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HIERARCHICAL MODELS IN MEDICAL RESEARCH

Paul Christopher Lambert B.Sc. M.Sc

Abstract

This thesis describes and develops the use of hierarchical models in medical research from 
both a classical and Bayesian perspective. Hierarchical models are appropriate when 
observations are clustered into larger units within a data set, which is a common occurance 
in medical research. The use and versatility of hierarchical models is shown through a 
number of examples, with the aim of developing improved and more appropriate methods 
of analysis. The examples are real data sets and present real problems in terms of statistical 
analysis.

The data sets presented include two data sets involved with longitudinal data where 
repeated measurements are clustered within individuals. One data set has repeated blood 
pressure measurements taken on pregnant women and the other consists of repeated peak 
expiratory flow measurements taken on asthmatic children. Bayesian and classical analyses 
are compared. A number of issues are explored including the modelling of complex mean 
profiles, interpretation and quantification of variance components and the modelling of 
heterogeneous within-subject variances. Other data sets are concerned with meta-analysis, 
where individuals are clustered within studies. The classical and Bayesian frameworks are 
compared and one data set investigates the potential to combine estimates from different 
study types in order to estimate the attributable risk. One of the meta-analysis data sets 
included individual patient data, where there is a substantial amount of missing covariate 
data. For this data set models that incorporate individuals with incomplete data when 
modelling survival times for children with Neuroblastoma are developed.

This thesis thus demonstrates that hierarchical models are of great importance in analysing 
data in medical research. In many situations a Bayesian analysis provides a number of 
advantages over classical models especially when introducing realistic complexity that 
would be hard to incorporate using classical methodology.
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CHAPTER 1 Introduction

1 INTRODUCTION

1.1 Aims of the Thesis

In this thesis I describe and develop the use of hierarchical models in medical research 

from both a classical and Bayesian perspective. I explore the use of such models through a 

number of different examples that demonstrate the range of applications that hierarchical 

models cover. All the examples in this thesis are real datasets and real problems and I 

explore the potential for improved and more appropriate methods of analysis.

1.2 Hierarchical Data and Hierarchical Models

Hierarchical data occurs when different levels of information exist in a data set, in that 

observations are grouped (or clustered) into larger units, with each unit consisting of a 

number of observations. For example, patients are grouped into GP practices. The 

existence of such a hierarchy is non-ignorable which has led to the development of 

hierarchical models. The use of such models has grown extensively in recent years due to 

advances in methodology and computing resources. To aid the understanding of 

hierarchical data and hierarchical models, in Chapter 2 I provide background information 

to hierarchical data and discuss model fitting and estimation from both a classical and 

Bayesian perspective. As two of the data sets in this thesis are concerned with repeated 

measurements, I describe hierarchical models in this context. I demonstrate the dangers of 

ignoring the hierarchical structure of the data and demonstrate the methods described 

through use of a simple example.

1.3 Repeated Measures

A common form of hierarchically structured data occurs when there are measurements 

taken on individuals on more than one occasion. In this situation the repeated 

measurements are clustered within individuals. Generally with repeated measurements, 

there is greater variation between individuals than within individuals, leading to high 

correlation of observations recorded on the same individual. In Chapter 3 I use a data set
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CHAPTER 1 Introduction

that investigates repeated blood pressure measurements over a 24-hour period in pregnant 

women, with the aim of comparing women who subsequently give birth to an infant with 

intra-utrine growth retardation to those who do not. In Chapter 4 1 use a data set that 

consists of repeated measurements of peak expiratory flow on young children with the aim 

of comparing atopic and non-atopic children. Both data sets are analysed from both a 

classical and Bayesian perspective. A number of issues are explored including 

interpretation and quantification of variance components and heterogeneity of within- 

subject variances.

1.4 Meta Analysis

Meta-analysis is the quantitative synthesis of results from different studies. Data from 

meta-analyses exhibit a hierarchical structure as individual patients are grouped within 

particular studies and there will be both between-study and within-study variation. Often in 

a meta-analysis data are only available at the study level in the form of a summary measure 

and a standard error. In Chapter 5 I present the results from two data sets using both 

classical and Bayesian models. The first investigates the effect of lowering cholesterol on 

mortality and the second is a more complex example that combines estimates from three 

different types of study in order to estimate the attributable risk of a history of infertility on 

perinatal mortality. In Chapter 6 1 present a meta-analysis including individual patient-level 

data, but the main issue of interest in this chapter is missing covariate data.

1.5 Missing Data

Missing data is a common problem in medical and other areas of research. Hierarchical 

models are of potential use for missing data problems, as missing data is usually a 

multivariate problem in that a data set may consist of both response variables and 

covariates, with any of these variables being potentially missing. The variables can be 

considered to be clustered within individuals and it is likely that there are 

interdependencies between the variables. In Chapter 6 1 present a data set of survival times 

for children with Neuroblastoma with the aim of exploring the relationship between tumour 

markers and survival time. I use hierarchical models to model missing covariate data, with
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CHAPTER 1 Introduction

the main aim of including in the analyses individuals who have some covariates missing as 

well as those with complete information. I demonstrate how in simple cases multiple 

imputation techniques can be used using classical methods, but for more complex 

situations Bayesian models offer far greater flexibility.

1.6 Discussion

In this thesis I investigate the use of hierarchical models in medical research, but many of 

the findings are applicable to other areas of research. I demonstrate that the use of Bayesian 

models can offer a number of advantages over classical models, especially in more 

complex situations. In Chapter 7 I discuss the work I have presented and suggest directions 

for future research.

Paul Lambert Ph.D. Thesis, November 2000 3



CHAPTER 2 Hierarchical Models

2 HIERARCHICAL MODELS

2.1 Introduction

In this Chapter I give an introduction to hierarchical data and hierarchical models. I begin 

in section 2.2 by introducing the concept of hierarchical data and discuss why it needs to be 

considered in a different way to non-hierarchical data. In section 2.3 I give a brief summary 

of techniques used in the analysis of a common form of hierarchically structured data, 

namely repeated measures (or longitudinal) data. Section 2.4 introduces the concept of 

hierarchical models by describing how a simple repeated measures analysis could be 

performed. In section 2.5 I describe methods of estimation for hierarchical models, with 

Iterative Generalized Least Squares (IGLS) described in section 2.5.1 and a Bayesian 

approach to estimation using Markov Chain Monte Carlo (MCMC) methods described in 

section 2.5.2. Section 2.6 demonstrates that if the hierarchical structure is ignored then the 

results can be biased. A simple example is given in section 2.7. Finally, in section 2.8,1 

give a summary and discuss the issues raised in the chapter.

2.2 Hierarchical Data

In many situations there is a natural hierarchy to data with there being different levels of 

information. Other ways of describing this is to state that there is a clustered or nested 

structure (Longford 1993; Goldstein, 1995). Often data of this type is encountered when 

individuals are grouped (or clustered) into larger units, with each unit consisting of a 

number of individuals. One simple example is where patients are grouped into GP 

practices. It is important to recognise hierarchically structured data, since individuals (or 

units) within the same cluster will tend to be more similar than individuals (or units) from 

different clusters. This is perhaps best illustrated by examples. A first example concerns the 

family unit where offspring are nested within families, where you would expect there to be 

similarities within families due to both genetic and environmental factors. A second 

example is where patients are nested within wards, which are nested within hospitals, 

where there may be similarities between patients in the same ward and patients in the same 

hospital, for example, specialist and non-specialist hospitals.

Paul Lambert Ph.D. Thesis, November 2000 4



CHAPTER 2 Hierarchical Models
Two of the chapters in this thesis are concerned with longitudinal data where repeated 

observations are nested within subjects. One would generally expect repeated observations 

made on the same subject to be more similar than observations made on different subjects. 

There is an extensive literature on longitudinal data and it is discussed further in section 

2.3. Much of the recent research regarding hierarchical structures and models has been in 

educational research where pupils are nested within classes, which are nested in schools 

(Aitkin and Longford, 1986; Goldstein, 1995). Again one would expect some degree of 

similarity between children in the same class and between children in the same school.

A further example of clustering is in a multi-centre clinical trial where one may expect 

there to be similarities between subjects within the same centre. Related to this is meta­

analysis, where the results of two or more independent studies are statistically combined. 

Again one would expect similarities between subjects within the same study. In Chapter 5 I 

show how hierarchical models can be used in meta-analysis. Another example is cluster- 

randomised trials where randomisation occurs at, for example, the general practice level 

rather than at the individual level. There is a growing amount of work in this area 

demonstrating the need to account for similarities between individuals within the same 

randomisation unit both in terms of design and analysis (Donner, 1998). A final example 

of hierarchically structured data is when there is a multivariate response. For example, 

there may be a number of different outcomes recorded on each individual. Again one 

would expect the outcomes recorded on the same subject to be more similar than outcomes 

recorded on different subjects, for example systolic and diastolic blood pressure. I use 

hierarchical models for multivariate structured data for the analyses involving missing 

covariate data in Chapter 6.

The main reason why it is important to take into account the hierarchical structure when 

performing an analysis is that units within clusters tend to be more similar than units from 

different clusters or alternatively there are observable differences between units. In other 

words, data with a hierarchical structure induces a correlation structure leading to a lack of 

independence between measurements within the same cluster. Ignoring this lack of 

independence, sometimes known as naive pooling (Burton et al., 1998), can lead to the
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CHAPTER 2 Hierarchical Models
wrong or misleading inferences being drawn. A well known example in educational 

research investigates school effectiveness for 907 pupils in 18 schools (Aitkin and 

Longford, 1986). In this data set a hierarchical model was shown to be more realistic and 

could potentially lead to different conclusions than models ignoring the grouping of pupils 

into schools, estimating a separate intercept for each school and using a summary measure 

for each school (aggregation of pupil data). Generally, if the clustering is ignored then the 

main problem with the analysis will be with biased standard errors. Cluster level covariates 

will tend to have too small standard errors whilst within-cluster level covariates will tend to 

have too larger standard errors. I demonstrate a simple example of how the wrong 

inferences can be drawn when ignoring the lack of independence in section 2.6.

I shall adopt the definitions of Goldstein (1986) and Byrk and Raudenbush (1992) in that 

units are grouped at different levels in a hierarchy. Level 1 units are at the lowest level of 

the hierarchy and level 2 are the units in which the level 1 units are grouped. For example, 

in a cluster randomised trial, where randomisation is by GP practice, the patients are the 

level 1 units and the GP practices are the level 2 units, as patients are grouped (or nested or 

clustered) within GP practices. Hierarchical structures can be extended to situations where 

there are more levels. For example, in educational research data may be analysed at three 

levels with pupils (level 1) nested within classes (level2) nested within schools (level 3).

As discussed above, the important aspect regarding hierarchical structures is that we expect 

there to be differences between the units at each level. For example, we expect there to be 

differences between practices in a cluster randomised trial or in the case of repeated 

measures we expect there to be variation between patients. Often, we are not interested in 

estimating the effect of each of the higher level units, but more interested in describing the 

features of various groups, for example the mean treatment difference in a randomised 

controlled trial. The important aspect of hierarchical data structures is that random effects 

can be used to quantify and explore the nested structure of the data. Random effects are 

coefficients that are allowed to vary between units according to some specified distribution 

(conventionally Normal). These will be discussed in more detail with application to 

repeated measures problems in section 2.4.

Paul Lambert Ph.D. Thesis, November 2000 6



CHAPTER 2 Hierarchical Models
In the rest of this chapter I will concentrate on hierarchical structures with a continuous 

response, where the response is assumed to have a Normal distribution. However, it is 

important to realize that other types of data can have a hierarchical structure, for example 

binary or count data. In Chapter 5 I investigate hierarchical structured data with a 

combination of Poisson and Binomial responses and in Chapter 6 the response is 

(censored) survival time.

In this thesis, I shall use the term hierarchical model when modelling hierarchical data. 

However, there are various other names used in the literature such as multilevel models 

(Goldstein, 1986), random effects models (Laird and Ware, 1982), mixed effects models 

(Breslow and Clayton, 1993), random coefficients models (Longford, 1993; Rutter and 

Elashoff, 1994), and variance component models (Longford, 1987). The Laird and Ware 

paper has become so well known that hierarchical models in the context of longitudinal 

data are often referred to as Laird-Ware models. The term hierarchical models was first 

introduced by Lindley and Smith (1972) in the investigation of Bayesian estimation of 

linear models. However, hierarchical models were not really used much in practice, mainly 

due to computational problems, until the introduction of the EM algorithm (Dempster et 

al., 1977). The EM algorithm was shown to be appropriate for hierarchical data by 

Dempster et a l (1981), and Laird and Ware (1982).

Other estimation procedures have been developed for hierarchical models, a Fisher scoring 

algorithm (Longford, 1987) and a generalized least squares algorithm (Goldstein, 1986). 

The latter known as Iterative Generalised Least Squares (IGLS) is one of the approaches I 

use in this thesis. Methods of estimation are discussed in further detail in section 2.5. It is 

also worth stating the increase in use of hierarchical models has been largely due the 

development of specialist statistical software. The most common of these is MLWin 

(Rasbash et al., 1999) and its predecessors (MLn, ML3 and ML2) developed at the Institute 

of Education by Harvey Goldstein and colleagues, and HLM developed by Raudenbush and 

Byrk (1988). Other programs exist such as VARCL and MIXREG as well as 

implementation in certain larger statistical software packages, e.g. PROC MIXED (Littel et

Paul Lambert Ph.D. Thesis, November 2000 1



CHAPTER 2 Hierarchical Models

Subject 1 Subject 2 Subject j

▼ T T ▼ ▼

Obs 1 Obs 2 ... Obs rV| Obs 1 Obs 2 ... Obs Obs 1 Obs 2 ... Obs q

Figure 2.1 Hierarchical structure of repeated measures data.

al, 1996) in SAS and the “lme” function in Splus (Mathsoft 1996). A comparative review 

of some of the software for fitting hierarchical models can found in Kreft (1994).

2.3 Repeated Measures Data

In this and the following section I will describe hierarchical models for the analysis of 

repeated measures data, since two of the chapters in this thesis relate to this type of data. 

However, the analyses and interpretation of hierarchical data is similar across disciplines. 

For example, in a cluster randomised trial one may interested in the between-general 

practice variation, while in a repeated measures analysis one is interested in the between- 

subject variation.

As stated in the previous section it is sensible to think of longitudinal (or repeated 

measures data) as forming a hierarchy with repeated observations being nested within 

individual subjects. This hierarchical structure can be seen in Figure 2.1. It has long being 

realised that when dealing with repeated measures data one explicitly needs to take account 

of the correlation that the hierarchical structure induces. There is an extensive literature on 

repeated measures analysis, examples of which are (Crowder and Hand, 1993; Lindsey, 

1993; Diggle, Liang, and Zeger, 1994; Hand and Crowder, 1996). The simplest method of 

analysing repeated measures data is to use summary measures (Matthews et al., 1990). A 

summary measure is obtained for each individual, which summarises a feature of the 

response (e.g. mean, slope, time to maximum value etc). In reducing each individual’s 

repeated observations to a single summary measure standard statistical techniques, such as 

the t-test, can be used to analyse the data. However, although they have the advantage of 

being relatively simple, there is a potential large decrease in power due to the loss of

Paul Lambert Ph.D. Thesis, November 2000 8



CHAPTER 2 Hierarchical Models

Time (t)

Figure 2.2 Plot showing within-subject variation about a regression line

information (Matthews et al., 1990). Two common techniques for the analysis of repeated

measures data that do not require a summary measure to be calculated are the Multivariate 

Analysis of Variance (MANOVA) and univariate Analysis of Variance (ANOVA) based 

on the agricultural split plot design (Crowder and Hand, 1993). However, there are a 

number of problems with these techniques (Diggle, Liang, and Zeger, 1994). Firstly, there 

is the need to have the same number of repeated observations per individual, measured at 

the same time points. Secondly, with ANOVA split plot models the assumption of the 

correlation structure is usually too simplistic (with essentially one variance and one 

covariance term estimated) and with MANOVA models the correlation structure is over- 

parameterised (with all possible variances and covariances estimated). With the 

development of hierarchical random effects models and the ability to model the covariance 

structure it is likely that the use of these two methods will reduce over time.

2.4 Hierarchical Models for Repeated Measures

This section describes models for repeated measures using hierarchical or multilevel 

models. The notation is similar to that of Goldstein (1995). Figure 2.2 shows a hypothetical 

response (y) for an individual where there is a linear increase over time (t). The regression 

line represents the mean response ofy as t increases, while the points scattered about the

Paul Lambert Ph.D. Thesis, November 2000 9



CHAPTER 2 Hierarchical Models
regression line show variation about this mean. In this case, such variation can be thought 

of as within-subject variation. A simple regression line can be fitted to data such as this

y i =Po+Piti +ei (2.1)

where is the response at the ith time point, U is the time at the ith time point, J30 is the 

intercept, fii is the gradient and e, is the residual at the i h time point. Generally it is 

assumed that ei ~ 7V(0,cr2) and cov(eirej)=0.

Of course studies are generally not performed on only one subject. If there are a number of 

subjects then it is likely that there will be between-subject variability as it is unlikely that 

all subjects would have the same response, i.e. some individuals will tend to have higher 

values of the response. When between-subject variability exists then observations on the 

same subject will tend to be correlated. For example, it will be seen in Chapter 3 that blood 

pressures recorded on the same subject are likely to be more similar than blood pressures 

recorded on different subjects. Thus, with repeated measures on each individual there will 

be both between-subject and within-subject variation. This can be explained graphically.

Figure 2.3 shows both between-subject and within-subject variation for a hypothetical 

response that increases linearly over time, recorded on four subjects on ten occasions. The 

thick line shows the mean population response over time. The thin lines indicate each of 

the four subjects’ mean responses. It can be seen that these vary about the population mean 

response. The thin lines therefore demonstrate between-subject variability. There is also 

variation associated with measurements taken within subjects. This is represented by the 

symbols that vary about each of the thin lines. It is possible to consider this sort of data as 

forming a two level hierarchy. The level 1 units are the repeated observations and these are 

nested within the level 2 units (the subjects). It can be assumed that the mean response for 

each subject is randomly distributed around the underlying response in the population as a 

whole. This leads to level 2 or between-subject variation. In a similar way, the repeated 

observations for each subject are assumed to be randomly distributed around their 

underlying mean response, thus leading to within-subject or level 1 variability. A model to 

fit this data in Figure 2.3 can be of the form.

Paul Lambert Ph.D. Thesis, November 2000 10



CHAPTER 2 Hierarchical Models

y l j= P o ^ P ^ J +uj +eiJ (2.2)

whereby is the response at the ith time point for the f h subject, tg the is the time at the i h 

time point for the j h subject, Po is the intercept, Pi is the gradient, uj is the effect of the j h 

subject and eg is the residual at the i h time point, where Uj and eg are assumed to be normal 

random variables, with the following parameters

Uj ~ N(0,a*), e,j~N(0,cr2) (2.3)

and coy(eij,ekj)=0. Incorporating the random effect uj leads to the intercept being a random 

coefficient in that it varies between subjects. This can be seen by rewriting (2.2) as

y g  =  fio  j  +  P \ l ij +  e ij
(2.4)

0 o  j  ~  0 o  +  Uj

The model in (2.4) is flexible as not only does it model the fixed parameters (Po and Pi), 

but also the components of variance, in that both between-subject (<r2) and within-subject

variation (<?) are being estimated. In order to investigate how similar the level 1 units are 

(in this case the repeated measurements on each subject) the intraclass correlation 

coefficient (ICC) can be estimated (Goldstein, 1995). This is given by the formula

Time (t)

Figure 2.3 Plot showing between and within-subject variation for subjects with a 
positive linear response over time (different symbols represent 
different subjects).

Paul Lambert Ph.D. Thesis, November 2000 11
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(2.5)

This is a measure of the proportion of the total variation that is explained by the variation

between observations made on the same subject. It can be seen that if there is no between- 

subject variability then p=0 and standard statistical methods could be used. However, it 

must be stressed that this is an unlikely situation with hierarchical data, especially repeated 

measures data.

It may be of interest not only to describe the mean response of a population over a period of 

time, but also to quantify how different the subjects are and by how much individuals vary 

with regard to their responses. If there were only a few subjects then it is possible to treat 

the u/s  as fixed effects, i.e. obtain an estimate of Uj for each subject. However, if there are 

a large number of subjects then the number of parameters that need to be estimated will 

become large. If there is an interaction between subject and time then the number of 

parameters that need to be estimated will become even larger. The hierarchical model has 

appeal, as it is not sensible for the regression coefficients to be the same for all subjects and 

the approach can be considered a sensible compromise between separate models for each 

subject and models where the coefficients are forced to be equal. The compromise is 

sensible because a hierarchical model will give more stable estimates than separate models 

and more interesting parameters than equal coefficients (de Leuuw and Kreft, 1995).

Figure 2.3 may be unrealistic because it assumes that the rate of change in the response 

over time is the same for all subjects, i.e. the gradients are the same. It may be sensible to 

consider a response as shown in Figure 2.4, where not only the intercept varies from 

subject to subject but so too does the gradient. A model to capture this feature can be 

defined as follows,

between the level 2 units, in this case subjects, and can be thought of as the correlation

y tJ -  floj + Pxfij + eij

Po j  =  Po +  U0 j » P l j  = P i +  U\ j

(2 .6)

Paul Lambert Ph.D. Thesis, November 2000 12
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where uq/, uij and eg are assumed to be normal random variables, with the following 

parameters,

"  '0^ f  - 2
Uj ~ MVN

fn \ „

u0 v «oi 
2

vOy
ev ~ N (  0,<t2) (2‘7)

Where MVN[-,-] denotes a Multivariate Normal distribution.

Using this formulation the variation in intercepts is quantified by cr 20 and the variation in 

gradients is quantified by a 2ul. Note that there is a covariance term (<juoi) for the two

between-subject (level 2) random effects. By inspection of Figure 2.4 it becomes apparent 

why a covariance term may be needed. In the figure the subjects with high intercepts tend 

to have smaller gradients leading to a negative association between uoj and uij, and thus a 

negative covariance term. A positive covariance would indicate that subjects with higher 

intercepts would also tend to have larger gradients.

The model in (2.6) can be rewritten in the following form,

ys = A + + «oj + “i A + ea (2.8)

or of the form

Time (t)

Figure 2.4 Plot where both the gradient and intercept varies between subjects 
(different symbols represent different subjects)
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CHAPTER 2 Hierarchical Models

y,i = (A) + “o, ) + U  + Ul, )‘ij + ea <2-9)

In this simplistic example, I have assumed that all subjects were measured at the same time 

points and there are no missing values. However, a very important aspect about hierarchical 

models is that level 2 units can have a different number of level 1 units, so in the repeated 

measure example, different subjects could be measured at different time points and have a 

different number of observations. These examples are also simplistic in that they assume a 

linear effect of time and the variation about the mean response is a function of the linear 

predictor. However, it is possible to extend these models to situations where the mean 

profile is a more complex function of time and the between-subject variance is also of a 

more complex form. The models can be extended in the same way as standard linear 

models to situations where groups of individuals can be compared, e.g. treatment arms in a 

clinical trial and where adjustments are made for confounding variables. Another aspect I 

will demonstrate is where the level 1 (within-subject variation) can also be modelled. For 

example,

C T y = a  + f k g  (2 .10)

where the within-subject variance is a function of time. This is known as complex level 1 

variation (Goldstein, 1995).

2.5 Estimation

It was seen in section 2.4 that when fitting a hierarchical model, both fixed effects and 

random effects need to be estimated. There are a number of techniques available for 

estimating the parameters including Iterative Generlized Least Squares (IGLS) (Goldstein, 

1986), a Fisher Scoring method (Longford, 1987), and an EM algorithm (Bryk and 

Raudenbush, 1992). Alternatively, within a Bayesian framework it is possible to use 

Markov Chain Monte Carlo (MCMC) methods, notably Gibbs Sampling (Zeger and Karim, 

1991). In this thesis the program MLn (Rasbash and Woodhouse, 1995) is used for fitting 

hierarchical models. This program uses Iterative Generalized Least Square (IGLS) which is 

described in section 2.5.1.1 also consider Bayesian methodology-for fitting hierarchical 

models using the BUGS and WinBUGS programs (Spiegelhalter et al, 1996). The
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methodology for this is described in section 2.5.2. Descriptions of the other methods can be 

found in Goldstein (1995) and Longford (1992).

2.5.1 Iterative Generalized Least Squares (IGLS)

For the models described in the previous section it was shown that a hierarchical model 

consists of both fixed effects and random effects. Furthermore, for a two level model there 

can be random effects at both level 2 and level 1. Let N  be the total number of observations 

(also the number of level 1 units), M  be the number of level 2 units (the number of subjects 

in a repeated measures analysis) and nj the number of observations for the f h level 2 unit. 

Note that

f \ n , - N  (2.11)
7=1

A general two level model can be written, using the notation similar to that of Goldstein 

(1988), as

Y = X/3 + Z {2)u + Z {l)e (2.12)

where Y is the (Nx 1) vector of responses, X  is the (N x p) design matrix for the p  fixed 

effect parameters, p  is the ip x 1) vector of fixed effect parameters, Zf2) is the (N xMqi) 

design matrix for the q2 random effect parameters at level 2, Zf1} is the (N  x Mq{) design 

matrix for the qi random effect parameters at level 1, u consists of M  random sub-vectors 

UjJ= 1,. ..M , each with q2 components, and e consists of N random sub-vectors eg, 

z=1 , . ..M , each with qi components.

Since u and e denote the random effects it is assumed that

u ~ MVN(Q, Cl2), e -  MVN(0, Qj) (2.13)

where Q2 is the covariance matrix for the level 2 random effects and Qi is the covariance 

matrix Tor the level 1 random effects.
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The above model can be illustrated by considering the example o f the 2 level model 

described in (2.6)-(2.7) for a linear model with random intercepts and slopes. This can be 

written in the form of (2.12) as follows;

y  i i  

y  i\

\ y *jM j

i t21

1 tnM\  njM y

+ diag

1 tu

1 tnmM

U01

u.

u
u1M

+ / ,
'21

\ " , » j

(2.14)

Note that ‘diag’ indicates that the matrix is block diagonal, with the blocks denoted by the 

square brackets. Since at level 1 there is only one variance term (the within-subject 

variance is assumed constant) the design matrix is the identity matrix.

Also from (2.13) it is assumed that u ~ MVN(0, Q2), e ~ MVN(0, Qj), In this case

and O, = (p-2)  (2 .1 5 )n 2 =
(  2 A

a u0 âOl 
_  2 

V'-'aoi °u\ y

These are the covariance matrices for the random effects and are also known as the 

variance components. In the repeated measures example here, 0.2 denotes the between- 

subject variation about the mean slope and Qi the within-subject variation, which is 

assumed to be constant over time and also equivalent between subjects.

When estimating the parameters in a hierarchical model, the variance of the outcome Y 

conditional upon the fixed effects is needed.

V = Var(y I xp) = E[(Y -  XP)(Y - X P ) 1] 

From (2.12) it can be seen that Y-XP is equal to Z^VhZ^e, so

(2.16)
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V = E[(Zi2)u + Z me)(Zi2)u + Z we)T ]
(2.17)

= Z (2)Var(u)Z(2f + Z (1)Var(e)Z(1)

From (2.13) it is known that Var(w)=Q2 and Var(e)=Qi, and so

F = Z(2)Q2Z(2)r+ Z (1)Q1Z(1)r (2.18)

V will block diagonal, which is sensible, as observations made on different level 2 units are 

considered independent. For the repeated measures linear model example in (2.6)-(2.7) 

each block would be of the form

If Qi and Q2, and hence V, are known then it is possible to use standard Generalised Least 

Squares (GLS) (McCullagh and Nelder, 1989) to estimate the fixed effect parameters P, 

such that

However, in practice V will not be known, and it will have to be estimated from the data. 

The IGLS method works through the following steps (Goldstein, 1986);

1) Obtain an initial estimate of p  (usually assuming all observations are 

independent, i.e. V—In)

2) Estimate Qi and Q2 using the residuals for the current estimate of P  enabling V 

to be estimated using (2.18).

3) Re-estimate p  using the updated estimate of V.

4) Repeat steps 2 and 3 until to convergence, at a pre-specified level of tolerance,

<7*0 ■*■(*!/ *2j )^rn01 + ^ l j h j ° ’ut <7u0 +  2 t 2 j a u0\ + t 2j (F u\ +<7
(2.19)

Vau0 +(*u +^ 'K o, +

p  = (X TV-lX ) - 'X TV-'Y (2.20)

with covariance matrix

V(P) = (X TV-xX y l (2.21)

of both the fixed effects and the variance components in Qi and Q2.
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Equation (2.20) shows how step 3 is performed, but obtaining the estimates of Qi and Q2 is 

slightly more complex and uses residuals. The residuals of a hierarchical model are defined 

as

Y = Y - X p  (2.22)

Let the cross-products of the residuals be defined by Y* where

Y* = Y Y t (2.23)

From (2.16) it can be seen that E(7*)= V. It was seen in (2.18) and (2.19) that Visa, linear 

function of the parameters in Qi and Q2. Therefore, if  the appropriate design matrix is 

obtained then the parameters can be estimated using GLS. Y* is symmetric and so only the 

lower triangle of the matrix is needed. Thus,

Y** = vech(T*) (2.24)

Where the function ‘vech’ means that Y** is formed by stacking the columns of the lower 

triangle of Y*. The linear model of the variance components can then be written

E(Y**) = Z* 0 (2.25)

where Z* is the design matrix for the variance components and 6 is the vector of
_  A

parameters in Qi and Q2. The GLS estimates of 0, 0 , can be obtained by

0 = (Z*V"Z*)"1Z * V ’17~ (2-26)

where V* is the covariance matrix of Y** and is defined by

V *= V ® V  (2.27)

where 0  is the Kronecker product which multiplies every element of the left hand matrix 

by each element of the right hand matrix.

Assuming multivariate normality it is possible to obtain a covariance matrix for 0 such 

that.

cov(0) = 2 ( Z 'V " z ') - ' (2-28)
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However, when estimating the variance components the assumption of multivariate 

normality may be unrealistic (Goldstein, 1995). Although this should not bias the estimates 

of the variance components themselves, it can lead to biased estimates of the variances of 

the variance components. Thus, they should be used with caution.

For the simple repeated measure linear model example in (2.6)-(2.7) where each block of V 

is shown in (2.19) the variance components are estimated as follows. Y** is formed by 

stacking the following vectors, y*

YnY ii

ynjiYn 
*  —2

y  j  =  y  2i (2.29)

ynt\y%\

2  is formed by stacking the following matrices

1 t2j + tl j t2jtxj 0

(2.30)

Finally #is the vector of parameters to be estimated.

(2.31)
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Futher details regarding obtaining the design matrix for the random effects can be seen in 

Goldstein and Rasbash (1992). Although I have demonstrated the estimation procedure for 

two levels, the procedure can be easily extended to situation with three or more levels.

Usually the random components (the w/s) are not of specific interest, but they can be useful 

for model checking puiposes or for showing fitted individual profiles. Unlike a general 

linear model, there are more than one set of residuals, with the potential for several sets 

residuals at each of the different levels. For example, for model (2.18) there will be three 

sets of residuals, two at the between-subject level (the uo/s and the wy/s) and one at the 

within-subject level (the e,/s). The residuals are not obtained directly in the model 

estimation, but using the parameter estimates of the hierarchical model it is possible to 

obtain shrunken residuals. A shrunken residual is the expected value of the random 

components conditional on the estimated fixed and random components. For each level of 

the model, the residuals are estimated by regressing the random component on the overall

residual component Y . Thus, for a hierarchical model with h levels the level h residuals 

can be obtained using

Where Rh is block diagonal, with each block corresponding to a level h unit, and for the j th 

block is given by

Further details of residuals in hierarchical models can be found in Goldstein(1995).

Goldstein (1986) shows that IGLS estimates are equivalent to Maximum Likelihood (ML) 

estimates. However, it is known that maximum likelihood estimates of the variance 

components are biased. The reason for this is that the procedure ignores the sampling 

variability in the estimates of fixed effects. Goldstein (1989) extends his work on IGLS to 

obtain Restricted Iterative Generalised Least Squares (RIGLS) estimates. He shows that 

RIGLS is equivalent to restricted maximum likelihood (REML). The choice of IGLS and 

RIGLS becomes important in small samples. However, the datasets analysed in this thesis

u = R [V -1Y (2.32)

(2.33)
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are of a sufficiently large size that use of RIGLS instead if IGLS makes no practical 

difference. There is an important issue in the definition of small. There may be a large 

number of level 1 units, but very few level 2 units. In this situation it may be advisable to 

use RIGLS as there is a small sample size with regard to the level 2 units.

2.5.2 Bayesian Methodology for Hierarchical Models

There has been a long debate of the various advantages and disadvantages of Bayesian and 

Frequentist statistics. However, much of this debate has been regarding philosophical 

rather than practical aspects of analysis (de Finetti, 1972; Lindley, 1985). There is 

increasing interest in the use of Bayesian statistical methods in many fields including 

epidemiology and biostatistics (Kadane, 1995; Berry and Stangl, 1996; Lilford and 

Braunholtz, 1996; Spiegelhalter et al.9 1999). I will not go into detail about the 

advantages and disadvantages of Bayesian statistics, these can be found in the above 

references. My adoption of Bayesian methods is pragmatic rather than philosophical, 

although I do have leanings towards the philosophical arguments. The five main reasons 

why I believe Bayesian methodology may be useful in the analysis of hierarchical models 

are as follows;

1) the ability to take appropriate account of all forms of recognised uncertainty;

2) the ability to deal with problems that would be difficult (or impossible) using 

classical methods;

3) the ability to provide more meaningful interpretations of data;

4) the ability to include pertinent information external to the current study;

5) the ability to predict future/unknown observations.

An important difference between the Frequentist and Bayesian frameworks is in the 

definition of probability. I will briefly explain the differences between the two frameworks 

in terms of the comparison of two treatments (a new treatment, A, and the current 

treatment, B) in a clinical trial where x  denotes the observed data and 6 the parameter of 

interest (the treatment difference).
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The Frequentist approach to inference attempts to demonstrate a treatment difference by 

assuming that there is not a difference, but then showing that it is unlikely that you would 

have obtained your data if  this were actually the case. This is done by defining a null 

hypothesis that there is not a treatment difference, choosing an appropriate test statistic and 

then calculating the probability of observing the test statistic to be as extreme as that 

obtained given that the null-hypothesis is true. This is, of course the definition of a P-value. 

Many non-statisticians are confused by this definition and actually interpret P-values as if 

they were Bayesian probabilities.

The Bayesian approach starts with the observed treatment difference and obtains the 

probability that, for example, treatment A is better than treatment B. This is of course the 

question most clinical researchers want answered. Although the interpretation of the 

Bayesian analysis is simpler, there is a penalty to pay in the form of a prior distribution. 

One must specify the prior beliefs of the treatment difference before conducting the 

analysis.

The difference in interpretation between the two frameworks is because P-values are based 

on a hypothesis testing framework, which is based on an inverse argument, P(x 16 ) , while 

what most people want to have is P {61 x ) . It is worthwhile stating that in Frequentist 

inference probabilities refer to the long-run frequencies of repeatable events. In Bayesian 

statistical inference probabilities are subjective in that a probability can be attached to any 

event. For example, I could state that “the probability of Ipswich Town not being relegated 

from the Premier League in the 2000/2001 season is 0.7” (more optimistic than the 

bookmakers!). A Frequentist could not make this statement, as the event is not repeatable.

A similar problem occurs when obtaining confidence intervals. Many people interpret a 

Frequentist (95%) confidence interval as if there was a 95% probability that the interval 

contained the parameter o f interest. Since in the Frequentist approach, parameters are 

considered to be fixed, the parameter is either in the interval or it is not. The correct 

interpretation of a 95% confidence interval is that it implies that if  the experiment were 

repeated again and again then 95% of the confidence intervals would be expected to 

contain the true parameter value. Within the Bayesian framework, credible intervals can be
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obtained, where a 95% credible interval infers that there is a 95% chance that the parameter 

of interest lies within the interval.

In the previous section I showed how the parameters 9_ in a hierarchical model with 

observed data x  can be estimated using IGLS which is equivalent to maximising the 

likelihood,p(x\0). In a Bayesian analysis the unknowns, 0  need to be given a distribution 

that reflects the uncertainty about these parameters before the data has been observed 

which may include knowledge based on external evidence. This is known as the prior 

distribution for 6. We then want to update our knowledge of 0 in light of seeing the data, 

x. This is known as the posterior distribution and is defined by p(6\x). The prior is linked 

to the posterior distribution through Bayes Thereom.

P(x\2)P<g)
pig. I * ) -

\p { i)p (x \ff)d 0  (234)

Generally it is not necessary to calculate the denominator so

p{d | x) k  p(x  10)p(g) (2.35)

One of the main criticisms of the Bayesian approach is that the results o f an analysis will be 

dependent on the prior distributions. The choice of prior distribution may vary between 

individuals and thus these different individuals could potentially reach different 

conclusions after analysing the same data. Furthermore, in multi-parameter settings, the 

specification of prior beliefs can be very complex. To overcome these problems it has been 

suggested that vague or non-informative prior distributions should be used. With such 

prior distribution, it assumed that very little is known about the parameters before the 

analysis and so the data, through the likelihood, dominates the prior distribution. In this 

thesis I always use vague prior distributions. As I use the WinBUGS software for Bayesian 

analysis the prior distributions I use are proper, in that they are expressed in the form of a 

parametric distribution. However, it is relatively easy to make these vague by, for example, 

using very large variances with a Normal distribution. In addition, one can perform 

sensitivity analyses in order to investigate how sensitive any parameter estimates are to the 

choice of prior distributions.
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The main reason why Bayesian methods have been little used in practice until the last few 

years is because of computational problems. This is because although the likelihood will be 

the product of simple terms, problems occur when making inferences regarding specific 

parameters as the other parameters need to be ‘intergrated out’, i.e.

P&t I *) = £  I $)d0^  (2.36)

p(0k | x) is the marginal posterior distribution for Ok with the ‘ \k’ notation denoting all 

parameters other than Ok.

Interest may sometimes lie in the prediction of a future observation. This should be 

conditional on the data and the prior distributions. Within the Bayesian framework it is 

possible to obtain such prediction through the use of a predictive distribution, p(y|x), where 

y  is the future observation. A predictive distribution can be defined as

p(y  I £> = fp (y  I S)p(& I (2.37)

In Chapter 6 1 use predictive distributions, not to predict fixture observations, but to predict 

missing values for covariates.

When obtaining marginal posterior or predictive distributions it may not be possible (or 

very complex) to do numerical or analytical integration. For details of these methods see 

Thisted (1988). However, with the developments of Markov Chain Monte Carlo (MCMC) 

methods it has become relatively simple to obtain samples from the joint posterior 

distribution p{0  |x) (Gilks, Richardson, and Spiegelhalter, 1996). As stated by Draper 

(1998), “I start out wanting to compute a probability densityp(0  |x), but then I notice after 

thinking about it, I would be just as happy to have a large sample for as to know its precise 

form”. With a large sample it is possible to approximate marginal statistics of interest from 

the joint posterior such as means, medians, standard deviations and quantiles. If the sample 

is large enough then these will be estimated to a high degree of accuracy. The simplest 

form of MCMC is Gibbs Sampling. In Gibbs Sampling after starting values have been 

chosen or randomly generated for each parameter, then each parameter is then sampled 

from a distribution conditional on the current values of all other parameters and the data. 

The procedure loops through all parameters many times leading to a large sample from the
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joint posterior distribution. If all parameters are contained in the vector 0, then estimates 

are each parameter can be obtained using the following three steps.

1) Choose starting values for 0 (0^O), 02o),. • •, 0*O))

2) Sample 0\l) from p(01 | 02o), 03(o), • • •, 0ko), x)

Sample 02(1) from p(02 \ 0[l), 0\o), • • •, #*0), x)

Sample 0kl) from p(0k \ 0,(1), 03(,), • • •, 0k\ , x)

3) Repeat step 2 many 1000’s of times and eventually obtain a large sample 

from p{0  |x).

Note that 0k } refers to the 1th iteration of parameter 0k.

In the 1000’s of repeats of step 2 a sample is obtained from the Jull conditional distribution 

for each parameter. A full conditional distribution for a parameter is the distribution of that 

parameter conditional on the data and all other parameters in the model. Due to ergodic 

theory, the full conditional distribution tends to the marginal posterior distribution (Gelfand 

and Smith, 1990). Although Gibbs Sampling can be implemented in any statistical 

programming environment, the use of a user friendly package, such as BUGS 

(Spiegelhalter et a l  1996) or the more recent WinBUGS (Spiegelhalter, Thomas, and Best, 

1999), has made it more practical to applied statisticians.

When using Gibbs Sampling to fit a Bayesian hierarchical model graphical models (also 

known as conditional independence models) are useful for breaking down complex models 

into simple constituent components, for communicating the essential structure of the model 

and for providing the basis for computation (Whittaker, 1990). Graphical models can be 

represented by a graph known as a Directed Acyclic Graph (DAG) (Best et al., 1996). As 

an example consider the following model:

Ty = A) + A  ({ij ~ 0  + Po j + A  j + eij (2.38)

A j  ~ m ,«r* X A i ~ W(0,<7* ), etj ~ N(0,cr2)

Note that no covariance is assumed between f y  and pij as ty is centred about its mean. The 

model can be re-expressed in the following hierarchical form:
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p0j ~ N (p0, a l )

A y~A T (A .oi)

(2.39)

The model is shown graphically as a DAG as in Figure 2.5. Each component of the model 

appears in the DAG as a node. Solid arrows represent probabilistic (or stochastic) 

dependencies, while dashed arrows represent deterministic (or functional) dependencies.

deterministic node and thus, has dashed arrows leading to it.

The important aspect about expressing models in this graphical form is that it can be shown 

that there are useful properties that can make computation, when using Gibbs sampling, 

much simpler. Let v be a node in a DAG and Fbe the set of all nodes. The joint 

distribution p(V) can be obtained as follows. If a parent of v is any node with an arrow 

coming from it pointing at v then it can be shown that (Spiegelhalter et a l, 1993)

When defining a parent, deterministic nodes are ignored, so the parents of yy are fop fiij 

and a  Thus for the model in Figure 2.5,

It was shown above that when using Gibbs Sampling, samples are taken from full 

conditional distributions. It can be shown (Spiegelhalter et al., 1993; Gilks et al., 1993) 

that the full conditional distribution p{v\ V.v) for node v has the form

For example y y  is a stochastic node and thus has solid arrows from c? and py. py  is a

P(V) = n  P(v I pa«nts[v]) (2.40)

p ( V ) = p ( y y  I A y . A y . O / K A ,  I A . C f t M A y  I A . * * )  

p (Po )piPi )p(a l,, )p(a \  )p(ct2 )
(2.41)

p(v  I V.v) °C p(v,V_v)
oc terms in p(V) containing v (2.42)

For example, the full conditional distributions for fioj is

Pifioj 10 = P^ij I A>, >P\j>°*)p(Poj I fio> )p(Po)

and for crl is

(2.44)

(2.43)
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j=1 N

Figure 2.5 DAG for simple repeated measure hierarchical model

At each iteration of the Gibbs Sampler, for each node a value needs to be sampled from its 

frill conditional distribution. The full conditional distribution for any stochastic node is 

conditional on the current values of all other stochastic nodes in the model and, as seen in 

(2.42), this can be obtained from the DAG. When using WinBUGS, if the full conditional 

distribution reduces analytically to a known distribution, then the full conditional 

distribution will be sampled from this. If this is not the case then adaptive rejection 

sampling is used to sample the full conditional distribution (Gilks and Wild, 1992). In 

adaptive rejection sampling a density g(y) is obtained using (2.42). A function Gfy), so that 

G(y)>g(y) for ally, is then chosen. A sample is drawn from the density proportional to G(y) 

and the point is accepted with probability g(y)/G(y). Accepted points are independent 

samples from the density proportional to g. A poor choice of G will lead to many rejected 

points and thus it will take a long time to run the Gibbs Sampler. The adaptive part of 

adaptive rejection sampling comes from when the sampled point is rejected, G is updated
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so that it comes closer to g. Further details of these methods and more complex methods 

can be found in (Gilks, 1996; Brooks, 1998).

An important advantage of using the Bayesian approach is that one is not restricted to a 

small number of distributions. For example, rather than assume normality one could 

assume that between-subj ect variation could be modelled using a t-distribution with pre­

specified degrees of freedom or even estimate the degrees of freedom. With Binomial and 

Poisson responses it has been shown that classical methods of estimation can be biased 

(Breslow and Clayton, 1993; Rodriguez and Goldman, 1995) and that Bayesian methods 

are preferred, especially with small samples (Browne and Draper, 2000).

When using Gibbs Sampling or other MCMC methods a crucial issue is assessment of 

whether the repeated samples, known as chains, have converged to the target distribution.

It is important to realise that convergence in this case means convergence to a distribution 

rather than to a single value. The first issue is to decide on starting values for each 

parameter. If the starting values are close to the actual values then convergence will be 

quicker. However, when one is not sure what the actual values are, then one must be 

careful as there are situations where the joint posterior distribution may not be fully 

explored, for example, with a bi-modal likelihood. An issue related to the choice of starting 

value is the length of the ‘burn-in’. These are the samples that are discarded while the chain 

“settles down” to its target distribution. After deciding on the length of burn-in, one must 

decide on how many samples are needed to obtain reliable estimates. Generally the 

repeated samples will not be independent, as autocorrelation will exist. With high 

autocorrelation more samples will be needed. To aid in the choice of burn-in and number 

of samples a number of convergence diagnostics exist. The most common of these, namely 

the Geweke statistics and the Gelman and Rubin statistic are outlined below.

Informal convergence assessment for each chain can be performed by inspection of trace 

plots (a plot of the sampled values vs. iteration number), but there are a number of 

techniques available to assess convergence more formally. For a comprehensive review of 

these see Cowles and Carlin (1996). Some of these techniques require more than one chain 

and assess between and within-chain variation (Gelman and Rubin, 1992; Brooks and
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Gelman, 1998). A procedure that uses only one chain is the Geweke Statistic (Geweke, 

1992). For each parameter, this looks at an ‘early’ and a ‘late’ section of the chain. ‘Early’ 

is usually defined as the first 10% of the chain and ‘late’ as the last 50%. The means (Eeariy 

and Eiate) and variances (Yearly and Viate) of both sections of the chain are obtained. Since 

there may be autocorrelation in the chain the variances are calculated using a spectral 

density. A test statistic for each parameter is then obtained as follows:

Absolute values greater than 2 indicate that there may be problems with convergence. 

Although it us usually preferable to use more than one chain when using Gibbs Sampling, 

some models take a long time to run and a large number of iterations are required. In this 

situation running multiple chains is less attractive due to both time constraints and 

computing resources. When developing a model using classical estimation and then fitting 

a Bayesian model, the starting values can be chosen to be equal to those obtained from the 

classical model (Browne and Draper, 2000). In this situation, one would not expect the 

parameter estimates to differ dramatically and so detailed convergence assessment is not 

usually required.

Gelman and Rubin (1992) discuss how there can be problems with just using one chain 

when assessing convergence. This is because it is possible that the chain will remain in a 

region that is heavily influenced by the starting values. The problem may be particularly 

severe if the target distribution is multi-modal. Gelman and Rubin therefore recommend 

the use of multiple chains with different starting values when assessing convergence.

The Gelman and Rubin convergence diagnostic uses m chains, each with 2n iterations and 

each with different starting values. The starting values should be overdispersed with 

respect to the target distribution. Convergence is assessed using the components of 

variance of the multiple sequences and is based on a classical ANOVA calculating the 

between-chain variance and the pooled within-chain variance. Convergence is assessed on 

the last half of the sample, i.e. a sample of size n. However, there is no reason why the 

proportion of the sample the Gelman and Rubin diagnostic should be half the sample.

EBmh, E,
(2.45)
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The between-chain variance (B) for the parameter of interest 0  is calculated as follows,

m - l  jsl

(2.46)
where

f f , - ± ± 4  and
n  1 ™ Jml

0, is the mean value of the f h chain and- 6 is the overall mean value.

The pooled with chain variance (W) is calculated as follows
1 m n  _

<247>

The total variance of 0, (V) can be estimated by a weighted average of B and W,

Ty n - 1_. B
V =  W + — (2.48)

n n

It can be seen that if the between-chain variance is small (as one would expect if each chain 

had converged to the target distribution) the effect of the second term is negligible.

V is an unbiased estimate of the true variance if the chain has converged, but will be an 

overestimate if convergence has not been achieved. For any finite n, the within-chain 

variance, W, will be an underestimate of the true variance, as the individual chains have not

had time to range over all of the target distribution. As« oo, both V and W approach the 

true variance from opposite directions.

The Gelman and Rubin diagnostic is obtained by estimating the factor by which the 

estimated variance of the posterior distribution will be reduced as n —> oo, and is obtained 

by

(2.49)
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It can be seen that if  the between-chain variance is very small then V will be approximately 

equal to W and <Jr  « 1 .

Gelman and Rubin (1992) and Brookes and Gelman (1998) give further details of this 

convergence diagnostic, including procedures to take account of the uncertainty of the
—  A

estimates of 6  and V by applying a correction factor (which in practice makes little 

difference), and advise using the upper 97.5% confidence limit of y[R . If VR is close to 

one for all parameters then the m chains have converged to similar distributions. Practical 

convergence is sometimes defined as 4 r  < 1.04 and ^R 91_5% < 1.08 (Gelman, 1996).

The above method proposes running the chains for 2n iterations and then calculating VR 

for the final n iterations. Brooks and Gelman (1998) suggest using an iterated graphical 

approach where each of the m chains is divided into batches of length b. *Jr  is then 

calculated for each of the segments and plotted against the number of iterations. In this way 

it can be seen how quickly the chains converge and get an idea of how long the ‘burn-in’ 

period needs to be.

2.6 The Effect of Ignoring the Hierarchy

In this section I show how standard errors of fixed effect parameters may be wrong if the 

hierarchical structure o f the data is ignored. Consider a situation where there are repeated 

observations over time for a number of individuals and of interest is the linear relationship 

between the response (y) and time (f). It will be assumed that the responses for each subject 

are parallel as in Figure 2.3 and that each subject has the same number of measurements 

with no missing data. There are N  subjects and M  time points. Time (t) has been centred 

about its mean. Let <r2 denote the between-subject variance and cr2 be the within-subject 

variance. Thus the model is as follows.

y,j = A  + P\h + + eij (2.50)

Uj ~  N(0,crl) ,  etj ~ N(0,cr2)
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If cr2 and cr2 are assumed known then estimates of the fixed effects (J3o and /?/) are 

obtained using equations (2.20) ( f i  = (X TV~lX)~l X TV~lY  ) with variance matrix obtained 

using (2.21) ( Var(j3) = (X TV 'lX y l );

V is block diagonal with blocks V) of the form

u cr2
.2

( —2 , _2 +cr

vj =
2 2 <J: + cr

.2  N\

2 2 2 cr a l  + cr

(2.51)

V is block diagonal because observations made on different subjects can be considered to 

be independent. V 1 is also block diagonal with each block being the inverse of Vj. Since Vj 

is symmetric, V 1 will also be symmetric and can be solved as follows. Letting

a = cr.2 + cr2

and

b = a 2

The inverse of V can be calculated by solving

'a b . . . ‘P <1 -  q] f l 0 . . .  o'

b a <1 P '• 0 1
\ \  b : <1 0

Kh b a> . . . <1 PJ ,0 . . . 0 K

forp  and q.

From (2.54) is is possible to obtain the following equations for p  and q.

Solving for p  and q,

ap + (M -1  )bq = 1 
bp + (a + (M  -  2)b)q = 0

V l  (a ( M - \ ) b  W r *
vOyK'iy b a + ( M - 2 ) b

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

The determinent of the square matrix is
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a(a + ( M - 2 ) b ) - b ( M - \ ) b  

= a2+ a b M - 2 a b - b 2M + b 2 
= ( a - b ) 2+ M (a b -b 2)

(2.57)

Solving for p

P =
a + (M - 2 ) b

( a - b ) 2 + M ( a b - b 2) (2.58)

and for q

- b
(2.59)( a - b ) 2 + M ( a b - b 2)

substituting <j \  and a 2 back into (2.58) and (2.59) yields V 1 as a symmetric matrix with 

diagonal elements r, where

_ ( M -  l)a2u + a 2r =
M a la 2 + (cr2)2 (2.60)

and off diagonal elements s, where

s =
M a la 2 +(a2)2 (2.61)

To obtain Var(/?) equation (2.21) is used. The design matrix X  is as follows

X  =

1 t

21

1
/2

(2.62)

y

and F 7 is block diagonal with blocks A, such that
{ a a aNA 0 . . .  o

0 A •
• \  0
0 0 A

(2.63)

with
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A =

r s 
s r

V

(2.64)

The first two terms of equation (2.21), X TV 1, gives 

f r + (M  -1)5 r + (M  -1)5 • • •
X TV~' =

V tur x us t2]r t2ls 

And multiplying by X, gives

MN(r + (M -l)s )  (r + (M  -  2 ) j ) £  t

r + (M  — l)s

fr ~^MNS J

X TV ' 'X  =
V

(2.65)

(2.66)

(r + (M -2)s£>  ( r - s ) Y , t 2

Note that the off diagonals are zero as t is centred about its mean so ~*)t will be zero. To 

obtain Var(/3) the inverse of (2.66) needs to be obtained. The determinent is:

(2.67)X TV - 'X  = NM(r + (M -  2>Xr -  

The variance o f the intercept P„ is therefore

Var(p0) = (2.68)

(2.69)

NM(r + ( M - 2 ) s ) ( r -  

and the variance of the gradient fr is

Var(fix) =  MN(r + (M_- l ) s
MN{r + (M -  i)s(r -  s ) £  t2

Substituting the terms for r and s from  (2.60) and (2.61) into (2.68) and (2.69) gives the 

variance of the intercept,

M o 2 + or2
VQr ( M  =

NM
(2.70)

and the variance of the gradient

Var(fr) = (2.71)

When ignoring the between-subject variance using ordinary least squares (OLS) the 

residual variance ( <j 20ls ) will be equal to a 2 + cr2 so that the variance of the intercept will 

be
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NM

And the variance o f the gradient will be

<7 2 + a 2 (2.72)
Var(fi0) = CT' +<7

ct2 +<72 (2.73)
Var(ft) = ̂

x 2I -

It can be seen that the variance of the intercept for the hierarchical model will always be

greater than or equal to that obtained from the simple linear model. The degree to which 

the variance estimates differs will depend on the number of repeated observations M, and 

the size of the between-subject variance,. <r2. Of more interest is the variance of the 

gradient, $  for the hierarchical model, and this will always be less than or equal to that 

obtained from the simple linear model. The amount the variance differs will depend on the 

size of the between-subject variance cr2. Although this is a special case it is worth noting

that the results are applicable generally to the comparison of hierarchical models and 

ordinary least squares estimates. For example, in a clustered randomised trial where 

randomisation is at the cluster level, but analysis is at the individual level the treatment 

effect will have too small a standard error if ordinary least squares is used as treatment is a 

cluster level covariate.

2.7 Example (Plasma Citrate Concentration)

In order to illustrate the methods described and the effect of ignoring the hierarchy I will 

use an example from Hand and Crowder (1996). The data consists of 5 repeated 

measurements of plasma citrate concentration in micromoles per litre on twenty subjects. 

The data can be seen plotted in Figure 2.6. It appears from the figure that plasma citrate 

decreases over time. There is also some evidence that the between-subject variation 

decreases over time, but this will be ignored in this illustrative example. If yy denotes the 

plasma citrate concentration on the ith occasion on the j th subject and tg, centred time then a 

hierarchical model can be fitted to the data as follows
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Plasma Citrate Concentrations

200

Co

C 150 -  
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o

100 -

2 31 4 5
time

Figure 2.6 Individual profile plots for plasma citrate concentration measured at five 
time points.

y y  = P o + P \ t i j + “ j + e ij

2 2 (2*74) where u} ~ N (0, g u ) and ey ~ N (0, cr )

If gI is constrained to equal 0, then model (2.74) is a simple linear regression model (i.e. 

it ignores the clustering).

The parameter estimates for the hierarchical linear model and a simple linear regression 

model can be seen in Table 2.1. It can be seen that the estimates of Po and Pi are the same 

for both methods of estimation and that g 20ls -  g 2u + g 2 as would be expected. The 

standard error of po for the simple linear model is thus

473.75

and for the hierarchical linear model,
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Parameter Hierarchical linear 

model
Simple linear 

regression model
Po 119.9 (3.85) 119.9 (2.18)
Pi -4.74 (1.05) -4.74(1.54)

252.08 -

<72 221.68 -

_2
°O LS - 473.75

Table 2.1 Parameter estimates for simple linear and hierarchical 
linear model for plasma citrate concentration data set.

tr,  / ■» . (5x252.08 + 221.681 „
, 2 0 x 5  = 3 -8 5 -

The variance of Pi for the simple linear model is thus 

and for the hierarchical linear model

Thus, it can be seen that if  the hierarchical structure is ignored then in this simple example, 

the standard error of the intercept is too small, but perhaps more critically the standard 

error of the gradient is too large. In general when ignoring the hierarchical structure 

standard errors of subject level covariates will be too small, and standard errors of 

covariates that change over time will be too large.

The dataset can also be used to illustrate the Bayesian approach to estimation. The model 

can be written in the following form

y t- ~  N(Mi/,<r2)

(2.75)

U j ~ N ( p 0, a l )
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Figure 2.7 DAG for Plasma Citrate Concentration model

As this is a Bayesian model prior distributions need to be specifed for all the unknown 

parameters. Standard vague prior distributions for the fixed effects are Normal with large 

variances and Gamma distribution with small parameters for the inverse of the variances, 

(Spiegelhalter et al, 1996), i.e.

~ m i  0000)

(2.76)
~ Gamma(0.001,0.001)

<r

Further details regarding prior distributions will be discussed in subsequent chapters.
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A DAG for the model can be seen in Figure 2.7. This shows how only the intercept is 

allowed to vary from subject to subject. Although the plot in Figure 2.6 indicates that it 

may be sensible to allow the slope to vary from subject to subject, I will not include a 

random effect for this as the example is for illustrative purposes only.

The model was fitted in WinBUGS using 5 chains with each chain having different starting 

values. These were various combinations of small or large fixed and small or large 

variances estimates. Each chain was run for 10000 iterations, which took about 10 seconds

Po

o

2000 4000 6000 2000 100000

P i
oo

o

o

o

oo

2000

Iterations

COO 6000 

Iterations

8000 10000

? -

cru

2000 4000 6000

Iterations

—I-----
8000 10000

J

T------ T
2000 4000 6000

Iterations

1 r 
8000 10000

Figure 2.8 Trace plots for the four parameters in the Plasma Citrate 
Concentration dataset.
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Parameter Geweke Statistic Gelman and Rubin ^ 97 5%

Po -0.17 1.00
Pi 0.01 1.00
<y\ 0.67 1.00

O'2 -1.13 1.00

Table 2.2 Geweke and Gelman and Rubin diagnostic statistic for the Plasma 
Citrate Concentration dataset.

on a Pentium II 400Mhz PC. Trace plots for the 10000 iterations for each of the five chains 

for each of the four parameters in the model can be seen in Figure 2.8. The five chains are 

overlayed, so it is not always possible to distinguish between the chains. With the 

exception of the between-subject variance (cr2), where convergence appears to occur after

only a few iterations, it can be seen that convergence appears to have occurred by about 

1500 iterations. However, it is difficult to know for sure just from these plots as it is 

difficult to see the fluctuations after the chains have converged due to the very high or very 

low values in the early part of the chain. Trace plots for the last 5000 iterations together 

with density plots for when the five chains are combined can be seen in Figure 2.9. The 

trace plots appear to indicate that convergence has occurred. Figure 2.10 shows Gelman 

and Rubin plots for the four parameters. It can be seen that both and >/R97 5./# are very

close to 1 for all parameters after about 2500 iterations. For these reasons just the last 5000 

iterations were used to obtain the parameter estimates. Geweke and Gelman and Rubin 

diagnostic statistics can be seen in Table 2.2. The absolute values for all parameters of the

Geweke diagnostic are below 2 and the Gelman and Rubin statistic A/i?97 5% is estimated at

1.00 to two decimal place for all four parameters, indicating that there is negligible 

between-chain variation.

Classical 
Hierarchical linear 

model

Bayesian 
Hierarchical linear 

model
Po 119.9(3.85) 119.9(4.09)
Pi -4.74 (1.05) -4.74 (1.08)

252.1 295.1

a 2 221.7 231.9

Table 2.3 Parameter estimates for classical and Bayesian 
hierarchical linear models for plasma citrate 
concentration data set
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Figure 2.9 Trace and density plots for the parameters in the Plasma Citrate 
Concentration dataset.

Comparison of the parameter estimates between the classical and Bayesian estimates can 

be seen in Table 2.3. It can be seen that the fixed effect estimate are identical, but there are 

slight differences in the both the between and within-subject variances. The standard errors 

for the fixed effects are slightly larger for the Bayesian model. This is to be expected as the 

classical model does not take into account the uncertainty associated with the estimates of 

the between-and within-subject variances when estimating the standard errors. It can be 

seen from the density plots in Figure 2.9, that there is a considerable amount of uncertainty 

associated with the variance estimates.
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Figure 2.10 Gelman and Rubin plots for Plasma Citrate Concentration data.

2.8 Discussion

In this chapter I have introduced the concept of hierarchical data, discussed the reason why 

such data needs to be considered differently to non-hierarchical data and shown the effect 

on the standard errors of the estimates when ignoring the hierarchical structure. I have 

introduced some of the important concepts through the use of a hypothetical repeated 

measures example, but it is important to realise that the methodology is applicable to all 

types of hierarchical data. An important issue is the idea of natural variation between units
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(between-subj ects in the case of repeated measures data), which can be modelled using 

random effects. Through the use of random effects, it possible to investigate the source of 

variation of the response variable at the each of the levels in the model. Thus, as seen in the 

repeated measures example there is both between and within-subject variation. In chapters 

3 and 4 1 develop hierarchical models for two different and more complex repeated 

measures problems.

Although I have concentrated on classical methodology for Gaussian outcomes, there are 

techniques available for other outcomes, e.g. Binary and Poisson outcomes (Gilks et al., 

1993; Breslow and Clayton, 1993). However, in small samples these estimation 

procedures can be biased (Rodriguez and Goldman, 1995) and it may be better to use 

Bayesian methods of estimation (Browne and Draper, 2000). In fact the use of Bayesian 

models offers much more flexibility in terms of model fitting including distributional type 

and further complexity, as I will demonstrate in subsequent chapters.
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3 THE ANALYSIS OF AMBULATORY BLOOD PRESSURE (ABPM) 
DATA

3.1 Introduction

In this chapter I demonstrate how hierarchical models can be used in the analysis of 

repeated measures data. I use a two-level model hierarchical model to analyse repeated 

ambulatory blood pressure monitor measurements with measurements taken every half 

hour over a 24-hour period. The mean profiles over the 24-hour period exhibit complex 

curvature and are modelled using restricted cubic splines. I first give a brief background to 

ambulatory blood pressure monitoring in section 3.2 followed by a description of the data 

set used in section 3.3. Section 3.4 is concerned with approaches to modelling individual 

profiles, including conventional summary measures (3.4.1), regression splines (3.4.2), 

restricted cubic splines (3.4.3), periodic splines (3.4.4), and the choice of the number and 

location of knots in spline models (3.4.5). In section 3.5 I use restricted cubic splines in a 

two level hierarchical model. I discuss an initial model in section 3.5 and then perform a 

number of sensitivity analyses to assess the robustness of the model to various factors 

including the number of knots (3.5.4), the modelling of the difference in profiles between 

groups (3.5.5), the choice of between-subject random effects (3.5.6), and the modelling of 

the within-subject variation (3.5.7) In section 3.5.81 assess the assumptions of the model.

A Bayesian approach is adopted in section 3.6 including a re-analysis of the initial model 

(3.6.2) and accounting for the within-subject variance heterogeneity (3.6.3). In section 3.6.4 

I assess the convergence of the Bayesian model. Finally, in section 3.7,1 discuss the 

techniques I have used and recommend further developments.

3.2 Background to Ambulatory Blood Pressure Monitoring

Blood pressure is one of the most common and important measurements in clinical 

medicine. For over 100 years (since 1896) mercury sphygmomanometers have been used as 

the standard method of measuring blood pressure. However, in recent years there has been 

a growth in the use of Ambulatory (or Automated) Blood Pressure Monitors (ABPM) in
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both clinical research and practice (Conway and Coats, 1991; Prasad and Isles, 1996). An 

APBM is a small device (about the size of a personal stereo) that can be worn by a patient 

with a belt or a strap over the shoulder. The device measures the patient’s blood pressure at 

pre-set times, usually every 15 or 30 minutes. When using an ABPM it is possible to 

investigate the blood pressure profile over a 24-hour period or longer. This may be of 

interest as blood pressure has a circadian rhythm with there being a dipping of blood 

pressure at night (Seligman, 1971). It has been shown that attenuation of dipping is 

associated with a number of diseases including pre-eclampsia and chronic renal disease 

(Pickering, 1990).

The use of ABPM has been advocated for a number of reasons. It may reduce or eliminate 

some of the problems with conventional sphygmomanometry, including observer error 

(both terminal digit preference (Patterson, 1984) and systematic under or over reading 

(Bailey and Bauer, 1993)) and faulty equipment (Burke et al., 1982). Another common 

problem is that for some individuals blood pressure is increased in the presence of a health 

professional (Mancia et al., 1983). This is known as ‘white coat hypertension’ and there is 

evidence that the use of automated techniques for measuring blood pressure can reduce this 

problem (Punzi, 1998). An advantage of using ABPM is that it can reduce sampling 

variation since it involves an increased number of readings compared to 

sphygmomanometry, where often clinical decisions are based on only one reading (Coats et 

al., 1992). Another important reason why interest is increasing in the use of automated 

devices for blood pressure measurement is due to the likelihood that sphygmomanometers 

will to be banned in the not too distant fixture due to the toxicity of mercury. In fact they 

have already been banned in parts of Scandinavia (O'Brien, 1996).

The use of ABPM provides a number of challenges in terms of data analysis, with the large 

number of repeated observations per subject and changes in blood pressure during the day. 

However, most approaches to the analysis of ABPM data have tended to simplify the data 

in that they reduce each subject’s ABPM profile to a few summary measures. This results 

in a loss of information, and it may be preferable to use methods that utilize the whole 

profile. However, it is important that the results of any analysis are presented in a clinically 

meaningful maimer.
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3.3 Description of Data

The data set used to illustrate the methods comes from an observational study comparing 

the use of ABPM with conventional mercury sphygmomanometry on obstetric outcome for 

348 pregnant women with a confirmed clinic BP of at least 140/90 mm Hg and >20 weeks 

gestation (Penny et al., 1998). A number of outcomes were investigated including 

development of severe hypertension, development of proteinuria, admission to a neonatal 

intensive care unit, preterm delivery and low birth weight for gestational age. Blood 

pressure was measured every 30 minutes using a SpaceLabs 90207 ambulatory blood 

pressure monitor. In the previously reported analysis a day-time mean (10am-8pm) was 

used as a summary measure. In this chapter I use a reduced data set of 206 women who had 

at least 10 day-time measurements (10am-8pm) and 5 night-time (12am-6am) 

measurements. There were 8593 blood pressure recordings in total from the 206 women 

leading to a mean number of 41.7 blood pressure measurements per women. Analysis was 

restricted to a 24 hour period starting at 12:00 and finishing at 12:00 the following day. 

Reasons for exclusion of the 142 women include failure of the monitor, but more usually 

women removed the monitor, as they were aware that any results would not be used for 

their clinical management. This was particularly the case at nighttime where the monitor 

could interrupt their sleep. The question of interest was whether ABPM blood pressure at 

referral was related to intra-uterine growth retardation (IUGR). This was assessed by 

investigating whether women who subsequently gave birth to an infant <10* weight centile 

for gestational age had a different diastolic blood pressure (DBP) profile at referral to those 

who subsequently gave birth to an infant >10* weight centile for gestational age. This may 

be important, as previous work has shown little association between maternal blood 

pressure and birthweight. However, with the greater accuracy of ABPM measurement there 

is more potential for observing an association (Churchill et al., 1997). Of the 206 women 

20(9.7%) subsequently gave birth to an infant <10th centile for gestational age.

A plot of the blood pressure profiles for the first 12 women can be seen in Figure 3.1. 

Nocturnal dipping can be observed in some of these subjects where blood pressure appears 

lower at night, but in others it is less clear. The within-subject variation appears to be high 

indicating problems with making clinical decisions when only taking one blood pressure
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Figure 3.1 Diastolic blood pressure profiles for the first 12 subjects.

measurement. In addition the level of the within-subject variability appears to vary between

subjects, i.e. some women have greater variation in their blood pressure measurements.

3.4 Approaches to Modelling Individual Profiles

3.4.1 Summary Measures

With ABPM data there are serial measurements collected over a period of time for each 

individual. This leads to ABPM exhibiting a natural two-level hierarchical structure with 

individual blood pressure measurements nested within subjects. Naturally blood pressure 

measurements made on the same subject will be correlated. Most of the current methods of 

analysing ABPM data reduce each individual’s blood pressure profile to a few summary 

measures. I will now discuss some of these methods.

The simplest method of reducing an individual’s blood pressure profile to a summary 

measure is to take a mean. This can be a 24 hour mean or more usually a day-time mean 

and/or a night-time mean (Gatzka and Schmieder, 1995). To overcome the problem of 

people having different sleep patterns, the use of sleep diaries has been advocated (Peixoto
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Filho et al., 1995). However, sleep diaries can be unreliable and so a more simple 

approach is to define ‘narrow bands* for the definition of day and night during which it is 

expected that most people will be awake/asleep (Peixoto Filho et al., 1995). For example, 

in previous work on this data set I used 10:00am-8:00pm as a definition of day-time and 

12:00am-8:00am as a definition of night-time (Penny et al., 1998).

Although a mean is obviously the simplest method of reducing each individual’s blood 

pressure profile to a summary measure, as discussed in section 3.2, blood pressure is not 

constant over time and is said to have a circadian rhythm, with blood pressure 

measurements tending to be lower at night. Much work has looked at fitting curves to 

individual blood pressure profiles including cosinor analysis (Bingham et al., 1982; Ayala 

et al., 1997) or its extension fourier analysis (Somes et al. 1994). There has also been 

some recent work on the use of 3rd degree (cubic) polynomials (Corrao et al., 1996).

In cosinor analysis, fourier analysis and the 3rd degree polynomial method, an individuals 

blood pressure is considered to be a function of time (t) and a model of the following form 

is fitted to the data:

X = / ( 0 + ^  (3.1)

where y t is the i h blood pressure measurement,^) is some function of time and et is a 

normal random variable with zero mean and constant variance.

In the 3rd degree (cubic) polynomial approach^) is

f i t )  = J30+ f a  + f a f  (3.2)

After fitting this model to an individuals blood pressure profile it is possible to obtain a 

number of summary measures including maximum blood pressure, minimum blood 

pressure, the blood pressure at the ‘flex’ point and the times at which the maximum, 

minimum and the flex point occur.

In cosinor analysis it is assumed that there is one sinusoidal cycle per day (one harmonic 

period) and fit)  is defined by
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f ( i )  = a0 + Acos
24 (3.3)

where ao is the Mesor (an average blood pressure over the 24 hour period), A is the 

amplitude (the difference between the Mesor and the highest and lowest parts of the fitted 

curve) and <f> is the phase (the time to the peak). Model (3.3) can be written in a linear form 

as follows (Hallberg, 1969);

/ ( / )  = <*„+/?, cos
2 n ti

~2A
2 7Tti 
~2A

where the amplitude, A, and the phase, ^can be calculated as follows;

(j> = arctan -Y\
A

(3.4)

(3.5)

(3.6)

Often the amplitude is defined as 2A as this represents the difference between the peak and 

trough of the blood pressure measurements.

Fourier analysis is an extension of cosinor analysis where there are more harmonics, 

leading to there beingy multiple cycles within a day with^O taking the form.

/ ( f )  = a 0 + cosl 1 + Yj sin
24 24 (3.7)

If/=1 then this reduces to the cosinor model in (3.4). The number of harmonics can be 

determined by model selection methods (Somes et al., 1994) or can be pre-defined to be 

the same for all subjects (Germano et al., 1990). Using fourier analysis is possible to 

obtain fitted maximum and minimum blood pressure measurements as well as Mesor and 

phase parameters.

Although cosinor techniques are still used extensively, it is known that there are problems 

with using such methods to analyse ABPM data. For example, cosinor analysis has been 

criticised for a variety of reasons (Streitberg et al., 1989) including;
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(i) It implies an exactly symmetrical behaviour of high and low blood pressure 

periods, both of the same length, shape and amplitude.

(ii) It fixes the difference between the acrophase (time of peak pressure) and 

bathyphase (time of lowest pressure) at 12 hours.

(iii) Observed patterns can be multiphasic (several maxima/minima).

(iv) A cosine waves produces either extremely high or extremely low values most 

of the time, while regions with average values are traversed comparatively 

fast.

Figure 3.2 shows the raw data for four women together with the fitted values for a cubic 

polynomial model, a cosinor model and a fourier model with 3 harmonics at 24 hours, 12 

hours and 8 hours. It can be seen that the three methods give very different fits to the data, 

which is obviously problematic. The cubic polynomial and cosinor models do not appear to 

pick up all peaks and troughs. A potential problem with the cosinor and fourier models is 

that curvature is being induced in the data leading to parts of the profile where the observed 

blood pressure appears relatively constant having curvature for the fitted values.

12:00 12:0024:00

— Fourier
24.00 12001800 

— Cubic * - Cosinor

24:00 12:000600 12001800

Figure 3.2 Example fit of Cubic Polynomial, Cosinor and Fourier curves for 
four women in the ABPM study.
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Two other procedures used to describe the circadian rhythm of ABPM profiles are 

cumulative sums (cusums) (Stanton et al., 1992) and square wave fitting (Idema et al.,

1992). The cusum method plots the sum of successive deviations from a reference line 

against time. Various cusum derived statistics are available including the cusum derived 

crest and trough. The square wave method assumes that there is one period of high blood 

pressure and one period of low blood pressure and that the change between the two is 

effectively instantaneous. The duration of the two periods is constrained by the fact that the 

sum of the two times is equal to 24 hours. These methods have been advocated as they do 

not rely on pre-defined definition of day and night or require the subjects to keep sleep 

diaries.

3.4.2 Regression Splines

When the aim of a model is to describe the functional relationship between a response Y 

and an explanatory variable X, and this relationship is non-linear, a usual approach is to use 

polynomial regression. For example, in the previous section I demonstrated how third 

degree polynomials could be used to model ABPM profiles. However, polynomial 

regression has a number of drawbacks, including the fact that individual observations can 

exert too much influence on certain parts of the curve (Wold, 1974). This is particularly so 

for observations towards the minimum or maximum of the explanatory variable X. If the 

curvature of the data is complex with a number of turning/flex points then the use of 

polynomials may not be suitable. One possible solution is to use piecewise polynomials, 

which are also known as regression splines.

Regression splines can be defined as piecewise polynomials of degree n whose function 

values and the first n -  1 derivatives agree at the points where the polynomials join (De 

Boor, 1978). The points at which the polynomials join are known as knots. Polynomials 

can be considered as a special case of regression splines, but having no knots, i.e. no 

joining points. The most common form of regression spline is the cubic spline, where the 

functional relationship is visually smooth with cubic polynomials between each knot, but
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with continuous first and second derivatives (Wold, 1974). To repeat a quote of Rice 

(1969) from given by Wold (1974).

“spline functions are the most successful approximating functions for practical 

applications so far discovered. The reader may be unaware of the fact that ordinary 

polynomials are inadequate in many situations. This is particularly the case when one 

approximates functions that arise from the physical world rather than from the 

mathematical world. Functions that express physical relationships are frequently of a 

disjointed or disassociated nature. That is to say that their behaviour in one region may 

be totally unrelated to their behaviour in another region. Polynomials, along with most 

other mathematical functions, have just the opposite property. Namely their behaviour in 

a small region determines their behaviour everywhere. Splines do not suffer this 

handicap since they are defined piecewise, yet, for n>3, they represent nice, smooth 

curves in the physical world.”

This is an old quotation, but it is a good description of some of the problems with 

polynomials. However, given that the quote is over 25 years old, one must realise that it 

does not acknowlege recent developments in curve fitting such as fractional polynomials 

(Royston and Altman, 1997).

Although there are methods that include both the number and position of knots as 

unknowns (Gallant and Fuller, 1973; Freedman and Silverman, 1989), when using a fixed 

number of knots it is possible to obtain parameter estimates using standard linear 

regression models using standard statistical software packages. However, it must be 

realized that the fitted model will depend on both the choice of the number of knots and 

their locations. Before describing a spline model algebraically it is important to understand 

the “+” function representation (Smith, 1979). Let

u+ =u if u > 0
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In general, with k  knots, tj<.. .</*, and the k+\ polynomial pieces each of degree n and 

explanatory variable x, it is possible to write a spline model S(x) with no continuity 

restrictions as follows

S{x) = Y Jp ojx J , (* - / , ){ + « ,  (3.9)
7=0 i=l 7=0

where e, is a random normal variable with zero mean. If Sfi* denotes the / h derivative of 

S(x) then the presence of a fi&(x -  tt){ term allows a discontinuity at /,• for and its

absence forces the continuity of 5® at ff. This is perhaps best described by an example. 

Figure 3.3 shows a blood pressure profile for one subject with four piecewise polynomial 

models fitted to the data. Each model has two knots, at 20 hours and 28 hours (shown as 

vertical dashed lines). I am using these graphs to demonstrate the continuity restrictions 

and not to illustrate the choice of the number and locations of knots. The choice of the 

number and location of the knots is discussed in section 3.4.5. In Figure 3.3(a) there are no 

continuity restrictions so that the cubic polynomials do not even join at the knots, clearly 

giving an unsatisfactory fit to the data. In Figure 3.3(b) the fito s from (3.9) are dropped 

from the model so that the cubic polynomials are forced to join at the knots. Despite the 

values of the function agreeing at the knots, it can be seen that the resulting fit is not 

visually smooth, especially before and after the first knot. In Figure 3.3 (c) both the fiw’s 

and pu s from (3.9) are now dropped from the model. This forces both the function values 

and the first derivative to agree at the knots. It can be seen that the resulting fit is visually 

smoother than (b). Finally, in Figure 3.3(d) the fiw’s, fin's and fin's from (3.9) are dropped 

from the model, thus forcing the function values to join at the knots and have continuous 

first and second derivatives. It can be seen that the resulting fit is the smoothest of all four 

models.

Paul Lambert Ph.D. Thesis, November 2000 53



CHAPTER 3 The Analysis o f ABPM Data

S -

Time Time

Time

Figure 3.3 Fitted curves with different continuity restrictions for one subject: 
(a) no restrictions, (b) forced to join at knots, (c) continuous first 
derivitive, (d) continuous first and second derivative.

Inspection of equation (3.9) reveals that there are a number of choices the user has to make 

when using regression splines (Wold, 1974). These are (i) the degree of the spline 

function, 7i, (ii) the number o f knots, k, and (iii) the positions of the knots (tj,.

Cubic splines («=3) are more generally used due to them being visually smooth as they 

have continuous first and second derivatives. Higher degree polynomials are generally not 

needed, since if  there was a complicated shape between knots (e.g. with more than 2 

turning points) then rather than fitting a higher degree polynomial another knot could be 

added. When fitting a cubic spline model as in Figure 3.3(d) then (3.9) can be simplified to:

S(x) = Y^P«jxJ + Z  +ei (3.10)
7=0 /=1

Thus, the number of parameters in a standard regression spline model is k+4.

Regression splines are part of the large family of smoothing methods encompassed by the 

general term “splines”. Sometimes regression splines are expressed using alternative 

formulations that are more computationally efficient. The most common of these are B-
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splines (De Boor, 1978), which are described as being ‘nearly orthogonal’. A related non- 

parametric technique is smoothing splines (Silverman, 1985). The difference between 

regression splines and smoothing splines is in the choice of knots. When using regression 

splines a fixed number of knots is set, whereas smoothing splines use each data point as a 

knot with a penalty term included in the likelihood to control the smoothness of the fitted 

curve leading to more complex estimation methods particularly when fitting hierarchical 

models. In this thesis I will not be employing the use of a penalty term to control the 

smoothness o f the curve, but will investigate the sensitivity of the model to the choice of 

the number and location o f knots.

3.4.3 Restricted Cubic Splines

Restricted cubic splines were first suggested by Stone and Koo (1986) and discussed 

further by Durrleman and Simon (1989) and are a simple extension of regression splines. 

Restricted cubic splines are forced to be linear in the tails, i.e. before the first knot and after 

the last knot. There is less information in the tails of the data and over fitting can result if 

curvature is assumed. If S(x) is to be linear for x<tj then f a  = f a  = 0 in (3.10). If S(x) is to

be linear for x>tk then = o = 0 •

It can be shown (Durrleman and Simon, 1989) that using the model formulation in (3.10) 

that a restricted cubic spline function can be written as follows

k—2

/=!
( * - o i

*k t/c-l h  h-l
+  *i (3.11)

However, this can be simplified as follows. If starting with a time variable, x, then with k 

knots at locations (tj<t2<- • •<**), k -  2 new variables are introduced where

hi  + (x  J J ,■ = . , £ - 2
3

h ~ h-i
(3.12)

These derived covariates can be easily programmed and as for standard regression splines 

described in section 3.4.2, the regression coefficients when using restricted cubic splines
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can be estimated using a linear model using standard statistical software. For a restricted 

cubic spline model with k  knots there are k  regression coefficients to be estimated. Thus, 

for a standard regression spline model there are 4 extra parameters that need to be 

estimated when compared to a restriced cubic spline model with the same number of knots.

The fact that the function is forced to be linear in the tails (i.e. before and after the last 

knot) should not generally be a problem as long as the boundary knots are not too far away 

from the minimum and maximum values of x  and that the function is not changing rapidly 

at the extremes (Durrleman and Simon, 1989).

Figure 3.4 shows for four subjects an example of fitting a standard cubic regression spline 

model with 5 knots at (15:00,20:00,24:00,04:00 and 09:00) and a restricted cubic spline 

model with 5 knots at the same locations. Thus nine parameters need to be estimated for 

the standard regression spline model compared to five for the restricted cubic spline model. 

The four plots show that the cubic regression splines pick up more localised peaks and 

troughs, which may be expected as they have 4 extra parameters. However, interest here 

lies in the tails and it can be seen that the regression splines appear to be more influential in 

the tails and start behaving oddly, thus having similar problems in the tails to those 

encountered when using standard polynomials.

One area where restricted cubic splines have been used is survival analysis where restricted 

cubic splines have been used for modelling of non-liriear continuous covariates (Heinzl and 

Kaider, 1997) and modelling the baseline hazard function (Herndon and Harrell, 1995). 

Restricted cubic splines can also be used when testing linearity assumptions in generalized 

linear models (Harrell et al., 1996).

3.4.4 Periodic Splines

Periodic splines models using robust regression techniques have been suggested for 

modelling individual ABPM profiles (Streitberg et al., 1989). A periodic spline forces the
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Figure 3.4 Example of regression splines and restricted cubic splines with knots 
at (15:00, 20:00,24:00,04:00 and 09:00) for four women.

fitted ABPM profile to have equal values at the beginning and end of the 24 hour period. 

With exact repeatability of the 24 hour profiles this may be sensible, but in reality there 

could be a number of reasons why the blood pressure measurement may be different at the 

beginning and end of the 24 hour period. For example, when monitoring the effect of blood 

pressure lowering treatment. Therefore, periodicity in the context of ABPM profiles may 

be too rigid an assumption (Dickson and Hasford, 1992). Another reason for not assuming 

periodicity is that the dataset used in this thesis has a number of subjects who do not have 

complete readings for the 24-hour period. This may lead to complications when forcing the 

model to agree at the endpoints.

3.4.5 Choice o f  Number and Location o f Knots

As mentioned in section 3.4.2 the number and the location of knots is generally left to the 

user. The choice can be important, as too many knots will lead to over fitting of the data, 

while too few will lead to a poor fitting model. In theory, the position and the number of 

knots can be considered as unknown parameters. Although there are methods that can 

estimate the number and the location of the knots (Gallant and Fuller, 1973; Denison et 

al., 1998), it has been argued that using a fixed number of knots and sensibly choosing
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their locations may be adequate (Wold, 1974). Wold states that the choice of the locations 

of the knots corresponds closely with the choice of functional type in an ordinary curve- 

fitting problem. Generally the choice of function is not considered as a parameter, so the 

knots in a spline function can be thought of as analogous to this situation. He concludes 

that the knots should be chosen as to correspond to the overall behaviour of the data 

(number of points, positions of maxima/minima etc). The curve fitting can then be treated 

as a standard linear model in terms of the derived covariates. Some rules of thumb for the 

choice of knots (Wold, 1974) are

(i) Have as few knots as possible (obtaining a balance between overfitting and 

parsimony).

(ii) Have not more than one maximum or minimum and one inflexion point per 

interval.

(iii) Have extreme points centred in the intervals.

(iv) Have inflexion points close to the knots.

Other recommendations are (Wegman and Wright, 1983)

(v) Knots should be located at data points.

(vi) A minimum of four or five observations should fall between the knots.

One suggestion is to use 5 knots when using restricted cubic splines, but it has been argued 

that there is no theoretical basis for this (Durrleman and Simon, 1989). When having 5 

knots it has been suggested that it may not be beneficial to have the boundary knots at the 

extremes due to the potential influence of outliers, but that the boundary knots should not 

be to far from the extremes due to the restriction that the curve is linear in the tails. 

Boundary knots at the 5th and 95th percentiles are suggested. A further suggestion is to 

examine plots o f the residuals against time as this may suggest placement of additional 

knots if curvature is still present. As there is an element of subjectivity when using 

restricted cubic splines it appears sensible to perform a sensitivity analysis. One would 

hope that the inferences would not change with a small increase or decrease in the number 

of knots from an initial model.
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Figure 3.5 The effect of the number of knots on the fitted curve for a women 
with 0 knots (a), 3 knots (b), 4 knots (c), 5 knots (d), 7 knots (e), 9 
knots (f): Example 1.

In order to illustrate how the number of knots can affect the shape of the fitted curve Figure

3.5 and Figure 3.6 show the ABPM profiles for two women together with the fitted curves 

for six different restricted cubic spline models. The six different models have 0 knots 

(cubic polynomial), and 3,4, 5, 7 and 9 knots. The locations of the knots are shown in the 

graphs. For the first example (Figure 3.5), the rate of change in the blood pressure over 

time is not that great and none of the model fits are totally unacceptable. However, one 

may have reservations regarding the cubic polynomial (0 knots) and the model with 3 

knots. It is hard to differentiate between the models with 4, 5, 7 and knots.

For the second example in Figure 3.6 the blood pressure profile is more complex with a 

sharp decrease followed by a sharp increase in blood pressure. The cubic polynomial model 

does not fit the data well with it not picking up some of the large peaks and troughs. These 

patterns are common and indicates that the third degree polynomial method (Corrao et al., 

1996) discussed in section 3.4.1 is not appropriate. Probably worse than this is the 

restricted cubic spline model with 3 knots. The restriction that the model is linear in the 

tails leads to there being little flexibility for the rest of the curve. Clearly more knots are
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needed. The models with 4 and 5 knots are a slight improvement, but there are still some 

parts of the curve where the model does not appear to fit well. This can be seen by the fact 

that at night there are about four hours where the fitted values are below the observed 

values. The models with 7 and 9 knots appear to pick up most o f the observed peaks and 

troughs, and appear to be a better choice of model for this particular subject.

3.5 Using Restricted Cubic Splines in a Hierarchical Model.

3.5.1 Introduction

In this section I will use restricted cubic splines in a two-level hierarchical model including 

all 206 ABPM profiles. So far I have just fitted restricted cubic spline models to individual 

profiles, however it is sensible to explore the feasibility of combining all ABPM profiles 

into one model making use of the hierarchical structure of the data. The structure exists 

because individual blood pressure measurements are nested within individuals and hence 

there are two natural units of blood pressure variation, variability between-women and 

variability within-women. The restricted cubic splines will be used to model the mean
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Figure 3.6 The effect of the number of knots on the fitted curve for a women 
with 0 knots (a), 3 knots (b), 4 knots (c), 5 knots (d), 7 knots (e), 9 
knots (f): Example 2.
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profiles of the two groups, i.e. those women who gave birth to an infant <10th centile for 

gestational age and those women who gave birth to an infant >10th centile for gestational 

age. The main question of interest is whether the mean profile differs between the groups, 

as this will indicate if  those women who are going to give birth to a small for gestational 

age infant can be detected earlier in their pregnancy.

There has been previous work on using splines in the context of longitudinal studies mainly 

in relation to AIDS patients. One approach used piecewise polynomials (regression splines) 

(Wang and Taylor, 1995a) when analysing log neopterin values with about 6 observations 

per subject. In this approach a large fixed number of knots was chosen, but so that the 

mean curves were smoothed, a penalty term was subtracted from the log likelihood. Thus 

the method uses penalized maximum likelihood with cross validation methods used to 

estimate the penalty term. Extensions of this work (Wang and Taylor, 1995b) investigated 

coverage rates of confidence intervals when using maximum penalized likelihood and the 

choice of covariance structure. Other work in the area of Aids uses B-splines to model the 

mean profile of serial CD4 counts (Shi et al., 1996). In this analysis the between-subject 

random effects are obtained by firstly fitting an overparamerterised model where all fixed 

effects are also treated as random effects. Principal components analysis is then used to 

reduce the number of covariance parameters, while still accounting for most of the known 

between-subject variation observed in the overparameterised model. Another example 

again in the AIDS area uses semi-parametric model for CD4 counts incorporating non- 

parametric kernel smoothing to describe the mean profile (Zeger and Diggle, 1994). Cross 

validation methods are used to provide a smooth mean profile, with a parametric model for 

covariate adjustment and modelling of the serial correlation.

Restricted cubic splines have been used in growth curve models and were found to perform 

better than polynomials when predicting future observations (Tian et al., 1994). In a 

similar type of analysis a hierarchical model using regression splines with 4 knots was used 

in the analysis of growth data (Pan and Goldstein, 1998). This analysis also incorporated 

fractional polynomials terms (Royston and Altman, 1997). A further area of application 

was in the analysis of pulmonary function using B-splines with 10 knots (Wypij et a l ,

1993). This approach accounted for the within-subject correlations by using generalised
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estimating equations (Liang and Zeger, 1986). Because of the large number of 

observations per subject in this study it has been suggested that there is not need for 

inclusion of a penalty term (Wang and Taylor, 1995a). This is a similar situation to the 

ABPM data in this thesis, with up to 48 observations per subject.

There has been little work on the longitudinal analysis of ABPM profiles. One study 

considers a method that uses weighted least squares to obtain the mean blood pressure at 

every (fixed) time point for two groups. The weights are obtained by ‘smoothing’ the 

variance covariance matrix by assuming .that observations set distances apart are equally 

correlated (Turney et al., 1992). The smoothing assumes that the between-subject 

variance is constant over the 24-hour period and that the within-subject correlation follows 

a rather strict pattern in that three separate covariance terms are estimated, one for 

observations 1 hour apart, one for observations 2-7 hours apart and one for observations >7 

hours apart. This method requires rounding the time of each measurement to the nearest 

hour and estimates the mean blood pressure at each hour for the two treatments. This leads 

to 48 parameters being estimated in order to describe the 2 blood pressure profiles. Another 

approach uses a hierarchical model model incorporating a polynomial up to degree 4 to 

model the mean profiles (Selwyn and Difranco, 1993). This approach has similarities to 

the approach that I adopt here, but does not incorporate the use of restricted cubic splines. 

Restricted cubic splines are potentially more flexible than polynomials as discussed in 

section 3.4.2.

3.5.2 Gram-Schmidt Orthogonalization

Analyses of the ABPM blood pressure profiles when using restricted cubic splines lead to 

some problems with convergence when fitting some of the more complicated models 

discussed later in this chapter. This is due to there being strong associations between the 

derived covariates in the construction of the restricted cubic splines obtained from equation - 

(3.12). There are several ways to formulate spline models, most of which were developed 

to be more computationally efficient, which is not as important as it was once with 

advances in computational power. One of the most common methods is B-splines (De 

Boor, 1978) and these have been used in the analysis of repeated CD4 counts (Shi et al.,
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1996). However, there are a number of possible formulations that will reduce the 

association between the derived covariates. Since the derived covariates are not 

interpretable individually, but need to be considered jointly, it makes sense to 

orthogonolize the covariates. A simple approach to this that uses linear models is the 

Gram-Schmidt process (Guttman, 1982).

For a restricted cubic spline model with k knots there are k  derived covariates xo, .. 

obtained using (3.12), forming a Nxk design matrix X. In order to orthogonalize these 

covariates a set of new covariates so,.. .,$*■/ are computed. Let s,- be the transformation of 

the i h derived covariatext. Thes,- are obtained as follows:

•s0 = * 0 (3*13)

The7 th transformed covariate, s j is obtained by regressing xj on so,...^j-i and then 

obtaining the predicted values x .. Sj is the vector of residuals of the regression

model, thus

(3.14)

This is a very simple process and can be easily performed in any statistical package that can 

fit linear models. For example I wrote a macro in MLn that consisted of about 10 lines of 

code (see Figure 3.7).

3.5.3 Components o f  the Model

When fitting a hierarchical model to the ABPM blood pressure profiles there are four 

aspects of the model that need to be initially considered. These are:

i. The number and location of the knots for the fixed effects.

ii. The choice o f random effects to model the between-subject variability.

iii.The modelling of the difference between the groups

iv. The modelling of the within-subject errors.

The choice of the number and location of the knots may be different to that when 

modelling individual profiles as in section 3.4.5. In the hierarchical model the main interest
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echo
NOTE *************************************************************************, 
NOTE * * This macro uses the Gram-Schmidt process to orthogonalise the derived 
NOTE * *  restricted cubic spline covariates.
NOTE **
NOTE ** Derived restricted cubic splines need to start in column c80 
NOTE ** C70 - column of knot locations
NOTE **
NOTE ** Transformed covariates start in column cllONOTE *************************************************************************
count c70 bl 
calc bl=bl-l 
calc b6»79 
calc c79='cons' 
calc cll0=c79 
calc b8=110 
loop b4 1 bl 

calc b7=b6+b4 
oreg cb7 b4 cll0-cb8 clOl 
calc b8=b8+l 
calc cb8=cb7-cl0l 
calc cl09=cb8**2 
sum cl09 bll 
calc cb8=cb8/sqrt(bll) 

endloop 
echo

Figure 3.7 MLn macro for Gram-Schmidt Orthogonalisation.

lies in the mean blood pressure profile for each of the two groups. It is probably better to 

have too many knots rather than too few knots, since with too few knots important aspects 

of the curve could be missed, while with too many at least these aspects of the curve will 

be picked up, but with perhaps more ‘kinks’ due to random variation. I initially chose to 

have 9 knots at (13:00,15:00,18:00,21:00, 00:00,03:00, 06:00,09:00 and 11:00). Note 

that I have chosen not to have knots at the minimum and maximum times (i.e. 12:00 on 

both days), but the location of the initial and final knots are close to the boundary to allow 

for the restriction that they are linear in the tails as discussed in section 3.4.5. With 9 knots 

there will be 9 fixed effect parameters describing the underlying mean profile. I discuss 

further the choice o f the number of knots in section 3.5.4.

The choice of which covariates are to treated as random effects needs consideration, since 

these will model the between-subject variation and therefore allow women to have 

different fitted blood pressure profiles. One option would be to allow all of the coefficients 

of the derived covariates describing the mean blood pressure profile (i.e the fixed effects) 

to vary from subject to subject. However, this will probably be unnecessarily complex 

given the likely variation about the mean profile and would lead to overfitting. With nine 

knots there will be k(k+1)/2=45 unknown parameters in the between-subject (level 2) 

variance-covariance matrix that requires estimation. At the other extreme, just the intercept
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could vary from subject to subject as seen in the simple linear regression model in section 

2.4. However, as shown in Figure 2.3, this would force the blood pressure profiles for all 

individuals to be parallel which is obviously not the case. A sensible compromise may be 

to use a cubic polynomial for the between-subject random effects, which should allow 

sufficient variation about the average profile to appropriately define each individual’s 

blood pressure profile (Wang and Taylor, 1995b). It is possible to compare the fitted 

values for each individual’s profile from the hierarchical model to their observed blood 

pressure, so that the appropriateness of the between-subject random effects can be assessed. 

This is discussed further in section 3.5.6,

The third aspect o f the model to consider is how to model the difference between the two 

groups. A dichotomous covariate, taking the value 0 for women who subsequently had a 

child <10th centile for gestational age and 1 for women who subsequently had a child 

>10th centile, can be incorporated into the model to see if there is a ‘vertical shift’ in the 

profiles (i.e. parallel profiles, but one group having consistently higher blood pressure 

throughout the 24 hour period). However, also of interest is whether the blood pressure 

profiles differ in shape. An interaction between group and the restricted cubic spline 

parameters is one way of doing this, but will increase the number of parameters by k-l. 

Assuming that the blood pressure profiles will have a similar shape, it is perhaps more 

attractive to consider fewer parameters. Fitting a cubic polynomial for the difference 

between the groups should allow appropriate investigation of any differences in profile 

shape and avoid overfitting (Beacon et al., 1998). The issue of how to model differences 

between the two groups is discussed in section 3.5.5.

The final aspect of the model to consider is how to model the within-subject residuals. I 

will initially assume that the within-subject errors are independently normally distributed 

with zero mean and constant variance. In doing this I am assuming that the within-subject 

variance is the same for all women. In section 3.5.7,1 investigate modelling of the within- 

subject variation as a function of time.

I will first fit the following model:
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g 3

BPt  = X  + X < V s  + e, (3.15)
*=0 m=0

a j ~ M V N (  0 ,2 ) ,  ^ .~A T(0,<72)

where 2?P,y is the *** blood pressure measurement on the j h women, the jTs are the fixed 

effects coefficients associated with the Gram-Schmidt transformed restricted cubic spline 

covariates, s&y, % is the time of the i h blood pressure measurement on the f h woman and the 

am /s  are the random effects allowing individual blood pressure profiles to vary about the 

mean profile. It is assumed that a } has a zero mean vector and variance matrix I .  This

model ignores the group effect and models the between-subject variation as a cubic 

polynomial. A plot o f the mean profile for this model can be seen in Figure 3.8(a). The 

observed blood pressure profiles of ten randomly chosen women have been added to the 

plot. These show that there is relatively large between-subject and within-subject 

variability o f blood pressure. It appears from the figure that the mean blood pressure is 

approximately constant during the day, until about 21:00 when it starts to dip and continues 

decreasing until just after midnight. The mean blood pressure then appears to be 

approximately constant during the night until about 6:00, when it starts to increase again to 

the day-time mean. For the group as a whole there appears to be a reduction in mean blood 

pressure at night of just over 10 mmHg. A formal assessment of whether the blood pressure 

profile changes over time can be made by comparing this model with a model that just 

includes an intercept (i.e. no effect of time on blood pressure) using the likelihood ratio test 

(Goldstein, 1986). Not surprisingly this yielded a highly significant result ( x \  = 828.2,

P0.001), indicating that there is strong evidence that blood pressure was not constant over 

the 24-hour period.

The group effect is now added to the model as a dichotomous covariate, bwtj, which takes 

the value 1 for women who subsequently had a child <10th centile for gestational age and 0 

when for women who subsequently had a child >10th centile. Model (3.15) can be 

extended as follows,
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bwt>10th centile 
bwt<IOth centile

bwt>10th centile 
bwt<10th centile
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Time Time

Figure 3.8 Fitted values and confidence intervals for models with (a) no group 
effect, (b) difference between groups forced to be parallel, (c) 
difference between groups modelled by cubic polynomial and (d) 
mean difference between groups when using cubic polynomial.

8 3

BPy = Z +S« bwti + Z <V *  + e‘i (316)
k=Q m=0

where So is the fixed effect associated with bwtj and represents the mean difference 

between the groups assuming that the difference is constant throughout the 24 hour period. 

Figure 3.8(b) shows the fitted mean profiles for this model, where those women who had a 

child <10th centile have a different, but parallel, mean blood pressure profile to those 

women who had an infant>10th centile. A similar pattern to Figure 3.8(a) can be seen 

where for both groups blood pressure appears approximately constant during the day and 

then dips and then is approximately constant during the night. The figure shows that the 

women with heavier babies for gestational age tended to have higher blood pressure with So 

=6.2, which can be interpreted as there being a mean difference of 6.2 mmHg (95% 

confidence interval 2.8 mmHg to 9.6 mmHg) between the two ABPM mean profiles 

(Likelihood Ratio test comparing models (3.16) and (3.15): x l  ~ 12-6, P0.001).
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The above model may be too restrictive in that it forces the two profiles to be parallel. In 

the following model the difference between the profiles is modelled by using a third degree 

(cubic) polynomial:

Bpi = Z  + Z S' bwti x + Z < V "  + eij (3.17)
4=0 n=0 m=0

Figure 3.8(c) shows the fitted values for this model. Although the two profiles have slightly 

different shapes they are broadly similar and the difference is non-significant (Likelihood 

ratio test comparing (3.17) and (3.16): x \  = 4.3, P=0.23) indicating that there is insufficient

evidence to reject the hypothesis that the profiles are in fact parallel. It can be useful to plot 

the difference in blood pressure between the two groups against time. This is shown in 

Figure 3.8(d). A line has been added showing the difference observed in the model in 

(3.16), where the difference was assumed to be constant over time. Although non­

significant, it can be seen that the main difference between the profiles is at the end of the 

24 hour period. This is where there is less data and where the cubic polynomial modelling

Parameter______________________________________Estimate (SE)_________
F ixed Effects

flo 76.6 (0.54)
Pi -276.6 (16.86)
p 2 g 363.3 (15.71)
P3 I  221.4 (13.85)
p 4 § 28.4 (9.24)
Ps *  -118.9 (9.02)
P6 .S -128.0 (9.00)
fa  m -6.3 (9.00)
fa  -73.8 (8.99)

So 7.4 (1.90)
So Group 0.163 (0.201)
52 Comparison -0.023 (0.014)
53 -0.0026 (0.0020)

Random  Effects

f 60.9 '
0.74 0.47

2 -0.147 -  0.0055 0.0020
0.0037 -  0.0038 . 0.00005 0.00004, 

g 2_____________________________________________ 78.5 _________

Table 3.1 Parameter estimates for initial ABPM model.

Paul Lambert Ph.D. Thesis, November 2000 68



CHAPTER 3 The Analysis o f ABPM Data

the difference in the profiles is most likely to be affected by potentially outlying 

observations. The parameter estimates for this model can be seen in Table 3.1. The 

parameter estimates of the fixed effects associated with the restricted cubic splines are 

generally not o f interest individually, but it is interesting to note that all bar one are 

formally significant at the 5% level.

To summarise, the above model appears to indicate that women who had infants <10th 

centile for gestational age had a mean diastolic blood pressure 6.2 mm Hg higher than 

those women who had infants >10th centile for gestational age. There was little evidence 

that the two profiles differed in shape. The model defined in equation (3.17) will be 

referred to as the initial model. I will now perform various sensitivity analyses to see how 

robust the initial model is to changes in the choice of the number of knots, the choice of 

random effects, how the difference between the profiles is modelled and how the within- 

subject variance is modelled.

3.5.4 Choice o f  the Number and Location ofKnots

In order to investigate the effect of the choice of the number of knots, six models with 

differing numbers of knots will be compared. In all models the between-subject variation 

will be modelled using a cubic polynomial, as in the initial model described in the previous 

section. Similarly, the within-subject variation is assumed to be independently normally 

distributed with zero mean and constant variance, and the difference between the mean 

profiles is the same as the initial model (3.17) where it is modelled as a cubic polynomial. 

Thus, the only difference between the six models is the number of knots and hence the 

number of parameters used to describe the underlying mean profile. The six models thus 

take the form

BPtj  = X A f *  x + X X /;” + e v
*-o "-° (3.18)

Uj ~ MVN(0,1) et ~ N(0,<t 2 )

where k  is the number o f knots. The six models fitted are:
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Model A: 0 knots (cubic polynomial)

Model B: 3 knots at (13:00,00:00,11:00)

Model C: 5 knots at (13:00,18:00,00:00,06:00,11:00)

Model D: 7 knots at (13:00,16:00,20:00,00:00,04:00,08:00,11:00)

Model E: 9 knots at (13:00,15:00,18:00,21:00,00:00, 03:00,06:00, 09:00,

11:00)

Model F: 13 knots at (13:00,14:00,16:00,18:00,20:00,22:00, 00:00, 02:00,

04:00, 06:00, 08:00,10:00,11:00)

Model E is therefore the same as the initial model in (3.17), with 9 knots. Fitted mean 

profiles for all six models can be seen in Figure 3.9. The cubic polynomial model (A) in 

Figure 3.9(a) shows much slower changes when compared to the model with 9 knots 

(model E). With a cubic polynomial if the minimum and maximum are a long way apart 

then the curve that joins these two points can only change slowly. Model B with 3 knots 

shown in Figure 3.9(b) has less parameters than model A and therefore the fit is even 

worse. Models C and D, shown in Figure 3.9(c) and Figure 3.9(d) with 5 and 7 knots, are 

an improvement and are picking up the general shape seen in the model with 9 knots, but 

still show more curvature than model E even though the 9 knot model has the potential to 

pick up more localised curvature. Model F with 13 knots shown in Figure 3.9(f) shows 

remarkably similar mean profiles to the model with 9 knots. Visual inspection of the fitted 

mean profiles for the six models indicates that the models with 9 and 13 knots are probably 

best. Given that the two models appear to give similar results it would appear preferable to 

choose the model with 9 knots as it has four less parameters.
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Figure 3.9 Fitted values and 95% confidence intervals for women who
subsequently gave birth to an infant >10th centile (—) and those 
who gave birth to an infant <10th centile (----) with (a) 0 knots 
(cubic polynomial), (b) 3 knots, (c) 5 knots, (d) 7 knots, (e) 9 knots 
and (f) 13 knots.
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An alternative way to compare the models is to formally test whether there is evidence of a 

difference in the shape of the mean profiles. One would hope that, as long as there were 

sufficient knots, the different models would give similar results. This can be done by 

comparing each model to a reduced model where the profiles are forced to be parallel (i.e. 

for each model removal o f the linear(<5/), quadratic^) and cubic(<5?) interactions with 

bwtj). Table 3.2 shows the results of this comparison using the likelihood ratio test. It is 

interesting to note that the models with 7, 9 and 13 knots give almost identical significance 

levels for a test o f a difference in the shapes of the profiles, indicating that perhaps the 

models are not very sensitive to the choice of the number of knots as long as there are 

enough of them.

The models with differing numbers of knots can not be compared using the likelihood ratio 

test as they are not nested. However, it is possible to compare them using other methods 

which account for the differences in the number of parameters in each model by subtracting 

a penalty term from the likelihood ratio statistic. I will use two of these, the Bayesian 

Information Criterion (BIC) (Schwarz, 1978) and the Akaike Information Criterion (AIC) 

(Akaike, 1980). Let Wbe the difference in -2xLog likelihood between two models then the 

BIC is defined by

BIC = W -  (p2 -  Pl) log(w) (3 .1 9 )

where p t is the number of parameters in model i and n is the total number of observations. 

The AIC is similarly defined as

AIC = W - 2 ( p 2 - p x) (3.20)

Number of 
knots

-2xLog
likelihood

Change in -2xLog likelihood 
from Parallel assumption

P-value

A: 0 Knots 63561.8 3.0 0.39
B: 3 Knots 63748.8 12.7 0.0053
C: 5 Knots 63342.3 6.7 0.082
D: 7 Knots 63159.6 4.4 0.22
E: 9 Knots 63085.9 4.3 0.23
F: 13 Knots 63074.8 4.3 0.23

Table 3.2 Formal test of difference in shape of mean profiles for the 
six models with differing number of knots using the 
likelihood ratio test
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When comparing models using either the BIC or AIC the “better fitting” models have 

larger values. Since the BIC and AIC have different penalty terms it is possible they will 

give different answers. In fact it has been noted that the AIC “keeps too many terms in the 

model” as it has a smaller penalty term (Carlin and Louis, 1996). In order to compare the 

six models they all need to be compared to the same initial model. The comparison model I 

have chosen is a model where only an intercept is fitted as a fixed effect (i.e. no change in 

blood pressure over time) and a cubic polynomial for the between-subject random effects. 

The deviance for this model is 63931.0. The results for the AIC and BIC can be seen in 

Table 3.3. The highest value for the BIC is for the model with 9 knots. This is sensible as it 

agrees with the fitted value plots in Figure 3.9 in that the model with 13 knots appeared to 

fit similar mean profiles for the two groups when compared to the model with 9 knots, but 

had 4 more parameters. The highest value for the AIC is for the model with 13 knots. This 

could be due to the penalty term for the AIC being smaller than the BIC. I would tend to 

opt for the results from the BIC as it confirms the initial view that the model with 9 knots 

gave the “best” fit.

I have chosen to space the knots evenly over the 24-hour period. This does not have to be 

the case, for example Streitberg (1989) uses clinical opinion to choose the location of the 

knots. It may be theoretically possible to reduce the number of knots, by changing the 

location of the knots. For example, having fewer knots where the profile is observed to be 

flat. However, in a large dataset, such as the ABPM data, the inclusion of one or two extra 

fixed effect parameters is not a problem. Unless confronted with a small dataset, I would

Number of 
Parameters

-2xLog
likelihood

BIC AIC

A: 0 Knots 8 63561.8 305.8 355.2

B: 3 Knots 6 63748.8 136.9 172.2

C: 5 Knots 8 63342.3 525.3 574.7

D: 7 Knots 10 6319.6 689.9 753.4

E: 9 Knots 12 63085.9 745.4 823.1

F: 13 Knots 16 63074.8 720.3 826.2

Table 3.3 BIC and AIC values for the six models with a differing 
number of knots
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prefer to have evenly spaced knots, rather than trying to reduce the number of knots by 

changing the locations after observing the model fit.

3.5.5 Modelling the Difference Between Groups

In the initial model in (3.17) the difference between the two mean profiles was modelled 

using a cubic polynomial. However, this could lead to problems if the difference between 

the two mean profiles is more complicated than it is possible to model using a cubic 

polynomial (for example with more than two turning points). I have also discussed some of 

the limitations in using polynomials in section 3.4.2. In this section I fit six different 

models to compare the modelling of the difference in the mean profiles. In order to do this I 

have standardised other aspects of the model. The underlying mean profile is modelled 

using 9 knots as in the initial model in (3.17). Similarly the between-subject variation is 

modelled using a cubic polynomial for the random effects and the within-subject variation 

is assumed constant. Thus the only difference between the 6 models is how the difference 

between the two mean profiles is modelled. The six models model the difference in the 

mean profiles as follows:

Intercept (i.e. forces the mean profiles to be parallel) 

cubic polynomial 

quartic polynomial

5 knots at (13:00,18:00,00:00,06:00 and 11:00)

7 knots at (13:00,16:00,20:00, 00:00, 04:00, 08:00 and 11:00)

9 knots at (13:00,15:00,18:00,21:00,00:00,03:00, 06:00, 09:00 

and 11:00)

Thus model A is the same model as in (3.16) and model B is the initial model in (3.17). 

Model F is equivalent to fitting a separate mean profile using 9 knots for each group.

Figure 3.10 shows the fitted values for the two mean profiles for the six different models 

and Figure 3.11 shows the difference in mean profiles together with 95% confidence 

intervals. The difference between the mean profiles is remarkably similar in all models, 

except obviously model A where the difference is assumed constant. The difference is

Model A: 

Model B: 

Model C: 

Model D: 

Model E: 

Model F:
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Figure 3.10 Fitted mean profiles and 95% confidence intervals for 6 models 
with differing interaction terms to model the difference between 
groups: (a) none, (b) cubic, (c) quartic, (d) 5 knots, (e) 7 knots, 
(f) 9 knots.

approximately constant at about 6 mm Hg until about 06:00 when it starts to decrease. For 

the models with more knots and thus more parameters, i.e. the model with 7(E) and 9(F) 

knots, more local changes are detected, but these are not clinically or statistically 

important.

Since the main interest lies in whether there is a difference in the mean profiles it is 

possible to formally compare each of models B-F with model A, where the difference is 

assumed parallel, using the likelihood ratio test. The results for these analyses can be seen 

in Table 3.4. All comparisons yield statistically non-significant results so one would 

conclude in all cases that there was insufficient evidence to state that the mean profiles 

were not parallel. However, the P-values tend to increase as the number of parameters 

increases which is to be expected as more parameters are being used to explain a small 

difference, so the change in likelihood values will decrease by only a small amount while 

the change in the number of parameters increases.
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Figure 3.11 Difference in mean profiles for 6 models with differing
interaction terms to model the difference between groups: (a) no 
interaction, (b) cubic, (c) quartic, (d) 5 knots, (e) 7 knots, (f) 9 
knots.

3.5.6 Choice o f Random Effects

In the initial model the between-subject variation was modelled using a cubic polynomial 

for the random effects. It was envisaged that this model would allow there to be sufficient 

variation about the mean profiles to appropriately define each woman’s mean blood 

pressure profile. However, it is o f interest to investigate the effect of different choices for 

the between-subject random effects, as the more random effects there are, the greater the 

flexibility in the shape o f the individual profiles.

-2xLog
likelihood

No. of 
Parameters 
for difference

Change in -2xLog 
likelihood from 
Parallel assumption

P-value

A: No interaction 63090.2 1 - -
B: Cubic Polynomial 63085.9 4 4.3 0.23
C: Quartic polynomial 63085.8 5 4.4 0.35
D: 5 Knots 63085.4 5 4.8 0.31
E: 7 Knots 63084.5 7 5.7 0.46
F: 9 Knots 63083.2 9 7.0 0.54
Table 3.4 Formal test of difference in shape of mean profiles for the six models with 

differing number of knots using likelihood ratio test comparing models B- 
F with model A.
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As for the comparison of the number of knots, and the modelling of the difference between 

the groups, six models based on the initial model in (3.17) will be compared. Thus, each 

model will have 9 knots to describe the underlying mean profile, use a cubic polynomial to 

model the difference between the two profiles and assume a constant within-subject 

variance. Therefore, the only thing that differs between the six models is the between- 

subject random effects parameters. The random effects will be modelled in the six models 

as follow

Model A: Intercept only

Model B: Linear polynomial of time

Model C: Cubic polynomial of time

Model D: 5 knots at (13:00,18:00,00:00,06:00 and 11:00)

Model E: 7 knots at (13:00,16:00,20:00,00:00, 04:00, 08:00 and 11:00)

Model F: 9 knots at (13:00,15:00,18:00,21:00, 00:00, 03:00, 06:00, 09:00

and 11:00)

The number of variance-covariance terms that need to be estimated range from 1 in model 

A to 9x(10)/2=45 in model F. In order to illustrate how the choice of random effects can 

affect the fitted values for an individual, the fitted values for 5 individuals mean profiles 

for all six models are shown in Figure 3.12-Figure 3.16. For each of the five women the 

first model just allows the intercept to vary from women to women and therefore forces the 

fitted profile for each woman to be parallel to the overall mean profile. It can be seen that 

this may be adequate for women who have similar profiles to the mean profile, but is 

clearly not adequate for those women whose profile differs from the mean profile (which 

will be the case for most women). The linear model B does little better which perhaps one 

would expect as it only allows the fitted individual profiles to differ from the mean profile 

by either decreasing or increasing over time and does not allow for a change of direction.

The individual profiles visually appear to have the best fit for the models with more 

parameters, i.e. models D-F. However, it is unclear which is the “best” model and whether 

it actually matters if  one is not directly interested in the fit of the individual profiles, but 

rather in the comparison between groups. Thus it is of interest to investigate whether fitting 

a cubic polynomial, with ten parameters estimated in the variance-covariance matrix, or a
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nine knot restricted cubic spline with 45 parameters. As the models are not nested it is not 

possible to use the likelihood ratio test, but again it is possible to use the BIC and AIC. The 

deviance, number o f parameters in the model, BIC, AIC and the within-subject variance are 

shown in Table 3.5. The highest value of the BIC is for the model with a restricted cubic 

spline with seven knots for the between-subject (level 2) random effects, while the AIC 

chooses the model with nine knots. As stated in section 3.5.4, the AIC tends to lead to 

over-parameterised models being selected, so perhaps the BIC is more appropriate.
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Figure 3.12 Predicted values for an individual for models with different 
between-subject random effects: (a) intercept, (b) linear 
polynomial, (c) cubic polynomial, (d) 5 knots, (e) 7 knots and (f) 
9 knots. Example 1.
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Figure 3.13 Predicted values for an individual for models with different 
between-subject random effects: (a) intercept, (b) linear 
polynomial, (c) cubic polynomial, (d) 5 knots, (e) 7 knots and (f) 
9 knots. Example 2.
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Figure 3.14 Predicted values for an individual for models with different 
between-subject random effects: (a) intercept, (b) linear 
polynomial, (c) cubic polynomial, (d) 5 knots, (e) 7 knots and (f) 
9 knots. Example 3.
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Figure 3.15 Predicted values for an individual for models with different 
between subject random effects: (a) intercept, (b) linear 
polynomial, (c) cubic polynomial, (d) 5 knots, (e) 7 knots and (f) 
9 knots. Example 4.
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Figure 3.16 Predicted values for an individual for models with different 
between-subject random effects: (a) intercept, (b) linear 
polynomial, (c) cubic polynomial, (d) 5 knots, (e) 7 knots and (f) 
9 knots. Example 5.
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Also of interest in the within-subject (level 1) variance for the models with a different 

number o f random effects terms. Figure 3.12-Figure 3.16 show that as the number of 

random effect parameters increases, the better the fit to each individual’s profile.

Therefore, one would expect the greater the number of between-subject random effect 

parameters, the smaller the within-subject variability. The within-subject variability for the 

six models can be see in Table 3.5. It can be seen that, as expected, the within-subject 

variance decreases, the greater the number of between-subject random effect parameters. If 

a large number o f extra level between-subject parameters only produced a small reduction 

in the within-subject variance then this could indicate that the extra parameters are 

probably not needed.

A crucial question is whether it actually matters how the between-subject variation is 

modelled when it comes to assessing the differences in the two mean profiles. Table 3.6 

shows for each of the six models, the reduction in —2xlog likelihood when testing the null 

hypothesis that the two mean profiles are parallel. It can be seen that for models A and B 

there is a significant change in deviance with both models having a P-value of 0.014. 

However, for the remaining models the change in deviance is non-significant. It is perhaps 

reassuring that models C and F which could be considered to be realistic in terms of 

modelling the differences between subjects give very similar results in terms of the change 

in deviance and hence P-value.

-2xLog
likelihood

No. of 
Parameters

BIC AIC Within-subject
Variance

A: Intercept 63452.3 15 2673.8 2758.5 87.2

B: Linear Polynomial 63286.1 17 2821.9 2920.7 83.3

C: Cubic Polynomial 63085.9 23 2967.7 3108.9 78.5

D: 5 Knots 62965.1 28 3043.2 3219.7 76.0

E: 7 Knots 62817.2 41 3073.4 3341.6 72.2

F: 9 Knots 62735.3 58 3001.3 3389.5 69.5

Table 3.5 AIC and BIC values for six different models with differing numbers of 
between-subject random terms.
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-2xLog
likelihood

Change in -2xLog 
likelihood for 
testing parallel 
assumption

P-Value

A: Intercept 63452.3 10.6 0.014

B: Linear Polynomial 63286.1 10.6 0.014

C: Cubic Polynomial 63085.9 4.3 0.23

D: 5 Knots 62965.1 4.4 0.22

E: 7 Knots 62817.2 4.8 0.19

F: 9 Knots 62735.3 4.0 0.26

Table 3.6 Change In deviance in testing assumption of parallel profiles for 
models with a differing number of random effects using the 
likelihood ratio test

3.5.7 Complex Level 1 Variation

Inspection of the plots of the raw data for the first 12 subjects in Figure 3.1 indicated that 

there may be variation between subjects in terms of the within-subject variances. One 

advantage of using a hierarchical model is that it is possible to model the within-subject 

variation in a similar way to the between-subject variation. Goldstein (1995) refers to this 

as complex level 1 variation. When the within-subject variances are heterogeneous it is 

good practice to attempt to identify if  there are particular types of subjects who tend to 

have greater or less variation in their response. This is done by modelling the within- 

subject variance using subject level covariates. It is also possible that the within-subject 

variance is a function o f time. This may be appropriate for this data set as one may believe 

there to be less variation in blood pressure at night when people tend to be less active. In 

order to illustrate the modelling of the within-subject variance I will extend the initial 

model so that the within-subject variation is a function of time for both groups by fitting 

two models.

The initial model can be extended by adding a subscript ij to the within-subject variance 

term <?.
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Bpu + Z ,s *bwtj x t?j + +e'j
k=0 n*0 m=0

(3.21)

a j~MVN( f i ,T )  e , ~ N ( 0 , a 2)

I will model the within-subject variance a cubic polynomial for both groups where

+ -V, + - V# + 'M.J + + h  bw t/ij + \ bwtj ‘l  + ^bwtjt-j (3.22)

and as a 5 knot restricted cubic spline function with knots at (13:00,18:00,00:00,06:00 and 

11:00) for both groups where

G y  ~  ^ 0  +  ^ \ S \ ijS  +  ^ 2 S 2ij +  ^ 3 S 3ij +  ^ A S Aij +  ^ S ^ W t j  +  ^

K  b w t jS Uj +  Z jb w t  jS 2ij  + l %b w tj s liij+ X )b w tj s Aij 

Figure 3.17 shows plots of the within-subject variance against time for the two models.
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Time
(c)

8

8
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Time

06:00 12:00
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—  Birthweight <10* centile

-
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Time
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O
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Initial model

Complex level 1 variation
Figure 3.17 Plot of within-subject variance as function of time for (a) cubic

polynomial model and (c) 5 knot model. Plot of variance of mean profile
for those women who subsequently had an infant >10th centile for (b) 
cubic polynomial model and (d) 5 knot model compared to initial model.
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Also shown is a plot o f the variance of the mean profile for those women who had an infant 

<10* centile for gestational age. The within-subject variance plots show similar patterns 

for the two models, but with the cubic model giving a slightly flatter profile. Although 

statistically significant (Likelihood ratio test, cubic polynomial model Xi = 18.0, P=0.012,

5 knot model %\ = 18.5, P=0.030), it is difficult to put a clinically meaningful

interpretation to the two patterns. However, importantly neither the mean profiles (not 

shown) or the variances o f the mean profiles (Figure 3.17 (b) and (d)) altered to any 

considerable degree.

3.5.8 Model Checking

I have demonstrated in the previous sections that provided the mean profiles, between- 

subject random effects and within-subject variances are modelled sensibly the conclusions 

will not differ qualitatively. However, it is also important to investigate the assumption of 

normality o f the residuals (both within and between-subject residuals) and to investigate 

whether there are any potential influential or outlying observations. Failure to meet these 

assumptions could lead to incorrect inferences being drawn.

Figure 3.18 shows histograms and normal probability plots of both the between-subject and 

within-subject residuals. It appears that the assumption of normality is valid for the within- 

subject residuals. For each subject there are four between-subject (level 2) residuals (the 

a/s). Investigation of the assumption of normality at level 2 is more complicated than at 

level 1. This is because the between-subject residuals are not actually observed, but as seen 

in section 2.5.1, estimated from the model and the variance-covariance matrix. However, it 

is still possible to investigate the assumption of normality on the shrunken residuals. The 

between-subject residuals are correlated since it is assumed that they have a multivariate 

normal distribution with q variates (g=4 in this case). However, it has been suggested that 

in most cases it is sufficient to check for univariate normality for each of the q variates or 

sometimes to check all the bivariate pairs for bivariate normality (Morrison, 1990). If a 

formal test of normality is required it has been suggested that use of the Shapiro Wilks W 

statistic for univariate normality on each of the q variates is often adequate as the test
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Figure 3.18 Histograms and Normal probability plots for between-subject (c%, 
ajjy a2j, a3j) and within-subject residuals (eg).

statistic generally has low correlation even in the presence of high correlation between the

q variates (Royston, 1983). The histograms and normal probability plots indicate that the 

assumption of univariate normality is valid for all four random effects.

A method of assessing multivariate normality is to obtain the Mahalanobis distance for 

each subject’s level 2 residuals (Bryk and Raudenbush, 1992). It can also be used for 

investigation of outliers (Morrison, 1990). The Mahalinobis distance is obtained as follows,

DJ = « /£ - '« ,  (3.24)

where Uj is a vector of the subject level residuals for the j th subject and £ is the variance 

matrix for the between-subject random coefficients.

Each D 2j provides a summary of the degree of departure from multivariate normality of the 

random effects for each subject. The D ]  ’s have a large sample distribution with q 

degrees of freedom, where q is the number of random effects (four in this case). Since the 

residuals are shrunken, it is expected that in practice they will be less dispersed than a x \  

distribution. The distribution of the Mahalanobis distances for the initial model can be seen
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Figure 3.19 Plots of Mahalanobis Distance: (a) against subject id, (b) histogram 
and (c) quantile plot.

in Figure 3.19 together with a plot vs subject id and a quantile plot. This first plot has a line 

added to represent significance at the 5% level. It can be seen that only one value exceeds 

this value indicating that the assumption of normality is valid. The quantile plot shows the 

ordered, observed Mahalanobis distances versus the expected quantiles from a 

distribution with 4 degrees of freedom. The plot appears to show a fairly straight line again 

indicating that the assumption of multivariate normality is valid, but shows some departure 

at higher values due to the use of shrunken residuals.

Recent work in the detection of outliers in multilevel models (Langford and Lewis, 1998) 

suggests using the deviance to assess whether a subject appears to belong to the 

multivariate normal distribution describing the between-subject variability. The approach is 

simple in that a single subject is removed from the random component of the model and the 

associated effects are included as parameters in the fixed part of the model. Thus if starting 

with the initial model, where a cubic polynomial was used to model the between-subject 

variation then one subject can be removed from the fixed part as follows

k=0 n=0 1=0 m- 0
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Figure 3.20 Change in Deviance plots: (a) Histogram, (b) vs subject id, (c) quantile 
plot.

where hj= 1 for the subject of interest and 0 otherwise. This model can then be compared

with the initial model by investigation of the change in deviance. This can be repeated for 

all subjects. Thus, in the case of the dataset used here there will be 206 change in deviance 

values to be evaluated. A histogram of the change in deviances can be seen in Figure 3.20 

together with a plot against subject number. The plot shows the distribution of the change 

in deviance for the 206 subjects. In the plot vs subject number, lines showing the 5% and 

1% significance levels have been added. Given the multiple testing I will only investigate 

those subjects formally significant at the 1% level. This comprises of 8 subjects whose raw 

data is shown in Figure 3.21. There appears nothing particularly unusual about these eight 

subjects and removing them from the analysis makes very little difference to the parameter 

estimates or the mean profiles. Also shown is a quantile plot for the change in deviance. 

The line appears relatively straight, but perhaps shows some departure at the upper end.

The change in deviance approach is both time and computer intensive. In this case, 206 

different models had to be fitted to the data. The time taken was about 2 hours using a 

macro written for MLn. However, it has been shown (Langford and Lewis, 1998) that if
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Figure 3.21 Blood pressure profiles for eight subjects identified as potential outliers 
using change in deviance method.

starting with the converged values in the initial model, then a one-step approximation can

be used where only a single iteration is used when fitting each model.

A further assumption is that the within-subject variance is homogeneous across subjects. 

One way this can be investigated is by calculating the variance ( S j ) of the within-subject

residuals for each o f the J  subjects. A histogram of these variances is shown in Figure 3.22, 

which shows a positively skewed distribution. The median variance was 70.7 with a 

minimum of 24.2 and a maximum o f240.4. A formal test of Level 1 variance heterogeneity 

(Bryk and Raudenbush, 1992) uses a standardised measure of dispersion for each subject:

ln ( .s ;  ) - [ ]> > ,-l)ln(5])/X"y-i]
(3.26)

The test statistic for level 1 variance homogeneity is

* = I X 2
(3.27)

/=!
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Figure 3.22 Histograms and normal probability plots of variances of within- 
subject residuals (a), (b) and logged variances (c), (d).

which has a large sample distribution with J-l degrees of freedom. Using (3.26) and

(3.27) on the initial model yields H=673.2 with 205 degrees of freedom which gives a P 

value <0.0001 indicating that heterogeneity of within-subject variances exists.

Another method of formally assessing heterogeneity of the within-subject variances is to fit 

a separate level 1 variance, crj, for each subject (Bryk and Raudenbush, 1992). Thus

instead of just one parameter being estimated for the level 1 variance, there will be 206 

parameters estimated, one for each subject. The two models can then be compared by using 

the likelihood ratio test. However, this model could not be implemented in either MLn or 

SAS PROC MIXED, due to memory limitations. In section 3.6 a Bayesian method is 

developed which allows the within-subject (level 1) variance to vary between subjects.

One final assumption is that the within-subject residuals are uncorrelated. It is possible that 

the within-subject residuals have an autoregressive structure. In order to investigate this, 

the correlations between residuals at lags 1, 2 and 3 were calculated for each subject for 

models with differing number of between-subject random effects.. The mean correlations 

are shown in Table 3.7. It can be seen that for the models with less between-subject random 

effects parameters, there appears to be greater autocorrelation. This makes sense since the
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Random terms Lag 1 Lag 2 Lag 3
Intercept 0.24 0.10 0.07
Linear Polynomial 0.20 0.06 0.02
Cubic Polynomial 0.14 0.00 -0.04
5 Knots 0.11 -0.04 -0.07
7 Knots 0.04 -0.09 -0.11
9 Knots -0.00 -0.13 -0.12

Table 3.7 Mean correlations between within-subject (level 1) residuals for 
different random effect models at lags 1,2 and 3.

less random effect parameters there are to model individual profiles, the worse the fit of the

individual profiles. Inspection of some of the predicted values for the 5 individuals in

Figure 3.12-Figure 3.16, shows that for the models with only a few random effect

parameters there are sections o f the profile where there are long series of positive or

negative residuals and thus the correlations of the lagged residuals will be positive. With

more random effects the better fitting the individual profiles will be, and thus there will be

less autocorrelation. The models could be extended by inclusion of an autoregressive term

(Diggle, 1988; Goldstein et al.y 1994), but since the autoregressive effect is small and

there are a large number of repeated observations per individual this is unlikely to have a

great effect on the estimates o f the fixed effects or their standard errors (Wade and Ades,

1998).

In summary, the models I have presented clearly show that there is the expected dipping of 

blood pressure at night for both groups. There is strong evidence that those women who 

subsequantely had a baby with a low birthweight for gestational age had higher blood 

pressure. However, the shape of the two mean profiles was not different between the two 

groups.

3.6 Bayesian Analysis

3.6.1 Introduction

In this section I consider the use of a Bayesian approach to the analysis o f ABPM profiles 

described above. One reason for this is that it has been suggested that models should be 

developed using classical methods of estimation, but the final model should be checked 

using Bayesian estimation as interval estimates are improved (Browne and Draper, 2000).
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A further advantage o f the Bayesian framework is that it is relatively easy to extend the 

model to more complex, but more realistic scenarios (Best et al., 1996). In addition, if 

there was prior information from previous studies about the magnitude of the difference 

between the two groups, then this could be incorporated through the use of prior 

distributions. In section 3.5.8,1 demonstrated that there was heterogeneity of the within- 

subject (level 1) variances. I will develop the model so that the within-subject variances are 

allowed to vary from subject to subject. This is shown in section 3.6.3, but I will first fit the 

initial model, but now using Bayesian estimation of the parameters.

3.6.2 Initial Model

The initial model used a 9 knot restricted cubic spline for the underlying profile, a cubic 

polynomial for the difference between the profiles and a cubic polynomial for the between- 

subject random effects. This can be written in a slightly different but equivalent 

hierarchical form, as follows:

BPy ~ N(/4ijy<j2)

(3.28)

M ij =  + ' Z S "b w t J x ‘ v  +  Z < V ”
k= 0 n=Q m=0

where the JTs and the 8  are the fixed effects and the d s  are the random effects. In the 

initial model it was assumed that the random effects had a multivariate normal distribution 

with a zero mean vector and variance matrix E. When specifying a prior distribution for E a 

Wishart distribution is often used (Carlin, 1996). In Chapter 4 1 demonstrate the use a 

Wishart distribution for this purpose. However, the use of the Wishart distribution is not 

always intuitive and it is possible to formulate a multivariate normal distribution using a 

series of linear models (Spiegelhalter et al., 1997; Spiegelhalter, 1998). This is known as 

the product normal formulation o f the multivariate normal distribution. For the four 

between-subject random effect terms, multivariate normality can be expressed as follows
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«oJ ~  W(0,cr*0)

«ij ~
(3.29)

®2 j ~  + r 2aiy.o'«2)

«3j ~ + r 4«iy+rAy»o'a3)

The advantage o f using this formulation is that instead of using the Wishart distribution as 

a prior distribution, where a prior is given for the covariance matrix as a whole, univariate 

prior distributions for y0,"-,y s and cr^,---,cr*3 can be specified instead. Expressing the

relationships between the random effects in this way is also more intuitive. If one considers 

a simple linear multilevel model where the intercept and gradient vary from subject to

Observation
Subject j

Figure 3.23 DAG for initial Bayesian Model
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subject, then using the top two lines in (3.29), it can be seen that the size of the random 

effect associated with the gradient is related to the intercept through yo-

The model can also be expressed as a Directed Acyclic Graph (DAG), which is shown in 

Figure 3.23. As mentioned in Chapter 2, the DAG is a convenient method of obtaining the 

factorisation of the joint posterior distribution and, in particular, obtaining the full 

conditional distribution for each unknown parameter (Best et aL, 1996). In the DAG each 

quantity in the model is shown as a node with the arrows showing direct dependence. Solid 

arrows represent probabilistic dependencies, while dashed arrows represent functional 

(deterministic) dependencies. The DAG shows how the mean blood pressure on the i h 

occasion for the f h subject depends on the fixed effects and the subject level random 

effects. The interdependencies between the 4 between-subject random effects can be clearly 

seen.

Since I am now going to adopt a Bayesian approach, prior distributions need to be specified 

for all unknown parameters. Since I want to compare this model to the classical model I 

will use non-informative prior distributions. The prior distributions used are

p 's  ~ A(0,1000000)

S 's  ~ A(0,1000000)

y ' s ~ N ( 0 , 1000000)
i (3.30)

—r----- Gamma(0.00l, 0.001)

— ~ Gamma(0.0Q 1,0.001)
O’

Note that it is common in Bayesian models to give the precision (the reciprocal of the 

variance) a prior rather than the variance.

In order to fit the model WinBUGS was used using overdispersed starting values. A ‘bum 

in’ of 5000 iterations was used followed by 50000 samples. This took about eight hours on 

a Pentium I I 400 Mhz PC.

Paul Lambert Ph.D. Thesis, November 2000 93



CHAPTER 3 The Analysis o f ABPM Data

Parameter Classical
Model

Bayesian Model

Po 76.6 (0.54) 76.7 (0.55)
Pi -276.6 (16.86) -276.1 (22.59)
Pi 363.3 (15.71) 373.5 (16.89)
Pi 221.4(13.85) 221.8 (16.34)
P4 28.4 (9.24) 33.3 (9.57)
Ps -118.9 (9.02) -115.8(9.11)
Pe -128.0 (9.00) -125.3 (9.09)
P i -6.3 (9.00) -3.6 (9.04)
Ps -73.8 (8.99) -71.6 (9.02)
So 7.4 (1.90) 7.30(1.93)
Si 0.163 (0.201) 0.162 (0.201)
S2 -0.023 (0.014) -0.022 (0.015)
S3 -0.0026 (0.0020) -0.0026 (0.0024)

Table 3.8 Comparison of fixed effects for the initial Classical and Bayesian Models.

The parameter estimates of the fixed effects for the classical model and the initial Bayesian 

model are reported in Table 3.8. It can be seen that the parameter estimates are broadly 

similar. The standard errors are also similar, but tend to be slightly larger for the Bayesian 

model. However, each parameter has little meaning individually and it is of more interest to 

investigate the mean profiles in each group. A plot of the predicted values for the classical 

and Bayesian models together with 95% confidence/credible intervals for each of the two 

groups is shown in Figure 3.24. The fitted values and 95% credible intervals for the 

Bayesian model appear to be very similar to the fitted values and 95% confidence intervals 

for the Classical model. This is perhaps not surprising, as the models are essentially 

identical and as I am using non-infonnative priors virtually all the information in the 

Bayesian model is in the likelihood. If there were less subjects then perhaps one would 

expect to see differences between the two models as when estimating the fixed effects and 

their standard errors, the classical model assumes that the random effect variances and 

covariances are known while the Bayesian model treats them as unknown, and 

appropriately takes the uncertainty associated with them into account. The main difference 

between the two methods of estimation are in the first and last two to three hours where the 

Bayesian model has slightly wider intervals. This can also be seen in the plot of the
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Figure 3.24 Mean profiles with 95% confidence/credible intervals of Classical and 
Bayesian models for (a) birth weight < 10th centile and (b) birth weight 
> 10th centile.

difference between the two mean profiles in Figure 3.25(a). The reason for this is that this

is where there is less data and hence more uncertainty associated with the random effects.

3.6.3 Heterogeneity o f  Within- Subject Variation.

The main advantage o f the Bayesian approach is its flexibility. Since the within-subject 

variance appeared not to be constant I will now show how this variation can be 

incorporated into the Bayesian model. Extending (3.28) gives

BP, ~ N(Mii,o ]) (3.31)

= Z  + Z  s *bwtJ * ‘"> + E  a "it‘i
k —0 n=Q m=0

A subscript j  term has been added to the within-subject variance so that now instead of 

estimating one within-subject variance (or precision), there is a separate within-subject 

variance for every subject. I will fit three different models for the within-subject variation 

and compare them to the initial Bayesian model. The first model'considers each within- 

subject variance as a separate parameter, so 206 within-subject variances need to be
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estimated, one for each subject. A prior is needed for all 206 within-subject variances and 

can take the following vague form

<rj — Gamma(0.001,0.001) (3.32)

This is the Bayesian equivalent of the model described in section 3.5.8, which can be used 

to test whether there is evidence of heterogeneous within-subject variation. However, it 

was not possible to fit these models using Classical methodology.

The above model is probably over parameterised and it may be more sensible to allow the 

within-subject variance to vary from subject to subject by treating it as a random effect and 

choosing an appropriate distribution. Figure 3.22 shows that the observed within-subject 

variances appear to have a skewed distribution, but using a log transformation appears to 

show approximate normality. Thus, in the next model the within-subject variances are 

modelled in the following way

log((jj) = 0y.
(3.33)
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Figure 3.25 Differences between mean profiles for (a) Classical and Bayesian 
models and (b) the four Bayesian models.

Paul Lambert Ph.D. Thesis, November 2000 96



CHAPTER 3 The Analysis o f ABPM Data

Priors distributions are needed for fie and g\  and as with the rest of the prior distributions 

of the model are relatively non-infoimative

Me ~ N (0,1000000) (3.34)

~ Gamma(0.001,0.001)

It may be preferable not to transform the variances, so the final Bayesian model considers 

using a Gamma distribution to model the within-subject variances as follows

(Tj ~ Gamma(a,b) (3.35)

Again relatively non-informative prior distributions are used, i.e.

a ~ Gamma(0.001,0.001)
(3.36)

b ~ Gamma (0.001,0.001)

As with the initial Bayesian model a ‘bum in’ of 5000 iterations was used for the three 

extended models with a further 50000 iterations used to form a sample. These models took 

longer to run than the initial Bayesian model, with the model using the Gamma distribution 

to model the variation in the within-subject variance taking about 14 hours. The estimates 

of the fixed effects for the four Bayesian models can be seen in Table 3.9. It can be seen 

that there is little difference between the four models in either the parameter estimates or

Parameter Initial Model Separate Log-Normal Gamma
Variances Variances Variances

Po 76.7 (0.55) 76.7 (0.55) 76.6 (0.55) 76.6 (0.55)

Pi -276.1 (22.59) -275.4 (22.39) -275.3(22.48) -275.7(22.47)

P2 373.5 (16.89) 373.6 (16.35) 373.3 (16.64) 373.0 (16.55)

Pi 221.8(16.34) 220.5 (15.86) 220.1 (15.77) 219.7 (16.06)

P4 33.3 (9.57) 28.4 (9.37) 29.9 (9.44) 29.8 (9.44)

Ps -115.8 (9.11) -115.1 (8.79) -116.2 (8.83) -115.9 (8.85)

Pe -125.3 (9.09) -127.0 (8.84) -126.8 (8.85) -126.6 (8.82)

Pi -3.6 (9.04) 3.0 (8.69) 0.8 (8.83) 0.9 (8.79)

Ps -71.6 (9.02) -76.2 (8.69) -75.2 (8.79) -74.9 (8.78)

do 7.30(1.93) 7.22 (1.94) 7.43 (1.96) 7.40 (1.90)

Si 0.162(0.201) 0.142(0.199) 0.148 (0.200) 0.142(0.198)

Sz -0.022 (0.015) -0.020(0.015) -0.021 (0.015) -0.021 (0.015)

Ss -0.0026 (0.0024) -0.0022 (0.0024) -0.0024 (0.0024) -0.0023 (0.0024)

Table 3.9 Comparison of fixed effect estimates (standard errors) from the four 
Bayesian Models.
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the standard errors. However, it is again more sensible to compare the predicted values. 

Figure 3.25 shows the mean difference between the two profiles for the four Bayesian 

models. There is very little difference between the four models both in terms of the mean 

difference and 95% credible intervals which almost completely overlap.

Figure 3.26 shows a histogram of the observed within-subject variances obtained using the 

mean values from the Bayesian model estimating a separate variance for each subject. The 

posterior densities for the two models where the within-subject variance was considered to 

be a random effect has been superimposed. Both models appear to fit the observed 

distribution adequately.

3.6.4 Assessment o f Convergence

Values of the Geweke test statistic and autocorrelations at lag 10 can be seen in Table 3.10. 

There are three parameters that give values greater than two for the Geweke statistic, po, . 

p 3, and Po. It is interesting to note that these are the three parameters with the highest
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Figure 3.26 Distribution of within-subject variances when each modelled separately 
together with fitted densities for models where the within-subject 
variance was modelled using a Log-normal distribution and a Gamma 
distribution.
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autocorrelations. It is well known that high autocorrelations can cause problems in terms of 

slower convergence. With high autocorrelation it is more likely to have high or low values 

over a section o f the chain leading to a greater chance that the sections will differ.

A problem with the Geweke statistic is that it is only a comparison of the means in the two 

sections of the chain. In addition it is sometimes more useful to explore the data graphically 

in order to assess visually how different the two sections are. Figure 3.27 shows density 

plots for the first 10% and last 50% of the chain for the fixed effects. These provide a 

graphical alternative to the Geweke statistic and can show potential discrepancies for both 

the locations and shape o f the two sections of the chain. It can be seen that for most of the 

parameters there is almost complete overlap. For the parameters with high values for the 

Geweke statistic, i.e. . fc, and /?p, although one can see a slight difference one can see 

that the differences in densities are very small and unlikely have a great deal of influence.

3.7 Discussion

CO.
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®-i5o’’-wo -126 -ibo 36 ® -Iw -mo -12b -100
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-60 3 6
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Figure 3.27 Density plots for first 10% (solid line) and last 50% (dotted line) of 
chains for each fixed effect parameter.
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Fixed Effect Parameters Random Effect Parameters
Geweke Autocorrelation Geweke Z Autocorrelation at
Z value at lag 10______________ value__________ lag 10

Po 2.13 0.74 To -0.27 0.01

Pi 0.54 0.17 Yi 0.42 0.00

P2 -1.30 0.09 Y2 0.82 0.02

Ps -2.81 0.31 Y3 0.20 0.00

P4 0.02 0.01 Y4 1.20 0.01

Ps 0.42 0.01 Y5 1.18 0.00

Pe 1.12 0.00 _2 1.07 0.00

P? 2.07 0.00 ' <T«1 -1.11 0.00

Ps -1.44 0.01 <*12 -0.19 0.01

So -2.05 0.68 0.10 0.00

Si -1.63 0.30 Ms 0.04 0.00

S2 -0.89 0.06 <*S 0.36 0.00

S3 1.10 0.29

Table 3.10 Z scores for Geweke assessment of non-convergence 
and autocorrelations at lag 10.

In this chapter I have demonstrated how repeated ambulatory blood pressures can be 

modelled using a two level hierarchical model. Use of the two level model allows 

modelling of mean profiles, shrunken estimates of individual profiles and within-subject 

variation. Use of Bayesian estimation makes little practical difference to the fitted values or 

the standard errors of the mean profiles when fitting the same model as in the classical 

analysis. The Bayesian approach allows greater flexibility in the modelling of the within- 

subject variance. However, modelling the within-subject variance heterogeneity also makes 

little difference to the fitted values and standard errors.

The use of restricted cubic splines appears a very useful tool for curve fitting, not 

necessarily just for hierarchical models. They are relatively simple to use and it takes very 

little time to fit a model, and can be useful for exploratory purposes when investigating the 

functional form of a relationship. In the example presented here, it appears that as long as 

there are a sufficient number of knots, the choice of the exact number is not that crucial in 

terms of model inferences. However, it would seem sensible to recommend that sensitivity 

to the choice of the number and location of knots should, at least briefly, be carried out. An
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alternative would be to treat the number and location of the knots as unknowns and 

estimate them in a model. An example of this for non-correlated data from a Bayesian 

perspective can be seen in Denison et a l  (1998). However, in this case, given that the 

model appears robust to changes in the number of knots, this would probably add an 

unacceptable amount o f time to fitting the Bayesian model, which at present takes about 10 

hours on a Pentium I I 400 Mhz.

The choice o f the between-subj ect random effect parameters will depend on the research 

question. In most cases the main interest is in the mean profiles. However, in some 

instances, interest may also lie in modelling individual profiles. When the interest lies in 

the mean profile I have shown that the choice of random effects variables makes little 

difference to the results as long as there are sufficient terms to model the between-subject 

variation sensibly. This concurs with previous work by Taylor and Law (1998) who found 

that the choice of covariance structure made little practical difference to the mean profiles 

or their standard errors. However, if one is interested in accurate estimation of individual 

profiles or prediction of future observations, they found that the choice of covariance 

structure was much more important. However, since the blood pressure here is recorded 

over a 24 hour interval prediction of fixture observations is unlikely to prove that useful.

Using Bayesian estimation procedures made very little difference to the mean profiles or 

their standard errors. This is not that surprising due to the large number of individuals and 

observations in the study. However, I would agree with the recommendations of Browne 

and Draper (2000) that after developing the model using classical methodology one should 

check parameter estimates and their standard errors using Bayesian estimation. In fact the 

software program MLWin allows IGLS, RIGLS and MCMC methods of estimation.

One advantage of using a Bayesian analysis is that it is relatively simple to extend the 

analysis to more complex scenarios. For example, in this case, by incorporating a between- 

subject random effect for the within-subject variance. Despite strong evidence of within- 

subject variance heterogeneity there was very little difference in the estimate of the mean 

profiles. If interest lies in the individual profiles then the modelling of the within-subject 

heterogeneity will obviously be more crucial (Lin et al., 1997).
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The models presented in this chapter could be extended in a number if ways. For example,

I have assumed Normality for the response (blood pressures) and the between-subject 

random effects. Although this is often reasonable it may be possible to explore situations in 

which the distributions have a different form. For example, it may be possible in some 

situations to assume that the response has a t-distribution with either pre-specified or 

estimated degrees of freedom. This allows for the response to have heavier tails than those 

in a Normal distribution. The use of such methods would be relatively simple using a 

Bayesian model.

I have assumed vague priors for all parameters in the Bayesian models. In some situations 

it may be of interest to include more informative prior distributions on the fixed 

components, the variance components or both. However, since the coefficients associated 

with the spline variables do not have a sensible interpretation individually, this would be 

complicated, so it would only realistically be possible to use informative prior distributions 

for the treatment difference. I have used inverse gamma distributions as prior distributions 

for the various variance components. Recent work has shown that the use of Pareto 

distributions for the variance components are often more appropriate than Gamma 

distributions (Burton et al., 1999). However, the main problem with the use of Gamma 

distributions is with small variances or when there is only a small amount of data, which is 

not the situation in the models presented in this chapter.
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4  THE ANALYSIS OF PEAK EXPIRATORY FLOW DATA

4.1 Introduction

In this chapter I use hierarchical models to analyse repeated measures of Peak Expiratory 

Flow (PEF). I extend the two level models of chapter 3 by using a three level model that 

enables quantification o f both the mean level of PEF as well as the within-subject 

variability of PEF. The latter is broken down into between and within-day variation and has 

a useful clinical interpretation. I give a brief background to PEF in section 4.2, followed by 

a description of the data I use in section 4.3. Section 4.4 reviews a number of summary 

measure techniques for the analysis of repeated measures of PEF. The three level model is 

described and developed in section 4.5, with the model built up from a simple variance 

components model in section 4.5.2 through to modelling the mean profiles and between 

and within-subject variability in section 4.5.5. Section 4.6 investigates the potential use of a 

Bayesian approach. Finally, section 4.7 discusses the techniques I have used and discuss 

possible extensions of my work.

4.2 Peak Expiratory Flow

Peak Expiratory Flow is the maximum airflow achieved during a forced expiration from 

total lung capacity (Ayres and Turpin, 1997). PEF is commonly used in both clinical 

practice and research. In clinical practice it is often used for monitoring and diagnosing 

patients with asthma. It is used in the self management of asthma where patients can 

modify their treatment or seek medical advice accordingly. In clinical research PEF can be 

used to monitor effectiveness of new treatments in clinical trials (Enright et al., 1994; 

Toogood et al., 1996). In epidemiological studies it is sometimes used to define asthma 

cases and to assess severity o f asthma (Lebowitz et al., 1987; Toelle et al., 1992).

One of the advantages of PEF is that it is possible for individuals to measure their PEF at 

home using a peak flow  meter. Such a device can be seen in Figure 4.1. After the patient 

has being instructed on how to use the device no clinical supervision is necessary as there 

are no risks associated with its use. The devices are inexpensive and so measurement of 

peak flow is relatively cheap. In addition PEF is usually recorded in the form of diaries. In
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the research field these are 

more per day.

When investigating a patient’s PEF, not only is the actual level of interest, but also the 

variability in PEF measurements as asthmatics tend to have more variable airways and thus 

more variable PEF when compared to non-asthmatics. Of particular interest is diurnal 

variation in PEF (the variation between measurements made on the same day), as this has 

been shown to be increased in people with asthma (Hetzel and Clark, 1980). In fact some 

of the current asthma guidelines state that in clinical practice diurnal variability should be 

calculated when diagnosing asthma and assessing its severity (Bethesda 1995; British 

Thoratic Society, 1996).

4.3 Description of Data

In 1990 a prevalence study was performed in order to estimate the prevalence of wheeze, 

doctor diagnosed asthma, and recurrent cough in pre-school children in Leicestershire. This 

has been reported in detail elsewhere (Luyt et al., 1993). Briefly, the parents of 1650 white 

Caucasian children bom between January 1985 and January 1990 were randomly sampled 

using the Leicestershire Child Health Register as a sampling frame. Parents received a 

postal questionnaire concerning respiratory symptoms, family history, and 

environmental/social conditions.

often for a two week period with peak flow recorded twice or

Figure 4.1 Peak flow meter
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Between March 1992 and March 1994 all children in whom prior wheeze had been 

reported, together with all children with prior recurrent cough and a random sample of 

children who had been initially asymptotic, were invited to attend the Leicester Royal 

Infirmary for a follow-up questionnaire, assessment of current symptoms, and 

physiological measures. Some of the results of the follow-up study have been reported in 

detail elsewhere (Brooke et al., 1995; Brooke et al., 1996). In this chapter, I will 

investigate those who were current wheezers in the 1990 study. Current wheeze was 

defined as wheezing at least once in the year prior to the original study. In addition to the 

children receiving the follow-up questionnaire, all children who were thought to be able to 

make repeatable PEF recordings were issued with a mini-Wright peak flow meter and were 

asked to make recordings at 8:00am (morning measurement), 4:00pm (afternoon 

measurement) and 8:00pm (evening measurement) for fourteen days. The mini-Wright 

peak flow meter is one o f the most popular devices for measuring PEF and has been shown 

to be repeatable and correlates well with other measures of lung function (Wright, 1978; 

Kotses et al., 1984). The importance of adhering to these times was emphasised and 

parents were asked to omit inaccurately timed readings. Proficiency in using the peak flow 

meter was checked by a research nurse in a home visit during the two weeks. Completed 

diaries and meters were returned to the investigators using a freepost system.

The subset of children analysed here consists of 90 children aged between 5 and 8. The 

atopic status o f the children was assessed by skin prick testing (Pepys, 1975). Four 

aeroallergens: cat hair, dog dander, house dust mite and mixed grass pollen were used. 

Children who had at least one positive response to any of these four allergens were deemed 

atopic. The aim of the analysis was to compare PEF for atopic and non-atopic children.

PEF is expressed as percentage predicted (PPEF) using separate predictive equations for 

boys and girls (Wille and Svensson, 1989), with the equations being a function of age and 

height. This is standard when analysing PEF, with PPEF being calculated by dividing the 

observed PEF by the predicted PEF and multiplying by 100. Hence a value greater than 100 

indicates that a child had a higher PEF than predicted and a value less than 100 indicates 

that a child had a PEF less than that predicted. To be included in the analysis children had
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Figure 4.2 Serial plot of PPEF for the first 12 subjects.

to complete at least half o f the potential 42 observations in the PEF diary. Of the 90 

children, 38 were non-atopic and 52 were atopic with a combined total of 3153 PEF’s. A 

serial plot of the first 10 subjects can be seen in Figure 4.2. These plots demonstrate that 

there is both, between and within-subject variability. It is of interest to note that within- 

subject variability appears to vary between subjects

4.4 Standard Approaches to the Analysis of Peak Expiratory Flow

In the research setting, comparison of PEF diaries between groups is of interest. In virtually 

all cases in the literature a summary measure of the PEF diaries is obtained, with standard 

procedures such as the t-test used for formal comparison between groups. If one is 

interested in the level o f PEF or PPEF then a mean value can be taken. As it is well known 

that PEF varies during the day, with lower values in the morning, the values averaged 

should be measured at similar times of the day.

Paul Lambert Ph.D. Thesis, November 2000 106



CHAPTER 4__________________________   The Analysis o f PEF Data

In the previous section I discussed how not only the level of PPEF, but also the variability 

of PPEF is of interest. Therefore, a number of summary measures that have been used 

attempt to measure this. For example, Siersted (1994) uses nine different summary 

measures for PEF variability. Two of the most commonly used measures are Amplitude 

percent mean (Amp%Mean) where

Amp0/  mean -  mean ̂  highest reading -  daily lowest reading^
daily mean

And the Standard Deviation percent mean (SD%Mean)

o„ 0/ SD of PPEF measurementsSD%mean =

(4.1)

mean of PPEF measurements (4.2)

A previous study has shown that Amp%mean is the “best index of separation” between 

asthmatics and non-asthmatics (Higgins et al., 1992). It has been argued that these two 

measures are too complex to use in clinical practice as they take too long to calculate in a 

standard medical consultation and that an even simpler measure should be used, namely 

‘Lowest PPEF as % o f personal best’ (Low%best) (Reddel et al.9 1999).

T + Lowest PPEF ■Low%best  ------------------ x 100 (a
Highest PPEF

These three PPEF variability summary measures were obtained using the data described in 

section 4.3. In addition the mean of the morning measures (AM), the afternoon measures 

(PM) and the evening measures (EVE) was obtained for each child. Children who had 

fewer than half (seven) measurements when obtaining this means were excluded from the 

analysis.

The results of obtaining these six summary measures and a formal comparison of atopic 

and non-atopic children using the t-test can be seen in Table 4.1. For the analysis of SD % 

mean, the data was logged as it was positively skewed. It can be seen that the number of 

children with evening measures of PPEF is less than those measured in the morning. This 

is because some o f the children would be in bed by the time the evening measure was to be 

made (8:00pm). The table shows that atopic children tend to have lower mean PPEF as 

percent predicted at all three measurement times. However, only in the morning is the 

difference formally statistically significant (at the 5% level). For the comparison of PPEF
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Non Atopic Atopic Difference in means
N Mean (SE) N Mean (SE) (95% Cl)

Morning measure 52 97.5 (2.3) 37 90.2 (2.6) 7.3 (0.2 to 14.3)
Afternoon measure 52 101.4(2.3) 38 95.4 (2.4) 6.0 (-0.7 to 12.7)
Evening measure 43 99.2 (2.5) 31 94.1 (2.5) 5.0 (-2.2 to 12.2)
Amp % mean 52 9.5 (0.62) 38 12.3 (1.08) -2.7 (-5.1 to -0.4)
Low % best 52 71.7 (1.3) 38 66.9 (1.5) 4.7 (0.7 to 8.8)
Log SD % mean 52 2.02 (0.05) 38 2.22 (0.07) -0.20 (-0.37 to -0.02)

Table 4.1 Comparison of atopic and non-atopic children using summary measures.

variability, it can be seen that atopic children appear to have greater variability for all three 

measures with all being significant at the 5% level.

There are a number o f potential problems with the use of these summary measures. Firstly, 

there is the problem o f missing data as there are a number of children who do not have 

complete PEF diaries. For example, in the comparison of PPEF in the morning while a 

number of children will have recorded all 14 measures, some children will have fewer 

recordings. Strictly, one should apply weights, as the children with all measurements 

should contributes more information to the analysis as they will have smaller variances 

(Matthews, 1993). However, it has been argued that in doing this the attractiveness and the 

simplicity of summary measurements has been lost and one could therefore use a more 

powerful method o f analysis that does not reduce the data to summary measures (Hand and 

Crowder, 1996). Another problem is in the choice of which summary measures to use. I 

have demonstrated six here, but there are numerous others that could have been used. This 

is especially so for the summary measures estimating PEF variability. The three measures 

here measure different aspects of variability with Amp%mean measuring mean diurnal 

variation, SD%mean measuring the variability of all PEF recordings and Low%best 

investigating the extremes which makes it potentially highly influenced by outlying 

observations.
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4.5 A Three Level Model

4.5.1 Introduction

As I discussed in Chapter 2, with repeated measures data one can normally consider there 

to be a two level hierarchical structure, with individual measurements nested within 

subjects. In the case of the PEF data presented here, the PPEF measurements (level 1) are 

nested within children (level 2). One can also consider the data as having a three level 

structure and there to be variation at each of these three levels. Firstly, there will be 

between-subject (or in this case between-child) variability in that one would expect PEF’s 

recorded on the same subject to be more similar than PEF’s recorded on different subjects 

(i.e. some children would have consistently higher PEF when compared to other children). 

There will also be within-subject variation. However, due to the way the data was recorded 

it is possible to break down the within-subject variation into two components. Firstly, one 

can expect there to be variation on a day to day basis, i.e. between-day within-subject 

variation. In addition there will be variation in PPEF within each day. This is the residual 

variation but can also be thought of as within-day within-subject variation. The three level 

structure can be seen graphically in Figure 4.3. It can be seen that individual PPEF 

observations (level 1) are nested within days (level 2) which are nested within subjects 

(level 3).

There are two reasons for analysing the data as a three level hierarchical model. Firstly, it is 

of clinical interest to break down the variation in this way as clinicians are generally 

interested in both aspects of within-subject variability, but mainly concentrate on within-

Child nChild 1

Day 14Day 1 Day 2Day 14Day 2Day 1

AM PM EVE AM PM EVE AM PM EVEAM PM EVEAM PM EVE AM PM EVE

Figure 4.3 Hierarchical structure of the asthma dataset
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day variation (Reddel et al., 1999). The second reason for adopting the three level model 

is that it will induce a slightly more complex correlation structure which may be more 

realistic. Not only are observations made on the same subject correlated, but by including 

day as a level in the model, die PPEF recorded on a particular day will be more similar than 

those recorded on different days for the same subject. This could allow for factors affecting 

specific days, for example pollution, pollen or humidity levels.

4.5.2 Variance Components Model

The model will have the response percent predicted peak expiratory flow (PPEFy*) which 

denotes the ith observation (7=1,.. .,3) on the f h day (/= 1,.. .,14) for the lih subject 

(£=1,.. .,90) and will consist o f both fixed effects and random effects as follows.

PPEF.j^ = Fixed Effects+Random Effects (4.4)

The fixed effects will model the mean level of PPEF and the random effects will model the 

variability o f PPEF at each o f the three levels. I will start with a simple model, namely a 

variance components model as follows,

PPEFgk =  +  oc0 k +  d 0 jk +  egk

a ok ~ ^ (0 , a 2o) (Between - Subject Variation) ^  ^

SQjk ~ N (0, crJo) (Between - Day Within - Subject Variation)

eijk ~ N (0, a 2) (Within - Day Within - Subject Variation)

The model has one fixed effect (J3o) which is the overall mean PPEF, and three random 

effect parameters which need to be estimated. The nested random effects give the following 

covariance structure for PPEF’s measured on the same subject.
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Day Time

I AM + <*1 +<r2 <*ia + * 1 +erl < <
1 PM < < <
1 EVE <  +®sL a L + + <*s. + <r~ < <7«a
2 AM a L <*\ . c r ;e + a 'l + < r <  + <
2 PM < , < + O'i. + <71 + <72 + a k
2 EVE ° i . + a l + c r 'i +  a 2

14 EVE

(4.6)

The matrix shows the variances and covariances of the first six PPEF’s measured on the 

first two days. The full matrix for an individual will be of dimensions 42x42.

This model was fitted in MLn using IGLS with the results presented in Table 4.2. It can be 

seen that the overall mean PPEF is 96.9%. The reason why it less than 100 could be due to 

the fact that the population o f children have previously been defined as wheezers.

However, it is well known that populations can differ from those from which the predictive 

equations were obtained and so absolute values should be treated with a degree of caution. 

It can be seen that the greatest amount of variation is between subjects, which is sensible as 

one expects children to have different underlying PEF’s. Of the within-subject variation the 

greater proportion is within-days.

Using the variance component parameters it is possible to measure the correlation between 

observations made on the subject using the intra class correlation (Armitage and Berry, 

1987). This can be done by converting the covariance matrix in (4.6) to a correlation 

matrix. Because o f the 3 level structure there will be two such measures or correlation, 

which are obtained as follows

Parameter Estimate (Standard Error)
Fixed Effects

(Overall mean) 96.9(1.68)

Random Effects

cr^ (Between-Subject Variation) 250.6 (37.8)

crjo (Between-Day Within-Subject Variation) 17.6 (1.8)

cr2 (Within-Day Within-Subject Variation) ' 58.5(1.9)

Table 4.2 Parameter estimates of variance components model
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Intra - Subject Correlation

Intra - Day Correlation

= 0.77

= 0.82
(4.7)

The intra-subject correlation is a measure of the similarity between observations measured 

on the same subject on different days and the intra-day correlation is a measure of the 

similarity between observations measured on the same subject on the same day. By 

definition the inter-day correlation will be greater than or equal to the intra-subject 

correlation. They will be the same if the between-day within-subject variance is equal to 

zero. It can be seen that the standard error of the between-day within-subject variance is 

small compared to the parameter estimate indicating that it is worthwhile including day as a 

level in the model. However, as I have previously discussed one must be cautious when 

using standard errors o f variance components, although in this case the estimate of the 

variance is ten times that of the standard error.

4.5.3 Including the effect o f  time o f  day.

It is well known that PEF tends to vary during the day, with it generally being lowest in the 

morning and then increasing during the day, until reaching its peak in late afternoon. Since 

there are three measurements per day at distinct times (8am, 4pm and 8pm) it seems 

sensible to incorporate this information in the model. PM and EVE are two dichotomous 

covariates taking the value 1 if the recording was made in the afternoon or evening 

respectively and 0 otherwise. Model (4.5) can thus be extended as follows

PPEFijk — P0 + fi\PMijk + j32EVEyk + cc0k +alkPMijk + a 2kEVEijk +S0Jk +eijk

(4.8)

60jk ~ N (0 ,*2So)

eijk ~ N(0,<J2)

where
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4:00pm 8.00pm 
Time o f Measurement

4:00pm 8O0pm 
Tine of Measurement

400pm 8O0pm 
Time of Measurement

4O0pm 800pm 
Time of Measurement

400pm 800pm 
Time of Measurement

400pm 800pm 
Time of Measurement

4O0pm 8O0pm 
Tine of Measurement

40Cpm 8O0pm 
Tine of Measurement

4O0pm 800pm 
Time of Measurement

4O0pm 800pm 
Tine of Measurement

800am 400pm 800pm 
Tine of Measurement

Figure 4.4 Effect o f time of measurement for first 12 children.

(4.9)

The model now estimates the mean PPEF in the morning, the afternoon and the evening. 

The effects of PM and EVE are also included as between-subject random effects. This is 

because the effect o f time of day is unlikely to be the same for all subjects with perhaps 

some subjects having increased or decreased morning dipping when compared to the other 

subjects. This is investigated in Figure 4.4 where the mean value for each time of day 

measurement is shown for the first 12 subjects. The figure clearly shows that the effect of 

the time o f day varies from subject to subject with some children having very little mean 

change in their PPEF during the day while others have increases of over 10%.

I have assumed that the three between-subject random effects come from a multivariate 

normal distribution with a zero mean vector and covariance matrix , as it is likely that
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the random effects are correlated. The two sources of within-subject variation are defined 

in the same way as the previous model (4.8). The results of fitting this model can be seen in 

Table 4.3. It can be seen that PPEF is lower on average in the morning at 94.4%, increases 

by about 4.4% in the afternoon and by 3.5% in the evening. It can be seen that these effects 

are clearly statistically significant as the standard errors are small compared to the 

parameter estimates. In addition the change in —2xLog likelihood for this model when 

compared to model (4.5) gives %] = 298.5 , P<0.001 which clearly indicates that there is 

an effect o f time o f day.

The covariance matrix associated with the between-subject variation is also shown in Table 

4.3. From this covariance matrix it appears that there is between-subject variation in the 

effects of PM and EVE, i.e. the effect of time of day does vary from subject to subject. 

Predictive intervals can be constructed for this matrix. The variance o f274.2 for cco 

indicates that most subjects will be within 2 x V274.2 = 33.1% of the morning mean of 

94.4. The variance of 7.2 for ai indicates that most subjects will have a mean change in 

PPEF from morning to afternoon of between 4.4±2 x *Jl2 . =(-1.0%, 9.8%). The 

corresponding interval for evening is wider (-4.8%, 11.8%).

Parameter Estimate (Standard Error)
Fixed Effects

(Intercept) 94.4 (1.76)
/?, (PM effect) 4.4 (0.41)
P2 (EVE effect) 3.5 (0.55)

Random Effects

'274.2(41.7) '

La (Between-Subject Variation) -15.6(7.2) 7.2(2.3)
^-28.8(9.8) 10.3(2.6) 17.1(3.9),

crjo (Between-Day Within-Subject Variation) 22.5 (1.8)

cr2 (Within-Day Within-Subject Variation) 47.4 (1.6)

Table 4.3 Including the effect of time of day as both fixed and random effects
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Converting the covariance matrix to a correlation matrix gives

'  1 ^
-0 .35  1

0.42 0.93 \ J

The negative correlations for Intercept / PM and Intercept / EVE indicate that those 

subjects who tend to have higher intercepts (high PPEF in the morning) do not tend to have 

as large increases in PPEF later in the day when compared to subjects with smaller 

intercepts. The high positive correlation for PM / EVE indicates that those subjects who 

have high increases in PPEF in the afternoon when compared to the morning also have a 

high increase in PPEF in the evening when compared to the morning. This would appear 

sensible as the PM and EVE measures are likely to be more similar than either of these 

measures and the morning measure. These correlations indicate that it is necessary to 

estimate the covariance components o f matrix as the three between-subject random

effects are not independent.

The between-day within-subject variation has increased slightly. In addition the within-day 

within-subject variation has decreased. This is because the effect of time of day as both 

fixed and random effects has been incorporated in the model and these are within-day 

within-subject (level 1) covariates, and thus will explain a proportion of the variation. In 

other words, by incorporating information about time of day one is explaining part of the 

within-subject variation.

4.5.4 Including the effect o f  atopic status.

The model can be further extended by incorporation of the information on atopic status. 

ATP is a dichotomous covariate taking the value 0 if the child is non-atopic and 1 if the 

child is atopic. Model (4.8) can be extended to investigate the effects of atopy on mean 

PPEF as follows
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+ a 0* + <*,kPMijk + a lkEVEijk + S0Jk + eijk
(4.10)

eijk ~ N(0,<t 2)

In this model only the fixed effects of ATP and its interactions with PM and EVE have 

been included as additions to the model. The definition of the random effects has remained 

the same as the previous model. The results of fitting this model can be seen in Table 4.4. It 

can be seen that there appears to be an effect of atopy in that atopic children tend to have 

lower PPEF. The greatest difference is in the morning at 7.5%. The difference in the 

afternoon and evening is slightly less, but the interaction in not formally significant 

(Likelihood ratio test, x \  = 3.5, P=0.17). Figure 4.5 shows a plot of the mean PPEF at the

Parameter Estimate (Standard Error)
Fixed Effects

PA (ATP.PM interaction) 
P5 (ATP.EVE interaction)

(PM effect) 
P2 (EVE effect) 
P3 (ATP effect)

PQ (Intercept) 97.6 (2.3)
3.8 (0.53)
2.8 (0.71) 
-7.5 (3.48)
1.6 (0.82) 
1.5 (1.10)

Random Effects

Xa (Between-Subject Variation)

'260.7(39.7) 
-12.9(6.8) 6.5(2.2)

26.0(9.4) 9.7(2.5) 16.5(3.9) J

crjo (Between-Day Within-Subject 
Variation)
a 2 (Within-Day Within-Subject Variation)

22.5 (1.8)

47.4 (1.6)

Table 4.4 Including the effect of atopy as fixed effects.
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— Non Atopic
-  • Atopic

10 _ O n

ON

08:00 16:00 20:00

Time

Figure 4.5 Mean PPEF for non-atopic and atopic children measured at the three 
times of day.

three times o f day for non-atopic and atopic children. Visually one can see that the effect of 

time of day appears to be similar for atopic and non-atopic children.

The random effects have changed very little from the previous model in Table 4.3. There is 

a slight reduction in the between-subject variances for the three between-subject random 

effects. This is to be expected as a subject level covariate (ATP) has been added to the 

model thus explaining part o f the between-subject variation.

4.5.5 Modelling the within-subject variance.

As was stated earlier in this chapter, the variability of PPEF is often of interest. It has been 

shown previously that atopic children have greater between and within-day variability 

(Clough et al. 1991). One of the advantages of fitting a three hierarchical model to this 

data is that the effect o f covariates on the variation at each level can be investigated. Thus, 

it is possible to add terms to the model that allow for different between-day within-subject 

variances and different within-day within-subject variances for atopic and non-atopic 

children. The model is defined as follows
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PPEFIJk = # ,+  PxPMm + p kEVEm + f},ATPk + fitATPk ■ PMijk + p sATPk ■ EVEt]k 
+ a M + a ltPMlJk + a 2kEVEljk +SJk +eljk

a k ~ M V N (0 ,Z J
(4.11)

[^(O, cr^ ) Non Atopic 
'* |iV (0 ,  crj ) Atopic

J  jV(0, a]  ) Non Atopic 
ljk [a^O, cr] ) Atopic

In comparison to the previous model, there are now two between-day within-subject 

variances, cr^ and a ]2, and two within-day with subject variances, <r* and . The

results of fitting this model can be seen in Table 4.5. The fixed effects and the between- 

subject random effects have changed very little from the previous model. This is perhaps 

not really surprising as the additional terms only change the within-subject variability. It

Parameter Estimate (Standard Error)
Fixed Effects

p 0 (Intercept) 97.6 (2.3)
Px (PM effect) 3.8 (0.51)
P2 (EVE effect) 2.8 (0.69)
P2 (ATP effect) -7.5 (3.48)
PA (ATP.PM interaction) 1.5 (0.84)
p 5 (ATP.EVE interaction) 1.5 (1.11)

Random Effects

"260.1(39.6) '

Za (Between-Subject Variation) -12.6(6.8) 6.0(2.2)
25.4(9.3) 9.7(2.5) 16.4(3.8),

£r| (Non Atopic) 23.7 (2.3)

<j\ (Atopic) 20.4 (3.1)

<7  ̂(Non Atopic) 39.8 (1.7)

(Atopic) 58.2 (3.0)

Table 4.5 Allowing separate within-subject variances for non atopic and atopic 
children.
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Group Variance 90% Confidence Interval
Non Atopic 39.8 ±10.3
Atopic 58.2 ±12.5

Table 4.6 Quantifying within-day within-subject variation

can be seen that the two between-day within-subject variances are fairly similar indicating 

that atopic and non-atopic children have fairly similar variation between days. However, 

there does appear to be a difference in the within-day within-subject variance between non- 

atopic and atopic children. The difference between the two groups is quantified in Table 

4.6. In this table I have taken the square root of the variance to obtain the within-day 

within-subject standard deviation. I have then constructed a 90% predictive interval. For 

the non-atopic group the majority o f an individual’s observations will be within about 10% 

of that predicted after the fixed effects, between-subject and between-day random effects 

have been taken into account. For the atopic group this value is about 12.5%.

The interpretation here is important. The fixed effects indicate that atopic children tend to 

have lower PPEF than non-atopic children, but there is not sufficient evidence to suggest 

that morning dipping is increased in atopic children (i.e. on average the reduction in PPEF 

is the same for all three time of day measurements). Incorporation of the between-subject 

random effects essentially gives each child their own underlying mean morning, afternoon 

and evening PPEF. The between-day within-subject random effects shifts these three mean 

measures up or down for each of the 14 days separately for each child. There is then greater 

variation about these mean values for atopic children when compared to non-atopic 

childfen. It is important to realise this is in addition to any differences observed in the fixed 

effects, i.e slightly increased morning dipping.

The model can be extended further as it is possible that the within-subject within-day 

variances differ at different times of the day. It thus seems sensible to allow different 

within-subject within-day variances for the three time of day measurements. Model (4.11) 

can thus be extended to,
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Parameter Estimate (Standard Error)
F ix e d  E f f e c t s

fi0 (Intercept) 9 7 .6  (2 .3 )

fix (PM effect) 3 .8  (0 .51 )

fi2 (EVE effect) 2 .8  (0 .69)

fi$ (ATP effect) -7 .5  (3 .48)

fi4 (ATP.PM interaction) 1.5 (0 .8 4 )

fis (ATP.EVE interaction) 1.5 (1 .11 )

R a n d o m  E f f e c t s

" 2 6 0 .0 (3 9 .7 )  "

yLa (Between-Subject Variation) - 1 2 .2 ( 6 .8 )  6 .0 (2 .2 )

 ̂-  2 5 .1 (9 .3 ) 9 .3 (2 .5 ) 16 .7 (3 .8 ) ,

<J2S (Non Atopic) 2 3 .2  (2 .3 )

<j\ (Atopic) 2 0 .4 (3 .1 )

cr* (Non Atopic AM) 4 5 .7  (3 .3 )

(Non Atopic PM) 4 1 .8  (3 .2 )

<7* (Non Atopic EVE) 3 1 .4 (2 .8 )

<7* (Atopic AM) 6 3 .0  (5 .3)

<7* (Atopic PM) 6 0 .5  (5 .2)

C7̂  (Atopic EVE) 5 1 .2 (4 .9 )

Table 4.7 Allowing separate within-subject variances for non atopic and atopic 
children and separate times of the day.

Group Variance 9 0 %  Confidence Interval
Non Atopic AM 4 5 .7 ± 1 1 .1
Non Atopic PM 4 1 .8 ± 1 0 .6
Non Atopic EVE 3 1 .4 ± 9 .2
Atopic AM 6 3 .0 ± 1 3 .0
Atopic PM 6 0 .5 ± 1 2 .8

Atopic EVE 5 1 .2 ± 1 1 .7

Table 4.8 Quantifying within-day within-subject variation
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PPEFm = p ,+  p xPMijk + p kEVEfk + P,ATPk + p t ATPk ■ PMljk + p sATPk ■ EVEijt

+ a ot + a lkPM vk + a n EVEijt + Sjk + eijk

a t ~MVN{0 ,2 J

' i j k

l m < > Non Atopic
i m < ) Atopic

, a \ ) Non Atopic AM
Non Atopic PM

Non Atopic EVE
Atopic AM
Atopic PM

Atopic EVE

(4.12)

This model allows a separate within-day within-subject variance to be estimated for each 

time of day for both atopic and non-atopic children, i.e. there now six within-day within- 

subject variance terms rather than the two in the previous model. The results of fitting this

o&. a lk alk

c o  es >3 -
3 2 -

Theoretical Quantiles 

<*2k r

Theoretical Quantiles

o

ST °  -

o

Theoretical Quantiles 
Non atopic

<»2k 
Non atopic Atopic Atopic

o .
(N

Urn ©

Atopic Theoretical QuantilesTheoretical QuantilesNon atopic

Figure 4.6 Histograms and normal probability plots for level 3 (between- 
subject) and level 2 (between-day within-subject) residuals.
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model can be seen in Table 4.7. The fixed effects and the between-subject and between-day 

subject within-subject random effects parameters have changed very little from the 

previous model. For the within-day within-subject variation it can be seen that atopic 

children have greater variances at all times and that for both groups of children the 

variances are lower in the evening.

This can be further quantified by calculating 90% prediction intervals as before. The results 

of this can be seen in Table 4.8. As an example, these values can be interpreted as follows; 

the PPEF for non atopic children in the morning will be within 11.1% of that child’s mean 

after the random effect o f day has been taken into account.

4.5.6 Normality Assumption

Figure 4.6 shows histograms and normal probability plots for the level 3 and level 2 

residuals, while Figure 4.7 shows the histograms and normal probability plots for the level 

1 residuals. It can be seen that these plots show that the assumption of normality appears 

valid in all cases.

Non Atopic (AM) Non Atopic (AM)
Oc
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O
l U£Urn

d d
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Figure 4.7 Histograms and normal probability plots for level 1 (within-day 
within-subject residuals.
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4.6 A Bayesian Approach

4.6.1 Introduction

In this section I will demonstrate how a Bayesian approach can be adopted for the PPEF 

model. There are two main advantages for adopting a Bayesian model. Firstly, the IGLS 

model does not allow for the uncertainty in the estimates o f the variance components when 

estimating the fixed effects or their standard errors. With a three level model it is unclear 

how estimating the many random effects may affect the uncertainty in the estimates of the 

fixed effect parameters. A second advantage is that in the IGLS model there are problems 

in making inferences about the variance components, due to problems regarding the 

assumption of multivariate normality, when obtaining the parameter estimates of the 

variances and covariances. Although it is possible to obtain standard errors for the 

variances, they can be unreliable as discussed in section 2 .5.1.1 will show in this section 

how it is possible to obtain credible intervals and density plots for the random effect 

variances or standard deviations.

4.6.2 Initial estimation o f  the Bayesian model

I initially attempted to fit a model identical to (4.12) in WinBUGS, i.e.

PPEFm = A  + + P2EVE,jt + p,ATPt + ft4A7Pt • PM m + p ;ATPk ■ EVE,

+ «ot + «1 kPMyk + a u EVE,ji + 5jt +

a t ~M VN{  0 ,2a )

fjV(0,oj:) Non Atopic
jk N (0 ,crl)  Atopic

N(Q,cr* ) Non Atopic AM 
N ( 0, cr* ) Non Atopic PM 
N (0, cri3) Non Atopic EVE 
V(0, (j\ ) Atopic AM

(4.13)

Atopic PM 
Atopic EVE
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with univariate non-mformative prior distributions for the fixed effects and the within- 

subject random effect variances as follows

Pq, . . . ,0 5 ~ N ( 0,1000000)

— Gamm<z(0.001,0.001) (4*14)
a s2 a e, <*<>1

Specifying a prior distribution for Z is slightly more complex. In Chapter 3 I demonstrated 

how the product normal formulation can be used for multivariate normality. However, 

another common method for specifying covariance matrices is to use the Wishart 

distribution as a prior for Z '1. The Wishart distribution can be defined for a pxp symmetric

A
8

8 -Lt
2 e+04 4 **04 6 **04 8 *+04 I **05

Iterations

2 **04 4 **04 6 **04 8 **04 1 **05
Iterations

2 **04 4 **04 6 **04 8 **04 1 **05
Iterations

2 **04 4 **04 6 **04 8 **04 1 **05
Iterations

A

2 **04 4 **04 6 **04 8 **04 1 **05
Iterations

f i .

2 **04 4 **04 6 **04 8 **04 I **05
Iterations

Figure 4.8 Trace plots for fixed effects for initial Bayesian PEF model defined in 
equation (4.13).
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positive definite matrix x as follows

/ ( x | R , £ ) o c | R | 2 |x| 2 expf-^trace(Rx)] (4.15)

where It>p are the degrees o f freedom, and R is a pxp  symmetric non-singular matrix. In 

fact, the Wishart distribution is a multivariate extension of the x,2 distribution (De Groot 

1970). If k  is small then 2  should have essentially a non-informative prior distribution. R  

can be considered as an estimate of the ‘order of magnitude* of the covariance matrix. If k 

is small then the choice o f R  is not crucial and it should lead to a non-informative prior. 

Thus for model (4.12) the prior distribution for 2 is assumed to be

1 0 0"
0 1 0 ,3 (4.16)
0 0 K

When fitting this model it immediately became clear that there were severe problems with 

autocorrelation in the MCMC chains and so I chose a bum-in o f20000 iterations and then 

drew samples from a further 80000 iterations. The total of 100000 iterations took about 70 

minutes on a Pentium II 400Mhz PC. The autocorrelation was severe as can be seen in the 

trace plots for the fixed effects in Figure 4.8 and the corresponding autocorrelation plots in 

Figure 4.9. Even though there are 80000 sampled values for each parameter it is still 

possible to notice patterns in the trace plots, notably for Po and pi. This is confirmed by 

calculating the autocorrelations up to lag 200, which are shown in Table 4.9. It can be seen 

that the autocorrelations even after 200 lags are still about 0.5 for Po and Pi, and still higher 

than desired for the other paramaters.

Parameter Lag 1 Lag 50 Lag 100 Lag 200
po (Intercept) 0.99 0.82 0.69 0.51
Pi (PM) 0.99 0.82 0.67 0.49
p2 (EVE) 0.45 0.21 0.17 0.13
Pi (ATOPY) 0.68 0.35 0.29 0.22
p4 (ATOPY.PM) 0.51 0.29 0.25 0.21
Ps (ATOPY.EVE) 0.73 0.44 0.-38 0.31

Table 4.9 Autocorrelations for fixed effects at lags of 1,50,100 and 200 for intial 
Bayesian PEF model.
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Figure 4.9 Autocorrelation for fixed effects for initial Bayesian PEF model

The Geweke convergence diagnostic (Geweke, 1992) was obtained for the fixed effects 

with the results presented in Table 4.10. Three of the parameters have absolute Z-scores 

greater than 2, indicating that the chains still may still have not achieved convergence.

Parameter Geweke Z score
po (Intercept) -5.12
Pi (PM) 7.18
p2 (EVE) 3.31
p3 (ATOPY) 1.84
p4 (ATOPY.PM) 0.46
Ps (ATOPY.EVE) 1.36

Table 4.10 Geweke convergence diagnostic for initial Bayesian PEF model
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The potential lack o f convergence is a serious problem. The model in its current form 

would have to run for much longer in order to achieve convergence, with the main problem 

being the high autocorrelation. This will lead to problems with computer storage with the 

current output file o f samples being over 25 megabytes with the file having to be split so 

that the MCMC diagnostic software CODA (Best, Cowles, and Vines, 1995) or BOA 

(Smith, 2000) could be used. Another problem with the high autocorrelation is that the 

model will be sensitive to the choice of initial values. If initial values are a long way from 

the true value, then it will take an extremely large number of samples until the initial value 

“is forgotten” thus requiring a very long.‘bum in’. Such high autocorrelation, which 

although in theory should not be a problem as long as the chains are run for long enough, is 

a major problem in practice for the reasons mentioned above and also the problem of being 

certain that the chains has converged.

4.6.3 Hierarchical Centring

One potential method o f reducing the autocorrelation and hence reduce the number of 

iterations required is to reparameterise the model. A method particularly useful for random 

effects models is to use hierarchical centring (Gelfand et al., 1995b). Gelfand showed 

that in random effects models there can be large posterior correlations between the fixed 

effects and random effects and between the random effects themselves. It was shown that 

by reparameterising the model these correlations can be reduced. If one considers the 

variance components model (4.5)

P P E F ijk  =  f i o + a k +  & j k  +  e yk

a t ~ N ( 0 ,a l )

eijk~W(0,<r2)

(4.17)

This can be rewritten in hierarchically centred form as follows

PPEFijk ~ N (SJk, a 2) 

Sjk ~ N (a k,crj) 

a k ~ N (p » ,o l  )
(4.18)
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When writing the model in this form, Gelfand showed that the posterior correlations 

between parameters are much reduced. In the presence of covariates, it may not be possible 

to fully centre the parameterisation, but it may be possible to partially centre the model 

(Gelfand et al., 1995a).

Using this approach model (4.13) can be rewritten as follows 

PPEFijk ~ N ( t iJk,crl) r  = l,~.,6

fiijk ~  &jk + a 0k + +  a 2kEVEijk

Sjk ~  N ( 0 ,c r j  ) 5 = 1,2 

a k ~ M V N ( u , - z ) (4.19)

Vo" Vo"
Fa = Yx for non - atopies, fia - Yi

J u

for atopies

This is the same model as (4.13), but just parameterised in a different way. The model in 

(4.19) used partial centring with the a  parameters centred, but not the 8 parameters. The 

parameterisation o f the fixed effects is slightly different to (4.12), but the f s  can be 

transformed back to the original parameterisation as follows,

A = / o .  A = r 2> fii = r ,

P i= Y i - 7 o >  A = r 3- r 2> Ps = Y s - r *
(4.20)

One of the advantages o f using MCMC methods is that although the /Ts are not modelled 

directly, they can be obtained as functions other parameters. They can be estimated at each 

iteration of the Gibbs Sampler and monitored as one would monitor any model parameter.
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4.6.4 Results o f  the hierarchically centred model

Five chains were run using WinBUGS, in itially with 5000 iterations each. Various 

combinations o f very high or very low variances and very high and very low fixed effect 

estimates as well as differing random effects were chosen as starting values. Figure 4.10 

shows the Gelman and Rubin plots, as described in section 2.5.2, for the fixed effects. It

can be seen that the values o f -J~R and ^JR915% are close to one after about 1000 to 2000

iterations which indicates that the between-chain variation appears to be very small

indicating that the chains have converged. The values of J r  and 7̂ 97.5% calculated for

the final 50% o f the iterations for all parameters can be seen in Table 4.11. It can be seen 

that with just looking at the final 2500 iterations of the five chains it appears to indicate 

that the between-chain variance is small and one can be fairly confident that the chains 

have converged. The plots for the other parameters were very similar and are not shown. It 

is possible to combine the results from the 5 chains, but often it is simpler to deal with one 

chain. Therefore I just analysed the samples from one of the chains, but ran it for longer 

with a 5000 iterations ‘bum in’ with samples taken from a further 50000 iterations.

4000 500050004000 1000 2000 3000
Irt itmhcw iftcKm

30002000
last iteration in chain

8-
 f  i I4000 50005000 1000 2000 3000400030001000 2000

—ntditfi
^  rl4000 50001000 2000 3000

lost iteration ip chap
5000400030002000

latt iteration in chain
1000

Figure 4.10 Gelman and Rubin plots for the fixed effects for hierarchically 
centred PEF model
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Fixed Effects Between-subject Within-subject
random effects random effects

V* V-̂ 97-5% 'J~R *J~R V̂97-5V«
Po 1.00 1.01 Sii 1.00 1.00 < 1.00 1.00

Pi 1.04 1.08 Zl2 1.01 1.02 a * 1.00 1.00

P2 1.03 1.07 1̂3 1.00 1.00 < 1.00 1.01

P3 1.00 1.01 £22 1.01 1.02 < 1.00 1.00

P4 1.01 1.04 2̂3 1.00 1.01 < 1.00 1.00

P5 1.01 1.04 233 1.00 1.00 < 1.00 1.00

1.00 1.01

1.00 1.00

Table 4.11 Gelman and Rubin diagnostic for hierarchically centred
PEF model.

Although it appeared that the convergence had been achieved by about 2000 iterations, 

when the models do not take long to run, it seems sensible to be cautious and run the ‘bum 

in’ for longer. In addition the 50000 iterations used to draw samples from could also be 

considered to be larger than needed and over cautious. However, as I will demonstrate 

shortly there is still evidence of autocorrelation, and in general having too large a sample is 

preferable to having a sample that is thought to be just about large enough.

The results of fitting the model defined in (4.19) can be seen in Table 4.12 where the 

parameter estimates are compared to the IGLS model. The parameter estimates of the fixed 

effects for the two models are very similar. However, perhaps more importantly the 

standard errors are also very similar. This indicates that the uncertainty associated with the 

variances o f the random effects does not appear to have a large impact on the fixed effects 

parameter estimates or their standard errors. This is probably due to the fairly large sample 

size. With a smaller sample size one would expect the standard errors of the fixed effect 

parameters to be larger for the Bayesian model. The parameter estimates of the between- 

subject random effect variances and the within-subject variances are also very similar for 

the two methods o f estimation. The standard errors of these parameters are also similar.
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Parameter IGLS
Estimate (Standard Error)

Bayesian 
Estimate (Standard Error)

Fixed Effects

A 97.6 (2.3) 97.6 (2.3)

A 3.8 (0.51) 3.7 (0.50)

A 2.8 (0.69) 2.8 (0.70)
A -7.5 (3.48) -7.5 (3.58)

A 1.5 (0.84) 1.5 (0.83)

A 1.5 (1.11) 1.5 (1.16)

Random Effects

s . r260.0(39.7) '  
-12.2(6.8) 6.0(2.2)

25.1(9.3) 9.3(2.5) 16.7(3.8),

r268.8(42.3) '  
-12.1(7.0) 5.5(2.0) 

^-25.6(9.7) 8.9(2.6) 16.6(4.0),

23.2 (2.3) 23.2 (2.4)

a X 20.4 (3.1) 19.6 (3.3)

< 45.7 (3.3) 46.1 (3.5)
41.8 (3.2) 42.4 (3.3)

< 31.4(2.8) 31.7 (2.9)

< 63.0 (5.3) 63.8 (5.5)

< 60.5 (5.2) 61.4(5.4)

< 51.2 (4.9) 52.0 (4.9)

Table 4.12 Comparison of estimates from IGLS and Bayesian PEF models

This is despite known problems with using classical methods to obtain standard errors for

the variances parameters. One o f the advantages o f using the Bayesian model is that 

credible intervals can be constructed using the quantiles of the samples chains. This is 

especially advantageous if  the distributions of the variance parameters are skewed.

Figure 4.11 shows a trace plot for the fixed effect parameters and Figure 4.12 shows the 

corresponding autocorrelation plots. The trace plots are hard to interpret as they are so 

dense. However, they are clearly an improvement on the trace plots for the initial 

hierarchical model in Figure 4.8. Although there is still some autocorrelation it is much 

reduced from the non-hierarchically centred model described in equation (4.13). This can
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Figure 4.11 Trace plots for fixed effects for hierarchically centred model.

be seen by comparison o f the autocorrelation plots in Figure 4.9. The autocorrelation for 

the random effect variances was smaller, disappearing by about lag 10.

Figure 4.13 shows density plots for the first 10% and last 50% of the chains for each model 

parameter. As demonstrated in the last chapter, these are a graphical equivalent of the 

Geweke test. It can be seen that the two densities for most parameters overlap. There are 

some minor differences in the densities of the fixed effects (the /Ts), which had the highest 

autocorrelation, but the differences are very small.
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Figure 4.12 Autocorrelation of beta’s from hierarchically centred Bayesian model

4.6.5 Interpretation o f  random effect variances

When using the IGLS model there are problems with making inferences and obtaining 

confidence intervals for the random effect variances. This is because of problems in 

estimating the standard errors (Goldstein, 1995). A clear advantage of the Bayesian model 

is that any function o f the model parameters can be obtained and quantiles used to obtain

Non Atopic Atopic
AM 6.8 (6.3,7.3) 7.9 (7.3,8.7)
PM 6.5 (6.0,7.0) 7.8 (7.2,8.5)
EVE 5.6 (5.2,6.2) 7.2 (6.6,7.9)

Table 4.13 W ithin-day within-subject standard deviations with 95% credible 
intervals for hierarchically centred Bayesian PEF model.
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Figure 4.13 Density plot for first 10% (solid line) and last 50% (dotted line) of 
chains for each model parameter

credible intervals. Since it is easier to interpret standard deviations rather than variances it

makes sense to present these. Figure 4.14 displays density plots for the six within-day 

within-subject standard deviations. These clearly show that at all three times, the standard 

deviation for the atopic children is greater than that of the non-atopic children and that 

there is very little overlap between the densities. It is also possible to calculate 95% 

credible intervals for the standard deviations. These are shown in Table 4.13.

An alternative way of looking at the variances is to obtain the difference in within-day 

within-subject standard deviations. The densities are shown in Figure 4.15 with the 95% 

credible intervals in Table 4.14. In addition the probability that the atopic standard
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Figure 4.14 Density plots for within-subject within-day standard deviations for 
Bayesian hierarchically centred PEF model.

deviation is greater than the non- atopic standard deviation has been added to the table.

This probability is obtained by observing the proportion of the 50000 iterations the atopic 

standard deviation is greater than the non-atopic standard deviation (i.e. the difference is 

<0).

For all time o f day measures there is very strong evidence that the within-day within- 

subject standard deviation is greater for atopic children. This can be seen by inspection of

the difference in the standard deviations, their credible intervals and by looking at the 

probabilities. The probability o f one arises from the fact that for none of the 50000 samples

Difference in SD P( Atopy SD>Non-atopy SD)
AM 1.2 (0.4,2.1) 0.9982
PM 1.3 (0.5,2.2) 0.9995
EVE 1.6 (0.7,2.4) 1.0

Table 4.14 Difference in within-day within-subject standard deviation for hierarchically 
centred Bayesian PEF model.
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Figure 4.15 Difference between within-subject standard deviations for non atopic 
and atopic children for hierarchically centred Bayesian PEF model.

was the within-subject standard deviation larger for the non-atopic group. Thus, there is

very strong evidence that the atopic children had greater within-day variation.

4.7 Discussion

In this chapter I have demonstrated how data obtained from PEF diaries can be analysed 

using a hierarchical model. The nature o f the recording of the diary with measurements 

nested within-days, which in turn are nested within-subjects, makes it possible to analyse 

the data using a three level hierarchical structure rather than the more standard two level 

structure usually used in the analysis of repeated measures data. Although the model is 

more complicated than the standard summary measures used in the analysis of PEF data, it 

is fairly simple to interpret. Perhaps most crucial of all, it provides evidence on a scale that 

is clinically meaningful and in way which is relatively easy to interpret.
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When performing a complex statistical analysis it is important to think about whether the 

complexity is necessary. If the same inferences can be obtained using simpler techniques, 

such as summary measures, then generally these should be reported as the results will then 

be easier for non-statisticians to understand. Li the area of PEF there are many sum m ary  

measures that have been used that attempt to measure some aspect of ‘within-subject 

variability’. However, the many different summary measures all measure different aspects 

of the variability as I discussed in section 4.4. The lack of consensus and the apparent 

confusion on which summary measure to use leads one to think that some of the analyses 

previously performed may be inappropriate. The most important aspect regarding the three 

level hierarchical model is that it simultaneously investigates the level of PEF (as percent 

predicted) and the three levels o f variability, without the need to reduce the data to 

summary measures. An important aspect o f the model is the ability to break down the 

within-subject variability into two components, namely between-day and within-day 

variation. Interpretation o f the fixed effects is simple as they represent mean values. 

Interpretation o f the random effect variances is more complex, However, these can be 

converted to standard deviations or prediction intervals which most clinical researchers 

should be able to understand.

I have presented both a classical and Bayesian analysis of the data. I have shown that the 

parameter estimates and standard errors were very similar for the two methods of 

estimation. This is encouraging as the same model was fitted using both methods of 

estimation. One might expect the estimates and standard errors to differ with smaller 

sample sizes, as the estimates in the classical model do not take into account the 

uncertainty associated with the estimates o f the variance components. With the Bayesian 

model there were initial problems with very high autocorrelation. I demonstrated that 

expressing the model in a slightly different way, using hierarchical centring, decreases the 

autocorrelation. It is still higher than desired leading to a larger number of iterations being 

required in order to obtain the parameter estimates. However, given that the model runs in 

under an hour and that the model was developed using classical methodology, it is probably 

not of great practical importance. For more complex models that take a long time to run it 

may be worthwhile exploring other techniques of reducing the autocorrelation (Gilks and 

Roberts, 1996). Perhaps the most appealing aspect of the Bayesian model is the ability to
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make inferences regarding the random effect variances. With the classical model one must 

be careful when using the standard errors o f the variance estimates to obtain confidence 

intervals, as they can be unreliable. The Bayesian model does not have this problem and it 

is simple to obtain densities/credible intervals for standard deviations, which are easier to 

interpret. An alternative way of looking at the data is to obtain the difference in standard 

deviations between atopies and non-atopics together with credible intervals. I feel that 

presenting the data in the form of either Table 4.13 or Table 4.14 or Figure 4.14 or Figure 

4.15 make interpretation much more intuitive, especially for non-statisticians.

The models presented in this chapter could be extended in a number of ways. I have 

analysed PEF, but there are a number of other measures of lung function that could also be 

analysed using a three level hierarchical model. In fact there are known inaccuracies with 

the use of peak flow meters, especially in children (Sly et al., 1994). With the recent 

introduction of small, electronic, portable devices that record peak flow and other measures 

of lung function, such as Forced Expiratory Volume in 1 second (FEV1), there is potential 

for more accurate measures (Hamid et al., 1998). One possible extension is to consider a 

four-level model which would enable investigation of the correlation structure between 

different types o f outcome measure (Beacon and Thompson, 1996)

The Bayesian model could be extended in the same way I extended the Bayesian models of 

ABPM in the previous chapter, where I allowed the within-subject variance to vary 

between subjects. In addition, it is plausible that PEF has longer tails than those defined by 

normality, so it may be of interest to explore the use of alternative distributions.

For the Bayesian model presented in this chapter I have used the Wishart distribution as a 

prior when I have assumed multivariate normality. In chapter 3 I used the product normal 

formulation in the analysis if  ABPM data. In general I find the latter more intuitive than the 

Wishart distribution and so could be used for the models presented in this chapter.

Although the models are relatively easy to interpret, in a practical setting where a doctor is 

concerned with an individual patient the models are clearly of less use. However, because 

the models quantify how and when different groups of patients may differ in terms of the
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PEF, the models could be used in construction or justifying suitable summary measures. 

For example, in the dataset I present, there is little difference in the between-day variation 

between atopic and non-atopic children. If one wants to differentiate between these two 

groups, then use o f a summary measure that only assess within-day variation will be more 

powerful.
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5 META-ANALYSIS USING HIERARCHICAL MODELS

5.1 Introduction

In this chapter I demonstrate how hierarchical models can be used for m eta-analysis The 

use of hierarchical models is slightly different to that in the previous two chapters, as often 

in meta-analysis information is only available in aggregate form, i.e. a study summary 

statistic with a standard error. In section 5 .21 give a brief introduction to meta-analysis. In 

section 5.3 I describe how hierarchical models can be used for meta-analysis by giving a 

fairly standard example that investigates the effect of lowering cholesterol on mortality of 

coronary heart disease, using both a classical analysis (section 5.3.1) and a Bayesian 

analysis (section 5.3.2). In section 5 .41 extend the methods shown in section 5.3 and show 

how meta-analysis can be applied when interest lies in estimation of the attributable risk. 

Section 5.4.1 introduces an example where interest lies in the effect o f a history of 

infertility on perinatal mortality. Section 5.4.2 gives a classical analysis, while section 5.4.3 

gives a Bayesian analysis that has a number of potential advantages including the synthesis 

of data from different types o f studies. Finally in section 5.5,1 discuss the models I have 

used and possible further research.

5.2 Meta-Analysis

Over the last 10-15 years or so the use of meta-analysis in medical research has grown 

extensively. Meta analysis can be defined as the quantitative synthesis of results from 

different studies, with the term first used by Glass (1976). The aim of a meta-analysis is to 

obtain a pooled estimate o f an effect size that is more precise than that achieved by any 

individual study. One of the reasons why the use of meta-analysis has grown and is likely 

to continue to grow is due to the increasing emphasis on evidence-based-medicine (Sackett,

1996). Hand in hand with the growth of the use of meta-analysis has been the attention on 

analytical methods for meta-analysis. A comprehensive review of these methods can be 

seen in Sutton et a l  (1998).
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At the simplest level, meta-analysis assumes a fixed effects model in which each study is 

assumed to estimate an unknown overall population effect (Fleiss, 1993). In a fixed effects 

model it is assumed that all studies are estimating a single underlying effect size and that 

there is no heterogeneity between study results other than sampling error. However, it is 

often observed that there is considerable heterogeneity between individual studies with 

respect to their effect sizes. Reasons for this include, differences between studies due to 

dosage differences, different inclusion/exclusion criteria etc (Fleiss, 1993). Heterogeneity 

can be formally assessed in a number of similar ways (Dickersin et al., 1992), with the 

method of Cochran (1954) the most commonly used. This tests whether the variation 

between studies is greater than that expected due to sampling error alone. A problem with 

assessing heterogeneity is that the statistical power of the test is low, due to the small 

number of studies often included in the meta-analysis (L'Abbe et al., 1987). In the 

presence of heterogeneity a random effects model has been advocated (Dersimonian and 

Laird, 1986). In these models each study is assumed to be estimating its own unknown 

study effect. There is considerable controversy between the use of fixed and random effects 

models for meta-analysis. For example, see (Peto, 1987; Thompson and Pocock, 1991; 

Thompson, 1993). More important than just allowing for the heterogeneity between 

studies, is the practice o f exploring reasons for its existence, which leads to the use of 

mixed effect models (Raudenbush, 1994; Thompson, 1994). These extend the random 

effects meta-analysis by incorporating fixed covariates that attempt to explain the 

differences between treatment effects, with the remaining variation modelled using a 

random component.

Meta-analysis fits naturally into a hierarchical structure in that individuals can be 

considered to be nested within-studies. It is therefore sensible to think about variation at 

both the individual (level 1) and the study (level 2) levels. Raudenbush and Byrk (1992) 

give five reasons why hierarchical models are useful for the analysis of meta-analysis data. 

These are:

1. to estimate the average effect size across a group of studies;

2. to estimate the variance o f the effect size parameters;

3. to pose and test a series of linear models to explain variation in the effect size 

parameters;

Paul Lambert Ph.D. Thesis, November 2000 141



CHAPTER 5 Meta-Analysis using Hierarchical Models

4. to estimate the residual variance of the effect size parameters for each linear 

model; and

5. to use information from all studies to derive empirical Bayes estimates of each 

studies effect.

A characteristic o f meta-analysis data is that often information is only available at the study 

level in the form o f a summary measure with an associated standard error, for example an 

an odds ratio. This is not always the case and in chapter 6 1 show how a meta-analysis can 

be performed using individual patient data (IPD). In this chapter I shall present two 

examples of meta-analysis, from both a classical and Bayesian perspective. The first 

introduces some of the basic concepts of meta-analysis and investigates the effect of 

lowering cholesterol on mortality. The second example investigates attributable risk of a 

history of infertility on perinatal mortality and introduces the problem of combining 

evidence from different types of studies. Both examples are analysed from a classical and 

Bayesian perspective.

5.3 Meta-Analysis of Cholesterol Data

An example of a meta-analysis is given by Davey-Smith, Song and Sheldon (1993) in 

which the effects o f lowering blood serum cholesterol levels on mortality (both all-cause 

and cardiac) were assessed in 35 different randomised controlled trials. Various study-level 

covariates were collected, amongst the most important were thought to be baseline-risk, i.e. 

the cardiac mortality rate in the control group. The data can be seen in Table 5.1.1 have 

used this data previously to demonstrate the application of hierarchical models in meta­

analysis using MLn (Lambert and Abrams, 1995).
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Study Died/Total 

Treatment Control

Risk Group Odds Ratio’ Log OR Standard 
error (Log 

OR)

1 25/204 45/202 High Risk 0.494505 -0.7042 0.270396
2 62/285 35/147 High Risk 0.890172 -0.11634 0.239859
3 34/156 39/119 High Risk 0.578684 -0.547 0.273656
4 2/88 2/30 High Risk 0.333333 -1.09861 0.920135
5 0/30 2/33 High Risk 0.213559 -1.54384 1.569883
6 47/279 73/276 High Risk 0.568093 -0.56547 0.209459
7 37/206 50/206 High Risk 0.689691 -0.37151 0.242401
8 17/123 20/129 High Risk 0.886025 -0.12101 0.352768
9 97/1018 97/1015 High Risk 0.997827 -0.00218 0.150621
10 71/427 23/143 High Risk 1.031301 0.030822 0.260083
11 25/244 44/253 Medium Risk 0.54943 -0.59887 0.26649
12 13/50 10/50 Medium Risk 1.426614 0.355304 0.469755
13 13/47 5/48 Medium Risk 3.187246 1.159157 0.554857
14 0/30 4/60 Medium Risk 0.212806 -1.54737 1.50755
15 826/5552 632/2789 Medium Risk 0.596603 -0.5165 0.058873
16 41/424 50/422 Medium Risk 0.800298 -0.22277 0.221789
17 25/199 25/194 Medium Risk 0.976945 -0.02332 0.300103
18 34/350 35/367 Medium Risk 1.024196 0.023908 0.251638
19 2/79 4/78 Medium Risk 0.541031 -0.61428 0.805325
20 19/1149 31/1129 Medium Risk 0.602057 -0.5074 0.291244
21 35/221 26/237 Medium Risk 1.527386 0.423558 0.275672
22 8/54 1/26 Medium Risk 3.175824 1.155567 0.919258
23 5/71 6/72 Medium Risk 0.859072 -0.1519 0.604764
24 61/4541 54/4516 Medium Risk 1.124158 0.117034 0.187233
25 32/421 44/417 Medium Risk 0.702139 -0.35362 0.241839
26 0/94 1/94 Low Risk 0.333333 -1.09861 1.639495
27 17/311 8/317 Low Risk 2.171059 0.775215 0.42593
28 32/1906 44/1900 Low Risk 0.72371 -0.32336 0.233052
29 14/2051 19/2030 Low Risk 0.734461 -0.30862 0.348189
30 28/6582 3/1663 Low Risk 2.063205 0.724261 0.56706
31 91/5331 77/5296 Low Risk 1.176138 0.162237 0.15561
32 0/48 0/49 Low Risk 1.042105 0.041243 2.010179
33 1/94 0/52 Low Risk 1.702703 0.532217 1.642075
34 1/23 0/29 Low Risk 4.116279 1.41495 1.656807

0.5 added to each cell when calculating odds ratios and corresponding standard errors.

Table 5.1 Cholesterol Data for use in Meta-Analysis
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5.3. 1  Classical Analysis

A simple random effects meta-analysis model (not allowing for study level covariates) can 

be defined as follows. Lety,- be the observed log odds ratio in the i h study and s,- its 

observed standard error. The model can be written as

y i= fio + S i+ e i (5.1)

where

Po is the estimate of the pooled log odds ratio 

P is the effect o f the ith study and is distributed St ~ N ( 0, <j 2s )

Ci is the error associated with the i h study where E(e,)=0 and Var(e/)= cr,2 which is

estimated by s]

The pooled estimate can be obtained using p  = ( X TV~lX)~l X TV~lY (see equation (2.20) 

in section 2.5.1), where the design matrix X  will be a vector of Fs, Y  a vector of the log- 

odds ratios and V a diagonal matrix with diagonal elements a 2s + a ] . The pooled estimate 

is thus

r

/=! 0's + a i

-1

^  (5-2)/=i o’s + a  i

which is equivalent to equations (2) and (3) in Dersomonian and Laird (1986).

The variance of the pooled estimate can be obtained using V(J3) = ( X TV~lX)~l (see 

equation (2.21)). The variance of the pooled estimate is thus

Var{fi„) = E  2 1 2 (5.3)
/=1 Og + <J.t

which is equivalent to equation (4) in DerSimonian and Laird (1986).

To obtain model based estimates o f the log-odds ratio the level 2 residuals need to be 

obtained using R ^ V '1?  (see equation (2.33)) where R2 is a diagonal matrix with identical 

elements <j2s and Y  is a vector of the differences between the observed log odds ratios and
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Parameter Estimate (SE) OR (95% Cl)
Po (pooled estimate) -0.118
a] (between-study varince) 0.0434

-0.118(0.061) 0.89 (0.79,1.00)

Table 5.2 Parameter estimates for pooled estimate for meta-analysis of 
cholesterol data.

A  a

the pooled log odds ratio, 0 Q. Thus the model based estimate ( Sf) for the log-odds ratio in

the i4h study is given by subtracting these residuals from the pooled log-odds ratio (J30).

‘ . 6 i  + 6 f  (5"

The standard error o f the model based estimate can be obtained by R* V~XR2 and is thus

It should be noted that like all classical hierarchical models, these standard errors take

effects ( a# ). Accommodating the uncertainty with regard to a \  can be performed using

classical methods (Hardy and Thompson, 1996; BiggerstafF and Tweedie, 1997), but can 

also be performed using a Bayesian analysis which will be demonstrated in section 5.3.2.

The results of fitting this model can be seen in Table 5.2. This shows that the estimate of 

the odds ratio is 0.89 (95% confidence interval 0.79 to 1.00) indicating a benefit in 

lowering cholesterol, but with some uncertainty o f the benefit as the upper bound of the 

95% confidence interval is 1. The between-study variance is estimated to be 0.0434.

The model can be extended to incorporate information on baseline risk. Baseline risk is 

defined as the number of deaths from coronary heart disease per 1000 person years for 

control subjects. Baseline risk was divided into three categories with three corresponding 

dummy covariates created. The three categories were,

HR - High Risk (>50 deaths)

MR -M edium Risk (>10-50 deaths)

LR -Low  Risk (<10 deaths).

(5.5)

account of the uncertainty in the estimate of the fixed effects ( ), but not the random
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Model (5.1) can therefore be extended to a mixed effect meta-analysis by inclusion of the 

risk groups as fixed effect covariates.

y t = PxHRt + f l2MRi + JS3LR{ + St + e, (5.6)

where

Pi 9 P29 Ps are the estimates o f the pooled log odds ratio in the three groups 

5i is the effect o f the ith study and is distributed St ~ N (0 f <rj)

ei is the error associated with the study where E(^/)=0 and Vai■(£,)= <7 2 which is 

estimated by sf

The results o f fitting this model can be seen in Table 5.3 There appears to be some benefit 

in lowering cholesterol in the high risk group, less in the medium risk group and a 

detrimental effect in the low risk group. However, the confidence intervals in the latter two 

categories include one. Note that the between-study variance has reduced, which is to be 

expected as some of the between-study heterogeneity is being explained by including 

information on baseline risk.

Figure 5.1 shows the observed and model based estimates of the log odds ratios and 95% 

confidence intervals for each study together with the pooled estimates. It can be seen that 

the model based estimates are shrunk towards their corresponding overall group estimate.

Parameter Estimate (SE) OR (95%CI)
pi (low risk group)
P2 (medium risk group)
p 3 (high risk group)
cr2 (between-study variance)

0.162 (0.121) 
-0.130 (0.077) 
-0.284 (0.099) 
0.027

1.18 (0.93 to 1.49) 
0.88 (0.76 to 1.02) 
0.75 (0.62 to 0.91)

Table 5.3 Parameter estimates for mixed model meta-analysis of cholesterol 
data.
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Study

Observed 
Model Based
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23
24
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20 4■2-4-6

Log Odds Ratio

Figure 5.1 Observed and model based estimates for log odds ratios with 95% 
confidence intervals for the cholesterol data.

Paul Lambert Ph.D. Thesis, November 2000 147



(5-7)

CHAPTER 5   Meta-Analysis using Hierarchical_Models___

5.3.2 Bayesian Analysis

As I have mentioned previously, one advantage of using a Bayesian approach for analysing 

hierarchically structured data is that the uncertainty in the estimates of the variance 

components are automatically taken into account when estimating  the fixed effects and 

their standard errors. With large datasets this is generally not important, as seen in the 

repeated measures examples in chapters 3 and 4. However, a meta-analysis is often 

performed with under ten studies and the issue becomes much more important (DuMouchel 

and Harris, 1983).

The simple classical model in equation (5.1) can be written as follows,

y t ~

Prior distributions need to be specified for po and a ] . These are generally vague and I 

have defined these as follows

P Q ~ 7^(0,10000)
1 (5.8)

—-  ~ Gamfna(0.00l,0.00Y)

The above model has assumed that the outcome (log odds ratio) is normally distributed. 

However, the raw data shown in Table 5.1 gives the number of events and the total number 

of subjects in the control and treatment arms. Therefore, as an alternative to modelling the 

calculated log odds ratios, it has been suggested that it may be more sensible to model the 

raw data (Skene and Wakefield, 1990; Smith et al., 1995). In this case a Binomial 

distribution can be assumed, with the log odds ratio obtained through the use of a logit 

transformation. Let ra  and rn  denote the observed number of events in the control and 

treatment arms for the t h study, and na  and nr, the corresponding total number of 

individuals in each arm.

The model can then be defined a follows.
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ra  ~ Binomial{nCi, nCi) rTi ~ Binomial(nTl, nTl)
logitOrCi) = Ml logit (*„) = Mi + <?, (5.9)

Thus, Mi is the log odds in the control arm of the f h study and Si is the treatment effect in
•/Athe i study. Prior distributions can be specified as follows,

Mi ~ N(0,10000)
P0 ~ JV(0,10000)

— Gam/wa (0.001,0.001)
<*s

Using this formulation 0.5 does not have to be added when there are zero events as was 

done for both the classical and Bayesian models o f the calculated odds ratios. This can be 

important for rare events and/or small studies.

The results o f these two Bayesian models can be seen in Table 5.4, where the estimates are 

compared with those from the classical analysis.

It can be seen that the estimates o f the pooled log odds ratios are broadly similar, with the 

standard errors for the Bayesian models being slightly larger as expected. The estimate of 

the standard error for the Bayesian model using the Binomial formulation is larger than 

using the normal formulation. One reason for this is due to the estimate of the between- 

study variance being larger using the Binomial formulation.

Both models (5.7) and (5.9) can be extended to incoiporate information on baseline risk as 

in model (5.6). Thus model (5.7) becomes

y , ~ N ( . s t , s f )  (5U)
8,  ~ N i p j m ,  + P iM R t + p ,L R t, crj )

Parameter Classical Bayesian Bayesian
Normal formulation Binomial Formulation

Po -0.118(0.061) -0.121 (0.064) -0.160 (0.080)

0.0434 (0.0245) 0.0540 0.089

Table 5.4 Comparison of estimates of classical and two Bayesian models for 
meta-analysis of cholesterol data.
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and model (5.9) becomes

ra  ~ Binomial{nCi,nCi) rTl ~ Binomial{tzTi,nTl)
log*t(«-a )  = ft, logit(;rn ) = //,+<?, (5.12)

8 , ~ ,+  /32MR, + fi3HR„<T2e)

In both of these model the prior distribution for the p ’s are

P x ~^(0,10000) (5.13)

The results of fitting the two Bayesian models incorporating baseline risk can be seen in 

Table 5.5. It can be seen that as in the previous table the Bayesian models give larger 

standard errors for the pooled log odds ratios, with the Binomial formulation giving the 

largest standard errors. Again the between-study variance is larger using the Binomial 

formulation.

5.3.3 Potential bias in the use o f  baseline risk in meta-analysis

Since I originally analysed this data (1995) there has been further work on the use of 

baseline risk in exploring heterogeneity in meta-analysis (Walter, 1997; Thompson et al.,

1997). These two papers demonstrate that simplistic use of baseline risk as a covariate can 

lead to bias. In order to explain these biases and solutions to them I will reformulate the 

model by treating baseline risk as continuous covariate rather than categorising it into risk 

groups. Thus, the classical model in (5.6) becomes

Parameter Classical Bayesian
Normal formulation

Bayesian
Binomial Formulation

Pi (High Risk) -0.284 (0.099) -0.287 (0.101) -0.323 (0.135)

P2 (Medium Risk) -0.130 (0.077) -0.122 (0.087) -0.143(0.118)

Pi (Low Risk) 0.162(0.121) 0.167(0.133) 0.111 (0.189)

0.027 0.040 0.086

Table 5.5 Comparison o f estimates classical and two Bayesian models for meta­
analysis o f cholesterol data incorporating baseline risk.
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y-i -  Pa + P\xi + 8 { + et (5.14)

Where

yt is the log odds ratio in the i h study.

Xj is the log odds o f the event rate in the control group. 

fio  is the estimate o f the intercept 

p i is the estimate o f  the gradient

8  is the effect o f the i h study and is distributed 8 t ~ N(0, a )  )

ei is the error associated with the i *1 study where E(^i)=0 and V <jf which is

estimated by sf

The results o f fitting this model classically can be seen in Table 5.6. It can be seen that the 

absolute value of the gradient estimate is substantially larger than its standard error 

indicating strong evidence o f relationship between baseline risk (on the log odds scale) and 

the log odds ratio. The between study variation is smaller than that found in the model 

categorising the baseline risk into three groups (0.027) indicating that categorisation is less 

efficient. The relationship between the odds ratio and baseline risk is best examined 

graphically. Figure 5.2 shows a plot of the log odds ratio against the log odds in the control 

group with the fitted line obtained from (5.14). The size o f the plotting symbol for each 

study is inversely proportional to the standard error of the log odds ratio. It can be seen how 

the odds ratio decreases as the event rate in the control group increases. It is also apparent 

that the fitted line will be dominated by a few large studies.

The model defined above can lead to bias for the following reasons. Firstly, the model fails 

to take into account the fact that the explanatory covariate, the event rate log odds in the 

control group, is subject to sampling error. Secondly, the log odds in the control group is

Parameter Estimate (SE)
po  (Intercept) 
p i (Gradient)
a]  (between-study variance)

-0.508 (0.087) 
-0.153 (0.031) 

0.006

Table 5.6 Parameter estimates of classical basline risk model for 
cholesterol data.
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Figure 5.2 Plot o f log odds ratio against control group log odds for cholesterol 
data.

part of the function used to derive the log odds ratio. In fact Thompson et al. (1997) show 

that one would expect there to be a relationship between the log odds ratio and the log odds 

of the event rate in the control group even if there was no real effect.

In order to circumvent these problems Thompson et al. (1997) suggested an extension to 

the Bayesian model described in (5.12)

rCi ~ Binomial(rcCi, nCi) rTl ~ Binomial(nTl, nTl)
logit(^a ) = Mi logit0rn ) = Mi+S,

8, =Sl  +
S : ~ N ( 8 , a j )

In the above model the treatment effect in the i h study,4 depends on the log odds of the 

event rate in the control group, /Ji, through a linear relationship. The subtraction of the 

mean for the gradient effect (J3) is to improve convergence by reducing autocorrelation.
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—  Classical Model
—  Bayesian Model

CO-O

CN

1% 5% 10% 20% 30%

Baseline Risk (bg odds scale)

Figure 5.3 Plot of log odds ratio against control group log odds for cholesterol 
data for both Classical and Bayesian models.

Caclulating the mean of a stochastic variable in WinBUGS slows down the iteration

procedure, so I subtracted a scaler (-3.5), that approximated the mean of the fit ’s

Vague priors are specified as follows

ju, ~ V(0,10000)
J3,S ~ N (0,10000)

- V  ~ Gamma(0.001,0.001) 
v s

The results of fitting this model compared to the classical model can be seen in Table 5.7. 

The estimate o f gradient is slightly reduced in the Bayesian analysis, but the standard error

Classical Analysis Bayesian analysis
Parameter Estimate (SE) Estimate (SE)
Pi (Gradient) -0.153 (0.031) -0.144(0.0481)
a] (between-study variance) 0.006 0.045 (0.039)

Table 5.7 Comparison o f slope and between study variance for Classical and 
Bayesian models incorporating baseline risk.
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is over 50% larger. This is mainly due to the fact that the uncertainty in the estimate of the 

explanatory covariate is now taken into account.

The relationship between the odds ratio and baseline risk can again be examined 

graphically. Figure 5.3 shows a plot o f the log odds ratio against the log odds in the control 

group with the fitted line obtained from both the classical and Bayesian models. It can be 

seen how the odds ratio decreases as the event rate in the control group increases, and that 

the fitted lined are similar for both estimation methods. Thompson et al. (1997) found 

relatively large differences between his Bayesian model and the naive classical model. The 

reason for the similarity in this case is that there is considerable variability in the baseline 

risk in the control groups and that the fitted regression lines are dominated by a few large 

trials.

5.4 Meta-analysis of Attributable Risk

In epidemiology a commonly used measure is the relative risk, which measures the excess 

risk when exposed to a particular factor. However, the full implications of excess risk will 

depend not only on the magnitude of the relative risk, but also on the proportion of the 

population who are exposed to the factor of interest. A moderate relative risk with a high 

level o f exposure may produce more cases than a high relative risk with a low level of 

exposure. An example given by Walter (1976) is where the risk of lung cancer can be about 

40 to 50 times higher in industrial workers exposed to certain types of chemicals. However, 

although smoking has a lower relative risk for lung cancer (between 5 and 10), it causes 

many more cases o f disease, as smoking is a much more common exposure and thus has a 

larger impact on the population as a whole.

A measure of association that takes into account both the magnitude of the relative risk and 

the proportion of the population exposed is the attributable risk (Levin, 1958), here 

defined as A.. It can be defined as

0 { f - 1)
x = T 7 % fT )  (517>
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where 0is the proportion o f the population exposed to the exposure of interest and ^ is the 

relative risk. The attributable risk is also known as the population attributable risk, 

aetiologic fraction and attributable fraction.

When it is possible to infer causation for a particular exposure, the AR can be interpreted 

as the proportion o f cases in a population that are attributable to the risk factor in question. 

Knowledge of the effect on the population o f a particular exposure makes the attributable 

risk a potentially very useful measure for developing public health and health service 

provision policy. For example, in 1992 the results o f a case-control study that investigated 

risk factors for Sudden Infant Death Syndrome (SIDS) was published (Mitchell et al.,

1992). The most important risk factor observed was prone sleeping position (on baby’s 

front), where an estimate of the relative risk was 3.70 and an estimate of the prevalence 

was 33%. This leads to an estimate o f the attributable risk of 0.47 indicating that if the 

prone sleeping position is a causal risk factor one could expect almost a 50% reduction in 

the incidence o f sudden infant death syndrome if  babies were no longer placed to sleep on 

their front. The findings in this study prompted the introduction of ‘The Back to Sleep’ 

campaign in the UK with similar campaigns in New Zealand and the rest of the world. In 

1990, before the campaign began, the incidence of SIDS in the UK was about 2 deaths per 

1000 births and in New Zealand about 4 deaths per 1000 births. In 1996, after the 

campaigns had been running, the incidence was reduced to about 0.7 deaths per 1000 births 

in the UK and 1.9 deaths per 1000 births in New Zealand, a reduction of over 50%.

The attributable risk can be estimated from case-control studies, where the odds ratio is 

used to estimate the relative risk and the proportion of the population exposed to risk factor 

estimated from the control group (Breslow and Day, 1980). This assumes that the controls 

are representative o f the population o f interest, which may not always be the case, for 

example if  they are hospital controls. It is o f course necessary to quantify the uncertainty of 

the estimate o f the attributable risk and when calculating its variance from a case-control 

study it is important to account for the covariance between the odds ratio and the 

prevalence. Details o f different methods of calculating variances of attributable risk 

obtained from case-control studies can be found in Whittemore (1983).
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Prevalence Relative Risk

Attributable Risk

Figure 5.4 Combining information from different sources to 
estimate the attributable risk.

Often estimates o f  ̂ and 0  may come from different sources. For example estimates of (j> 

may come from clinical trials, case-control studies or cohort studies and the estimate of 6  

may come from prevalence studies or the control group of a case-control study. It may not 

always be appropriate to use the control group from a case-control study to estimate 0  as 

they may be specially selected (e.g. hospital controls) or from a different geographical area 

than that to which the estimate o f the AR will apply. Figure 5.4 shows how the estimate of 

the AR may come from a number o f different sources with Z\,...,Zm  representing M  

independent studies that estimate the prevalence, 0 , of the exposure of interest and 

Yi,...,Yyvrepresent N independent studies that estimate the relative risk, y/. Both the 

prevalence studies and the relative risk studies will generally provide point estimates and 

standard errors. From Figure 5.4, it can be seen that there are two independent meta­

analyses where the two pooled estimates are then combined to obtain an estimate of the 

attributable risk. When estimating the attributable risk it is important to account for the 

uncertainty associated with both the estimates of the prevalence and the relative risk. I will 

show how the pooled estimates o f the two meta-analyses can be combined from both a 

classical and Bayesian perspective and then develop the Bayesian model further to 

situations where case-control studies can contribute to both the estimate of the prevalence 

and the relative risk.
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Year Infertile Group Fertile Group RR (95% Cl)
Cohort Studies

Maresh et al. 1982 3/123 45/3568 1.94 (0.59,6.38)
Varma et al. 1988 5/464 75/7348 1.06 (0.42,2.67)
Beral et al. 1990 43/1581 6463/659490 2.78 (2.04,3.77)
Rizk et al. 1991 22/961 6463/659490 2.34(1.53,3.59)
Venn et al. 1993 49/1465 680/61253 3.01 (2.23,4.04)

Case-Control Studies Cases Controls
Draper et al. 1999 65/567 34/972 3.57 (2.32,5.48)

Table 5.8 Cohort studies and case-control study investigating relationship 
between infertility and perinatal mortality.

5.4.1 Example

In the early 1980’s research was undertaken to explore the possibility that a history of 

infertility may lead to increased risk of perinatal mortality, i.e. a still birth or death in the 

first week of life. Infertility is a biological condition that leads to the social condition of 

childlessness. There are problems with the definitions of infertility, but a common 

definition is “failure to conceive a clinically recognised pregnancy by a couple having 

regular sexual intercourse for at least a year without the use of contraception” (Hammond, 

1994). Some women who have a history of infertility will eventually become pregnant and 

it is these women who it is hypothesised have a higher risk of perinatal mortality. Table 5.8 

shows six studies that have estimated the relative risk perinatal mortality comparing 

women who had a history o f infertility and those that were fertile. The six studies consisted 

of five cohort studies and one case-control study. Given in the table is the relative risk 

estimates with 95% confidence intervals, with a relative risk>l indicating the increased risk 

of perinatal mortality associated with infertility.

The relative risks and confidence intervals are shown in a forest plot in Figure 5.5. In 

addition two pooled estimates are shown using both a Maximum Likelihood (ML) random 

effects model as in section 5.3.1, and a Bayesian hierarchical model as in section 5.3.2. The 

pooled estimates shown have been transformed back from the log relative risk scale. For 

the Bayesian model the same vague priors as in equation (5.8) were used. It can be seen 

that the pooled estimates are similar with the Bayesian model having wider credible
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Figure 5.5 Forest plot for Relative Risks of perinatal mortality with pooled
estimates obtained from maximum likelihood and Bayesian models.

intervals. This is sensible as there are only six studies and the Bayesian model 

appropriately takes into account the uncertainty associated with the estimate of the 

between-study variance. The pooled relative risks indicate that having a history of 

infertility leads to over a doubling of the risk of perinatal mortality.

The prevalence o f infertility may vary from region to region and country to country. When 

estimating the prevalence in calculating an attributable risk, it is important that it applies to 

the population o f interest. In this case the population of interest is that in Leicestershire. 

However, it appears sensible to assume that the prevalence in Leicestershire is similar to 

that in the rest o f the UK. Table 5.9 shows the estimated prevalence of infertility in six UK 

studies together with 95% confidence intervals.
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Figure 5.6 Forest plot for prevalence estimates of infertility with pooled estimates
obtained from maximum likelihood and Bayeisan models.

Figure 5.6 shows a forest plot for the prevalence estimates. In addition to the prevalence

estimates from the six studies the figure shows two pooled estimates that have been 

transformed back from the logit scale. As with the relative risks these are for a Maximum 

Likelihood (ML) random effects model and a Bayesian hierarchical model. Both pooled

Author Year r/n Risk (95% Cl)
Page 1989 43/153 28.0% (21.0%,35.0%)
Greenhall et al. 1990 179/872 20.5% (18.0%,23.0%)
Templeton et al. 1991 293/2008 14.6% (13.1%,16.1%)
Gunnell et al. 1994 628/2377 26.4% (24.6%,28.2%)
Buckett et al. 1995 126/728 17.3% (14.6%,20.0%)
Wilkes et al. 1995 623/3500 17.8% (16.5%,19.1%)

Table 5.9 Estimates of prevalence of infertility in six UK studies.
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estimates are in broad agreement with again the Bayesian credible interval being wider. 

What is o f interest is the large amount of variation between studies. The two largest studies 

have confidence intervals that do not overlap. It can be seen that because of the variation 

between studies, the pooled estimates have a relatively large amount of uncertainty 

associated with them, with the Bayesian credible interval being wider than  any individual 

study. If a fixed effects meta-analysis were used, which assumes no heterogeneity between 

studies, the pooled estimate would be 0.203 (95% Cl 0.188 to 0.220). It can be seen that 

the confidence interval is much narrower than when using a random effects model. The 

reasons for the variation in the estimation of the prevalence of infertility is unclear as all 

use similar, if  not exact, definitions of infertility. It is clear that there is a great deal of 

uncertainty in what the true estimate of the prevalence of infertility is. However, is 

important that this uncertainty is appropriately taken into account when estimating the 

attributable risk.

5.4.2 Classical Analysis

In order to obtain an estimate of X, the attributable risk, it is possible to substitute the 

pooled estimates o f the relative risk and the prevalence into (5.17). To obtain the standard 

error, and hence a confidence interval, it is possible to use the delta method (Cox and 

Hinkley, 1974). The delta method can be used to obtain the variance of a function of two 

random variables. Initially I will not use the controls from the case-control study (Draper et 

al., 1999) to estimate the prevalence as this leads to complications in a simple analysis, as 

there will be a covariance term between the estimate of the relative risk and the prevalence 

from this study. In section 5.4.3 I will show how the prevalence estimate from this case- 

control can be used in the pooled estimate of the prevalence as well as the relative risk. The 

delta method is as follows,

,,,,
In the calculation of the variance of the attributable risk, the covariance term can be 

ignored if the estimates o f the prevalence and the relative risk come from independent 

studies. I will assume this is the case in my initial analysis.
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Differentiating equation (5.17) with respect to both fland ogives

dX_ </>-\ dX e
d o  (0 ( 0 - 1) +  i j  d * ~  (5 1 9 )

substituting into equation (5.18) gives

pvjr f n  _ (*■-1 fV ar(ff)+ 0 2Var(t)
a i )  W - i b V —  (5'20)

It is more convenient to express the above in terms of Var(log( if/)). Again using the delta 

method,

Var(y/) = Var(e^  ) = <j>2Var(ln(^)) (5.21)

and

Var(0) = Var

giving

(  glogit(0) >

I + elosit(0)
= V a r + e~lo*lt(0) J 1) = 0 2 (1 -  0)2 Var(log it(^)) ( 5 22)

_ & - \f0\\-OfVar^im)* gV2MlnW)
( )  “  to to -ib -1)4 ( )

Using the pooled ML estimates together with their standard errors given in Figure 5.5 and 

Figure 5.6 gives an estimate of X of 0.248 with variance 0.00104 and hence 95% 

confidence interval 0.185 to 0.311. Thus, about 25% of perinatal deaths are associated with 

having a history o f infertility.

5.4.3 Bayesian Analysis

All that is occurring in the analysis above are two simultaneous meta-analyses, where the 

two pooled estimates are combined in a function to obtain the estimate of the attributable 

risk. It is possible to adopt a Bayesian approach to estimation of the attributable risk in a 

similar way to how the classical meta-analysis was extended in section 5.3.2. Let Z, be the 

log-odds o f the prevalence of infertility in the i h prevalence study and Yj be the log relative 

risk in the j h relative risk study. A hierarchical model can be defined as follows,
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Zt Yj ~ N (yji(j 2Y.)

Si ~ N ( p 9cr2s ) y . ~ Niy/.cx2)

0  = -2 —  6 = e* (5*24>
l  +  ep

^ - 1 )  
l + 0 ( ^ - l )

As with the more standard meta-analyses vague prior distributions are used, so

p  and if/ ~ A^O,1 0 0 0 0 0 0 )

—V and -^y  ~ Gamma(0.001,0.001) (5.25)

The DAG for this model can be seen in Figure 5.7. This clearly shows that there are two 

independent meta-analyses where the two pooled estimates are then combined. The model 

specified in (5.24) and (5.25) was fitted using WinBUGS with a ‘bum in’ of 1000 

iterations and a sample of 5000 iterations. The results o f this analysis can be seen in Table

5.10

It can be seen that the estimates of the pooled relative risk and the pooled prevalence are 

identical to that obtained in the two separate analyses shown in Figure 5.5 and Figure 5.6. 

The estimate o f k  is 0.24, which is similar that obtained in the ML analysis. However, the 

credible intervals are wider when compared to the ML confidence intervals, which is to be 

expected as the Bayesian model takes account o f all uncertainty specified in the model 

including the two between-study random effects.

Parameter Estimate (median) 95% Credible Interval
0 (Prevalence) 0 . 2 0 2 0.154 to 0.260
<|> (Relative Risk) 2.583 1.929 to 3.274
X (Attributable Risk) 0.240 0.150 to 0.332

Table 5.10 Parameter estimates for attributable risk hierarchical model
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Figure 5.7 DAG for Hierarchical Model for calculation of attributable risk.

The above Bayesian analysis is essentially a simple extension of the classical analysis, but 

importantly does allow for the uncertainty associated with the estimates o f the between- 

study variances. However, a further advantage of adopting a Bayesian model is that further 

complexity can be incorporated relatively easily. In this case, instead of modelling the 

summary measures, it is possible to model the observed frequencies directly. In doing this 

it is possible to use both the relative risk estimate and the prevalence estimate from the 

case-control study in the estimation o f the attributable risk. For the cohort studies the 

numbers having a perinatal death can be modelled using a Poisson distribution in each of 

the two groups with the total number in each group as an offset. For this part of the model 

let y E4, nEi and y EJ, nEl denote the number of perinatal deaths and the total number of

women in the exposed and non-exposed groups respectively, for the ith cohort study. 

Similarly prevalence studies can be modelled using a binomial distribution with r0 j
•th

denoting  the number o f infertile women out of fipj for they prevalence study. The case-
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control study can be modelled with both the case and control groups being assigned a 

binomial distribution with rDJc, nDJk and . denoting the number of those exposed

and the total number in the case (diseased) and control (non-diseased) groups respectively

modelled separately, but with the case-control study linking to the cohort studies through 

the estimate o f the relative risk and to the prevalence studies through the prevalence 

estimate from the controls. The model can be defined in the general case where there are M  

(j=1,...M ) cohort studies,L (k= 1 case-control studies andN prevalence

studies as follows,

y e j  ~ p (a £ j )  rx>.k rf,i ~ B i n ( < o . , n r j )

>'&< ~  p ( a Ej  ) r o,k ~  B i n ( n o * > « d ,* )

This model when written down appears complex, and it is in situations such as these when 

DAG becomes very useful in order to simplify the explanation of the model. The DAG for 

the model can be seen in Figure 5.8. It can be seen that there are now three meta-analyses 

for the three different study types. What is important to observe about the model and the 

DAG is that both the cohort studies and case-control studies contribute to y, the between- 

study random effect associated with the log relative risk, and that both the prevalence 

studies and the case-control studies contribute to 8, the between-study random effect

for the k study (here A=l). When using the frequencies, each study type will need to be

log(a£J) = log(niii) + Ai + i r ,  logit(^D>t) = S ^ N + y t+M logit(<uy) = <5,

log(aEJ) = log(/i£>,) + A, ~ i r ,  logit(^E t) = (5.26)

7, ~ N (y /,a 2r )

$k.N~ N (P> <*s) s i ~ N (P> a s )

<t> = exp(j/) 0 _ exp{p)
1 + exp(p)

« (# - ! )
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rD,k

Yk+M j

i=1 k=1 j=1  N

Figure 5.8 DAG for combined hierarchical model for calculation of attributable risk.

associated with the logit of the prevalence. The estimates of ̂ and 0are combined in the 

same way as before to obtain an estimate of X, the attributable risk. Prior distributions need 

to be specified for the model parameters. These were chosen to be vague.

Mts and p ~ N (0 ,1000000)

(5.27)

— and ~ Gamma(0.001,0.001)

The model was fitted in WinBUGS using a burn-in of 1000 iterations with a further sample 

of 5000 iterations. The results of this analysis can be seen in Table 5.11. It is of interest to 

note the pooled prevalence estimate has decreased from 0.20 to 0.16. This is because the 

control group from the case-control study is now being incorporated in the estimate of the 

prevalence, and in that particular study only 34/972 (3.5%) were reported to have a history
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Parameter Estimate (median) 95% Credible Interval
0 (Prevalence) 0.164 0.090 to 0.284
<|> (Relative Risk) 2.615 1.876 to 3.229
X (Attributable Risk) 0.206 0.101 to 0.333

Table 5.11 Results of combined hierarchical model for calculation of 
attributable risk.

of infertility. Thus, further adding to the heterogeneity between the prevalence studies. The 

pooled estimate of the relative risk of 2.62 is similar to that estimated in the previous 

Bayesian model, which is not surprising as the case-control study adds relatively little 

information to the pooled value. The attributable risk estimate of 0.21 is reduced from the 

previous Bayesian model, which is to be expected, as the prevalence estimate is lower. The 

confidence interval for the attributable risk is wider than previous Bayesian analysis, which 

reflects the greater uncertainty regarding the prevalence estimate because of the inclusion 

of the controls from the case-control study.

5.5 Discussion

In this chapter I have shown how hierarchical models can be used in meta-analysis of 

summary data. I have presented a standard meta-analysis, using the cholesterol data and a 

more complex problem where interest lies in estimating the attributable risk of a history of 

infertility on perinatal mortality.

With the cholesterol data I demonstrated the importance of including study level covariates 

in the model, with the aim of reducing the observed heterogeneity between studies. An 

advantage of the Bayesian approach was that the models explicitly allow for the uncertainty 

in the between-study variance. I have also demonstrated how a Bayesian model can be 

developed to include the observed frequencies of deaths using the Binomial distribution, 

rather than having to assume that a summary measure is Normally distributed and using the 

estimated standard error. The use of baseline risk as a covariate can lead to bias due to both 

the uncertainty in the estimate of the baseline risk and the fact that that baseline risk is 

functionally related to the odds ratio. I demonstrated that the method of Thompson et al 

(1997) can be used to overcome this problem, although in this case there was very little
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difference in the parameter estimateof the slope, but there was an increase in its associated 

standard error.

For the infertility data I have shown how meta-analyses of relative risk and prevalence can 

be combined to obtain a pooled estimate of the attributable risk. For the infertility dataset 

there are only a small number of studies and the advantage of the Bayesian appoach is clear 

in allowing for the uncertainty in the estimate of the between-study variance. The Bayesian 

approach offers clear advantages when modelling the observed counts in each study 

through the use of Poisson and Binomial distributions, rather than summary measures. This 

enables case-control studies to contribute to both the prevalence estimate and the relative 

risk estimate. Although the model in the attributable risk example is sensible, perhaps it is 

not the best dataset to use it on. This is because the attributable risk is most beneficial for 

modifiable risk factors and infertility is a risk factor that is hard to modify. However, 

knowledge o f the attributable risk may be useful in the planning of neonatal intensive care 

services. Further research should be conducted using alternative datasets.

The model I have used in obtaining a pooled eatimate of the attributable risk combines data 

from different study types and is therefore related to cross-design synthesis methods 

(Droitcour et al., 1993). In cross-design synthesis involves combining results from 

different study types, usually randomised trials and observational studies. Their use has 

been advocated in situations where randomised controlled trials may be difficult to perform 

for ethical or other reasons (Abrams and Jones, 1995).
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6 USE OF HIERARCHICAL MODELS IN THE ANALYSIS OF 

MISSING COVARIATE DATA WITH A CENSORED RESPONSE

6.1 Introduction

In the previous chapter I demonstrated how meta-analysis could be performed when there 

are summary data for each study. It is generally accepted that if individual patient data is 

available from each study then it should be used in the meta-analysis (Stewart and Clarke, 

1995). This type of analysis is known as an Individual Patient Data (CPD) meta-analysis. 

There has been some previous work comparing IPD meta-analyses with meta-analyses 

using aggregated data. Some of this work has found discrepancies in the results between 

the methods (Pignon and Arriagada, 1993; Stewart and Parmar, 1993; Jeng et al., 1995). 

However, little work has been undertaken to assess why these differences exist (Oxman et 

al., 1995). One of the main advantages o f using IPD meta-analysis is that a fuller 

exploration o f the data can be undertaken, such as sub-group analyses or adjustment for 

specific covariates. For survival data it has be said that an IPD analysis is the only 

satisfactory way of combining the data (Hunink and Wong, 1994). With survival data, 

interest often lies in development of a prognostic model that identifies individuals most at 

risk of poor outcome (Simon and Altman, 1994). In order to do this properly a substantial 

amount of data is needed at the individual level. However, with any IPD analysis, a 

potential problem when combining data from different sources is missing covariate data. 

For example, when developing a prognostic model certain disease markers may or may not 

have been recorded in every study. The missing data makes the combining of the data into 

a sensible prognostic model difficult. Although methods exist for analysing data with 

missing data, such as multiple imputation, there tend to be problems when it comes to 

analysing censored data.

In this chapter I develop Bayesian models for analysing censored data, which has missing 

data for a dichotomous and a continuous covariate. I give a brief overview of methods for 

dealing with missing data in section 6.2. In section 6.31 use a simple multiple regression 

example to demonstrate the methodology, using a hierarchical model to generate multiple 

imputation data sets in section 6.3.1 and a fully Bayesian analysis in section 6.3.2. In
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section 6 .41 use simulation techniques to investigate potential bias in the different ways the 

models can be formulated. Section 6.5 gives an introduction to the Neuroblastoma data, 

which is used in later sections. Section 6.6 presents a complete case analysis of the data 

with sections 6.7 and 6.8 extending this model to deal with the missing data. In section 6.9 

I demonstrate how extra covariates can be included in the model and in section 6.10,1 

discuss the techniques I have used and directions for further research.

6.2 Dealing with missing covariate values

The problem of missing data is encountered in many studies (Lessler and Kalsbeek, 1992), 

but can be a particular problem when data are combined from different sources. The most 

common method of dealing with missing data is to perform a complete case analysis. In 

this approach those subjects who have missing values for one or more of the covariates 

under consideration are excluded from the analysis entirely. The main advantage of this 

approach is its ease o f implementation, with many statistical packages removing subjects 

with missing observations by default. The main disadvantage of the approach is the loss of 

information because some known data values for subjects, for whom some other value is 

missing, are excluded from the analysis, as well as the missing values themselves.

Another approach, sometimes used in epidemiology, is to use a missing value indicator for 

each covariate with missing data (Greenland and Finkle, 1995). This indicator is then 

included as an extra (dummy) covariate in the analysis. Although this method is simple, it 

has been shown that it can yield biased results even when the data is missing completely at 

random (Vach and Blettner, 1991; Greenland and Finkle, 1995). This is most severe when 

there is a large correlation between any covariates included in the model.

A third approach is single value imputation (Little and Rubin, 1989) where a value (the 

unconditional mean, a conditional mean based on other covariates, or a conditional mean 

based on other covariates and the response) is imputed for each missing data point. 

Imputing these values and performing a standard analysis will artificially deflate the 

standard errors of the coefficients estimated. This is because imputed values are more 

similar than the corresponding values would be if they were not missing.
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Two other approaches that have been shown to be improvements on the above are 

maximum likelihood and multiple imputation methods (Little and Rubin 1989; Little,

1992). Maximum likelihood methods specify a joint model for the response and covariate 

distribution. For simple missing data structures the likelihood can be factorised into 

components that can be maximised separately, but for more complicated structures iterative 

procedures such as the EM algorithm (Dempster et a l , 1977) must be used. In multiple 

imputation, multiple copies o f the original data set are generated, each with missing values 

replaced with values imputed from a model conditional on both the complete covariates 

and the response (Rubin, 1996). Each generated data set is then analysed as if it were 

complete data. The parameter estimates are taken as the means of the analyses with 

standard errors calculated taking into account both the variability within and between the 

imputed data sets. Multiple imputation is becoming more popular with both commercial 

(SOLAS, Statistical Solutions Inc.) and public domain software (Schafer and Olsen, 1998) 

available for data where variables are continuous, categorical or both.

In a recent paper, Van Buuren et a l (1999) used multiple imputation for survival analysis 

data where there was missing information for two covariates (systolic and diastolic blood 

pressure). In this approach log survival time was included as a predictor variable for 

generation o f the multiple imputation data set. In addition the censoring indicator was 

included as a predictor variable. It is not clear how the choice of model will affect the 

results when compared to a full multivariate model. Multiple imputation has also been used 

in survival analysis for imputation of the missing (censored) survival times, so that a 

simple linear model could be used in the analysis of the data (Wei and Tanner, 1991; 

James, 1995).

Other techniques for missing covariate values with a censored response includes a Tree 

based method (Ahn and Loh, 1994), using log-linear models for missing categorical 

covariates (Schluchter and Jackson, 1989) and using pseudo-likelihood methods when the 

missing data can be considered to be missing completely at random (Robins et a l , 1994).
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Use of Bayesian methods appears to be a sensible approach for dealing with missing data 

as the missing values can be considered in the same way as other unknowns in the model, 

namely as model parameters that need to be estimated. Bayesian methods that have been 

developed explicitly to deal with missing values are data augmentation (Tanner and Wong, 

1987; Kong et al., 1994) and the hierarchical sub-models o f Aijas and Liu (1996). In both 

these methods the missing covariate is assumed to be a random variable with an associated 

stochastic mechanism. The data augmentation method repeatedly imputes missing data 

from their predictive distribution (based on the observed data) and then uses the (weighted) 

average posterior distribution, based on both observed and augmented data to derive an 

approximate posterior distribution for the underlying parameters. Data Augmentation is 

also used by Schafer in the generation of multiple imputation datasets (Schafer, 1997). In 

the hierarchical sub-model method missing covariate values are considered as unknowns in 

the same way as other model parameters are, so that the posterior distributions are obtained 

as well as the predictive distributions for the missing covariates. In this chapter I will be 

assuming that the missing data is missing at random, i.e. missingness does not depend on 

unobserved data. However, it is possible to extend Bayesian methods for missing data to 

situations where there is informative missing data (Best et al., 1996).

6.3 A Simple Example

In order to demonstrate how the Bayesian framework can be used for missing data 

problems, I will use a simple example of multiple regression. The data comes from 

Armitage and Berry (1987) and consists of 53 subjects from one arm o f a clinical trial 

comparing two drugs used to lower blood pressure during operations. The response 

variable is the time (in minutes) elapsing between the time at which the drug was 

discontinued and the time at which the systolic blood pressure returned to 100 mmHg. The 

question of interest is the extent to which the recovery time depends on the quantity of the 

drug used and the level to which blood pressure was lowered during hypotension. The two 

covariates are,

xi - log (quantity of drug used (mg)).

x2 - mean level o f systolic blood pressure during hypotension (mm Hg).

with response
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xj X2 y
2.26 66 1
1.81 52 10
1.78 72 18
1.54 67 4

2.10 51 25
_________ L80____________________ 61_____________________ 44________

Table 6.1 Data on the use of a hypotensive drug, xj: log (quantity of drug used), 
x2: mean level of systolic blood pressure during hypotension (mmHg), 
y: recovery time.

y  - recovery time (mins).

In order to demonstrate how missing data can be dealt with within the Bayesian framework 

I have removed every second observation for Part of the complete data can be seen in 

Table 6.1.

6.3.1 Multiple Imputation using a hierarchical model

The multiple regression model to be fitted to the data is as follows

y t = A + A * w + A * 2/ + et
(6.1)

£?t. ~ N(0,cr2) 

where subscript i refers to the ith individual.

However, there is the problem that half of the observations for xj are missing and standard 

techniques of estimation cannot cope with this. In this situation maximum likelihood 

techniques could be used as the missing data has a relatively simple structure (Little and 

Rubin, 1989). However, in most practical cases (involving more covariates) there is no 

obvious pattern to the missing data and multiple imputation techniques should be used. The 

question, therefore, is how to generate the multiple imputation data sets.

The hypotension data set can be considered to have a multivariate structure. This can also 

be thought of as a hierarchical structure, with the 3 variables y, xj and x2 being nested 

within individuals. One may expect there to be similarities between the variables measured
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on the same individual, i.e. correlation between the variables. The level 2 units are the 

individuals and the level 1 units are the three variables. Letyy denote thej h variable on the 

i h individual. Let zoy, zjy, and Z2y denote three dummy variables for y, xj and X2 that take 

the value 1 when the variable is present and 0 otherwise. The multivariate model can be 

defined as follows

yy = a ozoy + + a 2z2y + UojZoy + uXjz Xij + u2jz2ij

where Uj ~ MVN

ao, aj and cfc represent the means of y, xj and X2 respectively and <j\ , cr\ and a 2 their 

corresponding variances with the covariances also estimated in the model.

f ° l
f  _ 2 °0l

\
^02

0 » O’oi crX2

,0, ^02 °\ 2

(6.2)

Half of the subjects will have all three variables measured and half of the subjects will have 

two variables measured as xj is missing. However, an estimate of the predicted value of xi, 

**, conditional on the values ofy  and x2, can be obtained by using the shrunken residual

estimate uXj as follows

x\j ~ a \ +uXj (6.3)

When generating multiple imputation data sets one also needs to take into account the 

uncertainty in obtaining this prediction. This is obtained by adding a random value sampled 

from a Normal distribution with zero mean and variance equal to the variance of the 

residual uXJ (Goldstein, 1995). Thus, each imputed data set will have the missing values

for xj imputed with values x** where

x ~ = a x+uXj+ v lj
/  X (6.4)

where vXj ~ N\Q,Var(uXJ))

The value of Var( ux ) will be the same for each missing value of xj.
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Parameter Estimate (standard error)
oco
ai
Ct2

22.70 (2.216) 
1.99 (0.058) 

66.34(1.052)

Variance matrix
f 260.2 1.09 -13.29"

1.09 0.12 1.48
^-13.29 1.58 58.6 ,

Table 6.2 Parameter estimates for multivariate model for hypotension data.
The parameter estimates from (6.2) can be seen in Table 6.2 which shows the means of y, 

xi and X2 and the associated variance matrix. Converting the variance matrix to a 

correlation matrix gives,

It can be seen that y  is positively associated with Xj and negatively associated with x2. 

There is a fairly high correlation between xj and x2 indicating that when xj is missing the 

value of x2 should provide some information to predict the value of x2.

When the m imputed data sets have been generated, each data set can then be analysed 

using standard linear regression models. The estimates are combined as follows 

Let Qf** be the estimate o f the parameter of interest for the imputed data set (*=1,.. .,m) 

and l f t} be the associated variance estimate. The multiple imputation point estimate is the 

average o f the estimates from each multiple imputation dataset,

The variance estimate associated with Q has two components, the within-imputation 

variance and the between-imputation variance. The within-imputation variance is the 

average of the estimates of the multiple imputation variance estimates,

'  1 
0.20 1

^-0.11 0.60 I)

(6.5)

u = - f u m (6.6)

Paul Lambert Ph.D. Thesis, November 2000 174



CHAPTER 6 Missing Data

Multiple 
Imputation 
Data set

Po (Variance) pi (Variance) p 2 (Variance)

1 23.583 (5.022) 15.898 (74.874) -0.624(0.129)
2 23.424 (4.356) 25.752 (68.013) -0.750 (0.102)
3 22.725 (5.099) 6.693 (76.773) -0.387 (0.130)
4 22.699 (4.554) 19.071 (54.953) -0.657 (0.106)
5 23.406 (5.000) 16.151 (88.172) -0.677(0.151)
6 23.618 (4.623) 23.219(77.176) -0.885 (0.139)
7 22.561 (4.875) 15.276 (77.757) -0.597 (0.128)
8 23.384 (4.402) 23.306 (59.753) -0.752 (0.104)
9 22.650 (3.806) 27.849 (43.798) -1.059(0.104)
10 23.079 (4.427) -22.121 (58.630) -0.885 (0.127)

Q =23.113, U =4.616 Q =19.534, U  =67.990 Q =-0.727, U  =0.122
£=0.175, J=4.809 £=38.912, T=110.793 £=0.035, 7=0.160

Table 6.3 Parameter estimates of multiple imputation data sets for the hypotension 
data.

The between-imputation variance (B) is the variance of the multiple imputation data set 

estimates,

B ~ ± < Q W - Q )  (6.7)m -1  ,=1

The total variance (T) is obtained by,

‘6S>

Ten multiple imputation data sets were generated and multiple regression performed on 

each one using (6.1). The parameter estimates for the ten multiple imputation data sets can 

be seen in Table 6.3. The results in this table will be compared with those from the 

Bayesian analysis in the following section.

6.3.2 A Bayesian model

If only complete cases are used then the following model can be fitted,

y, ~ n (Mi><?2) (6 9)

Mi = A> + P\xu + Pixn

This is a standard multiple regression model and can be easily fitted using maximum 

likelihood methods in most statistical software packages. From a Bayesian perspective
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prior distributions need to be specified for Po, Pi, P2 and cf. It is usual to use the standard 

normal distribution for the f¥  s with suitably large variances and an inverse Gamma 

distribution for c?. The problem with using a complete case analysis is that only 

information on 27 of the 53 subjects is used even though the remaining 26 subjects have 

complete data for y  and x2.

To include all the data, i.e. including those cases where y  and x2 were recorded, but not x/, 

the Bayesian model needs to be extended. The unknown value for xy will depend on bothy 

and x2 so the joint distribution needs to be obtained. A sensible option for multiple 

regression is to assume multivariate normality for the 2 covariates and 1 response variable. 

In a similar way to the use of the product normal formulation in Chapter 3, the model can 

be extended as follows

~ N(jUi,cr2)

Mi =  P o +  Px*li +  P 2X2i

*1 ( 6 ' 1 0 )

A,,, =0, +02*2/

= r

Prior distributions now need to be specified for po, pi, P2, c?, 9o, 9i, y, <j\ , and <J2X . These

can be defined as non-informative distributions as follows

P's, 0 's ,y ~ N ( 0,1000000)

-^-,-\-,-i-~G am m <j(0.001,0.001) (6 11)
a  a H

Note that the final two lines of model (6.10) do not need to be specified in this case as there 

is no missing data for x2. However, I have included it to demonstrate how the model can be 

extended to situations when more than one covariate has missing values using the product 

normal formulation.
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Figure 6.1 DAG for multiple regression model with missing data for hypotension 
data.

The DAG for model (6.10) can be seen in Figure 6.1. The DAG clearly shows the inter­

dependencies between y, xj and jc2 .

The advantages o f formulating the model in this manner are;

1. The Wishart distribution does not need to be used as a prior distribution for the 

multivariate normal distribution. I find the Wishart distribution less intuitive 

than the product normal form for multivariate normality and in any case would 

not be possible using the current version of WinBUGS (1.3), as it cannot cope 

with partial missing data for multivariate normal distributions.

2. The desired regression model can be written down as part of the product normal 

formulation, so there is no need to transform any of the parameters.

3. It would be easier to include prior information if this were available. For 

example, if  there is external information about the relationship between the 

variables then this could be incorporated through the use of informative prior 

distributions or possibly a sub-model.
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4. There is not the problem of generating multiple data sets, analysing each data 

set and then combining the results as when using multiple imputation.

The complete case Bayesian model and the model incorporating missing data were fitted in 

WinBUGS with a burn-in o f 1000 iterations and a further 5000 iterations for the generation 

of the sample. Fitting each of these models took about 5 seconds on a Pentium I I400 Mhz 

PC. The complete case model (6.9) was also fitted using standard maximum likelihood 

methods. The results o f the two Bayesian analyses, the multiple imputation model and the 

maximum likelihood model on the complete data can be seen in Table 6.4

It appears from the results that a unit increase in log dose lengthens the recovery time by 

about 19 minutes and a unit increase in systolic blood pressure leads to a reduction in 

recovery time of about 0.8 minutes. It can also be seen that the parameter estimates for the 

complete case analysis for both the ML and Bayesian models give broadly similar answers 

with the Bayesian model having slightly larger standard errors.

When the model is extended to include all the data the standard errors are smaller. This is

true for both the multiple imputation analyses and the Bayesian model, which again give

Parameter Maximum 
Likelihood 
Analysis on 
Complete 

Cases

Bayesian 
Analysis on 
Complete 

Cases

Multiple
Imputation

Bayesian Analysis 
including missing 

data

Po 24.69 (3.05) 24.70 (3.20) 23.11 (2.19) 23.30 (2.34)
Pi 19.23 (11.25) 19.17(11.71) 19.53 (10.53) 18.68 (10.59)
P2 -0.78 (0.52) -0.78 (0.54) -0.73 (0.40) -0.73 (0.41)
o2 248.20 255.70 (95.54) 241.31 245.10 (57.45)
00 - - - -0.029 (0.054)
01 - - - -0.027 (0.0076)
Y - - - 0.021 (1.09)

- - - 0.084 (0.025)

<?x2 - - - 62.23 (12.78)

Table 6.4 Parameter estimates (standard errors) for multiple regression on the
hypotension data using a maximum likelihood and Bayesian estimation 
for the complete case data, and multiple imputation and Bayesian 
estimation for the complete data.
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broadly similar estimates, but with the Bayesian model giving slightly larger standard 

errors. The reduction in standard error is most dramatic for p 2 which is sensible as the 

number of extra data values has doubled for X2. However, the standard error has also 

decreased for p i even though there are no new data points for xi. This is because for each 

missing value o f xj, both y  and x2 are known and due to the association between xj and x2 

and xi and y, a predictive distribution for each unknown is obtained. The stronger the 

relationship between the two covariates, the greater the precision of the predictive 

distribution.

6.4 Simulation to investigate bias in indirect models

Later in this chapter I extend the methods described above to deal with the situation where 

there are missing values for both continuous and dichotomous covariates with a censored 

response variable. The work is an extension of work by Aijas and Liu (1996) who 

investigated missing covariate data in a Cox proportional hazards model. Aijas and Liu 

discuss the use of indirect and direct models. A direct model models the relationship 

between the covariates and an indirect model assigns an appropriate distribution to each 

covariate with missing values, but does not model the relationship between covariates 

explicitly. However, Aijas and Liu argue that some of the inter-relationships between the 

covariates will be picked up through the linear predictor. It is more difficult and more time 

consuming to use direct models, especially when there are numerous covariates with 

missing data and this will lead to complex models. However, an important question is 

whether it matters if  an indirect model is used rather than a direct model, and how the 

choice of model may affect the parameter estimates?

In this section I use simulation techniques to show that using indirect models can lead to 

biased results, especially when the correlation between the covariates is high. I do this by 

using a very simple simulated data set with missing data and argue that if  there is bias in 

the simple case, then it is very likely that there is bias in more complicated scenarios. The 

results I find are important as they indicate that the full joint distribution of the data needs 

to be modelled in order to make valid statistical inferencesThe model considered is as 

follows:
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= A  + Pxxu + p 2x2i + et 

ei — N  (0, a 2)
(6.12)

The model is thus a multiple regression model with response# and two continuous 

covariates xn  andx2i (i= l,.. .^V). Each data set is generated as follows.

1) xu  and x2i are generated from a bivariate normal distribution with 0 mean, 

variances 1 and covariance/correlation p.

2) y  is generated assuming 0, P i-1, Pz=\ and c^=l.

I investigate values o f p, the covariance/correlation between xn  and x2u of 0.0,0.2,0.4,0.6 

and 0.8. For each value of p, 100 data sets are generated each of size iV=100. The last 50 

observations o f xj are removed from each data set. Each data set was fitted in WinBUGS 

using the following 2 models,

Indirect Model

y, ~N(Pi,<j2)

M i  =  A  +  P l x U  +  P l X 2 , (6.13)

Direct Model

y t ~ N {fi„ a 2)

M i  = Po + P\xu + Pixn

Xu~N(pXi,<7l) 

M i ,  = 0 O + 0 i * 2 i

(6.14)

Non-informative prior distributions were used as follows

P's, 0 's ~ W(0,1000000)

i ~  Gamma(0.001,0.001)
(6.15)
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i=1,...,100

Figure 6.2 DAG for indirect model looping over each simulated data set

At present it is not possible to use batch runs in WinBUGS so for each value of p, the 100 

data sets are stacked on top of each other and each model fitted separately in a loop. This 

can be seen in the DAG for the indirect model in Figure 6.2, where subscript j  represents 

the f h simulated data set.

The results of the simulations can be seen in Table 6.5. It can be seen that when the two 

covariates are not related the choice of the direct or indirect model is not important. 

However, as the correlation between the two covariates increases Pi is underestimated, 

whilst Pi is overestimated for the indirect model. However when using the direct model, 

the mean o f the posterior density means is approximately equal to one and hence not 

biased. In addition the mean of the residual variation, cf, appears to be overestimated for 

the indirect model whilst it is closer to one for the direct model (it is slightly greater than 

one as I am taking the mean of a positively skewed distribution).
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p
Mean

Po
SD Mean

P i
SD Mean

P2
SD Mean SD

0.0 Indirect 0.01 0.12 0.99 0.13 1.00 0.12 1.03 0.20
Direct 0.01 0.13 0.99 0.13 0.99 0.13 1.03 0.20

0.2 Indirect 0.01 0.12 0.98 0.13 1.07 0.12 1.04 0.20
Direct 0.02 0.13 0.99 0.13 0.99 0.13 1.03 0.20

0.4 Indirect 0.01 0.12 0.93 0.14 1.16 0.13 1.05 0.20
Direct 0.02 0.12 1.00 0.14 0.99 0.14 1.03 0.20

0.6 Indirect 0.01 0.12 0.81 0.16 1.29 0.14 1.08 0.21
Direct 0.02 0.12 1.00 0.17 0.99 0.16 1.02 0.19

0.8 Indirect 0.01 0.12 0.55 0.19 1.54 0.15 1.12 0.20
Direct 0.01 0.12 1.00 0.23 0.99 0.21 1.02 0.18

Table 6.5 Mean of posterior density means and standard deviations from 100
simulated datasets for 5 values of p  for direct and indirect models, with 
p (T 0, P i= h  /?2=1 and <^=1.

Thus, it can be seen that even in this very simple example, if  the covariates are even 

moderately correlated, bias can arise in the parameter estimates. It seems sensible therefore 

to always attempt to model using a direct model.

6.5 Neuroblastoma Data

Neuroblastoma is the most common extracranial solid tumour of childhood accounting for 

approximately 10% of childhood malignancies. The incidence has increased over the last 

20-25 years (Stiller, 1993) and currently occurs in about 10 per million per year in children 

under 15 years o f age in both the United States and Europe (Parkin et al, s 1988; Stiller and 

Parkin, 1992; Powell et al., 1998). The clinical behaviour of the tumour varies widely, 

ranging from spontaneous regression in a small percentage of patients through to rapid 

disease progression with poor prognosis in others. Identifying prognostic factors is thus 

important not only for predicting long term outcome, but more importantly as a guide to the 

choice of the most appropriate therapy. Most of the improvements in outcome for children 

with Neuroblastoma have stemmed from a greater ability to distinguish between cases of 

varying risk, with intensive therapy being given to those most at risk, whilst those with a 

better prognosis can avoid morbidity associated with such treatment. Optimal identification 

of such factors is thus clinically very important. A number of prognostic factors have been 

clearly recognised or reported to be of importance in neuroblastoma, but the relative
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importance o f each o f these factors, their inter-relations, and in some cases the biological 

mechanisms responsible have yet to be fully elucidated.

Currently the most predictive factors are the classical stage of the disease and age of the 

child. However, several paediatric oncology groups are now examining the value of a 

variety o f other immuno-biological and histopathological markers.

In 1986 the first o f a series of conferences to standardise definitions for diagnosis, staging 

and treatment response (Brodeur et al., -1988) led to the International Neuroblastoma 

Staging System (INSS). This should allow survival data from different oncology centres to 

be compared according to a uniform set of definitions of stage, as prior to this a number of 

different staging systems were used. In an initial analysis to explore the feasibility of 

combining datasets from various oncology centres, partitioning analysis (Ciampi et al. 

1986) was used on a database from five centres. This analysis only investigated the effects 

of age and stage since only these two variables were routinely recorded at all centres. Only 

limited analyses could be performed when looking at biological prognostic variables. These 

have mainly been explored factor by factor with relatively little work on investigating the 

joint influence o f several or all o f the potential prognostic factors. Where this has been 

attempted, the analyses have generally been based on selected or centre-specific patient 

databases. These almost inevitably (in a relatively rare disease) include a limited number of 

patients (Berthold et al.9 1992; Berthold et al., 1994; Combaret et al., 1996; Rubie et 

al., 1997; Matthay et al., 1998; Ladenstein et al., 1998). However, the need to combine 

data from different sources has been recognised (Castleberry et al., 1997) in order to 

explore the joint effects of a number of potential disease markers. To quote Favrot et al. 

(1996) ‘.. multifactorial analyses are fundamental if the respective impacts of biological 

abnormalities and other factors on neuroblastoma progression are to be explored and 

determined.’.

At the second INSS meeting in 1991 it was recommended to construct International 

Neuroblastoma Risk Groups (INRG) (Castleberry et al., 1997) from a composite of age, 

INSS stage and the most predictive and widely available laboratory based variables. Data 

from 1991 consists o f 2832 children with Neuroblastoma from five oncology groups.
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Centre Total N-myc
only

Ferritin
only

Both
measured

Neither
measured

Included 
in Analysis

1 365 (100%) 126 (35%) 0 (0%) 0 (0%) 239 (65%) 126 (35%)
2 96 (100%) 22 (23%) 6 (6%) 5 (5%) 63 (66%) 33 (34%)
3 131 (100%) 6 (5%) 64 (49%) 44 (34%) 17(13%) 114(87%)
4 268 (100%) 29(11%) 105 (39%) 96 (36%) 38 (14%) 230 (86%)
5 275 (100%) 2 (1%) 32 (12%) 1 (0%) 240 (87%) 35 (13%)
Total 1135(100%) 185 (16%) 207 (18%) 146 (13%) 597 (53%) 538 (47%)

Table 6.6 Number analysed at each centre.

However, it was soon recognised that there was a problem with missing data in that not all 

disease markers were recorded on each subject by each group. This may be because the 

disease marker was not recorded at all at a certain centre, or that it was only recorded after 

a specific date. Missing data represents a major problem for statistical analysis and 

interpretation, as standard techniques require all markers to be recorded on all subjects. 

Therefore, analysis o f the data using standard techniques would need to be based on a 

reduced set o f patients for whom all disease markers of interest were recorded.

In order to demonstrate how a Bayesian approach could be adopted in the presence of such 

missing data I concentrate on two laboratory based disease markers, N-myc and Ferritin. N- 

myc is a dichotomous marker (being either amplified or non-amplified) and Ferritin is a 

continuous marker. I also just concentrate on children who were over one year and had 

Evans stage IV at diagnosis. This is a subset o f children with poor prognosis.

Table 6.6 displays the breakdown of missing observations at each centre for this data. It can 

be seen that at centres 4 and 5 at least one of N-myc or Ferritin was measured for most 

patients (87% and 86% respectively) in the subset. Centre 1 only has measurements for N- 

myc. Centres 3 and 6 contribute only a small number of subjects in the subset. If a 

complete case analysis was performed then the analysis would only be on 146 subjects, 

whereas, if one could analyse the data where at least one of N-myc or Ferritin were present 

then the analysis would be on 538 subjects. Thus, the information loss would be high if a 

complete case analysis were used.
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6.6 Complete Case Analysis

With the neuroblastoma data discussed in the previous section the outcome of interest is 

time to death. Analysis of time to death data is complicated by the fact that some of the 

individuals have not yet been observed to die. This is known as censoring and is important 

because, although one does not know when these individuals will die, we do known that 

their time to death will be after the time they were last observed alive. Analysis of data 

with censoring makes use of survival analysis techniques. In survival analysis interest often 

lies in estimating the hazard at any time after the start of the study. The hazard is the 

instantaneous probability of death given that a subject has already survived to time t. As a 

consequence the hazard function is often modelled and the effect of a covariate described 

using the hazard ratio (Collett, 1994).

There are a number of techniques available for the analysis of censored data. The most 

common of these is the log-rank test (Mantel, 1966) which is used to compare two or more 

groups o f individuals. However, some form of modelling is often required and when this is 

the case the proportional hazards model (Cox, 1972) is the most common method of 

analysis. The proportional hazards model is known as a semi-parametric method as no 

form of probability distribution is assumed for the survival times, with the baseline hazard 

being modelled non-parametrically, but the method does have a regression function to 

determine the changes in hazard associated with one or more covariates.

Another possibility when modelling survival data is to assume that the survival times 

follow a specific probability distribution. If this assumption is valid then inferences will be 

more precise than the proportional hazards model, though the gain is not that great which is 

one of the reasons why proportional hazards models remain so popular. In addition one has 

to choose which probability distribution to use. There are a number of distributions that are 

commonly used in the analysis of survival data including the exponential, Log-normal, log- 

logistic, gam m a and Weibull distributions (Klein, 1997). The most commonly used of 

these distributions is the Weibull distribution and it has been previously used within the 

Bayesian framework using asymptotic approximations and Gaussian quadrature (Abrams et
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al., 1996). Use of the Weibull distribution assumes that the baseline hazard, XQ (t) , is 

constant, increasing or decreasing over time.

The Weibull distribution for survival time U for t h individual with covariate vector x,- can 

be defined as follows.

f ( t  IJC,.) = e x p i-e ^ 't ')  (6.16)

The baseline hazard is the risk of death when each of the covariates take the value zero and 

can thus be obtained as,

Av(ti) = reA‘t'-' (6.17)

When r> l then the baseline hazard function will increase over time, when r<l it will 

decrease over time and when r=T the hazard will be constant over time. In the latter case 

the Weibull distribution reduces to the simpler exponential distribution. As the value of r 

determines the shape of the hazard function, it is sometimes referred to as the shape 

parameter.

For the Neuroblastoma data described in the previous section, a complete case analysis 

would involve the following model.

tt ~ Weibull{r, )
(6.18)

log (jit) = 0 O + 0 lLogferri + 0 1Nmyci 

where subscript i refers to the ith individual.

For censored observations survival is assumed to follow a truncated Weibull distribution 

with lower band corresponding to the censoring time. Formulating the model in this way 

leads to the censored survival times being treated as missing values and a predictive 

distribution being obtained for each missing (censored) survival time. This is similar to the 

multiple imputation work developed by Wei and Tanner (1991) and extended by James 

(1995). Within a Bayesian framework prior distributions need to be specified for the 

unknown parameters, r  and the 0 ’s. In this case I have chosen these to be as follows

r ~ Gamma(l,0.001) 0 O,0 {,0 2 ~ 7V(0,100000) (6.19)
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Parameter ML Analysis 
Estimate (SE) 95% Cl

Bayesian Analysis 
Estimate (SE) 95% CrI

Po (intercept) 
Pi (Logferr) 
P2 (Nmyc) 
r (shape)

0.213 (0.107) 
0.495 (0.206) 
1.120

0.003 to 0.423 
0.091 to 0.899

-3.88 (0.322) 
0.215 (0.105) 
0.490 (0.205) 
1.116(0.086)

-4.56 to -3.29 
0.025 to 0.412 
0.086 to 0.882 
0.967 to 1.281

Table 6.7 Comparing Maximum Likelihood (ML) and Bayesian complete case 
analysis

These prior distributions are non-informative. The prior distribution for r is slowly 

decreasing from zero. The value of r will tend to be low leading to essentially a non- 

informative prior. The corresponding DAG for model (6.19) can be seen in Figure 6.3. The 

node censi will take the value 0 for individuals that die and the censoring time for censored 

individuals. The stochastic node u representing the survival time will have missing values 

for censored observations and will be sampled from a truncated Weibull distribution with 

lower bound equal to censt.

Model (6.19) was fitted using WinBugs with a ‘bum-in’ of 1000 iterations and a further 

5000 iterations to sample from. This took about 4 minutes on a Pentium I I400 Mhz PC. 

The results of fitting model (6.19) to the neuroblastoma data can be seen in Table 6.7. Also 

shown are maximum likelihood estimates obtained from SAS PROC LIFEREG. SAS uses

nmyq

logferr-

i=1,...n

Figure 6.3 DAG for complete case analysis of neuroblastoma data.
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Time Time

150 200
Time

Figure 6.4 Example of predictive distributions for censored survival times

the accelerated failure time paraxneterisation of the Weibull model, so the parameters need

to be transformed using the methods described in Collett (1994). Collett also described 

how to obtain the standard errors o f the parameters of interest (the log hazard ratios). It can 

be seen that the estimates are broadly similar under the two methods of estimation, with 

slightly larger standard errors being obtained using the Bayesian model. Amplified N-myc 

is associated with an increased hazard (hazard ratio=1.63, 95% credible interval 

(1.09,2.42)) as is Log Ferritin (hazard ratio= 1.24, (1.03,1.51)). The positive value of r 

indicates that the hazard is increasing over time, but the 95% credible interval does include 

one, so there is some evidence that the use o f the exponential model may be adequate.

Figure 6.4 shows the predictive distributions for three censored survival times. These 

subjects had censored survival times o f (a) 29.2, (b) 45.8 and (c) 33.6 months. It can be 

seen that at each iteration o f the Gibbs Sampler the survival times o f subjects with 

censored observations are sampled from a distribution truncated at the censoring time.
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6.7 Indirect Model for Missing Data

As discussed in section 6.4, Aijas and Liu (1996) introduced indirect and direct models to 

model the missing data. I have shown that when the covariates are correlated, the indirect 

model is biased. However, for comparison purposes I will first analyse the data using an 

indirect model. In the case presented here the choice of direct or indirect model should 

make little difference as the relationship between Logferr and Nmyc is relatively weak, 

with the mean (standard deviation) o f Logferr being 5.34 (1.04) for non amplified Nmyc 

and 5.53 (0.98) for amplified Nmyc. The 95% confidence interval for the difference in 

means is -0.54 to 0.18.

The model in (6.3) can be extended as follows

tt ~ Weibull(r, fii)

log(/0 = J3o + P\LoSferri + P iNmy ci

In model (6.20) Logferr has been assigned a Normal distribution with mean a  and variance 

cr2Lf and Nmyc has been assigned a Bernoulli distribution with the logit of the probability 

of Nmyc being amplified estimated by 0. The DAG for model (6.20) can be seen in Figure

The prior distributions for Po, ...,/% and r remain the same as in (6.19). The prior 

distributions for a, 0and are assumed to be;

L og fe^  ~ N (a,cr2Lf) 

Nmyct ~ Bemoulliid;) 

log #(£,.) = 0

(6.20)

6.5

a , 6  ~ N(0,1000000)

—\ —  G<27wmfl(0.001,0.001)
a Lf

(6.21)
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logfenj

Figure 6.5 DAG for Indirect Model.

In order to clarify how the linear predictor affects the imputed values o f Logferr and Nmyc 

the full conditional distributions can be obtained. Using the methods for obtaining full 

conditional distributions described in section 2.5.2, the full conditional distributions for 

missing values o f Logferr and Nmyc will be given by;
l "2

P(Logferr11 •) oc Y \ Weib(ti | r,exp(/?0 + p^Logferr^ fi2Nmyct))x
1

nll+n2 (6.22)
Y\N (Logferrt \a,cr2Lf)
/=«.+!

and

1
p(Nm yci | •) oc Y [  Weib(ti | r, exp(/?0 + faL og fe^  + P1Nmyci)) x

i=B, +»2+l
nl+n2+n3 (6.23)

Bernoulli(Nmyc119)
l= « l+ « 2 + l

The parameters in model (6.20) were estimated using WinBUGS with a 5000 iteration 

‘burn-in’ and 20,000 further samples. The results of fitting this model can be seen in Table

6.8 together with the estimates from the complete case Bayesian model. It can be seen that 

the standard errors are smaller for the indirect model, which is intuitive as there are more
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•  Nmyc +ve, Dead 
▲ Nmyc -ve, Censored 
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Figure 6.6 Relationship between survival time, censoring status and Nmyc with 
mean imputed values of Logferr using an indirect model for the 
neuroblastoma data.

data in this model than in the complete case model. The parameter estimates for pi and P2 

have both increased.

Figure 6.6 shows for the missing values of Logferr, a plot o f the mean values of the 

predictive distribution o f each missing value obtained when using the indirect model. It can 

be seen that as survival time increases the mean of the predictive distribution decreases, 

which is sensible, as lower values o f Logferr are associated with longer survival. Censored 

observations appear to show a different pattern from non-censored values and tend to have 

lower posterior means. This is also sensible, censored individuals will survive longer than 

their censoring time and that lower values o f Logferr are associated with longer survival. 

Thus, one would expect the imputed values of Logferr to be lower for a censored time than

Indirect Model Complete Case Model
Estimate 95% CrI Estimate 95% CrI

Po (Intercept) -4.01 (0.185) -4.38 to -3.65 -3.86 (0.322) -4.48 to -3.29
Pi (Logferr) 0.37 (0.060) 0.25 to 0.49 0.215 (0.105) 0.02 to 0.41
P2 (Nmyc) 0.57 (0.147) 0.27 to 0.56 0.490 (0.205) 0.09 to 0.88
r (Shape) 1.16(0.051) 1.06 to 1.16 1.116(0.086) 0.97 to 1.28

Table 6.8 Comparing indirect and complete case models for the neuroblastoma 
data.
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<N

Logferr

Figure 6.7 Predictive densities for two imputed values of Logferr for indirect 
model.

compared to an equivalent observed survival time where an individual died. The effect of 

Nmyc is small, with the means tending to be slightly lower for amplified values. The effect 

of Nmyc is small, probably because the relationship between Nmyc and Logferr is relatively 

weak.

It is important to realise that Figure 6.6 only shows the mean value for each missing value 

of Logferr and that each missing value has a predictive distribution. Figure 6.7 shows the 

predictive distribution for two missing values of Logferr. The solid line corresponds to the 

posterior density for a child who died at 6.6 months and the dotted line corresponds to the 

posterior density for a child who died at 55 months. Both had non-amplified Nmyc. It can 

be seen that the child who died earlier had a higher mean value for Logferr, but there is 

considerable overlap between the densities, demonstrating that the level of uncertainty 

associated with the prediction of the missing values is considerable. This uncertainty is 

appropriately taken into account when obtaining the estimates of the parameters of interest, 

i.e. the log hazard ratios. One would expect the uncertainty to decrease if the relationship 

between the two covariates was stronger.
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6.8 Direct Model

In section 6 .4 1 demonstrated that bias can arise when using an indirect model even when 

the covariates are only moderately correlated. It therefore appears sensible to extend the 

indirect model for the neuroblastoma data to explicitly allow for the potential relationship 

between Nmyc and Logferr. However, it is unlikely to have a dramatic effect in this 

instance as the relationship between Logferr and Nmyc is weak. Thus model (6.20) can be 

extended as follows;

tt ~ Weibull(r, jj.i)

lo g (/0  = fi0 + p xLogferrt + fi2Nmyct 

Logferr, ~ N(y,,<j2v )
(6.24)

y, = a 0 + alNmyc,

Nmyct ~ Bemoulli(Si) 

log = 0

The important addition to the above model when compared to the indirect model is that it 

now includes the possibility o f a relationship between Logferr and Nmyc. This can be seen 

in the DAG shown in Figure 6.8. Prior distributions need to be specified for the additional 

parameters ao and aj .These are,

a 0,a x ~ W(0,1000000) (6.25)

It is important to note that there is no need to include in the model a term relating Logferr 

to the outcome Nmyc. This can be seen from the functional form of the full conditional 

distributions,
ni+n2

piLogferr, | -)°c Weibit, |r,exp(/?0 + /?,Logferrt + /?2Nmycl))x

(6.26)Ht+« 2
Y lN iL o g fe ^  \a 0,a 19Nmyc.,crlf )

i - n  |+1

and
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Parameter Direct Model 
Estimate 95% CrI

Indirect Model 
Estimate 95% CrI

Po (Intercept) -4.02 (0.180) -4.37 to -3.67 -4.01 (0.185) -4.38 to -3.65
Pi (Logferr) 0.36 (0.061) 0.24 to 0.48 0.37 (0.060) 0.25 to 0.49
p 2  (Nmyc) 0.55 (0.151) 0.24 to 0.83 0.57 (0.147) 0.27 to 0.56
R (Shape) 1.16 (0.050) 1.07 to 1.26 1.16(0.051) 1.06 to 1.16

Table 6.9 Comparison of indirect and direct models for the neuroblastoma data.

p(Nmyci | -) x  J j  Weib(t: | r ,e x p ($ , +  fitLogferr, + fl2Nmyc, )) x

(6.27)
»=rt|+l»2+l
/ I j+ JN + H j

J j [ Bemoulli(Nmyci 10) (Logferr; | a 0,a l,Nmyci,(T^)

It can be seen that for both full conditional distributions there are terms for both covariates, 

even though Logferr is not included in the regression equation for Nmyc.

The results o f fitting model (6.24) in WinBUGS, with a bum in of 5000 samples and then a 

further 20000 samples to obtain the estimates, can be seen in Table 6.9. It can be seen that 

in this case there is very little difference in the estimates or the standard errors between the 

direct and indirect models. This is because there is very little association between the two

logfen;

Figure 6.8 DAG for direct model for neuroblastoma data.
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covariates. However, as I demonstrated in the simulation study in section 6.4, when the 

covariates are associated it is likely that the results from an indirect model will be biased. It 

is probably safer to model the relationship between the covariates even if this is weak. This 

also gives a way o f assessing the strength of the relationship between the covariates.

Figure 6.9, shows the mean o f the predictive distributions for each missing value of 

Logferr plotted against time. It is similar to Figure Figure 6.6 for the indirect model and 

shows a similar relationship. However, using the direct model the difference between 

negative and positive values o f Nmyc is not quite so distinct.

6.8.1 Reversing Normal and Binomial Distributions

In the previous section I stated that it should not matter which way the relationship between 

Nmyc and Logferr is specified in the model, with either Nmyc or Logferr being the 

dependent variable. Figure Figure 6.10 shows the DAG for the direct model where now 

Nmyc is the dependent variable. The model is thus written

o Nmyc -ve, Dead 
• Nmyc +ve, Dead 
a Nmyc -ve, Censored 
A Nmyc +ve, Censored••• ° &

©

20

Time (months)

Figure 6.9 Relationship between survival time, censoring status and Nmyc 
with mean imputed values of Logferr for direct model.
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t{ ~ Weibull{r

log(Mi) = A) + P\Logferri + p 2Nmyct

Logferr, ~ N (a ,a 2v ) (6 28)

Nmyci ~ Bemoulli{5i) 

logzY(^) = 0O + Q f.ogfe^

The full conditional distributions for Logferr and Nmyc for model (6.28) are
«,+«2

p(Logferr;. )cc ]^[ FFezh(f. | r, exp(/?0 + /?, Logferrt + P2 N m yc)) x

/=fl,+1 (6.29)« + « 2 n +n2

n ^ (L°gferri I ^ lo g /e r r) F I Bemoulli{Nmyci \0Q,0 X,Logferr.)

and

logferif

Figure 6.10 DAG when reversing Normal and Binomial distributions
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p(Nmyci) <x Weib(ti | r,exp (/?0 + p xLogferr. + j51Nmyci)) x
i= n ,+ n ,+ l

*+*,+*, (6.30)
I I BemoulliiNmyCi \00,6X,Logferrt)

i*«,+«2+l

The results o f fitting model (6.28) can be seen in Table 6.10. It can be seen that the 

estimates are almost identical, which one would expect.

6.9 Inclusion of Extra Covariates

The models I have described so far have been relatively simple in that there are only two 

covariates and the effect o f centre has been ignored. When developing a prognostic model 

there are likely to be other covariates o f interest. It is also possible that the effect of centre 

is important. One extra covariate that is likely to be related to survival is age. It is 

important therefore to include this in any clinically useful model. However, age may also 

be related to Logferr and Nmyc and it should also be included in any sub-models, i.e. the 

models that define the inter-relationships between the covariates. If age was strongly 

related to one o f the covariates then it would decrease the uncertainty associated with any 

missing values associated with that covariate leading to reduced standard errors. Even if 

age is not related to survival, it could be related to Logferr and Nmyc, thus leading to 

improved prediction for the missing values. In order to allow for potential differences 

between the five centres, I include centre as a random effect in the Weibull regression 

model. Thus, model (6.24) can be extended to

Parameter Direct Model 
Estimate 95% CrI

Reversed Direct Model 
Estimate 95% CrI

Po (Intercept) 
Pi (,Logferr) 
P2 (Nmyc)
R (Shape)

-4.02 (0.180) 
0.36 (0.061) 
0.55 (0.151) 
1.16 (0.050)

-4.37 to -3.67 
0.24 to 0.48 
0.24 to 0.83 
1.07 to 1.26

-4.00 (0.180) 
0.36 (0.061) 
0.54(0.151) 
1.16 (0:050)

-4.36 to -3.65 
0.24 to 0.48 
0.24 to 0.83 
1.06 to 1.26

Table 6.10 Comparing direct model with reversed normal / binomial 
assumption for neuroblastoma data.
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tt ~ Weibull(r,//.)

l°g (^ ,) = 00 + PxLogferr, + P2Nmycl + 0 xAge: + Sj 

Sj ~N(0,cr2c )

Logferr, ~ N f y , , ^ ) (6.31)

r, = a 0 + a xNmyc, + a 2Agetj 

Nmyci ~ Bemoulli{5f) 

log it{Si) = 90 +9xAgei

where subscript j  refers to the f h centre so that the effect of centre is included as a random

effect. This is sensible if  the survival times in a particular centre are likely to be more 

similar than the survival times from different centres. The DAG can be seen in Figure 6.11. 

It can be seen as the number of covariates increases the DAG, and thus the model become 

more complicated. If the extra covariates having missing data then the model, will become 

even more complex and care will need to be taken so that all inter-relationships between 

covariates are being appropriately modelled. Prior distributions need to be given for all 

model parameters. These were again chosen to be relatively non-informative and are as 

follows

The model was fitted using WinBUGS and again had a 5000 iteration ‘burn-in’ followed 

by 20000 samples. The parameter estimates, 95% credible intervals and Geweke Z scores 

can be seen in Table 6.11.

There is little change in the parameter estimates for pi and p 2 from the direct model (6.24), 

which ignored the effects o f centre and age, with the log hazard ratio for Logferr increasing 

slightly and the log hazard ratio for Nmyc decreasing slightly. There is very little change in 

the standard deviations for these parameters. The value of ai is small relative to its 

standard deviation and the corresponding 95% credible interval clearly crosses zero

a 2,OQ,0x ~ N(0,100000)

— ~ Gamma(0.001,0.001) 

r ~ Gamma(0.001,1)

(6.32)
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agq
nmyq

j=1.... 5

Figure 6.11 DAG for direct model with additional covariates, age and centre (as 
a random effect).

indicating little association between Logferr and Nmyc. This explains why the direct and 

indirect models give broadly similar parameter estimates. The negative coefficient for fa  

indicates that there is a reduction in the hazard as age increases. In addition, age is 

positively associated with Logferr (ai) and negatively associated with Nmyc (Of) indicating 

the Logferr tends to increase with age and that the probability of amplified Nmyc decreases 

with age. The between centre variance (cr] ) is small indicating very little variation 

between centres in terms o f survival.

The Geweke scores are also shown in the table. All of the Z scores are clearly less than 2, 

indicating that there is relatively little evidence o f non-convergence. As in Chapter 3, it can 

be more meaningful to plot the densities o f the first 10% of each chain and the last 50% of 

each chain rather than just to obtain a Z score. These density plots can be seen in Figure 

6.12 and show that there is very little difference between the two densities for all the 

parameters. There are, however, very slight differences for A , aj ,a2, O0 and r. However,
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Parameter Estimate 
(Standard deviation)

95% Credible 
Interval)

Geweke 
Z score

Po) (Intercept -4.06 (0.210) (-4.47, -3.64) 0.77

P i (Logferr) 0.40 (0.063) (0.28, 0.53) 0.17
P2 (Nmyc) 0.51 (0.156) (0.19, 0.80) -1.14

P i (Age) -0.05 (0.023) (-0.10, -0.01) -0.64
0.038 (0.136) (0.00,0.21) 0.26

R (Shape) 1.17(0.052) (1.07,1.28) -1.33
Oq 5.50(0.071) (5.36,5.64) 0.86
ai A  ^

^  -S 0.22 (0.191) (-0.17,0.58) 0.14
oc2 £ fe© > 0.06 (0.022) (0.01,0.10) -0.21

cry
■-d ©

s: -1.18(0.089) (1.02,1.37) -0.77

00 £  £
-1.18 (0.143) (-1.47,-0.91) -0.48

0i s* «© -0.26 (0.075) (-0.41,-0.12) 0.79

Table 6.11 Estimates from direct model with extra covariates

these differences are very small and I would expect them to disappear if a larger sample 

size was used. This is not to say that the present sample size is too small, but that the 

sample size is obviously reduced when one only looks at the first 10% of the chain.

6.10 Discussion

In this chapter I have demonstrated methods for dealing with missing data with an example 

o f a meta-analysis including individual patient survival data. In section 6 .3 1 used a simple 

example, namely the hypotension data set, to demonstrate how multivariate data can be 

considered to have a hierarchical structure, and that one can take advantage of this structure 

when analysing data with missing values. I have shown how this can be done using 

classical hierarchical models using multiple imputation by generation o f multiple 

imputation data sets using the estimated residuals for the missing values. When using a 

Bayesian model very similar parameter estimates were obtained. When using MCMC 

methods the Bayesian model can be considered to be a multiple imputation analysis with 

1000’s o f multiple imputation data sets, as at each iteration of the Gibbs Sampler a value 

for the missing covariate is sampled from a predictive distribution. However, it must be 

acknowledged that the hypotension data is a simple example, and in practice one does not
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Figure 6.12 Density plots for first 10% (solid line) and last 50% (dotted line) of 
chains for each parameter.

always deal with continuous data where multivariate normality can be assumed. When

dealing with categorical data, censored data, random effects or an unusual distribution the 

use of a full Bayesian model becomes more appealing. I have demonstrated this with the 

use of the neuroblastoma data set where the outcome was survival time with some 

censoring, and missing values for a continuous and a dichotomous covariate. In the 

simulation in section 6 .4 1 showed that the use of the indirect model discussed by Aijas and 

Liu (1996) can lead to serious bias in the parameter estimates when the covariates are 

correleted. Thus it would seem sensible to recommend that the inter-relationships between 

covariates should always be modelled unless one has very good reason to believe that the 

covariates are totally unrelated.

One potential problem with the fully Bayesian analysis is the time taken to fit the models. 

The final model with the centre random effect and age included in the model with a 5000 

iteration ‘bum -in’ and a further 25000 samples took about 90 minutes on a Pentium II400 

Mhz. Although this is clearly acceptable, when dealing with much larger samples with 

many more missing covariates, the time taken could increase greatly. However, since 

values are sampled for each missing value at each iteration, one could generate multiple
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imputation data sets, analyse each data set classically and combine the parameter estimates 

as in section 6.3.1. Care would need to be taken that sufficient iterations had passed 

between generation o f the multiple imputation data sets due to the problem of 

autocorrelation.

An important question is what covariates to include in the sub-models. A sensible approach 

is to follow the guidelines for multiple imputation (Rubin, 1996; Schafer, 1997). 

Following these guidelines, all covariates included the main model should be included in 

the sub-models. In addition covariates not o f interest in the main model could be included 

in the sub-models. For example, if  gender was not related survival then this would not be 

included in the main model. However, if gender was predictive of Nmyc and/or Logferr the 

it would be sensible to include gender as a covariate in the sub-models as this would lead 

to improved prediction o f the missing values. If there is uncertainty o f what to include in 

the sub-models then it may be appropriate to perform a number of sensitivity analyses to 

see how the choice actually affects the estimates of the parameters of interest.

With a larger number o f covariates the missing data part o f the model will become more 

complicated. However, one can use simple parameterisation rules. If xx, - - , x p are/?

covariates which have some missing data values, then the joint distribution of the p  

covariates is the product o f a series o f conditional distributions, i.e.

P ( . X l y X 2 » —  » p  )  =  P &  1 I * 2  » • '  • » * p  > • * *»X p  )

= p(x1 \x2, . . . ,xp)p(x2 \x3,. . . ,xp)p(x3, . . . ,xp) (6.33)
= /?(*i \x2,. . . ,xp)p(x2 \x3,. . . ,xp) . . .p (xp_, \ x p)p(xp)

Thus, complex multivariate relationships can be expressed as the product of simple 

univariate models. For example, with a combination of categorical and continuous 

variables the general location mode (Olkin and Tate, 1961) can be fitted where the 

categorical variables are assumed to have a multinomial distribution and the continuous 

variables are assumed to be multivariate normal with separate means for each combination 

of the categorical variables, but with constant covariance matrix. -The missing data model
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presented in this chapter is the simplest form of the general location model having just one 

dichotomous covariate and one continuous covariate.

I have assumed that the survival times have a parametric form, namely they follow a 

Weibull distribution. This may be slightly restrictive in that it imposes a monotonic shape 

on the hazard function. Other possibilities include other parametric distributions, for 

example Gamma or Log-normal, or the use of a Cox proportional hazards model. Although 

it is possible to use Bayesian methods for fitting proportional hazards models (Kalbfleisch, 

1978; Clayton, 1991), fitting can be very slow and in my experience the BUGS program 

often fails. One possibility is to define a number of time intervals, rather than estimate the 

hazard at each event time, as in the proportional hazards model, and to assume the hazard 

is constant within each o f these intervals. This can be achieved through the use of a 

piecewise exponential model (Aitkin et a l, 1989). The more time intervals that are chosen, 

the closer the piecewise exponential model gets to a proportional hazards model.
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7 DISCUSSION

7.1 Summary

In this thesis I have demonstrated the use and versatility o f hierarchical models through a 

number o f examples, showing that they cover a wide range of areas and applications in 

medical research. In fact hierarchical models are becoming a common tool for applied 

statisticians to use, due to many data sets having a clustered form. As with many other 

statistical techniques, one reason for the increase in the use of hierarchical models is the 

advancement o f computer software. For all examples, I have contrasted the classical 

approach to estimation and model fitting with the Bayesian approach, with the aim of 

demonstrating the further versatility that the Bayesian approach can add, especially in 

complex situations.

7.2 Hierarchical Data and Hierarchical Models

It is becoming increasingly apparent that many forms of data have a clustered form. It is 

clearly necessary to take this into account. I have shown in section 2.6 that ignoring the 

hierarchical structure o f such data can lead to inappropriate inferences being drawn due to 

errors in the calculation o f the standard errors. There are many types of data that may 

exhibit a clustered form and I have demonstrated and developed the concept for repeated 

measures data, meta-analysis data and multivariate data.

It has long being acknowledged that repeated measures data induces a correlation structure. 

The type o f models fitted until about the mid 1980’s, namely repeated measures ANOVA 

and MANOVA, were restrictive in that they assumed that repeated measurements were 

taken at the same time points with no missing data. They also did not offer the opportunity 

to model the between unit variation. I have demonstrated how the use of hierarchical 

models, incorporating suitable random effects, can lead to more realistic repeated measures 

models that are more concerned with estimation rather than with hypothesis testing.
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It is not always realised that meta-analysis data exhibits a hierarchical structure. However, 

it is clear that if  between-study heterogeneity exists then this should be taken into account. 

Researchers who advocate the use o f fixed effects meta-analysis models are ignoring this 

heterogeneity and thus will end up with pooled effect estimates that are too precise.

Multivariate data also exhibits a hierarchical structure and again it is not always 

acknowledged that this is the case. The relationship between hierarchical models and 

multivariate structured data is important to observe as many of the multivariate techniques 

such as repeated measures MANOVA generally require there to be complete data on all 

individuals. However, fitting these models within the hierarchical models framework 

allows there to be a differential number of measures on each subject leading to less wastage 

in removing subjects with incomplete data. However, as always with missing data, it is 

important to consider why the data is missing.

7.3 Interpretation of Hierarchical Models

It is clear that hierarchical models are more complex to fit and interpret when compared 

with standard linear models. There are a number of issues to be decided including 

definition o f the clustering unit(s), how many levels of information there are and what 

variables should considered to vary between these. In some cases the definition of the 

clustering unit will be fairly obvious, for example in simple repeated measure or standard 

meta-analysis problems. In other situation it may be less clear, for example in chapter 4 1 

used a three level model for the peak flow data as this led to sensible interpretation of the 

variance components (between-subject, between-day within-subject and within-day within- 

subject). However, if  one was just interested in the fixed effects then just a standard two- 

level model could be fitted, probably with some auto-regressive term incorporated into the 

within-subject variance to allow for the fact that measurements taken on the same day tend 

to be more similar than measurements on different days. For the attributable risk meta­

analysis presented in chapter 5 a third level, the type of study, could be incorporated. This 

may be important if  there is variation in the quality of the type of studies and is probably 

more appropriate when combining randomised and non-randomised evidence (Abrams and 

Jones, 1995).
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Often in hierarchical models the variance components are considered to be nuisance factors 

rather than o f direct interest. For example, in chapter 3 the main interest was in the mean 

profiles o f the two blood pressure profiles. However, it is important to realise that the 

variance components do have a sensible interpretation that may be clinically meaningful, 

which is shown in chapter 4 for the peak flow analysis. Thus, when variability is itself of 

interest then the use o f hierarchical models is a sensible approach. However, although the 

fixed effects tend to be robust to misspecification of the random effects it is unclear 

whether the reverse is true. In addition the standard errors associated with the variance 

components may be subject to bias in classical models. Therefore a Bayesian approach may 

be advisable in this situation.

For the ABPM analysis in chapter 3 ,1 have introduced the possibility o f using restricted 

cubic splines to model the mean profile. These are very powerful in that they are simple to 

use and can accommodate a wide variety of curved profiles. I have shown how they can be 

incorporated in to either the fixed or random component of the model. A potential criticism 

of using restricted cubic splines is the subjective choice of the number and location of the 

knots. I investigated this through the use o f sensitivity analysis by varying the number and 

location of the knots and found that the models were robust to these changes as long as 

there were a sufficient number of knots. It may be worthwhile investigating the possibility 

of using models that treat the number and location of the knots as unknowns, but I feel that 

these models would probably add little apart from unreasonable amounts of computing 

time.

7.4 Classical and Bayesian Hierarchical Models

In this thesis I have contrasted model fitting and interpretation from both a classical and 

Bayesian perspective. When identical models are fitted using both the frameworks, and the 

number of level 2 units is large, there will be very little difference in the inference being 

drawn. This was generally the case in models fitted in this thesis as they all consisted of 

relatively large datasets with vague prior distributions being used, so virtually all 

information was contained in the likelihood. However, the classical analysis does not take 

account of the uncertainty associated with the estimates of the variance components, which
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becomes important when the number of level 2 units is small. The Bayesian approach 

incorporates all relevant uncertainty automatically and thus one would expect the standard 

errors o f the fixed effects to be larger with smaller datasets.

Despite leading to similar inferences for equivalent models, I feel that the Bayesian 

approach has a number o f advantages when compared to the classical analyses. The main 

two o f these are incorporating extra complexity and easier interpretation that is clinically 

meaningful.

When I refer to extra complexity I mean ‘realistic complexity’ in the context of Best et al. 

(1996). For the ABPM data in chapter 3 it was clear that the within-subject variability 

varied from subject to subject and that this violated one of the assumptions of a standard 

hierarchical random effects model. The use of Bayesian models enabled modelling of the 

within-subject variance. Although this is possible using classical models, it is not 

straightforward to model any unexplained heterogeneity in the within-subject variance 

using a between-subject random effect. Interestingly, although there was considerable 

heterogeneity in the within-subject variance between subjects, modelling this heterogeneity 

appeared to have very little impact on the mean profiles or more importantly their standard 

errors. An interesting area o f further research would be to investigate if there are any 

situations when differing within-subject variances would have an impact on the standard 

errors o f the fixed effects. The PEF models in chapter 4 could also be extended to allow for 

heterogeneity o f the within-subject variance. The impact here could be important because 

interest lies in the quantification o f the within-subject variance. In chapter 4 1 showed how 

further complexity could be incorporated into the attributable risk meta-regression model 

by modelling the observed counts and frequencies using a Poisson or Binomial distribution. 

This is generally preferable to calculating summary estimates for each study prior to 

conducting the meta-analysis. In addition, for the infertility example this enabled the case- 

control study to contribute to both the prevalence estimate and the relative risk estimate. 

Finally, in chapter 6 1 showed how complex models with missing data can be fitted from a 

Bayesian perspective. The importance here is that standard methods for missing data do not 

easily allow for censoring and/or the use of random effects. The Bayesian models could be 

extended to investigate the effect o f informative missing data. At present the models
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assume that the missing data are missing at random, but in some situations there may be 

informative missing data. The effect o f this on parameter estimates could be investigated 

through simulation studies. The Bayesian approach has some distinct advantages in the 

study o f informative missing data mechanisms, as they could be modelled in a similar way 

to Best et a l (1996). The main problem with informative missing data is that, by definition, 

the covariate related to 'missingness' has not been measured and thus assumptions need to 

be made regarding the missing data mechanism. A sensible approach would be to fit a 

number o f models assuming different missing data mechanisms in order to investigate how 

robust the results are to different missing data assumptions.

In general I feel that the interpretation of the Bayesian models is simpler. Firstly, although 

interpretation o f the parameter estimates is similar, when fitting classical models one 

should interpret any uncertainties in these estimates, either through p-values or confidence 

intervals, in the usual non-intuitive way as discussed in section 2.5.2. The Bayesian 

quantification o f uncertainty, either through probability statements or the use of credible 

intervals, which I have used throughout this thesis, is much more intuitive. In chapter 4 1 

show how the use o f density plots can be useful for quantification of uncertainty for 

variance components. As these models may appear complex to non-statisticians, it is 

important to present results in a way they can be clearly understood. I feel that this is easier 

to do within the Bayesian framework.

In this thesis I have used vague prior distributions for the Bayesian analyses, with the aim 

that virtually all the information regarding parameter estimates is contained in the 

likelihood. Although informative prior distributions could be used in the analyses I have 

presented, I feel that they would be of little benefit as the models have generally included 

large sets o f data. Where there may be need for further research is when variances are being 

estimated with sparse amounts o f data, which is often the case in meta-analyses. The use of 

a Gamma(0.001,0.001) prior distribution may actually be informative when data is sparse 

and/or the variance estimate is very small. The sensitivity of results to the choice of 

different vague priors is an area for future research, but the exploration of the sensitivity of 

results to various model assumptions is a crucial element to any Bayesian analysis.
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I have shown how multivariate normality can be expressed using a series of conditional 

normal distributions known as the product normal formulation in chapters 3 and 6. In 

chapter 4 1 took a different approach using the standard multivariate normal distribution 

available in WINBUGS. The disadvantage of the latter is that it requires a Wishart 

distribution to be used as a prior distribution. I find the Wishart distribution non-intuitive 

and would find it difficult to use informative priors using this formulation. Using the 

product normal formulation enables standard univariate prior distributions to be used. For 

the missing data models presented in chapter 6 it would not be possible to use the built in 

multivariate distribution in WINBUGS as it can not currently cope with missing data. In 

addition the use o f the product normal formulation could aid the use o f informative priors 

when modelling the relationship between covariates as the information may be available 

from external studies.

7.5 Model Comparison

An important issue I have not covered in this thesis is comparison of models from a 

Bayesian perspective. In classical models comparison of nested models is fairly 

straightforward using the likelihood ratio test. Non-nested models can be compared using 

the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) as 

seen in Chapter 3. One possibility is the use of Bayes Factors (Kass, 1993; Kass and 

Raftery, 1995), which compares ratios of model probabilities, so for two models (Mi and 

M2) and complete data Y, the Bayes Factor is p(Y  \Mx)l p(Y \ M 2) . However, there are 

complications in the calculation o f Bayes Factors, particularly in complex models such as 

some o f those presented here. One possible solution is to compare the conditional 

predictive ordinates (CPO’s) for each observation in the model (Pettit, 1990). For 

observation y/, complete data Y, the CPO for the f h observation can be defined as 

p(y. | Y(i)) where Y(q is the complete data excluding y,. Comparison of the CPO’s from

different models gives the preference for each model for each observation. The ratios of the 

sum o f the CPO’s can then be combined to obtain Pseudo Bayes Factors (Kass and 

Raftery, 1995). An advantage of the use of CPO’s and pseudo Bayes Factors is that they 

can easily be incorporated into WinBUGS by the addition of two lines of code
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(Spiegelhalter et al., 1996). However, further research is required into their use and 

interpretation.

An area o f my thesis where model comparison may be important is in reducing the 

complexity o f the missing data models, particularly in problems with a large number of 

covariates. W ith a large number o f covariates there will be many inter-relationships 

between the covariates that need to be modelled, but some of these inter-relationships may 

be negligible and a reduced model could exclude these. However, there are problems with 

the definition o f ‘negligible’ and also the problem of comparing different models.

7.6 Conclusions

In this thesis I have demonstrated and developed a wide range of uses for hierarchical 

models and shown that they can be used to tackle a number of major issues in medical 

research. I have compared classical and Bayesian approaches and generally believe that the 

Bayesian approach offers a number o f clear advantages over the classical approach. With 

the advances in computer technology and computationally intensive techniques, such as 

MCMC methods, there will be the potential to fit more and more complex, but realistic and 

appropriate, hierarchical models. This is likely to bring with it many challenges and 

research opportunities for the applied statistician.
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