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Abstract 

The unfolded protein response (UPR) occurs following the accumulation of unfolded 

proteins in the endoplasmic reticulum (ER) and orchestrates an intricate balance between its 

pro-survival and apoptotic arms to restore cellular homeostasis and integrity. However, in 

certain neurodegenerative diseases, the apoptotic arm of the UPR is enhanced, resulting in 

excessive neuronal cell death and disease progression, both of which can be overcome by 

modulating the UPR. Here, we describe a novel crosstalk between glucocorticoid receptor 

signaling and the apoptotic arm of the UPR, thus highlighting the potential of glucocorticoid 

therapy in treating neurodegenerative diseases. Several glucocorticoids, but not 

mineralocorticoids, selectively antagonize ER stress-induced apoptosis in a manner that is 

downstream of and/or independent of the conventional UPR pathways. Using GRT10, a 

novel selective pharmacological modulator of glucocorticoid signaling, we describe the 

importance of the transrepression arm of the glucocorticoid signaling pathway in protection 

against ER stress-induced apoptosis. Furthermore, we also observe the protective effects of 

glucocorticoids in vivo in a Drosophila model of Huntington’s disease (HD), wherein 

treatment with different glucocorticoids diminished rhabdomere loss and conferred 

neuroprotection. Finally, we find that growth differentiation factor 15 (GDF15) plays an 

important role downstream of glucocorticoid signaling in antagonising ER stress-induced 

apoptosis in cells, as well as in preventing HD-mediated neurodegeneration in flies. Thus, our 

studies demonstrate that this novel crosstalk has the potential to be effectively exploited in 

alleviating several neurodegenerative disorders. 

 

Keywords - Glucocorticoids, Unfolded Protein Response, GDF15, Huntington’s disease, 

Neurodegeneration  
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Introduction 

 The unfolded protein response (UPR) occurs in response to the accumulation of 

unfolded and misfolded proteins in the endoplasmic reticulum (ER) and executes a 

coordinated sequence of intracellular events, all of which are designed to restore cellular 

homeostasis in the stressed cells.
1-3

 This is achieved by the activation of the three major arms 

of the UPR, involving inositol-requiring protein-1  (IRE1), activating transcription factor-

6 (ATF6) and protein kinase RNA-like ER kinase (PERK), which in turn mediate a series of 

events, including the phosphorylation of an eukaryotic translation initiation factor 2 

eIF2 to temporarily arrest protein synthesis, and generation of chaperones like binding 

immunoglobulin protein (BiP) to aid in protein folding.
1-3

 However, when the extent of stress 

is overwhelming, the UPR activates the apoptotic arm, which includes the accumulation of 

C/EBP homologous protein (CHOP), resulting in the clearance of stressed cells.
4,5

 Since 

canonical ER stress and the UPR have been implicated in a number of disorders, including 

diabetes, cancer and several neurodegenerative diseases, efforts have been made to modulate 

specific arms of the UPR in an attempt to minimize disease pathology and improve survival.
6-

9
 This has led to the design of compounds that specifically inhibit different arms of the ER 

stress pathway, such as inhibitors of PERK and eIF2 dephosphorylation (salubrinal and 

guanabenz), IRE1 (STF-083010 and MKC-3946) and ATF6 proteolysis (AEBSF), all of 

which efficiently modulate specific arms of the ER stress pathway to achieve therapeutic 

benefits.
10-14

 

Glucocorticoids exert pleomorphic effects on a variety of physiological responses and 

are widely prescribed to treat several inflammatory diseases, including asthma, rheumatoid 

arthritis and allergic rhinitis.
15

 Due to their propensity to induce apoptosis, high dose 

glucocorticoids are also an integral part of chemotherapy regimens in the treatment of several 

leukemias and lymphomas.
16,17

 However, recent reports also claim specific pro-survival roles 
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of glucocorticoids.
18-21

 Glucocorticoid signaling involves the nuclear translocation of the 

dimerized ligand-receptor complex, which in turn results in the induction of several anti-

inflammatory proteins as well as regulator proteins important for metabolism. This pathway, 

also known as transactivation, is believed to be responsible for many of the side effects of 

glucocorticoids.
22

 Alternatively, the transrepression arm of glucocorticoid signaling involves 

the direct or indirect interaction of the monomeric receptor complex with specific 

transcription factors to negatively regulate pro-inflammatory gene expression, finally 

resulting in anti-inflammatory and immune-suppressive effects.
22

 In an attempt to improve 

the therapeutic index of these compounds, structural variants of glucocorticoids that 

selectively modulate the transrepression arm of glucocorticoid signaling are currently being 

developed.
23-31

 

In the present study, we describe a novel crosstalk between glucocorticoid signaling 

and the apoptotic arm of the UPR, highlighting the potential use of glucocorticoid therapy in 

several disease conditions. Using a selective modulator of glucocorticoid signaling, GRT10, 

we further establish a role for the transrepression arm of glucocorticoid signaling in the 

inhibition of ER stress induced apoptosis. Furthermore, using microarray analysis, we 

identify growth differentiation factor 15 (GDF15) as a major player in ER stress induced 

apoptosis that can be effectively downregulated by the transrepression arm of glucocorticoid 

signaling. Finally, since ER stress plays a central role in several neurodegenerative diseases, 

we exploit a fruit fly model of Huntington’s disease (HD), which expresses a fragment of 

mutant huntingtin (HTT) – the causative protein in this disorder - to validate the therapeutic 

potential of glucocorticoid signaling and GDF15 in HD, and find that this novel crosstalk 

could be an important target for designing drugs to alleviate several neurodegenerative 

diseases.  
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Results 

Mometasone Furoate antagonizes ER stress-induced apoptosis with little changes to the 

major arms of the UPR 

Following a series of screening experiments, we found that treatment with 

mometasone furoate, a glucocorticoid commonly used to treat inflammation of the skin and 

airways, resulted in significant protection against apoptosis induced by several conventional 

ER stressors, including tunicamycin, brefeldin A (BFA), thapsigargin (THG) and 

dithiothreitol (DTT)  (Figure 1A). This protective effect was comparable to that of the -2 

adrenergic receptor agonist, guanabenz.
11

 Both mometasone and guanabenz also protected 

against tunicamycin-induced activation of caspase-9, -7 and -3 as well as cleavage of the 

canonical caspase substrate, poly (ADP-ribose) polymerase (PARP) (Figure 1B). The 

protective effect of guanabenz against ER stress-induced apoptosis has been attributed to its 

ability to sustain the phosphorylation status of eIF2, which in turn resulted in a temporary 

block of global translation and modulation of the major arms of the UPR.
11

 Since 

mometasone was equally efficacious in antagonising ER stress-induced apoptosis, we 

speculated that the protective effects of mometasone, like guanabenz, could be due to 

changes in phospho-eIF2 levels and other arms of the UPR. However, mometasone failed to 

alter most UPR-mediated RNA and protein changes (Figure 1C and D), despite fluctuating 

levels of the phosphorylated form of eIF2(Figure 1D). In contrast, guanabenz-mediated 

sustained levels of phospho-eIF2 and inhibited CHOP accumulation (Figure 1D), thereby 

suggesting that the protective effects of mometasone could be distinct from those of 

guanabenz.  

Glucocorticoid receptor signaling is critical for the anti-apoptotic functions of 

glucocorticoids 
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The protective effect of mometasone was more restricted to cell death induced by 

canonical ER stressors than other cell death stimuli, as the extent of rescue from apoptosis in 

cells exposed to common cell death stimuli, such as the kinase inhibitor, staurosporine (STS), 

the BCL-2 inhibitor (ABT-263), the proteasomal inhibitor (MG132), the translation inhibitor, 

cycloheximide (CHX) or an oxidising agent, hydrogen peroxide (H2O2), was not statistically 

significant (Figure 2A), The protective effects of mometasone gradually diminished over 

time, suggesting that repeated administration of mometasone may be required to prolong the 

protective response (Figure 2B). In most of these experiments, mometasone was added to the 

cells at least 4 h prior to tunicamycin treatment, to ensure complete activation of the 

glucocorticoid receptor signaling pathways. However, altering the exposure times to 

mometasone yielded similar protection against tunicamycin-induced apoptosis (Figure 2C), 

thus suggesting that preconditioning of cells is not a requirement for efficient inhibition of the 

apoptotic arm of the UPR. Furthermore, the ability to antagonize ER stress-induced apoptosis 

was not restricted to mometasone, as several glucocorticoids but not mineralocorticoids, also 

diminished tunicamycin-mediated apoptosis (Figure 2D). To attribute these protective effects 

of glucocorticoids to elevated glucocorticoid receptor signaling, we used a competitive 

inhibitor, mifepristone,
32

 which completely reversed the anti-apoptotic effects of budesonide 

and dexamethasone but not those of fluticasone and mometasone (Figure 2E). This was most 

likely due to the high association and low dissociation rate constants of fluticasone and 

mometasone with the glucocorticoid receptor.
33

 Furthermore, silencing the cellular 

expression levels of the glucocorticoid receptor completely abolished the ability of 

mometasone to protect against tunicamycin-induced apoptosis (Figure 2F), thus confirming 

the existence of a crosstalk between glucocorticoid receptor signaling and ER stress-induced 

apoptosis.  
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The transrepression arm of glucocorticoid signaling antagonizes ER stress-induced 

apoptosis and ameliorates mutant HTT-mediated neurodegeneration 

To determine the relative contributions of transactivation and transrepression 

pathways to the protective effects, we used a novel and selective modulator of glucocorticoid 

signaling, GRT10, which is unable to effectively transactivate glucocorticoid dependent gene 

expression but demonstrates full transrepression activity (Figure 3A).
29

 Similar to 

mometasone, GRT10 exhibited anti-apoptotic effects, even at nanomolar concentrations 

(Figure 3B), thus demonstrating that the transrepression arm of glucocorticoid signaling is 

sufficient to inhibit ER stress-induced apoptosis. As ER stress-induced apoptosis is linked to 

the incidence of several neurodegenerative diseases, we wished to assess whether 

glucocorticoids could ameliorate neurodegeneration in a relevant in vivo model. Therefore we 

used a Drosophila model of HD, in which flies pan-neuronally express a mutant HTT exon 1 

fragment (HTT93Q) and exhibit a progressive loss of photoreceptor neurons (rhabdomeres) 

during their lifespan.
34-38

 Treatment of adult HD flies with either mometasone or GRT10 

markedly rescued mutant HTT-mediated neurodegeneration, although the extent of protection 

with GRT10 was slightly lower than with mometasone (Figure 3C and D). Moreover, 

treatment of the glucocorticoids during larval stages reduced neurodegeneration in newly 

emerged (day 0) HD flies (Figure 3E), suggesting that the transrepression arm of 

glucocorticoid signaling is neuroprotective both in adult HD flies and during development.  

Growth differentiation factor 15 (GDF15) plays a critical role in regulating the 

antiapoptotic functions of glucocorticoids 

To identify the target downstream of the transrepression arm that was critical for 

neuroprotection, we performed microarray analysis following tunicamycin in the presence of 

mometasone or GRT10. While mometasone or GRT10 exhibited varied effects on 
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tunicamycin-mediated transcriptional changes, only a limited subset of genes induced by 

tunicamycin was maximally decreased by both mometasone and GRT10 (Figure 4A). Of 

these genes, the induction of growth differentiation factor 15 (GDF15) following ER stress, 

which was efficiently diminished both at RNA and protein levels by mometasone and GRT10 

(Figure 4B), was intriguing, as we observed a similar, time-dependent induction of GDF15 in 

immortalized rat adrenal gland phaeochromocytoma PC12 cells expressing a mutant HTT 

fragment (Figure 4C).
39

 To assess if GDF15 upregulation was responsible for ER stress-

induced apoptosis, we used RNA interference to silence the expression of GDF15 in cells. 

Following silencing of GDF15, tunicamycin induced apoptosis was significantly reduced 

(Figure 4D), thus confirming the involvement of GDF15 in ER stress-induced apoptosis. 

Furthermore, exposure of GRT10 to cells that lack GDF15 did not significantly enhance the 

protection (Figure 4D), thus suggesting that GDF15 was one of the major and crucial targets 

of GRT10, with respect to their anti-apoptotic functions. These observations were further 

confirmed in vivo, wherein genetic inhibition of maverick (mav) – the Drosophila ortholog of 

GDF15 – by RNAi efficiently ameliorated HD-relevant photoreceptor loss at day 7 (Figure 

4E). Interestingly, we observed a significant age x genotype interaction [F(1,46) = 7.76, P < 

0.01], suggesting that knockdown of mav is not only neuroprotective, but slows progression 

of neuron loss in this animal model (Figure 4E). Finally, in agreement to our findings in cells, 

further treatment of GRT10 on flies lacking mav, failed to enhance the extent of protection 

from baseline (Figure 4F), confirming that mav is a critical target of the transrepression arm 

of glucocorticoid receptor signaling. Taken together, our data suggest that the transrepression 

arm of glucocorticoid signaling ameliorates mutant HTT-mediated neurodegeneration (Figure 

5), and this novel crosstalk between GDF15 and the transrepression arm of glucocorticoid 

signaling could be an important target in the design of drugs to alleviate other 
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neurodegenerative disorders in addition to HD, including Alzheimer’s and Parkinson’s 

diseases. 
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Discussion 

HD is a neurodegenerative disorder characterized by psychological problems, 

cognitive dysfunction, motor impairment and ultimately death. A prominent feature of HD 

pathology is the assembly of mutant HTT protein into cytoplasmic and nuclear insoluble 

amyloid-like fibrils, as well as soluble oligomeric species.
40

 Although the disease pathology 

has been attributed to a mutation in the HTT gene, resulting in the expansion of the 

polyglutamine tract in the HTT protein,
41

 the molecular mechanisms underlying mutant HTT 

toxicity are poorly understood. However, a number of pathological mechanisms, including 

mitochondrial dysfunction 
42,43

 and ER stress 
7,44

 have been implicated in HD. Currently, 

there is no cure for HD, with drugs only available for symptomatic treatment.
45

  

Canonical ER stress response and the UPR have been implicated in a wide variety of 

disorders, including diabetes, cancer, inflammatory diseases and neurodegeneration.
6
 While 

enhanced activation of the survival arms of the UPR is observed in cancers, the apoptotic 

pathways are more prevalent in several neurodegenerative diseases.
6,9

 UPR-targeted gene 

manipulation, such as the deletion of the pro-apoptotic protein CHOP, has been observed to 

delay disease onset and improve survival in Parkinson’s disease and amyotrophic lateral 

sclerosis.
46,47

 ER stress-induced apoptosis has been implicated as an important contributor to 

cellular toxicity in several models of HD.
48-53

 Furthermore, other UPR modulators (such as 

salubrinal, several chemical chaperones, overexpression of GRP78 and downregulation of 

SCAMP5, Rrs1 and ASK1) have been successfully used in alleviating HD-associated 

phenotypes.
10,49,52,54-60

 Recently, guanabenz, an -2 adrenergic receptor agonist, was reported 

to exhibit significant protection against apoptosis via selective modulation of the UPR.
11

 

Unlike guanabenz, which antagonizes ER stress-induced apoptosis by blocking most UPR 
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pathways, glucocorticoids exert their protective effects downstream of and/ or independent of 

the major arms of the UPR (Figures 1 and 2).  

Although previous studies have reported protective roles for glucocorticoids in cell 

death, 
61-63

 our current study characterizes a role for transrepression and not transactivation in 

the glucocorticoid-mediated protection against ER stress-induced apoptosis (Figure 3). 

Notably, we have identified, characterized and validated a role of GDF15 in ER stress-

induced apoptosis (Figure 4). The ability of glucocorticoids to repress the transcription of 

GDF15, in a manner that is partly dependent on the Brm Swi/Snf ATPase, has been 

documented.
64

 Furthermore, downregulation of Brm increased glucocorticoid receptor 

occupancy most likely by competing with the glucocorticoids to bind the receptor, thus 

modulating GDF15 transrepression.
64

 This raises the possibility that inactivation of Brm 

ATPase may abrogate the protective effects of glucocorticoids against ER stress-induced 

apoptosis and provide further mechanistic insight to the regulation of GDF15. 

GDF15 (also known as NAG1 or MIC1) is a member of the TGF- superfamily of 

proteins and has been implicated in various pathologies including inflammation, cancer, 

cardiovascular diseases and obesity.
65

 In the central and peripheral nervous systems, GDF15 

is widely expressed and is particularly induced in neuronal lesions and cerebral ischemia.
66

 

However, the role of GDF15 in disease pathologies associated with CNS lesions is further 

complicated by the progressive loss of neurons, motor axons and rotarod skills in GDF15-

deficient mice, suggesting the importance of GDF15 in neuronal health.
67

 In this study, we 

observe that GDF15 is upregulated under stress conditions and normalisation of its function, 

via RNA interference or pharmacological inhibition resulted in a marked protection against 

both ER stress-induced apoptosis and HD-associated neurodegeneration (Figure 4). Thus, 

typical of several members of the TGF- superfamily, GDF15 performs opposing functions 
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in disease conditions and hence, further studies are required to identify specific molecular 

functions of this protein.
65

 Nevertheless, our study conclusively demonstrates that the novel 

crosstalk between GDF15 and the transrepression arm of glucocorticoid signaling could be an 

important target in the design of drugs to alleviate several neurodegenerative disorders, 

including HD, Alzheimer’s and Parkinson’s diseases.    



13 
 

Materials and Methods 

Cell Culture 

HeLa cells from ATCC were cultured in DMEM medium supplemented with 5 mM L-

glutamine and 10 fetal calf serum (FCS) (all from Life Technologies, Inc, Paisley, UK). 

PC12 cells, stably transfected with a ponasterone A - inducible mutant HTT fragment (103Q) 

fused with green fluorescent protein (GFP) 
39

 (kindly provided by Leslie Thompson, 

University of California, Irvine), were cultured in DMEM supplemented with 10 horse 

serum (v/v), 5 FCS (v/v), 2 mM GlutaMax and 1mM sodium pyruvate (all from Life 

Technologies).  

Drosophila transgenic lines  

Flies were raised on standard maize media, in LD 12:12 at 25
◦
C. The elavGAL4 [c155] driver 

and y
1
scv

1
; P{TRiP.GL01025}attP40 were obtained from the Bloomington Stock Center, 

Indiana. The w;+;UAS HTT93Q exon 1 flies were a gift from Larry Marsh and Leslie 

Thompson (University of California, Irvine) 
34

. 

Reagents and antibodies 

All steroids (mometasone furoate, dexamethasone, fluticasone propionate, budesonide, 

deoxycorticosterone acetate) and ER stress agents (tunicamycin, brefeldin A, thapsigargin 

and DTT) were from Tocris Bioscience (Bristol, UK). Guanabenz was kindly provided by 

Medical Research Council Technology. Ponasterone A was from Santa Cruz Biotechnology 

(Santa Cruz, CA).  Antibodies against glucocorticoid receptor, phospho- and total eIF2α from 

Cell Signaling Technology Inc (Danvers, MA), PARP from Alexis Biochemicals 

(Nottingham, UK), Tubulin from Calbiochem (Darmstadt, Germany), GDF15, BiP and 

CHOP from Abcam (Cambridge, UK), caspase-3, -7 and -9 (kind gift from Dr. Xiao-Ming 

Sun, MRC Toxicology Unit, Leicester, UK) were used. All other reagents, unless mentioned 

otherwise, were from Sigma-Aldrich Co. (St. Louis, MO).  
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Apoptosis measurements and immunoblotting 

Apoptosis was assessed by phosphatidylserine (PS) externalization as described previously 
68

. 

Western blots were carried out according to standard protocols. Briefly, 30 g of total protein 

lysate (lysed in a buffer of 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 (v/v) Triton X-100, 

1 mM EDTA, 30 mM NaF, 1 mM glycerolphosphate, 1× proteinase inhibitor (Roche) and 1 

mM Na3VO4) was denatured in sampling buffer (50 mM Tris-HCl, pH 6.8, 10 (w/v) 

glycerol, 2 (w/v) SDS, 0.02 (w/v) bromophenol blue and 2.5 (v/v) β-mecaptoethanol) 

and subjected to SDS-PAGE. Proteins were transferred to nitrocellulose membranes, blocked 

with 5 (w/v) milk in Tris-buffered saline Tween 20 and incubated with various primary 

antibodies. Washed membranes were incubated with horseradish peroxidase (HRP)-

conjugated secondary antibody and protein bands visualized with ECL reagents (GE 

Healthcare, Bucks, UK).  

 

RT-PCR and XBP-1 Splicing 

Total RNA extracted (RNAeasy, Qiagen, Germany) from cells was  reverse-transcribed 

(Invitrogen, Carlsbad, CA, USA), and the resulting cDNA used as a template for PCR 

amplification using primers, 5’-TTACGAGAGAAAAC TCATGGC-3’ and 5’-

GGGTCCAAGTTGTCCAGAATGC-3’ to generate the 289 bp amplicon of spliced XBP-1, 

which was resolved on a 2.5 agarose/ 1x TAE gel and visualized. 

siRNA knockdowns 

HeLa cells were reverse-transfected with 10 nM siRNA of control, glucocorticoid receptor 

(s6187) or GDF15 (sc-39798) obtained from Ambion (Carlsbad, CA, USA) or Santa Cruz 

Biotechnology (Santa Cruz, CA), using Interferin Reagent (Polyplus Transfection Inc, New 

York, NY) according to the manufacturer's protocol and processed 72 h after transfection.  



15 
 

Compound treatment of Drosophila 

Fly food medium was liquefied by gentle heating and mixed thoroughly with appropriate 

glucocorticoid concentrations. Newly emerged flies were transferred to vials containing food 

mixed with the glucocorticoid and maintained for 7 days, with the food, changed daily to 

ensure a constant drug supply. For rhabdomere analysis at day 0, flies were crossed and 

grown on standard maize medium supplemented with 10 μM of either glucocorticoid. 

Pseudopupil analysis 

Treated flies were anaesthetized with CO2 and the heads removed. The heads were mounted 

face-up on microscope slides and viewed using a Nikon Optiphot-2 microscope at 40X 

magnification. Approximately 50 ommatidia were counted from about 12 flies per treatment 

and averaged to acquire the number of rhabdomeres per ommatidium. Statistical analyses 

were conducted by ANOVA with Newman-Keuls post-hoc tests. 

Microarray analysis and statistics 

Total RNA extracted from HeLa cells exposed to tunicamycin (10 M) for 20 h, following a 

4 h pretreatment with mometasone (1 M) or GRT10 (0.1 M) was used to make biotin-

labelled cRNA using the Illumina TotalPrep RNA amplification kit (Ambion, Carlsbad, CA, 

USA). The resulting cRNA was hybridized to an Illumina HumanHT-12 BeadChip array 

(Illumina, San Diego, CA, USA), Cy3 labelled and scanned using an Illumina BeadArray 

Reader (Illumina). Microarray data normalization and analyses were carried out as before 
69

. 

For Heat map analysis, the top 50 genes with the highest fold changes (P ≤ 0.003) following 

tunicamycin treatment were compiled. The transcriptional changes of those genes in the 

treated cells were compared using MultiExperiment Viewer. Microarray analysis on PC12 

cells exposed to DMSO or ponasterone A for 12, 24 and 72 h were carried out as before but 

the samples were hybridized to Illumina rat RatRef-12 v1 BeadChip microarrays instead and 

the microarray data sets for different treatments were compared to the top 20 differentially 



16 
 

expressed genes of tunicamycin treatments.



17 
 

Acknowledgements 

We thank the Medical Research Council Toxicology Unit for core support, and the CHDI 

Foundation, Inc. for funding (F.G.). We also are grateful to MRCT for guanabenz, Dr. Sun 

for the caspase-3, -7 and -9 antibodies and Drs. L. Thompson and L. Marsh for the HTT 

PC12 cells and fruit flies. The authors declare no conflict of interest. 

  



18 
 

Figure Legends 

Figure 1. Mometasone protects against ER stress-induced apoptosis with few changes to 

the UPR.  (A) HeLa cells exposed for 4 h to DMSO, mometasone or guanabenz (1 M) 

followed by 20 h of tunicamycin (Tunic; 10 M), brefeldin A (BFA; 10 M), thapsigargin 

(THG; 10 M) or DTT (1 mM), were analyzed by FACS for phosphatidylserine (PS) 

externalization (n = 3). Statistical analysis was conducted by paired t-test (***P < 0.001, **P 

< 0.01, ns – not significant, if P > 0.05).  (B) HeLa cells exposed to DMSO, mometasone or 

guanabenz (1 M) for 4 h followed by 20 h of tunicamycin were immunoblotted with the 

indicated antibodies to detect apoptosis.  (C) Heat map analysis comparing gene changes in 

HeLa cells, following 4 h of DMSO or mometasone (M; 1 µM) followed by a further 20 h of 

tunicamycin (T; 10 M), where yellow and blue indicate up- or downregulation of genes, 

respectively. The results are shown for three independent experiments (n = 1-3). (D) Total 

RNA or whole cell lysates of HeLa cells exposed to either mometasone (1 M) or guanabenz 

(1 M) alone or in combination with tunicamycin (10 M) for the indicated times were either 

processed for RT-PCR to identify spliced fragment of xbp1 or immunoblotted with the 

indicated antibodies to detect changes in the major arms of the UPR.  

Figure 2. Glucocorticoid receptor signaling is critical for the protective effects of the 

glucocorticoids. (A) HeLa cells exposed for 4 h to 1 M of mometasone, followed by 20 h of 

staurosporine (STS; 1 M), ABT-263 (10 M), MG132 (20 M), cycloheximide (CHX; 20 

M) or hydrogen peroxide (H2O2; 100 M), were analyzed by FACS for phosphatidylserine 

(PS) externalization (n = 3). Statistical analysis was conducted by paired t-test (*P < 0.1, ns – 

not significant, if P > 0.05).  (B) HeLa cells exposed for 4 h to mometasone (1 M) followed 

by tunicamycin (Tunic; 10 M) for 1-3 days were analyzed by FACS for phosphatidylserine 

(PS) externalization (n = 3). Statistical analysis was conducted by paired t-test (***P < 0.001, 
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**P < 0.01, ns – not significant, if P > 0.05). (C) HeLa cells exposed to mometasone (1 M) 

for 0 h, 2 h or 4 h, followed by tunicamycin (Tunic; 10 M) for a further 20 h, were analyzed 

by FACS for phosphatidylserine (PS) externalization (n = 3). Statistical analysis was 

conducted by paired t-test (**P < 0.01, ns – not significant, if P > 0.05).  (D) HeLa cells 

exposed for 4 h to 1 M of budesonide (Bude), dexamethasone (Dexa), fluticasone 

propionate (Flutic), mometasone furoate (Momet) or deoxycorticosterone acetate (DOCA) 

followed by 20 h of tunicamycin (10 M) were analyzed by FACS for phosphatidylserine 

(PS) externalization (n = 3). (E) HeLa cells, pre-treated for 0.5 h with mifepristone (20 M), 

were subjected to other treatments as specified in A and analyzed by FACS for 

phosphatidylserine (PS) externalization (n = 3). (F) HeLa cells, reverse transfected with 10 

nM of control or glucocorticoid receptor siRNA, were exposed to mometasone (1 M) for 4 h 

followed by 20 h of tunicamycin and assessed for apoptosis. Immunoblots confirmed the 

knockdown efficiency of the siRNA oligoduplexes (n = 3).  

Figure 3. The transrepression arm of glucocorticoid signaling is sufficient to protect 

against ER stress-induced apoptosis and HTT-mediated neurodegeneration. (A) 

Chemical structure of GRT10. The transrepression and transactivation assays characterizing 

the specificity of GRT10 have previously been published, where GRT10 is denoted as 

compound 5.
29

  (B) HeLa cells, exposed for 4 h to the indicated concentrations of GRT10 and 

mometasone, followed by a further 20 h of tunicamycin (10 M), were analyzed by FACS for 

phosphatidylserine (PS) externalization (n = 3). Dashed, straight line at the bottom depicts the 

extent of basal cell death in control cells. Statistical analysis was conducted using a paired t-

test (**P < 0.01, ns – not significant, if P > 0.05). The inset shows the extent of apoptosis 

assessed by cleavage of PARP. (C) Newly-emerged fruit flies, expressing mutant HTT, were 

exposed to either mometasone (10 M, n = 14) or GRT10 (10 M, n = 11) for 7 days and the 
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number of rhabdomeres per ommatidium was scored by pseudopupil analysis. (D) Same as C, 

but the average number of rhabdomeres per ommatidium has been plotted. Statistical analysis 

was conducted by ANOVA with Newman-Keuls post-hoc tests (***P < 0.001). (E) Same as 

D, but the analysis was carried out with day 0 flies to assess HTT-mediated 

neurodegeneration during development (n = 11-13). Statistical analysis was conducted by 

ANOVA with Newman-Keuls post-hoc tests (***P < 0.001). 

Figure 4. GDF15 regulates ER stress-induced apoptosis and HD-associated 

neurodegeneration.  (A) Heat map analysis comparing gene changes in HeLa cells, 

following 4 h of mometasone (1 M) or GRT10 (0.1 M) followed by a further 20 h of 

DMSO or tunicamycin (10 M), where yellow and blue indicate up- or downregulation of 

genes, respectively. The results are shown for three independent experiments (n = 1-3). (B) 

Whole cell lysates of HeLa cells exposed for 4 h to either mometasone (1 M) or GRT10 (0.1 

M) alone or in combination with tunicamycin (10 M) for a further 20 h were 

immunoblotted with the indicated antibodies. (C) Heat map analysis comparing gene changes 

in tunicamycin-treated HeLa cells (10 M for 20 h) to microarray datasets obtained in PC12-

HTT103Q-GFP cells following the induction of HTT expression using a steroid inducer, 

ponasterone A (5 M) for the indicated times (12-72 h). The results are shown for three 

independent experiments (n = 1-3).  (D) HeLa cells, reverse transfected with 10 nM of 

control or GDF15 siRNA, were exposed to tunicamycin (10 M for 20 h) alone, or in 

combination with GRT10 (0.1 M), and the extent of cell death was assessed by PS 

externalization (n = 3). Statistical analysis was conducted by a paired t-test (***P < 0.001, ns 

– not significant, if P > 0.05). Immunoblot analysis confirmed the knockdown efficiency of 

the GDF15 siRNA and the effects on apoptosis, as assessed by cleavage of PARP.  (E) 

Genetic inhibition of maverick (mav), the Drosophila ortholog of GDF15, by RNA 
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interference significantly reverses photoreceptor loss in day 7 HD flies (n=11-14). Statistical 

analysis was conducted by ANOVA with Newman-Keuls post-hoc tests (***P < 0.001, ns – 

not significant, if P > 0.05). (F) Newly-emerged fruit flies, expressing mutant HTT, 

following control or mav RNAi, were exposed to DMSO or GRT10 (10 M, n = 11) for 7 

days and the number of rhabdomeres per ommatidium was scored by pseudopupil analysis. 

Statistical analysis was conducted by ANOVA with Newman-Keuls post-hoc tests (***P < 

0.001, ns – not significant, if P > 0.05). 

Figure 5. The transrepression arm of glucocorticoid signaling antagonizes ER stress-

induced upregulation of GDF15 and apoptosis, thereby diminishing mutant HTT-

mediated neurodegeneration.  Schematic representation depicting the induction of the 

unfolded protein response (UPR) following various stress stimuli, resulting in pro-survival or 

apoptotic signaling pathways depending on the extent of stress. Here, we report a novel 

crosstalk between the glucocorticoid signaling pathway and the apoptotic arm of the UPR. 

Binding of glucocorticoids to their receptors can elicit transrepression and/ or transactivation 

as part of their signaling cascade. Using a selective modulator of glucocorticoid signaling, 

GRT10, we confirm that the upregulation of Growth Differentiation Factor 15 (GDF15) is an 

important event in the apoptotic arm of the UPR. Furthermore, by selective activation of the 

transrepression arm of glucocorticoid signaling, we demonstrate that downregulation of 

GDF15 is efficient in antagonising ER stress-induced apoptosis, both in HeLa cells and also 

in a fruit fly model of Huntington’s disease (HD). Exposure to glucocorticoids or a genetic 

inhibition of GDF15 ameliorated the disease pathology and was neuroprotective in adult HD 

flies and during development. 
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