THE STRUCIURE OF AQUEOLS SOIUTIOITS

BY

Alan K. Soper

A thesis submitted for the degree of Doctor of Fhilosophy

University of Leicester, 1977.

Nだ 215


3． 371

## PRWFACE

The work presented in this thesis would not have been possible without the assistance, both physically and morally, of a large number of people in various establishments, and I am extremely grateful to all these people, whether they are mentioned here or not. In particular, Frofessor Enderby, my supervisor, must be thanked for his inspiring enthusiasm and sense of humour without them I think I would have given up long ago. I should like to thank Dr. Neilson for many interesting 'arguments', and for much help in the presentation of the nickel chloride data. My thanks are also due to Dr . Howe for much useful discussion and advice, and to $\operatorname{Dr}$. Nguyen for permission to quote his data on liquid iron, and liquid nickel-telluride alloys.

The experiments were performed at I.I.L., Grenoble, and Dr. Howells as local contact played a major part in ensuring the smooth running of the experiments : I wish to thank him for his very generous hospitality. I am also grateful to Irs. Knoll, Chieux and $\operatorname{Big}$ ger, for their excellent maintenance of the D4 diffractometer, and their continual readiness to help at awkward moments.

Computing was an essential part of the data analysis: I should like to thank the staff of the computer laboratories at I.L.L. and Leicester for the considerable use of their respective machines.

The sam les were provided by the Science Research Council, and sample preparation was aided considerably by the cooperation of Messrs. Les Bint and Dave McGahan of the Chemistry Division at Harwell.

I am greatly indebted to the Theoretical Fhysics group at Ieicester, especially IFick Guirie and Professor Beeby, for many illuminating discussions. I must thank the S.R.C. for their Researah Studentship, and their very generous support whilst in Grenoble. In the later stages, my parents and family were wonderful in providing a warm friendly home, a whole feast of excellent grub, and endless cups of coffee. I thank myself for laboriously typing the text.

## STAMISTICAL IECHANICS AND NETPTRCN SCATTERTMG

1) Distribution Functions

Frogress in the structure of liquids has generally been achieved as an interplay between theory and experiment, and it is necessary to define a quantity which relates to both. Distribution functions form the building blocks of statistical mechanical theories, (1) and (2), and can be obtained from experiment, at least in principle.

In terms of the $\gamma$-space, each particle $j$ is given a momentum vector $p_{j}$ and a position vector $\underline{r}_{j}$. There are $N$ particles in the system and we represent the entire system by 3 N dimensional vectors $\underline{I}^{(N)}$ and $\underline{p}^{(N)}$, where, for example, $\underline{I}^{(N)}=\sum_{j}{\underset{Y}{j}}$. Guantum mechanics applies to the system, so we define an elemental volume of phase space as $h^{-3 N_{d \underline{p}}}{ }^{(N)} d \underline{r}{ }^{(N)}$, where $h$ is Planck's constant, and $d p^{(N)}=\prod_{\text {( }} d \underline{p}_{j}$. We then define a geineric distribution function $F\left(\underline{p}^{(\mathbb{N})}, \underline{\underline{r}}^{\left(\mathbb{N}^{j}\right)}\right.$ ) for a system with identical particles such that

$$
h^{-3 N} F\left(\underline{p}_{-}^{(N)}, \underline{x}^{(N)}\right) d \underline{p}^{(N)} d \underline{r}^{(N)}
$$

is the probability that any one of the $\mathbb{N}$ particles will be found within $d \underline{p}_{1} d x_{1}$ at $\underline{p}_{1}, \underline{x}_{1}$, while simultaneously any other particle will be found within $\underline{-r}_{2} \frac{d r_{2}}{}$ at $\underline{p}_{2}, \underline{x}_{2}$, etc.

There are N! ways of distributing the particles in the system, which places a normalizing condition on the distribution:

$$
h^{-3 N} \int_{\text {In }} \cdots \int_{\text {the same way we define the distribution for a subset }} F\left(\underline{p}^{(N)}, \underline{r}^{(N)}\right) \prod_{j=1}^{N} d p_{j} d r_{j}=N!\quad \cdots 1.2
$$

of $k \leqslant \mathbb{N}$ particles as:

The factor $1 /(\mathrm{N}-\mathrm{k})$ ! arises because there are ( $\mathrm{N}-\mathrm{k}$ ) ! ways of introducing the $N-k$ remaining particles to the system.

Hence this subset has the normalizing condition:

$$
1 / h^{3 N} \int F^{(k)}\left(\underline{p}^{(k)}, \underline{\underline{r}}^{(k)}\right) \prod_{j=1}^{k} d \underline{p}_{j} d \underline{x}_{j}=\frac{N}{(N-k) \downarrow} \quad \ldots 1.4
$$

and phase distributions of consecutive order are related, from 1.3, by

$$
\left.\underline{F}^{(k)}\left(\underline{p}^{(k)}, \underline{\underline{r}}^{(k)}\right)=1 /(N-k) \int F^{(k+1)} \underline{\underline{p}}^{(k+1)}, \underline{\underline{x}}^{(k+1)}\right) d \underline{\underline{q}}_{x+1} \frac{d x_{k+1}}{\ldots}
$$

An important quantity, derived from the phase distribution, is the configuration distribution, obtained by integrating over all

$$
n^{k} g^{(k)}\left(\underline{I}^{(k)}\right)=1 / h^{3 N} \int_{F^{(k)}}^{\left(\underline{p}^{(k)}, \underline{\underline{r}}^{(k)}\right) d p^{(k)}, \quad k \leqslant N \quad \ldots 1.6}
$$

where $n$ is the average number of particles per unit volume of configurational space. So defined, $g^{(k)}\left(\underline{r}^{(k)}\right)$ is the probability of finding any particle within $d \underline{I}_{1}$ at $I_{1}$, whilst simultaneously finding any other particle within $\frac{r_{2}}{2}$ at $\underline{I}_{2}$, etc. Consecutive distributions are obtained from (1.5):

$$
\left.\left.g^{(k)} \underline{\underline{r}}^{(k)}\right)=\frac{n}{(N-k)} \int g^{(k+1)} \underline{( }^{(k+1)}\right) d \underline{r}_{k+1}
$$

Thus, for example, the pair and triplet correlation functions are given by:

$$
\begin{aligned}
& \left.n^{2} g^{(2)}\left(\underline{\underline{r}}_{1}, \underline{\underline{r}}_{2}\right)=\frac{n^{N}}{(N-2)!} \int \ldots \int g^{(N)} \underline{\underline{r}}^{(N)}\right) \prod_{j=3}^{N} \frac{d \underline{r}_{j}}{} \quad \ldots 1.8 a \\
& \left.n^{3} g^{(3)}\left(\underline{r}_{1}, \underline{r}_{2}, \underline{x}_{3}\right)=\frac{n^{N}}{(N-3)!} \int \ldots \int g^{(N)} \underline{\underline{r}}^{(N)}\right) \prod_{j=4}^{N} \frac{d r_{j}}{n} \ldots 1.8 b
\end{aligned}
$$

and from 1.7

$$
g^{(2)}\left(\underline{r}_{1}, \underline{x}_{2}\right)=\frac{n}{(N-2)} g^{(3)}\left(\underline{r}_{1}, \underline{x}_{2}, \underline{x}_{3}\right) d r_{3}
$$

Combining 1.6, 1.7 and 1.4, we have the important normalization condition:

$$
\int n^{2} g^{(2)}\left(\underline{x}_{1}, \underline{x}_{2}\right) d \underline{r}_{1} \frac{d \underline{x}_{2}}{}=\frac{N!}{(N-2)!}=\mathbb{N}(N-1)
$$

The next stage in the problem is to relate the phase distributions to macroscopic variables. This is done by means of ensembles.
2) Ensembles

The idea of a cloud of points in $\gamma$-space, each point representing a complete system, leads to the concept of an ensemble of
systems in thermal and numerical contact. The entire ensemble, however, is isolated so that although the energy and number of particles may vary from one system to another, the totals for the ensemble remain constant. This is called the Grand Canonical form. The usual
procedure is to assume energy fluctuations are small, so the average distribution is used as the most probable distribution. Moreover, the time average of a function of the system is set equal to the average over the ensemble.

For a one component system, the probability distribution,

$$
\begin{align*}
& \mathrm{F}_{\mathrm{G}} \text {, is defined as : } \\
& \begin{array}{l}
\text { is defined as : } \\
F_{G}\left(\underline{p}^{(N)}, \underline{\underline{r}}^{(N)}\right)=\frac{1}{\mathbf{z}} \exp \left(\frac{\left.\mu \underline{N}-H \underline{\underline{p}}^{(N)}, \underline{\underline{r}}^{(N)}\right)}{k_{B}{ }^{T}}\right)
\end{array}
\end{align*}
$$

where $\mu$ is to be associated with the thermodynamic chemical potential, $H$ is the Hamiltonian for the system with $N$ particles, $k_{B}$ is Boltmann's constant, and $T$ is the absolute temperature. $Z$ is the Grand partition function for the ensemble - it forms a normalizing function for $F_{G}$.
$\mathbf{Z}=\sum_{N=0} \exp \left(\frac{\mu_{N}}{k_{B}^{T}}\right) \exp \left(\frac{\left.-H^{(N)}, \underline{\underline{r}}^{(N)}\right)}{k_{B}^{T}}\right) \quad \ldots 1.12$
This may be wifiten in the form:
$z=\sum_{\mathbb{N} \geqslant 0} \lambda^{N_{Z(N}(\mathbb{N})}$
where $\lambda$, the absolute activity, is given by

$$
=\exp \left(\frac{\mu}{k_{B}{ }^{T}}\right)
$$

... 1.14
and $Z(\mathbb{N})$ is the Canonical partition function.
The link with thermodynamics is made via the entropy, S:-
$S=-k\left\langle\ln F_{G}\right\rangle$

$$
=k \ln Z+\frac{\langle H\rangle}{T}-\frac{\mu\langle N\rangle}{T}
$$

The brackets <...〉〉 represent the average over the ensemble. We associate $\langle H\rangle$ with the internal energy of the system, and the similarity of this equation with the thermodynamic equation for the

Helmholtz free energy, (see, for example, ref. (3) ):-

$$
F=J-T S
$$

suggests we associate the Helmholtz free energy with g :

$$
F=\frac{k m}{B} \ln \boldsymbol{Z}+\mathrm{Nk}_{\mathrm{B}} T \ln \lambda \quad \ldots 1.16
$$

3) Multi-component systems

If we introduce more than one atomic species to the system, then, in general, each species will have its own chemical potential, and the phase distribution is now expressed in the form

$$
F_{G}\left(\underline{p}^{(N)}, \underline{\underline{x}}^{(N)}\right)=\frac{1}{3} \exp \left(\frac{\underline{\mu} \cdot \underline{N}-H\left(\underline{p}^{(N)}, \underline{\underline{x}}^{(N)}\right)}{k_{B}^{T}}\right)
$$

$$
\ldots 1.17
$$

where $\mu \cdot \underline{N}=\sum_{a} \mu_{a} \mathbb{N}_{a}$, and $\mu_{a}, N_{a}$ are the chemical potential and muber of atoms respectively of species a.

There is no effect on the meaning of the overall distribution functions, $f(\mathbb{N})$. As an obvious example of a multi-component system, however, consider the electrical resistivity of binary alloys. in the formalism of Faber and Ziman (4). Since different species of atom have different scattering properties for the electron, the resistivity is dependent on the atomic distribution.

The overall distribution function is split into a series of partial distributions, according to their respective scattering properties. This can be complicated if we have to consider the triplet or higher order correlations, but for pair correlation the total is represented by a sum:

$$
g^{(2)}\left(\underline{x}_{1}, \underline{x}_{2}\right)=\sum_{a} \sum_{b} c_{a} c_{b} g_{a b}^{(2)}\left(\underline{x}_{1}, \underline{x}_{2}\right)
$$

$$
\text { ... } 1.18
$$

where the sums over $a$ and $b$ are each over all the atomic species, and $c_{a}$ is the atomic fraction of a atoms. The partial distribution, $g_{a b}^{(2)}\left(\underline{I}_{1}, \underline{r}_{2}\right)$, represents the probability of finding an atom of species $a$ at $\underline{r}_{1}$, and an atom of species $b$ at $\underline{r}_{2}$.

Another reason for this choice of separation is based
on the normalizing condition, 1.10. We can represent the total number of particles in the system as

$$
N=\sum_{a} N_{a}
$$

Then $N(N-1)=\sum_{a} N_{a}\left(\sum_{b} N_{b}-1\right)$

$$
=\sum_{a} N_{a}\left(N_{a}-1\right)+\sum_{a} \sum_{b \neq a} N_{a} N_{b} \quad \ldots 1.20
$$

Hence we have a normalizing condition for the partial distributions:

$$
\begin{aligned}
& n^{2} c_{a}^{2} \int_{a a}^{(2)}\left(\underline{r}_{1}, \underline{x}_{2}\right) d r_{1} d r_{2}=N_{a}\left(N_{a}-1\right) \\
& n^{2} c_{a} c_{b} \int g_{a b}^{(2)}\left(r_{1}, r_{2}\right) d r_{1} d r_{2}=N_{a} N_{b} \quad a \neq b
\end{aligned} \quad \ldots 1.21 a
$$

4) Neutron Scattering

Various descriptions of the theory in relation to liquids are available, references (5) - (12). Van Hove (6) is generally invoked in the course of these discussions. The scattering process of the neutron is intimately bound up with its wave-particle duality. The fact that a single neutron can set up a series of scattered waves from an array of scattering centres, which then combine, cokerently or incoherently, to form a single neutron, is incomprehensible on any classical basis, and the quantum mechanical approach, therefore, is to consider each neutron as being scattered by the entire array of nuclei available to it.

The neutron is given an initial wave vector, $Q_{0}$, so its initial momentum is 4 , where $\%$ is Flanck's constant/ $2 \pi$, and a scattered wave vector $Q_{1}$. The momentum transferred to the system in scattering the neutron is

$$
b a_{0}=H a_{0}-G_{1}
$$

and the energy tranfer is

$$
w=m^{2}\left(Q_{1}^{2}-Q_{0}^{2}\right) / 2 m
$$

$m$ being the mass of the neutron.

When a neutron strikes a nucleus it is affected by three

## influences:

i) the neutron-nuclear potential - this is generally very short range $\left(10^{-14} \mathrm{~m}\right)$ compared with the wavelength of the neutron $\left(10^{-10} \mathrm{~m}\right)$ - hence the assumption of s-wave scattering only (i.e. no angular momentum interaction),
ii) the mass of the nucleus - this affects the recoil of the nucleus and hence the energy transferred to it by the neutron, iii) the forces holding the nucleus in position, principally due to the surrounding electrons and nuclei. These also determine whether any vibrational modes in the bonds may be excited.

Scattering characteristics are expressed in terms of crosssections. Thus, for an incident flux of $N$ neutrons per unit area, the number scattered into solici ancle d $\Omega$ is $N\left(\frac{d o}{d \Omega}\right)$ d $\Omega$, where $\frac{d \sigma}{d \Omega}$ is the differential scattering cross-section. As, in general, there will be an energy transfer, then a partial differential scattering cross-section is defined such that $N\left(\frac{d^{2} o}{d \Omega}\right)$ is the number of neutrons scattered into solid angle $d \Omega$ with an energy gain of $d w$.
5) Inelastic Scatterin Cross-section

In appendix 1 is derived an expression for the partial differential cross-section (equation A1.10). For neutrons, assumption (i) above implies a $\delta$-function for $\nabla_{j}\left(\underline{I}-\underline{R}_{j}\right)$ - the Fermi pseudopotential (13) :

$$
\nabla_{j}\left(\underline{r}-\underline{R}_{j}\right)=\frac{2 \pi b_{j}}{m} \delta\left(\underline{\underline{r}}-\underline{R}_{j}\right) \quad \ldots 1.24
$$

and the Fourier component of a $\delta$-function is a constant, $\frac{2 \pi b}{m} j$. $b_{j}$ is called the coherent bound scattering length for atom $j$ (by
analogy with scattering from rigid spheres)

## 6) Mastic Scattering

If all the atoms were rigidly bound, neutrons would have the same energy after scattering as before. The Fourier transform over $w$ is then performed immediately, giving a $\delta(t)$ function for the time dependence. This leaves

$$
\frac{d o}{d \Omega}=\sum_{j} \sum_{k} b_{j} b_{k} \exp \left(-i Q_{\bullet} \cdot R_{j}(0)\right) \exp \left(i Q_{\bullet} \cdot R_{k}(0)\right) . \quad \ldots 1.25
$$

The cases for $j=k$ and $j \neq k$ separate:

$$
\sum_{j} b_{j}^{2}+\sum_{j \neq k} b_{j} b_{k} \exp \left(i \xi \cdot\left(R_{k}-R_{j}\right)\right)
$$

The second sumation in 1.26 is considered in appendix 2. For powder diffractometry and liquids the cross-section is averafed over all directions of the incident $Q$ vector, and we see only the radial distribution function. Introducing paxtial structure factors in the Faber-Ziman formulation, i.e.

$$
a_{a b}(Q)=1+4 \pi n \int\left(g_{a b}(x)-1\right) \frac{\sin (Q x)}{Q x} r^{2} d r \quad \ldots 1.27
$$

and atomic fractions

$$
c_{a}=\frac{N_{a}}{N}
$$

we finally obtain for the scattering cross-section

$$
\frac{d O}{d \Omega}=N F(Q)
$$

where
$F(Q)=\sum_{a} c_{a} b_{a}^{2}+\sum_{a} c_{a}^{2} b_{a}^{2}\left(a_{a a}(Q)-1\right)+2 \sum_{a} \sum_{b>a} c_{a} c_{b} b_{a} b_{b}\left(a_{a b}(Q)-1\right)$
Here we have made use of the definition $A 2.8$, so that $g_{a b}(r)$ is invariant in the order of $a, b$, i.e. $\delta_{a b}(r)=\delta_{b a}(r)$.
7) Isotopes in ijeutron scatterins

There are two scattering lengths for each isotope with spin, and the isotopes are distributed randomly among the atoms of a given element.

The summations in equation 1.29 must first be performed over all the spin and isotope states of each element, but the partial structure factors are left outside such averages:-

$$
\begin{aligned}
F(Q)=\sum_{a} c_{a}\left\langle b_{a}^{2}\right\rangle & +\sum_{a} c_{a}^{2}\left(a_{a a}(Q)-1\right)\left\langle b_{a}\right\rangle^{2} \\
& +2 \sum_{a} \sum_{b\rangle a} c_{a} c_{b}\left(a_{a b}(Q)-1\right)\left\langle b_{a}\right\rangle\left\langle b_{b}\right\rangle
\end{aligned}
$$

where the averages are performed over spin and isotope. The coherent bound scattering length of an element is then

$$
\mathrm{b}_{\mathrm{a}}=\left\langle\mathrm{b}_{\mathrm{a}}\right\rangle_{\text {isotope, spin }}
$$

and the isotope bound scattering length is

$$
b_{i a}=\left\langle b_{i a}\right\rangle_{\text {spin }}
$$

8) Isotopic Substitution

It is seen from tables ( for example (14) and (15) ) that scattering lengths show quite wide variations with isotope, and some are negative. This affords a method of extracting partial structure factors (Faderby (10)), assuming suitable isotopes are available. It would be impossible with X-rays, where the form factors are independent of isotope.

The first term in equation 1.30 represents the total scattering cross-section of the sample. In general, since the atoms are not rigidly bound, it depends on the neutron energy and the atomic environment. For heavy elements the measured cross-section is close to the bound value, but for light elements, such as hydrogen and deuterium, there is considerable recoil. In the present experiment the total cross-section was calculated as the average of that for
the water molecule, ( see (16)), plus the bound cross-section of the two ions.

This total scattering cross-section also affects the choice of isotopes. Hydrogen, for example, has a much larger total crosssection than its coherent scattering, so is unsuitable: for accurate structure factors, the second and third terms in equation 1.30 should predominate. As a result, heavy water is used for the solvent. For the choice of solute, sodium chloride was readily available with chlorine isotopes, which have a suitable range of scattering lengths.

A solution of sodium chloride in heavy water presents to neutrons a four-component system, $D, \mathrm{O}, \mathrm{Na}, \mathrm{Cl}$, having ten partial stracture factors. Examination of 1.30 shows that just two chlorine substitutions (mass numbers 35 and 37 ), and a subtraction, produces:-

$$
\begin{gather*}
F_{35}(Q)-F_{37}(Q)-\Delta=c_{C 1}^{2}\left(b_{35}^{2}-b_{37}^{2}\right)\left(a_{C 1 C I}-1\right)+2 c_{C 1}\left(b_{35}-b_{37}\right) \\
c_{D} b_{D}\left(a_{C 1 D}-1\right)+c_{0} b_{0}\left(a_{C 10}-1\right)+ \\
c_{N a} b_{\mathrm{Na}}\left(a_{\mathrm{CINa}}-1\right) \quad \ldots 1.33
\end{gather*}
$$

where $\Delta=c_{c 1}\left(\left\langle b_{35}^{2}\right\rangle-\left\langle b_{37}^{2}\right\rangle\right)$,
and a third substitution (natural chlorine) with further subtractions
gives
$a_{C l C l}-1=\frac{1}{c_{C 1}^{2}\left(b_{n a t}-b_{35}\right)}\left[\frac{F_{n a t}-F_{37}-\Delta_{1}}{\left(b_{n a t}-b_{37}\right)}-\right.$
$\left.\frac{F_{35}-F_{37}-\Delta_{2}}{\left(b_{35}-b_{37}\right)}\right] \quad \cdots 1.34$
Equation 1.33 represents the environment surrounding the chlorine ion, and it will be dominated by the D - Cl and $0-C l$ terms, because of
the concentration factors. A Fourier transform of this equation produces a similarly weishted sum of the radial distributions, and so is a picture of the hydrated water molecules. Equation 1.34 represents the distribution of the chlorine ions in the solution.

## 9) Placzek Corrections

Equations 1.33 and 1.34 show us those parts of the total pattern in which we are interested. When discussing systems of several nuclei, Placzek (5) divides the total scattering into self and interference terms, as in equation 1.29. For a constant efficiency detector the measured differential cross-section is

$$
\begin{aligned}
\frac{d o}{d Q}=S_{0}-\frac{1}{2 E_{0}}\left(s_{1}+t S_{1}^{/}\right) & -\frac{1}{16 E_{0}^{2}}\left(2 S_{2}-(2 t+u) s_{2}^{\prime}-2 t^{2} S_{2}^{/ /}\right) \\
& +\ldots \ldots
\end{aligned}
$$

where $E_{0}$ is the energy of the incident neutron, $t=u \sin ^{2} \frac{\theta}{2}$, and $u=4 Q_{0}^{2}$. ( $Q_{0}$ is the incident wave vector of the neutron, and $\theta$ is the scattering angle.) Derivatives are taken with respect to $t$.
$S_{0}$ is the elastic cross-section (equation 1.29) and $S_{1}, S_{2}, \ldots$, are the moments of this function:-

$$
s_{n}=\sum_{i}\left\langle b_{i}^{2}>G_{n}^{i i}+\sum_{i,} \sum_{j \neq i} b_{i} b_{j} G_{n}^{i j}\right.
$$

where the sumation over $i$ and $j$ is over all the atoms. Fquations 1.35, 1.36 replace equation 1.26 for the real system.

In the first summation, the average is performed over the spin and isotopes as in equation 1,30, and $G_{n}^{i i}$ are the moments for a single nucleus:

$$
\begin{aligned}
& G_{0}^{i i}=1 \\
& G_{1}^{i i}=\frac{h^{2} Q^{2}}{2 M_{i}} \\
& G_{2}^{i i}=\left(\frac{h^{2} Q^{2}}{2 M_{i}}\right)^{2}+\frac{4}{3} \frac{h^{2} Q^{2}}{2 M_{i}} K_{a v} \cdot
\end{aligned}
$$

$K_{a v}$ represents the mean cinetic energy of the ' $i$ !th minleus. For the interference terms

$$
\begin{array}{ll}
G_{0}^{i j}=\exp i Q \cdot\left(r_{i}-\underline{I}_{j}\right), \text { as in equation } & 1.26 \\
G_{1}^{i j}=0 & \ldots 1.38
\end{array}
$$

The second term in the square brackets represents the correlation of momentum of the different nuclei. For classical statistics there is no such correlation, and this is usually treated as negligible.

Equations 1.35 and 1.36 may be combined, and the subtraction of 1.33 repeated here, after introducing the partial structure factors in exactly the same way as before.

For the self terms this produces to first order:

$$
\left(b_{35}^{2}-b_{37}^{2}\right)\left(1-\frac{m}{M_{c l}}\left(4 \sin ^{2} \frac{\theta}{2}-\frac{1}{3 E_{0}} K_{a v}\right)+\ldots \ldots\right)
$$

If $X_{a v}$ is assumed to be of the order $k_{B} T$, and $E_{0}$ is 0.16 eV ( for $\lambda=$ 0.69 ) , the third term at $T=293^{\circ} \mathrm{K}$ is 0.006 , so it is reasonable to ignore it compared to $4 \sin ^{2} \frac{\theta}{2} . m$ is the mass of the neutron. For $\theta=180^{\circ}$, the overall correction is -0.114 , so we should expect a small fall in the term with increasing angle. It is not possible to employ this formula as the detector efficiency is not known. However, in appendix 3 it is shown that there is a straightforward method for correcting any fall in the value of $\Delta$.

For the interference terms, $G_{1}^{i j}$ disappears, and so the second order corrections must be considered. The terms obtained are:

$$
\begin{gathered}
c_{C I}^{2}\left(a_{C I C I}-1\right)\left(b_{35}^{2}-b_{37}^{2}\right)\left(1-\frac{m^{2}}{M_{C I}^{2}} F_{C I C I}(\theta)\right)+2 c_{C 1}\left(b_{35}-b_{37}\right)[ \\
c_{D D} b_{D}\left(a_{C I D}-1\right)\left(1-\frac{m^{2}}{M_{C I} M_{D}} F_{C I D}(\theta)\right)+\text { similar terms. }
\end{gathered}
$$

where $\vec{F}_{i j}(\theta)$ is a function of $a_{i j}$ and its derivatives which cannot, in general, be calculated (although the possibility of applying the correction iteratively has apparently not been
investigated), and momentum correlations are ignored. The important result is that the $a_{D D}$ and $a_{D O}$ terms and their troublesome Placzek corrections have disappeared.

## CHAPIER 2

THE STRUCTURE OF AQUEOUS SOLURIONS

## 1) Early Concepts of Dissociation

Modern electrolyte theory has evolved from several discoveries which were made in 1887. Gibbs (17) had previously developed a system o1 thermodynamics so that measurements of elevation of boiling point, lowering of freezing point, vapour pressure of solvent, solubility, osmotic pressure, conductivities, on solutions could all be related to a single. thermodynamic quantity - the chemical potential. Raoult (18) showed that the lowering of vapour pressure of the solvent is proportional to the mole fraction of the solute. Van't Hoff (19) subsequently showed this to be proportional to the number of solute particles present. For example, from Raoult's Law it is possible to estimate the molecular weight of the solute, Dreisbach (20). The molecular weight of KCI in solution, as determined by this method, turns out to be nearly half its actual value of 75, implying that the solute molecule is dissociated into two particles. Another example is that the osmotic pressure of a 1-1 electrolyte is approximately double that of a sucrose solution of the same molality.

The electrical properties of dissociated solutions (mostly acid, base and salt solutions) had already been extensively studied: the concept of ions as charge carriers was introduced, and it was known that at low concentrations the equivalent conductivity of a solution was a maximum at infinite dilution. Arrinenius (21) proposed that when these substances dissolved in water they dissociated into rositive and negative charged ions, and the degree of dissociation, $\alpha$, was related
to the equivalent conductivity, $\Omega$, by

... 2.1
where $\Lambda_{\text {ois }}$ the equivalent conductivity at infinite dilution. The implication was that the ions moved at a constant speed, independent of the concentration and inter-ionic forces.

The dissociation constant could also be defined from the Ostwald Dilution Law (22) in terms of the ionization constant, and discrepancies between the two definitions led to increasing support for a theory which allowed the solute to be completely dissociated, even at high concentrations, and the reduction in mobility of the ions was then attributed to their electrostatic attraction: the actual behaviour of osmotic coefficients, activity coefficients, and equivalent conductivities was quite unlike that predicted from the Arrhenius theory.
2) Debye-Fuckel Theory (23)

The method of Debye and Iluckel is to solve the Foisson-Boltzmann equation for a distribution of equal numbers of fositive and negative charges. It invokes two major approximations (24):
(i) The potential of mean force between a rair of ions ignores all short range repulsive effects, and is simply the Coulomb interaction due to the charges on each ion. The effect of the solvent appears only in the dielectric constant, $\mathcal{E}$, of the medium in which the ions are situated.

Thus the potential energy of ion $j$, with charge $q_{j}$, due to ion $i$ a distance $\underline{x}$ away is represented by

$$
w_{i j}(\underline{r})=q_{j} \rho_{i}(\underline{r})
$$

where $\varphi_{i}(x)$ is the electrostatic potential due to the charge $q_{i}$.
(ii) The quantity $w_{i j}(\underline{x})$ is assumed very small compared to $k_{B} T$, so that the distribution function between ions $i$ and $j$ may be approximated to

$$
\begin{aligned}
g_{i j}(\underline{x}) & =\exp \left(-\frac{w_{i j j}(\underline{r})}{k_{B}^{T}}\right) \\
& \approx 1-\frac{q_{j} \varphi_{i}(x)}{k_{B} T}
\end{aligned}
$$

Neither approximation can work if the ions approach each other closely, so the resulting formulation can only work for extremely dilute solutions. Assuming a spherically symmetric charge distribution, the potential is

$$
\varphi_{i}(x)=\frac{q_{i}}{\varepsilon} \frac{\exp (-\mathrm{kr})}{r} \quad \ldots 2.4
$$

where $k$, the reciprocal Debye length, is defined by

$$
k^{2}=\frac{4}{\varepsilon k_{B}^{T}} \sum_{s} n_{s} q_{s}^{2}
$$

and $n_{s}$ is the number density of ions with charge $q_{s}$.
Subsequent modifications to the theory included the introduction of an ionic diameter, a, representing the distance of closest approach. Bjerrum (25) considered a 1-1 electrolyte to be associated if the ions approached within a distance of $\frac{1}{2} \frac{q^{q}}{\varepsilon_{k_{B}} T}$, and defined this as the closest distance of approach.

The success of the theory and its modifications is by now very well established. However it does only apply to very dilute solutions, typically 0.001 molar or less for $1-1$ electrolytes. For $2-1$ electrolytes the approximation, equation $\varepsilon_{0} 3$, when substituted into the FoissonBoltzmann equation, is much less satisfactory, and the theory will apply to an even smaller range of concentration, Robinson and Stokes (26).
3) Hodern Hectrolyte Theory

There have been many semi-empirical attempts to extend the DebyeHuckel approach to higher concentrations, (26) and (27), and at least one major attempt to give electrolyte theory a rigorous statistical mechanical background, Friedman (28). The aim is to calculate thermodynamic quantities as functions of concentration and then make a comparison with experiment. The calculations are verformed either with fionte Carlo / Molecular Dynamics simulations, or by approximation theories, such as the Fercus Yevick or Hypernetted Chain approaches, Rasaiah (29). The former are time consuming and expensive, but act as standards with which to judge the more approximate results. A potential of mean force between ion pairs is modelled, and thermodynamic properties are evaluated from the radial distribution which is generated from the potential. Priedman (30) discusses a typical form for the potential between ions $i$ and $j:-$

$$
U_{i j}(r)=\mathrm{COOL}_{i j}+\mathrm{COR}_{i j}+\mathrm{CAV}_{i j}+G U R_{i j} .
$$

$\mathrm{COOL}_{i j}$ represents the electrostatic potential. $\mathrm{COR}_{\mathrm{ij}}$ is the hard core repulsive potential, and assumes either an inverse pover or exponential form. $\mathrm{CAV}_{\text {ij }}$ represents the polarigation of the cavity in the dielectric medium containing the ion, winich results in a force pushing the cavity toward a region of lower field. $\mathrm{GUR}_{i j}$ is an adjustable parameter, introduced to represent the overlap of the cospheres of the hydrated solvent, Gurney (31).

This latter effect is the extent to which the solvent is usually considered in all the theories: it appears as a structureless medium, whose dielectric constant is modified only in the proximity of an ion. Fionetheless, the behaviour of activity coefficients for the models, is a considerable improvement over that for the Debye-Fuckel formulation The concentration for which agreement with experiment is satisfactory is now as high as 1 molar. Unfortunately at higher concentrations
the agreement becomes worse again, and Rasaiah attributes this to the absence, in the models, of any reference to solvent granularity: detailed calculations which include solvent - solvent and solvent solute interactions have yet to be performed.

The statistical mechanical approach was established by Mackillan and Mayer (32): it regards the ions as a gas of finite charged particles moving in a structureless medium. This is the justification for the use of the traditional Fercus-Yevick or Hyper-netted Chain equations. However, interest in the original Debye-Huckel method has been renewed recently by Bennetto and Spitzer (33). They argue that 'any positive contribution to the free energy function arising from the (hard core) repulsions (between the ions) is also intrinsic to the standard state, and does not, therefore, contribute to the non-ideality.' For high concentrations the Debye-Huckel assumption of a spherically symmetric charge distribution around an ion becomes inadequate, and instead the cloud is allowed to be polarized by the neighbouring charges: this contributes additional multipole interactions. Unfortunately, detailed comparison with experiment is left to another paper which has not appeared yet, although the authors claim the behaviour of activity coefficients, derived from their treatment, with concentration is 'realistic'. They also claim they can recover the cube root dependence of activity coefficients on molality - this dependence has been the subject of some controversy.

The cube root "law", previously examined by Ghosh (34) and Frank and Thompson (35), has been interpreted by Bahe and Farker (36) in terms of a lattice model of the solution. The solvent appears as a continuous dielectric, but solvation is introduced as a dielectric gradient over a range of 1.5 to 5 \& from the centre of the ion. Beyond this distance the dielectric constant assumes the buik value of the solvent. When a second ion is brought up to a first, polarization
of the dielectric sradient produces a $\frac{1}{r^{j}}$ (repulsive) term to the electrostatic potential energy, additional to the Coulomb interaction. Bahe assumes the ions are on a lattice, and then performs a liadelungtype energy sum over the ion distribution. However, Guirke (Fh.D. Thesis, Leicester University, 1977) argues that such a sum is invalid because the energies of the induced dipoles are not pair-wise additive. Moreover the authors seem unaware of all the recent X-ray and neutron scattering data on aqueous solutions.

As an overall view, it is clear that there is no unique theory for the structure of concentrated aqueous solutions. One of the difficulties of all the approaches is that they calculate thermodynamic properties, which are likely to be insensitive to the microscopic arrangement of the solution, and hence to the detailed form of the ion-ion and ion-solvent forces.

## 4) Evidence from $X$-ray Diffraction

Since the review of X-ray scattering data on aqueous solutions by Safford and Leung (37), there has been a considerable literature on the subject, and a lot of work published in Zhurnal Struktornoi Khimii is now available in English translation.

For water, a tetrahedral near-neighbour configuration of water molecules, with some interstitial zositions, which increase in number as the temperature is raised, has emerged as the most likely model. There is some disagreement over which recise disordered lattice model is used: Narten (38) proposes a disordered Ice I lattice with interstitial molecules, whereas o'Reilly (39) favours a mixture of Ice Ic and Ice VII lattices. However, bec-use of the high degree of disorder beyond

## Figure 2.1

List of principal contributors to structure of aqueous solutions, using X -ray diffraction.

Author(s)
Brady, Krause
Brady
Brady
Srucuss Standley
Shapovalov, Radchenko, Lesovitskaya
Ryss, Radchenko
Dorosh, Skryshevskii
Radchenko, Ryss
Wertz, Lawrence, Kruh
Namasivayam
Lawrence, Kruh
Dorosh, Skryshevskii

Wertz, Kruh
Terekhova, Radchenko
Terekhova, Ryss, Radchenko
Shapnvalov, Badchenko
Narten
Shayovalov, Radchenko, Lesovitsikaya
ilbright
Fishkis, Soboleva
Narten, Vaslow, Levy
Licheri, Ficcaluga, Finna
Wertz, Bell
Bell, Tyvoll, Wertz
Fishkis, Zhmak
Cristini, Licheri, Ficcaluga, Finna
Alves iarques, De Barros llarques
Bertagnolli, Weidner, zimmermann
Triolo, iJarten
Licheri, Ficcaluga, Finna

Ref. Solute
$42 \mathrm{KOH}, \mathrm{KCl}$
43 KOH,LiCl
44
45
47
47a
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
$71,72,7 \mathrm{ZiBr}, \mathrm{CaBr}_{2}, \mathrm{CaCl}_{2}$ respectively
the first near-neighbour shell, the models are essentially in agreement, and they are botin supported by the moleculan dynamics model for liquid water, Stillinger and Rahman(40).

For solutions, the general method is to generate a composite X-ray radial distribution, and assign different peaks to solute and solvent interactions, often using a model of the structure. On the assumption that the scattering from the water molecule is dominated by the spherical part of the molecular form factor, Blum (41), the composite distribution will be the sum of six partial distributions, and so the assignment must inevitably be ambiguous. The majority of the information derived from the technique concerns the coordination of water molecules around the ions, and a summary of this information is presented in Appendiz 5 The hydration numbers show variations, depending on the solute studied, and on the authors performing the data analysis, and only in liCl (62) has any attempt been made to assign orientations to the hydrated water molecules: this latter experiment was performed in conjunction with neutron scattering.

The other important information derived from X-ray scattering concerns the ion-ion distribution. The existence of a longer range structure beyond the ionic hydration shelis is consideced to be indicated by a maximum in the scattering pattern for a scattering vector in the region of $1 \mathrm{~A}^{-1}$, Neilson, Enderby, and Howe (74). Freviously, Dorosh and Skryshevskii (53) had come to a similar conclusion when considering X-ray scattering from solutions of $\mathrm{NGCl}_{2}, \mathrm{CaCl}_{2}, \mathrm{CoCl}_{2}, \mathrm{NiCl}_{2}, \mathrm{CuCl}_{2}$, $\mathrm{CdCl}_{2}$ - ilves Larques and De Barros liarques (68) have succesfully attributed low angle maxima to a lattice structure of cation complexes, which involve vater molecules and anions, in solutions of $\mathrm{BeCl}_{2}, \mathrm{HgCl}_{2}$, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NgBr}, \mathrm{AlCl}_{3}, \mathrm{AlBr}_{3}, \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{InCl}_{3}$, تor $\mathrm{CaCl}_{2}$, they find a. low angle feature, but could not construct a nodel to explain it:


Iicheri, Ficcalusa and Finna (72) find no such feature (al though their presentation of the data may obscure it), but both authors agree that it ciisappears in CaBr ${ }_{2}$ solutions (73). It is not clear whether this is a true effect, or simply an artefact of the increased X-ray scattering amplitude of bromine.

For 1-1 electrolytes there: is very little evidence for long range structure. Only for concentrated LiCl solutions has Beck (75) sucgested a structure related to the crystalline hydrate, :hilst Naiten (62) finds no evidence for this structure at all. In figure 2.2 are shown the X-ray intensity curves obtained by Lawrence and Kruh (52) for a variety of alkali - halide solutions. Only for CsCl is there suggestion of a low angle feature, although its presence could also be hinted at in concentrated lithium and sodium iodide solutions. Bertagnolli, :leidner and Zinmemann (69) consider the Cs ions in CsF solutions to be amranged only in the cavities of a disordered $\beta$-tridymite lattice.

There has been some work on solutions in organic solvents. Hertz, Tutsch and Bowman (76) have remarked that 'water has a strong tendency to form its own structure, so wart of the force exerted by an ion's electric field is needed to break down the reoper structure of water. Consequently, solvation structure stabilization is known to be stronger in non-aqueous solvents, where proper solvent stiuctures are absent or less developed'. There have been studies of ferric chloride in methanol (77) and magnesium, calcium, cobalt and nickel chlorides in methanol, ethanol, and dimethylformamide, (78) and (79). In all these solutions the hydnation phenomena me more pronounced than in the equivalent aqueous solutions. The divalent cations are six-fold coordinated with solvent molecules,for cilute solutions: at higner concentrations this is reduced to four, ith anions entering the first shell of molecules. For the solutions in
alcoinol, the low andle maximum is much more prominent, indicating enhanced long-rance ordering of the ions. For the dinethylformanicie solutions the low angle marimum aisanpears.

## 5) Widence from Neutron Scatterins

The number of neutron scattering experiments on aqueous solutions is small. Arart from the work of Narten, the major contribution has come from zinderby (80). This work has given quantitative information about the nickel-nickel partial structure factor in nickel chloride solutions, and confirmed the idea of a lattice structure. There is also the inelastic neutron scattering work of Safford, Leung, Neumann and Schaffer (81). The inelestic spectra will contain contributions from all the molecular motions in the solutions, and so interpretation can only be qualitative at best: their nain conclusion is that small hichly charged ions disrurt the vater structure and form locally ordered complexes.
6) Nolecular Dymenics and Fonte Carlo Calculations

Since the successful application of molecular dynamics to liquid water ( 40 ), the technique has been applied to aqueous solutions, although limitations in computer size and time have so far prevented a simulation vith a large number of solute particles. Eovever valuable information about the hydration of ions can be obtained. So far the calculations have been limited to alkali-metal and halogen ions. Either the ST2 model of the water molecule or Hartree-Fock calculations are used to obtain the ion-:ater and water-water potentials. The hydration numbers and ion-water distances are shown in Appendix 6 . These pawers also contain much information about the orientation of the water molecules. Janman (91) has demonstrated the formation of hyication stheres around a pair of ositive and negative ions surrounded by vater molecules.

## Figure 2.3

List of ionte Carlo / Molecular Iynamics calculations on the hydration of ions by water molecules.

| Author(s) | Nethod | Mef. | Ion |
| :---: | :---: | :---: | :---: |
| Heinzinger, Vogel | ND | 82 | $\mathrm{Li}^{+}, \mathrm{Cl}^{-}$ |
| Vogel, Heinzinger | MD | 83 | $\mathrm{Cs}^{+}, \mathrm{Cl}^{-}$ |
| Heinzinger, Vogel | 1 D | 84 | $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Cs}_{-}^{+}, \mathrm{I}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$ |
| Vogel, Heinzinger | ND | 85 | $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$ |
| Kistenmacher, Fopkie, Clementi | MC | 86 | $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{F}^{-}, \mathrm{Cl}^{-}$ |
| Fromm, Clementi, Watts | MC | 87 | $\mathrm{Li}^{+}, \mathrm{F}^{-}$ |
| Watts | MC | 88 | $\mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{F}^{-}, \mathrm{Cl}^{-}$ |
| Briant, Burton | MD | 89 | $\mathrm{Na}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{F}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$ |
| Mruzik, Abraham, Schreiber, \& Found | MC | 90 | $\mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{CI}^{-}, \mathrm{F}^{-}$ |

7) Conclusion

There is a vice literature on the structure of aqueous solutions. Since the successful Debye-fjakel theory,ideas have divorged along several patis which regresent a considerable improvement at hisher concentrations, but development of a rigorous theory is unlikely until detailed knowledge of ion-solvent and ion-ion interactions is available. X-ray diffraction data and molecular dynamics calculations have supplied some of this, but discrerancies occur between different experiments on the same solution. The X-ray data is,however, cuite consistent in assigning ion-water cistances to the indration spheres.

A variety of other techniques have been applied to the problem of ion hydration. Inframred absorption, Rarnan spectroscopy, and nuclear magnetic resonance have supplied some information - see,for example, Irish (92), the series of papers by James et al. (93), and those by Hertz et al. (77). However because of the complex interpretation required for the latter experiments only general conclusions are usually drawn about the structure making and structure breaking properties of ions.

The neutron diffraction experiment presented in subsequent chapters is a source of reliable, quantitative information on the hydration of syecific ions, and ion-ion interactions, and should eventually enable a major advance in both theory and interpretation of data from other experimental techniquesto be made.

## CHAFMYR 3

## TEE MEUTRON EXERTITNT

1) Introduction

Examination of the structure of liquids is usually accomplished using the Debye - Scherrer powder technique. There are two differences: the liquid structure pattern is considerably more diffuse than the crystal one, and peak intensities are much smaller. Hence a large incident flux is required to produce observable scattering, and it is not necessary to have the high resolution of a crystal diffractometer.
2) Neutron Diffractometer

Figure 3.1 shows a schematic diagram of the D4 liquids diffractometer at Institut Laue - Langevin, Grenoble, France. The principle of neutron diffraction has been described by Bacon (8). Samples were mounted in zirconium - titanium cans, fiģ. 3.2a. This is a random alloy, so that, because the titanium scattering length is negative, then, with appropriate choice of concentration, the alloy could be made with nearly zero conerent scattering. The sample vas mounted on a metal cancile at the centre of the vacuum charnber, and centred with a micrometer gauge: when completely certral, rotating the sample produced no movement on the gauçe. The incident beam was collimated to 50 mm high, and 20 mm wide, and cadmium shields on the sample container lowered the beam height to 31.4 mm . The wavelength used was 0.69 A throughout, and was checked regularly by I.L.I. staff. Iypical counting times were two days per sample; there was a count rate of ~360 per sec at the main reak in the total scattering pattern. The data vere recorded on magnetic tare or pajer tape for computer analysis.

Pig. 3.1 Schematic Diagmam of the Ceometry of $D A$
Liquids Diffractoneter, I.I.I. Grenoble.


IC. 3.2 Scale diarmam of zirconium - titanium zeno a.lloy sample can.


Pis 3.2b. Infwamed calibnation curve, wich
dmonstrates the Beer-Lambert Law

## 3) Sample Freparation

Several of the earlier experiments were not reproducion and it emerged that this was due to varying amounts of light water in the samrles. Dr. Neilson suggested the use of an inframred spectrometer to monitor the hydrogen content. This spectrometer (a Ferkin - Ellmer inframed spectrometer) produces a graph of the variation of inframred absorption with wavelength. The sample is contained between calcium fluoride glass windows 0.1 mm afart. in absorption feature due to an $0-H$ bond excitation at $3400 \mathrm{~cm}^{-1}$ was selected for the purpose. The absorption, A, is siven by the Beer-Lambert law as a function of the concentration, $c$, in atoms per unit volume, of the component causing the absorption:

$$
\log _{10} A=-k c, \quad \ldots 3.1
$$

where $k$ is a sample cell constant. The procedure was to compare the absorption of the sample with that of a sheet of standard Elass by taking the ratio

$$
\log _{10} A / A_{s}=-k c+k_{s} c_{s}
$$

$$
\ldots 3.2
$$

where the suffix $s$ applies to the standard. This equation was used to calibrate the spectrometer and sample cell, fig. 3.2b. The sodium chloride solutions were tested in a sirilar way and compared using the calibration curve. The important aim was to prepare all the samples with the same light water content. The heavy water used was normally 99.9 wt\% $\mathrm{D}_{2} 0$; it was possible to preqare samples with absorption the same as 99.2 to 99.7 wt $\% \mathrm{D}_{2} \mathrm{O}$, and the three samples could be made the same within $\pm 0.05 \mathrm{wt} \% \mathrm{D}_{2} \mathrm{O}$.

They were prepared in 5 or 10 ml Fyrex volumetric flasis with ain-tight glass stoppers. To reduce the $\mathrm{H}_{2} 0$ content, the sodium chloride was initially baked at $\sim 150^{\circ} \mathrm{C}$ for several hours. Subsequently, in solution, if the content was still too high, the
solution was evarorated over sentle heat anc the solute re-baked. The lons neck of the flask prevented any loss of solute in the drying process, and it was generally not necessary to repeat the process more than three times.

## Figure 3.3

Data Analysis (See Paalman and Pings (94), and Beech and Averbach (95), Placzek (5) )

1. Subtract background counts from empty container, vanadium, and sample counts.
2. Correct vanadium counts for absorption, multiple scattering, and inelastic effects. From the known incoherent crosssection of vanadium, calculate a calibration constant, CVAN.
3. Calculate the Paalman and Pings quantities $A_{s, s c}$, $A_{c, s c}$, and $A_{c, c}$, and the multiple scattering crosssection, $\sigma_{\mathrm{m}}$, for the sample.
4. Generate the corrected data as function of $\theta$ :

where $I_{c+s}(\theta)$ is the scattering from sample plus container, and $I_{c}(\theta)$ is the scattering from the empty container.
5. Normalize $I_{s}(\theta)$ to units of differential cross-section, and subtract the multiple scattering:
$F(\theta)=\frac{I_{s}(\theta)}{\operatorname{CVAN}}-o_{\text {II }}$
6. Convert values of scattering angle $\theta$ to momentum transfer, Q:
$Q=\frac{4 \pi \sin \frac{\theta}{2}}{\lambda}$
where $\lambda$ is the wavelength of the neutrons.
4) Data Analysis

Data were taken for the background (i.e. no sample or container), empty container, vanadium rod of dimensions similar to the sample, and sample in the container. These were corrected for absorption, according to Faalman and Pings (94), and for multiple scattering, according to Blech and Averbach (95). See figure 3.3. The multiple scattering was assumed to be isotropic with scattering angle. Vanadium has virtually zero coherent scattering and so is used to calibrate the neutron counter.

This approach is open to some criticism. The Paalman and Pinga work was originally derived for $X$-rays, in which photon capture is the predominant form of absorption, and scattering causes negligible attenuation. Hence multiple scattering is usually ignored for X-rays. For neutrons, in the present samples, scattering is the primary form of attemuation, and neutron capture is usually quite small. Moltiply scattered neutrons contribute to $\sim 20 \%$ of the total scattering. Thus it is not clear whether the Faalman and Pings approach is applicable in this instance: a more rigorous treatment should include both multiple scattering and absorption under the same formalism. In the past this procedure has been used quite satisfactorily with monatomic and binary liquids, where the degree of accuracy required is the same order of a magnitude as the errors in the absorption correction. In the next chapter, however, it will be seen that errors of $1.0 \%$ can lead to a completely misleading picture of the ion-ion structure pattern. Faalman and Pings is used here in the absence of a more acceptable formalism: for the first order differences at least, the data go to approximately the correct limits.





5) Correction Procedure

The first order differences were generated according to equation 1.33, and smoothed using the Fourier analysis technique described in Appendix 3. The latter considerably reduces the statistical noise in the data, but it was evident from the outset that systematic exrors remaining in the data were sufficiently large to prevent a direct second subtraction to obtain the chlorine-chlorine distribution. This problem has axisen previously in partial structure factor analysis, and Edwards, Enderby, Howe and Fage" (96), have used an algorithm to remove as much of the systematic error as possible. Their method relies on the fact that the partial stucture factors must lie within certain limits, and they allow the function $F(Q)$ for each isotope to vary between $\pm 0.01$ barns for $0<Q<2 \mathrm{~A}^{-1}$, and $(1 \pm 0.05) F(Q)$ for $Q>2 \mathrm{~A}^{-1}$. Table 3.1 gives the scattering lengths for the isotopes used in the present experiments. If these are substituted in equation 1.34, it will be seen that for a variation in $F_{\text {nat }}(Q)$ of 0.01 barns, and $c_{C 1}=0.0331$ (corresponding to a 5.32 molal solution), then the value of ${ }^{\text {ClCl }}$ generated will change by 53 . The conditioning becomes even worse at greater dilutions.

Consider the first order differences from equation 1.33:-

$$
\begin{align*}
& D 1=F_{\text {nat }}(Q)-F_{37}(Q)-\Delta_{1} \\
& D 2=F_{35}(Q)-F_{37}(Q)-\Delta_{2}
\end{align*}
$$

The systematic and random errors are represented by $\delta_{1}, \delta_{2}$ respectively, and equation 3.3 is rewritten in the form

$$
\begin{align*}
& D 1=c_{1 X} X+c_{Y Y} Y+\delta_{1} \\
& D 2=c_{2 X} X+c_{2 Y} Y+\delta_{2}
\end{align*}
$$

where

$$
\begin{aligned}
& X=\left(a_{C l C I}-1\right) \\
& Y=2 c_{D} b_{D}\left(a_{C l D}-1\right)+2 c_{0} b_{0}\left(a_{C l O}-1\right)+2 c_{N a} b_{N a}\left(a_{C I N a}-1\right), \\
& \ldots 3.5 a
\end{aligned} .
$$

and

$$
\begin{aligned}
& c_{1 X}=c_{C 1}^{2}\left(b_{\text {nat }}^{2}-b_{37}^{2}\right) \\
& c_{2 X}=c_{C 1}^{2}\left(b_{35}^{2}-b_{37}^{2}\right) \\
& c_{1 Y}=c_{C I}\left(b_{\text {nat }}-b_{37}\right) \\
& c_{2 Y}=c_{C I}\left(b_{35}-b_{37}\right) .
\end{aligned}
$$

There are two conditions on which the data $\frac{\text { are }}{i=1}$ sensitive to errors:

$$
\begin{aligned}
& \operatorname{Som}_{X}=a_{X} D 1+D 2=\left(a_{X} c_{1 X}+c_{2 X}\right) \cdot X+\operatorname{CORB}_{X} \quad \ldots 3.7 \\
& \operatorname{SUM}_{I}=a_{Y} D 1+D 2=\left(a_{Y} c_{1 Y}+c_{2 Y}\right) Y+\operatorname{CORR}_{Y} \quad \ldots 3.8 \\
& a_{X}=-\frac{c_{2 Y}}{c_{1 Y}} \text {, and } a_{Y}=-\frac{c_{2 X}}{c_{1 X}}, \\
& \operatorname{CCRR}_{X}=a_{X} \delta_{1}+\delta_{2} \text {, and } \operatorname{COFR}_{Y}=a_{Y} \delta_{1}+\delta_{2} .
\end{aligned}
$$

Because $X$ and $Y$ must lie within certain limits, then $S_{X M}$ and $S_{Y}$ must also lie within limits $I_{X}^{ \pm}$and $I_{Y}^{ \pm}$respectively, and these define maximum and minimum values for $\mathrm{CORR}_{\mathrm{X}}, \mathrm{CORR}_{\mathrm{Y}}$ :

$$
\begin{align*}
& \operatorname{CORR}_{X}^{\max }=I_{X}^{+}-\operatorname{SUM}_{X} \\
& \operatorname{CORR}_{X}^{\min }=I_{X}^{-}-\operatorname{SUM}_{X} \\
& \operatorname{COR}_{Y}^{\max }=I_{Y}^{+}-\operatorname{SUM}_{Y} \\
& \operatorname{CORR}_{Y}^{\min }=I_{Y}^{-}-\operatorname{SUI}_{Y}
\end{align*}
$$

The procedure is to allow $\operatorname{CORR}_{\mathrm{X}}$ to vary between $\operatorname{CORR}_{\mathrm{X}}^{\max }$ and $\operatorname{coR} R_{X}^{\min }$, while CORR $R_{Y}$ simultaneously varies between $\operatorname{CORR}_{Y}^{\max }$ and $\operatorname{CORR}_{Y} \mathrm{~min}^{\min }$, and for each pair of values $\mathrm{CORR}_{X}, \mathrm{CORR}_{Y}$, the corrections $\delta_{1}, \delta_{2}$ are computed from equation 3.9. A pair of values of $\delta_{1}, \delta_{2}$ are selected such that

$$
\delta=\left|\delta_{1}\right|+\left|\delta_{2}\right|
$$

is a minimum, ie. the corrected curves are to lie as close as possible
to the original. To check the consistency of the procedure, a third difference may be defined:

$$
D 3=D 1-D 2,
$$

and the analysis repeated for each of the pairs $D 1, D 3$ and $D 2, D 3$. The corrected differences are then Fourier transformed to the weighted sum of radial distribution functions, and the analysis repeated, with of course different limits for $\operatorname{Sum}_{X}, S_{Y}$.

The corrected first order differences are shown alongside the originals in figures 3.9 to 3.14. The correction is not usually greater than 0.01 barns - indeed it is an order of magnitude less than this for most of the $Q$ range. The exception occurs in the range $0<\&<0.5 \mathrm{~A}^{-1}$, which is difficult to measure experimentally. With this exception, the present corrected data lie well within the systematic error limits proposed by Edwards et al.

To describe the allowed limits for SUM $_{Y}$, an average sum of the partial distributions in equation 3.50 was defined as

$$
Y_{a v}={\frac{Y}{\left(2 c_{D} b_{D}+2 c_{0} b_{0}+2 c_{N a} b_{N a}\right)}} \quad \ldots 3.12
$$

The limits on $X$ and $Y_{a v}$ are shown in Table 3.2. The data - indicate. the limits on $Y_{a v}$ since this term dominates the first order difference. The limits on $X$ are not well defined. However the thermodynamic limit of $a_{C l}$ at $Q=0$, i.e. $a_{C l C l}(0)$, can be computed, and the limits for $X$ were defined to be $\pm 1.5\left(a_{\text {ClCl }}(0)-1\right)$, (see Appendix 4). For the radial distributions, it is known that none of the partial distributions can be negative, and atomic packing prevents any liquid radial distribution function going above $\sim 4$ for $x>2$ A. In fact the limits of the radial distribution function of X were larger than those which could be physically allowed, as the data retained large
truncation oscillations.
In general if the scattering lengths or the limits on
SUMX, SUNI $Y$ have been wrongly chosen, then the corrected data lie further from the original than they would with correct values. This provides an inherent check on the scattering lengths.




$\times 10^{-24} \mathrm{~cm}^{2}$



## RISULIS

1) The Chlorine Eydration Schere

The function $Y(Q)$ in equation $3.5 b$ represents a weighted sum of CI - D, CI - O and Cl - Na partial structure factors, and can be extracted according toi equation 3.8 (figs. 4.1-4.2). Fourier transform of thas function yields $Y(r)$, (figs. 4.3-4.5), where

$$
\begin{aligned}
Y(r) & =\frac{1}{2 \pi^{2} n r} \int Y(Q) Q \operatorname{Sin}(Q r) d Q \\
& =2 c_{D D} b_{D}\left(g_{C I D}-1\right)+2 c_{0} b_{0}\left(g_{C l O}-1\right)+2 c_{N a} b_{N a}\left(g_{C I N a}-1\right)
\end{aligned}
$$

The figures show that statistical noise remains in the data as well as truncation exrors caused by $Y(Q)$ being measureable to only finite values of $Q\left(<15 \mathrm{~A}^{-1}\right)$. To identify true structural features, a window function (see for example (107)) was applied to $Y(Q)$. The form of the window function was

$$
Y_{W}(Q)=Y(Q) \frac{\left(1+\cos \frac{\pi Q}{T}\right)}{2}
$$

with $T=15 \AA^{-1}$, and $Y_{w}(Q)=0$ for $Q>15 \AA^{-1}$.
Since $Y(r)$ is dominated by the $C 1-D$ and $C l-0$ terms, it is inmediately evident that the chlorine ion is strongly coordinated with water molecules, and beyond the hydration sphere there is practically no ordering of the water molecules. The double peak in $Y(x)$ implies that the water molecules have a definite orientation around the ion. The depth of the minimum between the two peaks indicates that the rate of exchange of hydrated water molecules with the unhydrated molecules is small, (but see Chanter 6 for a discussion of this).

However it is not clear whether the first peak consists entirely of deuterium atoms, or partly of deuterium and partly oxygen.

The coordination numbers are obtained by integrating over the first peak: RMIN

$$
4 \pi n \int(Y(r)+\Delta) r^{2} d r=2 b_{D^{N} N_{D}}+2 b_{0} N_{O}+2 b_{\mathrm{Na}} \mathrm{~N}_{\mathrm{Na}}
$$

where $\Delta^{0}=2 c_{D} b_{D}+2 c_{0} b_{0}+2 c_{N a} b_{N a}$,
$N_{D}, N_{0}, N_{N a}$ are the respective coordination numbers of $D_{2} \mathrm{O}, \mathrm{Na}$, and $\operatorname{BMIN}$ is the position of the minimum. Table 4.1 shows the results of the integration for the three cases when the first peak consists (i) entirely of deuterium $\left(N_{0}=N_{N a}=0\right)$, (ii) of equal numbers of deuterium and oxygen $\left(N_{D}=N_{0}, N_{N a}=0\right)$, and (iii) entirely of $\mathrm{D}_{2} \mathrm{O}$ molecules $\left(\mathrm{N}_{\mathrm{D}}=2 \mathrm{~N}_{0}, \mathrm{~N}_{\mathrm{Na}}=0\right)$.

## 2) Model of the Fydration Sohere

To obtain a more specific representation of the structure, a model of the hydration sphere was developed on the lines given in the previous paragraph. $N_{c}$ is the number of water molecules coordinated to the ion: the total number of atoms in the hydration sphere is then 3 $\mathrm{NI}_{\mathrm{c}}+1$. If $n_{c}$ is the total number density of $\mathrm{D}, 0_{\rho_{n}}^{\mathrm{Cl}}$ and Na atoms in the bulk liquid, then the rean volume per atom is $\frac{1}{n_{c}}$, and so the volume occupied by the hydration sphere is $\frac{3 N_{c}+1^{c}}{n_{c}}$, which enables a mean radius of the hydration sphere to be defined as

$$
r_{c}=\sqrt[3]{\frac{3\left(3 N_{c}+1\right)}{4 \pi n_{c}}}
$$

In the model, the continuum radial distribution function is assumed to be flat beyond tris radius, and zero within it. As the transition from hydration sphere to continuum is unlikely to be truly 'hard', a small width, $w$, is placed on the contimum radial distribationfunction:

$$
g_{c}(x)=0, \quad r<x_{c}-w
$$

$$
\begin{aligned}
& g_{c}(r)=\frac{\left(r_{c}+w\right)^{2}}{r^{2}}\left(1-\sin \left(\frac{\Pi\left(r_{c}-r\right)}{2 w}\right)\right), \quad r_{c}-w \leqslant r \leqslant r_{c}+w \ldots 4.5 \\
& g_{c}(r)=1, \quad r>r_{c}+w
\end{aligned}
$$

For the coordinated molecules, the spherical polar coordinates of the ion with respect to the oxygen atom of a water molecule were defined according to figure 4.6 a , and the distance of each deuterium and oxygen atom from the chlorine ion calculated. The $0-D$ bond length was set at 0.94 \& , and the $D-0-D$ angle set at $104.5^{\circ}$ (see Franks (97) ). To account for thermal motion, a normalized Gaussian profile of width $w$ was placed on each distance and weighted according to the neutron factors. This produces an hydrated radial distribution function:

$$
\begin{aligned}
& g_{h}(x)=\frac{1}{4 \pi r^{2}} 2 c_{D} b_{D} \sum_{D} \frac{r_{D}}{\sqrt{2 \pi} w} \exp \left(\frac{-\left(x-r_{D}\right)^{2}}{2 w}\right)+ \\
&+2 c_{0} b_{0} \sum_{0} \frac{N_{0}}{\sqrt{2 \pi_{w}}} \exp \left(\frac{-\left(x-r_{0}\right)^{2}}{2 w}\right)
\end{aligned}
$$

Here, $N_{D}, N_{0}$ are the numbers of deuterium and oxygen atoms at distances $r_{D}, r_{0}$ respectively. The summations are performed over all the atoms in the hydration sphere. The weighted radial distribution for the model is finally defined as

$$
Y_{\text {model }}(x)=g_{h}(r)+\Delta g_{c}(x)-\Delta
$$

At concentrations 5.32 and 2.99 molal, two models emerged, (figs. 4.6b and 4.7a, and Table 4.2). It was not necessary to define more than two $C l-0$ distances. In model $A$, one of the $0-D$ bonds in the water molecule lies nearly parallel to the CI - 0 axis - there is only one hydration sphere. In model $B$ the two deuterium atoms lie equidistant from the chlorine ion, and there is a second layer of water molecules, similarly orientated, which overlaps with the continum.

At a concentration of 1.49 molal, two models again emerged, and one of these (B) is show in fig. 4.7b. The model A had a first shell similar to the model A of the higher concentrations, and a second hydration shell similar to the 1.49 molal model $\mathrm{B}_{\text {. }}$ At this concentration, the small signal to noise ratio makes the analysis open to much greater ambiguity, but for both models at this concentration, unlike at the higher concentrations, a second shell of orientated water molecules is definitely needed to regenerate the experimental data.

The models were analysed in terms of their mean square deviation from the experimental data, and results of this are shown in table 4.3. For concentrations 5.32 and 2.99 molal, model $B$ emerges as giving the better fit of the two, despite the fact that it entails a Cl - O distance shorter than that observed in any X-ray experiment, appendix 5, and an orientation different from that observed in the molecular dynamics simulations. In the past, the orientation as in model $A$ has been accepted as the most likely configuration. This discrepancy may well represent a short-coming in the modelling technique, but liarten, Vaslov and Levy (62) used the same type of model to obtain the hydration of chlorine ions in LiCl solutions, and there have been very few X -ray experiments on NaCl solutions. However one wouldn't expect the hydration of Cl in the two solutions to be very different. Finally,it should be noted that the sodium ions are not included in the models as they contribute less than $3 \%$ to the composite pattern.







3) Chlorine Fartial Structure Factors and Zadial Distributions

The chlorine partial structure factors were extracted according to equation 3.7 from the corrected differences. Direct Fourier transform of the partials yielded a $g(x)$ which had large oscillations of period $\sim 1 \AA$ in the rance 2-10 $\AA$, and virtually structure-less beyond. Such a distribution is difficult to justiIy physically. The molten sodium chloride data (Edwards et al. (96)) shows that the chlorine ions do not approach any closer than $j \&$ in the liquid state, and the period of oscillation in the $\mathrm{Cl}-\mathrm{Cl}$ radial distribution of the fused salt is $\sim 4$ \&. Eence the large oscillations were treated as truncation errors, and the oscillations in $a_{C l C l}(Q)$ were similarly found to be due to $\mathscr{C}(r)$ values beyond beyond 20 . Assumine the $f(\underline{n})$ cannot have a period of oscillation less then 1.8 A, then ( $a_{\text {ClCl }}-1$ ) should be substantially zero for $Q$ values greater than $2 \pi / 1.8 \mathrm{~A}^{-1}$, i.e. $3.5 \mathrm{~A}^{-1}$. At the same time, the resolution of the $D 4$ diffractometer at I.I.I., Grenoble is usually quoted as $0.2 \mathrm{R}^{-1}$ at $Q=1 \mathrm{Q}^{-1}$, so it is difficult to observe oscillations of period $0.3 \mathrm{E}^{-1}$ or less. This imiles a restriction on the naximum madius value to which infomation can be obtained : $r_{\text {max }} \doteq 2 \pi / 0.3=20.9$. . The winco function, equation
 with $T=20$. Pinally, because the dava for $<0.40^{-1}$ is unreliable, this region was approzimated by drawing a straight line between the themodynanic value (Appendix 4) at $Q=0$, and the value at $Q=0.4 \mathrm{~A}^{-1}$. In $\mathrm{g}_{\mathrm{ClCl}}(\mathrm{r})$, all values for $\mathrm{r}<\mathrm{C}_{\mathrm{A}} \mathrm{Q}$ were set to zero . The partial stivucture iactors obtained are show in
fiç 4.8 : the band of emor shows the amplitude of the oscillations in the rew data. Obviously with such lare error bars at the lower
concentrations, it is difficult to justify the radial distribution curves presented in fig. 4.9. The apparent increase in structure with dilution is probably an effect of the increased statistical uncertainty in the partial, although there is some justification in terms of structuring of the ions by water molecules (see Chapter 6 ) at lower concentrations.


4) Nickel Chloride Aqueous Solutions

A study of nickel chloride aqueous solutions was performed concurrently with the present experiment, using nickel isotopes. This work was performed by Dr. Neilson, and so is only presented in outline here. The experimental method was identical with that for sodium chloride solutions. The nickel isotopes used were: natural nickel, nickel '62', and nickel 'zero', the latter consisting of a mixture of natural and '62' (which has a negative scattering length) such that the scattering length is nearly zero, (see Table 4.4). The equations relating to the structure functions are exactly analogous to those already described, and the figures contain all the relevant information. At present, application of the correction procedure described in Chapter 3, has not been completed, and so there are no $Y(Q)$ or $Y(r)$ curves for the data. Instead, the second order subtraction was performed directly; no reliable radial distribution has been obtained from this data. However the first order difference curves have been Fourier transformed, and yield important information concerning the nickel hydration schere.

The total $F(Q)$ curves show a small feature in the region of $1.0 \mathrm{~A}^{-1}$ for the natural isotope, which moves inwards at lower concentrations: this movement has been interpreted in terms of a lattice model of the solution, Neilson, Enderby and Howe (74). The feature does not appear in the 'zero' or '62' isotope curves, and only very weakly in the first order difference curve, $F_{162}-F_{\text {zero }}{ }^{\prime}$ where despite the negative scattering length of the nickel isotope, it would still appear as a positive feature if it were solely due to the Ni-Ni yartial structure factor. This suggests that a major
contribution to the peak is from one of the berms $a_{\text {NiD }}, a_{\text {NiO }}, a_{\text {NiCl }}$. Thus the identification of the movement of the pre-peak in the total $F(Q)$ pattern with the movement of the main peak in the Ni-Ni partial structure factor has yet to be verified by partial structure factor analysis at lower concentrations. The existence of the feature and its movement contrasts strongly with the sodium chloride solutions, where no such feature is observed.

The radial distribution curves, fig. 4.18-4.20, indicate that the water molecules are tightly bound to the nickel ion. The coordination numbers were obtained by a similar integration to equation 4.3, and are shown in Table 4.5. Least squares analysis in terms of models has not been performed, but it is clear that only the orientation of the water molecules shown in fig. 4.22 would fit the data at all dilutions. Thus the existence of a cation complex, as suggested by X -ray diffraction data (Chapter 2), is confirmed, and the depth and width of the minimum between the double peak and subsequent features implies that the rate of exchange of hydrated water molecules with the surroundings is small. 'This again contrasts with the sodium chloride data, where the orientation of hydrated sater molecules around the chlorine ion is open to ambiguity, and the hydration sphere merges continuously with its environment.

Fig. 4.10 $F(Q)$ curves for nickel chloride solutions:
4.41 molal


Fig. $4.11 F(G)$ curves for nickel chloride solutions: 3.02 molal


Fig. $4.12 \mathrm{~F}(Q)$ curves for nickel chloride solutions: 1.43 molal



Fig. $4.14 P(\Omega)$ curves for nickel chloride solutions: 0.44 molal









Fig. 4.22 Orientation of water molecules around the nickel ion


## MODEHS OF LIEULDS

1) Introduction

In the discussion in Chapter 2, it emerged that some authors have suggested the existence of a quasi-lattice structure of the ions dissolved in an aqueous solution. This has prompted two questions: how lattice-like is the structure, and do other liquids not show similar features? There is also the question of whether the structure can be predicted by a non-lattice model.

For aqueous solutions we have the following information concerning the ion-ion distribution: The structure factor for chlorine ions in sodium chloride shows no ordering in the radial distribution. For nickel chloride, there is considerably more evidence for ordering in the Ni - Ni partial structure factor. In addition, a small peak in the total scattering pattern, associated with the first peak in the nickel partial, is seen to move linearly with $n_{N i}^{\frac{1}{3}}$, where $n_{N i}$ is the number density of nickel atoms (74).

An attempt is made here to answer the questions by presenting some calculations on disordered lattices, and comparing them with the results of $n$ hard-sphere simulation.

## PART A - Disordered Lattices

2) Setting Un the Disordered Lattice

The lattice model of liquids, both theoretically and experimentally, is well-known. Kaplow, Strong and Averbach (98)
and (99) have found good agreement between the disordered lattices of magnesium, lead and gold-tin alloys and their corresponding liquid stucture. Narten (38) was able to obtain good agreement between a disordered Ice $I$ model of water and experiment, although $O^{\prime}$ Reilly (39) showed an Ice Ic-VII model to be equally satisfactory. Most approaches use a large number of adjustable parameters to fit their models, leading to a confusing picture of the real liquid structure. In the present study, a simple model is used to compare a variety of liquids, showing the extent of the lattice-like behaviour, and gaining insight into the physical meaning of the liquid structure factor.

The radial distribution function for a crystal lattice is represented by a distribution of $\delta$-functions, whose heights corresponds to the number of atoms at each radius value from a given origin. Thermal broadening, the Debye-Waller factor, reduces the height of the peaks, but the area under each still represents the number of atoms. For the liquid model, the broadening is allowed to increase considerably so that the peaks overlap and the distribution becomes contimuous.

There are two types of distribution to be discussed:
$g(x)$ is the probability function discussed in Chapter 1. $G(x) d r$ is the number of atoms found within $d r$ at $r$, and is equal to $4 \pi n r^{2} g(r) d r$. It is necessary to generate $G(r)$ before $g(r)$ can be calculated. The method for disordering a crystal structure therefore falls into three stages:-

1) Obtain $G(x)$ for the solid lattice.
2) Disorder this and then divide by $4 \pi n r^{2}$ to obtain $g(x)$.
3) Perform a Fourier transform to obtain a(Q). The third stage is included since experimental data comes as $a(Q)$, and it is possible to avoid termination errors in the simulated data by generating $g(x)$ to large values of r. A general computer algorithm was written for any crystal lattice which can be described by a repeated unit cell, for the $G(r)$ in stage 1. See figure (5.1).

For step 2, the width of the 'i'th peak, $o_{i}$, is described by the equation

$$
\sigma_{i}=a x_{i}, \quad \cdots \overline{5}_{.} 1
$$

where $x_{i}$ is the position of the peak, and a is the width constant. Other broadening terms were tried. A constant term was unsatisfactory, a square-root term did not produce sufficient disorder at large $r$, and a quadratic term was too strong: the linear function is the maximum broadening possible while keeping the distribution meaningful.

However, Frenkel (100) argues from statistical mechanics that the width should increase as $\sqrt{x_{i}}$. Indeed the Iinear term is not perfectly satisfactory. But in the real liquid there are interstitial positions, on account of the atomic motion, which are not possible in the solid, and this produces broadening additional to Frenkel's simple kinetic term.

Another effect, not mentioned by Frenkel, is that disordering a lattice with increasing peak widths increases the number density of the final $G(x)$. The amount will depend on the value of a, and the peak shape. Hence it is necessary to integrate the disordered $G(x)$ to obtain the new mean number density. This integral is awkward for the Gaussian probability curve usually

Algorithm for generating radial distribution of a crystal.

1. Input the dimensions and angles of the unit cell, the coordinates of the atoms within the cell, and their lattice site probabilities.
2. Define the maximum radius to which atoms are to be counted, and define a parallelipiped containing an integer number of unit cells, and sides parallel to the unit cell vectors, sufficiently large to contain a sphere of this radius.
3. Step through the parallelipiped, stopping at each unit cell.
4. At each unit cell, generate the coordinates of each atom in turn, and convert to Cartesian coordinates with respect to the centre of the parallelipiped. Measure the distance of the atom from this origin: compare with the previous values of such distancea. If there are already atoms at this distance add the present lattice site probability to the existing value. If there are no atoms previously at this distance, generate a new lattice distance and probability, and place this in the array in order of increasing distance. If the distance is greater than the radius of the sphere, then ignore the lattice site.
5. When the stepping is complete, there will be two arrays, one containing all the distances from the origin at which a lattice site may be found, and the other contains the total number of atoms to be found at each distance, given that some or all of the sites are not filled for $100 \%$ of the time.
associated with this type of disorder, so a simpler function for the peak shape is used here:-

$$
F_{i}(x)=\frac{1}{\sigma_{i}}\left[1+\cos \left(\frac{2\left(x-x_{i}\right)}{\sigma_{i}}\right)\right], \quad \cdots 5.2
$$

for $\left(x_{i}-\frac{\sigma_{i}}{2}\right) \leqslant r \leqslant\left(x_{i}+\frac{\sigma_{i}}{2}\right)$, and zero for $r$ outside these limits. The $\frac{1}{\sigma_{i}}$ factor is introduced so that the integral of the function over the allowed range of $x$ is mity; this integral is analytic.

The disordered $G(x)$ is represented by the sum

$$
G(x)=\sum_{i} \mathbb{N}_{i} F_{i}(x) \quad \because 5.3
$$

where $N_{i}$ is the number of atoms at radius $x_{i}$ in the original lattice. 3) Results
a) Monatomic Liquids.

There is a wide literature for the structure factors of monatomic liquids. Comparison of the disordered solid-state structure with the liquid structure factors is shown in figs. 5.2. to 5.4. Table 5.1 gives the parameters used in the simulation. No attempt was made to obtain a least-squares fit: the amount of fitting was kept to an absolute minimum. The guiding criteria were, to obtain a near-neighbour distance, atomic number density and peak width constant, consistent with an $a(Q)$ close to experiment.

The following points emerge from the comparison:-

1) Except for zinc and tin, the near-neighbour distances of the simulation are too large. For zinc and tin they are too small.
2) Except for zinc and tin the second and subsequent peaks of the simulated data are at too low a value of Q. For tin they are at too large a value, for zinc they are approximately correct.




3) All the simulated number densities are too large, despite three out of five of the near-neighbour distances being too large.

The conclusion is that the second and subsequent peaks in the structure factor are more representative of the near-neighbour distance than the first peak, and that the liquid has vacancies in the solid state lattice. The liquid structure does resemble the solid lattice: it would, for example, be quite impossible to fit either of the cubic structures to liquid tin. To this extent the liquid may be described as lattice-like.
b) Molten Sodium Chloride

Reliable partial structure factors have been obtained for this system (Edwards, Faderby, Howe, and Page (96)), and these are compared in fig. (5.5) with a disordered F.C.C. lattice. See Table 5.2. Once again, number densities are too larges the lattice sites are only $75 \%$ occupied.

If the position, $Q_{0}$, of a feature in a structure factor represents the near-neighbour distance, $d$, then we would expect the product $Q_{0} d$ to be constant as $d$ alters from real liquid to model. This product for the first and second peaks in the real liquid is compared with the simulated values in Table5.3. The two models agree closely with each other, which is expected as model (b) is a scaled up version of model (a). Yet neither model represents the true liquid, as deduced from the structure factor, and it is seen that the second peak/minimum has the more direct relationship with the near-neighbour distance.
c) Liquids Based on the Nickel Arsenide Structure

Examples of these liquids are: $\mathrm{Au}-\mathrm{Sn}, \mathrm{Ni}-\mathrm{Te}, \mathrm{Cu}-\mathrm{Sn}$, $\mathrm{Ni}-\mathrm{Te}, \mathrm{Cu}_{2} \mathrm{Te}, \mathrm{Cu}-\mathrm{Te}$. They are all binary alloys. In the nickel arsenide structure (see Wycko $f$ f ( 105 ) ), metalloid (As) atoms form a close-packed hexagonal arrangement, and the metal sites are octahedrally coordinated by metalloid atoms. In terms of the unit cell vectors, the atomic coordinates are:-

| Ni : (i) $(0,0,0)$ | (ii) $\left(0,0, \frac{1}{2}\right)$ |
| :--- | :--- | :--- |
| As : (i) $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{4}\right)$ | (ii) $\left(\frac{2}{3}, \frac{1}{3}, \frac{3}{4}\right)$ |

These substances often show a variable composition. For compounds of the form $\mathrm{Ni}_{2} \mathrm{As}$ an additional set of Ni sites occur at:-

Mi: (iii) ( $\frac{1}{3}, \frac{2}{3}, \frac{3}{4}$ ) (iv) ( $3, \frac{3}{3}, \frac{1}{4}$ )
For compounds of the form $\mathrm{NiAs}_{2}$, only site (i) is occupied.
A related structore, for $\mathrm{Cu}_{2} \mathrm{Te}$, is the iron arsenide structure, $\mathrm{Fe}_{2} \mathrm{As}$, which has a tetragonal unit cell, containing two molecules:-
$\mathrm{Fe}:$
(i) $(0,0,0)$
(ii) $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
(iii) $\left(0, \frac{1}{2}, u\right)$ (iv) ( $\left.\frac{1}{2}, 0, \bar{u}\right)$

As :
(i) $\left(0, \frac{1}{2}, u\right)$ (ii) $\left(\frac{1}{2}, 0, \bar{u}\right)$

For $\mathrm{Cu}_{2} \mathrm{Te} u(\mathrm{Cu})=0.27$, and $u(T e)=-0.285$; effectively this means a treble plane of Cu atoms sandwiched with a double layer of . Te atoms.

Neutron data are available for $\mathrm{Ni}-\mathrm{Te}, \mathrm{Ni}_{\mathrm{Ne}}^{3}$ ( 106 ), and $\mathrm{Cu}-\mathrm{Te}, \mathrm{Cu}_{2}-\mathrm{Te}(106)$, and here the total scattering functions,$F(Q)$, are compared (see equation 1.29), as these are more sensitive to errors in the partial structure factors. See Table 5.4 and figs. (5.6) and (5.7). For $\mathrm{Mi}-\mathrm{Te}_{3}$, the abundance of tellurium over copper is represented by decreasing the lattice site probabilities of the copper to one third of those of the


tellurium. Crystal data are taken from Wyckopf, who is, however, silent on the structure of Cu-Te: the nickel arsenide structure has been assumed here.
$\mathrm{Cu}_{2} \mathrm{Te}$ exhibits two structural forms - a low temperature Fends stucture, and a high temperature form, analogous to nickel arsenide, inwhich the metal atoms form planes with tellurium between. The simulation shown in the figure is for the former structure, as the latter produced a considerable peak at $2 \mathbb{R}^{-1}$. It is important that the experimental data show a peak at $0.8 \mathrm{~A}^{-1}$, and both the high and low temperature simulations show a significant first peak at $\sim 1 \AA^{-1}$, on account of the layered structure of these lattices.

The same point is made in the NiTe and $\mathrm{NiTe}_{3}$ simulations. Both the experimental curves show a peak in the low Q region. In the simulated data, in which, for both liquids, the models are identical except for the lattice site probabilities and peak widths, the pre-peak at $1.05 \mathrm{~A}^{-1}$ is introduced by reducing the probabilty of site (ii) compared to (i). For $\mathrm{NiPe}_{3}$, the two sites have equal probability, and no pre-peak is observed. Hence the pre-peak is created in the disordered model by emphasizing the planes of nickel atoms.

In all these simulated structures, the nickel and copper near-neighbour distances remain near 2.6 \&. The conclusion is that the first peak does not necessarily represent this distance, as the monatomic liquids already studied have a similar distance of closest approach, but there is no peak in the structure pattern at $1 \mathrm{~A}^{-1}$.
d) Nickel Chloride Aqueous Solutions

In the solid state nickel chloride hexahydrate forms a monoclinic structure consisting of planes of nickel atoms, along which the crystal cleaves easily (108). The disordered nickel distribution
and partial structure factor for this lattice, expanded to give a first peak in the structure factor at $1 \mathbb{R}^{-1}$, are shown in fig. 5.8. The amount of disordering necessary, (width constant $a=0.8$ ), is substantially more than that used for the previous liquids, although the simulated peak is still too large. The comparison indicates that a lattice - type ordering of the ions is reasonable, but with greater disorder than found in one- and two- component liquids.
e) Sodium Chloride Aqueous Solutions

Although the chlorine partial structure factor, fis. 4.8 indicates no ordering of the chlorine ions, it has been seen, from the simulation of fused sodium chloride, that a peak in the Cl-Cl structure factor coincides with a sharp minimun from the NamCl structure factor, and when added together with the appropriate neutron factors the two features might cancel each other. Hence a suitably expanded F.C.C. lattice has been disordered (with $a=0.8)$ and the $C 1-C 1$ and $N a-C l$ structure factors added together with the neutron factors appropriate to the $F_{35}-F_{37}$ first order difference at 5.32 molal, fig 5.9. For the disordered lattice there remains a significant peak at $18^{-1}$, and the absence of such a sharp feature in the raw first order difference confirms our earlier conclusion that there is negligible ordering of the ions in the solution.



## PABT B - Hard Sohere Calculations

4) Baxter's Zquations

The present neutron experiments on aqueous solutions indicate the strongly hydrated nature of the ions. This has prompted the idea of treating the hydrated ions as hard spheres, Quirke and Soper (109). Using a factorization procedure, Baxter (IIO) has derived a straightforward technique for generating multi-component, hard sphere radial distributions, in the PercusYevick approximation, without recourse to the usual Fourier inversion method. Perram (III) demonstrated that a stevwise solution is possible, and a program was written to perform this for the multi-component system. The computing time for the six partial distributions in a three component system, out to 35 , and at a step of $0.05 \%$, was 2 minutes. The Fourier transform was then performed as described in Appendix 3.

## 5) One and Two Component Systems

As a check that the program worked correctly, the onecomponent distributions, with a hard sphere diameter of $1 \AA$, were compared with those of Throop and Bearman (112), for a wide range of concentrations; the agreement was to within $0.1 \%$ in all cases. Although the near-neighbour distance remains constant as the concentration decreases, the subsequent peaks in the radial distribution move to greater $r$ values, and this is represented in the structure factor by movement in the position of the first peak, fig 5.10a.

The analysis was repeated for a two-component system with hard sphere diameters fixed at 5.6 \& and 4.3 \& for nickel and chlorine ions respectively. Again covements of the first peak ars seen, especially at the higher concentration, fig 5.10 b .


(b) Position of first peak in $a_{11}(Q)$ $\left(\AA^{-1}\right)$

[^0]
(a) comparison of tard syhere structure function with
nickel partial structure factor in solution, for 4.41 molal.

Fig. 5.11

(b) Novement of the first peak in nickel-nickel structure factor for the thres-component model
6) Three Component Nodel

In the three component model, a more detailed descrigtion of the effect of hydration on the hard sphere diameter of the ions is given. For the concentrated solutions most of the water is bound, and free water molecules are only introduced after the maximum amount of water has been absorbed into the hydration spheres. The nickel dimmeter and hydration number are held at 5.6 \& and 6.0 respectively at all concentrations. At present no chlorine substitution has been carried out in $\mathrm{NiCl}_{2}$ solutions, and both the both the magnitude and variation with concentration of the chlorine hydration number are unknown. In order to make progress we shall assume all the remaining water molecules are bound to the chlorine ion at 4.41 molal - this gives a chlorine hydration number of 2.3. This number is allowed to increase to 6 at 2.0 molal, after which it remains constant, Table 5.5.

The movement of $Q_{0}$ with number density is shown in fig 5.llb. (2 is the position of the first peak in the Ni-Ni partial structure factor) The region over which \& moves linearly with $n_{N i}^{\frac{1}{3}}$ is small in comparison to the experimental points; the gradients of the two lines are different. Also, the three component model deviates more rapidly from the linear behaviour than does the two component model, indicating that the free water molecules have their own structuring effect. Qo for the model partial structure factor is different from that found experimentally, but the magnitude of the partial is correct, so, judged solely from the magnitude of the experimental partial, there is no evidence for any more ionic ordering than found in a hard sphere fluid.

## FART C - Argument from the Zero Limits

From the results of the previous two sections it is possible to dra:r some simple conclusions about the liquid structure factor:
(i) The first peak does not necessarily represent the near-neighbour distance of the atoms, but is more representative of the longer range structure.
(ii) The clue to the behaviour of the near-neighbour distance as the density of the liquid varies is in the second or subsequent peaks.
(iii) The magnitude of the first peak is not simply an indication of the extent of the order, since it is also proportional to the number density used in the structure factor definition, and the scailing effect of the size of the particles.

A necessary, but not sufficient, condition for tha validity of a particular model, is that the low $Q$ structure factor should go to the thermodynamic limit. These limits have been calculated according to the Beeby formulation, Appendix 4, for concentrations of nickel and sodium chlorides appropriate to the experiments, and comparison is made with the simple lattice and hard schere models of nickel chloride in fig 5.12•

For a salt, $A B_{z}$, which completely dissociates in to $1+x$ ions on dissolving, the Beeby formula gives, for the zero limit in a very dilute solution:

$$
S_{A A}(0)-1=n k_{B} T H-\frac{1}{c_{A}}\left(\frac{x}{1+x}\right) \quad \ldots 5.7
$$

where $n$ is the total number of atoms per unit volume, $c_{A}$ is the atomic fraction of A ions, and the other symbols have the same meaning as those in the arpendix. This result can be seen irmediately by invoking the Landau-Lifshitz formula for the chemical potential
of the solvent in a dilute strong electrolyte (113). Hence, since $x>0$, the limit goes to $-\infty$ at zero concentration, and is a general result for all systems which dissociate into ionized particles on dissolving.

It is interesting to compare this behaviour with that of the Debye-Fuckel limiting law, which applies at low concentratifons. The radial distribution about an ion in the theory is given by (see Chapter 2)

$$
g_{i j}(r)=1-\frac{q_{1} q_{i}}{k_{B} q^{\prime} \varepsilon} \frac{\exp (-k r)}{r}
$$

$$
\text { ... } 5.8
$$

where $\mathcal{E}$ is the dielectric constant of the solvent and $k$ is the reciprocal Debye length. Fourier transform of equation 5.8 at $G_{0}=0$ gives immediately

$$
a_{i j}(0)-1=-\frac{4 \pi n}{k_{B} T} \frac{q_{i} q_{i}}{\varepsilon} \frac{1}{k^{2}}=-\frac{q_{i} q_{i}}{\sum_{i} c_{i} q_{i}^{2}}
$$

where $c_{i}$ is the atomic fraction of species i. For a molecule of the form $A B_{x}$, $A$ is assumed to have a charge $x$ units compared to $B$, then, for charge neutrality, the ion $B$ will have an atomic fraction $x c_{A}$, if $c_{A}$ is the atomic fraction of A. Substituted in 5.9 , these results give

$$
a_{A A}(0)-1=-\frac{1}{c_{A}}\left(\frac{x}{1+x}\right)
$$

The only difference between this and equation 5.7 is the compressibility term, which represents the fact that the solvent is not a true continuum at any dilution. However this term is small, and, as fig 5. shows, the model fits the low Q limits for both sodium and nickel chlorides more accurately than the otrer models. The agreement is especially good for sodium chloride.

The importance of this result may be seen in the following way. In the Debye-Fuckel theory, the quantity $\frac{1}{k}$ represents

the distance of the maximum in the charge cloud density from an ion, and it varies as $1 / \sqrt{n_{i}}$. Hence, as the concentration decreases, the charge cloud expands away from the ion. The similaxity between the thermodynamic limits of the real solutions and those of the Debye-Huckel theory suggests that such an expansion also occurs in the real solution. The absence of Coulomb forces in the hard sphere model is no doubt one reason why the model gives only approximate agreement with experiment, and then only at high concentrations, when atomic packing of the hydration spheres has a decisive role. Yet the Debye-fuckel charge cloud has no 'structure' in terms of peaks in the radial distribution function, equation 5.8. Combining the two approaches, the observed structure in nickel chloride solutions is an effect of hard sphere interactions between strongly hydrated nickel ions, but the movement of peaks with concentration is dominated by the Coulomb forces. A full three component simulation, which included electrostatic forces between the ions, has yet to be performed. The success or failure of such a simulation would confirm or disprove the ideas proposed here.

On the same argument, the absence of any structure in the distribution of chlorine ions in sodium chloride solutions, might suggest that the hydrated water molecules are not bound tightly to that ion, although the neutron evidence requires that they are stronsly orientated towards it when approaching closely. The lack of structure could equally be an effect of the packing of non-spherical hydrated ions.

## CHAPIER 6

CONCLUSIOI:
In the previous Chapter, we have seen how the hard-sphere simulation is a useful reference system with which to judge the real solution. The tightness of the binding between an ion and its hydration molecules will be represented by the sharpness of the first peak in the ion-oxygen radial distribution, but even a bare ion sumrounded by water molecules with only hard sphere repulsions present, will show a significant peak, due to the atomic packing. Hence, the true extent of binding is determined by comparison with the hard sphere situation. Neutron data cannot at present supply information about the ion-oxygen partial distribution. Nonetheless, a model which fits the data must generate a reasonably accurate ion-oxygen distribution, and so in fig 6.1 comparison is made between the chlorine - oxygen partial obtained from model A in sodium chloride at 5.32 nolal, with the same distribution function from a mixture of hard sinere water molecules (diameter $2.8 \AA$, number density $0.0209 / \AA^{3}$ ), sodium ions (diameter 1.90 A , number density $0.00318 / \mathrm{R}^{3}$ ), and chlorine ions (diameter 3.6 \& number density $0.00318 / \AA^{3}$ ), at the same concentration. Clearly, for the chlorine ion, the water molecules are no more tightly bound than in the hard sphere solution, and probably less so. In addition, the ion-water rotential is much 'softer' than a hard sphere potential. Hence the hydration of water molecules around the chlorine ion is confirmed to be an orientation effect, but the role of bincing between the ion and its hydration sphere is at present unclear.
. Samoilov (114), by considering the activation energy

needed to re:lace a water molecule in the hydration sphere, argues that, for ions like $\mathrm{K}^{+}, \mathrm{Cs}^{+}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$, the rate of exchance of water molecules around the ions is greater than the rate for those around a water molecule in pure water, i.e. the ion actually 'Iubricates' the motion of the water molecules. The present data agrees with this interpretation, although there is marked orientation of the water molecules near the ion.

As no model has been developed, so far, for the nickel hydration sphere, it is not possible to make the same comparison, elthough the height and sharpness of the features in figs 4.18 to 4.20 strongly suggest that binding does occur.

There are no previous experimental data on the distribution of chlorine ions in the solution, and all the simulations have been carried out at concentrations below 2.0 molal. - these invariably ignore the finite size of the solvent particles. However, Stell and Sun ( $1 / 5$ ) quote some Monte Carlo results, for a series of solutions up to 1.968 molar, for a twocomponent system of charged hard spheres, and Lantelme and Friedman (116) performed a simulation of a 1.0 molar solution, by treating the motion of the charged particles as Bromian motion in a viscous medium. Neither of the simulations shows 'structure' in the distributions, but it is unfair to compare them with the chlorine partial at 5.32 molal, which, as we saw earlier, of the three concentrations for which a partial structure factor is available, is least likely to contain experimental error.

Finally, a hard-sphere simulation of sodium chloride solutions, analogous to the one for nickel chloride, is presented in fig 6.2 - see Table 6.1. Although it is unrepresentative of the real solution, since we now know that the ion-solvent potential is not 'hard', the increasing role of the solvent

in structuring the ions is clearly demonstrated by these curves.
Hence the result in fig 4.9 , where there appeared an increase
in structure with dilution, could be interpreted as such an effect.

## APPENDIX 1

We define the Hamiltonian for the unperturbed system as $H_{0}$, and for the neutron interaction we then add the Hamiltonian of the particle to be scattered and the interaction potential:-

$$
\begin{equation*}
H=H_{0}+\frac{\theta_{0}^{2}}{2 m}+\sum_{j} \nabla_{j}\left(\underline{x}-\underline{R}_{j}\right) \tag{A1. 1}
\end{equation*}
$$

where $\underline{R}_{j}$ is the position of the $j^{\text {th }}$ nucleus, and the sum is taken over all the scattering centres. $\nabla_{j}\left(\underline{\underline{r}}-\underline{R}_{j}\right)$ is the scattering potential. Born approximation tells us the partial differential cross-section:-

$$
\left.\frac{d^{2} \sigma}{d \Omega d w}=\frac{Q_{1}}{Q_{0}}\left(\frac{m}{2 \pi}\right)^{2}\langle f| \int \frac{d x}{} \exp \left(i \Omega_{0} \underline{x}\right) \sum_{j} \nabla_{j}\left(x-R_{j}\right)|i\rangle\right\rangle_{[ }^{2} \delta_{f}\left(E_{f}-E_{i}-w\right)
$$

where $i$ and $f$ represent the initial and final states, and $E$ is the energy of the system. The $\delta$-function expresses conservation of energy. If we let $R=I-{\underset{R}{j}}^{R}$, then the integral can be written as

$$
\sum_{j}\left(d \underline{R} \nabla_{j}(R) \exp \left(i Q_{0}\left(\underline{R}+R_{j}\right)\right)=\sum_{j} \nabla_{j}(Q) \exp \left(i Q_{0} R_{j}\right)\right.
$$

$\nabla_{j}(Q)$ is the Fourier component of $V_{j}(R)$.
The cross-section must be averaged over all initial and final
states. The average over the initial states simply is a thermal average. The distribution of final states is governed by the unperturbed Hamiltonian acting on the final states.

First we note the Fourier expansion of a $\delta$-function:

$$
\delta\left(E_{f}-E_{i}-w\right)=\frac{1}{2 \pi} \int d t \exp \left(i\left(E_{f}-E_{i}-w\right) t\right)
$$

In the Heisenberg representation

$$
\begin{array}{rlr}
\exp \left(-i H_{0} t\right)|i\rangle & =\exp \left(-i E_{i} t\right)|i\rangle & \ldots A 1.5 \\
\text { and }\langle\underline{f}| \exp \left(i H_{0} t\right) & =\langle f| \exp \left(i E_{f} t\right) & \ldots . .11 .6
\end{array}
$$

Furthermore we note the following operation on a function of the system, f:

$$
\exp \left(i H_{0} t\right) f(0) \exp \left(-i H_{0} t\right)=f(t)
$$

Finally, to make use of these results, we replace the term within the modulus sign squared by the expression

$$
\langle i| \sum_{j} \nabla_{j}^{+}(Q) \exp \left(-i Q_{0} R_{j}\right)|f\rangle\langle f| \sum_{k} \nabla_{k}(Q) \exp \left(i Q_{0} R_{s}\right)|i\rangle, \quad \therefore A 1.8
$$

where

$$
\nabla_{j}^{+}(Q)=\int d R \nabla_{j}(R) \exp (-i Q \cdot R)
$$

Note that $\nabla_{j}^{+}(Q), V_{j}(Q)$ are independent of operations of the Hamiltonian and time. Combining all the previous equations, we obtain

$$
\begin{aligned}
& \frac{d^{2} \sigma}{d Q d w}=\frac{Q_{1}}{Q_{0}}\left(\frac{m}{2 \pi}\right)^{2} \frac{1}{2 \pi} \int d t \cdot \exp (-i w t) \sum_{j} \sum_{k} \nabla_{j}^{+}(Q) \nabla_{k}(Q) * \\
& * \exp \left(-i Q_{\cdot} R_{j}(0)\right) \exp \left(i Q_{\cdot} R_{k}(t)\right) . \quad . \ldots A 1.10
\end{aligned}
$$

Here the thermal average has been assumed.

## APPENDIX 2

In equation 1.26 we have the sum:

$$
\sum_{j} \sum_{k \neq j} b_{j} b_{k} \exp \left(i Q_{0}\left(B_{k}-R_{j}\right)\right)
$$

Setting $R_{n}=R_{s}-R_{j}$, this is rewritten:

$$
\sum_{j} \sum_{m} b_{j} b_{m}\left(\exp \left(i Q \cdot R_{m}\right)-\delta\left(R_{m}\right)\right)
$$

The sum over $j$ is performed immediately

$$
\sum_{j} b_{j}=\sum_{a} \mathbb{N}_{a} b_{a}
$$

For the sum over $n_{?}$ let $\rho_{a b}(r)$ represent the density of particles 'b' with an 'a' particle at the origin.

$$
\rho_{a b}(x)=\sum_{m} \delta\left(x-R_{m}\right)
$$

so $\quad \int \rho_{a b}(\underline{r}) \exp (i \Omega \cdot \underline{r}) d r=\sum_{m} \exp \left(i Q \cdot R_{m}\right)$.
Also note that $\sum_{k} \delta\left(B_{K}\right)=\sum_{b} N_{b} \int \exp \left(i Q_{0} \underline{r}\right) d r$
The sum over mow becomes

$$
\sum_{b} b_{b} \int\left(\rho_{a b}(x)-N_{b}\right) \exp \left(i Q_{0} \underline{r}\right) d r
$$

Using the partial distributions of equation 1.18, we write

$$
g_{a b}(x)=\frac{\rho_{a b}^{\prime}(x)}{n c_{b}},
$$

A2.8
and A1.1 finally becomes

$$
\left.N n \sum_{a} \sum_{b} c_{a} c_{b} b_{a} b_{b} \int \delta_{a b}(r)-1\right) \exp (i \underline{2} \cdot x) d r .
$$

## SMOOTHIIG BY FOURIER ANALYSIS

The standard method of smoothing noisy data by Fourier analysis is to set up a Fourier series through the data. The higher frequency harmonics are then deleted since they correspond, principally, to the noise in the data, and 'smoothed' data regenerated from a reduced number of harmonics. Such a procedure applied to a structure function is open to an important criticism.

For the Fourier analysis, we take $n$ data points, and set up a second set so that the combined set is an EVEN function, i.e.

$$
I_{j}=I_{2 n-j} \quad \text { for } \quad 0 \leqslant j \leqslant n, \quad \ldots \Delta 3.1
$$

then on Fourier analysis the sine coefficients disappear, and the data are expressed as a series of cosine coefficients:

$$
I\left(Q_{j}\right)=\sum_{k=0}^{2 n-1} a_{k} \cos \left(\frac{\pi_{j k}}{n}\right)
$$

where

$$
a_{k}=\frac{1}{n} \sum_{k=0}^{2 n-1} I\left(Q_{j}\right) \cos \left(\frac{\Pi_{j k}}{n}\right)
$$

The Fourier transform of $I(Q)$ is in general defined by

$$
G(r)=\frac{1}{2 \pi^{2} n_{a} r} \int_{0}^{\infty} Q\left(Q_{0}\right) \sin \left(Q_{Q} r\right) d Q, \text { where } n_{a} \text { is the total number density of atoms. }
$$

For a finite number of discrete data points, the definition, $A$. 4 ,

$$
\begin{align*}
& \text { can be rewritten as } \\
& \qquad G\left(r_{m}\right)=\frac{1}{2 \pi^{2} n_{a} r_{m}} \Delta Q_{j=0}^{2 n-1} Q_{j} I\left(Q_{j}\right) \sin \left(Q_{j} r_{m}\right) \tag{A3. 5}
\end{align*}
$$

where $\Delta Q$ is the step in $Q=0$-space between data points, so that $Q_{j}=j . \Delta Q$. QUAX is the maximum value of $Q$, so that $n=Q H A X / \Delta Q$, and $r_{m}=\frac{m \pi}{Q u A X}$. This form of representation is used because the fast-Fourier transform algorithm of Cooley and Iukey (117) was employed to evaluate equations $\mathbf{A 3 . 3}$ and $\mathbf{A 3 . 5}$.

For the transform $A 3.5$ we need the sine coefficients,
so the function $Q_{j} I\left(Q_{j}\right)$ is made $O D D$, i.e. $Q_{j} I\left(Q_{j}\right)=-Q_{Q_{n-j}} I\left(Q_{Q_{n-j}}\right)$ for $n<j<2 n$. Combining 43.2 and 43.5 , after reordering the terms, gives

$$
G\left(r_{m}\right)=\frac{1}{2 \pi^{2 n_{a}}} \frac{1}{r_{m}} \sum_{k=0}^{2 n-1} a_{k} \Delta Q \sum_{j=0}^{2 n-1} Q_{j} \cos \left(Q_{j} r_{k}\right) \sin \left(Q_{j} r_{m}\right)
$$

The bracketed term represents the Fourier analysis of the function $Q_{j} \cos \left(Q_{j} x_{k}\right)$, and is given by

$$
\begin{array}{lll}
b_{k m}= \pm \frac{Q M A X^{2} 2 m}{\pi\left(k^{2}-m^{2}\right)} & \text { for } m \neq k & \begin{array}{l}
\text { +re for } k+m \text { EVEN } \\
\text {-ve for } k-m \text { ODD }
\end{array} \\
b_{k m}=-\frac{Q M A X^{2}}{2 \pi k} & \text { for } m=k, & \ldots A 3
\end{array}
$$

assuming $n>k+m$. The cases for when $k=0$ and $n \approx k+m$ are also straightforward to derive. It is clear that values of $\mathrm{b}_{\mathrm{km}}$, for $m \neq k$, are large in the region $k \approx m$. Thus if we delete coefficients $a_{k}$ for $k$ greater than a value $k^{\prime}$, say, then we similarly deleting most of the information about $G\left(r_{m}\right)$ for $r_{m}>r_{k^{\prime}}$.

The point is demonstrated in fig. A3.1, where the Fourier coefficients (curve (c)),from the structure factor of a disordered F.C.C. lattice ( see chapter 5), are compared with the radial distribution function (curve (a) ) derived from the same structore factor : the two curves bear considerable resemblance to one another. Curve (b) shows the radial distribution function after terminating the Fourier coefficients at 3 \&. Although this last curve may exagrerate the effect, it is clear that simply deleting coefficients is not a satisfactory way of obtaining a radial distribution.

Curve (d) shows the Fourier coefficients obtained from the first order difference $I_{35}-I_{37}$, (fig. 3.9b), after inter-

polating the raw data to a step of $0.015 \mathrm{~A}^{-1}$. This is the least noisy of all the difference curves, but the Fourier coefficients retain considerable noise: this noise persists over all radius values, (see Wertheim (118)), but has a maximum in the region of 10 A . The curve appears flat beyond $8 \&$, but there is no justification for assuming this, especially as the long range interaction, the Cl-Cl partial distribution, contributes only $5 \%$ to the total.

In the absence of a more satisfactory method, the problem was overcome in the present work by smoothing the coefficients using a simple averaging procedure, i.e. the value of coefficient $a_{n}$ was replaced by $\frac{1}{4}\left(a_{n-1}+2 a_{n}+a_{n+1}\right)$. The amount of averaging was kept to a minimum and restricted to regions where the Fourier coefficients displayed no or only slowly varying structure.

The Fourier analysis technique also enables us to correct any fall in the data due to Placzek effects on the self terms ( section 9, Chapter 1.). To first order this correction is of the form

$$
\Delta(Q)_{\text {actual }}=\Delta_{0}\left(1-b Q^{2}\right)
$$

$$
\ldots \text { A3. } 8
$$

where $\Delta_{0}$ is the ideal, elastic value, and $b$ is a constant.
Fourier coefficients of $\Delta(Q)$ are, for $k \ll n$,

$$
a_{k}=\Delta_{0} \operatorname{GMAX}^{2} b^{2} \frac{4}{\pi^{2} k^{2}}(-1)^{k+1} \quad \ldots 43.9
$$

Hence the coefficients rise sharply for small $k$. By subtracting a curve of the form A3.9 from the coefficients at small values of k , the Flaczek correction to the self terms can be completely eliminated. In practice, the effect occurs only within the first 5 coefficients of the first order differences.

## APFENDIX 4

## ZYRO IIMIT CALCULATIONS

Beeby (119) has derived expressions for the zero limits to the partial structure factors in an aqueous solution consisting of $N_{b}$ solute molecules dissolved in $N_{a}$ solvent molecules, in a volume $V$, in terms of the fluctuations $\Delta_{N_{a}}, \Delta N_{b}$. These fluctuations are in turn related to the isothermal compressibility, $H$, and the derivative of the osmotic pressure $\frac{d P}{d c}$ with respect to molecular fraction, $c=\frac{\mathrm{N}_{b}}{\mathrm{~N}_{\mathrm{a}}+\mathrm{N}_{\mathrm{b}}}$.

Tabulated data usually give the practical osmotic coefficient, $\phi$, which represents the deviation of the osmotic pressure from its ideal (van't Hoff) value, as a function of molality, $m$. The osmotic pressure is then given by (Robinson and Stokes (26))

$$
P=\frac{\mathrm{vN}_{0} k_{B} T M_{1}}{1000 \bar{v}_{a}} \text { m } \varnothing
$$

where $\mathbb{N}_{0}$ is Avogadro's number, $v$ is the mumber of ions which the solute dissociates into, $M_{1}$ is the molecular mass of the solvent, and $\bar{\nabla}_{a}$ is the average of the partial molar volume of the solvent, on either side of the membrane. In practice this number does not change significantly, and so it is treated simply as the partial molar volume of the solvent.

In terms of molality
$m=\frac{c}{1-c} \frac{1000}{M_{1}}, \quad \frac{d m}{d c}=\frac{1}{(1-c)^{2}} \frac{1000}{M_{1}}$
and so

$$
\frac{d P}{d c}=\frac{\nabla N_{0} k_{B} T}{\nabla_{a}} \frac{1}{(1-c)^{2}}\left(\phi+m \frac{d \phi}{d m}\right)
$$

There is a slight confusion alout dimensions in Beeby's paper. The partial molar volumes are defined as

$$
\nabla_{i}=\left(\frac{\partial V}{\partial N_{i}}\right)_{P, N_{k}}
$$

implying that $\mathbb{N}_{i}$ refers to the number of gram molecules of substance $i$, whereas the relations for the zero limits apply to the fluctuations in the number of molecules. For the present we shall keep the latter notation, so the partial molar volume becomes

$$
\nabla_{i}=N_{0}\left(\frac{\partial V}{\partial N_{i}}\right)_{P, N_{k}},
$$

and everywhere in Beeby's paper we replace $\nabla_{i}$ by $\frac{V_{i}}{\bar{N}_{0}}$
With this notation the fluctuations are
$\frac{\left\langle\Delta N_{a}^{2}\right\rangle}{\left\langle N_{a}\right\rangle}=\frac{N}{V}\left(k_{B} T(1-c) H+\frac{c}{(1-c)} \frac{N}{V} \frac{\nabla_{b}^{2}}{N_{0}^{2} P_{1}}\right)$
$\frac{\left\langle\Delta N_{b}^{2}\right\rangle}{\left\langle N_{b}\right\rangle}=\frac{N}{V}\left(k_{B}^{T} c H+\frac{N}{V} \frac{\nabla_{a}^{2}}{N_{0}^{2} \nabla P_{1}}\right)$

where $N=N_{a}+N_{b}$, and $P_{1}=\frac{1}{(1-c)^{2}}\left(\phi+m \frac{d \phi}{\partial m}\right)$
Osmotic coefficient data were taken from Growther and
Dunlop (120) for sodium chloride, and from Robinson and Stokes (26) for nickel chloride. Strictly these values apply to light water solutions, but the conversion to $D_{2} O$ does not affect the values very appreciably, Robinson (121).

Hydration of ions in aqueous solutions - ion-water distances and coordination numbers obtained from X-ray diffraction. If wore than one value of either Iarameter is given, this indicates the uncertainty of the particular experiment.

Ion Ref. Solute Ion-Water(Oxygen) Hydration Number Molality Distance (gm moles per $1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ )

| $\mathrm{Ii}^{+}$ | 47 | $\mathrm{Li}_{2} \mathrm{SO}_{4}$ | 2.08 | 4 | 2.22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 49 | $\mathrm{LiBF}_{4}$ | 2.14 | 6 | 10.40 |
|  | 61 | LiI | - | 2.6 | 5.53 |
|  |  |  |  | 3.4 | 0.43 |
|  | 62 | LiCl | 2.25 | 4-1 | 18.50 |
|  |  |  | 1.95 | 4 ${ }^{\mathbf{+}}$ | 6.90 |
|  | 63 | LiCl | 2.1 | - | - |
|  | 71 | LiBr | 2.16 | 4,6 | 6.60 |
| $\mathrm{Na}{ }^{+}$ |  |  | 2.25 | 4,6 | 2.22 |
|  | 47 | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | 2.38 | 4 | 2:22 |
|  | $47 a$ | $\mathrm{NaBr}_{4}$ | 2.4 | 6 | 9.05 |
| $K^{+}$ | 42 | KOH | 2.9 | 4,6 | 2.02 |

$$
5.51
$$

| 47 | $\mathrm{~K}_{2} \mathrm{SO}_{4}$ | 2.8 | 4 | 0.55 |
| :--- | :--- | :--- | :--- | :--- |
| 61 | KI | 2.9 | 1.7 | 6.61 |
|  |  |  | 3.2 | 0.51 |

$\mathrm{Cs}^{+} \quad 52 \quad \mathrm{CsCl} \quad 3.15$

| $2.9,6.2$ | 2.5 |
| :--- | ---: |
| $2.8,4.2$ | 5.0 |
| $2.0,3.0$ | 10.0 |
| $5.1,6.0$ | 2.5 |
| 1.9 .3 .0 | 5.0 |
| $2.3,2.7$ | 2.5 |


| $\mathrm{NH}_{4}^{+}$ | 49 | $\mathrm{NH}_{4} \mathrm{BF}_{4}$ | 3.00 | 4.5 | 2.78 |
| :--- | :--- | :--- | :--- | :--- | ---: |
|  | 58 | $\mathrm{NH}_{4} \mathrm{~F}$ | 2.88 | 4.4 | 15.56 |
|  | $\mathrm{NH}_{4} \mathrm{Cl}$ | 2.80 | 4.4 | 6.51 |  |
|  | $\mathrm{NH}_{4} \mathrm{Br}$ | 2.82 | 4.4 | 7.31 |  |
|  | $\mathrm{NH}_{4} \mathrm{I}$ | 2.91 | 4.4 | 6.78 |  |

Ion Ref. Solute Ion-Water(Oxygen) Hydration Number Molality Distance


| $\begin{aligned} & \mathrm{cu}^{++} \\ & (\text {cont'd) } \end{aligned}$ | 65 | $\mathrm{CuCl}_{2}$ | 1.93 | $\mathrm{Cu}_{3} \mathrm{Cl}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ clusters $\mathrm{Cu}_{5} \mathrm{Cl}_{10}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ clusters | 5.10 3.55 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 66 | $\mathrm{CuSO}_{4}$ | 2.1,2.3 | 4,6 | 0.74 |
|  |  |  |  |  | 0.45 |
| $\mathrm{Zn}{ }^{++}$ | 46 | $\mathrm{ZnCl}_{2}$ | 2.05 | 1 (3 Cl atoms are coordinated at the same distance.) | $\begin{array}{r} 27.5 \\ 8.5 \end{array}$ |
|  |  |  |  |  | 5.0 |
|  | 50 | 2 nBr 2 | 2.1? | 2 (2 Br atoms are coordinated at the same distance.) | 17.7 8.9 |
|  |  |  |  |  | 4.4 |
|  | 64 | $\mathrm{ZnCl}_{2} / \mathrm{HEI}$ | 2.05,2.15 | 2 | 3.5 |
| $\mathrm{Cd}^{++}$ | 53 | $\mathrm{CaCl}_{2}$ | - | 1,2 (2 or 3 Cl atoms coordinated as well) | $\begin{aligned} & 2.22 \\ & 1.39 \end{aligned}$ |
| $\mathrm{Al}^{++}$ | 68 | $\mathrm{AlCl}_{3}$ | 1.9 | 6 | 3.38 |
|  |  |  |  |  | 1.63 |
|  |  | $\mathrm{AlHr}_{3}$ | - | $6 ?$ | 2.42 |
| $\mathrm{In}^{+++}$ | 68 | $\mathrm{InCl}_{3}$ | 2.35 | 6 | 6.9 |
|  |  |  |  |  | 2.9 |
| $C r^{+++}$ | 67 | $\mathrm{CrCl}_{3}$ | 1.90 | 6 | 0.25 |

The coordination of anions is not well defined for solutes with di-valent or tri-valent cations, because the anion is frequently considered to form part of a cation complex.

| $\mathrm{OH}^{-}$ | 42 | KOH | 2.9 | 1,6 | 4.48 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 2.01 |
|  | 43 | KOH | 2.9 | 6 | 17.50 |
| $\mathrm{Cl}^{-}$ | 42 | KCI | 3.16 | 5.4,7.2 | 5.51 |
|  | 43 | LiCl | 3.24 | 8,9 | 6.86 |
|  | 48 | $\mathrm{MgCl}_{2}$ | 3.35 | 6 | 2.22 |
|  |  | $\mathrm{HiCl}_{2}$ | 3.35 | 6 | 2.22 |
|  | 52 | LiCl | 3.25 | 6.5,7.3 | 10.0 |
|  |  |  | 3.20 | 5.4,8.7 | 5.0 |
|  |  |  | 3.15 | 6.2,11.0 | 2.5 |
|  | 54 | $\mathrm{CoCl}_{2}$ | 3.1 | - | 3.75 |

Ion Ref. Solute Ion-íater(0xygen) Iydration Number Folality Distance

| ${\underset{(\text { cont'd) }}{\mathrm{Cl}^{-}} 58}_{58}$ | $\mathrm{NH}_{4} \mathrm{Cl}$ | 3.2 | $\begin{aligned} & 6-\text { may include }_{\mathrm{NH}_{4}^{+}} \\ & \text {ions } \end{aligned}$ | 6.51 |
| :---: | :---: | :---: | :---: | :---: |
| 60 | $\mathrm{MgCl}_{2}$ | 3.2 | 8.2 | 5.65 |
|  |  |  | 8.9 | 4.27 |
|  | $\mathrm{CaCl}_{2}$ | 3.2 | 7.9 | 5.22 |
|  |  |  | 8.0 | 3.26 |
| 62 | LiCl | 3.19 | 6\# 1 | 18.5 |
|  |  | 3.10 | $6 \pm 1$ | 6.9 |
| 63 | EiCl | 3.25 | 8.2,9.1 | 8.62 |
|  |  |  | 7.1,10.2 | 3.99 |
|  |  |  | 8.0 | 2.27 |
| 70 | HCl | 3.13 | 4 | 13.9-0.58 |
| 73 | $\mathrm{CaCl}_{2}$ | 3.15 | 6 | 4.52 |
|  |  | 3.14 | 6 | 2.09 |
|  |  | 3.14 | 6 | 1.00 |
|  | LiBr | 3.43 | 7.2,8.9 | 10.0 |
|  |  | 3.37 | 6.6,8.3 | 5.0 |
|  |  | 3.40 | 6.7,7.2 | 2.5 |
|  | $\mathrm{NH}_{4} \mathrm{Br}$ | 3.36 | $6 \text { - may include } \mathrm{NH}_{4}^{+}$ | 7.3 |
|  | Libr | 3.40 | 7.4,9.5 | 4.26 |
|  | LiBr | 3.29 | 6 | 6.60 |
|  |  |  |  | 2.22 |
|  | $\mathrm{CaBr}_{2}$ | - | 6 | 2.14 |
|  |  |  |  | 1.26 |
| $\mathrm{I}^{-} \quad 5$ | LiI | 3.76 | 6.1,8.9 | 10.0 |
|  |  | 3.65 | 6.7,8.0 | 5.0 |
|  |  | 3.69 | 8.8,9.4 | 2.5 |
|  | $\mathrm{NH}_{4} \mathrm{I}$ | $3.64 \pm 0.04$ | 6 | 6.77 |
|  | KI | 3.7 | 9.6 | 6.61 |
|  |  |  | 4.2 | 0.51 |
|  | LiI | 3.7 | 9.6 | 5.56 |
|  |  |  | 4.2 | 0.43 |

पydration numbers and ion-water distances derived from Molecular Dynamics and Monte Carlo calculations on ion-water clusters.

| Ion | Ref. | Method | Ion - O Distance | Eycration numoer |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Li}^{+}$ | 82-85 | MD | 2.08 | $5.7 \pm 0.2$ |
|  | 86 | MC | 1.9-2.0 | 4 |
|  | 87 | MC | 1.75 | 4,5,6 |
|  | 88 | MC | 2 | 5 |
|  | 90 | MC | 2 | - |
| $\mathrm{Na}{ }^{+}$ | 84,85 | VD | 2.31 | $\begin{aligned} & 6.6(2.2 \text { molal }) \\ & 7.3 \text { ( } 0.55 \text { molal }) \end{aligned}$ |
|  | 86 | MC | 2.3-2.4 | 5,6 |
|  | 89 | MD | 2.3 | 5 |
| $\mathrm{K}^{+}$ | 86 | MC | 2.7-2.8 | 5,7 |
|  | 88 | MC | 2.9 | 5 |
|  | 90 | MC | 2.8 | - |
| $\mathrm{Rb}{ }^{+}$ | 89 | $M D$ | 2.4 | 5 |
| Cs ${ }^{+}$ | 83 | MD | 3.1 | $\begin{aligned} & 7.3 \pm 0.7\left(\text { anion: } \mathrm{F}^{-}\right) \\ & 8.2 \pm 0.8\left(\text { anion: } \mathrm{Cl}^{-}\right) \end{aligned}$ |
| $\mathrm{F}^{-}$ | 83 | MD | 2.22 | $6.3 \pm 0.1$ |
|  | 86 | MC | 2.7-2.8 | 4,6 |
|  | 87 | MC | 2.2,2.3 | 3,4 |
|  | 88 | HC | 2.7 | 5.5 |
|  | 89 | ND | 2.3 | 6.5 |
|  | 90 | MC | 2.5-2.6 | - |
| $\mathrm{Cl}^{-}$ | 82-85 | MD | 2.67 | $\begin{aligned} & 7.4 \pm 0.4 \text { (anion: } \mathrm{Li}^{+} \text {) } \\ & 6.7 \pm 0.3 \text { (anion: } \mathrm{Na}^{+} \text {) } \\ & 7.9 \pm 0.3 \text { (anion: } \mathrm{Cs}^{+} \text {) } \end{aligned}$ |
|  | 86 | MC | 3.4,3.5 | 6,7 |
|  | 88 | MC | 3.5 | 6 |
|  | 90 | MC | 3.3 | - |
| $\mathrm{Br}^{-}$ | 89 | IVD | 2.9 | 5 |
| $\mathrm{I}^{-}$ | 84 | IVD | 3.02 | $7.1 \pm 0.1$ |
|  | 89 | MD | 3.8 | 5 |

## APFENDIX 7 - TABLES

TABLE 3.1 Experimental Conditions for Sodium Chloride Solutions.
a) Isotopic Composition (Chlorine Isotopes) and Scattering Lengths

| Sample | At. $\%{ }^{35}{ }_{\mathrm{Cl}}$ | At. $\% 3_{\mathrm{Cl}}$ | Coherent Scattering <br> Length $\left(10^{-12} \mathrm{~cm}\right)$ |
| :---: | :---: | :---: | :---: |
| Natural | 75.5 | 24.5 | 0.96 |
| ' $\mathrm{NI}^{\prime}$ | 59.3 | 40.7 | 0.81 |
| '35' | 99.4 | 0.7 | 1.17 |
| '37' | 9.6 | 90.4 | 0.35 |

b) Solution Composition and Scattering Cross-Sections.

| Nolality gm moles per | Density ${ }^{*}$ $\mathrm{gm} / \mathrm{cc}$ | Atomic <br> Fraction | Scattering | cross-section per atom barns |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 gm $\mathrm{D}_{2} 0$ |  |  | Natural | ${ }^{1} \mathrm{~N}^{\prime}$ | '35' | '37' |
| 5.32 | 1.30 | 0.0331 | - | 4.09 | 4.31 | 3.82 |
| 2.99 | 1.22 | 0.0192 | 4.03 | - | 4.11 | 3.82 |
| 1.49 | 1.16 | 0.0097 | - . | 3.91 | 3.97 | 3.83 |

*measured in the course of the experiments. The likely error is $\pm 0.01 \mathrm{em} / \mathrm{cc}$.
c) Hydrogen Contents.

| Molality | Hydrogen content, expressed as the wt \% of pure $D_{2} O$ which had the same absorption as |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Natural | 'N' | '35' | '37' |
| 5.32 | - | 0.8 | 0.8 | 0.8 |
| 2.99 | 0.5 | - | 0.2 | 0.2 |
| 1.49 | - | 0.4 | 0.3 | 0.4 |

TABLE 3.2 Limits on Fartial Structure Factors and Radial Distributions.
Molality Partial Structure Factors Fartial Radial Iistributions


PABLE 4.1 Hydration Numbers of Chlorine Ion in NaCl Solutions.

| Molality | (i) <br> AllDeuterium <br> atoms | Fqual numbers of <br> deuterium and oxygen | All $\mathrm{D}_{2}$ O molecules |
| :---: | :---: | :---: | :---: |
| 5.32 | 5.4 | atoms |  |
| 2.99 | 6.6 | 2.9 | 1.9 |
| 1.49 | 6.4 | 3.5 | 2.4 |
|  |  | 3.3 | 2.2 |

PABLE 4.2 Farameters for hydration sphere models drawn in figs.

$$
\text { 4.1. to } 4.7
$$

| Molality | Model A - | $C I-0$ <br> (\&) | $\begin{gathered} \theta \\ \left({ }^{0}\right) \end{gathered}$ | $\begin{gathered} \emptyset \\ \left({ }^{0}\right) \end{gathered}$ | $N_{0}$ | $\begin{gathered} \text { W } \\ (\AA) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.32 |  | 3.15 | 90 | 15 | 5.5 | 0.26 |
| 2.99 |  | 3.15 | 90 | 15 | 6.0 | 0.24 |

Model B 1st Eydration Sphere
2nd Hydration Sphere

|  | $C I-0$ <br> (\&) | $\left(^{\theta}\right)$ | $\begin{gathered} \phi \\ (0) \end{gathered}$ | $\mathrm{N}_{0}$ | $C 1-0$ <br> (i) |  | $\begin{gathered} \phi \\ \left({ }^{0}\right) \end{gathered}$ | $\mathrm{N}_{0}$ | $\begin{gathered} \text { W } \\ (\AA) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.32 | 2.7 | 80 | 52 | 2 | 3.7 | 80 | 52 | 1.5 | 0.18 |
| 2.99 | 2.6 | 80 | 52 | 2.5 | 3.7 | 80 | 52 | 1.5 | 0.18 |
| 1.49 | 2.5 | 60 | -48 | 3 | 3.8 | 90 | -60 | $4 \cdot 5$ | 0.16 |

TABLE 4.3 Optimum Parameters of the Hydration Sphere Models.
1st Hydration Sphere

| Holality | $\mathrm{Cl}-\mathrm{O}$ | $\mathrm{N}_{\mathrm{O}}$ | $\theta$ | $\emptyset$ | $\mathrm{Cl}-0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (§) |  | $\left(^{\circ}\right)$ | $\left({ }^{\circ}\right)$ | (\%) |

Model A

| 5.32 | $3.2 \pm 0.02$ | $5.5 \pm 0.180 \pm 3$ | . $12 \pm_{2}$ | - | - | - | - | 0.173 | 0.178 | 0.26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.99 | $3.2 \pm 0.05$ | $6.0 \pm 0.2 \quad 90 \pm 10$ | $10 \pm 5$ | - | - | - | - | 0.303 | 0.353 | 0.24 |
| 1.49 | 3.25*0.05 | $6.0 \pm 0.280 \pm 10$ | $5 \pm 5$ | 4.0 | $5.9 \pm$ | $25 \pm 15$ | $-80 \pm 25$ | 0.279 | 0.419 | 0.26 |

Model B

| 5.32 | $2.68 \pm 0.04$ | $2.1 \pm 0.1$ | $82 \stackrel{+}{-4}$ | 46 ${ }_{\text {t }}$ | 3.7\#0.1 | $1.3 \pm \pm .290 \pm 40$ | $52 \pm 8$ | 0.154 | 0.121 | 0.18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.99 | $2.65 \pm 0.03$ | $2.2 \pm 0.2$ | $85 \pm{ }^{+10}$ | 52 ${ }_{4}$ | 3.50.1 | $1.6 \pm{ }^{ \pm}+25^{ \pm}$25 | $45 \pm{ }_{-25}$ | 0.228 | 0.270 | 0.18 |
| 1.49 | $2.6 \pm 0.1$ | $3.0 \pm 0.2$ | $55 \pm 20$ | $40 \pm 10$ | $3.8 \pm 0.1$ | $4.5 \pm 0.270 \pm 20$ | $-60 \pm 10$ | 0.234 | 0.445 | 0.16 |

The errors shown indicate approximately the range over which the mean square deviation varies within $10 \%$ of the minimum value.

TABLE 4.4 Composition of Mickel Chloride Aqueous Solutions.

| Molality | Jensity $\mathrm{gm} / \mathrm{cc}$ | nickel <br> Atomic <br> Fraction | Scatterin <br> Natural | '62' | atom 'zero' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4.41 | 1.53 | 0.027 | 4.61 | 4.39 | 4.36 |
| 3.02 | 1.41 | 0.019 | 4.43 | 4.29 | 4.26 |
| 1.43 | 1.25 | 0.009 | 4.33 | 4.29 | 4.26 |

## Scattering Lengths:

Ni (Natural) $1.03 \times 10^{-12} \mathrm{~cm}$
Ni (162') $\quad-0.79 \times 10^{-12} \mathrm{~cm}$
Ni ('zero') $\quad 0.04 \times 10^{-12} \mathrm{~cm}$

TABLE 4.5 Hydration Numbers of Nickel Ion in Nickel Chloride Solutions (assuming the double peak in figs. 4.18-4.20 consists solely of $D_{2} 0$ molecules) -

Molality
4.41
3.02
1.43

Eydration Number
$5.8 \pm 0.1$
$6.0 \pm 0.2$
$6.1 \pm 0.4$

## TABLE 5.1

Parameters for lionatomic Iiquids.

| Liquid | Crystal Structure | Near-neighbour Distance ( 1 ) |  | $\begin{aligned} & \text { Number Density } \\ & \text { (per \&) } \end{aligned}$ |  | Width consłant ( $\AA^{-7}$ ) | Reference No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ar | F.C.C. | 3.71 | 3.88 | 0.0212 | 0.0237 | 0.4 | 101 |
| Na | B.C.c. | 3.7 | 3.83 | 0.0244 | 0.0253 | 0.42 | 102 |
| 7n | H.C.P. | 2.75 | 2.68 | 0.0622 | 0.0708 | 0.6 | 103 |
| Fe | B.C.C. | 2.54 | 2.61 | 0.0756 | 0.0796 | 0.5039 | 104 |
| Sn | Tetragon. | 3.18 | 3.07 | 0.0355 | 0.0371 | 0.42 | 103 |

TABLE 5.2
Parameters for Molten Sodium Chloride

| Paxtial | Neax-neighbour Distance (\&) |  |  | $\begin{aligned} & \text { Number Density } \\ & \text { (per } \AA^{3} \text { ) } \end{aligned}$ |  |  | Width Constant$\left(\Omega^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Expt. | Model (a) | Model (b) | Expt. | Model(a) | Model (b) |  |
| Cl-C1 | 4.1 | 3.89 | 4.38 |  |  |  | 0.5 |
| Namina | 4.1 | 3.82 | 4.35 | 0.0311 | 0.0467 | 0.033 | 0.55 |
| Na -Cl | 2.6 | 2.75 | 3.08 |  |  |  | 0.525 |

## TABLE 5.3

Molten Sodium Chloride - Comparison of Peak Positions

| Partial | Product Qod <br> First peak/minimum <br> Expt. <br> (a) Model <br> (b) |  |  | Second peak/minimum <br> Expt. <br> (a) ${ }^{\text {Model }}(b)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CI-CI | 7.17 | 7.78 | 7.80 | 13.94 | 13.69 | 13.88 |
| Na-Cl | 4.55 | 5.09 | 5.17 | 10.32 | 10.31 | 10.41 |

TABLE 5.4 Parameters for liquids with Nickel Arsenide-type Structures

| Liquid <br> N | Structure | Fetal <br> neigh <br> dist <br> 正xpt. | tal near- <br> r <br> ( 8 ) <br> Fodel | Total no. density of model (per $\AA^{3}$ ) | Width constants ( $\mathrm{O}^{-1}$ )Ketal- Fietalloid- Metalloid-metalmetal |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NiTe | NiAs | 2.5 | 2.58 | 0.055 | 0.7 | 0.7 | 0.7 |
| $\mathrm{NiTe}_{3}$ | NiAs | - | 2.64 | 0.055 | 0.4 | 0.4 | 0.7 |
| CuTe | NiAs | 2.78 | 2.61 | 0.055 | 0.55 | 0.45 | 0.5 |
| $\mathrm{Ca}_{2} \mathrm{Te}$ | $\mathrm{Fe}_{2} \mathrm{As}$ | 2.63 | 2.58 | 0.031 | 0.6 | 0.5 | 0.5 |

TABLE 5.5 Hydration Numbers and Free water Molecule Concentration for Three Component Hard Sphere del

Molality $D_{2} \mathrm{O}$ no. Ni no. $\mathrm{Cl} \quad$ Remaining free $\mathrm{D}_{2} \mathrm{O}$ density density hydration Hydrated no. density. (per $\AA^{3}$ ) (per $\AA^{3}$ ) number. diameter. (per $\AA^{3}$ )
(部)

| 4.27 | 0.02926 | 0.00274 | 2.3 | 4.3 | - |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 3.71 | 0.02976 | 0.00239 | 3.2 | 4.45 | - |
| 3.05 | 0.03026 | 0.00197 | 4.7 | 4.75 | - |
| 1.87 | 0.03147 | 0.00123 | 6.0 | 5.0 | 0.00933 |
| 0.81 | 0.03237 | 0.00053 | 6.0 | 5.0 | 0.02283 |
| 0.31 | 0.03183 | 0.00020 | 6.0 | 5.0 | 0.02923 |
| 0.06 | 0.03289 | 0.00004 | 6.0 | 5.0 | 0.03217 |

Eydrated nickel diameter $=5.6 \mathrm{~g}$, water molecule diameter $=6.0 \mathrm{~A}$ Nickel hydration number $=6.0$
TABLE 6.1 Hard Sphere Model of Sodium Chloride Solutions

Molality $D_{2} \mathrm{O}$ no. Na no. $\mathrm{Cl} \quad$ Remaining free $\mathrm{D}_{2} \mathrm{O}$ density density Hydration Hydrated no. density (per $\AA^{3}$ ) (per $\AA^{3}$ ) Lumber diameter (per $8^{3}$ )

| 5.32 | 0.02988 | 0.00318 | 4.5 | 4.77 | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2.99 | 0.03109 | 0.00186 | 5.0 | 4.86 | 0.01265 |
| 1.49 | 0.03203 | $0.0009 j$ | 7.5 | 5.31 | 0.02019 |

Na hydration number $=5.0$, Na hydrated diameter $=4.15$.

| - | 'Ti' | '35' | '37' |
| :---: | :---: | :---: | :---: |
| $\left(0^{-1}\right.$ |  |  | , |
| 0.06000 | . 29198 | . 28536 | - 27833 |
| - 1000 | - 23623 | . 29181 | - 28488 |
| - 2 L 000 | - $3001+7$ | -29726 | - 29144 |
| - 30000 | . 30454 | . 30477 | - 30059 |
| . 401700 | - 30911 | -30858 | - 30685 |
| - 5000 | - 31234 | - 31335 | - 31258 |
| - 50000 | - 31630 | - 31836 | - 31845 |
| -70000 | . 31928 | - 32233 | - 32546 |
| - 80jo | . 32633 | . 33029 | -33115 |
| -9000 | . 33759 | -. 34134 | - 34413 |
| 1.000co | - $3+812$ | . 35351 | . 35576 |
| 1.1030] | -35291 | -35772 | - 37170 |
| 1.20030 | - 38257 | . 38839 | -39042 |
| 1.30000 | . 40525 | . 41508 | . 41415 |
| 1.40300 | .43939 | . 45147 | . 44497 |
| 1.50000 | . 43481 | - 50056 | . 48745 |
| 1.50000 | . 55028 | - 57113 | - 54841 |
| 1.70300 | . 64325 | . 66960 | . 63691 |
| 1.80000 | . 76183 | . 79613 | . 75112 |
| 1.90000 | . 90367 | -94347 | . 88615 |
| 2. 00000 | 1.02785 | 1.07737 | 1. 01077 |
| 2.10000 | 1.09138 | 1.14171 | 1.05877 |
| 2.20000 | 1.07025 | 1.12007 | 1.04773 |
| 2.30002 | . 33472 | 1.03302 | -95688 |
| 2.4000 | . 83104 | -923+0 | . 86274 |
| 2.50.00 | . 79149 | . 83068 | . 77428 |
| 2.50-0 | . 72313 | . 75223 | . 70638 |
| 2.70000 | . 67637 | . 71507 | . 65888 |
| 2.90000 | . 64337 | -6E215 | . 62391 |
| 2.30000 | . 61797 | . 65431 | - 59675 |
| 3.00000 | . 59558 | . 63232 | - 57174 |
| 3.15000 | . 57770 | . 01124 | . 55230 |
| 3.20900 | - 56045 | . 59774 | . 53917 |
| 3.30000 | - 55826 | . 58852 | . 53056 |
| 3.40000 | - 5.5843 | . 59089 | . 52814 |
| 3.50000 | -56243 | . 59396 | . 52951 |
| 3.501000 | - 56765 | . 59994 | - 53453 |
| 3.70000 | - 57307 | . 60813 | . 53913 |
| 3.80000 | -57823 | -61300 | - 54260 |
| 3.90000 | - 57846 | . 61522 | . 54679 |
| 4.0000 | . 58017 | . 61531 | . 54725 |
| 4.10300 | -57872 | . 61096 | . 54130 |
| 4.20900 | . 56948 | . 6.349 | . 53977 |
| 4.30000 | . $501 E 4$ | -59340 | . 53230 |
| +.40000 | -53241 | . 58318 | . 52421 |
| 4.5070 | - 54271 | . 57003 | -51511 |
| 4.62000 | . 53158 | . 55715 | . 50774 |
| 4.70000 | . 52322 | . 55056 | .49996 |
| 4.80 j 0 | - 51492 | - 54017 | . 49398 |
| 4.90300 | . 51126 | . 53549 | . 49196 |
| 5.00000 | . 51029 | - 53234 | . 48897 |
| 5.10000 | . 50726 | . 53329 | . 45858 |
| 5.20300 | . 50844 | - 53485 | . 48811 |
| こ.30000 | - 51310 | - 53818 | . 48933 |
| 5.40100 | - 51953 | - 54381 | . 48937 |
| 5.50000 | -52488 | . 55025 | . 49680 |
| 5. EEOCO | - 2838 | . 56083 | . 50293 |
| 5.70000 | -53611 | -50730 | . 51005 |
| 5.80500 | . 54395 | . 57428 | . 51453 |
| 5.00000 | . 54897 | -58038 | . 51789 |
| 6. 3600 | - 55598 | - 58595 | . 52453 |
| E.16)00 | . 55919 | . 59316 | -52701 |
| \%. 20.300 | - 50351 | . 59004 | - 52984 |
| 6.36100 | - 56435 | - 53846 | . 53182 |
| 0.40006 | . 55438 | -59997 | . 53492 |
| O. ECuCo | . 56549 | . 59644 | . 53729 |
| 6. 50000 | . 56622 | . 59764 | . 53675 |
| 6.70000 | . 56475 | - 59758 | - 53521 |
| E.90000 | . 56223 | . 59107 | . 53343 |
| 6.90000 | - 56393 | . 58713 | . 53473 |
| 7.06300 | - 5 E4, 8 | . 58604 | 53526 |
| 7.10000 | . 56324 | . 58884 | 53353 |
| 7.20000 | . 56226 | . 59002 | 53529 |


| $\left(A^{-1}\right)$ | 'I', | '35' | $137^{\prime}$ |
| :---: | :---: | :---: | :---: |
| 7.30300 | . 56285 | . 59062 | . 53859 |
| 7.40000 | $\begin{array}{r}.56508 \\ .56834 \\ \hline\end{array}$ | - 59097 | .54335 .54296 |
| 7.60000 | . 56837 | . 60006 | - 5434 |
| 7.70.30 | . 56748 | . 60184 | . 54438 |
| $7.80 .100$ | - 57202 | . 60201 | - 54364 |
| 7.90000 | - 57429 | -60152 | - 54592 |
| 8.1000 | -. 57529 | - 60123 | - 54871 |
| 8.20000 | - 57594 | -60360 | . 54947 |
| 8.3050 | . 57610 | . 50373 | . 54655 |
| 8.40000 | . 57491 | . 60142 | -54285 |
| 8.50000 | -56773 | -59826 | . 54247 |
| 3.60000 | . 56345 | -59391 | . 53860 |
| c. 8000 | - 5 E613 | - 58826 | . 53782 |
| 8.90000 | - 54867 | - 57798 | - 52170 |
| 9.06000 | - 54256 | . 57336 | - 51603 |
| 3.10000 | . 53689 | . 56670 | . 51057 |
| 9. 20000 | - 52776 | . 55751 | . 50446 |
| 9.30000 | -51159 | -.54866 | .49492 .48511 |
| 3.50000 | . 50511 | . 53281 | . 47539 |
| 9.60000 | . 49527 | . 52643 | . 46807 |
| 9.70000 | . 48900 | - 51708 | . 46045 |
| 9.80000 | . 43021 | . 50776 | . 45289 |
| 9.90300 | . 40859 | . 49914 | . 44523 |
| 10.00300 | -46181 | . 43020 | . 43710 |
| 10.10300 | - 45742 | -43333 | . 42860 |
| 1月.30009 | -. 43762 | . 45818 | -41196 |
| 10.40000 | . 43038 | . 46597 | . 40789 |
| 10.5000 | - 42730 | . 45865 | - 40188 |
| 10.6000 | . 42159 | -44951 | - 39341 |
| 10.7000 | -41490 | -44116 | - 38540 |
| 10.80060 | - 41089 | . 43574 | - 38381 |
| 10.9000 | . 40514 | -43221 | - 37748 |
| 11.0000 | - 40142 | -42936 | - 37496 |
| 11.20000 | . 39431 | . 41801 | . 36675 |
| 11.30000 | . 39083 | . 41460 | . 36205 |
| 11.40000 | . 386.35 | . 41402 | . 35834 |
| 11.50000 | . 38394 | . 40810 | . 35772 |
| 11.60000 | - 38110 | . 40758 | - 35544 |
| 11.83000 | -37911 | -. 40517 | - 35131 |
| 11.90000 | . 37785 | . 40344 | . 34730 |
| 12.00000 | . 37717 | . 40148 | . 34939 |
| 12.1000 | - 37496 | -40023 | - 34592 |
| 12.3000 | - 37435 | - 3993 | -3479 |
| 12.40000 | . 37287 | . 40257 | . 34285 |
| 12.50000 | . 37471 | . 40059 | . 34473 |
| 12.60300 | - 37454 | . 40038 | - 34535 |
| 12.8000 | -3716 | - 39642 | - 34428 |
| 12.90000 | -. 37245 | -39880 | -34327 |
| 13.0000 | . $374+9$ | . 39752 | . 34475 |
| 13.10000 | - 37376 | . 39915 | - 34546 |
| 13.30000 | - 37239 | - 40015 | - 34586 |
| 13.4000 | -. 37324 | -3974 | -34488 |
| 13. 5000 | . 3729 | . 40104 | . 34548 |
| 13.60000 | . 37267 | -39586 | - 345 |
| 13.70000 | - 36857 | - 39731 | - 34488 |
| 13.90000 | - 37236 | -39652 | - 342.35 |
| 14.00000 | . 35912 | . 39916 | . 34107 |
| 14.10000 | . 37035 | - 39427 | . 34051 |
| 14.2000 | - 36537 | - 39364 | 34018 |
| 14.40060 | -36244 | -39193 | -33828 |
| 14.50000 | . 36164 | . 38914 | . 33431 |


| $\left(A^{-1}\right)$ | 11. | '35' | 157 |
| :---: | :---: | :---: | :---: |
| 14.5000 | . 36116 | - 38641 | 33193 |
| 14.7000 | . 35726 | . 38603 | . 33030 |
| 14.8000 | . 35481 | - 38184 | -32838 |
| 14.90000 | - 34963 | - 37840 | . 32873 |
| 15.00000 | - 34920 | - 37706 | - 32332 |
| 15.10000 | - 34583 | - 37155 | - 32046 |
| 15.20000 | -34110 | - 37031 | . 31732 |
| 15.3000 | - 33952 | - 36465 | . 31325 |
| 15.40000 | . 33546 | . 36326 | . 31169 |


. 29941

- 10000
- 20000
.40000
- 29379
- 29058
. 31113
. 31627
- 31920
- 32561
$\cdot 32542$
. 35276
- 36594
- 38733
.42155
.46201
.52200
.
. 60.353
.71269
.34163
.98207
.
1.08529
1.12375
- 98595
.89368
.80678
- $7+368$
. 70437
. 67503
. 64225
- 59534
.58325
.57518
. 57587
-. 58187
- 59753
. 60056
60234
.59715
60003
.59246
- 58207
57423
.56334
. 55076
. 543132
.52630
52508
.52407
-52610
.53359
.53493
-54180
- 54680
.55375
.55454
. 56774
- 57234
- 57565
- 57960
- 58455
- 59199
. 58457
$\cdot 53717$
.58583
.53843
- 5898
'3'
'37'

| . 26398 <br> - 25887 <br> - 27969 <br> - 28209 <br> - 25761 <br> - 29722 <br> - 30418 <br> 31450 -32431 <br> - 34299 <br> -35505 <br> .39163 .43233 <br> -43715 <br> .58262 .69139 <br> .81980 .95553 <br> .07212 <br> 10827 .05948 .087459 <br> . 97160 <br> - 87459 <br> .79820 <br> .69483 <br> .55756 .63143 <br> 53997 -53057 <br> - 57241 <br> 56512 .5703 <br> -56959 <br> 57919 .58709 <br> -59485 <br> 59307 .59340 <br> .59340 -58998 <br> . 58307 <br> -55963 <br> .55562 -54627 <br> -53675 <br> 52522 .51833 <br> - 51394 <br> -53315 <br> . 51258 <br> -51876 <br> - 52.855 <br> .53813 $\cdot 54412$ <br> - 55238 <br> 55599 -55868 <br> -. 56444 <br> -.55520 <br> .57672 .5774 <br> .57592 <br> .57417 -57305 <br> .57250 -57214 |  |
| :---: | :---: |

## $\left(A^{-1}\right)$

7. 30000
8. 40100
7.50300
7.50000
7.70000

- 80000

8. 00000
3.10300
$3 \cdot 20000$
3.30000
$\times 2000$
8.50000
8.60000
8.70000
9. 80000
8.90000
9
1.at
135
$157^{\prime}$
. 58531

- 59676
- 59179
. 59046
- 57887
. 54427
- 59605
. 58411
.58484
.58557
- 5497
- 50163
- 5857
- 55730
.60136
- 59127
. 56060
. 60345
- 59241
- 5
55941
55821
. 50131
- 5
.59336
- 56285
- 56288
. 59491
.59155
.59178
- 59022
- 55449
. 5.8749
. 58464
- 58440
- 57636
- 5520
- 54902
53340
.5794
- 55712
- 53477
-52786
.57476
.56249
- 5591
- 52642
.55707
.55067
.55729
.55090
- 52007
- 54363
- 51218
- 5035
- 5414
- 5363
- 5297
- 5246
. 5207
- 52176
. 49488
.48513
.47558
.46648
.50430
.46648
.4994
.4902
. 44908
. 4343
. 4681
.48332
-4490
$41+22$
.4354
.429
-4293
.45928
.42055
- 4511
4429
.4346
-42905
.42076
- 4165
41432
.41049
.4054
40347
.40339
. 40113
.39498
.33825
- 39318
- 39350
- 33005
39725
.39065
. 38675
- 35624
. 39030
-4 4
.46303
-45315
.41129
.4112
.4035
.433 . 4
-39841
. 42595
- 39354
. 41978
-39058
- 41451
. 38536
- 378.3
- 37204
- 37051
. 35673
-40043
- 36671
.39878
-362'9
39671
$\cdot 39491$
- 30044
. 39397
- 35758
.39333 . 35803
- 39121 . 3255
$\begin{array}{rr}\cdot 38893 & 35436 \\ \cdot 38321 & 35121\end{array}$
- 3781
- 34827
.38233 .34857
- 38605 -34871
- 37873 •3+851
$\cdot 38396$ •34750
- 38802
- 38324
- 35072
- 38451
- 38546
- 35136
$\because 38210 \quad \cdot 35138$
.38934
. 38154
. 35139
. 39012
- 38569
- 35351
. 33752
- 38723
. 35879
- 3996
- 35744
.39454
. 39710
.38833
-38725
- 35558
. 38252
. 35207
. 39181
. 39538
. 35783
.38229
. 35578
. 38993
- 38.371
- 35578
- 38659
- 38140
- 351.33
- 38817
-33608
-34591
-39008 •39114 •3467
- 3.9532
-38219
- 35059
38172
37817
- 37860
- 34713
- 37583
- 34714
. 37396
. 37394
34639

| $\left(q^{-1}\right)$ | INe.t | '35' | 1371 |
| :---: | :---: | :---: | :---: |
| $14.650 C 0$ | . 37194 | . 37297 | - 34430 |
| 14.70000 | . 37418 | . 37186 | . 33776 |
| 14.80000 | . 37174 | - 36901 | . 33393 |
| 14.90000 | . 36907 | - 36750 | . 33221 |
| 15.00.000 | . 30455 | . 35966 | . 33098 |
| 15.10000 | -358e0 | . 35933 | - 32534 |
| 15.20000 | . 35572 | - 35558 | . 32155 |
| 15.30000 | . 35335 | . 35054 | . 31873 |
| 15.40000 | . 34939 | . 34832 | . 31646 |
| 15.50360 | - 34677 | - 34056 | -31335 |
| 15.50300 | - 34239 | . 33724 | - 30915 |
| 15.70000 | . 33963 | - 33110 | - 30130 |
| 15.80000 | . 33304 | . 33185 | - 29824 |
| 15.9000 | -33119 | -33236 | -29699 |



|  | 171 |  |  |
| :---: | :---: | :---: | :---: |
| $\left(\AA^{-1}\right)$ |  | $5^{\prime}$ | $27^{\prime}$ |
| 7.3.100 | . 51899 | . 52337 | 50610 |
| 7.40000 | . 51644 | . 52819 | .50812 |
| 7.50000 | - 51870 | - 52735 | - 51218 |
| 7.500 0 | -52350 | - 53153 | - 51932 |
| 7.70000 | . 52878 | . 53574 | . 52061 |
| 7.83000 | . 52659 | - 53365 | - 52214 |
| 7.90000 | . 52551 | -53464 | - 51514 |
| 3.00100 | -52770 | - 53232 | -5203 |
| 口. 10300 | . 52444 | . 53417 | . 51542 |
| 8.20000 | . 52102 | . 52973 | . 5116 |
| 8.30000 | . 51808 | . 52712 | . 51530 |
| 8.40000 | -51342 | - 52489 | -51046 |
| 8.5i000 | . 51093 | - 51669 | 50278 |
| 8.60000 | . 50130 | - 51588 | - 49542 |
| 8.70000 | .49728 | .57633 | -4C15 |
| 8.8 cogo | . 43218 | . 50500 | 48312 |
| 8.90000 | .48517 | . 43844 | . 47256 |
| 9.00000 | . 47698 | . 49269 | 457 |
| 9.10000 | . 45728 | . 47714 | 46252 |
| 9.20000 | . 46210 | . 45554 | 45983 |
| 9.30000 | .45086 | . 45051 | 4461 |
| 9.40000 | . 44503 | . 45787 | 43637 |
| 9.50000 | . 44112 | . 45291 | 4305 |
| 9.60000 | . 42824 | . 44368 | 42116 |
| 9.70000 | . 42357 | . 43299 | -4161 |
| 9.80900 | .41456 | . 42975 | -40. |
| 9.30000 | .40746 | . 42433 | 398 |
| 10.70300 | . 402 ह. 9 | . 41493 | 391 |
| 1.10000 | . 33498 | . 479.51 | 38532 |
| 10.20300 | . 38583 | . 39572 | . 37930 |
| 10. 0.300 | . 38308 | . 37983 | - 37254 |
| 10.40000 | . 37549 | . 33551 | 355 |
| 11.50900 | . 35568 | . 37568 | 35851 |
| 10.60 .500 | . 36035 | . 37123 | 35292 |
| 10.70000 | . 35672 | . 36421 | . $3=136$ |
| 10. 20000 | . 35173 | - 36072 | . 34163 |
| 10.00900 | . 34590 | . 35912 | 3.3556 |
| 11.00300 | . 35247 | . 35308 | 34429 |
| 11.10300 | - 34040 | . 35159 | - 33604 |
| 11.20000 | . 34203 | -34934 | -33296 |
| 11.3000 | - 34367 | -34770 | - 32713 |
| 11.40060 | - 33451 | . 34743 | - 32953 |
| 11.50000 | . 33012 | . 34283 | - 32357 |
| 11.60000 | . 33754 | . 34036 | 32511 |
| 11.70000 | . 32947 | - 34373 | 32476 |
| 11.80500 | . 33248 | . 33930 | 32503 |
| 11.90300 | . 33158 | -34021 | 32428 |
| 12.0 nco | - 37838 | - 33657 | 31745 |
| 12.10000 | . 33175 | . 33851 | 32427 |
| 12.20 .900 | - 33475 | - 34104 | 3227 |
| 12.30000 | . 33095 | . 333 万2 | . 32057 |
| 12.40000 | . 33387 | . 33518 | . 31754 |
| 12.50000 | . 32984 | . 33797 | . 32142 |
| 12.50000 | . 33262 | . 33795 | . 31887 |
| 12. 7000 | . 32812 | . 33556 | -31743 |
| 12.80000 | - 32331 | -33547 | 3194 |
| 12.90000 | . 32446 | . 33758 | 321 |
| 13.00900 | . 33674 | - 34035 | 32790 |
| 13.10300 | . 33005 | - $3+504$ | 3224 |
| 13.26000 | . 32787 | . 34071 | 32440 |
| 13.30000 | . 33143 | - 34330 | 32153 |
| 13.46200 | . 33375 | - 33954 | 32530 |
| 13.50000 | . 32925 | . 33997 | 32055 |
| 13.50000 | . 33452 | . 34203 | 32519 |
| 13.70500 | . 33008 | . 34187 | 3267 |
| 13.80000 | . 32739 | -34195 | 32357 |
| 13.90000 | . 33249 | . 34033 | 32038 |
| 14.00000 | . 33204 | -34025 | 31078 |
| 14.1000 0 | . 32918 | - 33879 | 32184 |
| 14.200C0 | . 32537 | +33194 | 323.1 |
| 14.20000 | . 32353 | . 33478 | 31277 |
| 14.40000 | . 32097 | -.33414 | 31316 |
| 14.50000 | . 31693 | . 33035 | 31253 |

3) cont'd

| $\left(A^{-i}\right)$ | '1.' | '35' | '37' |
| :---: | :---: | :---: | :---: |
| 14.50000 | . 32328 | . 32755 | . 31087 |
| 14.70000 | . 31503 | . 32291 | . 31332 |
| 14.80000 | - 31413 | - 32.434 | . 30208 |
| 14.9COC | - 30849 | -32015 | . 30672 |
| 15.00000 | - 31163 | - 31716 | . 30289 |
| 15.10000 | -30692 | - 31449 | - 30157 |
| 15.20000 | - 30533 | - 31275 | . 29715 |
| 15.30000 | - 29307 | - 31176 | . 29535 |
| 15.40000 | - 29944 | . 31254 | . 28910 |


| $\left(8^{-1}\right)$ | Nat | '62' | $10:$ |
| :---: | :---: | :---: | :---: |
| C. OEVOO | . 25479 | . 27116 | . 27432 |
| - 1000 | - 26677 | -27743 | 23173 |
| - 20000 | . 27875 | - 23369 | - 28944 |
| - 36000 | - 29307 | - 29302 | - 29634 |
| - 50.300 | -31234 | -30076 | -30498 |
| - 500 co | -32426 | -3 3877 | -31769 |
| - 7 OCO | -34238 | -31248 | - 32596 |
| - 8 COC 0 | - 36184 | -31923 | - 33045 |
| 1.94000 | - 37739 | - 33055 | - 33495 |
| 1.1300 | -38136 | -36274 | - 35557 |
| 1. 20000 | -33639 | - 37880 | - 36863 |
| 1.3]00? | -39755 | - 39948 | . 39584 |
| 1.40000 | . 42519 | . 43566 | . 42055 |
| 1.500 | . 45723 | . 47647 | . 45810 |
| 1.70 ¢ | -508j0 | - 52980 | -51340 |
| 1.86000 | -680\%4 | .73989 | - 7108 |
| 1.96 ju 0 | -81522 | -9U0E 8 | -85002 |
| 2.01000 | . 96493 | 1.07834 | 1.02438 |
| $2 \cdot 16303$ | 1.08637 | 1. 22587 | 1.15792 |
| 2. 20000 | 1.13550 | 1. 27717 | 1.25477 |
| 2.351] 3 | 1.09097 | 1. 22173 | 1.15058 |
| 2. 4 COC | .99226 | 1.08692 | 1.03179 |
| 2. 50000 | - 88553 | - 94378 | . 90435 |
| 2.5:005 | - 79920 | . 81145 | -79205 |
| 2. 0 ¢ | . 73679 | . 70599 | . 70819 |
| 2.80040 | - 7065 | . 6345 ? | -65402 |
| 2.90900 | . 58238 | . 58408 | . 51450 |
|  | -67730 | . 55294 | - 60352 |
| 3. ${ }^{1}$ - 0 | -673.3 | -54096 | -59051 |
| 3.3030 | -6551 | - | - 5770 |
| 3.40500 | . 63147 | -54308 | . 57003 |
| 3.Eud0 | . 61747 | -55872 | . 57728 |
| 3.50500 | . $608 \mathrm{~F}, 1$ | - 57255 | 57671 |
| 3.70000 | - 50997 | - 57657 | - 5916 |
| 3.90000 | . 60720 | . 61309 | 59775 |
| 3.9400 | . 60843 | . 62445 | -60655 |
| 4.00000 | . 01229 | . 63499 | -61601 |
| 4.14000 | . 62155 | .63897 | . 61700 |
| 4.20000 | . 61537 | . 63258 | -61728 |
| 4.30300 | . 60948 | -62213 | . 60410 |
| 4.40300 | -61445 | -61086 | -59884 |
| $4 \cdot 5$ | . 59543 | - 5962 | . 58958 |
| 4.7000 | - 573 | - | - 5102 |
| 4.80300 | -56776 | -56691 | - 54986 |
| 4.90300 | . 56153 | -54732 | . 54135 |
| 5.06000 | . 55932 | - 54060 | . 53879 |
| 「.10000 | . 56445 | . 54220 | . 54083 |
| 5.20990 | . 56415 | -54191 | 54209 |
| $5 \cdot 3 \div 0$ | -56412 | -54456 | - 54547 |
| $5 \cdot 4000$ | . 57391 | -55227 | 55278 |
| 5.50 5000 | - 580 ES | -55988 | - 5606 |
| 5:7600 | -58537 | -5028 | - 5615 |
| 5.8050 | -5830 | -57840 | -56938 |
| 5.90 .900 | -. 59793 | -58751 | -58394 |
| 5.06 JC0 | . 60075 | -58978 | . 58167 |
| 6.1uju | . 59895 | . 58830 | . 58591 |
| 6. 20.00 | -6J167 | -59638 | . 58619 |
| 6.30 UC | . 60301 | . 59730 | . 59022 |
| E. $4 \mathrm{c}_{0} 0$ | . 60658 | - 59906 | 59556 |
| 5.50 .305 | -61252 | . 60097 | . 59538 |
| 6.50000 | . 61734 | -60326 | 59897 |
| $6 \cdot 76305$ | -61876 | . 60607 | . 60634 |
| 6.sigid | . 615 万6 | . 60961 | 60102 |
| S. 9t 00 | . 62153 | -6C897 | . 59571 |
| 7.0100 | . 62747 | . 60468 | 59802 |
| 7.15005 | . 63098 | . 59935 | 50438 |
| 7.20300 | . 63284 | .60005 | 59868 |



| $\left(A^{-1}\right)$ | Ni．et | $162{ }^{\prime}$ | $10^{1}$ |
| :---: | :---: | :---: | :---: |
| 14．60］［ | ． 41854 | 45423 | 40011 |
| 14.7000 | .41707 | .40271 | 39659 |
| 14.8000 | ． 41550 | .40119 | .39306 |
| $14 \cdot 96$ UC | － 40 ER0 | －39201 | － 37472 |
| 15．OCOU | ． 41151 | － 39144 | － 38774 |
| 15．16 Jio | ． 40575 | ． 38967 | － 38628 |
| 15．2¢0 | ． 40003 | － 39951 | － 38278 |
| 15．3COCO | ．3970 | －38261 | － 38067 |
| 15．400C！ | －．39846 | －37627 | －37806 |
| 15.56 リ | ． 39.653 | － 37784 | ． 37424 |
| 15．0́U OCO | － 39035 | －37568 | － 37025 |
| 15．70000 | ． 38786 | － 37209 | .36636 |
| 15．6\％UC | － 33537 | ． 35849 | － 36247 |
| 15．asjuj | － 332 c8 | ． 35490 | ． 35858 |
| 10．0以吅 | －38039 | － 35130 | － 35469 |
| $16 \cdot 1530$ | .37790 | －35771 | ． 35079 |
| 16.2000 | ． 37541 | －35411 | ． 34690 |
| 15.3000 | － 37110 | － 35422 | 34815 |
| 16．46 〕ֹ | ． 35935 | .35090 | 34894 |

5) 3.02 molal nickel chloride.

$\left(8^{-i}\right)$


. 58301
.58149
.57919

- 58535

59393
58046
58046
$\cdot 57689$
57905
$\cdot \quad 59100$
.59035
'62'
101
. 58870

- 58587
.57873
- 59012

59017
$\cdot 58799$
.58799
$\cdot 58118$

- 58192
- 53266

59544
-58815
$\begin{array}{r}58815 \\ \cdot \\ \hline \\ \hline\end{array}$

- 58336

59152
$\cdot 57937$
.57937
.57634

- 56834
- 55288
$\begin{array}{r}55174 \\ \hline 54258 \\ \hline\end{array}$
- 53072
- 52010

51849
-50793

- 49443
.48963
48298
.47333
.47450
.4733
.45486
.44947
.44947
.43633
. 42668
. 42438
.41908
.41950
.41488
.40642
.40145
40145
.40523
. 39918
. 39865
- 39910
- 39490
- 39225
-39190
$\cdot 39377$
$\cdot 39598$
39598
$\cdot 38817$
- 39396
- 39623
- 39667

38692
$\cdot 39002$
-38791

- 38685
- 39105
- 38699
- 38806
.38785
$\cdot 39286$
.39286
$\cdot 38815$
- 39091
- 39386
- 38998
- 38383
- 38954
- 38674

38394
-38114

- 38114
. 37555

| $\checkmark$ | Nat | ＇62＇ | $10^{1}$ |
| :---: | :---: | :---: | :---: |
| $\left(A^{-1}\right)$ |  |  |  |
| 14.60000 | ． 38252 | － 37431 | 37275 |
| 14.76100 | － 37993 | － 37248 | － 36995 |
| 14．80000 | － 37734 | －36991 | － 36715 |
| 14.910 | － 37816 | － 37310 | － 36371 |
| 15．う心以く | － 37840 | －36068 | － 35534 |
| $15 \cdot 10000$ | －36990 | －35835 | － 35883 |
| 15．20000 | － 36946 | － 35392 | －35663 |
| 15．3しJした | ． 35493 | ． 35.353 | －35393 |
| 15.40 JU ？ | －36114 | － 34776 | － 34862 |
| 1う．5úu | －36171 | － 34640 | － 34574 |
| 15．6しらち | －35740 | －3＇454 | － 33610 |
| 15．7i ub | － 35533 | －33991 | － 33429 |
| 15.8000 | － 35376 | －33529 | －33247 |
| 15．90 リ6 | － 35198 | － 33006 | － 33055 |
| 15．OLU | ． 35021 | － 32654 | － 32895 |
|  | － 34304 | － 32141 | －32703 |
| $16.2 心 リ ヒ$ | ． 34607 | － 31679 | －32522 |
|  | ． 33325 | － 31605 | ． 31949 |
| 15．4000 0 | －32778 | ． 31562 | －31781 |


|  | ITat | ${ }^{162}$ | ＇0＇ |
| :---: | :---: | :---: | :---: |
| $\left(\AA^{-1}\right)$ | －．at |  |  |
| 0.00000 | ． 29576 | ． 27265 | ． 29333 |
| －16000 | －29820 | ． 27649 | － 29536 |
| － 2600 | － 30053 | ． 28034 | － 29739 |
| －3iJ0 | － 29594 | －28579 | － 29370 |
| － 4000 | － 30954 | －29032 | － 29835 |
| －5iduo | － 31846 | － 29634 | －30412 |
| －ELuCo | －32453 | －3¢ 116 | .30592 |
| －7心しくす | －32395 | ． 30191 | ． 31021 |
| －8eOce | － 32408 | －310C8 | ． 31101 |
| －960lo | ． 32409 | ． 31793 | ． 31505 |
| 1．0くすこ？ | ． 33417 | － 33302 | ． 32879 |
| 1．1636 | －34222 | －34959 | － 34294 |
| 1．26コし | － 36486 | ． 37159 | ． 36071 |
| 1．30jc j | － 33294 | ． 40451 | ． 40249 |
| 1．400 0 | ． 44128 | ． 44445 | ． 44135 |
| － 50 ÚU | ． 50153 | － 51155 | － 50368 |
| 1． 5 先炎 | ． 59093 | － 59773 | ． 59358 |
| 1．7005 | － 6 － 954 | －7＇997 | ． 70220 |
| 1．80000 | ． 82052 | ． 84789 | －83578 |
| 1．GlOC | ． 94649 | －98003 | － 36321 |
| 2．0̌ U69 | 1．02355 | 1．07580 | ． 05255 |
| 2．1000 | 1．05118 | 1．10544 | 1．07320 |
| 2． 20400 | 1．00573 | 1．05592 | 1． 0360 亿 |
| 2．35以近 | ． 93605 | 1．98819 | ． 95184 |
| 2．4060 | ． 55055 | －89882 | － 87447 |
| 2．50 und | ． 77921 | ． 81489 | ． 79078 |
| 2．U6 ¢ | ． 71634 | －73813 | ．72850 |
| 2．O000 | －67266 | ．67729 | ． 67804 |
| 2．S0060 | .53903 | ． 52517 | ． 62856 |
| 2． 40 Jie | － 60817 | － 58210 | －58522 |
| 3．UuJ［ | － 59585 | －5¢6\％ | ． 57025 |
| 3.10060 | － 585 ¢ 6 | － 54438 | － 55875 |
| 3．26） 0 | － 573.37 | － 54059 | －55191 |
| 3.30 U［ | － 57442 | ． 54240 | ． 55501 |
| 3．40000 | －57108 | － 54906 | － 55667 |
| 3．5i 300 | ． 57052 | － 56107 | －56201 |
| 3．EUJO | ． 5758 | －57254 | ． 57252 |
| 3．70 300 | －57531 | －58319 | －57251 |
| 3． 90000 | － 57579 | ． 58712 | ． 57811 |
| 3． 9600 | ． 57766 | － 59149 | － 58320 |
| 4.00000 | － 57842 | ． 59324 | ． 58080 |
| $4 \cdot 10$ ¢0 | － 57600 | － 58355 | － 57595 |
| 4． 20 J¢ | ． 56556 | － 57524 | － 56323 |
| 4.3000 | ． 56420 | － 57249 | － 56685 |
| 4．4000 | － 54959 | － 55788 | － 55187 |
| 4.5000 ？ | － $541: 5$ | ． 54910 | － 54051 |
| $4 \cdot 50$ UC0 | － 5349 í | － 53884 | － 53025 |
| 4.7000 | － 52427 | － 52525 | － 52458 |
| 4．800 | ． 51689 | － 51772 | － 51385 |
| 4．90おuc | ． 51276 | － 51497 | － 50836 |
| 5．OCOOO | ． 51324 | ． 50606 | ． 50370 |
| 5.10 〕¢ | －50980 | － 50889 | ． 50201 |
| $5 \cdot 2000$ | －51222 | － 51235 | － 50327 |
| 5．30000 | － 52058 | ． 52008 | ． 50618 |
| 5.4000 | － 51808 | － 51822 | ． 51938 |
| 5.50 jCO | －52659 | － 52956 | ． 52414 |
| 5． 6000 | － 53525 | － 53438 | －52985 |
| 3.70000 | ． 54130 | ． 54157 | ． 53629 |
| 5．86005 | ． 54278 | ． 53918 | － 54172 |
| 5．90100 | － 54819 | ． 55201 | － 54548 |
| 6． 0000 ¢ | ． 54353 | － 55395 | － 54750 |
| $5 \cdot 1005$ | － 55544 | － 55104 | ． 53713 |
| 6． 2 U00 | － 54973 | － 55931 | ． 53454 |
| 6．3600 | － 55593 | －50278 | ． 54741 |
| 万．42J00 | ． 55997 | ． 55124 | － 55420 |
| －．5ivio | － 56046 | －55213 | － 57008 |
| 6.50 .000 | ． 50300 | － 55949 | ． 56219 |
| ら．7こうu0 | ． 56059 | －56660 | 56258 |
| 5.8000 | － 56502 | － 55498 | 55882 |
| ¢．90300 | ． 56698 | ． 57102 | 56262 |
| 7．00000 | ． 57245 | －56982 | 55453 |
| 7．1000 | － 57050 | ． 56853 | 56818 |
| 7． 26000 | ． 57541 | －56993 | ． 57117 |


| $\left(R^{-1}\right)$ | 17at | 1521 | ＇0＇ |
| :---: | :---: | :---: | :---: |
| 7．3000 | － 37845 | ． 57263 | ． 57207 |
| 7． 4000 | － 57741 | －57059 | － 57213 |
| 7.50000 | ． 58539 | －57119 | － 57758 |
| 7．60000 | － 58250 | － 57346 | － 57625 |
| 7．70 Jco | － 58346 | －58055 | － 57506 |
| 7．80 000 | ． 57951 | － 57824 | － 57927 |
| 7．90000 | － 57750 | － 57319 | － 58156 |
| 8．00950 | ． 53552 | ． 53229 | － 59066 |
| 勺． 1 L 000 | － 5421 | －59258 | ． 57977 |
| 3． 20000 | － 57947 | －．59593 | ． 57934 |
| 0.30000 | －58U27 | － 58375 | ． 57339 |
| 3． 40000 | －5，7342 | －57375 | ． 57511 |
| 8.5000 | ． 57131 | － 57240 | － 57357 |
| 8.50050 | － 55935 | － 57785 | － 56070 |
| 8．730¢0 | － 55841 | － 56458 | － 55989 |
| 8.80000 | ． 54330 | － 56026 | －55706 |
| 9．90uco | －． 54.377 | － 54978 | － 54705 |
| 9.05060 | ． 54347 | －53922 | － 53558 |
| 9．10 uí | ． 52458 | － 53450 | － 52593 |
| 9． 2000 | － 51754 | －5 2708 | － 52006 |
| 9．3j0u？ | ． 5150 | －50949 | －5j731 |
| 9．40リu | －50 9f 8 | －504e0 | － 50056 |
| 9.50040 | ． 50290 | ． 49655 | .49753 |
| 9．500c0 | ． 49925 | ． 48808 | ． 48756 |
| 9．7ju0 0 | ． 49501 | ． 47299 | ． 47683 |
| 9．8036？ | ． 43250 | .47242 | ． 47004 |
| 9．900 | ． 47978 | ．46175 | ． 46698 |
| 10．00000 | ． 46308 | ．45226 | .45910 |
| 10．10．0 | .45455 | ． 44378 | ． 44435 |
| 19． 2 U UE | ． 44940 | ． 43573 | ． 44007 |
| 1 C ¢ 3 可 0 | ． 4.3940 | ． 43195 | ． 42859 |
| 10．4iCuO | ． 42459 | .42443 | ． 42541 |
| 10．うご吅 | ． 42738 | .41780 | ． 41938 |
| 10.60000 | ．41831 | ． 41371 | ． 41371 |
| 10．7う以0 | ． 41247 | ． 41200 | ． 40 E42 |
| 10.850 C | .40466 | ． 40318 | － 39995 |
| 10.9000 | ． 40005 | － 39972 | －39904 |
| 11．03000 | ． 39467 | －．39873 | － 39546 |
| 11.100 ¢ | ． 38909 | － 39479 | －38332 |
| 11.2000 | － 35425 | － 38489 | － 38274 |
| 11． 5000 | － 38328 | －．38313 | － 38447 |
| 11.4000 | ． 3351 | ． 38797 | ． 37931 |
| 11.50000 | ． 39570 | － 38356 | － 37832 |
| $11.5000^{\circ}$ | － 37954 | － 2 － 245 | －37486 |
| 11．750 | ． 37649 | － 37302 | － 37480 |
| $11.8 i c 00$ | ． 37851 | ． 37754 | ． 37748 |
| 11.9000 | ． 37716 | － 37655 | － 37006 |
| 12.0 outo | ． 37570 | － 37537 | 36936 |
| 12.160 | ． 37758 | － 37287 | 37557 |
| 12． 2 亿uo | ． 37633 | － 37214 | 37232 |
| 12．30000 | ． 37855 | ． 37025 | ． 37226 |
| 12.46000 | ． 37854 | － 37225 | － 30736 |
| 12．可欶0 | －38048 | － 37311 | －37137 |
| 12.60 OC | － 37749 | －36962 | － 36876 |
| 12．7600 | － 37875 | － 37184 |  |
| 12.80 U00 | － 3755 | － 35743 |  |
| 12.90 | － 37623 | － $357 \pm 8$ | － 35655 |
| 13.00050 | ． 37429 | －37120 | －36566 |
| 13.1000 | ． 38404 | － 37123 | 36349 |
| 13． 20 U60 | ． 37613 | － 37354 | 37055 |
| 13.36003 | ． 37290 | － 37548 | 36531 |
| 13.4305 ？ | ． 37671 | － 37258 | 36912 |

1) G. I.A. Cole,'Introduction to Statistical Kechonics of Simle

> Lense Iuids' Lerganon (1967)
2) I.L. ill,'Staitstical hochanics: Frinci les and selected
mplications' NeGcaw-ilill (1956)
3) Te Haar, Werseland, 'Introduction to Themodyarics', Addison-Wesley (1968)
4) T.E. Faber, J.N. Ziman, Fhil. Narg. 11, 153 (1965)
5) G. Flaczek, Ehys. Rev. 86, 377 (1952)
6) L. Ven Zove, Hys. Rev. 95, 249 (1954)
7) P.G. De Gennes, Fnysica 25 , 825 (1959)
8) G.E. Dacon 'Ifeutron Diffraction' O.U.F. (1968)
9) F.A. Weistaff, 'Introcuction to the Iiquid State', Academic Press (1967)
10) J.E. Inderby, Chaptex 14 of 'Ihysics of Simyle Liquids' ed. H.N.V. Tomperly, et al. , IVorth-IIolland, (1968)
11) W. Marshall, S.W. Lovesey, 'Theory of Themal INeutron Scattering' O.U.F. (1971)
12) J.G. Lowles, Adv. Fhys. 22, 1 (1973)
13) E. Fermi, Ricerca. Scient. , 7., 13 (1936)
14) G. D. Bacon, ista. Ciryst. A 28, 7 (1972)
15) G.2. Becon, Acta. Cryst. \& 30, 847 (1974)
16) Scattering cross-sections are reported in many volunes of B1LL - 325 $(19,8,1960,1964,1966)$, published by Brookhaven Mational Iaboratory. For absorption cross-sections, see 'IIandbook of American Institute of Thysics', Srà edition, HeGrav-ill (1972)
17) J.W. Gibbs, Trans. of Connecticut Acad. Sciences., 2,309,382 (1873) and $2,108,43(1875-1878)$
18) F.M. Raoult, Comptes Rendus, 104, 1430 (1887); Z.Mysik. Chen. ㄴ,353 (1888)
19) J. ב. van't Ioff, 2. Physiz. Chem. 1, 481 (1887)
20) - Jcoisoach, 'Liquids and Solutions', oughton Lifflin Co., Zoston (1966)
21) S. Amhenius, 2. Thysils. Chern. 1, 031 (1887)
22) W. Ostwald, Z. Inysil. Unom. 2,270 (1888)
23) -.J.... Debye, E. Huckel, Fhysik. Z., 2., 185 (1923)
24) D.A. Iic vamrie, 'Statistical hechanics', Harper \& Now (1976)
25) II. Bjermun, I. ianske. vidensk. Sels..。, I (9) (1926)
26) R.A. Robinson, R.I. Stokes, '皿ectrolyte Solutions' Buttemworth, (1959)
27) H.S. Harned, B.B. Oven, 'Hhysical Chemistry of Electrolyte Solutions', Reinhold, INew York, (1958)
28) H.I. Priedman, 'Ionic Solution Theory' , Interscience , (1962)
29) J.C. Rasaiah, J.Sol Chem. 2 , 301 (1973)
30) H.I. Ariedman, C.V. Krishnan, C. Jolicoeur, Ann. I.Y. Acad. Sci. 204, 79 (1973)
31) R...Gurney, 'Ionic processes in Solution', Dover, New York (1953)
32) W.G. Nelillan, J.E. Nayer, J.Chem. Thys. 13,276 (194.5)
33) H.F. Bennetto , J.J. Spitzer, J.Chem.Soc. Farad. Trans. I

72,2108 (1976)
34) G.C. Ghosh, J.Chem. Soc. 112, 449,627,707,790 (1918)
35) Th.S. Trank, P.T. Thoonson 'Structure of lectrolyte Solutions', V.J. Hamer, Pd., Wiley, liew York (1959)
36) I.W. Bahe, D. Farker, J. Am. Chen. Soc. 27 5664 (1975) - see also L.W. Bahe, J. Fhys. Cnem. 76, 1062 (1972)
37) G.J. Sefford, ․S. Leung, 'Techniques of Electrochemistry' ed. E. Yeaceer, A.J. Sallind, vol II, p173, iley (1973)
38) A.H. Narten, H.A. Levy , Science 165,47 (1959)
39) D.E. OReilly, J. Chern. Thys. 63, 2432 (1975)
40) IT.I. Stillinger, A. Rahman, J.Chem Hys. 60, 1545 (1974)
41) L.Blun, J. Comut. Phys. 7,592 (1971)
42) G...Brady, J.T. Erause, J.Gnern. hys. 27, 304 (1957)
43) G.W. Brad, J. Chem Ehys. 28,464 (1958)
4.4) G.W. Bredy, J. Chem Thys. 29, 1371 (1958)
45) A.A. trauss, Jissertation Abstracts 21,751 (1960)
46) K.I. Krouh, C.L. Standey, Inore. Gom. 1,941 (1962)
47) I.l. Sharolov, I.V. Fedchonio, ..... Lesovitokaya, en. Stmule Thin.

47a) A.I. Ryss, I.V. Radchento Zh. Strutct. Khim. $\frac{5}{5}, 489$ (1964)

49）I．V．Redchenko，A．I．ivss，Zin．Stiuct．Minim．6， 182 （1965）
so）．．I．ertz，foil．Larrence，f．P．Kouh，J．Chem Thys．43，2163（1965）
51）A．Hamasivayan，J．Lnnamalai Univ．，Ft．B 26， 10 （1965）
52）R．h．Lamrence，R．I．Irouh，J．Ghem hyss．47， 4758 （1967）
53）A．I．Dorosh，A．F．Maryshevskii，Zh．Strokkt．Whim．8，348（1967）
54）D．I．wertz，R．T．Kiruh ，J．Chem．Fhys． 50,4313 （1969）
55）D．S．Terekhova，I．V．Redchenko，Zh．Strukt．Ihim．10， 1102 （1969）
56）D．S．Terekhova，A．I．Fivss，I．V．Radchenko，Wh．Strukt．Thim． 10，923（1969）

57）I．ll．Shapolov，I．v．Radichenko，Zh．Strukt．Zhim．10，921（1969）
58）A．H．Narten，J．Phys．Chem．74，765（1970）
59）I．NT．Shapovalov，I．V．Radchenko，M．K．Lesovitskaya， Zh．Strukst．Whim．13，140
60）J．fl．illbright，J．Chem．Fhys． 26,3783 （1972）
61）M．Za Pishkis，T．S．Soboleva，Zh．Struict．Mim．15， 186 （1974）
62）A．H．Narten，F．Vaslov，H．A．Levy，J．Chem．Fhys．⿺辶， 5017 （1973）
63）G．Licheri，G．Ficcaluga，G．Finna，J．Appl．Gryst．6， 392 （1973）
64）D．L．Wertz，J．R．Bell，J．Inorg．Ifucl．Chem．25， 137 （1973）
2：25， 861 （1973）
65）J．R．Bell，J．I．Iyvoll，D．I．Nertz，J．im．Chem．Soc．
25， 1456 （1973）
66）H．Ya Fishkis，V．A．Zhnek，Zh．Stirukt．Knim．15，3（1974）
67）A．Cristini，G．Licheri，G．Ficcaluga，G．Finna，Chem．Hivy．Lett． 24， 289 （1974）

68）In．Alves Harques，h．I．De Barros Narques，Froc．Foninklijke Hethlandze Mkadery Vetenschapren，series 3 II，286（1974）

69）V．H．Bertacnolli，J．U．Weidner，II．．．．Zimmermann．Ber．Bunsen． Gesel．78， 1 （1974）
70）R．Triolo，A．I．Narten，J．Chem．Mhys．63， 3624 （1975）
71）G．Iicheri，G．Iiccaluga，．Linnc，Chem．Mays．Lett．35， 119 （1975）
72）aitto J．Chem．Fhs．运4412（1975）
73）ditto J．Chem．Mivs．64， 2437 （1976）
74）G．i．．ieilson，J．inderby，R．．．．Hove，Chem．Mays．Lett．

75) J. Beck, Phys. Z. 40,474 (1939)
76) G. Hertz, R. Thutsch, N.S. Bowman, J. Phys. Chem. 80(4) (1976)
77) D.I. .ertz, R.P. Kruh, J. Chem. Fhys. 50, 4013 (1969)
78) A.II. Golub, V.I. Golovorushkin, A.K. Dorosh, A.F.Skryshevskii, V. Ya Proshi:o, 2h. Strukt. Khim. 15, 14 (1974)
79) ditto Zh. Strukt. Khim. 14,973 (1973)
80) J.E. Enderby, Proc. R. Soc. Iondon A345, 107 (1975)
81) G.J. Safford, P.S. Leung, A. N. Naumann, P.C. Schaffer, J. Chem Phys. 50, 4444 (1969)
82) K. Heinzinger, P.C. Vogel, Z. Naturforsch 29a, 1164 (1974)
83) F.C. Vogel, K. Heinzinger, Ibid 30a ,789 (1975)
84) K. Heinzinger, P.C. Vogel, Ibid 31a ,463(1976)
85) P.C. Vogel, K. Heinzinger, Ibid 31a, 476 (1976)
86) H. Kistenmacher, H. Fopkie, B. Clementi, J. Chem. Fhys. 61,799 (1974)
87) J. Fromm, E. Clementi, R.O. Watts, J. Chem. Phys. 62, 1388 (1975)
88) R.O. Watts, Mol. Phys. 32,659 (1976)
89) C.L. Briant, J.J. Burton, J. Chem. Fhys. 64,2888 (1976)
90) M.R. Mruzik, F.F. Abraham, D.E. Schreiber, G.M. Found, J. Chem. Phys . 64,481 (1976)
91) A. Rahman, CECAM Report of Workshop on Ionic Liquids, p263 (1974)
92) D.E. Irish, 'Ionic Interactions' ed. S. Petrucci, vol II,p187 (1971)
93) D.W. James, R.F. Armishaw, Aust. I. Chem. 28, 1179 (1975)
94) H.H. Faalman, C.J. Eings, J. Appl. Fhys. 33,2635 (1962)
95) I.A. Blech, B.I. Averbach, Thys. Rev. 137A, 1113 (1965)
96) F.G. Edwards, J.E. Finderby, R.A.Howe: D.I. Fage, J. Thys. C 8, 3483 (1975)
97) P. Pranks, 'Water: a Comprehensive Treatise', Vol. 1, Plenum, New York, (1973)
98) R. Kaplow, S.L. Strong, B.L. Averbach, 'Local Atomic Amangements studied by X-ray Diffraction', Chap. 5, Gorion ic Breach (1966)
99). Zitto Zhys. Rev. 138, 1386 (1965)
100) J. Frenkel 'Kinetic Theory of Liquids' Dover (1955)
101) J.L. Yarnell, M.J. Katz, R.G. Venzel, S.H. Koenig, Fhys. Rev. AT , 2130 (1973)
102) A.J. Greenfield, J. Wellendorf, Fhys. Rev. Af; 1607 (1971)
103) D.K. North, J.E. Enderby, P.A.Egelstaff, J. Fhys. C. Ser 2, $\underline{2}, 1075$ (1968)
104) V.T. Neuyen, private communication.
105) R.W.G. Wyckoff 'Gyystal Structures' Wiley-Interscience (1963)
106) V.T. Nguyen, paivate commumication.
107) I. Haw $<e x$, Ph.D. Thesis, Leicester University (1974)
108) J. Miizuno, J. Fhys. Soc. Japan 16,1574 (1961)
109) N.P. Quirke, A.K. Soper, J. Fhys. C, to be rublished.
110) R.J. Baxter, J. Chem. Phys. 52, 4559 (1970)
111) J.W. Ferram, Mol. Phys. 30, 1505 (1975)
112) G.J. Throop, R.J. Bearman, J. Chem Phys. 42, 2408 (1965)
113) L.D. Landau, E.f. Lifshitz, 'Statistical Fhysics', London,

Pergamon, (1959)
114) O. Ya Samoilov, Disc. Farad Soc. 24, 141 (1957)
115) G. Stell, S.P. Sun, J. Chem Phys. 63, 5333 (1975)
116) F. Lantelme, P. Turq, H.L. Friedman, CECAFI Report of workshop on Ionic Liquids, p208 (1974)
117) J.W. Cooley, J.W. Mukey, Nath. Comput. 19, 297 (1965)
118) G.K. Wertheim, J. Blectron Spectroscopy and Related Fhenomena 6. : 239 (1975)
119) J.I. Beeby, J. Phys. C 6 , 2262 (1973)
120) N.P. Crowther, P. Dunlop, J. Chem. Whermodynamics, 4 , 255 (1972)
121) R.A. Robinson, J. Chem. Thermodynamics 2 , 813 (1973)


#### Abstract

 experimental evidence for the structure of aqueous solutions is reviewed. A neutron diffraction experiment is described, which employs isotopic substitution, from which information conceming the hydration of ions in solution, and their distribution, can be obtained. The results for sodium chloride solutions, with chlorine isotopes, at concentrations of $5.32,2.99$, and 1.49 molal, and the accompanying data analysis are presented in detail, whilst data from nickel chloride solutions, with nickel isotopes, are presented in outline.


Both chlorine and nickel ions are strongly hydrated, but for the chlorine ion the binding may be weak: the hydration appears as marked orientation of water molecules towards the ion. with the accepted orientation of water molecules around the chlorine ion, the optimum coordination number for a model of the hydration schere is $5.5 \pm 0.1$ at 5.32 molal, increasing to $6.0 \pm 0.2$ at lover concentrations - at 1.49 molal a second hydration sphere is suggested by the data. The nickel hydration sphere is more tightly bound, with a hydration number of $5.8 \pm 0.1$ which remains essentially constant with ciilution.

The ionic distributions are ciscussed in terms of lattice and hard-sphere models. The chlorine distribution in sodium chloride is apparently structureless, whilst the distribution of nickel ions in nickel chloride has a much more ordered character, but the modsls give only a qualitative remresentation of the nickel structure function.


[^0]:    Pis 3.10 rovements of the ficst peek of hard sphere stmucture
    functions for (a) one-comonent (b) two-compnenet systems.

