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Pietro Ghillani

This work documents the development of a three-dimensiligdl-order prefac-
tored compact finite-dierence solver for computational aeroacoustics (CAA) based
on the inviscid Euler equations. This time explicit schemapplied to representative
problems of sound generation by flow interacting with sobdibdaries.

Four aeroacoustic problems are explored and the resuitiated against available
reference analytical solution. Selected mesh convergenickes are conducted to de-
termine the #ective order of accuracy of the complete scheme. The firstceese
simulates the noise emitted by a still cylinder in an ostiifield. It provides a sim-
ple validation for the CAA-compatible solid wall conditiarsed in the remainder of
the work. The following test cases are increasingly compbsions of the turboma-
chinery rotor-stator interaction problem taken from NASAALworkshops. In all the
cases the results are compared against the availabléuitera

The numerical method features some appreciable conwiiitio computational
aeroacoustics. A reduced data exchange technique folgdazamputations is im-
plemented, which requires the exchange of just two valuegdoh boundary node,
independently of the size of the zone overlap. A modifiedigarsf the non-reflecting
buffer layer by Chen is used to allow aerodynamic perturbationiseathrough flow
boundaries. The Giles subsonic boundary conditions aended to three-dimensional
curvilinear coordinates.

These advances have enabled to resolve the aerodyname gengration and
near-field propagation on a representative cascade geomilr a time-marching

scheme, with accuracy similar to spectral methods.
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Nomenclature

Roman Symbols

C

Cp

Speed of sound

Specific heat at constant pressure

Specific heat at constant volume

Specific internal energy

Specific total internal energy

Vector of the body forces

Component of the body forces along thaxis
Component of the body forces along thaxis
Component of the body forces along thaxis
Imaginary unit

Identity matrix

Left eigenvector

Static pressure

Stagnation pressure

Vector of the primitive variables

Right eigenvector

Vector of the characteristic variables

Specific gas constant



NOMENCLATURE

t Time

T Absolute temperature

Twt  Stagnation temperature

u Velocity vector

U Vector of the conservative variables
u Velocity component along theaxis
v Velocity component along thegaxis
w Velocity component along theaxis
Greek Symbols

A Eigenvalue

w Angular frequency

0 Density

Superscripts

T Transpose operator

Acronyms

CAA Computational Aeroacoustics
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy (condition)
CGNS CFD General Notation System
HOOS High-Order One-Sided

HPC High Performance Computing
LOC Low-Order Centred

LODI Local One-Dimensional Inviscid
MPI Message Passing Interface

ODE Ordinary Diterential Equation



NOMENCLATURE

PML Perfectly Matched Layer

SIDS Standard Interface Data Structures

Xi



Chapter 1

Introduction

1.1 Thesis layout

This thesis is divided into five chapters. The first chaptetaims an introduction on
the object of this research including a brief descriptiothefproblem, its background
and a literature review. In addition, the aims of this workl és expected outcomes
are detailed.

The second chapter presents the numerical methods thabbamemplemented in
the flow solver to address a series of test cases of increhwamtgplexity. Particular
attention was given to the implementation of the optimisepglieit time-integration
scheme, the generalised characteristic-based boundadytions, the code paralleli-
sation and the data ingoutput in standardised form.

The third chapter presents the results obtained by theigolaf four increasingly
complex test cases related to the turbomachinery rottwrstaeraction problem.

Chapter four, the conclusions, contains a summary of thé&d@one that focuses

especially on the newly devised numerical methods and omtpact that these ad-
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vances have in the field of computational aeroacoustics.
To conclude, in the fifth chapter, the current limitationshed solver are discussed.

Approaches for their alleviation are proposed in futurekyvor

1.2 Background and problem definition

1.2.1 Background

In the last decades, the growing popularity of the commeoia air transport has

led to more stringent legislation regarding noise-patintin the areas surrounding the

airports and to an increased environmental awareness [UaiDeent of Transport,

2003; Various|, 2005]. Therefore, research, both thealedicd applied, in the field of

aeroacoustics, primarily related to the various companehthe noise emitted by air-
craft, has received a strong impulse. Due to the complexitlyeoinvolved geometries
and the inherent unsteady nature of the aerodynamic souretgen, the theoreti-

cal acoustic analysis and the traditional technigues of @dational Fluid Dynamics

(CFD) are of limited applicabilityl [Tam, 2004; Tam & Hardih997]. For these rea-

sons, in the last 30 years a branch of the field of computdtfnd mechanics, called

Computational Aeroacoustics (CAA), has emerged [Tam, [JL¥Xarting directly from

the fundamental flow governing equations, the CAA aims toaépce all the aspects
of the sound generation and propagation in air by overconaargus problems of
physical and numerical nature including the disparity igmtude between mean and
acoustic flow variables and the necessity to model the higépency noise compo-
nents. Among the many numerical methods developed in CApadfcular relevance

are the high-order finite-ffierence schemes which have remarkable low dispersion and
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dissipation properties that are required to increase ttigracy and theféiciency of the

computation by reducing the number of grid points per wawgte, while still ensuring

tolerable levels of numerical error [Colonius & Lele, 2 ' 2007].

1.2.2 Problem definition

As mentioned, the aircraft contain many sources of noiseogthe most relevant is
the noise emitted by the turbofan engines, often referrestarbomachinery noise
Its various components, originating fronfiéirent parts of the engine, have relative im-

portance depending of the flight configuration (landing &eteff), but the two main

sources are usually the fan and the turbin roen ,11995]. In this case, the
physical process of the noise generation includes a nunfbetevacting factors like
the blades unsteady response to internal and externartzhsites and the influence
of the duct. Due to the practical problems involved in thdemtion of data from the
internal parts of the engine, experimental studies of theagplex interactions is often
impossible. For this reason, the development of analyéicdlnumerical methods able
to model the physical processes at the basis of the noiseagemeare of high impor-
tance. The interaction between incident vortical distodes having complex spectral
content and a cascade of static or rotating blades is onesé fiundamental processes,
and is the subject of this research. Noise is originated eytmversion of the hydro-
dynamic kinetic energy of the disturbances into pressumduations pressure over
the blade surface that is followed by the emission of acowstives characterised by
a specific spectrum and directivity. Complex analytical elschave been developed
over the years to accurately describe the influence of theusparameters defining

the problem, like the number of blades, their shape andvelpbsition. These mod-



1. INTRODUCTION

els have helped to clarify various aspects of the involveehpmena but are always
approximations of the actual complex intertwined physpraicesses. The numerical
methods provided by CAA have been developed to overcome thmegations.

This study focuses on the particular case of vortical gudts avlimited spectral
content impinging on a stator blade cascade. Due to its aaxitp| the problem de-
scribed is transposed into a series of four test cases imvihecgeometry of the blades
cascade is modified in order to includefdrent aspects of the actual turbomachine

configuration.

1.3 Aims of this study

The principal aim of this work is the solution of the turborhanery-related problem
stated in Section 1.2.2. For this purpose, a three-dimeatkhigh-order prefactored
compact finite-dference solver for CAA, based on the inviscid Euler equatieris

explicit time-integration, was developed. However, thdebas general applicabil-
ity, and the larger aim of this study is to demonstrate itditglio address real-world
problems involving the conversion of hydrodynamic kinemergy into sound by the

interaction with rigid surfaces.

1.4 Literature review

In the following, a literature review of the most relevanabical and numerical for-
mulations regarding the problem of this work is presented.
For the various numerical methods implemented in the sollieressential litera-

ture references are given in the specific sections of Ch&ptéin exception is made
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for Sectior 2.8 in which the theory is preceded by an exterlgierature review of the
optimised explicit Runge-Kutta methods.
For the relevant literature regarding the basic charasttesiof the original version

of the in-house finite-dierence prefactored compact solver, refer to the w pis

[unpublished].

1.4.1 Analytical solutions

From an analytical point of view, the first solution to the w@agly subsonic problem

of a vortical gust impinging on an infinite cascade of flat @s&abased on vortex sound

theory, was given by Smith [1972]. The geometry was limitetito dimensions and
the mean flow was aligned with the plates surfaces, no stadggfereen successive
blades was considered. The author supplied the predictssye distribution both
in the upstream and the downstream direction along with tisteady blade lift and

moment, and compared the results with experimental datsedBan the linear theory

of Smith,|Whitehead [1987] developed a computer prograreddlINSUB for the

numerical evaluation of the pressure field in which apprations for the computation

of the infinite sums and of the numerical integration wereokhticed. This program

was later modified by Hall [1997a] to obtain one of the nunedrieference solutions

considered in this work. A dierent solution to the problem solved by Smith, but

limited to the transmission and reflection of the acousticegsawas proposed by Koch

[1971] who started from the treatment given by Mani & Ho ], based on the

finite Wiener-Hopf technique. This exact analysis was lai¢ended bLFLea‘k [1993]

to cover the case of a vortical incoming gust.

The three-dimensional version of the problem was first sblaean approximate
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form byALa&;j_&_tlade [1981] and then by Envia & Kers h{en_[ﬁ.BBho obtained

the solution for a swept vane cascade from the superimpositi the solution ob-

tained for an isolated stator vane. The neglectéetes due to the interaction between

the blades and their finite chord were introduced in thertneat of Glegg|[1999] that,

similarly tolKoch [1971], based his solution on the Wieneygfimethod. The work by
Glegg illustrates the response of the blades cascade t@@aming acoustical or vorti-
cal three-dimensional disturbance by supplying the aralsolution for the unsteady
loading of the blades and the acoustic power of each projpagaiode.

In the case of a swept cascade bounded by two parallel walalytical solution

is known. The treatment given by Envia [2000], based on aipusvwork by the

same autho [EnvicL]_9J88] allows to obtain an approximaigiso to the problem by

considering only the contribution from the leading edgeha infinitely thin blades
while discarding the contribution of the trailing edge ahd mutual influence of the
blades. In this work the solution provided by Envia is used esference to assess the
accuracy of one of the solved test cases.

Other relevant contributions to this problem have been rba]lﬂajumdaL&_P_eake

[1996], IHanson & Horan [1998 ake [2002], Cheenhgl. [2006, 2000]

and Wei h [2010].

1.4.2 Numerical solutions

Numerical solutions to the various versions of the gustads interaction problem

have become available in literature since the problems men@osed in the respective

NASA CAA workshops|[Dahl, 2000, 2004; Tam & Hardin, 1997].

The two-dimensional version of the problem of a vorticaltgenpinging into a rec-
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tilinear cascade of thin flat plates was first solved by foseegch groups whose con-

tributions are included in the proceedings of the second AE3A workshop [Tam

& Hardin,|1997]. The solution proposed by Hu & Manthey [19@#jployed the Per-

7

fectly Matched Layer (PML) technique for the enforcementha boundary closures

at the inflow and at the outflow, and of the optimised LDDRK &ipRunge-Kutta

schemel[Het al, 11996] for the time-integration. The PML technique, orgglg ap-

plied to Maxwell’s equations, is, in this case, adapted ®itiviscid Euler equations.

Another contribution was provided by Taet all [1997] whose results were based on

the application of the explicit spatial discretisationagivby the Dispersion-Relation-

Preserving (DRP) of Tam & Webb [1993]. The most interestispets of the adopted

numerical methods are, again, the external boundary deginat in this case were

tailor-made for the absorption of the analytically predictiuct modes. H IL [19977Db]
adopted for the solution of the problem an original approagtemploying a finite-

element formulation based on a variational method, withltesThe last contribution

from the second NASA CAA workshop was givenlby Lockard & M l{ﬂ&@] whose

solution is characterised by the use of a structured iregguesh, the optimised RK56

two-step explicit Runge-Kutta time-integration schemethyet all [1996], and the

adoption of the DRP scheme by Tam & Webb [1993] with the modliGedficients

given byl Lockarcet all[1995]. At the inflow and outflow the Giles subsonic boundary

conditions were applied. Further contributions to thishieo were given during the

following NASA workshops with the solutions given by Wi [.[2000] and by Bin

et al. [2004] that used this problem as an introductory test foirtbedes. The for-

mer adopted an original technique, also applied to the ttim@ensional form of the
problem, called space-time conservation element andisnlatement (CESE), based

on a second-order finite volume formulation that allows tecsfy the non-reflecting
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boundary conditions at the inflow and at the outflow in a paléidy simple form,
without resorting to the usual characteristic-based ckxsuThe latter proposed a so-

lution based on a particular version of the DRP schemessdédwy one of the au-

thors [Cheong & Lee, 2001], called Grid-Optimised DispensRelations-Preserving

(GODRP). This spatial scheme was coupled to a third-ordemAsiBashforth time-

integration scheme. At the inflow and at the outflow the bomndanditions by Kim

& Lee [2000], also used in this work, were enforced.

Other solutions to this problem were publishe(L by Hiebal.[2000] and by Ragab

& Salem-Said|[2007]. The study by Hixat al. compares the performances of four

different pairs of inflovioutflow non-reflecting boundary conditions: the charastiri

based 1D by Thompson [1987, 1990], the subsonic non-raftpdty Giles L‘LQJO]

(modified for the input of the vortical gust from the inflow balary), the formulation

proposed by Hagstrom & Goodrich [2003], and the PML impletagon of Abarbanel

et al.[1999]. The results show that the PML technique is the mostiate but has

the disadvantage of requiring additional computationaleso The study by Ragab

and Salem-Said contains the solution to the original prakds defined by the NASA

CAA workshop [Tam & Hardin, 1997] and a number of its variasdhat make their

work the most extensive in literature on this subject. Thatigbscheme was a sixth-

order compact by Lele [1992] with filtering following Visb& Gaitonde [2002] and

time-integration was performed by a five-stage optimisegaieix Runge-Kutta scheme

by/Carpenter & Kennedy [1994]. The inviscid wall was modefiellowing Poinsot &

Lele [1992] and, at the outflow, the closure was provided [1990] boundary

conditions. At the inflow, Giles condition was modified tcoa¥ithe introduction of the

vortical gust. The article by Ragab & Salem-$aid [2007] agooduces corrections

in the scheme to deal with the singularities of the pressisteilsition. The authors
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further extended their work on this subjecLLnﬁa.l&mﬁa.id&é) [2008].

The three-dimensional version of the problem with the swaptade of flat plates,

defined by Dahl [2000], was solved [2000] adopting the same numerical

technigues employed for the solution of the 2D problem alyedescribed in this re-

view. It has to be noted that the supplied solution does rt@fgall the requirements

defined by the problem statedlin D D00] and it is limiteciveep angles lower

than 15°. No other numerical solution of this problem is know

In the occasion of the fourth NASA CAA workshop, the two-dims®nal ver-

sion of the problem including a blades cascade with realjstofile | 1,L.2004],

was solved by six research grou,ls;milaﬂ[ 004] used numerical techniques here

already described for the version of the problem with indlyitthin plates. The so-

lution given byl Nallasamyet al. [2004] was obtained with a parallel [Hix L,

2002] non-linear solver based on the spatial scheme by M], and with th

time-integration performed by an explicit optimised Ruigdta scheme

[1996]. The spurious oscillations were removed applyirg ténth-order dissipation

model by Kennedy & Carpenter [1994] and, at the inflow and owtfla modified

version of the non-reflecting conditions b;g‘JiI 2s [1990] evesed. In this case, the

boundary closure has not only the ability to feed the voriizsst into the computa-

tional field, but also that of maintaining a constant meanddamn specified by the

problem, both at the inflow and at the outflow [Hixenall, 12003, 2004]| Wanet al

[2004] solved the problem using the (3E method already described in this review for

the versions of the problem previously discussed ,12000]. A highly orig-

inal approach to the problem was illustrated by Hixon [2004is newly developed

Space-Time Mapping Analysis (STMA) technique, particiylauited for the parallel

computation on multiple processors, replaces the timeshiag method with an itera-
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tive procedure based on a “space-time” volume that avorlaéed of synchronisation

between dterent processes [Hixon, 2003]. During the fourth NASA CAArkshop,

the last two contributions came frc ' [2004] and Coupland [2004] that,

for the solution of the problem, adopted frequency-domge tof solvers. The for-
mer, using unstructured grids, performed a two-step aigafirst by computing the
mean steady-state flow by the means of a non-linear codelddllés’T, and then by
separately solving the unsteady problem, with a lineariwersf the same code called

Mu2s?T-L, for each of the three fferent harmonics of the incoming vortical gust. At

the through boundaries the Glles [1990] conditions werel u3ée latter, employing
a structured multi-block non-linear code called HYDRA, fpemed the integration
by an unspecified five-stage Runge-Kutta scheme with mctiagceleration. In this
case the treatment of the boundaries was performed in agmmespecific fashion based
on the analytical prediction of the propagation modes.

The group of research of the University of Toledo, Ohio, USActively working

on problems [Nall L, [2007] that are direct three-dimensional extensions with

blades of increasingly realistic shape, of the series oblpras here illustrated. In

particular, their most recent publications [Hixenal., 2010, 2011] regard the modeli-

sation of realistic three-dimensional rotor wakes withateque called Vortical Gust

Boundary Condition (VGBC), and the extension of the subsbtoundary condition

by|Giles [1990] to unsteady three-dimensional flows.

10



Chapter 2

Numerical method

The original in-house code by Spisso [unpublished] fromatihis work started, was

based on the spatial compact prefactored finifeecence scheme hy Hixon [2000b]

and was capable to integrate solutions in time by the useeotidissical four-stage

fourth-order Runge-Kutta method and of the more recent stage low-dispersion

and low-dissipation Runge-Kutta scheme|by étuall [1996]. The applicability of
this solver was restricted to 2D problems in primitive linéam defined on regular

Cartesian meshes. The range of available boundary conslitnzluded the inviscid

wall by Tam & Dong [1994] and the liter layer by Cheret al. [2004]. The applica-

ble numerical high-order filtering techniques of Gaitond¥/ 1998, 1999] were

restricted to their explicit formulation and to their imgti prefactored compact for-

mulation by Hixon [;9_9J9]. The code did not allow to run pagdltomputations and

could not manage the non-dimensionalisation of the vaggmbhd the input and output
of data in a standard format.
During the course of this work the 2D Cartesian code was eetito 3D curvilin-

ear coordinates to solve the flow governing equations ireeghimitive, conservative,

11



2. NUMERICAL METHOD

linearised or non-linear form. The equations can also bedwmensionalised with
respect to a prescribed set of reference values. In additierdata input-output from
standard files was implemented to improve the portabilitghef initial models and
of the results. The range of solvable problems was extendlbdie introduction of
a number of characteristic-based boundary treatments #ghdive possibility to run
simulations on large models thanks to the domain decomeposéchnique and to the
parallelisation of the code. Finally, the most recent oged explicit Runge-Kutta
time-marching schemes were implemented to speed-up thEotahintegration.

In this chapter, the algorithms used in the solver are desdrin detail with a

particular emphasis on the features newly implemented.

2.1 Equations

2.1.1 The Euler equations

The inviscid Euler equations are derived by the applicatiothe principles of conser-
vation of mass, momentum, and energy to an arbitrary voluimevescid fluid. The
application of these principles to an arbitrary closedargf fluid, calledcontrol vol-
ume bounded by @ontrol surfacehat can either be fixed in the space (Eulerian frame
of reference) or moving with the fluid (Lagrangian frame dérence) leads to tfer-

ent formulations of the Euler equations. If the control volihas a finite extension,
the integral formulation is obtained. Else, if the control volume is ity small so

to have homogeneous flow properties within it, thggerentialformulation is derived.
When the Eulerian frame of reference is used, the equati@ensaad to be irconser-

vativeform and the unknown variables are defined by vettot [p,pu,pQ]T. Their

12
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differential formulation is

% +V-(pu) =0, (2.1a)

9 (pu) + V- (puu) = =Vp + pf, (2.1b)
ot

6(51:3) L V. (petU) =_V. (pu) +pf u, (210)

wherep is the densityp is the static pressura,= [u, v, w] is the vector of the velocity
components in three-dimensional Cartesian fogns the specific total energy that
is given by the sum of the specific internal enesggnd the kinetic energy - u/2,
f = [fx, fy, fz] is the body force vector per unit mass that could be causeddy t
presence of a gravitational or an electromagnetic fieldf &nidthe time. Equation§ (2.1)
are applicable to homogeneous, non-reacting, mass-cong&ows.

If the Lagrangian approach is used, the equations goenmtive form and the un-
known variables are defined by vec@r= [p, u, p]T, in which(p, p) are a selected pair
of thermodynamic variables that define the thermodynamiid §tate. Their complete

differential formulation is

Dp

Dt +pV-u=0, (2.2a)
Du 1

M _Zvp+t 2.2b
D

Ff = —ypV-u+ (y — L)pf-u, (2.2¢)

wherey is the ratio of the specific heat at constant pressgite that at constant volume
Cy, With % denoting the material derivative.

The Euler equations in their 3D form have 6 unknown varighlesrefore, to solve

13



2. NUMERICAL METHOD

the system, an additional relation is required. Usuallyemwdealing with gases, the

closure is provided by thequation of statéor a perfect gas
p=pRT, (2.3)

that relates the static pressypewith the densityp and the absolute temperatufe
through the specific gas constdit This equation introduces one further varialble

that is directly related to the specific internal eneedyy the expression
e=c¢c,T. (2.4)

In order to numerically compute the Euler equations, theyomamore conveniently

recast instrongor vectorconservative form

U OE OF 3G _

E+&+6_y+5_ , (2.5)
where -
Jo, 0
pu pfx
U=|pv|. S=|pf,|. (2.6)
pW pf;
P& pf-u]

14



2. NUMERICAL METHOD

ou

pu +p

PWU

pau+ pu

ovu |

oV
puv
pV2+p

PWV

pa + pv)

PW
PUW
PVW

PW2 + p

pew + pw

2.7)

The same system of equations can be written in the so-cqlledi-linearform,

where the spatial derivatives of the flow variables (eitinecanservative or primitive

form) are premultiplied by Jacobian matrices

U 4U _aU _au

_ - B— — =

o TAex TBey T TS
0Q  ,9Q  L0Q 0Q _

ot

154

+A—+B—+C

ay

0z

S,

(2.8a)

(2.8b)

where vector®) andS, and matrice®\, B, C, when the primitive variables are used,

have the form

15
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2. NUMERICAL METHOD

W p 00 O] v o p 0 O wWoOo p O]
0 uo00 Y Ov oo 0 Owo 0 0
A=l0 0 uo 0|, B=[00 v 0 1p|- C=|l0 0w 0 0]
00 0u O 00 0v 0 000w 1/p
0 yp 0 O u 0 0 yp O Vv 0 0 0yp w,
(2.10)

Equations[(ZB) lead to results equivalent to the ones frqomakon [2.5) when the
flow field does not contain strong variations in the flow staue laas the computational
advantage of requiring the fiierentiation with respect to the various space directions
on the same set of value® (or U) instead of having to compute the derivatives se-
guentially onE, F, andG.

The expressions fdk, B, andC in case of conservative variables are slightly more

complex and their formulation can be found_in Hirsch [1990hey can be obtained

by the application of the chain rule to Equatién{2.5) thatsgi

A:6_E BZGF C_(?G

30" 30" =20 (2.11)

The quasi-linear forms of the Euler Equations (2.8a) arfii2allow for the defini-
tion of alinearisedformulation that is oftenly used in CAA. In this case, theal@ian
matricesA, B, andC do not depend on the actual state of the flow but on a reference
state that is considered constant throughout the compuotatiany point of the field. It
is clear that this form only suits certain classes of prolsl@mwhich the perturbations
are of small amplitude so that the non-linefieets can be considered negligible and in
which the mean value of any flow variable does not vary in tifit@s particular form

of the equations has the computational advantage of ayptdipdate the Jacobian

16



2. NUMERICAL METHOD

matrices at each time step. TherefokeB, andC can be computed once and for all at

the beginning of the simulation.

2.1.2 The characteristic form of the Euler equations

Another form of the Euler equations can be determined byaatipd) their hyperbolic-
ity in time, thecharacteristicform. The Euler equations can be re-cast by a principal
component analysis as a set of advection wave equations.soihations are advection
waves of varied nature that propagate through the flow fiehds flormulation is par-
ticularly important for the numerical treatment of the bdary conditions as it allows
to selectively reflect, absorb, or feed into the field the wwalepending on the type of
boundary that is imposed and on the sign of the wave grougiglo

The characteristics are families of curves (or surfacesnwhe8D) along which
some of the dferential terms of the Euler equations become zero as thegsemt an
invariant state for that particular variable. This allowsé¢duce the Euler equations to
a set of ordinary dierential equations (ODE).

Solutions of the Euler Equatioris (218b) can be written inavkke form as

Q = QdEx-eh, (2.12)

whereQ is the wave amplitude at tinte= 0, £ = [£,, &y, &;] is the wavenumber vector,
X is the position vector in space and the whole expressiondec between brackets
represents the phase of the wave that propagates &dhection.

The study of matriXX, defined as

K =&A+EB+EC, (2.13)
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leads to the computation of matricesand its inverseL ! that allow to transform
an elemental variation of the flow stai€® defined in terms of primitive variables
Q into an elemental variation of the characteristic variabl®eterminingL is an

eigenvectgikeigenvalue problem where the eigenvalugare the solution to equation
detK — Ail) =0, (2.14)

in which | is the identity matrix of the same dimensionskofand A; represents the
speed of propagation of th€ wave. Left and right eigenvectors can be computed as
K = al;,
(2.15)
Kri = Airi,
wherei is integer, 1< i < N, with N equal to the number of ordinary ftirential
equations of the system. The left eigenvectors constihgedws of matrix_ ! and
the right eigenvectors (that are proportional to the waveldaudes) are the columns
of matrix L.
By premultiplying both sides of Equatiop (218b) hy?*, the following compatibil-
ity equation is obtained

L2199 4 1 1a9Q L 1g%Q L R

=L"1s 2.16
ot oX ay 0z ( )

Equation[[2Z.16) can be re-written as:

L_l§+(L_1AL) _laQ ( 1BL) —18(5 ( _lCL) —188_(29:L—18, (2.17)

18



2. NUMERICAL METHOD

which allows it to be stated in terms of the vector of the chimastic variable®R as

(L™cL) %—F; =L's, (2.18)

oR
ot

R,
oX

oR

+ (L‘lAL) (L‘lBL) v

where

oR 4,0Q  OR 4,0Q  OR 4,0Q  OR ,0Q
—=L1=, —=L1t=, —=L1=, —=L1= 2.19
ot ot ox ox’ oy oy’ 0z 0z (2.19)
The choice of vecto€ can only diagonalise one of the three Jacobian matrices
A, B, andC. For example¢ = [1,0, 0] diagonalise®\, while B andC remain non-

diagonal.

It is important to notice that the characteristic varialdes functions of the spatial
direction defined by vectaf and that, in this context, they are a linear combination
of the primitive variables through cfiients that are represented by the components
of the left eigenvectors. These, in turn, are function of phienitive variables and
therefore, not constant. This limits the possibility to geally define the vectoR

that exists only ifL is constant. On the other hand, vectst of the characteristic

variations can always be defined with respe@@jHirsch, 1990], wheré represents

an arbitrary variation (spatial or temporal partial detive).

Solving Equation[(2.14) foa; gives (in 3D)

A=A =A3 = U'f, (220&)
Ag=U-€+C, (2.20b)
As=U-&—-C, (2.20¢)
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2. NUMERICAL METHOD

wherec is the local isentropic speed of sound. This means that thietliree waves
have speed equal to the component of the flow velocity aloaglitection defined by
& while the fourth and the fifth also include the contributidrttte speed of sound in
the opposite directions.

Having determined; for the Euler equations, the eigenvector malriis obtained
from Equation[(2.15).

It is important to notice that the eigenvectors are not utelly determined as any
of their linear combinations is a valid solution to the eiga@ne problem. Therefore,
matrix L and its inverse appear in the literature undéiedent forms related to specific

normalisations, depending on the choices made by the authbroughout this docu-

ment, the treatment given by Hirsch [1990] is used, as itisqadarly suitable for the

application of the characteristic-based boundary comustideveloped in Kim & Lee

[2000,/2008, 2004] and adopted in this work. This gives

& 5 & & 4
0 & & 5 -%
L=|g 0 -4 % _%, (2.21a)
& & 0 % -%
[0 0 0 5 5]

& 0 & -g -5
& —& 0 & -%
Lh=ls & -4 O -&|. (2.21b)
0 & & & =
0 & & & |
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Finally, it is possible to write the value of the variatiorfstloe characteristic vari-

ables as function of the primitive variables’ variationsraj with their physical inter-

pretation. These are

1
6Rl = 5p - gdp’

5R2 = _é:zéu + fxéw’

(entropy wave)
(2.22a)

(vorticity wave)
(2.22b)

(vorticity wave)

(2.22c)

1 . .
OR4 = &x0U + £yOV + E0W + —C(S P, (leftward propagating acoustic wave)
P

(2.22d)

1 . . .
ORs5 = —&,0U — &0V — E0W + —Cd p. (rightward propagating acoustic wave)
Jej

(2.22€)

Note that these definitions are derived from a version ofimatr! obtained with a

different normalisation (also given by Hirsch [1990]) but they @ften preferred over

those obtainable from Equatidn (2.21b), because theiriphlyisiterpretation is more

intuitive.

2.1.3 Transformations between the dferent forms of the flow vari-

ables

As shown by

Hirsc

h

[19¢

)0], when dealing with the Euler equadi as seen in Sec-

tion[2.1.2, it is possible to switch from primitive variabl® to characteristic variables
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R and back by the use of the eigenvector matricesdL ~*
oR = L715Q, 6Q = LJR, (2.23)

whereé represents an arbitrary variation (spatial or tempordiglaterivative).
More generally, as the transformation is not limited to dmatiations only, it is

possible to switch from the primitiv® to the conservativé) formulation through

matrix M and its inverse

U=MQ, Q=M1u, (2.24)
whereM andM ! are
1 0 0 0 O
u p 0 0 O
ouU
M= 2.25
20 v 0 p 0 O0f (2.25)
W 0 0 p O
2
S5 pu v pw |
1 0 0 0 0 |
_% ;1) 0 0 0
d
e £ S 0 1 0 0| (226)
_w 0 0 L 0
0 P
(GDEW) (DU (-1 —(y-Lw y-1

The combination of the above matrices with Equatfon (2. 2ia) [2.21b) allows

to directly transform small variations of conservativeiahles into variations of the
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characteristic variables through mati»and its inverse

oU = PR, SR = P 16U, (2.27)
where
P=ML, (2.28)
and
Pi=L"*M" (2.29)

MatricesP and P~ are determined analytically from Equatios (2.28), (P.25)
(&) and 9)[(2.26). (2.21b) and are reported indHif¢990] and in Kim &

Lee [2000| 2004].

2.1.4 Non-dimensionalisation

A final note regarding the internal non-dimensionalisatbbrall the variables in the
code: following the recommendations of the Standard laterData Structures (SIDS),
on which the CFD General Notation System (CGNS) is builts itniade with respect

to a set of only four reference scales: lengthstatic speed of sourgl,, static density

P, @nd static temperatuie, [NASA), 2012]. All the other variables are consistently

non-dimensionalised with respect to these. For example

Prd = Pa/ (PwC2), (2.30a)
Hnd = Hd/ (PeoCool o), (2.30b)
tha = t4Coo/lo- (2.30c)
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2.2 Spatial discretisation

In the present work, a compact sixth-order central finiféedence scheme is used for
all the computations. The spatial derivatiffeat pointi depends on the values of

function f and on the derivative itself in the surrounding points as
’ ’ ’ 1
al(fi+1 + fi—l) + ay fi = B( [bl (fi+2 — fi—2) + b2 (fi+l - fi—l)] , (231)

where Ax is the uniform distance between the nodes, andndb; are two sets of

codficients that are [Lele, 1992]

1 7
s ) = g, bl = —, b2 = —. (232)

& = 60 15

gl =

By substituting the spatial derivativés on the left-hand side of Equation (2131)
with their Taylor series expansion, it can be shown that theficients in Equa-
tions [2.32) ensure that the leading term of the truncatioor é of sixth order.

Central high-order schemes like this are particularlyexuito the use in CAA be-
cause they have no dissipation error and, therefore, theprmpagate acoustic waves
over long distances with little attenuation in amplitude.

The ability of this scheme to propagate waves depending@ngpectral content

can be studied using the 1D advection wave equation|as gt dli[1996]

ou ou

E + CH_X =0, (233)

wherec is the group velocity with which the wave propagates.
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Assume a solution fou of the type

u(x,t) = Upeeh, (2.34)

wherek is thereal wavenumber and the angular frequency.

Applying the discretisation of Equation (Z]31) to Equatfgi83), the semi-discrete

equation at pointis obtained

oy a 8ui+1_6ui_1 N c |b;
AX

b
 Ca\ax X 2 U2 = U2+ (U — Uiy | = 0. (2.35)

(o
ot A

Through Fourier analysis, the semi-discrete Equafiorbjzh@comes

% +ickli =0, (2.36)

whereu'is the spatial Fourier transform af and k* is the numerical (or effective

wavenumber that is related to the real wavenunkid®y the relation e, 1992]

_ bysin@) + (by/2) sin()

k*
ap + 2a; cosk)

(2.37)

As can be seen by Figute 2.1 where tliieetive wavenumbek® is plotted as a
function of the real wavenumbér (the continuous line represents the ideal case of
an exact dferentiation), the former is a good approximation of theelatinly on a
restricted range of frequencies.Maximum resolvable wavenumbe¢rdan be defined

depending on a maximum tolerable error between two waveerwnbor instance, Hu

et al. [1996] set the maximum errdk* — k| equal to 0.00B\x. The value ofk} can

be determined numerically with iterative methods. For aimaxn tolerable error of
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0.005AXx, k? is 1.353Ax and the relative minimum number of points-per-wavelength
N, is immediately obtained a¥, = 27/ (k;AX) = 4.63. Another important value that
can be derived from Equation (Z2]37) is thmaximum gective wavenumber:k, that

in Figure[2.1 corresponds to tlyecoordinate of the maximum of the function shown

as a dashed line. It is an absolute value and for the compebt@ider scheme of

Equation[(Z.30) it is equal to 1.989%.

3
B exact
B — — — — compact sixth order
25
2 [ kf*naxAX -
- . - AN
= 7 N\
< [ e \
<5l / |
A kAX \
B \
B \
1+ \
B \
i \
= \
05F \
[ \
- \
0 V4R ENRERENEN ENEN AT ENENENEE BATETEN SNETET W
0 0.5 1 1.5 2 25 3

kA X

Figure 2.1: Numerical wavenumber as a function of the realewamber for the an
ideal exact spatial discretisation and for the compacthsixtier scheme of Equa-

tion (2.31).

2.2.1 Hixon's prefactored compact scheme

The compact scheme represented by Equaltion](2.31) can bericalty implemented

in many ways. In this work th@refactored small-stenci¥ersion given by Hixan
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[2000b] is used. In matrix form a compact scheme of any ordarte written as

1
Ad = —Cf. (2.38)

where, in the case of a sixth-order scheme of Equafionl(248ik) a tridiagonal matrix
of the codficientsa (i = 1, 2), d is the vector of the spatial derivatives of functibn
C is a pentadiagonal matrix of the d&eientsb; (i = 1,2), andf is the vector of the
values of functionf.

Hixon introduces the forwardl™ and backwardsi® derivative operators in the

equations
F AF 1 ¢
A"d" = —B"f, (2.39a)
AX
1
BB _ — RpB
A°d® = AxB f, (2.39b)
that satisfy
1 F B
dzé(d +d°), (2.40)

where AF, AB, B, andBB are unknown matrices to which the following restrictions

are applied:

AF = [AB]T, (2.41a)

BF = —[B®]". (2.41b)

Under these conditions, Equatiohs(2.39) can be writterpaeded form for a generic
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nodei as

afi1\ af\" dfia) _
Cl( aX) +(1—C1—C3)(& + C3 X =

[C2fiii— (26— 1) fi = (1-cy) fia], (2.42a)

1
AX

a1\ at\° dfig B_
03( ax) +(1—cl—03)(& +C vl B

%( [(1-c) fisa+ (202 - 1) fi — cofig] . (2.42b)

Isolating(%—fi)F and(%—‘l)B, and substituting them into Equatidn{2.40), leads to

(CaCa) (o + f/ o) + (Ca+ ) (1-Cr—Ca) (Fy + ) [E+ G+ (1—c - )| f =

= A_lx [% (C1+ C2(C3 — €1)) (fisz — fi2) + (% —C1—C(C3— Cl)) (fisr - fi—l)] . (243)

that can be directly compared to the equation defining theefaiifterence scheme to
obtain the cofficientscy, ¢, andcs.

In the case of a sixth-order scheme of Equation (2.31), Hgives the solution

Cl=>-—, 2.44a

T2 245 (2.442)
1

=1-— 2.44b

C 30, ( )

;= 0. (2.44¢)

With the same procedure shown here Hixon [2000b] also dedif@srth-order and

an eighth-order scheme.
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As a result, tridiagonal matrix is split into the two bidiagonal matrice&™ and
AB and the pentadiagonal matiikis substituted by the tridiagonal matricBS, and
BB. This means that the spatial derivative at a node of inaéshin the computational
field can be obtained as the sum of two contributions (thededivatives) that depend
on the value of the functiof ati, i + 1 andi — 1 (the stencil is reduced from five to
three points) and on the value of the same half-derivativabf one of the neighbour-
ing nodes. This allows to execute the computation of the talé-derivatives in an
independent fashion with “sweeps” starting from the opfgolsoundaries. The com-

plete spatial derivatives are then recovered simply addmthe two components as

in Equation [(2.4D)|_Hixan [2000b] claims that this techrégalthough implying one

addition per each point more, has to be preferred with reédpethe most optimised
Thomas algorithm “since additions are much less expenbae ultiplications” and

“the advantages of the prefactorizatidiiset the slight increase in computational cost”.

2.2.2 Treatment of the boundaries

For the sweeps to start from the opposite sides of the fieldaniaal approximation

of the two half-derivatives at the boundaries is nee il2000Db] suggests to

compute them by using high-order explicit approximatidrad tdepending on the type
of boundary, can use either one-sided or centred stencils.

For walls and outer boundaries, the sixth-order one-sigdoximations with 7-
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point stencil at nodes with index= 1 andi = imaxhave the form

on° 27: sf (2.45a)
= i Tis .
X —
af,F !
a_l = - Z Cmax+1-i fi, (245b)
X i=1
If B imax
a"“ax = Z ef, (2.45¢)
X i=imax-6
afimaXF Imax
X = - Z Smax+1—i fi, (245d)
i=imax-6
where:
~610- 965 860- 965
Sfl. = Y V) amax = T AAA~ (246a)
300 300
1300+ 34645 —2300+ 34645
SZ = —\/_’ emax—l = \/_? (246b)
300 300
~1375- 5355 3125- 5355
S = ) Cmax2 = — <> (2-460)
300 300
1125+ 4755 —2875+ 4755
S =7, Emax-3 = , (2.46d)
300 300
—600- 2605 1650— 2605
55 = ) emax—4 = T AA~A~ s (2466)
300 300
185+ 8115 535+ 8115
&5 = YV amax—S = YY) (246f)
300 300
—25-11V5 75— 115
S = 300 €max-6 = ~300 (2.460)

For symmetrical, periodical and inter-block boundaribs,rinth-order centred 11-

point stencil is used. Although a tenth-order formulatisrpossible|, Hixan/ [2000b]

uses one of the available degrees of freedom to match magelglihe performance of
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the interior scheme. At a node with indgxhe formulation is

‘Z_EF = ZS: bifiij, (2.47a)

i=—5

at;® >
o = _Z%b_i fiui, (2.47D)

where:

b_s = —0.000429279312812 bs = 0.00115802227448959 (2.48a)
b_, = 0.00444354988633981 b, = —-0.01539771995493  (2.48b)
b_s = —0.0192836978258309 bs = 0.0997639212217881  (2.48c)
b_, = 0.0507098949263327 b, = —0.425480581264144  (2.48d)
b_; = —-0.264423227620118 by = 1.40224343904655 (2.48e)
by = —0.833304321377665 (2.48f)

The procedure used to obtain theseftiornts, that in the original article by Hixon

[2000b] are given in single precision only, is described @tadl by Spisso [unpub-

lished] and it is applied in the following part of this sectito obtain upwind and
downwind stencils, not previously available, needed fergblution of the second test
case as described in Section]3.2. These stencils allow thguw@ation of the half-
derivatives at a node of indexbased on the values of functidnfrom indexi — 1 to

I +5 (referred to as “(5-1) 7-point stencil”), or based on thieiga of the function from
indexi — 2 toi + 4 (referred to as “(4-2) 7-point stencil”). The same ffi@gents can
also be used, by inverting their signs, for the applicatibthe stencil in the opposite

spatial direction.
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For example, the cdicients for the backward derivative of the (4-2) 7-point sten

are computed. First, the cieientsA, B, K, D, E, F, andG of the Taylor expansion

of the two half-derivatives introduced in Equatiohs (2.[Eisso, unpublished]
af-F of; 0%, d*f; o'f,
— + AdxX— — BAX— KAXS— DAX°
ox  Ox 0X? ox 0x8 X’
a8 f; a%f; 910f;
7 i 8 i 9 11
+ EAX 5 + FAX 50 + GAX —= 500 +0O(AX) (2.49a)
ot of &, 30, s0°fi 60 fi
& —&—MXW-I-BAX(?— KAx (9X6 + DAX ENG
10
— EAx 10 + FAX 30 — GAX 00 s +0(Ax)™, (2.49b)

0x8 90 oxt

have to be determined. Note that when the two Equations)(249added, the con-
tribution from the even derivatives is always zero as theyeh@pposite coéicients.
A, B, K, D, E, F, andG are characteristic of the adopted spatial scheme and can be

computed as a function of cfigientsc,, c,, ¢z of Equation [(2.41) by substituting

Equations[(2.49) intd (2.42). For Hixon’s sixth-order stieethey are equal to [Spisso,

unpublished]

1 5475
“TE B= +720‘F, (2.50a)
(o5 bl sy
E= _250_4;3(7)(\)/5 : F= 45_32670700 (2.50¢)
1475- 839v5
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The (4-2) 7-point backward derivative can be written in exgied form as

af® 1
6_)2 = % (sofio+safia+ sofi + sifivs + Sfio + iz + ufiva), (2.51)

where cofficientss; (with -2 < j < 4) are the unknowns.
By substituting the values of the functidnwith their Taylor expansion up to the
sixth order and neglecting the rest, and then regroupingahees of the derivatives of

different order, Equation (2.61) becomes

0% [1
Ix A (B2t St ot st et sts)f

+(-2s,— s_1+sl+252+353+4s4)g—;
22 1 1 22 3? 42 o*f
+ Zs_z + zs_l + Esl + Zsz + Zs@, + Z&)AXW
+ —2—3&2—i&1+isl+2—352+3—383+4—354)(AX)263—f (2.52)
3! 3! 3! 3! 3! 3! ax3 '
*f

axt
25 1 1 2° P 45 LO0°f
+|l-=So2—-=S1+ =S+ =S+ =S+ =% (AX)

24 1 1 24 4 4

3
+ ES_Q + Es_l + ES[L + msz + mss + mSﬁl) (AX)

5l 5l 5l 5l 5l 5l %5

+2—65 PP +2—6 +3—6 +4—6 (Ax)586—f
TR TR T TR TR A 96 |
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Finally, comparing Equation (2.52) arid (2.49b)

1 1 11111—73_2— [ 0 |
-2 -1 0 1 2 3 4f|s, 1
03 035 5 &l |-A
—3—?—%0%5—73—73—7&=0- (2.53)
T 05 0% 5 % &=l |®

By numerically inverting the matrix on the left-hand sideExfuation [2.58), the

stencil codficients of Equatior{2.51) are found

20+ 85 ~190- 785
S, = W, S 1= T, (2543)
-450+ 130vV5 850-50vV5
S = + \/_, S = —\/_, (2.54b)
600 600
- -2 12
_ ~300-20V5 S = 80+ 12V5 (2.54¢)
600 600
~10-2+5
S = 00— (2.54d)

In a similar way, the cd@cients of the forward derivative at noddefined as

4

F
8f| = — Z € fi+j, (255)

X )
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are recovered

o _ —20+8+5
277600

250+ 1305
&= ———,

600
300- 205

600
10— 2+5

600

o
I

o 290- 785
- 600
_ —750- 505
“="%00
_ —80+125
S~ "0

(2.56a)
(2.56b)
(2.56c¢)

(2.56d)

For the sake of completeness, the (5-1) 7-point stencifggahdth their codicients

are also shown

_ —25-11+5
T 300
_ —435-19+5

®=7300
775+ 115V5
277300

_ -500- 1505

2=7300

_ 250+ 905

=730
~75- 295
S = o,
300
_10+4+5
%7300

More generally, half-derivatives at node with index 1 based on one-sided sten-

€4

5
== Z & fivj,
o
. 75— 115
- 300
335-1945
®="30

_725+ 1155
e = ,

300

500— 1505
&= ———

300
_ —250+ 905
- 300
_ 75-29+5
~ 300

~10+ 45
&= ———.

300

(2.57a)

(2.57b)
(2.57¢)
(2.57d)
(2.57¢)
(2.57f)
(2.579)

(2.57h)



2. NUMERICAL METHOD

cils includingl points have the form

018 <

= = > s, (2.58a)
=1

ofF '

a—; :—Zej f;. (2.58b)

Table[2.1 lists the numerical cieients to be applied to Equatioris (2.58) in or-
der to obtain lower-order approximations of the half-datives. These cdicients
were obtained with the same procedure used to derive theided sodficients of
Equations[(2.54) and (2.67). The samefiognts can be used to compute the half-
derivatives in the opposite spatial direction by invertihgir sign. Some of the cée
cients in Tabl€Z]1 were used for the solution of the secostcttse in Sectidn 3.2 and
of the fourth test case in Sectibn13.4.

Similarly, Tabld 2.P shows the cfiieientsb; to be used in the equations that define
backward and forward half-derivatives at node with indé&ased on centred stencils

of length2 + 1

9fB <

& = Z bj fi+j, (259&)
j=-1

ot F !

o =" Z b_; f;. (2.59b)

2.2.3 High-order filters

The high-order finite-dference schemes tend to introduce spurious waves without
physical meaning into the numerical predictions. This is tluthe fact that the dif-

ference equations have additional solutions that are ritdlde for the original dif-
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Table 2.1: Cofficientss; ande; for lower-order one-sided stencils of various length
and order of accuracy.

j 5™ order (I=6 4™ order (1=5 3 order (I=4 2" order (1=3)
Sj € Sj € Sj € Sj €
1 —117-17+5 157-17V5 —110-14+5 140-14V5 —20-2V5 24-25 -17-+5 19-5
60 60 60 60 12 12 12 12
2 230+56 V5 —370+565 195+41+v5 —285+41v5 31+55 —4145V5 | 22+2V5  -26+215
60 60 60 60 12 12 12 12
3 —200-74+5 400-74V5 —-130-44+5 230-44+5 —14-4+5 22-4+5 -5-5 7-5
60 60 60 60 12 12 12 12
4 125+51+5 —275+51v5 55+21v5 —-105+21v5 34515 —5+515
60 60 60 60 12 12
5 —45-19+5 105-19V5 -10-4v5 20-4+5
60 60 60 60
6 7+3V5 -17+3v5
60 60

Table 2.2: Co#flicientsb; for lower-order centred stencils of various length and prde
of accuracy.

i ] 8™ order (1=4) | 6™ order (1=3) | 4Morder (=2) [ 2"9order (=1)

-4 | 0.00184262134833348

-3 | -0.0172874108616684| -0.00921310674166744

-2 0.0729375719116774| 0.068010840825008 | 0.0460655337083364

-1 -0.349306533340048 | -0.386119737833376 | -0.414589803375032 -0.396994335208351
0 -0.683039164783257 | -0.578689325833263 | -0.429618127333277 -0.206011329583298
1 1.24402679999329 1.11388026216662 0.918743529958302| 0.603005664791649
2 -0.320395761421656 | -0.231989159174992 | -0.12060113295833

3 0.0560459224716651| 0.024120226591666

4 | -0.00482404531833327
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ferential equations. There are also other sources of d@twes that can degrade the
solution. Among them are the discontinuities in the defomitof the boundary con-
ditions and the discontinuities in the governing equatiofise two main approaches

for the removal of these unwanted high-frequency osadtegiare the application of a

damping co#ficient as suggested, for example, by Tam & Webb [1993], or pipdi-a

cation, at each time step, of a low-pass filter. The lattautsm was adopted for this
study.

Filters, like finite-diference schemes, can be explicit or implicit and are charac-
terised by their order of accuracy. It is important to noticat, to preserve the quality
of the results, the applied filter has to be at least two oragiser than the level of

accuracy of the finite-dlierence scheme used in conjunction with it.

The filter applied in this work is the implicit filter proposégGaitonde & Visba

[1998, 1990]. The general formulation of this filter d{2-order is

N

@iQi.1 + Qi + ¢ Qp1 = Z% (Qisn + Qi-n), (2.60)

n=0

whereQ; is the vector of the unfiltered flow solution in primitive forftihe treatment
of the conservative form is equivalent) at node of indle&; is the vector of the fil-
tered flow solution at the same nod®, are N + 1 cosdficients that characterise the
filter, anda; is a free parameter with a rang®.5 < o < 0.5. The sets oN + 1

codficientsa, for filters from the second to the tenth order of accuracy eported

by |Gaitonde & Visball[1999]. They are obtained in terms of tie® parameteu

with a Taylor series expansion based on templates prop 1992] for spatial

finite-difference schemes with spectral-like resolution. The freffic@nta; controls
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the dissipation introduced by the filtering. The dissipati@creases with the increase
of a¢ until it reaches the value 0.5 where the application of therfthas no ffect on

the flow solution. The free cdigcientas has to be set depending on the distortion of

the employed grid. As reported by Gaitonde & Vishal [1998is usually appropriate

to adopt values in the range30< a; < 0.5 with lower values required only for grids
containing discontinuities in the metrics.
The spectral functio® F of the filters defined by Equation(2160) is

N
> a, cos(nw)
n=0

SHw) = 1+ 2a¢ cos@)’

(2.61)

wherew is the angular frequency. Due to the symmetry of Equatidd2the spectral
functionS Fis always real and the filter is non-dispersive.

In multidimensional problems, the filter is applied in seggeto the various direc-
tions of the space alternating them at every stage to elimitee possible bias. The
frequency of application of the filter can be varied depegdin the requirements of
the problem. It is usually applied at the end of each Runggakaiage or only once at
the end of the time step.

The central scheme of Equatidn (2.60) is characterised gnaisof 2N + 1 nodes
and the main problem of its implementation regards how it tiee points located near
the boundaries. Note that, in this implementation, the dawnpoints are filtered only
in the transverse directions and not in the direction nonmahe boundary surface.
Two approaches can be used to solve this problem: the apphda the near-boundary

points of high-order one-sided (HOOS) filters, or the agian of lower-order centred

(LOC) filters. The former solution is described i E 1999]. The

formulation of the 18-order HOOS filters applied to a boundary with node index
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i = 1is, for example,
. . . 11
@iQi_1 + Qi + Qi1 = Zan,iQn, (2.62)
n=1

where indexi ranges from 2 to 5. As for the centred filter of Equatibn (.60

codficientsa,; are expressed as a function of the free paramgtand were obtained

using a similar procedure [Gaitonde & Vishal, 1999].

The spectral functio’® F of the filters defined by Equatioh (2]62) is [Gaitonde &

Visbal,[1999]

Ean,i {cos [ —i)w] + V-1sin[n - i)w]}

SHw) = = (2.63)

1+ 2a cOSE) ’

where, againj ranges from 2 to 5. Equatioh (2162) is asymmetrical, and duhis,

the spectral functio® Hw) has a non-zero imaginary part. In a range of the angular
frequencyw that depends on the order of the HOOS filter, the real partrodtian S F

is larger than 1 and, although these filters are only locadpliad and not extended to
the whole computational field, this can cause the ampliboadi instabilities and lead

to the divergence of the predicted solution. All the ff@&nts for the application of
HOOS filters, including odd-order filters and the filters fbe thodes located on the
boundary (here not used) can be found in Gaiton |5‘Lt1@_4]_9

The second solution for the filtering of the nodes near thenbaties consists in
the LOC method for which, approaching the boundary, thecditsize and the order
of the filter is reduced while the centred formulation is me¢d. Their formulation
also follows Equation (2.60) with = 1 on the first point in the flow field from the

boundary,N = 2 on the second, and so on. The spectral funcBénof these filters
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is, again, given by Equatidn 2J61 witt related to the order of accuracy of the filter
applied to the specific node considered. This solution esstimatS F is always real
and that the filters are non-dispersive. This makes the LQx€oagh more robust than
the HOOS. The LOC is easy to implement but has the drawbaakadring the order
of accuracy of the filter. This aspect can become the domiaatdr on the accuracy
of the results for some types of problems. Further detaitsiaithis technique along

with the list of the co#icients for diferent orders of accuracy are given by Visbal &

Gaitonde|[1998].

It is worth to notice that with both the LOC and the HOOS metdte free co-
efficienta; applied to the near-boundary nodes is not restrained toghergl value
adopted for the treatment of the internal field, and near thenbaries it can be var-
ied giving a further degree of freedom to the user. In paldicdor the case of the
LOC technique, this property can be used to decrease thetraptne adoption of the

low-order stencils on the accuracy of the flow solution byéasing the local value of

D

as When approaching the boundary. This technique, proposéddial & Gaitond

d

1998] and commonly found in the literature (see, for examBagab & Salem-Sa

[2007]), has also been applied to some of the test cases sharaptefB.

In the high-order prefactored solver used in this work, thierfdefined analyti-
cally by Equation[{2.60) is numerically implemented undeeé forms: arexplicit

form where Equation (2.60) is simplified by setting = 0, aprefactoredform fol-

lowingHixon [1999] that applies to the high-order filter theeme technique developed

for the spatial discretisation scheme discussed in Segild, and atandard implicit
treatment requiring the inversion of the matrix containthg a; codficients on the

left-hand side of Equation (2.60).
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In the course of this work both the explicit and the standanglicit numerical
implementations have been used for the solution of the tesgscof Chaptéd 3. Un-
fortunately, the implicit prefactored implementation veatopted only for preliminary
computations whose results are not shown in this repors iSldue to the fact that this
particular technique, although verffieient, has a strong limitation that currently does
not allow the use of variable; strategy near the boundary owing to the complexity
of its numerical implementation. The application of the leipformulation, due to
its higher dissipation with respect to the implicit versitias to be restrained to prob-
lems where the numerical instabilities can not be overcontle more conservative

methods.

2.3 Time-marching scheme

The numerical time-integration of a finiteftBrence scheme can be executed in im-
plicit or explicit form. A popular choice for its charactstics of stability and for
the optimised use of the computational memory is the exglange-Kutta class of
schemes.

Consider a general semi-discrete equation like

0Q
F=FQ. (2.64)

where, in the case of the Euler equations in primitive fo@ms the vector of the flow
solution andF contains the discretisation of the spatial derivatives {ime depen-

dence is omitted). The generic algorithm of an explicit Redk@itta scheme witls
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stages advancing time frotpto t, + At is

Q" =Q"+ > wiK;, (2.65)
i=1
where
i—-1
Ki = AtF [Qn+2ﬁij KJ] (266)
j=1

The sets of constant ciientsw; andg;; characterise the scheme.

Following Hu et al. [1996] the analysis of the stability and of the accuracy of

the general scheme shown above can be made on the simplaiadweave Equa-
tion (2.33) having a solution of the form of Equation (2.34).

Fourier transforming Equatiof (2J65) and computing théraf the results be-
tween two successive stepsindn + 1, leads to the value af thenumericalamplifi-

cation factor

An+1 s
r=3 =1+ ) ¢(-ickAty, (2.67)
Qk i=1

whereQ[ is the spatial Fourier transform @", c; are codficients related tov, and
Bij of Equations[(2.65) and (2.66), amdand k" are defined as in Sectign 2.2. The
numerical amplification factor expresses, for each frequdrelated tock'At), if the
particular time-marching scheme, characterised bytiwoentsc;, tends to amplify or
reduce the wave amplitude, and it is strictly related todtsuaacy and stability. These

can be studied by comparing thamericalwith the exactamplification factorr,
Fe = e KA (2.68)

of which Equation[(2.87) can be seen as an approximation.si@ering the Taylor
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series expansion of it becomes clear that the formal order of accuracy of the IRung
Kutta scheme is related to the number of theficientsc; of Equation [[2.6]7) that
match those of the series expansion. This observation ggairs why the maximum
order of accuracy of a scheme is related to the number of swt®t controls the
number of available cdgcientsc;.

The ratio of the amplification factors

~ e, (2.69)

e

expresses the two components of error introduced by the mcatheategration:|r| is
the error of amplitude (related to thigssipationof the scheme), andlis the error of
phase (related to thdispersionof the scheme). They are both functionscifAt and
depend on the characteristics of the internal scheme. Nat@[thas to be compared
to the theoretical value of 1. For instance, the classiaat-fvage fourth-order Runge-
Kutta scheme has dissipation and dispersion charactsria shown in Figurie 2.2.
The details of the figure also show the stability liRit an absolute value related to
the error amplitude that indicates the range of frequentiasare not amplified by
the schemel(| < 1), and the accuracy limitlsyiss andLgisp related, respectively to the
dissipation and to the dispersion of the time-integratidmesne. As in the case of the
spatial scheme, described in Section 2.2, these valuesndepea formal maximum

tolerable error in the propagation of the waves that can lkexlfoepending on the

accuracy requirements of the computation. For exanLol_Qal-_lalJ [1996] set both

the maximum dterence between| and 1, and the maximuihto 0.001. The overall
accuracy limitL of the scheme is given by the lower betwdggs andLgisp.

The Courant-Friedrichs-Lewy (CFL) condition for the peawiar association of the
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0.8

Ir|

0.6

ck'At
(a) Amplitude errofr| (dissipation).

0.05

1

-0.1
0

[y

ckAt
(b) Phase errof (dispersion).

Figure 2.2: Errors of the classical four-stage fourth-oRlenge-Kutta scheme as func-
tions of the &ective wavenumber. Where appropriate, the stability liRnand the
accuracy limitL are shown.
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spatial and the time-integration scheme adopted can belfoyirelatingL andR with
the maximum resolvable wavenumléand the maximumféective wavenumbek’ .,

defined in Sectioh 212 that are typical of the spatial schémthge form

A . L R
c—t <min| —, : (2.70)
AX KiAX K o, AX

The maximum value for the time steft can be obtained from Equatioh (21 70)

depending on the minimum value of the inter-nodal distakicen the grid and on the

speed of sound.

2.3.1 Low-storage Runge-Kutta schemes

The modern Runge-Kutta schemes used in association witk-fiifference high-order
spatial schemes, require two main characteristics: thedopossible memory storage,
and the highest stability or accuracy limits (or both at thee time). Essentially, four
factors can be varied for this optimisation: the type of alypo that is related to
the memory requirements and to th@aency, the number of steps and of stages of
the Runge-Kutta scheme, and the set offioents employed that is related to both
stability and accuracy.

The optimisation of the memory requirements of the explReihge-Kutta schemes
has been an important issue since the birth of the digitapedimg machines as, at that

time, the number of available registers was one of the maanihig factors of the com-

putation.ﬁjl 1951] gives a first version of a fourth-oragggorithm of optimised 3N
type, where N is the number of equations simultaneouslyesbland 3 is the required
number of levels of memory storage for each equation (thahfoclassical four stage

fourth-order Runge-Kutta is equal to 4). The basic ideartiie optimisation, still at
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the basis of the most recent methods, is to use, at each gtageformation contained

in the memory registers without resetting them. Fyfe [198&honstrates that all the

Runge-Kutta schemes can be written in 3N form, andJALLIJLth 80] shows that

all the second-order, many third-order and some fourtleiosdhemes can be arranged

in 2N form. The study of Williamson, along with that of van ddouwen [1972]

who illustrated another type of 2N algorithm, have remaiftedh long time the main

reference for the development of new schemes.

Recently, Ketcheson [2010] has analysed in a rigorous matieal form the avail-

able methods giving a new type of classification and intratye more general class
of low-storage algorithms. In addition, the author conssdee memory requirements
to provide an error estimate of the computation and thetghdirestart of each type
of algorithm.

In brief, Ketcheson found that the algorithm used| by WiIIaIJ\' 1980] (called

2N) can be written in pseudo-code as

S1 := Q(n)

for i= 2:s+1 do

S2 := A(i) S2 + Dt F(S1)
S1 := S1 + B(i) S2

end

Q(n+1) = S1

whereS1 andS2 are the two memory registers of sizef\Ns the number of stageBt is
the time stepF andQ are as defined for Equation (2164);i) andB(i) are constant
codficients typical of the scheme, and the operaterdenotes the action of storing

the right-hand side of the equation into the memory registethe left-hand side.
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This algorithm can be implemented with only 2 levels of sg@rander the assumption

that the assignmer2 := S2 + F(S1) does not require additional memory. The

algorithms proposed b edy [1994], Stan&s¢iabashi [_’L9_9J8],

7

Berlandet all [2006], and Allampalliet al. [2009] are of this type.

In contrast, the algorithm devised by van der Houwen [19¢&2lJ€éd 2R by Ketch-

eson to distinguish it from the one proposed by Williamsanpseudo-code has the

form

S2 := Q(n)

for i = 1:s do
S1 := S2 + (C a(i,i-1) - b(i-1) ) Dt S1
S1 := F(S1)
S2 := S2 + b(i) Dt S1

end

Q(n+1) = S2

wherea(i, j) andb(i-1) are the sets of constant dheients typical of the scheme.

The above algorithm can be found in the literature in varifmuss. This, proposed

by/Calvoet al.[2003,2004], is one of the most simple. Thos [2000],

and Huet al.[1996] are equivalent. In this case the algorithm can beémginted with
only 2 levels of storage under the assumption that the assgts1 := F(S1) does
not require additional memory.

Ketcheson found that both the above algorithms are actspéygial cases of

S2 =0
S1 := Q(n)
for i = 2:s+1 do
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S2 := S2 + d(i-1) S1

S1 := gl(i) S1 + g2(i) S2 + b(i,i-1) Dt F(S1)
end
Q(n+1) = S1

This algorithm is called 2S and1(i), g2(i), d(i), andb(i,j) are its constant
codficients. Due to the higher number of availablef&icgents with respect to the 2N
and 2R cases, this class of algorithms allows to write fiftid aixth-order schemes
in low-storage form and also allows some four-stage foortter schemes that are not

possible in 2N or 2R form.

2.3.2 Optimised Runge-Kutta schemes

In the last 20 years the development of the explicit Rungdakschemes has been
driven by the research in the aeroacoustic field in order @ firethods optimised
for the wave propagation. The optimisation of a scheme isresdly based on the
variation of its number of steps and of stages, and on thefsstnstant cofficients,
in order to extend either the limit of accuraktyor that of stabilityR, or of both at the

same time.

An important contribution in this sense is given by Iduall [1996] with their

Low-Dissipation and Low-Dispersion Runge-Kutta (LDDRKghemes that are the
first example of optimisation for both dissipation and drspen errors. Furthermore,
they propose two-step schemes that, alternating the nuafltstages and the set of
codficients used, can largely improve the characteristics ofrtethod. The authors
base their study on the minimisation jof- r¢*> (see Equation(2.67) and (2168) for

the definition ofr andr,) that implies the minimisation of the errors. The singlepst
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schemes proposed with 4 and 5 stages are second-ordertadcafarred to akRK24
andRK25in Table[2.B), and that with 6 stages (referred tdR&316in Table[2.B) is
fourth-order. Both the two-step methods devised (refetoeas RK4-6 and RK5-6in

Table[2.4) are fourth-order and alternate a step of 6 stagbowne of 4 or 5 stages. In

the article by Huet all [1996] the low-storage implementation is discussed and a 3N

algorithm is provided.

Stanescu & HabashL[LJ%] start from the work by Hu noting thigh the given
3N implementation, the fourth-order schemes turn secaddrdor non-linear prob-
lems. They provide the céiecients for all the schemes proposed by Hu to be used in
association with a 2N algorithm that preserves the fourttepalso in the non-linear
case.

The most comprehensive work on optimised schemes so faves diy Kennedy

et al. [2000] that analyse the performance of a large number of Bidfigta schemes

with various levels of memory optimisation applied to théuson of the complete

Navier-Stokes equations.

Bogey & Bailly [2004] concentrate on uniform and slowly nanform grids op-

timising at the same time the spatial scheme, the time-iateg and the filtering, all
in the same range of wavenumbers. The two time-marchingsetigroposed are

second-order accurate and require 5 and 6 stages.

The work by Calveet al. [2004] also aims to optimise various aspects of the wave

propagation adopting a new optimisation function thatsttie blend “good stability
properties, high order, low dissipation and dispersion lamdstorage use”. The au-

thors obtain a fourth-order six-stage scheme (referred teeev LDD46in Table[2.3)

with characteristics, in most cases, superior to thosequ@g by Huet all [1996].

Very similar results to those of Calvo are obtained by Betlanal. [2006] using
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a different approach in the optimisation. In this case the foartier accuracy is re-
tained even for non-linear problems adopting a 2N low-gferalgorithm against the
2R algorithm of Calvo. The accuracy and stability limits & tfourth-order accurate

six-stage scheme are shown in Tdblé 2.3 where it is refeoradRK46-1/NL.

Finally, the work of Allampalliet al.[2009] extends the range of available schemes

with a different approach. In this case the optimisation function eHigh-Accuracy
Large-step Explicit Runge-Kutta schemes (HALE-RK) ter@maximise the stability
limits rather than the accuracy. This type of schemes carsbiuwith problems in
which the length of the propagating waves is large relatit@the smallest cell of the
grid. For these problems the accuracy optimisation overgeleange of frequencies
results in an unnecessary limitation of the time step. Thkaltiag one- and two-step
methods having 6 or 7 stages are all fourth-order accuréte claracteristics of accu-

racy and stability of the two-step scheme (referred tRI&6-7) are shown in Table 2.4.

The finite-diference compact solver used for this study implements atseieaf
five of the above discussed optimised explicit Runge-Kutteetmarching schemes
in low-storage form: (i) the classical fourth-order Rurtgetta scheme, here imple-
mented in 3N form, (ii) Hu’s fourth-order 4-6 alternate Ldssipation Low-Dispersion
(LDDRK46) (referred to aRK4-6in the tables and the figures), (iii) Berland’s fourth-
order six-stage Low-Dissipation Low-Dispersion (LDDRKHA®.) (referred to aRRK46-
L/NL in the tables and the figures), (iv) Calvo’s fourth-ordersiage Low-Dissipation
Low-Dispersion (new 2N LDD46) (referred to aew LDD46in the tables and the fig-
ures), and (v) Allampalli’s two-step alternated (6-7) fildorder High-Accuracy Large
step Explicit RK (HALE-RK) (referred to aRK6-7in the tables and the figures). In

most cases the sets of constantfiioents for the various Runge-Kutta schemes are
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obtained by the authors with techniques of numerical ogtnon that are dicult to
reproduce, so their values have been taken directly fronotiigénal publications and
are not shown here.

It has to be stressed that the solver produced in this workngpatible with both
2N and 2R types of algorithm. Therefore, the implementatibather schemes that
can be written in these forms requires littiéoet.

Thec; codficients of Equation(2.67) along with the accuracy and stgbiinits
of a selection of the schemes here discussed, are shown le[Z&bfor the one-step
methods, and in Table 2.4 for the two-step methods. In andith Figure§ 2J3 arld 2.4
the values of their error of amplitudg and of phasé as function ofck‘At are com-

pared.

2.4 Curvilinear coordinates

The finite-diference compact scheme described in Se¢tioh 2.2 impligtiyires to
be applied to uniform grids having nodes equally spaced ényespatial direction. To
solve problems involving complex geometrical shapes, maiferm curvilinear grids
must be adopted. In order to overcome this limitation it isassary to establish a
transformation between the actual, non-uniform grid inghgsical space defined by
coordinates, y, andz, and a topologically equivalent uniform grid in the computa
tional space defined by curvilinear coordinafes, andZ. This transformation can
be exemplified in 2D as in Figufe 2.5 where at each node of theabhgrid on the

left-hand side corresponds a node on the uniform grid oni¢fne-hand side.
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Table 2.3: Cofficientsc; of Equation[(2.6I7) of the classical fourth-order explicitrige-Kutta scheme and of various second-
and fourth-order single-step explicit Runge-Kutta opsiet schemes. The values of the dissipaltign and dispersiot.gisp,
accuracy limits for dierent levels (field “Max error”) of maximum tolerable errgealso shown along with the stabilig/
limit. [ppw] indicates the values expressed in points pevelength.

Codficient| Max error | Classical Hu Bogey Hu Berland Calvo
/ limit [nd] [nd] RK4 RK24 RK25 RK26 RK46 RK46-L/NL  new LDD46
C1 1 1 1 1 1 1 1
C2 12 0.5 0.5 0.5 r 1/2 12
C3 1/6 0.162997 0.166558 0.165919771368 /61 1/6 1/6
Cs 1/24  0.0407574 0.0395041 0.040919732041 /241 124 124
Cs - - 0.00781071 0.007555704391 0.00781005 0.00785677204207853
Cs - - - 0.000891421261 0.00132141 0.00095999859500@04
Laiss 0.002 |0.824624 - - - - - 2.106869
0.00125 - - - - - - 2.031125

0.001 |0.732341 0.849090 1.720940 2.003248 1.750970 2.058761 96939
0.0005 |0.732340 0.849096 1.673345 1.909166 1.709902 1.969950 96999
Laiss[ppw] | 0.0005 |8.579601 7.399853 3.754865 3.291063 3.674588 3.189515 12B73

Ldisp 0.002 |0.788377 - - - - - 1.299215
0.00057 |0.747340 0.911251 1.384397 1.530614 2.009860 1.248420 42102
0.00125 - - - - - - 1.189958

0.001 |0.677373 0.8562  1.346950 1.468801 1.966030 1.146278 15840
Laisp [Ppw] | 0.00057 |8.407399 6.895120 4.538572 4.105010 3.126181 5.032910 58490
R 2.828427 2.8519  3.522508 3.942836 1.750970 3.815986 33826
R [ppw] 2.221442 2.203158 1.783725 1.593570 3.588403 1.646543 42216
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Table 2.4: Cofficientsc; of Equation [[2.67) of three fourth-order two-step explicit
Runge-Kutta optimised schemes. The values of the diseipatjss and dispersion
Lgisp @ccuracy limits for dierent levels (field “Max error”) of maximum tolerable error
are also shown along with the stabilRfimit. [ppw] indicates the values expressed in
points per wavelength.

Codficient | Max error Hu Allampalli
/limit [nd] [nd] RK4-6 RK5-6 RK6-7

c1(2) 1 1 1

ca(1) 12 12 12

ca(1) 1/6 1/6 16

ca(1) 1/24 124 124

cs(1) 0 0.0036105 0.005095336935

cs(1) 0 0 0.000923040959

c7(1) 0 0 0

c1(2) 1 1 1

c2(2) 172 y2 12

cs(2) 1/6 1/6 16

ca(2) 1/24 124 124

cs5(2) 0.0162098 0.0121101 0.008223191190

cs(2) 0.00286365 0.00285919 0.000871526244

c7(2) 0 0 0.000125766378
Laiss 0.002 1.703043 2.052337 1.120339
Ldiss 0.001 1.637163 2.002488 0.992488
Laiss 0.0005 1.581532 1.962898 0.880336
Laiss[ppw] | 0.0005 | 3.972847  3.200974 7.137254
Laisp 0.002 1.886675 2.242957 1.122240
Laisp 0.00057 1.871215 2.230987 1.059158
Laisp 0.001 1.845561 2.211651 0.954030
Laisp [ppW] | 0.00057 3.357810 2.816325 5.932247
R 2.519454 2.843538 5.529152
R [ppw] 2.493868 2.209636 1.136374
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Figure 2.3: Amplitude errojr| (related to the dissipation) as function ck' At of a
selection of optimised one- and two-step multi-stage ekgRunge-Kutta schemes.
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Figure 2.4: Phase errér(related to the dispersion) as functionaif At of a selection
of optimised one- and two-step multi-stage explicit Rukggta schemes.
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Figure 2.5: An example of physical non-uniform mesh (leftitd side) and its uniform
computational counterpart (right-hand side).

The transformation is defined by

é‘u = .f(X, Y, Z)’ (271&)
n=n(xYy,2, (2.71b)
g = g(X, Y, Z)' (2710)

Note that in this brief treatment no time dependence is damned as the grids are
taken as static and the time in the computational spasalways equal to the timie
in the physical space.

The derivatives of the curvilinear coordinates with respet¢he Cartesian coordi-
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nates, callednetrics

_ 9% _ o _ 0
é:x - ax’ fy - ay’ gZ - az’ (272a)
o _n _on
TIx = X’ Iy = oy’ Nz = oz’ (2.72b)
_ 9% _ % _ 9%

can be determined either analytically (when Equation {Rigin turn known in ana-

lytical form) or, more generally, numerically, as in this lkpusing a method capable

to ensure an adequate level of accuracy. As suggested bgl\@sBaitonde [_’L9_9J8],

for their computation it is correct to use the same spatiaése used for the flow

derivatives.
Starting from the Euler equations in conservation form afi&en [2.5) and using

the chain rule of dferential calculus

5U OE oF oF oF
(fx Py nxa + {x é,) (fya_‘f + nya_ + gya_é,)
0G 5G)

(2.73)
(fz o T T s

Then, by regrouping, dividing by, and after some manipulation Hirsch [1990] the

form is obtained

o(Uy o 1
E(J) ag[ (& +&F +&G) |+ 5 j(’?xE""?yF‘H?zG)] -
1 S '
Yor 3(§XE+§yF+§zG)]=3,

58



2. NUMERICAL METHOD

whereld is the Jacobian determinant

ox oz
e  0f  OF
J=|&x o o . (2.75)
on on On
a oL oL
By defining
U:%, (2.76a)
~ 1
E:E@ﬁ+§F+§Gy (2.76b)
- 1
F:3@£+mf+mey (2.76c)
~ 1
G:TﬂQE+QF+gG% (2.76d)
é:?, (2.76¢€)

the strong conservative form is recovered over a uniformagonal grid

o0 OE oF oG -
oE OF G _& 277
ot "og Tan oz (2.77)

2.5 Boundary conditions

2.5.1 Kim and Lee characteristic generalised boundary contons

In their series of articles Kim & Lee [2000, 2003, 2004] prepa framework for the

implementation of generalised characteristic boundangitmns in conservative form
for the Navier-Stokes equations. They include: soft inflamadition, non-reflecting

outflow, pulsating inviscid wall, and a multi-block intecacondition.
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All of these conditions have been implemented in invisciehfan the high-order
finite-difference solver object of this work and the general framewaskdiso been

used, with small modifications, to host the subsonic infloal aatflow characteristic-

based boundary conditions by Giles [1990] discussed in@e2i5.2.

The treatment of Kim and Lee strongly relies on the theorggilryl Hirsch([1990]

briefly illustrated in this work in Sectiois 2.1.2 dnd 211.3.
Starting from the flow equations in the strong conservativenfof Equation[(Z.717),
and applying the transformations described in Sedtior8batween the conservative

and the characteristic variable form, Kim and Lee obtain

OR
=S (2.78)

whereR is the vector of the characteristic variables defined in Equa2.22),¢ is
the vector of the convective terms, and vec#rincludes all the remaining terms.
For example, in the case of a boundary located in correspmed® the curvilinear

coordinate = 0

_ AR _paf 9B OF L OG

f:Aaf_P (§X8§+§y6§+§26§)’ (2.79a)
_pila [0 (&), gD (8), g0 (&), O, G

S = JP {s [Eaf(J)+F6§(J)+Ga§(J)+an+ag]}, (2.79D)

whereA = [11, A2, A3, A4, A5] | iS the vector of the eigenvalues shown in Equation 2.20)
and matrixP~! defines the transformation between the conservative anchtéracter-
istic variables of Equation (Z.29). The novelty of the treant by Kim and Lee consists
in the conservation of all the terms containedirand their use in the enforcement of

the boundary conditions without introducing any approxiora For the wall bound-
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aries, this idea, originally proposed by Lockard & Marri99B] but not completely

developed, can be seen as a correction of the local one-diomat inviscid (LODI)

relations used by Thompco‘n_Llf) 7,.1990] and Poinsot & for their treat-

ments. A resulting “modified” LODI system in primitive fornmcluding the source
terms of vectolS, that can be used for the definition of the boundary condstios

derived from Equatiori{2.78) as

% P _s,+ 2
i 51~+ > (€4 +€5) = S + o (Sea + Ses) (2.80a)
ou 1 1
i 5(51—55) =5 (Ses — Ses) (2.80b)
aa_\t/ + 05 = Sa, (2.80¢)
66—\1\/ + 52 = SCZ, (280d)
0D L KC (), gy L K
ot + 5 (Ca+ ts) = > (Ses + Ses) (2.80e)

wherec is the speed of sound and, V, andW are, respectively, the contravariant

velocity normal to the boundary locatedéat 0 and its components parallel to the

plane [Hung, 2002].

The general procedure for the enforcement of all the chariatt-based boundary
conditions proposed by Kim and Lee require the followingstélways referring to

the boundary af = 0):

1. The computation of the flux derivatives along the cureiéincoordinateg and
£ using the internal spatial scheme. In théirection the flux derivatives are
computed using the high-order approximation based on mleetstencils (in
this study the explicit 7-point stencil defined in SecfioB.2). The value of the

normal flux derivative is used as a first guess that will beemied in the next
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steps.
. Afirst guess for vectaf containing the variation of the amplitude of the incom-
ing and outgoing waves is obtained using the following eggpien that can be

easily derived combining Equatioris (2.76b) and (2.79a)

5 (5)+Fa(3) o ()]

. The values of are modified by imposing the physical boundary condition (de

OE

aE

0
E—
43

9
5

&x

J

9
5

&
J

&2

t= JP-l{ 3 (2.81)

scribed in the following chapters) obtaining the corredted £*.

The corrected form of the normal flux derivatives are reces fromé* by using

OE

Z3

Equation[(Z.811)
) -3

|

J

—Pt* +

g

&
PEAW

il

)+F

9
5

&
J

|

)+

c2
5

&z

J

5

(2.82)

Finally, the corrected value of the normal flux derivativa egther be used to compute

the time derivative at the boundary or, as for the implemenan this work, as the

starting value for the sweep along the coordinate normdlegdbundary.

2.5.1.1 Inflowoutflow

n)

In their article Kim & L ee [200

inspired by the non-reflecting outflow proposec

0] define non-reflecting inflome outflow conditions

Poin

base their treatment on an idea

by Rudy & Strikw:

e

da|

1992] that, in turn,

98plieg only to the energy

equation. The conditions are enforced on the primitive fofrtihe variables. They are

loosely related to a fixed reference state representing dhditton of the flow far

beyond the boundary. This technique allows to maintain annneference state. The
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partial reflectivity of the condition depends on a fimentK related to the speed of
soundc, to a characteristic length of the domé#jrio the maximum Mach number on

the whole computational fielM,x, and to a coficiento- as

K=o(1- M,iax)(%). (2.83)

Note that the correct value for depends on the particular problem and should be
determined through tests. However, Kim and Lee recommeaddlue 0.25 that in
their experiments allows at the same time to keep the meanafidine desired value
and to avoid most of the reflections.

The number of conditions that need to be imposed is relatédetalirection of
propagation of the characteristic waves that, when outgane computed from the
state of the flow while, when incoming, are determined impgsi relation on the cor-

responding value of. The corrected form is labelled &s

For a 3D subsonic outflow locatedéat &maxas on the right-hand side of Figlirel2.6
(a), only one wave, the acoustic pressure wave defined bytieguUa.22¢), is entering

the computational domain and its value is specified by tedicel

ls = K( o ), (2.84)

whereK is as by Equatior (2.83) andp are the static pressure and density in that
point,cis the speed of sound, aipd is the value of the pressure at a point downstream
of the boundary where the flow state is considered stationary

When the outflow is supersonic, as on the right-hand sidegpfrEi2.6 (b), all the
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(a) Case of a subsonic mean flow.
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(b) Case of a supersonic mean flow.

Figure 2.6: Waves leaving and entering the computationaialo through an inlet
plane att = 0 and an outlet plane &t= &nax in case of subsonic or supersonic mean
flow.
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waves are outgoing an there is no need for any condition astéte on the boundary

is completely determined by the information coming from filoev field.

For a 3D subsonic inflow boundary locatedéat 0 as on the left-hand side of
Figure[2.6 (a), four waves are entering the computationial éied the following con-

ditions are imposed on the characteristic waves defined matitims from [(Z.22a)

to (Z.22dl)

€ =0, (2.85a)
6 =K W_2~°°), (2.85h)
=K \7_2~°°), (2.85¢)
6 =K(0-0,+ p;Cp‘”), (2.85d)

where the variables with subscrigtrefer to a stationary state upstream of the bound-
ary. The first condition odf; is quasi-isentropic, the second and the third correct the
incoming vorticity relating it to the transverse comporseat the velocity, and the
fourth regards the outgoing acoustic pressure wave.

When the inflow is supersonic as on the left-hand side of i@ (b), in addition
to the conditions expressed by Equatidns (P.85), the valu& bas to be corrected

similarly to £

j-0 p_p‘”]. (2.86)

KE:K[—(U—UOO)+ —

The solver also includes two generic inflow and outflow boupdanditions that
implement either the subsonic or the supersonic versioriseo€losure by checking

node by node the sign of the eigenvalue corresponding todhmpconent of the con-
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travariant velocity normal to the boundary. This versionssful when the flow veloc-

ities are in the transonic range.

2.5.1.2 Inviscid wall

The condition regarding the inviscid wall, described in K&l e€ [2004], is based
on the assumption that the component of the velocity normahé wall has to be
zero. This condition can be enforced starting from Equaf@B0b) that relates the
amplitude of the incoming and the outgoing acoustic waveshé case of an inviscid
wall located at = 0 the amplitude of the reflected wave propagating rightwdjds

depends on the amplitude of that propagating leftwésds
Gi="ls+(Su—Se) + 2—| . (2.87)

The condition of Equatiori(2.87) includes the case of a vibga(or porous) wall
and the purely stationary inviscid wall condition is recaaejust by setting‘% wall =

0. Note that if $4 = S = 0 and the computation @ with Equation [Z.8/1) does

not include the contribution of the transverse componéhéscondition expressed by

Equation[[2.817) reduces to the wall boundary closure of $ti& Lele [1992]. As this

condition is not linked to any reference value, to avoid thegible drift in the mean

value due to the numerical rounéferror Kim & L ee [2004] suggested, in addition to

the previously stated condition, to overwrite the Cartesiemponents of the velocity

for all the nodes on the boundary with the exact values. Fauatary normal to the

66



2. NUMERICAL METHOD

curvilinear coordinaté, the correction is

-1

u é?x gy gz U
vl=l& & of |v. (288)
wi |-& 0 &| |W

where

(2.89)

gx — éx é’g'y: fy é‘:z: & .
\[‘fxz"‘fyz""fzz \/fxz""fyz"'fzz ‘fxz"‘fyz"‘fzz

This additional correction is also implemented in the solwvben the Kim and Lee

inviscid wall condition is used.

2.5.1.3 Inter-block boundary

To complete the set of boundary conditions that can be spdaiithin their frame-

work,Kim & Lee [2003] propose an original specification oétimter-block boundary

condition based on the characteristic waves.

Even for the most simple problem geometries, the non-umifgrids very often
contain singularities. At these points the slope of a gne labruptly changes caus-
ing a discontinuity in the grid metrics. This condition igesf impossible to avoid and,
especially for high-order solvers like the one used in thaskyit causes spurious oscil-
lations that contaminate the field. Furthermore, it can bad¢ason for a discontinuity
in the solution.

Kim and Lee tackle the problem by using a multi-block compiatathat relegates

the singularities to the borders so to avoid special treatewithin the field assigned
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to each process. On the borders where the singularitiesresemnt, the computation
of the grid metrics and that of the flow derivatives is exedutsing one-sided stencils
that do not cross the borders themselves, so that each lddtkolated” from the
discontinuity. Once these conditions are satisfied, theahttoundary closure can be
enforced in the following way: if a singularity is presentween two abutting blocks
having a vertical boundary in common, the flow state of a nadéhe border of the
left block (denoted by the letter “L”) has to be equal to thatlee corresponding node
of the right block (denoted by the letter “R”). To ensure thigeir time derivatives at
each Runge-Kutta stage have to be the same. This conditiohecaeen in terms of
characteristic waves within the theory given at the begigmif Sectiol 25 as

- -S =FR-S%. (2.90)

(o

At this point the question is: which is the process that hgsas the values and
which the one that has to receive and overwrite them? Forwaeh, the direction in
which the information has to be passed is determined by gredfithe eigenvalues of
Equations[(Z2.20) that is related to the direction of propiaga

This technique, potentially useful for the second, thire &ourth test cases illus-
trated in Chaptelr]3, is not used for their actual solutionva#) the current config-
uration of the solver, it cannot be employed in associati@h explicit and implicit
filtering methods whose stencils cross the borders. The fitdying technique cur-

rently available in the code compatible with this methodhie prefactored implicit

filtering defined by Hixonl[1999], detailed in Sectiobn 2121t currently does not al-

low the use of variable; (free codficient) strategy and, therefore, is not used in this

work.
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2.5.2 Giles subsonic non-reflecting boundary conditions

The Giles non-reflecting boundary conditions for the limgsa Euler equations de-

scribed in Giles|[1990] are based on the treatment of the wguation by Engquist &

Majda [197 b] and on the analysis of well-posedness by Kfg&g0]. First, the author

formulates an ideal non-local boundary condition basederFourier analysis of the
outgoing waves: this type of boundary requires the knowgeafghe flow state on the
whole computational field and its complete history. The cotapon implies a Fourier
and a Laplace transform in time and is, in most cases, too atatipnally expensive to
be practically viable. Along with this exact condition Gileroposes three approximate
treatments: 1D for unsteady flows, exact 2D for steady-stdtgion, and approximate
2D for unsteady flows. This last boundary closure is suredyniost interesting for the
adoption in practical problems and has proven a very pophlaice since its proposal.
It is second-order accurate and it basically consists ictmeputation of the incoming

wave amplitudes based on the transverse components ofdhactéristic waves. The

advantage of this approach with respect to the treatmeendiwy Thompson [1987,

1990] is that outgoing waves not normal to the boundary acewatted for.
The formulation of the subsonic inflow boundary conditioma®n by Giles in his

article, valid for the application to uniform 2D Cartesiamdg only, is, in dimensional

form
-2, 0 0 1 —C2 Voo 0 0 Voo
0 0
0 0 pPoCo O —Q + PooCoolso  PooCooVeo  Coo —Q =0. (2.91)

ot 0 Py
0 PoCoVeo PuCou™7" Ve
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At the outflow,

d9Q
E-I—

0
[O —0eoCooVoo  PooCoolles Voo —Q=0, (2.92)

0 —puCs O 1] dy

where, in this 2D case, the vector of the variales- [p, u, v, p]T does not include
the component along theaxis, and the speed of sound and the flow variables with
subscripto are relative to the reference state around which the eqsadice linearised:
Quo = [Peos Uoos Voo, Peo]

For their implementation in a program, it is preferable te tre version in charac-

teristic form (also dimensional)

Ry
R; Voo 0 0 0
P B d |Rs
o Rs|+| 0 Vo, _(cm;um) _(szum) 5/ N =0, (2.93a)
Ry |0 &=y 0
Rs
Ry
R R
R 1o —ue 0 vl 2™ =0 (2.93b)
ot oy R,
Rs

where the definition of the vector of the characteristicaaliesR is the same used for
the Kim and Lee treatment in Equatiohs (2.22).

Note that the time derivatives of the characteristic vdeamot supplied by the
Giles conditions are computed directly from the state oflihe field. The flux deriva-
tives are used to obtain the values%éfthat, in turn, through the multiplication by the

respective eigenvalues, supply the valuéhaf
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To generalise the definition of these boundary conditionti®application to non-

uniform grids, the approach of Medioa [2007] is followed.eTdeneralised equations

in primitive dimensional form are

_Coozé:x O O é:x

Q

O poocoofx poocoofy lP

0 0 0 0
0Q
10 PuCoo(—EVes + MyUx)  PooCoo(ExVeo = NxUso) &Y |Gy T 0,
0 PooCuol(EVeo + 2eXU)y 0 (£ + BETUy iy ¢
(2.94a)

[ Q

0Q
+ [O PeoCoo(—ExVeo + MxUeo)  PooCoo(—EWVeo + MyUes) PV + Coolt o 0, (2.94Db)

where

+
N - f_X”XT qfv"V, (2.95a)
D= \ng+mG+ 02, v = f—xnyq,—qunx. (2.95b)
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The same equations in characteristic form are

R 0 0 0 0
Hu V(Coo P+Us) V(Coo P —Uso) 0 R3 =0 2.96
aR3+O Vw—v T gz _Ta_ﬂR_, ( a)
4
R, 0 _v(cooz‘;;um) Vo, — u(coz‘;;um) _u(3cz;’2—uoo) .
5
Ry
8R5 _ 0 R3
F'i‘ 0 _V\Pu_‘;’ f% Vw+% 8_77 =0. (296b)
R4
Rs

Note that in the finite-dierence solver used for this study the flow derivatives in
the transverse direction, from which the derivatives of¢haracteristic variables are
obtained, are always computed using the standard spatigdact scheme. The flow
derivatives normal to the boundary are evaluated with theesaded 7-point stencils
defined in Section Z2.2.2. Unlike for the Kim and Lee boundamditions, for which
the corrected version of the flux derivatives on the boundegyised to start the sweeps
computing the flow on the nodes in the interior of the compoma domain, in this
case the correction is directly applied to the time deneadind hence it is restricted to
the nodes on the boundary.

For the sake of completeness, here the generalisation taméorm grids of the

extension to 3D Cartesian coordinates of the Giles boundamdition given by Me-

dida [2007] is shown. These conditions, tested in the thest tase illustrated in

Section[3.B have shown a long-time instability that makesntmot suitable for the
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solution of the problem. The equations are shown in charatiteform only

. R,
Ry 0 O 0 0 0
R,
o R |0 v 0 0 0 P
a * U Ven(Coo P+Ucso) Ven(Coo P—Uo) 6_ R3
Rs| [0 0 wvo-tfa= el valel o)) o
Ra
Y—Uy oo P+Uso 3Coo P —Uoo
»R4_ »O 0 _Vfr](C;o\Pz = ) Voo - :uffl(c4\{l2+u ) _ﬂ&]( (;_\Ilz - ) R
5
) R,
0 0 0 0 0
R,
0 Woo_/lé'(uoo 0 _ ver(Coo P +Ueo) _ Ver(Coo'W—Uoo) P
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where
Exnx + Eymry Exnty — EyTix
Hen = % Ven = % (2.98a)
X X+ z'zZ xlfz — 6ZI[x
Meg = (ér an(Df 7 ), Ver = —(f UIP(Df 4 ) (298b)

For the application of this type of boundary condition totist cases of Chapter 3,
two modifications are needed. The first regards the pogsgibilinput vortical waves
(function of the node coordinates and of time) from the imiatle retaining the non-
reflectivity of the boundary closure (as required for testesatwo, three and four in
ChapteiB). The second modification is relative to the usé@tbibundary condition
for problems where the reference flow field is not knaypriori and only a minimum
set of mean flow reference values is specified on the boursd@sein the fourth test
case in Chaptéld 3). For these problems, the boundary conditieds to be able to deal
with both a steady-state and an unsteady type of solution.

Consider a boundary where the subsonic non-reflecting Gdesdary condition
is enforced. In general, the time derivative of the flow fiatd primitive form, is

composed of the following three parts

@:(@) +(@) +(@) , (2.99)
ot ot perturbation ot mean ot Giles

where the first component (with subscript “perturbatiosddsponsible to feed into the
field the desired perturbation (a vortical gust in the cagb®problems of Chaptért 3),
the second component (“mean”) maintains the prescribechroeaditions, and the

last (“Giles”) refers to the reaction of the boundary to thegoing waves, necessary

to maintain the non-reflectivity.
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The first component of the right-hand side of Equation (2d#)ends on the ana-
lytical definition of the incoming disturbance usually knoawver the whole field or, at
least, over the boundary as a function of time and node lmtafihis component can
either be initially subtracted directly from the value otihow field on which the Giles
closure is computed, or, alternatively, it can be subtdicie the analytical derivative is
always known on the boundary, from the time and the flux dewea used to enforce
the non-reflecting condition. This part is then re-addechtodomputed time deriva-
tives after the application of the Giles closure and makeskrturbation” component

“invisible” to the non-reflecting boundary condition. Thiery dfective method was

first proposed by Hixoet all [2000] and also adopted by Ragab & Salem-Said [2007].

The “mean” component of Equation (2199) is not computed ftbenactual value
Q of the flow field but from its mean value, denoted by the barr ev&fficiently long
period of time. For the problems solved in Chajfler 3, thietperiod is equal to the
period determined by the fundamental frequency of the inagrgust to which the
outgoing acoustic waves are also related. This choice altominimise data history
and, therefore, the quantity of memory required for the cotafoon.

In general, this component is only needed when the referdmees unknown and
it is univocally determined by a minimum set of conditionepthe boundaries. In
the fourth test case, described in Secfion 3.4.1, this ssiraditions consists of: mean
inflow anglea, mean stagnation pressupg; and temperatur@ at the inflow, and
mean static pressune at the outflow. The following treatment refers to this case in
2D but, with small adaptations, it can be applied to any setelf-posed boundary
conditions in 3D. The problem here is to relate the time mm(%)meanto the value
of sa, 6Prot 6‘ITt0t, andép that represent the fierence between the current value of

these variables and their target value specified by the @nobl
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At the inflow, the stagnation values and the flow angle ardedlto the primitive

variables as

Prot = P + %p (u2 + \/2) , (2.100a)
(u2 + v2) p (u2 + v2)

Tt =T +
e 2, pR 2,

: (2.100b)

a= arctar(\—l:), (2.100c)

where the thermodynamic constaftsindc, are defined as in Sectign 2.11.1 and the
static temperaturé is

T- & (2.101)

From Equationd (Z.100) it is possible to analytically detiie set of relations

aptotép + aptotéu + aptot + aptot (U2 + V2)

1) = oV op= 0p + pUdU + pVoV + o,
Pot =5 U v op P = T oprpwltp P
(2.102a)
O0Tiot OTiot O0Tiot O0Tiot p u \ op
O0Tiot = op + ou + oV + op=—=0p+ —0U+ —6V+ —,
o= P e v ap P R T c, ¢  pR
(2.102hb)
Y, u
oa = T V26u + T V26v, (2.102c)

from which it is evident that, to obtain the variations of {mitive variables from

the variations of the available stagnation properties ditigeoflow angle, an additional

relation is needed. Following Ahmadi & Ghaly [1996] and, #arly, Hixon et al

[2003,12004], this relation is supplied by the outgoing cleseristic waves. At the

inflow, only Rs defined by Equatiof(Z.2Pe) is outgoing. When computed frioen t
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averaged values of the flow in a steady-state condition itdvde equal to zero (note
that here, unlike in Sectidn 2.1.2 wheftés already of unit length, the metrics have to
be divided by¥ having value defined by Equatidn (2.95a))

P S PV
O0Rs = lPéu lP6v+pcc5p_0. (2.103)

Collecting Equationd (2.102) and (2.103) in matrix form amgoducing the time

averaged values, it follows that

- B _2 )

| (€2 ol v

- AR A | U

L T (2.104)
o 0 -mw mw 0|V ov

oRs| | 0 -% % X|lop] |op

where matrixH can be inverted, either analytically or numerically (asha tmple-

mentation of this work), to give the sought relationship

oo S Prot
su 5T,
—Ht . (2.105)
ov oa
5p SR:

The correction to be applied to the characteristic varslbbkn be directly computed
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by pre-multiplying by matrix. ~* in Equation [2.21b) both sides of Equatién (2.1105)

SRy Sp 6 Prot
SR su 5T,
D ) e T i B (2.106)
oR4 oV oa
6Rs 5P| SR:

It has to be noted that, in the practical computation, thee/alfélig, as those of
the components of matrild 2, is based on the variation of the mean flow variables,
while 6Rs is the actual correction of the characteristic variablieat,talong with the
other components, contribute to establish the correcte@saf the actual time deriva-
tives on the boundary. When the flow field is in conservativenfdhe only diference
with the above procedure is that matkk and its inverse have to be multiplied re-
spectively by matrixM —* andM of Equations[(2.26) and (2.25). The correction of
Equation [(2.106) is applied only at the end of each time steprmt at each Runge-
Kutta stage as the other terms in Equatfon (2.99).

At the outflow, the treatment is similar with the onlyfidirence that, in this case,
one condition is provided by the problem (the value of théisfaressurep) and the

remaining three conditions are given by imposing the amgétof the outgoing char-
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acteristic waves equal to zero. The condition can be sunsedhas

SRy |& 0 0 FE|lop 5p
SRyl |0 & —& of|su su
Bl “H| |, (2.107a)
SRy |0 & T LoV N
spl |0 0 1||sp| 5p
SRy Sp SR;
SR su SR,
D ) e TR i (2.107b)
0Ry oV SR,
6Rs 5p op

2.5.3 Symmetry

As seen in Section Z2.2.2, the treatment of a symmetry boyraendition can be done
in a general standard way by employing the ninth-order eenirl-point stencils de-
fined by Equationd (Z2.47) with the déieients shown in Equation (2.48). The flow
values of the first five rows of nodes near the boundary haves tmibrored on the
other side of the boundary and stored in five rinds of addiighostnodes. Then the
centred stencil of Equation (ZJ47) can be applied to comihetéorward and backward
half-derivatives necessary to start the sweep computiagréttues of the derivative
within the field. The only disadvantage of this techniqueslated to the amount of er-
ror introduced by the centred explicit stencil that, althlowery similar for its spectral
characteristics to the compact scheme, can not ensurertieelsgel of accuracy for
every wavenumber.

When the axis is parallel to one of the Cartesian axes, a sialfgrnative to the

use of the explicit stencil is available. It is based on tharabteristics of the compact
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axis ,
of symmetry i~ forward derivative
» backward derivativ

e Oy

0 2 3 4 node number
(a) Axis of symmetry on a row of nodes.
axis A

forward derivative

of symmetry ~%
' backward derivativ

(ERRy.

(b) Axis of symmetry halfway between rows of nodes.

N —O—

Figure 2.7: Two schematics illustrating the alternativeety of treatment of the sym-
metry boundary condition.

scheme and does not introduce any additional error withetdp it as the boundary
nodes are treated exactly as nodes belonging to the int&ribie domain. The fol-

lowing description regards a generic 2D problem with theeEafjuations in primitive

form.

In the standard treatment, the calculation of the forward backward spatial
derivatives for a row of nodes is executed with two sweepgistafrom the oppo-
site sides. They are independent and their order of exetbgars no importance.
With the alternative technique the computation starts fthenedge opposite to that
where the symmetry is enforced. There, the value of the daifsatives is known
and the sweep evaluating, for example, the forward deveatan be executed. The
alternative symmetry condition is applicable to the twddwing cases: (i) the axis of
symmetry is coincident with a row of nodes as shown in Figur@), or (ii) the axis

of symmetry lies exactly halfway between two rows of nodeskaswvn in Figuré 2]7
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(b). In the former case, when the first node from the axis ofragtny of the physi-
cal domain is reached (node 2 in detail (a)), the spatialdive, being based on the
value of the flow at nodes 1, 2 and 3 and on the half-derivativeode 3, can still be
calculated by the three-point stencil of the prefactoreshgact scheme described in
Sectior 2.R. For the calculation at node 1 an exception isdiiced in the code: due
to the symmetry of the flow variables, it is possible to ima&gafurther point (number
0 in detail (a) of Figuré_Z]7) having the same flow charadiesf node 2 with the
exception of the velocity component perpendicular to the,dkat has opposite sign.
So, the forward derivative at node 1 can be computed as if $tpeat of the interior
domain. Its backward derivative can be evaluated by exptpéagain the symmetry of
the problem. In fact, for the pressure, the density and thecitg component parallel
to the axis of symmetry, it is always equal to the forward\dive with opposite sign.
This is obvious from the fact that the sum of the two half-datives, representing the
derivative at the node, on the boundary has to be zero. Theexcakption is the ve-
locity component normal to the axis of symmetry, for which thvo spatial derivatives
are equal and with the same sign. Once the value of the badldeaivative at node 1
is known, it is possible to execute the second sweep for thkiatron of the backward
half-derivative in the domain interior.

For the second case of Figulrel2.7, in which the axis doeseotlia row of nodes
but is located halfway between them as in detail (b), the agatwn is even simpler
as the backward derivative at node 0 is equal and opposite totward derivative at 1
with the usual exception of the velocity component normdhtaxis of symmetry, for
which the two contributions have the same sign. In this caishe end of each Runge-
Kutta stage, the values of row 1 need to be copied to row O \wigheikception of the

normal velocity component for which a slightly more complesatment is needed.
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When both the opposite boundaries of a block are of symntgpe; the illustrated
technique can be used anyway by starting the sweeps witevafuhe half-derivatives
computed by an explicit stencil and executing them twicas Tdépresents an additional

computational cost that has to be considered.

2.5.4 Bufer zone

Thebuffer (or spongé zone method, originally proposed by Wasi [L[1997] but

here used in the formulation given by Cheinal. [2004], reduces the reflections from

a boundary by numerically damping the outgoing waves. Thaarical damping is
applied within a zone abutting the boundary by modifying sleéution vectorQ at
every node via a cdiciento that depends on the node position. In a 1D case, with

the left boundary ax = 0 the correction takes the form

Q=0- O-(Q - Qtarget) ) (2.108a)
(Lb ; X)ﬂ
o(X) = a , (2.108b)
Lo

whereL, is the buter layer thickness equal to the distance between the ekteynad-

ary of the computational domain and the coordinate of therfode not corrected, and
a andg are two coéicients that in this work are set respectively equal to 1 abd 3.
a controls the value of- at the boundary and controls the blending of the interior
flow solution with theQager. Qrarget IS @ set of reference values, usually constant.
The treatment in case of conservative variables is identith U andU ,qe; that take
the place ofQ andQaget. This boundary condition is particularlytective when the

buffer thicknesd., is large and, therefore, the discontinuity at the interfaegveen
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the treated zone and the rest of the field is minimised. The st@rtcoming of this
technique is related to its computational cost due to th&iaddl nodes in the hitier
layer.

A modified version of the kiier zone is newly devised in this work in order to
associate the non-reflectivity of its standard treatmetit thie necessity to introduce a
vortical gust from the boundary inflow as required by mostef test cases described
in ChaptefB. Numerically, the treatment follows Equati@gd08) with the only dif-
ference that the target valW@age: IS NOt constant but equal to the sum of the flow
reference value plus the vortical gust superimposed onhits Bufer layer treatment
with a time-depender@,ge: Can be implemented provided the gust is known over the
whole thickness of the lfter as it is in test case number two and three, and can also
be applied to the outflow when the field near the outlet &deantly similar to the

introduced gust.

2.6 Parallelisation

In order to solve problems on models having a number of nokeseeling the com-
putational power of a single processor in terms of addrésgsabmory, it is necessary
to distribute the computationatfert executing the code in parallel on multiple pro-
cessors. The available strategies to realize this areuaaad essentially depend on
the nature of the solver that needs to be “parallelised” anthe maximum number
of processors that have to be employed in parallel for thetieol of the problem. In
order to ensure the maximum flexibility and portability, andallow the solution of
problems on an indefinite number of processors, the messeging interface (MPI)

standard system is chosen. In particular, the model addptetthis work is MPI-1
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that does not allow shared memory. Details regarding tlisrtiggue can be found, for

example, in Pacheco [1997].

MPI can be used to modify the algorithm of the original “scataode in diferent
ways. For instance, it is possible to assigfiatent independent tasks to a number of
processes that, at the end of the computation, exchangeptiméial results to obtain
the general solution of the computation. Given the natuthefinite-diterence solver

used in this work, the strategy callddmain decompositioor, more accuratelyata

decompositions used [[Smithet all, [1996]. With this strategy the various processes,

as the independent entities connected by the messagegassiriace are called, all
execute the same algorithm on sets of data correspondinéeossht parts of the flow
field. Hence, the computational steps executed by the v@pmcesses can onlyftér
due to the conditions enforced at the boundaries. The datantgeosition type used
for this work is callechon-overlappings the portions of the physical field assigned to
each process have in common only the nodes on the boundagythiNd this definition
does not regard the overlap due to the presence oflbstnodes necessary to the

data exchange and described further on in this chapter. Bluvat the parallelisation

and data decomposition strategies can be found in SemﬂJ [1996] and Quarteroni

& Valli [_ﬁﬂ].

Figure[Z.8 shows an example of the two levels of data decoitqoselated to a

simple 3D multi-zone model. The initial model, shown in defa), is composed of
a number of structured blocks connected through their fatbs is the first level of
data decomposition that depends on the structure of theatigmodel. The solver,
as shown in detail (b), allows to decompose each of the ifitacks in the desired
number of parts along every curvilinear direction. The lt#sy sub-zones are still

structured grids and can be assigned ftedent processes.
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(a) First level of data decomposition related to the stmectf
the original model.

////\/

(b) Second level of data decomposition.

Figure 2.8: General decomposition of a multi-zone model.
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The two levels of data decomposition seen in Figureé 2.8 impty levels of data
communication. Consider the simple multi-block 2D modeFafure[2.5: it is com-
posed of two structured blocks. Suppose to divide zone 1 iars@nd zone 2 in 12
parts as shown on the left-hand side of Figuré 2.9. The conation of the pro-
cesses within each of the initial zones in MPI is calletta-communicatiorand is
represented in the figure by black solid arrows. The set upedd communications
largely relies on functions, provided by MPI, that allow tat@matically subdivide a
structured mesh in smaller subsets of data assignedferetit processors, creating
what is called a Cartesian communicator. While the domademmposed, a set of
information is also provided to each process (essentidiby position of the process
within the structured block and its local rank) to allow thekange of messages be-
tween neighbouring processes. The right-hand side of €@ illustrates the topol-
ogy of the model when decomposed by MPI in two separate Gamteemmunicators:
the local rank of each process and its Cartesian coordimates the communicator
are shown.

The second level of data communication aims to allow the axgh of data be-
tween processes that are part of two separate abutting.zibmessually callednter-
communicatiorand it is represented by dashed arrows in the schematic ¢eftiend
side of Figuré 219. In this case two connected zones can hfieeaht orientations of
the curvilinear coordinates. For example, in Fiduré 2.5cthrnection along the upper
edge of zone 1 has coordinates in agreement between the dekskdst; coincides
with &, andn; andn, have the same orientation. In contrast, the connectiorgatom
right edge of zone 1 has curvilinear coordinates that arecowipatible between the
two zones and the message passing requires a manipulattenddta. For this reason,

the second level of communication is much more problembaa the previous and
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Figure 2.9: An example of the decomposition of a two-zone ehoth MPI Cartesian
communicators.

its implementation can be made in a number of ways followirftetent approaches.
That adopted in this work avoids the use of theer-communicatoras specified by
MPI because they wouldi@ct the éiciency of the code as they represent an excep-
tion in the code algorithm. More simply, the communicatistased on the use of the
general ranks. These are values that unambiguously igexgth process within the
most general communicator (usually called MBEOMM_WORLD, including all the

processes). For this purpose the code goes through theviofsteps:

1. each process, that already has the possibility to conoatewith its neighbours
belonging to the same block (since it knows their local raitkiw the Cartesian
communicator), exchanges its general rank with the sudiogrprocesses. This
allows to pass messages using the general communicatanwébh block;

2. themasterprocess (that, as explained in Secfiof 2.7, manages theadjenmut-
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output of data) executes a part of the code that, starting fitee geometri-
cal characteristics of each connection between tfferént zones of the initial
model, computes the general rank of each couple of abuttogepses and sends
a message with this information directly to every processlired;

3. atthis point, each process knows the general rank osaikighbours, including

those that are part of affierent block, and can use it to send and receive data.

Once the communication between each process and all ithbwigs is estab-
lished, and the initial condition of the flow field is distriied along with the boundary
conditions, the proper computation can be started.

Consider a simple 2D mesh with 17 nodes per edge like the angrsin detall
(a) of FigureLZ.ID. The boundary conditions enforced on eidd are periodic and
use the same algorithm of the inter-block as detailed ini@2@2.2. The mesh can
be divided, for instance, in 4 squared parts, outlined irfithee by thick black lines,
having the same extension (9 nodes per edge) and assigneffeiemnt processes.
Detail (b) of Figurd 2.710 shows the grid that each of the fawcpsses has to allocate
in its memory. It is not limited to the field portion assignepigyed out in the figure)
but has to include additional rinds of nodes. In fact, as seeBection 2.2, for
the sweeps computing the derivatives to start, the valudsedhalf-derivatives on the
boundaries are needed. These values are provided by ek stiehcils for a wall or
an outer boundary, or by centred stencils in case of ineckdboundary. This implies
that along the inter-block boundaries each process alsdsneeknow a part of the
field owned by its neighbours. Its size depends on that of tmg@yed stencil. This
requires a data exchange between neighbouring procesesextd of each Runge-
Kutta stage. The data received from the neighbours is starad additional part of

the computational grid usually calleghostnodes. The adoption of the explicit 11-
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point stencil of Equation{2.47) for the computation of thafiderivative (black and
white dots in detail (b) in Figurie Z.1L0) implies 5 rinds of ghaodes (black dots in the
figure) along each inter-block boundary. It has to be notad iththe code object of
this work the approach is completely parametric and it Iedle freedom to specify
any number of rinds and so, if needed, it is possible to use#s$eof any length and

order of accuracy.

2.6.1 Communication in reduced form

The main drawback of the type of computation shown aboveaswinen high-order

schemes are used, the number of rind nodes necessary torealata received from
the neighbours can be relevant, especially when 3D grids@neerned. In terms
of memory usage, this aspect could represent a strong tioritaTo overcome this

problem, the computation can be approached irffemint way: instead of computing
the whole backward and forward derivatives in one go, it issiae to use a two-step
process.

First, instead of using the whole 11-point stencil shown qué&tion (2.4V), every
process computes just one half of the spatial derivativexssat¢he boundary, based on
the nodes that belong to its own share of the flow field (e.gntues defined by the
white dots in detail (b) of Figule 2.10). This is done with tise of stencils that cover

6 nodes. For the boundary on the left-hand side of the gricetaid(b), denoted by
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(a) Two dimensional model with periodic boundaries
divided into four parts.

(b) The actual local grid of one of the processes
shown in detail (a). In addition to the physical data
proper to that process (the area greyed out), five rinds
of nodes are included to store part of the flow field of
the neighbouring processes.

Figure 2.10: An example of the decomposition in four paris 2D block with periodic
boundaries.
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node index 0, the stencils are defined as

(afoF) 1b fy+ ZSZ b; f (2.109a)
- = <~ lo i lis .

ox ), 2 —

81‘05) 1 >

— | = -Zbhyfo— > bf, (2.109b)

where the coficientsb; are still those shown in Equation (2148).
Similarly, for the boundary on the right-hand side of thedgn detail (b) of Fig-
ure[Z.10, denoted by indémax

Ofimax’) 1 Z‘l
( alr:(ax )2 = Ebo fimax + ) bi 1:imax+i, (2.1108)
afimaxB _ 1 S
( ax , = —Ebo f|max - i:§_5 b f|max+|- (2'110b)

Then, the two halves of the derivatives (just two values Bwheboundary node) are
exchanged with the neighbouring process and the whole wa&neée reconstructed.
This method reduces the number of required rind nodes toama, most importantly,
keeps them constant when the order of accuracy is incre&®deven with stencils
having more than eleven points, the quantity of additionaiary and the bandwidth
required by the message passing does not change. Noticeypiaat from a dierent
round df, the results are numerically identical to the ones obtalmethe standard
method.

Unfortunately, this technique cannot be used when the prolib be solved re-
quires the application of high-order filtering methods like explicit and the standard
implicit described in Section 2.2.3 that employ stencilsssing the borders. In these

cases the message passing of the whole set of flow data issaeces
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2.7 Input/output

In the current version of the solver, the initial data of thielgpem (essentially: flow
field and node coordinates) can either be introduced by miodifa specific module
of the code or by using a standard CFD General Notation Sy§3BaNS) external
file. The latter method neatly separates the phase of modlaitote with the actual
computation and enables the user to examine and modify thimioed data and, if
required, to exchange them with other researchers. The Cig@$San be managed
by codes written in C or Fortran via an open source mid-lelehty of functions called
libcgnsavailable on dterent platforms. In addition, recently, a similar librasiled
mexCGNS has been developed to be used in association wiiHdwgl programming
languages like MATLAB and GNU Octave.

Independently of the way in which the initial data are introed, they need to
be distributed to all the processes in order to provide thetin the minimum set of
information required for starting the computation. Thistdbution can be executed

essentially in two ways:

1. One of the processors (calletstej is in charge of the reading and writing from
and to the external files, so that all the stream of data paksasgh it. It dis-
tributes and collects data with one to one communicationkute computation
is initialised and when the results are output. A varianhaf method can be im-
plemented using intermediate passages, with the masteeggsending blocks
of data tolocal masters that then distribute the data to the single prosesse

2. Each process, having been provided by the master of ennfagmation, reads
the coordinates and the initial flow field directly from theexxal file. For the

output, similarly, each process directly accesses therfdenaites its part of the
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results.

The first solution is the only one available on those higHgrerance computing
(HPC) clusters in which just one process is allowed to acttesdisk for reading and
writing purposes. For this reason it is the most reliable &nsl portable on every
system. Unfortunately, it also brings some disadvantages. main ones regard the
superior complexity of the code and the fact that the prooégsput/output is much
slower than that resulting from the second solution. It sbaimportant to notice that
the second option can actually be realized ifiestent ways depending on the charac-
teristics of the host system (type of connection betweendigles and file system used)
and on the type of output (CGNS or other type of data file). Hwsd option also re-
quires the adoption of MPI-2, a level of the MPI standard tuaitains an extended set
of functions with respect to MPI-1, including shared memopgrations and parallel
inpuyoutput.

The first solution was chosen for the program object of thiskwiecause of its
higher portability, but the code was written in a way thabat to easily implement the
second solution in those cases (e.g. models particulagg kaat have to be distributed
on hundreds of processes) where the requirements regahgimgadingvriting speed

should become of the highest importance.

All the additional parameters necessary to execute thelations are read from
an external text file. This file is used independently of theetgf input of the initial
conditions and of the output of the results. It consists oé¢hsectionsparameters

always readparameters read if the input is from CGN&hdspecial sections
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2. NUMERICAL METHOD

2.8 Error norms

Let U,, be the numerical solution of the flow state dsgthe analytical or the reference
solution defined on the san® point, the multidimensional error vectercan be de-

fined as the dference between the two values= |U,—U,|. To evaluate the accuracy
of a set of results and its order of convergence towards feeargce solution when the

mesh is refined, the following two error norms are used thhoug Chaptelr13:

1. thenormalised 4 -norm(also referred to in the literature alg  nornt)

(2.111)

2. thel, -norm(also referred to in the literature hg- norm)

| -norm= maxg), i=1,..,N. (2.112)
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Chapter 3

Test case applications

This chapter contains the results from four test cases that heen solved to demon-
strate the ability of the high-order finiteftBrence solver to simulate the conversion of
kinetic energy into noise by the interaction of vorticitywes with rigid surfaces. This

goal is achieved by solving four test cases of increasingotexity.

Thefirst test casanodels the sound field generated by an oscillating field afoun
a still cylinder. This test case is used to test tifieaiveness of the Kim and Lee
generalised boundary conditions detailed in Se¢tion?16.addition, this case allows
to compare the results from the linearised and the nonifeemulation of the Euler
equations and study the influence of non-line&ees on the results.

The second test casaims to simulate the two-dimensional interaction of an in-
cident gust with a cascade of flat plates. It is a simplifieciagr of the rotor-stator
interaction problem for which an analytical solution is iéafale.

The third test cases the extension into three dimensions of the second test cas

and can assess the ability of the solver to address largéepnslon distorted grids in
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three dimensions.

In the fourth test casgthe rotor-stator interaction in two dimensions is simeiht
introducing further details including a realistic commasblade profile and an incom-
ing multi-frequency spectrum vortical gust. This testsabéity of the code to tackle a
problem of practical engineering interest using a stretahalti-block computational
mesh.

All but the first test case are taken from the NASA workshopsamputational
aeroacoustics that are periodically organised to verigytdthnological advancement

in the numerical computation of the generation and of th@g@gation of sound.

In all four cases, the working fluid is air, modelled usingfpet gas assumptions,
with specific gas constai = 287.06 J(kg K) and heat capacity ratip= 1.4.

For each problem, the metrics for the transformation froenghysical to the com-
putational space and their inverse are evaluated numigrigsing the same spatial
scheme as used for the flow derivatives, even when, as forrighiee test cases,

the exact analytical solution is available. Accordinq_LﬁbA'L&_G_a'LLQmj‘e [1998] this

technigue ensures a higher level of overall accuracy.

All the simulations have been run on ALICE, the high perfonea computing
cluster of the University of Leicester. This cluster is carapd of 256 nodes, and each
node includes two quad-core 2.67GHz Intel Xeon X5550 CPUls %2 GB of RAM.
The operating system is the 64-bit version of Scientific kiBua.

Unless otherwise stated, the solver has been compiled wiion 12.1.3 of the
64-bit Intel compiler. The compilation flags included sal@ptions to maximise the

speed of execution. Other relevant libraries used in the émdspecific tasks are: Intel
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3. TEST CASE APPLICATIONS

MPI version 4.0.3, FFTW version 3.2.2, Intel Math Kernel taby (MKL) version
10.3.9, and CGNS library version 2.54.

3.1 Firsttest case: dipole sound generated by an oscil-

lating flow field around a still cylinder

The first test case is a modified version of the problem pre Kim & Lee [2004],

where a cylinder oscillates vertically in a steady invisibodv generating the acoustic

field typical of a dipole (see Figute_3.1). Viscosity is nexel.

3.1.1 Problem definition

The position of the centre of the cylinder of diamddedlepends on timeand is defined

by the coordinates

x(t) = 0, (3.1a)

y(t) = —e%’" cosft), (3.1b)

wheree is a non-dimensional value equal to"1Q ¢, is the ambient speed of sound,
andw = 2nc., /D is the angular frequency of the oscillation. Any pditin the 2D field
is defined by the distanaefrom the origin of the axes and by the angleneasured
from the axis of oscillatiory. In order to correctly define the boundary condition on

the wall surface it is important to notice that the velocitrmal to the wallJ and its
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3. TEST CASE APPLICATIONS

Figure 3.1: Schematic of the problem as in Kim & Lee [2004]cilating cylinder in
a still air.

time derivative are equal to

wall = €Cs COS¢ Sin(wt),

U
i €wC,, COS¢p cOS(wt).

wall

Kim & Lee [2004] run four simulations with dierent values of the mean flow

velocity (M., = 0,0.1, 0.2, and 04). An analytic solution is known only for the case

with no mean flow. The perturbation in the pressure field ieigilby Dowling &
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Ffowcs Williams [1983]

Ho@ (wr/cs)

'(r, , 1) = —po€C?, cospet ——~— 27
pPr.¢.0=-p ¢ Ho® (WR/C.)

(3.3)
wherep,, is the reference ambient densi®= D/2 is the radius of the cylinder, and
Ho@ andHq@" are respectively the firﬁHo' (2 = %) and the secon@—|o" (2 = %)
derivatives of the zero-th order Hankel function of the setkind. These functions
can be easily computed exploiting one of their propertied tblates the derivative
of the Hankel function to the function itself and to the fuontof order immediately
higher

d

S Hy(2) = ~aHpa(ed) + DHy(e2). (3.4)

By applying Equation(3]4), Equatiohn (8.3) becomes

H.1? (wr/cy)
SH,@ (wR/c.) — H? (wR/Cw)

p, (r’ ¢, t) = _pooecfo Cos¢eiwt (35)

This work considers the reciprocal problem of a still cyndgmmersed in an os-
cillating flow field as sketched in FigureB.2. This can be ntledeby setting the body
forces vectof = [fy, f,, f,]T in Equations[{ZI1) or Equatiors(2.2) equal to

fy 0
f=11|=|ecowcoswt)|- (3.6)
f, 0

This changes the value of tisavector in the set of Euler equations either in the conser-

99



3. TEST CASE APPLICATIONS

N
V7

Figure 3.2: Schematic of the modified problem. Oscillatiegdfaround a still cylinder.

100



3. TEST CASE APPLICATIONS

vative form of Equation[(Z2]5) or in the primitive form of Edian (2.9) and the value
of vectorsS, andS;, in the Kim and Lee boundary treatment of Secfion 2.5.1.

Let subscript “of” define the oscillating flow field. Then

P Lo

u 0

Qof = | V| = |eCo Sin(wt) | (3.7)
w 0
Pl | Po

wherepo and pg are the constant reference values for density and presufds a
valid solution of the Euler set of equations that includes ltlhdy forced. This can
be demonstrated by substituting Equationl(3.7) into Equd®.8b) withf from Equa-
tion (3.8).

The analytical solution of Equation (3.3) to the originabipiem presented by Kim
and Lee is also the analytical solution to the modified pnoblérhe former can be
transposed into the latter by the means of a change in thersyst reference. The
amplitude of the oscillation is taken to be vanishingly draalthis is an inherent as-

sumption in the analytical solution of Equatidn {3.5) whishonly valid for linear

oscillations.
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3. TEST CASE APPLICATIONS

3.1.2 Numerical methods

A set of increasingly refined meshes was created to moded$ihedse of Sectign 3.1.1.
The coarsest grid, which is referred to as grid number 1 éuriin the text, is shown
in Figure[3.B. It has an O-grid topology and, to reduce thepaational cost of the
simulation, the symmetry of the problem is exploited by miadg only half of the
field, so that the part located in the negative half-plane@lihex axis is neglected.
All the dimensions are normalised with respect to the c@imtiameteD. The char-
acteristics of the five grids employed are summarised inefad. Grid number 1 was
designed to have approximately squared cells near theategtmder. This allows to
minimise the error due to the grid distortion. In the circenetial direction (curvilin-
ear coordinatein detail (b) of Figuré_313) the nodes are equally spaced e@ine first
two rows of nodes around the cylinder are determined, a anhstretching factor (the
ratio between the distances of two successive pair of naddkg radial direction is
applied to compute the position of all the nodes. The exteathus Re = 11.704D)

is kept constant for all the five grids, making the results parable in every area of
the field. Every grid is obtained from the previous one antlithes all its nodes. New
nodes are added by reducing the stretching factor as shovabie[3.1.

For this test case the flow governing equations are solvednservative form to
allow coupling with the Kim and Lee type of boundaries of $8tl2.5.1. They are
non-dimensionalised for the computation following theesufiven in Sectioh 2.7.4.
The set of reference values shown in Tdble 3.2 is used. Thealsation of the input
data and of the results (in primitive form) udes p.,, andc,, for normalising length,
density and velocity. Pressure is normalisedoy = 101325 Pa to facilitate the com-

parison with published data.
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12
10
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(b) Detail of the area surrounding the circle representiagstill cylin-
der. Curvilinear coordinatésandj are shown.

Figure 3.3: Coarsest grid (number 1 in Tableg 3.1) used fosthetion of the first test
case. All dimensions are normalised with respect to thexdgli diameteD.
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Table 3.1: The five grids used for the solution of the first taste. The value of the
stretching factor refers to the radial direction. The sestltell values refer to the min-

imum node distance along the two curvilinear coordinatesigsnon-dimensionalised
with respect tdD.

Grid no. Nodes Stretching  Smallest cell [nd]
inidir. in jdir. total factor in idir. in jdir.

1 61 61 3721 1.0539 2.62E-02 2.70E-02

2 121 121 14641 1.0266 1.31E-02 1.33E-02

3 241 241 58081 1.0132 6.54E-03 6.61E-03

4 481 481 231361 1.0066  3.27E-03 3.29E-03

5 961 961 923521 1.0033 1.64E-03 1.65E-03

Table 3.2: Reference values used for the code internal moastsionalisation.

Length Static speed of sound Static density
(I) [na] (Cx) [m/s] (o) [kg/m?]
Cylinder diameteD 340.2939905434 1.225

At the beginning of the simulations, the flow field is initsdid with

Q=[p,uv,p] =[1,0,0,1]". (3.8)

The surface of the cylinder is modelled with the stationargscid wall boundary
condition proposed by Kim and Lee and reported in Sedtionl25 The external
semi-circular surface, that is an inflow or an outflow depegdn the phase of the
field oscillation, is computed with a customised closuré ivéunction of the direction
of the velocity normal to the boundary and enforces eitherstbit inflow or the non-
reflecting outflow condition by Kim and Lee reported in Sec{®d5.1.1. The non-

dimensional reference values required by Equatibns](2@33) and[(2.86) for the
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3. TEST CASE APPLICATIONS

computation of the boundary conditions are as follolws:25 (characteristic length of
the domain)y, = 0, V., = eSin(wt), p. = 1.

The condition of symmetry applied to the vertical boundaigenforced as de-
scribed in Sectioh 2.5.3. This particular type of boundaogare can only be applied
to plane surfaces normal to either ther they axis as in this case.

When the computation is run in parallel on multiple processtandard inter-block

boundary conditions are used for the communication as ithestin Section 2]6.

The linearised formulation of the Euler Equatiohs (P.8ansappropriate choice

for the solution of this problem, so that predictions canibeaily compared against the

reference analytical solution i illiarfE983], which is based

on a linear perturbation assumption. The problem is alseeslolising the non-linear

set of equations.

The time-integration is performed using the classical toarder Runge-Kutta

scheme with the implementation described in Sedfion2.3.2.

The types of finite-dterence spatial filters used for removing high-wavenumber
spurious numerical waves from the computation of this tasecare summarised in
Table[3.B3. Note that when the implicit filter is used, the eabfia; is constant near the

boundary as, if increased, the computations become uestabl
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Table 3.3: Characteristics of the filters used for the first tase.

Filter type NBT «; codf. Application frequency

explicit  LOC 0 every time step
implicit  LOC 0.4 every time step
3.1.3 Results

The non-dimensional duration of the simulatidpg is fixed equal to 23 to allow for
the waves that originate near the cylinder to propagaterizbifte external boundaries.
The convergence of the results is checked betweenttin22 and 23. In all the simu-
lations run, the maximum fference in non-dimensional pressure over the whole field

is less than 0.3%.

The time-integration and parallelisation settings depgndn the degree of mesh
refinement are shown in Talle B.4. With the sixth-order mtef@d compact scheme
and the classical fourth-order explicit Runge-Kutta tim&egration, the stability and
the accuracy limits for the Courant number are respecteglal to 04999 and 4217.
The simulations on grid number 3, 4, and 5 in Tdble 3.1 useadively high number of
nodes and time steps and therefore are run in a parallebfa$lyi dividing the model

in equal parts as summarised in Tdbld 3.4.

Four different sets of simulations have been run by varying the fortheoéquation
(linearised or non-linear) and the type of filtering (explar implicit, see Tablé 313 for
details). To check the order of the mesh convergence, eachaanposed of five runs
on the progressively refined grids of Tablel3.1.

The linearised and non-linear sets of simulations leadgoally identical results,
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Table 3.4: Time integration and parallelisation settingsthie numerical grids of Ta-
ble[3.1. The time step is in non-dimensional form.

Gridno. | Timestep Steps Courant no. Processes
[nd] inidir. in jdir. total
1 0.0125 1920 0.4775 1 1 1
2 0.00625 3840 0.4774 1 1 1
3 0.003125 7680 0.4774 2 1 2
4 0.0015625 15360 0.4774 2 2 4
5 0.00078125 30720 0.4774 4 2 8

so, only those relative to linearised equations with impfittering are shown in Fig-
ured 3.4-36. All the figures are obtained at the non-dinoeraditimet = 22 and show
flow variables in non-dimensional form.

Figure[3.4 shows the flow statetat 22 from simulation with grid number 1. The
general shape of the acoustic non-dimensional pressudeigi¢hat of a dipole with
the main directivity along axig. These results can be directly compared with those
obtained from grid number 5 shown in Figlre]3.5. The highatiapresolution of the
latter simulation is shown near the external boundary wtteggyrids are locally more
coarse, due to the proportional mesh stretching of Table Bakse observations are
confirmed by the details (b) and (c) of the two figures that ré¢j@e non-dimensional
velocity components andv.

In Figure[3.6, the pressure distribution along positives sgpobtained from the five
different grids are compared. The numerical results, repmdéytsymbols, are clus-
tered around the analytical reference solution which issghiby the continuous line.

The detail allows to appreciate the small dependence ofrédigtions on the level of

mesh refinement.
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Level p’[nd]

11 0.00010
10 0.00008
0.00006
0.00004
0.00002
0.00000
-0.00002
-0.00004
-0.00006
-0.00008
-0.00010
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(a) Non-dimensional pressure oscillation.
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(b) Non-dimensional velocity. (c) Non-dimensional velocity.

Figure 3.4: Non-dimensional predicted flow state at nonetfisional time = 22 using
equations in linearised form and implicit filtering. Gridmber 1. Negative contours
are shown by dashed lines.
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Level p’[nd]

11 0.00010
10 0.00008
9 0.00006
0.00004
7 0.00002
6 0.00000
5 -0.00002
4 -0.00004
3

2

1

-0.00006
-0.00008
-0.00010

(a) Non-dimensional pressure oscillation.

Level u[nd]

4.00E-05
3.00E-05
2.00E-05
1.00E-05 10k
0.00E+00
-1.00E-05
-2.00E-05
-3.00E-05
-4.00E-05
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10+ 0.00E+00
-2.00E-05
-4.00E-05
-6.00E-05

y/D
y/D

(b) Non-dimensional velocity. (c) Non-dimensional velocity.

Figure 3.5: Non-dimensional predicted flow state at nonetlisional time = 22 using
equations in linearised form and implicit filtering. Gridmber 5. Negative contours
are shown by dashed lines.
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(a) Non-dimensional pressure oscillation.
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(b) Detail of the second peak.

Figure 3.6: Results at non-dimensional time: 22 along the positivg axis. The
results from simulations on fivefierent grids are compared to the analytical solution.
Equations in linearised form with implicit filtering.
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In Table[3.5, the non-dimensional pressure error at tieaé is shown as both the
|, -norm, defined by Equatioi_(2.1112), and thenormdefined by Equatiori (Z.111).
The values are compared node-by-node with the analytidatiso of Equation[(3.3).
The results are grouped in four sets, using the fiffiedént numerical grids of Takle 3.1
in each set in order to evaluate the mesh convergence. Eachrssults comes from
a combination of filter type (implicit or explicit) and equat form (linearised or non-
linear). At timet = 6, the front of the first wave propagating from the cylindes hat
yet reached the external boundary. Thus the comparisorebetthe analytical and the
numerical solution is restricted to a circle of radRs= 1 centred on the origin of the
axes. This region includes the first pressure peak only, @srsin Figure§ 3.4, 315,
and3.6. The analytical solution of Equatién {3.3) was at#diunder the hypothesis
of linearity. Therefore, correctly, the results indicatattthe equations in linearised
form give a lower error with respect to their non-linear cauparts. The implicit form
of the spatial filter used to damp high-frequency numericales in the computational
domain gives a flow simulation that is in closer agreemert e analytical solution
in terms of absolute non-dimensional pressure value onvallfiids.

The examination of the order of convergence of the error sagainst the mesh
density shows a second-order roft ¢columns “conv.”). This result is not in accor-
dance with the expected sixth order of the internal spatiaéme of Sectioh 2.2 and
can be explained by the use of the low-order centred (LOQ)igcie, described Sec-
tion[2.2.3, to filter the flow field on the nodes near the bouiedarin fact, the first
interior point of the computational domain at the circulghircder boundary is treated
with a second-order three-point stencil filter. In this tygggroblems the waves are
originated on the cylinder surface and they necessarilg @apass through the low-

order filter as they propagate inside the domain. Thiscsés the wave amplitude.
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In Table[3.6, the results at the non-dimensional time 22 with comparison re-

stricted to a circle of radiuR = 1 are summarised. Here the influence of the error

induced by the external boundary becomes apparent on tlodusdsccuracy of the

non-dimensional pressure. The finer meshes are nit@eted by this fect.

At the non-dimensional time = 22 the waves have reached the external bound-

aries and the error comparison with the analytical solutan be extended to the
whole field. The results are summarised in Tablé 3.7. Botbr erorms increase with
respect to the norms computed over the rane<OR < 1 of Table[3.6. The accu-
racy approaching the external boundaries is lower due tmfluence of the boundary
closure and to the lower node density. In contrast to TdbBs8d 3.6, the order of
convergence of thk, -normand of thd, -normhere behave dierently. Thd., -norm,
depends only on the error peak and is always located on teenextboundary. This
norm increases with the grid refinement level, whjlenorm, which is function of all
the nodes in the field, is more or less grid independent.

An attempt has been made to overcome the limitations giveéhdoyse of the LOC
boundary treatment by the use of high-order one-sideddi(t¢©0OS), but without suc-
cess due to the instabilities moving from the boundary thenwially lead to the failure

of the simulation. The spectral functions of these filtensyen in Equation(2.63) have

a non-zero imaginary part [Visbal & Gaitonde, 1998] and,ssmuently, the amplifi-

cation ratio over a range of wavenumbers is greater than s mlkes the resulting
numerical method less stable than with lower-order cerfitteds.

Other attempts to stabilising the computation with HOOSuoitg the time step
by up to ten times still give numerical instability.

A last attempt was made by reducing the non-dimensionaliaundpl of the oscil-
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Table 3.5: Comparison of thefteérence between the numerical and the analytical re-
sults for the non-dimensional pressure at time 6 within a circle of radiuRR = 1
centred on the origin of the axes. Results from combinatdheearised or non-linear
equations and implicit or explicit filters. The absoluteugabf the error is shown both
asl. -normandlI, -normalong with their order of convergence against the grids with
increasing spatial refinement from Table]3.1.

Gridno. Eq.form Filter | I conv. | I, conv.
1 non-lin.  expl. | 2.81E-06 1.36E-06
2 non-lin.  expl.| 6.63E-07 2.11| 3.18E-07 2.12
3 non-lin.  expl. | 1.68E-07 2.00| 7.74E-08 2.05
4 non-lin.  expl. | 5.02E-08 1.75| 2.04E-08 1.93
5 non-lin.  expl. | 2.25E-08 1.16| 7.31E-09 1.48
1 lin. expl. | 2.81E-06 1.36E-06
2 lin. expl. | 6.60E-07 2.12| 3.18E-07 2.12
3 lin. expl. | 1.65E-07 2.02| 7.74E-08 2.05
4 lin. expl. | 4.68E-08 1.82| 2.01E-08 1.95
5 lin. expl. | 1.82E-08 1.37| 6.61E-09 1.61
1 non-lin.  impl. | 1.43E-06 6.91E-07
2 non-lin.  impl. | 3.44E-07 2.08| 1.63E-07 2.11
3 non-lin.  impl. | 9.16E-08 1.92| 4.06E-08 2.02
4 non-lin.  impl. | 3.17E-08 1.54| 1.17E-08 1.80
5 non-lin.  impl. | 2.08E-08 0.61| 5.61E-09 1.07
1 lin. impl. | 1.43E-06 6.91E-07
2 lin. impl. | 3.41E-07 2.09| 1.63E-07 2.11
3 lin. impl. | 8.86E-08 1.96| 4.05E-08 2.02
4 lin. impl. | 2.83E-08 1.65| 1.13E-08 1.85
5 lin. impl. | 1.36E-08 1.06| 4.65E-09 1.29
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Table 3.6: Comparison of thefteérence between the numerical and the analytical re-
sults for the non-dimensional pressure at time 22 within a circle of radiufk = 1
centred on the origin of the axes. Results from combinatdheearised or non-linear
equations and implicit or explicit filters. The absoluteugabf the error is shown both
asl. -normandlI, -normalong with their order of convergence against the grids with
increasing spatial refinement from Tablel3.1.

Gridno. Eq.form Filter | I conv. | I, conv.
1 non-lin.  expl. | 2.76E-06 1.32E-06
2 non-lin.  expl. | 7.06E-07 1.99| 3.35E-07 2.01
3 non-lin.  expl. | 1.98E-07 1.84| 8.96E-08 1.91
4 non-lin.  expl. | 1.63E-07 0.28] 7.25E-08 0.31
5 non-lin.  expl. | 1.52E-07 0.10| 3.70E-08 0.97
1 lin. expl. | 2.76E-06 1.32E-06
2 lin. expl. | 7.06E-07 1.99| 3.35E-07 2.01
3 lin. expl. | 2.02E-07 1.82| 9.00E-08 1.91
4 lin. expl. | 1.65E-07 0.29| 7.28E-08 0.31
5 lin. expl. | 1.68E-07 -0.03 3.73E-08 0.96
1 non-lin.  impl. | 1.41E-06 6.85E-07
2 non-lin.  impl. | 3.90E-07 1.88| 1.93E-07 1.85
3 non-lin.  impl. | 2.95E-07 0.41| 1.12E-07 0.78
4 non-lin.  impl. | 1.93E-07 0.61| 6.42E-08 0.81
5 non-lin.  impl. | 1.41E-07 0.46| 2.94E-08 1.13
1 lin. impl. | 1.41E-06 6.85E-07
2 lin. impl. | 3.91E-07 1.88| 1.93E-07 1.85
3 lin. impl. | 2.94E-07 0.41| 1.13E-07 0.78
4 lin. impl. | 2.11E-07 0.48| 6.45E-08 0.81
5 lin. impl. | 1.54E-07 0.45| 2.97E-08 1.12
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Table 3.7: Comparison of theftikrence between the numerical and the analytical re-
sults for the non-dimensional pressure at tinse22 on the whole field. Results from
combinations of linearised or non-linear equations andicit@r explicit filters. The
absolute value of the error is shown botH asnormandl, -normalong with their or-

der of convergence against the grids with increasing dpafiaement from Table 3l 1.

Gridno. Eq.form Filter | I conv. | I, conv.
1 non-lin.  expl. | 4.12E-05 9.15E-06
2 non-lin.  expl.| 3.30E-05 0.32]| 5.61E-06 0.71
3 non-lin.  expl. | 2.97E-05 0.15| 1.58E-06 1.84
4 non-lin.  expl. | 1.48E-05 1.00| 6.52E-07 1.28
5 non-lin.  expl. | 5.46E-06 1.44| 1.94E-07 1.75
1 lin. expl. | 4.12E-05 9.15E-06
2 lin. expl. | 3.30E-05 0.32| 5.61E-06 0.71
3 lin. expl. | 2.97E-05 0.15| 1.58E-06 1.84
4 lin. expl. | 1.49E-05 1.00| 6.52E-07 1.28
5 lin. expl. | 5.49E-06 1.44| 1.96E-07 1.74
1 non-lin.  impl. | 3.95E-05 7.49E-06
2 non-lin.  impl. | 2.80E-05 0.50( 4.01E-06 0.91
3 non-lin.  impl. | 2.66E-05 0.08| 1.33E-06 1.61
4 non-lin.  impl. | 1.32E-05 1.01| 4.78E-07 1.47
5 non-lin.  impl. | 4.98E-06 1.41| 1.65E-07 1.53
1 lin. impl. | 3.95E-05 7.49E-06
2 lin. impl. | 2.80E-05 0.50| 4.01E-06 0.91
3 lin. impl. | 2.66E-05 0.08| 1.33E-06 1.60
4 lin. impl. | 1.33E-05 1.01| 4.79E-07 1.47
5 lin. impl. | 5.02E-06 1.40| 1.67E-07 1.52
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lation € to 10°" while keeping a non-dimensional formulation and explidiefing.
The results at non-dimensional time= 13 from grids 1 to 4 are shown in Takle 13.8.
The non-dimensional pressure amplitude is correctly redby 3 orders of magnitude
but, apart from a slight increase in the order of accuracbably due to the reduced
influence of the non-linearfkects, these results do not show any significafiedence
compared to the ones in Talhlel3.7.

Table 3.8: Comparison of thefteérence between the numerical and the analytical re-
sults for the non-dimensional pressure at non-dimensignalt = 13 with the inputv
velocity oscillation amplitude reduced to 10'. The equations are solved numerically
in non-dimensional form with explicit filtering. The radioser which the comparison
is made is indicated by the vall®,,. The absolute value of the error is shown both

asl. -normandlI, -normalong with their order of convergence against the grids with
increasing spatial refinement from Tablel3.1.

Gridno. Rim| lw conv. | I, conv.
1 1 | 2.96E-09 1.36E-09
2 1 | 6.53E-10 2.20| 3.17E-10 2.13
3 1 | 1.56E-10 2.07| 7.61E-11 2.07
4 1 | 3.86E-11 2.02| 1.88E-11 2.02
1 Reyxt | 4.13E-08 9.15E-09
2 Rext | 3.31E-08 0.32| 5.61E-09 0.71
3 Rext | 2.95E-08 0.17| 1.57E-09 1.85
4 Rext | 1.47E-08 1.01| 6.53E-10 1.27
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3.2 Second test case: sound generation by interaction
between an incident gust and a cascade of flat plates
(2D)

3.2.1 Problem definition

The second test case is a benchmark problem from the seco8é Némputational

aeroacoustics (CAA) workshop [Tam & Hardin, 1997]. It is gecond problem un-

der category 3: “Turbomachinery noise” and aims to modeterms of tonal noise
emission, the interaction between a rotor and a stator botaachinery.

The model is simplified with respect to the real turbomacihireenumber of ways:
() the 3D of a turbomachine stage is unrolled in two dimensjdii) the blade profile
is modelled as a simple flat plate, (iii) the wakes from thetrgasn blade row are
replaced by a vortical, divergence free, convedtedengust defined at the left inflow
boundary that aims to reproduce the turbulence containttimakes. The geometry
of the problem is shown in Figute 3.7, wheres the chord length of the plate and
is the mean inflow velocity in the direction of thxeaxis. The inter-blade distancgs
equal toc and the field extends from = —2c to x = 3c and fromy = 0 toy = 4c,
to include four plates. The initial flow field is uniform withean static density...
The problem prescribes the use of the following set of refegevariables for the non-
dimensionalisation: velocity.,, lengthc, time c/u.., densityp..,, and pressurg.,uz..

The Mach number at the inflow i, = 0.5.
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Figure 3.7: Problem geometry of test case number 2 (modifad [Tam & Hardin
[1997]).
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The incoming vorticity gust is a function of the coordinatesl of time as

Ug(X. Y, t) = —% cos(ax + By — wt), (3.9a)
Vg(%, ¥, t) = Vg cos(ax + By — wt), (3.9b)
.Y 1) =0, (3.90)
Py(%. Y, t) =0, (3.9d)

wherevg = 0.01 and the non-dimensional wavenumhbei@nd are equal to the non-
dimensional angular frequeney. The problem requires the solution of twdfdrent

input frequencies: a low-frequency gust with= 57/2 and high-frequency gust with

w = 13r/2 but, similarly to other workshop contributors [Tam & Hargil997], in

this work only the low-frequency case is treated. Eithellitinearised or the non-linear
formulation of the Euler equations can be used.

The problem requires to predict the pressur@edenceAp = Piower — Pupper DE-
tween the upper and the lower surface of the reference platg g = 0. In addition,
the intensity of the radiated sourp_ﬂ has to be determined along linggc = -2 and
x/c = +3 and the final non-dimensional pressure distribution dvemthole computa-
tional field at timet = 27n/w, with ninteger, has to be plotted. The problem requires
the solution to be periodic in time but does not prescrib&wvitvhich limits this peri-

odicity has to be obtained.

An analytical solution for the problem was publishedM] but its nu-

merical computation requires the truncation of infinite stand numerical quadrature.

This makes this benchmark approximate. Hall [1997a] presid numerical solution

in tabular form computed by a computer code called LINSUB=dasn Smith’s the-
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ory. This solution is used in the results Secfion 3.2.3 a$amerce to compare against
both for the pressure jump across the blade and for the vaﬁl@ atx/c = -2 and

X/C = +3.

3.2.2 Numerical methods

The equations and the data input and output are non-dimaaised using the set of

reference values definedin Tam & Hardin [1997] and reponeSkiction 3.2]1.

The problem definition does not give any constraint on theattaristics of the
grids to be used, and only specifies a minimum computatiom@laih extent. In the
current study, only orthogonal Cartesian uniform mesheskgspaced in both the
x andy direction are used. The spacing in tkélirection is kept equal to that in the
y direction, so that the grid geometry is fully determined bg inter-nodal distance
Ax and by the total field length. A third parameterX,) is necessary to determine
the position of the blades along thexis, specifying the distance between the inflow
plane and the leading edge of the platgsdoes not &ect the grid structure. In the
direction the position of the reference blade is equal to thabno further parameter
is needed. The length of the fielldn the x direction is extended beyond the minimum
defined by the problem description as preliminary tests Bawegvn that placing the in-
flow and outflow on the monitoring planegc = —2 andx/c = +3 leads to predictions
being adverselyféected by the boundary closure treatment. Furthermore, $gpes
of boundary conditions cannot be applied without the presef additional nodes.
Extending the computational domain beyor@ < x/c < +3 is a common practice
among the authors that have published solutions to thidgamab

Non-uniform grids are not used in the results presentedisstrtion to minimise
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ylc
N

Figure 3.8: General structure of grid 6.1 in Table 3.9.

the number of variabledi@cting the accuracy of the results. Non-uniform meshes are
used for the solution of test cases 1, 3 and 4 where the naittine problem requires
their adoption. This choice is not economical in terms of patational resources, as
the nodes could be clustered around the plates, where thetiegphysical process of
conversion from flow wake kinetic energy to radiating noisession takes place.

The computational mesh parameters adopted in this studyuanenarised in Ta-
ble[3.9. Each grid is labelled with the common notationwhich identifies the values
of L andAx; used to generate each grid.

The set of grids of length = 6 is used for preliminary tests on how the inlet gust
convects across the computational domain in the absenbe bfades. The remaining
grids are used for the solution of the problem including thgcade. Figurle 3.8 shows

grid 6.1, which is the mesh of extebt= 6 with the coarsest (level 1) discretisation.

In they direction, an inviscid solid wall condition is applied ovitie range 0<
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Table 3.9: Characteristics of the fifteen grids used for thaten of the second test
case.L, Ax and the nodes per unit length are in non-dimensional forne Adme of
the grid univocally determines its characteristics and given by the total length of
the field and a progressive index related to the grid denSite fields related to the
total number of nodes “model” and “computation” refer, resjpvely, to the nodes of
the initial model and to the nodes of the actual parallel catafon. The two values
are diferent as the nodes on the common borders are duplicated neitjebouring
processes.

Grid | Length L AX Nodes per Total no. of nodes
name [nd] [nd] unit length [nd] model computation
6.1 6 0.0625 16 6305 6936
6.2 6 0.03125 32 24897 26136
6.3 6 0.015625 64 98945 101400
7.1 7 0.0625 16 7345 8092
7.2 7 0.03125 32 29025 30492
7.3 7 0.015625 64 115393 118300
7.4 7 0.0078125 128 460161 465948
9.1 9 0.0625 16 9425 10404
9.2 9 0.03125 32 37281 39204
9.3 9 0.015625 64 148289 152100
9.4 9 0.0078125 128 591489 599076
11.1 11 0.0625 16 11505 12716
11.2 11 0.03125 32 45537 47916
11.3 11 0.015625 64 181185 185900
11.4 11 0.0078125 128 722817 732204

x/c < 1 and a periodic boundary condition is imposed/at < 0 andx/c > +1. The
periodic boundary condition is numerically equivalent si@ndard inter-block bound-
ary exchanging the data of five rinds of nodes with the neighblm thex direction,
various boundary closures have been tested at the inlehemabitlet of the computa-
tional domain. At the inflow boundary, fiveftierent closures are available: (i)fBer
zone, (ii) Kim and Lee soft (non-reflecting) inflow, (iii) @$ subsonic non-reflecting

inflow, (iv) modified Giles subsonic non-reflecting inflow) fwodified buter zone.
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At the outflow, a variety of boundary condition treatmentavailable: (i) bdfer
zone, (ii) modified btfer zone, (iii) Kim and Lee non-reflecting outflow, (iv) Giles
subsonic non-reflecting outflow.

For all the simulations presented in Secfion 3.2.3, théeblength is varied based
on the mesh density of the model so to keep the same spagalsanh. For grid density
1, the bdifer layer depth is 30 nodes, for grid density 2 it is 60 nodesgfa density
3itis 120 nodes and, finally, for grid density 4 it is 240 nades

The Kim and Lee soft inflow and non-reflecting outflow are diésset in detail in
Section[2.5.1]1, the various versions of the Giles closure3ection2.5.2, and the
buffer layer and its modified version in Section 215.4.

The flow state in the modified ffier layer is set by Equation (2.108a) using a target
flow stateQiarger that is equal to the sum of the uniform time-invariat, = 0.5 plus
the gust of Equation (3.9) superimposed on it.

The blade surface is modelled as an inviscid wall. Two indisall boundary con-

ditions have been included in the code which are the invigeill condition by Tam

D

& Dong [1996] and that based on the theory of characteristigplied by Kim & Le

[2004]. The former is used in association with the primitigem of the Euler equa-

tions and the latter with their conservative formulation.

For this test case, the specification of the boundary canditand the introduction
of the vortical gust are provided by a custom unsteady inflomdation, which can be

implemented as either a modified Giles or a modifieffdninflow condition. A third

technique is available following Lockard & Morris [1997h this case, the oscillation

is not introduced from the boundary but it is directly getedan the computational

domain interior by applying an appropriate body force vett(see Equations (2.1)
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and [2.2)). The problem consists in finding a functibrthat satisfies the momentum

equations in 2D primitive form wheanandyv include the vortical gust

Du 1dp 0% _
bu, 1op _0o¥ 1
Dt + Sox "y sin(wt), (3.10a)
Dv 1 ¥

V1P Y e, (3.10b)

Dt " pay  ox
This function is

Y= V?G {1+ cos [Q5a (X — Xg)]} cos(ax + By), (3.11)

and it is valid in the rangejx — Xg| < 2r/a. Xs is the x coordinate of the midline of

the zone where the gust is introduced.

The resulting body force components are

fy = —,BV?G {1+ cos[Q5a (X — Xg)]} sin(ax + By) sin(wt), (3.12)

fy = o8 {(1+ cos [Q5a (X — Xg)]) sin(ax + By)
n (3.13)

+0.5sin[05a (X — Xg)] cos(ax + BYy)} sin(wt) .

All the simulations presented in this work are run in patdde subdividing the
computational domain in equal squared parts connectedhgatd inter-block bound-
ary conditions as detailed in Section]2.6. The squared shiehe parts minimises the
amount of inter-communication while their approximatedyal size in terms of nodes

of the computational grid tends to homogeneously distelboé computationalffort,
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Figure 3.9: Grid 7.1 subdivided into 28 zones delimited bgkér borders. The posi-
tion of the cascade is shown by horizontal black lines overéimge 0< x/c < 1.
although the processes including the external boundaees to perform additional
computations with respect to the other processes. Thdg@aatcution is also chosen
to avoid exceptions in the treatment of the boundary comustithat, apart from the
corrections related to the presence of the plate edgeslinteal only in some simula-
tions, use a uniform condition along each block boundaryeedthis allows to keep
the code simple andffécient. In Figurd_3.9 grid 7.1 is shown divided into 28 same
sized blocks. The position of the cascade of flat plates isligigted with thick black

lines.

The initial conditions at the start of the computation depen the type of gust gen-
eration method used. When the body force approach of Equeafb12) and (3.13) is
used, the initial conditions are homogeneous on the whatkdied, in non-dimensional
primitive form

Qe = [P U Voo puat2] = [1,1,0,4/1.4T. (3.14)
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On the other hand, when the gust is introduced from the boyndfow using
the modified Giles or the modified fier inflow, it is advantageous to start from a
field already including the vortical gust by superimposing ¢scillating part of Equa-
tion (3.9) over the homogeneous field of Equatiion (8.14)s fiound that the initial
transient necessary to reach the periodicity in the conapilde field, with this modi-

fication was considerably shortened.

Some of the simulations run for this test case include asefiexceptions in the
treatment of the nodes lying on the plates. This is requicedeal with the strong
discontinuity that appears as a singularity in the anadysolution of the problem at
the plate leading edge, whiclffects the pressure distribution in the surrounding area.

There is also a second reason for the special treatment ¢ thedes close to
the plate edges. Figufe 8.9 shows that the leading andchiyagliiges of the cascade
are always coincident to the corner nodes of four zones tklang to four diferent
processes (those located between successive plates)e iMbdle processes apply the
inviscid wall boundary condition on the corner nodes, tineiighbours treat the same
nodes as inter-block boundary points with no wall conditi®his originates a dlier-
ence in the flow field values at the nodes that should repréisersame physical flow
state. The situation is illustrated in Figure 3.10, wherm niodes belonging to two
neighbouring processes at a plate leading edge (bottoe-aid represented by black
circles. Point -1 and point 1 represent the same physicalitwts in the flow field
duplicated on two processes. These locations ought to haveame flow state, but
for node -1 the spatial derivatives in tlgalirection are computed using the 11-point
inter-block boundary stencils while for node 1 they are cated with the one-sided

stencils and then corrected by the inviscid wall boundandaoon that is used at the
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Figure 3.10: Schematic illustrating the node distributomer abutting processes up-
stream and below one plate.
plate leading edge. This causes a discontinuity in the flola fleat interests mainly
a small region around the edge but negativélgats the accuracy of the computation.
It also contributes to the generation of high-frequencyliadions that the high-order
finite-difference scheme, by its own nature, tends to develop in camédspce of ge-
ometrical discontinuities and steep gradients in the flold fie

For this reason, dlierent types of numerical corrections have been tested a&nd th

best results were obtained using the following four stages:

1. The process that computes the inviscid wall conditionictvins the right-hand
side process in Figute_3J10, passes the half-derivativepuated in they direc-
tion on the corner nodes (already corrected by the wall bagntteatment) to
its neighbour process, which is the process upstream ofléte ip Figuré_3.100.
This process overwrites aiyyderivative value it previously computed.

2. The processes upstream and downstream of the bladestapiyering on the
corner node in the direction as if the node were part of a wall (and not an

inter-block boundary).
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3. The derivatives in tha direction of the nodes near the plate edges, which are
points -3, -2, 2 and 3 in Figufe_3]10, are computed with onedstigh-order
stencils that do not “cross” the discontinuity represertgdhe corner. Specifi-
cally, the (5-1) 7-point stencil is applied on points -2 amah? the (4-2) 7-point
stencil is applied on points -3 and 3. Details regardingelstsncils and their
codficients can be found in Sectibn Z.2.2.

4. Over the whole plate surface, the half-derivatives inytligection of the pres-
sure and the velocity componentcomputed before the enforcement of the in-
viscid wall condition are not obtained with the typical highder one-sided 7-
point stencils. Instead, their order is dropped respégtice1st and 3¢ by the
use of 2-point and 4-point one-sided stencils describe@dati@[2.2.D.

Stages 1 and 2 ensure that the flow field around the plate eslgestiched on both
processes while stages 3 and 4 aim to reduce the high-wawaEmnsgpurious oscilla-

tions radiating from the surface discontinuity of the lempedge and are similar to the

corrections adopted hy Ragab & Salem-Said [2007]. In Sef8i@.3, the application

of stage 1 and 2 will be referred to as correction “level 1”jletlevel 2” also includes
stage 3 and “level 3" includes all 4 stages.

These corrections have a computational cost related taditié@al exchanges of
data between the processes involved. Their cost can beagedlby monitoring the

duration of the runs.

For this test case, the linearised version of the Euler @ousts used. The prim-
itive formulation of the equations is used in conjunctiohwthe Tam and Dong wall
boundary condition, while the conservative formulationsed where the Kim and Lee

inviscid wall boundary condition is enforced.
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3.2.3 Results

The proceedings of the second NASA workshop include therianions from four

different research groups that have presented a solution tprtb&em LI:IaJI 1997b;

Hu & Manthey, 1997; Lockard & Morris, 1997; Taet all, 11997]. Their numerical

methods are both of the finite-elements and of the finifeedince type and include
various techniques to avoid spurious wave reflections ata@hgutational boundaries,
introduce the gust and remove any spurious wave.

At the third and fourth NASA workshops, two groups used tinggypem as an initial

test for their computational aeroacoustic solvers [&i@ll, [2004; Wanget al., 2000].

'M)O?] that included nu-

merical solutions of this test case, were published indegetly. The study by Hixon

Other two studies [Hixort al., [2000;/ Ragab & Salem-S

et al. compares the performance of fouffdrent non-reflecting boundary conditions.

Ragab & Salem-Said [2007] include the solution of this t@stecamong other similar

two-dimensional configurations.

The convergence of the non-dimensional pressure has beskezh for all the

simulations against the reference solution/by |Hall [199Tajer the whole computa-

tional field, the diference between the flow state at the end of the penultimate (no
dimensional timé = 500) and of the last period (non-dimensional time 5008) is
lower than 1% for all the results presented in this sectindicating that the predic-

tions are statistically stationary.

For this test case, more than 200 simulations were perfouasang a large num-

ber of computation parameters including: the type of boandanditions, the time-
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integration scheme, the formulation of the equations @irsednon-linear, primitive-
conservative), the type of filtering (expligihplicit), its frequency of application and
its near boundary treatment, the technique used to inpwgubg the size of the com-
putational domain, the special treatment of the plate edges the final time of the
simulation. The aim was to determine the combination ofrnieplres resulting in the
highest accuracy. A selection of all the results is repaatatidiscussed in two sections.
Section3.2.3]1 concerns the accuracy of the input vorgoat and Sectioh 3.2.3.2
concerns the accuracy of the complete problem that inclieeknear plates cascade.
For the preliminary simulations not including the platég, time-integration is per-
formed using the classical fourth-order Runge-Kutta sahdiscussed in Section 2.3.

On the other hand, the simulations regarding the compleibl@m use the Runge-

Kutta scheme proposed by Berlaatlal. [2006] in the low-storage 2N form detailed
in Sectior 2.3P.

Due to the clearly superior results obtained in the prelanyntests with respect
to the explicit formulation, all the simulations have beem applying the implicit
filtering with a near boundary treatment of type low-ordartoed (LOC). The tunable
codficient a; linearly decreases with the distance from the boundary asdraes
values between 0.495 on the first point from the wall, and.Q@his case the filtering

is executed at the end of each Runge-Kutta stage.

3.2.3.1 Accuracy of the vortical gust

The level of accuracy that can be reached in modelling thé igube absence of a
linear cascade is of interest since it tests the ability efgblver to convect vorticity
waves since the amplitude of the waves impinging on the dasisadirectly related to

the noise emission that is studied in Secfion 3.2.3.2.
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Table 3.10: Grid-dependent explicit time-integrationgmaeters for the simulations
not including the linear cascade of flat plates. The time istepn-dimensionalised by
C/Us.

Grid no. | Time step Steps Courant no.
[nd]

1 0.01 10000 0.4800
2 0.005 20000 0.4800
3 0.0025 40000 0.4800

The results are reported at the non-dimensional tirse100, when the velocity
disturbance has crossed the outflow boundary of the compuigfield so to test not
only the ability to correctly input the vortical gust butalhe level of error introduced
by the boundary conditions at the inflow and at the outflow. Wvine buter zones are
used, Equatiori(2.10Ba) is applied at the end of each cortiqmaitime step.

Table[3.10 shows the main parameters of the runs that areedrtdy increasing
computational mesh density. The CFL condition is satisfeébathis association of
time-integration (classical Runge-Kutta) and of spat@esne the accuracy limit is
0.4999 and the stability limit is.#217 (see Sectidn 2.3 for details).

Table[3.11 shows the non-dimensional errors of the veledityponents and of the
pressure from various runs. The numerical solution is caetbagainst the analytical
definition of the gust of Equation (3.9). The error is showrbath thel,, -normde-
fined by Equation(2.112) and the-normdefined by Equatiori(2.111). The order of
convergence against the mesh points per unit length is sfavinoth error norms.

The analysis of the results shows that in all the cases tbeiarthe velocity com-
ponents and in the pressure is roughly two orders of magaituder than the ampli-
tude of the gust = 0.01. All the methods proposed for the introduction of the ieailt

gust appear engineering accurate predictions and can beeddé for purpose.
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Table 3.11: Results from the simulations not including thedr cascade of flat plates. The non-dimensional errorseof t

velocity components and of the pressure with respect toriaf/tical definition of the gust of Equation (8.9) are shown a

|, -normandl;, -normalong with their order of convergence against the mesh pelangth. The comparison is restricted to

the nodes having coordinate ranging from 0 to 1 inclusive as this is the arearevthe linear cascade will be introduced. The
valuexg refers to the position of the midline of the zone where the mustroduced with the method proposed by Lockard
& Morris [1997] and does not apply to the other cases.

No. Model Eqg. Boundary conditions Gust Xg u [nd] v [nd] p [nd]
name form X low x high loo conv. lo conv. loo conv. lo conv. loo conv. lo conv.

1 6.1 prim. bdter buter Lockard -1| 5.56E-5 3.35E-5 5.77E-5 3.48E-5 3.45E-6 7.63E-7

2 6.2 prim. bdfer bufer  Lockard -1| 1.10E-4 -0.99 6.62E-5 -0.991.14E-4 -0.99 6.89E-5 -0.997.90E-6 -1.20 1.60E-6 -1.07
3 6.3 prim. bdter buter Lockard -1| 2.02E-4 -0.88 1.22E-4 -0.8§92.09E-4 -0.88 1.27E-4 -0.8§91.74E-5 -1.14 3.39E-6 -1.08
4 6.1 cons. bfier buter Lockard -1| 5.93E-5 3.35E-5 5.75E-5 3.46E-5 3.72E-5 2.17E-5

5 6.2 cons. bfier bufer Lockard -1| 1.13E-4 -0.93 6.61E-5 -0.991.13E-4 -0.99 6.87E-5 -1.003.96E-5 -0.09 2.16E-5 0.01
6 6.3 cons. bfier bufer Lockard -1| 2.05E-4 -0.87 1.22E-4 -0.8§92.09E-4 -0.88 1.27E-4 -0.8§94.13E-5 14.19 2.14E-5 14.45
7 6.1 prim. Giles Giles Lockard -l 3.95E-4 2.74E-4 3.98E-4 2.73E-4 2.06E-5 1.06E-5

8 6.2 prim. Giles Giles Lockard -12.13E-4 0.89 1.44E-4 0.932.16E-4 0.89 1.44E-4 0.932.17E-5 -0.08 1.11E-5 -0.07
9 6.3 prim. Giles Giles Lockard -L1.18E-4 0.86 7.48E-5 0.9p1.17E-4 0.89 7.45E-5 0.962.21E-5 -0.02 1.12E-5 -0.01
10 6.1 cons. Giles Giles Lockard 113.99E-4 2.74E-4 3.99E-4 2.74E-4 5.98E-5 2.60E-5

11 6.2 cons. Giles Giles Lockard 1{12.18E-4 0.88 1.45E-4 0.9B2.17E-4 0.89 1.45E-4 0.9B5.93E-5 0.01 2.54E-5 0.03
12 6.3 cons. Giles Giles Lockard 111.22E-4 0.84 7.51E-5 0.9p1.17E-4 0.89 7.46E-5 0.965.91E-5 0.01 2.50E-5 0.02
13 6.1 prim. Giles Giles Giles na3.29E-4 2.32E-4 3.30E-4 2.33E-4 1.89E-6 8.94E-7

14 6.2 prim. Giles Giles Giles np@9.89E-5 1.75 6.98E-5 1.759.93E-5 1.75 6.99E-5 1.756.32E-7 1.58 3.11E-7 1.52
15 6.3 prim. Giles Giles Giles na2.62E-5 1.92 1.85E-5 1.9R2.63E-5 1.92 1.85E-5 1.9R1.72E-7 1.88 8.57E-8 1.86
16 6.1 cons. Giles Giles Giles na3.30E-4 2.32E-4 3.31E-4 2.33E-4 2.14E-5 1.34E-5

17 6.2 cons. Giles Giles Giles HD.97E-5 1.74 6.98E-5 1.7569.97E-5 1.74 6.99E-5 1.752.08E-5 0.04 1.41E-5 -0.07
18 6.3 cons. Giles Giles Giles na&2.70E-5 1.89 1.85E-5 1.9P2.66E-5 1.92 1.85E-5 1.9R2.06E-5 0.01 1.43E-5 -0.02
19 6.1 prim. mod. buf. mod. buf. Ifier na| 8.23E-7 4.75E-7 8.34E-7 4.75E-7 7.43E-9 1.92E-9

20 6.2 prim. mod. buf. mod. buf. Ifier na| 1.35E-8 5.98 7.62E-9 6.011.31E-8 6.04 7.62E-9 6.0{1.10E-10 6.08 2.09E-11 6.53
21 6.3 prim. mod. buf. mod. buf. Ifier na|3.04E-10 5.49 1.72E-10 5.4®.98E-10 5.47 1.72E-10 5.4®.02E-12 5.77 2.56E-13 6.35
22 6.1 cons. mod. buf. mod. buf. fer na| 8.48E-7 4. 74E-7 8.42E-7 4. 74E-7 5.01E-6 3.54E-6

23 6.2 cons. mod. buf. mod. buf. fier na| 1.12E-7 2.94 5.69E-8 3.081.22E-7 2.81 6.02E-8 3.0p5.03E-6 -0.01 3.54E-6 0.00
24 6.3 cons. mod. buf. mod. buf. fier na| 1.46E-7 -0.38 7.73E-8 -0.441.54E-7 -0.34 7.85E-8 -0.385.04E-6 0.00 3.54E-6 0.00
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3. TEST CASE APPLICATIONS

The comparison of the errors in Taljle 3.11 indicates thagnithe equations are
in primitive form, the accuracy is higher and the errors heparticularly low levels
for the case in which the modified fhar layer is applied at both the inlet and the
outlet. In this case, the convergence rate against the nuoflm®des per unit length
matches the sixth-order rollfio which is the formal order of accuracy of the spatial
differentiation of the interior scheme. This demonstratesttiegagrror introduced with
this time step by the fourth-order time-integration schesiewer than that from the
spatial discretisation and that, in the absence of the platgoduced by the modified
buffer is also lower than this threshold. The low-order filterlaggpnear the boundaries
has probably a negligiblefect on the results in Table 3111 as the flow in those points

is overwritten with values almost exact at the end of eacle step.

The method by Lockard & Mortis [1997] for introducing the gusthe computa-
tional domain appears to generate higher valuds ahdl., error norms and a lower

error roll of than the inlet conditions. The order of convergence is megathen

thelLockard & Morris([1997] gust generation is used witlifbulayers, which is not a
favourable combination.

Introducing the gust by a modified Giles boundary conditierf@grms well as the
error roll of is approximately second order. This rate is probably drivghe LOC
near-boundary treatment of the implicit filter. The abselet/el of the errors obtained
appears to be adequate for the adoption in the completegmnoivicluding the flat
plates cascade.

Figured 3. I1[ 312 arid 3113 show the distribution of the diomensional velocity
component and of the pressure oscillatigriwith respect to the reference valpgu?,
at the end of simulations 3, 15 and 21 in Table B.11. In de#ibf Figured 3.1l, the

buffer zones at the inflow and outflow reduce the velocity ampéitiod/alues very near

133



3. TEST CASE APPLICATIONS

Table 3.12: Grid-dependent explicit time-integration graeters for the two-
dimensional linear cascade test case. The time step isinmmdionalised bg/u,,.

Gridno. | Timestep Steps Courant no.

[nd]

0.01 50080 0.4816
0.005 100160 0.4816
0.0025 200320 0.4816

0.00125 400640 0.4816

A WN P

to zero, small oscillations with an amplitude about zerosdilenoticeable, and only
in the central part of the field the gust has the correct vdbetails (a) of Figures 3.12
and[3.IB show that, when the modified Giles and the modifigi@bboundaries are
used, the field is completely occupied by the gust. In dethiof the figures, the
non-dimensional amplitude of the pressure oscillapowith respect to the reference
valuep..UZ, due to the introduction of the gust and to the influence of thendlaries,
is shown for the three gust generation techniques. Herepbssible to appreciate
the diferent levels of accuracy provided by théfdrent gust generation methods. In
Figure[3.IB (b), small oscillations related to the inteydd boundary approximations

are visible.

3.2.3.2 Results from the complete model

The results reported in this section are taken at a non-difoeal timet = 500.8.

Table 3. 1P shows the main parameters of the time-integrattbeme used as func-
tion of the computational grid. As in the simulations withtwe cascade, the accuracy
limit is 0.4999 and the stability limit is 4217 (see Section 2.3 for details). These
limits are met in all the runs reported in Tables 3.13[andl3.14
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(b) Distribution of the non-dimensional amplitude of thegsure oscillatiop’ with respect
10 pooUZ,.

Figure 3.11: Simulation number 3 in Talile 3.11 not includihg linear cascade of
flat plates. Gust introduced by the force field_of Lockard & ki®{1997]. Negative
contours are shown by dashed lines.
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(b) Distribution of the non-dimensional amplitude of thegsure oscillatiop’ with respect
10 pooUZ,.

Figure 3.12: Simulation number 15 in Talble 3.11 not inclgdime linear cascade of
flat plates. Gust introduced at the inflow boundary follo @]. Negative
contours are shown by dashed lines.
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Figure 3.13: Simulation number 21 in Talle 3.11 not inclgdine linear cascade of
flat plates. Gust introduced by the modifiedileu technique. Negative contours are
shown by dashed lines.
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3. TEST CASE APPLICATIONS

Tabled3.1B and3.14 list the results, as required by thegmobefinition, of the
simulations that include the presence of the linear casofith plates. The simulation
was repeated by varying the length of the domain, the typejo&ion, the type of
boundary closures, the method used for the introductiom@fgust, and the relative
position of the inflow plane and of the leading edge of thegdatenoted by the non-
dimensional valueg,. The non-dimensional errors of the pressure jukmpbetween
the faces of the reference plate, and of the radiated s@aﬂ)ng the linex/c = -2
andx/c = +3 are given from a representative set of these simulations.

The pressure ttierenceAp across the flat plates is evaluated at the non-dimensional
timet = 5008, which coincides with the end of a period and the error n@armagiven
for both the real part ohp and its imaginary part which is computed from the vectorial
difference between the time-dependent oscillation amplitederded during the last
period and the real part &p. The rate of convergence of the pressuréedenceAp
with increasing mesh refinement is between 0.7 and 1.5, whickwver than the sixth-
order roll df that would be expected from the order of accuracy of theimtecheme.
The radiated soun@ is evaluated between= 500 andt = 5008 by averagingp?
in time. The estimations q? from grids with diferent levels of mesh refinement do
not display a monotonic rollfé. This suggests that, while some sources of error are
reduced by incrementing the spatial refinement, other gsuray increase.

Table[3.1B shows a summary of the results from the simulatidmere no modi-
fications to the treatment of the plate edges and surfacestanduced as detailed in
Sectior3.ZR. Table-3.114 shows results from the simulationwhich the corrections
are applied. In Table_3.14, field “Corr.” refers to the vasdavels of correction as
defined in Section 3.2.2.

Table[3.IB shows that, by increasing the mesh density, thedimensional pres-
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3. TEST CASE APPLICATIONS

sure diferenceAp across the flat plates tends to converge towards the retesamnic
lution. The absolute values of the error are very similar agithe various sets with

the exception of simulations 9 to 11 in which the gust is gateel by the force field

oflLockard & Morris [1997], which is a rather coarse approaiion and is the domi-
nant source of error in the simulation as discussed in theegbof Figurd 3.111. Inter-
estingly, the predicted pressurdidrence seems not to be significantly influenced by
the length of the field as the sets 1 to 4, 16 to 19, and 20 to 28 skarly the same re-
sults. The non-dimensiong? on the plane at/c = —2 in most cases gives results that
tend towards the reference solution with lanrnorm reducing with increasing mesh
resolution. The best results are obtained by simulatiorie 2Z with a modified bfier
condition at both the inflow and the outflow. On the plane/at = +3 the situation

is more involved and the convergence towards the referemloesis obtained only in
some cases.

Table[3.1#% lists the results from the predictions in whichrections were intro-
duced in the attempt to improve their accuracy. With Gilearatary conditions at
both the inflow and the outflow (simulations 28 to 39) the puesslfferenceAp error
decreases with increasing level of correction and, withemion level 3 (simulations
36 to 39 in Tablé_3.14) the real part of thg error is lower than in the unmodified
simulations (1 to 4 of Table—3.13). This is also the case ferdimulations using the
modified bufer at the external boundaries (simulations 24 to 27 and 58toGom-
paring the simulations from 36 to 47, it is evident that theg of the computational
field has little influence on the pressurdtdrenceAp when the Giles type of closure
is enforced. In all the cases reported in Tables|3.13andtBeLKim and Lee invis-
cid wall, which uses conservative variables, performsdbdtian the Tam and Dong

wall closure for primitive variables, despite the primdivariables allowing the gen-

139



ort

Table 3.13: Error analysis of the simulations including lthear cascade of flat plates. Predictions without speciakc-

tions for the treatment of the edges and the surfaces of #teglValues are in non-dimensional form.

No. Model Eg. Boundaryconditons Wall Gust Xg Xin Apreal [nd] Apimag. [nd] P? [nd] at x/c = =2 | p?[nd] at x/c = +3
name form X low x high  type [nd] loo lo loo I loo I loo I
1 7.1  cons. Giles Giles Kim Giles na -3 1.55E-2 3.27E-3 3.74E-2 7.38E1.43E-7 1.87E-7| 2.61E-7 2.01E-7
2 7.2 cons. Giles Giles Kim Giles na -3 112E-2 2.77E-3 2.87E-2 5.86E{33.05E-7 2.30E-7| 7.70E-7 6.78E-7
3 7.3  cons. Giles Giles Kim Giles na -3 8.09E-3 2.20E-3 1.79E-2 4.28E1.30E-7 1.64E-7| 9.20E-7 7.89E-7
4 7.4 cons. Giles Giles Kim Giles na -3 6.40E-3 1.71E-3 6.28E-3 1.85E{31.33E-7 8.68E-8| 8.95E-7 7.65E-7
5 7.1 prim. Giles Giles Tam Giles na -3 1.61E-2 3.40E-3 3.71E-2 7.36E{®.30E-7 1.74E-7| 3.67E-7 3.19E-7
6 7.2  prim. Giles Giles Tam Giles na -3 1.18E-2 2.89E-3 2.88E-2 5.96E133.72E-7 2.79E-7| 9.22E-7 8.03E-7
7 7.3 prim. Giles Giles Tam Giles na -3 7.77E-3 2.33E-3 1.82E-2 4.40E{R.83E-7 2.03E-7| 1.04E-6 8.91E-7
8 7.4 prim. Giles Giles Tam Giles na -3 7.27E-3 1.90E-3 7.07E-3 2.07E{3L.60E-7 1.04E-7| 9.91E-7 8.44E-7
9 9.1 cons. btier Giles Kim Lockard -1 -5| 1.53E-2 3.43E-3 3.51E-2 7.08E{37.29E-7 5.82E-7| 8.29E-7 7.56E-7
10 9.2  cons. biier Giles Kim Lockard -1 -5|1.11E-2 2.86E-3 2.78E-2 5.85E{3%.04E-7 3.86E-7| 9.29E-7 8.03E-7
11 9.3 cons. bfier Giles Kim Lockard -1 -5 | 8.24E-3 2.25E-3 1.74E-2 4.29E133.68E-7 2.75E-7| 9.44E-7 8.06E-7
12 9.1 cons. Giles mod. buf. Kim  Giles na -B1.55E-2 3.26E-3 3.75E-2 7.40E133.70E-7 3.03E-7| 7.01E-8 4.87E-8
13 9.2  cons. Giles mod. buf. Kim  Giles na -B1.14E-2 2.78E-3 2.88E-2 5.88E133.51E-7 2.62E-7| 8.48E-7 7.09E-7
14 9.3 cons. Giles mod. buf.  Kim Giles na -B8.05E-3 2.22E-3 1.75E-2 4.26E{3%.55E-8 3.88E-8| 1.23E-6 1.08E-6
15 9.4  cons. Giles mod. buf. Kim  Giles na -B6.49E-3 1.78E-3 6.38E-3 1.77E13L.32E-7 8.23E-8| 1.04E-6 9.32E-7
16 9.1 cons. Giles Giles Kim Giles na -4152E-2 3.25E-3 3.74E-2 7.38E{R.42E-7 2.06E-7| 1.86E-7 1.20E-7
17 9.2 cons. Giles Giles Kim Giles na -41.10E-2 2.76E-3 2.89E-2 5.87E{34.82E-7 3.78E-7| 5.29E-7 4.15E-7
18 9.3 cons. Giles Giles Kim Giles na -4847E-3 2.20E-3 1.82E-2 4.28E{34.52E-7 3.47E-7| 5.94E-7 4.69E-7
19 9.4 cons. Giles Giles Kim Giles na -46.33E-3 1.74E-3 6.34E-3 1.84E{33.64E-7 2.72E-7| 5.59E-7 4.39E-7
20 11.1  cons. Giles Giles Kim Giles na -5156E-2 3.28E-3 3.74E-2 7.37E{R.63E-7 2.15E-7| 2.82E-7 2.19E-7
21 11.2 cons. Giles Giles Kim Giles na -51.14E-2 2.77E-3 2.88E-2 5.88E133.76E-7 2.94E-7| 7.84E-7 6.27E-7
22 11.3 cons. Giles Giles Kim Giles na -57.95E-3 2.19E-3 1.81E-2 4.30E{33.14E-7 2.36E-7| 8.86E-7 7.13E-7
23 11.4 cons. Giles Giles Kim Giles na -56.37E-3 1.70E-3 6.26E-3 1.88E1.21E-7 1.59E-7| 8.46E-7 6.82E-7
24 11.1 cons. mod. buf. mod. buf. Kim fier na -5 |1.54E-2 3.43E-3 3.52E-2 7.10E{3.87E-7 7.21E-7| 7.26E-7 5.79E-7
25 11.2 cons. mod. buf. mod. buf. Kim fier na -5 | 1.13E-2 2.86E-3 2.79E-2 5.87E13%.42E-7 4.18E-7| 1.01E-6 8.37E-7
26 11.3 cons. mod. buf. mod. buf. Kim fier na -5 |8.19E-3 2.26E-3 1.70E-2 4.27E{3l.64E-7 1.00E-7| 1.25E-6 1.09E-6
27 11.4 cons. mod. buf. mod. buf. Kim fier na -5 | 6.52E-3 1.84E-3 6.49E-3 1.80E{3.44E-8 6.26E-8| 1.07E-6 9.64E-7
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eration of a gust at the inflow that is closer to the analytsdution as reported in
Sectiori3.2.3]1. In general, the Giles boundary conditammkthe modified hifier give
satisfactory results with similar error magnitudes, assshby comparing simulations
44-47 to 56-59. The Giles boundary closures are preferreduse they are compu-
tationally more éicient as they do not require a layer of boundary nodes. Tl err
norms of@ at the inflow show the expected trend with increasing meshagfent but
with absolute errors that only in certain cases compareufaly against the simula-
tions without corrections. For the mesh with highest spagsolution, the best results
are obtained with the modified Biars. At the outflow, as for the case without correc-
tions, a clear trend ip? error norms cannot be found. The length of the field seems
to have a noticeable influence E\ at the inflow and at the outflow, but the results are
difficult to interpret.

Figure[3.14 shows a representative set of results from thelations without ad-
ditional modifications. It refers to simulations 1 to 4 of TeB.13. This set is obtained
with the Euler equations in conservative form, the Gilesssulic non-reflecting bound-
aries at inflow and outflow, the Kim and Lee inviscid wall foetplate surfaces, and
a computational domain of non-dimensional length 7 inxhdrection. Figuré 3.14
shows both the real and the imaginary part of the non-dino@aspressure ¢lierence

Ap across the blade gt= 0. The symbols are predictions attérent levels of grid

refinement and the continuous line is the reference solltyoHall [1997a]. Spatial
oscillations at the plate leading and trailing edges arevaehibat tend to increase in
amplitude with increasing number of nodes. On the left-hadd of the graph, the real
part of the predictecd\p converges towards the reference solution. On the rightthan
side, a small fiset can be noticed and the pressur@edence magnitude is slightly

over-estimated. The imaginary part seems to display theecbtrend with an fiset
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Table 3.14: Error analysis of the simulations including lihear cascade of flat plates. Predictions with correctfonshe
treatment of the edges and the surface of the plates. This lefveorrection as defined in Sectibn 3]2.2 are shown in field

“Corr.”. Values are in non-dimensional form.

No. Model Eg. Boundary conditions Wall Gust Corr. X Apreal [nd] Apimag. [nd] p? [nd] at x/c = -2 | p? [nd] at x/c = +3
name form X low x high  type [nd] loo I loo I loo I loo I
28 7.1 cons. Giles Giles Kim  Giles 1 -3 8.53E-3 2.39E-3 3.17E-2 7.30Ei®.63E-7 1.70E-7| 7.85E-7 6.81E-7
29 7.2  cons. Giles Giles Kim  Giles 1 -3 4.74E-3 1.82E-3 1.96E-2 5.63E{#.33E-7 3.10E-7| 9.03E-7 7.61E-7
30 7.3 cons. Giles Giles Kim  Giles 1 -3 8.23E-3 2.13E-3 2.13E-2 5.61E1®.51E-7 1.73E-7| 8.35E-7 7.05E-7
31 7.4  cons. Giles Giles Kim  Giles 1 -3 1.08E-2 2.58E-3 2.31E-2 6.05E{3l.08E-7 6.51E-8| 7.78E-7 6.60E-7
32 7.1  cons. Giles Giles Kim  Giles 2 -3 1.01E-2 2.55E-3 2.92E-2 6.49E1%4.92E-7 3.55E-7| 8.30E-7 7.11E-7
33 7.2 cons. Giles Giles Kim  Giles 2 -3 4.05E-3 1.40E-3 1.45E-2 3.94E3.78E-7 3.51E-7| 7.36E-7 6.19E-7
34 7.3 cons. Giles Giles Kim  Giles 2 -3 4.17E-3 1.17E-3 1.15E-2 3.29E1R.66E-7 1.93E-7| 5.54E-7 4.74E-7
35 7.4 cons. Giles Giles Kim  Giles 2 -3 8.16E-3 1.62E-3 1.93E-2 3.83E3L.26E-7 8.67E-8| 4.45E-7 3.88E-7
36 7.1 cons. Giles Giles Kim  Giles 3 -3 1.44E-2 3.32E-3 3.23E-2 7.02E13%.46E-7 3.99E-7| 8.40E-7 7.20E-7
37 7.2  cons. Giles Giles Kim  Giles 3 -3 8.52E-3 1.95E-3 1.98E-2 4.34E{34.62E-7 3.41E-7| 6.65E-7 5.61E-7
38 7.3 cons. Giles Giles Kim  Giles 3 -3 3.79E-3 1.13E-3 1.07E-2 3.01EiR.37E-7 1.72E-7| 4.75E-7 4.10E-7
39 7.4 cons. Giles Giles Kim  Giles 3 -3 5.29E-3 1.15E-3 1.37E-2 2.93E3L.09E-7 7.25E-8| 3.74E-7 3.31E-7
40 9.1 cons. Giles Giles Kim  Giles 3 -4 1.42E-2 3.25E-3 3.23E-2 7.01E{3%.66E-7 4.05E-7| 8.81E-7 6.78E-7
41 9.2  cons. Giles Giles Kim  Giles 3 -4 8.19E-3 1.85E-3 2.00E-2 4.39E{3X%.21E-7 4.74E-7| 4.18E-7 3.07E-7
42 9.3 cons. Giles Giles Kim  Giles 3 -4 3.35E-3 1.03E-3 1.10E-2 3.08Et3#.15E-7 3.24E-7| 1.81E-7 1.27E-7
43 9.4  cons. Giles Giles Kim  Giles 3 -4 5.22E-3 1.09E-3 1.39E-2 2.97E{®.82E-7 2.22E-7| 8.33E-8 5.08E-8
44 11.1  cons. Giles Giles Kim  Giles 3 -5 1.48E-2 3.40E-3 3.24E-2 7.00E{3.99E-7 4.40E-7| 9.56E-7 7.35E-7
45 11.2  cons. Giles Giles Kim  Giles 3 -5 8.72E-3 1.98E-3 1.99E-2 4.36E{3%.40E-7 4.08E-7| 6.64E-7 5.10E-7
46 11.3 cons. Giles Giles Kim Giles 3 -5 3.94E-3 1.15E-3 1.09E-2 3.04E{33.18E-7 2.42E-7| 4.48E-7 3.46E-7
47 11.4 cons. Giles Giles Kim Giles 3 -3 5.35E-3 1.16E-3 1.37E-2 2.95E{31.86E-7 1.42E-7| 3.38E-7 2.62E-7
48 9.1 cons. Giles mod. buf. Kim Giles 3 -3 1.45E-2 3.33E-3 3.25E-2 7.05E13%.69E-7 5.05E-7| 7.53E-7 5.71E-7
49 9.2  cons. Giles mod. buf. Kim Giles 3 -3 8.82E-3 2.01E-3 1.99E-2 4.35E{3®%.26E-7 3.91E-7| 7.25E-7 5.77E-7
50 9.3 cons. Giles mod. buf. Kim Giles 3 -3 3.92E-3 1.18E-3 1.03E-2 2.94E13x%.98E-8 4.15E-8| 7.59E-7 6.60E-7
51 9.4  cons. Giles mod. buf. Kim Giles 3 -35.02E-3 1.11E-3 1.36E-2 2.87E{3l.30E-7 1.06E-7| 5.09E-7 4.87E-7
52 7.1 prim. Giles Giles Tam Giles 3 -3 5.17E-3 2.66E-3 2.14E-2 6.26E1.34E-7 1.35E-7| 1.71E-6 1.44E-6
53 7.2 prim. Giles Giles Tam Giles 3 -3 1.17E-2 3.62E-3 1.40E-2 5.06E137.09E-7 5.04E-7| 1.44E-6 1.18E-6
54 7.3  prim. Giles Giles Tam Giles 3 -3 1.29E-2 4.01E-3 1.74E-2 5.17E{3.68E-7 6.64E-7| 1.06E-6 8.50E-7
55 7.4 prim. Giles Giles Tam Giles 3 -3 1.53E-2 3.12E-3 2.20E-2 5.04E13%.87E-7 5.36E-7| 7.41E-7 6.00E-7
56 11.1 cons. mod. buf. mod. buf. Kim fber 3 -5 | 1.46E-2 3.63E-3 2.97E-2 6.46E{3lL.28E-6 9.69E-7| 1.57E-6 1.22E-6
57 11.2 cons. mod. buf. mod. buf. Kim fber 3 -5 | 8.72E-3 2.08E-3 1.87E-2 4.13E{37.40E-7 5.60E-7| 8.85E-7 7.01E-7
58 11.3 cons. mod. buf. mod. buf. Kim fber 3 -5 | 3.77E-3 1.19E-3 9.68E-3 2.85E{31.96E-7 1.30E-7| 7.86E-7 6.76E-7
59 11.4 cons. mod. buf. mod. buf. Kim fber 3 -5 | 491E-3 1.11E-3 1.35E-2 2.84E{37.98E-8 4.80E-8| 5.43E-7 5.19E-7
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3. TEST CASE APPLICATIONS

particularly pronounced betweeagic = +0.05 andx/c = +0.4.

In Figure$3.1b anid 3.16 the non-dimensional presplii®shown for the same set
of results as Figure_3.14, which are simulations 1 to 4 of @&bI3. Upstream of the
cascade, Figufe 3.115 shows that, as the grid is refined, guicped non-dimensional

pressure amplitude, shown by symbols, tends to convergartisnthe reference so-

lution by|Hall [19974a], denoted by the continuous line. Daiveam of the cascade,

at x/c = +3, the values tend to converge towards a limit showing theecbisound

directivity, displayed by the correct location of ttTé maximum and minimum along
they direction, but that is over-estimated with respect to tHieremce solution. This is
common to most of the other sets of solutions.

Figure[3.1¥ compares the results of the radiated noise aiutikow plane from
simulations difering only for the extension of the field in thedirection. Increasing
the distance between the cascade trailing edge and the tatopal domain outflow
boundary &ects the amplitude of the mean squared pressure fluctudtioic & +3.
There is a rather smalffect on the spatial phase of the mean squared pressure distri-
bution, confirming that the directivity of the pressure pdsation is captured by the
simulation, but for thq? mean level. The uniformly Iowe[? predicted by the com-
putation with streamwise length = 9 may result from wave patterns generated by
spurious wave reflections at the outflow boundary.

Figures3.IB[3.19 arld 3]20 show respectively the non-diioeal perturbation
fields of pressur@’ and velocityy’ andv’ at non-dimensional time= 5008. The per-
turbation is computed about the uniform reference f@w of Equation [3.14). The
non-dimensional velocity fluctuation in thyedirectionv’ is coincident with the value
of the non-dimensional velocity componentThe distributions of pressure and veloc-

ity perturbations give patterns that are consistent withgredictions shown in Tam
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3. TEST CASE APPLICATIONS

0.05

0.04

0.03

-0.01

[ reference
- o simulation 1
a simulation 2
simulation 3
simulation 4

Imaginary part

Figure 3.14: Simulations of the linear cascade of flat plates-dimensional pressure
difference across the= 0 blade at the non-dimensional tihe 500.8. Results from
simulations 1 to 4 in Table_3.1L3 with increasingly refineddgrivhich do not include
the corrections of Sectidn 3.2.2.
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reference
i o simulation 1
2.5E-06 - a simulation 2
simulation 3
i o simulation 4

EZE'OG [~

&

1.5E-06 |~

Figure 3.15: Linear cascade of flat plates with the inflow gneh-dimensional pres-
sure amplitudq:? evaluated between non-dimensional time 500 andt = 500.8 up-
stream of the cascade@tc = —2. Symbols represent simulations 1 to 4 in Table3.13
with an increasingly refined mesh that do not include theemions of Sectioh 3.2.2.
Only the range of/c between 0 and 1 is included as the values from 2 to 4 are idgntic
due to the cascade pitchwise periodicity.
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- —————— reference
B o simulation 1
4E-06 |~ a simulation 2
B simulation 3 R
i o simulation 4 A
3.5E-06 |-
= B
£.3E-06 |-
e [
2.5E-06 |~
2E-06 |~

Figure 3.16: Linear cascade of flat plates with the inflow gneh-dimensional pres-
sure amplitudq? evaluated between non-dimensional time 500 andt = 5008
downstream of the cascade»ic = +3. Symbols represent simulations 1 to 4 in
Table[3.1B with an increasingly refined mesh that do not ohelthe corrections of
Sectio-3.Z2. Only the range gfc between 0 and 1 is included as the values from 2
to 4 are identical due to the cascade pitchwise periodicity.
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L —— reference
B o length 7 (simul. 4)
4E-06 |- o length 9 (simul. 19)

length 11 (simul. 23)

3.5E-06 |-

2.5E-06 |-

2E-06 |-

0 0.2 0.4 0.6 0.8 1 1.2
ylc

Figure 3.17: Linear cascade of flat plates with the inflow gneh-dimensional pres-
sure amplitudq? evaluated between non-dimensional time 500 andt = 5008
downstream of the cascadexdt = +3. Symbols represent simulations 4, 19 and 23
in Table[3.1B with increasing domain length The simulations do not include the
corrections of Section 3.2.2. Only the rangeypt between 0 and 1 is included as the
values from 2 to 4 are identical due to the cascade pitchvasedtcity.
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Level p’[nd]
0.005
0.00375
0.0025
0.00125
0

-0.00125

-0.0025
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Figure 3.18: Linear cascade of flat plates with inflow guststibution of the non-

dimensional pressure perturbatiph = p — p.,U2, (Wherep is the non-dimensional
pressure computed as required by the problem definitiom)tbeeentire computational
domain at the end of simulation 2, Ta .13. Negative amstare shown by dashed
lines.

& Hardin [1997]. The velocity components in Figufes 3.19 do not show any

change in spatially periodic patterns approaching the ctatipnal domain bound-
aries where the Giles subsonic conditions are enforcedshwindicates that the ve-
locity perturbation is unected by the domain boundaries that are substantially non-
reflecting for this components of the flow state. The presperaurbation is slightly
more irregular at the outflow boundary. At the inflow boundanyall disturbances,
that tend to disappear in the more refined grid simulatiomsnaticeable.

Figure[3.21 shows the distribution over the whole compaieti field of the non-
dimensional mean pressure amplitﬁe:omputed during the last period of simulation
2 in Table[3.IB. The directivity of the radiating pressurehswn by the lobes of the
p? contours in FigurE3.21 (a). Figuries 3.21 (b) and (c) shovdéuay ofp? along the
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Level u’[nd]
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-0.0045
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Figure 3.19: Linear cascade of flat plates with inflow guststiihution of the non-
dimensional perturbation of the streamwise veloaity u — u,, over the entire com-
putational domain at the end of simulation 2, Tdble B.13.atigg contours are shown

by dashed lines.
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Figure 3.20: Linear cascade of flat plates with inflow guststiibution of the non-
dimensional perturbation of the flow-normal velocity= v — v,, over the entire com-
putational domain at the end of simulation 2, Tdble B.13.aYigg contours are shown

by dashed lines.
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3. TEST CASE APPLICATIONS

dashed lines 1 and 2 in Figure 3.21 (a). Two directivity pesesshown a = 220°
from the cascade leading edge and at —40° from the cascade trailing edge, where
0 is measured anti-clockwise positive from tkexis. The decay is monotonic and,
in logarithmic scale, non-linear. The non-linearity candxglained as in both the
upstream and downstream direction the cascade resporteeitwbming gust is com-
posed of a number of modes that are either cut-on (propagatircut-df (decaying).
For the combination of the geometry and gust prescribed &ytbblem definition of
the second test case, the dominating mode, the only clesilylerin Figure[3.1B, is
decaying, but other lower amplitude propagating modesgpergmposed to it in the
resulting pressure field. The sum of these contributionegyte the pressure profile
along dashed lines 1 and 2 the shape of a blend of two straiggd. | The pressure
amplitudes related to the various modes of the cascadensspmwmuld be obtained
by performing a double (both in time and space) Fourier faans of the predicted

pressure as done for the fourth test case of this study indd€€#. The mode decom-

position for this test case can be found in Ragab & Sale [Ja@m&]

The decay in the downstream direction, shown in Figure] 21§ characterised
by changes in curvature that are absent from the pressurbtagepdistribution in
the upstream direction shown in Figlire 3.21 (b). This is pbdpdue to the fact that
the outflow Giles subsonic boundary partially reflects thegoing waves. The over-
estimation of thq? amplitude noted in Figurds 3116 and 3.17, and directly frbe t
data in Tabl€_3.13, could be related to this phenomenon.

Figures fromi 3.22 tb 3.24 refer to simulations 36 to 39 of €&hIL4 with correction
level 3. They can be directly compared to Figures fiom13.13L16.

Figures fron3.25 t6 3.27 illustrate the results from sirtiala37 in Tabld_3.14.

These values can be directly compared to those from siroal&ishown in Figures
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~J o
Level p?[nd]
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(a) Contours op? over two vanes showing the unsteady pressure directivity.
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(b) Values along dashed line 1 in Figlire 3.21 (a).
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Figure 3.21: Linear cascade of flat plates with inflow gustnidamensional unsteady
pressure amplitudp? computed over the last period of simulation 2, Table13.13.

1 1 1 | 1 . . .
1.4 1.6 18 2 2.2 2.4 2.6 2.8
xlc

(c) Values along dashed line 2 in Figlire 3.21 (a).
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0.05 = —— reference
B o simulation 36
i a simulation 37
0.04 - v simulation 38
i o simulation 39
0.03
2
— 0.02
o
<
0.01
0
-0.01

Figure 3.22: Linear cascade of flat plates with inflow gustnd@anensional pressure
differenceAp across thg = O flat plate at non-dimensional tinhe- 5008. The results
from four simulations with correction level 3 (36 to 39 in Tel8.14) and increasingly
refined grids are shown. The same axis scales are used asue[Bid4 to facilitate
the comparison among the results.
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2.5E-06

E-ZE-OG

&

1.5E-06

reference

simulation 36
simulation 37
simulation 38
simulation 39

Figure 3.23: Linear cascade of flat plates with inflow gusow~hormal distribution
of fluctuating pressure amplitude gtc = —2 upstream of the flat plate leading edge,
averaged over the non-dimensional time 590Q@ < 5008. Predictions with scheme
correction level 3 at increasing levels of mesh refinememhf®ls). Reference solu-
tion (continuous line). Simulations 36 to 39 in Table 3.14eTordinate axis range is
0 < y/c < 1 as the pressure distribution is pitchwise periodic.
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4E-06
3.5E-06
©
£.3E-06
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2.5E-06

2E-06

reference

simulation 36
simulation 37
simulation 38
simulation 39

Figure 3.24: Linear cascade of flat plates with inflow gustw~hormal distribution
of fluctuating pressure amplitude atc = +3 downstream of the flat plate leading
edge, averaged over the non-dimensional time 500 < 5008. Predictions with
scheme correction level 3 at increasing levels of mesh ma@me (symbols). Reference
solution (continuous line). Simulations 36 to 39 in TdbI&43.The ordinate axis range
IS 0< y/c <1 as the pressure distribution is pitchwise periodic.
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Figure 3.25: Linear cascade of flat plates with inflow guststiibution of the non-
dimensional pressure perturbatiph = p — p.,U2, (Wherep is the non-dimensional
pressure computed as required by the problem definitiom)tbeeentire computational
domain at the end of simulation 37, Table 3.14. Negativeamstare shown by dashed
lines.
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Figure 3.26: Linear cascade of flat plates with inflow guststiibution of the non-
dimensional perturbation of the streamwise veloaity- u — u,, over the entire com-
putational domain at the end of simulation 37, Table3.14ydtige contours are shown
by dashed lines.

from [3.18 to[3.2D. Simulations 2 and 37 solve the same fortiomaf the Euler
equations, using the same type of boundary conditions,igstiuction method, and
computational domain field length. This allows to grapHycalaluate the increase in
the accuracy due to the introduction of the correctionsiagt the blade edges and

surfaces discussed in Sectlon 3.2.2.

Figure[3.2P compares the flat plate surface pressiiereince from predictions us-

ing different levels of mesh refinement (symbols) with the refereobation by Hall

[1997a] (continuous line). Figufe 3122 shows that the real pf the non-dimensional

pressure diferenceAp across they = 0 blade from the simulations with higher node
density (simulations 38 and 39) is nearly the same and qytlee reference solution
over the whole plate. The spatial oscillation\ip observed in Figure_3.14, especially

near the leading edge, where the pressure gradients apeistase shown to be sub-
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Level v'[nd]
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Figure 3.27: Linear cascade of flat plates with inflow guststiibution of the non-
dimensional perturbation of the flow-normal velocity= v — v, over the entire com-
putational domain at the end of simulation 37, Table3.14dtige contours are shown
by dashed lines.
stantially attenuated in Figufe_3122. The imaginary parpfin Figure[3.22 is also
nearly coincident with the reference solution and tffset along the left-hand side of
the plate noted in Figufe 3.114 is shown to have been subaligméduced by the level
3 corrections applied by the numerical method at the flaepdiyes and surfaces.
Figure[3.2B shows the flow-normal distribution of the presdiuctuation ampli-
tude? at x/c = -2, upstream of the flat plate leading edge. These resultsrare p
dictions obtained with the level 3 corrections of SecfioB.3. In Figure[3.23, the
non-dimensional pressure fluctuation amplittﬁérom the coarser mesh simulations
(O, o) shows a lower agreement with the reference solution (ooatis line) when
compared to Figure 3.15. However, the predictions from tbeemefined meshey (
o) show an improved agreement with the reference solutiorpened to Figuré 3.15.

Figure[3:2# shows the flow-normal distribution of unsteadsspure predicted at
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3. TEST CASE APPLICATIONS

x/c = +3, downstream of the plate trailing edge, using the samé 8wgerrection as
for Figure[3.2B. Atx/c = +3, the prediction shown by symbols displays a vertical
offset with respect to the reference solution (continuou$ bmailarly to Figurd 3.16.
However, this éfset is lower than in the predictions without the level 3 cotion. The
level 3 predictions also display a monotonically decregsiifference among them as
the computational mesh is refined, which is a strong inddcatif mesh convergence
in the computation.

Figured 3.2H, 3.26 arid 3]27 show the distributions of flutaiggressure, stream-
wise, and flow-normal velocity components across the futhpotational domain at
non-dimensional timé = 500.8. These predictions are obtained using the level 3 cor-
rection in the scheme. The displayed predictions are satislilst equivalent to those
without the corrections.

Table[3.I5 summarises the computational resources useuh teach simulation.
Due to the scheduler of the high-performance computer tlastwged, the runs have
not been made under identical conditions, such as by reggeritire blades of pro-
cessors to maximise the locality of the memory and to mirgntie latencies related
to the data exchange. This resulted in a significant dateedsgm in the recorded
cost of the computation that does not allow to accuratejuewa the additional com-

putational cost from the corrections implemented to impribne quality of the results.

The results show that both the modifiediten condition and the Giles non-reflecting
subsonic inflow and outflow, in association with the invisaidll boundary by Kim
and Lee, are suitable for the solution of the second test cibe Giles boundary
conditions have to be preferred over the modifieffdrubecause they do not require

additional grid nodes to host the fiier layer and are, therefore, morii@ent. The
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Table 3.15: Computational cost and duration of the lineacade simulations of flat
plates with inflow gust.

No. | Walltime CPUtime Totalmem. || No. | Walltime CPUtime Total mem.
[hh:mm:ss]  [hh:mm:ss] [MB] [hh:mm:ss] [hh:mm:ss] [MB]
1 00:05:01 01:36:35 692 32 02:00:16 01:48:25 694
2 00:12:55 05:20:20 735 33 00:11:00 05:05:20 727
3 03:16:42 88:39:38 980 34 03:32:37 95:48:21 1001
4 33:27:53 921:30:45 1841 35 41:17:34 1111:10:40 1894
5 00:05:13 01:35:14 686 36 00:06:14 01:58:55 694
6 00:10:19 04:45:35 739 37 00:14:25 06:37:14 732
7 01:10:23 32:48:43 866 38 04:12:04 113:38:40 1057
8 35:51:50 980:45:13 1782 39 36:06:30 990:29:41 1678
9 00:04:23 01:41:56 873 40 00:05:30 02:20:09 838
10 00:19:11 11:09:54 943 41 00:12:48 07:31:52 919
11 03:24:05 118:34:20 1281 42 04:04:16 139:53:43 1293
na na na 43 38:31:07 1359:45:07 2172
12 00:03:16 01:48:53 879 44 00:03:28 02:26:36 1047
13 00:13:31 07:57:59 941 45 00:15:34 11:11:34 1162
14 03:41:05 128:56:12 1344 46 04:11:26 174:24:32 1574
15 29:58:06 1078:13:50 2041 47 47:48:21 1987:32:49 2953
16 00:03:30 01:59:01 867 48 00:03:29 01:55:31 873
17 00:13:03 06:54:58 937 49 00:13:59 08:15:56 946
18 04:07:02 139:50:23 1135 50 02:55:07 104:55:43 1122
19 51:39:29 1692:20:37 2334 51 29:45:45 1070:50:42 2022
20 00:03:15 02:17:08 1060 52 00:03:02 01:20:31 654
21 00:10:58 07:59:08 1138 53 00:12:08 05:34:29 729
22 03:20:09 142:55:11 1487 54 01:43:28 48:07:55 879
23 37:05:53 1583:54:32 2986 55 35:17:53 947:43:28 1817
24 00:12:09 07:38:56 1086 56 00:11:38 07:23:10 1079
25 00:21:04 14:22:21 1149 57 00:21:20 14:39:09 1161
26 02:59:57 129:59:46 1378 58 03:09:26 132:09:42 1419
27 37:51:35 1617:47:45 2472 59 42:45:36  1809:57:03 2662
28 00:05:43 01:38:55 696
29 04:00:27 05:35:45 732
30 04:17:04 114:28:26 977
31 36:57:44 997:28:22 1589
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length of the computational domain seems to have an influeradly concentrated
around the outflow area and needs to be established depemdiing problem to be

solved.

The results from this test case demonstrate that the hidgrqrefactored finite-
difference solver, with appropriate wall boundary and plateeedyl surface correc-
tions can provide engineering accurate predictions of tistaady wall pressure and
of the near-field radiating pressure amplitude in an aenastcoproblem of noise gen-
erated by the interaction with a straight solid wall. Theref the Giles non-reflecting
inflow and outflow, and the Kim and Lee inviscid wall boundaopnditions are surely
the first choice for the application in the test cases desdnb the following sections.
Although no direct numerical comparison is given with theules from other authors,

the level of agreement with the reference solution, as déiméhe proceedings of the

second NASA computational aeroacoustics (CAA) workshan{®& Hardin, 1997]

seems comparable with that of the results by Ragab & Sale 1{@] that is cer-

tainly the most accurate prediction available in literattar this problem.
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3.3 Third test case: sound generation by interaction
between an incident gust and a cascade of flat plates
(3D)

3.3.1 Problem definition

The third test case is a benchmark problem from the third NA8@putational aeroa-

coustics (CAA) workshopl [Dahl, 2000]. It is the third proisleunder category 3:

“Sound generation by interacting with a gust” and aims togdpce the interaction of
an incoming convected vortical gust with a cascade of flaifads having a finite span
and bounded in thespatial direction by two parallel impermeable walls, ascked
in Figure[3.28. The coordinate system origin is on the lomugall at the leading edge
of the reference aerofoil lying on thez plane. They axis is normal to the aerofoil sur-
face. Thez axis forms an angle with the aerofoil leading edge of the reference blade
defining the sweep of the blades. The chord of the aerofodjisktoc, the distance
between two successive plates in thairection ish = ¢ and the two bounding plates
are separated by a distarice 2.6c¢.

The mean flow is uniform across the domain. The mean velooityponents in
they andz direction are equal to zero and the component inxlurection is equal
to u,, = 0.5c.,, wherec,, is the reference speed of sound, so that the mean flow Mach
numberMy is equal to 0.5.

The problem is solved in non-dimensional form. The refeeeticmensional quan-
tities used for non-dimensionalisation are: the speed ohdo,, for the velocity, the
ambient flow density., for the densityp..c2 for the pressure, the aerofoil chordior

the length, ana/c., for the time.
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~ Impermeable
walls

Figure 3.28: Problem geometry of test case number 3 (mod'rﬁmil @i)]).

The function describing the incoming gust is defined oventhele field and is

function of the coordinates y, andz and of timet as

uy(xy,zt) =0, (3.15a)
Vy(xy,zt) = Acos(kxx + Ky + kz - wt), (3.15b)
wWy(x. Y,z 1) =0, (3.15¢)

whereA = 0.05, the wavenumbels, = 5.5/c, k, = 7 andk, = 0, and the harmonic
(angular) frequencw = kyu,/c = 2.75. The sweep angle ranges from 0° to 30°
with steps of 2.5°.

The problem requires to determine the amplitude of the re@msquared radiated
acoustic pressurpyms = \/ﬁ in the upstream direction at poiRt= (-5c, 0, 1/2) for
each prescribed value of the sweep angld he results are presented in dB using the
Prms Value obtained forr = 0° as the reference level and are referred t8 &.in the

results Section 3.3.3.
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To keep the incoming gust velocity field divergence free, taraloid pressure and
density oscillations coming from the inflow, in this work tgast definition also in-

cludes a componenf, = — (ky/kx)vé in the x direction.

An exact analytical solution for this problem is not avai&@abln the proceedings

of the NASA workshopl[Dahl, 2000] an approximate solution tlee noise radiated

in the upstream direction is given by Envia [2000], for whible contribution of the

noise coming from the trailing edge of the aerofoils is negdd. This solution is used

in Sectior 3.3 as the reference solution for comparingregnioe numerical results.

3.3.2 Numerical methods

The equations and the data input and output are non-dimei&ed using the set of
reference values defined by the problem in Sedfion3.3.1.

The problem definition in Sectidn 3.8.1 does not prescrileecdmputational do-
main size or the spatial discretisation to be used. The ctatipnal domain is to be
defined simply to include the blades and the p&fitom which the output is required.
As for the second test case, clustering of the points aropedfic areas of the model,
such as the aerofoil surface, is not used and the only dmtast the grid with respect
to a uniform orthogonal Cartesian mesh is to accommodatestgweep angle of the
blades.

The overall dimension of the model in thdirection is fixed by the problem defini-
tion. In they direction, the value of the transverse wavenunihand of the inter-blade
distanceh determine the minimum number of vanes to be included in theetia or-

der to obtain a pitchwise periodic flow. This gives a transgetomain extent ofi2 In
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the x direction the length of the model is determined by the typbamfndary closure
applied at the inflow and at the outflow and by starfideistance between the inflow
and outflow boundaries to the aerofoils leading and tragidges.

The node distribution iy andz directions over the whole model is kept as regular
as possible imposing a constant distance between the suaxémsyers of nodes. In
the x direction, the faces corresponding to the inflow and the @utfian either be kept
normal to the other external faces of the model, as sketehEayure 3.2D (a), or they
can follow the sweep angle of the blades, as sketched in &@@9 (b). The former
choice gives a “stretched” mesh and has the advantage ofiegshbe orthogonality
between the inflow and outflow boundaries and the curviliceardinate shown in
Figure[3.29 (a). The latter choice gives a “skewed” mesh aisdires a more regular
distribution of nodes in the direction for all values ofty, therefore simplifying the
definition of the mesh and minimising the errors related #gtid deformation. Both
types of mesh were used for the preliminary tests on the acguwf the input gust.

For both types of mesh, the distribution of the nodes alomgi tboordinate is
dominated: by the position of poiRtwhere the acoustic pressure is monitored, which
requires one mesh node to avoid data interpolation, by tbeipo of the nodes on the
edges of the blades, and by the position of the nodes on tflewuilane. In order
to minimise the errors related to the mesh non-uniformityftia-order polynomial is
used to map between the physical and the computatiawirdinate. The procedure
is as follows. The model is divided into four zones as showRigure[3.30 for the
“stretched” mesh. Zone 1 extends from the inflow boundanhé&gdlane, parallel to
the inflow, passing through poiRt Zone 2 extends from poif to the plane defined
by the blade leading edge. Zone 3 covers the area occupidteliat plates. Zone 4

extends from the trailing edge of the plates to the outflom@la
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V\E/x

i
(a) In the stretched mesh, the inflow and outflow planes anmaldio thex axis.

z

Y\E/x

i
(b) In the skewed mesh, the normal to the inflow and outflow¢ddiorms an angle equal to
the sweep angle with the x axis.

Figure 3.29: Computational domain of (a) the stretched raashb) the skewed mesh.
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3. TEST CASE APPLICATIONS

Figure 3.30: Schematic of the stretched grid highlightimg subdivision in the four
zones used for the computation of the nodes along tteordinate.

In each of the four zones, aftrent transformation is used to map the computa-
tional domain {, j, k) on the physical domainx( y, z). For all zonesy = jAy and
z = kAz, with Ay andAz constant.

For zone 1, the stretched mesh streamwise coordiatex, — 6¢, wherex, = iAX
andAx is constant.

For zone 2,

Xs = es—sh (IAX)° — 15S—h (iIAX)* + 108—? (IAX)® + iAx — 5c, (3.16)

X Xe X

a_>_<s = AX [305—:' (iAX)* - aos—h (iAX)® + 3os—3h (iAX)? + 1], (3.17)
ol XIe xlt xle
2
0% _ (ax?[12037 (iax)® - 18037 (1ax)2 + 6027 (iax)| (3.18)
di? Xe X Xe

wherexge is the x coordinate of the leading edge in a regular Cartesian gdsés
the diference betweer, and the position of the aerofoil leading edge plane in the

stretched grid for that particular row of nodes.
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For zone 3,
Xs = IAX+ sh (3.19)
% = AX, (3.20)
2
60;5 - 0. (3.21)
For zone 4,
sh . 5 sh 4
Xs = _GW(IAX - X(e) + 15m(|AX - Xte)

<h (3.22)

—10m(|AX — Xte)3 +iAX + sh+ C,

- (S)
0Xs s : 4 sh 3
— = AX|-30——=(IAX - 60— (IAX -

T = x|S0 k- na + 8018 % 2
<h (3.23)

—BOm(lAX - Xte)z + 1,

(S}
2 h h
9 .);S = (AX)? [—1205—5(iAx — Xe)® + 180874(iAx ~ Xe)?
ai (L = Xe) (L — %)
<h (3.24)
—60m(iAX - Xte)] ,

where X Is the position of the trailing edge in a regular Cartesiad gndL is the
overall length of the undeformed model.

In order to avoid an excessive compression of the mesh irofhkeft-hand corner
of zone 4, the overall length of the stretched type of grid edsnded by the quantity

Shnax corresponding to the maximum valuesst by modifying the equations used for
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zone 4 as
Xs = _GMOAX - Xte)s + lSMOAX - Xte)4
(L - XtE)S (L - Xte)4 (3 25)
~ (sh— shnay . VI )
10—(L EEVRE (IAX — %) + IAX + Sh+ c,
s _ Ax[—SOM(iAX o)t + 60N S v
ai (L - Xe)® (L = Xe)* (3.26)
—30M(mx—xt)2+l .
(L — Xe)® © ’
8;’;5 = (AX)? [_12%(m — %e)® + 180WOAx ~ %)’
¢ e (3.27)
sh— shnay .
—60ﬁ(|AX - Xte)] .

Equations[(3.25) td (3.27) were the transformation useHigswtork, although this
results in sets of meshes havingfdient overall length for the various values of the
sweep angle.

The adopted mapping of Equatios (3.16)[fo (B.21) and (32%3.27) ensures

the continuity of both the first and the second derivativelnriodes located on the

boundaries between the four zones.

The characteristics of the sets of computational grids uisetlis test case are
summarised in Tab[e3.116. Each line of the table represetitieaent set characterised
by the same overall nominal length in tikedirection (as the actual length depends
on the anglex), the same number of nodes and the same spatial orientdtithe o
inflow and outflow planes. Each set is labelled with the commutationL.i. ABwhich
identifies the extension in thedirection of the computational field the average inter-

nodal distancex; used to generate each grid and the orientation of the infwarid
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Table 3.16: Characteristics of the six sets of grids usedhersolution of the third
test case. The name of the set univocally determines itsactaistics. The fields
“Zones” indicate the number of parts in which the whole madedubdivided along
the curvilinear coordinates j, andk shown in Figuré_3.29. The fields related to the
total number of nodes “model” and “computation” refer, resjpvely, to the nodes of
the initial model and to the nodes of the actual parallel catafon. The two values
are diferent as the nodes on the common borders are duplicated neitjebouring
processes.

Set Set Zones Nodes for Total no. of nodes

no. name | inidir. in jdir. in kdir. eachzone model computation
1 10.1.NlI 10 2 2 6358 228459 254320
2 10.1.NN 10 2 2 6358 228459 254320
3 10.1.IN 10 2 2 6358 228459 254320
4 10.1.1 10 2 2 6358 228459 254320
5 12.1.NN 12 2 2 6358 273867 305184
6 12.2.NN 12 2 2 46827 2127125 2247696

the outflow @) planes. Letter N is used when the plane is normal toxtlagis and
letter | is used when it is inclined with respect to it.

For example, grid 10.1.11 with sweep angte= 30° is shown in Figure 3.31.

In all the models, the number of nodes along the three spditedtions is estab-
lished to keep the cells as much as possible similar to a cllbes, each zone in
which the complete model is subdivided has 17 nodes alongahé j directions and
22 nodes along thke direction. The only exception is set 12.2.NN in which the @od
linear density is doubled in all three spatial directions.

Table[3.1¥V shows the minimum and maximum value of stretcaiagg the curvi-
linear coordinaté for each set of grids of Table 3]16. The values refer to thesgri
having sweep angle = 30°.

The preliminary tests on the accuracy of the input vortiaedt@re run on the first

5 sets listed in Table=3.116, while the complete problem idiclg the plate cascade is
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3. TEST CASE APPLICATIONS

Table 3.17: Minimum and maximum stretching ratio along thevidinear coordinate

i for each set of grids in Table_3]16. The stretching ratio isgoted as the ratio
between two successive inter-nodal distances. For aletse the stretching values are
computed with sweep angie= 30°.

Set Set Stretching ratio
no. name min. max.

10.1.NI | 0.98238 1.01794
10.1.NN| 0.95616 1.04585
10.1.IN | 0.95616 1.04585
10.1.11 | 0.99035 1.00975
12.1.NN| 0.95616 1.04585
12.2.NN| 0.97778 1.02272

OO hs WN PR

run on sets 5 and 6.

In they direction, a periodic type boundary condition is enforceithwhe exception
of the surface occupied by the plates. Numerically, thegakeiboundary condition
is equivalent to a standard inter-block boundary exchantie data of five rinds of

nodes with the neighbour. The parallel impermeable waltsvabto thez axis and the

plate surfaces are modelled with the inviscid wall boundsmnKim & Lee [2004], de-

tailed in Section 2.5.111. In thedirection, at the inlet, two diierent boundary closures
have been tested: the extension to 3D of the Giles subsonicailecting boundary
including an additional term for the introduction of the guketailed in Section 2.5.2,
and the extension to 3D of the modifiedffar technique of Sectidn 2.%.4, with co-
efficientsa andp equal to 1 and 3.5, which was already used, in its 2D versmam, f
test case 2. At the outflow, the modifiedffar technique is used as the extension of
the Giles outflow to three dimensions shows a numerical ligiiathat could not be

controlled satisfactorily with the application of spatiiitering.
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Figure 3.31: General structure of grid 10.1.11 with sweeglan equal to 30°.

For all the simulations presented in the results Se¢fior83tBe bifer length de-
pends on the mesh density of the model so to keep the samalspdgnsion: for
density 1 (sets 1 to 5 in Table 3]16) it consists of 30 nodesdémsity 2 (only set
number 6 in Table_3.16) of 60 nodes.

In the three dimensional flat plate cascade with sweep, theifgmtion of the
boundary conditions and the introduction of the vorticastgare strictly correlated.
Both the Giles and modified ffiier inflow boundary conditions support the introduction

of the velocity disturbance to model the inflow gust. Theadtrction of the gust

through a body force vectdrfollowing the method of Lockard & Morris [1997] is

not implemented in this test case, as this approach was ftmupbduce the largest
error norms with respect to the reference analytical smhuitn the second test case of
Chaptef3.P.

All the simulations presented in this work are run with thegtial scheme by sub-

dividing the field in equal parts connected by the inter-klboundary condition of
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Figure 3.32: Grid 10.1.NN with sweep angteequal to 30° subdivided into 40 zones,
which are shown by thick borders. The position of the refeeeblade of the swept-
back cascade is highlighted in grey.

Section 2.6. The multi-block split in terms of number of nedends to evenly dis-
tribute the computationalfiort among the processors, maximising tHiceency of
the parallel computation. By domain decomposition the ltegumulti-block struc-
ture is such that only one type of condition is used on eachkblace. This aided
the speed of the computation. Figlre 3.32 shows the domaionagosition of grid
10.1.NN which is divided into 40 blocks of equal number of e®d The position of

the reference plate is highlighted in grey.

The computation is started from a uniform mean flow with thetgelocity per-
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turbations of Equation§ (3.115) superimposed on it as

Peo
Uso + Ug(X, Y, 2 0)
QXxY.z0)=| V(xy,20)

0
PooC?

(o)

(3.28)

-

where the mean field flow stafp.., U.., C..) and the gust velocity perturbation are
defined in Section 3.3.1.

Unlike what done for the second test case, in the third test c@ exception is
introduced in the algorithm for the special treatment ofribdes located on the plate
surfaces and edges. This choice was dictated by the coristcai the computational
resources and time available for this work.

For this test case, the linearised version of the Euler gmpusare solved in conser-
vative form for compatibility with the use of the Kim and Lewiscid wall boundary
condition that require the conservative form.

Time integration is performed using the Runge-Kutta scheroposed by Berland

et al.[2006] in low-storage 2N form reported in Section 213.2.

3.3.3 Results

The proceedings of the third NASA workshop include the dbotron from Wang

et al. [2000] that have presented a solution to this problem._In L [2000]

the problem is solved using the space-time conservationezieand solution element

(CE/SE) method that is based on the conservation of fluxes. lisuiation natively
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Table 3.18: Characteristics of the filters used for the tteésd case.

Filtertype NBT «; codf. Application frequency

explicit  LOC 0 every time step
explicit  LOC 0 every Runge-Kutta stage
implicit LOC 0.4-0.495 every Runge-Kutta stage

allows for a simple implementation of non-reflecting boutydaonditions without re-
quiring the definition of the characteristic variables. Tuenerical implementation is

second-order accurate in space and time.

Wanget al. introduce the following modifications with respect to thelgem def-
inition: (i) the non-dimensional gust amplitudeis reduced from @5 to Q0001 to
avoid any non-linearféect, (ii) the gust includes a componetto keep the vorticity
in two-dimensional form and divergence-free (also adoptetie present work), and
(i) the sweep angler ranges only from 0° to 15° with increments of 5° (although

additional values are shown in the section of the proceeadivitere results are com-

pared). The results presented in Sections 3.3.3.1 and 31858 the same parameters

for comparison purposes.

Unless otherwise stated, the convergence of the non-dioraipressure has been
verified for each simulation. Convergence is attained wherdfference between the
values at the end of the penultimate (non-dimensional tisn&0265) and of the last

period (non-dimensional time= 504.93) is lower than 1%.

The characteristics of the spatial filters used for this test are shown in Ta-

ble[3.18.
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The results for this test case are reported in two secticestid®(3.3.3.11 addresses
the accuracy of the input vortical gust modelled without¢hscade of flat plates, and
Sectior 3.3.3]2 addresses the complete problem, includengfect of the swept-back

solid boundaries flat plates cascade.

3.3.3.1 Accuracy of the vortical gust

As for the second test case, a preliminary simulation isqoeréd with the computa-
tional domain not including the linear cascade, to verify liével of accuracy that can

be reached in the introduction of the vortical gust. Thidipr@ary simulation was
repeated using fferent models, configurations of the boundary conditionsfitied-

ing techniques. This is an important preliminary test tocghthe ability of the solver

to convect vorticity waves on a 3D stretched grid. Theseltesuwe directly corre-
lated to the outcome of the simulation with the linear cascad the amplitude of the
introduced gust directlyfiects the noise emitted in response from the plates cascade
edges.

The flow in the simulations is time-marched to the non-dinmama timet =
10281. At this time the velocity disturbance has propagated kejond the borders
of the computational field, so to test not only the ability trrectly input the vortical
gust, but also the level of error introduced by the boundanddions at the inflow and
at the outflow. The non-dimensional time step is constanegu@l to 001038, giving
a total number of time steps of 9900. The minimum inter-naidstince on the sets of
meshes 1 to 5 in Table_3]16 iD062%. This gives a Courant number of 0.254 based
on the mean flow conditions, which is below the accuracy loh@.846 and the stabil-
ity limit of 1.918 given by the combination of the characteristics of treiapand the

time-integration schemes. When thefflen zones are used, the correction is applied
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at the end of each computational time step. The mesh skewe angfl the position
corresponding to the cascade leading edge is kept equaf tmBall the simulations
so to match the cascade sweep-back and tesfibet ©f the maximum mesh skew on
the predictions.

A selection of the simulations run to check the accuracy efittroduced vortical
gust is shown in Table_3.119. The error norms are computediasthe nodes that are
located between the aerofoils in the complete simulatian iticludes the flat plates
cascade. Note that in this case, due to the dimensions of ddelrmvolved, no mesh
convergence study is conducted.

The first four simulations in Table_3.119 are run on grids of h@mhlength 1@
applying the Giles non-reflecting boundary condition of t8ed2.5.2 at the inflow
and the modified biier condition of Sectioh 2.5.4 at the outflow. The simulations
3 and 4 with inclined inflow boundaries were found to be corapanally unstable
due to an instability arising from the inlet. Simulations dda2 reached the non-
dimensional end timé = 10281 but without convergence of the results on the pres-
sure due to a numerical instability originating from the amfl This phenomenon is
illustrated in Figuré_3.33, where the non-dimensional gues oscillation on a node
located in correspondence of the cascade leading edge aothplete simulations is
shown for simulation 2 and 6 from Takile 3119. The unsteadgqune fluctuation am-
plitude from simulation 2 grows with time while the one froimsilation 6 is constant.
Figure[3.34 shows the iso-levels of non-dimensional pres8uctuationp’ over the
external boundaries at the end of simulation 2. In the aleseh¢he aerofoils the
pressure fluctuation should be zero. Non-zero pressurelditich levels are shown.

To improve the numerical stability of the model, in the siatidns 5 to 8 in Ta-

ble[3.19 the inflow condition was changed from Giles non-ciftg inflow to the mod-
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Table 3.19: Results from the simulations not including tkewsed cascade of flat plates. The non-dimensional errors of
the velocity components and of the pressure with respedte@nalytical definition of the gust given by Equatibn (8.15)
are shown a§, -normandl,-norm The norms are computed from the nodes that in the complete@lations are located
between the plates. In field “Filter freq.” referring to thedquency of application of the filter, value “every RK” medhat

the filtering is executed at the end of every Runge-Kuttaestadpile “every step” means that the application is made only
when the time step is completed.

No. Set Boundary conditions Filter Result u [nd] v [nd] w [nd] p [nd]
name | low | high  type freq. loo I loo I loo I loo I

10.1.NI Giles mod. buf. impl. every RK complgté.24E-003 1.67E-0037.68E-003 3.00E-00B36.90E-005 1.86E-0053.55E-003 1.95E-003
10.1.NN  Giles  mod. buf. impl. every RK complet.28E-003 1.68E-0037.68E-003 3.04E-00833.34E-005 9.82E-0083.46E-003 2.02E-003
10.1.IN  Giles mod. buf. impl. every RK crashed - - - - - -

10.1.11 Giles mod. buf. impl. every RK crashgd - - - - - - - -
12.1.NlI mod. buf. mod. buf. impl. every RK complete25E-003 2.65E-0042.19E-003 4.63E-00¢2.60E-005 6.60E-0063.97E-004 2.35E-004
12.1.NN mod. buf. mod. buf. impl. every RK complete24E-003 2.64E-00/2.17E-003 4.62E-00142.62E-005 6.54E-0063.82E-004 2.33E-004
12.1.NN mod. buf. mod. buf. expl. every RK complefe05E-003 4.73E-00¢3.59E-003 8.29E-00¢4.60E-005 1.06E-0053.68E-004 2.31E-004
12.1.NN mod. buf. mod. buf. expl. every step comp|etb6E-003 3.48E-00W2.74E-003 6.10E-00¢3.77E-005 8.54E-0083.67E-004 2.32E-004
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Figure 3.33: Simulations without swept-back cascade opfies. The time sequence
of the pressure fluctuation, normalised with respegt.icZ,, at a node located in cor-
respondence of the cascade leading edge. Results fromasiom? and simulation 6
in Table[3.1D are compared.

ified bufer condition of Section 2.5.4. This required extending th@putational field
in the upstream direction byczo accommodate 30 additional noded iover which
the bufer correction is applied. This change combined either withlicit filtering
applied at every Runge-Kutta stage or with explicit filtgrproduced numerically sta-
ble simulations. Tablle_3.19 shows that, with the only exoepdf velocity component
w, simulations 1 and 2 that use the Giles inflow are less acetinain simulations 5
and 6, which use the inflow Ifiier, by roughly one order of magnitude. Simulations
5, 6 and 8 provide similar error norms while the applicatibexplicit filtering at ev-
ery Runge-Kutta step in simulation 7 leads to error norm&é&wMelocity components
nearly twice as large as 5, 6 and 8. This is likely to be due tessive filtering of the

state variables that is corrected by lowering the frequari@pplication of the filter

to once every time step, as shown in simulation 8. The cordtian of the outflow
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p' [nd]
W< 0.0025
0.00125
0
-0.00125
-0.0025

Figure 3.34: Simulation of a divergence-free velocity goisipagating in the com-
putational domain of the skewed cascade without the plaRrsssure perturbation
normalised with respect {@.,c2 over the external surfaces of model 10.1.NN at non-
dimensional timé = 10281 from simulation 2 in Table_3.19. Negative contours are
shown by dashed lines.

179



3. TEST CASE APPLICATIONS

plane (compare simulations 5 and 6 in Tdble B.19) seems ®ltte influence on the
results. The complete problem including the flat platesadeds only run on models
with outflow plane normal to thg axis.

Based on thé -norm the non-dimensional error level of the best performingusim
lations is two orders of magnitude smaller than the ampéitue: 0.05 of the incoming
gust. Therefore, even on grids relatively coarse, skewedséretched as those used
in this study, the gust propagation error is deemed adedoatdtempting to model
the complete problem of sound generated by the gust integawith the swept-back

cascade of aerofoils. It is useful to remind that the datavehia Table[3.1P refer to

models with the maximum sweep angle- 30° required by this test ca hl, 2000]

and, therefore, the maximum level of mesh distortion, scetiner level expected for
all the other values of the sweep angle is lower.

Figure[3.3b shows the non-dimensional flow field obtained tdve external sur-
faces of model 12.1.NN at the end of simulation 8 in Table]3at%on-dimensional
timet = 10281. The non-dimensional velocity perturbation componémtaxis x
in Figure[3.35 (a) and iy in Figure[3.35 (b) show a regular pattern over the whole
model and only small deviations can be noticed near the imeable walls in coin-
cidence with the peaks of the oscillations that are slighejuced. Figuré_3.35 (c)
shows the pressure perturbation, normalised with respggtd?. The pressure per-
turbation peaks are one order of magnitude lower than thetsessom simulations of
Figure[3.34 and thus closer to the analytical value of zehis Gonfirms the numerical
results shown in Table_3.119 in that simulation 8 is more aateuthan simulation 2 by
about one order of magnitude. It can be noticed that neardhguatational inlet and
the outlet, the modified ter condition leads the error to a level near to zero. The

results from simulations 5 to 7 give qualitatively similasults.
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Table 3.20: Computational requirements and duration ofstheulations performed
for the solution of the third test case in the absence of thepfles cascade. The
non-dimensional pressure error norms of table]3.19 arerkpteated for the sake of
completeness.

No. | Walltime CPUtime Total mem. p [nd]
[hh:mm:ss] [hh:mm:ss] [MB] oo I,

1 00:48:22 30:20:21 1793 | 3.55E-003 1.95E-003

2 00:36:53 23:20:41 1824 | 3.46E-003 2.02E-003

3 00:19:39 10:55:48 1801 - -

4 00:18:09 09:57:18 1776 - -

5 00:41:33 30:09:47 2292 | 3.97E-004 2.35E-004

6 00:46:56 31:33:08 2502 | 3.82E-004 2.33E-004

7 00:23:30 17:01:30 1956 | 3.68E-004 2.31E-004

8 00:27:47 20:11:33 2114 | 3.67E-004 2.32E-004

The reduction in error of one order of magnitude from the dskemodified bifer
at the inflow is a positive outcome from the range of simulagion Tabld 3.19. This
inflow condition together with a computational domain stn@ase extent of 12 are
therefore selected for modelling the gust propagatingudindhe swept-back cascade
reported in Section 3.3.3.2.

Table[3.20 reports the computational resources used to letenghe simulations
listed in Tabld_3.19. Simulations 5 to 8 used larger memdpncation to include the
inflow buffer. They also tended to use more CPU time, even if a signifianance
among the computational time is shown that has probably toate with the &ect of
concurrent jobs on the cluster (using communication badthyithan to the #ect of

using diferent solver options in the code.
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(c) Iso-levels of pressure fluctuation normalisegy?,.

Figure 3.35: Convection of divergence-free velocity wakeoas the computational
domain of test case 3 without the cascade walls. Instantsnadue of the flow state
perturbation at non-dimensional computational titme 10281. Simulation 8 in Ta-

ble[319.
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3.3.3.2 Results from the complete model

This section reports the predictions of the gust of Equaf’) interacting with
swept-back cascade of flat plates of Figure 3.28. The predgare obtained from
models that have a computational domain streamwise leridgiPocand use the modi-
fied buter at the inflow and outflow.

Both the implicit and the explicit spatial filters of Sect@Z.3 have been tested, but
the implicit filter resulted not capable of dealing with thghfrequency oscillations
generated by the presence of the plate edges that represegukarity of the analytical
solution. Unlike the second test case, no special treatmeyplied to these edges,
therefore the filter performance is relied upon to keep theputation numerically
stable. Hence, all the results shown in this section araraaday explicit filtering, in
its two versions shown in Table 3]18.

31 simulations were performed covering the sweep angleer@ig o < 30° as
listed in Tabld_3.211. All simulations are time-marched te fame non-dimensional
end timet = 50494. The simulations are grouped into three groups. Withochea
group the simulations ffer only for the value of the sweep angleThe first group of
simulations 1 to 13 and the second group of simulations 14 tas2 the set of meshes
5 in Table[3.16. The two groupsftir only for the frequency of application of the
explicit filter that, for simulations 1 to 13 is applied at ey®unge-Kutta stage, while
for simulations 14 to 26 is applied only at the end of each tte@. As prescribed by
the problem definitiong ranges from 0° to 30° with increments of 2.5°. All the sim-
ulations are time-advanced by a constant non-dimensionalgtep equal t0.01038
over a total number of time steps of 48620. This satisfies e condition, based on

the uniform background flow state, for which the Courant namib equal to 254.

183



3. TEST CASE APPLICATIONS

The third group of simulations 27 to 31 uses the more refinedfsaeshes number 6
in Table[3.16. Due to the larger mesh size and computatiasilaf the third group
of simulations is increased in steps of 5° and the maximum value is equal 10 25
The third group of simulations 27 to 31 use a non-dimensibma step of 0005192,
resulting in 97240 steps, and a Courant number.2564.

Along with the characteristics of the three groups of sirtiaies, Tablé 3.21 shows
the computational cost of each simulation in terms of memGBU time, and actual
duration of the run. The simulations within each group stidwdve the same compu-
tational weight, but their actual duration shows a largg@elision. As noted for the
previous test case, due to the high-performance compuiesgjoeduler, the runs have

not been made under controlled conditions.

Figure[3.36 shows the sound pressure le8aPl) in dB predicted at the upstream

monitoring pointP [Dah/,12000] from the 31 simulations of Taljle 3.22. The dBelsv

are referenced to the predicted sound pressuse-at0°. The results from the three
groups of simulations in Table 3122 are compared to the xppaie reference analysis
supplied by Envia [2000] and to the numerical resultsj};dAH[tdj[ 000]. The three
groups are referred to as “Ghillani 1” (1 to 13 in Table 3.2&hillani 2” (14 to 26),

and “Ghillani 3” (27 to 31). The data by Wareg al ], not available in numerical

form, were extracted from the graphs by the graph tracingnarm “g3data” version
1.5.3.
In general, the results compare favourably with the refegesolution, with the

Ghillani 1 and Ghillani 2 groups showing an improved matchhi reference curve

by [Envia [2000] with respect to Wanet all [2000]. The Ghillani 1 and Ghillani 2

predictions seem to follow the reference curve rather wedr dhe ranges 0L o <

184



3. TEST CASE APPLICATIONS

Table 3.21: Computational runs for the third test case ofkewapinging on a cascade
of flat plates at dterent sweep anglea The list is divided into three groups. Within
each group, the simulationsfiéir only by the value of the sweep angleAlong with
the characteristics of each simulation, the computati@talirements and the duration
of each run are shown.

No. Model Anglea Filter Walltime CPUtime  Total mem.
name [°] type freq. [hh:mm:ss]  [hh:mm:ss] [MB]
1 12.1.NN 0 expl. every RK 01:58:25 90:01:03 1961
2 12.1.NN 25 expl. everyRK 02:24:18 106:40:59 2107
3 12.1.NN 5 expl. every RK 02:10:56 100:51:03 2240
4 12.1.NN 7.5 expl. every RK 02:33:59 111:24:45 2483
5 12.1.NN 10 expl. every RK 01:40:55 79:10:28 2008
6 12.1.NN 12.5 expl. every RK 02:36:41 115:43:45 2320
7 12.1.NN 15 expl. every RK| 02:36:54 115:20:35 2403
8 12.1.NN 17.5 expl. every RK 02:15:44 102:50:18 2068
9 12.1.NN 20 expl. every RK 02:16:33 103:42:50 2170
10 12.1.NN 22.5 expl. every RK 02:07:11 96:51:53 2117
11 12.1.NN 25 expl. every RK 02:38:26 116:11:27 2296
12 12.1.NN 275 expl. every RK 01:50:24 86:15:28 2044
13 12.1.NN 30 expl. every RK 01:38:12 76:35:51 1972
14 12.1.NN 0 expl. everystep 01:50:07 85:08:39 2156
15 12.1.NN 2.5 expl. everystep 01:50:25 84:08:56 2135
16 12.1.NN 5 expl. everystep 01:56:19 88:43:52 2101
17 12.1.NN 7.5 expl. everystep 01:34:27 74:34:12 2016
18 12.1.NN 10 expl. everystep 01:29:10 70:10:15 1942
19 12.1.NN 12.5 expl. everystep 02:00:07 90:38:10 2227
20 12.1.NN 15 expl. everystep 01:57:35 88:20:36 2240
21 12.1.NN 17.5 expl. everystep 01:54:29 86:12:54 2213
22 12.1.NN 20 expl. everystep 01:58:16 89:37:35 2140
23 12.1.NN 22.5 expl. everystep 02:13:49 97:40:22 2243
24  12.1.NN 25 expl. everystep 01:25:02 66:54:04 2018
25 12.1.NN 27.5 expl. everystep 01:27:52 68:02:30 2032
26 12.1.NN 30 expl. everystep 01:51:02 85:48:29 2122
27 12.2.NN 0 expl. every RK 44:56:18 1963:42:54 5699
28 12.2.NN 5 expl. every RK 38:35:37  1748:19:48 5695
29 12.2.NN 10 expl. every RK 38:39:00 1725:09:23 5692
30 12.2.NN 15 expl. every RK 33:00:52  1557:37:26 5703
31 12.2.NN 25 expl. every RK 38:17:49  1728:25:09 5678
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125° and 225° < a < 27.5°, with values slightly over- and under-estimated on the

right-hand side in correspondence with the secondary p&ak. coarser agreement

is found over the range 1% a < 20° and ate = 30°, where the amplitude of the

pressure fluctuation is possibly lower than the numericaenfioor in the simulation.
The Ghillani 3 group of simulations appears to clearly ocestimate the value of

S PL The analysis of the numerical values of the origipals, listed in Tabld_3.22,

gives some insight on the probable cause of this over-estimarhe reference curve

by [Envia [2000] indicates a monotonic reductionSrPL with a over the range 0°

< a < 15°. TheS PLpredicted by the second and third groups of simulationsrtego
in Table[3.22 shows an increase pn,s over the range 0X a < 2.5° in Ghillani

2 and over the range & a < 5° in Ghillani 3. This increment appears to be a
numerical artifact that impacts on the full set of Ghillarar®d Ghillani 3 results shown
in Figure[3.36, as th8 PLlevels are normalised by th®,s ata = 0°.

Figure[3.3¥ shows the same data of Fidure13.36 but useg.thata = 5° from
each simulation as the reference for 81EL, this normalisation partially removes the
vertical bias in the predictions from the current numerszdleme. The apparent under-
estimation of the results in the caseaf 0° can be explained by considering that in
that case the problem is essentially 2D and the rows of nadesing along thek
curvilinear coordinate of Figufe_3.29 form a right anglehvttie bounding plates. This
is an important advantage in the locations where the walhbaties of the aerofoils
and the impermeable bounding plates meet. In fact, fromrexqpee, when high-order
schemes are used, and two walls meet with an angdgferdnt from 90°, numerical
oscillations tend to originate from the corner adversdfgaing the accuracy of the
simulation. The first group of simulations Ghillani 1 coule less prone to thisfiect

due to the higher frequency of application of the spatiadrfilt
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analytical
Wang

Ghillani 1
Ghillani 2
Ghillani 3

SPL[dB]

Figure 3.36: Simulations including the plates cascadailt®fom the three dierent
groups (see Table_3.22) compared to the approximate refeigy Envia [2000] and
to the numerical solution provided by Waggal. [2000)].
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analytical
Wang

Ghillani 1
Ghillani 2
Ghillani 3

SPL[dB]

Figure 3.37: Simulations including the plates cascade:esgraults shown in Fig-
ure[3.36 but withs PLIevels normalised by thp,ms ata = 5°.
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Table 3.22: Numerical results of the simulations executedHe solution of the third
test case in the version including the plates cascade SRieresults are illustrated in
Figure[3.36. Here, in addition, the value of the non-dimenalp, s is shown.

No. Model Anglea Filter Prms SPL
name [°] type freq. [nd] [dB]
1 12.1.NN 0 expl. every RK 0.02166 0.00
2 12.1.NN 2.5 expl. every RK 0.02118 -0.19
3 12.1.NN 5 expl. every RK 0.01908 -1.10
4 12.1.NN 7.5 expl. every RK 0.01565 -2.82
5 12.1.NN 10 expl. every RK 0.01153 -5.48
6 12.1.NN 12.5 expl. every RK 0.00762 -9.08
7 12.1.NN 15 expl. every RK 0.00487 -12.96
8 12.1.NN 17.5 expl. every RK 0.00408 -14.49
9 12.1.NN 20 expl. every RK 0.00454 -13.57
10 12.1.NN 22.5 expl. every RK0.00503 -12.68
11 12.1.NN 25 expl. every RK 0.00511 -12.55
12 12.1.NN 27.5 expl. every RK0.00469 -13.28
13 12.1.NN 30 expl. every RK 0.00416 -14.33
14 12.1.NN 0 expl. everystep0.01373 0.00
15 12.1.NN 2.5 expl. everystgp0.01397 0.15
16 12.1.NN 5 expl. every step0.01285 -0.58
17 12.1.NN 7.5 expl. everystgp0.01063 -2.22
18 12.1.NN 10 expl. every stgp0.00791 -4.79
19 12.1.NN 12.5 expl. every step0.00554 -7.89
20 12.1.NN 15 expl. every step0.00400 -10.70
21 12.1.NN 17.5 expl. every stgp0.00350 -11.86
22 12.1.NN 20 expl. every stgp0.00384 -11.07
23 12.1.NN 22.5 expl. every stgp0.00422 -10.25
24 12.1.NN 25 expl. every stegp0.00431 -10.07
25 12.1.NN 27.5 expl. everystep0.00411 -10.47
26 12.1.NN 30 expl. every stegp0.00377 -11.23
27 12.2.NN 0 expl. every RK 0.01286 0.00
28 12.2.NN 5 expl. every RK 0.01393 0.70
29 12.2.NN 10 expl. every RK 0.00968 -2.47
30 12.2.NN 15 expl. every RK 0.00533 -7.64
31 12.2.NN 25 expl. every RK 0.00648 -5.96
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Figure 3.38: Schematic highlighting the planes from whieh data illustrated in Fig-
ures fron3.3P tb 3.50 are extracted.

The large quantity of data results collected can not be sHoava in its entirety.
Thus, only the results from simulation 31 in Table 3.22 amnshin detail. The sim-
ulation is characterised by a sweep angle 25°, mesh density level 2 in Talile 3116,
and explicit filtering applied at every Runge-Kutta stagegufes from3.3P t¢ 3.50
show the data obtained by slicing the model as schematidadigribed in Figure 3.88.
The six planes normal to theaxis are defined by the following equations:= —c
(labelled as X-1)x = —2c (X-2), x = =3¢ (X-3), x = —4c (X-4), x = -5c¢ (X-5),
andx = —6¢ (X-6). The three planes normal to tlyeaxis are defined by equations:
y = 0.5c (Y-1), y = c (Y-2), andy = 1.5¢c (Y-3). Finally, the three planes normal to the
z axis are defined by equatiorns= 0.6¢ (Z-1),z = 1.3c (Z-2), andz = 2c (Z-3).

These results show that the solver is able to address larger@iems on grids
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Figure 3.39: Third test case, complete problem with platssade. From simulation
31: distribution of the non-dimensional pressure osdila(with respect te.,c%) at
the end of the run over planes normal to #exis (see Figure 3.88). Negative contours
are shown by dashed lines.
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Figure 3.40: Third test case, complete problem with platssade. From simulation
31: distribution of the non-dimensional pressure osddla({with respect tp,..c2) at
the end of the run over planes normal to ytexis (see Figurie 3.88). Negative contours
are shown by dashed lines.
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Figure 3.41: Third test case, complete problem with plaéssade. From simulation
31: distribution of the non-dimensional pressure osddla({with respect tp,..c2) at
the end of the run over planes normal to #exis (see Figure 3.88). Negative contours
are shown by dashed lines.
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Figure 3.42: Third test case, complete problem with plagssade. From simulation
31: distribution of the non-dimensionalvelocity oscillation (with respect ta,,) at

the end of the run over planes normal to #exis (see Figure 3.88). Negative contours

are shown by dashed lines.
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Figure 3.43: Third test case, complete problem with platssade. From simulation
31: distribution of the non-dimensionalvelocity oscillation (with respect ta,,) at
the end of the run over planes normal to ytexis (see Figure 3.88). Negative contours
are shown by dashed lines.
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Figure 3.44: Third test case, complete problem with plaéssade. From simulation
31: distribution of the non-dimensionalvelocity oscillation (with respect ta,,) at

the end of the run over planes normal to #exis (see Figure 3.88). Negative contours

are shown by dashed lines.
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Figure 3.45: Third test case, complete problem with platssade. From simulation
31: distribution of the non-dimensionalvelocity at the end of the run over planes

normal to thex axis (see Figure 3.88). Negative contours are shown by ddstes.
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Figure 3.46: Third test case, complete problem with plagssade. From simulation
31: distribution of the non-dimensionalvelocity at the end of the run over planes

normal to
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198



3. TEST CASE APPLICATIONS

o

mm

1/ y \\ "N, W e
\ w\\ 7 \\\\ \ \ v \\\\ \\\\\ -
\w 7 7 \\\\\ A y \\\\\ \\\\\ \\\ i

\\\ \\\ a \\\\\ \\\\ T 7 &wo

/)

Vi

\\\

“““““““ \\\\ 0y oy Ty Ri:
q \\\\ \ 7, \ \\\ \\\ \\\ -

77N ) \\ i Y% \\ 4Y i

\\ \\ ( \ @ \K\ \\ \\ NI, -
%%%A_L%%:.T%%%FMV%%%:_/%%%%QUO

NE
N} =\

=z 74 \\ / ") |
\ \\ \ \\ -
7/ \\ 4 \\ 4 \\ \\ \\\\ 7 \\ \\ / \ ~
\\ \\ \\ / / 7/ 1 \ 7 \\ \\ \\ \\ \\ wa, -
. AT/

L2
=

Figure 3.47: Third test case, complete problem with platssade. From simulation
199

31: distribution of the non-dimensionalvelocity at the end of the run over planes
normal to thez axis (see Figure_3.88). Negative contours are shown by ddstes.
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Figure 3.48: Third test case, complete problem with platssade. From simulation
31: distribution of the non-dimensional velocity at the end of the run over planes
normal to thex axis (see Figure_3.88). Negative contours are shown by ddstes.
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Figure 3.49: Third test case, complete problem with plagssade. From simulation
31: distribution of the non-dimensional velocity at the end of the run over planes
normal to they axis (see Figure 3.88). Negative contours are shown by ddstes.
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Figure 3.50: Third test case, complete problem with platssade. From simulation
31: distribution of the non-dimensional velocity at the end of the run over planes
normal to thez axis (see Figure_3.88). Negative contours are shown by ddstes.
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containing high levels of skewness with an accuracy conip@r® that of the best

results available in literature [Wargd all, 2000].

3.4 Fourth test case: sound generation by interaction

between an incident gust and a cascade of aerofoils

3.4.1 Problem definition

The fourth test case is a benchmark problem from the fourttsAlAomputational

aeroacoustics (CAA) WorkshoL) [Dahl, 2004]. It is the secprablem under category

3: “Sound generation by interacting with a gust” and aimsttalg the impact of the
turbulence coming from the wake of a rotor on a cascade ofelsladpresenting a
guide vane stator. The problem is simplified by unrolling phefile of the blades in
two dimensions and by modelling the turbulence as a vorgjeat coming from the left
boundary. The geometry of the problem is shown in Figurel@adrec is the aerofoil
chord,d = (2/3)cis the cascade pitch or gap between the aerofoilspaigithe mean
flow angle at the inflow. The profile of the blades is a represterg compressor blade
shape and is provided via an ASCII file containing the coatdia of 170 points lying
on both the suction and the pressure sides of the aerofod.syktem of coordinates
is located approximately at the geometric centre of maskeofdéference aerofoil and
the inflow and the outflow planes are at a distance-bbc from the centre of the
coordinate system along theaxis. The reference flow field is not specified and has

to be computed starting from the mean (time-averaged) inflodoutflow boundary
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Outflow Plane

1.5¢c 1.5c

N SN

Figure 3.51: Problem geometry of test case number 4 (mod'rthmil mn

conditions that are
Protinflow) = 1

Twotinfiow) = 1 > (3.29)
a = 36°
and
Poutflow / Protinfiow) = 0.92, (3.30)

respectively, wher@giniony and 'ITtot(inﬂow) are the mean stagnation presspig and

temperaturd at the inflow, andputriow the mean static pressure at the outflow. All
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the values are normalised with respect to the followingresfee conditionspes =

10135293 Pa,T,es = 28833 K.

The vorticity gust is defined on the inflow plane and is a funrtbf they coordinate

and of timet
3
Ug(y, t) = Z a, cos[n (kyy — wt)] COSB, (3.31a)
n=1
Vg(¥s ) = —ug(y, t) tang, (3.31b)
Py, 1) =0, (3.31c)
Py, t) = 0, (3.31d)

where the fundamental reduced angular frequency 37/4 normalised by the vane
chordc divided by the speed of sour(qiRTref)l/z, the transverse wavenumbgr =
117/9 normalised by the vane chox the harmonic amplitudes; = 5 x 1073,

a, = 3x 1073 az = 7x 104 normalised by the speed of sound, ghd 44°.

The flow is assumed inviscid and isentropic and the problequires to solve the
time-dependent flow equations. The simulation has to be ntih aonvergence (the
spectra of two successive periods have tiediby less than 1% on inflow, outflow,
and on the reference aerofoil at any of the three input freges) and, once this is

achieved, the following quantities have to be computed anpud:

1. pressure frequency spectra at the selected locatiohg @etofoil surface having
x coordinate equal te-0.25c, 0, 0.25c on both the upper (suction) and lower

(pressure) side and on the inflow and outflow planes hayiogordinate equal
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to —0.3c, 0, and (3¢, as sketched in Figufe 3152;

2. the harmonic pressure distribution on the inflow and owtfiéanes at the fun-
damental angular frequeney and at its multiples @ and 3». Then, applying
a Fourier transform in thg direction, the spatial structure of the perturbations

(depending on the mode order) has to be obtained.
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Figure 3.52: Points (indicated by circles) from which thevlepectra are output.

All the results have to be expresseddiPLin dB using as reference 20Pa.

No analytical solution is known for this problem, so the aughof the problem
provide a numerical solution that, for the number of nodeskfan the characteristics
of the employed solver can be used as a reference. To obtaireflrence solution,
the computations were carried out with a linearised Euleg@am called LINFLUX
that operates in the frequency domain starting from a stetatg solution obtained
from a non-linear code called TURBO that is part of the sanieveoe collection in

use at NASA. To obtain the complete results, three runs &t efite frequency com-

ponents of the incoming perturbation were performed ]. A detailed
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description of the method used to obtain the referenceisalean be found iEia

[2004]. However, it has to be noted that the adopted sohsrigtly three-dimensional

axisymmetric and some approximations are introduced inrtbdelisation so that it

can not be considered exact.

It is necessary to determine the number of vanes that aréeega the model in
order to be able to enforce pitchwise periodic boundary itmms in they direction. In
a single-stage turbomachinery CFD, the flow has a macrosgaghwise periodicity
of B/V, whereB is the number of rotor blades aMlis the number of stator blades.
In a rotary cascade model, pitchwise periodic planes camBg¢\2 apart. In a linear
cascade, this pitchwise periodicity can be modelled by smappitchwise periodic
boundaries spacedd x B/V apart. TheB rotor blades sheB wakes at a wavenumber
k = 27B/(Vd), thusB/V = (kd)/(27). The value ofB/V is used to define the flow-
normal extent of the simulations with the inflow gust, whish2idd. The pitchwise
periodicity of the flow domain without the inflow gustds leading to a substantially

smaller domain size.

The Tyler-Sofrin rulel[Tyler & Sofrin|, 1962]

2
L =nk, — k— 3.32
ky K’ d/c’ ( )
allows to analytically compute the dominant mode wavenusikeof the acoustic
response of the blade cascade. héie the harmonic component of the gust &meh
integer (in this case only 0, 1 and 2 are of practical inteasshe contribution to the
radiated noise decreases with increasipgrhe mode orders are proportional td,

and can be computed through the consRstm/k, = B/k,.

207



3. TEST CASE APPLICATIONS

Table[3.2B shows the dominant acoustic modes for each hacroomponent. It
is important to note that some modes are diitand decay exponentially when mov-
ing away from the stator blades while others are cut-on angggate with constant

amplitude in the two-dimensional field.

Table 3.23: Characteristics of the dominant acoustic moéitse linear cascade.

n k ky m Type

1 0 +3.839 +11 cut-af
1 -5.585 -16 cut-fi

2 1 -1.745 -5 cut-on

3 1 +2.094 +6 cut-on
2 -7.330 -21 cut-on

3.4.2 Numerical methods

Given the nature of the problem, the solution of the nonadmeersion of the flow gov-
erning equations is required to deal with the large gradidémat can be found for all
the flow variables near the leading edge of the aerofoil. Thmeons are in conserva-
tive form and are non-dimensionalised for the computataloWing the rules given
in Section Z.IK4 and using the set of reference values showalle[3.24. Note that

this differs from the non-dimensional form of the results that arenatised following

the problem definition [Dal \L_ZQM] as stated in SecfionIB.4.

Table 3.24: Reference values used for the non-dimensgaian internal to the code.

Length Static speed of sound  Static density  Static temperate
() [na] (o) [M/s] (p) [kg/m’] (Tw) [K]
blade chorc 340.4064531311 1.224528207246 28.
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For the solution of this problem, two computational gride ased with the same
number of nodes but flerent node distribution. Note that the two grids were used in
two separate and independent series of simulations thiatd@dirst the computation
of the steady-flow state and then the solution of the unstgaolylem that includes
an incoming gust from the inflow plane. Both grids were desthuasing the software
package GAMBIT version 2.3.16. Their characteristics ammarised in Table_3.25
where the first line refers to the models used for the steany-flase, with the in-
flow wake amplitude set to zero, and the second line to theeadgtsimulations. In
Table[3.25, the characteristics of the grids adopted byrgthgicipants to the fourth
NASA workshop are also reported for comparison purposesadmaiied with the name
of the main author of the paper. Escribano usdtedent meshes for each incoming
harmonic, whereas the same mesh is used for all harmonibe icutrrent study. The
meshes used in the current study are shown in Figures 3.53.8AdAs can be seen
in the figures, the computational domain is split into threaes that correspond to
the area near the inlet on the left-hand side, the channeikleet two blades, and the
area near the outlet on the right-hand side. This gives atated mesh of H-topology.
This topology has a number of advantages. First, all theszbage the same number
of nodes and they can be assigned tedent parallel processes, therefore increasing
the dficiency of the computation. Second, the general structutletlasm connections
between the processes are simple, so the set-up of the pradgiicker and less error-
prone. Finally, the boundary conditions are homogeneousagh face of each zone
and this represents an advantage for ttheiency of the code. However, this type of
topology has the disadvantage of leading to grids with aifsogmt level of distortion
near the leading edge of the blade where, due to the steegiad the flow field,

the flow is rapidly changing in space and therefore requirgea level of spatial
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resolution. For this reason, the shape of the grid near thaebédges was carefully
designed in order to keep the cells as regular as possibEhagn in Figures 3.53

(b-e) and_3.54 (b-e). The curved shape of the grid near tle¢ imlFigures 3.53 (b,d)

and3.54 (b,d) is chosen to follow as much as possible tharstiees in the area near
the leading edge of the aerofoil and, at the same time, have#sh lines normal to

the inflow to satisfy the requirements of the Giles boundanydition. In the case of

the simulations with an inflow gust, the number of vanes neglis equal to 27 and

the same mesh structure is vertically replicated withoudlifications.

Table 3.25: Characteristics of the computational mesheginghe current simulations
and mesh characteristics of comparative simulations m].

Simulation Zones Nodes for each zone Total no. of nodes
inidir. in jdir. total

Ghillani (steady-state) 3 65 45 2925 8775

Ghillani (unsteady) 81 65 45 2925 236925

Envia na na na na 170667

Escribano na na na na 90090000360000

Hixon 8 na na na 313698

In thei direction, the zones are connected by the inter-block baxynconditions
of Sectior 2.2.2 exchanging the data of five rinds of nodels thizir neighbours. In the
J direction, the models use either the periodic boundary ghoascade without inflow
gust), or the inter-block boundary of Section 212.2 (modelcade with inflow gust).
At the inlet and outlet, a modified version of Giles subsoraartdary formulation is
used, which is detailed in Sectidn 2)5.2. The modified Gitesnlilation includes a

correction for the mean target value of the flow state sintiddahat proposed by Hixon

et al. [2003,2004]. On the aerofoil, in the direction normal to theface, the invis-

cid wall boundary of Ki el[2004] detailed in Sectibn 2L3 is used. Similarly
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(a) General structure of the H grid number 1. The three maireza@re delimited by a thick black
line. The dashed boxes show the locations from which FidBi'gs (b-e) are taken.
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(d) Detail of the leading edge, suction side. (e) Detail of the trailing edge, suction side.

Figure 3.53: Grid number 1 used for the solution of the fotet case. The details
regard the leading and the trailing edge of the blade.
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line. The dashed boxes show the locations from which FidBu®$ (b-e) are taken.
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(d) Detail of the leading edge, suction side. (e) Detall of the trailing edge, suction side.

Figure 3.54: Grid number 2 used for the solution of the fotest case. The details
regard the leading and the trailing edge of the blade. Thgénare directly compa-
rable to those of Figulfle 3.63. The higher node density in tbgimity of the edges is

shown. On the other hand, grid number 2 is coarser near theeagrthe zone located
within the blades.
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as to what is done for the second test case in SeCfidn 3.2,igheohder one-sided
7-point stencil half-derivatives are replaced by secortkn3-point stencils along the
solid walls in the direction normal to them to enhance the potational stability of

the simulation. This is the only modification with respectite standard configuration
of the solver and no exception was added to deal with the Engas associated to

the leading and the trailing edge of the aerofoil.

The only diterence in the boundary conditions applied between thestaadithe
unsteady runs is the introduction of the vortical gust, Wwhifed into the computa-

tional domain by the method detailed in Secfion 3.4.3.2.

The simulations of the linear cascade of aerofoils withoubdow gust starts from

a uniform flow field that in non-dimensional form is

Q = [po, Uo, Vo, Po]" = [1,0.275,0.2,0.92]" . (3.33)

In Equation [(3.3B) the value of the non-dimensional presgyiis equal to that pre-
scribed at the outflow by the problem definition and the otlagiables are set to levels
compatible with the expected flow. The final flow state of timsigation is then repli-
cated vertically for each of the 27 vanes and used as thengfdibow state for the

simulation of the cascade with the inflow gust.
The characteristics of the spatial filters used for the smubf this test case and

their frequency of application are shown in Table 3.26.

The time-integration is performed using the Runge-Kutteeste detailed in Sec-
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Table 3.26: Characteristics of the spatial filters usedHerfourth test case.

Filter type NBT «a; codf. Application frequency

explicit  LOC 0 every time step
implicit LOC 0.4-0.495 every time step

tion[2.3.2 proposed by Berlarat all [2006]. The time-integration uses the time steps

shown in Tablé_3.27, which are essentially function of theaast inter-nodal dis-
tance in the grid for both the steady and the unsteady simnokatThe CFL condition

is checked at the beginning of each simulation and the coadpDburant numbers are
below the values of 846 and 1918, which are respectively the accuracy and the sta-

bility limits given by the combination of the spatial and tiae-integration schemes.

Table 3.27: Runge-Kutta constant time steps used in théfoest case.

Grid no. | Min. inter-nodal distance  Time step  Courant no.
[nd] [nd]
1 1.69E-3 000069 0.58
2 2.43E-4 000011540 0.68
3.4.3 Results

The proceedings of the fourth NASA workshop include the gbations from five
different research groups that have presented a solution toué test case. A sixth

contributor (Shieh et al.) was able to submit only partiamewical results without

added documentation [Dahl, 2004]. The presented solutanshe divided into two

groups based on the numerical approach. The first group wtficos are by Biret al
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[2004]; Hixon [2004]; Nallasamet al. [2004];\Wanget al. [2004] and are obtained

with codes operating in the time-domain (both of finit€elience and finite-volume

type). The second group of solutions are_by Coupland [Z@Qﬂhanml_al [2004]

and are from frequency-domain type of solvers. In the firstugrboth high-order

and second-order schemes are used. These solutions frongrooips together with

the reference solution in_Envia [2004] are compared ag#mespredictions from the

current work in Sections 3.4.3.1 and 3.413.2. They are medieio with the name of the
main author of the conference paper. Unfortunately, thdighidd numerical values
are incomplete.

It has to be noticed that not all of the authors adopted theevathposed by the

problem definition for angl@ = 44°. In particular, Coupland [2004] us@d= 45°

to make the gust purely 2D vortical, and Hixan [20@E 50° without adding the
reasons for the choice made. It is possible that a largerearalld be beneficial to
avoid or reduce the discontinuity in the velocity comporedong thex direction that

most of the authors noticed in correspondence of the tgpdige of the aerofoil. This

aspect is discussed more in detail in Sectlons 3.4.3.1 @nd.2.

3.4.3.1 Steady flow through an aerofoil cascade without infle gust

A steady flow prediction of the linear cascade of aerofoﬂmfdla_tll 2004] was ob-
tained by time-marching the time-accurate numerical sehantil each residual in
non-dimensional form had reached a value either stablex@rlthan 10°. The steady-
state simulations were performed in time-accurate fashidhis simulation diers

from the unsteady flow results of Section 3.4.3.2 in thath@ ¢computational domain
pitchwise boundaries are one cascade pitch apart, and(@ust is fed at the inflow.

The diference between the initial field conditions and the conwksgéution generate
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a strong flow transient that is damped by the use of explitériiilg. Once obtained
a partial convergence, the less dissipative implicit spdilter of Sectior 2.2]3 with
the codficients as in Table_3.26 is used. The steady flow simulatiorpigeursor for
the unsteady flow simulation reported in Secfion 3.4.3.2ckviises the steady flow
prediction as its starting flow state. These runs are peddran multiple processors
by dividing each of the three zones of Figures B.53[and 3 &4faur or six parts to re-
duce the computation wall time. In Taljle 3.28, the main attarsstics of each steady
flow simulation in terms of duration, number of processes, memory requirements
are summarised. For grid number 2, the duration of the simoulsin terms of non-
dimensional time is halved with respect to grid 1 becausedghehed final accuracy is

considered dficient.

Table 3.28: Computational requirements and duration ofitinellations performed for
the steady flow solution of the fourth test case.

Grid | Simul. | Filter Final Time Processes  Walltime CPUtime  Total mem.
[nd] [hh:mm:ss]  [hh:mm:ss] [MB]
1 1 explicit 480 12 02:01:42 23:37:01 340
2 implicit 480 12 02:04:10 24:09:59 348
2 1 explicit 240 12 52:42:35 548:08:42 536
2 implicit 240 18 23:40:58 425:24:08 696

For simulation number 2 on grid number 1 of Table 8.28, FigB&% and 3.36

illustrate the convergence history of the non-dimensienar between the target flow

state from_Dahl[2004] and the predicted flow state at two {gdiocated on the in-

flow and on the outflow. At the computational domain inflow, gieblem definition

inDahl [2004] states the stagnation presgusg stagnation temperatufig,, and flow

anglea. A fourth condition is given by setting the amplitude vaoatof the outgoing

characteristic wave, in this casg R Equation[[2.103), to zero. In a similar way, at the
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outflow, the static pressureis imposed and the amplitude variation of three outgoing
characteristic waves RR3, and R, in Equation[[2.107a) is set to zero. As shown in
Figure[3.55, the flow state at position1(5c, —0.307c) located on the inflow bound-
ary reaches a non-dimensionaffdrence inpyt, Tiot, anda with respect to the target
flow state of 10° while the variation of B descends exponentially. At the outflow,
as shown in Figure_3.56, the behaviour is similar with the-domensional error on
the characteristic waves decreasing exponentially witheising computational time
and the diference between the outflow static pressure and the targjefstssure that
settles on a value slightly smaller than-3@.c¢2. This diference in outflow pressure
is likely to be related to a shear layer that forms downstreathe cascade trailing
edge, which is shown in Figurés 3158 dnd B.59. The shear &ffjegmt on the numer-
ical prediction of the pressure field is further discussethecontext of Figures 3.58
and[3.59 later on. The convergence results for grid numbee Biailar to those in

Figured 3.5b and 3.56.

Tables[3.20 anfd 3.80 show the flow state averaged over theviafia the out-

flow planes at the end of the second simulation (with impfittiéring) on both grids

of Table[3.25. With respect to the numerical reference smiusupplied by Envia

[2004], the Mach number at the inflow appears to be over-eséichand, as the non-

dimensional target stagnation pressure is equal to 1,ftreréhe static temperature

and pressure are slightly under-estimated. The predinfxhi anglea does not show

any significant dference with the reference prediction/by Envia [2004].

Figure[3.5V shows the non-dimensional pressure distabwiver both surfaces of
the reference blade at the end of simulation number 2. Thdtsesbtained from the

two grids in Tablé_3.25 are similar to one another and disghayrecognisable char-

217



3. TEST CASE APPLICATIONS

10°

error [nd]
B
[=]

N
°
)

10" |-

time steps

L 1 L L L L 1 L L L L 1 L
800000 1000000 1200000

Figure 3.55: Cascade of aerofoils without inflow gust. Ressitbm simulation 2 on
grid 1 in Table[3.2B. Non-dimensionalftérence between the target flow state and
the predicted flow state on inflow at non-dimensional coatis (-1.5,-0.307). The
number of time steps includes those from simulation numbérelvery 500 time steps

is shown, for clarity.

Table 3.29: Fourth test case, results on the inflow planesanid of simulation number
2 in Table3.2B. The values are averaged over the boundaryeaoept for the angle

a, are in non-dimensional form.

Author | Envia Ghillani Coupland

gridl grid2

Mach | 0.44958 0.48103 0.48224
Static p | 0.87049 0.85483 0.85420
StaticT | 0.96115 0.95373 0.95350
] | 36.00 3599 3599
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Figure 3.56: Cascade of aerofoils without inflow gust. Ressitbm simulation 2 on
grid 1 in Table[3.2B. Non-dimensionalftérence between the target flow state and
the predicted flow state on outflow at non-dimensional coatdis (1.5,0.394). The

number of time steps includes those from simulation numbérelvery 500 time steps
is shown, for clarity.

Table 3.30: Fourth test case, results on the outflow planeea¢nd of the simulation
number 2 in Table 3.28. The values are averaged over the bopadd, except for the
anglea, are in non-dimensional form.

Author Envia Ghillani Coupland Bin
grid 1 grid 2
Mach | 0.34704 0.37122 0.37337 na 0.3497
Static p | 0.92000 0.91878 0.91793 na 0.92
StaticT | 0.97648 0.97465 0.97400 na na
a[°] -1.71 -2.65 -1.78 -1.6 -0.82
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acteristics of a compressor stator blade. At the leadingedtx/c = —0.5, there
is a sharp stagnation point followed by a rapid flow accei@nabn both the suc-
tion side and the pressure side of the aerofoil. This rapi Haceleration causes
spurious numerical spatial oscillations in the predictidic pressure over the range
—0.5 < x/c < —0.48 on grid 1. These spatial oscillations are substantialppsessed
in the results from grid 2, by local node clustering. Therefgrid number 2 seems
to give a better description of the zone near the edges duse tagher node density
while, away from them, the results from grid number 1 appednave less changes in
curvature, which may indicate a better discrete repretientaf the aerofoil profile.
The static pressure distribution reaches a minimumyat —0.34 on the suction side
and then recovers towards the stagnation pressure valte aetofoil trailing edge.
This pressure recovery is well captured on both grids 1 andtB,the grid 1 results
displaying localised spatial oscillations on approachtottailing edge ax/c = +0.5.
Figure[3.58 shows the distributions of the non-dimensisteatic pressure and of
the Mach number at the end of simulation 2 on grid 1 in Tabl&.3.Zhe data is
replicated over two cascade pitches to improve their raityablhe results show a
reduction in Mach number and an increment in the static presthat is consistent
with the difuser role of a compressor cascade. A numerical problem seearse
downstream of the trailing edge of the aerofoils where @mins in the vertical di-
rection can be detected. This numerical artifact is relavethe inviscid high-order
finite-difference nature of the scheme. The absence of the viscous feads to a
duality, or pitchwise discontinuity in the field of the velyccomponent in thex di-
rection. This causes problems to inviscid solvers, in whighKutta condition is not
imposed by other means. The flow state at the aerofoil tcpduhge is defined by just

one node and cannot describe the dual nature of tledocity component in that point.
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Figure 3.57: Fourth test case, non-dimensional staticspresdistribution over the
aerofoil surface. Results from simulations with grid 1 and 2

The issue is not restricted to the edge only as the pitchwss®dtinuity in the veloc-
ity affects a large part of the field in the wake of the aerofoil. Femtiore, the long
stencils, typical of high-order solvers, applied acrossséhdiscontinuities, generate
oscillations that propagate in the pitchwise direction.

The problem mainly fiects the velocity field but is also clearly visible in the pres
sure field. The results obtained from grid number 2 are showkigure[3.5P. These
display the same flow features as the predictions from gndFigure 3.5B. The mesh
clustering at the aerofoil trailing edge produces a sligimibre localised static pressure
peak. The shear layer downstream of the aerofoil trailirgeeappears to be somewhat

narrower.
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(a) Non-dimensional static pressure distribution. Camstantour spacing.p = 0.02.

(b) Mach number distribution. Constant contour spadihg 0.02.

Figure 3.58: Fourth test case, steady-state simulatiorrionlg Pressure and Mach
number distribution are shown over 2 vanes.
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(a) Non-dimensional static pressure distribution. Camstantour spacing.p = 0.02.

(b) Mach number distribution. Constant contour spadihg 0.02.

Figure 3.59: Fourth test case, steady-state simulatiorrion2g Pressure and Mach
number distribution are shown over 2 vanes.
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3.4.3.2 Unsteady flow through an aerofoil cascade with inflogust

The time-dependent simulations with inflow gust are run whth same code as the
corresponding steady flow simulations without inflow gusing their final solution
as initial condition and applying implicit filters with thénaracteristics shown in Ta-
ble[3.26. The gust is introduced as a velocity perturbatiomfthe inlet and the con-
vergence of the time-dependent flow is determined as thistatat stationarity of the
flow field, as required by the problem definition in SecfionB.Similarly to the sec-
ond test case in Sectign B.2, the gust, defined by EquafidB®)(3s introduced using
an additional term in the definition of the Giles subsonicawflboundary condition.
The mathematical details regarding the implementatiohisfdlosure can be found in
Sectior 2.5.P.

In the second test case, the gust is function of the two $pat@dinates and of
time and is known at every point of the field, so, if requirdd tomputation can start
from a field already initialised with the velocity gust. Inntoast, in this case, the
gust is only defined analytically on the inlet boundary ahtheé unsteady simulation
is started without further preparation, the abrupt changieé velocity field near the
border tends to generate oscillations that propagate mitie field. As a result, the
predicted flow field struggles to reach a statistically stary state. This problem was
overcome by initialising the field near the inflow with a vetgdistribution compat-
ible with the inflow condition. When the unsteady simulatisistarted, based on the
mathematical definition of the gust and on the values of thadst-state results, an
additional component having the amplitude shown in Figué€l 8 superimposed on
the steady-state flow field. This imposed velocity pertudmavaries with a sinusoidal

law that ensures the continuity of the velocity distribatand of its first derivative. At
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each node, based on the definition of the gust, the amplittiteearon-dimensional
correctionay’ andvy’ of the velocity components along tlk@nd they axes in the area

of the computational field near the inflow boundary is theal@ghed with

X— % \] < % w
A=105+05 cos(an — Xb)] nzz; ancos{n [ky(y— J (x- xb)) 3y (x- xb)]},
(3.34a)
Uo'(X,y) = AcosB, (3.34b)
Vo' (X, y) = —Asing, (3.34¢)

wherex, is thex non-dimensional coordinate of the boundary inflewis the x non-
dimensional coordinate of the first node where no correasapplied k,, a, andw
are as by the problem definition in Section 314.1, anandv are the non-dimensional
velocity components of the steady flow field at coordinatgs In case of conservative

formulation, the momentum and energy equations are tréeat@gimilar fashion.

For both grid number 1 and number 2, the unsteady runs arerpextl on a model
including 27 vanes and divided into 81 zones. In turn, eacte s the divided verti-
cally into two parts of the same extension, so that 162 psmssare required and the
total number of nodes is equal to 238464. Tablel3.31 sumestiie time-integration

parameters of the unsteady simulations and their computtcost.
As required by the problem definition, the periodicity in $sare is considered

achieved when the spectra of two successive periddsrdiy less than 1% for each

of the input frequencies at the inflow, outflow and on the sigrfaf the aerofoil. This
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z

Figure 3.60: Cascade of aerofoils with inflow gust. Inisation of the streamwise ve-
locity field. A velocity perturbation in the form of an advedtgust of increasing am-
plitude is used. Three harmonies- 1, 2, 3 are imposed. Contours of non-dimensional
x velocity perturbationy” with constant contour spacingl,” = 0.0005.
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Table 3.31: Time integration characteristics of the urtgtesamulations performed for
the fourth test case.

Grid Time step Steps Final time  Walltime CPUtime  Total memory
[nd] [nd] [hh:mm:ss] [hh:mm:ss] [MB]
1 0.00069% 188160 13®% 01:31:29 241:47:10 4925
2 0.00011540 1658880 192.0 52:57:58 8515:29:18 7855

was implemented by sampling the pressure field on 12 nod#gdied as shown in
Figure[3.5D.

Figure[3.61 shows the convergence in the case of simulationg?id number 2 in
Table[3.28.

The predicted sound pressure level (in dB) from the unsteewlylations are shown

in Figures 3.6 anld 3.63. They are compared to the numeeéfaiance solution given

by [Envia [2004] and by Escribano, Hixon and Bin as reporte‘mﬁaﬂ 2004]. The

same data are presented in numerical form in Tablé A.1 of ApipAl

In Figure[3.6#4 the amplitude of the perturbations in dB fatkedominant mode
(see Tablé_3.23) extracted with a Fourier transform aloegrifiow and the outflow
planes is compared with the results from other researchpgroifthe same data are

supplied in numerical form in Table’A.2 of AppendiX A.

In general, the comparison with the reference numericatswol supplied by Envia

[2004] and with the work of the participants of the NASA wdnkg is satisfactory with

the exclusion of the values on the outflow where the radiateskens remarkably over-
estimated. This is probably due to the the oscillations ognfiiom the trailing edge
already noticed in the steady-state solution. There cdstillze a secondanffect due

to the reaction of the Giles subsonic outflow condition todb&going high-frequency

transverse waves. On the surfaces of the reference blagegghlts from grid 1 and
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Figure 3.61: Simulation of the aerofoil cascade with inflousg Simulation 2 on
grid number 2 in Table“3.28. Convergence in time of the nonedisional pressure
difference between two successive periods is shown. The vdhensaximum among
the 12 monitoring points of Figute 352.

2 do not show (apart from the third harmonic) relevarffadences. In contrast, on
both inflow and outflow planes, some results are not homogenaad the dierence
can not easily be explained. They are surely related to fifiereint node density of the
various zones of the two grids. The rarefaction of the noées tine inflow and outflow
of grid 2 seems to adversely influence both the behaviourefiies condition and
the accuracy of the vortical gust introduced.

The extraction of the three harmonics of the input gust froengressure field con-
firms the theoretical predictions of the Tyler-Sofrin rufd&sguation [(3.3R) summarised
in Table[3.2B. Although between the blades (see Figuré 3hé2largest pressure os-
cillations are those related to the fundamental angulajugacyw as amplitudea;

dominates oven, andag, the circumferential modes related to it, and in particular

m = +11 andm = -16, are all evanescent and their amplitudes, decreasiranerp
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Figure 3.62: Sound pressure level (dB) predicted upstreahdawnstream of a cas-

cade of aerofoils with inflow gust. Monitoring points (i1, i3) and Eol 02, 03) shown
in Figure[3.52. Predictions are compared with referencaesiro 4], Es-

cribano, Hixon and Bin reported IMM].
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Figure 3.63: Sound pressure level (dB) predicted on theserbf an aerofoil cascade
with an inflow gust. Surface monitoring points (al, a2, a3j énl, b2, b3) shown
in Figure[3.52. Predictions are compared with referencaaﬁafrommamq,
Escribano, and Hixon reported@a 04].
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Inflow Outflow

120.0
110.0
Hm=+11
B m=-16 100.0
Hm=-5
O m=+6 90.0
Om=-21
80.0
70.0
60.0
Envia

Ghillani (1)~ Ghillani (2)  Escribano Envia Ghillani (1) ~ Ghillani (2)  Escribano

B m=+11
B m=-16
Hm=-5
O m=+6
Om=-21

(a) (b)
Figure 3.64: Fourth test case, unsteady simulations. TaAgskhow the pressure am-
plitude of the relevant mode orders along the inflow and thBauplanes. Predictions
are compared with reference values f @004} Bacw, and Hixon reported
in ]. Data in dB.
tially from the edges of the blades, as shown in Figlires| 3n66368 and details (a)
and (b) of Figure§ 3.73 arid 3174, are exceeded by the ogmilkagenerated by the
second and the third harmonic. The second harmonic (recautgalar frequency@)
has a clear propagating mone= -5 as shown in Figurés 3.66 and 3.69 and details (c)
and (d) of Figure 3.73 ahd 3174, while all the others are es@nt. As expected, the
amplitude of the wave propagating in the aft direction iglslly larger than that trav-
elling upstream. Similarly, the third harmonic has two @ogating modesn = —-21
andm = +6 as shown in Figurds 367 and 3.70 and details (e) and (f)quirE{_3.78
and3.74. It has to be noted that in thdirection, the wavelength of the third harmonic
is approximately (bc. This means that in the areas where the grid is coarser,rike i
the proximity of the boundaries or near the centre of the Zmteeen the blades, the
number of points per wavelength is not far from the limit, vemtionally fixed at 46
for spatial schemes of this order (see Secfioh 2.2), belowhwe accuracy of the

computation can be considered compromised.
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In the zone near the inflow, for all the harmonics the situaisoclear: the waves
are propagating from the blade keeping their amplitude oradesing linearly in the
logarithmic scale. The only exception to this are waves,ifed the field from the
boundary, clearly visible for modes = +11, m = +22 andm = +33. This can be
explained remembering that the incoming gust hasagle of 44° and, therefore, the
gust is not purely 2D. So, along with the velocity variatiptie gust is also composed
of small incoming pressure and density waves of exactly chisumferential mode

(remember that the problem simulates the presence upstttam11 blades rotor).

From details (a), (c) and (e) of Figures 3.73 and B.74 it isleni that these modes
represent an exception and show an irregular behavioure@mflow. The situation
on the outflow is rather complicated due to the oscillatiormgpagating from the trail-
ing edge and the unsatisfactory performance by the Gilesosuib outflow boundary
condition. In fact, the boundary seems to reflect waves (ghigarticularly evident
for angular frequency &) into the field probably as a reaction to the outgoing high-
frequency transverse oscillations. Comparing Figure3 8nd 3. 74, the higher quality
of the results obtained from grid 1 is apparent and the amgiticomputational power
required to run the simulations on grid 2, due to the smafiefieable time step, is not

justifiable.

An increase in the quality of the results could surely be ioleth from a more
refined mesh and from a special treatment of the singulaatithe edges of the blades.
Other types of non-reflecting boundary conditions for tHkim and the outflow could
also be beneficial.

The shown results confirm that high-order solver can suta@sperform analyses

on large realistic problems of practical interest invotytghly irregular grids.
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Figure 3.65: Fourth test case, detail of the unsteady stionlan grid 1. The non-
dimensional pressure amplitude of the oscillations rdlateangular frequency is
shown. Negative contours are shown by dashed lines.
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Figure 3.66: Fourth test case, detail of the unsteady stionlan grid 1. The non-
dimensional pressure amplitude of the oscillations rdlédeangular frequencya2is
shown. Negative contours are shown by dashed lines.
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Figure 3.67: Fourth test case, detail of the unsteady stionlan grid 1. The non-
dimensional pressure amplitude of the oscillations rdlédeangular frequency«3is
shown. Negative contours are shown by dashed lines.
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Figure 3.68: Fourth test case, detail of the unsteady stionlan grid 2. The non-
dimensional pressure amplitude of the oscillations rdlateangular frequency is
shown. Negative contours are shown by dashed lines.
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Figure 3.69: Fourth test case, detail of the unsteady stionlan grid 2. The non-
dimensional pressure amplitude of the oscillations rdlédeangular frequencya2is

shown. Negative contours are shown by dashed lines.
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Figure 3.70: Fourth test case, detail of the unsteady stionlan grid 2. The non-
dimensional pressure amplitude of the oscillations rdlédeangular frequency«3is
shown. Negative contours are shown by dashed lines.
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Figure 3.71: Fourth test case, unsteady simulations. Thedimoensional pressure
along the aerofoil is shown.
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Figure 3.72: Fourth test case, unsteady simulations. Tipditaiche of non-dimensional
pressure along the aerofoil for each of the three harmosissawn.
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Figure 3.73: Fourth test case, unsteady simulation on grithe acoustic mode am-
plitude upstream (left-hand side) and downstream (rigimtehside) of the aerofoils is
shown.
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Figure 3.74: Fourth test case, unsteady simulation on grith2 acoustic mode am-
plitude upstream (left-hand side) and downstream (rigimtehside) of the aerofoils is
shown.
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Chapter 4

Conclusions

This work developed and tested a three-dimensional higbrgorefactored compact
finite-difference inviscid flow solver for computational aeroacossty explicit time-
integration, time-resolved simulations were obtainedha& hoise produced by the
interaction of unsteady aerodynamic flow with solid bouretar The time-explicit
scheme solves directly the sound generation and near-fiefshgation in the compu-

tational domain. The code developed is based on the twordiioeal in-house code

by|Spissoi[unpublished] that was substantially upgradeith&ymplementation of nu-
merical methods taken from the literature and by some nosehsions of these meth-
ods. The main upgrade was the extension of the scheme totbelven-linear form

of the Euler equations in both primitive and conservativanfoin three-dimensions.
A generalised characteristic-based framework for the dagnconditions allows to

model problems involving curvilinear geometries of comx@bape.

The range of non-reflecting boundary closures originallplemented by Spisso

[unpublished] was extended through the addition of the<Zlebsonic boundary con-

ditions, their three-dimensional extension, and the agrakent of a modified type of
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buffer zone with a target flow state that is both space- and tinpestent. In addition,
a symmetry boundary condition was devised for orthonornaaigSian boundaries that
retains the same accuracy of the internal spatial diseteirsscheme.

The introduction of a high-order implicit compact filterimyethod locally con-
trolled by a tunable cdicient and the use of flerent near boundary filters, both high-
and low-order, one-sided and centred, allows to suppressumerical instabilities
typically associated to the use of high-order centred selsemthe presence of geo-
metrical discontinuities or curvilinear grids.

The adoption of message passing interface (MPI) and dodegnmposition al-
lows to overcome the limitations related to the amount of mgmavailable for single-
processor computations, thus extending the applicalufithe solver to problems in-
volving models of larger sizes. For this purpose, the datmagosition parameters
allow to subdivide the zones of the structured grids in egpatial direction giving the
user full control over the size and shape of the data assigneakch process.

In order to minimise the amount of data exchange among theepses and to make
it independent from the stencil size used in the spatid&kntiation scheme, a non-
conventional inter-block boundary technique was used. Cdmred explicit stencils
used for the computation of the flow derivatives on the bardesre split into two parts.
This allows to perform the communication between two preesdy the exchange of
only two values for each boundary node. This method is ctlgrémited to problems
that require prefactored filters with constant tunabldfitent.

The time-integration of the numerical scheme was upgradeth® addition of
three multi-step explicit methods. These allow to tail@ ttade-& between numerical
stability and computational accuracy depending on theraatfl the problem to be

solved.
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The new three-dimensional scheme was tested on four prsladéimcreasing com-
plexity. The solution of each test case aims to demonsthateffectiveness of some
of the implemented numerical techniques.

The first case, involving a still cylinder in an oscillatinglfi, tests the implemen-
tation of some of the generalised characteristic-baseddsy closures and, specifi-
cally, the curvilinear impermeable wall condition, whigitiudes transverse velocity
components. The second test case, which is a two-dimensizhamachinery rotor-
stator interaction problem, demonstrates thiectiveness of the non-reflecting inflow
and outflow boundary closures on regular homogeneous drydgiving results with
an accuracy comparable to that of the best results availabhe literature for this test
case. The third and fourth test cases are higher fidelity imad¢éhe same rotor-stator
interaction problem. The third test case is a three-dinmgradigeometry that tested the
three-dimensional extension of the numerical scheme oretcked mesh. The fourth
test case modelled an aerofoil cascade by a highly distonesth and by solving the
Euler equations in non-linear form.

The results from the test cases show that the numerical me#mployed allow
engineering accurate predictions of the rotor-statoraonéchinery interaction prob-
lem. In particular, Hixon’s spatial compact prefactoredesoe in association with the
explicit time-integration provided by the classical Rur{#tta or by its optimised ver-
sion by Berland, have shown to be suitable for this class afea®ustical problems.
For the two-dimensional models, the Giles non-reflectingroiary conditions, both at
the inflow and at the outflow, as seen from the literature, conto be a good choice
although the level of reflectivity of the outflow couléfect the quality of the results in
the area nearby and its adoption should be considered degemdthe problem to be

solved. For the three-dimensional problems, the modifigtebaondition developed
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in this work has shown to be the only reliable choice as thedealternatives have
evidenced a long-time instability. The inviscid wall boang by Kim and Lee has
demonstrated to be both accurate and reliable in all the pesformed. In order to
overcome the disturbances that originate from the geocattliscontinuities, typical

of the high-order centred finite{kerence schemes, the addition of a special treatment,
as the one illustrated for test case two, has to be taken amsideration as it can have

a beneficial impact on the quality of the numerical preditgio

The scalability of conventional high-order numerical soes has been limited by
the communication overhead between processes that iecreath increasing order
of the scheme. The present work indicates that by splittieginter-block boundary
spatial derivatives, this communication overhead can theaed. This, in parallel with
on-going development work in the USA, has opened the higleoifinite-diference
compact schemes for use on high-performance computersswi processors, for
modelling flows of industrial interest.

The suite of governing equations, non-reflecting boundaryditions, variable-
order filters, and explicit time-integration options tha¢re added to the numerical
method in this work have created a powerful tool for modgllanrange of unsteady
flows in which the aerodynamic sound generation by intevactiith solid boundaries

is a key performance parameter for specific engineeringegians.
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Chapter 5

Future work

The results of Chaptér 3 highlighted opportunities for ioyang the numerical scheme,
to enhance the accuracy of the solution as well as to extenhtige of problems that
can be addressed.

The results of the second test case reported in Section iBdicate that special
treatment of the geometrical singularities can increaseldliel of accuracy. More
optimisation of the numerical method is required to furtiecrease the spurious os-
cillations generated at the plate edges and avoid the aglweflsence on the error
norm of the predictions. This could be aided by the develogroéan algorithm to
automatically check the potential sources of instabilion the geometrical shape of
the mesh or based on the condition of the flow state.

While the Giles approximate 2D subsonic inflow boundary wtegperforms well

in both the second and the fourth test case, its outflow copaute as also noticed in

literature [Hixonet all,i2000; Ragab & Salem-Sald, 2007], displays a greater raftect

of outgoing waves towards the computational domain intevitnich is an important

source of error in the computation. Alternative outflow bdary formulations could
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5. FUTURE WORK

be tested, such as the one from Hagstrom & GOOd\Li_CJL 20084ttwavs for arbitrarily

high accuracy levels at the expense of the simplicity of enpgntation, or the perfectly

matched layer (PML) in the implementations |by Tatal. [1998] or by Abarbanel

et al.[1999].

The third test case in Sectidn 3.3.3 shows the limitationshef non-reflecting

boundary closures currently available in the code for tHat®m of 3D curvilinear

problems. The Giles boundary extension to 3D regular mebplLE_e_di_dﬁ [200/7],

were here adapted to curvilinear meshes. This formulatioitevallows to model the

inflow vortical gust, shows a long-time instability that unt@bly leads to the failure

of the computation. The implementation of the 3D extensivergby Saxer & Giles

[1993], although only valid for steady-state solutionsjldgprovide a more féective

non-reflecting 3D boundary closure.

Although often necessary to ensure the stability of the agatpon, the filtering in
its explicit or implicit formulation is one of the main so@x of reduction in the accu-
racy of the numerical predictions approaching the wallherdcomputational domain
external boundaries. Improvements in this field throughitt@duction of new and
more stable high-order one-sided stencils, or by the dpvedmt of new techniques to
reduce the adverse influence of the low-order centred filtaike retaining the scheme
stability, would be appropriate.

The filtering techniques in the compact scheme require tkee elachange across
inter-block boundaries of the flow state in rinds with thieks that increases with
the filter order. The filters do not use the reduced form of commication described
in Sectio2.6/1. Implementing such reduced communicatioald aid the solution
of 3D problems involving large amounts of data and additioneamory which are

currently related to the number of rind nodes.
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5. FUTURE WORK

For what concerns the parallel code implementation, imgments are possible. In
particular, it would be useful to generalise the connetgtibetween processes, which
is currently limited to having only one neighbour in eachtedalirection, in order to
improve the flexibility of the solver and its use on more tagptally complex grids.
This limitation dfected the fourth test case, where the complex geometryiasswbto
the aerofoil cascade could have benefited from the use of @ coonplex connectivity
tailored to this problem.

The current parallelisation strategy based on the definihfoa hierarchy of pro-
cesses that are in charge for the data ifquiput is very flexible and can run on every
type of HPC cluster, but it is not computationallffieient. This is particularly evi-
dent when large problems are modelled and the reading atidgvof data represents
a non-negligible part of the computational time. The cods deaveloped with this
in mind and its structure remains open to the implementatfqrarallel inpufoutput,
which are supported by the MPI-2 standard level. For the saumgose it would be in-
teresting to investigate the advantages that HDF5 libsaniew the default data storage
format at the base of CGNS, could bring to the iriputput process.

Other useful code developments would involve testing tiseads fluxes, which
were added to the flow solver but have not been used for the wiatngns shown in
this work. This would allow to extend the applicability oetecheme to wall boundary

layers or to flows where viscosity plays an important rolexttr@rmore, the introduc-

tion of a RANS- or a LES-based turbulence model, followin@Bp & Bailly [2006],

would enable the modelling of higher Reynolds number visdtaws.
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Appendix A

Numerical results of the fourth test

case
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A. NUMERICAL RESULTS OF THE FOURTH TEST CASE

Table A.1: Fourth test case, comparison of the sound predsuel p in dB at 12
monitoring points located at the inflow and outflow planes andhe blade surface

shown in Figuré 3.32.

Inflow plane x/c = —1.5, points i1 to i3

y/c=-0.3 (i1) y/c = 0.0 (i2) y/c = +0.3 (i3)

w 2w 3w w 2w 3w w 2w 3w
Envia 111.9 113.2 105.6 106.6 119.3 1054 1109 116.2 103.7
Ghillani (1) 104.7 118.6 101.0 103.9 117.1 105.3 105.1 118.8 92.2
Ghillani (2) 91.7 117.6 99.7| 106.1 1125 101.1 100.1 115.1 94.2
Escribano 97.3 1185 1075 99.2 1184 1045 94.3 1185 108.6
Hixon 109.2 121.7 109.2 90.2 120.6 93.4| 108.7 121.8 109.3
Bin 131.7 1141 130.9 118.3 130.6 116.8

Outflow plane x/c = 1.5, points 01 to 03
y/c=-0.3 (01) y/c = 0.0 (02) y/c = +0.3 (03)

w 2w 3w w 2w 3w w 2w 3w
Envia 109.5 119.6 99.7| 107.8 119.4 98.4| 107.2 119.3 1015
Ghillani (1) 122.8 123.3 112.3 129.2 121.4 118.6 119.3 111.4 100.1
Ghillani (2) 121.9 112.8 108.3 134.4 126.8 126.8 120.6 1146 111.6
Escribano 106.5 120.0 108.6 106.1 120.0 112.4 106.6 120.0 109.8
Hixon 109.4 122.4 99.9| 112.0 122.8 105.5 110.6 122.6 104.4
Bin 125.7 116.7 1246 116.6

Suction surface of they = 0 aerofoil, points al to a3

x/c=-0.25(al) x/c = 0.0 (a2) x/c = +0.25 (a3)

w 2w 3w w 2w 3w w 2w 3w
Envia 140.7 128.3 104.1 140.6 118.4 107.5 141.2 121.0 92.8
Ghillani (1) 139.4 131.6 1149 138.1 1241 117.4 139.0 124.1 96.5
Ghillani (2) 140.1 128.8 110.8 138.6 122.8 109.§ 139.2 121.1 109.0
Escribano 140.4 129.2 109.8 141.2 121.0 111.9 139.8 118.9 106.1
Hixon 139.9 1325 114.1 143.8 124.7 116.8 1426 122.4 102.2

Pressure surface of they = 0 aerofoil, points b1 to b3

x/c=-0.25 (bl) x/c = 0.0 (b2) x/c = +0.25 (b3)

w 2w 3w w 2w 3w w 2w 3w
Envia 138.0 128.6 104.53 1415 121.4 103.0 1405 1195 97.6
Ghillani (1) 135.4 130.7 107.9 139.5 122.0 115.1 138.7 118.7 108.8
Ghillani (2) 135.8 127.7 107.2 139.6 118.6 112.2 1385 117.3 108.2
Escribano 138.2 128.8 112.9 140.3 119.7 115. 1405 122.6 106.3
Hixon 142.8 133.0 116.5 142.6 125.4 119.7 143.2 1255 97.1
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A. NUMERICAL RESULTS OF THE FOURTH TEST CASE

Table A.2: Fourth test case, comparison of the pressureiam@lof the relevant mode
orders along the inflow and the outflow planes from variouskaloop contributors

(sed Dalll[2004]). Data in dB.

Inflow

m=+11 m=-16 m=-5 m=+4+6 m=-=-21
Envia 101.3 113.0 116.8 97.6 88.1
Ghillani (1) 88.6 103.1 118.4 908.8 100.4
Ghillani (2) 88.0 95.2 116.2 90.7 88.9
Escribano 91.1 96.0 118.4 106.1 97.0
Hixon 104.0 103.9 121.2 104.7 100.8

Outflow

m=+11 m=-16 m=-5 m=+4+6 m=-=-21

Envia 108.4 83.8 119.2 95.6 98.0

Ghillani (1) 118.0 116.0 120.2 104.9 106.7
Ghillani (2) 121.8 119.8 117.6 91.0 104.1
Escribano 106.4 79.5 120.0 99.3 110.9
Hixon 110.6 86.4 123.2 101.7 102.9
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