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NON-NORMALITY AND NON-LINEARITY IN 

UNIVARIATE STANDARD MODELS OF INFLATION

by

Daniela Hristova-Bojinova

ABSTRACT

The empirical evidences presented in a vast number of recent publications gave rise to 
debates in the literature regarding the problem of stationarity of inflation. Sometimes 
considered as a unit root process and sometimes as a stationary process, in most of the 
studies inflationary time series are modelled assuming normality and linearity. The present 
thesis relaxes the frequently used assumptions of linearity in price processes and normality 
in distribution of inflation, and suggests two ways of modelling inflationary data. Firstly, it 
is assumed that distribution of inflation is a stable Paretian distribution and, under this 
assumption, stationarity of inflation is examined applying an appropriate test. Secondly, 
price time series are modelled by treating them as a unit root bilinear process, which 
further leads to non-normality in distribution of inflation. A recently proposed test for 
presence of no-bilinearity is then applied. If bilinearity is detected, the bilinear coefficient 
is estimated by the Kalman filter method. Subsequently, the finite sample properties of this 
estimator are evaluated using Monte Carlo simulation experiments. A series of Monte 
Carlo simulations leads to calculating the /-statistic critical values for testing whether the 
estimated bilinear coefficients significantly differ from zero.

The methodologies explained above are then applied to a large set of worldwide price and 
inflationary data for 107 different countries. Assuming that the distribution of inflation is a 
stable Paretian distribution 75% of the inflationary time series are classified as integrated 
of order zero. Under the assumption of normality of distribution of inflation this can be 
inferred for 11.11% of the inflationary time series. It has been also shown that 71.03% of 
the price time series exhibit unit root bilinearity. Analysis of the inflationary time series 
reveals the presence of bilinearity in 9.35% of them.
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INTRODUCTION

INTRODUCTION

The importance of modelling inflationary processes has been emphasised in the studies of 

many theoreticians and practitioners. Price stability and, therefore, low inflation rate has 

become a central issue of monetary and fiscal policy in many countries. In some of the 

countries the central bank monetary policy is oriented toward inflation targeting and is 

supported by a fiscal policy aiming at a balanced budget. This focuses both policymaker’s 

interests and the economist’s attention to the problem of inflationary forecasting. However, 

a reliable inflationary forecast rests on stationary time series, thus, highlighting the 

importance of correctly specifying the nature of inflationary processes regarding 

stationarity.

The dilemma of stationarity of inflation is a widely disputed issue in the recent literature. 

Many researchers treat inflation as a stationary process: Engle and Granger (1987), 

Clements and Mizon (1991), Johansen and Juseius (1992), Quah and Vahey (1995), etc. 

On the other hand, Nelson and Schwert (1977), Hall (1986), Baillie (1989), Ball and 

Cecchetti (1990), Johansen (1992) and Gartner and Wehinger (1998) among others have 

specified in their works inflation as a unit root process. Furthermore, in the studies of some 

researchers inflationary time series is being considered as both unit root and stationary 

process (see Engsted (1995), Barsky (1987), Mishkin (1992), Schwert (1987), etc.). 

Empirical evidences presented in the above publications support both suggestions 

regarding stationarity of inflation, as the conclusions made vary with time periods, 

frequency of observations and test results.
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INTRODUCTION

In the majority of the papers mentioned, stationarity of inflation is examined assuming 

normality. More precisely, testing the null hypothesis of linear unit root in prices is 

accompanied by the assumption that inflation, that is first difference in log of prices, is 

normally distributed process. However, this assumption is hypothetical and dubious one -  

plenty of empirical evidences demonstrate that inflationary data are far from being 

normally distributed. Therefore, it is reasonable to check the order of integration of 

inflationary processes relaxing this assumption.

Initially, inflation (and first difference of inflation) is modelled under the more realistic 

assumption that it distribution belongs to a broad family of distributions -  stable Paretian 

distributions -  from which the normal distribution is a special case {see Zolotarev (1986), 

Rachev and Mittnik (2000), etc.). Under the assumption that the disturbances of a random 

walk process are stable Paretian distributed, Rachev, Mittnik and Kim (1998) propose a 

unit root test conditional on the index of stability indicating the tail thickness of the 

distribution. Non-normality is indicated by an index of stability of magnitude smaller than 

the magnitude of the index of stability of the normal distribution.

Furthermore, non-normality in distribution of inflation is achieved by assuming non- 

linearity in prices. Imposing some restrictions, linear unit root models can be considered as 

a sub-class of the class of bilinear processes {see Granger and Andersen (1978), Subba Rao 

and Gabr (1974), Terdik (1999), etc.). This leads to the idea of applying bilinear processes 

in economic and financial time series modelling {see Charemza, Lifshits and Makarova 

(2002c)), in particular for modelling inflationary processes. Charemza, Lifshits and 

Makarova (2002b) propose a test for bilinear unit root conditional on the existence of 

linear unit root in the time series. In presence of bilinearity an issue of further investigation 

is evaluation of the magnitude of bilinearity in unit root bilinear processes and a way of its 

realization is suggested in this thesis.

Thus, the work continues with estimation of the bilinear coefficient in unit root bilinear 

price and inflationary processes. As bilinear processes distinguish themselves with a 

recursive structure, the recursive Kalman filter method {see Hamilton (1994), Harvey 

(1989), etc.) seems to be an appropriate estimation technique. Nevertheless, some of the 

features of this method, namely its applicability to non-stationary and non-linear processes 

and exact Maximum likelihood estimation make the algorithm preferable for the purposes 

of our analysis. It is also shown that for unit root bilinear processes with ‘small’ bilinearity

2
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and given sufficient number of observations the estimated innovations converge to the true 

values when the Kalman filter method is applied. The finite sample properties of the 

Kalman filter estimator are evaluated using a series of Monte Carlo simulations. 

Furthermore, Monte Carlo experiments are conducted for calculation of the ^-statistics 

critical values, used later for testing if the estimated bilinear coefficients are significantly 

different from zero. Subsequently, the Kalman filter estimator is applied to a large 

selection of world-wide price and inflationary data (price and inflationary time series for 

107 different countries).

In short, the rest of the thesis is outlined as follows: Chapter 1 concentrates on the problem 

of inflation predictability and, in this context, defines the term of core inflation (that is 

predictable inflation) and reviews some of the traditional ways of measuring it. It 

introduces a new device for measuring core inflation, called wavelets, and presents the 

results of measuring and forecasting inflationary processes for Poland and the United 

Kingdom applying different techniques. All the techniques, however, are based on the 

assumption of normality of inflationary distribution. Chapter 2 motivates the choice of 

modelling inflation under the assumption of non-normality, defines the stable Paretian 

distribution and the bilinear processes. It also dwells on the theoretical foundations of the 

tests suggested for establishing stationarity in price and inflationary processes under 

different assumptions, that is: the assumption of normality (classical unit root and 

stationarity tests), the assumption of stable Paretian distribution (unit root tests) and under 

the assumption of bilinearity (two-step testing procedure for presence of bilinearity). 

Abreast with the description of the data set (price time series for 107 different countries), 

Chapter 3 of this thesis discusses the test results obtained regarding stationarity of price 

(and inflationary) time series after the application of the tests suggested in Chapter 2. 

Furthermore, Chapter 4 adapts the Kalman filter for the purposes of estimating the bilinear 

coefficient in unit root bilinear price processes. It also presents the results of two Monte 

Carlo simulation experiments: (a) for evaluating the finite sample properties of the Kalman 

filter estimator, and (b) for calculating the t-statistics critical values for testing whether the 

estimated coefficients significantly differ from zero. The Kalman filter method is then 

applied to 108 world-wide price and inflationary data and the results obtained are 

discussed in Chapter 5. Finally, abreast with the concluding remarks the thesis finishes 

with suggestions for further research in the area.

3



CHAPTER ONE: PREDICTABILITY AND STATIONARITY OF INFLATION

CHAPTER ONE PREDICTABILITY AND STATIONARITY OF  

INFLATION

1. Introduction
Called by Friedman ‘phenomenon’, inflation is one of the main subjects of 

macroeconomics and is defined as the ’sustained rise in the general level of prices or a 

persistent fall in the value of money’ (Dawson (1992)). Moreover, it is the most 

commonly used economic term among both economists and the general public. Robert 

Shiller (1996) states that the word inflation appears in 872 004 news stories in the 

ALLNWS (all news) section of the Nexis system1 versus 602 885 stories for the word 

unemployment, and even outranks the word sex, which can be seen in only 662 920 stories 

only. One of the purposes of this section is to answer the question is inflation a social 

problem. The average person would say that inflation makes him/her poorer, since the raise 

in prices nullifies some of the raise in his/her salary. This is based on the assumption that 

in the absence of inflation people would be able to buy more goods if their salaries have 

risen. Although economists disagree about the size of social costs, there is a big gap 

between the public view and the cost of inflation identified by economists. This is 

supported by the curious survey results proposed by Robert Shiller in his 1997 article. He 

asked both the general public and economists whether their ‘biggest gripe about inflation’ 

was that ‘inflation hurts my real buying power, it makes me poorer’. 77% of the public 

versus only 12% of economists agreed with this statement. As a result of another more 

curious question that Shiller asked, namely whether the people agreed with the following

1 Nexis system is an electronic search system for English language news publications.
4
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statement ‘I think that if my pay went up I would feel more satisfaction in my job, more 

sense of fulfilment, even if prices went up just as much’, surprisingly 49% of the public 

agree compared to only 8% of the economists. In short, the term inflation is widespread 

among economist and the general public and the view of the social cost of inflation 

significantly differs between these two groups of people.

What is inflation and how do economists interpret this term? To provide a macroeconomic 

explanation of the term inflation we must consider the following examples, demonstrating 

the essence of inflation. In the United States in 1970, the price of the ‘New York Times’ 

was 15 cents and the average wage in the manufacturing sector was $3.36 per hour. 

Twenty-seven years later, in year 1997, the price of the ‘Times’ was 60 cents and the same 

average wage had increased to $13.6 per hour.2 If the reduction of the purchasing power of 

the money is so big that makes money useless and if this happens quickly, inflation is 

called hyperinflation. For example, in Germany, in July 1921 the purchasing power of 1 

DM was equivalent to the purchasing power of 54 000 million DM in November 1923.3 

These examples focus on the importance of inflation and stress the need of its forecast as a 

matter of urgency, since it is important for future individual or governmental decision­

making.

One of the main aims of this chapter is to provide an answer of the following question: Is 

inflation forecasting significant and indispensable? In short, if the level of prices is not 

correctly anticipated the real effect of inflation is observed, namely the difference between 

measured and expected level of prices, called metaphorically ‘price surprise’, while 

correctly anticipated inflationary rate would lead to correct individual and governmental 

decision making. As will be shown in Section 2.2, under the assumptions of RE-NRH, 

unanticipated inflation (‘price surprise’) is more costly than the anticipated inflation and, 

therefore, the better the inflationary forecast, the lower will be the cost of unanticipated 

inflation. Hence, it is important that rational inflationary expectations are formed correctly, 

i.e. there is a need for a reliable way of anticipated inflation forecasting.

It is, however, widely known that no single index provides a precise measurement of 

inflation, since price data exhibit high volatility and thus, contain substantial ‘noise’.

2 See Mankiw (2000).

3 See Dawson (1992).
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Eliminating the ‘noise’ part, the underlying (also called core inflation) is extracted. 

Although there is no explicit definition of the term core inflation, researchers try to find an 

accurate way of its estimation, based on different interpretations of this term. In all the 

concepts of core inflation, however, it is ‘generally associated with expectations and 

demand pressure components of measured inflation and excludes supply shocks’ (Roger 

(1998)). Thus core inflation is identified with the anticipated part of measured inflation. As 

unanticipated inflation is more costly than the anticipated one, it is important a reliable 

way of anticipated inflation forecasting to be found. Moreover, the better the forecast the 

lower will be the cost of unanticipated inflation.

Different methods of inflation decomposition and forecasting are known, as some of them 

are presented in this chapter. Chapter 1 also suggests a new technique, called wavelets, for 

core inflation measurement. Recently, this new device for signal decomposition has been 

successfully used in the economic area. As far as I know, the application of wavelets in the 

area of core inflation measuring is presented for first time in the present work.

The rest of the chapter is organized as follows: Section 2 states a brief overview of some 

inflationary indexes and discusses key measurement problems related to them. Next, the 

real effect of inflation is considered pointing out the importance of inflation forecasting. 

Further in this section a new inflationary term called core inflation is defined and an 

overview of different ways of measuring it is presented followed by brief theoretical 

explanation of three of them, as used in the empirical analysis later: Centered moving 

average, Exponential smoothing and Wavelets. The empirical analysis is based on 

inflationary data for two countries, exhibiting different patterns of inflationary processes: 

Poland and the United Kingdom. Further, for the purposes of inflation forecasting, the 

results of Exponential smoothing, Trend polynomial of order three and ARMA models are 

compared. However, when analysing inflationary processes a matter of primary importance 

is to specify correctly their order of integration. Thus, Section 3 of this chapter dwells on 

the often-questioned issue in the recant literature regarding the problem of stationarity of 

inflation, summarizes the findings related to this topic and suggests two alternative 

approaches of modelling inflationary processes. Finally, Section 4 concludes.

6



CHAPTER ONE: PREDICTABILITY AND STATIONARITY OF INFLATION

2. Inflation, predictable and core inflation

2.1 Inflation: definition and measurement
Defined by Dawson (1992) as the “sustained rise in the general level of prices or a 

persistent fall in the value of money”, the “phenomenon” inflation can be viewed as a 

measure of the real changes in the average level of prices. As the main interests of the 

governments are directed to the establishment of economic stability and sustained 

economic growth, an important issue from policymakers’ point of view is the availability 

of an accurate quantitative index for inflation. However, it is difficult to specify a single 

measure of this macroeconomic term: different indexes describe different sides of the 

inflationary process. In summary, while CPI, using fixed basket, measures the prices of 

certain goods and services bought by the consumer and PPI measures the producers’ 

prices, GDP deflator is a much more complex index, that incorporates both consumption 

and production processes. GDP deflator measures the prices of all goods and services 

produced in a domestic economy (only) thus, allowing the basket of goods to change over 

time. However, the main disadvantages of the last measure are first, its annual basis 

availability only and second, it takes usually up to two or three years in order for this 

measure to be precisely computed. As a matter of grate concern to the policymakers in 

forming current policy and preparing the government budget, this measure is of a little use. 

Another, although more limited price measure, CPI (or similarly RPI, PPI)4, which is 

available on monthly, quarterly or yearly basis, is usually used for inflationary assessment.

In 1995, the “Advisory Commission to Study the Consumer Prise Index” (widely known as 

the Boskin Commission) was formed and, appointed by the Senate Finance Committee in

4 The rate of change of the prices of goods and services bought by the consumers is measured in some

countries, for example UK, using Retail Price Index (RPI). According to Dawson (1992), the main difference 

between RPI and CPI is the measurement of the housing costs. For CPI calculation the housing costs are 

based on the rents, while calculating RPI, housing costs are ‘taken to be the monthly mortgage repayment, on 

the grounds that this is the proportion of the monthly mortgage household budget that has to be allocated to 

housing’ (Dawson (1992)).

An alternative measure of the price level is Producer Price Index (PPI), which measures the price of a typical 

basket of goods bought by firms rather than consumers.

7



c h a p t e r  ONE: PREDICTABILITY AND STATIONARITY OF INFLATION

order to examine the magnitude of the measurement error in the CPI in the US. The Boskin 

Commission’s report concludes that in the United States CPI “overstated inflation by 1.1 

percent per year in 1995-96” (Gordon (2000)), which significantly reflects most of the 

leading macroeconomic issues as “estimates of growth in output and productivity, median 

income, and real wages...it has major consequences for the time path of the government 

budget deficit and national debt; it produces misleading estimates of inflation for monetary 

policymakers for whom the inflation rate is a critical target” (Gordon 2000). Following 

Mankiw (2000) (and curiously enough), this measurement error has led to a rise in the 

federal government’s debt by more then $1 trillion over a dozen years.

As mentioned earlier, CPI is an index that measures the overall level of prices based on the 

prices of goods and services included in a fixed basket. Since some of the goods are 

purchased more often than others, the different items included in the basket are 

characterised by fixed weights and the CPI is computed as a weighted average. For the 

case of the US, the weights for the various goods and services are derived ones per decade 

from the Consumer Expenditure Survey in the US. For example, those used in the Boskin 

Commission’s Report in 1996 are based on the average of 1982-84, i.e. between 12 and 14 

years out of date. The data necessary for CPI calculation are collected in the following 

way: first, the items are divided on broad commodity groups such as housing, food, 

transportation, medical care, etc. Consequently, every one of these categories is divided 

into subcategories, which are further subcategorised, etc. As a result, a hierarchical 

structure of CPI is received. Its lowest level is called an item stratum and below the strata 

are the entry-level items.

CPI measures the price of a fixed basket relative to the price of the same basket in a chosen 

base period (month, quarter, year) using the standard Laspeyers5 formula:

Iu  = Z(=i

(  \  
Put

W i , o

where Wi,o = f l’° ^1,0 represents the weight of item i in the based period, p is the relevant
I  P i,o -9 ,,o(=1

price and q stands for quantities (monthly, quarterly, yearly).

5 Paasche formula designed for a changing basket is used when GDP deflator is calculated.
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According to Gordon’s paper (2000) related to Boskin Commission’s Report, three key 

measurement problems support the idea that CPI calculated using Laspeyer’s formula 

tends to overstate inflation (Table l . l 6): upper and lower level of substitution and, outlet 

substitution. In the following lines attention is focused on the first two.7

Upper Level Substitution 0.15

Lower Level Substitution 0.25

Outlet Substitution 0.1

New Products/Quality Change 0.6

Total 1.1

Table 1.1 Boskin Comission Estimates of Bias in CPI

As for the purposes of computations a fixed basket of goods is used, one of the problems is 

the upward substitution bias: if consumers substitute one good for another, as a result, for 

example, of fall in the relative prices, it would not reflect the CPI measure. Boskin 

Commission’s recommendation is Laspeyer’s index for the upper level strata to be used 

and geometric weights for the most of the lower level categories to be employed when CPI 

is calculated. The second problem arises from the introduction of new products as well as 

change in the quality of the existing goods. When a new product is introduced consumers 

are better off since their choice is greater and the real value (i.e. purchasing power) of the 

money increases. Although difficult to be measure, quality improvements, such as comfort 

or safety, cause increase in the measured price index. For example, the price of audio­

visual goods fell in real terms by 20% between 1974 and 1996 but no account of quality 

improvements has been made8. Ward and Dikhanov (1999) report in their paper an 

interesting example that demonstrates decrease in the speed, reliability, convenience and 

comfort in US airfares compared with 15-20 years ago: any flight from a major US city to 

an arbitrary destination in Europe is now 60-90 minutes longer; the flight service and 

especially the food have deteriorated; the seat space in the most widely used economy class 

has been significantly reduced; lots of destinations are not served now with the same

6 See Gordon (2000).

7 According to Gordon (2000) the third problem, namely outlet substitution bias seems minor. For example in 

US and other countries this bias is 0.1 percent per decade.

8 Dr. Stephen Price’s lectures, Department o f Economics, University o f Leicester, 2000-2001 academic year.

9
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frequency as before; schedules are less convenient; arrival and departure times are at 

unsatisfactory levels; the number of direct flights is significantly reduced.

The Boskin Commission divides its recommendations with respect to the three time 

horizons: short, medium and long run. In short run and medium run their recommendations 

include new data collection initiatives. According to the Boskin Commission, in short run 

the evaluation of the CPI has to be changed in order for this index to be more current and 

secondly, the cost of the living index has to be annually updated and continuously revised. 

In medium run the Commission suggests “reforms that are feasible in the current state of 

the art, ... reorganisation of activities, and/or changes in the detail of the various 

subindexes produced by the CPI” (Gordon (2000)). Long run recommendations however, 

“require additional research and attention” (Gordon (2000)).

Thus, CPI does not accurately measure inflation. One of the reasons for this is that it is 

usually represented as a time series of monthly or quarterly observations. Such time series 

are highly volatile and therefore contain a lot of ‘noise’. Eliminating the ‘noise’ part, the 

underlying (core) inflation is extracted. This is relevant to one the concepts of underlying 

inflation, that is the view of core inflation as the persistent element9 of the measured 

inflation. Prior to focus on the theory of core inflation let us briefly discuss - in the 

following subsection - the role of correctly formed inflationary expectations (associated 

with reliable inflationary forecast) by discussing the real effect of inflation.

9 The concept of core inflation as generalised component of measured inflation is developed in 

Okun (1970), Flemming (1976), Fase and Folkertsma (1996).

10
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2.2 Inflation and real effects
The present section focuses on the importance and significance of inflationary forecasting. 

As already mentioned, if the level of prices is not correctly anticipated the real effect of 

inflation is observed, known as ‘price surprise’. This is simply the difference between 

measured and expected level of prices. The so-called ‘price surprise’ model is theoretically 

generalised by Lucas (1972) and the rest of the section presents Lucas’ model supply side.

2.2.1 Lucas model
In Lucas’ model suppliers are located in a large number of separated competitive markets 

M, where single good is distributed. Based on the Rational Expectations -  Natural Rate 

Hypothesis (RE-NRH)10 theory, the model considers an economy, in which, there is 

imperfect information and hence the individuals “cannot distinguish relative from general 

price movements” (Lucas (1973)) (similar to the labour supply example, where workers 

cannot distinguish nominal from real wages). Following Cuthbertson and Taylor’s (1987) 

approach to Lucas’ model and using similar notations, consider the supply side of the 

model.11

The quantity supplied by producers in market M  at time t, denoted by yt(M), alters around
$

its natural level of output y (M):

y  (m  )= y *(m  )+  y \ M  ),

where y*(M) is a component common to all markets12 and yct ( M ) is a cyclical component, 

which varies from market to market. Assume that y*(M) is constant over the time t and that 

the cyclical component yct ( M ) varies only with relative prices13. The latter term can be 

expressed as an equality of the following form:

y; m = r { p , m - E M p ) ,

10 See Attfield, Demery and Duck (1991), Begg (1982), Demery and Duck (1991).

11 See also Tumovsky (1995), Stevenson and Muscatelli (1988), etc.

12 In his original paper, Lucas (1972) postulates that the natural level of output y*(M) follows a time trend. 

For simplicity, let’s assume that y*(M) i s a constant.

13 By contrast, in Lucas’ paper (1972), yct (M)  depends on its lagged value y^_t ( M ) .
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where, for specific market M, p/M)  represents the actual local price at the market M  at 

time t, p t is the aggregate price level over all markets and EMpt = E[pt\I2t(M)\ is the 

expected price, associated with the mean general price level over all the markets, 

conditional on all the information available, to the economic agents in market M  at

time t. It is evident that the individuals, located in market M  have more information about 

the local prices pt(M) and less information for the general price level p t. In his model the 

author assumes that the price of the good in market M, plM ) differ from the average price 

pt of the good in all the markets and therefore can be viewed as:

Pt(M)=pt + ut(M), (1.1)

where Ut(M)~N(0,(?) independent of pt, is a relative price shock, different for different 

markets and determined by events specific for the local market M.

Similarly, the average price level p t varies from its expected value, namely:

Pt -  Ept + vt, (1.2)

where Ept = E[pt\Qt\ is the expectation of the aggregate price level and vt ~N(0,i2) is a 

forecasting error. Both terms w/M) = p t(M) - pt and vt = p t - Ept have become known as 

price surprises (supply shocks), where the first error, u/M), represents the surprise specific 

for market M  and the second one, vt, the average price surprise for all the economy.

Substituting then (1.2) into (1.1) yields:

Pt(M) = Ept + vt + ut(M).

For a fixed market M  the price of the good is known, p t(M), and in order to form 

expectations about the general price level, economic agents use all the information 

available in their market at time t. Then, the following result can be shown algebraically:

yt = y* + yU-fi)(Pt - Ept),

T2
where = —:-----  , 0 < /? < 1.

G + r

The problem a supplier located in market M  faces is whether a change in the local price 

reflects the price in all other markets. The smaller is the variance of the average price 

surprise shock t2, the bigger is /? and the smaller is (1-fi), suppliers are, therefore, willing 

to supply more and locally the level of output will increase. Conversely, the bigger the 

variance T? the smaller is and the suppliers in this sector will not increase the supply in

12
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response to the price increases. The level of output then will not deviate from its natural
)|C

level of output y .

Lucas’ model of aggregate supply, therefore, can be summarised by the function:

yt = y* + 0(pt -Ept), (1.3)

where 0 -  y{l~P) 0> 0. This states that the output deviates from the natural level of output 

only when unexpected rise in the general price level is established. Correct expectations, 

that is pt=Ept, imply that the level of output yt supplied is equal to the natural level of 

output y*, consistent with long run vertical aggregate supply curve. In contrast, when 

expectations deviate from the actual price level, output changes in the following way: yt 

increases for prise level higher than the expected one and decrease when the prise level is 

lower, that is the supply of output is positively related to the current price level. Actually, 

equality (1.3) represents the short run AS curve, where the parameter 6 shows how much 

output responds to unexpected changes in the price level.

The analysis made above illustrates the significance of inflation forecasting. Associating 

the anticipated inflation with forecasted inflation, Lucas’ AS model demonstrates the real 

inflationary effect, namely: if the actual level of prices is not correctly predicted, consistent 

with price surprise, the real output deviates from its natural rate, while fully forecasted 

price level will not affect the level of real output.

2.2.2 The Cost of Inflation
As mentioned above, inflation can be split into two parts: anticipated and unanticipated. 

However, distinction has to be made between the cost of perfectly anticipated and 

imperfectly anticipated inflation. Although costly, it can be shown that anticipated inflation 

is less costly than unanticipated one, which once again points out the significance and 

importance of inflation forecasting. The following two sections present the economists’ 

view of the social cost of steady and predictable inflation, as well as, steady and 

unpredictable rate of inflation.

2.2.2.1 The Cost of Anticipated Inflation
A number of costs of the anticipated inflation have been identified by economists, e.g. 

shoes-leather cost, menu cost, infrequent price changes, nominal contracts, etc. Consider

13
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the leather-shoes cost of inflation. Under the assumptions of anticipated inflation, higher 

inflation leads to an increase in the nominal interest rate, which on the other hand, causes 

an increase in the cost of money holding by the people. The individuals will prefer to keep 

their cash holdings to the minimum required and will deposit the rest, if the interest rate is 

paid. Consequently, they will make more frequent trips to the bank to withdraw money and 

will ‘attempt to synchronise cash expenditures with the receipt of cash income’ (Briault 

(1995)). The cost of anticipated inflation is therefore associated with the loss of some of 

the utilities people get from the holding cash (e.g. fuel, time, unused labour, etc.). The 

positive relationship between the cost of inflation and the rate of inflation is consistent with 

the empirical results of Tobin (1972), Minford and Hilliar (1978), Fisher (1981), Lucas 

(1993). They report that even fully anticipated inflation has a large social effect. For 

example, in the US ‘an extra percentage point of anticipated inflation embodied in nominal 

interest rates produces in principle a social cost of 2/10 of one per cent of GNP per year’ 

(Tobin 1972). As Braiult (1995) states ‘this estimates are very sensitive to the specification 

of the money demand function and to the chosen definition of money (in most developed 

countries, cash in domestic circulation is a fairly small proportion of national income).’

Menu cost arises as a result of an increase in the rate of inflation, which makes the firms to 

change their prices and hence, to print new menus and catalogues more frequently.14 Since 

the price adjustments are costly, some of the firms will change the prices only if their 

desired price level is large enough to justify the costs of adjustments. The infrequent 

change in prices is another type of cost of inflation: higher inflation leads to higher 

variability in the relative prices. This is illustrated by the following example, presented by 

Mankiw (2000). Consider a firm that prints a new catalogue every January. If there is no 

inflation, firm’s prices relative to the overall level of prices will remain the same over the 

year. However, 1% monthly inflation will lead to relatively high prices and, hence, low 

sales in the beginning of the year. By contrast, the relative prices will be low and the sales 

will be high at the end of the year. In this example, the variability in relative prices induced 

by inflation is demonstrated.

14 In the German hyperinflation of 1923, for example, the prices in the pubs changed every half an hour. 

Under hyperinflation the individuals eating in a pub prefer to pay their bills in advance, since they expect the 

prices to risen at the time of their meal.

14
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2.2.2.2 The Cost of Unanticipated Inflation
A typical example that demonstrates the cost of unexpected inflation is long-terms loans. 

At the time of agreement the creditor and the debtor form expectations of the future 

inflationary rate over the loan period. Based on their expectations, the nominal interest rate 

is usually fixed by a loan agreement. Assuming that inflation differs from what was 

expected and let us suppose rate of inflation higher than expected. An increase in the rate 

of inflation leads to an increase in the nominal interest rate. Since in our example the 

interest rate determined by the agreement remains unchanged for a fixed period, the debtor 

wins and the creditor loses.

The following example illustrates the impact of the unanticipated inflation on individuals 

with fixed pensions. Let us assume that a retired worker receives fixed nominal pension. 

Actually, the worker could be seen as a creditor, since during the time he/she is working, 

he/she provides labour services to the firm but is not fully paid. Therefore, inflation higher 

than the anticipated level will lower the real value of the pension that the retired worker 

receives. Lower inflation, on the other hand, will hurt the firm, seen as a debtor in this 

example.

Based on these situations, one may conclude that the more variable the rate of inflation, the 

greater the uncertainty that firms and individuals face. A solution in this situation is the 

agreement to be written in real terms rather than in nominal, using as an index more stable 

foreign currency. The earliest empirical results (Foster (1978), Logue and Willet (1976), 

Okun (1971), etc.) suggest that there is a positive relationship between the variability and 

the level of inflation. However, according to Briault (1995) variability and uncertainty are 

not the same things. ‘Inflation might be highly variable, but if the process generating it 

were understood there might be little associated uncertainty and the costs of variable 

inflation will be lower if the variations are predictable’ (Briault (1995)). In their empirical 

work Ball and Cecchetti (1990), Engle (1983), Evans (1991), Evans and Wachtei (1993) 

among others, try to measure uncertainty by adjusting the measures of variability and the 

reported results suggest a positive relationship between the rate of inflation and measured 

uncertainty (particularly for uncertainty over longer time horizons). Finally, according to 

Mankiw (2000), it is a widely documented fact that high inflation is associated with
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variable inflation.15 For example, countries with high average inflation tend to have 

inflation rates that change greatly from year to year.

It is important, however, to point out that unanticipated inflation is more costly than the 

anticipated one, which emphasises once again the significance of inflation forecasting.

2.3 Core inflation
As it has been pointed out in the previous section, under the assumptions of RE-NRH, 

unanticipated inflation (or ‘price surprise’) is more costly than anticipated inflation. Thus, 

in order to lower the cost of unanticipated inflation it is important that the formation of 

rational inflationary expectations is correct. In other words, economists need a reliable way 

of anticipated inflation forecasting. As it has been mentioned earlier, the most commonly 

used measure for inflation, CPI, contains a lot of ‘noise’ and thus, does not evaluate 

precisely the ‘phenomenon’ inflation. In the present section a new term, named core 

inflation is introduced and its nature, significance and possible ways of measuring are 

summarized. However, before providing precise definitions of this term let us start the 

discussion with the relationship between anticipated and core inflation.

There are two central concepts of core inflation: first, the view of underlying16 inflation as 

persistent and secondly, as generalised component of measured inflation. However, in both 

concepts, core inflation is ‘generally associated with expectations and demand pressure 

components of measured inflation and excludes supply shocks’ (Roger 1998). Core 

inflation is, therefore, associated with anticipated inflation and the difference between 

measured and core inflation is called unanticipated inflation (‘price surprise’), or roughly 

speaking ‘noise’. Although there is no an explicit definition, the researchers try to find a 

reliable estimate of the underlying inflation based on different interpretations of this term.

2.3.1 Definitions of core inflation
Although indirectly, the idea of core inflation starts from Milton Friedman (1963): he 

defines inflation as a “steady and sustained increase in the general price level” and also

15 According to Briault (1995), however, ‘it is difficult to reach any firm conclusion that higher rates of 

inflation necessary lead to greater relative price variability’.

16 The terms core and underlying inflation are used interchangeably.
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distinguishes “a steady inflation, one that proceeds at a more or less constant rate, and an 

intermittent inflation, one that proceeds by fits and starts”. In other words, Friedman 

associates the ‘steady’ or the persistent component of inflation with the anticipated long- 

run inflation and the ‘intermittent’ inflation with unanticipated one.

The term underlying or core inflation is originally defined in the work of Eckstein (1981). 

He describes the underlying inflation as ‘the trend increase of the cost of the factors of 

production’. Following Eckstein, core inflation “originates in the long-term expectations of 

inflation in the minds of households and businesses, in the contractual arrangements which 

sustain the wage-price momentum, and in the tax system”. In Eckstein’s definition, 

inflation is viewed as a product of two components, namely measured inflation, and that 

part of measured inflation, which results from: first, supply shocks and secondly, cyclical 

movements, caused by aggregate demand shocks.

17Following Roger (1998) aggregate inflation can be presented as an equality of the form :

n t =  n ?  + g t + Ct >

where 7k and 7kLR denote the aggregate18 and long run inflation rates, gt measures cyclical 

demand shocks and £  is a measure of transient disturbances (e.g. supply shocks). Then 

core inflation might be represented in the form:

ri  =  Or, ~ g t ~  C t )  = 7tLR, 
while non-core inflation, associated with that component of inflation, which results from 

cyclical changes and supply shocks can be expressed as:

Hence, according to Eckstein’s definition, if expectations are formed rationally, only the 

non-core component of inflation will show a cyclical tendency. Core inflation should 

demonstrate a cyclical tendency only when long run inflationary expectations are adaptive. 

In long run, however, prices exhibit flexibility and do not influence real output. Therefore, 

in the long run and following Eckstein’s definition, the core component is determined as 

strongly output neutral. In contrast, in short run, when prices exhibit inertia and the output 

deviates from its natural rate, Eckstein’s definition determines real output as approximately 

output neutral.

17 See Roger (1998). The notations used are similar to those used by Roger (1998).

18 This is the increase in the money supply.
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The theory of core inflation became very popular and widely used after the publication of 

Quah and Vahey’s (1995) paper. The authors define core inflation as ‘that component of 

measured inflation that has no medium- to long- run impact on real output’ (this definition 

is consistent with vertical Philips’ curve). As it has been shown earlier (Section 2.2.1), 

based on the RE-NRH, long run vertical aggregate supply curve is consistent with correct 

expectations (i.e. pt = Ept) and, therefore, in order to be output neutral in long- to medium- 

run, core inflation must be associated with that inflationary component, that corresponds to 

the rational inflationary expectations. Some of the supply shocks, however, affect 

permanently the level of prices, but “have no lasting impact on the rate of inflation” (Roger 

1998). These shocks, therefore, are excluded from Quah and Vahey’s definition. However, 

core inflation “does include cyclical movements in inflation associated with excess 

demand pressure” (Roger 1998).19

Using the notations made earlier, Quah and Vahey’s core inflation can be represented by 

the following expression:

By contrast with Eckstein’s definition, Quah and Vahey’s underlying inflation has a strong 

cyclical character. Equalities (1.4) and (1.5) show that core inflation and non-core inflation 

correspond to anticipated and unanticipated inflation, respectively. Therefore, in long run, 

when prices are fully flexible, core inflation is output neutral and non-core inflation is 

correlated with the output. In contrast to Eckstein’s definition, in short run core inflation 

should be correlated with output. However, in both definitions, supply shocks are 

considered as having only passing effect on inflation and are excluded from core inflation 

definition.

Another view of the term core inflation is represented by Bryan and Cecchetti (1993). Both 

authors consider the relationship between the persistent element of the measured price 

index and money growth, defining the term core inflation as “a measure of money-induced

n t =  {7lt ~  C t) =  71^ +  g t (1.4)

and the non-core inflation as:

(1.5)

19 In Quah and Vahey definition the term ‘cyclical component’ refers to business cycles (that is short run 

fluctuations in output, incomes and unemployment)
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inflation: that is, the component of price changes that is expected to persist over medium- 

run horizons of several years” (Bryan and Cecchetti (1993)).

A version of the single period model, proposed by Ball and Mankiw (1992) is presented in 

Bryan and Cecchetti’s (1993) paper and specifies their view of the term core inflation. 

Consider an economy consisting of two types of price setters: ones that change their prices 

period after period, following changes in economy, and price setters that set their prices 

infrequently as a result of costly price adjustments. The latter change their prices only if 

their desired price change is large enough to justify the costs of adjustment, known as a 

“menu cost”. The relevant price paths exhibit different behaviour for the different type of 

price setters: the firms, changing their prices often and frequently possess price paths 

characterised by large transitory fluctuations and as a result noise is added to the measured 

inflation. By contrast, the second type of price setters, forming their expectations 

rationally, possesses smooth price paths, associated with the desired long-run inflationary 

trends.

Based on the shock distribution, the response of the overall price level on the shocks that 

affect relative prices is demonstrated. Symmetric distribution, for example, is consistent 

with an increase in the prices of some of the firms, offset by price cuts made by others and 

therefore, the average price level remains the same. Conversely, if the shock distribution is 

skewed, the average price level will temporarily move up and down and hence the high 

readjustment costs might result in transitory movements of the headline20 inflation from its 

long-run trend.

Facing the single period problem and given the assumptions of zero trend output growth, 

constant velocity and constant money growth m, Bryan and Cecchetti consider an economy 

consisting of a large number of firms, which face the same “menu cost” when adjusting 

their prices. Under these assumptions, each firm will decide to change its price by m, and 

therefore, the aggregate inflation will be equal to the monetary inflation21. Following both 

authors, the term core inflation is defined as:

n c = m.

20 The terms headline and overall inflation are used interchangeable.

21 Aggregate measures of inflation imply a smooth, uniform rise of the general price level.
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Considering a fixed firm i, let’s denote by £ the shock experienced to either its product 

demand or its production costs. Hence, the firms would have changed their prices by £, 

i.e.:

7ti = m + £i

However, as a menu cost has to be paid, only the firms with large \£ | will change the 

prices. Let’s denote the critical values of £ with £  and £t , the lower and upper limits for

the shock £, respectively. As one of the assumptions states that all the firms face the same 

menu cost, that is:

e i< e i< e t (1.6)

only the firms satisfying condition (1.6) will change their prices. The average inflation, 

therefore, depends of the nature of the shock distribution. Symmetrical distribution, for 

example, will lead to 7T= 7TC= m, while skewed shock distribution will deviate from n c in 

the following manner: n c will be greater than the core inflation n c if the distribution is 

positively skewed, that is the inflation of the current period will be above the core 

inflation, while in the period following the shock it will be below the core inflation.

□

Bryan and Cecchetti’s definition of core inflation is based on the assumption that m and £ 

are independent, i.e. “absence of monetary response to supply shocks” occurs, which - on 

the other hand - is consistent with lack of monetary accommodation. In contrast to 

Eckstein, and similarly to Quah and Vahey’s definition, Bryan and Cecchetti’s core 

inflation is output neutral, consistent with long run vertical aggregate supply curve. “Any 

deviations of inflation from n 0 will result in changes in real money balances and move y 

away from y*” (Bryan and Cecchetti (1993)), where y and y* denote the actual and the 

natural rate of output, respectively.

Finally, although slightly different, in all the definitions explained above the term core 

inflation is associated with the anticipated part of measured inflation. Varieties of methods 

for measuring and forecasting underlying inflation are known. A brief overview of selected 

methods is presented in the next section together with a short description of a new 

technique, called wavelets, which to the best of my knowledge is applied for first time in 

the area of inflationary measurement.
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2.3.2 Core inflation measures

2.3.2.1 Overview
As mentioned, core inflation considered as the persistent element of measured inflation is 

simply the difference between measured inflation and its transitory element. The transitory 

components, associated with ‘noise’, present the high frequency price changes and are 

usually characterised by high skewness and excess kurtosis, that is the tails of the 

distribution are fatter than the tails of the normally distributed random variables. Limited- 

influence estimators, such as median and trimmed means, are possible solutions when 

facing such problems.22

The former method is developed by Bryan and Pike (1991). In order to calculate the 

median, the inflation values in the CPI basket are ordered in the following way: {pi,..., pn}, 

where pi < pj, i < j  and the associated weights are {wj,..., wn}, wt < Wj, i < j  respectively. 

Consequently, the cumulative weights, denoted by Wi are defined as:

W, = t  wj
j =i

and the median inflation is then determined as the inflation rate p*e {pi, ..., pn) at which 

the cumulative weight W* reaches 50 percent. The median inflation pk is therefore the 50th 

percentile inflation rate at which half of the components in the CPI basket have higher 

inflation, and the other half less. 23

The method of trimmed mean is introduced by Bryan and Cecchetti (1993) and involves 

trimming both sides of the CPI components inflation distribution by a certain percentage, 

which is consistent with removing the tails from the distribution. Using the notations 

above, a -  percent trimmed mean is calculated in the following way:

22 Other methods are also known, e.g. excluding food and energy, elimination of extreme values, excluding 

the administered prices, etc.

23 According to Hogg (1967) if the kurtosis of a data distribution is above 5.5%, the median is recommended 

estimator.
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where Ia = { Wi | cn/100<W/< 1 -<3/100 }. That is a  percent trimmed mean is a weighted 

average of (100-a) percent observations, removing a  percent of the CPI components with 

the smallest and largest rates of inflation.

Under the assumption of symmetrically distributed component prices in the CPI basket, 

there is a slight difference between the median, trimmed mean and CPI measures of core 

inflation. However, trimmed mean provides efficient results for leptokurtic distributions. 

The higher the kurtosis of a distribution, the higher the efficient trim is. This is as a result 

of the following: higher kurtosis means a larger number of observations located in the tails 

of the distributions and unrepresentative of the central tendency. The trimmed mean 

method described above illustrates symmetric trims and will produce a biased estimator. If, 

however, the distribution is skewed, the trimmed mean will be lower than the overall CPI 

inflation for positive skewed distribution, and larger for negative.24 When the trimming is 

disproportional from the tails, the method is known as asymmetrical trimmed means and is
25found to be more efficient if the distribution exhibits positive or negative skewness. For 

example, the greater the coefficient of skewness of a positively (negatively) skewed 

distribution, the greater percentage of trim has to be taken from the left (right) tail of the 

distribution.

An alternative method of core inflation measuring - output-neutral method -  was proposed 

by Quah and Vahey and became widely used after their publication in 1995. They define 

the term core inflation as “that component of measured inflation that has no medium- to 

long- run impact on real output”, consistent with a vertical long run Philips curve. The 

authors suggest an alternative technique for calculating and forecasting the underlying 

component, using Vector Autoregression (VAR) model of two variables: output and 

measured inflation27. Following Quah and Vahey (1995) “the rate of the RPI is problematic 

as a measure of inflation, since the RPI is not designed to measure movements in the 

general price level”. As it has been already mentioned, RPI (or CPI) is constructed based 

on the costs and weights of various components included in a fixed basket of consumer

24 Wozniak (1999)

25 Jaramillo (1998)

26 Hamilton (1994)

27 The models of Claus (1997), Gartner and Wehinger (1998) among others are an advance in so far as they 

include more variables in the VAR system
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goods and services. According to Quah and Vahey (1995) “in the inflation context the 

weights are potentially misleading and possibly meaningless” and it is not clear whether “a 

given price change in a good with a higher weight” is “more inflationary than in a good 

with a lower one”. Measured inflation is considered as influenced by two types of 

exogenous shocks28: first, the disturbances that have no effect on the real output after fixed 

horizon, associated with the core inflation and, secondly, the disturbances that may 

significantly influence output in medium to long run horizons.

Applying decomposition methods to economic time series, in particular to inflationary 

data, aims at subtracting the random variable of the data thus, obtaining their underlying 

pattern. One way of distinguishing this pattern from the ‘noise’ is by smoothing the 

observed values. The underlying pattern, known also as trend-cycle, presents the long run 

changes and is sometimes subdivided into trend and cyclical components. Subtracting the 

core inflation using time series smoothing techniques refers to Eckstein’s definition of the 

term core inflation. The empirical analysis presented in the Section 2.3.3 is based on three 

smoothing techniques: Centered moving average (CMA), Single exponential smoothing 

and Wavelets, briefly discussed in the following sections.

2.3.2.2 Centered moving average29
Moving average is the simplest and oldest method of smoothing. A centered moving 

average technique is based on moving averages and is located at the middle of the period 

being averaged. When smoothing by ^-centered moving average one has to distinguish 

between k being an odd and an even number. Consider a time series, which consists of n 

observations: Y\, Yj, ...Yn.

If the number of the observations k being averaged is an odd number, moving average of 

order k and k centered moving average methods coincide. The following series can be 

calculated:

28 In fact, the economy is hit by a large number of heterogeneous shocks with different effects on the 

measured inflation and output.

29 See Markidakis (1998), Greenwald (1963).
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Yi + Y2 + -  + Y(k+y2+ -  + Yk Y2 + Y3 + -  + Y«+y2+ -  + Yk+i 
k k

Y  n-k+l +  Y n - k+2 +  -  +  Y(2«-*+%  +  ... +  Yn

where Y(*+%, Y(fc+3̂ /,...,Y{2n~k+y  are the relevant centres and their number is n-(k-l). As a 

result (k-l)/2 observations at each side of the time series are lost. In addition, for odd, k-

point moving averages the k elements weighting system is I I  I  
* V ' " *

Consider now the case when k is an even number. The moving averages are located half a 

period early and half a period late. For example, in a monthly inflationary time series any 

even moving average is located fifteen days away from the original series. Next, by 

averaging these two k moving average smoothers, the centered moving average is obtained. 

In this case the process of smoothing is equivalent to a weighted moving average of order 

£+1 with weights l/2k for the first and the last observations in the average and 1/k for the

JL  I  I  _L
2k V " V 2 f c

centres: Y(*+2^,Y(*+%,..y(2»-*j^. The number of the observations lost at each side of the 

time series is k/2.

rest. The relevant k+l elements weighting system is now with n-k

2323  Single exponential smoothing30
Consider time series with length n and let’s denote the observed values with Yt and the 

fitted values with Fu where t = 1, 2, ..., n. Exponential smoothing is then defined by 

recursion formula of the following form:

Ft = a Y tA + (l-(Y)Ft.h t = 2 , . . . ,n ,  (1.7)

cce (0,1),

i.e. the fitted value at the moment Ms a linear combination of the most recent observation 

and the most recent fit with weights a  and (1 ~a) respectively. Substituting consequently 

Ft-h Ft.2 , ... by their equal in equality (1.7) the following result is obtained:

Ft = a Y t_x + a (l-a )Y t.2 + a ( l-a )2Yt.3 +

+ a ( l-a )3Yt.4 + ... + a { \-a )t'2Y\+ cc.{\-a)tAF \.

30 See Markidakis (1998)
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that is Ft can be seen as a weighted moving average of all the past observations with 

exponentially decreasing weights as the observations get older.

However, when calculating Ft, t = 2, n one faces problems of identifying a  and F\. 

Various methods can be used for initialising F\. The simplest way is to equate the starting 

value F\ to the first observed value Y\. Another possibility is to initialise F\ by simply 

averaging the first several observations. Other methods related to this topic have been also 

proposed as backcasting, decomposition, etc. Similarly, another important issue is the way 

of choosing the weight a , a e  (0,1): while choosing or closed to zero, say a  -  0.1, leads to 

over-smoothing of the time series, large d s  value, say a  -  0.9, corresponds to very little 

smoothing. The parameter a  is usually set to the value that yields the smallest Mean 

Square Error (MSE) value, i.e. the MSE is first presented as a function of the coefficient a  

and is later minimised with respect to this coefficient. The optimum point can be then 

chosen for initialising the weight a.

2.3.2.4 Wavelets31
Every periodical32, square - integrable function33,34 has a Fourier representation35, i.e. can 

be transformed into a linear combination of sines and cosines also known as ‘waves’. 

Decomposing a function in such a way has - from practical point of view - one 

disadvantage: waves never tend to zero. For practical purposes we need a basis consisting 

of functions that tend to zero on infinity. The so-called ‘wavelets’ , usually denoted by 

\fAf), distinguish themselves with very fast tendency to zero. Before we look at the way of 

decomposing a time series into wavelets, let us focus our attention on the issue of 

modifying a given wavelet \jAf) in a way that it satisfies some desirable properties we 

would like this function to posses. Different families of wavelets are known. For the

31 It might be interesting fact for the reader that wavelets are used by FBI for storing fingerprints.

32 fit) is called a periodical function if the following equality holds:

fit)=j{t+1), where leN.

+°°
33That is J*/ 2 (t)dt < °o.

34 It is easy to show that every real function can be transformed into periodical function.

35 See Harvey (1981), Granger and Hatanaka (1964).

36 Intelligible explanation of the wavelets can be found in Chui (1992b). See also Daubechies (1992), Mayer 

(1993), Mallat (1989).
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purposes of our analysis the so-called Daubechies’ wavelets are used. Their advantageous 

are explained later.

As mentioned, wavelets exhibit fast convergence to zero. Thus, suppose the wavelet y/(t) is 

a function, such that yAt) —> 0 very fast. Hence, shifting yAt) along R, yAt) will cover the 

whole real line R. Therefore, it is convenient the function to be modified in the following 

way:

if/{t-k), keZ , (1.8)

where k shows the wavelet position.

Another feature we would like wavelets to possess is different frequencies. Let us further 

modify yAt-k), or equivalently yAt), in the following way:

i/A2'j t -  k), j ,k e  Z, (1.9)

where 2'; is the frequency of the wavelet. The inverse of the frequency is called scaling 

factor and the parameter j  shows the relevant scale. Obviously, in (1.9) the scaling factor is 

2/. While the frequency shows how often a function repeats itself in a unit of time interval, 

the scaling factor corresponds to the wavelets’ stretching or compressing.

Consider now a wavelet yAt) with scaling factor 2'J = 1. Scaling factor greater than one 

corresponds to a stretched wavelet, while scaling factor smaller than one leads to a 

compressed wavelet. In short, the smaller is the scaling factor, the more compressed is the 

wavelet and the larger is the scaling factor, the more stretched it is. The wavelet yAt) is 

often called in the literature mother wavelet. In summary, by the use of (1.8) the mother 

wavelet is shifted with step k, while (1.9) gives its scaled version.

While Fourier analysis decomposes a function (or time series) into waves (sines and 

cosines) of various frequencies, wavelet analysis breaks up a function (or time series) into 

wavelets yAt) satisfying properties (1.8) and (1.9). Equality (1.10), namely:

f( t )=  I  CnJ** d .io )tl — —OQ

where cn are constants, demonstrates that any function fit) can be presented as a linear 

combination of the elements of the orthonormal37 basis {eintjn£z■ Equality (1.10) is simply

37 If all the basis elements have unit length in orthogonal basis, the basis is called orthonormal.
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Fourier series presentation of fit). In a similar way and using Wavelet analysis, the aim is 

to find an orthonormal basis {y/jtk\j,kez, such that every real square-integrable function/(0 

can be represented as a linear combination of the basis elements, namely:

f ( t )=  £  £  Dj,kVjk(t)

where by definition = 2'j/1yA2'jt-k). The coefficients Djk can be found in the

following way:

D u = - j = l f m ik(‘)dt (1.11)
V 2 ' -

and characterise the wavelet yAt) at scale j  and position k.

Daubechies (1988) constructed class of orthogonal wavelets, called Daubechies’ wavelets. 

They are asymmetric and every one characterises with an order N, N  = 1,2, ... The higher 

the order N  of the wavelet, the smoother the wavelet is. With regard to their order, this 

class of wavelets possess important properties, namely:

• they are compactly supported with support length 2N-1: 

supp{ y/} = [-(AM), N]

• they have N  vanishing moments -  the highest number of vanishing

moments for a given support length among the other classes of wavelets

A useful device that represents the process of wavelet decomposition is the Multiresolution 

Analysis38. According to the definition of Multiresolution Analysis, there exists a function 

# f )  called scaling function. It can be shown that if <fAt) has a compact support such that:

m = i Ck</>(2t-k),
k=0

then (j>. k{t) = 2y/V(2 jt - k ) , j e Z  is an orthonormal basis in Vj.39. Further, it can be shown 

that ysj k(t) = 2 ;/V ( 2 Jt -  k ) is an orthonormal basis in the space Wj 40 as Vj and Wj are 

orthogonal.

38 See Appendix A for Mallat’s definition (1989) of Multiresolution Analysis.

39 (Vj)jez is a subspace in L2(R). The properties of V} are explained in more details in Appendix A.

40 The properties of Wj are explained in more details in the Appendix A.
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Consider now time series41 fit) of length m42. Let us call for simplicity the high-frequency 

information of f i t) ‘noise’ (or details) and the low-frequency information approximation. 

Applying first, low-pass43 and high-pass44 filters and secondly, down sampling, our 

original series is split into two signals: details and approximation. Replacing then the 

signal with the approximated one and using the same procedure, new approximation and 

‘noise’ are received, i.e. (Fig. 1.3):

1

di

fi
Fig. 1.3

Therefore, the decomposition of the time series fi t )  at level j  can be represented uniquely as 

a sum of one approximation and j  levels of noisy information:

/ ( 0  = / / 0  + £ j , ( 0 ,
i =1

where ffit) and di(t) are the approximation and the ‘noise’ signals respectively. This 

algorithm is proposed by Mallat (1987) and the relevant signals are calculated using the 

following two formulas:

f j ( t ) = i A jk<P(2jt - k ) ,
k = \

d j ( t ) = i D jk¥ ( 2 jt - k ) ,
k =1

where the coefficients A/* and Djk are calculated using formula (1.11). As in the real world 

the number of observations is limited (i.e. our data set is finite) theoretically the 

decomposition can continue until the approximation can be split into two parts. In practice, 

however, the levels of decomposition are chosen conditional on the main purpose. 

Following Greenblatt (1994) “different type of behaviour may become evident at different 

levels of resolution. We may look at trends, cycles, or extrema in the underlying data 

generating process”.

41 The terms time series and signal are used interchangeable.

42 The length of the time series has to be power of two.

43 A filter that subtract the low frequency information from the time series.

44 A filter that subtract the high frequency information from the time series.
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2.3.3 Empirical evidences
One of the main objectives of this chapter is to present the empirical results of some of the 

methods, theoretically presented in Chapter 2, for core inflation measuring. Further, based 

on data of the core inflation obtained, some traditional methods of time series forecast are 

used. Using monthly CPI and RPI data, the relevant analysis is done for two European 

countries, Poland and the United Kingdom, which exhibit different patterns of inflationary 

processes. Before to explain the results obtained for the measured and forecasted core 

inflation for both countries, let us consider the data sets used as well as the character of the 

time series.

2.3.2.1 Data
The data used in the present work consists of monthly RPI and CPI45 inflationary data over 

the period: 05/1980 - 07/2000 (or equivalently 243 observations) for the United Kingdom 

and 01/93 - 01/2000 (or 85 observations) for Poland collected from “Datastream”.

Further, the analysis proceeds considering InCPI and lnRPI. The standard tests confirm that 

InCPI and lnRPI can be treated as 1(1) processes.

-2.9074 -10.8806
POLAND (95% critical value : -3.4704) (95% critical value: -2.9012)

-1.4098 -5.0213
UK (95% critical value : -3.4303) (95% critical value: -2.8741)

Table 1.2

The results summarised in Table 1.2 lead to the conclusion that both price time series are 

integrated of order one. Consider for example Poland: according to the Akaike Information 

Criterion (AIC) the Augmented Dickey-Fuller (ADF) statistic is -2.9074, which is well 

bellow in absolute value than the absolute value of its 95% critical value. Hence, we do not 

reject the null hypothesis of a unit root in the InCPI and we proceed with differencing the

45 The measure of the level of prices in the United Kingdom is RPI, while Poland uses CPI.
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time series in order to achieve stationarity. The ADF statistic for AlnCPI is -10.8806, 

which is in absolute value well above the absolute value of the 95% critical value -2.9012 

thus, leading to the conclusion that the time series AlnCPI is stationary, that is InCPI ~ 1(1). 

By analogy, the results listed in Table 1.2. reveal that the same could be concluded for UK 

RPI data, i.e. AlnRPI ~ 1(1). From now on, the analysis presented in this section is obtained 

based on the stationary time series AlnCPI and AlnRPI46, that is AlnCPI ~ 1(0) and AlnRPI 

~I(0).

2.3.3.2 Core inflation measurement
Several methods for core inflation measurement have been already discussed in the 

previous section: Centered Moving Average, Single exponential smoothing and Wavelets. 

In the present section the empirical results of their application for measuring core inflation 

for Poland and the United Kingdom are presented. Following the work of Bryan and 

Cecchetti (1997), Cecchetti (1998), Wozniak (1999) among others, Centered Moving 

Average of the measured CPI (RPI) is used as a benchmark trend. Perhaps this method 

does not accurately presents the “true” core inflationary process, but according to Bryan at 

al (1997), CMAs come very close to people beliefs about core inflation. The issue of how 

correctly to chose the length of the time horizon to be averaged is subject to debates. Wider 

horizon over which one averages corresponds to less volatile time series but leads to lost of 

more observations. The empirical results for the UK show that 36 CMA of monthly RPI 

data is the best approximation of the trend inflation among other CMAs. In the study of 

Poland, however, as the monthly time series of AlnCPI data consists of only 84 elements, 

24 CMA seems the most suitable approximation for the Polish inflationary trend, as fewer 

observations will be lost. On the other hand, following Wozniak (1999) “in the case of 

transition economies (like the Polish economy during the sample period) it is reasonable to 

assume that the trend itself is more variable and therefore setting a narrower horizon seems 

desirable.” The values of 36 CMA and 24 CMA inflationary trends for the United 

Kingdom47 and Poland48 are graphically represented in Fig. 1.4 and Fig. 1.5.

46 According to the definition of inflation AlnCPI and AlnRPI are associated with inflation, since they 

represent the change in the level of prices.

47 The AlnRPI data used are over the period: 12/1981 to 01/1999.

48 The AlnCPI data used are over the period: 02/1994 to 01/1999.
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The United Kingdom

-0.01 1 27 53 79 105 131 157 183 209 235 261

- 0.02

months

observed inflation •36 CMA

Fig. 1.4

Poland

0.05 -

i lU ll^ r r /n V n

36 41 46 51 56 61 66 71 76 81
-0.05 -

months

observed inflation 24 CMA

Fig. 1.5

Fig. 1.6 and Fig. 1.7 illustrate graphically the results of the exponential smoothing method 

for both countries.
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The United Kingdom

0.05
0.04

c  0.03
.2 0.02
5= 0.01c

0 
- 0.01 
- 0.02

months

 observed inflation exponential smoothing

Fig. 1.6

Poland

-0.05 -

month

 observed inflation 'exponential smoothing

Fig. 1.7

In the previous section new method of time series decomposition was presented, namely 

wavelets. As far as I know this work introduces the wavelet technique for first time in the 

area of inflationary measuring. The empirical results for core inflation measurement 

obtained by means of wavelets are based on the db8 (Daubechies N8) wavelet. As it has 

been pointed out, when applying discrete wavelet transformation to time series the size of 

the data set has be to the power of two. On the other hand due to the boundary effect49 in 

the wavelet algorithms, the first and the last 16 decomposed values are not accurately 

calculated.50 The time series for UK and Poland consist of 242 and 84 observations

49 See Daubechies (1992).

50 The wavelet db8 has length 15 and the length of the filter is 16.
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respectively. As the conditions mentioned above must be fulfilled, before proceeding with 

the method of time series de-noising using wavelets several operations with the data are 

done as follow. In order for the values at the beginning and the end of the time series to be 

correctly calculated, the AlnCPI (AlnRPI) series has to be continued at both sides. At the 

end of the UK time series 16 observations are added and the number of all the elements in 

the RPI series became 256 = 28. Since the number of the observations for Poland CPI is 

only 84, 22 elements are added at the beginning and 22 elements at the end of the series 

and, therefore, the length of the new time series is 128 = 27. How to determine the new 

elements? Standard techniques, when function has to be continued are extension by zero or 

periodization. However, these two techniques lead to discontinuity, which can be easily 

avoided using the following trick: an extension of the time series beyond the border by its 

reflection. The main advantage of this way of extending the time series is that the new and 

the original time series have the same properties and character (e.g. stationarity, zero mean, 

etc.), which significantly facilitate the following empirical work.

The extended AlnRPI and AlnCPI time series are then de-noised. The first and the last 16 

observations of the de-noised UK time series as well as the first and the last 22 elements of 

the Poland de-noised time series are removed and the inflation trends for the United 

Kingdom and Poland using wavelets are shown on Fig. 1.8 and Fig. 1.9.

The United Kingdom

0.05 -I 
0.04 - 
0.03 - 
0.02 -  

0.01 -

-0.01 -I 27 53 79 105 131 157 183 209 235 261 287'313 339 365 
- 0.02 -

months

observed inflation wavelets smoothing

Fig. 1.8
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Poland

-0.08 J

months

 observed inflation “ — wavelets smoothing

Fig. 1.9

A widespread manner used for comparison of different inflationary measurements is Root 

Mean Square Error (RMSE) and /or Mean Absolute Deviations (MAD). RMSEs are 

calculated by formula of the following form:

where N  is the number of the observations in the time series, , i = are the values

calculated by the corresponding CMA method and jc,- , i = are the values obtained by

the use of exponential smoothing or wavelets. Using the same notations, the MADs are 

calculated by the formula:

N

RMSE and MAD for Poland and the United Kingdom are calculated and the results 

obtained are summarised in Table 1.3.

POLAND

WAVELETS -  24 CMA (%) 1.088 0.464
EXP. SMOOTHING -  24 CMA (%) 0.373 0.346

UK

WAVELETS -  36 CMA (%) 0.069 0.048
EXP. SMOOTHING - 36 CMA (%) 0.147 0.109

Table 1.3
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The results for the United Kingdom reveal that the wavelet method performs better 

inflationary measurement than the exponential smoothing, as the corresponding RMSE and 

MAD errors are smaller. Despite the fact that RMSE and MAD related to the wavelets 

method are greater than those calculated for the method of exponential smoothing, one can 

notice from the graph at Fig. 1.9 that wavelets distinguish themselves with very good 

approximation properties compared to the other both methods (Fig. 1.5 and Fig. 1.7) and 

thus, it makes them applicable for countries in transition characterized by time varying 

inflationary volatility.

Fig. 1.10 and Fig. 1.11 plot the graphs of AlnCPI and the trend inflations obtained by the 

use of the three methods, namely CMA, exponential smoothing and wavelets, for the 

United Kingdom and Poland respectively.

The United Kingdom

0.05
0.04 -

0.02 -

0.01 -

-0.01 J

months

observed inflation '36 CMA exponential smoothing wavelets

Fig. 1.10
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Poland
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 observed inflation
— 24 CMA

wavelets smoothing 
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Fig. 1.11

It is evidently from both graphs that the wavelet trend line

• follows the trend line precisely, compared with CMA and exponential

smoothing;

• is smoother than the trend lines obtained by CMA and exponential

smoothing;

• is closer to the CMA inflation than the inflation obtained by the use of

exponential smoothing.

As it was pointed out in Section 2.3.1, measured inflation 7it can be decomposed into two 

parts: core inflation n j  and non-core inflation eu as the latter term is associated whit 

‘white noise’:

Tit =  T ltf +  £t,

where i = {exponential smoothing, wavelets, CMA). In order to evaluate the three 

measures of core inflation it is important, therefore, to establish whether the difference 

between measured inflation and core inflation is white noise. One way of checking this is 

by testing the null hypothesis:

H0:p  = 0

against the alternative one:

Ho: p  * 0 
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in a regression equation of the form:

Et -  p.£t-\ +

where §  ~ N(0, a2) . If or denotes the significance level of the test and tc is the critical value 

such that P[\t(T-2)\ > tc] = then we use the test mechanism that rejects the null hypothesis, 

if \t\ > tc.

Exponential smoothing: -1.0751 1.98

POLAND Wavelets: 1.5703 1.98
24 CMA: -1.9097 2.0

Exponential smoothing: 1.3350 1.96
Wavelets: 1.4982 1.96

UK
36 CMA: 2.0000 1.96

Table 1.4

The results obtained are summarised in Table 1.4 and demonstrate that the null hypothesis 

Ho: p -  0 (that is the non-core inflation is white noise) is accepted in five out of six cases 

for level of significance a  = 0.05. The only exception is 36 CMA. The critical value for 

t(205) at the 0.05 level of significance is 1.96 and is less than the value of the corresponding 

/-ratio, namely 2.0000. The p-value, which is the probability of exceeding the computed 

value t= 2.0000 is p = 0.047. Thus, in this case I would reject the null hypothesis that p  -  

0 and conclude that the difference between the observed inflation and 36 CMA is not white 

noise at 0.05 level of significance. For a  = 0.01, however, this value is smaller than the 

critical value 2.576 and, therefore the null hypothesis of p  = 0 is accepted.
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2.3.3.3 Core inflation forecast
In the previous section new method, namely wavelet smoothing was empirically used for 

measuring of core inflation. As a result, a long-run trends time series were obtained for the 

periods: (a) 02/1993 -  01/2000 (Poland) and (b) 12/1981 -  07/2000 (the United Kingdom). 

Further, the last 12 elements from both time series are removed and the trends are 

forecasted using the following two models:

• trend polynomial of order three

• suitable ARMA(p,q) model.

The 12 elements obtained from the forecast are then compared with the last 12 elements of 

the time series in (a) and (b). Based on the trend inflationary values obtained using 

wavelets, the parameters p and q of the ARMA(p,q) models for both countries are 

determined as follow: ARMA(2,5) for UK and ARMA (1,0) for Poland.51 Fig. 1.12 and 

Fig. 1.13 graphically represent the ‘true’ inflation obtained by wavelets, the forecast with 

trend polynomial of order three and the forecast with ARMA(2,5) model for UK (Fig. 

1.12) and ARMA (1,0) model for Poland (Fig. 1.13).

Wavelet inflationary trend, trend polynomial, ARMA(2,5) 
the United Kingdom

0.008

0.006 -

0.004 -

-  0.002 -

months

ARMA(2,5)waveletinflationary trend trend polynomial

Fig. 1.12

51 Plots of the ACF (Auto Correlation Function) and the PACF (Partial Auto Correlation Function) for the 

United Kingdom and Poland are presented in Appendix B.
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Poland
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(0 61 65*1 -0.005 

- 0.01
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— wavelet inflationary trend ARMA(1,0) — trend polynomial

Fig. 1.13

The comparison between measured inflation using wavelets and forecasted inflation is 

considered in terms of RMSE and MAD, listed in Table 1.5

POLAND

ARM A (1,0) 0.751 0.483

TREND POLYNOMIAL 1.026 0.859

UK

ARMA(2,5) 0.279 0.312

TREND POLYNOMIAL 0.055 0.045

Table 1.5

According to the results obtained for RMSE and MAD, trend polynomial of order three is 

more suitable than ARMA(2,5) for UK core inflation prediction, while ARMA(1,0) gives 

better forecasting results than trend polynomial of order three in the case of Poland.
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The United Kingdom
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Fig. 1.14

Poland
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Fig. 1.15

Fig. 1.14 and Fig. 1.15 plot the forecasts based on the wavelet inflationary trend obtained 

by trend polynomial of order three and ARMA models and, the forecast given by the 

exponential smoothing method. The method of exponential smoothing I have used is a one 

step forecasting method, (and therefore the graph obtained is a straight line). For both 

countries, however, the predicted value obtained by this method is closer to the forecast 

obtained by the corresponding ‘better’ method {see Fig. 1.14 and Fig. 1.15).

Up to this point a main subject of discussion was the way of core inflation measurement. 

The Boskin Commission Report reveals that CPI overstates inflation. It is widely known as 

well as evident from the analysis presented that CPI contains substantial high-frequency 

noise, i.e. this index considerably deviates from the underlying inflation. Inflation, 

however, has been modelled under the assumption of normality. Following Bryan and
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Cecchetti (1996), Bryan, Cecchetti and Wiggins (1997) among others (and as it will be 

discussed and shown later, in Chapter 2 and Chapter 3), inflationary processes distinguish 

themselves with substantial kurtosis and high skewness thus, leading to conclusion that 

these processes are not normally distributed.

As inflation is one of the leading macroeconomic factors, an issue of significant 

importance for both economists and policymakers is the accurate way of forecasting it. 

Price stability and, therefore, low inflation rate has become a central issue of monetary and 

fiscal policy in many countries. In some of them the central bank monetary policy is 

oriented toward inflation targeting and is supported by a fiscal policy aiming at a balanced 

budget. This focuses both policymaker’s interests and the economist’s attention to the 

problem of inflationary forecasting. The present chapter emphasises that the so-called core 

inflation is associated with the predictable part of the measured inflation, which stresses on 

the importance of precisely modelling inflationary processes. In this context, an issue of 

prime importance is to correctly determine whether inflation is stationary or non-stationary 

process. The dilemma of stationarity of inflation is a widely disputed issue in the recent 

literature and the following section focuses on the essence of this problem.

3. Controversies about stationarity of inflation
The empirical evidences presented in a vast number of recent publications gave rise to 

debates in the literature regarding the dilemma of stationariy of inflation. Occasionally 

considered as a unit root process and sometimes as stationary process, the empirical 

conclusions made vary with time periods, frequency of observations and test results.

Some researchers judge inflation as a stationary process: Engle and Granger (1987), 

Clements and Mizon (1991), Johansen and Juseius (1992), Quah and Vahey (1995). For 

example, Quah and Vahey (1995) and Engle and Granger (1987) treat monthly inflationary 

data for the UK and the US, respectively, as 1(0) process. Clements and Mizon (1991) and 

Johansen and Juselius (1992) assume that the UK price is 1(1) with structural changes in 

the deterministic trend or non-stationarity in the variance.

On the other hand, Nelson and Schwert (1977), Hall (1986), Baillie (1989), Ball and 

Cecchetti (1990), Johansen (1992) and Gartner and Wehinger (1998) have specified in 

their work inflation as a unit root process. Hence, prices are judged as time series with two
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unit roots, so that any shock to inflation has a permanent effect. Specifically, Gartner and 

Wehinger (1998) use quarterly inflationary data for nine European countries and find 

evidence consistent with one unit root.

Further, in the empirical study of some researchers inflationary time series is being 

considered as both unit root and as stationary process. Particularly, in the work of Engsted 

(1995), for some countries the Dickey-Fuller test results indicate that inflation is stationary, 

while the Johansen test clearly point out to unit root for quarterly changes in CPI and 

inflation is approximated as 1(1) process52. Barsky (1987) states that inflation is stationary 

process until 1960 and unit root process thereafter. Similar results are presented in the 

study of Mishkin (1992) and Schwert (1987), where the order of integration depends on the 

time period being examined and on the results obtained by the use of different tests.

In order for further and precise analysis of inflationary processes to be conducted, it is 

important that the order of integration is correctly specified. In the majority of the papers 

mentioned above, stationarity of inflation is examined based on the assumption of 

normality. Testing the null hypothesis of linear unit root in prices is accompanied by the 

assumption that inflation, that is first difference in log of prices, is normally distributed 

process. However, this assumption is hypothetical and dubious -  plenty of empirical 

evidences demonstrate that inflationary data are far away from being normally distributed. 

Therefore, it is reasonable to check the order of integration of inflationary processes 

ignoring this assumption.

Further, the present work suggests two alternative approaches for modelling inflationary 

time series regarding inflation as first, stable Paretian distributed and secondly, unit root 

bilinear process. As already mentioned, inflationary time series exhibit excess kurtosis 

(consistent with tails fatter than the tails of normally distributed process), which leads to 

the idea of rejecting the assumption of normality and, considered alternatively, inflation as 

a stable Paretian distributed (see Rachev, Mittnik (2000)). On the other hand, imposing 

some restrictions, linear unit root models can be considered as a sub-class of the class of 

bilinear processes {see Granger and Andersen (1978), Subba Rao and Gabr (1974), Terdik

52 For the United Kingdom, for example, monthly inflation is considered as 1(0) process in the work of Quah 

and Vahey (1995), while quarterly inflation is assumed 1(1) in the study of Engsted (1995).
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(1999), etc.). This leads to the idea of applying bilinear processes in economic and 

financial time series modelling53, in particular for modelling inflationary processes.

4. Conclusion
In summary, Chapter 1 of this thesis concentrated on the significance of inflationary 

modelling and forecasting. Starting with the Boskin Commission conclusion that the most 

commonly used measure of inflation, CPI, tends to overstate inflation the work dwelt on 

the importance of subtracting the ‘noisy’ part of the measured inflation and thus, obtaining 

the so-called core or underlying inflation. Two different views of the last term were 

represented, namely Eckstein’s, and Quah and Vahey’s definitions. Under the assumptions 

of RE-NRH, in both definitions core inflation is associated with the anticipated part of 

inflation thus making the measure suitable for the purposes of inflationary forecasting. The 

significance of forecasting inflation follows from Lucas’ ‘surprise’ supply model. The real 

inflationary effect -  the difference between observed and anticipated inflation - is known 

as ‘prise surprise’ (or unanticipated inflation). The theoretical determination of the 

unanticipated inflation as being more costly than the anticipated one highlights the 

meaning of inflation forecasting and particularly forecasting its anticipated part. Thus, the 

researchers need a reliable way of core inflation measuring and forecasting. Abreast with 

the two traditional smoothing techniques, Centered moving average and Exponential 

smoothing, the Wavelets method of signal decomposition was also employed for the 

purposes of core inflation measuring. This new device became recently popular in the 

econometric area and as far as I know this work introduces for first time its use in the area 

of inflationary measurement. Chapter 1 also presented the empirical results of the 

application of the mentioned above smoothing methods to inflationary data for Poland and 

the United Kingdom. The results reveal that, according to Eckstein’s definition, wavelets 

can be characterized as a suitable way of core inflation measurement for both countries. 

However, abreast with the empirical results presented in this chapter indicating presence of 

substantial noise in the measured inflation, plenty of empirical evidence shows that 

inflationary processes exhibit high levels of skewness and excess kurtosis, thus 

demonstrating substantial non-normality in the inflationary distribution. In the following 

chapter two ways of modelling inflationary processes are suggested, namely inflation as a 

stable Paretian distributed process and as a bilinear process.

53 See Charemza, Lifshits and Makarova (2002c).
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CHAPTER TWO M ETHODS OF EVALUATING THE PROPERTIES  

OF INFLATIONARY DATA AND DISTRIBUTION

1 Introduction
Based on the empirical evidences presented in the literature, Chapter 1, Section 3 of this 

thesis discussed the problem of stationarity of inflationary time series and suggested two 

alternative ways of their modelling. In this chapter the attention is directed to investigating 

inflationary stationarity, questioning the assumptions of normality and linearity. Relaxing 

the normality assumption distribution of inflation could be regarded as a stable Paretian 

distribution. On the other hand, relaxing the assumption of linearity of price time series 

(and, consequently normality of inflationary time series) prices could be alternatively 

viewed as described by bilinear processes. Thus, the present chapter concentrates on two 

main issues: first, the reasons of relaxing the normality and linearity assumptions when 

inflationary processes are considered and secondly, the theoretical foundations of the ways 

proposed for their modelling. Chapter 2 also gives a brief theoretical explanation of some 

traditional unit root tests under the assumption of normality: the Dickey-Fuller test (see 

Dickey and Fuller (1979)), the Leyboume test {see Leyboume (1995)) and the KPSS test 

{see Kwiatkowski et.al (1992)); their corresponding, recently proposed bilinear unit root 

tests, called &-tests {see Charemza et a l (2002b)), and a test for stationarity under the 

assumption of stable Paretian distributed processes named in this work after its authors as 

Rachev-Mittnik-Kim test (Rachev et al. (1998)).
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In short, the present chapter is organized as follows: Section 2 concentrates on the features 

of the distribution of inflationary data followed, in Section 3, by suggestions of modelling 

inflation assuming non-normality in distribution. Section 4 dwells on seasonality and 

considers the very basic idea of the X -ll seasonal adjustment method. Next, Section 5 

defines and outlines the main features of the stable Paretian distribution and exposes the 

McCulloch method of its parameter estimation. Sections 6 and 7 outline several unit root 

tests under the assumptions of normal and stable Paretian distributed processes, 

respectively. After the bilinear unit root processes are defined in Subsection 8.1, 

Subsection 8.2 presents tests for stationarity under the assumption of bilinearity. The 

intuitive notion of bilinear and stable processes is graphically illustrated in Section 9. 

Finally, Section 10 summarises.

2 Problem of Normality of Inflationary Processes

2.1 Introduction
Chapter 1 of this thesis dwelt on the concept of core inflation and passed in review 

different ways of measuring it. The researchers examining underlying inflation are mainly 

interested in finding a robust way of its estimation. Varieties of methods are proposed in 

the literature but none of them seems to capture precisely this component of measured 

inflation. A possible reason might be that inflationary data are usually modelled under the 

assumption of normality. Nevertheless, many of the articles related to this topic point to 

substantial (empirically evident) non-normality of inflationary processes. Particularly in 

this section the attention is focused on the connection between inflation and its third and 

fourth distributional moments -  skewness and kurtosis.

The often-found positive correlation between the mean and skewness of inflation (i.e. 

inflationary data are positively skewed) has been theoretically explained and viewed first, 

as a sticky-price model by Ball and Mankiw (1995) and secondly, as a flexible-price model 

by Balke and Wynne (1996). Bryan and Cecchetti (1996), however, doubt this result. 

According to their work, in the former case, “the correlation arises purely from short-run 

considerations”, while in the latter case, “the effect need not to die out in long run”. Bryan 

and Cecchetti (1996) examine the small sample correlation between mean and skewness of 

the cross sectional distribution of price changes for the US, showing existence of bias in
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this correlation namely, the “higher the kurtosis of the distribution, the more positive the 

bias” is. Following the authors, the cross-sectional distribution of inflation is leptokurtic 

and skewed thus, leading to a sample mean characterized with high variance. Accordingly, 

an obvious conclusion one can make is that price changes are not a normally distributed 

process in the case of the US (see also Bryan, Cecchetti and Wiggins (1997)). A vast 

number of recent publications report identical conclusions for other countries: empirical 

evidences supporting the hypothesis of non-normality of inflationary data are presented in 

the studies of XapeM3a, MaicapoBa h IlapxoMeHKo (2002), Rogger (1995), Tsyplakov 

(2002), Wozniak (1999) among others. The authors mentioned above have examined 

monthly or quarterly inflationary time series for Poland, New Zealand and Russia.

In order to clarify better the issue discussed above, let us consider a few examples of 

distributions inflationary data. Four countries are selected -  The United Kingdom, Poland, 

Argentina and Sierra Leone. Each of them represents one of the following groups, 

respectively:

• Developed Countries

• Developing Countries

♦ Central and Eastern European Countries

♦ Other Developing Countries

• Least Developing Countries

2.2 Distribution of Inflation: Examples
Figures 2.1 -  2.4 displayed present histograms of monthly, seasonally adjusted inflation 

rates1, 2 for four selected countries: the United Kingdom, Poland, Argentina and Sierra 

Leone. The data cover different time periods for the four countries as follows :

• The United Kingdom: February 1956 -  December 2000;

• Poland: February 1988 -  December 2001;

1 Inflation is defined as a first difference of the log of prices, i.e. A ln(CPZ) or A ln (R P I) .

2 The procedure used for seasonal adjustment is discussed in Section 4 of this chapter.

3 The inflationary data used for these examples are part of a large dataset containing 108 inflationary time 

series for different countries. The data are explained in details in Chapter 4, Section 2.
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• Argentina: January 1991 -  November 2001;

• Sierra Leone: October 1988 -  November 2000.

and descriptive statistics for those inflationary processes are reported in Table 2.1. The 

tabulated results reveal that inflationary data for those particular countries are positively 

skewed4. This is also demonstrated by the histograms plotted on Fig. 2.1 -  Fig. 2.4, being 

clearly asymmetric and right-skewed. On the other hand, the large kurtosis values 

graphically correspond to sharper peaks and heavy tails. Adding to these two arguments 

the visible large up-and-down changes in the graphs displayed (especially for the UK and 

Sierra Leone), lead to the conclusion that - regardless of the development status of the 

countries - the shape of distribution of inflation reasonably defers from the shape of the 

normal distribution.

Descriptive statistics for inflation

Country Number of 

observations

Mean Standard
deviation

Skewness Kurtosis

(1) (2) (3) (4)

coeff.

(5)

p -value 

(6)

coeff.

(7)

p-value

(8)

UK 540 0.005 0.005 2.057 0.000 10.174 0.000

Poland 168 0.036 0.065 4.292 0.000 22.531 0.000

Argentina 143 0.047 0.137 4.848 0.000 27.698 0.000

Sierra Leone 170 0.030 0.063 2.353 0.000 21.754 0.000

Table 2.1

The United Kingdom

02  -0.01 0.01 0.02 0.03 0.04 0.05
Inflationary values

Fig. 2.1

0.1 0.2 0.3 0.4 0.5 0.6
Inflationary values

Fig. 2.2

4 As it will be shown later in Chapter 4, Section 2 with few exceptions, the inflationary distribution is 

positively skewed.
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Argentina Sierra Leone

0.2 0.4 0.6
Inflationary values

0.8 0.1 0.2 0.3 0.4
Inflationary values

-0.2  -0.1 0 6

Fig. 2.3 Fig. 2.4

In short, the discussion above reveals that distribution of inflation distinguishes with high 

levels of skewness and fat tails thus clearly demonstrating that inflationary data are far 

from being normally distributed.5 Hence, in order to model accurately inflationary 

processes, the necessity of specifying appropriate distribution arises. The distinct non­

normality of inflationary processes - evident from the graphs and supported by the 

numerous empirical evidences in the literature - leads to the idea of modelling these 

processes by relaxing the assumption of normality. Two alternative ways are proposed in 

the following section.

3 Bilinearity and Non-normality in a Research Hypothesis
The way of correctly modelling macroeconomic time series, in particular inflationary 

processes, is a subject of considerable interest for economic researchers and a matter of 

significant importance for politicians. Inflation is not only one of the leading 

macroeconomics factors but also the most commonly used economic term among both 

economists and the general public (see Shiller (1996) and Chapter 1, Section 1). Modelling 

it is an issue of primary interest of this research. More specifically, our attention is directed 

to investigating the problem of the stationarity of inflation -  an issue widely disputed in 

recent literature. The ideas of treating inflation in the ways suggested in the present section 

have arisen as a result of conclusions made in a vast number of recent empirical 

publications that inflationary processes are non-normally distributed6. On the other hand,

5 The empirical work presented later is based on a large selection of worldwide inflationary data and shows 

that this is valid for most of the countries examined.

6 This problem has been discussed in more details in Section 2 of the present chapter.
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n

most researchers consider prices and inflation as linear processes . Let us clarify this issue. 

Prices in logarithms, p t , are usually presumed to follow a linear process of the form:

P, = P t - i + £ f

where et ~ iid N(0, a ] ). Their first difference Apt or, in other words inflation, has the 

following representation:

Ap, = e, ,

that is inflation viewed as a normally distributed process.

However, the assumptions of normality and linearity are hypothetical and dubious. The 

ideas suggested in the present research are examining the order of integration of 

inflationary processes relaxing both these assumptions. Two alternative approaches for 

modelling inflationary time series are proposed: (a) inflation as a stable Paretian distributed 

process; and, (b) prices (and inflation) as bilinear processes. In case (a) prices follow 

process of the form:

Pt = P t- i + u t ,

where ut ~ iid S(u',a, 0 ,  S , c ) . Thus, inflation Apt =ut and is, therefore, viewed as a 

stable Paretian distributed process.

Regarding approach (b), prices follow bilinear process of the form:

p t =  Pt-t +  bp ,- ie, - t + e, •
o

where et ~ iid N(0 , a  ). This process is a non-linear process. Although the disturbances 

et are normally distributed, inflation (i.e. first difference of prices Ap t ), is a non-normally

7 By linearity assumption it is meant that a series can be transformed to stationary by means of a linear 

difference operator. Let us assume that prices are described by a linear process p t = p  + e  , where

et ~ iid N(0, ct])- If pt ~ /(l)  then first difference of prices, Apt , is assumed to follow process of the

same form, that is tspt = +gt , g( ~ iid N (0, cr?) and the order of integration of Apt is determined,

etc. The first difference operator is applied till stationarity is achieved.

8 The process p t = p +bpl_let_l +et is a recursive process. Thus, substituting p p t_2 , . . . , p0 with their 

equals leads to decomposition of the form:

P t  ~  f  (fit  ’ ^ < - i  ’ ■■■’ e o )  +  ^11 ^ t - 1  ’ • • • ’ e o )  ’

where f (b ,e t ,e t_lv ..,e0) is a linear function, and g(b,et ,e t_lv ..,e0)is a non-linear function of their 

arguments.
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distributed process. This is evident from the following equality:

AP, = bp,_,eM + e , .

The right hand side of the equality above is a non-linear function of e, ~ iid N(0, a 1) and,

therefore is a non-normally distributed process. Hence, inflationary processes are non- 

normally distributed, and non-linear processes.

The idea of the former concept arises from the fact already discussed that distribution of 

inflation is characterised by excess kurtosis - consistent with tails fatter than those of 

normally distributed processes -  and, high levels of skewness. Thus, a straightforward 

conclusion one can make is that distribution of inflationary processes differs from the 

normal. This leads to the idea of ignoring the assumption of normality and specifying an 

alternative and appropriate distribution for their modelling. A family of distributions 

describing leptokurtic and asymmetric processes is the class of stable Paretian 

distributions, from which the normal distribution is a particular case. Thus -  neglecting the 

assumption of normality - a suitable way of modelling inflationary processes seems to be 

their modelling under the more general assumption of stable Paretian distributed processes. 

Under this assumption the Rachev -  Mittnik - Kim unit root test can then be empirically 

applied to inflationary data.

The idea of the second approach - the concept of prices and inflation as bilinear processes - 

results from the theoretical fact that linear unit root models can be considered as a sub­

class of the class of bilinear processes. This makes bilinear processes applicable for the 

purposes of modelling economic and financial time series9, in particular for modelling 

price and inflationary processes. Under the assumption of bilinearity, the so-called 6-test 

for stationarity can be employed.

Prior to dwelling on the theory encompassing the suggestions for price and inflationary 

processes modelling above explained, this chapter continues with a brief theoretical 

description of the method of initial price data adjustment which is later used in our 

empirical work.

9 See Charemza, Lifshits and Makarova (2002c).
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4 Initial Data Preparation: Seasonal Adjustment
It is widely known that most of the leading macroeconomic factors, especially those 

analysed using time series with a monthly frequency of observations, are often affected by 

seasonality. Among these indicators are unemployment, income, sales, consumption, etc. 

and, in particular, one of both variables of interest in this research - prices. The use of 

seasonally adjusted data is, however, an issue broadly disputed in the literature. Sims 

(1974), Wallis (1974), Ericsson et al. (1993) among others show that seasonally adjusted 

series lead to distortion in the estimated dynamic relationships. Following Hylleberg 

(1992), p. 10, “as the degree of the distortion varies the best advice for researchers is to 

consider both seasonally adjusted and seasonally unadjusted series” when modelling 

economic variables.

Shiskin et a l  (1967) define the term ‘seasonal component’ as “the intrayear pattern of 

variation which is repeated constantly or in an evolving fashion from year to year”. Fig. 2.6 

gives an intuitive notion of this definition. It plots a logarithm of monthly price 

observations against the time in months for the UK over the periods 01/1998 -  12/1998, 

01/1999 -  12/1999 and 01/2000 -  12/2000. It shows that for three consequent years the 

graphs of prices in logs have very close representations, showing a very similar pattern 

over the three periods.

Sierra Leone
5

year 1996 
year 1995 
year 19944.9

4.8

4.7

4.6

4.5

4.4

4.3

4.2
10'0 2 6 124 8

time

Fig. 2.5

The United Kingdom
5.16

year 2000 
year 1999 
year 19985.15

5 14

5.13

^  5.12

5.11

509

5.08

5.07

time

Fig. 2.6

In the case of Sierra Leone, however, the corresponding graphs follow different patterns as 

is evident by Fig. 2.5. The figure plots a logarithm of prices against the time in months for 

the periods 01/1994 -  12/1994, 01/1995 -  12/1995 and 01/1996 -  12/1996 and shows no
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visually distinctive seasonality. Fig. 2.5 and 2.6 simply demonstrate that adjustment for 

seasonality is country specific.

However, in many empirical studies investigating inflationary processes, especially those 

with a monthly frequency of observations, seasonality is taken into consideration (see 

Engle (1982), Quah and Vahey (1995), Fountas, Karanasos and Karanassou (2000), etc.). 

On the other hand, filtering for seasonality smoothes price data, thus leading to stronger 

conclusions regarding the non-normality of distribution of inflationary data. As the 

empirical analysis presented in Chapter 3 and Chapter 5 is based on a large selection of 

worldwide monthly price time series, all the series are initially adjusted for seasonality. On 

the other hand, the interest is directed to the general pattern of price processes and not to an 

interaction between individual price series. Thus, in the forthcoming analysis we consider a 

data set consisting of price time series, presuming that they are independent of each other. 

The latter assertion allows us to apply the most popular and broadly used X -ll seasonal 

adjustment procedure.

In short, price data are adjusted for seasonality using the U.S. Census Bureau X-12- 

ARIMA software, version 0.2.8. The method used is the Census Bureau Method II, X - l l  

seasonal adjustment program, as detailed in Shiskin et al. (1967) and Dagum (1988). For 

the purposes of our analysis the log-additive method is applied. It is a logarithm of the 

price series Pt is decomposed as follows:

ln(P, ) = St + Ct + I t ,

where St is the seasonal component, the trend-cycle component Ct incorporates the long­

term trend and the medium-to-long term movements and It is the irregular component 

(which could be further decomposed on trading days, holiday effects, etc.). The seasonally 

adjusted series then has the form:

SAt = ec,+I' = eHPl)~s' 

and thus the interest is directed at estimating the seasonal component St.

The X -ll seasonal adjustment method consists of sequential use of appropriate moving 

average filters for estimating the seasonal element St . In addition, as the seasonal

adjustment method is applied to a large selection of worldwide data characterized with 

different inflationary patterns, the option of controlling the extreme irregular values has
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been omitted and the final seasonal filter has been chosen automatically10. Fig. 2.7 and Fig. 

2.8 plot the graphs of the seasonally adjusted (the ‘thin’ line) and the seasonally unadjusted 

(the ‘thick’ line) monthly price data in logarithms for Sierra Leone (January 1987 -  

November 2000) and the United Kingdom (January 1989 -  December 2000), respectively.
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5 Stable Paretian Distribution
It is widely accepted that traditional models fail to capture important features of the 

dynamic of financial and economic variables. The idea of applying stable Paretian 

distributions for modelling financial variables originates in the works of Mandelbrot (1962, 

1963a,b, 1967) and Fama (1965) who found excess kurtosis in asset returns and strongly 

rejected normality as a distribution for their modelling. Their findings have attracted the 

attention of many financial modellers among who are Chobanov et a l  (1996), Mittnik et 

al  (1998), Rieken et al (1998), Charemza and Kominek (2000).

The present section considers the main features of the class of stable Paretian distributions 

and dwells on some of their properties. It is followed by an expose of the McCulloch 

estimation method of stable Paretian distribution parameters (used in the empirical work 

presented later in this thesis).

5.1 Definition and Properties of Stable Paretian Distributions
Following Rachev and Mittnik (2000) the distribution function H(x) is said to be stable (in 

a broad sense), if there exist sequences of normalizing constants aT,bT e R and aT > 0, 

such that for each T e  N
d

X  —aT (Xj +... + X T) + b j , 

where X 1, X 2,... are iid random variables with the common distribution function H(x).n ’12 

If in the last equality bT = 0 , the distribution function H(x) is called strictly stable. The 

random variable X  is said to satisfy a stable (or, strictly stable) Paretian law.

Several parameters determine the stable Paretian distribution: index of stability, skewness, 

location and scale parameters. The first of them is also known in the literature as the 

characteristic exponent and is of main interest in our later work, when the class of stable 

Paretian distributions is considered. It is usually denoted by a  and determines the rate at 

which the tails of the distribution taper off. The four parameters of the stable Paretian

10 See X-12-ARIMA Reference Manual, Version 0.2.8, 2001.
d

11 The notation “ = ” signifies an equality in distribution.

12 According to Feller (1966), Theorem 1, p. 166 the only possible constants are the norming constants 

a T = T ^ a -
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distribution are specified by the characteristic function of the distribution function H(x). 

Different ways of their parameterisation are known (e.g. Zolotarev (1957), Zolotarev 

(1966), Feuerverger and McDunnough (1981), etc.). A way of expressing the characteristic

function is presented in the following lines, adopted from Rachev and Mittnik (2000)13.

The distribution function H(x) is stable, if there exist parameters 0 < a < 2 ,  - l <  J3 <1, 

c > 0 and 8  e R such that the characteristic function of H(x) has the following form:

n a

i/rt(x) = ] e UxdH(x) = <
e x p j-c  11\ 

exp« -c\t

1 -  ipsign(t) tan

2
l + i/3—sign(t)\n\t\ 

n

+ i8t | , if 1 

+ iSt>, if  a  = l

where

sign(t) =
1 if t > 0
0 if t = 0

-1  if t < 0

The stable Paretian (or a  - stable) distribution function is usually denoted by 

S (a, J3, c, S ) ,  where the parameter /? determines the skewness of the distribution, c is a

scale parameter, which compresses or extends the distribution, and 8 ,  the location 

parameter, shifts the distribution on the left or on the right. Consider a stable random 

variable x , denoted usually by x  ~ S(x;a , /?, c, 8 ). It can be shown that the standardized

variable z = { x - 8 ) lc  is S(z;a, fl, 1,0) distributed. Thus, the underlying parameters 

determining stable Paretian distributions are the characteristic exponent a  and the 

skewness parameter /?. Let us briefly outline the main features of both parameters.

Consider initially the index of stability a  e (0, 2]:

• if 0 < a  < 1 the distribution characterises with: heavy tails, infinite variance and 

infinite mean (i.e. the first and second moments of the distribution do not exist);14

• if 1 < a  < 2 the distribution characterises with: heavy tails, infinite variance (i.e. the 

second moment of the distribution does not exist) and mean equal to 8 ;

13 Indeed, the characteristic function is defined as in Zolotarev (1957) and this is the form employed by 

McCulloch for estimating the stable Paretian distribution parameters.
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• if a  -  2 the distribution coincides with the normal distribution N(S, 2c2).

On the other hand, the skewness parameter is j 3 e [ - 1, l] and it exists only for a  * 2 .  

According to Zolotarev (1957) the skewness of the distribution varies with the sign of /? 

in the following way:

• if P  < 0 the distribution is negatively skewed;

• if p  = 0 the distribution is symmetric;

• if P  > 0 the distribution is positively skewed.

Different estimation techniques for measuring the tail thickness (or more of the stable 

Paretian distribution parameters) are known (see Hill (1975), Pickands (1975), McCulloch 

(1986), Brorsnen and Yang (1990), Mittnik and Rachev (1996), Nolan (1997), Zolotarev 

(1986), etc.). The Maximum Likelihood (ML) estimators of stable Paretian models - as 

suggested, for example, by Brorsnen and Yang (1990) and Nolan (1997) - are based on 

numerical approximation and integration of stable non-Gaussian densities. Rachev and 

Mittnik (2000) present results from a study examining (by the use of Monte Carlo 

simulations) the performance of ML procedure15 and the McCulloch (1986) quantile 

estimator. The researchers conclude that the ML procedure “performs accurately and 

possesses less dispersion than the widely used ... estimator of McCulloch”. According to 

Rachev and Mittnik (2000), p. 135, however, the McCulloch estimator “performs 

remarkably well” and requires “little computational effort”. Consider in brief the 

McCulloch estimation method, which is used in our empirical work later.

The reminder of this section focuses on the McCulloch technique for evaluating the 

parameters a  and /?, as our interest is mainly directed in estimating the stability index a  . 

Once this parameter of the stable Paretian distribution is specified, the empirical work can 

proceed with application of the Rachev -  Mittnik -  Kim unit root test.

14 In particular, if a = 1 the distribution coincides with the Cauchy distribution.

15 While Brorsnen and Yang (1990) and Nolan (1997) ML estimators are based on the Fast Fourier 

Transform for the parameters of stable densities as suggested by Zolotarev (1986), the results presented in 

Rachev and Mittnik (2000) are based on DuMouchel (1971) approach.
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5.2 McCulloch Estimation Method of Stable Paretian Distribution 

Parameters
Fama and Roll (1971) proposed an estimator of the characteristic exponent a  and the scale 

parameter c of symmetric stable Paretian distributions. In short, the authors suggest 

estimators based on the calculation of appropriately chosen sample quantiles16 and, 

evaluate their properties by employing Monte Carlo simulations. McCulloch (1986) 

extends Fama and Roll’s work generalizing this method for the asymmetric cases. 

Moreover, while Fama and Roll restrict the ^-values to the interval [1, 2], the McCulloch 

method allows these values to vary in the larger range [0.6, 2]. The parameter of interest in 

our work is the characteristic exponent a  associated with the tail thickness of the 

distribution. However, the McCulloch estimation technique used later in our empirical 

work incorporates both the index of stability a  and the skewness /?. Let us consider in 

brief the theoretical grounds of the McCulloch method of estimation.

Let X l,X 2,...Xk are iid S(x;a,/3,c,S) and lets denote by the ith population quantile, 

i.e. i = S(xi\a,/3,c,S). Further, denote by xt the corresponding sample quantiles17 and 

consider the following population indexes

* ,  ~  X l -q  A  ( * ,  ~  * 0 .5  )  +  ( * ! - ,  ~  * 0 .5  )
g a = —  L and 8 f i= — ---------------- ----------

* p ~ * l - p  X p ~ X l - p

and, their corresponding sample statistics

* 9 “ * l - 9 , „  (*<7 * 0 .5 )  ( * l - g  * 0 . 5 )
8 a  =  * * a n d  8 f t --= — -------- Z------- Z - - - - - - - - - - - - -

* p “ * l - p  * P ~ * 1 - P

According to the author ga and gp are consistent estimators of ga and g p . However, by

definition, the quantiles of a random variable depend only on the parameters a  and fd of its 

distribution function. Thus, the indexes ga and gp can be seen as functions of the 

characteristic exponent and the skewness parameter, i.e.:

16 The q,h quantile (or percentile), o < q < 1» of a random variable X  with distribution function F(x), denoted 

is defined as the smallest number ^satisfying F(£) > q (see Poirier (1995)).

17 Following McCulloch (1986) these quantiles should be corrected for continuity. See McCulloch (1986) for 

more details.
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8 a = m > P )  (2-1)

^ = / 2(a,A).18 (2.2)

Thus, using relationships (2.1) and (2.2) the parameters a  and can be expressed as 

functions of ga and gp :

a  =  z l ( g a , g ft) 

f i  = z2(ga , g p ) 19

The q values suggested by Fama and Roll (1971) are q = {0.95, 0.96, 0.97}. McCulloch

(1986) estimates a  and f t  are based on the smallest q suggested by Fama and Role, i.e. 

0.95, “since it reduces the sampling error of the quantiles with limited samples” and
A A

p  = 0.75. The values of the functions ga = f x{a,P) and gp = f 2(a,j3) are tabulated in 

McCulloch (1986) for all the possible pairs (a, /?), where a  = {2,1.9,1.8,..., 0.6,0.5} and 

($ = {0,0.25,0.5,0.75, l}. Based on the estimated values ga and gp the index of stability
A

a  and the skewness parameter /? can be estimated using these relationships:

^ = Z l ( g a , g p )

P  =  Z2( g a , g p )

and their values are tabulated in McCulloch (1986) for fixed ga -values in the range 

[2.439, 25] and fixed gp -values in the range [0, l].20

In short, the present section presented the McCulloch method of estimation of the stable 

Paretian distribution parameters. Once the index of stability is estimated, the Rachev- 

Mittnik-Kim unit root test can be applied. However, before dwelling on this test (Section 7 

of the present chapter), let us consider the traditional unit root and stationarity tests used in 

our empirical work later.

18 Following McCulloch (1986) / ,  and f 2 are respectively even and odd functions with respect to the 

parameter of skewness /3.

19 Following McCulloch (1986) zl and z2 are respectively even and odd functions with respect to the index 

Sfi'
20 Some exceptions might occur in the empirical work. For more details on this matter see McCulloch (1986).
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6 Traditional Unit Root and Stationarity Tests Under the 

Assumption of Normality

6.1 Introduction
Although the theory of first-order autoregressive processes was developed in the 50’s and 

early 60’s years of the last century {see Rubin (1950), White (1958), Rao (1961)), unit root 

processes became more popular after the influential publications of Dickey and Fuller 

(1979), (1981). Subsequently, the work of Nelson and Plosser (1982) focuses the 

economists’ attention on the significance of correct determination of the autoregressive 

coefficient. In their empirical analysis the authors use long historical time series for 14 US 

macroeconomic variables. For all of them but unemployment the Dickey-Fuller (DF) test 

fails to reject the null hypothesis of a first-order autoregressive unit root in a lagged model 

with intercept and deterministic trend. The development of unit root theory continues in the 

works of Phillips (1987), Phillips and Peron (1988) among others. In contrast with the 

classical unit root test theory, Kwiatkowski et al (1992) developed a test with null 

hypothesis that of stationarity against the alternative of a unit root. Often quoted as the 

KPSS test21 (named after its authors), the KPSS test is usually used for confirmatory 

analysis. Further development in this area has been done by Leyboume (1995) who 

proposed a simple modification of the DF test. The researcher applies the DF test to: first, 

the ordered and second, the reversed data and defines the 7-test statistic as the maximum 

statistics obtained from both realisations. This test is known in the literature as either the 

Layboume or the DFmax test. Next, Charemza and Syczewska (1998) simultaneously apply 

the DF test with null hypothesis of unit root and the KPSS test with null of stationarity and, 

investigate their joint distribution.

In short, a central issue in the area of first-order autoregressive processes is testing for 

presence of unit root. Many tests have been proposed but none of them is uniformly 

powerful. In this section, the attention is focused on a few of them, used in the empirical 

work afterward, namely the Dickey-Fuller (DF), the Leyboume and the KPSS tests. 

However, prior to outlining these tests let us briefly expose the very basic concepts of a 

first-order autoregressive process.

21 see Kwiatkowski et a l (1992).
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Consider a first-order autoregressive model:

yt  =  pyt-1 +  et, t  = 1,2,. ..T ,  (2.3)

where et~iidN(0,c?), p e  R and {y,}/=i...T is a discrete time series. Three different states of 

nature can be classified in terms of the real parameter pr.

• if \p \ < 1 the process is stationary; the time series {yJ?=i...T is a stationary time

series since the variance of the process tends to a finite number, i.e. 
_2

/  \  &  22  var  7 <°°-
p

• if \p\ = 1 the process is non-stationary and is known as an autoregressive unit root

process or random walk; the time series {y/}*=i...T is non-stationary since the 

variance of the process changes stochastically, i.e. var(y,) = ter2 —» oo ,17
{ —>oo

• if \p\ > 1 the time series is non-stationary with exponentially increasing variance as

t increases23

As no one doubts that price processes possess one unit root, our interest is directed to 

investigating autoregressive unit root processes called, in short, unit root processes only. 

The following subsections outline the unit root and the stationarity tests used later in the 

empirical work, namely the Dickey-Fuller, Leyboume and KPSS tests. The first two tests 

consider the null hypothesis of unit root against the alternative of stationarity. However, 

following Kwiatkowski et al. (1992), the “standard unit root tests are not very powerful 

against relevant alternatives”. Thus, the authors suggest test of the null hypothesis of 

stationarity against the alternative of a unit root. In the empirical work presented later, the 

last mentioned test, abbreviated hereafter as the KPSS, is used for confirmatory analysis.

22This formula is derived under the assumption y0 = 0.

23 For more details see Hendry (1995).
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6.2 The Dickey-Fuller Test24
Introduced by Dickey and Fuller (1979), the DF test is one of the most popular unit root 

tests. In their article the authors consider data generation process (DGP) of the form (2.3) 

imposing y0 = 0 and et~iid N(0,c?) and test the null hypothesis of the unit root:

Ho: 1^ = 1 (2.4)

against the alternative of stationarity:

H , : | p | < l  (2.5)

Initially, both researchers consider the OLS estimator p :

T

2 > m
P = —T  (2.6a)

1=1

which is a consistent estimator of p  (see Rubin (1950)). Under the null hypothesis \p\ = 1 

it follows from (2.3) that Ayt = et . Hence, the following equality holds:

T - ' b . S ,
T { p - 1) = -----^ --------. (2.6b)

T~2Z y ht=i

It is shown in Maddala and Kim (1998) that the numerator and the denominator of (2.6b) 

converge to random variables defined as functions of Wiener processes and thus the 

asymptotic distribution of the OLS estimator of p, known as Dickey-Fuller distribution, is:
i
lw(r)dW(r)

T ( p - l ) = ^ -------------
jw (r)2 dr
0

rp  26as T —> oo.

24 For simplicity, the present section briefly outlines the DF test with estimated regression of the form (2.3). 

Dickey and Fuller (1979) also present the relevant statistics and their limited distributions for models with an 

intercept and models with an intercept and linear trend.

25 Following Maddala and Kim (1998), the Wiener process is defined by the following relation:

aw = WaF

(an equivalent representation in a differential equation form is dW = e jd t ) ,  where e ~ IN(0,l) and At 

denotes the length of a small interval of time. The variable W is said to follow a Wiener process.
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Next, both authors prove that under the null hypothesis the t - statistics tp formulated as

C o - 1 )  T ( p - 1)
SE(p)

has an asymptotic distribution, as T  —» <», given by:

j\V(r)dW(r)

JV(r) 2 dr

However, under the null hypothesis, the asymptotic distribution of the t-test statistic and 

hence the conventional critical values for the standard ^-distribution are not valid. Fuller 

(1976) tabulates the critical values for these statistics.

6.3 The Leybourne Test27
Modifying the Dickey -  Fuller test, Leyboume (1995) proposed a new test for unit root, 

known as the Leyboume or DFmax test. The article considers the DGP of the form (2.3) and 

tests the null hypothesis of unit root (2.4) against the alternative of stationarity (2.5) using 

regression with a constant, i.e.:

y t = a + p y t~i + et-

The test introduced by Leyboume (1995) involves two main steps: first, the D F  test is 

applied to the so-called forward realisation, that is yj, y2, yr,  and secondly, the same 

D F  test is applied to r/, r2, rT, where r; = y T, r2 =  yr-i , =  y i ,  known as a reverse 

realisation. The notations D F f  and D F r stand for the /-test statistics of the forward and 

reverse realisations, respectively. Following Leyboume (1995) relationship of the 

following type holds:

26 Originally Dickey and Fuller (1979) obtain the asymptotic distributions investigating canonical 

representations of the statistics. The approach presented in Maddala and Kim (1998) is by means of Wiener 

processes.

27 Leybourne (1995) considers (a) DGP of the form (2.3) and an estimated regression with constant and (b) 

DGP with constant: yt = ^  + pyt_x + et and an estimated regression with constant and linear trend

yt = a  + + py,_x + et • For simplicity, the present section dwells on the first class of models only.
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D F r = D Ff - A, (2.7)

where A  is a stochastic term measuring the end-effect of the difference between yr and yj. 

The author shows that the r-test statistics DFf  and D F r will only be equal when y i= y r ,  

specifying that in general yi will differ from y j  since under the null hypothesis of unit root

{y; is integrated of order one (or higher). The asymptotic distribution of the parameter

A  under the null hypothesis is also derived, that is, as T  —> :

Next, using Phillips and Peron’s (1988) result for the asymptotic distribution of the 

forward realisation t-test statistic D F f  and equality (2.7), Leyboume (1995) derives the 

asymptotic distribution of D F r, as T  —> ° o , namely:

The DFmax f-test statistic is then defined as the maximum value of both statistics DFf  and 

D F r. Leyboume (1995) tabulates the critical values of the DFmax test and shows that the 

DFmax test is “considerably more powerful” than the standard D F  test.

In addition, a variation of the D F  and DFmax tests is the augmented Dickey-Fuller (A D F ) 

test - proposed by Dickey and Fuller (1981) - and the A D F  max test {see Leyboume (1995)) 

respectively. Following Dickey and Fuller (1981) and Leyboume (1995), under the null 

hypothesis of unit root, the Mest statistics for the ADF, A D F f  and A D F r follow the D F  

distribution.

Up to this point, reviewing the D F  test and its variation, the DFmax test, the null hypothesis 

of unit root was tested against the alternative of stationarity. In the following section the 

discussion is focused on test for stationarity as a null against the alternative of non- 

stationarity. Named after its authors as the KPSS  test, this test is often referred to as a 

confirmatory test in conjunction with the A D F  test.

- 1/2

- 1/2
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6.4 The KPSS Test28
The test proposed by Kwiatkowski et al. (1992), usually referred to as KPSS, deviates 

from the classical unit root test theory: the null hypothesis is the hypothesis of stationarity 

against the alternative of a unit root. The researchers consider regression of the form:

y ,= r t +et (2.8)

where {et Yt=l is a stationary process and and {rt }̂=1 is a random walk:

rt = r t- i + w t>

with wt ~ iid (0, cr2) and a fixed initial value r0, which is associated with the intercept of 

the process.

The test itself is a Lagrange Multiplier (LM) test of the null hypothesis that the random 

walk {rt }]=l has a zero variance, that is, the null hypothesis of stationarity (or, in other 

words, the regression coefficients r t are constants):

Ho: ct2w=0

against the alternative of non-stationarity (or, in other words, random walk coefficients):

Hi: <7* > 0 .

Under the null hypothesis of stationarity and assuming that wt ~ iid N  (0, a 2) and 

et ~ iid N  (0, a 2), the LM test statistic is defined by the authors as the following ratio:

T

2 X
(2.9)

t
where St = ^ j wi, t = 1,..., T and a 2 is the estimated variance of the error term. However,

i=l

following Kwiatkowski et al. (1992), as “the series to which the stationarity tests will be 

applied are typically highly dependent over time, ... the iid error assumption under the null 

is unrealistic”. The authors derive the asymptotic distribution of the LM statistic under 

weaker assumptions defining the “long-run variance” as a ]  — lim T-1# ^ )  and construct

its consistent estimator using a Bartlett window. Further, it is shown that the LM statistic 

specified by equality (2.9) weakly converges to the following process:

28 Kwiatkowski et al. (1992) consider two classes of models: (a) models with intercept and (b) models with 

intercept and linear trend. For simplicity, in the present section we consider the first class of models only.
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1
LM => JV(r)2 d r ,

0

where V(r) = W(r) -  rW (1) is called a standard Brownian bridge and W(r) is a Wiener 

process.

In the empirical analysis presented later in Chapter 4, the KPSS test is used as a 

confirmatory test in conjunction with the ADFmSK test.

In short, Section 6 of this chapter has outlined several linear tests for stationarity, which 

are based on the assumption of normality. However, the classical theory assumptions of 

linearity and normality of economics time series are often dubious. As mentioned earlier, 

two alternative ways of modelling inflationary time series are suggested in this research: 

first, excluding the assumption of normality and treating them as stable Paretian distributed 

processes (discussed already in Section 5 of this chapter) and second, ignoring the 

assumption of linearity and examining inflationary processes as processes described by a 

non-linear class of models, known in the literature as bilinear models29. Prior to dwelling 

(in Section 8) on the definition of bilinear processes and the existing tests for the presence 

of bilinearity, let us briefly consider in the following section one of the unit root tests 

recently suggested in the literature, which assumes that the innovations are stably Paretian 

distributed.

7 Unit Root Tests Under the Assumption of Stable Paretian 

Distribution

7.1 Introduction
Dickey and Fuller (1979) investigate the process of the form (2.3) under the assumption of 

normally distributed disturbances. Some of their theoretical results were outlined in 

Section 6.2 of this chapter. The normal distribution, however, belongs to the family of 

stable Paretian distributions30, which has led Rachev, Mittnik and Kim (1998) to the idea 

of generalising DF unit root test assuming stably Paretian distributed disturbances. Before

29 See, for example, Granger and Andersen (1978), Subba Rao (1981), Subba Rao and Gabr (1984), etc.

30 See Section 5.1 of this chapter.
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examining their recent work let us introduce some of the terms used later. We shall start 

with the definition of the standard Levy process (or Levy motion).

Following Rachev and Mittnik (2000), a stochastic process La(z), a  e (0, 2), z e [0, l] is 

said to be standard Levy process if La(z) has stationary independent increments 

La(0) = 0 and La(1) has standard stable distributed increments with characteristic 

function:

Following Rachev et al (1998), let ut be iid symmetric, strictly stable random variables 

( La (1)) with index of stability a  e (1, 2) and, such that for a  = 1, Lx (1) is a symmetric 

stable variable. Then, the following weak convergence holds:
\r.z]

Cj W/ —̂ La (z), z e [0, l] ,
/ = i

where La (z) is a Levy process with strictly stable increments and the constant 

cT = T x/al(T) , where l(T) is a slowly varying function as T -> oo.

Next, Subsection 7.2 states the Rachev-Mittnik-Kim unit root test under the assumption of 

symmetric stable Paretian distributed innovations for the case where the estimated 

regression does not include intercept. The results for the cases with intercept, and intercept 

and linear trend as well as the related proofs, are given in Rachev et al (1998).
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7. 2 The Rachev -  Mittnik -  Kim Test31
In brief, Rachev, Mittnik, Kim (1998) consider the first-order autoregressive process:

y, =p*y,-x+u,

with initial condition y 0 = 0 , t = 1,..., T and, disturbances u, , which are iid, symmetric,

show that under the null hypothesis of unit root the asymptotic distribution of the OLS

Following Rachev et al (1998), the /-test statistic L. can be expressed in the following 

way:

and, as 71 -» q o ,  its asymptotic distribution weakly converges to a function of Levy’s 

processes:

in the present section, we consider the first class of models only.

32 According to Rachev, Mittnik, Kim (1998), ‘almost all of the results can be easily extended to the case 

0 < a  < 1 ’. However, for a  e (0,1), the mean of the processes does not exist and therefore has no meaning in 

applied work. Thus the discussion is concentrated on the case a  s  (1,2) only, as it is relevant to our 

empirical work later.

33 The OLS estimator p  is given by formula (2.6a) and is irrespective of the index of stability a.
34 “Square bracket” of the L6vy process La (z) is denoted by [La ] (z) and has the following presentation:

strictly stable random variables with index of stability a  e (1, 2) ?2 Chan and Tran (1989)

estimator p  33 as T q o  is:

0

T

34

31 Rachev et al. (1998) consider two classes of models: models without and with an intercept. For simplicity,

o
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The critical values for indexes of stability a  e (1, 2) are tabulated in Rachev and Mittnik 

(2000).

Consider in the following section the stationarity tests relevant to the second approach 

proposed in this thesis for modelling inflationary processes, namely stationarity tests under 

the assumption of bilenearity. The discussion of this issue starts with a brief overview of 

bilinear processes before defining the unit root bilinear process.

8 Unit Root Tests Under Assumption of Bilinearity
The development of the theory of bilinear time series modelling begins in the 1970’s in the 

works of Mohler (1973), Granger and Andersen (1978) and Subba Rao (1981) among 

others. The econometricians’ interest toward this class of models results in the recent (for 

those years) popularity of non-linear models, in particular for forecasting purposes. The 

properties of bilinear models have received further development in the works of Subba Rao 

(1981), Subba Rao and Gabr (1984), Sesay and Subba Rao (1986), Kim, Billard and 

Basawa (1990) and Grahn (1993) among others. Following Weiss (1986), bilinearity and 

ARCH effects may be easily mistaken as they posses similar unconditional moments. 

Higgins and Bera (1988) proposed a joint test for ARCH and bilinearity in a linear model 

with disturbances following bilinear process. Further development in the area has been 

done by Peel and Davidson (1998) who have suggested a bilinear error correction 

mechanism which has been empirically applied for modelling first, annual real 

consumption data and second, monthly spot price observations for the dollar/yen exchange 

rate, for the UK. Next, Charemza et al. (2002b) define unit root bilinear processes and 

propose a test for presence of bilinearity. Their findings have been applied to a large data 

set of mature and emerging stock market indexes (see Charemza et al (2002b), (2002c)).

8.1 Definition of a Bilinear Unit Root
Let {yt}t= i . . .T is a discrete time series. Process of the form:

P r  m k

y, = L da>y,-l +T , cJe>-j + £ 2 X > ', - i e,-r . (2-10)
1=1 7=0 /=1 /'=1

where an Cj,blf e R ,  Co = 1 and [et}t= i . . . t  are iid N(0,cre2)  is called bilinear process.

Models of the form (2.9) are called bilinear time series models and are usually denoted by 

BL(p, r, m, k). Note that the simplest process in the class of bilinear processes is the linear
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unit root process BL{ 1, 0, 0, 0). Thus, linear unit root processes are a sub-class of the class 

of bilinear processes.

As the class of processes BL (p, r, m, k) describes too broad family of bilinear processes, 

for the purposes of our analysis the attention is focused on the much narrower class 

BL( 1,0,1,1), and more specifically on processes expressed by an equality of the form:

y, = °y,-\ +*y,-ieM +e,- (2-n )

The stationarity condition for these processes is a2 +b2t j 2 < 1,35 Imposing the restriction 

that the coefficient a = 1, process (2.11) is equivalent to the following non-stationary 

process:

4 f, = by,_lel_l +el . (2.12)
2 2It can be shown that starting with eo=yo = 0, the means E(yt) = bcre (M ) and E(Ayt) = bcre 

and hence, for most macroeconomic time series the coefficient b > 0. On the other hand, 

the variance in returns, var(Ayt), changes stochastically , demonstrating that Ay, presented 

by (2.12) is a non-stationary process only if b differs from zero, i.e. b *  0. The definition of 

a bilinear unit root is then as follows:

Definition: A time series {yt}t =i ... t  is said to have a bilinear unit root if

Ay, =by,-,e,_, + e,

{£<}(-/...r  are iidN(0, tje ) and the coefficient b *  0.

In the present thesis price and inflation time series will be investigated as described by the 

class of unit root bilinear processes. At first, however, these series need to be tested for 

presence of bilinearity. Charemza et al. (2002b) have proposed a two-step testing 

procedure explained in the following subsection.

35 See Granger and Andersen (1978).

36 The mean of the macroeconomic time series is usually a positive value, which, for example, is 

demonstrated by the empirical results presented in Chapter 5.

37 See Charemza et al. (2002b)

38 Note that Subba Rao (1997) defines a term ‘bilinear unit root’. According to Charemza et al. (2002b), 

however, both concepts are mutually exclusive.
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8. 2 Bilinear Unit Root Tests39
The Charemza et al. (2002b) method of testing for presence of bilinearity consists of a 

two-step conditional procedure. First, the hypothesis of a linear unit root is tested applying 

some of the traditional tests already outlined in Section 6. If the linear unit root is 

confirmed, the second step involves applying the so-called 6-test40 - a main issue of 

discussion in the present subsection.

The authors test the null hypothesis of no blinearity:

H0:6 = 0,

against the alternative

H n 6 > 0 .

Following their work, under the null hypothesis of no bilinearity, the process Ayt takes the 

form:

4y, =e,.

Substituting Lyt.\ = et.\ in (2.11) yields:

4v, = b yl  i +e, (2.13)

where y*_x = yMAyM. Hence, under the null hypothesis, the coefficient 6 can be estimated

applying the OLS method to equation (2.13). The OLS estimate of b is given by formula of 

the following form:

2 > ;- ,4 v,
b =  • (2.14)

i x , ) 2
t=2

Section 6 of this chapter has presented and mentioned several non-stationarity tests 

applicable to linear unit root processes. Charemza et al (2002b) suggest modification of 

some of the tests, such that these tests can be applicable to unit root bilinear processes. The 

analogue of the Dickey -  Fuller test is named the 6-test and has a Student-/ statistic given 

by:

39 Charemza et al. (2002b) consider two classes of models: models with and without intercept. For simplicity, 

in the present section, we consider the second class of models only.

40 For more details about the theory behind the conditional testing procedure see Charemza et al. (2002b).
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Ẑ -lAVr-lAV,
-  ' - 2  

‘ f r

where <r 41 is a consistent estimator of cr, which weakly converges to a process of the 

form:
i
jw x(t)dW2(t)

h  => i4 =b n
K W *

v o

as f ^ o o ,  where Wl, W2 are independent Wiener processes.

The motivation of modelling inflationary and/or price time series under the assumptions of 

bilinearity or stable Paretian distribution has already been discussed in Section 3 of this 

chapter. Nevertheless, the present chapter defined and briefly dwelt on the main properties 

of both classes of objects. However, before discussing the empirical results obtained for 

price and inflationary data, let us dwell on two simulation examples.

9 Bilinear and Stable Distributions: a Simulation Example
Consider first simulation of a symmetric stable Paretian process. Initially, samples of 500 

standardised i id  symmetric stable random variables ua with indexes of stability

a  = {1.1,1.5,1.9 } were generated following the way suggested by Fama and Roll (1967). 

Histograms illustrating their distribution are presented on Fig. 2.9a -  2.1 la. They visually 

support the theoretical results that smaller values of the characteristic exponent correspond 

to thicker tails of the distribution (i.e. the distribution is more picked around the mean and 

possesses longer tails). On the other hand, Fig. 2.9 -  2.11 display the unit root processes 

corresponding to a=  1.1, 1.5, 1.9 which are generated using the following formula:

y, =y<-\+ua’

where the disturbances ua are defined above. Visually, a decrease in a  leads to more 

variable processes with processes values ranging in a larger diapason.

41 The standard deviation a  can be estimated from the regression equation Ay, = by*_x + et (see Charemza et 

al. (2002b)).
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Consider next the unit root bilinear process of the form (2.12):

y ,= y ,- t+by<-ie,-i+en

where {et}t= i . . . t  are iid N(0, 1). Series of 500 observations and coefficients of bilinearity 

0.044 (“high” bilinearity), 0.022 (“medium” bilinearity) and 0.011 (“low” bilinearity)42 

were generated. The corresponding graphs are plotted on Fig. 2.12 -  2.14. It is evident 

from the graphs that the higher the coefficient of bilinearity, the more variable is the 

process, with visibly large ups-and-downs and process values ranging in an increasing 

diapason. Further, Figs. 2.12a -  2.14a plot the distribution of the first difference of the 

generated bilinear processes. The graphs clearly show that an increase of the bilinear 

coefficient leads to distribution characterized with higher levels of skewness and kurtosis.

In short, both simulation examples intuitively illustrate the applicability of bilinear and 

stable Paretian distributed processes when inflationary data are modelled.

42 Those bilinear coefficients were obtained using the findings of Charemza et al. (2002a), namely that the 

bilinear coefficient £ < _ J _ . Thus a process is considered as possessing “high” bilinearity if

b e (0.5T"V2, T~l/1), “medium” bilinearity if b e (0.25T~I/2, 0.5T~,/2] and “low” bilinearity if b e  (0 ,0.25T~l/2] .
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10 Summary
Questioning the classical assumptions of normality and linearity, Chapter 2 of the present 

thesis suggested two ways of modelling inflation. Firstly, it dwelt on the concept of 

modelling inflation under the assumption that distribution of inflation is a stable Paretian 

distribution. Secondly, it has suggested the view of prices as described by unit root bilinear 

processes, which, on the other hand leads to non-normality in distribution of inflation. 

Abreast with a discussion on both concepts of modelling inflation the present chapter has 

also outlined several unit root and stationarity tests under various assumptions: classical 

unit root and stationarity tests under the assumption of normality (the Dickey-Fuller test, 

the Leyboume test and the KPSS test), a unit root test under the assumption of stable 

Paretian distribution (Rachev-Mittnik-Kim test) and a unit root test under the assumption 

of bilinearity. The Rachev-Mittnik-Kim unit root test is conditional on the estimated values 

of the index of stability, which measures the tail thickness of the distribution of inflation. 

In order for estimating the index of stability the present chapter has suggested the use of 

the McCulloch quantile method.

The results of the tests application to a large selection of worldwide inflationary data are 

presented and discussed in the following chapter.
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CHAPTER THREE DISTRIBUTION AND STATIONARITY OF 

WORLD-W IDE INFLATIONARY DATA: 

EM PIRICAL ANALYSIS

1 Introduction
Being one of the main macroeconomic indicators, inflation and, in particular modelling 

inflation, is a subject of considerable interest to economic researchers and a matter of 

significant importance for politicians. However, inflation has usually been modelled 

presuming that it is a normally distributed process. This assumption has recently been 

questioned in a vast number of empirical and theoretical publications. A broader discussion 

of this issue, supported with different examples of distributions of inflation has been 

presented in the previous chapter.

This chapter presents and discusses empirical results regarding the theory explained in 

Chapter 2. Using world-wide inflationary data, the chapter dwells on the issues of 

empirical investigation of first, the distribution of inflationary processes and second, the 

order of integration of price and inflationary processes.

Starting with a description of the data set in Section 2, the chapter proceeds in Section 3 

with a brief summary of the way of initial data smoothing, namely adjustment for 

seasonality1. Subsequently, the work continues with discussion on the descriptive statistics

1 The seasonal adjustment procedure and the motivation behind it has been discusses in Chapter 2, Section 4.
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of inflationary time series presented and explained in Section 4. The distribution of 

inflation regarded as a stable Paretian distribution is further discussed in Section 5.

The dilemma of stationarity of inflationary processes has been comprehensively discussed 

in Chapter 1, Section 3, of this thesis. Attempts to answer the question ‘is inflation a 

stationary or non-stationary process’ are found in many recent studies. In the majority of 

them prices have been tested for a unit root assuming that inflationary processes are 

normally distributed and that prices follow linear processes. Subsequently, if non- 

stationarity of prices has been established, inflation has been tested for a unit root 

assuming that the first difference of inflationary processes is normally distributed and 

inflation follows a linear process. Although linear tests reveal non-stationarity of prices, 

they are weak to clearly identify the nature of inflationary processes, that is: are 

inflationary processes stationary or non-stationary processes. Our main aim is to further 

investigate this issue using non-classical and, perhaps, non-trivial techniques. The 

forthcoming analysis presents the empirical results of three different types of tests applied 

to: first, price time series and second, inflationary time series. These tests differ according 

to the assumptions made regarding the nature of the processes. The work begins with a 

discussion of the empirical results obtained from the application of classical, linear, unit 

root and stationarity tests, that is joint application of the ADFm^ and the KPSS tests 

(Section 6.1). Both tests assume normality of the distribution of inflation and linearity of 

prices if price time series are tested, and normality of a first difference of the distribution 

of inflation and linearity of inflationary time series if inflation is tested. The results 

obtained are compared to those achieved using tests, which relax the assumptions of 

normality and linearity. Let us concentrate on this issue in more detail.

It has been explained in Chapter 2, Section 2 that the distribution of inflation is far from 

being normal. It is characterized by tails fatter than the tails of the normal distribution and, 

therefore, it is reasonable to consider it as a stable Paretian distributed process. Under the 

assumptions that prices follow a linear process and inflation is a stable Paretian distributed 

process, price time series can be tested for a unit root using the augmented Rachev- 

Mittnik-Kim (ARMK) test {see Chapter 2, Section 7.2). Subsequently, assuming that 

inflation follows a linear process and that the first difference of inflation is a stable 

Paretian distributed process, inflationary time series can be tested for a unit root applying
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the same test. In addition, inflation is tested for a unit root only if non-stationarity in price 

series has been established. The corresponding empirical results are presented in Section 

6.2. Alternatively, relaxing the assumption of linearity in prices, that is presuming that they 

follow a unit root bilinear process with normally distributed disturbances, leads to non­

normality of the inflationary distribution (see Chapter 2, Section 3). In this case prices can 

be tested for the presence of a stochastic, bilinear unit root. This can be done applying the 

augmented unit root bilinear (AURB) test, which is conditional on the confirmation of a 

linear unit root in prices {see Chapter 2, Section 8). Subsequently, for those time series 

only for which a unit root in prices has been established, the analysis continues with testing 

for a bilinear unit root in inflationary time series. In this case the AURB test is applied 

under the assumptions that inflation follows a unit root bilinear process with normally 

distributed disturbances. The empirical results are presented in Section 6.3. Finally, 

Section 7 concludes.

2 Data
The data set used consists of a large selection of world-wide price series. There are 108 

CPI and RPI of monthly, not seasonally adjusted time series for 107 different countries.2 

All the data are collected from DataStream. The price series are of different length, 

covering various time periods between January 1950 and December 2001. The longest 

series contain 612 observations (Canada, Mexico, Switzerland and the US). However, the 

price series for the countries in transition, in particular those for the Central and Eastern 

European countries, are of shorter length. Earlier data for these countries are not available 

as a result of the recent change to a market economy. The lengths of the price time series 

are country specific with minimum number of observations, 120, for Estonia, Latvia and 

Russia.

The empirical results presented in the following sections are discussed regarding the 

development status of the countries. The countries are divided into three main groups: 

Developed, Developing and Least developing countries. Those from the second group (i.e. 

Developing countries) are further partitioned into (A) Central and Eastern European

2 Two time series are available for Germany as one of them is for Former East Germany. Thus, the number of 

the time series is 108 and the number of the countries is 107.
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Countries and (B) Other Developing Countries. The names of the countries in the different 

groups are:3

• Developed Countries (DC)

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, 

Luxembourg, Netherlands, Portugal, Spain, Sweden, UK, Canada, Iceland, Japan, Norway, 

Switzerland and USA

• Developing Countries

♦ Central and Eastern European Countries (CEEC)
Albania, Bulgaria, Czech Republic, Estonia, Former East Germany (FE Germany), 

Hungary, Latvia, Lithuania, Poland, Romania, Russia, Slovakia and Slovenia

♦ Other Developing Countries (ODC)
Argentina, Aruba, Bahamas, Bahrain, Barbados, Bolivia, Botswana, Cameroon, 

Chile, Colombia, Costa Rica, Cyprus, Dominican Republic, Ecuador, El Salvador, 

Fuji, Ghana, Guatemala, Honduras, Hong Kong, India, Indonesia, Ivory Coast, 

Jamaica, Jordan, Kenya, Malaysia, Malta, Mauritania, Mauritius, Mexico, 

Morocco, Namibia, Netherlands Antilles, Nigeria, Pakistan, Paraguay, Peru, 

Philippines, Saudi Arabia, Singapore, South Africa, South Korea, Sri Lanka, St 

Kitts, St Lucia, Suriname, Swaziland, Taiwan, Thailand, Trinidad, Tunisia, 

Turkey, Uruguay, Venezuela, Vietnam and Zimbabwe

• Least Developing Countries (LDC)
Burkina Faso, Burundi, Chad, Ethiopia, Gambia, Guinea Bissau, Haiti, Malawi, 

Mauritania, Myanmar, Nepal, Niger, Samoa, Senegal, Sierra Leone, Solomon Iceland, 

Uganda and Zambia

In addition, the data set consists of a large number of price series and some of them contain 

time periods, of different length for different countries, with unchanging price values. For

3 The Least Developing Countries are specified by the United Nations. However, there is no precise 

definition of Developed countries and Developing countries. Following different criteria would lead to 

slightly different ways of their grouping. A suitable criterion, for example, is partitioning those countries 

according to their GNP per capita. The countries are, however, partitioned according to the author’s 

viewpoint.
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those time periods and those countries only, the data are linearly interpolated. Consider 

next the initial smoothing of the data.

3 Initial Smoothing of Data: Seasonal Adjustment
Although a contentious issue, adjustment for seasonality seems to be reasonable when 

working with monthly (or quarterly) inflationary data. The disputes in the literature, 

together with the motivations of filtering for seasonality regarding the current empirical 

study, have been discussed in more detail in Chapter 3, Section 4 of the present thesis. It is 

perhaps important to remember, that many researchers have inferred in their studies that 

seasonally adjusted series lead to distortion in the estimated dynamic relationships. 

Hylleberg (1992), p. 10, writes: “as the degree of the distortion varies the best advice for 

researchers is to consider both seasonally adjusted and seasonally unadjusted series”.

The present work analyses a large set of world-wide inflationary data. Precise examination 

for presence of seasonality is a time consuming procedure, as each series has to be 

analysed individually. Chapter 3, Section 4 of this thesis has graphically shown no 

distinctive seasonal pattern in Sri Lanka price data. This is, however, not the case with the 

UK (see Chapter 3, Section 4). A possible reason for lack of seasonality in the price data 

for some of the countries might be governmental control of prices. Although disputable, 

the present empirical work starts with initial adjustment for seasonality. However, we 

should bear in mind that it could lead to possible distortion in the results for some of the 

countries where no clear presence of seasonality is observed.

In short, all the price time series are initially adjusted for seasonality. This is done by the 

use of the U.S. Census Bureau X-12-ARIMA software, version 0.2.8. The method applied 

is Census Bureau Method n, X - l l  seasonal adjustment program, as detailed in Shiskin et 

a l (1967) and Dagum (1988) and, the algorithm followed is the log-additive algorithm.

Hereafter, the term ‘price time series’ is used instead of the natural logarithm of seasonally 

adjusted price time series. Subsequently, inflation is considered as a first difference of the 

natural logarithm of seasonally adjusted price (i.e. CPI or RPI) time series.
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4 Description of the Data
Descriptive statistics of the seasonally adjusted inflationary data are presented in Tables 

C3.1a-d (Appendix C)4. The Tables are organized in the following way: the first two 

columns, denoted by (1) and (2) respectively, contain the countries names and the number 

of observations in the corresponding price time series, followed by the mean values of 

inflation and their standard deviations stated in columns (3) and (4). Columns (5) and (7) 

tabulate the results for skewness and kurtosis of inflationary time series and their 

corresponding p-values are displayed in columns (6) and (8).

The results show that the mean values of the inflationary series are larger for the group of 

Central and Eastern European countries and lower for the Developed countries. The 

countries with minimum mean values across groups are as follows: Germany (0.002), FE 

Germany (0.003), Singapore (0.002) and Burkina Faso (0.003). Those with maximum 

mean values are Iceland (0.016), Russia (0.069), Peru (0.053) and Zambia (0.045).5

The results for skewness and kurtosis of inflationary time series indicate substantial non­

normality. The estimated values considerably deviate from the normal distribution values 

of those parameters, i.e. zero for skewness and kurtosis.6 Representatives of the countries 

groups with relatively low levels o f  skewness for the group to which they belong are as 

follows:

• Developed Countries: Luxemburg (0.503), Netherlands (0.681) and Belgium 

(0.779)

• Developing Countries

♦ Central and Eastern European Countries: Hungary (1.036), Romania 

(1.901)

4 Hereafter, the letters “a”, “b”, “c” and “d” after the Table number stand for the countries groups as follows: 

“a” -  Developed Countries, “b” -  Central and Eastern European Countries, “c” -  Other Developing 

Countries, “d” -  Least Developing Countries.

5 The discussion of the mean values of the inflationary series is meaningful only if inflation is a stationary 

process. The empirical results regarding stationarity of inflationary processes are presented later in Section 

6.1 and Section 6.2 of the present chapter.

6 The Normal distribution is characterized by zero value for skewness and kurtosis equal to three. However, 

in this work the kurtosis value is scaled to zero.
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♦ Other Developing Countries: Cyprus (0.197), India (0.267) and Vietnam 

(-0.235)

• Least Developing Countries: Niger (0.054), Malawi (0.115) and Samoa (0.297)

Alternatively, countries distinguished by high levels of skewness (regarding the group to

which the countries belong) are:

• Developed Countries: Spain (6.111), Denmark (2.682) and Portugal (2.136)

• Developing Countries

♦ Central and Eastern European Countries: Bulgaria (6.065) and Estonia

(6.143)

♦ Other Developing Countries: Colombia (9.558), Fuji (6.061) and Peru 

(7.456)

• Least Developing Countries: Uganda (2.844) and Sierra Leone (2.353)

The following countries possess the smallest kurtosis values in the group to which they 

belong:

• Developed Countries: Ireland (0.562) and Belgium (1.804)

• Developing Countries

♦ Central and Eastern European Countries: Hungary (3.097) and

Romania (4.173)

♦ Other Developing Countries: India (1.971) and South Africa (1.878)

• Least Developing Countries: Ethiopia (1.788), Malawi (1.543) and Samoa 

(1.692)

Large values of kurtosis (with the group to which the countries belong) are observed in the 

following countries:

• Developed Countries: Spain (112.741), Denmark (20.927) and Austria (17.695)

• Developing Countries

♦ Central and Eastern European Countries: Bulgaria (43.473) and

Estonia (45.578)

♦ Other Developing Countries: Colombia (117.106), Fuji (70.666) and

Philippines (226.787)

• Least Developing Countries: Sierra Leone (21.754), Uganda (13.074) and Niger 

(13.719)
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Moreover, for all the countries but Ghana, Philippines, Saudi Arabia, Vietnam (ODC 

group) and Nepal (LDC group), skewness is positive. With few exceptions, the calculated 

p -values show significance of the corresponding skewness and kurtosis estimates.

In short, the CEEC group is distinguished by general levels of skewness and kurtosis 

substantially higher than those for the rest of the groups. Kurtosis values of similar 

magnitude are specific for the rest of the developing countries. The general levels of 

skewness and kurtosis are lower for the LDC group. Remarkable examples of non- 

normally distributed inflationary data are the data for Spain, Estonia, Bulgaria, Philippines, 

and Colombia among others.

Thus, the empirical analysis of skewness and kurtosis of worldwide inflationary data 

reveals that the distribution of inflation significantly deviates from the normal distribution. 

These empirical results support the theoretical and practical findings in the literature (see 

Section 2, Chapter 2) regarding the non-normal nature of inflationary processes. In 

addition, the histograms of four selected countries, plotted on Fig. 2.1 -  2.4 (Chapter 2), 

graphically demonstrate that distribution of inflation is asymmetric and heavy-tailed. They 

have been discussed in more details in Section 2, Chapter 2.

Hence, we can infer that inflationary processes are far from being normally distributed. 

However, in the majority of studies inflation has been modelled under the assumption of 

normality. On the other hand, prices are usually considered as linear processes. As 

suggested in Chapter 2, this study examines inflation relaxing both the assumption of 

normality of distribution of inflation and the linearity of price processes. Two different 

approaches of modelling inflation have been proposed. One of them is to consider prices as 

a unit root bilinear process. Subsequently, as these processes belong to the class of non­

linear processes, the distribution of inflation is a non-normal distribution (see Chapter 2, 

Section 3). Alternatively, inflation is viewed as a stable Paretian distributed process. It is 

presumed that prices are described by a linear process with disturbances following a stable 

Paretian law (see Chapter 2, Section 3). As explained in Chapter 2, Section 3, in this 

particular case, inflation (i.e. first difference in prices Apt ) is associated with the 

disturbances of the process and, therefore, follows a stable Paretian law.
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Hence, under both mentioned suggestions prices can be tested for a unit root. Assuming 

that they follow a unit root bilinear process the so-called bilinear unit root tests (or 6-tests) 

can be applied (see Chapter 2, Section 8.2). Alternatively, assuming that inflation follows a 

stable Paretian law, the Rachev-Mittnik-Kim (RMK) unit root test can be applied (see 

Chapter 2, Section 7.2). Subsequently, for those time series for which the 6-test results or 

the RMK test results, respectively, point to non-stationarity of the price processes, the 6- 

test or the RMK test, respectively, can be further applied to inflationary processes in order 

to establish stationarity or non-stationarity of inflation. Thus, when applying a bilinear unit 

root test, inflation is assumed to follow a unit root bilinear process. Alternatively, when 

applying the RMK unit root test, first difference of inflation is assumed to follow a stable 

Paretian law. The RMK test is, however, conditional on the value of the index of stability

a. Hence, prior to applying this test it is necessary to evaluate the parameter a  (see Chapter 

2, Section 5.2). Moreover, as explained in Chapter 2, Section 5.1, the characteristic 

component a  determines the tail thickness of the stable Paretian distribution. The 

estimation results obtained, together with a discussion on the properties of the inflationary 

distribution viewed as a stable Paretian distribution, are explained in the following section.

5 Estimation of Stable Paretian Distribution Parameters
The present section examines the characteristic exponent a  of the stable Paretian 

distribution obtained after the empirical application of the McCulloch method of 

estimation to inflationary data. The corresponding results are tabulated in Tables C3.2a-d 

(Appendix C). The table consists of four columns. After the country names and the number 

of price observations are stated in columns (1) and (2), columns (3) of the tables display 

the estimated values of the index of stability a, while column (4) presents their standard 

deviations. The results can be summarised in the following way:

• Developed Countries

a  = 2 France, Greece and Iceland

(X£ (l.5, 2) 15 countries (out of 21) among which UK, Canada and

Finland

(X E (l, 1.5] Austria, Luxemburg and Germany
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Developing Countries

♦ Central and Eastern European Countries

OCG (l.5, 2) Hungary, Romania and Russia

OC G (l, 1.5] 8 countries (out of 13) among which Bulgaria, Czech

Republic and Slovenia

a  < 1 Latvia and Poland

♦ Other Developing Countries

a  = 2 Colombia, South Africa, Turkey and Uruguay

OCG (l.5, 2) 21 countries (out of 56) among which Cyprus, Namibia

and Venezuela

a e  (l, 1.5] 27 countries (out of 56) among which Ghana, Mexico and

Singapore

a  < 1 Argentina, Bolivia, Peru and Suriname

Least Developing Countries

OCG (l.5, 2) 6 countries (out of 18) among which Ethiopia, Myanmar

and Uganda

OC G (l, 1.5] 12 countries (out of 18) among which Burkina Faso,

Gambia and Sierra Leone

Summarizing, for most of the countries, 88.78%, the index of stability a  lies in the 

interval (l, 2): for 46,73% of the countries a e  (1,1.5] and for 42.05% of the countries 

a  G (1.5, 2). For seven out of 108 inflationary series the estimation results show normality 

of the corresponding inflationary distribution (i.e. a  = 2) and for another six inflationary 

time series a  < 1 meaning that the first moment of the process does not exist.
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Fig. 3.1 plots a scatter diagram of the indices of stability a  (determining the thickness of 

the stable Paretian distribution tails) versus the mean values of the inflationary time series. 

Before discussing the relationship between both parameters let us summarise the results 

obtained regarding the values of the index of stability a  . It is evident from Fig. 3.1 that the 

countries of the DC group, with few exceptions, possess a  -values ranging in the interval 

[1.5, 2]. Further, while most of the a  -values of the ODC group lie in the interval (1, 2], for 

the majority of the LDC the indices of stability are clearly smaller than 1.5. In conclusion, 

assuming that inflation is a stable Paretian distributed process, the distributions of inflation 

for the LDC group are characterised by thicker tails than the tails of the DC group under 

the same assumption. Finally, consider the results obtained for the CEEC group. 

Summarising, the distributions of inflation for these countries are clearly distinguished 

with tails fatter than the tails of the distributions of the countries from the rest of the 

groups, as the index of stability for the majority of the CEEC is between 1 and 1.5. 

Nevertheless those countries (with few exceptions) are distinguished by considerably 

larger mean values of inflation, demonstrating a negative relationship between the index of 

stability of the distribution of inflation and the mean values of inflation. With some 

exceptions, the same could be inferred for the rest of the Developing countries. In addition, 

the groups of the DC and the LDC (again, with few exceptions) are characterised by mean 

values of inflation of a small magnitude disregarding their corresponding a  -values.

In summary, the estimation results for the index of stability a  of the stable Paretian

distribution illustrate that for the majority of the countries this parameter is considerably
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below the value two of the normal distribution. For grater part of the Least Developing 

Countries and the Developing Countries (especially those from Central and Eastern 

Europe) the inflationary distribution is more heavily tailed. Graphs of symmetric stably 

Paretian distributed processes with indexes of stability a  = {l.l, 1.5,1.9} have been 

presented and discussed in Section 9, Chapter 2 {see Fig. 2.9a -  2.11a). It has already been 

shown that the distribution of inflationary processes is usually not symmetric, that is it is 

characterized by high levels of skewness. However, the unit root tests developed (i.e. RMK 

tests) assume that the disturbances follow a symmetric stable Paretian law. Although the 

inflationary data distribution is clearly asymmetric, the RMK test is applied to our data set, 

which could however lead to possible misrepresentation of the results obtained. The 

explanation of the RMK test results takes part of the next section.

6 Unit Root and Stationarity Tests
This section presents the empirical results obtained after the application of several unit root 

and stationarity tests to price and inflationary time series. The tests used differ with the 

assumptions made regarding the nature of the processes of interest as follows.

Prices are tested assuming that:

• inflation is a normally distributed process (joint application of the ADFmax 

and the KPSS tests)

• inflation is a stable Paretian distributed process {ARMK tests with and 

without a constant)

• prices follow a unit root bilinear process and consequently inflation is a 

non-normally distributed process (£-test)

Analogously, inflation is tested assuming that:

• first difference of inflation is a normally distributed process (joint 

application of the ADFmax and the KPSS tests)

• first difference of inflation is a stable Paretian distributed process (ARMK 

tests with and without a constant)
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• inflation follows a unit root bilinear process and consequently first 

difference of inflation is a non-normally distributed process (augmented b- 

test)

6.1  Testing Under the Assumption of Normality: Analysis of Price and 

Inflationary Data

The main objective of this section is to present the results of the linear unit root and 

stationarity tests applied to first, price time series and second, inflationary time series. 

More specifically, the results of the joint application of the ADFinax and the KPSS tests are 

considered. The critical values used are those of Charemza and Syczewska (1998), 

calculated for the purposes of such joint testing. Both tests (ADFmax and the KPSS) differ 

regarding their null and alternative hypothesis. Before explaining the results, it is perhaps 

convenient to state the exact hypothesis tested in the empirical work. The ADFmax test is 

Leyboume style ADF test as explained in Leyboume (1995) (see also Chapter 2, Section 

6.3). In short, it tests the null hypothesis of a unit root

Ho: \f\ = l
against the alternative of stationarity

Hi: |/?|<1

in a regression of the form
k

y,  =  a + fly,-, + 1 ] Yj  4y,_, +  e , ,
j=1

where a  is an intercept, k is the number of augmentations, y . are the regression

coefficients and et ~ iid Af(o, a 2). This is known as ADF test. The augmented Leyboume

test (or ADFmax test) is the ADF test applied to first the ordered, and second, the reversed 

realisation of the data. The ADFmax f-test statistic is then defined as the maximum statistics 

from both realisations.7

7 For more details see Chapter 2, Section 6.3.



CHAPTER THREE: DISTRIBUTION AND STATIONARITY OF WORLDWIDE INFLATIONARY
DATA: EMPIRICAL ANALYSIS

In contrast, Kwiatkowski et al. (1992) developed a test with null hypothesis of stationarity

H0: (J2W=0

against the alternative of non-stationarity (or, in other words, random walk coefficients)

H,: a \ >  0

in a regression of the form:
i

y, = r<>+ Z M''-' + f ,-
<=o

where r0 is an intercept, I is the number of autocorrelations, wt ~ iid (0, a 2w) and {st };r=1 is 

a stationary error process.8

The ADFmax test and the KPSS test are jointly applied to first, price data and second, 

inflationary data. The results obtained for price data are presented in Tables C3.3a-d 

(Appendix C), while those for inflationary data are displayed in Tables C3.6a-d (Appendix 

C). Both sets of tables are organised in an identical way: the country names are listed in 

columns (1), columns (2) -  (4) present the results for DFmax test, while columns (5) -  (6) 

tabulate those for the KPSS test. In both columns (2) and (5) the notations ‘O’, *+’, *++’ 

and *+++’ signify respectively: no significance of the statistics or, the statistics belongs to 

the 90%, 95% or 99% critical region. Columns (3) and (4) indicate the maximum 

significant length of augmentations in the ADFmax test and whether the maximum statistic 

is achieved in the forward or backward realisation. Finally, columns (6) tabulate the 

autocorrelation length for KPSS test.

The results in Tables C3.3a-d (Appendix C) point to clear non-stationarity of the price 

series for all the countries but Vietnam. This is indicated with pairs of the form (0, +++) 9 

showing joint confirmation of the unit root hypothesis at the 0.01 level of significance. 

However, nothing can be concluded regarding the non-stationarity of the Vietnam price 

data. This is indicated with a pair of results of the form (+++, +++).

Next, the joint testing procedure is applied to inflationary data and the results obtained lead 

to different conclusions about different countries (Tables C3.6a-d, Appendix C). Joint

8 For more details see Chapter 2, Section 6.4.
9 Hereafter, the first and the second elements in the pairs indicate the significance of the ADF^  and the 
KPSS tests, respectively.
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confirmation of a unit root is denoted with pairs (0, +++), (0, ++) or (0, +). The inflationary 

processes for the following countries are determined as non-stationary:

• Developed Countries: Iceland

• Developing Countries

♦ Central and Eastern European Countries: Czech Republic, Estonia, FE 

Germany, Poland, Russia and Slovenia

♦ Other Developing Countries: Chile, Colombia, South Korea and 

Uruguay

• Least Developing Countries: Uganda

Alternatively, joint confirmation of stationarity is denoted by (+, 0), (++, 0) or (+++, 0); 

the names of those countries satisfying this are:

• Developed Countries: none

• Developing Countries

♦ Central and Eastern European Countries: none

♦ Other Developing Countries: Ivory Coast, M alta, Philippines and Saudi 

Arabia

• Least Developing Countries: Burkina Faso, Burundi, Chad, M auritania, Nepal 

and Solomon Iceland

Summarising, the joint application of the ADFmax and the KPSS tests indicate that 12 out of 

107 (i.e. 10.19%)10 inflationary time series are non-stationary and the majority of them (10 

out of 12) belong to the group of the Developing countries. Moreover (in terms of 

percentages of the total number of countries in a group) while more than 46% of the 

inflationary time series of the CEEC group are non-stationary, for the ODC group of 

countries this percentage is only just over 7. On the other hand, stationarity of inflationary 

data is detected for 11 out of 107 series (i.e. 11.11%). 39% of the inflationary time series 

of the LDC group are non-stationary versus only 7% of the countries in the ODC group.

For the rest of the countries (78.7%), however, nothing can be inferred regarding

stationarity of inflationary processes.

10 Vietnam is excluded from further analysis using the joint application of the ADFmax and the KPSS tests.
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6.2 Testing Under the Assumption of Stable Paretian Distribution: 

Analysis of Price and Inflationary Data
The theoretical grounds of the Rachev -  Mittnik -  Kim (RMK) unit root test have been 

outlined in Chapter 2, Section 7.2. Before explaining the empirical results of applying this 

test after applying it to our data set, let us consider the corresponding estimated regression 

and the hypothesis tested. We are empirically using the augmented Rachev -  Mittnik -  

Kim (ARMK) test or, more specifically, estimation regression of the form:
m

y , = a  + p  y,_x + J j i 4y,-m + «,.
;= i

where the disturbances ut are iid, symmetric, strictly stable random variables with index of 

stability a  e  (1, 2), a* is an intercept, m is the number of augmentations and y* are the 

regression coefficients. The null hypothesis tested is the hypothesis of a unit root

Ho: a* =0 and 

against the alternative of stationarity

H i: a* ^  0 and P

=  1

< 1.

In addition, the results of the ARMK test without an intercept are also presented. For both 

cases, with and without an intercept, the critical values are tabulated in Rachev, Mittnik 

and Kim (2000). They are calculated for data generation processes with length of 500 

observations. Although the lengths of the price time series used in this analysis vary 

between 120 and 612 observations, the Rachev et a l (2000) critical values are used.

The ARMK tests are applied first, to price data and second, to inflationary data. The ARMK 

tests assume that the disturbances of the process follow a symmetric stable Paretian law 

(see Chapter 2, Section 3). Let us explain this issue in more detail. Price time series are 

tested assuming that inflation is a symmetric stable Paretian distributed process, i.e.:

Apt = ut (a ) , ut {a) ~ iid S(u\ a , 0, S , c) .

The tests are conditional on the index of stability a  . Thus, before applying the ARMK tests 

the parameter a  has to be evaluated. The estimated results are presented in Tables C3.2a-d 

(Appendix C), columns (3) and they have been discussed in Section 5 of the present 

chapter.
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Analogously, inflationary data are tested assuming that first difference of inflation follows 

a symmetric stable Paretian law, i.e.

AAp t = Aut(a) = ut(a),  ut(a)~ iid S (u ;a , 0 ,  S , c ) .

The symmetric stable Paretian distribution of AApt is characterized by an index of stability

a  * a  ( a  determine the thickness of the tails of the stable Paretian distribution). Thus, 

prior to applying the ARMK tests, the parameter a  has to be evaluated. The estimated 

results are presented in Tables C3.5a-d (Appendix C) columns (3).

Let us consider the results of the empirical investigation for price and inflationary time 

series. The results for price data are presented in Tables C3.2a-d (Appendix C), columns 

(5)-(10) and those for inflationary data are stated in Tables C3.5a-d (Appendix C), columns 

(5)-(10). Columns (5)-(7) present the results of the ARMK test without a constant, while 

columns (8)-(10) present those with a constant. Columns (5) and (8) list the calculated t- 

statistics while columns (6) and (9) indicate the significance of the statistic obtained. The 

notations ‘O’, *+’, *++’ and *+++’ have the same meaning as explained in Section 6.1. The 

symbol in Tables C3.2a-d (Appendix C) signifies that the unit root test has not been 

applied because the corresponding a  value is either less than one (i.e. the mean of the 

process does not exist) or because it is equal to two (i.e. the inflationary distribution 

coincides with the normal distribution)11. In Tables C3.5a-d (Appendix C) this notation 

also shows that the ARMK test has rejected the null hypothesis of a unit root in price time 

series and therefore, further application of the ARMK test to inflationary data is not 

necessary. Finally, columns (7) and (10) tabulate the maximum significant length of 

augmentations in the ARMK tests.

The empirical results obtained for the cases with and without a constant slightly differ. For 

the case without a constant the null hypothesis of a unit root in prices cannot be rejected 

for any of the countries to which the test has been applied. However, when a constant is 

included, non-stationarity in prices can be inferred for all the countries to which the test 

has been applied, except:

11 RMK test is applicable to those time series only, for which the index of stability of their distribution, Ot, 

lies in the interval (l, 2). See also Chapter 2, Section 7.
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• Developed Countries: Denmark, Ireland and Japan

• Developing Countries

♦ Central and Eastern European Countries: Albania, Czech Republic, FE 

Germany, Lithuania and Slovenia

♦ Other Developing Countries: Aruba, Bahamas, Bahrain, Barbados,

Chile, Fuji, South Korea, Namibia, Netherlands Antilles, Tunisia and 

Vietnam

• Least Developing Countries: Guinea Bissau, Sierra Leone and Uganda

Subsequently, the analysis proceeds with examination for a unit root in inflationary time

series. The ARMK test without a constant has been applied to all the inflationary series. 

The ARMK test with a constant has been applied to those series only for which the unit root 

in prices has been established. The null hypothesis of a unit root in inflation is not rejected 

for the following countries:

• Developed Countries

A R M K  test without a constant: Austria, Denmark, Ireland, Italy and Netherlands 

A R M K  test with a constant: France and Italy

• Developing Countries

♦ Central and Eastern European Countries:

A R M K  test without a constant: Hungary 

A R M K  test with a constant: Hungary

♦ Other Developing Countries

A R M K  test without a constant: Botswana, Namibia, South Africa and

Turkey

A R M K  test with a constant: Mexico, South Africa and Turkey

• Least Developing Countries

A R M K  test without a constant: Solomon Iceland 

A R M K  test with a constant: none

Stationarity is, however, identified for the rest of the countries at different levels of 

significance. The results reveal that for the majority of the Developing and Least 

Developing countries the null hypothesis of a unit root in inflationary data is strongly 

rejected. The significance of the test statistic is less strong for the DC group of countries.
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Summarizing, the last two subsections have presented the empirical results of testing for 

unit root and stationarity in price and inflationary data under different assumptions. If 

prices are tested, inflation is assumed to be first, a normally distributed process (Section 

6.1) and second, a stable Paretian distributed process (Section 6.2). Analogously, if 

inflation is tested for a unit root or stationarity, first difference of inflation is assumed to be 

first, a normally distributed process and second, a stable Paretian distributed process. A 

comparison of the empirical results (in percentages) of testing price and inflationary time 

series under both types of assumptions are presented in Table 3.1 below. All the price and 

inflationary time series are considered. The set of columns (1) presents a summary of the 

results obtained after the joint application of the ADFmax and the KPSS tests. On the other 

hand, the set of columns (2) presents those obtained applying the ARMK test with a 

constant.

Assuming Normality
(1)

Assuming Stable Paretian Distribution
(2)

Stationary Non-
stationary

Nothing can 
be inferred

Stationary Non-
stationary

Nothing can 
be inferred

Prices - 99.07% 0.93% 21.29% 66.67% 12.04%

Inflation 11.11% 10.19% 78.7% 75% 2.78% 22.22%

Table 3.1

Thus, non-stationarity can be inferred for 99.07% of the price time series under the 

assumption of inflation being a normally distributed process. Considering inflation as a 

stable Paretian distributed process this can be concluded for 66.67% of the price time 

series. However, nothing can be inferred for 12.04% as the ARMK test is applicable only to 

those processes, for which the index of stability a e  (l, 2).12 On the other hand, the results 

of the ARMK test with a constant reveal stationarity in a vast majority (75%) of the 

inflationary time series, which is confirmed by the linear unit root tests for 11.11% of the 

series only. Non-stationarity is confirmed for 10.19% using jointly the ADFmax and the 

KPSS tests while only 2.78% are confirmed as non-stationary if the ARMK test is applied. 

Finally, for the majority of the inflationary time series, 78.7%, the joint testing is weak in

12 If the index of stability a = 2 the stable Paretian distribution coincides with the normal distribution and 

therefore the linear unit root and stationarity tests are applicable. If a  < 1 nothing can be inferred employing 

the tests considered in this work.
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determining if inflationary data are stationary or non-stationary, while the ARMK test 

cannot identify it for 22.22% of them. In conclusion, the assumption of inflationary 

processes being stable Paretian distributed processes leads to a better specification of the 

nature of inflationary processes. Moreover, concerning the recent disputes in the literature 

(,see Chapter 1, Section 3) regarding stationarity and non-stationarity of inflationary 

processes, the ARMK test results strongly endorse the viewpoint of those who have 

considered inflation as a stationary process.

6.3 A Bilinear Unit Root Test: Analysis of Price and Inflationary Data
The present section discusses the results obtained after the application of the bilinear unit 

root test to price and inflationary data. Testing for presence of bilinearity consists of a two- 

step procedure as suggested by Charemza et al. (2002b) {see also Chapter 2, Section 8.2). 

In summary, the first step involves application of one or more linear unit root tests and if 

the linear unit root is confirmed, the analysis proceeds with the application of the so-called 

6-tests. In our empirical work the first step consists of joint confirmation of the linear unit 

root applying the ADFmax and the KPSS tests. This has already been explained in Section

6.1 of the present chapter. For those price and inflationary time series for which integration 

of order one has been confirmed, the analysis proceeds with the application of the 

augmented 6-test. Let us consider the hypothesis tested starting with the form of the 

regression estimated, that is:
n

y,=M + y ,-1 + + X  ̂  + e< >
;= i

where // is an intercept, n is the number of augmentations, are the regression

coefficients and et ~ iid Af(o, a 2e ). Subsequently, the null hypothesis of no bilinearity

H0:6 = 0

is tested against the alternative of bilinearity

Hi:6 > 0 .

The augmented 6-test is applied first, to price data and second, to inflationary data. Price 

time series are tested assuming non-linearity of price processes and non-normality of 

inflationary processes, i.e.:
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& Pt = bP t - i e t-l + e t > e t ~  i i d  ° e  ) ^

Subsequently, inflationary time series are tested assuming first, non-linearity of inflation, 

i.e. inflation follows a bilinear process of the form:

Apt = Ap t_x + 6 Apt_xet_x +et , et ~ iid N(0, <T-2),  

and second (by analogue to the case of prices), non-normality of first difference of 

inflation, i.e.:

AAp, =bAp,_,eM +«,.

In short, the bilinear unit root test is conditional on the confirmation of a linear unit root 

applying jointly ADFmax and the KPSS tests (see Chapter 2, Section 8). The tests results of 

the joint testing first for prices and second for inflation have been presented in Section 6.1 

of the present chapter. A summary of the results for prices shows that for all the countries 

except Vietnam both tests confirm the unit root hypothesis. Thus, excepting Vietnam, the 

b-test can be applied to all the price series. Subsequently, the ADFmax and the KPSS tests 

have been jointly applied to inflationary data and the results reveal that the hypothesis of 

unit root in inflationary data is confirmed for 12 out of 107 time series only (Vietnam is 

excluded from the analysis). For those 12 inflationary series the analysis proceeds with a 

test for the presence of a bilinear unit root.

The results of the 6-test for price and inflationary data are presented in Tables C3.4a-d and 

Table C3.7 (Appendix C) respectively. Both sets of tables are organised in the following 

way: the countries names are listed in columns (1), columns (2) tabulate the r-statistics; 

columns (3) indicate whether the statistic obtained is significant. The notations used are the 

same as in Section 6.1. The maximum significant length of augmentations in the 6-test is 

displayed in columns (4).

The results obtained reveal that the null hypothesis of no bilinearity in prices has to be 

rejected as follows:

• Developed Countries: 61.9% of the countries, among which are Denmark, Japan 

and the US

13 A more detailed explanation has been presented in Chapter 2, Section 3 of the present thesis.
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• Developing Countries

♦ Central and Eastern European Countries: 76.92% of the countries,

among which are Bulgaria, Hungary and Romania

♦ Other Developing Countries: 69.64% of the countries, among which are

Argentina, Cyprus and Mexico

• Least Developing Countries: 72.22% of the countries, among which are Chad, 

Malawi and Sierra Leone

It is evident from the summary that bilinearity is present for the majority of the countries 

disregarding their development status. Moreover, the results in percentages for the Least 

developing countries and the Developing countries, especially those for the CEEC group, 

are much higher compare to the percentage result obtained for the Developed countries.

Bilinearity is identified, however, at different levels of significance. A summary of the 

results (in terms of percentages of the total number of countries in a group) follows:

• Developed Countries

0.01 level of significance: 42.86%

0.05 level of significance 14.29%

0.1 level of significance 4.76%

• Developing Countries

♦ Central and Eastern European Countries

0.01 level of significance: 69.23%

0.05 level of significance 7.69%

♦ Other Developing Countries

0.01 level of significance: 46.43%

0.05 level of significance 17.86%

0.1 level of significance 5.36%

• Least Developing Countries
0.01 level of significance: 50.00%

0.05 level of significance 16.67%

0.1 level of significance 5.56%
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Further, the analysis proceeds with investigating the presence of bilinearity for inflationary 

processes. The bilinear unit root test can be applied to those inflationary series for which 

non-stationarity has been jointly confirmed from the ADFmax and the KPSS tests. The 

names of those countries have been listed in Section 6.1. Subsequently, the null hypothesis 

of no bilinearity in inflation has been rejected for the following 10 countries:

• Developed Countries: Iceland

• Developing Countries

♦ Central and Eastern European Countries: Czech Republic, FE 

Germany, Russia and Slovenia

♦ Other Developing Countries: Chile, Colombia, South Africa and 

Uruguay

• Least Developing Countries: Uganda

as the levels of significance vary among countries (see Table C3.7, Appendix C).

A more general summary of the results shows presence of bilinearity in 71.03% of the 

price series and in 9.35% of the inflationary time series.

For the purposes of this analysis the set of programs ‘Blini’ {see Charemza and Makarova 

(2002)) together with variations of some of the programs has been used. The programs are 

written using the GAUSS programming language.

7 Conclusion
Based on recent findings in the literature regarding the normality of distribution of 

inflation, Chapter 2 of the present section introduced the idea of modelling inflationary 

processes relaxing both assumptions of normality of distribution of inflation and linearity 

of price processes. It has emphasized the non-normal nature of inflation and has considered 

the theoretical background of the ways proposed for modelling it. The present chapter 

discussed the empirical results in relation to the methods discussed in Chapter 2. The 

analysis is based on a large selection of world-wide price data for 107 different countries.
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Initially, the discussion concentrated on examining the distribution of inflationary 

processes. The results reveal substantial deviation of the distribution of inflation from the 

normal distribution. Inflation is distinguished by high levels of skewness and kurtosis and 

substantial tail thickness.

Another issue of interest of this chapter is in investigating the stationarity of inflationary 

processes. Price and inflationary data have been tested for a unit root using conceptually 

different techniques. The analysis started with the joint application of: a linear unit root test 

(the ADFmax test) and stationarity test (the KPSS test). Both tests confirm non-stationarity 

in prices for all the countries but Vietnam. After applying these tests, however, it is 

difficult to infer whether inflationary processes are stationary or non-stationary. The results 

reveal that 10.19% of the inflationary time series are stationary and 11.11% are non- 

stationary. For the rest 78.7%, however, nothing can be concluded.

Further, the analysis has proceeded with a unit root testing under the assumptions that 

inflation follows a stable Paretian law if prices are tested and, first difference of inflation 

follows a stable Paretian law if inflation is tested. For those purposes the ARMK tests (with 

and without a constant) have been used. Both tests are applicable to symmetric data and 

depend on the index of stability a , which is identical for each time series. The method 

used for calculating it is the McCulloch (1986) quantile estimator. Although our data are 

clearly asymmetric the ARMK tests have been applied. Examination of price time series 

reveal non-stationarity in prices if the ARMK test without a constant is applied. Non- 

stationarity in prices can be inferred for 66.67% of the time series if the ARMK test with a 

constant is applied. Only for those countries for which prices are non-stationary processes, 

the analysis proceeds with testing for a unit root in inflationary processes. The results 

reveal that applying the ARMK test with a constant, stationarity can be established for 75% 

of all the inflationary time series, which strongly supports the standpoint of those 

researchers who have seen inflation as a stationary process.

Finally, the analysis ends with testing for a bilinear unit root in prices and inflation. This 

has been done using the two-step testing procedure proposed by Charemza et al. (2002b). 

If non-stationarity has been detected after the joint application of the ADFmax and the KPSS
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tests, the &-test has been applied. The test results reveal the presence of bilinearity in 

71.03% of the price time series and in 9.35% of the inflationary time series.

In conclusion, the empirical analysis clearly shows that the often-assumed normality of the 

distribution of inflation should be seriously questioned. A plausible assumption when 

modelling these processes is inflation being a stable Paretian distributed process. Under 

this assumption a unit root test (the ARMK test) has been applied and the results reveal that 

most of the price time series are non-stationary. Further investigation of those time series 

by applying the ARMK test to the corresponding inflationary processes reveals that for a 

vast majority, 75%, of the inflationary time series in the data set considered, stationarity 

can be clearly inferred. The percentages results showing non-stationarity in inflationary 

data (and applying the ARMK test) are more impressive. Non-stationarity of inflation has 

been concluded for less than 3% of the time series. Thus, in the context of the debates in 

the literature regarding stationarity and non-stationarity of inflation, the results of the 

empirical study of a large selection of world-wide inflationary data strongly supports the 

standpoint of those researchers who have regarded inflation as a stationary process. On the 

other hand, the view of prices as non-linear processes, and consequently inflation as a non- 

normally distributed process, leads to the conclusion of the presence of bilinearity in the 

majority of the price processes considered (71.03%), which is in favour of the idea of the 

non-linear nature of price processes.
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CHAPTER FOUR KALM AN FILTER ESTIM ATION OF UNIT ROOT  

BILINEAR INFLATIONARY PROCESSES

1 Introduction
Chapter 2 of the present thesis introduced the view of price processes as non-linear 

processes. More specifically, prices have been considered as described by unit root bilinear 

processes. Subsequently, under this assumption of price behaviour, Chapter 3, Section 6.3 

presented the empirical results of the two-step testing procedure for presence of bilinearity 

(see Charemza et al. (2002b)) applied to a large set of world-wide inflationary data. In 

summary, the results reveal the presence of bilinearity in the majority of the price 

processes considered, that is 71.03%. These results strongly support the view of price 

processes as non-linear or, more precisely, unit root bilinear processes. In addition, the 

presence of bilinearity has been established in 9.35% of the inflationary time series only.

The next step in our analysis is the estimation of the bilinear coefficient for those price and

inflationary series for which presence of bilinearity has been detected. Under the null

hypothesis of no bilinearity Charemza et al. (2002b) evaluate the bilinear parameter using

the OLS method, which also might be a way of estimating the coefficient of bilinearity. On

the other hand, as the bilinear processes posses non-linear and non-stationary nature a

suitable way of evaluating the coefficients of interest is the Kalman filter method of

estimation. Before proceeding with the application of this method of estimation to unit root

bilinear processes, let us, for convenience, remind the definition of a unit root bilinear
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process. In short, the unit root bilinear processes belong to the class of non-linear models 

and they are defined by an equality of the following form:1

y, = y,-x+by, (4-i)

where b ^O  and e, ~ iid N(0,cr2) for t  = 1,2,..., T.

According to Charemza et al. (2002b) if b ~ 0 equality (4.1) can be seen as Ay, ~ et . 

Substituting Ay, = £t into (4.1) gives

Ay, =by,_lb.y,_l +e, (4.1a)

and hence, the OLS method is applicable for estimation of the bilinear coefficient. A 

limitation of this method of estimation, however, is the assumption that the innovations 

depend on the price observations only. However, the unit root bilinear process (4.1) is an 

iterative process with a specific non-linear and non-stationary2 structure. It follows from

(4.1) that £t = /(£,_!) that is the disturbance £t at time Ms a function of the disturbance

£*,_! at the time t-1. C onsequently,^ = f(£,_2), £t-i = f ( £t-3)>•••, = f ( £0) , where £0

is an initial value. Hence, the error term £t of the process (4.1) is described by a recursive

equation. An often-used technique for estimating processes possessing such a structure is 

the Kalman filter method. In brief, the Kalman filter method allows us to generate 

recursively optimal, non-linear forecasts of the disturbances £l ,£2,...,iT based on the 

observations y p y ^—̂ r  and an initial value yo. Therefore, this method should lead to

higher precision in the estimated results. Abreast with its applicability to non-linear 

processes, two other features that are prerequisites for the Kalman filter use in our study 

are: its applicability to non-stationary processes and the exact maximum likelihood 

estimation.

1 In this chapter the variable y, is presumed to describe a price process and is associated with logarithm of 

prices (i.e. CPI or RPI) at time t. Price processes have been denoted by p, in Chapter 2 and Chapter 3. 

However, in this chapter the symbol p  stands for the elements of a covariance matrix, as this is a usual

notation when the Kalman filter method is used.

2 Following Granger and Andersen (1978) the stationarity condition for processes of the form

y t = ayl_l +be,_ly l_l +£, is a 2 + b2(72 <1- The processes of interest of this study are the last mentioned

adding the condition a = 1, i.e. y t = y t l + bet_yt_x + et and they are, therefore, non-stationary processes.
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The Kalman fiter method has been introduced by Kalman (1960). Based on the theory of 

conditional distributions and expectations, the Kalman’s original paper presents digital 

filters for non-stationary processes and their application in the sphere of engineering, 

solving problems of practical importance. However, Kalman’s work has also attracted the 

economists’ attention. Although initially it appeared to be of a little use in the area of 

economics, Schweppe (1965) focused the economists’ interests on the Kalman filter 

applicability for the purposes of maximum likelihood estimation, which is of particular 

interest to the present work.

In general, the Kalman filter algorithm is a recursive procedure applicable to dynamic 

systems presented initially in a state -  space form. The development of the system over 

time is presented by a possibly unobserved vector (%, known as a state vector, and 

described by a first-order vector autoregressive Markov-Chain process. However, as the 

d s  might not be observed directly, their properties are specified based on knowledge of 

the observations yi, y% . . .  , y r  and by means of a state equation. Thus, the state-space form 

of the dynamic process y incorporates a state vector 3 <%, t = 1 ,...,T  representing the 

development of the system under study, and a state equationx depicting the relationship 

between the observed values yt, t=  1,... ,T and the d s. Subsequently, applying the Kalman 

filter to the state-space form updates the state vector as new observations become 

available, followed by forecasts of the state vector elements. Thus it allows us to obtain the 

best state vector estimates at any point within the sample.

Once a model is presented in a state-space form, applying the Kalman Filter enables one to 

obtain simultaneously estimates for both model parameters and the unobserved elements. 

As mentioned earlier, the main objective of this chapter is estimation of the bilinear 

coefficient b in a unit root bilinear process. The non-linear structure of these processes 

results in state-space presentations with time varying coefficient matrices5 that is matrices 

with elements dependent on the observations up to time t-1. Initially the unit root bilinear 

process is written into a state-space form. Subsequently, applying the Kalman filter allows 

the exact calculation of the likelihood function, one of the parameters of which is the

3 The state vector is also known in the literature as transition equation.

4 The state equation is also known in the literature as observation or measurement equation.

5 In general, the state-space form coefficients are matrices, which could be time invariant or time varying.
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coefficient of bilinearity b. Next, maximizing the likelihood function leads to estimation of 

this parameter.

In short, Chapter 4 presents a way of unit root bilinear parameter estimation by means of 

the Kalman filter. It consists of four sections of which the present introduction is the first. 

Section 2 provides a brief overview of the Kalman filter application in the area of 

economics. Further, the issue of bilinear coefficient estimation by the use of the Kalman 

filter is discussed in Section 3 as this section contains three main subsections. The first of 

them, Section 3.1, outlines the state-space form used in this work. Next, Section 3.2 states 

the Kalman filter derivation for the relevant time varying state-space structure. Further, 

Section 3.3 illustrates the Kalman filter estimation of the unknown bilinear parameter 

using the maximum likelihood method and considers the finite sample properties of the 

estimator. The former requires an appropriate numerical optimisation method for 

maximizing the log-likelihood function. Abreast with the traditional optimisation 

techniques, a recently proposed algorithm called Simulated Annealing algorithm is also 

used in the present study. The main idea behind this optimisation method is presented in 

Section 3.3.1. Subsequently, a brief theoretical description of the Monte Carlo simulation 

method is exposed in Section 3.3.2. The Monte Carlo simulations are then employed first, 

for evaluating the finite sample properties of the Kalman filter estimator (using the 

Simulated Annealing algorithm) and second, for calculating the critical values of the 

Kalman filter estimates r-test statistics (using standard numerical optimisation technique). 

The empirical results obtained are presented in Section 3.3.3. Finally, Section 4 concludes.

2 An Overview of the Kalman Filter
Although widely used in engineering and applied statistics, the Kalman filter is a 

convenient and successfully used tool in the applied economics area. Before applying the 

Kalman filter to the model of interest, the model has to be inverted into a state-space form, 

and thus converted to a fully dynamic framework, providing a wide variety of possible 

applications. State-space models can be univariate or multivariate models and the latter 

include more than one dependent variable (see Hamilton (1994), Engle and Watson (1987), 

Lawson (1984), Burmeister and Wall (1982), etc.). However, as our underlying bilinear 

process is based on inflationary observations only, the study presented in this chapter 

concentrates on models with one dependent variable, i.e. the so-called univariate models.
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On the other hand, state-space forms might be constant or time varying state-space forms6. 

The latter are typically used as tests for stability of a regression equation (see Garbade 

(1977), Laumas and Mehra (1976), Rauser and Laumas (1976), etc.). The Kalman filter has 

been successfully used in many areas of the applied economics: rational expectation 

models (see Engle and Watson (1987), Burmeister and Wall (1982), Cuthbertson (1988), 

etc.), regression estimation with ARMA errors (see Harvey and Phillips (1979)), signal 

extraction (see Pagan (1975)), seasonal adjustment (see Engle (1979), Burridge and Wallis 

(1984, 1990), Hausman and Watson (1985), etc.), forecast (see Engle and Watson (1987), 

Harvey (1984), Harvey and Todd (1983)), etc.

Among other applications, the Kalman filter method is often used as a technique for the 

estimation of the unknown parameters in the coefficient matrices of the likelihood 

function. Subsequently, one problem that has claimed attention is the problem of 

parameters identification.7 Rothenberg (1971) defines locally and globally identified 

models and finds a necessary and sufficient condition for local identification. Two 

different approaches for checking local identification are presented in Hannan (1971) and 

Gevers and Wertz (1984), Wall (1987), respectively. Following Caines (1988), subject to 

certain conditions, two of which are identifiability of the model and indeterministic 

covariance-stationarity of the exogenous variables, the author shows that the maximum 

likelihood estimate of the unknown parameters is consistent and asymptotically normal. 

Assuming that the exogenous variables are non-stochastic, Pagan (1980) examines a class 

of models, presented in state-space form with coefficients varying over time, and applies 

the Kalman filter. Under certain conditions, the author shows that the maximum likelihood 

estimator of the unknown parameters is consistent and asymptotically normal8,9.

6 Time varying parameter model was introduced into economics by Cooley and Prescott (1973) and 

Rosenberg (1972).

7 Absence of identification occurs when more than one set of parameter values can give rise to identical value 

of the likelihood function.

8 Pagan (1980), Theorem 4.

9 See also Ghosh (1998), Ljung and Caines (1979).
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3 Non-linear Estimation of a Unit Root Bilinear Process Parameter 

by the Use of the Kalman Filter
The main aim of this chapter is to introduce a way of unit root bilinear coefficient 

estimation. A traditional tool in the theory of parameter estimation is the likelihood 

function (LF), which for unit root bilinear processes can be formulated and calculated by a 

routine application of the Kalman filter. Before constructing the LF the underlying bilinear 

process has to be presented in a state-space form. However, this presentation is not unique: 

different state-space forms can characterise the same process. One of them, the most 

convenient from a researcher’s viewpoint, is usually chosen for further work. Thus, the 

present section begins with the state-space form of the unit root bilinear process (4.1). 

After the Kalman filter derivation for this particular process is presented, the rest of the 

section continues discussing the unit root bilinear coefficient estimation by maximising the 

corresponding LF. Hamilton (1994) and Harvey (1989) describe in details the theory 

behind state-space models with constant parameter matrices. Following their notations, in 

this chapter the attention is concentrated on a class of non-linear processes (i.e. unit root 

bilinear processes) described by a state-space form containing a stochastically varying 

coefficient matrix.

3.1 State-space Bilinear Form

In general, a state-space form of a price time series {y,},T=1 applies to multivariate time

series models. However, since our attention is concentrated on price processes only, with 

no loss of generality we can assume that yt is a single observation and, therefore, consider

{ y , a s  a univariate time series. Consider now our underlying bilinear process (4.1):

y, =y,-l +be,_

where et ~iidN(0, <T),t= 1, T. The state-space form of the dynamic process y consists

of a system of two equations, namely: state equation and state vector. The former has a 

representation of the form:

y, = Z t + T,rjt , (4.2)

where yt stands for the observed variable at time t, Z, = [y,_J and Tt = \byt_x l] are time- 

varying parameter matrices of dimension ( lx l)  and (2x1), respectively.10 The price

10 Note that the notation T denotes the sample size, while T, is a matrix.
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observation y t is also related to an unobserved (2x 1) vector rju known as a state vector, 

which is assumed to be described by process of the following form:

tlnl = H V ,  + £ M ' (4-3)

where for the bilinear process (4.1) rjt = £t i '0 1"(“1 , H =
_ £t . 0 0

is a (2x2 ) constant parameter

matrix and £ +1 =
0

' H i .

denotes a (2x 1) vector of serially uncorrelated disturbances with

mean zero and (2x2) covariance matrix Q, that is:

Q, for t = T

0 , otherwise
(4.4)

where Q is calculated in the following way:

q  = e [c,C ) = e {
" o ’ \

r i

oo oo

f .
[o £,] = E

i o to
1

—

n
C

lbo
i

(4.5)

Summarising, one way of writing the unit root bilinear process (4.1) in a state-space 

bilinear form is as follow:

y, = y,-< + k v i  i P _1

£t 0 1 e t 1 0
=

0 0
+

£t+1 £t £t+1

state equation

state vector

satisfying all the assumptions made above. The next section concentrates on Kalman filter 

derivation specified by (4.2) - (4.5).

Section 3 aims to present a way of estimating of the unknown parameter b using the 

Kalman filter method. In the state-space form stated above this parameter takes part of the

(1,1) element of the time-varying coefficient matrix Tt.n The following subsection briefly 

considers the Kalman filter derivation for the unit root bilinear process presented in the 

state-space form described above under the assumption that the coefficient matrixes 

containing the unknown parameters b and o2, that is Tu and Q, respectively, are given.

A state-space representation for a given process is not unique. An alternative state-space form is stated 

later in this chapter (Section 3.2).
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Then, the likelihood function can be constructed and the bilinear coefficient b together 

with the variance a  can be obtained by means of the maximum likelihood method of 

estimation. Following the general approach of Hamilton’s (1994) work the Kalman filter 

has been derived for the state-space bilinear form described by (4.2) - (4.5). The following 

section presents the main results of this derivation and an asymptotic property of the 

Kalman filter under the assumption of 'small' bilinearity.12

3.2 The Kalman Filter Derivation
The Kalman filter algorithm is simply a recursive procedure, which generates optimal non­

linear forecasts13 of the state vector rjt, i.e. f)xp,f)2\V...,f]AT_l based on the information set

Wt = {yt , yp y0}available at time t. The derivation of the Kalman filter presented in

this section is based on the assumptions that the disturbances and the initial state vector are 

normally distributed. The conditional distributions of the recursively-generated estimators 

are normal and, therefore, are completely specified by their mean and covariance matrices. 

Hereafter, Pt\t.i denotes the (2x2) covariance matrix of the estimation error associated with 

each of these forecasts.

The derivation of the Kalman filter results in the consecutive application of the following 

four steps and the last three of them execute T-1 times:

step 1: initialisation of the state vector

step 2: optimal forecast of the next observation yt based on the information 

available at time t

step 3: estimation of the state vector based on the information available at time t 

step 4: one period ahead optimal forecast of the state vector

12 Following Charemza et al. (2002b) the term 'small bilinearity ' is associated with coefficients b defined in 
the interval | q _J_ .

I 'J r .
13 If Z and T are also constant matrixes (H and Q are constants in the chosen bilinear state-space form), the 

forecasts of the state vector rjt are linear least square forecasts. It will be shown later that for time-varying 

parameter matrices the inference is non-linear function of y,_i.
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The recursion starts with estimation of the initial state vector rjxp, which is the forecast of

T]\ based on no observations of y. The matrix H is a (2x2) constant parameter matrix with 

zero eigenvalues, that is the eigenvalues are inside the unit circle. Following Hamilton 

(1994) if the eaigenvalues are inside the unit circle, the Kalman filter iterations can be

started with i = [0 0 ] and covariance matrix:

f 1-  -1 \ 2 2 -

1

k
)

£0
_£qSx

£q£x

£ 2 1

G 0

V

= E
V y 0 1

db

Let us presume that fjt]f_x and Pt\t.\ are given for fixed t. This subsection describes the way 

of calculating rjt+x]f and Pt+\\t starting with the forecast of the value yt. The forecasted value 

of yt, y ,M , is associated with the estimated expected value of yt based on the information 

set {TVi} and is obtained using the state equation:

5v> =z< +r.Vi
and the covariance matrix of the estimation error is V 5

Then, the current value of rjt can be updated based on extended information set =

{XF/}. This updated value fjt]t is calculated as the conditional mean of rjt based on the

information set {XF J and using an updating formula.16 It can be shown that for the state- 

space bilinear form this estimate has a representation of the form:

14 As mentioned above this state-space representation is not unique. Consider an alternative form describing 

the same underlying process (3.1):

= n,n, + ■

where / /  == T b y '
’ r= [ i  0], T]t = y,

’ Vl+x=
£t+\

0 0 , £t_ .£t+i _
. The coefficient matrix H t is a time varying

matrix with eigenvalues one and zero. Therefore, the unitary eigenvalue lies on the unit circle thus, leading to 

difficulties in initialising the state vector rjt.
15 It can be shown that TtPt̂ _xT, = b 2y 2_xp, + o 2, wherep, is the (1,1) element of P(|(1.

16 For the updating formula see Hamilton (1994), formula [4.5.30]. In our case this formula has the following
-1

form: n,t = n„., + ) (y,-Z,~T,n„.,)-
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% +

1

1 33
1

a

where p t is the (1,1) element of P^_x. Hence, f)t]t is a non-linear function of yt.\ with a 

covariance matrix

p« =
Pt 0 ' I1 2 2 , —2 \  1 b2y l,(p ,)2 by,-iP,<r2
0 ( j 2

~ ( b  X - i A  +£T )
_  by.-iP.v1 a*

(4.6)

The last step in the Kalman filter derivation consists in forecasting rjt+i using the state 

vector equation (4.3):

Thus, the estimated values of the state vector at time t+ 1 based on the information 

available at time t are:

■2~l
(b2y l , p ,  + ° r2V { y ,  -  y ,-■ - e ,H )*7r+l|/ 0

+
a
0

Ones the forecast of the state vector is obtained, the procedure continues recursively, 

finding the optimal forecast of the next observation yt+i.

Further, consider the covariance matrix Pt+i\h associated with fjt+l̂ . It has a presentation of

the form17:

/+i|r
P ?  o 
0  a 2

22where p l]t]f i, j  = 1,2 is the (/, j)  element of the covariance matrix Pt\t. However, pt+l]f = p^ 

is the mean square error of et]f and let us denote this element by p t+1, that is:

P,*1= E (e ,-e ,i )2 (4.7)

As we are interested in the properties of the Kalman filter for the underlying bilinear 

process (4.1), consider lim p t+1, where the element

_  b2ylp,<72
Pm b 'y l lP, +<T*

(4.8)

is obtained from formula (4.6). Starting the recursion with p x = cr2 and applying formula

(4.8) leads to the following result:

See Hamilton (1994) p.380
1 1 0



CHAPTER FOUR: KALMAN FILTER ESTIMATION OF UNIT ROOT BILINEAR INFLATIONARY
PROCESSES

1 + C,i> +C2b +... + C,b

i

where C, = yf_t > 0, i = l,...,f.
t=i

Following Charemza, Lifshits and Makarova (2002a), in the presence of ‘small’ bilinearity, 

that is \b\<—]=, the underlying unit root bilinear process (4.1) has limited distribution,
v r

while, otherwise, explosion occurs. Thus first, the elements C{ , i  = 1,..., t are limited and,

second, as ~^= < 1 with no loss of generality the proceeding analysis can be reduced to the 
vT

case | b |< 1. Consider now lim p t+l. If b = 0 or Ct = 0, then pt+\ = 0. Otherwise, formula
t—>°°

(4.9) can be viewed as:

Pt+1 =
a 2

Dtb Dt_xb‘

Ct
where Dt = C ,, Dt_j = —L, j  = 1 1 and thus,

ST- 2  ST- 2(7 <T
lim p t+l = lim—  ------------   = lim

 o—I Tt—rr +... + 1 -------
Dtb 2t Dt_xb1{t-l) t t D tb2t

The bilinear coefficient satisfies the inequality | b |< -\=  < 1. In this case the sequence
V r

V  — L -  is divergent, i.e.:

iimy ^  = „

Dtb

and hence lim pt+l = 0 . Therefore, it follows from formula (4.7) that
t—>°°

lim p t+l = lim E(et -  £t[l )2 = 0 ,t - \flp t —̂oo >
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p
that is as *—»«>. In conclusion, given sufficient number of observations yu the

disturbances et]f of the unit root bilinear process (4.1) calculated by the Kalman filter 

converge to the true values et .

3.3 The Maximum Likelihood Estimation: Finite Sample Properties
In order to estimate the bilinear parameter b and the variance of the error term o2 in the 

matrices Tt and Q, the maximum likelihood method will be used. Denoting by 6 the vector 

collecting these parameters, the log-likelihood function takes the following form:

In F ( y ;6) = £ ln /  ( y t | y m) =
t=i

= - y l n 2 ^ - t | l n | r t̂ Hr,j-

- \ £ { y . - z . \ y ~ z , - t ’.'V .)

It can be maximised using standard numerical optimisation methods. However, their 

application requires determination of the starting parameter values. A way of initialising 

them is by first equating b’s starting value, say b0, to its OLS value calculated by formula 

(2.14) (see Chapter 2, Section 8.2). Second, given the values bo and the price time series 

{y,}^j, the set of error terms {s,Yt=x *s found and its variance cr02 = var(^) is chosen for 

a 1 starting value.

However, in contrast to the traditional numerical algorithms, a numerical optimisation 

technique independent of the starting values was introduced in the early 1980’s. A brief 

expose of this method, called Simulated Annealing, is presented in the following section.

3.3.1 The Simulated Annealing Algorithm: Main Idea
Estimating the parameters of our model requires maximization of the log-likelihood 

function using numerical optimisation methods. However, some of the available algorithms 

(BFGS, DFP, NEWTON, BHHH, Polak-Ribiere Conjugate Gradient, etc.) often fail when 

trying to optimise a function. Routine problems experienced with these techniques are 

infinitely large parameter values, loop trough the same point over and again, slow 

convergence or lack of convergence, etc. The last problem seems to be the most frequent
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and the only way of possibly eliminating it is by trying different initial values. However,
1 8even if the algorithm eventually converges, the global maximum is not guaranteed: the 

algorithm might stop at the first optimum encountered, or alternatively, might converge to 

a local rather than a global maximum. Moreover, some of the algorithms use evaluation of 

the derivatives of the likelihood function and thus are applicable to well-defined (smooth 

and continuous in the domain of interest) functions only.

The above-mentioned disadvantages of the standard numerical optimisation techniques are 

prerequisites for the use of the Simulated Annealing (SA) algorithm if the log-likelihood 

function is maximized. Initially presented as a technique for optimising functions defined 

in a discreet domain of interest (see Kirkpatric, Gelatt and Vecchi (1983)), the algorithm is 

later modified for continuous functions optimisation (see Corana, Marchesi, Martini and 

Ridella (1987)). Corana et. al (1987) show that SA overcomes the above disadvantages of 

the traditional methods finding the global optimum or a good, near-optimal local 

maximum. Next, Goffie, Ferrier and Rogers (1994) present an extension of the algorithm, 

checking that the global maximum is indeed achieved.

The SA algorithm outlines with fewer limitations then the traditional optimisation methods 

require (e.g. there is no need the function to be smooth or continues) and it is applicable to 

ill-conditioned functions with high number of local optima. In contrast with the 

conventional optimisation algorithms (moving uphill iteratively), the SA moves uphill and 

downhill, which leads to the following two features distinguishing this algorithm from the 

traditional optimisation techniques: first, the SA is independent from the initial values and 

second, it can escape from local maximum and proceed to find the global maximum.

Prior to explaining the essence of the SA algorithm let us first clarify the intuition behind 

the method. The principles of the SA can be compared with those of a physical process by 

which molten metal is cooled. If the process of cooling is slow (known as annealing), the 

metal passes gradually from high to low energy state, that is, to the global minimum 

energy state of the system. If, however, the metal is cooled rapidly, when fully cooled it

18 Unless specified, the issue is discussed in terms of function maximisation as the same results hold for 

minimisation problems considering, however, the negative function.

113



CHAPTER FOUR: KALMAN FILTER ESTIMATION OF UNIT ROOT BILINEAR INFLATIONARY
PROCESSES

might contain more energy than annealed metal, that is the system will be in a local 

minimum state with higher energy than the energy of a slowly cooled metal system.

Following Corana et al. (1987) and Goffie et al. (1994), let us briefly outline the main 

steps of the SA algorithm. The following summary demonstrates SA application if one is 

interested in finding the global maximum of a bounded function L(x), where the vector 

xeR n and n is the number of the variables. Initially, the user must set starting values as 

follows: vector of parameters x, temperature T and step length v. The value of the function 

L(x) is then evaluated at the starting point jc. Next, new point xnew is generated using 

formula of the form:

X  new ~~ X  4" r  V

where r is a uniformly distributed random number, re  [-1, 1] and i stands for the ith 

coordinate direction, i = 1,...«. Then, the functional value L(xj) is calculated. Based on the 

Metropolis criterion a decision of acceptance or rejection of the new point is taken, that is:

•  if L(xnew) >L(x), Xnew is accepted, x  is set to xnew, i.e. x = xnew and the algorithm 

moves uphill

• if L(xnew) < L(x), xnew is accepted with probability

U xmw)-U x)

P = e T (4.10)

If P is grater than a uniformly distributed random number P from the interval [0,1], then x  

is set to xnew, i.e. x = xnew and the algorithm moves downhill.

The procedure described has to be repeated Ns times19 as this parameter is set by the user. 

Then, the step vector v  is adjusted so that one-half of the total numbers of moves are
90accepted. The sequence of steps presented above has to be repeated N t  times as each time 

the step vector length is updated. The temperature is then reduced using the following 

formula:

Tnew ~  ?t T ,

19 Ns is a criterion for step vector adjustment.

20 Nt is a criterion for temperature reduction set by the user.
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where the parameter rj lies in the interval [0,1]. Next, the algorithm presented above is 

repeated for the new temperature value, starting at the current optimum value x. It is clear 

from (4.10) that starting at the current maximum and at lower temperature decreases the 

number of downhill moves and, consequently, the length of the step vector v  declines thus, 

concentrating the new search on the most promising area. The temperature is reduced 

every Ns.Nt cycles of moves along every direction and after Nt step adjustments, that is, till 

it is low enough, such that no useful improvement can be expected from further 

temperature diminishing21.

However, when using the SA algorithm, one has to choose the initial parameter values 

controlling it carefully. Starting values suggestions for those parameters are presented in 

the 1987 article of Corana et al. Detailed discussion related to this issue is covered in the 

work of Goffie et a l (1994), also proposing a useful way of determining the initial 

temperature T.

Both the Simulated Annealing algorithm and the standard numerical optimisation 

algorithms possess advantages and disadvantages. In the present work SA is used if we 

require higher precision, and the traditional numerical optimisation techniques if speed is 

regarded.

3.3.2 Principles of the Monte Carlo Methodology
Up to this point a way of estimating the unknown bilinear coefficient b & 0 in the unit root 

bilinear process (4.1) has been presented. Further aspects of interest are the properties of 

this estimator for a sample with a finite number of observations. In classical statistical 

inference estimator’s properties are discussed in terms of their sampling distributions 

properties. Subsection 3.3.3 of this chapter concentrates on two finite sample criteria for 

assessing a single parameter: bias and Root Mean Squared Error (RMSE). In short, an 

estimator is said to be unbiased for parameter b if the mean of the sampling distribution 

equals b, and biased otherwise. In the latter case, the difference between b and the mean is 

known as bias. Although unbiasedness is a desirable property, there are biased estimators 

with smaller variances then the unbiased ones. As large variances may lead to estimators,

21 The parameter f is  a small number (e.g. 10E(-M), where M is an integer number larger than 1) set by the
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which are far from the true values, another property we would like our estimator to posses 

is a small variance. One criterion that incorporates both bias and variance is the RMSE. A 

method that allows one to examine the finite sample properties of the estimator described 

is the Monte Carlo simulation method, known also as resampling method, i.e. based on 

drawing repeated samples.

The Monte Carlo method is a numerical algorithm, providing approximate solutions to a 

variety of mathematical, physical, statistical, etc. problems, simulating uniformly and 

independently distributed random numbers and using computer sampling experiments. 

Substituting analytically complicated problem with equivalent stochastic, the Monte Carlo 

simulation method provides numerical solution for the latter. Thus, this approach can be 

efficiently used for solving differential and integral equations, numerical evaluation of 

high-dimensional integrals {see Fishman (1996)) and is often used in the applied statistics 

and econometrics area for comparison between estimators or test statistics {see Hendry 

(1984)22, Kleijnen and Groenendaal (1992), Charemza, Lifshits and Makarova (2002b)). 

The Monte Carlo method is described by Hendry (1984) as an experiment that can 

“efficiently complement analysis to establish numerical-analytical formulae which jointly 

summarise the experimental findings and known analytical results in order to help interpret 

empirical evidence and to compute outcomes at other points within the relevant parameter 

space”.

A fundamental issue of numerical computations is evaluating an integral of a function over 

a bounded region in, say, 5-dimensional Euclidean space. In general, the Monte Carlo 

method leads to computations of expectations. The example presented bellow demonstrates 

that every integral can be presented as an expected value. Thus, reducing the analytical 

problem of integral evaluation to the stochastic one of expected value calculation allows 

the evaluation of integrals, which are analytically difficult to solve. Consider as an 

example23 the evaluation of a 5-dimensional integral:

user. For more details about the stopping criterion see Corana et. al (1987).

22 Hendry (1984) presents a detailed review of Monte Carlo application in the area of econometrics.

23 This example is taken from Hendry (1984)

(4.11)
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and notice that its calculation is equivalent to the calculation of an integral of the following 

form:

Let us consider a random variable x defined in the 5-dimensional region Ds with

Therefore, the initial deterministic problem of calculating (4.11) reduces to the stochastic 

one of estimating the mean E { f ( x ) ) .

Let us denote the 5-dimensional unit cube by Qs. With no loss of generality we can assume 

that Ds c  Qs , that is if the region I f  is of an arbitrary size applying a suitable 

transformation J f  can be mapped into Qs. Although different methods exist for the 

evaluation of integral of the form (4.12) (e.g. quadrature formulas, equidistributed series, 

etc.24) the Monte Carlo method distinguishes with first, its applicability to bounded and

unbounded functions, which satisfy the condition ^ f 2{x)dx<°o, and second, the error of 

the algorithm does not depend on the continuity and variational properties of f{x).

Following Fishman (1996), consider a sequence X(1),X(2),...,X(n)of independent random 

points uniformly distributed on Ds. Then the estimator of FQS based on a sample of size n,

namely

(4.12)

probability density function p(jt) and let us set f ( x )  = g ( x ) / p ( x ) . Consequently, 

formula (4.12) can be seen as the mean of f ( x ), i.e.

JD, f W p ( x )  dx = E ( f ( x ) ) .

is an unbiased estimator with standard error assuming that

f 2(x)dx < oo, this error is 0(n xn) . Denote by a 2 the variance of f ( x ) , i.e.

24 See Fishman (1996) for the advantages and disadvantages of both methods.
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The standard Monte Carlo approach estimates F with variance varFJ, = a 2/n . For the 

purposes of estimating var FJ, the following trivial formula is used:

where 6\ is a strongly consistent and unbiased estimator of a 1. Under the condition 

f \ x ) d x  < <*>, the following result holds:

Thus, based on the Central Limit Theorem, the approximation error decreases with the 

increase of the sample size. However, two potential sources of errors play an important 

role: first, the replacement of the unknown variance a 1 with <r2 introduces a sampling 

error and second, if the correlation corr{F^t,a 2n)> 0, that is if FJ, is much smaller than the

true value F ,,  then the estimated variance a 2 will be much smaller than the true a 2.

Consequently, for fixed sample size n the corresponding confidence interval will be shorter 

than the interval justified by the theory.

Every Monte Carlo experiment is based on the assumption of availability of a random 

source of points. In practice, however, sequences of numbers called pseudorandom are 

used instead, i.e. regarded as indistinguishable from sequences of truly random numbers. 

They are uniformly and independently distributed over the interval [0,1] , simulated by 

means of generating algorithm, and are later converted to the distribution of interest. 

Pseudorandom numbers, denoted below by wf, j  = , are simulated using formulas of

the form:

wj = rj / q, Wj G [0,1],

rj+i = P rj (mod q ) ,

and they are exactly reproducible as the length of the period / depends on the choice of p 

and q. Therefore, the sequences of pseudorandom numbers27 repeat themselves after a

25 See Fishman (1996) and Hendry (1984) for more details about pseudorandom number generation.

26 The interval [0,1] corresponds to the 2-dimentional unit cube.

27 Called pseudorandom, since the generating algorithm and the “seed” r0 are known in advance.
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finite number of steps / and thus, sampling without limit does not lead to diminishing of 

the approximation error. Consequently, the accuracy obtained by the use of Monte Carlo 

simulations is limited and depends on the goodness of the generating algorithm. For 

example, rapid generating algorithms produce sequences whose properties depart from the 

desirable properties of drawing independent samples, as the error increases with the 

increase of the dimension s .28

Abreast with its application in various areas the Monte Carlo approach is often used in the 

applied statistics and econometrics for comparison between estimators or test statistics. An 

objective of the present chapter is using this technique for studying econometric model, 

namely unit root bilinear processes. Hereafter, the discussion of Monte Carlo simulations is 

concentrated on its econometric application and within the frames of the analysis 

undertaken. Initially, precise analysis of the econometric model should be done and then, 

using all the information available, the model should be framed in a Monte Carlo 

experiment. The former involves defining the class of processes to be investigated, called 

the Data Generation Process (DGP), assuming that it is fully known to the researcher. 

Once the DGP is specified, the numerical solution of the problem can be obtained by 

means of the Monte Carlo method. The method is based on drawing repeated samples of 

size n from the desired distribution, and using the DGP formulas data of size n are 

generated. Using those data the parameter estimates can be calculated. Subsequently, 

repeating this procedure a number of times, say m, m parameter estimates are obtained and 

their distribution gives the sampling distribution of the parameter estimates for samples of 

size n. In the following subsection the discussion is focused on the finite sample properties 

of the Kalman filter estimator conducting Monte Carlo simulations.

3.3.3 Properties of the Kalman Filter Estimator
The use of Monte Carlo simulations for the purposes of our analysis aims at testing the

bilinear coefficient b , which is estimated by means of the Kalman filter algorithm. Further 

in this section, the Monte Carlo method in discussed regarding the unit root bilinear 

process (4.1), which, for convenience, is stated once again:

y, = y,-i + b £ ,->y, +*, .

where b it  0 and et ~ iid N(0,(T2) , t = 1, 2

28 See Fishman (1996), Chapter 7.

119



CHAPTER FOUR: KALMAN FILTER ESTIMATION OF UNIT ROOT BILINEAR INFLATIONARY
PROCESSES

Since b is independent of a  , with no loss of generality we can set a  =1 and draw a 

series of size n, £t(1), t = 1, 2,.. .,T of normally distributed random numbers with mean zero

and variance one, i.e. £f(1) ~ iid N (0,1). Assuming that y0(1) = £0a) = 0  and fixing the 

bilinear parameter b to b*, a series y,(1), t = 1, 2 ,...,T can be generated using DGP 

incorporating the unit root bilinear process:

A,d) _ ,,(1) , I,* OM1) _L. c*(!)
y t -  y t~i + b  + £ t

with the assumptions made above.

Next, applying the Kalman filter to the generated sample values y,(1), t = 1, 2 ,...,T, the 

bilinear coefficient can be estimated. Let us denote its value with bm . To reduce the noise,
A

this procedure is repeated m times and as a result a series of m values b are obtained, 

namely b(l\ b (2),...,b(m). The distribution of the estimates can be then analysed by standard 

descriptive statistics as for the purposes of our analysis the BIAS and the RMSE are 

calculated using the following formulas:

/  \  1 m  —  

BIAS (£) = — | - b '  = b - b '
7=1

and

RMSE ( * ) = = var{£)+{bias{6))

where b stands for the average of b(1),b(2),...,b(m) •

In order to evaluate the finite sample properties of the Kalman filter method of estimation 

Monte Carlo simulation experiments are used. The choice of the tested b’s values grounds 

on the theoretical findings of Charemza, Lifshits and Makarova (2002a), namely: in 

presence of the so-called ‘small’ bilinearity the coefficient of interest lies in the interval (0 , 

T~V2), where T denotes the sample size. Thus, the values of the bilinear parameter b are 

initially set to 0.009, 0.020112 and 0.02846 for samples of size 100, 500 and 1000, 

respectively. For each sample size the simulations are repeated 100 times and the empirical
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results obtained are reported in Table 4.1 bellow. The results reveal that the RMSEkf (and 

consequently the variance of the estimator) is gradually and considerably decreasing as the 

sample size increases. On the other hand, the values calculated for BIAS show that for 

samples with size of 100 BIASkf is only 0.03% and for samples with size 500 and 1000 they 

are of similar magnitude being equal to 0.07% in absolute values.

Monte Carlo Simulations on unit root bilinear coefficient estimation 

by means of the Kalman filter method without a constant

Sample size Bilinear Coefficient BIASkf RM SE kf

100 0.009 0.0003700 0.024720

500 0.020112 -0.0007371 0.006493

1000 0.02846 -0.0007295 0.004772

Table 4.1

The same Monte Carlo experiments are also conducted for the finite sample properties 

evaluation of the OLS method of estimation. The corresponding results are presented in 

Table 4.2 bellow revealing that with the increase of the sample size the BIASOLs of the 

estimator in absolute value is considerably increasing and of a higher magnitude compared 

to BIASkf. On the other hand, the RMSEols is smaller than the RMSEkf for samples of size 100 

and of a similar magnitude for samples of size 500. For samples of size 1000 RMSEols is 

slightly increasing, while RMSE^ considerably decreases.

Monte Carlo Simulations on unit root bilinear coefficient estimation 

by means of the OLS method without a constant

Sample size Bilinear Coefficient BIASoLS RM SEols

100 0.009 -0.001231 0.019899

500 0.020112 -0.002196 0.006449

1000 0.02846 -0.004723 0.006524

Table 4.2

In short, the results of both Monte Carlo simulation experiments show that the RMSEkf (and 

respectively the variance) gradually decreases with the increase of the sample size and, 

BIASkf is considerably smaller than BIASols in absolute value. Thus, we can infer that
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Kalman filter method is a technique suitable to apply to samples of a large size, when the 

class of unit root bilinear processes is considered.

Up to this point the present section has outlined the results of the Monte Carlo 

experiments, which have been used for evaluating the finite sample properties of the 

Kalman filter method of estimation. For those purposes the log-likelihood function has 

been maximized applying the Simulated Annealing algorithm, which, as explained in 

Section 3.3, is independent of the starting values.29 The programs used in our empirical 

work are written in GAUSS (for Windows) programming language, version 3.5. As 

mentioned earlier, SA is computationally expensive algorithm compare to the traditional 

numerical optimisation methods. For the calculations presented in this work a computer 

with CPU running at 1.9GHz has been used and the following results in seconds have been 

obtained: the effective computing time is 8354s, 40380s and 82359s for 100 repetitions and 

samples of size 100, 500 and 1000 respectively.

Based on the finite sample properties of the Kalman filter estimator, this technique seems 

to be a plausible way of estimating the bilinear coefficients in unit root bilinear price and 

inflationary processes. It has been explained earlier (see Chapter 2, Section 8.2 and 

Charemza et al. (2002b), Theorem 1) that under the null hypothesis b = 0 the asymptotic 

distribution of the Mest statistics based on the OLS estimates of b in regression models of 

the form (4.1) weakly converges to the normal distribution as the sample size tends to 

infinity. The same result has been proven for unit root bilinear regression models with a 

constant {see Charemza et al. (2002b), Theorem 1). However, the distribution of the t- 

statistics based on the Kalman filter method estimates for unit root bilinear processes (with 

and without a constant) is not known. On the other hand, the number of observations in a 

particular time series is finite. Consequently, the need of evaluating the finite sample t- 

statistics critical values for the Kalman filter estimates arises. Monte Carlo simulation 

experiments have been conducted for those purposes. Initially, 10,000 random walk

processes of length n have been generated and for each of them the bilinear coefficient bKF 

(estimated by means of the Kalman filter) and its f-statistic have been calculated. The 

parameter n has been set to 150, 250 and 500 and the results obtained for levels of

29 The GAUSS program of the SA algorithm used in this work has been provided by Adriana Agapie and has 

been written by E.G. Tsionas.
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significance 0.01, 0.05 and 0.1 are presented in Table 4.3 bellow. As the calculation of t- 

statistic requires a large number of repetitions (i.e. 10,000 in the present study), the SA 

algorithm is not convenient since it is computationally time consuming. Instead, the 

standard numerical optimisation techniques are used with initial conditions calculated as 

explained in Section 3.3.

Sample size

The Kalman filter ^-statistics for an 
estimated regression with a constant

The Kalman filter ^-statistics for an 
estimated regression without a 

constant
0.01 0.05 0.1 0.01 0.05 0.1

150 2.6858 1.8066 1.3828 2.5451 1.737 1.3527

250 2.4863 1.7170 1.3278 2.4152 1.7227 1.3343

500 2.3535 1.6478 1.2581 2.4116 1.7078 1.3037

oo

(Normal distribution) 2.3263 1.6449 1.2816 2.3263 1.6449 1.2816

Table 4.3

It is evident from Table 4.3 that the calculated ^-statistic critical values diminish with the 

increase of the sample size, and those obtained for samples of size 500 approach the t- 

statistic critical values of the normal distribution. Hence, based on these empirical results 

we can infer that the distribution of the ^-statistics based on the Kalman filter method 

estimates for unit root bilinear processes with and without a constant comes closer to the 

normal distribution with the increase of the sample size.

The last explained Monte Carlo experiment has been repeated for the OLS method. The 

relevant /-statistic critical values are listed in Table 4.4 bellow.

Sample size

The OLS f-statistics for an estimated 
regression with a constant

The OLS t-statistics for an 
estimated regression without a 

constant
0.01 0.05 0.1 0.01 0.05 0.1

150 2.3080 1.6437 1.2767 2.2795 1.6266 1.2787

250 2.2964 1.6226 1.2785 2.3135 1.6495 1.2837

500 2.3069 1.6506 1.2802 2.3309 1.6590 1.2896

Table 4.4
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The f-statistic critical values calculated for the Kalman filter and the OLS methods of 

estimation are later used for testing the significance of the bilinear coefficients estimated 

for price and inflationary world-wide data. This issue is a main subject of the forthcoming 

chapter.

4 Conclusion
Abreast with the definition of unit root bilinear processes Chapter 2, Section 8.2 of the 

present thesis has discussed a two-step testing procedure for presence of bilinearity. If 

bilinearity is detected an issue of interest is finding a suitable tool for evaluating the 

bilinear coefficient. The present chapter has suggested the use of the Kalman filter method 

of estimation. Some of its features, e.g. applicability to non-linear, non-stationary 

processes, and the exact calculation of the maximum likelihood function make the 

algorithm suitable for estimating the unit root bilinear processes parameter.

The Kalman filter algorithm has been theoretically applied to unit root bilinear processes 

and it has been shown that under the assumption of ‘small’ bilinearity the estimated 

innovations of this process (i.e. the innovations calculated by the Kalman filter) converge 

to the true innovations as the time t tends to infinity. Next, the log-likelihood function has 

been constructed and one of the parameters of this function is the bilinear parameter. 

Abreast with the traditional numerical methods a non-trivial numerical optimisation 

technique, i.e. the Simulated Annealing algorithm, has been used for the estimation of this 

coefficient.

Further, in order to evaluate the properties of the Kalman filter estimator (BIAS and RMSE) 

a series of Monte Carlo simulation experiments has been conducted. The results of these 

experiments are compared to those obtained by means of the OLS method of estimation. 

They reveal that the RMSEKK gradually decreases with the increase of the sample size, 

confirming consistency of the Kalman filter method, and the BIASkf is of much smaller 

magnitude than the BIASols in absolute value. In short, empirical investigation shows that 

the Kalman filter method of estimation is a suitable way of evaluating the bilinear 

coefficient in a unit root bilinear process.
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Once the coefficient of bilinearity is estimated a subsequent issue of interest is testing 

whether or not it is significantly different from zero. The critical values for the Kalman 

filter and the OLS methods of estimation with and without constant have been tabulated 

using series of Monte Carlo experiments. They are used in the empirical work presented in 

the next chapter.
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CHAPTER FIVE KALM AN FILTER BILINEAR ESTIMATION: 

EMPIRICAL ANALISYS FOR WORL-WIDE  

INFLATIONARY DATA

1 Introduction
Chapter 4 of this thesis has drawn the conclusion that the Kalman filter method seems to be 

a plausible way of estimating the bilinear coefficient in a unit root bilinear process. This 

has been inferred after the application of the Kalman filter method to data generated 

processes with desirable properties and the consequent evaluation of the finite sample 

properties of this estimator. A next step in our analysis is the application of the Kalman 

filter estimator to world-wide price and inflationary time series. The view of price 

processes as non-linear or, more specifically, unit root bilinear processes has been 

discussed in more detail in Chapter 2, Section 3 of this thesis. Subsequently, the work 

proceeded with an examination of world-wide price and inflationary time series for 

presence of a linear unit root. Confirmation of non-stationarity (applying jointly the ADF 

and KPSS tests in this thesis) is the first step of the two-step testing procedure for presence 

of bilinearity. The second step consists in testing for presence of bilinearity1 and the way of 

testing it together with the results obtained for price and inflationary data has been 

discussed in Chapter 4, Section 6.3. The main objective of this chapter is the continuation 

of the analysis for price and inflationary data by evaluating the magnitude of bilinearity for 

those of them for which presence of bilinearity has been detected. Once the magnitude of 

bilinearity is specified, further aspect of interest is the establishment of possible

1 Hereafter bilinearity and unit root bilinearity are used interchangeably.
126



CHAPTER FIVE: KALMAN FILTER BILINEAR ESTIMATION: EMPIRICAL ANALISYS FOR
WORLD WIDE INFLATIONARY DATA

relationship between the estimated parameters of both approaches considering distribution 

of inflation as a non-normal distribution that is between (a) the coefficient of bilinearity 

and (b) the index of stability, measuring the tail thickness of the distribution of inflation 

under the assumption that inflation follows a stable Paretian law. It seems also interesting 

to investigate a possible dependency between the magnitude of bilinearity (associated with 

non-normality), and the magnitude of some macroeconomic factors, namely GDP 

(indicating the development status of the countries) and average inflation.

In short, the present chapter is outlined as follows: Section 2 presents and discusses the 

results of the Kalman filter estimator applied to those price and inflationary time series of 

our data set, for which presence of bilinearity has been detected. The estimates of the 

bilinear coefficient are compared to those evaluated by means of the OLS estimator. 

Subsequently, Section 3 of this chapter focuses the attention on the establishment of an 

eventual relationship between unit root bilinearity in prices, and the indexes of stability. 

Furthermore, Section 3 examines a possible relationship between bilinearity and two 

macroeconomic indicators: average inflation and GDP. Finally, Section 4 concludes.

2 Estimation of Unit Root Bilinear Processes
Chapter 4 of this thesis has dwelt on two different ways of estimating the bilinear 

coefficient in a unit root bilinear process. Under certain conditions the OLS method of 

estimation is applicable {see Chapter 4, Section 1). A limitation of this technique is the 

assumption that the innovations of the unit root bilinear price processes depend on the 

price observations only, which would lead to lower precision of the estimated bilinear 

coefficients. Thus, the necessity of a more accurate technique for their calculation arises 

and such a technique seems to be the Kalman filter estimator {see Chapter 4). The Kalman 

filter method is an often-used technique when the processes of interest posses non-linear 

and non-stationary structure. Both non-linearity and non-stationarity are characteristics 

inherent to the unit root bilinear price processes, which processes are of particular interest 

to the present study.

It should be emphasized, however, that both the Klaman filter method and OLS method are 

applicable only to those price and inflationary time series of the data set, for which 

presence of bilinearity has been detected. Bearing this in mind, the main objective of the
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present section is to discuss the empirical results of the Kalman filter estimator {see 

Chapter 4, Section 3) applied to unit root bilinear price and inflationary processes. 

Secondly, the Kalman filter estimates of the bilinear coefficients are compared to those 

obtained by means of the OLS method. In both methods a constant is included in the 

regression equation.

The results obtained are presented in Tables D5.1a-d (Appendix D)2 and they are organised 

in the following way: columns (1), as usual, list the names of the countries followed by the 

number of the price observations presented in columns (2). The sets of columns (3) -  (6 ) 

and (7) - (10) display the results obtained by means of the OLS method and the Kalman 

filter method of estimation respectively. Columns (3) and (7) present the estimated bilinear 

values. As already explained the bilinear unit root in process of the form (5.1) is a 

stochastic unit root. Following Charemza et al. (2002a) the limit behaviour of the unit root

bilinear model is well-defined for b e 0,Jf and under the assumption y0 = e0 = 0. In

addition, if b exceeds ~^= the unit root bilinear process becomes explosive process.
yjT

Multiplying the coefficient of bilinearity b by V r , where T is the sample size, maps the

(
interval

°’Jr
into the interval (0, l ] . This allows us to compare the parameters

/V I A  ___

b = b ^T  with the unitary value, where b stands for the estimated bilinear values. The

coefficients denoted by b are called scaled bilinear coefficients and their values are 

tabulated in columns (4) and (8 ).3 Next, columns (5) and (9) present the relevant t- 

statistics, and columns (6 ) and (10) indicate whether the estimated coefficients are 

significantly different from zero. As before, the notations ‘O’, V ,  *++’ and *+++’ in

2 It has been explained in Chapter 2 that the countries are partitioned into four main groups: Developed 

Countries, Central and East European Countries, Other Developing Countries and Least Developing 

Countries. Hereafter, the letters “a”, “b”, “c” and “d” after the Table number stand for the countries groups as 

follows: “a” -  Developed Countries, “b” -  Central and Eastern European Countries, “c” -  Other Developing 

Countries, “d” -  Least Developing Countries.

3 Column (4) presents the results obtained by the use of the OLS method, while column (8) displays those 

calculated by the Kalman filter method of estimation.
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columns (6 ) and (10) stand for: no significance of the /-statistics or, the /-statistics belongs 

to the 90%, 95% or 99% critical region, respectively.

Initially, let us consider the results calculated for the price time series. Presence of 

bilinearity has been established in 71.03% (i.e. 81 out of 108) of the price time series {see 

Chapter 3, Section 6.3). For 12 of them the calculated /-statistic shows that the coefficients 

estimated by means of the Kalman filter method are not significantly different from zero. 

For 10 of the countries (Ethiopia, Hong Kong, Malta, Nepal, Philippines, Burundi, Guinea 

Bissau, Nepal, Niger and Sierra Leone) the coefficients obtained are not significantly 

different from zero for both methods of estimation. In the same context, there is lack of 

significance of the estimated coefficients for Peru and Russia, when the OLS method is 

applied and for Netherlands, Slovakia and Ivory Coast when the Kalman filter algorithm is 

used. For the majority of the countries the results of both the OLS method and the Kalman 

filter method reveal strong significance of the /-statistic, i.e. it belongs to the 99% critical 

region. For 21 of the time series the scaled bilinear coefficients estimated by means of the 

Kalman filter are significantly different from zero and smaller than one in absolute value, 

namely:

• Developed Countries: Austria and Luxembourg

• Developing Countries

♦ Central and Eastern European Countries: Albania, Bulgaria, Czech 

Republic and FE Germany

♦ Other Developing Countries: Bahamas, Bahrain, Barbados, Botswana, 

Chile, Cyprus, Peru and St Lucia

• Least Developing Countries: Burkina Faso, Chad, Gambia, Haiti, Malawi and

Samoa

The above conclusion holds for 22 of the price processes when the OLS method is applied. 

The scaled bilinear coefficients are significantly different from zero and bigger than one in 

absolute value for 48 of the price time series if the OLS method is applied and for 46 of the 

price time series if the Kalman filter method is used. It has already been explained that 

under the initial condition y0 = €Q = 0  the unit root bilinear processes are well-defined if 

the scaled bilinear coefficients are smaller than one in absolute value and explosion occurs
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otherwise. The last mentioned condition, however, is not applicable to real world data. 

This could be seen as one of the reasons leading to overestimation of the bilinear 

coefficients when the Kalman filter method and the OLS method are applied to price data. 

On the other hand, the asymptotic distribution of the estimated bilinear coefficients is 

known under the null hypothesis b = 0  only, and is not known under the alternative b> 0  

(see Charemza et al. (2002a) and Chapter 2, Section 8). Hence although in practice the 

estimated scaled bilinear coefficients estimated by both methods are larger (in absolute 

value) than the theoretically found upper limit one, it cannot be inferred that they are 

insignificant. Further comparison between the results achieved by both the Kalman filter 

and the OLS methods of estimation (see columns (4) and (8) of Tables D5.1a-d (Appendix 

D)) reveals that for most of the price time series the bilinear coefficients obtained by the 

former method are of a smaller magnitude compared to those obtained by the OLS method.

Subsequently, let us consider the Kalman filter estimates of the bilinear coefficients 

obtained for the unit root bilinear inflationary processes. The results of the two-step testing 

procedure for presence of bilinearity in inflationary time series have been presented in 

Chapter 3, Section 6.3 and they reveal that 9.31% of them (i.e. 10 out of 108 time series) 

exhibit bilinearity. The Kalman filter and the OLS estimates of the bilinear coefficients 

obtained for inflationary data are presented in Table D5.2 (Appendix D). The scaled 

bilinear coefficient estimates obtained are of unrealistically higher magnitude compare to 

the unitary value, thus leading to conclusion of possible explosion in the processes 

considered or, perhaps, miss-specified bilinearity. Fig. 5.1 - 5.3 plot the graphs of three 

selected countries: Iceland, Former East Germany and South Africa. The inflationary 

graphs of Iceland and FE Germany distinguish with periods of high, explosive inflation 

followed by inflation stabilisation. A possible reason for the large magnitudes of the 

bilinear coefficients could be the existence of speculative bubbles in the level of prices, 

which leads to an exploding inflation (e.g. Fig. 5.2 - FE Germany: August 91, January 

93).4On the other hand, the inflationary graphs of South Africa and Iceland characterise 

with excess variability and large up-and-down changes, similarly to the pattern of the unit

4 Engsted (1993) examines the existence of rational bubbles in prices for Argentina, Israel and Brazil, and 

during hyperinflation periods in the first half of the 1980s. A weak evidence of a rational bubble has been 

found for Brazil only. According to the author, in the cases of Argentina and Israel the hyperinfletion is 

“merely monetary phenomena”.
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root bilinear processes. Nevertheless, presence of a structural break in September 1983 is 

graphically evident from Fig. 5.1.

Recent work of Charemza et al. (2002c) has shown that “a true bilinear unit root process 

might often be mistaken for the deterministic unit root process with a structural break”. 

The authors suggest an encompassing test distinguishing bilinearity from structural breaks 

and apply this test to 66  stock market indexes. The results reveal that “the bilinear model 

encompasses the structural break model more often than the other way around” (Charemza 

et al. (2002c)). The presence of structural breaks in inflationary time series is, however, 

graphically evident for some of the countries for which bilinearity in inflationary time 

series has been detected. It seems therefore reasonable to apply the encompassing test 

proposed by Charemza et al. (2002c)5 in order for further and more precisely to analyse the 

unit root bilinear inflationary processes. Applying it, however, is beyond the scope of the 

present work.

5 In order to distinguish bilinearity from deterministic structural break the authors consider augmented unit 

root bilinear regression model with structural break:
k

Ay t =M + by,-Ayt-i + yBRt + yt_i + et ’
1=1

where jU is an intercept, b denotes the bilinear coefficient, k stands for the number of augmentations, (J)i are 

regression coefficients, et ~ iid n {0, (J2) and the BRt signifies the structural break variable. Subsequently, 

they propose testing consecutively the following two sets of joined hypothesis:

A) H q :b = 0 and y = 0

H jA : b * 0 and! or y # 0

B) H» : b * 0  and y = 0 

H f  : b = 0 and y  * 0

Therefore, the consecutive rejection of H 0A and H q will lead to the conclusion of existence of deterministic 

structural break, while rejection of H q followed by non-rejection of H q would mean existence of unit root 

bilinearity.
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3 Empirical Relationship Between the Parameters of a Stable 

Paretian Distribution and Bilinearity

Section 2 of this chapter has presented the empirical results obtained from the application 

of the Kalman filter method of estimation to world-wide unit root bilinear price and 

inflationary time series. On the other hand, Chapter 3, Section 5 discussed the estimates of 

the characteristic exponent a  of the stable Paretian distribution obtained from the 

application of the McCulloch method of estimation to inflationary data. Both the bilinear 

coefficient and the index of stability are associated with measures of non-normality. The 

higher the magnitude of bilinearity the larger is the deviation of the distribution of inflation 

from the normal distribution. On the other hand, the distribution of inflation gets closer to 

the normal distribution with the increase of the index of stability. Hence, the expected 

relationship between both parameters is a negative dependency. The investigation of 

eventual dependency between the stable Paretian distribution estimates of the index of 

stability a  of the distribution of inflation, and the estimated bilinear coefficients for price 

processes is a main objective of the present section

Prior to concentrate on this issue let us examine the dependency between the magnitude of 

bilinearity (associated with non-normality), and the magnitude of two macroeconomic 

indicators, that is average inflation and GDP. Consider first the relationship between the 

estimated bilinear coefficients in unit root bilinear price processes, and the mean values of 

those inflationary time series for which the coefficients of bilinearity have been estimated 

(Fig. 5.4). Similar discussion regarding the connection between the estimates of the 

indexes of stability a  and the mean values of the inflationary time series has been 

presented in Chapter 3, Section 5. It has been inferred that regarding the group of the 

Developing countries (with few exceptions), the relationship between both these 

parameters is negative. Although weaker, similar, negative relationship between the 

estimated bilinear coefficients in prices and the mean values of inflationary processes can 

be concluded regarding the Developing countries, which is evident from the scatter 

diagram presented on Fig. 5.4. This, however, cannot be inferred for the groups of the 

Developed and the Least Developing countries.
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In order to examine the relationship between the magnitude of the bilinear coefficient and 

the GDP indicators (regarding the development status of the countries smaller GDP values 

are associated with less developed countries) let us consider a scatter diagram of both sets 

of values (Fig. 5.5). Fig. 5.5 plots the scaled bilinear coefficients versus the per capita GDP 

for year 1998.6 The diagram reveals positive relationship between the development status 

of the countries and the bilinear coefficient if the groups of the Least Developing 

Countries, the Central and Eastern European Countries and the Developed Countries are 

considered.
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6 The per capita GDP data have been obtained from Maddison (2002). In addition, the scatter diagram (Fig. 

5.5) presents those countries from our data set only for which the per capita GDP data are tabulated in 

Maddison (2002).
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As explained above and similarly to Charemza and Kominek (2000), further aspect of 

interest is to examine possible dependency between the index of stability of the 

inflationary distribution seen as a stable Paretian distribution and bilinearity in prices. 

Charemza and Kominek (2000) establish a relationship between the Diba-Grossman’s 

speculative processes and the stable Paretian distributions. This relationship allows the 

researchers to estimate the coefficient o f the Diba-Grossman’s process, and its variance (of 

the coefficient) is interpreted as a measure of the degree of speculation. Next, the authors 

consider stock market indexes for 66 countries and show graphically strong, non-linear 

dependency between the degree o f speculation and the index o f stability o f the distribution 

in returns. Similarly, let us consider a scatter diagram plotting the indexes of stability a  of 

the inflationary distribution versus the scaled bilinear coefficients evaluated for unit root 

bilinear price processes. This is presented on Fig. 5.6. As explained above the dependency 

expected between both parameters is a negative relationship. However, in contrast with the 

findings of Charemza and Kominek (2000), no relationship between bilinearity and the 

index of stability of the inflationary distribution, viewed as a stable Paretian distribution, 

can be graphically established.
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4 Conclusion
Summarising, the present chapter has presented and discussed the results of the Kalman 

filter estimator applied to unit root bilinear price and inflationary processes, for which 

bilinearity has been detected. The Kalman filter estimates have been compared to those 

obtained by the use of the OLS method. The results reveal that the estimates of the bilinear 

coefficients in unit root bilinear price processes obtained by means of the Kalman filter 

method are of a smaller magnitude compared to those estimated by the use of the OLS 

method. For the majority of the price time series the estimates of the bilinear coefficients 

(applying both estimation techniques) significantly differ from zero and this significance is 

strong. For 21 of the price time series the scaled bilinear coefficients are significantly 

different from zero and smaller than one in absolute value, thus supporting the theoretical 

findings of Charemza et al. (2002a) regarding the magnitude of the scaled bilinear 

coefficients. Although for 46 of the price time series these estimates are bigger than one in 

absolute value, no inference regarding their insignificance can be done. In order to 

establish the significance of these coefficients further investigation regarding their 

asymptotic distribution under the alternative hypothesis of b > 0  should be done.

The analysis proceeded with examination of eventual relationship between the magnitude 

of bilinearity and: (a) the index of stability of the distribution of inflation, and (b) two 

macroeconomic indicators, namely GDP and average inflation. In the former case a weak, 

negative relationship has been graphically found for the group of the Developing countries. 

No relationship, however, has been graphically shown between bilinearity and external 

information.
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CONCLUSIONS

One of the fundamental issues in modelling macroeconomic time series is to specify 

whether the series can be described by a stationary or non-stationary process. This thesis is 

tackling this issue in the context of modelling inflationary and price processes. Earlier 

attempts to answer the question ‘Is inflation a stationary process?’ have been made in a 

numeral empirical studies but none of them clarifies the nature of these processes. What 

these attempts have in common is the underlying assumption of normality of the 

inflationary data. One of the principle points of this thesis is to question this assumption. 

Distribution of price changes was examined for a large selection of world-wide inflationary 

series, and for a vast majority of them substantial deviation from the normal distribution 

was established. Consequently, the thesis hypothesises that non-normality is a prime 

feature for inflationary data. In this thesis inflation has been modelled under more realistic 

and general assumption that it distribution belongs to a broad family of distributions - 

stable Paretian distributions - from which the normal distribution is a special case. The 

series of statistical tests applied to the world wide data on inflation strongly support the 

hypothesised non-normality. Furthermore, an attempt was made to model the process 

generating prices, which underlines inflationary data. An often-made assumption leading to 

normality in distribution of inflation is that prices themselves follow a linear process. The 

present work relaxes the linearity assumption for price time series, and suggests the view 

of price processes as described by family of non-linear and non-stationary processes, that is 

the class of unit root bilinear processes. In this case, even if the underlying price process is 

constructed with the use of a normal distribution (which helps with the statistical analysis 

of the series), the distribution of price changes is not necessarily normal.
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The idea behind the view regarding the distribution of inflation as a stable Paretian 

distribution relies on the empirically observed excess kurtosis, resulting in tails thicker 

than the tails of the normal distribution. Consequently, price and inflationary data have 

been then tested for stationarity applying a recently proposed unit root test under the 

assumption that the disturbances of these processes follow a stable Paretian law. The test is 

conditional on the estimates of the index of stability measuring the tail thickness of the 

distribution. In contrast to the classical unit root tests, which hardly determine whether 

inflation is a stationary or non-stationary process, the test results obtained for inflation 

strongly support the opinion of those researchers, who believe that inflation time series is 

integrated of order zero. Assuming that inflation follows a stable Paretian law 75% of the 

inflationary time series examined are classified as integrated of order zero. In contrast, 

under the assumption of normality of distribution of inflation, this can be inferred for only 

11 .11% of the inflationary time series.

Relaxing the classical assumption of non-linearity in price time series - which leads to 

possible non-normality in inflationary time series - prices were seen to follow a particular 

non-linear and non-stationary process, that is a unit root bilinear process. Under this 

assumption they were tested for the presence of unit root bilinearity by applying a new, 

recently proposed testing procedure. Testing for unit root bilinearity is conditional on 

confirmation of linear unit root in price time series. It has been shown in the present thesis 

that a vast majority of the price time series, 71.03%, exhibit unit root bilinearity. Analysing 

inflationary time series has shown the presence of bilinearity (and consequently, non- 

stationarity) in a minor part of the time series, that is 9.35%.

After establishing that the majority of price processes considered exhibit unit root

bilinearity, question arises regarding the magnitude of the bilinearity. Consequently, the

further work is on the estimation of the bilinear coefficient in unit root bilinear processes.

Since the bilinear unit root process is, by definition, recursive the recursive Kalman filter

algorithm was adopted for unit root bilinear processes, and it was theoretically

demonstrated that under the assumption of ‘small’ bilinearity the disturbances of the unit

root bilinear process converge to the true disturbances as the sample size tends to infinity.

Evaluation of the finite sample properties of the Kalman filter estimator has shown

considerably small magnitude of the estimated bias, and a root mean square error gradually
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decreasing with the increase of the sample size. Comparison with the finite sample results 

obtained for the OLS estimator revealed that the Kalman filter method of estimation is an 

appropriate technique applicable for estimating the bilinear parameter in unit root bilinear 

process, in particular those with a large number of observations.

In order to test whether or not the estimated bilinear coefficients are significantly different 

from zero the statistics suggested here is a simple /-statistic for the Kalman filter estimates. 

It has been shown (in a series of Monte Carlo experiments) that the distribution of this t- 

statistics converges to the normal distribution with the increase of the sample size. 

Therefore, for a finite sample, the critical values for this statistics have been calculated and 

subsequently used in further empirical analysis. A summary of the results for price time 

series (that is the analysis of 108 series) shows that the majority of the Kalman filter 

estimates of the bilinear coefficient in unit root bilinear price processes are of smaller 

magnitude compared to those obtained by the OLS estimator. Both estimation techniques 

reveal that most of the estimated bilinear coefficients are significantly different from zero 

and this significance is strong.

The present thesis has further examined an often disputable question in the recent literature 

that is whether inflationary time series are described by stationary or non-stationary 

process. Establishing stationarity of inflationary series is an issue of prime importance in 

modelling inflationary data and is closely related to the problem of inflationary forecast. A 

reliable inflationary forecast rests on stationary time series (i.e. rests on the so-called core 

inflation), which highlights the importance of correctly specifying the nature of 

inflationary processes regarding their stationarity.

The results presented in this thesis could be further developed in several directions. The

work has shown the application of a recently proposed unit root test assuming that the

distribution of inflation is a symmetric stable Paretian distribution. However, clear

asymmetry regarding inflationary data has been empirically established. Transforming the

data to symmetric and then testing for a unit root would lead to more reliable results. The

present thesis has also shown that the estimated bilinear coefficients for unit root bilinear

inflationary processes are of surprisingly high magnitude. As bilinearity could often be

mistaken with structural breaks, the analysis of inflation could continue by further

examining these processes applying a recently proposed set of tests, which allows one to
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distinguish presence of bilinearity from existence of structural breaks. The bilinear 

processes also posses an attractive structure in terms of applicability to time series forecast 

allowing further evolvement of the analysis regarding inflationary time series. On the other 

hand, the class of unit root bilinear processes is a relatively simple class of non-linear and 

non-stationary models within the family of bilinear models. In this context an extension of 

the analysis to broader class of bilinear processes could be another possibility for further 

research in the area. Finally, an attempt to find a relationship between first, unit root 

bilinearity and average inflation and second, unit root bilinearity and GDP has shown no 

relation of bilinearity to external information.
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APPENDIX A

Definition of Multiresolution Analysis (Malat 1989j 1

A  Mutliresolution analysis of L2(R) (collection of all the real square-integrable 

functions) is a decomposition of the form:

L \R )  = ... © W-i © Wo © Wi © -  

such that Vj+j = V)© Wj, where (Vj)jeZ is a sequence of closed linear subspaces of L2(R) 

such that:

(1) V j C V j*i , n MZVj = 0 , VjezVj is dense in L2(R) (2)

(3) / ( ( ) e v 0o / ( (  + l ) € V 0

(4) (<p(x-k))kez  is a basis in V0

The function <pe Vo is called scaling function for Vj. and it can be shown that if the ^has 

compact support such that:

m = i c k(/>{2t-k),
k = 0

(j)j k(t) = 2if20(2Jt -  k) is an orthonormal basis for V} and y/j k{t) = 2j/7W(2jt -  k ) is an 

orthonormal basis for Wj.

1 Malat’s definition of Multiresolutional analysis is broadly discussed in Greenblatt (1994).
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APPENDIX B

THE UNITED KINGDOM

AlnRPI
ACF PACF

0.94494 0.95219

0.86899 -0.31193

0.82976 0.61442

0.81598 -0.17758

0.7826 -0.16169

0.72273 -0.044907

0.66068 -0.27171

0.60432 -0.26798

0.54774 -0.11103

0.49141 -0.1206

0.4408 -0.031354

0.39506 0.074034

0.35237 0.14857

0.31349 0.15545

0.27912 0.16034

Table B .l

Error term

ACF PACF

0.33919 0.3392

-0.40803 -0.59109

-0.28779 0.23067

0.28697 0.20356

0.39957 0.046097

0.13124 0.26848

0.012913 0.23681

0.058562 0.047579

0.051411 0.05222

-0.0077308 -0.039021

-0.0036676 -0.13633

0.016137 -0.18526

-0.0020334 -0.17201

-0.020351 -0.15794

-0.03668 -0.17301
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POLAND

ACF PACF ACF PACF
-0.3656 -0.36584 -0.0076556 0.018958

0.10863 -0.030902 0.027666 0.09154

0.098153 0.14873 0.1286 0.12688

-0.12055 -0.035797 -0.022164 0.14387

0.21124 0.16186 0.24252 0.27983

0.032053 0.18959 0.05537 0.0032724

-0.19163 -0.15243 -0.20369 -0.30815

0.061503 -0.15773 -0.048713 -0.18947

-0.13268 -0.17962 -0.074648 -0.28047

0.020565 -0.097895 -0.13477 -0.16577

-0.052596 -0.12821 -0.27242 -0.13811

-0.18045 -0.20426 -0.1495 -0.13402

-0.043657 -0.17172 -0.019097 -0.0054225

-0.018016 -0.030765 -0.068527 0.0060664

Table B.2
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ACF error
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APPENDIX C

Table C3.la
***********************************************************************

Descriptive statistics for inflation 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

code No.obs. mean st.dev

(1) (2) (3) (4)

Austri 528 0.003 0.005
Belgiu 528 0.003 0.003
Canada 612 0.003 0.004
Denmar 407 0.005 0.005
Finlan 528 0.005 0.005
France 528 0.005 0.004
Greece 526 0.008 0.009
Icelan 300 0.016 0.017
Irelan 385 0.006 0.006
Italy 600 0.006 0.005
Japan 526 0.003 0.006
Luxexnb 527 0.003 0.004
Nether 526 0.003 0.005
Norway 528 0.004 0.004
Portug 528 0.008 0.010
Spain 528 0.007 0.012
Sweden 526 0.004 0.004
Switze 612 0.002 0.003
UK 540 0.005 0.005
US 612 0.003 0.003
German 600 0.002 0.003

skewness kurtosis
coef p-value coef p-value
(5) (6) (7) (8)

0.931 0.000 17.695 0.000
0.779 0.000 1.804 0.000
0.991 0.000 2.387 0.000
2.682 0.000 20.927 0.000
1.246 0.000 5.531 0.000
1.198 0.000 2.982 0.000
0.807 0.000 3.081 0.000
1.398 0.000 2.282 0.000
1.115 0.000 0.562 0.024
1.350 0.000 3.076 0.000
1.631 0.000 5.453 0.000
0.503 0.000 2.812 0.000
0.681 0.000 13.589 0.000
0.952 0.000 4.622 0.000
2.136 0.000 12.521 0.000
6.111 0.000 112.741 0.000
1.743 0.000 6.244 0.000
1.210 0.000 2.956 0.000
2.057 0.000 10.174 0.000
1.201 0.000 2.257 0.000
1.616 0.000 9.555 0.000
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Table C3•lb
Descriptive statistics for inflation

code No.obs. mean st.dev skewness kurtosis

(1) (2) (3) (4)
coef
(5)

p-value
(6)

coef
(7)

p-value
(8)

Albani 131 0.023 0.047 3.992 0.000 23.383 0.000
Bulgar 132 0.055 0.134 6.065 0.000 43.473 0.000
CzechR 132 0.008 0.010 3.744 0.000 18.432 0.000
FEGerm 132 0.003 0.009 5.140 0.000 29.826 0.000
Estoni 120 0.026 0.060 6.143 0.000 45.578 0.000
Hungar 312 0.010 0.010 1.036 0.000 3.097 0.000
Latvia 120 0.024 0.056 4.089 0.000 18.703 0.000
Lithua 132 0.047 0.080 2.269 0.000 5.207 0.000
Poland 168 0.036 0.065 4.292 0.000 22.531 0.000
Romani 135 0.055 0.048 1.901 0.000 4.173 0.000
Russia 120 0.069 0.094 3.056 0.000 13.790 0.000
Slovak 131 0.009 0.010 3.915 0.000 19.174 0.000
Sloven 121 0.013 0.019 4.156 0.000 19.089 0.000

Table C3.1C
Descriptive statistics for inflation

code No.obs. mean st.dev skewness kurtosis
coef p-value coef p-value

(1) (2) (3) (4) (5) (6) (7) (8)

Argent 143 0.047 0.137 4.848 0.000 27.698 0.000
Aruba 177 0.003 0.002 1.807 0.000 4.827 0.000
Bahama 339 0.004 0.004 0.738 0.000 3.106 0.000
Bahrai 290 0.003 0.013 1.931 0.000 8.738 0.000
Barbad 420 0.006 0.011 0.931 0.000 10.758 0.000
Bolivi 197 0.037 0.115 5.363 0.000 35.695 0.000
Botswa 306 0.009 0.005 1.348 0.000 6.902 0.000
Camero 399 0.006 0.015 1.066 0.000 8.080 0.000
Chile 307 0.016 0.018 1.492 0.000 18.446 0.000
Colomb 528 0.015 0.019 9.558 0.000 117.106 0.000
CostRi 313 0.014 0.014 2.689 0.000 11.772 0.000
Cyprus 611 0.004 0.009 0.197 0.047 2.597 0.000
DominR 535 0.008 0.015 1.867 0.000 7.903 0.000
Ecuado 528 0.016 0.023 3.843 0.000 24.060 0.000
ElSalv 528 0.007 0.009 0.822 0.000 2.588 0.000
Fuji 384 0.006 0.010 6.061 0.000 70.666 0.000
Ghana 454 0.022 0.036 -0.539 0.000 20.432 0.000
Guatem 527 0.006 0.017 0.681 0.000 6.290 0.000
Hondur 527 0.007 0.009 0.867 0.000 2.105 0.000
HongKo 299 0.006 0.007 0.677 0.000 3.097 0.000
India 525 0.006 0.008 0.267 0.013 1.971 0.000
Indone 393 0.010 0.019 2.269 0.000 24.360 0.000
IvoryC 489 0.005 0.018 1.609 0.000 10.985 0.000
Jamaic 527 0.011 0.014 2.687 0.000 12.253 0.000
Jordan 299 0.005 0.015 1.633 0.000 8.895 0.000
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Kenya 396 0.009 0.014 2.198 0.000 15.198 0.000
Korea 432 0.008 0.009 0.745 0.000 2.865 0.000
Malays 524 0.003 0.005 1.689 0.000 7.641 0.000
Malta 526 0.003 0.009 0.677 0.000 34.199 0.000
Maurit 462 0.006 0.012 3.685 0.000 32.520 0.000
Mexico 612 0.015 0.019 2.144 0.000 5.862 0.000
Morocc 525 0.004 0.007 0.323 0.003 2.298 0.000
Namibi 346 0.009 0.006 1.626 0.000 7.326 0.000
NethAn 400 0.004 0.005 1.632 0.000 5.390 0.000
Nigeri 498 0.013 0.024 0.517 0.000 32.526 0.000
Pakist 527 0.006 0.010 0.277 0.010 9.785 0.000
Paragu 526 0.010 0.014 2.859 0.000 20.295 0.000
Peru 137 0.053 0.148 7.456 0.000 68.449 0.000
Philip 526 0.008 0.039 -2.239 0.000 226.787 0.000
SaudAr 250 0.000 0.005 -1.350 0.000 38.572 0.000
Singap 480 0.002 0.007 2.464 0.000 11.607 0.000
SouthA 527 0.007 0.005 1.115 0.000 1.878 0.000
SriLan 526 0.006 0.010 1.633 0.000 10.125 0.000
StKitt 256 0.003 0.008 1.139 0.000 6.386 0.000
StLuci 429 0.005 0.010 1.320 0.000 5.942 0.000
Surina 372 0.020 0.040 3.936 0.000 20.351 0.000
Swazi 1 402 0.008 0.020 0.530 0.000 28.291 0.000
Taiwan 504 0.004 0.013 3.252 0.000 23.304 0.000
Thaila 432 0.004 0.006 1.609 0.000 5.111 0.000
Trinid 523 0.006 0.008 1.027 0.000 6.534 0.000
Tunisi 161 0.004 0.003 1.146 0.000 2.463 0.000
Turkey 261 0.038 0.018 3.094 0.000 22.126 0.000
Urugua 256 0.030 0.019 1.021 0.000 2.415 0.000
Venezu 526 0.013 0.019 3.573 0.000 22.756 0.000
Vietna 141 0.000 0.010 -0.235 0.257 8.809 0.000
Z imbeds 264 0.015 0.015 1.377 0.000 2.889 0.000

Table C3.Id
***********************************************************************

Descriptive statistics for inflation 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

code No.obs. mean st.dev skewness kurtosis
coef p-value coef p-value

(1) (2) (3) (4) (5) (6) (7) (8)
BurkFa 218 0.003 0.017 0.498 0.003 2.964 0.000
Burund 322 0.010 0.020 0.868 0.000 2.912 0.000
Chad 214 0.004 0.028 0.322 0.055 2.766 0.000
Ethiop 426 0.005 0.020 0.593 0.000 1.788 0.000
Gambia 476 0.007 0.018 0.958 0.000 6.774 0.000
GuinBi 175 0.029 0.049 0.577 0.002 2.359 0.000
Haiti 527 0.007 0.021 0.767 0.000 4.895 0.000
Malawi 250 0.018 0.023 0.115 0.457 1.543 0.000
Maurit 189 0.005 0.018 0.651 0.000 11.606 0.000
Myanma 368 0.012 0.024 0.826 0.000 7.266 0.000
Nepal 452 0.007 0.014 -0.632 0.000 9.309 0.000
Niger 393 0.005 0.024 0.054 0.660 13.719 0.000
Samoa 406 0.006 0.015 0.297 0.015 1.692 0.000
Senega 393 0.005 0.020 1.130 0.000 5.337 0.000
SieraL 170 0.030 0.063 2.353 0.000 21.754 0.000
Solomo 265 0.009 0.012 1.081 0.000 8.555 0.000
Uganda 237 0.031 0.054 2.844 0.000 13.074 0.000
Zambia 157 0.045 0.035 1.812 0.000 5.675 0.000
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Table C3.2a
*********************************************************************** 

Stable Paretian distribution estimates for inflation 
and RMK test in levels 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

distribution RMK test
estimates no costant costant

included included
code No.obs. alpha sd(alpha) t-st. sign. max-aug . t-st. sign. max-aug
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Austri 528 1.461 0.085 2.550 0 24 -2.022 0 24
Belgiu 528 1.544 0.117 1.994 0 24 -1.266 0 24
Canada 612 1.657 0.123 2.012 0 16 0.181 0 16
Denmar 407 1.699 0.154 1.126 0 20 -3.076 ++ 20
Finlan 528 1.707 0.136 1.744 0 24 -1.598 0 24
France 528 2.000 - - - - - - -
Greece 526 2.000 - - - - - - -
Icelan 300 2.000 - - - - - - -

Irelan 385 1.851 0.179 1.047 0 19 -2.765 + 19
Italy 600 1.608 0.122 1.568 0 18 -0.819 0 18
Japan 526 1.815 0.148 2.451 0 24 -2.749 + 24
Luxemb 527 1.489 0.115 2.521 0 24 -0.957 0 24
Nether 526 1.570 0.102 2.187 0 24 -1.989 0 24
Norway 528 1.740 0.138 3.041 0 24 -0.858 0 24
Portug 528 1.684 0.134 0.810 0 15 -0.857 0 15
Spain 528 1.892 0.159 1.335 0 17 -0.889 0 17
Sweden 526 1.763 0.140 1.290 0 16 -1.272 0 16
Switze 612 1.857 0.143 2.768 0 24 -0.208 0 24
UK 540 1.590 0.128 1.824 0 24 -0.923 0 24
US 612 1.539 0.117 2.936 0 24 0.043 0 24
German 600 1.453 0.099 3.993 0 16 -1.022 0 16

Table C3.2b
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Stable Paretian distribution estimates for inflation 
and RMK test in levels 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

distribution RMK test
estimates no costant costant

included included

code Nc>.obs. alpha sd(alpha) t-st. sign. max-aug. t-st. sign. max-aug
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Albani 131 1.174 0.213 3.041 0 23 -3.379 ++ 24
Bulgar 132 1.035 0.182 1.832 0 1 -1.432 0 1
CzechR 132 1.178 0.180 4.219 0 20 -4.635 +++ 24
EastGe 132 1.325 0.209 4.937 0 24 -3.873 ++ 24
Estoni 120 1.030 0.202 -0.141 0 16 -2.080 0 16
Hungar 312 1.727 0.178 2.868 0 15 -0.053 0 15
Latvia 120 0.758 0.153 - - - - - -
Lithua 132 1.158 0.210 0.854 0 21 -13.640 +++ 24
Poland 168 0.948 0.159 - - - - - -
Romani 135 1.839 0.300 0.563 0 15 -2.341 0 2
Russia 120 1.825 0.314 1.365 0 3 -2.309 0 3
Slovak 131 1.240 0.170 4.019 0 11 -1.670 0 11
Sloven 121 1.383 0.236 2.071 0 11 -2.573 + 1
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Table C3.2c
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Stable Paretian distribution estimates for inflation 
and RMK test in levels 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

distribution RMK test
estimates no costant costant

included included
code No.obs. alpha sd(alpha) t-st. sign. max-aug. t - S t .  !sign. max-a
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Argent 143 0.855 0.156 - _ _ _

Aruba 177 1.535 0.218 2.235 0 7 -2.576 + 13
Bahama 339 1.733 0.171 3.119 0 24 -4.067 +++ 24
Bahrai 290 1.148 0.103 1.067 0 24 -4.559 ++ 24
Barbad 420 1.243 0.099 3.671 0 9 -4.107 ++ 24
Bolivi 197 0.589 0.122 - - - - - -
Botswa 306 1.662 0.149 3.153 0 24 -1.435 0 24
Camero 399 1.530 0.114 3.845 0 24 -2.252 0 24
Chile 307 1.329 0.151 1.760 0 21 -3.148 ++ 7
Colomb 528 2.000 - - - - - - -
CostRi 313 1.297 0.131 1.604 0 17 -1.183 0 17
Cyprus 611 1.663 0.102 3.097 0 24 0.108 0 24
DominR 535 1.355 0.116 2.556 0 15 0.771 0 15
Ecuado 528 1.963 0.170 2.075 0 15 3.543 0 15
ElSalv 528 1.909 0.162 1.769 0 24 0.263 0 24
Fuji 384 1.385 0.105 6.555 0 24 -7.024 +++ 24
Ghana 454 1.449 0.125 0.937 0 3 0.520 0 3
Guatem 527 1.318 0.079 3.366 0 24 1.113 0 24
Hondur 527 1.490 0.106 3.523 0 23 2.990 0 24
HongKo 299 1.918 0.210 2.235 0 24 -2.627 + 24
India 525 1.400 0.082 5.753 0 24 1.130 0 24
Indone 393 1.190 0.102 3.288 0 23 -0.687 0 23
IvoryC 489 1.330 0.085 5.252 0 12 -0.129 0 12
Jamaic 527 1.617 0.131 1.374 0 19 0.908 0 19
Jordan 299 1.327 0.115 4.225 0 24 -2.213 0 24
Kenya 396 1.383 0.108 3.532 0 24 0.202 0 24
Korea 432 1.435 0.126 2.316 0 24 -3.086 ++ 24
Malays 524 1.515 0.099 3.544 0 24 0.414 0 24
Malta 526 1.437 0.083 3.493 0 24 -0.311 0 24
Maurit 462 1.392 0.093 3.320 0 24 -0.322 0 24
Mexico 612 1.323 0.107 0.957 0 12 0.876 0 12
Morocc 525 1.538 0.096 3.265 0 15 -0.248 0 17
Namibi 346 1.771 0.165 2.987 0 21 -2.961 ++ 21
NethAn 400 1.289 0.125 2.184 0 24 -2.973 + 24
Nigeri 498 1.498 0.128 1.477 0 16 1.198 0 15
Pakist 527 1.584 0.101 4.492 0 16 0.524 0 16
Paragu 526 1.562 0.128 3.110 0 24 1.670 0 24
Peru 137 0.862 0.161 - - - - - -
Philip 526 1.449 0.115 8.751 0 24 0.931 0 24
SaudAr 250 1.553 0.136 1.110 0 0 -0.767 0 15
Singap 480 1.209 0.086 2.413 0 24 -1.068 0 24
SouthA 527 2.000 - - - - - - -
SriLan 526 1.605 0.119 4.988 0 23 2.408 0 23
StKitt 256 1.398 0.148 4.647 0 12 -1.023 0 12
StLuci 429 1.582 0.114 2.467 0 24 -2.139 0 24
Surina 372 0.879 0.099 - - - - - -
Swazi 1 402 1.420 0.109 4.667 0 24 -0.396 0 24
Taiwan 504 1.645 0.128 2.337 0 19 -0.998 0 14
Thaila 432 1.447 0.110 3.206 0 24 -1.030 0 24
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Trinid 523 1.828 0.150 1.612 0 15 -0.321 0 15
Tunisi 161 1.875 0.284 1.466 0 17 -7.279 +++ 21
Turkey 261 2.000 - - - - - - -
Urugua 256 2.000 - - - - - - -
Venezu 526 1.818 0.148 1.302 0 24 1.517 0 15
Vietna 141 1.303 0.160 -0.638 0 24 -5.235 +++ 22
Zimbab 264 1.385 0.164 5.138 0 17 3.518 0 17

Table C3.2d
Stable Paretian distribution estimates for inflation 

and RMK test in levels
distribution RMK test

estimates no costant costant
included included

code No.obs. alpha sd(alpha) t-st. sign. max-aug. t-st. sign. max-aug
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

BurkFa 218 1.472 0.135 1.621 0 24 -0.366 0 24
Burund 322 1.439 0.123 5.189 0 24 0.620 0 24
Chad 214 1.565 0.150 1.857 0 23 0.188 0 23
Ethiop 426 1.586 0.113 4.340 0 24 -1.269 0 24
Gambia 476 1.288 0.082 2.844 0 19 -0.033 0 19
GuinBi 175 1.449 0.155 0.439 0 15 -3.283 ++ 24
Haiti 527 1.416 0.086 5.678 0 24 3.005 0 24
Malawi 250 1.434 0.122 8.094 0 22 3.191 0 22
Maurit 189 1.261 0.136 6.170 0 17 -0.490 0 17
Myanma 368 1.919 0.196 2.888 0 24 0.518 0 24
Nepal 452 1.598 0.115 7.119 0 24 0.752 0 24
Niger 393 1.468 0.100 2.319 0 14 -2.210 0 14
Samoa 406 1.420 0.095 2.841 0 24 -1.773 0 24
Senega 393 1.494 0.107 4.475 0 20 -2.496 0 12
SieraL 170 1.372 0.150 2.431 0 13 -4.624 +++ 24
Solomo 265 1.481 0.124 5.817 0 14 -1.193 0 12
Uganda 237 1.663 0.199 -0.329 0 24 -3.795 +++ 24
Zambia 157 1.646 0.243 0.098 0 17 -1.793 0 17
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Table C3.3a
Joint confirmation of the unit root tests in levels 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

constant in DF   constant in KPSS
Leybourne DF,.. KPSS

code signif. max.aug. B/F signif. AC length
(1) (2) (3) (4) (5) (6)
Aust 0 21 back +++ 0
Belg 0 24 back +++ 0
Cana 0 16 forw +++ 0
Denm 0 20 back +++ 0
Finl 0 24 back +++ 0
Fran 0 24 back +++ 0
Gree 0 22 forw +++ 0
Icel 0 13 back +++ 0
Irel 0 22 back +++ 0
Ital 0 18 forw +++ 0
Japa 0 24 back +++ 0
Luxe 0 24 back +++ 0
Neth 0 24 back +++ 0
Norw 0 24 back +++ 0
Port 0 15 forw +++ 0
Spai 0 17 back +++ 0
Swed 0 16 back +++ 0
Swit 0 24 forw +++ 0
UK 0 24 back +++ 0
US 0 24 forw +++ 0
Germ 0 24 back +++ 0

Table C3.3b
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Joint confirmation of the unit root tests in levels 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

constant in DF..., constant in KPSS 

Leybourne DF... KPSS
code signif. max.aug. B/F signif. AC length
(1) (2) (3) (4) (5) (6)

Alba 0 24 back +++ 0
Bulg 0 1 back +++ 0
Czec 0 24 back +++ 0
FEGe 0 24 back +++ 0
Esto 0 20 back +++ 0
Hung 0 15 forw +++ 0
Latv 0 24 back +++ 0
Lith 0 24 back +++ 0
Pola 0 23 back +++ 0
Roma 0 18 back +++ 0
Russ 0 18 back +++ 0
Slov 0 22 back +++ 0
Slov 0 19 back +++ 0
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Table C3.3c
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Joint confirmation of the unit root tests in levels 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

constant in DF„..# constant in KPSS 
Leybourne DF—  KPSS

code signif. max.aug. B/F signif. AC length
(1) (2) (3) (4) (5) (6)
Arge 0 24 back +++ 0
Arub 0 2 back +++ 0
Baha 0 24 back +++ 0
Bahr 0 24 back +++ 0
Barb 0 24 back +++ 0
Boli 0 24 back +++ 0
Bots 0 24 back +++ 0
Came 0 24 back +++ 0
Chil 0 7 back +++ 0
Colo 0 14 forw +++ 0
Cost 0 17 back +++ 0
Cypr 0 24 forw +++ 0
Domi 0 15 forw +++ 0
Ecua 0 15 forw +++ 0
ElSa 0 24 forw +++ 0
Fuji 0 24 back +++ 0
Ghan 0 3 forw +++ 0
Guat 0 24 forw +++ 0
Hond 0 24 forw +++ 0
Hong 0 24 back +++ 0
Indi 0 24 forw +++ 0
Indo 0 23 back +++ 0
Ivor 0 12 forw +++ 0
Jama 0 19 forw +++ 0
Jord 0 24 back +++ 0
Keny 0 24 forw +++ 0
Kore 0 24 back +++ 0
Mala 0 24 forw +++ 0
Malt 0 24 forw +++ 0
Maur 0 24 forw +++ 0
Mexi 0 12 forw +++ 0
Moro 0 17 forw +++ 0
Nami 0 21 back +++ 0
Neth 0 24 back +++ 0
Nige 0 15 forw +++ 0
Paki 0 16 forw +++ 0
Para 0 24 forw +++ 0
Peru 0 24 back +++ 0
Phil 0 24 forw +++ 0
Saud 0 15 forw +++ 0
Sing 0 24 back +++ 0
Sout 0 21 forw +++ 0
SriL 0 23 forw +++ 0
StKi 0 12 back +++ 0
StLu 0 24 back +++ 0
Suri 0 22 forw +++ 0
Swaz 0 24 forw +++ 0
Taiw 0 12 back +++ 0
Thai 0 24 back +++ 0
Trin 0 15 forw +++ 0
Tuni 0 21 back +++ 0
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Turk 0 9 forw ++ 0
Urug 0 24 back ++ 0
Vene 0 15 forw ++ 0
Viet +++ 18 back ++ 0
Zimb 0 17 forw ++ 0

Table C3•3d
Joint confirmation of the unit root tests in levels

constant in DF...., constant in KPSS 
Leybourne DFmx KPSS

code signif. max.aug. B/F signif. AC length
(1) (2) (3) (4) (5) (6)
Burk 0 24 forw +++ 0
Buru 0 24 forw +++ 0
Chad 0 23 forw +++ 0
Ethi 0 24 back +++ 0
Gamb 0 19 forw +++ 0
Guin 0 24 back +++ 0
Hait 0 24 forw +++ 0
Mala 0 22 forw +++ 0
Maur 0 17 back +++ 0
Myan 0 24 forw +++ 0
Nepa 0 24 forw +++ 0
Nige 0 14 back +++ 0
Samo 0 24 back +++ 0
Sene 0 12 back +++ 0
Sier 0 24 back +++ 0
Solo 0 12 back +++ 0
Ugan 0 23 back +++ 0
Zamb 0 17 back +++ 0
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Table C3.4a
Bilinear unit root test in levels

constant in B test
B test

code signif . max.aug.
(1) (2) (3)
A U S t ++ 24
Belg + 24
Cana ++ 16
Denm +++ 20
Finl 0 24
Fran 0 19
Gree 0 22
Icel 0 11
Xrel +++ 22
Ital 0 18
Japa +++ 24
Luxe +++ 24
Neth +++ 24
Norw 0 24
Port ++ 24
Spai 0 17
Swed +++ 16
Swit +++ 24
UK 0 24
US +++ 24
Germ +++ 16

Table C3.4b
Bilinear unit root test in levels

constant in B test 
B test

code signif. max.aug.
(1) (2) (3)

Alba +++ 22
Bulg +++ 1
Czec + 5
FEGe ++ 24
Esto 0 20
Bung +++ 24
Latv +++ 23
Lith +++ 24
Pola 0 21
Roma +++ 24
Russ +++ 1
Slov +++ 6
Slov ++ 18
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Table C3.4c 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Bilinear unit root test in levels 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

constant in B test 

B test
code signif. max.aug.
(1) (2) (3)
Arge +++ 24
Arub +++ 13
Baha +++ 24
Bahr +++ 24
Barb ++ 7
Boli 0 10
Bots ++ 24
Ceune 0 24
Chil +++ 7
Colo 0 14
Cost + + + 17
Cypr +++ 24
Domi +++ 15
Ecua +++ 15
ElSa +++ 24
Fuji 0 24
6han +++ 3
Guat +++ 24
Hond +++ 23
Hong ++ 24
Indi +++ 24
Zndo 0 23
Ivor +++ 12
Jama ++ 19
Jord 0 24
Keny 0 24
Kore 0 24
Mala + 24
Malt +++ 24
Maur 0 24
Mexi ++ 12
Moro +++ 17
Nami 0 21
Neth +++ 24
Nige +++ 4
Paki +++ 16
Para 0 24
Peru +++ 24
Phil ++ 24
Saud 0 0
Sing 0 24
Sout + 21
SriL +++ 23
StKi 0 12
StLu +++ 24
Suri ++ 22
Swaz +++ 24
Taiw ++ 14
Thai ++ 24
Trin + 15
Tuni 0 17
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Turk 0 9
Urug ++ 24
Vene +++ 24
Zimb +++ 17

Table C3.4d 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Bilinear unit root test in levels 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

constant in B test 
B test

code signif. max.aug.
(1) (2) (3)
Burk 0 24
Buru 0 24
Chad +++ 23
Ethi + 24
Gamb +++ 19
Guin 0 24
Ha it ++ 11
Mala +++ 22
Maur +++ 17
My an +++ 24
Nepa 0 24
Nige +++ 14
Same +++ 24
Sene +++ 20
Sier +++ 24
Solo ++ 12
Ugan ++ 24
Zamb 0 17
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Table C3.5a
Stable Paretian distribution estimates for first difference of inflation

and RMK test in returns
distribution RMK test

estimates no costant costant
included included

code No.obs. alpha sd(alpha) t-st. sign. max-aug. t-st. sign. max-aug
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Austri 527 1.278 0.074 -0.980 0 24 -3.616 ++ 24
Belgiu 527 1.431 0.084 -1.598 + 23 -3.252 ++ 23
Canada 611 1.265 0.068 -1.940 ++ 13 -3.067 ++ 13
Denmar 406 1.452 0.100 -1.376 0 18 - - -
Finlan 527 1.235 0.074 -1.773 ++ 23 -3.109 ++ 23
France 527 1.384 0.083 -1.502 + 24 -2.223 0 24
Greece 525 0.931 0.062 - - - - - -
Icelan 299 1.171 0.093 -1.777 ++ 16 -2.781 + 13
Irelan 384 1.149 0.084 -1.361 0 21 - - -
Italy 599 1.275 0.069 -1.369 0 24 -2.370 24 -
Japan 525 1.557 0.094 -2.173 ++ 8 - - -
Luxemb 526 1.212 0.071 -1.674 + 23 -3.549 ++ 23
Nether 525 1.217 0.071 -0.881 0 21 -3.523 ++ 21
Norway 527 1.403 0.084 -1.530 + 24 -3.749 ++ 24
Portug 527 1.082 0.069 -1.914 ++ 24 -3.121 ++ 24
Spain 527 1.318 0.077 -1.555 + 14 -3.209 ++ 8
Sweden 525 0.743 0.052 - - - - - -
Switze 611 1.322 0.072 -2.401 ++ 23 -4.246 ++ 23
UK 539 1.486 0.085 -1.988 ++ 21 -3.400 ++ 21
US 611 1.330 0.071 -1.715 + 22 -3.412 ++ 23
German 599 1.232 0.067 -1.584 + 9 -3.545 ++ 23

Table C3.5b
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Stable Paretian distribution estimates for first difference of inflation
and RMK test in returns

distribution
estimates

RMK test
no costant 
included

costant
included

code No.obs. alpha sd(alpha) t-st. sign. max-aug. t-st. sign.
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Albani 130 1.116 0.138 -4.463 +++ 22 - -

Bulgar 131 1.343 0.162 -8.365 +++ 0 -8.844 +++
CzechR 131 1.114 0.160 -3.575 +++ 5 - -
FEGerm 131 1.241 0.146 -6.226 +++ 24 - -
Estoni 119 0.921 0.138 - - - - -
Hungar 311 1.175 0.093 -1.250 0 7 -2.429 0
Latvia 119 0.964 0.149 - - - - -
Lithua 131 0.812 0.107 - - - - -
Poland 167 0.767 0.099 - - - - -
Romani 134 1.341 0.162 -2.331 ++ 24 -3.148 ++
Russia 119 1.090 0.154 -2.327 ++ 2 -2.747 +
Slovak 130 1.119 0.140 -2.692 +++ 6 11.372 +++
Sloven 120 1.363 0.184 -1.866 ++ 10 - -

( 1 0 )

24
2
0

160



APPENDIXES

Table C3.5c
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Stable Paretian distribution estimates for first difference of inflation
and RMK test in returns 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

distribution RMK test
estimates no costant costant

included included
code No.obs. alpha sd(alpha) t-st. sign. max-aug. t-st. sign. max-a
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Argent 142 0.617 0.107 _ _ _ _ _ _

Aruba 176 0.800 0.105 - - - - -

Bahama 338 1.342 0.100 -2.180 ++ 6 - - -
Bahrai 289 1.136 0.093 -4.041 +++ 14 - -
Barbad 419 1.235 0.084 -2.502 +++ 8 - - -
Bolivi 196 0.900 0.097 - - - - - -
Botswa 305 1.327 0.102 -0.901 0 23 -14.172 +++ 23
Camero 398 1.340 0.091 -4.185 +++ 15 -18.365 +++ 0
Chile 306 1.013 0.083 -2.531 +++ 6 - - -
Colamb 527 1.177 0.072 -1.458 + 22 -6.348 +++ 22
CostRi 312 1.155 0.089 -1.857 ++ 16 -5.528 +++ 16
Cyprus 610 1.354 0.074 -2.808 +++ 9 -5.250 +++ 23
DominR 534 0.894 0.056 - - - - - -
Ecuado 527 0.977 0.062 - - - - - -
ElSalv 527 0.964 0.061 - - - - - -
Fuji 383 1.319 0.091 -2.432 ++ 23 - - -
Ghana 453 0.997 0.069 - - - - - -
Guatem 526 1.291 0.074 -3.307 +++ 23 -5.005 +++ 16
Hondur 526 1.164 0.070 -2.418 ++ 22 -3.840 ++ 22
HongKo 298 1.379 0.111 -1.651 + 23 - - -
India 524 1.391 0.083 -3.072 +++ 24 -11.714 +++ 23
Zndone 392 1.311 0.088 -2.644 +++ 13 -10.799 +++ 22
IvoryC 488 1.079 0.068 -2.634 +++ 16 -11.568 +++ 2
Jamaic 526 1.195 0.070 -2.365 ++ 16 -4.554 ++ 13
Jordan 298 1.341 0.104 -3.882 +++ 23 -5.471 +++ 23
Kenya 395 1.020 0.073 -2.217 ++ 14 -7.414 +++ 23
Korea 431 1.275 0.081 -1.920 ++ 24 - - -
Malays 523 1.161 0.070 -3.054 +++ 24 -5.361 +++ 24
Malta 525 1.445 0.083 -3.729 +++ 13 -6.277 +++ 23
Maurit 461 1.403 0.090 -2.998 +++ 14 -8.305 +++ 13
Mexico 611 1.276 0.068 -1.718 + 24 -2.226 0 24
Morocc 524 1.508 0.089 -2.460 ++ 14 -4.458 +++ 14
Namibi 345 1.491 0.106 -0.621 0 18 - - -
NethAn 399 1.287 0.086 -2.720 +++ 23 - - -
Nigeri 497 0.874 0.058 - - - - - -
Pakist 526 1.383 0.081 -1.935 ++ 16 -7.777 +++ 15
Paragu 525 1.009 0.064 -2.338 ++ 21 -4.638 ++ 21
Peru 136 0.838 0.116 - - - - - -
Philip 525 1.110 0.068 -10.796 +++ 23 -10.907 +++ 23
SaudAr 249 1.342 0.118 -6.116 +++ 14 -6.128 +++ 14
Singap 479 1.232 0.078 -4.537 +++ 20 -6.533 +++ 20
SouthA 526 1.049 0.064 -0.583 0 17 -1.698 0 17
SriLan 525 1.282 0.074 -1.846 ++ 24 -5.535 +++ 24
StKitt 255 1.170 0.101 -3.175 +++ 15 -15.833 + + + 15
StLuci 428 1.336 0.088 -3.275 +++ 19 -5.145 +++ 23
Surina
Swazil

371
401 1.173 0.080 -2.423 ++ 23 -25.535 +++ 23

Taiwan 503 1.432 0.086 -5.192 +++ 13 -7.690 +++ 3
Thaila 431 1.283 0.084 -2.605 +++ 20 -5.860 +++ 23
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Trinid 522 1.075 0.067 -1.460 + 14 -3.122 ++ 14
Tunisi 160 1.609 0.194 -1.679 + 13 - - -

Turkey 260 1.112 0.101 -0.615 0 8 -2.341 0 7
Urugua 255 0.951 0.089 - - - - - -

Venezu 525 0.927 0.058 - - - - - -

Vietna 140 1.287 0.151 -16.680 +++ 24 - - -

Zimbab 263 1.303 0.106 -0.670 0 16 -4.273 ++ 4

Table C3.5d
Stable Paretian distribution estimates for first difference of inflation

and RMK test in returns
distribution RMK test

estimates no costant costant
included included

code No.obs. alpha sd(alpha) t-st. sign. max-aug. t-st. sign. max-a
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
BurkFa 217 1.492 0.145 -6.760 +++ 23 -15.581 +++ 23
Burund 321 1.435 0.108 -3.605 +++ 13 -16.440 +++ 9
Chad 213 1.301 0.123 -11.592 +++ 0 -10.974 +++ 6
Ethiop 425 1.414 0.091 -6.453 +++ 4 -18.768 +++ 20
Gambia 475 1.155 0.073 -4.670 +++ 23 -6.321 +++ 23
GuinBi 174 1.361 0.139 -1.753 + 14 - - -
Haiti 526 1.079 0.067 -2.413 ++ 15 -5.270 +++ 21
Malawi 249 1.103 0.100 -2.247 ++ 4 -7.155 +++ 1
Maurit 188 1.097 0.117 -2.919 +++ 19 -18.674 +++ 11
Myanma 367 1.317 0.101 -2.545 +++ 23 -5.195 +++ 23
Nepal 451 1.214 0.078 -3.125 +++ 18 -20.212 +++ 23
Niger 392 1.412 0.095 -5.156 +++ 13 -19.320 +++ 3
Samoa 405 1.364 0.090 -3.716 +++ 24 -6.478 +++ 12
Senega 392 1.367 0.095 -5.091 +++ 12 -12.506 +++ 22
SieraL 169 1.361 0.148 -1.757 + 23 - - -
Solomo 264 1.463 0.121 -1.309 0 13 -17.755 +++ 0
Uganda 236 1.248 0.109 -1.591 + 24 - - -
Zambia 156 1.634 0.200 -1.869 ++ 24 -5.198 +++ 18
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Table C3.6a
Joint confirmation of the unit root tests in returns

constant in DF-.., constant in KPSS
Leybourne DFMX KPSS

code signif. max.aug. B/F signif. AC length
(1) (2) (3) (4) (5) (6)
Aust + 24 back +++ 0
Belg +++ 23 forw +++ 0
Cana +++ 13 back +++ 0
Denrn + 18 forw +++ 0
Finl +++ 23 forw +++ 0
Fran + 24 forw +++ 0
Gree ++ 8 forw +++ 0
Xcel 0 15 back +++ 0
Irel + 21 forw +++ 0
Ital + 24 forw +++ 0
Japa +++ 23 forw +++ 0
Luxe +++ 23 back +++ 0
Neth +++ 21 forw +++ 0
Norw +++ 24 forw +++ 0
Port +++ 24 back +++ 0
Spai +++ 8 forw +++ 2
Swed ++ 15 forw +++ 0
Swit +++ 23 forw +++ 0
UK +++ 21 forw +++ 0
US +++ 23 forw +++ 0
Germ +++ 23 forw +++ 0

Table C3.6b
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Joint confirmation of the unit root tests in returns
constant in DF„.,, constant in KPSS

code
Leybourne DF„., 

signif. max.aug. B/F
KPSS

signif. AC length
(1) (2) (3) (4) (5) (6)

Alba +++ 22 back +++ 0
Bulg +++ 0 back ++ 0
Czec 0 19 back +++ 0
FEGe 0 24 back +++ 0
Esto 0 24 back +++ 0
Hung + 7 back +++ 0
Latv + 22 back +++ 0
Lith +++ 24 back +++ 0
Pola 0 22 back +++ 0
Roma ++ 24 back +++ 0
Russ 0 0 back +++ 0
Slov ++ 18 back +++ 0
Slov 0 24 back +++ 0
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Table C3.6c
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Joint confirmation of the unit root tests in returns 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

constant in DF,,... constant in KPSS 
Leybourne DF„.. KPSS

code signif. max.aug. B/F signif. AC lengl
(1) (2) (3) (4) (5) (6)
Arge +++ 24 back +++ 0
Arub +++ 10 back +++ 0
Baha +++ 23 forw +++ 0
Bahr ++ 6 back +++ 1
Barb +++ 23 back +++ 0
Boli +++ 24 back +++ 0
Bots +++ 23 back +++ 0
Came +++ 0 forw ++ 0
Chil 0 6 back +++ 0
Colo 0 2 back +++ 0
Cost +++ 16 forw +++ 0
Cypr +++ 23 forw + 2
Domi +++ 24 forw +++ 0
Ecua +++ 15 forw +++ 0
ElSa +++ 23 forw +++ 0
Fuji +++ 23 forw +++ 0
Ghan +++ 16 back +++ 0
Guat +++ 16 back +++ 0
Hond +++ 22 back +++ 0
Hong ++ 23 forw +++ 0
Indi +++ 23 forw +++ 0
Indo +++ 22 back ++ 0
Ivor +++ 2 back 0 1
Jama +++ 13 forw +++ 0
Jord +++ 23 forw ++ 1
Keny +++ 23 back +++ 0
Kore +++ 24 forw +++ 0
Mala +++ 24 back +++ 0
Malt +++ 23 forw 0 3
Maur +++ 23 back +++ 0
Mexi + 24 forw +++ 0
Moro +++ 14 forw +++ 0
Nami +++ 0 forw ++ 0
Neth +++ 23 forw +++ 0
Nige +++ 3 forw +++ 0
Paki +++ 15 back +++ 0
Para +++ 21 forw +++ 0
Peru +++ 19 back +++ 0
Phil +++ 23 back 0 24
Saud +++ 14 back 0 0
Sing +++ 20 forw ++ 0
Sout 0 17 forw +++ 0
SriL +++ 24 back +++ 0
StKi +++ 5 back +++ 0
StLu +++ 23 back +++ 0
Suri +++ 24 forw +++ 0
Swaz +++ 23 forw ++ 3
Taiw +++ 3 forw +++ 0
Thai +++ 23 forw +++ 0
Trin +++ 14 forw +++ 0
Tuni +++ 13 forw +++ 0
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Turk + 7 back +++ 0
Urug 0 24 forw +++ 0
Vene +++ 23 back +++ 0
Zimb +++ 4 forw +++ 0

Table C3.6d
Joint confirmation of the unit root tests in returns

constant in DF-.,, constant in KPSS 
Leybourne DP,,,, KPSS

code signif. max.aug. B/F signif. AC length
(1) (2) (3) (4) (5) (6)

Burk +++ 23 forw 0 2
Buru +++ 9 forw 0 0
Chad +++ 6 forw 0 0
Ethi +++ 20 forw 0 0
Gaxnb +++ 23 forw +++ 0
Guin +++ 0 forw +++ 1
Hait +++ 21 back +++ 0
Mala +++ 1 forw +++ 0
Maur +++ 11 forw 0 24
My an +++ 23 forw +++ 0
Nepa +++ 23 back 0 1
Nige +++ 3 forw ++ 3
Same +++ 15 back +++ 0
Sene +++ 22 forw + 1
Sier +++ 10 back +++ 0
Solo +++ 0 forw 0 24
Ugan 0 24 back +++ 0
Zamb +++ 18 forw +++ 0

Table C3.7
Bilinear unit root test in returns

constant in B test
Leybourne B test

code signif . max.aug.
(1) (2) (3)

Icel ++ 17
Czec + 5
FEGe ++ 24
Russ +++ 1
Slov ++ 18
Chil +++ 7
Colo +++ 13
Sout +++ 17
Urug ++ 23
Ugan +++ 24
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APPENDIX D

Table D5.la
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* *

OLS and Kalman filter estimation results for prices 
**************************************************************************** 
* *

The OLS method The Kalman filter method
with constant with constant

country No.obs. b b-scaled t sign. b b-scaled t sign
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Austria 528 0.028 0.639 2.180 ++ 0.0267 0.6156 2.178 ++
Belgium 528 0.150 3.448 15.929 +++ 0.1194 2.7453 14.372 +++
Canada 612 0.140 3.453 14.937 +++ 0.0927 2.2938 11.110 +++
Denmark 407 0.065 1.309 4.667 +++ 0.0510 1.0294 4.618 +++
Ireland 385 0.140 2.750 24.985 +++ 0.0915 1.7949 17.152 +++
Japan 526 0.085 1.957 7.626 +++ 0.0594 1.3621 6.351 +++
Luxembou 527 0.064 1.470 6.045 +++ 0.0418 0.9598 4.872 +++
Netherla 526 0.020 0.465 1.603 + 0.0169 0.3873 1.257 0
Portugal 528 0.157 3.600 9.882 +++ 0.1236 2.8406 8.006 +++
Sweden 526 0.143 3.276 15.465 +++ 0.6184 14.1832 12.160 +++
Switzerl 612 0.105 2.602 11.136 +++ 0.0763 1.8881 9.414 +++
US 612 0.140 3.466 21.928 +++ 0.0960 2.3761 15.712 +++
Germany 600 0.086 2.098 8.476 +++ 0.0659 1.6136 7.116 +++
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T a b le D5.1b
* *

OLS and Kalman filter estimation results for prices
* *

The OLS method The Kalman filter method
with constant with constant

country No .obs. b b-scaled t sign. b b -scaled t sign
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Albania 131 0.086 0.983 3.880 +++ 0.0621 0.7109 3.508 +++
Bulgaria 132 0.045 0.518 3.903 +++ 0.0397 0.4567 3.485 +++
CzechRep 132 0.083 0.953 4.412 +++ 0.0559 0.6427 3.081 +++
FEGermany 132 0.082 0.937 4.426 +++ 0.0607 0.6969 3.877 +++
Hungary 312 0.109 1.932 8.030 +++ 0.0689 1.2162 5.245 +++
Latvia 120 0.233 2.550 17.716 +++ 0.2069 2.2673 60.43 +++
Lithuani 132 0.157 1.799 12.190 +++ 0.1029 1.1817 13.34 +++
Romania 135 0.083 0.966 3.690 +++ 0.1129 1.3114 7.251 +++
Russia 120 -0.030 -0.330 -0.997 0.1169 1.2804 4.783 +++
Slovakia 131 0.023 0.268 1.315 + 0.0137 0.1564 0.737 0
Slovenia 121 0.192 2.107 18.327 +++ 0.1183 1.3015 7.941 +++

Table D5.1c
* *

OLS and Kalman filter estimation results for prices
* *

The OLS method The Kalman filter method
with constant with constant

country No. obs . b b-scaled t sign. b b-scaled t sign
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Argentin 143 0.082 0.982 1.567 + 0.1488 1.7799 3.501 +++
Aruba 177 0.106 1.416 7.140 +++
Bahamas 339 0.070 1.292 5.295 +++ 0.0467 0.8600 4.619 +++
Bahrain 290 -0.029 -0.498 -2.236 ++ -0.0239 -0.4077 -1.885 ++
Barbados 420 0.044 0.893 3.253 +++ 0.0338 0.6923 3.076 +++
Botswana 306 0.035 0.610 2.231 ++ 0.0428 0.7488 2.948 +++
Chile 307 -0.074 -1.301 -3.029 +++ 0.0275 0.4813 1.541 +
CostRica 313 0.180 3.191 10.051 +++ 0.1358 2.4018 10.985 +++
Cyprus 611 -0.019 -0.477 -1.594 + -0.0189 -0.4693 -2.514 +++
DominRep 535 0.190 4.404 17.289 +++ 0.1338 3.0947 14.753 +++
Ecuador 528 0.114 2.627 10.784 +++ 0.0820 1.8845 6.008 +++
ElSalv 528 0.156 3.591 13.478 +++ 0.1024 2.3534 10.355 +++
Ghana 454 0.087 1.847 5.559 +++ 0.0593 1.2627 4.148 +++
Guatemal 527 0.082 1.880 4.914 +++ 0.0582 1.3356 3.543 +++
Honduras 527 0.151 3.473 15.397 +++ 0.1115 2.5588 11.455 +++
HongKong 299 0.013 0.229 0.856 0 0.0145 0.2515 1.257 0
India 525 0.123 2.812 10.451 +++ 0.1021 2.3403 10.021 +++
IvoryCoa 489 -0.018 -0.407 -1.318 + -0.0163 -0.3598 -1.256 0
Jamaica 527 0.193 4.432 18.295 +++ 0.1423 3.2657 14.337 +++
Malaysia 524 0.100 2.294 9.692 +++ 0.0808 1.8491 8.578 +++
Malta 526 -0.009 -0.215 -0.804 0 -0.0079 -0.1815 -0.995 0
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Mexico 612 0.175 4.336 25.316 +++ 0.1386 3.4287 50.074 +++
Morocco 525 0.069 1.574 5.814 +++ 0.0708 1.6224 6.162 +++
NethAnti 400 0.123 2.462 11.224 +++ 0.6763 13.5260 9.588 +++
Nigeria 498 0.163 3.630 10.294 +++ 0.1089 2.4296 8.606 +++
Pakistan 527 0.077 1.759 5.240 +++ 0.0563 1.2915 4.262 +++
Peru 137 0.013 0.153 0.317 0 0.0844 0.9877 2.151 ++
Philippi 526 0.004 0.103 0.436 0 0.0043 0.0976 0.374 0
SouthAfr 527 0.150 3.447 15.714 +++ 0.1069 2.4547 10.925 +++
SriLanka 526 0.072 1.644 6.367 +++ 0.0621 1.4241 6.016 +++
StLucia 429 0.044 0.920 3.525 +++ 0.0374 0.7742 3.327 +++
Suriname 372 0.187 3.614 19.633 +++ 0.1587 3.0603 20.409 +++
Swazilan 402 -0.072 -1.447 -5.513 +++ -0.0883 -1.7702 -7.001 +++
Taiwan 504 0.060 1.355 4.909 +++ 0.0623 1.3995 5.184 +++
Thailand 432 0.114 2.361 9.646 +++ 0.0879 1.8285 7.906 +++
Trinidad 523 0.069 1.572 4.944 +++ 0.0521 1.1922 3.870 +++
Uruguay 256 0.080 1.273 4.986 +++ 0.1273 2.0367 7.677 +++
Venezuel 526 0.183 4.203 23.342 +++ 0.1711 3.9253 132.372 +++
Zimbabwe 264 0.086 1.400 7.314 +++ 0.0664 1.0786 5.424 +++

Table D5.1d
OLS and Kalman filter estimation results for prices

The OLS method The Kalman filter method
with constant with constant

country No.obs b b-scaled t sign. b b-scaled t sign
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

BurkFaso 218 -0.028 -0.416 -1.826 ++ -0.0260 -0.3846 -1.778 ++
Burundi 322 0.011 0.194 0.800 0 0.0103 0.1844 0.889 0
Chad 214 0.046 0.668 2.929 +++ 0.0510 0.7466 3.238 +++
Ethiopia 426 0.016 0.333 1.254 0 0.0142 0.2935 0.885 0
Gambia 476 0.046 1.013 3.017 +++ 0.0355 0.7753 2.665 +++
GuinBis 175 -0.012 -0.165 -0.587 0 0.0044 0.0578 0.234 0
Haiti 527 0.040 0.925 2.716 +++ 0.0276 0.6343 1.772 ++
Malawi 250 0.067 1.062 4.471 +++ 0.0391 0.6177 2.908 +++
Mauritan 189 -0.081 -1.113 -5.528 +++ -0.0802 -1.1019 -5.720 +++
Myanmar 368 0.077 1.475 4.966 +++ 0.0754 1.4467 4.617 +++
Nepal 452 0.008 0.178 0.533 0 0.0068 0.1448 0.606 0
Niger 393 -0.001 -0.014 -0.058 0 0.0002 0.0034 -0.015 0
Samoa 406 0.018 0.354 1.421 + 0.0218 0.4389 1.778 ++
Senegal 393 0.002 0.036 0.131 0
SieraLeo 170 0.003 0.035 0.160 0 0.0194 0.2527 0.816 0
SolomonI 265 -0.026 -0.420 -1.640 + -0.0302 -0.4922 -1.887 ++
Uganda 237 0.048 0.744 1.818 ++ 0.0898 1.3833 4.176 +++
Zambia 157 0.110 1.373 4.986 +++ 0.1814 2.2728 13.458 +++
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Table D5.2
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

OLS and Kalman filter estimation results for inflation

The OLS method 
with constant

country No.obs b b-scaled t
(1) (2) (3) (4) (5)

Iceland 299 -10.27 -177.58 -9.53
CzechRep 131 -11.34 -129.86 -6.77
FEGerm 131 -12.52 -143.37 -7.70
Russia 119 0.05 0.59 0.15
Slovenia 121 0.19 2.10 18.32
Chile 306 -0.77 -13.61 -1.66
Colombia 527 4.89 112.39 8.66
SouthAfr 526 -36.25 -831.49 -14.19
Uruguay 255 -8.30 -132.54 -11.45
Uganda 236 -3.70 -56.87 -12.35

The Kalman filter method
with constant

sign. b b-scaled t sign
(6) (7) (8) (9) (10)
+++ -12.59 -217.80 -11.59 +++
+++ -11.79 -134.95 -6.87 +++
+++ -13.62 -155.93 -7.93 +++
0 -3.98 -43.46 -13.59 +++
+++ -49.03 -537.17 -8.92 +++
++ 15.14 265.00 67.51 +++
+++ -11.96 -274.75 -30.97 +++
+++ -42.90 -984.00 -18.78 +++
+++ -164.4 -65.99 -10.13 +++
+++ -4.29 -65.993 -10.13 +++
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