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Summa,
The standard synthesis techniques are limited in that they cannot
deal effectively with either parasitic elements or constraints and in
that the range of networks they can adequately synthesise is limited.

The computer makes it practical to use methods of directed trial and

~error which do not have these limitations, such as network evolution.

Network evolution is a process by which changes occur in both the
network topology and in the values of the network elements in such a
way as to drive an objective function (some measure of the error
between current and required response) to ever lower values and
ultimately solution. In this case the error arises from the matching
of the current set of coefficients of the network polynomials with their
respective required values. This comparison produces a set of non-
linear equations which on solution give a suitable network topology
and element values. These non-linear equations require optimisation
techniques for their solution.

It is shown that network evolution by coefficient matching is
feasible in processes which primarily work either by network growth
or by netw;rk reduction. The process of network growth works by
taking a primitive starting network having the correct network poly-
nomial structure and eliminatirg and growing elements at the appropriate
state of development until a saﬁisfactory solution is obtained.

The method of analysis used, in addition to being both accurate and
rapid, also gives the sensitivity of the coe?ficients with respect
to virtual zero-valued elements. Use of this information enables a

suitable choice of type, place in network and value of element to grow.



.

The network: reduction process takes initially a network which produces
the required network polynomials, but with redundant common factors,
and pares away the excess elements by making them open or short
circuit, simultaneously removing excess common factors, until a
suitable network is obtained.

Suggestions are made on ways of improving the evolutionary process

and increasing its scope.
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Preface

The work described in this thesis is an extensioh.of ideas put
foiward in the author's Master's thesis entitled 'An Investigatioh
into the Uses of Coefficient Matching in Network Synthesis'.

When the author commenced research for a sabbatical year at
the University of Leicester, programs employing coefficient matching
using optimisation for the network synthesis for specific networks,
were well established. In collaboration with Dr. O.FP.D. Cutteridge
the author was responsible ‘for the development of a general analysis
method which was much more rapid and accurate than the methods
then used.

.The analysis method developed also gave the sengsitivity of the
coefficients of the network polynomials with respect to zero-valued
netwofk elements. The idea was conceived that this information
together with the network synthesis programs already developed would
provide a means of producing changes in the topology of a network in
addition to changes in the values of its elements, that is, network
evolution. The subsequeht study of the feasibility of these ideas
is the subject of this thesis. The author carried out the research
described, on é part-time basis, in very close collaboration with
the group working under Dr. O.P.D. Cutteridge at the\University'of
Leicester. The author had many exchanges of ideas ﬁith Dr. Cutteridge
who guided this research. The author also had many interesting
discussiong with Dr. D.J. Wright and Mr. A.J. Krzeczkowski of the
group at Leicester about network evolution. The results described
in this thesis represent the first step; network evolution using
coefficient matching is feasible under certain circumstances.

The author hopes to continue the collaboration with Dr. Cutteridge
and the group at the University of Leicester in the development of

_this interesting subject.



INTRODUCTION

The furdamental problem in electrical network synthesis,
given a specification for the rnetwork to fulfil, is obtaining
the 'best’ ne;:w;:_r}_c configuration ard element values which fill
the specification, Defining the 'best' network deperds upon
the requirements which the network is to fulfilg it could be the
network containming the fewest elements, the cheapadst network or
the network with the lowest sensitivity,

The classical synthesis ‘t‘,ecl'm:lques6 for two terminal networks,
such as the Foster for two element kinds or the Erune for Lm
networks, are successful in producing canornical networks but,
when mutual inductance is excluded, then methods such as the
Bott~Duffin have to be used; thess produce.many more elements than
the carormical forms, Standard synthesis methods6, such as
Darlington,- are successful when applied to four terminal networks,
In practice, netw‘orks have three termipals (with a common grourd - '
terminal to input ard output) and exclude mutual inductance, this
produces the same sort of difficulties as with two termimal networks,
Furthermore all the stardard synthesis techniques use seriese
) parallel decbmpositioh and for“this reason cannot synthésise
networks which are only capable of realisation by non-series-
parallel configuraAtionsm. These techriques, in addition to
these 1imitations of realisation, take ro account of constraints
on the range of element values ard/or ratios or of the parasitics
across their ideal elements, Nevertheless, within these severe

limitations the classical synthesis techriques or their derivatives



do, very often, produce networks which satisfactorily fulfil the
specifications,

The introduction of integrated circuits ard the requirements
~ for ever more demarcing specifications provide the need for synthesis
methods which surmount some of the irherent 1limitations of the
standard techniqu'e;. These new techrﬂ.ques rust have greater
flexibility so as to allow fo‘r the effects of constraints armd
porasitices being directly ihciﬁded‘in the process of synthesis,
The need also exists for tecﬁxﬁqﬁes which can synthesise these
networks, such as equalisers, which are not capable of simple
design by the starmdard f,echniques.

One such new techrique is that of network evolution by
c;)efficierrt matching, By an evolutlonary approach to linear
network synthésis is meant the technigue whereby suitable changes
in the topology of a network are made to occur in addition to
beneficial variations-in the values of the network elements,

The general ‘direction of the whole process is determined by
the need to reduce a suitable error function (measuring the
departure of the characteri.stics currently achieved from those
finally desired) to ever lower values, Rardom selection of the
‘required topqlogy is impractiéaple, since the rnumber of alterna-
tive structures rises factorially with the mmber of nodes,
Although this _idea, or its rudiments, has avpeared on a rumber
of occé.siqns in the literature'56'57’ 35 yery 1ittle in the way of
c.oncrete achievements appears to have been published until
recen&!yg’ 5 62, 5, _- ' |

A method of directed trial amd error is made possiole in the

field of network synthesis by the capacity of the f:omputer to



perform many calculations rapldly ard at low cost, Directed trial

ard error is often used ﬁth success, by engineers in simpler site
vations, Coefficient matching developed by Calahanl froam an idea
by Orchard is one such synthesis technique. In this met}.':od the
coefficients o.;(‘ the mt@rk rolyromials are derived from the current
set of component values ard compared with the correspording
céefficients of the required _set of netwbrk. polynomials, Using
the results of this'comparison a set of rnon~linear similtaneous
equations are formed, The solution of this set ~of equations, if
achieved, will give a set of component values and a network topology
which will generate the required network polynomials., . In this
thesis, the set of network polynomials is that representing the
admittance paraméters; the coefficients and their derivatives are
derived via the nmodal admittance matﬁx from the network elerments,

The solution of the set of ron-linear simultaneous equations

arising from the teclf;hique of matching coefficients nscessitates
the use of optimisation theorySo . Since the problem is a reducfion
of an objective function co.nsisting of a sum of squares ard the
derivatives of the woefficients are readily avallable, only some

of the gamut of various techniques available are pertinent,
o A1l the methuds which canbe used to solve the set of non-
linear equations require many iterations. As the values of the
network elements are altered from iteration to jteration, the
coefﬁcient of the network polynSmials ard their derivatives must
be recalculated, Thus, if the synthesis of a spec:’_Lﬁcation
requiring a fairly complicatéd realisation is to be accomplished

in a reasonable time, the evaluation of the coefficients, ard their



derivatives from the nodal admittance matrix must be rapid,

.A method of analysis?'8 has been developed which achieves
‘th'e rapid evaluation of the coefficients and their first ard
secord derivatives with respect to the network elements, This
method obtains the coefficients anmd their derivatives analytically
by using the prog;erties of the nodal admittance matrix ard the
network polynomiais. Furthermore, this method of analysis enables
the derivatives of the coefﬁ‘cierrt. with respect to virtual (zero.
values) elements to be eé’sily calculatedg. When a stage is reached
in the ewlutionary process where alteration to the network topology
is required, the use of this information enables a choice of the
value, the type and the place in network of the element whicﬁ is
to be grown (added) in the network. In addition, should extra
nodes be necessary in the change of topology, the use of this
information assists in the placing .of the node and the appropriate
cholce of elements to connect it to the network.

. The synthesis problem6 has three different stages -
approximation, selection amd svaluation. The three stages
interact to such a high degree that, when one stage is being
urdertaken, t_he requirements of the others must be constantly
“taken into eénsiderativon. C o |

When the specification is given as a frequenc& or transient
response, the approximation stage of the synthesis is concerned
with the problem of putting this into appropriate mathametical
form, 1,e. sets of appropriate polynomials; ﬁhese polyromials mast
be realisable by the type of circuit envisaged, The approximation



-5a

stage is almost always cﬁncerned with sampling the required reAsponse
at a series of poirttsu; the choice of the appropriate sampling |
points requires a great deal of slkill, This thesis assuxﬁes that
the gppro:d.mation stage of the.synthesis has been accomplished,
providing a sui*lgzj\b_].e set of polynomials which are realisable,

The process of selection is, to suggest within the confines
of present synthesis techrniques, an appropriate circuit.
7 chﬁguration capable olf i‘alfilling the requirements set out by
the approxim;tion. Constraints are placed on the specifications
"which can be fulfilled if the circuit types are restricted by
other considerations, The circuit type is often restr:lc;ted to
linear passive lumped networks without mutual coupling, The
synthesis of two types of circuit having this restriction are'
specifically examined in this thesis, namely CR three terminal
networks and LCR two terminal networks,

Programs employing network evolution using coefficient matching
are described; these are capabl‘.e of synthesising any 2 or 3
terminal LCR network., - These programs primarily work eithsr
by a process of growth (adding elements and perhaps nodes to a
simple basic network until ‘the specification is Qatisﬁ.ed) or by
" 2 process of reduction (removimg from the network, | capable of
generating the speciﬁt;ation, oxcess elements and nodes ard as a
c'onsequence eliminating the excess common factors), |

The erolution by growth program9 performs the synthesis in a
series of steps. It first gives some guidelines as to the selection
of the starting network, The starting network is then checked to
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ensure that it has the correct network structure and the deficiencies
remedied, This network is then optimised until convergence céases

~ amd elements eliminated and added; the process being repeated

until solution is obtained., The evolution by reduction progranm
provides a précess by which networks generating the required poly-
nomials multipli‘e:ci by excess common factors are simplified by
removing these cormon factofs_ ahd the correspording excess elements
ard nodes,

The results obtained by using these programs are discussed and
it is .shovm that network evolution by coefficient matching is
feasible, within the lj.mita of the examples tested. I‘n particﬁlar,
it is sh;:wn that the synthesis of non-series parallel networks is.
feasible, at least for 6 modes, providing the bnly way, at this
time, by whicfx such networks may be synthesised, It is aiso shown
that network evolution may be used to simplify networks synthesised
by methods such as that of Bott-Duffin,

Further developments are suggested in exterding the scope of
network evolution ard to explore its limitations,



Chapter 1
COEFFICIENT MATCHING

1.1 Introduction

The technique of synthesis known as coefficient matching is
concérned with the analysis of;g iipear lumped electrical network to find
its network polynomials* and their comparison coeffiéient by coefficient

-with the required set of network polynomials.1 The network topology,
i.e. the type of each network component and their interconnection, is,
in the first ihsﬁénce, provided by a standard synthesis technique or
guessed at by the_designer. (see Chapter 4)

The analysis of the network in this thesis is by means of the
characterisation of the network in a nodal admittance matrix. This has
several advantages over other methods of analysis which yield the network
polynomials. The nodal admittance matrix has many special properties as
have the network polynomials; these properties can be used to aid the
analysis and synthesis. Since; in general, there are more coéfficients
than elements and because of the nature of the analysis, the method of
coefficient matching produces certain difficulties in the formulation of’
the problem;

The syntheéis_process has three basic stages; approximation,
selection and evaluation. Since these stages interact so much, if
coefficient matching is used as the last stage of the synthesis process,

its effects on the two prior stages must be examined. Furthermore,

# The network(polymomialé describe the response of the network to

changes at its input and output terminals.
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the approximation and selection stages must be compatible.  Though
coefficient matching apparently provides a large degree of choice in

type of network, there must.be a check that the polynomials given by the
l approximation stage are capable of being generated by the circuit in the
selection stage, i.e. the realization conditions are fulfilled.

Alternative m;thggs of.directed trial and error to that of
coefficient matching, are the direct method and pole-zero matching.z’4
In the direct method, mathematica; expression of the approximation is
not formed and the respénse of a networkvand the required response are
compared directly at a series‘of points. This comparisoﬁ produces a
set of non-linear simultaneous equations waich have to be solved much
in the manner of coefficient matching. In the pole-zero matching; the
approximation stage of the synthesis provides a required set of pole and
ZEeTro0S. The poles and zeros of the network aré compared with tiais
required'set of poles and zeros and this produces the set of non-linear
equations. These alternative methods are compared with coefficient
matching,

1.2 Nodal Admittance lMatrix

A node voltage Vi is defined as the voltage between rode i and the
‘node 0, an arbitrarily chosen reference hode, usually the ground node.

If Kirchhoff's current law* is applied to the nodes of a network, a set

of node current equations can be set up. If the branch currents (other
than sources) are expressed in terms of the node voltages or the difference

between node voltages then the node equations are set up. These equations

express the branch.currents in terms of the node voltages. If a passive

* Kirchhoff's current law states that the current leaving node j due to
"sources equals the current leaving through branches (other than sources)

connected to node J.



retwork is analysed, these equations can be expressed in the mattix

form

-

g+ 8C

a1t

R1J.+ = Ty

R
sL

4,

N1

-9 -

1 + sC

R

1

"R

NINl

1
i+
1N1 sl-lm
1
NlNl SLNIM

=

1,1
where Il------ INl are the total currents entering the modes 1 to m-,
V)= = = Vg are the mode voltage. There are Nl+ 1 modes and N1

equations, the reference mode has been taken as ground and mmbered 0,

The following rules may be used to give the values of R?LLI.’ ete,
Ifi=}3,

- Ri 3 = total parallél resistance directly connected between rnodes
iand j= Rji

- Ci 3 = total parallel capacitance directly connected between modes
iamd j= cji

- L:l s = total parallel inductance directly connected between nodes

"If 4 = j, connect all nodes except i to the ground (reference) node, then
Rii = parallel combination of all resistance connected between mode i
and gi-ourxi =

Cﬁ = parallel combination of all capacitance connected between node 1
ard grourd '

I‘ii = parallel wxﬁbination of all irductance connected between node 1
and grourd |

It can be seen from these rules that the mode admittance matrix is

" symmetrical for a passive network; also, that a network element connected

between rodes 1 and j will appear only in the elements i3, ji, i1 amd jj
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in the modal admittance matr’ix ard a network element cormect'ed between
rode 1 and grourd only in the element ii of the modal admittance matrix,
~As can be seen from equation 1.1 the elements of the nodal admi ttance
matrix are functions of s the Laplace operator, ard if the s is taken

out of terms 1ike . sC.. + L+ L1 | ' T

1
B Ry &y

so that it becomes -i- ['szgu-l- ﬁ+ 1-7112-1]
the common factor of all the elements of a row, '-Jsi', may be t;ken outside
the determinant,. The element is then a quadratic in s, Inversion of
the .nodal admittance matrix will give all the node voltages amd the
network will be solved, | |

An alternative method of analysis is by means of the mesh impedance
matrix, If this method is compared with the method of analysis using
the nodal admittance matrix, it 1s seen that the method presented here
has the following advantages,
1, The nodal admittance matrix is sparse ard easy to fomxla.té.
2., In most networks, the mﬁber of nodes is less than two times

the rumber of branches‘-sq the order of the nodal admittance

matrix (M - 1) is less than that of the mesh impedance matrix

(B~ N1+ 1),
1.3. Admittance Matrix of Active Networks

The passive 'elements of a network containing aétive elementi.s cé.n
be treated as in Sectionl,2,

The active el.e'merrrts mist be in the form of current generators
deperdent on nodal voltages, If they are not in this form then they
mist be rearranged to be so, by Norton's theorem or by some other
transformation, “ | ‘

A current generator of value G acting from node i to node j amd

deperdent on the voltage at mode k with respect to mode 1 produces
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entries of the various components in s of G in the nodal admitfancel
matrix of + G at scalars (1,k) amd (3,1) ard = G at scalars (1,1) amd
(J,k).- If the current generator acts from i to 0 and deperds on a
nodal volta_ge at node k with respect to node 1 this produces entries
of + G at scalar (:{,l-c) ard - G at scalar (1,1). If the current generator
acts from 1 to J ard dépends on a nodal voltage from k to 0, then+ G
is entered at (i,k) ad - G at (j,k). Lastly, if the current generator
acts from i to 0 and deperds on a voltage k to 0 then+ G is entered
at scalar (1,k).

"It can be seen that the symmetry of the modal admittance matrix is
destroyed by .the inclusion of active elements,

1.4 Two Terminal Networks

The response of a network across a pair of terminals is ofter;
required, Conversely, it 1s often necessary to finmd the network which
will generate a specifled response across a palr of terminals., These
needs have produced two terminal network theory.

The admittance across a pair of modes 1 and 0, the reference node

is given by
é_ (1,2)

where A 1s the determinant of nodal admittance matrix with respect to
refere.nce node 03y and Aii the cofactor of this matrix obtained by
deleting column i and row i, By conventlion the terminal nodes are
mmbered 1 and 0 (see fig. 1.2) hence

y= ,_é__ (193)
AT} |
The coefficients of AandA 44 ard their sensitivities with respect to

the network elements can be gconerated simultaneously in a similar manner

to the network poiynomials of the 3 terminal network (see Section 1,5),
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1.5 Network Polynomials

Usually, the specification for a network is defined only in terms
of the ‘input and output properties of the network anmd is . - concerned
with the internal structure of the ‘network only in so far as it effects |
thé input ard output - properties, For this reasoﬁ, the theory of 2
pqrt L ternximl networks has been developed, In this thesis, the most
common case is éonsidered, namely when one of both the inpuﬁ and output
terminal pairs is grouxﬁed, i,e, the three terminal network. When the -
rnodal admittance matrix is used it is most co‘nvenient to represent the
2 port network by the admittance parameters, these are defined by the
equations, |

L=y * 722

I \'}

_ 1.4
2= Y21V + Y2Vs

‘where I, and V, are the input port current and voltage, and I, and Vj
the ;autput port current and voltage, as shown in fig. 1.1. Ina 3
terminal network by convention the iﬁput node is rumbered 1, the output
node 2, ard the grourd node 0,

o I1 Input Admittance with a short-circuit
NEE v, =0 ' |
- 112 across the output port
~ 1,  Transfer Admittance with a shart-eircuit
255 v = 0
- 1Y 2 across the output port
=5 Transfer Admittance with a short-circuit
277 v, =0
- 2%’1 across the input port
Izl " Output Admittance with a short-circuit
22 2 - V.l =0

gcross the imput port
1.5
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If the nodal equations

_ - " T f o
12108). ¥y5() Ty 5(8) = = Ty u(s) = = Ty lls) 1 |14

Y21( s) 122( s) Y23( S) = = YZ;j( §) = = Yzm( s) v, I,
] ) | N ] ' ' ]
INORFOR OIS A J'( s) = = Y, u(s) vl o= 5
] ] ] ] ’ I ) R | ’

LgMI(s)xmé(s)IMB(s) = Y ys) = Ty a(s) Vel | Ig

13 - - IN]. = 0 for a two port mnetwork
' 1.6
are solved for Y17 Y21 Yoo in terms of Yi j using equations

1.4 then :
o _ D2 _ =An
1 1122 Y12 = A1z 1.7
ke _An
Y21 & AnNzz Y22 = K1122

where A 22 is the cofactor of nodal admittance obtained by deleting

column 2 and row 2, similarly for A Apamd amdA

11’ 1122
'is the cofactor formed by deleting columns 1, 2 ard rows 1, 2, For a
passive network the nodal admittance matrix is symmetrical and

Alz = AZI luaence Yoy = Y12¢ S?ince the nodal admittancg matrix
has elements which are polynomials in s, each of these cofactors when

evaluated is a polynomial in s,  These are known as the network

polyromials,
Equation 1,2 can be rewritten
Ay . Aa o
L= A1z 11 1122 2 e
~A12 , An .

= Tzt Anzm
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The roots of the polynomials, A 17° A12 .and Azz are the zeros of

s their respective network admittance, the roots of the polynomial A 1122
are the poles of the netwofk. These hetwork polynomial's for a passive
network have certain spscial propex:ties. | |
l. Each coefficierrﬁ'of the fnolynomials is. a miltilinear function

of the network componemts, i.e, it contains no component to a

higher degree than unity,

2, Ifa polynomial is of degree m then the coefficient corresponding -
to s to the degree n, is composed of sums of terms each the
produét of m components of the relevant degree n, These
correspord to the trees of that complexity present in that
network cofactor,

3. Sin;:e the components of a network are positive real mmbers,
the coeff‘iéients being mlltilinear functions of them are positive
real functions of s.

4, There are no zeros in middle ccefficients of the network

polyromials, o-¢0ztin LC networks when the odd powers are zeros,

.

1.6 Formulation
The network polynomials enable the frequency, phase and transient
résf:ofxse of a network to be easily dbtained as well as providing a
method of evaluating the network by plotting the poles ard zeros on the
s plane, Conversely given these responses or a multiplying‘ factor plus
the pole's ard -zaroé it is possible tc; provide a set of network poly-
nomials to provide a given response (see Section 1.5), The specification
does not always provide emough information to generate all the required
network polynomials ard all of them are not always necessary 'to defire
a network, |
Given the required network po]ynomials ard the polyromials generatéd

by the suggested network a set of simultaneous equations can be obtained
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by coinparison between the sets of polynomials coefficient by coefficient,
These equations must be organized so as to allow optimization techmiques
té be .used to solve them, )

Usually the rﬁmx_ber of coefficients sbecif‘ied in vélue, N5 the no.
funcil:ions,' is different from the number of elements in the network N,
the variables, There is the possvibility of three corditions,

1, < N5 in which case if at least N of the vcoefﬁcierrts
are irdeperdent the' hyperspice is entirely spanned and
the excess equations may be ignored or used to provide more
information and speed up the process of solution, i.e, the
solution-giv-ing the smallest residual error., |
2, N = N5 inwhich case if the coefficients are independent
the hyperspace is exactly spamned arr} the solutien is
straightforward,
3. N>N5 in which case the hypers“pace is no£ spanned
ard a specific solution is not given, (see section 4..2.)
An easy' check to test whether N coefficients are independent is to
find if their jacobian with respect to the components is non-singular,
"This jacobian must be calculated for use in the solution of the
'equ_at_ions using optimization techniques, In the first condition, N
indeperdent equations may be seieé%ed ard solved, but it is observed,
as might be ex;;ected, the coefficients cor_*respdrding to the equations
rot used are given with considerably more error than the coéfficiexrbs
correspording to the equations uséd, ard that tﬁis error is unacceptable
unless the residuals in the equations used is véry small, i.,e, sum of
squares of residuals less than 1_0'9 or so, It should alss be possible
to use the excess e&;uations’ to provide specified sensitivities of fulfil
other specifications, 'In the third condition, some of the component |
values may be predetermined so as to ma.ke the number of variables equal to

or less than the rumber of indeperndent equations,
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If the rmerator and denominator of a ratio of polynomials are
divided by some rumber, say 2, then in »theory the ratio is unaltered ard
the same network will provide the a.ltered polynomiale, but each coefficient -
is the sum of products of the elements of the network, sé the elemen':,.
values should be altered, This contradiction ean be resolved by rormale
isation of the network polynumials, ard introducing a multiplying

factor,

The sirultaneous equations can be formulated in several waysl'B. _

£, = £ = H,% 1.9
f ==1+ ¢
.0 k

e 1.10

“kro
fo="f , 1
o = st Tk .11

kr‘% fk

where I.o is 'Ehe rmltiplying constairt, fk the current value of the
coefﬁéient of a network polynomial, fkr its required value, amd fe
the residual error,

The formulation in equation 1.9 is simplest and gives an absolute
| error in the coefficient, Since the objective function is the sum of
fez(see equation3'-m, this is not a very satisfactory formulation,
 The formilation in equation 1.10 ifiproves on this situation in that the

error is now relative, There are two objections against this formulation;

the relative error is different deperding on whether fk > fkr or fk< fkr

ard if i‘k = 0 then equation 1,10 gives a false zero with a value of
Zl/fk Z1/, o
n - r kr . The fornulation in equation 1,11 overcomes
.2 1/fk2r .

" these objections but unfortunately is more complicated, The formilation

in equation 1,11 was that chosen.
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."l il H

\ / Formulation of equation 1.10
f

i,

minima 7

Formulation of equation 1.11 g
A = XX, + (xlx3 + x2x3)/2 %3 fixed

Comparison of Formulations close to Solution

fig. 1.3
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There are several ways of choosing the multiplying constant Io.
One of the coefficients, say Auzz(o)' can be selected as umity and
the other coefficients divided éobrz.'esponiingly; or the value o:% :
can be used which makes the objective mnctioﬁ a mim.muxs for the set

of network elements, i.e, which makes OF = 0.
: YL
o
For the formulation in equation 1.}1 it is shown in appendix §.5, that

this is given by

s 71/
X = Zfzk/ e 1,12

1Z0/%
Amother possibility is to let ‘16 enter the set of variables in a
similar manrer to f»l:he' nstwork elements, The method deﬂxﬂ.ng 16 in
equation 1,12 was that chbsen. The choi:ce of the method of formulation
of fe was subject to ruch experiment on the éompﬁter ard the method
selected gave the best results on the examples tested.3

1,7 Approximation

The most important part of the specification for a network is that
'c_oncerned with the function that the network must perform, The other
parts.of the speciﬁ.ca.tioﬁ such aé__:!.inﬁ.ts on costs, sensitivity, etec,
are secordary to .this. Approximation is that stage in the synthesis
process which is concerned with turning the role which the network mast
perform into a ma’c;}ienx-atical expres'#ion which can be u#ed by the subsequent
stages of synthesis, The primary part of the specification that the
network must bfulfil is usually given as the variation 6f the magnitude
ard phase of the gé.in with frequency, the frequency responss, or the |
response of the network to a pulse of prescribed character, the a,c,

transient response, This assumes the d,c, mon-linear effects can be



igrored or dealt with separately, The usual mathematical expressions
thgt the approximation stage gives are. the required retwork polynomials,
A lé’ A 1122 plus perhaps All. ard/or A 22° | _

. There are two main methods of'obtairﬂ.ng the required network
polynomials from the required response, The first method is to select
a series of sample points and by experience or by a set proéedure fit a
ratio of polynomials to these points, The seéon:l method is to select a
set of poles ard zeros in the s plane and by adjustir_ig these until the
reqﬁired respo'nse is obtained, an adequate set of poles amd zeros are
fourd, The secord method terds to be more economical in its represent-
étion in that.thé ‘mmber of pdles ard zeros necéssary are usﬁally less
.than those produced indirectly by the first method, This would mean,
in generg.l, that fewér components are necessary to fulfil the
specification, Unfortunately, whilé th;re’ are some simple rules for
the malfﬂ.pula.tion of poles amd zeroé, e.g. no‘poles in right half plane
for both passive amd active networks, the set of poles ard zeros obtained
méy rot be realizable by the type of network envisaged, It must thus
be ensured that the poiyrbnﬁ.alq produced by the approximation stage of
the synthesis must be realizable, see next section,

The stages of synthesis in which coefﬁcient matching is directly
eon;:e;ned assume that the approximation stage of the synthesis has been
successfully cofnpleted. For this reason, this is an extremely cursory

treatment of approximation,

1.8 Realization
The limitations imposed on the ratios of the polyromials produced
by the approximation stage, so that they may be produced by a network,

are called the conditions of realization,
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The primary conditions of realization for a‘general admittance are

that each polynomial must be a rational positive real function of s, i.e, .
‘1, y(s) is real for s real and a ratio of polyromials in sj
2, G(w) = Re y(jw)>0; .
3. All the poles c;fiy(“s) are in thé left half plane, with arny

poles on the imgimm axis being simple amd having positive

residues, | . '
This basic limitation is useful, but, since it allows a network which
represents that admittance to be a four terminal lattice or to contain a
transfomer', it is not a satisfactory condition in itself, The
additional réstrictions on the ratio of polynomials necessary for éach
simple class of networks are known, For example the following corditions
apply to the ratio of network polynomials from a RC ladder network,
1. y12( s) is real for s real and rational.
2. The poles of ylz( s) must be simple and located on the negative

real axlsy poles at zero amd infinity are not permitted.
3. The zeros of ylz( s) must 1ie on the negative real axis; multiple. |

zeros arnd zeros at zero ard infinity are permissible,
'As yet, the general corditions such that given a set of polynomials
_which set of networks are capable of realizing them has not been solved,
The-.cc;rﬁitions for the various basit networks, mainly ladders, which are

known are laid down in the standard texts on network synthesis.6

1.9 Comparison ﬁth the Direct Method

“12 45 an important alternative method to coefficient matching

This
when using optimization for network synthesis; it enjoys much of the
~same flexibility as coefficient matching, In this method the frequency

response obtained from a network is compared at a series of points with
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the specifiedrresponse ard the error amd its derivatives used within an
optimization écheme to alter the values of the network components so
as_to reduce the error. This teéhnique of course can be applied to
a tranéiént response or other‘measures of the network performancs,
This method hypasses‘{he approximation stage of synthesis, nevertheless
fhe best cholce of sample points is still difficult and requires |
experienée. It 1s even remoter from the classical synthesis techniques
than coefficient matching.
In comparison of coefficient matching with the direct method the
following advantages of coefficient matching should be noted.5
1. Wﬁen the'approximation stage has been aécomplished, the rest
of the synthesis procedure is always identieals
2, The mimimm £ e =1 . .. N51s easily identified
ard false minima easily spotted.,
3. The theory of poles and zeros which has been fairly well
established and which contains much information about a
network can still be used,
L, Since the coefficients are multilinear functions of the
network element, convergence should be more rapid than for
.mare complica:ted functions, . | -
5. The derivati%es of the coefficients with respect to the
elements can be rapidly obtained (see Chapter 2) ard each
iteration canlﬁe-rapidly performed,
The lelowing are tﬁe disadvantages of coefficient matching compared
with the direct methods; |
1. The.coefficieﬁés of the network components are difficult
to obtain accurately, particularly for narrow bard networks,
- 2, It'ig difficult to know how close the current iteration is

t2 solution,
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3. All the difficulties of the approximation stége, whether the
coefficients are realizable ete, which eccur in the claésical '

synthesis methods occur also in coefficient matching,

1,10 Comparison with Polq-Zero Matching |
A further altar;:afive mathod to coefficient matching when using
optimization }or network synthesis is pole-zero xriatch:i.ng.2 . In this
method the set of poles and zeroQ generated by a network are compared with
a required set of poles ard zero‘s. The required set of péles and zeros
having been obtained by tﬁe approximation process from the frequency
responses or the transient response, The method has the very. great
advantage of conveying to the engineer in a very direét manner how close
his present network correspords in performance to that required. ‘ Hence
in interactive methods it has advantages over coefficient matching which
gives the engineer little information on this point.
In comparison of coefficient matching with pole=zZero matching,

the following disadvantages of pole-éem matching should be noted,
1. 'i‘he difficulties of the approximation stage are common to

both methods, | o fo |
2, Discontimiities in the problem occur‘)\which present pole vshould be

" compared with which required pole. |
3. The poles ard zeros and, in particular, the derivafives of

their error with respect to the network elements cannot be

obtained in a direct manner or so rapidly as the coefficients

of the network functions ard their derivatives,
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Chapter 2
LUMPED LINE:R NETWORK FU.NCTIOBB AND THEIR DAEFC-[VATIVE

2,1 Introduction

In Chapter 1 it is stated that the functions of interest are the
ratios of the coefficients of the network polynomials to their required
values, In Chapter 3 it is shown that a method for the rapid evaluation
of these and their derivatives is essential if many iterations are to
be used, Since the coefﬁcients ard the nédal admittance matrix have
certain speci.al properties, it should be possible to use these properties
to make the evaluation of the coefficients more rapid, A method7'8’9
using these pmpefties is described below amd compared with other methods
preposed,

Strictly speaking, the general form of the cofactors of the nodal
admittance matrix is a polynomial in s,possibly for networks containing
inductance divided by some poer of s, | However, since in the method
described the inverse powers of s are removed from the cofactors prior
'to their evaluation, the cofactors will be regarded as polyromials in

N

this discussion,

2.2 Calculation of Coefficients of Network Polynomials

The central problem is fhe evaluation of a determinant éf a network
cofactof whose elements can be quadratics in s, the complex frequency,
It is known that even for quite simple networks each coafficient of the
polynomial in s, resulting from f,he evaluation of the detemj%arrt, is
usually made ﬁp of thousands of terms, each one represenfing a tree

containing the specified-components to give a term of that order of s,
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If a polynomial of order m is evaluated at m+ 1 points ard an
interppla_.tion forrila used to determine the coefficlents of the
polyromial, then the values of the coefficients should be generated,10r 10
Thus oﬁe way this piwoblem can be so.lved is to give to ‘the values of s'
in the nodal determinaht a series of mumerical values, The determinant -
eiements now become rumbers and the determinant can be evaluated (see
Section 2,9) ard interpolation used to find the coefficients, It is
simplest to store the conductive, capacitive amd reciproéal inductive
parts of the elements of the modal admittance matrix separately, in arrays
G, C ard GA, respectively, ard then to add them together multiplied by

the corresponding mmerical values of s to form Y, i.e.. Y=G+ sC+ GA «
s

To fird the order of each network ‘po]ymm:.lal, an integer programll

may be used. Alternatively, it is simpler to use the following method,

the rows (or columns) of each cofactor are scénned ard highest powef

of s contained in each noted, ;L‘he maximum power of s contained in the

expansi;an of the cofactor can them not exceed the sum é'f these powers' :

"and this is taken to be the orc}er of the correspording network polynomial,
The m + 1 values of s give m+ 1 equations for the Jdeterminant A ’

a + also'ti- azsozt_'} - - .; - - amsomt-’: A(iso)'
a + alsl‘(“+ azslzt: - -—-- amslmt: A(‘tsl) 2,2
L

- as 2 e e m my”

a, + alsmt-l- 2,8, as = A(tsm)
where a===a, are the coefficients of the network polynomial,
representing A, Sg= = = Sp the series of mumerical values of s,

' A(tso) - - A(tsm) the series of determinant values ard t a scale

factor. . In matrix form this is,’



Cr— s‘ -
n] " ]
lsos----s a, &So)
2 m
1 §) Sy ==~ =5 ta, | :Aktsl) 2,3
2 : m " m =
;.,.1 S S wemewans 1 LtamJ Mtsm)

'fhe square matrix of order m+ 1 is the Vandemorde matrix, This .could
be inverted in a conventional manner to give a~===a,butitis
more accurate to symthesize it by the method shown in Appendix 8.1
where a rﬁethod showing the derivation of thé inversé of the Vandemorde
matrix from the Lagrange interpolation formula is shown, Tfﬂ.s produces.
the same formla as that given by Traub13.. For the same set of values
of s, So= = = Sp» the inverse of the Vardemorde matrix is always the
same, If this set 61‘ values of s is to be used repeatedly, then it is
ﬁotthwhile storing the inverse once it is synthesized, This increases
the speed of calculation of the coefficlient very considerably. The
scalar product of this §toréd inverse and the vector of determinant

values is all that is required to give the vector of coefflcients,

2.3 Simltaneous Generation of the Coefficients of all the

Network Polynomials

Since in the optimization piogess more than one network polynomial
is required, tin;e per jteration can be saved if they are calculateci
stmiltaneously, The network cofactors 4., &4, D, D,
only differ'by a row amd a columny the rest of their elements are
-identical. A method making use of this éroperty has been devised,

Gaussian elimination is -used‘taking as the firsf rivot the element

Ty Of the rodal admittance determinant,y order NL,M., Then the

diagonal elements; T 1 where k is the iteration mumber,

N-k+1, Nkt
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~are used in turn as plvots up to ard including the element Y If

33°
rone of the elements in the first amd second row and coluym are used

~ in the irterchanging of rows ard columns for partial piwoting, all the

working for All' /\_12, Azz amd A1122 is common up to this point,

as shown in Apperdix 8.2,
When rows and columns 1 ard 2 are eliminated to form A1122’ its

determinant is seen to be the product of the pivots YN].NL to Y33.

When row and column 1 are eliminated this gives Y,, times det A1122

as the value of det All' similarly det A12= 1,1 ast A\ and

1122

1122° where Yli etc, are the final values of

these elements of the nodal admittance determinant,

" det Azz =Y, det Z\

2.4 The Evaluation of the Derdvatives of the Coefficients

with Respect to the Network Elements

If the determinant y is expanded by the method of Laplacel9

y= Yngn" YiZS:!.Z t-- Y.'L:]S;.J *-- Yinéin 2.k

where Yi ete. are the determinant elements and S 11 ete, that element's

1
cofrctor, ard the determinant is differentiated with respect toYi 5

say then .

D
b—%ij = "Sij_ 2,5

- -

i.e. the derivative of & determinant with respect to one of its elements
~ 1d equal to the cofactor of that e].ement.]'9 Consider the derivative

of a network .oofactor All’ 41-2, 'Azz, amd A112

respect to a network element Gk' say in a network, connected between
node 1 and grourd. Gl.c only occurs in admittance element Y., of the

2 say,_A y With

ii
nodal admittance majtrix.

o
i _

R

ard from equation 2.5 é__A_ _'6

‘ in’.’L - i3
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AN _ DA My _
hence BGk = §Y11 }le —S 1 | - 2,6

whereS,; is the cofactor of Dobtained by eliminating row and

column i, If Gy i1s connected between modes i amd j of a network,

then from the properties of the nodal admittance métrix it occurs

in admittance elements Yii’ Y 35’ j ard Y 40 Therefore

A =bA o¥ss . ¥ BY LA By D 3Ty 2.7
éGk MWis 3G, BYj }’G yij ¥ BY'iAG ’

bL\ =S pYAN A _

ard from the propertiea of the modal admittance matrix discussed

in Chapter 1 é

§_m+1m3_1§§ a1

therefore A

a
If the cofactors of Gy are evaluated as)‘polynomial in s, then by
matching coefficients on both sides of equation 2,8 the derivatives

of the network coefficients with respect to Gy can be fourd,

Similarly, the derivatives of the coefficients of the network .
polynomials with resvect to circuit elements C.‘.k ard 1/Lk, where Ck

ard 1/1.k are connected to mode 1, can be fourd by multiplying the
‘ Y
sum of cofactors bty the appropriate power of s given by i1

C,
mat that 15 AL '=sandb u-1 23k
1 Lk )C :§17L *
The easiest way to obtain the cofactors of the elements of a

ard

determinant is to invert the matrix of the determimant, mltiply by
the value of the determinant and transpose. For a passive reciprocal
network transposition is unnecessary, The inverse of the rumerical

matrix formed when s is given a series of mumeriecal values can be obtained
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in several ways. The eaéiest way is to exterd the simple Gaussian
elimination described in section 2,3 and apply all the operations’
similtaneously to # matrix which is initially the urit matrix, the
Gauss-Jordan methqd;ll“ - By not using elepzerxts in row ard column 1
ax;d 2 in interchanges, as in section 2,3, the inv;arsion af All' _

A s A,y am A [ o) is ddentical up to amd including the third
column, The final row and column operations on All' A i2 'and

AZZ must be i‘mrerteci independently as their final rows and columns
are different, aé are all their final inverted matrices, The first
ard secord rows and columns of A 12 mist be interchanged before-
inversion as'shown in Appeirlix 82, As A12 is taken as a cofactor
it has a negative sign attached to it.

It is more ecomomical and accurate to collect the cofactors as
mmbers corresponding to eé.ch mmerical value of s ard then to transform
to polynomials, than to find the cofactors as polynormials in s ard then
add, It takes very approﬁ.mately AM-NJ.B/Z + MNP multiplications compared
with MNL3/2 + 5M2M?/2 miltiplications, respectively.

2.5 The Evaluation of Derivatives with Respect to the Network

Elements of Active Netwofks

The evaluation of the derivatives of the coefficiénts of the' network
polyromials with'respect to)' the passive network elements uses the same
method as used in section 2,4, The derivation of the algorithm for
differentiation of the coefficients of the network polynomiais with
respect to the active elements follows the same arments only in this
case the cofactors which contain the active elements are different, see
Section 1,3, For example, the derivative with respect to a current

generator acting from nodes i to j amd deperdent on a modal woltage



at mnode 1 with respect to m is given by

S_A_k' = (94l + D im = Stm Sjl) 2,10

Where n = -1, o, 1 respectively, tfxe capacitive, corductive and reciprocal
inductive part of the active element. Similar formula can be derived

for the other possible connections shown in section 1,3.

2,6 The Evaluation of the Secbrxi Derivatives of the Coefficients

with Respect to the Network Elements

The second derivatives of the coefficients of the network polynomials
can be found by an extension of the above analysis for first derivatives.,
If Gk say is connected between modes i andj ard Gq say, between nodes 1

ard m of a CR network, then from equation 2,8

32A DA\ Y S P
QGaG = gG (.) \’ 36 (Sii"'%ji."éij '531)

-

hence (§111 3311 = S1;311 = 33111)
" Ciim * 3 mmm " S3m " Oum)  2m
- (34, * S -j,jlm - S f1m - S311m)

- (§4m * Sygm *Sigm1 “Sstm)

5[1: should be noted that the subscripts of the cofactor of a cofactor are
in the-order now column row cc;lumn.-* The sign of a cofactor of a cofactor
is more complicated than appears at first sight.- If the subscripts are
in ascerding order then the sign is simple (_1)i+j(_1)l+m= (~1)i+j" 1+m.
Unfortunately, there is mo guarantee that these subscripts are in this
ascending order when these cofactors of cofactors are formed to give the
secord derivatives, ‘ Thus the order in which the rows ard columns aré
eliminated must be taken into account. It is seen that if the first
row eliminated is less in order than the secornd row eliminated, then the

sign of the cofactor of the cofactor is reversed, Simllarly, the sign |



is reversed if fhe first column eliminated is less in order than the
secord column eliminated, For thils reason the cofactors of cofacters
in equation 2,11 can be considered to be miltiplied by (~1)%* 31
sgn(i-1) sgn(j-m) wheré

.Sén(“x) =+1 x>0

sgr{x) = =1 x <o
The arrangement follo;rs l‘lu'j.r's22 .convexrtion. In a passive network, the .
elements have positive -real valu;s and the coefficients, being multilinear
functions of these eleme_nts,} are positiwfe real functions,‘ hence the
derivatives of the coefficients with respect to the netwdrk elemenf.s are
rositive re;azl. functions, This argument simplifies the oomputatidn of
the secomi'derj_.vatives in the case of passive networks, since all the
values rmust be positive,

By using Jacobi's theorem

AS - Sij S @Sy - 212

and applying this to the secord order cofactors in equation 2,11 it is

shown in Appendix 8,3 that tais can be simplified to give

- -

2
‘geq?c;k = zlg( S "5 313 - éji)( $11 *Sm ~Sin ~Sa)
- ( §r11 * 53m ~Sim " Sjl)( 2% +Sny O m ‘§13)>
’ 2,13 '

Since the first two terms have al ready been formed as the first

derivatives of —=— oA
3G

YA _1dA XA - < ¢
GG~ ARG ka}Gq" (Sy1* Sy = S4n = Sp)
(833 * Sny = Sm "515))

in Apperdix 8.3 it is also shown that if Gk is connected ‘from node 1

ard S-é y using equation 2,8

2,14

to grourd and Gq from node 1 to grourd then
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A | 1[4 SS).

BGﬁk A DG, 11714

amd if Gk is connected from node 1 to grourd amd Gq from node 1 to

ntz>de m then

?T%E— (bA bA— (Sim 'Sil)( Smt "311% 2.16

By matching powers of s in the relevant equations 2,14, 2.15 or 2,16,
the second derivatives of the coefficients with respect to G, and 6,
are obtained, When seccnd derivatives with respect to elements in a.
CR, LR or LCR network are required, these equations must be modified
app'ropriately by equation 2,9. It is more economical to collect the
cofactors together as r;umbers correspording to each mumerical value of
s ard then transform to polynomials, than to firmd the cofactors as
polyromials in s ard then add, mitiply and divide the polyromials to
obtain the secord derivatives of the coefficients, It takes very
appro)d.mately 242 N2 computer operations to take the cofactors as rumbers
and then transform compared with Q@) + 342m2/2 computer operations |
to mandipulate the cofactors as polynoniials after iransforma.tion to

polynomials,

2,7 Formation of the Derivatives with Respect to

Elements of Zero Value A
As a conseqﬁence of inverting the rodal admittance matrix, cofactors

of all its elements can be fourd, This applies to the many zero

elements, as well ..;as'to the elements correspording to the circuit

components, By collecting these cofactors according to equation 2,8

it is easy to find the derivatives of the coefﬁgienﬁs with respect. to

zerd-valued network elements, These derivatives correspord to the sum

of the effects of the trees that would exist if that element were non-zero,
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since on differentiation of the coefficients with respect to that element,
the trees making up that coefficient have that element eliminated,

Thus it is seen that the same sensitivity of a coefficient exists
with respect to change: in existent and zero components acroés the same
pair of nodes, assuming the rest of the circuit is unaltered, This
would suggest that s‘ez;sitivity should refer to a2 mnode pai» and component
type rather than to a componerrt.‘ For practical reasgons sensitivity
with respect to change in a sped;fic component is always discussed,

Many of the cofactors that are mot ﬁsed in obtaimng the first derivatives

are required to obtain the secord derivatives,

2.8 Aeenracy Problems in the Evaluation of the Cosfficients

ard their Derivatives
There are two types of problem in the evaluation of accurate values

of the co::naff:i.c:i.en'l'.s%8 1

The first arises from the consideration of

the conditioming of equatibn 2,3 ard its solution and comprises

(a)' Errors in the inversion of the Vandemonde matrix. These are
insigrnificant, yet error due to rourded representation of the
inverted Vandemorde matrix (working with firdte arithmetic
accuracy) may be propagé.ted as large errors in the solution

» similar to problems involved with Hilbert matrix inveréion.u’

(b) Ermrs in the evaluation of the oofactorsA(ts

(¢) Errors due to overestimation of the polymomial order, ‘

The second problem arises from consideration of the stability of the

method -V perhaps the most iinport.ant error source, The sample Sy mst

be chosen such that the Lagrangian interpolation adequately represents

the information needed amd does mot introduce errors due to e,xcessive‘

extrapolation, Firstly, consider the corditioring of equation 2,3,
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Provided errors due to (a) above are igrnored we have
”Sa”

where the coniition mumber“52 = . ‘
' \s, |s |
= vl = 1+ ° g
C(V)A | Hvu .I _V" T max(—‘-;j:r—— maxTr 2,18
it oish j*‘i

(using the L _,morm throughout)
wherés.a, is the vector of errors in the coefficients and‘Z;A(ts) is the
vector of errors in the computation of A( ts)‘.'

Therefore for small (V), -1< s, <1 and all s, wellrspaced, :to
reduce the magnification of any errors in theA(ts.l)' evaluation, the

s values must ideally be balanced about zero with magnitude less than

unity. If implies unit spacing 16,17 of S5 gives an unsatisfactory
(V). If sample poirrts are chosen equidistant apart at O - sit
where =(1- -——) o<1<-2— -1 2.19
It can be shown %}xa‘t gor equal spaoing about zero
o = S2la 2,20
mh
z L

do(v

Where h is the interval between sample points, by putting h

n/2

= 0,

amirﬂ.mumisgivenath=%, and V) =me ',

For a logarithmic distribution of sample points about zero, very approx=

ima;.'.eiy 6(V) = min(r‘l,'.lsi) mfz 1f the maximum sample is taken as unity,
8ince usually min(tsi)<<1. (V) for a logarithmic distribution is
1arger.than that for an equAi distribution of sample points,

Now the errors in the evaluation of /A tsi) is dependent on its
cordition rumber C(A(tsi)) ard the cordition rumber is smallest when

elements of A(fsi) are comparable in v_alue.lu Hence Cf _A(tsi))o(t/te
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where te is a scaling factor which makes constan‘l; terms, terms in éi armd
terms in 312 ‘comparable in value,

Since the range of value of Sy is usually much greater for a
logarithmic distribution than for an equal distribution C(A(tsi)) is ]
greater for thé loéai-ithmic distribution of sample points than for an
equal distribution, h | .

If the network polynomial ansn-l- an_'lsn'l- --a5+a is evaj.uated
using infinite length arithmétic there is mo instability problem even if

the sample poirrt.é, s; occur in a region of mo singularity, i,e,
contributions
A(tsi)=froman+ from a --=+a

n-1 o ‘ ,
Because of finite length arithmetic the contribution from one coefficient
may completely swamp the contribution from others over a set of sample

1 Also, even if mot completely swamped, any errors in the

points,
evaluation of A(tsi) will\emphasizd in the coefficient making the
smallest contribution, Ina regiop where A(tsi) has singularities the
contributions of the various coefficients subtract amd obviously the |
instability problem is greatly eased, since for a low C(V), -1 <s,<l.
the singularities in the polymomial must be moved into this region by a

suitable choice of scaling factor.

This gives a transformed polyfpmial

Yy n n-1, n-1 ,
(ant s + (an_l‘_b )s +’- - - \(alt)s +a

There are a number of choices, if t could be chosen such that

n-1 n-2 i o

then the roots of the transformed polynomial would 1lie on the uh:lt

tha = t™la =t™% - --=ta=a 2.21

circle, or if t could be chosen such that

n _ ,.nl _ n(n-1) n-2 - L
tan-rrt 2,1 =75 an_zt -------ma._'-t,-ao

as in the biromial series then the roots of the transformed polynomial

would 1lie at -1, hence there is a fairly wide choice of t,



Since = roots = =L
an
amd a
. ]T roots = 32- : 2.22
’ n

the transfbrmed polynormial has the same pattern of roots as the original
with the space divided by t. The.scaling factor selected may not be the
best to keep C{A(ts;)) small. It sh:uldlbe noted that equation 2,22
gives a bourd on one of -the roots of ( 2-_9-) n 2,23
 Two empirical approaches have been deve;opegs'bo resolve these difﬁ.cultieé
(see fig, 2.1). .
1) Assuming a coefficient structure from experience ard estimating the
| upper bourd on one of the roots from equation 2,22, ard putting the
scaling factor t. equal to this bourd, Now in general for CR networks

iﬂ_r_n;_ Ci amd a, = ;'JI Gi‘ Hence t = (:33;1 = %where c (_n__c)l/NZ
geometric mean of capacitors ard

1/x33

(1_1 i) geometric mean of donductors., Similarly for LR networks
t = ,-.—., and for LR t = -%' , where ["is geometric. mean of rec;iproc;al
inductors, It should be moted that all netwérk elements are c.onsidered
éinoie all the network polymmials are to be generated simultanecusly.‘
With this estimate of the bound equal intervals about zero are taken,
'Geometric spac:’ug cannot be used because the geonetric ratio is not given
by one bourd, The sample points used in this method are 0,«"-'*!;5i i=0,1,2 -
si=%i- 2.2’+' wheréM=gﬁ;;ﬂaamn-%lmodd m=pax p
where }x is order of polynomal urder evaluation,

Arother way of assunrlng polyrordal structure is to consider the
polynomial to be the product of terms on the diagonal ignoring the
negative of diagonal products, Each term on the diagonal then gives an
approximate root of polynomial, This method gives tvhe—eems scaling

factor of the largeét Yssumed root! and scattered sample points,
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relative
inaccuracy. .-
10% -
N1
_ range of log, values
tondition R
number '

Stability errors s(aﬁ) and s(ao) found by 210% perturbation which

keptvC(ZkCtsi)) and C(V) approximately constant.

Condition Number and Stability as ts

i is altered

4

fig. 2.1
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2) An altermative method is to perform a preliminary investigation to
determine the bourds on the roots direcfly. In this investigation two
riegatiire real values of s are fourd for each relevant polymrrrlal, s = -CC
ard s = Fsay for particular polynonﬂ.al such that at s = =o{the polynomial
is prac;tically on its _asymptote at s = =@Dand at s = ﬁi‘t is practically
on its asymptote at s = =0, The start of the asymptote at - O may be
found by the following method, _Three values of s are chosen (=,

-2 -lod (0(¥ reciprocéal of .sma.lle‘st time constant is ; good éhoic;ef

e.g. min( C)xmin(G))and (=0), (=20) and (-U40) evaluated for all the

- metwork polyromials, If g:g") = E:go) 2,25 within 104 then
‘O(t;an be éo.nsidéred to be on the negative asymptote, If 2,25 is satisfied
by the first value of 0(, then A must be halved ard so on until 2,25
breaks down, i,e, the start of the asymptote has been fourd, If 2,25 '
is ot satisfied the first time Nis dou.bled ard so on until 2,25 is
satisfied, '
The asympt,ote close to zero at s = C) can be foyrd by a similar
method (the reciprocal of largest time constant is a good t;hoica) or
Fis taken to be that value of s producing a 10% change of the value
. of the polynordial at s = 0, Then the set of sample points used is

0, -t-ts

where \{= (‘7‘

with PRM deﬁ.ned as above andd‘ amd ﬁ mn 2T the maximum value of

1
qi i=o0, 1,3---}1

1/-1 2.26

HAand the minimm value of ﬁrespectively, obtained after examining
eac;h of the main network polyromials that are relevant, The scale
factor, t is taken as é(ma.x' ’

In this method there is no assumed structure to the ao& a

coefficients of the network polynomials, A geometric distribution of
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sample points is used because experience (Bode plots ete.) has shown
this to be useful manner of tackling wide spreads of frequenoy.

_ ;I‘he— sample point at si = 0 is not used if‘this'produces a

singular matrix because inversion cannot be performed t&grovide the
derivatives. . -

In practise, scaling of unmormalised components is necessary to
pfevent =27z - overflow in the computer, It is as well to perform
this Scaling such that the median values of the components are approx-
imately unity.

Because of its simplic-ty the first method was that employed in

the analysis section of the synthesis pmcedures.

2,9 The Speed of Various Techniques for Evaluation of

.

Deteminant and Inverse Mahﬂx

The majority of the books Lnd5 on numerieal methods for the evaluation
of determimnt ard :’mverse, recommend Gaussian elimination with partiai'
Pivoting for the general case, This requires a set rumber of operations
and provides an acceptable ar-curacy. When ill—cond:.tiomng occurs,
there are a rumber of modifications to this method which improve the |
" inverse, In this case, full pivoting can be employed, or double-length
working used, or the inverse can be improved by the Hotelling method,

A measure of the ill-conditioming of a matrix is the ratio of its
largest to its smallest eigervalue, When this ratio is large it implies
ill-oordition‘lng, when small it does not neoessarily irdicate that ill-
oonditiorﬁ.ng is mot present, Eigenvalues are mot readily available,
The Geracéorim circle theorem, gives 4 bourd on the eigenvalues, namely

a rorm.of the matrix., . The norm most easy to use is the row nax'm

* I11-corditioning occurs when a small change in a matrix element

produces large changes in the elements of its inverse,
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. N
A = max é, a,, « The product of the row norm of a matrix anmd
1 F Y - |

that of its inverse gives some indication of the ill-éorﬂitioxﬁng of

a matrix; it is approximately equal to ML for a well-conditioned matrix.-
Using the method described in section 2.8, the modal admittance matrix
is usually well-conditioned, |

The.mdal admittance matrix is symmetrical for passive recipmcal
.cz-iréﬁits. For symmetrical positive definite matrices Cholesky
dec;omposition is reconn_rxérxied. Negative rumerical values of s must be
used, however, (see section'2,2), and this may result ih the loss of
the positive defirmite property of the nodal admittance matrix, whiéh
ex’sts for posifive values of sv.

The nodal admittance matr:ix is usuwally fairly sparse, in suc&: c.ases
the Gauss~Seidel method is recommended, This would be particularly
attrac-tive since the mumerical value o-f s 1s altered only a little each
time, ard sfter the first iteration, a good ;et of starting values would
be available, This method does not give the determinant value as well
as the.imrerse, so unfortunately its advantages could not be used,

The conclusions reached abore led to Gaussian elimination being- '

. used, No pivoting was used, so that the symmetry of the nodal admittance
matrix was kept and this resulted in a much faster computation time,

about half that ﬁsing partial pi\fgfing. There is the danger in using
this method of ﬁumexd.cal instability, but this did rot occur in thq
examples tested, In general use, partial pivoting should be used and
symmetry destroyea; |

To speedup thé programme, 2zero jumping was employed, i,e, if element

Yik is zero in the formila for Gaussian elimination,
) . : Y. Y :
Y =Y . -3kki

ij ij Ykk
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~ - _
g X AR X ¢ o o
X ® X ¥ o o
o] 0
(1) (11)
2rd pivot . 1st pivot

O 1indtial non-zero elements

X elements made .non-zero by gauasian elimination, amd

calculated thereafter, ard calculated using lst pivot

Optirmum Ordering of Nodes

fig, 2,2
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where Ykk is pivot, then mo calculation was done, sinc-e elements only
need be éalt:-ulated‘ﬁhen ,Yik = 0, This zero jumping can .be made even
more effective if the modes are ordered such that the column with the
fewest ron-zero elements is the la_st, ard the column with the next fewest
ron-zero elements-is the next to last ard so on, In fig, 2,1 when zero
jumping is used, the matrix in (1) fequires fewer operations than the
matrix in (ii). .
If the derivatives are required then the Crout LU declomposition can

be used as a small improvement over the simple Gaussian‘elimination, .only
those c.ofac‘tors corresponding to non-zero elements need be calc.ulated
this requires approximately (NL-M/3 + LNMZ + SHLM + NL2M) operations

compared with M.BM + l}mz operations for the simple Gaussian elimination,

2,10 Comparison of Various Methods of Amlysis
12, 16 17

Various séhemes have been described for using real ard
imaginary mimerical values of s different from that deseribed in
se_c'tion 2,8, Unfortunately therd are mo prec-ise formilae or examples
of these other methods published so it is difficult to know whether -
they are superior. |

The major alternative to the generation of the coefﬁc;ients oi_‘ the
retwork polyromials via the nodal admittance matrix is their gemeration
via the state variable formlatior: This altermative has the great
advartage that it is easy to extend it to networks containing ron-1inear
elements, It éan also givé more useful information about the perfonhanée
of the network, .The state variable matrix cannot be derived direc-‘tly
from the topological information as can the rodal admittance matrix,

Satisfactory methodsz‘3 1240 25 have been developed to produce the state
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variable matrix, even when degeneracy occurs, The state varlable matrix
bas a linear function of s on its main diagonal and all the other elements
constant, For this reason, inversion of the state variable matrix is

relatively simple, Me‘l:hczdsz3 °3

using the eigenvalues of the state
variable matrix to generate the coefficients of the network polynomials
have been described, . Whilst this method is more elegant armd produces
more information about the circuit, i,e, .its eigenvalﬁes, from the results
they quote it appears to take longer than the method described above,

ard to be less accurato for the same precision, Po‘ttlezu' states that
both ways of calculating the coefficients require approximately the same
mumber of operations, i.e. Nb, where N is the rmumber of elements, He
also states that_. fm his experience the values of the coefficients obtained
by using the state variable matrix is less accurate than that using the
more conventional wa;}, the nodal admittance matrix,

Various alternatives have been proposed to the above method of
obtaim.ng the coefficients from the rodal admittance matrix, Down526’27
descr:.bes a method which gives determinant ard inverse in s di'»ectly,
which, while reducing the rumber of common factors generated, aupears very
oomplicated He does not discuss large networks nor give the computatiom
“times ard accuracy. This makes it difficult to compare the methods.-

Director amd Rohrer »29 give a method using the adjoint network
which has close theoretical links with the method described above,

This method works both for linear and non-linear networks, but it requires
two circuit analyses compared with the method discussed. Ne11170+ 3
gives tﬁe bare bones of a method very similar to that discussed;

Goddard ard Spencev32 give a similar sc'heme for resistive networks but
neither give any détails of how to extend this to reactive networks nor
to gererate all the coefficients amd\derivatives {-mr 11, A 12 A

ard A1122 sirmaltaneously,
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Many aui.hor%”39have suggested the use of the general method of
mmerical differentiation to evaluate the derivatives of ‘the network
A polyrpmials. This uses the formula
f _ fxSx) - f(x)

dx 2x A

_ ox = 0.01x, say

needing N function evaluations fér N circuit elements anmd requires an
inordinately long time. The evaluation of the secord derivatives
requires g(N-i) furction evaluations, or N derivative evaluations,

The method described above requires approximately mx13/ 3+ 121
multiplications for the evaluation of all the coefﬁcients; N].BMIE + IMON
multiplications for the evaluation of the derivatives of the coefficien't.s
with respect to the network elemerts, and Mn3/2 + 2282 mzltiplications
for the second derivatives of the eoefficients with respect to the network‘
elements, compared with NL/6°MN+ UMN ard NLMN/2 + 2N miltiplications
using ﬁmci.ion differences ard derivati.ve differences for the first and
seciorrl derivatives, respectively., 1In eomparison with the method used

in section 2,4 this method is quite inaccurate,
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Chapter 3

OPTIMISATION

3.1 Introduction

As shown in Chapter 1, the techrmique of synthesis by coefficient

matching gives a set of functions (fl ---f These functions

)
are deperdent on the elements of the network, the set of variables,

'(xl - - - xN} ard the maltiplying co.nstant xo‘. There may or may not be
more irndependent functions than variables, To fird the valdes of the
variables which drive these functions to zero involves the solution of

- a set of mon-linear simultaneous equations, This problem has to be
solved by the use of optimisation theory, Optimisation ‘Eheory glves
one many standard techniques each having its own special advantages ard
field of application. Some of these techmiques namely those using the
derivatives of the func‘tio_ns with respec;t to the variables, were used to
solve these equations, The vectors. used in this chapter are column

vectors.

3.2 Basic Concepts

All the optimisation algonthms work by a process of iteration,
The” correction for each variable is.calculated from the functions amd
their derivatives with respect to the wvariables using one of the
algonthms. the variables adjusted by these corrections and the functions
recalculated If the process is working correctly, the objective function
will have been reduced. From the new set of functio_ns ard variables
arother set of corrections is obtained, and so on, The iterative
techrﬂ.q;ue of directed trial and error is the essential core of

optimi saticn theory,
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.From a prelimnary perusal of the problem it would seem not very
much more difficult to solve a set of mon-linear simultaneous equations
than to solve one non-linear equation in one variable, but a large
mmber of variables leads to the often quoted phrase of &Mn, 'the
curse of dimensior;ai_i‘l;_y'. This curse -takes the following forms,

The difficulty of compreherding the behaviour of the objective function
as eac.h variable is altered, ' It is only possible to ernvisage the
problem in a *false' three-dimensional picture, As the rumber of
variables increases, so do the rumber of minima, '!:he~ standard methods
such as Newton Raphson tend to break down with the increase in
dimensiomli‘!:y. " Lastly, the huge size of the hyperspace in whiciu the
mimmm mst be found, As an example of this last difficulty, if by
simple func‘tion evaluations at points in a grid, the mirdmum of a
function is to be fourd within 108, with a variable krown to be in the
range 0-1, then 11 function evaluations are heéessary, if the minmirmum
of a funcfion of 10 variables 1s to be fourd by the same method, then
lllo funétion evaluations are required, The 1nc.rease in the mumber of
minima as the dimensiomality is increased is not such a dilemma in this
_problem as in other problems, since, by definition, the objective
func;tion is zero at a global nﬂ.rzim:\\u’:\. There may be many of these
nﬁxﬂnﬁg this implies that even for a fixed network topoloéy there may
be many-differeht realisations each with different values for the network
elements, In addition to these perfect realisations there may be,
engiheering 'quasi realisations', .(i;e. the objective function is small
ernough for praéti'cal purposes), - In addition, there are often many

'false' minima with a nearly zero gradient vector but with an objective

* The minimum with the lowest value of the objective- function,
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function far from zero, Nevertheless, the additional minmima may cause

the optimisation process to break down,

3.3 Selection of the Objective Function

It would be preferable to solve the set of non-linear sirultanequs
equations as a set ;af equations, with no extra cofnplication, but it is
soon fourd that tle ﬁlues of certain functions are increasing whilst
the values of others are decreasing; so it is necessary to have an
overall measure of whether or no;l: the optimisation procedure is éonverging.
This requires the use of an objective function which enables a measure
of the @mergence to be mé.de. The optimisation procedurs is row
c.onc.erned wi:th the reduction of this objective function, The
functions can be 'positive or negative amd this leads to the following
defiritions for the objective function, |

1. N ~
F= gi (g )" | 3.1

where m is even, the sum of even weighd powers of the functions,

2, N5 :
F=2Z: heg |l N 3.2

the minimax formulation, -

When m is large forrulation 3.1 is equivalent to 3.2, The weighing

in equation 3.1 enables certa'i_n i_’unctioris to be vemph‘asized by appropriate
c-hé'iée of weighing factors, The formulation in equat;’:.on 3.2 gives
diséontinqous functions, so its first ard second derivatives may or

may not exist, Hence direct methods not requiring derivatives must

be used, if this formmlation is required by the specifications.

Bown36 gives an effective method for dealing with this situation,

The formulation in equation 3.1 gives a contimous function anrd henée
there are no restrictions on its derivatives, The objecfive fun&ion

used was the sum of the squares of the function

N
2
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3.4 Constraints on Variables

A further limitation is necessary ﬁhen the synthesis is restricted
to passive network elements with no mutual inductance. 'fhe coefw
ficients of such netwcrks rust be generated by elements vwhich are real
ard hence positive in value. To constrain elements to be positive
the simplest solution is to remove elemenfs from consideratien once
they beceme negative; but an element ﬁhich has become negative during
the initial optimisation process"may become poeitive at some later
stage. To avoid this possibiiity a transformation-of the veriable
was emplosred. There are two popular methodslof eonstraining the
variables to be positive, the logarithmic transformation ard the squa're

transfomat:{on, 1.0, Yy == =7y is optimised where

y1=log*xi i=] weawesN 3.4
or ' yigxi'llz 1=lew=X 3.5

The logarithmic transformation of variables has the advantage of

automatic scaling for

?L_ g_._ belean 56
Yy X ‘

but unfortumtely as x, —> 0 yi——,— - 0o which causes mmeri.cal

. difﬁ.culties. This necessitates the removal of network alements
with some finite value and diseontimzity in the valus of the objective
fu’hetion. Nonetheless it works ~well.37’ S4Because of these numerieal
diffieulties the square transformation of variables was used,

Penalty 1’\11'u_:.tionl_’_3 method of constraint were rot censidered as being
unnec-es',sarily ceniplicated. Uni‘ertimately these transformations
usually distor’t.the objective function response surfaee and make

optimisation more difficult, They may even introduce false minima,

3.5 Direct and Gradient Methods of Search

There are two basic groups of methods which are ‘used in tackling

the problem of optimisation, -The direct methods which evaluate the
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function at a set of points in a pattern in space, and from'the value
of the objective function at these poirrts judge in which direction to .
move so as to reduce the objective function- and those methods using
derivatives evaluate the mnctions arﬂ their derivatives at a point .’m
space ard from thts calculate a direction to move such that the objective
function will be reduced, The criteria for the selection of an
appropriate method are the rnumber of eperations‘ each method requires
to fird the global mirdmum from the same sef of starting values, the
ability of the method to corverge from a range of starting points,

ard most important whether the method %:pl work with the problem as.
specified, Both direct and gradient)find the minimm in a small-

rart of the total space ard once this is found, move into space close
to the origi.ml space amd repeat the process everntually cenverging to
a mrimm, The general opimon’®’3? expressed 1s that the direct
methods sueh as Simplexuo Pattern Searchul, 1?.f.)senbrc>c:kh'2 are good

for those problems where the derivatives do not exist or are difﬁcult
to fird and when the rumber of variables is not too great, for examrle,
less than 10, but that if derivatlves are readily available, then the '
- gradient methods give faster convergence to the solution., Also
gradient methods contime to work well as the rmmber of va;-iables is
increased., The methods used are the gradient methods since the

gradients of the function are readily available,

3.6 Levenberg Algorithm

The gradieirh methods are based on the expansion of the objective

function in its Taylor series; using various terms in the series gives

" *  MNumber of operations here is taken to be the rumber of

multiplication, divisions, ete. performed on a computer,
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different algorithms, In vector form the Taylor series is given by
F+5F = H(x+$x) = F+ G'Sx + '1/25;:11 Sx+ wa = 3,8
where the prime refers to vector transbosition and S'x = §x1 G wom X
the vector of small changes in the variables, G' = -%'—F - - }—F

| ~ N | Xy
the gradient of the objective function F with respect to the variables
g.nd H is the hessiafx; 'yi.e. the matrix of the second derivatives of

the objective function with respect to the variables,

4
H= .

The steepest descent algorithm tukes the first two terms of Taylor's
series, This assumes a linear representation of the func-tion whicil
c;anmt give a mirdmm, if a further term of the Taylor series is
taken then the function has a quadratic representation whicia has a
i rd mmam,

F+ OF = A(x+3x) = F+ ' Sx + 1/28;11151: 3.9

- If this representation is différentiated ard put equal to zero, then
its minimum is given by ‘

o = SHOX = =

i.e. Sx = =H'l6 3.10

where as before x is the vector of corrections, G is the vecf,or of
gradients ard H the hessian, Fletcher amd Powell shofvé%hat if a
matrix such as H has a positive deﬁn:lte form and if a linear search

is carried out at each iteration then convergence is assured for a

quadratic function,

Thus this algorithm can be modified to be
Sx = -eff'lG ' 3.11
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vhere Qis the linear correction factor,
This method gives thg'solution of a set of quadratic equations in one
iteration, see fig, ;;1, so the method is quadratically convergent.
This means the final convergence 1s very rapid since most nonelinear, -
func.tions can be Q;;pmﬁmated by a quadratic very close to the rdrimum,
To find the rate cf‘ct-anvvergence of the Taylor series algorithm its
behaviour in the vicinity of a mimimum should be examined, . At a
mirdmm G(x) = 0 H= Hn:ln using. a Taylor series expansion about x
o(x +8 x) = 6(x) + F(E) 8x
H(x + §x) = H(x) + F*(c)Sx
vwhere € is c;ontained in the interval x to x + §x and since
-_-\_11‘2 = VF(x) and H =§;%;c-; G at the mirimm G, 1s related to G
at the ith iteration Gi by

G n=G:,'_+l'*"'(€-.)(J::,L--x.)==()

mi min
am Hi is related to Hmin by
= y (c -
o= H o+ M(c) (AX:I. xmin)

so the error in X1 is related to the error in x; by

Xmin = X341 " Fmin ~ %5 < QaFiG

using equation 2.9

xmin

’ | - M-S (x| = %y

Hence this algorithm has second order convergence, These argumenté

e X

1y = (T+ @47 Hy ) (X = %)
)2

make this method very attractive to use especially in synthesis by
equating coefficients when the hessian is fairly easy to obtain, see
section 2,6, But the convergence of the Taylor series algorithm is
not assured unless the hessian is positive deﬁxﬁté. There is m
guarantee that this will be so in the general case or in the method

of matching coefﬁcien‘l;s.
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-

wuadratic Function

using second order terms in Taylors series

V.~ start

- | ;"I

using first order terms
in Taylors series

solution

Convergence of Second Order Cptimisation

fig. 3.1
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.If this method is applied to the solution of an objective function

formilated as the squares of a set of functions, then

F%f gff

2F N,
Sfli: 2% febx
i
In vector form
G=WVF=2J'f

%3 _zzNﬁbﬂéf ¥,
Iy~ &L 3% egxi},j

In vec.tor form, if secord term is neglected
H= 2J'J |
If the secord term is neglected then
Sx = ~1/2(8'9)" 1
ard the Taylor series algorithm becomes ‘
Ox = «1/2 (329" N(2001) = ~(300)"1(av8)
This is c;alled the Gauss algorithin, A linear search may or may not
be used, If the rumber of variables N is the same as the rumber of
func'tions, then this becomes °
Gx = wg™1t
the Newton Raphson algorithm, .

Since a matrix times its transpose is at least positive semi-
definite this algonthm assures convergence for the quadratic function.
This algorithm tends to oscillaté far from solution, i.e, the
norrecfions :bo the variables alternate in sign each iteration; to

reduce this effect Lev’enbm‘gw’,u8

introduced the idea of adding a
constant term to the diagonal, i,e, adding an arbitrary steépest

descent correctlon,
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The Levernberg modiﬁcétion glves

ox = (I + Wy ger | 3.12
wheré W is the 'damping factor' and T the umit matrix, In the
original ‘methods /\2 was chosen to limit the vector of corrections

such that the Tayi&rs series approximation was not invalidated,

i.e. ‘}2 = _‘_‘Z_;_i_‘|= lg—‘

where r is the radius of the region of validity, . To estimate the

value of r is a ﬁfﬁ@t task, though various estimates of it are

available.so As '}2 is inéreased the other terms in thé inverted

Jachian become imsignificant amd the algorithm tends to become the

steepest desc.ent algorithm _ |
 Sx=- 3.13

X

The steepest descerr!ﬁ38 algorithm is effective far from solution,

As Az is decreased it becomes insigrdﬁc;,nt compared with the
other terms in the jacobian, The algorithm terds to become the
Newton Raphson algorithm

Sx==(3'9)°1 gog 3,14
This is particﬁlarly effeétiveBB close to solution,

As D2 is changed the tip of the correction vector marks out a
splral in spacé as shown in fig, 3.2, This means that this method
isﬂ f;bust and converges both far ‘a‘way ard close to solution without
having to change algoﬁthms for these different situations; the
difficulty is the choice ofl }2. After trials of various methods

of finding the best value of 7\2 to use, it was i‘bund most effective

to choose the time consumhg method of a linear search at each iteration,

3.7 Linear Search
A 4

The theory of linear search methods ~ assumes a urimodal function
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path of linear search
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Levenberg Algorithm

fig. 3.2
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in this applicetion this is not the case, Multimodality occ.urs
beceuse of the reasons stated in section 3.2 am because a *linear
search' in the .>\2 for Levenberg algorithm rotates the direction of
search,. hence a urimodal surface may appear multimocal in the linear
search phase, -

There are two basic methods of dealing with this problen, either
| ignore the multimcdality ard proceed with the standard methods, or to
attempt to find all the minima thet occur as X is varied by applying
soxce kKind of comb seatrchs3 and selecting the best of these, This
latter method implies varying >\2 from zero to infirity, an apparently
very difficult task, 1In fact this is mot so difficult with the
Levenb*lsrg algorithm since if >\ is increased beyord a certain level
the corrections become mirute (see equation 3.12) or if \ is reduced
below a certain level its value makes mno difference to the corrections
(see equation 3,13). The size of comb necessary to fird all the
mirdma in the objective function as AZ 1s varied is difficult to
decide.. In practice, the comb was made smaller and smaller until

it pd..c.ked up no rore minima. Tiis seemed to vary little from example
- to example, providing the unit of >\ was taken as the mean of the
trace of J'J divided by its order squared, i.e, >\2 had urdts of size

T{J'J
N

As \2.40 or 06the correction became insensitive to its value, The

a0 -

comb to be efficient must take account of this and use a geometric
progression, Two methods were tried,
l, Doubling the size of )2 until a mirimum was bracketed, storing

this ard so on'until the corrections became mimite, Then halving
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'}\2, storing each mirimum fourd until the corrections remained unaltered.,
Then each of the best minimum fourd was‘refined by a quadratic '
search,

2, Dividing the total interval between the two lirmits of >\ into .
sections between adjacerrt powers of 10, i.e, 10~ to 10 3 1072 to 1072
etc. ard performirz a coarse golden-section search in each of these
intervals, A final more accumf,e golden-section search being performed
over the region contaiming the best minimum,

The first n]ethod z;equires fewer function evaluations but is only
suitable for contimous functions, whereas the secord method is
suitable for discontimcus functions, |

This linear:-search phase is the most expensive in computer-'l‘fime
of any of the processes described in the optimisation secfion; the
 symmetric matrix J3* + )T mist be irverted in addition to each
funétion evaluation, But a linear search was fourmd to be essentialj
other methods such as halving )2 each successful iteration and
multiplying x 4 each unsuccessful iteratioh were fourd mot to work,

Only positive values of )\2 were considered since (JJ' +'}2I‘~)is
positive, defimte ard hence all its eigenvalues were negative,

Taking negative >\ would be a means of finding the maximun, ?f'
the objecture ((’Vw\d-wm .

3.8 Alternative Optimisation Alzorithm<

Tests have been performed '3’ 45 as to the best formulation (see
section_';l;, 6) ard Sptirzﬂ.sation algorithn to use to solve the equations
generated by coefficient matching, Much work has been carried out on

‘this problem at the Uriversity of Leicester under the direction of
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Dr, Cutteridge, The formulation of the problem fourd most effective
is that given by equation 1,11, ‘This formalation is also found to
be the most effective by the author, The most effective optimisation
algorithm is fourd to be that of t_:on_jugate gradients with a switch to
the Newton Raphsonh algorithm closer to solution. This work was
rublished after the'éa:uf,hor had successfully ussd the I..ewrenl.'n?.rgh"’'lJ8
algorithm, When the Leverberg algorithm proceeded steadily but slowly
to solution, the method descnbed by Dr, Cutteridge was employed to

speed solution.

3.9 Optimisation Algorithms for Multilinear Functions

The c;aeffiéients of the network polynomials are multilinear
i‘unc;cions of the network elements, see section 1.5, Hencé this
property should be u.seml in developing.optimisation algorithms
5pec‘iﬁ.c. to the problem of éoefficient matching, Some methods
have already been described51 158 using this property. These are
univariate methods based on the identity

xf o =f + Sx'é—f:(; (exactly) = 3.15

where Sx 4s the variation of ore variable x, x_ is miltiplyirg
constant fkr required value of ooefﬁcient fk current value of

f
coefficient ard -S— the sensitivity of coefficient f, with respec‘t

k
to the network-element x,
It is shown .:’g.n Apperdix 8.5 that generalisation of the urivariate
optirn:lsatibn methods leads to opiindsation algorithms akin to the
Newton Raphson. This shows that the Taylor series anpro:d.mation is

particular]y valid for rmltilinear functions,
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Preliminary tests of this algorithm indicate that it produces fairly
rapid convergence particularly close to solution. Further
investigation is necessary in order to discover its range of

convergence and its efficiency compared with the standard methods.
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Chapter '+

Network Evolution
4,1 Introduction

Two basic methods of network evolution have been developed as
methods of synthesia‘;: They use the method of matching coefficients
as discussed in Chapter 2 amd utilise the Leveﬁb‘rg algorithm for
optimisation as discussed in Chafter 3. In particular, the method
utilising the growth (addition) of elements to the network makes use
of the facf that the method of analysis generates at little extra
@st the sensitivity of each coefficient of the network polynomials
with respec;l': to the virtual (zero valued) elements of all three kirds
and aéross all possible connections, see section 2,7. This enables '
the network topology to be altered in .the same manner as thé values
of the network elements, |

There are two basic methods of approaching the problem of netﬁork
evolutiohs one method9 is by taking a simple startirig network, whici_x
must fulfill certain basic requirements and which may or may not
- even have the correct netﬁork polynomial structure, and adding elements,
and perhaps nodes, to this network = umtil the required coefficients
are obtained, The other method>" is by starting with an overelaborate
strucfure which generates the required network polynomials, but with
mary excéss ®mn factors, and simplifying this network by eliminating
network elements, énd perhaps mdes until the required @efﬁcie@s
are generated by a simpler mtwoz;k structure, The following seéitions
diséus_s some methqu developed to :implement these approaches, some -

?
of the problems that occur and their solution,



- 6l -

4,2 Virtual Elements as Variables

In a general synthesis procedure every possible cornnection should
be considered, This gives, in addition to the multiplying faétoi-.
x s a set of N6 variables for Nl nodes, in addj;tioxfl togz:ference node.,
where N6 = NMI(NL + 1) for CR networks amd N6 = 3NM.(NL +1)/2 for LCR
networks, Most c¢f ‘ﬂ:mse veriables will be virtual elemerrt# 'a;ﬂ zero
in value, The rumber of equations to solve for these variables is
equal to the rmumber of- coefﬁciehts to be matched, N5; some of these
may not bs indeperdent, |
£1(x,0 Xy Xp = = = xy) =
£(Xy X5 Xy = = = Xye) =

o O

' ' 4,1
TpsXyr Xy Xpm = = Xpe) = 0
In general, there will be more vari_.ables than equations; that is,
the equations are urderdetermined, The rumber of solutions may be
zero, extra rnodes arnd common factoré may be required to acﬁm solution,
Alternatively, there may -be any mumber, up to an infinity, of solutions
or quasi solutions (rot true solutions, but close enough to be useful),
This is inherent in network éynthesis; it is well known that there
are, in general, many equivalent-and quasi equivalent.networks to a
given realisation particuiarly as the network complexity is ircreased,
Some optimisation methods such as Newton Raphson break down
with an urderdetermined set of equations; the jacobian isA singular
- and henc§ cannot be inverted; wheréas those optimisation methods
'seeking a minirmm of the sum of the squares of the I'-esiduals §f the

equations, such as steepest descent, will converge. In particular,

the Levenberz algorithm will converge to solution (with AZ large



- 62 -

this is equivalent to stecpest descent)., As AZ is made smaller
mmerical singularity will occur because the Leverburg algorithm is
becoming closer to the Newton Raphson algorithm,

Unforturately, in practice, with such a large nimber of variables,
solution is achieved very slowly, if at all, by optimisation,

For these reaso-ri; a sub-set of the complete set of variables
must only be considered to speed up convergence, - This could be. the
sub-set of variables cgrresporﬂihg to those network elements which
are initially non-;zéro. If the sub-set does mot contaih a valid
solution, that is,)it fails to converge to a satisfactory mirimum,
then the full set of variables must be considered ard arother sub=set
selecfed .It would seem sensible to delete from the sub-set those
' variables which have been driven close to zero by the optimisation
process and to add to the sub-set those variables ffith zero wvalue
which have the greatest temdency to go positive or which cause the
1argest reduction in the objective function.58

Real elements which are required to remain fixed in value or
| frozen20 in value because they p.ay little part in the optimisation
procéss are, of course, excluded from the sub-set of active variables,

The above process can be thought af in geometriec terms, The
full-set of vari;bles generate a function space contaiming no rdnimum
or many mimima, The optimisation process is confined to a eub-spuce
of the total space by the selection of active variables which are a
sub-set of the complete set of variables, Optimisation occurs in
this sub-spéce until it cannot proceed closer to a nﬁnimum. The

addition of extra active variables alters the sub-space until hope-

fully a global mimdmum is contained within the sub-space and a solution
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is obtained, Restriction of the optimlsation process to a sub-space
enables it to converge to solution in a reasomable time and makes

the synthesis viable,

4,3 Evolution from a Basic Startine Network

The evolutio;\ -9f.. a satisfaétory network from some basic starting
network must proceed through a mumber of steps, see fig, 4.1,
1. Selecting a starting network (see section 4.4),

2, Checking that this starting network has the correct network
rolynomial ;tmctum amd )if not, altering the network
oﬁrrespordingly. (see section 4,5)

3. Applying optimisation to alter the values of network elements
until further progress ceases (see section 4,5).

b, Altering the topology of the network by removing and addirg |
elements (see sections 4,7, 4.8),

5. Repeating the optimisation process until progress ceases, and
adjusting the network, amd so on until solution is achieved
ard the network generates the required set of network
polynomials or the process hasréached a dead end., When
this occurs, further starting networks must be tried, If
these again fail to evol»\,re to solution, the addition of common

) }‘ac;t,ors to the network polynomials and nodes to tl;xe network

has to be cbnsidered (see section 4,10, 4,11),

4,4 Basic Startihg Networks

There 1s a wide selection of passive starting networks possible

for a given set of network polynomials, though the selection is

fortunately limited by the s’ructure of the network polynorials,
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The engineer Ashould use a starting network that from his exper'_lehce
provides a response close to that required. On the other hamd,
the optimisation process works betfef the fewer the ﬁﬂables.
Where there is ro idea of fhe final structure, it ic best to sf.ar?t
with a simple structure containing the minimum mmber of nodes ard
containing the minimm mmber 6f irﬂuctors, capacitors and resistors,
The sfar‘ting retwork must be capable of generating network poly-
romials of the same degres as the required polymomials, This implies
that there are limjitations set on the mirdmum rumber of. nodes ard
mmbers of each type of component, For a CR network, the minimm
munber of nodes in addltion to the reference mode, is given by tw;:,"3

plus the maximum degree which occurs in the network polynomial

1122 v
For a LCR network, the mimmum rmumber of nodes is given by this

maximum degrees halved, plus an additiona]g:nds if the maximum degree
is even, or plus an additiomal '3 nodes if the degree is odd, that
is,
min (M) = myqpn * 2 for CR networks 42
min (ML) = entier (m1122' +1/2) + 2 for LCR networks
There is one less node for two terminal networks.
- - The mimmu:m mumber of capaci,;l&oré and resistors in a LR network
is given by thé minimum mmber of nodes mims urity, Each node rust
have a capacitor and resistor connected to it if these capacitors and
resistors are to be effective j{—a 6enerating the required set of network
polymmials. In general, the\corditions apply to LCR networks; the
mirimom rumber of capacitors and inductors is equal to the number of X

rodes mirus unity with a capacitor and inductor connected to every rode.
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In general, the rumber of trees gemerating the highest order
and constant term coefficients is smail, hence the geometric mean of
the capacitance, C in a CR network is given by C = A 12 (mlz)l/mIZ

amd the geometric mean of conductance is given by G = A].Z( 0)1/.’“12 4.3

where ma is degree of A

This gives some 1ndication of the suitable order of magnitude of
elements to put irto the starting network.,

For LCR networks, if the mmber of capacitahces is approximately
equal to the mumber of inductances, in a similar manner'it can be shown

that

| 2/m),
c=4 12{™ )

2/
F= 1/L = AIZ(O) m12 4.4

give suitable approximations for the imitial wvalues of the network

elements,

4,5 Correct Structure of Network Polynomials

The rough rules described iv section 4, /. concerning the
connection of componerrts are not concise ard analysis of the start
network may reveal the presence of zero-valued coefficlents in some
of the network polynomials that should be non-zero, and/or ron-zero
e;:effic;i.ents that should be zero, ) Consider the first case, the
zero cﬁefﬁcients may be made mn—zero"by introducing additional
elements into the nétwork. This is affected by the following pmcedﬁréa
attention is directed to a zero-valued coefficient that is adjacent,
in a given polynomial, to one whose value is non-zero, and the set of

its paitial derivétive.s with respect to some or all possible virtual
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elements .is calculated (see section 2,7)% a non-zero partial deriva*l:.iva
indicates that the zéro valued coefficient will become mon-zero if the
correspording virtual element is replaced by a real one of the séme.
type. 1In fact, 'by considering the partial derivative of nbre than
obne4 coefficient it’'is sometimes possible to similtaneously co;rz:ect a
mmber of these coéfﬂcients by the introducfion of only one element
(cee section 5.3). In CR networks, capacitors are added to the
network when working from low ordered mon~-zero coefficients to generate
higher order coefﬁciehts; corﬂuétors when generating lower order
éoefﬁcients when working from higher order coefficients, The
éoefﬁcients of Alz are given priority with consideration given to

the effects on the zero-coefficients of B A 5y, Do which
should be non-zero, when a choice of possible connections is available,

It is sourd policy to prohibit, as far as possible, connections
between external modes at this stage as the encouragement of the
growth of @mctions between internai nodes has been observed to
speed up the evolutionary process,

The reverse process is used to make zero coefficients which are
ron-zero, Working from the outermost mon-zero coefficient which is
requ;lred to be made zero, the s'ej; of its partial derivatives with
respec£ to real eler?xenrts is examiné,dl ard those network elements
removed which eorx/‘espon:i to mon-zero partial derivatives,

It is possibleﬂthre above processes conflict as in the case shown
in fig, 4.2, '

When the evolutionary process calls the removal of G, to make

the coefficient.Alz(_o) zero no problems are caused since this also

incidently makes Au(o) and A 22 (0) zero, which is correct, But
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removal of G.'. to make Alz (2)zero and give the correct network

2
produces j:rpblems for it also makes Alle (l)a'nd_ Azz(l) zero when
-these coefficients should be non-zero, There is o connection which
will make An(l) ard A22_..(1') ron-zero whilst also keoping'Alz' (2) zero,

.Thus there is a conflict between the two processes, In such cases,

a different starting network must be considered, .

4,6 Criteria for Local Mirimum

As stated in sections 4,2 ard 4,3 some decisidn mist be made as
to whether the current optinﬁ.;ation phase with this specific subset
of variables can proceed m closer to solution; convergence hés
virtually ceased and a false mirdmum encountered, The followirg |
pheromenc;'i ére expected at a minimum, the objective function ard the
values of the variablés are changing, only slightly,at eaéh iteration
and the gradient vector is very small,

The difficulty is in deciding how small the gradient vec;tor
should be; a large amount of computation time may be wasted driving
a igradie'nt vector closer to z2ro with very small changes in the values
of the variables, Often the convergence may slow down as a mirdmum
.as it is approached, This pro‘cess must be distinguished from the
plateau convergence whicl'; often occurs in the middle of the optimis-
atit;n-phase, see fig, 4._3.‘ It is also possible for the vector of
connections generated by the Newton Raphson algorithm to become
orthogonal to the direction r;\f steepest descerz'c.s;5 tixis prevents further
convergence though a mimimum has not been reached,

The wl;c;le situation is aggravated by the difficulty of scaling

the program to select a minimum when it has to work with each synthesis
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problem involving such differences in the number of functions and
variables. The criteria selected are empirical; convergence is
said to have ceased when there is less than 1$ reduction in the
objective function together with less than 0,1* change in the values

of the variables” both taken over 3 iterations,

4.7 Criteria for Removal of Elements

When the evolution of a passive network is attempted its elements
must be constrained to be positive; if optimisation is attempted
without such constraints, some O}t’y\?;riables, though initially positive,
may pass through zero to become negative giving an unrealisable solution.
Square or logarithmic transfoivnations are ways to constrain the network
elements to positive values, see section 3.4, By this means a
variable which is attempting to become neg)a‘s;ive"o a Vaﬁle close to
zero.

Obviously a variable which has a much smaller value and gradient
than the other variables is not playing a useful part in synthesising
the network functions. When a minimum has been reached (section 4,6)
such an element should be removed in order to reduce the number of
variables and speed convergence. The trees generating each coefV
ficient of the network polynomials contain sums of products of the
network elements. If the trees containi the near zero element
make a relative contribution to a coefficient less than its required
relative accuracy then the element can be removed without a»y significant
change to the coefficients of the network polynomials. That is”if

Y < Yy ACC 4,3

IS
where Y* is value of near zero element, Yj“geometric mean of that type
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of element and ACC is the required relative accuracy in the coefficients,
thtar should be removed. In practice, this criterion worked very
well,* the objective function either remained approximately the same

or was reduced on the removal of the element,

With a logarithmic transformation it is found that the
connections, in attempting to drive the logarithm of a near zero-
variable closer to zero, become so large as to cause numerical
difficulties. This requires variables to be removed before a
minimum is reached, often causing an increase in the objective
function. For these reasons a square transformation is used.

This enables the method described above to be used to remove near

zero elements from the network,

4,8 An Algorj.thm for Select!n? Elements to add to fetwork

If the evolutionary process works primarily by the addition of
elements to the network,\a criterion must be devised to choose which
of the many virtual elements to add. Of all the .tasks that face a
designer of a program for synthesis by evolution this is the
greatest. Once a vi.rtual element is bought into the set of real
elements it must have the offset of producta worthwhile reduction
in the objective function and not being driven almost immediately to
zero by the optimisation process,,. To choose among the virtual
elements, when a false minimum has been encountered, the only piece
of information that is directly available is the sensitivity of each
of the coefficients of the network polynomials to each of the virtual
elements, depending on its type and location. It is how this

information is used that leads to the various algorithms for growth.
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Since th9 Leverberg: algorithm was used in the optimisation phase
to alter the values of the network elements,it would seem sensible to
" apply the sa;ne algorithm to the complete set of variables for one'
iteration and to use it to select which virtual elements to add to
the sub-set of real-elements ard w;hat value it should have,

Neither a logarithmic or square tranéfomation can be used to
keep the real variables positive in this phase; the zero valués
virtual elements canm? be used in these transformations, é;ee equations
3.4 amd 3,5, For this reason the réal elements are kept fixed in
the growth phase, )

The growth algoriﬁhm developed is as followst  the Levenbérg
algorithm is used in the domain of virtual element variables for a
mmber of positive values of the Leventerg damping parameter >\2, .

A very wide range 1s used as discussed in section 3.6, The vector
of c&rrec;tions to the variables 1s calculated for each of these
values of )\2 and the components of the vector having the ma:dmum
positive values are noted, | These particular c;:mponents, cﬁrrespond-
ing to a positive virtual element, are then incorporated with the
fixed value elements, ard the objective function caluﬂated, see‘
section 3.3. This objsctive function, as a function of A 2, is
usually discéntinuous ard multimo_dfl since, over the wide range of
>\2 used, diffefent components of the correction vector possess the
largest positive value., A golden search with logarithmicv intervals
is used as described in section 3.7 to find the minimum specific
_corrections, i.._e. its type, place in network and value,

It is fourd in all the examples tested that adding more than

one element at eaéh stage dic. mot speed up the process but,in fact,
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tended to lead t*s"“tworlg with a large number of elements”“which did
not fulfill the specifications. Hence only one network element is
added in each growth phase.

Elements which had just been .removed are prohibited in the growth
phase to prevent cycling. In practice, this prohibition has never
been found necessary. The criteria also hens to ensure that the
addition of network elements does not lead to an unsatisfactory
network polynomial structure. Again, this has never occurred.

There are serious drawbacks to this growth algorithm; all the
coefficients and their sensitivities are treated as a whole, while it
may be that individual coefficients may be in much greater error than
the majority of the other coefficients”“he algorithm calls for the
repeated inversion of a high order™ NJ. (N1 + 1) for a (R network”
matrix which is slow and inaccurate, particularly as the number of
nodes is increased. One way of reducing the effect of thése draw”
backs is to tackle the circuit step by step. This following strategy
is found to be successful,

1, Consider only elements connected solely to internal nodes or
internal nodes and ground, leaving all other elements fixed.

In optimisation and growth phases only the network polynomials

-N22 "A1122 considered,

2, After several cycles of the first condition”elements connected
to the output node 2 are included but those connected to the
input node 1 still excluded. The network polynomial is
added to *A1122 consideration in the optimisation

and growth phases.
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3. After several cycles of the second ooniitions, all elements

ard coefficients are considered as in the stardard case.

4,9 Other Growth Algorithms

| The first of the published a'lgorithms for growing additional
elements was that of Director and Rohrer56'57 , Who considered
the frequency dorain, The method they described was not a gmneral
synthesis procedure, but consisted of growing elements in specifie
placés in the network; The algorithm they proposed was based upon
the steepsst descent algorithm, This method has the advamagés
of steepest descent, working for underdetermined equations and c§_n-
verging far from solution, It also suffers from the major defect
of the steepest descent algorithm;— as the‘metr:i.c of the variables
is altered so does the direction of steepest descent ard hence the
cﬁoicé of element to grow. The Levenberg algorithm has automatie
sc#ling properties( unless AZ is very 1argé) ard this problen
does rot occur, |

Subsequent to the developront of the algorithm described in
secfion 4.8, Cutteridee, using coefficient matching, described an
algori.thm58 akin to the Newton Raj)hson 2lgorithm amd thus- the
algorithm described in section 4,8, This algorithm has been used
very succ‘essi‘t:t'].ly'.,37 it is é I‘\;l:ch more efficient algorithm,
requiring a'pproximtelyﬂﬁ\ig operations for one iteration compared
with approximatély. 5I'yléoperations for the Leverbgrg algorithm,
Bec;tuse it does ot require a linear search to cancei out the

effects on the element to be added to the network by the other

virt{lal elements:
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Wright recently described work , on pole-zero matching and in
Wt

the frequency domain” which attempted evolution bothprimitive starting
networks and from over elaborate networks. He used interactive
methods and achieved some remarkable success in synthesis of a“nodo”o
element network, primarily by network reduction. On the specific
examples, where the evolution has been successful using coefficient
matching he found the methods he had developed, to be inadequate.

Obviously, further work is necessary to flnd\various strengths and

weaknesses of the various methods.

4.10 Addition cf Fact+”rs to Aclyn?id.als

Standard methods of synthesis of networks which exclude mutual
inductance,such as the Bott Duffin procedure, generate excess factors,
that is, the network polynomial under these conditions is rot realis-
able by the network with the minimum number of nodes, see section
4.12, When the evolution procedure in section 4,3 has been
unsuccessful for several different starting networks, it is
likely that the required set of network polynomials are not realis-
able |[rith. the minimum number of nodes”in a similar manner to the
standard synthesis procedures. It is then necessary to use common
factors in the network admittances; corresponding extra nodes must
be added to the network generating these modified network polynomials.

Example; for a two”terru.nal network see section 1,4,

a § ——— a
mil 0
X*Cs-AM)(s-A™) - - - (s-AN)

where a - - - a and b . - - b are the coefficients of the
n 0 mil 0
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polyromial A ard Au respoctively with Ay~ - ~ A ard Bi= = - B

‘the correspording roots of these polynomials, If a common factor
-is.added (s + C) then,
x (stA)(stA;) - - = (s+A )(s$+C)

_a sm*']+Ca'+‘a 1 S 4 - = = Ca

or y=_m m- o - L.y
ml1+1 il e
P11 FPpytPyy s Tt - = = O

whore (s+C) is the common fﬁqtc;r that has been introduced into the
admittance, For three terminal networks corresp;)rxiing modifications
are generated in their admittance marameters, In CR networks only
common factors in the form \S+ C) (C is real) are permissible in order
to keep the poiymmials of the form positive real functions, 1In
LCR networks common factors of the form (sz+D)( D wholly real\ and
the form s2 + Cs + D are also permitted.
Since the miltiplying constant x, is'obtained by putting

BF/B X = 0 and using that value making the objective function a
minimum, see section 1,6, a similar method is used to generate suitable
values for the excess facto*s. To enable this to be accomnhshed in
a straightforward mamner, it is best to find the excess factor in
explicit form. This means that the formmulation in equation 1.9
| mist be used or tho formilation-in equation 1,10 modified to

L4
fe = -1'+ fk}‘ .}CO bf-S
T
' o
where fkr is the modified required network coafficient fk ka r+i‘k ~1
from equation 4,4, The optimum value of the excess factor is given

in apperdix 8.6.
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4,11 Addition of Extra Nodes to Network
tha
Complementary to&adding,\common factors to the admittance

parameters of a network is the addition of extra modes to the
network, There are several methods of adding extra modes to a

neimrk.

1, Existing network elements can be split in two and the extra
node incerted in such a manner as mt to alter the network
response, some suci equivalents are shown in fig, 4.4, The
resulting network can then be checked to ensure it produces
the required modiﬁ.ed network polynomial structure,

2. Ina CR network a unit capacitance ard a comuctance e'qualv
in yalue to the excess factor constant are connec{ed between
the reference mode and the extra mode ard a further element
is grown from node 1 in the network to Vthis extra mode,

This generates an extra factor of the form (s+C). Since only
rode 1 is involved it can be shown that,

A |
;—= Sn s” 4.6
Yim+1

where s the polynomial under consideration amd Y is an

admittance connecting mode i to the new node Nl+1, n= 0 if

Y'is
Y is a corductance ard +1, 1f)\a capacitance. This generates

S F SF __3F
3G ma1’ G mn % w1

a vector of possible additidns,

the largest negative .value of these 1is chosen,

Similarly in aaLCR network, a urnit capacitance and an

irductance, the reciprocal of the common factory will generate

an excess factor.of the form (s +D), similarly for (s +Cs+D) .
3. ‘In a CR nét;rork, a capacitance is grown from node i to the

extra node and a conductance from node j (j¥1) to the extra

x;nde. It is shown in apperdix 8,7 that, from the sensitivity
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point of view, this is equivalent to adding a capacitance from node
i to node j. Node i to reference nocde is equivalent to a capacitance
from node i to the extra node with a conductance from the extra node

to the reference ncde.

il . E = = S( .. *t handiR < JFRRNN -g .)
° 205 N14q aGj N1+1 B"Cj N1+1 éGi N1+1 ii o 7§ ij ji

}'2 A i BZA
205 jad%a M Fra M4 3% min

4.7
vhere N1+1 is the extra node.
This last result enables the methods already developed for growing
elements to be extended to growing nodes without much modification.
Consider a CR network, having generated the matrix of sensitivities

of each coefficient f, toeach C,, as when growing elements, the

k ij
following method is used to find the values of the capacitance Ci
from node i and conductance, Gj from node j to the new node N1+1 and
the corresponding optimum values of the multiplying constant X and

the common factor, C.

If the formulation given in equation 4.5 is used then

]
£ =<1+ b % 4.8
r £ \

1
where fkr is the required coefficient modified by the common factor
as in equation 4.4, that is,

1
fkr = fkr * C%&r—1

1
and fk is the current value of the corresponding coefficient generated

by the network including the extra nodé\ Cy and Gj'
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By equation 8.42

1
;K = ijk + sOifk_1 + 80, ijlgk 1 |
T
X " :k
where ﬁk, current value of coefficient andeijk =XC.
(given by equation 8.37) are in terms of the network before node

growth, If x 1is given its optimum value, then from equation 8.28

o
t
<
= er
$
b4 "&’fk
ON f'f')2
= kr' °k
giving
ﬁ%i kar * f'1{1'--1)2
fl
=\
F = 5= "Gttt 4-9
Z (—g—=h
k=i k

C having iés optimum value, given by equation 8.31

C = AZ - BY
BX - AY

whépe A,B etc. are as defined in appendix 8.6.
When fﬁ is replaced in equation 4.8 by its value given by equation 8.42,
the objective function is now a function of Ci and Gj onﬁj.

. NS Of, - f

kr = “kr-1 %2
o) C.f_ . +Gf +C.GEIT_
F=0N5- i k 1 - ik i3 i3k=1 4.10
d ( — k= )2
ezt Cafe * G * CiTin T

The values of Ci and Gj’ for each combination of nodes i and j, giving
the minimum value of F can be found by the method of conjugate gradientsAé.
This is simply accomplisued since it is ea@u to find the gradients

2 F ,2 F from equation 4.103 C and x, change correspondingly.
YN 25G
Putting tnese vahes of Gi and Gj into equation 4.10 gives the

minimum value of F for that combinatiori. The combination of Ci and Gj



giving the minimum vaiue F is then selected. The final stage of tnis

58 for growing elements.

method is similar to that developed by Cutteridge
This method is easily extended to growing nodes which will
generate common factors of the forms (82 +D) or (sz+cs+D)

4912 Evolution by Network Reduction

A procedure has been developed for network evolution by reduction;
this works from a network reslisation which though generating the
required set of network polymomials, contains many nodes in excess of
the 'minimum!. In particular, the procedure is applicable to 2
terminal ICR networks where the realisation has been generated by the
Bott Duffinéo or modified Bott Duffin synthesis.61 These realisations
are knowvn to generate many common factors in the network admittance,
gome of these may be redurdant. These redundant common factors
correspond to nodes which can be removed without impairing the potential
of the network to generate the required set of network polynomials.
The excess nodes, of course, bear the penalty of corresponding extra
elements.

The procedure developed consists of several steps, see fige 4.5
1. The starting network has the topology generated by the Bott

Duffin or modified Bott Duffin synthesisAbut with the element
values altered, say, to all 1's or all 10's. The, coefficients
of this network are matched to those of this network with the
correct element values. ,l .

2. Optimisation is applied to the above system using the Levenberg
algorithm, as described in 5.6 with a linear search at each
iteration using a ‘quadratic apprgximation, see section 3.7.

3. In general, one or more of ﬁhg‘network elements are driven to
nearly zero (an openm circuitf;;gée section 4.7 and/or to a very

large value (a short circuit).  \An infinite admittance is given
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fig. 4.5

. Network Evolution by Removing Redundant Common Factors
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in a similar way to a zero one, see equation 4.3. That is,
Y>> Y/aCC  4.11
This may, and usually does, lead to the elimination of one or
more nodes.
4+ By the comparison of the network.polynomials Just prior to
element removal, with nearly zero elements, and after element
removal, the excess common factors which have been removed by the
optimisation phase cﬁn be ascertained. Moreover, this process
is assisted by comparing these with the required unaugmented
and fully augmented network polynomials; this removes from
consideration the original factors which must continue to be
generated. It should be realised that the neté%k polynomials
generated by the network whose elements are near zero, are
ﬁsually not very close to those required; the roots of a
polynomial are fairly sensitive to the wvalues of its coefficients.
" To.illustrate this process consider the following example; the
.admittances are in factored form, with rounded values to aid
comprehension. | |

Required admittance is
_ A (542.2)(s40.14541.1 412
YRR T %sm.egésn.mz.eé)
The admittance generated by a modified Bott Duffin synthesis

containing essential and redundant common factors is

_BD  (642.0)%(5+0.67)%(5+0.16) (540.14+11.15) (8+1.1%41.2)
VIR T (5%0.6)(6+0.67)(5+40.16) (s+0.14231.15) (s+1.1431. 2) (5+2:2)
413 (8+1.7+32.66)

Starting from all O.1s certain elements are driven to low values

by the optimisation process. The objective function becomes quite

small, approximately 1073,  The admittance is now



-85 -

_ D (5+0.55)%(540.18) (540.1231.0) (5+0.13%§1.23) (5+0.95%41. 31) X
Y ERAT T (540.55) (5+0.17) (540, 57450, 57) (5+0.11+31.23) (42.6+31.2) X

(s+2.5211.16)
(s+1.24+32.63) Lol

When these elements are made open circuits then the admittance

becomes
+

oA (s+0.121.0) (540.1351.23) (5+0.957=11.3) (s+2.51411.16) 415
TEDBL] T (s+40.57£50.57) (s40.11431.23) (+2.6141.2) (s41.2422.63)  *°

Comparison of equations 4.14 and 4.15 shows approximate common
factors removed of (s+0.55)2(s+0.17). Examination of equation 4.13
shows that these common factors are exactly (s+0.67)2(s+0.16).

The factors of equation 4.12 must continue to be present in their

corresponding polynomials if the process is working correctly.

5. Thése excess common factors which have been found redundant are
then removed from the network polynomials of the Bott Duffin
realisation and the reduced network again perturbed to all 1's
or all 10's and the process repeated until solution is obtained.

- It should be noted that having all 1's etc. for the network
elements is only an appropriate starting point when the element values
of the realisation have.all been normalised , + In these
circumstances, it is found that when starting from high starting
values, such as all 10's, the redundant elements tend to high values,
that is, short circuit, and that when starting from low startiﬁg
values, such as 0.1's, the redundant elements tend to very small
values, that is, open circuits. Hence as the process: proceeds it
is a sengible strategy to alternate between high and low starting
values in each cycle of the operation so as to encourage Fhe
appropriate short and open circuits.

It is difficult when manipulating polynomials to obtain

satisfactory accuracy; the following methods were used to improve this.
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1. Prior to finding the factors in the polynomials, these were
normalised by puttingl¥1(m11) = 1.0

2. It was found that the standard subroutines using the Newton
Raphson or Bairstow method often require 'magic' numbers and
either failed to obtain the roots or were quite inaccurate.
A polynomial root finding procedure described by Garside,

63

Jarratt and Mack ~ was coded and is found to avoid these
difficulties.

3. Double length working is used in all the manipulating of
polynomials.

4. Hornerh nesting rule is used for the evaluation of polynomials,

and the multiplication and division of polynomials is carried

out from both ends.

413 Comparison with Other Methods of Reduction

A method of evolution using coefficient matching to synthesise
3 terminal RC networks and starting with a network generating many
excess common fadtors and elements or excess elements has been
described by Cutteridge.54 This method is very similar to that
degeribed in secuion 412 which is really an extension of the RC
netﬁork case. A very effective method for reducing complicated
equivalent circuits, working in the frequency domaiﬁ, has been
described by Spence.62 This method short circuits and apen circuits
each element of the equivalent circuit in turn and those elements
altering the response less than a specified tolerauce are removed.J
This method ie crude, but is simple and works well. Wright has
described a network reduction/growth meth&é' working in the

frequency domain and starting with a network containing more elements

than necessary to achieve the desired response. The method used is
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primarily interactive, using the experience of the designer. Thesge
methods have been applied to such different situations that it is

difficult to compare the efficacy of the various methods.



Chapter 5
EXAMPLES OF NETWORK EVOLUTION
5.1 Introduction

Network synthesis by evolution is essentially a method of trial
and error which is only possible because of the availability of the
modern high speed computer. Synthesis by evolution is an amalgam
of methods of analysis, which can be verified in the usual manner, and
semi-empirical criteria which are based on a knowledge of network theory
and experience. These semi-empirical criteria cannot be verified
with complete rigour but must be judged by whether they work with
practical examples. The wider the range of practical examples with
which the criteria successfully copes the more likely A to be
considered both valid and useful. In addition, it must be shown that
it is possible to evolve realisations from different 'reasonable’
starting networks. The realisations are particularly interesting
if they are not capable of being generated by the standard synthesis
procedures, for example, non-series-parallel networks. Thus the
computer must be used as an experimental tool to test the criteria
with different examples. The implementation of the algorithms used
in network evolution depends to some extent on the computer facilities
which are available.

A considerable number of examples of successful and unsuccessful
evolution have been produced. Not all these examples have been
presented in this chapter. The examples presented have been selected
so as to illustrate the potentialities and lim itations of network
evolution. A key to the figures corresponding to each example is

given in fig. 5.1.
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nil Element Values in Siemens
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residuals, see sections 1.6 and 3.3

Key to the Figures Illustrating each Example

fig. 5.1



5.2 Computer Facilities Available
Apart from some early work using the postal facilities of the

Harwell Atlas and the occasional weekend using the University of

Leicester Elliott 4130 computer, ‘*hands on!, the majority of the

results described were obtained on the Elliott 4130 computer of the

Engineering Department, University of Cambridge. This computer

facility was used in the batch mode, limited to ten minutes a week

and with no disc storage. To develop and 'prove! the empirical
criteria used in netwark evolution requires a considerable amount
of computer time, so without these limited facilities the pfogress
in developing network evolution would have been very siow.

The limitations imposed by this situation led to the following.

1. Though a comprehensive computer program haé been developed which
will carry out the whole evolutionary process, it took too long
to read in, compile and run té be useful. For this reason,
‘the results were obtained by splitting the program into two
phases, optimisation-re&uction and growth.

2. No interaction facilities were available and the experience of
the user could not be directly employed. - Though universal
criteria have been developed for such things as a minimum,
removal of elements, etc. these are not completeiy.satisfactory
over the whole range of examples, that is, 4~10 nodes, 5-16
elements., l‘

3. The number of examples whichxéould be tested in a reasonable time
was limited. Lo

v

|

5.3 Computer Specification Lo

The Elliott (ICL) 4130 computé: has 2 magnetic disc drives,

4 tape decks, line printer, tape readéf and punch and graph plotter.
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It has a 65.5k word store with a 2us access time. .

The Algol 60 compiler provided is better than the Fortran IV
compiler and since the author prefers to use Algol, Algol was the
computer language used. The programs used a series of Algol
compilers from ML19 to NL24, these give much the same efficiency
at compiling Algol into machine code. This computer is a medium
speed machine taking at machine code level, 79?8, Ast and 15‘ys
for a floating point division, multiplication and addition,
respectively. Thus wherever possible in the programs a series of
divisions by the same number is performed by reciprocation then
multiplying the numbers to be divided by the reciprocal. Since
an Algol compiler ensures that many running checks are made as
computation proceeds, e.g. whether arrays are within bounds, it
takés up to twice as long to run a program written in Algol, using
these compilers, as the corresponding program written in Fortran.

The word length of the 4130 computer is 24 Bits. It uses one
word to stofe an integer 80 the maximum integer that can be stored is

23-1, since one bit is used for sign information, this is approx-

Z2
imately 8x106. It uses two words to stbre a real floating point
number in single length, using 39 bits for the mantissa and 9 bits
fof the exponent. Hence the largest number that can be stored is

76 and the smallest 7.8x10770,  The length of the mantissa

7.8x10
before round-off is approximately 12 decimal places. The registers
in the central processing unit have a capacity of approximately 15
decimal places before round-off occurs.

The times quoted are the simple run-times of the evolutionary
process and include the substantial amount of time required for the

print-out of the current state of convergence and other useful

information.



-92 -

5.4, Implementation of the Evolution Algorithms

The process of synthesis by network evolution using coefficient
matching depends even more on a fast accurate analysis section than
the standard network synthesis procedures.6 The results obtained
from examining the speed, flexibility and accuracy of the analysis
section (gsee Chapter 2) developed by the author in conjunction with

8,33

0.P.D, Cutteridge have been published7’ or are to be published.18

So as to save .space they are not presented here. A general method
of inputing data to the analysis section has also been described33
by the author elsewhere. In Chapters 2,3,4 and 8, the author has
attempted to describe algorithms and criteria used in the analysis,
optimisation and growth-reduction sections in sﬁch detail that they

should be easily implemented by anybody, with a little programming

experience, interested in doing so.

5.5 An Example of Network Evolution without Constraints on Values

of Network Elements

This 3 terminal CR network (see fig. 5.2) has to generate the
network polynomials
1511 = 4.053+8.052+3.55+0.25
L>12
Afszz = 4.0s3+8s2+3.53+0.25

_ 2
Aﬁza = 4.05°+5.05+1.0
These polynomials can be realised by a passive Twin-T network,

= 4.083+4.052+1.Os+0.25

containing 4 nodes in addition to the reference node, and 3 resistors
and 3 capacitors. In thie example, an alternative strategy to that
described in section 4.5‘is used. All tne additional components
vwhich caﬁ generate the coefficients of these polynomials not produced

by the initial ladder network are added. The optimisation algorithm
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is then applied to the initial network without any transformations

being employed to kecp the values of the network elements positive,

that is, passive. Under such circumstances and with such a simple

network the final network is rapidly achieved; this contains he

negative componenti .

2-
3.

4.

This example illustrates four important points.
Different strategies to that employed in section 4.5 can be

used to produce networks with the correct network structure.

‘That the unconstrained problem is very easy to optimise.

That if passive realisations are to be acuieved a transformation

must be employed to constrain the network elements to be

positive despite the extra difficulty it produces in

optimisation.

That the noctwork evolution can be applied to produce active

realisations, if desired, and these are easy to achieve.

5.6 Some Examples of Ladder Networks Evolving into Twin-T Networks

These 3 terminal CR networks have to realise two different sets

of network polynomials. Those for an 'untuned'!' Twin-T see figs.

5.3 and 5.5 and for a 'tuned' Twin-T, see figs. 5.4 and 5.6.

These sets of polynomials are for the untuned case,

_.\[
-
N
N
il

> D> >

3
3

22.0s +32.1Os2+408iOs+105.O . Y

22.08+24,.05°+105.05+105.0

3

22.0s +222.Os2+306.Os+1O5.0

33.05°469.05+36.0

and for the tuned case,

_|.>'

>
-—
-
N
N

!

>

3

8.0s +2O.Os2+1O.Os+1.O

8.087+4.05°+2.08+1 .0

A= 8.057+20.05°+10.05+1.0

= 8.05°+8.05+2.0



- 95 -

IKITIAL NETWORK

- P | o |
T o—j al | 2 c, =0, =0, = 2.7
1 2 Cs >
G1 = G2 = 1.37 /
0o G, ) G?vf
Add G3 to generate A12(2),622(O)
L
1 ‘j I <\ 11. O 2 C = - -
| ! 1 =0, =0y =274
C C C :
1 2 3
G1 = G2 = G3 = 1.37
Add_G4 l to generate Zﬁ§2(1), 1531(0) it also generates AN
G G
: b -
I‘ \/ ' F=9.31
1 11 }H o .| 2 .
11 1] C. =C.=C_ =27
C, | c, | (53 IR
G =Gy =Gy =G =1.37
Gy, G,
0o L | F=2.03
add G, =l 0.14
C . : k
. 4 G, |
1 &2 U }'b L 2
) 0y C, = 3.82 C, = 2.98 Cy = 2.25
| o Gy = 0.17 Gy = 3.73 Gy = 1.70 G,
0~ +
0 | F= 1.5
Addd ¢, = | 0.13

5
see neft page
Series G, Parallel R Ladder to Tuned Twin-T

fig. 5.3

12(0)

= 0.34
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from previous page

add C5 ::v 0.13
) .
b F=1.8
I\
Gj_ﬁ‘/ \J: G \
3 } \ {! ) 4“ B C1 = 2.76 C2 = 2.35 03 = 2.44 04 = 1.07
C C ; o - _ _ o
1__( IJJ 2 3 Gy = 0.12 Gy = 4277 G = 1.39 G, = 0.4
o; . o 2T |
- | G, A F= 4.921077
Remove 6, = 4.9 1077 Cj = 6.5 1074 G, = 6.0 1072
G G
, {i%:} T o
J 11 i X 2 F=6.310%0
G M C“
AL 3 S .
hals Sian C = . = . C = .
) . 5= 2:00 6, =2.00 G, = 4.00

FINAL NETWORK

Series C, Parallel

fig. 5.3

fo»]
{l

20 G = ° = .
QO 3 1.00 G4 1.00

R Ladder to Tuned Twin-T

Ay
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S RS

- 97 -

2 =T
CZ

i
I

, A A
Add 03 to generate 12(1), 22(3)

% |
ya
G,

C1

—

Add C

4

¢ 2 =
G1:G2:

to generate £%2(2),[%1(3) it

Add G5

0.08

see next page

2.8
G3 = 4.73
03 = 2.8

also generates 13{2(3)

C1 = 02 = 03 = C4 = 2.8
G1 =,G2 = G3 = 473
&= 3.23
F = 2.77 |
01 = 0.15 02 = 9,07 03
G1 = 4.55 G2 = 4.65 G3
F=0.183

=5.17 C
= 5.67

Series R, Parallel C Ladder to Untuned Twin-T

fig. 5.4

4

= 0.51
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from previous page

Add G5 ={0.08

0.175
0.055 Gy = 16.20 Cy = 130 C, = 1.54
0.23 G, = 3.91 Gy = 7.56 G,= 4u74
. | |
o F=1.67 1077
" Remove ¢, = 6.4 1072 G, =141 106 G, = 9.1 1074
G G
14 } . é} 2 F= 6.310°%0
E | b G. =11.00 C. = 1.00 G = 2.0C
R - = .0 = . = . 0
. Co G5 _ 2 37 4
o - — — —
o - — Gy = 7.00 G, = 5.00 G, = 3.00

FINAL NETWCRK

" Series R, Parallel C Ladder to Urtuned Twirn-T

1

fig. 5.4 |
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INITILL NETWORK .
[ L T e TR e T

R EO C, = C, = 2.74
C1 02 ' G1 = G2 = G3 ? 1.37
O oo .
Add Ca to eners.te’%z(U,Azz(B)
1 I-E::l »—Ié_]v—r___l_a_}——c 2 c, =, = CB = 2.7
v o1 % ] % -
01 02 G1 = G2 = G3 =1.37
60—
Add C4 to generate¢£§2(2), ZX11(3) it also'generates 1512(3)
C C
g {4
] / 1 F=09,31
1 — }——X’ 2 6. =C.=C.=C =24
i u— 2 - 3 G =G = = 1.37
é é 1 2 3
0 1 2
o F = 200)
add G, = }0.072
G \
1 —
L N
i f 1 N
J Lo E,_J 4 A
1 L 2 L 3 C1 = 0,37 02 = 7.43 03 = 3.33 04 = 0.85
C1 02 G, =1.90 G. = 1.48 G, = 1.13
o o 17 2 3
F=1.56

- Add G5 = (.08,

see next page

Series R, Parallel C Ladder to Tuned Twin-T
! figo 505
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from previous page

Add G, =
5

G,

]

0.084

G1 e
G s JU
5
, C. C.
0 o 1 2
. ; -6
Remove C1 = 2.6 10 G1
G G
Y u
C C
3 4
02 G5
0 o

FINAL NETWORK

\

Series R, Farallel

P =17
N\ ﬁ |
e o
Lo , C, =0.23C,= 9.45C
g G,

G, = 1.40 G,

F =67 10"

. 4 ~=6
2.5 10 2

0

G, =17.310

_ ~20
.\& , F=6.310

=1.15 G

3= 2.81 C4
5 = 1.22 G4

6

c1 = 4.00 C_ = 2,00 C. = 2,00 ~

G, =1.00 G
A

3

fig. 5.5

3

C Ladder to Tuned Twin-T

=1.00 G
00 5

A

= 2.00

= 0.92

= 0.53
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INITIAL KETWORK

0o

't J—FJ*“’ '
1 2 3 1
, G1 G2 1 . G1

l to generateb,l‘z(?,),

 Add 05 = l 0.061

see next page

= 03 = 2.8
473
C3 = 2.8
G3 = 473

2.8

= G[;, = 4‘73

Series C, FParallel R Ladder to Untuned Twin-T

fig. 5.6
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from previous page

Add C5 = 0.C61

F = 5.83 ,
= = . = . = 0.9
G, =3.88C, =219 03 3.20 c4 9
2 | _
G =0.57 G, =16.58 Gy = 3.60 (}4 = 2.00
F=28.17 1000
Remove ¢, =3.91 10‘8, C, = 3.0 10‘1°, G, = 1.4 1070
G3 ) GL, ‘ . |
| k —i_— \ -
[ \ F=6.310"%
l " 2
1] H—b
5 1 3 C, =200 C, =11.00 C_ = 1.00
Ci——- _ 3 4 ,5
| G, G, = 2,00 Gy =5.00 G4 = 7.00
0 o

Final Network

Series C, Paraliel R Ladder to Ubhtuned Twin-T

fig. 5.6
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The evolution algorithm which is used is exactly as described

in Chapter 4.

. - These realisations can, of course, be synthesised by the standard
method. They are included because they illustrate the following
points.

1. Ladder netwcrks are used because it requires litvtle
imggination to generate a simpl; startihg network with the
required number of nodes, see section 4.4. |

2. Convergence from both series C, parallel R and series R,
parallel C ladders is obtained, with very similar resulfs,
to both tuned and untuned Twin-T structure.

3. In each, the reduction of the objective function is monotonic
and no elements are grown to be later eliﬁinated, this would
suggest at least for such simple examples, that the strategy

. employed is very effective with little wasted'effort.

be 'Each of these examples took approximately ten mirutes to

evolve.

5.7 ITwo Examples of Evolution of a Non-Series—Parallel Realisation

The two examples of non-series-parallel CR network 3 terminal

realisations are shown in fig. 5.7 and 5.8. They are realisations
of the following set of network polynomials.

= A =
A” 2o = 844,(0.07+0.00158)+A, ,

Aw, = (541) (38°=1.14824197.1765+77.616)

A0 = (5+1) (540, 515+40.0048)12¢5. 3016

o \
These network polynomials are those of an example published by
34 '

Fialkow™™, who showed that they‘afe ihcapable of being realised by

[}
NN

S

S
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Eliminate C

.. aAdd G

5

5
= 0.0035,

Y

,

=6 10

Gg

see next page

8

!

= 0,0033

o 9 2 |
G L G, L Gy Gy =0, =Cy= 045
c, C, C, Gy =G, =G, =G =0.325
06
14 0, 0 to geperate A,501), 4,20, A 4 ), B,)
\ 2
R s 11
f H
1 &—4%—:}3 2
G1 L G2:: G3 C1=C :03:64:05:0,45-
G, =G, =G, =G, =0.325
c, C, G, 1 37 7,
G
~ Add Cys O to gpnerate Z312'(4)
v
F=2809 10°
C1 =0, = 03 = C4 = 05
G, =G, =0y=0 =0.325
F=7.2 10

An Example of the Evolution of a Don-Series-Parallel Realisation

fig. 5.7

1




see previgus page

G
L_F 1'
L“ c F=7.13 10
L{:i‘-x' 0, =221 0, = 0.6 Cy = 2.2
1 72 Gs G, -6
- ma—— m—— 04 = 4.8 10 06 = 0.018 C7
¢4 Gy €y Gy = 0.03 G, = 1,56 Gy = 1.64
0 O
G, = 0.026 G, = v.0035 Gy = 0.0033
eliminate C, = 1077, G, = 10™9 F=3.805 L |
4dd G = 0.0134, Gy = 0.0138
—i 1 F=2. 64
| I | S—
G G
5 1} 6 - — _
/ 04” \ C1 ="8.43 C2 = 3.29 C3 = 1.46
o I S‘DGI l o ©, =0.0022 G, = 0.0022
G, G, 3] Cy G, = 0.056 G, = 1.43 Gy = 1.31
. 1 c. 1. Yol '
1 216 3 G G, = 0.011 G, = 0,068
0. 7 8 5 6
F=1.18 107
ad C, = 5.3 1070 6. = 4.4 107°
8 — * 9 2
F=1.1410 "%
01 = 1.66 62 = 6.3 C3 =.0.596
G, = 0.0015 C,, = 0.0015
Gy = 0,036 G = 0.041 G, = 9.029
. Gg = 0029 Gy = 4u4 1070
o _ -6
Elininate Gy = 2.8 107 Gg'= 4,7 107 £=7:810
G, ="1078
see nexE page g
Y

" An Example of the Evolution of a Mon-Series-Farallel

Realisation

fig. 5

7

= 0.021



F = 4.2 10'6
C, = 5.3016 02:‘20.0 G, = 0.597
C,, = 0.0015 G, = 0.0015
> G, = 2.256 Gg = 0.07 G, = 0.07
G, = 0.004 Gg = 0.1392 Gy = 0.3948
~16

‘F=8.1 10

Kearranging | network into

the form ginn by Fialkou

FINAL WATWORK

AY

An Example of the Evolution of a Non-Series-Parallel Realisation

fig. 5.7



INITIAL NETWORK

- 107 =

1 2
a 'Lmﬁ‘ F——JL-4 ‘}———0_ a
& | |:C—“2‘-___ 5 | T ¢, =C, = C,
C.I . Ci _ _
1 2 3 G1 = G2 =G
07
' A
. Add C4 to generate A12(1), 22(4).
‘ v
C
4
1 L 2 <
G1 G? G3 1 G4 C1 = 02 = C3
| 1 aﬂ—— G, =G. =G
¢ Cs 3 1= %0
0°
Add C5 to generate z§ﬁ2(2),[x11(4)
it - also generates Z&12(3), 1512(4) fixed components
v o

C1 = C5 = 0.45

3

= 0.45

é G4 = 0.325
= C4 = 0.45
= G4 = 0.325

considering 6312, 131122 only

C C
4 _IP_ G =G, =0.325
{ 2 T4 »
F=5.25 10
1 ) [:] 2
G G G G C1 = C2 =»03 = 0.45
1 2 5 4
C1 GZ 03 : G2 = G3 = 0.325
e, “ 2
F=8.38 10
Add C—5 = 0.66
see next page

An Example of the Evolution of a lNon-Series-Parallel

Realisation

fig. 5

.8
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from previous page

&}5 = | 0.66 i
fixed components
. . 01 = 05 = 0.45
4 il 5 : G. =G = 0.325
1'/‘—’ / N G G E e 6 on 102 |
G G & =6,
1 2 A
—1 — 5 g E-AJ 2 C, = 8.0 0, =0.05Cy =0.05
Gﬁ[:J .:::.C == = o G2 = 0.34 G3 = 0.15 G5 = 0.66
1 2 3 : 2
0o
. aAdd C6 = 0.07100nsidering /532, l53122 and [§11 only
: fixed components
c, Cs ' "
C4 = 0445 b1 =0.325
F=1.3 107
C, =150y = 4.35
C, = 0.47 Cg = 0.45 Cg = 0.07
Gy = 1,89 Gy = 21,4 G, = 0.325
G5 = 21.5
F=17.46
F=7.46
C1 = 17.0 02 = 52,0 03 = 0.0048
C5 = 14.9 Cb = 0.001 |
G2 = 49.2 u3 = 6.33 G4 =1.25
- -3
G5 = 0.09 G6 = 1.4 10
Add C,, | = 0.86 1074 F= 6.9

see next page

An Example of' the Evolution of a Non-Serics-Parailel Reaiisation

fig. 5.8
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from previous page

4

idd 07 = 0.86 16~

no fixed elements

F =

Eliminate

add G7 =

Eliminate c, = 1078

4dd G 1.8 1074

8 =

Eliminatg |G, = 1.5 10-6
11 - 10— 2

see next page

C. = 0.0015 C, = 97,
5 6 !

1
G, = 42.7 G, = 0,072

3 4
G5 = 0.11 Gg =‘o.o13
Gy = 0.071 Gg = 0.04
F = 6.6 10™2

5

G, = 2.3 107% G, = 0.55

2.76 10°
G, =154 C, = 8.1 C; = 10.8
= . = 1 (]
C, = 0.45 Oy = 163.9 4
- -3 _ -
Cg =7 %1072 G, =8x10
Gy =0.325 Gy = 6.33 Gy = 73,8
F = 4.33 10
) 1
F = 3;76 10
C, = 4.8 C, = 12,6 C; = 9.94
C, = 0.014 G/ = 0.0039 C, = 45.4
G, = 0.046 G, = 18.9 G, = 98.9
6, = 0.12 G, = 0.17 G = 0.0
F=1.310"]
F=1.10""
G, = 0.63 Cy = 23.1.C,- = 0.0015

An Example of the Evolution of a Non-Series-iarallel Realisation

fig. 5.8

Considering A1 09 A1.122’ An , and A 22
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from previous page

10~
=1.5 10

Eliminate G

o
iy
|

F= 22107
C1 = 6.6 03 = 24.8
€, =0.0015 C = 0.0015
Gy = 97.5
Gy = 48.0 G, = 0.01
G5 = 0,13 G6 = 0.07
G, = 0.007 Gy = 0.06
6

F=1.36 10"

FINAL NETCRK

i
An Example of the Evolution of a Mon-Series-Farallel Realistion
S .
A
fig. 5.8 1

e
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a series-parallel structure because the basic polynomial of £§12
contains a negative coefficient. Because of this negative
coefficient realisation is only possible if a common factor is
introduced. These examples take the common factor of (e=+1),
the sume as that used by Fialkow. Ctner realisations have

37

recently been published”’ using both this value
and alternative values for the common factor*(obtained by taking
this as an additional_Variablq. These realisationg are obtained
using the same method of analysis andeimilar method of network:
evolution using coefficient matching. The method of network -
evolution differs in several important details, the principﬂl one
being the use of a different element growth algori%hm.58
These two reaiisations are derived from the same initial

network but employ different strategies in the evolutionary procéss.
In the first example the correct network structure is found by the
same method as described in section 4.5 but allowing all the
connections which make tne relevant coefficient non-zero except
those between external nodés. The growth algorithm used is that
described %n section 4.8 with two elements added each cycle. This
evolutionury process produces the sawe realication as that given
by Fialkow. | This example shows certain features:
1. Extra elements are growwn both in obtaining the éorrect

network structure and in the growth phase of each cycle so

as to increase the flexibility of the evolutionary process.

(It is simpler to eliminate elements than to.grow them).

This leads to greater changes in the network structure during

the evolutionary process, elemeuts are eliminated, either one or

two at a time throughout the process not near the end as with

the other example.
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The greater number of network elements makes optimisation

more difficult.

Convergence in the optimisation phase is

slow but steady requiring many iterations; each of which are

slower because of the greater nunber of variables. This

offsets the gain achieved by growing excess elements.

FIn the second example, the correct network structure was

found exactly as stated in section 4.5. To reduce the number of

variables and equationé considered in the optimisation phase to

a minimum;

nomials Aﬁz and [S

1122

during the first tws cycles only the network poly-

are considered together with those network

elements connected sclely to the internal and reference nodes;

elements connected to nodes 1 and 2 are fixed in value. For the

ials A
next two cycles the network polynomials 127 4&1122 and £S11 are

considered with only those elements connected to node 1 fixed in

value.

Orly 1 element is grown in each of these 4 cycles.

Subsequent evolution is exactly as described in section 4.8.

This exauwple demonstrates the following features.

1.

2.

3.

Much more rapid optimisation in the initial stages due to the

reduction of number of variables and equations.

Convergence is now non-monotonic with the fixed network

elements restraining changes in the network. Their introduction

as variables causes a large increase in the objective function.

Final convergence is achieved mucn more rapidly, 20 minutes

compared with 40 minutes for the first example.

The final network is a quasi-realisation, that is, good enough

for engineering purposes with each coefficient being accurate

to less than u.1%. (To achieve this components must have
- better

tolerarces |

3
TA

than v.01% or so).
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5, Different strategies each huve their virtues and cau lead to

dirrerent realisations.

5.8 An Example of Failure in hetwork Evolution

This example is shown in fig. 5.9; it is an attempt to realise
a set of nmetwork functions given by Lucal.65 These are the
network polynomials.
A‘11
AV
Ay = 6(65™+34357410925%4773546)
A 5p = 36(s+1) (5+2) (543)
Several CR networks realising this set of polynomials have been

_ published66’67; " the simplest67 containing 7 nodes plus reference

365445335541 57282411838+36

36(82+1)(s2+s+1)

node and 7 capacitors and 6 resistors. This realisétion generaﬁes
the set of polynomials with two common factors. The number of
nodes is two more than the minimum number of nodes capable of
realising the order of 181122. .
The initial network generates the correct polyromial structure.
The growth algorithm employed is exactly as stated in section 4.8.
The following considerations arise from this example.
1. This is one of several attempts to produce.a reélisation
or quasi realisation of this set of polynomials Differemt
initial networks have been used, series R, parallel C ladder,
series C, parallel R ladder. Different evolutionary
strategies, as described in section 5.7, have been tried
on these networks. Each attempt ends with much the same
value of the objective function and with the same phenomenon.
Addingvfﬁrther elements to the network makes an insignificant
reduction in the objective function with subsequent optimisation

producing no further convergence.
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INITIAL NETWORK Metwork genérateé all required

coefficients
¢, G, |
k o T 2
L_— L] F =299 10
1 C,
= = =C = 2. .
S, VIRTE: RGN
141 I 1 2 2. G = G, = G3 = G4 = 2.45
03"'-"' I#GB .
0o F = 3.97
[
Add G, —l 0.214
G G
T~ —
- /[ J F = 3.68
. 4 - | ]
c, ’ 64 ' L Cq = 0.79 Cy = 4.76 G, = 27.0
1 ¢ 2 ~ _
| 1] 1 G, =0.027 05. = 0.214
c, 03 G = 37.4 G, = 0,181 G, = 16.0
0 _
G4 = 0.031
F’= 3.@3
Add G, 0.273
G,
B a F=3.2
) S— /__L_
]Ei- C1 = 0.73 02 = 4.83 C, = 26.1
3
. C, = 0.028 C_ = 0.25C, = 05273
14 % | |2 Lo 4 5 6
C= Oy G 1 2 3
' I e i G, = 0.3
0 o 3 - - 4’ >
Add Gi: 0.0045 0 F = 3.7

see next page

An Example of Failure of Network Evolution

fig. 5.9
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Add G :l 0.0045
G p

] G F = 3.073
{1 o—I7 1
/—-I—C C, = 0.67 C, = 4.92 C_ = 25.1
4 1 2 3
= 0.028 0, =0.29 Gy =037 -
= 39.2 G, = 017 Gy = 1449
= 0.035 Gy = 0,004
F = 3.069
= 0,68 C, = 4.91 G5 = 25.0
c | | = 0.028 G, = 0.29 Gy = 0.36
[ - ° = . = .
Al ‘———GBI \__ 1§ G, 392G2‘O‘I7G3 14.9
Cs— T T = = = 0.
5 cy Cg Gy G, = 0.035 Gg = 0.0093 Gy = 0.0075
0 ] “ B ; . F = 2077
Add G, = j@.ooz,s
(i-ﬁ: ) LGﬁ _ = 2,770 | '
LT C. = 0.69 C. = 4.68 C. = 26.1
G, 7 G 1 2 3
G - C, =0. = 0. =0.38
ATCL \:l I 3 G,y = 0.0045
C, = L —— G, = 37.7 G, = 0.17 Gy :.16'9
C G C G _ _ _
0 & 7 L 3] Y6 s | G, = 0.46 Gy = 0.02 G = 0.03

Addition of 4dditional virtual elements one by one produces little

differernce, fnilure of process

An Example of Failure of Network Evolution

fig. 5.9
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2. When the impasse occurs, if the residual of the equations are
studied then it is seen that they are relatively small except
for those corresponding to £%2(3) and £>12(4)- ZX12(3) is
épproximately +1 suggesting the elements making up its trees
should either be removed or reduced in value and 1&12(4) is
approximately -1 suggesting that elements making up its trees
should be increased in value or elements added. Since many
of these elements are in common to both sets of trees there
is ro solution.. Further fle#iﬁility is ﬁeéded to fesolve
this problem; such flexibility is achieved by introducing
8 common factor which will wodify the coefficients of the
polynoﬁials.

3. The phenomenon described is no proof that a reaiisation or
quasi-realisation is impossible with a network containing
only 5 nodes only'tnat it is not very likely and difficult
.to obtain using network evolution. It is strong evidence
for the need tc grow an extra node and introduce a common
factor into the polynomials.

4. The symptoms described in this particular example, i.e.
network evolution entering a cul de sac is observed with
several other problems which have been attempted, both witﬁ
3 terminal CR and 2 terminal LOR networks. Since in all
these cases realisations contairing more noaes and elements
are known, it would seem that in these circumstances node

growing should be performed.

5.9 An Ekxample of hode Groving

This example is shown in fig. 5.10; it starts at the penultimate

structure shown in fig. 5.9. This example is an attempt to realise
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From penultimate network structure

ot fig. 5.9 F = 2377

7

Hew node is to be grown between

. 2 and refdrence node with
G, = 0.38% C. =0.312

it 7
a —r . ’ =1
= et _ F=4.36 10
G N & " gomron faotor = 1.34
C ,
4 : - - = :
G61 Q1 —‘0.69 02 = 4.68 03 = 26.1
o GA 02 04 = 0.04 C5 = 0.31 C6 = 9.38
l‘\j 6:1_ N _ . |
Vi G1 = 37.7 G2 = 0.17 G3 = 16.?
= c :F \ ‘ H GZ‘ = 0.046 CT5 = Q.Uz ué = Q.03
5 3 G c G5 .
| 6 G, G, = 0.382
04 | F=3.57 107
Common factor = 4.23
: nevw_node
Add C8=10.036
E%ﬁ . ggj L -1
A F=3.39 10
‘ C Comron factor = 3.56
Ce & G C, = 0.76 C, = 4.91 C, = 21
i [ 17070 By = 491 65 = 21.9
1G = Q. = .> = 0.
1 //r—Z‘ 5EE/,/) ' 0.033 05 0.034 C, = 0.39
N ! ! C~ = 0.1 C, = 0.036
s Cs AN Gy = 43.5 &, = 0,16 Gy = 15.4
G /l % G, = 0.068 Gy = 0.02 Gy = 0,029
u. = 0.18 v

F = 3.305 10~
3.8

common factor

An Exawple of Node Growing

fig. 5.10



- 118 -

by a CR network the network polynomials published by Lucal6_5

and given in section 5.8. | To surméunt the impasse demonstrated
in the last examrle a common factor is introduced by growing an
extré node with the appropriate components connecting this node
to the original network. This is accomplished exactly as
described in section 4.11. .Subsequent optimisation uses the

common factor, C as a variable, giving it the value which makes

3.

5 =0, in much the same manner as with the multiplying
factor, X Several comments shoﬁld be made on this example.
1. The node growing works well as descfibed in section 4.171

and the theory is substantiated by experiment. The values
of the objective function and optimum common factor can be
predicted with little extra effort from the original
network without the extra node.-

2. Node growing in this case produces a large reduction in the

"objective function even tnough the number of equations has

been increased by 4 from 19 to 23.

3. Optimisation is substantially slower and more difficult than
prior to the growth of the node because there are extra
‘equations and variables introduced by the extra node, with.
the extra égmplication ot the use of the common\factor as
a fariablé.

4+ Unfortunately, due to lack of time, it was impossible to
pursue this example further and find whether it does evolve

into a realisation of the required set of polynomials.

5.10 Somé Examples of Evolution by Network Reduction

These examples of two terminal LCR networks, shown in figs.

511 and 5.12, refer to a set of network polynomials and their
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from previous page

Starting with all elements of value 10.0
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Starting with all Elements of Value 10.0
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corresponding realisation recently published.61 The realisation
was obtained by Tirtoprodjo using a modified Bott-Duffin synthesis
The polynomials realised are

‘ ZS = 33+2.552+2s+3

1511 = 83+432+12s+6
Many common factors were introduced by this method of synthesis as
can be seen from the example in section 4. . The evolution by
network reduction is used exactly as described in section 4.12.
The example in ?ig. 5.Ti was obtained by giQiﬁgnall the élemenﬁs
values of 0.1; This low value has the effect of encouraging
certain elements to become open circuit. These elements are
removed from the network and the correspondiﬁg redundant factors
eiiminated. When the redundant common factors have been femoved,
| it is found that further progress in network reduction is only
possible by giving all the remaining elements a value of 10.0.
'This has thé effect of making some of the elements tend to very
large values, equivalent to a short circuit. Further progress
could not be achieved in network reduction no matter what values
are given to the elements in the remaining network. The example
in fig..5.12 started from the same realisation but in this case
the elements were given values of 10.0, this again hag the efféct
of making certain elements tend to very high valués, equivalent
to making them a short circuit. When these elements were made
shoré circuit and the process rebeated no further progress could
be made in network reduction no mathr what starting values were

used., A
\

These examples show certain featuies.
e
1. Starting with appropriate element values has the effect of

}

driving elements to become either open circuit or short circuit.

60,61

9
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It c¢hould be noted that in this example that if the element
values are made all equal to unity then the network evolves

to the realisation published by Tirtoprodjo.

The optimisation phase takes a long time; though fortunately,
in this example it required relatively few iterations to
converge, that is, approximately 20 to 30 iterationms, each

iteration required over a minute. (In-this example there

are 24 equatiuns aud 14 network elecments plus multiplying

factor).

The values of the netwerk elements tend to suci extremeé that
the analysis section, wnich as implemented takes several
short cuts to speed the convergence, is beginning to break
down. This problem is particularly acuté, when elements
tend to short circuits, for example, the value of a coefficient

previously 0.1 may become ‘IO20 plus.

‘It should be noted that the process of short-circuiting or

open circuiting elements is very logical, that is, elements
in series become open circuit simultaneously elements in
parallel become short circuit simultaneously. This frocessl
occurs by straightforward optimisation without interventich.
From the experience gained of evolution by the éréwing of
elements and by the elimination of elements, the process of
network evolution by a process of reduction seems to be the

easiest to implement. \
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Chapter 6

FURTHER DEVELORMENTS

6.1 Introduction

For the extension of the rénge and scopé?%etwork evolution
by coefficient matching there is development necessary in four
areas; the analysis section, the growth and reduction algorithms,
the limits of applicability and the incorporation of practical
measures,

A satisfactory synthesis procedure has the prior requirement
of a fast accurate amlysis section having adequate flexibility;
.these requirements become more stringent when very large networks
of varied types are analysed in the process of network evolution.
ANétwork evolution has as its core the growth and elimination
algorithms, obviously improvement in its efficacy will come
'. primarily with improvements in these algoritﬁms. More invest-
igationiis necessary as to which types of network evolution

are
is primarily by growth )\ superior to network evolution which is

primarily by reduction, It appears from other workzthat retwork
~evolution using frequency response ard pole-zero matching are ef-
fective but in some situations coefficient matghing would appear

to be superior. An investigation of the various strengths and
weaknesses of these methods is necessary, As yet, network
evolution by coefficient matching has only been used in feasibility
studies, To make it an acceptasle method for engineers, restraints

on network elements and effect of parasitic elements must be

included,
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© 6,2 Extensions to the Score and Accuracy of Analysis Section

The present analysis section can deal with LCR networks
containing current generators but excludes mitual irductance,

To make this section entirely general ard include mutual
inductance ard additional active elements, hybrid methods of
amalysis such as the state variable could be used to describe
the network, Methods?3 already developed could be used to
transform this description to the modal admittance matrix, 1In
this way, none of the advantages of énalysis via the nodal
admittanée matrix, such as its directness, would be lost amd
coefficient matching would be easy to use, .

The method of matching coefficients, requires accurate
generation of these and their derivatives from the modal admittance
matrix, A method of achieving this is described in Chapter 2,
This method evaluates the admittance matrix at a set of wvalues
-_ of real s as described in section 2,2, The values of s to use
so as to achieve high accuracy has been the subject of some
analysis18, see section 2,8, but a full stability analysis of the
complete problem has not been obtained, Further effort must be
concentrated on this problem so that thevacceptable accuracy now
obtained in relatively small problems is‘obtaingd when lafger

networks are analysed,

1

6.3 Develorment of Improved Optimisation Technigues

The dptimisation phase takes up by far the major portion of

the total time spent in network evolution, As larger networks are
o\
considered the present optimisation procedures become slower ard less

v
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sure in their convergence properties, Some of this deterioration

is inevitable, but improvement in optimisation methods is
essential hefore the techriques described in this thesis can be |
applied to large practical networks,

38

Most optimisation routines”” are general purpose using none
of the specific proverties of the functions being optimised,

It would seem the easiest way to improve the perfbrmancé of
optimisation methods is to develop an optimisation routine
specific to each type of function, Some progress has already
been reported51’58 on optimisation routines using the special
properties of multilinear functions, These methods are new;

it must be hoped that with further experience these can be made

into powerful tools for optimisation using coefficient matching,

i‘ 6.4 improvement to Flement Elirination Alsorithms

Though the algorithms for element elimination are inherently
easier to implement than the growth algorithm, there is the need
for further develorment in the network reduction algorithms,

Time is often wasted in driving an'element closer to zero,
when it is obvious that it should be remaved at an earlier stage,
On the other hard, an elemen:t may benfemoved prematurely ard
subsequent change in netwo;k topologf{?iter a terdency of its
value to zere to a tendencj;to scme greater positive value,

The criteria which de;ermine whether to short circuit an
eloment bscause its value terds to infinity are more difficult

to develop than the criter;a\which‘determine whether to open
x\'i\ Ch
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circuit a variable because it is close to zero. At the moment
the criteria which short circuit are empirical and not entirely
satisfactory, There is the need for a study of how the process
of short circuiting an element works in terms of coefficient

matching,

6.5 Improvements to Growth Algorithms

There is still need for development in the criteria for the
growth of an element in a network, It is falrly easy to develop
other growth algorithms in addition to the two methods already
published.9’58 Many of the different optimisation algorithms
‘that are used to alter the values of the network elementScan be
adapted to also alter its topology. The efficacy of the growth
'algorithms can be tested in a similar manner to that of the various
optimisation algorithms in converging to the global mimimum by
" altering network values, It would seem as in section 6.3, that
| the most effective growth algorithms would be those using the
special properties of‘the rnltilinear functions, It may be
necessary to include other krowledge of the network topology which

is mot neéded just to alter the element values, For example,
| such information could be that the 0-1 ard 0-2 connections have
no effect on lxlz,.thus if the coefficients of\léiz are in much
greater relative error than the other coefficients these

connections should not be considered,

6.6 Comparison between Various Methods of Network Evolution

Relatively 1ittle has been pu blished on network synthesis by

evolution but nevertheless it appears that all three methods -
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coefficient matching, frequency response matching ard pole«
zero matching have shown to be feasible and quite successful
on specific problems but that specific problems which were.
solved successfully by coefficient matching were fourd to be
intractable when tried by the other two methods.2 Because of
the success of the other two methods on other problems it is
obviously important to account for this anomaly or at least
’delinqate‘the areas of application where each method is

particularly appropriate,

6.7 Incorporation of Interactive Proeramming

- it is difficult to devise programs such that the computer
can detect various patterns of behaviour; whereas the designer
.is rather good at this but poor at verforming arithmetie, This
makes interactive programming very attractive when different

'_ patterns of behaviour are to be detected. Unfortunately, the
author ;as limited to short batch runs ard was unable to
experiment with these ideas., Using a stard alone program, it
was found fairly difficult to establish eriteria which were

~ effective over a wide range of different problems. Such things
as the unit.for search in the Levenberg algori?hm, the criteria
fdr convergence, when is an element zero or infinity, are
difficult to define for a wide range of problems. It would be
a great help to be able to alter these criteria during the running
of a program, 2 Perhaps also an interactive program in the wider
semse with a visual display would have helped in the growth
strategy, the nétwork topology ard the various sensitivities

could be viewed as a whole, In this respect the programs
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developed have the advantage in being very efficient in the use of
store size and in being rapid, thus they would be easily adaptable
to interactive use., Some interactive programs are strong on the

graphies but use rather cumbersome amalytical techmiques,

6.8 Extension to Active Networks arnd Practical Problems

When the network elements are not constrained to be positive
then the evolution of the network bec&mes both more rapid ard
easier, The resulting realisation has fewer individual elements
than a purely passive network, It is possible to generate
negative network elements by using active devices, In some

"instances, for example, integrated circuits, active devices are
simpler ard cheaper to use than passive devices, With these
"considerations, it would be useful to compare the actual cost of
a realisat;on produced. using some active devices with a
realisation which is totally passive,

The programs developed for network evolution by coefficlient
matching are limited in their practical features; they were
develpped to discover whether the concepts, which sourd so
attracti§g in theory, are feasible, To find practical application
these programs must be externded to incorporate the practical
features, These features include constraints on the componept
values ard their ratios, constraints on the values of the network
sensitivities and the ability to include parasitics and to adjust
the network components to these, These complications would
perhaps make network evolution more difficult to achieve bﬁt many

practical working p:c-ograms"P have been developed which use
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optimisation ard include these features, It should be realised
that the greater the rumber of elements ard modes the easier
network evolution; in general the rnumber of possible
realisations 1s increased and the tolerance allowed to each
element is increased,

With the limited experience so far obtained it would seem
that the most likely immediate practical application of network
evolution would be in reducing the number of components and
complexify of circuits synthesised by étandard’methoass | |
this would be particularly appropriate with such applications
‘as equalisers and artificial transmission lines where the

problems are tackled on more of a piecemeal basis.
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Chapter 7
CONCLUSIONS

The major conclusion is that network evolution using coefficient
matching is feasible, at least on the scale of the examples coisidered
(4-10 nodes, 5-16 elements). Thus the use of coefficient matching
combined with optimisation, which up to now has been used only to
"trim' the values of the components obtained by standard synthesis
methods, can now be considered as potentially a synthesis method
complete in itself. In certain situations, network evolution présénfs‘
the only method of synthesis, for example, the synthesis of pon-~series-
parallel netwrks. With the limited number of examples tested it seems
to be a very useful adjunct to the standard synthesis procedures in
reducing the number of components and complexity. of the networks
produced by these closed form methods.

Successful network evolution dependé on paying attention to every
detgil of the processes inwvolved; failure in one small part of the
scheme may produce total failure. The essential prerequisites for
successful network evolution are:-

a rgpid, accurgte and flexible analysis section;

an optimisation section that is robust, is cépable of dealing with
multiminima and has a reasonable rate of convergence;

an effective representation of the problem, (coefficient matching

has many virtues on that accounf) together with a suitable formulation
of the non-linear equations arisng from coefficient matching with an
appropriate multiplying factor;

the use of the appropriate criteria ?or a minimamand the elimination

and growth of elements.
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The accuracy and speed of the analysis section developed has been
described elsewhere ?®233,  These virtues together with its flexibility
are illustrated by its successful use in examples with wildly differing
element values in both CR and ICR networks. Its speed in obtai%ing

!
the current values of the coefficients of the network polynomials and

their derivatives with respect to the network elements enables th;
optimisation section to converge in a reasonable time on a medium
speed computer even though many iterations are required. The method
of anglysis enables the derivatives of the coefficients of the network
polynomials with réspect to zero-valued elements to be easily generated.
This information is the basis of any criterion, utilising derivative
information, which decides the value, type and position of the elements
grown in the network. Furthermore, this inform;tion used in the
appropriate manner can be used as the basis of the criterion for the
position in which to grow a node in the network and the values of the
elements connecting this extra node to the network. It also gives the
appropriate value of the common factor introduced into the network
functions.

The optimisation method employed is the standard Levenberg
algorithm applied to the least square formulation of the set of noh-
linear equations with a multimodal linear search at each iteration.
This method is adequate to deal with the multilinear functions generated
by the problem and dealt successfully with their multimodal nature,
both far from and close to solution. The success of any'method of
optimisation depends greatly on the linear search method employed.

In this respect both methods used were successful, the quadratic search

between a geometric comb working from very low values to very high
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values of the Levénbwrg factor and the golden search over logarithmiec
intervals. In practice, the quadratic search used Tewer function
evaluations than the golden search, but with the discontinuous functions
generated by the growth algorithm the golden search must be used.
Despite the relatively successful use of these standard methods, it

is with the optimisation section that the greatest difficulties
occurred. Some problems converged very slowly and steadily to
solution. It seems essential, if network evolution using coefficient
matching is to be employed in synthesising larger networks, that more
powerful optimisation methods be developed. These methods will very
likely use the special properties of multilinear functions.

There are several wayé of synthesising networks using the
evolutionary approach. It is too early in their development to be
sure of the range of application of each approach. The method of
coefficient matching has many specific advantages over the two
alternative32 of direct frequency response matching and pole-zero
matching; these can be summed up as the simplicity of analysis using
the methods described, the use of the structure of the network
polynomialé in sélecting appropriate starting networks and with the
ease with which growth algorithms can Se analytically developed.

Without the appropriate formulation of the non<linear equations
arising from coefficient matching, convergence is very difficult.

The efficiency of the optimisation and growth sections is highly
dependent on this formulation. This is an important detail which
is easily overlooked. In particular, the large range of values
allowed to the multiplying constant enables the netw.rk evolutiouary
process to converge rapidly, particularly when elements are removed

by making them oper circuit or short circuit.



- 13 ~

Whereas the criteria for a mirimawand elimination of elements
from the network are fairly obvious thoSefor the growtu of elements
and noles in the network is not obvious ard experiment is necessary to
discover w.ich of tne various aliernatives is the best to use.

This problem is compounded by the choice o1 the various strategies:
To grow one or more elements at a time;

To start with a simple primitive netwcrk capable of geunerating the
correct structure of network polynomials or start with one containing
several surplus elements (elimination is easier than growth - the
more elements the siower the optimication);

To start with a complicated realisavion oi the required set of
network polynomiuls aid simplify the structure by element elimination.
After much experiment two different approaches were found to be the
most effective, firstly starting with a simple primitive network and
growing elements one at a time (this speeds convergence of the
optimisation process by keeping the number of variables small), and
secondly starting with a complicated realisation and simplifying
(this avoids the problem of the choice of the appropriate growth
algorithm). The growth algorithm described in this thesis selects
that zero-values element which using the optimisation algorithm, has
the greatest tendency to go positive. The value of this elemént is
that which gives the minimum in the objective function. This
algorithm works quite well as can be seen from the examples, but its
operation time.increases very rapidly as the network size is
increased. Alternative algorithm558 subsequently developed would
seem to be at least as effective and require much less execution time.
It should be realised that most networks have many equivalents or

quasi equivalents hence a different growth criterion or a different
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evolution strategy may produce convergence to different equivalents.
For this reason the problem is less intractable than it would be had

it just one realisation. '

When the specific examples are considered it is seen that a start
has been made on examining the potential of network evolution. \The

|

same realisation may be evolved from different starting networkskgnd
different realisations may be obtained from the same starting net;ork.
Several different strategies have been successfully employed in the
prﬁcess of evolution from starting network to aysAtiSfaétbry reélis-
ation. Though growing an additional node in the one example so far
tested has not produced a satisfactory realisation, it did lead to
a large reduction in the objective function. Where an additional
node is necessary for a successful realisation the node growing
facility will doubtless prbve to be a useful adjunct to the evolutionary
process. The largést CR network grown successfully from a primitive
sta;ting contained 11 elements and 6 nodes; the largest LCR network
reduced to a simpler form, started from a network containing 6
capacitors, 3 resistors and 5 inductors. Examples of larger network32
have been published using network evolution in the frequency plane,
hence a great deal of further investigation is necessary to discover
tne limits of practicability or network evolution using coefficient
matching and comparison with alternative methods.
To sum up, the main features discussed in this thesis ares—

1. The development of a rapid, accurate and flexible analysis

procedure.
2. The development of an element growing algorithm based én

certain features of this anaiysis procedure.
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The development of a node growing algorithm based on this

analysis procedure.

The development of various networx evolution strategies wnich

can be used in growing a satisfactory realisation either from

a primitive starting network or in reducing a complicated
realisation to a simpler form.

Comparison of these methods with their alternatives.
Indications as to possible developﬁents in network evolution

so as to produce improvements in its efficiency and scope.

H
1

'\

\

|

1
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APPENDICES

Q.1 Synthesis of Inverse Vardemonde Matrix

To fird the polynomial of order m in s, L(s) correspording to

a set of values A(tso) - - A(tsm) at a set of nodes S, = = = S,

the Lagrangian interpslation formula 19 can be used,

i,e. L(S) - A(tso) (S-Sl)(s—sz) ~ - - (S-—Sm)
(50-51)(50-52) - (So"sm)

(s-so)(s-sz) - - (é-sm) f oo

+ A(tsl) (sl_so)(sl_sz) - = (Sl_sm) 8.1
(s=s )(s-sl) - = = (s-s 1)
' A(tsm) (Sm-zo)(sm-sl) - - (Sm_z_m-l)

If terms are collected for each power of s, this gives the matrix
equation in fig, 8.1 for the coefficients of the polyromial IL(s),

square matrix, IV can be generated by the algorithm
- -1 -1
Ivli‘ = IVl;j (=s,) + :[v’jf_1j

whereIng=1\ i=0-a-n

me for a polyromial of degree m, The elements of the

k\j k=0 = =mnm

J=0=am

8.2
ard the superscript, k refers to the iteration number,

Each column must be divided by

AN

> K
c5=§5ufﬁ) ;%3 j=0w-m
8.3

\

g.2 Simultaneous Deteminant? Evaluation ard Inversion to obtain

Network Cofactors

v \ .
The admittance equations of a network are given by

v
l\v
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A:m ...mm Xmmlmm ) h.ﬁm ...mm vnom
(bs3)

(Ms=%s)(bs2s ) (Ts-Ps ) (%s-%s)
Csn) VY

("s-1s Xmm -Is xww..ﬁm ) m..Hm )
(fs3) v

(5= ) (Fe=’s)(%s="s)(Ts="5)
(*s3)V
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(Esw)+(Ps=)+(Ts=)+(%s-)
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#(%s=)(Ts=)(s=)(%s)
#Zs=)(%s=) 1 fs=)(s=)
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+ (bs=)(%s=)(Ts-)
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+ Cs=)(ts=y(%s=)

(Fs=)@s=)(Ts=)(%s-)

(Ms=y(Es=) (%8=)+(%s-)

(Ms=)(Esmys(Ts=)(%s=)
+ (Co=)(%sm)4(ls=)(°s=)
+ (bs=)(%s=)(%s=)(%s-)

(Ms=)(¢s=)(°s-)

+ (Ms=y(Es-)(Zsm)
+ (=) (%s=)("s-)
4 (Cemyemy(Cen)

(Ms=)(Es=)(Zs=)(°s=)

(Ms=y4(Es-y4(Zs=)+(Ts=)

(Ms=y(bsm)4(Ms=) (%sm)
+ (Bs=)(@s=)4(Ms=)(Tew)
+ (bs=)(%sm)(Esm)(Fsm)

(Ts=)(¢s-)(Ts)
+ (Temy(Esm)(Zsm)
+ (Ts=)(%s=)(1s-)
+ (bs=)Zs=)(Ts=)

(Ms=)(*s=)(%e=)(Ts-)
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Lo Ly et ==Y Ve = 4
20 Tyt YVt = = = YoV * YomVig = I 8.4
[ ] [ ] ] ] [] [ ] [ ]
[ ] [ ] [} [ ] [ ] [] ]
v - - =
M. Y"1 * Yoot = = Tomernr * Y = In

le can be found in terms of the other quantities from the NL

equation,
voo.m o Tama mz T . In
N~ " Yoo 17 ¥ 277" T_-°F% 1YY _—
NN nn NN TN Tan
8.5

If this expression for le is substituted into equations
1l -« - N-1 this gives
Y. Y Y. Y Y. .Y

1 1m¥ 2 1 nna
v, - SNy oy JAMNZ, Ly L ANNNSL,
nT Y, 1ttty 2 (5.5 R sep i B
s, _nhin
=h-7x
ML
¢ hmfwme, . _Tewtme ., _Iemlmma
127 Tr o 1t et Ty T Ve 2M-1" T g M-l+ 0
In'2m
| gl Tl ey
NN

T Tt === Tun-aaVi1 * YamVm = 1

8.6
This is Gaussian elimination ard the atove terms can be formed by

the equation
Y..Y

= - ik'kj
ETILST el

8.7

wvhere Ykk correspords to the cclumn eliminated and is called the rivot.
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iteration then in matrix form

T o '
I Y2
[ ] ]
In T2
.o 1
31 32 733
[ ] [}
REERRS TS

]
where Yll etc, are the fiml values of terms in admittance matrix,
The value of the determinant of A

ard column 1 ard row ard column 2 from the admittance matrix ard

T,

then finding the determinant

I (1 -
dot A 100 = TT Y
k=3

-
1 0
0 1
0

1122

is given by eliminating row

Since thé determinant of a triangulaf matrix is given by the product

of its diagonal elements, det Au is given by eliminrating column 1

ard row 1,

| | . . _
hence det Ay) = Tf Y, = Y, det Ao,
| k=2

similérly det A o =¥

11 A 1122

8.9

N

and det A12 =Y

21

det A 11

22

To fird the inverse of the matrix correspording to All' say,

row 1 and column 1 must be eliminated from both sides of equation

8.8
I,
then ‘VZ = Fiot - -

22

Toam Ty |, I
[ ]
T Tam | T

, substituting this into

row 3, V3‘ can be found in terms of the currents and so on until Vm;
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this is called back substitution, If these expressions are substituted
in plaée of the voltage vector amd the two triangular matrices
rultiplied then the inverse of All is given, A current vector

is now on the L,H.S, and voltage vector on the R,H,S, Simil%trly '

for A, ard A ... So that urity will appear in the (1,1) ‘»\

position of the R.,H.S., square matrix when rows 1 ard columns 2l are
elimimted? to form AlZ' Row ard column 1 must be interchan;ged

with row and column 2 before row 1 and column 2 are eliminated from
eaéh side of equation 8,8, This ensures back substitution is

possible for Alz

8.3 Simultaneous Generation of the Secord Derivatives of

the Coefficients of the Network Polyrnomials with

respect to the Network Elements

Equation 2,11 for a resistive network is

2 7A .
ma J:1111 jm '51311 ‘Sjin)

_"’ (§5rm* S551m ~S 191m _Sjilm)

- (ginm * ‘%jlm -5 151m ~ S3a1m)
(g irl ‘S:jjml gijml "%ml) S
Using Jacobi's theorem stated in equation 2,12

nanelyAS s 10 =S5 5 Sum = S4nS1;
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A 2
360 A gngn -541%03 * g;jjgll ~5191;

= 633911 %851 850 =8 11811+ S ¥
* 5118 = SinSm * S j jgmm S 35m m
- gij gmm Simg Sjmgmi
- g’iigm’” g Jjjgl "gjl-’mj
+ 85581 - gim‘ 15 % jig Im gjmgli
=S m +£imgli ~S3530m * Symb1;
-3, 50m *6 41674 - 5315m1 * §j1 St

By rearranging terms this gives

RN

5036y x A S31 *S 55 =515 = S (&1 *S g = S1m “Sw)

' = (B4 *5 3n =Sin "S5 (55 + Sy =S =S4
8.10

A 1 :
gsl;‘cq A (5’11 * Sjj 'gij "g'ji)(;{l "Smm “§1n ~Sm)
- (811 * 8jm ~&im = &q)
8.11
for syrmetrical determinants,

When G, is connected ffom node i to é;round ard Gq from node 1

k
to ground' from equation 2,9
g bl) g ‘

éZA RS fazs d ¢ \
hence}GXGk M\C}G q(gii) .

.S,

= (S &11 -gilg 11) by Jacobli's theorem

| 3D
) B%é'ae $41814)
8.12

ii11

When Gk is connected from node i to grourd ard Gq from node 1

to node m, then from equation 2,9
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BYAN
3G, gn‘?@" ‘%1*$m'§1m‘5m)

} N XA N
DCG, 25, 36 (g:nn *S 43m = S141m " S 14m)

8.13
by Jacobi's theorem

gege ~ 63380 - S11811 +5115m =S 1nSms

‘-'gnglm*gngmi =54® +gimgli)

119 m
3‘%_1 |
5Gq};Gk A (‘g.l ”g $1m=2m) - ($11 "Sim)(Sli ‘Sm»“

b 1 )A P :
}G;Gk & T%; (511 "Sim)(sli ~Sm)

8.14

8.4 Derivatives of the Objective Function with Reséect

to the Variables

‘From equation 3.3
_ N5 .2
F—gfé
=]

vhere F is the objective function ard fe is given by equation 1,11

fe  ZoTkr
fe™=x7 * %
o kr k

—~
N

where fk is the coefficient of a network polynoﬁial given by present
value of xi(i = ] e m = N) divided by its required value fkr and
X, is the multipl&ing factor also determined by x,.

Differentiating F with respect to an element,x 5

9F Z. Qf

3%, =) e:}x

X5
8.15
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Differentiating equation 8,15 with respect to an element, x

J
sz _,__5 ()fe}f }2
}“3?13‘5:; e-l 3% Bx e -x‘s-;(_
8.16

The terms in equations 8,15 and 8,16 are obtained by substituting
the expressions formed by differentiating equation 1,11 with

respect to Xy ete,

df, k(_ 1 ’;xofkr)
3% 3 %G sz
8.17
2
B £ b f ‘( 1 - xofkr- ) + kf éf xofkr
5"13"3 “ofkr 1,2 ¥ 3%y £’
8.18
sz'
roting that v 0, hence
P} x,

2
é fe . Bfkbfk xofkr

= 2
2 X, 9X 3

8.19

The value of X s the multiplying constant, to give a minirmum

" value of the objective function is given by putting ;x—F- = 0,
5

N§ f. f, x Y
- k 2
F=~§1(ka+ £ )
, kro k
N f 2 fkrzx 2
o
(——5 =~ 2+ )
£ 2 2 £ 2
kr o k
2
f. 2
DF N5 k fier
—_—= 0 = - 2 + 2x
on §1 fkr2x03 fk
Therefore 1/4
_ g fk?, / fkrz
%o ~ ?e:l 2. 2
’;?-’ fkr / fk
e=1
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8.5 Optimisation for Multilinear Variables

Since the coefficients are multilinear functions of the

variables
¥k
fki-l = fi + S x—)-f exactly

8.21
row, in general, there are simultaneous changes in all the
variables, To consider the effect of these simultaneous changes
tak§ as an example only Ck = xlxszxu. If x changes by? x1
etc, then the coefficient becomes

fle1 = (g +S %9 )(x, +Sx2)'(x3 +Sx3)(x4 + gxu)

R i M a e LA
¢ xS, + xS,
T+ xeB%xlS X, + X%, O xS Xy + xszS xS x,,
4 xlxugngx3 + X%, szS Xy, + XIXZSXBS X,
+ xls XZS XBSXL‘ + %, leg xjg X,
R
+ S'XI% ng x3g Xy,

8.22

if the changes x, are small then o

L DT
= - X
fln = e =1 Y

If the changes in the varia'bles are such as to make fie1 = x f .

1

(i.e. solution) then

_ 2 2t
%ohe ® =151 % Ix

\ T o ’
In general, for any coefﬁ.cie’nt, if all the coefficients are considered

“ .\\\

S
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simultaneously, then,

= fe = korkr k J&
r—— _ -_1——
' gx ==d7f
8.23

i.e. the same as the Newton Raphson formuila,
If terms in sz are rot ignored then in a similar manner, it is

seen that

2
SR A
xofkr k= g Sxibx + = j‘—'Z:’L‘Plgxi —Wi xjg xj

k=1« ~w N5
- 8.24
Téms ingx3 as above are now ignored,
This is a quadratic approximation to the original problem and can
Be solved by the Newton Raphson algorithm,
An jritial starting point could be the values of J‘xgjlven by

~ equation 8,23

- . " gx }i‘
£fo==- (xofkr gxi T + ?_—1 j=i+1i Sx
m i 59(1 j
gyt 2h 2 éfk
T ox, T FL T g
Sy, —-—- ~1 —_—
. Therefore Sx 1 Sxm " Jm fme
8.25 N

Though this is obtained diréctly from the consideration of
multilinear functions it could have been obtained by any function
which is validly approximated by thé' ﬁrst few terms of a Taylor's
series,

If the formulation of equation 1.12 is required then 8,24 can

be rearranged to give

' 2
-;fk + Xofkr - (f 1 + _1_‘];_)( % SX}‘&' + 4(;!:1 <ZN.:+1 Sxi.%g_xi
kr'o N o T LX) - ¥y *3

8.26
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8,6 Optimum Value of Cormon Factor

It is easy to show that formulations in equations 1,10 armd 1,11
lead to impliclt expressions for the multiplying constant which
are clumsy to use if the formulation in 1,10 is rearranged to that

in equation 4,5

x £
fe =1+ o.kr
Ty
. [] .

where fe is the residue, X the miltiplying constant ard fk the
coefficlent given by the modified circuit amd fkr the coefficient
' '
containing effect of extra common factor, C, fkr = kar + fkb-l'

taking the inaugmented coefficients as zero in the appropriate
places,

Using the objective function defined in equation 3.3

N
F e %fz_
=l e

| J
N5 £

x
Fe= = (-4 2kr)2
e=1 f.
Sk
' 2.' 2
N5 x f. x T
Fe > (1._2?kr+ 0 'kr )D
‘ e=1 £, f 2
\ k k
8,27
_JF.
The optimum value of x 1is given by putting 5—— = 0,
S g o , X,
kr
i.e. 'z.—'—
k

8.28

putting this into equation 8,27
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£ 2
kr
eE)
S T AN
Zl kr
Y
(ﬁifk;fkr_l\z
fx
FeN§m—o—
> {Gfkr+ fkr—l)
f'
, k
8.29
2.2 2
- C + 2CAB + B
F= N5 = =
CX+ XY+ &
8.30
f f. £ 2
where A =Z-f$r- , B ___Z__sz';-_l_' X= Z-_l'S.L
7k k sz
y ferfiera flix"--l
Y= T - ™ Z= Z'—-'-———
sz ikz
The optimum value of the extra cormen factor, @ is given by
OF _
5070

(£A% + 2B)(CX+ 2¢Y + 2) = (.FA% + 0AB+ BO) (XX + 2¥)

v

AZ - BY
G = BK - AY

8.31

8,7 Sensitivity of Coefficients to Node Growing

Consider a capacitance grown to node 1 ard a cornductance to
node j from extra mode N+1., 1 X j from considerations of network
contimity. In addition to the current real elements the elements
C, ard G

i J
nodal admittance matrix,

are embedded in the network as shown below in the resulting
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lunnnm—u—-u-u-m_ m_+1

1 |
' |
+sCi ' _ _ --sC:l
|
+G -
3 | Gy.
a |
N+1 ] e --G;~ B f‘SQij

Consider a general network cofactor, E&. From equation 2,14

{

A 35 DA ‘
S oS A T Fyen Y et * S-Sy
(Q m+1m+1 N+1i -gm+lj) )

8.32

where from equation

YN

Fmer Sii N+1 N#1 T SiNl+l ‘Smui)
ard
A

_}"G'j"m‘ +"1"‘ ‘S Nl+1 N+3 gjmn 2] Nl+1j)

8.34 .
Puttirg these cofactors of the nodal admittance matrix with the
added node in terms of the cofactors of the nodal admittance

matrix before the addition of node NI+1

2D A
2%m+1  O%m+1

= s(A+ Gjm+1( gi‘f,t * Sj.‘) -gij ._Sji))
8.35

25 A = (A+ scim+1(Sii+Sjj "gij "Sji))

O%me1  V5me1
8.36
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therefore

PRTAS
2 %+

= (04 +555- 8-S )

8.37
In a similar manner if the corductance G i; connected between
node N+l and the reference node, in terms of. the cofactors of the
nodal admittance matrix with added node then
A BE12Y. NPV S
3¢ m+15Gm+1m+1 Ay a1

8.38 .. 25 _S
where is given by equation 8,33 ard
S 1 N1 bGNl+1Nl+1 | N+1N+1

iN+1 Nl+li)

8.39
Putting these cofactors in terms of the cofactors of the nodal

admittance matrix before the addition of node NI+l

2Lé§———-"l§+ sC. E?

O% n+141 1M+ 74
I :
B 3 N+1 - s( A+ GNl+1N1+1S ii
8,40
hence
52 2 '
d 24N RPN - sS

¥ Cmsn il 9%+ d 1M
8.1 )
Furthermore, if extra common factor is given in form (stC)
A'-scmmgy Goer O scim+1G,le+1( gii ¥ gjj - g;.j - $55)
/ 8.42
or A= scim+1 B+ Gjm+1A * 50 a1ty 14

\

vhere A and A are original gn\d modified network cofactors,
respectively.  This method'of growing nodes can be extended
to LCR networks and common faétQ;“s of the form (sz+D) and

A

(52+Cs+D) .
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Reprinted from Electronics Letters, Vol.6, No.10. 14th May 1970

SIMULTANEOUS GENERATION OF THE
COEFFICIENTS OF NETWQRK POLYNOMIALS
AND THEIR PARTIAL DERIVATIVES FROM
THE NODAL-ADMITTANCE MATRIX

Indexing terms: Linear-network analysis, Sensitivity analysis

A method for the simultaneous evaluation of the coefficients
of a sumber of network polynomials and the formation of the
first 1nd second partial derivatives of these coefficients with
respert to the circuit elements is developed with special regard
to accuracy and speed of calculation. The method requires
only the original network to be analysed.

" Much interest has been expressed recently in methods for the
 calculation of network sensitivities. The method of Director

and Rohrer' 2 requires two network analyses while only one
network analysis is involved in the methods of Neill*' # and
Goddard and Spence.’ This letter describes a method for
the simultaneous calculation of the coefficients of a number
of network polynomials which can be extended to include, if
required, the simultaneous calculation of their partial deriva-
tives with respect to the circuit elements.

Consider as an example-a 3-terminal Jumped linear net-
work, whose external terminals are numbered 1, 2 and 0,
analysed by nodal analysis with node 0 regarded as the
reference node. If the network contains a total of n nodes
plus the reference node, the nodal equations can be written as

n
E Y,}EJ'—_-I‘ i=1,2,...,n . (l)
J=1 :
Writing A for the determinant of the coefficients Y;;, the
external equations of the 3-terminal network can be written as

AZZ All

E:+ E,=1
A“Il ! A1122 2 !

: ()
‘Alz All

Ex+ —E;=1
A2z ' Apaa 22

whére A, etc. are unsigned minors of A.

Suppose first of all that the network is purely resistive.
The external equations (eqns. 2) can be obtained from
eqns. 1 by ignoring the right-hand sides and using Gaussian
elimination to eliminate E,, E4, ..., E, from the first
two equations of eqns. 1. As Ay, is given by the
product of the diagonal elements produced in rows 3 to »
inclusive, A;;, A2, A,;; and A,;, can be obtained
from the coefficients of E, and E, produced in the first two
equations, the generation of the complete set of values
requiring only slightly more work than the calculation of
Ayyi, alone. In practice, in order to improve speed and
accuracy in the above elimination procedure, selection of the
optimum pivot and zero jumping would be incorporated.®

Consider now the calculation of the partial derivatives of
Ay, Agz, Ay, Azz and Ayy,,, first with respect to the
coefficients ¥;;. As the partial derivative of a determinant with
respect to one of its elements is equal to the corresponding
cofactor (Reference 7, p. 39), the calculation of the above
partial derivatives is equivalent to the calculation of terms
in the adjugates of the appropriate submatrices (i.e. sub-
matrices having determinants A,;, A, etc., respectively) of
the matrix of coefficients Y,;. This in turn reduces to the
calculation of terms in the inverses of these submatrices,

¢ provided that the values of their determinants are known,

which can be accomplished by extending the above elimina-

- tion procedure as follows. Carry out the same elimination :
. procedure as before but now including the right-hand sides
Forward substitute in the conventional manner ..
. to obtain the inverse of the submatrix Y, (/,j = 3,4, ..., n),
- whose determinant is A;,,,, but extend the working through

to columns 1 and 2 on the left-hand side. Eqns. 3 tllustrate,
for the case n = 5, the form of the situation thus obtained:
. Yuu Er+yi2 E; Culy
. YuEi+ynE;
VarEq+ys2 Ea+yss Ey
YarEx+ya Ex
ys1Eitys: Ex

o n

+yas Es
+yss Es

It can now be seen that the inverses of the submatrices whose
determinants are Ay, Az;, Az and A,; can each be obtained
with the minimum of additional working. Thus, to find the
inverse of the submatrix corresponding to A,;, the second
equation in eqns. 3 is used to eliminate E, from members
3,4, ..., n of that set of equations, with the working being
carried over to the right-hand sides; similarly for the inverses
of the submatrices whose determinants are A,,, Ay, and A,;.
Thus, as with the calculation of Ay, A2, Azy, A2z and
Aj122, the calculation of their first partial derivatives with
respect to their elements can have a great deal of working in
common, and it is most economical in computation time to
evaluate all these quantities, or such as may be required for
a given application, at the same time. Of course, if the
original matrix of coefficients Y,; is symmetrical, A;, and
A,, are equal and all adjugates of symmetrical matrices will
be symmetrical, and use might be made of these symmetries
in order to improve still further the computation time.
Second-order partial derivatives can now be obtained, if
required, by repeatedly applying Jacobi’s theorem (Reference
7, p. 97) to obtain the corresponding cofactors from elements
in adjugate matrices already calculated.

It is now necessary to extend the above to the calculation
of the partial derivatives of Ay, A{2; etc. with respect to the
circuit elements; there are two cases to consider. If a circuit
element, G, say, is connected between node i and the reference
node, then only Y;; is a function of G,, and so the partial
derivatives with respect to G, are equal to the corresponding
partial derivatives already calculated with respect to Y,,. If,
on the other hand, a circuit element, G, say, is connected
between nodes i and j, then Yy, Y, Y, and Y, are all
functions of G, and a given partial derivative required with.
respect to G, is equal to the algebraic sum of the appropriate
four partial derivatives previously obtained with respect to
these coefficients. Thus, for a reciprocal circuit element G,

oy _ 0¥ _ _,
062 an
. . . e “@
oYy _ 0¥, _
G, 0G,

and, if §,; is the cofactor with respect to Y;; in the determinant
Ay, for example, then

0A,y _ 0A,, Y, | 0Ay OV,
G, Y, 0G, aY;, 0G,
- QA 3Yy  0A 3V,
Y, 3G, ' 9Y, 0G,
o)

= du+0—8y—dp

It remains to extend the analysis to networks containing
reactive elements. In this case all the determinants involved
are functions of p the complex frequency, namely polynomials
in p possibly, for networks containing inductances, divided

~ by some power of p, upper limits to which are of the order of the

determinant in question and the total number of inductive
circuit elements contributing to the vatue of that determinant.
Similarly upper limits to the order ‘of the polynomial for
RC and RL networks are of the order of the determinant
and 'the total number of capacitive and inductive circuit
elements, respectively, contributing to the value of that
determinant, whilst corresponding upper limits for RLC
networks are twice the arder of the determinant and the
sum of the total numbers of capacitive and inductive circuit

" elements that contribute to the value of that determinant.

The coefficients of the required polynomials can be found by

+Cisl3+Ciale+Cysls
Ca21,+Ca3 I3+ Caala+ Cosls

C3als+Caals+Cssls R )
C‘3!3+C4414+C4515

C53 ’3+ Cg‘ I‘+C55 IS



repeating the above analysis (namely Gaussian elimination
together with, if partial derivatives are required, forward
substitution) for a sequence of real values of p sufficient in
number to enable the polynomial coeflicients to be determined
in any given case. In a program constructed by the authors,
a polynomial,. A;;(p) say, of known maximum order m is
evaluated a total of m+1 timesat p,, i = 0, 1, ..., m, giving

.

1 po p>2 — — — p” ao A (po)
1 ps Pll — — — p" a Ayi(py)
—_—— e — = - —}= —_— (6)
1 Pm pmz - — . pmm dm Al l(pm)

~where a, is the coefficient of p' in the polynomial A, (p).
The polynomial coefficients are now obtained by inverting
the Vandermonde matrix on the left-hand side of eqn. 6
using an algorithm given by Traub.® This inverse is calcu-
lated once only in each run of the program for each order
required thereby minimising the overall computation time.
The partial derivatives of the coefficients of A,,, for example,
with respect to the reciprocal circuit element G, are obtained
by equating like powers of p on both sides of eqn. 5. Other
partia! derivatives of coefficients follow in a similar manner.

The above technique for determining network polynomials
by carrying out the elimination procedures using real coef-
ficients would seem to offer an improvement in computation
time as compared with working with polynomial coefficients
(even though the method recently described by Downs® '°
reduces the number of extra algebraic factors that would
otherwise be introduced) and also over working with complex
coefficients particularly in cases where results are required
for a large number of real frequencies.

A program implementing the above scheme has been
written in ALGOL and run on an ICL (Elliott) 4130 computer

wy, -

’?‘"

having a core store of 2 us access time. The run time was 3 s
to calculate all the coefficients of A;,, A2, Az; and A,z
for a 31-clement series C shunt R ladder network, an additional
14 s being required to calculate all the partial derivatives of
these coefficients with respect to the circuit clements.

0. P. D. CUTTERIDGE
P. H. DI MAMBRO

A 14th April 1970

Department of Engineering
University of Leicester

* Leicester LE1 7RH, England
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SIMULTANEOUS GENERATION OF THE
PARTIAL DERIVATIVES OF NETWORK
POLYNOMIAL COEFFICIENTS: FURTHER
DETAILS AND RESULTS

Indexing terms: Linear-network analysis, Sensitivity analysis

A method was described recently by the authors for the simul-
taneous evaluation of the coefficients.of a number of network
polynomials and the formation of the first and second partial
derivatives of these coefficients with respect to the network
elements. The present letter gives further details, with respect
malrllly to the evaluation of second partial derivatives, and
results.

In a previous letter/ the authors described a method for the
simultaneous evaluation of a number of network polynomials
and, if required, of the first-order partial derivatives of these
polynomials with respect to the network elements from a given
nodal-admittance matrix of the network. It was further
pointed out that second-order partial derivatives could then
be obtained, if desired, by repeated application of Jacobi’s
theorem; further details concerning this will now be given,
together with a comparison of two possible variations in the
numerical procedure.

As was previously shown,” the first partial derivative of
the minor An, for example, of the nodal-admittance determi-
nant A with respect to a reciprocal conductance Gi is given by

#An
aGy

if G1 is connected between nodes i and j, which reduces to
dAii
dGi

= G+ 0jj-ij-0ji 0

=8i Q?)

if Gi is connected between node i and the reference node,
where 6ij etc. are cofactors of the determinant An with

respect to Yu, the element in the ith row and jth column ci
the given nodal-admittance matrix.

This analysis can now be extended to yield the second
partial derivative of An with respect to two reciprocal
circuit elements Gi and G:. If Gi is a conductance con-
nected between nodes / and j and Gz is a conductance con-
nected between nodes £ and /, we have

a'An  a“An
IGi"  dG @
and
a«A,, d /aA,\
dojG, “ (icT1 «
+ @i+ il —Qi—Git
~ (dijkk + dijii —éijki —Sijik)
—(djikk + djiit —djikt —Sjdk) “4)
where etc. are second-order cofactors of An with respect

to Yij and T¥. It should be noted that, in this letter, we
follow Muir’s convention (Reference 2, p. 82) with regard
to the signs to be associated with higher-order cofactors;
i.e. the cofactor Suki contains the factors (- )(+;+k+"

sgn (i- k) and sgn (j - /) where
sgn (%)= + 1 je0
15)
sgn (x) = - 1

The following form of Jacobi's theorem (Reference 3, p. 97)
djli = ~fer\ (dijoki-OuikG) 6)

can now be applied to change the second derivative from a
function of second-order cofactors into a function of first-
order cofactors. On repeatedly substituting eqn. 6, with

appropriate combinations of suffixes, into eqn. 4 and re-
arranging terms, we have

1y S-S @it —~Shi—SH)

—(Sik+6ji—bjk—bii) {oki-\-ou—okj—SiD}  (T)

a=Au
dGzdGi

Reprinted from ELECTRONICS LETTERS, Vol. 7. No. 1

Since the expressions in the first two brackets in eqn. 7 have
already been calculated as JAu/JGi and dAn/dGz, respec-
tively (see eqn. 1), for computational purposes we rewrite
eqn. 7 as
AASS A ASS
Al 1 CAL AT g ik
dGzdGi AT 1dGi dG;

X(Sat+Sij——M1 @

It should be noted that, if Gi is connected between nodes i
and j and G2 is connected between node k£ and the reference
node, eqn. 8 reduces to

a: ALl _1_ Ml SAii . .
iG:dGi A1 dG dG —TRINEI—S) ©

and if Gi and Gz are connected between nodes i and £,
respectively, and the reference node, eqns. 8 and 9 reduce to

e = Ll(ﬂimﬂ

== Vi@ dG —SkSI . (10

dGz dG 1

If a purely resistive network is being analysed, the nodal-
admittance determinant and all its minors, such as An, and
all cofactors used in the above equations are real numbers,
and these equations yield the appropriate real values for
the various partial derivatives. However, if the network
contains reactive elements, these items can be regarded as
power series in p, the complex frequency, and the various
partial derivatives of the coefficients of the powers of p in
A,, are obtained by equating like powers of p on both sides
of eqns. 1 and 8 etc. Appropriate modifications to these
equations must be made in cases where partial derivatives
are being calculated with respect to one or more reactive
elements. Thus, if Gi is replaced by a capacitance Ci, eqn. 1
becomes

dAii  ~Aii dYg  dAg dYjj
oa JaG ay, ac,
dYij aci dYji aci
Ie.
aAii e 12
aC, = p(Sii+Sjj-Sij-Sji) (12)
since
ay, ayjj _
aci  ac,
and 13)
dYij _ dyj,
ac, ac. - ”?

and, if G2 also is similarly replaced by a capacitance C2,
eqn. 8 becomes

a"A,, 1 (aA,, aAii

N (Ski+Sij—Skj—Su)\  (14)

Corresponding results for partial derivatives with respect to
inducfive elements and for partial derivatives with respect to
combinations of element types follow in a similar manner.
In all these cases the partial derivatives of the coefficients of
the various powers of p in A,, are obtained by equating like
powers of p on both sides of the relevant equations.

Two variations in the numerical procedure are now
possible for networks containing reactive elements. Either
the various terms on the right-hand sides of eons. 8 and 14
etc. can be found and manipulated as power series in p, or,
alternatively, the working can be performed in terms of the
values of these quantities at various real values of p, the
power series corresponding to the partial derivatives being



obtained at the very end by using the inverse Vandermonde
matrix as described in the previous letter.! If M is the order
of the highest-order polynomial involved, N is the number of
elements and N; is the number of nodes, an approximate
analysis indicates that the number of operations (equivalent
multiplications) required in these two methods, for passive
networks and for large values of M, N and N,, is about
6M2N2+2M2N,;? and 2M? N2, respectively, in order to
produce all the second derivatives of all the coefficients; this
relatively low number of operations for the second method
assumes that the required inverse Vandermonde matrix has
been previously calculated and stored in thc machine. Test
runs for a number of CR ladder network examples have con-
firmed that, using the second variation, an improvement in
speed of about threefold is obtained, together also with a
significant improvement in accuracy particularly in higher-
order cases.

The following are some results obtained for 3-terminal
series C shunt R ladder networks with an ALGoL version of
the faster of the two variations described above run on an
ICL (Elliott) 4130 computer having a core store of 2 us
access time. The figures of merit indicated in Table 1 are
defined as follows:

For calculation of first derivatives,
figure of merit

_ time taken by differencing function values
time taken for direct calculation of first derivatives

For calculation of second derivatives,
figure of merit

__ time taken by differencing first-derivative values
time taken for direct calculation of second derivatives

Table 1

Number of elements 13 17 19

Time to calculate all
polynomial coefficients 0-3s 05s 0.7s

Time to calculate coefficients
and first derivatives 1.9s 3.7s 5.1s
(Figure of merit) 2-4) 2-7) 3-0)

Time to calculate coefficients
and first and second derivatives| 7-0s 17.0s | 25.0s
(Figure of merit) “4-1) @1 4-2)

0. P. D. CUTTERIDGE 30th November 1970
P. H. DI MAMBRO*

Department of Engineering
University of Leicester
Leicester LEl 7RH, England
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SOME EXAMPLES DEMONSTRATING
FEASIBILITY OF EVOLUTIONARY APPROACH
TO LINEAR-NETWORK SYNTHESIS

Indexing terms: Computer-aided circuit design, Ladder networks,
Linear-network synthesis, Network topology, Optimisation

An initial study has been carried out to determine the
feasibility of using network evolution as a computer synthesis
method for linear networks. The procedure employed uses
numerical optimisation in conjunction with coefficient match-
ing, and is applied to 3-terminal RC networks containing two
internal nodes. An example showing the successful develop-
ment of a parallel-T realisation from an initial ladder structure
is described in detail.

By an evolutionary approach to linear-network synthesis is
meant the technique whereby suitable changes in the topology
of a network are made to occur in addition to beneficial
variations in the values of the network elements, the general
direction of the whole process being determined by the need
to reduce a suitable error function, measuring the departure
of characteristics currently obtained from those finally
desired, to ever lower values. Although this xdea, or its
rudiments, has appeared on a number of occasions in the
literature,' ~* very little in the way of definite results appears
to have been published; however, some examples involving
only element annihilation and node reduction were given in a
previous paper.® It is the purpose of this letter to present
an example showing in detail the steps in the evolutionary
synthesis, involving the growth annihilation of elements,
but, in this case, keeping the number of nodes invariant, of a
5-node 3-terminal RC network from a given set of short-
circuit admittance functions. Throughout this letter, the
error criterion used is based on a variant of the method of
coefficient matching,! the method of calculating the network-
polynomial coefficients and their partial derivatives with
respect to both real and virtual elements is as previously
described by the authors®s 7 and the optimisation technique
employed is due to Levenberg.®

The synthesis problem to be solved is to realise the set of
short-circuit admittance functions

A 1+10p+20p*+8p®
Y= Aaz 2+8p+8p?
A 1+2praresy "
“he = Az 2+8p+8p?
A, 1+10p+20p®+8p®
Y22 = Aji22 - 2+8p+8p2

and the sequence of changes leading to an exact realisation are
shown in Fig. 1. The following points should be noted
about the sequence shown in the Figure:

(a) Analysis of the start network reveals the presence of
zero-valued coefficients in some of the network polynomials,
and corresponding non-zero-valued coefficients in the set of
short-circuit admittance functions. The first step in the
synthesis method is to introduce additional network elements
that result in all the polynomials being of the correct form—the
first and second changes shown in Fig. 1. This is effected by
the following procedure: attention is directed to a zero-valued

initial structure

36 LG

(@ O

&
[ Yo}
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@

()

final structure

Fig. 1 Structural changes leading to realisation of short-
circuit admittance functions of eqns. 1

é, (k) refers to7the coefﬁc(l;ent of p* in the polynomial A;;

a lFxrst czhange ac’ld (1:'; to gzeneratc Allz(l) and A2,(3)

Ci=C=C3=2T4; G, = Gy = G3 = 1-37

b Second change add C4 to generate A;(2) and A;4(3). This also generates A,;,(3)

Initial F = Xf;2
]C:‘lln;l_l'(’:z—~2?%; 4~274 Gy =Gy= Gy =137

Cl—037Cz 743C;—333C._08561_19OG,—I4SG,=113
¢ Third change = add Gs

Initial F = Xf2 =

97
Cy =037, Cz—743 C3=1333,C4=10'85G,=190,G,=148,G3 = 1-13
Gy =0- 72
Final F= Xf2 = 1-56
C1=1023,C,=9-45,C3=2-81,C4=0'92; G, =140,G,=115,G3 = 1-22
Gi=0-53
d Fourth change add Gs
Initial F = X f2 = 1-47
C;=023,C,= 9- 45 C3;=2-81,C4 =092, G; =140, G, =1:15,G3=1-22
Ga=0-53,Gs=0-084 -
Final F= X fi> = 6-7x10-1°
Cy = 2-6x10-5, C; = 4-00, C3~200 C‘—200 G, =2:5x10-5, G, =
7-3x10-5, G5 = 1-00, G, = 1-00, 2-00
e Fifth change: remove C,, G, and Gz

=X fi? = 6-3x10-20

C2=14:00,C3=2-00,C¢ = 2:00; Gy = 1:00, G¢ = 1-00, G5 = 2-00



coefficient that is adjacent, in a given polynomial, to one whose
value is nonzero, and the set of its partial derivatives with
respect to some or all possible virtual elements is calculated; a
nonzero partial derivative indicates that the zero-valued
coefficient will become nonzero if the corresponding virtual
element is replaced by a real one of the same type. In fact, by
considering the partial derivatives of more than one zero-
valued coefficient, it is sometimes possible to simultaneously
correct a number of these coefficients by the introduction of
only one element (first and second changes of Fig. 1). It is
sound policy to prohibit, as far as possible, connections
between external nodes at this stage, as the encouragement
of the growth of connections between internal nodes has
been observed to generally speed up the evolutionary process.

(b) Optimisation carried out at each stage reached in the
~ evolutionary process, i.e. with fixed network topology, takes
place in the domain of the square of the independent variables.
This constrains the element values to be positive during the
optimisation procedure, and also indicates, by their being
driven to very low values, which elements might be removed
from the network. The removal of elements occurs -at the
fifth change in the example shown. In every case, the
optimisation process is continued until significant changes in
element values etc. cease to occur,

(¢) The following algorithm was used to determine the type
of network element to grow and also its position in the network
and its initial value: with the elements already present in the
network fixed in value and all possible virtual elements
regarded as independent variables, one stage of Levenberg’s
optimisation algorithm was performed in the domain of these
variables for a number of positive values of the Levenberg
parameter . A very wide range of the parameter A was used,
with equal intervals on a logarithmic A scale, the vector of
corrections to the variables was calculated for each of thesee
values of A and the component of this vector having the
maximum positive value was noted. This particular com-
ponent, corresponding to a positive virtual element, was
then incorporated with the fixed-value elements already
present in the network, and an objective function, equal to the
sum of the squares of the errors used throughout, was
calculated. This objective function, as a function of 4, is
usually discontinuous and multimodal, since, over the wide
range of A used, different components of the Levenberg
correction vector possess the largest positive value. A

golden-section linear search, of relatively low accuracy, was
then performed between adjacent values of the parameter A
used, followed by a final, more accurate, search over the
region of A associated with the best minimum thus obtained.
Growing elements by this method takes place at the third and
fourth stages in the example shown.

The example shown in Fig. 1 is only one of several twin-T
RC structures, each of which has been successfully synthetised
from different. types of RC ladder network. Taken together,
these examples demonstrate that an evolutionary approach
to linear-network synthesis is now feasible, at any rate, for
problems of this order of difficulty.
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Summary

deal effectively with either parasitic elements or constraints and in

that the range of networks they can adequately synthesise is limited.

The computer makes it practical to use methods of directed trial and

_error vhich do not have these limitations, such as network evolution.

Network evolution is a process by which changes occur in both the
network topology and in the values of the network elements in such a
way as to drive‘an objective function (some measure of the error
between current and required response) to ever lower values and

ultimately solution. In this case the error arises from the matching

of the current set of coefficients of the network polynomials with their -

respective required values. This comparison produces a set of non-
linear equations which on solution give a suitable network topology

and element values. These non-linear equations require optimisation

" techniques for their solution.

It is shown that network evolution by coefficient matching is
feasible in processes which primérily work either by network growth

or by network reduction. The process of network growth works by
taking a primitive starting network having the correet network poly-
nomial structure and eliminating and growing elements at the appropriate

state of development until a satisfactory solution is obtained.

" The method of analysis used, in addition to being both accurate and
\

rapid, also gives the sensitivity of the coefficients with respect |

to virtual zero~-valued elements. Use of this information enables a

\

suitable choice of type, place in'pétwork and value of element tb ETOWe



The network: reduction process takes initially a network which produces
the required network polynomials, but with redundant common factors,
and pares away the excess elements by making them open or short.

circuit, simultaneously removing excess common factors, until ai

suitable network is obtained.

Suggestions are made on ways of improving the evolutionary process

and increasing its scope.
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