
. A Stucly o f  the E volutionary Approach to  

Network S yn thesis u s in g  C o e ff ic ie n t  tiatching

by

P.H. d i Mambro, B .Sc. B r is to l  1959 

M.Sc. L e icester  1970

A th e s is  subm itted in  support o f  an a p p lica tio n  fo r  the degree 

o f  Doctor o f  Philosophy in  th e U n iv ersity  o f  L e ice ster .

1974



UMI Number: U641566

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U641566
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition ©  ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



A ^

X I 5



MEMORAI^^DUM

The accompanying th e s is ,  *A Study o f  the Evolutionary Approach 

to  Linear Network Synthesis using C o e ffic ien t Matching’ , i s  based on 

work conducted by the author in  the Engineering Department o f  the 

U n iversity  o f  L e ice ster , between January 1971 and November 1974.

A ll /ork recorded in  th is  th e s is  i s  o r ig in a l un less  otherw ise  

acknowledged in  the te x t  or by re feren ces . None o f  the work has 

been submitted for another degree in  th is  or any other u n iv e r s ity .

P.H. d i Mambro



. : Summary

The standard sy n th esis  techniques are lim ite d  in  th a t th ey  cannot 

d ea l e f f e c t iv e ly  with e ith e r  p a r a s it ic  elem ents or co n stra in ts  and in  

th a t the range o f  networks th ey  can adequately sy n th esise  i s  lim ite d .

The computer makes i t  p r a c tic a l to  use methods o f  d irected  t r i a l  and 

error which do not have th ese  l im ita t io n s , such as network ev o lu tio n .

Network evo lu tion  i s  a process by wliich changes occur in  both the  

network top ology and in  the values o f  th e network elem ents in  such a 

way as to  d rive an o b jec tiv e  fu n ction  (some measure o f  the error  

between current and required response) to ever lower values and 

u lt im a te ly  s o lu t io n . In th is  case the error a r is e s  from th e matching 

o f  the current se t  o f  c o e f f ic ie n ts  o f  the network polynom ials w ith th e ir  

r esp e c tiv e  required values* This comparison produces a s e t  o f  non­

l in e a r  equations which on so lu tio n  g ive  a su ita b le  network topology  

and elem ent v a lu es . These non -lin ear equations require op tim isa tion  

techniques fo r  th e ir  so lu tio n .

I t  i s  shown th a t network evo lu tion  by c o e f f ic ie n t  matching i s  

f e a s ib le  in  processes which p rim arily  work e ith e r  by network growth 

or by network red uction . The process o f  network growth works by 

tak in g  a p r im itive  s ta r tin g  network having the correct network poly­

nomial stru ctu re  and e lim in atin g  and growing elem ents a t the appropriate  

s ta te  o f  development u n t i l  a s a t is fa c to r y  so lu tio n  i s  obtained.

The method o f  a n a ly s is  used , in  ad d ition  to  being both accurate and 

rap id , a lso  g iv es  the s e n s i t iv i t y  o f  the c o e f f ic ie n t s  w ith resp ect  

to  v ir tu a l  zero-valued elem ents. Use o f  t h is  inform ation enables a 

s u ita b le  choice  o f  typ e, p lace in  network and value o f  element to  grow.



The network reduction process takes i n i t i a l l y  a network which produces 

th e required network polynom ials, but w ith redundant common fa c to r s ,  

and pares away the excess elem ents by making them open or short 

c ir c u i t ,  sim ultaneously  removing excess common fa c to r s , u n t i l  a 

su ita b le  network i s  obtained.

Suggestions are made on ways o f  improving the evo lu tionary  process  

and in crea sin g  i t s  scope*

i‘  V_,

l*v'-
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Preface

The work described in  t h is  th e s is  i s  an e x te n s io h io f id eas put 

forward in  th e author’s M aster’s th e s is  e n t it le d  ’An In v e stig a tio n  

in to  the Uses o f  C o effic ien t Matching in  Network S y n th e s is ’ .

When th e author commenced research for  a sab b atica l year a t  

the U n iv ersity  o f  L e ice ster , programs employing c o e f f ic ie n t  matching 

u sin g  op tim isa tio n  fo r  the network sy n th esis  fo r  s p e c if ic  networks, 

were w e ll e s ta b lish e d . In co lla b o ra tio n  w ith Dr. O.P.D. C utteridge  

the author was resp on sib le  fo r  the development o f  a general a n a ly s is  

method which was much more rapid and accurate than the methods 

then used .

The a n a ly s is  method developed a lso  gave th e s e n s i t iv i t y  o f  the 

c o e f f ic ie n t s  o f  the network polynom ials w ith resp ect to  zero-valued  

network elem en ts. The idea  was conceived th a t th is  inform ation  

togeth er  w ith the network syn th esis  programs already developed would 

provide a means o f  producing changes in  the topology o f  a network in  

ad d ition  to  changes in  the values o f  i t s  elem ents, th a t i s ,  network 

ev o lu tio n . The subsequeht study o f  the f e a s i b i l i t y  o f  th ese  id eas  

i s  the su b ject o f  t h is  t h e s is .  The author carried  out the research  

d escrib ed , on a part-tim e b a s is , in  very c lo se  co llab ora tion  w ith  

the group working under Dr. O.P.D. C utteridge at the U n iversity  o f  

L e ic e s te r . The author had many exchanges o f  id eas with Dr. C utteridge  

who guided t h is  research . The author a lso  had many in te r e s t in g  

d iscu ss io n s  w ith  Dr. D.J. Wright and Mr. A.J.  Krzeczkowski o f  the  

group a t L e ice ster  about network ev o lu tio n . The r e s u lt s  described  

in  t h i s  t h e s is  represent the f i r s t  step ; network ev o lu tion  using  

c o e f f ic ie n t  matching i s  fe a s ib le  under cer ta in  circum stances.

The author hopes to continue the co lla b o ra tio n  with Dr. C utteridge  

and th e group a t the U n iv ersity  o f  L eicester  in  the development o f  

t h is  in te r e s t in g  su b jec t.
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INTRODUCTION

The fundamental problem in  e le c t r ic a l  network sy n th es is , 

g iv en  a s p e c if ic a t io n  fo r  th e  network to  f u l f i l ,  i s  obtain ing  

th e  'b est*  network con figu ration  and elem ent va lu es which f i l l  

th e  s p e c if ic a t io n . D efin ing th e  'best*  network depends upon 

th e  requirem ents which th e network i s  to  f u l f i l ;  i t  could be the  

network con ta in in g 'th e  few est elem ents, the cheapest network or  

th e  network w ith th e  low est s e n s i t iv i t y .

The c la s s ic a l  sy n th es is  techniques^ fo r  two term inal networks, 

such as  th e  F oster fo r  two elem ent kinds or the Brune fo r  LCRM 

networks, are su ccessfu l in  producing canonical networks bu t, 

when mutual inductance i s  excluded, th en  methods such as the  

B o tt-D u ffln  have to  be used; th ese  produce many more elem ents than  

th e canonical forms. Standard sy n th es is  methods^, such as 

D arlington , are su ccessfu l when app lied  to  four term inal networks.

In  p r a c tic e , networks have th ree  term inals (w ith  a common ground 

term inal to  input and output) and exclude mutual inductance, th is  

produces th e  same so r t o f  d i f f i c u l t i e s  as w ith  two term inal networks. 

Furthermore a l l  th e standard sy n th es is  techniques use s e r ie s -  

p a r a lle l  decom position and for""this reason cannot sy n th esise

networks which are only  capable o f  r e a l i s a t io n  by noiM series-
%

p a r a lle l  con figu ration s , These tech n iq u es, in  a d d ition  to  

th ese  l im ita t io n s  o f  r e a lis a t io n , take no account o f  co n stra in ts  

on th e  range o f  elem ent va lu es and/or r a t io s  or o f  the p a r a s it ic s  

a cro ss  th e ir  id e a l elem ents. N everth eless, w ith in  th ese  severe  

l im ita t io n s  th e  c la s s ic a l  sy n th es is  techniques or th e ir  d e r iv a tiv e s
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do, very o ften , produce networks which s a t i s f a c t o r i ly  f u l f i l  th e  

s p e c if ic a t io n s .

The in tro d u ctio n  o f  in teg ra ted  c ir c u i t s  and th e requirements 

fo r  ever more demanding s p e c if ic a t io n s  provide the need fo r  sy n th es is  

methods which surmount some o f  th e  inh erent lim ita t io n s  o f  the  

standard tech n iq u es. These new techniques must have greater  

f l e x i b i l i t y  so as to  a llow  fo r  th e  e f f e c t s  o f  co n stra in ts  and 

p o r a s it ic s  being d ir e c t ly  included  in  th e process o f  sy n th es is .

The need a lso  e x is t s  for  techniques which can sy n th esise  th ese  

networks, such as e q u a lise r s , which are not capable o f  simple 

d esign  by th e  standard tech n iq u es.

One such new technique i s  th a t o f  network ev o lu tio n  by 

c o e f f ic ie n t  matching. By an evolu tion ary  approach to  l in e a r  

network sy n th esis  i s  meant th e technique whereby su ita b le  changes 

in  th e  topology o f  a network are made to  occur in  a d d itio n  to  

b e n e f ic ia l  v a r ia t io n s - in  th e  va lu es o f  th e network elem ents.

The general d ir e c t io n  o f  th e  whole process i s  determined by 

th e need to  reduce a su ita b le  error fu n ctio n  (measuring the  

departure o f  th e c h a r a c te r is t ic s  cu rren tly  achieved from those  

f in a l ly  d esired ) to  ever low er v a lu es . Random s e le c t io n  o f  the  

required topology i s  im p racticab le, s in ce  the number o f  a ltern a­

t iv e  stru ctu res  r i s e s  f a c t o r ia l ly  w ith  the number o f  nodes.

Although th is  id ea , or i t s  rudim ents, has appeared on a number 

o f  occasion s in  th e  l i t e r a t u r e v e r y  l i t t l e  in  th e  way o f  

concrete achievem ents appears to  have been published u n t i l  

recen&y9.54.6Z.59_
A method o f  d irec ted  t r i a l  and error i s  made p o ss ib le  in  the  

f i e ld  o f  network sy n th es is  by th e cap acity  o f  th e  computer to
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perform mary c a lcu la tio n s  rap id ly  and a t  low  c o st . D irected t r i a l

and error i s  o fte n  used w ith su ccess, by engineers in  sim pler s i t -

1n a tio n s . C o e ffic ien t matching developed by O lahan from an idea

by Orchard i s  one such sy n th es is  technique. In  t h is  method the  
* '

c o e f f ic ie n t s  o f  the network polynom ials are derived from the current 

s e t  o f  component va lu es and compared w ith  th e  corresponding 

c o e f f ic ie n t s  o f  the required s e t  o f  network polynom ials. Using 

th e  r e s u lt s  o f  th is'com p arison  a s e t  o f  n o iv lin ea r  simultaneous 

equations are formed. The so lu tio n  o f  t h i s  s e t  o f  equations, i f  

achieved , w i l l  g iv e  a s e t  o f  component va lu es  and a network topology  

which w i l l  generate the required network polynom ials. In  t h is  

t h e s i s ,  th e s e t  o f  network polynom ials i s  th a t  representing the  

adm ittance parameters; th e  c o e f f ic ie n t s  and th e ir  d er iv a tiv e s  are 

derived  v ia  th e  nodal adm ittance m atrix from the network elem ents. 

The so lu tio n  o f  the s e t  o f  non -lin ear  simultaneous equations  

a r is in g  from th e technique o f  matching c o e f f ic ie n t s  n e c e ss ita te s  

th e  use o f  o p tim isa tion  theory , S ince th e  problem i s  a reduction  

o f  an o b jec tiv e  fu n ction  co n s is t in g  o f  a sum o f  squares and th e  

d e r iv a tiv e s  o f  th e c o e f f ic ie n ts  are r e a d ily  a v a ila b le , only some 

o f  th e  gamut o f  various techniques a v a ila b le  are p ertin en t.

A ll th e methods which can "be used to  so lv e  the s e t  o f  noiv 

l in e a r  equations require mary i t e r a t io n s .  As the va lu es o f  th e  

network elem ents are a lte r e d  from i t e r a t io n  to  ite r a t io n , the  

c o e f f ic ie n t  o f  the network polynom ials and th e ir  d er iv a tiv e s  must 

be reca lcu la ted . Thus, i f  th e  sy n th es is  o f  a sp e c if ic a t io n  

req u irin g  a f a ir ly  com plicated r e a l i s a t io n  i s  to  be accomplished 

i n  a reasonable tim e, th e ev a lu a tio n  o f  the c o e f f ic ie n ts ,  and th e ir
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d e r iv a tiv e s  from th e nodal adm ittance m atrix must be rapid ,
7 8A method o f  a n a ly s is  * has been developed which ach ieves

th e  rapid eva lu ation  o f  th e  c o e f f ic ie n ts  and th e ir  f i r s t  and

second d e r iv a tiv e s  w ith  resp ec t to  the network elem ents. This 
»

method obtains th e  c o e f f ic ie n ts  and th e ir  d e r iv a tiv e s  a n a ly t ic a lly  

by u sin g  the p rop erties o f  the nodal adm ittance m atrix and th e  

network polynom ials. Furthermore, t h i s  method o f  a n a ly s is  enables 

th e  d e r iv a tiv e s  o f  the c o e f f ic ie n t  w ith  resp ec t to  v ir tu a l (zero -  

v a lu es) elem ents to  be e a s i ly  ca lcu lated^ . When a stage  i s  reached 

in  th e  evolu tionary process where a lte r a t io n  to  the network topology  

i s  required , th e  use o f  t h is  in form ation  enables a choice o f  the  

va lu e , th e  type and the p lace in  network o f  the element which i s  

to  be grown (added) in  th e  network. In  a d d itio n , should extra  

nodes be necessary in  the change o f  top ology , th e use o f  t h is  

in form ation  a s s i s t s  in  the p lacin g  o f  th e  node and the appropriate 

choice o f  elem ents to  connect i t  to  th e  network,

- The sy n th esis  problem^ has th ree  d if fe r e n t  stages -  

approxim ation, s e le c t io n  and ev a lu a tion . The th ree stages  

in te r a c t  to  such a high degree th a t, when one stage  i s  being  

undertaken, th e  requirements o f  th e o th ers must be con stan tly  

taken in to  con sid eration ,

When th e s p e c if ic a t io n  i s  g iven  as a frequency or tr a n s ie n t  

respon se, th e  approximation stage  o f  the sy n th es is  i s  concerned 

w ith  th e  problem o f  putting t h is  in to  appropriate mathametical 

form, i , e ,  s e t s  o f  appropriate polynom ials; th ese  polynom ials must 

be r e a lis a b le  h y  th e type o f  c ir c u it  envisaged . The approximation
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stage  i s  alm ost always concerned w ith sampling the required response
4

a t a s e r ie s  o f  p o in ts  ; th e  choice o f  th e  appropriate samplir^

p o in ts  req uires a great d ea l o f  s lc i l l .  This t h e s is  assumes that

th e approximation stage o f  th e -sy n th e s is  has been accom plished,

providing a su ita b le  s e t  o f  polynom ials which are r e a lis a b le .

The proceeds o f  s e le c t io n  i s ,  to  su ggest w ith in  th e  confin es

o f  present sy n th es is  techrdques, an appropriate c ir c u i t

con figu ration  capable o f  f u l f i l l i n g  th e requirem ents s e t  out by

th e  approximation. C onstraints are placed on the sp e c if ic a t io n s

which can be f u l f i l l e d  i f  th e c ir c u it  typ es are r e s tr ic te d  by

oth er co n sid era tion s. The c ir c u i t  type i s  o fte n  r e s tr ic te d  to

l in e a r  passive lum p^ networks w ithout mutual coupling. The

sy n th es is  o f  two typ es o f  c ir c u it  having t h is  r e s t r ic t io n  are

s p e c i f ic a l ly  examined in  t h is  t h e s is ,  namely OR th ree  term inal

networks and LCR two term inal networks.

Programs employing network ev o lu tio n  u sin g  c o e f f ic ie n t  matching

are described; th ese  are capable o f  sy n th es is in g  ary 2 or 3

term inal LCR network, ‘ These programs p rim arily  work e ith e r

by a process o f  growth (adding elem ents and perhaps nodes to  a

sim ple b a s ic  network u n t i l  th e s p e c if ic a t io n  i s  s a t i s f ie d )  or by

a process o f  red u ction  (removing from th e network, capable o f

generating  the s p e c if ic a t io n , excess elem ents and nodes and as a

consequence e lim in atin g  the excess common fa c to r s ) ,
o

The evolution by growth program performs th e  sy n th es is  in  a 

s e r ie s  o f  s te p s . I t  f i r s t  g iv e s  some g u id e lin e s  as to  the s e le c t io n  

o f  th e  s ta r tin g  network. The s ta r tin g  network i s  th en  checked to



-  6 -

ensure th a t i t  has the correct network structure and th e  d e f ic ie n c ie s  

remedied. This network i s  then optim ised u n t i l  convergence ceases  

and elem ents e lim in ated  and added; the process being repeated  

u n t i l  so lu tio n  i s  obtained. The e v o lu tio n  by red uction  program 

provides a process by which networks generating the required poly­

nomials m u ltip lied  by excess common fa c to r s  are s im p lif ie d  by 

removing th ese  common fa c to r s  and th e  corresponding excess elem ents 

and nodes.

The r e s u lt s  obtained by using th ese  programs are d iscu ssed  and 

i t  i s  shown th a t  network ev o lu tio n  by c o e f f ic ie n t  matching i s  

f e a s ib le ,  w ith in  th e l im ita  o f  th e  examples te s te d . In  p a r ticu la r , 

i t  i s  shown th a t th e sy n th es is  o f  n o n -ser ie s  p a r a lle l networks i s  

f e a s ib le ,  a t  l e a s t  fo r  6 nodes, providing the on ly  way, a t t h is  

tim e, by which such networks may be 'synthesised . I t  i s  a lso  shown 

th a t network ev o lu tio n  may be used to  s im p lify  networks syn th esised  

by methods such as th a t o f  B ott-D u ffin ,

Further developments are suggested in  extending th e  scope o f  

network ev o lu tio n  and to  explore i t s  l im ita t io n s .
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Chapter 1 

COEFFICIENT MATCHING

1.1 Introduction

The technique o f  sy n th es is  known as c o e f f ic ie n t  matching i s

concerned w ith  the a n a ly s is  o f  a lin e a r  lumped e le c t r ic a l  network to  fin d
*

i t s  network polynom ials and th e ir  comparison c o e f f ic ie n t  by c o e f f ic ie n t  

w ith the required s e t  o f  network polynom ials.^ The network top o logy , 

i . e .  the type o f  each network component and th e ir  in tercon n ection , i s ,  

in  the f i r s t  in s ta n ce , provided by a standard sy n th esis  technique or  

guessed a t by the d esign er , (see  Chapter 4)

The a n a ly s is  o f  the network in  t h is  th e s is  i s  by means o f  the  

ch a ra cter isa tio n  o f  the network in  a nodal admittance m atrix. This has 

sev era l advantages over oth er methods o f  a n a ly s is  which y ie ld  the network 

polynom ials. The nodal admittance m atrix has many sp e c ia l p ro p erties  as 

have the network polynom ials; th ese  p rop erties  can be used to  a id  the  

a n a ly s is  and sy n th e s is . S in ce , in  gen era l, there are more c o e f f ic ie n t s  

than elem ents and because o f  the nature o f  the a n a ly s is , the method o f  

c o e f f ic ie n t  matching produces cer ta in  d i f f i c u l t i e s  in  th e form ulation o f  

th e problem.

The sy n th es is  process has th ree b a s ic  s ta g es; approximation, 

s e le c t io n  and ev a lu a tio n . S ince th ese  stages in ter a c t so much, i f  

c o e f f ic ie n t  matching i s  used as the l a s t  stage  o f  the sy n th esis  p ro cess , 

i t s  e f f e c t s  on th e  two p r io r  sta g es  must be examined. Furthermore,

* The network polynom ials d escrib e  the response o f  the .network to  

changes a t  i t s  input and output term in a ls .
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the approximation and s e le c t io n  stages must be com patible. Though 

c o e f f ic ie n t  matching apparently provides a large  degree o f  ch oice  in  

type o f  network, th ere must be a check th a t the polynom ials g iven  by th e  

approximation stage are capable o f  being generated by the c ir c u i t  in  the  

s e le c t io n  s ta g e , i . e .  th e  r e a liz a t io n  con d ition s are f u l f i l l e d .

A ltern ative  methods o f  d irected  t r i a l  and error to  th a t o f
2  Lc o e f f ic ie n t  matching, are the d ir e c t  method and po le-zero  matching.

In th e d ir e c t  method, mathematical expression  o f  the approximation i s  

not formed and the response o f  a network and the required response are 

compared d ir e c t ly  a t a s e r ie s  o f  p o in ts . This comparison produces a 

s e t  o f  n on -lin ear  sim ultaneous equations which have to  be so lved  much 

in  the manner o f  c o e f f ic ie n t  matching. In the po le-zero  matching, th e  

approximation stage o f  the sy n th es is  provides a required se t  o f  p o le  and 

zero s. The p o les and zeros o f  the network are compared w ith th is  

required s e t  o f  p o les  and zeros and th is  produces the s e t  o f  n on -lin ear  

equations. These a lte r n a tiv e  methods are compared with c o e f f ic ie n t  

matching.

1 .2  Nodal Admittance Matrix

A node v o ltage  i s  defin ed  as the vo lta g e  between node i  and th e

node 0 ,  an a r b itr a r ily  chosen referen ce node, u su a lly  the ground node.
*

I f  K irchhoff *s current law i s  app lied  to the nodes o f  a network, a s e t  

o f  node current equations can be s e t  up. I f  the branch currents (other  

than sources) are expressed in  terms o f  the node v o lta g es  or the d iffe re n c e  

between node v o lta g es  then the node equations are s e t  up. These equations 

express th e  branch currents in  terms o f  the node v o lta g e s . I f  a p a ssiv e

* K irchhoff*s current law s ta te s  th a t the current lea v in g  node j due to  

sources equals the current lea v in g  through branches (other than sources) 

connected to  node j .
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network i s  analysed, these equations can be expressed in  the m attix  

form

sL11 l ia

m m  sL R,NIL “ N IN l 

1 . 1

1__ + s c  + i
® % ia sLM l KL K1

L 4

where I. -  I jj l are the t o ta l  currents entering the nodes 1  to

V^- ■* -  Vj^ are the node vo ltage. There are N1 + 1 nodes and Kl

equations, the reference node has been taken as ground and numbered 0.

The follow ing ru les may be used to g ive the values o f  e tc .
*11

I f  1 = j ,

-  R^j = t o ta l  p a ra lle l resistan ce  d ir e c t ly  connected between nodes 

i  and j  = -  R̂ ^

« = to ta l  p a ra lle l capacitance d ir e c t ly  connected between nodes

i  and j  = -  C
j l

-  = to ta l  p a ra lle l inductance d ir e c t ly  connected between nodes

i  and j  = -

I f  i  = j ,  connect a l l  nodes except i  to  the ground (reference) node, then  

Rĵ  ̂ = p a r a lle l combination o f  a l l  resista n ce  connected between node i  

and ground

= p a r a lle l combination o f  a l l  capacitance connected between node i  

and ground

= p a r a lle l combination o f  a l l  inductance connected between node i  

and ground

I t  can be seen from th ese ru les th at the node admittance matrix i s  

symmetrical for  a passive network; a lso , that a network element connected 

between nodes i  and j  w i l l  appear only in  the elements i j ,  j i ,  i l  and j j
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in  the nodal admittance matrix and a network element connected between 

node i  and ground only in  the element i i  o f  the nodal admittance matrix. 

As can be seen from equation 1,1  the elements o f  the nodal admittance

matrix are functions o f  s the Laplace operator, and i f  the s i s  taken
1 1  * out o f  teiTOs l ik e  . sC_. + ==— + . . ± .

so th at i t  becomes —  ̂s^G| i + 1
the common factor o f  a l l  the elements o f  a row, —, may be taken outside  

the determ inant,. The element i s  then a quadratic in  s . Inversion o f  

the .nodal admittance matrix w i l l  g ive a l l  the node voltages and the  

network w i l l  be solved.

An a ltern ative  method o f  an a lysis  i s  by means o f  the mesh impedance 

matrix. I f  th is  method i s  compared with the method o f  an a lysis  using  

the nodal admittance matrix, i t  i s  seen th at the method presented here 

has the follow ing advantages,

1 , The nodal admittance matrix i s  sparse and easy to formulate,

2 , In most networks, the number o f  nodes i s  l e s s  than two times 

the number o f branches so the order o f  the nodal admittance 

matrix (NL -  1 ) i s  l e s s  than th at o f  th e  mesh impedance matrix 

(B « N1 + 1 ) ,

1 , 3 .  Admittance Matrix o f  A ctive Networks

The passive elements o f  a network containing a c tiv e  elements can 

be treated as in  Section 1 , 2,

The a c tiv e  elements must be in  the form o f  current generators 

dependent on nodal vo ltages. I f  they are not in  th is  form then they  

must be rearranged to be so, by Iforton’s theorem or by some other 

transform ation,

A current generator o f  value G acting  from node i  to node j and 

dependent on the voltage a t node k with resp ect to  node 1 produces



-  11 -

V.1

Three Terminal Network 

f ig .  1 .1

Two Terminal Network 

f ig .  1 .2
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en tr ie s  o f  the various components in  s o f  G in  the nodal admittance 

matrix o f  + G a t sca lars ( i ,k )  and ( j , l )  and -  G a t  sca lars ( i , l )  and 

( j ,k ) .  I f  the current generator acts  from i  to  0 and depends on a 

nodal voltage a t node k with respect to  node 1 th is  produces en tr ies  

o f  + G a t  sca lar  ( l ,k )  and -  G a t sca lar ( i , l ) .  I f  the current generator 

a cts  from i  to  j  arvi depends on a nodal voltage from k to  0 , then + G 

i s  entered a t ( i ,k )  and -  G a t  ( j ,k ) .  L a stly , i f  the current generator 

a cts  from i  to  0 and depends on a voltage k to  0 then + G i s  entered  

at sca lar ( i , k ) .

I t  can be seen th at the symmetiy o f  the nodal admittance matrix i s  

destroyed hy  the in c lu sio n  o f  a ctiv e  elem ents,

1 .4  Two Terminal Networks

The response o f  a network across a pair o f  term inals i s  o ften  

required. Conversely, i t  i s  o ften  necessary to  find  the network which 

w il l  generate a sp ec ified  response across a pair o f  term inals. These 

needs have produced two terminal network theory.

The admittance across a pair o f  nodes i  and 0 , the reference node 

i s  given by

y = A .  (1 ,2 )
A il

where A i s  the determinant o f  nodal admittance matrix with respect to  

reference node Oj and the cofactor o f  th is  matrix obtained Igr

d e le tin g  column i  and row i .  Bfy convention the terminal nodes are 

numbered 1 and 0 (se e  f ig ,  1 ,2 ) hence

y  = A -  ( 1 , 3)
A i l

The c o e f f ic ie n ts  o f  AandA^^ and th e ir  s e n s i t iv i t ie s  w ith respect to  

the network elements can be generated sim ultaneously in  a sim ilar manner 

to  the network polynomials o f  the 3 term inal network (se e  Section  1 , 5) .
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1 .5  Network Polynom ials

U sually, the sp ec ifica tio n  for a network i s  defined only in  terms 

o f  the input and output properties o f  the network and i s  , /  concerned

with the in tern a l structure o f  the network only in  so far as i t  e f fe c ts  

the input and output properties. For th is  reason, the theory o f  2 

port 4 term inal networks has been developed. In  th is  th e s is ,  the most 

common case i s  considered, namely when one o f  both the input and output 

terminal pairs i s  grounded, i . e .  the three terminal network. When the  

nodal admittance matrix i s  used i t  i s  most convenient to  i*epresent the 

2 port network by the admittance parameters, th ese are defined by the  

equations,

^  + 7i 2^2

^2 °  ^21^1 ^22^2

where I^ and are the input port current and vo ltage , and I^ and V2 

the output port current and vo ltage , as shown in  f ig ,  1 ,1 . In  a 3 

terminal network by convention the input node i s  numbered 1 , the output 

node 2, and the ground node 0 ,

y . ^ i  
1 1 " —  

1

Input Admittance with a sh o r t-c ircu it  

^2 ~  ̂ across the output port

1 .  I Transfer Admittance with a sh o r t-c ircu it
y 2 1 = v ^ U  = 0

1 * 2  across the output port

I_ f Transfer Admittance w ith a sh o r t-c ircu it
2 = —  IV IV = 0 2 * 1  across the input port

Ig  I Output Admittance with a sh o r t-c ircu it
^22” v" I V = 02 * 1 across the input port

1 .5
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I f  the nodal equations

Y ii(s )  Yi;p(s) Y^^(s) -

Y 3̂̂ (s) YggCs) -  -  Y ^ /s )  -  -  Y ^ ^ (s)
i j '

■2ĵ

INL'

■2NL'
t

T l l ( s )  T , , ( s )  T „ ( s )  -  -  Y , ,( s )  -  -  Y ,„ ( s )12
t

13
I

I j ' iNL'
t

I3 -  I ^  = 0 for  a two port network

1 -

^ 1

^ 2 I 2

t t

I t

f •

9 f

^ N L ^N L  
.  ..

1.6

are solved for  y^^ y^g in  terms o f  Ŷ ^̂  using equations 

1 .4  then
^ A 2 2  -A 2 1

■5

V -  4 - 1 1 -^22 " /T ÏÎ2 2

1 .711 A1122
^  -  -  A i 2 _
^21 ” *5H 22

where A i s  the cofactor o f  nodal admittance obtained by d eletin g  

column 2 and row 2, s im ilar ly  for A ^ 1 2  ^  IZ * 1122

i s  the CO factor  formed by d e le tin g  columns 1 , 2 and rows 1 , 2 , For a 

passive network the nodal admittance matrix i s  symmetrical and 

^ 2,2 “ ’̂ 2 1  ^21 " ^12* Si^c® the nodal admittance matrix

has elements which are polynomials in  s , each o f  these co factors when 

evaluated i s  a polynomial in  s . .These are known as the network 

polynomials.

Equation 1 ,2  can be rew ritten

T -  ^22 V A  21 „
T. " /&1122 h " A1I22 2 

- A 1 2  „  . A l l  „
1.8

I .. =2 " £0122  ^1 A 1122 '2
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The roots o f  the polynomials, A  A  ^ 2Z  zeros o f

th e ir  resp ective network admittance, the roots o f  the polynomial A  ^^22 

are the poles o f  the network. These network polynomials fo r  a passive  

network have certa in  sp ec ia l properties,

1 , Each c o e ff ic ie n t  o f  the polynomials i s  a m u ltilin ear function  

o f  the network components, i , e ,  i t  contains no component to  a 

higher degree than unity ,

2 , I f  a polynomial i s  o f  degree m then the c o e ff ic ie n t  corresponding 

to  s to  the degree n, i s  composed o f  sums o f  terms each the 

product o f  m components o f  the relevant degree n. These 

correspond to the tre e s  o f  th a t complexity present in  that 

network cofactor,

3 , Since the components o f  a network are p o sit iv e  rea l numbers,

the c o e ff ic ie n ts  being m u ltilin ear functions o f  them are p o sitiv e  

rea l functions o f  s ,

4, There are no zeros in  middle c o e ff ic ie n ts  o f  the networic 

polynomials, M C p t i n  LC networks when the odd powers are zeros,

1 ,6  Formulation

The network polynomials enable the frequency, phase and tran sien t  

response o f  a network to  be e a s ily  bbtained as w ell as providing a 

method o f  evaluating the network by p lo ttin g  the poles and zeros on the 

s plane. Conversely given these responses or a m ultiplying factor  plus 

the poles and zeros i t  i s  p ossib le  to  provide a se t  o f  network poly­

nomials to  provide a given response (se e  Section  1 , 5) .  The sp e c ifica tio n  

does not always provide enough inform ation to  generate a l l  the required 

network polynomials and a l l  o f  them are not always necessary to define  

a network.

Given the required network polynomials and the polynomials generated 

by the suggested network a se t  o f  simultaneous equations can be obtained
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by comparison between the s e ts  o f  polynomials c o e ff ic ie n t  by c o e ff ic ie n t .  

These equations must be organized so as to  allow  optim ization techniques 

to  be used to  solve them.

U sually the roiber o f  c o e ff ic ie n ts  sp ec ified  in  value, N5 the no, 

functions, i s  d ifferen t from the number o f  elements in  the network N, 

the v a r ia b les . There i s  the p o s s ib il ity  o f  three conditions,

1 , N <C N5 in  which case i f  a t  le a s t  N o f  the c o e ffic ie n ts  

are independent the hyper spa ce i s  en t ir e ly  spanned and

the excess equations may be ignored or used to  provide more 

inform ation and speed up the process o f  so lu tion , i , e ,  the 

so lu tio n  'g iving the sm allest residual error,

2, N s= N5 in  which case i f  the c o e ff ic ie n ts  are independent 

the hyperspace i s  exactly  spanned and the so lu tion  i s  

straightforward,

3, N>N5 in  which case the hyperspace i s  not spanned

and a s p e c if ic  so lu tion  i s  not given, (se e  le c t io n  4.,:2.)

An easy check to  t e s t  whether N c o e ff ic ie n ts  are independent i s  to  

find  i f  th e ir  jacobian with respect to  the components i s  non-singular.

This jacobian must be calcu lated  fo r  use in  the so lu tion  o f  the

equations using optim ization techniques. In  the f i r s t  condition, N
*

independent equations may be se lec ted  and solved, but i t  i s  observed, 

as might be expected, the c o e ff ic ie n ts  corresponding to  the equations 

not used are given with considerably more error than the c o e ff ic ie n ts  

corresponding to  the equations used, and that th is  error i s  unacceptable 

u n less the residuals in  the equations used i s  v e iy  small, i , e ,  sum o f  

squares o f  residuals l e s s  than 10~^ or so. I t  should a lso  be p ossib le  

to  use the excess equations to  provide sp ec ified  s e n s i t iv i t ie s  or f u l f i l  

other sp e c if ic a tio n s . In  the th ird  condition, some o f  the component 

values may be predetem lned so as to  make the number o f  variab les equal to  

or l e s s  than the number o f  independent equations.
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I f  the numerator and denominator o f  a ra tio  o f  polynomials are 

divided by some number, say 2, then in  theory the ratio  i s  unaltered and 

the same network w i l l  provide the a ltered  polynomiale, but each co e ffic ie n t  

i s  the sum o f  products o f  the elements o f  the network, so the element 

values should be a ltered . This contradiction can be resolved by normal­

is a t io n  o f  the netT/ork polynomials, and introducing a m ultiplying  

fa cto r ,
1 3The simultaneous equations can be formulated in  several ways ' ,

^0 = 1-9

«
1.10

^8 °  1 .11  
^ k r^  ^k

where IL i s  the m ultiplying constant, f^ the current value o f  the  

c o e ff ic ie n t  o f  a network polynomial, i t s  required value, and f^ 

the residual error.

The formulation in  equation 1 ,9  i s  sim plest and gives an absolute 

error in  the c o e ff ic ie n t . Since the ob jective  function i s  the sum o f  

f ^ ( s e e  equation3 .Z ,̂ th is  i s  not a very sa tis fa c to ry  formulation.

The formulation in  equation 1,10  improves on th is  s itu a tio n  in  that the  

error i s  now r e la t iv e . There are two objections against th is  formulation; 

the r e la t iv e  error i s  d iffer en t depending on whether f^ y  f^^ or f ^  f^^ 

and i f  f^ = 0 then equation 1,10 g ives a fa ls e  zero with a value o f  

? i / f  2 1 /
m -  kr , The formulation in  equation 1,11  overcomes

th ese objections but unfortunately i s  more complicated. The formulation 

in  equation 1,11 was that chosen.
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F,

Formulation o f  equation 1 .10

Formulation o f  equation 1 .1 1

Â = * (^ 3  * XgX )/2 f ix e d

Comparison o f  Formulations c lo se  to  S o lu tion

f i g .  1 .3
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There are several ways o f  choosing the m ultiplying constant 

One o f  the c o e ff ic ie n ts , say -^ 2122^^^* can be selected  as unity  and 

the other c o e ff ic ie n ts  divided correspondingly; or the value o f
3

can be used which makes the ob jective  function a minimum for the se t  

o f  network elements, i . e .  which makes à  F = 0 *

For the formulation in  equation 1 ,1 1  i t  i s  shown in  appendix 0 . 5» th at  

th is  i s  given by

X . =  o

1 /4
1.12

Another p o s s ib il ity  i s  to  l e t  X  enter the se t  o f  variables in  a

sim ilar manner to the network elem ents. The method defin ing X  in

equation 1,12  was that chosen. The choice o f  the method o f  formulation

nc 
3

o f  f^ was subject to much experiment on the computer and the method

se lected  gave the b est r e su lts  on the examples te ste d .

1 .7  Approximation

The most important part of* the sp e c if ica tio n  for a network i s  that 

concerned with the function th at the network must perform. The other  

parts .o f  th e  sp e c ifica tio n  such as lim its  on co sts , s e n s it iv ity ,  e tc ,  

are secondary to  th is .  Approximation i s  th a t stage in  the synthesis  

process which i s  concerned with turning the ro le  which the network must 

perform in to  a mathematical expression which can be used by the subsequent 

stages o f  syn th esis . The primary part o f  the sp e c ifica tio n  th at the  

network must f u l f i l  i s  u su ally  given as the varia tio n  o f  the magnitude 

and phase o f  the gain with frequency, the frequency response, or the 

response o f  the network to a pulse o f  prescribed character, the a .c .  

tra n sien t response. This assumes the d .c . norv-linear e f fe c t s  can be
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Ignored or d ea lt with separately. The usual mathematical expressions 

th at the approximation stage g ives are the required network polynomials,

A  ^2* ^  2122 perhaps and/or A  22"

There are two main methods o f  obtaining the required network 

polynomials from the required response. The f i r s t  method i s  to  se le c t  

a se r ie s  o f  sample points and by experience or by a se t  procedure f i t  a 

ra tio  o f  polynomials to  these p o in ts. The second method i s  to  s e le c t  a 

s e t  o f  poles and zeros in  the s plane and by adjusting these u n til  the 

required response i s  obtained, an adequate se t  o f  poles and zeros are 

found. The second method tends to  be more economical in  i t s  represent­

a tio n  in  th a t the number o f  poles and zeros necessary are usually  le s s  

than those produced in d ir e c tly  by the f i r s t  method. This would mean, 

in  general, th at fewer components are necessaiy to  f u l f i l  the  

sp e c if ic a tio n . Unfortunately, w hile there are some simple ru les for  

the manipulation o f  poles and zeros, e ,g , no poles in  righ t h a lf  plane 

fo r  both passive and a ctiv e  networks, the s e t  o f  poles and zeros obtained 

may not be rea liza b le  by the type o f  network envisaged. I t  must thus 

be ensured th at the polynomials produced by the approximation stage o f  

the synth esis must be rea liza b le , see next sectio n .

The stages o f  synthesis in  which c o e ff ic ie n t  matching i s  d ir ec tly  

concerned assume that the approximation stage o f  the synthesis has been 

su c cessfu lly  completed. For th is  reason, th is  i s  an extremely cursory 

treatment o f  approximation.

1 ,8  R ealization

The lim ita tio n s  imposed on the ra tio s  o f  the polynomials produced 

by the approximation stage, so th a t they may be produced by a network, 

are ca lled  the conditions o f  re a liz a tio n .
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The primary conditions o f  rea liza tio n  for a general admittance are 

th a t each polynomial must be a ra tion a l p o sitiv e  rea l function  o f  s , i . e .

1 . y( s) i s  rea l for  s rea l and a ra tio  o f  polynomials in  sj

2 . G(jw) = Re y< jw )^ 0 ; •

3. A ll the poles o f  jr(s) are in  the l e f t  h a lf  plane, with any 

poles on the imaginary ax is being simple and having p o sitiv e  

residues.

This b a sic  lim ita tio n  i s  u se fu l, but, since i t  allow s a network which 

represents that admittance to be a four terminal la t t ic e  or to contain a 

transformer, i t  i s  not a s a t is fa c to iy  condition in  i t s e l f .  The 

ad ditional rbs tr ic t io n s  on the ra tio  o f  polynomials necessary for each 

simple c la ss  o f  networks are known. For example the follow ing conditions 

apply to  the ra tio  o f  network polynomials from a RC ladder network,

1 , 7^2^®  ̂ i s  real for s rea l and ration a l,

2 , The poles o f  y^g( s) must be simple and located on the negative 

rea l ax is; poles a t zero and in f in ity  are not permitted,

3, The zeros o f  y^g( s) must l i e  on the negative rea l ax is; m ultiple  

zeros and zeros a t zero and in f in i t y  are perm issible.

As y e t , the general conditions such th at given a s e t  o f  polynomials 

which se t  o f  networks are capable o f  rea liz in g  them has not been solved. 

The conditions for the vaidous basib networks, mainly ladders, which are 

known are la id  down in  the standard te x ts  on network synth esis ,^

1 ,9  Comparison with the D irect Method 
2# 2

This ' i s  an important a ltern a tiv e  method to c o e ff ic ie n t  matching 

when using optim ization for  network synthesis; i t  enjoys much o f  the 

same f le x ib i l i t y  as c o e ffic ie n t  matching. In th is  method the frequency 

response obtained from a network i s  compared a t a se r ie s  o f  points with
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the sp ec ified  response and the error and i t s  d er iva tives used w ithin  an 

optim ization  scheme to  a lte r  the values o f  the network components so 

as to  reduce the error. This technique o f  course can be applied to  

a tra n sien t response or other measures o f  the network performance.

This method bypasses the approximation stage o f  syn th esis , nevertheless  

the b est choice o f  sample points i s  s t i l l  d i f f i c u l t  and requires 

experience. I t  i s  even remoter from the c la s s ic a l  synthesis techniques 

than c o e ff ic ie n t  matching.

In  comparison o f  c o e ff ic ie n t  matching with the d irec t method the 

follow ing advantages o f  c o e ff ic ie n t  matching should be noted, ̂

1 , When the approximation stage has been accomplished, the rest  

o f  the synthesis procedure i s  always id en tica l;

2 , The minimum f^ ^ ^  e = 1 , , , N5 i s  e a s ily  id e n tif ie d  

and fa ls e  minima e a s ily  spotted,

3, The theory o f  poles and zeros which has been fa ir ly  w ell 

estab lish ed  and which contains much information about a 

network can s t i l l  be used,

4 , Since the c o e ff ic ie n ts  are m u ltilin ear functions o f  the 

network element, convergence should be more rapid than for

.more complicated functions,

5, The d erivatives o f  the c o e ff ic ie n ts  with respect to  the  

elements can be rapidly obtained (see  Chapter %) and each 

ite r a t io n  can be rapidly performed.

The follow ing are the disadvantages o f  c o e ff ic ie n t  matching compared 

with the d ir e c t  method;

1 , The c o e ff ic ie n ts  o f  the network components are d i f f ic u l t

to  obtain  accurately, p articu larly  for narrow band networks,

2, I t  i s  d i f f i c u l t  to know how close  the current ite r a tio n  i s  

to  so lu tion .
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3 . A ll the d i f f ic u l t ie s  o f  the approximation stage, whether the 

c o e ff ic ie n ts  are rea lizab le  e tc , which occur in  the c la s s ic a l  

syn th esis  methods occur a lso  in  c o e ff ic ie n t  matching,

1,10 Comparison with Pole*Zero Matching

A further a ltern ative  method to  c o e ff ic ie n t  matching when using
® 2 

optim ization  for network synthesis i s  pole-zero matching. In th is

method the s e t  o f  poles and zeros generated by a network are com îared with

a required se t  o f  poles and zeros. The required s e t  o f  poles and zeros

having been obtained by the approximation process from the frequency

responses or the tran sien t response. The method has the very great

advantage o f  convey ing to  the engineer in  a veiy  d ire c t  manner how close

h is  present network corresponds in  performance to th at required. Hence

in  in te r a c tiv e  methods i t  has advantages over c o e ff ic ie n t  matching which

g ives the engineer l i t t l e  information on th is  point.

In comparison o f  c o e ff ic ie n t  matching with pole-zero matching,

the follow ing disadvantages o f  pole-zero matching should be noted,

1 , The d i f f i c u l t ie s  o f  the approximation stage are common to  

both methods.
qs to

2 , D isco n tin u ities  in  the problem o ccu i^ h ich  present pole should be 

" compared with which required pole,

3 , The poles and zeros and, in  p articu lar , the d eriva tives o f  

th e ir  error with respect to  the network elements cannot be 

obtained in  a d ir e c t  manner or so rapid ly  as the c o e ff ic ie n ts  

o f  the network functions and th e ir  d er iv a tiv e s .
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Chapter 2

LUMPED LINEAR NETWORK FUNCTIONS AND THEIR DERIVATIVES 

• '
2 .1  Introduction

In  Chapter 1 i t  i s  sta ted  th at the functions o f  in te r e s t  are the

ra tio s  o f  the c o e ff ic ie n ts  o f  the network polynomials to  th e ir  required

valu es. In  Chapter 3 i t  i s  shown that a method for the rapid evaluation

o f  th ese and th e ir  d eriva tives i s  e s se n tia l i f  many ite r a tio n s  are to

be used. Since the c o e ff ic ie n ts  and the nodal admittance matrix have

certa in  sp ec ia l properties, i t  should be p ossib le  to  use these properties
7 8 Qto  make the evaluation o f  the c o e ff ic ie n ts  more rapid, A method * * 

using th ese  properties i s  described below and compared with other methods 

proposed.

S tr ic t ly  speaking, the general form o f  the cofactors o f  the nodal 

admittance matrix i s  a polynomial in  ŝ  p ossib ly  for networks containing 

inductance divided by some poor o f  s . However, since in  the method 

described the inverse powers o f  s are removed from the co factors prior 

to  th e ir  evaluation , the cofactors w il l  be regarded as polynomials in  

th is  d iscu ssion ,

2.2  C alculation o f  C oeffic ien ts o f  Network Polynomials

The centra l problem i s  the evaluation o f  a determinant o f  a network

CO factor  whose elements can be qur.dratics in  s , the complex frequency.

I t  i s  known th a t even for q u ite  simple networks each c o e ff ic ie n t  o f  the
n

polynomial in  s , resu ltin g  from the evaluation  o f  the determf^nt, i s  

u su a lly  made up o f  thousands o f  terms, each one representing a tree  

containing the sp ec ified  components to  g ive a term o f that order o f  s .
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I f  a polynomial o f  order m i s  evaluated a t m + 1 points and an

in terp o la tio n  formula used to determine the c o e ff ic ie n ts  o f  the

polynomial, then the values o f  the c o e ff ic ie n ts  should be generated . ^

Thus one way th is  problem can be solved i s  to  give to  the values o f  s

in  the nodal determinant a se r ie s  o f  numerical values. The determinant

elements now become numbers and the determinant can be evaluated (see

S ection  2, 9) and in terp o la tion  used to  find  the c o e ff ic ie n ts . I t  i s

sim plest to  store the conductive, cap acitive and reciprocal inductive

parts o f  the elements o f  the nodal admittance matrix separately, in  arrays

G, C and GA, resp ectiv e ly , and then to  add them together m ultip lied  by

the corresponding numerical values o f  s to  form Y, i , e ,  Y = G + sC + GA •
s

To find  th e order o f  each network polynomial, an in teger  program?*  ̂

may be used. A ltern atively , i t  i s  sim pler to  use the follow ing method, 

the rows (o r  columns) o f  each cofactor are scanned and h ighest power 

o f  8 contained in  each noted. The maximum power o f s contained in  the 

expansion o f  the cofactor can then not exceed the sum o f these powers 

and th is  i s  taken to  be the order o f  the corresponding network polynomial. 

The m + 1 values o f  s g ive m + 1 equations for  the determinant A  ,

t t f f t

*o + *1*0*^ ...................

where a -  -  -  a are the c o e ff ic ie n ts  o f  the network polynomial, o m
representing .A , s^- -  -  s^ the ser ie s  o f  numerical values o f  s , 

A ( t s ^ )  -  -  -  / \ (  ts^ )̂ the se r ie s  o f  determinant values and t  a sca le  

fa c to r , , In  m atrix form th is  i s .
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2.3

The square matrix o f  order m + 1 i s  the Vandemonde matrix. This could

be inverted  in  a conventional manner to give a -  -  -  -  a , but i t  i so m
more accurate to synthesize i t  by the method shown in  Appendix Q,1

where a method showing the d erivation  o f  the inverse o f  the Vandemonde

matrix from the Lagrange in terp o la tio n  formula i s  shown. This produces
13the same formula as that given by Traub , For the same se t  o f  values 

o f  s , s^- -  -  s^, the inverse o f  the Vandemonde matrix i s  always the 

same. I f  th is  se t  o f  values o f  s i s  to  be used repeatedly, then i t  i s  

worthwhile storing the inverse once i t  i s  synthesized. This increases 

the speed o f  ca lcu la tion  o f  the c o e ff ic ie n t  very considerably. The 

sca lar  product o f th is  stored inverse and the vector o f  determinant 

values i s  a l l  that i s  required to give the vector o f  c o e ff ic ie n ts ,

2,3  Simultaneous Generation o f  the C oeffic ien ts o f  a l l  the  

Network Polynomials 

' -Since in  the optim ization process more than one network polynomial 

i s  required, time per ite r a t io n  can be saved i f  they are calcu lated  

sim ultaneously. The network co factors “̂ 1122

only d if f e r  by a r o w  and a column; the r e s t  o f  th e ir  elements are 

id e n t ic a l,  A method making use o f  th is  property has been devised,

Gaussian elim ination i s  used taking as the f i r s t  p ivot the element 

N̂LNL the nodal admittance determinant,y  order N1 ,NL, Then the  

diagonal elements Y NL-k*-l* k i s  the ite r a t io n  number.
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are used in  turn as p ivots up to and including the element I f

none o f  the elements in  the f i r s t  and second row and colugm are used 

in  the interchanging o f  rows and columns for p a rtia l p ivoting, a l l  the

working fo r  ^ 2Z "^1122 common up to th is  point,

as shown in  Appendix g .2.

When rows and columns 1 and 2 are e lim in a te  to form i t s

determinant i s  seen to  be the product o f  the pivots Y^^q  ̂ to Y^ ,̂

When row and column 1 are elim inated th is  g ives Ygg tim es det ^^^122

as the value o f  d et s im ila r ly  det ^21 1122

d et > ^ 2Z ” ^11 2122* e tc . are the f in a l values o f

th ese elements o f  the nodal admittance determinant,

2 ,4  The Evaluation o f  the D erivatives o f  the C oeffic ien ts  

with Respect to  the Network Elements
19I f  the determinant y  i s  expanded by the method o f  Laplace

y  = ^12^12 + -  -  ̂ 3^ 1}  * " ■
where Y^  ̂ e tc , are the determinant elements and§*^^ e tc , that element’ s

c o fic to r , and the determinant i s  d ifferen tia ted  with respect t o ^  ,
^  J

say then

i , 6 ,  the d er iv a tiv e  o f  à determinant with respect to  one o f  i t s  elements
19id  equal to  the co factor  o f  th at element. Consider the d erivative

o f  a network co fa cto r  ^^22’ “̂ 1122* , with

resp ect to  a network element G ,̂ say in  a network, connected between

node i  and ground, Ĝ  only occurs in  admittance element Ŷ  ̂ o f  the

nodal admittance m atrix.

and from equation 2 .5  ^
^  i i
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where S i s  the cofactor o f  A  obtained by elim inating row and 

column i .  I f  i s  connected between nodes i  and j o f  a network, 

then from the properties o f  the nodal admittance matrix i t  occurs 

in  admittance elements Y^y Ŷ  ̂ and Y^^, Therefore

n , „  , . 5 .  S j j ,  ^  ^ .  S j i

and from the properties o f  the nodal admittance matrix discussed  

in  Chapter 1 \ y  \ y  \ v  \ y

Cl
I f  the CO factors o f  G|̂  are evaluated a s)̂  polynomial in  s, then by

matching c o e ff ic ie n ts  on both sid es o f  equation 2,8 the d erivatives

o f  the network c o e ff ic ie n ts  with respect t o  Ĝ  can be found.

Sim ilarly , the d eriva tives o f  the c o e ffic ie n ts  o f  the network

polynomials with respect to  c ir c u it  elements Ĉ  and l/L ^ , where Ĉ

and I/L, are connected to node i ,  can be found by m ultiplying the
^  ^ i isum o f  cofactors by the appropriate power o f  s given by — —  and

The e a s ie s t  way to  obtain the cofactors o f  the elements o f a 

determinant i s  to  in vert the matrix o f the determinant, m ultiply by 

the value o f  the determinant and transpose. For a passive reciprocal 

network tran sp osition  i s  unnecessary. The inverse o f  the numerical 

matrix formed when s i s  given a ser ie s  o f  numerical values can be obtained
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in  severa l ways. The e a s ie s t  way i s  to  extend the simple Gaussian 

elim ination  described in  section  2 ,3  and apply a l l  the operations 

sim ultaneously to a matrix which i s  i n i t i a l l y  the u n it matrix, the 

Gauss-Jordan m ethod,^ By not using elements in  row and column 1

and 2 in  interchanges, as in  sec tio n  2 ,3 , the inversion  o f  

A  22* A  22 A  2122 id e n tic a l up to  and including the th ird  

column. The f in a l row and column operations on ^  n *  12 

1^22  be inverted independently as th e ir  f in a l rows and columns 

are d iffe r e n t , as are a l l  th e ir  f in a l inverted m atrices. The f ir s t  

and second rows and columns o f  A  must be interchanged before  

in version  as* shown in  Appendix ^ 2, As i s  taken as a co factor

i t  has a negative sign  attached to  i t .

I t  i s  more economical and accurate to c o l le c t  the co factors as

numbers corresponding to each numerical value o f  s and then to  transform

to polynomials, than to  find the co factors as polynomials in  s and then  

add. I t  takes very approximately MNÎ /2 + 4M i f  m u ltip lica tion s compared 

with MNl^/2 + 5NL̂ ^ /2  m u ltip lica tion s, resp ectiv e ly ,

2 ,5  The Evaluation o f  D erivatives with Respect to the Network

Elements o f  Active Networks

The evaluation o f  the d eriva tives o f  the c o e ff ic ie n ts  o f  the network 

polynomials with respect to  the passive network elements uses the same 

method as used in  sectio n  2, 4, The derivation  o f  the algorithm for  

d iffe r e n t ia tio n  o f  the c o e ff ic ie n ts  o f  the network polynomials with  

respect to the a ctive  elements follow s the same arguments only in  th is  

case the co factors which contain the a c tiv e  elements are d iffe r e n t, see 

S ection  1 , 3, For example, thé d eriva tive  with respect to  a current 

generator acting from nodes i  to  j  and dependent on a nodal voltage
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a t node 1 with respect to m i s  given hy

= n(^il + Sjm - Sim -S jl) 2,10

Where n = - 1 ,  0 , 1 resp ectiv e ly , the cap acitive , conductive and reciprocal 

inductive part o f  the a c tiv e  element. Sim ilar formula can be derived 

for the other possib le  connections shown in  section  1 ,3 ,

2 ,6  The Evaluation o f  the Second Derivaüves o f  the C oefficien ts

with Respect to  the Network Elements

The second d erivatives o f  the c o e ff ic ie n ts  o f  the network polynomials

can be found by an extension o f  the above an alysis  for f i r s t  d er iv a tiv es.

I f  G, say i s  connected between nodes i  and j and G say, between nodes 1 K q

and m o f  a CR network, then from equation 2,8

^̂ ill ĵjll ~ ̂ ijll ~ ̂jill̂
 ̂ ^%imm ^ jmm ” ^jmm “ ^jimra^ 2,11  

 ̂^ ilm  ^  jjlm  “ ^ j lm  " ̂ jilm ^

^̂ Liml ̂  ̂ jjml “^^jml "<§̂ jiml̂
I t  should be noted that the subscripts o f  the co factor o f  a cofactor are

in  the* order now column row c o lu m n ,T h e  sign  o f  a co factor o f  a co factor

i s  more complicated than appears a t f i r s t  s ig h t. I f  the subscripts are 

in  ascending order then the sign  i s  simple (* -1 )^ ^ ^ ^ ,

Unfortunately, there i s  no guarantee th at these subscripts are in  th is  

ascending order when th ese  co factors o f  cofactors are formed to give the  

second d er iv a tiv es . Thus the order in  which the rows and columns are 

elim inated must be taken in to  account. I t  i s  seen that i f  the f i r s t

row elim inated i s  le s s  in  order than the second row elim inated, then the

sign  o f  the co factor  o f  the cofactor i s  reversed. S im ilarly, the sign
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i s  reversed i f  the f i r s t  column elim inated i s  le s s  in  order than the

second column elim inated. For th is  reason the cofactors o f  cofactors

in  equation 2,11 can be considered to  be m ultip lied  by ( - 1 ) ^ ^ ^ ^

s g n ( i- l)  sgn( j-m) where

sgn(x) = +1 X 0

sgn(x) = -1  X <Co
22

The arrangement follow s Muirs convention. In à passive network, the . 

elements have p o sitiv e  rea l values and the c o e ff ic ie n ts , being m ultilinear  

functions o f  these elements, are p o s it iv e  rea l functions, hence the 

d eriv a tiv es o f  the c o e ff ic ie n ts  w ith respect to  the network elements are 

p o sit iv e  rea l functions. This argument s im p lifie s  the computation o f  

the second d erivatives in  the case o f  passive networks, since a l l  the 

values must be p o sitiv e .

By using Jacobi’s theorem

2.12

and applying th is  to the second order cofactors in  equation 2,11 i t  i s  

shown in  Appendix g , 3 that th is  can be s im p lified  to give

-  (  % 1  ^ - % l j ) )

2.13
-

Since the f i r s t  two terms have already been formed as the f i r s t  

d er iv a tiv es  o f  and , using equation 2,8
a  q

In Appendix g , 3 i t  i s  a lso  shown th at i f  i s  connected from node i  

to  ground and Ĝ  from node 1 to  ground then



and i f  i s  connected from node i  to  ground and Ĝ  from node 1 to  

node m then

^ G - =  & - S i i ) (  S ' .!  2 .16

By matching powers o f  s in  the relevant equations 2, 14, 2,15  or 2, l 6,

the second d eriva tives o f  the c o e ff ic ie n ts  with respect to  G. and GK q
are obtained. When second d er iv a tiv es  with respect to  elements in  a 

CR, LR or LOR network are required, these equations must be modified 

appropriately by equation 2, 9 . I t  i s  more economical to  c o lle c t  the  

CO factors together as numbers corresponding to each numerical value o f  

s and then transform to  polynomials, than to  find  the co factors as 

polynomials in  s and then add, m ultiply and d iv ide the polynomials to  

obtain  the second d eriva tives o f  the c o e ff ic ie n ts . I t  takes very 

approximately computer operations to  take the co factors as numbers

and then transform compared w ith + ^^NI^/2 computer operations

to  manipulate the cofactors as polynomials a fte r  transformation to  

polynomials,

2 ,7  Formation o f  the D erivatives with Respect to  

Elements o f  Zero Value
- m.

As a consequence o f  inverting  the nodal admittance matrix, cofactors  

o f  a l l  i t s  elements can be found. This ap p lies to  the many zero 

elem ents, as w ell as to  the elements corresponding to  the c ir c u it  

components. By co lle c tin g  these co factors according to  equation 2,8 

i t  i s  easy to  find the d eriva tives o f  the c o e ff ic ie n ts  with respect to  

zero-valued network elements. These d eriva tives correspond to the sum 

o f  the e f f e c t s  o f  the tr ees  th at would e x is t  i f  th at element were nor>.zerô,
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since on d iffe r e n tia tio n  o f  the c o e ff ic ie n ts  with respect to  that element» 

the tr e e s  making up th at c o e ff ic ie n t  have th at element elim inated.

Thus i t  i s  seen th at the same s e n s it iv ity  o f  a c o e ff ic ie n t  e x is ts  

with respect to  change?; in  ex isten t and zero components across the same 

pair o f  nodes, assuming the r e s t  o f  the c ir c u it  i s  unaltered. This 

would suggest th at s e n s it iv ity  should refer  to  a node pair and component 

type rather than to  a component. For p ractica l reasons s e n s it iv ity  

with respect to  change in  a s p e c if ic  component i s  always d iscussed .

Many o f  the cofactors that are not used in  obtaining the f i r s t  d er iva tives  

are required to  obtain the second d er iv a tiv es,

2,8 Acertracv ProTolems in  the Evaluation o f  the C oeffic ien ts  

and th e ir  D erivatives

There are two types o f  problem in  the evaluation  o f  accurate values 
18 11o f  the c o e ff ic ie n ts , * The f i r s t  a r ise s  from the consideration o f  

the conditioning o f  equation 2 ,3  and i t s  so lu tion  and comprises

(a ) Errors in  the inversion  o f  the Vandemonde matrix. These are 

in s ig n if ic a n t, y e t  error due to  rounded representation o f  the  

inverted  Vandemonde m atrix (working with f in i t e  arithm etic  

accuracy) may be propagated as large errors in  the so lu tion  

sim ilar to  problems involved with H ilbert matrix in v e r t io n .^

(b) Errors in  the evaluation o f  the cofactorsA (ts^ ),

(c )  Errors due to  overestim ation o f  the polynomial order.

The second problem a r ise s  from consideration o f  the s ta b i l i ty  o f  the  

method -  perhaps the most important error source. The sample must 

be chosen such that the Lagrangian in terp o la tio n  adequately represents 

the inform ation needed and does not introduce errors due to excessive  

extrapolation . F ir s t ly , consider the conditioning o f  equation 2, 3.
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Provided errors due to  (a) above are ignored we have

US i'&Wlr
52where the condition number =

^ Is.
C(V) = II VII II TT̂ II = maxIr^^T r  I max T T ir^— 2.18

(u sin g  the L ^  norm throughout)

whereS"a i s  the vector o f errors in  the coeffic ien ts  andSA(ts) i s  the 

vector o f errors in  the computation o fA ( t s ) ,

Therefore for small C(V), - l< s ^ : ^ l  and a l l  s^ w ell: spaced^ to  

reduce the m agnification o f  any errors in  t h e ^ t s ^ )  evaluation, the 

s values must id e a lly  be balanced about zero with magnitude l e s s  than 

u n ity . I t  im plies u n it spacing^^*^^ o f  s^ g ives an u n satisfactory  

C(V), I f  samjile points are chosen equid istant apart at 0 , -  s^t 

where = (1  -  -  1 2.19

I t  can be shown th at for equal spacing about zero

C (v) =  ---- ^ — = 1 -  n > 5  2,20

Where h i s  the in terv a l between sample p o in ts , by p u t t i n g = 0 ,
2 in/2a minimum i s  given a t h = — , and C(V) = me ,

For a logarithm ic d istr ib u tio n  o f  sample points about zero, very approx­

im ately C(V) = " ^ ‘̂ £s"'y"Kf/2 I f  the maximum sample i s  taken as un ity , 

Since u su ally  m in(ts^)^C le C(V) for a logarithm ic d istr ib u tio n  i s  

larger  than that for  an equal d is tr ib u tio n  o f  sample points.

Now the errors in  the evaluation o f /^ t s ^ )  i s  dependent on i t s  

condition  number C (A (ts^ )) and the condition number i s  sm allest when 

elements o f  A ( t s ^ )  are comparable in  v a l u e , H e n c e  C( ^ tS j^ ) )o ( t /te
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where i s  a scaling factor  which makes constant terms, terras in  and 
2

terms in  comparable in  value.

Since the range o f  value o f  s^ i s  u su a lly  much greater fo r  a

logarithm ic d istr ib u tio n  than for  an equal d is tr ib u tio n  C(A(ts^)) i s

greater for the logarithm ic d istr ib u tio n  o f  sample points than for  an

equal d istr ib u tio n .

I f  the network polynomial a_s^ + a _ s ^ ^ -  -  -  a_ s + a i s  evaluatedn n-x X o
using in f in it e  length  arithm etic there i s  no in s ta b i l i ty  problem even i f

the sample points, s^ occur in  a region o f  no s in g u la r ity , i , e ,
contributions

Z\( t s .  ) = from a^ + from a _ -  -  -  + a X n i>-± o
Because o f  f in i t e  length  arithm etic the contribution from one c o e ff ic ie n t

may completely swamp the contribution from others over a s e t  o f  sample 
11p o in ts . Also, even i f  m t  completely swamped, ary errors in  the

evaluation  o f  A (ts^ )  wilï'^emphasizd in  the c o e ff ic ie n t  making the

sm allest contribution. In a region where A ( t s ^ )  has s in g u la r it ie s  the

contributions o f  the various c o e ff ic ie n ts  subtract and obviously the

in s t a b i l i t y  problem i s  greatly  eased, since fo r  a low C(V),

the s in g u la r it ie s  in  the polynomial must be moved in to  th is  region by a

su ita b le  choice o f  sca lin g  factor .

This g ives a transformed, polynomial

( a t ”) s^ + ( a _ t^ ^ )  s^ ^  + -  -  -  ( a. t )  s + an n-x X o
There are a number o f  choices, i f  t  could be chosen such th at  

t"a^ =    = S

then the roots o f the transformed polynomial would l i e  on the u n it  

c ir c le ,  or i f  t  could be chosen such that

t \  = = “n-2*”' ^ ------- --- = »o

as in  the binomial se r ie s  then the roots o f  the transformed polynomial

would l i e  a t  - 1 , hence there i s  a fa ir ly  wide choice o f  t .
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Since roots = ■■

and yj- a
'* roots = ~  2,22

n
the transformed polynomial has the same pattern o f  roots as the o r ig in a l 

with the space dii^ded by t .  The sca lin g  factor selected  may not be the 

b est to  keep C( A(tsj^) ) sm all. I t  should be noted that equation 2,22

%gives a bound on one o f  the roots o f  | ~ |  n 2,23
18

Two em pirical approaches have been developed to resolve these d i f f ic u l t ie s  

(se e  f ig ,  2 ,1 ) ,

1) Assuming a c o e ff ic ie n t  structure from experience and estim ating the

upper bound on one o f  the roots from equation 2 ,22, and putting the

s c a lii^  fa cto r  t  equal to  th is  bound, Naw in  general for CR networks 
m _ m f a \ 1  ̂ / N2 ^ /U 2

V  5 1  ‘Ù = 1=1 V  Hence t  = | ^ m =  Ç where C = (^ C J

geometric mean o f  capacitors and 
J© \  1/M3

geometric mean o f  donductors. S im ilarly  for LR networks» -
t  = p  and fo r  LCR t  = , where P i s  geometric mean o f  reciprocal

inductors. I t  should be noted th at a l l  network elements are considered

since a l l  the network polynomials are to be generated sim ultaneously.

With th is  estim ate o f  the bound equal in terv a ls  about zero are taken.

Geometric spacing cannot be used because the geometric ra tio  i s  not given

by one bound. The sample points used in  th is  method are 0,+ts^  i= 0 , l ,2  -

s^ ~  2 ,24  where M = ^ m ev&i and M = m odd, m = max jl

where yu i s  order o f  polynomial under evaluation.

Another way o f  assuming polynomial structure i s  to  consider the

polynomial to  be the product o f  terms on the diagonal ignoring the

negative o f  diagonal products. Each term on the diagonal then g ives an
CK -

approximate root o f  polynomial. This method g ives the-eeke scalir^g 

factor o f  the la r g e st  bssumed root? and scattered  sample poin ts.
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r e la t iv e  
inaccuracy. ...

t s . t s .

equal

con d ition
number

range o f  lo g , values

S t a b i l i t y  errors s(a^) and s(a^ ) found by -10;. perturbation which 

kept C( A (ts ^ ))  and C(V) approxim ately constant.

Condition Immber and S t a b i l i t y  as ts^  i s  a ltered

f i g .  2 .1
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2) An a ltern a tiv e  method i s  to  perform a preliminary in v estig a tio n  to  

determine the bounds on the roots d ir e c t ly . In  th is  in v estig a tio n  two 

negative rea l values o f  s are found for each relevant polynomial, s = -  OC 

and s = -psay for p articu lar polynomial such th at a t s = -o (th e  polynomial 

i s  p ra c tic a lly  on i t s  asymptote a t s = -  ODand a t s = - ^ ) i t  i s  p ra ctica lly  

on i t s  asymptote a t s = -0 .  The s ta r t  o f  the asymptote at may be 

found by the follow ing method. Three values o f  s are chosen (•c^ ,

- 2)^ (o l=  reciprocal o f  sm allest time constant i s  a good choice^

e ,g ,  min(G)xmin(G)^and ( -o ) ,  (-2 o ) and (-4 o ) evaluated for  a l l  the

network polynomials. I f  2 .25  w ithin  105̂  then

“X>^can be considered to  be on the negative asymptote. I f  2 ,25 i s  s a t is f ie d  

by the f i r s t  value o f  ^  then must be halved and so on u n til  2,25 

breaks down, i . e .  the s ta r t  o f  the asymptote has been found. I f  2,25  

i s  not s a t is f ie d  the f i r s t  time o ( i s  doubled and so on u n til  2,25 i s  

s a t is f ie d .

The asymptote c lo se  to  zero a t s = -  ^  can be fojtnd by a sim ilar  

method (th e  reciprocal o f  la r g e st  time constant i s  a good choice) or 

^  i s  taken to be th a t value o f  s producing a 10$ change o f  the value 

o f  the polynomial a t s -  0 . Then the se t  o f  sample points used i s

0 , tSĵ
Sj =À i  = 0, 1, a  J1

where \^= 2.26

w ith defined as above and and are the maximum value o f

o^and the minimum value o f  p resp ectiv e ly , obtained a fte r  examining

each o f  the main network polynomials that are relevant. The scale

fa c to r , t  i s  taken as

In  th is  method there i s  no assumed structure to  the a a^o n
c o e f f ic ie n ts  o f  the network polynomials, A geometric d istr ib u tio n  o f
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sample points i s  used because experience (Bode p lo ts  e t c .)  has shown 

th is  to  be u sefu l manner o f  tack lin g  wide spreads o f  frequency.

The sample point a t s^ = 0 i s  not used i f  t h is  produces a 

singular matrix because inversion  cannot be performed t^ r o v id e  the  

d er iv a tiv e s , . .

In p ractise , sca lin g  o f  unnormalised components i s  necessary to  

prevent i  overflow in  the computer. I t  i s  as w ell to  perform 

th is  sca lin g  such that the median values o f  the components are approx­

im ately u n ity .

Because o f  i t s  s im p lic ity  the f i r s t  method was that employed in  

the a n a ly sis  section  o f  the synthesis procedures,

2 ,9  The Speed o f Various Techniques for Evaluation o f

Determinant and Inverse M Ailrpc

The majority o f  the books on numerical methods for the evaluation

o f  determinant and inverse, recommend Gaussian elim ination with p artia l 

pivoting for the general case. This requires a se t  number o f  operations 

and provides an acceptable accuracy. When ill-co n d itio n in g *  occurs, 

there are a number o f  m odifications to  th is  method which improve the 

in verse . In  th is  case, f u l l  p ivoting can be employed, or double-length  

working used, or the inverse can be improved by the H otelling method,

À measure o f the ill-c o n d it io n in g  o f  a matrix i s  the ra tio  o f  i t s  

la r g e s t  to  i t s  sm allest eigenvalue. When th is  ra tio  i s  large i t  im plies  

i l l-c o n d it io n in g , when small i t  does not n ecessarily  in d icate  that i l l -  

conditioning i s  not present. Eigenvalues are not read ily  ava ilab le ,
cKThe Ger^orim c ir c le  theorem, g ives a bound on the eigenvalues, namely 

a norm.of the matrix. The norm most easy to  use i s  the row norm

H I-con d ition in g  occurs when a small change in  a matrix element 

produces large changes in  the elements o f  i t s  inverse.
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NL
A = max a . .  . The product o f  the row nom o f  a matrix and

i  j= l ^
th at o f  i t s  inverse g ives some in d ica tio n  o f  the ill-c o n d it io n in g  o f

a matrix; i t  i s  approximately equal to  ,NL fo r  a w ell-conditioned matrix.

Using the method described in  sectio n  the nodal admittance matrix

i s  u su ally  w ell-conditioned.

The nodal admittance matrix i s  symmetrical for passive reciprocal 

c ir c u its .  For symmetrical p o s itiv e  d e f in ite  matrices Cholesky 

decomposition i s  recommended. Negative numerical values o f  s must be 

used, however, (se e  section  2 , 2) ,  and th is  may resu lt  in  the lo s s  o f  

the p o s it iv e  d e f in ite  property o f  the nodal admittance matrix, which 

e x is ts  for p o sitiv e  values o f  s .

The nodal admittance matrix i s  usu ally  fa ir ly  sparse, in  such cases 

the Gauss-Seidel method i s  recommended. This would be p articu larly

a ttr a c tiv e  since the numerical value o f  s i s  a ltered  only a l i t t l e  each

time, and a fte r  the f i r s t  ite r a tio n , a good se t  o f  startin g  values would 

be a v a ila b le . This method does not g ive the determinant value as w ell 

as the in verse , so unfortunately i t s  advantages could not be used.

The conclusions reached above led  to  Gaussian elim ination  being 

used. No pivoting was used, so that the symmetry o f  the nodal admittance 

matrix was kept and th is  resu lted  in  a much fa ster  computation time, 

about h a lf  that using p a rtia l p ivoting. There i s  the danger in  using  

th is  method o f  numerical in s ta b i l i ty ,  but t h is  did not occur in  the 

examples te sted . In general use , p a rtia l p ivoting should be used and 

symmetry destroyed.

To speedup the programme, zero jumping was employed, i . e .  i f  element 

Y., i s  zero in  the formula for Gaussian elim ination ,
W k i
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X

2nd p ivot 1 s t  p ivot

O O O

o o 

o

X  % X  %

( 11)

O i n i t i a l  nor>-zero elements

^  elements made non-zero by gauasian elim ination , and 

calcu lated  th ereafter , and calcu lated  using 1s t  pivot

Optimum Ordering o f  Nodes 

f ig .  2.2
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where i s  p ivot, then no ca lcu la tio n  was done, since elements only  

need be calculated when = 0 ,  This zero jumping can be made even 

more e f fe c t iv e  i f  the nodes are ordered such that the column with the 

few est non-zero elements i s  the l a s t ,  and the colu^m with the next fewest 

non-zero elements "i s  the next to  l a s t  and so on. In f ig ,  2 ,1  when zero 

jumping i s  used, the matrix in  ( i )  requires fewer operations than the  

matrix in  ( i i ) .

I f  the d erivatives are required then the Grout LU decomposition can 

be used as a small improvement over the simple Gaussian elim ination , only  

those cofactors corresponding to  non-zero elements need be calculated  

th is  requires approximately ( N l \ / 3  + 4îM  ̂ + 8NLÎM + NL^) operations 

compared with NL^ + operations for the simple Gaussian elim ination,

2,10 Comparison o f  Various Methods o f  Analysis

Various schemes ^  have been described for using rea l and

imaginary numerical values o f  s d iffe r en t from that described in  

sec tio n  2 ,8 , Unfortunately theré are no precise  formulae or examples 

o f  these other methods published so i t  i s  d i f f i c u l t  to  know whether 

they are superior.

The major a ltern ative  to  the generation o f  the c o e ff ic ie n ts  o f  the 

network polynomials v ia  the nodal admittance matrix i s  th e ir  generation  

v ia  the s ta te  variable formulation^ This a ltern a tiv e  has the great 

advantage th at i t  i s  easy to  extend i t  to networks containing non-linear  

elem ents. I t  can a lso  give more u sefu l information about the performance 

o f  the network. The s ta te  variab le matrix cannot be derived d ir e c t ly  

from the top o log ica l information as can the nodal admittance matrix. 

S a tis fa c to ry  methods^" '̂ 5̂ j^yQ been developed to produce the s ta te
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variab le  matrix, even when degeneracy occurs. The s ta te  variable matrix 

has a lin e a r  function o f  s on i t s  main diagonal and a l l  the other elements

constant. For th is  reason, inversion  o f  the s ta te  variable matrix i s
23 25r e la t iv e ly  sim ple. Methods ^  using the eigenvalues o f  the s ta te

variab le matrix to  generate the c o e ff ic ie n ts  o f  the network polynomials

have been described,. W hilst th is  method i s  more elegant and produces

more inform ation about the c ir c u it , i . e ,  i t s  eigenvalues, from the r esu lts

they quote i t  appears to take longer than the method described above,
24and to  be l e s s  accurate for the same p recision . P o ttle  s ta te s  that

both ways o f  ca lcu latin g  the c o e ff ic ie n ts  require approximately the same
4number o f  operations, i , e ,  N , where N i s  the number o f  elem ents. He 

a lso  s ta te s  th a t in  h is  experience the values o f  the c o e ff ic ie n ts  obtained 

by using the s ta te  variable matrix i s  l e s s  accurate than th at using the  

more conventional way, the nodal admittance matrix.

Various a ltern a tiv es  have been proposed to  the above method o f
26 27obtaining the c o e ffic ie n ts  from the nodal admittance matrix. Downs *

describes a method which g ives determinant and inverse in  s di?%ctly,

which, w hile reducing the number o f  common factors generated, appears very

complicated. He does not d iscu ss large networks nor give the computation

tim es and accuracy. This makes i t  d i f f i c u l t  to  compare the methods,
28 29D irector and Rohrer * give a method using the adjoint network

which has c lo se  th eo retica l lin k s  with the method described above.

This method works both for lin e a r  and non-linear networks, but i t  requires

two c ir c u it  analyses compared with the method discussed , Neill^^*^^

gives the bare bones o f  a method very sim ilar to that discussed;
82Goddard and Spence g ive a sim ilar scheme for r e s is t iv e  networks but 

neither g ive any d é ta ils  o f  how to  extend th is  to  reactive networks nor 

to  generate a l l  the c o e ff ic ie n ts  a r ^ ^ r iv a t iv e s  ^  A

Aand 2222 sim ultaneously.



— 44 —

1 39Mary authors^ have suggested the use o f  the general method o f  

numerical d iffe r e n tia tio n  to  evaluate the d erivatives o f the network 

polynomials. This uses the formula

^  ^ -  f(x ) 8% = O.OIJC, say

needing N function* evaluations for  N c ir c u it  elements and requires an

in ord in ately  long tim e. The evaluation  o f  the second d eriva tives

requires ^ N - l )  function evaluations, or N d erivative  evaluations,
3 / 2The method described above requires approximately MN̂  '3  + % 

m u ltip lica tion s for the evaluation o f  a l l  the c o e ffic ien ts ;  NL̂ / 2  + 

m u ltip lica tion s for the evaluation  o f  the d er iva tives o f  the c o e ffic ie n ts  

with respect to  the network elements, and MNl^/2 + 2M^1? m u ltip lica tion s  

fo r  the second d erivatives o f  the c o e ff ic ie n ts  with respect to  the network 

elem ents, compared with N l/6^ N +  and NL^N/2  + m u ltip lica tion s

using function d ifferen ces and d eriva tive  d ifferen ces for the f i r s t  and 

second d er iv a tiv es, resp ectiv e ly . In  comparison with the method uséd 

in  sec tio n  2 ,4  th is  method i s  q u ite  inaccurate.
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Chapter 3

OPTIMISATION

3.1  Introduction

As shown in  Chapter 1, the technique o f  synth esis by c o e ffic ie n t  

matching g ives a se t  o f  functions (f^  -  -  -  f^^). These functions  

are dependent on the elements o f  the network, the se t  o f  variab les,

(x^ -  -  -  and the m ultiplying constant x^. There may or may not be 

more independent functions than variab les. To find  the values o f  the 

v ariab les  which drive these functions to  zero in volves the so lu tion  o f  

a se t  o f  noj>»linear simultaneous equations. This problem has to  be 

solved by the use o f  optim isation  theory. Optim isation theory gives  

one mary standard techniques eadi having i t s  own sp ecia l advantages and 

f ie ld  o f  app lication . Some o f  th ese techniques namely those using the , 

d er iv a tiv es  o f  the functions with respect to  the variab les, were used to  

so lve th ese  equations. The vectors used in  th is  chapter are column 

v ectors,

3 .2  Basic Concepts

A ll the optim isation algorithms work by a process o f  ite r a tio n .

T he'correction  for each variable is»-calculated from the functions and 

th e ir  d er iv a tiv es  with respect to  the variab les using one o f  the  

algorithm s, the variables adjusted by these corrections and the functions 

reca lcu la ted . I f  the process i s  working correctly , the ob jective  function  

w il l  have been reduced. From the new se t o f  functions and variables  

aitother se t  o f  corrections i s  obtained, and so on. The ite r a t iv e  

technique o f  d irected t r ia l  and error i s  the e s se n t ia l  core o f  

optim isation  theory.
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From a prelindnaiy perusal o f  the problem i t  would seem not very

much more d i f f ic u l t  to solve a se t  o f  nor>-linear simultaneous equations

than to  so lve  one non-linear equation in  one variab le, but a large

number o f  variab les lead s to  the o ften  quoted phrase o f  Bellman, *the

curse o f  dim ensionality*. This curse takes the following forms.

The d i f f ic u l ty  o f  comprehending the behaviour o f  the objective function

as each variab le i s  a ltered . I t  i s  only p ossib le  to  envisage the

problem in  a * fa lse* three-dim ensional p icture. As the number o f

variab les in creases, so do the number o f  minima, the standard methods

such as Newton Raphson tend to  break down with the increase in

dim ensionality . L astly , the huge s iz e  o f the hyperspace in  which the

minimum must be found. As an example o f  th is  la s t  d if f ic u lty ,  i f  by

simple function  evaluations a t points in  a grid , the minimum o f a

function  i s  to  be found w ith in  with a variab le known to  be in  the

range 0- 1 , then 11 function evaluations are necessary, i f  the minimum

o f  a function o f  10 variab les i s  to  be found by the same method, then

11^^ function evaluations are required. The increase in  the number o f

minima as the dim ensionality i s  increased i s  not such a dilemma in  th is

problem as in  other problems, s in ce , by d e f in it io n , the objective
. *

function  i s  zero a t a global minimAVirw# There may be mary o f  these  

minima; t h is  im plies th at even fo r  a fixed  network topology there may 

be many d iffe re n t rea lisa tio n s  each with d iffe re n t values for the network 

elem ents. In addition to  these p erfect re a lisa tio n s  there may be, 

en^heering *quasi r ea lisa tio n s* , ( i , e ,  the ob jective  function i s  small 

enough for  p ractica l purposes). In  addition , there are o ften  mary

* fa lse*  minima with a nearly zero gradient vector but with an ob jective

* The minimum with the low est value o f  the ob jective  function.
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function  fa r  from zero. Nevertheless, the add itional minima may cause 

the optim isation process to  break down,

3 .3  S e lec tio n  o f  the Objective Function

I t  would be preferable to  so lve the se t  o f  non-linear simultaneous 

equations as a set o f  equations, with no extra com plication, but i t  i s  

soon found th at the values o f  certa in  functions are increasing w h ilst  

the values o f  others are decreasing; so i t  i s  necessary to  have an 

ov era ll measure o f whether or not the optim isation  procedure i s  converging. 

This requires the use o f  an ob jectiv e  function which enables a measure 

o f  the convergence to  be made. The optim isation  procedure i s  now 

concerned with the reduction o f  th is  ob jective  function. The 

functions can be p o s itiv e  or negative and th is  lead s to  the following  

d e fin it io n s  fo r  the ob jective  fu iiction,

1. %

where n i s  even, the svua o f  even welgtW  powers o f  the functions.

2 . m  , I
F = 5 î  l» /e l  3 .2

the minimax foim ulation, •

When m i s  large formulation 3 .1  i s  equivalent to  3 .2 , The weighing

in  equation 3.1  enables certa in  functions to  be emphasized by appropriate

choice o f  weighing fa cto rs . The form ulation in  equation 3 .2  g ives

discontinuous functions, so i t s  f i r s t  and second d er iv a tiv es  may or

may not e x is t .  Hence d irec t methods not requiring d eriva tives must

be used, i f  th is  formulation i s  required b y  the sp e c if ic a tio n s .
86Sown g ives an e f fe c t iv e  method fo r  dealing with t h is  s itu a tio n .

The formulation in  equation 3 .1  g ives a continuous function and hence 

there are no re s tr ic t io n s  on i t s  d er iv a tiv es. The ob jective  function  

used was the sum o f  the squares o f  the function

V  3 .3
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3 .4  Constraints on Variables

‘ A further lim ita tio n  i s  necessary when the synthesis i s  restr ic ted  

to  pa.ssive network elements with no mutual inductance. The coef­

f ic ie n t s  o f  such networks must be generated Ty elements which are rea l 

and hence p o sitiv e  in  value. To constrain elements to  be p o sitiv e  

th e sim plest so lu tion  i s  to  remove elements from consideration once 

they become negative; but an element which has become negative during 

th e  i n i t i a l  optim isation  process may become p o sitiv e  at some la te r  

stage. To avoid th is  p o s s ib il ity  a transformation o f  the variable  

was employed. There are two popular methods^of constraining the 

variab les  to  be p o s it iv e , the logarithm ic transformation and the square 

transform ation, i , e ,  y^ -  -  -  y^ i s  optimised where

y^ = lo g  i  = 1 -  -  -  N 3 .4

or y^ = i - l - - - N  3 .5

The logarithm ic transformation o f  variables, has the advantage o f  

automatic scaling  for

i  = 3 .6

but unfortunately as Xĵ —̂  0 which causes numerical

d i f f i c u l t i e s .  This n ecess ita te s  the removal o f  network ialements

w ith some f in i t e  value and d isco n tin u ity  in  the value o f  the objective

function . Nonetheless i t  works well,^^*^^Because o f  these numerical

d i f f i c u l t i e s  the square transformation o f  variab les was used,
43Penalty function method o f  constraint were not considered as being 

unnecessarily  complicated. Unfortunately these transformations 

u su ally  d is to r t  the ob jective  function response surface and make 

optim isation  more d i f f i c u l t .  They may even introduce fa lse  minima,

3 .5  D irect and Gradient Methods o f  Search

There are two b a sic  groups o f  methods which are used in  tackling  

the problem o f  optim isation . The d irec t methods which evaluate the
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function a t a se t o f  points in  a pattern in  space, and from the value

o f  the ob jective  function  a t these points judge in  which d irec tio n  to

move so as to  reduce the ob jective  function; and those methods using

d eriva tives evaluate the functions and th e ir  d erivatives a t a point in

space and from th is  ca lcu la te  a d irec tio n  to  move such th at the ob jective

function w i l l  be reduced. The c r ite r ia  fo r  the se le c tio n  o f  an

appropriate method are the number o f  operations* each method requires

to  find  the global minimum from the same se t  o f  startin g  values, the

a b i l i ty  o f  the method to converge from a range o f  startin g  points,

and most important whether the method w il l  work with the problem as

sp ec ified . Both d ir e c t  and gradient^find the minimum in  a small

part o f  the to ta l space and once th is  i s  found, move in to  space d o s e

to  the o r ig in a l space and repeat the process eventually converging to
38 39a minimum. The general opinion * expressed i s  that the d irect

40 4 l  42methods such as Simplex , Pattern Search , Rosenbrock are good

for those problems where the d er iv a tiv es  do not e x is t  or are d i f f ic u l t

to  find and when the number o f  variab les i s  not too great, for  example,

le s s  than 10, but th a t i f  d er iv a tiv es are read ily  ava ilab le , then the

gradient methods g ive fa s te r  convergence to the so lu tion . Also

gradient methods continue to work w ell as the number o f  variables i s

increased. The methods used are the gradient methods since the

gradients o f  the function  are read ily  ava ilab le ,

3 .6  Levenbcrg Algorithm

The gradient methods are based on the expansion o f  the ob jective  

function  in  i t s  Taylor ser ie s;  using various terms in  the ser ies  g ives

* Number o f  operations here i s  taken to  be the number o f

m u ltip lica tion , d iv is io n s , e tc . performed on a computer.
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d iffe r e n t  algorithms. In  vector form the Taylor ser ie s  i s  given by 

F + S F  = F(x +'§^x) = F + G*Sx + l/2 S x H  Sx + « « -  3 .8

where, the prime refers to  vector tran sp osition  and S*x = -  -
the vector o f  small changes in  the variab les, G* = -v—̂  

the gradient o f  the ob jective  function F with respect to the variables  

and H i s  the hessian, i . e ,  the matrix o f  the second d eriva tives o f  

the o b jectiv e  function with respect to  the variab les.

H =

^ F

The steep est descent algorithm takes the f i r s t  two terms o f  Taylor*s 

s e r ie s . This assumes a lin ea r  representation o f  the function which 

cannot g ive a minimum, i f  a further term o f  the Taylor ser ie s  i s  

taken then the function has a quadratic representation which has a 

minimum,

F +  "3F= F(% +$x) = F + 3 .9

I f  t h is  representation i s  d ifferen tia ted  and put equal to zero, then  

i t s  minimum i s  given by

G = - h S x

i . e .  § x  = 3.10

where as before x i s  the vector o f  corrections, G i s  the vector o f  

gradients and H the hessian , F letcher and Powell show^^hat i f  a 

m atrix such as H has a p o sitiv e  d e f in ite  form and i f  a lin ea r  search 

i s  carried out at each ite r a t io n  then convergence i s  assured for a 

quadratic function.

Thus th is  algorithm can be modified to  be

S x  = - çiT^g 3.11
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where Ç i s  the lin ea r  correction  factor .

This method g ives the so lu tion  o f  a se t  o f  quadratic equations in  one
2.! ■

i te r a t io n , see f ig ,  3 ,1 , so the method i s  quadratically  convergent. 

This means the f in a l convergence i s  very rapid sin ce most norv-linear. 

functions can be approximated by a quadratic very c lo se  to  the minimum.

To find  the rate c f  convergence o f  the Taylor se r ie s  algorithm  i t s

behaviour in  the v ic in ity  o f  a minimum should be examined. At a 

minimum G(x) = 0 H = using a Taylor s e r ie s  expansion about x  

G(x +S x) = G(x) + P*(6) S x

H(x + f x )  = H(x) + F***(<^)Sx

where C i s  contained in  the in terv a l x to x + S x  and since
V p

G = = VF(x) and H G a t the minimum G„̂  _ i s  re la ted  to  G)Xj min
at the i t h  ite r a tio n  Ĝ  by

-  W  = °
and i s  related  to by

« » in =  W

SO the error in  x ^ ^  i s  related  to  the error in  x^ by

- *1+1 = *»in - *1 -  W l

using equation 2 ,9

*«dn “ *1+1 = ( :  + "mln) <*nln " *1^

Hence t h is  algorithm has second order convergence. These arguments 

make th is  method very a ttra c tiv e  to  use e sp e c ia lly  in  synthesis by 

equating c o e ff ic ie n ts  when the hessian  i s  f a ir ly  easy to  obtain, see 

sec tio n  2 ,6 , But the convergence o f the Taylor se r ie s  algorithm i s  

hot assured unless the hessian  i s  p o s it iv e  d e f in ite .  There i s  no 

guarantee th a t th is  w i l l  be so in  the general case or in  the method 

o f  matching c o e ff ic ie n ts .
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Quadratic Function

u sin g  second order terms in  Taylors s e r ie s

s ta r t

using f i r s t  order terms 
in  Taylors s e r ie s

so lu tio n

Convergence o f  Second Order Optimisation 

f i g .  3 .1
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, I f  t h is  method i s  applied to the so lu tion  o f  an objective function  

formulated as the squares o f  a se t  o f  functions, then

In  vector form

G = V f  = 2J*f

e

In vector form, i f  second terra i s  neglected  

H = 2J»J

I f  the second terra i s  neglected tV\e>\

S x  = - l /2 ( d 'J ) “^G 

and the Taylor ser ie s  algorithm becomes

$ x  = - 1 /2  (J 'J )“^ (2 J 'f) = - ( j ' J ) " \ j ' f )

This i s  ca lled  the Gauss algorithm, A lin e a r  search may or Viay not 

be used. I f  the number o f  variab les N i s  the same as the number o f  

functions, then t h is  becomes 

S x  = •*J“’^f

the Jfewton Raphson algorithm.

Since a matrix times i t s  transpose i s  at le a s t  p o sitiv e  semi- 

d e f in ite  th is  algorithm assures convergence for the quadratic function. 

This algorithm tends to o s c i l la t e  far  from so lu tion , i . e .  the  

corrections to  the variab les a ltern ate  in  sign  each itera tio n ; to
hn UQ

reduce th is  e f fe c t  Levenbçrg * introduced the idea o f  adding a 

constant term to  the diagonal, i . e ,  adding an arb itra iy  steep est  

descent correction .
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The Levehbigrg m odification g ives

S x  = - (J 'J  + J i f  3.12

where ^  i s  the "damping factor* and X the u n it matrix. In  the 

o r ig in a l methods was chosen to  l im it  the vector o f corrections  

such th at the Taylors se r ie s  approximation Tras not in valid ated , 

i . e .
^  r  r

where r  i s  the radius o f  the region o f  v a lid ity . To estim ate the

value o f  r i s  a d i f f i c u l t  task , though various estim ates o f  i t  are
50 ~ 2 -a v a ila b le . As A i s  increased the other terms in  the inverted

jacobian become in s ig n if ic a n t  and the algorithm tends to become the

steep est descent algorithm

S x  = -  J ' f  3.13
38The steep est descent algorithm i s  e f fe c t iv e  far from so lu tion .

As ^  i s  decreased i t  becomes in s ig n if ic a n t  compared with the 

other terms in  the jacobian. The algorithm tends to become the  

Newton Raphson algorithm

% x =  - ( J 'J ) - l  J ' f  3 .14
38This i s  p articu larly  e f fe c t iv e  c lo se  to  so lu tion .

As X  i s  changed the t ip  o f  the correction  veotor marks out a 

sp ira l in  space as shown in  f ig ,  3 ,2 , This means th at th is  method

i s  robust and converges both far away and close  to so lu tion  without

having to  change algorithms for these d iffer en t situ a tion s; the  

d if f ic u lty  i s  the choice o f  A fter t r ia l s  o f  various methods

o f  finding the best value o f  to  use, i t  was found most e f fe c t iv e  

to  choose the time consuming method o f  a lin e a r  search a t each ite r a tio n ,

3 ,7  Linear Search
24,0

The theory o f  lin ea r  search methods assumes a urdmodal function
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path o f  lin e a r  search

LevenbSrg Algorithm  

f i g .  3 .2
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in  th is  ap p lica tion  th is  i s  not the case. Multimodality occurs

because o f  the reasons stated  in  sectio n  3 .2  and because a 'lin e a r  
*\2search* in  the ^  for  Levehb f̂crg algorithm rotates the d irec tio n  o f  

search^ hence a unimodal surface m y  appear multimocal in  the lin ea r  

search phase.

There are two b asic  methods o f  dealing with th is  problem, e ith er

ignore the m ultimodality and proceed with the standard methods, or to

attempt to fin d  a l l  the minima th at occur as i s  varied by applying

some kind o f  comb search and se le c tin g  the b est o f  th ese . This

la t t e r  method im plies varying from zero to in f in ity ,  an apparently

very d i f f i c u l t  ta sk . In fa c t  th is  i s  not so d i f f ic u l t  with the
\  2Levenbi^g algorithm since i f  \  i s  increased beyond a certa in  le v e l

•V 2
the corrections become minute (se e  equation 3.12) or i f  ^  i s  reduced 

below a certa in  le v e l  i t s  value makes no d ifferen ce to  the corrections  

(se e  equation 3 .1 3 ). The s iz e  o f  comb necessary to  find a l l  the  

minima in  the o b jectiv e  function as i s  varied i s  d i f f i c u l t  to  

d ecide. In  p ractice , the comb was made smaller and smaller u n t il  

i t  picked up no more minima. Tiiis seemed to  vary l i t t l e  from example 

to  example, providing the u n it o f  ^  was taken as the mean o f  the  

trace o f  J*J divided by i t s  order squared, i . e .  had u n its  o f  s iz e

3 .1 4

2
As or o6th e correction  became in se n s it iv e  to i t s  value. The

comb to  be e f f ic ie n t  must take account o f  th is  and use a geometric 

progression. Two methods were tr ie d .

1 . Doubling the s iz e  o f  ^  u n t il  a minimum was bracketed, storing  

th is  and so on u n t i l  the corrections became minute. Then halving
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storing each inlnimuDi found u n t i l  the corrections remained unaltered. 

Then each o f  the b est minimum found was refined  ty  a quadratic 

search.

2, D ividing the to ta l  in terv a l between the two l im its  o f  in to  . 

sectio n s between adjacent powers o f  10, i . e .  lO" %o 10* , 10~ to 10* 

e tc . and performing a coarse go lderesection  search in  each o f  these  

in te r v a ls , A f in a l more accurate golden-section  search being performed 

over th e region containing the b est minimum.

The f i r s t  method requires fewer function evaluations but i s  only  

su ita b le  fo r  continuous functions, whereas the second method i s  

su ita b le  for  discontinuous functions.

This linear.-search phase i s  the most expensive in  computer-time 

o f  ary o f  the processes described in  the optim isation  section; the  

symmetric matrix JJ* + must be inverted in  addition  to  each 

function  evaluation. But a lin e a r  search was found to be e ssen tia l;  

other methods such as halving each successfu l ite r a t io n  and 

m ultip lying x 4 each unsuccessful ite r a t io n  were found not to work.

Only p o sitiv e  values o f  were considered since ĴJ* 4- ^ i j i s  

p o s it iv e , d e f in ite  and hence a l l  i t s  eigenvalues were negative.

Taking negative ^  would be a means o f  finding maximum, ^9^

3.8 A lternative Optimisation Algorithms

Tests have been performed as to the b est formulation (see

se c tio n  1 ,6) and optim isation  algorithm to use to  solve the equations 

generated by c o e ffic ie n t  matching. Much work has been carried out on 

th is  problem a t the U niversity  o f  L e icester  under the d irectio n  o f



— 48 —

Dr, Catteridge, The formulation o f  the problem found most e f fe c t iv e  

i s  th at given by equation 1 ,1 1 , This formulation i s  a lso found to  

be the znost e f fe c t iv e  by the author. The most e ffe c t iv e  optim isation  

algorithm i s  found to  be th a t o f  conjugate gradients with a switch to  

the Newton Raphsoh algorithm c lo ser  to  so lu tion . This work was 

published a fte r  the author had su c cessfu lly  used the Levenburg^"^*^ 

algorithm. When the Levenbcrg algorithm proceeded stea d ily  but slowly  

to  so lu tion , the method described by Dr, Cutteridge was employed to  

speed so lu tion ,

3*9 Optimisation Algorithms for  M ultilinear Functions

The c o e ff ic ie n ts  o f  the network polynomials are m ultilinear

functions o f  the network elem ents, see sectio n  1 ,5 . Hence th is

property should be u sefu l in  developing optim isation algorithms

sp e c if ic  to  the problem o f  c o e f f ic ie n t  matching. Some methods
41 48have already been described ’ using th is  property. These are 

univariate methods based on the id e n tity
y

(ex a c tly ) 3.15

where §  x i s  the varia tion  o f  one variab le x , x^ i s  m ultiplying  

constant, f ^  required value o f  c o e f f ic ie n t , f. current value o f  

c o e ff ic ie n t  and — the sensitivjLty o f  c o e ff ic ie n t  f^ with respect 

to  the network element x .

I t  i s  shown in  Appendix g .5  th a t gen era lisa tion  o f  the univariate  

optim isation  methods leads to  optim isation  algorithms akin to the 

Newton Raphson, This shows th at the Taylor ser ies  approximation i s  

p articu lar ly  v a lid  for  m u ltilin ear functions.
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Prelim inary t e s t s  o f  th is  algorithm  in d ica te  th at i t  produces f a i r ly  

rapid convergence p a r tic u la r ly  c lo se  to so lu tio n . Further 

in v e s t ig a tio n  i s  necessary in  order to  d iscover i t s  range o f  

convergence and i t s  e f f ic ie n c y  compared with the standard methods.
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Chapter 4  

Network Evolution

4,1  Introduction

Two b asic  methods o f  network evolution  have been developed as

methods o f  syn th esis. They use the method o f  matching c o e ff ic ie n ts

as discussed in  Chapter 2 and u t i l i s e  the Levenb^rg algorithm for

optim isation  as d iscussed in  Chapter 3* In particular, the method

u t i l i s in g  the growth (addition) o f  elements to  the network makes use

o f  the fa c t  that the method o f  an a lysis  generates at l i t t l e  extra

cost the s e n s it iv ity  o f  each c o e ff ic ie n t  o f  the network polynomials

with respect to  the v ir tu a l (zero valued) elements o f  a l l  three kinds

and across a l l  p ossib le  connections, see sectio n  2 ,7 . This enables

the network topology to be a ltered  in  the same manner as the values

o f  the network elements.

There are two b asic  methods o f  approaching the problem o f  network

evolution* one method^ i s  by taking a simple starting network, which

must f u l f i l l  certa in  basic  requirements and which may or may not

even have the correct network polynomial structure, and adding elements,

and perhaps nodes, to  th is  network u n til  the required c o e ff ic ie n ts
44are obtained. The other method i s  by startin g  with an overelaborate 

structure which generates the required network polynomials, but with  

many excess common fa cto rs , and sim plifying th is  network by elim inating  

network elements, and perhaps nodes u n til  the required c o e ff ic ie n ts  

are generated by a simpler network structure. The follow ing section s  

d iscu ss some methods developed to implement these approaches^ some 

o f  the problems th a t occur and th e ir  so lu tion .



- 6 1  -

4 ,2  V irtual Elements as Variables

In  a general synthesis procedure every p ossib le  connection should

be considered. This g iv es, in  addition  to  the m ultiplying factor ,
.tKi,

a se t  o f  N6 variables fo r  NL nodes, in  addition  toVreference node  ̂

\fê!here N6 = NL(NL + 1) for CR networks and N6 = 3NL(NL + l ) /2  for LCR 

networks. Most c f  those variab les w i l l  be v ir tu a l elements and zero

in  value. The number o f  equations to  solve for th ese variab les i s

equal to  the number o f  c o e ff ic ie n ts  to  be matched, N5Î some o f  these  

may not be independent,

x^, X g----------------- = 0

^ --------- =N6) = 0
t •

• • 4 .1

=1' *2 = 0
In  general, there w il l  be more variab les than equations; th a t i s ,

the equations are underdetermined. The number o f  so lu tion s may be 

zero,* extra nodes and common factors may be required to achieve so lu tion . 

A ltern atively , there may be any number, up to an in f in i t y ,  o f  so lutions  

or quasi so lu tion s (not true so lu tion s, but c lo se  enough to  be u se fu l) . 

This i s  inherent in  network synthesis; i t  i s  w ell known th at there 

a r e , ' in  general, many equivalent-and quasi equivalent networks to a 

given r e a lisa t io n  p articu lar ly  as the network complexity i s  increased. 

Some optim isation methods such as Newton Raphson break down 

with an underdetermined se t  o f  equations; the jacobian i s  singular  

and hence cannot be inverted; whereas those optim isation  methods 

seeking a ftt'indmum o f  the sum o f  the sqqares o f  the resid u a ls  o f  the 

equations, such as steep est descent, w il l  converge. In particu lar, 

the Levenb%rg algorithm w il l  converge to  so lu tio n  (w ith  large
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th is  i s  equivalent to  steep est d escen t). As i s  made smaller

numerical sin g u la rity  w i l l  occur because the Levenburg algorithm i s

becoming c lo ser  to  the Newton Raphson algorithm.

Unfortunately, in  p ractice , with such a large nimber o f  variab les,

so lu tion  i s  achieved very slow ly, i f  a t a l l ,  by optim isation.

For th ese  reasons a sub-set o f  the complete se t  o f  variab les

must only be considered to  speed up convergence. This could be the

sub-set o f  variab les corresponding to those network elements which

are i n i t i a l l y  non^zero. I f  the sub-set does not contain a va lid

so lu tion , th at i s , ^ i t  f a i l s  to  converge to a sa tis fa c to ry  minimum,

then the f u l l  se t o f  variab les must be considered and another sul>-set

se lec ted . I t  would seem sen sib le  to  d e le te  from the sub-set those

variab les which have been driven c lo se  to zero by the optim isation

process and to  add to  the sub-set those variab les tS.th zero value

which have the grea test tendency to  go p o sit iv e  or which cause the

la rg est  reduction in  the ob jective  fu n c tio n ,^

Real elements which are required to  remain fixed  in  value or 
20frozen in  value because they play l i t t l e  part in  the optim isation  

process are, o f  course, excluded from the sub-set o f  a ctive  variab les. 

The above process can be thought Of in  geometric terms. The 

f u l l  s e t  o f  variab les generate a fu nction  space containing no minimum 

or many minima. The optim isation process i s  confined to a sub-spa ce 

o f the to ta l  space by the se le c tio n  o f  a c tiv e  variables which are a 

sub-set o f  the complete se t  o f  variab les. Optimisation occurs in  

th is  sub-space u n til  i t  cannot proceed c lo ser  to a minimum. The 

addition  o f  extra a c tiv e  variab les a lte r s  the sub-space u n til  hope­

fu lly  a global minimum i s  contained w ith in  the sub-space and a so lu tion
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i s  obtained. R estr iction  o f  the optim isation  process to  a sub-space 

enables i t  to  converge to  so lu tio n  in  a reasonable time and makes 

the ^ n th e s is  v ia b le ,

4 .3  Evolution from a Basic S tarting Network

The evolution  o f  a sa tis fa c to ry  network from some b a sic  startin g  

network must proceed through a number o f  step s , see f ig ,  4 ,1 ,

1 , S e lectin g  a startin g  network (se e  sectio n  4 ,4 ) ,

2, Checking that th is  sta rtin g  network has the correct network 

polynomial structure and^if not, a lte r in g  the network 

correspondingly, ( s e e  sectio n  4 ,5 )

3, Applying optim isation  to  a lte r  the values o f  network elements 

u n t i l  further progress ceases ( see sec tio n  4 ,5 ) •

4, A ltering the topology o f  the network by removing and addirg 

elements (see  section s 4 ,7 , 4 ,8 ) ,

5, Repeating the optim isation  process u n t il  progress ceases, and 

adjusting the network, and so on u n t il  so lu tio n  i s  achieved 

and the network generates the required se t o f  network 

polynomials or the process has reached a dead end. When 

th is  occurs, further startin g  networks must be tr ie d . I f  

th ese again f a i l  to  evolve to  so lu tion , the addition  o f  common 

factors to  the network polynomials and nodes to  the network 

has to  be considered (see  sec tio n  4 ,10 , 4 ,1 1 ),

4 .4  Basic Starting Ifetworks

There i s  a wide se le c tio n  o f  passive startin g  networks possib le  

fo r  a given se t o f  network polynomials, though the se le c t io n  i s  

fortunately  lim ited  by the structure o f  the network polynomials.
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so lu tio n

O ptim isation

Required Network

Polynom ials

Elements removed.

S ta rtin g  Network

Elements grown

Polynomial stru ctu re

Insuring correct

Network E volution  by Growth 

f i g .  4 .1
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The engineer should use a sta rtin g  network that from h is  experience 

provides a response c lo se  to  th a t required. On the other hand, 

the optim isation  process works b e tter  the fewer the variab les.

Where there i s  no idea o f  the f in a l structure, i t  i s  best to  s ta r t  

with a simple structure containing the minimum number o f  nodes and 

containing the minimum number o f  inductors, capacitors and r e s is to r s .

The startin g  network must be capable o f  generating network poly­

nomials o f  the same degree as the required polynomials. This im plies  

th a t there are lim ita tio n s  s e t  on the minimum number o f  nodes and 

numbers o f  each type o f  component. For a CR network, the minimum 

number o f  nodes in  addition  to  the reference node, i s  given by two 

plus the maximum degree which occurs in  the network polynomial

'^ 1122
For a LCR network, the minimum number o f  nodes i s  given by th is

hvo
maximum degree halved, plus an additional^nodes’i f  the maximum degree 

i s  even, or plus an additional 3 nodes i f  the degree i s  odd, that 

i s ,

min ( NL) =  ̂ for  CR networks ^ ^

min (NL) = e n t ie r  (^ ^ 2 2   ̂ + 2 for  LCR networks

There i s  one le s s  node for  two terminal networks#

- - The minimum number o f  capacitors and r e s is to r s  in  a ER network 

i s  given by the minimum number o f  nodes minus un ity . Each node must 

have a capacitor and r e s is to r  connected to  i t  i f  these capacitors and 

r e s is to r s  are to  be e f fe c t iv e  in  generating the required se t o f  network 

polynomials. In general, the^conditions apply to LCR networks; the  

minimum number o f  capacitors and inductors i s  equal to  the number o f  

nodes minus un ity  with a capacitor and inductor connected to  every node.
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In  general, the rmmber o f  tr ees  generating the h ighest order 

and constant term c o e ff ic ie n ts  i s  sm all, hence the geometric mean o f  

the capacitance, C in  a CR network i s  given by C = ^  

and the geometric mean o f  conductance i s  given by G = 

where m̂  ̂ i s  degree o f

This g ives some in d ica tio n  o f  the su itab le  order o f  magnitude o f  

elements to  put in to  the sta rtin g  network.

For LCR networks, i f  the number o f  capacitances i s  approximately 

equal to  the number o f  inductances, in  a sim ilar  manner i t  can be shown 

th a t

= z / c / r

g ive su ita b le  approximations fo r  the i n i t i a l  values o f  the network 

elements,

4 .5  Correct Structure o f  Network Polynomials

The rough ru les described ir? section  4 , concerning the  

connection o f  components are not concise and an alysis o f  the sta rt  

network may reveal the presence o f  zero-valued c o e ffic ie n ts  in  some 

o f  the network polynomials that should be non-zero, and/or non-zero
- m .

c o e ff ic ie n ts  that should be zero. Consider the f i r s t  case, the  

zero c o e ff ic ie n ts  may be made non-zero by introducing additional 

elements in to  the network. This i s  a ffected  by the follow ing procedure# 

atten tio n  i s  d irected  to a zero-valued c o e ff ic ie n t  that i s  adjacent, 

in  a given polynomial, to  one whose value i s  non-zero, and the se t  o f  

i t s  p a r tia l d er iv a tiv es  with respect to  some or a l l  possib le  v ir tu a l
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elements i s  calculated (se e  sectio n  2 .7 ) î  a non-zero p a r tia l d erivative  

in d ica tes  th at the zero valued c o e ff ic ie n t  w il l  become non-zero i f  the  

corresponding v ir tu a l element i s  replaced by a rea l one o f  the same

type. In  fa c t, by considering the p a r tia l d er iva tive  o f  more than
r r

one c o e ff ic ie n t  i t  i s  sometimes p ossib le  to  sim ultaneously correct a 

number o f  th ese c o e ff ic ie n ts  by the introduction  o f  only one element 

( se e  sectio n  5*3)* In CR networks, capacitors are added to  the  

network when working from low ordered non-zero c o e ff ic ie n ts  to  generate 

higher order c o e ffic ie n ts ;  conductors when generating lower order 

c o e ff ic ie n ts  when working from higher order c o e f f ic ie n ts . The 

c o e ff ic ie n ts  o f  are given p r io r ity  with consideration given to  

the e f fe c t s  on the zero -c o e ffic ie n ts  o f  A

should be non-zero, when a choice o f  p ossib le  connections i s  ava ilab le . 

I t  i s  sound policy  to  prohib it, as far as p o ssib le , connections 

between external nodes a t th is  stage as the encouragement o f  the 

growth o f  connections between in tern a l nodes has been observed to  

speed up the evolutionaiy process.

The reverse process i s  used to  make zero c o e ff ic ie n ts  which are 

non-zero, Workir^ from the outermost non-zero c o e ff ic ie n t  which i s  

required to be made zero, the se t  o f  i t s  p a rtia l d er iv a tiv es  with 

respect to  rea l elements i s  examinee^ and those network elements 

removed which correspond to  non-zero p a rtia l d er iv a tiv e s .

I t  i s  possib le the above processes c o n flic t  as in  the case shown 

in  f ig ,  4 ,2 ,

When the evolutionary process c a l ls  the removal o f  to  make 

the coefficient,A ^^(0) zero no problems are caused since th is  a lso  

in c id en tly  makes A ^ ( 0 )  and A  (o) zero, which i s  correct. But
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A j^ iO ) \ o y

A j^ (̂2) V 0 v /

\ o y

Aj_^(o) \  o X

A ^ 2 ( 3 ) H o

A i 2(2) \ 0  X  

A i 2 ( 1 ) \ 0  X

A ^ ^ ( o ) \ o  %

A u ( 3 ) \ 0  /

A i i ( 2 )  k o y

A i i ( ^ )  H 0 

Aj^j^(o) = 0 ^
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A ^ 2(0) = 0 vX"

A ,ii(3 )   ̂ 0 X' 

A n ( 2 )  \  0 x '  

A j^ ^ (l)-= 0  X

— 0  y /

A i 2 ( 3 ) \ ° ' ^  
A ^ 2 (2 ) = 0 v X

A ^ g (i)  = o \ /

Example o f  C o n flic t in  d ev is in g  Correct 

Polynomial Structure

f i g .  4 .2
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removal o f  to  m a k e (2) zero and give the correct network 

produces problems for  i t  a lso  makes (l)and  ^ 22^̂  ̂ zero when

th ese  c o e f f ic ie n ts  should be non-zero. There i s  no connection which

w i l l  make and '^22 ( i )  non-zero w h ilst a lso  keeping ^^^2 (2) zero.

Thus there i s  a c o n f lic t  between the two processes. In  such cases, 

a d iffe r e n t s ta r tin g  network must be considered.

4 .6  C riteria  for Local Minimum

As stated  in  section s 4 .2  and 4 .3  some d ecision  must be made as 

to  whether the current optimî.sation phase with th is  sp e c if ic  subset 

o f  variab les can proceed no c lo ser  to solution; convergence has 

v ir tu a lly  ceased and a fa ls e  minimum encountered. The follow ing  

phénomène; , are expected at a minimum, the ob jective function and the 

values o f  the variab les are changing, only s lig h tly ^ a t each ite r a t io n  

and the gradient vector i s  very sm all.

The d i f f i c u l t y  i s  in  deciding how small the gradient vector  

should be; a large amount o f  computation time may be wasted driving  

a gradient vector c lo ser  to  zero with very small changes in  the values 

o f  the variab les. Often the convergence may slow down as a minimum 

as i t  i s  approached. This process must be d istinguished  from the  

plateau convergence which o ften  occurs in  the middle o f  the optimis­

a tio n  phase, see f ig .  4 .3 . I t  i s  a lso  p ossib le  for the vector o f

connections generated by the Newton Raphson algorithm to  become
55 'orthogonal to  the d ir e c tio n  o f  s teep est d escen t; th is  prevents further  

convergence though a minimum has not been reached.

The whole s itu a tio n  i s  aggravated by the d if f ic u lty  o f  s c a lii^  

th e program to  s e le c t  a minimum when i t  has to  work with each synthesis
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Objective
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lo c a l minimum

Number o f  Iteration s

Flateau Convergence -  Local Minimum 

Cig. A.3
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problem involving such d ifferences in  the number o f functions and 

variab les. The cr iter ia  selected  are empirical; convergence i s  

said to have ceased when there i s  le s s  than 1$ reduction in  the 

objective function together with le s s  than 0,1^ change in  the values 

o f the variables^ both taken over 3 ite ra tio n s ,

4 .7  Criteria for Removal o f  Elements

When the evolution o f a passive network i s  attempted i t s  elements 

must be constrained to be p ositive; i f  optim isation i s  attempted
ttve-

without such constraints, some of^variables, though in i t ia l ly  p ositive ,

may pass through zero to  become negative giving an unrealisable solution.

Square or logarithm ic transfoivnations are ways to constrain the network

elements to  p ositive  values, see section  3 .4 , By th is  means a
)S ci

variable which i s  attempting to become negative^o a value close to  

zero.

Obviously a variable which has a much smaller value and gradient 

than the other variables i s  not playing a u sefu l part in  synthesising  

the network functions. When a minimum has been reached (sectio n  4,6) 

such an element should be removed in  order to reduce the number o f  

variables and speed convergence. The trees  generating each coefV 

f ic ie n t  o f the network polynomials contain sums o f products o f the 

network elements. I f  the trees contai ni the near zero element 

make a r e la tiv e  contribution to a c o e ffic ie n t  le s s  than i t s  required 

r e la tiv e  accuracy then the element can be removed without a»y sign ifican t  

change to the co e ffic ien ts  o f  the network polynomials. That i s ^ i f

Y <  Y y ACC 4,3
® IS

where Ŷ  i s  value o f near zero element, Yj^geometric mean o f  that type
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o f  element and ACC i s  the required r e la t iv e  accuracy in  the c o e f f ic ie n ts ,  

-thtar should be removed. In p ra ctice , th is  c r ite r io n  worked very 

well,* the o b jec tiv e  fu nction  e ith e r  remained approximately the same 

or was reduced on the removal o f  th e elem ent,

With a logarithm ic transform ation i t  i s  found th a t the 

connections, in  attempting to  drive th e logarithm  o f  a near zero-  

variab le  c lo ser  to  zero, become so large  as to  cause numerical 

d i f f i c u l t i e s .  This requires v a r ia b les  to  be removed before a 

minimum i s  reached, o ften  causing an in crease  in  the o b jective  

function . For th ese  reasons a square transform ation i s  used.

This enables the method described above to  be used to  remove near 

zero elem ents from the network,

4 ,8  An Algorj.thm for S elect!n ?  Elements to add to fetwork

I f  the evolutionary process works prim arily  by the add ition  o f  

elements to  th e network,\ a c r ite r io n  must be devised  to  choose which 

o f  the many v ir tu a l elem ents to  add. Of a l l  the .tasks th at face a 

designer o f  a program for sy n th esis  by evo lu tio n  th is  i s  th e  

g rea test. Once a vi.rtual element i s  bought in to  the se t  o f  rea l  

elements i t  must have the o f f s e t  o f  p r o d u c t a  worthwhile reduction

in  the o b jec tiv e  fu nction  and not being driven  almost immediately to
-

zero by th e  optim isation  process,, To choose among the v ir tu a l  

elem ents, when a fa ls e  minimum has been encountered, the only p iece  

o f  inform ation th a t i s  d ir e c t ly  a v a ila b le  i s  th e s e n s i t iv i ty  o f  each 

o f  the c o e f f ic ie n ts  o f  the network polynomials to  each o f  the v ir tu a l 

elem ents, depending on i t s  type and lo c a t io n . I t  i s  how th is  

inform ation i s  used th a t lea d s to the various algorithm s for growth.
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Since th e  Levehbierg. algorithm  was used in  the op tim isa tio n  phase 

to  a l t e r  the values o f  the network elements^ i t  would seem se n s ib le  to  

apply th e same algorithm  to  the complete s e t  o f  v a r ia b le s  fo r  one 

i t e r a t io n  and to  use i t  to  s e le c t  which v ir tu a l  elem ents to  add to  

th e  su b -se t o f  r ea l elem ents and what value i t  should have.

Neither a logaidthmic or square transform ation can be used to  

keep the rea l variables p o sitiv e  in  th is  phase; the zero values 

v ir tu a l elements cannot be used in  these transform ations, see equations

3 .4  and 3 .5 . For th is  reason the rea l elements are kept fixed  in  

the growth phase.

The growth algorithm  developed i s  as fo llo w s; th e  Levenburg 

algorithm  i s  used in  th e domain o f  v ir tu a l elem ent v a r ia b le s  fo r  a 

number o f  p o s it iv e  va lu es o f  th e Levenberg damping parameter 

A very wide range i s  used as d iscu ssed  i n  s e c t io n  3 .6 . The vector  

o f  co rrectio n s  to  th e  v a r ia b les  i s  ca lcu la ted  fo r  each o f  th ese  

va lu es  o f  and th e components o f  th e  v ecto r  having th e maximum 

p o s it iv e  va lu es are noted. These p a r ticu la r  components, correspond­

in g  to  a p o s it iv e  v ir tu a l elem ent, are then  incorporated w ith  the  

f ix e d  value elem ents, and the o b je c tiv e  fu n ctio n  o a lu u la ted jsee  

s e c t io n  3.3. This o b jec tiv e  fu n ction , as a fu n ctio n  o f  A. i s  

u su a lly  d iscontin uous and multimodal s in ce , over th e  wide range o f  

A^ used, d if fe r e n t  components o f  th e  co rrectio n  vector  p ossess th e  

la r g e s t  p o s it iv e  va lu e , A golden search w ith  logarith m ic  in te r v a ls  

i s  used as described  in  se c t io n  3 .7  to  fin d  th e  minimum s p e c if ic  

c o rrec tio n s , i , e ,  i t s  typ e, p lace in  network and va lu e .

I t  i s  found in  a l l  th e examples te s te d  th a t  adding more than  

one elem ent a t  each stage  die not speed up th e  process but^ in  fa c t .



— 74- —'

tended to lead t^s^tworlg with a large number o f elements^which did 

not f u l f i l l  the sp ec ifica tio n s. Hence only one network element i s  

added in  each growth phase.

Elements which had ju st been .removed are prohibited in  the growth 

phase to prevent cycling. In practice, th is  prohibition has never 

been found necessary. The c r ite r ia  also hems to ensure that the 

addition o f  network elements does not lead to an unsatisfactory  

network polynomial structure. Again, th is  has never occurred.

There are serious drawbacks to th is  growth algorithm; a l l  the 

c o e ffic ie n ts  and th e ir  s e n s it iv it ie s  are treated as a whole, while i t  

may be that individual co e ffic ie n ts  may be in  much greater error than 

the majority o f  the other co effic ien ts^ ^ h e  algorithm c a lls  for the 

repeated inversion  o f a high order^ NJ. ( N1 + l )  for a CR network^ 

matrix which i s  slow and inaccurate, particularly  as the number o f  

nodes i s  increased. One way o f  reducing the e ffe c t  o f thèse draw  ̂

backs i s  to  tack le  the c ircu it  step by step. This following strategy  

i s  found to be successfu l,

1, Consider only elements connected so le ly  to internal nodes or 

in ternal nodes and ground, leaving a l l  other elements fixed.

In optim isation and growth phases only the network polynomials

-^22  "^1122 considered,

2, After several cycles o f  the f i r s t  condition^elements connected 

to the output node 2 are included but those connected to the 

input node 1 s t i l l  excluded. The network polynomial i s

added to *^1122 consideration in  the optim isation

and growth phases.
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3. A fter several cycles o f  the second conditions, a l l  elements 

and c o e ff ic ie n ts  are considered as in  the standard case.

4 ,9  Other Growth Algorithms

The f i r s t  o f  th e  published algorithms for growing additional 

elements was th a t o f  D irector and jRohrer^^'^, who considered 

the frequency domain. The method they described was not a gpieral 

synthesis procedure, but consisted  o f  growing elements in  s p e c if ic  

places in  the network. The algorithm they proposed was based upon 

the steep est descent algorithm. This method has the advantages 

o f  steep est descent^ working for underdetermined equations and corv- 

verging far from so lu tion . I t  a lso  su ffers from the major d efect  

o f  the steep est descent algorithm;— as the metric o f  the variab les  

i s  a ltered  so does the d irec tio n  o f  steep est descent and hence the 

choice o f  element to  grow. The Levenberg algorithm has automatic 

sca lin g  properties^ unless i s  very largej and th is  problem 

does not occur.

Subsequent to the development o f  the algorithm described in

section  4 ,8 , Cutteridge, using c o e ff ic ie n t  matching, described an

algorithm ^ akin to the Newton Raphson algorithm and thus the

algorithm descidbed in  sectio n  4 ,8 , This algorithm has been used
37very su ccessfu lly^  I t  i s  a much more e f f ic ie n t  algorithm,

requiring approximatelyîiâ'i^ operations for  one ite r a tio n  compared
6with approximately 5I\1 operations for the Levehb f̂crg algorithm, 

because i t  does not require a lin e a r  search to cancel out the 

e f fe c ts  on the element to be added to  the network by the other 

v ir tu a l elements.
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2.
Wright recen tly  described work , on pole-zero matching and in

-fWrv̂
the frequency domain^ which attempted evo lu tion  both p r im it iv e  sta rtin g  

networks and from over elaborate networks. He used in te r a c tiv e  

methods and achieved some remarkable success in  syn th esis  o f  a^nodo^o 

element network, prim arily by network reduction . On the s p e c if ic  

examples, where the evo lu tion  has been su ccessfu l using c o e f f ic ie n t  

matching he found the methods he had developed, to  be inadequate. 

Obviously, further work i s  necessary to  fln d \var iou s strengths and 

weaknesses o f  the various methods.

4.10 Addition c f  Fac+^rs to ^c]yn?id.als

Standard methods o f  syn th esis  o f  networks which exclude mutual 

inductance,such as th e Bott D uffin  procedure, generate excess fa c to rs, 

th a t i s ,  th e  network polynomial under th ese  conditions i s  rot r e a lis ­

able by th e network with the minimum number o f  nodes, see sec tio n  

4 .1 2 , When the evo lu tion  procedure in  sec tio n  4 ,3  has been 

un su ccessfu l for several d if fe r e n t  s ta r tin g  networks, i t  i s  

l ik e ly  th a t the required s e t  o f  network polynomials are not r e a l i s ­

able \ r i t h .  the minimum number o f  nodes^in a sim ilar  manner to  the  

standard syn th esis procedures. I t  i s  then necessary to  use common 

fa c to rs  in  the network admittances; corresponding extra nodes must 

be added to  the network generating th ese  modified network polynom ials.

Example; fo r  a two^terru.nal network see sec tio n  1 ,4 ,  
a s — — — — — a

m il o

x^Cs-A^)(s-A^) -  -  -  ( s-A^)

where a -  -  -  a and b -  -  b are the c o e f f ic ie n ts  o f  the  n o m il o
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polynomial ^  and resp ectiv e ly  with A^- -  -  A  ̂ and -  -  ®mll

the corresponding roots o f  th ese polynomials. I f  a common factor

is-added ( s  + C) then,

y  t= ^ ^ ) ( s t A g )  (stA^)(:sfC)
( ^^2^ — — — ( sf )( s^C)

a s^ ^ C a  +a + -  -  -  Caor y  = _m______ m m-1_______________ o______^ ^

where (sfC ) i s  the common factor  that has been introduced in to  the 

admittance. For three terminal networks corresponding m odifications 

are generated in  th e ir  admittance parameters. In  CR networks only 

common fa cto rs  in  th e  form (s+  (p i s  real) are perm issible in  order

to  keep the polynomials o f  the form p o sitiv e  real functions. In

LCR networks common factors o f  the form (s^+D)( D wholly resl) and *
2th e form s + Os + D are a lso  perm itted.

Since the m ultiplying constant x i s  obtained ty  puttingo
^ F /A x  ̂ = 0 and using that value makii^ the objective function a 

minimum, see sec tio n  1 .6 , a sim ilar method i s  used to generate su itab le  

values fo r  the excess fa cto rs . To enable th is  to  be accomplished in  

a straightforward manner, i t  i s  b est to find the excess factor in  

e x p lic it  form. This means th at the formulation in  equation 1 ,9  

must be used or the form ulation-in equation 1,10 modified to  

f  = - 1 +  *o 4 .5

f •
where f^^ i s  the modified required network coefficient^  f^^= Cf^^^ki^l 

from equation 4 ,4 , The optimum value o f  the excess factor i s  given  

in  appendix 8 ,6 ,
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4,11 Addition o f  Extra Nodes to  Network

Complementary to^adding^common factors to  the admittance 

parameters o f  a network i s  the addition  o f  extra nodes to  the 

network. There are several methods o f  adding extra nodes to  a 

network,  ̂ .

1 . E xisting network elements can be s p l i t  in  two and the extra 

node in serted  in  such a manner as not to  a lte r  the network 

response, some such equivalents are shown in  f ig ,  4 ,4 , The 

resu ltin g  network can then be checked to  ensure i t  produces 

the required m odifiei network polynomial structure,

2, In  a CR network a u n it capacitance and a conductance equal 

in  value to  the excess factor constant are connected between 

the reference node and the extra node and a further element 

i s  grown from node i  in  the network to  th is  extra node.

This generates an extra factor  o f  the form (sfC ), Since only 

node i  i s  involved i t  can be shown th a t,

^ i l  s" 4 .6

where A is  the polynomial under consideration and Y i s  an

admittance connecting node i  to  the new node M+1, n = 0 i f
V is

Y i s  a conductance and +1, if^ a capacitance. This generates
^  F ^ F ^ Fa vector o f  possib le  additions, ^ ------------   -  Vr---------  '

<3̂ 1 NI+1 ‘̂ aNI+1 m i

the la r g e s t  negative value o f  these i s  chosen.

S im ilarly  in  an LCR network, a u n it capacitance and an

inductance^ the reciprocal o f  the common factor, w ill  generate
2 2 an excess fa c to r ,o f  the form ( s  +D)^ s im ila r ly  for (s +Cs+0) ,

3. In  a CR network, a capacitance i s  grown from node i  to  the

extra node and a conductance from node j  ( j% i)  to the extra

node. I t  i s  shown in  appendix 8 ,7  th a t, from the s e n s it iv ity
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p oin t o f  view , t h is  i s  equ ivalen t to  adding a capacitance from node 

i  to  node j . Node i  to  referen ce node i s  equivalent to  a capacitance

from node i  to  th e  extra  node w ith a conductance from the extra  node 

to  the referen ce node.
_____________________  / C  V Ç  r  X

B1+1 M+1 "  M+1 M+1 "

V A ________________ ^ V A ________________
^ ^ i  K 1 + 1 ^ S l + 1  NI+1 ^N 1+1 NI+1 ^ ^ i  NI+1

4 .7

where NI+1 i s  the extra node.

This l a s t  r e s u lt  enables the methods already developed fo r  growing

elements to be extended to growing nodes without much m odification.

Consider a CR network, having generated the matrix o f  s e n s it iv it ie s

o f each c o e ff ic ie n t  f. to  each C as when growing elem ents, thek i j
follow ing method i s  used to find the values of the capacitance Ĉ  

from node i  and conductance, from node j to the new node NI+1 and 

the corresponding optimum values o f  the m ultiplying constant x  ̂ and 

the common fa c to r , C.

I f  the form ulation given in  equation  4>* 5 i s  used then

I
f  = -1 + ^kr ^o 4 .8

I
where fĵ  ̂ i s  the required co e ffic ie n t  modified by the common factor  

as in  equation 4 .4 , that i s ,

C  = ^kr '  ":&r_1

t
and f, i s  the current value o f  the corresponding c o e ffic ie n t  generated

( W
by the network including the extra node^ Ĉ  and G..
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By equation 8.42

kwhere  ̂ current value o f  c o e ff ic ie n t  andjf^^j^ =

(given by equation 8.37) are in  terms o f  the network before node 

growth. I f  X i s  given i t s  optimum value, then from equation 8.28

giving
^ fk r _ L S r= l)2

" ^ k r-1 '2  

^k
G having i t s  optimum value, given by equation 8.31

G = AZ -  BY 
BX -  AY

where A,B e tc . are as defined in  appendix 8 .6 .

When f^ i s  replaced in  equation 4*^ by i t s  value given by equation 8 .42 , 

the ob jective  function i s  now a function o f and

' °^kr ~ ^kr-1________________12

F = K5 -  7 * ^.10
>  -  ^kr-1_______________ x2
k rt "^i^k-1 * °j^k  * '^ i^ / i jk -1

The values o f  G. and G., for each combination o f  nodes i  and j ,  giving
 ̂  ̂ 46the minimum value o f  F can be found by the method o f  conjugate gradients ,

This i s  simply accomplished since i t  i s  e a #  to find  the gradientsV
^  F . ^  F from equation 4*10^ G and x change correspondingly. 
àC i

Putting tnese vdhes o f Ĝ  and Ĝ  in to  equation 4*10 gives the 

minimum value o f  F for that combination. The combination o f  Ĝ  and Ĝ
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giving the minimm value F i s  then se lec ted . The f in a l stage ox tn is

method i s  sim ilar to that developed by Cutteridge^^ for growing elements.

This method i s  e a s ily  extended to growing nodes which w il l
2 2generate common factors o f  the forms (s +D) or (s +Cs+D)

4*12 Evolution by Network Reduction

A procedure has been developed for network evolution by reduction; 

th is  works from a network r e a lisa tio n  which though generating the 

required se t o f network polynomials, contains many nodes in  excess o f  

the ^minimum*. In p articu lar , the procedure i s  applicable to 2 

terminal LCR networks where the r e a lisa t io n  has been generated by the 

Bott D u ffin ^  or modified Bott Duffin s y n t h e s i s . T h e s e  rea lisa tio n s  

are knovm to generate many common factors in  the network admittance, 

some o f these may be redundant. These redundant common factors  

correspond to nodes which can be removed without impairing the p o ten tia l 

o f the network to generate the required se t  o f  network polynomials.

The excess nodes, o f  course, bear the penalty o f  corresponding extra  

elements.

The procedure developed con sists  o f  several step s, see f ig .  4*5

1. The startin g  network has the topology generated by the Bott 

Duffin or modified Bott Duffin synthesis but with the element 

values a ltered , say, to a l l  1 *s or a l l  10*'s. The, c o e ffic ien ts  

o f th is  network are matched to those o f  th is  network with the 

correct element va lu es.

2. Optimisation i s  applied to the above system using the Levenberg

algorithm, as described in  3 .6  with a lin ea r  search at each 

ite r a tio n  using a quadratic approximation, see section  3 .7 .

3. In general, one or more o f  the network elements are driven to

nearly zero (an open c ircu it)^  see sectio n  4 .7  and/or to a very

large value (a short c ir c u it ) . Ah in f in it e  admittance i s  given
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in  a sim ilar way to  a zero one, see equation 4*3* That i s ,  

Y^Y/ACC 4.11 

This may, and u su a lly  does, lead to the elim ination  o f  one or 

more nodes.

4. By the comparison o f the network polynomials ju st prior to

element removal, with nearly zero elem ents, and a fte r  element

removal, the excess common factors which have been removed by the

optim isation phase can be ascertained . Moreover, th is  process

i s  a ss isted  by comparing these with the required unaugmented

and f u l ly  augmented network polynomials ; th is  removes from

consideration the o r ig in a l factors which must continue to be
o

generated. I t  should be rea lised  that the net\^k polynomials 

generated by the network whose elements are near zero, are 

u su a lly  not very c lose  to those required; the roots o f  a 

polynomial are fa ir ly  se n s it iv e  to the values o f i t s  c o e f f ic ie n ts .  

To.i l lu s t r a te  th is  process consider the fo llow ing example; the 

admittances are in  factored form, with rounded values to aid  

comprehension.

Required admittance i s

, _  4  _ (s ->-2.2Hs-K).14-11.15) 4 .12
.j (s+0.6) (s+ 1 .7 ij2 .6 6 )

The admittance generated by a modified Bott Duffin synthesis  

containing e s se n tia l and redundant common factors i s  

7

C D b C i l U X a J .  C U A U . J l C U . U X I U . C U 1 U  V V i U U l U U  x a c u v j i c  x o

_  ^ _____(s4-2.2)^(s40.67).^(s->0.16)(340.14:^.11 . i s r c s t l . l l j l . 2)
S 7T  “ (8+0.6)43+0.67)^(3+0.16)(.840.14+31.15)Cs+1.1 +j1.2 ) (s+2.2)11

, .,3 (s+1.7+12.66)

s ta r tin g  from a l l  0 .1 s  certain  elements are driven to low values 

by the optim isation process» The ob jective  function becomes quite

small,, approximately 10" . The admittance i s  now
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^  ^  -  ( s + 0 . 5 5 ) ^ ( s + 0 . 1 8 )  ( 8 + 0 . 1 - . 1 1 . 0 )  ( s - K ) . 1 3 ^ . i 1 . 2 3 ) ( s + 0 .9 5 ^ : i 1 .31 ) X
^  ~  • S i T  “  ( s + 0 . 5 5 ) " ( 8 + O . T 7 ) ( s + 0 . 5 7 + j 0 . 5 7 ) ( s + 0 . 1 1 + j 1 . 2 3 ) ( E + 2 . 6 + j 1 . 2 ) X

(s+2.5^.11.16)
(s+ 1 .24+12.63) 4.14

When these elements are ma(ie open c ir c u its  then the admittance 

becomes
^  (s+ 0 .1 -1 .0 )(s -> 0 .1 3 ^ .i1 .2 3 )(s^ .9 5 V i1 .3 )(s+ 2 .5 lli1 .l6 )  ,

~ (s+ 0 .57+10. 57 )(s+ 0 .11+11. 23)(s+2.6+11.2) (s+1.24+12. 63)

Comparison o f  equations 4» 14 and 4*15 diows approximate common
2factors removed o f  (s+ 0 .55) (s+0.17).  Examination o f  equation 4.13  

shows that these common factors are exactly  (s +0.67)^(s+0.1^).

The factors o f equation 4*12 must continue to be present in  th e ir  

corresponding polynomials i f  the process i s  working correctly .

5. Those excess common factors which have been found redundant are 

then removed from the network polynomials o f  the Bott Duffin  

re a lisa tio n  and the reduced network again perturbed to a l l  1 *s 

or a l l  10's and the process repeated u n t i l  so lu tion  i s  obtained.

• I t  should be noted that having a l l  1 *s e tc . for the network 

elements i s  only an appropriate s ta rtin g  point when the element values 

of the re a lisa tio n  have a l l  been normalised • In these

circumstances, i t  i s  found that when sta rtin g  from h i ^  startin g  

values, such as a l l  IQ's,  the redundant elements tend to high va lu es, 

that i s ,  short c ir c u it ,  and that vhen sta rtin g  from low startin g  

values, such as 0.1 's , the redundant elements tend to very small, 

values, that i s ,  open c ir c u its .  Hence as the process' proceeds i t  

Is  a sen sib le  strategy to a lternate between high and low startin g  

values in  each cycle o f the operation so as to encourage the 

appropriate short and open c ir c u its .

I t  i s  d if f ic u lt  when manipulating polynomials to obtain  

sa tis fa c to ry  accuracy; the follow ing methods were used to improve th is .
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1 . P rior to  fin d in g  the fa c to r s  in  the polynom ials, th ese  were 

norm alised by p u ttin g   ̂(m.̂  .j ) = 1 . 0

2 . I t  was found th at the standard subroutines u sin g  the Newton 

Raphson or Bairstow method o ften  require 'm agic' numbers and 

e ith e r  fa i le d  to  ob ta in  the roots or were q u ite  in accu rate .

A polynom ial root fin d in g  procedure described by G arside,
/ o

J a rra tt and Mack was coded and i s  found to  avoid th ese  

d i f f i c u l t i e s .

3 . Double len gth  working i s  used in  a l l  th e m anipulating o f  

polynom ials.

4 . Homerh n estin g  ru le  i s  used fo r  th e eva lu ation  o f  polynom ials, 

and th e m u ltip lica t io n  and d iv is io n  o f  polynom ials i s  carried, 

out from both ends.

4 . 1 3  Comparison with Other Methods o f  Reduction

A method o f  evo lu tion  u sin g  c o e f f ic ie n t  matching to  sy n th esise  

3 term inal RC networks and s ta r tin g  w ith a network generating many 

excess common fa c to r s  and elem ents or excess elem ents has been 

described  by C utteridge.^^ This method i s  very s im ilar  to  th a t  

described  in  se c t io n  4*12 which i s  r e a l ly  an exten sion  o f  the RG 

network ca se . A very e f f e c t iv e  method fo r  reducing com plicated  

eq u iva len t c ir c u i t s ,  working in  the frequency domain, has been
62described  by Spence. This method short c ir c u it s  and open c ir c u its  

each element o f  the equivalent c ir c u it  in  turn and those elem ents 

a lte r in g  the response l e s s  than a sp e c if ie d  to leran ce  are removed. 

This method i s  crude, but i s  sim ple emd works w e ll .  Wright has 

described  a network reduction/grow th method" working in  th e  

frequency domain and s ta r tin g  w ith a network contain ing more elem ents 

than n ecessary  to  achieve the d esired  response. The method used i s
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p r i m a r i l y  i n t e r a c t i v e ,  u s i n g  t h e  e x p e r i e n c e  o f  t h e  d e s i g n e r .  T h e s e  

m e th o d s  h a v e  b e e n  a p p l i e d  t o  s u c h  d i f f e r e n t  s i t u a t i o n s  t h a t  i t  i s  

d i f f i c u l t  t o  com p are t h e  e f f i c a c y  o f  t h e  v a r i o u s  m e th o d s .
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C h a p te r  5 

EXAMPLES OF NETWORK EVOLUTION

5 .1  I n t r o d u c t io n

N etw ork  s y n t h e s i s  b y  e v o l u t i o n  i s  e s s e n t i a l l y  a  m eth o d  o f  t r i a l  

an d  e r r o r  w h ic h  i s  o n l y  p o s s i b l e  b e c a u s e  o f  t h e  a v a i l a b i l i t y  o f  t h e  

m odern  h ig h  s p e e d  c o m p u te r . S y n t h e s i s  b y  e v o l u t i o n  i s  an  am algam  

o f  m eth o d s o f  a n a l y s i s ,  w h ic h  c a n  b e  v e r i f i e d  i n  t h e  u s u a l  m a n n e r , an d  

s e m i - e m p i r i c a l  c r i t e r i a  w h ic h  a r e  b a s e d  o n  a  k n o w le d g e  o f  n e tw o r k  t h e o r y  

an d  e x p e r i e n c e .  T h e s e  s e m i - e m p i r i c a l  c r i t e r i a  c a n n o t  b e  v e r i f i e d  

w it h  c o m p le te  r i g o u r  b u t  m u st b e  j u d g e d  b y  w h e th e r  t h e y  w ork w i t h  

p r a c t i c a l  e x a m p le s .  The w id e r  t h e  r a n g e  o f  p r a c t i c a l  e x a m p le s  w i t h  

w h ic h  t h e  c r i t e r i a  s u c c e s s f u l l y  c o p e s  t h e  m ore l i k e l y  ^  t o  b e  

c o n s id e r e d  b o t h  v a l i d  an d  u s e f u l .  I n  a d d i t i o n ,  i t  m u st b e  show n  t h a t  

i t  i s  p o s s i b l e  t o  e v o l v e  r e a l i s a t i o n s  fro m  d i f f e r e n t  ' r e a s o n a b l e '  

s t a r t i n g  n e t w o r k s .  The r e a l i s a t i o n s  a r e  p a r t i c u l a r l y  i n t e r e s t i n g  

i f  t h e y  a r e  n o t  c a p a b le  o f  b e i n g  g e n e r a t e d  b y  t h e  s t a n d a r d  s y n t h e s i s  

p r o c e d u r e s ,  f o r  e x a m p le ,  n o n - s e r i e s - p a r a l l e l  n e t w o r k s .  T hus t h e  

co m p u ter  m u st b e  u s e d  a s  an  e x p e r im e n t a l  t o o l  t o  t e s t  t h e  c r i t e r i a  

w it h  d i f f e r e n t  e x a m p le s .  The im p le m e n t a t io n  o f  t h e  a lg o r i t h m s  u s e d  

i n  n e tw o r k  e v o l u t i o n  d e p e n d s  t o  som e e x t e n t  o n  t h e  co m p u ter  f a c i l i t i e s  

w h ic h  a r e  a v a i l a b l e .

A c o n s i d e r a b l e  num ber o f  e x a m p le s  o f  s u c c e s s f u l  an d  u n s u c c e s s f u l  

e v o l u t i o n  h a v e  b e e n  p r o d u c e d .  N o t a l l  t h e s e  e x a m p le s  h a v e  b e e n  

p r e s e n t e d  i n  t h i s  c h a p t e r .  The e x a m p le s  p r e s e n t e d  h a v e  b e e n  s e l e c t e d  

s o  a s  t o  i l l u s t r a t e  t h e  p o t e n t i a l i t i e s  and  l i m i t a t i o n s  o f  n e tw o r k  

e v o l u t i o n .  A k e y  t o  t h e  f i g u r e s  c o r r e s p o n d in g  t o  e a c h  ex a m p le  i s  

g i v e n  i n  f i g .  5 . 1 .
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O b j e c t i v e  F u n c t io n ,  F , g i v e n ' b y  a d j a c e n t  

n e tw o r k  s t r u c t u r e  w i t h  e le m e n t  v a l u e s  

below i n c l u d i n g  a n y  e l e m e n t s  e l i m i n a t e d  
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E le m e n t  v a l u e s

O b j e c t i v e  F u n c t io n ,  F a f t e r  o p t i m i s a t i o n  
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A bove p a t t e r n  r e p e a t e d

n i l  E le m e n t  V a lu e s  i n  S ie m e n s  

F a r a d s  o r  R e c ip r o c a l  H en ry s

The O b j e c t i v e  f u n c t i o n ,  F i s  t h e  sum o f  t h e  A

r e s i d u a l s ,  s e e  s e c t i o n s  1 . 6  and 3 . 3

K ey t o  t h e  F ig u r e s  I l l u s t r a t i n g  e a c h  E xam p le  

f i g .  5.1
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5 . 2  C om p uter F a c i l i t i e s  A v a i l a b l e

A p a r t  fro m  som e e a r l y  w ork  u s i n g  t h e  p o s t a l  f a c i l i t i e s  o f  t h e  

H a r w e l l  A t l a s  cOid t h e  o c c a s i o n a l  w e e k e n d  u s i n g  t h e  U n i v e r s i t y  o f  

L e i c e s t e r  E l l i o t t  4 1 3 0  c o m p u t e r ,  'h a n d s  o n * ,  t h e  m a j o r i t y  o f  t h e  

r e s u l t s  d e s c r i b e d  w e r e  o b t a i n e d  o n  t h e  E l l i o t t  4 1 3 0  c o m p u te r  o f  t h e  

E n g i n e e r in g  D e p a r tm e n t ,  U n i v e r s i t y  o f  C a m b r id g e . T h is  c o m p u te r  

f a c i l i t y  w a s u s e d  i n  t h e  b a t c h  m o d e , l i m i t e d  t o  t e n  m in u t e s  a  w eek  

a n d  w i t h  n o d i s c  s t o r a g e .  To d e v e l o p  a n d  'p r o v e *  t h e  e m p i r i c a l  

c r i t e r i a  u s e d  i n  n e tw o r k  e v o l u t i o n  r e q u i r e s  a  c o n s i d e r a b l e  am ou n t  

o f  c o m p u te r  t i m e ,  s o  w i t h o u t  t h e s e  l i m i t e d  f a c i l i t i e s  t h e  p r o g r e s s  

i n  d e v e l o p i n g  n e tw o r k  e v o l u t i o n  w o u ld  h a v e  b e e n  v e r y  s l o w .

T he l i m i t a t i o n s  im p o s e d  b y  t h i s  s i t u a t i o n  l e d  t o  t h e  f o l l o w i n g .

1 •  T hough a  c o m p r e h e n s iv e  c o m p u te r  p ro g ra m  h a s  b e e n  d e v e lo p e d  w h ic h  

w i l l  c a r r y  o u t  t h e  w h o le  e v o l u t i o n a r y  p r o c e s s ,  i t  t o o k  t o o  l o n g  

t o  r e a d  i n ,  c o m p i le  a n d  r u n  t o  b e  u s e f u l .  F o r  t h i s  r e a s o n ,  

t h e  r e s u l t s  w e r e  o b t a i n e d  b y  s p l i t t i n g  t h e  p ro g ra m  i n t o  tw o  

p h a s e s ,  o p t i m i s a t i o n - r é d u c t i o n  an d  g r o w t h .

2 .  Ko i n t e r a c t i o n  f a c i l i t i e s  w e r e  a v a i l a b l e  a n d  t h e  e x p e r i e n c e  o f  

t h e  u s e r  c o u ld  n o t  b e  d i r e c t l y  e m p lo y e d . T h ou gh  u n i v e r s a l  

c r i t e r i a  h a v e  b e e n  d e v e lo p e d  f o r  s u c h  t h i n g s  a s  a  m inim um , . 

r e m o v a l  o f  e l e m e n t s ,  e t c .  t h e s e  a r e  n o t  c o m p l e t e l y  s a t i s f a c t o r y  

o v e r  t h e  w h o le  r a n g e  o f  e x a m p le s ,  t h a t  i s ,  4 - 1 0  n o d e s ,  5 - 1 6  

e l e m e n t s .

3 .  The num b er o f  e x a m p le s  w h ic h  c o u ld  b e  t e s t e d  i n  a  r e a s o n a b l e  t im e  

w as l i m i t e d .  , '

5 . 3  C om p u ter  S p e c i f i c a t i o n  ^

The E l l i o t t  (IG L ) 4 1 3 0  c o m p u te r  h a s  2  m a g n e t i c  d i s c  d r i v e s ,

4  t a p e  d e c k s ,  l i n e  p r i n t e r ,  t a p e  r e a d e r  a n d  p u n c h  an d  g r a p h  p l o t t e r .
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I t  h a s  a  6 5 . 5k  w o rd  s t o r e  w i t h  a  ^ s  a c c e s s  t i m e .

The A l g o l  60  c o m p i le r  p r o v id e d  i s  b e t t e r  t h a n  t h e  F o r t r a n  IV  

c o m p i le r  a n d  s i n c e  t h e  a u t h o r  p r e f e r s  t o  u s e  A l g o l ,  A l g o l  w as t h e  

c o m p u te r  la n g u a g e  u s e d .  T he p r o g r a m s  u s e d  a  s e r i e s  o f  A l g o l  

c o m p i le r s  fro m  NLI9  t o  N L 24 , t h e s e  g i v e  m uch t h e  sam e e f f i c i e n c y  

a t  c o m p i l i n g  A l g o l  i n t o  m a c h in e  c o d e .  T h i s  c o m p u te r  i s  a  m edium  

s p e e d  m a c h in e  t a k i n g  a t  m a c h in e  c o d e  l e v e l ,  70jls ,  J+Qjls an d  1 5  

f o r  a  f l o a t i n g  p o i n t  d i v i s i o n ,  m u l t i p l i c a t i o n  a n d  a d d i t i o n ,  

r e s p e c t i v e l y .  T h u s w h e r e v e r  p o s s i b l e  i n  t h e  p r o g r a m s a  s e r i e s  o f  

d i v i s i o n s  b y  t h e  sam e nu m b er i s  p e r fo r m e d  b y  r e c i p r o c a t i o n  t h e n  

m u l t i p l y i n g  t h e  n u m b ers t o  b e  d i v i d e d  b y  t h e  r e c i p r o c a l .  S i n c e  

a n  A l g o l  c o m p i le r  e n s u r e s  t h a t  m any r u n n in g  c h e c k s  a r e  m ade a s  

c o m p u t a t io n  p r o c e e d s ,  e . g .  w h e t h e r  a r r a y s  a r e  w i t h i n  b o u n d s , i t  

t a k e s  up  t o  t w i c e  a s  l o n g  t o  r u n  a  p ro g ra m  w r i t t e n  i n  A l g o l ,  u s i n g  

t h e s e  c o m p i l e r s ,  a s  t h e  c o r r e s p o n d in g  p ro g ra m  w r i t t e n  i n  F o r t r a n .

The w ord  l e n g t h  o f  t h e  4 1 3 0  c o m p u te r  i s  24  b i t s .  I t  u s e s  o n e

w ord  t o  s t o r e  a n  i n t e g e r  s o  t h e  maximum i n t e g e r  t h a t  ca n  b e  s t o r e d  i s  

+ 23-  2 - 1 ,  s i n c e  o n e  b i t  i s  u s e d  f o r  s i g n  i n f o r m a t i o n ,  t h i s  i s  a p p r o x ­

i m a t e l y  8 x 1 0 ^ .  I t  u s e s  tw o  w o r d s  t o  s t o r e  a  r e a l  f l o a t i n g  p o i n t  

num ber i n  s i n g l e  l e n g t h ,  u s i n g  3 9  b i t s  f o r  t h e  m a n t i s s a  an d  9  b i t s  

f o r  t h e  e x p o n e n t .  H en ce  t h e  l a r g e s t  num ber t h a t  c a n  b e  s t o r e d  i s  

7 .8 x 1 0 ^ ^  a n d  t h e  s m a l l e s t  7 . 8 x 1 0  T he l e n g t h  o f  t h e  m a n t i s s a

b e f o r e  r o u n d - o f f  i s  a p p r o x im a t e ly  1 2  d e c im a l  p l a c e s .  T he r e g i s t e r s  

i n  t h e  c e n t r a l  p r o c e s s i n g  u n i t  h a v e  a  c a p a c i t y  o f  a p p r o x im a t e ly  1 5  

d e c im a l  p l a c e s  b e f o r e  r o u n d - o f f  o c c u r s .

T he t i m e s  q u o t e d  a r e  t h e  s im p le  r u n - t i m e s  o f  t h e  e v o l u t i o n a r y  

p r o c e s s  an d  i n c l u d e  t h e  s u b s t a n t i a l  am oun t o f  t im e  r e q u i r e d  f o r  t h e  

p r i n t - o u t  o f  t h e  c u r r e n t  s t a t e  o f  c o n v e r g e n c e  an d  o t h e r  u s e f u l  

i n f o r m a t i o n .
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5 . 4  I m p le m e n t a t io n  o f  t h e  E v o l u t i o n  A lg o r i t h m s

The p r o c e s s  o f  s y n t h e s i s  b y  n e tw o r k  e v o l u t i o n  u s i n g  c o e f f i c i e n t  

m a tc h in g  d e p e n d s  e v e n  m ore o n  a  f a s t  a c c u r a t e  a n a l y s i s  s e c t i o n  t h a n  

t h e  s t a n d a r d  n e tw o r k  s y n t h e s i s  p r o c e d u r e s .^  T he r e s u l t s  o b t a i n e d  

fr o m  e x a m in in g  t h e  s p e e d ,  f l e x i b i l i t y  an d  a c c u r a c y  o f  t h e  a n a l y s i s

s e c t i o n  ( s e e  C h a p te r  2} d e v e l o p e d  b y  t h e  a u t h o r  i n  c o n j u n c t i o n  w i t h
V 8  33  18O .P .D . C u t t e r i d g e  h a v e  b e e n  p u b l i s h e d  ' * o r  a r e  t o  b e  p u b l i s h e d .

So a s  t o  s a v e  s p a c e  t h e y  a r e  n o t  p r e s e n t e d  h e r e .  A g e n e r a l  m e th o d
33o f  inputing data to  the a n a ly s is  s ec tio n  has a lso  been described  

by the author elsew here. In Chapters 2 ,3 ,4  and 8 , the author has 

attempted to d escribe algorithm s and c r it e r ia  used in  the a n a ly s is ,  

op tim isation  and growth-reduction sec tio n s  in  such d e t a i l  th a t they  

should be e a s i ly  implemented by anybody, w ith a l i t t l e  programming 

experience, in ter e sted  in  doing so .

5 . 5  An E xam p le  o f  N etw o rk  E v o l u t i o n  w i t h o u t  C o n s t r a i n t s  o n  V a lu e s  

o f  N etw o rk  E le m e n ts

T h is  3  t e r m i n a l  CR n e tw o r k  ( s e e  f i g .  5 . 2 )  h a s  t o  g e n e r a t e  t h e  

n e tw o r k  p o ly n o m i a l s

=  4 .0 s ^ + 8 .0 s ^ + 3 .5 s + 0 .2 5  

=  4 . 0 s ^ + 4 .0 s ^+1 .O s + 0 .2 5  

= 4 .0 s ^ + 8 s ^ + 3 .5 s + 0 .2 5  

^ 1 2 2  ~  4 . 0 s ^ + 5 . 0 s + 1  . 0

These polynom ials can be r e a lise d  by a p assive  Twin-T network, 

contain ing 4 nodes in  add ition  to the referen ce node, and 3 r e s is to r s  

and 3 ca p a c ito rs. In t h is  example, an a lte r n a tiv e  stra teg y  to  th a t  

described in  sec tio n  4 . 5  i s  used. A ll tne ad d itio n a l components 

which can generate the c o e f f ic ie n ts  o f  th ese  polynom ials not produced 

by the i n i t i a l  ladder network are added. The op tim isation  algorithm
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lÜ lT I a L  kbTwCRK

^  2

0 ï lï
1̂ = ^2 = = 1 .6

Gy = Gg = 0 .6 3

Add G , r6 an d

S  S  t o , g e n e r a t e  ^ ^ ^ ( O ) ,  ^ 1 ^ ( 2 )

I—Ih
Hh Mh

1

0

r 7E l im in a t e

1

0

IF = 6 . 1 6  10'

G -  G =  G -  G =  G =  G, =  1 . 6  
1 2 4 3 D

Ĝ = = Ĝ  = 0 .6 3

F = 4 .9 9  1 0 -10

-16F =  5 . 0  1 0

= 2 . 5  Gg = 0 .623

= 2 .5 ' Ĝ  = - 2.5

G. = 1.471 Gg = 0 .529

G = 0. 25

m u l t i p l y i n g  f a c t o r  =  U.//79

S e r i e s  G , P a r a l l e l  R L a d d er  t o  A c t i v e  N etw o rk

f ig .  5 .2
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i s  then applied to  the i n i t i a l  network w ithout any transform ations 

being employed to  keep the values o f  the network elements p o s it iv e ,  

th a t i s ,  p a ss iv e . Under such circum stances and with such a sim ple 

network the f in a l  network i s  rap id ly  achieved; th is  contains  

negative component}.

This example i l lu s t r a t e s  four important p o in ts .

1. D ifferen t s tr a te g ie s  to  th a t employed in  sec tio n  4*5 can be 

used to  produce networks with the correct network stru ctu re .

2. That the unconstrained problem i s  very easy to  op tim ise .

3 . That i f  p assive  r e a lis a t io n s  are to  be acuieved a transform ation  

must be employed to  constrain  the network elem ents to  be 

p o s it iv e  d esp ite  the extra d i f f i c u l t y  i t  produces in  

op tim isation .

4 . That the network evo lu tion  can be applied to produce a c tiv e  

r e a l is a t io n s , i f  d es ired , and th ese  are easy to  ach ieve.

5 .6  Some Examples o f  Ladder Networks Evolving in to  Twin-T Networks 

These 3 term inal CR networks have to r e a l is e  two d if fe r e n t  s e t s  

o f  network polynom ials. Those for  an ‘untuned’ Twin-T see f i g s .

5 .3  and 5*5 and for  a ‘tuned’ Twin-T, see f i g s .  5 .4  and 5 .6 .

These s e ts  o f  polynom ials are fo r  the untuned case ,

=  2 2 . 0 s ^ + 3 2 . 1 0 s ^ + 4 0 8 v 0 s + 1 0 5 . 0  

2 2 . 0 s ^ + 2 4 . 0 s ^ + 1 0 5 . 0 s + 1 0 5 . 0  

A  p p  = 22.0s^+222.0s^+306.0s+105.0

A l l 22 33.0s^+69.0s+36.0

and for the tuned case ,
3 2

= S.Os +20.Os +10.08+1.0

y \^ p  = S.0s^+4.0s^+2.0s+1.0

^ 2 2 ~  8'0s^+20.0s^+10.08+1.0

A  1122 “ 8.08^^8.08+2.0
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I K I T I A L  NETWORK

1 II— M l — f — I
c l  0^ X  c

0 o ............ -1 .1 ______°

-Û 2
= Cg = G = 2.74  

G, = Gg = 1 .37

Add G, to generate ^

0 0 1'-

i l  f------1|— ^ = Cg = G = 2 .74

S  = °2  = S  = 1 -37

Add G to  generate (O) i t  a lso  generates A ,j ( O )

•à- â -

T
,  M — j H l — M j l -

G-i

2 M

G I

Add G = 0 .13

see neift page

F = 9.31

-  ^2 ~ ^3 ~ ^"74

S  = ^2 = S
F = 2 .03

G4  = 1-37

0 .1 4Add G

1

0

F = 1.96

Ĝ  = 3 .8 2  Gg = S .98 G = 2.25

G. = 0 .1 7  G_ = 3 .73  G_ = 1 .70  G. = 0 .3 4

F = 1.56

Series C, P a ra lle l R Ladder to Tuned Twin-T

f ig .  5 .3
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from previous page 

add G = 0 .13

1

0

F = 1 ,48

= 2 .76  0^ = 2.35 G 

= 0.12  Gg = 4.77 G_

Remove

1

0

F = 4 .9 2  10 

_ c in -4

-7

2 .44  C, = 1.07  
4

1 .39  Ĝ  = 0 .46  
4

2 F = 6 .3  1 0 " ^

C = 2 .00  C = 2 . 0 0  C = 4 .00  
J  4 3

Gg = 2.00 Ĝ  = 1.00 Ĝ  = 1.00

FIRaL NETWORK

S er ies  G, P a r a lle l  R Ladder to  Tuned Twin-T 

f i g .  5 .3
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I N I T I A L  l^ETwORK

1 o-

1

0 ^ = 0 ^ =  2.8
= G2 = = 4-73

Add C

1

0

= 0 ^  = 0 ^ =  2.8  

S  “ ^2 " S  “ 4*73

Add G
4 to  generate *̂ 2̂ ( 2 ) ,  (3) i t  a lso  generates

1

00
0

F = 15.88

2 0 = G = =; 0 = 2 .8
1 J 4

'  ^2 ~ ^3 ” 4*73 

F = 3.23

1

GG

F = 2.77

S  0-15 Gg = 9.07 G. 5.17  G, = 0.51  
4

S  = 4.55 G2 = 4.65 G = 5.67 

F = 0.183

Add Ĝ  f  0 .08

see next page ‘ \

S er ies  R, P a r a lle l G Ladder to  Untuned Twin-T

■ f i g .  5.4



-  98 -

from previous page 

Add G = 0 .08

r

0.175

1 = 0.055 G,

0
F = 1.67 10'

Remove

4

1

0

FINAL NETWORK

-202 F -  6 .3  10

C_ = 11.00 G_ = 1.00 C, = 2.00iC 3 4

G, -  7 .0 0  G, = 5.00 Ĝ  = 3 .00  
3 4 P

Series R, P a ra lle l G Ladder to Untuned Twin-T

f ig .  5 .4

\, :



-  99 -

l ü I T l A L  NETWORK

1 o ~ ï z y
G.

T "O» ■ { I—'

S - L “,

0 ü-

0 ^ = 0 ^  = 2 .74

=G^ = Ĝ  = 1.37

Add to  ^ e i i e r b t te '^ ^ ^ ^  ) »

1

C

= 0 ^  = 0^ = 2 .74  

= ^2 = G. = 1.37

Add C to  
4 1

g en era te -^  2 ( 2) ,  (3) i t  a lso  generates

1

0

Add G 0.072

1

00

F = 9.31

— G 2 — Ĝ  = Ĝ  = 2.7<f

Ĝ = Ĝ  = Ĝ  = 1 .37 

F = 2.G?

Add Ĝ  = p .084

F = 1 .9 7

S  0-37 C2 = 7. 43 G

Ĝ = 1.90 G2 = 1.48 G 

F = 1 .56

3 .3 3  G, = 0.65  
4

1.13

see next page

Series R, P a ra lle l G Ladder to Tuned Twin-T
' f ig .  5.5
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from previous page

Add'G  ̂ = 0 .0 8 4

cm

F = 1 . 4,7

C,| = 0 .23 Cg = 9.45 Cg = 2.81 C = 0.92  

= 1 .40 Gg = 1.15 Ĝ  = 1 .22  G = 0 .53

F = 6 .7  10'-10

Remove = 2 .6  10”  ̂ G = 2 .5  10“  ̂ G = 7 .3  10~^

-II'
-20

I
I

F = 6 .3  10

C = 4 .0 0  G = 2 .00  C = 2.00  
1 3 4

G_ = 1.00 G, = 1.00 Ĝ  = 2.00 3 4 5

FIÎ îL ÜETWOBK

Series R, P a ra lle l G Ladder to Tuned Twin-T

f ig .  5. 5
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I K I T I A L  KETWORK

1

0

Cl = ^2 ~ ^3 “ 2.:
= Gg = 4 .73

Add G, i
1

0

to  generate Aj 2

= 0^ = = 2.8

1̂ = ^2 = Gj = 4 .73

x’idd ^ to generate A j 2 (̂  )> (O), i t  a lso  generates A ^ (o )

1

0

F = 17.53

S  " ^2 " S  ■ ^4 "
F = 6 .5 2

Add C = 
4

0.052

1

0

F =

C. =

6 .4 4  

5 .2  0,
g] = 6.81 Gg 

? = 5.84

2 .06  C = 2.87
15.76 = 3 .68  G, = 1 .7 4

J) 4

= I  0.,Add 0 = I 0.061

see next page

S eries C, P a ra lle l R Ladder to Untuned Tvin-T
f ig .  5 .6
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from previous page

Add G = 0.G61

1

0  o*

3.91 10"GGRemove

a

1

0

F = 5.83

C. = 3 .88  C„ = 2.19 C = 3 .20  C, = 0.91
\ ti J

G.̂  = 0 .57  Gg = 16.58 Ĝ  = 3 .60  Ĝ  = 2 .00

F = 8 .17  10

o .^-10

-10

,-6

-20F = 6 .3  10

G„ = 2.00 G. = 11.00  
i  4

Gg = 2.00 Gg = 5.00

=  1.00
5

G, = 7 .00  
4

F inal Network

Series G, P a ra lle l R Ladder to Untuned Twin-T

f i g .  5 .6
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The evolu tion  algorithm  which i s  used i s  ex a ctly  as described  

in  Chapter A*

- These r e a lisa t io n s  can, o f  course, be syn th esised  by the standard  

metnod. They are included because they i l lu s t r a t e  the fo llow in g  

p o in ts .

1. Ladder networks are used because i t  req u ires l i t t l e  

im agination to  generate a simple s ta r t in g  network with the  

required number o f  nodes, see sec tio n  4*4« , , ,

2. Convergence from both s e r ie s  C, p a r a lle l  R and s e r ie s  R, 

p a r a lle l  C ladders i s  obtained , with very sim ila r  r e s u lt s ,  

to  both tuned and untuned Twin-T stru c tu re .

3. In each, the reduction  o f  the o b jec tiv e  fu n ction  i s  monotonie 

and no elem ents are grown to  be la te r  e lim in ated , th is  would 

suggest a t le a s t  for  such simple exam ples, th at the stra teg y  

employed i s  very e f f e c t iv e  w ith l i t t l e  wasted e f fo r t .

4 . Each o f  th ese  examples took approxim ately ten  minutes to  

evolve,

5 .7  Two Examples o f  Evolution o f  a N o n -S er ies-P a ra lle l R ea lisa tio n

The two examples o f  n o n -se r ie s -p a r a lle l CR network 3 term inal
\ '

r e a lisa t io n s  are shown in  f i g .  5 .7  and 5*8. They are r e a lisa t io n s  

o f  the fo llow in g  s e t  o f  network polynom ials.

^11 = ^ 2 2  =
=  ( s + 1 ) ( 3 s 4 i . U s ^ + 1 9 7 . 1 7 6 s + 7 7 . 6 1 6 )

■1122A 1100 = (s+1 )(s^ -t0 .51s+0.00^8)12x5.3016
' \

These network polynom ials are th ose o f  an example published by 

Fialkow^^, who showed th a t they are incapable o f  being r e a lise d  by
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Ĝ  = Ĝ  = = 0.325

Add C^, Ĝ  to generate ^ ^ ^ (4 )

F = 8 .9  10^

2 1̂ = ^2 = Gj = = Ĝ  = = Cy = 0.451

G C C1 2 3

Ĝ = Ĝ  = Ĝ  = Ĝ  = 0.325

F = 7 .2  10

Eliminate G,

Add G = 0 . 0035 , Ĝ  = 0^0033 
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ses next page
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e lim in ate  =

Add = 0.0134

 ̂ 10"' ,̂ G, = 
4

, G. = 0.0138

F = 7.13 10

0̂  = 2.27 Cg = 0 .6 6  G = 2 .2

G  ̂ = 4 .8  10”  ̂ Ĝ  = 0 .018 Ĝ  = 0.021

Ĝ = 0 . 0 3  Ĝ  = 1 .56  G = 1 . 6 4

G, = 0 ,026 G. = V . 0 0 3 5  G, = 0.00334 3 o
F = 3 .805

a o

oa -

0

F = 2. 649

= 8 . 4 3  Cg = 3 .29  C = 1.46  

2 C = 0 .0022 = 0 .0022

Ĝ = 0.056 Gg = 1.43 G = 1.31

Ĝ  = 0.011 G, = 0.068  5 6

F = 1.18 10-2

Add Cg = 5 . 3  ■0"^ Gg = 4 .4  10“^

a
-2F = 1 . 1 4  10

O C, ■= 0.0015 c„ = 0.0015

-6
2.8 lO""̂  G„ l: =  7 .8  10Elim inate G 7 10

see next page
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R ea lisa tio n
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s e e  l a s t  p a g e

1

0

- 6F = 4 . 2  10

= $.3016 Gg = 20 .0  G = 0.597

G, = 0.0015 G = 0.0015  
4 i

Gg = 2.256 = 0 .0 7  Ĝ  = 0 .07

Gg Ĝ  = 0 .004  Gg = 0 .1392 G = 0.3948

F = 8,1 10'-16

R e a r r a n g in g  

t h e  fo rm  g i v

n e tw o r k  i n t o  

an b y  F ia lk o u

F IR ag  1'jFTWORK

An E xam p le  o f  t h e  E v o l u t i o n  o f  a  N o n - S e r i e s - P a r a l l e l  R e a l i s a t i o n  

f i g .  5 . 7
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I K I T I A L  NETWORK

0— C 3 — f

°2

V

Add G, to  
4

generate )*

= 0.45

Gy = G2 = Gj = G, =- 0 .325

1 € D

c c G21

2

1̂ ~ ^2 ~ ^3 “ ^4 ~ 0.45

Ĝ “ ^2 “ ^3 ” ^4 ” 0'32$

Add toi generate 

i t  also generates
A |2 ( 2 ) ,  A ^ ^ (4)
A i 2 (3 ), A ^2(4)

1

G G G1 2

Add Ĝ  = 0 .66

considering ^ 1 1 2 2
fix ed  components

= Cj = 0 .4 5  

= G = 0 .325

2 F = 5 .25  10^
= c ,  = 0 . 4 5

Gg = G_ = 0.325

F = 8 .38  10^

see  next page

An Example o f  the Evolution o f  a E o n -S er ie s-P a ra lle l 

R ea lisa tio n  

f i g .  5 .8
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—  0.66
0

f ix e d  components 

= Ĝ  = 0.45

G. = G, = 0.325
I 4  P

? =6.04  10
 ̂ = 8 .0  Gg = 0 .05  G = 0 .05

Gg = 0 .3 4  G_ = 0 .15  G = 0 .6 6  

F = 2 .3 4  10^

Add Ĝ  = 0 .07 considering ^ 1 1 2 2

fix e d  components

1

4

O

A d d  G^ =  b 1 . 4  10-3

1

= 0.86 10"^Add G,

G = 0.4> Ĝ  = 0 .3 2 5  

F = 1 .36  10^

Cl = 15 Gg = 4 .35  

G = 0 .4 7  G = 0 .45  Ĉ  = 0 .07  

Gg = 1 .89  Ĝ  = 21 .4  Ĝ  = 0 .325

G„ = 21.5  5
F = 7 . 4 6

F = 7 . 4b

 ̂ =  1 7 . b ' 2 = >2.0 G = U.OO48

^ =  1 4 .9 ^b = 0.001

2 = 49-2 ^3 = 6 .3 3  G, = 1 .25  
4

= 0 .09 % = 1 .4  10"^

F = 6 .4 9

see  next page

An Example of' the Evolution o f  a E o n -S er ic s-P a ra ile l R ea lisa tio n

f ig .  5.8
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Add = 0.86

1 C±}

.-7Elim inate
A d d  G, 0.021

-8Elim inate

Eliminât* 
= 10””

= 1.5  10-6

Considering g, ^  2 2 ’  ^11 ’ 

no fix ed  elem ents

F = 2.76 10'

= 1 5 .4  = 8.1 G = 10.8

G, = 0 .4 5  G = 163.9
4 2

G. = 7 X 10”3 G_ = 8 X 10”4D l
G, = 0 .325  G„ = 6 . 3 3  G. = 7 3 .8

1 .2, 3
G = 0 .96  Gj = 0 .79  Ĝ  = 9 .4 9  

F = 4 .3 3  10^

22

F = 3}76 10^

C.| = 1 4 .8  Cg = 12 .6  0 = 9 . 9 4  

= 0 . 0 1 4  = 0 .0039  Ĉ  = 4 5 . 4

G., = 0 .0 4 6  Gg = 18.9  G = 98 .9

G, = 0 .1 2  Ĝ  = 0 .17  G, = 0.0214 2 0

F = 1 . 3  10-1

1

F = 1.1 10“^

2 Ĝ  = 0 .63  Ĝ  = 23.1 G^-= 0 .0015

G -  0 .0015  Ĝ  = 9 7 .5

G., = 2.3  10”4 Gg = 0.55 

= 4 2 .7  G = 0 .072

G- = 0.11 G, = 0 .0132 D
Gy = 0.071 Gg = 0 . 0 4  

F = 6 .6  10“ ^
see next, page

An Example o f the Evolution o f  a K o n -S e r ie s - la r a lle l R ea lisa tio n

f ig .  5.8
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E lim inate G. = 10-7

= 1.5  10-6

1

1

0

F = 2.2 10“^

= 0.6  0  ̂ = 24.8

Ç, = 0 .0015  = 0 .0015

06 = 97 .5

0 = ^8.0 G, = 0.01 
 ̂ 4

G = 0 .1 3  Ĝ  = 0 .07  

Ĝ  = 0 .007 Gg = 0 .0 6

F  = 1 .36  10—6

FIKAL ÜETÜCRK

An Example o f  the Evolutioh o f  a E o n -S e r ie s -Ia r a lle l Realisfcion

f i g .  5 .8
\,
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a s e r ie s - p a r a l le l  structure because the b a sic  polynomial o f

contains a negative c o e f f ic ie n t .  Because o f  th is  negative

c o e f f ic ie n t  r e a lis a t io n  i s  on ly  p o ss ib le  i f  a common fa c to r  i s

introduced. These examples take the common fa c to r  o f  (s+ 1 ),

the same as th at used by Fiallcow. Otner r e a lis a t io n s  have
37recen tly  been published usin g  both t h is  value

and a lte r n a tiv e  values for the common f a c t o r  (obtcdned by tak ing

th is  as an a d d itio n a l variab l^ . These r e a lis a t io n s  are obtained
Cl

using the same method o f  a n a ly s is  an d jsim ilar method o f network

evo lu tion  using c o e f f ic ie n t  matching. The method o f  network

evo lu tion  d if fe r s  in  sev era l important d e t a i l s ,  the princip^^l one
58being the use o f a d if fe r e n t  element growth algorithm .

These two r e a lisa t io n s  are derived from the same i n i t i a l  

network but employ d if fe r e n t  s tr a te g ie s  in  the evolu tionary p rocess. 

In the f i r s t  example the correct network stru ctu re  i s  found by the  

same method as described in  sec tio n  4 . 5  but a llow in g a l l  the  

connections which make tne relevan t c o e f f ic ie n t  non-zero except 

those between external nodes. The growth algorithm  used i s  th at  

described in  sec tio n  4-.8 with two elem ents added each c y c le . This 

evolutionary process produces the sa^e r e a lis a t io n  as th at given  

by Fialkow. This example shows cer ta in  fea tu res:

1 . Extra elements are grown both in  ob ta in in g  the correct

network structure and in  the growth phase o f  each cy cle  so 

as to  increase the f l e x i b i l i t y  o f  the evo lu tionary  p rocess.

( I t  i s  sim pler to e lim in ate  elem ents than to  grow them).

This leads to greater changes in  the network structure during 

the evolutionary p rocess, elem ents are e lim in ated , e ith e r  one or 

two at a time throughout the process not near the end as w ith  

the other example.
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2, The greater number o f  network elem ents makes op tim isation  

more d i f f i c u l t .  Convergence in  the op tim isation  phase i s  

slow but steady requiring many ite r a t io n s ;  each o f  which are 

slower because o f  the greater number o f  v a r ia b le s . This 

o f f s e t s  the gain achieved by growing excess elem ents.

In the second example, the correct network structure was 

found ex a ctly  as sta ted  in  sec tio n  4 . 5 . To reduce the number o f  

v a r ia b les  and equations considered in  the o p tim isa tion  phase to  

a minimum; during the f i r s t  twv cy c le s  on ly  th e network poly­

nomials ^ ^ 2  ^ 1122 considered togeth er  w ith those network

elem ents connected s o le ly  to  the in te r n a l and referen ce nodes; 

elem ents connected to  nodes 1 and 2 are f ix e d  in  va lu e . For the  

next two cy cles  the network polynom ials

considered with only  those elem ents connected to  node 1 f ix e d  in  

va lu e. Only 1 element i s  grown in  each o f  tn ese  4  c y c le s .

Subsequent evo lu tion  i s  ex a c tly  as described in  sec tio n  4 . 8 .

This example demonstrates the fo llow in g  fe a tu r e s .

1• Much more rapid op tim isation  in  the i n i t i a l  s tages due to  the 

reduction o f  number o f  v a r ia b les  and equations.

2 . Convergence i s  now non-monotonic with the f ix e d  network 

elem ents restra in in g  changes in  the network. Their in trod u ction  

as v a r iab les causes a large  in crease  in  the o b jec tiv e  fu n ctio n .

3 . F inal convergence i s  achieved mucn more ra p id ly , 20 minutes 

compared with 40 minutes fo r  the f i r s t  example.

4 . The f in a l  network i s  a q u a s i-r e a lis a t io n , th a t i s ,  good enough

fo r  engineering purposes with each c o e f f ic ie n t  being accurate

to  le s s  tnan u.1%. (To achieve t h is  components must have 
bfttcv

to leran ces ' \ than u .01% or s o ) .



-  113 -

5. D ifferen t s tr a te g ie s  each have th e ir  v ir tu e s  and can lead  to  

d if ie r e n t  r e a lis a t io n s .

$ . 8  An E xam p le  o f  F a i l u r e  i n  N e tw o rk  E v o l u t i o n

This example i s  shown in  f i g .  5 .9 ;  i t  i s  an attempt to  r e a lis e  

a se t  o f  network fun ction s given by Lucal.^^ These are the  

network polynom ials.

= 3 6 s ‘̂ +533s^+l5?2s^+1l83s+36 

A -|2 “ 36(s^+1)(s^+s+l) 

^ 2 2  =  6 ( 6 s '^ + 3 ^ 3 s ^ + 1 0 9 2 s ^ + 7 7 3 s + 6 )  

A ^122 = 36(s+1) (s+2)(s+ 3)

Several CR networks r e a lis in g  t h is  s e t  o f  polynom ials have been 

published^^*^^; the sim plest^^ contain ing 7 nodes p lus referen ce  

node and 7 capacitors and 6 r e s is t o r s .  This r e a lis a t io n  generates 

the s e t  o f  polynom ials with two common fa c to r s . The number o f  

nodes i s  two more than the minimum number o f  nodes capable o f  

r e a lis in g  the order o f  A

The i n i t i a l  network generates the correct polynomial stru ctu re . 

The growth algorithm employed i s  e x a c tly  as sta ted  in  sec tio n  4»8.

The fo llow in g  considerations a r ise  from t h is  example.

1 . This i s  one o f  sev era l attem pts to  produce a r e a lis a t io n  

or quasi r e a lisa t io n  o f  th is  s e t  o f  polynom ials D ifferen t  

i n i t i a l  networks have been used , s e r ie s  R, p a r a lle l  C ladd er, 

s e r ie s  C, p a r a lle l  R ladder. D ifferen t evolu tionary  

s tr a te g ie s , as described in  sec tio n  5 .7 , have been tr ie d  

on th ese  networks. Each attempt ends w ith much the same 

value o f  the o b jec tiv e  fu n ction  and with the same phenomenon. 

Adding fu rther elem ents to  the network makes an in s ig n if ic a n t  

reduction in  the o b jec tiv e  fu n ction  with subsequent op tim isa tion  

producing no further convergence.
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Network generates a l l  required  

c o e f f ic ie n ts

F = 2.99 10

= 2.45
2 = Ĝ  = Ĝ  = 2.45

F = 3 .9 7

Add C = 
2

0.214

G

Add 0^ = 0.273

F = 3.68

C.J = 0.79 = 4.76 G = 27.0

Ĝ  = 0.027 Ĝ  = 0.214

Ĝ = 37.4 Ĝ  = 0.181 G = 16.0

G. = 0.031 4

F = 3.63

aO
F = 3 .24

s  = 0.73 Gg =: 4.83 G = 26.1

0.028 G = 0.25 G, = 0.-273

s  = 37.5 0% = U . 1 8  G = 15.5’

0.33

F = 3.1

see next page

An Example o f  F ailure o f  Network E volution  

f i g .  5 .9
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0.0045Add G

G

Add = 0.0075

F = 3.073

0̂  = 0 .67  = 4 .9 2  C = 25.1

C, = 0 .028 0^ = 0 .29  G, = 0 .374 5 D
Ĝ = 39 .2  Gg = 0 .17  G = 14 .9

G = 0 .035 G = 0.0045  
4 >

F = 3.069

c r

0

F = 3.061

Ĝ  = 0 .6 8  Gg = 4.91 G = 25 .0  

G = 0 .028 Ĝ  = 0 .29  Ĝ  = 0 .36  

Ĝ = 3 9 .2  Ĝ  = 0 .17  G = 1 4 .9  

G = 0.035 Ĝ  = 0.0093  Ĝ  = 0.0075  

F = 2.77

Add Ĝ  = 0.0045

G
5

Addition o f  s 

d iffe r e n c e ,

F = 2.770

= 0 .69  Ĝ  = 4 .6 8  G = 26.1

G = 0 .4 0  = 0.31  Ĝ  = 0 .38

Ĝ  = 0.0045

Ĝ = 37 .7  Ĝ  = 0 .1 7  G = 16 .9

Ĝ  = 0 .4 6  Ĝ  = 0 .0 2  Ĝ  = 0 .0 3

F = 2.770

d d itio n a l v ir tu a l elem ents one by one produces l i t t l e  

4 a ilu re  o f  process

An Example o f  F ailure o f  Artwork evo lu tion

f ig .  5.9
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2. When the impasse occu rs, i f  the resid u a l o f  the equations are 

stud ied  then i t  i s  seen th at they are r e la t iv e ly  sm all except 

fo r  those corresponding to A| 2(3) and ' ^12^^^

approximately +1 suggesting  th e elem ents making up i t s  tr e e s  

should e ith e r  be removed or reduced in  value and i s

approxim ately -1 suggesting  th a t elem ents making up i t s  tr e e s  

should be increased  in  value or elem ents added. Since many 

o f  th ese  elem ents are in  common to both s e ts  o f  tr e e s  there  

i s  no so lu tio n . Further f l e x i b i l i t y  i s  needed to  reso lv e  

th is  problem; such f l e x i b i l i t y  i s  achieved by introducing

a common fa c to r  which w i l l  modify the c o e f f ic ie n ts  o f  tho  

polynom ials.

3 . The phenomenon described i s  no proof th at a r e a lisa t io n  or  

q u a s i-r e a lisa t io n  i s  im possible with a network contain ing  

on ly  5 nodes on ly  th at i t  i s  not very l ik e ly  and d i f f i c u l t  

to  obtain  using  network ev o lu tio n . I t  i s  strong evidence  

for the need to grow an extra node and introduce a common 

fa c to r  in to  the polynom ials.

4 . The symptoms described in  t h is  p a r ticu la r  example, i . e .  

network evo lu tion  entering  a cu l de sac i s  observed with  

sev era l other problems which have been attem pted, both with  

3 term inal CR and 2 term inal LCR networks. Since in  a l l  

th ese  cases r e a lisa t io n s  contain ing more noues and elem ents 

are known, i t  would seem th at in  th ese  circum stances node 

growing should be performed.

5 .9  An Example o f  Rode Growing

This example i s  shown in  f i g .  $ .10; i t  s ta r ts  a t the penultim ate

structure shown in  f i g .  5 . 9 . This example i s  an attempt to r e a l i s e
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From penultim ate network structure  

or f i g .  5 .9  F = 2;77

Hew node i s  to  be grown between

2 and referen ce node with  

G = 0.38Z = 0 .312

f  = 4.36 10 
common fa c to r  = 1 .34

=  0 .3 1 2

C

F = 3 .57  10

Common fa c to r  = 4.. 23
new node

0.036

F = 3 .39  10 
Common fa c to r  = 3 .56

= 0 .033  G_
1c:

c

u,. = 0 .1 8

F = 3.305 10-1 

common fa c to r  = 3 .8

An Exaiuple o f Ko de Growing 

f i g .  5.10
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by a CR network the network polynom ials published by Lucal^,^ 

and given in  sec tio n  5 .8 . To surmount the impasse demonstrated 

in  th e  la s t  example a common fa c to r  i s  introduced by growing an 

extra  node with the appropriate components connecting th is  node 

to  th e o r ig in a l network. This i s  accomplished ex a ctly  as 

described in  sec tio n  4-.11. Subsequent op tim isation  uses the  

common fa c to r , C as a v a r ia b le , g iv in g  i t  the value which makes

= 0 , in  much th e same manner as with th e m u ltip ly ing  

fa c to r , x^. Several comments should be made on t h is  example.

1 . The node growing works w e ll as described in  sec tio n  4*11 

and the theory i s  su b stan tia ted  by experim ent. The values  

o f  th e o b jec tiv e  fu n ction  and optimum common fa cto r  can be 

pred icted  with l i t t l e  extra e f fo r t  from the o r ig in a l  

network without the extra node.

2. Node growing in  th is  case produces a large  reduction in  the

o b jec tiv e  function  even tnough the number o f  equations has 

been increased  by 4 from 19 to 23.

3. O ptim isation i s  su b s ta n tia lly  slower and more d i f f i c u l t  than

p rior  to the growth o f  the node because there are extra

equations and v a r ia b les  introduced by the extra  node, w ith, 

the extra com plication o f  the use o f  th e  common fa c to r  as

a v a r ia b le .

4 . U nfortunately , due to  lack  o f  tim e, i t  was im possib le to  

pursue t h is  example fu rther and fin d  whether i t  does evolve  

in to  a r e a lis a t io n  o f  the required se t  o f  polynom ials.

5.10 Some Examples o f  Evolution by Ketwork Reduction

These examples o f  two term inal LCR networks, shown in  f i g s .

5.11 and 5 .1 2 , r e fer  to  a se t  o f  network polynom ials and th e ir



-  1 1 9  -

1

o f  T3

0

F u ll R ea lisa tio n

= 2.17  = 3.81 G = 0 .2 2

G, = 0 .0 8  = 1 .12
4 5

= 1 .0  = 0 .17  G_= 1 .0

3 .1 7  g  = 5.18 = 0.21

0 . 143!^ = 2.21

C. = 7 .0  10~5 
3 ^

S tartin g  with a l l  elem ents o f  value 0 .1

F = 2.51 10^

Elim inating the -6fo llow in g  elem ents = 7 10 ^

Gg = 8 . 8 10"^ = 3.1  10"6

1

0

nJi

-4F = 9 .0  10'

= 0 .88  G = 3 .6 2

= 0 .2 6

Ĝ = 1.00 G  ̂= 0.97

rj = 2.14  [  ̂= 6.06

G3 = 0.25  = 0.82

see nekt page

An Example o f  Network Reduction by O pen-Circuiting Elements

f ig .  5.11
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from previous page

S tartin g  v ith  a l l  elem ents o f  value 10 .0  
1

F = 1 .3  10'

E lim inating C, 2 .2  10^, = 4-‘1 10^ by a short c ir c u it

1

0

-5F = 1 .93  10

= 1.2  0^ = 0.26 

= 0.668

=  1 .0  =  1.0

n Gj = i,.o M = 0.223
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corresponding r e a lis a t io n  r ecen tly  p u b l i s h e d . T h e  r e a lis a t io n  

was obtained by Tirtoprodjo u sing  a m odified B ott-D u ffin  s y n th e s is ^  

The polynom ials r e a lis e d  are 

^  = s^+2.5s^+2s+3 

= s^+4s^+12s +6

Many common fa c to rs  were introduced by t h is  method o f  sy n th esis  as 

can be seen from the example in  se c t io n  4* The evo lu tion  by 

network reduction i s  used ex a c tly  as described  in  sec tio n  4*12.

The example in  f i g .  5.11 was obtained by g iv in g  a l l  the elem ents 

values o f  0 . 1 .  This low value has the e f f e c t  o f  encouraging 

c er ta in  elem ents to  become open c ir c u i t .  These elem ents are 

removed from the network and th e corresponding redundant fa c to r s  

elim in ated . When the redundant common fa c to r s  have been removed, 

i t  i s  found th at fu rther progress in  network reduction i s  only  

p o ss ib le  by g iv in g  a l l  th e remaining elem ents a value o f  1 0 .0 .

This has the e f f e c t  o f  making some o f  th e elem ents tend to  very 

large  v a lu es , equivalent to  a short c ir c u i t .  Further progress 

could not be achieved in  network reduction  no matter what values  

are given to  the elem ents in  the remaining network. The example 

in  f i g .  5. 12 s ta r ted  from the same r e a l is a t io n  but in  th is  case 

the elem ents were given values o f  1 0 .0 , t h is  again haâ th e e f f e c t  

o f  making certa in  elem ents tend to  very high v a lu e s , equivalent

to  making them a short c ir c u i t .  When th ese  elem ents were made
1

short c ir c u it  and the process repeated no fu rth er  progress could  

be made in  network reduction  no matter what s ta r t in g  values were

used . \
\

These examples show cer ta in  fe a tu r e s .

1 . S ta rtin g  with appropriate element values has the e f f e c t  o f

d riv in g  elements to  become e ith e r  open c ir c u i t  or short c ir c u i t .
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I t  chould be noted th at in  t h is  example th a t i f  the element 

values are made a l l  equal to  u n ity  then the network evolves  

to  the r e a lisa t io n  published by T irtoprodjo.

2. The optim isation  phase takes a long tim e; though fo r tu n a te ly , 

in  th is  example i t  required r e la t iv e ly  few ite r a t io n s  to  

converge, th a t i s ,  approxim ately 20 to 30 i t e r a t io n s ,  each 

i te r a t io n  required over a minute. (In th is  example there  

are 24 equatiuns and I4  network elem ents p lu s m u ltip ly in g  

f a c to r ) .

3 . The values o f  the network elem ents tend to  such extremes th at  

th e a n a ly s is  s e c t io n , wnich as implemented takes severa l 

short cuts to  speed th e convergence, i s  beginning to  break 

down. This problem i s  p a r tic u la r ly  acu te , when elem ents

tend to  short c ir c u i t s ,  for  example, th e value o f  a c o e f f ic ie n t  

p rev iou sly  0.1 may become 1 0 ^  p lu s .

4 . I t  should be noted th a t the process o f  sh o r t-c ir c u it in g  or 

open c ir c u it in g  elem ents i s  very lo g ic a l ,  th a t i s ,  elem ents 

in  s e r ie s  become open c ir c u it  s im u ltan eou sly  elem ents in  

p a r a lle l  become short c ir c u it  sim ultaneously . This process  

occurs by straightforw ard op tim isation  without in terventioh*

5 . From th e experience gained o f  evo lu tion  by the growing o f  

elem ents and by the e lim in ation  o f  elem ents, th e process o f  

network evo lu tion  by a process o f  reduction  seems to  be the  

e a s ie s t  to  implement*

' i \
\

\ ' ..

. * I
. :  ^
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Chapter 6 

FURTHER DEVELOPMENTS

6,1 Introduction
r

For the extension o f  the range and scope^etwork evolution  

by c o e ff ic ie n t  matching there i s  development necessary in  four 

areas; the an alysis section , the growth and reduction algorithm s, 

the lim its  o f  a p p lic a b ility  and the incorporation o f  p ractica l 

measures,

A sa tis fa c to ry  synthesis procedure has the prior requirement 

o f  a fa s t  accurate an alysis  section  having adequate f le x ib i l i t y ;  

these requirements become more stringent when very large networks 

o f  varied types are analysed in  the process o f network evolution. 

Network evolution  has as i t s  core the growth and elim ination  

algorithms, obviously improvement in  i t s  e ffic a c y  w il l  come 

primarily with improvements in  these algorithm s. More in vest­

ig a tio n  i s  necessary as to which types o f  network evolution

i s  primarily by growth ^  superior to network evolution  which i s
X

primarily by reduction. I t  appears from other work that network 

evolution  using frequency response and pole-zero matching are e f­

fe c tiv e  but in  some situ a tio n s c o e ff ic ie n t  matching would appear 

to be superior. An in v estig a tio n  o f  the various strengths and 

weaknesses o f  these methods i s  necessary. As y e t , network 

evolution  by c o e ff ic ie n t  matching has only been used in  f e a s ib i l i t y  

stu d ies. To make i t  an acceptable method for engineers, restra in ts  

on network elements and e f fe c t  o f  p a ra s itic  elements must be 

included.
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6.2 Extensions to the Scope and Accuracy o f  Analysis Section  

The present an alysis section  can deal with LCR networks

contain irg current generators but excludes mutual inductance.

To make tTiis sectio n  en tir e ly  general and include mutual

inductance and additional a ctiv e  elem ents, hybrid methods o f

an alysis such as the s ta te  variable could be used to describe

the network. Methods23 already developed could be used to

transform th is  d escrip tion  to the nodal admittance matrix. In

th is  way, none o f  the advantages o f  an a lysis  v ia  the nodal

admittance matrix, such as i t s  d irectn ess , would be lo s t  and

c o e ffic ie n t  matching would be easy to use.

The method o f  matching c o e ff ic ie n ts , requires accurate

generation o f  these and th e ir  d eriva tives from the nodal admittance

matrix, A method o f achieving th is  i s  described in  Chapter 2,

This method evaluates the admittance matrix a t a se t  o f  values

o f  rea l s as described in  section  2 ,2 , The values o f  s to  use

so as to  achieve high accuracy has been the subject o f  some 
18an alysis  , see section  2 ,8 , but a f u l l  s ta b i l i ty  analysis o f  the 

complete problem has not been obtained. Further e ffo r t  must be 

concentrated on th is  problem so that the acceptable accuracy now 

obtained in  r e la t iv e ly  small problems i s  obtained- when larger  

networks are analysed,

6.3 Develorment o f  Improved Optimisation Techniques

The optim isation phase takes up by far the major portion o f

the to ta l  time spent in  network evolu tion . As larger networks are
' . \

considered the present optim isation procedures become slower and le s s
' \ ' ; '
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sure in  th e ir  convergence properties. Some o f  th is  d eterioration

i s  in ev ita b le , but improvement in  optim isation methods i s

e sse n tia l before the techniques described in  th is  th e s is  can be

applied to large p ractica l networks,
38Most optim isation routines are general purpose using none

o f  the sp e c if ic  properties o f the functions being optimised.

I t  would seem the e a s ie s t  way to improve the performance o f

optim isation methods i s  to develop an optim isation routine

sp e c if ic  to each type o f  function. Some progress has already 
*51 *58been reported * on optim isation  routines using the specia l 

properties o f  m ultilinear functions. These methods are new; 

i t  must be hoped th at with further experience these can be made 

in to  powerful to o ls  for optim isation using c o e ff ic ie n t  matching.

6 ,4  Improvement to Element Elim ination Algorithms

Though the algorithms for element elim ination  are inherently  

easier  to  implement than the growth algorithm, there i s  the need 

for further development in  the network reduction algorithms.

Time i s  o ften  wasted in  driving an element c loser to zero, 

when i t  i s  obvious that i t  should be removed at an ea r lie r  stage. 

On the other hand, an element may be removed prematurely and 

subsequent change in  network topolog^^alter a tendency o f  i t s

value to zero to a teryiency to seme greater p o sitiv e  value,
1

The c r ite r ia  which determine whether to short c ir c u it  an
\

element because i t s  value tend^ to in f in i t y  are more d i f f ic u l t
\

to  develop than the c r iter ia  which determine whether to open
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c ir c u it  a variable because i t  i s  c lo se  to zero. At the moment 

the c r iter ia  which short c ir c u it  are empirical and not en tir e ly  

sa tis fa c to ry . There i s  the need for  a study o f  how the process 

o f  short c ircu itin g  an element works in  terms o f  c o e ff ic ie n t  

matching.

6 .5  Improvements to Growth Algorithms

There i s  s t i l l  need for development in  the c r iter ia  for the 

growth o f  an element in  a network. I t  i s  fa ir ly  easy to  develop  

other growth algorithms in  addition to the two methods already
Q «53

published, * Mary o f  the d ifferen t optim isation algorithms 

th at are used to a lte r  the values o f  the network elementscan be 

adapted to a lso  a lte r  i t s  topology. The e ffica cy  o f the growth 

algorithms can be tested  in  a sim ilar manner to  that o f the various 

optim isation algorithms in  converging to the global minimum by 

a lter in g  network values. I t  would seem as in  section  6 ,3 , th at  

the most e f fe c t iv e  growth algorithms would be those using the 

sp ecia l properties o f  the m ultilinear functions. I t  may be 

necessary to include other knowledge o f the network topology which 

i s  not needed ju st to a lte r  the element values. For example, 

such information could be that the 0-1 and 0-2 connections have 

no e f fe c t  on thus i f  the c o e ff ic ie n ts  o f  are in  much

greater r e la tiv e  error than the other c o e ffic ie n ts  these 

connections should not be considered,

6 .6  Comparison between Various Methods o f Network Evolution 

R elatively  l i t t l e  has been pu b lished  on network synthesis by

evolution  but nevertheless i t  appears that a l l  three methods -
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c o e ffic ie n t  matching, frequency response matching and pole-, 

zero matching have shown to  be fe a s ib le  and qu ite successfu l 

on sp e c if ic  problems but that sp e c if ic  problems which were

solved su ccessfu lly  l y  c o e ff ic ie n t  matching were found to be
2

in tractab le when tr ied  by the other two methods. Because o f  

the success o f  the other two methods on other problems i t  i s  

obviously important to account for th is  anomaly or at le a s t  

d elin eate the areas o f  app lication  where each method i s  

p articu larly  appropriate,

6 ,7  Incorporation o f  In teractive  Programming

I t  i s  d i f f i c u l t  to d evise programs such that the computer 

can detect various patterns o f  behaviour; whereas the designer 

i s  rather good a t th is  but poor a t performing arithm etic. This 

makes in tera ctiv e  programming very a ttra c tiv e  when d ifferen t  

patterns o f  behaviour are to be detected . Unfortunately, the 

author was lim ited  to short batch runs and was unable to 

experiment with these id eas. Using a stand alone program, i t  

was found fa ir ly  d i f f i c u l t  to e sta b lish  c r ite r ia  which were 

e ffe c t iv e  over a wide range o f  d iffer en t problems. Such th ings  

as the u n it for search in  the Levenb&rg algorithm, the c r ite r ia  

for convergence, when i s  an element zero or in f in ity ,  are 

d i f f ic u l t  to define for a wide range o f  problems. I t  would be

a great help to be able to a lte r  these c r ite r ia  during the running
2

o f  a program. Perhaps a lso  an in tera c tiv e  program in  the wider 

semse with a v isu a l d isp lay  would have helped in  the growth 

strategy, the network topology and the various s e n s it iv it ie s  

could be viewed as a whole. In th is  respect the programs
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developed have the advantage in  being very e f f ic ie n t  in  the use o f  

store s iz e  and in  being rapid, thus they would be e a s ily  adaptable 

to  in tera ctiv e  use. Some in ter a c tiv e  programs are strong on the  

graphics but use rather cumbersome a n a ly tica l techniques,

6,8 Extension to Active Networks and Practical Problems

When the network elements are not constrained to  be p o sitiv e  

then the evolution  o f  the network becomes both more rapid and 

ea sier . The resu ltin g  r ea lisa t io n  has fewer individual elements 

than a purely passive network. I t  i s  possib le  to generate 

negative network elements by using a ctiv e  devices. In some 

in stances, for example, integrated c ir c u its , a ctive  devices are 

simpler and cheaper to use than passive d ev ices, VELth these  

considerations, i t  would be usefu l to  compare the actual cost o f  

a r e a lisa tio n  produced, using some a ctiv e  devices with a 

r ea lisa tio n  which i s  t o ta l ly  passive.

The programs developed for network evolution  by co e ffic ie n t  

matching are lim ited  in  th e ir  p ractica l features; they were 

developed to d iscover whether the concepts, which sound so 

a ttra ctiv e  in  theory, are fea s ib le . To find p ractica l ap p lication  

these programs must be extended to incorporate the practica l 

features. These features include constraints on the component 

values and th e ir  r a tio s , constraints on the values o f the network 

s e n s it iv it ie s  and the a b il ity  to  include p a ra sitic s  and to adjust 

the network components to these. These complications would 

perhaps make network evolution  more d i f f ic u l t  to  achieve but many 

p ractica l working programs^ have been developed which use
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optim isation and include these fea tu res. I t  should be rea lised  

that the greater the number o f  elements and nodes the easier  

network evolution; in  general the number o f  possib le  

rea lisa tio n s  i s  increased and the tolerance allowed to each 

element i s  increased.

With the lim ited  experience so far obtained i t  would seem 

that the most l ik e ly  immediate p ra ctica l application  o f  network 

evolution would be in  reducing the number o f components and 

complexity o f c ir c u its  synthesised by standard methods; 

th is  would be p articu larly  appropriate with such applications  

as equalisers and a r t i f i c ia l  transm ission lin e s  where the 

problems are tackled on more o f  a piecemeal b a sis .
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Chapter 7

CONCLUSIONS

The major conclusion  i s  th a t network evo lu tion  using c o e f f ic ie n t  

matching i s  f e a s ib le ,  a t le a s t  on the s c a le  o f  the examples considered  

(4-10 nodes, 5-16 e lem en ts). Thus the use o f  c o e f f ic ie n t  matching 

combined with op tim isa tio n , which up to now has been used on ly  to  

'trim  * the values o f  the components obtained by standard syn th esis  

methods, can now be considered as p o te n t ia lly  a syn th esis  method 

complete in  i t s e l f .  In cer ta in  s i tu a t io n s , network ev o lu tion  presents  

the only method o f  sy n th e s is , fo r  example, the sy n th esis  o f  p o n -ser ie s-  

p a r a lle l  netwrks. With the lim ited  number o f  examples te s te d  i t  seems 

to  be a very u se fu l adjunct to  the standard sy n th es is  procedures in  

reducing the number o f  components and com plexity o f  the networks 

produced by th ese  c losed  form methods.

S u ccessfu l network ev o lu tion  depends on paying a tten tio n  to  every  

d e ta i l  o f  the p rocesses involved; fa i lu r e  in  one sm all part o f  the  

scheme may produce t o t a l  fa i lu r e .  The e s s e n t ia l  p rereq u is ite s  fo r  

su ccessfu l network evo lu tion  a r e :-  

a rapid , accurate and f le x ib le  a n a ly s is  sec tio n ;  

an op tim isation  sec tio n  th a t i s  robust, i s  capable o f  dea lin g  with  

multiminima and has a reasonable ra te  o f  convergence; 

an e f fe c t iv e  rep resen tation  o f  the problem, (c o e f f ic ie n t  matching 

has many v ir tu e s  on th at account) togeth er w ith a su ita b le  form ulation  

o f  the n on -lin ear equations arish g  from c o e f f ic ie n t  matching w ith an 

appropriate m u ltip ly ing  f a c t o r ; '

the use o f  the appropriate c r i t e r ia  fo r  a minimtwjand the e lim in ation  

and growth o f  elem ents. '
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The accuracy and speed o f  the a n a ly s is  sec tio n  developed has been 

described  elsewhere * * . These v ir tu e s  togeth er with i t s  f l e x i b i l i t y

are i l lu s t r a t e d  by i t s  su ccessfu l use in  examples w ith w ild ly  d if fe r in g
i

element values in  both CR and LCR networks. I t s  speed in  obta in in g  

the current values o f  the c o e f f ic ie n ts  o f  the network polynom ials and 

th e ir  d er iv a tiv e s  with resp ect to  the network elem ents enables the  

o p tim isa tion  sec tio n  to converge in  a reasonable time on a medium 

speed computer even though many ite r a t io n s  are required . The method 

o f  a n a ly s is  enables the d er iv a tiv e s  o f  the c o e f f ic ie n ts  o f  th e  network 

polynom ials with resp ect to  zero-valued elem ents to  be easRy generated. 

This inform ation i s  the b a s is  o f  any c r ite r io n , u t i l i s in g  d er iv a tiv e  

in form ation , which decides the va lu e , type and p o s it io n  o f  the elem ents 

grown in  the network. Furthermore, th is  inform ation used in  the 

appropriate manner can be used as the b a s is  o f  the c r ite r io n  fo r  the  

p o s it io n  in  which to grow a node in  the network and the va lu es o f  the  

elem ents connecting th is  extra node to  the network. I t  a lso  g ives the  

appropriate value o f  the common fa c to r  introduced in to  the network 

fu n ctio n s .

The op tim isation  method employed i s  the standard Levenb&rg 

algorithm  applied to the le a s t  square form ulation o f  the s e t  o f  nob- 

l in e a r  equations with a multimodal lin e a r  search a t each i t e r a t io n .

This method i s  adequate to  d e a l w ith the m u ltilin ea r  fu n ction s generated  

by the problem and d ea lt su c c e ss fu lly  with th e ir  multimodal nature, 

both fa r  from and c lo se  to  so lu tio n . The su ccess o f  any method o f  

o p tim isa tion  depends g rea tly  on the lin e a r  search method employed.

In t h is  resp ect both methods used were su c c e s s fu l, th e quadratic search  

between a geometric comb working from very low values to  very high
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values o f the Levenbigrg factor and the golden search over logarithm ic 

in ter v a ls . In p ra ctice , the quadratic search used fewer function  

evaluations than the golden search, but with the discontinuous functions 

generated by the growth algorithm thé golden search must be used.

Despite the r e la t iv e ly  successfu l use o f  these standard methods, i t  

i s  with the optim isation section  that the greatest d i f f ic u l t ie s  

occurred. Some problems converged very slow ly and stea d ily  to 

so lu tion . I t  seems e s se n t ia l, i f  network evolution using c o e ffic ie n t  

matching i s  to be employed in  synthesising larger networks, that more 

powerful optim isation methods be developed. These methods w il l  very 

l ik e ly  use the sp ec ia l properties o f  m ultilinear functions.

There are several ways o f synthesising networks using the

evolutionary approach. I t  i s  too early  in  th e ir  development to be

sure o f the range o f application o f each approach. The method o f

c o e ffic ien t  matching has many sp e c if ic  advantages over the two 
2

a ltern atives o f d irect frequency response matching and pole-zero  

matching; these can be summed up as the s im p lic ity  o f  analysis using  

the methods described, the use o f the structure o f the network 

polynomials in  se le c tin g  appropriate sta rtin g  networks and with the 

ease with which growth algorithms can be a n a ly tic a lly  developed.

Without the appropriate formulation o f the non-linear equations 

arisin g  from c o e ffic ie n t matching, convergence i s  very d i f f ic u l t .

The e ffic ien cy  o f  the optim isation and growth section s i s  h ighly  

dependent on th is  formulation. This i s  an important d e ta il which 

i s  e a s ily  overlooked. In p articu lar, the large range o f values 

allowed to the m ultiplying constant enables the netwv,rk evolutionary  

process to converge rapid ly, p articu larly  when elements are removed 

by making them open c ir cu it  or short c ir c u it .
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Whereas t h x ^  c r i t e r ia  for  a minimLWand elim in ation  o f  elem ents 

from the network are f a ir ly  obvious thdSefor the growta o f  elem ents 

and n o ies in  the network i s  not obvious and experiment i s  necessary  to  

d iscover  which o f  tne various a lte r n a tiv e s  i s  the b est to  u se .

This problem i s  compounded by the choice o i the various s tr a te g ie s :

To grow one or more elem ents at a tim e;

To s ta r t  w ith a simple p r im itive  network capable o f  generating the  

correct stru cture o f network polynom ials or s ta r t  w ith one contain ing  

sev era l surplus elem ents (e lim in ation  i s  e a s ie r  than growth -  the  

more elem ents the slower the o p tim isa tio n ;;

To s ta r t  w ith a complicated r e a lis a t io n  o i  the reqisLred s e t  o f  

network polynom ials and sim p lify  the stru ctu re by element e lim in a tio n . 

A fter much experiment two d if fe r e n t  approaches were found to  be the  

most e f f e c t iv e ,  f i r s t l y  s ta r tin g  with a sim ple p r im itive  network and 

growing elem ents one a t a time ( th is  speeds convergence o f  the  

op tim isation  process by keeping the number o f v a r ia b les  sm a ll) , and 

secondly s ta r tin g  with a com plicated r e a lis a t io n  and sim p lify in g  

( th is  avoids the problem o f the choice o f  the appropriate growth 

a lgorith m ). The growth algorithm  described in  th is  th e s is  s e le c t s  

th a t zero-valu es element which using the op tim isation  algorithm , has 

the g rea test tendency to  go p o s it iv e .  The value o f  t h i s  element i s  

th a t which g iv es  the minimum in  the o b jec tiv e  fu n ction . This 

algorithm  works q u ite  w e ll as can be seen from the examples, but i t s  

operation  time in creases very rap id ly  as th e network s iz e  i s  

in creased . A ltern ative  algorithm s'^ subsequently developed would 

seem to be a t le a s t  as e f f e c t iv e  and require much l e s s  execution  tim e. 

I t  should be r e a lise d  th a t most networks have many equ iva len ts or 

quasi eq u iva len ts hence a d if fe r e n t growth c r ite r io n  or a d if fe r e n t
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ev o lu tio n  stra tegy  may produce convergence to  d if fe r e n t  eq u iv a len ts .

For t h is  reason the problem i s  l e s s  in tra c ta b le  than i t  would be had 

i t  ju s t  one r e a lis a t io n . ,

When the s p e c if ic  examples are considered i t  i s  seen th a t a; s ta r t  

has been made on examining the p o te n tia l o f  network ev o lu tio n . 'The 

same r e a lisa t io n  may be evolved from d if fe r e n t  s ta r tin g  networks and
i

d if fe r e n t  r e a lisa t io n s  may be obtained from the same s ta r tin g  network. 

Several d if fe r e n t  s tr a te g ie s  have been s u c c e s s fu lly  employed in  the 

process o f  evo lu tion  from sta r tin g  network to a sa t is fa c to r y  r e a l i s ­

a tio n . Though growing an a d d ition a l node in  the one example so far  

te s te d  has not produced a s a t is fa c to r y  r e a l is a t io n , i t  did lead  to  

a large  reduction in  the o b jec tiv e  fu n ctio n . Where an a d d itio n a l 

node i s  necessary for a su ccessfu l r e a l is a t io n  the node growing 

f a c i l i t y  w i l l  doubtless prove to  be a u se fu l adjunct to  the evolu tionary  

p rocess. The la r g e s t  CR network grown s u c c e s s fu lly  from a p r im itive  

s ta r t in g  contained 11 elem ents and 6 nodes; the la r g e s t  LGR network 

reduced to  a sim pler form, sta rted  from a network contain ing 6
2c a p a c ito rs , 3 r e s is to r s  and 5 ind u ctors. Examples o f  la rger  networks 

have been published using network evo lu tion  in  the frequency p lan e, 

hence a great deal o f  fu rther in v e s t ig a tio n  i s  necessary to  d iscover  

the l im it s  o f  p r a c t ic a b ility  o f notwcrx ev o lu tion  using c o e f f ic ie n t  

matching and comparison with a lte r n a tiv e  methods.

To sum up, the main fea tu res  d iscu ssed  in  th is  th e s is  are*—

1• The development o f  a rap id , accurate and f le x ib le  a n a ly s is  

procedure.

2 . The development o f  an element growing algorithm  based on 

cer ta in  fea tu res o f  th is  a n a ly s is  procedure.
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3 . The development o f  a node growing algorithm  based on t h is  

a n a ly s is  procedure.

4,. The development o f  various network ev o lu tio n  s tr a te g ie s  wnich 

can be used in  growing a s a t is fa c to r y  r e a lis a t io n  e ith e r  from 

a p rim itive  s ta r tin g  network or in  reducing a com plicated | 

r e a lisa t io n  to a sim pler form.

5 . Comparison o f  th ese  methods with th e ir  a lte r n a t iv e s .

6 . In d ication s as to  p o ss ib le  developments in  network evo lu tion  

so as to  produce improvements in  i t s  e f f ic ie n c y  and scope.
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APPE13DICES 

Synthesis o f  Inverse Vandemonde Matrix

To find the polynomial o f  order m in  s , L(s) corresponding to

a set o f  values A ( t s  ) -  -  A ( t s  ) at a se t o f  nodes s -  -  -  so m o m
the Lagrangian interpolation formula can be used, 

i . e .  L ( s ) = A ( t s )  ( s - s p ( s - S g )  ( s - s ^

■ -  ( % -V
( s - s  )(s -s« ) «. -  « ( s -s  ) + -  -  -

m

I f  terms are co llec ted  for each power o f  s , th is  g ives the matrix 

equation in  f ig ,  g , l  for the c o e ff ic ie n ts  o f  the polynomial L (s), 

a  ̂ -  -  -  â j, for  a polynomial o f  degree m. The elements o f  the 

square matrix, IV can be generated by the algorithm

°  k \  j  k = 0 - - m

where IV °. = 1  i = 0 - - m
oj

j = 0 -  -  m

e .2

and the superscript, k refers to the ite r a t io n  number,

Ebch column must be divided by
m \

Cj = ^  (S j-s^ ) 1 \  j  j  = 0 -  -  m

8 .3
1

8 ,2  Simultaneous Determinant ■ Evaluation and Inversion to obtain  

Network Co factors  

The admittance equations o f  a network are given by

. t '
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Ĉ r> zi zi zi to to to 110 10 to to to 1 1 1

1 1 1 1 1 XX XX XX XCM> -X  ' w ' ^ - x
/ —»- X ~s X  A  ACM CM CM C*^ CM zi zi toto to to to to 10 to to 1

1 1 1 1 1 1 1 1 XX
v - x  v x " % -x X X  X X  X X XX -x X~x X ^ x - x  ^ - x  x - x

O O O CM O O O CMto to to to to to to to to
1 1 1 1 1 t  1 1 1

v - x «wX SwX X X  X X  X X X X

to
1 + + +

+  +  
x - x  x - x  x - xen en zi (0 to to 
1 1 1 

X X  X X  X̂

toI
» x

A
> - x

X"*. X-X
X -X  x - x  X *xCM CM en entozi zi zi to to to 1to to to to ta 1 1 1 X X

1 1 1 1 1 X X  X X  X X +
x ^

v - x  > « x ^w x v x  
X -x  X-X X  X X CMCM CM CM en en en zi zi toto to to to to to 10 to 1

X
tô
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V i  "  W 2 "  -  "  ^  W n i  =

^21^1 ^22^2 + “ -  -  ̂ 2NL-.1^N1-1 2̂NL̂ NL ” ^2
• I f # # • I
t t f t t t f

^ N L l\ ^NL2^2 " ^NLKL-l^N-1 N̂LNL̂ NL “ N̂L

Vj^ can be found in  terms o f  the other q u an tities  from the NL

equation,

v „  = _ V, -  v „  Im 2 _  _ I m i .  V +
^  ^NINL  ̂ ^NLNl  ̂ N̂LKL N̂LNL  ̂ /^NINL

8.5

I f  th is  expression for i s  substitu ted  in to  equations 

1 -  -  -  KL-1 th is  g ives

„  ̂ , y hro.^Ni2 „ .  ̂ h m ^ K iK i- i ,,  ̂ .
ÏNLN1 1 1 2 “ IklN '"2 * " h N l . l -  V -1   ̂ °

iR ih m
- 4  — Ÿ--------

•■■ mm.

llM llm 2 „ , „ l 2Hl̂ HL2 .............................  12M.1 N̂1HI-1  „
12 ■ 1 22 -  - Ÿ ^ ^2 " -  -  ^2m - i-  Y ^ ^  ^ m .i  + 0

_ J  ^NL̂ 2NL
-  i g  Y

 ̂ ^NLNI

^KL l̂ ^N12^2 ^NINL-l^NL-1 ^NINL^Nl “

8.6

This i s  Gaussian elim ination  and the above terms can be formed by 

the equation

' i j  °  " i j  '

8 .7
kk

where corresponds to the column elim inated and i s  ca lled  the p ivot.
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I f  th is  process i s  repeated using the diagonal as pivot in  each 

ite r a tio n  then in  matrix form

t
11 < 2 1 0 -  INL

N̂LNL

t
21 4

0

^2 0 1
Y

-  2NI 
N̂LNL

f
31 ^33

0
1

t
HLl ^N12

t
^NLNl 1

T
1

l 2

lo3

I .
J

9 .8
«

where e tc . are the f in a l values o f  terms in  admittance matrix. 

The value o f  the determinant o f  given by elim inating row

and column 1 and row and column 2 from the admittance matrix and 

then finding the determinant

^ 1 1 2 2 =  ^ 4
k=3

Since the determinant o f  a triangular matrix i s  given by the product 

o f i t s  diagonal elements, det i s  given by elim inating column 1

and row 1 ,
_ KL • • A

hence det “ ^22 1122
k=2

sim ilarly  det A. = Ŷ  ̂ A  and det = Ŷ ., det A12 "21 112211 1122 

8 ,9

To find  the inverse o f  the matrix corresponding to  A^^* say, 

row 1 and column 1 must be elim inated from both sid es o f  equation

8,8
j  Y I  I

then Vo = vT“ + -  -  , sub stitu tin g  th is  in to
22 ^NINL 22

row 3 , V̂  can be found in  terms o f the currents and so on u n til V ^;
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th is  i s  ca lled  back su b stitu tion . I f  these expressions are substituted  

in  place o f  the voltage vector and the two triangular matrices

m ultip lied  then the inverse o f  i s  given, A current vector
I

i s  now on the L.H.S, and voltage vector on the R,H,S, S im ilarly  

for  and that unity w i l l  appear in  the ( 1 , 1) |

p o sitio n  o f  the R,H,S, square matrix when rows 1 and columns 2 are
i

elim inated, to  form Row and column 1 must be interchanged

with row and column 2 before row 1 and column 2 are elim inated from 

each side o f  equation 8 , 8 , This ensures back su b stitu tion  i s  

possib le  for A^^,

8 ,3  Simultaneous Generation o f the Second D erivatives o f  

the C oefficien ts o f the Network Polvnomials with 

respect to the Network Elements 

Equation 2,11 for a r e s is t iv e  network i s

Sg S g" ^ j l l  "q K

*  ( i i m m  ^ j j l n

^ ^  j n i  '

Using Jacobi’ s theorem stated  in  equation 2,12

Sim -
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^ i j ^ U  ■*■ ^ i l  S j l  J iS ^ ll '*' ^ j l  ^11

* S iiS m m  “ S in S n i  + S ĵ j  " Sjm^ mj 

" ^ i j  Sram ""^jl^mm “ ^jm^mi

" '^iiS^lm ■*■ 4  ^  “ j j j ^ lm  “ ^ jl^ m j

* t^ ijS lm  ■■■ 5 j i S  im " S j m S l i

"  4 i S  m l  *  J i r a S l i  “  ^ m l  *  ^ j m ^ l j

“ ^ i j  '^ml Ij “ S j i S ml * ^ j l  "Smî
By rearranging terms th is  g ives

'^ 0 ^  ° À 4 i  ■ 5̂-j j  ~ ^ i j  ~ '■'S’mra “ 5̂ 1m “S'ml^

-  ( 4 + S j m - g i m  + ^ „ j  -^ m i - S l j )

8.10

+ ^ j j  ~ ^ i 3  " % ^ ^ 4 l'^ '^ m m " 5 ’lm - 5 „ a )

8.11

for symmetrical determinants.

When G, i s  connected from node i  to ground and G from node 1 k q
to ground, from equation 2,9

àA r  à A  <■ 
j ^ =  ^ i i  ®’̂ ïïô: “ ^ i i

hence ^ = y | | L V è r - Æ j  

= i i l l

= ^ ( ^ i ^1 1  " ^ i l ^ l i ^  by Jacobi’ s theorem

8,12

When G. i s  connected from node i  to  ground and G from node 1 K q
to  node m, then from equation 2,9
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°  ^  i l ' 5^  °  mmK q

— 5 k A . 3 (S' + Ç  « C  _ c  )
5 Ĝ >Ĝ  Ĝ \G^ “̂i i l l  Aiinm  A i i i r , -à iin a ^

8.13

by Jacobi’ s theorem 

^G\Gj^ ^ . ^ ^ l - ^ l l  " S i l S l i  ■■■^iiSimii “ Sim Sm i 

-  ^ l i ^ l n + 4 l S ' m i  “ ml + ^ im ^ li>

2
3 G ^ ; ^ ' ' Â ^ 4  4 l  "̂ ^mm "'^Im “ ^na^ " 4 l  ""^im )(4.i

^ A  _ 1 /àA ^ A  /C f  \/C  r  \
"  ( i l  -d m l)

8 .14

8 .4  D erivatives o f the Objective Function with Respect 

to  the Variables 

From equation 3 .3

e=l V

where F i s  the ob jective function and f  i s  given by equation 1,11

where f^ i s  the co e ffic ie n t o f  a network polynomial given by present 

value o f  x^ (i = 1 -  « N) divided by i t s  required value f ^  and 

x  ̂ i s  the m ultiplying factor a lso  determined by x^.

D ifferen tia tin g  F with respect to an element, x^

8.15
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D ifferen tia tin g  equation 8 .15  with respect to an element,

8.16

The terms in  equations 8 .15  and 8 . l 6 are obtained by sub stitu tin g  

the expressions formed by d iffer e n tia tin g  equation 1.11  with 

respect to  x^, e tc .

)

(-

8.17  

1 *ol'kr
*o^kr f, 

,  8.18  

noting that >--5—  = 0 , hence
Ô TC

X k ^ k  *o^ki 
X .  .  3

^  ^l^k^^k *o^kr

8.19

The value o f  x^, the m ultiplying constant, to give a minimum
^  F

value o f  the ob jective function i s  given by putting = 0 .

F =  Æ  ( 7 ^ +
^ 1  ^kr*o

-  2 +

+ 2 X
kr

o f

Therefore

e=l

v®=i f k / / 4

1 /4

8,20
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8 ,5  Optimisation for M ultilinear Variables

Since the c o e ff ic ie n ts  are m ultilinear functions o f the  

variables

C*

8.21

now, in  general, there are simultaneous changes in  a l l  the 

variab les. To consider the e f fe c t  o f  these simultaneous changes 

take as an example only = x^x^x^x^. I f  x^ changes b y ?  3^ 

e tc , then the c o e ff ic ie n t  becomes

^kH + ?  X i)(x2 +S-X2)(x^ + S x^ )(x^  + $Xj )̂

^kf 1 = V 2 ^ ^ 4  + W 4
+ X̂ X̂ X̂  ?X^ + X̂ XgX̂  Sx^

+ XgX^Sx^S Xg + XgXj^Sx^S x^ + XgX^S x^^ X;̂

+ x^Xji^SxgSx^ + X̂ X̂  S x^ S  Xjî  + x^x^? X^S Xĵ

+ x^5 x ^  ^ ^ ^ 4  + Xg Çx^S x^â x^

+ x^S%2^ + Xjî S x^SxgS

+ X^S x^? x^

8,22

i f  the changes x^ are small then \ '

kt-1 '  l̂ k i= l

I f  the changes in  the variab les are such as to make f^ ^  = x^f^^ 

( i . e .  so lu tion) then
f,

o
^  ^ "̂k

k̂r ^ ^k ~ 1=1 ^i à  X

In general, for ary c o e ff ic ie n t  i f  a l l  the c o e ff ic ie n ts  are considered
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simultaneously, then,

“ = V k r -^ k  =

8.23

i . e .  the same as the Newton Raphson formula,

S 2
X are not ignored then in  a sim ilar manner, i t  i s  

seen that 2

V k r -^ k  =  ̂ $ 1
k — 1 “ “ N5

8 .2 4

Terms in S x ^  as above are now ignored.

This i s  a quadratic approximation to the o r ig in a l problem and can 

be solved by the Newton Raphson algorithm.

An i n i t i a l  startin g  point could be the values o f  given  

equation 8,23
N ^  N N o  x2_

^ e = " (""o^kr-V + # 1  S x

• J  C
‘̂ mkj dXj ‘‘‘j= i j ^x^Xj

Therefore ? x  . .  = Sx^ *• J f_^Rr 1 m m me

8.25

Though th is  i s  obtained d ir e c t ly  from the consideration o f  

m ultilinear functions i t  could have been obtained by any function  

which i s  v a lid ly  approximated by the f ir s t  few terms o f  a Taylor’ s 

ser ie s .

I f  the formulation o f equation 1 ,12  i s  required then 8 .24  can 

be rearranged to give

8.26
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8 ,6  Optimum Value o f Common Factor

I t  i s  easy to show that formulations in  equations 1,10 and 1,11  

lead to  im p lic it  expressions for the m ultiplying constant which 

are clumsy to use i f  the formulation in  1,10 i s  rearranged to that 

in  equation 4 ,5

where f  i s  the residue, x the m ultiplying constant and f. the

c o e ff ic ie n t  given by the modified c ir c u it  and f^^ the c o e ffic ie n t
$

containing e f fe c t  o f  extra common factor , C, f^^ = Cf^  ̂ + ^kiv-1’ 

taking the inaugmented c o e ffic ie n ts  as zero in  the appropriate 

places.

Using the objective function defined in  equation 3.3

F = 4
f

F = t (-1
*o^kr

■** I&
f

F = f 2^0^kr
\ i  « -,

6=1 ^k

8.27

The optimum value o f  x i s  given by putting = 0.

i . e . '

^kr'

8.28

putting th is  in to  equation 8,27
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i 4 )k_ 

k '

f*  J
F = N5 -  -7 -Z w T  r?

k

8.29

F = N5 .  t  2ÇAB+ f
C X+ 23Y + Z

8.30

Where X =

k  %  V

k ' 4c

The optimum value o f  the extra conron factor, ^  i s  given by 

0

(2P.A^+ 2AB)( (?X+ 2QY+ Z) = ( (?A  ̂+ 2CAB + B^)(2CX+ 2Y)

AZ -  BY 
G = BX -  AY

8.31

8 ,7  S e n s it iv i ty  o f  C o e ffic ien ts  to  Node Growing

Consider a capacitance grown to  node i  and a conductance to

node j from extra mde NL+1, 1 \  j from considerations o f  network

continuity. In addition to the current rea l elements the elements

C. and G. are embedded in  the network as shown below in  the resu ltin g  
i  J

nodal admittance matrix.



NL

NL+1

+ sCĵ

-sC.

-  U 9  -

+G

-G

NL NL+1

*#sC.

-G

sC|+G
j .

Consider a general network oofactor, A . From equation 2.14

3G im ] ^ ° j m + i  "^''^ '^ini+1 3«jNi+i «  " “kl+ih i+i  - ^ i m + i - S j m i )

( j i  ■'■^m+iKi+1 " 4 + i i  " ^ m .+ ij) )

8.32

where from equation

3CiNL+l " + 4 . + 1  m +i " ^iffl.+i "^ra.+ii^

8.33

and

> G ~ Z 7   ̂ ‘̂ '^NI+1 NL+1 “* S nL+1 ""«^Nl+lj)jNL+1
8.34

Putting these cofactors o f the nodal admittance matrix with the 

added node in  terms o f  the cofactors o f  the nodal admittance 

matrix before the addition  o f node NL+1

3'^jKL+i ^ ^ im ti
s(A + Gjia+i( %  * " S 'ij

8 .35

‘̂ °iKL+l 3GjKL+l (A + ® q K l+ l^ ^ ii " ^ i j  " ^ ji^ )  

8.36
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therefore

= s( S’ + S
^

8.37

In  a sim ilar manner i f  the conductance G i s  connected between 

node NL+1 and the reference node, in  terras o f the cofactors o f  the 

nodal admittance matrix with added node then

^  _ Iv _____^  O  \
^ ^iNL+l^^Nl+lNI+1 >^^^iNI+l <à^NL+lNI+l i^L+l NL+li

^ C  where  i s  given by equation 8,33 and ^ . t
iNI+1 NL+lNL+1 ^  -L^ -L

8.39

Putting these cofactors in  terms o f the co factors o f  the nodal 

admittance matrix before the addition  o f  node NL+1

3 a = A+ S’,

= s(A+ 0^  . . )

à^NL+lNL+l

^^iNL+1 "Nl+lNL+1^ i i

8.40

hence

<5 2 A = s ?
^  ^ i N L + l ' i ^ N L + l N L + l  ^ ^ N L + l à ^ N L +1 N L +1 

8.41

Furthermore, i f  extra common factor i s  given in  form ( sf-C)

/  ‘ 8.42  
or A=

/  '
Where A and A  are o r ig in a l modified network cofactors, 

resp ectiv e ly . This method|pfgrowing nodes can be extended 

to  LGR networks and common factu rs o f the form (s +D) and 

(s^+Cs+D). "
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S IM U L T A N E O U S  GENERATION O F  THE 
COEFFICIENTS OF N E T W O R K  POLY NOM IALS  
A N D  THEIR PARTIAL DERIVATIVES F R O M  
THE NODAL -ADM ITT ANC E MATRIX

Indexing terms: Linear-network analysis. Sensitivity analysis

A method for the simultaneous evaluation of the coefficients 
of a lumber of network polynomials and the formation of the 
first ind second partial derivatives of these coefficients with 
respect to the circuit elements is developed with special regard 
to accuracy and speed of calculation. The method requires 
only the original network to be analysed.

Much interest has been expressed recently in methods for the 
"" calculation of network sensitivities. The method of Director 

and Rohrer’-  ̂ requires two network analyses while only one 
network analysis is involved in the methods of NeilP' * and 
Goddard and Spence.® This letter describes a method for 
the simultaneous calculation o f the coefficients of a number 
o f network polynomials which can be extended to include, if 
required, the simultaneous calculation of their partial deriva­
tives with respect to the circuit elements.

Consider as an example a 3-terminal lumped linear net­
work, whose external terminals are numbered 1, 2 and 0 , 
analysed by nodal analysis with node 0  regarded as the 
reference node. If the network contains a total of ii nodes 
plus the reference node, the nodal equations can be written as

S Y,jEj==I, 7=1 I =  1, 2 , , , , ,  n (I)

Writing A for the determinant of the coefficients Yu, the 
external equations of the 3-terminal network can be written as

Au Au
(2)

E,+ - ^ E 2  = IiAu All:

where A,, etc. are unsigned minors of A,
Suppose first o f all that the network is purely resistive. 

The external equations (eqns, 2) can be obtained from 
eqns, 1 by ignoring the right-hand sides and using Gaussian 
elimination to eliminate £ 3, £ 4 ,  ..., £„ from the first 
two equations of eqns, 1, As A 1122 is given by the 
product o f the diagonal elements produced in rows 3 to /i 
inclusive. A n , A u , A21 and A22 can be obtained 
from the coefficients of £1 and £2  produced in the first two 
equations, the generation of the complete set o f values 
requiring only slightly more work than the calculation of 
A ll22 alone. In practice, in order to improve speed and 
accuracy in the above elimination procedure, selection of the 
optimum pivot and zero jumping would be incorporated,® 

Consider now the calculation of the partial derivatives o f 
A ,u  A u , A21, A22 and A1122, first with respect to the 
coefficients Y,j. As the partial derivative of a determinant \vith 
respect to one of its elements is equal to the corresponding 
cofactor (Reference 7, p. 39), the calculation of the above 
partial derivatives is equivalent to the calculation o f terms 
in the adjugates o f the appropriate submatrices (i.e. sub­
matrices having determinants A n , A u  etc., respectively) o f  
the matrix of coefficients Yij. This in turn reduces to the , 
calculation of terms in the inverses o f these submatrices,

I provided that the values o f their determinants are known,
I which can be accomplished by extending the above elimina- 
V tion procedure as follows. Carry out the same elimination , 
i procedure as before but now including the right-hand sides \ 
t o f eqns, 1. Forward substitute in the conventional manner 
:: to obtain the inverse o f the submatrix Yu { i , j  -  3, 4, ,,,, n),
? whose determinant is A ,u 2, but extend the working through 

to columns 1 and 2 on the left-hand side, Eqns. 3 illustrate, 
for the case /i =  5, the form of the situation thus obtained: 

yii £] F3T2 £2 —
. y21 £1 FT22 £2  — C22 7

TJI £1  ■h}’32 F2 +  T33 Ej =
>'4l £ l + > ’42 £2  4-^44 £* =
Tai £ [+^52 £2  +3*53 £3  =

It can now be seen that the inverses o f  the submatrices whose 
determinants are A n , A22, A u  and A21 can each be obtained 
with the minimum o f additional working. Thus, to find the 
inverse of the submatrix corresponding to A n , the second 
equation in eqns. 3 is used to eliminate £2  from members 
3, 4 , n o f that set o f equations, with the working being 
carried over to the right-hand sides; similarly for the inverses 
o f the submatrices whose determinants are A22,.A u  and A21, 
Thus, as with the calculation of A n , A u , A21, A22 and 
A] 122, the calculation of their first partial derivatives with 
respect to their elements can have a great deal of working in 
common, and it is most economical in computation time to 
evaluate all these quantities, or such as may be required for 
a given application, at the same time. Of course, if the 
original matrix o f coefficients Yu is symmetrical. A u  and 
A ll are equal and all adjugates of symmetrical matrices will 
be symmetrical, and use might be made o f these symmetries 
in order to improve still further the computation time. 
Second-order partial derivatives can now be obtained, if 
required, by repeatedly applying Jacobi’s theorem (Reference 
7, p,' 97) to obtain the corresponding cofactors from elements 
in adjugate matrices already calculated.

It is now necessary to extend the above to the calculation 
o f the partial derivatives o f Ai 1, Ai U 2 etc, with respect to the 
circuit elements; there are two cases to consider. If a circuit 
element, Gi say, is connected between node / and the reference 
node, then only Yu is a function o f Gi, and so the partial 
derivatives with respect to Gi are equal to the corresponding 
partial derivatives already calculated with respect to Yu. If, 
on the other hand, a circuit element, G2 say, is connected 
between nodes i and j ,  then T„, Y,j, Yji and Yjj are all 
functions of G2, and a given partial derivative required with, 
respect to G2 is equal to the algebraic sum of the appropriate 
four partial derivatives previously obtained with respect to 
these coefficients. Thus, for a  reciprocal circuit element G2,

dY,j
dG2

dYu
dGi

dYj,
ÔG2

dYjj
dG2

=  —  1

=  1

(4)

and, ifS ij is the cofactor with respect to Yij in the determinant 
A ll, for example, then

tlAji
dGi

dAii dYu gAii dYjj
dYu dG2 dYjj ÔG2

. aAi, dYu . 3Au dYji 
"T "TTT rr  r

dY,j dGi
dii + djj — Stj — Sji

dYjt dG2 
. . (5)

It remains to extend the analysis to networks containing 
reactive elements. In this case all the determinants involved 
are functions of p the complex frequency, namely polynomials 
in p possibly, for networks containing inductances, divided 
by some power of p, upper limits to which are o f the order o f the 
determinant in question and the total number of inductive 

 ̂ circuit elements contributing to the value o f  that determinant. 
Similarly upper limits to the order of the polynomial for 
RC  and RL  networks are o f the order of the determinant 
and the total number of capacitive and inductive circuit 
elements, respectively, contributing to the value o f  that 
determinant, whilst corresponding upper limits for RLC  
networks are twice the order o f the determinant and the 
sum o f the total numbers o f capacitive and inductive circuit 
elements that contribute to the value o f that determinant. 
The coefficients of the required polynomials can be found by
13 li + C 14̂ Î  + Cisls

2 +  C 2 3 / 3  +  C 2 4 / 4 + G 2 3 7 S

G 3 3 / 3  + C 3 4 / 4 + C 3 S / s  ’ . . .  ( 3)

C4 3  I 3 + C 4 4  I4 + C 4 S is
C33/3+C34/4+C33/3 /



1 Po Po^ --- --- --- Po" Oo A| i(Po)
1 P i P l^  — — — p ” Oi

—

A| 1 ( p i )

1 Pm Pm  ̂ --- --- --- Pm"_ _ a „ _ _An(Pm)_

repeating the above analysis (namely Gaussian elimination 
together with, if partial derivatives are required, forward 
substitution) for a sequence of real values of p sufficient in 
number to enable the polynomial coefficients to be determined 
in any given case. In a program constructed by the authors, 
a polynomial,. A ll(p) say, of known maximum order m  is 
evaluated a total of ni+  1 times at p,, i =  0, 1, . . . ,  ni, giving

(6)

where ai is the coefficient o f p' in the polynomial A u(p), 
The polynomial coefficients arc now obtained by inverting 
the Vandermonde matrix on the left-hand side of eqn. 6 
using an algorithm given by Traub.® This inverse is calcu­
lated once only in each run of the program for each order 
required thereby minimising the overall computation time. 
The partial derivatives of the coefficients of A n , for example, 
with respect to the reciprocal circuit element Gz are obtained 
by equating like powers of p on both sides of eqn. 5. Other 
partial derivatives o f coefficients follow in a similar manner.

The above technique for determining network polynomials 
by carrying out the elimination procedures using real coef­
ficients would seem to offer an improvement in computation 
time as compared with working with polynomial coefficients 
(even though the method recently described by Downs^’ *° 
reduces the number of extra algebraic factors that would 
otherwise be introduced) and also over working with complex 
coefficients particularly in cases where results are required 
for a large number of real frequencies.

A program implementing the above scheme has been 
written in a l g o l  and run on an ICL (Elliott) 4130 computer

having a core store of 2 ps access time. The run time was 3 s 
to calculate all the coefficients of A ,,, A12, A22 and A, 122 
for a 31-element series Cshunt R ladder network, an additional 
14 s being required to calculate all the partial derivatives of 
these coefficients with respect to the circuit elements.

Mill April 1970O, p . D. CUTTERIDGE 
p . H, DI MAMBRO

Department o f  Engineering 
University o f  Leicester 
Leicester LEI 7RH, England

References

1 D IR E C T O R , S. w., and R O H R ER , R . A .: ‘On the efficient computation of 
first-order network sensitivities (for frequency domain studies of 
lumped, linear, time-invariant networks)’, 2nd IFAC symposium 
on system sensitivity and adaptivity, Dubrovnik, Yugoslavia, 
August 1968

2 D IR E C T O R , s. w., and r o h r e r ,  r .  a . :  ‘The generalized adjoint net­
work and network sensitivities’, IEE E  Trans., 1969, CT-16, pp. 
318-323

3 N E IL L , T . B. M .: 'Sensitivity analysis in computer-aided design of 
linear-circuits’, Electron. L ett., 1968, 4, pp. 316-317

4 N EILL, T . B. M .: ‘Comment o n  efficient method for the calculation of 
first- and sccond-order network sensitivities’, ibid., 1969, 5, pp. 
483-484

5 G O D D A R D , P . J . ,  and SPEN CE, R .:  ‘Efficient method for the calculation 
of first- and second-order network sensitivities', ibid., 1969, 5, 
pp. 351-352

6 B R A N iN , F . H . ,  J U N .:  ‘Computer methods of network analysis’ in 
K U O , F. F ., and m a g n u s o n ,  w .  g . ,  j u n .  (Eds.): ‘Computer oriented 
circuit design’ (Prentice-Hall, 1969), chap. 3

7 A iT K E N , A. c.: 'Determinants and matrices’ (Oliver & Boyd, 1944, 
3rd edn.)

8  T R A U B , J . R .:  ‘Associated polynomials and uniform methods for the 
solution of linear problems’, SIA M  Rev., 1966, 8, pp. 277-301

9 D O W N S , T . :  ‘Symbolic evaluation of transmittances from the nodal- 
admittance matrix’. Electron. L ett., 1969, 5, pp. 379-380

10 D O W N S , T . :  ‘Inversion of the nodal-admittance matrix in symbolic 
form’, ibid., 1970, 6, pp. 74-76



S IM U L T A N E O U S  G E N E R A T I O N  O F  TH E 
PARTIAL DERIVATIVES O F  N E T W O R K  
POLYNOMIAL C O E F F I C I E N T S :  FUR T HE R 
DETAILS A N D  RES ULT S

Indexing term s: Linear-network analysis, Sensitivity analysis

A method was described recently by the authors for the simul­
taneous evaluation of the coefficients.of a number of network 
polynomials and the formation of the first and second partial 
derivatives of these coefficients with respect to the network 
elements. The present letter gives further details, with respect 
mainly to the evaluation of second partial derivatives, and 
results.

In a previous letter/ the authors described a method for the 
simultaneous evaluation of a number of network polynomials 
and, if required, o f the first-order partial derivatives o f these 
polynomials with respect to the network elements from a given 
nodal-admittance matrix of the network. It was further 
pointed out that second-order partial derivatives could then 
be obtained, if desired, by repeated application of Jacobi’s 
theorem; further details concerning this will now be given, 
together with a comparison of two possible variations in the 
numerical procedure.

As was previously shown,^ the first partial derivative of 
the minor A n , for example, of the nodal-admittance determi­
nant A with respect to a reciprocal conductance Gi is given by

#An
dGy = àu + ôjj-ôij-ôji ( 1 )

if G1 is connected between nodes i and j ,  which reduces to

dAii
dGi = Sii (2)

if Gi is connected between node i and the reference node, 
where ôij etc. are cofactors of the determinant A n with 
respect to Yu, the element in the ith row and jth  column ci 
the given nodal-admittance matrix.

This analysis can now be extended to yield the second 
partial derivative o f A n  with respect to two reciprocal 
circuit elements Gi and G2 . If Gi is a conductance con­
nected between nodes / and j  and Gz is a conductance con­
nected between nodes k  and /, we have

a'An â An
JGi" dGz^ (3)

and

a « A ,, d / a A „ \  .
dojG, “ ( ic T l “

+ (àjjkk + djjil — Ôjjkl — Ôjjik) 
j ' ~  ( d i j kk  +  d i j i i  — ô i j k i  — S i j i k )

— (djikk +  âjiit — âjikt — Sjdk) (4)

where etc. are second-order cofactors o f A n with respect 
to Yij and T*/. It should be noted that, in this letter, we 
follow Muir’s convention (Reference 2, p. 82) with regard 
to the signs to be associated with higher-order cofactors; 
i.e. the cofactor Suki contains the factors ( - )(+;+k + '̂  
sgn (i -  k) and sgn ( j  -  /) where

sgn (%)= + 1 

sgn (x) =  -  1

jc> 0
15)

The following form of Jacobi's theorem (Reference 3, p. 97)

dijki = -7-- (àijôki-ôuôkj)ISi 1 (6)

can now be applied to change the second derivative from a 
function of second-order cofactors into a function of first- 
order cofactors. On repeatedly substituting eqn. 6, with 
appropriate combinations of suffixes, into eqn. 4 and re­
arranging terms, we have

a=Au 1
dGzdGi All {(<5j( + Sjj—Ô1J—àji)(ôkk+àit—Ski—Sik)

— (Sik+ôji—ôjk—ôii){ôki-\-ôu—ôkj—Sii)} (7)

Since the expressions in the first two brackets in eqn. 7 have 
already been calculated as JA u/JG i and dA n/dG z, respec­
tively (see eqn. 1), for computational purposes we rewrite 
eqn. 7 as

All 1 (^Aii ^Aii
dGzdGi Â7T I dGi dGz

It should be noted that, if Gi is connected between nodes i 
and j  and G2 is connected between node k  and the reference 
node, eqn. 8 reduces to

— (<5/k+ôji—ôjk— Su)

X (Ski+Sij—Skj—̂/i) 1 (8)

a :  A l l  

dGzdGi
_ 1_ 
Ai I

Âii 5Aii
dGi dGi — (Sik—Sjk)(Sni — Skj) (9)

and if Gi and Gz are connected between nodes i and k, 
respectively, and the reference node, eqns. 8 and 9 reduce to

a "  A l l

dGz dG
- = - L  ( 1 ^
1 Ai 1 y dGi

dAii ÔA11
dGi dGz — Sik Si . (10)

If a purely resistive network is being analysed, the nodal- 
admittance determinant and all its minors, such as A n , and 
all cofactors used in the above equations are real numbers, 
and these equations yield the appropriate real values for 
the various partial derivatives. However, if the network 
contains reactive elements, these items can be regarded as 
power series in p, the complex frequency, and the various 
partial derivatives of the coefficients o f the powers o f p in 
A ,, are obtained by equating like powers of p on both sides 
of eqns. 1 and 8 etc. Appropriate modifications to these 
equations must be made in cases where partial derivatives 
are being calculated with respect to one or more reactive 
elements. Thus, if Gi is replaced by a capacitance C i, eqn. 1 
becomes

dAii
OCi

I .e .

since

and

^Ai i  dYg dAg dYjj
JCi ay,, ac,

d Y i j  a c i  d Y j i  a c i  '  ^

aAii
ac,

ay,

=  p ( S i i + S j j - S i j - S j i ) ( 12)

a yjj
aci ac,

dYij _  dYj,
ac, ac.

=  p

=  - p

(13)

and, if G2 also is similarly replaced by a capacitance C2, 
eqn. 8 becomes

a"A,, 1 (aA,, aA,i _

^ (Ski+Sij—Skj — Su)\ (14)

Corresponding results for partial derivatives with respect to 
inducfive elements and for partial derivatives with respect to 
combinations of element types follow in a similar manner. 
In all these cases the partial derivatives of the coefficients o f 
the various powers of p in A ,, are obtained by equating like 
powers o f p on both sides of the relevant equations.

Two variations in the numerical procedure are now 
possible for networks containing reactive elements. Either 
the various terms on the right-hand sides of eons. 8 and 14 
etc. can be found and manipulated as power series in p, or, 
alternatively, the working can be performed in terms of the 
values o f these quantities at various real values o f p, the 
power series corresponding to the partial derivatives being
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obtained at the very end by using the inverse Vandermonde 
matrix as described in the previous le tter / Tf M  is the order 
o f the highest-order polynomial involved, N  is the number o f  
elements and N i is the number o f  nodes, an approximate 
analysis indicates that the number o f operations (equivalent 
multiplications) required in these two methods, for passive 
networks and for large values o f M, N  and N j, is about 
6M^N^ +  2M ^N i^  and respectively, in order to
produce all the second derivatives o f all the coefficients; this 
relatively low  number o f  operations for the second method  
assumes that the required inverse Vandermonde matrix has 
been previously calculated and stored in the machine. Test 
runs for a number o f  CR ladder network examples have con­
firmed that, using the second variation, an improvement in 
speed o f  about threefold is obtained, together also with a 
significant improvement in accuracy particularly in higher- 
order cases.

The following are some results obtained for 3-terminal 
series C shunt R ladder networks with an a l g o l  version o f  
the faster o f the two variations described above run on an 
ICL (Elliott) 4130 computer having a core store o f  2 ps 
access time. The figures o f  merit indicated in Table 1 are 
defined as follows:

For calculation o f first derivatives, 
figure o f  merit

_  time taken by differencing function values 
time taken for direct calculation o f  first derivatives

For calculation o f second derivatives, 
figure o f  merit

_  time taken by differencing first-derivative values 
time taken for direct calculation o f  second derivatives

Table 1

Number o f elements 13 17 19

Time to calculate all 
polynomial coefficients 0-3 s 0 5 s 0 7 s

Time to calculate coefficients 
and first derivatives 
(Figure o f merit)

1 9  s 
(2 4 )

3 7 s
(2 7 )

5 1  s 
(3 0 )

Time to calculate coefficients 
and first and second derivatives 
(Figure o f  merit)

7 0 s  
(4 1 )

17 0 s  
(4 1 )

25-Os
(4 2 )
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S O M E  E X A M PL E S  D E M O N S T R A T IN G  
FEASIBILITY O F  EVOLUTIONARY A P P R O A C H  
TO L IN E A R - N E T W O R K  SYNT HE SIS

Indexing term s: Computer-aided circuit design. Ladder networks, 
Linear-network synthesis. N etwork topology. Optimisation

An initial study has been carried out to determine the 
feasibility of using network evolution as a computer synthesis 
method for linear networks. The procedure employed uses 
numerical optimisation in conjunction with coelhcient match­
ing, and is applied to 3-terminal R C  networks containing two 
internal nodes. An example showing the successful develop­
ment of a parallel-T realisation from an initial ladder structure 
is described in detail.

By an evolutionary approach to linear-network synthesis is 
meant the technique whereby suitable changes in the topology 
o f a network are made to occur in addition to beneficial 
variations in the values of the network elements, the general 
direction o f the whole process being determined by the need 
to reduce a suitable error function, measuring the departure 
o f characteristics currently obtained from those finally 
desired, to ever lower values. Although this idea, or its 
rudiments, has appeared on a number o f occasions in the 
literature,' very little in the way o f definite results appears 
to have been published; however, some examples involving 
only element annihilation and node reduction were given in a 
previous paper.® It is the purpose o f this letter to present 
an example showing in detail the steps in the evolutionary 
synthesis, involving the growth annihilation o f elements, 
but, in this case, keeping the number o f nodes invariant, o f a 
5-node 3-terminal RC network from a given set o f short- 
circuit admittance functions. Throughout this letter, the 
error criterion used is based on a variant o f the method of 
coefficient matching,^ the method o f calculating the network- 
polynomial coefficients and their partial derivatives with 
respect to both real and virtual elements is as previously 
described by the authors®’ ’ and the optimisation technique 
employed is due to Levenberg.®

The synthesis problem to be solved is to realise the set o f  
short-circuit admittance functions

Til =

~ T i 2 —

T22 =

1̂122
1̂2

A1122
All 

Ai 122

14- 10p +  20p^-l-8p^ 
2 + 8p+8p̂

1 -b2p+4p^-t-8p® 
2-h8p-l-8p^

1 -f- lOp 20p^ 4* 8p® 
2 +  8p+8p^

(1)

and the sequence o f changes leading to an exact realisation are 
shown in Fig. 1. The following points should be noted 
about the sequence shown in the Figure:

(a) Analysis o f the start network reveals the presence o f  
zero-valued coefficients in some o f the network polynomials, 
and corresponding non-zero-valued coefficients in the set o f  
short-circuit admittance functions. The first step in the 
synthesis method is to introduce additional network elements 
that result in all the polynomials being o f the correct form—the 
first and second changes shown in Fig. 1. This is effected by 
the following procedure: attention is directed to a zero-valued

(a)

initial structure

9  - I f .

  " T  °

T  " T
(b)

Cc)

(d)

(e)

final structure

Fig. 1 Structural changes leading to realisation o f short- 
circuit admittance functions of eqns. 1

refers to the coefficient of p* in the polynomial An 
C l  =  C2 =  2 74; G I =  G% =  G  3 =  1 37 
a First change: add C3 to generate A ijtl)  and A2 2 O)
Cl = C2  ~  C3 =  2*74; Gi =  G2 =  G3 =  1 *37
b Second change: add C4  to generate A 1 2(2 ) and Au(3). This also generates A.zO) 
Irutiftl r  — =  9 31

:  ï f o î  =  <^3 =  1-37
Cl =  0*37, C2  =  7*43, C3 =  3*33, C4 =  0*85; Gi =  1*90, G2 =  1*48, 6 3 =  1*13
c Third change =  add G4 
Initial F  =  =  1*97
Cl = 0*%  C2  =  7*43, C3 =  3*33, C4  =  0*85; Gi =  1 *90, G2  =  1 *48, G3 =  1 * 13
G4  - 0*072
Final F  =  T,fd  = 1*56
Cl = 0*23, C2  =  9*45, C3 =  2*81, C4  =  0*92; Gi =  1*40, G2 =  1*15, G3  =  1*22

d Fourth change: add G,
Initial F  =  L f d  =  1*47
Cl — 0*23, C2  =  9*45, C3  =  2*81, C 4  =  0*92; G i  =  1 *40, G2  =  1 *15, G3  =  1*22
G4  =  0*53, G5  =  0*084 
Final F  =  =  6 * 7 x l0 -‘<>
Cl =  2*6x10-6, C2 =  4*00, C3  =  2*00, C4  =  2 00; Gi =  2*5x l0 -« , G, =
7*3x10-6, 03 =  1*00, G 4 =  1*00. G, =  2*00
« Fifth change: remove Ci, Gi and G2 
F  =  É /i^  =  6*3 X 10-*®
C2  =  4*00, C3 =  2 *0 0 , C4  =  2*00; G3 =  1 *0 0 , 0 4 =  1 00, G, =  2  0 0
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coefficient that is adjacent, in a given polynom ial, to one whose 
value is nonzero, and the set o f  its partial derivatives with  
respect to some or all possible virtual elements is calculated; a 
nonzero partial derivative indicates that the zero-valued 
coefficient will become nonzero if the corresponding virtual 
element is replaced by a real one o f  the same type. In fact, by 
considering the partial derivatives o f  more than one zero­
valued coefficient, it is sometimes possible to simultaneously 
correct a number o f  these coefficients by the introduction o f  
only one element (first and second changes o f  Fig. 1). It is 
sound policy to prohibit, as far as possible, connections 
between external nodes at this stage, as the encouragement 
o f  the growth o f  connections between internal nodes has 
been observed to generally speed up the evolutionary process.

(b) Optimisation carried out at each stage reached in the 
evolutionary process, i.e. with fixed network topology, takes 
place in the domain o f  the square o f  the independent variables. 
This constrains the element values to be positive during the 
optimisation procedure, and also indicates, by their being 
driven to very low  values, which elements might be removed 
from the network. The removal o f  elements occurs at the 
fifth change in the example shown. In every case, the 
optimisation process is continued until significant changes in 
element values etc. cease to  occur.

(c) The following algorithm was used to determine the type 
o f  network element to grow and also its position in the network 
and its initial value: with the elements already present in the 
network fixed in value and all possible virtual elements 
regarded as independent variables, one stage o f  Levenberg’s 
optimisation algorithm was performed in the domain o f  these 
variables for a number o f  positive values o f  the Levenberg 
parameter A. A  very wide range o f  the parameter X was used, 
with equal intervals on a logarithmic X scale, the vector o f  
corrections to the variables was calculated for each o f  these # 
values o f  X and the component o f  this vector having the 
maximum positive value was noted. This particular com ­
ponent, corresponding to a positive virtual element, was 
then incorporated with the fixed-value elements already 
present in the network, and an objective function, equal to the 
sum o f  the squares o f  the errors used throughout, was 
calculated. This objective function, as a function o f  X, is 
usually discontinuous and multimodal, since, over the wide 
range o f  X used, different components o f  the Levenberg 
correction vector possess the largest positive value. A

golden-section linear search, o f  relatively low  accuracy, was 
then performed between adjacent values o f  the parameter X 
used, followed by a final, more accurate, search over the 
region o f  X associated with the best minimum thus obtained. 
Growing elements by this method takes place at the third and 
fourth stages in the example shown.

The example shown in Fig. 1 is only one o f  several twin-T  
RC  structures, each o f  which has been successfully synthetised  
from different types o f  RC ladder network. Taken together, 
these examples demonstrate that an evolutionary approach 
to linear-network synthesis is now feasible, at any rate, for 
problems o f  this order o f  difficulty.
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’■ - ' -Sunmiary

:^W Tb.e standard synthesis techniques are limited in  that they cannot 

deal e ffective ly  vith  either parasitic elements or constraints and in  

that the range of networks they can adequately synthesise i s  limited.

The computer makes i t  practical to use methods of directed tr ia l  and 

error which do not have these lim itations, such as network evolution.

network evolution is  a process by which changes occur in both the 

network topology and in the values of the network elements in such a 

way as to drive an objective function (some measure of the error 

between current and required response) to ever lower values and 

ultimately solution. In th is  case the error arises from the matching 

of the current set of coefficients of the network polynomials with their 

respective required values. This comparison produces a set of non­

linear equations which on solution give a suitable network topology 

and element values. These non-linear equations require optimisation 

techniques for their solution.

I t  i s  shoivn that network evolution by coefficient matching i s  

feasible in processes which primarily work either by network growth 

or by network reduction. The process of network growth works by 

taking a primitive starting network having the correct network poly­

nomial structure and eliminating and growing elements at the appropriate 

state of development u n til a satisfactory solution is  obtained.

The method of analysis used, in  addition to being both accurate and
1

rapid, also gives the sensitivi^by of the coefficients with respect 

to virtual sero-valued elements. Use of th is information enables a 

suitable choice of type, place in petwork and value of element to grow.

V
V ' V  ,



The network reduction process takes in it ia lly  a network which produces 

the required network polynomials, but with redundant common factors, 

and pares away the excess elements by making them open or short; 

circuit, simultaneously removing excess common factors, until a| 

suitable network is  obtained.

Suggestions are made on ways of improving the evolutionary process
!

and increasing its  scope.

vv.


