
The Design and Development of a Fully Dynamic Simulator for

Renewable Energy Converters

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

David Anthony Parker MSc(Strathclyde)

Department of Engineering

University of Leicester

March 2000

UMI Number: U126280

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U126280
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Design and Development of a Fully Dynamic Simulator for

Renewable Energy Converters

David Anthony Parker

Abstract

This report describes the work undertaken to develop a real-time dynamic simulator for a
renewable energy conversion system, focusing on wind energy converter systems
(WECS). An assessment of existing simulators including hardware-in-the-loop
simulation (HILS) has shown that there is a need for a hardware simulator with a
comprehensive description of WECS aerodynamics.

The report reviews the modelling of WECS and establishes models for both the
aerodynamics and drive train dynamics. Once the models have been established the
hardware and software used for the simulator are introduced. The hardware consists of a
DC drive controlling a DC motor, which acts as a prime mover and provides a shaft
torque for a grid connected induction generator. The software used to model the WECS
‘front end’ and to provide a torque demand, via a serial communications link for the DC
drive, is the Matlab/Simulink environment with the Real-Time Workshop.

A model of a 45kW WECS is developed from specifications provided, and implemented
in Simulink as a software-only design. Verification of the model is obtained by
comparing the performance of the simulation with measured site data.

Following the verification of the software-only model, the effects of including hardware
in the simulation are modelled and assessed. Additionally, the effects of including the DC
motor in the hardware test-bed are investigated and compensated for prior to the
assessment of HILS.

The results of the HILS show that the simulator compares favourably with the measured
site data and meets the objectives of the project brief. There are, however, some
discrepancies between the simulated results and measured site data at high frequencies
due to noise in the system. An alternative method of communication, between the PC and
drive using a data acquisition card, is introduced to improve the response. The resulting
simulations, with the card used for communications, show that the low to mid-frequency
response is improved.

To emphasise the flexibility of the simulator a micro-hydro plant (MHP) is proposed and
simulated, both in software and HILS. Results are favourable, showing the adaptability of
the simulator to switch between different renewable energy converters with ease.

I would like to dedicate this thesis to the memory of my Dad, Harry Parker.

Acknowledgements

I would like to thank the teaching and technical staff of the University of Leicester

Engineering Department for their help and friendship during my studies. Particular

thanks go to Mr Adrian Payne for constructing the hardware test-bed and Dr G.A. Smith

for his encouragement and interest in my research. Thanks also to Dr Randall Jones and

Dr. J.A.M. Bleijs.

Acknowledgement goes to Dr G Dutton, Dr R Paynter and Dr A Ruddell of RAL for

providing the WECS data which made this project possible.

Finally I would like to thank my partner Jo Swingler for her encouragement,

understanding and friendship.

Contents

GLOSSARY OF PRINCIPLE SYMBOLS

CHAPTER 1 INTRODUCTION 1

1.1 Implications of the Brief 2

1.2 Initial Simulator Design 3
1.2.1 Variable Speed and Constant Speed Operation - The Choice of Generator 4

1.3 Current WECS Simulators - Literature Review 5

1.4 Report Structure 8

1.5 Summary 10

CHAPTER 2 MODELLING OF WIND TURBINE DYNAMICS 11

2.1 WECS Aerodynamics 12
2.1.1 Pitch Regulated and Stall Regulated WECS 16
(a) Stall Regulation 17
(b) Pitch Regulated 18
2.1.2 Additional Aerodynamic Effects 19
(a) Wind Shear 20
(b) Tower Shadow 21
(c) Yaw Misalignment 21
(d) Induced Torque at the Rotor Rotational Frequency 22
(e) Induction Lag 22
(f) Tower Movement 23
2.1.3 Modelling the Aerodynamic Effects 23
(a) Simulating and Modelling the Wind 23
(b) Simulating and Modelling the Sampling Effects and Induction Lag 24

2.2 Drive Train Dynamics 25
2.2.1 Modelling the Drive Train Dynamics 26
(a) Rotor, Hub and Low Speed Shaft Dynamics 28
(b) The Gearbox Dynamics 28
(c) Overall Drive Train Dynamics 29
2.2.2 M odelling the Induction Generator Dynamics 31
2.2.3 Drive Train Model Validation 32

2.3 Summary 32

CHAPTER 3 SELECTION OF SIMULATION HARDWARE 34

3.1 Selection of Simulator Generator 34

3.2 Simulation of the Prime Mover 35
3.2.1. AC Induction and Synchronous Motors 36
3.2.2 DC Motor 37

3.3 Test-Bed Development 37
3.3.1 Calculation o f Pulleys, Belt and ‘Test-bed’ Sizes 39

3.4 Operation and Control of a DC Motor 39
3.4.1 Development o f Motor Torque 40
3.4.2 Speed Control o f a DC Motor 42
3.4.3 DC Motor Field Connections 44
3.4.4 Saturation and Armature Reaction in a DC Machine 44
3.4.5 Controlling the DC Motor from the Software Simulator 45

3.5 Control Techniques Mentor II DC Drive 46
3.5.1 The Mentor II Thyristor Operation 46
3.5.2 Mentor II Control Menus 48
3.5.3 Selection o f Speed and Torque Control 51

3.6 MD21 Serial Communication Co-processor Board 53
3.6.1 Mentor II Operating System 54
3.6.2 ANSI Comms 56

3.7 Serial Communications and Interfacing the PC and MD21 57
3.7.1 Intel 8250 UART 59
3.7.2 Communication Software Development 60

3.8 Summary 67

CHAPTER 4 SELECTION OF SIMULATION SOFTWARE 68

4.1 Math works MATLAB/Simulink 68

4.2 Simulink Real-Time Workshop 70
4.2.1 D evice Driver Blocks 72
4.2.2 Designing the Mentor II Device Driver Blocks 75

4.3 Summary 81

CHAPTER 5 SOFTWARE SIMULATION 83

5.1 Implementing the Drive-Train Dynamics 84
5.1.1 Algebraic Loops in Simulink 85

5.2 Implementing the Generator Dynamics 88

5.3 The Strathclyde WECS Model 89
5.3.1 Comparison o f the Model Data with Provided Strathclyde Data 90

5.4 Developing the Model Parameters of the RAL 45kW WECS 92
5.4.1 Estimation o f RAL Drive Train Model 93
(a) LSS Stiffness (Kj) 93
(b) HSS Stiffness (K2) 94
(c) Lumped Rotor Inertia (Ii) 94
(d) Lumped Generator Inertia (I2) 96
(e) LSS and HSS Damping Constants (Yi and y2) 96
(i) Calculation o f Yi 96

(ii) Calculation o f Y2

5.4.2 Estimating the First Order Model o f the RAL Generator
5.4.3 Summary o f Parameters and Transfer Function o f the RAL Model

97
98
99

5.5 Developing the WECS Aerodynamic Models in Simulink 100
5.5.1 Development o f Aerodynamic Torque from the Wind Speed 100
5.5.2 Measurement Data from the RAL 45kW WECS 102
5.5.3 Selection o f Simulink Simulation Variables 103
(a) Linsim 104
(b) Runge-Kutta rk23 and rk45 104
(c) Gear 104
(d) Adams 104
(e) Euler 104
(f) Selection o f the Simulation Time Step 105
5.5.4 Model Simulation Using the RAL Measured Data 105
(a) Power Spectral Density 107
(b) Rotational Sampling 109
(c) Spatial Filtering 114
(d) Induction Lag 117
(e) T o wer M ovement 120

5.6 Summary 122

CHAPTER 6 SIMULATING THE EFFECTS OF HARDWARE IN THE LOOP 124

6.1 Replacing the 45kW IM with the llkW IM in the Simulink Model 124
6.1.1 Establishing a Model o f the 1 lkW IM 125
6.1.2 M odelling Hardware Delays and Quantisation Errors 129
(a) Speed Encoder 134
(b) The Mentor II 12-bit Analogue Input 135

6.2 Compensating for the Presence of the DC Motor in the Simulator 138
6.2.1 Testing The Motor Compensation Module 139

6.4 Summary 142

CHAPTER 7 REAL-TIME HARDWARE IN THE LOOP SIMULATION 144

7.1 WECS Simulation Using HILS 147
7.1.1 First Alternative Gearbox Design 151
7.1.2 The Second Alternative Gearbox Arrangement 152
7.1.3 Neglecting the Inertia Compensation in the Motor Model 154

7.2 Summary 157

CHAPTER 8. USING A PC BASED DATA ACQUISITION CARD FOR HILS 158

8.1 The Amplicon PC30FA Data Acquisition Card 158
8.1.1 PC30FA Register Layout and the Integration of the Card into the Simulator 159
(a)ADDATL - ADC Data Low Byte (Read Only) (700H) 160
(b)BLKCNT - Block Counter (700H) 160
(c)ADDSR - ADC Data/Status Register (701H) 160

(d)ADCCR -ADC Control/Channel Register (702H) 160
(e)ADM DE - ADC Mode Register (703H) 160
(f)DADATLO - DACO Register (70CH) 160
(g)DADATHO - DACO Register High Byte (70DH) 161
(h)GMEMO - Gain Memory 0 Register (718H) 161
(i)ADCCFG - ADC Configuration Register (71CH) 161
(j)DACCFG -DAC Configuration Register (Write only) (71DH) 161
8.1.2 Configuring and Controlling the PC30FA for ADC 161
8.1.3 C Program to Establish ADC 163
8.1.4 C Program for DAC 165

8.2 Creating DDBs for the PC30FA 166
8.2.1 Controlling the PC30FA from the Simulink Real-Time Workshop 166
8.2.2 Using the PC30FA with HILS 173

8.3 Summary 175

CHAPTER 9 SIMULATING A MICRO-HYDRO PLANT 178

9.1 Theory of Developing Power from Water 178

9.2 Modelling the Penstock 180
9.2.1 M odelling Gate Position 181

9.3 Developing the Model in Simulink 182
9.3.1 M odelling the 'Front-End' Dynamics o f the MHP 182
9.3.2 Modelling the Drive-Train and Generator Dynamics 183
9.3.3 Software-Only Simulation o f MHP 185
9.3.4 HILS o f MHP 186

9.4 Summary 188

CHAPTER 10 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER
WORK 189

10.1 Design Review 189

10.2 Achievements of the WECS Simulator 192

10.3 Further Developments 194

10.4 Original Contributions 195

CHAPTER 11 REFERENCES 198

APPENDIX 1A 205

The Energy Centre of the Netherlands IRFLET Project 205

Delft University of Technology DU WECS 206

SMI Multiple Renewable Energy Sources System Simulator 207

University of Rome Wind Simulator 208

Blade-Pitch-Angle-Controllable Windmill Simulator 209

APPENDIX 2A 211

Calculation of the First Order Dynamics of an Induction Generator 211

APPENDIX 3A 213

Calculation of Test-bed Dimensions and Pulley Sizes 213

APPENDIX 3B 217

The Input and Output Connections of the Mentor II 217

The Mentor II Menu 14 - MD21 Control 218

C Code for Basic Comms ‘Read’ Command 218

The UART 8250 Control and Status Registers 220
Line Control Register 220
Line Status Register 220
Baud Rate Divisor 220

Communicating Between the PC and the Mentor II 221
Writing Data to the Mentor II 221
Reading Data from the Mentor II 221

APPENDIX 4A 222

Watcom C/C++ Template Makefile 222

Spdin.c 225

Torout.c 229

APPENDIX 5A 234

Calculation of Root Locus of a Transfer Function 234

Matlab Response to a ‘linmod’ Command 235

Matlab Response to a ‘ss2tP Command 235

Matlab Program to Estimate Parameters of the RAL IM 236

APPENDIX 5B 238

Cq-X Values for the 45kW WEC 238

Cp-X Values for the 45kW WECS 239

APPENDIX 5C 240

Combined Model of Drive Train, Generator and Torque due to Wind Speed 241

Matlab Program to Compare Simulated and Measured Data Variables 242

APPENDIX 6A 243

Equivalent Circuit Parameters of the llkW IM 243

Calculating the Damping Factor of the llkW IM 243

Estimating the Relationship Between the General Purpose Register and the Motor Speed 243

DC Motor Model 244

Estimating the DC Motor and Induction Machine Characteristics 245

APPENDIX 6B 249

Simulating the Noise Content of the Speed Measurement from the Mentor II 249
Simulating the Measurement from the Mentor II 249

Determining the Noise Gain Limit for Stable Operation of WECS HILS 252

Reducing the Noise Power Further 254

APPENDIX 8A 257

Simulink Code for ADC (pc30ad.c) 257

Simulink Code for DAC (pc30da.c) 261

APPENDIX 9A 267

APPENDIX 9B 269

Estimating the 'Front-End* Parameters for an llkW MHP 269

BIBLIOGRAPHY 271

Glossary of Principle Symbols

P Pitch angle

Y#, damp# Damping coefficients

p Density

X Tip speed ratio

0# Angles of rotation

(J) Flux

x Time constant

co# Rotational speeds

coe Rotational speed error

C0is Low speed shaft rotational speed

(Ohs High speed shaft rotational speed

co, c o r Rotational frequency of rotor

Ao Cross sectional area of upstream airflow

Ai Cross sectional area of the airflow at the actuator disc

A2 Cross sectional area of the downstream airflow

Cl Lift coefficient

Cd Drag coefficient

Cp Power coefficient

Cq Torque coefficient

Dn Data bits

D# Torque speed gradient

E Peak line voltage

f, F Force

h# Height

g Acceleration due to gravity

I# Lumped inertias

J# Inertias

Jg, Jg Generator inertia

J r* Effective rotor inertia

K# Stiffness

m Mass flow rate

N Gearbox ratio

P#»P# Power

PL# Power losses

Q Water flow rate

R Radius of Rotor

r r Rotor resistance

rs Stator resistance

At Time difference

T# Torques

tls» Tls Low speed shaft torque

ths> Ths High speed shaft torque

Ta ,T A Aerodynamic Torque

Trot Torque due to rotational sampling

Tw Water time constant

V Water velocity

Vo Upstream airflow velocity

Vi,V Airflow velocity at the actuator disc

v2 Downstream airflow velocity

w Power extracted by rotor

xlr Rotor leakage reactance

xls Stator leakage reactance

xm Magnetising reactance

ZT Tower movement

Chapter 1 Introduction

The overall aims of the project are best summarised with the following extract from the

initial summary brief, provided by the project supervisor:

‘Research into the development and application of renewable energy sources for

the generation of electricity is often hampered by the inaccessibility of sites, the

lack of instrumentation on commercial installations and the unpredictability of the

energy source.

However, the relations governing the conversion processes, such as the

aerodynamic or hydrodynamic behaviour of turbines, are generally well

established. To assess the potential of any electrical generator scheme for

improving the overall efficiency of the energy extraction process, it is desirable to

have access to a drive facility that can be programmed to simulate the

characteristics of renewable energy converters under varying conditions in a

controlled and repeatable manner. Such a facility can be designed and constructed

using hardware already existing in the Electrical Power Engineering Section.

The proposed research will involve the design of a test bed with the appropriate

control hardware and software, and extensive testing to establish the ability of the

rig to simulate the performance of wind, hydro and wave power turbines.’ [1.1]

As the project developed it was decided to concentrate on the development of a fully

dynamic simulator for a wind energy conversion systems (WECS). The provision in the

initial development is that the simulator would have to be flexible enough to allow the

development of other renewable energy converters without extensive redevelopment of

the simulator software or hardware. To emphasise this flexibility the simulator should

also include a micro-hydro plant (MHP) model once a WECS has been modelled.

1

1.1 Implications of the Brief

The initial implication of the brief is that an understanding of the physical structure of a

WECS is necessary to establish what hardware facilities are required for the simulator.

The hardware test-rig for electrical generation can then be designed and the

communication and control software requirements of the rig determined.

Similarly, an understanding of the developments in the dynamic modelling of a WECS is

necessary to assess the software requirements for modelling. Also, developments in

modelling concerned with aerodynamic interaction between the WECS and the wind, will

have to be investigated.

Other implications of the brief are that research and development is required in the

following areas:

• An assessment of the current developments of both software-only simulations, and

simulations where software is controlling some form of electrical generation

hardware under closed loop control. This latter option is commonly referred to as

hardware-in-the-loop simulation (HILS) [1.2].

• Project funds are limited. The development of software and hardware should,

therefore, make use of equipment and packages available in the Department wherever

it is possible. Using a standard software package, widely used in industry, would also

reduce the development time for tasks such as modelling and control.

• The aim of the project is to produce electrical power from a generator comparable to

the output of a WECS. It is therefore necessary to be able to drive the generator in

real-time using a suitable prime mover, under software control, to produce a shaft

torque on the generator. This torque will be comparable to the torque developed by a

real WECS.

2

• Since the simulator will, eventually, be used to simulate other forms of renewable

energy converters, it should be flexible enough to allow for different generator types.

• The development of a WECS simulator will have to be validated by comparing it with

a real operational WECS. Therefore, some form of assessment criterion will have to

be established. Data from a real WECS would need to be obtained for both modelling

requirements and performance comparison.

1.2 Initial Simulator Design

The content and the analysis of the project brief indicate that a software package will be

used to model part of the WECS and its interaction with the wind. The output of the

model will be used to control the shaft torque of an electrical generator via a suitable

interface and prime mover. Fig. 1.1 is a block diagram of the basic design.

PC Based Real-Time Operation

Software Simulation
Simulator Hardware

ADC

DACControl Electrical
Generator

Wind Data WECS
Data

Prime
Mover

Software I
Control 1 I

Fig. 1.1 Basic Design of the Lab Based WECS Simulator

The software side of the simulator will be PC based and model the ‘front-end’ of the

WECS. This includes the wind data, the aerodynamic behaviour and the mechanical

dynamics of the WECS. The hardware side of the simulator consists of the prime mover,

which produces the drive torque for the generator, mimicking the actions of a WECS.

3

The output of the model in software will be used to derive a demand signal for the

hardware via an interface. The nature of this demand depends on the requirements of the

prime mover, which could be electrical, hydraulic or pneumatic. In general, an electrical

signal output is required from the software. This is realised using a digital to analogue

converter (DAC). Since the electrical output of an DAC is relatively small compared to

that of an electrical generator, additional signal conditioning maybe required to ensure

the output signal is suitable for the prime mover [1.3]. This would suggest that some form

of power amplification is required.

Closed loop control in software will require the feedback of the status of the simulator to

ensure optimum operation. Additionally, there may be possible interaction between the

hardware parameters and the software required during modelling (see Chapter 5). These

parameters need to be measured during the simulation and this data will, inevitably, need

suitable conditioning for use with the software via an analogue to digital converter

(ADC) interface. Again, some additional conditioning may be required on the measured

signal, depending on the nature of the measurement.

The type of electrical generator used will depend on the final use of the output power.

WECS may operate under a number of speed options. The most widely used methods are

constant speed operation and variable speed operation.

1.2.1 Variable Speed and Constant Speed Operation - The Choice of Generator

Constant speed WECS employ an induction machine directly connected to the grid/mains

supply. Although referred to as constant speed the operation will experience a variation

of speed, but since this variation is small compared with variable speed operation, it is

usually referred to as ‘constant speed’. A variable speed WECS may use an AC

synchronous or induction generator with a converter and a DC link. The variation of

speed is over a much larger range compared with the constant speed operation.

Alternatively, a DC generator connected to an inverter can be employed.

4

Each scheme has its advantages and disadvantages, the variable speed WECS are

controlled to operate more efficiently and result in a higher energy yield, but this is not

without a price. The controllers and the additional power conditioning such as the DC

link and inverter, raise the capital costs of the WECS as well as the complexity of the

system. The constant speed WECS, on the other hand, tend to be more robust and

cheaper. The lack of complexity provides a higher level of reliability [1.4].

To limit the complexity of the system and simplify the analysis and validation, the design

will concentrate on constant speed operation of a WECS. This will also have the added

advantage of limiting the costs of the project. The selected generator for the lab-based

simulator of Fig. 1.1 will therefore, be a grid-connected induction machine (IM).

Development of the MHP model will also be based around a grid-connected IM. The

simulator will be designed to be flexible enough to allow the adoption of alternative

operating schemes, i.e. it will not be restricted to constant speed operation.

1.3 Current WECS Simulators - Literature Review

In order to assess the need for the proposed WECS simulator, it is necessary to assess the

current simulators in this field and determine their limitations. Appendix la describes the

findings of the study.

Five WECS simulators were assessed, namely:

• ECNIRFLET Project Test-rig

• Delft University of Technology DUWECS

• SMI, Technical University of Sofia, Combined Multiple Renewable Energy Sources

System Simulator Facility.

5

• University of Rome, Microprocessor Controlled DC Drive as a Simulator of Wind

Turbines

• University collaboration (Japan), Blade-Pitch-Angle-Controllable Windmill

Simulator

The investigations do not indicate a definitive wind turbine simulator. Each project has

its own notable innovative design, for example:

• The Japan simulator includes compensation in software for the presence of a DC

motor acting as a prime mover.

• The IRFLET and University of Rome simulators both use a flywheel to simulate the

effects of the rotor inertia. This has the advantage of including the rotor dynamics,

but makes the simulator inflexible, e.g. for investigation of the effects of different

rotor designs with different inertias.

• The SMI simulator includes both a WECS simulator and a photo-voltaic (PV)

simulator connected to a bus with a diesel gen-set and dump load. The WECS

simulator includes the effects of spatial distribution of the WECS within a wind park

domain.

• The DUWECS simulator models both constant and variable speed WECS and

includes some WECS aerodynamic and drive train dynamic effects.

Each simulator tends to include some dynamic modelling but none include all the

relevant aerodynamics and drive train dynamics. For example, the DUWECS model

includes rotational sampling and tower shadow effects but fails to include the effects of

spatial filtering (see Chapter 2).

6

The exclusion of the dynamics is usually to make the simulator simpler since the

simulator is used to test various hardware configurations. The IRFLET simulator, for

example, is used to test control algorithms for variable speed operation at steady state.

The need for complicated wind profiles is therefore, not required.

Various control algorithms and hardware were used on the simulators, these ranged from

simple speed control for constant speed drives to control systems to moderate drive train

resonance. Normally, control applications will vary from machine to machine, depending

on machine type and optimal performance limits.

What was particularly apparent from the study were the problems encountered when

attempting to compare the simulators with real systems since an exact reproduction of a

particular wind regime was not obtained. This was evident with the DUWECS system

and will obviously have to be considered during the development of the simulator rig.

All of the simulators are PC based which improves the flexibility of the system. Also the

majority of the simulators sampled here boast ‘user-friendly’ designs for both software

and hardware interaction. Not only will this improve the ‘marketability’ of the system but

will allow any upgrade to the system to be implemented more easily.

A DC motor was used in all of the simulators where an ‘external’ drive facility was

designed to model WECS drive trains. The relative ease of control of a DC motor, which

will be discussed in Chapter 3, tends to explain this decision. A mixture of generators

including three-phase asynchronous and synchronous, and DC were used on the rigs.

This decision depended on the intended use of the simulator.

The overall impression of the literature review indicate that WECS simulators have met

with success for the areas they were designed for, but the following points became

apparent:

• There is a need for a flexible all-purpose WECS simulator rig incorporating all

aspects of aerodynamics and wind characteristics.

7

• Such a rig will need to include a generator driven by a software-controlled prime

mover to deliver ‘real’ power. This would allow the development of generator

configurations and control schemes

• Such a system would need to be user friendly

• Extensive and realistic testing would be required. This would require direct

comparison with an operational WECS.

• The simulator should be flexible enough to allow the development of additional

renewable energy converters, such as an MHP, without major modifications to either

the hardware or software.

1.4 Report Structure

In order to realise a fully dynamic simulator for WECS it is necessary to understand the

characteristics of both the WECS aerodynamics and drive train and the interaction with

the wind. Chapter 2 describes the current development of WECS models, which include

all the relevant dynamics, concentrating on grid connected I.M. machines.

Chapter 3 focuses on the development of the simulator hardware based on the design of

Fig. 1.1. It will explain the selection of the particular hardware, for example the use of a

DC motor as the ‘prime mover’. Details are also given on the choice of using the Mentor

II DC drive to perform the hardware closed loop control and the ADC and DAC

operations. Additionally, attention is given to the serial communications software of the

Mentor II and how this may be manipulated for novel communication with a PC.

The Math work’s Matlab/Simulink software package is introduced in Chapter 4 as the

selected tool used for modelling the dynamics of a WECS. This package, along with the

software tool, the Real-Time Workshop, can be used to operate under real-time control

and allows external communication. The chapter also describes the development of a

unique design to establish real-time communication between the Mentor II drive and the

Simulink software.

A WECS model with all the relevant aerodynamics, discussed in Chapter 2, is developed

as a Simulink model in Chapter 5. The model is derived from specifications provided for

a 45kW WECS. The development is accompanied by extensive comparisons between the

model and measured site data to justify and validate the design.

A limitation in the size of the laboratory hardware means that a smaller generator is used

with HILS. In Chapter 6 the effects of using a smaller generator in the hardware

simulator are investigated. Additionally, other effects of including HILS are assessed.

This includes the introduction of delays and quantisation errors due to the hardware. As

before the simulated results are compared with the measured site data to verify the

design.

In Chapter 7 compensation for the presence of the motor as the prime mover is

developed and verified. This is followed by the results of including HILS and discusses

the merits of the simulator as well as the problems encountered due to noise in the

system.

In an attempt to improve the response of the simulator discussed in Chapter 7, an

alternative method for communication between the PC and the DC drive, using a PC

based data acquisition card, is developed and detailed in Chapter 8. Some improvements

are noted and discussed.

Finally, Chapter 9 describes the theory behind the modelling of a micro-hydro plant

(MHP) and details the implementation and results of such a model on the simulator. This

9

is undertaken to show the flexibility of the simulator and emphasise its use for further

development.

1.5 Summary

The proposal of the project is to develop a hardware based fully dynamic simulator for

renewable energy converters. Initial studies indicated that efforts would be best served

concentrating on a simulator for a wind energy converter system. At the conclusion of

this simulation, a micro-hydro plant will be added to emphasise the flexibility of the lab-

based simulator

Before development of the simulator was begun it was deemed appropriate to assess the

current design and development of similar simulators. A literature review of current

developments indicated that a definitive, dynamic and flexible simulator has not yet been

realised. All the simulators have some novelty but they are limited to the hardware

application they were developed for. The conclusion of the review is that there is a need

for a flexible simulator, which would incorporate all the pertinent dynamics of a WECS

drive train and the associated aerodynamics.

Unless stated or referenced, all the design and development work enclosed in this thesis

is the original contribution of the author.

10

Chapter 2 Modelling of Wind Turbine Dynamics

A wind energy conversion system (WECS) converts the kinetic energy of the wind into

rotational mechanical energy. The aerodynamic properties of the blades of the WECS

interact with the air flow creating lift on the blades. The in-plane component of the lift

forces combine to create a torque which will rotate the rotor and drive a mechanical load

on the shaft. The larger the diameter of the turbine, and therefore the rotor, the more

energy will be converted. Sometimes this conversion is used to drive mechanical

systems directly, such as water pumps but, more usually, the mechanical power drives an

electro-mechanical device or generator, to produce electrical power.

The choice of electrical generator used is dependent on the final use of the electrical

energy produced. For example, some smaller WECS are used to charge batteries and use

either DC generators or AC synchronous generators with some form of rectification.

Induction machines (IM) are often used where the electrical energy produced is fed

directly into the electrical grid. The choice of generator affects the design and

performance of the WECS ‘drive train’. Using an IM directly coupled to the grid

demands that the rotational speed of the generator be maintained at or near synchronous

speed (i.e. 3000rpm for a two-pole machine). Due to its size and the airfoil aerodynamics,

it is not possible for the WECS’s rotor to rotate at this speed, therefore a step-up gearbox

is required to match the speeds of the rotor and the generator.

In order to develop a full model of the WECS dynamics, it is necessary to understand the

dynamic interaction between the WECS drive train components; from the aerodynamic

interaction between the wind and the blades to the interaction between the gearbox and

the generator. This chapter discusses the various dynamics inherent with the drive train of

a WECS, concentrating on a constant speed, grid connected WECS. The dynamics can be

applied equally to a variable speed WECS but some of the simplifications may not be

valid.

11

A 'constant speed' device is chosen with the hardware-in-the-loop requirements in mind.

As mentioned in Chapter 1, constant speed control is less complex than variable speed

control. Additionally, an IM connected directly to the grid is connected to a constant

voltage and frequency, therefore an external load, with suitable control, is not required

[2.1]. It was felt that this option would be preferable in order to reduce initial hardware

development.

2.1 WECS Aerodynamics

As stated above, a WECS extracts the kinetic energy from wind and converts it into

mechanical energy. The power available for a WECS is equal to the change in kinetic

energy of the air as it passes through the rotor. The amount of available power can be

analysed by assuming that the area swept by the WECS blades can be represented by a

what is known as an actuator disc [2.2] and [2.3]. Fig. 2.1 shows the profile of a disc in a

streamtube.

Fig. 2.1 Actuator Disc and Streamtube

If the airflow is regarded as incompressible, the mass flow rate of air in the streamtube

must be equal throughout. Additionally, if considering only simple momentum theory,

the air pressures immediately upstream and downstream of the rotor are constant over the

rotor disk. Therefore, if the velocity of the airflow reduces at the rotor disc, the

streamlines (cross sectional area of the flow) must diverge. In other words:

12

Mass Flow Rate, m = P^Vq = pA yx = pA2V2 (2 .1)

where An and Vn represent the cross sectional area of the streamtube and airflow velocity,

respectively, at different points in the streamtube. Air density is represented by p.

The force, F, on the rotor disc is the rate of change of momentum through the streamtube:

F = m(V0 - V 2) (2.2)

and the power extracted by the rotor is:

W = m(lV02 - ± V 22) (2.3)

Since the power extracted by the rotor is a product of the force on the rotor and the

velocity, Eqn. (2.2) and Eqn. (2.3) can be rearranged to give:

V ^ i (V 0 + V2) (2.4)

Defining a velocity factor, b, which relates the upstream velocity to the downstream

velocity as the ratio:

b = ^ (2.5)
V0

the previous equations can be manipulated to give :

W = ;tpAVo3x i (l - & 2)(! + £>) (2.6)

This can be rearranged to give:

13

w = cp± pvM2 (2.7)

where Cp is the power coefficient and R is the radius (m) of the WECS rotor.

From Eqn. (2.6) and Eqn. (2.7) Cp can be defined as:

Cp = ^ (l - b 2)(l + b) (2 .8)

The maximum value of Cp can be calculated by differentiating Cp w.r.t. b resulting in a

value of b = 1/3. Substituting this value into (2.8) gives :

This is known as the Betz limit. In practice, the value of Cp is never greater than 0.5 due

to the practical nature of slowly turning, low solidity rotors (total blade area as a ratio of

swept rotor area) causing energy waste in wake rotation [2.4].

The value of Cp for a particular WECS varies non-linearly with the ‘tip speed ratio’ X,

which is defined as the ratio of tangential speed of the blade tips to the undisturbed wind

speed:

where CD is the rotational velocity of the rotor (rad/s). A typical Cp - X curve for a WECS

is shown in Fig 2.2.

C = — = 0.5926
P 0 727

(2.9)

14

po
w

er

co
ef

fic
ie

nt

(C
p)

0.5

0.4

0.3

0.2

0.1

0
0 2 4 6 8 10

tip speed ratio

Fig. 2.2 The Cp - X curve of the Windharvester 45kW WECS [2.5]

It will be seen later that the force developed from the interaction between the WECS and

the wind, is best described as an aerodynamic torque. From Eqn. (2.7) and Eqn. (2.10),

the aerodynamic torque Ta, can be defined as:

where Cq is defined as the torque coefficient, and is related to Cp by:

Cq=-£ (2. 12)

Cq - X curves are blade/rotor dependant and since the relationship is non-linear, for

simulation purposes the values are normally held in software as a look-up table [2.6].

There are, however, some examples where the curves have been described

mathematically as a set of equations, e.g.

Cq = a + px+yx2 (2.13)

where a , P and y are constants which are device dependent [1.10]. The option chosen

for any simulation, will have to depend on the information available for the WECS under

investigation.

2.1.1 Pitch Regulated and Stall Regulated WECS

It was calculated earlier that the available power in the wind is directly proportional to

the cubic value of wind speed. Above rated wind speeds, some form of power regulation

is usually required due to the load limitation on either the structure of the WECS and/or

the electrical generator. Power regulation relies on a change in the aerodynamics of the

rotor blades. In other words, the Cq-X data is modified. This can be further explained by

considering Fig. 2.3 [2.3].

16

«c0)o3=
! °o
05_2
>

Angle of attack, « (degree)
Separation

Fig. 2.3 Variation of Aerofoil Coefficients with Change in Angle of Attack

C l , C d and C m represent the coefficients of lift, drag and pitching moment, respectively,

experienced by a rotating blade. In this example, the angle of separation is approximately

13°, at this point the airflow over the blade is disrupted due to flow separation.

Manipulating the characteristics of Fig. 2.3 lead to power regulation.

(a) Stall Regulation

Stall regulated rotors are blades that are designed to induce flow separation above a

certain wind speed. Consider the cross sectional representation of a rotating blade and the

velocity components on the blade shown in Fig. 2.4.

17

Lift
relative rotational

Angle of attack Torque

wind

Thrust

Drag

Fig. 2.4 Cross Sectional Profile of a Rotating Blade

The blade is rigidly fixed to the rotor and for a 'constant speed' WECS, the rotational

velocity of the blade is practically constant. Assuming that the wind speed is below rated

and the angle of attack is such that the air flow over the blade is not disrupted, the lift

force will be greater than the drag force(i.e. below 13° on Fig. 2.3). This will result in a

torque on the WECS shaft, as discussed previously. If the wind speed increases above

rated, the angle between it and the relative wind velocity becomes smaller, due to the

constant speed of rotation. This will inevitably, increase the angle of attack making it

greater than the angle of separation, and leading to stall. The torque on the rotor will,

therefore, be limited.

(b) Pitch Regulated

Whereas a stall regulated WECS relies on an increase in the angle of attack to induce

stall, a pitch regulated WECS relies on a reduction in the angle of attack to limit the

amount of lift on a blade [2.7]. This can be explained by consulting Fig. 2.3 and

observing the lift characteristic from 0° up to the separation angle. The whole blade or

part of it (i.e. full span or part span) is physically rotated to make the required reduction

and, once again, limit the amount of torque produced.

Altering the aerodynamics during regulation affects the properties of the torque

coefficient Cq. With stall regulation, the effect of stall is inherent in the Cq - X data,

18

therefore, no extra provision is required in the modelling. Effects such as stall delay and

dynamic stall are beyond the scope of this investigation and are not considered, but it

should be noted that the model is flexible enough for these effects to be added if and

when required. With pitch regulation, the values of Cq are effected by the pitch

modifications. Cq is therefore, a function of both X and the pitch angle, p. This

relationship is usually modelled as a two dimensional ‘look-up’ table, the inputs being X

and p.

Since pitch regulation relies on the rotation of the blade position, the mechanism required

to do this needs to be included in any simulation. This would have to include any delays

in the measurement system used to assess the desired rotor position, along with any

inherent delays and mechanism limitations.

2.1.2 Additional Aerodynamic Effects

The aerodynamic effects experienced by a WECS in a wind field are fairly complex. The

profile of the wind varies both spatially and temporally as shown in Fig. 2.5. As the

blades rotate in this non-uniform wind profile they effectively sample the wind at

different points. This is known as rotational sampling. Additionally, variations in the

wind stream, both upstream and downstream and the disruptive presence of the WECS in

the stream, can cause additional torque and forces to be induced on the rotor.

19

M ean pro fin

Aeluai wind speed profile

Fig 2.5 Typical Wind Velocity Profile

A number of these effects can cause structural problems for the WECS and are important

for analysing the structural dynamics and hence fatigue life of a WECS [2.8]. From the

drive train perspective, some of these dynamics have the effect of negating each other,

such as equal but opposite oscillatory motion on the blades, resulting in a net motion of

zero [2.8]. Since the project was concerned with simulation of the dynamics of the drive

train, these effects are not discussed. Further details can be found in references [2.8] to

[2.11]. This section will first detail the additional aerodynamics relevant to a WECS and

then describe how they can be modelled.

(a) Wind Shear

One effect that contributes to rotational sampling is wind shear. It can be seen in Fig 2.5

that there is an increase of wind velocity with height. This is due to the effects of friction

between the air and the surface of the ground. This ‘boundary layer effect’ decreases with

height, until eventually it becomes zero (around 2km [2.3]). Turbulence is also present in

20

the profile. As the rotor blades rotate, each blade is effected by a different part of the

profile (due to the shear). Each blade of the rotor, therefore, sees the profile as a

periodical function of time. If the shear was linear across the rotor disk, the effect upon

the induced torque would be the addition of a single harmonic at the blade passing

frequency and be predominately deterministic. Because the profile is non-linear, due to

the presence of turbulence, the effect tends to be stochastic having a bandwidth centred

at the blade passing frequency [2 .1 2].

The effect of wind shear becomes more prominent with increase in the radius of the rotor.

The effects are negligible for machines with radii of less than 5m [2.3].

(b) Tower Shadow

The presence of the WECS support tower greatly affects the wind profile as it offers

resistance to the flow past it and affects both the upstream and downstream profiles. The

local effect is to slow the speed of the wind in front of the tower. As each blade of the

WECS passes the tower, rotational sampling of this slower wind speed occurs. This

‘tower shadow’, like the wind shear, causes a torque to be induced on the drive train at

frequencies centred at the blade passing frequency. Tower shadow is more pronounced

for solid tower machines compared with lattice tower. Aerodynamically well designed

lattice towers can alleviate the effects of tower shadow [2.13].

(c) Yaw Misalignment

The effects of yaw misalignment are very similar to the effects of wind shear. WECS use

devices to direct the rotor into the direction of the prevailing wind. Because the wind

direction is never constant, and the directional devices tend to have a delay in adapting to

the new directions, the WECS can become misaligned. As with wind shear, where the

blades sample the vertical differences in wind speed, yaw misalignment results in the

turbine blades sampling the horizontal difference in wind speed. This, again results in

21

torque being induced in the drive train at frequencies centred at the blade passing

frequency.

(d) Induced Torque at the Rotor Rotational Frequency

In addition to induced torques at the blade passing frequency, analysis of the torque

spectrum of a WECS shows a predominant spectral peak at the rotor rotational frequency

[2.5]. This effect is due to any asymmetry in the rotor blades and the effects of imbalance

in aerodynamic and gravitational rotor loads. The effect of this induced torque is

predominately deterministic and sinusoidal.

(e) Induction Lag

It was mentioned previously, that a WECS is influenced by the condition of both the

upstream and downstream wind profiles [2.2]. The presence of a WECS in a wind flow

can cause a wake rotation [2.2] and [2.12]. When the wind speed or the pitch angle of a

blade changes (with pitch regulation), the airflow in the vicinity of the blade and

downstream from the blade adjust to suit (see Fig. 2.1) . The complex wake cannot

immediately change and it takes some time for the wind profile a distance downstream

from the turbine to adjust in the appropriate way [2.14]. This effect is known as an

induction lag.

During this lag, the induced aerodynamic torque is greater than expected. Experimental

investigation into this phenomenon, indicate that the larger values of torque were found

in the mid-frequency range (relative to the response of a WECS), with little change at

low frequency.

The influence of induction lag is more prominent with pitch regulation systems.

Induction lag can be negligible with stall regulated WECS [2.15].

22

(f) Tower Movement

Most of the WECS tower and hub movement has little affect on the induced torque on the

drive train. One effect that can be influential is the fore-aft tower movement, zT. The

effect of the movement is to modify the effective wind speed by adding or subtracting zt

[2.15].

2.1.3 Modelling the Aerodynamic Effects

All the aerodynamic effects have to be modelled in a suitable manner for inclusion in any

WECS simulation. Certain techniques can be used to ‘lump’ some of the afore mentioned

aerodynamic effects without loss in accuracy.

(a) Simulating and Modelling the Wind

Realistic wind input to a simulation model, can be modelled in a number of ways. One

method is to simulate a wind profile by imposing filtered, white noise on top of a

measured mean wind speed to produce a Von Karman spectrum [2.15]. Another novel

method is to generate a frequency spectra appropriate to real wind using a variable

Weibull distribution [2.16]. With this particular project, a measured wind site data series

was used. The wind speed was measured by an anemometer and is referred to as a ‘point

wind speed’

With either real or simulated wind data, it necessary to establish the effective wind speed

to validate the use of the aerodynamic torque equation (Eqn. 2.11). This can be achieved

by filtering the point wind speed data with a spatial filter. This compensates for the fact

that the wind turbulence experienced by the rotor is only a local effect and only the

spatial average wind speed variation influences the aerodynamic driving torque [2.14].

Without the filter there is too much power at higher frequencies in the simulation [2.17].

The transfer function, G(s), of a spatial filter, relating the point spectrum to the effective

wind speed is:

23

(2.14)

(2.15)

where a = 0.55 and V is the mean wind speed.

The tower motion, zt, is simply added or subtracted from the effective wind speed,

assuming zt is known.

(b) Simulating and Modelling the Sampling Effects and Induction Lag

The effects of wind shear, tower shadow and yaw misalignment can be modelled by

superimposing a torque component, due to the rotational sampling Trot, on to the

aerodynamic torque calculated from the effective wind speed (Eqn. 2.11). The effects due

to sampling have both a deterministic part and a stochastic part. For a three bladed rotor,

the third harmonic, due to the sampling effects of the blades, tends to be more prominent

and more stochastic.

Reference [2.13] indicates that the spectral peak at the rotor frequency can be modelled

using a simple sinusoid, while the effect of rotational sampling can be modelled as:

where A is a constant, contributing to the deterministic component of the rotational

sampling, while 6 i(t) and S2(t) are stochastic processes contributing the stochastic

component. £i(t) and S2(t) are independent white noise processes coloured by first-order

Trot =(A + e{(t))cos3(dt + (A + e2(7))sin3odt (2.16)

filters.

24

The induction lag is modelled using a lead-lag filter:

T , (l + stf)
Induction Lag = --------- (2.17)

(1 + sb)

where a > b and their values are found by comparing the simulated low speed shaft

torque with the measured torque from a WECS, assuming that the appropriate

measurements are available [2.17] and [2.18]. The value of b is usually less than 10,

corresponding to the time constant, while the value of a is usually less than 15, depending

on the mid frequency gain and the time constant [2.17].

2.2 Drive Train Dynamics

The modelling of the drive train dynamics involves the description of the WECS

mechanical system and the interaction of the individual components of that system. Fig

2.6 shows the typical drive train of a 'constant speed1 WECS. The drive train of a variable

speed WECS may or may not have a similar construction, depending on the generator

used and any power conditioning used.

The rotor is connected to a low speed shaft (LSS). Aerodynamic torque from the wind is

transferred to the gearbox via the LSS and the LSS bearings are used to withstand the

axial and radial loads transmitted by the rotor [2.19]. The flexible coupling at the end of

the LSS, is sometimes used to compensate for misalignment problems on the shaft.

Similarly, coupling is sometimes used on high speed shaft (HSS), which connects the

generator to the gearbox.

25

Low Speed
Shaft

Flexible

u

n

High Speed 111
Shaft ___

— n~T|— f Generator

r V x----------------
Flexible
Coupling

)
Gearbox

Low Speed Shaft

Fig 2.6 Typical Constant Speed WECS Drive Train and Generator

In addition to the drive train, the dynamic modes of tower, blades and hub and their

interaction with the drive train, have to be considered. This can lead to a fairly complex,

non-linear set of equations. Ideally, it is hoped that these complex dynamics could be

represented by a simple model, which would accurately describe the approximate

dynamic performance of the drive train. Additionally, this simple model would be

suitable for all 'constant speed' wind turbines. This section evaluates the modelling of

constant speed WECS, performed by Leithead and Rogers [2.8] and Sheinman and Rosen

[2.18], in order to produce simple models.

2.2.1 Modelling the Drive Train Dynamics

Modelling the system shown in Fig 2.6, can be realised by representing the drive train as

a chain of rotating inertias connected by torsional springs.

Most of the damping in the system is quite small and can be ‘lumped’ with the inertias

and/or the stiffness components. The major source of damping in the drive train, is that

associated with the induction machine connected to the grid. This may not be the case

with a variable speed arrangement using a synchronous machine.

It is important to understand the interaction of the individual parts of the drive train, the

tower, hub and blades of the WECS. This can be done by considering each part of the

26

drive train separately, and lumping the dynamics (inertia, damping and stiffness) of

individual components together, to create a simplified model. The model is derived by

assessing each part of the drive train and its interaction with the remaining parts.

Dynamic equations of motion are established which eventually, through linearisation

about an equilibrium point, allow some terms to be neglected. A model of a variable

speed WECS would be subject to some modifications. The larger speed range could

excite some structural dynamics not effected by constant speed operation [2.19].

Therefore, some of the assumptions stated for the constant speed WECS may not be valid

for the variable speed WECS. The simplifications are used to speed up the development

of the simulator but if the simulation software is flexible enough, any complexities such

as non-linearities, can be included in the model at a later date.

The relationships between drive train components can be further simplified if some valid

assumptions are made about individual components. For example, both the LSS and the

HSS are assumed massless. This is valid if the shafts are uniform and their inertias are

equally divided between the adjacent drive train components. Fig 2.7 shows a

generalised, simple mechanical model of a constant speed drive train.

(GB

Hub Low Speed Shaft Gearbox High Speed Shaft Generator
Rotor

Fig 2.7 Simplified Model of a WECS Drive Train

Ta and To are the aerodynamic torque and the torque acting on the generator

respectively, while Ti and T 2 are torques acting on the gearbox. Ki, K2 and K Gb represent

27

the stiffness of the LSS, the HSS and the gearbox respectively. 0r, 0i, 0gb, 02 , and 0g

represent the rotational position of the rotor, LSS at the gearbox, HSS at the gearbox and

the generator respectively. Jr* and Jg are the effective rotor inertia and generator inertia

respectively. The derivation of the model in Fig. 2.7 is summarised in the following

sections.

(a) Rotor, Hub and Low Speed Shaft Dynamics

J r *, the effective inertia of the rotor, is a ‘lumped’ parameter including the dynamics of

both the rotor and the hub as follows:

J R = J R(1 + — -----— -----) (2.18)
J r (Kr + Kh Y

where J r is the rotor inertia, the subscript H denotes the hub properties and K denotes the

stiffness. Jh includes half the inertia of the LSS, as mentioned previously.

The LSS stiffness, Ki, is another lumped parameter:

k KJ-K-H. (i + k r JjL) (2.19)
(Kr + Kh) k r + k h j r

Both Eqn. (2.18) and Eqn.(2.19) are lumped parameters derived by analysis of the

combined dynamics of the rotor and hub of the constant speed WECS [2.8].

(b) The Gearbox Dynamics

The gearbox shown in Fig. 2.7 can be either rigidly mounted or mounted on a compliant

suspension. Fig. 2.8 shows the model of a rigidly mounted gearbox. N is the gearbox

ratio while Js is the inertia of the gearbox referred to the LSS.

28

e,«—

7̂,0, = TI + NT2

0 2 = N Q x

'i x—>. + N

S 2 J .

1 N2
*2Js—i ;— s2Js

iV.

Fig. 2.8 Model of a Rigidly Mounted Gearbox

The compliant model is similar to the rigidly mounted model. The difference is that the

relative movement of the gearbox is considered and the different stages of the gearbox

have to be modelled. Fig. 2.9 shows the eventual model of the compliantly mounted

gearbox.

Fig. 2.9 Model of a Compliantly Mounted Gearbox

♦ 1. A
Jss is the lumped gearbox inertia referred to the LSS, ------ and are the lumped

^ gbi K Gb i

input and output compliance respectively. These parameters are related to the individual

inertias and damping coefficients of the gearbox stages.

(c) Overall Drive Train Dynamics

The lumped gearbox dynamics of Fig. 2.8 and Fig. 2.9 are combined with the dynamics

of the remaining drive train shown in Fig. 2.7 in order to establish a model of the overall

drive train. Fig. 2.10 shows the model of a drive train with a compliantly mounted

gearbox.

29

GB2GB1

Fig. 2.10 Overall Drive Train Model with a Compliantly Mounted Gearbox

Further reductions can be obtained by additional ‘lumping’ of drive train components. In

the case of a drive train coupled to an induction generator, high frequency dynamics may

be neglected. Fig. 2.11 shows the simplified model of a constant speed WECS.

K2

Fig 2.11 Simplified Model of a Constant Speed WECS

Yi and 72 are the LSS and HSS damping constants, respectively, while Ii and I2 are the

lumped rotor and generator inertias respectively. The symbol I has been used for the

drive train inertia terms in keeping with the said use in the reference [2 .8].

The lumped parameters relate to the previous dynamics as follows:

30

(2.20)

h = Ja + ----- ^ 2—--C (2.21)G Kt + N 2K2

This model can be used for both compliantly and rigidly mounted gearboxes and is valid

if the effective LSS stiffness, Ki, for the compliant model, is redefined as [2.20]:

1 = 1 , (N - l)
Kx N 2(I2s2 + y 3s + K2)= - 7 T + . . 2 , r 2 - • (2 . 2 2)

where I3 is the lumped gearbox inertia, 73 is the gearbox damping and K3 is the stiffness

of the gearbox mounting.

2.2.2 Modelling the Induction Generator Dynamics

A simple first order linear description of an IM is defined in reference [2.20]. The

justification for using the simplified model is that the IM is connected to an strong grid

(constant voltage and frequency) and it is stated th a t: 'Therefore, the electrical dynamics

of the generator are enclosed in a strong feedback loop, minimising any difference

between the dynamics of the simple model and a more complex, non-linear description1.

The first order model can be defined as:

z t G + TG = De(mR- ^) (2.23)
P

where x is defined as the time constant of the machine, De is the gradient of the torque

speed curve of the IM, c o r is the rotor speed, (Os is the grid frequency and p is the number

of pole pairs of the IM. To is the generator reaction torque.

31

De and T can be calculated using the equations of Appendix 2a, taken from reference

[2.20].

2.2.3 Drive Train Model Validation

Combining Eqn. (2.23) with Fig. 2.11 allows the transfer function between the

aerodynamic torque and the generator reaction torque to be established. Comparing the

Bode plots of the simplified model with a more complete linear model shows that there is

an agreement at both high and low frequencies for all wind speeds [2.20]. Further

comparisons with the simplified model, and the response from an actual large scale

WECS, show a favourable response at both high and low frequencies.

Earlier modelling by Wilkie et al [2.17] proposed and verified a comparison of the power

spectral density of the LSS to validate any WECS model. The advantage of this form of

comparison is that the response of any simulation would include the effects of the

aerodynamic modelling, described at the beginning of this chapter, and not just the

transfer function of the drive train and generator. Further more, the aerodynamic effects,

such as the addition of rotational sampling and an induction lag, can be added in a

modular fashion and any improvement in the response of the simulator observed

accordingly. The result of this comparison showed that the simplified model was, again, a

suitable representation of the WECS.

2.3 Summary

A wind energy conversion system converts the kinetic energy of the wind to a rotational,

mechanical force. To develop a fully dynamic model of a WECS, an understanding of

the aerodynamic properties of the wind, experienced by the device, is required. The wind

profile varies both temporally and spatially, resulting in a complex, stochastic, driving

function for the WECS. Additionally, the presence of the WECS in a wind profile

produces additional aerodynamics which are experienced by the drive train of the WECS.

32

The components of the WECS drive train have to be modelled accurately in order to

establish the dynamic interaction between each component and the aerodynamics.

Previous research, assessing the spectral response of the simplified WECS model, shows

that dynamics of complex systems can be reduced, with suitable ‘lumping’ of parameters

and the neglecting of others, to simplified models with no deteriation in system response.

This chapter has detailed the dynamics of both the wind and the WECS drive train, which

will result in the development of an accurate model. The model can be developed in the

selected software package, and then validated using recognised techniques.

33

Chapter 3 Selection of Simulation Hardware

Chapter 2 detailed the development of a model of a dynamic, constant speed WECS. The

aim of the project is to manipulate the model in software and provide real-time control of

a grid-connected, induction machine (IM), as if it was being driven by the drive train of a

WECS. This chapter details the development of the hardware required to realise the

project objectives. Details include the design of a test-bed and a description of the

operation of a DC drive, which will provide a real-time communications link to the

simulation software.

3.1 Selection of Simulator Generator

The development of the WECS model in Chapter 2 requires a description of the

particular WECS which is to be simulated. Details required for the description include

blade size and characteristics and gearbox ratio. The data available for simulation (see

Chapter 5) is for two WECS with ratings of 45kW and 330kW. The size of the hardware

simulator would be limited due to the constraints of the laboratory and availability of

machine. Within the lab, three phase supplies for both 415V and 250V are available with

current ratings of 32A and 16A per phase respectively. An IM would have to be selected

to be within these ratings therefore, simulation of a WECS at a higher rating would

require appropriate scaling of mechanical power, in the simulation software, to drive the

smaller machine. The selected machine, for both rating and availability, is a Brook

Crompton Parkinson llkW two pole device, rated at 2925rpm.

The proposed design of the simulator is such that the WECS model provides the real­

time, mechanical power at the shaft of an IM connected to the grid. Simulation of the

mechanical power, or prime mover, should be characteristic of the dynamic action of a

WECS drive train under the influence of the wind. Software will simulate the ‘front end’

of the WECS, namely the aerodynamic torque and the dynamics of the low speed shaft

and gearbox. The hardware arrangement therefore, has to include a device which can act

34

as the WECS’s high speed shaft, controlled by the simulated ‘front end’, and drive the

IM.

3.2 Simulation of the Prime Mover

A suitable device to act as the prime mover and provide the mechanical power to the

shaft of the IM, would have to be able to respond fast enough to mimic the actions of the

‘front end’ of the simulator and be able to deliver the required mechanical power to the

selected IM.

A 15kW DC motor was available in the lab, and it is anticipated that this could be used as

a suitable prime mover and hence, reduce development time and costs. To justify its

inclusion in the hardware simulator it is necessary to investigate any comparable

alternatives

Pneumatic and hydraulic motors are not considered since a pneumatic or hydraulic source

was not readily available. This suggests that an electrical source would be suitable since

both a supply and a number of machines are available in the department. The next step is

to assess the types of electrical motor available and establish their suitability for inclusion

in the simulator.

Three electrical motor arrangements are considered, namely the AC induction motor, the

AC synchronous motor and the DC motor. It has to be established which machine would

be suitable for the simulator. The development time and costs of the selected device also

have to be considered.

Selection of a suitable type of motor for the simulator, is dependent on the controllability

of the mechanical power delivered by that motor. In other words are the torque and/or

speed of the motor easily controlled ? A comparison of the three electrical motor types is

required.

35

3.2.1. AC Induction and Synchronous Motors

The IM, and its use as a constant speed generator was introduced in Chapter 1. Induced

voltages from a rotating magnetic field causes current, and therefore a flux, to be

produced in the rotor. This causes an interaction between the two magnetic fields to

produce a torque and hence, rotation. The speed of the rotation is dependent on the

voltage and frequency of the supply to the stator, which is generally fixed.

Speed and torque control can be achieved if either the line voltage or frequency are

changed. Control can be quite complex, susceptible to line fluctuations and the

relationship is non-linear (e.g. torque developed is proportional to the square of the

terminal voltage) [3.1].

The AC synchronous motor (ACSM) differs from the induction motor in that the flux in

the machine is produced by a DC fed field winding on the rotor. One of the

characteristics of the ACSM is that it is not self-starting. Starting can occur by either

using a frequency converter to reduce the initial frequency of the stator flux, or by

starting the motor as an induction motor. This can be achieved by leaving the rotor

unexcited. The costs of the frequency converter can be quite prohibitive, while the latter

option involves the development of hardware to ‘switch-in’ the rotor excitation at

synchronisation.

Like the induction motor, the speed of an ACSM can be controlled by changing the

frequency of the power supply. Common methods for speed control involve the use of

either inverters or cycloconverters to control the supply frequency to the motor [3.1]. The

torque of the motor can be controlled by adjusting the terminal voltage or the field

current of the motor. Unfortunately, neither relationship is linear.

A number of commercial AC drives are available which provide variable voltage,

variable frequency supplies. The drives can operate under both torque and speed control

36

using various control schemes. Examples include voltage-fed inverter drive using slip

control to control the torque of an induction motor [3.2].

Unfortunately, no AC drives are available in the department and the budget of the project

precludes the purchase of one.

3.2.2 DC Motor

In a DC motor the (stationary) flux is again produced by a DC field winding. The flux

interaction between the stationary field and the armature currents in the rotor, produces

torque and rotational motion. The advantage of the DC motor over the AC motors is that

both the speed and the torque can be controlled relatively easily.

The developed torque is proportional to the field flux and the armature current while the

speed is proportional to the back-emf and the field flux. If the field flux is kept constant,

torque and speed can be controlled by controlling the armature current and voltage,

respectively.

As mentioned earlier, a DC motor is available in the department. It is a Mawdsley’s Ltd.,

15kW, 3000rpm machine. The relative ease of control of the DC motor compared with

the non-linear AC motors favours the use of a DC motor, reducing the development time

and costs of using an AC arrangement.

3.3 Test-Bed Development

Following the selection of the motor and generator set, it is necessary to decide on an

appropriate coupling between the two devices. Two options are considered for the test­

bed arrangement. Firstly, an ‘inline’ coupling as shown in Fig. 3.1, is examined.

37

DC Connection To Grid
Torque Transducer

and Coupling

ooo Induction
Machine

DC
Motor

Fig 3.1 ‘ In-Line’ Coupling with Torque Transducer

The torque transducer can be used to provide a measurement of shaft torque if the

simulation requires it. The disadvantages of using this arrangement will be the difficulty

of changing generators, due to variable shaft heights etc. This would be necessary, for

example, if the simulator is to be used for testing variable speed operation using a

synchronous generator, or testing a multi-poled induction machine used in large hydro

energy converters.

To ensure that the ‘test-bed’ can accommodate various generators, a ‘side-by-side’

arrangement is preferred, using pulleys and a belt. Fig 3.2 shows the suggested design.

Belt
DC Motor

Pulleys
Induction Machine

Fig 3.2 ‘Side-by-Side’ Coupling

38

An estimation of the shaft torque could be acquired by placing the generator on a hinged

plate mounted on load cells. This method would increase the complexity of the rig but

since the measurement of the torque is not absolutely essential, the development time

could not be justified (see Chapter 5).

The use of different size pulleys means that the ‘test-bed’ is, therefore, not restricted to

the speed characteristics of the DC motor, allowing the use of IM’s with different pole

numbers. For example, the Brook Crompton is a two pole machine operating at

approximately, 3000rpm. Although the DC motor can operate at 3000rpm, it is at its

maximum operating condition and will require field weakening. This is undesirable, as

will be discussed later. The DC motor can operate at 1500rpm without field weakening,

and drive the 3000 rpm IM if pulleys with a 2:1 ratio, respectively, are placed on the

machine.

For the IM and DC motor initially selected, the size of the pulley’s and the length of belt

have to be calculated to allow for rated power transfer.

3.3.1 Calculation of Pulleys, Belt and ‘Test-bed’ Sizes

There is available, within the department, a Fenner 96H (38.1mm width, 388.08mm

diameter) pulley for a timing drive. It is anticipated that this could be used as pulley for

the DC motor and hence reduce costs. For this to be acceptable, a pulley half this size (to

give the desired speed ratio of 1:2) has to be selected for the IM, in this case a Fenner

48H, 97 mm pulley [3.3]. Once this initial procedure is complete, confirmation that the

selected pulleys and timing belt could function with the power rating at the operating

speed, has to be obtained. For this to be achieved, both the length and width of the belt

are calculated from the information given in reference [3.3]. Appendix 3a details the

required calculations for the belt as well as the measurements for the base of the test-bed.

39

3.4 Operation and Control of a DC Motor

Since the software simulation and drive will provide a demand signal to the motor, it is

necessary to include details on the operation and control of a DC motor and understand

any limitations this option offers.

It was mentioned earlier that a DC motor is doubly excited. A DC field is located on the

stator while the rotor contains the armature. Fig. 3.3 shows the basic configuration.

Fig. 3.3 Basic Configuration of a DC machine

The figure shows a two-pole device with one turn, a b, on the rotor with a current, ia,

flowing through it. Bi and B2 are brushes in contact with two commutator segments

connected to the conductors. The field on the stator is excited by the current If, giving

rise to a flux d>. O is directly proportional to If up to saturation.

When a supply is connected to the armature, ia produces a flux which interacts with the

field flux and causes a force, f, to be experienced by the armature conductors. In Fig. 3.3,

the force experienced on the rotor causes an anti-clockwise rotation due to the polarity of

40

the armature supply voltage. Direction of rotation can be altered by changing the polarity

of either the field or armature supply.

3.4.1 Development of Motor Torque

The force experienced by an armature conductor in a magnetic field (known as Lorentz

force), is defined as:

where B is the magnetic flux density (T) and 1 is the length of a conductor. In practice,

many turns are placed on the armature, and the force on each conductor can be related to

the total supply current, Ia:

where a is the number of parallel paths on the armature. It follows that the average

torque, T , developed by a conductor is:

/ = Blia (3.1)

(3.2)
a

T = B l — r (3.3)
a

where r is the radius of the armature. The average flux density can be found from the pole

flux, O, and the circumferencial area A, which gives:

_ = 0 = J>£
(3.4)

A 2nrl

where p is the number of field poles. Hence:

41

f = ®Plg (3.5)
2na

All conductors develop torque in the same direction and contribute to the average torque,

therefore the total torque developed is:

where N is the number of armature turns.

From substitution, the developed torque in relation to the armature current and field flux

is:

where Ka is defined as the motor or armature constant.

It can be seen from Eqn. (3.7) that if the field flux is kept constant, the developed torque

is directly proportional to the armature current.

3.4.2 Speed Control of a DC Motor

When a conductor is moving linearly in a magnetic field, the armature conductors ‘cut’

lines of flux, inducing voltage in the conductors. The induced voltage, e, is proportional

to the velocity of the conductor, v defined as:

T = 2NT (3.6)

(3.7)

e = Blv (3.8)

42

When motoring, the armature conductors rotate in the magnetic field, causing a voltage to

be induced in the armature. This ‘back em f opposes the applied current Ia. The average

induced voltage on a turn, rotating in a field is:

et = 2Bl(timr (3.9)

where com is the mechanical rotational speed. Substituting <I> for B gives:

£ , = ^ c o m (3.10)
n

The average terminal voltage Ea, for all the turns connected in series is:

NEa = — et (3.11)
a

substituting for et gives:

Ea = — ®(0 m (3.12)
na

from eqn (3.7):

Ea = Ka<J>com or wm = ^ ar (3.13)
K a < t >

Therefore, the ‘back em f of the motor is directly proportional to the mechanical speed of

the motor, if the field flux is kept constant.

Speed control can also be realised by adjusting the field flux while maintaining a constant

voltage. This can become necessary if the rated voltage of the motor has been met but an

43

increase of speed is still required. Reducing the field flux, or field weakening, can

increase the speed without increasing the voltage of the motor. This has the disadvantage

of reducing the amount of mechanical torque developed (eqn 3.7). Additionally, varying

the field current (flux) means that the relationship between the armature current and the

torque is no longer linear.

3.4.3 DC Motor Field Connections

The field of a DC motor can be excited by connecting it as a separately excited machine,

a shunt field winding or a series field winding. The shunt and the series terms refer to the

mutual circuitry of the field and the armature. A shunt winding is the parallel connection

of the field while a series winding connects the field in series with the armature. A

separately excited winding uses a separate power source than that used for the armature

circuit.

Each form of field winding has different torque-speed characteristics. A series motor, for

example, characteristically can operate with a relatively high starting torque. For this

project a separately excited DC motor is required. One of the major reasons for this

choice is that both speed and torque operation can be more easily controlled if the field

current (flux) is kept constant. From Eqn. (3.7) and Eqn. (3.13), speed and torque of the

motor can be linearly controlled by controlling the ‘back-emf and armature current

respectively.

3.4.4 Saturation and Armature Reaction in a DC Machine

It was stated earlier that the field flux in a DC motor increases linearly with increase in

excitation. As the excitation increases, the reluctance of the iron core of the rotor

becomes larger and saturation occurs. At saturation the flux increase is no longer linear

with the field excitation.

44

Armature reaction is the effect caused when the field flux is disturbed by the flux caused

by the armature current. The effect causes the flux under one half of a pole to be

enhanced, while flux under the other half is diminished. If the ‘enhanced’ pole becomes

saturated, then the overall effect is to reduce the total flux per pole. From the previous

equations (Eqn. 3.7 and Eqn. 3.13), change of flux will obviously effect the operating

speed and torque.

One method in reducing the armature reaction is to include compensation windings on

the motor to reduce the flux caused by the armature. These windings tend to be expensive

and therefore, tend only to be used on large machines.

Another way of reducing the armature reaction, is to limit the field current. This would

reduce the chances of one of the poles being saturated, due to the armature reaction, and

result in a reduction in flux.

3.4.5 Controlling the DC Motor from the Software Simulator

Once the ‘test-bed’ has been designed and constructed, it has to be decided how the DC

motor, or wind energy prime mover, is to be controlled. The initial idea was that the

WECS simulation in software would provide a variable armature voltage and current to

the DC motor. The motor would, in turn, drive the grid connected IM and mimic the

action of a WECS. The software, therefore, needs to be able to access the DC motor via a

hardware interface.

Additionally, in order to successfully control the motor, the speed and/or torque status of

the motor would need to be monitored by the software via a similar interface. This

indicates the need for a Digital to Analogue Converter (DAC) and an Analogue to Digital

Converter (ADC). However, the magnitude of the voltage/current required for a motor

(e.g. up to 460V/49A for the Mawdsley [3.4]) would require additional signal

manipulation (e.g. transformers or power electronics control). As mentioned earlier, the

45

costs of the project were limited, so it was hoped that additional equipment could be kept

to a minimum and, therefore, also reduce the complexity of the simulator.

As an alternative to the transformer/power electronics arrangement, a DC motor drive

system is available within the department and it was decided to make use of this. This

particular drive was a Control Techniques Mentor II.

3.5 Control Techniques Mentor II DC Drive

The Mentor II drive allows speed and/or torque control of a DC motor and can operate as

a four quadrant drive (i.e. reverse motoring to forward breaking). Operating parameters

such as speed and/or torque operation, choice of form of speed feedback signal and

maximum armature voltage can be set and varied via a menu system. These parameters

are used to configure the Mentor II’s dedicated on-board processor and control

communications, security and other operational functions. Menus and parameters can be

accessed via an on-board keypad or through a serial communications link.

3.5.1 The Mentor II Thyristor Operation

The Mentor II drive makes use of the relationships detailed in Eqn. (3.7) and Eqn. (3.13)

to initiate closed loop control of the motor. The drive operates by controlling the firing

angle of a thyristor bridge arrangements connected to both the armature and the field

[3.5]. Fig. 3.4 shows the layout of the thyristor bridges which can be used for the four

quadrant operation. The project does not require the reverse drive or braking options

since it is not in the design of a WECS to change direction of rotation. This option,

therefore, is simply disabled by setting the dedicated parameters in the Mentor II menu

(parameters 04.15 and 04.16).

46

AC

Vbn
Vcn

A S
Motor

AC

Field

_ Supply

Fig. 3.4 Mentor II Parallel-Pair Thyristor Stack

The thyristors, 1 to 6, are used during forward motoring and are fired in numerical

sequence (1,3 and 5 during positive half cycle operation). The firing angle is calculated

by the control action of the Mentor II. The reference for the firing angles are the zero

crossing points of the line voltages (i.e. at 7t/6 of the phase voltage). Fig. 3.5 shows the

example where the firing angle, a, is tt/6 (30°).

AN

Fig. 3.5 Thyristor Voltage Waveforms at Firing Angle ti/6

7t
At cor = —+ a thyristor 1 turns on. Before this, thyristor 6 is on. During the interval

6

71 7t 71
(— + a) < cor < (— + a + —), thyristors 1 and 6 conduct the output current and the motor

6 6 3

terminals are connected to phase A and phase B and v0 = vAB = vAN - vBN . The output

47

voltage v0 is the difference between the phase voltages v^ and vBN, as shown by the

arrows in Fig. 3.5. This continues for each crossing point [3.1].

The average value of the output voltage is:

>7i/6+a+7i/3

2n / 3 Jji/6+a
(3.14)

3a/6
Vp cosa (3.15)

7t

where Vp is the rms voltage.

Regenerative braking of the DC motor can be achieved by firing the thyristors in the

second bridge in the correct sequence and deliver power back to the mains

3.5.2 Mentor II Control Menus

In order to ensure closed loop operation, it is necessary for the Mentor II to access the

feedback variable, i.e. motor speed or motor torque/armature current. For speed control,

the Mentor II allows this using three methods, namely, measurement of back emf,

measurement taken from a tacho or measurement of a optical speed encoder. Under

torque/current control, the Mentor’s software monitors the motor’s armature current via

on board current transformers. Also, the Mentor II drive contains a number of on board

ADC’s and DAC’s which can be used for additional signal measurement or demand.

Fig. 3.6 shows the basic control overview for speed control, including speed feedback

selection and the interaction between menu parameters. It should be noted that the firing

angle of the thyristor set uses current control regardless of whether the drive is operating

under speed or torque control. Speed demands are converted into current demands using

the on-board software.

48

The lettering on the left hand side of the diagram refers to the external connections of the

Mentor II and are detailed in Appendix 3b. Table 3.1 details the Mentor II software

menu. Each menu contains parameters which could be used for monitoring the status of

the drive, or programming particular aspects of drive operation [3.5].

49

Fig. 3.6
M

entor II Control O
verview

FIRING
ANGLE

Run fwd
Run rev.
Inch fwd
Inch rev.

08.05 Parameters in bold type and those listed below
are not protected by Level 1 Security when the
drive is powered on.Permit

06.06 IR compensation 2
06.07 Back emf se t point
06.08 Maximum field current 1
06.10 Minimum field current
11.01 to 11.10 Menu 00 set-up

Bipolar
select
loilol

f SPEED
^REFERENCE

Offset
offset

01.13 02.02referencereference

Final
current slew

demand rate

Post
ramp

reference

Speed
loop

output
FIRING
ANGLEramp

reference
01.00 03.09

02.03 04.0503.10speed o 02.04Inch
ref

loi.QSl—

04.06
02.05
02.06

S p e e d / \
error«)3.0a>^

in te g r a l s /
Max

CurrentEncoder
feedback CURRENT jCurrent

feedback 05.05FEEDBACK |
ENCODER J scalin

Alarm
05.06
05.07
05.08

Armature
voltage

feedback
Speed

feedbackARMATURE 1
VOLTAGE J Max.

Armature
Voltage .4.

03.04>—*l03
M Scaling: 03.03

as- ^ r ~ n !A1, A2 IR Comp.
Output IR Com

pensation
SHfTACHO

TB1-09/10
Drive

enableENABLE
08.11

TB4-31

STATUS BITS
Forward speed 10.01
Reverse speed 10.02
Current limit 10.03
Bridge 1 enabled 10.04
Bridge 2 enabled 10.05
At Speed 10.07
Zero Speed 10.09

I I R/W logic

R/O logic

Internal logic

Menu Description
00 User Menu - to give fast access to the most used parameters
01 Speed Reference - selection of source and limits
02 Acceleration and Deceleration Ramps
03 Speed Feedback Selection and Speed Loop
04 Current - selection and limits
05 Current Loop
06 Field Control
07 Analogue Inputs and Outputs
08 Logic Inputs
09 Status Outputs
10 Status Logic and Fault Information
11 Miscellaneous
12 Programmable Thresholds
13 Digital Lock
14 MD21 System Set up
15 Applications Menu 1
16 Applications Menu 2

Table 3.1 Mentor II Drive Menu List

Speed control, for example, could be accessed via menu 1. Various parameters could be

adjusted to set speed demand and maximum speed etc. by manipulating the on-board

keypad. Selection of ramps, to limit acceleration and deceleration, can be enabled in

menu 2 to protect the motor from sudden, unforeseen changes in demand. Maximum,

minimum and constant values of field current can be defined using menu 6.

3.5.3 Selection of Speed and Torque Control

As well as current selection, menu 4 also includes the quadrant enable (04.14 to 04.17)

and selection of either speed control or torque control (04.12 and 04.13). Fig. 3.7 shows

the interconnection of the relevant parameters.

51

CMV->

SPEED LOOP
OUTPUT JFINAL CURRENT V DEMAND ,

SPEED
FEEDBACK

Taper 1 threshold
Taper 2 threshold

04.20
04.21i J

Threshold 1
exceeded

 ►

Threshold 2
exceeded

fSPEED LOOP)
{ OUTPUT J

Current
offset 104.09\-

04.04
04.07
04.10
04.18
04.19
04.22
04.23

Mode bit 0 04.12
Mode bit 1 04.13

Quadrant 1 enable 04.14
Quadrant 2 enable 04.15
Quadrant 3 enable 04.16
Quadrant 4 enable 04.17

Mlmit 1
1-limit 2
Select Mimit 2
Enable auto Mimit change
Mimit timer
Taper 1 slope
Taper 2 slope

Ovei-ridng
current limit

Current
demand

Odset
select
tom

lL

Mimit B1
Mimit B2

04.05
04.06

I

[FINAL CURRENT]
l DEMAND J

T

KEY

I I Ft/W logic

R/O logic

1 j Internal logic

<S> Summation

d i r Limits
T

ao
U
<DOcr
VhO
H
T3Ca
T3<D<DQh
00

e
>OO

13oo
t-

Invisible parameters are in italics, eg 04.07.

Th
ree

fo

rm
s

of
co

nt
ro

l
are

all

ow
ed

wi

th
the

M

en
to

r
II:

• Speed Control (04.12=0,04.13=0)

• Basic Current or Torque Control (04.12= 1, 04.13=0)

• Torque Control With Speed Override (04.12=0, 04.13=1)

With the speed control option, the conditioned demand is converted to a current demand

and, subject to the current limits, becomes the final current demand. With the basic

torque/current control, register 04.08 contains the current demand and, subject to the

same limits as the first option, becomes the final current demand. The final option allows

torque control up to the limit of the speed demand, again subject to the current limits.

The flexibility of the Mentor II indicates that it will be suitable for use with the hardware

simulator as it allows both speed and torque control, with numerous options, and various

ADC and DAC facilities.

It was mentioned that the Mentor II menus could be programmed manually or by use of a

serial communications link. Manual programming of parameters is unrealistic for

dynamic control of a WECS simulator, therefore the serial communication option has to

be considered. The Mentor II makes use of a co-processor dedicated to serial

communications. This unit is housed on the MD21 board.

3.6 MD21 Serial Communication Co-processor Board

The fact that the Mentor II microprocessor has to operate critical timing functions in real

time imposes limitations on its ability to perform other duties such as serial

communications [3.6]. A solution to this problem was to introduce the option of adding a

second processor.

The MD21 is a single board microcomputer which can communicate with the main

processor of the drive by means of a dual-port RAM. This provides memory which is

accessible to both processors via their respective buses, allowing them to exchange

53

information without the need for interrupts or synchronous operation, and with minimal

software overhead. The on-board serial port can operate under various communication

protocols such as RS232 and RS422. Control of the operation of the serial

communications is via The Mentor II’s menu 14 (further details in Appendix 3b).

Characteristics such as communication protocol, parity, baud rate and number of data bits

can be set to suit the communications requirements.

3.6.1 Mentor II Operating System

The Mentor II Operating System (MOS) is the operating system of the MD21, as it is on

the main processor, and exists as a package in the system EPROM.

The major function of the MOS on the MD21, is to interface it with the Mentor II and

provide information, such as the amount of hardware that is available, and run

application programmes stored in EPROM. Application programmes can be created by

the user and stored in the user’s EPROM. These programs are written in assembly

language for both speed and concurrent operation with other programmes.

Two modes of operation are available with the MOS, namely ‘Basic serial comms’,

which operates under interrupt control and supported handshaking, and ‘Mentor II ANSI

comms’ which, similarly, operates under interrupt control, but without handshaking.

The Basic comms uses high level language instruction code, similar to BASIC. This

allows ease of programming, but has the disadvantage of having a relatively slow

processing time. Fig. 3.8 shows a timing diagram of a Basic comms. instruction to read

data from one of the Mentor II registers. The C code used for this program is contained in

Appendix 3b.

54

1 5 .0 0 V 2 5 .0 Q V r - 3 7 .4 ^ lO .O g/
— . - y

.................4 -

4

1 :

1 :

......L ;
1 :

- 1 ■ * * i ■ i - • i • i • i - 1 - f - 1 • i • i • i • t • I l l - l l l l -

1 :

-1 - 1A - i - (* i • i -1 -
___L i..

V
4-

I ; ■

X

. . . l . j

1 :
1

1LJ3BP

t l = 0 .0 0 0 S t z = 7 5 . 2 0 m s A t = 7 5 .2 0 m s 1 /A t = 1 3 .3 0 H z

Fig. 3.8 Timing Diagram for a Basic Comms ‘Read’ Instruction

The data format of the serial communication will be discussed later in this section. The

vertical ‘bursts’ indicated on the diagram correspond to the data exchange between the

PC and the Mentor II. Channel 1 is the data transmitted by the PC, in this case the ‘read’

instruction. Channel 2 is the response from the Mentor II. This first ‘burst’ of data is the

echo of the ‘read’ instruction, while the second data stream corresponds to the Mentor II

register data. The total time taken for the information exchange, from request to

completion, is 75.2ms, as indicated by the cursor measurement At on the diagram.

ANSI comms uses a lower level code, similar to assembly code. This increases the

complexity of programming, but improves processing time compared with the Basic

comms. It is shown in the next section that the time taken to complete a ‘read’ instruction

using ANSI is 13.3ms. This is a vast improvement on the Basic comms. time of 75.2ms.

Initial appraisal of the two communication procedures, indicates that, due to improved

time response, the ANSI comms option is the more favourable for communication with

the PC-based simulation.

55

3.6.2 ANSI Comms

As mentioned before, Menu 14 of the Mentor II’s software can be programmed to set the

desired communications requirements. Setting the MD21 for ANSI comms, automatically

sets some aspects of the communication format. Additionally, to maximise the

communication speed, the baud rate is set at 19200bps. Table 3.2. indicates the format of

communication selection.

Parameter Format

Comms Selection

Baud Rate

Data

ANSI

19200 bps

7 Data Bits, 1 Stop Bit, Even Parity

Table 3.2 Desired Serial Communication Format of MD21

Both the MD21 and the selected simulation software, on the PC, must have the same

communication format to ensure successful data transfer.

ANSI comms. makes use of a number of control characters (i.e. characters that require

the use of the keyboard’s control key). Instructions are sent as packages of data which are

initiated and terminated with control characters. With an ANSI read command these

control characters are AD (4h ASCII) and AE (5h ASCII) respectively.

The format of a ‘read’ instruction that is sent (in ASCII) from the PC to the Mentor II is:

ADN1N1N0N0M1M0P1P0/W

N1 and NO are the drive address (used if more than one drive is connected to the PC - not

needed in this case, therefore the drive is always designated as 01). These values are

repeated for error control.

M l, MO, PI and P0 are the required menu and parameter respectively.

56

For example, if the value of the armature voltage of the motor (03.04) is required by the

PC’s software, the following data would need to be issued by the PC:

AZ)00110304AE

The Mentor II responds by sending a package of data which includes the register

selected, the value of that register and the initiation and termination control characters, in

this case AB and AC. If, for example, the value contained in register 03.04 was 100 the

response to a ‘read’ of that register would be:

AB0304+0100AC

ANSI comms has the ability to issue a ‘re-read’ command. This is achieved by issuing

AU. The response of the Mentor II is the same.

Writing to the registers of the Mentor II using the write command has the format:

AZ)N INI N0N0 AZ?M 1 MOP 1P0D4D3D2D1 DO A C

N1 and NO are the drive address

M l, M0, P0 and PI are the menu and parameter selections

DO to D4 is the value to be stored in the selected register where D4 is the sign of the data.

For example, to set the torque/current reference (04.08) of the motor at 555, the PC

issues:

AD0011 AZ?0408+0555 AC

3.7 Serial Communications and Interfacing the PC and MD21

The serial communication device installed on the PC is the Intel 8250 UART (Universal

Asynchronous Receiver/Transmitter) which, like the MD21, uses the RS232

57

communication protocol. RS232 is a two wire system which switches between ±15V but

tends to be susceptible to noise over distances above 10m. Problems can also be

encountered if a large bit rate is required, therefore RS232 is usually limited to bit rates

of less than 20 kbits/s [3.7]. This is acceptable for communication between the PC and

Mentor II since the baud rate will be no greater than 19.2kbits/s.

Fig. 3.9 shows the hardware connection between the UART of the PC and the MD21.

Note that the ‘handshaking’ connections are shown but are not used with ANSI comms,

they were used for initial testing of the Basic Comms. The only lines used are TX

(transmit), RX (receive) and GND (ground).

PC with RS232
Tx

2 3
Rx Mentor li

DC Drive

Rx
3 2

Tx

UART CTS

RTS

5 4 DTR

CTS

MD21

20 5

GND
7 1

GND

Fig. 3.9 Hardware Connection Between the PC and MD21

On the data lines TX and RX, positive voltages range from +3 to +15 volts and

corresponded to logic ‘O’, while negative voltages range from -3 to -15 volts

corresponding to logic ‘1’. This arrangement is the inverse of the normal TTL voltage

representation of logic.

58

3.7.1 Intel 8250 UART

The Intel 8250 UART allows both transmission and reception of 8-bit data via the serial

port. The received and transmitted data, timing, monitoring and control of

communications can be accessed via a number of registers within the UART. Table 3.3

shows the 8250 registers and their mapped addresses within the PC. Note that only the

registers used for this particular project application are shown. Registers controlling

interrupts and handshaking are omitted for the sake of brevity.

I/O Address Register
2F8 TX Buffer (DLAB = 0)
2F8 RX Buffer (DLAB = 0)
2F8 Divisor Latch LSB (DLAB = 1)
2F9 Divisor Latch MSB (DLAB = 1)
2FB Line Control Register (LCR)
2FD Line Status Register (LSR)

Table 3.3 8250 Registers and I/O Address

As can be seen from Table 3.3, many of the registers are multipurpose and depend on the

momentary action of the port (i.e. receiving, transmitting or port initialisation). DLAB (or

the Divisor Latch Access Bit) is bit 7 of the Line Control Register and is used to select

either data exchange or set the data exchange Baud rate.

With DLAB=1 the Baud rate of the UART can be set by sending the appropriate 2 byte

value to the divisor latch registers (lowest significant byte (LSB) to 2F8H and most

significant byte (MSB) to 2F9H). To obtain the Master clock which controls the Baud

rate, the Reference clock of the UART is divided by the 16-bit divisor value. The bit rate

(Baud rate) is then obtained by dividing the Master frequency by 16. Reference clock

frequencies are typically 1.8432 MHz.

The control and status registers were used to set parity and stop/start bits (LCR) and

monitor status of the receive and transmit registers (LSR). Appendix 3b contains a

description of the relevant control and status registers.

59

When used during transmission, the UART can only accept a byte of data when the TX

buffer is clear. This occurs when the transmission of the previous byte is complete,

indicated by bits 5 and 6 of the LSR (transmitter holding register free) being set high.

Similarly, when the UART is required to receive, a byte of data is available for reading

when bit 0 of the LSR (received data ready) is high [3.7]. Software control of the

communication has to allow for this continual ‘polling’ of the registers to check the status

during both transmission and reception.

3.7.2 Communication Software Development

After defining the initialisation and operating parameters of both the MD21/Mentor II

and the UART of the PC, it is necessary to develop software to test the serial link and

confirm successful operation. Initially, simple programs were compiled using QBASIC,

the Windows based BASIC language. The advantage of using QBASIC is that all the

UART initialisation and control, is controlled automatically using simple instructions

(i.e. the need to ‘poll’ status register during data exchange, is not required by the user’s

program). This means that the programmer can perform serial communication without

knowledge of the structure of the PC’s UART, other than it’s port designation (i.e.

COM1 or COM2). This ‘simple’ programming confirmed the validity of the hardware

link and the programming structure of the QBASIC comms. Appendix 3b contains the

details of the QBASIC programs used for reading from and writing to the MD21.

Once this initial test is confirmed, it is necessary to be able to perform the same tasks

using C/C++ code. The reason for this will be explained in Simulink Real-Time

Workshop section (see Chapter 4). Accomplishing these input/output (I/O) tasks using

C/C++, requires the manual initialisation and manipulation of the PC’s UART, as

mentioned in the previous section. Although labourious, it does have the advantage of

allowing greater control of the serial communication including control of handshaking, if

required, unlike QBASIC.

60

List 3.1 shows a C program which is designed to send a ANSI instruction to the MD21.

In this example, the Mentor II’s torque/current demand register, 4.08, is programmed to

be set at the value ‘555’. The ‘#include’ statements at the beginning of the program, refer

to ‘header’ files which contain ‘declarations’ required for mathematical (math.h) and I/O

(conio.h) functions [3.8] and [3.9]. The UART is initialised by sending values

corresponding to the required communications format to the appropriate UART registers.

Initialisation is followed by the creation of the ANSI comms instruction array. Data

transmission is controlled within the for loop by monitoring the status of the LSR,

ensuring that the ‘transmission register’ is empty. Each byte of the ANSI instruction is

transmitted using the outp command. The array numb is used to set up the output

command. Further details regarding the C++/C programming language can be found in

references [3.9] and [3.10].

ttinclude <conio.h> //for ‘outp’

Mnclude <iostream.h> //for ‘cout’

Mefine LCR 0x2fb

Mefine PORTOx2f8

Mefine IER 0x2f9

Mefine MCR 0x2fc

Mefine MSR 0x2fe

Mefine LSR 0x2fd

int main()

{

/*Initialisation */

outp(LCR, 0x80); //initiate baud set-up

outp(PORT, 0x06); //Isb baud

outp(lER, 0x0); //msb baud set to 19200

outp(LCR, 0x1 a); //7el

outp(IER, 0x0); //disable interrupts

outp(MCR, 0x0); //RTS=0

/* end ofinit */

61

int numb;

charpc_instr[16] = {0x4, 'O', 'O', '1', '1 ',0x2, 'O', '4', 'O', '8',' + '5', '5','5',0x3,0xdJ; //ANSI instr

here:for (numb=0;numb < = 15;numb++) //create loop to o/p array

{

while ((inp(LSR)& 0x6 0)!- 0x60); //check fo r empty TXB

outp(PORT, (int) pc_instr[numb]); //o/p byte to UART

}
cout « "This is the end of for loop”; //debug to check for end of loop

goto here; //continuous poll

return 0;

1
List 3.1 C Program to Write ANSI Instruction to MD21

Fig 3.10 is the result of monitoring the PC’s TX line during program operation. The

transmission of the instruction is continually ‘looped’ in order to aid capture on the

oscilloscope.

tl = 0.000 s tz = 8.360ms At = 8.360ms 1/At = 119.6 Hs
Fig 3.10 Timing Diagram for an ANSI ‘Write’ command

Each ‘burst’ of serial data corresponds to the ANSI ‘write’ instruction. The gap between

data streams is due to a forced delay in programming to aid visualisation of the

instruction.

62

It can be seen from the figure, that the total time to complete the transfer of the

instruction is measured using the oscilloscope cursor function and is 8.36ms (At on the

figure).

As indicated in ANSI comms. section, reading data from the Mentor II is more involved.

The read instruction has to be transmitted by the PC, similar to a write instruction, and

the response from the Mentor II has to be effectively processed. This processing involves

reading each byte of the response from the ‘receiver buffer’ of the UART, and storing it

in an array. As before, the LSR has to be monitored for the presence of data bytes in the

‘receiver buffer’.

List 3.2 shows the main section of the C program used to read data from the Mentor II,

and simply display it. The parameter num and array from jnentor are used to obtain the

response from the drive one byte at a time. Note that the initialisation and declaration

section is the same as shown in List 3.1 and has been omitted for the sake of brevity.

Once again, the program runs as an infinite loop.

int numb, num-0;

int array=0;

char from jnentor[20];

char pc_instr[13] = [0x4, 'O', 'O', 7 7 'O', '3', 'O', '4',0x5]; / / read reg 03.04

/*section to send read instruction to Mentor II*/

here:for (numb=0;numb < = 9;numb++) //create loop to o/p instr array

{
while ((inp(LSR)& 0x60) != 0x60); //check fo r empty TXB

outp(PORT, (int) pc_instr[numb]); //o/p chr to port

}

/*section to obtain response to read instruction from Mentor II*/

do{

while((inp(LSR) & 0x1) != 1); //check for data ready in RXB

from jnentor [num] - (char)inp(PORT); //input data from RXB

63

num+ +; //next array position

} while ((int)from_mentor[num-1] != 0x3); //check for end o f data

from_mentor[num] = \0'; //place 'null' at end of input array

cout < < from jnentor < <endl; //print the input array

num=0; //reset count

goto here;

return 0;

List 3.2 C program to Read Data from a Mentor II Register

Fig 3.11 shows the TX (channel 1) and RX (channel 2) of the UART during the

execution of the above C program. Channel 1 is the ANSI ‘read’ instruction data stream,

while channel 2 is the register contents data stream. It can be seen from At, (the time

difference between cursors) that the required processing time for a ‘read’ instruction is

13.3ms (c.f. 8.36ms for a ‘write’ instruction).

2

The time required for a ‘read’ and a ‘write’ instruction indicates that any sampling

required by the software simulation, would have been limited to 120Hz for a ‘write’ and

75Hz for a ‘read’. It is assumed that realistically, the software simulation will require at

least one ‘read’ and one ‘write’ per iteration, i.e. ‘write’ a torque demand to the Mentor II

1 5 .0 0 V 2 5 .0 0 V 1 3 .3 g 5 . 0 0 g / iS STOP

V‘l

1 3 .3 0 m s- 5 .9 0 0 m s t 2 = 7 .4 0 0 m s 1 / f i t = 7 5 . 19 H s

Fig 3.11 Timing Diagram for an ANSI ‘Read’ Command

64

followed by a ‘read’ of the motor’s speed. This indicates that, at the minimum, the total

time required to allow for the I/O commands, would be 21.66ms or 46Hz, which is

relatively slow [3.11].

It is also necessary to estimate if the processing time of ANSI instructions will further

effect the time delay of the serial communications. To achieve this, the armature current

of the DC motor was monitored while the torque/current demand register of the Mentor II

(04.08), was issued a ‘step’ change using a ‘write’ command from the PC. Fig. 3.12

shows the timing of the response. The lower data stream, shows the serial data which

carries the ‘step’ command, while the upper most trace shows the change in average

armature current. The middle, faint trace is the inverse of the armature current and not

required for analysis.

65

ml h. i ™ ! . k i t

Fig 3.12 Change in Armature Current in response to a ‘step’ demand

It can be seen that the delay time, i.e. time taken to reach new current demand, is

approximately, 17.5ms. This indicated that the total time taken for a ‘write’ instruction is

~25ms. A delay of this order was expected since the specifications listed in the Mentor II

guide, stated that the ‘current loop’ resolution was 80Hz (12.5ms). The difference is due

to the controller in the current loop of the Mentor II. This has been ‘autotuned’ by the

Mentor II to improve the performance of the drive for the particular motor under control

[3.5].

From intial studies, it is suggested that sampling rates in the order of 20-40ms are

sufficient for the simulation of WECS: the largest step length that provides

numerically satisfactory integration is 0.02 seconds. Note that with a deterministic input

only, the numerical integration could be performed with a step length of 0.1 seconds'

[3.12]. This is due to the slow dynamics of the mechanical components of WECS and,

therefore, allows the assumption that the serial communication link between the PC and

66

the MD21, including the processing delays, would be sufficient for the required test-bed

control. More on this in Chapter 6.

3.8 Summary

This chapter has detailed the hardware required to meet the objectives of the simulator.

Hardware was selected which allowed a flexible approach to the test-bed, ensuring that

various generators and other renewable energy converters could be tested, due to the

side-by-side belt and pulley arrangement. A DC motor was chosen as the prime mover

for a induction machine to mimic the actions of a 'constant speed1 WECS. A DC drive

was chosen to act as the controller of the DC motor, removing the need to include

explicit power electronics and reduce development costs. The drive’s ‘on-board’ software

and its serial communication link were investigated and a novel, unique strategy to

manipulate these characteristics, via the serial port of a PC, was designed and developed.

67

Chapter 4 Selection of Simulation Software

Chapter 3 established the selection of the simulator hardware and the communication

protocol required for exchange of data between the Mentor II and the PC. The next stage

of the simulator development is to investigate suitable simulator software. The main

criterion that has to be met is that the software must be able to successfully interface with

the Mentor II DC drive via the serial port of the PC. This suggests that the software must

be able to operate in real-time. Also the software will, ideally, have to allow for the

development of simulation models in a modular manner. This allows the complexity of

the model to be increased in stages and model parameters to be easily changed and to be

interchangeable.

Ideally, the desired simulation software will be available as an industrial standard

commercial package and be readily available within the department. This would reduce

both the software development time and cost of the project.

This chapter introduces the software package selected to meet the project’s objectives

and the the interaction between it and the MD21, using the serial communications link.

4.1 Mathworks MATLAB/Simulink

One such package that meets all the above criteria, is the Mathworks’ Matlab/Simulink

software.

Matlab is a package specifically designed for scientific and engineering calculations. Its

command structure is similar to a DOS or UNIX structure, using paths and directories.

The ‘base’ version of Matlab contains simple mathematical functions which can be used

in conjunction with matrices and/or statements and variables [4.1] [4.2]. In addition to

this ‘base’ version of Matlab, there are available task specific ‘toolboxes’. These

68

‘toolboxes’ include the Control Systems Toolbox, Simulink and the Real-Time

Workshop.

Simulink is an interactive environment for modelling, analysing, and simulating a wide

variety of dynamic systems, including discrete, analogue, and mixed signal systems.

Simulink provides a graphical user interface for constructing block diagram models using

"drag-and-drop" operations. With Simulink's large library of building blocks, a system

can be modelled rapidly, without writing a single line of code [4.3]. Fig. 4.1 shows the

available Simulink library.

% % 3-

Sources Sinks Discrete Linear NonlineaConnectionsExtras

SIMULINK Block Library (Version 1.3c)

Fig 4.1 The Simulink Building Block Library

Some of the features of Simulink include:

• A comprehensive block library for creating linear, non-linear, discrete-time,

continuous-time, hybrid and multirate systems.

• Convenient creation of hierarchical models and subsystems

• Mask facility for creating custom blocks and block libraries

• Model browser to view the decomposition of systems from highest-level through to

component level

• Scalar and vector connections

• Signal and port labelling for clear and concise block diagrams

• Interactive simulation with live display

• Scopes, input sources, output sinks [4.3]

When a Simulink model is created by drawing a block diagram, Simulink uses the

information in the block diagram to create an ‘s-function’. Each block diagram has a

69

corresponding s-function (normally transparent to the user) with the same name as the

model. S-functions are basically Matlab functions with a special calling syntax which

allows access to a models dynamic equations [4.4].

The strength of s-functions is their duality. Although Simulink automatically creates an

s-function for any block diagram, the process can be reversed to produce a block diagram

from a user defined C code s-function. The structure of this C code is very exact (see

later in this chapter) and must be compiled as a MEX file (a Matlab executable file).

Once in the form of a MEX file, the s-function can be used as a block diagram in

Simulink. This option is usually preferred if a particular system is best described as a set

of equations and it is simpler to enter them as C code.

Once the s-function C code is complete, it is compiled as MEX file using the Matlab

Mcmex’ instruction.

4.2 Simulink Real-Time Workshop

The Simulink Real-Time Workshop (RTW) is a toolbox that provides an integration

between Simulink models and hardware facilities. It produces C code directly from

Simulink graphical models and automatically builds programs that could be run in real­

time as a ‘stand alone’ DOS executable. The major applications of RTW are [4.5]:

• Real-Time control - Control can be designed in Simulink/Matlab.

• Hardware-in-the-loop - Simulink is used to mimic real life measurements

• Interactive real-time parameter tuning

• Program building is fully automated

Fig. 4.2 shows the building process that is required to build a real-time ‘stand alone’

executable in RTW.

70

The Simulink model, shown in Fig. 4.2 produces a C coded s-function. The difference

with the RTW is that the C code needs to be compiled to create the DOS executable. In

order to do this, a C/C++ compiler, compatible with the Simulink s-functions, is required.

One such compiler is the Watcom C/C++ compiler which, fortunately, is available on the

University PCFS network.

Simulink Makefile
Model Template

Generate
Code

Generate
Makefile

Model Custom
code Makefile

model, c model, mk
model, h

o !make -f model.mk

Program

model.exe

y User-Developed
Model and Template

Automated Build
Process

Executable C
Program

Fig 4.2 The RTW Build Process

In order to create an operating system dependent executable, i.e. a DOS executable file,

the compiler has to be given certain information regarding the ‘building process’ of the

program. Also Matlab has to be supplied with the location of the Watcom compiler and

linker. This is achieved by creating a ‘makefile’ template, see Fig. 4.2, which has to be

71

specific for the user’s particular compiler and target environment. The template contained

such information as macro definitions, tool locations and compiler options. Appendix 4a

contains the template makefile, which has been redesigned to control the executable

building process, using the Watcom C/C++ V I0.5 compiler on the university’s PCFS

network.

The ‘!make’ command, seen in Fig 4.2, is a RTW instruction that combines the generated

C code from the Simulink model and all the complier/linker options in the makefile, to

produce the desired DOS executable (EXE) file.

The above process is valid for creation of executables regardless of the presence of I/O

modules in the Simulink model. To include I/O and hence HILS, RTW requires the use

of Device Driver Blocks.

4.2.1 Device Driver Blocks

In order to create a real-time EXE file using Simulink as a controller, or as HILS, there

needs to be some I/O hardware control in software. This software can be implemented as

a C code s-function, compiled as a MEX file and implemented as a Simulink block

diagram. This block diagram is placed in the Simulink model, used for the real-time

operation, wherever the particular I/O is needed. RTW contains ‘ready made’ MEX files

for a number of commercially available DACs and ADCs. If the user plans to use these

devices, the provided DDBs can be used within the RTW without further development of

the devices’ s-functions.

To include I/O modules other than the ones included with the RTW, the appropriate s-

function C code has to be created and compiled as a MEX file (using ‘!cmex’). RTW

provides an ‘s-function template’ where the user can include the description and relevant

information of the I/O device to be used. This template is called SFUNTMPL.C.

The C code s-function has to conform to a certain data structure, recognised by Simulink,

for a MEX file to be successfully compiled. This structure is defined as ‘SimStruct’ and

72

has to be called from the device driver block (DDB) s-function. Specific functions also

have to be included. Fig 4.3 shows the structure for a DDB s-function.

73

Device Driver
S-Function

Clean up after completion of program:
mdlTerminate(S)

Define a name for the entry point function:
#define S_FUNCTION_NAME filename

Set the block’s sample time to the sample
time specified in the dialog box:
mdllnitializeSampleTimes(S)

Initialise the size information in the
SimStruct:
mdllnitializeSizes(S)

Include the MEX header file:
#ifdef MATLAB_MEX_FILE
#include “mex.h”

Read from or write to hardware (depending
on whether the block is for input or output):
mdlOutputs(y,x,u,S)

Obtain dialog box parameter and initialise
the board:
mdlInitializeConditions(xO,S)

Include the definition of the SIMULINK
data structure (SimStruct):
#include “simstruc.h”

Add required functions as stubs:
mdlUpdate(x,u,S,tid)
mdlDerivatives(dx,x,u,S,tid)

Include MEX header file:
#include “simulink.c”
Include code generator header file:
#include “cg_sfun.h”

Fig 4.3 Format of a Device Driver S-Function

74

Each stage has a specific function in order to create the MEX file, namely:

• Initialising the SimStruct

• Initialising the I/O device

• Calculating the block outputs

• Terminating the program

Initialising the SimStruct is required on every block while the remaining operations are

device dependent. Some of the functions such as mdlUpdate() and mdlTerminate() are

required for structural purposes, but are generally unused.

The I/O initialisation (such as board memory location) in the DDB s-function can be

rigidly set within the program or set via a pull down menu once the block has been

created within Simulink. The latter option has to be set in the s-function while the menu

parameter(s) has to be set in Simulink once the MEX file has been compiled. This is

known as masking, and allows initialisation parameters to be varied without altering the

DDB s-function.

4.2.2 Designing the Mentor II Device Driver Blocks

Two blocks have to be designed to realise the desired interface between Simulink and the

Mentor II, one for reading data from the drive and one for writing data to the drive. The

basic requirement is to convert the C programs that successfully communicated with the

drive (discussed earlier in Chapter 3), into DDB s-functions. This involves manipulating

the SFUNTMPL.C to include masking details, ‘include’ files and definitions, and

ensuring that the imported C code is compatible with the s-function structure.

The DDB C code for reading data from the speed register (03.02) of the Mentor II

(spdin.c) is shown in Appendix 4a. All the ‘include’ files and definitions are located prior

to the mdllnitializeSizesO section (see Fig 4.3). The mdlInitializeSizes() section contain

all the input and output details of the block. Since this block has one output (i.e. output to

75

the Simulink environment), it is set accordingly. Only one masking parameter is

included, this is the sampling time and is defined in mdlInitializeSampleTime().

The ‘main()’ section of the imported C code makes up the mdlOutputs() section. This is

the section that is continuously ‘looped’ when the Simulink model is run as a stand alone

executable and which normally reads or writes to the ADC or DAC location,

respectively. The s-function requires that these ‘external’ data transfers are assigned to

the Simulink specified declaration variables. For example, a Simulink DDB input block

(such as an ADC) has to assign the output value of that block to ‘y’, which is declared as

a variable ‘double float’ in the mdlOutputs() section.

The imported C code has to mimic the action of an ADC and:

• Issue a ANSI ‘read’ command

• Receive the character string response from the Mentor for a ‘read’ command

• Separate the register contents from remaining data (this was done by ignoring the first

six characters, AZ?03.02, of the ANSI data stream)

• Convert this value to a ‘double float’ and assign it to ’y’.

List 4.1 shows how the above criteria are met by the ‘imported’ C code (mdlOutputs()

section). The first character of the array small is programmed to point at the seventh

character of the Mentor response array fromjnentor.

static void mdlOutputs(double *y, double *x, double *u, SimStruct *S, int tid)

{

int numb, num=0;

int array=0, loop;

char from_mentor[20], small[5];

charpc_instr[13] = {0x4, 'O', 'O', '1', '1', 'O', '3', 'O’, '2',0x5}; //'read 03.02'

for (numb-0;numb < = 9;numb++) //create loop to o/p array

{

while ((inp(LSR)& 0x60) != 0x60); //check for empty TXB

outp(PORT, (int) pc_instr[numb]); //o/p chr to port

76

}

dof

while((inp(LSR)& Oxl) != 1); //check for data ready in RXB

from jnentor [num] = (char)inp(PORT); //input data

num++; //next array position

} while ((int)from_mentor[num-l] != 0x3); //check for end of data

from jnentor [num] = \ 0 / / null array

for (loop=num-6; loop<num-l; loop++) //start loop to miss first 6 chars

{

small [array] =fromjnentor[loop];

array + + ;

}

small[array] = \0'; //NULL at end of array

*y = atof(small); //convert string to double

}

List 4.1 Imported C Code of spdin.c

The structure of the output ddb is, essentially, in the same format as the input ddb. The

initialisation is the same as is the single mask parameter (sample time). The only

difference, is that the mdlOutputs() section has to mimic the action of a DAC and the

input to the output block is assigned to ‘double float’ ‘u \

The C code to mimic a DAC and write data to the Mentor II has to include the following:

• Receive data from the Simulink simulation (i.e. ‘u’)

• Determine the sign of the value ‘u’

• Convert ‘u’ from a double float to a character array

• Include this data in an ANSI ‘write’ instruction

• Send this instruction to the Mentor II

77

The mdlOutputsO section used to achieve the above is shown in List 4.2 while the whole

program is shown in Appendix 4a (torout.c). In this designed code the ddb writes data to

the Mentor II torque/current demand register 04.08.

static void mdlOutputs(double *y, double *jc, double *u, SimStruct *S, int tid)
{

int numb;
charpc_instr[17] = (0x4, 'O', 'O', '1', '1 ',0x2, 'O', '4', 'O', '8'}; / /s e t 04.08;
int intgr, loop, array-11, sign=10;

/* the following fo r loop converts the int to a char array***
****NOTE: the input value would never be greater than 1000***/

intgr = (int) *u; //debug to test input data

if(intgr>0)
{

pc_instr[sign] = '+';
}

else
{

pc_instr[sign] =

1

intgr=abs(intgr);

if(intgr>1000)
{
intgr=1000;

}

fo r (loop=1000;loop>l;loop=loop/10)
{

if (loop>intgr)
I
pc_instr[array] = 0x30; //set bit to zero(=30h)

}
else
{
pc_instr[array] = (intgrAoop) + 0x30; //convert integer to ascii hex code

}
intgr = intgr - (intgrAoop)*loop;
array++;

}
pc_instr[array] = (intgr%10) + 0x30; / / uses remainder function
pc_instr[+ +array] =0x3; / / AC
pc_instr[+ + array] = Oxd; / / RETURN

78

for (numb-0;numb < = array;numb++) //create loop to o/p array
{

while ((inp(LSR)& 0x60) / = 0x60); //check fo r empty TXB
outp(PORT, (int) pc_instr[numb]);

}
array -11;
pc_instr[array] = \0'; //place ‘null’ at end o f array

}
List 4.2 Imported C code of ‘torout.c’

On receiving the double float value ‘u’ from Simulink, the program immediately converts

it into an integer. This is because only integer values can be passed to Mentor II. The sign

of the integer is then assessed by calculating if the value is greater than zero. The next

stage is to convert the integer value, which must be less than 1000 since it is the

maximum value that can be passed to the Mentor II, into a character array. This is done

by comparing the integer value with 1000. If the value is greater than 1000 the value

intgr is set to 1000. It is then divided by descending powers of 10, starting from 1000.

The calculation results in single digit integer, which can be converted to a hexadecimal

ascii code and is equivalent to that integer (this is done by adding 30H to it). Finally, any

remainder left after the final division by 10 is calculated and converted to ascii. Each

converted ascii character is stored, consecutively, in the instruction array pc_instr.

Both spdin.c and torout.c were successfully compiled as MEX files and used to create the

corresponding Simulink graphical modules.These modules are seen to give similar timing

characteristics to Fig. 3.10 and Fig. 3.11. Fig 4.4 shows a block diagram used to test the

I/O modules (DDBs) during real-time operation, sending a torque demand to the DC

motor (unloaded) while monitoring the speed.

79

*■ torout

ramp L~N torque) torout
To Workspacel

spdin Hu* 1-54 H speed I

spdin conditioning
speed To Workspace

Fig 4.4 Block Diagram for Testing I/O DDBs

Fig 4.5 shows the result of the RTW executable. The ‘torque demand’ is shown without

units as the number is unique to the Mentor II.

The linear (‘ramp’) torque demand to the drive, and hence motor, results in an

acceleration on the motor. The relationship between the torque, T, and the motor speed,

co, is :

where J is the inertia of the motor. Since the torque demand is a linear ramp and directly

proportional to time, it can be replaced with At, where A represents the the gradient of the

ramp. Rearranging eqn. (4.1)

Integrating both sides

(4.3)

80

150

E 100

Time (s)

E 1500Q.

Time (s)

Fig 4.5 Torque Demand and Measured Speed of the DC motor

Fig. 4.5 indicates a ‘square’ relationship between the speed of the motor and the torque

demand, confirming the theory stated in eqn. (4.3).

The above example suggests that the design and use of the DDBs, for real-time, serial

communication between Simulink and the Mentor II, is valid.

4.3 Summary

The software selected to simulate the WEC and control the serial communications link in

real-time, is the Mathwork’s Simulink with the Real-Time Workshop. As with the

hardware, this package was available within the department, reducing development time

and costs. Software was designed to allow for the unique communication requirements of

81

both Simulink and the Mentor II, mimicking the action of both ADC’s and DAC’s. The

development is unique and novel, following the in-depth study of both systems. The

software, known as ‘Device Driver Blocks’, was developed as C code s-functions, a

Simulink program format which can be linked as a graphical module within Simulink.

Following design, the driver blocks were extensively tested to validate their inclusion in

any Simulink model requiring real-time communication with the Mentor II DC drive.

82

Chapter 5 Software Simulation

Having established the modelling requirements for the aerodynamics, relevant to a wind

energy conversion system (WECS), and the drive train dynamics, it is necessary to

implement the modelling in the selected software, Mathwork’s Simulink. The advantage

of Simulink is that the model can be developed in parts, particularly the aerodynamics,

and each stage of the development assessed accordingly.

This chapter will detail the development of the WECS model in software and explain any

difficulties encountered using Simulink. The ‘software-only’ simulation is required to

assess and verify the model before including the simulation hardware for hardware-in-

the-loop simulation (HILS).

Models of two WECS are created to confirm the generalisation of the theory and to show

the flexibility of the simulator. The first model is a 330kW WECS, this model will be

referred to as the ‘Strathclyde’ model [2.8] [2.20]. The second model is developed from

the information available for a Windharvester 45kW WECS based at the Rutherford

Appleton Laboratory (RAL) in Oxfordshire. Both machines are three bladed, the former

is a pitch regulated device with a solid tower while the latter is stall regulated with a

lattice tower. From the investigations of Chapter 2, it is suggested that the effects of

induction lag and tower shadow should be less on the RAL WECS compared with the

Strathclyde WECS.

The development of the WECS model will initially concentrate on the Strathclyde

WECS, firstly detailing the drive train implementation followed by the generator. A

transfer function relating the input of the model (aerodynamic torque) to the output

(generator reaction torque) will be derived from the model, and compared with that given

in the references. Once confirmation of the model is obtained, the parameters of the RAL

model will then be calculated using the dynamic relationships derived in Chapter 2, and

implemented in Simulink.

83

The RAL model will be used to develop all the aerodynamic properties relevant to a

WECS. Each of the properties described in Chapter 2 such as the aerodynamic torque

equation with Cq-X data, rotational sampling, spatial filtering and induction lag, will be

introduced to the model and simulated. A comparison of the low speed shaft (LSS) torque

of the simulated WECS and the measured data of the actual WECS is undertaken to

verify the accuracy of the simulator. This is performed as each aerodynamic property is

added to the model, confirming the importance of including each effect in the simulation.

5.1 Implementing the Drive-Train Dynamics

Chapter 2 showed that the drive-train dynamics of a WECS can be accurately modelled

by representing the WECS as a system of rotating masses and springs. The model

‘lumps’ together many of the dynamic characteristics to create the simplified model

shown previously in Fig 2.11.

Fig. 5.1 shows how the drive train model, developed in chapter 2, is implemented in

Simulink.

[2 h
w hs

!—►03— HU
SThstoThs ths

T-damp1Ttow i / j rdam pl

f tS —
Ta-TlsAerodynamic

Torque Gearbo):
L>07s|—
STIstoTls

To W orkspace2

To W orkspacel

Fig. 5.1 Simulink Model of the WECS Drive-Train

84

Fig. 5.1 is the direct implementation of Fig. 2.11, where the ‘1/s’ modules are Laplace

integrators while the ‘K-’ modules are Simulink gains. The ‘To Workspace’ modules are

used for monitoring all the relevant parameters required to assess the performance of the

simulation, in this particular case the LSS torque, ‘tls’, and the LSS speed, ‘wls’. The

term ‘dam pl’ is equivalent to the LSS damping constant, yi of Fig. 2.11.

The gearbox dynamics, in the Simulink model, are ‘grouped’ together under the heading

‘gearbox’ (see Fig 5.1). Fig. 5.2 shows the details of the module.

whs

1/N
1/K2 whs+wgbwls

sths

stls

Fig. 5.2 Simulink Gearbox Module

The inputs to the module are the LSS and HSS speeds, ‘wls’ and ‘whs’ respectively. The

outputs of the module are the derivatives of the LSS and HSS torques, ‘stls’ and ‘sths’

respectively. Once again, Fig. 5.2 compares directly with Fig. 2.11.

5.1.1 Algebraic Loops in Simulink

Algebraic loops occur when two or more blocks with direct feed-through of their inputs,

such as gain blocks and non-linear blocks, form a feedback loop. When this occurs,

Simulink performs iterations at each step of the simulation. This slows down the

processing time and the loop may be unsolvable [4.4]. Additionally, the Real Time

85

Workshop (RTW) does not compile code that includes algebraic loops so they therefore,

have to be removed from the model [4.5].

Preliminary assessment of the drive-train indicates that the gearbox contains an algebraic

loop. Any simulation using the gearbox results in the Matlab warning shown in List 5.1.

Warning: The following blocks form an algebraic loop:

Gearbox/Kl

Gearbox/l/N_

Gearbox/l/K2

Gearbox/whs+wgb

Gearbox/l/N

Gearbox/Wls- Wg/n

This will be solved at each iteration.

List 5.1 Matlab Algebraic Loop Warning

Obviously, the model has to be redesigned so that the loop is removed. Fig. 5.3 is the

gearbox section of the drive-train, taken from Fig. 2.11.

Fig 5.3 Gearbox Algebraic Loop

The equations relating the parameters shown in Fig. 5.3 are:

86

S t is = w e K i (5.1)

S ths = W e K l N
(5.2)

1 / , WeKU
W e = W l s \ W hs +)ls N NK2

(5.3)

w,
"e =("*■“ ■)

1 +
v N 2K2 j

(5.4)

(Wi,
wfa
A

n 1k 2
N 2K2 + Kx

(5.5)

Eqn. (5.1), Eqn. (5.2) and Eqn. (5.5) are implemented in Simulink as shown in Fig. 5.4.

whs 1/n

_2-
wls

m
Wlss-Whs/N gb_char K1 1/N SThs

► 2
STIs

Fig 5.4 Alternative Gearbox Arrangement

‘gb_char’ module details the information contained in the larger brackets of Eqn. (5.5).

The alternative arrangement removes the algebraic loop but retains all the relevant

dynamic information.

87

5.2 Implementing the Generator Dynamics

The HSS mechanical dynamics of Fig. 2.11 are combined with the generator electrical

dynamics of Eqn. (2.23) to create the model shown in Fig. 5.5

Whs

1 5+ 1

Fig 5.5 Combined HSS and Generator Dynamics

Fig 5.5 can be implemented in Simulink as shown in Fig 5.6

whs

1/JgI
damp2

De(wg-ws/p)
gen TF

T-damp2ths ths-Tq

Fig 5.6 Simulink Implementation of the HSS and Generator Dynamics

The ‘gen TF* module is the first order representation of the generator which, in this

example, has a time constant of 30ms. The input to the module is the HSS torque, ‘ths’,

while the HSS speed, ‘whs’, is the feedback, to the gearbox module of the drive train.

5.3 The Strathclyde WECS Model

The Strathclyde model contains the parameters for a 330kW WECS. Initial testing of the

drive train and generator model can be performed using this data. List 5.2 includes the

WECS parameters for the 330kW model [2.20].

Ii = 1.9x10s kgm2

12= 3.8 kgm2

Kj = 1.26xl07 NmJrad

K2 = 3.02x10s Nm/rad

N = 40.65

y/ = 500

y2 = 0 .3

De = 915.8 Nm/rad/s

x = 0.03 s

List 5.2 330kW WECS Parameters

The values from List 5.2 are placed in the combined drive train and generator Simulink

model (Fig. 5.1 and Fig. 5.5). To ensure that the design of the Simulink model is correct,

it is necessary to establish the transfer function and poles of the model and compare it

with the Strathclyde model.

The transfer function of the Strathclyde model, relating the aerodynamic torque, TA, to

the generator reaction torque, Tq is:

T c _ ______________12783_____________
Ta ~ (s2 + 6.72s + 52.92)(s2 + 26.7s + 9825.7)

89

12783
54 + 33.4s3 + 10058.04s2 + 67441.66s + 519976.04

(5.6)

Matlab can be used to derive the poles of the transfer function. The numerator and

denominator of the transfer function can be set up as two arrays (‘num’ and ‘den’). The

following command is used to assess the zeros (z) , poles (p) and gain (k) of a transfer

function:

[z,p,k] = TF2ZP(num,den)

The command for the transfer function of Eqn. (5.6) results in the following complex

conjugate poles:

pi =-13.34+j98.22

p2 = -13.34-j98.22

p3 = -3.36 + j6.4521

p4 = -3.36 - j6.4521

The root locus of these poles is shown in Appendix 5a.

5.3.1 Comparison of the Model Data with Provided Strathclyde Data

To ensure that the WECS model is compatible within the Simulink/Matlab environment,

it is necessary to compare the Simulink model with the parameters of the Strathclyde

model. The method used is to derive the transfer function and poles of the Simulink

model and compare them with the values calculated above. To establish the transfer

function, the state space representation of the model has to be first determined.

Matlab includes a facility which can be used to derive the linear state space model of a

Simulink model. The ‘linmod’ instruction returns the values of the state matrix A, the

90

input matrix B, the output matrix C and the direct transmission matrix D of the following

state space representation:

x = Ax + Bu

y = Cx + Du (5.7)

x is the state vector, u is the input vector and y is the output vector.

To use ‘linmod’ with a Simulink model requires the inclusion of an ‘inport’ and ‘outport’

module on the respective model input and output. The syntax of the ‘linmod’ command

is:

[A,B,C,D]=LINMOD('SFUNC')

where SFUNC is the name of the Simulink model. Using the combined drive train and

generator model (with the relevant port connections) the ‘linmod’ instruction results in

Matlab returning the values of A, B, C and D. The response shown in Appendix 5a.

The state space model can be converted into a transfer function, for comparison with

Eqn. (5.6), using the state space to transfer function instruction ‘ss2tf’, which has the

syntax:

[num,den] = SS2TF(A,B,C,D)

As before, Matlab returns the values of ‘num’ and ‘den’ and the response to the

instruction is again shown in Appendix 5a.

The coefficients resulting in the command refer to descending powers of the Laplace

function, s. The last coefficient referring to s°. From the appendix it can be seen that the

91

first coefficient refers to s5 instead of the expected s4. The transfer function, therefore has

the form:

12782.715T. F.(s) = -=---------- 2--------------- r---------------------------------- (5.8)
5 + 33.415 +10057.945 + 61All.69 s2 + 519958.985

Dividing Eqn. (5.8) through by ‘s’ gives similar values seen in Eqn. (5.6). The slight

discrepancies could be due to the Matlab processes, or rounding errors.

The poles of the equation are found to be:

pi = -13.3481 + j98.2216

p2 = -13.3481 -j98.2216

p3 = -3.3593 +j6.4524

p4 = -3.3593-j6.4524

A comparison of both the poles the transfer functions of the two models indicates that the

Simulink model is comparable with the Strathclyde model.

5.4 Developing the Model Parameters of the RAL 45kW WECS

The RAL 45kW WECS is manufactured by Windharvester. It is a fixed-pitch, stall-

regulated, three bladed machine and has a lattice tower support. Its gearbox arrangement

consists of a 19.58:1 gearbox coupled to a 2:1 pulley and belt resulting, in a total ratio of

39.16. The generator used is a 45kW, two pole-pair induction machine (IM).

List 5.3 details the available machine parameters, for the WECS, which were obtain from

RAL [5.1].

Rotor Inertia, Jr 14145 kgm2

Hub Inertia, JH 22.8 kgm2

92

Gearbox Inertia (referred to LSS), 34.2 kgm2

Large Pulley Inertia 2.62 kgm2

Small Pulley Inertia 0.376 kgm2

Generator Shaft Inertia 0.378 kgm2

LSS Stiffness, K} 3.36x1 (ft Nm/rad

HSS Stiffness, K2 2.13x1 (ft Nm/rad

Total gearbox and Pulley Ratio 39.16:1

Low Speed Rotational Frequency 4.01 rad/s

First Flapwise Frequency 16.34 rad/s

Second Flapwise Frequency 67.86 rad/s

First Edgewise Frequency 29.66 rad/s

Rotor Diameter 16.90 m

Rotor Speed 38.3 rpm

List 5.3 Available RAL 45kW Data

The information in List 5.3 can be used to ascertain the simplified WECS model

parameters as discussed in Chapter 2. In order to be compatible with the model developed

for the Strathclyde WECS, the RAL parameters have to be manipulated to fit the

requirements of the representation shown in Fig. 2.11. The following estimation of

‘lumped’ parameters, required for this particular representation, uses the dynamic

relationships established in Chapter 2. Unfortunately, not all the data required for the

development of the model (such as stiffness and damping characteristics) are available,

so some assumptions have had to be made. Additionally, it has been reported that some

of the estimated parameters may be erroneous and, therefore, open to debate [5.2].

It should also be reiterated that both T and T have been used for inertia parameters in

keeping with the references.

93

5.4.1 Estimation of RAL Drive Train Model

(a) LSS Stiffness (Ki)

The LSS shaft stiffness, Ki, is given as 3.36xl06 Nm/rad. It is not clear from the data how

this was measured and if it is of the same format derived earlier. Comparing the data with

the Strathclyde data given in List 5.2, it can be seen that the values are comparable. Since

no other stiffness values (such as hub, rotor stiffness, see Eqn. (2.19)) have been

measured and there is no available readings for the damping or stiffness of the gearbox

mounting (Eqn. (2.22)), it is difficult to establish the effective value of Kj. It is assumed

that the quoted value will, initially, suffice.

(b) HSS Stiffness (K2)

As with Ki, no information has been given regarding the process of measurement for the

HSS stiffness value, K2. Similarly, since there is insufficient gearbox dynamic data, it is

assumed the given value of 2.13xl03 Nm/rad is sufficient for initial simulation purposes.

(c) Lumped Rotor Inertia (Ii)

From Eqn. (2.20), it can be seen that the equivalent lumped LSS inertia Ii, predominately

consists of the effective rotor inertia, modified by the product of the effective gearbox

inertia and stiffness ratio.

/, = jg + — ^ 4 — (2-2°)Kt + N 2K2

The effective rotor inertia, Jr can be assessed from Eqn. (2.18) and requires the stiffness

values of both the rotor and the hub which are unavailable.

J R" = J R(1 + — ----- — ------) (2.18)
J R (KR + KHY

94

The stiffness ratio can be assumed to be small since, in general, K h » K r [2 .8] .

Additionally, the inertia ratio can be calculated since the values of Jh and JR have been

measured (List 5.3).

J jL _ J228_ _] 6] 2e“3 (5 9)
J R 14145

Assuming that the stiffness ratio is approximately 1/10, substituting back into Eqn.

(2.18)[2.8]:

J K* = 14145(1 + 1.612e-3 x 0.1) = 141473 kgm2 (5.10)

The effective gearbox inertia can be calculated using the formula:

J S* = JS + J H ^ ----- (5 . 1 1)
51 s h (Kr + Kh)

where Js is the gearbox inertia referred to the LSS. Using the same assumption used

previously for the stiffness ratio:

Js * = 34.2 + 22.8 x 0.1 = 36.48 kgm2 (5.12)

Substituting in Eqn. (2.20) to find Ii:

I - j * + j *X1 R ' * o * u
/f, +n 2k 2

/, =14147.3 + ---------- -33— ------------- -36.48 (5.13)
3.36 x l0 6 + 39.162 x 2.13 xlO3

95

/, =14165.8 kgm2

It should be noticed that comparison of this value and rotor inertia, Jr in List. 5.3, shows

very little difference. The percentage change is minimal and indicates that little error is

encountered if the value of the rotor inertia is adopted for Ii in the model.

(d) Lumped Generator Inertia (I2)

I2 can be calculated from Eqn. (2.21):

/ - 7 1 K* j *

2 G k ; + n 2k 2’ -

Jg is given in List 5.3 and is 0.378 kgm2 , therefore:

213 x 103
L =0.378 + -----------. V ------------ t 36.48 (5.14)

3.36 x 106 + 39.1 6 2 x 2.13 xlO3

I2 = 0.3897 kgm2

Once again it can be seen that there will be little error if the generator inertia is used

directly as the value of I2.

(e) LSS and HSS Damping Constants (yi and 72)

Yi and 72 are both dependent on the damping characteristics of the gearbox and the

bearing losses of the respective shafts. Unfortunately, no data is available on any

damping effects or shaft losses of the RAL WECS.

For preliminary simulation purposes, it will be assumed that the shaft losses, as a

percentage of the rated power, are the same for the 45kW and 330kW machines. From

96

List 5.2 the values of Yi and Y2 for the 330kW machine are 500 and 0.3 respectively.

Assuming that the LSS and HSS speeds are 4 rad/s and 157.07 rad/s, respectively, the

corresponding values for the RAL WECS model can be found as follows:

(i) Calculation of Yi

Calculating the LSS power losses for the 330kW machine:

P ^ lss- 330 ~ Y 1 (5.15)

= 500 x 42 = SkW

expressing this as a percentage of the rated power:

%loss = — = 2.42%
330

(5.16)

The LSS damping factor for the 45kW machine would therefore be equal to:

45x10^x2.42%
(5.17)

(ii) Calculation of Y2

Power loss on the HSS of the 330kW machine:

P L H s s - 3 3 0 ~ Y 2 0) /i5 (5.18)

= 0.3 x 157.072 = lAkW

97

the loss as a percentage of the rated power

%loss = — = 2.24% (5.19)
330

from which the HSS damping factor of the 45kW machine can be estimated as:

4 5 x l0 3x2.24%
Y 2 = -------------- -̂------= 0.041 (5.20)

2 157.07

The values selected for yi and 72 can be assessed when the model is validated.

5.4.2 Estimating the First Order Model of the RAL Generator

Chapter 2 and Appendix 2a detailed the development of a first order model for an

induction machine using the machine parameters of the equivalent circuit to establish

both the torque/speed slope, De, and the machine time constant, x (see Fig 5.5). The

relevant parameters for the RAL 45kW machine are shown in List 5.4 [5.1].

Stator Resistance, rs 0.1056 £2

Rotor Resistance Referred to the Stator, rr 0.0787 £2

Stator Leakage Reactance, xls 0.4356 £2

Rotor Leakage Reactance Referred to the Stator, xlr 0.4148 £2

Magnetising Reactance, xm 8.8095 £2

Peak Line Voltage, E 415 V 2 V

Number of Pole Pairs, p 2

List 5.4 RAL 45kW Machine Parameters

A Matlab program, ‘genral.m’, was written to implement the equations of Appendix 2a.

The listing of the program is shown in Appendix 5a.

98

Executing the program in Matlab results in:

De = 71.9838 Nm/rad/s

t = 0.0365 s

The equivalent values of the Strathclyde model, from List 5.2, show that the time

constants are comparable, but there is a great difference in the values of De. This is to be

expected considering the relative sizes of the generators. Chapter 6 assesses the effects of

replacing large size generators with smaller ones. This will be necessary for the use of

HILS in the laboratory.

The calculated generator values, along with those calculated for the drive train, can now

be placed in the WECS model in Simulink. The characteristics of the model can be

assessed and the transfer function and poles established.

5.4.3 Summary of Parameters and Transfer Function of the RAL Model

All of the calculated parameters for the RAL are shown in List 5.5

11 = 14165.8 kgm2

12 = 0.3897 kgm2

Kj = 3.36x1 & Nm/rad

K2 = 2.13x10s Nm/rad

N = 39.16

Yi = 68.06

y2 = 0.041

De = 71.9838 Nm/rad/s

x = 0.0365 s

List 5.5 RAL Model Parameters

99

The transfer function of the model can be established in Matlab using the ‘linmod’ and

‘ss2tf commands (see section 5.3.1) and is:

T.F.(s) =
15109.72

(5.21)
s4 + 215s2 + 7952.13j 2 + 79184.4* + 5923985

A comparison of the RAL transfer function with the Strathclyde transfer function of Eqn.

(5.8) shows that there is some similarity in the form of each.

5.5 Developing the WECS Aerodynamic Models in Simulink

Chapter 2 contains the description of the aerodynamics experienced by a WECS. The

aerodynamic interaction between the wind and the WECS can be modelled in Simulink in

a modular fashion. This will allow each particular aerodynamic effect to be assessed in

turn and emphasise the importance of including it in the modelling. Initially, the

development of aerodynamic torque due to the wind speed alone, will be considered to

assess the dynamic response of the WECS drive train.

5.5.1 Development of Aerodynamic Torque from the Wind Speed

Eqn. (2.11) describes the available aerodynamic torque due to an effective wind speed.

To recall, aerodynamic torque, Ta:

The values of the torque coefficient, Cq, depend on the tip speed ratio, X, of the WECS

and are usually modelled as a ‘look-up’ table due to the non-linear relationship.

T. = C , j n p V 2B? (2 .11)

100

No data is available on the Cq-A, characteristics of the Strathclyde WECS, but Cp-A, data is

available from RAL for the 45kW machine. The values of Cq can be calculated from the

Cp data using the relationship shown in Eqn. (2.12):

Cq = ^ ~ (2.12)

Appendix 5b includes tables of both the Cp-X data provided by RAL and the calculated

Cq-A, values. Fig. 5.7 is a graphical representation of the calculated Cq-A, values which are

used to establish the aerodynamic torque in the Simulink model.

0.12

crO.06

0.02

0 42 6 8 10
Tip Speed Ratio

Fig 5.7 Cq-A, Curve for the RAL 45kW WECS

The Cq-A values are stored in a ‘look-up’ table within the Simulink model. The model has

to be able to calculate the value of the tip speed ratio, A,, and establish it as an input to the

101

table. The output, Cq, is used to calculate the available aerodynamic torque, Ta, from the

relationship of Eqn. (2.11).

Fig. 5.8 shows the Simulink module used to derive Ta from the input wind speed data.

The output ‘Ta’ connects to the input of the drive train module.

m -
wind

m -
radius

m -
wls

■*UFh
1/wind

1/2*rho*RA3*pi

lam bda cq-lam

-H u* u I—
Wind

Squared

prod Productl Ta

— H cq 1
To W orkspace 1

Fig. 5.8 Simulink Module to Calculate Ta from Wind Speed

The combined model of the aerodynamics, drive train and generator of the RAL WECS

can be connected together and evaluated to see how the model compares with the actual

WECS. Appendix 5c shows the combined model. Chapter 2 discusses how validation of

the simulation is achieved by comparing the power spectral density of the modelled and

measured LSS torque. To establish an accurately simulated LSS torque, a real driving

function, in this case a series of measured wind speeds, is required for the model.

Additionally, measurement of the actual LSS torque, with respect to the same wind speed

series has to be available.

RAL has available a number of Matlab ‘.mat’ files containing measured variables from

the 45kW WECS test site. Measured variables include a wind speed series and the

resultant LSS torque.

102

5.5.2 Measurement Data from the RAL 45kW WECS

Four Matlab data files (‘.mat’) containing measured data from the RAL test site are

available. The measured parameters in each of the data files are:

• Wind Speed

• LSS Torque

• Wind Direction

• Electrical Power Output

The data files contains 600s (10 min) of 50Hz data with measurements over a wide range

of wind speed. Table 5.1 lists each data file and its average wind speed. The variation

allows the performance of the WECS to be assessed over a wide range of wind speed

input.

RAL Data File Average Wind Speed (m/s)

RL020702.mat 7.9057

RL060602.mat 8.6399

RL061302.mat 14.5213

RL101902.mat 17.1682

Table 5.1 Measured RAL Data Files [5.1]

With this information the model of the WECS can be compared with the measured data

of the actual WECS through simulation in Simulink. Firstly, the simulation parameters of

Simulink have to be selected. Variables such as the time step and integration method can

be specified to suit the model under simulation.

103

5.5.3 Selection of Simulink Simulation Variables

Simulink allows the selection of a number of integration methods for use during

simulation of models. Simulink recommends different integration methods depending on

the characteristics of the model to be simulated [4.4].

(a) Linsim

Linsim is recommended for stiff systems (i.e. a model containing both fast and slow

dynamics) and systems that are primarily linear models with a few non-linear blocks.

(b) Runge-Kutta rk23 and rk45

Recommended for highly non-linear and/or discontinuous systems but not stiff systems.

Performs well for a mixed continuous and discrete model. Rk45 is faster and more

accurate than the rk23 but produces fewer output points. Rk23, therefore, can be the

preferred method since it provides a ‘smoother’ output.

(c) Gear

Recommended for use with smooth, non-linear models and stiff systems. Not good for

systems with rapidly changing inputs.

(d) Adams

Used with models similar to those recommended for Gear but with a smaller variation of

time constants.

(e) Euler

Recommends that Euler is only used to confirm the results of other integration methods

as it requires much smaller step sizes than the other methods, therefore increasing

processing time, to produce the same accuracy.

The Real-Time Workshop only allows the use of a small number of the above integration

methods, namely, the Runge Kutta methods and the Euler.

104

Since the WECS model contains non-linearity's, such as the aerodynamic torque

calculation and the alternative gearbox model, the Runge-Kutta methods will be used.

Additionally, both methods are available for the normal simulation environment as well

as real-time simulation. This will be useful for comparing the software-only simulation

with the HILS, real-time simulation. The rk45 method has been selected for its accuracy.

(f) Selection of the Simulation Time Step

Minimum and maximum simulation step sizes can be selected according to the dynamics

of the model under investigation. Additionally, a tolerance level can be set which

controls the relative error of integration at each step of the integration. The tolerance

level dictates the step size of the simulation, within the maximum and minimum limits.

This can lead to a variable step size throughout the simulation, which is not acceptable

for real-time operation where the step size has to be fixed.

Simulation with a fixed step size during normal simulation can be realised by setting both

the maximum and minimum step size to the same value. This is the preferred option for

WECS simulation since it is necessary to compare the real-time, fixed step simulation

with the software-only simulation.

Since the data provided by RAL is measured at 50Hz the initial simulation step size is

selected to be fixed at 0.02s. This step size may need to be increased during real-time

operation due to the limitations of the serial communications (see Chapter 6).

5.5.4 Model Simulation Using the RAL Measured Data

Since the model of the drive train, generator and basic aerodynamics is complete and a

realistic drive function is available in Matlab, simulation of the model can be initiated.

The wind speed series and the corresponding LSS torque have to be loaded from the

Matlab data file. Initially, the RL020702.mat data is to be used. Simulink must have

105

access to the wind speed data during simulation. This can be achieved using a

‘from_workspace’ module which requires the name of the parameter to be accessed as

well as the relevant sample time of the data. Therefore, a time series array, corresponding

to the 50Hz sampling time, has to be devised.

List 5.6 shows the Matlab program designed to load the RAL data file and create the

50Hz time series array. The torque conditioning is necessary to convert the kNm

measurements to Nm. Additionally, the torque data series is not complete, so the length

of the array is not the same as the time array. Matlab and Simulink do not allow uneven

arrays for certain processes such as the ‘plot’ and ‘from_workspace’ commands.

Comparison, with the measured electrical power data indicates that the torque values are

missing from the end of the data series. Therefore, ‘dummy’ values are placed at the end

of the torque array to ensure it is the same length as the other data arrays.

%Program to load all the required info fo r WECS model using RAL data

clear; % clear memory

T1 =0:0.02:600.08; % create time array

load rl020702.mat; % open RAL data

torque=torque*1000; % convert kNm to Nm

torque(30001:30005)=[6e3 6e3 6e3 6e3 6e3]; % dummy values to lengthen array

ral % open RAL model in Simulink

List 5.6 Matlab Program to Condition RAL Data

The model is simulated using the wind speed data for 300s. The 300s simulation time

was selected instead of the 600s to speed up processing time and reduce memory

requirements.

Fig. 5.9 shows the resultant LSS torque time series, tls, after the 300s simulation and the

measured LSS torque from data file RL020702.mat.

106

2000
0 50 100 150 200 250 300

Time (s)

S 8000

100 150 200 250 300

Fig 5.9 Measured and Simulated LSS Torque of the 45kW WECS

A dynamic comparison of the time series data is not possible. The main reason for this is

that the wind speed is measured some distance away from the WECS and the LSS torque

is a response to a delayed wind speed. The simulation, on the other hand, assumes that

the WECS experiences the measured wind speed at the time of measurement. As an

alternative, Wilkie et al proposed a comparison of the power spectral densities of the two

LSS torque data series [2.18].

(a) Power Spectral Density

The power spectral density (PSD), Pxx, of a data array, X can be calculated in Matlab

using the following command:

107

Pxx = PSD(X,NFFT,Fs)

where NFFT is the length of the Fast Fourier Transform (FFT) and Fs is the sampling

frequency [5.3]. The resolution of the PSD is defined by length of the FFT. Initial

investigations indicate that an FFT length of 1024 provides a suitable resolution to

investigate dynamic characteristics such as rotational sampling. Additionally, Fs was

chosen to be 50Hz to match the RAL data files.

The Matlab program designed to compare the PSD of the measured LSS torque with the

simulated results is shown in Appendix 5c.

The resultant plot of the program of is shown in Fig. 5.10.

Q

CN Simulated Torque

Measured Torque
\

l6

4

0
210

w (r/

Fig 5.10 Power Spectral Density Comparison of Measured and Simulated Torque

108

The effect of rotational sampling on the measured site data can clearly be seen at ~4 rad/s

and ~12rad/s, corresponding to the rotational speed, co and 3(0 (the blade passing

frequency). The simulated torque is without the effects of rotational sampling, spatial

filtering or induction lag. Additionally, the comparison shows that there is too much

energy within the low to intermediate frequency range, as discussed in Chapter 2. There

is a noticeable difference at the higher frequency, which again, is probably due to the

omission of some of the dynamics and/or noise in the real system.

(b) Rotational Sampling

As stated in Chapter 2, the effects of the spectral peak at the rotor rotational frequency

can be modelled as a simple sinusoid with an appropriate gain while rotational sampling

can be modelled using Eqn. (2.16). As an alternative, it was decided that it would be

interesting to observe the effect of modelling the third harmonic as a simple sinusoid with

an appropriate gain. A comparison of each method can be made with the measured data

to assess the preferred option.

Fig. 5.11 shows the Simulink module used for the modelling with the third harmonic as a

simple sinusoid.

1w

Product Fcnwls

S-,
3w

♦CD
ntlsProductl Fcn1time Sum

tls

Fig. 5.11 Model of Rotational Sampling Using Simple Sinusoid Representation

109

The model adds two scaled sinusoids to the LSS torque, tls. The ‘Fen’ component

contains the following:

3e2*(sin(u)+cos(u)) (5.22)

‘u’ is the input to ‘Fen’, in this case the LSS rotational speed. The gain was selected

iteratively. Similarly, ‘F cn l’ has the format:

2.5e2*(sin(u)+cos(u)) (5.23)

Once again, the gain was selected iteratively.

Fig. 5.12 shows the result of the PSD comparison between measured and simulated LSS

torque with the above module. The comparison shows that there is an improvement at to

and 3(0 on the simulated torque. Additionally, the higher frequency response has been

improved.

110

Po
we

r
Sp

ec
tr

al
 D

en
sit

y
(N

m
)A

2

T

10

1 0

10

1 0 '

1 0

Simulated Torque

Measured Torque

M

’ J l ’ hVi i

^ W N w r n

.1
10 10

w
Fig 5.12 PSD Comparison with Rotational Sampling Included

1 0 '

Fig. 5.13 shows the model used to realise Eqn. 2.16 using filtered white noise to

represent the third harmonic of the rotational sampling [2.14].

i l l

1w

time

ntls
Sum

twls Product Fcn

Band-Limited K
White Noise 3rd Harm.Filter

Fig. 5.13 Rotational Sample Model with Filtered White Noise

Fig. 5.14 shows the Bode plot of the gain, K, and filter used to model rotational sampling.

It indicates an increase in gain at 10 rad/s to 15 rad/s centred at 12rad/s, the blade passing

frequency.

112

3
10

2
10

1

w (r/s)
Fig 5.14 Bode Plot of the Third Harmonic Filter

Fig 5.15 shows the PSD of the measured and simulated torque using the filtered white

noise model for the rotational sampling effects.

113

,8

CN Simulated Torque

Measured Torque

,6

4

Q_

,0
L0 1 2

w (r/
Fig 5.15 PSD Comparison Using Filtered White Noise for Rotational Sampling

Comparing Fig. 5.15 with Fig 5.12, it can be seen that the simulation with the filtered

white noise gives a more accurate representation of the rotational sampling at

approximately 12 rad/s. The simple sinusoid method of Fig. 5.12, does not have a large

enough bandwidth at this point. The filtered white noise method is, therefore, more

preferable.

(c) Spatial Filtering

The wind speed data used for the simulation is measured using an anemometer located

near the WECS. The anemometer measures a point spectrum wind speed as mentioned in

Chapter 2. To establish the effective wind speed experienced across the rotor of the

114

WECS, the model has to include spatial filtering of the point spectrum wind speed. The

form of the spatial filter is derived in Eqn. (2.14) and Eqn. (2.15). The average wind

speed V of the particular data file used (RL020702.mat), is required for the calculation

of p and can be established using the Matlab ‘mean()’ function. V is calculated to be

7.9057 m/s resulting in a value of 1.3895 for p. The spatial filter relating the effective

wind speed to the point spectrum wind speed for the RL020702 data is therefore:

c *• i r i t (V2 + 1.3895s)Spatial Filter = —1=------------------- (5.24)
(V2 + 1.0305j)(1 + 1.8745)

Eqn. (5.24) is modelled in Simulink and placed between the wind speed input and the

input to the aerodynamic torque model shown in Fig. 5.16.

[T1 ,wind_spd]
samp.
wind
8.45

Radius

wls

© -
Clock

spatial filte r
rl020702

— H rwind I
To Workspace6

Switch

Aero Torque

T
To Workspace

to
Ta-tls

Fig. 5.16 Model Including Spatial Filter

The switch is used to avoid the initial effective wind speed being zero due to the

integrating effect of the spatial filter. Without it, the simulation ‘crashes’ due to the

divide by zero value of the wind when calculating the value of X. Unfortunately, the

initial conditions of the transfer function modules, used for modelling the spatial filter,

can not be pre-set, hence the presence of the switch. The point spectrum is used for 2s

before the filter is ‘switched in’.

115

Simulation of the model with the spatial filter included, modifies the frequency response

of the model. Fig 5.17 shows the PSD comparison.

(N<

00
c
(D

Q
15
i—

o
CD
Q .

CO
i—
(D
5
O

CL

,8

Simulated Torque

Measured Torque

6

.4

2

Q
0 2

w (r/s }
Fig. 5.17 PSD Comparison Including Spatial Filter

Comparison between Fig. 5.17 with Fig. 5.15 shows that the spatial filter has improved

the frequency response of the model considerably. Adjusting the respective gains of the

simulated rotational effects can improve the results further but this should be considered

after the effects of the induction lag have been investigated.

116

(d) Induction Lag

Modelling the change of wake effect induction lag due to the presence of a WECS can be

achieved by lead-lag filtering the simulated LSS torque. Eqn. (5.25) shows the values

chosen for the lead-lag filter used to modify the torque [5.4]:

T . r (1 + 11.255)Induction Lag = -------------- (5.25)
(1 + 7.55)

Fig. 5.18 shows the PSD comparison with the induction lag included in the model.

8

CM Simulated Torque

Measured Torque

Jo> 1 0

4

CL

2

210

w fr/s}
Fig 5.18 PSD Comparison Including Induction Lag Model

117

Comparing Fig 5.18 with Fig 5.17 shows that there is an overall increase in gain at mid to

high frequencies as expected. The gain is particularly noticeable at the rotational

sampling frequencies. This can be rectified by reducing the gains of the rotational

sampling module ‘noise harmonic’. Initially, the value of the first harmonic gain was,

iteratively, set to 300. Using a similar technique, the gain found to suit the measured

profile is 200. Similarly, the gain at the blade passing frequency was initially, set to 3000.

Further experimental results suggests that it should be set to 2200. Fig. 5.19 shows the

resultant comparison with the modified gains.

8

CN S im ulated Torque

M easured Torque

6
> 1 0 -i—» 1

4
1 0

CL

UJ 9

I 10
CL

0
20

w (v/s)
Fig. 5.19 PSD Comparison with Modified Rotational Sampling Model

Fig. 5.19 shows the gain improvement at the harmonic frequencies of rotational

sampling. It is noticeable at the blade passing frequency that the simulated torque profile

118

is slightly shifted to the ‘right’ of the frequency scale. This is probably due to the

characteristics of the white noise filter used to shape the response. The example used

(Fig. 5.13 and Fig. 5.14) is designed for a harmonic frequency of V160.2 rad/s or 12.66

rad/s. The data from RAL states that the rotational frequency of the rotor is 4.01 rad/s,

therefore, the third harmonic is 12.03 rad/s (V l 44.72 rad/s). Modifying the white noise

filter to account for this difference in the centre frequency results in the PSD comparison

shown in Fig. 5.20.

,8
Sim ulated Torque

M easured T orque

6

4

CL

0
20

w (r/s)

Fig 5.20 PSD Comparison With Modified White Noise Filter

119

Fig 5.20 suggests that the modification makes the comparison more acceptable, since the

simulated blade passing frequency response compares more favourably with the

measured data than that of Fig. 5.19.

It could be argued that the introduction of the induction lag does little to improve the

response shown with the introduction of the spatial filter. Comparing Fig. 5.20 and Fig.

5.17 shows that there is very little difference. This could possibly be due to the fact that

the RAL WECS under simulation is a stall-regulated device and not susceptible to the

wake effects experienced by a pitch-regulated device (see Chapter 2). The minor

improvement shown by this modelling suggests that it should be include in the model.

(e) Tower Movement

It was stated in Chapter 2 that the tower movement of the WECS has an affect on the

effective wind speed ‘seen’ by the rotor. No information is available on the tower

movement of the RAL WECS, but a rudimentary investigation into the possible effects of

tower motion on the simulated LSS torque measurements can be performed by selecting

arbitrary values for the effects of the tower movement.

The WECS model can be modified to include a module which can subtract or add a

constant value from the effective wind speed, i.e. the output of the spatial filter. Fig. 5.21

shows the effects on the PSD comparison with the effective wind speed reduced by

subtracting an arbitrary value of 1.

120

CM<
E

2 :

> 4—>
</>c
<1)

Q
75i_
4—»o
a)
o .

CO
i_
0)
5
o

Q_

l8

Sim ulated T orque

M easured T orque

8

4

l2

0
0 1 2

w
Fig. 5.21 PSD Comparison Including Simulation of Tower Motion

The effect of introducing the possible affects of tower motion have resulted in an increase

in low frequency gain. The effect of adding an arbitrary value to the effective wind speed

is to reduce the low frequency response.

It could be argued that the spatial filter could be adapted to compensate for the effects of

tower motion at low frequency, but this would alter the higher frequency response of the

model and affect the modelling of the rotational sampling. Since the values used here for

the motion are totally arbitrary and no data is available on the influence of the motion, it

is preferable to model the RAL WECS without any tower motion dynamics. It is assumed

that any discrepancies between the simulated and measured data is due to the absence of

the tower motion in the model.

121

5.6 Summary

This chapter has detailed the development, in Simulink, of the proposed ‘simple’ model

of a constant speed wind energy conversion system. The transfer function and poles of

the model are comparable with the reported values. Following confirmation of the

suitability of the model in Simulink, the model parameters of the RAL WECS, under

investigation, were calculated using the ‘lumped’ parameter relationships established in

Chapter 2.

Comparing the power spectral densities of the simulated and measured low speed shaft

torque allows the performance of the model to be assessed. The aerodynamic effects of

the WECS such as rotational sampling, spatial filtering and wake induction lag, have

been developed and their inclusion justified using the PSD comparison.

The PSD comparison has established that the proposed model of the WECS drive

train/generator and aerodynamics is suitable for dynamic simulation of the 45kW RAL

WECS.

The strength of using the selected simulation package has been reinforced. The addition

and modification of modules to the WECS basis of the drive train and the generator, was

performed with relative ease. Additionally, manipulation of the various tools available,

such as the derivation of system poles and transfer functions from state space

representation of the model, shows that the package has the added benefit of being a

powerful analysing tool.

122

123

Chapter 6 Simulating the Effects of Hardware in the Loop

Before including hardware in the loop simulation (HILS) the effects of such an inclusion

should be investigated in software. This will provide an indication of the limitations of

the simulator and allow the development of suitable compensation. The previous chapters

have described the design work required for the development of a fully dynamic wind

energy conversion systems (WECS) simulator. A fully dynamic WECS model has been

developed, using the Matlab/Simulink design tool, and validated using measured data

from an actual WECS. Additionally, the simulator hardware, consisting of a Mentor II

DC drive and DC motor driving a grid connected induction machine (IM), has been

designed and constructed. A communication link, consisting of serial communications

controlled via the Simulink Real-Time Workshop (RTW), has been established between

Simulink and the Mentor Drive, allowing real-time control of the DC motor.

Knowing the nature of the hardware and the serial communication link, allows the

simulation of effects such as the delay of the drive, to be modelled with relative ease in

Simulink. The software will have to include any compensation required to cater for the

particular hardware used. This includes compensating for a different size IM and the

dynamics and losses of the DC motor, as well as the effects of the DC drive and signal

digitisation. Throughout the development, comparisons will be made with the RAL site

data and the software simulation of Chapter 5 to verify the modelling.

Initially, the effect of using a different generator size is investigated in the Simulink

model to establish whether the concept is valid.

6.1 Replacing the 45kW IM with the 11kW IM in the Simulink Model

The WECS model developed in Chapter 5 is based on the information obtained from

Rutherford Appleton Laboratory for a 45kW WECS and a 330kW WECS used by

Strathclyde University. Within the laboratory, it is not practical to have a different

124

generator for simulation of different machines. Additionally, the constraints of the

laboratory, mentioned in Chapter 3, limit the size of the IM that can be used. The

particular IM used for the simulation is an 1 lkW two-pole machine.

The study investigates the effects of replacing a, generally, large IM with the smaller

llkW machine. It has to be established whether the substitution is valid with the

appropriate compensation for the torque demand and speed difference. To achieve this, a

model of the 1 lkW IM is required.

6.1.1 Establishing a Model of the llk W IM

The development of a first order model of an IM was detailed in Chapter 5. Both the

torque-speed slope and the time constant of the IM can be calculated from the equivalent

circuit impedances. The equivalent circuit impedances of the 1 lkW machine are shown

in Appendix 6 a [6.1].

The Matlab calculations of the torque-speed slope, De, and the machine time constant, x

result in the following values:

De = 4.0832 Nms/rad and x = 0.0256 s (6.1)

Comparing these values with those of the Strathclyde and RAL WECS shows that the

time constants are very similar while the value of De reflects the relative size and the

number of poles of each IM.

The damping factor, 72, and the inertia of the generator, I2, have to be established for the

llkW model. 72 can be estimated using the same technique, shown in Chapter 5, which

calculates the damping factor of the 45kW generator from percentage losses of the

330kW machine. The value of I2 is found experimentally. Calculations and the

125

experimental measurements for the parameters, shown in Appendix 6a, result in the

following :

Y2 = 0.002 and I2 = 0.075kgm2 (6.2)

In addition to the above modifications, the reference speed of the generator has to be

changed to cater for the two-pole machine. The two-pole machine rotates at twice the

speed of the 45kW four-pole machine. Compensation for the speed of the generator has

to be included in the model and this is realised by including a 0.5 gain in the HSS speed,

whs, feedback to the gearbox module.

A modification of the HSS driving torque is also required. The llkW IM requires less

driving torque than the 45kW IM. The reduction in torque is assumed to be linear and the

ratio calculated as follows:

45 2
Torque Reduction Ratio = — x — = 8.182 (6.2)

11 1

The multiplication of two compensates for the 2:1 speed difference between the two

generators (i.e. at rated power, a 3000 rpm machine requires half the torque of a 1500

rpm).

Modification of the model concerns the HSS side only. The LSS remains the same. The

aim is that when HILS is included, the software will act as if a 45kW WECS is being

simulated while the hardware appears to be simulating an llkW WECS. Fig. 6.1 shows

the modified HSS side of the WECS model which compensates for the 1 lkW machine.

126

— N whs 1
To Workspace4

damp2whs/2

1/JgS generator
from wls Gearbox

tls

Fig. 6.1 WECS Model Including Compensation for the 1 lkW IM

The speed correction and torque reduction modules are ‘whs/2’ and ‘tdiv’ respectively.

The modified WECS model values are placed in the Simulink model and simulated to

assess the change in the power spectral density (PSD) comparison of the low speed shaft

(LSS) torques introduced in Chapter 5. Fig. 6.2 shows the LSS torque PSD comparison of

the WECS model with the 1 lkW generator and the RAL site data.

127

B

CM
Sim ulated T orque

M easured T orque

l6

4

2

n
0 1 2

w (r/s'i
Fig. 6.2 PSD Comparison of the WECS with 1 lkW Generator

Comparing Fig. 6.2 with Fig. 5.20, which is the PSD comparison between the simulated

45kW WECS and the RAL site data, it is observed that the llkW model compares

favourably with the previous simulation. Both the low frequency response and the

amplitudes at the rotational frequencies are very similar to the site data. This suggests

that the inclusion of the llkW generator, and therefore the hardware simulator, will not

disrupt the dynamic response of the simulation.

The inclusion of the DC drive, DC motor and the serial communications link will cause

delays in the closed loop as mentioned in Chapters 3 and 4. Additionally, real-time

measurements via the registers of the drive will inevitably, be subject to noise due to

128

sampling and quantisation errors. The effects of the delays and the errors can be modelled

in Simulink and the effect on the dynamic response of the model assessed accordingly.

6.1.2 Modelling Hardware Delays and Quantisation Errors

The slip of the llkW IM is given in Appendix 6a as 2.5% this indicates that the

maximum speed of the IM, acting as a generator, will be approximately 3080 rpm. In

practice, the drive will read the speed of the motor which is exactly half this value due to

the 2:1 ratio of the pulleys connecting the IM to the DC motor. The maximum speed of

the DC motor will be 1540 rpm which can be set as the maximum on the Mentor II. On

assigning this value, the Mentor II is calibrated such that the maximum speed will result

in a voltage of 10V being seen on the dedicated 10 bit tachogenerator analogue input.

The register corresponding to the motor speed measurement (register 3.02) shows the

value ‘1000’ at maximum speed. In other words, 1540 rpm is equivalent to the value

‘1000’ in the speed measurement register. The resolution is such that each unit of the

register value corresponds to 1.54 rpm or 0.16 rad/s. This can be modelled in Simulink

using the ‘Quantiser’ component.

In addition to quantisation error, measurements of the tachogenerator (or encoder if

selected) and the on-board ADC will be subject to further errors due to noise. A typical

measurement of DC motor speed from the Mentor over a 20 s period, is captured by

reading the dedicated speed register of the Mentor II from within Simulink. This is

shown in Fig 6.3.

129

8 2

81 .5
V i

81
|3
<L>

^ 80 .5
o>
<a>OhOO

80

79 .5
0 5 10 15 20

T im e (s)

Fig. 6.3. Typical DC Motor Speed Measurement from the Mentor Drive

The speed demand from the drive is kept constant at ‘500’ (80.63 rad/s) while the data is

measured. The speed shown has been converted to rad/s from the Mentor II

measurement. The presence of the noise can clearly be seen, although it is relatively

small compared with the actual value (approx. ± 1%). This error is larger than the error

expected from the effects of quantisation alone, therefore some other form of noise must

be present in the Mentor register or ADC.

Although the relative value of the error is small, it will be ‘fedback’ to the gearbox

module in the Simulink model and compared with the LSS speed, resulting in a speed

error value. This error will be amplified by the relatively large values of shaft stiffness,

therefore a small error can result in a large variation in LSS and HSS torques. This can

lead to instability in the model.

The noise can be modelled using a band limited white noise module with an appropriate

gain.

130

The delay in the closed loop due to the serial communications link can be modelled using

a transport delay component programmed with the estimated delay time. Fig. 6.4 shows

the module designed for the WECS model to include the errors inherent with HILS.

n-»B> *W \
whs whs/2QuantizerTranspor|t

Delay
noisy wh

—N awhs I
To Workspace

to g/b

Band-Limited
White Noise

Fig 6.4 WECS Model Modification To Simulate The Actions of the HILS

The ‘Quantizer’ contains the value 0.16, the ‘Transport Delay’ simulates the delay of the

drive (~0.03s). The ‘BLW Noise’ module has a gain corresponding to the speed

measurement from the drive which, in this case, is 0.005 (see Appendix 6b).

Simulating the modified WECS model shows that after approximately 50s, instability

occurs. Fig. 6.5 shows the LSS torque up to the point of instability as well as the effective

wind speed output of the spatial filter. The relatively large change in the effective wind

speed, just before the point of instability, suggests that the inclusion of the quantisation,

noise and delay due to the proposed HILS moves the stable WECS model into an

unstable state.

131

20 30 5040
4x 10

20 30 40
Time (s)

Fig. 6.5 Simulation Showing Instability due to HILS

It follows that values used to model HILS in the simulation will have to be modified to

avoid instability. The delay and the quantisation can not be improved due to the

limitations of the serial communications and drive, and the maximum speed setting of the

drive. Further simulations show that if the noise power is reduced to below 0.0007, the

simulation remains stable and produces a PSD comparison shown in Fig 6.6 (see

Appendix 6b).

132

6446

,8

CM
S im ulated T orque

M easured T orque

,6

A

2
5 10
o

CL

,0

Q 2

w (r fs)

Fig. 6.6 PSD Comparison With HILS and a Noise Power of 0.0007

The lower noise power value ensures that the simulation is stable. Observation of the

PSD comparison indicates that the lower frequency response of the simulator is valid, but

there is too much energy at higher frequencies due to the delay and inherent sampling

errors of the drive. Additionally, the effects of rotational sampling at the blade passing

frequency, are swamped by the presence of the sampling noise.

The investigation undertaken in Appendix 6b indicates that reducing the noise on the

speed feedback signal reduces the high frequency response of the LSS torque, leading to

a more favourable comparison with the measured site data. An alternative speed

measurement is therefore required where the effective noise power of the signal is less

133

than the 0.0007 limit of stability. One possibility is the use of a speed encoder attached to

the DC motor or, alternatively, the Mentor II general 12 bit analogue input could be used.

(a) Speed Encoder

As mentioned in Chapter 3, the Mentor II incorporates the facility to use a shaft encoder

for speed measurement. The encoder available for assessment is a two channel enclosed

optical shaft encoder with 360 pulses per revolution and a maximum operating speed of

8,333 rpm [6.2]. A casing to connect the encoder to the DC motor shaft was constructed

in the Department while the Mentor II drive was reprogrammed to operate using the

encoder for speed feedback. As before, the machine was run up to a steady speed of ‘500’

(80.63 rad/s) and the speed feedback monitored. Fig. 6.7 shows the response from the

encoder.

82

81.5

1 81
S3

^ 80.5
<L>4>
CXsza

80

79.5
0 5 10 15 20

Time (second)

Fig. 6.7 Speed Response from the Optical Shaft Encoder

134

Comparing Fig. 6.7 with Fig. 6.3, it can be observed that the ‘noise’ inherent with the

measurement is smaller with the encoder option. Further studies (see Appendix 6b)

indicate that the ‘noise power’ of the encoder measurement corresponds to the value

0.004. This value, as previously mentioned, will result in instability.

An encoder with a higher resolution per revolution could have improved the situation, but

none was available in the department at the time of the experiment. Therefore, an

alternative method was sought.

(b) The Mentor II 12-bit Analogue Input

The Mentor II has a 12-bit analogue input which, in general, is connected to an on-board

potentiometer and used as a manual speed demand. Alternatively, it can be used as a

general input. One alternative to using the 10 bit speed register connected to the DC

tachogenerator is to linearly attenuate the voltage from the tachogenerator and connect it

to the 12-bit analogue input. The increase in resolution should reduce the apparent noise

appearing on the speed feedback signal.

To perform the attenuation on the signal, a simple potential divider circuit is suggested.

From the name plate, the tachogenerator is defined as having a resolution of 0.06V per

rpm. This corresponds to a voltage of 92.4V at the defined maximum speed of 1540rpm.

The 92.4V should, therefore, correspond to 10V at the analogue input which results in an

attenuation of 9.24. Additionally, the input impedance of the analogue input is given as

lOOkQ. Fig. 6.8 shows the attenuation circuit used.

One of the Mentor II’s general purpose registers can be used to indicate the voltage

across the analogue input (in this case, register 07.05). The value in the register is a

maximum of ‘1000’ which corresponds to the maximum input of 10V. Therefore, any

voltage across the analogue input appears, in register 07.05, as that voltage multiplied by

100.

135

X

92.4V

100KS2 100KQ 10V

Fig. 6.8 Voltage Attenuation Circuit

To find the value of X:

92.4 _ X +50
10 ~ 50

X = 412kQ (N.P.V. = 430kQ) (6.3)

Using the nearest preferred value results in a maximum input voltage across the analogue

input of 9.625V. The relationship between the measured voltage and the speed of the

motor, in rpm or rad/s, can be defined in Simulink as a gain module. At 1500rpm the

Mentor II register will show 962 or 963, the conversion ratio would be approx. 1.56. This

value would depend on the tolerance of the resistors so the ratio would have to be

determined experimentally. Appendix 6a details how the conversion ratio is established

practically to be 1.59.

Fig. 6.9 shows the measured steady state speed using the potential divider circuit via the

general purpose register.

81.1

5 10
Time (s)

Fig. 6.9 Speed Measurement Using the Potential Divider

Simulations in Simulink using the ‘BLW Noise’ module indicate that the inherent noise

using this method is equivalent to a noise power of ‘0.0005’. Placing this value into the

model simulating the inclusion of HILS gives a stable response. Fig 6.10 shows the PSD

comparison with the alternative method of speed measurement. Comparing Fig. 6.10 with

Fig. 6.6, the energy at higher frequencies has been reduced but the effect of rotational

sampling at the blade passing frequency is still not discernible. Further reduction of the

noise gain would improve the higher frequency response and make the effects of

rotational sampling more pronounced (see Appendix 6b).

137

4

l8

CM Sim ulated T orque

M easured T orque

6
V

4

0
,0 1 2

w (rfs)
Fig. 6.10 PSD Comparison with HILS and a Noise Power of ‘0.0005’

Once the speed measurement method is calculated to remain stable, it is necessary to

investigate the effect the presence of the motor, as part of the HILS, has on the

simulation.

6.2 Compensating for the Presence of the DC Motor in the Simulator

The presence of the DC motor will influence the torque output from the simulator [1.10].

The inertia, friction and torque losses will all contribute to modifying the simulated

driving torque on the generator. The dynamics of the motor have to be compensated for

in the Simulink model to ensure that the simulated driving torque output from the model

is the actual torque ‘seen’ by the generator shaft. Calculation and measurement of the

138

inertia and losses of the DC motor, pulleys and the generator are detailed in Appendix 6a.

The parameters relevant to the development of a motor compensation model are shown in

List 6.1

Motor Inertia, Jm

Combined Inertia o f Hardware, J j

Velocity Friction Coefficient, D

Constant Load Torque, Tc

Armature Current to Mentor 04.08 Ratio, K

0.488 kgm

0.788 kgm2

0.017 Nms/rad

2.085 Nm

16.7

List 6.1 Motor Compensation Parameters

Fig 6.11 shows the Simulink module used for motor compensation.

Derivative jdw/dtspd

#4.08Dw+Tloss Sum *4 '08/k

ths/div

Fig. 6.11 Simulink Motor Compensation Module

The derivative of the speed measurement is multiplied by the calculated motor inertia and

added to the losses due to the friction and the constant load torque. These values are

added to the output torque calculated for the llkW generator. The modified torque

demand is then converted to an equivalent Mentor II torque demand for register 04.08.

6.2.1 Testing The Motor Compensation Module

The motor compensation module was set up in Simulink to test the calculated values. The

inertia is initially set at 0.788 kgm2 to include the inertia of the generator and pulleys. A

139

speed profile containing both ramps and a constant value was input to the module and the

resultant output current monitored. The same speed profile is then output via an RTW

executable to the Mentor II drive and the actual armature current measured. Fig. 6.12

shows the simulated response of the armature as well as the speed profile.

150
U1

100

4>4>
a ,

50 10 15 2520
Time (s)

u

-10
0 5 10 15 2520

Time (s)

Fig. 6.12 Simulated Response of the DC Motor to a Speed Demand

The armature current measurement clearly shows the effect of acceleration, constant

speed and deceleration. The RTW executable contains the same speed demand profile,

modified for use with the Mentor II and a module to read the armature current. Fig. 6.13

shows the measured current.

140

m

U
4>

-15
0 5 10 15 20 25

Time (s)

Fig. 6.13 Measured Armature Current for Specified Speed demand

Fig. 6.13 is very noisy making it difficult to analyse. One possible reason for the presence

of the noise is the switching nature of the drive output due to the firing action of the

drive’s thyristors (at approx. 300Hz), introduced in Chapter 3. The relatively low

impedance of the DC motor results in large ripples being present on the output voltage of

the drive. To combat this possible source of error, a choke (35mH) was placed in the

armature circuit in an attempt to ‘smooth’ the ripples. The test was then repeated.

Observation of the new results indicated that there was no noticeable improvement on the

current measurement.

The noise on the measurement of the current could be due to errors in the current register

of the Mentor II. To investigate this, the register was read without any drive output. The

response to this test showed that the measured current was constantly ‘O’.

141

Another alternative, is that the controller of the drive is not set correctly. The drive has an

‘autotune’ facility which sets the optimum gains for the connected motor. There is no

information on the nature of this optimisation so therefore, it is difficult to assess the

process followed. This leads to the possibility that these values are erroneous, so they

were adjusted in an attempt to improve the current response. Unfortunately, various

adjustment failed to make any improvements.

To establish an estimation of the armature current, without the noise of Fig. 6.13, an

ammeter was placed in the armature circuit. The result of this indicate that, visually, the

measurements compare favourably to the simulated armature current shown in Fig. 6.12.

The time duration of the speed profile is long enough to allow this and was chosen

specifically for this purpose. During acceleration, the measured value start at 8 amps

rising to approximately, 9.5 amps. Constant speed demand resulted in 3 amps while the

deceleration starts at -5 amps, ending at -7 amps. Since the comparison is favourable, it

suggests that the calculated and measured motor values are acceptable for the

compensation module.

It should be noted that the simulation of the WECS model with HILS includes the inertia

of the 1 lkW generator and small pulley which is 0.075kgm2 (0.3kgm2 at the motor side).

The motor compensation module must therefore only include the inertia of the motor and

the large pulley which was calculated to be 0.488 kgm2.

Since both the motor compensation and an alternative speed measuring technique have

been designed, the simulator hardware can now be controlled using the simulation

software in real-time and its performance assessed.

6.4 Summary

Before the simulator hardware could be used for HILS, the effects of using a smaller size

generator had to be assessed in software. The objective is to ensure that the simulation in

software, when operating with HILS, will appear to be simulating a WECS model with a

142

45kW generator while an 1 lkW generator in hardware is being used to return power to

the mains. A model of the llkW generator had to be developed and suitable scalars

placed on the torque demand to the generator and the speed from the generator. This

ensured that the driving torque to the generator was within its operational capability and

the speed fedback to the gearbox was of the same order as that expected from the 45kW

machine.

Once the use of a different size generator was validated, it was necessary to assess the

effects of including HILS. The inherent delay due to the serial communications link and

drive, the speed measurement quantisation and the noise present on the speed signal were

modelled in software. Initial investigations discovered that the speed measurement from

the Mentor II dedicated speed measurement register using both tachogenerator feedback

and an optical speed encoder, would cause the simulation to become unstable. Further

investigations indicated that using one of the Mentor II general purpose input registers,

connected to the voltage (after attenuation) from the tachogenerator, would allow stable

operation. Subsequent simulations indicate that the HILS results will compare with the

site data in the low to mid-frequency range, at higher frequencies, however, the results

will diverge due to the inherent HILS characteristics.

The relatively slow response of the motor had to be compensated for in software. The

dynamics of the motor, generator and pulleys were calculated from test results and a

suitable compensation model designed and validated in Simulink.

143

Chapter 7 Real-Time Hardware in the Loop Simulation

The next stage of the development of a real-time WECS simulator is to ensure that the

simulator hardware can be controlled by the Simulink model. In other words, the WECS

model needs to be modified to act as the ‘front end’ of the WECS and provide the

appropriate control signals to the DC drive. The simulator would then need to be

compared with the site data to verify the design.

Chapters 5 detailed the design of the model based in a software-only environment. The

effects of including hardware in the simulation and compensation for various aspects of

the hardware were modelled in Chapter 6. To realise the desire for hardware in the loop

simulation (HILS), modifications to the WECS model are required so that the HSS side

of the model is removed and the relevant compensation is included. Additionally, the

device driver blocks, developed in Chapter 4, will be introduced to provide an interface

between the software and hardware.

The complete real-time HILS WECS model is shown in Fig. 7.1. The operation of the

closed -loop HILS simulator can be summarised as follows:

• The software simulates the aerodynamics of the WECS as well as the LSS and the

gearbox dynamics, producing a torque demand for the grid connected IM generator.

• This torque is modified to compensate for the llkW generator, the presence of the

DC motor and convert the demand into the format used by the Mentor II.

• The driving torque on the DC motor results in the grid connected IM being driven at a

speed higher than synchronous and therefore, generating three-phase power into the

mains.

144

• The simulator monitors the speed of the DC motor which is half that of the IM due to

the 2:1 pulley ratio.

• This speed measurement is reduced according to the gearbox ratio and compared with

the simulated LSS speed. Any error is multiplied by the respective LSS and HSS

stiffness to derive the derivative of torque for the respective shafts. This results in

closed loop operation.

145

— ►! rwind I
To Workspace6To Workspace 1

To Workspace5

noise Inductio
harmonic LagSTIsstoTIss

torout
i - f i i l - T-damp
Ta-TIss 1/JrS toroutT1,wird_spc-

gearboxfilter
Switch

samp.
wind

ero Torque - H rnent I
mentor torque8.45 — H wls I

To Workspace 3Radius LH tdiff I
To Workspace5.Clock To Workspace

To Workspace2
—H ncsp I
To Workspace7

> Abs- whs 1
To Workspace4Abs ment to

rad

Fig. 7.1 HILS WECS Model

7.1 WECS Simulation Using HILS

The Mentor II drive is set up for closed loop torque control while the IM generator is

connected to the laboratory three-phase 415V power supply. A three phase variac is used

between the IM and the mains to limit the initial start-up current of the machine.

The real-time simulation is desired to run for 300s (5 min) so that the data established

during experimentation is comparable with the RAL measured data used for the PSD

comparison. Unfortunately, the real-time data-log buffer in Matlab is programmed to the

default size of 2048 data values. This buffer size would correspond to 40.96s of data

using a sample rate of 20 ms which is not appropriate. The buffer size can be

reprogrammed by editing the Matlab C code file ‘rt_log.c’ and setting the ‘Kilodouble’ to

half the size required in the definition section of the file (the program doubles the set

value during processing). The value has to be an exponential of two to ensure optimum

processing time [5.3]. The nearest exponential value to ensure 300s of data at 20 ms

(15000 points) can be logged is 214 (16384).

Chapter 4 described the serial communication procedure between the drive and Simulink

for both reading from and writing to the Mentor II registers. The total time taken to

complete a write (torque demand) instruction and a read (speed measurement) instruction

is 21.66 ms. The maximum sampling period will obviously, be tied to this value. Initially,

the sampling period will be set to 25 ms to allow for any unforeseen overlap.

Fig. 7.2 shows the LSS torque of the software-only simulation of the RAL WECS and the

LSS torque of the HILS RTW executable. It was mentioned in Chapter 5 that a time

domain comparison between the simulated and measured LSS torque was not possible

due to the inherent time delay in measured wind speed and the instantaneous torque

measurement of the RAL site data. A time domain comparison of the HILS and the

software-only simulation is possible in this example since both simulations are not

subject to the delay.

147

The results are the same regardless of whether the Mentor II is programmed to operate

with or without regenerative braking. This is because negative torque is not required

under the operating conditions shown in this example. However, wind regimes at lower

wind speed will result in a negative shaft torque causing the IM to motor. Regenerative

braking may then be required on the motor.

i 10000

o*
o 5000

10000

k 5000

30050 100 150 200 2500
Time (s)

100 150 200
Time (s)

300

Fig. 7.2 LSS Torque Analysis of the Software Simulation and HILS

The analysis of the HILS torque shows that it is relatively noisy compared with the

software-only simulated torque. The software simulation of the inclusion of the hardware

in the simulation suggests that this would be the case. The comparison does show,

however, that the response of both systems is very similar if the effects of the sampling

noise are neglected.

148

Previously, the PSD comparison between the measured data and simulated data involved

both data series sampled and simulated at 50Hz. The HILS executable operates at a

sampling rate of 40Hz (25 ms), therefore to ensure that the same parameters are used

throughout for comparison, a simple conversion can be performed on the HILS data

series. Fig. 7.3 shows the Simulink circuit to achieve this. The sampling period of the

model is set at 20ms so the LSS torque data is input to the model as a 25ms data series

(‘ntls’) and converted, through interpolation, to a 20ms data series (‘nntls’).

T.rtls-------------------------------------- H nntls I
prom To Workspace

Workspace

© --- H t 1
Clock ToWorkspacel

Fig. 7.3 Simulink Model to Convert 25ms Data to 20ms

The converted data series can now be compared with the PSD values of the measured site

data. Fig. 7.4 shows the PSD comparison.

149

CN<

</>
£=
CD

Q
15
•*—>o
CD
Q.

CO
i_
CD

O
CL

8
Simulated Torque

Measured Torque

6

4

2

0
0 1 2

w fr/sl
Fig. 7.4 PSD Comparison of Site Data and HILS

It can be seen from Fig. 7.4 that the low frequency response is very encouraging and is

comparable to the simulation PSD comparisons of Chapter 5 however, there is too much

energy at higher frequencies. This to be expected when considering the high frequency

noise present on the time domain analysis of Fig. 7.2. This outcome was also suggested

when the effects of HILS were simulated and discussed in Chapter 6 (see Fig. 6.6 and

Fig. 6.10). The effects of the rotational sampling are no longer prominent as they are

‘swamped’ by the noise on the measurement.

Further observation of the higher frequency response, of Fig. 7.4, indicates that the

energy levels are larger than that suggested for the ‘general purpose input’ speed

measurement method (Fig. 6.10). This could be due to a number of reasons. Firstly, the

150

‘noise power’ estimate of the chosen speed measurement method, could be larger than

the value used for simulating the effects of HILS, or the delay time estimates are

inaccurate. The apparent higher noise values will result in larger error values in the

gearbox, leading to large variations in respective shaft torques.

Alternatively, the presence of the motor compensation model could be causing ‘noise’

on the torque demand sent to the Mentor Drive. The derivative component, used to

establish the derivative of the measured speed and compensate for the motor inertia, will

add high frequency components to an already noisy signal. It follows that a noisy torque

demand will result in the speed of the motor becoming more noisy, subject to the

effective time constant and damping of the generator. Once again, this will cause larger

speed errors in the gearbox model.

To improve the high frequency response, it seems obvious that either the noise on the

speed signal has to be reduced or that the effects of the noise in the gearbox have to be

reduced. At the moment, the former solution is not possible, therefore the latter option

has to be investigated. A number of methods are to be assessed to see if any improvement

can be made to the structure of the gearbox.

7.1.1 First Alternative Gearbox Design

With the original gearbox, the speed measurement from the drive is converted to rad/s

and then the value is further reduced by the gearbox ratio, N, which, in the RAL case is

39.16. This division can further reduce the resolution of the measurement. An alternative

to this method is to multiply the LSS speed by N before the error value is calculated. This

can be explained by considering the gearbox equation for establishing the speed error,

Eqn. (5.5).

w, N 2K,
k N 2K2 + Kv

(5.5)

151

Rearranging this equation to remove the division of the measured speed by N gives:

(
we = (N w , - w hs)

[N 2K2 + Kh
(7.1)

This can be implemented in Simulink without affecting any other part of the HILS model.

The modified RTW executable, simulated for 300s, results in the LSS torque data series

shown in Fig. 7.5.

' s 10000I
o 5 0 0 0

100 150 2 0 0
Time (s)

300

Fig. 7.5 LSS Torque of HILS Using First Alternative Gearbox Arrangement

Comparing the LSS torque of Fig. 7.5 and the original HILS measurement of Fig. 7.2

shows that there is no improvement on the waveform. Indeed, the data appears to be

slightly more noisy than the original.

7.1.2 The Second Alternative Gearbox Arrangement

The second arrangement attempts to improve the error difference by keeping the speed

measurement data in the form used by the Mentor II register, i.e. it is not converted into

rad/s. The LSS speed would need to be converted to this value for the speed difference

calculation in the gearbox. This can be further explained by considering Eqn. (7.1) and

adding the appropriate conversion. Let the Mentor II speed be M and the conversion from

the Mentor II value to rad/s be C where C is:

152

This alternative model is implemented in the HILS and simulated for 300s as before.

In addition to the modified gearbox the motor compensation module can be modified to

cater for the Mentor II values. Eqn. (7.3) shows the structure of the existing motor

compensation which is used to calculate the modified torque Tment-

T =ment
16.7
1.57

d \V i
0.017 + 0.488— ^ + 2.085 + thsl,

dt
(7.3)

thsii is the HSS torque converted for the 1 lkW IM. Adapting the equation to cater for the

Mentor II speed value M and the conversion to rad/s, C:

T =ment
16.7

1.57C
0.017 M + 0.488— + C2.085 + Ct

dt h s 11 (7.4)

Implementing both these modifications in the HILS model and simulating for 300s,

results in the LSS torque time series shown in Fig. 7.6.

's 10000
I

H
w

o 5000

0 50 100 150 200 250 300
Time (s)

Fig. 7.6 LSS Torque of HILS Model with Second Alternative Gearbox Arrangement

Comparing Fig. 7.6 with Fig. 7.2 it can be observed that, once again, there is no

noticeable improvement in response. This gearbox arrangement seems to be the most

noisy of the three options.

Another alternative design to the model in an attempt to reduce the noise in the

simulation involves the modification of the motor module.

7.1.3 Neglecting the Inertia Compensation in the Motor Model

It was mentioned earlier in this section that the noisy speed measurement from the

Mentor II is subject to further high frequency components due to the speed derivative

calculation required for motor inertia compensation.

Since the IM is, essentially, kept at constant speed due to the connection to the mains, the

variation of speed is very small. At the estimated maximum speed of 1540 rpm, the

variation from synchronous speed (slip) is 2.5%. It can then be argued that since the

variation in speed, and therefore the derivative of the speed, is very small, the effects of

the motor inertia can be neglected. This will allow the removal of the derivative action

from the motor compensation module and possibly reduce the noise in the system.

154

The original HILS model with the initial gearbox arrangement, is modified to remove the

derivative action and simulated for the standard 300s. Fig. 7.7 shows the simulated LSS

torque during the 300s simulation.

10000
I

5000

3000 50 100 150 200 250
Time (s)

Fig. 7.7 HILS LSS Torque with Modified Motor Compensation

It can be observed, when comparing Fig. 7.7 to Fig. 7.2 that there is a very slight

improvement in the torque response. In order to assess if there is any improvement in the

PSD comparison, the torque data series is converted into a 20ms series as before. Fig. 7.8

shows the PSD comparison for the modification.

155

,8
Simulated Torque

Measured Torque
CM

B

4

,0
0 2

w fr/sl
Fig. 7.8 PSD Comparison with Modified Motor Model

Comparing Fig. 7.8 with Fig. 7.4 shows that there is some improvement to the response.

It can be observed that the peak at the rotational frequency is more discernible but the

energy at higher frequencies has increased slightly. This suggests that the modification

does have some benefits at lower frequencies.

In general, it appears, from the investigations of Chapter 6, that the only way to improve

the overall response of the simulator is to improve the resolution and accuracy of the

speed measurement signal. Introducing a choke to the armature circuit of the DC motor

(as before in Chapter 6) did not make any noticeable improvement to the response.

Reaffirming the belief that the resolution of the speed measurement needs to be

improved.

156

7.2 Summary

HILS was established and evaluated with regenerative breaking on the drive enabled and

disabled. Comparing the simulated data with that of the RAL site data and the software-

only simulation of Chapter 5, indicates that the lower frequency response is acceptable

but that the higher frequency response is subject to a higher energy content. This appears

to be due to the noisy speed signal from the drive. In attempting to compensate for this

noise, alternative gearbox arrangements were designed and tested to limit the effects of

the noise in the simulator. Additionally, the motor compensation model was modified to

limit the effects of the noise on the output torque demand. The alternative gearbox

designs were ineffective against the noise while the motor model modification slightly

improved the lower frequency response of the simulator.

Results indicate that the objective of creating a real-time hardware simulator for WECS

has been met. Some further modifications to the hardware are required to improve the

higher frequency response of the simulator. An alternative method for communication

between the PC and Mentor is proposed in the next section in an attempt to address this.

157

Chapter 8. Using a PC Based Data Acquisition Card for HILS

To improve the response of the HILS, an alternative method for communication between

the PC and the Mentor II is suggested and investigated. The serial link has proven to be

capable for communication for the HILS, but there are concerns about the sampling rate

used. The maximum sampling rate is 25ms (40Hz) and although it has been mentioned

previously that this should be acceptable for the simulation for a grid connected, 'constant

speed’ WECS, a communication link with a faster sampling rate could help to reduce the

inherent noise in the system. This is especially true if the noise is due to any aliasing

effects.

The selected, alternative method is an data acquisition card housed in the PC. This

chapter describes the structure of the card and the steps taken to integrate it into the

simulator’s existing software and hardware set-up. For example, the card will need to be

accessed from Simulink in real-time and minor modifications to the Mentor and the speed

measurement circuit will apply. Simulations, both HILS and software-only, are

performed to assess the response of the simulator and compare the two communication

methods.

Initially, the structure of the selected card is discussed in order to assess its programming

methodology. This will result in the design of C code to be used as a RTW device driver

blocks in Simulink.

8.1 The Amplicon PC30FA Data Acquisition Card

The particular data acquisition card used is the Amplicon PC30FA consisting of 16

single-ended or eight differential 12-bit input channels (analogue to digital converters),

as well as four 12-bit digital to analogue converters. The board also consists of digital

input and output channels, which will not be used for this project. The maximum

sampling rate for the card is 330kHz [8.1].

158

The input and output ranges of the card can be set to either ±5V or ±10V, depending on

the application and both this selection and the choice of single-ended or differential input,

are programmed via the card's on-board software. Additionally, the address of the card on

the PC's bus, is set using a series of dip switches.

The following sections describe the register arrangement and programming requirements

of the PC30FA. This is necessary to establish what is required for the development of

programs, using C code, to control ADC and DAC. The C code programs control all

aspects of conversion and manipulate the data formats required for the PC30FA registers

and the C environment.

8.1.1 PC30FA Register Layout and the Integration of the Card into the Simulator
The PC30FA is controlled via a series of 32 8-bit software registers some of which have

a dual read/write purpose. Table 8.1 shows the layout of the register relevant to the

project [8.2].

Register Address Register Name

Read Write

700 ADC Low Byte - ADDATL Block Count - BLKCNT

701 ADC Data/Status - ADDSR -

702 Control/Chan nel (ADDCCR)

703 ADC Mode Register

70C - DAC0 Low Byte - DADATL0

70D - DAC0 High Byte - DADATH0

718 Gain Read - GAINREG Gain Memory 0 - GMEM0

71C - ADC Configuration - ADCCFG

71D - DAC Configuration - DACCFG

Table 8.1 PC30FA Register Layout

159

The 'Register Address' column refers to the address of each register and assumes that the

card is configured to have a base default of 700H (factory setting). Any change of the on­

board DIP switches will alter the register addresses to correspond to the base value.

(a)ADDATL - ADC Data Low Byte (Read Only) (700H)
This register contains the low byte (D 0 -D 7) on the completion of an analogue to digital

conversion.

(b)BLKCNT - Block Counter (700H)
Indicates the number of conversions to be performed on each ADC strobe. The (Hex)

value written to the register is calculated from:

256-(No. of conversions per block)

(c)ADDSR - ADC Data/Status Register (701H)
Lowest four bits contains the high 4-bit data (Dn-Dg) of the ADC conversion. The

remaining bits contain ADC status information. Bit 6 is the 'ADC Done' status bit set at

the end of each conversion and reset on the reading of ADDATL.

(d)ADCCR -ADC Control/Channel Register (702H)
The highest four bits of the register contain the 4-bit channel address which is to be

manipulated. Only channel 0 is used for this project. The remaining bits are used for

control, bit 1 is used to select software strobe for the conversion (this will be required for

use in Simulink) while bit 0 is the strobe itself. A software strobe is initiated by a

'negative going edge' (i.e. bit 0 is set followed by a reset).

(e)ADMDE - ADC Mode Register (703H)
Used for the selection of DMA and error monitoring. Bits 0 and 1 are used to set up, or

clear, the channel list on the board. Since only channel 0 will be used, only needs to be

cleared at 'start up'.

(f)DADATLO - DACO Register (70CH)
Holds four lower bits of 12-bit code loaded into DACO for DAC conversions. The 12-bit

data is transferred to the output as soon as this register is loaded.

160

(g)DADATHO - DACO Register High Byte (70DH)
Holds the eight higher bits of the 12-bit code for DACO DAC conversion.

(h)GMEMO - Gain Memory 0 Register (718H)
Holds the programmable gain settings for a number of the channels, including channel 0.

Bits 0 and 1 must both be reset for a gain of one.

(i)ADCCFG - ADC Configuration Register (71CH)
Holds the interrupt source, input signal range and input signal mode. Bit 1 is set for ±10V

range, while bit 0 is set for differential mode. All other bits are reset to disable interrupts

and ensure conventional binary coding.

(j)DACCFG -DAC Configuration Register (Write only) (71DH)
This is the mode register in the DAC converter and controls the output gain settings. For

±10V output for channel 0, bits 3 and 7 must be set.

Knowing the requirements and format of the PC30FA, C code will be designed to

manipulate card initialisation and control data transfer. Initially, development of the

control software will assess the needs of the existing simulator and the communication

between the PC and the Mentor. In other words, a C program will be designed to

initialise the card knowing that the Mentor ADC and DAC channels operate over the

range ±10V and that programs will integrate into the Simulink Real-Time Workshop, as a

DDB (device driver block). This will follow the same design format used for the serial

communication method, discussed in Chapter 4.

8.1.2 Configuring and Controlling the PC30FA for ADC
Knowing the register structure and address of the PC30FA allows the design of a suitable

C program to control these registers and measure a voltage source. Fig. 8.1 shows the

pin-out of the card.

161

DACO OUTPUT

♦ 12 V

• 12 V

PORT 87

PORT 85

PORT B4

PORT A6

PORT A4

PORT A2

PORT AO

PORT CO

- - OAC3 OUTPUT
 OAC1 OUTPUT
 OAC2 OUTPUT
 CHB
 CH10

 CHO
 CH11

EXTERNAL CLOCK
CH12
CHO
CH13
CH4
CH14
CH2
CH15
EXTERNAL TRIOOER
ANALOG GROUND
PORT 80
PORT BO
PORT 83
PORT B1
PORT A7
PORT 82
PORT A5
PORT C3
PORT A3

DIGITAL GROUND 1+5 V ---------------

- PORT C2
PORT A1
PORT Cl
PORT C7
PORT CO
PORT C5
PORT C4

Fig 8.1 Pin-out of the PC30FA Board

The single-ended input is stated to be sensitive to noise when lead lengths exceed 45cm

[8.1]. This will be the case with the simulator, therefore the differential input mode is

chosen and Fig. 8.2 shows the input arrangement required for differential mode. CH8 is

used as the 'RET' input for CHO.

vo (5
CHO

CHO RET

—6—(^)—

>

AGND

Fig 8.2 Differential Input Connections for CHO and CH7

VO and V7 denote a voltage source.

162

8.1.3 C Program to Establish ADC
For the selected conversion method of one channel, one conversion under software strobe

control and differential input of ±10V, the following initialisation is required on the

PC30FA card:

• Allow for one conversion per strobe by placing the value of 256-1 (FFH) in to the

BLKCNT register.

• Clear the list register by placing 96H in the ADMDE register.

• Select CHO, disable interrupts, enable software strobe control and reset strobe bit by

placing 02H in the ADCCR register.

• Ensure that the gain of CHO is set to unity by placing 00H in the GMEMO register

• Finally, configure the conversion to operate with ±10V range, in differential mode

with no interrupt and no inversion on DAC binary coding. This is achieved by placing

03H into the ADCCFG register.

To realise these needs C code has been designed and developed to perform the above

initial operations and is shown in List 8.1

/*Initialisation */

outp(blkcnt, Oxff); //I pulse per conv

outp(admde, 0x96); //clr list

outp(adccr, 0x02); //chO, dis int, set s/w strobe, d r str bit

outp(gmemO, 0x00); //gain o f ch = 1

outp(adccfg, 0x03); //no dac inv, no int, diff mode, +-10v

List 8.1 Initialisation C Code for ADC Conversion

After the initialisation, the card is ready for ADC conversion. The designed C code will

need to include the conversion process which consists of the following procedures:

163

• Issue a software strobe (negative going pulse) by setting and resetting the strobe bit.

This is achieved by sending 03H then 02H to the ADCCR register.

• Poll the 'end of conversion' bit until it is set, indicating that data is ready (monitoring

bit 6 of the ADDSR register).

• Once data is ready, read the highest 4-bits of the input data (lowest nibble of

ADDSR), masking out the remaining bits in the register. Also read the low byte input

data to another location.

• The high data nibble input will need to be added to the low data byte input. A method

has to be devised in which the high data nibble can be combined with the low data

byte. The selected method will shift the high data nibble 8-bits 'to the left' creating 12-

bit data. In other words, the '« 8 ' C command will be used to, effectively, convert the

high data nibble from D 3 -D 0 to Dn-D8. This method resets all the other bits so that the

low data byte can be 'OR-ed' together with the high data nibble to create the 12-bit

data.

• Convert the 12-bit data into a voltage. From the PC30FA data manual [8.2]:

Voltage
(I2 ĥ ,„ - 2 0 4 8) x l0

2048

The C code designed and developed for the above procedure is shown in List 8.2. Note

that the code will be placed in a loop to ensure continuous conversion.

outp(adccr, 0x03); //start o f strobe

outp(adccr, 0x02); //strobe

while ((inp(addsr)& 0x40) != 0x40); //poll bit 6 for eoc

d811=(inp(addsr)& OxOf); //mask out control data

d07=inp(addatl); //get data 0 t o 7

dOl 1 = d 8 1 1 « 8 ; //shift left 8bits

dOl 1 =d011 +d07; //combine values

cout< < hex < <d011 < <endl; //print out

voltage=(d011 -2048)*10/2048;

List 8.2 C Code used for ADC Conversion

164

Tests examining the whole ±10V range showed that the correct voltage value was read by

the program from the voltage source connected to the ADC input.

8.1.4 C Program for DAC
Having established ADC, the next stage is to ensure the card can be used for DAC. The

voltage source is removed and a DVM is connected between DACO and the analogue

ground (see Fig. 8.1).

The initialisation for DAC is the same as for ADC but with one addition:

• To establish the ±10V range for the output, bits 7 and 3 have to be set in the DACCFG

register. All other bits are reset.

The DAC is, basically, the reverse process seen above. Tasks to be performed are:

• The voltage level required has to be converted using the following:

code = (vOltageX2048)+ 2047
10

• The code, automatically converted to hex, is placed in the appropriate register with the

correct positioning. The method devised to do this is a series of bit 'shifts' and

masking. First, the code is masked to isolate the high data byte, 'shifted to the right' by

4 bits and the result placed in the DADATHO register. Secondly, the code is again

masked, this time to isolate the lower data nibble, 'shifted to the left' and placed in the

DADATLO register. The board places the corresponding value on DACO as soon as

the low data nibble has been placed.

The C code designed and developed to perform the above conversion is shown in List

8.3. As with the ADC, the code is placed in a loop for continuous operation.

165

fcode =(voltage*2048/10)+2047;

code= int(fcode);

kbyte = (code & OxjfO) » 4 ;

Ibyte = (code & Oxf) « 4 ;

c o u t « "kbyte " « h e x « h b y te « e n d l ;

//convert voltage

//conv float to int

//mask and shift

//mask and shift

//print out - debug

//print out - debug

//place H data byte

//place L data nibble

c o u t « "Ibyte " « h e x « l b y t e « e n d l ;

outp(dadatho, kbyte);

outp(dadatlo, Ibyte);

List 8.3 C Code for DAC

Monitoring the DVM over the whole ±10V range indicated that the program performed

as desired.

The next stage in incorporating the PC30FA into the simulator is to convert the existing

C code, for both ADC and DAC, into Simulink Real-Time Workshop DDBs.

8.2 Creating DDBs for the PC30FA

The format of the DDBs is exactly the same as the DDBs created for communication

using the serial comms. link, discussed in Chapter 4. Modifications to the initialisation

and output sections of the C code s-function are made to include the unique code

developed above. The process for compiling the code for use within the Simulink

environment, is also as shown previously. The code for ADC (pc30ad.c) and DAC

(pc30da.c) is shown in Appendix 8a and differs slightly from the C code shown above.

This is due to the requirements of the s-function, which use the 'double float' variables 'y'

and 'u', and to adapt the voltages, in Simulink, to the Mentor format, e.g. 10V is 1000.

8.2.1 Controlling the PC30FA from the Simulink Real-Time Workshop
Once the DDBs have been created the data acquisition board can be used in the Simulink

environment. To assess the performance of the board, models are created for the input

and output of data. Fig. 8.3 shows the basic model for monitoring inputs to the PC.

166

pc30ad

adc

~*H vo lts I
W orkspace

Fig. 8.3 Simulink Model to Monitor the ADC of the PC30FA

The input is connected to a DC power supply between CHO and 'analogue ground', as

before, and the simulation run for 10s. Fig. 8.4 shows the measurement of the input

voltage.

4 6
Time(s)

Fig. 8.4 Measurement of DC Voltage Source

167

From the figure it can be seen that there is a noticeable amount of noise, which has the

value ±0.04V (0.8%). It is a reasonable assumption that this is an acceptable noise value

for many applications, but this may not be the case for the simulator (see Chapter 6).

In an attempt to improve the noise it was decided to incorporate a number of decoupling

capacitors across the differential inputs. Fig. 8.5 shows the proposed arrangement.

Fig. 8.5 Differential Input Incorporating Decoupling Capacitors

The input voltage, via Simulink, with the modified input circuit is shown in Fig. 8.6.

168

Time(s)
Fig 8.6 Voltage with Modified Input Circuit

Fig 8.6 shows that there has been an improvement in the measurement as the noise

reduces to ±0.02V (0.4%).

The next stage of the development is to look at the measurement of the voltage across the

tacho. With the serial communication link discussed earlier (Chapter 6), the feedback

from the tacho was scaled down, using a potential divider, before being input to one of

the Mentor's ADC channel. With the data acquisition card the feedback will, again, need

to be scaled down using a potential divider, before being connected directly to the

differential input. It is stipulated in the PC30FA manual that the source impedance of the

devices connected to the analogue inputs must be < lkQ. The impedance of the tacho is

measured at 500Q so the circuit will need to compensate for this. Additionally, the

resistors available are rated at 0.6W so the circuit had to be designed with the power

requirements in mind. Fig. 8.7 shows the circuit used.

15K Q

92 V

1KQ

18KQ

10V

Fig. 8.7 The Tacho Feedback Conditioning Circuit

Measuring the effective resistance across the differential input gives 893Q, which is

within specification. Calculations show that the voltage division and power requirements

are also acceptable.

Connecting the output of the above circuit to the ADC while the input is connected to

analogue tacho, allows the performance of the tacho to be assessed in Simulink. The

Simulink model shown in Fig. 8.3 is used again. Fig. 8.8 shows the measured voltage

when the motor is run at synchronous speed.

170

9.52

9.5

5 ^9.48
«T
□)
£ 9.46
o >

9.44

9.42

0 2 4 6 8 10
Time(s)

Fig. 8.8 Voltage Across the Tacho at Synchronous Speed

(Note that the measurement is actually a negative voltage, but is shown positive for

comparison purposes).

The measurement is noisier than the DC voltage source (0.74% c.f. 0.4%). Direct

measurement of the tacho output, using an oscilloscope, shows a similar noise level,

suggesting the additional noise must be due to the tacho itself. Chapter 6 and Appendix

6b discussed this and the implications of the noise on the effect on the stability of HILS.

Suitability of the use of this particular method of speed feedback may be too noisy for

HILS, therefore, is was decided to reassess the use of the digital encoder for speed

measurement. Previously (Chapter 6), it was noted that the encoder would lead to

instability in HILS using the slower sampling rate and serial communications link. To

establish whether this is still the case with the faster sampling rate, the encoder was re­

attached to the rig. The Mentor configuration was adjusted to allow for the change from

171

tacho to encoder. A speed measurement was taken from the encoder, via the Mentor and

PC30FA. Fig. 8.9 shows the response.

9.66

9.64-

>
S>9.62
O>

9.58
4 6 8

Time(s)
Fig. 8.9 Speed Measurement Using Encoder

Comparison of the measurements of the tacho and the encoder show that the encoder

provides a more stable and less noisy (0.4%) reading than the tacho and should be the

preferred choice for speed feedback for HILS.

172

01

8.2.2 Using the PC30FA with HILS
Before assessing the HILS with the new communication link, it is necessary to observe

any change in the software-only simulation with the faster sampling rate of 80Hz

(0.0125s). This is chosen since the Mentor current loop is specified to have a bandwidth

of 80Hz [3.5]. The same model is used, as in Chapter 5, except that the sampling rate has

been increased from 40Hz to 80Hz. Fig. 8.10 shows the power spectral density

comparison of the model and the RAL site data.

CM
<

CO
c
<D

Q
"ns
o
(D
Q_
C/5
i—
<D

O
CL

.8
Sim ulated T orque

M easured T orque

,6

4

2

0
.21.0

w
Fig. 8.10 PSD Comparison of the Site Data and 80Hz Simulation

Comparing the above figure and Fig. 5.20 shows that the responses are very similar for

the different sampling rates with only a slight variation at the rotational frequency of 4

rad/s The next stage is to investigate the response of the HILS and compare it with the

simulation of Chapter 7. The output of the data acquisition card (DACO) was connected

173

to one of the Mentors 10-bit input channels and the Mentor was reprogrammed to read

this channel and set it as the torque demand of the drive (register 04.08). Similarly, the

input of the digital encoder was directed to one of the Mentor's 10-bit output channels

(after decoding) and connected to one of the data acquisition card's differential inputs

(CHO). This is the motor speed measurement which is 'fedback' into the Simulink model.

As before in Chapter 7, a DOS executable was created via the RTW.

Fig. 8.11 shows the PSD comparison of the HILS, using the data acquisition card and

encoder, and the RAL site data.

Simulated Torque

Measured Torque
8

10
CM

l6
> 1 0

4
10

Q
10

2t0

w (r/s)
Fig. 8.11 PSD Comparison of HILS and Site Data

174

It is noticeable that there is excess energy in the mid to high frequency range but the low

frequency comparison is very close. The comparison at the rotational frequency is very

encouraging . Comparing this response to the HILS response with the serial comms. link

(Fig. 7.4) shows that there is definitely an improvement in response at lower to mid­

frequency, but there is still too much energy in the higher frequencies. This is noticeable

at the rotational sampling period (-12 rad/s). In an attempt to limit the energy, the white

noise model used to emulate the rotational sampling is removed, but no improvement in

response is noticed. As before, it is assumed that the effect is due to the noise in the

HILS circuit. Both the speed measurement from and the torque demand to the Mentor are

subject to noise, which appears to resonate through the system. Although the low-

frequency response has been improved, improving the sampling method and, therefore,

the sampling rate has not reduced the noise. This can be explained by the additional noise

encountered due to an increase in ADC and DAC conversions. With the serial comms.

link the conversions were limited, since the data transfer was digital, but the introduction

of the PC30FA necessitated the increase in conversions and the subsequent noise.

It could be argued that the noise in the speed feedback measurement could be improved

by replacing the encoder with one with a higher resolution, but the effects of increased

resolution will be limited by the 10-bit DAC register on the Mentor and it is unsure

whether the extra cost could be justified.

8.3 Summary

As an alternative to the serial communications link between the PC and the Mentor, a

data acquisition card, housed in the PC, was assessed. The card allowed the simulator to

operate with a faster sampling rate. The existing communications software had to be

modified to manipulate the unique connection, via the data acquisition card, between the

Simulink environment and Mentor software. Additionally, the use of a speed encoder for

feedback was reassessed since the inclusion of the data acquisition card, subsequently,

introduced more noise to the system and made the use of the tacho unfavourable.

175

Assessment of the modifications to the simulator showed that there was an improvement

in its response at low to mid frequencies. Higher energy levels, present at higher

frequencies, are, once again, attributed to sampling noise. It is suggested that this

particular arrangement has resulted in the noise being enhanced by the additional DAC

and ADC conversions, required due to the presence of the data acquisition card. Further

improvements to the response could be possible with the introduction of a higher

resolution encoder, but limitations of the Mentor DAC channels suggest that the costs of

investigating this, can not be justified.

Another positive aspect to the modifications is that, although major in concept, they were

relatively straightforward once the specification and operation of the data acquisition

card was known. This, once again, indicates that whether the modifications are in

software or hardware, the simulator is flexible enough to easily adapt.

176

177

Chapter 9 Simulating a Micro-Hydro Plant

Having successfully modelled and simulated a WECS, both in software and HILS, a

further renewable energy converter will be simulated, specifically a micro-hydro plant

(MHP). The simulation is required to further emphasise the flexibility of the simulator

and justify it being referred to as a dynamic simulator for renewable energy converters.

This chapter will detail the theory of a MHP and describe the design and development of

the model in Simulink, including both software-only and HILS modelling.

9.1 Theory of Developing Power from Water

A MHP makes use of the basic relationship between a mass of water dropping in height,

under gravity, and the force it exerts as it falls. In other words, a MHP converts the

potential energy of a mass of water at height into kinetic energy to drive a water turbine.

The drop in height, or the gross 'head', the mass of the water and the acceleration due to

gravity, relate to the energy released as follows:

E = mghgross (9.1)

Where m is the mass of water (Kg), g acceleration due to gravity (9.81m/s2) , hgr0ss the

head (m). Replacing the mass of water by the product of its density, p (lOOOkg/m2), and

its volume, V (m3) gives:

E = Vpghgross (9.2)

To convert the energy released to gross available power, the volume flow rate, Q (m3/s),

replaces the volume to give:

Egross = Q P S h g r o s s (9-3)

178

The 'gross' subscript shows the ideal situation where there the are no losses in the MHP.

This is not the case (e.g. frictional losses in the penstock, inefficiency of the generator)

and the efficiency of the MHP can be as low as 50%. Fig. 9.1 shows the typical

arrangement of a MHP and includes the typical losses in various parts of the system [9.1].

Power output

Step-up and down
transformers lose 4%

Full power potential
(power inpul)Generator lo se s 15%□

Penstock lo ses 10%

Channel
loses 5%Transmission

lo se s 10%

Turbine lo ses 20%

Fig. 9.1 Typical Construction and Losses of a MHP

Some of the processes shown in Fig. 9.1 are omitted in some MHPs. For example, some

run of the river schemes do not use a channel and the penstock, with or without a gate,

connects direct to the head, while many MHPs use grid-connected generators without the

transformer [9.2]. In addition to simplifying the circuit, minimising the complexity

improves the overall efficiency. For simplicity purposes, the rest of the study will

concentrate on such a system.

The next stage is to assess the inefficiencies of the system, especially the 'front-end'

losses such as those associated with the penstock and water turbine, and develop a

suitable MHP model in Simulink.

179

9.2 Modelling the Penstock

The penstock is a length of piping connecting the head to the water turbine, driving an

electrical generator. The material used for the penstock can be steel, PVC, even concrete,

the selection depends on the cost and the expected pressure requirements of the MHP. Of

concern to the modelling of the MHP is the 'roughness' of the inside wall of the pipe and

the length of the pipe. The 'roughness' is defined as a factor 'k', in mm, and can range

from values of 0.003mm for new PVC piping to 20mm for old, corroded cast iron [9.1].

The effect of the roughness on the penstock model is that it increases the friction, and

therefore losses, in the pipe. Longer pipe lengths, Lpipe, also increase the losses. These

losses are modelled as the 'wall losses', hwanioss-

fL .0 .0 8 Q z
h_______ = ——B1E1____ _ (Q A)

w allloss ^ 5

f is the friction factor and d is the internal diameter of the pipe. The friction factor is

determined from a 'Moody Chart', which depends on the values of k, d and Q. Appendix

9a shows the roughness values for various pipes and the Moody Chart required to

establish f.

Additionally, the velocity, v, of the water in the penstock and any bends or obstructions

in the pipe, K, contributes to 'turbulence losses', hturbioss- Eqn. (9.5) shows the relationship

between the velocity and flow rate while Eqn. (9.6) shows the relationship between v and

hturbioss-

(, -5)

K r m s , = ^ ~ K (9.6)
2g

180

Both the wall and turbulence losses combine to reduce the effective head, h, of the MHP:

h = h,g ro ss -h ,tu rb loss Kw allloss (9.7)

9.2.1 Modelling Gate Position

As mentioned before, many MHP systems are simply 'run of the river' types where the

penstock is directly connected to the head. These systems tend not to have any gate

control and are controlled via the electrical load [9.1]. Some systems do include a gate at

the entrance of the penstock and a change in the position of the gate greatly affects the

modelling of the penstock.

The gate is normally controlled by an governor, which monitors the speed of the

generator. Any deviation of speed and, therefore output power, results in a change in gate

position via the governor [9.2]. The control action of the governor can range from

proportional-only control to PID control [9.3].

Studies have shown that hydro-turbines exhibit an initial inverse response characteristic

of turbine torque to gate changes [9.4]. In other words, a positive step in gate position

results in an initial 'transient droop' in the mechanical power. This effect can be modelled

using a first order transfer function as follows:

ATm is the change in unit torque, AG is the change in unit gate position ('1' indicates that

the gate is fully open) and Tw is known as the 'water time constant' (s) and is typically '1'

[9.3]. The transfer function contains a 'right-hand plane zero' making it potentially

unstable [4.2]. It should be noted that this representation is often deemed sufficient,

although Ref. [9.4] argues that the first order transfer function is inadequate and should

(9.8)
AG l + 0.5Tws

181

be replaced with a fourth order model. For the sake of simplicity, the first order model,

Eqn.(9.8), will be used for simulation purposes.

9.3 Developing the Model in Simulink

Having established the 'front-end' of an MHP it is now necessary to develop the rest of

the MHP model in Simulink and test it. The model will be designed for the grid

connected llkW IM generator, so a similar sized MHP will be proposed and developed.

It should be noted that a larger size could be designed with the appropriate torque

scaling, as seen in the development of the WECS model. The model will be designed to

include the turbine characteristics as well as drive-train and generator dynamics used

before with the WECS. Appropriate parameter alterations will be required to suit the

MHP requirements.

9.3.1 Modelling the 'Front-End' Dynamics of the MHP

Since no data is available for the simulation and comparison of an existing MHP, it was

decided that a suitable model could be derived and designed from the information

contained in the references. As stated above, an 1 lkW system was required, so knowing

the approximate losses of the turbine an initial idea of the mechanical power at the

turbine, and therefore the flow rate and gross head, can be estimated. Appendix 9b details

the estimation of parameters and describes any assumptions made. The design is based on

the assumption that a Pelton water turbine, with a efficiency of 75%, will be used [9.1].

The assumptions and calculations from Appendix 9b show that the mechanical power

should be 14.67kW, corresponding to a flow rate of 0.05m3/s and net head (after penstock

losses) of 30m. Additionally, the transfer function relating the initial inverse response

characteristic of turbine torque to gate changes will need to be combined with these

values. To ensure that the complexity of the model is kept to a minimum, no attempt will

be made to simulate the effects of a gate position governing system. A change in gate

position will be represented as a step demand to the input of the transfer function. This

182

will suffice to show the characteristics of the penstock and the effect on the model and is

similar to the method of modelling in references [9.3]. Fig. 9.2 shows the Simulink model

of 'front-end' characteristics. Note that the gate position is represented by a 'step input'

module which can be designed to 'step' at anytime in the simulation. The 'switch' is used

to by-pass the gate transfer function at 'start-up'. Instability occurs if the switch is not

used.

1/wls

rho*g
mech

torq
hp/w

m ech
power

flow rate

head

gate
SwitchP enstock

model

Clockl

' 1/u

D.05

0.5s+1
-s+1

9.81*1000

Fig. 9.2 Simulink model for MHP 'Front-End'

The '1/wls' module is used, along with 'hp/wls', to convert the mechanical power into a

driving torque. The next stage is to modify the existing WECS drive-train and generator

model for use with MHP.

9.3.2 Modelling the Drive-Train and Generator Dynamics

The first adjustment to the drive-train model will be a change in the gearbox ratio. Due to

the characteristics of the MHP the gearbox ratio is limited to 3:1 [6.1]. Choosing this

value means that the maximum allowed speed for the low speed shaft (LSS), at

183

157 08
synchronous, will be — j — = 52.36 . If this is the case, the driving torque to establish

1467kWthe required mechanical power of 14.67kW is — :-------- = 280.2Nm.
52.36

The losses of the Pelton turbine can be included in the existing drive train model by

adjusting the damping factor, Yi- The loss can be represented by a reduction of the LSS

torque, namely, Loss = 280.18 x 0.25 = 70.05N m . Since yi relates the loss in torque to the

LSS speed, it will have the value y 7 = — = 1.33. This estimate does not take into
52.36

account the losses due to the shaft stiffness and assumes that the generator is running at

synchronous speed. Further analysis will need to be performed during simulation.

Since no other drive-train parameters were available for a typical MHP, adjustments to

the existing model were performed in an iterative manner, the values being chosen to

ensure stability and reduce the initial oscillation at the start of the simulation. It should be

emphasised that any modification of these parameters to correspond to any measured

data, can be easily implemented.

The derivation of the parameters for the llkW generator is detailed in Chapter 6. List 9.1

shows the chosen parameters for the MHP drive-train and generator.

11 = 50 kgm2

12 = 0.075 kgm2

Kj = 2xl& Nm/rad

K2 = 2.13x10s Nm/rad

N = 3

y j = 1.33

y2 = 0.002

De = 4.0832 Nms/rad

T = 0.0256s

List 9.1 MHP Drive-Train and Generator Parameters

184

9.3.3 Software-Only Simulation of MHP

Having established the MHP model parameters, it is simulated in Simulink. Initially, the

simulation is performed without the penstock model in order to analyse the mechanical

power measurements and assess the choice of damping factor, yi.

Table 9.1 shows the simulated LSS power, pis, and the HSS power, phS, taken for various

values of yi.

Yi Pls(W) Phs(W)

1.33 10,990 8,740

1 11,908 9,655

0.5 13,307 11,050

Table 9.1 Power Analysis Measurements

The measurements show that the initial calculation of 1.33 for yi is too high and should

be replaced by 0.5 to give a more realistic performance.

To complete the simulation, the penstock model is included and its effect monitored. An

arbitrary 'step’ in gate response from 60% 'open' to 80% is set 10s into the simulation.

Fig. 9.3 shows the response of the LSS torque, tis, to the step.

185

200

100

0
Time (s)

Fig 9.3 Response of tjs to a Gate Step Change

The figure clearly shows that the effect of the change in gate position results in the

inverse response characteristic expected from a MHP. This 'transient droop' compares to

the results of modelling in references [9.3]. The initial disturbance at the beginning of the

simulation is due to the 'initial values' chosen for some of the Simulink modules, as seen

with the WECS model.

9.3.4 HILS of M HP

Initial simulations showed that the system was very susceptible to noise and it was

difficult to distinguish any changes in the simulation with a change in gate position.

Since the parameters of the model were assumed, it was decided to alter the LSS

damping factor, which represents the loss of the turbine, from 0.5 back to 1.33 (see Table

186

9.1). This ensured a stable simulation and Fig 9.4 shows the response of the simulator to

a gate step from 60% open to 80%, as before. The measurement is affected by noise, as

expected, but comparing Fig. 9.4 and Fig. 9.3, there is a direct comparison between the

software-only and HILS simulations.

300

250

| 200
o '

§■150o

w 100_ i

50

0
0 5 10 15 20

Time (s’)
Fig. 9.4 HILS Response to Gate Step

The inverse response characteristic is clearly visible at the point of the gate change (10s).

This implies that the simulator provides an accurate, if noisy, response validating its use.

As with the WECS, a number of methods were addressed in order to improve the

response, but like the WECS, the noise was predominately due to the speed measurement

and could not be improved upon.

187

9.4 Summary

To emphasise the flexibility and adaptability of the simulator, a micro-hydro plant

(MHP) was designed and simulated both as software-only and HILS. Since no 'real'

system was available for simulation, system parameters were derived, and a model

designed, from information contained in the references. The model defined a new 'front-

end', corresponding to the hydrodynamics of a MHP, while the drive-train and generator

models retained the same format used in the WECS model. Parameters were altered to

suit the MHP.

Unique to the MHP was a model of the penstock representing changes in gate position.

An inverse response characteristic was observed at a gate position change, as expected

from references, and this was evident both with the software-only and HILS simulations,

validating the model. The simulator has been shown to successfully model both a wind

energy and hydro energy converter and has emphasised its flexibility to adapt to

modifications, regardless of the complexity.

188

Chapter 10 Conclusions and Recommendations for Further Work

10.1 Design Review

The proposal of the project was to develop a hardware based, fully dynamic simulator for

renewable energy converters. Initial studies indicated that efforts would be best served

concentrating on a simulator for a wind energy converter system (WECS).

A literature review of current developments in the field of WECS simulators indicated

that a definitive, dynamic and flexible simulator had not yet been realised. In other

words, there was still a need for a WECS simulator incorporating all the pertinent

dynamics of a WECS drive train and the associated aerodynamics. The desire to simulate

various renewable energy sources and different schemes of operation, suggested that both

the hardware and the software used for simulation needed to be easily adaptable to these

requirements.

Once the modelling of the dynamics of the WECS and the relevant aerodynamic effects

had been investigated, it was then necessary to assess suitable simulator hardware and

software.

Selected hardware consisted of a DC drive and motor connected to a grid-connected

induction machine (IM). The DC motor and the IM were mounted side-by-side and

connected via a belt and pulley arrangement. The side-by-side arrangement was selected

specifically to ensure that the generator could be easily replaced without major

modifications to the test-bed.

The selected software for modelling also had to be able to control communication

between the PC and the drive. Initially, a serial communication link, manipulating the DC

drive’s ‘on-board’ software and communication capability, via the serial port of a PC,

was selected. The software chosen to simulate the WECS and control the serial

communications was the Mathwork’s Simulink with the Real-Time Workshop.

189

Additional software was designed to provide the novel and unique communication

requirements between Simulink and the DC drive.

Having established the hardware, software package and required communication between

the two, it was necessary to develop, in Simulink, the proposed software-only model of a

constant speed WECS. A model, based on a 45kW WECS, was developed and validated

by comparing the performance of the simulation with measured data from the WECS site.

All the relevant dynamics and aerodynamics of the WECS were modelled successfully.

Before the simulator hardware could be included for HILS, the effects of using a smaller

size generator was assessed in software. The objective was to ensure that the simulation

in software was for a 45kW WECS while an 1 lkW generator was used to return power to

the mains. A model of the 1 lkW generator had to be developed and suitable gain values

placed on the torque demand from the software and the speed from the generator. This

ensured that the generator driving torque was within its operational capability, and the

speed feedback to the gearbox was of the same order as that expected from a 45kW

machine.

Once the use of a different size generator was validated, it was necessary to assess the

effects of including HILS. The inherent delay due to the serial communications link

between Simulink and the Mentor II, the speed measurement quantisation and the noise

present on the speed signal were modelled in software. Initial investigations discovered

that the speed measurement from the Mentor II using either tachogenerator feedback or

an optical speed encoder would cause the simulation to become unstable. Further

investigations indicated that connecting the tachogenerator, via an attenuator, to one of

the Mentor II general purpose input registers, would allow stable operation.

The response of the motor, due to losses and its inertia, had to be compensated for in

software. The dynamics of the motor, generator and pulleys were calculated from test

results and a suitable compensation model designed and tested in Simulink.

190

HILS was established and evaluated. Comparing the simulated data with that of the RAL

site data and the software-only simulation indicates that the lower frequency response

matched that of the real system. However, the higher frequency response was subject to a

higher energy content swamping out the effects of the rotational sampling. This appeared

to be due to the noisy speed signal from the drive. To compensate for this noise,

alternative gearbox arrangements were designed and tested to limit the effects of the

noise in the simulator. Additionally, the motor compensation model was also modified

and a first-order digital low pass filter was designed and implemented in Simulink

(higher order resulted in instability). Although, these modifications provided some

improvement to the lower frequency response, the higher frequency response was still

swamped by noise.

In an attempt to improve the response of the simulator an alternative communication

method, between the PC and the drive, was developed. A PC based data acquisition card

was connected to one of the drive's ADC and DAC channels and communication

controlled, once again, by the development of unique driver blocks in Simulink. This

arrangement reduced the complexity, and therefore improved the speed of the

communication, allowing the sampling rate during simulation to be increased. Once the

communication requirements were established, the WECS simulator with HILS could be

tested. Results showed that, compared to the serial comms. method, the low to mid­

frequency response was improved, especially at the rotational frequency, while the high

frequency response was not. The additional ADC and DAC conversions, required due to

the presence of the data acquisition card, were blamed for the increase of high frequency

energy content.

Finally, to prove the flexibility of the simulator a micro-hydro plant (MHP) was modelled

and simulated, both software-only and HILS. Unlike the WECS simulation, no real

system was available for comparison, but a realistic model was designed and developed

from references. The 'front-end' of the model was established to include the

191

hydrodynamic properties of a MHP and provide a driving torque for the mechanical

section of model. The drive-train and generator models were the same format as that of

the WECS, with only minor changes to the parameter values to suit the MHP

characteristics. Software-only and HILS simulations gave comparable results.

10.2 Achievements of the WECS Simulator

The main selling point of the Simulator is its flexibility. Throughout the design and

development, attention was always given to the fact that the simulator should incorporate

various renewable energy converters as well as have the ability to cater for different

operating strategies. The design of the hardware is such that the selected generator could

easily be replaced without major modifications to the test-bed. For example, larger hydro

systems tend to use multi-poled generators operating at a relatively slow speed, compared

with the two-pole generator used in this study. If simulation of such a device was

required, the new generator could be mounted on the existing test-bed and a suitable

pulleys ratio chosen depending on the shaft torque requirements of the generator. The

only modifications to the test-bed would be the possible need for new fixing points for

the generator. The height of the generator is not of great importance as it would be with

an in-line arrangement. The only restriction is that the selected pulley on either or both

the motor or generator is not greater than the 96H (388.08 mm) pulley used in this study.

The flexibility of the selected software package of Simulink and Matlab has been

exhibited throughout the study. This was especially apparent during the development and

validation of the aerodynamic effects such as rotational sampling and spatial filtering for

the WECS model. The vast component Simulink library allowed the implementation of

modular development of the model with relative ease. Various phenomena, such as the

aerodynamic effects could be created as subsystems, and the influence of each assessed

prior to the introduction of further dynamics. This modular approach also ensured that

model fault-finding during development could be quickly narrowed down to subsystem

level. This modular approach was seen to be advantageous when modelling another

renewable energy converter, the MHP, where the existing WECS model was easily

192

modified. Many of the model parts, such as the low speed shaft, gearbox and generator

were retained, subject to some parameter adjustment.

Flexibility was further emphasised when adapting the simulator to include the data

acquisition card for communication between the PC and drive. Modifications to the

Simulink model and, additionally the simulator hardware, were shown to be relatively

easy once the particular communication requirements were established and designed in

Simulink.

Another advantage of using the selected package is the comprehensive collection of

analysing tools. This is particularly evident with the power spectral density comparison

of the various simulated data and the measured data, and the assessment of the WECS

model transfer function and pole position. The ease of use of such tools aided the

simulator development since it prevented the need to create complex algorithms to

perform the desired tasks.

One of the most novel aspects of the simulator development is the design of the

communications modules for use with the Real-Time Workshop. These modules are

essential for HILS in real-time and the ability to include such modules as graphical

components in the Simulink models allowed the software-only model to be easily

converted to allow for HILS.

The main achievement of the simulator is that it has met the objectives of the initial

project brief, in that it has provided a test-bed that can be used to simulate renewable

energy converters. Analysis of the response of the WECS simulator using a measured

wind speed profile, has shown that its performance is very similar to that of a real,

operational WECS under the influence of the same wind profile, while the software-only

and HILS simulations of the MHP are also similar. Some work is required to improve the

high frequency response of the simulator to match that of real systems, but the cause of

the existing difference has been identified.

193

10.3 Further Developments

The immediate requirement for further development of the simulator is to improve its

high frequency response. This could be achieved with the introduction of a high

resolution speed encoder in an attempt to reduce the noise on the speed feedback signal,

but a digital encoder will be limited by the 10-bit output DAC used to transfer the data to

the PC so the advantages may be minimal. As an alternative, an analogue encoder could

be used, but again, it is unsure if noise inherent in such a system would cause similar

problems.

Another immediate development of the simulator could be the simulation of a variable

speed or two speed operation WECS. The drive train of the model used may need to be

modified to realise the requirements of variable speed operation. The development of the

‘simple’ constant speed model neglected some dynamics that may be required during

variable speed operation. The relatively large damping inherent with the use of the grid

connected induction machine, for example, may not be valid for a synchronous machine,

effecting some of the modelling assumptions (see Chapter 2). Also effects such as tower

and hub resonant frequencies may be excited by the variable speed operation leading to

induced torque in the drive train. These effects, would therefore need to be included in

the model.

As mentioned in the previous section, further renewable energy converters, such as wave

devices, could be simulated using the simulator. The hardware can be easily modified to

allow for such a requirement while the software is flexible enough to ensure that the

renewable energy converter can be easily modelled, as shown with the introduction of the

MHP. Although further study is required on the modelling of additional converters it is

assumed that, as with the WECS and MHP, the outcome of any ‘front-end’ simulation in

software is to provide a driving torque demand for the DC motor and receive a speed

feedback from the drive. This would ensure that further development of models would be

minimal.

194

The maximum sampling frequency, at present, is limited to the maximum bandwidth of

the drive which is 80Hz. Although acceptable for both the WECS and MHP simulators, it

may not be the case for further R.E. converters. If not, an alternative interface between

the Real-Time Workshop and the DC motor will be required, by-passing the DC drive.

This will, obviously, lead to the development of additional hardware and control

algorithms, increasing the complexity of the simulator. Fortunately, this development

would not affect either the Simulink modelling or the hardware test-bed.

10.4 Original Contributions

There are a number of novel aspects of the research that should be emphasised. Chapter

1 discussed some existing WECS simulators and highlighted the need for a HILS

simulator which should be fully dynamic, including all the mechanical dynamics and

aerodynamics, which effect the driving torque of the device. Reviews of current

developments, on-going since the initiation of the project has shown that simulators

being used are still suffering from the limitations of not including all the dynamic and if

so, are failing to compare the simulators with operational WECS [10.1]. This project has

addressed these needs and implemented them successfully. This has resulted in a unique

simulator which can be used for the development of WECS control schemes, or

alternative drive techniques, in the laboratory and not in the hostile environments usually

associated with the location of WECS.

Equally unique is the development of the simulator to simulate a MHP system. The

simulator includes all the dynamics associated with the mechanical system and

hydrodynamics. Reviews of the existing modelling, for such devices, have shown that

they are not fully dynamic and they are all software based. Including all the dynamics

and ensuring HILS operation makes this area of the project equally unique, once again

allowing for the development of MHP control and drive schemes in a laboratory

environment.

195

Although the developments of the WECS and MHP simulators are unique in themselves,

the fact that both these schemes are implemented on the same simulator and are readily

interchangeable with no modifications, emphasises the unrivalled singularity the

simulator represents and confirms the flexibility of the design which was sought from the

project conception.

Another novel aspect of the project which needs to be highlighted is the development of

the communications between the drive and the PC. The serial communication link which

manipulated the programming structure of the Mentor and Simulink software was unique

in conception and design. A thorough knowledge of both systems was required before a

suitable protocol could be designed and implemented. The resulting code, used for both

reading and writing data, provided a reliable and effective means of communication and

initially, avoided the need for an expensive data acquisition card. Although limited by its

maximum sampling rate of 40Hz, the communication method is a powerful option

allowing control of the Mentor DC drive from Simulink. This, therefore, has the potential

of being a very useful tool if such an arrangement would be needed for further research.

Equally, the inclusion of a data acquisition card also required a similarly unique

development of control software in Simulink. The characteristics and operation of the

card, again, had to be thoroughly researched before this software could be developed.

Adjustments to the Mentor software also had to made to ensure that the correct voltage

values were placed at or read from the appropriate DAC and ADC registers respectively.

This once again emphasises the flexibility and novelty of the chosen simulator

arrangement in that it adapts easily to changes whether in hardware or software.

The final aspect of the simulator that has to be addressed, is the hardware test-rig

arrangement. The review of all other simulators, that included some form of HILS,

showed that each had a fixed motor-generator arrangement some even having a fly-wheel

to simulate the inertia of a WECS. These systems are not designed for flexibility and

limit the simulators to testing one or a specific type of particular generator without major

re-design of the test-bed. The novelty of the side-by-side arrangement used in this

196

project, with a pulley-belt system and sliding base, is that a whole range of generator

sizes and types can be included in any simulation without any modification to the test

bed. This, once again, re-emphasises the flexibility of the simulator and confirms its

status as a powerful simulation tool for renewable energy converters.

197

Chapter 11 References

[1.1] Personal Correspondance with Dr J.A.M. Bleijs, Leicester, Jan. 1995

[1.2] ‘A Comparative Analysis of Dynamic Models for Performance Calculation of Grid-

Connected Wind Turbine Generators’, Chedid R, LaWhite N, Ilic M, Wind Engineering,

Vol. 17, No.4, 1993

[1.3] ‘Electrical Power Equipment and Measurements - With Heavy Current Electrical

Application’, Symonds A, McGraw-Hill Book Company (UK) Limited, 1980

[1.4]. ‘Basic Control Aspects of WECS’, Freris LL, taken from ‘Wind Energy

Conversion Systems’, Freris LL (Editor), Prentice Hall International (UK) Ltd, 1990

[1.5]. ‘Rotorsimulator voor de IRFLET - Proefopstelling’ (in Dutch), Baltus CWA,

Overtoom ATJM, Pierik JTG, ECN 1991

[1.6]. ‘Design and Test of the Controller for a Variable Speed Wind Turbine’, Leithead

WE, Rogers MCM, Pierik JTG, van Engelen TG, ETSU 1994

[1.7]. ‘Modelling and Identification of Flexible Wind Turbines and a Factorization

Approach to Robust Control’, Bongers PMM, Delft University, 1994

[1.8], ‘Combined Multiple Renewable Energy Sources System Simulator Facility’

Astinov I L, Bopp G, Consoli A, Lalas D P, Morgana B, Wrixon G T, EWEC 1994,

Thessaloniki, Greece, 10-14 October, ppl 154-1158

[1.9]. ‘A Microprocessor Controlled DC Drive as Simulator of Wind Turbines’ Di Napoli

A, Crescimbini F, Noia, G, EWEC 1989, Glasgow, UK, 10-13 July, pp687-691

198

[1.10]. ‘Blade-Pitch-Angle-Controllable Windmill Simulator’ Toumiya T, Sakakibara T,

Suzuki T, International Journal of Energy Research, Vol. 17, p89-104, 1993

[2.1]. ‘Generation of Electricity’, Freris LL, taken from ‘Wind Energy Conversion

Systems’, Freris LL (Editor), Prentice Hall International (UK) Ltd, 1990

[2.2]. ‘Wind Turbine Aerodynamics’, Sharpe DJ, taken from ‘Wind Energy Conversion

Systems’, Freris LL (Editor), Prentice Hall International (UK) Ltd, 1990

[2.3]. ‘Wind Energy Technology’, Walker JF, Jenkins N, UNESCO, John Wiley and

Sons, 1997

[2.4]. ‘Wind Turbine Engineering Design’, Eggleston DM, Stoddard FS, Van Nostrand

Reinhold, 1987

[2.5]. Personal correspondance from Dr J Dutton, Rutherford Appleton Labratory,

Oxfordshire, UK

[2.6]. ‘Final Report for CEC Contract JOUR-0078 Vol. 3 - Jodymod Dynamic Simulation

Software Package: Model Description’ RAL-94-003

[2.7]. ‘Horizontal Axis WECS Design’, Armstrong J, Brown A, taken from ‘Wind

Energy Conversion Systems’, Freris LL (Editor), Prentice Hall International (UK) Ltd,

1990

[2.8]. ‘Drive-Train characteristics of Constant Speed HAWT’s: Part 1 - Representation

by Simple Dynamic Models’, Leithead WE, Rogers MCM, Wind Engineering, Vol. 20,

No. 3, 1996

199

[2.9]. ‘Dynamic Analysis of Wind Turbines for Fatigue Life Prediction’ Garrad AD,

Hassan U, Garrad Hassan & Partners

[2.10]. ‘Development of a Wind Turbine Systems Dynamic Model Using the Automatic

Dynamic Analysis of Mechanical Systems (ADAMS) Software’, Wright AD, Buhl ML,

Elliott AS, National Renewable Energy Laboratory

[2.11]. ‘Modeling and Identification of Flexible Wind Turbines and a Factorizational

Approach to Robust Control’, Bongers PMM, Delft University of Technology, Faculty of

Mechanical Engineering and Marine Technology, 1994

[2.12]. ‘Forces and Dynamics of Horizontal Axis Wind Turbines’, Garrad AD, taken

from ‘Wind Energy Conversion Systems’, Freris LL (Editor), Prentice Hall International

(UK) Ltd, 1990

[2.13]. ‘Classical Control of Active Pitch Regualtion Of Constant Speed Horizontal Axis

Wind Turbines’, Leithead WE, De La Salle SA, Reardon D, International Journal of

Control, Vol. 55, No. 4, 1992

[2.14]. ‘Unsteady Wake Effects Caused By Pitch Angle Changes’, Stig-0ye AFM, IEA

R&D WECS Joint Action on Aerodynamics of Wind Turbines Symposium, Report of the

Technical University of Denmark, 15 October 1986 (s.oye@afm.dtu.dk)

[2.15]. ‘Wind Turbine Simulation Model - User Guide and Software Report’, Leithead

WE, de la Salle S, Reardon D, Department of Energy contract no. E/SA/CON/5108/1851,

1990

[2.16]. ‘Simulation of Wind With a Variable ‘K’ Parameter’, Keller JG, Wind

Engineering, Vol. 16, No. 6 1992

200

mailto:s.oye@afm.dtu.dk

[2.17]. ‘Modelling of Wind Turbines by Simple Models’, Wilkie J, Leithead WE,

Anderson C, Wind Engineering, Vol. 14, No. 4, 1990

[2.18]. ‘A Dynamic Model for Performance Calculations of Grid-Connected Horizontal

Axis Wind Turbines, Part 1 - Description of the Model’, Sheinman Y, Rosen A, Wind

Engineering, Vol. 15, No. 4, 1991

[2.19]. ‘Role and Objectives of Control for Wind Turbines’, Leithead WE, de la Salle S,

Reardon D, IEE Proceedings-C, Vol. 138, No.2, March 1991

[2.20]. ‘Drive-Train characteristics of Constant Speed HAWT’s: Part II - Simple

Characterisation of Dynamics’, Leithead WE, Rogers MCM, Wind Engineering, Vol. 20,

No. 3, 1996

[3.1]. ‘Principles of Electric Machines and Power Electronics’, Sen PC, John Wiley and

Sons Inc. 1989

[3.2]. ‘Control Techniques Drives and Servos Yearbook 1990-1’, Control Techniques

Pic., 1989

[3.3]. ‘Fenner Drive Belts and Pulleys Catalogue’, J H Fenner and Co., 1988

[3.4]. Mawdsley data sheet - Personal Correspondence

[3.5]. ‘User’s Guide for the Mentor II DC Drives’, Control Techniques pic 1991

[3.6]. ‘Mentor II Supplementary Information’, Control Techniques Drives Limited, Jan.

1992

201

[3.7]. ‘Interfacing the IBM-PC to Medical Equipment - The art of Serial

Communication’, Nickalls RWD, Ramasubramian R, Cambridge University Press, 1995

[3.8]. Watcom C/C++ On-line Help Facility, Version 10.50

[3.9]. ‘The C++ Programming Language’, Second Edition, Stroustrup B, Addison-

Wesley Publishing Company, 1991

[3.10]. ‘Software Engineering with C++ and Case Tools’, Pont MJ, Addison-Wesley

Publishing Company, 1996

[3.11]. ‘Digital and Analog Communication Systems’, Leon W, Couch II, Macmillan

Publishing Company 1990

[3.12]. ‘Modelling of Wind Turbines by Simple Models’, Wilkie J, Leithead WE,

Anderson C, Wind Engineering Vol. 14 No. 4, 1990

[4.1]. ‘Matlab User’s Guide’, The Mathworks Inc., Natick, Massachusetts, 1993

[4.2]. ‘Modem Control Systems Analysis and Design Using Matlab’, Bishop RH,

Addison-Wesley Publishing Company, Inc., 1993

[4.3]. http://www.mathworks.com/products/simulink/, 1998

[4.4]. ‘Simulink Dynamic System Simulation Software - User’s Guide’ The Mathworks

Inc., December 1993

[4.5]. ‘Simulink Real-Time Workshop’. The Mathworks Inc. 1990-1993

202

http://www.mathworks.com/products/simulink/

[5.1]. Personal Correspondance with G. Dutton, July 1997, Rutherford Appleton

Laboratory, Oxfordshire, UK.

[5.2]. Personal Correspondance with Paynter R, August 1997, Rutherford Appleton

Laboratory, Oxfordshire, UK.

[5.3]. ‘Signal Processing Toolbox User’s Guide’, The Mathworks Inc. 1990-1993

[5.4]. ‘Wind Turbine Control Systems Modelling and Design Phase I and II - Main

Report’, Leithead WE, de la Salle SA, Reardon D, Grimble MJ

[6.1]. Personal Correspondance from Greenwood D, Brook Hansen Design Office

Huddersfield, 8 Dec 1997.

[6.2] Data Sheet 10748, RS Components 1991

[8.1] 'Amplicon Liveline Catalogue', 1997, Vol. 2

[8.2] 'User Manual for the PC30F and PC30G Series Boards', Eagle Technology, Fifth

Edition, 1996

[9.1] 'Micro-Hydro Design Manual - A Guide to Small-Scale Water Power Schemes',

Harvery A, Intermediate Technology Publications, 1993

[9.2] 'Assessment of Hydroturbine Models for Power-Systems Studies', Smith JR,

McLean R, Robbie JF, IEE Proc., Vol.130, Pt. C, No.l, Jan. 1983

[9.3] 'HydraulicTurbine and Turbine Control Models for System Dynamic Studies',

Working Group on Prime Mover and Energy Supply Models for System Dynamic

Performance Studies, IEEE Trans, on Power Systems, Vol.7, No. 1, Feb. 1992

203

[9.4] 'Accurate Low Order Model for Hydraulic Turbine-Penstock', Sanathanan CK,

IEEE Trans, on Energy Conversion, Vol. EC-2, No. 2, June 1987

[10.4] 'Control Structures Analysis for a Real Time Wind System Simulator', Nichita C,

Diop AD, Belhache J, Dakyo B, Protin L, Wind Engineering, Vol. 22, No. 6, 1998

204

Appendix 1a

The following is an outline of the technology and designs that are being incorporated in

some of the WECS simulators being developed at the moment. Various aspects of

aerodynamics and the wind speed properties have been given particular attention and will

be used as a comparison base.

The Energy Centre of the Netherlands IRFLET Project

The IRFLET test-rig was constructed under the Dutch Department of Energy FLEXHAT

programme which had a stated aim of attaining a reduction in the cost of wind power by

30% [1.5].

The test-rig for the IRFLET project is shown in Fig. A la.l [1.6]. It consists of a variable

speed drive-train, i.e. a flexible shaft, gearbox, synchronous generator and DC-link,

together with a DC machine which mimics the aerodynamic torque corresponding to a

specified wind input. The DC machine is computer controlled in order to simulate the

aerodynamics of the rotor with the rotor inertia represented by a flywheel. It drives the

variable speed drive-train through a gearbox. The rig is rated at 30kW.

bnuhJesi jynchracom machine

rp=dj WIND TURBINE I
| ROTOR SIMULATOR j

Rotor shaft driving facility Variable speed system with integral control

Fig. A la .l IRFLET Test Rig

Fig. Ala.2 shows the aerodynamic algorithm used for the test-bed. The diagram shows

that the model relies on the kinetic energy relationship between power and wind speed

205

and not on any further aerodynamics. Subsequent studies have shown that the rig

operates on ‘stepped’ wind speed inputs and is not concerned with any effects due to

turbulence.

The main failing of the rig is its inflexibility. As stated above, the rig uses a flywheel to

model the inertia. This implies that the rig is only designed to simulate one WECS, unless

the flywheel is easily replaced. Even if this were the case, it is very impractical.

wind
speed

aerodynamic
torque

rotor
speed 2 k n

w

Fig. A la.2 IRFLET Aerodynamic Algorithm

Delft University of Technology DUWECS

DUWECS, which stands for Delft University Wind Energy Conversion Simulation is a

dedicated wind energy PC based simulation package using the Fortran 77 language. The

package is such that a complete wind turbine is divided into modules.

A library of modules is contained within the package and can be easily exchanged to

form different wind turbine models, for example a rigid tower instead of a flexible tower.

206

Up to 12 different rotor modules are available with varying degrees of aerodynamic

properties. Modules include:

• No rotor dynamics

• Oscillatory rotational sampling (tower shadow)

• Wind shear and yaw

• Two and three bladed models

Reference [1.7] includes results of a DUWECS simulation of a real wind turbine. The

simulation includes a rotor module which includes tower shadow and wind shear.

Unfortunately, the simulation assumes an average wind profile and neglects turbulence.

Comparisons with the measured data from the wind turbine and the simulator are

favourable but are only valid for ‘stationary values’. In other words, because actual wind

fields are unknown, no clear statements about the simulation model could be made [1.7].

SMI Multiple Renewable Energy Sources System Simulator

The Simulation Modelling in Industry (SMI) laboratory based in the Technical

University of Sofia, Bulgaria contains a facility to simulate combined multiple renewable

energy sources including wind and PV.

The facility is comprised of a 25kWp photovoltaic simulator, a 50kVA wind turbine

simulator, two diesel gen-sets with a total power of 80kVA and a battery set with a total

capacity of 135kWh. This facility supplies a simulated load of 70kVA. Various power

electronic circuitry is used to control the facility [1.8].

The system can be configured to work as a real hybrid plant, having the capability to be

configured as four different layouts, and has the ability to vary the size of the components

to simulate as many as possible different hybrid systems. All components are connected

to supply a stand-alone grid.

207

The wind turbine simulator is realised by a DC motor driving a three-phase generator and

is a constant speed device. The motor is driven by a controlled rectifier linked to a main

control computer (Apple Macintosh). This link provides the controller of the rectifier

with a value of torque calculated by dedicated software, used to simulate the action of the

wind. This torque value is continuously compared with measured torque on the

motor/generator shaft.

The torque software is generated using a particular wind turbine’s power curves. Detailed

aerodynamics do not appear to be included in the simulation and no details of testing are

included in the documentation.

In general, the simulation facility is quite large and this, to some extent, limits its

flexibility.

University of Rome Wind Simulator

The Department of Electrical Energy, University of Rome, has developed a Wind turbine

simulator as seen in Fig. Ala.3 [1.9].

As with the majority of the simulators mentioned in this section, this particular rig uses

software to drive a DC motor. Similar to the IRFLET simulator, it includes a flywheel to

model the rotor inertia and simulates a constant speed system.

The action of the wind is modelled on the computer by imposing gust models on top of

fixed, average wind speeds. No further dynamics are included.

208

80286

WIND iil'iZ O

RAM

Fig. A la.3 The University of Rome Wind Turbine Simulator

Blade-Pitch-Angle-Controllable Windmill Simulator

The authors in reference [1.10] have developed a WECS simulator which uses a software

controlled DC motor to drive a DC generator. Fig. Ala.4 shows the hardware

arrangement.

209

W i n d m i L o a d

9 U d c p u c h
c o n t r o l ScV w

G e a r

W i n d m i l l s i m u l a t o r V

Vm

D . C . M o t o r D C. g e n e r a t o r-O
F ie ld ?

C o n s u n t

P o w e r

N. Tm

Fig. A la.4 Hardware Arrangement for ‘Windmill Simulator’

The model is constant speed and the facility to change system parameters, such as rotor

inertia, is available. Software also includes a model that compensates for the use of the

DC motor simulating part of the drive train.

Initially, only the average wind speed values can be used for the determination of the

turbine speed/torque characteristics. Further tests indicated that the rig could simulate

both transient and dynamic responses. The software also includes a program to generate

‘natural wind’ with the use of random number generation and appropriate filters. Further

tests apparently show that the simulator responds favourably to the ‘natural wind’.

The simulator does not appear to include aerodynamic effects such as tower shadow,

wind shear and yaw misalignment.

210

Appendix 2a

Calculation of the First Order Dynamics of an Induction Generator

The time constant, x, and the torque speed slope, De, of a first order model of an

induction generator, can be shown to have the following form:

x = [K. + K ^ K . - K ^)]
0)5[X32 + (^ 3 - K2K4)2 - (1 + K 2)e2]

where the slip, e is:

e = (p (0R (0S)
COc

The K values are defined as:

K rs(x;r + x m) ' K K ^ (X b + X J K = r£Xjn (A2a3)
1 a 2 a ’ 3 a 4 a

and a = X lsX'ir + X mX;r + X mX ls (A2a.4)

where rs is the stator resistance, r \ is the rotor resistance, Xjs is the stator leakage

reactance, X’ir is the rotor leakage reactance and Xm is the magnetising reactance.

The torque speed slope, De, is defined as the rate of change of steady state generation

reaction torque, Tgo with the slip of the generator. TGo is derived as:

T = 1 P__________________ K2KaeE 2_______________ (A2a 5)
Go 2 (o)srs) - K2K4)2 + K32 - 2 K 2Kae +(1 + K 2)e2]

211

where E is the peak line voltage.

De can therefore be defined as:

p pTg„ [^ 2 +(KtK ^ - K,KA)2 ~(\ + K,2) t2]
‘ t (m.E) [(KtK3 - K2K4f + K,2 - 2K2K4z + (l + K, V] (A2a.6)

212

Appendix 3a

Calculation of Test-bed Dimensions and Pulley Sizes

For the selected 3000rpm, 1 lkW Brook Crompton Parkinson IM, a suitable pulley has to

be chosen to give the desired speed ratio 2:1 (since motor could operate up to 2000rpm

without field weakening). As stated in Chapter 3, it is desirable to use a Fenner 96H

(38.1mm width, 388.08mm diameter) pulley connected to the DC motor. The Fenner

Drives and Pulley s manual is consulted to give the desired ratio. From the manual, it is

noted that the selected pulley needs to be 48H [3.3].

NUMBgfl O ^SSTrt

35>-•9h •9m : cm 2'H 22 - :3w 24* : sh 2SH 20H :;> ll, r- I

'00 : 24) 25 26 0 29 0 29 0.30 ■3.32 3 3 3 0 34 0.36 0 37 0 40 2 42 3 47 3 53 J 63
m 0 47 3 50 0 5 3 0.55 0 58 0 61 3 6 3 3 6 6 3 63 3 71 0 74 0 79 :> 4 0.95 • 05 ' 25
300 : 7i 3.75 79 08 3 0.37 0 91 3.95 3 9 9 1 03 ' 07 1 11 1.19 1 25 1 42 • 53 ’ 89
400 9 96 00 05 1.11 * '6 1.21 ’ 26 1 32 ' 37 1 42 ; 47 1 58 63 1 89 2 ’0 2 5 2
£00 • 19 25 32 1.38 1 45 1 51 1.58 ’ 55 1 78 1 34 1 97 2 ■: 2 37 :.&3 2 15
600 ' 42 50 58 1 66 * ?4 • 82 1 89 ’ 97 2.05 2.13 2.21 2 37 2 52 2.83 3 /5 1
700 56 ’ 5 34 i 93 2 33 2.12 2.2 ’ 2.30 2 39 2.40 2 57 276 I ?4 : 30 356 i IS
n o 1.71 1 J0 1.89 1,99 2 .0 2 J 8 ZJZ7 2 J 7 2.46 2.55 2 .0 2 .0 3 .0 3.29 3.77 4.50
900 39 2.10 2.21 2.31 2.42 2.52 2 63 2.73 2.83 2.94 3.15 3 35 3 77 4 ‘a J 99
900 2 13 2.2S 2.37 2.48 2.60 2.72 2.83 2 95 307 3 18 3.30 3 53 3 77 4 23 469 559
MO Z27 2.40 2,52 I M 2.77 2.90 3.02 3. IS 3.77 3.39 3 32 3.77 4.01 4,50 423 $.0'000 2 37 50 2 63 2.76 2 39 3 02 3.15 3 28 3 40 3.53 3 66 392 4 3 4 69 5 19 6 *3

MOO 260 74 2 89 3.03 3 17 3 31 3 4 6 3.60 3 74 3.88 4 02 4 30 4 53 5 /4 569 5 771200 2.83 299 3.15 3.30 346 361 3 77 39 2 4 07 4 23 4 38 4 69 4 99 5 59 5 19 • ;5
1300 3.07 3 24 3.40 3 57 3 74 391 4 07 4 24 4 41 4 57 4 74 5.07 5 3 604 5 68 7 92
1400 3 30 24a 3 66 3 84* 4 02 4 20 4 3 8 4 56 4 74 4 91 5 09 5.44 5 -? 6 48 7 *6 347
1440 3JS 3.51 3.77 3 3 5 4.14 4.32 4,50 4 . 0 4.17 5.05 $.23 5,58 SJS 8.6* 7 JO 1 .0
’500 3 53 3 73 3 92 4 1 1 4 30 4 50 4 69 4 68 507 5.25 i 44 5.82 6 9 6 92 7 63 3 22
1600 3 77 3 97 ’8 4 3 8 45 8 4 79 4 9 9 5 19 539 5.59 5.79 5.19 553 7 35 3.10 3 55
1700 400 i 21 4 43 465 4 8 6 5 08 5 29 5 50 5 72 5 93 6 14 5 55 6 97 778 356 ’007

'900 446 4 69 4 91 5 14 5 37 5 59 5 32 5 04 5 26 5.48 6 92 735 8.20 902 •0 57
1900 4 70 4 94 5 10 5.42 566 5 8 9 0 13 5 36 659 6 82 7.28 7 73 861 346 11 2f>2000 494 5 19 5.44 5 69 5.94 6.19 6 43 568 3 92 7 :6 7 64 3 *2 9 02 989 ' 1 £32200 5 42 5 69 5 96 6.24 6.5) 6 77 7 04 '3 0 756 7.32 3 34 384 981 ’0 73 2 '.2
2400 539 19 6.48 5.77 706 7.35 7 63 7 92 3 20 347 3 02 955 1057 ” £3 •3 24

2600 ' 5.68 6 99 730 7 61 7 92 6.22 3 52 3.81 9 11 968 •024 11 30 2 28 • 3 98
2900 i 7 16 7 49 ^82 8.15 3.47 3.79 9 • 9.42 3.72 •032 *0 90 11 99 298 "4 63
z n o 7.35 7 .0 1.03 I J « 1 J 9 9.02 9 J 4 9 .0 S M 10.57 11.15 12.25 1324 14.17
3000 , 763 799 3.33 868 3 02 9 35 9 68 •000 •032 •0 94 •2 64 •362
3200 1 3.10 3.47 334 9.20 3 5 5 9 9 0 '2 24 1057 •0 9 0 ’ I 53 •2 •: *3.24 •4 2 ’

3400 3 56 396 933 9.70 *0.07 ’0 4 2 •0 '9 > 1 12 • ’ 45 •710 •2 ’ * •3 81 14 73
3600 9 42 981 10 19 *057 •0 94 11 20 •t 65 •• 99 ■ 2 64 24 14 32
3900 9B7 •0 29 '0 67 * ’ Cfi • • 43 •* 30 •2 15 : 49 •3.15 :g
4000 ’0 32 •0 '3 • 1 14 •1 53 ‘ 1 91 •2 29 12 54 2 98 •3 62 4 :•
4200 10 75 ii '3 M 59 ’ ' 99 •2 3 7 *2 '4 •310 •3 44 •4 07 • 45 ;

4400 »i 18 •• 51 12.02 •2 42 ’ 2 01 *3*3 •] 53 '3 66 *4 48
4600 • 1 59 *2 02 12.44 *2 84 •3 23 •3 59 '3 94 •4 26 ■4 85
4800 *2 42 12.84 •3 24 •3 6 2 •3 98 •4 32 •4 63
5000 •291 *3 23 •3 62 •4 00 ’ 4 jz •4 67 •497
5200 ‘3 '3 13 59 3-38 •4 35 • - •4 99

5400 C O N SU L T 1353 1394 •4 32 •4 6 7 •439 C O N S u .-
5600 FE N N P R 14 27 •4 6 3 •4 9 7
5800 14 57 •4 2 2
6000 U B5

Mott: To oouwn caoaofv 'or w*3tns uinw in*n 1" vatu* m Tat>* aoov* mutton ov ^<otn ‘ac’Of m o w

3a«! w <nh"________ -4 ' , : 3"_________2"__________ 3"

•V'dtft tacto* O’*1 '0 0 : 56 ' 2 . 1 4 3 36

Table A3a.l Power Ratings (kW) of Pulleys Against Speed

The next stage is to confirm that the rating of the pulleys is compatible with the rating of

the llkW IM. Table A3a.l shows the rating of the ‘Heavy’ drives. For a 38.1mm width,

194.04mm diameter 48H pulley the power rating is calculated to be:

213

Rating = 14.87xl03 x 1.56

= 23.197kW

This is obviously, more than efficient for the desired test-bed.

An estimation of the belt length is then required. Before this is possible, the design of the

base of the test-bed is considered. As stated in the main text, it is anticipated that the

base, would be able to cater for a number of generators. It was decided that the best

option is to rigidly fix the DC motor and have the generator mounting as a movable plate.

The generators would be fixed to the plate and the plate adjusted until the required

tension of the belt is achieved. Table A3a.2 shows the dimensions of three machines

available in the department which are considered for the test-bed, as well as the DC

motor.

Machine Feet Width (mm) Feet Length (mm) Front to Feet (mm)

15kW Synchronous 280 275 215

lOkW Induction 220 240 170

1 lkW Induction 250 215 215

15kW DC Motor 215 510 160

Table A3a.2 Machine Dimensions

From the table it is deduced that the length of the base is dependant on the length of the

motor since it is the longest. The eventual length of the base is selected to be lm in order

to ensure stabilisation of the base with the machines mounted on it.

Since the DC motor has the larger pulley attached to its shaft, the mounting for it has to

account for the 388.08 mm diameter. This is achieved by placing the motor 100mm

higher than the base.

214

When considering the width of the base, not only is the distance between the feet

mountings required, but also the diameter of the pulleys. The generator with the largest

feet width is the synchronous generator with a width of 280mm. This, and the motor

width gives a total of 495mm. The width of the pulleys totals 582.12mm. To ensure

stability, the total width of the base is selected to be lm.

With this data, the length of the timing belt required for use with the motor and the llkW

IM is calculated. The following is the calculation recommended by Fenner.

Firstly, the required distance between the centre points of the two machines, with pulleys

and the belt, is required. To save costs, the length of the belt is to be as small as possible

without affecting performance. Initial estimations indicate a distance of 450mm is

acceptable. This value is assigned the variable, C, and related to the other pulley and belt

characteristics, as follows:

2
L = 2 C + (D + ■■■■ +l57(D + d) (A3a.l)

4C

Where

L = Required pitch length of belt in mm

D = Pitch diameter of large pulley

d = Pitch diameter of smaller pulley

In this example,

L = (2 * 450) + » ^ i + 913.93
4*450

L = 1834.8 mm

215

The belt size, is found by multiplying the above value by 2.54. This gives:

Lcorr =722.38

According to the Fenner information, the nearest sizes to this were 700 (1778 mm) or 750

(1905 mm). The values of C corresponding to these two values is calculated as follows

C = A + a/ a 2 - B

where

A = -^ -03925(D + d) and B = (D ~ ~

The two values of L gave C = 431.98 mm and C = 495.49 mm. The former value is

sufficient so the 700H150 (700, 38.1 mm, heavy duty) belt is selected.

216

Appendix 3b

The Input and Output Connections of the Mentor II

o

*s

S '

$

rlJ
r •)

®5T'e:

- *•> ,

- <•>?-

■■Os

(i'f

T5 —)----

* " > ■

: > ■

i *
H

53

■II

w

5*i

— S

S3
?HS:1 X

1<o?|
i?.

— 'I

| j * ;

0
Is

Mj' r
- ; *->J w
►t— -j-=-

r*-
►t:

"1

M !

o ?

<; sn

S S12
SI3

« SM

£ 5 T5

4

*7 I
* J -] i

...J!

)

SS®».

POM

R°

r 3 ‘ r;

c

G
"fi

t

" r
enable y

’ «

s io p

i r i o i n r v e r s e ; G m

INCH (ONWARD ,’j y

RUN FORWARD T/JK

2a

€

if
: " T '

T
rlT

T

~ T
__ t - s

?,
g T 7_

71
B T 2

T

° * 3

-it-.

1

I : r

3 § 5
'i
|
I 1 3
_T ■

5 ? ?r
1 TY

t: . . . : r

-C-

— c-

/ I I I

S-

Fig. A 3b .l The External Connections of the Mentor II

217

The Mentor II Menu 14 - MD21 Control

Menu

Parameter

Description

14.01

14.02

14.03

14.04

14.05

14.06

14.07

14.08

14.09

14.10

14.11 to 14.17

Drive number (usually set to 1 when using one drive)

0 - ANSI comms 1 - Basic serial comms

Baud rate (xlOO), i.e. ‘192’ for 19200 baud rate

Line pacing character (Basic serial comms)

Enable or disable autobooting

Line feed enable (Basic comms)

Enable or disable ‘> ‘ prompt (Basic serial comms), enable or disable

checksum (ANSI comms)

1st bit of data format (Basic serial comms) set to ‘0’ for ANSI to

operate with Mentor II

2nd bit of data format (Basic serial comms)

Enable or disable Intel Basic (disabled for ANSI)

Enable or disable application programmes

Table A 3b.l Serial Communications Configuration Menu

C Code for Basic Comms 'Read’ Command
include <conio.h>
Mnclude <math.h>
include <iostream.h>
include <iomanip.h>
#define LCR 0x2fb
tfdefme PORT 0x2f8
#define IER 0x2f9
tfdefme MCR 0x2fc
#define MSR 0x2fe
ttdefine LSR 0x2fd

int readp(int, char* const);
int echo(int, char* const);
int writep();

int main()
{

218

/* Initialisation */
outp(LCR, 0x80);
outp(PORT, 0x06);
outp(IER, 0x0);
outp(LCR, Oxl a);
outp(IER, 0x0);
outp(MCR, 0x0);
/* end o fin it */

//initiate baud set-up
//Isb baud

//msb baud set to 19200
//7 e l

//disable interrupts
//RTS=0

here:writep();
goto here; //loop

return 0;
1

/************ ********************** *************/

int writep()
{

int numb, element=0;
charf_m _[50];
charpc_instr[7] = 'O’, '3',', 'O', '4'}; / / s e t reg 1.0 to value
pc_instr[6] = (int) Oxd; //term inate array with a carriage return
fo r (numb=0;numb < = 6;numb++) //create loop to o/p array

{
while ((inp(LSR)& 0x60) != 0x60); //check fo r empty TXB
outp(PORT, (int) pc_instr[numb]); //o/p chr to port
echo(element, &f_m_[0]); //read characters back from the M il
elem ent++; //next location o f array

}
readp(element, &f_m_[0]); //get rest o f data from M il
return 0;

}

/*************punction to read echoed characters from the mentor**********/
int echo(int num, char* const from_mentor)

{
while((inp(LSR)& Oxl) /= 1); //check fo r data ready in RXB
from_mentor[num] = (char)inp(PORT); //input data
return 0;

}

t0 read data from Mentor************************/
int readp(int num, char* const from_mentor)

{
do{

while((inp(LSR)& Oxl) != I); //check fo r data ready in RXB
from_mentor[num] = (char)inp(PORT); //input data
num++; //next array position

} while ((from_mentor[(num -I)] != ’>')& & num < 50);//check fo r end o f data

from_mentor[num] = \0'; / /p u t NULL character at end of array

cout< < from _m entor;
return 0;

}

The UART 8250 Control and Status Registers

Line Control Register

Line Control Register j
 ' ! ' 1 ; ! !

7 6 5 ! 4 3 , 2 1 0
' ! | ; ' 1 ‘ j 1 i 1 i ' |—1

I j j j I 1---- ‘— D ata b i ts 00 = 5 bits
! 1 I ! I 01 = 6 bits
i I I | I 10 = 7 bits
i | | f | 11=8 bits

i : j j -------------- S top bi ts 0 = 1 bit
S : ! | 1 = i.5/2 bits

! 1 ----- ------1------------------- P a r i ty bit 000 = None
i j 001 = Odd
i 1 011= Even
i 101 = Mark

111= Space

 ---------------------------------- Break C tr l 0 = off
1 = on

 DLAB

Line Status Register

L ine S ta tu s R egister i

7 r m
1 ! '

4 j 3 j 2 j ! 0 I

1 = received data ready
1 = overrun error
1 = parity error
1 = framing error
1 = break interrupt
1 = transmitter holding register em pty
1 = both transmitter holding register

and shift register empty
1 = tim e-out error

220

Baud Rate Divisor
1

Baud Rate Divisor

15 14 13 12 ! 11 10 9 . 8 7 ' 6 5 = 4 . 3 2 I | 0 |

high byte register (BDRH) low byte register i BDRL) 1
i

Communicating Between the PC and the Mentor II

Writing Data to the Mentor II
10 OPEN "COM2:2400,N,8,1,CD, CS5000,DS, OP5000,RS,RB2048" FOR RANDOM ACCESS READ
WRITE AS #1
20 DO
30 PRINT#1, "#1.20"; CHR$(44); "300"
40 FOR 1 = 1 TO 1000
50 NEXT I
60 PRINT "SENDING DATA "
70 LOOP
80 END

Reading Data from the Mentor II
10 OPEN "COM2:2400,N,8,1, CD, CS5000,DS,OP5000,RS,RB2048" FOR RANDOM ACCESS READ
WRITE AS #1
20 DO
40 PRINT#1, "#03.04"
50 AN$ = " "
80 DO
90 BN$ = INPUT$(LOC(l), #1)
100 AN$ = AN$ + BN$
105 LOOP UNTIL BN$ = "> "
110 PRINT AN$
120 LOOP

221

Appendix 4a

Watcom C/C++ Template Makefile

File : drt_wat2.tmf
Abstract:
Template m akefile for building a DOS-based real-time
version o f a SIM ULINK model using generated C code
and the W atcom C /386 Compiler with W atcom W MAKE
#
Note that this template can be automatically customised using
make__nrt.m and the "Generate and Build Real-Time" option under the
"Code" menu heading.

 #...................................... M acros Read By m ake_rt...
#
Note: These macros are parsed by make_rt. Thus they should not contain
other macros, as these macros w ill not be expanded.
#
MAKE = wmake
QUOTE = "
HOST = PC
BUILD = yes

 #------------------------------- Customisation M acros...
#
The follow ing set o f macros are custom ised by the make_rt program.
#
MODEL = |>M O DEL_NAM E<|
MAKEFILE = |>M AKEFILE_NAM E<|
S_FUNCTIONS = |>S_FUNCTION_FILENAM ES<|
S_FUNCTIONS_OBJ = |>S_FUNCTION_OBJ_FILENAM ES<j
INTEGRATOR = |>INTEG_SRC_FILENAM E<|
INTEGRATOR_OBJ = |>INTEG_OBJ_FILENAM E<|
LOGGER = |>LOG_SRC_FILENAM E<|
LOGGER_OBJ = |>LOG_OBJ_FILENAM E<|
COMM_LINK = |>COM M _LINK_FILENAM E<|

INTEG_DEFINES = |>INTEG_DEFINES<|
LOGGING_DEFINES = |>LOGGIN G_DEFINES <|

MATLAB_ROOT = |>M ATL AB_RO O T <|

 #------------------------------------ T ool Locations -...
#
M odify the follow ing three macros to reflect where you have installed
M ATLAB, the W atcom C /386 Compiler, and the Phar Lap Assembler. The
Phar Lap Assem bler is not required. It is only used to compile rt_fpu.asm,
which is also supplied in object file form.
#

W ATCOM _ROOT = v:\w atcom \vl0 .50

222

#PHARLAP_ROOT = c:\phar386

 #---------------------------------- Tool D efin ition s---------------------------------

!ifeq %OS W indow s_N T
CC = $(W ATCOM _ROOT)\binnt\wcc386
LD = $(W ATCOM _ROOT)\binnt\wcl386
!else
CC = $(W ATCO M _RO O T)\binw\wcc386
LD = $(W ATCO M _RO O T)\binw\wcl386
lendif

#AS = $(PH ARLAP_ROOT)\bin\386asm

#-...........................Include P ath

CO DEG EN.RO O T = $(M ATLAB_RO O T)\codegen

M A T L A B JN C L U D E S = &
-I$(M ATLAB_ROOT)\sim ulink\include &
-I$(CODEGEN_ROOT)\comm on\include &
-I$(CODEGEN_ROOT)\rt\common &
-I$(CODEGEN_ROOT)\rt\dos\os

COMPILER_INCLUDES = -I$(W ATCOM _ROOT)\h

INCLUDES = $(M A TLAB_IN CLU DES) $(COMPILER_INCLUDES)

 #................................- -— C F la g s —

REQ_OPTS = -fpi87 -3s
OPT_OPTS = -oaxt
D BG .O PTS = -d2
OPTS =
CC.O PTS = $(REQ_OPTS) $(OPT_OPTS) $(DBG_OPTS) $(OPTS)

CPP_REQ_DEFINES = -DM ODEL_NAM E=$(M ODEL)

CFLAGS = $(CC_OPTS) $(IN CLUDES) $(CPP_REQ_DEFINES) $(CPP_DEFINES) &
$(INTEG_DEFINES) $(LOGGING_DEFINES)

ASFLAGS = -twocase -nolist
LDFLAGS = -l=dos4g -x

 #----------------------------------- Source F i le s -------------------------------------

REQ_SRCS = $(M O D EL).c rt_main.c rt_keybd.c rt_sim.c simstruc.c rt_cpu.c
OPT_SRCS = timer.c
S_FCN_SRCS = $(S_FU N CT IO N S)
IN T .SR C S = $(INTEG RATO R)
LOG_SRCS = $(LOGGER)

C_SRCS = $(REQ _SRCS) $(OPT_SRCS) $(S_FCN_SRCS) $(INT_SRCS) $(LOG_SRCS)

REQ_OBJS = $(M ODEL).obj rt_main.obj rt_keybd.obj rt_sim.obj simstruc.obj rt_cpu.obj

223

OPT_OBJS = timer.obj
S_FCN_OBJS = $(S_FUNCTIONS_O BJ)
IN T .O B J = $(INTEGRATOR_OBJ)
LO G .O BJ = $(LOGGER_OBJ)
C .O BJS = $(REQ_OBJS) $(OPT_OBJS) $(S_FCN_OBJS) $(INT_OBJ) $(LOG_OBJ)

ASM _SRCS = rt_fpu.asm m odf.asm frexp.asm fft387.asm
ASM _OBJS = rt_fpu.obj modf.obj frexp.obj fft387.obj

OBJS = $(C_O BJS) $(ASM _O BJS)

LIBS =

Source Path
.c :
$(M ATLAB_ROOT)\simulink\src;$(CODEGEN_ROOT)\rt\common;$(CODEGEN_ROOT)\rt\dos\os;$(C
ODEGEN_ROOT)\rt\dos\devices

.a sm : $(CO DEGEN_ROOT)\rt\dos\os

 #--------------------------Exported Environment V ariab les------------------------
#
Because o f the 128 character command line length limitations in DOS, we
use environment variables to pass additional information to the WATCOM
Compiler and Linker
#
!ifeq %OS W indow s_N T
PATH = $(W ATCOM_ROOT)\binnt;$(W ATCOM_ROOT)\bin;$(W ATCOM _ROOT)\binb
lelse
PATH = $(W ATCOM_ROOT)\bin;$(W ATCOM _ROOT)\binw;$(W ATCOM _ROOT)\binb
!endif
WATCOM = $(W ATCOM _ROOT)

................................. -..................R u le s ...

.BEFORE
@set path=$(PATH)
@set W ATCO M =$(W ATCOM)
@set W CM _ VER = 100
@ if exist $(M O D EL).lnk @del $(M ODEL).lnk
@for %i in ($(O BJS)) do @ echo FILE %i » $(MODEL).lnk

$(M O D E L).exe: $(OBJS)
$(LD) /fe=$(M O D E L).exe $(LDFLAGS) @$(MODEL).lnk $(LIBS)
@echo * * * * * * M ake o f $(M ODEL).EXE complete * * * *
del $(M O DEL).lnk

.c.obj:
*$(CC) $(CFLAG S) $<

.asm.obj:
@ if exist $ (A S).exe $(A S) $(ASFLAG S) $< -o $@
@ if not exist $(A S).exe copy $[*.obj $@

fft387.obj: $(CO DEGEN_ROOT)\rt\dos\os\fft387.obj

224

copy $[*.obj $@

----------------------------------- D ep en dencies........................

$ (O B JS): $(M AKEFILE) .AUTODEPEND

rt_main.obj : $(M O D EL).c .AUTODEPEND

Spdin.c

/*
* spdin.c
*
* Copyright (c) 1994 by The MathWorks, Inc.
* All Rights Reserved
*/

/*
* STEP1 The follow ing #define is used to specify the name o f your S-Function.
*
* You should change the define to include the name o f your S-function.
*/

#define S_FU N C TIO N _N A M E spdin

/* STEP2
* Need to include simstruc.h for the definition o f the SimStruct and
* its associated macro definitions.
*/

#include "simstruc.h"

/*STEP3
♦Include file for M EX file
*/

#ifdef M ATLAB_M EX_FILE
#include "mex.h"
#endif

#include <conio.h> //for outp & inp
#include <string.h> //for str* commands
#include <stdlib.h> //for atoi
#include <ctype.h> //for isdigit
#define LCR 0x2fb
#defm e PORT 0x2f8
#define IER 0x2f9
#define MCR 0x2fc
#define M SR 0x2fe
#defm e LSR 0x2fd

/* STEP4
* m dllnitializeSizes - initialize the sizes array

225

* The sizes array is used by SIM ULINK to determine the S-function block's
* characteristics (number o f inputs, outputs, states, etc.).
*/

static void m dlInitializeSizes(Sim Struct *S)
{

ssSetNum ContStates(S, 0); /* number o f continuous states */
ssSetNum DiscStates(S, 0); /* number o f discrete states */
ssSetNumInputs(S, 0); /* number o f inputs */
ssSetNumOutputs(S, 1); /* number o f outputs */
ssSetDirectFeedThrough(S, 0); /* direct feedthrough flag */
ssSetNum Sam pleTim es(S, 1); /* number o f sample times */
ssSetNumInputArgs(S, 1); /* number o f input arguments */
ssSetNumRW ork(S, 0); /* number o f real work vector elements */
ssSetNumIW ork(S, 0); /* number o f integer work vector elements */
ssSetNumPW ork(S, 0); /* number o f pointer work vector elements */

}

/♦STEP5
* m dllnitializeSam pleTim es - initialize the sample times array
*
* This function is used to specify the sample time(s) for your S-function.
* If your S-function is continuous, you must specify a sample time o f 0.0.
* Sample times must be registered in ascending order. If your S-function
* is to acquire the sam ple time o f the block that is driving it, you must
* specify the sample tim e to be INHERITED_SAM PLE_TIME.
*/

static void m dlInitializeSam pleTimes(Sim Struct *S)
{

ssSetSam pleTim eEvent(S, 0, m xGetPr(ssGetArg(S,0))[0]);
ssSetOffsetTim eEvent(S, 0, 0.0);

/*
* SET OTHER SAM PLE TIMES A N D OFFSETS HERE
*/

/*STEP6

* m dllnitializeConditions - initialize the states
*
* In this function, you should initialize the continuous and discrete
* states for your S-function block. The initial states are placed
* in the xO variable. You can also perform any other initialization
* activities that your S-function may require.
*/

static void m dlInitializeConditions(double *x0, SimStruct *S)

/♦Initialisation*/
int clear;
outp(LCR, 0x80); //initiate baud set-up
outp(PORT, 0x06); //lsb baud
outp(IER, 0x0); //m sb baud set to 19200

outp(LCR, Ox la); //7 e l
outp(IER, OxO); //disable interrupts
outp(M CR, 0x0); //R TS=0
clear=inp(PORT);

}

/*
* mdlOutputs - com pute the outputs
*

* In this function, you com pute the outputs o f your S-function
* block. The outputs are placed in the y variable.
*/

static void m dlOutputs(double *y, double *x, double *u, SimStruct *S, int tid)
{

int numb, num =0 ;
int array=0 , loop;
char from _m entor[20], small[5];

char pc_instr[13] = {0x4 ,'O','O',T,T,'O','3','O','2',0x5}; //'read 03.02'
for (numb=0;numb <= 9;numb++) //create loop to o/p array

{
w hile ((inp(LSR)& 0x60) != 0x60); //check for empty TXB
outp(PORT, (int) pc_instr[numb]); //o/p chr to port

}

do{
while((inp(LSR)& 0x1) != 1); //check for data ready in RXB
from_mentor[num] = (char)inp(PORT); //input data
num++; //next array postion

} while ((int)from _m entor[num -l] != 0x3); //check for end o f data

from_mentor[num] ='\0 '; / / null array

for (loop=num -6 ; loop cn u m -1 ; loop++) //start loop to miss first 6 chars
{

small[array]=from _m entor[loop];
array ++;

}
small [array] = A0’; // N U LL at end o f array
*y = atof(small); // convert string to double

}

/*STEP 8 - PART 1
* mdlUpdate - perform action at major integration time step
*
* This function is called once for every major integration time step.
* Discrete states are typically updated here, but this function is useful
* for performing any tasks that should only take place once per integration
* step.
*/

227

static void m dlUpdate(double *x, double *u, SimStruct *S, int tid)
{

/*
* YO UR CODE GOES HERE
*/

}

/♦STEP8 - PART 2
* m dlDerivatives - com pute the derivatives
*

* In this function, you com pute the S-function block's derivatives.
* The derivatives are placed in the dx variable.
*/

static void m dlDerivatives(double *dx, double *x, double *u, SimStruct *S, int tid)
{

/*
* YOUR CODE GOES HERE
*/

}

/* STEP9
* mdlTerminate - called when the simulation is terminated.
*
* In this function, you should perform any actions that are necessary
* at the termination o f a simulation. For example, if memory was allocated
* in m dllnitializeConditions, this is the place to free it.
*/

static void mdlTerminate(SimStruct *S)
{

/*
* YOUR CODE GOES HERE
*/

}
// STEP 10
#ifdef M ATLAB_M EX_FILE /* Is this file being compiled as a M EX-file? */
#include "simulink.c" /* M E X -file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

228

Torout.c

/*
* torout.c
*
* Copyright (c) 1994 by The MathWorks, Inc.
* All Rights Reserved
♦/

/*
* STEP1 The fo llow ing #define is used to specify the name o f your S-Function.
*

* You should change the define to include the name o f your S-function.
♦/

#define S_FU N C TIO N _N A M E torout

/* STEP2
* Need to include simstruc.h for the definition o f the SimStruct and
* its associated macro definitions.
*/

#include "simstruc.h"

/*STEP3
♦Include file for M EX file

*/

#ifdef M ATLAB_M EX_FILE
#include "mex.h"
#endif

#include <conio.h> //for outp & inp
#include <string.h> //for str* commands
#include <stdlib.h> //for abs
#define LCR 0x2fb
#defme PORT 0x2f8
#define IER 0x2f9
#define MCR 0x2fc
#define M SR 0x2fe
#define LSR 0x2fd

/♦ STEP4
♦ m dllnitializeSizes - initialize the sizes array
*
♦ The sizes array is used by SIM ULINK to determine the S-function block's
♦ characteristics (number o f inputs, outputs, states, etc.).
♦/

static void m dlInitializeSizes(Sim Struct %S)

{
ssSetNum ContStates(S, 0); /♦ number o f continuous states ♦/

ssSetNum DiscStates(S, 0); /* number o f discrete states */
ssSetNum Inputs(S, 1); /* number o f inputs */
ssSetNum Outputs(S, 0); /* number o f outputs */
ssSetDirectFeedThrough(S, 1); /* direct feedthrough flag */
ssSetNum Sam pleTim es(S, 1); /* number o f sample times */
ssSetNumInputArgs(S, 1); /* number o f input arguments */
ssSetNum RW ork(S, 0); /* number o f real work vector elements */
ssSetNum IW ork(S, 0); /* number o f integer work vector elements */
ssSetNum PW ork(S, 0); /* number o f pointer work vector elements */

/*STEP5
* m dllnitializeSam pleTim es - initialize the sample times array
*
* This function is used to specify the sample time(s) for your S-function.
* If your S-function is continuous, you must specify a sample time o f 0.0.
* Sample times must be registered in ascending order. If your S-function
* is to acquire the sam ple time o f the block that is driving it, you must
* specify the sam ple time to be INHERITED_SAM PLE_TIME.
*/

static void m dlInitializeSampleTimes(Sim Struct *S)
{

ssSetSam pleTim eEvent(S, 0, mxGetPr(ssGetArg(S,0))[0]);
ssSetOffsetTim eEvent(S, 0, 0.0);

/*
* SET OTHER SAM PLE TIMES A N D OFFSETS HERE
*/

/♦STEP6

* mdllnitializeConditions - initialize the states
*
* In this function, you should initialize the continuous and discrete
* states for your S-function block. The initial states are placed
* in the xO variable. You can also perform any other initialization
* activities that your S-function may require.
*/

static void m dlInitializeConditions(double *x0, SimStruct *S)

{
/♦Initialisation*/

outp(LCR, 0x80); //initiate baud set-up
outp(PORT, 0x06); //lsb baud
outp(IER, 0x0); //m sb baud set to 19200
outp(LCR, 0x1a); / /7 e l
outp(IER, 0x0); //d isable interrupts
outp(MCR, 0x0); //R T S=0

}

/*
* mdlOutputs - com pute the outputs

230

* In this function, you com pute the outputs o f your S-function
* block. The outputs are placed in the y variable.
*/

static void mdlOutputs(double *y, double *x, double *u, SimStruct *S, int tid)
{

int numb;
char pc_instr[17] = {0x4,'0,,,0',,r ,T ,,0x2,’0','4,,,0 ,,'8'}; // set 04.08;
int intgr, loop, array=l 1 , s ign = 1 0 ;

/* the follow ing for loop converts the int to a char array***
****NOTE: the input value would never be greater than 1000***/

intgr = (int) *u; //debug to test input data

if (intgr>0)
{

pc_instr[sign] ='+';
}

else
{

pc_instr[sign] =
}

intgr=abs(intgr);

for (loop= 1 0 0 0 ;loop>l ;loop=loop /1 0)
{

if (loop>intgr)
{
pc_instr[array] = 0x30; //set bit to zero

}
else
{
pc_instr[array] = (intgr/loop) + 0x30;

}
intgr = intgr - (intgr/loop)*loop;
array++;

}
pc_instr[array] = (intgr% 10) + 0x30; / / uses remainder function
pc_instr[++array] =0x3; / / AC
pc_instr[++array] = Oxd; / / RETURN

for (numb=0 ;numb <= array;numb++) //create loop to o/p array

{
while ((inp(LSR)& 0x60) != 0x60); //check for empty TXB
outp(PORT, (int) pc_instr[numb]);

}
array = 1 1 ;
pc_instr[array] = '\0 ';

/♦STEP 8 - PART 1
* mdlUpdate - perform action at major integration time step
*

* This function is called once for every major integration time step.
* Discrete states are typically updated here, but this function is useful
* for performing any tasks that should only take place once per integration
* step.
*/

static void m dlUpdate(double *x, double *u, SimStruct *S, int tid)
{

/*
* YOUR CODE GOES HERE
*/

}

/♦STEP8 - PART 2
* mdlDerivatives - com pute the derivatives
*
* In this function, you com pute the S-function block's derivatives.
* The derivatives are placed in the dx variable.
* /

static void m dlDerivatives(double *dx, double *x, double *u, SimStruct *S, int tid)
{

/*
* YOUR CODE GOES HERE
*/

}

/* STEP9
* mdlTerminate - called when the simulation is terminated.
*

* In this function, you should perform any actions that are necessary
* at the termination o f a simulation. For example, if memory was allocated
* in mdllnitializeConditions, this is the place to free it.
*/

static void mdlTerminate(SimStruct *S)
{

/*
* YOUR CODE GOES HERE
*/

}
// STEP10
#ifdef M ATLAB_M EX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* M E X -file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Appendix 5a

Calculation of Root Locus of a Transfer Function

The root locus of a transfer function can be calculated and plotted in Matlab using the

command:

RLOCU S (num,den)

‘num’ and ‘den’ are the numerator and denominator of the transfer function, respectively.

Fig. A5a. 1 shows the root locus constructed using information provided on the

Strathclyde WECS.

150

100

-50

X -100

-150
0 50 100-50-100

Real Axis

Fig. A 5a.l Root Locus of the Strathclyde WECS

234

Matlab Response to a ‘linmod’ Command

List A5a. 1 shows the response of the ‘linmod’ command used to determine the state

space representation of the Strathclyde Simulink model.

A =

1.0e+004 *

-0.0033 0.0241 0 0 0

-0.0033 0.0000 0 0 0.0001

0 0 0.0000 -0.0001 0
0 -7.9560 0.0065 0 0

0 -0.1957 0.0002 0 0

B =

0

0
1
0
0

c =
33.3333 0 0 0 0

D =

0
List A 5a.l Matlab State Space Model of the WECS Model

Matlab Response to a ‘ss2tf’ Command

List A5a.2 shows the response to ‘ss2tf for the Simulink based Strathclyde model

235

NUM =

1.0e+004 *

Columns 1 through 4

0 0.00000000000000 0.00000000000000 -0.00000000000001
Columns 5 through 6

1.27827079519259 -0.00000000000009

DEN =

1.0e+005 *

Columns 1 through 4

0.00001000000000 0.00033414911924 0.10057941405578 0.67427690671342

Columns 5 through 6

5.19958980409994 0.00000000000002

List A5a.2 Matlab Transfer Function of the Simulink WECS Model

Matlab Program to Estimate Parameters of the RAL IM

xm=8.8095*3; % Parameters *3 to convert from 'star'

xls=0.4352*3;

xlr=0.4148*3;

rs= 0 .1073*3;

rr=0.0787*3;

u=0.02667; % u is the slip

ws=50*2*pi; % supply frequency

p= 2;

a=(xls*xlr)+(xm*(xlr+xls));

k l = rs *(xlr+xm)/a;

k2=rs*xm/a;

k3=rr*(xls+xm)/a;

k4=rr*xm/a;

E=415*1.4142;

dem =(kl *k3-k2 *k4)A2+k3A2-2 *k2 *k4 *u+(1 +kl*2) *uA2; %denominator fo r tgO and De

tg 0 -(3 /2) *p *k2 *k4 *u *EA2/(ws *rs *dem);

236

D e=p *tgO*(k3A2 +(k l *k3-k2 *k4)A2-(1 + k lA2) *uA2)/(W5 *u *dem)

t= (k3+kl *(kl *k3-k2*k4))/(ws*(k3A2 + (k l *k3-k2*k4)A2 -(l+ k lA2)*uA2))

List 5.6 Matlab Program ‘genral.m’ for RAL Generator First Order Model

Appendix 5b

Cq-X Values for the 45kW WEC
X c q

1.3693 0.0142
1.3976 0.0145
1.4270 0.0143
1.4577 0.0147
1.4897 0.0149
1.5232 0.0154
1.5582 0.0158
1.5949 0.0159
1.6333 0.0161
1.6736 0.0165
1.7160 0.0172
1.7606 0.0180
1.8075 0.0190
1.8570 0 . 0 2 0 1

1.9094 0.0214
1.9647 0.0224
2.0233 0.0233
2.0856 0.0248
2.1518 0.0276
2.2224 0.0291
2.2977 0.0312
2.3783 0.0349
2.4648 0.0381
2.5578 0.0442
2.6581 0.0505
2.7666 0.0551
2.8843 0.0614
3.0125 0.0684
3.1526 0.0747
3.3064 0.0815
3.4760 0.0870
3.6639 0.0914
3.8733 0.0944
4.1080 0.0955
4.3730 0.0977
4.6746 0.0910
5.0209 0.0899
5.4226 0.0827
5.8941 0.0622
6.4554 0.0402
7.1349 0.0297
7.9743 0.0219
9.0376 0.0092

238

Cp-X Values for the 45kW WECS
X Cp

1.3693 0.0195
1.3976 0.0203
1.4270 0.0204
1.4577 0.0214
1.4897 0.0222
1.5232 0.0234
1.5582 0.0246
1.5949 0.0254
1.6333 0.0263
1.6736 0.0276
1.7160 0.0295
1.7606 0.0317
1.8075 0.0344
1.8570 0.0373
1.9094 0.0408
1.9647 0.0440
2.0233 0.0471
2.0856 0.0516
2.1518 0.0593
2.2224 0.0647
2.2977 0.0718
2.3783 0.0829
2.4648 0.0939
2.5578 0.1129
2.6581 0.1342
2.7666 0.1523
2.8843 0.1771
3.0125 0.2059
3.1526 0.2356
3.3064 0.2695
3.4760 0.3025
3.6639 0.3350
3.8733 0.3656
4.1080 0.3922
4 .3730 0.4273
4.6746 0.4253
5.0209 0.4512
5.4226 0.4482
5.8941 0.3667
6.4554 0.2593
7.1349 0.2122
7.9743 0.1744
9.0376 0.0832

239

Appendix 6a

Equivalent Circuit Parameters of the 11kW IM

List A6a. 1 shows the impedance parameters provided by the Manufacturer

Stator Resistance, rs 0.695 Q

Stator Leakage Reactance, xls 1.249 Q

Rotor Resistance (Referred to Stator), rr 0.420 Q

Rotor Leakage Reactance (Referred to Stator), xlr 1.977 Q

Magnetising Reactance, xm 52.76 Q.

Number o f Pole Pairs, p 1

Peak Line Voltage, E 415 >p2 V

Slip, u 0.025

List A 6a.l Equivalent Circuit Parameters of the 1 lkW IM

Calculating the Damping Factor of the 11kW IM

Using the same format of section 5.4. l(eii) where the losses of the generator are assumed

to be the same, i.e. 2.24%, gives the following:

11 x 103 x 2.24%
12 ~ 314.162

y2 = 0.002

Estimating the Relationship Between the General Purpose Register and the

Motor Speed

Table A6a.l shows the measurements of the general purpose register and the

corresponding speed of the motor measured with an optical tachometer.

243

Register Value Measured Speed (rpm) Conversion Ratio

-315 500 1.5873

-365 580 1.5890

-433 687 1.5866

-628 997 1.5876

-828 1316 1.5894

-964 1535 1.5923

Table A 6a.l Comparison of Speed Measurement

The average conversion value is 1.5887.

DC Motor Model

Fig. A6a. 1 shows the electrical and mechanical model of a DC Motor and load

Ra La
/ V Y Y \

T co

V,

Fig A 6a.l DC Motor Model

The model assumes that the field current is constant.

From the model:

Load

V , = R J a + ^ a ^ + K^ (A6a.l)

and

244

T = J - —
dt

+ Deo + Tc (A6a.2)

where J is the inertia of the motor, D is the velocity friction coefficient and Tc is the

constant load torque.

The machine parameters Ra and La, provided by Mawdsley are 0.52 £2 and 8.25mH

respectively. Assume that K’= KO then at steady state:

Estimating the DC Motor and Induction Machine Characteristics

The mechanical machine parameters of the motor can be estimated by measuring the

armature voltage, current and the motor speed. Initially, the IM is disconnected from the

motor so that the inertia of the motor and large pulley can be estimated. The IM and

small pulley can then be reconnected and the inertia and losses of the combined hardware

estimated. All calculations and measurements are taken with the regenerative braking

enabled.

The drive has been set up for speed control with the field current, initially, fixed at 4

amps. Table A6a.2 shows the measurements and calculations

(A6a.3)
co

and from Eqn. (A6a.2)

T = Deo + Tc (A6a.4)

245

Speed (rpm) Vt (Volts) Ia (Amps) K’ (Nm/a) T=(KTa) (Nm)

62.83 146 1.35 2.31 3.132

83.78 195 1.45 2.32 3.364

104.72 244 1.55 2.32 3.596

125.66 293 1.65 2.32 3.828

146.61 341 1.75 2.32 4.06

157.08 365 1.8 2.32 4.176

167.55 390 1.85 2.32 4.292

Table A6a.2 Measurements and Calculations of DC Motor Characteristics

The inertia of the motor and the large pulley can be estimated by measuring the rate of

change of speed w.r.t. to the torque. At 157.08 rad/s T = 4.176 Nm if the armature supply

is removed and with the field still connected, the time taken for the speed to fall 16.7

rad/s is 2.1 s. Therefore

^ = 1 ^ = 8.564
dt 1.95

and the inertia, J can be estimated to be

r ^ 4.176 j 2J = — = --------= 0.488kgm
*j- 8.564

The IM and small pulley is reconnected to the DC motor and large pulley in order to

estimate the combined inertia and losses of the two machines and the belt and pulley

arrangement. This time the field current was set to lower value of 2 amps, as explained in

Chapter 3 to avoid the effects of armature reaction. Also the drive was set for torque

control in order to establish the relationship between the torque demand register (04.08)

246

and the measured armature current. Table A6a.3 shows the measured values and

calculations

04.08 Ia (Amps) Vt (Volts) Speed (r/s) K’(Nm/a) Torq(Nm)

27 1.62 44 27.44 1.57 2.5434

29 1.74 60 37.7 1.57 2.7318

31 1.85 90 56.55 1.57 2.9045

34 2.03 125 78.54 1.58 3.1871

42 2.5 194 122.1 1.58 3.925

51 3.04 249 157.29 1.57 4.7728

Table A6a.3 Measurements and Calculations of DC Motor and IM

The relationship between the torque/current demand register, 04.08, and the armature

current is shown to be linear and have the average gain of 16.7.

To calculate the constant losses and velocity friction coefficient consider the two cases

where the armature current is 1.62 amps and 3.04 amps. From Eqn. (A6a.4) the

measurements at these points can be used to form two simultaneous equations:

when Ia = 1.62 amps

27.44D + 7C= 2.543

when Ia = 3.04 amps

157.29D + TC =4.7728

157.29D + 2.543 - 27.44D = 4.7728

D = 0.017 (A6a.7)

from Eqn.(A6a.5)

(A6a.5)

(A6a.6)

247

Tc = 2.016Nm

from Eqn.(A6a.6)

Tc = 2.099Nm

Taking an average value for Tc gives the value 2.085Nm.

Calculating the inertia of the whole system using the same method as before. The ‘rig’ is

run up to 157.29 rad/s and the armature supply removed. Measuring the response shows

that a speed change of 14.9854 rad/sec occurs during 2.51 sec. Therefore

dt 2.474

j T 47728 _____ 2J = — = --------- = 0.788kgm
6.057

Comparing the inertias of the combined system and the motor with the large pulley, the

difference in inertia, which is the inertia of the generator and small pulley referred to the

motor side, is:

0.788 - 0.488 = 03kgm2

Referring this value to the generator side results in the generator inertia, Jg:

0.3 0.3 2
s = ~NJ = J r = °-075kgm

This value is used for simulation of the 1 lkW generator and small pulley in Simulink.

248

Appendix 6b

Simulating the Noise Content of the Speed Measurement from the Mentor II

Fig. A6b.l shows the Simulink model used to simulate the noise inherent on the speed

measurement from the drive.

Band-Limited
White Noise Sum Graph

80.63
Constant

Fig. A 6b.l Noise Simulation Model

The gain of the ‘BLW Noise’ component can be varied and added to the constant value

80.63, which represents the expected speed measurement from the Mentor II.

Simulating the Measurement from the Mentor II

Fig. A6b.2 to Fig. A6b.4 show the response of the model to different gains in the ‘BLW

Noise’ component. Each plot has the same axis as the speed measurement from the

Mentor II (Fig. 6.3) for comparison purposes. Enlarging the plots (not shown here) show

that the response of the noise model with the gain set at 0.005 is very similar to the speed

measurement register of Fig. 6.3.

Similarly, the noise content of the signal from the optical speed encoder measurement is

equivalent to a noise power gain of 0.004.

249

Ga
in

0.0
5

Ga
in

0.
1

81

80

0 5 10 15 20
Time (s)

82

0 5 15 20
Time (s)

Fig. A6b.2 Response to Noise Gains of 0.1 and 0.05

Ga
in

0.0
05

Ga

in
0.

01

82

80

0 5 10 15 20
Time (s)

20155 10
Time (s)

Fig. A6b.3 Response to Noise Gains 0.01 and 0.005

251

^ V ijV V ^ w ^ ^

5 10
Time (s)

5 10
Time (s)

Fig. A6b.4 Response to Noise Gains 0.001 and 0.0005

Determining the Noise Gain Limit for Stable Operation of WECS HILS

Variable gain values are used to establish the value of noise at which the WECS model,

incorporating the HILS, becomes unstable. Once this value is established, any steady

speed measurement can be assessed for both its noise content and whether it can be used

for HILS. The module used for determining the influence of HILS is shown in Fig. 6.4.

Fig. A6b.5 and Fig. A6b.6 shows the time response of the simulation associated with

varying noise gain values. The limit of stability occurs when the noise gain is 0.0007.

Therefore, the noise of the speed measurement must be lower than this value.

252

Ga
in

0.0
01

Ga

in
0.

00
5

x 106 Time (s)

^ _____________ l_____________ I--------------------1------------------- 1-------------------
0 20 40 60 80 100

Time (s)
Fig. A6b.5 Response of Model to Noise Gains of 0.005 and 0.001

253

x 10

00
o o
o
o 0
a

' 3
O

-2
0

o o
o
d
c

■a
o

50 100 150 200
Time (s)

250 300

10000

5000

0
300200 2500 100 15050

Time (s)
Fig. A6b.6 Response of Model to Noise Gains of 0.0008 and 0.0007

Reducing the Noise Power Further

Once the limit of stability is calculated it is necessary to assess the improvement of the

PSD comparison with the reduction in noise gain. Fig. 6.6 and Fig. 6.10 show the PSD

comparison for gains of 0.0007 and 0.0005 respectively. Fig. A6b.7 and Fig. A6b.8 show

how the PSD comparison is improved, in particular the blade passing frequency, with

further reduction in noise gain.

254

Po
w

er
 S

pe
ct

ra
l

De
ns

ity

(N
m

)A
2

,810
S im u lated T orque

M easu red T orque

,6
1 0

4
1 0

2
1 0

,o
1 0 ,20

w
Fig. A6b.7 PSD Comparison with Noise Gain 0.0003

255

Po
w

er

Sp
ec

tr
al

 D
en

sit
y

(N
m

)A
2

810
Simulated Torque

Measured Torque

Jo10

4
1 0

2
1 0

Lo
1 0

o 1 2

w fr/s^
Fig. A6b.8 PSD Comparison with Noise Gain 0.00005

256

Appendix 8a

Simulink Code for ADC (pc30ad.c)

/*

* adin.c
*

* Copyright (c) 1994 by The MathWorks, Inc.

* All Rights Reserved

* /

/*

* STEP1 The following #define is used to specify the name o f your S-Function.
*

* You should change the define to include the name o f your S-function.

* /

Mefine S_FUNCTION_NAME adin

/* STEP2

* Need to include simstruc.h fo r the definition o f the SimStruct and

* its associated macro definitions.

*/

#include "simstruc.h"

/*STEP3

^Include file fo r MEX file

* /

MfdefMA TLAB_MEX_F1LE

#include "mex.h"

ttendif

Mnclude <conio.h> //for outp & inp

//^include <iostream.h> //for cout

257

#define blkcnt 0x700

#defme adccr 0x702

#define admde 0x703

#define gmemo 0x718

#define adccfg 0x7lc

tfdefme addsr 0x701

#define addatl 0x700

/ * STEP4

* mdllnitializeSizes - initialize the sizes array
*

* The sizes array is used by S1MULINK to determine the S-function block's

* characteristics (number o f inputs, outputs, states, etc.).

* /

static void mdlInitializeSizes(SimStruct *S)

{
ssSetNumContStates(S, 0); /* number o f continuous states */

ssSetNumDiscStates(S, 0); /* number o f discrete states */

ssSetNumInputs(S, 0); /* number o f inputs */

ssSetNumOutputs(S, 1); /* number o f outputs */

ssSetDirectFeedThrough(S, 0); /* direct feedthrough flag */

ssSetNumSampleTimes(S, 1); /* number o f sample times */

ssSetNumlnputArgs(S, 1); /* number o f input arguments */

ssSetNumRWork(S, 0); /* number o f real work vector elements */

ssSetNumIWork(S, 0); /* number o f integer work vector elements */

ssSetNumPWork(S, 0); /* number o f pointer work vector elements */

}

/*STEP5

* mdllnitializeSampleTimes - initialize the sample times array

*

* This function is used to specify the sample time(s) fo r your S-function.

* If your S-function is continuous, you must specify a sample time of 0.0.

* Sample times must be registered in ascending order. If your S-function

258

* is to acquire the sample time o f the block that is driving it, you must

* specify the sample time to be INHERITED_SAMPLE_TIME.

* /

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTimeEvent(S, 0, mxGetPr(ssGetArg(S,0))[0]);

ssSetOjfsetTimeEvent(S, 0, 0.0);

/*
* SET OTHER SAMPLE TIMES AND OFFSETS HERE

*/

/*STEP6

* mdllnitializeConditions - initialize the states

*

* In this function, you should initialize the continuous and discrete

* states fo r your S-function block. The initial states are placed

* in the x0 variable. You can also perform any other initialization

* activities that your S-function may require.

*/

static void mdlInitializeConditions(double *xO, SimStruct *S)

f

/* Initialisation */

//I pulse per conv

//clr list, set chO as only ch

//chO, dis int,set s/w strobe, clr str bit

//gain o f ch - 1

//no dac inv, no int, diffmode, +-10v

outp(blkcnt, Oxff);

outp(admde, 0x96);

outp(adccr, 0x02);

outp(gmemo, 0x00);

outp(adccfg, 0x03);

/*

259

* mdlOutputs - compute the outputs
*

* In this function, you compute the outputs o f your S-function

* block. The outputs are placed in the y variable.

*/

static void mdlOutputs(double *y, double *x, double *u, SimStruct *S, int tid)

{
int d07, d811, dO ll;

outp(adccr, 0x03); //start o f strobe

outp(adccr, 0x02); //strobe

while ((inp(addsr)& 0x40) /= 0x40); //poll bit 6 fo r eoc

d811=(inp(addsr)& OxOf); //mask out control data

d07=inp(addatl); //get data 0 to 7

dOl 1= d811< <8; //shift left 8bits

dOl 1 =d011 +d07; //combine values

*y=(dOl 1-2048) *1000/2048;

}

/*STEP 8 - PART 1

* mdlUpdate - perform action at major integration time step

*

* This function is called once fo r every major integration time step.

* Discrete states are typically updated here, but this function is useful

* fo r performing any tasks that should only take place once per integration

* step.

*/

static void mdlUpdate(double *x, double *u, SimStruct *S, int tid)

{
/*

* YOUR CODE GOES HERE

*/

}

260

/*STEP8 - PART 2

* mdlDerivatives - compute the derivatives
*

* In this function, you compute the S-function block's derivatives.

* The derivatives are placed in the dx variable.

*/

static void mdlDerivatives(double *dx, double *x, double *u, SimStruct *S, int tid)

{
/*

* YOUR CODE GOES HERE

*/

}

/* STEP9

* mdlTerminate - called when the simulation is terminated.

*

* In this function, you should perform any actions that are necessary

* at the termination o f a simulation. For example, if memory was allocated

* in mdllnitializeConditions, this is the place to free it.

*/

static void mdlTerminate(SimStruct *S)

{

/*
* YOUR CODE GOES HERE

*/

}
//ST E P 10

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

^include "simulinkx" /* MEX-file interface mechanism */

#else

include "cg_sfun.h" /* Code generation registration function */

tfendif

261

Simulink Code for DAC (pc30da.c)

/*
* daout.c
*

* Copyright (c) 1994 by The MathWorks, Inc.

* All Rights Reserved

* /

/*

* STEP1 The following If define is used to specify the name o f your S-Function.
*

* You should change the define to include the name o f your S-function.

* /

ffdefine S_FUNCTION_NAME daout

/ * STEP2

* Need to include simstruc.h fo r the definition o f the SimStruct and

* its associated macro definitions.

*/

ffinclude "simstruc.h"

/*STEP3

*Include file fo r MEX file

*/

ffifdefMA TLAB_MEX_FILE

ffinclude "mex.h"

ffendif

ffinclude <conio.h> //for outp & inp

ffdefine blkcnt 0x700

ffdefine adccr 0x702

ffdefine admde 0x703

ffdefine gmemo 0x718

262

ttdefine adccfg 0x7lc

ttdefine addsr 0x701

tfdefme addatl 0x700

#define daccfg 0x7Id

#define dadatho 0x70d

ttdefine dadatlo 0x70c

/* STEP4

* mdllnitializeSizes - initialize the sizes array
*

* The sizes array is used by SIMULINK to determine the S-function block's

* characteristics (number o f inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

i

ssSetNumContStates(S, 0); /* number of continuous states */

ssSetNumDiscStates(S, 0); /* number o f discrete states */

ssSetNumInputs(S, 1); /* number o f inputs */

ssSetNumOutputs(S, 0); /* number o f outputs */

ssSetDirectFeedThrough(S, 1); /* direct feedthrough flag */

ssSetNumSampleTimes(S, 1); /* number o f sample times */

ssSetNumlnputArgs(S, 1); /* number o f input arguments */

ssSetNumRWork(S, 0); /* number o f real work vector elements */

ssSetNumIWork(S, 0); /* number o f integer work vector elements */

ssSetNumPWork(S, 0); /* number o f pointer work vector elements */

1

/*STEP5

* mdllnitializeSampleTimes - initialize the sample times array

*

* This function is used to specify the sample time(s) fo r your S-function.

* If your S-function is continuous, you must specify a sample time o f 0.0.

* Sample times must be registered in ascending order. If your S-function

* is to acquire the sample time o f the block that is driving it, you must

263

* specify the sample time to be INHERITED_SAMPLE_TIME.
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTimeEvent(S, 0, mxGetPr(ssGetArg(S,0))[0]);

ssSetOjfsetTimeEvent(S, 0, 0.0);

/*

* SET OTHER SAMPLE TIMES AND OFFSETS HERE

* /

}

/*STEP6

* mdllnitializeConditions - initialize the states
*

* In this function, you should initialize the continuous and discrete

* states fo r your S-function block. The initial states are placed

* in the xO variable. You can also perform any other initialization

* activities that your S-function may require.

* /

static void mdlInitializeConditions(double *xO, SimStruct *S)

{
/*Initialisation */

//I pulse per conv

//clr list, set chO as only ch

//chO, dis int, set s/w strobe, clr str bit

//gain o f ch - 1

//no dac inv, no int, diff mode, +-10v

//dac +-10v

outp(blkcnt, Oxjf);

outp(admde, 0x96);

outp(adccr, 0x02);

outpfgmemo, 0x00);

outp(adccfg, 0x03);

outp(daccfg, 0x88);

}

/*

264

* mdlOutputs - compute the outputs
*

* In this function, you compute the outputs o f your S-function

* block. The outputs are placed in the y variable.

* /

static void mdlOutputs(double *y, double *jc, double *u, SimStruct *S, int tid)

{

int hbyte, Ibyte, code;

code =((*u)*2048/1000)+2047; //convert voltage

hbyte = (code & OxjfO) » 4 ; //mask and shift

Ibyte = (code & Oxf) « 4 ; //mask and shift

outp(dadatho, hbyte);

outp(dadatlo, Ibyte);

}

/*STEP 8 - PART 1

* mdlUpdate - perform action at major integration time step

*

* This function is called once fo r every major integration time step.

* Discrete states are typically updated here, but this function is useful

*for performing any tasks that should only take place once per integration

* step.

* /

static void mdlUpdate(double *x, double *u, SimStruct *S, int tid)

{

/*

* YOUR CODE GOES HERE

* /

/*STEP8 - PART 2

* mdlDerivatives - compute the derivatives

* In this function, you compute the S-function block's derivatives.

* The derivatives are placed in the dx variable.

* /

static void mdlDerivatives(double *dx, double *x, double *u, SimStruct *S, int tid)

{

/*

* YOUR CODE GOES HERE

* /

}

/* STEP9

* mdlTerminate - called when the simulation is terminated.

*

* In this function, you should perform any actions that are necessary

* at the termination o f a simulation. For example, if memory was allocated

* in mdllnitializeConditions, this is the place to free it.

*/

static void mdlTerminate(SimStruct *S)

{

/*

* YOUR CODE GOES HERE

* /

}

//ST E P 10

ttifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-fde? */

include "simulinkx" /* MEX-file interface mechanism */

#else

Mnclude "cg_sfun.h" /* Code generation registration function */

ttendif

266

Appendix 9a

Table 9a. 1 shows typical roughness values for various pipe materials and conditions

[9.1].

Material Age/ Condition

Good

(<5 years)

Normal

(5-15 years)

Poor

(>15 years)

Smooth Pipes

(PVC, HDPE, MDPE, Glass fibre) 0.003 0.01 0.05

Concrete 0.06 0.15 1.5

Mild Steel

-Uncoated 0.01 0.1 0.5

- Galvanised 0.06 0.15 0.3

Cast Iron

New 0.15 0.3 0.6

Old - Slight Corrosion 0.6 1.5 3.0

- Moderate Corrosion 1.5 3.0 6.0

- Severe Corrosion 6.0 10.0 20.0

Table 9a.l Pipe Roughness Values (mm)

Fig. 9a. 1 shows the Moody Chart which is used to establish the friction factor, f. Q is the

flow rate, d is the internal diameter of the pipe, k is the pipe roughness [9.1].

267

Fr
ic

tio
n

fa
ct

or

f

so 100
I I 1 H I 0 . 1

m
.05 .1 .2 .5 1

« i i ii i i__1 I I I l 111 1. I ,1 1111

k/d -.05
k/d = .04

k/d = .03

k/d -.02
k/d - . 015

k.'d -01
k/d -.000
k/d =.006

k/d =.004

025 - k/d-002
k /d -001
k/d =0008 —
k/d-0 0 0 6 —
k/d =.0004

0 5 -
k/d =.0002

k/d = 0001

k/d -.000.05

009 - k/d =.000.01 -

1.2 _Q_ / m / s \
M ' m /

k/d =.000,00! k/d -.000,005

Fig. 9a. 1 The Moody Chart

268

Fr
ic

tio
n

fa
ct

or

f

Appendix 9b

Estimating the ‘Front-End' Parameters for an I l k W MHP

To ensure that the 1 lkW IM operates near to rated, the 'front-end' parameters of the MHP

have to be estimated to allow for losses in the penstock and turbine. The simulator

includes a model of the drive train so dynamics in this section will be accounted for.

The first assumption to be made is that a Pelton water wheel will be used as the turbine.

References state that the Pelton has an efficiency of 75% and assuming that the losses in

the drive-train are negligible, compared to those of the turbine, the mechanical power,

Pm, at the turbine will be [9.1]:

1 lkWiiKvv_ = l 4j67kw
m 0.75

Assuming that the net head will be 30m, the flow rate, Q, can be estimated from Eqn.

(9.3)

Q =
p sK

_ -----14.67kw------= Q05m>
1000 x 9.81x30

In order to estimate the friction factor, the roughness value, k and internal diameter, d,

have to be assumed. Assuming that the penstock is galvanised, mild steel and 5-15 years

old, k is 0.00015m while the diameter of the pipe is assumed to be 0.2m [9.1]. Appendix

9a includes the Moody Chart necessary for estimating f. First the following have to be

calculated:

7.2 — = 7.2 x 9^1. - o,3
d 0.2

269

k = 0M 015
d 0.2

These co-ordinates on the Moody Chart correspond to value of f = 0.024. Assuming a

pipe length of 35m, the pipe wall losses can be calculated from Eqn. (9.4):

0.024 x 3 5 x 0.08 x (0.05 f
waiiioss = (02)5 ~ = 0.525m

The velocity, v, of the water in the pipe, required for calculating the turbulence losses,

can be calculated from Eqn. (9.5)

4x0.05
v = ------------t- = 1.59 f

n x (0.2)

Assuming that the pipe has a head loss co-efficient, K, of 0.5, the turbulence losses can

be calculated from Eqn. (9.6)

(159 f
^ 0 . 5 = 0.06m

The total head losses are:

hloss - 0.525 + 0.06 = 0.585m

The gross head will therefore, be 30.585m to ensure a net of 30m This corresponds to a

loss of 2% and compares to loss measurements in the references [9.1].

270

Bibliography

‘CAMO:Cypros ESIM, User’s Manual, Version 3.’ CAMO A/S, Jarleveien 4, N-7041

Trondheim, Norway, 1991

‘Final Report for CEC Contract JOUR-0078. Volume 3 - Jodymod Dynamic Simulation

Software Package: Model Description’, RAL-94-003

‘Final Report for CEC Contract JOUR-0078. Volume 3 - Jodymod Dynamic Simulation

Software Package: User’s Guide’, RAL-94-005

‘Wind Turbine Engineering Design’ Eggleston D M, Stoddard F S, VNR 1987

‘Principles of Electromechanical-Energy Conversion’ Meisel J, McGraw-Hill 1966

‘Hughes Electrical Technology’ McKenzie Smith I, Longman Scientific & Technical 7th

Edition 1995

‘Structural Dynamics, Stability and Control of High Aspect Ratio Wind Turbine

Generators’ Stoddard F S, University of Massachusetts 1979

“ Front-End’ Aerodynamic Control of Horizontal Axis Wind Turbines- Final Report’

Anderson C G, Campbell T J, ETSU WN 6037 1993

‘Modeling [sic] and Control of Variable-Speed Wind-Turbine Drive-System Dynamics’

Novak P, Ekelund T, Jovik I, Schmidtbauer B, IEEE Control Systems August 1995

‘Modelling and Output Power Optimisation of a Wind Turbine Driven Double Output

Induction Generator’ Uctug M Y, Eskanderzadeh I, Ince H, IEE Proc.-Electr. Power

Appl., Vol. 141 No.2, March 1994

271

‘Comparison of Wind Tunnel Airfoil Performance Data with Wind Turbine Blade Data’,

Butterfield C P, Scott G, Musial W, Journal of Solar Energy Engineering, May 1992,

Vol. 114

‘Theoretical and Experimental results from the Operation of Riso’s Experimental

Wind/Diesel System’, Lundsager P, Hauge Madsen P, Aagraard Madsen H, European

Wind Energy Association Conference and Exhibition 7-9 October 1986

‘A Short Term Dynamic Simulation Model for Wind/Diesel Systems’ Uglen K, Oyvin S,

BWEA Conference 1988

‘Simulation of a Radial MV/LV Electricity Grid Voltage Associated with Wind Power

Induction Generator’, Rakkolainen J, Vilkko M, Lautala P, BWEA Conference 1995

‘Development of Dynamic Models for no Storage Wind/Diesel Systems’, Jeffries W Q,

McGowan J G, Manwell J F, BWEA Conference 1995

‘Dynamic Modelling of a Wind-Diesel System for Analysis and Design’, Asbach-Cullen

R C, Freris L L, BWEA Conference 1995

‘Improvement in Performance of a Passive Pitch Wind Turbine with Variable Speed

Operation’ Bleijs J A M , EWEC 1994

‘A Norwegian Wind/Diesel Autonomous System’, Toftevaag T, Uhlen K, Skarstein O,

Wigren J, Wind Energy 1989

‘The Integration of a Wind Turbine and Hydraulic Accumulator Energy Store with a

Diesel Generator to Supply Electricity in a Remote Location’, Slack G, University of

Reading 1985

272

‘Harmonic Analysis of an Electric Utility System with a High Penetration Level of Wind

Generation’, Tang L, Zavadil R M

‘Development of a Wind Turbine Systems Dynamics Model Using the Automatic

Dynamic Analysis of Mechanical Systems (ADAMS) Software’, Wright A D, Buhl M L,

Elliot A S

‘Wind Power Modeling and Application in Generating Adequacy Assessment’, Billinton

R, Gan L, IEEE Proc. 1993

‘Energy Conversion Problems in a Wave Power Station’, Beattie W C, UPEC 1993

‘Computer Modelling of the Islay Wave Power Generator’ Linden B M, Beattie W C,

Whitmaker T J T, UPEC 1993

‘Dynamic Control Options for Variable Speed Wind Turbines’, Iqbal M T, Coonick A H,

Freris L L, Wind Engineering, Vol. 18, No. 1

‘Dynamic Response of Offshore Wind Turbines’, Wastling M A, Quarton D C, Schellin

T E, Wind Engineering, Vol. 17, No. 5

‘A Dynamic Model of the Influence of Turbulence on the Power Output of a Wind

Turbine’, Sheinman Y, Rosen A, Journal of Wind Engineering and Industrial

Aerodynamics, Vol. 39, 1992

‘Software Engineering with C++ and Case Tools’, Pont MJ, Addison-Wesley Publishing

Company, 1996

‘Engineering Mathematics’, Stroud KA, MacMillan Education, 1987, 3rd Edition

273

‘Further Engineering Mathematics’, Stroud KA, MacMillan Education, 1987

‘Solutions of Problems in Advanced Electrical Engineering’, Atkinson GH, Stevens RA,

Sir Isaac Pitman & Sons Ltd. 1967

‘Modem Control Engineering’, Ogata K, Prentice Hall International, Inc. 1990, 2nd

Edition

‘Computer Modelling of Electrical Power Systems’, Arrillaga J, Arnold CP, Harker BJ,

John Wiley & Sons, 1991

‘Electric Circuits’, Nilsson JW, Addison-Wesley Publishing Company, 1983

‘System Modelling and Control’, Schwarzenbach J, Gill KF, Edward Arnold, 1988

‘Engineering Mechanics - Volume 2 Dynamics’, Meriam JL, Kraige LG, John Wiley &

Sons, 1987, 2nd Edition

‘Large-Eddy Simulation: A Critical Review of the Technique’, Mason PJ, Quarter

Journal of the Royal Meteor Society, pp 120-126, 1994

‘Some Aspects of Small Aerogenerator Design and Testing’, Buehring IK, Freris LL,

Third International Symposium on Wind Energy Systems, 1980

‘Flexible Wind Turbine Model Validation’, van Baars GE, Bongers PMM, Wind

Engineering, Vol. 16, No. 4, 1992

‘Calculations of Dynamic Wind Turbine Blade Loads from Simple Meteorological Data’,

Smedman AS, Wind Engineering, Vol. 16, No. 4, 1992

274

‘Torque Measurements Using Strain Gauges’, http://apo.mech.nwu.edu/mbrown-

lib/Master...is/Section4/Section4.2.1/master4.2.2.html

‘Torque Measuring Platform’, Personal Correspondence with Mullins M, Arrow

Engineering Designs, May 1997

‘Electric Machines and Drives’, Slemon GR, Addison-Wesley Publishing, 1992

‘NMAKE.wri File’, Documentation for the NMAKE Utility for Microsoft Visual C++,

Version 1.0, 1993

‘I/O Port Access in Microsoft Visual C++’,

http://www.doc.ac.uk/~ih/doc/par/doc/data/vc.html

‘How to Change COM1 or COM2 Parameters While Port is Open’,

http://emwac.faf.cuni.cz/mir...velopr/BASIC/KB/Q39/2/55.txt

‘The Role of Converters & Their Control in the Recovery of Wave Energy’, Childs JF,

IEE, 1997

‘Flood & Coastal Defence’, No. 10, June 1997, Ministry of Agriculture, Fisheries and

Food

‘Design Charts for Wells Air Turbine’, Kotb MA, Wind Engineering, Vol. 20, No. 4,

1996

‘New Approach for Simulating an Energy Limited Hydro Unit’, Ahsan Q, Bhuiyan MR,

IEE Proceedings, Vol. 137, Pt. C, No. 5, 1990

275

http://apo.mech.nwu.edu/mbrown-
http://www.doc.ac.uk/~ih/doc/par/doc/data/vc.html
http://emwac.faf.cuni.cz/mir...velopr/BASIC/KB/Q39/2/55.txt

‘A Wind/Diesel System with Variable Speed Flywheel Storage’, Ruddell AJ, Bleijs JAM,

Freris LL, Infield DG, Smith GA, Wind Engineering, Vol. 17, No. 3,1993

‘Interconnection Issues Concerning Consumer-Owned Wind Electric Generators’, Park

GL, Zastrow OW, IEEE Trans, on Power Apparatus and Systems, Vol. Pas-101, No. 7,

1982

‘High Quality Mains Power from Variable-Speed Wind Turbines’, Jones R, Smith GA,

Wind Engineering, Vol. 18, No. 1

‘Propagation and Elimination of Torque Ripple in a Wind Energy Conversion System’,

Dessaint L, Nakra H, Mukhedkar D, IEEE Trans, on Energy Conversion, Vol. EC-1, No.

2, 1986

‘On Wind Turbine Power Measurements’, Frandsen S, Christensen CJ, International

Symposium on Wind Energy Systems, 1980

‘Autonomous Wind Energy Conversion Systems with a Simple Controller for Maximum-

Power Transfer’, Ermis M, Ertan HB, Akpinar E, Ulgut F, IEE Proceedings-B, Vol. 139.

No. 5, 1992

‘Control Strategies for Variable-Speed Wind Energy recovery’, Goodfellow D, Smith

GA, Gardner G, BWEC 1988

‘Some Control Aspects of a Small Isolated Wind Turbine’, Iqbal MT, Coonick AH,

Freris LL

'Amplicon Liveline Catalogue', 1997, Vol. 2

276

'User Manual for the PC30F and PC30G Series Boards', Eagle Technology, Fifth Edition,

1996

'Amplicon Liveline Catalogue', 1997, Vol. 2

'User Manual for the PC30F and PC30G Series Boards', Eagle Technology, Fifth Edition,

1996

'Micro-Hydro Design Manual - A Guide to Small-Scale Water Power Schemes', Harvery

A, Intermediate Technology Publications, 1993

'Assessment of Hydroturbine Models for Power-Systems Studies', Smith JR, McLean R,

Robbie JF, IEE Proc., Vol.130, Pt. C, No.l, Jan. 1983

'HydraulicTurbine and Turbine Control Models for System Dynamic Studies', Working

Group on Prime Mover and Energy Supply Models for System Dynamic Performance

Studies, IEEE Trans, on Power Systems, Vol.7, No. 1, Feb. 1992

'Accurate Low Order Model for Hydraulic Turbine-Penstock', Sanathanan CK, IEEE

Trans, on Energy Conversion, Vol. EC-2, No. 2, June 1987

'Control Structures Analysis for a Real Time Wind System Simulator', Nichita C, Diop

AD, Belhache J, Dakyo B, Protin L, Wind Engineering, Vol. 22, No. 6, 1998

277

