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ABSTRACT

The first section of this work consists of an analysis of three 

wave-functions for the ground state of the two-electron series which 

begins with H ”. Two of the wave-functions include electron correlation. 

One does so by means of superposition of configurations and the other 

by the inclusion of explicit correlation factors. For comparison, the 

third function is of the Hartree-Fock type. The correlation within the 

wave-functions is demonstrated by presenting various density functions 

and density difference maps relative to the uncorrelated approach. 

Expectation values and physical properties such as X-ray scattering 

factors, diamagnetic susceptibilities and nuclear diamagnetic shielding 

factors are also presented. By this means it is possible to assess the 

correlation predicted by the wave-functions, with comparison being made 

where possible with results from a more accurate wave-function. In 

addition, the production of the natural expansion for one of the corr­

elated functions gives extra information about the effects of radial 

and angular correlation. The second part consists of a study of a good 

one-centre treatment of the diatomic molecular ion HeH'*’. Both the mol­

ecular formation and the electron correlation in the system are studied 

by means of density differences and expectation values. Natural 

orbitals are used to enable comparison to be made with another HeH'*’ 

wave-function. This comparison shows that the two calculations are 

similar, even though conceived quite differently. A development of the 

general theory of natural spin orbitals is given as an appendix.

Special emphasis is given to this technique as regards two-electron 

systems.
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GEIŒRAL INTRODUCTION.

Since the very beginnings of quantum mechanics, two-electron 

systems have occupied a position of the highest importance and have 

been the objects of a great deal of interest. The reason for this is 

that they form a stepping-stone between the comparatively simple 

one-electron systems and the far more complicated systems with many 

electrons. The value of the pioneering work of Hylleraas in this 

field can hardly be overestimated. Since his original series of 

classic papers, the pace of the work on two-electron systems has 

never slackened. In fact, since the nineteen-fifties it has 

quickened considerably, with the advent of high speed electronic 

digital conqmters. During this modern phase the work of Pekeris has 

been especially noteworthy.

This present work is divided into two main sections. Part I is 

a study of the electron correlation in various theoretical treat­

ments of an isoelectronic series. These approaches study the ground 

states of eight members of the two-electron series beginning with H ”. 

Part II is concerned with a calculation on the simplest heteronuclear 

diatomic system, the molecular ion HeH'*’. In addition, an appendix 

contains a description of the theory of natural spin orbitals. This 

technique is used extensively during the work of Part I and Part II,

In Part I a close study is made of two treatments which
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introduce correlation by different methods. These are two of the 

three methods which Hylleraas introduced in 1928, One method is by 

the superposition of configurations, of which the wave-functions of 

Weiss are examples. The other is by using explicit correlation terms 

in the wave-function, as was used by Green et al. General details of 

these two methods and a description of the actual treatments in which 

they were used are given in Chapter 2.

Examination of the correlation within each treatment is carried 

out by evaluating various density functions and expectation values 

for the correlated wave-functions and for the corresponding Hartree- 

Fock functions. These Hartree-Fock functions are due to Curl and 

Coulson and to Roothaan, Sachs and Weiss, Analysis of the config­

uration interaction functions in terms of natural spin orbitals 

enables a classification to be made in terms of radial and angular 

correlation. All this is presented in Chapter 3, whilst the 

discussion of the results is given in Chapter 4. Where possible, 

results are compared with corresponding values obtained from very 

elaborate correlated wave-functions - those of Pekeris and of 

Frankowski and Pekeris. Special consideration is given to the systems 

with atomic number Z = 1-3, whilst for Z = 4-8 the analysis is less 

extensive and interest is concerned more with an examination for 

overall trends and general behaviour.

The molecule-ion HeH*has received a good deal of attention
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since the early days of quantum mechanics, and a very great variety 

of calculations has been performed on it. Part II of this work is 

devoted to an examination of a good one-centre wave-function for the 

system. This is the calculation of Stuart and Matsen. Chapter 2 

contains the details of the treatment, which is then analysed from 

two viewpoints. In Chapter 3 the molecular formation is examined by 

looking at the whole molecule as the bond length changes. A number of 

density difference maps are drawn to show the changes which occur as 

the intemuclear separation is varied. Then, in Chapter 4, the 

effects of electron correlation in the system are discussed, again 

using density differences. A natural spin orbital analysis is performed 

and the results are compared with those of a similar analysis on a 

different wave-function for HeH'*’. This wave-function is due to Anex 

and the NSO analysis was due to Anex and Shull.

Natural spin orbitals have an important place in this work, and 

for this reason an appendix is devoted to the general theory of NSO^s 

for configuration interaction wave-functions. It is shown that by 

means of the natural expansion a simplification of a complicated 

configuration interaction wave-function may be achieved. This 

simplification is shown to be particularly striking in the case of 

two-electron systems. In this case also, a pleasing degree of 

physical interpretation of the wave-function is shown to be possible.

Tables of results, figures and references may be found at the 

end of the section to which they pertain.



PART I



— 4 —

CHAPTER 1,

INTRODUCTION,

The helium atom and the helium-like ions have been the

subjects of a great deal of study throughout the history of

quantum mechanics. Although exact analytical calculations on

them are not possible, they are simple enough to allow

extremely accurate approximate methods to be used. For the

ground state, in particular, these approximate theoretical

methods have reached the same degree of accuracy as that of

spectroscopic measurements. In this respect therefore, such

systems provide the ideal subjects for testing approximations

which might later be extended to more complex systems.
— +  2 +The series of helium-like ions H , He, li , Be , 

are of considerable interest in physics and astrophysics. 

In particular, the existence of the negative hydrogen ion H

has brought about an explanation of the opaque atmosphere of
c I )the sun . This effect is caused mainly through the small

concentration of hydride ions in the region immediately below 

the photosphere. Because of repetitive electron capture by 

neutral hydrogen and subsequent photodissociation through 

absorption of radiation from the stints interior, the photo­

sphere forms an optical boundary and gives the sun a sharp 

edge.
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These systems are also particularly important, however, 

in any discussion of the correlation problem. As is explained 

later in this section, the essential consideration is of electrons 

with anti-parallel spins, which is precisely the situation which 

pertains in the ground states of the helium-like ions. The 

case of H provides a critical test of any approximation since 

it is only just stable against dissociation into a neutral 

hydrogen atom and a free electron. Because of this low binding 

energy, high accuracy is required of an approximation if it is 

to predict a bound state in this case.

Thus, in an analysis of electron correlation, such as this 

present work, some excellent material is provided by approximate

wave-functions for the helium-like ions h ”. He, ....

We begin by giving a brief resume of the problem of electron 

correlation and of various attempts which have been made to 

solve it.

The Correlation Problem:

In order to obtain accurate solutions of the Schrodinger 

equation for atomic and molecular systems, it is essential to 

take account of the so-called "correlation energy*', which arises 

from the tendency of the electrons to avoid one another. This 

appears in the Hamiltonian as the Coulomb term , and it is 

this term which causes great difficulty in the theory.
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( 2 ) C 3 )The approximation developed by HÂRTREE and FOCK

has enjoyed great success in giving approximations to the wave-

functions for electronic systems. However, this famous method

suffers from one serious inadequacy; this is its inherent

inability to account fully for the correlation of the electrons.

The solution itself is based on the "independent particle" model.

It is expressed as an antisymmetrized product of "one-electron

functions", and implicit in this is the fact that electrons of

like spin are surrounded by the "Fermi-hole" - that they are

unlikely to be found close to one another. It is unable, however,

to allow for the "Coulomb-hole" - that is, the tendency of

electrons of unlike spin to avoid one another. It is in the light

of this basic limitation of an otherwise excellent approximation
C 4 )

that correlation energy has been defined as the difference

between the exact nonrelativistic energy and the energ^y from 

the Hartree-Fock method, i.e.

E = E , - E 1(1)corr nonreL H-F

With this definition in mind, this analysis of certain 

correlated wave-functions has been undertaken, A solution of the 

Hartree-Fock type has been used as a standard "non-correlated" 

treatment, relative to which the merits of certain correlated 

treatments have been examined.
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In his original study of the ground state of helium and
C 5 )

of the He-like ions, HYLLERAAS introduced three quantum-

mechanical methods of treating electron correlation. These 

have been used continuously ever since, and have proved to be 

of the deepest importance in the development of this field.

Before describing these methods in detail, it is worth­

while mentioning at this stage a characteristic feature of the 

wave-function for two-electron systems. Describing only the 

singlet state (a similar procedure is possible for the triplet), 

the total antisymmetric wave-function may be factorized into 

a space part and a spin part:

' [»CI)/3C2)-aC2^^CI)] 1(2)

Here, represent co-ordinates of space and spin, while

r^, r^ represent space co-ordinates only. ^ denotes a spin 

component +J and /3 denotes a spin component -J, Thus, * Y 

represents a total (antisymmetric) space-and-spin singlet 

wave-function, which may be factorized into the product of a 

symmetric space part and an antisymmetric spin part. In the 

case of the triplet, the space part is antisymmetric and the 

spin part symmetric. Because of this simplification for N 

(number of electrons) = 2, the main interest may be concentrated 

on the space functions.



- 8 -

The three methods introduced by Hylleraas have come to be 

commonly known by the following names:

(a) Superposition of configurations.

(b) Explicitly correlated wave-functions.

(c) Different orbitals for different spins.

In the first method, also known as configuration inter­

action (Cl), one chooses in theory a complete set of one- 

electron basis functions yr^(r^). These are then combined to 

form the total wave-function, which may be written as

YCI,2) = E  C  , ^  Cr ) 1 ( 3 )
kl k I ^ 1 2

with C|^ = . These coefficients are found using the

variation method. In practice, the basis set cannot be complete

because it would be unmanageable, and only a finite number of

basis functions are chosen, Hylleraas found that the series of

configurations converged rather slowly, and that far quicker

convergence could be obtained by introducing the inter-electronic

distance r ̂  explicitly into the solution. This method produced

"explicitly correlated wave-functions", (b) above. Another
C 6 )application of this method was by JAMES and COOLIDGE in

their treatment of the hydrogen molecule. Method (c) is now 

described as the splitting of the closed shell, (Is)^, into an 

open shell, (Is'ls '), i.e. using different orbitals for
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different spins (DODS).

Against the disadvantage of their slow convergence, 

configuration interaction wave-functions have the advantage that 

they may be generalized to systems with N greater than 2 without 

great difficulty. However, no physical significance can be placed 

on the configurations making up the total wave-function. To 

overcome this disadvantage, the original Cl wave-function may 

be thrown into the form of the natural expansion, which is the 

superposition of configurations of most rapid convergence within 

a given basis. Details of the general theory of natural spin- 

orbital s are given in the Appendix.

Wave-functions containing r^ explicitly have enjoyed 

very great success, but certain drawbacks limit their application. 

Firstly, it seems impossible to give them a simple physical 

interpretation, and secondly, extension to include cases with 

more than two electrons produces extreme computational 

difficulties.

In the following pages, an analysis is presented of wave-

functions which attes^t to overcome the problem of electron

correlation as outlined above. So great was the accuracy of the 
C 7 )

work of PEKERIS that the "exact" correlation energy has

been defined in terms of the difference between his energies and 

those from a Hartree-Fock treatment (c.f. equ, 1(D).
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CHAPTER 2.

WAVE-FONCTIONS AND ENERGIES.

Wave- fiinot ions i

The wave-functions studied in this analysis of electron 

correlation are exas^les of two of the types of correlation, (a) 

and (b), discussed in the previous chapter. Thus the first type 

is a case of superposition of configurations, and the second 

arises from the inclusion of inter-electron co-ordinates explicitly, 

For each treatment of the ground state, the total wave-function 

was factorized to give a product of space and spin. The anti­

symmetric spin function was then integrated out. Details of the 

individual treatments studied are given below, together with a 

description of the wave-functions which were used as criteria 

when comparing results.

Function It This was the extensive Cl calculation of 
C 8 )WEISS . In undertaking this calculation, his purpose was to 

investigate the method to see just how good were the results 

obtainable using expansions tractable on the existing conqmting 

equipment. At the same time, he sought a compromise between the 

accuracy of the approximation and its usability. His resulting 

normalized wave-functions for the two-electron series from 

H “(Z=d) up to 0^*(Zs8) were superpositions of thirty-five
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configurations. These were all the possible configurations

which could be made up from the basis functions, which were;

Is, 2s, Is', 2s', 3s'; 2p, 3p, 2p', 3p'; 3d, 4d, 5d; 4f, 5f;

5g. (Here, the prime among a group of orbitals with the same

L quantumrnumber indicates a different orbital exponent.)

This led to fifteen (ss) configurations, ten (pp), six (dd),

three (ff) and one (^). These basis functions were
C 9 )

normalized Slater-type orbitals (STO s ), defined by

[C2n)!]' 2

where t , 9 ,<f> are spherical polar co-ordinates and Y, areu m
spherical harmonics. Seven orbital exponents were used, obtained 

by optimization at a few selected points along the series, with 

graphical interpolation in between. This entire process was 

repeated for a 20-configuration function, but only the best 

function is studied here.
C lO )Function II: The functions of GREEN ET AL were chosen

as exa3q)les of accurate wave-funetions which include correlation 

by means of explicit, Hylleraas-type terms. The total wave- 

function was of the form

.  fCr ,3  f C y  g ( r ,
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and various analytical forms were chosen for the functions 

f(r^) and g(rj ,rj^)* The energetically "best" functions were, 

for z = 1 - 5:

f(r^) = exp(-Zr^) + c.exp(-kZr^)

e<r|.r2,r,2> =» 1 +«^12 + p < r  -Pj)

For Z a 6 - 8, the function g(r̂  '*2 ***1 2  ̂was the same as given 

above, but f(r^) became a simple exponential,

Function III; This was the normalized Cl function of 
CM )STUART and MATSEN . The interest in such a wave-function

came about indirectly, through a study which was being made of 

the molecular ion HeH'*’. (For details, see Part II.) In their 

paper on HeH'*' Stuart and Mat sen present limited Cl functions 

for the systems He and Li'*' (which HeH'*' becomes at R =Oo and 

R = 0, respectively). These functions were included in the 

present analysis for cospleteness and to test the correlating 

ability of a relatively small basis set. They consisted of ten 

configurations, made up from basis functions which were, as 

with Weiss, normalized STO's, The basis functions were Is, 2s', 

3s'; 2p, 3p; 3d, giving six (ss) configurations, three (pp) and 

one (dd). Four independent orbital exponents were used, which 

were optimized iteratively. Thus this function afforded a nice
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comparison with the far more elaborate Cl treatment of Weiss.

Function IV: For the "non-correlated" function, relative

to which the merits of the correlated functions were examined, 

the Hartree-Fock function of the form

YCI,2) = <^(r ) )

was chosen. (r.) is the normalized self-consistent field (SCF)

function. For the purposes of ease of computation, these SCF

orbitals were chosen to be of analytical form. They were, for
H~, the fitted functions of CURL and COUL8(]N^° X12 )  ̂ for

He through to the "best" SCF functions reported by
CI4 )ROOTHAAN, SACHS and WEISS

The natural expansion, which has been mentioned earlier 

and is described in detail in the Appendix, affords a useful way 

of analysing correlation effects. For atoms, these effects may be 

classified according to whether they are radial or angular  ̂̂  .

If we constrain two electrons to the same radius vector, the 

only way they are able to keep apart is by assuming different

(a) Table I p.648 of this paper contains some numerical errorsS 

C.A. Coulson, private communication. Corrections to the 

analytical SCF wave-function for H” have been given by these 

authors, see ref.(13).
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positions along that radius vector; this is known as "radial 

correlation". Since s-functions are independent of angles, this 

is the only type of correlation which a wave-function composed 

of s-functions alone can introduce. (This is the basis of the 

split-shell technique, DODS, described above.) However, if we 

instead allow the electrons some angular freedom, they are able 

to keep apart by so-called "angular correlation". In the main, 

angular correlation will be introduced if angularly-dependent 

functions, p, d, etc., are used.

When a Cl function is thrown into the form of the natural 

expansion, the transformation matrix between the two forms is 

in general block-diagonal. The result of this is that some 

natural orbitals are conposed purely of s-functions, others 

purely of p-functions, and so on. In the case of Weiss' Cl 

treatment, for exanple, the natural expansion reduces to fifteen 

configurations, of which five are composed of s-type orbitals, 

four of p-type, three of d-type, two of f-type and one of g-type. 

(Each of these fifteen configurations has, of course, the *S 

symmetry of the ground state of the systems concerned.)

By truncating and re-normalizing the natural expansion it

is possible to analyse separately and in more detail the effects 

of angular and radial correlation. Further explanation of this 

is given in the next chapter, when the various calculated 

expectation values are discussed. The results obtained in this
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CI6,I7)study lend support to the resemblance, noted by other authors , 

between the first natural orbital and the Hartree-Fock orbital,

Use is made of this apparent similarity during the analysis.
C 7 )The wave-functions of PEKERIS and of FRANKOWSKI and 

CI8)
PEKERIS were chosen as criteria in this analysis of correlation. 

Pekeris has produced extremely accurate approximations for H~,

He and Li*, attempting to reach to within 0.001 e.V. of the 

total nonrelativistic energies of the ground state of these 

systems. His wave-function depends only on r ,r^ and r̂  ̂ , and 

is of the form

-^Cu+v+w) Oo
YCI,2)  = E AClm n)  LCu)  L ( v )  L ( w )

I  m n»0

where u,v and w are perimetric co-ordinates. The coefficients 

A are determined from the wave equation, and the L are norm­

alized Laguerre polynomials. Pekeris also presents numerous 

expectation values, and these are taken as the standard when 

comparison is made with those from the other treatments*

Frankowski and Pekeris have produced very accurate wave-

functions for the ground states of the whole two-electron 

isoelectronic series for Z = 1 - 10. These were variational 

calculations containing the unconventional terms InCr^

[ln(r^+r^)]^ and (r^+i^) The results for these were better 

than anything published previously, though to the accuracy



— 16 —

required in this present analysis, they agree exactly with those 

of Pekeris. Consequently we have used the Pekeris results for 

Z =5 1 - 3 and the Frankowski and Pekeris results for Z = 4 - 8.

Interest in the He and Li* wave-functions arose through 

the aforementioned study of HeH*. These systems, with the addition 

of H“, form the beginning of the two-electron series. During the 

study of these three systems, certain trends seemed to be 

appearing, and it seemed of interest to extend the study to higher 

members of the series. For these reasons, the presentation and 

discussion of the results is in two sections. In Part A, H “,He 

and Li"*" are analysed, in some considerable detail. Part B deals 

with the next five members of the series, though in rather less 

detail. Hence, the various tables and figures are labelled "A" 

or "B", depending on which of the two discussion sections they 

concern.

Energies:

Tables I A & B contain, in order of excellence, the total 

energies obtained from the treatments listed above. The percen­

tage correlation energy is defined in terms of the results of 

the elaborate calculations by Pekeris and by Frankowski and 

Pekeris. The "exact" correlation energy has been taken as the 

difference between the Pekeris and the Hartree-Fock energies.

The energies calculated from the first natural orbital X, of
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Weiss and of Stuart and Mat sen for the various systems complete 

the energy tables.

Tables n  A & B give the coefficients o^ associated 

with the natural orbitals X|̂  in the natural expansions of the 

wave-functions of Weiss. Each term in the natural expansion is 

a configuration of S-type symmetry, conposed of basis orbitals 

whose symmetry-type is represented in the tables by . This 

information proves useful later vdien Table Z  is discussed in 

conjunction with Tables II A & B .
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CHAPTER 3.

ELECTRON DENSITIES AND EXPECTATION VALUES,

In order to show up the extent and type of correlation 

which the selected treatments contain, a number of density 

functions and expectation values were calculated. Taking the 

results of Pekeris as a standard, comparison was made, where 

this was possible, between results calculated from the chosen 

wave-functions and those from Pekeris^ work. The various 

density functions and expectation values are described in some 

detail below.

Density functions:

It is to be expected that the correlation within a wave- 

function would have a significant effect on the two-particle 

radial density distribution D(r| ,r^), which is defined as

DC r r ) = 2
I’ 2

YCl 2) Y(l 2) r^dOdO 3(1)' ’ 1 2  1 2

where dO^ = sin8̂  dd^ d<̂  ̂ and i = 1 or 2. In these calculations 

this function is such that

DCFj dr̂  dr̂  = 2. 3(2)
O O
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Thus, this function is a measure of the probability of the 

electrons having, simultaneously, radial coordinates in the 

range r̂  to r̂ fdr̂  and r̂  to +di^ . In particular, in a

wave-function which makes allowance for correlation, it is to be

expected that the value of D(r ,r^) at r =r^ would be smaller

than that for a non-correlated function, and should itself be

small. In order to show up such facts as these, we have drawn 

maps of the two-particle radial density difference function 

AD(r^ ,rg), which is defined as

AD(r ,rg) = D(r, - D(r, , 3(3)

i.e. it is the difference between results from a correlated 

treatment and corresponding results from the best non-correlated 

treatment ; the latter is here represented by the Hartree-Fock 

approach.

The correlated approach studied here with the best energy 

was that of Weiss, so dD(r^ ,r^) maps were drawn using these 

functions only. Further, it became difficult to represent them 

on a reasonable scale for Z greater than 3, which explains why 

the maps in Fig, I are only for H~, He and Li+. However, these 

are quite sufficient to show up the incipient trends which occur,

Comparison between the different correlated treatments is 

demonstrated in Fig, 2 . The curves here are of the function
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ADCrjsPg), the diagonal of the ADCr, surface, plotted as

a function of r̂  =r^. All the studied correlated functions are 

represented in this figure, including those of Stuart and Matsen 

for He and Li"* , From these curves it is possible to compare the 

relative positions and depths of the minima which occur.

TableniA gives more detailed information than Fig, 2 .

It contains the (r̂  ,rg) co-ordinates of the maxima and minima in 

each AD(rj,rg) surface. Since the differences are of limited value 

on their own, they are accompanied in Table EH A by the absolute 

values of the Hartree-Fock D(r|,r2 ).

The one-particle radial density distribution D(rj) is 

required for the evaluation of several of the expectation values. 

This function is defined as

D(r,) = D(r,,r2> drg 3(4)

and will henceforth simply be referred to as D(r). Graphs of D(r) 

for the various treatments are shown in Fig. 3 . They show

clearly the effects of correlation within the different approx­

imations. Once again, these are only drawn for H”, He and Li"̂  

because they become graphically indistinguishable beyond Z = 3,

To assist in the interpretation of these curves, the origins for 

He and Li'*' have been displaced.
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Expectation values*

Quantum-mechanical averages of

These quantities are important because, through their 

dependence on different regions of the electron density D(r) 

they are a guide to the accuracy of a particular approximation*

It was mentioned above that the evaluation of certain expectation 

values requires the function D(r). Among these are the <r">, 

where -2 < n < 4. They are defined by

<r"> = D<r) r*' dr , 3(5)

This value is clearly the same whichever of the two electrons 

is specified, so that in this work the values of <r"> have been 

calculated to be consistent with the definition

<r"> = <r" + r ^ >  . 3(6)

These average values are useful when estimating how good 

a certain approximation is at predicting the density in a part­

icular region. Consider, for exanq>le, r~^. This becomes very 

large near the nucleus. Consequently, the function defined in 

3(5) for n = -2 gives a good indication of how well the wave- 

f unction is representing the density in this region* Similarly, 

the function in 3(5) with n = 4 emphasizes the behaviour of the
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wave-function in the far-outer regions* Expectation values of 

r" are presented in Tables IZ A & B .

In Chapter 2 it was mentioned that the natural expansion 

allows a method of analysing separately the effects of radial 

and angular correlation. Each configuration in the natural 

expansion for a two-electron atom is composed of basis orbitals 

of a particular symmetry-type: s, p, d, etc. Thus, starting with 

the natural expansion truncated to the first configuration 

(which bears a strong resemblance to the Hartree-Fock function), 

successive build-up to the total wave-function is equivalent to 

adding in correlation:- radial from a "radial" configuration of 

s-orbitals, and angular from an "angular" configuration of p, or 

d, or f, etc., orbitals. If an expectation value is calculated for 

each of the successive degrees of truncation, it may clearly be 

seen how each type of correlation affects that particular 

expectation value. In the case where the average values are of 

r", information is given as to how correlation affects D(r).

Table 3Z contains values of <r"> calculated for different degrees 

of truncation of the Weiss Cl functions.

Nuclear diamagnetic shielding factor, o’ :

When atoms are placed in a homogeneous magnetic field,

internal diamagnetic fields are brought about. This was shown by
C 1 9 -2 1  )

the molecular beam experiments of RABI and his co-workers *
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A larmor precession of the electrons takes place and produces 

at the nucleus a shielding field which is proportional to the 

external field. The shielding factor is a measure of the extent 

to which the effective field acting on the nucleus is altered 

from the external field. Although the effect is small, it is 

important in measurements of nuclear magnetic moments.

The nuclear diamagnetic shielding factor for atoms and
, (22,23)ions 18 given by

(T = <r-'> 3(7)

where o is Sommerfeld^s fine-structure constant.

Atomic diamagnetic susceptibility, % %

The concept of magnetic susceptibility is associated with

the interaction between a system and an external homogeneous

magnetic field, which induces a magnetic moment in the system.

For diamagnetic substances, X is negative and independent of

the temperature. With the nucleus as the centre of reference,
C24 )

the diamagnetic susceptibility is given by

A - (25)
X = -0,79199 * 10"® <r^> . 3(8)

Because of the <r^> - dependence of this quantity, it is a
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test of how well a particular approximation represents the 

density in the outer regions of the atom,

C 26 )
Root-mean-square deviation from the mean, Ar;

This quantity, though strictly speaking not an expectation 

value, is defined as

= I - (r)21 , 3(9)

and is thus derived from expectation values.

Here, = <r^>/2 and (r)̂  ̂ = <r>/2. Evaluation of this

statistical quantity gives a measure of the spread or diffuseness 

of each D(r) curve.

Values of or , X and Ar are all presented in Tables 3ZL A & B .

X-ray scattering factor, f(X);

The scattering of X-rays by an atom is due almost entirely 

to the electrons in the system. When a monochromatic beam of 

X-rays is scattered by a gas, the scattered radiation may 

be observed to be a combination of two components. One of these, 

the "coherent" part, is characterized by having the same 

frequency as the incident radiation. The other, the "incoherent" 

part, arises from the Compton Effect, and has a series of 

frequencies all lower than that of the incident rays, (This
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latter conq)onent will not be considered further in this work*)

The atomic scattering factor f(X) of an atom is the ratio

of the an^litude of the radiation scattered by the atom to

the amplitude A^ which an electron would scatter under the same
C 27)

conditions according to the classical theory . In terms of 

intensities

f^ = I; / Ig . 3(10)

Considering the spherical part of the density, the atomic 

scattering factor may be defined as

4. (X) =
^0 »

D(r) sin 4ffXr dr 3(11)

4rXr

where X = sin ê- / • 6 is the angle of scatter and X is the 2/ X
wavelength of the radiation.

Graphs have been drawn (see Fig, 4 ) of f^o as a function

of the variable X, When X tends to zero, f ĝ tends to the value 
*Oo

D(r) dr , the number of electrons in the atom* For large X 
O

values, the scattering curve depends essentially on the inner 

regions of the density. Thus, considered as a whole, scattering 

factors are a manifestation of the overall density distribution.
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Other expectation values:

The average value of cos ŷ  ̂  , where is the angle

subtended at the nucleus by the electrons, gives a measure of
CIS)

the angular correlation included in a wave-function . For 

a non-correlated wave-function, the average value would be 

zero, leading to a corresponding value for y^^ of 90°. For a 

correlated wave-function, however, the tendency of the electrons 

to avoid one another would lead to a value of <cos ^ ̂  such 

that the corresponding ŷ  ̂  would be greater than 90°. TablesZIA & B 

contain values of the complete quantum-mechanical average of 

cos ŷ  2 » while Table IH A contains values evaluated at the

maxima and minima of the AD(rj ,r̂  ) surfaces.

Allied to <cos y^2 ^ is the quantity <f ̂ ' 2̂ ^* which is 

defined by

.T2 > = <r, r^ cos y, ̂  >. 3(12)

It is required in the investigation of the properties of two-
C 28 )

electron systems using the oscillator strength sum rules
3 — 3 —The Dirac delta-functions Ô (r^) and Ô (^12  ̂ occur in

the evaluation of relativistic corrections to the ground state 
(29)energy. .In addition they are needed in the calculation of

C 30 )
certain radiative corrections . Their expectation values are
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defined by

<ôCF|)> = YCF,,0) YCr,,0) dr^ 3(13)

and

<  « (f )> = 3(14)

Results for all these expectation values are given in 

Tables 3Z1 A & B .
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CHAPTER 4.

DISCUSSION OF RESULTS.

For reasons mentioned previously it was found most 

convenient to present and discuss the results of this work in 

two sections. The first of these, Part A, deals with H",He and 

Li*, and the second, Part B, with the remaining systems, Be^^ • 

0*+, with Z = 4 - 8 ,

A. H~, He and Li+:

The results in Table I A for the total energies of the 

systems show that the energies from the functions of Weiss and 

of Green et al are each in very good agreement with the results 

of Pekeris, each providing a steadily increasing percentage of 

the Pekeris total energy as Z increases. Regarding the percentage 

correlation energy the Weiss results show a steady decrease with 

increasing Z and the Green et al values show a larger steady 

decrease. Each provides a high percentage, however, and even 

the limited Cl treatment of Stuart and Matsen provides around 

94% of the correlation energy.

Turning to the energies obtained from the wave-functions 

truncated to the first natural orbital X| for the Cl expansions 

of Weiss and of Stuart and Matsen, a strong similarity is seen
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to exist between these and the Hartree-Fock energies. This is

most noticeable for He and Li*; for H~, the ^reement is not

quite as good. The basic limitation, mentioned earlier, of the

Hartree-Fock approximation is strikingly illustrated for H^,

because its failure to predict a bound state is almost entirely

due to its inability to account fully for the correlation of

the electrons. These points thus lend support to the findings 
C 16,17 )

of other workers regardix^ the closeness of X, and

Hartree-Fock energies for two-electron systems. By means of a
C3I )

pertubation expansion, NA2jAR0FF and HIRSCHFELDER have in

fact shown that the two orbitals begin to differ from each- 

other in the second order.

Table HA comprises a list of the coefficients c^ in the 

natural expansion of the Weiss wave-functions. These coefficients 

correspond to configurations derived from basis orbitals of 

symmetry X- . In view of the points mentioned above, it seems 

xeasonable to consider the wave-function truncated to the first 

natural orbital configuration as the "non-correlated" function, 

so that all succeeding configurations contribute to the corre­

lation in the system. This standpoint will be adopted in this 

and later discussions.

The c^ may be considered to provide a measure of the 

relative importance of configurations composed of basis orbitals 

of symmetry . As Z increases, C| increases whilst all the
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other coefficients decrease. If all those above the first are 

to be considered as correlating configurations, then this may 

be interpreted that correlation effects become relatively less 

important as Z increases - a conclusion which may be also 

reached from the energies in Table lA , Further, the ĉ  ̂

representing radial configurations show a more rapid decrease 

with increasing Z than do those representing angular 

configurations,

As well as these general trends, however. Table E A allows 

a clearer insight into the way correlation is introduced into 

the systems as Z increases. For H~, c^ corresponds to a radial 

configuration, and is considerably larger than c^, which 

corresponds to an angular configuration. For He, c^ now 

corresponds to an angular configuration, and is roughly equal to 

c^, which now corresponds to a radial configuration, A similar 

state of affairs exists for Li*, except that c^ has now becon# 

considerably larger than c^. This indicates a trend such that 

in H"̂ , the initial introduction of radial correlation is more 

isportant than that of angular correlation. The situation becomes 

reversed for Li*, with He representing the transition stage, in 

which radial and angular correlation are almost equally balanced.

In order to extend this, a measure of the total radial 

correlation "character" and of the total angular correlation 

"character" are presented in Table H A  , These are, respectively.
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the sum of the squares of the which correspond to radial 

configurations (other than the first) and the sum of the 

squares of the c^ which represent angular configurations. They 

show a similar switch-over in relative magnitude, with He as the 

approximate transition point.

The AD(rj yr^) surfaces in Fig, I are negative along 

the diagonal, indicating the anticipated lowering due to 

correlation of the Cl density relative to the Hartree-Fock 

density for r̂  sr^. The three surfaces, drawn on the same scale, 

show the effect of the increasing nuclear charge by being 

pulled in strongly towards the nucleus. As may be seen from the 

plots of AD(r^ sr^) in Fig. 2 , the minima become deeper and

closer to the nucleus as Z increases. Whereas for He and Li* the 

Weiss functions provide the deepest pair of minima, for H~ the 

results from functions I and II are more closely related. The 

results from function III for He and Li"*" fit quite well into 

the general pattern.

From the more detailed information in Table HI A , several 

interesting points arise. The coordinates of the maxima and 

minima in AD(r| fr^) for functions I and II are in quite good 

general agreement. The minima become larger in magnitude as Z 

increases, but this quantity expressed as a fraction of the 

Hartree-Fock value for D(rg=r^) becomes considerably smaller.
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A similar trend exists for the maxima. When <cos Y. - >_ _ isI 2 Tj .Tg

evaluated at a minimum, i.e. r, =rg, a more negative value 

(indicating a larger corresponding Y, 2 ) is obtained than when 

the evaluation is made at a maximum. Finally, for the maximum 

of each D(rj ̂ r^) surface, the quantity (r2 -r,) decreases 

somewhat more rapidly than <cos y, _> as Z increases.

Examination of the D(r) curves in Fig, 3 reveals that as Z 

increases, the correlated and non-correlated one-particle radial 

density distributions soon become indistinguishable, to within 

graphical accuracy. For H “, the Hartree-Fock density is more 

contracted towards the origin than either of the correlated 

densities. Though it is not evident from the graphs, a study of 

the data for He and Li* shows a similar effect.

The most obvious trends from the <r*' > values in Table 12 A 

are that, whereas for H " the Weiss function gives a slightly 

more diffuse D(r) than that obtained from the function of Green 

et al, the opposite is the case for He and Li*. The results 

from functions I and II show good agreement throughout with those 

of Pekeris, and those from function III are also quite good by 

conparison.

Although the <r^> values for He and Li* from the Hartree- 

Fock functions are in quite good agreement with those from X,
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(Weiss), a large discrepancy occurs between these values for H~, 

This may well be connected with the point noticed in the study 

of Table I A , that the only discrepancy of any size between the 

energies from the Hartree-Fock and the X, (Weiss) functions 

was for H “,

From the A r  values also (Table21 A), a large discrepancy 

between Hartree-Fock and X j (Weiss) values only occurs for 

H". A study of the Ar values for functions I and II confirms 

the trend apparent from the <r"> values, that whereas for H ” the 

Weiss function gives a slightly more diffuse D(r) than that of 

Green et al, the opposite is the case for He and Li*.

The results in Table 2  allow examination to be made of 

changes in <r"> as correlation effects are gradually introduced 

into the wave - fune t ion. (This table should be studied in 

conjunction with Table E A  , which contains information about the 

symmetry-type of the basis orbitals cozposing each configuration 

in the natural expansion.) Correlation seems to produce the 

greatest effect in the values for H “. Further, the general 

implication which these values reveal is that within each 

natural expansion, the inclusion of configurations involving 

s-orbitals causes D(r) to become more diffuse, whereas addition 

of those composed of angular-type orbitals usually results in 

a contraction. There seems to be no general rule at this st%e 

as to the number of terms required for convergence to the total
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value.

The X-ray scattering curves in Fig. 4 become indistin­

guishable for He and Li+. For H ”, the Hartree-Fock curve assumes

the same position relative to that for the correlated functions
(32 )

as was found by SILVERMAN, PLATAS and MATSEN in a study of 

the scattering factors produced by various correlated and 

uncorrelated functions. Included in Fig. 4 are curves for the 

one-electron systems with the same Z values.

The nuclear diamagnetic shielding factor, cr , and the 

atomic diamagnetic susceptibility, X , depend on <r“*> and <r^>, 

respectively, so that the values for these quantities in Table 21 A

follow the same trends as were pointed out earlier for the <r">
(33)

values. HAVENS gives experimental values for X for helium 

of -1.906 at room temperature and -1.91 at liquid air temperature, 

showing negligible temperature dependence.

Though there are no values for <cos 7, ̂  > from Pekeris, 

cocparison of <fj ,r^> values shows steadily improving agreement 

between the results from Weiss and those from Pekeris, as Z 

increases. For the Weiss functions, the values of ^ corres­

ponding to <cos 2 > are: for H “, Y, g = 96.03° ; for He, y, g = 

93,69°; and for Li*, Y| g “ 92,50°. The values from Green et al 

for <cos Y|2 > and <?| are considerably more negative than
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those of Weiss. The Stuart and Mat sen values give only poor 

agreement with those of Pekeris.

Values of the Dirac delta-function 6^(r|) from functions 

I and II are in reasonable agreement with the Pekeris values, 

with the Weiss results in general being closer. The Xj (Weiss) 

values are in poor agreement with the correspending Hartree-Fock 

results. The X̂  (Stuart and Mat sen) and Hartree-Fock values 

show a much better agreement for 6^ (r, ̂  ), whereas the Green et 

al results show poorer agreement with the Pekeris values with 

increasing Z.

B. Be^*, B^*,

The energy values of Frankowski and Pekeris are used as 

the yardstick in Table I B . The percentage correlation energy 

supplied by the Weiss functions seems to have reached a steady 

value of about 98%, whereas the values of Green et al for this 

quantity show a continued steady decrease. The excellent ^ree- 

ment found in Part A between the energies from the first natural 

orbital X | and the Hartree-Fock treatment is seen to be maintained 

throughout the two-electron series. The effect of neglecting all 

terms in the natural expansion of the Weiss wave-funetion other 

than the first leads to energy differences from the total function 

of 0.0406 (H“), 0.0428 (Li*), 0.0440 (B^*) and increasing slowly
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to 0,0446 The "exact" correlation energy has values

0.0398 (H“), 0.0435 (Li*), 0.0448 (sf*) through to 0.0454 (0*+).

The coefficients in Table E  B show a continuance of the 

trends developed by those in Table E A .  All above ĉ  decrease 

with increasing Z, and those corresponding to radial configurations 

decrease more rapidly than those representing angular config­

urations. An assessment of the total radial and total angular 

correlation "charactex^ is again included.

From Table IE B, it can be seen that the minima in A D(r| 

become deeper and closer to the nucleus as Z increases, though 

their depths as a fraction of the Hartree-Fock values for D(rg 

become considerably smaller. Similar features occur for the 

maxima. All these trends are in accord with those from Part A.

Fig. 5 illustrates graphically the variation in the magnitudes 

of the maxima and minima as Z increases.

The <r®> values for X| and the Hartree-Fock functions 

are generally close, but deeper examination reveals the following 

pattern. For <r"^> and <r~*>, the Xj values are consistently 

larger than the Hartree-Fock results, whereas they are lower for 

larger values of n. Referring back to Part A, a similar trend 

existed for Li* although the change-over occurred, not at <r"*> 

but at <r^>. For He and H ”, however, the Xj values are always 

larger than the Hartree-Fock values.

A study of the <r"> values from truncated natural expansions
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again shows that the corresponding D(r) expand when configurations 

involving s-orbitals are added in. The effect rapidly decreases, 

however, as Z increases, and for this reason details are not 

given. The effect of angular configurations was less clear cut.

In paretheses in Table 12 B are the number of terms required in 

the natural expansion for convergence to the total <r"> value 

to be reached. These now show that the number of terms tends to 

decreases with increasing Z,

Table 2 E  contains values of the one-particle density p(f) 

at the nucleus for the Cl wave-function of Weiss and the Hartree- 

Fock function. The values for the former are consistently higher 

than for the non-correlated function - an effect similar to that 

found in a simple molecule, see Part II - for all values of Z. 

Except for H “, the percentage change with respect to the Hartree- 

Fock result is small, and decreases markedly with increasing 

atomic number.

The values of <cos Y| g > from the Weiss functions, in Table 

2IB, show the trend continuing from Part A. The corresponding 

values of y, ̂  are : Be^* 91.89°, B̂ "̂  91.51°, 91.26°,

91*08° and 90.95°. The values from Green et al for 

<cos Yj 2 > and <f, .rg> are again rather more negative than the 

corresponding Weiss results.

In a paper on the properties of the helium isoelectronic
< 30 )

sequence, DALGARNO and STEWART use pertubation calculations.
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and give formulae for the quantities <r, and X • These 

formulae are

<r,.r2 > = 0.379 0.240 ,
,4

-0.79199 6 + 4.78125 + 4.35616

Using these we have calculated values for <f| *^2^ and X , and 

these are contained in brackets in Table 21B, below the corres­

ponding Weiss results. For Z = 1 - 3, the results are as follows,

the Weiss value first in each case:

<r,.?j> H~ -0.676 , -0.619 .

He -0.0646, -0.0624.

Li* -0,0172, -0.0170.

X H “ -18.85 , -12 . 0 .

He -1.889 , -1.878 .

Li* -0,707 , -0.711 .

Thus, the high accuracy which Dalgamo and Stewart expected from 

their inverse-Z expansions is well justified, except in the case 

of the lowest Z values.
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CHAPTER 5,

SUMMARY AND CONCLUSIONS.

The analysis presented in the previous pages allows some 

remarks to be made about the particular methods of approximation 

which were studied and about the way they represent the 

correlation in the systems.

The energy tables presented show that both the 

configuration interaction and the explicitly correlated 

functions give a good account of the electron correlation and 

give high percentages of the Pekeris "exact" energy. Even the 

limited Cl, function III, is able to give a reasonably high 

percentage of the correlation energy.

These tables also show evidence which gives strong support 

to the results of other workers as regards the similarity 

between the Hartree-Fock orbital and the first natural orbital 

for two-electron systems. The only discrepancy of any size in 

the energies from each of these is for H~, The expectation 

values calculated from each approximation are also in general 

close together, and this similarity tends to improve for 

larger values of Z. This is particularly noticeable for <r">, 

where, for H~, there is a large difference between their
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respective values for larger values of n. These results imply a 

Z-dependence of the difference between the Hartree-Fock 

orbital and the first natural orbital, in the sense that the 

discrepancy decreases with increasing Z.

There is a certain amount of evidence in our results 

Tdiich indicates that, as Z increases along the series, angular 

correlation replaces radial correlation as being more important. 

For instance, the natural orbital coefficients show that, 

initially at least, radial correlation is more important in 

H" but angular correlation becomes dominant to a greater and 

greater extent as we move up the series. The total cozrrelation 

"character" is also largely radial for H“, but this again 

soon changes to angular and becomes increasingly so. Although 

each of the C|̂  (for i>l) decreases as Z increases, the ones 

which represent angular configurations decrease slower than 

those which represent radial configurations. Thus, while 

correlation as a Tdiole becomes relatively less important, 

angular correlation decreases more slowly than radial.

Further, from the AD(r, ,rg) surfaces we saw that the 

maxima and minima had magnitudes which became smaller and 

smaller percentages of the corresponding Hartree-Fock values. 

These effects could be explained by saying that the increasing 

nuclear charge shows its effect by inhibiting the radial free­

dom of the electrons, hence causing a relative increase in
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correlation by means of angular separation.

The <r"> values calculated as a function of truncation

of the natural expansion show that, in general, D(r) becomes

more diffuse when a radial configuration is introduced,

whereas an angular configuration generally contracts it. These
(34 )

conclusions are in accord with those of GODDARD .

The expectation values calculated from the Weiss Cl 

functions generally have good agreement with those of Pekeris. 

This is especially true for <5,.rg> values. The results of 

Green et al are also good by comparison with Pekeris for lower 

Z values, but they become rather erratic for higher atomic 

numbers. In particular, the values of <cos Y , ̂  > and <r| .r2 > 

seem rather too negative, suggesting that the correlation 

factors contained in these wave-funetions over-estimate the 

importance of angular correlation. Also, as indicated by the 

A r values, the density seems to become over-diffuse with 

respect to Pekeris, as Z increases.

The curves of the X-ray scattering factors showed that 

changes due to correlation effects were small, as Z increased. 

The agreement between (X) for H “ and the H atom at large X 

is good, but this agreement is not apparent for He and Li*. 

Thus, thou^ for H" it might be conjectured that the "inner" 

correlated electron was in a state similar to that for the one- 

electron atom, this does not seem to carry over to systems
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with higher Z values. In general, we tend to agree with EUSTGI 
(35 )

and TIWARI that it is not possible to extract any

reliable information on the angular and radial correlation of 

electrons from the scattering factors.

The general agreement for X and <r| .rg> between the 

Weiss results and those from the expansions of Dalgamo and 

Stewart is good except for low Z values. This is an expected 

result, in view of the inevitable slow convergence of their 

inverse-Z expansions for such values.
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W aT»function

H*

Ener/gr v
C a .u .) c o r r . ( * )

Re

Energy ^  
—E ( a . u . ) corr»^*^

L i *

Energy ^  
-E  ( a . u . )  * c o rr .^ *^

I  -  W eiss 0 -5275 99*2 2-9032 98*8 7*2792 98*4

11 -  Green e t a i

- .
0 -5 2 7 3 9 8 -7 2-9026 97 -4 7-2781 95*9

I l l  -  S . and 
( 10- C . l . ;

2 -9015 94*8 7*2771 93*6

(e )
IV  -  H artreo -F o c k 0 - 4G80 o ( h )

2 -8617 o ( h ) 7*2364 0< ^

X ,(W e l8 s ) ( f ) 0 '4 8 6 9 2*8617 7*2364

X ,C S . and 2*8616 7*2364

Pekeris^®^ 0*5278 100̂ ^ 2-9037 100̂ ^ 7*2799 lo o t‘d

Table I A . Wave-functions and Energies, Z = 1-3.

<a) % correlation = 1 0 0  |̂ [e - E^.p]j .

(b) Reference 8 .

(c) Reference lO .

(d) Reference II.

(e) Reference 14 .

(f) First natural orbitals in the appropriate natural expansion

(g) Reference 7 .

(h) By definition.
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1
if lie U *

\ = l cI

1 - 0-97152 (ej ■0-59593 - 0-99840 (0)

2 0-20768 (b ) 0-06191 (p) 0-04149 Cp)

3 0-11000 (p) 0-06163 (c) 0-03691 ( • )

4 0-01775 (d) 0-01265 (d) O-OC903 (d)

! 5 0-01574 Cp) 0-01114 (p; 0-00779 (p )

0-01411 (b ) 0-00790 (d ) 0-00521 (a)

0-00585 ( f ) 0-00448 ( f ) 0-00326 (f)

! 8
1

c -00511 (d) 0 • 0390 (d) 0-00280 (d )

9 , c -00378 ( r ) 0-00328 (p ) 0-00230 (p )

10 1 0 -CO 333 (s) 0 -CC192 (s ) 0-00131 (b )

11 0-00250 (g ) 0-00180 (g ) 0-00129 (g )

12 I 0-00205 ( f ) 0 '00160 Cf) 0-00115 (f)

13 , 0-00181 (d) 0-00132 (d) 0-00091 (d )

14 I .-00161 (p) 0-00087 (p) 0-00055 (P)

15 1 0-00005 (b) 0-00065 (a) 0-00044 (e)

E C .^ C \» iî O 04334  
1*1 ‘ ^

0  00 3 8 6 0 00139

E CX 4 * )  O 01276 
I 1 1

0  00 417 0 0 0 1 8 9

Table EL A . Coefficients c^, and symmetry of the basis 

orbitals, associated with each in the natural expansion 

of the Weiss Cl wave-functions, Z = 1-3,
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1 4 5 6 1
7 8

X .
«3 + 0 '  +

I
----- X.I X̂

1 -•99916 (s) --99947 (s ) --99967 (0 ) --99978 (s ) — 99984 (a )

2 0-03112 (p ) 0-02489 (p ) 0-02072 (?) 0-01775 (p ) 0-01554 (p )

3 0-02657 (a ) 0-02052 (0 ) 0-01679 ( b) 0-01422  (a ) 0-01233 (a )

4 0-00694» (d) 0-00554» (d) 0-00476 (d ) 0-00409  (d ) 0-00361 (d )

5 0-00594 (p ) 0-0047 9 (p ) 0-0 0 4 0 0 (p ) 0 -0 0 3 4 6  (p ) 0 -0 0 3 0 3  (p )

6 O-OO5G3 (s ) 0-0 0 3 0 9 (s ) 0 -0 0 2 5 6 (c ) 0 -0021 9  (e ) 0 -00191  (a )

7 0 -00254' ( f ) 0-00201 ( f ) 0 -0017 2 ( f ) 0 -0015 0  ( f ) 0 -00131  ( f )

8 0 -0 0 2 1 5 (d ) 0-0 0 1 7 4 (d ) 0-0 0 1 4 7 Cd) 0 -0012 7  (d ) 0-00112  (d )

9 0 -0 0 1 7 5 (p ) 0-0014 0 (p ; 0-0 0 1 1 7 (p) 0-00101 (p ) 0 -0 0 0 8 8  (p )

10 0-0 0 0 9 9 (r.) 0-00081 (s ) 0*000 67 (c) 0 -0 0 0 5 8  (a ) 0 -0 0 0 5 0  (g )

11 0 -0 0 0 9 8 (g ) o-oooCo (g ) 0 -0 0 0 6 6 (u ) 0 -0 0 0 5 7  (g ) 0 -0 0 0 4 9  (s )

12 0*000 89 ( f ) 0 *00065 ( f ) 0 -0 0 0 5 6 ( i ) 0 -0 0 0 4 9  ( f ) 0 -0 0 0 4 4  ( f )

13 0 -0 0 0 6 8 (d ) 0 -0005 4 (d ) 0 -0 0 0 4 5 (d ) 0 -0 0 0 3 9  (d ) 0 -0 0 0 3 4  (d )

14 0 -0 0 0 4 0 (p) 0-00031 (p ) 0-0 0 0 2 6 (p ) 0-00021 (p ) 0 -0 0 0 1 9  (p )

15 0-0 0 0 3 4 (c ) 0-00028 (n ) 0 -0 0 0 2 3 ( e ) 0 -0 0 0 2 0  (a ) 0 -0 0 0 1 7  (a )

E c ^ tX ..s ) 0 -0 0 0 7 0  
1*1  ̂ ^

0 -0 0 0 4 3 0 -0 0 0 2 8 0-00021 0 -0 0 0 1 5

E c fc x .s )  0-00106 
i  ̂ '

O-OGO68 0-0 0 0 4 7 0 -0 0 0 3 5 0 -0 0 0 2 7

Table H  B . Coefficients C|̂ , and symmetry of the basis 

orbitals, associated with each Xĵ  in the natural expansion 

of the Weiss wave-functions, Z = 4-8.



- 47-

Or- O  r-

99 99 99

i l
99  9 ?  9?
99 99 99

OO

00

T- IR
OO OO
rvj 6

OO OO 
ru O

CO OO
N Ôr- OV- O

00 R MR 
79

99 99 99
il
99 99

II00

rr\ r-
OJ 00

Ô Ô 9?  ô ôo  r* O O
K\00 IT\A -

KN00 CO

K\

•H

HMMMM

IC•H
U
•o

•H
Ns
<
B
o
lodH

m
§•H4->O
«H
(0
m*rl

+»

.S

Q
<HO
CQ&

î■P
gO

bû•Hk
0
0CA



— 48 —

Cyot«a lia x lm Hint an

ùD (r r ) 
1’ 2

1 _
G ( ' , = Y n [2 ^1-^2 r  2

O 'lC 0*Gf> 0*1679:'. 2*96>39C
0*16

0*58

-.53410

-*07606

4 . 9&S92

1-74415

5 5^ 0 '1 4 0.4G 0*21334 5*0472T)
0*14

C * 46

- * i»C429

— 0(1774

9*35218

2*72393

C 0*1?

1

0 .5 8  . 0*26033 7-X0C9
0*10

0*33

-*55485

— 11935

11*14324

3*97193

7 D’OZ 0-52 0*20951 6*91CC7
0*10

0*32

—* 68493 

-'14110

19*56/631

5*74086

3 Ü&+ O-OL

L.

0*26 U*356(y)' 13*05598
0*08

0*28

— 80293

- • 163 .̂̂ )

23*04321;

7*39508

Table PI B . Maxima and minima in the ADCr, surfaces for 

the Weiss functions, Z = 4-8.
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S y e te o W a v e fu n c tio n <  r ' >

1 3656

< r > <  r ^ > < : > < 4 >

I  -  W eiss 2*2345 5*4243 23*792 150*25 1243*8

I I  -  G re e n  e t  a l 2*2412 1*3683 5*3846 23*412 147*61 1231*9

H- I V  -  i l a r t r e e  Fock 2*1596 1*3694 5 *044l 19*394 105*57 771*16

X |(W e is s ) 2*2125 1*3693 5*3009 22*501 137*98 1117*9

P o k e rie ^ 5*4204 23*827

I  -  W eiss 12*037 3*3764 1*8587 2*3843 3*9212 7*8759

I I  -  G re e n  e t  a l 12*025 3*3754 1*8592 2*5871 3*9312 7*9105

I I I  -  S . an d  M. 12*043 3*3784 1*8574 2*3787 3*8950 7*7594

He IV  -  l i a r t r e e  Fock 11 *991 3*3744 1*8544 2*3696 3*8811 7*7756

(W e is s ) 12*01*3 3*3795 1*8546 2*3722 3*8889 7*7867

X| (S « and M .) 12*022 3*3785 1*8543 2*3685 3*8683 7*6903

P e k e r is ^ *^ 12*035 3*3766 1*8589 2*3870

I  -  W eiss 29*858 5*3757 1*1455 0*89215 0*88117 1*0551

I I  -  G re e n  e t  a l 29*822 5*3722 1*1450 0*89295 0*88415 1*0631

I I I  -  5 ,  and H . 29*878 5*3778 1*1449 0*89080 0*87794 1*0473

Li"^ IV  -  H a r t r e c  Fock 29*811 5*3716 1*1440 0*89036 0*87865 1*0521

X |(W e is s ) 29*870 5*3781 1*1445 0*89041 0*87845 1*0507

X| (s. an d  M .) 29*860 5*3780 1*1442 0*88943 0*87576 1*0438

( a )
P e k e r is ^ 1*1456 0*89256

Table E  A . Values of < r " >  , Z = 1-3,

(a) Reference 7 .
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!

< r -2 >

H

r
< r - '  > < r “ >

, ( b ) 2-21247 1-36927 22-501 1117-9

2 2-25396 1-37064 23-880 1256-0

3 2-23394 1-36561 23-793 1244-1

4 2-23339 1-36547 23-790 1243-7

5 2-23320 1-36547 23-789 1243-5

6 2.23448 1-36563 23-793 1 2 /3-9

7 2-23441 1-36562 23-792 1243-8

8 2-23438 1-36561 23-792 1243-8

9 2-23439 1-36562 23-792 1243-8

10 2-23452 1-36563 23-792 1243-8

11 2-23451 1-36565 23-792 1243-8

12 2-23450 1-36563 23-792 1245-8

13 2-23450 1-36563 23-792 1243-8

14 2-23450 1-36563 23-792 1243-8

15 2-23450 1-36563 23-792 1243-8

< > ■ < - - >

lie

12-043 3-37951 2-37219

12-010 3-37547 2-37317

12-038 3-57657 2-38391

12-036 3-37638 2-38393

12-036 3-37653 2-38409

12-037 3-37642 2-38427

12-037 3-37639 2-38427

12-037 3-37638 2-38428

12-037 3-37638 2-38431

12-037 3-37638 2-38435

12-037 3-37638 2-38435

12-037 3-37638 2-38435

12-037 3-37638 2-38435

12-037 3-37638 2-38435

12-037 3-37638 2-38435

u

7-78669

7-78068

7-87247

7-87195

7-87281

7-87498

7-87490

7-87491

7 - 8751<*

7-87587

7-87585

7-87584

7-87584

7-87585

7-87590

29-870

29-834

29-859

29-858

29-857

29-858

29-858

29-858

29-858

29-858

29-858

29-858

29-858

29-858

29-858

5-37810

5-37520
5-37587
5-37571

5-37567
5-37572
5-37570

5-37569
5-37569
5-37569

5-37569

5-37569

5-37569

5-37569

5-37569

0-89042

0-89066

0-89206

0-89207

0-89210

0-89213

0-89213

0-89213

0-89214

0-89215

0-89215

0-89215

0-89215

0-89215

0-89215

1.03071
1-05053

1-05490
1-05488

1-05495
1.05508

1-05508

1-05308

1-05510

1-05514
1-05514

1-05514
1-05514
1-05514

1-05514

Table g  . Values of selected <r" >  , obtained from the 

natural expansions of the Weiss wave-functions, truncated 

after m  terms. The convergence value for each < r " >  is 

indicated by the dotted line. Each expansion consisted 

of a total of 15 configurations.

(b) The symmetry for the basis orbitals associated 

with each additional configuration included in the 

truncated expansion is obtained by inspection of Table H A
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System W avefu n ctio n a X 10*5
Co J

X Ar < C O S y  >  
12

< r r  > 
1 2

< 6̂ cr )>  
1

< ) > 
12

I  -  WeisB 2'4240 -18*850 2*1308 -0*10500 -0*67622 0*16555

I I  -  G reen e t  a l 2*4287 -18*549 2*1113 -0*10958 -0*72913 0*16672 0*2984 X i(T*

H“ IV  -  H a rtre e " F o c k 2*4307 -15*366 1*8265 (0) (c ) 0*15464 1*2984 X 1(T*

X| (W e ia a ) 2*4305 - 17*828 2*0557 (c ) (c ) 0 * l 6l 68

P ekerle^^^ -18*878 2*1374 -0*68731 0*16455 0 2742 X 1( f *

I  -  Weiss 5*9931 -1.8891 0*57315 -0*06431 -0*06455 1*81558

I I  -  Green e t  a l 5*9913 -1*8913 0*57391 -0*07188 -0*07549 1*80926 0*11717

I I I  and M. 5*9967 - 1*8846 0.57167 -0*03768 -0*03724 1*80949 0*14288

He IV  -  H a rtre e -F o c k 5*9896 -1*8774 0*57014 1*79821 0*19093

(W e is s ) 5*9987 -1*8759 0*57113 1*81465

X, (S .  and M .) 5.9969 -1*8765 0*56978 1*80092 0*19143

P ekeris^^^ 5*9936 -1*8912 0*57408 -0*06474 1*81043 0*10635

I  -  W eiss 9.5419 -0.70685 0*34358 -0*04367 -0*01717 6*86218

I I  -  G reen e t  a l 9.5457 -0.70749 0*34459 -0*04957 -0*02080 6*83225 0*57492

I I I  -  S . and M. 9*5457 -0*70578 0.34306 -0*02545 -0*00986 6*86207 0*64537

L I * IV  -  H a rtre e -F o c k 9-5347 -0*70543 0*34347 6*83702 0*77935

(W e is s ) 9*5462 -0*70548 0*34314 6*86291

(s. and M .) 9*5461 -0.70470 0*34265 6*85040 0*77170

Pekeris^*^^ -0.70718 0.34382 -0*01725 6*85199 0*53389

Table 21 A . Some expectation values, Z = 1-3,

(a) Reference 2 5 .

(b) Reference 7 .

(c) Due to the independent particle nature of the 
Hartree-Fock treatment, and to the fact that X| 
is composed of s-type orbitals, this quantity 
is identically zero.



- 53 -

2 Syoten W avefunction A r a X 10^
C O )

X < COS y > 
12 < '2 >

1 1 -  Weinc 0*24574 1 3 0 9 1 5
-*3 6 7 1 4

(-*3 6 9 7 6 )^ '’^
-0 3 2 9 2

— 00686

(- *0 0 6 8 6 )(^ )

4
11 -  oraon o t c l 0 -25166 12*8576 -*3 8 3 4 2 -*0 4 2 7 3 — 00997

I  -  H a rtro e -P o d : 0*24560 13*0903 -*3 6 7 3 4 (c ) (c )

(W ejoe) 0*24552 13*0CX*9 -*367 24 (c ) (c )

I  -  Weloc 0*19136 16*6413
-*224 91

(-*2 2 5 9 6 )
— 02641

-*003 40

(-•0 0 3 4 2 )

5
■ I I  -  Green o t a l  

I  -  H artreo -Fock

0-19720
1
,0*19151

16*5117

l 6 *64o4

— 23671

-•2 2 4 6 2

— 03470 — 00515

(W oiss) 0 *1 ,1 2 6 ^C’CÂ>h2 -•2 2 4 7 7 . . . . . .

I  -  WeiCO 0*15663 20-1906
-•1 5 1 6 8

( — 15223)
- .0 2 2 0 3

— 00193

( - . 00194)

6 c''""
I I  -  ür®. n o t o l 

I  -  H a rtro o -F c d ;

: ' 1 5  32

0 * 15*668

;?0 * 11O3

20*1906

-*1 5 3 8 3  

— 19164

-*028 10 -*0 0 2 7 8

(Wei; c) 0*15665 20*1924 — 15162 . . .

I  -  Wei CO 0*13266 2 3 *7 'X)6
-*1 0 9 1 6

(-*1 0 9 4 7 )
-  01890

— 00119

( - * 00120)

7
I I  -  Green o t a l  

I  -  H a rtrc e -F o d :

0*13591

0*13266

23*6625

2 3 *7'+06

— 11050

— 10915

-  32379 — 00173

(W oico) 0*13266 23*7424 — 10913 . . .

I  -  Woico 0*11506 27*2906
-*06231

( — 03253)
-  01657

-*0 0 0 7 9  

( — ooo'o )

8 0 ^*
11 -  Groon o t a l  

I  -  H artroo -i'ock

0*11567

0*11502

27*2143

27*2996 i
- •0 3 3 1 5

— 08231

-*02379 -*0 0 1 1 5

I
(Vteiao) 0 * V1502 27*2924 1 -•0 8 2 2 9 * * * . . .  1

L ____ 1

Table 3CE B . Some expectation values, Z = 4-8.

(a) Reference 2 5 .

(b) The figures in parentheses are derived from 
the inverse-Z expansions of Dalgamo & Stewart.

(c) Due to the independent particle nature of the 
Hartree-Fock treatment, and to the fact that X; 
is composed of s-type orbitals, this quantity 
is identically zero.
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V. Sycto!.'! Welcs Groon ot al liartx*eo«Koc?c

1 k“ 0*53107 0*33342 0*30913

2 Ho 3-65124 3*61853 3'59627

3 13*7332 13*6669 13*6732

y i -4330 32*7607 34*3585

5 69-5780 66-2518 69* 456‘4

6 122-964 121-805 122*825

7 198-434 196*793 198*242

6 0 ^ 299*805 297*660 299*609

Table V il . Density pCf ) evaluated at the nucleus.
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He

r. r.

H'

r.

Fig. I . Maps of the two-particle radial density difference 
A D (r|,r2 > for H“, He and Li^. These are obtained by subtracting 
the two-particle radial density D (r | ,r 2 ) for the Hartree-Fock 
functions from the corresponding values for the Weiss functions.
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-o OO

- 0  05

\ ̂
-OlO

He

-o 20

-O 25

— 0 30

O O 0 5 I O 3 02 015 2 5
P| = Tj

Fig, 2 . The two-particle density differences AD(r| »r2 ) for 
H“, He and Li+, plotted as a function of r | =r2 . The solid curves 
represent the functions of Weiss ( I ) , the dashed curves those of 
Green et al ( I I )  and the dots within circles those of Stuart and 
Matsen ( I I I ) .
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3.0

D(r)

He

0-5

O O
O O O O O O 1-0 4-0 5 02 0

Fig. 3 . The radial density distributions D(r) for H , He and Li .
The solid curves represent the functions of Weiss ( I ) , the dashes 
those of Green et al ( I I )  and alternate long and short dashes 
those of Stuart and Matsen ( I I I ) . Results from the Hartree-Fock 
functions are represented by crosses. The origins have been 
separated for c la r ity .
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2 0

He2.0

OO

0.8

He

0  4

o. o
0.0 0 40-1 0-30 2

Fig. 4 . The coherent X-ray scattering factor f^^CX) for H~, He
and L i * f  vhere X=(sin®/2)/x. The solid curves represent the functions 
of Weiss ( I )  and the dashes those of Green et a l ( I I ) . Results from 
the Hartree-Fock functions are represented by crosses. Also shown are 
the X-ray scattering factors from the corresponding one-electron 
systems.
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0-0

- 0.2

— G • 4

A D

—  0 . 6

—  0*8 X —

73

A D
M A X

G- 4

G.2

G.G

Fig. S . Values of the minima ( —  X— X— ) and the maxima
ADMAXvarious Z.

(— O — O — ) vhich occur in the ADCr, fTg) surfaces» for
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NATURAL EXPANSIONS FOR THE WEISS FUNCTIONS.

In the following pages are presented the natural expansions

of the wave-functions of Weiss for H through to O^^ . Alongside

each coefficient is the symmetry of the basis orbitals composing 

the corresponding natural orbital. Within each natural orbital 

the basis orbitals are ordered as followsS

Is 2s Is' 2s' 3s
2p 3p 2p" 3p' 3d
4d 5d 4f 5f 5g
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NATURAL EXPANSION WEISS H

COEFFICIENTS: 1 . - 0 . 9 7 1 5 2 s
2. 0 , 2 0 7 6 8 s
3. 0 . 1 1 0 0 1 p
4. 0 . 0 1 7 7 5 d
5. 0 . 0 1 5 7 4 P
6. 0 . 0 1 4 1 1 s
7. 0 . 0 0 5 8 5 f
8. 0 . 0 0 5 1 1 d
9. 0 . 0 0 3 7 6 P

1 0 . 0 . 0 0 3 3 0 s
1 1 . 0 . 0 0 2 5 0 9
1 2 . 0 . 0 0 2 0 5 f
1 3 . 0 . 0 0 1 8 1 d
1 4 . 0 . 0 0 1 6 1 P
1 5 . 0 , 0 0 0 0 5 s

NATURAL ORBITALS:

1 . 0 . 5 2 4 6 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 0 5 6 4 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 5 8 2 2 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 0 5 1 7 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 1 1 5 2 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

2. - 0 . 9 5 5 4 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 4 9 6 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 . 0 3 7 0 8  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0

0 . 1 7 7 9 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 3 4 1 5 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3. 0 . 0 0 0 0 0
0 . 4 9 6 7 6
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 7 4 9 9
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 , 0 4 3 8 8
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 3 2 8 6
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

4. 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 1 3 4 3 8

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 5 6 2 0 1

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 3 5 1 0 7
0 . 0 0 0 0 0

5. 0 . 0 0 0 0 0
- 2 . 2 1 1 7 5
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 1 9 2 7 8
0 . 0 0 0 0 0

0 . 0 0 0 0 0  
1 . 0 7 9 6 8  
0 . 0 0 0 0 0

0 . 0 0 0 0 0
1 . 2 7 5 0 9
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

6. - 2 . 1 7 5 7 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 6 8 2 3 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 1 . 6 3 1 4 7
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3 . 1 3 1 5 5
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 2 9 8 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0
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7. 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 7 0 8 5

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 9 3 2 5 3

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

8. 0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 7 9 7 2 6

0 . 0 0 0 0 0
0 . 0 0 0 0 0
1 . 9 3 8 9 9

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0  
- 1 . 1 7 3 6 3  
0 . 0 0 0 0 0

9. 0 . 0 0 0 0 0
1 . 9 1 0 5 8
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 2 . 2 6 2 4 9
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 2 . 8 3 4 0 2
0 . 0 0 0 0 0

0 . 0 0 0 0 0
2 . 5 5 4 0 4
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 0 . 6 . 4 7 0 6 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 2 . 7 6 8 6 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 3 . 8 8 4 8 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0

6 . 6 5 1 1 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 7 . 8 8 4 7 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 1 . 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 , 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0  
0 . 0 0 0 0 0  
1 . 0 0 0 0 0

1 2 . 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 3 . 1 6 1 4 9

0 . 0 0 0 0 0
0 . 0 0 0 0 0
3 . 0 2 1 6 5

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 3 . 0 . 0 0 0 0 0  
0 . 0 0 0 0 0  

1 1 . 6 3 4 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 6 . 3 9 7 2 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 5 . 8 7 3 5 9
0 . 0 0 0 0 0

1 4 . 0 . 0 0 0 0 0
- 1 9 . 8 6 2 0 0

0 . 0 0 0 0 0

0 . 0 0 0 0 0
1 0 . 4 0 2 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 9 7 1 5 5
0 . 0 0 0 0 0

0 . 0 0 0 0 0
1 0 . 2 5 8 0 0
0 , 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 5 . - 8 . 3 1 1 0 2
0 . 0 0 0 0 0
0 . 0 0 0 0 0

5 . 3 7 3 2 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 . 6 3 0 3 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 0 9 8 6 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3 . 2 3 6 4 7
0 . 0 0 0 0 0
0 . 0 0 0 0 0
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NATURAL EXPANSION WEISS He

COEFFICIENTS: 1 .
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
1 3 .
1 4 .
1 5 .

- 0 . 9 9 5 9 8
0 . 0 6 1 9 1
0 . 0 6 1 6 3
0 . 0 1 2 6 5
0 . 0 1 1 1 4
0 . 0 0 7 9 0
0 . 0 0 4 4 8
0 . 0 0 3 9 0
0 . 0 0 3 2 8
0 . 0 0 1 9 2
0 . 0 0 1 8 0
0 . 0 0 1 6 0
0 . 0 0 1 3 2
0 . 0 0 0 8 7
0 . 0 0 0 6 5

s
P
s
d
P
s
1
d
P
s
9
f
d
P
s

NATURAL ORBITALS:

1 . 0 . 8 0 9 9 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 3 5 5 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 1 3 0 5 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 4 6 6 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 1 7 5 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

2. 0 . 0 0 0 0 0
0 . 6 7 0 2 2
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 3 4 3 6 7
0 , 0 0 0 0 0

0 . 0 0 0 0 0  
- 0  . 0 4 0 4 2  
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 3 8 8 1
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3. - 1 , 2 7 6 3 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 3 9 4 7 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 8 1 3 7 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 7 9 6 5 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 2 2 0 1 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

4. 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 2 7 3 6 8

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 4 9 6 1 8

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 6 9 3 2
0 . 0 0 0 0 0

5. 0 . 0 0 0 0 0
1 . 2 8 5 9 4
0 . 0 0 0 0 0

0 . 0 0 0 0 0  
- 1 . 8 4 3 4 5  
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 0 . 0 3 9 9 7
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 6 3 2 0 9
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

6. - 1 , 6 8 9 9 5
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 5 9 9 1 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 3 2 0 4 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 3 4 8 3 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

2 . 9 2 9 8 6
0 , 0 0 0 0 0
0 , 0 0 0 0 0
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7. 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 1 1 6 6 2

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 8 8 8 6 9

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

8. 0 . 0 0 0 0 0  
0 . 0 0 0 0 0  

- 1 . 4 7 7 3 7

0 . 0 0 0 0 0
0 . 0 0 0 0 0
2 , 3 0 6 2 4

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0  
- 0 . 8 3 0 2 4  
0  . 0 0 0 0 0

9. 0 . 0 0 0 0 0
9 . 7 7 5 2 3
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 6 . 0 2 3 0 7
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 2 . 3 1 1 9 2
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 2 . 8 2 5 6 9
0 . 0 0 0 0 0

0 , 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 0 . - 1 7 . 8 3 5 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

8 . 3 4 9 3 0  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0

3 . 1 9 4 9 8
0 . 0 0 0 0 0
0 . 0 0 0 0 0

5 . 2 9 3 7 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3 . 5 8 9 9 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 1 . 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
1 . 0 0 0 0 0

1 2 . 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 3 . 1 6 0 1 3

0 . 0 0 0 0 0
0 . 0 0 0 0 0
3 . 0 3 4 8 4

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 3 . 0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 1 . 5 6 5 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 6 . 2 7 9 7 9

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 5 . 9 3 6 2 2
0 . 0 0 0 0 0

1 4 . 0 . 0 0 0 0 0
- 1 2 . 3 9 1 0 0

0 , 0 0 0 0 0

0 . 0 0 0 0 0
6 . 4 1 3 9 7
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 1 . 6 1 7 4 2
0 . 0 0 0 0 0

0 . 0 0 0 0 0
8 . 5 1 7 4 8
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 5 . - 2 3 . 2 8 1 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

9 . 1 4 1 2 2
0 . 0 0 0 0 0
0 . 0 0 0 0 0

9 . 5 4 0 3 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 4 . 5 3 0 0 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 3 . 0 8 4 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0
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NATURAL EXPANSION WEISS LI"

COEFFICIENTS: 1.
2.
3.
4.
5.
6. 
7* 
8. 
9.

10.
11.
12.
13.
14.
15.

-0.99840
0.04149
0.03691
0.00903
0.00779
0.00521
0.00326
0.00280
0.00230
0.00131
0.00129
0.00115
0.00091
0.00055
0.00044

s
P
s
d
P
s
f
d
P
s
6
f
d
P
s

NATURAL (HBITALS:

1. 0.85231
0.00000
0.00000

0.04635
0.00000
0.00000

0.08948
0.00000
0.00000

0.03039
0.00000
0.00000

0.00873
0.00000
0.00000

2. 0.00000
0.58720
0.00000

0.00000
0.43516
0.00000

0.00000
-0.03432
0.00000

0.00000
0.02599
0.00000

0.00000
0.00000
0.00000

3. -1.52435
0.00000
0.00000

-0.39537
0.00000
0.00000

0.94112
0.00000
0.00000

0.94246
0.00000
0.00000

0.22001
0.00000
0.00000

4. 0.00000
0.00000
0.25771

0.00000
0.00000
0.53288

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.24772
0.00000

5. 0.00000
2.04759
0.00000

0.00000
-2.27589
0.00000

0.00000
-0.20443
0.00000

0.00000
0.40485
0.00000

0.00000
0.00000
0.00000

6. -3.04964
0.00000
0.00000

-0.37629
0.00000
0.00000

0.13206
0.00000
0.00000

0.00129
0.00000
0.00000

3.44794
0.00000
0.00000



— 66 —

7. 0.00000
0.00000
0.00000

0.00000 
0.00000 

' 0.00000

0.00000
0.00000
0.09363

0.00000
0.00000
0.91073

0.00000
0.00000
0.00000

8. 0.00000
0.00000

-1.76755

0.00000
0.00000
2.45105

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
-0.68819
0.00000

9. 0.00000
10.19700
0.00000

0.00000
-6.15276
0.00000

0.00000
-2.22886
0.00000

0.00000
-3.23942
0.00000

0.00000
0.00000
0.00000

10. 24.90400
0.00000
0.00000

-10.61300
0.00000
0.00000

-5.89157
0.00000
0.00000

-7.16158
0.00000
0.00000

-4.59830
0.00000
0.00000

11. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
1.00000

12. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

-3.16089

0.00000
0.00000
3.02830

0.00000
0.00000
0.00000

13. 0.00000
0.00000

11,52400

0.00000
0.00000

-6.22169

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
-5.95532
0.00000

14. 0.00000
-11.94500

0.00000

0.00000
6.14078
0.00000

0.00000
-1.71856
0.00000

0.00000
8.38308
0.00000

0.00000
0.00000
0.00000

15. -33.79700
0.00000
0.00000

12.13700
0.00000
0.00000

13.56700
0.00000
0.00000

-2.29123
0.00000
0.00000

15.56500
0.00000
0.00000
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NATURAL EXPANSION WEISS Be2 +

COEFFICIENTS : 1.
2.
3.
4.
5.
6 .
7.
8 . 
9.

10,
11.
12.
1 3 .
1 4 .
1 5 .

- 0 . 9 9 9 1 6  
0 . 0 3 1 1 2  
0 . 0 2 6 3 7  
0 , 0 0 6 9 4  
0 . 0 0 5 9 4  
0 . 0 0 3 8 8  
0 . 0 0 2 5 4  
0 . 0 0 2 1 5  
0 . 0 0 1 7 5  
0 . 0 0 0 9 9  
0 . 0 0 0 9 8  
0 . 0 0 0 8 9  
0 . 0 0 0 6 8  
0 . 0 0 0 4 0  
0 . 0 0 0 3 4

s
P
•
d
P
s
f
d
P
s
9
f
d
P
s

NATURAL ORBITALS:

1. 0 . 8 7 6 5 5
0 . 0 0 0 0 0
0 , 0 0 0 0 0

0 . 0 4 8 0 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 6 8 4 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 2 2 7 1
0 , 0 0 0 0 0
0 . 0 0 0 0 0

0 , 0 0 5 6 7
0 , 0 0 0 0 0
0 , 0 0 0 0 0

2. 0 . 0 0 0 0 0
0 . 5 4 1 2 5
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 4 8 1 1 6
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 0 . 0 2 9 7 9
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 2 2 8 0
0 . 0 0 0 0 0

0 , 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3. - 1 . 6 9 3 9 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 3 7 5 9 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 . 0 2 2 7 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 . 0 2 5 0 7  
0 , 0 0 0 0 0  
0 . 0 0 0 0 0

0 . 2 2 2 1 1
0 . 0 0 0 0 0
0 , 0 0 0 0 0

4. 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 2 1 6 1 5

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 5 8 6 5 8

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 3 5 5 0
0 . 0 0 0 0 0

5. 0 . 0 0 0 0 0
2 . 3 8 7 1 4
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 2 . 4 6 5 4 8
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 0 . 2 7 5 4 7
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 9 8 3 2
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

6. - 4 . 0 3 0 6 6  
0 . 0 0 0 0 0  
0 . 0 0 0 0 0

- 0 . 1 8 1 6 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 4 8 2 1 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 , 2 5 7 8 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3 . 7 5 1 3 0
0 , 0 0 0 0 0
0 . 0 0 0 0 0
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7. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.08535

0.00000
0.00000
0.91867

0.00000
0.00000
0.00000

8. 0.00000
0.00000

-2,00620

0.00000
0.00000
2.56514

0.00000 
0.00000 
0.00000

0.00000
0.00000
0,00000

0.00000
-0.57218
0.00000

9. 0.00000
10.33500
0.00000

0.00000
-6.18426
0.00000

0.00000
-2.19050
0.00000

0.00000
-3.39814
0.00000

0.00000
0.00000
0.00000

10. 29.08100
0.00000
0.00000

-11.88300
0.00000
0.00000

-7.59910
0.00000
0.00000

-8.23956
0.00000
0.00000

-5.15691
0.00000
0.00000

11. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
1.00000

12. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

-3.16113

0.00000
0.00000
3.02590

0.00000
0.00000
0.00000

13. 0.00000 
0.00000 

11.48600

0.00000
0.00000

-6.17058

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
-5.96801
0.00000

14. 0.00000
11.76400
0.00000

0.00000
-6.03135
0.00000

0.00000
1.75762
0.00000

0.00000
-8.32439
0.00000

0.00000
0.00000
0.00000

15. -39.91700
0.00000
0.00000

13.77300
0.00000
0.00000

16.07000
0.00000
0,00000

-0.90479
0.00000
0.00000

16.83300
0.00000
0.00000



— 69 —

NATURAL EXPANSION WEISS B3 +

COEFFICIENTS; 1.
2.
3.
4.
5.
6 .
7.
8. 
9.

10.
11.
12.
13.
1 4 .
1 5 .

- 0 . 9 9 9 4 7
0 . 0 2 4 8 9
0 , 0 2 0 5 2
0 . 0 0 5 6 4
0 . 0 0 4 7 9
0 . 0 0 3 0 9
0.00201
0 . 0 0 1 7 4
0 . 0 0 1 4 0
0 . 0 0 0 8 1
0 . 0 0 0 8 0
0 . 0 0 0 6 5
0 . 0 0 0 5 4
0 . 0 0 0 3 1
0 . 0 0 0 2 8

NATURAL ORBITALS:

1. 0 . 8 9 9 0 7
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 4 1 2 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 5 5 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 1 7 8 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 3 9 7
0 . 0 0 0 0 0
0 . 0 0 0 0 0

2. 0 . 0 0 0 0 0
0 . 5 1 2 3 3
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 5 0 8 9 4
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 0 . 0 2 7 0 2
0 . 0 0 0 0 0

0 , 0 0 0 0 0
0 . 0 2 2 0 9
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3. - 1 . 8 3 9 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 3 3 7 8 4
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 . 0 8 3 9 6
0 . 0 0 0 0 0
0 . 0 0 0 0 0

1 . 0 8 1 3 8
0 , 0 0 0 0 0
0 . 0 0 0 0 0

0 . 2 2 6 0 6
0 , 0 0 0 0 0
0 . 0 0 0 0 0

4. 0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 1 8 9 7 3

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 6 1 9 0 8

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 2 9 2 8
0 . 0 0 0 0 0

5. 0 . 0 0 0 0 0
2 . 5 7 8 8 5
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 2 . 5 7 1 6 3
0 . 0 0 0 0 0

0 . 0 0 0 0 0
- 0 . 3 1 5 2 6
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 . 2 3 7 1 2
0 . 0 0 0 0 0

0 . 0 0 0 0 0
0 , 0 0 0 0 0
0 . 0 0 0 0 0

6. - 4 . 6 4 2 7 9
0 . 0 0 0 0 0
0 . 0 0 0 0 0

- 0 . 0 4 9 1 3
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 7 0 5 0 1
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 4 2 0 8 5
0 . 0 0 0 0 0
0 . 0 0 0 0 0

3 . 9 1 8 9 7
0 , 0 0 0 0 0
0 . 0 0 0 0 0
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7. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

-0.07761

0.00000
0.00000
1.07332

0.00000
0.00000
0.00000

8. 0.00000
0,00000
-2,14061

0.00000
0.00000
2.62847

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
-0.50640
0.00000

9. 0.00000
10.40800
0.00000

0.00000
-6.19906
0.00000

0.00000
-2.16740
0.00000

0.00000
-3.48645
0.00000

0.00000
0.00000
0.00000

10. 31.81500
0.00000
0,00000

-12.71800
0.00000
0.00000

-8.74233
0.00000
0.00000

-8.80278
0.00000
0.00000

-5.65085
0.00000
0.00000

11. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0,00000

0.00000
0.00000
1,00000

12. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
3.16133

0.00000
0.00000

-2.97456

0.00000
0.00000
0.00000

13. 0.00000
0.00000

-11.46200

0.00000
0.00000
6.14079

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
5.97428
0.00000

14. 0.00000
11.66000
0.00000

0.00000
-5.96928
0.00000

0.00000
1.77947
0.00000

0.00000
-8.28981
0.00000

0,00000
0.00000
0.00000

15. 42.76100
0.00000
0.00000

-14.45700
0.00000
0.00000

-17.32400
0.00000
0.00000

0.26554
0.00000
0.00000

-17.39500
0.00000
0.00000
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NATURAL EXPANSION WEISS .4 4-

COEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
13.
14.
15.

-0.99967 
0.02072 
0.01679 
0.00476 
0.00401 
0.00256 
0.00172 
0.00147 
0.00117 
0.00067 
0.00066 
0.00056 
0.00046 
0.00026 
0.00023

s
p
s
d
P
s
f
d
P
9
s
f
d
P
s

NATURAL ORBITALS:

1. 0,91382
0.00000
0.00000

0.03695
0.00000
0.00000

0.04593
0.00000
0.00000

0.01470
0.00000
0.00000

0.00300
0.00000
0.00000

2. 0.00000
0.49308
0.00000

0.00000
0.52741
0.00000

0.00000
-0.02487
0,00000

0.00000
0.02133
0.00000

0.00000
0,00000
0.00000

3. -1.94039
0.00000
0.00000

-0.31137
0.00000
0.00000

1.12751
0.00000
0.00000

1.12004
0.00000
0.00000

0.22875
0.00000
0.00000

4. 0.00000
0.00000
0.19312

0,00000 
0 .00000 
0.61583

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.22908
0.00000

5. 0.00000
2.69859
0.00000

0.00000
-2.63710
0,00000

0.00000
-0.33890
0.00000

0.00000
0.19745
0.00000

0.00000
0.00000
0.00000

6. -5.27828
0.00000
0.00000

0.11976
0.00000
0.00000

0.93100 
0.00000 
0.00000

0.57768
0.00000
0.00000

4.08073
0.00000
0.00000
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7. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

-0,05843

0.00000
0.00000
1.05526

0,00000
0.00000
0.00000

8. 0.00000
0.00000

-2.15049

0.00000
0.00000
2.63445

0.00000
0.00000
0,00000

0.00000
0.00000
0.00000

0.00000
-0,50094
0.00000

9. 0.00000
10.44100
0.00000

0.00000
-6.20229
0.00000

0.00000
-2.15427
0,00000

0.00000
-3.53311
0.00000

0,00000
0.00000
0.00000

10. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0,00000

0.00000
0,00000
0.00000

0,00000 
0.00000 
1.00000

11. 32.32900
0.00000
0.00000

-12.83100
0.00000
0.00000

-8,99112
0.00000
0.00000

-9.19569
0.00000
0.00000

-5.42042
0.00000
0,00000

12. 0.00000
0.00000
0.00000

0,00000
0.00000
0.00000

0.00000
0.00000

-3.16174

0.00000
0.00000
2.98101

0.00000
0.00000
0.00000

13. 0.00000
0.00000

11.46100

0.00000
0.00000

-6.13859

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
-5.97477
0.00000

14. 0.00000
11.60400
0.00000

0.00000
-5.93572
0.00000

0.00000
1.79107
0.00000

0.00000
-8.27109
0.00000

0.00000
0.00000
0.00000

15. -45.75800
0.00000
0.00000

15.33000
0.00000
0.00000

18.49500
0,00000
0,00000

0.47078
0.00000
0.00000

17.94500
0.00000
0.00000
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NATURAL EXPANSION WEISS N5 +

CGEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.
10.
11.
12.
13.
14.
15.

-0.99978
0.01775
0.01422
0.00409
0.00346
0.00219
0.00150
0.00127
0.00101
0.00058
0.00057
0.00049
0.00039
0.00022
0.00020

s
P
s
d
P
s
f
d
P
9
s
f
d
P
s

NATURAL ORBITALS!

1. 0.92441
0.00000
0.00000

0.03390
0.00000
0.00000

0.03918
0.00000
0.00000

0.01257
0,00000
0,00000

0,00248
0,00000
0,00000

2. 0.00000
0.48038
0.00000

0.00000
0.53932
0.00000

0.00000
-0.02344
0.00000

0.00000
0.02114
0,00000

0,00000
0.00000
0.00000

3. -1.99647
0.00000
0.00000

-0.29758
0.00000
0.00000

1.14789
0.00000
0.00000

1.13984
0.00000
0.00000

0.23767
0.00000
0.00000

4. 0.00000
0.00000
0.17774

0.00000
0,00000
0.63609

0.00000
0.00000
0.00000

0.00000
0.00000
0,00000

0.00000
0.22391
0,00000

5. 0,00000
2.76614
0.00000

0.00000
-2.67337
0.00000

0.00000
-0.35115
0.00000

0,00000
0.17396
0.00000

0,00000
0,00000
0.00000

6. -5.32400
0.00000
0.00000

0.10728
0,00000
0.00000

0,96133
0.00000
0.00000

0.58346
0.00000
0.00000

4.10647
0,00000
0,00000
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7. 0.00000
0.00000
0.00000

0.00000
0.00000
0,00000

0.00000
0,00000

-0,03220

0.00000
0,00000
1,03050

0,00000
0,00000
0,00000

8. 0.00000
0.00000
-2.21763

0,00000
0,00000
2,66450

0,00000
0,00000
0,00000

0,00000
0,00000
0.00000

0,00000
-0.46852
0,00000

9. 0.00000
10.46800
0.00000

0,00000
-6.20852
0.00000

0,00000
-2,14556
0.00000

0.00000
-3,56486
0,00000

0.00000
0,00000
0.00000

10. 33.62500
0.00000
0.00000

-13,23100
0.00000
0.00000

-9.52659
0,00000
0.00000

-9.35991
0.00000
0.00000

-5.77359 
0,00000 
0,00000

11. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0,00000

0.00000
0.00000
0.00000

0,00000 
0.00000 
1,00000

12. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

-3,16211

0 ,00000 
0.00000 
2.98966

0.00000
0.00000
0,00000

13. 0.00000 
0.00000 

-11.44800

0.00000
0.00000
6.12334

0,00000
0.00000
0.00000

0.00000
0,00000
0,00000

0.00000
5,97746
0.00000

14. 0.00000
-11.56400

0.00000

0.00000
5.91174
0.00000

0.00000
-1,79916
0,00000

0.00000
8.25791
0.00000

0,00000
0,00000
0,00000

15. -46.17300
0.00000
0.00000

15.36800
0,00000
0,00000

18.74600
0,00000
0,00000

0.54568
0,00000
0,00000

18.02900
0,00000
0,00000
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NATURAL EXPANSION WEISS .6 +

COEFFICIENTS: 1 .
2.
3.
4.
5.
6.
7,
8 . 
9.

10.
11.
12.
13.
14.
15.

-0.99984
0.01554
0.01233
0,00361
0.00303
0.00191
0.00131
0.00112
0.00088
0.00050
0.00049
0.00044
0.00034
0.00019
0.00017

NATURAL ORBITALS:

1. 0.92941
0.00000
0.00000

0,03423
0,00000
0.00000

0,03481
0,00000
0,00000

0,01099
0,00000
0,00000

0,00207
0,00000
0,00000

2. 0.00000
0.47005
0.00000

0.00000
0,54825
0,00000

0,00000
-0,02187
0.00000

0.00000
0.02159
0.00000

0,00000
0.00000
0,00000

3. -2.05613
0.00000
0.00000

-0.28667
0,00000
0.00000

1,18125
0,00000
0.00000

1.16731
0.00000
0.00000

0,22950
0.00000
0,00000

4. 0.00000
0.00000
0.18387

0.00000
0.00000
0,62866

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0,00000
0,22526
0,00000

5. 0,00000
2,83464
0,00000

0,00000 
-2,71173 
0,00000

0.00000
-0,36499
0.00000

0.00000
0.15110
0.00000

0,00000
0,00000
0,00000

6. -5,98037
0,00000
0,00000

0,27953
0,00000
0,00000

1.19573
0,00000
0,00000

0,76439
0.00000
0.00000

4,25428
0,00000
0,00000
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7. 0.00000
0.00000
0.00000

0.00000
0,00000
0,00000

0,00000
0,00000

-0,03851

0.00000
0,00000
1.03646

0.00000
0.00000
0.00000

8. 0.00000
0.00000
-2.21435

0.00000
0.00000
2.66479

0,00000 
0,00000 
0.00000

0.00000
0,00000
0,00000

0.00000
-0,46935
0,00000

9. 0.00000
10.48500
0.00000

0,00000
-6.20893
0,00000

0,00000
-2,13780
0,00000

0.00000
-3.59088
0.00000

0.00000 
0.00000 
0 .00000

10. 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0.00000
1.00000

11. 34.07200
0.00000
0.00000

-13.31800
0.00000
0.00000

-9.76154
0.00000
0.00000

-9.74885
0.00000
0.00000

-5.50880
0.00000
0.00000

12, 0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
0,00000
3,16205

0.00000
0.00000
-2.98760

0.00000
0.00000
0.00000

13. 0.00000
0.00000

-11.44800

0.00000
0.00000
6.12399

0.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0.00000
5.97734
0.00000

14. 0.00000
11.53200
0.00000

0.00000
-5.89296
0,00000

0.00000
1.80565
0.00000

0.00000
-8.24708
0.00000

0.00000
0.00000
0,00000

15. 49,39500
0.00000
0.00000

-16.29400
0.00000
0,00000

-20,02300
0,00000
0,00000

-1.34349 
0.00000 
0.00000

-18,60300 
0.00000 
0.00000
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CHAPTER 1.

INTRODUCTION.

The helium hydride molecular ion HeH’*' is the simplest two- 

electron heteronuclear diatomic system and as such plays a role 

analogous to that of the hydrogen molecule in homonuclear systems.

The generally accepted equilibrium bond length is only slightly 

greater than that of H^, and although the binding energy is only 

about 40% of that of H2 , it nevertheless forms quite a strong bond. 

HeH*^ is a one-centre system both at R=0, when we have the united atom 

Li*, and at R = 0 , when we have the helium atom. Thus it is the 

simplest molecule of the form MH'*' (where M is an element whose 

ionization potential is greater than that of the hydrogen atom),

which in the ground state dissociates according to MH*->M + H*.
C I )

It was first observed around 1933 , in mass spectrometers,

along with NeH * and AH * Because these rare-gas hydride ions have 

only a short lifetime and are formed in low concentrations, 

experimental measurements of their properties are very difficult.

This in itself admits a need for accurate theoretical treatments of 

the systems.

Besides this, however, HeH"*" is particularly inqwrtant because 

He^H * is the daughter ion which results when tritium in the tritium 

hydride molecule undergoes jB-decay. Investigation of this decay
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process has been undertaken theoretically, and it has been the sole

reason for the production of at least one extremely accurate wave-

function for the ground state of HeH*.

Some knowledge of the molecular states of HeH* is also

desirable because it is thought to form an important constituent of

some stellar systems. The existence of a flux deficiency in the

spectra of certain stars was thought to be due to absorption by HeH*
C 2 )

in the surface layers. WERNER used some theoretical treatments to 

investigate this and discounted the explanation that the flux 

deficiency was due to transitions from the ground to the first excited 

state. He did not entirely rule out, however, the possible cause as 

being transitions between higher excited states.

The points outlined above are ample explanation for the large 

number of theoretical calculations which have been performed on HeH* 

since the early years of quantum mechanics. These calculations have 

been extremely varied in type and accuracy. There follows a brief 

review of the most important of these, the majority of which are 

concerned solely with the ground state.

The theoretical treatment of HeH* began in 1933 when GLOCELER 
C 3 )

and FULLER applied the techniques of wave mechanics to the system.

They had predicted the existence of such an ion earlier. Then, when
C I )

BAINBRIDGE made his experimental observation of the system, they 

sought to put this on a theoretical footing. They made two attempts
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at a quantum-Bieohanical solution. The first was based on the inter­

action of an excited helium atom and a proton, and the system was 

found to be repulsive for all intemuclear separations. The second 

used the interaction of a helium ion with a hydrogen atom. On 

neglecting one integral, because it would have taken too long to 

evaluate, they obtained a binding energy of 8.1 e.V., and thought that 

they had in fact obtained a satisfactory theoretical solution. The 

neglected integral was the unsymmetric Sugiura integral, whose 

inclusion reduces the binding energy from 8.1 e.V. to 3.6 e.V* We now 

know that the ground state of HeH*connects energetically with a 

helium atom and a proton, so that Glockler and Fuller were optimistic 

in their conclusion. Thus the theoretical treatment of H e H d i d  not 

begin in a very auspicious manner.
C4 )In 1938 COULSON and DUNCANSON made a comparative study on 

HeH using various different types of wave-function. Among these were 

a molecular orbital and a valence bond calculation, of which the

former was found to be better. Another of their wave-funetions was of
c 5 )

the James-Coolidge type, and in 1940 TOH extended this work with a

ten- and a twelve- term James-Coolidge function. With the work of
( 6 ) . 

EVETT in 1956 we have the first really large calculation on HeH .

Evett chose to extend Teh's work with a twenty- and a twenty-three-

term James-Coolidge function. In doing so he was able to check Toh's

results, whereby he found some numerical errors in the latter's

work. Up to this point, calculations on HeH"*" had predicted varied
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results for both the binding energy and the equilibrium bond length.
CO)

Evett's results were 1.90 e.V. and 1.432 a.u. respectively, which

are not very far from today's generally accepted values.
C 7 )With the work of ANEX in 1963 we have another large-scale

calculation, a product of the age of high-speed cosqmters. Anex

maximized the then available computing facilities in producing a

thirty-five-term configuration interaction wave-function with one-

electron basis functions in elliptical co-ordinates. His values for

binding energy and equilibrium bond length of 1.931 e.V. and 1.446 a.u.

were extremely close to those of Evett. Anex produced wave-functions

at four different bond lengths. He also produced a SCF wave-function,

which, in combination with the Cl, gave information about the

correlation energy in the system. This was estimated at 0.045 a.u.,

and was found to be more or less constant with bond length.
C 8 )

In 1964 STUART and MATSEN published the first extensive one- 

centre calculation on the ground state of HeH** . The total wave- 

function consisted of a thirty-term superposition of configurations 

using a basis of Slater-type orbitals, up to 101. The calculation 

was done at twelve different values of the bond length, ranging from 

0.1 a.u. to 5.0 a.u.. In addition Stuart and Matsen presented limited 

Cl functions for Li** and He. These were constructed from ten config­

urations and conformed to the accuracy attained in the molecular

(o) 1 a.u. = 27.2097 e.V..
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calculation. The values of 1.852 e.V. and 1.464 a.u. for binding 

energy and equilibrium separation fitted in well with the results of 

Evett and of Anex, whilst the total energy (at 1.4 a.u.) of 

-2.9691 a.u. ranked third in excellence up to this point behind

-2.9742 a.u. of Anex and -2.9730 a.u. of Evett.
C 9 )

The calculation of PEYERIMHOFF in 1965 yielded the first
CI O)

really extensive LCAG SCF function. BHATTACHÂRYA had produced a 

simple LCAO but his results were optimistic because of incomplete 

optimization of non-linear parameters. Peyerimhoff's was an extensive 

study for a range of bond lengths, in which she used a 4x2 (four 

orbitals centred on He, two on H) basis and a 7x5 basis to make up 

the LCAO molecular orbital. The basis orbitals were STO's. In each 

case, results were presented for orbital exponents optimized both at 

1.455 a.u. (the equilibrium bond length) and at each R value, the 

range of bond lengths being from 1.0 a.u. to 4.5 a.u.. Results for 

binding energy and minimum total energy were 1.943 e.V. and 

-2.93313 a.u. respectively,

Peyerimhoff was the first worker to present a wide range of 

physical properties. Among these were spectroscopic constants and 

the variation of the centre of charge with bond length. Also 

presented were potential curves, curves of the variation of the forces 

on the two nuclei with bond length, and density contours of the total

electronic charge in the molecule.
Cll )

WOLNIEWICZ, in 1965, was prcanpted into making his calculation
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by the wish to test a surprising experimental result. SNELL,
( 1 2)

PLEASQNTQN and LENING , working on the -decay of tritium in 

tritium hydride, had found that the molecule remained bound after 

decay in 93.2% of cases. Wolniewicz attempted to test this unexpected 

result but found that theoretical treatments of both the parent, HT, 

and the daughter, HeH* (or more exactly He^H*), were unreliable. To 

remedy this situation he produced a wave-function which has so far 

given the lowest energy for HeH*, -2,97866 a.u. at the equilibrium 

bond length of 1.4632 a.u.. Basing his work on that of Evett, he 

extended this from a twenty-three-term to a sixty-four-term James- 

Coolidge function. For the binding energy he obtained 2,039 e.V, and 

for the total energy at R=*1.4 a.u. he obtained -2.97797 a.u.. With 

this extremely accurate and elaborate function he tested theoretically 

the experimental result of Snell, Pleasonton and Leming. He concluded 

that the theoretical dissociation rate in the decay process was 

something larger than 17.8%, much greater than the 6.8% predicted by 

experiment. Wolniewicz believed his function to be "rather accurate", 

due to its high flexibility.
(13)Of the later work on the ground state, that of HOYLAND is 

worthy of note in that he used non-integral elliptical orbitals in a 

part-SCF, part-CI study. The SCF results were compared with those of 

Peyerimhoff, and indicated a very similar result with fewer terms. 

Comparison of the Cl work with that of Anex indicated that non- 

integral n-values brought faster convergence than a truncated
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natural expansion.
(14)

The work of HARRIS gave the same result that Anex found, 

that the correlation energy was almost independent of intemuclear 

separation. This paper is one of the last to concentrate solely on

the ground state, and later work looks at some of the lower and
(15)higher excited states. For instance, MICHELS , in 1966,

examined fourteen excited states of £ and TT symmetry. Among the
(16)

most recent calculations, that by BARTOLOTTI and GOODISMAN is 

interesting in that it invoked the bare-nucleus perturbation 

theory, where the full interelectronic interaction is taken as a 

perturbation. The equilibrium bond length obtained was 1.448 a.u., 

very close to the accepted value, whilst the energy at R=1.4 a.u. 

was -2.97478 a.u., to be compared with the values of -2.97797 a.u. 

by Wolniewicz and -2.9742 a.u. by Anex.

Of this extensive list of calculations on HeH*, one in 

particular seems to stand out as being worthy of further investigation. 

This is the one-centre calculation of Stuart and Matsen. No other 

wave-function is presented over such a wide range of bond lengths.

In conjunction with this, the presentation of the wave-functions for 

the He atom smd the Li* ion offers a perfect opportunity to test 

how the wave-function predicts the formation of the molecule. Using 

a popular method, that of density difference maps, this has been 

done. By means also of physical properties calculated at the
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different bond lengths, extra information has been obtained as to 

the effect the proton has on the density, as predicted by this 

approximation, as it changes its position relative to the He nucleus. 

The results from these investigations are presented and discussed in 

the next chapter.

Subsequent to his original calculation, ANEX together with
(17)

SHULL analysed the configurât ion interaction wave-function into 

the form of the natural expansion# They analysed both an all-sigma- 

basis wave-function and the total wave-function in this way and 

demonstrated the rapid convergence of the natural expansion from 

the point of view of the energy. In addition they attempted to 

rationalize the trends which appeared in the variation of the 

natural expansion coefficients with bond length. We have analysed 

the Stuart and Matsen wave-functions into natural orbitals over the 

entire range of bond length, and in Chapter 3 the results are 

discussed in comparison with those of Anex and Shull. The Stuart and 

Matsen wave-functions were coiposed of Slater-type orbitals centred 

on the helium nucleus, whilst those of Anex were built up from 

essentially two-centre functions. Here, then, is a splendid starting 

point from which to test the natural expansion in reducing the 

influence of the arbitrary nature of the choice of the basis set. 

Results from this comparison are also presented in Chapter 3.
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CHAPTER 2.

MOLECULAR FORMATION#

A popular and useful method of studying the changes which 

occur when a molecule is formed is through the use of density
(18)

contours and density difference maps# The work of KERN and KARPLUS ,
( 1 9) (2 0)

BADER and HENNEKER , and BADER, HENNEKER and CADE , is

especially noteworthy in this connection# We begin this study of

Stuart and Matsen's one-centre wave-function for HeH'*’by presenting

maps of the one-electron density of the molecule-ion minus that of

an isolated helium atom# By drawing these maps for a wide range of

bond lengths, it may clearly be seen what effect the proton has on

the density in HeH*, as predicted by this calculation, as its

proximity to the He nucleus increases.

These one-electron density difference maps are presented in 

Fig. 1 (a) to (f). In Fig. 1 (a), it may be seen that the proton, 

at 5#0 a.u# from the He nucleus, is having only a small effect on 

the electron density. There has been a transfer of charge from the 

side of the He nucleus remote from the proton into the region between 

the nuclei, but the amount of this charge-transfer is slight.

Though it forms a build-up between the nuclei, this again is only 

slight and it seems to be influenced more by the He nucleus than by 

the proton, since the position of the maximum is at only about
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0.4 a.u. from the He nucleus. By the time the proton has moved in to 

be 3.0 a.u. from the He nucleus. Fig. 1 (b), it is having a far 

greater effect. The amount of charge transferred to the region between 

the nuclei is considerably larger, and the density as a whole has 

become more diffuse. The He nucleus is firmly embedded in the region 

of negative density difference, whereas previously the zero contour 

was only just to the right of this nucleus. The zero contour has 

begun to be bent round towards the proton. The maximum of the pile-up 

of charge has now moved out to 1.0 a.u. from the He nucleus. The same 

trends continue, as may be seen from Fig. 1 (c), when the proton is 

at 2.0 a.u. from the He nucleus. The pile-up of charge has continued 

and is now at a maximum at 1.10 a.u.. The zero contour has bent 

round more and is a little further still to the right of the He 

nucleus.

The effect of the proton has thus far shown a gradual but 

definite increase. The next diagram. Fig. 1 (d), shows the proton 

at a distance of 1.4 a.u. from the He nucleus, very close to the 

theoretical bond length of HeH*; the effect of the proton has now 

become very strong. The charge build-up between the nuclei, with its 

maximum located at 0.9 a.u., is considerable. The zero contour has 

been bent round more and more toi^rds the proton, and the density 

has become correspondingly more contracted. A charge build-up of 

this kind is of course to be expected at around this bond length.

It is worth noting that the He nucleus is now only just, but
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nevertheless unmistakeably, in the region of negative density 

difference, showing that the density on the heavy nucleus in the 

molecule-ion at the equilibrium bond length is less than that in 

the isolated helium atom. The negative contours are seen to be 

being gradually drawn round with the zero contour. Moving on to 

Fig. 1 (e), the proton is now 1.0 a.u. from the He nucleus, 

considerably less than the equilibrium bond length for HeH*. The 

approach of the proton towards the He nucleus appears to have forced 

the zero contour in front of it, because the He nucleus now resides 

firmly in the region of positive density difference. The maximum of 

charge is between the nuclei but proportionately closer to the 

proton than has been the case so far. The position of the maximum is 

approximately 0.75 a.u. from the He nucleus. The zero contour has 

swung round markedly, enclosing the positive contours and drawing 

the negative contours around with it. By the time the proton has 

moved in to 0,1 a.u. from the He nucleus, see Fig, 1 (f), the 

density of the ion has become very nearly spherically symmetrical.

The positive contours are now cospletely enveloped within the zero 

contour and are almost semi-circular. Their slight variation from 

exact semi-circular shape, plus the behaviour of the negative 

contours in this case, indicate a very slight polarization of the 

charge to the proton side of the He nucleus.

As remarked by Bader, Henneker and Cade, "as important as the 

amount of charge is the exact disposition of charge in the molecule".
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This point is very well brought in these diagrams. When the inter- 

nuclear distance is 5.0 a.u. there is already a pile-up of charge 

between the nuclei, but this is so slight and so far from the proton 

that one could hardly expect a respectable bond. As the proton moves 

in, however, the situation rapidly improves. The amount of charge in 

the "bonding region" increases and moves proportionately nearer to 

the proton. In doing so it serves to exert a greater attractive force 

on the proton, and at the same time to screen more effectively the 

repulsion between the two nuclei. When the distance between the 

nuclei is 1.4 a.u. we evidently have the optimum conditions, with a 

good pile-up of charge between the He nucleus and the proton, and the 

position of the maximum dividing the He - H distance very closely in 

the ratio 2:1. Inside 1.4 a.u. the build-up has apparently become 

too large and too close to the proton to give the best conditions 

for stability in the system.

Though the density difference maps just discussed show most 

clearly the behaviour of the electronic charge during molecular 

formation, this may also be illustrated by the graphs of the one- 

particle radial density distribution D(r). (See Part I, Equ. 3(4).)

In Fig. 2 these are plotted for Li*, He and some intermediate bond 

lengths for HeH*. The He atom D(r) could not be distinguished on this 

scale from the HeH* R=5.0 D(r), so the latter is not shown. This is 

also the case for R=3.0 and B=4.0, although close inspection of the
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data shows that the proton is beginning to have an effect in 

making the corresponding D(r) spread slightly. This effect is most 

marked for R=2.0 a n., as shown, after which the proton begins to 

pall charge in with it and makes the D(r) contract. The graphs show 

that for smaller bond lei^hs the D(r) carves gradually begin to 

resemble that for Li*, until for R=0.1 the respective D(r) curves 

are indistinguishable. These results indicate that the proton, from 

having very little influence at large values of R, so that the 

density is little different from that for an isolated He atom, has 

a gradually increasing effect as it is moved in. This is what one 

would expect from such a system, which in the ground state dissociates 

into a normal helium atom and a proton. Peyerimhoff and Anex found 

a similar state of affairs in calculating the centre of negative 

charge. Their results indicated that if the proton were within a 

distance from the He nucleus smaller than the equilibrium bond length 

then the charge cloud tended to follow it, but that if this distance 

increased from Rg the charge cloud moved steadily back towards the 

unperturbed position which it would have in the He atom.

The graphical indistinguishability of the D(r) curves is a 

disadvantage which may be overcome if we look instead at the values 

of <r"> , where -2 3 n 3 4. (See Part I, Equ. 3(5).) In Fig. 3 

these are plotted as a function of intemuclear distance, and they 

indicate the same trends as did the D(r) curves but with greater 

clarity. For n=-2 and -1 the curves each have a minimum at R approx-
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imately equal to 1.8 a.u.. The curves for the positive values of n 

each have a maximum at around B=2.5 a.u.. For n=l and 2 the maximum 

is barely perceptible but it becomes clearer for n=3 and very 

pronounced for n=4. This indicates that in the middle regions of the 

system the density is not greatly affected by the proton, but that 

in the outer regions the density is most distended at values of R 

around 2,5 a.u., These conclusions underline those from the D(r) 

curves and concur with those from the centre of charge calculations 

of Peyerimhoff and of Anex.
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CHAPTER 3.

ELECTRON CORRELATION AND NSO ANALYSIS.

In the first section of this chapter we examine by means of 

density differences and expectation values the electron 

correlation present in the HeH* wave-functions of Stuart and 

Matsen. Later, the results of a natural spin orbital analysis of

these functions are presented and compared with those from a
. CI7)similar analysis on HeH wave-functions by Anex and Shull.

The density difference map in Fig. 4 was obtained by 

subtracting the one-particle density as predicted by the natural 

expansion truncated to the first configuration from that for the 

total wave-function for HeH*, at a comnK)n bond length of 1.4 a.u,. 

This is intended to give a representation of the effect of correl­

ation in the molecule, bearing in mind that the closeness of X| 

to the SCF orbital leads to a good approximation to the uncorrelated 

function. Fig. 4 shows some striking points. In the region between 

the nuclei correlation evidently has the effect of removing charge, 

whilst piling charge up on the nuclei themselves. The neatly 

localized form of the increase of charge on the proton is rather 

remarkable in view of the one-centre nature of the approximation 

under consideration. Also very interesting is the increase of
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charge which correlation causes at right-angles to the bond axis, 

on and around a line through the helium nucleus.

From the increase in charge on the nuclei, and the 

simultaneous decrease between them, it might be conjectured that 

the equilibrium bond length predicted by a correlated treatment 

should be slightly greater than that from a non-oorrelated approach. 

Thus, the lower charge between the nuclei in a correlated density 

may cause the nuclear repulsion to be relatively more effective and 

hence provide a corresponding relaxation of the bond length. The 

equilibrium bond length Rg as predicted by Peyerimhoff^s SCF 

function is 1.455 a.u.. The correlated functions of Wolniewicz and 

of Stuart and Matsen predict 1,4632 a.u, and 1.464 a.u., respect­

ively, and so are in line with the above hypothesis. The values 

of 1.446 a.u. and 1.432 a.u., however, due to Anex and Evett, 

respectively, are contrary to it. Actual figures therefore leave the 

question an open one.

The discussion above is unsatisfactory in that the figures 

given correspond to different approximations. It would be better if 

a comparison could be made within the same model, between a correl­

ated and an uncorrelated function. Here again the Stuart and Matsen 

functions would be most useful because they are presented at several 

bond lengths very close to the equilibrium value. Potential curves 

could be drawn corresponding to the total wave-functions and to the 

natural expansions truncated to the first configuration. From each
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of these the equilibrium intemuclear separation could be estimated, 

and the question as to which is larger might be resolved in a more 

rigid manner than the one used above.

The density differences along the intemuclear axis in HeH* 

for a selection of bond lengths are plotted in Fig. 5, Here again, 

the density from the first NSO configuration has been subtracted 

from that for the total function at the same bond length. In 

general these curves have the features noticed in the density 

difference map, Fig. 4. In each case there is a pronounced negative 

minimum between the nuclei, accompanied by an increase of charge 

at or slightly behind the nuclei. Only for R=1.0 a.u. is the 

density at the He nucleus from the correlated function less than 

that from the uncorrelated function. Inspection of data shows that a 

pile-up of charge exists in the outer regions on a line perpendicular 

to the intemuclear axis through the helium nucleus for all the 

R-values presented in Fig. 5, just as was noticed for R^l.4 a.u. in 

Fig. 4, The height of this maximum is in general only a very small 

fraction of that at the He nucleus itself and is therefore not easily 

shown graphically. However, it seems to be a feature common to all 

our difference functions.

In Table I we present values of <r"> (see Part I, Equ. 3(5)), 

relative to the He nucleus, calculated for different bond lengths. 

These are given as a function of the degree of truncation of the 

natural expansions, and are therefore analogous to those in Part I,
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Table V, The symmetry of the basis orbitals making up each natural 

orbital may be ascertained from the tables of natural expansions 

at the end of Part II. The values of <r"> soon converge to the 

values from the total functions, with a maximum of six terms 

being required for convergence. We observe the general trend that 

in the inner and outer regions of the system, natural orbitals 

composed of p-type orbitals expand D(r), whilst those composed of 

ir-, 6 - type orbitals usually contract it. This tendency is parallel 

to that noticed for the atoms in Part I, where radial configurations 

spread the density and angular configurations caused a contraction. 

Finally, we note in passing that for <r>, which emphasizes the 

middle regions of the molecule, there is a steady convergence to 

the total value, regardless of the symmetry-type of the basis 

orbitals composing the added natural orbitals.

In Fig, 6 are diagrams representing the variation of <cos 

(see Part I, Chapter 3) with intemuclear distance R, On the right- 

hand vertical axis we give values of corresponding to the 

<cos V|2 > values given on the left-hand vertical axis. The upper 

graph. A, was calculated using the wave-function truncated to the 

first natural orbital configuration; the lower graph, B, corr­

esponds to the total wave-function. Graph A shows a tendency towards 

<cos Yjg >=0 ( 7|2=90®) at R=0 (Li*) and at R=0> (He). Considering 

that the wave-function is uncorrelated, this is an expected trend. 

For the united and separated atoms, <cos Yjg > should be exactly zero
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for a wave-function which does not include correlation. This was 

found to be the case, see Part I. Thus, Curve A shows the expected 

behaviour at the ends of the range of R. The question arises, what 

happens to our convenient value of Y|2 =90* for an uncorrelated 

wave-function when we move from an atom to a molecule? Here, we 

cannot expect the same argument to hold, since the extra positive 

charge, in our case a proton, causes polarization of the originally 

spherical charge-cloud. Thus, although we cannot expect a value of 

V|2 equal to 90*, we can expect a value fairly near to 90*, simply 

because it has this value at both ends of the range of intemuclear

separation. Graph A shows clearly that the value of <cos >12 > in

the molecule is at all times greater than that in the atoms. It has 

a minimum value at around R=0.9 a.u. corresponding to Yjg =87.65*, so 

that from the point of view of <cos 7,2 >, the uncorrelated system is 

least atom-like at this bond length. Thus, this graph shows that in 

the molecule the electrons are, on average, closer together than 

they were in the united and the separated atoms.

Graph B, although of the same general shape as Graph A, is 

considerably displaced towards smaller <cos >12 > values, i.e. 

towards correspondingly larger V|2 values. The values of <cos y 2̂ > 

for Li* and He from the Stuart and Matsen functions are also marked

in Fig. 6 . The ends of Graph B do not seem to approach these atomic

values. In attempting to rationalize this, it is instructive to 

revert to Tables I A and VI A of Part I. In Table I A, it may be seen
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that for He, the function of Weiss predicts 93,8% of the correlation 

energy whereas the Stuart and Matsen function predicts 94,8%. 

Similarly, for Li*, the Weiss function gives 98.4% of the correlation 

energy and the Stuart and Matsen function 93.6%, From Table VI A it 

is seen that the values of <cos 7,2 > for He are -0.06431 and -0.03768, 

and for Li* they are -0.04367 and -0.02545, for the Weiss and the 

Stuart and Matsen functions respectively. Thus, although the 

difference in the predicted percentage correlation energies is not 

very large, the resulting values of <cos yj2 > are vastly different.

The Stuart and Matsen values are in fact only about 60% of the 

Weiss values. The function <cos > thus appears to be a very 

sensitive gauge of the amount of correlation predicted by a particular 

wave-function, for atomic systems.

Turning to HeH*, it is possible to calculate a rough value for 

the percentage correlation energy at a particular bond length. For 

convenience, we may follow Anex and consider that the correlation 

energy is practically constant with bond length at a value of 

about 0.045 a.u.. If we take Peyerimhoff^s energies as "uncorrelated" 

we may calculate percentage correlation energies for the Stuart and 

Matsen functions according to:

% correlation = 100 x [E(Stuart & Matsen) - E(Peyerimhoff)]/0.045 . 

Using this expression, % correlation = 77 for R=1.0 a.u., 80 for
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R=l,4 a.u., 85 for R=2.0 a.u., and 88 for R=4.0 a.u.. Hence, 

throughout the molecule the Stuart and Matsen wave-functions at no 

time predict more than 90% of the correlation energy. This could 

explain why Graph B does not tend to the atomic values. The single­

centre configuration interaction wave-function has two things 

demanded of it. It has simultaneously to predict molecular form­

ation and put some electron correlation into the molecule. The 

behaviour of Graph B indicates that the approximation is falling 

down on this latter point. This is why it seems to be displaced 

bodily upwards, away from the correlated atomic values.

The position of Graph B relative to the uncorrelated curve. 

Graph A, is interesting. It is not the absolute values of <cos yjg > 

but the values relative to Graph A which are important here. Fig. 4 

and the curves of Fig. 5 showed that correlation tended to move large 

quantities of charge away from the region between the nuclei. The 

displacement of charge could result in the electrons being spread out, 

and on average being further away from each other than in the 

uncorrelated case. Graph B bears out this argument.

One of the claims for the natural expansion is that it reduces 

the influence of the arbitrary nature of the choice of basis set. In 

other words, wave-functions built up from quite different basis 

orbitals will have ve±y similar NSO coefficients when put into the 

form of the natural expansion. This property was extensively
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(21)investigated by SHULL , analysed a very large number of 

hydrogen molecule ground state wave-functions in terms of natural 

orbitals. His analysis showed a very great similarity between all 

the functions, with the natural expansion coefficients c^ being 

relatively independent of the choice of basis functions. This close 

correspondence increased if the bases approached completeness.

This valuable property of the natural expansion has found a 

useful application in analysing the Stuart and Matsen wave-functions. 

The original configuration interaction functions contained thirty 

configurations, made up from twenty-six single-centre basis orbitals 

(STO's). Since the parameters were optimized at each of the twelve 

bond lengths, the result was effectively a different basis set at 

each R-value. This makes meaningful comparison between the twelve 

functions almost inq>ossible; hence the need for an analysis which 

would somehow reduce the disparity between the functions.

It was mentioned earlier that Anex and Shull performed an NSO 

analysis on Anex^s Cl functions. These original functions were 

conq>osed of an essentially two-centre basis. Anex and Shull analysed 

in terms of the natural expansion both a twenty-eight-term function, 

made up from seven or basis orbitals, and a thirty-five-term function, 

made up from six a, three v and two Ô basis orbitals. Thus, in the 

former case the natural expansion had seven configurations and in the 

latter case eleven. The original Cl functions were produced by 

optimization of non-linear parameters at four bond lengths, and are
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therefore subject to the same limitation as those of Stuart and 

Matsen - meaningful comparison between them is almost impossible.

Anex and Shull performed the NSO analysis to reduce this disadvantage.

We have analysed the Stuart and Rlatsen functions in terms of 

natural orbitals and have calculated various quantities at different 

bond lengths. In addition, we have taken the opportunity of comparing 

these natural expansions with the corresponding Anex and Shull results, 

Since the original functions were built up in entirely different 

ways, the natural expansion gives us a method of drawing parallels 

between two calculations which are, superficially at least, quite 

different.

The results of the NSO analysis of the Stuart and Matsen 

functions are presented at the end of Part II, together with with the 

symmetry of the basis functions composing each natural orbital. Since 

there were twenty-six basis functions originally, one would have 

expected there to be twenty-six natural orbital coefficients. In fact 

thirteen of these wore found to be effectively zero.

The curves in Fig. 7 show the variation of the first two 

natural orbital coefficients C; (Graph A) and C2 (Graph B) with R 

for the Stuart and Matsen HeH* functions. The atomic values are also 

indicated. The crosses represent the results of Anex and Shull.

Both Graph A and Graph B have turning points around R=1.9 a.u.. The 

Anex and Shull results indicate the same general trend and are very 

close to the Stuart and Matsen values. Whereas for C| the Anex and
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Shull results are usually higher, for 02 they lie below the Stuart 

and Matsen curve. In each case, A and B, the ends of the curves lie 

very close to the atomic values. In the case of He in particular, 

each curve approaches the atomic value asymptotically.

Further evidence of the closeness of the Stuart and Matsen and 

the Anex and Shull results is given in Table II, The intemuclear 

distances R=1,0 a.u. and R=l,4 a.u, are the only two common to both 

calculations. Comparison of the two sets of results shows a very 

close correspondence between the magnitudes of the coefficients down 

at least as far as the fifth. Beyond this the agreement is not as 

good. This is understandable, because in each case the sum of the 

squares of the numbers has to equal unity. In the case of the Stuart 

and Matsen values this has to be "spread” over two more coefficients. 

The effect of this is that in general the Stuart and Matsen values 

are lower than the corresponding Anex and Shull values, with the 

disparity becoming more noticeable for the smaller coefficients. 

Considering the vastly different natures of the original approx­

imations, the extent to which the natural expansion coefficients 

agree is remarkable. The symmetries of the basis orbitals composing 

the natural orbitals are also seen to agree precisely, except for the 

very last of all.

It seems appropriate at this point to make some comments on the 

signs of the natural expansion coefficients. Table II shows that 

there are disparities over signs between the Stuart and Matsen and
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tho Anex and Shull results, even though the magnitudes of the 

corresponding numbers are so close. The two-electron Cl wave-function 

Y is expressible as a real quadratic form (see Appendix):

Y = Vf C

where ÿ is a row vector of basis orbitals and c is the matrix of the 

coefficients. By means of the transformation x=ÿA this may be 

reduced to

Y = X c X"*"

which is a sum of squares if c is diagonal. This is what has been 

done by throwing y into the form of the natural expansion. The 

number of terms in the diagonal form of Y depends on C . There are r 

terms if the rank of C is r. Further, we may define the index p of 

the quadratic form as the number of the r terms which are positive 

and the signature s as the number of positive terms minus the number 

of negative terms, = 2p-r. Thus in the case of the Stuart and 

Matsen wave-functions the rank of the quadratic form is evidently 13, 

the index 5 and the signature (-)3. For the Anex functions, however, 

the quadratic form is apparently non-singular, its index is 1 and its 

signature (-)9. The case with the Anex and Shull coefficients, 

therefore, where the first coefficient is of different sign from the
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rest, though very common does not happen invariably. HAGSTRCM and 
(22,23)

SHULL report a similar state of affairs for H2 . A single-centre

calculation yielded sixteen non-zero coefficients, of which four apart

from the first were positive. Several of the positive coefficients
C24)

were non-negligible. A two-centre calculation, however , yielded 

the "usual" scheme, with the first coefficient of different sign from 

all the rest.

In order to compare the twelve wave-functions produced by 

Stuart and Matsen we have followed a method used by Anex and Shull.

We look here for quantities which give a measure of the total 

"character" of a particular symmetry type in HeH*. The sum of the 

squares of the NSO coefficients corresponding to or-configurations is 

called the total " E character" of the molecule; the sum of the 

squares corresponding to v-configurations is called the total 

" ÏÏ character"; and so on. In order to obtain some correspondence 

between the molecule and the atomic systems Li* and He, the total 

S character + I/3 total P character + I/5 total D character of the 

atomic systems is compared with the total E character of the molecule; 

2/̂  total P character + ^  total D character of the atomic systems is 

compared with the total TT character of the molecule; and so on. The 

S, P, etc., character comes from squaring the coefficients in the 

Li* and He natural expansions. Table III contains the results of this 

work. There is a smooth variation of each symmetry character so 

formulated, from Li* through the twelve different R-values to He. As
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the E character decreases, each of the TT and A characters shows a 

simultaneous increase. There is no minimum or maximum as was noticed 

with the C| and C2 variation in Fig. 7, Thus, the c, coefficient, 

though very large, is not completely dominant.

The corresponding values from the Anex and Shull natural 

expansions are, for R=1.0 a.u.; E , 0.997927;TT, 0.002009;A , 0.000058; 

and for R=1.4 a.u.I E, 0.997799; TT, 0.002135; A, 0,000060. These are 

extremely close to the Stuart and Matsen values, which is only to be 

expected since we noticed a very strong correspondence between the 

natural orbital coefficients themselves. In this manner, the rather 

gross approximation as regards the "character" as defined above gives 

us a slightly different way of looking at the comparison between the 

two wave-functions.
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CHAPTER 4.

SUMMARY AND CONCLUSIONS.

This study of the molecular ion HeH* has been instructive in 

several ways. By analysing the extensive configuration interaction 

wave-function of Stuart and Matsen we saw how a good one-centre 

calculation predicted the formation of the molecule. The density 

difference maps drawn at different bond lengths showed clearly that 

from being a one-centre system at large intemuclear distances, HeH* 

became more and more polarized as the proton approached the helium 

nucleus. The proton tended to take charge with it until it coincided 

with the helium nucleus, again forming a one-centre system.

The average values of r" also showed clearly how the 

calculation predicted one-centre systems both at R=0 and at R=Oo.

They also showed that the proton greatly affected the density in the 

outer regions of the system, especially around an intemuclear 

separation of about 2,5 a.u.. The conclusions from the density 

difference maps and expectation values are in line with the centre of 

charge calculations made by Peyerimhoff and by Anex. Their results 

showed that as the intemuclear separation was increased, the electron 

cloud tended to follow the hydrogen nucleus at smaller R-values, and 

then showed a contraction towards the helium nucleus as R became 

relatively large.
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Analysing the Stu^t and Matsen functions in terms of natural 

orbitals made possible a comparison which would otherwise have been 

very difficult. We saw that this single-centre calculation and the 

two-centre calculation of Anex gave natural orbital coefficients 

which coincided to a very great degree of accuracy. It is worth 

bearing in mind that the Stuart and Matsen Cl wave-function was 

composed from twenty-six basis orbitals, making thirty config­

urations, whereas the Anex Cl wave-function had thirty-five config­

urations, made up from eleven basis orbitals. The natural expansion 

had the effect of reducing the number of natural orbital config­

urations in the Stuart and Matsen case from the expected twenty-six 

to thirteen, since thirteen coefficients were for all practical 

purposes zero. The thirteen which were not negligible were then found 

to be very close to the eleven from the Anex and Shull calculation. 

This similarity was evident both in the magnitudes of corresponding 

coefficients and in the symmetry of the basis orbitals from which 

they were composed. Hence, even though conceived and developed in 

entirely different ways, the two HeH* calculations were shown to bear

strong similarities to each other. This conclusion is in line with 
(21)that of SHULL as a result of his analysis of many varied hydrogen 

molecule calculations.

The density difference map in Fig. 4 gave information as to the 

effect of electron correlation in the Stuart and Matsen calculations. 

Here again we used as a basis the fact, noted by several authors and
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confirmed by our own results in Part I, that the first natural orbital 

configuration bears a strong resemblance to the self-consistent-field 

function. Yet further evidence of this fact is given by Anex in the 

case of HeH*. In addition to his Cl work he made a SCF calculation, 

which for R=l,4 a.u, gave an energy of -2.93192 a.u.. (Peyerimhoff^s 

SCF value was -2.93259 a.u..) Calculating the energy from the first 

natural orbital configuration he obtained -2,93177 a.u,. Using the 

truncated natural expansion as our uncorrelated function, we saw that 

the effect of correlation was to remove charge from the region between 

the nuclei and to pile it up on or behind them. In addition, there was 

a small increase of charge in the outer regions at right-angles to the 

intemuclear axis on and around a line through the helium nucleus. 

These effects were noticed for all the bond lengths studied, from 

small to large values of R.

The average values of cos Tjg appeared to give a rather sensitive 

measure of the electron correlation in both the atomic and molecular 

systems. In the first place, for He and Li* a large difference between 

<cos 7|2 > values was noticed for functions which differed by only 

about 4% in the predicted percentage correlation energy. Extension of 

this to the molecule explained why the limits of the <cos 7|2 > versus 

R curve for the molecule did not tend to the atomic values. A rough 

calculation showed that the percentage correlation energy predicted 

for the molecule was considerably lower than that for the atoms. This 

seemed to explain why the whole curve was displaced towards higher
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values of <cos 7,2 >, i.e. towards lower corresponding values of y|2 .

The <cos yj2 > versus R curve calculated from the natural 

expansion "uncorrelated" function showed the expected behaviour at its 

limits. That is, it tended towards the atomic values of <cos yj2 >=0,

>12 =90*, for both the united atom Li* and the separated system He, The 

curves for the uncorrelated function and the total function have 

relative positions indicating that on average the electrons are 

further apart in the latter case. This expected result is consistent 

with the charge movements noticed in the correlated minus uncorrelated 

density difference map and curves.

In their NSO paper on HeH*, Anex and Shull discuss the 

resemblance between the first natural orbital configuration and the 

SCF function. They calculated the overlap between the first natural 

orbital and the SCF orbital, and found that there was a trend of 

increasing difference between the overlaps as R increased, and hence 

an increasing difference between the orbitals. Two possibilities were 

present; either the agreement between the orbitals increased with 

increasing atomic charge, or the agreement went through a minimum at 

or beyond R=2 a.u.. Because of lack of evidence they were unable to 

choose between these alternatives. Our results from Part I, however, 

seemed to indicate that the effect of increasing Z was to draw the 

orbitals into better agreement. This of course does not preclude the 

possible existence of a minimum as described above.
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Finally, a few words must be said on the great usefulness

throughout this work of the natural expansion. It paid great

dividends in Part I in giving a more detailed insight into the

effects of radial and angular correlation. This was true to a lesser

extent in Part II, but the technique came into its own when

cosparison was made between the superficially different functions of

Stuart and Matsen and of Anex. In their original form no meaningful

comparison is possible, but the natural expansion showed that in

fact the functions were very similar, notably in the amount of E,TT ,

etc., "character" which each contained.

In a less direct but still very useful way, the natural

expansion has paid dividends through uncovering mistakes in published

data. In this connection we report two such errors. Firstly, in the
C25)H wave-funetion of WEISS , p. 1829, Table I, the coefficient of

the 2p^3p^ configuration should be 0.016493 and not 0,16493. Secondly,

in the HeH* function of Stuart and Matsen at R=l,2 a.u., p. 1468,

Table III, the coefficient of the ls5g configuration has the wrong

sign. The nature of the natural expansion provides an immediate and

relatively simple check on data as presented in journals etc.. A

property such as this is extremely useful, since errors manage to

creep into the literature with almost every extensive calculation.
(21)

SHULL goes so far as to suggest that one should perform an analysis 

of this kind wherever possible during the computations.
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R=0.1 8=1.0 Rp:1.4

<r-2> <r> <r^> <r > <r> <r^> <r-2> <r> <r^>

1 27,467 1.1687 1.1442 12.734 1.6933 4.1091 11.835 1.8362 6.1884

2 27.486 1.1691 1.1461 12.738 1.6944 4.1026 11.841 1.8401 6.2592

3 27.463 1.1693 1.1459 12.722 1.6948 4.1197 11.825 1.8404 6.2561

4 27.453 1.1694 1.1458 12.724 1.6952 4.1245 11.828 1.8408 6.2619

5 27.452 1.1458 12.724 4.1246 11.828 1.8409 6.2626

6 27.454 6.2625

8=2.0 8=5.0

<r-2> <r> <r^> <r-2> <r> <r4>

1 11.611 1.9279 9.1846 12.006 1.8580 7.7929

2 11.625 1.9351 9.2374 12.041 1.8617 7.9042

3 11.608 1.9354 9.2291 12.019 1.8622 7.8986

4 11.606 1.9356 9.2288 12.008 1.8625 7.8960

5 11.608 1.9357 9.2328 12.010 1.8626 7.9014

6 7.9017

Table I. Values of selected <r > from the natural expansions of the 
Stuart and Matsen^®^ wave-functions for HeH* truncated after m terms. 
The symmetry of the basis orbitals composing each natural orbital 
may be obtained from the tables of natural expansions at the end of 
Part II, Only the terms required for convergence to the values from 
the total wave-functions are shown. Values of bond length R are in 
atomic units.
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8=1 ,0 8=1 .4

STUART & MATSEN ANEX & SHULL STUART & MATSEN ANEX & SHULL

1 0.996408 a 0.996410 a 0.995198 a 0.995233 or

2 -0.063610 Q -0.062039 a -0.079150 a -0.077736 or

3 0.043489 IT -0.043673 IT 0.045027 IT -0.044962 IT

4 -0,031859 a -0.033598 a -0.031345 or -0.033406 or

5 -0.007718 a -0.007758 or -0.010792 or -0.009601 or

6 0.007403 -0.007736 IT 0.007862 IT -0.008359 IT

7 -0.006320 6 -0.007294 6 -0,006575 6 -0.007476 6

8 0.005914 5» -0.006560 IT 0.006307 IT -0.006722 IT

9 -0.003990 a -0.006332 or -0.005044 or -0.006342 or

10 -0.003048 or -0.004468 or -0.003946 or -0.004710 a

11 -0.001077 or -0.002290 6 -0.001748 or -0.002311 6

12 -0.000309 TT -0.000403 IT

13 0.000141 IT 0.000194 fl

Table II. Natural expansion coefficients and symmetry of basis 
orbitals composing the corresponding natural orbitals for the 
Stuart and Matsen^®^ and the Anex^^ HeH* wave-functions. Values 
of bond length R are in atomic units.
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r
Character u o a 0 .5 1 .0 1 .2 1 .3

1
. . .  !

E 0 .998808 0 .998689 0.998281 0 ,997972 0.997921 0 .997850

....................

0 .997809

TT 0 .00 12 2 5 0 .001267 0 ,001667 0 .001979 0.002054 0.002090 0 .002127

4 0 .000035 0 .00 00 2 9 0 .000036 0 .00 00 3 9 0.000041 0 .000042 0 .000043

Character 1 .5 1 .6 2 .0 3 .0 4 .0 5 .0 He

E 0 .9 9 7 7 8 3 0 .997790 0 .9 9 76 5 3 0 .997448 0 .997288 0 .997244 0 .997192

TT 0.002153 0 .00 21 8 3 0 .002307 0 .002557 0.002664 0.002696 0 .002720

A 0 .000043 0 .000044 0 .0 0 00 4 7
.

0 .000054 0 .000056 0 .000058 0 .000076

Table III. Symmetry "character" (for definition see text p. 105 ) as 
calculated from the Stuart and Matsen^®^ wave-functions. Values of 
bond length are in atomic units.
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3 0

He H R = 0  5

He20

O  O 2 0I O rca.u.)

Fig. 2. Radial density distributions D(r) from the Stuart and 
Matsen HeH*, He and Li'*’ wave-functions . Values of bond length 
R are in atomic units.
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20 29- 88

nr n = -2

n s 4

4 0 5 . 03 0l O 2 0

He

20

I 5

R (a u.)

Fi%. 3. Variation of <r^>, -2 n 4, with bond length R for the 
Stuart and Matsen HeH* wave-functions . The atomic values are
also indicated.
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Fig. 4. Difference map of the one-particle density from the total 
HeH function minus that from the natural expansion truncated to 
the first configuration. The function is that of Stuart and Matsen' 
at a bond length of 1,4 a.u..
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lOO

50

0 5 0  5 2 0

-50

CO)

Fig. 5. Difference curves plotted along the intemuclear axis of 
the one-particle density Ap(f) from the total HeH* function minus 
that from the corresponding natural expansion truncated to the 
first configuration, for various bond lengths. Values of the bond 
length R are in atomic units. The He nucleus is situated at the 
origin. The Ap(r) values have been scaled up by a factor of 10^, 
The wave-functions are those of Stuart and Matsen .
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R= 3 o

lOO

5 0

0 5 200 5

- 5 0
R =  3 0 ( b)

Fig. 5. Difference curves plotted along the intemuclear axis of 
the one-partie le density Ap(f) from the total HeH"*" function minus 
that from the corresponding natural expansion truncated to the 
first configuration, for various bond lengths. Values of the bond 
length R are in atomic units. The He nucleus is situated at the 
origin. The Ap(f) values have been scaled up by a factor of 10^. 
The wave-functions are those of Stuart and Mat sen ̂ ® ̂ .
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NATURAL EXPANSIONS PGR THE STUART & MATSEN FUNCTIONS.

In the following pages are presented the natural expansions 

of the wave-functions of Stuart & Matsen for He, Li*, and HeH* at 

twelve values of the intemuclear distance. Alongside each 

coefficient is the symmetry of the basis orbitals composing the 

corresponding natural orbital. Within each natural orbital the basis 

orbitals are ordered as follows:

He, Li*: Is 2s' 3s'
2p 3p 3d

HeH*: Is 2s' 3s' 2p 3p
4p 3d 4d 4f 5f
5g 6h 7i 8j
9k 101 2p' 3p' 3d

. 3p"" 3 d " 2p'''' 3d
3d'''
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NATÜRAL EXPANSION STUART & MATSEN He.

COEFFICIENTS: 1. 0.99596 s
2. -0,06200 s
3. -0.03597 P
4. -0.00727 s
5. -0.00585 p
6. -0.00539 d

NATURAL ORBITALS:

1. 1.23261 -0.26778 0.03026
0.00000 0.00000 0.00000

2. -1,92219 0.80919 1.44096
0.00000 0.00000 0.00000

3. 0.00000 0.00000 0.00000
0.45118 0.57103 0.00000

4, -4.32703 6.79347 -2.69049 
0.00000 0.00000 0,00000

5. 0.00000 0.00000 0.00000
-2.40758 2.38200 0.00000

6 . 0.00000 0.00000 0.00000  
0 .00000 0.00000 1 .00000



-127-

NATURAL EXPANSION STUART & MATSEN Li'

COEFFICIENTS: 1. 0.99836 s
2. -0,03700 s
3. -0.02404 P
4. -0.00447 s
5. -0.00396 p
6. -0,00380 d

NATURAL ORBITALS:

1. 1.13926 -0.14985 0.00657
0.00000 0.00000 0.00000

2. -1,79229 0.51275 1.59749
0.00000 0.00000 0.00000

3. 0.00000 0.00000 0.00000
0.42442 0.59743 0.00000

4. -4.48366
0,00000

6.79497
0.00000

■2.51687
0.00000

5. 0.00000
-2.41244

0.00000
2.37552

0.00000
0.00000

6. 0.00000 
0.00000

0.00000
0.00000

0.00000 
1.00000
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NATURAL EXPANSION HeH+ R 0.1

COEFFICIENTS: 1. 0.99839 a
2. -0.03559 or
3. 0.03476 n

4. -0.02430 cr

5. 0.00564 n

6. -0.00547 b

7. 0.00537 It

8. -0.00393 or
9. -0.00388 or

10. -0.00368 or
11. -0.00006 or
12. -0.00000 it

13. 0.00000 it

NATURAL ORBITALS:

1.

2.

3.

1.11564 -0.04010 -0.08970 0.06064 -0.05401
0.04860 0.00419 -0.00003 0.00101 0.00001

-0.00019 0.00056 0.00020 0.00011 0.00007
0.00005 0.00003 -0.00041 -0.00064 -0.00001
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

-1.59027 -0.16729 2.06620 -0.09563 0.08518
-0.07664 —0.00660 0.00005 -0.00159 -0.00002
0.00030 -0.00088 -0.00032 -0.00017 -0.00011

-0.00008 -0.00005 -0.04281 -0.08776 -0.00035
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.40888
0.00000

0.60926 0.00802 0.00214 0.04236



-129-

4. -0,29243 -0.14554 0.45619 0.08863 -0.07894
0.07103 0.00612 -0.00004 0.00148 0.00001

-0.00028 0.00082 0.00029 0.00016 0.00010
0.00007 0.00004 0,27308 0.65348 0.00050
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

5. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-1,84008
0.00000

1.99404 -0.58000 -0.15474 -0,01041

6. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000
1.00000

0.00000 0.00000 0.00000 0,00000

7. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0,00000
0.00000 0.00000 0.00000 0.00000 0,00000
0.00000 0.00000 0.00000 0.00000 0.00000

-1.58077
0.00000

1.28778 0.83057 0.22155 -0.02508

8. 1.09123 -1.41316 0.32885 0.10950 -0,09754
0.08776 0.00756 -0.00005 0,00182 0.00002

-0.00034 0.00101 0.00036 0.00020 0.00013
0.00009 0.00005 0.88700 -0.95585 0,88546
0.00000
0.00000

0.00000 0.00000 0.00000 0,00000
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9. -2.03299 2.61832 -0.59969 -0.16335 0.14551
-0.13091 -0.01128 0.00008 -0.00272 -0.00003
0.00051 -0.00151 -0.00054 -0.00030 -0.00019

-0.00013 -0.00008 -1.78375 1.86842 0.46319
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

10. -4.38966 5.54436 -1.19682 -0.02227 0.91984
-0.01785 -0.00154 0.00001 -0.00037 -0.00000
0.00007 -0.00021 -0.00007 -0.00004 -0.00003

-0.00002 -0.00001 1.16651 -1.10134 0.01075
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

11. 0.10087 -0.09573 -0.00027 -7.36750 6.56277
-5.90459 -0.50875 0.00364 -0.12263 -0.00121
0.02307 -0.06799 -0.02428 -0.01336 -0.00850
-0.00607 -0.00364 5.33888 0.58752 0.22030
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

12. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-20.16945
0.00000

-13.25177 13.32346 32.72651 -13.34677

13. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-20.17522
0.00000

-13,24977 -13.33166 32.72691 13.34673
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NATURAL EXPANSION HeH+ R = 0,5

COEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
13.

0.99779
0.03995

-0.03734
-0.03533
0.00645

-0.00600
0.00557

-0.00491
-0.00446
-0,00379
- 0.00012
- 0.00010
0.00005

NATURAL ORBITALSX

1.

2.

3.

0.90568 0.10197 -0.02153 0.03723 0.11862
0.00055 -0.00071 0.04806 70.00578 0.02353

-0.00506 0.01314 0.00453 0.00264 0.00166
0.00111 0.00076 -0.00077 -0.00083 -0.00019
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.32786
0.00000

0.65107 0.03188 0.02512 0.14218

-1.32364 0.37022 0.98495 0.13413 0.42736
0.00200 -0,00257 0.17315 -0.02081 0.08477

-0.01824 0.04736 0.01632 0.00951 0.00599
0.00399 0.00274 0.10700 0.10835 0.02039
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000
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4. 0.91684 0.35622 -1.60770 0.09695 0.30892
0.00144 -0.00185 0.12516 -0.01504 0.06128

-0.01319 0.03423 0.01180 0.00688 0.00433
0.00288 0.00198 0.08374 0.08446 0.01568
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

5. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-0.47981
0.00000

-0.57538 1.12775 0.86206 -0.14866

6. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0,00000 0.00000 0.00000 0.00000
0.00000
1.00000

0.00000 0.00000 0.00000 0.00000

7. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-2.39840
0.00000

2.39841 -0.07948 -0.06041 0.02002

8. -0.30841 0.43064 -0.13731 0.03607 0.11492
0.00054 -0.00069 0.04656 -0.00560 0.02280

-0.00491 0.01273 0.00439 0.00256 0.00161
0.00107 0.00074 -2.41262 2.15267 0.20272
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000
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9. -0.93173 1.30649 -0.41452 0.07245 0.23085
0.00108 -0.00139 0.09353 -0.01124 0.04579

-0.00986 0.02558 0.00882 0.00514 0.00323
0.00216 0.00148 0.42266 -0.96972 0.81887
0.00000
0.00000

0.00000 0.00000 O.OOOOO 0.00000

10. -4.64543 6.55544 -2.06509 0.00995 0.03171
0.00015 -0.00019 0.01285 -0.00154 0.00629

-0.00135 0.00351 0.00121 0.00071 0.00044
0.00030 0.00020 -0.00092 -0.06583 -0.23089
0.00000
0.00000

0.00000 0.00000 0.00000 0,00000

11. 0.10668 -0.15631 0.04753 1.68525 5.36963
0.02508 -0.03224 2.17551 -0.26147 1.06515

-0.22924 0.59503 0.20506 0.11954 0.07522
0.05015 0.03448 -2.70874 -4.48707 -2.19641
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

12. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
3.24195
0.00000

7.12156 -4.01292 -10.21752 4.13193

13. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-3.40796
0.00000

-7.50459 -3.91721 10.71680 3.95116



- 134-

NATURAL EXPANSION HeH+ R — 1 *0

COEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
13.

0.99641
-0.06361
0.04349

-0.03186
-0.00772
0.00740

-0.00632
0.00591

-0.00399
-0.00305
-0.00108
-0.00031
0.00014

or
or
It

a
or
it
6
it

or
or
or
ir
ir

NATURAL ORBITALS:

1.

2.

3.

0.89801 -0.04536 0.14640 0,02672 0.01612
0.14626 -0.01564 0.09405 -0.01642 0.05328

-0.01317 0.03219 0.01131 0.00686 0.00440
0.00296 0.00207 0.00004 -0.00213 -0.00022
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

-0.96883 -0.21937 1.16792 0.08715 0.05259
0.47709 -0.05102 0.30678 -0.05355 0.17379

-0.04297 0.10499 0.03689 0.02238 0.01435
0.00965 0.00675 0.00195 0.14143 0.01219
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.33306
0.00000

0.63391 0.03761 0.03275 0.16127



-135-

4. 1.11217 0.06529 -1.47594 0.05246 0.03166
0.28720 -0.03072 0.18468 -0.03224 0.10462

-0.02587 0.06320 0.02221 0.01347 0.00864
0.00581 0.00406 0.01145 0.24171 0.01561
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

5. -0.28636 0.27488 0.06098 -0.11342 -0.06844
-0.62091 0.06641 -0.39927 0.06969 -0.22618
0.05592 -0.13664 -0.04802 -0.02913 -0.01868
-0.01257 -0.00878 0.34220 0.85427 -0.23648
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

6. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-1.10799 
0.00000

0.05473 1.03549 0.84063 -0.13533

7. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000
1.00000

0.00000 0.00000 0.00000 0.00000

8. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-2.15510
0.00000

2.57916 -0.52259 -0.41491 0.16352



-136-

9. -4.73831 6.73793 -2.16618 0.00209 0.00126
0.01145 -0.00122 0.00736 -0.00128 0.00417

-0.00103 0.00252 0.00089 0.00054 0.00034
0.00023 0.00016 -0.01136 -0.00395 0.06036
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

10. 0.19784 -0.31042 0.13449 -0.07725 -0.04662
-0.42290 0.04523 -0.27194 0.04747 -0.15405
0.03809 -0.09306 -0.03270 -0.01984 -0.01272

-0.00856 -0.00598 0.65324 -0.11278 0.99246
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

11. 0.03557 -0.06856 0.04401 -0.14608 -0.08815
-0.79968 0.08553 -0.51422 0.08976 -0.29130
0.07202 -0.17598 -0.06184 -0.03751 -0.02406

-0.01618 -0.01131 -2.69781 3.32638 0.46656
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

12. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
1.11543
0.00000

5.49706 -2.56198 -6.61534 2.75419

13. 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000

-1.14104
0.00000

-6.11103 -2.51197 7.18039 2.56201



-137-

NÂTÜRAL EXPANSION HéH+ R s 1.2

COEFFICIENTS: 1. 0.99574 a

2. -0.07284 a

3. 0.04428 ir

4. -0.03155 a

5. -0.00941 cr

6. 0.00766 ir

7. -0.00645 6

8. 0.00607 ir

9. -0.00459 or
10. -0.00352 cr

11. -0.00140 a

12. -0.00037 it

13. 0.00017 #

NATURAL ORBITALS:

1.

2.

3.

0.89170 -0.06857 0.18653 0.03107 -0.01193
0.16825 -0.01921 0.10238 -0.01977 0.06101
-0.01574 0.03785 0.01342 0.00826 0.00535
0.00362 0.00252 -0.00001 -0.00254 -0.00024
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

-0.99069 -0.10902 1.10826 0.09400 -0.03608
0.50900 -0.05813 0.30973 -0.05981 0.18456

-0.04762 0.11451 0.04061 0.02498 0.01619
0.01095 0.00764 0.00603 0.13984 0.01069
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.34608
0.00000

0.62627 0.03489 0.02978 0.15433



-136-

4. 1.20269 -0.46031 -1.02896 0.05446 -0.02090
0.29493 -0.03368 0.17946 -0.03466 0.10694

-0.02759 0.06635 0.02353 0.01447 0.00938
0.00635 0.00442 0.03345 0*33398 0.01552
0. 0 000 0
0.00000

0.00000 0 . 0 0 0 0 0 0. 0 000 0 0 . 0 0 0 0 0

5. -0.69337 0.89924 -0.16043 -0.13337 0.05119
-0.72221 0.08248 -0.43946 0.08487 -0.26187
0.06757 -0.16247 -0.05762 -0.03544 -0.02297

-0.01554 -0.01083 0.40022 0.75971 -0.19699
0 . 0 0 0 0 0
0 .0 000 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0

6 . 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0
0 .00000 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

-1.21976
0.00 000

0.26275 0.97434 0.76053 -0.10038

7. 0.00 000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0
0.00 000  
1 . 0 0 0 0 0

0 .00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

8 . 0.00000 0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 .0 000 0 0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0.00000 0 . 0 0 0 0 0 0. 000 00 0 . 000 00
-2.08990
0 . 00 000

2.56482 -0.59901 -0.45379 0.17886



-139-

9. -4.17501 6.76543 -2.89603 0.00931 -0.00357
0.05039 -0.00575 0.03066 -0.00592 0.01827

-0.00471 0.01134 0.00402 0.00247 0.00160
0.00108 0.00076 —0.05465 -0.00173 0.15472
0. 0 0 0 0 0
0.00 000

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0

1 0 . 0.45841 -0.77900 0.37185 -0.07493 0.02876
-0.40573 0.04633 -0.24689 0.04768 -0.14712
0.03796 -0.09128 -0.03237 -0.01991 -0.01290
-0.00873 -0.00609 0.72341 -0.28133 0.97254
0. 0 000 0
0. 0 0 0 0 0

0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0

1 1 . 0.12004 -0.22354 0.12717 -0.16128 0.06190
-0.87335 0.09974 -0.53144 0.10263 -0.31668
0.08171 -0.19648 -0.06967 -0.04286 -0.02778
-0.01879 -0.01310 -2.63673 3.22901 0.46385
0. 0 0 0 0 0
0. 0 000 0

0 . 00 000 0 . 0 0 0 0 0 0.00000 0.0 0 0 0 0

1 2 . 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0,000 00 0 . 0 0 0 0 0
0 .0 000 0 0 . 000 00 0 . 0 000 0 0 .0 000 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 .0 0 0 0 0
0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00000 0 . 0 0 0 0 0
0.81261
0.0 000 0

5.16263 -2.22086 -6.00426 2.43110

13. 0.00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 00 000 0.0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.0 000 0 0 . 0 0 0 0 0 0. 0 000 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
-0.79925
0 . 0 0 0 0 0

-5.88105 -2.16356 6.63192 2.22407



- 140-

NATURAL EXPANSION HeH+ R 1.3

COEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
13.

0.99545
-0.07603
0.04463

-0.03170
-0.01018
0.00778

—0.00650
0.00616
-0.00485
-0.00374
-0.00157
-0.00038
0.00018

a
or
#
a
or
ir
6
#
or
or
or
f

NATURAL ORBITALS X

1.

2.

3.

0.89118 -0.07693 0.20072 0.03255 -0.02082
0.17314 -0.02037 0.10466 -0.02090 0.06369
0.01677 0.04009 0.01429 0.00885 0.00576
0.00391 0.00273 -0.00004 -0.00268 -0.00025
0 . 00 000
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

1.00114 -0.04877 1.07205 0.09590 -0.06133
0.51011 -0.06001 0.30834 -0.06156 0.18763
0.04941 0.11811 0.04209 0.02607 0.01697
0.01152 0.00804 0.00822 0.14008 0 . 0 1 0 2 2
0.00 000
0. 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 0 000 0 0. 0 0 0 0 0 0 . 0 000 0
0.35796
0 .00000

0.61827 0.03304 0.02763 0.14893



— 141 —

4. 1.23394 -0.68812 -0.81889 0.05324 -0.03405
0.28318 -0.03331 0.17117 -0.03418 0.10416
-0.02743 0.06557 0.02337 0.01447 0.00942
0.00640 0.00446 0.04840 0.37535 0.01485
0. 0 000 0
0. 0 000 0

0. 0 0 0 0 0 0.0 000 0 0.0 0 0 0 0 0 . 0 0 0 0 0

5. -0.88342 1.24338 -0.32566 -0.14046 0.08983
-0.74713 0.08789 -0.45160 0.09017 -0.27481
0.07236 -0.17300 -0.06165 -0.03819 -0.02485

-0.01688 -0.01177 0.42827 0.70240 -0.18314
0.0 000 0
0 . 00 000

0.00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

6 . 0.0 000 0 0.00000 0 . 0 0 0 0 0 0 .0 000 0 0 . 0 0 0 0 0
0.0 000 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 000 0 0. 0 0 0 0 0
0. 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0 0 . 0 000 0 0. 0 0 0 0 0
0.00 000 0.00000 0. 0 0 0 0 0 0 .00 000 0 . 0 0 0 0 0
-1.29115
0. 0 000 0

0.39531 0.93549 0.71063 -0.07897

7. 0 . 0 0 0 0 0 0.00000 0 . 0 0 0 0 0 0 . 00 000 0.0 0 0 0 0
0.000 00 0. 0 0 0 0 0 0 .0 000 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0. 00000 0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0
0. 0 0 0 0 0 0.00000 0 .0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 00000
1.00 000

0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

8 . 0 . 0 0 0 0 0 0 .00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0.00000 0.0 000 0 0 . 0 0 0 0 0 0 . 0 000 0
0.0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.00 000 0.0 000 0 0 .00000 0 . 0 0 0 0 0

-2.04419
0 . 0 0 0 0 0

2.54408 -0.64052 -0.47100 0.18316



-142“

9. -3.87559 6.62891 “3.11494 0.01391 “0.00890
0.07401 “0.00871 0.04473 “0.00893 0.02722

-0.00717 0.01714 0.00611 0.00378 0.00246
0.00167 0.00117 “0.08725 0.00887 0.20160
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0. 00000 0.0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

1 0 . 0.55667 “0.98958 0.50352 “0.07277 0.04654
-0.38704 0.04553 “0.23395 0.04671 -0.14236
0.03749 “0.08962 -0.03193 “0.01978 -0.01287
“0.00874 -0.00610 0.77134 “0.36772 0.95714
0. 0 0 0 0 0
0 .0 000 0

0. 00000 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

1 1 . 0.16939 “0.32401 0.18831 “0.16735 0.10703
-0.89016 0.10472 “0.53806 0.10743 “0.32742
0.08622 “0.20611 -0.07345 “0.04550 “0.02961
“0.02011 “0.01403 “2.60146 3.18244 0.46553
0.00 000
0 . 0 0 0 0 0

0 . 00 000 0 .00 000 0 . 0 0 0 0 0 0 .0 0 0 0 0

1 2 . 0 . 0 0 0 0 0 0. 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 .0 0 0 0 0 0.0 000 0 0 .0 000 0 0 . 00 000 0 . 0 0 0 0 0
0.00000 0.00 000 0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.68608
0.0 000 0

5.03736 “2.11093 “5.76276 2.32597

13. 0.0 000 0 0.0 000 0 0.0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0.00000 0 . 0 000 0 0 . 00 000 0 . 0 0 0 0 0
0.00000 0 . 0 0 0 0 0 0.0 0 0 0 0 0.0 000 0 0.0 0 0 0 0
0 . 000 00 0.00000 0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0

-0.64653
0 , 0 0 0 0 0

“5.75011 -2.06480 6.36002 2.12928



- 143-

NATURAL EXPANSION HeH+ R = 1,4

COEFFICIENTS: 1. 0.99520 cr
2. -0.07915 cr

3. 0.04503 If

4. -0.03135 a

5. -0.01079 a

6. 0.00786 f
7. -0.00657 6
8. 0.00631 IT
9, -0.00504 a

10. -0.00395 cr

11. -0.00175 a

12. -0.00040 It

13. 0.00019 If

NATURAL ORBITALS:

1.

2 .

3.

0.88635 -0.08125 0.21601 0.03359 -0.02738
0.17530 -0.02160 0.10616 -0.02187 0.06576

-0.01782 0.04207 0.01500 0.00937 0.00613
0.00416 0.00292 -0.00007 -0.00280 -0.00025
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

-1.01017 0.01069 1.03342 0.09699 -0.07906
0.50617 -0.06236 0.30654 -0.06316 0.18989

-0,05144 0.12147 0.04332 0.02705 0.01769
0.01202 0.00844 0.01027 0.13927 0.00966
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.37443
0.00000

0.60570 0.03091 0.02549 0.14363



-144-

4. 1.23667 -0.86675 -0.62371 0.04888 -0.03984
0.25509 -0.03143 0.15448 -0.03183 0.09570

-0.02593 0.06122 0.02183 0.01363 0.00892
0.00606 0.00425 0.06878 0.42513 0.01353
0.00 000
0.00 000

0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0

5. -1.07503 1.60592 -0.51130 -0.14609 0.11908
-0.76238 0.09392 -0.46170 0.09512 -0.28601
0.07748 -0.18295 -0.06525 -0.04075 -0.02664

-0.01810 -0.01271 0.45648 0.63259 -0.17255
0.00 000
0. 0 0 0 0 0

0 . 0 0 0 0 0 0.00000 0. 0 000 0 0 . 0 0 0 0 0

6 . 0. 0 000 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000
0 . 0 0 0 0 0 0 .0 0 0 0 0 0.00000 0 .0 000 0 0. 0 0 0 0 0
0 . 000 00 0 . 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 0 0. 0 0 0 0 0 0 .0 0 0 0 0

-1.37480
0.00 000

0.54058 0.89901 0.66129 -0.06157

7. 0.00000 0 . 0 0 0 0 0 0 . 00 000 0 . 00 000 0.000 00
0.00 000 0 . 0 0 0 0 0 0 . 00 000 0 . 00 000 0.00 000
0.00 000 0 . 0 0 0 0 0 0.00000 0 . 0 000 0 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 00 000
1.0 000 0

0 . 0 0 0 0 0 0 .00000 0 . 00 000 0 . 0 0 0 0 0

8 . 0 .0 0 0 0 0 0 . 0 0 0 0 0 0.000 00 0 .00000 0 .0 000 0
0. 00000 0 . 0 0 0 0 0 0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0.0 0 0 0 0 0.00000 0.0 000 0 0.0 0 0 0 0
0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

-1.98618
0.00000

2.50056 -0.67204 -0.47644 0.17858



— 145 —

9. -3.56473 6.41307 -3.25801 0.01849 -0.01507
0.09649 -0.01189 0.05843 -0.01204 0.03620
-0.00981 0.02315 0.00826 0.00516 0.00337
0.00229 0.00161 -0.12709 0.02926 0.25228
0.00 000
0 . 000 00

0.00 000 0.00000 0.00000 0 . 0 0 0 0 0

1 0 . 0.64376 -1.19814 0.64823 -0.06976 0.05686
-0.36406 0.04485 -0.22048 0.04542 -0.13658
0.03700 -0.08737 -0.03116 -0.01946 -0.01272

-0.00864 -0.00607 0.82893 -0.46051 0.93685
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0.00000 0.00 000 0.00 000 0 . 000 00

1 1 . 0.22278 -0.44302 0.26773 -0.17270 0.14077
-0.90128 0.11103 -0.54582 0.11245 -0.33812
0.09160 -0.21629 -0.07713 -0.04817 -0.03150

-0.02140 -0.01502 -2.56111 3.13416 0.46662
0 . 0 0 0 0 0
0.00000

0.0 000 0 0.00000 0. 0 0 0 0 0 0 . 0 0 0 0 0

1 2 . 0 . 00 000 0.00000 0.000 00 0 . 000 00 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0 . 000 00 0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 . 00 000 0 .0 000 0 0 . 0 0 0 0 0 0 .0 000 0
0 . 00 000 0 . 00 000 0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.69384
0 . 0 0 0 0 0

4.95946 -1.92813 -5.69296 2.15372

13. 0 . 0 0 0 0 0 0.000 00 0.00 000 0. 0 0 0 0 0 0 . 0 0 0 0 0
0 .0 0 0 0 0 0 . 0 000 0 0 . 0 0 0 0 0 0 .0 000 0 0.0 0 0 0 0
0.00 000 0.000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0
0 . 00 000 0 .0 000 0 0 . 0 0 0 0 0 0 . 0 000 0 0. 0 0 0 0 0

-0.66899
0. 0 0 0 0 0

-5.85289 -1.83469 6.48187 1.91043



—146 —

NATURAL EXPANSION HeH+ 1.5

COEFFICIENTS : 1 . 0.99493 a
2 . -0.08242 Q
3. 0.04530 n
4. -0.03062 a
5. -0.01117 a
6 . 0.00791 #
7. —0.00663 Ô
8 . 0.00639 n
9. -0.00521 Q

1 0 . -0.00416 O
1 1 . -0.00192 a
1 2 . -0.00040 V
13. 0 . 0 0 0 2 0 K

NATURAL ORBITALS:

3.

0.87625 -0.07862 0.23052 0.03383 -0.02972
0.17335 -0.02199 0.10632 -0.02269 0.06725
-0.01838 0.04340 0.01559 0.00980 0.00643
0.00438 0.00308 -0 . 0 0 0 1 2 -0.00287 -0.00025
0.00000
0. 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000

-1.01660 0.07614 0.98379 0.09638 -0.08467
0.49379 -0.06264 0.30287 -0.06464 0.19156

-0.05235 0.12363 0.04442 0.02793 0.01833
0.01249 0.00876 0.01345 0.13663 0.00920
0 . 0 0 0 0 0
0.0 000 0

0 . 0 0 0 0 0 0 . 0 000 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0.0 000 0 0.0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0. 0 0 0 0 0 0.0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.37839
0. 0 000 0

0.60599 0.02870 0.02294 0.13665



-147-

4. 1.20751 -0.99414 -0.44300 0.03984 -0.03500
0.20410 -0.02589 0.12519 -0.02672 0.07918

-0.02164 0.05110 0.01836 0.01154 0.00758
0.00516 0.00362 0.10245 0.47804 0.01139
0. 0 0 0 0 0
0. 0 0 0 0 0

0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

5. -1.28116 2.01855 -0.73979 -0.14752 0.12960
-0.75583 0.09588 -0.46360 0.09894 -0.29321
0.08013 -0.18924 -0.06799 -0.04275 -0.02806

-0.01912 -0.01341 0.50041 0.52793 -0.16891
0.00 000
0. 0 0 0 0 0

0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

6 . 0 .0 000 0 0. 0 0 0 0 0 0 . 000 00 0 .0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 .00000 0 . 0 0 0 0 0 0.0 0 0 0 0 0 . 00 000
0.00 000 0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0, 0 0 0 0 0 0.0 0 0 0 0 0 . 000 00 0.00 000 0 . 0 0 0 0 0
-1.39686
0 .0 000 0

0.61386 0.87839 0.62013 -0.04774

7. 0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 000 0 0.0 0 0 0 0
0 .0 000 0 0.00 000 0 . 000 00 0.000 00 0 .0 0 0 0 0
0. 0 0 0 0 0 0.00000 0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 .0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 0 0 0 0 0
1. 0 0 0 0 0

0.00 000 0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0

8 . 0. 0 0 0 0 0 0 . 000 00 0.00 000 0.0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.000 00 0 . 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0.0 000 0 0.0 000 0 0 . 00 000 0 . 0 0 0 0 0
0 . 000 00 0 . 00 000 0.00 000 0.0 000 0 0 . 0 0 0 0 0

-1.97047
0 . 0 0 0 0 0

2.46730 -0.67782 -0.46037 0.16906



-148-

9. -3.21620 6.09625 -3.33194 0.02204 -0.01936
0.11291 -0.01432 0.06925 -0.01478 0.04380
-0.01197 0.02827 0.01016 0.00639 0.00419
0.00286 0 . 0 0 2 0 0 -0.17708 0.06481 0.31438
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 00000 0 .0 0 0 0 0

1 0 . 0.72332 -1.41526 0.81519 -0.06511 0.05720
-0.33362 0.04232 -0.20463 0.04367 -0.12942
0.03537 -0.08353 -0.03001 -0.01887 -0.01238

-0.00844 -0.00592 0.92713 -0.59084 0.90508
0 . 0 0 0 0 0
0.00 000

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 000 0

1 1 . 0.28338 -0.59252 0.37710 -0.17925 0.15747
-0.91839 0.11650 -0.56330 0. 1 2 0 2 2 -0.35627
0.09736 -0.22995 -0.08262 -0.05194 -0.03409
-0.02323 -0.01630 -2.50184 3.09246 0.47943
0 . 000 00
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

1 2 . 0. 00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .00000 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0 0 .00000 0 . 000 00
0.00 000 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000 0 . 00 000
0.62910
0. 0 0 0 0 0

4.89613 -1.83327 -5.56884 2.06185

13. 0. 0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0 0 .0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00000 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00 0 . 00 000
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0
-0.59324
0 . 00 000

-5.79106 -1.74264 6.35049 1.82449



—149 —

NATURAL EXPANSION HeH+ 1.6

COEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
13.

0.99480
-0.08391
0.04560

-0.03074
-0.01156
0.00800

-0.00669
0.00644

-0.00532
-0.00434
-0.00207
-0.00044
0.00022

NATURAL ORBITALS:

1.

2.

3.

0.87321 -0.07797 0.23840 0.03423 -0.03296
0.17145 -0.02229 0.10573 -0.02313 0.06801

-0.01890 0.04446 0.01606 0.01016 0.00670
0.00458 0.00321 -0.00015 -0.00290 -0.00025
0.000 00
0 . 0 0 0 0 0

0 . 0 0 0 0 0 O.OOOOO 0 . 0 0 0 0 0 0. 0 0 0 0 0

-1.02807 0.13900 0.94345 0.09648 -0.09290
0.48326 -0.06282 0.29801 -0.06519 0.19168

-0.05327 0.12531 0.04527 0.02865 0.01888
0.01291 0.00905 0.01565 0.13595 0.00884
0 .00000
0. 0 0 0 0 0

0 . 0 0 0 0 0 0.0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

0.0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0 . 000 00
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0 .0 0 0 0 0 0 . 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0
0.38509
0. 0 0 0 0 0

0.60306 0.02648 0.02077 0.13042



-150-

4. 1.17963 -1.09296 -0.29505 0.03413 -0.03287
0.17098 -0.02223 0.10544 -0.02306 0.06782

-0.01885 0.04434 0.01602 0.01013 0.00668
0.00457 0.00320 0.12921 0.51277 0.00955
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

5. -1.44072 2.38310 -0.97228 -0.14937 0.14383
-0.74818 0.09726 -0.46138 0.10092 -0.29677
0.08248 -0.19401 -0.07008 -0.04435 -0.02923

-0.01998 -0.01402 0.52245 0.45033 -0.16109
0 . 0 0 0 0 0
0. 00000

0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

6 . 0 .00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 0 000 0 0 . 0 0 0 0 0 0 . 00 000 0. 0 0 0 0 0 0 . 0 0 0 0 0
0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0 0. 0 000 0

-1.45627
0 . 0 0 0 0 0

0.73705 0.83695 0.56904 -0.02699

7. 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 000 0 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0
1 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

8 . 0.0 000 0 0 . 000 00 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 00 000
0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

-1.92601
0. 0 000 0

2.42584 -0.71146 -0.46190 0.16887



-151-

9. -2.90598 5.74298 -3.31252 0.02471 -0.02379
0.12377 -0.01609 0.07632 -0.01670 0.04909

-0.01364 0.03209 0.01159 0.00734 0.00483
0.00331 0.00232 -0.22425 0.10445 0.38033
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0. 0 0 0 0 0 0. 0 000 0 0.0 000 0 0. 0 0 0 0 0

1 0 . 0.80751 -1.64006 0.98677 -0.06193 0.05963
-0.31021 0.04033 -0.19130 0.04185 -0.12304
0.03420 -0.08044 -0.02906 -0.01839 -0. 0 1 2 1 2

-0.00828 -0.00581 1.01027 -0.70125 0.87124
0 .0 0 0 0 0
0 . 00 000

0 . 0 0 0 0 0 0.0 0 0 0 0 0 . 0 000 0 0. 0 0 0 0 0

1 1 . 0.34800 -0.75196 0.49416 -0.18491 0.17805
-0.92624 0.12041 -0.57119 0.12494 -0.36740
0.10211 -0.24018 -0.08676 -0.05490 -0.03618

-0.02474 -0.01735 -2.44534 3.03454 0.48170
0 . 0 0 0 0 0
0 .0 000 0

0. 6 000 0 0 . 0 0 0 0 0 0.00 000 0 . 000 00

1 2 . 0.0 000 0 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 00000 0.0 000 0 0 . 0 0 0 0 0 0 . 00 000 0.00 000
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 00000
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0
0.44331
0 . 0 0 0 0 0

4.69183 -1.66929 -5.19620 1.91036

13. 0. 0 000 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0
0. 0 000 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0. 00000
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 000 0
-0.36179
0.00000

-5.58307 -1.59860 5.92982 1.68930



-152-

NÂTURAL EXPANSION HeH+ R = 2.0

COEFFICIENTS: 1.
2.
3.
4.
5.
6.
7.
8. 
9.

10.
11.
12.
13.

0.99459
-0.08521
0.04687

-0.03149
-0.01193
0.00809

-0.00690
0.00683

-0.00546
-0.00488
-0.00241
-0.00040
0.00023

a
cr
ir
a
a
f
ô
ir
or
a
a

NATURAL ORBITALS:

1.

2.

3.

0.85495 -0.05103 0.24921 0.03334 -0.03479
0.15072 -0 . 0 2 1 1 1 0.09627 -0.02303 0.06577

-0.01940 0.04492 0.01651 0.01072 0.00720
0.00497 0.00351 -0.00026 -0.00269 -0 . 0 0 0 2 0
0 .00000
0.00 000

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0

-1.08037 0.39828 0.77395 0.09325 -0.09729
0.42148 -0.05903 0.26923 -0.06441 0.18393

-0.05426 0.12563 0.04617 0.02998 0 . 020 12
0.01390 0.00980 0.02593 0.12937 0.00714
0 .0 000 0
0 . 000 00

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0
0 .00000 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00
0. 00000 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0 . 000 00
0 .00000 0.00 000 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0
0.41557
0 . 0 0 0 0 0

0.58660 0.01851 0.01241 0.10206



-153-

4. 0.95094 -1.12855 0.04255 0.00941 -0.00982
0.04254 -0.00596 0.02718 -0.00650 0.01857
-0.00548 0.01268 0.00466 0.00303 0.00203
0.00140 0.00099 0.25966 0.58353 0. 0 0 2 2 0
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0

5. 1.89672 -3.65903 1.94361 0.14201 -0.14816
0.64189 -0.08990 0.41002 -0.09810 0.28011

-0.08263 0.19133 0.07032 0.04566 0.03065
0.02117 0.01493 -0.60098 -0.11321 0.13037
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0 0 . 0 0 0 0 0

6 . 0 .0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0
0.000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
O.OOOOO 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 000 00 0. 0 0 0 0 0

-1.65829
0 . 0 0 0 0 0

1.14898 0.73043 0.40107 0.01366

7. 0 . 00 000 0. 0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000 0. 0 0 0 0 0 0.0 000 0
0. 0 0 0 0 0 0.0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00
0. 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0. 0 000 0 0.00 000
O.OOOOO
1 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0.0 0 0 0 0

8 . 0.000 00 0. 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0 0.0 000 0
0.00 000 0 .00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0.00 000
0.0 000 0 0. 0 0 0 0 0 0 . 00 000 0.000 00 0.000 00
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0 0. 0 0 0 0 0
1.75016
0.0 0 0 0 0

-2.18967 0.76454 0.39912 -0 . 1 2 2 1 0



-154-

9. -1.70393 3.88099 -2.62558 0.02181 -0.02276
0.09860 -0.01381 0.06298 -0.01507 0.04303

-0.01269 0.02939 0.01080 0.00701 0.00471
0.00325 0.00229 -0.41340 0.32071 0.67651
0 . 00 000
0.0 000 0

0.00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0

1 0 . 0.97855 -2.26225 1.55897 -0.04024 0.04198
-0.18188 0.02547 -0.11618 0.02780 -0.07937
0.02341 -0.05421 -0.01992 -0.01294 -0.00868

-0.00600 -0.00423 1.49501 -1.30320 0.64715
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

1 1 . 0.60306 -1.48578 1.10293 -0.21477 0.22408
-0.97079 0.13597 -0.62011 0.14836 -0.42364
0.12497 -0.28936 -0.10635 -0.06905 -0.04635

-0.03201 -0.02258 -2.06638 2.69231 0.46094
0 . 0 0 0 0 0
0. 00000

0.00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0

1 2 . 0.000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0
0.0 000 0 0.00000 0 . 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.38390
0 . 00 000

4.62768 -1.37115 -5.07005 1.62414

13. 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0.00000 0 . 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0
0 .0 000 0 0 . 00 000 0 . 0 0 0 0 0 0. 0 000 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.00000 0 . 0 0 0 0 0 0. 000 00 0 . 0 0 0 0 0

-0.30399
0 . 00 000

-5.56137 -1.28911 5.85684 1.41312



-155-

NATURAL EXPANSION HeH-h R 3.0

COEFFICIENTS: 1. 0.99545 or
2. -0.07116 Q

3. 0.04936 If

4. -0.03478 cr

5. -0.01029 a
6. 0.00823 If

7. 0.00737 6
8. -0.00737 If

9. -0.00567 cr

10. -0.00545 cr

11. -0.00147 a

12. -0.00025 #
13. 0.00019 if

NATURAL ORBITALS:

1.

2.

3.

0.84545 0.00399 0.22081 0.02374 -0.00948
0.07063 -0.00843 0.04986 -0.01326 0.03813
-0.01236 0.02835 0.01096 0.00751 0.00524
0.00373 0.00268 -0.00025 -0.00147 -0.00007
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

-1.27986 0.94364 0.49716 0.06743 -0.02693
0.20062 -0.02394 0.14163 -0.03765 0.10833

-0.03511 0.08053 0.03115 0.02134 0.01489
0.01059 0.00763 0.03831 0.10091 0.00310
0.00000
0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.44228
0.00000

0.57512 0.00777 0.00303 0.05121



— 156 —

4. 0.51522 -0.68946 0.10961 -0.00276 0. 0 0 1 1 0
-0.00822 0.00098 -0.00581 0.00154 -0.00444
0.00144 -0.00330 -0.00128 -0.00087 -0.00061

-0.00043 -0.00031 0.42033 0.56154 -0.00028
0. 0 0 0 0 0
0. 00000

0. 00000 0 . 0 000 0 0 . 0 0 0 0 0 0 .0 000 0

5. -2.14852 4.90545 -3.23252 -0.10262 0.04098
-0.30530 0.03643 -0.21552 0.05730 -0.16485
0.05343 -0.12255 -0.04740 -0.03248 -0.02266
-0.01611 -0.01160 0.58555 -0.26849 -0.06385
0.00000
0. 00000

0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00000

6 . 0. 00000 0.00000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 .00000
0 .0 000 0 0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 000 0
0.00 000 0.00 000 0 . 000 00 0 . 0 0 0 0 0 0 .00000
0.00 000 0.000 00 0. 0 0 0 0 0 0 . 0 0 0 0 0 0.00000

-2.09231
0.00 000

1.90722 0.46934 0.13495 0.04095

7. 0.00000 0. 0 0 0 0 0 0 .0 000 0 0 . 0 0 0 0 0 0.000 00
0.00000 0.00000 0.00000 0 .0 0 0 0 0 0.00000
0.00000 0.00000 0.00 000 0 . 0 000 0 0. 00000
0.00000 0.00000 0. 0 0 0 0 0 0 .0 0 0 0 0 0.00000
1.19254
0.00000

-1.46403 0.89806 0.24522 -0.04402

8 . 0.00000 0.00000 0 . 00 000 0 . 0 0 0 0 0 0.00000
0.00000 0.00000 0.0 0 0 0 0 0 . 0 0 0 0 0 0.00000
0.00000 0. 0 000 0 0 . 00 000 0.0 0 0 0 0 0.000 00
0. 00000 0.0 000 0 0 . 00 000 0 . 000 00 0.000 00
0.00000
1. 0 0 0 0 0

0.00 000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0.0 000 0
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9. -0.79310 2.03601 -1.54134 0.00365 -0.00146
0.01086 -0.00130 0.00767 -0.00204 0.00586
-0.00190 0.00436 0.00169 0.00116 0.00081
0.00057 0.00041 -2.19134 2.15277 0.04757
0 . 0 0 0 0 0
0 . 00 000

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.000 00

1 0 , -0.21146 0.54603 -0.41599 0.00236 -0.00094
0.00703 -0.00084 0.00496 -0.00132 0.00380

-0.00123 0.00282 0.00109 0.00075 0.00052
0.00037 0.00027 0.25283 -0.25540 0.98736
0 . 00 000
0.0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 00 000

1 1 . -0.50469 1.44912 -1.22802 0.29605 -0.11823
0.88080 -0.10510 0.62179 -0.16532 0.47560
-0.15416 0.35357 0.13674 0.09370 0.06537
0.04648 0.03348 1.17643 -1.81804 -0.22487
0 . 0 0 0 0 0
0. 0 000 0

0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 00000 0.00000

1 2 . 0. 0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000
0. 0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 000 0 0 . 00 000
0.0 000 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 00 000
0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00 000
0.08382
0. 0 0 0 0 0

4.51179 -1.03438 -4.66428 1.29746

13. 0 .0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 000 00
0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0 0. 0 0 0 0 0
0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0.00 000
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0.000 00
0.00570
0. 00000

-5.07429 -1.00154 5.10037 1.18753
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NATÜRAL EXPANSION HeH+ R = 4,0

COEFFICIENTS: 1.
2 .
3.
4.
5.
6.
7.
8 . 
9.

10,
11.
12.
13.

0.99585
-0.06448
0.05039

-0.03580
-0.00895
0.00828
0.00758

-0.00754
-0.00587
-0.00543
-0.00046
-0.00014
0.00012

NATURAL ORBITALS:

3.

0.85703 -0.00664 0.21903 0.01551 0.00946
0.01933 0.00068 0.01722 -0.00401 0.01417
0.00446 0.01103 0.00460 0.00324 0.00233
0.00170 0.00125 -0.00015 -0.00077 -0.00003
0. 0 000 0
0. 0 000 0

0.0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 0

1.40085 1.08861 0.50392 0.04205 0.02565
0.05242 0.00185 0.04668 -0.01088 0.03843
0.01209 0.02991 0.01246 0.00879 0.00632
0.00461 0.00338 0.02808 0.06261 0.00115
0.000 00
0. 0 0 0 0 0

0 . 0 0 0 0 0 0. 0 0 0 0 0 0 , 0 0 0 0 0 0 . 0 0 0 0 0

0.00000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0.00 000
0 . 0 0 0 0 0 0 , 0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0
0.00000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0 0 . 0 0 0 0 0
0.0 000 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0
0.44666
0.0 000 0

0.57406 0.00414 0.00093 0.02837
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4. 0.29190 -0.37382 0.04319 -0.00055 -0.00034
-0.00069 -0. 0 0 0 0 2 -0.00061 0.00014 -0.00050
0.00016 -0.00039 -0.00016 -0. 0 0 0 1 1 -0.00008

-0.00006 -0.00004 0.44355 0.56535 -0.00003
0 .00000
0 .0 000 0

0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00000

5. -2.39366 5.48817 -3.66319 -0.06552 -0.03997
-0.08169 -0.00288 -0.07275 0.01696 -0.05989
0.01883 -0.04661 -0.01942 -0.01370 -0.00986

-0.00718 -0.00526 0.41443 -0.25972 -0.03011
0 .0 000 0
0.00000

0.000 00 0 . 0 0 0 0 0 0 . 00 000 0.0 0 0 0 0

6 . 0.00000 0.00000 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 00 000 0.00 000 0. 0 0 0 0 0 0.0 0 0 0 0 0. 000 00
0.0 000 0 0. 000 00 0 . 0 0 0 0 0 0 .00 000 0.00000
0.00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0

-2.28296
0. 0 000 0

2.19999 0.29975 0.04828 0.02870

7. 0.000 00 0.00000 0 . 0 0 0 0 0 0.0 0 0 0 0 0 .00000
0.00000 0 . 00 000 0.00 000 0 . 0 0 0 0 0 0 .00000
0.00000 0.0 000 0 0 . 0 0 0 0 0 0 . 00 000 0 .00000
0.00 000 0 .0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0
0.76625
0 . 0 0 0 0 0

-0.92974 0.95824 0.14776 -0.01543

8 . 0.00000 0. 0 0 0 0 0 0.0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 000 0
0 .0 000 0 0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0.00000 0.00000 0 . 00 000 0 . 0 0 0 0 0 0 . 00 000
0.00000 0.00000 0.0 0 0 0 0 0 . 0 0 0 0 0 0. 00000
0.00000
1 . 00 000

0.000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
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9. 0.49564 -1.22487 0.89616 -0.00189 -0.00115
-0.00236 -0.00008 -0 . 0 0 2 1 0 0.00049 -0.00173
0.00054 -0.00134 -0.00056 -0.00039 -0.00028

-0 . 000 21 -0.00015 2.33789 -2.30831 -0.00702
0 . 0 0 0 0 0
0. 0 000 0

0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0.00000

1 0 . -0.10299 0.25723 -0.19052 0.00131 0.00080
0.00163 0.00006 0.00145 -0.00034 0.00119

-0.00038 0.00093 0.00039 0.00027 0 . 00 020
0.00014 0 . 0 0 0 1 0 0.05002 -0.05212 0.99817
0. 0 0 0 0 0
0 . 00 000

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 0

1 1 . -0.25316 0.71594 -0.60446 0.43452 0.26503
0.54169 0.01911 0.48243 -0.11244 0.39713

-0.12490 0.30906 0.12878 0.09084 0.06536
0.04763 0.03489 0.99387 -1.73954 -0.14159
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00 000 0 . 00 000

1 2 . 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0
0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.000 00
0.04515
0 . 00 000

4.61997 -0.98783 -4.72633 1.23936

13. 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 00 000 0 . 0 0 0 0 0 0 . 00 000 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0.00741
0 . 0 0 0 0 0

-4.94249 -0.96972 4.97554 1.17745
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NATURAL EXPANSION HeH+ R « 5,0

COEFFICIENTS: 1.
2 .
3.
4.
5.
6 .
7.
8. 
9.
10.
11.
12.
13.

0.99592
-0.06297
0.05071

-0.03599
-0.00856
0.00831

-0.00762
0.00761

-0.00588
-0.00541
-0.00013
-0.00009
0.00008

NATURAL ORBITALS:

1.

2.

3.

0.85941 -0.01266 0.22194 0.01094 0.01189
0,00276 0.00247 0.00540 -0.00044 0.00419
-0.00108 0.00328 0.00145 0.00098 0. 0 000 0
0 , 0 0 0 0 0 0 . 0 0 0 0 0 -0 . 0 0 0 1 0 -0.00048 -0.00001
0 . 0 0 0 0 0
0. 0 0 0 0 0

0 .0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 000 0

-1.42678 1.07736 0.55022 0.02932 0.03187
0.00740 0.00663 0.01448 -0.00117 0.01124

-0.00289 0.00880 0.00390 0.00262 0.00 000
0.00000 0 . 0 0 0 0 0 0.01877 0.04031 0.00054
0 .0 000 0
0 ,0 000 0

0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00

0.00000 0.0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 000 0
0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 000 0
0.00 000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 0 0 0 0
0.45142
0. 0 000 0

0.57023 0.00255 0.00036 0.01783
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4. 0.18291 -0.22521 0.01683 -0.00024 -0.00027
-0,00006 -0.00006 -0 . 0 0 0 1 2 0 .0 000 1 -0.00009
0.00 002 -0.00007 -0.00003 -0 . 0 0 0 0 2 0 . 0 0 0 0 0
0.00 000 0.00 000 0.44656 0.57039 -0 . 0 0 0 0 1
0, 0 0 0 0 0
0 . 0 0 0 0 0

0.00000 0 . 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0

5. -2.51570 5.70114 -3.76966 -0.04429 -0.04814
-0.01117 -0.01001 -0.02187 0.00176 -0.01698
0.00437 -0.01330 -0.00589 -0.00396 0. 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.26947 -0.17909 -0.01498
0 .00000
0 . 0 0 0 0 0

0.00000 0 . 0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0

6 . 0.00000 0. 00000 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.00 000 0. 0 0 0 0 0 0 . 0 000 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0.00000 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0

-2.36119
0.000 00

2.31431 0.18228 0.01860 0.01966

7. 0. 0 000 0 0 . 000 00 0 . 0 0 0 0 0 0.0 000 0 0 . 0 0 0 0 0
0. 0 0 0 0 0 0.0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 0 0 0 0 0 0.00000 0. 0 0 0 0 0 0. 0 0 0 0 0 0.0 0 0 0 0
0. 00000 0 . 0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00 000
0. 0 000 0
1. 0 0 0 0 0

0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 00 000 0.00 000

8 . 0 . 00 000 0 .0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0.00 000
0.0 000 0 0. 00000 0 . 0 0 0 0 0 0.0 000 0 0.0 0 0 0 0
0 . 000 00 0. 0 000 0 0 . 0 0 0 0 0 0 , 0 0 0 0 0 0.00 000
0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 000 00
0.46949
0. 0 0 0 0 0

-0.57631 0.98486 0.09602 -0.00612
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9. 0.32059 -0.77635 0.55753 -0.00109 -0.00119
-0.00028 -0.00025 -0.00054 0.00004 -0.00042
0.00011 -0.00033 -0.00015 -0 . 0 0 0 1 0 0.0 000 0
0 .0 000 0 0 . 0 0 0 0 0 2.38098 -2.35270 -0.00248
0. 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0. 00000 0 . 0 0 0 0 0 0 . 00 000

1 0 . -0.05198 0.12737 -0.09274 0.00054 0.00059
0.00014 0. 0 0 0 1 2 0.00027 -0 . 0 0 0 0 2 0.00021

-0.00005 0.00016 0.00007 0.00005 0.00 000
0 .00000 0 . 0 0 0 0 0 0.01591 -0.01669 0.99958
0 . 0 0 0 0 0
0 . 0 0 0 0 0

0.0 000 0 0.00 000 0.0 0 0 0 0 0.000 00

1 1 . 0.12707 -0.35595 0.29898 -0.61834 -0.67201
-0.15598 -0.13977 -0.30526 0.02460 -0.23705
0.06094 -0.18561 -0.08218 -0.05535 0. 0 0 0 0 0
0. 0 0 0 0 0 0 . 0 0 0 0 0 -1.09700 2.01810 0.12482
0. 0 0 0 0 0
0 . 0 0 0 0 0

0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 00000 0.00000

1 2 . 0. 00000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 . 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0
0 .0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 000 0 0.00000
0.01775
0. 0 0 0 0 0

4.65924 -0.96154 -4.73601 1.20900

13. 0 .0 000 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.0 000 0
0 .00000 0 . 0 0 0 0 0 0 .00000 0 . 0 0 0 0 0 0 .0 000 0
0 .0 000 0 0 . 0 0 0 0 0 0 .0 0 0 0 0 0 . 0 0 0 0 0 0 .00 000
0 . 0 0 0 0 0 0 . 000 00 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 000 0
0.01691
0 . 0 0 0 0 0

-4.86579 -0.95037 4.89473 1.16984
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APPENDIX

The General Theory of Natural Spin-Orbitals!

In the configuration interaction (Cl) approximation the 

normalized wave-fxinction of a system of N electrons may be 

represented as a linear combination of Slater determinants:

Y(x,,X2 ,....,x^) = (x, ....,x^) A(l)
where

M'k <x , ,x , ,..,,x ) = (Nl)^det(Vf A  ) . A(2)
^ IN K| *2 *N

The elements of the determinant in A(2) are in general spin-
(a )

orbitals (molecular or atomic orbitals) . Each of these 

determinants does not necessarily have the symmetry of the system 

of which A(l) is the approximate wave-function, but the 

determinants may be grouped into so-called "configurations”, which 

do have this symmetry. (This latter is the usual way of 

representing a configuration interaction wave-function.)

Before the theory is developed further, it is necessary

(a) On a point of convention: if the suffices k|,k2 > etc. 

in A(2) are arranged in numerical order, such that, for instance 

k|<k2 < ....<kj^, then the Slater determinants A(2) are called 

"ordered".
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to introduce some notation:

Consider two of the Slater determinants from the set A(l) 

Let them be and Y|_ say, where

\  = (N!)

■*'l =

A(3)

The sets and \jt̂̂ are chosen from an extended basis set, 

whose members are in general non-orthogonal, so that we can 

define "non-orthogonality integrals" between them:

d(kL) = yjfC. X, ) V' C.X, ) d X,
k ' L ' ' A(4)

The integral between the two Slater determinants in A(3) 

may easily be shown to be N! times the integral of the 

product of the diagonal term in and the determinant in Y|_ 

This in turn reduces to the determinant whose elements are 

the various integrals defined in A(4), i.e.

Y|_Cdx) = CNDCN!) 2 CN!) 2

(where the notation (dx) denotes integration over all 

co-ordinates)
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= = d©t[d(k )]. A(5)

Thus, the element in the first row, first column of is

the element in the first row, second column of D is

yjj Cx.) yb ex.) dx, k̂, ' Ho ' '

and so on.

The (N-l)th-order cofactors of and Y|_ are

det^(l|k) and det^(l|L) A(6 )

respectively, where the 1 indicates that the first row has 

been removed and the k(L) that the column containing a 

particular has been removed, (NB a cofactor is a

signed minor.) The (N-l)th-order cofactor of is 

correspondingly denoted by

A(7)

Both Y|( and H'l may be expanded about their first rows,
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80 that

-I.2 L A(8 )
Y ^  »  ( N ! )  E  Vfj^CXj) d e t ^ C l | L )  .

K
The notation E  indicates that the summation takes place only 

k

over the spin-orbitals which the particular set K

contains. It is worth noting that in the general case which we 

are considering, that of non-orthogonal basis functions, the 

Slater determinants such as Y|̂  are not normalized.

In a way similar to that in which A(5) was derived, we 

can show that, using A(6 ) and A(7),

det,^(l|k) detL<l|L) (dx) = (N-1)! D,^L<k|0, A(9)

an expression which relates the cofactors of the determinants 

Y|̂  and Y|_ with those of the determinant 0 %^°^ the non­

orthogonality integrals A(4).

Now let us define the first-order reduced density matrix 

y (x^|x|) for the system represented by the normalized wave- 

function Y given in A(l). We have

y C X | | X | )  =  N Y  Cx', Xg,... ,Xĵ ) Y (x̂  , Xg,...,x^) Cdx|) A(10)
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The prime on the Xj coordinate indicates that, when calculating 

the expectation value of some operator, we put xĵ  equal to X| 

after the operation has been performed. The operator thus works 

simply on the unprimed co-ordinates. The notation (dx^) indicates 

that the integration takes place over all coordinates except Xĵ  • 

According to A(10), we have for the total integral

y Cx' |X|) dX| = N A(ll)

Assuming that our normalized wave-function may be expanded 

according to A(l), we may now obtain an expression for the 

first-order reduced density matrix within this approximation 

for Y :

Substituting in A(10) for Y from A(l):

X.) - N E C*Y* E C  T (dx') K K K L L L

Substituting from A(8 ) for Y|̂  and Y|_ expanded about their 

first rows:

X E E C ,  ^(x ) det. (I lb) (dx') . L b  L b I L

A(12)

The double summation E E , for example, means:K k
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for a particular sot of spin-orbitals K, sum over all the

contained in that set, and then sum over all such sets K,
(k>

This can clearly be re-arranged as E E , which means; for a 

particular spin-orbital from the extended basis set, sum

over all the sets K of spin-orbitals which contain that 

particular \jt̂ , and then sum over all possible .

Using summations re-arranged in this way, A (12) becomes

Ni

CL)
X E dr (X ) E C  det Cl L) Cdx') . b I I L L L I

Using A(9) this becomes

NCN-Dl _ * / Ckxt) * ,ycX||X|> = E V̂ î CXj) ^|^Cx,)EE C ^  D^Jkll) C ^

E^ x|) yCt|k) ^^X|) A(13)

where Ck) cl) *
ytl|k) = E E C ^  D,^,jk|l) C ^  A(14)

C a )
y (t|k) is Lowdin^s "first-order density in the k-space".

(a) The general theory of natural spin-orbitals for an 

orthonormal basis set is given in: P.-O, Lbwdin, Phys. Rev.97, 

1474 (1955).
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It is a square matrix whose order is equal to the number of 

basis orbitals being used in the approximation of Y • The 

factor Dj^^(k|L) is, of course, the (N-l)th-order cofactor of 

^KL' remaining from after the row containing and the 

column containing have been removed, (see A(7)).

In order to obtain the natural spin-orbitals (NSo's) 

for the wave-function Y we need to derive the first-order 

reduced density matrix y(x^|x|) in the form given in A(13), 

This in turn requires the production of the matrix y(L|k), 

defined in A(14); it is this which proves the most tedious 

task, since it includes the evaluation of (N-l)th-order 

determinants in D|^^(kjL),

The natural spin-orbitals are defined as being that 

orthogonal basis in which the first-order reduced density 

matrix is diagonal.

In general, the fo n̂n of y(xj^|x|) given in A (13) will 

contain some cross-terms. It will become diagonal if y(l|k) 

be diagonal, i.e. only terms with k=t will remain. Thus, 

from the original extended basis , we wish to obtain the 

NSO^s by means of a linear transformation using some matrix 

A, as yet unknown.We wish this new basis to be orthonormal, 

and at the same time to render the first-order reduced density 

matrix into diagonal form. These stipulations may be 

represented mathematically:
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or, in matrix notation

X  = ^ A A(15)

Here, X represents a row-vector of the natural spin-orbitals 

and ^ a row-vector of the original basis spin-orbitals. A is 

the required transformation matrix, whose exact form we wish to 

find. Thus in general, each NSÜ is a linear combination of 

the original basis spin-orbitals , and there will be as 

many NSO^s as there are basis orbitals.

The requirement that the X ^s form an orthonormal set 

may be written

= *k L

or

< X ■f'lX >  » I A(16)

The notation X ̂  represents the complex conjugate of the 

transpose of X , so that since X is a row-vector, is a

colcimn-vector; I is the identity matrix.
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Substituting for X from A(15) in the condition A(16):

<  Tp A > = I

i.e. a 1" a a - I A(l7)

where A = and is the "overlap matrix"; its elements

are the various overlap integrals d(kL) defined in A(4), The 

orthogonality requirement for the % -basis thus leads to 

condition A(17)•

We also require that, expressed in terms of this ortho­

normal basis, the first-order reduced density matrix be 

diagonal. Equation A(13) may be re-written in matrix notation 

as follows:

yCx^ |x|) = ÿ 7 A(18)

Now from A(15)

and X ?

Substituting for yp and in A(18)
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yCx'|x,) =  X  A " ' y  Ca ')^ X ^  . 

y(x'||x|) will be diagonal in the x -basis if the matrix

be diagonal, i.e. if

A"' y lA"' = n A<19)

where n is a diagonal matrix. Then we may write

or
yCx{|X|) = E X|̂ Cx'|) X|̂ (x,) A(20)

in which form the first-order reduced density matrix is 

diagonal. A(20) leads to the following normalization 

condition from the total integral:

A(21)

using equation A(ll) .

The diagonal elements n^ of the diagonal matrix n are 

known as the "occupation numbers" of the natural spin-orbitals X.
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To summarize, the two conditions which must be satisfied 

to obtain the transformation matrix A and the matrix of the 

occupation numbers n are

A? A A = I A(21)(a)

and A * y CA = n A(21) (b)

Unlike the case described by Lbwdin, our basis set of the 

spin-orbitals is not an orthonormal one. In the orthonormal

case, A becomes the identity matrix, so that A(21)(a) reduces to

A A = I

which is the condition that the matrix A be unitary. In the 

case under discussion, therefore, A is not unitary, and the 

two conditions A(21)(a) and A(21)(b) have to be satisfied 

simultaneously to find the unique transformation matrix A,

One method of doing this is as follows:

Perform a unitary transformation on the overlap matrix A :

A U = T A(22)

Here, U is a unitary matrix whose columns are the eigenvectors
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of A . T is a diagonal matrix (not in general the identity 

matrix) whose diagonal elements are the eignvalues of A .

Now let us define some matrix W, whose elements are given by 

the relation

“ ^Vr ~  A(23)
y  jj

By operating on A with W, we are forcing out the identity 

matrix:

W'̂ ’a  W = I A(24)

Comparing A(21)(a) and A(24), it would appear that W and A are 

identical. This is not true, however, since in general, A is 

given by the product of W and some other matrix, X say:

A = W X  and A^= . A(25)

The nature of X may be discovered by substituting from A(25) in 

A(21)(a):

X ^ W ^ A  W X = I

Using A(24) this becomes
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X'*’ X = I

so that X is a unitary matrix. Thus, any unitary matrix can be 

used, and A(24) will still be satisfied. To obtain the exact 

form of X we use condition A(21)(b):

From A<25) A~' = x’‘w"'

so that A(21)(b) becomes

X"* W"'y < X'')^= n A(26)

Putting W ’*y C^*)^= M  , say, and using the fact that X is 

unitary, we obtain

X^ M X = n A(27)

If we perform this unitary transformation, we may obtain the 

diagonal matrix of the occupation numbers, n. In addition, the 

columns of X are formed from the eigenvectors of M, so that we 

can obtain the product WX, which, as defined in A(25), is the 

required transformation matrix A.

Using the quantities defined in this way, we may now 

expand the wave-function in terms of the natural spin-orbitals.
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Determinants are formed with the NSO s as elements, and the 

so-called "natural expansion" of the wave-function is obtained 

in terms of these new Slater determinants.

When exactly N of the NSO^s are fully occupied (i.e. 

have occupation numbers equal to 1) we have a limiting case, 

in which the natural expansion is reduced to a single Slater 

determinant. From a convergence point of view, this is obviously 

the most favourable case. Even if only a small number of the nĵ 

are non-zero (some being essentially zero), then the natural 

expansion will only contain relatively few terms, leading to 

an improvement in the convergence of the wave-function. It 

can be shown that the introduction of the natural spin-orbitals 

leads to an expansion of most rapid convergence within the 

original basis.

C o )
The Case of Two Electrons:

The general NSO theory dealt with above undergoes some 

simplification in the special case of two-electron systems.

The configuration interaction singlet-state normalized wave- 

function may in this case be written

(a) see, for example, P.-O. Lbwdin and H. Shull, Phys. Rev. 

1 0 1 , 1 7 3 0  ( 1 9 5 6 ) .
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with .

Hero we can use the well-known fact that, with a two- 

electron wave-function the singlet spin function may be 

factored off from the determinants; re-writing A(29):

'n't*,,*,) = E C ^ , ^ ^ C r , 5  (T,) «II) PC2)-»C2)/SCI) A(30)

Formation of the first-order reduced density matrix (from 

A(10)) gives

y(x'||X|) = (a'<H-/3'/3) E C r|̂) y(l|k) •

In this simplified case, y CI ( k ) is in general a sum of

products made up of coefficients and overlap integrals defined

in A(4). (These overlap integrals have taken the place of the

(N-l)th-order cofactors |̂<|_(k|L) in A(14) ; in this present 

case, of course, N-1 = 1.) In the particular case of an ortho­

normal basis, the matrix y simplifies further to

y = C
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where C is the coefficient matrix of the original configuration 

interaction wave-function. The formation of y is thus far 

simpler in the two-electron case than in the general N-electron 

case discussed above.

We have now to satisfy conditions A(2l)(a) and A(21)(b).

In doing so, we obtain matrices A and n, as before. By 

diagonalizing , the first-order reduced density matrix becomes 

diagonal in the X -basis. However, because of the particular 

nature of the two-electron configuration interaction wave- 

function, yet a further simplification is possible. The wave- 

function is a real quadratic form in the original basis, i.e:

' T - ÿ C A(31)

where is again a row-vector of the basis spin-orbitals and 

C is the matrix of the coefficients. Using the transformations 

V' = X A"' and xp - (A'b'̂'X + we have

' Y = X A"' C (A"!)'*' x'*’

Condition A(21)(b) is hence replaceable by

A"‘ C (A"')'̂ = c
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wher© c is a diagonal matrix whose non-zero elements are the 

coefficients in the natural expansion, for then

't  - X c X^

Thus, we have brought the wave-function itself to diagonal 

form in the X -basis. In this simplified case,

Y » E c X (I) X C2) aCl)B(2)-a<2) 8(1) A(32)
k k k k --------— --------

y/2

where the c^ are the diagonal elements of c. This form is to 

be compared with that in A(30). Now, within the X-basis the 

first-order reduced density matrix is given by

|X|) = E n^X| ( l )  X^(l) ,
k

and A(32) gives

. *
y(X| |X|) = E c. X (I) X (I) , ' ' ' k k k k

omitting the spin functions, for convenience. Comparing these, 

there evidently exists the relationship that
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between the coefficients in the natural expansion A(32) and 

the occupation numbers, in this two-electron case.

Thus, in this simplified case, there is no need to 

produce Lowdin^s "first-order density in the k-space", the 

y -matrix. We can operate instead on the matrix C of the 

coefficients in the original Cl wave-function. NB this is 

purely a consequence of the fact that the two-electron wave- 

function may be written as a real quadratic form, A(31), and 

it is therefore strictly confined to the two-electron case.

If the original set of basis orbitals contains, say,

M orbitals, then the wave-function A(30) will contain 

^M(M+1) terms, if all possible basis orbitals are used to form 

configurations. The diagonal form A(32), however, will contain 

only M terms. This enormous simplification cannot be expected 

in the many-electron case.

Throughout this discussion we have used spin-orbitals, the 

spatial parts of which may or may not be doubly-filled. If they 

are doubly-filled, and we have two spin-orbitals for every 

spatial orbital, we will correspondingly get two natural spin- 

orbitals for every natural (spatial) orbital. In this case the 

word "spin" may be dropped from the expression "natural spin- 

orbital".
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CO )
Example on the Two-electron Case;

Consider a simple configuration interaction normalized 

wave-funet ion:

Y = 3^^[c,(lsls) + C2<1 s2 s^) + C3<2s^2 s^)j . (i)

i.e, we have three configurations whose determinants are 

composed of normalized Slater-type orbitals.

C, = 0.23586511 q(s) = 2,64

C2 = 0.37591055 q(s') = 1,95

C3 = 0,17935024 Jls2s^dr = S = 0,71103715

Writing out (i) in full:

1 ■c. ls(l)o(l) Isd)iS(l) + C2 ls(l)a(l) 2s'(l)P(l)

ls(2 )*(2) ls(2)p(2) ls(2)*(2) 2s'(2)P(2)

2 s'(l)c(l) Is(l)fd) + C 3 2 s"(l)c(l) 2 s'(l)P(l)

2 s'(2)G(2) ls(2 )P(2 ) 2 s'(2)c(2) 2 s'(2)p(2) (ii)

(a) data for this example is taken from J,D, Stuart and F,A, 

Mat sen, J, Chem. Phys. 1646 (1964). See y (2), Table II, 

p. 1647.
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Factoring off the spin!

Y = [C|ls<l)ls(2) + C2ls(l)2s'(2) + C2 2s'(l)ls(2) +

C3 2 s'(1 )2s'(2) ] * 8 (1 )13(2) - »(2)p(l) (ill)

We have four distinct spin-orbitals, but since they are made 

up from doubly-filled spatial orbitals, we can from now on 

talk about two natural orbitals. We shall ignore the spin 

function during this analysis. The spatial orbitals are Is and 

2s', which we shall label O  and 0  respectively.

Construction of the y -matrix:

The first-order reduced density matrix is given, from 

(iii), by

y(x'|X|) = ls(l)ls(l) (C,^+ Cg + aCjCgS)

+ ls(l)2s'(l) (CjCg + CjCgS + c|s + CgCj)

+ 2 s'(l)ls(l) (CgC, + C^S + CgCjS + CgCg)

+ 2s'<l)2s'(l) (C2̂  + C| + 2C2C3S) , (iv)

so we can identify the elements of the y -matrix as

y (O  10  ) — C| + C2  + 2cIC2 S 

= 0.32302814
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y ( 0 | 0  ) = y( O | 0  ) = c,C2 + c,C3S + C2S + C2C3 

= 0,28663820

y ( ©  I ©  ) = C2 + €3^ + 2C2C3S

= 0.26935098

Thus, the complete y -matrix is

y = 0,32302814

0,28663820

0,28663820

0,26935098

The C-matrix will be:

C = 0.23586511

0.37591055

0.37591055

0.17935024

The A -matrix will be:

A = 1.0
0,71103715

0,71103715

1.0
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If we use A and 7 in the analysis, we get A and n :-

n = 0.99759759 0 A = 0,56542539 -1,30494943

0 0.00240200 0,51552846 1,32543469

(The sum of the occupation numbers is 1 and not 2 because a 

factor of 2 was omitted from the first-order reduced density 

matrix, equ. (iv).)

If we use A and C in the analysis, we get A and c :-

c = 0,99879829 0

0 -0,04901019

A = 0,56542538 -1.30492944 

0,51552847 1.32543468

and Cj = hy two methods, we have the

complete natural expansion for Y in (i).


