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SUMMARY

The creation of memories about real-life episodes re-
quires rapid neuronal changes thatmay appear after a
single occurrence of an event. How is such demand
met by neurons in the medial temporal lobe (MTL),
which plays a fundamental role in episodic memory
formation? We recorded the activity of MTL neurons
in neurosurgical patientswhile they learnednewasso-
ciations. Pairs of unrelated pictures, one of a person
and another of a place, were used to construct a
meaningful association modeling the episodic mem-
oryofmeetingaperson in a particular place.We found
that a large proportion of responsive MTL neurons
expanded their selectivity toencode thesespecificas-
sociations within a few trials: cells initially responsive
to one picture started firing to the associated one
but not to others. Our results provide a plausible neu-
ral substrate for the inception of associations, which
are crucial for the formation of episodic memories.
INTRODUCTION

Neuroimaging investigations in humans and behavioral studies

of neurological patients have substantiated the importance of

the medial temporal lobe (MTL) for episodic memories (Davachi,

2006; Eichenbaum, 2004; Eichenbaum et al., 2007; Moscovitch,

1994; Squire et al., 2004; Tulving, 2002). Furthermore, neuro-

physiological and lesion studies in animals have shown that

the MTL is involved in the encoding of associations (Bunsey

and Eichenbaum, 1996; Day et al., 2003; Kahana et al., 2008; Sa-

kai and Miyashita, 1991; Wirth et al., 2003), which is a key mech-

anism for episodicmemory formation. In spite of themajor signif-

icance of these works in advancing our understanding of

episodic memory, their contribution has been limited. On the

one hand, human studies have not addressed episodic memory

formation at the single neuron level. Animal studies, on the other

hand, have relied on extensive reward-driven training with

numerous repetitions of non-natural stimuli, thus offering a
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limited account on how single exposures to natural stimuli can

give rise to the rapid encoding of new episodic memories.

Neurons in the humanMTLhavebeen found to respond to con-

cepts that are related to each other (Quian Quiroga, 2012; Quian

Quiroga et al., 2005), such as two co-stars in the same television

series or a few researchers (previously unknown to the patients)

involved in the experiments (QuianQuirogaet al., 2009; Viskontas

et al., 2009). Here we designed a paradigm to study how fast

these associations can be created and whether this speed is

compatiblewith basicmechanismsof episodicmemory creation.

We postulate that associations can be formed by partially over-

lapping cell assemblies encoding related concepts (Quian Quir-

oga, 2012) and show experimental evidence of rapid changes

of single-cell responses while contextual associations are

learned. As detailed below, in order to gain such evidence, we

combined the ability to analyze trial-by-trial changes in the robust

firing of highly selectiveMTL neurons (Quian Quiroga et al., 2005,

2008, 2009), with the rapid facility that humans have for learning

complex associations and consciously declare them.

Patients first participated in a ‘‘screening session’’ (QuianQuir-

oga et al., 2005) in which a large number of images of people, an-

imals, and places were presented to find out which (if any) of the

recordedneurons responded to apicture. Data processing (spike

detection, sorting, and identification of responsive cells) was

done quickly (typically within 1 hr) and 3 to 8 (median 7) pairs of

pictures were selected. Each pair consisted of a picture of a per-

son (or animal) and a picture of a landmark, for which there was a

neuron firing tooneof them (thepreferred ‘‘P’’ stimulus) andnot to

the other one (the non-preferred ‘‘NP’’ stimulus). For each pair,

we created contextual ‘‘composite’’ images, in which each indi-

vidual was digitally extracted from the original picture and placed

in front of the landmark, mimicking a real photo of seeing the in-

dividual at that landmark (Figure 1). Using presentations of the

single and composite images of each pair, we evaluated changes

in neural activity while subjects performed five consecutive tasks

(Figure 1). First, to get an estimation of the pre-learning firing to

each picture, in Task 1, the screening was repeated showing

each of the single pictures for 1 s 6 times in pseudorandomorder,

and patients were asked to indicate whether the picture con-

tained a human face or not. Then, a block of ‘‘learning and evalu-

ation trials’’ (median of 15 trials) comprising interleaved tasks 2

and 3 were shown. In Task 2, the composite images (each of
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Figure 1. Experimental Design and Behav-

ioral Results

(A) Structure of the association task. P, preferred

stimulus; NP, non-preferred stimulus; C, com-

posite stimulus; L, landmarks.

(B) Selection of stimuli. In this example, in a pre-

vious recording session (performed prior to the

tasks in A to determine pictures eliciting re-

sponses in the neurons), we identified one single

unit that responded to a picture of the American

actor Clint Eastwood (P) and did not change its

firing rate in response to the picture of the Holly-

wood sign (NP). The preferred (P) and non-

preferred (NP) stimuli for each neuronwere used to

create contextual pictures as the one shown

(median 7 pairs, 3–8 pairs per session).

(C) Grand average learning curve (mean ± SD) for

all pairs in 25 sessions performed by 14 patients.

Trial number refers to trials during Task 3, where

learning was assessed. Note the high variability

across sessions.
them being a specific person in a specific place) were presented

in pseudorandomorder, whichwere then followed by the presen-

tation of the single pictures, also in pseudorandom order. The in-

structions were the same as in Task 1 (i.e., indicate presence of a

human face). After each runof Task 2, the learningof associations

was tested in Task 3 (the patient was presented each face at a

time and had to select the landmark corresponding to it). After

Task 2 and Task 3, in Task 4 the patient was presented 6 times

each landmark in pseudorandom order and had to name the per-

son that was there. Finally, in Task 5 (‘‘re-screening’’) all single

pictures were presented again in pseudorandom order, to

comparewith Task 1 (before learning). Typically, the entire exper-

iment lasted between 25 to 30 min.

RESULTS

Firing Patterns of Single Cells during Learning
In 14 patients, who participated in 25 experimental sessions (and

only 22 for Task 5),we recorded the activity ofmultiple single neu-
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rons using electrodes implanted in the

MTL for clinical reasons. Figure 2 shows

a neuron in the hippocampus that re-

sponded strongly to the picture of amem-

ber of the patient’s family (with a mean

firing rate of 13.1 spikes/s, SD = 3.9, me-

dian = 12.5) but not to the Eiffel tower

(3.6 spikes/s on average, SD = 3.4, me-

dian = 3.3. The firing to the Eiffel tower

during the response period did not differ

significantly from the one during baseline

(3.9 spikes/s on average, SD = 2.0, me-

dian = 4.2), according to a Wilcoxon

rank-sum test (p = 0.84, W = 40.5, n1 =

n2 = 6). With our experimental design,

we aimed to establish whether MTL neu-

rons will widen their tuning to encode the
formed association by selectively increasing their firing to the

associated stimulus. After a single exposure of the composite

picture, the subject learned the association (i.e., family member

at the Eiffel tower) and the firing rate in response to the Eiffel

tower increased to 7.6 spikes/s on average (SD = 5.1, median =

8.3), a 230% increase compared to the presentations of the Eif-

fel Tower before learning took place (Task 1). This difference

was significant (p = 0.002, W = 563, n1 = n2 = 27, Wilcoxon

rank-sum test between baseline and response periods, see

Experimental Procedures). In contrast, the response to the

preferred stimulus (family member) did not change significantly

after learning the association (9.4 spikes/s, SD = 4.5, median =

10.8) and it was similar to the response to the composite image

of ‘‘family member at the Eiffel tower’’ (7.8 spikes/s, median =

8.3; p = 0.96, W = 325, n1 = 27, n2 = 15, Wilcoxon rank-sum be-

tween the response to the Eiffel tower and the composite im-

age). In order to verify that the increase in firing after learning

was specific to the associated stimulus pair (NP) and not com-

mon to other stimuli used in the experiment, for example, due
–230, July 1, 2015 ª2015 The Authors 221
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Figure 2. Exemplary Response in the Hip-

pocampus

A unit in the left hippocampus of participant 14was

activated with a response of 13.1 spikes/s when

the image of the patient’s family was presented

(preferred stimulus, black squares have been

added for privacy reasons). The same cell was not

responsive (response: 3.3 spikes/s) to the image of

the Eiffel tower before learning (Task 1). For each

task the corresponding raster plots (ordered from

top to bottom) of each picture are given. Blue

rasters represent pre-learning (Task 1) or incorrect

trials. Red rasters represent correct or post-

learning (Task 5) trials. The spike density function

for trials before (BL) and after (AL) learning in

response to the non-preferred (left), preferred

(middle), and to the mean of the non-associated

stimuli (average over 7 pictures) are shown at the

bottom panels. Crosses indicate that the stimulus

was not shown during a given task. After single-

trial learning (Tasks 2, 3, and 4), the unit fired

strongly to the picture of the patient’s family

(mean: 10.8 spikes/s, left), to the composite pic-

ture (7.8 spikes/s, right) and to the picture of the

Eiffel tower (7.6 spikes/s). There was a 230% in-

crease in firing to the non-preferred stimulus. The

response to the non-associated stimuli slightly

decreased from 5.3 spikes/s before learning to 3.6

spikes/s after learning.
to an increase in familiarity, we also examined the response to

the other stimuli. For each neuron X with a preferred stimulus

Px and a non-preferred stimulus NPx, we defined the non-asso-

ciated (NA) stimuli for neuron X to be all the other pictures used

in the association experiment corresponding to the same cate-

gory of the NPx stimulus (person or landmark). The bottom-right

plot of Figure 2 shows the average response to all the NA stimuli,

which decreased from a mean of 5.3 spikes/s (SD = 5.6) to

3.8 spikes/s (SD = 4.9) after learning.

For someother units, the associationwas established the other

way around, i.e., a neuron initially responding to a landmark

changed its firing to the associated person after learning. Figure 3

shows a multi-unit in the parahippocampal cortex that, in Task 1

(before learning), originally fired to an image of the White House

(mean=17.8spikes/s,SD=7.2,median=15) andnot toAmerican

beach volleyball player Kerri Walsh (mean = 5.0 spikes/s, SD =

3.6, median = 3.3). After the patient learned the association be-

tween these twoconcepts (trial 1 in Task 2, seeExperimental Pro-

cedures for learningcriterion), therewasan increase in thefiringof

the neuron to the picture of Kerri Walsh (mean = 13.8 spikes/s,

SD = 9.2, median = 14.2), which was statistically significant (p <

0.05,Wilcoxon rank-sumtest betweenbaselineand responsepe-

riods). This increase in the neuron’s response to Kerry Walsh (NP
222 Neuron 87, 220–230, July 1, 2015 ª2015 The Authors
stimulus) after learningwas observed in all

tasks: a mean of 12.9 spikes/s in Task 2

(post-learning trials only), 16.7 spikes/s in

Task 3, and 9.4 spikes/s in Task 5. The

response to the preferred stimulus (the

White House) increased slightly after

learning to 25.6 spikes/s (SD = 8.9),
but this difference was not significant (Wilcoxon rank-sum test).

Additional examples are shown in Figure S1 and Movie S1.

Population Responses
We recorded from a total of 613 units (438 multi-units and 175

single units) from the hippocampus (138 units), entorhinal cortex

(117 units), amygdala (194 units), and parahippocampal cortex

(164 units). We first identified visually responsive units, defined

as those that, before learning, showed a significant difference in

the response to at least one stimulus using a Wilcoxon rank-

sum test between baseline and response (see Experimental

Procedures). Altogether, we found 51 visually responsive units

(31 single units and 20 multi-units) that significantly increased

their firing rate in response to the preferred stimulus (P), with

P being one individual (27 units) or landmark (24 units). Figure 4

shows the population results for all visually responsive units.

Figure 4A shows the increase in response strength (comparing

before and after learning) for each of the 51 visually responsive

units and for all stimuli. The population averages are shown at

the bottom of Figure 4A for all types of stimuli, where we

observe a larger increase in firing after learning for the NP

compared to the other stimuli. The change in firing rate after

learning (see ‘‘Visually Responsive Units’’ in Experimental
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Figure 3. Exemplary Response in the Para-

hippocampal Cortex

Conventions are the same as in Figure 2. A multi-

unit in the parahippocampal cortex of participant 3

fired at a rate of 17.8 spikes/s (SD = 7.2) to the

picture of the White House (preferred stimulus)

from a baseline of 4.4 spikes/s (SD = 4.0). This cell

only fired at a rate of 5.0 spikes/s (SD = 3.6) to the

picture of the American volleyball player Kerri

Walsh before learning (Task 1). After learning (trial 1

in Task 2), the cell selectively increased (by 246%)

its response to the pair associate (mean response:

13.8 spikes/s, SD = 9.1, p < 0.05).
Procedures) was significantly different for the different stimuli

according to a one-way ANOVA F(11,492) = 3.15, MSE =

0.46, p = 0.0001 (n = 42 cells with at least 12 stimuli—9 units

that corresponded to sessions where less than 12 stimuli

were presented were excluded from this analysis to avoid un-

balanced data). This significant difference was largely due to

the change in the NP stimuli and not any other non-associated

stimulus. In fact, the difference was still significant when

excluding the P stimuli (p = 0.01) but not when also excluding

the NP stimuli (p = 0.76). Moreover, the only two stimuli that

showed a median significantly different from zero were the

preferred stimulus (decrease, p = 0.001; see below for interpre-

tation in terms of repetition suppression) and the NP stimulus

(increase, p = 0.005). Furthermore, paired t tests showed that

the increases in the NP responses were significantly larger

than the ones to any other stimulus (all p values between

0.0008 and 0.03). To further validate these results, we per-

formed a permutation test, adjusted for multiple comparisons,

by shuffling the labels of the stimuli and taking as test statistic

the smallest difference between the activity to the NP stimulus

and the one to any other stimuli. We ran 5,000 permutations

and found the p value of the NP stimulus to be statistically sig-

nificant (p = 0.012, see Supplemental Experimental Procedures
Neuron 87, 220
for details). Of all the 613 units that we re-

corded from, 51 were visually responsive

and 562 were non-responsive (i.e., did

not have a significant response

compared to baseline before learning).

Of the 562 non-responsive units, 12

(2.1%) exhibited a significant increase

to at least one image (mean = 4.1 images,

SD = 1.5) after learning took place, ac-

cording to a Wilcoxon rank-sum test

between the baseline and response pe-

riods. This number is within what could

be expected by chance (n = 28) with a

false positive rate of 0.05. Only three of

the non-responsive units had a change

in response to an association pair

(P and NP) that was larger than the one

to the other pictures (Wilcoxon rank-

sum test, p < 0.05). To further quantify

the responses of all visually responsive
neurons (to all of the presented stimuli), we calculated a pair-

coding index (PCI), a correlation coefficient for each neuron be-

tween the mean response to each stimulus and its paired asso-

ciate (as defined in Higuchi and Miyashita, 1996). This statistic

has been used to assess how neurons acquire stimulus selec-

tivity through associative learning and is expected to approach

zero for a large number of neurons firing with a pattern indepen-

dent of the stimulus pairs (Naya et al., 2003). Across the popu-

lation of visually responsive units, we found that the pair-coding

indices after learning (median = 0.35) were significantly higher

(median = �0.03, D = 0.36, n1 = n2 = 42, p = 0.007, Kolmo-

gorov-Smirnov test, see Figure 4B), thus showing the formation

of an association between the P and NP stimulus pairs.

To assess the changes that occurred in different tasks, we

calculated, for the whole population of visually responsive units,

an average differential activity index DAI = (Pr � NPr / Pr + NPr),

where Pr, NPr denote the mean activity in the response interval

(see Experimental Procedures). The DAI is expected to be posi-

tive, since Pr > NPr, and it quantifies the difference in the

response to the preferred and non-preferred stimuli. As ex-

pected, the largest DAI values were obtained for Task 1 (Fig-

ure 4C) before learning took place, indicating a large difference

in the response to the P and the NP stimuli. For the following
–230, July 1, 2015 ª2015 The Authors 223



Figure 4. Population: Visually Responsive

Units

(A) Response changes for all visually responsive

units. Each row represents one cell and each col-

umn represents one stimulus. The rows were sor-

ted by the strength of the change in the NP stimulus

and the columns were unsorted. Blank squares

represent stimuli that were not shown during the

corresponding session. Themean values across all

cells are shown in the middle panel (in colors) and

in the bottom panel including SEMs. Ex1, Ex2

correspond to the exemplary units shown in Fig-

ures 2 and 3.

(B) Cumulative frequency histograms of the corre-

lation coefficient (defined as in Higuchi and Miya-

shita, 1996) for units before learning (BL) and after

learning (AL). Correlation coefficients were signifi-

cantly higher after learning than before learning (p =

0.007, Kolmogorov-Smirnov test).

(C) Average differential activity index DAI = (Pr �
NPr / Pr + NPr) for all tasks. Lower values of DAI

denote more similar responses. Responses to the

preferred and non-preferred stimuli become more

similar after learning for all tasks (p < 0.001,

average decrease by a factor of 1.6, range:

1.4–1.8).

(D) Average normalized spike density function

(SDF) for 51 visually responsive units to the P, NP,

and NA before and after learning. There was a

significant increase in the response strength to the

NP stimuli after learning (p < 0.05, Wilcoxon rank-

sum test).
tasks, DAI values were significantly smaller (p < 0.001, see

Experimental Procedures).

To study the time course of the responses, we separated the

normalized population response for all visually responsive neu-

rons according to the type of stimuli (P, NP, and NA) and condi-

tion (before and after learning). After learning (Figure 4D), we

found a 172% increase in the response strength to the NP stimuli

compared to the pre-learning value. This increase was statisti-

cally significant (p = 0.05, n = 51, Wilcoxon rank-sum test be-

tween the mean response before versus after learning). In

contrast, the mean response to the preferred stimuli decreased

to 87% of its pre-learning value (p = 0.3, n = 51, Wilcoxon

rank-sum test), while the mean response to the non-associated

stimuli did almost not change (101% of the pre-learning value,

p = 0.9, n = 51, Wilcoxon rank-sum test).

Given these population results, we next evaluated how many

of the visually responsive neurons encoded the enforced associ-

ations. For this, we defined ‘‘pair-coding neurons’’ as the ones

that: (1) showed a significant response to the NP stimulus after

learning, using a Wilcoxon rank-sum test comparing baseline

and response periods (with p < 0.05), and (2) the distribution of

increases of single-trial responses to the NP stimulus after

learning was larger than the distribution of increases of single-
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trial responses to all the other pictures

(excluding P) after learning (see ‘‘Pair-

Coding Units’’ under Experimental Proce-

dures). Of the 51 visually responsive units,
21 (41%) were ‘‘pair-coding neurons’’ and selectively increased

their response to the NP stimuli after learning. As expected by

construction—since based on the screening sessions we chose

the NP stimuli to be one that the neuron originally did not fire to—

these units showed no significant response to the NP stimuli

before learning took place (Wilcoxon rank-sum test). The number

of neurons encoding the association (pair-coding neurons, n =

21/51) far exceeded the number expected by chance (p <

10�13), according to a binomial test with a chance level of 0.05

(see Supplemental Experimental Procedures). We also verified

that the observed distribution of p values was significantly lower

than the one generated by neurons with a Poisson firing proba-

bility and the same mean firing rates as the responsive units

(p < 0.004; see ‘‘Proportion of Pair-Coding Units’’ under Supple-

mental Experimental Procedures).

In what follows, we concentrate on the 21 neurons that en-

coded the associations. Among the 21 pair-coding units, 14

(67%) originally fired to a person and started firing to the associ-

ated landmark after learning (like the one shown in Figure 2). In

the remaining 7/21 cases, the association was established the

other way around, i.e., the neuron originally responding to a

landmark, changed its firing to the associated individual after

learning (like the one shown in Figure 3). Across the population



Figure 5. Population: Pair-Coding Units

Average normalized spike density function (SDF)

for 21 units that selectively changed their response

after learning. The shaded areas represent SEM.

(A) Normalized SDF to the preferred stimulus for

before learning (BL) and after learning (AL). There

was no significant difference between conditions in

the response period.

(B) Normalized SDF to the non-preferred stimulus

for BL and AL. After learning, units responded

significantly more strongly to the non-preferred

stimulus (p < 0.01).

(C) Normalized SDF to the non-associated stimuli.

(D) Average normalized neural activity (black

squares) and behavioral responses (green circles)

to the non-preferred stimulus as a function of trial

number. In the top panel, data were aligned to the

learning time (relative trial number 0). In the bottom

panel, trials were sorted according to their pre-

sentation order, with the first 6 trials always de-

noting trial 1 and trial 7 corresponding to the start

of Task 2. Continuous lines correspond to psy-

chometric fits using a binomial function. Note that

the neural activity follows the sudden increase in

behavioral learning when data are aligned relative

to learning time.

(E) Normalized SDF to the non-preferred stimulus

for Task 1 and Task 5. Responses during Task 5

were significantly higher than during Task 1 (p =

0.001, Wilcoxon rank-sum test).

(F) Average differential activity index DAI for all

tasks. Responses to the preferred and non-

preferred stimuli become more similar after

learning for all tasks (p < 10�6, average decrease

by a factor of 5.5, range: 4.2–6.7).
of pair-coding neurons, the responses to the non-preferred stim-

uli showed an average increase of 281% (from 1.44 ± 0.22 to

4.06 ± 0 0.38, mean ± SEM) after learning, which was statisti-

cally significant (p < 10�5; Wilcoxon rank-sum test between

the mean response before versus after learning) (Figure 5B).

Similar results were obtained when considering only single units

(n = 11). In this case, there was a significant increase of 412% in

the response to the NP stimuli after learning (p = 0.0001, Wil-

coxon rank-sum test). In line with the results for all visually

responsive units (Figure 4C), the responses to the P (Figure 5A)

and NA (Figure 5C) stimuli did not change significantly after

learning (88% of the pre-learning value, p = 0.65 for the P stim-

ulus and 134% of the pre-learning value, p = 0.27 for the NA

stimuli).

Neuronal and Behavioral Learning Curves
In order to compare on a trial-by-trial basis the neural and behav-

ioral changes, we calculated the neuronal learning curves by re-
Neuron 87, 220
scaling the activity across the population

of neurons encoding the association for

all trials in all tasks to the range 0–1 (see

Experimental Procedures). A direct com-

parison between the behavioral and neu-

ral learning curves exhibited a significant
positive correlation for the non-preferred stimulus (r = 0.25, p <

10�11, Pearson’s correlation coefficient r), due to the increase

in firing after learning the associations. There was a non-signifi-

cant correlation for the non-associated stimuli (r = 0.05, p =

0.2) and also a negative correlation for the preferred stimulus

(r = �0.08, p = 0.03), consistent with the decrease in firing to

the preferred stimulus reported in Figure 4A, which is likely due

to repetition suppression in line to a previous work without an

association paradigm (Pedreira et al., 2010). To further investi-

gate whether this behavior is due to repetition suppression, or

whether it also reflects the formation of associations, we

compared the decreases found in pair-coding units with the

ones found in the other visually responsive units. For this, for

each visually responsive unit, we calculated the percentage

change as 100*(Ppost � Ppre)/Ppre, where Ppost and Ppre indicate

the mean activity in the response window. Both populations

of pair-coding and non-pair-coding units exhibited similar

trends, with a mean percentage decrease of �7% (SD = 40,
–230, July 1, 2015 ª2015 The Authors 225



median = �15%) for the pair-coding units and �11% (SD = 33,

median = �20%) for the non-pair-coding units. The median of

both populations did not differ significantly (p = 0.64, Wilcoxon

rank-sum test) and the median of both populations differed

significantly from zero (p = 0.03 and p = 0.02 for pair-coding

and non-pair-coding, respectively), thus the decreases for the

P stimuli seem to reflect repetition suppression rather than an

encoding of the association.

Given the variability on the number of trials that subjects

needed to learn each association pair, to further evaluate how

tightly correlated were the observed firing changes to the actual

learning of the associations, we realigned the response of each

cell to the learning time and compared these neural responses

to the ones obtained as a function of the actual trial number in

the experimental session. For this, we fitted logistic functions

to the average behavioral and neural learning curves to the

non-preferred stimulus for both alignments (absolute trials and

relative to learning time; see Experimental Procedures for de-

tails). In Figure 5D, we first observe that aligning to learning

time gives a more accurate matching between the behavioral

and the neural learning curves. In fact, for data aligned to learning

there were no significant differences between behavioral and

scaled neural data (Kolmogorov-Smirnov test, p = 0.59). Addi-

tionally, the fits were more accurate for data aligned to learning

time, as quantified by the Akaike Information Criterion (AIC)

(Akaike, 1974)—data relative to learning: AICBeh = 142; AICNeu =

298; data not aligned: AICBeh = 175; AICNeu = 325, where smaller

values denote higher accuracy. The same logistic model did not

fit the data for the preferred and non-associated stimuli as accu-

rately as it did with the non-preferred stimuli (Figure S2). More-

over, both for the P and NA, Pearson’s correlation coefficient

was larger for the unaligned (R2 = 0.73/0.04 for P/NA stimuli)

than for the learning-aligned data (R2 = 0.46/0.03). When the

NP data were aligned to learning time, there was a large increase

in the slope of the behavior curve: bBeh = 4.6 after re-alignment,

compared to bBeh = 4.2 for the unaligned data. But the interesting

fact was that this change in the behavioral learning curve was

accompanied by an abrupt increase in firing to the non-preferred

stimuli, when re-aligning the neural data to the learning time:

bNeu = 3.1 aligned to learning, compared to bNeu = 1.6 without

alignment. The slope difference (with and without alignment to

learning) was significant, according to a non-parametric boot-

strap test (p < 0.05; see Figure S3 and Experimental Procedures

for details).

Neural Activity during Different Tasks
Next, to rule out that changes in neuronal responses were just

driven by one of the specific tasks we used (as each task varied

in complexity and attentional demand) and not by the formation

of new associations, we used the differential activity index DAI

introduced before for the population of visually responsive units.

Altogether, after learning there was a decrease of DAI values by a

factor of 5.5 on average (range: 4.2–6.7). Moreover, differences

between the tasks after learning were not significant, thus sug-

gesting that these neuronal changes were not task dependent.

Supporting this view, a direct comparison of the response to

the non-preferred stimuli in the two identical tasks (Task 1,

pre-screening and Task 5, re-screening) showed significant dif-
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ferences (p = 0.001, Figure 5E), which can be attributed to the

learning of the particular association. There was also an increase

in the response during Task 5 when considering all visually

responsive units but in this case the difference was not signifi-

cant (p = 0.14).

Decoding Analysis
From a readout viewpoint, the learning of the associations

should be accompanied by a decrease in the discriminability be-

tween the NP and the P stimulus, given that the neuron originally

firing only to the P stimulus starts also firing to the NP after

learning. This selective increase in firing to the NP stimuli should

also lead to more discriminability between the NP and NA stimuli

after learning. This is indeed what we observed using a linear

classifier to decode the identity of the stimuli before and after

learning (see Supplemental Experimental Procedures). When

considering the whole population of visually responsive units,

the discrimination between P and NP stimuli went down from a

74% average performance before learning to 68% after learning.

The decrease was significant according to a paired t test, t(100) =

1.95, p = 0.03. For pair-coding units, the discrimination between

P and NP stimuli went down from a 72% average performance

before learning to 56% after learning. Altogether, the decoding

performance was significantly larger than chance with p < 0.05

(see Supplemental Experimental Procedures) for 11 of the 21 re-

sponses (52%) before learning and for 6 of the 21 responses

after learning (38%).

Latency Analysis
Two possible mechanisms can in principle account for the

increased response to the NP stimuli after learning. On the one

hand, neurons can rapidly change their tuning and start firing

to the NP stimuli directly—that means, a neuron originally encod-

ing the P stimulus starts encoding the NP stimulus after

learning—in which case, the time courses of both P and NP sig-

nals are expected to be similar. On the other hand, the NP stimuli

can act as a cue to evoke the representation of (and in turn the

neuron’s firing to) the P stimuli. Following previous works

(Naya et al., 2001, 2003), we distinguished between these two

putative mechanisms—namely between Type 1 and Type 2 neu-

rons—by analyzing the differences in the latency response on-

sets between the NP and P stimuli. In the first case (Type 1),

we expect similar latency onsets for the P and NP stimuli,

whereas in the other case (Type 2), we expect a larger latency

onset for the NP stimuli. We used Poisson spike train analysis

(see Experimental Procedures) to estimate the onset latency

for all presentations and performed a Wilcoxon rank-sum test

to compare the latency values for the P and NP stimuli. Of the

21 pair-coding units that selectively increased their firing to the

NP stimuli after learning, 13 were ‘‘Type 1,’’ as in the example

shown in Figure 2, and the remaining 8 were ‘‘Type 2,’’ as in

the example shown in Figure 3. The scatter plot of the response

onset latency values with the classification details is shown in

Figure S4. Interestingly, both Type 1 and Type 2 units exhibited

a significant positive correlation between behavioral perfor-

mance and neural activity for the NP stimulus (Pearson’s r =

0.24, p = 10�7 and r = 0.28, p = 4*10�6 for Type 1 and Type 2,

respectively).



Regional Analysis
Altogether, we identified 51 visually responsive units across

different regions within the MTL: 10 in hippocampus, 7 in the en-

torhinal cortex, 29 in the parahippocampal cortex, and 5 in the

amygdala. We observed pair-coding units throughout the MTL:

(6 out of 10 [60%] visually responsive units in the hippocampus),

4 out of 7 (57%) in the entorhinal cortex, 11 out of 29 (38%) in

the parahippocampal cortex, and 1 out of 5 (40%) in the amyg-

dala. We consistently found both Type 1 and Type 2 neurons in

these regions: 4 out of 8 pair-coding units in H/EC were of Type

1, where we have grouped responses in hippocampus and en-

torhinal cortex that were previously shown to exhibit similar

properties (Mormann et al., 2008; Quian Quiroga et al., 2009).

In PHC, 7 out of 11 pair-coding units were of Type 1. Pair-cod-

ing cells in H/EC were more prominently firing to pictures of per-

sons instead of landmarks (6 out of 8 pair-coding units)

compared to cells in PHC (n = 7 out of 11) but the difference

was not significant (c2 = 0.28, p = 0.60). Despite the small sam-

ple size of the recorded neurons, we found that the time courses

of the responses in PHC were qualitatively similar to the ones in

H/EC (Figure S5). As a cautionary note, we wish to point out that

a larger number of recorded neurons is necessary to address

the issue of regional differences (and similarities) more

conclusively.

DISCUSSION

Episodic memory—the ability to consciously recall personal

experienced events and situations (Moscovitch, 1994; Tulving,

2002)—relies on the very rapid and effortless formation of

new associations (Bunsey and Eichenbaum, 1996; Quian Quir-

oga, 2012; Wirth et al., 2003; Kahana et al., 2008). Animal

studies have previously shown that single neurons can change

their selectivity after learning in associative tasks (Erickson and

Desimone, 1999; Gochin et al., 1994; Messinger et al., 2001;

Sakai and Miyashita, 1991; Wirth et al., 2003). In particular,

Miyashita and colleagues trained macaque monkeys to asso-

ciate pairs of fractal patterns and found picture-selective neu-

rons in IT cortex (areas TE and perirhinal cortex) that showed

significantly correlated responses to the paired associates (Sa-

kai and Miyashita, 1991). This coding was later hypothesized to

emerge from separate TE neurons coding perceptual informa-

tion about the individual paired associates that would converge

onto the same neurons in the perirhinal cortex (the selective-

convergence model) (Higuchi and Miyashita, 1996; Naya

et al., 2001, 2003). But the learning of paired associates in an-

imals is a demanding task that requires extensive reward-

driven training, typically taking place before recordings begin

(Erickson and Desimone, 1999; Higuchi and Miyashita, 1996;

Sakai and Miyashita, 1991). Moreover, these recordings were

performed in extra-hippocampal regions, which show distrib-

uted representations and are not thought to support fast

learning according to modeling studies (McClelland et al.,

1995). One notable exception was reported by Wirth and col-

leagues (Wirth et al., 2003; Yanike et al., 2004), who demon-

strated a significant correlation between behavioral perfor-

mance and neuronal hippocampal activity during the

acquisition of associations between background scenes and
specific actions (a saccade toward one of four cardinal loca-

tions). However, in this case the task also involved explicit

reward-driven training, and learning occurred in two-thirds of

the cases only after 14–17 trials (Wirth et al., 2009). These time-

scales are longer than the ones concomitant with episodic

memory, which is seemingly effortless and often triggered by

single presentations.

Besides the need of reward-driven training, a major caveat to

develop animal models of episodic memory is the lack of verbal

or complex feedback to assess conscious recollection. In an

earlier study, we showed that neurons in the human MTL

respond in a reliable and specific manner during viewing of video

episodes such as a clip of The Simpsons and also during the free

conscious recall of that same clip (Gelbard-Sagiv et al., 2008).

Human MTL neurons have also been reported to act as novelty

and familiarity detectors (Rutishauser et al., 2006). A recent work

(Miller et al., 2013) has studied modulations in the firing of place-

responsive neurons in the human MTL while subjects learned

item-location associations during a virtual navigation task fol-

lowed by free recall. The authors calculated a neural similarity in-

dex between the ensemble activity of these place cells during

navigation and during item recall and found that such index

was higher for the ensemble of place cells near the location of

the item. Considering the previous finding that MTL neurons

show an invariant representation of concepts (Quian Quiroga

et al., 2005), our results of association formation in these neu-

rons suggest conceptual associations. In particular, we show:

(1) the encoding of associations at the single-cell level, (2) the

learning of the associations on a trial-by-trial basis (showing

the emergence of robust responses at the exact moment of

learning), (3) the precise latency of the responses, distinguishing

two type of neurons, (4) the neurons’ responses in different

tasks, including free recall, also comparing the exact same

task before and after learning (Task 1 versus Task 5), (5) that

these changes were specific to the associated (compared to

the other non-associated) stimuli, and (6) a decoding approach

provided differences in discrimination performance after

learning consistent with our other analyses. Overall, by showing

that such associations can be created with arbitrary but concep-

tually coherent concepts (i.e., persons in particular scenes, in

contrast to pair association tasks in which two arbitrary pictures

are associated), our results provide strong evidence pointing to-

ward a role of the MTL beyond a spatial representation of the

environment. Moreover, the emergence of associations of con-

cepts established after single trials linked to rapid neural activity

changes is ideal for the creation of new episodic memories

(Quian Quiroga, 2012).

How different MTL regions contribute to episodic memory

formation is still a subject of intense discussion (Diana et al.,

2007; Eichenbaum et al., 2007). Neuroimaging works have

advocated that episodic encoding is mediated by the hippo-

campus, which supports the relational binding of the individual

elements to the context of an episode (see Davachi, 2006;

Quamme et al., 2007), and the parahippocampal cortex, which

is involved in item memory (Kirwan and Stark, 2004) and/or in

relational memory (Diana et al., 2007). The PHC has been

shown to be involved in both spatial (Buffalo et al., 2006) and

nonspatial contextual associations (Aminoff et al., 2007; Law
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et al., 2005). Related lesion studies in animals have suggested

that the hippocampus is important for item-item associations,

while parahippocampal cortex is critical for recognition memory

for object-place associations (Higuchi and Miyashita, 1996;

Malkova and Mishkin, 2003). In line with these studies, we

found pair-coding units not only in H/EC (8/21) but also in

PHC (11/21).

A long-lasting debate in the psychology literature (Roediger

and Arnold, 2012), refers to whether the formation of associa-

tions occurs gradually (Hull, 1943) or all-or-none (Estes et al.,

1960; Rock, 1957). In the first case, the strength of association

between each pair develops gradually until the first item pro-

duces a recall of the second. This assumes that learning reflects

a continuous buildup of the strength of memory traces. Alterna-

tively, association pairs could be learned at once and repeated

trials are just giving several opportunities for the formation of

the association (Estes et al., 1960). In line with the latter view,

the formation of associations to NP stimuli changed abruptly,

with a large increase in the slope of both the behavioral and neu-

ral learning curves, thus supporting all-or-none learning. A ma-

jority of neurons that changed their tuning after learning had a

similar response-onset latency for the P and NP stimuli (Type

1), thus suggesting the creation of associations by combining

distinct concepts through partially overlapping representa-

tions—namely, some of the neurons initially encoding one

concept started firing to the associated one after learning (Quian

Quiroga, 2012). One could in principle relate gradual learning

with Type 2 neurons—in other words, the later response onset

latency of NP compared to P may imply a recall of P when

showing NP. However, learning occurred in a median of 1 trial

for Type 2 neurons (and a median of 2 trials for Type 1 neurons).

So, rather than supporting gradual learning, Type 2 neurons

could be showing an evoked representation based on associa-

tions created using partial overlapping representations by Type

1 neurons (and it is also plausible to expect that after more rep-

etitions the latency difference between P and NP may disap-

pear). Importantly, associations were encoded by widening the

tuning of neurons previously encoding one of the concepts,

rather than by recruiting new neurons encoding each association

because less than 1%of the initially non-responsive units started

firing to a pair of associated images, compared to a 41% of visu-

ally responsive neurons that expanded their tuning to encode the

associations.

Due to clinical constrains and day-to-day variability of the re-

cordings, it is currently not possible to assess how the changes

in neuronal tuning reported here may evolve at longer timescales

(days, weeks, months, or years) to establish long-termmemories

and a robust encoding of related concepts. It seems, however,

reasonable to postulate that this initial encoding of associations,

established after single presentations, may be further consoli-

dated with time in some cases but may also disappear in others,

considering that a relatively large proportion of neurons encoded

the associations. Although the inception of episodic memories—

like remembering the context and sequence of salient events

when meeting a friend at a particular café—goes beyond the for-

mation of contextual associations, our study suggests a funda-

mental mechanism of neuronal plasticity that may support

episodic memory formation.
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Subjects

14 patients with pharmacologically intractable epilepsy (10 right handed,

6 male, 18 to 53 years old) participated in this study. Patients were implanted

with chronic depth electrodes for 7–10 days to determine the seizure focus

for possible surgical resection. The number and specific sites of electrode im-

plantation were determined exclusively on clinical grounds and were verified

by MRI or by computer tomography co-registered to preoperative MRI. Pa-

tients volunteered for the study and gave written informed consent. The study

conformed to the guidelines of the Medical Institutional Review Board at

UCLA.

Electrophysiology

Each electrode contained nine platinum-iridium microwires at their end. Eight

of themicrowires acted as the active recording electrodes and the ninthmicro-

wire acted as a reference. The differential signal from the microwires was

amplified and filtered between 1 and 9,000 Hz. Data from six patients were re-

corded with a 64-channel Neuralynx system with a sampling rate of 28 kHz. In

the remaining eight patients, data were acquired at 30 kHz using a 128-chan-

nel acquisition system (Blackrock Microsystems). The extracellular signals

were band-pass filtered (300 Hz to 3 kHz) and later analyzed offline. Spikes

were detected and sorted usingwave_clus (QuianQuiroga et al., 2004). Single-

and multi-unit activity was classified by one of the authors (M.J.I.) based on

spike shape, variance, and the presence of a refractory period for the single

units (i.e., <1% spikes within <3 ms interspike interval distributions) (Quian

Quiroga et al., 2005).

Experimental Sessions

Subjects sat in bed facing a laptop computer on which pictures were pre-

sented. In the screening sessions, they were instructed to respond whether

the image showed a person or not with a button press. Approximately 105 pic-

tures were displayed six times in pseudorandom order (Ison et al., 2011; Quian

Quiroga et al., 2005).

In each recording session, a median of 8 (range: 2–28) of the recorded neu-

rons responded to one or more pictures. Each of these responsive neurons

fired to a median of 2 pictures (range 1–18 stimuli), which gives an average

selectivity of 2.6% (range: 0.8%–30%), in agreement with values reported in

a previous study showing an invariant representation by these neurons (Quian

Quiroga et al., 2005). After each screening session, we selected a subset of the

stimuli (mean: 14, range: 6–16) to create the images to be shown in the ‘‘asso-

ciation sessions,’’ as depicted in Figure 1 and described in the main text.

Further information about these sessions can be also found in the Supple-

mental Experimental Procedures. All the methods described below corre-

spond to the analyses of the association sessions.

Analysis of the Neural Data

Visually Responsive Units

For each image presentation, we considered two intervals based on the

response latency of neurons recorded from the medial temporal lobe (Mor-

mann et al., 2008): a baseline interval starting 500 ms before stimulus onset

and ending 100 ms after stimulus onset and a response interval between

200 ms and 800 ms after stimulus onset. Responses were defined as the me-

dian firing rate in a segment (baseline/response) across trials (Quian Quiroga

et al., 2005). We identified visually responsive units as those that significantly

responded to at least one individual or landmark before learning took place.

The criterion for significance of the response was based on a Wilcoxon

rank-sum test (with p < 0.05) between the baseline and response periods

and we additionally required amedian firing rate of at least 2 Hz following stim-

ulus onset. For each stimulus presented (P, NP, and others), we quantified the

firing rate changes after learning for stimulus ‘‘i’’ as Delta_i = Resp_i(AL) �
Resp_i(BL), using a Z score normalization for each unit and phase (BL/AL):

Resp_i = (mean(FR_i) � mean(FR))/SD(FR).

Pair-Coding Units

We defined pair-coding units as the ones that selectively changed their

response to the associated picture after learning (see below for the definition

of learning time), fulfilling the following criteria: (1) they had a significant



increase in the response to the NP stimulus (the paired associate of the

preferred stimulus) with respect to baseline after learning (Wilcoxon rank-

sum test), and a non-significant response to NP before learning (Wilcoxon

rank-sum test), and (2) the distribution of single trial increases after learning

(i.e., subtracting the mean number of spikes before learning in the response

window) for the NP stimulus was significantly larger than the distribution of sin-

gle trial increases after learning for all the other pictures (excluding P) accord-

ing to a Wilcoxon rank-sum test across trials.

Pair-Coding Index

We also used a pair-coding index defined using a correlation coefficient as

in Higuchi and Miyashita (1996): CC=
P½ðxi � mÞðxi0 � m0Þ�=P f½ðxi � mÞ2�

½ðxi0 � m0Þ2�g1=2ði = 1� 12Þ, where xi denotes the mean response for the i-th

stimulus, and the i’-th pictures are the ones belonging to the associated

pair, m and m’ are the averages of xi and xi’. This calculation was done over

n = 42 visually responsive units that correspond to sessions where at least

12 stimuli were shown.

Comparisons between Conditions

In the examples shown in Figures 2 and 3 and Figure S1, we used the raw data

(number of spikes in the response window) and Wilcoxon rank-sum tests to

compare between different conditions. For comparing the population re-

sponses before and after learning, we used normalized data (see ‘‘Time

Courses of Behavioral and Neural Data’’) and Wilcoxon rank-sum tests be-

tween responses before and after learning.

Time Courses of Behavioral and Neural Data

To study the time course of the responses, we built the spike density function

by convolving each spike train with a Gaussian kernel (width = 100ms). For the

analyses at the population level we normalized the firing rates for each neuron

by calculating a Z score for each 50 ms width bin: z=FRresponse�
FRbaseline=SDbaseline + h, where FRresponse is the smoothed firing rate in the

bin, FRbaseline is the mean firing rate during the baseline period, SDbaseline is

the standard deviation of firing rates averaged for all trials, and h = 0.1 is a reg-

ularization term. We obtained the normalized population response by aver-

aging the Z scores of a given neuron in response to a stimulus type (preferred,

non-preferred, non-associated) and averaging over all the trials depending on

the analysis (e.g., pre-learning trials, post-learning trials, all trials in a given

task).

Differential Activity Index

To quantify the difference in firing in the different tasks, we computed a differ-

ential activity index DAI = (Pr� NPr / Pr + NPr), considering the mean activity in

the response interval of the normalized response (where Pr and NPr are the

mean normalized responses to the preferred [P] and nonpreferred [NP] stimuli,

respectively). We used z tests to assess the significance of the difference in the

DAI across different tasks (Figure 5F).

Latency Estimation

Onset latencies for responsive units were determined by Poisson spike train

analysis (Hanes et al., 1995; Mormann et al., 2008). To compare the latency

values for the P and NP stimuli, we estimated the onset latency for all presen-

tations and then performed aWilcoxon rank-sum test. This procedure allowed

us to separate the neurons into Type 1 neurons, which fired to the P and NP

stimuli with a latency that was not significantly different (Wilcoxon rank-sum

test and interquartile range < 250 ms), and Type 2 neurons, which showed a

significantly longer latency to the NP compared to the P stimulus.

Behavioral Learning Curves

We calculated the learning curves for individual picture pairs and subjects. For

each paired associate, we annotated whether each response was correct or

incorrect for all the trials of Task 3 (in which subjects had to identify the land-

mark where each person was). Subjects performed a median of 15 trials

(range: 14–19), where each trial corresponds to a complete cycle through

the entire set of stimuli used in the task. We estimated the trial where learning

occurred by fitting the behavioral learning curves with a logistic function:

fðxÞ= 1� g� l

1+ expð�bðx � aÞÞ+g (Equation 1)

where a corresponds to the threshold, b denotes the slope of the logistic func-

tion (low values of beta correspond to gradual transitions and high values of

beta correspond to abrupt transitions), and l,g are two parameters related

to the pre-learning lower asymptote (g) and post-learning upper asymptote
(1 – l). We used a Maximum Likelihood Criterion to estimate the optimal pa-

rameters and obtained the learning time from the closest trial following a

(the threshold f(x = a) = 0.5, for l = g = 0). All subjects learned most pairs

(mean: 98.3%) but the learning time varied across subjects. The learning

criterion was reached on average after 2.9 trials (median 2, interquartile

interval: 2).

Comparison of Neural and Behavioral Learning Curves

To allow a comparison with the behavioral fits, the neural data were smoothed

and rescaled to a range of 0–1. For this, we rescaled the neural activity (N) to

the range 0–1 (Nr) using Nr =N�minðNÞ=maxðNÞ �minðNÞ. We then

measured the similarity between neural and behavioral learning curves with

a Pearson’s correlation coefficient. To further quantify whether the changes

in the neural activity were gradual or sudden, we fitted the neural learning

curves with logistic functions with b as the only free parameter (Equation 1).

The values of l,g were taken from the pre-learning and post-learning firing

rates/behavioral performance, where 0/1 corresponds to pre/post-learning,

respectively. The threshold a, calculated for each individual pair, was kept

constant. For the data aligned to absolute trial number, we considered the first

14 trials in chronological order (which corresponded to presentations during

Tasks 1, 2, and 3).

Assessing the Quality of the Fits

We evaluated the quality of the fits following an information theoretic approach

by means of the Akaike Information Criterion (Akaike, 1974). The lower the

value of AIC, themore accurate the fit. To test the significance of the difference

in the parameters (slope, AIC) for the neural data with different alignments,

we performed a non-parametric bootstrap procedure (Kingdom and Prins,

2010).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, one table, and one movie and can be found with this article online

at http://dx.doi.org/10.1016/j.neuron.2015.06.016.
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