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SUMMARY

In this thesis the variation of a functional defined on a variable 

domain has been studied and applied to the problem of finding the 

optimum shape of the domain in which some performance criterion 

has an extremum. The method most frequently used is one due to 

Gelfand and Fomin. It is applied to problems governed by first and 

second order partial differential equations, unsteady one 

dimensionsal gas movements and the problem of minimum drag on a 

body with axial symmetry in Stokes* flow.
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INTRODUCTION



INTRODUCTION

Distributed parameter system theory refers to those systems whose 

governing equations are partial differential equations, defined over 

a domain S, and whose controls are either distributed over S or on 

parts of the boundary of S. The study of distributed parameter 

systems was initiated by Butkovskii and Lerner^ ^ . In this thesis 

the definition of distributed parameter systems has been extended 

to include continuum problems where the shape of the boundary is 

control since there are problems in which the shape of the domain 

is unknown and needs to be determined in order to minimise or 

maximise some performance criterion. For example the problem of 

designing the most efficient body for extracting the energy from 

incident sea waves has recently been discussed by Salter^. This 

problem may be interpreted as the problem of finding the optimum shape 

of a floating body which minimises the reflection and transmission 

of the incident wave. Some problems have the boundary of the 

domain depending on time. Such a problem in which the system is 

governed by a parabolic equation of the heat conduction type has 

been considered by Degtyarev ® and its necessary conditions for 

opimality obtained.

The earliest reference to variable domain problems appears to be in

Forsyth's "Calculus of Variations,"? (Chapters ix, x and xi). In

their text book "Calculus of Variations"® (Chapter 7) Gelfand and

Fomin discuss the theory of the first variation of a functional,

J I u| = ... F(xi, ..., X ,u,u ,..., u ) dxi dx , where theJ  r J  n XI x^ n
independent variables xi,..., x^, and hence the domain, vary as well 

as the function u and its derivatives. Neither Forsyth nor Gelfand-



-L-Z,

Fomin gives examples of their theory.

In Chapter One the Gelfand - Fomin theorem is extended to m unknown 

functions and at the end of the chapter two simple examples are given 

to illustrate the Gelfand - Fomin theorem. In Chapters Two and Three 

first and second order hyperbolic partial differential equation 

examples of the extension of the Gelfand - Fomin theorem are discussed.

In Chapter Four a boundary control problem from unsteady one­

dimensional gas movements, in which a semi - infinite gas domain is 

bounded at one end by a moving piston, is discussed using standard 

characteristic theory. Various problems arise in which the piston 

movement may be regarded as a control and the one considered is that 

of determining the piston curve in order to minimise a given functional. 

In Chapter Five the same problem is resolved using the Gelfand - 

Fomin theorem, with identical results.

In Chapter Six the Gelfand - Fomin theorem is applied to the problem

of minimum drag on a body with axial symmetry in Stokes' flow.

Three papers by Pironneau®  ̂̂ have already appeared on this problem 

but Pironneau's method is not the same as that considered, in this thesis. 

In Chapters Seven and Eight the equations determined in Chapter Six for 

finding the body of minimum drag in Stokes' flow are discussed firstly 

by considering the shape near the end point and secondly by a 

singularity solution.



CHAPTER ONE



CHAPTER ONE

Variation of a Functional Defined on a Variable Domain.

In Section 37 of their book "Calculus of Variations" Gelfand and 

Fomin derive the first variation of an r-tuple integral where not 

only the dependent variable and its derivatives vary but also the 

independent variables, and hence the region of integration, vary. 

In this chapter this method is extended to m dependent variables, 

since the theorem is required later in this extended form.

Consider the system

z^, ....  z^) ** ^2* **** ^n*^i *%* >
Xn

• ••» z^ ,••••,z^ ) dxr,.« *dx^ (1*1)
X X1 n

where R is the simply connected domain of the independent variables

X ,x ,...x_, and z ,z ,...,z^ are functions of x ,x. ,...,x ,1 2 n' i' 2 ™ i 2 n
defined and continuous, with continuous first and second derivatives, 

in R. The integral F is assumed to have continuous first and 

second derivatives with respect to all its arguments in R.

For simplicity vector notation is used with

21" (x^,x^,...,x^) ; £ -  (z^,z^,...,z^) ;

* (d3̂  -,d^ » • • • * d * (8iz^,,»,Bz^,», z^, • • ,3 z^ ) ,
3Tx Wx" Ïk . Bx"1 n 1 n

So equation (1.1) can conveniently be written in the form

j[x(£)J « F(x,£,Vz)dx • (1.2)
R

Consider the family of continuous transformations



$ (x,z,9z,e ,e ,...,e ) , s- 1,2,
s -------- 1 2 ” ^ (1.3)

» k= 1,2.... .

depending on m parameters £^,^2 ,..,,e^, where $  ̂and are

differentiable with respect to c ,e ,..,e and the values1 2  ™
0 , e » 0 ,

1 2 
so that

" 0 correspond to the identity transformations

(1.4)
Xg — (£,£,V£,0 ,....,0) , s •“ l,2,..,nj

Zĵ  — Y 7z ,0 ,....,0) , k *  1,2,.. ,m{

Now z^(x^,x^,..,,x^)“ C^= constant, k = l,2,...,m,

may be thought of as a surfaced^ in the n+1 space E respect

to the coordinates x^,x^,...,x^,z^, and the transformations (1.3)

map o , a , o into a *, o *,..,<r * in the new space with
1 2  m 1 2  m n+1

the coordinates x*,x* x*,z*. Similarly the functional1 2  n K
J [£(£)] in (1.2) transforms into

F (x* ,£*, V*£*) dx* , (1.5)
R*

where ^z* « ( az*,..., 9z*,..,, 3z*,..., 9x* ) and R* is the new—  ' • V  1 m m /
9x*

transformed domain.

K 9x*
1

9x*n

The object now is to calculate the terms of order £ ■  (e^ ,e^,... ,e^) 

(that is the principal linear part, 6J, relative to O  of the 

difference

AJ - j[£*(x*)J - d[£(x)] , (1.6)

e , £ ,...,e being regarded as infinitesimal quantities. Because 1 2  ®
of the identity relations (1.4) coupled with the continuity of the 

transformations (1.3) it follows by Taylor's theorem that when

e ̂ ,e 2» • • • »£ĵ  are sufficiently small



X*s X + e (x,z.,vz,s 1
ae

+ ..tEj)@*(x,Z,7z,E ) m s —  —  —  —

E=0 3e

+ 0 (e2)

m E=0

s »

3e
+....+ 3l'g(2i.£.7£.£)

e-0 a em

+ O(^) 

e*0

k - 1,2,.. .m.

These transformations can be written more simply in the form

m a )X* - X + y c 0f. (x,z,7z) + O(e^) , s - 1,2,...,n ,
8 8 %:i z * —  -  -

z* - z + ^ e + 0 (e^) , k - 1,2.....m- ,
7=1

(1.7)

J Hwhere 0 (x,z,Vz) « 9 $  (x,z,Vz,e) f 7 " l,2,...,m}

6=0

(7)^ (x,z,Vz) * (x,z,Vz,e)«mm «mm

a G

f 7 =  1,2...,m.

6=0

For a given surface d^,(k - l,2,...,m),

with equation C = z (%) , (1.7) leads to the increments
k m k -  (1)

Ax = X* - X = y 6_ 0 (x) + 0(6%) s s s 7 s -7=1
= 6x + 0 (£^) , s = 1,2,...,n ; (1.8)8

m (7)
Az » z* (x*) - z (x) = y 6 ^ (x) + 0(6%)k k -  k -  r  -



« 6z^ + 0(£^) , k « ;(1.9)

where the arguments z and Vz have been replaced by z(x) and

V£(x). Thus (1.9) gives the change in value of z^ in going

from a point [ x,z (x)   z_ (x), z.(x),z (x),...,z (x)lL —  1 —  k~i—  k —  k+i —  m —  -*
to a point [x*,z^(x*),...,z^_|x*),z*(x*),z^^(x*),...,z^(x*)] ,

s = l,2,...,n. The variations 6x^ and dz^corresponding to (1.7) 

are defined as the principal linear parts (relative to e) of the 

increments in the right hand sides of equations (1.8) and (1.9), that 

is
m (Z)

6x - y 6 0 (x) , 8 » 1,2,...,n ; (1.10)
:  % » -

m (Z)
6z = y 6_üL (x) , k = 1,2,...,m . (1.11)_ k  ̂k -

Consider the increment

ïïz » z* (x) - z (x) , k - l,2,...,m ,k k —  k —
that is the change in z^ in going from the point

[x»z^(x).... z^_ (x ) , Zj^(x),Zj^^(x),.. .,z^(x)] on the surface to the point

[x,z (x),..., z, (x), z*(x), z, (x),..., z (x)l on the surface a*^  1 —  k“i"" k —  k+i m —  k
with the same x-coordinate.

The notation

Zz" - z* (x) - z (x) 
mk -  (Z) k 

- I ej ?  + 0 (£^)
= + 0 (6%) , k « 1, 2, ..., m , (1.12)

is used to find the relationship between ẑ" and 6z.. Nowk k

Az = z* (x*) - z (x) k k —  k —
" [z* (x*) - z* (x)l + [ z* (x) - z (x)1 k —  k —  k —  k —
P 3z*(x* - X ) + 0 (6^) C + [ ^  + 0 (6%) 1 

1 3 ^ : '  = -  3



n
“ y 9z* 6x + Sz" + 0 (e%), k = 1, 2, m,

s:i "âT » k s
Since 3z* and az^differ only by a quantity of order £  this 

9Xg axs
equation may be written as

n
6z » y £z 6xg + Zzk , k " 1, 2,..., m , (1.13)
^ 8 - 1 9 ^

where 6z^ is the principal linear part of Az^ (relative to £).

An alternative form of (1.13) is, using (1.10), (1.11) and (1.12) ,

m (7) n m (7) m (7)
1=1 4 k g.iz.i 8̂  '■ 8 1-1 4 K

s » 1,2,..,n; k - 1,2,..m.

Consider the expression for the increment,a (Az*y,of the gradient
axg

V£, that is,a (Az^) = az* (jc*) - az^̂ (3p , or more precisely its 
9Xg ax̂ i axg

principal linear part (relative to O  a(&z^) , s ■ l,2,...n ;

k = 1, 2,...m. It can be derived from (1.7) that
m <7) _9x^ » 6gi + y e 30^ (%) + 0(£^) , i,s = 1,2,...n ; (1.15)

9Xg _ 7=1 9Xg
where 6 .is the Kroneckèr delta. It now follows from the chain rule 81
that    , . . ............

^  = y 3x* 2  '
3x^ .£l 3X^ 3X4

■ Zi'si * I 8 , 30(Rx) + 0 (e:)? 3
i-ll 1-1 3x S 3x4

n m (1) ® ^
" L. * 1 1  8^30{ w  ^  + 0 (£2) ,

3x* i-ll-1 3x 8x48 8 1
hence,

2 m (7)
" I I G 30^ _ W  (1-16)

9Xg^ ax* i=i7=i  ̂ axg ax*
The increment in 8z.is given by

8Xg
Af3z^) - 8 (x*) - 8zy(%)

3Xs 8X* 8Xs



( " i_)z (x*) , k - (1.17)

Analysing the three terms on the right hand side of equation (1.17) 

separately gives (a) from (1.12).

k ■ 1,2,...m.z* (x) - z (x) = T 6 ÿ(^%x)+ 0 (6%) ,k —  k —  7 ^k “  —
hence, using (1.16)

n m
a C zf (x*) - Z, (x*) 7 “C ® - T T e_90r(x) 9 + 0(e^)7

i "i
i l - l  * 0 ( f >3
T e,3>/)̂ v(x*) + O(e^), k - 1,2,...m, (1.18)

1-1  k -  -

(b) 3 Cz, (x*) - z (x) ? - 3 <T y 3Zv(x) (x* - X.) + 0(e^)9sV~ ""3 i ^ s l i - i ^  ' ' "53X,

and using (1.8) this equation becomes
m n

3
3 X

(%)
'^2̂ (x*) - \(i>? ■ I i (x) + Of£^) . (1-

k = l,i .

19)

(c) for the final term on the right hand side of equation (1.17)

( L .  ■ L.) 8. (X*) ■ ( ! _  - Î L  ) 8. w  + 0 (£2). k - 1, 2..... .
3 X* 3 X 3 / ks s 

and applying (1.16)
3x* BXg

s s

m n .(7)- 7 7  e.,9 0,-(s) 9 z,. (x) + O(e^)
i-ii-i - % r  -
m n (if

- y y (z) 9 z^ (x) , k " 1,2,.. .m, (1.20)
7=li=l 9Xs 9x^

since 9 and differ by a term of order c. Adding together
3X i 9x%

equations (1.18), (1.19) and (1.20) and using (1.17) gives 
m . (7) Tn , (7) ‘

4(a&k) - I 8 9 a£jx)_ + _2_ y a z,, (x) 0 (x)
•» . ^  ̂V '' V . . a X9 Xg 9 Xgli-i7-1 L 9x
- y 9 0£ \x) 9ẑ (̂x) 7 + 0(£^)
i=l 9 X 9 X. 1



m ^ il) n  ̂ (7) ^I e Wv(x) + I 9 ẑ, (x) 0. (x) 7 + 0(£̂ )
L 9x axs 3XÎ J (1.21)

1 ,2 ,#  * .m*

Finally using the defininition of ij;̂ ) in (1.12) and 0^in (1.8) gives
n

^ C i £ k ) " ^ k x  I 9^zy (x) 6x£+ 0<£^), k - 1,2,...m, (1.22)
9Xg '‘® i«i axg3x£

and the principal linear part, 6z , of Â zy) is given by

6zk^g= 7 z ^  + y 9^z^(x) 6x£ , k » l,2,...,m • (1.23)
‘8 i=l axgaxi

Consider now the increment AJ defined in (1.6). The following result

will be established: 
m

7
AJ H)

n

- s h  L  'zkxj
m m Ç  p

I kU. V -
it)

7=1 %
(1.24)

it)
R: c-S

where \lf is given in terms of i|; in (1.14) .
The proof of equation (1.24) is as follows: by definition (1.6)

AJ *  ̂ F(x*, £*,V*x*) dx* - J F(x,£,V£) dx
- r C f (x*,z*,V*z*) a(x*. X& , ...x%)_F(x,z,Vzyp (1.25)II x‘,...,x^) j  "

9(x*,x%,...,x&) 
9(x^,x^,...,x ) 

1 2 n

hence

m
From the definition of a Jacobian, and (1.8),

m (7) m (7)

 ̂" Z=1 'ui ....................! zMP.l+fc  !
7=1 ‘'9X2 7=1  ̂9X2 =1 49x2 7=1

J .

i l
9x2

m 1(7) m (7) *m (7[)
I Ml  I s  S  M l=1 9x„ 7=1 4 ax..̂ 7=1 4 ax'

(x4,x̂ ,...,x4,) ‘ Cl * I  c 80PVl+ I e +l e
(xi,x2,... ,x”) 7=1 7 3Xg Z-1 73x2 4=1 7 ax^ ^

+ 0 (£ 2 )

1 . I I t 0 (f)
7=1 s=l 7ax_



Thus from (1.25) 

AJ Ç  F(x*,£*,V£*)
r m n
1 + I I 8 30^4 0 (f) . _
 ̂ 7=1 s=l 4 3x n 8

- F(X,£,V£) ? dx . (1.26)

Taylor's theorem is now used to expand the first term in the 

integrand of (1.26) remembering the notation

■ Xg+aXs • X* = . |z| - ;
OX* OX OX

M  =[î[r(x.z.vz) . I yax,. ' f a% r,, + 1  I 6z^ x
jn n k=l s=lk=l ^

X [ 1 + I % &  - F(x,£,V£ ) ? dx
7=ls=l  ̂ 3x ■* \8

AJ I

s

m n m
(Xg + I ("k ^Zk + I I (\,k=l m n s=lk=l

+ 7 Y EL F(x,z,Vz) 90(^)?dx .(1.27)
7=ls=l^ 9x {m s ^

Equation (1.8) is used to replace 7 6x in the final
^  L 8 o7=1

term of the integrand of (1.27) and using (1.13) and (1.22) this 

gives, correct to the first order ' in £,

6J - \^ l 6:̂  + I ( %  + I i5k *̂ 8̂ >
=1

+ 2 I (
k=l ^ *' 8 = 1 9Xg

Ï ) FI + I
=1 k=l i=l 9x„ dx. zkXs

n
♦ F(x,£,V£) I 3 0X.) dx (1.28)

s=l 9x_
where ÔJ is the prinicpal linear part of AJ,relative to £. This 

is now expressed in the form G (x)Ô£ + div(...)

' - Ezl 9 F 
xs5  35T,

and thus equation (1.28) can be rearranged into the form

’̂ ^k ’ 8^1 1
6J -

' m r-

J. s m



F_ S^z Sxj 7 dx
i-Jl J

R ^ : &.n ' - ss=l k=l
dx

hence

6J -
n m

R
I

k-l n n m 8=1 9x
Î I i_ f  F4X; +
î“l k”l 3x, C

dx

? d x
"kxs5 -

(1.29)

This expression is the same as that quoted in (1.24) since

and

6x. I 0g^lx) , s - 1,2.... n.
2=1

Two simple examples will now be discussed to illustrate the Gelfand- 

Fo min theorem.

Case 1. m  ° 1, n = 1 ,

Figure 1.1

The problem is to find the shape of the curve connecting the fixed

point A and the curve z = c(x) which minimises 
b,

J (z) F(x, z(x),z'(x)) dx

where the point (a, z(a)) is fixed but the value of b may vary. 

From equation (1.29)



10

6J

6J

F ÔX + 6z Fz^ C dx.- J ' S T Ç F z - 3 F ? dx + i d C  
C 3xs ^ dx I

" f ‘Sz’S'Fz-9 F ? d x +  ^F dx + 5z F% 1 
i 6  37s x J

From equation (1.13)

6z * 6z - dz 6x
dx __

At the end B since z = c(x), and 6z ■ c*(x) 6x, 6z * c*(x) - dz, at x=b.
dx

At X “ a, 6x and 6z are zero since A is a fixed point so, 
b.

x*b
6J “ J Tz ^Fg - i__ ^  dx + 6x ^ F  + [c*(x) - z * (x)] F.̂  ^

For a minimum 6J is zero, so as TF and 6x are arbitary variations

, (x,z) <2 z « c(x) , (1.301

F + [ c*(x) - z'(x)] Fg^ " 0 at X " b • (1.31)

Equations (1.30) and (1.31) are the same as those that are derived 

when this problem is solved by the Euler Variational method. (1.31) 

is the well-known transversality condition.

Case II . = 2,

In this example the performance index

J - F(x,y,z,z^,z ) dxdy (1.32)
. 5.is minimised over the domain S as the position of the curve C which 

bounds S varies. z is required to take prescribed values on C so 

that on C there is the condition

z = g(x,y) (x,y)e C

y

0

Figure 1.2
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From equation (1.29) 

6J •
S
+

TF^F^ - i J z x “ U z  ? dx dy
9x 9y y j  ^

Tz F_ 1 + 9  [F6y + 6z Fz J r dx dy
37 y J

9 r F6x +

Applying Stokes* theorem in two dimensions to the second integrand.

6J becomes

6J 6z 3F2- U zjj-  U -  C dx dyC O
+ () y [pdx + 7z  3F ]  dy -  [?6y + 'Sz' ^  ] dxr. (1.33)

J C 9z 9z sJ

From the equation (1.31)

6z - 6z - 6x - 22 ^y •
9x 9y

As z - g(x,y) , 6z = 9g 6x + 9g ôy
9x 9y

%z ■ 6x ( 22 “ ^y )
9x 9x 9y 9y

and (1.33) may be written as

so

6J %z X F - 9 F - 9__ F dx dy
9y ŷ. ̂ 9x ^x

C> 6x [Fdy + (gx ” z^ )9__ F dy - ( ^  - z^)9 F dx]
9z_. 9z..

+ <Sy [(gy - Zy ) 9F dy - F dx - (gy - z^)9F dx]
9z 9zX y

For a minimum of J in (1.32) 6J must be zero. Since 7z,6x and 6y

are arbitary variations

Fy*(x) + (gx " z^)9F y'(%) " (g^ "" z^)9F - 0
9Zjç 9z

(1.34) 

,on C (1.35) 

,on C (1.36)(gy - Zy)9£ y*(x) - F - (g^ - z )9F " 0
y .The conditions (1.35) and (1.36) are not independent since if 

(1.36) is multiplied by y*(x) and added to (1.35) then

y* (x)22  ̂ (gx - z^) + (gy - Zy)y*(x)? - 9F Ç(g^ - z^) + (^- zy)y* ( x ^ O
9z 9z.

y C
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The term

Ç g ^ -  - Zy ) y ’(x)7

is the differential along the curve C of the function g - z, 

therefore since z = g on C this vanishes. Hence one and only one 

transversality condition remains.



CHAPTER TWO



IZ

CHAPTER TWO

A First Order Hyperbolic Partial Differential Equation Example of the 

of the Use of the Gelfand Fomin Theorem.

In order to acquire experience in the handling of the Gelfand-Fomin 

Theorem the following simple hyperbolic partial differential equation 

problem is considered.

Let S be the domain in the (x,t) plane .indicated in the diagram? S

is bounded by the closed curve OARL and the various parts of the 

boundary need to be discussed.

t=T

t“T

S = Si IJ S2
Figure 2.1

In the first place OA is a portion of t = 0, 0 being the origin of 

coordinates and A a given fixed point? LR is a portion of the line 

t = T. It is convenient to label the four portions of the boundary 

as as shown in figure 2.1, In particülar it is assumed

that the equation of the curve OL is expressed in the form

x = a ( x ) , t = T  O ^ t ^ T  , (2.1)

T being a time parameter, with a(0) =0.

It is assumed that a function 0(x,t) is defined for all (x,t)e S
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and 0 satisfies in S the quasi-linear partial differential equation

90 = g(x,t,0,0x ) = -A(x,t,0)0x+ B(x,t,0), (x,t)eS, (2.2)
9t

where A and B are functions of x,t and 0. The ordinary differential

equation of the family of characteristics for equation (2,2) is

dx = A(x,t,0) , (2.3)
dt

and certain restrictions will be placed on A as follows. In the 

first place it is postulated that

A(x,t,0) > 0 for all (x,t) eS , (2.4)

further, it is assumed that the funtion A is such that, travelling 

along the characteristics with x increasing, each characteristic 

commencing at any point of OA or OL will travel into the domain S 

and will eventually meet either LR or AR in a single point. This 

implies that the slope of OL at the point x must be greater than the 

slope of the characteristic at x , that is

A ^u(T), X, 0^^> o'(x) , 0 < x < ‘T . (2.5)

It is assumed that the particular characteristic of the family (2.3) 

which commences at 0 ultimately intersects the line t = T  at the 

point R, thus all the characteristics commencing along OL will meet 

LR and the characteristics commencing along OA will meet AR. The 

characteristic OR divides S into two parts S ̂ and S £ •

Also it is assumed that the boundary conditions upon 0 on the portions

r 1 and F2 are as follows:

M(x,t,0) 5 0 , (x,t) 6 Ti, (2.6)

N(x,0) = 0 , (x,t) € ?£ . (2.7)

The control problem can now be stated. It is postulated that the 

position of the curve OL has to be found, subject to (2.5) being



IS

satisfied, in order to minimise the performance criterion I defined 

by

P(x, t, 0, 0^ )dx dt +
1 LR

T?.T
Q(x,T,0) dx + f(T,a a ’,a”)dT ,(2.8)

T=0
the functions P, Q and f being prescribed; in other words the 

function a(r) which was introduced in (2.1) must be determined. It 

is clear from characteristic theory that any variations in the position 

of the curve OL, such that a(0) = 0, will influence the value of 

0 in only, the value of 0 in being unaffected by such variations. 

It is for this reason that the double integral in (2.8) is taken 

over the domain Si only and not over the whole domain S.

Consider now in place of I a new functional J given by

J = J  J + X(g - 0^^ dx dt Q dx + f dx ; (2.9)
Si LR T=0

where X'is a Lagrange multiplier depending on x and t. By introducing

a Hamiltonian H defined by

H = P(x,t,0,0^ ) + Xg(x,t,0,0^ ) ,

J in (2.9) can be written in the form

(2.10)

Si
(H - X0^ ) dx dt + Q dx + f dr (2.11)

arcLR T =0
The value of the increment, 6J, in J when a variation occurs in the 

location of OL is now investigated. The variation in the position of 

OL can be done by adding to a (x ) and increment 6a (x) at the same time x .

t=x

X
Figure 2.2
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The curve OL i.e. x “ a(r), t * t , (2.12)

will be regarded as the curve which provides the minimum of I in.

(2,8) and the varied curve is OL*, namely

X ■ a(x) + 6a(r) , t » T ,  0 < r < T (2.13)

a(x) and 6a(x) are assumed to be continuous functions satisfying

a(0) - 0, 6a(0) - 0 . (2.14)

The postulate (2.14) implies that no variation occurs at the 

origin so that the characteristic OR is unaltered in position. The 

new value of 0 on OL* will follow from the boundary condition (2.6) 

but the value of 0 on F2 , see (2.7), remains unchanged in the 

variation and likewise on the characteristic OR

60 - 0 , (x,t) € characteristic OR . (2.15)

Specialising the Gelfand - Fomin result to the two dimensional space 

Si in the (x,t) plane this result can be stated as follows : with

%l(0) “  ̂ , F(x,t,0,0^ ,0^ ) dx dt , (2.16)
Si

F(x,t,0,0x ,0^ ) = (H - X0t ) , (2.17)

the increment 6)̂  is given, from (1.29), by

6Xi - W  ? F . - 9 F, - 9 F. ?dx dt
(- * 37 St

+ Ç 8 (F «X + «0 F.. ) + 8 (Fit + 60 F., )? dx dt (2.18)
J ’x 3t

where 60, from (1.13),the increment in the function 0, is related to 

60 by

60 = 6 ^ +  90 6x + 80 6t , (2.19)
8x 8t

and 6x, 6t are the increments in x and t arising from the variation 

in the domain Si .
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Using Stokes* Theorem in [2] , (2,18) can be written in the form

60 S F, - 9 F, - 9 F^ ?dx dt + f $(F6x + ) dt -
■ t ♦ s  '» î f  *«i *«OR+RL+LO 

- (F 6t + W  F ) dx
h

(2.20)
The variation of the line integral

X2
LR

Q (x, T , 0 ) dx (2.21)
can also be discussed using the Gelfand - Formin result. Thus 

using (1.29) gives

6 X » f Q* ? dx +, q 6x + ?dx.
^ 9x LR 3x L x J

is zero since q is independent of 0 % ,  hence

60 q A dx + J e__ (qax)dx 
LR LR 9x

^  Qx dx + rq 6x 1* * 
UR  ̂ L J x-x

R
x=%L

At X « x^ , 6x - 0, so finally

6X2 "J M q  dx - q(xL, T, 0l) 5x
LR * X“X^

(2.22)
6J in (2.11) can now be calculated using (2.20) and (2.22). Thus 

ÔJ . - 9 F - 9 F ? dx dt + [^(Fôx + 60 F . ) dt “
2 ^ 37 3t ♦ti OR+RL+LO 

- (F6t + W  F

LR
3^q dx - q (x , T, 0 ) 6x 

P L L + + f g i 6 a * + f g "  du^jdT
X"X. T»0

^ (2.23)
At any point on OR x, t and 0 remain unaltered by a variation of the 

position of the curve OL and so 6x, 6t and 60 are zero at such a 

point; which means, from (2.19), that is zero on OR. Therefore

there is no contribution to 6J from the integral along OR. On RL 

t = T therefore dt and 6t are zero, t is unchanged by the variation 

of OL so on OL 6r = 6t = 0. So
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6J - 9 F - 9  F ?dx dt + -6? F. dx +
9x 9t ^tJ R1

60 Q dx
LRr p

+ ) (F «X + ^  F )dt - F, dx? - Q(x t , T, Q.) dx
LO^ J

*î Î V »  • *

" -y®!
- I [(F6x + #  F^ )dt - 6T F^ dx] - Q(]^,T,0^ )6x 
arc OL ^ ^

x =Xl

F. - 9 F^ - 9 F.̂
^ ^ x  Tt *t

dx dt +" Jarc LR t

(2.24)

)dx

+ *̂  ^fa fg* da* + f̂ ,i 6a" ] dr .
T=0

On OL the boundary condition must be satisfied, and so

'=L
(2.25)

M(a(r),T, 0) = 0 (x,t) € OL ;

and in the varied state the boundary condition to be satisfied is

M(a(x) + 6a(r), t , 0  + 6 0 ) « = O  , (x,t) e OL* (2.26)

Expanding (2.27) by Taylor*s theorem

M(a(r),T, 0) + 9M 6a + 9N 60 +  “ 0, (x,t)e OL* ,
9a

where ^
9a

9M
9x x=a

OL is the curve that minimises d and so for a minimum

9M 6g + 9N 
9a W

and so

60 (x,t) (2.27)

60 » - 6aMg , and
M0

60̂  » — M + 90 6a
3x

thus 

6J *

, (X,t) € OL

6^ ÇF^ - 9 F^ — 9 F. ^dx dt + 
9x X 9t

Si t

(2.28)

LR
- f dajF - F ( M ^ +  0% ) dt + F. (M^+ 0%) d x ?

J C X M* t  JOL
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+ I ?f 6a + f , 6a* + f „6a" ? 67(2.29)
t=0 _ *

ô^ Ç F  - 9 F^ - 9 F ? dx dt + 60 (Q + F ) dxV /  * 3 7  *x at ^ t 3  &  '
dx

- Q (x^, T, ) 6x

6J
' 3  ' "  L i  '

T=n C X ^6 I * ^
J I  f^da + f^ ,«a  + £^„«a"?dT(2 .30 )

T*=0
- Q(x^, T, 0^) 6x

X=X^ T-0
since on the arc OL x = a(x), t - ?, and dx has been replaced by

a*(x)dT.

Now integrating f^,6a* and f^„6a" by parts gives
T I T
J f^,6a*dx = 6a | f^, - j 6a 9^»dx , (2.31)
x=0 '* x=0 x=0 9x
T £ ,, do" dT - do’ f £.,,, - I do’ ^..dT 
tio “ tAo “ xio 3x

6a , T V  - Go j 3^,,+ J do 3 % „  dT • (2.32)
x*=0 x“0 9x x“0 9x'

Since there is no variation in the curve OL at the origin 6a is

zero at X " 0, and so 6J may now be written as

6J - ^ Ç F , — 9 F — 9 F, 2 dx dt
SlT C 9x • J 6F(Q. + F^ ) dx

arcLR  ̂ ^t

do(F^ - 3£o" - Q(x,T.0)) 1  + [do’ £ ,. ] . (2.33)
3X fix “

As d? and do are arbitary variations it £ollows that £or 1 to be a

minimum 6J is zero so

F . - 9 F^ - 9 F^ - 0 * 37 ♦x at *t Cx,t) € S, , (2.34)

Q, + F, - 0t
f - 9f^> + 9̂ ffyW - F. +

i f  1 ^

(x,t) e LR (2.35)

' F - F o ’(t ) 
’’x *t

(x,t)e OL ; (2.36)

Since do(f 0) and do’ ()* 0) are independent variations at x “ T
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4, - 2Éo" " Q(x,T,0) “ 0 , at T ■ T
3t

(2.37) 

(2.37 a) 

(2.37 b)

- 0

At T « 0 either a*(0) is given or f^n ■ 0.
I

From (2.17) F(x,t,0,0^,0^ ) - H(x,t,0,0^ ) - X0^

and from (2.10) H(x,t,0,0^ ) - P(x,t,0,0^ ) + Xg(x,t,0,0^ )
and so

P,
-X

Using the above (2.34), (2.35) and (2.37) can be rewritten as:

- X2 - 3 
 ̂ ax

+ xg- + 3X - 0 , (x,t) € %  ̂(2.38)
at

- X' (x,t)

(x,t)e OL ,

LR

0̂ ) + P. + Xg + Xa*(r) 
P PX X

(2.39)

k ̂ **p
(2.40)

0,

Equation (2.40) is the transversality condition and from it the value 

of a(r) which minimises J may be found. Equation (2.38) is the co­

state equation.

A simple example of the above theory will now be discussed. In 

this example the state equation is given by

30
3t

a 30 
3x

a > 0

i.e. g(x,t,0,0 ) = - a 30
37

(2.41)

(2.42)

The performance criterion is defined as
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dx dt + (Ja^ + &a*2 ) dt 9 (2.43)
T“0

i.e. P(x,t,0,0^) - i0^ , (2.44)

Q(x,T,0) - 0 , (2.45)

f(a,a*,a",x) - . (2.46)

J ®J J^i0^ - X(a0^ + 0^ ) dx^dt + J (ia^ + &a*2 )dT.(2.47)

The boundary condition on OL is

M(x,0,t) «* 0(x,t) - 0^ (x,t)=0 X “ a(x), t - x. (2.48)

The ordinary differential equations of the family of characteristics

of equation (2.41) are

dx ■ a and d0 » 0 
ïït dt

which imply

X - a t “ constant and 0 » constant,on the characteristics and so 

0(x,t) « x(x “ a t) (2.49)

where x is an arbitary function.

At X “ a(x), t “ X , 0(x,t) = 0Q (x,t) so

X (a(x) - ax) - 0^ (o(x),x) . (2.50)

From equations (2.38), (2.41) and (2.44)

0(x,t) - 9 (-aX) + 9X “ 0 
9x 9t

and using (2.49),

a * 22: " “ x(x - at )  . (2.51)
9x 9t

To solve equation (2.51) put 

C = X - a t , n " t
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then

L- " li 9 - 9
9x 9x
9 9
9t 9t 9Ç 9t 9%

and so (2.51) becomes

9Ç 9t)

a9X - a9X + ^X “ “X(C )
9Ç 9r)

aX . -x(%) • (2.52)
9ti

so X = - nxfe) + Xj (n) » (2.53)

where x ’ îs an arbitary function. Therefore

X " - t x(x “ at) + x^Cx - at).

From (2.39) X is zero at t ■ T since Q is zero so

T x(x - aT) - ^  (x - aT)

and

X - (T - t) x(x - at). (2.54)

M and M. can be found froma P

M " 1 , and
OL 9x x“a
9M - - 3^ , so
9x 9x
M “ ■- 300 1a 9x 1x=a

%  ■

and so in this problem equation (2.40)̂  ; becomes:

a(x) - a"(x) - i 0 ̂  (x,t) + X ^90 - 90<^* (x) - a? « 0, x - o ( t )  , t * x
9x 9x (1 3

x-b Ct) (2.55)
t=x

From (2.49) 0(x,t) - x (% - at)

therefore ^  = X'(x - at)
9x
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30 I -  x'(o(t) -  at). (2.56)37 x-a(T)
Put a(x) - aT = w(t), then

x{*w(t)^ = 0^ (cx(t),t ) from (2.50) ,

so differentiating with respect to t .

x7w(x)? dw = 30J a'(x) + 30<
97

or

[o'(t) - a 1 x' (a(t) - at) " M o l  «'(?) + 30 . (2.57)
3x p?(t) 3t

Using (2.57), (2,56) can be written as

M l  “ M d  a'(?) + M3x ^^(x) axg^o(x) 3x

o'(x) - a

so

C 3 0 - M o7|
( 9x 9x )^a(T)

Mil o'(T) + Mo " ___
3x X=a(x) jx 9x ’̂“«(t)

a*(x) - a

M o + ̂  Mol . (2.58)
9x 9x ^=o(x)

a'(x) - a

From (2.54) X = (T - t)x (o(T) - ax) on OL and as 

0o(a(T),T) - x(o(T) - ax)

X - (T -X) 0^ (o<t),x ), on OL. (2.59)

i0^(x,t) becomes i0|(a(x),x) on OL and so using this, (2.59) and 

(2.58), (2.57) can be written as

q(x) - a"(x) - i 02 (a(x),x) + (T -x) 0_(a(T), x) Ç ̂  + a90o| 1
° ) 3f 97.^Sa(T)j

( %) - a
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X (et * (t ) - a) “ 0

ct(T) - a"(x) i02 (a(x), x)+ (T -r) 0^ (a(x) ,x)Ç30n + a90^ j .
^9x 9x ga(x)r

(2.60)

The solution for a(x) which minimises I may be found from equation 

(2.60), together with the boundary conditions (2.14) and (2.37).
VTake the particular case where 0^(x,t) = x . Here 

0 o ( o ( t ) , x  ) = dÿ(x), so (2.60) becomes 

a(x) - a"(x) - ia(x) + (T -x) a^(x). & a o^(x) = 0

ct"(x) - i 5̂ a(x) + a(T -x) ? = 0 . (2.61) .

Putting i|»(x) = a(x) + a(T —x) (2.62)

then if; " (x ) = a"(x) 

and (2.61) becomes

if" (x) - i if; (x) " 0 . (2.63)

The boundary conditions on (2.63) are: 

from (2.16),

a(0) “ 0, i.e. if - aT , x ■ 0;

from (2.37),

a*(T) " 0, i.e. if * (T) * - a ,x " T.

Using these conditions (2.63) may be solved for if(x) and hence the 

value of ot(x) which minimises I may be found from (2.61).



CHAPTER THREE
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CHAPTER THREE

A Second Order Hyperbolic Partial Differential Equation Example of 

the Use of the Gelfand-Fomin Theorem.

Let S be the domain in the (x,t) plane indicated in figure (3.1);

S is bounded by the closed curve OARL with AR being a portion of the 

line X = Z and LR a portion of the line t = T. It is assumed that the 

equation of OL may be expressed in the form

x = a(T) , t * = T  , 0< T < T ,

T being a time parameter, with a(0) = 0.

(3.1)

t

t=T

0 X

Figure 3.1
The shape of the curve OL is unknown initially, that is a(x) is an 

unknown function of t , and later it is attempted to find the curve OL 

in order to minimise a particular performance criterion. With a(0) = 0 

the curve OL always passes through the origin.

A function 0(x,t) is defined for all (x,t)eS and 0(x,t) satisfies in S 

the second order partial differential equation

3^0 = c ̂ 3^0 , (3.2)
'dïP-

where c is a constant.
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Putting 90 •* c9î  p (3.3)
9t 9x

then c90 = cW, . (3.4)
9x 9t

The boundary conditions on OA are 

0(x,O) - 0q (x ) , ^(x,0) = ^^(x) ; (3.5)

on AR,

0(Z,t) « 0 ; (3.6)

and on OL,

M(0,i|;, o (t ), a* (t ),t ) " 0 . (3.7)

The ordinary differential equations for the families of characteristics 

for equation (3.2) are:

C +: dx - c dt = 0 i.e. x - ct * constant ■ ç ; (3.8)

C dx + c dt = 0 i.e. x + ct = constant » • (3.9)

It is assumed that a moving point on a C+ characteristic commencing 

at any point on OL or OA will travel with increasing time into the 

domain S and will eventually meet either LR or Ml in a single point. 

This implies that the slope of OL at the point t = T must be greater 

than the slope of the characteristic at that point, that is,

c > a'(x) , 0 < T. (3.10)

It is also assumed that each C- characteristic commencing at any 

point on OA or AR will travel (with dt> 0) into the domain S and will 

eventually meet either OL or LR in a single point.

From (3.8) and (3.9)

9 = 9  + 9  , 9 " — c9 + c9
9x 9T 9rT 9? 9^ 9^

and equations (3.3) and (3.4) become
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c f “90 + 90 \
9C 9n

and

c / + 9^ - c / “9i/j + _9ji > »
 ̂9Ç 9n ̂  9n ^

giving on addition and subtraction

2 90 = 2 ^
9n 9ri

2 90 -29^

It follows from the above equations that

9 (0 - ip) = 0 , 9 (0 + ip) = 0
^  3%

hence

(a) 0 - ^ is constant along the Ç = constant characteristic ;

(b) 0 + ip is constant along the q = constant characteristic.

t=T

C-

P(x)

Figure 312
Accordingly if FQ is a C- characteristic then

where 0 ipq 9 0 ̂  and denote the values of 0 and at the points P 

and Qr (see Figure (3.2) and this equation can be written in the form

0(a(x),T ) + ip(a(T),T) = 0^ (x) + 4^(x) (3.11)

where (x,0) are the coordinates of the point P. Since x + ct is constant 

along the C- characteristics this becomes



0 (a(x),T) + ^i(a(T),T) ■ 0 (a(r) + ct ) + \p (a(x) + ct )0 o

hence

N E 0(a(x),T) + ^(a(T),x) - 0 (a(x) + cx) - \|; (a(x) + c t) “ 0 (3.12)0 0

is true for all x in the range 0<x<T and is valid on OL. Accordingly 

there are two conditions to be satisfied on OL, namely (3.7) and

(3.12).

The controllable area of the domain S must now be determined when the 

curve OL varies in position. Consider first the case where the C+ 

characteristic through the origin meets the line AR in a point H.

The C+ characteristic through any point Q in the triangle OAH will 

originate on the line OA and the C- characteristic through this point 

will originate on either OA or AR and so the values of 0 and ^ at Q 

will not be affected by any variation of the position of the curve OL.

t

0

Figure 3.3
Hence the domain OAH is uncontrollable. At any point, B, in the 

domain OKRL the C+ characterisitic will originate on OL and so the 

values of 0 and ^ at B will alter with a variation of OL. Hence 

the domain OHRL will be regarded as controllable.



Consider next the case where the C+ characteristic through the origin 

meets the line LR in a point K. It can be shown by a similar

t

Figure 3.4

argument that the domain OARK is uncontrollable and that the domain 

OKL is controllable.

The latter case will now be discussed more fully. The position of the 

line AR will be taken to be such that the C- characteristic through K 

originates on OA and not AR. The control problem is to minimise a 

performance index I given by
r TF(0; dx dt + J Q(0, ^,x,T)dx + J  f (a,a * ,a",T)dT,

T=0
(3.13)

LK

where Sj is the domain OKL, as the position of the curve OL varies.

t
t=T

C+
C-

Figure 3,5



zo

In physical terms this can be interpreted as a string of length 

Z being fixed at one end, A. The string is moved, with the free 

end 0 describing the curve OL after time T, The control problem 

will determine the optimum path for 0 to follow to minimise a given 

performance criterion. If 0(x,t) represents the position of the 

string at a point x at time t, then, if the string is to be as

NP * 0(x,t)

Figure 3.6
close-as possible to some prescribed shape $(x) at time T, the

performance index will be P= 0, Q =^0(x,T) - $(x)j % . ^ is related

to the velocity by c90 *» and so for the velocity also to be as
9x 9t

near as possible to a prescribed velocity Y(x) at time T»Q becomes 

Q E^0(x,t) - $(x)j2 + ^^(x,t) - 'F(x) j ̂  ,

Consider now instead of I given in (3,13) the new functional J 

given by

SP + X ( 0 ^ “ c^^) + p(^t " c0^ ? dx dt 
Si . T

Q(0,^,x,T) dx + ff(a,a*,a”,T)dT , (3.14)
C JoLK

where X and y are Lagrange multipliers depending on x and t. The 

increment, 6J, in J as the position of the curve OL varies must now be 

found. The variation of position may be achieved by adding to a(i) 

the increment 6a(t ) at the same time t . The curve CL i.e.

X = aCr)* t = T, (0<t*T), will be regarded as the curve which provides 

the minimum for I in (3.13) and the varied curve will be OL*, namely
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Figure 3.7

X = a(r) + (aCr), t = T ,  (0<t <T),

The functions aCx) and 6a(%) are assumed continuous and satisfying 

a(0) = 0 , 6a(0) = 0 . (3.15)

The extension of the Gelfand-Fomin result may now be used to find 6J • 

Let

F (0,^,0 ,ip ,0 ,x,t) = P + X (0 - cip ) + y (\|̂ - c0 ), (3.16)X X u u  t X  u X

F dx dt

r

8x '̂ x at '̂t
+ 6ip F, - a F, - a F, /dx dt

/  a; at \J3

F6x + ^ F  + 6iLF ,0 ipX X
+ a 

at
F6t + ^ F  + 51]; F

'̂ t ’♦'t
,dx dt.

(3.17)

where 60 and 6ip, the increments in 0 and ip, are related to 60 and

6i|j by

(3.18)

(3.19)

Applying Stoke's theorem in [ 2 ] to the second integral in (3.17) gives 

6Xi

60 = 6^ + 20 6x + a^ 61
ax at

6||, = ^  6x + 2^ 6t
ax at

Y « 0 'F - a F - a F “ + 6ip F - a F - a F ^ x  dtI /  a3T \  dT t "’tjf



32

OK+KL+LO
^ [f6x + 60F + ^  F  ̂ dt — [F6t + ^ F  + 5ij)F l^dx •

*L
(3.20)

Let %2 " j Q(0,^,x,T)dx , then
LK

6X,
Jr

Q — B
Bx '•J • dx

J I-LK Bx
Q is independent of 0 and ip so

QÔX + Q + 6̂  Q
^x '̂ x

dx

^60 + G^Q^^dx + Q6x
x=xK

LK ^
and since 6x is zero at the point K

6X,
LK

Q + 5ij/Q ? dx + Q6x I
(p X-Xĵ (3.21)

6J may now be written down from equations (3.20), (3.21) and the variation

6J

0",T)

Si I
F - B F^ - B F^ 
* at

ôip F — B F — 9 F
ifl «Il il3x 'l'x ât "'t

'dx dt

+ J^^6x + 60F + 6^ F J dt — [F6t + 6 ^  + 6^ F J dx ^
CK+KL+LO
+ r f 60 Q + 6& Q ? dx + Q6x

<- (p \pjLK
T (3.22)

At any point on OK x,t,0 and ip remain unaltered by a variation of the 

position of curve OL and so 6x,6t,60 and Sip are zero at such a point, 

which means, from (3.18) and (3.19), that and "Sip are zero on OK. 

Therefore there is no contribution to 6J from the integral along OK,

On OL X « a(x) , t “ T and as t is unaltered 6t = 6? = 0. Since 

t = T on LK, dt and 6t are zero on LK. 6J can therefore be written as

6J = ' rL SÏ I

LO

F — B F — B F + 6Â3ÏÏ • ̂ x  at ft
FSct + 60F, + ôil; F dr *“

^x *x

F. - B F. - a F 
*9
da

* a X  ’"x at *t dx dt

+ F+ f * F 1 + w
L * *tj

+ '̂r ! f Sa + f ,5a' + f io " ? (3tJq  ̂  a a a ^

60F + 6iI)F
ft ^

^dx + Q6x
x-x^
(3.23)
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On OL the boundary condition M = 0 must be satisfied so 

M( 0,*,a(T),a'(r),T) " 0 

On OL*, i.e. x » a(r) +6a(x), t « x ,

M = 0 must also be satisfied so

M( 0 + 60,^ + 6ip, a(x) + 6a(x), a^x) + do* (?),%) - 0 .

Expanding this by Taylor's theorem gives 

M( 0,^,a(x),o'(x),x) + d0M^ + +6aM^ + da'M^, - 0

where M - M ( 0, ^,o(x),a'(x),x)

It follows from the two equations M(0,i|;,a (x) ,a* (x) ,x) ■ 0

and M (0 + S0,ip + ôipfU + 6a,a* + 6a',x) = 0 that

60M + 6#,^ + 6aM + 6a'M 0, on OL. (3.24) ̂ y a a

Equation (3.12) gives a second relationship between 0 and for all

values of x on OL and in a similar way it follows that

60N + 6#, + 6aN^ = 0, on OL. (3.25)Ç Y 01

Eliminating first ôip and then 60 from (3.24) and (3.25) gives 

60 - 6c.(M^ - N^M^) + (o' M*, ;

\
60 - Sa(MN^ - 6a' N*

M.N, - N,MTp (f> ]p (

For convenience let

“ a'^0 “
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M N - N Mg d> - cx <
M N - N MV ^ f

(3.26)

B2

then

60 *• 6aAi + 6a*Bi ; ôip 

and from (3.18) and (3.19)

6oA2 + 6a'B2 ;

60 “ 6oAi + 6g*Bi - 90 6x — 90 6t
9x 9t

ôip “ 6aA2 + 6o*B2 “ 3^ 6x — 9^ 61

(3.27)

(3.28)
9x 9t

Since x " oi(t) and t ** t on OL 6x ■» 6a and 6t ■ 6t and since t 

is unchanged by any variation in OL (i.e. 6t is zero), then

60 = 6a r Ai - 9^ ') + 6a'Bi , on OL;
t 3a 3

6^ » 6a ̂ A2 - 9j; ^ + 6a*B2 , on OL;

where

90 - 90
9a 9x x=a(t )

BV' - 9V̂  
9a 9x x=a(t )

Using integration by parts in the final integral of (3.23) and writing 

da as a'(T)dx , 6J may now be written as

6J ■ c w F. - 3 F. - 3 F* 
* 37 ’x 3t

+ S'P dx dt

+ f{6a [ f* - d ^ ,  + F - F.. (Al - ^  ) - F^ (Ag - 3j) +
0 dT dt X 3a x 3a

+ F. (A - 30 ) a'(T) + F (A% - 3ÿ ) «'(?) ] “
t 3d 3o

+ [3 60
LK^

+ 6a j-fa -
dr \=0

+ ÿîF ^ dx + Q6x 1^^^

+ 6a'fa" T . (3.29)
T=0
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B + F, B - (F^ B + F , B  ) o'Cr)Integrating 6a* 

by parts gives

6a <T d
‘•0 7 d7

T“0

X  ̂t
and from (3,15) 6a(0) = 0. Accordingly

(F - F^ a*(i) ) B + (F, - F, a*(x) ) B
1 4" 2

dx,

6J - 3 F. - 9 L f  at *tj + 6\p F, - a F, - a F, 
J  ^ * x  at *1: dxdt

J ■ — »' * ^ a " ~  F " (F$ - F. »'(t)) (A - 3£) -0 L dx dx^ X ' t  ̂ 9a

- o ’Ct )) <A - a$_) +
 ̂ 3a^x *t

^ d r (F - F a*(x))B + (F - F a ’(x) ) b ‘
dx L X t  ̂ ^x ^t t

dx

+ J { « 0  (Qj + F. ) + S*(Q, + F  ) 3 dx + Q
KL ^t r

6x
X«Xĵ

+ 6a - dfa" - (F̂  - F^ a'(x) ) B - (F, - F, a'(x) ) B
“a

+ 6a* f. »» tio
Substituting for F from (3.16) gives

(3.30) x=T

6J -

+ (cy + Xa

c3y - 3̂  ̂1 +
cTx 31 J

Sijj P + 3X - 3y37 at dx dt

- dff̂  * + d^ff »̂- P - X 
di ^

3a

30 — C dtp -y 3i|; — c30
_3t 3x 3t 3x
+ ya * (x ) ) (A, - ^  ) -2 3a

ya * (x ) ) B 2 1 dx- ^  r (cy +Xa * (t ) ) B + (cidr L  1
+ + AP ((̂  +p) I dx

+ 6af f I - d^ii + (cy + Xa*(x) ) B + (cX + y a * ( x ) ) B  + Q?1
^ ° 2F 1 2

+ 6a*f 1̂1 (3.31)
x “0

For a minimum of I in (3.13) 6J ^ust be zero. Since 60 and &l> 

are non zero and unrelated in and on LK and since 6a and 6a *
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are arbitary variations then when 6J is zero

j3P + c9y - 9X ■ 0 , (x,t) e Si , (3.32)
W  3x 9t

9P + c9X - " 0, (x,t) € S , (3.33)
9%;̂ 9x at

f - dfgt+d^f îi- P + (cy + Xa*(r) ) (Ai - 90) + (cX + ya*(r))C\, - 9(1;) -
“ d T  d?2 37 37

- ^  [ (cy + Xa'Cr) ) Bj + (cX + y a'(T))E2 ] “ 0 , (x,t)eOL,(3.34)
dx

+ X - 0 , (x,t) eLK, (3.35)

<^ + y - 0 , (x,t) eLK, (3.36)

f , - d^»'+ P + (cy +Xa*(r) ) B + (cX +ya*(x) ) %  + Q * 0 , x  - T (3.37)
“ d T  I
f - 0 , T - T , (3.38)
a

at X - 0 either a*(0) is given or * 0. (3.39)

As an example to illustrate the above theory the case, described 

earlier, of the string being required to be as close as possible to a

prescribed shape $ (x) at time T will now be discussed. Here
 2....................................
P 5 0 , Q = [ 0(x,T) - t (x) ^

and f will be taken to be

f = ia2(x) + ia'2(x)

and the initial and boundary conditions are

0 = 0 ,  (j; = 0 ,0 0

M = 0 - a(x) " 0 , 0(2,t) = 0
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C-

Figure 3.8

It is assumed also that the line AR (see Figure (3.8)) is such that the 

C- characteristic through K meets the x - axis in a point E such that

< X

The state equations

30 — ,
3t 9x
c 90 = Ü

9x 3t
Equations (3.32) and

c ^  ■- 3X = 0
3x 3t

c 9X •- 3y = 0
3x 3t

Differentiating (3.4(

gives

c 3^y - 3^X = 0,
3x31 3t^

c 3^X - 9^y = 0
3x^ 3t9x

and so

0?- 3^X - 3^X = 0.
3x^ 3t^

(3.40)

(3.41)

(3.42)
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The solution to (3.42) is

X(x,t) - A(x - ct) + B(x + ct) , (3.43)

where A and B are arbitrary functions.

From (3.40)

3X " c 3y 
3t 3x

so

c 3y " - c A* (x - ct) + cF (x + ct)
3x

hence

y(x,t) * - A(x - ct) + B(x + ct) (3.44)

From equation (3.26) it can be seen that, since Q is independent of 

in this case, y is zero on OK, that is when t ■ T, so

y(x,T) “ - A(x - cT) + B(x + cT) « 0

therefore

A(x - cT) = B(x + cT) for all x.

Put X + cT = i , then

ACC - 2cT) = B(ç) for all ç and so

X(x,t) " A(x - ct) + A(x + ct - 2cT) , (3.45)

y(x,t) - - A(x - ct) + A(x + ct - 2cT) . (3.46)

Equation (3.35) gives ,with Q “ 0(%.T) - $ (x)

X " - 2 [ 0(x,T) - $ (x)J , (x,t)e LK. (3.47)

It has already been seen that 0 - # is constant along the C+ 

characteristics so

0 (x,t) - 4'(x,t) - 0(a(x),T) - ^(a(T),T ) . (3.48)
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0 + rfj is constant along the characteristics, so,from (3.12),

0(ci(t),t ) + i|;(a(T),T) = 0 (&(%) + cr ) + ^ (a(x) + c%). (3.49)0 0

since the boundary condition on OL is 0 - a(x) ■ 0, (3.49) may

be written as

^(ot(T),T) = 0^ (a(x) + c t ) + i^^(a(x) + c x) - o (t )

and using this and the boundary condition (3.48) may be written as

0(x,t) - i/̂ (x,t) “ 2a(x) - 0 (a(x) + cx) - (a(x) + Cx)o 0

hence

0(x,t) - if/ (x,t) = 2aCx) , (3.50)

since 0^ and are assumed to vanish identically on OA. Proceeding 

along the C - characteristic through (x,t), which characteristic 

intersects the x - axis at the point (x̂  , 0), then

0(x,t) +^(x,t) = 0 (x ) + ij; (x )0 0 0 0

hence

0(x,t) + Tj; (x,t) - 0 .  (3.51)

Adding (3.50) and (3.51) gives 

20(x,t) « 2a(x) , (3.52)

for all (x,t) in OKL, and so using (3.47),

-X(x,T) + 2$ (x) - 2a(x), (3.53)

where xr is defined by a(x) - cx " x - cT.

From (3.45) X(x,T) = 2A(x - cT) , so 

- 2A(x - cT) + 2 $(x) = 2a(x), a(x) ~ cx * x - cT,

A^a(x) - cxj = - a(x) + $^a(r) - cx + cT , for all x .(3.54)
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From (3.12) a condition on OL is

N = 0(a(x),T) + i|^(a(x),x) - 0 (a(x) + cx) - (a(x) + cx) - 00 0

and since 0 and ib are assumed to be zero OA 0 0

N = 0(a(x),x) + i|>(a(x),x) “ 0 .

The other condition on OL is

M = 0 - a(x) ■ 0.

Using the defininitions in (3.26)

A " -1 
1

B - 0 
1

A = 12
B - 0

30 and 3if; in equation (3.34) must now be determined. 
3a 3a
0(x,t) - a(x), and a(x) - cx - x - cT.

From (3.52)

so

30 = G*(x) 32 , and [a*(x)
3x 3x

cl 9x 
3x

1 ,

30
3x

a* (x)
a'(x) - c

30 « 30 I 
3a 3x X = a(x)

From (3.51)

a'(x) 
o/(x) - c

#(x,t) = - a(x) and a(x) - cx - x - cT

so

3if; " -a ' (x ) 3x_ and [ a * (x ) 
3x 3x c] il - 1 .3x

hence 3ij;
3a

-o'(x) 
a ’(x) - c

Since f = ^a^(x) + ^a’̂ (x)

f « a a , df^' - a" , 0 .
d T
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The transversality condition (3.34) can now be written as

o(t) - a"(x) + fey + Xa*(x)l Ç -1 - a* (x) ? +
C  a ’ (x) - c J

+ fcX + ya’ (x)1 Ç 1 + g* (x) 9  “ 0 »
^  (x) - c j

[g(x) - g"(x)] [g*(x) - c] - [cy + X a ’(x) - cX - ya’(x)] [2a*(x) + c]- 0

(3.55)

From (3.45), (3.46) and (3.54)

X(g(T),x) " A{[a(r) - c x J + A { a ( x )  + cx - 2cT }

= -g(x) + $[g(r) - cr + c T ^ + A ^ g ( x )  + c x “ 2cT J ;

p(ot(T),x) ■ -A^g(x) - cx] + Ajg(x) + cx - 2cT^

= g(x) - $ [g(x ) - cx + cT J + A  ̂a(x) + cx - 2cT J

Thus replacing X and y in (3.55) gives

[g(x) - g'’(x)] [g*(x) - c] - [a * (x) - c] [-2g (x) + 2$ [a (x ) - cx + cT|][2a*(x) - (Q

- 0
g” (T) - g(x) - 4g*(x)g(x) + 4$^a(x) - cx + cT|a*(x) + 2ca(x) -

- 2c$£g(x) - cx + cTJ = 0

g” (x) + 4g ’(x) [ $ [ g (x) - cx + cT] - a(x)] + 2ca(x) - 2c$^g(x) - cx + cTj= 0

(3.56)

g(T) may be determined from equation (3.56) together with the boundary 

condition at x - T obtained from equation (3.37) .
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CHAPTER FOUR

A Boundary Control Problem in Unsteady One Dimensional Gas Movements.

This chapter is concerned with the one dimensional movement of a gas

in a semi-infinite tube of uniform section, the gas being bounded by a

moving piston. At time t = 0 the piston is at the origin x = 0 and the

gas in X > 0 is in a state of rest with uniform density p and
0

uniform sound speed c (ĉ  = icyp̂  ̂ ) . For t > 0 the piston0 0 0
is moved away from the gas so that at the time t = t its displacement is

X = a(x) , a(0) = 0 , a(x) > 0 , (4.1)

where t is a time parameter. A wave of' rarefaction is formed at t = 0

and this travels in the direction x > 0 so that the leading edge of the

rarefaction wave is at x > c t at time t.o

II x=c t

Figure 4.1

For X > c^t (Region I, see figure 4.1) the gas remains undisturbed.

In Region II the gas moves in the x direction with speed u(x,t), density 

p(x,t) and pressure p(x,t) and the governing equations are

(4.2)9u + u 9iJ 
3t 9t

- 1 3p 
P 3x
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9p + 9(pu) = 0 . (4.3)
9t 3%

It is assumed that the adiabatic condition

p ■ K p^ C4.4)

is satisfied with Y " / c^ . Equatiohs (4.2) and (4.3) can be

rewritten in the form

9u + u3u + __2 c 3c. " 0 > (4.5)
3t 3x y-1 3x

2 3fc + 2 u 2s. + c 22 " 0  ; (4.6)
Y-1 3t y-1 3x 3x

where c, the local velocity of sound, is defined by

c^ " K Y pY 1 . (4.7)

In the problem the piston movement will be looked upon as the control,

and the piston movement must be determined such that, for example, 
x=c T

I “ i 1 r0(x) Ç u(x,T) - u*(x)?2 + 1̂ (x) c c(x,T) - c*(x)?2 dx
X— a(x)  ̂  ̂ i J

T
+ I r ?aa2(x) + ba ’̂ Or) + ca"2(x)? dr , (4.8)

T=0
with 0 > 0 ,i|; > 0 V x, is a minimum, in other words the piston control

is found so that u(x,T) is as close as possible to a prescribed

function u*(x) and c(x,T) is as close as possible to a prescribed function

c*(x), with the minimum expenditure of control energy. In general

however the problem is taken to be that of minimising a general function

of the form:
x-c T T

I - J* f [ x,u(x,T) , c(x,T) ] dx + J F^a(r),a*(r) ,a’*(r ) ] dr. , (4.9)x=-a(T) T=0 •
where f and F are prescribed functions.

The method of handling this problem is as follows: From (4.4) and (4.5)

C3 + (u + c) 3 ) /u + 2 c \ ■* 0, (4.10)
1 3t j ̂  y-1 /
C 3 + (u - c) 3 1 / u - 2 c = 0, (4.11)
[ t e  ^ 5   ̂ Y=r
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hence

(u + 2 c) remains constant along the C+ characteristics given by
Y-1

dx = u + c , (4.12)
dt
(u - 2 c) remains constant along the C- characteristics given by

y-1
dx = u- c . (4,13)
dt
The different regions in the (x,t) space will be distinguished as

follows. In Region I, namely x > c^t , t > 0 the gas is at rest with

u = 0, p = Pg, c = Cg , thus in Region I the C+ and the C- characteristics 

are families of straight lines x ± c^t = constant and Region I will be

bounded by x = c t.0
C+

V II

C-

Piston A 
displacement-^
X = -a(x)

u=0
c=c

0 X

Figure 4.2.

The Region II is on the other side of the line x = c^t from Region I. 

Region II called a Simple Wave Region (Courant and Friedrichs^^) and 

in this Region it can be proved that the C+ characteristics are straight 

lines. For if P and Q are any two points in II lying on the same C+ 

curve which starts at A thus from (4.12)

u - 2  c = - 2 c .
^ y-1 ^ y-1 °

u - 2 c = - 2 c

From (4.15) and (4.16) it is deduced that u^ = u^ , c^ 

slope of the C+ characteristics at P, namely 1______

(4.15)

(4.16)

c^ ; hence the 

is the same as
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the slope of the C+ characteristic at Q, namely 1 ,
+ Cg)

hence the C+ characteristic is a straight line. The C- characteristics 

in Region II remain as general curves satisfying (4.13). Continuing 

with the theory it is deduced that if A [ -aCr),? | lies on the

piston displacement curve then from the above theory

u = u. p A (4.17)

Travelling on the C- characteristic through A back to Region I

u . - 2 c. = - 2 c
* 7 ?  * F T  °

or

- <0 + 1:1 "A

Thus the slope of the C+ characteristics through A will be

"A + c + Y+1 u.0 -y—  A c - Y+la’ (x) 
° 2

(4.18)

(4.19)

where a ’(r) = da . The equation of the straight line C+ characteristic 
dx

through A will be

t - T
c - y+1 a*(x) 
° 2

( X + a(x) ) . (4.20)

B(X,T)

(-a(T),x) A

Figure 4.3
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Suppose the C+ characteristic (4.20) meets t " T at the point B 

whose co-ordinates are (X,T), then from (4.20), X will be given 

by

X = - a(r) + (T -t) [c - y+T a*(r)] . (4.21)
° 2

Furthermore, using (4.17), the values of Ug and are as follows:

u(X,T) » u * u = -a*(x), (4.22)
B A

c(X,T) " Cg = = c^ - y-1 g* (t) , (4.23)

using (4.18). The above theory relating to Region II is valid 

providing the speed of the piston does not become excessive and this 

limitation is discussed as follows. Equation (4.18) can be written 

in the form

- y-1 a*(r) ,

noting that c. = 0 if a*(t) = 2cp ; the vanishing of c implies the
. . .  Y-1vanishing of the density p , thus if the piston speed becomes equal

to 2c^ , the density of the gas in contact with the piston will be zero.
y- 1 ..........................................................

If the piston speed now exceeds 2c^ the piston will lose contact with
y-1

the gas and a vacuum will form between the piston and the gas. In this 

event clearly no control of the gas movement is possible. Thus in the

above problem it will be assumed that 0 < a ’(x) < 2c_ .

The substitution (4.21)13 is now used to change from the variable X into 

the new variable x. Now from (4.21)

d X * * { - a ’( x ) - c  + y+1 a * (x) + (T -x) ( - y+1 a*' (t) ) ^ dx
° 2 2

“ - f c - y-1 a * (t ) + y+1 (T -x) a" (x ) ] dx . (4.24)
 ̂ ° 2 2

It is deduced from (4.21) that X = c^T will correspond to x = 0 provided

that G*(0) = 0 and X « -a(T) will correspond to x = T. Hence (4.9)

can be written in the form
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I -
T=0

f ̂  - a(T) + (T -t) - Y+1 a* (t) ] , - a* (t) , - y-1 o* (%)]

{ c ~ Y-1 a ’(T) + Y+1 (T -t ) a"(T) j dx +

+ J F f a(r) , a’(t) , a"(x) ] dx
x=0

or

I " J g[T, a(x),a*(x),a"(x) J dx 
x=0

(4.25)

(4.26)

where

g(T,a(x),a'(x),o"(x) ) = - Y^l a*(T) + Y+1 (T -x)a"(x) ] %

X - a(T) + (T ^ x)[̂ ĉ  - (Y+l)g* (x) ] , - G*(x), - (Y-l).â (x) j

+ F[ a(x),a»(x),a"(x) j (4.27)

Thus the original problem has been transformed into one of finding 

the function a(x) which will provide the minimum of the funcitonal I 

in (4.26) which is the classical Euler problem in the calculus of 

variations In order to study the boundary conditions the problem is 

tackled as follows:

Consider the function 
T

J (E) - J g{T,a(x) +en(x),a*(x) + en ’ (x) ,a’*(x) + en"(x) j dx

where y ** a(x) is the function which gives the minimum of I in (4.26)

and where y = a(x) + en(x) is 

a neighbouring function. J (0) ■ I 

and the necessary condition for a 

minimum is J ’(0) =0 .

y
x=T XFigure 4.4

J'(0) = +Ti'(f)g^t +Ti"(x)g^„ J dx

■ ga"j] +[n'(T)g^„

Thus the necessary conditions for J'(0) = 0 with arbitrary n(x) are



48

8„ - d g^, + d2 g^„ - 0  , (4.28)
ax dT

and

Fn* (x)g „ + n(x) f g , - ^  g_„?l - 0 . (4.29)L a c a dx
Consider first the differential equation (4.28).

Writing

X(x,a(x),a'(x)) = f [ -a(x) + (T - x) - (Y+l)a* (x)J , - a*(x),

c - (y-1) a*(x) ? ,(4.30)o 2

then (4.27) can be written in the form

g(x,a,a*,a") = i c - (y-l)a* (x) + (y+1) (T -x)a"(x)fx (x,a(x),o"(x))C 0 2 n J

+ F(a(x),a*(x),a"(x) ) . (4.31)

From (4.31) it is deduced that

g^," -(irDx + { - (y-l)q* (x) + (y+l)(T -x)a"(x) ] x%, + F^,,(4.32)

g„if* (y+1) (T - x) x(T,a(T),a*(x) ) + F „ , (4.33)
2

g - $c_ - (y-l)a* (x) + (g+1) (T - x)a”(x) ? + F^ ; (4.34)o C o 2 2 J cx o

thus equation (4.28) can be written as follows:

d^ Ç (y+1) ÇT - x) x(T,o(x),a'(x)) + F 
dîF C 2 J
+ d ^ (y-1) X - [ - (y-l)g' (x) + (y+1) (T - x)g*'(x)j x̂ j» -

+ 9 c - (y-l)g' (x)+ (y+1) (T - x)g"(x) 2 x^ + ^ “ 0* (4.35)I 0 -y- -y- J g g
Consider now the boundary conditions for the problem. Two of the 

boundary conditions upon g(x) have already been noted and these are 

as follows:

g(0) - 0 , g*(0) - 0 . (4.36)

The conditions (4.36) imply that n(0) ■ 0 and n* (0) = 0 and thus 

(4.29) can now be written in the form
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n’(T)g^„| + n(T)Çg^f - g^„ 7 - 0  . (A.37)
T“T C dx '7x»T

Since nCx) is an arbitary variation it follows that the coefficients of 

n(x) and n'(x) in (4.37) must both be zero, hence

®a" " , T " T ; (4.38)

8̂ ,- ĝ ii“ 0 , T " T . (4.39)
dx

These conditions allied with the two conditions upon a(x) in (4.36) 

provide the appropriate conditions for the unique solution of a(x) 

in the problem.
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CHAPTER FIVE

The Application of the Gelfand - Fomin Theorem in the Unsteady One 

Dimensional Gas Problem.

The unsteady one dimensional gas problem is now discussed using the 

Gelfand - Fomin theorem. The notation is the same as that used in 

Chapter Four.

The governing equations of the gas are

9u + u 9 u +  2 c 9c * 0
"9t 9x 9x

2 9c + 2 u 22. c 9JU = 0
9t Y-1 Jx 9x

(5.1)

(5.2)

0 X

X = c t0

Figure 5.1

As before the performance index I to be minimised is given by
T

I = J  f$'x,u(x,T) ,c(x,T) 7 dx + f F f a (t) ,a’(T)a" (t) ,T?dT . (5.3)
LR  ̂ J T=0 L J

Consider instead of I the new functional J where

+ n(x,t) _ 2_c + 2 uc + cu I9dxdt
,Y-1 Y-1 =

J .J J rc(x,t) Tu^ + uu^ + _2 ccx
Si ^ L T Y-1
+ ^ f  [ x,u,c j dx + J F ̂  a(T) ,a'(t ) ,a"(T) ,T j dr , (5.4)

C and n being Lagrange multipliers depending on x and t. Let



$ = C(x,t)

and 

J

u + uu + 2 cc 1
t ^rr X

$ dx dt.
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+ n(x,t) 2 + 2 uc + cu
Ly~ "  ^  * *

.(5.5)

(5.6)

Applying the Gelfand - Fomin theorem to Jj the variation in Jj, that is 
ôJj, is given by

6Jl - I 1 S ÔU

< h k

— 9 $ — 9 $I - u ■ ■ u3x X 9t t
$5x + Ô U  $ +  6c $

“x

+ 6c I — 9 $ — 9 $
 ̂ %  Tt ^t

dx dt

+ 9 
9t

$ 6t + 6u $ + 6c $
“t ‘=6

ix dt

and using Stokes* theorem on the second integral this becomes

6J 1 =
*  V Si!«»

" $ - 9 $
, ^ *9t ^x

- 9 $ " 
9t "t

j + 6c - 9 $
_ ^ 9x ^x

— 9 $
9t ^t

+ J
OR+RL+LO

* 6x + 6u $ + 6c $u cX X
dt -

dx dt

$ 6t + 6u $  + 6c $
"t ^t

dx

(5.7)

It is known from the characteristic theory that xj c, t and u remain 

unaltered on OR and so there is no contribution to 6J from the integral 

along OR. On LR, that is t = T, 6t and dt are zero so the integration 

along RL becomes

LR
^ 6u$y + 6c $2 ^  dx. (5.8)

On LO X = - a(x), t = T and the value of t at a point on LO is 

unaltered by the variation of position of LO so 6t « 0 and 

6x = -6a (t ) .

6u and 6c are defined by

6u • 6u - 9u 6x - 9u 6t ;
9x 9t

6c = 6c - 9c 6x - 9c 6t 
9x 9t

On LO these become

6u = 6u + 9u 9a 
9a

6c - 6c + 9c 6a 
9a



where 3u * 3u 
3a 3x X - -aCr)
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3c 3c
3a 3x x"-a(t )

From equation (4.24) the boundary condition on OL is

u (x ,t ) + a*(x) * 0, X - -a(x) ;

and the varied conditions are 

ÔT = 0, ÔX *= -6a , 6u ** -6a*

and on OL

c (x,T ) " c - (v-l)a * (t )

so 6c ■ - (y-1) 6a ' (x) .
2

Therefore on OL 6û  and 6c may be written as

6u = - 6a* + 3u 6a 
__ 9a
6c = — (y-1) 6a * + 3c 6a 

2 9a
and the integration along LO may be written as

- ^ r $ 6a + f6a* - 3u 6a\$ + /(y-l)6a* - 3c 6a\$
LO U  3a ' *x 2 3a  ̂ <

+ r(6a * - 3u6a)$ + ( (y-l)6a * - 3c 6a)$
lïT “t 2 3S- <=t J

df

da

or r $6a + (6a * — 3u 6a) $ + ((y—l)6a* - 3c 6a)$ +
OL a* "x 2 3a ("x

]
+ ( 6a* - 3u 6a)$ a'(r) + ( (y-1) 6a* - 3c 6a)$ a * (r ) ? dr

^  "t 2 ^  ^
f 6a - 3u ($ + $ a*(x))- 3c ($ + $

OL ^ IS" “x “t =x '
+ 6a* r$ + $ a* (t ) +L ^ x  ^ t (Y-1) ($r

2 X
+ $ a»(T))| ? dx .(5.9)

Integrating j 6a* F* + a*(x) + (y-1) ($_ + $ a*(x))1
OL _ "x  "t ~ r  "=x J

dx

by parts gives 

6a $ + $ a*(x) + (y-1) (*_ + $ a*(x))
"x '̂ t “  X =t

x-T

-*x*0

OL
6a3 C $ + a*(x) + (y-1) ($ + $ a*(x) )7dx,
3x t X t 2 X t J

and (5.9) may be written as
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\ 6aS$ - 3u ($ + $ a'Cr) ) - 3c + $ ci*(t ) )
OL L SÛT "x "t 3a S  ""t

r $ + $ a*(T) + (y-1) C$ + $ a * Ct ) ) 1 7 dx
L "x "t -IT =x

—
3t 

+ 6a ,$ + $ a*(x) + (y-1) C$ + $ a*(x))l
"x '̂ t 2 "̂ x -It»T

(5.10)

since 6a = 0 at x = 0 .

(5.7) may now be written as

6Ji » 6u
•» ' h \

*c - 3_*c% - l_*c ' 3x * 3t ^
dx dt

+ j 6u ^ ^  + 6c ?dx
LR

6a^$ - ^  ($u + G*(T) ) - 3c ($ + a'(T) ) _
^  / 3a X t 3a ^x t

- 3
3

+ 6a
9x L '"x

3a X t 3a
+ a*(r) + (y-1) ($̂  + a'Cr) )

2 ^x
dx

$ + $ a*(x) + (y-1) ($ + $ a*(x) )1
_*x "t 2 X ^t Jx=T

Let J  f  ̂ x,u,c] b e J ,  then by the Gelfand - Fomin theorem
LR 2

6J2 “ J   ̂ 6u [ fu - 3_ fu^] + 3c [fc - 3_ fc 1 ? dx
LR 3x 3x J J

+ f  3 (f6x + 6uf + ^  f ) dx
LR 9x "x ^x

and since f is independent of u and c............ X X

(5.11)

6J, J  [ 6u f^ + 6c fç. ? dx + J  3 (f6x) dx
LR LR 3x

x=x.1+ 6c f^ f dx - f6x (5.12)
x=

and at x = x 6x is zero. R

If J 3 = J F [ a(x) ,a’ (x) ,a"(x) ,x ] dx , then 
x-o

6J 3 - J CF 6a + F^, 6a» + F^„ 6a" ] dx 
x=o ^

and integrating F^,6a» and F^,^a" by parts this becomes, as in previous

examples,
T

6J . 3 6a Ç F
0 i ®

- d^,+ d̂ Ff̂ i, 7 dl + 6a rF I - dFdul + F-i* 6a ’I 
d?" d?z j L “ dt -^-T “ It T

(5.13)
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6J, the total variation of J, is the sum of (5.11), (5.12) and (5.13), so

+ 6c
- JsJr
+ [ T 6u($ + f ) + 6c($ + f ) ? dxu u C C -J

$ — 3 $ — 3 $
. ̂  37 ^x St'^t

dx dt

LR
T, - dF^,+ d^F^n* $ - 3u. + $ ot̂ Cx) ) -

dx dx^ 3a '̂ x ^t
— 3c($ +$ a»(x) ) — 3

3a ^x ^t 3x
<I>u + *u o'(x) + (y-1). a»(x))l?dx

X t 2 X t J J
+ 6a Tf^, - dFfv" + $„ + * a'(x) + (y-l)($ + 4> a ’(x))L  a dx

=T

u 2 ^x ^t " 1 T
(5.14)" ^ ' “ ’U

For a minimum of I in (5.3) 6J must be zero and since 6u, 6c, 6a and 

6a» are independent arbitary variations this implies that

$ — 3 $  — 3 $  “ 0 ,  
" 3x 37 "t

(x,t) e Sj » (5.15)

$ — 3 $ — 3 $ = 0 , 
^ 3x ^x 3t ^t

(x,t) e S% > (5.16)

$ + f = 0 , 
“t “

(x,t) e LR. » (5.17)

$ + f - 0 , (x,t) e LR » (5.18)

F — dF„» + d^Fn + $ — 3u ($ + 
" d f  IS- “x

$ a »(x) ) - 3c($
3a °x

+ 4^ o'(t) )

- 3 Ç $ + $ a»(x) + (y-1) ($ + $ a»(x) ) ? " 0,
3x 2 "x *t 2 S  ^t j

(x,t)e OL , (5.19)

F^, - dFnt, + f + $ + $ a»(x) + (y-1) ($ + a»(x) ) *» 0, x = T,(5.20)
dx X t 2 X t

a 6a»
X

X = T . (5.21)

Substituting the value for $ from (5.5) into (5.15) and (5.16) gives

3-y n 3c — u 3^ — c 3n — 3g * 0
y-1 3x 3x 3x 3t

and y—3 n 3u — 2 c 3 ̂ — 2 u 3 ri
y-1 3x y-1 3x y-1 3x

and these may be written as

2 2n
y-1 3t

0 ;

— (3-y) r|3c + u 3  ̂+ c 3ri + 3^ = 0 
y^l 3x 3 X 3 X 3 t

(5.22)
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3-y r|3u + c 9E + u 3n + 9n " 0 
2 9x 9x 9x 9t

Adding (5.22) and (5.23) gives

(u + c)9 (̂  + n) + ^ ( C  + n) = (y-3)n ^ ” 2 c 1 ,
9x 9t 2 9x c y-1 j

and subtracting (5.23) from (5.22) gives

(5.23)

(5.24)

32^ n 2_ fu + _2_ c 9 . (5.25)
2 9x [ y-1 j

It is known from the characteristic theory of equations (5.1) and

(u - c) 9 (C - n) + 9 (C - n) 
9x 9t

(5.2), [(4.13)] , that

u - 2 c “ - 2 c
Y-1 Y-1 ^

hence (5.24) becomes

Ç (u + c) 9  + 9 
C 9x 91

for all

( C + n) = 0

(x,t) e Si

(5.26)

and this can be interpreted as + n ) is constant along ^  = u + c,
dt

the C+ characteristic.

Substituting for $ in (5.17) and (5.18) gives

fy + C = 0 , (x,t) € LR ;

f + 2 ri = 0 , (x,t) e LR
Y-1

Since (C + n) is constant along the C+ characteristic

(5.27)

(5.28)

C+
/

<X,T)

(x,t)

(-a(x) ,T

Figure 5.2
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Ç(x,t) + n(x,t) - Ç(-a(T),T) + ti(-ci(t),t)

- ((X,T) + nCX,T), 

and from (5.27) and (5.28)

Ç(X,T) + n(X,T) “ - + III f ?
^ x=3E

so Ç(x,t) + n(x,t) = çC-a(T),T) + nC-aCT)»T). - “ **“ Y-1 . (5.29)
^ t=I

Substituting for $ from (5.5) in (5.19) gives

F - dF^* + d%Fn" - (Cu + ne + ÇaHx) ) ~ 3c( 2 çc + 2 n u + _^jia*<T) )
dT dx 9a 9a y-1 y-1 y-1

- 2 — 9 Cu + ne + (y-1) ( 2 Çc + 2 nu) + a* (x) (Ç + (y-1). 2 n )? “ 0
9x  ̂ 2 y-1 y-1 2 (y-1)

(x,t) € OL, (5.30)

and u + a* (t ) « 0 on OL so (5.30) becomes

F - dF^ f + d^F^n- 9u ne - 9c. 2 Çc - T (n + C)e 7 = 0. (5.31)
^ dx dx 9a 9a y-1 9x ^

9u and ^e must now be determined.
9a 9a
Since u(x,t) = - a*(x) and , from (4.18),

c(x,t) « c_ (y-l)a* (t ) then
° ~

9u “ - a" (x ) 9x and 9c « c - (y-l)a"(x) 9x .

From (4.23) x is related to x by the equation

X » - a(T) + (t - T) [ Co - (Y+l)a'(T) ]

so 9x = - a'(T) - fc - (Y+l)a'(T) ? - (Y+l)a” (T)(t - t )
9T 2 2

and since t = T on OL, ^  on OL becomes
9T

9x = - a'(T) - c + (Y+1) a'(T) , (x,t) e OL
9T 2

and 22, “ 1 on OL.
9x (Y-l)a'(T) - 

~2~
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3u = 3ii 1 Su. = 9ii
3a 3x'x=-a(T) 3c 3x ' x=-a t

(ri)SO _3u *® - a"(x) , 3_c = - 2 a” (t ) . on OL
3a (y-l)a' (x) - c 3a (y-l)a' (x) - c 

1 ^ —  0
(5.31) may now be written as

- dR., + d%Fn"+ nca"(x) + Cca"(x) - 9 C c ( Ç  + n)% " 0
dx dx (y-l)g' (x) - c (y-l)a ' (x) - c 9x ^

® 2

and since c » c - (y-l)a^ (x) and (Ç + n) * ” ? f + (y-l)f ?
0 I " 2

F - ^ ' +  d^F "+a" + (Y-l)f? + 3  S (c - (Y-l)g’(T) ) (f + (y-pf 0
= d f  d T Z  2 ° -2 " 2  %

F - dF^*+d^F^n+a"îf + (y-l)f X - (y-1)a"(x) f f + (y-l)f 7
“ d f  ^  i “ “ 1 = 1  “   ̂ 2 %

+ (c - (y-l)a' (x) ) 9 Sf + (y-l)f ? = 0
^ —  9?t u - 2-

F - dFgt + d^F^ti= (y-3)a" ̂  f + (y-l)f.? -fc - (y-l)a* (x) ? x
“ d T  ^  ~  t “ -y- =Jt=j 1 °  —  -5 .

" w ' "  • v - w  ” ■
where X - - a(x) + (T - x)  ̂ĉ  - (y+l)a* (x) j

When the value for $ from (5.5) is substituted in the boundary 
condition (5.20) that becomes

F »- dF%" + f - (c - (y-l)a^ (x) ) (f + (y-l)f ) “ 0 x " T .(5.33)
“ d T  ° ~  M

Equation (5.32) is the transversality condition corresponding to 
equation (4.35) in the previous chapter. It will now be shown that 

these two equations are identical.

Equation (4.35) is given by

Ç (y+1) (T - x) x(T,a(x),a*(x) ) + F „ 7 
I 2 J
+ d Ç (y-l)x - [c - (y-l)a^ (x) + (y+1) (T - T)a"(x)l x_* " ?

d? ^ " T   ̂° " T  ~  '‘ “ “ J
+ i c - (y-l)a' (x) + (y+1) (T - x)a*'(x)? x + F = 0 . (5.34)c o 2 2 J ct a

From (4.30)

X = f [ - a(x) + (T - x) ^c^ - (y+1) a * (x ) J , - a'(x),c^ - (y-1) a * (x ) J
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so

d_ S (y+1) (T
dr C 2

and

d%
dr

- t )x ^ “ (y ‘*~1)x + (y+1) (T - t ) ^ [ ~ cx*(t ) - + (Y+l)a'

- (T - T ) (y+l)g" (r )] - a" (y ~1) ^

(t )

^ (y +1) (T - t )x ̂  “ (y + 1) ̂  (Y-l)g* (r ) - - (T - t ) (y + P a"(r )

- n,”«"(t ) f + (y-l)f u C

+ (y+1) (T - t ) ç  (y-1)g" (t ) + (y+l)g"(r ) ~ (T “ t ) (y +l)g* ’ ’ (%) 
2 1 2 2 2

a *''(r) f + (v-l)f I + U c (y-l)g'(t )“ c - (T - T ) (y+l)ct* (t ) 9F
9t

- ct"(r) 9_ 
9r

f + kll)fu (5.35)

(Y-l)q* (t ) - c - (T - t ) (y+l)g"(T) 
2 ® 2

- g"(T) r f„ + (y-1) fc 
2

X , " (y+1) (T - x)f - f - (y-l)f
g* '2 X u c

(5.36)

(5.37)

so

dx
^ jĉ  - (y-l)g' (x) + (y+l)q” (x^x^, ̂  *

d C[c - (Y-l)g'(T) + (y+l)g"(x)l f -(y+l)(T - x)f - f - (y-l)f 1 7
d T U u 2 —  J L —  X u - 2̂  cJ J
= f-(y-l)g"(x) - (y+l)g"(T) + (y+1) (T - T)a » m  JC-(y+i) (t - x)f - f - (Y-l)f

I 2 2 —  il —  X " —
+ ^c - (y-l)g* (x) + (y+1) (T + x)a"(x)? Ç (y+l)f - (y+1) (T - x)3f_-
C ° 2 2 J I “T “ ^ 2  9 T

- fg X

Using (5.35), (5.36), (5.37), (5.38) and (5.59), (5.34) may be written as

(5.39)

~(y+l)^ j'(y-l)g* - - (T - t ) (y+l)g"

+ (y+1) (T - x)f r(Y~l)ot” + (y+l)g" - (T - x) (y+l)a* * * 
2 CL 2 2 ~

fu + (ïÿ.) fc

f - g'''X

(y-l)g' - c - (T - x) (y+1)a"
9x

3_[fu + (ïzl)fe] 
3t L 2 .
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t e i f (Y~l)g* - c - (T - t)(y+1)u" 
2 ° 2 .

f - a"
X [*u * }

- C c  - (y-l)g* + (y+1) (T-x)g” X ̂  (y+l)f„ - (y+1) (T-x) 9f ” 9 É  +
I ° —  —  H ~ r  ^ 2 3 ? "

-Sc - (r-l)g' + (y+1) (T-T)g" ? f  + d^F_„ -  dF^, + F -  0c ^ o o J X j_2̂  J- g

(y-l)f i ]
2 2 

which simplifies to

X

9fx
3x
+

(y-l)g* - c - (T-x) (y+l)g"l f- y- 1 + (y-1) + (y+1) + 1 1 
_ 2 2 -I L 2 2 - 1
(y-l)g" + (y+l)g” - (T-x) (y+l)g" 

2 2 2

(y-l)g* - c - (T-x) (y+l)g” 
2 ° 2

(y+1) (T-x) - (y+1) (T-x) 
2 2

Cy+1) (T-x ) - (y+1) (T - X )
2 2

- (Y-l)g" - (Y+l)g" + (V+1)(T-T)g"' + (y+pg"
2 2 2

- (y+1) (T-x)g" ' - (y-1) g" 
2 2

+ 3_
9x fu + (ïÿ.)fc - (y+1) (T-t )g" + c - (y-l)g^ + (y+1) (T-x )g"

+ d̂ Frt'*- dF~»+ F
d T  d C  “

or

fu + (Iÿ:)fc " y +1 - (y-1)- (y +1) - (y-1) 1 + 3 F f + (y -l)f
—  2 2 J 3T,  2 c

+ dZFnH-dF^Y+ F - 0 
d T  “

c - (y-1) 
° 2

+ d^Fa"- dFg » + F = 0 . 
d?" T T  *

Finally this becomes.

d%a,r- + Fg " (y-3) g" 
d ?  X T  —

■ (3-y)g" ■ + c - (y-l)g" 9
- 2

- ~  . 9x u

Cg - (V-l)g" 9
TÛ

which is identical to (5.32)

The boundary conditions in Chapter Four are

Sa" " °

8a ’ - g_ 8„.. - 0 dx

X = T 

, T = T

(5.40)

(5.41)
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From equation (4.31) 

g(T ,a(T),a*(T> a"(T) ) - (y-l)g* Ct ) + (y+l) (!-%)(%"(%) ? x (t >q (t ) .a* (t ) )
c 0 2 2
+ F(a(T),o* (t ) ,a "(t ) ) ,

and, from (4.30),

X = f{ - a(x) + (T-t ) - (Y+l)g' j , - o*(T), - (Y-l)a* (?)?.

go, - - (y-l)f + 5" C - (Y-l)g* + (y+l) Cr-r)a" ? f ,+ F , (5.42)2 L 0 2 2 o tt a

f^, “ S ""(y+l) (T~t) - f^ - (y-l)f^ 7 (5.43)

* (ill) (T-t ) f + F „a a'

d g „ * - (y+l)f + (y+l) (T-r) f , + d F „ . (5.44)
dx “ 2 2 dx “

The left hand side of (5.41) may be written down from (5.42), (5.43) 
and (5.44)

g f  - d g „ = C c  - (y-l)g* + (Y+l) (T-T)g" 2 S” (Y+1) (T-T ) f - f (Y-1 ) f ?.
“ d 7 “ i 2 ~  s i ~  * " —  £>̂

+ F + f - (y+l)(T-x) X

+ (y-l)q* -, (T-x) (y+l)a"j f^^- a"f^ - (y-l)a"f^ J

-  ^  T = T
àr

- ■ I j- V  " ( %  ■ + (Y^)fj)+ f,T ' T
which is the same as the boundary condition (5.33).



CHAPTER SIX



61

CHAPTER SIX

The Problem of Minimum Drag on a Body with Axial Symmetry in Stokes’ Flow.

U

w

V

Figure 6.1

Consider an axially symmetric body with its axis of symmetry in the z 

direction immersed in a stream of viscous liquid in which the flow at 

infinity is of magnitude W and in the direction Oz. The liquid is 

assumed to be moving sufficiently slowly at infinity so that Stokes' 

approximation is valid and the equations of motion are

- 22. + = 0 ,
p 3x

- 1 9p + v V ^ V = 0  ,
P W

- 22. V w “ 0 ;
p 3z

and the equation of continuity is

3U + 3V + 3w = 0 .
3x 3y 3z

The problem posed is that of finding the shape of the axially symmetric 

body of either given internal volume or given surface area which provides 

the minimum resistance or drag. It is convenient to use cylindrical

(6.1)
(6.2)
(6.3)

(6.4)



62

polar coordinates, writing x ■ r cos 0 , y « r sin © with u(r,z) as 

the radial velocity. The equations of motion can then be written 

in the form.

■ i l E
p 3r

+ V / 9^u + 3^u 
 ̂9z^ 9r^

+ 1 3u 
r 9r

- u \ " 0 > (6.4)

-
P 3z

+ V r 9^w + 3^w 
 ̂3z^ 9z^

+ 1 9w\ 
r 9r /

- 0 > (6.5)

and the equation of continuity as

3 (rw) + 3 (ru) " 0 
3z 3r

The vorticity vector n is given by n 

velocity vector.

(6.6)
V X V , where V is the

 ̂3z
Using (6.7) in (6.4) gives

Ar ê Az

9 9 9
3r 90 9z
u o w

- 9w \
9r ^

(6.7)

- 1 2 2
P 9r

+ v|
[ h

- 1 2 2
P 9r

+ 1 9n
,3z

— 1 9p 
p 3r

+ V (

” 1 2 2
P 9r

+ 1'9n
3z

(n + 2 w ) + 3^u + 3  (u )'
9r 3r^ 3r r j

9r 9z r 9r

and using the equation of continuity this becomes

— 9p + v3n * 0 . (6.8)
P 3r 9z

Similarly using (6.7) in (6.5), and the equation of continuity, gives

Ji 2E ^2IL + V 2  “ 0 • (6.9)
p 9z 3r r

To minimise the drag on the body consider the minimisation of the rate 

of dissipation of energy. I, within the liquid, where
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_  { 2u2 + 2V^ + 2w| + (Wy + )2+ (V^ + w^)2+ (V^ + Uy)2jdxdydz

Subtracting from this the expression 2vJ^ dxdydz ,

which is zero when there is no variation in density, gives

I = V 

- 4v
D

V w  - V w  + w U  + w U  + U V  - U V fdx dy dz, y z  z y  z X x z x y yx i  ^

The first term is the square of the components of the vorticity function

1 A

j
Ak

9 9__ 9
9x 9y 9z
U V w

and after partial integration the second term becomes

— 4v C 9 (Vw„) - 9 (Vw ) + 9 (Uw ) - 9 (Uw )
1 3y 37 y 9x 9z
+ 9_ (UV ) - 9_(UV ) 9 dx dy dz 

ax y 9y * j
which when the divergence theorem is applied is zero as U and V are 

zero on the body and at infinity. I may therefore be written as

V n^r dz dr. (6 .10)

where S is the domain in the (z,r) plane exterior to the body and the 

problem is then the determination of C% so that I is minimised, where C 

is the curve of the body in the (r,z) plane.

w

Figure 6.2.
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r is the boundary at infinity and C2 is the line, exterior to the 

body,r = 0 .

It is assumed that the end point at -a and a are fixed. To ensure 

that the problem is not trivial an additional constraint is postulated. 

This constraint is that either the internal volume of the axially 

symmetric body or the .arc. ien^^k of the body is prescribed. If the 

shape of the body is given by

z - a , r = 0(0)

then the volume of the body is 
a

TT a^(a) da
-  OL

and the arc length is
a.

(6.11)

-CL
^1 + a'^(a) da .

The following performance criterion is now set up:

S'"
^ vrn^ + Xi (Ĵ  p^ - vn^) + X2 (JL Pg + Jl)

+ X (n - u^ + w^) + Xi| <u^ + 2  * Wg) ^ dz dr
a

f (ot,a',a)da . (6.12)
-  OL

where X%, X2 , X3 and X^ are Lagrange multipliers depending on r and z 

and contain the r contribution to the volume element rdzdr. Put

vr n ̂ + Xi (1̂ p^ - ) + X (Ip^ + vn^ + v n_)

+ X3 (n - u^ + w^ ) + Xi+ (u^ + u + ) . (6.13)

then,
CL

p  p

J - x(z,r,u,w,n,p) dz dr + f(a,a',a)da . (6.14)
 ̂S -a.

The minimisation of J is now considered. The Gelfand - Fomin theorem 

is used to find 6J, that is the variation in J caused by a variation 

in the position of the curve C% .
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6J = ’̂ 6ÏÏ
I * ■ ê " .  ■ It *-,

+ ôp X - 9 X - 3 X + 66n X - 9 X - 9 X
. P 9l Pz 97 Pr_ L  ̂ 97 \  97 %r.

\ 9 r X 6z + 6ux + 6wx +
S' j^9z u w z z

dz dr

+ 9 r x^r + 6ux + 6wx + 6px + ônX 
3? I “r "r Pr

C L

Z
dz dr

f 6a + f ,6a’ ? da , a a’ J
»  (X

where 6u, 6w, 6p and 6n , the increments in u, w, p and q are 

related to 6u, 6w, 6p and 6p by

(6.15)

6u “ 6u + 9u 6z + 2^ 6r , 6w ■ 6w + _9̂  6z + 6r , (6.16)
9z 9r 9z 9r

6p = 6p + 22 AE ) 6ri = 6p + 22 2lL •
9z 9r 9z 9r

Using Stokes' theorem in two dimensions on the second term of the right 

hand side of (6.15) gives

6J » C6u - 9 X 1+ 6w X - 9 X - 9
S' c ^  ̂ rj w 9z 9r w

+ 6p j X — 3 X — 9 X 
P 3?Pz 37 Pr

+ 6r) X - 9 X - 9 X
^ 97^2 97 ^

1

dz dr

+  J  {[X6z + 6uX + ^  + 6pX + 6pX ] dr +
PUC1UC2 '̂ z ^z ^z

+ FX6r + 6uX + ^wX + 67^ + 67^
Pr "r

f 6a + f , 6a’ a a do.

z
dz

(6.17)

PQ = 6a (o)

Figure 6.3
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On Cl 6r ■ 6a(cf) , 6z " 6a and 6a ■ 0. u and w are zero 

on the body at all times and so 6u and 6w are also zero.

Hence, using (6.16)

6u * - 9u 6a
9ÔT

, 6w «• - 9w. &G
9a

Integrating 6a* by parts gives
a

6oĉ  fg,da ,

the total integral over €% may be written as

— u 6aX — w 6aX + 6 ^  + 6nXa u a w  p nz z z z

(6.18)

(6.19)
-a -a da

and the first term disappears since 6a is zero at -a and a. So

da

- f 6a + 6adf_, + X6a - u 6aX - w 6aX + 6 ^  + 6tiXa a u  a w  p nda r r ^r 'r(6.20)
da

On C2, which is the line r = 0, dr and 6r are zero and the condition, 

u * 0 must be satisfied so 6u is zero. The contribution to 6J from 

the integration along C2 becomes

- Ç 6uX + 6wX + (Ŝ X + ^nX 7 dz . (6.21)
C2 I “r Pr ^r j

On r, which lies at infinity, the conditions are u « 0, w = W, hence 
6u and 6w are zero and at infinity 6r and 6z may be taken to be zero 

so the integration along F becomes

6 pX + 6n X
Pz

dr - 6pX + 6t) X 
Pr "r

'dz (6.22)
Using (6.19) to (6.22) 6J may be written as

6J
S'*

6u 6w w - 9 X - 9 X 
9z ̂ z 9r ̂ r

X - 9 X - 9 X
P 37 Pz 3? Pr

+ 6p
Cl

+
-a

+ (- fa + “ X

+ 6n

f Ç - 6af(u X + w X ) da L a a w_'
df 
dP

X - 9 X - 9 X
P 37 Pz W ^ r

dz dr

+ 6p X da *- X da + 6n
- Pz Pr .

X da - X da 
L Pz Pr
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C2
Ç 6ÎD( + ôwX + 6pX + 5 ^  7
i Pr ^r 3

dz

6p dr - X dz

a minimum:

X — 9 X — 9 X
" 97 ̂z 9r '̂ r

X - 9 X - 9 X
inr^Tz 37 "r

X - 9 X - 9 X 
P ^  Pz 9? Pr

X - 9 X - 9 X
% 27^7 97 \
u X + w X a u  a wz ZJ

X da - X dj'
Pz Pr

- 0 

- 0 

- 0

0

%n 4* - *n
u

w

X dr — X dz

X_ dr X^ dz « 0

+ 6ri X dr - X dz ? . (6 .23)
J

s minimised when 6J is zero and so for

> (z,r) e S , (6 ,24)

> (z,r) € S , (6 .25)

> (z,r) € S , (6 .26)

(z,r) € S , (6 .27)

- w X + f - d f 1 Ida - 0 , (z,r)ur a w^ a ^  a J
» (z,r) € C^, (6 .29)

> (z,r) € Cl, (6 .30)

> (z,r) € C:2» (6 .31)

> (z,r) e Cr̂ , (6 .32)

» (z,r) e C&, (6 .33)

> (z,r) € Cĝ , (6 .34)

» Cz,r) € r , (6 .35)

y (z,r) € r  . (6 .36)

Substituting for X from (6.13) become:

0 , (z,r) e S ,

, (z,r) € S ,

, (z,r) € S ,

0 , (z,r) € S ,

9X3 - &
9z 9r r
9Xxi + 9X3 " 0  
9z 9r
9X2 + 9X% “ 0 
9z 9r
2vm + X3. + v/9Xi - 9X2 + X2 ^

9z 9r r
[-X3u^ + Xi+ŵ  ] a* (a) + - Xi+û  - X3

(6.37)

(6.38)

(6.39)

(6.40)

0, (z,r)e Cl ,
da

(6.41)
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where da has been replaced by dado and the equation has been divided
da

through by da ;

Xjdr - X, dz » 0 , (z,r) € r , (6 .42)

X. dr — X 1 2 dz ■ 0 , (z,r) € Cl . r , (6 .43)

- 0 » Cz,r) € (6 .44)

= 0 . (z,r) e *=2 * (6 .45)

= 0 , (z,r) € "2 • (6 .46)

« 0 » Cz,r) € "2 ' (6 .47)

One method of resolving the above problem is as follows. The known

stream function rp, where ^ is defined, from (6.6), by

9r
- wr , ^

dz
ur

and vorticity function n for the flow past a sphere can be used to 

calculate u^, w^, and X^ . (The methods for these calculations are 

the same as those used in Chapter 7 for different values of \jj and ^ 

(7.21) to (7.31) .) When these are substituted into the transversality 

condition (6.41) the resulting differential equation a(a) could be 

solved numerically and the subsequent value for a(a) used as the initial 

value in the next step on an iteration method. This has not been 

successfully pursued.
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CHAPTER SEVEN

A Study near the Leading Point of the Shape of the Axially Symmetric 

Body of Minimum Drag in Stokes* Flow.

The equations of the system are:

1 22 ” = 0 ,
p 9r 9z

(7.1)

1 9p + v9q + vn = 0 , 
P 9z 9r r

(7.2)

h- 9u + 9w = 0 , 
9z 9r

(7.3)

9u + u + 9w = 0 . (7.4)
9r r 9z

The elimination of p from (7.1) and (7.2) leads to

9̂ ri + 9^n + 9_\ = 0
9r ^r /

(7.5)
9z

It can be seen from (7.4) that the Stokes' stream function, can 

be defined by

wr - ^
9r

ur
9z

(7.6)

and so equation (7.3) can be written as

(7.7)
r 9z“̂ r 9r^ r^9r 

Consider first the leading point of the body, z = -a, r = 0.

A(-a,0)

Figure 7.1
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It will be assumed that in the neighbourhood of z = - a, r = 0  

the body has a conical shape with a semi-angle 0^ The coordinates 

are transformed with

z + a = R cos 6 , r = R sin 0 . (7.8)

so equation (7.7) becomes

n = 1 Ç + 1 d̂ lb - cot 0 9 , (7.9)
Rsin 0 ^ SR^ R^90^ r 30 J

and equation (7.5) becomes

9^n + 1 3n + 1 d̂ T] + ̂ sin 0 9 + cos 0 9 ^  p = 0 .(7.10)
9F" R 9R R^ 90^ 9R R 90 Rsin 0

The flow in the conical region must satisfy

rp = 0 for 0 = 7T ; (7.11)

W

w.0
ip=0, 9^=0, 0=0 

90 (

Figure 7.2

and in addition since the radial and transverse components of velocity are

^R “ 1 9 tp
R^sin 0 90 0 Rsin 0 90

it follows that the viscous conditions 

= 0 , Wq = 0 on 0 = 0Q

lead to

^  = 0 , 0 = 0 ,
90

(7.12)
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where 0 ** 0^ is the angle of the conical body near A. Solutions for 

(7.9) and (7.10) must now be determined, satisfying conditions (7.11) 

and (7.12) for sufficiently small R.

A solution for n of (7.10) is sought which depends on 0 only, and 
for small R the function r\ ■ h (0) will satisfy

d^n + cot 0 dn - ncosec ^ 0  * 0 ,
dê? ÏÏ0
d Ç dh +
d0 I d0

n cot 0 ? « 0 ,

dn + n cot 0 = - C , 
d0
d Ç n sin 0 ? = - C sin 0 ,
d0 L
n (0) - C cos 0 + D , (7.13)

sin 0
where C and D are arbitrary constants. It is clear from (7.9) and (7.13) 

that ip will be of the form

\p - R3f(0)

and f(0) will satisfy

d^f - cot 0 df + 6 f « C cos 0 + D . (7.14)
d02" d0

A particular integral for f is % C cos 0 + iD. To find the

complementary function put f(0) * sin 0 F (0), then (7.14) becomes

F"(0) + cot 0 F ’ (0) + F (0) Ç 6 - 1 9 "  0.
C sTn^ 0* J

This is the differential equation satisfied by the Associated Legendre 

polynomial (cos 0), hence

F(0) ■ 3 sin 0 cos 0

f(0) “ 3 siif 0 cos 0

the second solution possessing a log singularity at 0 =iT . The 

complete solution for (7.14) is thus
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f (0) " g ^ C C08 0 + D ̂  + A sin^ 0 cos 0 ,

where A is an arbitrary constant. therefore may be written as

^ " R.3 ^ \ [ C cos 0 + D ] + A sinf 0 cos 0 ^ .

To satisfy ip " 0 on 0 - "T D must equal C so

^ " RS ^ 6 C (1 + cos 0) + A sin? 0 cos 0 J 

For ^ to satisfy conditions (7.12)

i C (1 + cos 0 ) + A sin? 0 cos 0 * 00 0 0

i C (1 - sin 0 ) + A(-sin^ 0 + 2  cps^ 0 sin 0 ) = 00 0 0 0

and these conditions imply that 

(1 + cos 0 )(- sin? 0 + 2  cos% 0 sin 0 ) + cos © sin? 0 * 0  ,0 O 0 0 0 0

sin 0 (1 + cos 0 ) f - sin? 0 + 2  cos^ 0 + cos 0 (1 - cos 0 ) ? * 0,0 0  ̂ 0 O 0 O ' ^

sin 0 (1 + cos 0 ) ? 2cos^ 0 + cos 0 - 1 ? = 0 ,o o c o n J

sin 0 (1 + cos 0 )(2cos 0 - 1)(cos 0 + 1) * 00 0 0 0

The solutions sin 0^ * 0 and cos 0^ * -1 are clearly not acceptable

and the required solution is

cos 0Q * & , or 0Q = tt/3 .

Thus the cone at A has a semi-vertical angle of 60°. This agrees with 

a result of Sir James Lighthill quoted, without reference, by Pironneau^. 

Using this value for E^in conditions (7.12) gives a value for A of - fC, 

hence

if; * i CR^ ^ (1 + cos 0) - 4 sin? 0 cos 0 j ,

* iCR^ (1 + COS 0)  ̂ 1 - 4  cos 0(1 - cos 0) ]

* i Cr3 (1 + cos 0) (1 - 2cos 0)^ , tt/3 ^ 0 ^ iT . (7.15)

As C is equal to D from (7.13) p may be written as
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p “ C 1 + cos 0 , tt/3 ^ 0 ^ it . (7.16)
sin 0

and it is noted that p 0 as 0 tt .

A similar study will now be made of the Lagrange multipliers near the 

leading point. The equations governing the Lagrange multipliers are

(6.37) to (6.40), namely,

3X3 “ 3X(* + Xĵ  * 0 , (7.17)
3z 3r r
X̂It + 3X3 - 0 , (7.18)
3z 3r
lAz + " 0 , (7.19)
9z 3r
2vrp + X3 + 9Xi - 9X2 + " 0 . (7.20)

9z 9r r
It will now be established that for the present problem Xj " 0 ,

X2 * 0. In the first place it is noted that when X% and X2 vanish 

equation (7.20) gives

X3 * - 2 vrp . (7.21)

Eliminating Xi* between equations (7.17) and (7.18) gives

3^X3 + 9^X3- 1 0X q - 0 (7.22)
95? 9̂  F  9ir

and when -2vrp is substituted for X3 in (7.22) the resulting equation 

is

9^p + 9^p + 1 9p - p * 0
952 ^  7  9? 72

which is exactly the same equation in p as that found from the state 

equations [(7.5)] . This proves (7.21) coupled with X% * 0,

X2 “ 0 is a consistent solution. Since X % and X2 are zero on the 

boundaries, [equations (6.42), (6.43), (6.46), (6.47)] , this solution 

is also consistent with the boundary conditions. When X 3 * - 2vrp , 

equation (7.20) becomes

9X \ — 9X 2 + 2l2 ** 0 •
9z 9r r
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In order to establish the uniqueness of the solution for X3 consider

9X2 + 2 ^  . 0 ,
3z 3r
3 X % — 3X2+ Xg= 0 .
3z 3r r

From the first may be written

3m
3z

— 3m 
3?

and substituting these into the second gives

9^m + 3^m - ^  ̂  = 0
3z^ 3r"̂  r 3r

(7.23)

(7.24)

Since Xj and X2 are zero on the boundaries, m is a constant on the 

boundaries and this constant may be taken to be zero without any loss 

of generality to the value of m.

^  ̂ D is the domain

exterior to the body S.

E is the boundary of D.

m=0

Ir
Figure 7.3

If R, ^  and 2  continuous functions defined in Eg with 

R = 0 V Y , then

^ [ R d Z  
E

so J  I I  0 V2 2  + (V 0 V 2)]dx dy dz = I  I  0 d î :

J I I  div R dx dy dz =
D

D 3n

D
0 9^2 + 0^Y^ + 0^Y^ + 0^Y^ J dx dy dz = 0 22 dJ:.

3n
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Putting ^  = 2  this becomes

J  J  J  Ç 09^0 + 0 2 + 0 2  + 02 ? dx dy dz - r  J  0 30 dE.D I _  _  _x _y -z J E ”  at

Since this is true for any functions, ^  , in Eg m satisfies

J  J  J  f  niV2ni + n\2 + m2 + m2 ? dx dy dz - I  Jm 3m dE. (7.25)D X y z J I dn

The right hand side of (7.25) is zero since m is zero on the boundaries.

When the left hand side is transformed to cylindrical polar coordinates

(7.25) may be written as
f f
J J r m(m + Im + m ) + m2 + mf ?r dz dr = 0 S c  rr — r zz r zo

and using (7.24) this becomes 

J + mf + m2 ^r dz dr " 0

Jgl ̂  i  + m2 dz dr - 0.

From this it can be seen that

n̂ = 0  , m ^ = 0 ,

which means that m is a constant and since m is zero on the boundaries 

m = 0 everywhere. From (7.23)%i and X2 are zero everywhere and so

X3 = -2vrri is the unique solution for X3 .

From (7.16) it is known that near the leading point

n " C(l+cos 0) » C Ç [(z+a)2 + r2 + (z+a)
sin 0 C r

and so writing z ■ z + a the value for X3 near the leading point is given

by

X 3 " - 2vC [ z + (z2 + ] . (7.26)

The value for \  near the leading point may now be found using equations 

(7.17) and (7.18). From (7.18) it can be seen that

3X+!, = 2vC r z + (z2 + r2)‘̂*1 ,
3z 3r
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* 2vCr ,

Xi* - 2vCr log l̂ z + (*2 + r2)* ] + h(r) ,

where h(r) is an arbitrary function of r . From (7.17)

3X3" 3__^2vCr log z + (z^ + r2)%J + h(r) ̂  - 2vC log [* + (*^ + r^)^]-h(r)

3X3 = 2vCr2 + h'(r) - h(r), (7.27)
3z (z^ + r̂ )'* [ z + (z^ + r̂ )*̂ ] r
and since, from (7.26),

3X3“ - 2vC Ç 1 + * 2
37 I "(P“— 2)'- 6
(7.27) may be written as

h*(r) - h(r) + 2vCÇ r2 + (z2+r2)*^ [ z + (z2+f2yt] + z(z2+r2)^ ? - 0
r c (z2+r^y^ [z + (z2+r2)(<î  j

h*(r) - h(r) + 2vC Ç 2(z2+r2)% [ z + (z2+ r2)^] 7 = 0
r I (z^+r^)'^ [ z + (z^+r^yt] j

h'(r) - h(r) + 4 vC = 0  
r

h(r) = - 4vCr log r 

and so

Xi+ ■ 2vCr log ^ z + (z2 + r2)^ ^  . (7.28)

The shape of the body, a (a), near the leading point may be found 

from the transversality condition, that is equation (6.41):

a* (a)  ̂- X3U^ + Xitŵ -J - ^X^u^ + + vrif + - df^i - 0

(z,r) 6 Cl .

To find the solution for a (a) the values of X 3, X4, u^, and n 

must be known as functions of r and z. Values for X3,X4 and n 

have already been determined in the neighbourhood of the end point 

and values for u^ and w^ will now be found so that the shape of 

the body near the end point may be investigated.
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The stream function ip in the neighbourhood of the leading point is 

known, [ (7,15)] , to be

Tp = ^ (1 + cos 0) - 4 sin2 0 cos 0 J

and u and w are related to \p by (7.6), that is

wr * - » ur =
3r 3«

Since Rcos 0 = z + a = * and Rsin 0 ■ r

« C r %2 + r^l^^ Ç 1 + « - 4r2* 76  ̂ i W  + r̂ŷ- V  + r2)(*2 + J
= C («2 + r2) Ç (*2 + r2)^ + z - 4r2z 7 , (7.29)
6 ^ z2 + J

22 = Cr S (*^ + r2)^ + z - 4r2g 9+ c (z2 + r2)(~ r - 8rz + 8r^z 7 
3r 3 C z2 + r2 \ 6 / (z^+r^)*^ z^+r^ (z^+r^) ‘̂J
so w = - C 7(z2 + r2)^ + z - 4r2z 7 ” c (z2+r%)Ç 1 - 8z + 8r2*

3 C z^ + ) 6 7 (z^+r^y^ 72+72 (z^+r2)z
“ - C S 3(z 2 + r2)'̂  - 6z ?

"S’ <- J
3w “ - C Ç 3r
37 6 I

and,since w = 3w I ,Ot -r—  / N3r 'r ; g(cr)

w " - C Ç _____ 3a(g)______  7 • (7.30)
6 I I(a+a)^ +o2(a)]* j 

3 ip ■ Cz ( (z2 + r2)"̂  + z - 4r2g ? + C(z2+r2) Ç z + 1 - 4r2 + 8r2g2
3z 3 c z^ + r2 j 6 [ (z^+r^)^ z^+r^ (z^+r^)

so u = Cz Ç (*2 + r2)* + z - 4r2g 9 + ^ Ç *(*^ + r2)* + (g2 + r2) - 4r2+8r2g
3r c 72+72* j 6r ^ z^+r^

“ C Ç z(z2+r2)^ + g2 _ f2 
2 ^ r

3u " - C Ç z(z2+r2)*^ + z2 - r2 7+ C Ç zr - 2
W  2 I ----- 72------------- j 2 I T*^+72y^ r

= - C Ç z(z2+r2) + z2 - r2 zr^ + 2r2
272" [ T7^T72yr

" - C Ç z2 + r2 + z (z2 + r2 - r2)
2r2 ^ 772+72")%

= — C Ç z2 + r2 + 7
2r% I (z2+r2)%

Since u * 3u 1
^ 3r r=a(o)z=o
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u = - C S [(c + a) 2 + a2(a) ] + (a+a)̂  ?. (7.31)
® 2â (o) [(a+a)2+ j

The values for and n near the leading point are:

X3** - 2v C [ (*2 + r2)^ + z ]

= - 2vC [[ (o + a)2 + a2(a) + (o + a) ] ;

Xî - 2vCr log ̂  z + (z2 + r2)̂  ^

■ 2vCa(o) log Ç (a + a ) + [(a + a)2 + q2(a)
I 72775

n " c (l + cos e) 
s in 0

* ^  [* + (z2 + r2)S]

C r (o + a ) + r (o + a) 2 + a2(a) 1
"lûCTT  ̂ J

The postulated constraint on the system will be taken to be that of 
constant ctrc len̂ l'K and so f(a(g),a*(o), a) in this case is

f (o(o), a*(o), o) " p [1 + a*2(o) ,

where y is a constant. In this case

The transversality condition may now be written down as

y g"(g) + a*(g)j vç2
[l+a *2 (0)]^ 2 02777

[̂ (g+a)2 +a2(g)J + (g+a)3 + (g+a) [ (g+a)2+ a2(a)]

+ (g+a)^
t(g+a)*̂  + a‘̂(g)]^

+ vC2g2 (0) logÇ (g+a) + [(g+a) 2 + g2 (0)]*̂
[(g+a)*̂  + â (g)]'̂  c â (g)

- vç2 Ç (g+a)2 + g2(g) + (g+a)̂  7 logT (d+a) + [(g+a)2 +g2(0)]\|
a(g) 2 [(g+a)2 + a2(g)]% j \ ô (g) j

+ vC2q(g%([ [(g+ a)2 + g2 (g) ]% + (0+a)
 ̂ [(g+a)2 + g2(o7]%

- vÇ2 Ç 2(g+a)2 + g2(g) + 2 [(g+a)2 + g2(g) (g+a) ? ■ 0, (7.32)
777) I 3

which simplifies to
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y g" (g) + vC^Ç g* (g)g^(g) - (g+a? - [ (g+a) 2 + q^(g) 2 ^
[l+a * 2 (g)]̂/i ^ g (g) [(g+a)^ + af(g)]%

X log 3 (c+a) + [(g+a)2 + g2(g)
72775

+ vÇ2
[7g+a)z +gZ(g)]%

(g+a) + L(g+a)2 + g2(g)]% o'(g)
72777

- 2(g+a) [ (g+a)2 + g2(a)
“7775

+ a (g) (g+a) ?  * 0.

[(g+a) 2+ g2(a)]^-

+ (g+a)3

(7.32)

The solution for a(g) from (7.32) gives the shape,near the leading point, 

of the body of minimum drag. It is likely that this equation can 

be resolved numerically but this has not been pursued and instead a 

method to obtain an approximate solution for a(g) has been studied 

as follows.

It has already been shown that at the leading point there is a semi­

vertical angle of 60®, that is a*(u) - /3 at the point (-a,0) and so

a(g) = V3 (<T+a). The substitution (g+a) = a(g) is made in equation
/3

(7.32) to get an approximate form of the transversality condition, namely:

y a"(a) + /J vC2g(g)^ [/J - g*(g)] log
1 T O ^ 7 7 5 F  2 I

VJg(o) + 3a^ (g) -73 0.

(7.33)

An iteration method is now used taking the known value of a*(g) at the 

leading point, that is a\a) = /3 , as the initial value for g*(g). 

Equation (7.33) then becomes;

y g"(g) + V3vC2g(â) . 2 /3 - 0
[1 + 3]% 2
et" (g) + 24 vC2g(g) ■ 0. (7.34)

Let 24vÇ2 = m2  ̂ then the Solution to (7.34) is 
y

a (g) = A cos m (g+a) + Bsin m (g+a)
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a(cr) tends to zero as o tends to - a therefore A * 0 and 

a(a) - B sin m (o+a). 

a* (a) ** m B cos (o+a) 

a *(a) = V? at a ■ - a , so

= m B

a (a) “ y? sin m (o+a). 
m

The symmetry condition a*(0) ■ 0 can be satisfied by an appropriate 

choice of m as follows:

à*(a) « 0 at o = 0, so

cos m a = 0,

ma " JT .
2

a(o) * 2/3 a sin (o+a) . (7.35)
TT 2a

This value for a (a) gives an approximation to the shape of minimum 

drag between <r “ - a and a " 0.
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CHAPTER EIGHT

Singularity Solutions of the Stream Function and Lagrange Multipliers.

The governing equations df the system are

1 9p — v9ti “ 0 
p" 9r Tz

1 22 u9n + vj]_ " 0 
p" 9z 9r r
h - 9u + 9w " 0 

9z 9r
9u + u + 9w ■ 0
9r r 9z
9X3 “ 9Xtf + X4 “ 0 
9z 9r r
9X4 + 9X3 " 0
9z 9r
X3 - 2vrn = 0

Eliminating p between (8.1) and (8.2) gives

+ 1 9n - n * 0
9i^ 7  9? 'P

Substituting (8.7) in (8.5) gives

9__(X4)«]^2_('“ 2 vrri )
9r r r 9z

and using (8.1) this becomes

9 ( X4 ) " - 2 9p •
9r r p 9r

Substituting (8.7) in (8.6) gives

9X4 » 2 v9 (m)
9z 9r

and using (8.2) this may be written as

9X4 = - 9__( 2rp )
9z 9z p4

Therefore

(8.1)
(8.2)
(8.3)

(8.4)

(8.5)

(8.6)
(8.7)

(8.8)

2_ ( X 4 _  + 2 £ ^ « 0  , 9__^X4 + 2rp ^
9r 9z
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hence ^  = A .
r p

where A is an arbitrary constant.

If a function X is introduced such that

ax
3r

then (8.8) becomes

araP 
that is

0a^x + a3x + 2  a^x - i ax
aV^ r dr^ r^ar

a^x + a^x + ax 1= o
az^ 3r^ r ar j

therefore a^X + 9^X + ^  = 0.
az^ 3r^ r ar

is a Ç 
ar I

(8.9)

(8.10)

(8 .11)

This is Laplace’s Equation in cylindrical coordinates and it has a 

basic solution

X “ , 5% = (z-C)2 + r%
w

corresponding to a source singularity at (C,0).

(8 .12)

(z,r)

/\
\

OA ■ Z

Figure 8.1

From (8.12) it follows that a more general solution for X can be 

constructed by distributing source singularities along the z-axis
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from the leading point of the body (chosen to be the origin) to the tail 

of the body (z - Z) this solution being of the form
I.

X(z,r) a(C)dç 

«
a(C)dC

+ (z-C)^
(8.13)

where a(Ç) is an unknown source density and is a function of Ç only. 

It now follows from (8.10) and (8.13) that the vorticity j\ is

given in terms of a by the equation

n - a(s) 3_ , 1  \dC
0 3r *■ S ■'

(8.14)

The singularities 3 / 1 \ are dipoles pointing in the r direction.
3r

Next the expression for the pressure p in terms of a is considered. 

Equation (8.1) together with solution (8.14) gives
V

1 2 2  “  V J  a(Ç) 32 , (8.15)
P 9r o
and from (8.2)

JL - 2  Ê_P 3z r 3r ^
■ - V

" - 2
r I

3z3r  ̂55 ^

a ( Ç ) l _ . l ) d ç ]
3r ("w /

a(C) 3 Cr 3 ,1 v ? dÇ
3r Z 3r ' w / j

a(C) S r 32 + 3 9,1. dÇ
I IP- 3?J^â)

- V a(S)
0 L 3r^ r 3r

and since 1 satisfies Laplace’s equation

1 ^  
P 3z

a(S) 32 .1 . dE
3l2(â )

(8.16)

It can be deduced from (8.15) and (8.16) that, apart from an arbitrary 
constant, ^

a(G) 3 rl^d^ . (8.17)
) 3z w£P

It now follows from (8.7) and (8.14) that
Zn

3̂ - 2vr a(S) 3 , 1 ̂
3F

dC (8.18)
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and from (8.9) that
I

X4 " Ar - 2vr (8.19)

It is now necessary to deduce from (8.14) the stream function t|; . 

It has already been seen that equation (8.4) gives

ru - 9i|; 
9z

rw " - ^  
9r

so that from (8.3)

9z^ 9r2 r 9r
Putting iff 

then

rY

n = 92y + 92? + ^  9Y - 1 Y
9z2 T P  r 9r r2

and writing

Y « 9@
9r

together with (8.10) gives

9r 
so that

93$ + 93$ + 1 92$ - 1 9$ 
TPTr 9r' 7  aP" F  97

(8.20).

(8.21)
(8.22)

(8.23)

(8.24)

(8.25)

X « 92$ + 92$ + 1̂ 9$ = v2$ , (8.26)
9z2 9r2 r 9r

where v2is the three dimensional Laplacian. A solution must now be

found for $ from

V2$ a(S)dC , 5)2 " (z-S)2 + r2 (8.27)
0 w 

Consider the function
Z.

$ a(Ç)dÇÇau) + glog w + y_ ?
 ̂ Q

dC

where a, 6, Y are constants; it is easily shown that

V2w

V2logw
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V2 ^  - 0
w

Thus the particular solution for $ from (8.27) corresponds

a = " 0, Y * * 0  and hence
In

$1 w a(C)d€ (8.28)

and to this particular solution a complementary function of the form 
I

b(C) dC 
0 w

(8.29)

can be added,where b(Ç) is an arbitrary function of K , since 7^$

vanishes. This gives a solution for $ of the form
Zn Zn

$ w a(Ç)dÇ. +
'"b

b(C) dK 
0 w

(8.30)

The function Y defined in (8.24) is then
Zo Zn

I

a(E) 92 dC + 
9r

r a(€) dC +

Y - I afP'» 92 dg + b(Ç) ^  . dÇ
9r

b(C) 9 .l.dE
0

and the stream function Y in (8.22) becomes
Zp Ir

Y - i r- a(C)dC + r
w

b(C) 3 ,l\dC
9r '2 ■

(8.31)

(8.32)

In (8.32) a(C) and b(Ç) are two arbitrary functions of the former 

having entered originally in (8.13).

The complete stream function can now be constructed. Corresponding 

to the uniform stream at infinity

w " Wg = W .

there is a stream function Y^ such that

^  " 0 
9z

hence

9Yp» -rW 
9r

- ir^w . (? .33)

Thus the total stream function Y* will be
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- & r2 W + Y , 03.34)

where Y is given in (8.32). For large values of r the first integral

in (8.32) gives Y“ C^r where is a constant and thus the conditions

at infinity, namely u tends to zero and w tends to W will be satisfied 

by Y*.

The boundary conditions on the surface of the body are that the total 

velocity is zero, in other words

u “ 0 , w = 0 , on the body, (8,35)

and in terms of the stream function Y* this can be written as

Y* - 0, 9Y* " 0, on the body ,
9n

(8.36)

where n is the normal derivative. Alternatively the boundary 

conditions may be used in the more convenient form

Y* “ 0 , 9Y* “ 0 , on the body ,
9r

and using (8.34) it follows that 

Y “ i Wr^ , on the body r * a (a) ,

(8.37)

(8.38)

9r
Wr , on the body r = a(a) .

(8.32) may be written in the form
I I

Y - i r2 a(S) df - r% f Mç)dÇ
 ̂ US J0

hence (8.38) becomes 
I

\ a (g) de b (E) dE 
^  (a) +

Likewise

9Y = r 
9r

(8.39)

(8.40)

iW .(8.41)

a (C) / 1 - \ dS - r b(Ç)Ç 2 - 3r^ 1 dC ̂ w   ̂ 0 j
and thus (8.39) becomes
In

I&q^(o) + (o-C)2] a(ç)dç - [2(g-S)2- g2(g)| b(Ç) dÇ " W .(8.42)
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Equations (8.41) and (8.42) provide two coupled integral equations 

between the unknowns a(o), a(Ç) and b(C) and the third relation 

between these three functions is the transversality condition, namely,

pa” (a) + a ’(a)[ X3U - Xt+w ] +fXi*u + Xgw ~\ - vrq2 = 0 ,
[ T +  a'2(o)y^^ L a  aj [ a aj

on r * a(a) . (8.43)

A certain degree of simplification can be effected in (8.42) because 

when W is eliminated on the right hand side of (8.41) and (8.42)

this gives
Z 0

|g2(g) + &(o-C)2 - ^q2(g) - &(o-€)2 a(Ç)dÇ
0 ^

Zn
( q - ^ ) 2  -  ][a2(g) -  ( g - % ) 2  -  q 2 ( g )  b(Ç)dÇ «  0

25
0

hence
Zn \
- i q2(g) a(G)d% + iq2&r) b(S)dS ■ 0

2^ 0 2^
Since a(a) ^ 0 it follows that
In I

b(Ç)_d£ - 0 . (8.44)
0

a(C)d€ - 6 [30 2'
This equation can replace (8.42) and (8.41) can be written in the form
Z n In

a(C)dC - 2 b(C)dC - W , fe.45)
° 2 ° 23

where in (8.44) and (8.45)

2^ * â (<r) + (a-Ç)^ . (8.46)

The resolution of the solution by this method of distributed 

singularities has not been completed analytically due to the complexity 

of the problem (although it is possible that the methods described by 

Landweber^^ and Hodking^5 can be used in getting approximate solutions) 

but it is likely that the problem from this point onwards can be resolved 

numerically.
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SUMMARY

In this thesis the variation of a functional defined on a variable 

domain has been studied and applied to the problem of finding the 

optimum shape of the domain in which some performance criterion 

has an extremum. The method most frequently used is one due to 

Gelfand and Fomin. It is applied to problems governed by first and 

second order partial differential equations, unsteady one 

diffieiisionsal gas movements and the problem of minimum drag on a 

body with axial symmetry in Stokes’ flow.


