
Pricing Discretely Monitored Barrier Options

and Credit Default Swaps under Lévy Processes

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Marco de Innocentis

Department of Mathematics

University of Leicester

December 2012

Pricing discretely monitored barrier options and credit
default swaps under Lévy processes

Marco de Innocentis

Abstract

We introduce a new, fast and accurate method to calculate prices and sensitivities
of European vanilla and digital options under the Variance Gamma model. For near
at-the-money options of short maturity, our method is much faster than those based on
discretization and truncation of the inverse Fourier transform integral (iFT method).
We show that the results calculated with our method agree with those obtained
with the iFT algorithm using very long and fine grids. Taking the results of our
method as a benchmark, we show that the parabolic modification of the iFT method
(Boyarchenko and Levendorskĭi, 2012) is much more efficient than the standard (flat)
version. Based on this conclusion, we consider an approach which uses a combination
of backward induction and parabolic iFT to price discretely monitored barrier options,
as well as credit default swaps, under wide classes of Lévy models. At each step of
backward induction, we use piece-wise polynomial interpolation and parabolic iFT,
which allows for efficient error control. We derive accurate recommendations for
the choice of parameters of the numerical scheme, and produce numerical examples
showing that oversimplified prescriptions in other methods can result in large errors.

Acknowledgements

I am greatly indebted to my supervisor, Sergei Levendorskĭi, for his invaluable

guidance and advice during the time of my research studies. I would also like

to thank Wilhelm Klingenberg, Jimmy Law, Jeremy Levesley, Enzo Michelangeli,

and Jiayao Xie for their support, insights, and useful discussions. All errors and

omissions in this thesis are the sole responsibility of the author.

Finally, special thanks to my wife, my parents, my brother and my sister for

their support and understanding during the last three years.

Contents

Abstract i

Acknowledgements ii

Chapter 1. Introduction 1

1.1. The inverse Fourier transform pricing method for European options 1

1.2. Discretely monitored barrier options 2

1.3. Organisation of the thesis 4

Chapter 2. European option pricing under Lévy models 6

2.1. Financial modelling under Lévy processes 6

2.2. The iFT pricing method 10

2.3. Parabolic iFT method for European vanilla options 15

Chapter 3. Fast pricing of European options under VG 23

3.1. General remarks 23

3.2. ATM case 24

3.3. Non-ATM case 33

3.4. Algorithms and numerical results 39

3.5. Analysis of relative performance of flat and parabolic iFT 50

Chapter 4. Pricing discretely monitored barrier options under Lévy processes 55

4.1. General remarks 55

4.2. General scheme for pricing down-and-out put options 57

iii

CONTENTS iv

4.3. Error estimates 65

4.4. Comparison of relative performance of different methods 71

Chapter 5. Pricing credit default swaps under Lévy processes 81

5.1. General remarks 81

5.2. Numerical results 86

Chapter 6. Conclusions 90

Appendix A. Lévy processes: general background and results 92

A.1. Main definitions 92

A.2. Regular Lévy processes of exponential type 95

A.3. Measure changes for Lévy processes 97

Appendix B. Algorithms for vanilla option pricing using flat iFT 101

B.1. Calculation of option price as function of strike using FFT 101

B.2. Calculation of option price as function of spot using iFFT 102

B.3. Calculation of option price as function of strike using refined FFT 102

B.4. Calculation of option price as function of spot using refined FFT 104

Appendix C. Truncation error bounds for the VG option price 105

C.1. Flat iFT case 105

C.2. Parabolic iFT (ATM case) 107

Appendix D. A put-call symmetry 111

Appendix E. Comparison of different quadrature methods 113

E.1. ATMVG case 113

E.2. FastVG case 114

Appendix F. Deltas and digitals 116

CONTENTS v

Appendix G. Discretization error bound for Ψ1(x; σ, 0; Λ). 118

Appendix H. Pricing algorithm for discretely monitored barrier options 121

Appendix I. Other interpolation methods 124

I.1. Piece-wise linear interpolation 124

I.2. Piece-wise cubic interpolation 124

Appendix J. Additional numerical results for Chapter 4 126

Appendix K. Other types of barrier options 128

K.1. Down-and-out call option 128

K.2. Up-and-out put and call options 128

K.3. Down-and-in and up-and-in options 128

K.4. Options with rebate and first-touch digitals 128

K.5. Double barrier options 129

Appendix L. Fast convolution algorithm 130

Appendix M. Technical calculations 132

M.1. Proof of Lemma 4.1 132

M.2. Proof of Lemma 4.3 135

M.3. Proof of Lemma 4.4 136

M.4. Proof of Proposition 4.6 138

M.5. Proof of Lemma 4.7 140

M.6. Error bounds for the CDS price 142

Appendix N. Benchmark prices used in numerical examples 145

Appendix O. The iFT method for put-like options 146

O.1. Flat iFT method 146

CONTENTS vi

O.2. Parabolic iFT method (case x′ ≥ 0, ω > 0) 152

O.3. General implementation scheme for parabolic iFT 157

Appendix P. Hilbert transform method 160

P.1. General idea 160

P.2. Algorithms 161

Appendix Q. COS method 165

Q.1. Main details 165

Q.2. Algorithm 169

Appendix. Bibliography 172

CHAPTER 1

Introduction

1.1. The inverse Fourier transform pricing method for European options

The Fourier Transform (FT) method, a standard tool in applied mathematics,

was introduced to option pricing by Heston [51] and Eydeland [41] for the case of

diffusion models, by Boyarchenko and Levendorskǐi [16, 17, 18] and Carr and Madan

[28] for the case of Lévy models, and was later extended for term structure models in

[38, 30, 40, 15]. It is now one of the most popular methods used by practitioners to

price European options under Lévy1 and stochastic volatility models. As will be shown

in Chapter 2, for European options under Lévy processes, the FT method reduces

the option pricing problem to the simplified trapezoid rule for an integral involving

the inverse Fourier transform of the payoff. Following [19, 36], we call this sequence

inverse Fourier Transform (iFT) method. In [19], several new efficient variations

of the iFT method were developed and analyzed, one of which, parabolic iFT, was

applied in [36] to price barrier options. As shown in [19], all versions of the iFT

pricing method for European options face the greatest difficulties when dealing with

at-the-money or near at-the-money options of short maturity, especially under Lévy

processes of order close to zero. In Chapter 3 we present a new method, introduced

in [35], for the pricing of short maturity options under the Variance Gamma model,

and show that it is much more accurate for (near) at-the-money options than either

ordinary (flat) or parabolic iFT. Using the prices obtained with the new method as a

benchmark, we show that parabolic iFT can be much faster and more accurate than

1For some background on Lévy processes, see Appendix A.

1

1.2. DISCRETELY MONITORED BARRIER OPTIONS 2

flat iFT, especially for short maturity and near at-the-money options, confirming the

results in [19].

1.2. Discretely monitored barrier options

A discretely monitored (or discrete) barrier option differs from one with continuous

monitoring in that the breaching of the barrier level is only observed at a finite set

of times (e.g., once a day). In the foreign exchange (FX) market, discrete monitoring

has become increasingly popular in recent years, especially for pairs against the euro

and daily frequency linked to European Central Bank (ECB) fixing. The monitoring

officially takes place at 14:15 CET every working day, although the underlying rate

is only released 5-10 minutes later, upon publication by the ECB, on Reuters page

ECB37, of an average of quotes from a pool of market makers for FX spot rates

against the euro [6, 29].

From the point of view of option pricing, continuous monitoring is an advantage

in the Black-Scholes framework, since it leads to simple analytical formulas for the

option price (the interested reader may wish to consult, for example, the bibliography

lists in [24] and [20]). However, in a more realistic setting in which the underlying

follows a jump-diffusion or a pure jump process, no closed form solutions are available,

except for particular model classes. Nevertheless, continuously monitored barrier op-

tions with one or two barriers can be priced very efficiently using the BBL method,

introduced by S. Boyarchenko, M. Boyarchenko and Levendorskĭi [18, 13, 11]. The

BBL method and a closely related method developed by Kudryavtsev and Leven-

dorskǐi [57] are based on Carr’s randomization [25] and an efficient realization of the

Wiener-Hopf factorization [84].

1.2. DISCRETELY MONITORED BARRIER OPTIONS 3

For the most difficult case of pure jump processes, the BBL method is extremely

accurate even near the barrier, unlike other methods, such as jump-diffusion approx-

imations [12]. However, it cannot be used for the pricing of discrete barrier options.

We present an alternative technique for the discrete monitoring case, introduced in

[36], based on a backward induction procedure, together with piece-wise polynomial

interpolation at each step and parabolic iFT.

The backward induction approach for discrete barrier options was used by Ey-

deland in the context of discrete path-dependent options in the gaussian framework

[41]. At each step, going backwards from maturity, one computes the convolution

of the value function of the option at the next monitoring date with the transi-

tion probability density between the two dates. An approximation to the discretized

and truncated version of the integral is then calculated using the Toeplitz matrix-

vector multiplication algorithm (cf. Appendix P.2.4). Thus, the problem of pricing

a barrier option is reduced to pricing a sequence of European options. The method

requires O(NM log2M) operations, where N is the number of monitoring dates and

M the number of points in the discretized and truncated version of the integral. This

approach was subsequently extended by Feng and Linetsky in [45] to the case of

non-gaussian Lévy processes, using the fact that the multiplication of a function by

the indicator function in the state space can be expressed in terms of the Hilbert

transform in the dual space (cf. Appendix P). This observation, together with the

powerful approximation theory of analytical functions in Hardy spaces, allowed the

authors of op. cit. to develop a remarkably efficient procedure (HT method) for

pricing discrete barrier options, together with a set of estimates for the discretization

and truncation errors. The method requires O(NM log2M) operations, where M is

now the number of points in the discretized and truncated dual space grid used to

compute the Hilbert transform at each step.

1.3. ORGANISATION OF THE THESIS 4

A different generalization of the Eydeland method for discrete barrier options to

the case of Lévy processes was introduced in [64] (convolution, or CONV method),

in which an FFT-based approach is used to calculate the convolution of the modified

option price and the transition probability density. The cosine or COS method uses

a similar approach, based on the Fourier cosine expansion of the option price at

each time step [44]. Both methods require O(NM log2M) operations, where M is

the number of grid points (CONV method) or the number of terms in the cosine

expansion (COS method).

Finally, the Fast Gaussian Transform (FGT) method, introduced to finance by

Broadie and Yamamoto in [21] for European options, was used by the same authors

in [22] for the pricing of discrete barrier options under models in which the distribution

of the underlying is a mixture of independent gaussians (as in Merton’s jump diffusion

model [72]). The method requires only O(NM) operations, where M is the number

of sample points at each date used in the computation of the FGT. However, this

approach does not generalize to the case of non-gaussian distributions.

We show that, while the HT and COS methods can be efficient if the numerical

parameters of each scheme are chosen close to optimally, the error control in either

case is non-trivial, especially for options of longer maturity, due to the presence of

several interacting sources of errors. Our method, on the other hand, behaves as if

the interpolation at each step, which is easier to control, were the only source of error.

We also show that, in some cases, our method is much faster than the HT method.

1.3. Organisation of the thesis

In Chapter 2 we include some background on option pricing under Lévy models,

and describe in detail the iFT pricing method, as well as its modification (parabolic

iFT), introduced in [19]. In Chapter 3 we describe a new method, introduced in [35],

1.3. ORGANISATION OF THE THESIS 5

which can be used to price European vanilla and digital options under the Variance

Gamma model, and calculate their sensitivities. We show that the new method is

much faster and more accurate in the case of at-the-money and near at-the-money

options, in which the application of iFT techniques faces the greatest difficulties,

especially for short times to maturity. Using the prices calculated with the new

method as benchmarks, we show that the parabolic iFT method is much more accurate

than flat iFT. In Chapter 4 we introduce a new method, based on backward induction,

piece-wise polynomial interpolation at each step, and parabolic iFT, to price discretely

monitored barrier options. We derive error bounds and recommendations for the

choice of numerical parameters, and show that the prescriptions in other methods

can produce large errors. Finally, in Chapter 5, we describe a modification of the

method which can be used to price credit default swaps.

Background details and technical calculations are relegated to the appendices.

CHAPTER 2

European option pricing under Lévy models

2.1. Financial modelling under Lévy processes

We consider a model with a simplified market consisting of a riskless bank account

B yielding a constant, continuously compounded interest rate r (known as the riskless

or risk-free rate), so that its value at time t is given by Bt = B0e
rt, and a stock S with a

constant, continuously compounded dividend yield q. In addition, our market includes

a derivative or contingent claim security on the stock S, whose future payoff(s) depend

on the future realizations of the value process of the stock, {St}. Typical examples of a

contingent claim are European vanilla call and put options with expiry (or maturity)

date T and strike price K. A call option gives the holder the right, but not the

obligation, to buy the underlying stock at time T for price K. Hence, the holder

stands to gain (ST −K)+ = max{ST −K, 0} at expiry. This is known as the terminal

payoff of the option. Similarly, a put option gives the holder the right to sell the

underlying at time T for price K, and has terminal payoff (K − ST)+.

In order to develop a pricing approach, two important assumptions are usually

made. First, one assumes that the market is frictionless, i.e., there are no transac-

tion costs, unlimited borrowing and lending is allowed, and the rates for borrowing

and lending, in the same currency, are the same. These assumptions are generally

considered to be valid for large institutional investors. In addition, one assumes that

the Efficient Market Hypothesis (EMH) holds, according to which all market agents

are rational and have access to the same information1.

1This assumption can be relaxed (see [79, 76]).

6

2.1. FINANCIAL MODELLING UNDER LÉVY PROCESSES 7

2.1.1. The Equivalent martingale measure (EMM). It is well-known that,

if the market is arbitrage-free2, then all prices of contingent claims can be interpreted

as expected values under a certain pricing measure Q, equivalent to the historical

measure P, such that the discounted stock price process, with the re-invested divi-

dends, is a martingale under Q. Q is known as the “equivalent martingale measure”

(EMM) or the “risk-neutral measure” [48, 49, 50, 37, 80]. If the EMM exists and

is unique, one says that the market is complete. Otherwise, if the EMM exists but is

not unique, one says that the market is incomplete.

Whereas in the classic Black-Scholes-Merton model [10, 71] the market is com-

plete, under a more general Lévy model, the market is incomplete and the EMM Q

is “chosen by the market” [8]. This means that the parameters of the underlying

process under Q can only be recovered by calibrating the pricing model to the traded

prices of liquid derivative products, such as vanilla options [31].

We assume that St = eXt , whereX is a Lévy process of exponential type3 (λ−, λ+),

where λ− ≤ −1 ≤ 0 ≤ λ+ (see Definition A.7). In order Q to be an EMM, we must

have

EQ[e−(r−q)tSt] = e−(r−q)tEQ[eXt] = e(−r+q+ψ
Q(−i))tS0,

where ψQ denotes the characteristic exponent of X under Q (cf. Appendix A.1). It

follows that the EMM condition for Q is

r − q + ψQ(−i) = 0. (1)

2I.e., if it is impossible to lock in a future nonnegative return with nonzero probability. More
formally, if Vt denotes the value of a self financing portfolio at time t, then an arbitrage opportunity
exists if Vt = 0, P(VT ≥ 0) = 1, and P(VT > 0) > 0, for some T > t, where P denotes the historical
probability measure. For more details, including the definition of a self financing portfolio, see [8].
3For the purpose of this chapter, it suffices to know that the characteristic exponent ψ(ξ) of such a
process admits the analytic continuation into the strip Im ξ ∈ (λ−, λ+).

2.1. FINANCIAL MODELLING UNDER LÉVY PROCESSES 8

Note that the reason why we take λ− ≤ −1 is that we require ψQ(ξ) to admit the

analytic continuation into the closed strip −1 ≤ Im ξ ≤ 0. If this is not the case,

then E[eXt] = ∞ for all t > 0, i.e., the process {St} cannot be priced; we exclude

this situation from our consideration. From now on, for simplicity, it will be assumed

that λ− < −1 < 0 < λ+. We will also usually write ψ instead of ψQ and E instead of

EQ, with the understanding that, unless stated otherwise, all expectations are taken

under Q.

2.1.2. Model processes. The main classes of processes used in the study of

financial markets enjoy the following property: there exist λ− < −1 < 0 < λ+

such that the underlying Lévy process X is of exponential type (λ−, λ+). In fact,

almost all Lévy processes used in financial modelling belong to the more restricted

class of regular Lévy processes of exponential type (RLPEs, see Definition A.9), the

only notable exception being the Variance Gamma model. RLPEs commonly used

in option pricing include Brownian Motion, the Merton model [72], and the KoBoL

model (cf. Example A.5) of order ν ∈ (0, 2), ν ̸= 1 [53, 17, 18], with characteristic

exponent given by4

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν], (2)

where c > 0, λ− < −1 < 0 < λ+, µ ∈ R. They also include NIG (Normal Inverse

Gaussian model [5]), hyperbolic processes [39], the double-exponential jump-diffusion

model [62, 63, 54, 55, 56], its generalization constructed in [61] and labelled later

hyper-exponential jump-diffusion model, and the majority of processes of the β-class

[58]. Note that the parameter ν in (2) corresponds to the order of the process in the

sense of Definition A.9. For the Variance Gamma process (VGP or VG model for

4For the expression of the KoBoL characteristic exponent of order ν = 1, see [18, §3.1.2.2].

2.1. FINANCIAL MODELLING UNDER LÉVY PROCESSES 9

short) [69, 67, 66], we have

ψ(ξ) = −iµξ + c

[
ln
λ+ + iξ

λ+
+ ln

−λ− − iξ

−λ−

]
, (3)

where c > 0 and λ− < −1 < 0 < λ+ (we use this non-standard parametrization of

the VG model to make the analogy with KoBoL more transparent). The VG model

can be naturally regarded as a process of order ν = 0 (cf. Example A.5).

The most efficient conformal iFT methods developed in [19] require that ψ(ξ)

admit the analytic continuation into the complex plane with two cuts i(−∞, λ−] and

i[λ+,∞) and satisfy certain conditions on growth as ξ → ∞ in the complex plane

with the cuts. These conditions are satisfied for the model classes of Lévy processes

cited above. For a general definition of the class of strongly regular Lévy processes

of exponential type, which enjoys these properties, see [12, 59]. In developing our

pricing method for discretely monitored barrier options and CDS, in Chapters 4 and

5, respectively, we will consider a slightly different class of processes, for which the

characteristic exponent ψ(ξ) is of the form ψ(ξ) = −iµξ + ψ0(ξ), for some µ ∈ R,

so that ψ0(ξ) admits the analytic continuation into the complex plane with the cuts

i(−∞, λ−], i[λ+,∞), λ− < −1 < 0 < λ+, and is such that, for ρ→ ∞, ω ∈ (λ−, λ+),

and ϕ ∈ (−π/2, π/2),

ψ0(iω + eiϕρ) = d0+e
iϕνρν(1 +O(ρ−1)), (4)

∂ρReψ
0(iω + eiϕρ) = νd0+ cos(ϕν)ρν−1(1 + o(1)), (5)

where d0+ > 0. For a KoBoL process of order ν > 0, d0+ = −cΓ(−ν) (iν + (−i)ν) =

−2cΓ(−ν) cos(πν/2). We will refer to the class of such processes, together with VG,

as model processes. We note that almost all Lévy processes used in finance belong to

this class.

2.2. THE IFT PRICING METHOD 10

2.2. The iFT pricing method

Following [19], we outline the main details of the iFT pricing method for European

options. The value function V (τ,Xt) := V (G;T ; t,Xt) of a European option with

payoff at maturity G(XT) and time to maturity τ = T − t is given by

V (τ, x) = E[e−rτG(XT)|Xt = x]. (6)

In what follows, we assume that X is a model process of exponential type (λ−, λ+),

and the Fourier transform Ĝ of G satisfies the condition

|Ĝ(ξ)| = O(ξ−1), (7)

for ξ → ∞ along any line Im ξ = ω, with the exception of a finite number of omegas

(this condition is satisfied for both vanilla and digital options, cf. Examples 2.1 and

2.2, respectively). We decompose the payoff G into the Fourier integral

G(x) =
1

2π

∫
Im ξ=ω

eixξĜ(ξ)dξ, (8)

where ω ∈ (λ−, λ+) is such that eωxG(x) ∈ L1(R). Substituting this into (6), we

obtain

V (τ, x) =
e−rτ

2π
E
[∫

Im ξ=ω

eiXT ξĜ(ξ)dξ

∣∣∣∣Xt = x

]
=
e−rτ

2π

∫
Im ξ=ω

eixξ E[eiXτ ξ]Ĝ(ξ)dξ

=
e−rτ

2π

∫
Im ξ=ω

eixξ−τψ(ξ)Ĝ(ξ)dξ, (9)

where the standard properties of Lévy processes have been used (cf. Appendix A.1),

and the application of Fubini’s theorem is justified due to the regularity assumption

(7) for G, together with the fact that, for a model process with ν > 0, e−τψ(ξ) decays

2.2. THE IFT PRICING METHOD 11

at infinity faster than |ξ|−N , for any N > 0, while for VG it decays as |ξ|−2cτ , where

c > 0, τ > 0 (cf. (2) and (3), respectively).

Example 2.1 (Fourier transform of the vanilla option payoff). For a vanilla put

option with strike K, the terminal payoff is given by G(x) = (K − ex)+. We have

G /∈ L1(R), but eωxG(x) ∈ L1(R), for all ω > 0. Hence, the Fourier transform of G,

Ĝ(ξ), is defined in the open upper half-plane {ξ ∈ C| Im ξ > 0}, and is given there by

Ĝ(ξ) = Fx→ξ ((K − ex)+) =

∫ lnK

−∞
(Ke−iξx − e(−iξ+1)x)dx

= −Ke
−iξ lnK

iξ
+
Ke−iξ lnK

iξ − 1
= −Ke

−iξ lnK

(ξ + i)ξ
. (10)

Similarly, for a vanilla call option, with terminal payoff G(x) = (ex−K)+, the Fourier

transform of G is defined in the open lower half-plane {ξ ∈ C| Im ξ < −1}, and is also

given there by (10).

Example 2.2 (Fourier transform of the digital option payoff). For a digital put

option with strike K, the terminal payoff is given by G(x) = 1(−∞,lnK](x). As in

the vanilla put case, the Fourier transform of G, Ĝ(ξ), is defined in the open upper

half-plane {ξ ∈ C| Im ξ > 0}. It is given there by

Ĝ(ξ) = Fx→ξ

(
1(−∞,lnK](x)

)
=

∫ lnK

−∞
e−iξxdx =

e−iξ lnK

−iξ
. (11)

Similarly, for a digital call option, with terminal payoffG(x) = 1[lnK,∞)(x), the Fourier

transform of G is defined in the open lower half-plane {ξ ∈ C| Im ξ < 0}, and is given

there by Ĝ(ξ) = e−iξ lnK/(iξ).

Example 2.3 (Vanilla option price as a function of spot). Let S denote the current

price of the underlying. If we redefine x = ln(S/K), in order to get rid of the

oscillating factor in (10), then equation (9), for the case of a vanilla call or put

2.2. THE IFT PRICING METHOD 12

option, becomes

V (τ, x) = −Ke
−rτ

2π

∫
Im ξ=ω

eixξ−τψ(ξ)

ξ(ξ + i)
dξ, (12)

with ω ∈ (λ−,−1) for the call and ω ∈ (0, λ+) for the put option, respectively.

Example 2.4 (Vanilla option price as a function of strike). In practical calculations,

it is sometimes more convenient to calculate the option price as a function of strike,

since, at any one moment, only one spot price is observed, but several liquid options

exist with different strikes and maturities. To this end, we set x = ln(K/S) and

re-write formula (12) for the vanilla option as follows

V (τ, x) = −Se
−rτ

2π
ex
∫
Im ξ=ω

eixξ−τψ(ξ)

ξ(ξ + i)
dξ. (13)

2.2.1. The fast Fourier transform. In order to calculate the option price nu-

merically using the ordinary (or flat) iFT method, one considers a truncated and

discretized version of integral (9)

V (τ, x) ≈ e−rτ
ζ

2π

M∑
k=1

eixξke−τψ(ξk)Ĝ(ξk), (14)

where, for some suitably large Λ > 0, we have ξ = (ξk)
M
k=1, ξk = −Λ + iω + (k − 1)ζ,

k = 1, 2, . . . ,M , ζ = 2Λ/M . In the case of vanilla call and put options, we obtain

from (12)

V (τ, x) ≈ −Kζ
2π

M∑
k=1

eixξkfk, (15)

where

fk = e−τ(r+ψ(ξk))/(ξk(ξk + i)). (16)

The procedure for the case of the option price as a function of strike (cf. (13)) is

similar. In practice, the calculation of (15) can be carried out using the well-known

Fast Fourier Transform (FFT) algorithm [33]. If the price as a function of spot is

2.2. THE IFT PRICING METHOD 13

needed (i.e., if x = ln(S/K), K is fixed, and S varies), then the inverse FFT (iFFT)

algorithm can be used, while for the price as a function of strike (i.e., if x = ln(K/S),

S is fixed, and K varies), the FFT can be used.

2.2.1.1. Ordinary and refined FFT. Let f be a function on R. We define the

discrete Fourier transform of f as follows

(Fdiscf)(ξ) = ∆
M∑
j=1

f(xj)e
−iξxj .

We note that Fdiscf depends only on the array (f(xj))
M
j=1 of values of f on the evenly

spaced grid of points x = (xj)
M
j=1. Consider an evenly spaced grid ξ = (ξj)

M
j=1 of

points in C such that ξk = ξ1 + (k − 1)ζ, where ζ > 0 is a fixed real number. Given

a function g on C, we define the inverse discrete Fourier transform of g as follows

(F−1
disc g)(ξ) =

ζ

2π

M∑
k=1

g(xk)e
ixξk .

In general Fdisc and F−1
disc need not be the inverse of each other. However, it is a well-

known result that if the following condition, sometimes known as the uncertainty

principle or the Nyquist relation, holds

∆ζ =
2π

M
, (17)

then, if f is a function whose domain of definition includes the grid x = (xj)
M
j=1, and

g(ξ) = (Fdiscf)(ξ), we have f(xj) = (F−1
disc g)(xj), j = 1, . . . ,M . In practice, there

are many situations in which one has a function f defined on an evenly spaced grid

x = (xj)
M
j=1 and wishes to calculate Fdiscf on the evenly spaced grid ξ = (ξj)

M1
j=1 with

different length M1 and such that ξk = ξ1 + (k − 1)ζ, and ζ > 0 is fixed, however,

condition (17) does not hold. A procedure which is sometimes used in these situations

2.2. THE IFT PRICING METHOD 14

is the “fractional FFT” method of Bailey and Swartztrauber [4], which results in an

increase in the cost of the algorithm by a factor of 6. Fractional FFT does not rely

on the uncertainty principle, however it requires both grids to be of equal length,

i.e. M = M1. Alternatively, a new FFT setup, introduced by M. Boyarchenko and

Levendorskĭi in [14], can be used. This allows one to choose two positive integers

M2 and M3, which are used to stretch and refine the ξ grid, respectively. The total

number of points in the ξ grid becomes M1 =MM2M3. As noted in [14], one should

still takeM to be a power of 2, as in the ordinary FFT algorithm, butM2 andM3 can

be arbitrary positive integers. This improved setup allows one to calculate the FFT

of the function f on the grid ξ′ = (ξk)
M1
k=1, where ξk = ξ1 + (k − 1)ζ1, k = 1, . . . ,M1,

and ζ1 = ζ/M3. We refer to this as the refined FFT method. Details of the flat iFT

pricing algorithm, for both ordinary and refined FFT, can be found in Appendix B.

2.2.2. Reduction to an integral over the real half-line. Performing the

change of variables ξ = η + iω in (12), we obtain

V (τ, x) =
e−ωx

2π

∫
R
eixη−τ(r+ψω(η))Ĝω(η)dη, (18)

where ψω(η) = ψ(iω + η) and Ĝω(η) = Ĝ(iω + η). As noted in [19], taking into

account that, for real η, ω

i. for a real valued function G, Ĝ(iω + η) = Ĝ(iω − η);

ii. in particular, the characteristic function of a real-valued random variable, and

hence the characteristic exponent ψ, enjoy the same property: E[ei(iω+η)Xt] =

E[ei(iω−η)Xt], and ψ(iω + η) = ψ(iω − η),

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 15

we can write

V (τ, x) =
e−ωx

2π

(∫ 0

−∞
+

∫ +∞

0

)
eixη−τ(r+ψω(η))Ĝω(η)dη

=
e−ωx

2π

∫ +∞

0

(
eixη−τ(r+ψω(η))Ĝω(η) + e−ixη−τ(r+ψω(−η))Ĝω(−η)

)
dη

=
e−ωx

2π
Re

∫ +∞

0

eixη−τ(r+ψω(η))Ĝω(η)dη. (19)

Since (19) is the same integral (18) written in a slightly different form, the discretiza-

tion and truncation errors will be the same in both cases. However, the number of

terms in appropriate quadratures will be twice smaller when (19) is used, hence, the

CPU time will be twice smaller as well.

2.2.3. Error control. There are two sources of error in the numerical realization

of (18) or (19): discretization and truncation of the integral on the RHS. A detailed

discussion of the discretization error for the flat iFT method, in a slightly more

general context, can be found in Appendix O.1.1, together with recommendations for

the choice of offset ω and mesh ζ. Estimates for the truncation error for flat iFT,

for different classes of Lévy processes, can be found in [19]. We do not include them

here, since they are not relevant for our purposes, except for the case of VG, for which

we present a more accurate error bound (the details can be found in Appendix C.1).

2.3. Parabolic iFT method for European vanilla options

This method, introduced in [19], relies on deforming the contour of integration in

(18) or (19) under a conformal map, such that the integrand decays faster along the

deformed contour. Two versions of the method were introduced in op. cit., one for put

options with x′ = ln(St/K) + µτ ≥ 0 and one for call options with x′ ≤ 0. Although

it is not strictly necessary to use both, due to the symmetry relations outlined in

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 16

Appendix D, we describe both cases in some detail, since the call version was used

for the comparisons in [35], on which Chapter 3 is based, while the put version was

used in [36], on which Chapter 4 is based.

As in [19], we refer to the situation in which x′ = x+µτ = 0 as the at-the-money

(ATM) case5, for both call and put options. Similarly, we define a call (put) option

to be out-of-the-money (OTM) if x′ < 0 (x′ > 0), and to be in-the-money (ITM) if it

is neither ATM nor OTM. For the remainder of this chapter, we follow the exposition

in [19].

2.3.1. ATM and OTM put case (KoBoL, x′ ≥ 0, ν ∈ (0, 2), ν ̸= 1). Recall

that the price of the vanilla put option with strikeK is given by (12), with ω ∈ (0, λ+).

We can deform the contour of integration in (12) under the conformal map χ+
α , defined

on the half-plane Im ξ < λ+ by

χ+
α (ξ) = iλ+ − iλ1−α+ (λ+ + iξ)α (20)

for α ∈ [1, 2]. If α ∈ (1, 2), then the image of the half-plane Im ξ < λ+ is the obtuse

angle

{iλ+ + z | z ̸= 0, arg z /∈ [π/2− π(1− α/2), π/2 + π(1− α/2)]}.

For α = 2, the image is the complex plane with the cut i[λ+,∞). Figure 1 illustrates

typical curves of the modified contour χ+
α (ξ) for different values of α.

5We note that this definition differs slightly from the various ones used by practitioners.

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 17

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

Re χ
α
+(ξ)

Im
 χ

α+
(ξ

)

α=1
α=1.5
α=2
α=2.5

Figure 1. Typical curves of χ+
α (ξ) = iλ+−iλ1−α+ (λ++iξ)

α, ξ = iω+R
(λ+ = 8, ω = 1).

As in [19], denote by Lω;χ+
α
the image of the line Im ξ = ω ∈ (0, λ+) under χ+

α .

Using Cauchy’s theorem, one can deform the contour of integration in (12) and obtain

V (τ, x) = −Ke
−rτ

2π

∫
L
ω;χ+

α

eix
′ξ−τψ0(ξ)

ξ(ξ + i)
dξ, (21)

where ψ0(ξ) = ψ(ξ) + iµξ. The justification of the contour deformation for KoBoL,

VG, and NIG, can be found in [19]. We shall only focus on the KoBoL case with

ν(0, 2), ν ̸= 1, since it is the only relevant one for our purposes. Changing the variable

ξ 7→ χ+
α (ξ) in (21), one obtains

V (τ, x) = −Ke
−rτ

2π

∫
Im ξ=ω

eix
′χ+

α (ξ)−τψ0(χ+
α (ξ))

χ+
α (ξ)(χ

+
α (ξ) + i)

α

(
λ+ + iξ

λ+

)α−1

dξ. (22)

Similarly to the case of (19) for flat iFT, one can reduce the integral on the RHS of

(22) to the positive half-line, by considering that, if ξ = iω + η, where η, ω ∈ R, then

iξ = i(iω−η), hence iχ+
α (iω + η) = iχ+

α (iω−η), and ψ0(χ+
α (iω + η)) = ψ0(χ+

α (iω−η)).

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 18

One obtains

V (τ, x) = −Ke
−rτ

π
Re

∫ iω+∞

iω

eix
′χ+

α (ξ)−τψ0(χ+
α (ξ))

χ+
α (ξ)(χ

+
α (ξ) + i)

α

(
λ+ + iξ

λ+

)α−1

dξ. (23)

We call this variation of iFT conformal parabolic iFT method of order α, or Para(α)

for short. Flat iFT can be regarded as Para(1). As noted in op. cit., one can

use the contour deformation Lω;χ+
α
for α ∈ [1, 4), rather than α ∈ [1, 2), with the

understanding that, for α ∈ [2, 4), the contour belongs to an appropriate Riemann

surface. For the ATM and OTM put case, which we consider, we have x′ ≥ 0. Hence,

as η = Re ξ → ±∞

iχ+
α (ξ) = −λ+ +

(λ+ + iξ)α

λα−1
+

= λ1−α+ · (iξ)α + o(ξ).

Therefore

Re
(
ix′χ+

α (ξ)
)
= x′λ1−α+ Re

(
e±απ/2

)
|η|α(1 +O(η−1))

= x′λ1−α+ cos(απ/2)|η|α(1 +O(η−1)).

In order for this to tend to −∞ for η → ±∞, we must have x′ > 0 (OTM case) and

cos(απ/2) < 0, i.e. α ∈ (1, 3). For α ∈ [1, 4), and KoBoL with ν ∈ (0, 2), ν ̸= 1, we

can write

ψ0(χ+
α (ξ)) = cΓ(−ν)

[
λν+ − λ

ν(1−α)
+ (λ+ + iξ)αν + (−λ−)ν

−
(
λ+ − λ− − λ1−α+ (λ+ + iξ)α

)ν]
.

(24)

Since λ− < 0 < ω < λ+, for any α ∈ [1, 4), the curve

R ∋ η 7→ λ+ − λ− − λ1−α+ (λ+ − ω + iη)α

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 19

does not cross (−∞, 0], therefore the RHS of (24) is well-defined for α ∈ [1, 4). We

have

(λ+ + iξ)αν = (λ+ − ω + iη)αν = (±i|η|)αν(1 +O(η−1)) = e±iπαν/2|η|αν(1 +O(η−1))

as η → ±∞ along Im ξ = ω. Hence

Re [(λ+ + iξ)αν] = Re
(
e±ναiπ/2

)
|η|αν(1 +O(η−1))

= cos(απν/2)|η|αν(1 +O(η−1)).

Similarly, we have

Re
[(
λ+ − λ− − λ1−α+ (λ+ + iξ)α

)ν]
= λ

ν(1−α)
+ cos(νπ(α/2− 1))|η|αν(1 +O(η−1)).

It follows that

−Re
[
τψ0(χ+

α (ξ))
]
= τcΓ(−ν) Re [cos(ανπ/2) + cos (νπ(α/2− 1))] |η|αν(1 +O(η−1))

= 2τcΓ(−ν) cos(νπ/2) cos (νπ(1− α)/2) ηαν |η|αν(1 +O(η−1)).

For ν ∈ (0, 2) and ν ̸= 1, we have Γ(−ν) cos(νπ/2) < 0. Hence, in order for

−Re [τψ0(χ+
α (ξ))] to tend to −∞ as η → ±∞, we must have cos ((1− α)νπ/2) > 0,

i.e., (1 − α)νπ/2 > −π/2, for α ≥ 1. Therefore, we must have α ∈ [1, 1 + 1/ν). If

ν > 1, this implies α < 2. Hence, the real part of both terms in the exponential

under the integral in (23) tends to −∞ as η → ±∞. If ν ∈ [0, 1) and x′ > 0, then

it is possible to have α ∈ (1 + 1/ν, 3). Then, the real part of the first term tends to

−∞ as |η|α and that of the second term tends to +∞ as |η|αν . The real part of the

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 20

sum tends to −∞, but the behaviour can be rather irregular. Hence, in these cases,

it is recommended to take6 α < α0 = min{3, 1 + 1/ν} [19].

The following result is a consequence of the previous considerations.

Proposition 2.5 (Proposition 5.2(a) in [19]). Let ν ∈ (0, 2), ν ̸= 1, and either

x′ > 0 and α ∈ [1,min{1 + 1/ν, 3}), or x′ = 0 and α ∈ [1,min{1 + 1/ν, 4}). Then, as

η = Re ξ → ±∞, the real part of the integrand in (22), including the factor outside

the integral, admits an upper bound via

Kλα−1
+

2πerτ
αC(η) exp

[
x′A(η)|η|α +B(η)τ |η|αν − cτΓ(−ν)(λν+ + (−λ−)ν)

]
|η|−1−α,

where C(η) = (1 +O(η−1)), and

A(η) = cos(απ/2)λ1−α+ (1 +O(η−1)), (25)

B(η) = 2cΓ(−ν)λ(1−α)ν+ cos(νπ/2) cos(νπ(α− 1)/2)(1 +O(η−1)). (26)

Remark 2.6. It follows from Proposition 2.5 that the integrand in (21) or (22) decays

as |η|−1−αex
′A(∞)|η|α+B(∞)τ |η|αν

, where A(∞), B(∞) < 0, as |η| → ∞ along the line

Im ξ = ω ∈ (0, λ+). This is generally a faster decay rate than the one for flat iFT,

namely |ξ|−2 · e−τκ|ξ|ν , where κ = −2cΓ(−ν) cos(πν/2).

2.3.2. ATM and OTM call case (x′ ≤ 0, VG). For the case of a call option,

one again starts from (12), this time with ω = Im ξ ∈ (−λ−,−1). For α ∈ [1, 2], one

considers the conformal map χ−
α , defined on the half-plane Im ξ > λ− by

χ−
α (ξ) = iλ− + i(−λ− − 1)1−α(−λ− − iξ)α.

6As a rule of thumb, we recommend using α = α0 − 0.05. The numerical examples in this thesis,
unless stated otherwise, were calculated with this choice of α.

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 21

If α ∈ (1, 2), the image of the half-plane Im ξ > λ− is the obtuse angle

{iλ− + iz | z ̸= 0, arg z /∈ [−π/2− π(1− α/2),−π/2 + π(1− α/2)]}.

For α = 2, the image is the complex plane with the cut i(−∞, λ−]. Figure 2 illustrates

typical curves of the modified contour χ−
α (ξ) for different values of α.

-20 -15 -10 -5 0 5 10 15 20
-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

Re χ
α
- (ξ)

Im
 χ

α-
(ξ

)

α=1
α=1.5
α=2
α=2.5

Figure 2. Typical curves of χ−
α (ξ) = iλ−+ i(−λ−−1)1−α(−λ−− iξ)α,

ξ = iω + R (λ− = −11, ω = −2).

The analogous pricing formula to (23) is given by

V (τ, x) = −Ke
−rτ

π
Re

∫ iω+∞

iω

eix
′χ−

α (ξ)−τψ0(χ−
α (ξ))

χ−
α (ξ)(χ

−
α (ξ) + i)

α

(
−λ− − iξ

−λ− − 1

)α−1

dξ. (27)

As for the put option, one can use the contour transformation ξ 7→ χ−
α (ξ) for the wider

range α ∈ [1, 4), with the understanding that, for α ∈ [2, 4), the contour belongs to

the appropriate Riemann surface. Then one has

ln[−λ− − iχ−
α (ξ)] = (1− α) ln(−λ− − 1) + α ln(−λ− − iξ), (28)

ln[λ+ + iχ−
α (ξ)] = ln

(
λ+ − λ− + (−λ− − 1)1−α(−λ− − iξ)α

)
. (29)

2.3. PARABOLIC IFT METHOD FOR EUROPEAN VANILLA OPTIONS 22

Then, for α ∈ [1, 4), the integrand in (27) admits the analytic continuation into the

strip Im ξ ∈ (−λ−,−1). From similar considerations to the ones in Section 2.3.1, it

follows that, if the underlying follows a VG process, in order for the integrand to be

of class L1 on the line Im ξ = ω, one must have α ∈ [1, 3) in the OTM case and

α ∈ [1, 4) in the ATM case. It follows from (28) and (29) that the expression for

ψ0(χ−
α (ξ)) for VG is given by, for α ∈ [1, 4)

ψ0(χ−
α (ξ)) = c

[
α ln(−λ− − iξ)− (α− 1) ln(−λ− − 1)− ln(−λ−λ+)

+ ln
(
λ+ − λ− − (−λ− − 1)1−α(−λ− − iξ)α

)]
.

(30)

CHAPTER 3

Fast pricing of European options under VG

3.1. General remarks

The VG model, introduced to finance by Madan and Seneta in 1990 [69], was the

first non-Gaussian Lévy model used in derivative pricing1, and is still available on the

Bloomberg system for the pricing and calibration of equity and index options2 [27].

Although, the KoBoL model has become more popular in recent years, it should be

recalled that VG corresponds to KoBoL with ν = 0 (cf. Example A.5) and that,

occasionally, one obtains VG as a best fit when the KoBoL model is calibrated to

traded option prices, as is the case for the parameter set used in Section 3.4.5.3. As

noted in [19], for processes of finite variation, all versions of iFT face the greatest

difficulties in the ATM and near-ATM cases, particularly for short time to maturity τ

and order ν close to zero. Under the VG model, it is possible to calculate the option

price extremely accurately by using an alternative method, introduced in [35], based

on an asymptotic expansion of the iFT integrand. The results calculated with this

method can be used as a benchmark to investigate the performance of different ver-

sions of iFT. In addition, the method can be used in model fitting. When calibrating

to the traded prices of vanilla options, especially those in the FX market, there is

1The Lévy stable model was introduced to finance by Mandelbrot in 1963 [70]. However, in its
general form it cannot be used for option pricing, since its exponential moments do not exist.
2The SKEW function on a Bloomberg terminal no longer allows the user to select VG as pricing model.
However, the VG calculator is still available on the Bloomberg API.

23

3.2. ATM CASE 24

usually at least one option with very short time to maturity which is close to ATM3.

Moreover, these options are generally among the most liquid. During a calibration to

market data, the optimization procedure may well come across regions of parameter

space such that one of these options is either ATM or very close to ATM. Hence, the

new method can be used to replace iFT during model fitting for VG.

We start with expression (19) for the price of a European option with terminal

payoff G, which can be re-written as

V (τ, x) =
e−rτ−ωx

′

π
Re

∫ ∞

0

eix
′ηe−τψ

0
ω(η)Ĝω(η)dη, (31)

where x′ = x+µτ , Ĝω(η) = Ĝ(η+iω), ψ0
ω(η) = iµ(η+iω)+ψ(η+iω), and ω ∈ (λ−,−1)

for the vanilla call option, ω ∈ (0, λ+) for the vanilla put.

3.2. ATM case

For the rest of this chapter, unless stated otherwise, we will choose ω in (12) so

that ω = (λ+ + λ−)/2, and take x = ln(S/K). If ω > 0 we price the put, and if

ω < −1 we price the call, applying put-call-parity if needed (we will consider the case

ω ∈ [−1, 0] in Section 3.2.3). Putting σ = (λ+−λ−)/2, we obtain ±λ±± iξ = σ± iη,

which can be used to simplify the expression of the characteristic exponent as follows

ψ0
ω(η) = −c ln(−λ−λ+) + c ln(σ2 + η2).

Hence

V (τ, x) = −Ke
−r′τ−ωx′

2π

∫ +∞

−∞
eix

′η (σ2 + η2)−cτ

(η + iω)(η + iω + i)
dη, (32)

3The volatility surfaces available from various market data providers usually include quotes for
options with maturity one day. In practice, options of even shorter maturity (e.g., 3-4 hours) are
liquidly traded.

3.2. ATM CASE 25

where r′ = r − c ln(−λ−λ+). We note that, using this parametrization, it is possible

to derive an upper bound for the truncation error of the VG option price. The details

can be found in Appendix C.1. Recall that we refer to the situation in which x′ = 0 as

the ATM case, for both call and put options. Similarly, we define a call (put) option

to be out-of-the-money, or OTM, if x′ < 0 (x′ > 0). If we set

I(x′;σ, ω) =

∫ +∞

−∞
eix

′η (σ2 + η2)−cτ

(η + iω)(η + iω + i)
dη, (33)

then we can write

I(0;σ, ω) = Φ(σ, ω)− Φ(σ, ω + 1), (34)

where

Φ(σ, ω) = −i
∫ +∞

−∞

(σ2 + η2)−cτ

η + iω
dη. (35)

Reducing this integral to R+, we obtain

Φ(σ, ω) = 2ω

∫ ∞

0

(σ2 + η2)−cτ

ω2 + η2
dη. (36)

Hence, if we know how to calculate Φ(σ, ω), we can obtain the vanilla option price

from (32), (33) and (34). We start with the following result.

Proposition 3.1. For η > σ, the integrand in the expression (36) for Φ(σ, ω) admits

the following series expansion

(σ2 + η2)−cτ (ω2 + η2)−1 = η−2−2cτ

∞∑
n=0

cn(σ, ω, cτ)η
−2n, (37)

3.2. ATM CASE 26

where the coefficients cn(σ, ω, cτ) can be calculated recursively4, by setting a0(σ, cτ) =

c0(σ, ω, cτ) = 1, and, in a cycle w.r.t. n = 1, 2, . . .

cn(σ, ω, cτ) = −ω2cn−1(σ, ω, cτ) + an(σ, cτ), (38)

an(σ, cτ) = −n−1(cτ + 1− n)σ2an−1(σ, cτ). (39)

Proof. Follows directly from the binomial theorem. The coefficients cn(σ, ω, cτ)

are given by

cn(σ, ω, cτ) =
n∑
j=0

aj(σ, cτ)bn−j(ω), (40)

where in turn

aj(σ, cτ) = (−1)j
cτ(cτ + 1) . . . (cτ + j − 1)

j!
σ2j, (41)

and bℓ(ω) = (−1)ℓω2ℓ. Then (39) follows from (41), and (38) follows from the following

considerations. Recall that

cn(σ, ω, cτ) =
n∑
j=0

aj(σ, cτ)ω
2(n−j)(−1)n−j,

cn−1(σ, ω, cτ) =
n−1∑
j=0

aj(σ, cτ)ω
2(n−1−j)(−1)n−1−j.

Therefore

ω2cn−1(σ, ω, cτ) =
n−1∑
j=0

aj(σ, cτ)ω
2(n−j)(−1)n−1−j

= −cn(σ, ω, cτ) + an(σ, cτ).

�

4Alternatively, a convolution may be used. However, as shown in Appendix E.1, the choice of method
makes little difference to the overall CPU time taken for the calculation of the price.

3.2. ATM CASE 27

For Λ > 0, we can break the integral Φ(σ, ω) into two pieces: Φ(σ, ω) = Φ1(σ, ω; Λ)+

Φ2(σ, ω; Λ), where

Φ1(σ, ω; Λ) = 2ω

∫ Λ

0

(σ2 + η2)−cτ

ω2 + η2
dη, (42)

Φ2(σ, ω; Λ) = 2ω

∫ ∞

Λ

(σ2 + η2)−cτ

ω2 + η2
dη. (43)

For Λ > σ, Φ2(σ, ω; Λ) can be calculated using the expansion (37), while Φ1(σ, ω; Λ),

being the integral of a smooth function over a finite interval, can be computed very

efficiently using one of several numerical integration techniques. We will examine

each of these tasks in detail.

3.2.1. Calculation of Φ2(σ, ω; Λ). The next result follows directly from Propo-

sition 3.1.

Proposition 3.2. The value of Φ2(σ, ω; Λ), for Λ > σ, is given by

Φ2(σ, ω; Λ) = 2ω
∞∑
n=0

cn(σ, ω, cτ)

∫ ∞

Λ

η−2−2cτ−2ndη

= 2ω
∞∑
n=0

cn(σ, ω, cτ)
Λ−1−2cτ−n

1 + 2cτ + n
. (44)

The next result can be used to determine the number of terms in the series (44)

which ought to be included in order to reach a desired accuracy.

Proposition 3.3. Denote by Φ
(N)
2 (σ, ω; Λ) the approximation to Φ2(σ, ω; Λ) obtained

by discarding all terms from n = N + 1 onwards in the series expansion (44). Then

the error of approximation of Φ2(σ, ω; Λ) by Φ
(N)
2 (σ, ω; Λ) admits the following bound

|Φ(N)
2 (σ, ω; Λ)− Φ2(σ, ω; Λ)| ≤ 2|ω|φN(Λ)

Λ−3−2cτ−2N

3 + 2cτ + 2N
, (45)

where

3.2. ATM CASE 28

φN(Λ) = |aN+1(σ, cτ)|
Λ2N+2 − ω2N+2

Λ2 − ω2
+ ω2N+2

N∑
n=0

|an(σ, cτ)|Λ−2n

+ |aN+1(σ, cτ)|
ω2N+2

Λ2N+2
+

N−1∑
n=0

|cn+N+1(σ, ω, cτ)|Λ−2n.

(46)

Proof. From (44), we have

Φ2(σ, ω; Λ) = 2ω

∫ ∞

Λ

η−2−2cτ

(
∞∑
n=0

cn(σ, ω, cτ)η
−2n

)
dη.

Consider the series
∑∞

n=0 cn(σ, ω, cτ)η
−2n. We need an estimate for its remainder,

after discarding all terms from n = N +1 onwards. Recall that, for x ∈ (0, 1), z ∈ R,

we have

f(1 + x) := (1 + x)z =
∞∑
n=0

xn

n!
f (n)(1).

The remainder is then given by Lagrange’s formula

R
(f)
N :=

∞∑
n=N+1

xn

n!
f (n)(1) =

xN+1

(N + 1)!
f (N+1)(1 + θx),

for some θ ∈ (0, 1). We obtain

R
(f)
N =

xN+1

(N + 1)!
z(z − 1) . . . (z −N)(1 + θx)z−N−1

= xN+1

(
z

N + 1

)
(1 + θx)z−N−1,

where
(
a
k

)
denotes the generalized binomial coefficient(

a

k

)
=
a(a− 1) . . . (a− k + 1)

k(k − 1) . . . 1
,

3.2. ATM CASE 29

for a ∈ R, k ∈ N. If z < N + 1, then

R
(f)
N ≤

∣∣∣∣(z

N + 1

)∣∣∣∣xN+1. (47)

Take two (absolutely convergent) series A =
∑∞

n=0An and B =
∑∞

n=0Bn. Define the

product series C = AB =
∑∞

n=0Cn, where Cn =
∑n

j=0AjBn−j. Denote by R
(a)
N , R

(b)
N ,

R
(c)
N , the remainders of A, B, C, respectively. Then the remainder of the product

series C = AB =
∑∞

n=0Cn is given by

R
(c)
N =

∞∑
n=N+1

Cn = R
(a)
N

N∑
n=0

Bn +R
(b)
N

N∑
n=0

An +R
(a)
N R

(b)
N +

2N∑
n=N+1

C ′
n,

where

C ′
n =

N∑
j=n−N

AjBn−j. (48)

Hence the following bound holds

|R(c)
N | ≤ |R(a)

N |
N∑
n=0

|Bn|+ |R(b)
N |

N∑
n=0

|An|+ |R(a)
N R

(b)
N |+

2N∑
n=N+1

|C ′
n|. (49)

Note that, if we identifyA andB with the series
∑∞

j=0 aj(σ, cτ)η
−2j and

∑∞
ℓ=0 bℓ(ω)η

−2ℓ,

respectively, then, in the last term on the RHS of (49), C ′
n can be replaced by Cn,

since all terms in the sum (40) for the coefficient cn(σ, ω, cτ), for a given n, have the

same sign.

Consider the series
∑∞

n=0 cn(σ, ω, cτ)η
−2n. Denote by φ(η) the integrand in (43),

and write φ(η) = η−2−2cτφ1(η)φ2(η), where φ1(η) = (1 + σ2/η2)
−cτ

and φ2(η) =

(1 + ω2/η2)
−1
. For η ≥ Λ > σ, we have φ1(η) =

∑∞
n=0 an(σ, cτ)η

−2n, φ2(η) =∑∞
n=0 bn(ω)η

−2n. Denote by R
(φ1)
N (η) and R

(φ2)
N (η) the remainders of the series for

φ1(η) and φ2(η), respectively. From (47), with x = σ2η−2 and x = ω2η−2, respectively,

3.2. ATM CASE 30

we obtain

|R(φ1)
N (η)| ≤

∣∣∣∣(−cτ
N + 1

)∣∣∣∣ σ2N+2

η2N+2
=

|aN+1(σ, cτ)|
η2N+2

, (50)

|R(φ2)
N (η)| ≤ ω2N+2

η2N+2
. (51)

If we denote by R
(φ)
N (η) the remainder of the series for φ(η), we obtain from (49),

(50), (51)

|R(φ)
N (η)| ≤ η−4−2cτ−2N

[
|aN+1(σ, cτ)|

(
N∑
n=0

ω2n

η2n

)
+ ω2N+2

(
N∑
n=0

|an(σ, cτ)|η−2n

)

+ |aN+1(σ, cτ)|
ω2n+2

η2N+2
+

2N∑
n=N+1

|cn(σ, ω, cτ)|η−2n+2N+2
]

= η−4−2cτ−2N
[
|aN+1(σ, cτ)|η−2N η

2N+2 − ω2N+2

η2 − ω2
+ ω2N+2

(
N∑
n=0

|an(σ, cτ)|η−2n

)

+ |aN+1(σ, cτ)|
ω2n+2

η2N+2
+

N−1∑
n=0

|cn+N+1(σ, ω, cτ)|η−2n

]
.

(52)

The result follows from (52), together with the fact that η ≥ Λ. �

From Proposition 3.3 it is clear that, if ϵ is the tolerance level for the absolute

error |Φ(N)
2 (σ, ω; Λ)− Φ2(σ, ω; Λ)|, the smallest value of N we can take can be found

from

φN(Λ)

(3 + cτ + 2N)Λ3+cτ+2N
≤ ϵ

2|ω|
. (53)

The following iterative procedure can be used to find the smallest value of N , given

the error tolerance ϵ: in a cycle w.r.t. N = 1, 2, . . ., calculate the LHS of (53), and

stop as soon as its value drops below that of the RHS.

3.2. ATM CASE 31

3.2.2. Calculation of Φ1(σ, ω; Λ). As mentioned earlier, Φ1(σ, ω; Λ) can be com-

puted to a very high degree of accuracy using one of several numerical integration

techniques. In a practical implementation, one would usually calculate an integral

such as Φ1(σ, ω; Λ) by an adaptive quadrature scheme, i.e. one in which the integra-

tion grid is successively refined until certain convergence criteria are met, with the

aim that the absolute error should lie under a tolerance level ϵ [75, §4.7]. In our

numerical examples in Appendix E, we include results calculated with the adaptive

Simpson’s rule5 developed in [46], the adaptive Gauss-Lobatto rule6 of op. cit., the

adaptive Clenshaw-Curtis quadrature, implemented in MATLAB according to the

algorithm in [74], and the vectorized Gauss-Kronrod quadrature method7 developed

in [78]. Overall, the best results were obtained by Clenshaw-Curtis integration and

vectorized Gauss-Kronrod quadrature.

3.2.3. Case ω ∈ [−1, 0]. In this section, we will use V (τ, x;ω) to denote the RHS

of (12) for a specific choice of ω.

3.2.3.1. Case ω ∈ (−1, 0). Define Vc(τ, x) and Vp(τ, x) to be the vanilla call and

put prices, respectively, and set V(−1,0)(τ, x) = V (τ, x;ω) for ω ∈ (−1, 0). Then, using

a similar procedure to that in [18, §4.2.2] to give a proof of the well-known vanilla

put-call parity relationship

Vc(τ, x)− Vp(τ, x) = e−qτKex − e−rτK, (54)

we can express the call price in terms of V(−1,0)(τ, x).

5Available in MATLAB as the function quad.
6Available in MATLAB as the function quadl.
7Available in MATLAB as the function quadgk.

3.2. ATM CASE 32

Proposition 3.4. The following relationship holds between Vc(τ, x) and V(−1,0)(τ, x)

Vc(τ, x)− V(−1,0)(τ, x) = e−qτKex.

Proof. We have

Vc(τ, x)− V(−1,0)(τ, x) =

(∫
Im ξ=ω−

−
∫
Im ξ=σ

)
−Ke−rτ

2π

eixξ−τψ(ξ)

ξ(ξ + i)
dξ,

where ω− < −1, σ ∈ (−1, 0). The integrand has only one singularity in the strip

Im ξ ∈ [ω−, σ], a simple pole at ξ = −i. From this, the result easily follows. �

3.2.3.2. Case ω ∈ {−1, 0}. Define V−1(τ, x) = V (τ, x;−1) and V0(τ, x) = V (τ, x; 0),

with the corresponding integrals in (12) defined in the sense of Cauchy’s principal

value. The next two propositions show how to express the call price in terms of

V−1(τ, x) and V0(τ, x).

Proposition 3.5. The following relationship holds between Vc(τ, x) and V−1(τ, x)

Vc(τ, x)− V−1(τ, x) =
1

2
e−qτKex.

Proof. We have

Vc(τ, x)− V−1(τ, x) =

(∫
Im ξ=ω−

−P
∫
Im ξ=−i

)
−Ke−rτ

2π

eixξ−τψ(ξ)

ξ(ξ + i)
dξ,

where P denotes the Cauchy principal value of the integral. Compared to the situation

in Proposition 3.4, we now have only half the contribution from the simple pole

ξ = −i. �

Proposition 3.6. The following relationship holds between Vc(τ, x) and V0(τ, x)

Vc(τ, x)− V0(τ, x) = e−qτKex − 1

2
e−rτK.

3.3. NON-ATM CASE 33

Proof. We have

Vc(τ, x)− V0(τ, x) =

(∫
Im ξ=ω−

−P
∫
R

)
−Ke−rτ

2π

eixξ−τψ(ξ)

ξ(ξ + i)
dξ,

Compared to the situation with put-call-parity, we now have only half the contribution

from the simple pole ξ = 0, but the full contribution from the simple pole ξ = −i. �

Finally, we note that, at ATM, we have

V−1(τ,−µτ) = −Ke
−r′τ

2π
Φ(σ,−1),

V0(τ,−µτ) =
Ke−r

′τ

2π
Φ(σ, 1).

3.3. Non-ATM case

In practice, interpolation near ATM is known to be very inaccurate, especially for

short times to maturity. Since near-ATM options tend to be among the most liquid,

it is important for model fitting purposes to calculate their prices accurately. In this

section, we outline a similar method to that of Section 3.2, but valid for x′ ̸= 0. As

we will see, this can be a useful alternative to iFT for the case in which x′ is close to,

but not quite zero, when iFT can take a long time to produce accurate results [19].

As in Section 3.2, we consider the vanilla option case when developing the algorithm.

For the case of digitals, see Appendix F.

Taking (31) into account, the vanilla option price is given by

V (τ, x) = −K
π
e−r

′τ−ωx′ Re I+(x′;σ, ω), (55)

where

I+(x′; σ, ω) =

∫ ∞

0

eix
′η (σ2 + η2)−cτ

(η + iω)(η + iω + i)
dη, (56)

3.3. NON-ATM CASE 34

for x′ ̸= 0. In a similar way to (34), we can write

I+(x; σ, ω) = Ψ(x;σ, ω)−Ψ(x;σ, ω + 1),

where

Ψ(x;σ, ω) = −i
∫ ∞

0

eixη
(σ2 + η2)−cτ

η + iω
dη. (57)

For Λ > 0, we set

Ψ1(x;σ, ω; Λ) = −i
∫ Λ

0

eixη
(σ2 + η2)−cτ

η + iω
dη, (58)

Ψ2(x;σ, ω; Λ) = −i
∫ ∞

Λ

eixη
(σ2 + η2)−cτ

η + iω
dη, (59)

so that Ψ(x; σ, ω) = Ψ1(x;σ, ω; Λ) + Ψ2(x;σ, ω; Λ). As in the case of Φ1(σ, ω),

Ψ1(x;σ, ω; Λ) can be calculated extremely accurately using one of several numerical

integration techniques.

3.3.1. Calculation of Ψ2(x; σ, ω; Λ). The following result is the equivalent of

Proposition 3.2 for the non-ATM case.

Proposition 3.7. For x ̸= 0 and Λ > σ we have

Ψ2(x;σ, ω; Λ) = −i
∞∑
n=0

cn(σ, ω, cτ)(−ix)2cτ+nΓ(−2cτ − n,−ixΛ), (60)

where Γ(·, ·) denotes the principal branch of the upper incomplete gamma function,

defined by

Γ(s, x) =

∫ ∞

x

e−t ts−1dt,

where Re s > 0, for integration paths which do not include the origin or cross the

negative real axis (cf. [73, §8.2]). The coefficients cn(σ, ω, cτ) can be calculated by

setting a0(σ, cτ) = c0(σ, ω, cτ) = 1, an(σ, cτ) = 0 for n odd, and using the following

3.3. NON-ATM CASE 35

recurrence relations

cn(σ, ω, cτ) = an(σ, cτ)− iωcn−1(σ, cτ), (61)

an(σ, cτ) = −2σ2

n

(
c+

n

2
− 1
)
an−2(σ, cτ). (62)

Proof. For |η| ≥ Λ > σ, we can write8

(σ2 + η2)−cτ

η + iω
= η−1−2cτ

(
1 +

σ2

η2

)−cτ (
1 +

iω

η

)−1

= η−1−2cτ

(
∞∑
j=0

αj(σ, cτ)η
−2j

)(
∞∑
k=0

bk(ω)η
−k

)

= η−1−2cτ

(
∞∑
j=0

aj(σ, cτ)η
−j

)(
∞∑
k=0

bk(ω)η
−k

)

= η−1−2cτ

∞∑
n=0

cn(σ, ω, cτ)η
−n, (63)

where

αj(σ, cτ) = (−1)j
cτ(cτ + 1) . . . (cτ + j − 1)

j!
σ2j, (64)

aj(σ, cτ) = (−1)j/2
cτ(cτ + 1) . . . (cτ + j/2− 1)

(j/2)!
σj

(−1)j + 1

2
, (65)

bk(ω) = (−iω)k,

cn(σ, ω, cτ) =
n∑
j=0

aj(σ, cτ)bn−j(ω). (66)

Recurrence relations (62)-(61) follow from (65)-(66). Therefore, for Λ > σ, we obtain

Ψ2(x;σ, ω; Λ) = −i
∞∑
n=0

cn(σ, ω, cτ)

∫ ∞

Λ

eixη η−1−2cτ−ndη.

8With a slight abuse of notation, we re-use some of the symbols from Section 3.2 for the series
expansion coefficients.

3.3. NON-ATM CASE 36

If we set

I(x, z; Λ) =
∫ ∞

Λ

eixη η−1−zdη,

for z > 0, then we can write

Ψ2(x; σ, ω; Λ) = −i
∞∑
n=0

cn(σ, ω, cτ)I(x, 2cτ + n; Λ).

Let us now calculate the value of the integral I(x, z; Λ). Put t = −ixη. For x > 0,

we have

I(x, z; Λ) =
∫ −i∞

−ixΛ
e−t (ix−1t)−1−zix−1dt

It follows that

I(x, z; Λ) = (−ix)z
∫ −i∞

−ixΛ
e−t t−1−zdt = (−ix)zΓ(−z,−ixΛ), x > 0. (67)

In a similar way, one obtains

I(x, z; Λ) = (−ix)z
∫ i∞

−ixΛ
e−t t−1−zdt = (−ix)zΓ(−z,−ixΛ), x < 0.

Hence in both cases

I(x, z; Λ) = (−ix)zΓ(−z,−ixΛ), x ̸= 0. (68)

�

3.3.1.1. Recommendations for the computation of the incomplete gamma function.

The value of the incomplete gamma function Γ(s, y) can be calculated very efficiently

using the following series expansion [1, §6.5.29], which converges for s /∈ Z−

Γ(s, y) = Γ(s)

(
1− e−yys

∞∑
n=0

yn

Γ(s+ j + 1)

)
. (69)

3.3. NON-ATM CASE 37

This converges very fast if s is not very close to a negative integer. All the numerical

examples in this chapter were calculated using the expansion (69). For the case in

which cτ is very close to an integer, other techniques, such as Legendre’s continued

fraction, can be used [83, 85].

3.3.1.2. Error bounds for the remainder of the series expansion (63). The follow-

ing result is analogous to Proposition 3.3 for the ATM case, and can be used to choose

the minimum number of terms N to include in the expansion (63) for a given error

tolerance. For the sake of brevity, in the remainder of this section, we will drop the

functional dependencies of the series coefficients, writing only an, bn, cn, instead of

an(σ, cτ), bn(ω), cn(σ, ω, cτ), respectively.

Proposition 3.8. Denote by Ψ
(N)
2 (x;σ, ω; Λ) the approximation to Ψ2(x;σ, ω; Λ) ob-

tained by discarding all terms from n = N + 1 onwards in the expansion (63). Then

the error of approximation of Ψ2(x;σ, ω; Λ) by Ψ
(N)
2 (x; σ, ω; Λ) admits the following

bound

|Ψ(N)
2 (x;σ, ω; Λ)−Ψ2(x; σ, ω; Λ)| ≤ ψN(Λ)

Λ−1−2cτ−N

1 + 2cτ +N
, (70)

where

ψN(Λ) =
|aN ′+2|
ΛN

ΛN+1 − |ω|N+1

Λ− |ω|
+ |ω|N+1

N∑
n=0

|an|Λ−n

+
|aN ′+2∥ωN+1|

ΛN+1
+

N−1∑
n=0

|cn+N+1|Λ−n,

(71)

and N ′ = N − (1 + (−1)N+1)/2.

Proof. We need an estimate for the remainder of the series
∑∞

n=0 cnη
−n. Recall

that cn =
∑n

j=0 ajbn−j, where

aj = (−1)j/2
cτ(cτ + 1) . . . (cτ + j/2− 1)

(j/2)!
δjσ

j,

3.3. NON-ATM CASE 38

and bk = (−iω)k, δn = (1 + (−1)n)/2. We can use (49), in which, again, the C ′
n

coefficients can be replaced by the Cn, due to the fact that all the terms in the sum

(66) for the coefficient cn, for a given n, have the same sign. Then, if we define the

remainders R
(a)
N (η) =

∑∞
n=N+1 anη

−n and R
(b)
N (η) =

∑∞
n=N+1 bnη

−n, we have

R
(a)
N (η) ≤ max{|aN+1|, |aN+2|}η−N−1,

and

R
(b)
N (η) ≤ |ω|N+1η−N−1.

Assume for the moment that N is odd. Then, from (49) and the previous considera-

tions, we have∣∣∣∣∣
∞∑

n=N+1

cnη
−n

∣∣∣∣∣ ≤ |aN+1|
ηN+1

(
N∑
n=0

|ω|nη−n
)

+
|ω|N+1

ηN+1

(
N∑
n=0

|an|η−n
)

+
|ωN+1aN+1|
η2N+2

+
2N∑

n=N+1

|cn|η−n

= η−N−1

[
|aN+1|

1− |ω/η|N+1

1− |ω/η|
+ |ω|N+1

(
N∑
n=0

|an|η−n
)

+
|ωN+1aN+1|

ηN+1

+
2N∑

n=N+1

|cn|η−n+N+1

]
.

Since η > Λ, we obtain∣∣∣∣∣
∞∑

n=N+1

cnη
−n

∣∣∣∣∣ ≤ Λ−N−1

[
|aN+1|
ΛN

ΛN+1 − |ω|N+1

Λ− |ω|
+ |ω|N+1

(
N∑
n=0

|an|Λ−n

)
+

|ωN+1aN+1|
ΛN+1

+
N−1∑
n=0

|cn+N+1|Λ−n
]
.

(72)

3.4. ALGORITHMS AND NUMERICAL RESULTS 39

The above bound still holds in the case when n is even, if aN+1 is replaced by aN+2.

From this, (70) and (71) follow. �

3.3.2. Case ω ∈ [−1, 0]. For ω ∈ (−1, 0), the same results of Section 3.2.3.1

apply. If, on the other hand, either ω = −1 or ω = 0, then we can define

Ψ1(x;σ, 0; Λ) = − i

2
P

∫ Λ

−Λ

eixη
(σ2 + η2)−cτ

η
dη.

This can be re-written as

Ψ1(x; σ, 0; Λ) =
πi

2
Hψ(0), (73)

where

ψ(η) = eixη(σ2 + η2)−cτ1[−Λ,Λ](η), (74)

and H denotes the Hilbert transform, defined by

Hψ(ξ) = 1

π
P

∫ +∞

−∞

ψ(η)

ξ − η
dη.

As noted in [45], the Hilbert transform can be calculated very efficiently by using

an approximation based on Whittaker’s cardinal series (sinc expansion), which relies

on the FFT realization of Toeplitz matrix-vector multiplication. The details of the

algorithm can be found in Appendix P.2.4, and a discussion of the discretization error

bound for the calculation of Ψ1(x;σ, 0; Λ) can be found in Appendix G.

3.4. Algorithms and numerical results

3.4.1. ATM case. From the results in Section 3.2, the following procedure can

be used to calculate the ATM price of a vanilla option under the VG model. For the

modifications needed in the case of the ATM vanilla delta and the digital price, see

Appendix F.

3.4. ALGORITHMS AND NUMERICAL RESULTS 40

1. Fix a value of Λ. As noted earlier, this choice is largely irrelevant to the accuracy

which can be achieved by the algorithm. The only requirement is that Λ > σ. As

a rule of thumb, for a fast implementation, we recommend the choice Λ = 1.5σ,

since it is neither so small that it would force one to include several additional

terms in the asymptotic expansion of Φ2(σ, ω; Λ), nor so large as to significantly

slow down the calculation of Φ1(σ, ω; Λ).

2. Fix the value of the error tolerance ϵ for the option price, broken down as ϵ = ϵ1+ϵ2,

where ϵ1 is used for the calculation involving Φ1(σ, ω; Λ) and ϵ2 for that involving

Φ2(σ, ω; Λ). One may set ϵ1 = ϵ2 = ϵ/2; however, as will be seen in Section 3.4.2,

such a choice may not give the best performance, and in practice it is usually safe

to set ϵ1 about four orders of magnitude larger than ϵ, and ϵ2 about one order of

magnitude larger than ϵ. Set ϵ′1 = ϵ12πK
−1er

′τ+ωx′ , and ϵ′2 = ϵ22πK
−1er

′τ+ωx′ .

3. Calculate Φ1(σ, ω; Λ) and Φ1(σ, ω + 1;Λ) (cf. definition (42)), e.g. by using one of

the numerical integration methods discussed in Section 3.2.2, with error tolerance

ϵ′1/2.

4. Calculate Φ2(σ, ω; Λ) and Φ2(σ, ω + 1;Λ) (cf. definition (43)) with the method of

Section 3.2.1, i.e., using the asymptotic expansion (44) with N terms, where N

can be determined from Proposition 3.3. Use error tolerance ϵ′2/2.

5. Calculate the price by using (32)-(34) and (42)-(43), applying put-call-parity and/or

one of Propositions 3.4-3.6, if needed.

We refer to the algorithm outlined above as the ATMVG method.

3.4.2. Numerical results.

3.4.2.1. Choice of Λ. First, we look at the behaviour of the ATMVG price for

varying truncation parameter Λ. As pointed out in Section 3.4.1, the choice of Λ is

3.4. ALGORITHMS AND NUMERICAL RESULTS 41

largely irrelevant to the accuracy of the algorithm, but should affect the overall CPU

time taken for the calculation. We check this by comparing the CPU times9 for a range

of Λ. Throughout this section, we will consider the case of an ATM call option with

K = 1, τ = 0.004 (approximately equal to one trading day), r = 0.03, q = 0, under

process parameters10 λ− = −12, λ+ = 8, and m2 = 0.16. We use the adaptive Gauss-

Lobatto rule, implemented in MATLAB as the function quadl, for the calculation of

Φ1(σ, ω; Λ). As we will see, other methods can be faster, but we found that adaptive

Gauss-Lobatto quadrature could more easily cope with large ranges of integration

and low error tolerances. Therefore, all the plots of CPU times in the remainder of

this section should be used only to judge the relative performance of the algorithm

for different choices of truncation parameter and error tolerances (the comparison of

CPU times for other integration methods can be found in Appendix E.1). We take

error tolerances ϵ1 = ϵ2 = 10−16, include twice as many terms in the series (44) as

necessary, and refer to the price calculated in this way as our “benchmark”. For a

given choice of Λ we denote it by Vbm(Λ). In Figure 1 we plot the CPU time taken

by the calculation of Vbm(Λ), where Λ varies between 11 and 100. As can be seen

from the picture, the CPU times range between 13.35 ms for Λ = 15 and 24.6 ms

for Λ = 100. We conclude that the choice of Λ does not greatly affect the overall

CPU time, and from now on simply set Λ = 1.5σ (which, in this case, produces the

smallest CPU time).

9The calculations were carried out in MATLAB 7.9.0, on a PC with Intel Core 2 Duo, CPU P8400,
2.26 GHz and 3 GB RAM, running Windows XP Professional.
10m2 denotes the instantaneous second moment, which in the VG model determines c via c =
m2(λ

−2
− + λ−2

+)−1.

3.4. ALGORITHMS AND NUMERICAL RESULTS 42

10 20 30 40 50 60 70 80 90 100
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Λ

C
P

U
 T

im
e

(s
ec

)

Figure 1. CPU times for varying Λ, for an ATM vanilla call option
with K = 1, λ− = −12, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004,
for ϵ1 = ϵ2 = 10−16.

3.4.2.2. Choice of ϵ1 and ϵ2. We consider the effect of the error tolerance on the

calculation of Φ1(σ, ω; Λ) and Φ2(σ, ω; Λ). In Figure 2 we plot the absolute difference

in the ATMVG price for varying ϵ1 w.r.t. ϵ1 = 10−16, while ϵ2 is held fixed at 10−16,

and the corresponding CPU times. In Figure 3 we do the same for varying ϵ2, while

ϵ1 is held fixed at 10−16. We note that

1. The price does not change at all between ϵ1 = 10−16 and ϵ1 ≈ 2 · 10−11. Even for

larger values of ϵ1, the error is still several orders of magnitude smaller than ϵ1,

and is of the order of 10−15 for ϵ1 = 10−8. This remarkable accuracy is due to the

high efficiency of adaptive quadrature methods for smooth integrands over small

intervals.

2. The CPU time increases almost monotonically for decreasing ϵ1, from 4.54 ms for

ϵ1 = 10−8 to 48.77 ms for ϵ1 = 10−16.

3.4. ALGORITHMS AND NUMERICAL RESULTS 43

3. As ϵ2 increases from 10−16 to 10−8, the error increases more or less monotonically,

staying about two orders of magnitude below ϵ2.

4. The CPU time is largely independent of ϵ2, reflecting the fact that the calculation

of Φ2(σ, ω; Λ) is very fast compared to that of Φ1(σ, ω; Λ) (see Appendix E.1).

In light of these results, even if accuracy of the order of floating point error is

desired for the benchmark, one might as well take ϵ1 around 10−12 or even slightly

larger, while ϵ2 can be chosen in the range 10−16–10−15.

3.4.2.3. Comparison with iFT. The absolute difference between the ATMVG bench-

mark and the price calculated by parabolic iFT, with α = 3.9, using a very long and

fine grid (ζ = 0.1, Λ = 100000) is very small, at 2.56 ·10−15. In Section 3.5 we include

a more detailed comparison of the ATMVG prices with those obtained by flat and

parabolic iFT. The results confirm the analysis of [19], according to which parabolic

iFT is the most efficient version of the method, both in terms of accuracy and CPU

time.

3.4.3. Non-ATM case. From the results in Section 3.3, we can obtain a pro-

cedure to calculate the non-ATM price or delta of a vanilla option, or the non-ATM

price of a digital option. We outline the algorithm for vanilla prices. For the modifi-

cations needed in the case of the ATM vanilla delta and digital price, see Appendix

F.

1. Fix a value of Λ. As will be seen in Section 3.4.5.1, the value of Λ is largely irrelevant

to the accuracy of the results. For a fast implementation, we recommend taking Λ

in the range 4σ-5σ.

2. Fix the value of the error tolerances ϵ1 and ϵ2, corresponding to the calculations

involving Ψ1(x
′;σ, ω; Λ) and Ψ2(x

′;σ, ω; Λ), respectively. As in the ATM case, we

3.4. ALGORITHMS AND NUMERICAL RESULTS 44

10
-16

10
-14

10
-12

10
-10

10
-8

0

0.2

0.4

0.6

0.8

1

1.2
x 10

-14

ε
1

A
bs

ol
ut

e
E

rr
or

(a) Absolute error

10
-16

10
-14

10
-12

10
-10

10
-8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ε
1

C
P

U
 T

im
e

(s
ec

)

(b) CPU time

Figure 2. Absolute errors in the ATMVG price, and corresponding
CPU times, for varying error tolerance level ϵ1 w.r.t. ϵ = 10−16, for an
ATM vanilla call option with K = 1, λ− = −12, λ+ = 8, m2 = 0.16,
r = 0.03, q = 0, τ = 0.004, for Λ = 1.5σ.

10
-16

10
-14

10
-12

10
-10

10
-8

0

0.5

1

1.5

2

2.5

x 10
-10

ε
2

A
bs

ol
ut

e
E

rr
or

(a) Absolute error

10
-16

10
-14

10
-12

10
-10

10
-8

0.044

0.0445

0.045

0.0455

0.046

0.0465

0.047

0.0475

0.048

ε
2

C
P

U
 T

im
e

(s
ec

)

(b) CPU time

Figure 3. Absolute errors in the ATMVG price, and corresponding
CPU times, for varying error tolerance level ϵ2 w.r.t. ϵ = 10−16, for an
ATM vanilla call option with K = 1, λ− = −12, λ+ = 8, m2 = 0.16,
r = 0.03, q = 0, τ = 0.004, for Λ = 1.5σ.

write ϵ = ϵ1 + ϵ2, where ϵ is the absolute error tolerance for the option price.

However, as we will see in Section 3.4.5.2, it is usually safe to choose ϵ1 five or six

3.4. ALGORITHMS AND NUMERICAL RESULTS 45

orders of magnitude larger than ϵ, and ϵ2 one or two orders of magnitude larger

than ϵ. Set ϵ′1 = ϵ1πK
−1er

′τ+ωx′ , and ϵ′2 = ϵ2πK
−1er

′τ+ωx′ .

3. Calculate Ψ1(x
′;σ, ω; Λ) and Ψ1(x

′; σ, ω + 1;Λ) (cf. definition (58)), e.g. by using

one of the numerical integration methods mentioned in Section 3.2.2, with error

tolerance ϵ′1/2.

4. Calculate Ψ2(x
′; σ, ω; Λ) and Ψ2(x

′; σ, ω+1;Λ) (cf. definition (59)) by using Propo-

sition 3.7, i.e., using the asymptotic expansion (44) with N terms, where N can

be determined from Proposition 3.8. Use error tolerance ϵ′2/2.

5. Calculate the price by using (55)-(59), applying put-call-parity, one of Propositions

3.4-3.6, or the method in Section 3.3.2, if needed.

We will refer to the algorithm outlined above as the FastVG method.

3.4.4. Digitals and deltas. The algorithm can be modified to price digital op-

tions, or to calculate the delta of a vanilla option, with x′ ̸= 0. The details can be

found in Appendix F. In either of these cases, we expect the CPU time to be approx-

imately halved compared to the case of the vanilla option price, since one only needs

to calculate the value of one improper integral, rather than two.

3.4.5. Numerical results (non-ATM case).

3.4.5.1. Choice of Λ. As in the ATM case, the method has an almost free parame-

ter, Λ. In Figure 4 (cf. Figure 1 for the ATMVG case) we plot the CPU times for the

calculation of the benchmark11 FastVG price of an OTM call option with x′ = −10−6,

for varying Λ, under the same process parameters used in Section 3.4.2. This com-

parison corresponds to that of Figure 1 for the ATM case, and shows that, although

11See Section 3.4.2 for the definition of the benchmark.

3.4. ALGORITHMS AND NUMERICAL RESULTS 46

the CPU time increases more or less monotonically, it is not greatly affected by the

choice of Λ. In what follows we will take12 Λ = 4.5σ.

20 30 40 50 60 70 80 90 100
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

0.062

Λ

C
P

U
 T

im
e

(s
ec

)

Figure 4. CPU times for varying Λ, for an OTM vanilla call option
with x′ = −10−6, K = 1, λ− = −11, λ+ = 8, m2 = 0.16, r = 0.03,
q = 0, τ = 0.004, for ϵ1 = ϵ2 = 10−16.

3.4.5.2. Choice of ϵ1 and ϵ2. Figures 5-6 show the effect of varying the error tol-

erances ϵ1 and ϵ2 used in the calculation of Ψ1(x
′;σ, ω; Λ) and Ψ2(x

′;σ, ω; Λ), respec-

tively, on both price accuracy and CPU time (in seconds, cf. Figures 2-3 for the

ATMVG case). As in Section 3.4.5.1, we take an OTM call option with x′ = −10−6.

We note that, similarly to the ATMVG case

1. The price does not change between ϵ1 = 10−16 and ϵ1 ≈ 2 · 10−11, and the absolute

difference w.r.t. ϵ1 = 10−16 is still well below floating point accuracy up to ϵ1 ≈

2.5 · 10−10.

12As shown in Figure 4, smaller values of Λ, such as 2σ or 3σ, result in slightly faster calculation
times. However, we observed that choosing too small a value of Λ (such as 1.5σ) can occasionally
result in difficulties when evaluating the incomplete gamma function for the calculation of Ψ2. To
be on the safe side, as a rule of thumb, we recommend taking a slightly larger value of Λ, in the
range 4σ-5σ.

3.4. ALGORITHMS AND NUMERICAL RESULTS 47

2. The CPU time increases almost monotonically for decreasing ϵ1.

3. The absolute error increases approximately monotonically for increasing ϵ2, staying

about two orders of magnitude below ϵ2, and the CPU time is largely independent

of ϵ2.

We conclude that, even if accuracy of the order of floating point precision is needed,

one might as well take ϵ1 in the range 10−11–10−7 and ϵ2 in the range 10−15–10−14.

10
-16

10
-14

10
-12

10
-10

10
-8

0

1

2

3

4

5

6

7

8
x 10

-14

ε
1

A
bs

ol
ut

e
E

rr
or

(a) Absolute error

10
-16

10
-14

10
-12

10
-10

10
-8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ε
1

C
P

U
 T

im
e

(b) CPU time

Figure 5. Absolute errors in the FastVG price, and corresponding
CPU times (in seconds), for varying error tolerance level ϵ1 w.r.t. ϵ =
10−16, for an OTM vanilla call option with x′ = −10−6, K = 1, λ− =
−11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004, for Λ = 4.5σ.

3.4.5.3. Comparison of CPU times. For comparisons of the performances obtained

using different numerical integration methods, see Appendix E.2. In Figure 7 we plot

the CPU times taken to price an OTM call option with the FastVG method, for a

wide range of x′ from x′ = −0.01 to x′ = −10−10. It can be seen that the CPU time

is almost independent of x′. This indicates that the conclusions from the previous

examples, for x′ = −10−6, should also hold for other values of x′.

3.4. ALGORITHMS AND NUMERICAL RESULTS 48

10
-14

10
-12

10
-10

10
-8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-13

ε
2

A
bs

ol
ut

e
E

rr
or

(a) Absolute error

10
-16

10
-14

10
-12

10
-10

10
-8

0.0795

0.08

0.0805

0.081

0.0815

0.082

0.0825

0.083

0.0835

0.084

0.0845

ε
2

C
P

U
 T

im
e

(b) CPU time

Figure 6. Absolute errors in the ATMVG price, and corresponding
CPU times (in seconds), for varying error tolerance level ϵ2 w.r.t. ϵ =
10−16, for an OTM vanilla call option with x′ = −10−6, K = 1, λ− =
−11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004, for Λ = 4.5σ.

In Figure 8, we show the CPU times taken by parabolic iFT with α = 2.9 (solid

line) versus those of FastVG using Clenshaw-Curtis integration, with ϵ1 = 10−7,

ϵ2 = 10−15 (dashed line), for better than 1% accuracy (left panel) and better than

0.1% accuracy (right panel). The following parameter set13 was used: λ− = −31.6586,

λ+ = 14.9279, m2 = 0.0232. In both cases, we take a vanilla option with K = 1,

r = 0.03, q = 0, and maturity τ = 0.004 (approximately one day). Our results show

that, for vanilla option prices, FastVG is faster than parabolic iFT for short maturities

and options close to ATM, or for small error tolerances. As noted in Section 3.1, such

short distances from the ATM point x′ = 0 may naturally occur during a model

calibration.

13Calibrated by the author to the volatility surface of AUDUSD options as of 12 March 2010.

3.4. ALGORITHMS AND NUMERICAL RESULTS 49

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

0.0805

0.081

0.0815

0.082

0.0825

0.083

0.0835

x+µτ

C
P

U
 T

im
e

Figure 7. CPU times (in seconds) taken for the calculation of the
FastVG price for an OTM vanilla call option with K = 1, λ− = −11,
λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004, for Λ = 4.5σ, for
varying x′ = x+ µτ , using Gauss-Lobatto quadrature.

-10
-2

-10
-4

-10
-6

-10
-8

-10
-10

0.0023

0.0037

0.01

0.02

x+µτ

C
P

U
 T

im
e

(s
ec

)

Parabolic iFT
FastVG

(a) Better than 1% accuracy

-10
-2

-10
-4

-10
-6

-10
-8

-10
-10

0.0025

0.0037

0.01

0.02

0.03

x+µτ

C
P

U
 T

im
e

(s
ec

)

Parabolic iFT
FastVG

(b) Better than 0.1% accuracy

Figure 8. Logarithmic plots of CPU times with parabolic iFT (with
α = 2.9) and FastVG, with Clenshaw-Curtis integration, for the price
of a vanilla call option with K = 1, λ− = −31.6586, λ+ = 14.9279,
m2 = 0.0232, r = 0.03, q = 0, τ = 0.004, for varying x′ = x+ µτ , with
different accuracy levels. The VG parameters were calibrated to the
volatility surface of AUDUSD options as of 12 March 2010.

3.5. ANALYSIS OF RELATIVE PERFORMANCE OF FLAT AND PARABOLIC IFT 50

3.4.5.4. CPU times for digitals. In Figure 9 we show the CPU times taken by

parabolic iFT with α = 2.9 (solid line) versus those of FastVG with Clenshaw-Curtis

integration, ϵ1 = 10−7, ϵ2 = 10−15 (dashed line), for better than 1% accuracy (left

panel) and better than 0.1% accuracy (right panel), and time to maturity τ = 0.004.

In both cases, we take a digital call option with K = 1, r = 0.03, q = 0, and the same

process parameters used in Section 3.4.5.3, namely λ− = −31.6586, λ+ = 14.9279,

m2 = 0.0232. In general, FastVG outperforms parabolic iFT for maturities up to

about two weeks, except for deep OTM options.

-10
-2

-10
-4

-10
-6

-10
-8

0.001

0.005

0.015

0.03

0.25

1

x+µτ

C
P

U
 T

im
e

(s
ec

)

Parabolic iFT
FastVG

(a) Better than 1% accuracy

-10
-2

-10
-4

-10
-6

-10
-8

0.003

0.02

0.035

0.25

1
1.5

x+µτ

C
P

U
 T

im
e

(s
ec

)

Parabolic iFT
FastVG

(b) Better than 0.1% accuracy

Figure 9. Logarithmic plots of CPU times with parabolic iFT (with
α = 3) and FastVG, with Clenshaw-Curtis integration, for the price
of a digital call option with K = 1, λ− = −31.6586, λ+ = 14.9279,
m2 = 0.0232, r = 0.03, q = 0, τ = 1/26, for varying x′ = x + µτ , with
different accuracy levels.

3.5. Analysis of relative performance of flat and parabolic iFT

3.5.1. Flat iFT. Flat iFT consists in the computation of a truncated and dis-

cretized version of the integral on the RHS of (12) over a uniform grid (cf. Section

2.2). It was shown in [19] that flat iFT and its common variants are less efficient

3.5. ANALYSIS OF RELATIVE PERFORMANCE OF FLAT AND PARABOLIC IFT 51

than the new versions introduced in op. cit., especially parabolic iFT. Flat iFT is,

however, still widely used by practitioners.

Throughout this section, when comparing our results with those obtained by iFT,

unless stated otherwise, we will use for the latter a grid xj = −µτ−j∆, j = 0, . . . ,M ,

with ∆ = 0.02,M = 12, and xM = −µτ . We fix our initial error tolerance at ϵ = 10−7

and, using the error bound in Appendix C.1, choose the smallest Λ = Λ0 such that

the truncation error is smaller than ϵ/2. Then, using this Λ0, we take an initial mesh

ζ ≫ 1 in the dual space, calculate the option price, and progressively decrease ζ

by a constant factor between 1 and 2, until the difference between two successive

evaluations lies below ϵ/2. The justification for this procedure lies in the fact that,

as shown in [19] (cf. Appendix O.1.1), the error in the discretized version of (12),

without truncation, decays as C exp[−2πd(ω)/ζ], where C is a constant and d(ω) is

the minimum distance between the line Im ξ = ω and the boundary of the strip of

analyticity of the integrand in (12). Therefore, by decreasing ζ in a loop by a factor of

1.5 each time, say, we can expect to reach very quickly a point where the discretization

error is negligible. Figure 10 shows a logarithmic plot of the absolute pricing error

w.r.t. the ATMVG price (solid line) as a function of ζ, when Λ is held fixed at a value

chosen to ensure that the truncation error is smaller than 5 · 10−10 (Λ ≈ 2.441 · 108).

The solid line in Figure 10 is therefore a good approximation to the discretization

error. The dashed line is just C exp[−2πd(ω)/ζ], where the constant C is chosen so

that the theoretical estimate coincides with the actual error for ζ = 2. The two curves

closely follow each other as the mesh is reduced from ζ = 2 down to about ζ = 0.6.

For lower values of ζ the curves diverge, since the theoretical discretization error for

such values of ζ is smaller than residual numerical errors, which are mostly due to

truncation.

3.5. ANALYSIS OF RELATIVE PERFORMANCE OF FLAT AND PARABOLIC IFT 52

Figure 11 shows the truncation error and CPU time as functions of Λ. We note

that very large grids are needed for good accuracies, e.g. for a relative pricing error

smaller than 1% one needs over 10,000, points, and 60 ms of CPU time. For relative

errors smaller than 0.01%, over 120,000 points are needed, and 0.47 seconds of CPU

time.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-10

10
-8

10
-6

10
-4

10
-2

ζ

E
rr

or

Actual error
Theoretical estimate

Figure 10. Discretization error under flat iFT for an ATM vanilla call
option with K = 1, λ− = −11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0,
τ = 0.004, for varying ζ.

3.5.2. Parabolic iFT. A theoretical bound for the ATM truncation error in

the VG case can be derived (the details can be found in Appendix C.2), and the

same procedure as for flat iFT can be followed in order to separate the discretization

and truncation errors. Figure 12 shows the absolute truncation error and the CPU

time for the price of an ATM vanilla call option calculated using parabolic iFT with

α = 3.9. The comparison shows that parabolic iFT is several orders of magnitude

faster and more accurate than flat iFT, needing only 880 points, and 4 ms of CPU

3.5. ANALYSIS OF RELATIVE PERFORMANCE OF FLAT AND PARABOLIC IFT 53

10
5

10
6

10
-6

10
-5

10
-4

10
-3

10
-2

Λ

R
el

at
iv

e
E

rr
or

(a) Truncation error

10
5

10
6

10
-2

10
-1

10
0

10
1

10
2

Λ

C
P

U
 T

im
e

(s
ec

)

(b) CPU time

Figure 11. Truncation error (logarithmic plot) and CPU time (loga-
rithmic plot) under flat iFT for an ATM vanilla call option with K = 1,
λ− = −11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004, for varying
Λ.

time, for relative errors smaller than 1%, and 9535 points, and 34.6 ms of CPU time,

for relative errors smaller than 0.01%. Increasing Λ further, one can achieve absolute

and relative errors of the order of 10−10 to 10−9. Of course, this gain in accuracy

for increasing Λ comes at the cost of additional CPU time: already for errors of the

order of 10−9 to 10−8, the calculation can take 0.10–0.60 seconds, whereas, as we saw

in Section 3.4.2, ATMVG is much faster.

3.5. ANALYSIS OF RELATIVE PERFORMANCE OF FLAT AND PARABOLIC IFT 54

200 300 400 500 600 700800
10

-6

10
-5

10
-4

10
-3

10
-2

Λ

R
el

at
iv

e
E

rr
or

(a) Truncation error

200 300 400 500 600 700 800
0

0.005

0.01

0.015

0.02

0.025

0.03

Λ

C
P

U
 T

im
e

(s
ec

)

(b) CPU time

Figure 12. Truncation error (logarithmic plot) and CPU time under
parabolic iFT, with α = 3, for an ATM vanilla call option with K = 1,
λ− = −11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004, for varying
Λ.

CHAPTER 4

Pricing discretely monitored barrier options under Lévy

processes

4.1. General remarks

As noted in the Introduction, the backward induction approach, first used by

Eydeland in [41], reduces the problem of pricing a discretely monitored barrier option

to that of pricing a sequence of European options. Both the HT method [45] and the

COS method [44] are efficient, provided the parameters of the numerical schemes are

chosen optimally or close to optimally (given the desired error tolerance). However,

if the choice is insufficiently accurate, sizable errors may result; for options of several

years’ maturity, the numerical scheme may blow up due to error accumulation. The

error control is non-trivial because of several interacting sources of errors. In general,

one should expect that, in order to control n sources of errors, a numerical scheme

should be specified in terms of m ≥ n parameters. Both in [45] and [44], m < n,

and, although the prescriptions for the choice of the parameters are fairly ingenious

and work well in many cases, in other cases, the quality of the prescriptions is not

good enough.

We describe a new version of backward induction, introduced in [36], which allows

us to separate the sources of errors and control each of them efficiently. Our method

consists of the following main blocks: (i) truncation of the state space; (ii) piece-wise

polynomial approximation of the payoff Gs at each step of backward induction; (iii)

pricing options with the modified payoff using the Fourier transform technique. In

55

4.1. GENERAL REMARKS 56

the exponential Lévy models that we consider, the error of (i) decays exponentially,

and can be efficiently controlled independently of other sources of errors. Modulo

certain reservations in the case of the Variance Gamma model and the KoBoL model

of order close to 0, the errors of (iii) also decay exponentially or even faster, and can be

controlled relatively easily. We choose the corresponding parameters of the numerical

scheme so that the contributions of errors of blocks (i) and (iii) are much smaller

than the desired error tolerance. The resulting scheme behaves as if the interpolation

error were the only source of errors. Figure 1 below shows the absolute error due to

piece-wise quadratic interpolation versus the third power of the interpolation mesh

∆, for a down-and-out put option, with two parameter sets used in the literature (cf.

Lemma 4.4 and Section 4.4).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
-6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

∆3

M
ax

im
um

 a
bs

ol
ut

e
er

ro
r

Set A
Set B

Figure 1. Maximum absolute error in the interval 1.01 ·H ≤ S ≤ K
versus ∆3, where ∆ is the interpolation mesh in log-S space, for a
down-and-out put option with strike K = 100, barrier H = 80 and
time to maturity T = 0.25, for parameter set A, used in [19], and
parameter set B, used in [45] and [44]. The interval shown corresponds
approximately to ∆ lying between 2.23 ·10−4 and 0.012 (see Section 4.4
for more details).

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 57

The scheme that we realize is stable but involves a certain overkill which results in

an additional computational cost. However, due to the fast decay of errors, the CPU

time increases by a factor of 2-3 only. The gain is that we can essentially guarantee

the desired error tolerance, whereas the simplified prescriptions in [45] and [44] may

result in sizable errors, and good results can be achieved only by trial and error,

playing with the parameters of the scheme. Note that, in some cases, our method is

much faster than the HT method (cf. Tables 1 and 3), and the ad hoc procedure for

the choice of parameters given in [44] can result in very large errors for COS.

4.2. General scheme for pricing down-and-out put options

4.2.1. Reduction to pricing European options. We consider the down-and-

out (DO) barrier put option1 with barrier H = eh, strike K > H, and monitoring

dates (0 =)t0 < t1 < · · · < tN(= T). Let Vs(x) denote the option price at time

t = ts and Xts = x, s = 0, 1, . . . , N . Then VN(x) = (K − ex)+1(h,∞)(x). For

s = N − 1, N − 2, . . . , 0, we set

Vs(x) = 0, x ≤ h, (75)

and calculate

Vs(x) = e−r∆̄s

∫
R
p∆̄s

(y)Vs+1(x+ y)dy, x > h, (76)

where ∆̄s = ts+1−ts, and p∆̄s
is the transition probability density of X∆̄s

. The option

price at time t ∈ (ts, ts+1) can be calculated as the price of a European option with

payoff Vs+1(Xts+1) and maturity ts+1:

V (t, x) = e−r(ts+1−t)
∫
R
pts+1−t(y)Vs+1(x+ y)dy, x ∈ R. (77)

1This is one of the most liquid contracts in the market. For the generalization of the method to
other option types, see Appendix K.

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 58

For simplicity, we assume that the monitoring dates are equally spaced so that ∆̄s =

∆̄ := T/N .

Step I. The Fourier Transform of the terminal payoff G(x) := VN(x),

Ĝ(ξ) = − K

ξ(ξ + i)
e−iξ lnK +

(
K

iξ
+

eh

1− iξ

)
e−ihξ, (78)

is an analytic function in the complex plane, which decays at infinity as |ξ|−1 as

ξ → ∞ in any strip of finite width around the real axis2. Therefore, we can take any

ω ∈ (λ−, λ+) and calculate VN−1(x), x > h, as follows (cf. Section 2.2)

VN−1(x) =
e−r∆̄

2π

∫
Im ξ=ω

ei(x+µ∆̄)ξ−∆̄ψ0(ξ)Ĝ(ξ)dξ. (79)

In Appendix O, we describe the general procedure for the calculation of the RHS

of (79) with both flat and parabolic iFT [19]. Other methods include the European

option versions of the CONV [65] and COS [43] methods3. The parabolic iFT method

is generally faster than flat iFT, since it allows one to use a far smaller number of

points in the dual space in the discretized and truncated version of (79) (cf. Section

3.5, [19, 35]).

For practical computations, it is convenient to write the RHS of (79) as follows

VN−1(x) = −Ke
−r∆̄

2π

∫
Im ξ=ω

ei(x+µ∆̄−lnK)ξ−∆̄ψ0(ξ)

ξ(ξ + i)
dξ

+
e−r∆̄

2π

∫
Im ξ=ω

ei(x+µ∆̄−h)ξ−∆̄ψ0(ξ)

(
K

iξ
+

eh

1− iξ

)
dξ, x > h,

(80)

where we take ω ∈ (0, λ+). Note that the first integral in (80) gives the price of

a vanilla put option with strike K, and the second integral can be regarded as a

correction due to the knock-out barrier.

2The singularities at ξ = 0 and ξ = −i are removable.
3For a comprehensive review and analysis of performances, see [19].

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 59

Step II. For s = N − 1, N − 2, . . . , 0, the Fourier transform V̂s does not have a

sufficiently simple form, therefore, we will approximate Vs by a piece-wise polynomial

Vs, so that the Fourier transform V̂s can be calculated explicitly. We choose a grid

that contains h, and starts with h: (h =)x1 < x2 < · · · < xM , because all Vs(x)

vanish below h. Next, the discretization error will be large unless we use Vs+1(h +

0) instead of Vs+1(h)(= 0) in the calculation of Vs(xj), j = 1, 2, . . . ,M at steps

s = N − 1, N − 2, . . . , 1 of the backward induction procedure. Equivalently, we set

VN(x) = (K − ex)+1[h,∞)(x), and, for s = N − 1, N − 2, . . . , 1, set

Vs(x) = 0, x < h, (81)

and calculate

Vs(x) = e−r∆̄
∫
R
p∆̄(y)Vs+1(x+ y)dy, x ≥ h. (82)

Of course, this is only a useful computational trick. The option price at x = h is zero

at each monitoring date. For a numerical realization of (82) using the iFT method,

it is necessary to approximate Vs by a function, whose Fourier transform can be

calculated explicitly. We will use piece-wise polynomial approximations. The choice

of the order of approximation generally depends on the smoothness of Vs. It turns

out (cf. Section 4.2.3) that the main difficulties occur when ν and ∆̄ are both small4.

4.2.2. Greeks. The approach described above for the calculation of the price can

be modified for the calculation of the option’s delta and gamma. Since the underlying

spot price S0 at time t0 equals ex, the chain rule gives the following expressions for

4Naturally, which values of ν and ∆̄ qualify as small will generally depend on the process parame-
ters. Our tests showed that, for steepness parameters and values of m2 which typically arise from
calibrations to market data, ν ∈ [0, 0.3] can be considered small, for the daily monitoring case.

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 60

the delta and gamma, respectively

∂V

∂S0

= e−x
∂V

∂x
, (83)

∂2V

∂S2
0

= e−x
∂

∂x

(
e−x

∂V

∂x

)
= e−2x

(
∂2V

∂x2
− ∂V

∂x

)
. (84)

For model processes of order ν > 0, by differentiating n times under the integral

sign of the iFT integral for V0(x), one obtains the following explicit expression for

V
(n)
0 (x) := ∂nxV0(x)

V
(n)
0 (x) =

e−r∆̄

2π

∫
Im ξ=ω

ei(x+µ∆̄)ξ−∆̄ψ0(ξ)(iξ)nV̂1(ξ)dξ. (85)

The delta and gamma can be calculated as follows: at the last step of backward

induction, one performs two additional convolutions to calculate approximations to

V ′
0(x) and V

′′
0 (x), and then uses (83) and (84).

4.2.3. Regularity of the option price and sensitivities. Assume that X is

a model process of order ν > 0 (or, more generally, an RLPE; cf. Appendix A.2, [18,

Ch. 3]), and let, as in the rest of this thesis, ψ0(ξ) denote the characteristic exponent

without the term −iµξ: ψ(ξ) = −iµξ + ψ0(ξ). Then, for any τ > 0, the integrand in

pτ (x) =
1

2π

∫
R
e−iξ(x−µτ)−τψ

0(ξ)dξ (86)

decays faster than any power of |ξ| at infinity. Therefore, all the derivatives of the

integrand w.r.t. x are continuous. Since X is an RLPE, the derivatives decay expo-

nentially at infinity. Writing (82) in the form

Vs(x) = e−r∆̄
∫
R
p∆̄(y − x)Vs+1(y)dy, x ≥ h, (87)

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 61

and differentiating w.r.t. x under the integral sign, we obtain that Vs ∈ C∞([h,∞)).

Hence, formally, interpolation methods of arbitrary order are applicable. However, if

∆̄ and ν are both small, then exp[−∆̄ψ0(ξ)] decays slowly as ξ → ∞, and, therefore,

in the vicinity of x = µτ , pτ (x) is rather large, and the derivatives of pτ (x) are very

large indeed. Since VN is discontinuous at x = h, we conclude from (82) that the

derivatives of Vs(x) are large at x = h − (N − s)µ∆̄. Of course, if µ > 0, then

h− (N − s)µ∆̄ < h, and, therefore, this remark is irrelevant.

4.2.4. Piece-wise polynomial approximations. For a numerical realization,

one discretizes and truncates the state space, choosing an appropriate grid5. To

minimize the discretization error, a grid should ideally be chosen so that both h and

lnK − µ∆̄ are among its points.

We want to calculate Vs(x) at points of a grid x = (xj)
M
j=1 given values vs+1

j of

Vs+1(x) at points of the same grid. Consider the piece-wise polynomial interpolation6

of degree m of the function Vs(x), s = N − 1, N − 2, . . . , 1, on the grid x = (xj)
M
j=1

Vs(x) ≈ Vs(x) =
M−1∑
j=1

m∑
ℓ=0

fm,sj,ℓ

(
x− xj

xj+1 − xj

)ℓ
1[xj ,xj+1)(x). (88)

(In general formulas below, fm,sj,ℓ with ℓ > mmay appear; then fm,sj,ℓ = 0). In Appendix

M.1, we prove

Lemma 4.1. The Fourier transform of Vs(x) is given by

V̂s(ξ) =
m∑
ℓ=0

∆−ℓ
M∑
j=1

Wm,s
j,ℓ e

−ixjξ(−iξ)−ℓ−1, (89)

5An alternative is to take the Fourier transform and do calculations in the dual space; then the dual
space is discretized as well (cf. Appendix P).
6Hermite spline interpolation tends to perform less well than piece-wise quadratic or cubic interpo-
lation.

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 62

where

Wm,s
1,0 = −fm,s1,0 , Wm,s

1,1 = fm,s1,1 , Wm,s
1,2 = −2fm,s1,2 , Wm,s

1,3 = 6fm,s1,3 , (90)

Wm,s
j,0 = 0, j = 2, 3, . . . ,M,

Wm,s
M,1 = −fm,sM−1,1 − 2fm,sM−1,2 − 3fm,sM−1,3,

Wm,s
M,2 = 2fm,sM−1,2 + 6fm,sM−1,3, Wm,s

M,3 = −6fm,sM−1,3,

and, for j = 2, 3, . . . ,M − 1,

Wm,s
j,1 = fm,sj,1 − fm,sj−1,1 − 2fm,sj−1,2 − 3fm,sj−1,3, (91)

Wm,s
j,2 = 2fm,sj−1,2 − 2fm,sj,2 + 6fm,sj−1,3,

Wm,s
j,3 = −6fm,sj−1,3 + 6fm,sj,3 .

Remark 4.2 (Notation conventions). The index denoting the time step is usually

placed at the bottom, unless we need to denote the j-th element of an array, or the

(j, k) element of a matrix, in which case the time step index will move to the top

(e.g., vs(xj) versus v
s
j , for s = 1, 2, . . . , N − 1 and j = 1, 2, . . . ,M). Occasionally, in

order to avoid ambiguity, we will denote a vector by using boldface letters (e.g., to

distinguish the grid x from the point x = lnS0). For ease of notation, from now on

we will drop the superscript m in Wm,s
j,ℓ and fm,sj,ℓ , writing Ws

j,ℓ and f
s
j,ℓ, respectively.

Since, as will be shown in Section 4.4, the version with m = 2 is usually the most

efficient one, this is the only case on which we will focus in the rest of this chapter and

in the following one. A description of the procedures for piece-wise linear and cubic

interpolation can be found in Appendix I. On [xM−1, xM], we approximate Vs(x) as

Vs(x) ≈
(x− xM)2

(xM−1 − xM)2
f 2,s
M−1,2, (92)

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 63

on [xj, xj+1], j = 2, 3, . . . ,M − 1, as a quadratic polynomial Vs(j) satisfying

Vs(j)(xj−1) = vsj−1, Vs(j)(xj) = vsj , Vs(j)(xj+1) = vsj+1, (93)

and, on [x1, x2], as a quadratic polynomial satisfying

Vs(1)(x1) = vs1, Vs(1)(x2) = vs2, Vs(1)(x3) = vs3. (94)

In the case of an equally spaced grid, we find

f s1,0 = vs1, f s1,1 = 2vs2 − (3vs1 + vs3)/2, f s1,2 = −vs2 + (vs1 + vs3)/2, (95)

for j = 2, 3, . . . ,M − 2,

f sj,1 = (vsj+1 − vsj−1)/2, f sj,2 = (vsj+1 + vsj−1)/2− vsj , (96)

and, finally,

f sM−1,0 = vsM−1, f sM−1,1 = −2vsM−1, f sM−1,2 = vsM−1. (97)

It follows that, for piece-wise quadratic interpolation, we have

Ws
1,0 = −vs1, (98)

Ws
1,1 = 2vs2 − (3vs1 + vs3)/2, (99)

Ws
1,2 = 2vsj − vsj+1 − vsj−1, (100)

Ws
M,1 = 0, (101)

Ws
M,2 = 2vsM−1, (102)

4.2. GENERAL SCHEME FOR PRICING DOWN-AND-OUT PUT OPTIONS 64

and, for j = 2, 3, . . . ,M − 1

Ws
j,1 =

1

2
(vj+1 − 3vj + 3vj−1 − vj−2), (103)

Ws
j,2 = 2Ws

j,1. (104)

4.2.5. Calculation of (approximations to) Vs(xk) using the inverse Fourier

transform. Assuming that the coefficients f s+1
j,ℓ of approximation (88) with s+1 in-

stead of s are known, and the Fourier transform V̂s+1(ξ) has been calculated, we

find approximations to Vs(xk) by replacing Vs+1 on the RHS of (82) with Vs+1 and

applying the iFT method:

Vs(xk) ≈ e−r∆̄

2π

∫
Im ξ=ω

ei(xk+µ∆̄)ξ−∆̄ψ0(ξ)V̂s+1(ξ)dξ

=
M∑
j=1

m∑
ℓ=0

∆−ℓWs+1
j,ℓ (f s+1)

e−r∆̄

2π

∫
Im ξ=ω

ei(xk−xj+µ∆̄)ξ−∆̄ψ0(ξ)

(−iξ)ℓ+1
dξ. (105)

Introduce the notation

I(ω;n, ℓ) =
e−r∆̄

2π

∫
Im ξ=ω

ei(n∆+µ∆̄)ξ−∆̄ψ0(ξ)(−iξ)−ℓ−1dξ. (106)

We can re-write (105) as

Vs(xk) =
M∑
j=1

m∑
ℓ=0

∆−ℓWs+1
j,ℓ (f s+1)I(ω; k − j, ℓ). (107)

We will use ω ∈ (0, λ+). In what follows, we will sometimes write Iℓ(n∆) instead of

I(ω, n, ℓ), in which case it will be understood that ω ∈ (0, λ+). I(ω;n, ℓ) is the time-0

price of a put-like option7 with the payoff G(X∆̄) = (ℓ!)−1(−X∆̄)
ℓ
+ at maturity date

∆̄; the spot is X0 = n∆ (then it can be verified that Ĝ(ξ) = (−iξ)−ℓ−1, Im ξ > 0).

7A put-like (call-like) option is a European option whose terminal payoff G(x) vanishes above (below)
a certain point.

4.3. ERROR ESTIMATES 65

Therefore, each I(ω;n, ℓ) can be evaluated using any version of the iFT method,

such as the new ones introduced in [19]. Of these, parabolic iFT has been shown

to be the most efficient (cf. Chapter 3, [19, 35]). Details of the algorithm for both

standard and parabolic iFT can be found in Appendices B and O. Parabolic iFT is

applicable in the ATM (n∆ + µ∆̄ = 0) and OTM case. Put-like options are OTM

iff n∆ + µ∆̄ > 0; if n∆ + µ∆̄ < 0, then we push the line of integration in (106) to

Im ξ = ω′ ∈ (λ−, 0), and reduce to calculation of I(ω′;n, ℓ), which is the price of an

OTM call-like option. Using the residue theorem and the notation z = iξ, we obtain

I(ω;n, ℓ) = I(ω′;n, ℓ) +
(−1)ℓ

ℓ!
e−r∆̄

(
dℓ

dzℓ
ez(n∆+µ∆̄)−∆̄ψ0(−iz)

) ∣∣∣
z=0

. (108)

The Ws+1
j,ℓ (fs+1) are linear functions of the entries of the matrix fs+1 = [f s+1

j,ℓ], there-

fore, approximations to Vs(xk) are linear functions of the same entries. In turn, f s+1
j,ℓ

will be expressed as linear functions of Vs+1(xn), n = 1, 2, . . . ,M . After the I(ω, n, ℓ)

are calculated for n = −M + 1,−M + 2, . . . ,M − 1, the sum
∑M

j=1 in (107) can be

calculated using the fast convolution algorithm (see Appendix L, [14]). The pricing

algorithm, for the case of piece-wise quadratic interpolation, can be found in Appen-

dix H, and the modifications for the cases of piece-wise linear and cubic interpolation

can be found in Appendix I.

4.3. Error estimates

The method has several sources of errors. We will examine each one in detail.

4.3.1. Truncation in the state space. The choice of a grid implies the absolute

truncation of the state space above xM(> lnK). In Appendix M.2, we will prove the

following

4.3. ERROR ESTIMATES 66

Lemma 4.3. For any ω− ∈ (λ−, 0) and ω+ ∈ (0, λ+), the truncation error in the

state space, for the time-0 option price at X0 = x, admits an upper bound via

(K −H)e−(r+ψ(iω+))T · e−ω+(xM−lnK)+ω−(xM−x) sup
τ∈[0,T]

e−τ(ψ(iω−)−ψ(iω+)). (109)

2 4 6 8 10 12 14 16 18 20
10

-15

10
-10

10
-5

10
0

λ
+

T
ru

nc
at

io
n

er
ro

r
es

tim
at

e

 x

M
 - x = 2

 x
M

 - x = 4

Figure 2. Logarithmic plot of the error estimate given by (109) for a
DO put option with K = 100, H = 80, T − t = 1, under KoBoL with
λ− = −2, m2 = 0.16, ν = 1.2, for ex = 90 and varying λ+.

It follows that, if at least one of the steepness parameters λ−, λ+ is large in absolute

value, then a moderate xM − x should suffice to satisfy a very small error tolerance.

Figure 2 shows the error estimate given by (109) for a DO put option with strike

K = 100, barrier H = 80, time to maturity one year, and underlying spot S0 =

ex = 90 under KoBoL, as a function of λ+, for xM − x = 2 and xM − x = 4, with

λ− = −2, second moment m2 = 0.16, ν = 1.2, r = 0.03, q = 0. It can be seen

that, unless both steepness parameters are very small in absolute value, even the

choice xM − x = 2 produces very small errors. Moreover, as can easily be verified,

4.3. ERROR ESTIMATES 67

the magnitude of the error is largely independent of the second moment8 m2, ν and

T − t. An additional attractive feature of this bound is that it is independent of the

number N of monitoring dates. The remaining errors must be estimated for each step

of backward induction. Equivalently, given a desired error tolerance ϵ for each type

of error, one must try to achieve an error less than ϵ/(N − 1) at each step.

4.3.1.1. Prescription. From Lemma 4.3, the following procedure can be used to

determine an appropriate value of xM − x in order to satisfy a given error tolerance

ϵ: we minimize

xM =
−(r + ψ(iω+))T + ω+ lnK − ω−x+ T (ψ(iω+)− ψ(iω−))+ − ln

ϵ

K −H
ω+ − ω−

over ω− ∈ (λ−, 0), ω+ ∈ (0, λ+), e.g., by using an optimization method such as

conjugate gradient or Nelder-Mead9.

4.3.2. Interpolation error (discretization error in the state space). We

consider the case of piece-wise quadratic interpolation, which, as will be shown in

Section 4.4, is the most efficient one. Similar estimates for other interpolation meth-

ods can easily be derived. At each step, we estimate the error in L∞-norm. Since (an

approximation to) the option price at date ts and Xts > h is a (discounted) expecta-

tion of the price at date ts+1, we estimate the interpolation error in the same norm.

Recall that the error of piece-wise polynomial interpolation of order m of a function

f ∈ Cm+1([0,∞)) over a uniform grid of mesh ∆ admits the upper bound

∥f∆ − f∥L∞
= Cm+1

∥∥f (m+1)
∥∥
L∞

∆m+1, (110)

8For VG or KoBoL of order ν ̸= 1,m2 determines the intensity c viam2 = cΓ(2−ν)[(−λ−)ν−2+λν−2
+]

[18].
9The latter is implemented in MATLAB as the function fminsearch. Of course, this method should
be used together with an appropriate change of variables, in order to transform the constrained
optimization problem into an unconstrained one.

4.3. ERROR ESTIMATES 68

where C2 = 1/8, C3 = 1/6, C4 = 1/24. Let p∆̄ denote the transition probability

density. In Appendix M.3, we prove

Lemma 4.4. Let X be a Lévy process whose transition density p∆̄ satisfies p∆̄ ∈

C3(R) and its derivatives are such that p
(s)

∆̄
∈ L1(R), s = 1, 2, 3, then the total error in

the time-0 option price due to piece-wise quadratic interpolation admits the following

approximate bound

Eint.tot. ≤
e−rT

6
∆3(N − 1)(K −H)∥p′′′

∆̄∥L1 . (111)

Remark 4.5. Lemma 4.4 applies to model processes of order ν > 0, or, more gener-

ally, to RLPEs (cf. Theorem A.10, Appendix M.3).

In order to apply (111), we can use

Proposition 4.6. Let X be a model process of order ν > 0. Then, for n = 1, 2, 3,

or 4, the following approximate bound holds

∥p(n)
∆̄

∥L1 ≤ ρn, (112)

where

ρn =
2Γ(n/ν)

(d0+)
n/νπνD(n)

∆̄−n/ν , (113)

and

D(n) = sup
ϕ∈(0,min{π

2
, π
2ν

})
(cos(ϕν))n/ν cos(ϕ− π/2). (114)

The proof can be found in Appendix M.4.

4.3.2.1. Prescription for a choice of ∆ in the case of piece-wise quadratic inter-

polation. Given an error tolerance ϵ > 0, calculate ρ3 using (113) and (114), and

4.3. ERROR ESTIMATES 69

set

∆ =

(
e−rT

6ϵ
(N − 1)(K −H)ρ3

)− 1
3

. (115)

4.3.3. Impact of errors of parabolic iFT. The parabolic iFT method, which

we apply to calculate (approximations to) vN−1(x) and Iℓ(x), ℓ = 0, 1, . . . ,m, is

based on an appropriate conformal change of variables and the simplified trapezoid

rule applied to the resulting integral over a horizontal line in the complex plane (cf.

Section 2.3 and Appendix O.2). The simplified trapezoid rule has two sources of

errors: the discretization error and the truncation error. In [19, 35], explicit upper

bounds were derived for both types of error (see Appendix O.2.3 for a review). Denote

the sum of the bounds for either type of error in the calculation of vN−1(x) and Iℓ(x)

by EvN−1
(x) and EIℓ(x), respectively, and note that, as can be seen from the explicit

formulas in Appendix O.2.3, upper bounds for the L1-norms of EvN−1
and EIℓ can

be derived. This explains why the following lemma for the absolute error Errv0(xk)

can be applied to derive explicit recommendations for the choice of parameters of

parabolic iFT. The proof can be found in Appendix M.5.

Lemma 4.7. Let X be a model process. Assume that ν and ∆̄ are not both small,

and the mesh ∆ is chosen so that the interpolation error of piece-wise quadratic in-

terpolation is small. Then the following approximate bound holds

Errv0(xk) ≤ e−rT
[∣∣EvN−1

(h)
∣∣+ (N − 1)(K −H)

(
∥EI0∥L∞

+
(
∥p′′∆̄∥L1

+ 3∆ ∥p′′′∆̄∥L1

)
∥EI1∥L1

+ 2
(
∆−1 ∥p′′∆̄∥L1

+ 3 ∥p′′′∆̄∥L1

)
∥EI2∥L1

)]
.

(116)

4.3. ERROR ESTIMATES 70

4.3.3.1. Prescription for the choice of parabolic iFT settings. Let ϵds be the tol-

erance for all errors due to approximations in the dual space10. We use parabolic

iFT to calculate vputN−1(x), v
barr
N−1(x), I0(y), I1(z), and I2(z), where y is the grid n∆,

n = 0, 1, . . . ,M − 1, and z is the grid m∆, m = −M + 1,−M + 2, . . . ,M − 1.

In each case, we can use the procedure described in Appendix O.3, which requires

the specification of a grid x′, as well as the truncation parameters Λ± and the pairs

(ω±, ζ±) (where the plus and minus signs refer to the subgrids x′ ≥ 0 and x′ < 0,

respectively). This can be done as follows. Again, we consider the case of piece-wise

quadratic interpolation, and assume that the conditions of Lemma 4.7 hold.

1. For the calculation of vputN−1(x), set x
′ = x+ µ∆− lnK, then apply the procedure

in Appendix O.3.1.1 with grid x′, error tolerance ϵ = erT ϵds/16, and x
′
0 = h+µ∆̄−

lnK to break the grid x′ into the subgrids x′
± and calculate the error tolerances

ϵ±, as well as the values x′±. Then use these values to obtain: Λ±, by using

Proposition O.4, and (ω±, ζ±), by using the procedure in Appendix O.2.2, applying

the symmetry of Appendix D in the minus cases.

2. For the calculation of vbarrN−1(x), set x
′ = x+µ∆−h, ϵ = erT ϵds/16, x

′
0 = h+µ∆̄−

lnK, and proceed in the same manner as in step 1.

3. For the calculation of I0(y), set x
′ = y + µ∆, ϵ = erT ϵds/[8(N − 1)(K −H)], and

proceed in the same manner as in step 1.

4. For the calculation of I1(z), set x
′ = z+µ∆, then apply the procedure in Appendix

O.3.1.1 with grid x′, and error tolerance

ϵ =
ϵds

8(N − 1)(K −H) (ρ2 + 3∆ρ3)
,

10Since in this section we focus only on one source of error (discretization or truncation) at a time,
we will need to take an overall error tolerance of ϵds/2 rather than ϵds when using the error bounds
in Appendix O.

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 71

where ρn is an upper bound estimate for ∥p(n)
∆̄

∥L1 , calculated using Proposition 4.6.

Use the resulting error tolerances ϵ± to calculate: Λ±, using Proposition O.9, and

the pair (ω±, ζ±), using Remark O.8 (applying the symmetry of Appendix D in the

minus case).

5. For the calculation of I2(z), proceed in the same manner as in step 4, but with the

following value of ϵ

ϵ =
ϵds

16(N − 1)(K −H) (∆−1ρ2 + 3ρ3)
.

4.4. Comparison of relative performance of different methods

Consider a down-and-out put option with barrier H = 80, strike K = 100, mon-

itoring interval ∆̄ = 1/252 (approximately equal to one trading day) at time t = 0.

We assume that the underlying asset follows an exponential KoBoL process under

Q, and compare the accuracy of the prices obtained with our method, for various

times to maturity, against the HT and COS methods11. We consider the following

parameter sets:

• λ− = −8, λ+ = 9, ν = 1.2, m2 = 0.16, with r = 0.03 and q = 0 (used in [19];

henceforth referred to as set A);

• λ− = −60, λ+ = 50, ν = 0.7, c = 4, with r = 0.04 and q = 0.02 (used in

[45, 44]; henceforth referred to as set B).

The benchmarks were calculated using a combination of our method, with piece-

wise cubic interpolation, and HT. Specifically, for each set of parameters and maturity,

11All calculations were carried out in MATLAB R2011b (win64), on a PC with Intel i5-2410M, 2.30
GHz with 4 GB RAM, running Windows 7 Professional (64 bit).

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 72

we used our method with mesh ∆0 = (lnK − h)/1000 ≈ 2.23 · 10−4, which was of the

same order of magnitude as the value obtained using the prescription in Section 4.3

with error tolerance ϵ = 10−4K, for both parameter sets and all maturities involved12.

The accuracy of the settings was checked first, by halving the mesh in the state space

and observing that the absolute changes in option price lay well below our tolerance

and, second, by ensuring that the same price could be obtained with the HT method

(which has very different sources of errors and numerical realization) for some suitably

large M , up to a relative difference of less than 0.01%.

In Tables 1 and 2, we compare the accuracy of our method (for sets A and B,

respectively), with piece-wise quadratic interpolation, versus HT and COS, at a point

close to the barrier (x = h + 50∆0, just over 1.1% of the barrier), and at the strike,

for each parameter set, and times to maturity 0.25, 0.5, and 1 year13. In addition,

in Tables 3 and 4, we show analogous results to those in Tables 1 and 2 for the set

λ− = −28.5528, λ+ = 10.2038, ν = 0.9228, c = 3.6502 (fitted to the traded prices of

vanilla options on the Nikkei 225 index in [47]), and the set λ− = −32.95, λ+ = 18.75,

ν = 0.5757, c = 6.51 (fitted to the traded prices of vanilla options on Intel in [26]),

respectively, in both cases with r = 0.03 and q = 0. The results for both sets are

similar to those for set A.

In Figure 3 below, and Figures 1-3 in Appendix J, we plot the minimum CPU

time taken by the different versions of our method, as well as by HT and COS,

to achieve a relative error tolerance ranging between 0.1% and 1% in the region

ln(1.02 · H) ≤ x ≤ lnK, for times to maturity 0.25, 0.5, 1, and 2 years. Since

12The other settings were chosen to be (almost) as large (xM , Λ) or small (ζ) as our computer could
handle, and were much more “overkill” than the values given by the prescriptions in Section 4.3.
Specifically, we used xM = h+ 3, and ζ = 0.1, Λ = 3000 for all applications of parabolic iFT.
13For HT, we used a grid yj = h + (j − 1)∆, j = 1, 2, . . . , 12, with ∆ = 89 · ∆0 ≈ 0.00198, for
comparisons near the strike, and a similar grid y′j = h+ (j − 1)∆′, with ∆′ = 50 ·∆0 ≈ 0.00112, for
comparisons near the barrier.

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 73

the descriptions in [45] and [44] do not include procedures for the choices of M

and N in the HT and COS methods, respectively, for a given error tolerance14, we

ran both HT15 and COS, gradually increasing M and N from 10 to 106. For the

different versions of our method, on the other hand, we started out by using a rather

coarse grid with mesh ∆ ≈ 0.02 and gradually refined it down to ∆0. In order to

make a comparison with HT and COS, we used a grid y in the state space ranging

approximately between ln(1.02·H) and lnK. More precisely, we set yj = h+(j−1)∆,

with ∆ = 89 · ∆0 ≈ 0.00198, and compared the performance of HT and COS w.r.t.

the benchmarks for (yj)
12
j=2. Since, by design, COS takes a single value of x rather

than a grid, we ran it separately for each point (the benchmark prices over this grid

can be found in Appendix N). For each choice of N , we stored the maximum relative

error over j and the corresponding CPU time.

For COS, we note that the prescription in [44] for the choice of truncation interval

(a, b), given by (239)-(240) in Appendix Q.2, with L = 8, produces very large errors,

especially for parameter set B used in op. cit., as can be seen from Figure 4. This

shows that for daily monitoring (which is by far the most common case in the market

[6, 29]) COS can be unstable, especially for longer times to maturity, even if the

recommendations for parameter choice in [44] are followed. We found that the choice

L = 25 worked well for parameter set A, and L = 40 worked well for set B, for

all maturities under consideration. However, as noted in [19], the choice of L, even

for the European option case, is not straightforward, since this parameter controls

different sources of errors at once.

14Recall that these parameters play a similar role to that of the mesh ∆ in our method.
15For HT, we used the prescription in [45] for the choice of mesh ζ in the dual space (see (225) in
Appendix P.2.5).

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 74

2 4 6 8 10

x 10
-3

0.005

0.05

0.25

1

10

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(a) Parameter set A

2 4 6 8 10

x 10
-3

0.001

0.01

0.025

0.1

1

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(b) Parameter set B

Figure 3. Logarithmic plots of CPU time versus relative error toler-
ance. Comparison of piece-wise linear (solid), quadratic (dashed) and
cubic (dot-dashed) interpolation, as well as HT method (dotted) and
COS method (dashed) to price a DO put option with H = 80, K = 100,
T = 0.25, ∆̄ = 1/252, over the interval 1.02 ·H ≤ ex ≤ K.

Our results show that

1. Our method performs much better than HT for parameter set A and for the ex-

ample in Table 3, but, for set B, HT is about as fast as our method. This is due

to the fact that, for smaller steepness parameters, one typically needs a smaller

mesh ζ in the dual space (cf. Appendix O.2.2). Unless the steepness parameters

are very large in magnitude, the prescription (225), given in [45], often requires a

much larger number of points M than necessary in order to obtain a small enough

value of ζ. Hence, if λ+ and λ− are not very large in magnitude (as is normally

the case for calibrations to market data [26, 47, 52, 3]), this can result in much

longer calculation times16.

2. With the prescriptions for L and (a, b) given in [44], COS produces large errors

for sets A and B, especially for longer maturities; e.g., for set A and T = 1, 2, it

16Of course, one is free to ignore the recommendations in [45] for ζ. However, in that case the error
estimates in op. cit. no longer apply.

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 75

results in relative errors larger than 20%. For set B, the situation is even worse.

If an appropriate value of L is chosen somehow, then COS can outperform both

our method and HT, especially for shorter maturity, at least when ν and ∆̄ are

not both small. However, no universal prescription exists for the choice of L for a

given error tolerance and set of process parameters.

3. For our method, quadratic and cubic interpolation perform much better than lin-

ear, except for larger error tolerances and very long maturities (T = 1 or 2).

4. For longer maturities, the performance gap between linear and quadratic/cubic

interpolation is smaller. For error tolerances close to 1% and T = 1 or 2, linear

interpolation sometimes even outperforms quadratic and/or cubic.

5. The performance of quadratic and cubic interpolation is similar, although quadratic

tends to run slightly faster, especially for longer maturities.

82 84 86 88 90 92 94 96 98

10
-4

10
-2

10
0

10
2

S

R
el

at
iv

e
er

ro
r

1 month
3 months
6 months
1 year
2 years

(a) Parameter set A

82 84 86 88 90 92 94 96 98

10
-2

10
0

10
2

S

R
el

at
iv

e
er

ro
r

1 month
3 months
6 months
1 year
2 years

(b) Parameter set B

Figure 4. Logarithmic plots of relative errors of COS, with N = 106,
for the price of a DO barrier put option with H = 80, K = 100,
monitoring interval ∆̄ = 1/252, for different times to maturity, under
KoBoL, over the interval 1.02 · H ≤ ex ≤ K, using the prescription
L = 8, given in [44].

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 76

We also note that, on average, about 70–80% of the overall CPU time with our

method is taken up by the parabolic iFT calculations before the backward induction

loop (most of the remaining time is used by the fast convolution inside the loop).

We therefore expect the performance of the algorithm to greatly improve with par-

allelization. Finally, we note that, as expected, for increasingly smaller monitoring

interval ∆̄, the price calculated with our method can be seen to converge to that

of a continuously monitored barrier option. In Figure 5 we compare the prices of a

DO barrier put option with approximately monthly, weekly, daily and hourly mon-

itoring, calculated using our method (with the benchmark settings) with those of a

continuously monitored barrier option, calculated using the method of [13].

80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5

3

3.5

4

S

O
pt

io
n

P
ric

e

Monthly
Weekly
Daily
Hourly
Continuous

Figure 5. Price of a DO barrier put option with H = 80, K = 100
and T = 0.25, for monthly (∆̄ = 1/12), weekly (∆̄ = 1/52), daily
(∆̄ = 1/252), hourly (∆̄ = 1/6048), and continuous monitoring, under
KoBoL parameters λ− = −8, λ+ = 9, ν = 1.2,m2 = 0.16, with r = 0.03
and q = 0.

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 77

Table 1

S Price ϵabs ϵrel Time ∆ M ζ L N

T = 0.25
Benchmark 80.89757 0.58657346 184.8 0.000223
Quadratic 80.89757 0.58657684 3.38 · 10−6 1.00 · 10−5 0.026 0.005579

HT 80.89757 0.57137568 1.52 · 10−2 2.59 · 10−2 0.031 1000 1.13742

HT 80.89757 0.59306974 6.50 · 10−3 1.11 · 10−2 0.14 5000 0.47278
HT 80.89757 0.58113611 5.44 · 10−3 9.27 · 10−3 0.281 8000 0.36587
HT 80.89757 0.58383383 2.74 · 10−3 4.67 · 10−3 1.794 50000 0.13465

HT 80.89757 0.58850986 1.94 · 10−3 3.30 · 10−3 4.165 100000 0.09226
HT 80.89757 0.58727466 7.01 · 10−4 1.20 · 10−3 34.057 1000000 0.02628
COS 80.89757 0.58728375 7.10 · 10−4 1.21 · 10−3 0.012 8 300

Benchmark 100 2.59027151 184.8 0.000223

Quadratic 100 2.5912833 1.01 · 10−3 3.90 · 10−4 0.026 0.005579
HT 100 2.5895322 7.39 · 10−4 2.90 · 10−4 0.031 1000 1.13742
COS 100 2.59042878 1.57 · 10−4 6.00 · 10−5 0.006 8 100

T = 0.5
Benchmark 80.89757 0.22495341 185.23 0.000223

Quadratic 80.89757 0.22496984 1.64 · 10−5 7.00 · 10−5 0.033 0.005579
HT 80.89757 0.21911038 5.84 · 10−3 2.60 · 10−2 0.047 1000 1.13742
HT 80.89757 0.22745049 2.50 · 10−3 1.11 · 10−2 0.281 5000 0.47278

HT 80.89757 0.22390037 1.05 · 10−3 4.68 · 10−3 3.198 50000 0.13465
HT 80.89757 0.2256977 7.44 · 10−4 3.31 · 10−3 8.128 100000 0.09226
HT 80.89757 0.22522293 2.70 · 10−4 1.20 · 10−3 66.068 1000000 0.02628
COS 80.89757 0.23097575 6.02 · 10−3 2.68 · 10−2 0.055 8 1000

COS 80.89757 0.22495453 1.12 · 10−6 5.00 · 10−6 0.054 15 1000
Benchmark 100 1.39574958 185.23 0.000223
Quadratic 100 1.39624957 5.00 · 10−4 3.60 · 10−4 0.033 0.005579

HT 100 1.39546539 2.84 · 10−4 2.00 · 10−4 0.062 1000 1.13742

COS 100 1.39785172 2.10 · 10−3 1.51 · 10−3 0.056 8 1000
COS 100 1.39574989 3.10 · 10−7 2.00 · 10−7 0.055 15 1000

T = 1
Benchmark 80.89757 0.08130903 187.25

Quadratic 80.89757 0.08129447 1.46 · 10−5 1.80 · 10−4 0.051 0.005579
HT 80.89757 0.08221303 9.04 · 10−4 1.11 · 10−2 0.468 5000 0.47278
HT 80.89757 0.08092782 3.81 · 10−4 4.69 · 10−3 6.801 50000 0.13465
HT 80.89757 0.0814066 9.76 · 10−5 1.20 · 10−3 130.7 1000000 0.02628

COS 80.89757 0.10289052 2.16 · 10−2 2.65 · 10−1 0.108 8 1000
COS 80.89757 0.0813639 5.49 · 10−5 6.70 · 10−4 0.107 15 1000

Benchmark 100 0.60133743 187.25 0.000223
Quadratic 100 0.60118634 1.51 · 10−4 2.50 · 10−4 0.051 0.005579

HT 100 0.60123454 1.03 · 10−4 1.70 · 10−4 0.109 1000 1.13742
COS 100 0.62570898 2.44 · 10−2 4.05 · 10−2 0.107 8 1000
COS 100 0.60136022 2.28 · 10−5 4.00 · 10−5 0.106 15 1000

Comparison of prices for a DO put option with barrier eh = 80 and strike K = 100, for x = h+ 50∆0 and
x = lnK, where ∆0 = (lnK − h)/1000 ≈ 2.23 · 10−4. Time: CPU time (seconds).
For HT, we used the Feng-Linetsky [45] prescription for ζ (cf. (225)).
Parameters of KoBoL: λ− = −8, λ+ = 9, ν = 1.2, second moment m2 = 0.16 (hence, c ≈ 0.3796), with
riskless rate r = 0.03 and dividend rate q = 0 (parameter set A, used in [19]).
ϵabs and ϵrel denote absolute and relative errors, respectively. Benchmarks were calculated using cubic
interpolation with state space mesh ∆0.
Settings for quadratic interpolation: xM = h+ 1, ζ = 1, Λ = 100. Calculations were carried out with
MATLAB R2011b (win64), on Intel i5-2410M, 2.30 GHz with 4 GB RAM, running Windows 7 Professional
(64 bit).

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 78

Table 2

S Price ϵabs ϵrel Time ∆ M ζ L N

T = 0.25
Benchmark 80.89757 1.77132603 191.66 0.000223
Quadratic 80.89757 1.77103311 2.93 · 10−4 1.70 · 10−4 0.041 0.002231

HT 80.89757 1.76453336 6.80 · 10−2 3.83 · 10−3 0.047 1000 5.69475

HT 80.89757 1.76962911 1.70 · 10−2 9.60 · 10−4 0.172 6000 2.72307
COS 80.89757 1.89363042 1.22 · 10−1 6.91 · 10−2 0.029 8 1000
COS 80.89757 1.78247147 1.11 · 10−2 6.29 · 10−3 0.03 10 1000

COS 80.89757 1.7724825 1.16 · 10−3 6.50 · 10−4 0.03 15 1000
Benchmark 100 3.11359622 191.66 0.000223
Quadratic 100 3.11373903 1.43 · 10−4 5.00 · 10−5 0.041 0.002231

HT 100 3.11668802 3.09 · 10−3 9.90 · 10−4 0.062 2000 4.28076

COS 100 1.19 · 1013 1.19 · 1013 3.83 · 1012 0.029 8 1000
COS 100 3.13122123 1.76 · 10−2 5.66 · 10−3 0.029 10 1000
COS 100 3.11697328 3.38 · 10−3 1.08 · 10−3 0.029 15 1000

T = 0.5
Benchmark 80.89757 0.83350436 192.24 0.000223

Quadratic 80.89757 0.8333734 1.31 · 10−4 1.60 · 10−4 0.1 0.002231
HT 80.89757 0.83043581 3.07 · 10−3 3.68 · 10−3 0.14 1000 5.69475
HT 80.89757 0.83282627 6.78 · 10−4 8.10 · 10−4 0.561 6000 2.72307

COS 80.89757 1.14068967 3.07 · 10−1 3.69 · 10−1 0.057 8 1000
COS 80.89757 0.83416434 6.60 · 10−4 7.90 · 10−4 0.055 20 1000

Benchmark 100 2.89634078 192.24 0.000223
Quadratic 100 2.89651621 1.75 · 10−4 6.00 · 10−5 0.1 0.002231

HT 100 2.89897574 2.63 · 10−3 9.10 · 10−4 0.062 1000 4.28076
COS 100 5.66 · 1029 5.66 · 1029 1.96 · 1029 0.055 8 1000
COS 100 2.89910955 2.77 · 10−3 9.60 · 10−4 0.055 20 1000

T = 1
Benchmark 80.89757 0.34160881 193.74 0.000223

Quadratic 80.89757 0.34153123 7.76 · 10−5 2.30 · 10−4 0.223 0.001116
Quadratic 80.89757 0.34155933 4.940 · 10−5 1.40 · 10−4 0.061 0.002231

HT 80.89757 0.34038686 1.22 · 10−3 3.58 · 10−3 0.094 1000 5.69475

HT 80.89757 0.34136607 2.42 · 10−3 7.10 · 10−4 0.25 6000 2.72307
COS 80.89757 0.63866249 2.97 · 10−1 8.70 · 10−1 0.031 8 200
COS 80.89757 0.356945 1.53 · 10−2 4.49 · 10−2 0.031 15 200
COS 80.89757 0.34221689 6.08 · 10−4 1.78 · 10−3 0.046 20 300

Benchmark 100 1.90919403 193.74 0.000223
Quadratic 100 1.90929924 1.05 · 10−4 6.00 · 10−5 0.061 0.002231

HT 100 1.91088427 1.69 · 10−3 8.90 · 10−4 0.031 1000 5.69475
COS 100 1.28 · 1063 1.28 · 1063 6.70 · 1062 0.049 8 400

COS 100 1.91185873 2.66 · 10−3 1.40 · 10−3 0.032 15 200
COS 100 1.91047424 1.28 · 10−3 6.70 · 10−4 0.024 20 100

Comparison of prices for a DO put option with barrier eh = 80 and strike K = 100, for x = h+ 50∆0 and
x = lnK, where ∆0 = (lnK − h)/1000 ≈ 2.23 · 10−4. Time: CPU time (seconds).
For HT, we used the Feng-Linetsky [45] prescription for ζ (cf. (225)).
Parameters of KoBoL: λ− = −60, λ+ = 50, ν = 0.7, c = 4, with riskless rate r = 0.03 and dividend rate
q = 0 (parameter set B, used in both [45] for HT and in [44] for COS).
ϵabs and ϵrel denote absolute and relative errors, respectively. Benchmarks were calculated using cubic
interpolation with state space mesh ∆0.
Settings for quadratic interpolation: xM = h+ 1, ζ = 5, Λ = 200. Calculations were carried out in
MATLAB R2011b (win64), on a PC with Intel i5-2410M, 2.30 GHz with 4 GB RAM, running Windows 7
Professional (64 bit).

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 79

Table 3

S Price ϵabs ϵrel Time ∆ M ζ L N

T = 0.25
Benchmark 80.89757 0.26322875 182.37 0.000223
Quadratic 80.89757 0.26326994 4.10 · 10−5 1.56 · 10−4 0.037 0.005579

HT 80.89757 0.25409413 9.14 · 10−3 3.47 · 10−2 0.125 1000 1.04987

HT 80.89757 0.26294396 2.85 · 10−4 1.08 · 10−3 33.951 1000000 0.03814
COS 80.89757 0.26364695 4.18 · 10−4 1.59 · 10−3 0.072 8 3000
COS 80.89757 0.26323591 7.00 · 10−6 2.72 · 10−5 0.008 10 200

Benchmark 100 1.09016924 182.37 0.000223
Quadratic 100 1.09034561 1.76 · 10−4 1.62 · 10−4 0.037 0.005579

HT 100 1.08973156 4.38 · 10−4 4.01 · 10−4 0.016 1000 1.04987
COS 100 1.09024719 7.80 · 10−5 7.15 · 10−5 0.007 8 100

COS 100 1.09017578 7.00 · 10−6 6.00 · 10−6 0.006 10 100

T = 0.5
Benchmark 80.89757 0.09416167 183.14 0.000223
Quadratic 80.89757 0.09417632 1.50 · 10−5 1.56 · 10−4 0.053 0.005579

HT 80.89757 0.09090297 3.26 · 10−3 3.46 · 10−2 0.078 1000 1.04987

HT 80.89757 0.09406005 1.02 · 10−4 1.08 · 10−3 66.151 1000000 0.03814
COS 80.89757 0.10190078 7.74 · 10−3 8.22 · 10−2 0.139 8 3000
COS 80.89757 0.09507403 9.12 · 10−4 9.69 · 10−3 0.141 10 3000

COS 80.89757 0.09411302 4.90 · 10−5 5.17 · 10−4 0.012 15 100
Benchmark 100 0.47311846 183.14 0.000223
Quadratic 100 0.47319172 7.30 · 10−5 1.55 · 10−4 0.053 0.005579

HT 100 0.47296231 1.56 · 10−4 3.30 · 10−4 0.047 1000 1.04987

COS 100 0.47803122 4.91 · 10−3 1.04 · 10−2 0.139 8 3000
COS 100 0.47350924 3.91 · 10−4 8.26 · 10−4 0.012 10 100

T = 1
Benchmark 80.89757 0.032677 184.76 0.000223
Quadratic 80.89757 0.03267633 1.00 · 10−6 2.03 · 10−5 0.085 0.005579

HT 80.89757 0.0315477 1.13 · 10−3 3.46 · 10−2 0.156 1000 1.04987
HT 80.89757 0.03264177 3.50 · 10−5 1.08 · 10−3 131.19 1000000 0.03814
COS 80.89757 0.04709172 1.44 · 10−2 4.41 · 10−1 0.274 8 3000

COS 80.89757 0.03908499 6.41 · 10−3 1.96 · 10−1 0.272 10 3000
COS 80.89757 0.03284474 1.68 · 10−4 5.13 · 10−3 0.274 15 3000
COS 80.89757 0.03267762 1.00 · 10−6 1.92 · 10−5 0.046 20 300

Benchmark 100 0.18159309 184.76 0.000223

Quadratic 100 0.18155885 3.40 · 10−5 1.89 · 10−4 0.085 0.005579
HT 100 0.18153898 5.40 · 10−5 2.98 · 10−4 0.094 1000 1.04987
COS 100 0.21293813 3.13 · 10−2 1.73 · 10−1 0.275 8 3000
COS 100 0.19093063 9.34 · 10−3 5.14 · 10−2 0.273 10 3000

Comparison of prices for a DO put option with barrier eh = 80 and strike K = 100, for x = h+ 50∆0 and
x = lnK, where ∆0 = (lnK − h)/1000 ≈ 2.23 · 10−4. Time: CPU time (seconds).
For HT, we used the Feng-Linetsky [45] prescription for ζ (cf. (225)).
Parameters of KoBoL: λ− = −28.5528, λ+ = 10.2038, ν = 0.9228, c = 3.6502 with riskless rate r = 0.03
and dividend rate q = 0 (calibrated to European options on the Nikkei 225 index in [47]).
ϵabs and ϵrel denote absolute and relative errors, respectively. Benchmarks were calculated using cubic
interpolation with state space mesh ∆0.
Settings for quadratic interpolation: xM = h+ 2, ζ = 1, Λ = 100. Calculations were carried out in
MATLAB R2011b (win64), on a PC with Intel i5-2410M, 2.30 GHz with 4 GB RAM, running Windows 7
Professional (64 bit).

4.4. COMPARISON OF RELATIVE PERFORMANCE OF DIFFERENT METHODS 80

Table 4

S Price ϵabs ϵrel Time ∆ M ζ L N

T = 0.25
Benchmark 80.89757 0.83086523 485.21 0.000223
Quadratic 80.89757 0.83092984 6.46 · 10−5 7.78 · 10−5 0.042 0.002231
Quadratic 80.89757 0.83177595 9.11 · 10−4 1.10 · 10−3 0.019 0.005579

HT 80.89757 0.83790481 7.04 · 10−3 8.47 · 10−3 0.031 1000 4.04752
HT 80.89757 0.83167846 8.13 · 10−4 9.79 · 10−4 0.789 30000 1.16817
COS 80.89757 0.83207781 1.21 · 10−3 1.46 · 10−3 0.053 8 2000

COS 80.89757 0.83083116 3.41 · 10−5 4.10 · 10−5 0.011 10 300
Benchmark 100 2.50677158 485.21 0.000223
Quadratic 100 2.50684785 7.63 · 10−5 3.04 · 10−5 0.042 0.002231
Quadratic 100 2.50814994 1.38 · 10−3 5.50 · 10−4 0.019 0.005579

HT 100 2.50700086 2.29 · 10−4 9.15 · 10−5 0.062 2000 3.14199
COS 100 2.50683739 6.58 · 10−5 2.63 · 10−5 0.006 8 100
COS 100 2.50663377 1.38 · 10−4 5.50 · 10−5 0.006 10 100

T = 0.5
Benchmark 80.89757 0.32091967 487.7 0.000223

Quadratic 80.89757 0.32094552 2.59 · 10−5 8.06 · 10−5 0.064 0.002231
Quadratic 80.89757 0.32128764 3.68 · 10−4 1.15 · 10−3 0.028 0.005579

HT 80.89757 0.32362993 2.71 · 10−3 8.45 · 10−3 0.062 1000 4.04752

HT 80.89757 0.32123278 3.13 · 10−4 9.76 · 10−4 1.552 30000 1.16817
COS 80.89757 0.34100488 2.01 · 10−2 6.26 · 10−2 0.043 8 700
COS 80.89757 0.32301646 2.10 · 10−3 6.53 · 10−3 0.035 10 600
COS 80.89757 0.32090339 1.63 · 10−5 5.07 · 10−5 0.025 15 400

Benchmark 100 1.46997127 487.7 0.000223
Quadratic 100 1.47002451 5.32 · 10−5 3.62 · 10−5 0.064 0.002231
Quadratic 100 1.47089699 9.26 · 10−4 6.30 · 10−4 0.028 0.005579

HT 100 1.47005962 8.84 · 10−5 6.01 · 10−5 0.140 2000 3.14199

COS 100 1.47390845 3.94 · 10−3 2.68 · 10−3 0.022 8 300
COS 100 1.47003247 6.12 · 10−5 4.16 · 10−5 0.013 10 100

T = 1
Benchmark 80.89757 0.11677253 492.42 0.000223

Quadratic 80.89757 0.11678081 8.29 · 10−6 7.10 · 10−5 0.105 0.002231
Quadratic 80.89757 0.11690746 1.35 · 10−4 1.16 · 10−3 0.044 0.005579

HT 80.89757 0.1176323 8.60 · 10−4 7.36 · 10−3 0.094 1000 4.04752
HT 80.89757 0.11688626 1.14 · 10−4 9.74 · 10−4 3.34 30000 1.16817

COS 80.89757 0.16822278 5.15 · 10−2 4.41 · 10−1 0.023 8 100
COS 80.89757 0.11710773 3.35 · 10−4 2.87 · 10−3 0.069 15 600
COS 80.89757 0.11678388 1.14 · 10−5 9.72 · 10−5 0.064 20 500

Benchmark 100 0.67934308 492.42 0.000223

Quadratic 100 0.67933135 1.17 · 10−5 1.73 · 10−5 0.105 0.002231
Quadratic 100 0.67974327 4.00 · 10−4 5.89 · 10−4 0.044 0.005579

HT 100 0.67937213 2.90 · 10−5 4.28 · 10−5 0.218 2000 3.14199
COS 100 0.72867580 4.93 · 10−2 7.26 · 10−2 0.023 8 100

COS 100 0.67942229 7.92 · 10−5 1.17 · 10−4 0.083 15 700

Comparison of prices for a DO put option with barrier eh = 80 and strike K = 100, for x = h+ 50∆0 and x = lnK,
where ∆0 = (lnK − h)/1000 ≈ 2.23 · 10−4. Time: CPU time (seconds).
For HT, we used the Feng-Linetsky [45] prescription for ζ (cf. (225)).

Parameters of KoBoL: λ− = −32.95, λ+ = 18.75, ν = 0.5757, c = 6.51 with riskless rate r = 0.03 and dividend rate
q = 0 (KoBoL parameters as calibrated to European options on Intel in [26], with diffusion coefficient set to zero).
ϵabs and ϵrel denote absolute and relative errors, respectively. Benchmarks were calculated using cubic interpolation
with state space mesh ∆0.

Settings for quadratic interpolation: xM = h+ 1, ζ = 1, Λ = 300. Calculations were carried out in MATLAB
R2011b (win64), on a PC with Intel i5-2410M, 2.30 GHz with 4 GB RAM, running Windows 7 Professional (64 bit).

CHAPTER 5

Pricing credit default swaps under Lévy processes

5.1. General remarks

The credit default swap (CDS), a basic building block of the credit derivative

market, is a contract to buy or sell protection against the default of a reference entity

(usually, a bond issuer). One party (protection buyer) makes a periodic payment,

known as the CDS spread or premium, until either the contract matures or the refer-

ence entity defaults, whichever happens sooner. If default occurs before maturity, then

the other party (protection seller) compensates the protection buyer for any losses

incurred. The maturity of a typical CDS contract is around five years, although in

some cases it can be considerably longer, especially for a sovereign CDS. Clearly, the

par or fair spread, defined as the spread which makes the CDS price zero at inception,

depends on the probability of default of the underlying entity under the risk-neutral

measure Q. In the approach pioneered by Black and Cox in 1976, the asset value of

the firm under Q is modeled as Geometric Brownian Motion, with default occurring

when it reaches a pre-determined barrier level [9]. In recent years, alternative models

have been proposed in which the underlying follows a more general exponential Lévy

process. In [23], a partial integro-differential equation approach was used to price

CDS contracts under VG. In [68], a simplified approach involving the Wiener-Hopf

factorization for one-sided Lévy processes was used for spectrally negative versions of

VG, NIG, and KoBoL. Finally, in [42], an extension of the COS method was used,

for both KoBoL and a mixture of NIG and Brownian Motion. Note that there exists

81

5.1. GENERAL REMARKS 82

effectively no secondary market for CDS contracts, hence, in the front office, “pricing”

a CDS means calculating its par spread. In risk management, however, one typically

needs to calculate the actual CDS price, with the spread provided as an input. We

will consider both cases.

5.1.1. Discrete time model for CDS. We model the value of the underlying

asset, under Q, by a stochastic process S = {St}, such that St = S0e
Yt , where

Y = {Yt} is a Lévy process under Q, and S0 > 0. As in the Black-Cox model, we

assume that default occurs as soon as St reaches or falls below a time-dependent

barrier level H(t) = eαt+β, such that eβ < S0. Note that, since Yt is unobservable,

we can consider the process Xt = Yt − αt instead, which reduces calculations to the

case of a flat boundary, with default occurring when Xt reaches or crosses the barrier

h = β − lnS0. If the underlying process reaches or crosses the barrier, then the

continuous stream of premium payments from protection buyer to seller terminates,

and the seller compensates the buyer for any losses incurred from default, i.e. (1−R)

times the underlying notional1.

Under these assumptions, the time-0 price of a CDS with maturity T , unit no-

tional, and constant, continuously compounded spread c > 0, from the point of view

of the protection seller, is given by

VCDS(T) = c

∫ T

0

e−rτP (τ)dτ − (1−R)

∫ T

0

e−rτdPdef (τ)

= c

∫ T

0

e−rτP (τ)dτ + (1−R)

∫ T

0

e−rτdP (τ), (117)

1Although common in the mathematical finance literature (see, e.g., [23, 68, 42]) these simplifying
assumptions describe an idealized form of CDS, which differs from actual traded contracts. In reality,
the premium is paid periodically in arrears, and the compensation payment from the protection seller
in case of default is settled at the following premium payment date, rather than at default. We will
ignore such complications for the purpose of this thesis.

5.1. GENERAL REMARKS 83

where P (τ) is the probability of survival of the underlying up to time τ , i.e. the

probability that default time is larger than τ , and Pdef (τ) = 1−P (τ) is the probability

that default time lies in (0, τ] (both probabilities are under Q). Note that the first

term on the RHS of (118) gives the time-0 price of a defaultable bond with constant,

continuously compounded coupon c, and maturity T . Integrating by parts in the

second integral on the RHS of (117), we obtain (cf. [23])

VCDS(T) = [c+ (1−R)r]

∫ T

0

e−rτP (τ)dτ − (1−R)(1− e−rTP (T)). (118)

The par CDS spread is defined as the premium c which makes the price zero. It is

therefore given by

c(T) = (1−R)

(
1− e−rTP (T)∫ T
0
e−rτP (τ)dτ

− r

)
. (119)

As in [23, 68, 42], we approximate the continuous time model by a discrete time

model with time step ∆̄. With the assumption of discrete monitoring, the survival

probability P (τ), for τ ∈ [ts, ts+1), is

P (τ) = E
[
1(h,∞)(X∆̄)1(h,∞)(X2∆̄) . . .1(h,∞)(Xs∆̄)

∣∣X0 = 0
]
. (120)

Under this assumption, P (τ) becomes a right-continuous step function. Therefore

we have
∫ T
0
e−rτP (τ)dτ = r−1(1 − e−r∆̄)

∑N−1
s=0 e

−rs∆̄P (s∆̄). The expressions for the

CDS price and par spread, for unit notional, become

VCDS(T) =
(c
r
+ 1−R

)
(1− e−r∆̄)

N−1∑
s=0

e−rs∆̄Ps − (1−R)(1− e−rTPN), (121)

c(T) = r(1−R)

(
1− e−rTP (T)

(1− e−r∆̄)
∑N−1

s=0 e
−rs∆̄P (s∆̄)

− 1

)
, (122)

respectively. Note that P (τ) is equal to erτ times the price of a (discretely monitored)

DO “no touch” option with time to maturity τ and the terminal payoff of a European

5.1. GENERAL REMARKS 84

digital call option, Gdc(x) = 1(h,∞)(x), whose Fourier transform is given by Ĝdc(ξ) =

e−ihξ/(iξ), for Im ξ < 0 (cf. Example 2.2). Hence, using a change of measure2, we

obtain P (∆̄) = erτVdc(∆̄, 0), where Vdc(τ, x) is the price of a European digital call

option

Vdc(τ, x) =
e−rτ+γ(x+µτ−h)

2π

∫
Im ξ=ω

ei(x+µτ−h)ξ−τψ
0(ξ−iγ)

γ + iξ
dξ, (123)

where γ ∈ (0,−λ−) and ω ∈ (γ+λ−, γ). It follows from similar arguments to the ones

in Section 4.2.3 that, for model processes of order ν > 0, P is of class C∞([0,∞)).

5.1.2. Backward induction algorithm for CDS. From the argument in the

previous subsection, it follows that a modification of the backward induction proce-

dure for barrier options can be used to price a CDS with maturity T , continuously

compounded spread c, recovery rate R, and notional Ω, or calculate its par spread,

under a discrete time model with time step ∆̄. We assume that the underlying follows

the exponential of a model process of order ν > 0, and that ν and ∆̄ are not both

small. As in Chapter 4, we consider only the case of piece-wise quadratic interpola-

tion.

5.1.2.1. Choice of parameters.

1. Choose an overall error tolerance ϵ.

2. Allocate, e.g., ϵint = 0.80 · ϵ for the interpolation error, and set ϵtr = ϵds = 0.10 · ϵ

for the errors due to truncation in the state space and approximations in the dual

space, respectively.

2The change of measure from Q to Qγ is such that the corresponding likelihood process is given by
(dQγ/dQ)t = eγXt . For more details on the use of this technique in option pricing, see Appendix
A.3.2.

5.1. GENERAL REMARKS 85

3. Choose xM so that eω−xM supτ∈[0,T] e
−τψ(iω−) ≤ ϵtrP , for any ω− ∈ (λ−, 0), where ϵ

tr
P

is given by the RHS of (194) in Appendix M.6 with ϵ replaced by ϵtr (cf. Lemmas

M.7 and M.8).

4. Calculate ρ3 (cf. (113)).

5. Find the maximum value ∆0 of the mesh ∆ in the state space, according to ∆0 =

(ϵintP ρ3)
−1/3, where ϵintP is given by the RHS of (193) in Appendix M.6, with ϵ

replaced by ϵint.

6. Set up the grid x as described in Appendix H.

7. Denote by ϵdsP the RHS of (193) with ϵ replaced by ϵds. Then

a. For the calculation of ΠN−1, use the same procedure in step 2 of the algorithm

in Section 4.3.3.1, with ϵ now equal to ϵdsP /8.

b. For the calculations of I0, I1, I2, use the same procedure as in steps 3–5 of the

algorithm in Section 4.3.3.1, with ϵds replaced by ϵdsP .

5.1.2.2. Algorithm.

1. Calculate an approximation to the integral

ΠN−1(x) = 1[h,∞)(x) ·
e−γx

′

2π

∫
Im ξ=ω

e−ix
′ξ−∆̄ψ̃0(ξ)(−iξ)−1dξ, (124)

where ω ∈ (0,−λ−) and ψ̃0(ξ) = ψ0(−ξ) (cf. Appendix D), using parabolic iFT,

on a uniform grid x′ = (xj + µ∆̄− h)Mj=1, where xj = h+ (j − 1)∆.

2. In a cycle w.r.t. s = N − 2, N − 3, . . . , 0, calculate an approximation to

Πs(x) = 1[h,∞)(x) ·
e−γx

′

2π

∫
Im ξ=ω

e−ix
′ξ−∆̄ψ̃0(ξ)Π̂s+1(ξ)dξ,

5.2. NUMERICAL RESULTS 86

on the grid x′, using the method described in Appendix H for the calculation of

Vs(x), s = N − 2, N − 3, . . . , 1, in the barrier option case. At each step s =

N − 1, N − 2, . . . , 0, store the values PN−s = Πs(0).

3. Calculate the approximation to the CDS price or its par spread using (121) or

(122), respectively.

5.2. Numerical results

For our numerical comparisons, we used the parameter set λ− = −11, λ+ = 0.06,

c = 0.038, ν = 1.32, with r = 0.04 and q = 0, which was calibrated to the CDS

spreads for ABN Amro Bank for 2 February 2008 in [42]. As in op. cit., we take

T = 1, h = lnR, and R = 0.4. In Table 2, we compare the par CDS spreads calculated

for discretization time steps ∆̄ = 1/48 and ∆̄ = 1/252 using our method, again with

quadratic interpolation, and with COS. In Figure 1, we compare the minimum CPU

time (in seconds) taken by our method with that taken by COS. In the left panel, we

used time step ∆̄ = 1/48 (as in op. cit.), and in the right panel we used ∆̄ = 1/252

(approximately equal to one trading day). The benchmarks for each choice of ∆̄

were calculated in the same way as for barrier options3. The relative error shown in

Figure 1 is in terms of the CDS spread (our comparison is for illustrative purposes

only, since in practical applications the relevant error would be the one in the price,

which in turn depends on the underlying notional amount of the contract). For our

method, we used ζ = 0.5, Λ = 400, xM − h = 3. For COS, again we found that the

recommendations in [42] (cf. (239)-(240) in Appendix Q.2, with L ∈ [7.5, 10]) gave

relative errors of over 10% for daily time steps. Empirically, we found that a larger

value of L was needed, and set L = 15 for ∆̄ = 1/48 and L = 25 for ∆̄ = 1/252.

3For the calculation of the benchmarks, we used ∆ = 0.0001, xM = h + 5, and ζ = 0.1, Λ = 3000,
for all applications of parabolic iFT.

5.2. NUMERICAL RESULTS 87

2 4 6 8 10

x 10
-3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Quadratic
COS

(a) ∆̄ = 1/48

2 4 6 8 10

x 10
-3

0

0.05

0.1

0.15

0.2

0.25

C
P

U
 ti

m
e

(s
ec

)

Relative error tolerance

Quadratic
COS

(b) ∆̄ = 1/252

Figure 1. Plots of CPU time versus relative error tolerance. Compari-
son of our method with quadratic interpolation (solid) and COS method
(dashed) to calculate the fair spread of a CDS with T = 1, R = 0.4,
h = lnR, under KoBoL with parameters λ− = −11, λ+ = 0.06,
c = 0.038, ν = 1.32 and risk free rate r = 0.04 (from [42]).

We note that, for daily time steps, the performance of our method and COS is

similar, conditional on an appropriate choice of L for COS. For weekly monitoring,

COS is slightly faster. However, it should be noted that weekly monitoring results in

a relative difference in the CDS spread of over 1%, which in most practical applica-

tions would lead to a sizable error in the CDS price. This can also be seen from Table

1, where we list the relative errors in the calculation of the par spread benchmarks

for monitoring intervals ∆̄ = 1/252 (approximately once a day), ∆̄ = 1/52 (approx-

imately once a week), and ∆̄ = 1/48 (as in [42]) versus ∆̄ = 1/6048 (approximately

once an hour).

5.2. NUMERICAL RESULTS 88

Table 1. Relative errors of par CDS spreads calculated using our
method with ∆̄ = 1/252 (approx. daily monitoring), ∆̄ = 1/52 (approx.
weekly monitoring), and ∆̄ = 1/48 (as in [42]) w.r.t. ∆̄ = 1/6048 (ap-
prox. hourly monitoring) for a CDS with T = 1, R = 0.4, h = lnR, un-
der KoBoL with parameters λ− = −11, λ+ = 0.06, c = 0.038, ν = 1.32
and risk free rate r = 0.04 (from [42]).

∆̄ = 1/252 ∆̄ = 1/52 ∆̄ = 1/48
T = 1 0.00459 0.01702 0.01807
T = 2.5 0.00475 0.01705 0.01809
T = 5 0.00162 0.00960 0.01055

One reason for the poorer performance of COS in the CDS case lies in the fact

that for a CDS we need to compute the survival probability at each step of backward

induction, which results in additional calculations for COS, but not for our method.

Apart from these differences, the same considerations as in Section 4.4 apply re-

garding the performance of our method versus COS, especially about COS being

unstable if L is not chosen properly, and the difficulty in finding a universal prescrip-

tion for the choice of this parameter.

5.2. NUMERICAL RESULTS 89

Table 2

Spread ϵabs ϵrel Time ∆ L N

∆̄ = 1/48

Benchmark 0.00898124 782.712 0.0001

Quadratic 0.0089883 7.06 · 10−6 7.86 · 10−4 0.404 0.0035

Quadratic 0.0090315 5.03 · 10−5 5.60 · 10−3 0.22 0.0065

COS 0.00883013 1.51 · 10−4 1.68 · 10−2 0.049 8 1000

COS 0.0089339 4.73 · 10−5 5.27 · 10−3 0.046 10 1000

COS 0.00897318 8.06 · 10−6 8.97 · 10−4 0.03 15 600

∆̄ = 1/252

Benchmark 0.00910459 901.341 0.0001

Quadratic 0.0091136 9.01 · 10−6 9.90 · 10−4 2.628 0.0007

Quadratic 0.00915516 5.06 · 10−5 5.55 · 10−3 0.465 0.0035

COS 0.00807571 1.03 · 10−3 1.13 · 10−1 0.829 8 5000

COS 0.0089339 1.71 · 10−4 1.87 · 10−2 0.049 10 1000

COS 0.00905311 5.15 · 10−5 5.65 · 10−3 0.466 15 2000

COS 0.00909517 9.43 · 10−6 1.04 · 10−3 0.822 20 5000

COS 0.00910313 1.47 · 10−6 1.60 · 10−4 0.456 25 2000

Comparison of par spreads for a CDS with T = 1, R = 0.4, h = lnR, for discretization time steps
∆̄ = 1/48 and ∆̄ = 1/252. Time: CPU time (seconds).
Parameters of KoBoL: λ− = −11, λ+ = 0.06, ν = 1.32, c = 0.038, with riskless rate r = 0.04 and
dividend rate q = 0 (calibrated by Fang et al. to CDS spreads for ABN Amro as of 2 February
2008 in [42]).
ϵabs and ϵrel denote absolute and relative errors, respectively. Benchmarks were calculated using
cubic interpolation.
Settings for quadratic interpolation: xM = h+ 3, ζ = 0.5, Λ = 400. Calculations were carried out
in MATLAB R2011b (win64), on a PC with Intel i5-2410M, 2.30 GHz with 4 GB RAM, running
Windows 7 Professional (64 bit).

CHAPTER 6

Conclusions

We introduced a new method (ATMVG) to calculate the price of ATM European

options under the VG model, and showed that it is much faster and more accurate,

for short times to maturity, than either standard iFT or the parabolic iFT method

(introduced in [19]). Using the ATMVG price as a benchmark, we compared the

ATM prices of short maturity vanilla options calculated with both flat and parabolic

iFT. As expected from the analysis in [19], we found that parabolic iFT is much more

efficient than flat iFT, and its errors w.r.t. ATMVG can be made as small as 10−14

or 10−15. We also introduced the FastVG method to calculate the price or delta of

a non-ATM European option, or the price of a digital option, under the VG model.

Despite having to rely on numerical computation of the incomplete gamma function,

this procedure is both very accurate and much faster, for short maturity and near-

ATM options, than parabolic iFT, particularly for the calculation of the digital price

and the vanilla delta. In these cases, FastVG can replace iFT for applications, such

as model fitting and risk management, in which speed is an important concern. The

same can be done with the ATMVG method for ATM options.

We introduced a new method to price discretely monitored barrier options and

CDS using a backward induction procedure, based on approximation of the option

price at each step by piece-wise polynomial interpolation, fast convolution (cf. Ap-

pendix L, [14]), and the parabolic iFT method for fast pricing of European options

(introduced in [19]). An analysis of the errors incurred by approximations in both

90

6. CONCLUSIONS 91

state and dual spaces showed that the most important source of error is the inter-

polation, since the interpolation error decays polynomially, whereas all other errors

decay exponentially, and are thus easier to control. Error bounds were derived, and a

general prescription for the implementation of the method was outlined. Examination

of numerical results for barrier options for the case in which the underlying follows an

exponential KoBoL process showed that the version of the method involving piece-

wise quadratic interpolation is usually the most efficient one, in terms of relative error

versus CPU time. While COS can sometimes be faster than our algorithm, its accu-

racy depends on the choice of truncation interval as well as the number of terms in

the cosine expansion, and the prescriptions given in [44] and [42] can result in very

large errors for daily monitoring, even for the KoBoL parameters used in [44, 42].

As shown in [19], an appropriate choice of truncation interval for COS and similar

methods can sometimes be non-trivial. The HT method, while remarkably accurate

for some choices of process parameters, can sometimes be considerably slower than

ours, especially if the steepness parameters are not very large, which is normally the

case for processes calibrated to market data [26, 47, 52, 3].

APPENDIX A

Lévy processes: general background and results

A.1. Main definitions

We recall some general results about Lévy processes. For an exposition of the

general theory of Lévy processes and their applications to pricing derivative securities,

we refer the reader to [7, 77, 2] and [18, 32, 82], respectively.

Definition A.1. Let (Ω,F ,P) be a probability space. An Rn-valued stochastic pro-

cess X = {Xt}t≥0 on (Ω,F ,P) is called a Lévy process if it has the following properties

1. There exists a subset N ⊂ Ω such that P[N] = 0 and, for every ω ∈ Ω \ N , the

trajectory t 7→ Xt(ω) is right-continuous with left limits for all t > 0.

2. For any integer m ≥ 1, and any collection of times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tm, the

random variables Xt0 , Xt1 −Xt0 , . . . , Xtm −Xtm−1 , are independent.

3. For any s, t ≥ 0, the distribution of Xt+s −Xt does not depend on t.

We recall that every Lévy process has a characteristic exponent, which is a con-

tinuous function ψ : Rn −→ C satisfying ψ(0) = 0 and

E
[
ei⟨ξ,Xt⟩

]
= e−tψ(ξ) ∀ ξ ∈ Rn, t ≥ 0, (125)

where ⟨·, ·⟩ denotes the inner product in Rn. Conversely, the law of a Lévy process

is uniquely determined by its characteristic exponent [7, §I.1]. The following well-

known result, known as the Lévy-Khintchine formula, gives the general form of the

characteristic exponent for all Lévy processes.

92

A.1. MAIN DEFINITIONS 93

Theorem A.2 (Lévy-Khintchine Formula, cf. Theorem 1 in [7]). Let X be a Lévy

process on Rn. Then its characteristic exponent admits the following representation

ψ(ξ) =
1

2
⟨Aξ, ξ⟩ − i⟨µ, ξ⟩ −

∫
Rn

(
ei⟨x,ξ⟩ − 1− i⟨x, ξ⟩1D(x)

)
F (dx), (126)

where A is a symmetric nonnegative-definite n×n matrix, µ ∈ Rn, D = {x
∣∣ ∥x∥ ≤ 1},

with ∥ · ∥ denoting the Euclidean norm in Rn, and F is a measure on Rn satisfying

F ({0}) = 0,

∫
Rn

min{1, ∥x∥2}F (dx) <∞. (127)

The representation (126) is unique. Conversely, if A is a symmetric nonnegative-

definite n×n matrix, µ ∈ Rn, and F is a measure on Rn satisfying (127), then there

exists a Lévy process X defined by (125), together with (126) and (127).

Remark A.3. The measure F can be interpreted as follows: during a unit time

interval, the expected number of jumps from 0 into a measurable set U ⊂ Rn \ {0}

equals F (U).

F is known as the Lévy measure, A as the gaussian covariance matrix, and we will

sometimes refer to µ as the “drift”. (A,F, µ) is known as the characteristic triplet of

X. If F (D) = ∞, X is said to have infinite activity.

Remark A.4. For a Lévy process on R, it is customary to write σ2 instead of A,

where σ ≥ 0 is known as the diffusion coefficient. We will follow this convention.

Example A.5. A KoBoL process (cf. Section 2.1.2) of order ν ∈ [0, 2) is a one-

dimensional Lévy process with A = 0 and the Lévy measure of the form

F (dx) = c+x
−ν−1eλ−x1{x>0} dx+ c−|x|−ν−1eλ+|x|

1{x<0} dx, (128)

A.1. MAIN DEFINITIONS 94

where1 c± > 0 and λ− < 0 < λ+. This process was introduced in [17] and used

in [18] under the name “KoBoL2”. In [32] it was termed a “tempered stable Lévy

process”, since it can be obtained from the stable Lévy process, introduced to finance

by Mandelbrot in 1963 [70], by tempering the Lévy measure with exponentially de-

caying factors, which ensure finiteness of all moments. The λ± are known as steepness

parameters. In general, a good fit to market data for vanilla options can be obtained

with c± = c [26, 47]. In the rest of this thesis, we restrict our attention to this case,

unless stated otherwise. The parameter c is known as the intensity of the process.

Note that the case ν = 0 corresponds to the VG model (cf. [18, §3.1.2]).

In the rest of this thesis, we only consider Lévy processes on R. Recall that the

total variation of a function f : [a, b] → R is defined by

V (f) = sup
P

NP∑
i=1

|f(ti)− f(ti−1)|,

where the limit is taken over the set of partitions

P =
{
P = {t0, t1, . . . , tNP

}
∣∣ 0 = t0 < t1 < . . . < tNP

= b
}

of the interval [a, b]. A Lévy process X is said to be of finite variation if all its trajec-

tories are functions of finite variation (almost surely). It can be shown [77, Definition

11.9, Theorem 21.9] that X is of finite variation if and only if its characteristic triplet

(σ2, F, γ) satisfies

σ = 0,

∫
|x|≤1

|x|F (dx) <∞.

1When the KoBoL model is used for pricing, one must impose the additional condition λ− ≤ −1
(see Section 2.1.1).
2A version with c− = c+ was later used in [26] under the name “CGMY process”.

A.2. REGULAR LÉVY PROCESSES OF EXPONENTIAL TYPE 95

If X is of finite variation, then the Lévy-Khintchine formula (126) simplifies as follows

ψ(ξ) = −iµ0ξ −
∫
R

(
eiξx − 1

)
F (dx),

where µ0 = µ −
∫ 1

−1
xF (dx) is known as the drift of X. If, on the other hand,

X satisfies the condition
∫
|x|≥1

|x|F (dx) < ∞, while not necessarily being of finite

variation, then use of the truncation function 1D in (126) becomes unnecessary and

we can write

ψ(ξ) =
1

2
σ2ξ2 − iµcξ −

∫
R

(
eiξx − 1− ixξ

)
F (dx),

where µc = µ+
∫
|x|≥1

xF (dx) is known as the center of X [77, §11]. In this case, we

have E[Xt] = µct.

A.2. Regular Lévy processes of exponential type

Recall the following result.

Proposition A.6 (cf. Theorem 25.17 in [77]). Let X be a Lévy process with charac-

teristic triplet (σ2, F, µ). Let CX be the set defined by

CX =

{
α ∈ R

∣∣∣∣ ∫
|x|>1

eαx F (dx) <∞
}
. (129)

Then, α ∈ CX if and only if E[eαXt] <∞ for every t > 0.

This motivates the following definition.

Definition A.7. Let X be a Lévy process with characteristic triplet (σ2, F, µ). Then

X is a Lévy process of exponential type (λ−, λ+), with λ− ∈ (−∞, 0), λ+ ∈ (0,∞), if

the set CX , defined by (129), contains the interval (λ−, λ+).

A.2. REGULAR LÉVY PROCESSES OF EXPONENTIAL TYPE 96

Remark A.8. It follows from Proposition A.6 and Definition A.7 that, if X is a Lévy

process of exponential type (λ−, λ+), then its characteristic exponent ψ(ξ) admits the

analytic continuation into the strip Im ξ ∈ (λ−, λ+).

Following Boyarchenko and Levendorskĭi [18, §3.2.2], we consider a special class

of processes, that of regular Lévy processes of exponential type (RPLEs), which satisfy

the following definition.

Definition A.9. Let λ− < 0 < λ+ and ν ∈ (0, 2]. A Lévy processX is called a regular

Lévy process of exponential type (λ−, λ+) and order ν if the following conditions are

satisfied

1. the characteristic exponent of X admits the representation

ψ(ξ) = −iµξ + ψ0(ξ), (130)

where µ ∈ R, ψ0 is holomorphic in the strip Im ξ ∈ (λ−, λ+), is continuous up to

the boundary of the strip, and admits the representation

ψ0(ξ) = c|ξ|ν +O(|ξ|ν1), (131)

for some constant c > 0, as ξ → ∞ in the strip Im ξ ∈ (λ−, λ+), for some ν1 < ν;

2. there exist some ν2 < ν and some constant C ∈ R such that

|∂ξψ0(ξ)| ≤ C(1 + |ξ|)ν2 , Im ξ ∈ [λ−, λ+]. (132)

Most processes commonly used in finance are RLPEs, the most prominent excep-

tion being Variance Gamma (cf. Section 2.1.2). We recall the following result from

[18].

A.3. MEASURE CHANGES FOR LÉVY PROCESSES 97

Theorem A.10 (Theorem 3.1 in [18]). For any τ > 0, the probability density pτ of

a RLPE X is infinitely smooth and decays exponentially at infinity, together with all

of its derivatives.

Proof. (Adapted from [18]). Let X be of exponential type (λ−, λ+). Take

ω ∈ (λ−, λ+). From the definition of the characteristic exponent, it follows that the

transition probability density function is given by

pτ (x) =
1

2π

∫
R
e−ixξ−τψ(ξ)dξ. (133)

If ω ∈ (λ−, λ+), we can write

pτ (x) =
eωx

2π

∫
R
e−ix(ξ−iω)−τψ(ξ)dξ

=
eωx

2π

∫
Im ξ=−ω

e−ixξ−τψ(ξ+iω)dξ

=
eωx

2π

∫
R
e−ixξ−τψ(ξ+iω)dξ, (134)

where the shift of the line of integration in the last equality is justified by Cauchy’s

theorem. The integral in (134) converges absolutely and uniformly in x, even after

differentiating w.r.t. x under the integral sign any number of times. �

A.3. Measure changes for Lévy processes

A.3.1. General results. We quote the following result from [77].

Theorem A.11 (Theorem 33.1 in [77]). Let (Xt,P) and (Xt,P′) be Lévy processes

on R, with characteristic triplets (σ2, F, µ) and (σ′2, F ′, µ′), respectively. Then the

measures P|Ft and P′|Ft are equivalent for all t ∈ [0,∞) if and only if

(1) σ = σ′,

A.3. MEASURE CHANGES FOR LÉVY PROCESSES 98

(2) F and F ′ are equivalent measures and

∫ ∞

−∞

((
dF ′

dF

)1
2

− 1

)2

F (dx) <∞, (135)

where dF ′/dF denotes the Radon-Nikodym derivative.

(3) If σ = 0, then

µ′ = µ+

∫ 1

−1

x(F ′ − F)(dx). (136)

As a consequence, we can state the following

Corollary A.12 (See example 9.1 in [32]). If (Xt,P) is a general KoBoL process

with order ν ∈ (0, 2), with c± > 0 and steepness parameters λ± > 0, then P′ ∼ P if

and only if (Xt,P′) is a KoBoL process with order ν ′ = ν and intensities c′± = c±.

Proof. (Adapted from [32]). From the expression (128) for the Lévy measure of

a KoBoL process, it follows that, if (135) is to be satisfied, then we must have

∫ ∞

0

(
x

ν−ν′
2 e

1
2
(λ+−λ′+)x

√
c′+
c+

− 1

)2
e−λ+x

x1+ν
dx <∞,

with an equivalent condition holding for the integral on the negative half-line. By

expanding the exponential inside the brackets as a Taylor series, it can be seen that,

if ν ′ ̸= ν, or if ν ′ = ν and c′+ ̸= c+, then the integrand behaves like x−1−ν for x → 0,

and is therefore divergent. If, on the other hand, ν ′ = ν and c′+ = c+, then the

integrand behaves like x1−ν , which is integrable, since ν < 2. By considering the

integral corresponding to the negative half-line, one similarly obtains the condition

c′− = c−. �

A.3.2. Measure changes and European option pricing. We start with the

following

A.3. MEASURE CHANGES FOR LÉVY PROCESSES 99

Proposition A.13. Let X be a Lévy process on R under Q such that its characteristic

exponent under Q, ψ(ξ), admits the analytic continuation into the domain R + iU ,

where U ⊂ R is an open interval containing the origin. Then, for any γ ∈ −U , under

the measure change with likelihood process

(dQγ/dQ)t = eγXt , (137)

X becomes a Qγ-Lévy process with characteristic exponent ψγ(ξ) = ψ(ξ − iγ).

Proof. We have

EQγ

[eiξXt] = EQ[eγXteiξXt] = EQ[ei(ξ−iγ)Xt] = e−tψ(ξ−iγ).

�

Remark A.14. The measure change in (137) is similar to the Esscher transform,

which has (dQ̃γ/dQ)t = eγXt+tψ(−iγ), for γ ∈ −U , and under which ψ(ξ) 7→ ψ̃γ(ξ) :=

ψ(ξ − iγ) − ψ(−iγ). Note a Lévy process and its dual (cf. Appendix D) are related

by an Esscher transform with γ = 1.

Recall that an operator of the form

Au(x) = a(x,D)u(x) =
1

2π

∫ +∞

−∞
eixξa(x, ξ)û(ξ)dξ

is called a pseudo-differential operator (PDO) with the symbol a. If a does not depend

on x, then A is called a PDO with constant symbol. Let V (t, x) denote the price at

time t of a European option, with maturity T and terminal payoff G(XT), on an

underlying following the exponential Lévy process eXT , such that Xt = x. Then, if

ψ(ξ) is the characteristic exponent of X under the risk-neutral measure Q, it can be

A.3. MEASURE CHANGES FOR LÉVY PROCESSES 100

shown that V (t, x) satisfies

∂tV (t, x)− (r + ψ(D))V (t, x) = 0, t < T, (138)

V (T, x) = G(x), (139)

where ψ(D) is the PDO with constant symbol ψ(ξ) (for a formal derivation, see

Chapters 1-2 of [18]). For some γ ∈ −U , define V γ(t, x) = e−γxV (t, x) and Gγ(x) =

e−γxG(x). Then, using the equality eγxψ(D)e−γx = ψ(D+ iγ), we obtain from (138)-

(139)

∂tV
γ(t, x)− (r + ψγ(D))V γ(t, x) = 0, t < T, (140)

V γ(T, x) = Gγ(x). (141)

Hence, if we change the measure from Q to Qγ using (137), we can price the original

option by solving (140)-(141) instead of (138)-(139), then changing the measure back

by setting V (t, x) = eγxV γ(t, x). For more details, see [18].

APPENDIX B

Algorithms for vanilla option pricing using flat iFT

Following [19], we include the algorithms for the calculation of the vanilla option

price under flat iFT, for both ordinary and refined FFT. Recall that, for the vanilla

call and put option, one should take ω ∈ (λ−,−1) and ω ∈ (0, λ+), respectively
1. As

in Chapter 2, we denote by S the current (spot) price of the underlying.

B.1. Calculation of option price as function of strike using FFT

Suppose that, given S, we need to calculate call option prices for several strikes

K = Kℓ, ℓ = 1, 2, . . . , n, at time τ > 0 to maturity. Then

1. Choose x1, M = 2m and ∆ > 0 such that for all ℓ, x1 ≤ ln(Kℓ/S) ≤ x1 + (M −

1)∆, and construct the grid x = (xj)
M
j=1, where xj = x1 + (j − 1)∆. If possible,

all ln(Kℓ/S) ought to be among the points of the grid; this allows one to avoid

interpolation errors.

2. Set ζ = 2π/(M∆) so that the uncertainty principle (17) holds. Set Λ = Mζ/2(=

π/∆), ξ1 = iω − Λ, and construct the grid ξ = (ξk)
M
k=1, where ξk = ξ1 + (k − 1)ζ.

3. Calculate the array f = (fk)
M
k=1, where the fk are given by (16).

4. Calculate the array2

V = −Sζ
2π

exp((1− i ∗ ξ1) ∗ x) .∗ fft
(
f .∗ exp(−i ∗ ζ ∗ x1 ∗ (0 :M − 1))

)
.

The array V consists of (approximations to) the option prices V (τ, xj).

1For the choice of offset ω and mesh ζ under flat iFT, see Appendix O.1.1.1.
2In this appendix, we will use a notation reminiscent of MATLAB syntax.

101

B.3. CALCULATION OF OPTION PRICE AS FUNCTION OF STRIKE USING REFINED FFT102

5. If some of the points yℓ := ln(Kℓ/S) are not among the points of the grid x, then

an additional interpolation procedure must be used to calculate V (τ, yℓ).

B.2. Calculation of option price as function of spot using iFFT

Suppose that, given K, we need to calculate call option prices for several S =

Sℓ, s = 1, 2, . . . , n, at time τ > 0 to maturity. Then

1. Choose x1, M = 2m and ∆ > 0 such that for all ℓ, x1 ≤ ln(Sℓ/K) ≤ x1 + (M −

1)∆, and construct the grid x = (xj)
M
j=1, where xj = x1 + (j − 1)∆. If possible,

all ln(Sℓ/K) ought to be among the points of the grid; this allows one to avoid

interpolation errors.

2. Set ζ = 2π/(M∆) so that the uncertainty principle (17) holds. Set Λ = Mζ/2(=

π/∆), ξ1 = iω − Λ, and construct the grid ξ = (ξk)
M
k=1, where ξk = ξ1 + (k − 1)ζ.

3. Calculate the array f = (fk)
M
k=1, where the fk are given by (16).

4. Calculate the array

V = −(K/∆) ∗ exp(i ∗ ξ1 ∗ x) .∗ ifft
(
f .∗ exp(i ∗ ζ ∗ x1 ∗ (0 :M − 1))

)
.

The array V consists of (approximations to) the option prices V (τ, xj).

5. If some of the points yℓ := ln(Sℓ/K) are not among the points of the grid x, then

an additional interpolation procedure must be used to calculate V (τ, yℓ).

B.3. Calculation of option price as function of strike using refined FFT

If the characteristic exponent increases slowly at infinity and/or time to maturity

is too small, then the truncation parameter Λ = π/∆ chosen above may be too

small in the sense that the truncation error is too large. If we decrease ∆ and keep

the number M of points on the grids x and ξ fixed, then, on the strength of the

uncertainty principle, ζ = 2π/(M∆) will increase and the discretization error may

B.3. CALCULATION OF OPTION PRICE AS FUNCTION OF STRIKE USING REFINED FFT103

become too large; in addition, the interval [x1, xM] may become too small and some

of the points ln(Kℓ/S) of interest will be outside this interval.

Thus, it is useful to keep the same grid x and a moderately small mesh ζ in the dual

space but extend, and, if necessary, refine the grid in the dual space. The following

approach (refined FFT method) was introduced by M. Boyarchenko and Levendorskĭi

in [14]. We take integers M2 ≥ 2, M3 ≥ 1, set M1 = MM2M3, ζ1 = ζ/M3, and use

Λ = M1ζ/2 as the truncation parameter and ζ1 as the mesh of the grid on the line

Im ξ = ω ofM1 points: ξj = −Λ+ iω+(j−1)ζ, j = 1, 2, . . . ,M1−1. We approximate

the truncated integral using the simplified trapezoid rule.

V (τ, x) ≈ −Sζ1
2π

ex
M1∑
k=1

e−ixξkfk, (142)

where fk = f(ξk), f(ξ) = exp[−(r + ψ)(ξk)]/((ξk + i)ξk. To apply the standard FFT,

we need to divide the sum in (142) into M2M3 sums, each sum having M terms

V (τ, x) ≈ −Sζ1
2π

ex
M2∑
j=1

M3∑
k=1

M∑
ℓ=1

e−ixξ
jk
ℓ f jkℓ , (143)

where ξjkℓ = iω − M1ζ1/2 + (j − 1)Mζ + (k − 1)ζ1 + (ℓ − 1)ζ, f jkℓ = f(ξjkℓ), and

apply to each interior sum the procedure described in Appendix B.1 with the grid

(ξjkℓ)Mℓ=1 instead of ξ and array (f jkℓ)Mℓ=1 instead of (fk)
M
k=1: for j = 1, 2, . . . ,M2 and

k = 1, 2, . . . ,M3, calculate

V jk = exp((1− i ∗ ξjk1) ∗ x) .∗
(
f jk .∗ exp(−i ∗ ζ ∗ x1 ∗ (0 :M − 1))

)
,

and then set

V = −Sζ1
2π

M2∑
j=1

M3∑
k=1

V jk.

B.4. CALCULATION OF OPTION PRICE AS FUNCTION OF SPOT USING REFINED FFT 104

B.4. Calculation of option price as function of spot using refined FFT

We modify the algorithm in Appendix B.2 in the same way as the algorithm in

Appendix B.1 was modified in Appendix B.3: for j = 1, 2, . . . ,M2, we calculate

V jk = exp(i ∗ ξjk1 ∗ x) .∗ ifft
(
f jk .∗ exp(i ∗ ζ ∗ x1 ∗ (0 :M − 1))

)
,

and then set

V = − K

M3∆

M2∑
j=1

M3∑
k=1

V jk.

APPENDIX C

Truncation error bounds for the VG option price

C.1. Flat iFT case

We truncate the integral on the RHS of (32) as follows

V (τ, x; Λ) = −e
−r′τ−ωx′

2π

∫ Λ

−Λ

eix
′η (σ2 + η2)−cτ

(η + iω)(η + iω + i)
dη. (144)

We refer to V (τ, x; Λ) as the truncated price and to Tr.Err.(V ; τ, x; Λ) = |V (τ, x; Λ)−

V (τ, x)| as the (absolute) truncation error. Recall that the hypergeometric function

is defined by [1, §15]

2F1(a, b; c; z) =
∞∑
0

(a)n(b)n
(c)n

zn

n!
,

for c /∈ {0}∪Z− and |z| < 1, where (·)n, known as the Pochhammer symbol, is defined

according to

(q)n =

1, n = 0,

q(q + 1) . . . (q + n− 1), n > 0.

A useful bound for the truncation error in (144) is given by the following result.

Proposition C.1. If the underlying follows a VG process, Tr.Err.(V ; τ, x; Λ) admits

the following bound

|Tr.Err.(V ; τ, x; Λ)| ≤ C(Λ)
e−r

′τ−ωx′

π(1 + 2cτ)
Λ−1−cτ , (145)

where C(Λ) = 2F1

(
1
2
+ cτ, 1 + cτ ; 3

2
+ cτ ;−ω2

Λ2

)
.

105

C.1. FLAT IFT CASE 106

Proof. Putting α = π−1e−r
′τ−ωx′ , we have

Tr.Err.(τ, x; Λ) =

∣∣∣∣αRe

∫ +∞

Λ

eix
′η(σ2 + η2)−cτ

(η + iω)(η + iω + i)
dη

∣∣∣∣ ≤ α

∫ +∞

Λ

∣∣∣∣ eix
′η(σ2 + η2)−cτ

(η + iω)(η + iω + i)

∣∣∣∣ dη
≤ α

∫ +∞

Λ

(σ2 + η2)−cτ

|η + iω|2
dη ≤ α

∫ +∞

Λ

dη

(ω2 + η2)1+cτ
.

Define

C(Λ) =

∫ +∞

Λ

dη

(ω2 + η2)1+cτ
= ω−1−2cτ

∫ +∞

Λ/ω

dx

(1 + x2)1+cτ
.

Consider the integral

I(L) =

∫ +∞

L−1

dx

(1 + x2)1+p
,

for L > 0, p > 0. Changing the variable z = x−1, we obtain

I(L) =

∫ L

0

z2pdx

(1 + z2)1+p
.

Recall that (cf. [1, §15.2.4]), for |y| < 1, d /∈ {0, 1} ∪ Z−, we have

y
d

dy
2F1(a, b; d; y) = (d− 1)[2F1(a, b; d− 1; y)− 2F1(a, b; d; y)]. (146)

Hence, for p > 0, we have

y
d

dy
2F1

(
1

2
+ p, 1 + p;

3

2
+ p; y

)
=

(
1

2
+ p

)[
(1− y)−1−p − 2F1

(
1

2
+ p, 1 + p;

3

2
+ p; y

)]
,

(147)

where we have used the fact that [1, §15.1.8], for b /∈ {0} ∪ Z−

2F1(a, b; b; y) = (1− y)−a. (148)

Substituting y = −z2 in (147), we obtain

z
d

dz
2F1

(
1

2
+ p, 1 + p;

3

2
+ p;−z2

)
= (1+2p)

[
(1 + z2)−1−p − 2F1

(
1

2
+ p, 1 + p;

3

2
+ p;−z2

)]
.

C.2. PARABOLIC IFT (ATM CASE) 107

Multiplying both sides by z2p, it can be seen that

z2p

(1 + z2)1+p
=

1

1 + 2p

[
z1+2p

2F1

(
1

2
+ p, 1 + p;

3

2
+ p;−z2

)]
,

which gives

I(L) =
L1+2p

1 + 2p
2F1

(
1

2
+ p, 1 + p;

3

2
+ p;−L2

)
.

�

Remark C.2. This result is similar to Proposition 2.5 in [19], except that the value

of C(Λ) is now given explicitly.

Remark C.3. Since C(Λ) tends to 1 very rapidly for Λ → ∞, in a practical appli-

cation one can safely set C(Λ) = 1 for large Λ.

C.2. Parabolic iFT (ATM case)

The following bound is the analogue of the one in Proposition C.1 for the ATM

call case under parabolic iFT.

Proposition C.4. If the underlying follows a VG process, then the ATM truncation

error under the parabolic iFT procedure described in Section 2.3.2, with truncation

parameter Λ, Tr.Err.(p)(V ; τ,−µτ ; Λ) (defined analogously to the error for the flat

iFT case in Proposition C.1), admits the following approximate bound

|Tr.Err.(p)(V ; τ,−µτ ; Λ)| ≤ C1
Λ−α(1+2cτ)

α(1 + 2cτ)
, (149)

where

C1 =
αK

π
(−λ−λ+)cτ (−λ− − 1)(α−1)(1+2cτ),

Proof. Recall that the ATM call price under parabolic iFT, for a VG process,

is given by (27) with α ∈ [1, 4), and ψ0(χ−
α (ξ)) given by (30). Put ξ = η + iω, where

C.2. PARABOLIC IFT (ATM CASE) 108

η ∈ R and ω ∈ (λ−,−1). In the ATM case x′ = 0, so we need an upper bound for

the quantity

Φ−
p (ξ) =

αK

π(−λ− − 1)α−1

e−τ Reψ0(χ−
α (ξ)) |(−λ− − iξ)α−1|

|iχ−
α (ξ)(1− χ−

α (ξ))|
, (150)

in the limit as η → ±∞. We start by calculating the asymptotics of Reψ0(χ−
α (ξ)) as

η → ±∞. We have

Re ln(−λ− − iξ) = ln |η|+ (−λ− + ω)2

2η2
+O(η−4). (151)

Consider the factor ln (λ− − λ− − (−λ− − 1)1−α(−λ− − iξ)α). Write

Y (η) = −(−λ− − 1)1−α(−λ− + ω − iη)α.

As η → ±∞, |Y (η)| → +∞. Hence ln(λ+ − λ− + Y (η)) = ln(Y (η)) + O(η−α). If

α ∈ (2, 4), then

Re ln(λ+ − λ− + Y (η)) = ln
(
−(−λ− − 1)1−α

)
+ αRe ln(−λ− + ω − iη) +O(η−α)

= ln
(
−(−λ− − 1)1−α

)
+ α ln |η|+ α(−λ− + ω)2

2η2
+O(η−α).

Hence

Reψ0(χ−
α (ξ)) = c

[
− ln(−λ−λ+) + 2(1− α) ln(−λ− − 1) + 2α ln |η|+

α(−λ− + ω)2η−2 +O(η−α)
]
.

Therefore

e−τReψ
0(χ−

α (ξ)) =

(
−λ−λ+

(−λ− − 1)2(1−α)

)cτ
|η|−2cταe−cτα(−λ−+ω)2η−2

(1 +O(η−α))

≤
(

−λ−λ+
(−λ− − 1)2(1−α)

)cτ
|η|−2cτα(1 +O(η−α)). (152)

C.2. PARABOLIC IFT (ATM CASE) 109

Next, we need the asymptotics of

∣∣(−λ− + ω − iη)α−1
∣∣ = |η|α−1

∣∣∣∣1 + (α− 1)
−λ− + ω

−iη
− (α− 1)(α− 2)(−λ− + ω)2

2η2
+O

(
η−3
)∣∣∣∣

= |η|α−1

[(
1− (α− 1)(α− 2)(−λ− + ω)2

2η2

)2
+

(
(α− 1)

λ− + ω

η

)2
+O

(
η−3
)]

= |η|α−1

(
1 +

(α− 1)(−λ− + ω)

η2
+O

(
η−3
))

. (153)

Next, we calculate

−
[
iχ−

α (ξ)(1− iχ−
α (ξ))

]−1
= −(−λ− − 1)2(α−1)(−λ− + ω − iη)−2α +O

(
η−3α

)
= −(−λ− − 1)2(α−1)(−iη)−2α +O

(
η−3α

)
.

Hence ∣∣∣[iχ−
α (ξ)(1− iχ−

α (ξ))
]−1
∣∣∣ = (−λ− − 1)2(α−1)|η|−2α +O

(
η−3α

)
. (154)

Finally, using (150), (151), (152), (153), and (154), we obtain

∣∣Φ−
p (ξ)

∣∣ ≤ αK

π
(−λ−λ+)cτ (−λ− − 1)(α−1)(1+2cτ)|η|−1−α(1+2cτ)(1 +O(η−α))

+
αK

π
(−λ−λ+)cτ (−λ− − 1)(α−1)(1+2cτ)(α− 1)(−λ− + ω)|η|−3−α(1+2cτ)

× (1 +O(η−α)).

Hence, for η → +∞, we have

∣∣Φ−
p (ξ)

∣∣ = C(η)C1(1 + C2η
−2)η−1−α(1+2cτ),

C.2. PARABOLIC IFT (ATM CASE) 110

where C(η) = 1 +O(η−α), C2(η) = (α− 1)(−λ− + ω). Since, for η → +∞, C(η) will

tend to 1 very rapidly, we can write, for large Λ

|Tr.Err.(p)(V ; τ,−µτ ; Λ)| ≤ C1

∫ ∞

Λ

η−1−α(1+2cτ)dη

+ C1C2

∫ ∞

Λ

η−3−α(1+2cτ)dη,

(155)

which gives (149), since, for large enough Λ, the second integral in (155) can usually

be neglected. �

APPENDIX D

A put-call symmetry

Recall the following result [8]

Lemma D.1. Let Zt be a Q-martingale. Then, the process Z−1
t is a martingale

under the dual measure Q̃, such that the likelihood process (process of Radon-Nikodym

derivatives) is given by Lt := (dQ̃/dQ)t = Zt.

Proof. If Lt = (dQ̃/dQ)t = Zt, then Yt is a Q̃-martingale if and only if LtYt is a

Q-martingale. From this the result follows. �

The discounted stock price (Q-martingale) is Zt = e−rtSt, hence Lt = e−rteXt .

Also recall the following result on the change of measure for conditional expectations

of processes

EQ[LtYt|Fs] = LsEQ̃[Yt|Fs], (156)

where s < t. Defining the dual process X̃ by X̃t = −Xt, we obtain the following

Corollary D.2. The characteristic exponent of the dual process X̃ is given by ψ̃(ξ) =

ψ(−ξ − i)− ψ(−i).

Proof.

e−tψ̃(ξ) = EQ̃[eiξX̃t] = EQ[e−rteXte−iξXt] = e−rtEQ[ei(−ξ−i)Xt]

= e−rte−tψ(−ξ−i) = e−t(ψ(−ξ−i)−ψ(−i)),

111

D. A PUT-CALL SYMMETRY 112

where the EMM condition (1) has been used. It can easily be seen that the risk-

neutral “drift” of the dual process is the same as that of the original process, but

with the opposite sign. �

We can now prove the following results.

Proposition D.3. The price of a European call option with maturity T , strike K,

riskless rate r on an underlying asset following the exponential RLPE (or model pro-

cess) eXt, with continuous dividend yield q and spot value S, equals the price of a

European put option with maturity T , strike S, riskless rate q on an underlying as-

set with continuous dividend yield r and spot value K, following the exponential dual

RLPE (or model process) eX̃t.

Proof. Change the variable ξ 7→ −ξ−i in (12), and substitute r = µ+q−ψ0(−i)

(which follows from the EMM condition (1)). Use Corollary D.2. �

Proposition D.4. The price of a European call option with maturity T , strike K,

riskless rate r on an underlying asset following an exponential KoBoL (or VG) process

eXt, with continuous dividend yield q and spot value S, equals the price of a European

put option with maturity T , strike S, riskless rate r on an underlying with continuous

dividend yield q and spot value K, following an exponential KoBoL (or VG) process

eX
′
t, where X ′ is such that its “steepness parameters” λ− and λ+ are interchanged

w.r.t. to those of X.

Proof. Change the variable ξ 7→ −ξ in (12). �

Remark D.5. The last result is sometimes referred to as “foreign-domestic symme-

try” in the FX option market [86].

APPENDIX E

Comparison of different quadrature methods

E.1. ATMVG case

We compare the ATMVG price calculated with Λ = 1.5σ, ϵ1 = 10−12, ϵ2 =

10−15, using each of the methods in Section 3.2.2, namely: adaptive Simpson’s rule,

Clenshaw-Curtis integration, the adaptive Gauss-Lobatto rule (used in several exam-

ples in Chapter 3), and vectorized Gauss-Kronrod quadrature. In Table 1 we list the

absolute and relative differences of the ATMVG prices obtained with each of these

methods w.r.t. the benchmark price calculated with the adaptive Gauss-Lobatto

rule, and the CPU times taken by each. In addition, we list the corresponding results

obtained using Integration Along Cut (IAC, cf. [18, 60]) and parabolic iFT1. The

absolute differences are very small indeed, ranging from 4.58 ·10−15 for Gauss-Lobatto

to 3.98·10−16 for Clenshaw-Curtis and Gauss-Kronrod quadratures. CPU times range

from 37.76 ms for Adaptive Simpson integration to 5.08 ms for Clenshaw-Curtis, and

1.84 ms for Gauss-Kronrod quadrature.

Finally, we note that the CPU time taken by the calculation of Φ2(σ, ω; Λ) in the

above example is only 0.56 ms, which shows that most of the time is taken up by the

calculation of Φ1(σ, ω; Λ).

1Run with ζ = 0.125, Λ = 180000, α = 3.9 (cf. Section 3.5.2).

113

E.2. FASTVG CASE 114

Table 1. Differences w.r.t. the benchmark and CPU times for AT-
MVG calculation of the price of an ATM call option with K = 1,
λ− = −11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004.

Method Abs. Diff. Rel. Diff. CPU Time (sec.)
Adapt. Simpson 3.43 · 10−15 1.40 · 10−12 0.03776
Clenshaw Curtis 3.98 · 10−16 1.62 · 10−13 0.00486
Gauss-Kronrod 3.98 · 10−16 1.62 · 10−13 0.00148
Gauss-Lobatto 4.58 · 10−15 1.87 · 10−12 0.01373
parabolic iFT 3.17 · 10−14 1.29 · 10−11 12.223

E.2. FastVG case

We compare the FastVG price calculated with Λ = 4.5σ, ϵ1 = 10−7, ϵ2 = 10−15,

using different quadrature methods for the calculation of Ψ1(x
′;σ, ω; Λ). In addition

to the adaptive Gauss-Lobatto rule used in several examples in Chapter 3, we include

the other adaptive schemes mentioned in Section 3.2.2: the adaptive Simpson’s rule,

Clenshaw-Curtis integration, and vectorized Gauss-Kronrod quadrature. We also in-

clude parabolic iFT (with α = 2.9) and IAC in the comparison. The results, for an

OTM vanilla call option with x′ = −10−6, are shown in Table 2. It can be seen that

absolute and relative differences w.r.t. the benchmark (calculated with the adaptive

Gauss-Lobatto rule) are very close to floating point accuracy for all integration meth-

ods, apart from the adaptive Simpson’s rule. The price calculated with parabolic

iFT is also extremely close to this benchmark, with an absolute difference of about

1.53 · 10−16, while the absolute error of the IAC price is much larger (1.73 · 10−10).

The most efficient FastVG implementations are the ones using Clenshaw-Curtis and

Gauss-Kronrod integration, which both take 6.94 ms, whereas parabolic iFT takes

0.28 seconds of CPU time to obtain the same accuracy.

E.2. FASTVG CASE 115

Table 2. Differences w.r.t. the benchmark and CPU times for FastVG
calculation of the price of an OTM call option with x′ = −10−6, K = 1,
λ− = −11, λ+ = 8, m2 = 0.16, r = 0.03, q = 0, τ = 0.004.

Method Abs. Diff. Rel. Diff. CPU Time (sec.)
Adapt. Simpson 6.94 · 10−11 2.83 · 10−08 0.00674
Clenshaw Curtis 4.38 · 10−16 1.79 · 10−13 0.00694
Gauss-Kronrod 1.99 · 10−16 8.14 · 10−14 0.00694
Gauss-Lobatto 7.57 · 10−16 3.36 · 10−12 0.00742
Parabolic iFT 1.53 · 10−16 6.80 · 10−13 0.28169
IAC 1.73 · 10−10 7.69 · 10−7 0.00140

APPENDIX F

Deltas and digitals

Since ∂S = K−1e−x∂x, the vanilla option delta ∆(τ, x) = K−1e−x∂xV (τ, x) is given

by

∆(τ, x;ω) =
e−rτ−x

2π

∫
Im ξ=ω

eixξ−τψ(ξ)

iξ − 1
dξ, (157)

where ∆(τ, x;ω) is equal to the vanilla call delta ∆c(τ, x) if ω < −1 and to the vanilla

put delta ∆p(τ, x) if ω > −1. From (157) we obtain

∆(τ, x;ω) =
e−rτ−(ω+1)x

2π

∫ ∞

−∞

eix
′η−τψ0

ω(η)

iη − ω − 1
dη.

Hence, in the ATMVG case, we can write

∆(τ,−µτ ;ω) = e−r
′τ−x

2π
Φ(σ, ω + 1), (158)

where Φ(σ, ω + 1) is given by (36). For the FastVG case, we have

∆(τ, x;ω) =
e−r

′τ−ωx′−x

π
ReΨ(x′;σ, ω + 1), (159)

where Ψ(x′;σ, ω + 1) is given by (57).

For ω = −1 and ω > −1, (158)-(159) give the values of ∆−1(τ, x) (defined in the

same way as V−1(τ, x) in Section 3.2.3) and ∆p(τ, x), respectively. In each case, the

vanilla call delta is given by

∆c(τ, x) =

∆−1(τ, x) +

1

2
e−qτ , ω = −1,

∆p(τ, x) + e−qτ , ω > −1,

116

F. DELTAS AND DIGITALS 117

respectively. The payoff at maturity of a digital call or put option is given by G(x) =

1[lnK,∞)(x) and G(x) = 1(−∞,lnK](x), respectively. Denote the price of the digital call

by Vdc(τ, x) and that of the digital put by Vdp(τ, x). If, for ω ̸= 0, we define

Vd(τ, x;ω) =
e−rτ

2π

∫
Im ξ=ω

eixξ−τψ(ξ)

iξ
dξ, (160)

then Vd(τ, x;ω) = Vdc(τ, x) if ω < 0 and Vd(τ, x;ω) = −Vdp(τ, x) if ω > 0. In the

ATMVG case, for ω ̸= 0, we can write

Vd(τ,−µτ ;ω) =
e−r

′τ

2π
Φ(σ, ω), (161)

and in the FastVG case we have

Vd(τ, x;ω) =
e−r

′τ−ωx′

π
Ψ(x′;σ, ω). (162)

The digital call and put prices are related by digital put-call parity: Vdc(τ, x) +

Vdp(τ, x) = e−rτ . Regarding the case ω = 0, using the same argument as in Section

3.2.3 it can be seen that Vdc(τ, x) + Vd(τ, x; 0) = 1
2
e−rτ , where Vd(τ, x; 0) is defined

in terms of Cauchy’s principal value. From this it follows, in particular, that for a

symmetric VG process (i.e., one with λ+ = −λ−), the ATM price of a digital call or

put option is always equal to 1
2
e−rτ . For x′ ̸= 0 and ω ∈ [−1, 0], the same method as

in Section 3.3.2 can be applied.

APPENDIX G

Discretization error bound for Ψ1(x; σ, 0; Λ).

Due to the presence of the indicator function in the expression (74) for ψ(η), we

need not concern ourselves with a truncation error in the numerical realization of (73).

The following result can be used to choose an appropriate value of the discretization

mesh ζ in order to ensure that the error lies within a specified tolerance.

Proposition G.1. Denote by Ψ̃1(x;σ, 0; Λ; ζ) the approximation to Ψ1(x;σ, 0; Λ) cal-

culated according to (73), and define the discretization error with mesh ζ as

Disc.Err.(Ψ1;x;σ, 0; Λ; ζ) = |Ψ̃1(x;σ, 0; Λ; ζ)−Ψ1(x;σ, 0; Λ)|.

Then, if cτ < 1, the discretization error satisfies the following bounds1

Disc.Err.(Ψ1; x;σ, 0; Λ; ζ) ≤ µ(χ, ζ)(eσx + e−σx)
π(2σ)−cτΛ1−cτ

2F1

(
1−cτ
2
, cτ

2
, 3−cτ

2
,− Λ2

4σ2

)
1− cτ

(163)

≤ µ(χ, ζ)(eσx + e−σx)
π(2σ)−cτΛ1−cτ

1− cτ
, (164)

where µ(χ, ζ) = e−2πχ/ζ/(1− e−2πχ/ζ).

Proof. The discretization error in the numerical calculation of the Hilbert trans-

form of a function f is bounded above by (cf. Appendix O.1.1, [81])

e−2πχ/ζ

1− e−2πχ/ζ
∥ψ∥H1(Dχ),

1For options of a few days’ maturity and typical parameter ranges, the condition cτ < 1 is almost
always satisfied.

118

G. DISCRETIZATION ERROR BOUND FOR Ψ1(x;σ, 0; Λ). 119

where ζ is the interpolation mesh of the discretization grid, Dχ := {z ∈ C : | Im z| <

χ}, and H1(Dχ) denotes the Hardy space of functions f analytic in the strip Dχ such

that
∫ χ
−χ f(x+ iy)dy → 0 as x→ ±∞, and the Hardy norm is finite

∥f∥H1(Dχ) := lim
y→χ−

[∫
R
|f(x+ iy)|dx+

∫
R
|f(x− iy)|dx

]
<∞.

In our case χ = σ, and∫
R
|ψ(η + iω)|dη =

∫ Λ

−Λ

|eix(η+iω)(σ2 + (η + iω)2)−cτ |dη ≤ e−ωx
∫ Λ

−Λ

dη

|σ2 + (η + iω)2|cτ

= 2e−ωx
∫ Λ

0

dη

|σ2 + η2 − ω2 + 2iωη|cτ

= 2e−ωx
∫ Λ

0

dη

[(σ2 − ω2 + η2)2 + 4ω2η2]cτ/2
.

Define

H(ω, σ,Λ, cτ) =

∫ Λ

0

dη

[(σ2 − ω2 + η2)2 + 4ω2η2]cτ/2
. (165)

Then the norm ∥ψ∥H1(Dσ) admits the bound

∥ψ∥H1(Dσ) ≤ 2eσxH(−σ, σ,Λ, cτ) + 2e−σxH(σ, σ,Λ, cτ).

We have

H(σ, σ,Λ, cτ) = H(−σ, σ,Λ, cτ) = (2σ)1−2cτ

∫ Λ/2σ

0

z−cτ

(1 + z2)cτ/2
.

Using (146) and (148), we obtain, for |y| < 1, p < 1,

y
d

dy
2F1

(
1− p

2
,
p

2
;
3− p

2
; y

)
=

1− p

2

[
(1− y)−p/2 − 2F1

(
1− p

2
,
p

2
;
3− p

2
; y

)]
.

(166)

The bound (163) then follows by substituting y = −z2 and multiplying both sides

of (166) by z−p, as in the proof of Proposition C.1. The bound (164) can easily be

G. DISCRETIZATION ERROR BOUND FOR Ψ1(x;σ, 0; Λ). 120

proved by discarding the η4 term in the square brackets in the denominator on the

RHS of (165). �

APPENDIX H

Pricing algorithm for discretely monitored barrier options

In what follows, we will use the notation vsj = Vs(xj); to be more precise, these

equalities are almost exact if s = N − 1 and j < M (we cannot evaluate the inverse

Fourier transform in (79) exactly). Also, we set vsM = 0, s = N −1, N −2, . . . , 0, and,

for s < N − 1 and j = 1, 2, . . . ,M − 1, evaluate vsj ≈ Vs(xj) at each step of backward

induction. We assume that ∆̄ and ν are not very small so that the second, third and

fourth derivatives of the option price w.r.t. x are not large. This condition will be

used at the first step of each algorithm, where an appropriate grid will be chosen.

1. Fix the overall absolute error tolerance ϵ.

2. Allocate, e.g., tolerance ϵint = 0.80 · ϵ for the interpolation error, then set ϵtr =

ϵds = 0.10 · ϵ, where ϵtr and ϵds denote the errors due to truncation in the state

space and to approximations in the dual space, respectively.

3. Using the procedure outlined in Section 4.3.1.1, find the minimum value of xM , so

that the total error due to truncation in the state space lies below the tolerance

ϵtr. Call this x
0
M .

4. Using the procedure outlined in Section 4.3.2.1, find the maximum value ∆0 of the

mesh in the state space so that the total interpolation error lies below the tolerance

ϵint.

5. Create a uniform grid x = (xj)
M
j=1, xj = h + (j − 1)∆, such that ∆ ≤ ∆0,

and xM ≥ x0M and, ideally, lnK − µ∆̄ lies on one of its nodes. E.g., set M0 =

121

H. PRICING ALGORITHM FOR DISCRETELY MONITORED BARRIER OPTIONS 122

ceil(lnK−µ∆̄−h)/∆0, then set ∆ = (lnK−µ∆̄−h)/M0, andM = ceil(x0M−h)/∆.

Finally, set xj = h+ (j − 1)∆, j = 1, 2, . . . ,M .

6. Calculate the price grid vN−1 at step s = N − 1, as follows

a. Run parabolic iFT on the grid x+µ∆̄− lnK, using the procedure in Appendix

O.3.2 with Ĝ(ξ) = −K/(ξ(ξ + i)), with the settings calculated using the pro-

cedure in Section 4.3.3.1 with error tolerance ϵds. This calculates the price of a

vanilla put option vputN−1 over the grid x with time to maturity ∆̄.

b. Run parabolic iFT on the grid x + µ∆̄ − h, using the procedure in Appendix

O.3.2 with Ĝ(ξ) = −K/ξ + eh/(1 − iξ), and the settings calculated using the

procedure in Section 4.3.3.1 with error tolerance ϵds. This calculates the “barrier

correction” vbarrN−1 to the vanilla put price vputN−1.

c. Set vN−1 = v
put
N−1 + v

barr
N−1.

d. Set vN−1
M = 0.

7. Calculate arrays I0 := [I(ω;n, 0)]n=0,1,...,M−1 and Iℓ := [I(ω;n, ℓ)]n=1−M,1,...,M−1, for

ℓ = 1, 2, over the grids y = (0 :M − 1)∆ + µ∆̄ and z = (1−M :M − 1)∆ + µ∆̄,

respectively. Again, the algorithm of Appendix O.3.2 can be used, with the settings

calculated using the procedure in Section 4.3.3.1 with error tolerance ϵds.

8. calculate Ws
j,ℓ, j = 1, . . . ,M , ℓ = 0, 1, 2, using (90) and (91), together with (95)-

(97).

9. In a cycle w.r.t. s = N − 2, . . . , 0

a. Calculate the array

vsk = Ws+1
1,0 I(ω, k − 1, 0) +

2∑
ℓ=1

∆−ℓ
M∑
j=1

Ws+1
j,ℓ I(ω, k − j, ℓ), k = 1, 2, . . . ,M − 1

H. PRICING ALGORITHM FOR DISCRETELY MONITORED BARRIER OPTIONS 123

(the interior sum can be calculated for all k using the fast convolution algorithm;

cf. Appendix L);

b. Set vsM = 0.

10. Set v01 = 0.

11. The array v0 stores the approximations to the option prices V (0, xj), j = 1, . . . ,M .

APPENDIX I

Other interpolation methods

In this Appendix, we give a description of the procedures for piece-wise linear and

cubic interpolation of the option price at each step of backward induction.

I.1. Piece-wise linear interpolation

On [xj, xj+1], j = 1, 2, . . . ,M − 1, we approximate Vs(x) as

Vs(x) ≈ vsj +
x− xj
xj+1 − xj

(vsj+1 − vsj). (167)

Hence, we use (88) with m = 2 and f sj,0 = vsj , f
s
j,1 = vsj+1 − vsj . Since v

s
M = 0 and the

grid is equally spaced, equality (89) simplifies to

V̂s(ξ) = Ws
1,0e

−ix1ξ 1

−iξ
+

M∑
j=1

∆−1Ws
j,1e

−ixjξ 1

(−iξ)2
, (168)

where

Ws
1,0 = −vs1, Ws

1,1 = vs2 − vs1, Ws
M,1 = vsM−1, (169)

Ws
j,1 = vsj+1 + vsj−1 − 2vsj , j = 2, 3, . . . ,M − 1.

I.2. Piece-wise cubic interpolation

Since very good approximations on [xM−1, xM] and [xM−2, xM−1] are not needed,

we use the same quadratic approximations (92) and (96) with j = M − 2. Thus, we

have

f sM−1,0 = vsM−1, f
s
M−1,1 = −2vsM−1, f

s
M−1,2 = vsM−1, f

s
M−1,3 = 0, (170)

124

I.2. PIECE-WISE CUBIC INTERPOLATION 125

and

f sM−2,0 = vsM−2, f sM−2,1 = (vsM−1 − vsM−3)/2, (171)

f sM−2,2 = (vsM−1 + vsM−3)/2− vsM−2, f sM−2,3 = 0.

On [xj, xj+1], j = 1, 2, . . . ,M − 3, we approximate Vs(x) as a cubic polynomial Vs(j)
satisfying

Vs(j)(xj) = vsj , Vs(j)(xj+1) = vsj+1, Vs(j)(xj+2) = vsj+2, Vs(j)(xj+3) = vsj+3. (172)

Therefore, for j = 1, 2, . . . ,M − 3,

f sj,1 = −11

6
vsj + 3vsj+1 −

3

2
vsj+2 +

1

3
vsj+3, (173)

f sj,2 = vsj −
5

2
vsj+1 + 2vsj+2 −

1

2
vsj+3,

f sj,3 = −1

6
vsj +

1

2
vsj+1 −

1

2
vsj+2 +

1

6
vsj+3.

APPENDIX J

Additional numerical results for Chapter 4

2 4 6 8 10

x 10
-3

0.01

0.05

0.25

1

10

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(a) Parameter set A

2 4 6 8 10

x 10
-3

0.01

0.025

0.05

0.1

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(b) Parameter set B

Figure 1. Logarithmic plots of CPU time versus relative error toler-
ance. Comparison of piece-wise linear (solid), quadratic (dashed) and
cubic (dot-dashed) interpolation, as well as HT method (dotted) and
COS method (dashed) to price a DO put option with H = 80, K = 100,
T = 0.5, ∆̄ = 1/252, over the interval 1.02 ·H ≤ ex ≤ K.

126

J. ADDITIONAL NUMERICAL RESULTS FOR CHAPTER 4 127

2 4 6 8 10

x 10
-3

0.02

0.1

0.25

1

20

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(a) Parameter set A

2 4 6 8 10

x 10
-3

0.02

0.05

0.25

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(b) Parameter set B

Figure 2. Logarithmic plots of CPU time versus relative error toler-
ance. Comparison of piece-wise linear (solid), quadratic (dashed) and
cubic (dot-dashed) interpolation, as well as HT method (dotted) and
COS method (dashed) to price a DO put option with H = 80, K = 100,
T = 1, ∆̄ = 1/252, over the interval 1.02 ·H ≤ ex ≤ K.

2 4 6 8 10

x 10
-3

0.05

0.2

1

10

60

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(a) Parameter set A

2 4 6 8 10

x 10
-3

0.03

0.1

0.25

0.4

Relative error tolerance

C
P

U
 ti

m
e

(s
ec

)

Linear
Quadratic
Cubic
HT
COS

(b) Parameter set B

Figure 3. Logarithmic plots of CPU time versus relative error toler-
ance. Comparison of piece-wise linear (solid), quadratic (dashed) and
cubic (dot-dashed) interpolation, as well as HT method (dotted) and
COS method (dashed) to price a DO put option with H = 80, K = 100,
T = 2, ∆̄ = 1/252, over the interval 1.02 ·H ≤ ex ≤ K.

APPENDIX K

Other types of barrier options

K.1. Down-and-out call option

The algorithm is almost the same as in the case of the down-and-out put option.

The most important difference is that the payoff G(x) = (ex − K)+1(h,∞)(x), and

hence the option price, increases exponentially as x → ∞; hence, a straightforward

truncation will lead to a sizable error. Therefore, in the very beginning, it is necessary

to change the measure (cf. Section 5.1.1, Appendix A.3.2) and reduce calculations to

the case of the option with payoff function Gγ(x) = e−γx(ex − K)+1(h,∞)(x), where

γ ∈ (1,−λ−).

K.2. Up-and-out put and call options

The results and algorithms for these options can be obtained by symmetry x 7→

−x.

K.3. Down-and-in and up-and-in options

The prices of these options can be obtained by in-out parity (in+out = vanilla).

K.4. Options with rebate and first-touch digitals

Consider the down-and-out put with rebate. For simplicity, we consider the case

of constant rebate R. The only difference with the case R = 0 is that, at each time

step, the restriction of the option price to [h,∞) is the sum of the term, which we

128

K.5. DOUBLE BARRIER OPTIONS 129

already calculated, and the term

Re−r∆̄
∫ h−x

−∞
p∆̄(y)dy,

which can be calculated using the iFT method for x at the points of the chosen grid.

K.5. Double barrier options

The calculations are almost the same as in the case of the down-and-out option

without a rebate. The differences are:

1. a grid should ideally be chosen so that x1 and xM are the boundary points. How-

ever, unless the strike is chosen so that (lnK − µ∆̄ − x1)/(xM − x1) is rational,

it is impossible to have a uniform grid with x1, lnK − µ∆̄, xM at the grid, and a

non-uniform grid should be preferred;

2. an approximation on [xM−1, xM] should be chosen in the same way as the ap-

proximation on [x1, xM]. In particular, at each step of the backward induction

procedure, we calculate Vs(xM − 0) instead of of V (xM)(= 0), and use Vs(xM − 0)

as an input at the next step.

APPENDIX L

Fast convolution algorithm

In this appendix we describe the main details of the fast convolution algorithm,

introduced to finance in [14]. We follow the exposition in op. cit., which we reformu-

late in accordance with our system of notation. Recall that the convolution of two

functions f and g, defined on R, is given by

(f ∗ g)(x) =
∫ +∞

−∞
f(x− y)g(y)dy,

assuming that the integral on the RHS converges. As in the case of the numerical

realization of the (inverse) Fourier transform, one can truncate and discretize the

integral on the RHS using the simplified trapezoid rule on an evenly spaced grid

x = (xj)
M
j=1, xj = x1 + (j − 1)∆, with fixed mesh ∆ > 0. One obtains

(f ∗ g)(x) ≈ ∆
M∑
j=1

f(xj)g(x− xj). (174)

In order to calculate the RHS of (174) at all points of the grid x, one needs to know

the values of f at all points of x, together with all the values of g at the points k∆,

for 1−M ≤ k ≤M − 1. Then, the following algorithm can be used1

1. Take two arrays f = (fj)
M
j=1 and g = (gk)

M−1
k=1−M . We want to calculate the array

h = (hℓ)
M
ℓ=1, given by

hℓ =
M∑
j=1

fjgℓ−j.

1In this appendix, we use a notation reminiscent of MATLAB syntax.

130

L. FAST CONVOLUTION ALGORITHM 131

2. Use the following steps

g = [g (M : 2 ∗M − 1) 0 g(1 :M − 1)];

f = [f zeros(1,M)];

h = ifft (fft(f) . ∗ fft(g)) ;

h = h(1 :M);

As noted in [14], the above algorithm requires applying the FFT and iFFT to arrays

of length 2M rather thanM . However, it is still much faster than evaluating (174)

in a cycle (e.g., a for loop in MATLAB).

APPENDIX M

Technical calculations

M.1. Proof of Lemma 4.1

First, we calculate

Jj,ℓ :=

∫ xj+1

xj

e−ixξ
(

x− xj
xj+1 − xj

)ℓ
dx = e−ixjξ(xj+1 − xj) · Iℓ(−i(xj+1 − xj)ξ),

where Im(α) =
∫ 1

0
eαttmdt. Integrating by parts, we obtain

I0(α) =
eα − 1

α
,

I1(α) =
1

α

∫ 1

0

tdetα =
eα

α
− 1

α
I0(α) = eα

α− 1

α2
+

1

α2
,

I2(α) =
1

α

∫ 1

0

t2detα =
eα

α
− 2

α
I1(α) = eα

α2 − 2α+ 2

α3
− 2

α3
,

I3(α) =
1

α

∫ 1

0

t3detα =
eα

α
− 3

α
I2(α) = eα

α3 − 3α2 + 6α− 6

α4
+

6

α4
.

132

M.1. PROOF OF LEMMA 4.1 133

Therefore,

Jj,0 = e−ixjξ(xj+1 − xj)
e−i(xj+1−xj)ξ − 1

−i(xj+1 − xj)ξ
= (−iξ)−1

[
e−ixj+1ξ − e−ixjξ

]
,

Jj,1 = e−ixjξ(xj+1 − xj)

[
e−i(xj+1−xj)ξ−i(xj+1 − xj)ξ − 1

(−i(xj+1 − xj)ξ)2
+

1

(−i(xj+1 − xj)ξ)2

]
= e−ixj+1ξ

i(xj+1 − xj)ξ + 1

(xj+1 − xj)ξ2
− e−ixjξ

1

(xj+1 − xj)ξ2
,

Jj,2 = e−ixjξ(xj+1 − xj)

[
e−i(xj+1−xj)ξ−(xj+1 − xj)

2ξ2 + 2i(xj+1 − xj)ξ + 2

(−i(xj+1 − xj)ξ)3

− 2

(−i(xj+1 − xj)ξ)3

]
= e−ixj+1ξ

−(xj+1 − xj)
2ξ2 + 2i(xj+1 − xj)ξ + 2

i(xj+1 − xj)2ξ3
− e−ixjξ

2

i(xj+1 − xj)2ξ3
,

Jj,3 = e−ixjξ(xj+1 − xj)

[
6

(−i(xj+1 − xj)ξ)4

+e−i(xj+1−xj)ξ (−i(xj+1 − xj)ξ)
3 + 3(xj+1 − xj)

2ξ2 − 6i(xj+1 − xj)ξ − 6

(−i(xj+1 − xj)ξ)4

]
= e−ixj+1ξ

i(xj+1 − xj)
3ξ3 + 3(xj+1 − xj)

2ξ2 − 6i(xj+1 − xj)ξ − 6

(xj+1 − xj)3ξ4

+e−ixjξ
6

(xj+1 − xj)3ξ4
.

If the grid xj = h + (j − 1)∆, j = 1, 2, . . . ,M, is equally spaced, the expressions

above simplify

Jj,1 = e−ixj+1ξ
i∆ · ξ + 1

∆ · ξ2
− e−ixjξ

1

∆ · ξ2
,

Jj,2 = e−ixj+1ξ
−∆2ξ2 + 2i∆ · ξ + 2

i∆2ξ3
− e−ixjξ

2

i∆2ξ3
,

Jj,3 = e−ixj+1ξ
i∆3ξ3 + 3∆2ξ2 − 6i∆ · ξ − 6

∆3ξ4
+ e−ixjξ

6

∆3ξ4
,

M.1. PROOF OF LEMMA 4.1 134

and we obtain

V̂s(ξ) = −e−ix1ξ
{
f s1,0

1

−iξ
+ f s1,1

1

∆ · ξ2
+ f s1,2

2

i∆2ξ3
− f s1,3

6

∆3ξ4

}
(175)

+e−ixM ξ

{
f sM−1,0

1

−iξ
+ f sM−1,1

i∆ · ξ + 1

∆ · ξ2

+f sM−1,2

−∆2ξ2 + 2i∆ · ξ + 2

i∆2ξ3

+f sM−1,3

i∆3ξ3 + 3∆2ξ2 − 6i∆ · ξ − 6

∆3ξ4

}

+
M−1∑
j=2

e−ixjξ
{
f sj−1,0

1

−iξ
+ f sj−1,1

i∆ · ξ + 1

∆ · ξ2

+f sj−1,2

−∆2ξ2 + 2i∆ · ξ + 2

i∆2ξ3

+f sj−1,3

i∆3ξ3 + 3∆2ξ2 − 6i∆ · ξ − 6

∆3ξ4

−f sj,0
1

−iξ
− f sj,1

1

∆ · ξ2
− f sj,2

2

i∆2ξ3
+ f sj,3

6

∆3ξ4

}
.

The RHS of (175) can be simplified if we take into account that a reasonable ap-

proximation is continuous on [h, xM], and, if the approximation is chosen so that

Vs(xM) = 0, then Vs is continuous on [h,∞). Then the term of the slowest rate ξ−1

of decay at infinity comes from the only point of discontinuity at x1 = h (this can be

verified directly by using the continuity condition f sj+1,0 = f sj,0+f
s
j,1+f

s
j,2+f

s
j,3). The

M.2. PROOF OF LEMMA 4.3 135

result is

V̂s(ξ) = −e−ix1ξ
{
f s1,0

1

−iξ
+ f s1,1

1

∆ · ξ2
+ f s1,2

2

i∆2ξ3
− f s1,3

6

∆3ξ4

}
(176)

+e−ixM ξ

{
f sM−1,1

1

∆ · ξ2
+ f sM−1,2

2i∆ · ξ + 2

i∆2ξ3

+f sM−1,3

3∆2ξ2 − 6i∆ · ξ − 6

∆3ξ4

}

+
M−1∑
j=2

e−ixjξ
{
f sj−1,1

1

∆ · ξ2
+ f sj−1,2

2i∆ · ξ + 2

i∆2ξ3

+f sj−1,3

3∆2ξ2 − 6i∆ · ξ − 6

∆3ξ4

−f sj,1
1

∆ · ξ2
− f sj,2

2

i∆2ξ3
+ f sj,3

6

∆3ξ4

}
.

Collecting like terms, we derive (89), (90), (90).

M.2. Proof of Lemma 4.3

Use will be made of the following result.

Proposition M.1. The truncation of the state space at x = xM in the backward

induction procedure for the price of a DO option with terminal payoff G(x) and barrier

eh is equivalent to killing the process X when it enters [xM ,∞), and the resulting loss

in option value is less than the price of an up-and-in option with barrier exM which,

upon activation, becomes a European option with the payoff 1(h,∞)(XT)G(XT).

Proof. Follows from the fact that the price calculated with truncation of the

state space at x = xM at steps N − 1, N − 2, . . . , 1 is given by

V tr
0 (x) = e−r(T−t)1(h,∞)(x)Ex

[
1(h,xM)(X∆̄)1(h,xM)(X2∆̄) . . .1(h,xM)(XT−∆̄)1(h,∞)(XT)G(XT)

]
.

�

M.3. PROOF OF LEMMA 4.4 136

Denote by τ the first entrance time of process X into [xM ,∞). For any ω+ ∈

(0, λ+), the τ -price of the embedded European option admits an upper bound via

e−r(T−τ)Eτ
[
(K − eXT)+1[h,∞)(XT)

]
≤ (K − eh)e−r(T−τ)Eτ

[
e−ω+XT−τ · eω+XT−τ · 1[h,lnK](XT)

]
≤ (K − eh)e−r(T−τ)e−ω+(xM−lnK)Eτ

[
e−ω+XT−τ

]
= (K − eh)e−r(T−τ)e−ω+(xM−lnK)−(T−τ)ψ(iω+).

It follows that, at time 0 and X0 = x ∈ (h, xM), the truncation error admits an upper

bound via sup0≤τ≤T of the following expression

Ex
[
e−rτ (K − eh)e−r(T−τ)e−ω+(xM−lnK)−(T−τ)ψ(iω+)

1[xM ,∞)(Xτ)
]

= e−rT (K − eh)e−r(T−τ)−ω+(xM−lnK)−(T−τ)ψ(iω+)

×Ex
[
e−ω−(Xτ−x) · eω−(Xτ−x)1[xM ,∞)(Xτ)

]
≤ e−rT (K − eh)e−ω+(xM−lnK)−(T−τ)ψ(iω+)eω−(xM−x)e−τψ(iω−).

M.3. Proof of Lemma 4.4

For simplicity, and without loss of generality, in the rest of this appendix we will

use the barrierH = eh as the numéraire, setting h = 0. We will also set g0(x) := VN(x)

and, for n = 1, 2, . . . , N − 1, define

gn+1(x) = Ex[gn(X∆̄)1(0,∞)(X∆̄)]. (177)

With this notation and convention, the time-0 option price is given by e−rTgN(x).

The following result will be used.

M.3. PROOF OF LEMMA 4.4 137

Lemma M.2. Let X be a Lévy process such that its transition density p∆̄ ∈ Cm(R),

for some m ∈ Z+, and its first m derivatives are in L1(R). If we define the operator

P
(j)

∆̄
: L∞(R) → L∞(R) by

(P
(j)

∆̄
f)(x) =

dj

dxj
Ex[f(X∆̄)],

for j = 0, 1, . . . ,m (the case j = 0 corresponding to no differentiation), then the norm

of the operator P
(j)

∆̄
is bounded above by ∥p(j)

∆̄
∥L1 (and, in particular, by 1, for j = 0).

Proof. If f ∈ L∞(R), then∣∣∣∣ djdxjEx[f(X∆̄)]

∣∣∣∣ = ∣∣∣∣∫
R
p
(j)

∆̄
(y − x)(−1)jf(y)dy

∣∣∣∣ (178)

≤
∫
R
|p(j)

∆̄
(y − x)| · |f(y)| dy ≤ ∥f∥L∞ ·

∫
R
|p(j)

∆̄
(y − x)| dy = ∥p(j)

∆̄
∥L1 · ∥f∥L∞ . (179)

�

Remark M.3. The lemma applies to model processes, of order ν > 0, and in general

to all RLPEs (cf. Theorem A.10).

Remark M.4. From Lemma M.2, it follows that, if X satisfies the conditions in

the lemma, for some m ∈ Z+, then the functions gn, defined by (177), are such that

g
(j)
n ∈ C(R) ∩ L∞(R), for j = 0, 1, . . . ,m, and n = 1, 2, . . . , N . Hence, there exist

constants dj, j = 0, 1, . . . ,m, such that ∥g(j)0 ∥L∞ ≤ dj. It also follows from Lemma

M.2 (with j = 0) that the total interpolation error in the time-0 option price is

bounded by the sum of the error at each single step of backward induction (the same

applies to other sources of errors).

We can now prove the following result.

M.4. PROOF OF PROPOSITION 4.6 138

Lemma M.5. For the functions gn, n = 1, 2, . . . , N , and a Lévy process satisfying

the conditions of Lemma M.2, for some j ≥ 0, we have

∥g(j)n ∥L∞ ≤ ∥p(j)
∆̄
∥L1 · d0,

for j = 0, 1, . . . ,m, were d0 is as defined in Remark M.4.

Proof. Using (177) and Lemma M.2, we obtain, for n = 0, 1, . . . , N

|g(j)n (x)| =
∣∣∣∣ djdxjEx[gn−1(X∆̄)1(0,∞)(X∆̄)]

∣∣∣∣
≤ ∥p(j)

∆̄
∥L1 · ∥gn−1∥L∞ ≤ ∥p(j)

∆̄
∥L1 · d0.

�

Lemma 4.4 follows from Lemma M.5, together with the previous considerations.

Remark M.6. From Remark M.4 and Lemma M.2, it follows that we can set dj =

∥p(j)
∆̄
∥L1 · ∥VN∥L∞ , j = 0, 1, . . .m. Note that for the DO put case, with h = 0, we have

∥VN∥L∞ = K − 1.

M.4. Proof of Proposition 4.6

Since the transition operator is translation-invariant, we may assume that µ = 0

and ψ = ψ0. If X is a model process of order ν > 0, we can write

p
(n)

∆̄
(x) =

1

2π

∫
Im ξ=ω

e−ixξ−∆̄ψ0(ξ)(−iξ)ndξ, (180)

for any ω ∈ (λ−, λ+). If x < 0, we take ω = ω+ ∈ (0, λ+); if x ≥ 0, we take

ω = ω− ∈ (λ−, 0). Define the contours L+
ω+,ϕ

= iω+ + (eiϕR+ ∪ ei(π−ϕ)R+) and

L−
ω−,ϕ

= iω−+(e−iϕR+∪ ei(−π+ϕ)R+), for ϕ ∈ (0,min{π/2, π/(2ν)}). Since ∥p(n)
∆̄

∥L1 =

M.4. PROOF OF PROPOSITION 4.6 139

∥p(n)
∆̄
1(−∞,0)∥L1 +∥p(n)

∆̄
1(0,∞)∥L1 , we can consider each term separately, obtaining sim-

ilar estimates. For x < 0 (x > 0) we can deform the contour of integration in (180)

into L+
ω+,ϕ

(L−
ω−,ϕ

). Consider the case x < 0. We have

p
(n)

∆̄
(x) =

1

2π

∫
L+
ω+,ϕ

e−ixξ−∆̄ψ0(ξ)(−iξ)ndξ.

Changing variable ξ = iω+ + eiϕρ, ρ > 0, and reducing the integral to R+, we obtain

|p(n)
∆̄

(x)| ≤ 1

π

∫ ∞

0

|e(ω+−ieiϕρ)x−∆̄ψ0(iω++eiϕρ)| · |iω+ + eiϕρ|ndρ

=
1

π

∫ ∞

0

e(ω++cos(ϕ−π/2)ρ)x−∆̄Reψ0(iω++eiϕρ)((ω+ + cosϕ · ρ)2 + (sinϕ · ρ)2)n/2dρ.

(181)

Since ω+ > 0 and cos(ϕ − π/2) > 0, we can integrate this over x < 0, applying

Fubini’s theorem, and obtain

∥p(n)
∆̄
1(−∞,0)∥L1 ≤

1

π

∫ ∞

0

e−∆̄Reψ0(iω++eiϕρ)

ω+ + cos(ϕ− π/2)ρ
((ω+ + cosϕ · ρ)2 + (sinϕ · ρ)2)n/2dρ.

(182)

From (5), it follows that there exists C > 0 such that, for ρ > C, Reψ0(iω++ eiϕρ) is

monotone. For n ≤ 4, and ω+ not too small (hence, λ+ not too small), C is not large,

for processes under consideration, hence we can replace the integral in (182) with one

M.5. PROOF OF LEMMA 4.7 140

over (C,∞) and obtain an approximate bound. Put y = ∆̄Reψ0(iω+ + eiϕρ). Then

ρ =

(
y

∆̄d0+ cos(ϕν)

)1/ν

(1 +O(y−1/ν)) (183)

dρ

dy
∼ ν−1(∆̄d0+ cos(ϕν))−1/νy1/ν−1 (184)

((ω+ + cosϕ · ρ)2 + (sinϕ · ρ)2)n/2

ω+ + cos(ϕ− π/2)ρ
∼ ρn−1

cos(ϕ− π/2)

∼ (cos(ϕ− π/2))−1(∆̄d0+ cos(ϕν))(1−n)/νy(n−1)/ν .

(185)

Substituting into (182), we obtain the approximate bound

∥p(n)
∆̄
1(−∞,0)∥L1 ≤

(∆̄d0+)
−n/ν

πνD(n, ϕ)

∫ ∞

Cν∆̄d0+ cos(ϕν)

e−yyn/ν−1dy, (186)

where D(n, ϕ) = (cos(ϕν))n/ν cos(ϕ− π/2). From this, (112) follows.

M.5. Proof of Lemma 4.7

Write vN(x) = G(x), and

vs(x) = Ex[1(h,∞)(X∆̄)vs+1(X∆̄)], s = 0, 1, . . . , N − 1.

Assume, for simplicity, that r = 0. Denote by Ĩℓ(x) the approximation to Iℓ(x) due

to truncation and/or discretization in the dual space, i.e. Ĩℓ(x) = Iℓ(x) + EIℓ(x),

where EIℓ(x) is the error in the computation of Iℓ(x). Recall that the total error in

the price at t = 0 due to approximations at time steps s = 0, 1, . . . , N − 1 is bounded

above by the sum of the (absolute) errors at each time step. In other words, the total

error at t = 0 can be estimated by summing the bounds for the absolute errors at

steps s = 0, 1, . . . , N − 1, each time assuming that the price vs+1 is exact. With this

M.5. PROOF OF LEMMA 4.7 141

understanding, at each step s = 0, 1, . . . , N − 2, we have

vs(xk) = Ws+1
1,0 · Ĩ0(xk − h) + ∆−1

M∑
j=1

Ws+1
j,1 · Ĩ1(xk − xj)

+ ∆−2

M∑
j=1

Ws+1
j,2 · Ĩ2(xk − xj),

(187)

where Ws+1
1,0 = −vs+1(h). Hence, if we assume that vs+1 is error-free, it follows that

the error in vs(xk) is given by

Evs(xk) = −EI0(xk − h) · vs+1(h) + ∆−1

M∑
j=1

Ws+1
1 (xj) · EI1(xk − xj)

+ ∆−2

M∑
j=1

Ws+1
2 (xj) · EI2(xk − xj).

(188)

If u is smooth on (x1, xM) and continuous on [x1, xM], and we write uj = u(xj), then

the mean value theorem gives (uj+1 − uj)/∆ = u′(xj + θ∆), for j = 1, 2, . . . ,M − 1

and some θ ∈ (0, 1). Substituting this into the expression for the second order finite

difference, one obtains

uj+1 − 2uj + uj−1

∆2
= ξu′′(xj + ϕ∆), (189)

for some ξ ∈ (0, 2), ϕ ∈ (−1, 1). Therefore∥∥∥∥uj+1 − 2uj + uj−1

∆2

∥∥∥∥
ℓ∞

≤ 2∥u′′∥L∞ . (190)

In a similar way, for the third order finite difference, one can write

uj+1 − 3uj + 3uj−1 − uj−2

∆3
= ∆−1(ξ1 − ξ2)u

′′(xj + ϕ1∆)

+∆−1ξ2 [u
′′(xj + ϕ1∆)− u′′(xj −∆+ ϕ2∆)] ,

(191)

M.6. ERROR BOUNDS FOR THE CDS PRICE 142

for some ξj ∈ (0, 2), ϕj ∈ (−1, 1). It follows that

∥uj+1 − 3uj + 3uj−1 − uj−2

∆3
∥ℓ∞ ≤ 2

∆
∥u′′∥L∞ + 6∥u′′′∥L∞ . (192)

Using (103), together with (191) and (192), we obtain

∥Ws+1
j,1 ∥L∞ ≤ ∆2∥V ′′

s+1∥L∞ + 3∆3∥v′′′s+1∥L∞

≤ ∆2∥Vs+1∥L∞ (∥p′′∆̄∥L1 + 3∆∥p′′′∆̄∥L∞)

≤ ∆2(K −H) (∥p′′∆̄∥L1 + 3∆∥p′′′∆̄∥L∞) ,

where Lemma M.2 has been used, with a similar result holding for ∥Ws+1
j,2 ∥L∞ . Also,

for small ∆, we have ∥EIℓ∥ℓ1 ≈ ∆−1∥EIℓ∥L1 . The result then follows from the consid-

erations above, together with the fact that, if f = {fj} and g = {gj} are sequences

such that f ∈ ℓ∞, g ∈ ℓ1, then ∥f ∗ g∥ℓ∞ ≤ ∥f∥ℓ∞ · ∥g∥ℓ1 , where ∗ denotes the discrete

convolution.

M.6. Error bounds for the CDS price

The following result allows one to choose an error tolerance ϵP for the calculation

of the survival probability Ps at each step of backward induction (cf. (121) in Section

M.6) from the error tolerance ϵ for the CDS price. Recall that, for all sources of errors

except the truncation in the state space, the total error is approximately proportional

to the number of steps in the backward induction cycle.

Lemma M.7. Consider a CDS contract with maturity T , spread c, recovery rate R

and underlying notional Ω, with risk-free rate r, under a discrete time model with

time step ∆̄. If ϵ is the error tolerance for the time-0 CDS price, then the maximum

error ϵP in the calculation of each default probability PN = P (N∆̄), in the case of all

M.6. ERROR BOUNDS FOR THE CDS PRICE 143

sources of error except truncation in the state space, can be set as

ϵP =
ϵNΩ−1(c

r
+ 1−R

)
1− e−rT −Ne−rT (er∆̄ − 1)

er∆̄ − 1
+ (1−R)Ne−rT

, (193)

where N = T/∆̄. In the case of truncation in the state space, (M.7) is replaced by

ϵP =
ϵ rΩ−1

c(1− e−rT) + r(1−R)
. (194)

Proof. Denote by ϵs the error in the calculation of P (s∆̄). For all errors except

the one due to truncation in the state space, we have ϵs ≈ sϵ1. If we denote the

corresponding error in the CDS price by ErrCDS(T), then we can write, using (121)

Ω−1ErrCDS(T) = ϵ1

(c
r
+ 1−R

)
(1− e−r∆̄)

N−1∑
s=0

e−rs∆̄s+ (1−R)e−rTNϵ1.

Hence

∣∣ϵ1Ω−1ErrCDS(T)ϵ
−1
1

∣∣ ≤ (c
r
+ 1−R

) 1− e−rT −Ne−rT (er∆̄ − 1)

er∆̄ − 1
+ (1−R)Ne−rT ,

from which (193) follows. The proof for the case of the truncation error in the state

space is similar, except that one has ϵs ≈ ϵ1. �

The following result can be used to find a suitable value of xM so that the absolute

error in the survival probability P (T), for T > 0, lies below a given error tolerance ϵ.

Lemma M.8. Let P (T) denote the probability of survival from time 0 until time T >

0, calculated using (123). Then the error in the calculation of P (T) due to the trunca-

tion of the state space at x = xM admits the upper bound e−ω−xM · supτ∈[0,T] e−τψ(iω−),

for any ω− ∈ (λ−, 0).

M.6. ERROR BOUNDS FOR THE CDS PRICE 144

Proof. We use a similar approach to that for the case of barrier options in Ap-

pendix M.2. Recall from Section 5.1.1 that P (T) = erTVDOD(T, 0), where VDOD(T, x)

is the time-0 price of a (discretely monitored) DO option with payoff 1(h,∞)(x) and

maturity T . Also recall from Appendix M.2 that the truncation of the state space

at x = xM in the calculation of the price of a DO option results in a loss in the

option value which is bounded above by the price of an UI option with barrier xM ,

which, upon activation, becomes a European option with payoff G(x) ≡ 1, barrier eh

and maturity T . Let τ be the first-entrance time into the set [xM ,∞). Under the

transformed measure Qγ (where γ ∈ (0,−λ−); cf. Section 5.1.1, Appendix A.3.2), the

τ -price of the embedded European option admits the following upper bound

e−r(T−τ) EQγ

τ [e−γXT1(h,∞)(XT)]

= e−r(T−τ) EQγ

τ [e−γ(Xτ+XT−Xτ)1(h,∞)(XT)]

= e−r(T−τ)e−γXτ EQγ

τ [e−γXT−τ1(h,∞)(XT)]

≤ e−r(T−τ)e−γXτ e−(T−τ)ψγ(iγ) = e−r(T−τ)e−γXτ ,

since the characteristic exponent of X under Qγ is ψγ(ξ) = ψ(ξ − iγ). Hence, at

step t = 0, the truncation error in the calculation of VDOD(T, x), under Q, is bounded

above via the following expression, for any ω′
− ∈ (λ− + γ, 0)

sup
τ∈[0,T]

{
eγxe−rτ EQ,x [e−r(T−τ)−γxM · 1[xM ,∞)(XT)

]}
= e−rT eγ(x−xM) · sup

τ∈[0,T]
EQ,x

[
e−ω

′
−(Xτ−x) · eω′

−(Xτ−x)1[xM ,∞)(XT)
]

≤ e−rT eγ(x−xM)+ω′
−(xM−x) · sup

τ∈[0,T]
e−τψ

γ(iω′
−) = eω−(xM−x) · sup

τ∈[0,T]
e−τψ(iω−),

where ω− ∈ (λ−, 0). The result follows from the fact VDOD(T, x) = eγxV γ
DOD(T, x).

�

APPENDIX N

Benchmark prices used in numerical examples

Tables 1 and 2 show the benchmarks used for the numerical comparisons in Section
4.4.

Table 1. Benchmark prices used for numerical examples in Section
4.4. DO put option with H = 80, K = 100, r = 0.03, under KoBoL
with λ− = −8, λ+ = 9, ν = 1.2, m2 = 0.16, r = 0.03, q = 0.

x− h S T = 0.25 T = 0.5 T = 1 T = 2
0.0198598 81.60466 0.7874795 0.3022111 0.1092502 0.0378899
0.0397196 83.24151 1.2045203 0.4655813 0.1688737 0.0586578
0.0595793 84.91120 1.5747130 0.6170645 0.2253475 0.0785302
0.0794391 86.61437 1.8976159 0.7583372 0.2796995 0.0979428
0.0992989 88.35171 2.1686511 0.8888220 0.3320719 0.1170169
0.1191587 90.12389 2.3836597 1.0073908 0.3823338 0.1357724
0.1390184 91.93162 2.5402448 1.1128661 0.4302551 0.1541880
0.1588782 93.77561 2.6382029 1.2042218 0.4755730 0.1722232
0.1787380 95.65659 2.6795476 1.2806787 0.5180235 0.1898282
0.1985978 97.57530 2.6682978 1.3417520 0.5573577 0.2069493
0.2184575 99.53249 2.6101161 1.3872690 0.5933527 0.2235316

Table 2. Benchmark prices used for numerical examples in Section
4.4. DO put option with H = 80, K = 100, r = 0.03, under KoBoL
with λ− = −60, λ+ = 50, ν = 0.7, c = 4, r = 0.05, q = 0.02.

x− h S T = 0.25 T = 0.5 T = 1 T = 2
0.0198598 81.60466 2.4672710 1.1678112 0.4804866 0.1775060
0.0397196 83.24151 3.8518309 1.8633295 0.7778474 0.2898515
0.0595793 84.91120 4.9223824 2.4597732 1.0493906 0.3961360
0.0794391 86.61437 5.6382276 2.9398467 1.2907212 0.4956579
0.0992989 88.35171 5.9914948 3.2912529 1.4972945 0.5873418
0.1191587 90.12389 6.0088954 3.5099061 1.6657565 0.6702021
0.1390184 91.93162 5.7438663 3.5998892 1.7942011 0.7434307
0.1588782 93.77561 5.2658178 3.5723590 1.8821954 0.8064230
0.1787380 95.65659 4.6493119 3.4438925 1.9307008 0.8587865
0.1985978 97.57530 3.9649264 3.2345642 1.9419230 0.9003412
0.2184575 99.53249 3.2727447 2.9659962 1.9191107 0.9311127

145

APPENDIX O

The iFT method for put-like options

In this appendix, we recall two methods for the calculation of integral (106) in

Section 4.2.5 with ω ∈ (0, λ+). Calculations in the case ω ∈ (λ−, 0) can be reduced

to the ones in the case ω ∈ (0, λ+) by making the change of variables ξ 7→ −ξ and

replacing ψ(ξ) with ψ̃(ξ) = ψ(−ξ) (cf. Appendix D). The same methods can be

applied to integrals with more general functions Ĝ(ξ) in place of (−iξ)−ℓ−1. See [19]

for more details.

O.1. Flat iFT method

We choose a uniformly spaced grid ξj = ξ1 + (j − 1)ζ, j = 1, 2, . . . , 2N + 1, where

ξ1 = −Nζ+iω on the line Im ξ = ω, discretize the integral using the infinite trapezoid

rule with grid iω + ζZ, and truncate the sum

I(ω;n, ℓ) ≈ e−r∆̄ζ

2π

2N+1∑
j=1

eiξj(n∆+µ∆̄)−∆̄ψ0(ξj)(−iξj)−ℓ−1dξ. (195)

As noted in Section 2.2.2, the number of operations decreases almost twofold using

the equivalent expression

I(ω;n, ℓ) ≈ e−r∆̄−ω(n∆+µ∆̄) ζ

π

×Re
N∑
j=1

eiηj(n∆+µ∆̄)−∆̄ψ0(iω+ηj)(ω − iηj)
−ℓ−1(1− δj=0/2)dη. (196)

Recall that we need to evaluate (196) for 0 ≤ n ≤M − 1 if ℓ = 0, and for −M + 1 ≤

n ≤ M − 1, if ℓ = 1, 2, 3. Hence, if M is large (e.g., about a hundred or more) then

146

O.1. FLAT IFT METHOD 147

the speed of calculations can be enhanced using the iFFT algorithm and its variations

(cf. Appendix B, [14, 13, 19]).

O.1.1. Error analysis. As in [45], we start with Theorem 3.2.1 in [81], which

we reformulate in accordance with our system of notation. Denote by fℓ(ξ) the

integrand in (106) for a specific choice of ℓ, including the factor (2π)−1 outside the

integral, and choose [µ−, µ+] ⊂ (0, λ+) and set D(µ−, µ+) := {ξ | Im ξ ∈ (µ−, µ+)}.

Let H1(D(0, λ+)) denote the Hardy space of functions analytic in the strip (µ−, µ+)

such that ∫ µ+

µ−

|fℓ(η + iω)|dω → 0 as η → ±∞,

and the Hardy norm is finite (cf. Appendix G, [81]):

∥fℓ∥D(µ−,µ+) := lim
ω↑µ+

∫
R
|fℓ(η + iω)|dη + lim

ω↓µ−

∫
R
|fℓ(η + iω)|dη <∞.

Denote by Edisc(ζ;∞) the error of the replacement of the exact option price (106)

with the price calculated using the infinite trapezoid rule with mesh ζ, and, for

ω ∈ (µ−, µ+), set d(ω) = min{ω − µ−, µ+ − ω}. The following result will be used.

Theorem O.1. ([81, Theorem 3.2.1]). For r = 0, we have

∣∣Edisc(ζ;∞)
∣∣ ≤ e−2πd(ω)/ζ

1− e−2πd(ω)/ζ
∥fℓ∥D(µ−,µ+). (197)

Corollary O.1. Let the error tolerance ϵ > 0 for the discretization error be small

so that ϵf := ϵ/∥fℓ∥D(µ−,µ+) < 1. Then, for r = 0, the mesh ζ can be chosen as

ζ = 2πd(ω)/ ln((1 + ϵf)/ϵf).

If ϵ≪ 1/∥fℓ∥D(µ−,µ+), then we may (and will) use the following approximation

ζ = 2πd(ω)/ ln(∥fℓ∥D(µ−,µ+)/ϵ). (198)

O.1. FLAT IFT METHOD 148

Set x′ = n∆+ µ∆̄. The following estimates of the Hardy norm are derived similarly

to Proposition 2.4 in [19].

Proposition O.2. a) Consider the case of Iℓ(x), ℓ ≥ 1. Then, for r = 0 and any

[µ−, µ+] ⊂ (0, λ+), one can apply (197) and the bound

∥fℓ∥D(µ−,µ+) ≤ 2 max
γ={µ−,µ+}

e−γx
′−∆̄ψ0(iγ)

(ℓ+ 1)γℓ
, (199)

where x′ = x+ µ∆̄.

b) For the calculation of I0(x), (199) is replaced by

∥fℓ∥D(µ−,µ+) ≤
Γ(s/2)√

π Γ ((s+ 1)/2)
max

γ={µ−,µ+}
γ−se−γx

′−∆̄ψ0(iγ), (200)

where s > 0, and x′ = x+ µ∆̄.

c) For the calculation of vputN−1(x), (199) is replaced by

∥fℓ∥D(µ−,µ+) ≤ 2 max
γ={µ−,µ+}

Ke−γx
′−∆̄ψ0(iγ)

(ℓ+ 1)γℓ
, (201)

where x′ = x+ µ∆̄− lnK.

d) For the calculation of vbarrN−1(x), (199) is replaced by

∥fℓ∥D(µ−,µ+) ≤
KΓ(s/2)√

π Γ ((s+ 1)/2)
max

γ={µ−,µ+}
γ−se−γx

′−∆̄ψ0(iγ), (202)

where s > 0, and x′ = x+ µ∆̄− h.

e) For the calculation of ΠN−1(x), (199) is replaced by

∥fℓ∥D(µ−,µ+) ≤
Γ(s/2)√

π Γ ((s+ 1)/2)
max

γ={µ−,µ+}
γ−se−γx

′−∆̄ψ0(iγ), (203)

where s > 0, and x′ = x+ µ∆̄− h.

O.1. FLAT IFT METHOD 149

Proof. Assume r = 0. Consider case (a) first. We have

1

π

∫ ∞

0

dη

|η + iω|ℓ+1
=

1

π

∫ ∞

0

dη

(ω2 + η2)
ℓ+1
2

=

1

2ω
, ℓ = 1,

1

πω2
, ℓ = 2,

1

4ω3
, ℓ = 3,

where the integral can be calculated using the substitution tan θ = η/ω. Hence, in all

three cases,
(
(ℓ+ 1)ωℓ

)−1
is an upper bound. For ω ∈ (λ−, λ+), ψ1(η) := ψ0(η+iω)−

ψ0(iω) is the characteristic exponent of a Lévy process, obtained from the process

X−µt via an Esscher transform (cf. Remark A.14, [18, §1.3.4]). Due to the properties

of characteristic functions, Reψ1(η) ≥ 0, and therefore Reψ0(η + iω) ≥ ψ0(iω). It

follows that

1

π

∫ ∞

0

|fℓ(η + iω)|dη ≤ sup
η∈R

∣∣∣e−ωx′−∆̄ψ0(η+iω)
∣∣∣ · ∫ ∞

0

dη

|η + iω|ℓ+1
≤ e−ωx

′−∆̄ψ0(iω)

(ℓ+ 1)ωℓ
.

In case (b), with ℓ = 0, we need a bound for |I0(x)|. For some s > 0, we have

|I0(x)| ≤
e−ωx

′

π

∫ ∞

0

e−∆̄Reψ0(η+iω)

(ω2 + η2)
1
2

dη ≤ e−ωx
′−∆̄ψ0(iω)

π

∫ ∞

0

|η + iω|−s

(ω2 + η2)
1
2

dη

=
e−ωx

′−∆̄ψ0(iω)

π

∫ ∞

0

dη

(η2 + ω2)
s+1
2

=
e−ωx

′−∆̄ψ0(iω)

2ωs
√
π

Γ(s/2)

Γ ((s+ 1)/2)
.

The last step can be proved as follows. Consider the integral

I =

∫ ∞

0

dη

(ω2 + η2)
s+1
2

.

Using the substitution tan θ = η/ω, we obtain

I = ω−s
∫ π/2

0

(cos θ)s−1dθ. (204)

O.1. FLAT IFT METHOD 150

Recall that the beta function, which can be defined by

B(x, y) = 2

∫ π/2

0

(sin θ)2x−1(cos θ)2y−1dθ (205)

for Rex > 0, Re y > 0, satisfies

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (206)

The result then follows from (204), (205), and (206). The proofs for cases (c)-(e) are

similar. �

The same argument as in [19, §2.7] can be used to derive from Proposition O.2

the following recommendation for a choice of ω and ζ.

O.1.1.1. Choice of ω and ζ. We assume that λ+ is not small. Given a small

discretization error tolerance ϵ > 0, we can use Theorem O.1, Corollary O.1, and

Proposition O.2 to choose ω and ζ. Consider first the calculation of Iℓ(x), ℓ ≥ 1 (case

(a) in Proposition O.2). We can choose

ζ =
2πd(ω)

ln ∥fℓ∥D(µ−,µ+) − ln ϵ
, (207)

where fℓ(η + iω) again denotes the integrand in (106). We have 0 < µ− < µ+ < λ+,

and ω ∈ (µ−, µ+). Set ω ∈ (µ+ + µ−)/2, then d = ω ∈ (µ+ − µ−)/2. Recall that,

according to Proposition O.2, we have

∥fℓ∥D(µ−,µ+) ≤ 2 max
γ={µ−,µ+}

e−γx
′−∆̄ψ0(iγ)

(ℓ+ 1)γℓ
.

It follows from (207) that we can take

ζ = 2πd

[
ln

(
1

ϵ1

)
+ min

γ={µ−,µ+}

(
−γx′ − ∆̄ψ0(iγ)− ℓ ln γ

)]−1

, (208)

O.1. FLAT IFT METHOD 151

where ϵ1 = (ℓ + 1)ϵ/2. From the previous considerations, the following modification

of the prescription in [19, §2.7] can be used1

1. If 0.1 ln(1/ϵ1) ≥ −∆̄ψ0(iλ+ − 0)− ℓ lnλ+, then set µ+ = λ+, otherwise find µ+ as

the unique positive solution of equation 0.1 ln(1/ϵ1) = −∆̄ψ0(iµ+)− ℓ lnµ+.

2. Set ω = µ+/2, µ− = 0, ζ = −πµ+/(1.1 ln ϵ1).

For ℓ = 0 (case (b) in Proposition O.2), we have

∥fℓ∥D(µ−,µ+) ≤
Γ(s/2)√

π Γ ((s+ 1)/2)
max

γ={µ−,µ+}
γ−se−γx

′−∆̄ψ0(iγ).

Hence, (208) becomes

ζ = 2πd

[
ln

(
1

ϵ′1

)
+ min

γ={µ−,µ+}

(
−γx′ − ∆̄ψ0(iγ)− s ln γ

)]−1

,

where now ϵ′1 =
√
πϵΓ ((s+ 1)/2) /Γ(s/2). Numerical testing for KoBoL parameters

which typically arise from calibration to market data shows that, in practice, one can

usually take s ∈ (0, 0.1). The algorithm for the choice of ω and ζ is the same as the

one for the case ℓ ≥ 1, except that we replace ϵ1 by ϵ
′
1, and ℓ by s. The modifications

for the remaining cases (c)-(e) in Proposition O.2 are straightforward.

Remark O.3. Since the discretization error decays exponentially, in applications,

it is not always necessary to use an accurate bound for this error. An alternative

procedure is to fix a very large value of the truncation parameter Λ (so that the

truncation error is negligible), then start from an initial value of ζ, e.g., ζ = 2, and,

in a cycle, reduce it by a factor of 1.5 at each step, say, until the difference in price

between two steps lies below a small error tolerance. This procedure works due to the

fact that the discretization error in the price, without truncation, decays very fast,

as C exp[−2πd(ω)/ζ], where C is a constant (cf. Section 3.5.1).

1Typically, µ− is close to zero, hence, one can use µ− = 0 as a good approximation.

O.2. PARABOLIC IFT METHOD (CASE x′ ≥ 0, ω > 0) 152

Estimates for the truncation error and the choice of truncation parameter Λ under

KoBoL for flat iFT, which are not relevant for our purposes, can be found in [19,

§2.8].

O.2. Parabolic iFT method (case x′ ≥ 0, ω > 0)

O.2.1. Deformation and change of variable. Let x′ := n∆ + µ∆̄ ≥ 0. As

in Section 2.3.1, we deform the contour of integration in the formula (106) under

the conformal map χ+
α , defined by (20) for α ∈ [1, 2]. In the same way as (22) was

obtained from (12), we obtain from (106)

I(ω;n, ℓ) =
e−r∆̄

2π

∫
Im ξ=ω

eix
′χ+

α (ξ)−∆̄ψ0(χ+
α (ξ))(−iχ+

α (ξ))
−ℓ−1α

(
λ+ + iξ

λ+

)α−1

dξ. (209)

Finally, to decrease CPU time, we take into account that, for real η, i(iω + η) =

i(iω − η), iχ+
α (iω + η) = iχ+

α (iω − η) and ψ0(χ+
α (iω + η)) = ψ0(χ+

α (iω − η)), and

obtain

I(ω;n, ℓ) =
e−r∆̄

π
Re

∫ iω+∞

iω

eix
′χ+

α (ξ)−∆̄ψ0(χ+
α (ξ))(−iχ+

α (ξ))
−ℓ−1α

(
λ+ + iξ

λ+

)α−1

dξ.

(210)

Recall that we term this variation of iFT conformal parabolic iFT method (or para-

bolic iFT) of order α, or Para(α) for short.

The larger the α parameter, the faster the integrand in (210) decays at infinity.

Recall from Section 2.3.1 that we can consider the analytic continuation of the RHS

in (210) w.r.t. α. The rightmost part of (20) admits the analytic continuation w.r.t.

α in the whole plane. As noted in Section 2.3.1, ψ0(χ+
α (ξ)) for KoBoL with ν ∈ (0, 2),

ν ̸= 1 can be written explicitly as in (24). Finally, it is necessary that the integrand

in (209) be of class L1. Recall that, in order for this to be the case, we must have

α ∈ [1, α0), where α0 > 1 depends on x′ and the order of the process:

O.2. PARABOLIC IFT METHOD (CASE x′ ≥ 0, ω > 0) 153

• if x′ > 0 and ν ∈ [0, 1), then α0 = min{3, 1 + 1/ν};

• if x′ = 0 and ν ∈ [0, 1), then α0 = min{4, 1 + 1/ν};

• if x′ ≥ 0 and ν ∈ [1, 2], then α0 = 1 + 1/ν.

The integral on the RHS of (210) is calculated using the simplified trapezoid rule.

O.2.2. Recommendation for the choice of ω and ζ for parabolic iFT

method. In Appendix O.1.1, we analyzed the discretization error for the flat iFT

method, giving a procedure to find the mesh ζ and the offset ω in terms of the strip

Im ξ ∈ [µ−, µ+] ⊂ (0, λ+), such that ω = (µ++µ−)/2. We follow the exposition in [19,

§5.2.1], which we reformulate in accordance with our system of notation, to outline the

procedure for the case of parabolic iFT and put-like options. For parabolic iFT, we

need to find σ± such that χ+
α (iσ±) = iµ±, then set ω = (σ++σ−)/2, d = (σ+−σ−)/2.

The σ± can be found from (λ+ − µ±)/λ+ = ((λ+ − σ±)/λ+)
α, which gives

σ± = λ+ − λ+

(
λ+ − µ±

λ+

)1/α

.

If µ− = 0, then σ− = 0, and if µ+ = λ+, then σ+ = λ+. It follows that

d =
λ+
2

[(
λ+ − µ−

λ+

)1/α

−
(
λ+ − µ+

λ+

)1/α
]
, (211)

ω = λ+ − λ+
2

[(
λ+ − µ−

λ+

)1/α

+

(
λ+ − µ+

λ+

)1/α
]
. (212)

If we denote the transformed coordinate by η = χ+
α (ξ), then the domain of analyticity

outside the imaginary axis extends to infinity as Im η → ±∞, hence, one can expect

the main contribution to the discretization error to come from the bottleneck between

the two cuts. Therefore we can select the strip in the transformed η-coordinate which

has the same intersection with the imaginary axis as the strip Im ξ ∈ [µ−, µ+] in the

O.2. PARABOLIC IFT METHOD (CASE x′ ≥ 0, ω > 0) 154

original ξ-coordinate. Similarly to (198), we have

ζ =
2πd

ln
(
∥fℓ(χ+

α (·))∥D(σ−,σ+)/ϵ
) ,

where, e.g., for the calculation of Iℓ(x), we have

fℓ(χ
+
α (ξ)) =

e−r∆̄

2π
eix

′χ+
α (ξ)−∆̄ψ0(χ+

α (ξ))(−iχ+
α (ξ))

−ℓ−1α

(
λ+ + iξ

λ+

)α−1

.

Since the exponential factor decays very fast as Re ξ → ±∞ along the lines Im ξ = σ±,

we can expect to obtain a reasonably good upper bound for it via the modulus of its

value at ξ = iσ±, i.e., at χ
+
α (ξ) = iµ±. It follows that the Hardy norm in the flat iFT

case is approximately equal to the Hardy norm in the parabolic iFT case. Therefore,

the following modification of the algorithm in Appendix O.1.1.1 can be used for the

choice of ω and ζ, for a given small error tolerance ϵ

1. If 0.1 ln(1/ϵ1) ≥ −∆̄ψ0(iλ+ − 0)− ℓ lnλ+, then set µ+ = λ+, otherwise find µ+ as

the unique positive solution of equation 0.1 ln(1/ϵ1) = −∆̄ψ0(iµ+)− ℓ lnµ+.

2. Set µ− = 0, calculate d and ω according to (211) and (212), respectively, and set

ζ = −πd/(1.1 ln ϵ1).

O.2.3. Recommendations for the choice of truncation parameter Λ. We

give the recommendations for KoBoL and VG models, which are straightforward

generalizations of those in [19] for the case ℓ = 1; therein, the reader can also find

the recommendation for NIG, and detailed error estimates for the case ℓ = 1.

Proposition O.4. Let ν ∈ (0, 2), ν ̸= 1, and either x′ > 0 and α ∈ (1,min{1 +

1/ν, 3}), or x′ = 0 and α ∈ (1,min{1 + 1/ν, 4}). If ϵ > 0 is the tolerance for the

truncation error in the dual space, and r = 0, then

O.2. PARABOLIC IFT METHOD (CASE x′ ≥ 0, ω > 0) 155

a) For the calculation of Iℓ(x), Λ can be chosen as the smallest number which satisfies

α

αℓ+ s

ex
′A(Λ)Λα+∆̄B(Λ)Λαν

Λℓα+s
< ϵπλ

ℓ(1−α)
+ exp[c∆̄Γ(−ν)(λν+ + (−λ−)ν)], (213)

where x′ = x + µ∆̄ and s = 0 if ℓ ≥ 1; if ℓ = 0, then we require that (213) holds

for some s > 0 (this recommendation is applicable only in the region of sufficiently

large Λ, where the LHS is monotone or very close to a monotone function). The

functions A(Λ) and B(Λ) are defined by (25) and (26), respectively.

b) For the calculation of vputN−1(x), equation (213) is replaced by

Kex
′A(Λ)Λα+∆̄B(Λ)Λαν

Λα
< ϵπλ1−α+ exp[c∆̄Γ(−ν)(λν+ + (−λ−)ν)], (214)

where x′ = x+ µ∆̄− lnK.

c) For the calculation of vbarrN−1, equation (213) is replaced by

2αKex
′A(Λ)Λα+∆̄B(Λ)Λαν

sΛs
< ϵπ exp[c∆̄Γ(−ν)(λν+ + (−λ−)ν)], (215)

where x′ = x+ µ∆̄− h.

d) For the calculation of ΠN−1(x), equation (213) is replaced by

αex
′A(Λ)Λα+∆̄B(Λ)Λαν

sΛs
< ϵπ exp[c∆̄Γ(−ν)(λν+ + (−λ−)ν)], (216)

where x′ = x+ µ∆̄− h.

Proof. Consider case (a) with ℓ ≥ 1. Then (213) follows from Proposition 2.5,

together with the fact that, for a decreasing positive function f and any Λ > 0, we

have ∫ ∞

Λ

f(x)αx−ℓα−1dx ≤ f(Λ)

ℓΛαℓ
.

If ℓ = 0, then the proof is similar to that of case (b) in Proposition O.2. �

O.2. PARABOLIC IFT METHOD (CASE x′ ≥ 0, ω > 0) 156

Remark O.5. As noted in [19, §5.2], in practice, a good approximation can be

obtained by simply neglecting the O(Λ−1) terms in the definitions of A(Λ) and B(Λ),

i.e., using A(∞) and B(∞) instead of A(Λ) and B(Λ).

O.2.3.1. Estimates for the L1-norms of Edisc
Iℓ

and E tr
Iℓ
, ℓ ≥ 1. Since each calculation

of Iℓ(x) over the grid x = n∆, n = −M + 1,−M + 2, . . . ,M − 1, actually involves

two separate parabolic iFT procedures, one for x′ = x + µ∆̄ ≥ 0 and the other for

x′ < 0 (cf. Appendix O.3), we need separate bounds for the L1-norms of Edisc
Iℓ

·1{x′≥0}

and Edisc
Iℓ

·1{x′<0}, and similarly for E tr
Iℓ
. The following results can be derived from the

bounds for the discretization and truncation errors for parabolic iFT.

Proposition O.6. Denote by Edisc
Iℓ

(x) the discretization error in the calculation of

Iℓ(x), ℓ ≥ 1, with mesh ζ, using flat iFT. Then, if r = 0, the L1-norm of its restriction

to x+ µ∆̄ ≥ 0 satisfies the following upper bound (cf. (199))

∥∥Edisc
Iℓ

· 1{x′≥0}
∥∥
L1

≤ 2e−2πd(ω)/ζ

1− e2πd(ω)/ζ
max

γ={µ−,µ+}

e−∆̄ψ0(iγ)

(ℓ+ 1)γℓ+1
. (217)

Remark O.7. The bound for the case x′ < 0 is similar, except that instead of

the original process one considers the “dual” process (cf. Appendix D). For the

case of KoBoL or VGP, this is obtained by replacing λ± with −λ∓, and ψ0(ξ) with

ψ̃0(ξ) := ψ0(−ξ).

Remark O.8. If ϵ is the maximum tolerance for
∥∥Edisc

Iℓ
· 1{x′≥0}

∥∥
L1
, then the pair

(ω, ζ) can be chosen using the algorithm in Appendix O.2.2, only with x′ = 0 and the

same choice ϵ′1 = (ℓ+ 1)ϵ/2, but replacing ℓ with ℓ+ 1 in Step 1.

Proposition O.9. If ϵ is the maximum tolerance for ∥E tr
Iℓ
· 1{x′≥0}∥L1, where E tr

Iℓ
(x)

is the truncation error in the calculation of Iℓ(x), ℓ ≥ 1, using parabolic iFT, with

truncation parameter Λ, then, in the case where r = 0 and the underlying follows a

O.3. GENERAL IMPLEMENTATION SCHEME FOR PARABOLIC IFT 157

KoBoL process of order ν ∈ (0, 2), ν ̸= 1, Λ can be chosen as the smallest number,

which satisfies

e∆̄B(∞)Λαν

Λα(ℓ+1)|A(∞)|
< ϵπℓλ

ℓ(1−α)
+ exp[c∆̄Γ(−ν)(λν+ + (−λ−)ν)]. (218)

(This recommendation is applicable only in the region of sufficiently large Λ, where

the LHS is monotone or very close to a monotone function).

Remark O.10. The bound for the x′ < 0 case is similar, except that the absolute

values of the steepness parameters are interchanged, λ± 7→ −λ∓, including when

calculating the expressions for A(Λ) and B(Λ) (cf. Appendix D).

O.3. General implementation scheme for parabolic iFT

We give the algorithm for the calculation of the price of a put-like or call-like option

using Para(α), according to (210). We only give the details for the case of OTM and

ATM put-like options, since call-like options can be priced using (the equivalent of)

put-call parity2 (PCP), if needed (e.g., (108) for the calculation of I(ω;n, ℓ)).

O.3.1. Choice of α and general scheme for put-like options. We set αν =

1 + 1/ν for KoBoL with ν ∈ (0, 1) or ν ∈ (1, 2). The recommended choice of α is as

follows

1. x′ > 0 (OTM). Use Para(α) with α ∈ (1,min{3, αν});

2. x′ = 0 (ATM) Use Para(α) with α ∈ (1,min{4, αν});

3. x′ < 0 (ITM). Price the equivalent (OTM) call-like option, with the same x′, using

Para(α) with α ∈ (1,min{3, αν}), using the symmetry of Appendix D, hence,

replacing x′ by −x′. Finally, apply PCP to recover the price of the original option.

2I.e., the relationship between the price of a call-like option and that of the equivalent put-like
option, which can be obtained by using the residue theorem in the iFT expression for the price.

O.3. GENERAL IMPLEMENTATION SCHEME FOR PARABOLIC IFT 158

O.3.1.1. Procedure for the choice of error tolerances ϵ± for each subgrid x′ ≥ 0

and x′ < 0, given an overall error tolerance ϵ at a point x′0. This procedure is an

initial step which should be performed in order to determine the appropriate error

tolerances, as well as the optional output x′±, which are used in order to calculate the

iFT settings Λ, (ω, ζ).

1. Take grid x′, error tolerance ϵ, and point x′0 (the latter is optional), such that x′0

lies on x′.

2. Set3 x′
− = x′ (find(x′ < 0)) and x′

+ = x′ (find(x′ ≥ 0)).

3. If x′0 ∈ x′
+, and x

′
− is empty, then set x′+ = x′0, ϵ+ = ϵ. If x′0 ∈ x′

−, and x
′
+ is

empty, then set x′− = x′0, ϵ− = ϵ. If x′0 is not provided, then set x′+ = min(x′
+) and

ϵ+ = ϵ if x′
− is empty, or x′− = max(x′

−) and ϵ− = ϵ if x′
+ is empty.

4. If neither x′
− nor x′

+ is empty, then

a. If x′0 ∈ x′
+, then set x′+ = x′0, x

′
− = max(x′

−), ϵ+ = ϵ− = ϵ/2.

b. If x′0 ∈ x′
−, then set x′− = x′0, x

′
+ = min(x′

+), ϵ+ = ϵ− = ϵ/2.

c. If x′0 is not provided, then set x′+ = min(x′
+), x

′
− = max(x′

−), ϵ+ = ϵ− = ϵ/2.

O.3.2. Algorithm for parabolic iFT. We describe the algorithm for the imple-

mentation of Para(α), for a given function Ĝ(ξ) (the Fourier transform of the payoff)

and “driftless” characteristic exponent function ψ0(ξ), over a grid x′ = x + µτ . We

assume that the grid x′ has already been broken into the subgrids x′
± (cf. Step 2 of

the algorithm in Appendix O.3.1.1), and that the iFT settings Λ± and (ω±, ζ±) for

each subgrid have already been calculated.

The algorithm is as follows

3In this appendix, we use a notation reminiscent of MATLAB syntax.

O.3. GENERAL IMPLEMENTATION SCHEME FOR PARABOLIC IFT 159

1. Computation of Para(α) over the grid x′
+

a. Create the grids

η = iω+(0 : N+ − 1) · ζ+,

ηα = iλ+ − iλ1−α+ exp[α · ln(λ+ + iη)],

dηα = αλ1−α+ exp[(α− 1) · ln(λ+ + iη)],

ψα = ψ(χ+
α (η)),

where ψ(χ+
α (η)) is given by (24) for KoBoL with ν ∈ (0, 1) or ν ∈ (1, 2).

b. Create the gridH = exp(−τ(r+ψα)) .* dηα .* Ĝ(ηα), then replace H(1) with

H(1)/2.

c. Create the result grid V+ = zeros(1,M).

d. In a loop4 w.r.t. j = 1, . . . ,M , set V+ = exp(ix′(j)ηα) .*H * ones(1, N+).

e. Finally, replace V+ with ζ+/π · realV+.

2. Repeat the procedure in step 1 over the grid x′
−, replacing Ĝ(ξ) by G̃(ξ) := Ĝ(−ξ)

and ψ0(ξ) by ψ̃0(ξ) := ψ0(−ξ). Call the result V−.

3. Apply PCP to either V− or V+, if needed.

4. The grid V = [V− V+] stores the result of the calculation.

4This step can be parallelized, rather than run in a loop. However, in the case of discrete barrier
options, one typically needs to use rather large grids x′, hence such a parallelization is usually not
feasible.

APPENDIX P

Hilbert transform method

P.1. General idea

This method follows from the approximation theory in Hardy spaces of analytical

functions, first applied in finance by Feng and Linetsky [45].

Recall that [18, §15.5.3]

F(1(0,∞)f)(ξ) =
1

2πi

∫
R

f̂(η)

ξ − i0− η
dη,

where f ∈ L1(R), and f̂ is the Fourier transform of f . By applying the residue

theorem, this can be re-written as

F(1(0,∞)f)(ξ) =
1

2
f̂(ξ) +

1

2i
Hf̂(ξ),

where Hf̂ is the Hilbert transform of f̂ , defined by

Hf̂(ξ) = 1

π
P

∫
R

f̂(η)

ξ − η
dη,

and P denotes the Cauchy principal value of the integral. From this we obtain

F(1(h,∞)f)(ξ) =
1

2
f̂(ξ) +

1

2i
e−ihξH(eihηf̂(η))(ξ). (219)

Similarly,

F(1(−∞,h)f)(ξ) =
1

2
f̂(ξ)− 1

2i
e−ihξH(eihηf̂(η))(ξ). (220)

160

P.2. ALGORITHMS 161

Finally, using 1(h−,h+) = 1(h−,∞)−1[h+,∞), and noticing that (219) is valid with [h,∞)

instead of (h,∞), we obtain

F(1(h−,h+)f)(ξ) =
1

2i

(
e−ih−ξH(eih−ηf̂(η))− e−ih+ξH(eih+ηf̂(η))

)
(ξ)

=

∫
R

e−ih−(ξ−η) − e−ih+(ξ−η)

2πi(ξ − η)
f̂(η)dη

=

∫
R
e−i(ξ−η)(h++h−)/2 sin(

(ξ−η)(h+−h−)
2

)

π(ξ − η)
f̂(η)dη. (221)

P.2. Algorithms

P.2.1. Down-and-out barrier option with terminal payoff G.

1. Put1 V̂N(ξ) = F(1(h,∞)G)(ξ).

2. In a cycle w.r.t. s = N,N − 1, . . . , 1, calculate

V̂s−1(ξ) =
1

2
e−∆̄ψ(ξ)V̂s(ξ) +

e−ihξ

2i
H(eihη−∆̄ψ(η)V̂s(η))(ξ). (222)

3. Set V (0, x) = e−rT1(h,∞)(x) · V0(x).

P.2.2. Up-and-out barrier option with the terminal payoff G. The algo-

rithm is similar to that of Appendix P.2.1, except that in the first step we put V̂N(ξ) =

F(1(−∞,h)G)(ξ), in the second step we use (222) with the minus sign in front of the

second term on the RHS, and in the third step we use V (0, x) = e−rT1(−∞,h)(x)·V0(x).

P.2.3. Double knock-out barrier options with the terminal payoff G and

barriers H± = eh±.

1. Put V̂N(x) = F(1(h−,h+)G)(ξ).

1In this appendix, we denote by G the terminal payoff without the barrier.

P.2. ALGORITHMS 162

2. In a cycle w.r.t. s = N,N − 1, . . . , 1, calculate

V̂s−1(ξ) =

∫
R
e−i(ξ−η)(h++h−)/2 sin(

(ξ−η)(h+−h−)
2

)

π(ξ − η)
e−∆̄ψ(η)V̂s(η)dη. (223)

3. Set V (0, x) = e−rT1(h−,h+)(x) · V0(x).

P.2.4. Numerical realization of the Hilbert transform. The method, in-

troduced to finance in [41], approximates the Hilbert transform of a function f by

the multiplication of the vector of function values f , of dimension2 M , by a Toeplitz

matrix T . Since it is known that any M ×M Toeplitz matrix can be embedded into

a wider circulant matrix C, and that the multiplication of a circulant matrix C by a

vector x can be realized as follows3 [34, 45]

Cx = ifft (fft(c) .∗ fft(x)) ;

where c is first column of C, we end up with the following algorithm for the calculation

of the discrete Hilbert transform

1. Compute the entries of the vector t = (tj)
M
j=1, given by

tj =
1− (−1)1−j

π(1− j)
,

for k = 2, . . . ,M , and t1 = 0.

2. Let N denote the smallest power of 2 such that N ≥ 2M − 1. If M is already a

power of 2, then set N = 2M .

3. Construct the vector c such that

c = [−t zeros(1, N − 2 *M + 1) t(end : −1 : 2)].

2For consistency with the exposition in [45], in this appendix we denote by M the number of points
on the dual space grid, rather than the state space grid.
3In this appendix, we use a notation reminiscent of MATLAB syntax.

P.2. ALGORITHMS 163

4. Augment the vector f by appending N −M zeros to it

f1 = [f zeros(1, N −M)].

5. Calculate

g1 = ifft(fft(c) .* fft(f1)).

6. Finally, discard the last N−M elements in the vector g1 to obtain the result vector

g = g1(1 : M).

We note that the vector fft(c) can be computed in advance, for several values of M ,

therefore this method only involves the calculation of one FFT and one inverse FFT

of dimensions 2M each. For the numerical realization, we used the refined FFT setup

of M. Boyarchenko and Levendorskǐi (cf. Section 2.2.1.1, Appendix B, [14]).

P.2.5. Error estimates. We recall the following error bounds, which follow from

a fairly non-trivial approximation theory for functions analytic in a strip around the

real axis (see [45] for details and references). Let VN(ξ) and ψ(ξ) be analytic in a

strip Im ξ ∈ (λ−, λ+), where λ− < 0 < λ+, and let, for some ν ∈ (0, 2] and4 κ,C > 0

Reψ(ξ) ≥ κ|ξ|ν − C, ξ ∈ R. (224)

Choose d > 0 such that [−d, d] ⊂ (λ−, λ+). Feng and Linetsky [45, §6], proved the

following bounds

Proposition P.1. a) Set

ζ =

(
πd

κ∆̄

) 1
1+ν

M− ν
1+ν . (225)

4In [45], the notation c is used instead of κ. Recall that, in our notation, κ = −2cΓ(−ν) cos(πν/2)
for KoBoL with ν > 0, ν ̸= 1.

P.2. ALGORITHMS 164

There exists C > 0 independent of M such that the error of approximation of the

Hilbert transform by the discrete Hilbert transform in (222) admits the bound

CM
1

1+ν exp
[
−(κ∆̄)

1
1+ν (πdM)

ν
1+ν

]
. (226)

b) Set

ζ =

(
2πd

κ∆̄

) 1
1+ν

M− ν
1+ν . (227)

There exists C > 0 independent of M such that the error of approximation of the

Hilbert transform by the discrete Hilbert transform in (223) admits the bound

Cmax{1,M
1−ν
1+ν } exp

[
−(κ∆̄)

1
1+ν (2πdM)

ν
1+ν

]
. (228)

c) Define ζ by (225). There exists C > 0 independent of M such that the error of

approximation of F−1
ξ→xe

−∆̄ψ(ξ)V̂ 1(ξ) by the simplified trapezoid rule admits the bound

Cmax{1,M
1−ν
1+ν } exp

[
−(κ∆̄)

1
1+ν (2πdM)

ν
1+ν

]
. (229)

APPENDIX Q

COS method

Q.1. Main details

The COS method for vanilla options is based on the following result. The time

t = 0 price for a European option with maturity T , strike K and underlying spot S0

following an exponential Lévy process is approximated by

V (x, t) = e−rT
N−1∑
k=0

Re
[
e−(T−t)ψ(kπ

b−a)e(ikπ
x−a
b−a)

]
Uk(t), (230)

where x = ln(S0/K), ψ is the characteristic exponent of the underlying Lévy process,

and expressions for a, b and the coefficients Uk(t) can be found in [43].

The method can be generalized to the case of discretely monitored barrier options.

Denote the barrier by H and the monitoring dates by 0 = t0 < t1 < . . . < tM = T .

Following the conventions in [44], in this appendix we will write h = ln(H/K). The

terminal payoff is given by G(x) = [αK(ex− 1)]+, where α = 1 for a call and α = −1

for a put. For simplicity, we also assume that tm+1− tm = ∆̄, m = 0, . . . ,M − 1. The

generalization of the method to the case of discrete barrier options, which is relevant

for our purposes, is based on the following result.

Lemma Q.1 (Lemma 2.1 in [44]). The time-0 price of an up-and-out (UO) discretely

monitored barrier option with no rebate can be approximated using (230) with T − t

replaced by ∆̄, and the coefficients Uk calculated by the following backward induction

165

Q.1. MAIN DETAILS 166

procedure. At steps m =M − 1,M − 2, . . . , 1, calculate

Uk(tm) = Ck(x1, x2, tm),

where

C(x1, x2, tm) =
e−r∆̄

π
Im[(Mc +Ms)u], (231)

and in turn

u0 =
1

2
φ(0)U0(tm+1),

uj = φ

(
jπ

b− a

)
Uj(tm+1),

where φ(ξ) = e−∆̄ψ(ξ). The matrices Mc and Ms in (231) are given by

M c
k,j =

x2 − x1
b− a

πi k = j = 0,

(j + k)−1

[
exp

(
i(j + k)

x2 − a

b− a
π

)
− exp

(
i(j + k)

x1 − a

b− a
π

)]
otherwise,

(232)

M s
k,j =

x2 − x1
b− a

πi k = j = 0,

(j − k)−1

[
exp

(
i(j − k)

x2 − a

b− a
π

)
− exp

(
i(j − k)

x1 − a

b− a
π

)]
otherwise,

(233)

where i =
√
−1. For the step t = tM , if h < 0, Uk(tM) is given by

Uk(tM) =

0 for a call,

Gk(a, h) for a put.

(234)

Q.1. MAIN DETAILS 167

For h ≥ 0, on the other hand, Uk(tM) is given by

Uk(tM) =

Gk(0, h) for a call,

Gk(a, 0) for a put.

(235)

Finally, the function Gk(x1, x2) is given by

Gk(x1, x2) =
2

b− a
αK[χk(x1, x2)− ψk(x1, x2)], (236)

with

χk(x1, x2) =
1

1 +
(
kπ
b−a

)2[cos(kπx2 − a

b− a

)
ex2 − cos

(
kπ
x1 − a

b− a

)
ex1

+
kπ

b− a
sin

(
kπ
x2 − a

b− a

)
ex2 − kπ

b− a
sin

(
kπ
x1 − a

b− a

)
ex1
]
,

(237)

and

ψk(x1, x2) =

[
sin

(
kπ
x2 − a

b− a

)
− sin

(
kπ
x1 − a

b− a

)]
b− a

kπ
k ̸= 0,

x2 − x1 k = 0.

(238)

The N × N matrices M c
k,j(x1, x2) and M s

k,j(x1, x2) can be calculated using the

FFT. One has

Mc =

m0 m1 m2 . . . mN−1

m1 m2 mN

...
...

mN−2 mN−1 . . . m2N−3

mN−1 . . . m2N−3 m2N−2

,

Q.1. MAIN DETAILS 168

Ms =

m0 m1 . . . mN−2 mN−1

m−1 m0 m1 . . . mN−2

...
. . .

...

m2−N . . . m−1 m0 m1

m1−N m2−N . . . m−1 m0

,

where the mj are given by

mj =

x2 − x1
b− a

πi j = 0,

j−1

[
exp

(
ij
x2 − a

b− a
π

)
− exp

(
ij
x1 − a

b− a
π

)]
j ̸= 0,

for j = 0, 1, . . . , 2N − 1. Note that Mc is a Hankel matrix and Ms is a Toeplitz

matrix. The matrix-vector products in (231) can be calculated using the FFT. The

product Msu is equal, in MATLAB notation, to the first N elements of the vector

ifft(fft(ms) .∗ fft(us)),

where us = [u0, u1, . . . , uN−1, 0, . . . , 0], and

ms = [m0,m−1,m−2, . . . ,m1−N , 0,mN−1,mN−2, . . . ,m1].

The productMcu is given by the firstN elements of the vector ifft(fft(mc) .∗ fft(uc)),

in reverse order, where uc = [0, . . . , 0, u0, u1, . . . , uN−1], and

mc = [m2N−1,m2N−2, . . . ,m1,m0].

Finally, there is no need to compute the FFTs of both us and uc, since

fft(uc) = [−1, 1,−1, 1, . . .] .∗ fft(us).

Q.2. ALGORITHM 169

Q.2. Algorithm

Consider a discretely monitored barrier option with no rebate, barrier H, strike

K, spot S0, time to maturity T , monitoring interval ∆̄. We use the COS method

with N terms. The algorithm is as follows (cf. [44, §2.4]):

1. Set x = ln(S0/K), L = 8 (cf. Section 3.3 in op. cit.) and

a = c1 + x− L
√
c2 +

√
c4, (239)

b = c1 + x+ L
√
c2 +

√
c4, (240)

where c1, c2, c4 are the first, second and fourth cumulants of the process, with

maturity ∆̄, respectively1.

2. Calculate the coefficients Uk(tM) = Gk(x1, x2), using (236) with

• x1 = 0, x2 = h, for an UO call option;

• x1 = a, x2 = h, for an UO put option;

• x1 = 0, x2 = b, for a DO call option;

• x1 = h, x2 = 0, for a DO put option.

3. For j = 0, 1, . . . , 2N − 1, set

mj =

x2 − x1
b− a

πi j = 0,

j−1

[
exp

(
ij
x2 − a

b− a
π

)
− exp

(
ij
x1 − a

b− a
π

)]
j ̸= 0,

where

• x1 = a, x2 = h, for an UO option;

• x1 = h, x2 = b, for a DO option.

1Expressions for the first four cumulants of VG, KoBoL and NIG processes can be found in [43].

Q.2. ALGORITHM 170

4. Using the fact that m−j = −mj, set

ms = [m0,m−1,m−2, . . . ,m1−N , 0,mN−1,mN−2, . . . ,m1].

5. Set

mc = [m2N−1,m2N−2, . . . ,m1,m0].

6. Calculate

d1 = fft(ms),

d2 = s · fft(mc),

where s = [1,−1, 1,−1, . . .].

7. In a cycle w.r.t. m =M − 1, . . . ,m = 1,

a. Compute u = (uj)
N−1
j=0 , such that

u0 =
1

2
φ(0)U0,

uj = φ

(
jπ

b− a

)
Uj, j ̸= 0.

b. Create the vector us by padding N zeros to the right in u.

c. Calculate the vector Ms, given by the first N elements of the vector ifft(d1 ·

fft(us)).

d. Calculate the vector Mc, given by the first N elements, in reverse order, of the

vector ifft(d2 · fft(us)).

e. Replace U = (Uk)
N−1
k=0 by π−1e−r∆̄ Im(Ms +Mc).

8. Replace U0 by U0/2.

Q.2. ALGORITHM 171

9. Calculate the approximation to the option price via

V (x) ≈ e−r∆̄
N−1∑
k=0

Re

[
φ

(
kπ

b− a

)
· exp

(
ikπ

x− a

b− a

)]
Uk.

The modification of the COS algorithm for the CDS case can be found in [42].

Bibliography

[1] M. Abramowitz and I. Stegun (eds.). Handbook of Mathematical Functions, with Formulas,

Graphs and Mathematical Tables. Dover Publications, Mineola, NY, 1965.

[2] D. Applebaum. Lévy processes and infinitely divisible distributions, volume 116 of Cambridge

Stud. Adv. Math. Cambridge University Press, Cambridge, second edition, 2009.

[3] S. Asmussen, D. Madan, and M.R. Pistorius. Pricing Equity Default Swaps under an approxi-

mation to the CGMY Lévy model. Journal of Computational Finance, 11:79–93, 2008.

[4] D.H. Bailey and P.N. Swarztrauber. The fractional Fourier transform and applications, 1991.

[5] O.E. Barndorff-Nielsen. Processes of normal inverse Gaussian type. Finance and Stochastics,

2:41–68, 1998.

[6] C. Becker and U. Wystup. On the cost of delayed currency fixing announcements. Annals of

Finance, 5:161–174, March 2009.

[7] J. Bertoin. Lévy Processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge Uni-

versity Press, 1996.

[8] T. Björk. Arbitrage Theory in Continuous Time. Oxford University Press, Oxford, third edition,

2009.

[9] F. Black and J.C. Cox. Valuing corporate securities: some effects of bonds indenture provisions.

Journal of Finance, 31:351–367, 1976.

[10] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political

Economy, 81:637–659, May/June 1973.

[11] M. Boyarchenko and S. Boyarchenko. Double barrier options in regime-switching hyper-

exponential jump-diffusion models. International Journal of Theoretical and Applied Finance,

14(7):1005–1043, 2011.

172

BIBLIOGRAPHY 173

[12] M. Boyarchenko, M. de Innocentis, and S.Z. Levendorskĭi. Prices of barrier and first-touch

digital options in Lévy-driven models, near barrier. International Journal of Theoretical and

Applied Finance, 14(7):1045–1090, 2011.

[13] M. Boyarchenko and S.Z. Levendorskĭi. Prices and sensitivities of barrier and first-touch dig-

ital options in Lévy-driven models. International Journal of Theoretical and Applied Finance,

12(8):1125–1170, December 2009.

[14] M. Boyarchenko and S.Z. Levendorskĭi. Refined and enhanced fast Fourier transform techniques,

with an application to the pricing of barrier options. Working paper, June 2009. Available at

SSRN: http://papers.ssrn.com/abstract=1142833.

[15] N. Boyarchenko and S.Z. Levendorskĭi. On errors and bias of Fourier transform methods in

quadratic term structure models. International Journal of Theoretical and Applied Finance,

10(2):273–306, 2007.

[16] S.I. Boyarchenko and S.Z. Levendorskĭi. On rational pricing of derivative securities for a family

of non-Gaussian processes. Preprint 98/7, Institut für Mathematik, Universität Potsdam, 1998.

Available at http://opus.kobv.de/ubp/volltexte/2008/2519.

[17] S.I. Boyarchenko and S.Z. Levendorskĭi. Option pricing for truncated Lévy processes. Interna-

tional Journal of Theoretical and Applied Finance, 3(3):549–552, July 2000.

[18] S.I. Boyarchenko and S.Z. Levendorskĭi. Non-Gaussian Merton-Black-Scholes Theory, volume 9

of Adv. Ser. Stat. Sci. Appl. Probab. World Scientific Publishing Co., River Edge, NJ, 2002.

[19] S.I. Boyarchenko and S.Z. Levendorskĭi. New efficient versions of Fourier transform method in

applications to option pricing. Journal of Computational Finance, 2012. (Forthcoming).

[20] M. Broadie, P. Glasserman, and S.G. Kou. A continuity correction for discrete barrier options.

Mathematical Finance, 7(4):325–348, October 1997.

[21] M. Broadie and Y. Yamamoto. Application of the fast Gauss transform to option pricing.

Management Science, 49(8):1071–1088, 2003.

[22] M. Broadie and Y. Yamamoto. A double-exponential fast Gauss transform algorithm for pricing

discrete path-dependent options. Operation Research, 53(5):764–779, 2005.

[23] J. Cariboni and W. Schoutens. Pricing credit default swaps under Lévy models. Journal of

Computational Finance, 10(4):1–21, 2007.

BIBLIOGRAPHY 174

[24] P. Carr. Two extensions to barrier option valuation. Applied Mathematical Finance, 2(3):173–

209, September 1995.

[25] P. Carr. Randomization and the American put. Review of Financial Studies, 11(3):597–626,

Fall 1998.

[26] P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of asset returns: an empirical

investigation. Journal of Business, 75:305–332, 2002.

[27] P. Carr, A. Hogan, and H. Stein. Time for a change: The Variance Gamma

model and option pricing. Working paper, January 2007. Available at SSRN:

http://papers.ssrn.com/abstract=956625.

[28] P. Carr and D.B. Madan. Option valuation using the Fast Fourier Transform. Journal of Com-

putational Finance, 2(4):61–73, 1999.

[29] A. Castagna. The Hedging Costs of Discrete Monitoring of FX Barrier Options. Working paper,

January 2009. Available at SSRN: http://papers.ssrn.com/abstract=1335302.

[30] G. Chacko and S. Das. Pricing interest rate derivatives: a general approach. Review of Financial

Studies, 15(1):195–241, 2002.

[31] Iain J. Clark. Foreign Exchange Option Pricing: A Practitioner’s Guide. The Wiley Finance

Series. John Wiley & Sons, Ltd, Chichester, 2010.

[32] R. Cont and P. Tankov. Financial Modelling with Jump Processes. CRC Financ. Math. Ser.

Chapman & Hall, Boca Raton, FL, 2004.

[33] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier

series. Mathematical Computing, 19:297–301, 1965.

[34] P.J. Davis. Circulant Matrices. Chelsea Publishing Company, New York, second edition, 1994.

[35] M. de Innocentis. Fast calculation of prices and sensitivities of European op-

tions under Variance Gamma. Working paper, August 2011. Available at SSRN:

http://papers.ssrn.com/abstract=1916020.

[36] M. de Innocentis and S. S.Z. Levendorskĭi. Pricing discrete barrier options and credit default

swaps under Lévy processes. Working paper, June 2012. Available at SSRN:

http://papers.ssrn.com/abstract=2080215.

[37] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset

pricing. Math. Ann., 300:463–520, 1994.

BIBLIOGRAPHY 175

[38] D. Duffie, J. Pan, and K. Singleton. Transform Analysis and Asset Pricing for Affine Jump

Diffusions. Econometrica, 68:1343–1376, 2000.

[39] E. Eberlein and U. Keller. Hyperbolic distributions in finance. Bernoulli, 1:281–299, 1995.

[40] E. Eberlein and F. Özkan. The Lévy Libor model. Finance and Stochastics, 9:327–348, 2005.

[41] A. Eydeland. A fast algorithm for computing integrals in function spaces: financial applications.

Computational Economics, 7:277–285, 1994.

[42] F. Fang, H. Jönsson, C.W. Oosterlee, and W. Schoutens. Fast valuation and calibration of credit

default swaps under Lévy dynamics. Journal of Computational Finance, 14(2):57–86, Winter

2010.

[43] F. Fang and C.W. Oosterlee. A novel pricing method for european options based on Fourier-

cosine series expansions. SIAM Journal on Scientific Computing, 31(2):826–848, 2008.

[44] F. Fang and C.W. Oosterlee. Pricing early-exercise and discrete barrier options by Fourier-cosine

series expansions. Numerische Mathematik, 114(1):27–62, 2009.

[45] L. Feng and V. Linetsky. Pricing discretely monitored barrier options and defaultable bonds in

Lévy process models: a fast Hilbert transform approach. Mathematical Finance, 18(3):337–384,

July 2008.

[46] W. Gander and W. Gautschi. Adaptive quadrature – revisited. BIT, 40(1):84–101, March 1993.

[47] H. Geman and D.B. Madan. Risks in returns: a pure jump perspective. In Exotic Option Pricing

and Advanced Lévy Models. Wiley, 2005.

[48] J.M. Harrison and D.M. Kreps. Martingales and arbitrage in multiperiod securities markets.

Journal of Economic Theory, 20, 1979.

[49] J.M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory of continuous

trading.

[50] J.M. Harrison and S. R. Pliska. A stochastic calculus model of continuous trading: complete

markets. Stochastic Processes and their Applications, 15:313–316, 1983.

[51] S. L. Heston. A closed-form solution for options with stochastic volatility with applications to

bond and currency options. The Review of Financial Studies, 6(2):327–343, 1993.

[52] M. Jeannin and M.R. Pistorius. A transform approach to calculate prices and greeks of barrier

options driven by a class of Lévy processes. Quantitative Finance, 10(6):629–644, 2010.

BIBLIOGRAPHY 176

[53] I. Koponen. Analytic approach to the problem of convergence of truncated Lévy flights towards

the Gaussian stochastic process. Physics Review E, 52:1197–1199, 1995.

[54] S.G. Kou. A jump-diffusion model for option pricing. Management Science, 48(8):1086–1101,

August 2002.

[55] S.G. Kou and H. Wang. First passage times of a jump diffusion process. Advances in Applied

Probability, 35(2):504–531, 2003.

[56] S.G. Kou and H. Wang. Option pricing under a double exponential jump diffusion model.

Management Science, 50(9):1178–1192, September 2004.

[57] O. Kudryavtsev and S.Z. Levendorskĭi. Fast and accurate pricing of barrier options under Lévy

processes. Finance and Stochastics, 13(4):531–562, 2009.

[58] A. Kuznetsov. Wiener-Hopf factorization and distribution of extrema for a family of Lévy

processes. Annals of Applied Probability, 20, 2009.

[59] S. Levendorskĭi. Convergence of Carr’s Randomization Approximation Near Barrier. SIAM J.

Finan. Math, 2:79–111, 2011.

[60] S. Levendorskĭi and J. Xie. Fast pricing and calculation of sensitivities of OTM European options

under Lévy processes. Journal of Computational Finance, 15(3):71–133, 2012.

[61] S.Z. Levendorskĭi. Pricing of the American put under Lévy processes. International Journal of

Theoretical and Applied Finance, 7(3):303–335, May 2004.

[62] A. Lipton. Assets with jumps. Risk, pages 149–153, September 2002.

[63] A. Lipton. Path-dependent options on assets with jumps. 5th Columbia-Jaffe Conference, April

2002. Available at http://www.math.columbia.edu/~lrb/columbia2002.pdf.

[64] R. Lord, F. Fang, F. Bervoets, and C.W. Oosterlee. A fast and accurate FFT-based method

for pricing early-exercise options under Lévy processes. SIAM Journal on Scientific Computing,

30(4):1678–1705, 2008.

[65] R. Lord and C. Kahl. Optimal Fourier inversion in semi-analytical option pricing. Journal of

Computational Finance, 10(4):1–30, Summer 2007.

[66] D.B. Madan, P. Carr, and E.C. Chang. The Variance Gamma process and option pricing.

European Finance Review, 2:79–105, 1998.

[67] D.B. Madan and F. Milne. Option pricing with V.G. martingale components. Mathematical

Finance, 1(4):39–55, 1991.

BIBLIOGRAPHY 177

[68] D.B. Madan and W. Schoutens. Break on through the single side. Technical report 07-07, July

2007. Available at: SSRN: http://papers.ssrn.com/abstract=1003144.

[69] D.B. Madan and E. Seneta. The Variance Gamma (V.G.) model for share market returns.

Journal of Business, 63:511–524, 1990.

[70] B. Mandelbrot. The variation of certain speculative prices. Journal of Business, 36(4):394–419,

October 1963.

[71] R.C. Merton. Theory of rational option pricing. Bell Journal of Economics and Management

Science, 4:141–183, Spring 1973.

[72] R.C. Merton. Option pricing when underlying stock returns are discontinuous. Journal of Fi-

nancial Economics, 3:125–144, 1976.

[73] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark (eds.). NIST Handbook of Math-

ematical Functions. National Institute of Science and Technology and Cambridge University

Press, New York, 2010.

[74] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C.

Cambridge University Press, New York, second edition, 1992.

[75] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes – The Art

of Scientific Computing. Cambridge University Press, New York, third edition, 2007.

[76] R. Rebonato. Volatility and Correlation – The Perfect Hedger and the Fox. The Wiley Finance

Series. John Wiley & Sons, Ltd., Chichester, 2004.

[77] K. Sato. Lévy Processes and Infinitely Divisible Distributions, volume 68 of Cambridge Stud.

Adv. Math. Cambridge University Press, Cambridge, 1999.

[78] L.F. Shampine. Vectorized adaptive quadrature in MATLAB. Journal of Computational and

Applied Mathematics, 211(2):131–140, January 2008.

[79] A. Shleifer. Inefficient Markets: An Introduction to Behavioral Finance. Clarendon Lectures in

Economics. Oxford University Press, Oxford, 2000.

[80] S.E. Shreve. Stochastic Calculus for Finance II – Continuous-Time Models. Springer Verlag,

New York, Berlin, 2004.

[81] F. Stenger. Numerical Methods based on Sinc and Analytic functions. Springer Verlag, New

York, 1993.

BIBLIOGRAPHY 178

[82] P. Tankov. Lévy processes in finance and risk management. Wilmott Magazine, pages 89–97,

September 2007.

[83] N. M. Temme. Computational aspects of incomplete gamma functions with large complex pa-

rameters. In R. V. M. Zahar, editor, Approximation and Computation. A Festschrift in Honor of

Walter Gautschi., volume 119 of International Series of Numerical Mathematics, pages 551–562.

Birkhäuser Boston, Boston, MA, 1994.

[84] N. Wiener and E. Hopf. Über eine Klasse singulärer Integralgleichungen. Sitzungsberichte der

Preußischen Akademie der Wissenschaften, Mathematisch-Physikalische Klasse, 30:696–706,

1931.

[85] S. Winitzki. Computing the incomplete Gamma function to arbitrary precision. Lecture Notes

in Computer Science, 2667:790–798, 2003.

[86] U. Wystup. FX Options and Structured Products. The Wiley Finance Series. John Wiley &

Sons, Ltd., Chichester, 2006.

