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This work documents the development of a three-dimensionalhigh-order prefac-

tored compact finite-difference solver for computational aeroacoustics (CAA) based

on the inviscid Euler equations. This time explicit scheme is applied to representative

problems of sound generation by flow interacting with solid boundaries.

Four aeroacoustic problems are explored and the results validated against available

reference analytical solution. Selected mesh convergencestudies are conducted to de-

termine the effective order of accuracy of the complete scheme. The first test case

simulates the noise emitted by a still cylinder in an oscillating field. It provides a sim-

ple validation for the CAA-compatible solid wall conditionused in the remainder of

the work. The following test cases are increasingly complexversions of the turboma-

chinery rotor-stator interaction problem taken from NASA CAA workshops. In all the

cases the results are compared against the available literature.

The numerical method features some appreciable contributions to computational

aeroacoustics. A reduced data exchange technique for parallel computations is im-

plemented, which requires the exchange of just two values for each boundary node,

independently of the size of the zone overlap. A modified version of the non-reflecting

buffer layer by Chen is used to allow aerodynamic perturbations at the through flow

boundaries. The Giles subsonic boundary conditions are extended to three-dimensional

curvilinear coordinates.

These advances have enabled to resolve the aerodynamic noise generation and

near-field propagation on a representative cascade geometry with a time-marching

scheme, with accuracy similar to spectral methods.
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Chapter 1

Introduction

1.1 Thesis layout

This thesis is divided into five chapters. The first chapter contains an introduction on

the object of this research including a brief description ofthe problem, its background

and a literature review. In addition, the aims of this work and its expected outcomes

are detailed.

The second chapter presents the numerical methods that havebeen implemented in

the flow solver to address a series of test cases of incremental complexity. Particular

attention was given to the implementation of the optimised explicit time-integration

scheme, the generalised characteristic-based boundary conditions, the code paralleli-

sation and the data input/output in standardised form.

The third chapter presents the results obtained by the solution of four increasingly

complex test cases related to the turbomachinery rotor-stator interaction problem.

Chapter four, the conclusions, contains a summary of the work done that focuses

especially on the newly devised numerical methods and on theimpact that these ad-
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1. INTRODUCTION

vances have in the field of computational aeroacoustics.

To conclude, in the fifth chapter, the current limitations ofthe solver are discussed.

Approaches for their alleviation are proposed in future work.

1.2 Background and problem definition

1.2.1 Background

In the last decades, the growing popularity of the commercial civil air transport has

led to more stringent legislation regarding noise-pollution in the areas surrounding the

airports and to an increased environmental awareness [UK Department of Transport,

2003; Various, 2005]. Therefore, research, both theoretical and applied, in the field of

aeroacoustics, primarily related to the various components of the noise emitted by air-

craft, has received a strong impulse. Due to the complexity of the involved geometries

and the inherent unsteady nature of the aerodynamic sound generation, the theoreti-

cal acoustic analysis and the traditional techniques of Computational Fluid Dynamics

(CFD) are of limited applicability [Tam, 2004; Tam & Hardin,1997]. For these rea-

sons, in the last 30 years a branch of the field of computational fluid mechanics, called

Computational Aeroacoustics (CAA), has emerged [Tam, 1995]. Starting directly from

the fundamental flow governing equations, the CAA aims to reproduce all the aspects

of the sound generation and propagation in air by overcomingvarious problems of

physical and numerical nature including the disparity in magnitude between mean and

acoustic flow variables and the necessity to model the high-frequency noise compo-

nents. Among the many numerical methods developed in CAA, ofparticular relevance

are the high-order finite-difference schemes which have remarkable low dispersion and

2



1. INTRODUCTION

dissipation properties that are required to increase the accuracy and the efficiency of the

computation by reducing the number of grid points per wavelength, while still ensuring

tolerable levels of numerical error [Colonius & Lele, 2004;Rona & Spisso, 2007].

1.2.2 Problem definition

As mentioned, the aircraft contain many sources of noise. Among the most relevant is

the noise emitted by the turbofan engines, often referred toasturbomachinery noise.

Its various components, originating from different parts of the engine, have relative im-

portance depending of the flight configuration (landing or take-off), but the two main

sources are usually the fan and the turbine [Groeneweget al., 1995]. In this case, the

physical process of the noise generation includes a number of interacting factors like

the blades unsteady response to internal and external disturbances and the influence

of the duct. Due to the practical problems involved in the collection of data from the

internal parts of the engine, experimental studies of thesecomplex interactions is often

impossible. For this reason, the development of analyticaland numerical methods able

to model the physical processes at the basis of the noise generation are of high impor-

tance. The interaction between incident vortical disturbances having complex spectral

content and a cascade of static or rotating blades is one of these fundamental processes,

and is the subject of this research. Noise is originated by the conversion of the hydro-

dynamic kinetic energy of the disturbances into pressure fluctuations pressure over

the blade surface that is followed by the emission of acoustic waves characterised by

a specific spectrum and directivity. Complex analytical models have been developed

over the years to accurately describe the influence of the various parameters defining

the problem, like the number of blades, their shape and relative position. These mod-

3



1. INTRODUCTION

els have helped to clarify various aspects of the involved phenomena but are always

approximations of the actual complex intertwined physicalprocesses. The numerical

methods provided by CAA have been developed to overcome these limitations.

This study focuses on the particular case of vortical gusts with a limited spectral

content impinging on a stator blade cascade. Due to its complexity, the problem de-

scribed is transposed into a series of four test cases in which the geometry of the blades

cascade is modified in order to include different aspects of the actual turbomachine

configuration.

1.3 Aims of this study

The principal aim of this work is the solution of the turbomachinery-related problem

stated in Section 1.2.2. For this purpose, a three-dimensional high-order prefactored

compact finite-difference solver for CAA, based on the inviscid Euler equationswith

explicit time-integration, was developed. However, the code has general applicabil-

ity, and the larger aim of this study is to demonstrate its ability to address real-world

problems involving the conversion of hydrodynamic kineticenergy into sound by the

interaction with rigid surfaces.

1.4 Literature review

In the following, a literature review of the most relevant analytical and numerical for-

mulations regarding the problem of this work is presented.

For the various numerical methods implemented in the solver, the essential litera-

ture references are given in the specific sections of Chapter2. An exception is made
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1. INTRODUCTION

for Section 2.3 in which the theory is preceded by an extensive literature review of the

optimised explicit Runge-Kutta methods.

For the relevant literature regarding the basic characteristics of the original version

of the in-house finite-difference prefactored compact solver, refer to the work of Spisso

[unpublished].

1.4.1 Analytical solutions

From an analytical point of view, the first solution to the unsteady subsonic problem

of a vortical gust impinging on an infinite cascade of flat plates, based on vortex sound

theory, was given by Smith [1972]. The geometry was limited to two dimensions and

the mean flow was aligned with the plates surfaces, no staggerbetween successive

blades was considered. The author supplied the predicted pressure distribution both

in the upstream and the downstream direction along with the unsteady blade lift and

moment, and compared the results with experimental data. Based on the linear theory

of Smith, Whitehead [1987] developed a computer program called LINSUB for the

numerical evaluation of the pressure field in which approximations for the computation

of the infinite sums and of the numerical integration were introduced. This program

was later modified by Hall [1997a] to obtain one of the numerical reference solutions

considered in this work. A different solution to the problem solved by Smith, but

limited to the transmission and reflection of the acoustic waves, was proposed by Koch

[1971] who started from the treatment given by Mani & Horvay [1970], based on the

finite Wiener-Hopf technique. This exact analysis was laterextended by Peake [1993]

to cover the case of a vortical incoming gust.

The three-dimensional version of the problem was first solved in an approximate
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1. INTRODUCTION

form by Atassi & Hamad [1981] and then by Envia & Kerschen [1986] who obtained

the solution for a swept vane cascade from the superimposition of the solution ob-

tained for an isolated stator vane. The neglected effects due to the interaction between

the blades and their finite chord were introduced in the treatment of Glegg [1999] that,

similarly to Koch [1971], based his solution on the Wiener-Hopf method. The work by

Glegg illustrates the response of the blades cascade to an incoming acoustical or vorti-

cal three-dimensional disturbance by supplying the analytical solution for the unsteady

loading of the blades and the acoustic power of each propagating mode.

In the case of a swept cascade bounded by two parallel walls, no analytical solution

is known. The treatment given by Envia [2000], based on a previous work by the

same author [Envia, 1988] allows to obtain an approximate solution to the problem by

considering only the contribution from the leading edge of the infinitely thin blades

while discarding the contribution of the trailing edge and the mutual influence of the

blades. In this work the solution provided by Envia is used asa reference to assess the

accuracy of one of the solved test cases.

Other relevant contributions to this problem have been madeby Majumdar & Peake

[1996], Hanson & Horan [1998], Evers & Peake [2002], Cheonget al. [2006, 2009]

and Wei & Cheong [2010].

1.4.2 Numerical solutions

Numerical solutions to the various versions of the gust-cascade interaction problem

have become available in literature since the problems wereproposed in the respective

NASA CAA workshops [Dahl, 2000, 2004; Tam & Hardin, 1997].

The two-dimensional version of the problem of a vortical gust impinging into a rec-
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1. INTRODUCTION

tilinear cascade of thin flat plates was first solved by four research groups whose con-

tributions are included in the proceedings of the second NASA CAA workshop [Tam

& Hardin, 1997]. The solution proposed by Hu & Manthey [1997]employed the Per-

fectly Matched Layer (PML) technique for the enforcement ofthe boundary closures

at the inflow and at the outflow, and of the optimised LDDRK explicit Runge-Kutta

scheme [Huet al., 1996] for the time-integration. The PML technique, originally ap-

plied to Maxwell’s equations, is, in this case, adapted to the inviscid Euler equations.

Another contribution was provided by Tamet al. [1997] whose results were based on

the application of the explicit spatial discretisation given by the Dispersion-Relation-

Preserving (DRP) of Tam & Webb [1993]. The most interesting aspects of the adopted

numerical methods are, again, the external boundary closures that in this case were

tailor-made for the absorption of the analytically predicted duct modes. Hall [1997b]

adopted for the solution of the problem an original approachby employing a finite-

element formulation based on a variational method, with results. The last contribution

from the second NASA CAA workshop was given by Lockard & Morris [1997] whose

solution is characterised by the use of a structured irregular mesh, the optimised RK56

two-step explicit Runge-Kutta time-integration scheme byHu et al. [1996], and the

adoption of the DRP scheme by Tam & Webb [1993] with the modified coefficients

given by Lockardet al. [1995]. At the inflow and outflow the Giles subsonic boundary

conditions were applied. Further contributions to this problem were given during the

following NASA workshops with the solutions given by Wanget al.[2000] and by Bin

et al. [2004] that used this problem as an introductory test for their codes. The for-

mer adopted an original technique, also applied to the three-dimensional form of the

problem, called space-time conservation element and solution element (CE/SE), based

on a second-order finite volume formulation that allows to specify the non-reflecting
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1. INTRODUCTION

boundary conditions at the inflow and at the outflow in a particularly simple form,

without resorting to the usual characteristic-based closures. The latter proposed a so-

lution based on a particular version of the DRP schemes, devised by one of the au-

thors [Cheong & Lee, 2001], called Grid-Optimised Dispersion-Relations-Preserving

(GODRP). This spatial scheme was coupled to a third-order Adams-Bashforth time-

integration scheme. At the inflow and at the outflow the boundary conditions by Kim

& Lee [2000], also used in this work, were enforced.

Other solutions to this problem were published by Hixonet al.[2000] and by Ragab

& Salem-Said [2007]. The study by Hixonet al. compares the performances of four

different pairs of inflow/outflow non-reflecting boundary conditions: the characteristic-

based 1D by Thompson [1987, 1990], the subsonic non-reflecting by Giles [1990]

(modified for the input of the vortical gust from the inflow boundary), the formulation

proposed by Hagstrom & Goodrich [2003], and the PML implementation of Abarbanel

et al. [1999]. The results show that the PML technique is the most accurate but has

the disadvantage of requiring additional computational nodes. The study by Ragab

and Salem-Said contains the solution to the original problem as defined by the NASA

CAA workshop [Tam & Hardin, 1997] and a number of its variations that make their

work the most extensive in literature on this subject. The spatial scheme was a sixth-

order compact by Lele [1992] with filtering following Visbal& Gaitonde [2002] and

time-integration was performed by a five-stage optimised explicit Runge-Kutta scheme

by Carpenter & Kennedy [1994]. The inviscid wall was modelled following Poinsot &

Lele [1992] and, at the outflow, the closure was provided by the Giles [1990] boundary

conditions. At the inflow, Giles condition was modified to allow the introduction of the

vortical gust. The article by Ragab & Salem-Said [2007] alsointroduces corrections

in the scheme to deal with the singularities of the pressure distribution. The authors
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1. INTRODUCTION

further extended their work on this subject in Salem-Said & Ragab [2008].

The three-dimensional version of the problem with the sweptcascade of flat plates,

defined by Dahl [2000], was solved by Wanget al.[2000] adopting the same numerical

techniques employed for the solution of the 2D problem already described in this re-

view. It has to be noted that the supplied solution does not satisfy all the requirements

defined by the problem stated in Dahl [2000] and it is limited to sweep angles lower

than 15°. No other numerical solution of this problem is known.

In the occasion of the fourth NASA CAA workshop, the two-dimensional ver-

sion of the problem including a blades cascade with realistic profile [Dahl, 2004],

was solved by six research groups. Binet al. [2004] used numerical techniques here

already described for the version of the problem with infinitely thin plates. The so-

lution given by Nallasamyet al. [2004] was obtained with a parallel [Hixonet al.,

2002] non-linear solver based on the spatial scheme by Hixon[2000a], and with the

time-integration performed by an explicit optimised Runge-Kutta scheme of Huet al.

[1996]. The spurious oscillations were removed applying the tenth-order dissipation

model by Kennedy & Carpenter [1994] and, at the inflow and outflow, a modified

version of the non-reflecting conditions by Giles [1990] were used. In this case, the

boundary closure has not only the ability to feed the vortical gust into the computa-

tional field, but also that of maintaining a constant mean condition specified by the

problem, both at the inflow and at the outflow [Hixonet al., 2003, 2004]. Wanget al.

[2004] solved the problem using the CE/SE method already described in this review for

the versions of the problem previously discussed [Wanget al., 2000]. A highly orig-

inal approach to the problem was illustrated by Hixon [2004]. His newly developed

Space-Time Mapping Analysis (STMA) technique, particularly suited for the parallel

computation on multiple processors, replaces the time-marching method with an itera-
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1. INTRODUCTION

tive procedure based on a “space-time” volume that avoids the need of synchronisation

between different processes [Hixon, 2003]. During the fourth NASA CAA workshop,

the last two contributions came from Escribanoet al.[2004] and Coupland [2004] that,

for the solution of the problem, adopted frequency-domain type of solvers. The for-

mer, using unstructured grids, performed a two-step analysis first by computing the

mean steady-state flow by the means of a non-linear code called Mu2s2T, and then by

separately solving the unsteady problem, with a linear version of the same code called

Mu2s2T-L, for each of the three different harmonics of the incoming vortical gust. At

the through boundaries the Giles [1990] conditions were used. The latter, employing

a structured multi-block non-linear code called HYDRA, performed the integration

by an unspecified five-stage Runge-Kutta scheme with multi-grid acceleration. In this

case the treatment of the boundaries was performed in a problem-specific fashion based

on the analytical prediction of the propagation modes.

The group of research of the University of Toledo, Ohio, USA is actively working

on problems [Nallasamyet al., 2007] that are direct three-dimensional extensions with

blades of increasingly realistic shape, of the series of problems here illustrated. In

particular, their most recent publications [Hixonet al., 2010, 2011] regard the modeli-

sation of realistic three-dimensional rotor wakes with a technique called Vortical Gust

Boundary Condition (VGBC), and the extension of the subsonic boundary condition

by Giles [1990] to unsteady three-dimensional flows.

10



Chapter 2

Numerical method

The original in-house code by Spisso [unpublished] from which this work started, was

based on the spatial compact prefactored finite-difference scheme by Hixon [2000b]

and was capable to integrate solutions in time by the use of the classical four-stage

fourth-order Runge-Kutta method and of the more recent two-stage low-dispersion

and low-dissipation Runge-Kutta scheme by Huet al. [1996]. The applicability of

this solver was restricted to 2D problems in primitive linear form defined on regular

Cartesian meshes. The range of available boundary conditions included the inviscid

wall by Tam & Dong [1994] and the buffer layer by Chenet al. [2004]. The applica-

ble numerical high-order filtering techniques of Gaitonde &Visbal [1998, 1999] were

restricted to their explicit formulation and to their implicit prefactored compact for-

mulation by Hixon [1999]. The code did not allow to run parallel computations and

could not manage the non-dimensionalisation of the variables and the input and output

of data in a standard format.

During the course of this work the 2D Cartesian code was extended to 3D curvilin-

ear coordinates to solve the flow governing equations in either primitive, conservative,
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2. NUMERICAL METHOD

linearised or non-linear form. The equations can also be non-dimensionalised with

respect to a prescribed set of reference values. In addition, the data input-output from

standard files was implemented to improve the portability ofthe initial models and

of the results. The range of solvable problems was extended with the introduction of

a number of characteristic-based boundary treatments and with the possibility to run

simulations on large models thanks to the domain decomposition technique and to the

parallelisation of the code. Finally, the most recent optimised explicit Runge-Kutta

time-marching schemes were implemented to speed-up the temporal integration.

In this chapter, the algorithms used in the solver are described in detail with a

particular emphasis on the features newly implemented.

2.1 Equations

2.1.1 The Euler equations

The inviscid Euler equations are derived by the applicationof the principles of conser-

vation of mass, momentum, and energy to an arbitrary volume of inviscid fluid. The

application of these principles to an arbitrary closed region of fluid, calledcontrol vol-

ume, bounded by acontrol surfacethat can either be fixed in the space (Eulerian frame

of reference) or moving with the fluid (Lagrangian frame of reference) leads to differ-

ent formulations of the Euler equations. If the control volume has a finite extension,

the integral formulation is obtained. Else, if the control volume is infinitely small so

to have homogeneous flow properties within it, thedifferentialformulation is derived.

When the Eulerian frame of reference is used, the equations are said to be inconser-

vativeform and the unknown variables are defined by vectorU =
[

ρ, ρu, ρet
]T . Their

12
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differential formulation is

∂ρ

∂t
+ ∇· (ρu) = 0, (2.1a)

∂ (ρu)
∂t
+ ∇· (ρuu) = −∇p+ ρf , (2.1b)

∂ (ρet)
∂t
+ ∇· (ρetu) = −∇· (pu) + ρf · u, (2.1c)

whereρ is the density,p is the static pressure,u = [u, v,w] is the vector of the velocity

components in three-dimensional Cartesian form,et is the specific total energy that

is given by the sum of the specific internal energye and the kinetic energyu · u/2,

f =
[

fx, fy, fz
]

is the body force vector per unit mass that could be caused by the

presence of a gravitational or an electromagnetic field, andt is the time. Equations (2.1)

are applicable to homogeneous, non-reacting, mass-conserving flows.

If the Lagrangian approach is used, the equations are inprimitive form and the un-

known variables are defined by vectorQ =
[

ρ, u, p
]T , in which(ρ, p) are a selected pair

of thermodynamic variables that define the thermodynamic fluid state. Their complete

differential formulation is

Dρ
Dt
+ ρ∇· u = 0, (2.2a)

Du
Dt
= −1
ρ
∇p+ f , (2.2b)

Dp
Dt
= −γp∇· u + (γ − 1)ρf · u, (2.2c)

whereγ is the ratio of the specific heat at constant pressurecp to that at constant volume

cv, with D
Dt denoting the material derivative.

The Euler equations in their 3D form have 6 unknown variables; therefore, to solve
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the system, an additional relation is required. Usually, when dealing with gases, the

closure is provided by theequation of statefor a perfect gas

p = ρRT, (2.3)

that relates the static pressurep with the densityρ and the absolute temperatureT

through the specific gas constantR. This equation introduces one further variableT

that is directly related to the specific internal energyeby the expression

e= cvT. (2.4)

In order to numerically compute the Euler equations, they can be more conveniently

recast instrongor vectorconservative form

∂U
∂t
+
∂E
∂x
+
∂F
∂y
+
∂G
∂z
= S, (2.5)

where
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The same system of equations can be written in the so-calledquasi-linearform,

where the spatial derivatives of the flow variables (either in conservative or primitive

form) are premultiplied by Jacobian matrices

∂U
∂t
+ A
∂U
∂x
+ B
∂U
∂y
+ C
∂U
∂z
= S, (2.8a)

∂Q
∂t
+ A
∂Q
∂x
+ B
∂Q
∂y
+ C
∂Q
∂z
= S, (2.8b)

where vectorsQ andS, and matricesA, B, C, when the primitive variables are used,

have the form
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(2.10)

Equations (2.8) lead to results equivalent to the ones from Equation (2.5) when the

flow field does not contain strong variations in the flow state and has the computational

advantage of requiring the differentiation with respect to the various space directions

on the same set of values (Q or U) instead of having to compute the derivatives se-

quentially onE, F, andG.

The expressions forA, B, andC in case of conservative variables are slightly more

complex and their formulation can be found in Hirsch [1990].They can be obtained

by the application of the chain rule to Equation (2.5) that gives

A =
∂E
∂U
, B =

∂F
∂U
, C =

∂G
∂U
. (2.11)

The quasi-linear forms of the Euler Equations (2.8a) and (2.8b) allow for the defini-

tion of a linearisedformulation that is oftenly used in CAA. In this case, the Jacobian

matricesA, B, andC do not depend on the actual state of the flow but on a reference

state that is considered constant throughout the computation at any point of the field. It

is clear that this form only suits certain classes of problems in which the perturbations

are of small amplitude so that the non-linear effects can be considered negligible and in

which the mean value of any flow variable does not vary in time.This particular form

of the equations has the computational advantage of avoiding to update the Jacobian
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matrices at each time step. Therefore,A, B, andC can be computed once and for all at

the beginning of the simulation.

2.1.2 The characteristic form of the Euler equations

Another form of the Euler equations can be determined by exploiting their hyperbolic-

ity in time, thecharacteristicform. The Euler equations can be re-cast by a principal

component analysis as a set of advection wave equations. Their solutions are advection

waves of varied nature that propagate through the flow field. This formulation is par-

ticularly important for the numerical treatment of the boundary conditions as it allows

to selectively reflect, absorb, or feed into the field the waves depending on the type of

boundary that is imposed and on the sign of the wave group velocity.

The characteristics are families of curves (or surfaces when in 3D) along which

some of the differential terms of the Euler equations become zero as they represent an

invariant state for that particular variable. This allows to reduce the Euler equations to

a set of ordinary differential equations (ODE).

Solutions of the Euler Equations (2.8b) can be written in wave-like form as

Q = Q̃ei(ξ·x−ωt), (2.12)

whereQ̃ is the wave amplitude at timet = 0, ξ = [ξx, ξy, ξz] is the wavenumber vector,

x is the position vector in space and the whole expression included between brackets

represents the phase of the wave that propagates in theξ direction.

The study of matrixK , defined as

K = ξxA + ξyB + ξzC, (2.13)
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leads to the computation of matricesL and its inverseL−1 that allow to transform

an elemental variation of the flow stateδQ defined in terms of primitive variables

Q into an elemental variation of the characteristic variables. DeterminingL is an

eigenvector/eigenvalue problem where the eigenvaluesλi are the solution to equation

det(K − λiI ) = 0, (2.14)

in which I is the identity matrix of the same dimensions ofK andλi represents the

speed of propagation of thei th wave. Left and right eigenvectors can be computed as

l iK = λi l i,

Kr i = λir i ,

(2.15)

where i is integer, 16 i 6 N, with N equal to the number of ordinary differential

equations of the system. The left eigenvectors constitute the rows of matrixL−1 and

the right eigenvectors (that are proportional to the wave amplitudes) are the columns

of matrixL .

By premultiplying both sides of Equation (2.8b) byL−1, the following compatibil-

ity equation is obtained

L−1∂Q
∂t
+ L−1A

∂Q
∂x
+ L−1B

∂Q
∂y
+ L−1C

∂Q
∂z
= L−1S. (2.16)

Equation (2.16) can be re-written as:

L−1∂Q
∂t
+

(

L−1AL
)

L−1∂Q
∂x
+

(

L−1BL
)

L−1∂Q
∂y
+

(

L−1CL
)

L−1∂Q
∂z
= L−1S, (2.17)
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which allows it to be stated in terms of the vector of the characteristic variablesR as

∂R
∂t
+

(

L−1AL
) ∂R
∂x
+

(

L−1BL
) ∂R
∂y
+

(

L−1CL
) ∂R
∂z
= L−1S, (2.18)

where

∂R
∂t
= L−1∂Q

∂t
,
∂R
∂x
= L−1∂Q

∂x
,
∂R
∂y
= L−1∂Q

∂y
,
∂R
∂z
= L−1∂Q

∂z
. (2.19)

The choice of vectorξ can only diagonalise one of the three Jacobian matrices

A, B, andC. For example,ξ = [1, 0, 0] diagonalisesA, while B andC remain non-

diagonal.

It is important to notice that the characteristic variablesare functions of the spatial

direction defined by vectorξ and that, in this context, they are a linear combination

of the primitive variables through coefficients that are represented by the components

of the left eigenvectors. These, in turn, are function of theprimitive variables and

therefore, not constant. This limits the possibility to generally define the vectorR

that exists only ifL is constant. On the other hand, vectorδR of the characteristic

variations can always be defined with respect toδQ [Hirsch, 1990], whereδ represents

an arbitrary variation (spatial or temporal partial derivative).

Solving Equation (2.14) forλi gives (in 3D)

λ1 = λ2 = λ3 = u· ξ, (2.20a)

λ4 = u· ξ + c, (2.20b)

λ5 = u· ξ − c, (2.20c)

19



2. NUMERICAL METHOD

wherec is the local isentropic speed of sound. This means that the first three waves

have speed equal to the component of the flow velocity along the direction defined by

ξ while the fourth and the fifth also include the contribution of the speed of sound in

the opposite directions.

Having determinedλi for the Euler equations, the eigenvector matrixL is obtained

from Equation (2.15).

It is important to notice that the eigenvectors are not univocally determined as any

of their linear combinations is a valid solution to the eigenvalue problem. Therefore,

matrixL and its inverse appear in the literature under different forms related to specific

normalisations, depending on the choices made by the authors. Throughout this docu-

ment, the treatment given by Hirsch [1990] is used, as it is particularly suitable for the

application of the characteristic-based boundary conditions developed in Kim & Lee

[2000, 2003, 2004] and adopted in this work. This gives
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0 −ξx −ξy −ξz 1
ρc











































































. (2.21b)

20



2. NUMERICAL METHOD

Finally, it is possible to write the value of the variations of the characteristic vari-

ables as function of the primitive variables’ variations along with their physical inter-

pretation. These are

δR1 = δρ −
1
c2
δp, (entropy wave)

(2.22a)

δR2 = −ξzδu+ ξxδw, (vorticity wave)

(2.22b)

δR3 = ξyδu− ξxδv, (vorticity wave)

(2.22c)

δR4 = ξxδu+ ξyδv+ ξzδw+
1
ρc
δp, (leftward propagating acoustic wave)

(2.22d)

δR5 = −ξxδu− ξyδv− ξzδw+
1
ρc
δp. (rightward propagating acoustic wave)

(2.22e)

Note that these definitions are derived from a version of matrix L−1 obtained with a

different normalisation (also given by Hirsch [1990]) but they are often preferred over

those obtainable from Equation (2.21b), because their physical interpretation is more

intuitive.

2.1.3 Transformations between the different forms of the flow vari-

ables

As shown by Hirsch [1990], when dealing with the Euler equations, as seen in Sec-

tion 2.1.2, it is possible to switch from primitive variablesQ to characteristic variables
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R and back by the use of the eigenvector matricesL andL−1

δR = L−1δQ, δQ = LδR, (2.23)

whereδ represents an arbitrary variation (spatial or temporal partial derivative).

More generally, as the transformation is not limited to small variations only, it is

possible to switch from the primitiveQ to the conservativeU formulation through

matrixM and its inverse

U = MQ , Q = M−1U, (2.24)

whereM andM−1 are

M =
∂U
∂Q
=











































































1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0

(u2+v2+w2)
2 ρu ρv ρw 1

γ−1











































































, (2.25)

M−1 =
∂Q
∂U
=











































































1 0 0 0 0

−u
ρ

1
ρ

0 0 0

− v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0

(γ−1)(u2+v2+w2)
2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1











































































. (2.26)

The combination of the above matrices with Equation (2.21a)and (2.21b) allows

to directly transform small variations of conservative variables into variations of the
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characteristic variables through matrixP and its inverse

δU = PδR, δR = P−1δU, (2.27)

where

P = ML , (2.28)

and

P−1 = L−1M−1. (2.29)

Matrices P and P−1 are determined analytically from Equations (2.28), (2.25),

(2.21a) and (2.29), (2.26), (2.21b) and are reported in Hirsch [1990] and in Kim &

Lee [2000, 2004].

2.1.4 Non-dimensionalisation

A final note regarding the internal non-dimensionalisationof all the variables in the

code: following the recommendations of the Standard Interface Data Structures (SIDS),

on which the CFD General Notation System (CGNS) is built, it is made with respect

to a set of only four reference scales: lengthl∞, static speed of soundc∞, static density

ρ∞, and static temperatureT∞ [NASA, 2012]. All the other variables are consistently

non-dimensionalised with respect to these. For example

pnd = pd/(ρ∞c2
∞), (2.30a)

µnd = µd/(ρ∞c∞l∞), (2.30b)

tnd = tdc∞/l∞. (2.30c)
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2.2 Spatial discretisation

In the present work, a compact sixth-order central finite-difference scheme is used for

all the computations. The spatial derivativef ′i at point i depends on the values of

function f and on the derivative itself in the surrounding points as

a1
(

f ′i+1 + f ′i−1

)

+ a2 f ′i =
1
∆x

[

b1 ( fi+2 − fi−2) + b2 ( fi+1 − fi−1)
]

, (2.31)

where∆x is the uniform distance between the nodes, andai and bi are two sets of

coefficients that are [Lele, 1992]

a1 =
1
5
, a2 =

3
5
, b1 =

1
60
, b2 =

7
15
. (2.32)

By substituting the spatial derivativesf ′ on the left-hand side of Equation (2.31)

with their Taylor series expansion, it can be shown that the coefficients in Equa-

tions (2.32) ensure that the leading term of the truncation error is of sixth order.

Central high-order schemes like this are particularly suited to the use in CAA be-

cause they have no dissipation error and, therefore, they can propagate acoustic waves

over long distances with little attenuation in amplitude.

The ability of this scheme to propagate waves depending on their spectral content

can be studied using the 1D advection wave equation as in Huet al. [1996]

∂u
∂t
+ c
∂u
∂x
= 0, (2.33)

wherec is the group velocity with which the wave propagates.
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Assume a solution foru of the type

u (x, t) = ũ0e
i(kx−ωt), (2.34)

wherek is thereal wavenumber andω the angular frequency.

Applying the discretisation of Equation (2.31) to Equation(2.33), the semi-discrete

equation at pointi is obtained

∂ui

∂t
− c

a1

a2

(

∂ui+1

∂x
−
∂ui−1

∂x

)

+
c
∆x

[

b1

a2
(ui+2 − ui−2) +

b2

a2
(ui+1 − ui−1)

]

= 0. (2.35)

Through Fourier analysis, the semi-discrete Equation (2.35) becomes

∂ũ
∂t
+ ick∗ũ = 0, (2.36)

where ũ is the spatial Fourier transform ofu and k∗ is the numerical(or effective)

wavenumber that is related to the real wavenumberk by the relation [Lele, 1992]

k∗ =
b2 sin(k) + (b1/2) sin(2k)

a2 + 2a1 cos(k)
. (2.37)

As can be seen by Figure 2.1 where the effective wavenumberk∗ is plotted as a

function of the real wavenumberk (the continuous line represents the ideal case of

an exact differentiation), the former is a good approximation of the latter only on a

restricted range of frequencies. Amaximum resolvable wavenumber k∗
c can be defined

depending on a maximum tolerable error between two wavenumbers. For instance, Hu

et al. [1996] set the maximum error|k∗ − k| equal to 0.005/∆x. The value ofk∗c can

be determined numerically with iterative methods. For a maximum tolerable error of
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0.005/∆x, k∗c is 1.355/∆x and the relative minimum number of points-per-wavelength

Nλ is immediately obtained asNλ = 2π/
(

k∗c∆x
)

= 4.63. Another important value that

can be derived from Equation (2.37) is themaximum effective wavenumber k∗max that

in Figure 2.1 corresponds to they coordinate of the maximum of the function shown

as a dashed line. It is an absolute value and for the compact sixth-order scheme of

Equation (2.31) it is equal to 1.989/∆x.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
exact
compact sixth order

k∆x

k∗
∆

x

k∗max∆x

k∗c∆x

Figure 2.1: Numerical wavenumber as a function of the real wavenumber for the an
ideal exact spatial discretisation and for the compact sixth-order scheme of Equa-
tion (2.31).

2.2.1 Hixon’s prefactored compact scheme

The compact scheme represented by Equation (2.31) can be numerically implemented

in many ways. In this work theprefactored small-stencilversion given by Hixon
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[2000b] is used. In matrix form a compact scheme of any order can be written as

Ad =
1
∆x

C f , (2.38)

where, in the case of a sixth-order scheme of Equation (2.31), A is a tridiagonal matrix

of the coefficientsai (i = 1, 2), d is the vector of the spatial derivatives of functionf ,

C is a pentadiagonal matrix of the coefficientsbi (i = 1, 2), and f is the vector of the

values of functionf .

Hixon introduces the forwarddF and backwardsdB derivative operators in the

equations

AFdF =
1
∆x

BF f , (2.39a)

ABdB =
1
∆x

BB f , (2.39b)

that satisfy

d =
1
2

(

dF + dB
)

, (2.40)

whereAF, AB, BF, andBB are unknown matrices to which the following restrictions

are applied:

AF = [ AB]T , (2.41a)

BF = −[BB]T . (2.41b)

Under these conditions, Equations (2.39) can be written in expanded form for a generic
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nodei as

c1

(

∂ fi+1

∂x

)F

+ (1− c1 − c3)

(

∂ fi
∂x

)F

+ c3

(

∂ fi−1

∂x

)F

=

=
1
∆x

[

c2 fi+1 − (2c2 − 1) fi − (1− c2) fi−1
]

, (2.42a)

c3

(

∂ fi+1

∂x

)B

+ (1− c1 − c3)

(

∂ fi
∂x

)B

+ c1

(

∂ fi−1

∂x

)B

=

=
1
∆x

[

(1− c2) fi+1 + (2c2 − 1) fi − c2 fi−1
]

. (2.42b)

Isolating
(

∂ fi
∂x

)F
and

(

∂ fi
∂x

)B
, and substituting them into Equation (2.40), leads to

(c1c3)
(

f ′i+2 + f ′i−2

)

+ (c1 + c3) (1− c1 − c3)
(

f ′i+1 + f ′i−1

)

[

c2
1 + c2

3 + (1− c1 − c3)
2
]

f ′i =

=
1
∆x

[

1
2

(c1 + c2 (c3 − c1)) ( fi+2 − fi−2) +

(

1
2
− c1 − c2 (c3 − c1)

)

( fi+1 − fi−1)

]

, (2.43)

that can be directly compared to the equation defining the finite-difference scheme to

obtain the coefficientsc1, c2 andc3.

In the case of a sixth-order scheme of Equation (2.31), Hixongives the solution

c1 =
1
2
− 1

2
√

5
, (2.44a)

c2 = 1−
1

30c1
, (2.44b)

c3 = 0. (2.44c)

With the same procedure shown here Hixon [2000b] also definesa fourth-order and

an eighth-order scheme.

28



2. NUMERICAL METHOD

As a result, tridiagonal matrixA is split into the two bidiagonal matricesAF and

AB, and the pentadiagonal matrixB is substituted by the tridiagonal matricesBF, and

BB. This means that the spatial derivative at a node of indexi within the computational

field can be obtained as the sum of two contributions (the half-derivatives) that depend

on the value of the functionf at i, i + 1 andi − 1 (the stencil is reduced from five to

three points) and on the value of the same half-derivative ofonly one of the neighbour-

ing nodes. This allows to execute the computation of the two half-derivatives in an

independent fashion with “sweeps” starting from the opposite boundaries. The com-

plete spatial derivatives are then recovered simply addingup the two components as

in Equation (2.40). Hixon [2000b] claims that this technique, although implying one

addition per each point more, has to be preferred with respect to the most optimised

Thomas algorithm “since additions are much less expensive than multiplications” and

“the advantages of the prefactorization offset the slight increase in computational cost”.

2.2.2 Treatment of the boundaries

For the sweeps to start from the opposite sides of the field, aninitial approximation

of the two half-derivatives at the boundaries is needed. Hixon [2000b] suggests to

compute them by using high-order explicit approximations that, depending on the type

of boundary, can use either one-sided or centred stencils.

For walls and outer boundaries, the sixth-order one-sided approximations with 7-
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point stencil at nodes with indexi = 1 andi = imaxhave the form

∂ f1
∂x

B

=

7
∑

i=1

si fi , (2.45a)

∂ f1
∂x

F

= −
7

∑

i=1

eimax+1−i fi, (2.45b)

∂ fimax

∂x

B

=

imax
∑

i=imax−6

ei fi, (2.45c)

∂ fimax

∂x

F

= −
imax
∑

i=imax−6

simax+1−i fi, (2.45d)

where:

s1 =
−610− 96

√
5

300
, eimax =

860− 96
√

5
300

, (2.46a)

s2 =
1300+ 346

√
5

300
, eimax−1 =

−2300+ 346
√

5
300

, (2.46b)

s3 =
−1375− 535

√
5

300
, eimax−2 =

3125− 535
√

5
300

, (2.46c)

s4 =
1125+ 475

√
5

300
, eimax−3 =

−2875+ 475
√

5
300

, (2.46d)

s5 =
−600− 260

√
5

300
, eimax−4 =

1650− 260
√

5
300

, (2.46e)

s6 =
185+ 81

√
5

300
, eimax−5 =

−535+ 81
√

5
300

, (2.46f)

s7 =
−25− 11

√
5

300
, eimax−6 =

75− 11
√

5
300

. (2.46g)

For symmetrical, periodical and inter-block boundaries, the ninth-order centred 11-

point stencil is used. Although a tenth-order formulation is possible, Hixon [2000b]

uses one of the available degrees of freedom to match more closely the performance of
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the interior scheme. At a node with indexj the formulation is

∂ f j

∂x

F

=

5
∑

i=−5

bi fi+ j , (2.47a)

∂ f j

∂x

B

= −
5

∑

i=−5

b−i fi+ j , (2.47b)

where:

b−5 = −0.000429279312812, b5 = 0.00115802227448959, (2.48a)

b−4 = 0.00444354988633981, b4 = −0.01539771995493, (2.48b)

b−3 = −0.0192836978258309, b3 = 0.0997639212217881, (2.48c)

b−2 = 0.0507098949263327, b2 = −0.425480581264144, (2.48d)

b−1 = −0.264423227620118, b1 = 1.40224343904655, (2.48e)

b0 = −0.833304321377665. (2.48f)

The procedure used to obtain these coefficients, that in the original article by Hixon

[2000b] are given in single precision only, is described in detail by Spisso [unpub-

lished] and it is applied in the following part of this section to obtain upwind and

downwind stencils, not previously available, needed for the solution of the second test

case as described in Section 3.2. These stencils allow the computation of the half-

derivatives at a node of indexi based on the values of functionf from index i − 1 to

i +5 (referred to as “(5-1) 7-point stencil”), or based on the values of the function from

index i − 2 to i + 4 (referred to as “(4-2) 7-point stencil”). The same coefficients can

also be used, by inverting their signs, for the application of the stencil in the opposite

spatial direction.
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For example, the coefficients for the backward derivative of the (4-2) 7-point stencil

are computed. First, the coefficientsA, B, K, D, E, F, andG of the Taylor expansion

of the two half-derivatives introduced in Equations (2.39)[Spisso, unpublished]

∂ fi
∂x

F

=
∂ fi
∂x
+ A∆x

∂2 fi
∂x2
− B∆x3∂

4 fi
∂x4
+ K∆x5∂

6 fi
∂x6
+ D∆x6∂

7 fi
∂x7

+ E∆x7∂
8 fi
∂x8
+ F∆x8∂

9 fi
∂x9
+G∆x9∂

10 fi
∂x10

+O (∆x)11 , (2.49a)

∂ fi
∂x

B

=
∂ fi
∂x
− A∆x

∂2 fi
∂x2
+ B∆x3∂

4 fi
∂x4
− K∆x5∂

6 fi
∂x6
+ D∆x6∂

7 fi
∂x7

− E∆x7∂
8 fi
∂x8
+ F∆x8∂

9 fi
∂x9
−G∆x9∂

10 fi
∂x10

+O (∆x)11 , (2.49b)

have to be determined. Note that when the two Equations (2.49) are added, the con-

tribution from the even derivatives is always zero as they have opposite coefficients.

A, B, K, D, E, F, andG are characteristic of the adopted spatial scheme and can be

computed as a function of coefficientsc1, c2, c3 of Equation (2.44) by substituting

Equations (2.49) into (2.42). For Hixon’s sixth-order scheme they are equal to [Spisso,

unpublished]

A =
1

3+ 3
√

5
, B =

5+ 7
√

5
720

, (2.50a)

K =
−5+ 17

√
5

21600
, D =

1
2100

, (2.50b)

E =
−25− 227

√
5

6048000
, F =

−277
4536000

, (2.50c)

G =
1475− 839

√
5

544320000
. (2.50d)
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The (4-2) 7-point backward derivative can be written in expanded form as

∂ fi
∂x

B

=
1
∆x

(s−2 fi−2 + s−1 fi−1 + s0 fi + s1 fi+1 + s2 fi+2 + s3 fi+3 + s4 fi+4) , (2.51)

where coefficientssj (with −2 ≤ j ≤ 4) are the unknowns.

By substituting the values of the functionf with their Taylor expansion up to the

sixth order and neglecting the rest, and then regrouping thevalues of the derivatives of

different order, Equation (2.51) becomes

∂ fi
∂x

B

=

[

1
∆x

(s−2 + s−1 + s0 + s1 + s2 + s3 + s4) fi

+ (−2s−2 − s−1 + s1 + 2s2 + 3s3 + 4s4)
∂ f
∂x

+

(

22

2!
s−2 +

1
2!

s−1 +
1
2!

s1 +
22

2!
s2 +

32

2!
s3 +

42

2!
s4

)

∆x
∂2 f
∂x2

+

(

−
23

3!
s−2 −

1
3!

s−1 +
1
3!

s1 +
23

3!
s2 +

33

3!
s3 +

43

3!
s4

)

(∆x)2∂
3 f
∂x3

+

(

24

4!
s−2 +

1
4!

s−1 +
1
4!

s1 +
24

4!
s2 +

34

4!
s3 +

44

4!
s4

)

(∆x)3∂
4 f
∂x4

+

(

−25

5!
s−2 −

1
5!

s−1 +
1
5!

s1 +
25

5!
s2 +

35

5!
s3 +

45

5!
s4

)

(∆x)4∂
5 f
∂x5

+

(

26

6!
s−2 +

1
6!

s−1 +
1
6!

s1 +
26

6!
s2 +

36

6!
s3 +

46

6!
s4

)

(∆x)5∂
6 f
∂x6

]

.

(2.52)
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Finally, comparing Equation (2.52) and (2.49b)
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By numerically inverting the matrix on the left-hand side ofEquation (2.53), the

stencil coefficients of Equation (2.51) are found

s−2 =
20+ 8

√
5

600
, s−1 =

−190− 78
√

5
600

, (2.54a)

s0 =
−450+ 130

√
5

600
, s1 =

850− 50
√

5
600

, (2.54b)

s2 =
−300− 20

√
5

600
, s3 =

80+ 12
√

5
600

, (2.54c)

s4 =
−10− 2

√
5

600
. (2.54d)

In a similar way, the coefficients of the forward derivative at nodei defined as

∂ fi
∂x

F

= −
4

∑

j=−2

ej fi+ j , (2.55)
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are recovered

e−2 =
−20+ 8

√
5

600
, e−1 =

290− 78
√

5
600

, (2.56a)

e0 =
250+ 130

√
5

600
, e1 =

−750− 50
√

5
600

, (2.56b)

e2 =
300− 20

√
5

600
, e3 =

−80+ 12
√

5
600

, (2.56c)

e4 =
10− 2

√
5

600
. (2.56d)

For the sake of completeness, the (5-1) 7-point stencils along with their coefficients

are also shown

∂ fi
∂x

B

=

5
∑

j=−1

sj fi+ j ,
∂ fi
∂x

F

= −
5

∑

j=−1

ej fi+ j , (2.57a)

s−1 =
−25− 11

√
5

300
, e−1 =

75− 11
√

5
300

, (2.57b)

s0 =
−435− 19

√
5

300
, e0 =

335− 19
√

5
300

, (2.57c)

s1 =
775+ 115

√
5

300
, e1 =

−725+ 115
√

5
300

, (2.57d)

s2 =
−500− 150

√
5

300
, e2 =

500− 150
√

5
300

, (2.57e)

s3 =
250+ 90

√
5

300
, e3 =

−250+ 90
√

5
300

, (2.57f)

s4 =
−75− 29

√
5

300
, e4 =

75− 29
√

5
300

, (2.57g)

s5 =
10+ 4

√
5

300
, e5 =

−10+ 4
√

5
300

. (2.57h)

More generally, half-derivatives at node with indexi = 1 based on one-sided sten-
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cils includingl points have the form

∂ f1
∂x

B

=

l
∑

j=1

sj f j, (2.58a)

∂ f1
∂x

F

= −
l

∑

j=1

ej f j. (2.58b)

Table 2.1 lists the numerical coefficients to be applied to Equations (2.58) in or-

der to obtain lower-order approximations of the half-derivatives. These coefficients

were obtained with the same procedure used to derive the one sided coefficients of

Equations (2.54) and (2.57). The same coefficients can be used to compute the half-

derivatives in the opposite spatial direction by invertingtheir sign. Some of the coeffi-

cients in Table 2.1 were used for the solution of the second test case in Section 3.2 and

of the fourth test case in Section 3.4.

Similarly, Table 2.2 shows the coefficientsb j to be used in the equations that define

backward and forward half-derivatives at node with indexi based on centred stencils

of length 2l + 1

∂ fi
∂x

B

=

l
∑

j=−l

b j fi+ j, (2.59a)

∂ fi
∂x

F

= −
l

∑

j=−l

b− j fi+ j . (2.59b)

2.2.3 High-order filters

The high-order finite-difference schemes tend to introduce spurious waves without

physical meaning into the numerical predictions. This is due to the fact that the dif-

ference equations have additional solutions that are not suitable for the original dif-
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Table 2.1: Coefficientssj andej for lower-order one-sided stencils of various length
and order of accuracy.

j 5th order (l=6) 4th order (l=5) 3rd order (l=4) 2nd order (l=3)
s j e j s j e j s j e j s j e j

1 −117−17
√

5
60

157−17
√

5
60

−110−14
√

5
60

140−14
√

5
60

−20−2
√

5
12

24−2
√

5
12

−17−
√

5
12

19−
√

5
12

2 230+56
√

5
60

−370+56
√

5
60

195+41
√

5
60

−285+41
√

5
60

31+5
√

5
12

−41+5
√

5
12

22+2
√

5
12

−26+2
√

5
12

3 −200−74
√

5
60

400−74
√

5
60

−130−44
√

5
60

230−44
√

5
60

−14−4
√

5
12

22−4
√

5
12

−5−
√

5
12

7−
√

5
12

4 125+51
√

5
60

−275+51
√

5
60

55+21
√

5
60

−105+21
√

5
60

3+5
√

5
12

−5+5
√

5
12

5 −45−19
√

5
60

105−19
√

5
60

−10−4
√

5
60

20−4
√

5
60

6 7+3
√

5
60

−17+3
√

5
60

Table 2.2: Coefficientsb j for lower-order centred stencils of various length and order
of accuracy.

j 8th order (l=4) 6th order (l=3) 4th order (l=2) 2nd order (l=1)

-4 0.00184262134833348
-3 -0.0172874108616684 -0.00921310674166744
-2 0.0729375719116774 0.068010840825008 0.0460655337083369
-1 -0.349306533340048 -0.386119737833376 -0.414589803375032 -0.396994335208351
0 -0.683039164783257 -0.578689325833263 -0.429618127333277 -0.206011329583298
1 1.24402679999329 1.11388026216662 0.918743529958302 0.603005664791649
2 -0.320395761421656 -0.231989159174992 -0.12060113295833
3 0.0560459224716651 0.024120226591666
4 -0.00482404531833322
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ferential equations. There are also other sources of disturbances that can degrade the

solution. Among them are the discontinuities in the definition of the boundary con-

ditions and the discontinuities in the governing equations. The two main approaches

for the removal of these unwanted high-frequency oscillations are the application of a

damping coefficient as suggested, for example, by Tam & Webb [1993], or the appli-

cation, at each time step, of a low-pass filter. The latter solution was adopted for this

study.

Filters, like finite-difference schemes, can be explicit or implicit and are charac-

terised by their order of accuracy. It is important to noticethat, to preserve the quality

of the results, the applied filter has to be at least two ordershigher than the level of

accuracy of the finite-difference scheme used in conjunction with it.

The filter applied in this work is the implicit filter proposedby Gaitonde & Visbal

[1998, 1999]. The general formulation of this filter of 2Nth-order is

α f Q̂i−1 + Q̂i + α f Q̂i+1 =

N
∑

n=0

an

2
(Qi+n +Qi−n), (2.60)

whereQi is the vector of the unfiltered flow solution in primitive form(the treatment

of the conservative form is equivalent) at node of indexi, Q̂i is the vector of the fil-

tered flow solution at the same node,an are N + 1 coefficients that characterise the

filter, andα f is a free parameter with a range−0.5 < α f 6 0.5. The sets ofN + 1

coefficientsan for filters from the second to the tenth order of accuracy are reported

by Gaitonde & Visbal [1999]. They are obtained in terms of thefree parameterα f

with a Taylor series expansion based on templates proposed by Lele [1992] for spatial

finite-difference schemes with spectral-like resolution. The free coefficientα f controls
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the dissipation introduced by the filtering. The dissipation decreases with the increase

of α f until it reaches the value 0.5 where the application of the filter has no effect on

the flow solution. The free coefficientα f has to be set depending on the distortion of

the employed grid. As reported by Gaitonde & Visbal [1999], it is usually appropriate

to adopt values in the range 0.3 < α f < 0.5 with lower values required only for grids

containing discontinuities in the metrics.

The spectral functionS F of the filters defined by Equation (2.60) is

S F(ω) =

N
∑

n=0
an cos(nω)

1+ 2α f cos(ω)
, (2.61)

whereω is the angular frequency. Due to the symmetry of Equation (2.60) the spectral

functionS F is always real and the filter is non-dispersive.

In multidimensional problems, the filter is applied in sequence to the various direc-

tions of the space alternating them at every stage to eliminate the possible bias. The

frequency of application of the filter can be varied depending on the requirements of

the problem. It is usually applied at the end of each Runge-Kutta stage or only once at

the end of the time step.

The central scheme of Equation (2.60) is characterised by a stencil of 2N+1 nodes

and the main problem of its implementation regards how to treat the points located near

the boundaries. Note that, in this implementation, the boundary points are filtered only

in the transverse directions and not in the direction normalto the boundary surface.

Two approaches can be used to solve this problem: the application to the near-boundary

points of high-order one-sided (HOOS) filters, or the application of lower-order centred

(LOC) filters. The former solution is described by Gaitonde &Visbal [1999]. The

formulation of the 10th-order HOOS filters applied to a boundary with node index
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i = 1 is, for example,

α f Q̂i−1 + Q̂i + α f Q̂i+1 =

11
∑

n=1

an,iQn, (2.62)

where indexi ranges from 2 to 5. As for the centred filter of Equation (2.60), the

coefficientsan,i are expressed as a function of the free parameterα f and were obtained

using a similar procedure [Gaitonde & Visbal, 1999].

The spectral functionS F of the filters defined by Equation (2.62) is [Gaitonde &

Visbal, 1999]

S F(ω) =

11
∑

n=1
an,i

{

cos [(n− i)ω] +
√
−1 sin [(n− i)ω]

}

1+ 2α f cos(ω)
, (2.63)

where, again,i ranges from 2 to 5. Equation (2.62) is asymmetrical, and due to this,

the spectral functionS F(ω) has a non-zero imaginary part. In a range of the angular

frequencyω that depends on the order of the HOOS filter, the real part of functionS F

is larger than 1 and, although these filters are only locally applied and not extended to

the whole computational field, this can cause the amplification of instabilities and lead

to the divergence of the predicted solution. All the coefficients for the application of

HOOS filters, including odd-order filters and the filters for the nodes located on the

boundary (here not used) can be found in Gaitonde & Visbal [1998].

The second solution for the filtering of the nodes near the boundaries consists in

the LOC method for which, approaching the boundary, the stencil size and the order

of the filter is reduced while the centred formulation is retained. Their formulation

also follows Equation (2.60) withN = 1 on the first point in the flow field from the

boundary,N = 2 on the second, and so on. The spectral functionS F of these filters
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is, again, given by Equation 2.61 withN related to the order of accuracy of the filter

applied to the specific node considered. This solution ensures thatS F is always real

and that the filters are non-dispersive. This makes the LOC approach more robust than

the HOOS. The LOC is easy to implement but has the drawback of lowering the order

of accuracy of the filter. This aspect can become the dominantfactor on the accuracy

of the results for some types of problems. Further details about this technique along

with the list of the coefficients for different orders of accuracy are given by Visbal &

Gaitonde [1998].

It is worth to notice that with both the LOC and the HOOS methods, the free co-

efficientα f applied to the near-boundary nodes is not restrained to the general value

adopted for the treatment of the internal field, and near the boundaries it can be var-

ied giving a further degree of freedom to the user. In particular, for the case of the

LOC technique, this property can be used to decrease the impact of the adoption of the

low-order stencils on the accuracy of the flow solution by increasing the local value of

α f when approaching the boundary. This technique, proposed byVisbal & Gaitonde

[1998] and commonly found in the literature (see, for example, Ragab & Salem-Said

[2007]), has also been applied to some of the test cases shownin Chapter 3.

In the high-order prefactored solver used in this work, the filter defined analyti-

cally by Equation (2.60) is numerically implemented under three forms: anexplicit

form where Equation (2.60) is simplified by settingα f = 0, aprefactoredform fol-

lowing Hixon [1999] that applies to the high-order filter thesame technique developed

for the spatial discretisation scheme discussed in Section2.2.1, and astandard implicit

treatment requiring the inversion of the matrix containingtheα f coefficients on the

left-hand side of Equation (2.60).
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In the course of this work both the explicit and the standard implicit numerical

implementations have been used for the solution of the test cases of Chapter 3. Un-

fortunately, the implicit prefactored implementation wasadopted only for preliminary

computations whose results are not shown in this report. This is due to the fact that this

particular technique, although very efficient, has a strong limitation that currently does

not allow the use of variableα f strategy near the boundary owing to the complexity

of its numerical implementation. The application of the explicit formulation, due to

its higher dissipation with respect to the implicit version, has to be restrained to prob-

lems where the numerical instabilities can not be overcome with more conservative

methods.

2.3 Time-marching scheme

The numerical time-integration of a finite-difference scheme can be executed in im-

plicit or explicit form. A popular choice for its characteristics of stability and for

the optimised use of the computational memory is the explicit Runge-Kutta class of

schemes.

Consider a general semi-discrete equation like

∂Q
∂t
= F (Q) , (2.64)

where, in the case of the Euler equations in primitive form,Q is the vector of the flow

solution andF contains the discretisation of the spatial derivatives (the time depen-

dence is omitted). The generic algorithm of an explicit Runge-Kutta scheme withs
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stages advancing time fromtn to tn + ∆t is

Qn+1 = Qn +

s
∑

i=1

wi Ki , (2.65)

where

Ki = ∆tF

















Qn +

i−1
∑

j=1

βi j K j

















. (2.66)

The sets of constant coefficientswi andβi j characterise the scheme.

Following Hu et al. [1996] the analysis of the stability and of the accuracy of

the general scheme shown above can be made on the simple advection wave Equa-

tion (2.33) having a solution of the form of Equation (2.34).

Fourier transforming Equation (2.65) and computing the ratio of the results be-

tween two successive stepsn andn+ 1, leads to the value ofr, thenumericalamplifi-

cation factor

r =
Q̃n+1

k

Q̃n
k

= 1+
s

∑

j=1

cj (−ick∗∆t) j , (2.67)

whereQ̃n
k is the spatial Fourier transform ofQn, cj are coefficients related towi and

βi j of Equations (2.65) and (2.66), andc andk∗ are defined as in Section 2.2. The

numerical amplification factor expresses, for each frequency (related tock∗∆t), if the

particular time-marching scheme, characterised by coefficientscj, tends to amplify or

reduce the wave amplitude, and it is strictly related to its accuracy and stability. These

can be studied by comparing thenumericalwith theexactamplification factorre

re = e−ick∗∆t, (2.68)

of which Equation (2.67) can be seen as an approximation. Considering the Taylor
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series expansion ofre it becomes clear that the formal order of accuracy of the Runge-

Kutta scheme is related to the number of the coefficientscj of Equation (2.67) that

match those of the series expansion. This observation also explains why the maximum

order of accuracy of a scheme is related to the number of stages s that controls the

number of available coefficientscj.

The ratio of the amplification factors

r
re
= |r | e−iδ, (2.69)

expresses the two components of error introduced by the numerical integration:|r | is

the error of amplitude (related to thedissipationof the scheme), andδ is the error of

phase (related to thedispersionof the scheme). They are both functions ofck∗∆t and

depend on the characteristics of the internal scheme. Note that |r | has to be compared

to the theoretical value of 1. For instance, the classical four-stage fourth-order Runge-

Kutta scheme has dissipation and dispersion characteristics as shown in Figure 2.2.

The details of the figure also show the stability limitR, an absolute value related to

the error amplitude that indicates the range of frequenciesthat are not amplified by

the scheme (|r | 6 1), and the accuracy limitsLdiss andLdisp related, respectively to the

dissipation and to the dispersion of the time-integration scheme. As in the case of the

spatial scheme, described in Section 2.2, these values depend on a formal maximum

tolerable error in the propagation of the waves that can be fixed depending on the

accuracy requirements of the computation. For example, Huet al. [1996] set both

the maximum difference between|r | and 1, and the maximumδ to 0.001. The overall

accuracy limitL of the scheme is given by the lower betweenLdiss andLdisp.

The Courant-Friedrichs-Lewy (CFL) condition for the particular association of the
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ck∗∆t

|r|

(a) Amplitude error|r | (dissipation).

0 1 2 3
-0.1

-0.05

0

0.05

0.1

L

ck∗∆t

δ

(b) Phase errorδ (dispersion).

Figure 2.2: Errors of the classical four-stage fourth-order Runge-Kutta scheme as func-
tions of the effective wavenumber. Where appropriate, the stability limitR and the
accuracy limitL are shown.
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spatial and the time-integration scheme adopted can be found by relatingL andRwith

the maximum resolvable wavenumberk∗c and the maximum effective wavenumberk∗max

defined in Section 2.2 that are typical of the spatial scheme,in the form

c
∆t
∆x
6 min

(

L
k∗c∆x

,
R

k∗max∆x

)

. (2.70)

The maximum value for the time step∆t can be obtained from Equation (2.70)

depending on the minimum value of the inter-nodal distance∆x in the grid and on the

speed of soundc.

2.3.1 Low-storage Runge-Kutta schemes

The modern Runge-Kutta schemes used in association with finite-difference high-order

spatial schemes, require two main characteristics: the lowest possible memory storage,

and the highest stability or accuracy limits (or both at the same time). Essentially, four

factors can be varied for this optimisation: the type of algorithm that is related to

the memory requirements and to the efficiency, the number of steps and of stages of

the Runge-Kutta scheme, and the set of coefficients employed that is related to both

stability and accuracy.

The optimisation of the memory requirements of the explicitRunge-Kutta schemes

has been an important issue since the birth of the digital computing machines as, at that

time, the number of available registers was one of the main limiting factors of the com-

putation. Gill [1951] gives a first version of a fourth-orderalgorithm of optimised 3N

type, where N is the number of equations simultaneously solved, and 3 is the required

number of levels of memory storage for each equation (that for the classical four stage

fourth-order Runge-Kutta is equal to 4). The basic idea behind the optimisation, still at

46



2. NUMERICAL METHOD

the basis of the most recent methods, is to use, at each stage,the information contained

in the memory registers without resetting them. Fyfe [1966]demonstrates that all the

Runge-Kutta schemes can be written in 3N form, and Williamson [1980] shows that

all the second-order, many third-order and some fourth-order schemes can be arranged

in 2N form. The study of Williamson, along with that of van derHouwen [1972]

who illustrated another type of 2N algorithm, have remainedfor a long time the main

reference for the development of new schemes.

Recently, Ketcheson [2010] has analysed in a rigorous mathematical form the avail-

able methods giving a new type of classification and introducing a more general class

of low-storage algorithms. In addition, the author considers the memory requirements

to provide an error estimate of the computation and the ability to restart of each type

of algorithm.

In brief, Ketcheson found that the algorithm used by Williamson [1980] (called

2N) can be written in pseudo-code as

S1 := Q(n)

for i= 2:s+1 do

S2 := A(i) S2 + Dt F(S1)

S1 := S1 + B(i) S2

end

Q(n+1) = S1

whereS1 andS2 are the two memory registers of size N,s is the number of stages,Dt is

the time step,F andQ are as defined for Equation (2.64),A(i) andB(i) are constant

coefficients typical of the scheme, and the operator:= denotes the action of storing

the right-hand side of the equation into the memory registeron the left-hand side.

47



2. NUMERICAL METHOD

This algorithm can be implemented with only 2 levels of storage under the assumption

that the assignmentS2 := S2 + F(S1) does not require additional memory. The

algorithms proposed by Carpenter & Kennedy [1994], Stanescu & Habashi [1998],

Berlandet al. [2006], and Allampalliet al. [2009] are of this type.

In contrast, the algorithm devised by van der Houwen [1972] (called 2R by Ketch-

eson to distinguish it from the one proposed by Williamson) in pseudo-code has the

form

S2 := Q(n)

for i = 1:s do

S1 := S2 + ( a(i,i-1) - b(i-1) ) Dt S1

S1 := F(S1)

S2 := S2 + b(i) Dt S1

end

Q(n+1) = S2

wherea(i,j) andb(i-1) are the sets of constant coefficients typical of the scheme.

The above algorithm can be found in the literature in variousforms. This, proposed

by Calvoet al.[2003, 2004], is one of the most simple. Those of Kennedyet al.[2000],

and Huet al.[1996] are equivalent. In this case the algorithm can be implemented with

only 2 levels of storage under the assumption that the assignmentS1 := F(S1) does

not require additional memory.

Ketcheson found that both the above algorithms are actuallyspecial cases of

S2 := 0

S1 := Q(n)

for i = 2:s+1 do
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S2 := S2 + d(i-1) S1

S1 := g1(i) S1 + g2(i) S2 + b(i,i-1) Dt F(S1)

end

Q(n+1) = S1

This algorithm is called 2S andg1(i), g2(i), d(i), andb(i,j) are its constant

coefficients. Due to the higher number of available coefficients with respect to the 2N

and 2R cases, this class of algorithms allows to write fifth- and sixth-order schemes

in low-storage form and also allows some four-stage fourth-order schemes that are not

possible in 2N or 2R form.

2.3.2 Optimised Runge-Kutta schemes

In the last 20 years the development of the explicit Runge-Kutta schemes has been

driven by the research in the aeroacoustic field in order to find methods optimised

for the wave propagation. The optimisation of a scheme is essentially based on the

variation of its number of steps and of stages, and on the set of constant coefficients,

in order to extend either the limit of accuracyL or that of stabilityR, or of both at the

same time.

An important contribution in this sense is given by Huet al. [1996] with their

Low-Dissipation and Low-Dispersion Runge-Kutta (LDDRK) schemes that are the

first example of optimisation for both dissipation and dispersion errors. Furthermore,

they propose two-step schemes that, alternating the numberof stages and the set of

coefficients used, can largely improve the characteristics of themethod. The authors

base their study on the minimisation of|r − re|2 (see Equation (2.67) and (2.68) for

the definition ofr andre) that implies the minimisation of the errors. The single-step
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schemes proposed with 4 and 5 stages are second-order accurate (referred to asRK24

andRK25 in Table 2.3), and that with 6 stages (referred to asRK46 in Table 2.3) is

fourth-order. Both the two-step methods devised (referredto asRK4-6andRK5-6 in

Table 2.4) are fourth-order and alternate a step of 6 stages with one of 4 or 5 stages. In

the article by Huet al. [1996] the low-storage implementation is discussed and a 3N

algorithm is provided.

Stanescu & Habashi [1998] start from the work by Hu noting that with the given

3N implementation, the fourth-order schemes turn second-order for non-linear prob-

lems. They provide the coefficients for all the schemes proposed by Hu to be used in

association with a 2N algorithm that preserves the fourth-order also in the non-linear

case.

The most comprehensive work on optimised schemes so far is given by Kennedy

et al. [2000] that analyse the performance of a large number of Runge-Kutta schemes

with various levels of memory optimisation applied to the solution of the complete

Navier-Stokes equations.

Bogey & Bailly [2004] concentrate on uniform and slowly non-uniform grids op-

timising at the same time the spatial scheme, the time-integration and the filtering, all

in the same range of wavenumbers. The two time-marching schemes proposed are

second-order accurate and require 5 and 6 stages.

The work by Calvoet al. [2004] also aims to optimise various aspects of the wave

propagation adopting a new optimisation function that tries to blend “good stability

properties, high order, low dissipation and dispersion andlow storage use”. The au-

thors obtain a fourth-order six-stage scheme (referred to as new LDD46in Table 2.3)

with characteristics, in most cases, superior to those proposed by Huet al. [1996].

Very similar results to those of Calvo are obtained by Berland et al. [2006] using
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a different approach in the optimisation. In this case the fourth-order accuracy is re-

tained even for non-linear problems adopting a 2N low-storage algorithm against the

2R algorithm of Calvo. The accuracy and stability limits of the fourth-order accurate

six-stage scheme are shown in Table 2.3 where it is referred to asRK46-L/NL.

Finally, the work of Allampalliet al.[2009] extends the range of available schemes

with a different approach. In this case the optimisation function of the High-Accuracy

Large-step Explicit Runge-Kutta schemes (HALE-RK) tends to maximise the stability

limits rather than the accuracy. This type of schemes can be useful with problems in

which the length of the propagating waves is large relatively to the smallest cell of the

grid. For these problems the accuracy optimisation over a large range of frequencies

results in an unnecessary limitation of the time step. The resulting one- and two-step

methods having 6 or 7 stages are all fourth-order accurate. The characteristics of accu-

racy and stability of the two-step scheme (referred to asRK6-7) are shown in Table 2.4.

The finite-difference compact solver used for this study implements a selection of

five of the above discussed optimised explicit Runge-Kutta time-marching schemes

in low-storage form: (i) the classical fourth-order Runge-Kutta scheme, here imple-

mented in 3N form, (ii) Hu’s fourth-order 4-6 alternate Low-Dissipation Low-Dispersion

(LDDRK46) (referred to asRK4-6in the tables and the figures), (iii) Berland’s fourth-

order six-stage Low-Dissipation Low-Dispersion (LDDRK46-NL) (referred to asRK46-

L/NL in the tables and the figures), (iv) Calvo’s fourth-order six-stage Low-Dissipation

Low-Dispersion (new 2N LDD46) (referred to asnew LDD46in the tables and the fig-

ures), and (v) Allampalli’s two-step alternated (6-7) fourth-order High-Accuracy Large

step Explicit RK (HALE-RK) (referred to asRK6-7 in the tables and the figures). In

most cases the sets of constant coefficients for the various Runge-Kutta schemes are
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obtained by the authors with techniques of numerical optimisation that are difficult to

reproduce, so their values have been taken directly from theoriginal publications and

are not shown here.

It has to be stressed that the solver produced in this work is compatible with both

2N and 2R types of algorithm. Therefore, the implementationof other schemes that

can be written in these forms requires little effort.

Thecj coefficients of Equation (2.67) along with the accuracy and stability limits

of a selection of the schemes here discussed, are shown in Table 2.3 for the one-step

methods, and in Table 2.4 for the two-step methods. In addition, in Figures 2.3 and 2.4

the values of their error of amplitude|r | and of phaseδ as function ofck∗∆t are com-

pared.

2.4 Curvilinear coordinates

The finite-difference compact scheme described in Section 2.2 implicitly requires to

be applied to uniform grids having nodes equally spaced in every spatial direction. To

solve problems involving complex geometrical shapes, non-uniform curvilinear grids

must be adopted. In order to overcome this limitation it is necessary to establish a

transformation between the actual, non-uniform grid in thephysical space defined by

coordinatesx, y, andz, and a topologically equivalent uniform grid in the computa-

tional space defined by curvilinear coordinatesξ, η, andζ. This transformation can

be exemplified in 2D as in Figure 2.5 where at each node of the actual grid on the

left-hand side corresponds a node on the uniform grid on the right-hand side.
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Table 2.3: Coefficientscj of Equation (2.67) of the classical fourth-order explicit Runge-Kutta scheme and of various second-
and fourth-order single-step explicit Runge-Kutta optimised schemes. The values of the dissipationLdiss and dispersionLdisp

accuracy limits for different levels (field “Max error”) of maximum tolerable error are also shown along with the stabilityR
limit. [ppw] indicates the values expressed in points per wavelength.

Coefficient Max error Classical Hu Bogey Hu Berland Calvo
/ limit [nd] [nd] RK4 RK24 RK25 RK26 RK46 RK46-L /NL new LDD46

c1 1 1 1 1 1 1 1
c2 1/2 0.5 0.5 0.5 1/2 1/2 1/2
c3 1/6 0.162997 0.166558 0.165919771368 1/6 1/6 1/6
c4 1/24 0.0407574 0.0395041 0.040919732041 1/24 1/24 1/24
c5 - - 0.00781071 0.007555704391 0.00781005 0.007856772044 0.00785̇3
c6 - - - 0.000891421261 0.00132141 0.000959998595 0.00094̇8

Ldiss 0.002 0.824624 - - - - - 2.106869
0.00125 - - - - - - 2.031125
0.001 0.732341 0.849090 1.720940 2.003248 1.750970 2.058761 1.996937
0.0005 0.732340 0.849096 1.673345 1.909166 1.709902 1.969950 1.896997

Ldiss [ppw] 0.0005 8.579601 7.399853 3.754865 3.291063 3.674588 3.189515 3.312175
Ldisp 0.002 0.788377 - - - - - 1.299215

0.0005π 0.747340 0.911251 1.384397 1.530614 2.009860 1.248420 1.242107
0.00125 - - - - - - 1.189958
0.001 0.677373 0.8562 1.346950 1.468801 1.966030 1.146278 1.140756

Ldisp [ppw] 0.0005π 8.407399 6.895120 4.538572 4.105010 3.126181 5.032910 5.058490
R 2.828427 2.8519 3.522508 3.942836 1.750970 3.815986 3.826039
R [ppw] 2.221442 2.203158 1.783725 1.593570 3.588403 1.646543 1.642217
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Table 2.4: Coefficientscj of Equation (2.67) of three fourth-order two-step explicit
Runge-Kutta optimised schemes. The values of the dissipation Ldiss and dispersion
Ldisp accuracy limits for different levels (field “Max error”) of maximum tolerable error
are also shown along with the stabilityR limit. [ppw] indicates the values expressed in
points per wavelength.

Coefficient Max error Hu Allampalli
/ limit [nd] [nd] RK4-6 RK5-6 RK6-7

c1(1) 1 1 1
c2(1) 1/2 1/2 1/2
c3(1) 1/6 1/6 1/6
c4(1) 1/24 1/24 1/24
c5(1) 0 0.0036105 0.005095336935
c6(1) 0 0 0.000923040959
c7(1) 0 0 0
c1(2) 1 1 1
c2(2) 1/2 1/2 1/2
c3(2) 1/6 1/6 1/6
c4(2) 1/24 1/24 1/24
c5(2) 0.0162098 0.0121101 0.008223191190
c6(2) 0.00286365 0.00285919 0.000871526244
c7(2) 0 0 0.000125766378

Ldiss 0.002 1.703043 2.052337 1.120339
Ldiss 0.001 1.637163 2.002488 0.992488
Ldiss 0.0005 1.581532 1.962898 0.880336
Ldiss [ppw] 0.0005 3.972847 3.200974 7.137254
Ldisp 0.002 1.886675 2.242957 1.122240
Ldisp 0.0005π 1.871215 2.230987 1.059158
Ldisp 0.001 1.845561 2.211651 0.954030
Ldisp [ppw] 0.0005π 3.357810 2.816325 5.932247
R 2.519454 2.843538 5.529152
R [ppw] 2.493868 2.209636 1.136374
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Figure 2.3: Amplitude error|r | (related to the dissipation) as function ofck∗∆t of a
selection of optimised one- and two-step multi-stage explicit Runge-Kutta schemes.
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Figure 2.4: Phase errorδ (related to the dispersion) as function ofck∗∆t of a selection
of optimised one- and two-step multi-stage explicit Runge-Kutta schemes.
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zone 1

zone 2

zone 1

zone 2

x

y

ξ1

η2

ξ2

η1

Figure 2.5: An example of physical non-uniform mesh (left-hand side) and its uniform
computational counterpart (right-hand side).

The transformation is defined by

ξ = ξ(x, y, z), (2.71a)

η = η(x, y, z), (2.71b)

ζ = ζ(x, y, z). (2.71c)

Note that in this brief treatment no time dependence is considered as the grids are

taken as static and the time in the computational spaceτ is always equal to the timet

in the physical space.

The derivatives of the curvilinear coordinates with respect to the Cartesian coordi-
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nates, calledmetrics

ξx =
∂ξ

∂x
, ξy =

∂ξ

∂y
, ξz =

∂ξ

∂z
, (2.72a)

ηx =
∂η

∂x
, ηy =

∂η

∂y
, ηz =

∂η

∂z
, (2.72b)

ζx =
∂ζ

∂x
, ζy =

∂ζ

∂y
, ζz =

∂ζ

∂z
, (2.72c)

can be determined either analytically (when Equation (2.71) is in turn known in ana-

lytical form) or, more generally, numerically, as in this work, using a method capable

to ensure an adequate level of accuracy. As suggested by Visbal & Gaitonde [1998],

for their computation it is correct to use the same spatial scheme used for the flow

derivatives.

Starting from the Euler equations in conservation form of Equation (2.5) and using

the chain rule of differential calculus

∂U
∂t
+

(

ξx
∂E
∂ξ
+ ηx
∂E
∂η
+ ζx
∂E
∂ζ

)

+

(

ξy
∂F
∂ξ
+ ηy
∂F
∂η
+ ζy
∂F
∂ζ

)

+

(

ξz
∂G
∂ξ
+ ηz
∂G
∂η
+ ζz
∂G
∂ζ

)

= S.
(2.73)

Then, by regrouping, dividing byJ, and after some manipulation Hirsch [1990] the

form is obtained

∂

∂t

(

U
J

)

+
∂

∂ξ

[

1
J

(

ξxE + ξyF + ξzG
)

]

+
∂

∂η

[

1
J

(

ηxE + ηyF + ηzG
)

]

+
∂

∂ζ

[

1
J

(

ζxE + ζyF + ζzG
)

]

=
S
J
,

(2.74)

58



2. NUMERICAL METHOD

whereJ is the Jacobian determinant

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

. (2.75)

By defining

Ũ =
U
J
, (2.76a)

Ẽ =
1
J

(

ξxE + ξyF + ξzG
)

, (2.76b)

F̃ =
1
J

(

ηxE + ηyF + ηzG
)

, (2.76c)

G̃ =
1
J

(

ζxE + ζyF + ζzG
)

, (2.76d)

S̃=
S
J
, (2.76e)

the strong conservative form is recovered over a uniform orthogonal grid

∂Ũ
∂t
+
∂Ẽ
∂ξ
+
∂F̃
∂η
+
∂G̃
∂ζ
= S̃. (2.77)

2.5 Boundary conditions

2.5.1 Kim and Lee characteristic generalised boundary conditions

In their series of articles Kim & Lee [2000, 2003, 2004] propose a framework for the

implementation of generalised characteristic boundary conditions in conservative form

for the Navier-Stokes equations. They include: soft inflow condition, non-reflecting

outflow, pulsating inviscid wall, and a multi-block interface condition.
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All of these conditions have been implemented in inviscid form in the high-order

finite-difference solver object of this work and the general framework has also been

used, with small modifications, to host the subsonic inflow and outflow characteristic-

based boundary conditions by Giles [1990] discussed in Section 2.5.2.

The treatment of Kim and Lee strongly relies on the theory given by Hirsch [1990]

briefly illustrated in this work in Sections 2.1.2 and 2.1.3.

Starting from the flow equations in the strong conservative form of Equation (2.77),

and applying the transformations described in Section 2.1.3 between the conservative

and the characteristic variable form, Kim and Lee obtain

∂R
∂t
+ ℓ = Sc, (2.78)

whereR is the vector of the characteristic variables defined in Equation (2.22),ℓ is

the vector of the convective terms, and vectorSc includes all the remaining terms.

For example, in the case of a boundary located in correspondence to the curvilinear

coordinateξ = 0

ℓ ≡ Λ
∂R
∂ξ
= P−1

(

ξx
∂E
∂ξ
+ ξy
∂F
∂ξ
+ ξz
∂G
∂ξ

)

, (2.79a)

Sc = JP−1

{

S̃−
[

E
∂

∂ξ

(

ξx

J

)

+ F
∂

∂ξ

(

ξy

J

)

+G
∂

∂ξ

(

ξz

J

)

+
∂F̃
∂η
+
∂G̃
∂ζ

]}

, (2.79b)

whereΛ = [λ1, λ2, λ3, λ4, λ5]
T is the vector of the eigenvalues shown in Equation (2.20)

and matrixP−1 defines the transformation between the conservative and thecharacter-

istic variables of Equation (2.29). The novelty of the treatment by Kim and Lee consists

in the conservation of all the terms contained inSc and their use in the enforcement of

the boundary conditions without introducing any approximation. For the wall bound-
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aries, this idea, originally proposed by Lockard & Morris [1998] but not completely

developed, can be seen as a correction of the local one-dimensional inviscid (LODI)

relations used by Thompson [1987, 1990] and Poinsot & Lele [1992] for their treat-

ments. A resulting “modified” LODI system in primitive form,including the source

terms of vectorSc, that can be used for the definition of the boundary conditions, is

derived from Equation (2.78) as

∂ρ

∂t
+ ℓ1 +

ρ

2c
(ℓ4 + ℓ5) = Sc1 +

ρ

2c
(Sc4 + Sc5) , (2.80a)

∂Ũ
∂t
+

1
2

(ℓ4 − ℓ5) =
1
2

(Sc4 − Sc5) , (2.80b)

∂Ṽ
∂t
+ ℓ3 = Sc3, (2.80c)

∂W̃
∂t
+ ℓ2 = Sc2, (2.80d)

∂p
∂t
+
ρc
2

(ℓ4 + ℓ5) =
ρc
2

(Sc4 + Sc5) , (2.80e)

wherec is the speed of sound and̃U, Ṽ, andW̃ are, respectively, the contravariant

velocity normal to the boundary located atξ = 0 and its components parallel to the

plane [Hung, 2002].

The general procedure for the enforcement of all the characteristic-based boundary

conditions proposed by Kim and Lee require the following steps (always referring to

the boundary atξ = 0):

1. The computation of the flux derivatives along the curvilinear coordinatesη and

ζ using the internal spatial scheme. In theξ direction the flux derivatives are

computed using the high-order approximation based on one-sided stencils (in

this study the explicit 7-point stencil defined in Section 2.2.2). The value of the

normal flux derivative is used as a first guess that will be corrected in the next
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steps.

2. A first guess for vectorℓ containing the variation of the amplitude of the incom-

ing and outgoing waves is obtained using the following expression that can be

easily derived combining Equations (2.76b) and (2.79a)

ℓ = JP−1

{

∂Ẽ
∂ξ
−

[

E
∂

∂ξ

(

ξx

J

)

+ F
∂

∂ξ

(

ξy

J

)

+G
∂

∂ξ

(

ξz

J

)

]}

. (2.81)

3. The values ofℓ are modified by imposing the physical boundary condition (de-

scribed in the following chapters) obtaining the correctedform ℓ∗.

4. The corrected form of the normal flux derivatives are recovered fromℓ∗ by using

Equation (2.81)

(

∂Ẽ
∂ξ

)∗

=
1
J

Pℓ∗ +
[

E
∂

∂ξ

(

ξx

J

)

+ F
∂

∂ξ

(

ξy

J

)

+G
∂

∂ξ

(

ξz

J

)

]

. (2.82)

Finally, the corrected value of the normal flux derivative can either be used to compute

the time derivative at the boundary or, as for the implementation in this work, as the

starting value for the sweep along the coordinate normal to the boundary.

2.5.1.1 Inflow/outflow

In their article Kim & Lee [2000] define non-reflecting inflow and outflow conditions

inspired by the non-reflecting outflow proposed by Poinsot & Lele [1992] that, in turn,

base their treatment on an idea by Rudy & Strikwerda [1980] applied only to the energy

equation. The conditions are enforced on the primitive formof the variables. They are

loosely related to a fixed reference state representing the condition of the flow far

beyond the boundary. This technique allows to maintain a mean reference state. The
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partial reflectivity of the condition depends on a coefficient K related to the speed of

soundc, to a characteristic length of the domainl, to the maximum Mach number on

the whole computational fieldMmax, and to a coefficientσ as

K = σ
(

1− M2
max

)

(c
l

)

. (2.83)

Note that the correct value forσ depends on the particular problem and should be

determined through tests. However, Kim and Lee recommend the value 0.25 that in

their experiments allows at the same time to keep the mean flowat the desired value

and to avoid most of the reflections.

The number of conditions that need to be imposed is related tothe direction of

propagation of the characteristic waves that, when outgoing, are computed from the

state of the flow while, when incoming, are determined imposing a relation on the cor-

responding value ofℓ. The corrected form is labelled asℓ∗.

For a 3D subsonic outflow located atξ = ξmaxas on the right-hand side of Figure 2.6

(a), only one wave, the acoustic pressure wave defined by Equation (2.22e), is entering

the computational domain and its value is specified by the relation

ℓ∗5 = K

(

p− p∞
ρc

)

, (2.84)

whereK is as by Equation (2.83),p andρ are the static pressure and density in that

point,c is the speed of sound, andp∞ is the value of the pressure at a point downstream

of the boundary where the flow state is considered stationary.

When the outflow is supersonic, as on the right-hand side of Figure 2.6 (b), all the
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(b) Case of a supersonic mean flow.

Figure 2.6: Waves leaving and entering the computational domain through an inlet
plane atξ = 0 and an outlet plane atξ = ξmax in case of subsonic or supersonic mean
flow.
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waves are outgoing an there is no need for any condition as thestate on the boundary

is completely determined by the information coming from theflow field.

For a 3D subsonic inflow boundary located atξ = 0 as on the left-hand side of

Figure 2.6 (a), four waves are entering the computational field and the following con-

ditions are imposed on the characteristic waves defined by Equations from (2.22a)

to (2.22d)

ℓ∗1 = 0, (2.85a)

ℓ∗2 = K

(

W̃− W̃∞
2

)

, (2.85b)

ℓ∗3 = K

(

Ṽ − Ṽ∞
2

)

, (2.85c)

ℓ∗4 = K

(

Ũ − Ũ∞ +
p− p∞
ρc

)

, (2.85d)

where the variables with subscript∞ refer to a stationary state upstream of the bound-

ary. The first condition onℓ∗1 is quasi-isentropic, the second and the third correct the

incoming vorticity relating it to the transverse components of the velocity, and the

fourth regards the outgoing acoustic pressure wave.

When the inflow is supersonic as on the left-hand side of Figure 2.6 (b), in addition

to the conditions expressed by Equations (2.85), the value of ℓ∗5 has to be corrected

similarly to ℓ∗4

ℓ∗5 = K

[

−
(

Ũ − Ũ∞
)

+
p− p∞
ρc

]

. (2.86)

The solver also includes two generic inflow and outflow boundary conditions that

implement either the subsonic or the supersonic versions ofthe closure by checking

node by node the sign of the eigenvalue corresponding to the component of the con-

65



2. NUMERICAL METHOD

travariant velocity normal to the boundary. This version isuseful when the flow veloc-

ities are in the transonic range.

2.5.1.2 Inviscid wall

The condition regarding the inviscid wall, described in Kim& Lee [2004], is based

on the assumption that the component of the velocity normal to the wall has to be

zero. This condition can be enforced starting from Equation(2.80b) that relates the

amplitude of the incoming and the outgoing acoustic waves. In the case of an inviscid

wall located atξ = 0 the amplitude of the reflected wave propagating rightwardsℓ∗4

depends on the amplitude of that propagating leftwardsℓ5 as

ℓ∗4 = ℓ5 + (Sc4 − Sc5) + 2
∂Ũ
∂t

∣

∣

∣

∣

∣

∣

wall

. (2.87)

The condition of Equation (2.87) includes the case of a vibrating (or porous) wall

and the purely stationary inviscid wall condition is recovered just by setting∂Ũ
∂t

∣

∣

∣

wall
=

0. Note that if Sc4 = Sc5 = 0 and the computation ofℓ5 with Equation (2.81) does

not include the contribution of the transverse components,the condition expressed by

Equation (2.87) reduces to the wall boundary closure of Poinsot & Lele [1992]. As this

condition is not linked to any reference value, to avoid the possible drift in the mean

value due to the numerical round off error Kim & Lee [2004] suggested, in addition to

the previously stated condition, to overwrite the Cartesian components of the velocity

for all the nodes on the boundary with the exact values. For a boundary normal to the
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curvilinear coordinateξ, the correction is
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, (2.88)

where

ξ̃x =
ξx

√

ξx
2 + ξy

2 + ξz
2
, ξ̃y =

ξy
√

ξx
2 + ξy

2 + ξz
2
, ξ̃z =

ξz
√

ξx
2 + ξy

2 + ξz
2
. (2.89)

This additional correction is also implemented in the solver when the Kim and Lee

inviscid wall condition is used.

2.5.1.3 Inter-block boundary

To complete the set of boundary conditions that can be specified within their frame-

work, Kim & Lee [2003] propose an original specification of the inter-block boundary

condition based on the characteristic waves.

Even for the most simple problem geometries, the non-uniform grids very often

contain singularities. At these points the slope of a grid line abruptly changes caus-

ing a discontinuity in the grid metrics. This condition is often impossible to avoid and,

especially for high-order solvers like the one used in this work, it causes spurious oscil-

lations that contaminate the field. Furthermore, it can be the reason for a discontinuity

in the solution.

Kim and Lee tackle the problem by using a multi-block computation that relegates

the singularities to the borders so to avoid special treatments within the field assigned

67



2. NUMERICAL METHOD

to each process. On the borders where the singularities are present, the computation

of the grid metrics and that of the flow derivatives is executed using one-sided stencils

that do not cross the borders themselves, so that each block is “isolated” from the

discontinuity. Once these conditions are satisfied, the actual boundary closure can be

enforced in the following way: if a singularity is present between two abutting blocks

having a vertical boundary in common, the flow state of a node on the border of the

left block (denoted by the letter “L”) has to be equal to that on the corresponding node

of the right block (denoted by the letter “R”). To ensure this, their time derivatives at

each Runge-Kutta stage have to be the same. This condition can be seen in terms of

characteristic waves within the theory given at the beginning of Section 2.5 as

ℓL − SL
c = ℓ

R − SR
c . (2.90)

At this point the question is: which is the process that has topass the values and

which the one that has to receive and overwrite them? For eachwave, the direction in

which the information has to be passed is determined by the sign of the eigenvalues of

Equations (2.20) that is related to the direction of propagation.

This technique, potentially useful for the second, third, and fourth test cases illus-

trated in Chapter 3, is not used for their actual solution as,with the current config-

uration of the solver, it cannot be employed in association with explicit and implicit

filtering methods whose stencils cross the borders. The onlyfiltering technique cur-

rently available in the code compatible with this method is the prefactored implicit

filtering defined by Hixon [1999], detailed in Section 2.2.3,that currently does not al-

low the use of variableα f (free coefficient) strategy and, therefore, is not used in this

work.
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2.5.2 Giles subsonic non-reflecting boundary conditions

The Giles non-reflecting boundary conditions for the linearised Euler equations de-

scribed in Giles [1990] are based on the treatment of the waveequation by Engquist &

Majda [1977] and on the analysis of well-posedness by Kreiss[1970]. First, the author

formulates an ideal non-local boundary condition based on the Fourier analysis of the

outgoing waves: this type of boundary requires the knowledge of the flow state on the

whole computational field and its complete history. The computation implies a Fourier

and a Laplace transform in time and is, in most cases, too computationally expensive to

be practically viable. Along with this exact condition Giles proposes three approximate

treatments: 1D for unsteady flows, exact 2D for steady-statesolution, and approximate

2D for unsteady flows. This last boundary closure is surely the most interesting for the

adoption in practical problems and has proven a very popularchoice since its proposal.

It is second-order accurate and it basically consists in thecomputation of the incoming

wave amplitudes based on the transverse components of the characteristic waves. The

advantage of this approach with respect to the treatment given by Thompson [1987,

1990] is that outgoing waves not normal to the boundary are accounted for.

The formulation of the subsonic inflow boundary condition asgiven by Giles in his

article, valid for the application to uniform 2D Cartesian grids only, is, in dimensional

form
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= 0. (2.91)

69



2. NUMERICAL METHOD

At the outflow,

[

0 −ρ∞c∞ 0 1
]

∂Q
∂t
+

[

0 −ρ∞c∞v∞ ρ∞c∞u∞ v∞

]

∂Q
∂y
= 0, (2.92)

where, in this 2D case, the vector of the variablesQ =
[

ρ, u, v, p
]T does not include

the component along thez axis, and the speed of sound and the flow variables with

subscript∞ are relative to the reference state around which the equations are linearised:

Q∞ =
[

ρ∞, u∞, v∞, p∞
]T.

For their implementation in a program, it is preferable to use the version in charac-

teristic form (also dimensional)
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where the definition of the vector of the characteristic variablesR is the same used for

the Kim and Lee treatment in Equations (2.22).

Note that the time derivatives of the characteristic variables not supplied by the

Giles conditions are computed directly from the state of theflow field. The flux deriva-

tives are used to obtain the values of∂R
∂x that, in turn, through the multiplication by the

respective eigenvalues, supply the value of∂R
∂t .
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To generalise the definition of these boundary conditions for the application to non-

uniform grids, the approach of Medida [2007] is followed. The generalised equations

in primitive dimensional form are
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∂Q
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]

∂Q
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where

Ψ =

√

ξ2x + ξ
2
y + ξ

2
z, µ =

ξxηx + ξyηy

ΨΦ
, (2.95a)

Φ =

√

η2
x + η

2
y + η

2
z, ν =

ξxηy − ξyηx

ΨΦ
. (2.95b)

71



2. NUMERICAL METHOD

The same equations in characteristic form are
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Note that in the finite-difference solver used for this study the flow derivatives in

the transverse direction, from which the derivatives of thecharacteristic variables are

obtained, are always computed using the standard spatial compact scheme. The flow

derivatives normal to the boundary are evaluated with the one-sided 7-point stencils

defined in Section 2.2.2. Unlike for the Kim and Lee boundary conditions, for which

the corrected version of the flux derivatives on the boundaryare used to start the sweeps

computing the flow on the nodes in the interior of the computational domain, in this

case the correction is directly applied to the time derivative and hence it is restricted to

the nodes on the boundary.

For the sake of completeness, here the generalisation to non-uniform grids of the

extension to 3D Cartesian coordinates of the Giles boundarycondition given by Me-

dida [2007] is shown. These conditions, tested in the third test case illustrated in

Section 3.3 have shown a long-time instability that makes them not suitable for the

72



2. NUMERICAL METHOD

solution of the problem. The equations are shown in characteristic form only
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where

µξη =

(

ξxηx + ξyηy

)

ΨΦ
, νξη =

(

ξxηy − ξyηx

)

ΨΦ
, (2.98a)

µξζ =
(ξxηx + ξzηz)
ΨΦ

, νξζ =
(ξxηz− ξzηx)
ΨΦ

. (2.98b)

For the application of this type of boundary condition to thetest cases of Chapter 3,

two modifications are needed. The first regards the possibility to input vortical waves

(function of the node coordinates and of time) from the inletwhile retaining the non-

reflectivity of the boundary closure (as required for test cases two, three and four in

Chapter 3). The second modification is relative to the use of the boundary condition

for problems where the reference flow field is not knowna priori and only a minimum

set of mean flow reference values is specified on the boundaries (as in the fourth test

case in Chapter 3). For these problems, the boundary condition needs to be able to deal

with both a steady-state and an unsteady type of solution.

Consider a boundary where the subsonic non-reflecting Gilesboundary condition

is enforced. In general, the time derivative of the flow field,in primitive form, is

composed of the following three parts

∂Q
∂t
=

(

∂Q
∂t

)

perturbation

+

(

∂Q̄
∂t

)

mean

+

(

∂Q
∂t

)

Giles

, (2.99)

where the first component (with subscript “perturbation”) is responsible to feed into the

field the desired perturbation (a vortical gust in the case ofthe problems of Chapter 3),

the second component (“mean”) maintains the prescribed mean conditions, and the

last (“Giles”) refers to the reaction of the boundary to the outgoing waves, necessary

to maintain the non-reflectivity.
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The first component of the right-hand side of Equation (2.99)depends on the ana-

lytical definition of the incoming disturbance usually known over the whole field or, at

least, over the boundary as a function of time and node location. This component can

either be initially subtracted directly from the value of the flow field on which the Giles

closure is computed, or, alternatively, it can be subtracted, as the analytical derivative is

always known on the boundary, from the time and the flux derivatives used to enforce

the non-reflecting condition. This part is then re-added to the computed time deriva-

tives after the application of the Giles closure and makes the “perturbation” component

“invisible” to the non-reflecting boundary condition. Thisvery effective method was

first proposed by Hixonet al.[2000] and also adopted by Ragab & Salem-Said [2007].

The “mean” component of Equation (2.99) is not computed fromthe actual value

Q of the flow field but from its mean value, denoted by the bar, over a sufficiently long

period of time. For the problems solved in Chapter 3, this time period is equal to the

period determined by the fundamental frequency of the incoming gust to which the

outgoing acoustic waves are also related. This choice allows to minimise data history

and, therefore, the quantity of memory required for the computation.

In general, this component is only needed when the referenceflow is unknown and

it is univocally determined by a minimum set of conditions over the boundaries. In

the fourth test case, described in Section 3.4.1, this set ofconditions consists of: mean

inflow angleᾱ, mean stagnation pressure ¯ptot and temperaturēTtot at the inflow, and

mean static pressure ¯p at the outflow. The following treatment refers to this case in

2D but, with small adaptations, it can be applied to any set ofwell-posed boundary

conditions in 3D. The problem here is to relate the time derivative
(

∂Q̄
∂t

)

mean
to the value

of δᾱ, δp̄tot, δT̄tot, andδp̄ that represent the difference between the current value of

these variables and their target value specified by the problem.
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At the inflow, the stagnation values and the flow angle are related to the primitive

variables as

ptot = p+
1
2
ρ
(

u2 + v2
)

, (2.100a)

Ttot = T +

(

u2 + v2
)

2cp
=

p
ρR
+

(

u2 + v2
)

2cp
, (2.100b)

α = arctan
(v
u

)

, (2.100c)

where the thermodynamic constantsR andcp are defined as in Section 2.1.1 and the

static temperatureT is

T =
p
ρR
. (2.101)

From Equations (2.100) it is possible to analytically derive the set of relations

δptot =
∂ptot

∂ρ
δρ +

∂ptot

∂u
δu+

∂ptot

∂v
δv+

∂ptot

∂p
δp =

(

u2 + v2
)

2
δρ + ρuδu+ ρvδv+ δp,

(2.102a)

δTtot =
∂Ttot

∂ρ
δρ +

∂Ttot

∂u
δu+

∂Ttot

∂v
δv+

∂Ttot

∂p
δp = −

p
ρ2R
δρ +

u
cp
δu+

v
cp
δv+

δp
ρR
,

(2.102b)

δα = −
v

u2 + v2
δu+

u
u2 + v2

δv, (2.102c)

from which it is evident that, to obtain the variations of theprimitive variables from

the variations of the available stagnation properties and of the flow angle, an additional

relation is needed. Following Ahmadi & Ghaly [1996] and, similarly, Hixon et al.

[2003, 2004], this relation is supplied by the outgoing characteristic waves. At the

inflow, only R5 defined by Equation (2.22e) is outgoing. When computed from the
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averaged values of the flow in a steady-state condition it hasto be equal to zero (note

that here, unlike in Section 2.1.2 whereξ is already of unit length, the metrics have to

be divided byΨ having value defined by Equation (2.95a))

δR5 = −
ξx

Ψ
δu−

ξy

Ψ
δv+

1
ρc
δp = 0. (2.103)

Collecting Equations (2.102) and (2.103) in matrix form andintroducing the time

averaged values, it follows that
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ū
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where matrixH can be inverted, either analytically or numerically (as in the imple-

mentation of this work), to give the sought relationship
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The correction to be applied to the characteristic variables can be directly computed
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by pre-multiplying by matrixL−1 in Equation (2.21b) both sides of Equation (2.105)



























































δR̄1

δR̄3

δR̄4

δR̄5



























































= L−1



























































δρ̄

δū
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It has to be noted that, in the practical computation, the value ofδR̄
∗
5, as those of

the components of matrixH−1, is based on the variation of the mean flow variables,

while δR̄5 is the actual correction of the characteristic variables, that, along with the

other components, contribute to establish the corrected values of the actual time deriva-

tives on the boundary. When the flow field is in conservative form, the only difference

with the above procedure is that matrixH and its inverse have to be multiplied re-

spectively by matrixM−1 andM of Equations (2.26) and (2.25). The correction of

Equation (2.106) is applied only at the end of each time step and not at each Runge-

Kutta stage as the other terms in Equation (2.99).

At the outflow, the treatment is similar with the only difference that, in this case,

one condition is provided by the problem (the value of the static pressurep) and the

remaining three conditions are given by imposing the amplitude of the outgoing char-
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acteristic waves equal to zero. The condition can be summarised as
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2.5.3 Symmetry

As seen in Section 2.2.2, the treatment of a symmetry boundary condition can be done

in a general standard way by employing the ninth-order centred 11-point stencils de-

fined by Equations (2.47) with the coefficients shown in Equation (2.48). The flow

values of the first five rows of nodes near the boundary have to be mirrored on the

other side of the boundary and stored in five rinds of additional ghostnodes. Then the

centred stencil of Equation (2.47) can be applied to computethe forward and backward

half-derivatives necessary to start the sweep computing the values of the derivative

within the field. The only disadvantage of this technique is related to the amount of er-

ror introduced by the centred explicit stencil that, although very similar for its spectral

characteristics to the compact scheme, can not ensure the same level of accuracy for

every wavenumber.

When the axis is parallel to one of the Cartesian axes, a simple alternative to the

use of the explicit stencil is available. It is based on the characteristics of the compact
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axis
of symmetry

0 1 2 3 4

forward derivative

backward derivative

node number

(a) Axis of symmetry on a row of nodes.

0 1 2 3 4

axis
of symmetry forward derivative

backward derivative

node number

(b) Axis of symmetry halfway between rows of nodes.

Figure 2.7: Two schematics illustrating the alternative types of treatment of the sym-
metry boundary condition.

scheme and does not introduce any additional error with respect to it as the boundary

nodes are treated exactly as nodes belonging to the interiorof the domain. The fol-

lowing description regards a generic 2D problem with the Euler equations in primitive

form.

In the standard treatment, the calculation of the forward and backward spatial

derivatives for a row of nodes is executed with two sweeps starting from the oppo-

site sides. They are independent and their order of execution bears no importance.

With the alternative technique the computation starts fromthe edge opposite to that

where the symmetry is enforced. There, the value of the half-derivatives is known

and the sweep evaluating, for example, the forward derivative can be executed. The

alternative symmetry condition is applicable to the two following cases: (i) the axis of

symmetry is coincident with a row of nodes as shown in Figure 2.7 (a), or (ii) the axis

of symmetry lies exactly halfway between two rows of nodes asshown in Figure 2.7
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(b). In the former case, when the first node from the axis of symmetry of the physi-

cal domain is reached (node 2 in detail (a)), the spatial derivative, being based on the

value of the flow at nodes 1, 2 and 3 and on the half-derivative at node 3, can still be

calculated by the three-point stencil of the prefactored compact scheme described in

Section 2.2. For the calculation at node 1 an exception is introduced in the code: due

to the symmetry of the flow variables, it is possible to imagine a further point (number

0 in detail (a) of Figure 2.7) having the same flow characteristics of node 2 with the

exception of the velocity component perpendicular to the axis, that has opposite sign.

So, the forward derivative at node 1 can be computed as if it was part of the interior

domain. Its backward derivative can be evaluated by exploiting again the symmetry of

the problem. In fact, for the pressure, the density and the velocity component parallel

to the axis of symmetry, it is always equal to the forward derivative with opposite sign.

This is obvious from the fact that the sum of the two half-derivatives, representing the

derivative at the node, on the boundary has to be zero. The only exception is the ve-

locity component normal to the axis of symmetry, for which the two spatial derivatives

are equal and with the same sign. Once the value of the backward derivative at node 1

is known, it is possible to execute the second sweep for the evaluation of the backward

half-derivative in the domain interior.

For the second case of Figure 2.7, in which the axis does not lie on a row of nodes

but is located halfway between them as in detail (b), the computation is even simpler

as the backward derivative at node 0 is equal and opposite to the forward derivative at 1

with the usual exception of the velocity component normal tothe axis of symmetry, for

which the two contributions have the same sign. In this case,at the end of each Runge-

Kutta stage, the values of row 1 need to be copied to row 0 with the exception of the

normal velocity component for which a slightly more complextreatment is needed.
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When both the opposite boundaries of a block are of symmetrictype, the illustrated

technique can be used anyway by starting the sweeps with values of the half-derivatives

computed by an explicit stencil and executing them twice. This represents an additional

computational cost that has to be considered.

2.5.4 Buffer zone

Thebuffer (or sponge) zone method, originally proposed by Wasisthoet al. [1997] but

here used in the formulation given by Chenet al. [2004], reduces the reflections from

a boundary by numerically damping the outgoing waves. The numerical damping is

applied within a zone abutting the boundary by modifying thesolution vectorQ at

every node via a coefficientσ that depends on the node position. In a 1D case, with

the left boundary atx = 0 the correction takes the form

Q = Q − σ
(

Q −Qtarget

)

, (2.108a)

σ(x) = α

(

Lb − x
Lb

)β

, (2.108b)

whereLb is the buffer layer thickness equal to the distance between the external bound-

ary of the computational domain and the coordinate of the first node not corrected, and

α andβ are two coefficients that in this work are set respectively equal to 1 and 3.5.

α controls the value ofσ at the boundary andβ controls the blending of the interior

flow solution with theQtarget. Qtarget is a set of reference values, usually constant.

The treatment in case of conservative variables is identical with U andUtarget that take

the place ofQ andQtarget. This boundary condition is particularly effective when the

buffer thicknessLb is large and, therefore, the discontinuity at the interfacebetween
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the treated zone and the rest of the field is minimised. The main shortcoming of this

technique is related to its computational cost due to the additional nodes in the buffer

layer.

A modified version of the buffer zone is newly devised in this work in order to

associate the non-reflectivity of its standard treatment with the necessity to introduce a

vortical gust from the boundary inflow as required by most of the test cases described

in Chapter 3. Numerically, the treatment follows Equations(2.108) with the only dif-

ference that the target valueQtarget is not constant but equal to the sum of the flow

reference value plus the vortical gust superimposed on it. This buffer layer treatment

with a time-dependentQtarget can be implemented provided the gust is known over the

whole thickness of the buffer as it is in test case number two and three, and can also

be applied to the outflow when the field near the outlet is sufficiently similar to the

introduced gust.

2.6 Parallelisation

In order to solve problems on models having a number of nodes exceeding the com-

putational power of a single processor in terms of addressable memory, it is necessary

to distribute the computational effort executing the code in parallel on multiple pro-

cessors. The available strategies to realize this are various and essentially depend on

the nature of the solver that needs to be “parallelised” and on the maximum number

of processors that have to be employed in parallel for the solution of the problem. In

order to ensure the maximum flexibility and portability, andto allow the solution of

problems on an indefinite number of processors, the message passing interface (MPI)

standard system is chosen. In particular, the model adoptedfor this work is MPI-1
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that does not allow shared memory. Details regarding this technique can be found, for

example, in Pacheco [1997].

MPI can be used to modify the algorithm of the original “scalar” code in different

ways. For instance, it is possible to assign different independent tasks to a number of

processes that, at the end of the computation, exchange their partial results to obtain

the general solution of the computation. Given the nature ofthe finite-difference solver

used in this work, the strategy calleddomain decompositionor, more accurately,data

decompositionis used [Smithet al., 1996]. With this strategy the various processes,

as the independent entities connected by the message passing interface are called, all

execute the same algorithm on sets of data corresponding to different parts of the flow

field. Hence, the computational steps executed by the various processes can only differ

due to the conditions enforced at the boundaries. The data decomposition type used

for this work is callednon-overlappingas the portions of the physical field assigned to

each process have in common only the nodes on the boundary. Note that this definition

does not regard the overlap due to the presence of theghostnodes necessary to the

data exchange and described further on in this chapter. Moreabout the parallelisation

and data decomposition strategies can be found in Smithet al. [1996] and Quarteroni

& Valli [1999].

Figure 2.8 shows an example of the two levels of data decomposition related to a

simple 3D multi-zone model. The initial model, shown in detail (a), is composed of

a number of structured blocks connected through their faces. This is the first level of

data decomposition that depends on the structure of the original model. The solver,

as shown in detail (b), allows to decompose each of the initial blocks in the desired

number of parts along every curvilinear direction. The resulting sub-zones are still

structured grids and can be assigned to different processes.
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X Y

Z

(a) First level of data decomposition related to the structure of
the original model.

X Y

Z

(b) Second level of data decomposition.

Figure 2.8: General decomposition of a multi-zone model.
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The two levels of data decomposition seen in Figure 2.8 implytwo levels of data

communication. Consider the simple multi-block 2D model ofFigure 2.5: it is com-

posed of two structured blocks. Suppose to divide zone 1 in 4 parts and zone 2 in 12

parts as shown on the left-hand side of Figure 2.9. The communication of the pro-

cesses within each of the initial zones in MPI is calledintra-communicationand is

represented in the figure by black solid arrows. The set up of these communications

largely relies on functions, provided by MPI, that allow to automatically subdivide a

structured mesh in smaller subsets of data assigned to different processors, creating

what is called a Cartesian communicator. While the domain isdecomposed, a set of

information is also provided to each process (essentially,the position of the process

within the structured block and its local rank) to allow the exchange of messages be-

tween neighbouring processes. The right-hand side of Figure 2.9 illustrates the topol-

ogy of the model when decomposed by MPI in two separate Cartesian communicators:

the local rank of each process and its Cartesian coordinateswithin the communicator

are shown.

The second level of data communication aims to allow the exchange of data be-

tween processes that are part of two separate abutting zones. It is usually calledinter-

communicationand it is represented by dashed arrows in the schematic on theleft-hand

side of Figure 2.9. In this case two connected zones can have different orientations of

the curvilinear coordinates. For example, in Figure 2.5 theconnection along the upper

edge of zone 1 has coordinates in agreement between the two blocks asξ1 coincides

with ξ2, andη1 andη2 have the same orientation. In contrast, the connection along the

right edge of zone 1 has curvilinear coordinates that are notcompatible between the

two zones and the message passing requires a manipulation ofthe data. For this reason,

the second level of communication is much more problematic than the previous and
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Figure 2.9: An example of the decomposition of a two-zone model via MPI Cartesian
communicators.

its implementation can be made in a number of ways following different approaches.

That adopted in this work avoids the use of theinter-communicatorsas specified by

MPI because they would affect the efficiency of the code as they represent an excep-

tion in the code algorithm. More simply, the communication is based on the use of the

general ranks. These are values that unambiguously identify each process within the

most general communicator (usually called MPICOMM WORLD, including all the

processes). For this purpose the code goes through the following steps:

1. each process, that already has the possibility to communicate with its neighbours

belonging to the same block (since it knows their local rank within the Cartesian

communicator), exchanges its general rank with the surrounding processes. This

allows to pass messages using the general communicator within each block;

2. themasterprocess (that, as explained in Section 2.7, manages the general input-
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output of data) executes a part of the code that, starting from the geometri-

cal characteristics of each connection between the different zones of the initial

model, computes the general rank of each couple of abutting processes and sends

a message with this information directly to every process involved;

3. at this point, each process knows the general rank of all its neighbours, including

those that are part of a different block, and can use it to send and receive data.

Once the communication between each process and all its neighbours is estab-

lished, and the initial condition of the flow field is distributed along with the boundary

conditions, the proper computation can be started.

Consider a simple 2D mesh with 17 nodes per edge like the one shown in detail

(a) of Figure 2.10. The boundary conditions enforced on eachside are periodic and

use the same algorithm of the inter-block as detailed in Section 2.2.2. The mesh can

be divided, for instance, in 4 squared parts, outlined in thefigure by thick black lines,

having the same extension (9 nodes per edge) and assigned to different processes.

Detail (b) of Figure 2.10 shows the grid that each of the four processes has to allocate

in its memory. It is not limited to the field portion assigned (greyed out in the figure)

but has to include additional rinds of nodes. In fact, as seenin Section 2.2.2, for

the sweeps computing the derivatives to start, the values ofthe half-derivatives on the

boundaries are needed. These values are provided by one-sided stencils for a wall or

an outer boundary, or by centred stencils in case of inter-block boundary. This implies

that along the inter-block boundaries each process also needs to know a part of the

field owned by its neighbours. Its size depends on that of the employed stencil. This

requires a data exchange between neighbouring processes atthe end of each Runge-

Kutta stage. The data received from the neighbours is storedin an additional part of

the computational grid usually calledghostnodes. The adoption of the explicit 11-
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point stencil of Equation (2.47) for the computation of the half-derivative (black and

white dots in detail (b) in Figure 2.10) implies 5 rinds of ghost nodes (black dots in the

figure) along each inter-block boundary. It has to be noted that in the code object of

this work the approach is completely parametric and it leaves the freedom to specify

any number of rinds and so, if needed, it is possible to use stencils of any length and

order of accuracy.

2.6.1 Communication in reduced form

The main drawback of the type of computation shown above is that when high-order

schemes are used, the number of rind nodes necessary to storethe data received from

the neighbours can be relevant, especially when 3D grids areconcerned. In terms

of memory usage, this aspect could represent a strong limitation. To overcome this

problem, the computation can be approached in a different way: instead of computing

the whole backward and forward derivatives in one go, it is possible to use a two-step

process.

First, instead of using the whole 11-point stencil shown in Equation (2.47), every

process computes just one half of the spatial derivatives across the boundary, based on

the nodes that belong to its own share of the flow field (e.g. thenodes defined by the

white dots in detail (b) of Figure 2.10). This is done with theuse of stencils that cover

6 nodes. For the boundary on the left-hand side of the grid in detail (b), denoted by
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(a) Two dimensional model with periodic boundaries
divided into four parts.
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(b) The actual local grid of one of the processes
shown in detail (a). In addition to the physical data
proper to that process (the area greyed out), five rinds
of nodes are included to store part of the flow field of
the neighbouring processes.

Figure 2.10: An example of the decomposition in four parts ofa 2D block with periodic
boundaries.
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node index 0, the stencils are defined as

(

∂ f0
∂x

F)

1

=
1
2

b0 f0 +
5

∑

i=1

bi fi, (2.109a)

(

∂ f0
∂x

B)

1

= −
1
2

b0 f0 −
5

∑

i=1

b−i fi, (2.109b)

where the coefficientsbi are still those shown in Equation (2.48).

Similarly, for the boundary on the right-hand side of the grid in detail (b) of Fig-

ure 2.10, denoted by indeximax

(

∂ fimax

∂x

F)

2

=
1
2

b0 fimax+

−1
∑

i=−5

bi fimax+i , (2.110a)

(

∂ fimax

∂x

B)

2

= −1
2

b0 fimax−
−1
∑

i=−5

b−i fimax+i . (2.110b)

Then, the two halves of the derivatives (just two values for each boundary node) are

exchanged with the neighbouring process and the whole valuecan be reconstructed.

This method reduces the number of required rind nodes to two,and, most importantly,

keeps them constant when the order of accuracy is increased.So, even with stencils

having more than eleven points, the quantity of additional memory and the bandwidth

required by the message passing does not change. Notice that, apart from a different

round off, the results are numerically identical to the ones obtainedby the standard

method.

Unfortunately, this technique cannot be used when the problem to be solved re-

quires the application of high-order filtering methods likethe explicit and the standard

implicit described in Section 2.2.3 that employ stencils crossing the borders. In these

cases the message passing of the whole set of flow data is necessary.
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2.7 Input/output

In the current version of the solver, the initial data of the problem (essentially: flow

field and node coordinates) can either be introduced by modifying a specific module

of the code or by using a standard CFD General Notation System(CGNS) external

file. The latter method neatly separates the phase of model definition with the actual

computation and enables the user to examine and modify the contained data and, if

required, to exchange them with other researchers. The CGNSfiles can be managed

by codes written in C or Fortran via an open source mid-level library of functions called

libcgnsavailable on different platforms. In addition, recently, a similar library called

mexCGNS has been developed to be used in association with high-level programming

languages like MATLAB and GNU Octave.

Independently of the way in which the initial data are introduced, they need to

be distributed to all the processes in order to provide them with the minimum set of

information required for starting the computation. This distribution can be executed

essentially in two ways:

1. One of the processors (calledmaster) is in charge of the reading and writing from

and to the external files, so that all the stream of data passesthrough it. It dis-

tributes and collects data with one to one communications while the computation

is initialised and when the results are output. A variant of this method can be im-

plemented using intermediate passages, with the master process sending blocks

of data tolocal masters that then distribute the data to the single processes.

2. Each process, having been provided by the master of enoughinformation, reads

the coordinates and the initial flow field directly from the external file. For the

output, similarly, each process directly accesses the file and writes its part of the
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results.

The first solution is the only one available on those high-performance computing

(HPC) clusters in which just one process is allowed to accessthe disk for reading and

writing purposes. For this reason it is the most reliable andit is portable on every

system. Unfortunately, it also brings some disadvantages.The main ones regard the

superior complexity of the code and the fact that the processof input/output is much

slower than that resulting from the second solution. It is also important to notice that

the second option can actually be realized in different ways depending on the charac-

teristics of the host system (type of connection between thenodes and file system used)

and on the type of output (CGNS or other type of data file). The second option also re-

quires the adoption of MPI-2, a level of the MPI standard thatcontains an extended set

of functions with respect to MPI-1, including shared memoryoperations and parallel

input/output.

The first solution was chosen for the program object of this work because of its

higher portability, but the code was written in a way that allows to easily implement the

second solution in those cases (e.g. models particularly large that have to be distributed

on hundreds of processes) where the requirements regardingthe reading/writing speed

should become of the highest importance.

All the additional parameters necessary to execute the simulations are read from

an external text file. This file is used independently of the type of input of the initial

conditions and of the output of the results. It consists of three sections:parameters

always read, parameters read if the input is from CGNS, andspecial sections.
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2.8 Error norms

Let Un be the numerical solution of the flow state andUa the analytical or the reference

solution defined on the samei th point, the multidimensional error vectore can be de-

fined as the difference between the two values:ei = |Un−Ua|. To evaluate the accuracy

of a set of results and its order of convergence towards the reference solution when the

mesh is refined, the following two error norms are used throughout Chapter 3:

1. thenormalised l2 -norm(also referred to in the literature as “l2 - norm”)

l2 - norm=

√

√

√

√ N
∑

i=1
ei

2

N
, (2.111)

2. thel∞ -norm(also referred to in the literature aslmax- norm)

l∞ - norm= max(ei), i = 1, ...,N. (2.112)
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Chapter 3

Test case applications

This chapter contains the results from four test cases that have been solved to demon-

strate the ability of the high-order finite-difference solver to simulate the conversion of

kinetic energy into noise by the interaction of vorticity waves with rigid surfaces. This

goal is achieved by solving four test cases of increasing complexity.

Thefirst test casemodels the sound field generated by an oscillating field around

a still cylinder. This test case is used to test the effectiveness of the Kim and Lee

generalised boundary conditions detailed in Section 2.5.1. In addition, this case allows

to compare the results from the linearised and the non-linear formulation of the Euler

equations and study the influence of non-linear effects on the results.

The second test caseaims to simulate the two-dimensional interaction of an in-

cident gust with a cascade of flat plates. It is a simplified version of the rotor-stator

interaction problem for which an analytical solution is available.

The third test caseis the extension into three dimensions of the second test case

and can assess the ability of the solver to address large problems on distorted grids in
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three dimensions.

In the fourth test case, the rotor-stator interaction in two dimensions is simulated

introducing further details including a realistic compressor blade profile and an incom-

ing multi-frequency spectrum vortical gust. This tests theability of the code to tackle a

problem of practical engineering interest using a stretched multi-block computational

mesh.

All but the first test case are taken from the NASA workshops oncomputational

aeroacoustics that are periodically organised to verify the technological advancement

in the numerical computation of the generation and of the propagation of sound.

In all four cases, the working fluid is air, modelled using perfect gas assumptions,

with specific gas constantR= 287.06 J/(kg K) and heat capacity ratioγ = 1.4.

For each problem, the metrics for the transformation from the physical to the com-

putational space and their inverse are evaluated numerically using the same spatial

scheme as used for the flow derivatives, even when, as for the first three test cases,

the exact analytical solution is available. According to Visbal & Gaitonde [1998] this

technique ensures a higher level of overall accuracy.

All the simulations have been run on ALICE, the high performance computing

cluster of the University of Leicester. This cluster is composed of 256 nodes, and each

node includes two quad-core 2.67GHz Intel Xeon X5550 CPUs with 12 GB of RAM.

The operating system is the 64-bit version of Scientific Linux 5.4.

Unless otherwise stated, the solver has been compiled with version 12.1.3 of the

64-bit Intel compiler. The compilation flags included several options to maximise the

speed of execution. Other relevant libraries used in the code for specific tasks are: Intel
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MPI version 4.0.3, FFTW version 3.2.2, Intel Math Kernel Library (MKL) version

10.3.9, and CGNS library version 2.54.

3.1 First test case: dipole sound generated by an oscil-

lating flow field around a still cylinder

The first test case is a modified version of the problem presented by Kim & Lee [2004],

where a cylinder oscillates vertically in a steady inviscidflow generating the acoustic

field typical of a dipole (see Figure 3.1). Viscosity is neglected.

3.1.1 Problem definition

The position of the centre of the cylinder of diameterD depends on timet and is defined

by the coordinates

x(t) = 0, (3.1a)

y(t) = −ǫ c∞
ω

cos(ωt), (3.1b)

whereǫ is a non-dimensional value equal to 10−4 , c∞ is the ambient speed of sound,

andω = 2πc∞/D is the angular frequency of the oscillation. Any pointP in the 2D field

is defined by the distancer from the origin of the axes and by the angleφ measured

from the axis of oscillationy. In order to correctly define the boundary condition on

the wall surface it is important to notice that the velocity normal to the wallŨ and its
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r

x

y

P

R

φ
ǫ

Figure 3.1: Schematic of the problem as in Kim & Lee [2004]. Oscillating cylinder in
a still air.

time derivative are equal to

Ũwall = ǫc∞ cosφ sin(ωt) ,

dŨ
dt

∣

∣

∣

∣

∣

∣

wall

= ǫωc∞ cosφ cos(ωt) .
(3.2)

Kim & Lee [2004] run four simulations with different values of the mean flow

velocity (M∞ = 0, 0.1, 0.2, and 0.4). An analytic solution is known only for the case

with no mean flow. The perturbation in the pressure field is given by Dowling &

98



3. TEST CASE APPLICATIONS

Ffowcs Williams [1983]

p′(r, φ, t) = −ρ∞ǫc2
∞ cosφeiωt H0

(2)′ (ωr/c∞)

H0
(2)′′ (ωR/c∞)

, (3.3)

whereρ∞ is the reference ambient density,R = D/2 is the radius of the cylinder, and

H0
(2)′ andH0

(2)′′ are respectively the first
(

H0
′
(z) = dH0

dz

)

and the second
(

H0
′′
(z) = d2H0

dz2

)

derivatives of the zero-th order Hankel function of the second kind. These functions

can be easily computed exploiting one of their properties that relates the derivative

of the Hankel function to the function itself and to the function of order immediately

higher
d
dz

Hp(αz) = −αHp+1(αz) +
p
z

Hp(αz). (3.4)

By applying Equation (3.4), Equation (3.3) becomes

p′(r, φ, t) = −ρ∞ǫc2
∞ cosφeiωt H1

(2) (ωr/c∞)
c∞
ωRH1

(2) (ωR/c∞) − H2
(2) (ωR/c∞)

. (3.5)

This work considers the reciprocal problem of a still cylinder immersed in an os-

cillating flow field as sketched in Figure 3.2. This can be modelled by setting the body

forces vectorf = [ fx, fy, fz]T in Equations (2.1) or Equations (2.2) equal to

f =









































fx

fy

fz









































=









































0

ǫc∞ω cos(ωt)

0









































. (3.6)

This changes the value of theSvector in the set of Euler equations either in the conser-
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r

x

y

P

R

φ

Figure 3.2: Schematic of the modified problem. Oscillating field around a still cylinder.

100



3. TEST CASE APPLICATIONS

vative form of Equation (2.5) or in the primitive form of Equation (2.9) and the value

of vectorsSV andS∗V in the Kim and Lee boundary treatment of Section 2.5.1.

Let subscript “of” define the oscillating flow field. Then

Qof =




































































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



ρ

u

v

w

p
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




































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
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, (3.7)

whereρ0 and p0 are the constant reference values for density and pressure.Qof is a

valid solution of the Euler set of equations that includes the body forcesf . This can

be demonstrated by substituting Equation (3.7) into Equation (2.8b) withf from Equa-

tion (3.6).

The analytical solution of Equation (3.3) to the original problem presented by Kim

and Lee is also the analytical solution to the modified problem. The former can be

transposed into the latter by the means of a change in the system of reference. The

amplitude of the oscillation is taken to be vanishingly small as this is an inherent as-

sumption in the analytical solution of Equation (3.5) whichis only valid for linear

oscillations.
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3.1.2 Numerical methods

A set of increasingly refined meshes was created to model the test case of Section 3.1.1.

The coarsest grid, which is referred to as grid number 1 further in the text, is shown

in Figure 3.3. It has an O-grid topology and, to reduce the computational cost of the

simulation, the symmetry of the problem is exploited by modelling only half of the

field, so that the part located in the negative half-plane along thex axis is neglected.

All the dimensions are normalised with respect to the cylinder diameterD. The char-

acteristics of the five grids employed are summarised in Table 3.1. Grid number 1 was

designed to have approximately squared cells near the central cylinder. This allows to

minimise the error due to the grid distortion. In the circumferential direction (curvilin-

ear coordinatei in detail (b) of Figure 3.3) the nodes are equally spaced. Once the first

two rows of nodes around the cylinder are determined, a constant stretching factor (the

ratio between the distances of two successive pair of nodes)in the radial direction is

applied to compute the position of all the nodes. The external radius (Re = 11.7049D)

is kept constant for all the five grids, making the results comparable in every area of

the field. Every grid is obtained from the previous one and includes all its nodes. New

nodes are added by reducing the stretching factor as shown inTable 3.1.

For this test case the flow governing equations are solved in conservative form to

allow coupling with the Kim and Lee type of boundaries of Section 2.5.1. They are

non-dimensionalised for the computation following the rules given in Section 2.1.4.

The set of reference values shown in Table 3.2 is used. The normalisation of the input

data and of the results (in primitive form) usesl∞, ρ∞, andc∞ for normalising length,

density and velocity. Pressure is normalised bypre f = 101325 Pa to facilitate the com-

parison with published data.
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(a) General structure of the grid.
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(b) Detail of the area surrounding the circle representing the still cylin-
der. Curvilinear coordinatesi and j are shown.

Figure 3.3: Coarsest grid (number 1 in Table 3.1) used for thesolution of the first test
case. All dimensions are normalised with respect to the cylinder diameterD.
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Table 3.1: The five grids used for the solution of the first testcase. The value of the
stretching factor refers to the radial direction. The smallest cell values refer to the min-
imum node distance along the two curvilinear coordinates and is non-dimensionalised
with respect toD.

Grid no. Nodes Stretching Smallest cell [nd]
in i dir. in j dir. total factor in i dir. in j dir.

1 61 61 3721 1.0539 2.62E-02 2.70E-02
2 121 121 14641 1.0266 1.31E-02 1.33E-02
3 241 241 58081 1.0132 6.54E-03 6.61E-03
4 481 481 231361 1.0066 3.27E-03 3.29E-03
5 961 961 923521 1.0033 1.64E-03 1.65E-03

Table 3.2: Reference values used for the code internal non-dimensionalisation.

Length Static speed of sound Static density
(l∞) [na] (c∞) [m/s] (ρ∞) [kg/m3]

Cylinder diameterD 340.2939905434 1.225

At the beginning of the simulations, the flow field is initialised with

Q =
[

ρ, u, v, p
]T
= [1, 0, 0, 1]T . (3.8)

The surface of the cylinder is modelled with the stationary inviscid wall boundary

condition proposed by Kim and Lee and reported in Section 2.5.1.2. The external

semi-circular surface, that is an inflow or an outflow depending on the phase of the

field oscillation, is computed with a customised closure that is function of the direction

of the velocity normal to the boundary and enforces either the soft inflow or the non-

reflecting outflow condition by Kim and Lee reported in Section 2.5.1.1. The non-

dimensional reference values required by Equations (2.83), (2.85) and (2.86) for the
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computation of the boundary conditions are as follows:l = 25 (characteristic length of

the domain),u∞ = 0, v∞ = ǫ sin(ωt), p∞ = 1.

The condition of symmetry applied to the vertical boundaries is enforced as de-

scribed in Section 2.5.3. This particular type of boundary closure can only be applied

to plane surfaces normal to either thex or they axis as in this case.

When the computation is run in parallel on multiple processes, standard inter-block

boundary conditions are used for the communication as described in Section 2.6.

The linearised formulation of the Euler Equations (2.8a) isan appropriate choice

for the solution of this problem, so that predictions can be directly compared against the

reference analytical solution by Dowling & Ffowcs Williams[1983], which is based

on a linear perturbation assumption. The problem is also solved using the non-linear

set of equations.

The time-integration is performed using the classical fourth-order Runge-Kutta

scheme with the implementation described in Section 2.3.2.

The types of finite-difference spatial filters used for removing high-wavenumber

spurious numerical waves from the computation of this test case are summarised in

Table 3.3. Note that when the implicit filter is used, the value ofα f is constant near the

boundary as, if increased, the computations become unstable.
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Table 3.3: Characteristics of the filters used for the first test case.

Filter type NBT α f coeff. Application frequency

explicit LOC 0 every time step
implicit LOC 0.4 every time step

3.1.3 Results

The non-dimensional duration of the simulationst f in is fixed equal to 23 to allow for

the waves that originate near the cylinder to propagate beyond the external boundaries.

The convergence of the results is checked between timet = 22 and 23. In all the simu-

lations run, the maximum difference in non-dimensional pressure over the whole field

is less than 0.3%.

The time-integration and parallelisation settings depending on the degree of mesh

refinement are shown in Table 3.4. With the sixth-order prefactored compact scheme

and the classical fourth-order explicit Runge-Kutta time-integration, the stability and

the accuracy limits for the Courant number are respectivelyequal to 0.4999 and 1.4217.

The simulations on grid number 3, 4, and 5 in Table 3.1 use a relatively high number of

nodes and time steps and therefore are run in a parallel fashion by dividing the model

in equal parts as summarised in Table 3.4.

Four different sets of simulations have been run by varying the form ofthe equation

(linearised or non-linear) and the type of filtering (explicit or implicit, see Table 3.3 for

details). To check the order of the mesh convergence, each set is composed of five runs

on the progressively refined grids of Table 3.1.

The linearised and non-linear sets of simulations lead to visually identical results,
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Table 3.4: Time integration and parallelisation settings for the numerical grids of Ta-
ble 3.1. The time step is in non-dimensional form.

Grid no. Time step Steps Courant no. Processes
[nd] in i dir. in j dir. total

1 0.0125 1920 0.4775 1 1 1
2 0.00625 3840 0.4774 1 1 1
3 0.003125 7680 0.4774 2 1 2
4 0.0015625 15360 0.4774 2 2 4
5 0.00078125 30720 0.4774 4 2 8

so, only those relative to linearised equations with implicit filtering are shown in Fig-

ures 3.4-3.6. All the figures are obtained at the non-dimensional timet = 22 and show

flow variables in non-dimensional form.

Figure 3.4 shows the flow state att = 22 from simulation with grid number 1. The

general shape of the acoustic non-dimensional pressure field is that of a dipole with

the main directivity along axisy. These results can be directly compared with those

obtained from grid number 5 shown in Figure 3.5. The higher spatial resolution of the

latter simulation is shown near the external boundary wherethe grids are locally more

coarse, due to the proportional mesh stretching of Table 3.1. These observations are

confirmed by the details (b) and (c) of the two figures that regard the non-dimensional

velocity componentsu andv.

In Figure 3.6, the pressure distribution along positive axis y obtained from the five

different grids are compared. The numerical results, represented by symbols, are clus-

tered around the analytical reference solution which is shown by the continuous line.

The detail allows to appreciate the small dependence of the predictions on the level of

mesh refinement.
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Figure 3.4: Non-dimensional predicted flow state at non-dimensional timet = 22 using
equations in linearised form and implicit filtering. Grid number 1. Negative contours
are shown by dashed lines.
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Figure 3.5: Non-dimensional predicted flow state at non-dimensional timet = 22 using
equations in linearised form and implicit filtering. Grid number 5. Negative contours
are shown by dashed lines.
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Figure 3.6: Results at non-dimensional timet = 22 along the positivey axis. The
results from simulations on five different grids are compared to the analytical solution.
Equations in linearised form with implicit filtering.
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In Table 3.5, the non-dimensional pressure error at timet = 6 is shown as both the

l∞ -norm, defined by Equation (2.112), and thel2 -normdefined by Equation (2.111).

The values are compared node-by-node with the analytical solution of Equation (3.3).

The results are grouped in four sets, using the five different numerical grids of Table 3.1

in each set in order to evaluate the mesh convergence. Each set of results comes from

a combination of filter type (implicit or explicit) and equation form (linearised or non-

linear). At timet = 6, the front of the first wave propagating from the cylinder has not

yet reached the external boundary. Thus the comparison between the analytical and the

numerical solution is restricted to a circle of radiusR = 1 centred on the origin of the

axes. This region includes the first pressure peak only, as shown in Figures 3.4, 3.5,

and 3.6. The analytical solution of Equation (3.3) was obtained under the hypothesis

of linearity. Therefore, correctly, the results indicate that the equations in linearised

form give a lower error with respect to their non-linear counterparts. The implicit form

of the spatial filter used to damp high-frequency numerical waves in the computational

domain gives a flow simulation that is in closer agreement with the analytical solution

in terms of absolute non-dimensional pressure value on all five grids.

The examination of the order of convergence of the error norms against the mesh

density shows a second-order roll off (columns “conv.”). This result is not in accor-

dance with the expected sixth order of the internal spatial scheme of Section 2.2 and

can be explained by the use of the low-order centred (LOC) technique, described Sec-

tion 2.2.3, to filter the flow field on the nodes near the boundaries. In fact, the first

interior point of the computational domain at the circular cylinder boundary is treated

with a second-order three-point stencil filter. In this typeof problems the waves are

originated on the cylinder surface and they necessarily have to pass through the low-

order filter as they propagate inside the domain. This affects the wave amplitude.
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In Table 3.6, the results at the non-dimensional timet = 22 with comparison re-

stricted to a circle of radiusR = 1 are summarised. Here the influence of the error

induced by the external boundary becomes apparent on the absolute accuracy of the

non-dimensional pressure. The finer meshes are more affected by this effect.

At the non-dimensional timet = 22 the waves have reached the external bound-

aries and the error comparison with the analytical solutioncan be extended to the

whole field. The results are summarised in Table 3.7. Both error norms increase with

respect to the norms computed over the range 0.5 < R < 1 of Table 3.6. The accu-

racy approaching the external boundaries is lower due to theinfluence of the boundary

closure and to the lower node density. In contrast to Tables 3.5 and 3.6, the order of

convergence of thel∞ -normand of thel2 -normhere behave differently. Thel∞ -norm,

depends only on the error peak and is always located on the external boundary. This

norm increases with the grid refinement level, whilel2 -norm, which is function of all

the nodes in the field, is more or less grid independent.

An attempt has been made to overcome the limitations given bythe use of the LOC

boundary treatment by the use of high-order one-sided filters (HOOS), but without suc-

cess due to the instabilities moving from the boundary that eventually lead to the failure

of the simulation. The spectral functions of these filters, shown in Equation (2.63) have

a non-zero imaginary part [Visbal & Gaitonde, 1998] and, consequently, the amplifi-

cation ratio over a range of wavenumbers is greater than 1. This makes the resulting

numerical method less stable than with lower-order centredfilters.

Other attempts to stabilising the computation with HOOS reducing the time step

by up to ten times still give numerical instability.

A last attempt was made by reducing the non-dimensional amplitude of the oscil-
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Table 3.5: Comparison of the difference between the numerical and the analytical re-
sults for the non-dimensional pressure at timet = 6 within a circle of radiusR = 1
centred on the origin of the axes. Results from combinationsof linearised or non-linear
equations and implicit or explicit filters. The absolute value of the error is shown both
as l∞ -normandl2 -normalong with their order of convergence against the grids with
increasing spatial refinement from Table 3.1.

Grid no. Eq. form Filter l∞ conv. l2 conv.
1 non-lin. expl. 2.81E-06 1.36E-06
2 non-lin. expl. 6.63E-07 2.11 3.18E-07 2.12
3 non-lin. expl. 1.68E-07 2.00 7.74E-08 2.05
4 non-lin. expl. 5.02E-08 1.75 2.04E-08 1.93
5 non-lin. expl. 2.25E-08 1.16 7.31E-09 1.48
1 lin. expl. 2.81E-06 1.36E-06
2 lin. expl. 6.60E-07 2.12 3.18E-07 2.12
3 lin. expl. 1.65E-07 2.02 7.74E-08 2.05
4 lin. expl. 4.68E-08 1.82 2.01E-08 1.95
5 lin. expl. 1.82E-08 1.37 6.61E-09 1.61
1 non-lin. impl. 1.43E-06 6.91E-07
2 non-lin. impl. 3.44E-07 2.08 1.63E-07 2.11
3 non-lin. impl. 9.16E-08 1.92 4.06E-08 2.02
4 non-lin. impl. 3.17E-08 1.54 1.17E-08 1.80
5 non-lin. impl. 2.08E-08 0.61 5.61E-09 1.07
1 lin. impl. 1.43E-06 6.91E-07
2 lin. impl. 3.41E-07 2.09 1.63E-07 2.11
3 lin. impl. 8.86E-08 1.96 4.05E-08 2.02
4 lin. impl. 2.83E-08 1.65 1.13E-08 1.85
5 lin. impl. 1.36E-08 1.06 4.65E-09 1.29
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Table 3.6: Comparison of the difference between the numerical and the analytical re-
sults for the non-dimensional pressure at timet = 22 within a circle of radiusR = 1
centred on the origin of the axes. Results from combinationsof linearised or non-linear
equations and implicit or explicit filters. The absolute value of the error is shown both
as l∞ -normandl2 -normalong with their order of convergence against the grids with
increasing spatial refinement from Table 3.1.

Grid no. Eq. form Filter l∞ conv. l2 conv.
1 non-lin. expl. 2.76E-06 1.32E-06
2 non-lin. expl. 7.06E-07 1.99 3.35E-07 2.01
3 non-lin. expl. 1.98E-07 1.84 8.96E-08 1.91
4 non-lin. expl. 1.63E-07 0.28 7.25E-08 0.31
5 non-lin. expl. 1.52E-07 0.10 3.70E-08 0.97
1 lin. expl. 2.76E-06 1.32E-06
2 lin. expl. 7.06E-07 1.99 3.35E-07 2.01
3 lin. expl. 2.02E-07 1.82 9.00E-08 1.91
4 lin. expl. 1.65E-07 0.29 7.28E-08 0.31
5 lin. expl. 1.68E-07 -0.03 3.73E-08 0.96
1 non-lin. impl. 1.41E-06 6.85E-07
2 non-lin. impl. 3.90E-07 1.88 1.93E-07 1.85
3 non-lin. impl. 2.95E-07 0.41 1.12E-07 0.78
4 non-lin. impl. 1.93E-07 0.61 6.42E-08 0.81
5 non-lin. impl. 1.41E-07 0.46 2.94E-08 1.13
1 lin. impl. 1.41E-06 6.85E-07
2 lin. impl. 3.91E-07 1.88 1.93E-07 1.85
3 lin. impl. 2.94E-07 0.41 1.13E-07 0.78
4 lin. impl. 2.11E-07 0.48 6.45E-08 0.81
5 lin. impl. 1.54E-07 0.45 2.97E-08 1.12
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Table 3.7: Comparison of the difference between the numerical and the analytical re-
sults for the non-dimensional pressure at timet = 22 on the whole field. Results from
combinations of linearised or non-linear equations and implicit or explicit filters. The
absolute value of the error is shown both asl∞ -normandl2 -normalong with their or-
der of convergence against the grids with increasing spatial refinement from Table 3.1.

Grid no. Eq. form Filter l∞ conv. l2 conv.
1 non-lin. expl. 4.12E-05 9.15E-06
2 non-lin. expl. 3.30E-05 0.32 5.61E-06 0.71
3 non-lin. expl. 2.97E-05 0.15 1.58E-06 1.84
4 non-lin. expl. 1.48E-05 1.00 6.52E-07 1.28
5 non-lin. expl. 5.46E-06 1.44 1.94E-07 1.75
1 lin. expl. 4.12E-05 9.15E-06
2 lin. expl. 3.30E-05 0.32 5.61E-06 0.71
3 lin. expl. 2.97E-05 0.15 1.58E-06 1.84
4 lin. expl. 1.49E-05 1.00 6.52E-07 1.28
5 lin. expl. 5.49E-06 1.44 1.96E-07 1.74
1 non-lin. impl. 3.95E-05 7.49E-06
2 non-lin. impl. 2.80E-05 0.50 4.01E-06 0.91
3 non-lin. impl. 2.66E-05 0.08 1.33E-06 1.61
4 non-lin. impl. 1.32E-05 1.01 4.78E-07 1.47
5 non-lin. impl. 4.98E-06 1.41 1.65E-07 1.53
1 lin. impl. 3.95E-05 7.49E-06
2 lin. impl. 2.80E-05 0.50 4.01E-06 0.91
3 lin. impl. 2.66E-05 0.08 1.33E-06 1.60
4 lin. impl. 1.33E-05 1.01 4.79E-07 1.47
5 lin. impl. 5.02E-06 1.40 1.67E-07 1.52
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lation ǫ to 10−7 while keeping a non-dimensional formulation and explicit filtering.

The results at non-dimensional timet = 13 from grids 1 to 4 are shown in Table 3.8.

The non-dimensional pressure amplitude is correctly reduced by 3 orders of magnitude

but, apart from a slight increase in the order of accuracy, probably due to the reduced

influence of the non-linear effects, these results do not show any significant difference

compared to the ones in Table 3.7.

Table 3.8: Comparison of the difference between the numerical and the analytical re-
sults for the non-dimensional pressure at non-dimensionaltime t = 13 with the inputv
velocity oscillation amplitudeǫ reduced to 10−7. The equations are solved numerically
in non-dimensional form with explicit filtering. The radiusover which the comparison
is made is indicated by the valueRlim. The absolute value of the error is shown both
as l∞ -normandl2 -normalong with their order of convergence against the grids with
increasing spatial refinement from Table 3.1.

Grid no. Rlim l∞ conv. l2 conv.
1 1 2.96E-09 1.36E-09
2 1 6.53E-10 2.20 3.17E-10 2.13
3 1 1.56E-10 2.07 7.61E-11 2.07
4 1 3.86E-11 2.02 1.88E-11 2.02
1 Rext 4.13E-08 9.15E-09
2 Rext 3.31E-08 0.32 5.61E-09 0.71
3 Rext 2.95E-08 0.17 1.57E-09 1.85
4 Rext 1.47E-08 1.01 6.53E-10 1.27
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3.2 Second test case: sound generation by interaction

between an incident gust and a cascade of flat plates

(2D)

3.2.1 Problem definition

The second test case is a benchmark problem from the second NASA computational

aeroacoustics (CAA) workshop [Tam & Hardin, 1997]. It is thesecond problem un-

der category 3: “Turbomachinery noise” and aims to model, interms of tonal noise

emission, the interaction between a rotor and a stator in turbomachinery.

The model is simplified with respect to the real turbomachinein a number of ways:

(i) the 3D of a turbomachine stage is unrolled in two dimensions, (ii) the blade profile

is modelled as a simple flat plate, (iii) the wakes from the upstream blade row are

replaced by a vortical, divergence free, convectedfrozengust defined at the left inflow

boundary that aims to reproduce the turbulence contained inthe wakes. The geometry

of the problem is shown in Figure 3.7, wherec is the chord length of the plate andu∞

is the mean inflow velocity in the direction of thex axis. The inter-blade distanceg is

equal toc and the field extends fromx = −2c to x = 3c and fromy = 0 to y = 4c,

to include four plates. The initial flow field is uniform with mean static densityρ∞.

The problem prescribes the use of the following set of reference variables for the non-

dimensionalisation: velocityu∞, lengthc, timec/u∞, densityρ∞, and pressureρ∞u2
∞.

The Mach number at the inflow isM∞ = 0.5.
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GUST
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Periodic boundary
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x0

Computational domain

Periodic boundary Reference plate
with length c

Figure 3.7: Problem geometry of test case number 2 (modified from Tam & Hardin
[1997]).
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The incoming vorticity gust is a function of the coordinatesand of time as

u′g(x, y, t) = −
vGβ

α
cos(αx+ βy− ωt) , (3.9a)

v′g(x, y, t) = vG cos(αx+ βy− ωt) , (3.9b)

ρ′g(x, y, t) = 0, (3.9c)

p′g(x, y, t) = 0, (3.9d)

wherevG = 0.01 and the non-dimensional wavenumbersα andβ are equal to the non-

dimensional angular frequencyω. The problem requires the solution of two different

input frequencies: a low-frequency gust withω = 5π/2 and high-frequency gust with

ω = 13π/2 but, similarly to other workshop contributors [Tam & Hardin, 1997], in

this work only the low-frequency case is treated. Either thelinearised or the non-linear

formulation of the Euler equations can be used.

The problem requires to predict the pressure difference∆p = plower − pupper be-

tween the upper and the lower surface of the reference plate along y = 0. In addition,

the intensity of the radiated soundp2 has to be determined along linesx/c = −2 and

x/c = +3 and the final non-dimensional pressure distribution over the whole computa-

tional field at timet = 2πn/ω, with n integer, has to be plotted. The problem requires

the solution to be periodic in time but does not prescribe within which limits this peri-

odicity has to be obtained.

An analytical solution for the problem was published by Smith [1972] but its nu-

merical computation requires the truncation of infinite sums and numerical quadrature.

This makes this benchmark approximate. Hall [1997a] provides a numerical solution

in tabular form computed by a computer code called LINSUB based on Smith’s the-
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ory. This solution is used in the results Section 3.2.3 as a reference to compare against

both for the pressure jump across the blade and for the value of p2 at x/c = −2 and

x/c = +3.

3.2.2 Numerical methods

The equations and the data input and output are non-dimensionalised using the set of

reference values defined in Tam & Hardin [1997] and reported in Section 3.2.1.

The problem definition does not give any constraint on the characteristics of the

grids to be used, and only specifies a minimum computational domain extent. In the

current study, only orthogonal Cartesian uniform meshes equally spaced in both the

x andy direction are used. The spacing in thex direction is kept equal to that in the

y direction, so that the grid geometry is fully determined by the inter-nodal distance

∆x and by the total field lengthL. A third parameter (xin) is necessary to determine

the position of the blades along thex axis, specifying the distance between the inflow

plane and the leading edge of the plates.xin does not affect the grid structure. In they

direction the position of the reference blade is equal to 0 sothat no further parameter

is needed. The length of the fieldL in thex direction is extended beyond the minimum

defined by the problem description as preliminary tests haveshown that placing the in-

flow and outflow on the monitoring planesx/c = −2 andx/c = +3 leads to predictions

being adversely affected by the boundary closure treatment. Furthermore, sometypes

of boundary conditions cannot be applied without the presence of additional nodes.

Extending the computational domain beyond−2 < x/c < +3 is a common practice

among the authors that have published solutions to this problem.

Non-uniform grids are not used in the results presented in this section to minimise
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Figure 3.8: General structure of grid 6.1 in Table 3.9.

the number of variables affecting the accuracy of the results. Non-uniform meshes are

used for the solution of test cases 1, 3 and 4 where the nature of the problem requires

their adoption. This choice is not economical in terms of computational resources, as

the nodes could be clustered around the plates, where the essential physical process of

conversion from flow wake kinetic energy to radiating noise emission takes place.

The computational mesh parameters adopted in this study aresummarised in Ta-

ble 3.9. Each grid is labelled with the common notationL.i which identifies the values

of L and∆xi used to generate each grid.

The set of grids of lengthL = 6 is used for preliminary tests on how the inlet gust

convects across the computational domain in the absence of the blades. The remaining

grids are used for the solution of the problem including the cascade. Figure 3.8 shows

grid 6.1, which is the mesh of extentL = 6 with the coarsest (level 1) discretisation.

In the y direction, an inviscid solid wall condition is applied overthe range 06
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3. TEST CASE APPLICATIONS

Table 3.9: Characteristics of the fifteen grids used for the solution of the second test
case.L, ∆x and the nodes per unit length are in non-dimensional form. The name of
the grid univocally determines its characteristics and it is given by the total length of
the field and a progressive index related to the grid density.The fields related to the
total number of nodes “model” and “computation” refer, respectively, to the nodes of
the initial model and to the nodes of the actual parallel computation. The two values
are different as the nodes on the common borders are duplicated in theneighbouring
processes.

Grid Length L ∆x Nodes per Total no. of nodes
name [nd] [nd] unit length [nd] model computation
6.1 6 0.0625 16 6305 6936
6.2 6 0.03125 32 24897 26136
6.3 6 0.015625 64 98945 101400
7.1 7 0.0625 16 7345 8092
7.2 7 0.03125 32 29025 30492
7.3 7 0.015625 64 115393 118300
7.4 7 0.0078125 128 460161 465948
9.1 9 0.0625 16 9425 10404
9.2 9 0.03125 32 37281 39204
9.3 9 0.015625 64 148289 152100
9.4 9 0.0078125 128 591489 599076
11.1 11 0.0625 16 11505 12716
11.2 11 0.03125 32 45537 47916
11.3 11 0.015625 64 181185 185900
11.4 11 0.0078125 128 722817 732204

x/c 6 1 and a periodic boundary condition is imposed atx/c < 0 andx/c > +1. The

periodic boundary condition is numerically equivalent to astandard inter-block bound-

ary exchanging the data of five rinds of nodes with the neighbour. In thex direction,

various boundary closures have been tested at the inlet and the outlet of the computa-

tional domain. At the inflow boundary, five different closures are available: (i) buffer

zone, (ii) Kim and Lee soft (non-reflecting) inflow, (iii) Giles subsonic non-reflecting

inflow, (iv) modified Giles subsonic non-reflecting inflow, (v) modified buffer zone.
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At the outflow, a variety of boundary condition treatments isavailable: (i) buffer

zone, (ii) modified buffer zone, (iii) Kim and Lee non-reflecting outflow, (iv) Giles

subsonic non-reflecting outflow.

For all the simulations presented in Section 3.2.3, the buffer length is varied based

on the mesh density of the model so to keep the same spatial extension. For grid density

1, the buffer layer depth is 30 nodes, for grid density 2 it is 60 nodes, for grid density

3 it is 120 nodes and, finally, for grid density 4 it is 240 nodes.

The Kim and Lee soft inflow and non-reflecting outflow are described in detail in

Section 2.5.1.1, the various versions of the Giles closuresin Section 2.5.2, and the

buffer layer and its modified version in Section 2.5.4.

The flow state in the modified buffer layer is set by Equation (2.108a) using a target

flow stateQtarget that is equal to the sum of the uniform time-invariantM∞ = 0.5 plus

the gust of Equation (3.9) superimposed on it.

The blade surface is modelled as an inviscid wall. Two inviscid wall boundary con-

ditions have been included in the code which are the inviscidwall condition by Tam

& Dong [1996] and that based on the theory of characteristicssupplied by Kim & Lee

[2004]. The former is used in association with the primitiveform of the Euler equa-

tions and the latter with their conservative formulation.

For this test case, the specification of the boundary conditions and the introduction

of the vortical gust are provided by a custom unsteady inflow condition, which can be

implemented as either a modified Giles or a modified buffer inflow condition. A third

technique is available following Lockard & Morris [1997]. In this case, the oscillation

is not introduced from the boundary but it is directly generated in the computational

domain interior by applying an appropriate body force vector f (see Equations (2.1)
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and (2.2)). The problem consists in finding a functionΨ that satisfies the momentum

equations in 2D primitive form whenu andv include the vortical gust

Du
Dt
+

1
ρ

∂p
∂x
=
∂Ψ

∂y
sin(ωt) , (3.10a)

Dv
Dt
+

1
ρ

∂p
∂y
= −
∂Ψ

∂x
sin(ωt) . (3.10b)

This function is

Ψ =
vG

π
{1+ cos [0.5α (x− xG)]} cos(αx+ βy) , (3.11)

and it is valid in the range:|x− xG| < 2π/α. xG is thex coordinate of the midline of

the zone where the gust is introduced.

The resulting body force components are

fx = −β
vG

π
{1+ cos [0.5α (x− xG)]} sin(αx+ βy) sin(ωt) , (3.12)

fy = α
vG

π
{(1+ cos [0.5α (x− xG)]) sin(αx+ βy)

+0.5 sin [0.5α (x− xG)] cos(αx+ βy)} sin(ωt) .
(3.13)

All the simulations presented in this work are run in parallel by subdividing the

computational domain in equal squared parts connected by standard inter-block bound-

ary conditions as detailed in Section 2.6. The squared shapeof the parts minimises the

amount of inter-communication while their approximately equal size in terms of nodes

of the computational grid tends to homogeneously distribute the computational effort,
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Figure 3.9: Grid 7.1 subdivided into 28 zones delimited by thicker borders. The posi-
tion of the cascade is shown by horizontal black lines over the range 06 x/c 6 1.

although the processes including the external boundaries have to perform additional

computations with respect to the other processes. The parallel execution is also chosen

to avoid exceptions in the treatment of the boundary conditions that, apart from the

corrections related to the presence of the plate edges introduced only in some simula-

tions, use a uniform condition along each block boundary edge. This allows to keep

the code simple and efficient. In Figure 3.9 grid 7.1 is shown divided into 28 same

sized blocks. The position of the cascade of flat plates is highlighted with thick black

lines.

The initial conditions at the start of the computation depend on the type of gust gen-

eration method used. When the body force approach of Equations (3.12) and (3.13) is

used, the initial conditions are homogeneous on the whole field and, in non-dimensional

primitive form

Q∞ =
[

ρ∞, u∞, v∞, ρ∞u2
∞

]T
= [1, 1, 0, 4/1.4]T . (3.14)
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On the other hand, when the gust is introduced from the boundary inflow using

the modified Giles or the modified buffer inflow, it is advantageous to start from a

field already including the vortical gust by superimposing the oscillating part of Equa-

tion (3.9) over the homogeneous field of Equation (3.14). It is found that the initial

transient necessary to reach the periodicity in the computed flow field, with this modi-

fication was considerably shortened.

Some of the simulations run for this test case include a series of exceptions in the

treatment of the nodes lying on the plates. This is required to deal with the strong

discontinuity that appears as a singularity in the analytical solution of the problem at

the plate leading edge, which affects the pressure distribution in the surrounding area.

There is also a second reason for the special treatment of these nodes close to

the plate edges. Figure 3.9 shows that the leading and trailing edges of the cascade

are always coincident to the corner nodes of four zones that belong to four different

processes (those located between successive plates). While these processes apply the

inviscid wall boundary condition on the corner nodes, theirneighbours treat the same

nodes as inter-block boundary points with no wall condition. This originates a differ-

ence in the flow field values at the nodes that should representthe same physical flow

state. The situation is illustrated in Figure 3.10, where the nodes belonging to two

neighbouring processes at a plate leading edge (bottom-side) are represented by black

circles. Point -1 and point 1 represent the same physical locations in the flow field

duplicated on two processes. These locations ought to have the same flow state, but

for node -1 the spatial derivatives in they direction are computed using the 11-point

inter-block boundary stencils while for node 1 they are computed with the one-sided

stencils and then corrected by the inviscid wall boundary condition that is used at the
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of the plate
Process upstream Process including a plate

Figure 3.10: Schematic illustrating the node distributionover abutting processes up-
stream and below one plate.

plate leading edge. This causes a discontinuity in the flow field that interests mainly

a small region around the edge but negatively affects the accuracy of the computation.

It also contributes to the generation of high-frequency oscillations that the high-order

finite-difference scheme, by its own nature, tends to develop in correspondence of ge-

ometrical discontinuities and steep gradients in the flow field.

For this reason, different types of numerical corrections have been tested and the

best results were obtained using the following four stages:

1. The process that computes the inviscid wall condition, which is the right-hand

side process in Figure 3.10, passes the half-derivatives computed in they direc-

tion on the corner nodes (already corrected by the wall boundary treatment) to

its neighbour process, which is the process upstream of the plate in Figure 3.10.

This process overwrites anyy derivative value it previously computed.

2. The processes upstream and downstream of the blades applythe filtering on the

corner node in they direction as if the node were part of a wall (and not an

inter-block boundary).
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3. The derivatives in thex direction of the nodes near the plate edges, which are

points -3, -2, 2 and 3 in Figure 3.10, are computed with one sided high-order

stencils that do not “cross” the discontinuity representedby the corner. Specifi-

cally, the (5-1) 7-point stencil is applied on points -2 and 2and the (4-2) 7-point

stencil is applied on points -3 and 3. Details regarding these stencils and their

coefficients can be found in Section 2.2.2.

4. Over the whole plate surface, the half-derivatives in they direction of the pres-

sure and the velocity componentv, computed before the enforcement of the in-

viscid wall condition are not obtained with the typical high-order one-sided 7-

point stencils. Instead, their order is dropped respectively to 1st and 3rd by the

use of 2-point and 4-point one-sided stencils described in Section 2.2.2.

Stages 1 and 2 ensure that the flow field around the plate edges is matched on both

processes while stages 3 and 4 aim to reduce the high-wavenumber spurious oscilla-

tions radiating from the surface discontinuity of the leading edge and are similar to the

corrections adopted by Ragab & Salem-Said [2007]. In Section 3.2.3, the application

of stage 1 and 2 will be referred to as correction “level 1”, while “level 2” also includes

stage 3 and “level 3” includes all 4 stages.

These corrections have a computational cost related to the additional exchanges of

data between the processes involved. Their cost can be evaluated by monitoring the

duration of the runs.

For this test case, the linearised version of the Euler equations is used. The prim-

itive formulation of the equations is used in conjunction with the Tam and Dong wall

boundary condition, while the conservative formulation isused where the Kim and Lee

inviscid wall boundary condition is enforced.
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3.2.3 Results

The proceedings of the second NASA workshop include the contributions from four

different research groups that have presented a solution to thisproblem [Hall, 1997b;

Hu & Manthey, 1997; Lockard & Morris, 1997; Tamet al., 1997]. Their numerical

methods are both of the finite-elements and of the finite-difference type and include

various techniques to avoid spurious wave reflections at thecomputational boundaries,

introduce the gust and remove any spurious wave.

At the third and fourth NASA workshops, two groups used this problem as an initial

test for their computational aeroacoustic solvers [Binet al., 2004; Wanget al., 2000].

Other two studies [Hixonet al., 2000; Ragab & Salem-Said, 2007] that included nu-

merical solutions of this test case, were published independently. The study by Hixon

et al. compares the performance of four different non-reflecting boundary conditions.

Ragab & Salem-Said [2007] include the solution of this test case among other similar

two-dimensional configurations.

The convergence of the non-dimensional pressure has been checked for all the

simulations against the reference solution by Hall [1997a]. Over the whole computa-

tional field, the difference between the flow state at the end of the penultimate (non-

dimensional timet = 500) and of the last period (non-dimensional timet = 500.8) is

lower than 1% for all the results presented in this section, indicating that the predic-

tions are statistically stationary.

For this test case, more than 200 simulations were performedvarying a large num-

ber of computation parameters including: the type of boundary conditions, the time-
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integration scheme, the formulation of the equations (linearised/non-linear, primitive/-

conservative), the type of filtering (explicit/implicit), its frequency of application and

its near boundary treatment, the technique used to input thegust, the size of the com-

putational domain, the special treatment of the plate edges, and the final time of the

simulation. The aim was to determine the combination of techniques resulting in the

highest accuracy. A selection of all the results is reportedand discussed in two sections.

Section 3.2.3.1 concerns the accuracy of the input vorticalgust and Section 3.2.3.2

concerns the accuracy of the complete problem that includesthe linear plates cascade.

For the preliminary simulations not including the plates, the time-integration is per-

formed using the classical fourth-order Runge-Kutta scheme discussed in Section 2.3.

On the other hand, the simulations regarding the complete problem use the Runge-

Kutta scheme proposed by Berlandet al. [2006] in the low-storage 2N form detailed

in Section 2.3.2.

Due to the clearly superior results obtained in the preliminary tests with respect

to the explicit formulation, all the simulations have been run applying the implicit

filtering with a near boundary treatment of type low-order centred (LOC). The tunable

coefficient α f linearly decreases with the distance from the boundary and assumes

values between 0.495 on the first point from the wall, and 0.45. In this case the filtering

is executed at the end of each Runge-Kutta stage.

3.2.3.1 Accuracy of the vortical gust

The level of accuracy that can be reached in modelling the gust in the absence of a

linear cascade is of interest since it tests the ability of the solver to convect vorticity

waves since the amplitude of the waves impinging on the cascade is directly related to

the noise emission that is studied in Section 3.2.3.2.
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Table 3.10: Grid-dependent explicit time-integration parameters for the simulations
not including the linear cascade of flat plates. The time stepis non-dimensionalised by
c/u∞.

Grid no. Time step Steps Courant no.
[nd]

1 0.01 10000 0.4800
2 0.005 20000 0.4800
3 0.0025 40000 0.4800

The results are reported at the non-dimensional timet = 100, when the velocity

disturbance has crossed the outflow boundary of the computational field so to test not

only the ability to correctly input the vortical gust but also the level of error introduced

by the boundary conditions at the inflow and at the outflow. When the buffer zones are

used, Equation (2.108a) is applied at the end of each computational time step.

Table 3.10 shows the main parameters of the runs that are ordered by increasing

computational mesh density. The CFL condition is satisfied as for this association of

time-integration (classical Runge-Kutta) and of spatial scheme the accuracy limit is

0.4999 and the stability limit is 1.4217 (see Section 2.3 for details).

Table 3.11 shows the non-dimensional errors of the velocitycomponents and of the

pressure from various runs. The numerical solution is compared against the analytical

definition of the gust of Equation (3.9). The error is shown asboth thel∞ -normde-

fined by Equation (2.112) and thel2 -normdefined by Equation (2.111). The order of

convergence against the mesh points per unit length is shownfor both error norms.

The analysis of the results shows that in all the cases the error in the velocity com-

ponents and in the pressure is roughly two orders of magnitude lower than the ampli-

tude of the gustǫ = 0.01. All the methods proposed for the introduction of the vortical

gust appear engineering accurate predictions and can be deemed fit for purpose.
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Table 3.11: Results from the simulations not including the linear cascade of flat plates. The non-dimensional errors of the
velocity components and of the pressure with respect to the analytical definition of the gust of Equation (3.9) are shown as
l∞ -normandl2 -normalong with their order of convergence against the mesh per unit length. The comparison is restricted to
the nodes havingx coordinate ranging from 0 to 1 inclusive as this is the area where the linear cascade will be introduced. The
valuexG refers to the position of the midline of the zone where the gust is introduced with the method proposed by Lockard
& Morris [1997] and does not apply to the other cases.

No. Model Eq. Boundary conditions Gust xG u [nd] v [nd] p [nd]
name form x low x high l∞ conv. l2 conv. l∞ conv. l2 conv. l∞ conv. l2 conv.

1 6.1 prim. buffer buffer Lockard -1 5.56E-5 3.35E-5 5.77E-5 3.48E-5 3.45E-6 7.63E-7
2 6.2 prim. buffer buffer Lockard -1 1.10E-4 -0.99 6.62E-5 -0.991.14E-4 -0.99 6.89E-5 -0.997.90E-6 -1.20 1.60E-6 -1.07
3 6.3 prim. buffer buffer Lockard -1 2.02E-4 -0.88 1.22E-4 -0.892.09E-4 -0.88 1.27E-4 -0.891.74E-5 -1.14 3.39E-6 -1.08
4 6.1 cons. buffer buffer Lockard -1 5.93E-5 3.35E-5 5.75E-5 3.46E-5 3.72E-5 2.17E-5
5 6.2 cons. buffer buffer Lockard -1 1.13E-4 -0.93 6.61E-5 -0.991.13E-4 -0.99 6.87E-5 -1.003.96E-5 -0.09 2.16E-5 0.01
6 6.3 cons. buffer buffer Lockard -1 2.05E-4 -0.87 1.22E-4 -0.892.09E-4 -0.88 1.27E-4 -0.894.13E-5 14.19 2.14E-5 14.45
7 6.1 prim. Giles Giles Lockard -1 3.95E-4 2.74E-4 3.98E-4 2.73E-4 2.06E-5 1.06E-5
8 6.2 prim. Giles Giles Lockard -1 2.13E-4 0.89 1.44E-4 0.932.16E-4 0.89 1.44E-4 0.932.17E-5 -0.08 1.11E-5 -0.07
9 6.3 prim. Giles Giles Lockard -1 1.18E-4 0.86 7.48E-5 0.951.17E-4 0.89 7.45E-5 0.962.21E-5 -0.02 1.12E-5 -0.01
10 6.1 cons. Giles Giles Lockard -13.99E-4 2.74E-4 3.99E-4 2.74E-4 5.98E-5 2.60E-5
11 6.2 cons. Giles Giles Lockard -12.18E-4 0.88 1.45E-4 0.932.17E-4 0.89 1.45E-4 0.935.93E-5 0.01 2.54E-5 0.03
12 6.3 cons. Giles Giles Lockard -11.22E-4 0.84 7.51E-5 0.951.17E-4 0.89 7.46E-5 0.965.91E-5 0.01 2.50E-5 0.02
13 6.1 prim. Giles Giles Giles na3.29E-4 2.32E-4 3.30E-4 2.33E-4 1.89E-6 8.94E-7
14 6.2 prim. Giles Giles Giles na9.89E-5 1.75 6.98E-5 1.759.93E-5 1.75 6.99E-5 1.756.32E-7 1.58 3.11E-7 1.52
15 6.3 prim. Giles Giles Giles na2.62E-5 1.92 1.85E-5 1.922.63E-5 1.92 1.85E-5 1.921.72E-7 1.88 8.57E-8 1.86
16 6.1 cons. Giles Giles Giles na3.30E-4 2.32E-4 3.31E-4 2.33E-4 2.14E-5 1.34E-5
17 6.2 cons. Giles Giles Giles na9.97E-5 1.74 6.98E-5 1.759.97E-5 1.74 6.99E-5 1.752.08E-5 0.04 1.41E-5 -0.07
18 6.3 cons. Giles Giles Giles na2.70E-5 1.89 1.85E-5 1.922.66E-5 1.92 1.85E-5 1.922.06E-5 0.01 1.43E-5 -0.02
19 6.1 prim. mod. buf. mod. buf. buffer na 8.23E-7 4.75E-7 8.34E-7 4.75E-7 7.43E-9 1.92E-9
20 6.2 prim. mod. buf. mod. buf. buffer na 1.35E-8 5.98 7.62E-9 6.011.31E-8 6.04 7.62E-9 6.011.10E-10 6.08 2.09E-11 6.53
21 6.3 prim. mod. buf. mod. buf. buffer na 3.04E-10 5.49 1.72E-10 5.492.98E-10 5.47 1.72E-10 5.492.02E-12 5.77 2.56E-13 6.35
22 6.1 cons. mod. buf. mod. buf. buffer na 8.48E-7 4.74E-7 8.42E-7 4.74E-7 5.01E-6 3.54E-6
23 6.2 cons. mod. buf. mod. buf. buffer na 1.12E-7 2.94 5.69E-8 3.081.22E-7 2.81 6.02E-8 3.005.03E-6 -0.01 3.54E-6 0.00
24 6.3 cons. mod. buf. mod. buf. buffer na 1.46E-7 -0.38 7.73E-8 -0.441.54E-7 -0.34 7.85E-8 -0.385.04E-6 0.00 3.54E-6 0.00

1
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The comparison of the errors in Table 3.11 indicates that, when the equations are

in primitive form, the accuracy is higher and the errors reach particularly low levels

for the case in which the modified buffer layer is applied at both the inlet and the

outlet. In this case, the convergence rate against the number of nodes per unit length

matches the sixth-order roll off, which is the formal order of accuracy of the spatial

differentiation of the interior scheme. This demonstrates thatthe error introduced with

this time step by the fourth-order time-integration schemeis lower than that from the

spatial discretisation and that, in the absence of the plates, introduced by the modified

buffer is also lower than this threshold. The low-order filter applied near the boundaries

has probably a negligible effect on the results in Table 3.11 as the flow in those points

is overwritten with values almost exact at the end of each time step.

The method by Lockard & Morris [1997] for introducing the gust in the computa-

tional domain appears to generate higher values ofl2 and l∞ error norms and a lower

error roll off than the inlet conditions. The order of convergence is negative when

the Lockard & Morris [1997] gust generation is used with buffer layers, which is not a

favourable combination.

Introducing the gust by a modified Giles boundary condition performs well as the

error roll off is approximately second order. This rate is probably drivenby the LOC

near-boundary treatment of the implicit filter. The absolute level of the errors obtained

appears to be adequate for the adoption in the complete problem including the flat

plates cascade.

Figures 3.11, 3.12 and 3.13 show the distribution of the non-dimensional velocity

componentv and of the pressure oscillationp′ with respect to the reference valueρ∞u2
∞

at the end of simulations 3, 15 and 21 in Table 3.11. In detail (a) of Figure 3.11, the

buffer zones at the inflow and outflow reduce the velocity amplitude to values very near
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Table 3.12: Grid-dependent explicit time-integration parameters for the two-
dimensional linear cascade test case. The time step is non-dimensionalised byc/u∞.

Grid no. Time step Steps Courant no.
[nd]

1 0.01 50080 0.4816
2 0.005 100160 0.4816
3 0.0025 200320 0.4816
4 0.00125 400640 0.4816

to zero, small oscillations with an amplitude about zero arestill noticeable, and only

in the central part of the field the gust has the correct value.Details (a) of Figures 3.12

and 3.13 show that, when the modified Giles and the modified buffer boundaries are

used, the field is completely occupied by the gust. In details(b) of the figures, the

non-dimensional amplitude of the pressure oscillationp′ with respect to the reference

valueρ∞u2
∞ due to the introduction of the gust and to the influence of the boundaries,

is shown for the three gust generation techniques. Here it ispossible to appreciate

the different levels of accuracy provided by the different gust generation methods. In

Figure 3.13 (b), small oscillations related to the inter-block boundary approximations

are visible.

3.2.3.2 Results from the complete model

The results reported in this section are taken at a non-dimensional timet = 500.8.

Table 3.12 shows the main parameters of the time-integration scheme used as func-

tion of the computational grid. As in the simulations without the cascade, the accuracy

limit is 0.4999 and the stability limit is 1.4217 (see Section 2.3 for details). These

limits are met in all the runs reported in Tables 3.13 and 3.14.
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Figure 3.11: Simulation number 3 in Table 3.11 not includingthe linear cascade of
flat plates. Gust introduced by the force field of Lockard & Morris [1997]. Negative
contours are shown by dashed lines.
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Figure 3.12: Simulation number 15 in Table 3.11 not including the linear cascade of
flat plates. Gust introduced at the inflow boundary followingGiles [1990]. Negative
contours are shown by dashed lines.
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Figure 3.13: Simulation number 21 in Table 3.11 not including the linear cascade of
flat plates. Gust introduced by the modified buffer technique. Negative contours are
shown by dashed lines.
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Tables 3.13 and 3.14 list the results, as required by the problem definition, of the

simulations that include the presence of the linear cascadeof flat plates. The simulation

was repeated by varying the length of the domain, the type of equation, the type of

boundary closures, the method used for the introduction of the gust, and the relative

position of the inflow plane and of the leading edge of the plates denoted by the non-

dimensional valuexin. The non-dimensional errors of the pressure jump∆p between

the faces of the reference plate, and of the radiated soundp2 along the linesx/c = −2

andx/c = +3 are given from a representative set of these simulations.

The pressure difference∆p across the flat plates is evaluated at the non-dimensional

time t = 500.8, which coincides with the end of a period and the error normsare given

for both the real part of∆p and its imaginary part which is computed from the vectorial

difference between the time-dependent oscillation amplitude recorded during the last

period and the real part of∆p. The rate of convergence of the pressure difference∆p

with increasing mesh refinement is between 0.7 and 1.5, whichis lower than the sixth-

order roll off that would be expected from the order of accuracy of the interior scheme.

The radiated soundp2 is evaluated betweent = 500 andt = 500.8 by averagingp2

in time. The estimations ofp2 from grids with different levels of mesh refinement do

not display a monotonic roll off. This suggests that, while some sources of error are

reduced by incrementing the spatial refinement, other sources may increase.

Table 3.13 shows a summary of the results from the simulations where no modi-

fications to the treatment of the plate edges and surfaces areintroduced as detailed in

Section 3.2.2. Table 3.14 shows results from the simulations for which the corrections

are applied. In Table 3.14, field “Corr.” refers to the various levels of correction as

defined in Section 3.2.2.

Table 3.13 shows that, by increasing the mesh density, the non-dimensional pres-
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sure difference∆p across the flat plates tends to converge towards the reference so-

lution. The absolute values of the error are very similar among the various sets with

the exception of simulations 9 to 11 in which the gust is generated by the force field

of Lockard & Morris [1997], which is a rather coarse approximation and is the domi-

nant source of error in the simulation as discussed in the context of Figure 3.11. Inter-

estingly, the predicted pressure difference seems not to be significantly influenced by

the length of the field as the sets 1 to 4, 16 to 19, and 20 to 23 show nearly the same re-

sults. The non-dimensionalp2 on the plane atx/c = −2 in most cases gives results that

tend towards the reference solution with anl∞ -norm reducing with increasing mesh

resolution. The best results are obtained by simulations 24to 27 with a modified buffer

condition at both the inflow and the outflow. On the plane atx/c = +3 the situation

is more involved and the convergence towards the reference values is obtained only in

some cases.

Table 3.14 lists the results from the predictions in which corrections were intro-

duced in the attempt to improve their accuracy. With Giles boundary conditions at

both the inflow and the outflow (simulations 28 to 39) the pressure difference∆p error

decreases with increasing level of correction and, with correction level 3 (simulations

36 to 39 in Table 3.14) the real part of the∆p error is lower than in the unmodified

simulations (1 to 4 of Table 3.13). This is also the case for the simulations using the

modified buffer at the external boundaries (simulations 24 to 27 and 56 to 59). Com-

paring the simulations from 36 to 47, it is evident that the length of the computational

field has little influence on the pressure difference∆p when the Giles type of closure

is enforced. In all the cases reported in Tables 3.13 and 3.14the Kim and Lee invis-

cid wall, which uses conservative variables, performs better than the Tam and Dong

wall closure for primitive variables, despite the primitive variables allowing the gen-
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Table 3.13: Error analysis of the simulations including thelinear cascade of flat plates. Predictions without special correc-
tions for the treatment of the edges and the surfaces of the plates. Values are in non-dimensional form.

No. Model Eq. Boundary conditions Wall Gust xG xin ∆p real [nd] ∆p imag. [nd] p2 [nd] at x/c = −2 p2 [nd] at x/c = +3
name form x low x high type [nd] l∞ l2 l∞ l2 l∞ l2 l∞ l2

1 7.1 cons. Giles Giles Kim Giles na -3 1.55E-2 3.27E-3 3.74E-2 7.38E-32.43E-7 1.87E-7 2.61E-7 2.01E-7
2 7.2 cons. Giles Giles Kim Giles na -3 1.12E-2 2.77E-3 2.87E-2 5.86E-33.05E-7 2.30E-7 7.70E-7 6.78E-7
3 7.3 cons. Giles Giles Kim Giles na -3 8.09E-3 2.20E-3 1.79E-2 4.28E-32.30E-7 1.64E-7 9.20E-7 7.89E-7
4 7.4 cons. Giles Giles Kim Giles na -3 6.40E-3 1.71E-3 6.28E-3 1.85E-31.33E-7 8.68E-8 8.95E-7 7.65E-7
5 7.1 prim. Giles Giles Tam Giles na -3 1.61E-2 3.40E-3 3.71E-2 7.36E-32.30E-7 1.74E-7 3.67E-7 3.19E-7
6 7.2 prim. Giles Giles Tam Giles na -3 1.18E-2 2.89E-3 2.88E-2 5.96E-33.72E-7 2.79E-7 9.22E-7 8.03E-7
7 7.3 prim. Giles Giles Tam Giles na -3 7.77E-3 2.33E-3 1.82E-2 4.40E-32.83E-7 2.03E-7 1.04E-6 8.91E-7
8 7.4 prim. Giles Giles Tam Giles na -3 7.27E-3 1.90E-3 7.07E-3 2.07E-31.60E-7 1.04E-7 9.91E-7 8.44E-7
9 9.1 cons. buffer Giles Kim Lockard -1 -5 1.53E-2 3.43E-3 3.51E-2 7.08E-37.29E-7 5.82E-7 8.29E-7 7.56E-7
10 9.2 cons. buffer Giles Kim Lockard -1 -5 1.11E-2 2.86E-3 2.78E-2 5.85E-35.04E-7 3.86E-7 9.29E-7 8.03E-7
11 9.3 cons. buffer Giles Kim Lockard -1 -5 8.24E-3 2.25E-3 1.74E-2 4.29E-33.68E-7 2.75E-7 9.44E-7 8.06E-7
12 9.1 cons. Giles mod. buf. Kim Giles na -3 1.55E-2 3.26E-3 3.75E-2 7.40E-33.70E-7 3.03E-7 7.01E-8 4.87E-8
13 9.2 cons. Giles mod. buf. Kim Giles na -3 1.14E-2 2.78E-3 2.88E-2 5.88E-33.51E-7 2.62E-7 8.48E-7 7.09E-7
14 9.3 cons. Giles mod. buf. Kim Giles na -3 8.05E-3 2.22E-3 1.75E-2 4.26E-36.55E-8 3.88E-8 1.23E-6 1.08E-6
15 9.4 cons. Giles mod. buf. Kim Giles na -3 6.49E-3 1.78E-3 6.38E-3 1.77E-31.32E-7 8.23E-8 1.04E-6 9.32E-7
16 9.1 cons. Giles Giles Kim Giles na -4 1.52E-2 3.25E-3 3.74E-2 7.38E-32.42E-7 2.06E-7 1.86E-7 1.20E-7
17 9.2 cons. Giles Giles Kim Giles na -4 1.10E-2 2.76E-3 2.89E-2 5.87E-34.82E-7 3.78E-7 5.29E-7 4.15E-7
18 9.3 cons. Giles Giles Kim Giles na -4 8.47E-3 2.20E-3 1.82E-2 4.28E-34.52E-7 3.47E-7 5.94E-7 4.69E-7
19 9.4 cons. Giles Giles Kim Giles na -4 6.33E-3 1.74E-3 6.34E-3 1.84E-33.64E-7 2.72E-7 5.59E-7 4.39E-7
20 11.1 cons. Giles Giles Kim Giles na -5 1.56E-2 3.28E-3 3.74E-2 7.37E-32.63E-7 2.15E-7 2.82E-7 2.19E-7
21 11.2 cons. Giles Giles Kim Giles na -5 1.14E-2 2.77E-3 2.88E-2 5.88E-33.76E-7 2.94E-7 7.84E-7 6.27E-7
22 11.3 cons. Giles Giles Kim Giles na -5 7.95E-3 2.19E-3 1.81E-2 4.30E-33.14E-7 2.36E-7 8.86E-7 7.13E-7
23 11.4 cons. Giles Giles Kim Giles na -5 6.37E-3 1.70E-3 6.26E-3 1.88E-32.21E-7 1.59E-7 8.46E-7 6.82E-7
24 11.1 cons. mod. buf. mod. buf. Kim buffer na -5 1.54E-2 3.43E-3 3.52E-2 7.10E-38.87E-7 7.21E-7 7.26E-7 5.79E-7
25 11.2 cons. mod. buf. mod. buf. Kim buffer na -5 1.13E-2 2.86E-3 2.79E-2 5.87E-35.42E-7 4.18E-7 1.01E-6 8.37E-7
26 11.3 cons. mod. buf. mod. buf. Kim buffer na -5 8.19E-3 2.26E-3 1.70E-2 4.27E-31.64E-7 1.00E-7 1.25E-6 1.09E-6
27 11.4 cons. mod. buf. mod. buf. Kim buffer na -5 6.52E-3 1.84E-3 6.49E-3 1.80E-39.44E-8 6.26E-8 1.07E-6 9.64E-7
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eration of a gust at the inflow that is closer to the analyticalsolution as reported in

Section 3.2.3.1. In general, the Giles boundary conditionsand the modified buffer give

satisfactory results with similar error magnitudes, as shown by comparing simulations

44-47 to 56-59. The Giles boundary closures are preferred because they are compu-

tationally more efficient as they do not require a layer of boundary nodes. The error

norms ofp2 at the inflow show the expected trend with increasing mesh refinement but

with absolute errors that only in certain cases compare favourably against the simula-

tions without corrections. For the mesh with highest spatial resolution, the best results

are obtained with the modified buffers. At the outflow, as for the case without correc-

tions, a clear trend inp2 error norms cannot be found. The length of the field seems

to have a noticeable influence onp2 at the inflow and at the outflow, but the results are

difficult to interpret.

Figure 3.14 shows a representative set of results from the simulations without ad-

ditional modifications. It refers to simulations 1 to 4 of Table 3.13. This set is obtained

with the Euler equations in conservative form, the Giles subsonic non-reflecting bound-

aries at inflow and outflow, the Kim and Lee inviscid wall for the plate surfaces, and

a computational domain of non-dimensional length 7 in thex direction. Figure 3.14

shows both the real and the imaginary part of the non-dimensional pressure difference

∆p across the blade aty = 0. The symbols are predictions at different levels of grid

refinement and the continuous line is the reference solutionby Hall [1997a]. Spatial

oscillations at the plate leading and trailing edges are shown that tend to increase in

amplitude with increasing number of nodes. On the left-handside of the graph, the real

part of the predicted∆p converges towards the reference solution. On the right-hand

side, a small offset can be noticed and the pressure difference magnitude is slightly

over-estimated. The imaginary part seems to display the correct trend with an offset
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Table 3.14: Error analysis of the simulations including thelinear cascade of flat plates. Predictions with correctionsfor the
treatment of the edges and the surface of the plates. The levels of correction as defined in Section 3.2.2 are shown in field
“Corr.”. Values are in non-dimensional form.

No. Model Eq. Boundary conditions Wall Gust Corr. xin ∆p real [nd] ∆p imag. [nd] p2 [nd] at x/c = −2 p2 [nd] at x/c = +3
name form x low x high type [nd] l∞ l2 l∞ l2 l∞ l2 l∞ l2

28 7.1 cons. Giles Giles Kim Giles 1 -3 8.53E-3 2.39E-3 3.17E-2 7.30E-32.63E-7 1.70E-7 7.85E-7 6.81E-7
29 7.2 cons. Giles Giles Kim Giles 1 -3 4.74E-3 1.82E-3 1.96E-2 5.63E-34.33E-7 3.10E-7 9.03E-7 7.61E-7
30 7.3 cons. Giles Giles Kim Giles 1 -3 8.23E-3 2.13E-3 2.13E-2 5.61E-32.51E-7 1.73E-7 8.35E-7 7.05E-7
31 7.4 cons. Giles Giles Kim Giles 1 -3 1.08E-2 2.58E-3 2.31E-2 6.05E-31.08E-7 6.51E-8 7.78E-7 6.60E-7
32 7.1 cons. Giles Giles Kim Giles 2 -3 1.01E-2 2.55E-3 2.92E-2 6.49E-34.92E-7 3.55E-7 8.30E-7 7.11E-7
33 7.2 cons. Giles Giles Kim Giles 2 -3 4.05E-3 1.40E-3 1.45E-2 3.94E-34.78E-7 3.51E-7 7.36E-7 6.19E-7
34 7.3 cons. Giles Giles Kim Giles 2 -3 4.17E-3 1.17E-3 1.15E-2 3.29E-32.66E-7 1.93E-7 5.54E-7 4.74E-7
35 7.4 cons. Giles Giles Kim Giles 2 -3 8.16E-3 1.62E-3 1.93E-2 3.83E-31.26E-7 8.67E-8 4.45E-7 3.88E-7
36 7.1 cons. Giles Giles Kim Giles 3 -3 1.44E-2 3.32E-3 3.23E-2 7.02E-35.46E-7 3.99E-7 8.40E-7 7.20E-7
37 7.2 cons. Giles Giles Kim Giles 3 -3 8.52E-3 1.95E-3 1.98E-2 4.34E-34.62E-7 3.41E-7 6.65E-7 5.61E-7
38 7.3 cons. Giles Giles Kim Giles 3 -3 3.79E-3 1.13E-3 1.07E-2 3.01E-32.37E-7 1.72E-7 4.75E-7 4.10E-7
39 7.4 cons. Giles Giles Kim Giles 3 -3 5.29E-3 1.15E-3 1.37E-2 2.93E-31.09E-7 7.25E-8 3.74E-7 3.31E-7
40 9.1 cons. Giles Giles Kim Giles 3 -4 1.42E-2 3.25E-3 3.23E-2 7.01E-35.66E-7 4.05E-7 8.81E-7 6.78E-7
41 9.2 cons. Giles Giles Kim Giles 3 -4 8.19E-3 1.85E-3 2.00E-2 4.39E-36.21E-7 4.74E-7 4.18E-7 3.07E-7
42 9.3 cons. Giles Giles Kim Giles 3 -4 3.35E-3 1.03E-3 1.10E-2 3.08E-34.15E-7 3.24E-7 1.81E-7 1.27E-7
43 9.4 cons. Giles Giles Kim Giles 3 -4 5.22E-3 1.09E-3 1.39E-2 2.97E-32.82E-7 2.22E-7 8.33E-8 5.08E-8
44 11.1 cons. Giles Giles Kim Giles 3 -5 1.48E-2 3.40E-3 3.24E-2 7.00E-35.99E-7 4.40E-7 9.56E-7 7.35E-7
45 11.2 cons. Giles Giles Kim Giles 3 -5 8.72E-3 1.98E-3 1.99E-2 4.36E-35.40E-7 4.08E-7 6.64E-7 5.10E-7
46 11.3 cons. Giles Giles Kim Giles 3 -5 3.94E-3 1.15E-3 1.09E-2 3.04E-33.18E-7 2.42E-7 4.48E-7 3.46E-7
47 11.4 cons. Giles Giles Kim Giles 3 -5 5.35E-3 1.16E-3 1.37E-2 2.95E-31.86E-7 1.42E-7 3.38E-7 2.62E-7
48 9.1 cons. Giles mod. buf. Kim Giles 3 -3 1.45E-2 3.33E-3 3.25E-2 7.05E-36.69E-7 5.05E-7 7.53E-7 5.71E-7
49 9.2 cons. Giles mod. buf. Kim Giles 3 -3 8.82E-3 2.01E-3 1.99E-2 4.35E-35.26E-7 3.91E-7 7.25E-7 5.77E-7
50 9.3 cons. Giles mod. buf. Kim Giles 3 -3 3.92E-3 1.18E-3 1.03E-2 2.94E-36.98E-8 4.15E-8 7.59E-7 6.60E-7
51 9.4 cons. Giles mod. buf. Kim Giles 3 -3 5.02E-3 1.11E-3 1.36E-2 2.87E-31.30E-7 1.06E-7 5.09E-7 4.87E-7
52 7.1 prim. Giles Giles Tam Giles 3 -3 5.17E-3 2.66E-3 2.14E-2 6.26E-32.34E-7 1.35E-7 1.71E-6 1.44E-6
53 7.2 prim. Giles Giles Tam Giles 3 -3 1.17E-2 3.62E-3 1.40E-2 5.06E-37.09E-7 5.04E-7 1.44E-6 1.18E-6
54 7.3 prim. Giles Giles Tam Giles 3 -3 1.29E-2 4.01E-3 1.74E-2 5.17E-38.68E-7 6.64E-7 1.06E-6 8.50E-7
55 7.4 prim. Giles Giles Tam Giles 3 -3 1.53E-2 3.12E-3 2.20E-2 5.04E-36.87E-7 5.36E-7 7.41E-7 6.00E-7
56 11.1 cons. mod. buf. mod. buf. Kim buffer 3 -5 1.46E-2 3.63E-3 2.97E-2 6.46E-31.28E-6 9.69E-7 1.57E-6 1.22E-6
57 11.2 cons. mod. buf. mod. buf. Kim buffer 3 -5 8.72E-3 2.08E-3 1.87E-2 4.13E-37.40E-7 5.60E-7 8.85E-7 7.01E-7
58 11.3 cons. mod. buf. mod. buf. Kim buffer 3 -5 3.77E-3 1.19E-3 9.68E-3 2.85E-31.96E-7 1.30E-7 7.86E-7 6.76E-7
59 11.4 cons. mod. buf. mod. buf. Kim buffer 3 -5 4.91E-3 1.11E-3 1.35E-2 2.84E-37.98E-8 4.80E-8 5.43E-7 5.19E-7
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particularly pronounced betweenx/c = +0.05 andx/c = +0.4.

In Figures 3.15 and 3.16 the non-dimensional pressurep2 is shown for the same set

of results as Figure 3.14, which are simulations 1 to 4 of Table 3.13. Upstream of the

cascade, Figure 3.15 shows that, as the grid is refined, the predicted non-dimensional

pressure amplitude, shown by symbols, tends to converge towards the reference so-

lution by Hall [1997a], denoted by the continuous line. Downstream of the cascade,

at x/c = +3, the values tend to converge towards a limit showing the correct sound

directivity, displayed by the correct location of thep2 maximum and minimum along

they direction, but that is over-estimated with respect to the reference solution. This is

common to most of the other sets of solutions.

Figure 3.17 compares the results of the radiated noise at theoutflow plane from

simulations differing only for the extension of the field in thex direction. Increasing

the distance between the cascade trailing edge and the computational domain outflow

boundary affects the amplitude of the mean squared pressure fluctuation at x/c = +3.

There is a rather small effect on the spatial phase of the mean squared pressure distri-

bution, confirming that the directivity of the pressure perturbation is captured by the

simulation, but for thep2 mean level. The uniformly lowerp2 predicted by the com-

putation with streamwise lengthL = 9 may result from wave patterns generated by

spurious wave reflections at the outflow boundary.

Figures 3.18, 3.19 and 3.20 show respectively the non-dimensional perturbation

fields of pressurep′ and velocityu′ andv′ at non-dimensional timet = 500.8. The per-

turbation is computed about the uniform reference flowQ∞ of Equation (3.14). The

non-dimensional velocity fluctuation in they directionv′ is coincident with the value

of the non-dimensional velocity componentv. The distributions of pressure and veloc-

ity perturbations give patterns that are consistent with the predictions shown in Tam
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Figure 3.14: Simulations of the linear cascade of flat plates. Non-dimensional pressure
difference across they = 0 blade at the non-dimensional timet = 500.8. Results from
simulations 1 to 4 in Table 3.13 with increasingly refined grids which do not include
the corrections of Section 3.2.2.
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Figure 3.15: Linear cascade of flat plates with the inflow gust: non-dimensional pres-
sure amplitudep2 evaluated between non-dimensional timet = 500 andt = 500.8 up-
stream of the cascade atx/c = −2. Symbols represent simulations 1 to 4 in Table 3.13
with an increasingly refined mesh that do not include the corrections of Section 3.2.2.
Only the range ofy/c between 0 and 1 is included as the values from 2 to 4 are identical
due to the cascade pitchwise periodicity.
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Figure 3.16: Linear cascade of flat plates with the inflow gust: non-dimensional pres-
sure amplitudep2 evaluated between non-dimensional timet = 500 andt = 500.8
downstream of the cascade atx/c = +3. Symbols represent simulations 1 to 4 in
Table 3.13 with an increasingly refined mesh that do not include the corrections of
Section 3.2.2. Only the range ofy/c between 0 and 1 is included as the values from 2
to 4 are identical due to the cascade pitchwise periodicity.
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Figure 3.17: Linear cascade of flat plates with the inflow gust: non-dimensional pres-
sure amplitudep2 evaluated between non-dimensional timet = 500 andt = 500.8
downstream of the cascade atx/c = +3. Symbols represent simulations 4, 19 and 23
in Table 3.13 with increasing domain lengthL. The simulations do not include the
corrections of Section 3.2.2. Only the range ofy/c between 0 and 1 is included as the
values from 2 to 4 are identical due to the cascade pitchwise periodicity.
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Figure 3.18: Linear cascade of flat plates with inflow gust. Distribution of the non-
dimensional pressure perturbationp′ = p − ρ∞u2

∞ (where p is the non-dimensional
pressure computed as required by the problem definition) over the entire computational
domain at the end of simulation 2, Table 3.13. Negative contours are shown by dashed
lines.

& Hardin [1997]. The velocity components in Figures 3.19 and3.20 do not show any

change in spatially periodic patterns approaching the computational domain bound-

aries where the Giles subsonic conditions are enforced, which indicates that the ve-

locity perturbation is unaffected by the domain boundaries that are substantially non-

reflecting for this components of the flow state. The pressureperturbation is slightly

more irregular at the outflow boundary. At the inflow boundarysmall disturbances,

that tend to disappear in the more refined grid simulations, are noticeable.

Figure 3.21 shows the distribution over the whole computational field of the non-

dimensional mean pressure amplitudep2 computed during the last period of simulation

2 in Table 3.13. The directivity of the radiating pressure isshown by the lobes of the

p2 contours in Figure 3.21 (a). Figures 3.21 (b) and (c) show thedecay ofp2 along the
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Figure 3.19: Linear cascade of flat plates with inflow gust. Distribution of the non-
dimensional perturbation of the streamwise velocityu′ = u− u∞ over the entire com-
putational domain at the end of simulation 2, Table 3.13. Negative contours are shown
by dashed lines.
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Figure 3.20: Linear cascade of flat plates with inflow gust. Distribution of the non-
dimensional perturbation of the flow-normal velocityv′ = v− v∞ over the entire com-
putational domain at the end of simulation 2, Table 3.13. Negative contours are shown
by dashed lines.
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dashed lines 1 and 2 in Figure 3.21 (a). Two directivity peaksare shown atθ = 220°

from the cascade leading edge and atθ = −40° from the cascade trailing edge, where

θ is measured anti-clockwise positive from thex axis. The decay is monotonic and,

in logarithmic scale, non-linear. The non-linearity can beexplained as in both the

upstream and downstream direction the cascade response to the incoming gust is com-

posed of a number of modes that are either cut-on (propagating) or cut-off (decaying).

For the combination of the geometry and gust prescribed by the problem definition of

the second test case, the dominating mode, the only clearly visible in Figure 3.18, is

decaying, but other lower amplitude propagating modes are superimposed to it in the

resulting pressure field. The sum of these contributions gives to the pressure profile

along dashed lines 1 and 2 the shape of a blend of two straight lines. The pressure

amplitudes related to the various modes of the cascade response could be obtained

by performing a double (both in time and space) Fourier transform of the predicted

pressure as done for the fourth test case of this study in Section 3.4. The mode decom-

position for this test case can be found in Ragab & Salem-Said[2007].

The decay in the downstream direction, shown in Figure 3.21 (c), is characterised

by changes in curvature that are absent from the pressure amplitude distribution in

the upstream direction shown in Figure 3.21 (b). This is probably due to the fact that

the outflow Giles subsonic boundary partially reflects the outgoing waves. The over-

estimation of thep2 amplitude noted in Figures 3.16 and 3.17, and directly from the

data in Table 3.13, could be related to this phenomenon.

Figures from 3.22 to 3.24 refer to simulations 36 to 39 of Table 3.14 with correction

level 3. They can be directly compared to Figures from 3.14 to3.16.

Figures from 3.25 to 3.27 illustrate the results from simulation 37 in Table 3.14.

These values can be directly compared to those from simulation 2 shown in Figures
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(a) Contours ofp2 over two vanes showing the unsteady pressure directivity.
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(b) Values along dashed line 1 in Figure 3.21 (a).
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Figure 3.21: Linear cascade of flat plates with inflow gust. Non-dimensional unsteady
pressure amplitudep2 computed over the last period of simulation 2, Table 3.13.
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Figure 3.22: Linear cascade of flat plates with inflow gust. Non-dimensional pressure
difference∆p across they = 0 flat plate at non-dimensional timet = 500.8. The results
from four simulations with correction level 3 (36 to 39 in Table 3.14) and increasingly
refined grids are shown. The same axis scales are used as in Figure 3.14 to facilitate
the comparison among the results.
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Figure 3.23: Linear cascade of flat plates with inflow gust. Flow-normal distribution
of fluctuating pressure amplitude atx/c = −2 upstream of the flat plate leading edge,
averaged over the non-dimensional time 500< t 6 500.8. Predictions with scheme
correction level 3 at increasing levels of mesh refinement (symbols). Reference solu-
tion (continuous line). Simulations 36 to 39 in Table 3.14. The ordinate axis range is
0 6 y/c 6 1 as the pressure distribution is pitchwise periodic.
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Figure 3.24: Linear cascade of flat plates with inflow gust. Flow-normal distribution
of fluctuating pressure amplitude atx/c = +3 downstream of the flat plate leading
edge, averaged over the non-dimensional time 500< t 6 500.8. Predictions with
scheme correction level 3 at increasing levels of mesh refinement (symbols). Reference
solution (continuous line). Simulations 36 to 39 in Table 3.14. The ordinate axis range
is 06 y/c 6 1 as the pressure distribution is pitchwise periodic.
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Figure 3.25: Linear cascade of flat plates with inflow gust. Distribution of the non-
dimensional pressure perturbationp′ = p − ρ∞u2

∞ (where p is the non-dimensional
pressure computed as required by the problem definition) over the entire computational
domain at the end of simulation 37, Table 3.14. Negative contours are shown by dashed
lines.
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Figure 3.26: Linear cascade of flat plates with inflow gust. Distribution of the non-
dimensional perturbation of the streamwise velocityu′ = u− u∞ over the entire com-
putational domain at the end of simulation 37, Table 3.14. Negative contours are shown
by dashed lines.

from 3.18 to 3.20. Simulations 2 and 37 solve the same formulation of the Euler

equations, using the same type of boundary conditions, gustintroduction method, and

computational domain field length. This allows to graphically evaluate the increase in

the accuracy due to the introduction of the corrections applied at the blade edges and

surfaces discussed in Section 3.2.2.

Figure 3.22 compares the flat plate surface pressure difference from predictions us-

ing different levels of mesh refinement (symbols) with the referencesolution by Hall

[1997a] (continuous line). Figure 3.22 shows that the real part of the non-dimensional

pressure difference∆p across they = 0 blade from the simulations with higher node

density (simulations 38 and 39) is nearly the same and overlaps the reference solution

over the whole plate. The spatial oscillations in∆p observed in Figure 3.14, especially

near the leading edge, where the pressure gradients are steeper, are shown to be sub-
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Figure 3.27: Linear cascade of flat plates with inflow gust. Distribution of the non-
dimensional perturbation of the flow-normal velocityv′ = v− v∞ over the entire com-
putational domain at the end of simulation 37, Table 3.14. Negative contours are shown
by dashed lines.

stantially attenuated in Figure 3.22. The imaginary part of∆p in Figure 3.22 is also

nearly coincident with the reference solution and the offset along the left-hand side of

the plate noted in Figure 3.14 is shown to have been substantially reduced by the level

3 corrections applied by the numerical method at the flat plate edges and surfaces.

Figure 3.23 shows the flow-normal distribution of the pressure fluctuation ampli-

tude p2 at x/c = −2, upstream of the flat plate leading edge. These results are pre-

dictions obtained with the level 3 corrections of Section 3.2.2. In Figure 3.23, the

non-dimensional pressure fluctuation amplitudep2 from the coarser mesh simulations

(�, △) shows a lower agreement with the reference solution (continuous line) when

compared to Figure 3.15. However, the predictions from the more refined meshes (▽,

◦) show an improved agreement with the reference solution compared to Figure 3.15.

Figure 3.24 shows the flow-normal distribution of unsteady pressure predicted at
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x/c = +3, downstream of the plate trailing edge, using the same level 3 correction as

for Figure 3.23. Atx/c = +3, the prediction shown by symbols displays a vertical

offset with respect to the reference solution (continuous line) similarly to Figure 3.16.

However, this offset is lower than in the predictions without the level 3 correction. The

level 3 predictions also display a monotonically decreasing difference among them as

the computational mesh is refined, which is a strong indication of mesh convergence

in the computation.

Figures 3.25, 3.26 and 3.27 show the distributions of fluctuating pressure, stream-

wise, and flow-normal velocity components across the full computational domain at

non-dimensional timet = 500.8. These predictions are obtained using the level 3 cor-

rection in the scheme. The displayed predictions are substantially equivalent to those

without the corrections.

Table 3.15 summarises the computational resources used to run each simulation.

Due to the scheduler of the high-performance computer that was used, the runs have

not been made under identical conditions, such as by reserving entire blades of pro-

cessors to maximise the locality of the memory and to minimise the latencies related

to the data exchange. This resulted in a significant data dispersion in the recorded

cost of the computation that does not allow to accurately evaluate the additional com-

putational cost from the corrections implemented to improve the quality of the results.

The results show that both the modified buffer condition and the Giles non-reflecting

subsonic inflow and outflow, in association with the inviscidwall boundary by Kim

and Lee, are suitable for the solution of the second test case. The Giles boundary

conditions have to be preferred over the modified buffer because they do not require

additional grid nodes to host the buffer layer and are, therefore, more efficient. The
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Table 3.15: Computational cost and duration of the linear cascade simulations of flat
plates with inflow gust.

No. Walltime CPU time Total mem. No. Walltime CPU time Total mem.
[hh:mm:ss] [hh:mm:ss] [MB] [hh:mm:ss] [hh:mm:ss] [MB]

1 00:05:01 01:36:35 692 32 02:00:16 01:48:25 694
2 00:12:55 05:20:20 735 33 00:11:00 05:05:20 727
3 03:16:42 88:39:38 980 34 03:32:37 95:48:21 1001
4 33:27:53 921:30:45 1841 35 41:17:34 1111:10:40 1894
5 00:05:13 01:35:14 686 36 00:06:14 01:58:55 694
6 00:10:19 04:45:35 739 37 00:14:25 06:37:14 732
7 01:10:23 32:48:43 866 38 04:12:04 113:38:40 1057
8 35:51:50 980:45:13 1782 39 36:06:30 990:29:41 1678
9 00:04:23 01:41:56 873 40 00:05:30 02:20:09 838
10 00:19:11 11:09:54 943 41 00:12:48 07:31:52 919
11 03:24:05 118:34:20 1281 42 04:04:16 139:53:43 1293

na na na 43 38:31:07 1359:45:07 2172
12 00:03:16 01:48:53 879 44 00:03:28 02:26:36 1047
13 00:13:31 07:57:59 941 45 00:15:34 11:11:34 1162
14 03:41:05 128:56:12 1344 46 04:11:26 174:24:32 1574
15 29:58:06 1078:13:50 2041 47 47:48:21 1987:32:49 2953
16 00:03:30 01:59:01 867 48 00:03:29 01:55:31 873
17 00:13:03 06:54:58 937 49 00:13:59 08:15:56 946
18 04:07:02 139:50:23 1135 50 02:55:07 104:55:43 1122
19 51:39:29 1692:20:37 2334 51 29:45:45 1070:50:42 2022
20 00:03:15 02:17:08 1060 52 00:03:02 01:20:31 654
21 00:10:58 07:59:08 1138 53 00:12:08 05:34:29 729
22 03:20:09 142:55:11 1487 54 01:43:28 48:07:55 879
23 37:05:53 1583:54:32 2986 55 35:17:53 947:43:28 1817
24 00:12:09 07:38:56 1086 56 00:11:38 07:23:10 1079
25 00:21:04 14:22:21 1149 57 00:21:20 14:39:09 1161
26 02:59:57 129:59:46 1378 58 03:09:26 132:09:42 1419
27 37:51:35 1617:47:45 2472 59 42:45:36 1809:57:03 2662
28 00:05:43 01:38:55 696
29 04:00:27 05:35:45 732
30 04:17:04 114:28:26 977
31 36:57:44 997:28:22 1589
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length of the computational domain seems to have an influencelocally concentrated

around the outflow area and needs to be established dependingon the problem to be

solved.

The results from this test case demonstrate that the high-order prefactored finite-

difference solver, with appropriate wall boundary and plate edge and surface correc-

tions can provide engineering accurate predictions of the unsteady wall pressure and

of the near-field radiating pressure amplitude in an aeroacoustic problem of noise gen-

erated by the interaction with a straight solid wall. Therefore, the Giles non-reflecting

inflow and outflow, and the Kim and Lee inviscid wall boundary conditions are surely

the first choice for the application in the test cases described in the following sections.

Although no direct numerical comparison is given with the results from other authors,

the level of agreement with the reference solution, as defined in the proceedings of the

second NASA computational aeroacoustics (CAA) workshop [Tam & Hardin, 1997]

seems comparable with that of the results by Ragab & Salem-Said [2007] that is cer-

tainly the most accurate prediction available in literature for this problem.
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3.3 Third test case: sound generation by interaction

between an incident gust and a cascade of flat plates

(3D)

3.3.1 Problem definition

The third test case is a benchmark problem from the third NASAcomputational aeroa-

coustics (CAA) workshop [Dahl, 2000]. It is the third problem under category 3:

“Sound generation by interacting with a gust” and aims to reproduce the interaction of

an incoming convected vortical gust with a cascade of flat aerofoils having a finite span

and bounded in thez spatial direction by two parallel impermeable walls, as sketched

in Figure 3.28. The coordinate system origin is on the lowerzwall at the leading edge

of the reference aerofoil lying on thex-zplane. They axis is normal to the aerofoil sur-

face. Thez axis forms an angleα with the aerofoil leading edge of the reference blade

defining the sweep of the blades. The chord of the aerofoil is equal toc, the distance

between two successive plates in they direction ish = c and the two bounding plates

are separated by a distancel = 2.6c.

The mean flow is uniform across the domain. The mean velocity components in

the y andz direction are equal to zero and the component in thex direction is equal

to u∞ = 0.5c∞, wherec∞ is the reference speed of sound, so that the mean flow Mach

numberM0 is equal to 0.5.

The problem is solved in non-dimensional form. The reference dimensional quan-

tities used for non-dimensionalisation are: the speed of soundc∞ for the velocity, the

ambient flow densityρ∞ for the density,ρ∞c2
∞ for the pressure, the aerofoil chordc for

the length, andc/c∞ for the time.
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Figure 3.28: Problem geometry of test case number 3 (modifiedfrom Dahl [2000]).

The function describing the incoming gust is defined over thewhole field and is

function of the coordinatesx, y, andz and of timet as

u′g(x, y, z, t) = 0, (3.15a)

v′g(x, y, z, t) = Acos
(

kxx+ kyy+ kzz− ωt
)

, (3.15b)

w′g(x, y, z, t) = 0, (3.15c)

whereA = 0.05, the wavenumberskx = 5.5/c, ky = π andkz = 0, and the harmonic

(angular) frequencyω = kxu∞/c = 2.75. The sweep angleα ranges from 0° to 30°

with steps of 2.5°.

The problem requires to determine the amplitude of the root mean squared radiated

acoustic pressureprms =

√

p2 in the upstream direction at pointP = (−5c, 0, l/2) for

each prescribed value of the sweep angleα. The results are presented in dB using the

prms value obtained forα = 0° as the reference level and are referred to asS PLin the

results Section 3.3.3.
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To keep the incoming gust velocity field divergence free, andto avoid pressure and

density oscillations coming from the inflow, in this work thegust definition also in-

cludes a componentu′g = −
(

ky/kx

)

v′g in thex direction.

An exact analytical solution for this problem is not available. In the proceedings

of the NASA workshop [Dahl, 2000] an approximate solution for the noise radiated

in the upstream direction is given by Envia [2000], for whichthe contribution of the

noise coming from the trailing edge of the aerofoils is neglected. This solution is used

in Section 3.3.3 as the reference solution for comparing among the numerical results.

3.3.2 Numerical methods

The equations and the data input and output are non-dimensionalised using the set of

reference values defined by the problem in Section 3.3.1.

The problem definition in Section 3.3.1 does not prescribe the computational do-

main size or the spatial discretisation to be used. The computational domain is to be

defined simply to include the blades and the pointP from which the output is required.

As for the second test case, clustering of the points around specific areas of the model,

such as the aerofoil surface, is not used and the only distortion of the grid with respect

to a uniform orthogonal Cartesian mesh is to accommodate to the sweep angle of the

blades.

The overall dimension of the model in thezdirection is fixed by the problem defini-

tion. In they direction, the value of the transverse wavenumberky and of the inter-blade

distanceh determine the minimum number of vanes to be included in the model in or-

der to obtain a pitchwise periodic flow. This gives a transverse domain extent of 2h. In
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the x direction the length of the model is determined by the type ofboundary closure

applied at the inflow and at the outflow and by stand-off distance between the inflow

and outflow boundaries to the aerofoils leading and trailingedges.

The node distribution iny andz directions over the whole model is kept as regular

as possible imposing a constant distance between the successive layers of nodes. In

thex direction, the faces corresponding to the inflow and the outflow can either be kept

normal to the other external faces of the model, as sketched in Figure 3.29 (a), or they

can follow the sweep angle of the blades, as sketched in Figure 3.29 (b). The former

choice gives a “stretched” mesh and has the advantage of ensuring the orthogonality

between the inflow and outflow boundaries and the curvilinearcoordinatei shown in

Figure 3.29 (a). The latter choice gives a “skewed” mesh and ensures a more regular

distribution of nodes in thei direction for all values ofα, therefore simplifying the

definition of the mesh and minimising the errors related to the grid deformation. Both

types of mesh were used for the preliminary tests on the accuracy of the input gust.

For both types of mesh, the distribution of the nodes along the i coordinate is

dominated: by the position of pointP where the acoustic pressure is monitored, which

requires one mesh node to avoid data interpolation, by the position of the nodes on the

edges of the blades, and by the position of the nodes on the outflow plane. In order

to minimise the errors related to the mesh non-uniformity, afifth-order polynomial is

used to map between the physical and the computationali coordinate. The procedure

is as follows. The model is divided into four zones as shown inFigure 3.30 for the

“stretched” mesh. Zone 1 extends from the inflow boundary to the plane, parallel to

the inflow, passing through pointP. Zone 2 extends from pointP to the plane defined

by the blade leading edge. Zone 3 covers the area occupied by the flat plates. Zone 4

extends from the trailing edge of the plates to the outflow plane.
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(a) In the stretched mesh, the inflow and outflow planes are normal to thex axis.
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(b) In the skewed mesh, the normal to the inflow and outflow planes forms an angle equal to
the sweep angleα with thex axis.

Figure 3.29: Computational domain of (a) the stretched meshand (b) the skewed mesh.
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Figure 3.30: Schematic of the stretched grid highlighting the subdivision in the four
zones used for the computation of the nodes along thex coordinate.

In each of the four zones, a different transformation is used to map the computa-

tional domain (i, j, k) on the physical domain (x, y, z). For all zones,y = j∆y and

z= k∆z, with ∆y and∆z constant.

For zone 1, the stretched mesh streamwise coordinatexs = xu−6c, wherexu = i∆x

and∆x is constant.

For zone 2,

xs = 6
sh

x5
le

(i∆x)5 − 15
sh

x4
le

(i∆x)4 + 10
sh

x3
le

(i∆x)3 + i∆x− 5c, (3.16)

∂xs

∂i
= ∆x

[

30
sh

x5
le

(i∆x)4 − 60
sh

x4
le

(i∆x)3 + 30
sh

x3
le

(i∆x)2 + 1

]

, (3.17)

∂2xs

∂i2
= (∆x)2

[

120
sh

x5
le

(i∆x)3 − 180
sh

x4
le

(i∆x)2
+ 60

sh

x3
le

(i∆x)

]

, (3.18)

wherexle is thex coordinate of the leading edge in a regular Cartesian grid and sh is

the difference betweenxle and the position of the aerofoil leading edge plane in the

stretched grid for that particular row of nodes.
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For zone 3,

xs = i∆x+ sh, (3.19)

∂xs

∂i
= ∆x, (3.20)

∂2xs

∂i2
= 0. (3.21)

For zone 4,

xs = −6
sh

(L − xte)5
(i∆x− xte)

5 + 15
sh

(L − xte)4
(i∆x− xte)

4

−10
sh

(L − xte)3
(i∆x− xte)

3 + i∆x+ sh+ c,
(3.22)

∂xs

∂i
= ∆x

[

−30
sh

(L − xte)5
(i∆x− xte)

4 + 60
sh

(L − xte)4
(i∆x− xte)

3

−30
sh

(L − xte)3
(i∆x− xte)

2 + 1

]

,

(3.23)

∂2xs

∂i2
= (∆x)2

[

−120
sh

(L − xte)5
(i∆x− xte)

3 + 180
sh

(L − xte)4
(i∆x− xte)

2

−60
sh

(L − xte)3
(i∆x− xte)

]

,

(3.24)

wherexte is the position of the trailing edge in a regular Cartesian grid andL is the

overall length of the undeformed model.

In order to avoid an excessive compression of the mesh in the top left-hand corner

of zone 4, the overall length of the stretched type of grid wasextended by the quantity

shmax, corresponding to the maximum value ofsh, by modifying the equations used for

167



3. TEST CASE APPLICATIONS

zone 4 as

xs = −6
(sh− shmax)
(L − xte)5

(i∆x− xte)
5 + 15

(sh− shmax)
(L − xte)4

(i∆x− xte)
4

−10
(sh− shmax)
(L − xte)3

(i∆x− xte)
3 + i∆x+ sh+ c,

(3.25)

∂xs

∂i
= ∆x

[

−30
(sh− shmax)
(L − xte)5

(i∆x− xte)
4 + 60

(sh− shmax)
(L − xte)4

(i∆x− xte)
3

−30
(sh− shmax)
(L − xte)3

(i∆x− xte)
2 + 1

]

,

(3.26)

∂2xs

∂i2
= (∆x)2

[

−120
(sh− shmax)
(L − xte)5

(i∆x− xte)
3 + 180

(sh− shmax)
(L − xte)4

(i∆x− xte)
2

−60
(sh− shmax)
(L − xte)3

(i∆x− xte)

]

.

(3.27)

Equations (3.25) to (3.27) were the transformation used in this work, although this

results in sets of meshes having different overall length for the various values of the

sweep angleα.

The adopted mapping of Equations (3.16) to (3.21) and (3.25)to (3.27) ensures

the continuity of both the first and the second derivative on the nodes located on the

boundaries between the four zones.

The characteristics of the sets of computational grids usedin this test case are

summarised in Table 3.16. Each line of the table represents adifferent set characterised

by the same overall nominal length in thex direction (as the actual length depends

on the angleα), the same number of nodes and the same spatial orientation of the

inflow and outflow planes. Each set is labelled with the commonnotationL.i.ABwhich

identifies the extension in thex direction of the computational fieldL, the average inter-

nodal distance∆xi used to generate each grid and the orientation of the inflow (A) and
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Table 3.16: Characteristics of the six sets of grids used forthe solution of the third
test case. The name of the set univocally determines its characteristics. The fields
“Zones” indicate the number of parts in which the whole modelis subdivided along
the curvilinear coordinatesi, j, andk shown in Figure 3.29. The fields related to the
total number of nodes “model” and “computation” refer, respectively, to the nodes of
the initial model and to the nodes of the actual parallel computation. The two values
are different as the nodes on the common borders are duplicated in theneighbouring
processes.

Set Set Zones Nodes for Total no. of nodes
no. name in i dir. in j dir. in k dir. each zone model computation

1 10.1.NI 10 2 2 6358 228459 254320
2 10.1.NN 10 2 2 6358 228459 254320
3 10.1.IN 10 2 2 6358 228459 254320
4 10.1.II 10 2 2 6358 228459 254320
5 12.1.NN 12 2 2 6358 273867 305184
6 12.2.NN 12 2 2 46827 2127125 2247696

the outflow (B) planes. Letter N is used when the plane is normal to thex axis and

letter I is used when it is inclined with respect to it.

For example, grid 10.1.II with sweep angleα = 30° is shown in Figure 3.31.

In all the models, the number of nodes along the three spatialdirections is estab-

lished to keep the cells as much as possible similar to a cube.Thus, each zone in

which the complete model is subdivided has 17 nodes along thei and j directions and

22 nodes along thek direction. The only exception is set 12.2.NN in which the node

linear density is doubled in all three spatial directions.

Table 3.17 shows the minimum and maximum value of stretchingalong the curvi-

linear coordinatei for each set of grids of Table 3.16. The values refer to the grids

having sweep angleα = 30°.

The preliminary tests on the accuracy of the input vortical gust are run on the first

5 sets listed in Table 3.16, while the complete problem including the plate cascade is
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Table 3.17: Minimum and maximum stretching ratio along the curvilinear coordinate
i for each set of grids in Table 3.16. The stretching ratio is computed as the ratio
between two successive inter-nodal distances. For all the sets, the stretching values are
computed with sweep angleα = 30°.

Set Set Stretching ratio
no. name min. max.

1 10.1.NI 0.98238 1.01794
2 10.1.NN 0.95616 1.04585
3 10.1.IN 0.95616 1.04585
4 10.1.II 0.99035 1.00975
5 12.1.NN 0.95616 1.04585
6 12.2.NN 0.97778 1.02272

run on sets 5 and 6.

In they direction, a periodic type boundary condition is enforced with the exception

of the surface occupied by the plates. Numerically, the periodic boundary condition

is equivalent to a standard inter-block boundary exchanging the data of five rinds of

nodes with the neighbour. The parallel impermeable walls normal to thezaxis and the

plate surfaces are modelled with the inviscid wall boundaryby Kim & Lee [2004], de-

tailed in Section 2.5.1.1. In thex direction, at the inlet, two different boundary closures

have been tested: the extension to 3D of the Giles subsonic non-reflecting boundary

including an additional term for the introduction of the gust, detailed in Section 2.5.2,

and the extension to 3D of the modified buffer technique of Section 2.5.4, with co-

efficientsα andβ equal to 1 and 3.5, which was already used, in its 2D version, for

test case 2. At the outflow, the modified buffer technique is used as the extension of

the Giles outflow to three dimensions shows a numerical instability that could not be

controlled satisfactorily with the application of spatialfiltering.
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Figure 3.31: General structure of grid 10.1.II with sweep angleα equal to 30°.

For all the simulations presented in the results Section 3.3.3, the buffer length de-

pends on the mesh density of the model so to keep the same spatial extension: for

density 1 (sets 1 to 5 in Table 3.16) it consists of 30 nodes, for density 2 (only set

number 6 in Table 3.16) of 60 nodes.

In the three dimensional flat plate cascade with sweep, the specification of the

boundary conditions and the introduction of the vortical gust are strictly correlated.

Both the Giles and modified buffer inflow boundary conditions support the introduction

of the velocity disturbance to model the inflow gust. The introduction of the gust

through a body force vectorf following the method of Lockard & Morris [1997] is

not implemented in this test case, as this approach was foundto produce the largest

error norms with respect to the reference analytical solution in the second test case of

Chapter 3.2.

All the simulations presented in this work are run with the parallel scheme by sub-

dividing the field in equal parts connected by the inter-block boundary condition of
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Figure 3.32: Grid 10.1.NN with sweep angleα equal to 30° subdivided into 40 zones,
which are shown by thick borders. The position of the reference blade of the swept-
back cascade is highlighted in grey.

Section 2.6. The multi-block split in terms of number of nodes tends to evenly dis-

tribute the computational effort among the processors, maximising the efficiency of

the parallel computation. By domain decomposition the resulting multi-block struc-

ture is such that only one type of condition is used on each block face. This aided

the speed of the computation. Figure 3.32 shows the domain decomposition of grid

10.1.NN which is divided into 40 blocks of equal number of nodes. The position of

the reference plate is highlighted in grey.

The computation is started from a uniform mean flow with the gust velocity per-
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turbations of Equations (3.15) superimposed on it as
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, (3.28)

where the mean field flow state(ρ∞, u∞, c∞) and the gust velocity perturbation are

defined in Section 3.3.1.

Unlike what done for the second test case, in the third test case no exception is

introduced in the algorithm for the special treatment of thenodes located on the plate

surfaces and edges. This choice was dictated by the constraints on the computational

resources and time available for this work.

For this test case, the linearised version of the Euler equations are solved in conser-

vative form for compatibility with the use of the Kim and Lee inviscid wall boundary

condition that require the conservative form.

Time integration is performed using the Runge-Kutta schemeproposed by Berland

et al. [2006] in low-storage 2N form reported in Section 2.3.2.

3.3.3 Results

The proceedings of the third NASA workshop include the contribution from Wang

et al. [2000] that have presented a solution to this problem. In Wang et al. [2000]

the problem is solved using the space-time conservation element and solution element

(CE/SE) method that is based on the conservation of fluxes. Its formulation natively
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Table 3.18: Characteristics of the filters used for the thirdtest case.

Filter type NBT α f coeff. Application frequency

explicit LOC 0 every time step
explicit LOC 0 every Runge-Kutta stage
implicit LOC 0.4-0.495 every Runge-Kutta stage

allows for a simple implementation of non-reflecting boundary conditions without re-

quiring the definition of the characteristic variables. Thenumerical implementation is

second-order accurate in space and time.

Wanget al. introduce the following modifications with respect to the problem def-

inition: (i) the non-dimensional gust amplitudeA is reduced from 0.05 to 0.0001 to

avoid any non-linear effect, (ii) the gust includes a componentu′g to keep the vorticity

in two-dimensional form and divergence-free (also adoptedin the present work), and

(iii) the sweep angleα ranges only from 0° to 15° with increments of 5° (although

additional values are shown in the section of the proceedings where results are com-

pared). The results presented in Sections 3.3.3.1 and 3.3.3.2 use the same parameters

for comparison purposes.

Unless otherwise stated, the convergence of the non-dimensional pressure has been

verified for each simulation. Convergence is attained when the difference between the

values at the end of the penultimate (non-dimensional timet = 502.65) and of the last

period (non-dimensional timet = 504.93) is lower than 1%.

The characteristics of the spatial filters used for this testcase are shown in Ta-

ble 3.18.
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The results for this test case are reported in two sections. Section 3.3.3.1 addresses

the accuracy of the input vortical gust modelled without thecascade of flat plates, and

Section 3.3.3.2 addresses the complete problem, includingthe effect of the swept-back

solid boundaries flat plates cascade.

3.3.3.1 Accuracy of the vortical gust

As for the second test case, a preliminary simulation is performed with the computa-

tional domain not including the linear cascade, to verify the level of accuracy that can

be reached in the introduction of the vortical gust. This preliminary simulation was

repeated using different models, configurations of the boundary conditions andfilter-

ing techniques. This is an important preliminary test to check the ability of the solver

to convect vorticity waves on a 3D stretched grid. These results are directly corre-

lated to the outcome of the simulation with the linear cascade, as the amplitude of the

introduced gust directly affects the noise emitted in response from the plates cascade

edges.

The flow in the simulations is time-marched to the non-dimensional time t =

102.81. At this time the velocity disturbance has propagated well beyond the borders

of the computational field, so to test not only the ability to correctly input the vortical

gust, but also the level of error introduced by the boundary conditions at the inflow and

at the outflow. The non-dimensional time step is constant andequal to 0.01038, giving

a total number of time steps of 9900. The minimum inter-nodaldistance on the sets of

meshes 1 to 5 in Table 3.16 is 0.00625c. This gives a Courant number of 0.254 based

on the mean flow conditions, which is below the accuracy limitof 0.846 and the stabil-

ity limit of 1 .918 given by the combination of the characteristics of the spatial and the

time-integration schemes. When the buffer zones are used, the correction is applied
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at the end of each computational time step. The mesh skew angle α at the position

corresponding to the cascade leading edge is kept equal to 30° for all the simulations

so to match the cascade sweep-back and test the effect of the maximum mesh skew on

the predictions.

A selection of the simulations run to check the accuracy of the introduced vortical

gust is shown in Table 3.19. The error norms are computed based on the nodes that are

located between the aerofoils in the complete simulation that includes the flat plates

cascade. Note that in this case, due to the dimensions of the model involved, no mesh

convergence study is conducted.

The first four simulations in Table 3.19 are run on grids of nominal length 10c

applying the Giles non-reflecting boundary condition of Section 2.5.2 at the inflow

and the modified buffer condition of Section 2.5.4 at the outflow. The simulations

3 and 4 with inclined inflow boundaries were found to be computationally unstable

due to an instability arising from the inlet. Simulations 1 and 2 reached the non-

dimensional end timet = 102.81 but without convergence of the results on the pres-

sure due to a numerical instability originating from the inflow. This phenomenon is

illustrated in Figure 3.33, where the non-dimensional pressure oscillation on a node

located in correspondence of the cascade leading edge in thecomplete simulations is

shown for simulation 2 and 6 from Table 3.19. The unsteady pressure fluctuation am-

plitude from simulation 2 grows with time while the one from simulation 6 is constant.

Figure 3.34 shows the iso-levels of non-dimensional pressure fluctuationp′ over the

external boundaries at the end of simulation 2. In the absence of the aerofoils the

pressure fluctuation should be zero. Non-zero pressure fluctuation levels are shown.

To improve the numerical stability of the model, in the simulations 5 to 8 in Ta-

ble 3.19 the inflow condition was changed from Giles non-reflecting inflow to the mod-
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Table 3.19: Results from the simulations not including the skewed cascade of flat plates. The non-dimensional errors of
the velocity components and of the pressure with respect to the analytical definition of the gust given by Equation (3.15)
are shown asl∞ -normand l2 -norm. The norms are computed from the nodes that in the complete simulations are located
between the plates. In field “Filter freq.” referring to the frequency of application of the filter, value “every RK” meansthat
the filtering is executed at the end of every Runge-Kutta stage, while “every step” means that the application is made only
when the time step is completed.

No. Set Boundary conditions Filter Result u [nd] v [nd] w [nd] p [nd]
name I low I high type freq. l∞ l2 l∞ l2 l∞ l2 l∞ l2

1 10.1.NI Giles mod. buf. impl. every RK complete4.24E-003 1.67E-0037.68E-003 3.00E-0036.90E-005 1.86E-0053.55E-003 1.95E-003
2 10.1.NN Giles mod. buf. impl. every RK complete4.28E-003 1.68E-0037.68E-003 3.04E-0033.34E-005 9.82E-0063.46E-003 2.02E-003
3 10.1.IN Giles mod. buf. impl. every RK crashed - - - - - - - -
4 10.1.II Giles mod. buf. impl. every RK crashed - - - - - - - -
5 12.1.NI mod. buf. mod. buf. impl. every RK complete1.25E-003 2.65E-0042.19E-003 4.63E-0042.60E-005 6.60E-0063.97E-004 2.35E-004
6 12.1.NN mod. buf. mod. buf. impl. every RK complete1.24E-003 2.64E-0042.17E-003 4.62E-0042.62E-005 6.54E-0063.82E-004 2.33E-004
7 12.1.NN mod. buf. mod. buf. expl. every RK complete2.05E-003 4.73E-0043.59E-003 8.29E-0044.60E-005 1.06E-0053.68E-004 2.31E-004
8 12.1.NN mod. buf. mod. buf. expl. every step complete1.56E-003 3.48E-0042.74E-003 6.10E-0043.77E-005 8.54E-0063.67E-004 2.32E-004

1
7

7
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Figure 3.33: Simulations without swept-back cascade of flatplates. The time sequence
of the pressure fluctuation, normalised with respect toρ∞c2

∞, at a node located in cor-
respondence of the cascade leading edge. Results from simulation 2 and simulation 6
in Table 3.19 are compared.

ified buffer condition of Section 2.5.4. This required extending the computational field

in the upstream direction by 2c to accommodate 30 additional nodes ini over which

the buffer correction is applied. This change combined either with implicit filtering

applied at every Runge-Kutta stage or with explicit filtering produced numerically sta-

ble simulations. Table 3.19 shows that, with the only exception of velocity component

w, simulations 1 and 2 that use the Giles inflow are less accurate than simulations 5

and 6, which use the inflow buffer, by roughly one order of magnitude. Simulations

5, 6 and 8 provide similar error norms while the application of explicit filtering at ev-

ery Runge-Kutta step in simulation 7 leads to error norms in the velocity components

nearly twice as large as 5, 6 and 8. This is likely to be due to excessive filtering of the

state variables that is corrected by lowering the frequencyof application of the filter

to once every time step, as shown in simulation 8. The conformation of the outflow
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Figure 3.34: Simulation of a divergence-free velocity gustpropagating in the com-
putational domain of the skewed cascade without the plates.Pressure perturbation
normalised with respect toρ∞c2

∞ over the external surfaces of model 10.1.NN at non-
dimensional timet = 102.81 from simulation 2 in Table 3.19. Negative contours are
shown by dashed lines.
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plane (compare simulations 5 and 6 in Table 3.19) seems to have little influence on the

results. The complete problem including the flat plates cascade is only run on models

with outflow plane normal to thex axis.

Based on thel2 -norm, the non-dimensional error level of the best performing simu-

lations is two orders of magnitude smaller than the amplitudeA = 0.05 of the incoming

gust. Therefore, even on grids relatively coarse, skewed and stretched as those used

in this study, the gust propagation error is deemed adequatefor attempting to model

the complete problem of sound generated by the gust interacting with the swept-back

cascade of aerofoils. It is useful to remind that the data shown in Table 3.19 refer to

models with the maximum sweep angleα = 30° required by this test case [Dahl, 2000]

and, therefore, the maximum level of mesh distortion, so theerror level expected for

all the other values of the sweep angle is lower.

Figure 3.35 shows the non-dimensional flow field obtained over the external sur-

faces of model 12.1.NN at the end of simulation 8 in Table 3.19, at non-dimensional

time t = 102.81. The non-dimensional velocity perturbation componentsin axis x

in Figure 3.35 (a) and iny in Figure 3.35 (b) show a regular pattern over the whole

model and only small deviations can be noticed near the impermeable walls in coin-

cidence with the peaks of the oscillations that are slightlyreduced. Figure 3.35 (c)

shows the pressure perturbation, normalised with respect to ρ∞c2
∞. The pressure per-

turbation peaks are one order of magnitude lower than the results from simulations of

Figure 3.34 and thus closer to the analytical value of zero. This confirms the numerical

results shown in Table 3.19 in that simulation 8 is more accurate than simulation 2 by

about one order of magnitude. It can be noticed that near the computational inlet and

the outlet, the modified buffer condition leads the error to a level near to zero. The

results from simulations 5 to 7 give qualitatively similar results.
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Table 3.20: Computational requirements and duration of thesimulations performed
for the solution of the third test case in the absence of the flat plates cascade. The
non-dimensional pressure error norms of table 3.19 are herereplicated for the sake of
completeness.

No. Walltime CPU time Total mem. p [nd]
[hh:mm:ss] [hh:mm:ss] [MB] l∞ l2

1 00:48:22 30:20:21 1793 3.55E-003 1.95E-003
2 00:36:53 23:20:41 1824 3.46E-003 2.02E-003
3 00:19:39 10:55:48 1801 - -
4 00:18:09 09:57:18 1776 - -
5 00:41:33 30:09:47 2292 3.97E-004 2.35E-004
6 00:46:56 31:33:08 2502 3.82E-004 2.33E-004
7 00:23:30 17:01:30 1956 3.68E-004 2.31E-004
8 00:27:47 20:11:33 2114 3.67E-004 2.32E-004

The reduction in error of one order of magnitude from the use of the modified buffer

at the inflow is a positive outcome from the range of simulations in Table 3.19. This

inflow condition together with a computational domain streamwise extent of 12c are

therefore selected for modelling the gust propagating through the swept-back cascade

reported in Section 3.3.3.2.

Table 3.20 reports the computational resources used to complete the simulations

listed in Table 3.19. Simulations 5 to 8 used larger memory allocation to include the

inflow buffer. They also tended to use more CPU time, even if a significantvariance

among the computational time is shown that has probably moreto do with the effect of

concurrent jobs on the cluster (using communication bandwidth) than to the effect of

using different solver options in the code.
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(a) Iso-levels ofx-velocity perturbation normalised byu∞.

(b) Iso-levels ofy-velocity fluctuations normalised byu∞.

(c) Iso-levels of pressure fluctuation normalised byρ∞c2
∞.

Figure 3.35: Convection of divergence-free velocity wake across the computational
domain of test case 3 without the cascade walls. Instantaneous value of the flow state
perturbation at non-dimensional computational timet = 102.81. Simulation 8 in Ta-
ble 3.19.
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3.3.3.2 Results from the complete model

This section reports the predictions of the gust of Equation(3.15) interacting with

swept-back cascade of flat plates of Figure 3.28. The predictions are obtained from

models that have a computational domain streamwise length of 12c and use the modi-

fied buffer at the inflow and outflow.

Both the implicit and the explicit spatial filters of Section2.2.3 have been tested, but

the implicit filter resulted not capable of dealing with the high-frequency oscillations

generated by the presence of the plate edges that represent asingularity of the analytical

solution. Unlike the second test case, no special treatmentis applied to these edges,

therefore the filter performance is relied upon to keep the computation numerically

stable. Hence, all the results shown in this section are obtained by explicit filtering, in

its two versions shown in Table 3.18.

31 simulations were performed covering the sweep angle range 0°6 α 6 30° as

listed in Table 3.21. All simulations are time-marched to the same non-dimensional

end timet = 504.94. The simulations are grouped into three groups. Within each

group the simulations differ only for the value of the sweep angleα. The first group of

simulations 1 to 13 and the second group of simulations 14 to 26 use the set of meshes

5 in Table 3.16. The two groups differ only for the frequency of application of the

explicit filter that, for simulations 1 to 13 is applied at every Runge-Kutta stage, while

for simulations 14 to 26 is applied only at the end of each timestep. As prescribed by

the problem definition,α ranges from 0° to 30° with increments of 2.5°. All the sim-

ulations are time-advanced by a constant non-dimensional time step equal to 0.01038

over a total number of time steps of 48620. This satisfies the CFL condition, based on

the uniform background flow state, for which the Courant number is equal to 0.254.
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The third group of simulations 27 to 31 uses the more refined set of meshes number 6

in Table 3.16. Due to the larger mesh size and computational cost of the third group

of simulations,α is increased in steps of 5° and the maximum value is equal to 25°.

The third group of simulations 27 to 31 use a non-dimensionaltime step of 0.005192,

resulting in 97240 steps, and a Courant number of 0.254.

Along with the characteristics of the three groups of simulations, Table 3.21 shows

the computational cost of each simulation in terms of memory, CPU time, and actual

duration of the run. The simulations within each group should have the same compu-

tational weight, but their actual duration shows a large dispersion. As noted for the

previous test case, due to the high-performance computer job scheduler, the runs have

not been made under controlled conditions.

Figure 3.36 shows the sound pressure level (S PL) in dB predicted at the upstream

monitoring pointP [Dahl, 2000] from the 31 simulations of Table 3.22. The dB levels

are referenced to the predicted sound pressure atα = 0°. The results from the three

groups of simulations in Table 3.22 are compared to the approximate reference analysis

supplied by Envia [2000] and to the numerical results by Wanget al.[2000]. The three

groups are referred to as “Ghillani 1” (1 to 13 in Table 3.22),“Ghillani 2” (14 to 26),

and “Ghillani 3” (27 to 31). The data by Wanget al. [2000], not available in numerical

form, were extracted from the graphs by the graph tracing program “g3data” version

1.5.3.

In general, the results compare favourably with the reference solution, with the

Ghillani 1 and Ghillani 2 groups showing an improved match tothe reference curve

by Envia [2000] with respect to Wanget al. [2000]. The Ghillani 1 and Ghillani 2

predictions seem to follow the reference curve rather well over the ranges 0°6 α 6
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Table 3.21: Computational runs for the third test case of a wake impinging on a cascade
of flat plates at different sweep anglesα. The list is divided into three groups. Within
each group, the simulations differ only by the value of the sweep angleα. Along with
the characteristics of each simulation, the computationalrequirements and the duration
of each run are shown.

No. Model Angleα Filter Walltime CPU time Total mem.
name [°] type freq. [hh:mm:ss] [hh:mm:ss] [MB]

1 12.1.NN 0 expl. every RK 01:58:25 90:01:03 1961
2 12.1.NN 2.5 expl. every RK 02:24:18 106:40:59 2107
3 12.1.NN 5 expl. every RK 02:10:56 100:51:03 2240
4 12.1.NN 7.5 expl. every RK 02:33:59 111:24:45 2483
5 12.1.NN 10 expl. every RK 01:40:55 79:10:28 2008
6 12.1.NN 12.5 expl. every RK 02:36:41 115:43:45 2320
7 12.1.NN 15 expl. every RK 02:36:54 115:20:35 2403
8 12.1.NN 17.5 expl. every RK 02:15:44 102:50:18 2068
9 12.1.NN 20 expl. every RK 02:16:33 103:42:50 2170
10 12.1.NN 22.5 expl. every RK 02:07:11 96:51:53 2117
11 12.1.NN 25 expl. every RK 02:38:26 116:11:27 2296
12 12.1.NN 27.5 expl. every RK 01:50:24 86:15:28 2044
13 12.1.NN 30 expl. every RK 01:38:12 76:35:51 1972
14 12.1.NN 0 expl. every step 01:50:07 85:08:39 2156
15 12.1.NN 2.5 expl. every step 01:50:25 84:08:56 2135
16 12.1.NN 5 expl. every step 01:56:19 88:43:52 2101
17 12.1.NN 7.5 expl. every step 01:34:27 74:34:12 2016
18 12.1.NN 10 expl. every step 01:29:10 70:10:15 1942
19 12.1.NN 12.5 expl. every step 02:00:07 90:38:10 2227
20 12.1.NN 15 expl. every step 01:57:35 88:20:36 2240
21 12.1.NN 17.5 expl. every step 01:54:29 86:12:54 2213
22 12.1.NN 20 expl. every step 01:58:16 89:37:35 2140
23 12.1.NN 22.5 expl. every step 02:13:49 97:40:22 2243
24 12.1.NN 25 expl. every step 01:25:02 66:54:04 2018
25 12.1.NN 27.5 expl. every step 01:27:52 68:02:30 2032
26 12.1.NN 30 expl. every step 01:51:02 85:48:29 2122
27 12.2.NN 0 expl. every RK 44:56:18 1963:42:54 5699
28 12.2.NN 5 expl. every RK 38:35:37 1748:19:48 5695
29 12.2.NN 10 expl. every RK 38:39:00 1725:09:23 5692
30 12.2.NN 15 expl. every RK 33:00:52 1557:37:26 5703
31 12.2.NN 25 expl. every RK 38:17:49 1728:25:09 5678
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12.5° and 22.5° 6 α 6 27.5°, with values slightly over- and under-estimated on the

right-hand side in correspondence with the secondary peak.The coarser agreement

is found over the range 15°6 α 6 20° and atα = 30°, where the amplitude of the

pressure fluctuation is possibly lower than the numerical noise floor in the simulation.

The Ghillani 3 group of simulations appears to clearly over-estimate the value of

S PL. The analysis of the numerical values of the originalprms, listed in Table 3.22,

gives some insight on the probable cause of this over-estimation. The reference curve

by Envia [2000] indicates a monotonic reduction inS PL with α over the range 0°

6 α 6 15°. TheS PLpredicted by the second and third groups of simulations reported

in Table 3.22 shows an increase inprms over the range 0°6 α 6 2.5° in Ghillani

2 and over the range 0°6 α 6 5° in Ghillani 3. This increment appears to be a

numerical artifact that impacts on the full set of Ghillani 2and Ghillani 3 results shown

in Figure 3.36, as theS PLlevels are normalised by theprms atα = 0°.

Figure 3.37 shows the same data of Figure 3.36 but uses theprms at α = 5° from

each simulation as the reference for theS PL, this normalisation partially removes the

vertical bias in the predictions from the current numericalscheme. The apparent under-

estimation of the results in the case ofα = 0° can be explained by considering that in

that case the problem is essentially 2D and the rows of nodes running along thek

curvilinear coordinate of Figure 3.29 form a right angle with the bounding plates. This

is an important advantage in the locations where the wall boundaries of the aerofoils

and the impermeable bounding plates meet. In fact, from experience, when high-order

schemes are used, and two walls meet with an angle different from 90°, numerical

oscillations tend to originate from the corner adversely affecting the accuracy of the

simulation. The first group of simulations Ghillani 1 could be less prone to this effect

due to the higher frequency of application of the spatial filter.
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Figure 3.36: Simulations including the plates cascade: results from the three different
groups (see Table 3.22) compared to the approximate reference by Envia [2000] and
to the numerical solution provided by Wanget al. [2000].
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Figure 3.37: Simulations including the plates cascade: same results shown in Fig-
ure 3.36 but withS PLlevels normalised by theprms atα = 5°.
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Table 3.22: Numerical results of the simulations executed for the solution of the third
test case in the version including the plates cascade. TheS PLresults are illustrated in
Figure 3.36. Here, in addition, the value of the non-dimensionalprms is shown.

No. Model Angleα Filter prms SPL
name [°] type freq. [nd] [dB]

1 12.1.NN 0 expl. every RK 0.02166 0.00
2 12.1.NN 2.5 expl. every RK 0.02118 -0.19
3 12.1.NN 5 expl. every RK 0.01908 -1.10
4 12.1.NN 7.5 expl. every RK 0.01565 -2.82
5 12.1.NN 10 expl. every RK 0.01153 -5.48
6 12.1.NN 12.5 expl. every RK 0.00762 -9.08
7 12.1.NN 15 expl. every RK 0.00487 -12.96
8 12.1.NN 17.5 expl. every RK 0.00408 -14.49
9 12.1.NN 20 expl. every RK 0.00454 -13.57
10 12.1.NN 22.5 expl. every RK 0.00503 -12.68
11 12.1.NN 25 expl. every RK 0.00511 -12.55
12 12.1.NN 27.5 expl. every RK 0.00469 -13.28
13 12.1.NN 30 expl. every RK 0.00416 -14.33
14 12.1.NN 0 expl. every step0.01373 0.00
15 12.1.NN 2.5 expl. every step0.01397 0.15
16 12.1.NN 5 expl. every step0.01285 -0.58
17 12.1.NN 7.5 expl. every step0.01063 -2.22
18 12.1.NN 10 expl. every step0.00791 -4.79
19 12.1.NN 12.5 expl. every step0.00554 -7.89
20 12.1.NN 15 expl. every step0.00400 -10.70
21 12.1.NN 17.5 expl. every step0.00350 -11.86
22 12.1.NN 20 expl. every step0.00384 -11.07
23 12.1.NN 22.5 expl. every step0.00422 -10.25
24 12.1.NN 25 expl. every step0.00431 -10.07
25 12.1.NN 27.5 expl. every step0.00411 -10.47
26 12.1.NN 30 expl. every step0.00377 -11.23
27 12.2.NN 0 expl. every RK 0.01286 0.00
28 12.2.NN 5 expl. every RK 0.01393 0.70
29 12.2.NN 10 expl. every RK 0.00968 -2.47
30 12.2.NN 15 expl. every RK 0.00533 -7.64
31 12.2.NN 25 expl. every RK 0.00648 -5.96
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Figure 3.38: Schematic highlighting the planes from which the data illustrated in Fig-
ures from 3.39 to 3.50 are extracted.

The large quantity of data results collected can not be shownhere in its entirety.

Thus, only the results from simulation 31 in Table 3.22 are shown in detail. The sim-

ulation is characterised by a sweep angleα = 25°, mesh density level 2 in Table 3.16,

and explicit filtering applied at every Runge-Kutta stage. Figures from 3.39 to 3.50

show the data obtained by slicing the model as schematicallydescribed in Figure 3.38.

The six planes normal to thex axis are defined by the following equations:x = −c

(labelled as X-1),x = −2c (X-2), x = −3c (X-3), x = −4c (X-4), x = −5c (X-5),

and x = −6c (X-6). The three planes normal to they axis are defined by equations:

y = 0.5c (Y-1), y = c (Y-2), andy = 1.5c (Y-3). Finally, the three planes normal to the

z axis are defined by equations:z= 0.6c (Z-1), z= 1.3c (Z-2), andz= 2c (Z-3).

These results show that the solver is able to address large 3Dproblems on grids
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Figure 3.39: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensional pressure oscillation (with respect toρ∞c2

∞) at
the end of the run over planes normal to thex axis (see Figure 3.38). Negative contours
are shown by dashed lines.
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Figure 3.40: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensional pressure oscillation (with respect toρ∞c2

∞) at
the end of the run over planes normal to they axis (see Figure 3.38). Negative contours
are shown by dashed lines.
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Figure 3.41: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensional pressure oscillation (with respect toρ∞c2

∞) at
the end of the run over planes normal to thezaxis (see Figure 3.38). Negative contours
are shown by dashed lines.
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Figure 3.42: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalu velocity oscillation (with respect tou∞) at
the end of the run over planes normal to thex axis (see Figure 3.38). Negative contours
are shown by dashed lines.
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Figure 3.43: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalu velocity oscillation (with respect tou∞) at
the end of the run over planes normal to they axis (see Figure 3.38). Negative contours
are shown by dashed lines.
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Figure 3.44: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalu velocity oscillation (with respect tou∞) at
the end of the run over planes normal to thezaxis (see Figure 3.38). Negative contours
are shown by dashed lines.
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Figure 3.45: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalv velocity at the end of the run over planes
normal to thex axis (see Figure 3.38). Negative contours are shown by dashed lines.

197



3. TEST CASE APPLICATIONS

z/c
0 1 2

Y-2

z/c
0 1 2 3 4

Level v [nd]

7 0.0450
6 0.0300
5 0.0150
4 0.0000
3 -0.0150
2 -0.0300
1 -0.0450

Y-3

z/c

x/
c

0 1 2
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y-1

Figure 3.46: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalv velocity at the end of the run over planes
normal to they axis (see Figure 3.38). Negative contours are shown by dashed lines.
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Figure 3.47: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalv velocity at the end of the run over planes
normal to thezaxis (see Figure 3.38). Negative contours are shown by dashed lines.
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Figure 3.48: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalw velocity at the end of the run over planes
normal to thex axis (see Figure 3.38). Negative contours are shown by dashed lines.
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Figure 3.49: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalw velocity at the end of the run over planes
normal to they axis (see Figure 3.38). Negative contours are shown by dashed lines.
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Figure 3.50: Third test case, complete problem with plates cascade. From simulation
31: distribution of the non-dimensionalw velocity at the end of the run over planes
normal to thezaxis (see Figure 3.38). Negative contours are shown by dashed lines.

202



3. TEST CASE APPLICATIONS

containing high levels of skewness with an accuracy comparable to that of the best

results available in literature [Wanget al., 2000].

3.4 Fourth test case: sound generation by interaction

between an incident gust and a cascade of aerofoils

3.4.1 Problem definition

The fourth test case is a benchmark problem from the fourth NASA computational

aeroacoustics (CAA) workshop [Dahl, 2004]. It is the secondproblem under category

3: “Sound generation by interacting with a gust” and aims to study the impact of the

turbulence coming from the wake of a rotor on a cascade of blades representing a

guide vane stator. The problem is simplified by unrolling theprofile of the blades in

two dimensions and by modelling the turbulence as a vorticalgust coming from the left

boundary. The geometry of the problem is shown in Figure 3.51wherec is the aerofoil

chord,d = (2/3)c is the cascade pitch or gap between the aerofoils, and ¯αi is the mean

flow angle at the inflow. The profile of the blades is a representative compressor blade

shape and is provided via an ASCII file containing the coordinates of 170 points lying

on both the suction and the pressure sides of the aerofoil. The system of coordinates

is located approximately at the geometric centre of mass of the reference aerofoil and

the inflow and the outflow planes are at a distance of±1.5c from the centre of the

coordinate system along thex axis. The reference flow field is not specified and has

to be computed starting from the mean (time-averaged) inflowand outflow boundary
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Figure 3.51: Problem geometry of test case number 4 (modifiedfrom Dahl [2004]).

conditions that are






































p̄tot(in f low) = 1

T̄tot(in f low) = 1

ᾱ = 36°

, (3.29)

and

p̄(out f low)/p̄tot(in f low) = 0.92, (3.30)

respectively, where ¯ptot(in f low) andT̄tot(in f low) are the mean stagnation pressureptot and

temperatureTtot at the inflow, and ¯p(out f low) the mean static pressure at the outflow. All
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the values are normalised with respect to the following reference conditions:pre f =

101352.93 Pa,Tre f = 288.33 K.

The vorticity gust is defined on the inflow plane and is a function of they coordinate

and of timet

u′g(y, t) =
3

∑

n=1

an cos
[

n
(

kyy− ωt
)]

cosβ, (3.31a)

v′g(y, t) = −u′g(y, t) tanβ, (3.31b)

ρ′g(y, t) = 0, (3.31c)

p′g(y, t) = 0, (3.31d)

where the fundamental reduced angular frequencyω = 3π/4 normalised by the vane

chordc divided by the speed of sound
(

γRTre f

)1/2
, the transverse wavenumberky =

11π/9 normalised by the vane chordc, the harmonic amplitudesa1 = 5 × 10−3,

a2 = 3× 10−3, a3 = 7× 10−4 normalised by the speed of sound, andβ = 44°.

The flow is assumed inviscid and isentropic and the problem requires to solve the

time-dependent flow equations. The simulation has to be run until convergence (the

spectra of two successive periods have to differ by less than 1% on inflow, outflow,

and on the reference aerofoil at any of the three input frequencies) and, once this is

achieved, the following quantities have to be computed and output:

1. pressure frequency spectra at the selected locations on the aerofoil surface having

x coordinate equal to−0.25c, 0, 0.25c on both the upper (suction) and lower

(pressure) side and on the inflow and outflow planes havingy coordinate equal
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to −0.3c, 0, and 0.3c, as sketched in Figure 3.52;

2. the harmonic pressure distribution on the inflow and outflow planes at the fun-

damental angular frequencyω and at its multiples 2ω and 3ω. Then, applying

a Fourier transform in they direction, the spatial structure of the perturbations

(depending on the mode order) has to be obtained.
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Figure 3.52: Points (indicated by circles) from which the flow spectra are output.

All the results have to be expressed inS PLin dB using as reference 20µPa.

No analytical solution is known for this problem, so the authors of the problem

provide a numerical solution that, for the number of nodes and for the characteristics

of the employed solver can be used as a reference. To obtain this reference solution,

the computations were carried out with a linearised Euler program called LINFLUX

that operates in the frequency domain starting from a steady-state solution obtained

from a non-linear code called TURBO that is part of the same software collection in

use at NASA. To obtain the complete results, three runs at each of the frequency com-

ponents of the incoming perturbation were performed by Envia [2004]. A detailed
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description of the method used to obtain the reference solution can be found in Envia

[2004]. However, it has to be noted that the adopted solver isstrictly three-dimensional

axisymmetric and some approximations are introduced in themodelisation so that it

can not be considered exact.

It is necessary to determine the number of vanes that are required in the model in

order to be able to enforce pitchwise periodic boundary conditions in they direction. In

a single-stage turbomachinery CFD, the flow has a macroscopic pitchwise periodicity

of B/V, whereB is the number of rotor blades andV is the number of stator blades.

In a rotary cascade model, pitchwise periodic planes can be 2πB/V apart. In a linear

cascade, this pitchwise periodicity can be modelled by imposing pitchwise periodic

boundaries spacedVd×B/V apart. TheB rotor blades shedB wakes at a wavenumber

k = 2πB/(Vd), thusB/V = (kd)/(2π). The value ofB/V is used to define the flow-

normal extent of the simulations with the inflow gust, which is 27d. The pitchwise

periodicity of the flow domain without the inflow gust isd, leading to a substantially

smaller domain size.

The Tyler-Sofrin rule [Tyler & Sofrin, 1962]

kr
y = nky − k

2π
d/c
, (3.32)

allows to analytically compute the dominant mode wavenumbers kr
y of the acoustic

response of the blade cascade. Letn be the harmonic component of the gust andk an

integer (in this case only 0, 1 and 2 are of practical interestas the contribution to the

radiated noise decreases with increasingn). The mode ordersm are proportional tokr
y

and can be computed through the constantR= m/kr
y = B/ky.
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Table 3.23 shows the dominant acoustic modes for each harmonic component. It

is important to note that some modes are cut-off and decay exponentially when mov-

ing away from the stator blades while others are cut-on and propagate with constant

amplitude in the two-dimensional field.

Table 3.23: Characteristics of the dominant acoustic modesof the linear cascade.

n k kr
y m Type

1 0 +3.839 +11 cut-off
1 -5.585 -16 cut-off

2 1 -1.745 -5 cut-on
3 1 +2.094 +6 cut-on

2 -7.330 -21 cut-on

3.4.2 Numerical methods

Given the nature of the problem, the solution of the non-linear version of the flow gov-

erning equations is required to deal with the large gradients that can be found for all

the flow variables near the leading edge of the aerofoil. The equations are in conserva-

tive form and are non-dimensionalised for the computation following the rules given

in Section 2.1.4 and using the set of reference values shown in Table 3.24. Note that

this differs from the non-dimensional form of the results that are normalised following

the problem definition [Dahl, 2004] as stated in Section 3.4.1.

Table 3.24: Reference values used for the non-dimensionalisation internal to the code.

Length Static speed of sound Static density Static temperature
(l∞) [na] (c∞) [m/s] (ρ∞) [kg/m3] (T∞) [K]

blade chordc 340.4064531311 1.224528207246 288.3̇
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For the solution of this problem, two computational grids are used with the same

number of nodes but different node distribution. Note that the two grids were used in

two separate and independent series of simulations that include first the computation

of the steady-flow state and then the solution of the unsteadyproblem that includes

an incoming gust from the inflow plane. Both grids were designed using the software

package GAMBIT version 2.3.16. Their characteristics are summarised in Table 3.25

where the first line refers to the models used for the steady-flow case, with the in-

flow wake amplitude set to zero, and the second line to the unsteady simulations. In

Table 3.25, the characteristics of the grids adopted by other participants to the fourth

NASA workshop are also reported for comparison purposes andlabelled with the name

of the main author of the paper. Escribano used different meshes for each incoming

harmonic, whereas the same mesh is used for all harmonics in the current study. The

meshes used in the current study are shown in Figures 3.53 and3.54. As can be seen

in the figures, the computational domain is split into three zones that correspond to

the area near the inlet on the left-hand side, the channel between two blades, and the

area near the outlet on the right-hand side. This gives a structured mesh of H-topology.

This topology has a number of advantages. First, all the zones have the same number

of nodes and they can be assigned to different parallel processes, therefore increasing

the efficiency of the computation. Second, the general structure and the connections

between the processes are simple, so the set-up of the problem is quicker and less error-

prone. Finally, the boundary conditions are homogeneous oneach face of each zone

and this represents an advantage for the efficiency of the code. However, this type of

topology has the disadvantage of leading to grids with a significant level of distortion

near the leading edge of the blade where, due to the steep gradients in the flow field,

the flow is rapidly changing in space and therefore requires agood level of spatial
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resolution. For this reason, the shape of the grid near the blade edges was carefully

designed in order to keep the cells as regular as possible, asshown in Figures 3.53

(b-e) and 3.54 (b-e). The curved shape of the grid near the inlet in Figures 3.53 (b,d)

and 3.54 (b,d) is chosen to follow as much as possible the streamlines in the area near

the leading edge of the aerofoil and, at the same time, have the mesh lines normal to

the inflow to satisfy the requirements of the Giles boundary condition. In the case of

the simulations with an inflow gust, the number of vanes required is equal to 27 and

the same mesh structure is vertically replicated without modifications.

Table 3.25: Characteristics of the computational meshes used in the current simulations
and mesh characteristics of comparative simulations from Dahl [2004].

Simulation Zones Nodes for each zone Total no. of nodes
in i dir. in j dir. total

Ghillani (steady-state) 3 65 45 2925 8775
Ghillani (unsteady) 81 65 45 2925 236925
Envia na na na na 170667
Escribano na na na na 9000/90000/360000
Hixon 8 na na na 313698

In the i direction, the zones are connected by the inter-block boundary conditions

of Section 2.2.2 exchanging the data of five rinds of nodes with their neighbours. In the

j direction, the models use either the periodic boundary (model cascade without inflow

gust), or the inter-block boundary of Section 2.2.2 (model cascade with inflow gust).

At the inlet and outlet, a modified version of Giles subsonic boundary formulation is

used, which is detailed in Section 2.5.2. The modified Giles formulation includes a

correction for the mean target value of the flow state similarto that proposed by Hixon

et al. [2003, 2004]. On the aerofoil, in the direction normal to thesurface, the invis-

cid wall boundary of Kim & Lee [2004] detailed in Section 2.5.1.2 is used. Similarly
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(a) General structure of the H grid number 1. The three main zones are delimited by a thick black
line. The dashed boxes show the locations from which Figures3.53 (b-e) are taken.
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Figure 3.53: Grid number 1 used for the solution of the fourthtest case. The details
regard the leading and the trailing edge of the blade.
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(a) General structure of the H grid number 2. The three main zones are delimited by a thick black
line. The dashed boxes show the locations from which Figures3.54 (b-e) are taken.
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Figure 3.54: Grid number 2 used for the solution of the fourthtest case. The details
regard the leading and the trailing edge of the blade. The images are directly compa-
rable to those of Figure 3.53. The higher node density in the proximity of the edges is
shown. On the other hand, grid number 2 is coarser near the centre of the zone located
within the blades.
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as to what is done for the second test case in Section 3.2, the high-order one-sided

7-point stencil half-derivatives are replaced by second-order 3-point stencils along the

solid walls in the direction normal to them to enhance the computational stability of

the simulation. This is the only modification with respect tothe standard configuration

of the solver and no exception was added to deal with the singularities associated to

the leading and the trailing edge of the aerofoil.

The only difference in the boundary conditions applied between the steady and the

unsteady runs is the introduction of the vortical gust, which is fed into the computa-

tional domain by the method detailed in Section 3.4.3.2.

The simulations of the linear cascade of aerofoils without an inflow gust starts from

a uniform flow field that in non-dimensional form is

Q =
[

ρ0, u0, v0, p0
]T
= [1, 0.275, 0.2, 0.92]T . (3.33)

In Equation (3.33) the value of the non-dimensional pressure p0 is equal to that pre-

scribed at the outflow by the problem definition and the other variables are set to levels

compatible with the expected flow. The final flow state of this simulation is then repli-

cated vertically for each of the 27 vanes and used as the starting flow state for the

simulation of the cascade with the inflow gust.

The characteristics of the spatial filters used for the solution of this test case and

their frequency of application are shown in Table 3.26.

The time-integration is performed using the Runge-Kutta scheme detailed in Sec-
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Table 3.26: Characteristics of the spatial filters used for the fourth test case.

Filter type NBT α f coeff. Application frequency
explicit LOC 0 every time step
implicit LOC 0.4-0.495 every time step

tion 2.3.2 proposed by Berlandet al. [2006]. The time-integration uses the time steps

shown in Table 3.27, which are essentially function of the smallest inter-nodal dis-

tance in the grid for both the steady and the unsteady simulations. The CFL condition

is checked at the beginning of each simulation and the computed Courant numbers are

below the values of 0.846 and 1.918, which are respectively the accuracy and the sta-

bility limits given by the combination of the spatial and thetime-integration schemes.

Table 3.27: Runge-Kutta constant time steps used in the fourth test case.

Grid no. Min. inter-nodal distance Time step Courant no.
[nd] [nd]

1 1.69E-3 0.00069̇4 0.58
2 2.43E-4 0.000115̇740̇ 0.68

3.4.3 Results

The proceedings of the fourth NASA workshop include the contributions from five

different research groups that have presented a solution to the fourth test case. A sixth

contributor (Shieh et al.) was able to submit only partial numerical results without

added documentation [Dahl, 2004]. The presented solutionscan be divided into two

groups based on the numerical approach. The first group of solutions are by Binet al.
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[2004]; Hixon [2004]; Nallasamyet al. [2004]; Wanget al. [2004] and are obtained

with codes operating in the time-domain (both of finite-difference and finite-volume

type). The second group of solutions are by Coupland [2004];Escribanoet al. [2004]

and are from frequency-domain type of solvers. In the first group both high-order

and second-order schemes are used. These solutions from both groups together with

the reference solution in Envia [2004] are compared againstthe predictions from the

current work in Sections 3.4.3.1 and 3.4.3.2. They are referred to with the name of the

main author of the conference paper. Unfortunately, the published numerical values

are incomplete.

It has to be noticed that not all of the authors adopted the value imposed by the

problem definition for angleβ = 44°. In particular, Coupland [2004] usedβ = 45°

to make the gust purely 2D vortical, and Hixon [2004]β = 50° without adding the

reasons for the choice made. It is possible that a larger angle could be beneficial to

avoid or reduce the discontinuity in the velocity componentalong thex direction that

most of the authors noticed in correspondence of the trailing edge of the aerofoil. This

aspect is discussed more in detail in Sections 3.4.3.1 and 3.4.3.2.

3.4.3.1 Steady flow through an aerofoil cascade without inflow gust

A steady flow prediction of the linear cascade of aerofoils from Dahl [2004] was ob-

tained by time-marching the time-accurate numerical scheme until each residual in

non-dimensional form had reached a value either stable or lower than 10−6. The steady-

state simulations were performed in time-accurate fashion. This simulation differs

from the unsteady flow results of Section 3.4.3.2 in that (i) the computational domain

pitchwise boundaries are one cascade pitch apart, and (ii) no gust is fed at the inflow.

The difference between the initial field conditions and the converged solution generate
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a strong flow transient that is damped by the use of explicit filtering. Once obtained

a partial convergence, the less dissipative implicit spatial filter of Section 2.2.3 with

the coefficients as in Table 3.26 is used. The steady flow simulation is aprecursor for

the unsteady flow simulation reported in Section 3.4.3.2, which uses the steady flow

prediction as its starting flow state. These runs are performed on multiple processors

by dividing each of the three zones of Figures 3.53 and 3.54 into four or six parts to re-

duce the computation wall time. In Table 3.28, the main characteristics of each steady

flow simulation in terms of duration, number of processes, and memory requirements

are summarised. For grid number 2, the duration of the simulations in terms of non-

dimensional time is halved with respect to grid 1 because thereached final accuracy is

considered sufficient.

Table 3.28: Computational requirements and duration of thesimulations performed for
the steady flow solution of the fourth test case.

Grid Simul. Filter Final Time Processes Walltime CPU time Total mem.
[nd] [hh:mm:ss] [hh:mm:ss] [MB]

1 1 explicit 480 12 02:01:42 23:37:01 340
2 implicit 480 12 02:04:10 24:09:59 348

2 1 explicit 240 12 52:42:35 548:08:42 536
2 implicit 240 18 23:40:58 425:24:08 696

For simulation number 2 on grid number 1 of Table 3.28, Figures 3.55 and 3.56

illustrate the convergence history of the non-dimensionalerror between the target flow

state from Dahl [2004] and the predicted flow state at two points located on the in-

flow and on the outflow. At the computational domain inflow, theproblem definition

in Dahl [2004] states the stagnation pressureptot, stagnation temperatureTtot, and flow

angleα. A fourth condition is given by setting the amplitude variation of the outgoing

characteristic wave, in this case R5 in Equation (2.103), to zero. In a similar way, at the

216



3. TEST CASE APPLICATIONS

outflow, the static pressurep is imposed and the amplitude variation of three outgoing

characteristic waves R1, R3, and R4 in Equation (2.107a) is set to zero. As shown in

Figure 3.55, the flow state at position (−1.5c,−0.307c) located on the inflow bound-

ary reaches a non-dimensional difference inptot, Ttot, andα with respect to the target

flow state of 10−5 while the variation of R5 descends exponentially. At the outflow,

as shown in Figure 3.56, the behaviour is similar with the non-dimensional error on

the characteristic waves decreasing exponentially with increasing computational time

and the difference between the outflow static pressure and the target static pressure that

settles on a value slightly smaller than 10−3ρ∞c2
∞. This difference in outflow pressure

is likely to be related to a shear layer that forms downstreamof the cascade trailing

edge, which is shown in Figures 3.58 and 3.59. The shear layereffect on the numer-

ical prediction of the pressure field is further discussed inthe context of Figures 3.58

and 3.59 later on. The convergence results for grid number 2 are similar to those in

Figures 3.55 and 3.56.

Tables 3.29 and 3.30 show the flow state averaged over the inflow and the out-

flow planes at the end of the second simulation (with implicitfiltering) on both grids

of Table 3.25. With respect to the numerical reference solution supplied by Envia

[2004], the Mach number at the inflow appears to be over-estimated and, as the non-

dimensional target stagnation pressure is equal to 1, therefore the static temperature

and pressure are slightly under-estimated. The predicted inflow angleα does not show

any significant difference with the reference prediction by Envia [2004].

Figure 3.57 shows the non-dimensional pressure distribution over both surfaces of

the reference blade at the end of simulation number 2. The results obtained from the

two grids in Table 3.25 are similar to one another and displaythe recognisable char-
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Figure 3.55: Cascade of aerofoils without inflow gust. Results from simulation 2 on
grid 1 in Table 3.28. Non-dimensional difference between the target flow state and
the predicted flow state on inflow at non-dimensional coordinates (-1.5,-0.307). The
number of time steps includes those from simulation number 1. 1 every 500 time steps
is shown, for clarity.

Table 3.29: Fourth test case, results on the inflow plane at the end of simulation number
2 in Table 3.28. The values are averaged over the boundary and, except for the angle
α, are in non-dimensional form.

Author Envia Ghillani Coupland Bin
grid 1 grid 2

Mach 0.44958 0.48103 0.48224 0.448 0.4365
Static p 0.87049 0.85483 0.85420 na 0.876
Static T 0.96115 0.95373 0.95350 na na
α [°] 36.00 35.99 35.99 na 36
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Figure 3.56: Cascade of aerofoils without inflow gust. Results from simulation 2 on
grid 1 in Table 3.28. Non-dimensional difference between the target flow state and
the predicted flow state on outflow at non-dimensional coordinates (1.5,0.394). The
number of time steps includes those from simulation number 1. 1 every 500 time steps
is shown, for clarity.

Table 3.30: Fourth test case, results on the outflow plane at the end of the simulation
number 2 in Table 3.28. The values are averaged over the boundary and, except for the
angleα, are in non-dimensional form.

Author Envia Ghillani Coupland Bin
grid 1 grid 2

Mach 0.34704 0.37122 0.37337 na 0.3497
Static p 0.92000 0.91878 0.91793 na 0.92
Static T 0.97648 0.97465 0.97400 na na
α [°] -1.71 -2.65 -1.78 -1.6 -0.82
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acteristics of a compressor stator blade. At the leading edge, at x/c = −0.5, there

is a sharp stagnation point followed by a rapid flow acceleration on both the suc-

tion side and the pressure side of the aerofoil. This rapid flow acceleration causes

spurious numerical spatial oscillations in the predicted static pressure over the range

−0.5 6 x/c 6 −0.48 on grid 1. These spatial oscillations are substantially suppressed

in the results from grid 2, by local node clustering. Therefore, grid number 2 seems

to give a better description of the zone near the edges due to its higher node density

while, away from them, the results from grid number 1 appear to have less changes in

curvature, which may indicate a better discrete representation of the aerofoil profile.

The static pressure distribution reaches a minimum atx/c = −0.34 on the suction side

and then recovers towards the stagnation pressure value at the aerofoil trailing edge.

This pressure recovery is well captured on both grids 1 and 2,with the grid 1 results

displaying localised spatial oscillations on approach to the trailing edge atx/c = +0.5.

Figure 3.58 shows the distributions of the non-dimensionalstatic pressure and of

the Mach number at the end of simulation 2 on grid 1 in Table 3.28. The data is

replicated over two cascade pitches to improve their readability. The results show a

reduction in Mach number and an increment in the static pressure that is consistent

with the diffuser role of a compressor cascade. A numerical problem seemsto arise

downstream of the trailing edge of the aerofoils where oscillations in the vertical di-

rection can be detected. This numerical artifact is relatedto the inviscid high-order

finite-difference nature of the scheme. The absence of the viscous forces leads to a

duality, or pitchwise discontinuity in the field of the velocity component in thex di-

rection. This causes problems to inviscid solvers, in whichthe Kutta condition is not

imposed by other means. The flow state at the aerofoil trailing edge is defined by just

one node and cannot describe the dual nature of thex velocity component in that point.
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Figure 3.57: Fourth test case, non-dimensional static pressure distribution over the
aerofoil surface. Results from simulations with grid 1 and 2.

The issue is not restricted to the edge only as the pitchwise discontinuity in the veloc-

ity affects a large part of the field in the wake of the aerofoil. Furthermore, the long

stencils, typical of high-order solvers, applied across these discontinuities, generate

oscillations that propagate in the pitchwise direction.

The problem mainly affects the velocity field but is also clearly visible in the pres-

sure field. The results obtained from grid number 2 are shown in Figure 3.59. These

display the same flow features as the predictions from grid 1 in Figure 3.58. The mesh

clustering at the aerofoil trailing edge produces a slightly more localised static pressure

peak. The shear layer downstream of the aerofoil trailing edge appears to be somewhat

narrower.
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(a) Non-dimensional static pressure distribution. Constant contour spacing∆p = 0.02.
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Figure 3.58: Fourth test case, steady-state simulation on grid 1. Pressure and Mach
number distribution are shown over 2 vanes.
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Figure 3.59: Fourth test case, steady-state simulation on grid 2. Pressure and Mach
number distribution are shown over 2 vanes.
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3.4.3.2 Unsteady flow through an aerofoil cascade with inflowgust

The time-dependent simulations with inflow gust are run withthe same code as the

corresponding steady flow simulations without inflow gust, using their final solution

as initial condition and applying implicit filters with the characteristics shown in Ta-

ble 3.26. The gust is introduced as a velocity perturbation from the inlet and the con-

vergence of the time-dependent flow is determined as the statistical stationarity of the

flow field, as required by the problem definition in Section 3.2.1. Similarly to the sec-

ond test case in Section 3.2, the gust, defined by Equations (3.31), is introduced using

an additional term in the definition of the Giles subsonic inflow boundary condition.

The mathematical details regarding the implementation of this closure can be found in

Section 2.5.2.

In the second test case, the gust is function of the two spatial coordinates and of

time and is known at every point of the field, so, if required, the computation can start

from a field already initialised with the velocity gust. In contrast, in this case, the

gust is only defined analytically on the inlet boundary and, if the unsteady simulation

is started without further preparation, the abrupt change in the velocity field near the

border tends to generate oscillations that propagate within the field. As a result, the

predicted flow field struggles to reach a statistically stationary state. This problem was

overcome by initialising the field near the inflow with a velocity distribution compat-

ible with the inflow condition. When the unsteady simulationis started, based on the

mathematical definition of the gust and on the values of the steady-state results, an

additional component having the amplitude shown in Figure 3.60 is superimposed on

the steady-state flow field. This imposed velocity perturbation varies with a sinusoidal

law that ensures the continuity of the velocity distribution and of its first derivative. At
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each node, based on the definition of the gust, the amplitude of the non-dimensional

correctionsu0
′ andv0

′ of the velocity components along thex and they axes in the area

of the computational field near the inflow boundary is then established with

A =

[

0.5+ 0.5 cos

(

π
x− xb

xr − xb

)] 3
∑

n=1

an cos
{

n
[

ky

(

y− v
u

(x− xb)
)

− ω
u

(x− xb)
]}

,

(3.34a)

u0
′(x, y) = Acosβ, (3.34b)

v0
′(x, y) = −Asinβ, (3.34c)

wherexb is thex non-dimensional coordinate of the boundary inflow,xr is thex non-

dimensional coordinate of the first node where no correctionis applied,ky, an andω

are as by the problem definition in Section 3.4.1, andu, andv are the non-dimensional

velocity components of the steady flow field at coordinatesx, y. In case of conservative

formulation, the momentum and energy equations are treatedin a similar fashion.

For both grid number 1 and number 2, the unsteady runs are performed on a model

including 27 vanes and divided into 81 zones. In turn, each zone is the divided verti-

cally into two parts of the same extension, so that 162 processors are required and the

total number of nodes is equal to 238464. Table 3.31 summarises the time-integration

parameters of the unsteady simulations and their computational cost.

As required by the problem definition, the periodicity in pressure is considered

achieved when the spectra of two successive periods differ by less than 1% for each

of the input frequencies at the inflow, outflow and on the surface of the aerofoil. This
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Figure 3.60: Cascade of aerofoils with inflow gust. Initialisation of the streamwise ve-
locity field. A velocity perturbation in the form of an advected gust of increasing am-
plitude is used. Three harmonicsn = 1, 2, 3 are imposed. Contours of non-dimensional
x velocity perturbationu0

′ with constant contour spacing∆u0
′ = 0.0005.
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Table 3.31: Time integration characteristics of the unsteady simulations performed for
the fourth test case.

Grid Time step Steps Final time Walltime CPU time Total memory
[nd] [nd] [hh:mm:ss] [hh:mm:ss] [MB]

1 0.00069̇4 188160 130.6̇ 01:31:29 241:47:10 4925
2 0.000115̇740̇ 1658880 192.0 52:57:58 8515:29:18 7855

was implemented by sampling the pressure field on 12 nodes distributed as shown in

Figure 3.52.

Figure 3.61 shows the convergence in the case of simulation 2on grid number 2 in

Table 3.28.

The predicted sound pressure level (in dB) from the unsteadysimulations are shown

in Figures 3.62 and 3.63. They are compared to the numerical reference solution given

by Envia [2004] and by Escribano, Hixon and Bin as reported inDahl [2004]. The

same data are presented in numerical form in Table A.1 of Appendix A.

In Figure 3.64 the amplitude of the perturbations in dB for each dominant mode

(see Table 3.23) extracted with a Fourier transform along the inflow and the outflow

planes is compared with the results from other research groups. The same data are

supplied in numerical form in Table A.2 of Appendix A.

In general, the comparison with the reference numerical solution supplied by Envia

[2004] and with the work of the participants of the NASA workshop is satisfactory with

the exclusion of the values on the outflow where the radiated noise is remarkably over-

estimated. This is probably due to the the oscillations coming from the trailing edge

already noticed in the steady-state solution. There could also be a secondary effect due

to the reaction of the Giles subsonic outflow condition to theoutgoing high-frequency

transverse waves. On the surfaces of the reference blade, the results from grid 1 and
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Figure 3.61: Simulation of the aerofoil cascade with inflow gust. Simulation 2 on
grid number 2 in Table 3.28. Convergence in time of the non-dimensional pressure
difference between two successive periods is shown. The value isthe maximum among
the 12 monitoring points of Figure 3.52.

2 do not show (apart from the third harmonic) relevant differences. In contrast, on

both inflow and outflow planes, some results are not homogeneous and the difference

can not easily be explained. They are surely related to the different node density of the

various zones of the two grids. The rarefaction of the nodes near the inflow and outflow

of grid 2 seems to adversely influence both the behaviour of the Giles condition and

the accuracy of the vortical gust introduced.

The extraction of the three harmonics of the input gust from the pressure field con-

firms the theoretical predictions of the Tyler-Sofrin rule of Equation (3.32) summarised

in Table 3.23. Although between the blades (see Figure 3.72)the largest pressure os-

cillations are those related to the fundamental angular frequencyω as amplitudea1

dominates overa2 anda3, the circumferential modes related to it, and in particular

m = +11 andm = −16, are all evanescent and their amplitudes, decreasing exponen-
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Figure 3.62: Sound pressure level (dB) predicted upstream and downstream of a cas-
cade of aerofoils with inflow gust. Monitoring points (i1, i2, i3) and (o1, o2, o3) shown
in Figure 3.52. Predictions are compared with reference values from Envia [2004], Es-
cribano, Hixon and Bin reported in Dahl [2004].
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Figure 3.63: Sound pressure level (dB) predicted on the surface of an aerofoil cascade
with an inflow gust. Surface monitoring points (a1, a2, a3) and (b1, b2, b3) shown
in Figure 3.52. Predictions are compared with reference values from Envia [2004],
Escribano, and Hixon reported in Dahl [2004].
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Figure 3.64: Fourth test case, unsteady simulations. The charts show the pressure am-
plitude of the relevant mode orders along the inflow and the outflow planes. Predictions
are compared with reference values from Envia [2004], Escribano, and Hixon reported
in Dahl [2004]. Data in dB.

tially from the edges of the blades, as shown in Figures 3.65 and 3.68 and details (a)

and (b) of Figures 3.73 and 3.74, are exceeded by the oscillations generated by the

second and the third harmonic. The second harmonic (reducedangular frequency 2ω)

has a clear propagating modem= −5 as shown in Figures 3.66 and 3.69 and details (c)

and (d) of Figures 3.73 and 3.74, while all the others are evanescent. As expected, the

amplitude of the wave propagating in the aft direction is slightly larger than that trav-

elling upstream. Similarly, the third harmonic has two propagating modesm = −21

andm = +6 as shown in Figures 3.67 and 3.70 and details (e) and (f) of Figures 3.73

and 3.74. It has to be noted that in thex direction, the wavelength of the third harmonic

is approximately 0.5c. This means that in the areas where the grid is coarser, like in

the proximity of the boundaries or near the centre of the zonebetween the blades, the

number of points per wavelength is not far from the limit, conventionally fixed at 4.6

for spatial schemes of this order (see Section 2.2), below which the accuracy of the

computation can be considered compromised.
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In the zone near the inflow, for all the harmonics the situation is clear: the waves

are propagating from the blade keeping their amplitude or decreasing linearly in the

logarithmic scale. The only exception to this are waves, fedinto the field from the

boundary, clearly visible for modesm = +11, m = +22 andm = +33. This can be

explained remembering that the incoming gust has aβ angle of 44° and, therefore, the

gust is not purely 2D. So, along with the velocity variations, the gust is also composed

of small incoming pressure and density waves of exactly thiscircumferential mode

(remember that the problem simulates the presence upstreamof an 11 blades rotor).

From details (a), (c) and (e) of Figures 3.73 and 3.74 it is evident that these modes

represent an exception and show an irregular behaviour on the inflow. The situation

on the outflow is rather complicated due to the oscillations propagating from the trail-

ing edge and the unsatisfactory performance by the Giles subsonic outflow boundary

condition. In fact, the boundary seems to reflect waves (thisis particularly evident

for angular frequency 2ω) into the field probably as a reaction to the outgoing high-

frequency transverse oscillations. Comparing Figures 3.73 and 3.74, the higher quality

of the results obtained from grid 1 is apparent and the additional computational power

required to run the simulations on grid 2, due to the smaller applicable time step, is not

justifiable.

An increase in the quality of the results could surely be obtained from a more

refined mesh and from a special treatment of the singularities at the edges of the blades.

Other types of non-reflecting boundary conditions for the inflow and the outflow could

also be beneficial.

The shown results confirm that high-order solver can successfully perform analyses

on large realistic problems of practical interest involving highly irregular grids.
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Figure 3.65: Fourth test case, detail of the unsteady simulation on grid 1. The non-
dimensional pressure amplitude of the oscillations related to angular frequencyω is
shown. Negative contours are shown by dashed lines.
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Figure 3.66: Fourth test case, detail of the unsteady simulation on grid 1. The non-
dimensional pressure amplitude of the oscillations related to angular frequency 2ω is
shown. Negative contours are shown by dashed lines.
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Figure 3.67: Fourth test case, detail of the unsteady simulation on grid 1. The non-
dimensional pressure amplitude of the oscillations related to angular frequency 3ω is
shown. Negative contours are shown by dashed lines.
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Figure 3.68: Fourth test case, detail of the unsteady simulation on grid 2. The non-
dimensional pressure amplitude of the oscillations related to angular frequencyω is
shown. Negative contours are shown by dashed lines.
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Figure 3.69: Fourth test case, detail of the unsteady simulation on grid 2. The non-
dimensional pressure amplitude of the oscillations related to angular frequency 2ω is
shown. Negative contours are shown by dashed lines.
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Figure 3.70: Fourth test case, detail of the unsteady simulation on grid 2. The non-
dimensional pressure amplitude of the oscillations related to angular frequency 3ω is
shown. Negative contours are shown by dashed lines.
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Figure 3.71: Fourth test case, unsteady simulations. The non-dimensional pressure
along the aerofoil is shown.
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Figure 3.72: Fourth test case, unsteady simulations. The amplitude of non-dimensional
pressure along the aerofoil for each of the three harmonics is shown.
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(e) Inflow, 3ω.
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Figure 3.73: Fourth test case, unsteady simulation on grid 1. The acoustic mode am-
plitude upstream (left-hand side) and downstream (right-hand side) of the aerofoils is
shown.
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Figure 3.74: Fourth test case, unsteady simulation on grid 2. The acoustic mode am-
plitude upstream (left-hand side) and downstream (right-hand side) of the aerofoils is
shown.
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Conclusions

This work developed and tested a three-dimensional high-order prefactored compact

finite-difference inviscid flow solver for computational aeroacoustics. By explicit time-

integration, time-resolved simulations were obtained of the noise produced by the

interaction of unsteady aerodynamic flow with solid boundaries. The time-explicit

scheme solves directly the sound generation and near-field propagation in the compu-

tational domain. The code developed is based on the two-dimensional in-house code

by Spisso [unpublished] that was substantially upgraded bythe implementation of nu-

merical methods taken from the literature and by some novel extensions of these meth-

ods. The main upgrade was the extension of the scheme to solvethe non-linear form

of the Euler equations in both primitive and conservative form, in three-dimensions.

A generalised characteristic-based framework for the boundary conditions allows to

model problems involving curvilinear geometries of complex shape.

The range of non-reflecting boundary closures originally implemented by Spisso

[unpublished] was extended through the addition of the Giles subsonic boundary con-

ditions, their three-dimensional extension, and the development of a modified type of
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buffer zone with a target flow state that is both space- and time-dependent. In addition,

a symmetry boundary condition was devised for orthonormal Cartesian boundaries that

retains the same accuracy of the internal spatial discretisation scheme.

The introduction of a high-order implicit compact filteringmethod locally con-

trolled by a tunable coefficient and the use of different near boundary filters, both high-

and low-order, one-sided and centred, allows to suppress the numerical instabilities

typically associated to the use of high-order centred schemes in the presence of geo-

metrical discontinuities or curvilinear grids.

The adoption of message passing interface (MPI) and domain-decomposition al-

lows to overcome the limitations related to the amount of memory available for single-

processor computations, thus extending the applicabilityof the solver to problems in-

volving models of larger sizes. For this purpose, the data decomposition parameters

allow to subdivide the zones of the structured grids in everyspatial direction giving the

user full control over the size and shape of the data assignedto each process.

In order to minimise the amount of data exchange among the processes and to make

it independent from the stencil size used in the spatial differentiation scheme, a non-

conventional inter-block boundary technique was used. Thecentred explicit stencils

used for the computation of the flow derivatives on the borders were split into two parts.

This allows to perform the communication between two processes by the exchange of

only two values for each boundary node. This method is currently limited to problems

that require prefactored filters with constant tunable coefficient.

The time-integration of the numerical scheme was upgraded by the addition of

three multi-step explicit methods. These allow to tailor the trade-off between numerical

stability and computational accuracy depending on the nature of the problem to be

solved.
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The new three-dimensional scheme was tested on four problems of increasing com-

plexity. The solution of each test case aims to demonstrate the effectiveness of some

of the implemented numerical techniques.

The first case, involving a still cylinder in an oscillating field, tests the implemen-

tation of some of the generalised characteristic-based boundary closures and, specifi-

cally, the curvilinear impermeable wall condition, which includes transverse velocity

components. The second test case, which is a two-dimensional turbomachinery rotor-

stator interaction problem, demonstrates the effectiveness of the non-reflecting inflow

and outflow boundary closures on regular homogeneous grids,by giving results with

an accuracy comparable to that of the best results availablein the literature for this test

case. The third and fourth test cases are higher fidelity models of the same rotor-stator

interaction problem. The third test case is a three-dimensional geometry that tested the

three-dimensional extension of the numerical scheme on a stretched mesh. The fourth

test case modelled an aerofoil cascade by a highly distortedmesh and by solving the

Euler equations in non-linear form.

The results from the test cases show that the numerical methods employed allow

engineering accurate predictions of the rotor-stator turbomachinery interaction prob-

lem. In particular, Hixon’s spatial compact prefactored scheme in association with the

explicit time-integration provided by the classical Runge-Kutta or by its optimised ver-

sion by Berland, have shown to be suitable for this class of aeroacoustical problems.

For the two-dimensional models, the Giles non-reflecting boundary conditions, both at

the inflow and at the outflow, as seen from the literature, confirm to be a good choice

although the level of reflectivity of the outflow could affect the quality of the results in

the area nearby and its adoption should be considered depending on the problem to be

solved. For the three-dimensional problems, the modified buffer condition developed
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in this work has shown to be the only reliable choice as the tested alternatives have

evidenced a long-time instability. The inviscid wall boundary by Kim and Lee has

demonstrated to be both accurate and reliable in all the tests performed. In order to

overcome the disturbances that originate from the geometrical discontinuities, typical

of the high-order centred finite-difference schemes, the addition of a special treatment,

as the one illustrated for test case two, has to be taken into consideration as it can have

a beneficial impact on the quality of the numerical predictions.

The scalability of conventional high-order numerical schemes has been limited by

the communication overhead between processes that increased with increasing order

of the scheme. The present work indicates that by splitting the inter-block boundary

spatial derivatives, this communication overhead can be reduced. This, in parallel with

on-going development work in the USA, has opened the high-order finite-difference

compact schemes for use on high-performance computers with> 103 processors, for

modelling flows of industrial interest.

The suite of governing equations, non-reflecting boundary conditions, variable-

order filters, and explicit time-integration options that were added to the numerical

method in this work have created a powerful tool for modelling a range of unsteady

flows in which the aerodynamic sound generation by interaction with solid boundaries

is a key performance parameter for specific engineering applications.
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Future work

The results of Chapter 3 highlighted opportunities for improving the numerical scheme,

to enhance the accuracy of the solution as well as to extend the range of problems that

can be addressed.

The results of the second test case reported in Section 3.2.3indicate that special

treatment of the geometrical singularities can increase the level of accuracy. More

optimisation of the numerical method is required to furtherdecrease the spurious os-

cillations generated at the plate edges and avoid the adverse influence on the error

norm of the predictions. This could be aided by the development of an algorithm to

automatically check the potential sources of instability from the geometrical shape of

the mesh or based on the condition of the flow state.

While the Giles approximate 2D subsonic inflow boundary closure performs well

in both the second and the fourth test case, its outflow counterpart, as also noticed in

literature [Hixonet al., 2000; Ragab & Salem-Said, 2007], displays a greater reflection

of outgoing waves towards the computational domain interior, which is an important

source of error in the computation. Alternative outflow boundary formulations could
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be tested, such as the one from Hagstrom & Goodrich [2003] that allows for arbitrarily

high accuracy levels at the expense of the simplicity of implementation, or the perfectly

matched layer (PML) in the implementations by Tamet al. [1998] or by Abarbanel

et al. [1999].

The third test case in Section 3.3.3 shows the limitations ofthe non-reflecting

boundary closures currently available in the code for the solution of 3D curvilinear

problems. The Giles boundary extension to 3D regular meshesby Medida [2007],

were here adapted to curvilinear meshes. This formulation while allows to model the

inflow vortical gust, shows a long-time instability that inevitably leads to the failure

of the computation. The implementation of the 3D extension given by Saxer & Giles

[1993], although only valid for steady-state solutions, could provide a more effective

non-reflecting 3D boundary closure.

Although often necessary to ensure the stability of the computation, the filtering in

its explicit or implicit formulation is one of the main sources of reduction in the accu-

racy of the numerical predictions approaching the walls or the computational domain

external boundaries. Improvements in this field through theintroduction of new and

more stable high-order one-sided stencils, or by the development of new techniques to

reduce the adverse influence of the low-order centred filterswhile retaining the scheme

stability, would be appropriate.

The filtering techniques in the compact scheme require the data exchange across

inter-block boundaries of the flow state in rinds with thickness that increases with

the filter order. The filters do not use the reduced form of communication described

in Section 2.6.1. Implementing such reduced communicationwould aid the solution

of 3D problems involving large amounts of data and additional memory which are

currently related to the number of rind nodes.
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For what concerns the parallel code implementation, improvements are possible. In

particular, it would be useful to generalise the connectivity between processes, which

is currently limited to having only one neighbour in each spatial direction, in order to

improve the flexibility of the solver and its use on more topologically complex grids.

This limitation affected the fourth test case, where the complex geometry associated to

the aerofoil cascade could have benefited from the use of a more complex connectivity

tailored to this problem.

The current parallelisation strategy based on the definition of a hierarchy of pro-

cesses that are in charge for the data input/output is very flexible and can run on every

type of HPC cluster, but it is not computationally efficient. This is particularly evi-

dent when large problems are modelled and the reading and writing of data represents

a non-negligible part of the computational time. The code was developed with this

in mind and its structure remains open to the implementationof parallel input/output,

which are supported by the MPI-2 standard level. For the samepurpose it would be in-

teresting to investigate the advantages that HDF5 libraries, now the default data storage

format at the base of CGNS, could bring to the input/output process.

Other useful code developments would involve testing the viscous fluxes, which

were added to the flow solver but have not been used for the computations shown in

this work. This would allow to extend the applicability of the scheme to wall boundary

layers or to flows where viscosity plays an important role. Furthermore, the introduc-

tion of a RANS- or a LES-based turbulence model, following Bogey & Bailly [2006],

would enable the modelling of higher Reynolds number viscous flows.
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Numerical results of the fourth test

case
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A. NUMERICAL RESULTS OF THE FOURTH TEST CASE

Table A.1: Fourth test case, comparison of the sound pressure level p in dB at 12
monitoring points located at the inflow and outflow planes andon the blade surface
shown in Figure 3.52.

Inflow plane x/c = −1.5, points i1 to i3

y/c = −0.3 (i1) y/c = 0.0 (i2) y/c = +0.3 (i3)
ω 2ω 3ω ω 2ω 3ω ω 2ω 3ω

Envia 111.9 113.2 105.6 106.6 119.3 105.4 110.9 116.2 103.7
Ghillani (1) 104.7 118.6 101.0 103.9 117.1 105.5 105.1 118.8 92.2
Ghillani (2) 91.7 117.6 99.7 106.1 112.5 101.1 100.1 115.1 94.2
Escribano 97.3 118.5 107.5 99.2 118.4 104.5 94.3 118.5 108.6
Hixon 109.2 121.7 109.2 90.2 120.6 93.4 108.7 121.8 109.3
Bin 131.7 114.1 130.9 118.3 130.6 116.8

Outflow plane x/c = 1.5, points o1 to o3

y/c = −0.3 (o1) y/c = 0.0 (o2) y/c = +0.3 (o3)
ω 2ω 3ω ω 2ω 3ω ω 2ω 3ω

Envia 109.5 119.6 99.7 107.8 119.4 98.4 107.2 119.3 101.5
Ghillani (1) 122.8 123.3 112.3 129.2 121.4 118.6 119.3 111.4 100.1
Ghillani (2) 121.9 112.8 108.3 134.4 126.8 126.8 120.6 114.6 111.6
Escribano 106.5 120.0 108.6 106.1 120.0 112.6 106.6 120.0 109.8
Hixon 109.4 122.4 99.9 112.0 122.8 105.5 110.6 122.6 104.4
Bin 125.7 116.7 124.6 116.6

Suction surface of they = 0 aerofoil, points a1 to a3

x/c = −0.25 (a1) x/c = 0.0 (a2) x/c = +0.25 (a3)
ω 2ω 3ω ω 2ω 3ω ω 2ω 3ω

Envia 140.7 128.3 104.1 140.6 118.4 107.5 141.2 121.0 92.8
Ghillani (1) 139.4 131.6 114.9 138.1 124.1 117.4 139.0 124.1 96.5
Ghillani (2) 140.1 128.8 110.8 138.6 122.8 109.8 139.2 121.1 109.0
Escribano 140.4 129.2 109.8 141.2 121.0 111.9 139.8 118.9 106.1
Hixon 139.9 132.5 114.1 143.8 124.7 116.8 142.6 122.4 102.2

Pressure surface of they = 0 aerofoil, points b1 to b3

x/c = −0.25 (b1) x/c = 0.0 (b2) x/c = +0.25 (b3)
ω 2ω 3ω ω 2ω 3ω ω 2ω 3ω

Envia 138.0 128.6 104.5 141.5 121.4 103.0 140.5 119.5 97.6
Ghillani (1) 135.4 130.7 107.9 139.5 122.0 115.7 138.7 118.7 108.8
Ghillani (2) 135.8 127.7 107.2 139.6 118.6 112.2 138.5 117.3 108.2
Escribano 138.2 128.8 112.9 140.3 119.7 115.6 140.5 122.6 106.3
Hixon 142.8 133.0 116.5 142.6 125.4 119.7 143.2 125.5 97.1

251



A. NUMERICAL RESULTS OF THE FOURTH TEST CASE

Table A.2: Fourth test case, comparison of the pressure amplitude of the relevant mode
orders along the inflow and the outflow planes from various workshop contributors
(see Dahl [2004]). Data in dB.

Inflow

m = +11 m = −16 m = −5 m = +6 m = −21
Envia 101.3 113.0 116.8 97.6 88.1
Ghillani (1) 88.6 103.1 118.4 98.8 100.4
Ghillani (2) 88.0 95.2 116.2 90.7 88.9
Escribano 91.1 96.0 118.4 106.1 97.0
Hixon 104.0 103.9 121.2 104.7 100.8

Outflow

m = +11 m = −16 m = −5 m = +6 m = −21
Envia 108.4 83.8 119.2 95.6 98.0
Ghillani (1) 118.0 116.0 120.2 104.9 106.7
Ghillani (2) 121.8 119.8 117.6 91.0 104.1
Escribano 106.4 79.5 120.0 99.3 110.9
Hixon 110.6 86.4 123.2 101.7 102.9
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