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Abstract We examine the point spectrum of the various tiling spaces that result from
different choices of tile lengths for substitution of constant length on a two or a three letter
alphabet. In some cases we establish insensitivity to changes in length. In a wide range
of cases, we establish that the typical choice of length leads to trivial point spectrum.

We also consider a problem related to tilings of the integers and their connection to fixed
point theorems. Using this connection, we prove a generalization of the Banach Contrac-
tion Principle.
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Introduction

This thesis consists of two parts. The first part comprises Chapters 1-3 and is mainly con-

cerned with the translation dynamics of substitution tiling spaces associated to primitive,

aperiodic substitutions of constant length. Before giving a synopsis of each chapter we

describe the content of our research which we consider to be original.

More precisely the main theme of the first part is the classification of the point spectrum

of one-dimensional substitution tiling spaces associated to primitive, aperiodic substitu-

tions of constant length on a two or a three letter alphabet A.

The primary focus of the paper [7] by Clark and Sadun is to what extent the point spec-

trum of the tiling spaces associated to substitutions depend on the changes in the tile

lengths. The substitutions of constant length considered there were primarily of interest

as examples of substitutions for which the dynamics is sensitive to changes in the tile

length. The ultimate result of this thesis is that our classification of the point spectrum

in a two letter or a three letter case includes classes of substitutions that are sensitive to

changes in tile lengths and other classes of substitutions that are independent of these

changes. Although the classes of substitutions that are insensitive to changes in lengths

are limited, they present interesting cases to be considered.

The substitution tiling space has a canonical choice for lengths of prototiles based on the

left Perron-Frobenius eigenvector of the incidence matrix Mθ . In the case of a constant

length substitution the canonical choice would give all tiles the same length. Our plan

is to investigate the effect on the translation dynamics of changing the tile lengths from

those of the canonical choices.

One of the motivating factors in studying and understanding the dynamical spectrum or

the discrete spectrum of the translation dynamics of tiling spaces is that it has been es-

tablished that the dynamical spectrum is related to diffraction spectrum of materials with

corresponding patterns (see [2]). Therefore, it is of interest to identify the patterns whose

spectrum remain unaffected by changes in tile lengths.

Similar topics have been investigated also in the papers [8], [9] and [20], but none of
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them have addressed the special cases we consider. More recently, these ideas have been

used to study the homeomorphism group of tiling spaces in [18] and there has been a

connection established with number theory in [21].

We prepare the groundwork in Chapter 2 where we use a flow under the ceiling func-

tion to provide an alternative description of the substitution tiling space to the description

given by Barge and Diamond in [3]. We introduce Theorem 2.62 to illustrate the point

spectrum of the substitution tiling space where all the tiles have the same length.

In Chapter 3, a detailed exposition of how the point spectrum is affected by the change of

the tile lengths via studying two major cases, the two and three letter alphabet A. In the

two letter case, examining the effect of changing tile lengths on the the point spectrum

of a substitution tiling space was investigated by Clark and Sadun in [7] under specific

conditions, whereas in my thesis a general conclusion for the point spectrum is estab-

lished independent of [7]. This will be extended to the examination of the three letter

case, where the classification of the point spectrum is based on the different possibilities

of the roots (specifically the roots of the quadratic monic polynomial) associated to the

characteristic polynomial of the incidence matrix Mθ . This yields two major cases: com-

plex roots and real roots.

The second part of this thesis comprises Chapter 4. There we address another type of

tiling problem related to tilings of the integers which can specifically have a bearing on

fixed point theorems. In particular, we prove a generalization of the Banach Contraction

Principle. The proof involves establishing a connection between tilings of the integers

and fixed points of functions.

Chapter 1. In general, by a dynamical system we mean a pair (X ,T ), where X is just a

set (called a phase space), while T is a group of self-transformations on X . Usually,

the space X is endowed with some kind of structure, and the acting transformations

respect this structure. The theory of dynamical systems is interdisciplinary, as

it involves research methods from many other branches of mathematics. There

has been an intense development of the theory over the past few decades and it

grew into a science successfully competing for applications in the practical sciences

with statistical and even with numerical techniques. And so, if X is a measure

space (most often a probability space), then the transformations are assumed to be

measurable and preserve the measure by preimage (sometimes one requires only

that they are nonsingular). The branch investigating measure dynamical systems is

called ergodic theory. If X is assumed to be a topological space (usually compact),

then T is required to be continuous. These systems are the subject of topological
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dynamics. In this chapter we study tilings of Euclidean space from the point of view

of dynamical systems theory, and in particular, symbolic dynamics. The dynamical

systems described here involve the full tiling space TP (Def.1.11), the tilings we

study are tilings (Def.1.9) of Rd by translations of a finite number of basic tile types

called "prototiles". All the tilings considered in this chapter satisfy the locally

finiteness condition (Def.1.16). The tiling topology is based on the tiling metric

(Lemma 1.17) which is complete and compact (Lemmas 1.18 and 1.20). As tiling

spaces (Def.1.22) play a key role in the next chapters, we give a notion of tiling

spaces and refer to a special kind of tiling space called the orbit closure of a tiling.

The link between repetitivity (Def.1.30) and almost-periodicity (Def.1.34) within

a tiling space is discussed in the Proposition 1.40. Proposition 1.45 states that

a dynamical system (O(x),T ) is minimal if and only if x is repetitive. And this

follows from combining Proposition 1.40 and "Gottschalk’s Theorem" (Theorem

1.43).

Chapter 2. We consider the symbolic dynamics in the classical one-dimensional case

and introduce the notion in the context of shift spaces generated by a primitive

substitution rule (Lemma 2.20). Then we show that the shift space is minimal.

We distinguish between two kinds of dynamical systems (substitution subshifts),

those which arise from a primitive, aperiodic substitution of constant length on

two letters (as an example, discrete or continuous substitution) and the ones that

arise from a primitive, aperiodic substitution of constant lengths on three letters.

The one-dimensional tilings are described here (Def. 2.22) and in particular one-

dimensional substitution tilings. Informally a suspension (Def. 2.25) construction

turns a map into a flow. By this process, we prove that the suspension of the full

shift space and the full tiling space support flows which are topologically conju-

gate (Prop. 2.27). Then by lemma 2.29, we show that there is a homeomorphism

between the suspension of the substitution subshift and the associated substitution

tiling space.

In preparation for determining the point spectrum (Def. 2.56) of the substitution

tiling space Tθ , with all the tile lengths the same, associated to a primitive, aperi-

odic substitution θ of constant length l, we introduce the notions of the height of

the substitution (Def. 2.45), the n-adic system (Z(l),τ) with the τ addition by 1

(Def. 2.35) and the system (Z(l)×Zh,τ × τh) (Def. 2.50). First, we describe in

detail how to determine the point spectrum of the constant c suspension flow of τ

addition by one on the suspension space {Z(l)}c (Prop. 2.59). Second, we give a

brief description (Prop. 2.60) of how to determine the point spectrum of the system.
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Then we use the trace relation (Def. 2.42) to determine the point spectrum of the

constant c suspension flow of the shift map S on the suspension subshift (Theorem

2.61). Finally, we conclude in Theorem 2.62 the point spectrum of the substitution

tiling space with all the tiles having the same length.

Chapter 3. This chapter describes our main results for a classification of the point spec-

trums of substitution tiling spaces. Clark and Sadun give in Theorem 2.3 of [7] a

condition (3.1) for determining the point spectrum in terms of the tile length vector,

recurrence vector (Def. 3.1) and the incidence matrix of the substitution. The setR
of integer module generated by recurrence vectors (Def. 3.5) is used to give a new

criteria for the existence of the point spectrum (Theorem 3.6). Theorem 3.7 gives

partial spectral information in terms of the eigenvalues of the incidence matrix and

the ratios of lengths of the tiles because it is applied for the class of substitutions

whose incidence matrices have non zero eigenvalues and when there exists a full

recurrence vector (Def. 3.2). So we present a Corollary 3.8 which we think is

useful for determining the point spectrum in the case of substitutions with zero

eigenvalues. Establishing the typical case (Def. 3.9 ) associated to a typical choice

of length vectors is helpful in determining the sensitivity of the point spectrum to

changes in tile lengths. It will be vital for us to determine the integer module gen-

erated by recurrence vectors, in the case of a two letter alphabetA we establish that

R= Z2. The situation is different in the case of a three letter alphabet A, there are

cases whereR= Z3 and other cases such asR 6= Z3. We describe the relationship

between the height of the substitution and the existence of full recurrence vectors

withR. We list relevant examples which show these relationships.

We examine the extent to which the point spectrum of a substitution tiling space

associated to a primitive, aperiodic substitution of constant length on two letters is

affected by changing the tile lengths (Theorem 3.26).

In the case of a substitution on three letters, our classification of the point spectrum

is based on different possibilities of the roots of the quadratic monic polynomial

q(x) of the characteristic polynomial of its incidence matrix Mθ . In the first place,

either we have the case of complex roots or the case of real roots. In the case of

complex conjugate roots, the point spectrum will have sensitivity to changes in the

tile lengths (Prop. 3.28). We investigate the point spectrum in the case of real roots

through dividing it into four major cases each one of them is divided into subcases

due to the height of the substitution.

Case I: If the roots r1 and r2 of q(x) are of magnitude greater than or equal 1, that

is, |r1| and |r2| ≥ 1. That is the case where we have eigenvalues of the incidence
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matrix with magnitude greater than or equal one.

If the height equals one or two, we show that the point spectrum is sensitive to

changes in tile lengths (Propositions 3.31, 3.32).

Case II: If r1 and r2 are the roots of q(x) such that r1 = 0 and r2 ∈ Z−{0}.

If the height equals one, then in either caseR=Z3 orR=




k+ `

k

`

 | k, ` ∈ Z

 ,

we conclude that the point spectrum is trivial. Thus the point spectrum will have

sensitivity to changes in tile lengths (Prop. 3.34, 3.36). While in the case of a height

two substitution we establish that the point spectrum is insensitive to changes in tile

lengths (Prop. 3.37).

Case III: If q(x) has 0 as a double root, that is, r1 = r2 = 0.

In this case, where zero occurs as a double root, the height two substitution subcase

simply does not exist and so we give our examination of the point spectrum only

for the height one substitutions (Prop. 3.38). The point spectrum will be insensitive

to changes in tile lengths.

Case IV. If the roots r1 and r2 of q(x) are such that |r1|> 1 and 0 < |r2|< 1. This is

the case where q(x) has a Pisot root. Although we cannot handle the general case,

we can give a conclusion due to some special cases. Again the only subcase that

we have is the height-one substitution, we show that the point spectrum will have

sensitivity to changes in the tile lengths (Prop. 3.43).

Chapter 4. The Banach contraction principle states that every contraction on a complete

metric space has a unique fixed point. As a generalization of it, the following

conjecture was considered in [17].

Conjecture I. Let (X ,d) be a complete metric space and let f : X → X satisfy the

following condition:

inf{d( f m(x), f m(y)) : m ∈ J} ≤ Kd(x,y)

for all x,y ∈ X and some K ∈ (0,1), where J is a subset of positive integers. Then

f has a fixed point.

Rather than requiring that a mapping be a contraction, we consider the following

generalization of Conjecture I and provide a tiling proof for our result.
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Conjecture II. Let (X ,d) be a complete metric space and let f : X → X satisfy the

following condition:

inf{α(x,y)d( f m(x), f m(y)) : m ∈ J} ≤ Kd(x,y)

for all x,y ∈ X , some K ∈ (0,1) and α : X ×X → [0,∞), where J is a subset of

positive integers. Then f has a fixed point.

However, relevant to this thesis, Stein in [31] established conjecture I for the class

of strongly continuous mappings and J= {1,2, . . ,n}. In [17], the authors showed

that conjecture I is true if J= {1,2}.
Because the process of constructing an analytical proof of our main result is com-

plicated, we follow the same method devised by Stein in [17] which involves tilings

of the integers while in the proof of our results that lead to the main result we use

analytical methods (Theorems 4.3, 4.4, 4.5). To use the tiling methodology, we

define a good collection of tiles (Def.4.6) and present some rules defined in [17]

that yield to the proof of our main fixed point result (Theorem 4.7).

Papers:

1. D. Abuzaid, Fixed point theorems and tiling problems, Filomat, (2015) (in press).
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Chapter 1

Some Notions in Tiling Theory and
Tiling Dynamical System

In this chapter, we study tilings of Euclidean space. The tilings we study are tilings of Rd

by translations of a finite number of basic tile types called “prototiles”.

Throughout this chapter, a dynamical system will be a pair (X ,T ), where X is a compact

metric space (the phase space) and T is a continuous action of a group, usually Rd. Some

basic notions and fundamental results of tiling theory are presented. Necessary notations

and the terminology used in the sequel are also fixed. None of the results in this chapter

are original and most of the material is taken from [15], [25] and [26].

1.1 Basic definitions

Definition 1.1. A topological group is a triple (G, ·,τ), where (G, ·) is a group and (G,τ)

is a topological space, such that the following conditions hold:

1. The operation · on G is a continuous function from G×G into G (the topology on

G×G is the product topology determined by τ).

2. The function f : G→ G defined by f (a) = a−1, for each a ∈ G is continuous.

An example of a topological group is (Rd,+,τ), where + denotes ordinary addition of

Rd and τ is the Euclidean topology.
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Definition 1.2. Let X be a topological space. Let (G, ·) be a topological group. An action

of G on X is a continuous map α : G×X → X such that

1. α(e,x) = x for all x ∈ X , where e is the identity element of the group G.

2. α(g1,α(g2,x)) = α(g1 ·g2, x) for all x ∈ X and g1,g2 ∈ G.

Note that for any given action α and any g0 ∈ G, the function αg0 : X → X , where

αg0(x) = α(g0,x), is a homeomorphism with inverse α(−g0).

Definition 1.3. Let f and g be two actions of the group G on the topological spaces X

and Y respectively. A topological semi-conjugacy from f to g is a surjective continuous

map h : X→Y such that gt ◦h = h◦ f t for all t ∈G. If h is a homeomorphism, it is called

a topological conjugacy and f and g are said to be topologically conjugate.

Definition 1.4. Let α be a topological group action of (G, ·) on X . The set M ⊆ X is

minimal if it is non-empty, closed, invariant under the action and there are no proper

closed and action invariant subsets of M.

Definition 1.5. For an action α of G on X and x ∈ X , the orbit of x is denoted by

O(x) = {α(g,x) | g ∈ G}.

The following result is well known.

Theorem 1.6. Let α be a topological group action of (G, ·) on X. Then M⊆ X is minimal

if and only if M is non-empty and for all x ∈ M, O(x) = M, where O(x) denotes the

closure of O(x).

By an application of Zorn’s Lemma, one obtains the following result.

Theorem 1.7. Let α be a topological group action of (G, ·) on X . Any non-empty, closed,

invariant subset of X contains a minimal set M.

1.2 Tilings

We now begin to introduce a structure on tilings of Rd that allows us to use dynamical

systems to study their properties.
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Definition 1.8. A subset D of Rd,d ≥ 1, is called a tile if it is homeomorphic to a d-

dimensional closed ball.

Example 1.1. Tiles in R are closed intervals and in R2 are often closed polygons.

Definition 1.9. A tiling x of Rd is a collection {Di} of tiles such that any two tiles have

pairwise disjoint interiors and their union is Rd , (that is, {Di} covers Rd ).

Definition 1.10. We say that two tiles D1 and D2 are equivalent if one is a translation

of the other. It is denoted by D1 ∼ D2. Equivalence class representatives are called pro-

totiles.

Definition 1.11. Let P be a finite collection of prototiles (finite set of inequivalent tiles)

and TP be the collection of all possible tilings of Rd formed from translations of elements

of P. TP is usually called the full tiling space.

Remark 1.12. Geometry is generally concerned with properties of objects that are in-

variant under congruence and dynamics is concerned with group actions.

In this chapter, we will be interested in how groups of rigid motions act on sets of tilings.

Of central interest will be the action of Rd by translation.

Definition 1.13. Let T tx ∈ TP , t ∈Rd and x ∈ TP , be the tiling of Rd in which each tile

D ∈ x has been shifted by the vector −t, that is, T tx = {D− t | D ∈ x}. This action of Rd

on TP is denoted by T .

The orbit of a tiling x ∈ TP is the set O(x) = {T tx | t ∈ Rd} of translates of x.

Definition 1.14. Let P be a set of prototiles. A P-patch px is a finite subset of a tiling

x ∈ TP such that the union of tiles in px is connected. This union of tiles in px is called

the support of px and is written as supp(px).

Definition 1.15. The notion of equivalence extends to patches, and a set of equivalence

class representatives of patches is denoted by P∗. The subset of patches of n tiles, called

the n-patches, is denoted by P(n) ⊆P∗.

Definition 1.16. A tiling space TP is locally finite if P(2) is finite; equivalently, P(n)

is finite for each n.

From now on, whenever we write P,P∗or TP it will always implicitly include a choice

of a finite P(2). For the case of polygonal prototiles in R2, we will assume that all tiles

meet edge-to-edge. This will guarantee achieving local finiteness condition.

9



Example 1.2. Let S be the set consisting of a single 1×1 square prototile. Without any

local finiteness condition, fault lines exist in the tilings TS with a continuum of possible

displacements. The edge-to-edge condition guarantees that every x ∈ TS is a translation

of a single periodic tiling.

1.3 The tiling topology

We shall show that locally finite tiling spaces have useful topological properties. The

tiling topology is based on a simple idea: two tilings are said to be close if after a small

translation they agree on a large ball around the origin.

For K ⊆ Rd bounded and x ∈ TP , let x[[K]] denote the set of all sub-patches px ⊆ x such

that K ⊆ supp(px). The smallest such patch is represented by x[K].

Given r > 0 and t ∈ Rd, let

Br = {t ∈ Rd | ||t||< r},

where || · || denotes the Euclidean norm on Rd.

Lemma 1.17. For x,y ∈ TP , define

d(x,y) = inf({
√

2/2} ∪ {0 < r <
√

2/2 | ∃ px ∈ x[[B1/r]], py ∈ y[[B1/r]],

with T t px = py for some ||t|| ≤ r}). (1.1)

Then d defines a metric on TP

Proof. It is clear from the definition that 0≤ d(x,y)≤
√

2
2 for all x,y ∈ TP .

We now show that d(x,y) = 0 if and only if x = y. Assume that x 6= y, then there are two

possibilities:

1. The two tilings have the origin placed at different locations within a prototile. Then

in order that they agree on a patch centered at the origin one of them must be trans-

lated by some vector. One thus takes a vector of this type of smallest magnitude.

So, in this case, d(x,y)> 0.

2. The two tilings x,y have the origin placed at the same location relative to some

prototile. Then, since x is not the same as y, there must be some r > 0 such that
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the tilings x and y have different prototiles at a distance 1
r from the origin. Thus the

two tilings would not agree on a ball of radius≥ 1
r . As a result, again we must have

d(x,y)> 0. Consequently, we have d(x,y) = 0 implies x = y.

Conversely, if x = y, then the two tilings x,y agree on a ball of radius 1
r for each r > 0.

This implies that the infimum of r’s is 0. Thus d(x,y) = 0.

Obviously, d(x,y) = d(y,x) for all x,y ∈ TP .

Finally, we will prove the triangle inequality. Let 0 < d(x,y) = a′ ≤ d(y,z) = b′ with

a′+b′ <
√

2/2. Let 0 < ε <
√

2/2− (a′+b′) and set a = a′+ ε/2 and b = b′+ ε/2.

Since d(x,y) = a′, there exist px ∈ x[[B1/a′]], py ∈ y[[B1/a′]] with T t px = py for some

||t|| ≤ a′. But a′ < a, therefore 1/a < 1/a′ and so B1/a ⊆ B1/a′. This implies that there

exist px ∈ x[[B1/a]], py ∈ y[[B1/a]], with T t px = py for some ||t||< a.

Similarly, since d(y,z) = b′, there exist p
′
y ∈ y[[B1/b]], p

′
z ∈ z[[B1/b]] with T−s p

′
z = p

′
y for

some ||s||< b.

Let y0 = py ∩ p
′
y, x0 = T−ty0 ⊆ px and z0 = T sy0 ⊆ pz. Then T−(t+s)z0 = x0, where

||t + s|| ≤ ||t||+ ||s||< a+b.

Note that

a+b = a′+b′+ ε/2+ ε/2 = (a′+b′)+ ε

< (a′+b′)+
√

2/2− (a′+b′) =
√

2/2,

this implies 0 < a≤ b <
√

2/2. Also 1
a+b ≤

1
b −a if and only if b(a+b)≤ 1.

Let c = a+b. Then

0 <
1
c
=

1
a+b

≤ 1
b
−a.

We claim that

B1/c ⊆ (B1/b + t).

Indeed, let h ∈ B1/c. Then ||h||< 1/c. Now

||h− t|| ≤ ||h||+ ||t||< 1
c
+a≤ 1

b
−a+a =

1
b
.

This implies that

h ∈ (B1/b + t) and so B1/c ⊆ (B1/b + t).

11



Now py, p
′
y ∈ y[[B1/b]] and thus

x0 ∈ x[[B1/b + t]]⊆ x[[B1/c]].

Also z0 ∈ Z[[B1/c]]. Since T−(t+s)z0 = x0, where ||t + s||< a+b, we have

d(x,z)≤ a+b = a′+ ε/2+b′+ ε/2 = d(x,y)+d(y,z)+ ε,

where ε > 0 is chosen arbitrarily small. Consequently, we have

d(x,z)≤ d(x,y)+d(y,z).

Hence d is a metric on TP .

1.4 Completeness and Compactness

Lemma 1.18. The tiling metric d is complete.

Proof. Let (xn) be a Cauchy sequence of tilings. Assume that d(xn+1,xn) > 0 and let

sn = d(xn+1,xn)+
1
2n . We construct a subsequence (snk) of (sn) as follows:

1. Since (xn) is Cauchy, we can choose N > 1 such that d(xN ,xN+1)<
1
22 . Set n1 = N.

Then we have

sn1 = d(xN ,xN+1)+
1

2N <
1
22 +

1
22 =

1
2
.

2. Assume that n1,n2, . . . ,nk have been chosen such that

(a) n1 < n2 < .. . < nk.

(b) sni <
1
2i , i = 1,2, . . . ,k.

We shall show that snk <
1
2k for all k ≥ 1. Choose M > nk and M > k + 2 such that

d(xM,xM+1)<
1

2k+2 .

Let nk+1 = M. Then we have

n1 < n2 < .. . < nk < nk+1

12



and

snk+1 = d(xnk+1+1,xnk+1)+
1

2nk+1

= d(xM+1,xM)+
1

2M

<
1

2k+2 +
1

2k+2 =
1

2k+1 .

So, by the Principle of Mathematical Induction,

snk <
1
2k for all k ≥ 1.

We claim that (snk) is decreasing. If not, then d(xnk+1,xnk) does not converge to zero and

so (xnk) is not Cauchy. Since snk <
1
2k for all k ≥ 1 and ∑

∞
k=1

1
2k < ∞, by the Comparison

Test, ∑
∞
k=1 snk < ∞.

For convenience, now we shall use the subscript n instead of nk. Let d(x1,x2) = d1. Then

by the definition of the metric, there exist two sub-patches px1, p
′
x2

match around the

origin in a ball of radius 1
d1
, that is, there exist px1 ∈ x1[[B1/d1]] and p

′
x2
∈ x2[[B1/d1]] such

that

T t1 px1 = p
′
x2
, ||t1|| ≤ d1 (t1 ∈ Rd).

Since d1 < s1, it follows that B1/s1 ⊆ B1/d1 ⊆ supp(px1) and so px1 ∈ x1[[B1/s1]], p
′
x2
∈

x2[[B1/s1]] such that

T t1 px1 = p
′
x2
, ||t1||< s1.

Now let d(x2,x3) = d2. Then there exist px2 ∈ x2[[B1/d2]], px3 ∈ x3[[B1/d2]] such that

T t2 px2
′
= p

′
x3
, ||t2||< d2 (t2 ∈ Rd).

Since d2 < s2, we have px2 ∈ x2[[B1/s2]], px3 ∈ x3[[B1/s2 ]] such that

T t2 px2 = px3, ||t2||< s2.

Continuing in this manner, for each n, we can find tn ∈ Rd with ||tn||< sn such that

T tn pxn ⊆ pxn+1.

Since (sn) is decreasing,

B1/s1 ⊆ B1/s2 ⊆ . . .⊆ B1/sn ⊆ . . . .

13



Note that B1/s1 ⊆ B1/s2, p
′
x2
∈ x2[[B1/s1]], px2 ∈ x2[[B1/s2]]. This implies T t1 px1 ⊆ px2 and

so on.

Let

rn =
∞

∑
k=n

tk.

Then

rn = rn+1 + tn

and so

T rn pxn = T rn+1T tn pxn ⊆ T rn+1 pxn+1.

This means that T rn pxn is an increasing sequence of patches. Now define a tiling

x =
⋃
n

T rn pxn.

Notice that

d(x,xn)≤max{||rn||,sn}.

Since

||rn||= ||
∞

∑
k=n

tk|| ≤
∞

∑
k=n
||tk||<

∞

∑
k=n

sk,

||rn||→ 0 as n→∞ and also sn→ 0 as n→∞. As a result, we have d(x,xn)→ 0 as n→∞,

that is, the subsequence (xnk) converges to x.

Since (xn) is a Cauchy sequence and its subsequence (xnk) converges to x, it follows that

the sequence (xn) itself converges to x. Hence the tiling metric space is complete.

Lemma 1.19. Let TP be a locally finite tiling space. Then TP is totally bounded.

Proof. Let ε > 0. Choose n such that all patches containing a ball of radius 1
ε

centered at

the origin are contained in some of P(n). By local finiteness, P(n) is finite. Assume that

we have m patches of n tiles, say p(n)1 , p(n)2 , · · · , p(n)m and choose some tilings x1,x2, · · · ,xm

that have these patches around the origin. Any patch containing the ball B(0, 1
ε
) will

match one of p(n)m after translation of xm by vector of magnitude less than ε. The corre-

sponding tiling ym will be within ε of xm. So d(xm,ym) < ε. But B(xm,ε) is an ε-ball in

the tiling topology, therefore the m ε-balls form a covering of the tiling space, that is,

TP =
m⋃

i=1

B(xi,ε).
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and hence TP is totally bounded.

Theorem 1.20. Let TP be a locally finite tiling space. Then TP is compact in the tiling

metric d.

Proof. It is well-known that a metric space is compact if and only if it is complete and

totally bounded. By Lemma 1.18, TP is complete and by Lemma 1.19 TP is totally

bounded. Consequently, TP is compact.

Theorem 1.21. Let TP be a locally finite tiling spaces. The action T of Rd by translation

on TP is continuous.

Proof. Let (t,x) ∈ Rd×TP , and ε > 0. Define the metric D on Rd×TP as follows:

D[(t,x),(t ′,y)] = max{dist(t, t ′),d(x,y)},

where dist is the usual metric on Rd and d is the tiling metric on TP . If ||t ′|| > ||t||,

choose δ < 1
2

(
1

1
ε
+||t ′||

)
such that D[(t,x),(t ′,y)]< δ . Then ||t− t ′||< δ and d(x,y)< δ .

So ∃ px ∈ x[[B1/δ ]], py ∈ y[[B1/δ ]] with T s px = py for some ||s|| ≤ δ . Note that

||t ′|| ≤ ||t||+ ||t− t ′||

and so

||t ′||< ||t||+δ .

Thus t ′ = t +u, where ||u||< δ . If T s px = py and t ′ = t +u, then

T t(T s px) = T t py

implies

T u+sT t px = T t ′ py

Since py ⊆ y is a patch of y containing a ball of radius 1
δ
> 2
(1

ε
+ ||t ′||

)
around the origin,

this implies that T t ′ py ⊆ y is a patch of y containing a ball of radius 1
ε

around the origin

after translation by t ′. Also px⊆ x is a patch of x containing a ball centered at the origin of

radius 1
δ
> 2

(1
ε
+ ||t ′||

)
. Thus T t px ⊆ x is a patch containing a ball centered at the origin

of radius 2
(1

ε
+ ||t||

)
after translation by vector t with ||t|| < ||t ′||. And so containing a

ball centered at the origin of radius 1
ε
.

||u+ s|| ≤ ||u||+ ||s||< 2δ <
ε

1+ ε||t ′||
< ε.
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So

T u+s(T t px) = T t ′ py

for some ||s+u||< ε. Thus

d(T t px,T t ′ py)< ε,

and hence T : Rd×TP →TP is continuous.

1.5 Tiling spaces

Symbolic dynamics investigates a special kind of dynamical system called a symbolic

dynamical system. The classical case is 1-dimensional, but we discuss here the general

d-dimensional case.

Definition 1.22. Let TP be a full d-dimensional tiling space and let T represent the

translation action of Rd. A tiling space T is a closed T -invariant subset T ⊆ TP . We call

the pair (T ,T ) a tiling dynamical system.

Definition 1.23. Let TP be a full tiling space and let F ⊆P∗. Let T\F ⊆ TP be the set

of all tilings x ∈ TP such that no patch px in x is equivalent to any patch in F . We call a

set F a set of forbidden patches.

Note that we will use the notation p in general for any patch in P∗.

Lemma 1.24. For any F ⊆P∗, the set T\F is a tiling space.

Proof. First we show that T\F is T -invariant. Let x be any tiling T\F , then x contains

no patch in F . We know that the patches that occur in any translation of x are the same

patches that occur in x. Thus for any vector t ∈Rd, the translation T tx is also in T\F , that

is, T tx ∈ T\F and so T\F is T -invariant.

It remains to show that T\F is closed, it is enough to show that TP −T\F is open. Let

y ∈ TP−T\F be a tiling. By Definition 1.23, there is a patch p of F such that p occurs in

y. Since p is compact, every point in p is within a finite distance from the origin. Let d1

be the distance between p and the origin and let d2 denote the diameter of p (note that p is

compact if and only if it is closed and bounded). Set r1 = d1 +d2 and r2 = r1 +
1
r1
. Then

p is contained in a ball of radius r2 centered at the origin. If we shift y by 1
r2
< 1

r1
and
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thus p will be in the shifted version of the tiling. So any tiling z within 1
r2

of y contains a

copy of the patch p and therefore will be in TP −T\F . This means that there exists

B1/r2(y) =
{

z ∈ TP −T\F | d(z,y)<
1
r2

}
such that y ∈ B1/r2(y)⊆ TP −T\F . Hence TP −T\F is open and so T\F is closed.

Proposition 1.25. Let T ⊆ TP be a tiling space. Then for every tiling y ∈ TP−T , there

exists a patch of y that doesn’t occur in T .

Proof. Assume that there exists a tiling y ∈ TP−T , such that each patch of y does occur

in a tiling in T . If pn is a patch of y determined by [−n,n]d occurring in a tiling in T , then

by T -invariance of T there exists a tiling xn ∈ T which matches y exactly on [−n,n]d.

This implies d(xn,y)≤ 1
n for all n and hence xn→ y. Now y is a limit point of a sequence

(xn) of tilings in T . Since T is closed, then y ∈ T which is a contradiction. Hence for

every tiling y∈ TP−T , there exists a patch of y that doesn’t occur in any tiling in T .

Remark 1.26. Every tiling space T ⊆ TP is defined by a set F of forbidden patches.

To see this, let F = {py| y ∈ TP −T }, where py is a patch of y that does not occur in T ,
then T = T\F .
Indeed, if x ∈ T , then no patch in x is equivalent to any patch py in F . Consequently

x ∈ T\F and so T ⊆ T\F .
On the other hand, if there exists an x ∈ T\F such that x /∈ T . Then x ∈ TP −T and by

Proposition 1.25, x would have a corresponding patch px ∈ F which is a contradiction

and so T\F ⊆ T . Hence T = T\F .

Definition 1.27. A tiling space T ⊆ TP is called a finite type tiling space if there exists

a finite F ⊆P∗ so that T = T\F .

Consider the following question: Suppose we are given a set P of prototiles and a set

F ⊆P∗of forbidden patches. Is T\F 6= /0?

The following result gives a positive answer to the above question.

Theorem 1.28. Let P be a collection of prototiles with a local finiteness condition P(2)

and let F ⊆P∗ be a set of forbidden patches. Define P+ ⊆P∗ to be the set of patches

that do not contain any forbidden sub-patches. Then T\F 6= /0 if and only if for each r > 0

there is a patch p ∈P+ with Br ⊆ supp(p).
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1.6 Applications of topological dynamics

Recall that for given n linearly independent vectors b1, · · · ,bn ∈Rm, the lattice generated

by them is defined as L(b1,b2, · · · ,bn) = {∑xibi|xi ∈ Z}. We refer to b1, · · · ,bn as a ba-

sis of the lattice. Equivalently, if we define B as the m× n matrix whose columns are

b1, · · · ,bn, then the lattice generated by B is L(B) = L(b1,b2, · · · ,bn) = {Bx|x ∈ Zn}. We

say that the rank of the lattice is n and its dimension is m. If n = m, the lattice is called a

full-rank lattice.

It is easy to see that, L is a lattice if and only if L is a discrete subgroup of (Rn,+).

For matrix B,P(B) = {Bx|x ∈ [0,1)n} is the fundamental parallelepiped of B.

For a full rank lattice L(B),P(B) tiles Rn in the parttern L(B), in the sense that Rn =

{P(B)+ x | x ∈ L(B)}.

Definition 1.29. A tiling x of Rd is called a periodic tiling if its isotropy group Γx = {t ∈
Rd | T tx = x} is a lattice of full rank, that is a subgroup of Rd with d linear independent

generators. A tiling x is called aperiodic if Γx = {0}.

Definition 1.30. A tiling x is called repetitive if for any patch px in x there is an r > 0

such that for any t ∈ Rd there is a translation T s px of px in x such that

supp(T s px)⊆ Br + t.

Remark 1.31.

1. In other words, a tiling x is repetitive if there is an r > 0 such that any ball of radius

r always contains a copy of the patch.

2. All periodic tilings are repetitive since one can choose the r in the definition of

repetitive to be larger than the diameter of a fundamental parallelepiped and then

any patch will have a period within r of any point. So we can think of repetitivity

as a generalization of periodicity.

Definition 1.32. Let (X ,T ) be a dynamical system. Let U ⊆ X be open and let x ∈ X .

Define the return set of x to U to be

R(x,U) = {t ∈ Rd | T tx ∈U}.
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Definition 1.33. A set R⊆Rd is called relatively dense if there is an r > 0 such that every

r-ball in Rd intersects R.

Definition 1.34. A point x ∈ X is called almost periodic if R(x,U) is relatively dense for

every open U ⊆ X with R(x,U) 6= /0.

Definition 1.35. For a tiling space T ⊆ TP , let p ∈P∗ and R = supp(p). Set T (p) =

{x ∈ T : x[R] = p}. For ε > 0, define the cylinder set

U(p,ε) = T BεT (p) = {T tx | x ∈ T (p), t ∈ Bε}.

Lemma 1.36. U(p,ε) is open.

Proof. Let z ∈U(p,ε). Then there exists x ∈ T (p) and t ∈ Bε such that z = T tx. Since p

is compact, all points in R = supp(p) are within a finite distance, say ω , from the origin.

Let

δ =
1
2

min
{

1
ω + ε

,ε

}
.

Then the ball of radius 1
δ

centered at the origin contains R and all points within ε distance

from R. So the ball ( in the tiling metric) Bδ (z) consists of all tilings z′ that agree with

z on a ball of radius 1
δ

after small translation less than δ < ε. Therefore, Bδ (z) ⊆U(p,ε)

because z′ ∈ T (p) and δ < ε. Since z is an arbitrary point of U(p,ε), we conclude that

U(p,ε) is open.

Remark 1.37. Without loss of generality, we can assume by translating that the support

of each patch p in P∗ contains the largest possible ball Br around the origin.

Lemma 1.38. The collection of cylinder sets {U(p,ε) | p ∈P∗,ε > 0} forms a basis for

the tiling topology.

Proof. Let U ⊆ T be any open set containing x. Then there exists Bd(x,ε) such that

x ∈ Bd(x,ε)⊆U.

For the tiling x, x will contain a patch p centered at the origin of radius greater than

ε + 1+ 1
ε
. Consider a cylinder set U(p,ε) = {T tz | z ∈ T (p), ||t|| < ε} containing x =

T−t(T tx). Any translation (T tz) of z ∈ T (p) by amount ||t|| < ε will agree with x on a

ball of radius 1
ε

around the origin, and then d(T tz,x)< ε. Thus for all elements w = T tz∈
U(p,ε), d(w,x)< ε and x ∈U(p,ε). So

x ∈U(p,ε) ⊆ Bd(x,ε)⊆U.
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Hence {U(p,ε) | p ∈P∗,ε > 0} forms a basis for the tiling topology.

Note that in Definition 1.34, one can replace the open sets U by the sets of the basis given

in the above lemma.

Lemma 1.39. If R⊆Rd is relatively dense, then for any s∈Rd the set s+R = {s+r | r ∈
R} is relatively dense.

The proof is self evident.

Proposition 1.40. Let (T ,T ) be a tiling dynamical system. Then a tiling x ∈ T is repeti-

tive if and only if x is an almost periodic point.

Proof. Assume that x is repetitive. Let U ⊆ T be an open set with R(x,U) 6= /0. Thus

there exists t0 ∈Rd such that T t0x ∈U. Since T t0 is a homeomorphism, there exists ε > 0

such that T t0(B(x,ε))⊆U.

Let px be a patch in x containing a ball B(0, 1
ε
) around the origin. By repetitivity, there is

an r(px)> 0 such that for all t ∈Rd there is a translated copy (T s px) of px in Br + t. Thus

any translation by size less than ε belongs to B(x,ε), say T sx ∈ B(x,ε) where ||s||< ε.

Now

B(0,
1
ε
)⊆ px

implies

T sB(0,
1
ε
)⊆ T s px

and so

B(s,
1
ε
)⊆ T s px ⊆ Br + t.

Thus in particular, s ∈ Br + t so R(x,B(x,ε))∩ (Br + t) 6= /0. Therefore, R(x,B(x,ε)) is

relatively dense. By Lemma 1.39,

t0 +R(x,B(x,ε)) is relatively dense.

But

R(x,U)⊇ t0 +R(x,B(x,ε)).

This implies R(x,U) is also relatively dense. Hence x is almost periodic.
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Conversely, assume that x is almost periodic tiling. Let px be a patch in x around the

origin of size 1
ε

and let B(x,ε) =Uε be an open ball in the tiling metric with R(x,Uε) 6= /0.

By almost periodicity, there exists r > 0 such that for all t ∈ Rd, (Br + t)∩R(x,Uε) 6= /0.

Then there exists s ∈ Rd such that s ∈ Br + t with T sx ∈Uε .

So that T sx and x agree on a ball around the origin of size 1
ε

after translation by some

u ∈ Rd with ||u|| ≤ ε. Thus there exists s′ = s+u ∈ (Br+2ε + t).

Now let r′ = r+2ε. This implies that x has a translated copy (T s′ px) of px contained in

Br′+ t. Since this is true for all t ∈ Rd, x is repetitive.

Lemma 1.41. Let (T ,T ) be a tiling dynamical system and M ⊆ T is T -invariant. Then

M is T -invariant.

Proof. Assume that M is T -invariant, and let x ∈ M. Then there exists a sequence of

points xn in M such that xn→ x ∈ T . By continuity of the translation action,

T txn→ T tx

But M is T -invariant, then T txn ∈M for all n. So we have a sequence of points T t(xn) of

M that converges to T tx. Then T t(x) ∈M. This implies M is T -invariant.

Remark 1.42. Since the orbit closure O(x)⊆ TP is a closed T -invariant, it follows that

(O(x),T ) is a tiling dynamical system.

Theorem 1.43. (Gottschalk’s Theorem). A dynamical system (O(x),T ) is minimal if and

only if x is almost periodic.

Proof. Suppose that (O(x),T ) is minimal and x is not almost periodic. Then there exists

an open set V ⊂O(x) such that R(x,V ) 6= /0 but R(x,V ) is not relatively dense. Thus for

every n ∈ N, there exists tn ∈ Rd such that

(Bn + tn)∩R(x,V ) = /0. (1.2)

Since (O(x),T ) is compact, the sequence T tnx has a convergent subsequence T tni x→ y

as i→ ∞, for some y ∈ O(x).
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Since O(x) is minimal, O(y) = O(x). Since R(x,V ) 6= /0, there exists t0 ∈ Rd such that

T t0x ∈ V ⊆ O(x). Thus T t0x ∈ O(y) and then V ∩O(y) 6= /0 which implies, there exists

t ∈ Rd such that T ty ∈V.

By continuity, there exists an open set U such that y ∈U and T t(U)⊆V. Since T tni x→ y,

there exists a positive integer N ∈ N such that

T tni x ∈U, ∀ i≥ N.

Thus ∀ i ≥ N,T tni+tx ∈ V and so, ∀ i ≥ N, tni + t ∈ R(x,V ). If ni > ||t||, then tni + t ∈
R(x,V )∩ (Bn + tni). This contradicts (1.2).

Conversely, suppose that x is almost periodic. Then R(x,U) is relatively dense for every

open set U ⊆ O(x) with R(x,U) 6= /0. Let U = B(x,ε), then there exists r > 0 such that

∀ t ∈ Rd,

(Br + t)∩R(x,U) 6= /0. (1.3)

Assume that O(x) is not minimal. Then there exists y ∈ O(x) such that

O(y)⊂O(x).

Let Y =O(y). Note that x 6∈Y, since otherwiseO(x)⊂Y and thusO(x)=Y. Let dist(x,Y )=

2ε. Recall, T : Rd×O(x)→O(x) is continuous.

Thus ∃ δ > 0 such that if d(z,y)< δ , then ∀ t ∈ Br,d(T tz,T ty)< ε. Since O(x), and Br

are compact, Br×O(x) is compact and so T is uniformly continuous on Br×O(x). Thus

∀t ∈ Br, if d(z,y)< δ , then

d(T tz,T ty)< ε. (1.4)

Since y ∈ O(x), there exists s ∈ Rd such that

T sx ∈ B(y,δ ).

For some t ∈ Br + s,T tx ∈U. Thus for some u ∈ Br,

T u(T sx) = T u+sx ∈U.

So by (1.4)

d(T u(T sx)),T u(y))< ε.
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As a result,

d(T u(y),x) ≤ d(T u(y),T u(T s(x))

+ d(T u(T s(x)),x)

< ε + ε = 2ε,

which is a contradiction. Thus (O(x),T ) is minimal.

Remark 1.44. It follows from the minimality of the dynamical system (O(x),T ) that

O(y) =O(x) for all y ∈ O(x). In this case it follows from Gottschalk’s theorem that y is

almost periodic too.

Combining Proposition 1.40 and Theorem 1.43 we obtain the following important result.

Proposition 1.45. The dynamical system (O(x),T ) is minimal if and only if x is repetitive.

Definition 1.46. Two repetitive tilings x,y are said to be locally isomorphic if O(x) =
O(y). Dynamically, local isomorphism means x and y belong to the same minimal tiling

dynamical system.

Proposition 1.47. If a tiling x is periodic, then O(x) =O(x).

Proof. Assume that x is periodic. Let y ∈ O(x), then there exists a sequence of points in

O(x), say T tnx, that converges to y.

By periodicity, each tn ∈ Rd is equivalent (modulo the lattice) to a point Pn in the fun-

damental parallelepiped. That is, tn = Pn + ln, where ln is a point in the lattice. Since

the sequence Pn is in the fundamental domain which is compact, then Pn has a conver-

gent subsequence Pni → t in the parallelepiped. Since each ln is in the lattice of periods,

T lnx = x. Apply the group action property to conclude that for each

T (Pni+lni)x = T Pni x.

And then by continuity of the translation action on Rd,

lim
i→∞

T tni x = lim
i→∞

T (Pni+lni)x

= lim
i→∞

T Pni (T lni x)

= lim
i→∞

T Pni x = T tx ∈ O(x).
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Since the sequence T tnx→ y, then T tni x→ y.

lim
i→∞

T tni x = T tx = y.

This implies y ∈ O(x) and hence O(x) =O(x).
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Chapter 2

Symbolic Dynamics

In this chapter, we introduce a notion of symbolic dynamics in the classical one-dimensional

case, in particular, we will consider substitution subshifts and their associated tiling

spaces. We will conclude the chapter by considering the dynamical spectrum of the tiling

spaces associated to substitutions of constant length.

The definitions in §2.1 and §2.2 are adapted from [2], [10], [13] and [24].

2.1 The shift spaces and associated dynamical systems

Definition 2.1. Over a finite alphabet A, we define the full one-sided shift AN0 by

{(ui)i∈N0 | ui ∈ A, ∀ i ∈ N0} and the two-sided shift AZ by {(ui)i∈Z | ui ∈ A, ∀ i ∈ Z}.
The shift map S acts on both spaces and is defined by S((ui)) = (ui+1) where (ui) is an

infinite or bi-infinite sequence. This shift is continuous in both cases and possesses a

continuous inverse on AZ. For our purpose, we are interested in bi-infinite sequences.

Let the metric d on AZ be defined by:

for u,v ∈ AZ, d(u,v) =

 0 i f u = v,

2−k i f u 6= v, k = inf{i ∈ N0, ui 6= vi or u−i 6= v−i}.

(2.1)

This metric induces the product topology and thus turnsAZ into a compact metric space.

Hence we get the invertible dynamical system (AZ,S).

Definition 2.2. A word is a finite sequence of letters from the n-letter alphabet A. The

length of a finite word w, denoted by |w|, is the number of letters a ∈ A that occur in w.
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Definition 2.3. Let u[k,l] with k, l ∈ Z and k ≤ l be the finite subword of u ∈ AZ from

position k to l (with u[k,k] = uk). The cylinder sets for a finite word w of length m≥ 1 are

defined to be

[w]k =
{

u ∈ AZ | u[k,k+m−1] = w
}

with k ∈ Z.

The family of all such cylinder sets forms a basis for the product topology.

Remark 2.4. If we consider the set of all non-empty finite words in A denoted by A∗,
then the product topology extends in a natural way to A∗∪AZ. Indeed, let B be a new

alphabet obtained by adding a further letter toA, then words inA∗ can be considered as

sequences in BZ, by extending them by the new letter in B. The setA∗∪AZ is thus metric

and compact, as a closed subset of BZ. It is convenient to let d be a metric on A∗∪AZ

similarly defined as equation (2.1).

Definition 2.5. A shift space (subshift) is a closed shift invariant subset of a full shift

AZ. The pair (X ,S) consisting of a subshift X ⊆AZ, together with the shift map S forms

a symbolic dynamical system. Given u ∈ AZ, the symbolic dynamical system associ-

ated with u is the system (O(u),S), where O(u) ⊆ AZ is the closure of the orbit of the

sequence u under the shift action; the orbit O(u) is the set
{

S j(u) | j ∈ Z
}
.

Definition 2.6. A sequence u ∈ AZ is shift-periodic if Sk(u) = u for some k ≥ 1 and

we say that u has period k under S. The subshift is aperiodic if it contains no periodic

elements under the shift action.

Now we will consider the notions of almost periodic bi-infinite sequences and repetitive

ones. These notions are slightly different from the ones given in Chapter 1. In other

words, when talking about almost periodic sequences we are talking about relatively

dense sets in Z. Also, the definition for repetitive sequences is given as follows:

Definition 2.7. A bi-infinite sequence u ∈ AZ is repetitive if every finite word occurring

in u occurs in an infinite number of positions with bounded gaps. In other words, for every

word w in u there exists s > 0 such that for every j ∈ Z,w is a subword of u j · · ·u j+s−1.

The following result presents the equivalence of repetitive and almost periodic sequence

in AZ.

Proposition 2.8. A sequence u ∈ AZ is repetitive if and only if it is almost periodic.

For the proof, one can follow an argument analogous to the argument applied to tiling in

Chapter 1.

The following proposition states formally the connection between the minimality of the

system (O(u),S) and the repetitivity of u ∈ AZ.
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Proposition 2.9. The system (O(u),S) is minimal if and only if u is repetitive.

This follows from Gottschalk’s theorem [15] and Proposition 2.8.

2.2 Substitutions and symbolic dynamical Systems

In this section we present the notion of substitution and construct shift spaces via a prim-

itive substitution rule.

Definition 2.10. With a finite alphabet A = {ai | 1 ≤ i ≤ n} and the set A∗ of all non-

empty finite words over A, define a substitution to be a function θ :A→A∗.

The map extends to a morphism of A∗ by concatenation. That is, θ(ww′) = θ(w)θ(w′),

where w,w′ ∈ A∗. It also extends in a natural way to a map defined over AN or AZ.

Namely, for u = (ui)i∈Z,

θ(· · ·u−2u−1 ·u0u1 · · ·) = · · ·θ(u−2)θ(u−1) ·θ(u0)(θ(u1) · · · .

Definition 2.11. Let θ be a substitution on a finite n-letter alphabet A, θ is called of

constant length if |θ(a)|= l for every letter a ∈ A.
A finite word is called legal for θ , if it occurs as a subword of θ m(ai) for some 1≤ i≤ n

and some m ∈ N.

Remark 2.12. Legal words have the property that they are mapped to legal words under

the substitution.

Definition 2.13. A substitution θ defined over the n-letter alphabetA= {ai | 1≤ i≤ n},
is primitive if there exists a positive integer k such that, for every ai,a j ∈ A, the letter ai

occurs in θ k(a j).

The incidence matrix of a substitution θ defined over the n-letter alphabet is the n× n

matrix Mθ such that each of its entries (i, j) is |θ(a j)|ai, that is, the number of occurrences

of ai in θ(a j).

Mθ is primitive if ∃ k > 0 such that Mk
θ
> 0, that is, has positive entries. Clearly, a

substitution is primitive if its incidence matrix is primitive.

Now we will define a shift space constructed via the primitive substitution rule θ as

follows:
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Definition 2.14. Let θ be a substitution defined over the n-letter alphabet A= {a1,a2,

· · · ,an}. Define the subset Σθ ⊆AZ by

Σθ = {(ui)i∈Z ∈ AZ | ∀ j ∈ Z, k ∈ N : u j · · ·u j+k is a legal word}. (2.2)

Note that primitivity of a substitution θ allows that Σθ can be written as follows:

Σθ = {(ui)i∈Z ∈ AZ | ∀ j ∈ Z, k ∈ N ∃ m ∈ N 3

u j · · ·u j+k is a subword of θ
m(ai) for all 1≤ i≤ n}. (2.3)

Definition 2.15. A bi-infinite sequence u ∈ Σθ is called a periodic point of a substitution

θ if θ k(u) = u for some k ∈ N. If k = 1, then u is called a fixed point of θ .

An n-word of θ is any one of the words θ n(ai) for ai ∈ A.

The next lemma shows the existence of bi-infinite fixed points in the case of a primitive

substitution. We do not include the proof of the lemma here as it can be found in Lemma

4.3, [2].

Lemma 2.16. If θ is a primitive substitution on a finite n-letter alphabet A with n ≥ 2,

there exists some k ∈N and some u∈ Σθ such that u is a fixed point of θ k. In other words,

the substitution θ has at least one periodic point.

Note that Lemma 2.16 still holds for one-sided fixed points.

We give an example that supports the previous lemma (Example 1, [29]).

Example 2.1. Consider the Thue-Morse substitution θ on an alphabetA= {a,b} defined

by θ(a) = ab,θ(b) = ba. Obviously θ is primitive. We can choose b · a as a legal two

letter word such that θ 2(a) starts with a and θ 2(b) ends with b. Thus θ 2(b · a) = baab ·
abba contains b ·a, and generally θ n+2(b ·a) contains θ n(b ·a). Consequently, the fixed

point sequence can be obtained from b ·a as an iteration limit of the sequence θ n+2(b ·a)
of finite words of increasing length. Thus u = · · ·abba baab · abba baab · · · is a fixed

point of θ 2, that is θ 2(u) = u.

Proposition 2.17. Given a substitution θ on the n-letter alphabet A = {ai | 1 ≤ i ≤ n},
then Σθ is a subshift of the full shift AZ.

Proof. Let S : Σθ → Σθ be the shift map defined on Σθ . Firstly, we will prove that Σθ is

shift invariant. Let u = (ui)i∈Z ∈ Σθ and t ∈ Z, then any finite string u ju j+1 · · ·u j+k in
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St(u), for some j ∈ Z, k ∈ N, is in u located somewhere in a different position. Since

u = (ui)i∈Z ∈ Σθ , then θ m(ai) contains u ju j+1 · · ·u j+k as a sub word for some m ∈N, i ∈
{1,2, · · · ,n}. Thus St(u) ∈ Σθ and Σθ is shift invariant.

Secondly, let {(wt
i)i∈Z}t∈N be a sequence of points in Σθ such that (wi)i∈Z ∈ AZ be a

limit point, that is, {(wt
i)i∈Z}t∈N → (wi)i∈Z as t → ∞, and let w jw j+1 · · ·w j+k be any

finite string that occurs in w = (wi)i∈Z, where j ∈ Z, k ∈ N. Choose ε < 1
2N where N =

max{| j|, | j+ k|}, then there exists a positive integer l0 ∈ N such that

d((wl0
i )i∈Z,(wi)i∈Z)<

1
2N .

Thus

wl0
j wl0

j+1 · · ·w
l0
j+k = w jw j+1 · · ·w j+k.

But (wl0
i )i∈Z ∈ Σθ , which implies that wl0

j wl0
j+1 · · ·w

l0
j+k is a subword of θ m(ai) for some

m ∈ N and i ∈ {1,2, · · · ,n}, Therefore w jw j+1 · · ·w j+k is a subword of θ m(ai), that is,

(wi)i∈Z ∈ Σθ . Hence Σθ is closed.

Corollary 2.18. If u is a point in the subshift Σθ , where θ is a substitution on the n-letter

alphabet A, then {S j(u) | j ∈ Z} ⊆ Σθ .

Remark 2.19. The substitution subshift Σθ is invariant under θ .

Consider the subshift Σθ , where θ is a primitive substitution. The following lemma gives

an alternative description of Σθ in terms of the closure of the shift orbit of one of its

periodic points.

Lemma 2.20. Let u ∈ Σθ be one of the periodic points of a primitive substitution θ on

the n-letter alphabet A. Then

Σθ = {S j(u) | j ∈ Z}.

Proof. As a result of Proposition 2.17 and Corollary 2.18,

{S j(u) | j ∈ Z} ⊆ Σθ .

So it suffices to show that

Σθ ⊆ {S j(u) | j ∈ Z}.

Let w∈ Σθ and w′ = w−N · · ·w0 · · ·wN be a finite subword of w. It follows that there exists

a basic open set [w′]Nk=−N containing w.
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By primitivity, there exists m ∈ N such that w′ is a subword of θ m(ai) for all ai ∈ A and

thus w′ is a subword of θ l(ai) for all ai ∈ A and for all l ≥ m. Let u = (ui)i∈Z be any

θ -periodic point, then u = θ p(u) for some p > 0. If we choose k ∈ N such that pk > m,

we will have

u = θ
pk(u)

u = · · ·θ pk(u−1) ·θ pk(u0)θ
pk(u1) · · ·

Now w′ is a subword of θ pk(u0) and consequently a subword of u. Choosing k′ appropri-

ately, we get

Sk′(u) = · · ·w−N−1w−N · · ·w0 · · ·wNwN+1 · · ·

which implies

Sk′(u) ∈ [w′]Nk=−N ,

that is

[w′]Nk=−N ∩{S
j(u) | j ∈ Z} 6= /0

and so

w ∈ {S j(u) | j ∈ Z}.

Note that the previous result is independent of the choice of periodic point.

Lemma 2.21. Let u ∈ Σθ be a bi-infinite periodic point of a primitive substitution θ on

the finite alphabet A= {ai | 1≤ i≤ n}. Then the shift space {S j(u) | j ∈ Z} is minimal.

Proof. By Proposition 2.9, it sufficies to show that u is repetitive. Let w be any finite

word occurring in u = (ui)i∈Z. Since u is a θ periodic point, then u = θ p(u) for some

p > 0. By primitivity of a substitution θ , there exists m ∈ N such that w is a subword of

θ m(ai) for all ai ∈ A.

Choosing k ∈ N such that pk > m implies

u = θ
pk(u)

= · · ·θ pk(u−1) ·θ pk(u0)θ
pk(u1) · · ·

Now each θ pk(ui) contains w as a subword where ui = ai for some ai ∈A. SinceA has a
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finite number of letters and each θ pk(ui) has a finite length, we may choose

L′ = max{|θ pk(ai)| | ai ∈ A}.

If we let L = 2×L′, then every word occurring in u of length L contains W as a subword.

Hence u is repetitive.

As a result of Lemma 2.21, one can conclude the minimality of the substitution subshift

Σθ .

2.3 One-dimensional tilings

The content and definitions in §2.3 are adapted from [3], [5] and [7]. In Chapter 1, we

studied the Rd-dimensional tilings. In this section we continue our discussion but on

one-dimensional tilings in particular.

Definition 2.22. Given a collection P = {P1, · · · ,Pn} where each Pi is a closed interval,

a tiling x of R by P is a collection of closed intervals {xi}i∈Z satisfying:

1. ∪i∈Zxi = R,

2. for each i ∈ Z, each tile xi is the translate of some Pi ∈P,

3. xi∩ xi+1 is a singleton for each i ∈ Z.

Definition 2.23. A continuous flow or simply a flow is a continuous action of the group

R on a compact metric space X .

Recall that if we let TP the full tiling space of all possible tilings of R by prototiles from

the set P with the tiling metric as defined in Lemma 1.17, then the continuous R-action

φ : R×TP →TP on a tiling x defines a flow, given by φ(t, x) = x− t.

Also the orbit of x is the set O(x) = {x− t | t ∈ R} of all translates of x.

The most commonly studied class of tiling spaces is the class of orbit closures. Thus we

will give the following definition.

Definition 2.24. A tiling space T of x ∈ TP is the orbit closure O(x).
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2.3.1 Substitution tiling spaces

A substitution tiling space Tθ arising from a primitive, aperiodic substitution θ was de-

scribed by Barge and Diamond in [3]. Whereas the substitution rule θ induces an inflation

map on a tiling, characterized by expansion and translation, this map extends to a home-

omorphism Fθ : Tθ → Tθ . For such a substitution tiling space, the precise construction

has a canonical choice of tile length, that is, the lengths are picked according to the left

Perron-Frobenius eigenvector of the incidence matrix Mθ of the substitution.

One could also choose different lengths for the tiles, this will not affect the topology of

the resulting tiling space. But as we shall see that may or may not affect the dynamics of

the translation action.

In the particular case of a substitution of constant length, in the canonical construction

of the associated substitution tiling space all of the tiles have the same length. Typically

this length would be 1 but one may normalize the left Perron-Frobenius eigenvector in

different ways.

2.3.2 The suspension construction

Suspension is a construction which turns a map into a flow. We base the following defi-

nition on [5]. Throughout, the notation [(..., ...)] indicates the equivalence class.

Definition 2.25. Given a homeomorphism f : X → X on a compact metric space X , and

a function c : X → R+ bounded away from 0, consider the quotient space (suspension

space) Xc = {(x, t)∈X×R+ | 0≤ t ≤ c(x)}/∼ . The suspension of f with ceiling function

c is the flow defined on R×Xc, such that

1. for t ≥ 0, ∼ is the equivalence relation defined by:

(x,c(x))∼ ( f (x),0), (2.4)

and the positive semi-flow φ t : Xc→ Xc given by φ t [(x,s)] = [( f n(x),s′)], where n and s′

satisfy:
n−1

∑
i=0

c( f i(x))+ s′ = s+ t 0≤ s′ ≤ c( f n(x)),

2. for t ≤ 0, ∼ is the equivalence relation defined by:

(x,c(x))∼ ( f−1(x),0), (2.5)
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and the negative semi-flow φ t : Xc→ Xc given by φ t [(x,s)] = [( f−n(x),s′)], where n and

s′ satisfy:
i=0

∑
−(n−1)

c( f i(x))+ s′ = s+ |t|, 0≤ s′ ≤ c( f−n(x)).

A suspension flow is called a flow under a function.

Remark 2.26.

1. Obviously, in the case of positive (negative) semi-orbit, we will have positive (neg-

ative) semi-flow.

2. The positive semi-flow is defined on [0,∞)×Xc and the negative one is defined on

(−∞,0]×Xc. They agree on their overlap {0}×Xc and so by the pasting lemma it

yields a continuous flow on R×Xc.

3. The suspension space Xc is called an ordinary suspension if c(x) = c for all x ∈ X .

In this case, the suspension flow is the natural additive flow φ t : Xc→ Xc given by

φ t [(x,s)] = [(x,s+ t)].

2.3.3 Shift and tiling spaces

Let AZ be the full shift over the n-letter alphabet A = {a j | 1 ≤ j ≤ n}. Define the

symbolic cylinder [a] = {((ui)i∈Z) ∈AZ | u0 = a ∈A}. Then AZ is partitioned into non-

empty disjoint clopen subsets [a j], 1≤ j ≤ n. That is

AZ = [a1]∪ [a2]∪·· ·∪ [an].

Given the shift map S : AZ→AZ, in order to cater for the suspension of a map involv-

ing cylinders with different lengths we define the ceiling function c : AZ → (0,∞) by

c((ui)i∈Z) = l j = l(u0), where l j is the length associated to (ui)i∈Z ∈ [a j]. As noticed,

the ceiling function c is constant for each one of the cylinder sets [a j], 1 ≤ j ≤ n, thus

associate to each cylinder set [a j] the fixed length l j ∈ (0,∞). This fixed length is called

the height of the cylinder.

Consider the quotient space

AZ
c = {((ui)i∈Z, t) ∈ AZ×R+ | 0≤ t ≤ c((ui)i∈Z)}/∼,
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where ∼ is the equivalence relation generated by

((ui)i∈Z,c((ui)i∈Z))∼ (S((ui)i∈Z),0),

Note that for each i ∈ Z, S((ui)i∈Z) = (ui+1)i∈Z ∈ [a j] for some 1≤ j ≤ n. The construc-

tion of AZ
c determines that for each [((ui)i∈Z, t)] ∈ AZ

c ,(ui)i∈Z ∈ [a j] and 0 ≤ t ≤ l j for

some 1≤ j ≤ n. Thus ((ui)i∈Z, t) ∈ [a j]× [0, l j] and consequently AZ
c can be partitioned

as follows:

AZ
c = ([a1]× [0, l1))∪·· ·∪ ([an]× [0, ln)).

The suspension of S under the ceiling function c is the flow defined on R×AZ
c such that

1. for t ≥ 0, the positive semi-flow Φt :AZ
c →AZ

c given by

Φ
t [((ui)i∈Z,S)] = [(Sn((ui)i∈Z),s′)],

where n and s′ satisfy:

n−1

∑
i=0

c(Si((ui)i∈Z))+ s′ = s+ t, 0≤ s′ ≤ c(Sn((ui)i∈Z)).

That is

c(ui)i∈Z+ c((ui+1)i∈Z+ · · ·+ c((ui+(n−1))i∈Z)+ s′ = s+ t

which implies

l[u0]+ l[u1]+ · · ·+ l[un−1]+ s′ = s+ t, 0≤ s′ ≤ l[un],

2. for t ≤ 0, the negative semi-flow Φt :AZ
c →AZ

c given by

Φ
t [((ui)i∈Z,s)] = [(S−n((ui)i∈Z),s′)],

where n and s′ satisfy:

l[u0]+ l[u−1]+ · · ·+ l[u−(n−1)]+ s′ = s+ |t|, 0≤ s′ ≤ l[u−n].

Now consider a full tiling space TP made from a finite set of prototiles P = {P1,P2,

· · · ,Pn} such that card (P) = card(A) = n. Then associate with each a j ∈ A a closed

interval Pj = [0, l j] of length l j, where l j = l(u0),u0 = a j, and define the map τ :AZ→TP
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by

τ((ui)) = (xi), ∀ i ∈ Z (2.6)

such that the left endpoint of the tile x0 corresponding to u0 is at 0 ∈ R and each xi is a

translate of the prototile associated with ui.

The following proposition illustrates the conjugacy between the respective R actions on

the suspension AZ
c and the full tiling space TP .

Proposition 2.27. The two continuous flows (AZ
c ,Φ) and (TP ,φ) are topologically con-

jugate. That is, there exists a homeomorphism that conjugates the respective R actions.

AZ
c

τc
��

Φt
// AZ

c

τc
��

TP
φ t
// TP

Proof. Given Φ : R×AZ
c → AZ

c and φ : R×TP → TP . Define the map τc : AZ
c → TP

by:

τc[((ui)i∈Z,s)] = φ
s(τ((ui)i∈Z)) (2.7)

By construction, the map (2.6) defines a one-one correspondence between a sequence

(ui)i∈Z ∈ AZ and a tiling (xi)i∈Z ∈ TP so the composite map τc is a bijection.

First, we shall give the proof of continuity for the map τc. Consider the following subset

S̃⊆AZ×R+, where

S̃ = {((ui)i∈Z, t) ∈ AZ×R+ | 0≤ t ≤ c((ui)i∈Z)},

and define the map h̃ : S̃→TP by:

h̃((ui)i∈Z, t) = φ
t(τ(ui)i∈Z) = φ

t(xi)i∈Z.

That means that the image of any pair ((ui)i∈Z, t) is a tiling x = (xi)i∈Z having the origin

located at t units to the right of the left end point of an x0-tile.

The map h̃ is constant on each set P−1[((ui), t)] for all [((ui)i∈Z, t)] ∈ AZ
c , where P :

S̃→AZ
c is the quotient map. As P is a quotient map, then it suffices to show that h̃ is

continuous.
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Let ε > 0 and ((ui)i∈Z, t) ∈ S̃. Define the metric D on S̃ as follows:

D[((ui)i∈Z, t),((vi)i∈Z,s)] = max{dist(t,s), d((ui)i∈Z,(vi)i∈Z)},

where dist is the usual metric on R and d is the metric defined on AZ.

We now construct δ > 0 such that if D[((ui)i∈Z, t),((vi)i∈Z,s)]< δ , then

d(h̃(u, t), h̃(v,s)) < ε, where d is the tiling metric. Choose N such that (N−2)lmin >
1
ε
,

where lmin is the minimum length of the tiles, then choose δ < min{ 1
2N−2 ,ε}. Notice that

d(u,v)< δ <
1

2N−2 , u = (ui)i∈Z, v = (vi)i∈Z.

So

[u−N ,uN ] = [v−N ,vN ].

That means the sequences u and v are matched from −N to N. Since

N

∑
i=0

l(xi)≥
N

∑
i=0

lmin = Nlmin > (N−2)lmin >
1
ε
,

the tilings h̃(u, t) and h̃(v, t) match around the origin in a ball of radius (N−2)lmin >
1
ε
.

By translating the tiling h̃(v,s) by t− s, the two tilings h̃(u, t) and h̃(v,s) agree on a ball

centered at the origin of radius (N−2)lmin >
1
ε

for some |t− s|< δ ≤ ε. Thus

d(h̃(u, t), h̃(v,s))< ε.

Hence τc is continuous and consequently a homeomorphism.

It remains to show that τc◦Φt = φ t ◦τc, ∀ t ∈R. Consider first that t ≥ 0 and [((ui)i∈Z,s)]∈
AZ

c , then

τc ◦Φ
t [((ui)i∈Z,s)] = τc[(Sn((ui)i∈Z),s′)]

= τc[((ui+n)i∈Z),s′)]

= φ
s′(τ((ui+n)i∈Z)))

= φ
s′((xi+n)i∈Z)

= (xi+n)i∈Z− s′.
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On the other hand

φ
t ◦ τc[((ui)i∈Z,s)] = φ

t
φ

s(τ((ui)i∈Z))

= φ
t+s((xi)i∈Z)

= (xi)i∈Z− (t + s).

Since

s′ = (t + s)−
n−1

∑
i=0

l[ui],

then

φ
t ◦ τc[((ui)i∈Z,s)] = (xi+n)i∈Z− s′.

Similarly, in the case when t ≤ 0, it can be shown that

τc ◦Φ
t = φ

t ◦ τc.

Hence

τc ◦Φ
t = φ

t ◦ τc ∀ t ∈ R

and thus the flows are topologically conjugate.

Remark 2.28. From Proposition 2.27, the map τc : AZ
c → TP is continuous and bi-

jective. By restricting the suspension on the full shift to a suspension on its substitution

subshift Σθ , the following map is obtained

τc |{Σθ}c : {Σθ}c→TP (2.8)

which is continuous and one-one but not onto.

Lemma 2.29. Given a substitution θ on the n-letter alphabet A = {a j | 1 ≤ j ≤ n}.
There is a natural homeomorphism between the suspension of the subshift {Σθ}c and the

associated substitution tiling space.

Proof. The construction of the substitution tiling space based on the collection of inter-

vals P = {P1,P2, · · · ,Pn} with respective lengths l1, l1, · · · , ln, where the ceiling function

c which takes the value l j for the cylinder [a j], 1≤ j≤ n. By the map (2.7), each element

[((ui)i∈Z,s)] ∈ {Σθ}c is mapped to a tiling x = φ s(τ(ui)), where τ is given by (2.6). That

is, tiling x that has origin located at s units to the right of the left point of a x0-tile and

with tiles that then follow the pattern of the sequence (ui)i∈Z to the right and left of this
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tile. Such a tiling x is called a substitution tiling.

Recall that Σθ is minimal and so the suspension {Σθ}c is minimal as well. In order to

construct the tiling space we can choose a substitution tiling that corresponds to any spe-

cific element [((ui)i∈Z,s)] ∈ {Σθ}c and then take the closure of the translation orbit of

this tiling. It follows that we get a tiling space associated to the substitution called the

substitution tiling space and denoted by Tθ .

Define the map h : {Σθ}c→Tθ by

h[((ui)i∈Z, t)] = φ
t(τ(ui)i∈Z),

where

τ((ui)i∈Z) = (xi)i∈Z.

Since the map (2.8) is continuous, and Tθ is a subspace of TP such that h̄({Σθ}c) = Tθ ,

where

h̄ = τc |{Σθ}c .

Then h : {Σθ}c→Tθ is a continuous bijective map, and thus h is a homeomorphism.

Remark 2.30.

1. As being explained in the proof, flows under a function provide an alternative de-

scription of tiling spaces.

2. The substitution tiling space Tθ is nothing but the suspension above the subshift

where we are using a ceiling function that depends on cylinder sets. Above each

cylinder we assign a constant value (the height of the cylinder) but the value may

not be the same for all cylinders.

3. Regardless of which choices of height we make, there will be a natural homeomor-

phism between the suspension {Σθ}c and the associated substitution tiling space.

4. In our case, we can choose values of the height of the cylinders so that the homeo-

morphism h conjugates the suspension flow and the flow on Tθ when we make the

choice of lengths L1 = L2 = ...= Ln for the tiles.
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2.4 The spectrum and dynamical systems

In this section, we will distinguish between two kinds of dynamical systems. The first

one corresponds to substitutions of constant length on a two letter alphabetA. The second

dynamical system corresponds to substitutions of constant length on the n-letter alphabet

A.

2.4.1 Discrete and continuous substitutions

The notions of discrete or continuous substitutions on a two letter alphabet A and their

corresponding dynamical systems are discussed briefly, as well as the notion of the n-

adic system. The link between the system that arises from a discrete substitution and the

n-adic system is also presented. Most of the material in §2.4.1 is included in the book [4]

and [10].

Definition 2.31. Let θ be a substitution of constant length l on a two letter alphabet

A = {0,1} and let θ(0) = a = a0 · · ·al−1 and θ(1) = b = b0 · · ·bl−1. Then θ is called

finite if any one of the following condition holds:

1. ai = bi for all i ∈ N0.

2. ai = 0 for all i ∈ N0 or bi = 1 for all i ∈ N0.

3. ai = 1 for all i ∈ N0 and bi = 0 for all i ∈ N0.

4. l is odd and a = b̃ = 0101 · · ·010 or 1010 · · ·101. Where b̃ the mirror of b is ob-

tained by replacing all the zeros in b by ones and all the ones by zeros.

θ is called continuous if it is not finite and a = b̃.

θ is called discrete if it is neither finite nor continuous.

Remark 2.32. If the substitution θ is discrete, then both I1 = {i | ai = bi} and J1 =

{i | ai 6= bi} are non-empty, that is θ(0) and θ(1) agree at some but not every place. We

remark that in the original paper [10] they mistakenly claim that the converse implication

holds.

Lemma 2.33. For substitutions on two letters, if the substitution is discrete or continuous,

then it is primitive and aperiodic. If on the other hand the substitution is periodic, then

the associated shift space is also periodic.
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Proof. This follows Coven and Keane, [10] except for primitivity. Additionally, they

showed that the dynamical systems that correspond to the substitution subshifts Σθ and

Σσ , where θ is discrete and σ is continuous, cannot be conjugate to each other.

To prove the primitivity, assume that a substitution θ (discrete or continuous) is not prim-

itive. Then θ(0) and θ(1) cannot both contain 0’s and 1’s. Without loss of generality

assume that θ(0) is the one which does not contain both 0’s and 1’s. Then either θ(0) is

all 0’s or θ(0) is all 1’s. If θ(0) is all 0’s, then the substitution will be a finite substitution

which is a contradiction. If θ(0) is all 1’s, then θ(1) must contain 0’s and 1’s otherwise

it becomes a finite substitution. Thus θ 2(0) and θ 2(1) both contain 0’s and 1’s which is

a contradiction to the hypothesis that θ is not primitive.

n-adic integers Z(n) and n-adic system

We follow the definitions and description given on pages 19-21 of [4].

Definition 2.34. Let n be some positive integer such that n≥ 2, then a sequence of inte-

gers (xm) = (x0,x1, ..,xm, ...) satisfying xm ≡ xm−1( mod nm) for all m≥ 1, determines an

n-adic integer.

The set of all n-adic integers will be denoted by Z(n).

Note that to distinguish ordinary integers from n-adic integers, ordinary integers will

be called rational integers. Each rational integer x is associated with an n-adic integer

determined by the sequence (x,x, ...,x, ...). Thus we may assume that the set of rational

integers is a subset of all n-adic integers. The sum of two n-adic integers determined by

the sequences (xm) and (ym) is the n-adic integer determined by the sequence (xm + ym).

It can be shown that every n-adic integer is determined by some canonical sequence, a

sequence each term of which satisfies the conditions xm ≡ xm−1( mod nm) for all m ≥ 1

and xm≡ xm( mod nm+1 ), 0≤ xm < nm+1, and two distinct canonical sequences determine

distinct n-adic integers. Thus the n-adic integers are in 1− 1 correspondence with the

canonical sequences. Since every canonical sequence has the form (z0,z0 + z1n,z0 +

z1n+ z2n2, ...), where 0 ≤ zi < n and on the other hand every sequence of this type is a

canonical sequence, then we can alternatively define Z(n) as follows:

Definition 2.35. For n≥ 2, let Z(n) be the additive group of n-adic integers defined by

Z(n) = {
∞

∑
i=0

zini | zi = 0,1, · · · ,n−1}.

40



Z(n) is a compact abelian group with τ : Z(n)→ Z(n) defined by τ(z) = z+1. The system

(Z(n),τ) is called the n-adic system.

Note that (Z(n),τ) forms a minimal dynamical system.

Remark 2.36. We can identify Z(n) with the cantor set {0,1, ...,n− 1}Z+
0 and endow it

with the product topology.

As in [16] and [22], a substitution θ of constant length l on a two letter alphabet A =

{0,1} defines a map λ 2 ( which corresponds to the substitution θ 2). This map has either

one, two, or four fixed points. Also the minimal substitution subshifts associated to

discrete or continuous substitutions are Σθ =O(w′), where w′ ∈ Σθ is any θ 2-fixed point.

Note that w′ is a θ -periodic point.

In [10], Coven and Keane gave an explicit construction of the semi-conjugacy between

the subshift arising from a discrete substitution of constant length l on a two letter alpha-

bet A and the group of l-adic integers.

The following result describes this semi-conjugacy and additionally shows that it is a

measure theoretic isomorphism.

Remark 2.37. Let (X ,φ) and (Y,ψ) be two systems with invariant measures µ and ν

respectively. A semi-conjugacy π : (X ,φ)→ (Y,ψ) is a measure-theoretic isomorphism

if there is an invariant subset Y ′ of Y such that ν(Y ′) = 1 and π is one-one on π−1(Y ′).

Theorem 2.38. Consider the discrete substitution θ of constant length l on a two letter

alphabet A and define the map π : (Σθ ,S)→ (Z(l),τ) by π(w) = limi→∞ τki(0), where

{ki} is chosen so that Ski(w′)→ w for a θ 2-fixed point w′. Then π is a semi- conjugacy

taking w′ to 0. Furthermore, the map π is a measure- theoretic isomorphism.

Proof. See for the proof (Theorem 1 and Corollary 1, [10]).

2.4.2 Substitutions of constant length on the n-letter alphabet A.

In this section, we discuss the trace relation on substitutions of constant length on the

n-letter alphabet A. We shall see in Section §2.4.4 that how this is related to the point

spectrum of the translation action on the associated tiling spaces. The following defini-

tions and lemmas are adapted from [12].
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Definition 2.39. Let (X ,T ) be a minimal dynamical system. A cyclic partition of X is a

partition {Xi}m−1
i=0 of X into disjoint subsets such that Xi+1 = T Xi for 0≤ i < m−1 and

T Xm−1 = X0.

Let n≥ 1. A T n-invariant partition of X is a partition of X whose elements are all closed

and T n-invariant.

A T n-minimal partition of X is a partition of X whose elements are all T n-minimal.

Lemma 2.40. Consider the minimal dynamical system (X ,T ) and let n be a positive

integer. Then there exists a cyclic T n-minimal partition. This partition is unique up to

cyclic permutations of its members.

Definition 2.41. The number of elements of a cyclic T n-minimal partition will be denoted

by γ(n) for each n ≥ 1. The equivalence relation whose classes are the members of the

cyclic T n-minimal partition will be denoted by Λn.

Definition 2.42. The trace relation Λ of a minimal dynamical system is defined by Λ =⋂
n≥1 Λn.

Lemma 2.43. The trace relation Λ =
⋂

n:n=γ(n)Λn.

This follows from the fact that the function γ satisfies the following Properties:

1. 1≤ γ(n)≤ n and γ(n) divides n.

2. Λγ(n) = Λn and thus γ(γ(n)) = γ(n).

3. If m divides n then Λm ⊃ Λn; moreover if γ(n) = n then γ(m) = m.

4. If (m,n) = 1 then Λ(mn) = Λm∩Λn and γ(mn) = γ(m)γ(n).

Lemma 2.44. Consider the dynamical system (Σθ ,S) associated to the minimal substi-

tution subshift Σθ obtained from a primitive substitution θ of constant length l on a finite

alphabet A. Then either γ(ln) = ln for all n≥ 1 or θ is periodic.

Definition 2.45. Consider the system (Σθ ,S), where Σθ is the minimal substitution sub-

shift obtained from a primitive substitution of constant length l on the n-letter alphabet

A. Let w be any sequence in Σθ , then the number h(θ) = max{r≥ 1 | (r, l) = 1,r divides

gcd{a | wa = w0}} is called the height of θ .
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Remark 2.46.

1. The height h(θ) is independent of the choice of the sequence w ∈ Σθ .

2. 1≤ h(θ)≤ n.

3. Let k be an integer, let Pk = {a | wa+k = wk} and gk = gcd Pk. Then

{r ≥ 1 | (r, l) = 1,r divides g0}= {r ≥ 1 | (r, l) = 1,r divides gk}.

4. If h(θ) = n, then θ is periodic.

If θ is one-one, then θ is periodic if and only if h(θ) = n.

Remark 2.47. By using the criteria given in Remark 2.46(4), it follows that all our ex-

amples throughout are aperiodic.

The following results are desirable in establishing the height of primitive, aperiodic sub-

stitutions of constant length on a two letter alphabet, in particular discrete or continuous,

or on a three letter alphabet.

Lemma 2.48. All primitive, aperiodic substitutions of constant length on a two letter

alphabet A have height one.

Proof. Let θ be a primitive, aperiodic substitution of constant length on a two letter

alphabet A. By Remark 2.46, the substitution θ must have height one otherwise it will

be a periodic substitution which is a contradiction to the fact that the substitution θ is

aperiodic.

Lemma 2.49. All primitive, aperiodic substitutions of constant length on a three letter

alphabet A either have height one or have height two.

Proof. If a substitution θ is primitive, aperiodic of constant length, then by Remark 2.46,

θ must have height one or height two otherwise it will be a periodic substitution which is

a contradiction to the fact that θ is aperiodic.

Definition 2.50. Let θ be a primitive, aperiodic substitution of constant length l and

height h(θ) = h. Define the system (Zh,τh), where Zh = {[k],k = 0, · · · ,h−1} is a cyclic

group of order h and the map τh : Zh→ Zh defined by

τh([k]) = [k+1], k = 0, · · · , h−1.
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Note that the system (Zh,τh) forms a minimal dynamical system. Since (h, l) = 1, then

the product system (Z(l)×Zh,τ× τh) is minimal.

The following theorem (Theorem 13, [12]) shows that the systems (Σθ/Λ,SΛ) and (Z(l)×
Zh,τ× τh) are conjugate to each others.

Theorem 2.51. [12] Consider the substitution dynamical system (Σθ ,S) obtained from a

primitive, aperiodic substitution θ of constant length l with height h(θ) = h. Define the

trace relation Λ on Σθ . Then there is a conjugacy

Ψ : (Σθ/Λ,SΛ)→ (Z(l)×Zh,τ× τh).

As an immediate consequence of Theorem 2.51, we will establish Theorem 2.53 which is

the analogue of Theorem 2.38 but is more general. Specifically, it applies to any primitive,

aperiodic substitution of constant length on the n-letter alphabet A with any height.

Definition 2.52. [5] Consider the dynamical system (X , f ), where X is a compact metric

space. Then f is said to be equicontinuous if the family { f n(x) : n∈Z} is equicontinuous,

that is, for any ε > 0, there exists δ > 0 such that dX(x,y)< δ implies that

dX( f n(x), f n(y))< ε

for all n ∈ Z.

Theorem 2.53. Let (Σθ ,S) be a substitution dynamical system, where θ is a primitive,

aperiodic substitution of constant length l and height h(θ) = h. Then there is a semi-

conjugacy

π : (Σθ ,S)→ (Z(l)×Zh,τ× τh).

Proof.

(Σθ ,s)
π

((

π̃ // (Σθ/Λ,SΛ)

��
(Z(l)×Zh,τ× τh)

The proof follows from the fact that there is a semi-conjugacy say π̃ : (Σθ ,S)→ (Σθ/Λ,SΛ),

and by Theorem 2.51 there is a conjugacy

Ψ : (Σθ/Λ,SΛ)→ (Z(l)×Zh,τ× τh).
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Thus the composite

π = Ψ◦ π̃ : (Σθ ,S)→ (Z(l)×Zh,τ× τh)

forms a semi-conjugacy.

Remark 2.54. Since the trace relation Λ =
⋂

n≥1 Λn is the intersection of all closed in-

variant equivalence relations Λn, n≥ 1 on the subshift Σθ , then (Σθ/Λ,SΛ) is the largest

factor for which SΛ is equicontinuous (Chapter V, [32]).

2.4.3 Suspension space and point spectrum

In this section we study some basic properties of the point spectrum σpp defined in 2.56

of general constant c suspension flow.

Definition 2.55. [33] Let φ : R×X → X be a continuous R-action on a compact metric

space X and S1 = {z ∈C | |z|= 1}. An eigenfunction of φ is a Borel measurable function

f : X → S1 for which there exists r ∈ R such that

f (t · x) = e2πirt f (x) for all t ∈ R, x ∈ X ,

where t · x denotes φ(t,x).

r is called the eigenvalue of φ corresponding to the eigenfunction f .

Definition 2.56. The point spectrum denoted by σpp is the set of all eigenvalues of a

continuous R-action φ on a compact metric space X .

We point out that the point spectrum σpp forms a countable group under addition op-

eration and the set of all eigenfunctions forms a group with point-wise multiplication

operation.

Remark 2.57. By (Theorem 2.3, [7]), all eigenfunctions of the flows we shall consider

are continuous. Hence we shall restrict our attention to continuous eigenfunctions and

their eigenvalues.

Construction of eigenfunctions (eigenvalues) of the constant c suspension flow

Given a homeomorphism f : X → X on a compact metric space X with a ceiling function

c : X→R+, let the quotient space (suspension space) be Xc = X× [0,c]/∼, where c(x) =
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c for all x ∈ X and ∼ is the equivalence relation is generated by (x,c) ∼ ( f (x),0). The

space Xc can be partitioned into a finite number of disjoint clopen subsets called cylinder

sets, each one is of constant height c.

Consider the suspension flow φ t : Xc→ Xc that works in a natural additive way, that is,

for all t ∈ R and [(x,s)] ∈ Xc

φ
t [(x,s)] = [(x,s+ t)].

Let S1 = [0,1]/ ∼, where ∼ is the equivalence relation define by identifying 0 and 1.

Define the function fn : Xc→ S1 by

fn[(x,s)] = e2πi 1
cns for all n ∈ Z.

It can be shown that fn is well-defined and for all t ∈ R, (x,s) ∈ Xc

fn(t · [(x,s)]) = fn[(x,s+ t)]

= e2πi 1
cn(s+t)

= e2πi 1
cnt fn[(x,s)].

Thus fn is an eigenfunction with corresponding eigenvalue rn =
1
c n for all n ∈ Z.

Note that for n = 1, the eigenfunction f1[(x,s)] = e2πi 1
c s will generate the subgroup.

G f = { fn[(x,s)] | n ∈ Z},

furthermore, r1 =
1
c will generate the subgroup

Gr = {
1
c

n | n ∈ Z}.

G f and Gr are both infinite cyclic groups generated by f1 and r1 respectively, thus they

are isomorphic to the additive group of integers (Z,+).

In general, any suspension space with the constant height c will have a subgroup of eigen-

functions (eigenvalues) that is isomorphic to the additive group of integers (Z,+).
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2.4.4 The n-adic system and point spectrum

In preparation for studying the point spectrum of the suspension of Σθ , we dicuss the

trace relation and explain how it is used to determine the point spectrum via studying the

point spectrum of the suspension of n-adic systems.

Our aim is to obtain the group of all eigenvalues of the constant c suspension flow of

τ-addition by 1 on Z(n). Up to this point we have determined a subgroup of these eigen-

values, but we have not determined the entire group.

Definition 2.58. Define the additive group of the ring Z[1
n ] to be { m

nk | m ∈ Z,k ∈ N}.
Z[1

n ] is an abelian group under the operation of addition of numbers.

The following is my own interpretation of some established result.

Proposition 2.59. Given the n-adic system (Z(n),τ) with a ceiling function c such that

c(z)= c for all z∈ Z(n), consider the suspension space {Z(n)}c = Z(n)× [0,c]/∼, where

the equivalence relation ∼ is generated by (z,c) ∼ (τ(z),0). The constant c suspension

flow of τ-addition by 1 will have point spectrum σpp isomorphic to the additive group

(Z[1
n ],+).

Proof. The subgroup Z⊂Z[1
n ] corresponds to the group of eigenvalues {rn =

1
cn | n∈Z}

with associated eigenfunctions { fn[(z,s)] = e2πi 1
cns |n ∈ Z} as considered previously.

To construct the isomorphism between the additive group (σpp,+) and the additive group

(Z[1
n ],+), our objective is to obtain the elements in σpp that correspond to the elements

in Z[1
n ] which are of the form m

nk ,m ∈ Z,k ∈ N. In order to establish this objective, we

will divide the discussion into the following stages:

First stage: We will obtain the elements in σpp that correspond to 1
n ,

2
n , · · · .

Second stage: We will obtain the elements in σpp that correspond to 1
n2 ,

2
n2 , · · · .

k’th stage: We will obtain the elements in σpp that correspond to 1
nk ,

2
nk , · · · .

As for the first stage, observe that the element 1
n ∈ Z[1

n ] is uniquely determined by the

property 1
n ×n = 1.

We now identify an eigenfunction g such that plays the same role that 1
n does in Z[1

n ].

That is, f1 = g · · ·g (n−times).

Let us consider the following diagram and associated description:

47



z0 z1 zn−1

0 1
n

2
n

(n−1)
n

1

I0 I1 In−1

FIGURE 2.1: Illustration of the third step in the construction of an eigenfunction.

1(a) Partition {Z(n)}c into n clopen subsets (cylinders)

Z j =

{
∞

∑
t=0

ztnt | z0 = j

}
, j = 0,1, · · · ,n−1.

2(a) Divide S1 into n equal subintervals

I j =

[
j
n
,

j+1
n

]
, j = 0,1, · · · ,n−1.

3(a) Align these cylinders in a way that they respect the τ-additive flow structure such

that the bottom of the cylinder Z0 and the top of the cylinder Zn−1 are being iden-

tified to 0 ∈ S1 and 1 ∈ S1 respectively, that is, assigned to the same point. Each

one of the cylinders Z j in succession is mapped to the corresponding subinterval

I j, j = 0, · · · ,n−1, of S1.

4(a) Rescale time such that rc = 1
n , where c is the common value for the height of the

cylinders Z j.

5(a) Over each cylinder, define the map

g[(z,s)] = e2πi 1
n ( jn0+ s

c ),

where

z =
∞

∑
t=0

ztnt ∈ Z j.
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g[(z,s)] =


e2πi s

cn if z0 = 0

e2πi s
cn+

1
n if z0 = 1

...
...

e2πi s
cn+

n−1
n if z0 = n−1.

One can easily check that the piecewise function g forms an eigenfunction with associated

eigenvalue 1
cn . Once we get an eigenfunction (eigenvalue) corresponding to 1

n , we can

automatically get eigenfunctions (eigenvalues) corresponding to 2
n ,

3
n , · · · by multiplying

g by itself less than m-times, m ∈ Z.

As for the second stage, look at the next diagram with associated description:

z0 0 z1 0 zn−1 0 z0 n−1 z1 n−1 zn−1 n−1

0 1
n2

2
n2

(n2−1)
n2 1

I0 I1 In2−1

FIGURE 2.2: Illustration of the second step in the construction of an eigenfunction.

1(b) Partition {Z(n)}c into n2 clopen subsets (cylinders)

Z j1 j2 =

{
∞

∑
t=0

ztnt | z0 = j1,z1 = j2

}
, ∀ j1, j2 ∈ {0,1, · · · ,n−1}

and consider the circle S1, which is divided into n2 equal subintervals

I j =

[
j

n2 ,
j+1
n2

]
, j = 0,1, · · · ,n2−1.
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2(b) Align the cylinders Z j1 j2 in a way that respect the τ-additive flow structure such that

the bottom of the cylinder Z00 and the top of the cylinder Zn−1 n−1 are being identi-

fied to the same point 0 and 1 respectively. Also, map each one of the cylinders in

succession to corresponding subinterval of S1.

3(b) Rescale time such that rc = 1
n2 , again c is the common value for the height of the

cylinders Z j1 j2.

4(b) For each cylinder Z j1 j2, define the map

h[(z,s)] = e2πi 1
n2 ( j1n0+ j2n1+ s

c ),

where

z =
∞

∑
t=0

ztnt ∈ Z j1 j2 .

One can check that h is an eigenfunction with associated eigenvalue 1
cn2 such that h satis-

fies g = h · · ·h (n times). Then automatically obtain eigenfunctions (eigenvalues) corre-

spond to 2
n2 ,

3
n2 , · · · .

As for the k’th stage, follow the following steps:

1(c) Partition the quotient space {Z(n)}c into nk clopen subsets (cylinders)

Z j1,··· , jk =

{
∞

∑
t=0

ztnt | z0 = j1, · · · ,zk−1 = jk

}
,

∀ j1, · · · , jk ∈ {0,1, · · · ,n−1}.

Devide the circle S1 into nk equal subintervals

I j =

[
j

nk ,
j+1
nk

]
, j = 0,1, · · · ,nk−1.

2(c) Align the cylinders Z j1 j2··· jk in a way that respect the τ-additive flow structure such

that the bottom of the cylinder Z00···0 and the top of the cylinder Zn−1···n−1 are

being identified to the same point 0 and 1 respectively. Also, map each one of the

cylinders in succession to corresponding subinterval of S1.

3(c) Rescale time such that rc = 1
nk , where c is the common value for the height of the

cylinders Z j1··· jk .
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4(c) For each cylinder Z j1··· jk , define the map

β [(z,s)] = e2πi 1
nk ( j1n0+ j2n1+···+ jknk−1+ s

c ),

where

z =
∞

∑
t=0

ztnt ∈ Z j1··· jk .

Again, one can check that β is an eigenfunction with associated eigenvalue 1
cnk . Thus

one can obtain the eigenfunctions with associated eigenvalues 1
cnk m that correspond to

m
nk ∈ Z[1

n ], where m ∈ Z, k ∈ N.
This set of eigenvalues

{
1
cnk m | m ∈ Z,k ∈ N

}
forms an additive group, which leads to

the question: Is this the group of all eigenvalues? The answer is yes, as will be explained

in the following argument.

One can show that, given any two distinct points in the suspension space of n-adic in-

tegers {Z(n)}c, we can separate them with eigenfunctions associated to the eigenvalues

that are described earlier. That is, if we have two different points in the suspension space,

we can find eigenfunctions that will assign them to different values on the circle. There-

fore, since the eigenfunctions separate all points, then it must be the complete set of all

eigenvalues and eigenfunctions (Chapter 3, [33]).

For any group of eigenvalues with associated eigenfunctions, there is a corresponding

equicontinuous factor. In our case, one could note that the induced semi-conjugacy from

the suspension space {Z(n)}c onto the corresponding equicontinuous factor is a topolog-

ical conjugacy of flows.

To prove the isomorphism, define the map φ : { 1
cnk m |m ∈ Z, k ∈N}→ Z[1

n ] by φ( m
cnk ) =

m
nk . It is easy to check that φ is one-one and onto and a homomorphism. So φ is an

isomorphism and thus the additive group of eigenvalues (σpp,+) of the constant c sus-

pension flow of τ-addition by 1 on Z(n) and the additive group (Z[1
n ],+) are isomorphic

to each other.

As a result of the previous proposition, the constant c suspension flow of τ-addition by

one on Z(n) will have eigenvalues of the form 1
c

m
nk for some m ∈ Z,k ∈ N and thus the

point spectrum σpp =
1
cZ[

1
n ], that is, a scalar multiple of Z[1

n ].

The following proposition is useful for determining the point spectrum of the dynamical

system (Z(l)×Zh,τ× τh) defined in Definition 2.50 where h is the height of a primitive,

aperiodic substitution θ of length l.
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Proposition 2.60. Consider the system (Z(l)×Zh,τ × τh) where Zh is the cyclic group

of order h. Then the constant c suspension flow of (τ × τh) will have point spectrum

σpp =
1
h

1
cZ[

1
l ].

Proof. A way of determining the eigenvalues of the constant c suspension flow of (τ×τh)

on (Z(l)×Zh) is to construct the eigenfunctions as we did before: at the first stage we

have h · l cylinders and at each stage we subdivide those cylinders. Then we can show

that the eigenvalues correspond to these eigenfunctions are of the form 1
h

1
c

m
lk for some

m ∈ Z, k ∈ N and hence the point spectrum σpp =
1
h

1
cZ[

1
l ].

Lemma 2.61. Consider the suspension space {Σθ}c, where θ is a primitive, aperiodic

substitution of constant length l and height h(θ) = h. Let Λ be the trace relation given in

Definition 2.43, then the constant c suspension flow of S on Σθ will have point spectrum

σpp =
1
h

1
c
Z[

1
l
].

Proof. By Remark 2.54, the system (Σθ/Λ,SΛ) is the largest equicontinuous factor of

(Σθ ,S) and thus has the same eigenvalues as (Σθ ,S). And by Theorem 2.51, the two

systems (Σθ/Λ,SΛ) and (Z(l)×Zh,τ×τh) are conjugate to each other. Thus the constant

c suspension flow of τ× τh and S have the same eigenvalues.

Hence, the point spectrum σpp of the constant c suspension flow of S on Σθ is equal to
1
h

1
cZ[

1
l ].

We follow in part Remark 2.30(4), Lemma 2.61 and discussion presented at p.135 in [33]

to state the following important result:

Theorem 2.62. If a substitution θ on the n-letter alphabet A is primitive, aperiodic, of

constant length l and height h(θ) = h, then the substitution tiling space Tθ with all the

tile lengths L1 = L2 = · · ·= Ln = c has point spectrum σpp =
1
h

1
cZ[

1
l ].
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Chapter 3

Point Spectrum of Substitution Tiling
Spaces on a two or three letter alphabet

In this chapter we shall discuss and study how the point spectrum σpp of the substitution

tiling space Tθ is affected by changing the tile lengths from those of the canonical choices,

where θ is a primitive, aperiodic substitution of constant length l. The study will cover

two major cases: the two letter and the three letter alphabet A.

In the first section §3.1 we introduce some definitions, propositions, and theorems asso-

ciated to the main concepts in our study. In the subsequent sections §3.2 and §3.3, we

give a careful study of the nature of the point spectrum in the case of a two letter and a

three letter alphabet A respectively.

3.1 Definitions, propositions and theorems

Definition 3.1. [7] Let A = {a1,a2 · · · ,an} be a finite alphabet of n-letters. For a word

w=w0 · · ·wk from the alphabetA of the full shiftAZ, the population vector v=(v1, · · · ,vn)
T

of the finite word w gives the number of the occurrences vi of the letter ai in w.

A recurrence word is a finite word w in u∈AZ, w = urur+1 · · ·us satisfying the condition

us+1 = ur.

A recurrence vector is the population vector for a recurrence word.
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Definition 3.2. [7] A recurrence vector v of the word w from the finite alphabet A of the

substitution subshift Σθ is called full if the vectors {Mk
θ

v}, with k ranging from 0 to n−1,

are linearly independent; where Mθ is the incidence matrix associated to the substitution

θ .

Remark 3.3. Every primitive, aperiodic substitution on a two letter alphabetA= {0,1}
admits a full recurrence vector, namely (0,1)T or (1,0)T , because if we have neither

(0,1)T nor (1,0)T , this means that we will not have either 00 or 11. This implies that the

sequences in the θ -subshift are of the form · · ·0101 · · · which are periodic sequences. By

primitivity of the substitution, these recurrence vectors must be full.

The following theorem (Theorem 3.4, [7]) is vital for determining the point spectrum of

the tiling space Tθ associated to the substitution θ with n× n incidence matrix Mθ over

an n-letter alphabet. Let L = (L1, ...,Ln) denote the tile length vector.

Theorem 3.4. Let θ be a primitive, aperiodic substitution on a finite n-letter alphabetA.

The number K is in the point spectrum of the substitution tiling space Tθ if and only if,

for every recurrence vector v,

KLMm
θ v→ 0 (mod1) as m→ ∞. (3.1)

Since (3.1) is an integer linear condition on v,(3.1) holds for a set of vectors V if and

only if it holds for the Z-module generated by V. With this in mind, we introduce the

following definition.

Definition 3.5. LetR denote the Z-module generated by the set of recurrence vectors.

We can make changes in the method of the convergence in (3.1) to give the following

theorem.

Theorem 3.6. The number K is in the point spectrum of the substitution tiling space Tθ

if and only if, for every vector v ∈R,

KLMm
θ v→ 0 (mod1) as m→ ∞. (3.2)

An important result for the investigation of the substitutions of constant length on two

letters or three letters is Theorem 2.4 in [7]. We give the following
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Theorem 3.7. Let θ be a primitive, aperiodic substitution on a finite n-letter alphabet

A. Suppose that all the eigenvalues of the incidence matrix Mθ are of magnitude 1 or

greater, and there exists a full recurrence vector. If the ratio of any two tile lengths is

irrational, then there is trivial point spectrum. If the ratio of tile lengths are all rational,

then the point spectrum is contained in Q/L1.

In order to simplify the notation for the following proof, let Mθ = M.

Proof. Let K be in the point spectrum, and consider the sequence of real numbers tm =

KLMmv, where v is a fixed full recurrence vector. Let p(λ ) = λ n+an−1λ n−1+ · · ·+a0 be

the characteristic polynomial of M. Note that the ai are all integers since M is an integer

matrix. Since p(M) = 0, then

Mn +an−1Mn−1 + · · ·+a0 = 0

Mn =−(an−1Mn−1 + · · ·+a0)

Mm+n =−(an−1M(m+n)−1 + · · ·+a0Mm)

KLMm+nv =−KLv(an−1M(m+n)−1 + · · ·+a0Mm)

tm+n =−
n−1

∑
k=0

aktm+k. (3.3)

Hence tm satisfy the recurrence relation (3.3). By Theorem 3.4, the tm converge to zero (

mod 1). That is, we can write

tm = im + εm, (3.4)

where the im are integers, and the εm converge to zero as real numbers. By substituting

the division (3.4) into the recursion (3.3), we get:

im+n + εm+n =−
n−1

∑
k=0

ak(im+k + εm+k)

im+n + εm+n =−
(
(a0im + · · ·+an−1i(m+n)−1)+(a0εm + · · ·+an−1ε(m+n)−1)

)
(3.5)

As mentioned, for sufficiently large m the sequence εm converges to zero, so we can take

εm bounded by 1
∑

n−1
i=0 ai

, which implies that each individual εm < 1
∑

n−1
i=0 ai

. Then

a0εm +a1εm+1 + · · ·+an−1ε(m+n)−1 ≤ |a0εm +a1εm+1 + · · ·+an−1 ε(m+n)−1|

<
|a0|+ |a1|+ · · ·+ |an−1|

∑
n−1
i=0 |ai|

= 1
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Note that the left hand side of equation (3.5) is broken up into the integer part im+n and

the fractional part εm+n which is not an integer. The right hand side by our calculation

has as its integer part a0im + · · ·+ an−1 i(m+n)−1 and as its fractional part a0εm + · · ·+
an−1ε(m+n)−1. Hence

εm+n =−
n−1

∑
k=0

akεm+k

and

im+n =−
n−1

∑
k=0

akim+k.

Thus both the i and the ε must separately satisfy the recursion (3.3). For the sake of

simplicity we shall assume Mθ is diagonalizable with eigenvalues λ1, · · · ,λn. In this case

any solution to the recursion relation (3.3) is a linear combination of powers of eigen-

values of Mθ , and the case where M is not diagonalizable can be handled by considering

instead a polynomial in m times eigenvalues to the mthpower. Now εm is the solution of

the recurrence relation (3.3), let εm = c1λ m
1 + c2λ m

2 + · · ·+ cnλ m
n . From the hypothesis,

the eigenvalues are all of magnitude 1 or greater. This implies that the linear combination

converges to zero only if it is identically zero, therefore εm must be identically zero for

all sufficiently large values of m. The non-diagonalizable case is handled similarly.

The vector Mmv is an integer column vector and so each tm is an integer linear combina-

tion of the elements of the vector KL. From a sequence of n consecutive terms tm, one can

obtain the system of n linear equations in n variables KL1,KL2, · · · ,KLn. The coefficient

matrix A of this system consists of the n row vectors Mmv with m ranging from 0 to n−1.

Since v is full, then the n row vectors of this integer coefficient matrix are linearly inde-

pendent which implies that A is invertible and so the linear system has a unique solution.

Since the tm are integers (for m large enough), the components of KL must then all be

rational. Thus if it is defined for all i and j,

Kli
Kl j

=
Li

L j

is also rational. So, if for some i and j,Li/L j is irrational we must have K = 0. Hence

there is trivial point spectrum σpp = {0}. Suppose on the other hand that for all i and

j,Li/L j is rational. Then for each i, Li = q1L1 for some q1 ∈ Q. By the observation

that KL must be rational for each component, we have KLi = KL1q1 is a rational num-

ber. Let KL1q1 = q2 for some q2 ∈ Q. Then K = q/L1 for some q = q2/q1 ∈ Q. Hence

K ∈Q/L1.
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Although Theorem 3.7 applies to a wide variety of substitutions of constant length, there

are substitutions of constant length with zero eigenvalues for which the following corol-

lary can be useful.

Corollary 3.8. Let θ be a primitive, aperiodic substitution with the incidence matrix Mθ .

Suppose that all the eigenvalues of Mθ are of magnitude equal or greater than 1 or equal

to 0. If K is in the point spectrum, then the numbers tm = KLMm
θ

v have to be integers for

n sufficiently large, where v ∈R.

If we review the proof of Theorem 3.7, one can realize that the conclusion tm =KLMm
θ

v∈
Z for sufficiently large m does not depend on the assumption that 0 is not an eigenvalue

or the existence of a full recurrence vector.

Definition 3.9. If there is a set of length vectors with full measure in the set of all possible

length vectors for which σpp = {0}, then we say that the typical case is σpp = {0}.

Remark 3.10. When the typical case is σpp = {0}, then there will be exceptional choices

for L for which σpp is larger for example when L = (1,1,1) or (c,c,c).

Proposition 3.11. Under the same hypothesis as in Theorem 3.7, the typical case is

σpp = {0}.

Proof. Although similar arguments apply in general, we shall consider here the three

letter case as this is the case we shall need.

Consider the space of length vectors
{

L = (L1,L2,L3)| L ∈ R+3}. According to Theorem

3.7, we examine the nature of a set of R+3 that satisfies: for some i, j, Li/L j 6∈Q.

Let

Z =

{
(L1,L2,L3) ∈ R+3| ∃ i, j,

Li

L j
/∈Q
}
.

One of the ways of thinking of Z is as built up out of its intersection with the hyperplanes

perpendicular to one of the coordinate axes. For the sake of definiteness, let us partition

Z using the hyperplanes with fixed final coordinate.

Then for a given value c ∈ (0,∞), we have

Zc =

{
(L1,L2,c) ∈ R+3| L1

L2
/∈Q or

L1

c
/∈Q or

L2

c
/∈Q
}
.

Thus when c = 1,we have

Z1 =

{
(L1,L2,1) ∈ R+3| L1

L2
/∈Q or L1 /∈Q or L2 /∈Q

}
.
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For a given c ∈ (0,∞), letting

Rc =
{
(L1,L2,L3) ∈ R+3| L3 = c

}
,

we have for example

R1 \Z1 =
{
(L1,L2,1)| L1,L2 ∈Q+

}
.

As this is a countable set, we have that Z1 has full measure in R1. A similar result holds

for all c, and so we see by integration that all of Z has full measure. Thus we have

sensitivity to changes in lengths and the typical case is σpp = {0}.

Remark 3.12. In future propositions, when establishing the typical case under similar

circumstances, a similar proof will apply but we shall omit it without comment.

As we shall be making repeated use of Theorem 3.6, it will be vital for us to determine

the Z-module of recurrence vectors R associated to substitutions. We shall begin with

the two letter case where we have a very general result. And then we shall discuss some

special cases in the three letter case.

Lemma 3.13. Given a primitive, aperiodic substitution on a two letter alphabet A =

{0,1}, thenR= Z2.

Proof. By Remark 3.3, we can assume without loss of generality that the substitution

θ admits the full recurrence vector

(
1

0

)
. Also, we have 010 or 101 otherwise we will

have sequences which end either with only 1’s or 0’s which are not possible in primitive

substitutions. In either case this will lead to the recurrence vector

(
1

1

)
and henceR will

include (
1

1

)
−

(
1

0

)
=

(
0

1

)
,

which implies {(
1

0

)
,

(
0

1

)}
⊂R

and thusR= Z2.
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Proposition 3.14. Let θ be a primitive, aperiodic substitution of constant length on a

three letter alphabet A = {0,1,2}. If the word ii occurs in the θ -subshift, where i ∈
{0,1,2}, then the substitution has height h(θ) = 1.

Proof. Let i ∈ A be a symbol such that i is repeated, which implies that i occurs in an

even and odd index of some sequence in the θ -subshift. Assume that i occurs in k and

k+ 1 index, where k is odd and k+ 1 is even. Then Pk = {a | wa+k = wk} contains the

number 1 and so gk = gcd Pk = 1.

Proposition 3.15. Let θ be a primitive, aperiodic substitution of constant length on a

three letter alphabet A = {0,1,2}. If the height of the substitution h(θ) = 1 and there

exist at least two repeated symbols, thenR= Z3.

Proof. Assume that the symbols 00 and 11 occur in the θ -subshift which implies that
1

0

0

 and


0

1

0

 are inR. By minimality of the substitution subshift, the word 2 · · ·2

occurs somewhere ( with no 2’s in between). Thus we will have the following recurrence

vector


m

n

1

 for some m,n ∈ N0. Then


m

n

1

−m


1

0

0

−n


0

1

0

=


0

0

1

 ∈R.
HenceR= Z3.

Remark 3.16. Among the height one substitutions of constant length, we can find ones

with no repeated symbols such thatR= Z3 as the following example shows.

Example 3.1. θ(0) = 101010, θ(1) = 101020 and θ(2) = 101210.

The incidence matrix is Mθ =


3 3 2

3 2 3

0 1 1

 and the height h(θ) = 1 since the length l = 6

is even. Words occurring in the θ -subshift are 101, 020, 201012 and 10201 revealing that
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among recurrence vectors are


1

1

0

 ,


1

0

1

 ,


2

2

1

 and


2

1

1

.


2

2

1

−


1

1

0

=


1

1

1

 , then


1

1

1

−


1

0

1

=


0

1

0

 ∈R,


1

1

1

−


1

1

0

=


0

0

1

 ∈R and


2

1

1

−


1

1

1

=


1

0

0

 ∈R. HenceR= Z3.

Lemma 3.17. Let θ be a primitive, aperiodic substitution of constant length on a three

letter alphabet A = {0,1,2}. If the height of the substitution h(θ) = 2, then

R =




k+ `

k

`

 | k, ` ∈ Z

 up to a permutation of coordinates. Whenever R has this

form, there exists no full recurrence vector.

Proof. Let (wi)i∈Z be a sequence in the substitution subshift Σθ such that (wi)i∈Z be a

θ -fixed point, then for each ai ∈A, ai ∈ {0,1,2}, ai occurs in wk for only even k or only

odd k, otherwise Pk = {a | wa+k =wk} contains an odd number in violation that h(θ) = 2.

Observe that there is a surjection between the finite alphabetA and the set of spots {even ,

odd}, thus one of the symbols must take one of the spots and the other two symbols share

the other spot. Which means that one of the symbols must occur every other symbol.

Without loss of generality, assume that 0 occurs every other symbol such that it takes

the even spot. Under these assumptions the recurrence vector of any recurrence word

occurring in the θ -subshift will have the form


k+ `

k

`

 for some k, l ∈ N0. The words

010 and 020 will occur in the θ -subshift revealing that among the recurrence vectors are
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
1

1

0

 and


1

0

1

. The integer span of these two vectors is




k+ `

k

`

 | k, ` ∈ Z

 ,

which forms a subgroup of Z3, thusR=




k+ `

k

`

 | k, ` ∈ Z

.

We shall now show that in this situation the substitution admits no full recurrence vector.

Let v = k


1

1

0

 + `


1

0

1

 be a recurrence vector, then Mθ v and M2
θ

v are recurrence

vectors.

Consider the equation c1v+ c2Mθ v+ c3M2
θ

v = 0, where

Mθ v =


k1 + `1

k1

`1

 and M2
θ

v =


k2 + `2

k2

`2

 for some k1, `1,k2, `2 ∈ N0.

This implies

c1


k+ `

k

`

+ c2


k1 + `1

k1

`1

+ c3


k2 + `2

k2

`2

= 0.

Then the determinant

∣∣∣∣∣∣∣∣
k+ ` k1 + `1 k2 + `2

k k1 k2

` `1 `2

∣∣∣∣∣∣∣∣= 0.

Hence the set
{

v,Mθ v,M2
θ

v
}

is not linearly independent and thus there exists no full re-

currence vector.
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Remark 3.18. One can find height one substitutions such that

R=




k+ `

k

`

 | k, ` ∈ Z

 (see Example 3.3 below).

Now I shall investigate a large class of examples of substitutions of constant length on a

three letter alphabet with height equal to one or two.

By the previous Lemma 3.17 and the previous Remark 3.18, we can assume without loss

of generality that we have sequences of the form 0−0 and I refer to all such substitution

subshifts as being of type 0−0.

Lemma 3.19. If θ is a primitive, aperiodic substitution of constant odd length l such that

the substitution subshift of type 0−0, then either (i) or (ii) holds

(i) θ(0) = 0−0 · · ·−0 and so the incidence matrix Mθ is of the form

Mθ =


l+1

2
l−1

2
l−1

2

r s j
l−1

2 − r l+1
2 − s l+1

2 − j

 for some r,s, j ∈ N0. (3.6)

(ii) θ(0) =−0−0 · · ·0− and so the incidence matrix Mθ is of the form

Mθ =


l−1

2
l+1

2
l+1

2

r s j
l+1

2 − r l−1
2 − s l−1

2 − j

 for some r,s, j ∈ N0. (3.7)

Proof. Observe that this kind of substitution has height h(θ) = 2. Since the sequences in

the subshift are of the form 0− 0 and the substitution has odd length, then θ(0) either

starts and ends with 0 or starts and ends with something different from 0. For the first

case, consider the words 010 and 020 that occur somewhere in the subshift and then apply

the substitution. One can notice that θ(1) must start and end with something different

from 0 otherwise we will not have a substitution of type 0−0. Similarly, θ(2) starts and

ends with something different from 0. Clearly, Mθ is of the form (3.6) and can be easily

checked that (−1,1,1) is a left eigenvector associated to the eigenvalue equal to 1.

For the second case, if we consider the words 010 and 020 that occur somewhere in the

subshift and apply the substitution, then θ(1) must start and end with 0 otherwise we will

not have a sequence of the form 0−0. Similarly θ(2) must start and end with 0. Clearly,
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Mθ is of the form (3.8) and can be easily checked that (−1,1,1) is a left eigenvector

associated to the eigenvalue equal to −1.

Note that when the vector (−1,1,1) is paired with any vector of the form


k+ `

k

`

 for

some k, ` ∈ Z, we will get the zero vector.

Lemma 3.20. If θ is a primitive, aperiodic substitution of constant even length l such

that the substitution subshift is of type 0−0, then (−1,1,1) occurs as a left eigenvector

associated to the eigenvalue zero.

Proof. Observe that the substitution θ has height 1 (h(θ) cannot divide the length, so

h(θ) cannot be 2). Independent of the nature of the substitution, the incidence matrix Mθ

will be of the form

Mθ =


l
2

l
2

l
2

r s j
l
2 − r l

2 − s l
2 − j

 for some r, s, j ∈ N0. (3.8)

It can be easily checked that (−1,1,1) is the left eigenvector associated to the eigenvalue

0.

Remark 3.21.

1. A substitution subshift of type 0-0 either has odd length with height equals two or

has even length with height equals one.

2. All height two substitutions are of type 0-0, but not all of the height one substitu-

tions are of type 0-0 (Example 3.10).

3. In all the substitution subshifts of type 0− 0 with height equal one or two, R has

the form


k+ `

k

`

 | k, ` ∈ Z

 and there exists no f ull recurrence vector.
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One can easily check the following proposition.

Proposition 3.22. Let θ be a height one substitution with even length l andR=Z3. If its

incidence matrix Mθ is of the form


l
2

l
2

l
2

r r r
l
2 − r l

2 − r l
2 − r

 , where 0 < r < l
2 , then there

exists no full recurrence vector.

As mentioned before, in all of the height two substitutions R 6= Z3 such that R has the

form 


k+ `

k

`

 | k, ` ∈ Z


and there exists no full recurrence vector (Example 3.12). On the other hand, in the height

one substitutions one could have eitherR=Z3 (Example 3.2) orR 6=Z3, and ifR 6=Z3,

we can have either 


k+ `

k

`

 | k, ` ∈ Z


(Example 3.3), or another form


m

n

n

 | m,n ∈ Z

 (Example 3.4).

We also provide an example to demonstrate that even in the height one case whenR=Z3

we do not necessarily have a full recurrence vector (Example 3.5).

Remark 3.23. We cannot say in general that in the case of height one substitutions when

R 6= Z3, then there exists no full recurrence vector. But this is the case for examples we

know.

Listed below are the examples showing the connection between height and R and the

connection betweenR and the existence of full recurrence vectors.

From now on and without further comment, in all given examples we shall assume that

θ denotes a primitive, aperiodic substitution on a finite alphabet A.
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Example 3.2. θ(0) = 0120, θ(1) = 1120 and θ(2) = 0012.

The incidence matrix is Mθ =


2 1 2

1 2 1

1 1 1

 . Since we have two successive 0’s, then the

substitution has height h(θ) = 1. Moreover, we have also two successive 1’s which im-

plies that R = Z3. A word occurring in the θ -subshift is 00, revealing that among the

recurrence vectors is


1

0

0

, which one can check directly is full.

Example 3.3. θ(0) = 0102, θ(1) = 0201 and θ(2) = 0101.

This substitution is a 0− 0 type substitution of even length l = 4, then it has height

h(θ) = 1 and R has the form


k+ `

k

`

 , k, ` ∈ Z. Therefore the substitution has no full

recurrence vector.

Example 3.4. θ(0) = 001200, θ(1) = 012000 and θ(2) = 000120.

Here the substitution has length l = 6 and incidence matrix Mθ =


4 4 4

1 1 1

1 1 1

 . Since we

have successive 0’s, then the substitution has height h(θ) = 1. Examination of the words

occurring in the θ -subshift reveal that the recurrence vectors are all of the form


m

n

n

 for

some m,n ∈ N0. ThusR=




m

n

n

 | m,n ∈ Z

 .

Example 3.5. θ(0) = 0210, θ(1) = 0120 and θ(2) = 0012.

This substitution has even length l = 4 and so height h(θ) = 1. The words occurring in

the θ -subshift are 00,1001, and 10021, showing that among recurrence vectors are
1

0

0

 ,


2

1

0

 , and


2

1

1

 .
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Now 
2

1

0

−2


1

0

0

=


0

1

0

 ∈R,
and 

2

1

1

−


0

1

0

−2


1

0

0

=


0

0

1

 ∈R.

Then clearly R = Z3. The incidence matrix of the substitution is Mθ =


2 2 2

1 1 1

1 1 1

 so

by Proposition 3.22 the substitution has no full recurrence vector.

Example Length l Height h(θ ) R Full recurrence vector

3.12 3 2


k+ `

k
`

 | k, ` ∈ Z

 no full recurrence vector

3.2 4 1 Z3

1

0

0


3.10 3 1 Z3

1
2
0


3.3 4 1


k+ `

k
`

 | k, ` ∈ Z

 no full recurrence vector

3.4 6 1


m

n
n

 | k, ` ∈ Z

 no full recurrence vector

3.5 4 1 Z3 no full recurrence vector

TABLE 3.1: Connection between R and the heights and the existence of full recurrence
vectors.
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3.2 Point spectrum in the case of a two letter alphabet A

In this section we examine the dependence of the point spectrum σpp of the substitution

tiling space Tθ on the changes of tile lengths L = (L1,L2), where θ is a primitive, aperi-

odic substitution of constant length on two letters.

The following Theorem 3.24 which was introduced by Clark and Sadun in [7] gives more

spectral information than Theorem 3.7, but only when the alphabet A has two letters and

the substitution is of constant length.

Theorem 3.24. Suppose that we have a primitive, aperiodic substitution θ on a two

letter alphabet A = {0,1} of constant length l, and θ(i) contains li 0’s and l− li 1’s,

where i ∈ {0,1}. Suppose further 1 ≤ l0, l1 ≤ l − 1 and l0 6= l1, let z be the greatest

common factor of l and l0− l1. Then the point spectrum σpp depends as follows on the

ratio L1/L2 :

1. if L1 = L2, then there is a positive integer N such that

NZ[
1
l
]⊂ NL1σpp ⊂ Z[

1
l
];

2. if L1/L2 ∈Q−{1}, then there exist positive integers N1 and N2 such that

N1Z[
1
z
]⊂ N2L1σpp ⊂ [

1
z
];

3. if L1/L2 /∈Q, then σpp = {0}.

Obviously, Theorem 3.24 applies to any primitive, aperiodic substitution of constant

length l on a two letter alphabet A = {0,1}, when the two additional conditions are

satisfied:

1. l0 6= l1

2. 1≤ l0, l1 ≤ l−1.

Remark 3.25. Let θ be a primitive, aperiodic substitution of constant length on two

letters {0,1}, where θ(i) contains li 0’s and l− li 1’s, then the incidence matrix is Mθ =(
l0 l1

l− l0 l− l1

)
with eigenvalues l and l0− l1.
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The point spectrum σpp and sensitivity

Now we will establish a theorem which completes the analysis of sensitivity to changes

in tile lengths in the case of a two letter alphabet A through the explanation of how the

point spectrum σpp is affected by these changes, independent of Theorem 3.24.

Theorem 3.26. Let θ be a primitive, aperiodic substitution of constant length l on the

alphabetA= {0,1}. Letting li be the number of 0’s in θ(i), we have the following cases:

(a) l0 = l1. Here, the point spectrum σpp is insensitive to changes in length and is always

a scalar multiple of Z[1
l ].

(b) l0 6= l1. Here, the point spectrum σpp is sensitive to changes in tile length L = (L1,L2)

and depends as follows on the ratio L1/L2 :

(1) if L1 = L2 = c, then σpp =
1
cZ[

1
l ], where c ∈ R+,

(2) if L1/L2 ∈Q, then σpp ⊆Q/L1,

(3) if L1/L2 /∈Q, then σpp = {0}.

Proof. (a) If we have l0 = l1, then the general length vector L = (L1,L2) can be decom-

posed into the linear combination of the two left eigenvectors v1,v2 as follows:

L = c1v1 + c2v2,

where v1,v2 are associated to the eigenvalues of the incidence matrix of the substitution

θ ,r1 = l and r2 = 0. For any v ∈R

LMnv = c1rn
1(1,1)v

implies

KLMnv = Kc1ln(1,1)v

= Kc1ln(1,1)v.

For sufficiently large n and for all v ∈ R, KLMnv→ 0 (mod 1) if and only if K is of the

form 1
c1

m
lr for some m ∈ Z,r ∈ N. That is, K ∈ 1

c1
Z[1

l ]. Thus the point spectrum is always

a scalar multiple of Z[1
l ].

Observe that in this case c1 cannot be zero for us to have a legitimate length vector.

(b) Recall that in the case of a two letter alphabet A the height h(θ) = 1, by applying

Theorem 2.62, if L1 = L2 = c, then the point spectrum is σpp =
1
cZ[

1
l ].

Since l0 6= l1, then both eigenvalues l and l0− l1 have magnitude one or greater. By
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Remark 3.3, we know there exists a full recurrence vector and so by applying Theorem

3.7, we get that, if L1/L2 ∈Q, then σpp is contained in Q/L1. If L1/L2 /∈Q, then there is

trivial point spectrum, that is, σpp = {0}. Hence if l0 6= l1, we have sensitivity to changes

in tile lengths L = (L1,L2).

Observe that our description of σpp in the case that L1 = L2 = c is more precise than in

that of Theorem 3.24.

Remark 3.27. By Lemma 2.33, Theorem 3.26 applies to all discrete and continuous

substitutions.

3.3 Examining the nature of the point spectrum when A
is a three letter alphabet

Let θ be a primitive, aperiodic substitution on three letters of constant length l. and let

Mθ be the incidence matrix with characteristic polynomial P(x). By the Gauss Lemma,

P(x) can be factorized as follows:

P(x) = (x− l)q(x), where q(x) = x2 +bx+ c

is a quadratic, monic polynomial with integer coefficients. q(x) is either going to have

a pair of complex conjugate roots or real roots. We will study the nature of the point

spectrum based on the nature of the roots r1 and r2 as demonstrated in §3.3.1 and §3.3.2.

3.3.1 The quadratic polynomial q(x) has complex roots

In this subsection we will refer to q(x) when its roots are complex numbers that are not

real.

Note that if the incidence matrix Mθ for the substitution θ has complex roots in addition

to l, then the sequences in the θ -substitution subshift cannot be of the form 0−0 because

the associated matrices Mθ have eigenvalue±1 or 0. Thus we cannot have complex roots

in the case of substitution subshifts of type 0−0, and hence all substitutions are of height

one in this case.
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Proposition 3.28. Let θ be a height one substitution of constant length l such that its

incidence matrix Mθ has complex conjugate eigenvalues. If there exists a full recurrence

vector, then the point spectrum is sensitive to changes in the tile lengths and typically

σpp = {0}.

Proof. Let q(x) = x2 +bx+ c, where b,c ∈ Z, q(x) can be factorized over C as follows:

q(x) = (x− r1)(x− r2), where r1 and r2 are the complex conjugate roots of q(x) such that

r1r2 = |r1|2 = |r2|2 = c ∈ Z+−{0}, otherwise we will not have complex roots. Then

|ri| ≥ 1, where i = 1,2. Hence, as long as we have a full recurrence vector we can apply

Theorem 3.7 and thus we will have sensitivity to changes in length vectors.

Remark 3.29. We cannot say in general that all the substitutions with complex roots have

full recurrence vectors, but the examples we identify have full recurrence vectors.

Example 3.6. θ(0) = 2022, θ(1) = 0211 and θ(2) = 1212.

The substitution is of length l = 4 and its incidence matrix is Mθ =


1 1 0

0 2 2

3 1 2

 , with

eigenvalues 4, 1+7i
2 and 1−7i

2 . Since we have two successive 2’s and 1’s, we have the

height h = 1 and also R = Z3 (see Propositions 3.14 and 3.15). A word occurring in

the θ -subshift is 11, revealing that among the recurrence vectors is


0

1

0

 , which one can

check directly is full. As a result, Proposition 3.28 applies to θ . Thus for a typical choice

of length, the point spectrum will be {0}, and hence we will have sensitivity to changes in

length. Also by Theorem 2.62, the constant c= 1 suspension flow will have eigenvalues

Z[1
4 ].

3.3.2 The quadratic polynomial q(x) has real roots

Studying the nature of the point spectrum when the quadratic polynomial q(x) has real

roots will be divided into cases, each case is divided into two subcases according to

the height. To be more precise, height one substitutions such that R = Z3 or R =


k+ `

k

`

 | k, ` ∈ Z

 are studied when it is possible.
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Case I: If the roots r1 and r2 of q(x) are of magnitude greater than or equal 1, that is, |r1|
and |r2| ≥ 1.

(i) The height of the substitution h(θ) = 1.

Recall that for any height one substitution we can have either R = Z3 or R 6= Z3. Bear

in mind that we cannot have a height one substitution such that the Z-module generated

by recurrence vectors R=




k+ `

k

`

 | k, ` ∈ Z

 , where all the eigenvalues of its in-

cidence matrix Mθ are all greater than or equal 1 in magnitude, because in this case Mθ

will have 0 as an eigenvalue. As a result of this, we will review the case of height one

substitutions with all eigenvalues of Mθ having magnitude grater than or equal to one,

where R = Z3. In such a case, the existence of the full recurrence vector plays a very

important role to determine the sensitivity of σpp to changes in tile lengths, which means

that if there exists a full recurrence vector, Theorem 3.7 applies to θ and we get sensitivity

to changes in length.

Remark 3.30. One thing left to determine is whether there must be a full recurrence

vector in this case whenR= Z3.

Proposition 3.31. If θ is a height one substitution of constant length l, with R = Z3

and eigenvalues associated to the incidence matrix Mθ are all of magnitude greater than

or equal to one, then if there exists a full recurrence vector we will have sensitivity to

changes in tile lengths.

For the proof, one can apply Theorem 3.7.

Example 3.7. θ(0) = 2022, θ(1) = 0202 and θ(2) = 0101.

The incidence matrix is Mθ =


1 2 2

0 0 2

3 2 0

 , with associated eigenvalues 4,−1 and −2.

Since the length of the substitution l = 4 is even, then the height h(θ) = 1 and so by

Theorem 2.62, the constant c = 1 suspension flow will have eigenvalues Z[1
4 ]. Words

occurring in the θ -subshifts are 22,020, and 010, the associated recurrence vectors are
0

0

1

 ,


1

0

1

 and


1

1

0

 . Now
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
1

0

1

−


0

0

1

=


1

0

0

 and


1

1

0

−


1

0

1

+


0

0

1

=


0

1

0

 .

Then 


0

0

1

 ,


1

0

0

 ,


0

1

0


⊆R

and hence R = Z3. One can check directly that


0

0

1

 is a full recurrence vector. As a

result, Theorem 3.7 applies to θ , and for a typical choice of length, the point spectrum

will be {0}. Thus we will have sensitivity to changes in tile lengths.

Example 3.8. θ(0) = 0012010, θ(1) = 2010102 and θ(2) = 1020202.

Here the substitution θ is of length l = 7, its incidence matrix is Mθ =


4 3 3

2 2 1

1 2 3


with associated eigenvalues 7,1 and 1. By Proposition 3.14, the substitution has height

h(θ) = 1 because we have two successive 0’s. Words occurring in the θ -subshift are

00,010, and 202 and their associated recurrence vectors are


1

0

0

 ,


1

1

0

 and


1

0

1

 .

Then


1

0

1

−


1

0

0

=


0

0

1

 and


1

1

0

−


1

0

0

=


0

1

0

 .

Thus 


1

0

0

 ,


0

1

0

 ,


0

0

1


⊆R

and hence R = Z3. The constant c = 1 suspension flow will have eigenvalues Z[1
7 ]. one

can check directly that the recurrence vector


1

0

0

 is full. As a result, Proposition 3.31

applies to θ and so we will get sensitivity to changes in tile lengths.
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(ii) The height of the substitution h(θ) = 2.

Proposition 3.32. If θ is a height two substitution of constant length l and eigenvalues

are all of magnitude one or greater, then for a typical choice of length vectors σpp = {0}.

Proof. The general length vector L = (L1,L2,L3) can be expressed as follows:

L = c1(1,1,1)+ c2(−1,1,1)+ c3v3,

where (1,1,1),(−1,1,1) and v3 are left eigenvectors associated to the eigenvalues l,r1 =

±1, and r2 respectively. Without loss of generality, assume that r1 = 1, then

LMn = c1ln(1,1,1)+ c2(−1,1,1)+ c3rn
2v3.

For any v ∈R,v =


k+ `

k

`

 for some k, ` ∈ Z, we have

LMnv = c1ln(1,1,1)v+ c2(−1,1,1)v+ c3rn
2v3v

LMnv = c1ln(2k+2l)+0+ c3rn
2m,

where m = v3v, m ∈ Z.

KLMnv = K(c1ln(2k+2l)+ c3rn
2m).

Let c1
c3

/∈ Q, we will prove that K = 0. Assume the K 6= 0, then by Corollary 3.8, for

sufficiently large n

tn = K(c1ln(2k+2l)+ c3rn
2m) = ν ∈ Z

and

tn+1 = K(cln+1(2k+2l)+ c3rn+1
2 m) = µ ∈ Z.

Therefore,
tn+1

tn
=

c1ln+1(2k+2l)+ c3rn+1
2 m

c1ln(2k+2l)+ c3rn
2m

=
µ

ν
∈Q,

which implies

c1ln+1(2k+2l)+ c3rn+1
2 m =

µ

ν
(c1ln(2k+2l)+ c3rn

2m)
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and so
c1

c3

(
ln+1(2k+2l)− µ

ν
ln(2k+2l)

)
=

µ

ν
rn

2m− rn+1
2 m.

Let

ln+1(2k+2l)− µ

ν
ln(2k+2l) = q1 ∈Q

µ

ν
rn

2m− rn+1
2 m = q2 ∈Q.

Then
c1

c3
q1 = q2,

which implies that
c1

c3
=

q2

q1
∈Q,

which is a contradiction. Thus K = 0, that is, we will have trivial point spectrum σpp =

{0}. Hence, in the case of a height two substitution with eigenvalues greater than or equal

to 1 in magnitude, we will get sensitivity to changes in length. Observe that by Theorem

2.62, the constant c= 1 suspension flow will have eigenvalues 1
2Z[

1
l ].

Example 3.9. θ(0) = 01020, θ(1) = 10101 and θ(2) = 10202.

This substitution is of length l = 5, height h(θ) = 2, and with incidence matrix Mθ =
3 2 2

1 2 1

1 1 2

 with associated eigenvalues 5,1 and 1. The left eigenvectors associated to

these eigenvalues are (1,1,1),(−1,1,1) and (−1,2,0) respectively. By applying Propo-

sition 3.32, for a typical choice of length vectors we get trivial point spectrum σpp = {0}
and thus sensitivity to changes in tile lengths.

Remark 3.33. If we have repeated roots, it does not affect the outcome.

Case II: If r1 and r2 are the roots of q(x) such that r1 = 0 and r2 ∈ Z−{0}.

(i) The height of the substitution h(θ) = 1.

• Firstly, we consider the case whereR= Z3.

Proposition 3.34. Let θ be a height one substitution of constant length l, with R = Z3

and eigenvalues l, r1 = 0 and r2 ∈ Z−{0}. Then for a typical choice of length vectors

σpp = {0}.
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Proof. The left eigenvectors associated to the eigenvalues l,r2 ∈ Z−{0} and r1 = 0, are

v1 = (1,1,1),v2 and v3 respectively, and the general length vector L = (L1,L2,L3) can be

expressed as follows:

L = c1v1 + c2v2 + c3v3

LMn = c1ln(1,1,1)+ c2rn
2v2 +0.

For any vector v ∈R,
LMnv = c1ln(1,1,1)v+ c2rn

2v2v

KLMnv = K(c1ln(1,1,1)+ c2rn
2v2)v,

where v2 can be chosen to have a 1 in one of its coordinates. Without loss of generality, let

v2 =(1,x,y). For K to be in σpp, it is sufficient to show that KLMnv→ 0 (mod1) as n→∞

for the following bases vectors inR,e1 =


1

0

0

 ,e2 =


0

1

0

 and e3 =


0

0

1

 .

For v = e1, we have

KLMnv = K(c1ln + c2rn
2).

Assume that K 6= 0 and c1
c2

/∈Q, then by Corollary 3.8 for sufficiently large n

tn = K(c1ln + c2rn
2) = ν ∈ Z

and

tn+1 = K(c1ln+1 + c2rn+1
2 ) = µ ∈ Z.

Then
tn+1

tn
=

c1ln+1 + c2rn+1
2

c1ln + c2rn
2

=
µ

ν
∈Q,

which implies
c1
c2

ln+1 + rn+1
2

c1
c2

ln + rn
2

=
µ

ν

and so
c1

c2

(
µ

ν
ln− ln+1

)
= rn+1

2 − µ

ν
rn

2.

Let
µ

ν
ln− ln+1 = q1 ∈Q

and

rn+1
2 − µ

ν
rn

2 = q2 ∈Q,
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then
c1

c2
q1 = q2

which implies that
c1

c2
=

q2

q1
∈Q,

which is a contradiction. Thus K = 0.

Observe that, any potential K will have to work for all of the v’s inR at the same time. If

for one of the v’s the only possibility for K is 0, then it suffices to conclude that the point

spectrum must be trivial, that is, σpp = {0}. Hence we will have sensitivity to changes of

length.

Remark 3.35. By Theorem 2.62, the constant c = 1 suspension flow will have eigenval-

ues Z[1
l ], where l is the length of the substitution.

Example 3.10. θ(0) = 001, θ(1) = 201 and θ(2) = 102.

Here the incidence matrix is Mθ =


2 1 1

1 1 1

0 1 1

 with associated eigenvalues 3,1 and 0.

The height h(θ) = 1 because we have two successive 0’s. Moreover, we have also two

successive 1’s which implies that R = Z3. A word occurring in the θ -subshift is 0110,

revealing that among the recurrence vectors is


1

2

0

, which one can check directly is full.

By Theorem 2.62, the constant c= 1 suspension flow will have eigenvalues Z[1
l ], where

l = 3 is the length of the substitution and by the previous Proposition 3.34, for a typical

choice of length, the point spectrum σpp = {0}.

• Secondly, we consider the caseR=




k+ `

k

`

 | k, ` ∈ Z

 .

Proposition 3.36. If θ is a height one substitution of constant length l such that

R =




k+ `

k

`

 | k, ` ∈ Z

 , and eigenvalues l, r1 = 0 and r2 ∈ Z−{0}, then for a

typical choice of length vectors σpp = {0}.
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Proof. Recall from before that this substitution has even length l and of type 0-0, and

so the incidence matrix is of the form (3.8) with 0 as one of its eigenvalues. Let the

eigenvalues of Mθ be l,r2 ∈ Z−{0} and r1 = 0 with associated left eigenvectors v1 =

(1,1,1),v2 and v3 = (−1,1,1) respectively. Then

L = c1v1 + c2v2 + c3v3

L = c1(1,1,1)+ c2v2 + c3(−1,1,1).

For any v =


k+ `

k

`

 ∈R, where k, ` ∈ Z

LMnv = (c1ln(1,1,1)+ c2rn
2v2 +0)v

and

KLMnv = K(c1ln(2k+2l)+ c2rn
2m),

where m= v2v∈Z. Assume that K 6= 0 and c1
c2

/∈Q. Then by Corollary 3.8, for sufficiently

large n,

tn = K(c1ln(2k+2`)+ c2rn
2m) = ν ∈ Z

and

tn+1 = K(c1ln+1(2k+2`)+ c1rn+1
2 m) = µ ∈ Z.

So
tn+1

tn
=

c1ln+1(2k+2`)+ c2rn+1
2 m

c1ln(2k+2`)+ c2rn
2m

=
µ

ν
∈Q,

which implies

c1

c2
(ln+1(2k+2l)+ rn+1

2 m) =
µ

ν
(
c1

c2
ln(2k+2`)+ rn

2m)

and so
c1

c2
(ln+1(2k+2`)− µ

ν
ln(2k+2`)) =

µ

ν
rn

2m− rn+1
2 m.

Let

ln+1(2k+2`)− µ

ν
ln(2k+2`) = q1 ∈Q

and
µ

ν
rn

2m− rn+1
2 m = q2 ∈Q.
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Then
c1

c2
q1 = q2,

which implies
c1

c2
=

q2

q1
∈Q,

which is a contradiction. Hence K = 0 and σpp = {0}.

Example 3.11. θ(0) = 0102, θ(1) = 0201 and θ(2) = 0101.

Here the substitution θ is of type 0-0 with even length l = 4, height h(θ) = 1, and

thus R =




k+ `

k

`

 | k, ` ∈ Z

 . The incidence matrix of the substitution is Mθ =


2 2 2

1 1 2

1 1 0

 with eigenvalues 4,−1 and 0, and associated left eigenvectors (1,1,1),

(−1,−1,4) and (−1,1,1) respectively. By the above Proposition 3.36, we will have sen-

sitivity to changes in tile lengths.

Note that by Theorem 2.62, the constant c = 1 suspension flow will have eigenvalues

Z
[1

4

]
.

(ii) The height of the substitution h(θ) = 2.

Proposition 3.37. If θ is a height two substitution of constant length l and incidence

matrix Mθ with associated eigenvalues l, r1 = 0 and r2 ∈ Z−{0}, then we will have

insensitivity to changes in lengths and the point spectrum σpp is always a scalar multiple

of 1
2 Z
[1

l

]
.

Proof. As mentioned before, any substitution θ of height h(θ) = 2 is of type 0−0 with

odd length l andR=




k+ `

k

`

 | k, ` ∈ Z

 . Among the eigenvalues of the incidence

matrix Mθ is +1 or −1 with associated left eigenvector (−1,1,1). Without loss of gener-

ality, assume that +1 is an eigenvalue, let v1 = (1,1,1),v2 = (−1,1,1) and v3 be the left

eigenvectors associated to eigenvalues l,r2 = 1 and r1 = 0 respectively.

Expressing the general length vector L = (L1,L2,L3) as a linear combination of the three

left eigenvectors of Mθ , direct calculation shows that c1 6= 0 for L to have positive entries.

Now we see that for any v ∈R,
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KLMnv = K(c1(1,1,1)+ c2(−1,1,1)+ c3v3)Mnv

= K(c1ln(1,1,1)+ c2(−1,1,1)+0)v

= K(c1ln(1,1,1)+ c2(−1,1,1))v

= Kc1ln(2k+2`)

= 2Kc1ln(k+ `).

For sufficiently large n and for all v ∈R, the expression 2Kc1ln(k+ `) will converge to 0

(mod 1) if and only if K is of the form 1
c1

m
2·lr for some m∈Z,r ∈N. Hence the point spec-

trum will be a scalar multiple of 1
2 Z
[1

l

]
and we see that we have a very rigid structure in

this case. Which means that we have insensitivity to changes in the tile lengths.

Example 3.12. θ(0) = 010, θ(1) = 201 and θ(2) = 102.

This substitution θ is of type 0-0, has odd length l=3 and thus the height h(θ) = 2.

The incidence matrix is Mθ =


2 1 1

1 1 1

0 1 1

 with eigenvalues 3,1 and 0, and associated

left eigenvectors (1,1,1),(−1,1,1) and (1,−2,1). By the previous Proposition 3.37, the

point spectrum σpp is a scalar multiple of 1
2Z[

1
3 ] and thus we will have insensitivity to

changes in tile lengths.

Case III. If q(x) has 0 as a double root, that is, r1 = r2 = 0.

The subcase (ii), where the substitution has height equal to two, simply does not exist

because in such case the incidence matrix Mθ will always have±1 as an eigenvalue. Thus

we only have the following subcase:

(i) The height of the substitution h(θ) = 1.

Proposition 3.38. Let θ be a substitution of constant length l and incidence matrix Mθ

with eigenvalues l,0 and 0, with associated left eigenvectors (1,1,1),v2 and v3. Then the

point spectrum σpp is always a scalar multiple of Z
[1

l

]
.
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Proof. Expressing the general length vector L = (L1,L2,L3) as a linear combination of

the three generalized left eigenvectors (1,1,1),v2 and v3 of Mθ associated to the eigen-

values, we see that for any v ∈R

KLMnv = K(c1(1,1,1)+ c2v2 + c3v3)Mnv

= K(c1ln(1,1,1)+0+0)v

= Kc1ln(1,1,1)v.

We know that K is in σpp if and only if KLMnv→ 0 (mod1) as n→ ∞. Since σpp is

countable (as can be seen from Theorem 3.1 in [33]), then we cannot have c1 = 0 since

that would lead to an uncountable σpp.

Let (1,1,1)v = m
′
v ∈Z and γ = gcd{m′v |m

′
v > 0}. Then for sufficiently large n and for all

v ∈R, KLMnv→ 0 (mod1) if and only if K is of the form 1
c1

1
γ

m
lr for some m ∈ Z,r ∈N.

Thus the point spectrum σpp is always a scalar multiple of Z
[1

l

]
and so we have a very

rigid structure.

Remark 3.39.

1. As can be noticed, the argument is independent of the nature ofR.

2. This proposition also applies to Example 3.3.

Example 3.13. θ(0) = 0102, θ(1) = 0201 and θ(2) = 0102.

Here the substitution θ is a height one substitution of type 0-0 with even length l=4

and incidence matrix Mθ =


2 2 2

1 1 1

1 1 1

 with eigenvalues 4,0 and 0, and associated left

eigenvectors (1,1,1),(−1,1,1) and (1, 0,−2). By applying Proposition 3.38, we see

that the point spectrum will be a scalar multiple of Z
[1

4

]
and so we will have complete

insensitivity to changes in tile lengths.

Example 3.14. θ(0) = 012, θ(1) = 201 and θ(2) = 120.

The incidence matrix is Mθ =


1 1 1

1 1 1

1 1 1

 with eigenvalues 3,0 and 0, and associated

left eigenvectors (1,1,1),(−1,0,1) and (−1,1,0). The substitution has height h(θ) = 1
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since we have two successive 0’s. Indeed, we have also two successive 1’s and 2’s, thus

R = Z3 by Proposition 3.15. By Theorem 2.62, the constant c = 1 suspension flow will

have eigenvalues Z
[1

3

]
, and by Proposition 3.38, the point spectrum will be a scalar

multiple of Z
[1

3

]
and so we will have complete insensitivity to changes in tile lengths.

Case IV. If the roots r1 and r2 of q(x) are such that |r1|> 1 and 0 < |r2|< 1.

We will give some definitions and theorems that we shall need.

Definition 3.40. A real number λ > 1 is called a Pisot number if and only if it is an

algebraic integer and all its Galois conjugates (other than λ ) are of modulus less than 1.

Pisot numbers have the following characterization:

λ > 1 is a Pisot number if and only if λ n→ 0 (mod 1) as n→ ∞.

The following characterization of Pisot numbers can be found in [11].

Theorem 3.41. Suppose that λ > 1 is an algebraic number (over the field of rational

numbers Q). The following are equivalent

(i) λ is a Pisot number

(ii) There exists non-zero real x such that

lim
n→∞

λ
nx = 0 (mod 1).

Moreover, any x satisfying (ii) belongs to Q[λ ], the field extension of Q by λ .

Let the set Xλ be defined by

Xλ =
{

x ∈ R | lim
n→∞

λ
nx = 0 (mod 1)

}
,

where λ is a Pisot number. The following theorem gives a characterization of the set Xλ .

Theorem 3.42. [23] Suppose λ > 1 is Pisot. Let p′ be the derivative of the monic ir-

reducible polynomial of λ over Z, and Z[λ ]∗ = 1
p′(λ )Z[λ ]. Then x ∈ Xλ if and only if

λ nx ∈ Z[λ ]∗ for some n≥ 0. Z[λ ]∗ is called the dual lattice of λ .

Now we are going to examine the nature of the point spectrum when q(x) has a Pisot

root. Although we cannot handle the general case, we are able to give conclusions in

some special cases.
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Note that if q(x) has a root r such that 0 < |r| < 1, then it must be quadratic irrational

(by the rational root theorem) and the other root r, which is the conjugate of r, satisfies

|r|> 1 since rr = c ∈ Z−{0}, where c is the constant term in q(x) = x2 +bx+ c.

In this case, we cannot have a height two substitution, because +1 or −1 occurs as a

root of q(x). Also, we cannot have a height one substitution of type 0-0, because in this

situation 0 occurs as a root of q(x). Hence the only case that we are going to examine is

the following case:

(i) The height of the substitution h(θ) = 1.

Proposition 3.43. Let θ be a substitution of constant length l such that its incidence

matrix Mθ has eigenvalues l,r1 and r2 with |r1|> 1 and 0 < |r2|< 1, that is, r1 or −r1 is

a Pisot number. Expressing the general length vector L = (L1,L2,L3) by

L = s(1,1,1)+ c1v1 + c2v2,

where (1,1,1), v1 and v2 be the associated left eigenvectors, then we have the following

conclusions for σpp of the substitution tiling space Tθ :

1. if c1 = 0, then σpp = d Z
[1

l

]
f or some d ∈ R−{0},

2. if c2 = 0 and s
c1

/∈Q[r1], then σpp = {0},

3. if s = 0, then σpp ⊆ 1
c1
Q[r1] and contains a scalar multiple of Z[r1].

Thus we have sensitivity to changes in tile lengths.

Proof. For any v ∈R, we have

KLMnv = K(sln(1,1,1)+ c1rn
1v1 + c2rn

2v2)v.

Here the entries of vi’s, i = 1,2, are no longer rational numbers typically. It can be shown

that these entries can be chosen to be in the quadratic field Q[r1].

1. Let c1 = 0, then we can conclude that s 6= 0 by an argument similar to the one given

in Proposition 3.38. Then for sufficiently large n,

KLMnv = K(sln(1,1,1)+c2rn
2v2)v→Ksln(1,1,1)v, (because |r2|< 1, then rn

2→ 0

as n→ ∞).

Let (1,1,1)v = m
′
v ∈ Z and γ = gcd{m′v | m

′
v > 0}. Then K ∈ σpp if and only if for
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sufficiently large n and for all v ∈ R, Ksln(1,1,1)v→ 0(mod1) if and only if K is

of the form 1
sγ

m
lr for some m ∈ Z,r ∈ N0, that is K ∈ 1

sγ
Z[1

l ]. Therefore, the point

spectrum is a scalar multiple of Z[1
l ].

2. Let c2 = 0 and s
c1

/∈Q[r1], then we conclude that c1 6= 0 because technically speak-

ing s
c1

does not make any sense if c1 = 0. We will prove in this special case that

we will have trivial point spectrum. Assume that K 6= 0. Since we do not have any

contribution from the eigenvector with associated small eigenvalue in this case, we

may apply the same arguments as in the proof of Corollary 3.8 to conclude that for

sufficiently large n,

tn = K(sln(1,1,1)v+ c1rn
1v1v) = ν ∈ Z

and

tn+1 = K(sln+1(1,1,1)v+ c1rn
1v1v) = µ ∈ Z.

So
tn+1

tn
=

sln+1(1,1,1)v+ c1rn+1
1 v1v

sln(1,1,1)r+ c1rn
1v1v

=
µ

ν
∈Q,

which implies

sln+1(1,1,1)v+ c1rn+1
1 v1v =

µ

ν
(sln(1,1,1)v+ c1rn

1v1v).

Note that (1,1,1)v ∈ Z and v1v ∈Q[r1]. Let (1,1,1)v = d1 and v1v = d2, then

s
c1
(ln+1d1−

µ

ν
lnd1) =

µ

ν
rn

1d2− rn+1
1 d2.

Now

ln+1d1−
µ

ν
lnd1 = q1 ∈Q[r1]

and
µ

ν
rn

1d2− rn+1
1 d2 = q2 ∈Q[r1].

Thus
s
c1

q1 = q2.

So s
c1
= q2

q1
∈Q[r1] which is a contradiction. Hence K = 0 and σpp = {0}.

3. Let s = 0, then by a similar reasoning to 1. c1 6= 0. For v ∈R,

KLMnv = K(c1rn
1v1 + c2rn

2v2)v.
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For sufficiently large n,

KLMnv→ Kc1rn
1v1v

but

Kc1rn
1v1v→ 0(mod1)

if and only if

Kc1v1v ∈ Xr1

if and only if ∃ n0 ∈ N0 such that

rn0
1 Kc1v1v ∈ Z[r1]

∗

if and only if

rn0
1 Kc1v1v = (a1 +b1r1)

1
q′(r1)

,

where q′(r1) is the derivative of the monic irreducible polynomial of r1 over Z

if and only if

K =
(a1 +b1r1)

q′(r1)v1vc1rn0
1
,

where a1 , b1 ∈ Z. That is, K ∈ 1
c1
Q[r1] and hence σpp ⊆ 1

c1
Q[r1].

Now we will show that σpp 6= {0}. As mentioned before, for K to be in σpp we must

show that there exists n0 ∈ N0 such that for all v ∈R

rn0
1 Kc1v1v q′(r1) ∈ Z[r1].

It can be demonstrated that there exists a rational number ρ ∈ Q−{0} such that all the

entries of v1 are in ρZ[r1] which implies that for all v ∈R, v1v ∈ ρZ[r1]. Therefore,

rn0
1 Kc1v1v q′(r1) ∈ ρKc1Z[r1].

If K ∈ 1
c1ρ

Z[r1], then rn0
1 Kc1v1v q′(r1) ∈ Z[r1] and hence 1

c1ρ
Z[r1]⊆ σ pp.

Remark 3.44.

1. Examining the point spectrum σpp in some special cases shows that it is sensitive

to changes in tile lengths. Nevertheless, we do not have techniques to handle the

general case when sc1c2 6= 0.

84



2. Note that some of the special cases may not exist in the sense that it will depend on

the precise nature of the vi’s, when i = 1,2. For example, if v1 has some positive

and some negative entries, and if we say s and c2 equal to 0, then no value of c1

will make a legal length vector. So there are some examples where some special

cases actually do not occur.

3. We do not know any example with Pisot root whenR 6= Z3.

Example 3.15. θ(0) = 011010121, θ(1) = 010101212 and θ(2) = 122020212.

Here the substitution has length l = 9, its incidence matrix is Mθ =


3 3 2

5 4 2

1 2 5

 with

eigenvalues 9, r1 =
1
2(3+

√
13) and r2 =

1
2(3−

√
13) with associated left eigenvectors

(1,1,1), v1 = ( 1
12(−47+11

√
13), 1

6(13−4
√

13),1) and v2 = ( 1
12(−47−11

√
13), 1

6(13+

4
√

13),1). As can be noticed, the root r1 is a unit Pisot root.

Since we have two successive 1’s the height h(θ) = 1 and so by Theorem 2.62, the

constant c = 1 suspension flow will have eigenvalues Z[1
9 ]. Successive 1’s and 2’s occur

in the θ -subshift, thereforeR= Z3.

Expressing the length vector L = (L1,L2,L3) by L = s(1,1,1)+c1v1+c2v2 and applying

Proposition 3.43, we see that:

1. if c1 = 0, then σpp will be a scalar multiple of Z
[1

9

]
,

2. if c2 = 0 and s
c1

/∈Q[r1], then σpp = 0,

3. if s = 0, then σpp ⊆ 1
c1
Q[r1]. For this particular v1,v1 ∈ 1

6Z[r1], which implies that

for all v ∈R,

v1v ∈ 1
6
Z[r1].

Therefore

rn0
1 Kc1v1v q′(r1) ∈

1
6

Kc1Z[r1].

If K ∈ 6
c1
Z[r1], then

rn0
1 Kc1v1v q′(r1) ∈ Z[r1]

and hence 6
c1
Z[r1]⊆ σpp.
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Example l h(θ ) R Full recurrence vector r1 r2 σpp

3.6 4 1 Z3

0
1
0

 1+7i
2

1−7i
2 typical{0}

3.7 4 1 Z3

0
0
1

 −1 −2 typical{0}

3.8 7 1 Z3

1
0
0

 1 1 typical {0}

3.9 5 2


k+ `

k
`

 | k, ` ∈ Z

 none 1 1 typical {0}

3.10 3 1 Z3

1
2
0

 1 0 typical {0}

3.11 4 1


k+ `

k
`

 | k, ` ∈ Z

 none 0 1 typical {0}

3.12 3 2


k+ `

k
`

 | k, ` ∈ Z

 none 0 1 scalar multiple of 1
2Z[

1
3 ]

3.4 6 1


 m

n
n

 | m,n ∈ Z

 none 0 0 scalar multiple of Z[1
6 ]

3.13 4 1


k+ `

k
`

 | k, ` ∈ Z

 none 0 0 scalar multiple of Z[1
3 ]

3.14 4 1 Z3 none 0 0 scalar multiple of Z[1
4 ]

3.15 9 1 Z3

0
1
0

 1
2(3+

√
13) 1

2(3−
√

13) sensitive

TABLE 3.2: Classification of point spectrum σpp.
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Chapter 4

Fixed Point Theorems and Tiling
Problems

In this chapter we consider a different type of tiling problem related to tilings of the

integers. We show that a general fixed point conjecture (see Conjecture II below) is true

for J = {1,2} and also give a tiling proof of our result. The result of this chapter will

appear in [1].

4.1 Fixed points conjectures

The well-known Banach contraction principle states that every contraction from a com-

plete metric space into itself has a unique fixed point. It has played a fundamental role in

various areas of pure and applied sciences. During the last 50 years, it has been general-

ized and extended in many ways by a number of authors. In [17] the following interesting

conjecture, connected with Banach’s fixed point theorem, was considered.

Conjecture I. Let (X ,d) be a complete metric space and let f : X → X satisfy the fol-

lowing condition:

inf{d( f n(x), f n(y)) | n ∈ J} ≤ Kd(x,y) (4.1)

for all x,y ∈ X and some K ∈ (0,1), where J is a subset of positive integers. Then f has

a fixed point.
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Remark 4.1.

1. The condition (4.1) does not imply the continuity of f .

2. If J= {1} in the condition (4.1), then f is a contraction on X.

3. If f k is a contraction, then the condition (4.1) holds.

We also note that the case J = {1} corresponds to the Banach contraction principle and

the case J= {k}, where k ∈ N, to a result in [6]. Conjecture I is not true when J= N, as

shown in [17] and [31].

Example 4.1. [31] Let X = [0,∞) with the usual metric d(x,y) = |x−y| for all x,y ∈ X .

Define a mapping f : X → X by

f (x) =
√

x2 +1

for all x ∈ X . Then f n(x) =
√

x2 +n for all x ∈ X , and for all x,y ∈ X with x < y, we can

find K ∈ (0,1) such that

inf{| f n(x)− f n(y) | n ∈ N} ≤ K|x− y|.

However, it is clear that f has no fixed points.

Definition 4.2. Let f : X → X be a mapping and α : X×X → [0,∞). We say that f is

1. α-admissible [30] if x,y ∈ X and α(x,y)≥ 1 implies α( f (x), f (y))≥ 1;

2. triangular α-admissible [19] if

(a) α(x,y)≥ 1 implies α( f (x) , f (y))≥ 1, x,y ∈ X ;

(b)

{
α(x,y)≥ 1

α(y,z)≥ 1
implies α(x,z)≥ 1, x,y,z ∈ X .
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In this chapter, we consider the following generalization:

Conjecture II. Let (X ,d) be a complete metric space and let f : X → X satisfy the

following condition:

inf{α(x,y)d( f m(x), f m(y)) | m ∈ J} ≤ Kd(x,y) (4.2)

for all x,y ∈ X , some K ∈ (0,1) and α : X ×X → [0,∞), where J is a subset of positive

integers. Then f has a fixed point.

Example 4.2. Let X = R with the usual metric d(x,y) = |x− y| for all x,y ∈ X . Define

a mapping f : X → X by

f (x) =


√

x2 +1 if x≥ 0

2x otherwise,

and α : X×X → [0,∞) by

α(x,y) =

1 if x,y ∈ [0,∞)

0 otherwise.

Then f n(x) =
√

x2 +n for x∈ [0,∞) and f n(x) = 2nx otherwise. Note that for all x,y∈ X ,

we can find K ∈ (0,1) such that

inf{α(x,y)| f n(x)− f n(y) | n ∈ N} ≤ K|x− y|.

So f satisfies (4.2). However, f does not satisfy (4.1). To see this, let x =−1 and y = 0,

then

inf{| f n(−1)− f n(0) | n ∈ N}= inf{2n +
√

n | n ∈ N}> K|−1−0|

for all K ∈ [0,1). It is clear that f has no fixed points.

Taking α(x,y) = 1 for all x,y ∈ X , it follows that if Conjecture I holds then Conjecture II

holds as well. We note that Conjecture II is not true for infinite J. One is led to conjecture

whether Conjectures I and II are true if J is finite. In [31], Stein established Conjecture

I for the class of strongly continuous mappings and J= {1,2, . . ,n}. In [17], the authors

showed that Conjecture I is true if J= {1,2} without any additional assumption on f .

In this chapter we show that Conjecture II is true for J = {1,2}. We also give a tiling

proof of our result.
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4.2 Fixed point theorems

Theorem 4.3. Let (X ,d) be a metric space and let f : X → X satisfy the following

condition:

inf{α(x,y)d( f m(x), f m(y)) : m ∈ N} ≤ Kd(x,y)

for all x,y ∈ X, some K ∈ (0,1) and α : X×X → [0,∞). Suppose that

(i) f is α−admissible;

(ii) there exist x0 ∈ X with α(x0, f (x0))≥ 1 and m ∈ N such that f m(x0) = x0.

Then x0 is a fixed point of f .

Proof. Let x0 ∈ X with α(x0, f (x0)) ≥ 1 and f m(x0) = x0. Define the sequence (xi)

in X by xi+1 = f (xi) for i ∈ N∪ {0}. Then it follows from α−admissibility of f that

α(x0,x1) ≥ 1 which implies α(x1,x2) = α( f (x0), f (x1)) ≥ 1 and thus, by induction,

α(xi,xi+1)≥ 1 for all i. Choose L such that K < L< 1. Now for each i∈ {0,1, . . . ,m−1},
there is mi ∈ N such that

α(xi,xi+1)d( f mi(xi), f mi(xi+1))≤ Ld(xi,xi+1)

and so

d( f mi(xi), f mi(xi+1))≤ α(xi,xi+1)d( f mi(xi), f mi(xi+1))≤ Ld(xi,xi+1).

Since f m(x0) = x0, following arguments as in Lemma 1 of [17], we can find a sequence

(ki) in {0,1, . . . ,m−1} such that

d( f ki(x0), f ki+1(x0))≤ Ld(xki−1,xki−1+1).

Since ki ∈ {0,1, . . . ,m−1}, we can find i and j in N such that ki+ j = ki. Thus

d( f ki(x0), f ki+1(x0)) = d( f ki+ j(x0), f ki+ j+1(x0))

≤ L jd(xki,xki+1)

= L jd( f ki(x0), f ki+1(x0)).

Since L < 1, we have d( f ki(x0), f ki+1(x0)) = 0 and so f ki(x0) = f ki+1(x0) = f ( f ki(x0)).

That is, f ki(x0) is a fixed point of f . But m− ki > 0 and f m−ki( f ki(x0)) = f ki(x0), that

is, f ki(x0) is a fixed point of f m−ki . This implies that f m(x0) = f ki(x0). But f m(x0) = x0.
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Therefore f m(x0) = f ki(x0) = x0. Hence x0 is a fixed point of f .

Theorem 4.4. Let (X ,d) be a metric space and let f : X → X satisfy the following con-

dition:

min{α(x,y)d( f m(x), f m(y)) : m ∈ J} ≤ Kd(x,y)

for all x,y ∈ X , some K ∈ (0,1) and α : X ×X → [0,∞), where J is a finite subset of

positive integers. Suppose that

(i) f is triangular α−admissible;

(ii) there exists x,z ∈ X such that α(x, f (x))≥ 1, α(z, f (z))≥ 1, α(z,x)≥ 1 and for any

ε > 0, there is an integer N = N(ε) such that d(z, f i+N(x))< ε for any i ∈ {0}∪J.

Then f has a fixed point.

Proof. Let ε > 0 and let δ = ε

1+K . Choose N =N(δ ) as mentioned in the hypothesis such

that d(z, f i+N(x))< δ for any i∈ {0}∪J. By (i) and (ii), α(x, f N(x))≥ 1 and α(z,x)≥ 1

and so α(z, f N(x))≥ 1. Also there exists m ∈ J such that

α(z, f N(x))d( f m(z), f m( f N(x)))≤ Kd(z, f N(x)).

and so

d( f m(z), f m( f N(x))) ≤ α(z, f N(x))d( f m(z), f m( f N(x)))

≤ Kd(z, f N(x))< Kδ .

As a result, we have

d(z, f m(z)) ≤ d(z, f m+N(x))+d( f m+N(x), f m(z))

≤ δ +Kδ = ε.

Since J is finite, there exists m ∈ J such that f m(z) = z. By Theorem 4.3 , z is a fixed

point of f .

Theorem 4.5. Let (X ,d) be a complete metric space and let f : X → X be a continuous

mapping satisfying

inf{α(x,y)d( f m(x), f m(y)) | m ∈ N} ≤ Kd(x,y)
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for all x,y ∈ X , some K ∈ (0,1) and α : X×X → [0,∞). Suppose that

(i) f is α−admissible;

(ii) there exist x0 ∈ X with α(x0, f (x0)) ≥ 1 and an increasing sequence (ki) of integers

such that

(a) for all i ∈ N, d( f ki(x0), f ki−1(x0))≤CLki−1 for some 0 < L < 1 and C > 0;

(b) there is a positive integer m such that ki− ki−1 = m for infinitely many i.

Then f has a fixed point.

Proof. It follows from (a) that the sequence ( f ki(x0)) is Cauchy and so converges to

x (say) by the completeness of X . The continuity of f further implies that the limit

limi→∞ f m( f ki(x0)) exists. By virtue of (b), there is a subsequence (in) such that

f m( f kin (x0)) = f kin+1(x0). Thus ( f m( f ki(x0))) and ( f ki(x0)) have a common subsequence

and so have the same limits. As a result, we have

f m(x) = f m(lim
i→∞

f ki(x0)) = lim
i→∞

f m( f ki(x0)) = lim
i→∞

f ki(x0) = x.

Hence f has a periodic point and the result now follows from Theorem 4.3.

4.3 On a tiling problem and tiling proof of a fixed point

theorem

Let (X ,d) be a complete metric space, let x0 ∈ X , and let f : X → X be triangular α-

admissible with α(x0, f (x0))≥ 1 and satisfy the following condition:

min{α(x,y)d( f n(x), f n(y)) | n ∈ J} ≤ Kd(x,y)

for all x,y ∈ X and some K ∈ (0,1), where J= {1,2, ...,N}.

Let x(q,q+ k) denote a tile in one dimension of length k that starts from q. Our aim is

to have a usable bound for the term d( f q(x0), f q+k(x0)), which implies the sequence of

iterates is Cauchy and its limit is the fixed point. The idea here is to be able to tile that

segment of the line that goes from q to q+ k with x(q,q+ k), a tile that starts from q and

is of length k. In order to obtain a collection of tiles whose metric analog is a Cauchy

sequence, following [17] we have the following notion.
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Definition 4.6. Given x0 ∈ X , a set of tiles E is called a good collection of tiles for x0 if

and only if there exist C > 0 and 0 < L < 1 such that for all tiles x(q,q+ k) in E ,

d( f q(x0), f q+k(x0))≤CLq.

Our tiling problem affects fixed point theorems and consists of an initial good collection

of tiles, set of rules which enable us to enlarge the collection, and a goal showing that the

good collection can be enlarged according to rules such that it includes a pre-determined

sub-collection of tiles. For instance, our objective is to enlarge the original good collec-

tion such that it contains all but finitely many adjacent tiles of the same length. If a tile

of length of 4 starts from 5 and covers 5 – 6, 6 – 7, 7 – 8, 8 – 9, then the next adjacent

tiles of length 4 starts at 9 and covers 9 – 10, 10 – 11, 11 – 12, 12 – 13. Assuming

that the good collection of tiles consists of adjacent tiles of length 4, starting at 5, which

cover all but a finite portion of the real line corresponds to showing that the sequence

( f 5(x0), f 9(x0), f 13(x0), ...) is Cauchy and thus converges. If f satisfies the assumption

of results of previous section, then f has a periodic point and thus has a fixed point. We

present some rules defined in [17] which lead to a tiling proof of our fixed point theorem.

Rule 1. Suppose that we have a good collection E of tiles. Then there is a good collection

E ′ with E ⊂ E ′ having the following property: If x(q,q+ k) lies in E , then at least one of

the tiles x(q+1,q+ k+1), x(q+2,q+ k+2), ..., x(q+N,q+ k+N) lies in E ′.

Proof. If x(q,q+ k) lies in E , then d( f q(x0), f q+k(x0))≤CLq. Since α(x0, f (x0))

≥ 1, f is triangular α-admissible, α( f (x0) , f 2 (x0))≥ 1 and so α(x0, f 2 (x0))

≥ 1. By induction, we have α(x0, f k (x0))≥ 1 for all k ∈ N.

Since f is α-admissible, we have, by induction, α( f q(x0), f q+k(x0))≥ 1. By the assump-

tion on f , there exists j1 ∈ {1, ...,N} such that

α( f q(x0), f q+k(x0))d( f q+ j1(x0), f q+k+ j1(x0))≤ Kd( f q(x0), f q+k(x0))

and so

d( f q+ j1(x0), f q+k+ j1(x0)) ≤ α( f q(x0), f q+k(x0))d( f q+ j1(x0), f q+k+ j1(x0))

≤ Kd( f q(x0), f q+k(x0))≤ KCLq.

Continuing in this way, we can find a sequence { jn | n= 1,2,3, ...} such that d( f q+ jn(x0),

f q+k+ jn(x0)) ≤ KnCLq and 1 ≤ jn+1− jn ≤ N. Thus n ≤ jn ≤ nN which implies n ≥
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jn
N and Kn ≤ K

jn
N . So d( f q+ jn(x0), f q+k+ jn(x0)) ≤ CRq+ jn , where R = max{K 1

N ,L}.
Consequently, the collection E ′ is obtained from E by adjoining all tiles of the from

x(q+ in,q+ in + k) with constants of the collections E ′, C > 0 and 0 < R < 1.

Rule 2. Suppose that we have a good collection E of tiles. Then there is a good collection

E ′ with E ⊂ E ′ having the following property: If x1 and x2 are adjacent tiles in E with x1

preceding x2, then E ′ contains the tile that begins at the start of x1 and ends at the end of

x2.

Proof. If x(q,q+ k) lies in E , then d( f q(x0), f q+k(x0)) ≤ CLq. Suppose that i < n < p

and that x1 = x(i, i+n) and x2 = x(i+n, i+n+ p). Then

d( f i(x0), f i+n+p(x0)) ≤ d( f i(x0), f i+n(x0))+d( f i+n(x0), f i+n+p(x0))

≤ CLi +CLi+n =C(1+Ln)Li ≤ 2CLi.

The collection E ′ is obtained from E by adjoining all sum of two adjacent tiles in E with

constants of the collections E ′, 2C > 0 and 0 < L < 1.

Rule 3. Suppose that we have a good collection E of tiles and that q ∈ N is fixed. Then

there is a good collection E ′ with E ⊂ E ′ having the following property: If E contains two

tiles which either begin or end at the same point, and the longer tile is of length less than

or equal to q, then E ′ contains the difference of the shorter and longer tiles.

Proof. Suppose i < n < p. We consider the following two cases:

Case 1: If the tiles x(i, i+ p) and x(i, i+n) belong to E , then

d( f i+n(x0), f i+p(x0)) ≤ d( f i+n(x0), f i(x0))+d( f i(x0), f i+p(x0))

≤ CLi +CLi = 2CLi =
2C

Ln−i L
n ≤ 2C

Lq Li+n.

Here we assume that the longer tile is of length less than or equal to q.

Case 2: If the tiles x(i, i+ p) and x(i+n, i+ p) belong to E , then

d( f i(x0), f i+n(x0)) ≤ d( f i(x0), f i+p(x0))+d( f i+p(x0), f i+n(x0))

≤ CLi +CLi+n =C(1+Ln)Li ≤ 2CLi ≤ 2C
Lq Li.
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The collection E ′ is obtained from E by adjoining all differences of tiles of length less than

or equal to q in E which begin or end at the same point with constants of the collections

E ′, 2C
Lq > 0 and 0 < L < 1.

Applying the above rules, we are able to prove the following fixed point theorem. Note

that any finite collection of tiles is a good collection for any constant L < 1, by choosing

the constant C sufficiently large.

Theorem 4.7. Let (X ,d) be a complete metric space and let f : X → X satisfy the fol-

lowing condition:

min{α(x,y)d( f m(x), f m(y)) | m = 1, 2} ≤ Kd(x,y)

for all x,y ∈ X , some K ∈ (0,1) and α : X×X → [0,∞). Suppose that

(i) f is continuous and triangular α−admissible;

(ii) there exist x0 ∈ X with α(x0, f (x0))≥ 1.

Then the sequence ( f q(x0)) is Cauchy and f has a fixed point (which is the limit of the

sequence).

Proof. We follow [17]. Let E0 be the good collection consisting of tiles x(0,1) and

x(0,2). Apply Rule 1 to E0 to get a good collection E1. Observe that if x(q,q + 1),

with q≥ 1, does not lie in E1, then both x(q−1,q) and x(q+1,q+2) lie in E1. Similarly,

if x(q,q+2), with q≥ 1, does not lie in E1, then both x(q−1,q+1) and x(q+1,q+3) lie

in E1. Since all tiles in E1 are of length less than or equal to 2, we obtain a good collection

E2 by applying Rule 3 to E1. We claim that E2 includes the tile x(q,q+ 1) for q ≥ 2. If

x(q,q+1) lies in E1, then we are done since E1 ⊂ E2. If x(q,q+1) does not lie in E1, then

both x(q− 1,q) and x(q+ 1,q+ 2) lie in E1. If x(q− 1,q+ 1) lies in E1, then applying

Rule 3 to tiles x(q−1,q+1) and x(q−1,q) both belonging to E1 to get the tile x(q,q+1)

lies in E2. If x(q− 1,q+ 1) does not lie in E1, then applying Rule 3 to tiles x(q,q+ 2)

and x(q+1,q+2) both belonging to E1 to get the tile x(q,q+2) lies in E1 and x(q,q+1)

lies in E2. This implies that d( f q(x0), f q+1(x0))≤CLq for q≥ 2. Suppose p = q+ k for

k ≥ 1. Then

d( f q(x0), f p(x0)) ≤ d( f q(x0), f q+1(x0))+d( f q+1(x0), f q+2(x0))+

...+d( f q+k−1(x0), f q+k(x0))

≤ CLq +CLq+1 + ...+CLq+k−1

≤
∞

∑
n=q

CLn.
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Since 0 < L < 1, the sequence ( f q(x0)) is Cauchy and so converges to x ∈ X . Since f is

continuous, ( f q+1(x0)) converges to f (x).

Since d(x, f (x)) = limn→∞ d( f q(x0), f q+1(x0)) = 0, this implies that x is a fixed point of

f .

Taking α(x,y) = 1 for all x,y ∈ X , we get the following corollary. Note that in this case

we do not require the continuity of f instead we apply Theorem 4.4. Indeed, { f q(x0)}
is a Cauchy sequence as above and so converges to x ∈ X . Thus for any ε > 0, there is

an integer N = N(ε) such that d( f i+N(x0),x) < ε for all i ∈ {0}∪ J. So, by Theorem

4.4, f has a fixed point. For uniqueness, choose L such that K < L < 1. If x = f (x) and

y = f (y) with x 6= y. Then there exist m ∈ {1,2} such that d( f m(x), f m(y)) ≤ Ld(x,y).

This implies d(x,y)≤ Ld(x,y). This is a contradiction since L < 1.

Corollary 4.8. [17] Let (X ,d) be a complete metric space and let f : X → X satisfy the

following condition:

min{d( f m(x), f m(y)) | m = 1, 2} ≤ Kd(x,y)

for all x,y ∈ X and some K ∈ (0,1). Then f has a unique fixed point.

We end the chapter with the following problem.

Problem Let (X ,d) be a complete metric space, let x0 ∈ X, and let f : X → X be α-

admissible with α(x0, f (x0))≥ 1 and satisfy the following condition:

min{α(x,y)d( f n(x), f n(y)) | n ∈ J} ≤ Kd(x,y)

for all x,y ∈ X and some K ∈ (0,1), where J= {1,2, ...,N}. Does f have a fixed point?
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