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ABSTRACT

The first section of this work consists of an analysis of three
wave-functions for the ground state of the two=-electron series which
begins with H™, Two of the wave-functions include electron correlation.
One does so by means of superposition of configurations and the other
by the inclusion of explicit correlation factors. For comparison, the
third function is of the Hartree-~Fock type. The correlation within the
wave-functions is demonstrated by presenting various density functions
and density difference maps relative to the uncorrelated approach.
Expectation values and physical properties such as X-ray scattering
factors, diamagnetic susceptibilities and nuclear diamagnetic shielding
factors are also presented. By this means it is possible to assess the
correlation predicted by the wave~functions, with comparison being made
where possible with results from a more accurate wave~function. In
addition, the production of the natural expansion for one of the corr-
elated functions gives extra information about the effects of radial
and angular correlation. The second part consists of a study of a good
one-centre treatment of the diatomic molecular ion HeH'. Both the mol-
ecular formation and the electron correlation in the system are studied
by means of density differences and expectation values. Natural
orbitals are used to enable comparison to be made with another Hout
wave-function. This comparison shows that the two calculations are
similar, even though conceived quite differently. A development of the
goneral theory of natural spin orbitals is given as an appendix.
Special emphasis is given to this technique as regards two-electron

systems,



GENERAL INTRODUCTION,

Since the very beginnings of quantum mechanics, two~electron
systems have occupied a position of the highest importance and have
been the objects of a great deal of interest. The reason for this is
that they form a stepping~stone between the comparatively simple
one-electron systems and the far more complicated systems with many
electrons. The value of the pioneering work of Hylleraas in this
field can hardly be overestimated. Since his original series of
classic papers, the pace of the work on two-electron systems has
never slackened. In fact, since the nineteen~fifties it has
quickened considerably, with the advent of high speed electronic
digital computers., During this modern phase the work of Pekeris has

been especially noteworthy.

This present work is divided into two main sections, Part I is
a study of the electron correlation in various theoretical treat-
ments of an isoelectronic series. These approaches study the ground
states of eight mombers of the two-electron series beginning with H™,
Part II is concerned with a calculation on the simplest heteronuclear
diatomic system, the molecular ion HeH', In addition, an appendix
contains a description of the theory of natural spin orbitals. This
technique is used extensively during the work of Part I and Part II,

In Part I a close study is made of two treatments which



introduce correlation by different methods. These are two of the
three methods which Hylleraas introduced in 1928, One method is by
the superposition of configurations, of which the wave-functions of
Weiss are examples. The other is by using explicit correlation terms
in the wave-function, as was used by Green et al. General details of
these two methods and a description of the actual treatments in which
they were used are given in Chapter 2,

Examination of the correlation within each treatment is carried
out by evaluating various density functions and expectation values
for the correlated wave-functions and for the corresponding Hartree-
Fock functions. These Hartree-Fock functions are due to Curl and
Coulson and to Roothaan, Sachs and Weiss, Analysis of the config-
uration interaction functions in terms of natural spin orbitals
enables a classification to be made in terms of radial and angular
correlation, All this is presented in Chapter 3, whilst the
discussion of the results is given in Chapter 4, Where possible,
results are compared with corresponding values obtained from very
elaborate correlated wave-functions - those of Pekeris and of
Frankowski and Pekeris, Special consideration is given to the systems
with atomic number Z = 1-3, whilst for Z = 4-8 the analysis is less
extensive and interest is concerned more with an examination for

overall trends and general behaviour,

The molecule-ion HeH' has received a good deal of attention



since the early days of quantum mechanics, and a very great variety
of calculations has been performed on it. Part II of this work is
devoted to an examination of a good one-centre wave-function for the
system. This is the calculation of Stuart and Matsen, Chaptef 2
contains the details of the treatment, which is then analysed from
two viewpoints. In Chapter 3 the molecular formation is examined by
looking at the whole molecule as the bond length changes. A number of
density difference maps are drawn to show the changes which occur as
the internuclear separation is varied. Then, in Chapter 4, the
effects of electron correlation in the system are discussed, again
using density differences. A natural spin orbital analysis is performed
and the results are compared with those of a similar analysis on a
different wave-~-function for HeH*, This wave-function is due to Anex
and the NSO analysis was due to Anex and Shull.

Natural spin orbitals have an important place in this work, and
for this reason an appendix is devoted to the general theory of Nso’s
for configuration interaction wave-functions, It is shown that by
means of the natural expansion a simplification of a complicated
configuration interaction wave-function may be achieved. This
simplification is shown to be particularly striking in the case of
two-electron systems. In this case also, a pleasing degree of
physical interpretation of the wave-function is shown to be possible.

Tables of results, figures and references may be found at the

end of the section to which they pertain.
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CHAPTER 1,

INTRODUCTION,

The helium atom and the helium-like ions have been the
subjects of a great deal of study throughout the history of
quantum mechanics. Although exact analytical calculations on
them are not possible, they are simple enough to allow
extremely accurate approximate methods to be used. For the
ground state, in particular, these approximate theoretical
methods have reached the same degree of accuracy as that of
spectroscopic measurements. In this respect therefore, such
systems provide the ideal subjects for testing approximations
which might later be extended to more complex systems,

The series of helium-like ions H'; He, Li+} Bez+, cescey

06*'are of considerable interest in physics and astrophysics.
In particular, the existence of the negative hydrogen ion H ™
has brought about an explanation of the opaque atmosphere of
the sun ‘! . This effect is caused mainly through the small
concentration of hydride ions in the region immediately below
the photosphere, Because of repetitive electron capture by
neutral hydrogen and subsequent photodissociation through
absorption of radiation from the sun’s interior, the photo-

sphere forms an optical boundary and gives the sun a sharp

edge.



These systems are also particularly important, however,
in any discussion of the correlation problem. As is explained
later in this section, the essential consideration is of electrons
with anti-parallel spins, which is precisely the situation which
pertains in the ground states of the helium-like ions. The
case of H provides a critical test of any approximation since
it is only just stable against dissociation into a neutral
hydrogen atom and a free electron. Because of this low binding
energy, high accuracy is required of an approximation if it is
to predict a bound state in this case,

Thus, in an analysis of electron correlation, such as this
present work, some excellent material is provided by approximate
wave-functions for the helium-like ions H™, He, .....0°".

We begin by giving a brief resumé of the problem of electron

correlation and of various attempts which have been made to

solve it.

The Correlation Problem:

In order to obtain accurate solutions of the Schrodinger
equation for atomic and molecular systems, it is essential to
take account of the so-called "correlation energy", which arises
from the tendency of the electrons to avoid one another, This
appears in the Hamiltonian as the Coulomb term Fi; , and it is

this term which causes great difficulty in the theory.



C2) 3D
The approximation developed by HARTREE and FOCK

has enjoyed great success in giving approximations to the wave-
functions for electronic systems., However, this famous method
suffers from one serious inadequacy; this is its inherent
inability to account fully for the correlation of the electrons.
The solution itself is based on the "independent particle™ model.
It is expressed as an antisymmetrized product of "one-electron
functions", and implicit in this is the fact that electrons of
like spin are surrounded by the "Fermi-hole™ - that they are
unlikely to be found close to one another, It is unable, however,
to allow for the "Coulomb-hole'" - that is, the tendency of
electrons of unlike spin to avoid one another. It is in the light
of this basic limitation of an otherwise excellent approximation
that correlation energy has been defined €42 as the difference

between the exact nonrelativistic energy and the energy from

the Hartree~Fock method, i.e,

= E - E 1
corr nonrel H-F 1@
With this definition in mind, this analysis of certain
correlated wave-functions has been undertaken, A solution of the
Hartree-Fock type has been used as a standard "mon-correlated”
treatment, relative to which the merits of certain correlated

treatments have been examined.



In his original study of the ground state of helium and
of the He-like ions, HYLLERAAS( > introduced three quantum-
moechanical methods of treating electron correlation, These
have been used continuously ever since, and have proved to be
of the deepest importance in the development of this field.

Before describing these methods in detail, it is worth-
while mentioning at this stage a characteristic feature of the
wave-function for two-electron systems, Describing only the
singlet state (a similar procedure is possible for the triplet),

the total antisymmetric wave-function may be factorized into

a space part and a spin part:

] - - _ -
YR, K = \vcrl,r2>[ocnpcz)—ccz)pcn] 1(2)

Here, il’ iz represent co-ordinates of space and spin, while
f|, ié represent space co-ordinates only. 8 denotes a spin
component +} and B denotes a spin component -é. Thus, Iy
represents a total (antisymmetric) space-and-spin singlet
wave-function, which may be factorized into the product of a
symmetric space part and an antisymmetric spin part. In the
case of the triplet, the space part is antisymmetric and the
spin part symmetric, Because of this simplification for N

(number of electrons) = 2, the main interest may be concentrated

on the space functions,



The three methods introduced by Hylleraas have come to be
commonly known by the following names:

(a) Superposition of configurations.

(b) Explicitly correlated wave-functions,

(¢) Different orbitals for different spins.

In the first method, also known as configuration inter-
action (CI), one chooses in theory a complete set of one-
electron basis functions wk(it)° These are then combined to

form the total wave-~function, which may be written as
¥c1,2) = F r 1(3
)2 It:l. ckL zﬁk(r'> \,bL(rz)

with Ckl = Cik . These coefficients are found using the
variation method. In practice, the basis set cannot be complete
because it would be unmanageable, and only a finite number of
basis functions are chosen, Hylleraas found that the series of
configurations converged rather slowly, and that far quicker
convergence could be obtained by introducing the inter-electronic
distance r}z explicitly into the solution, This method produced
"explicitly correlated wave-functions™, (b) above, Another
application of this method was by JAMES and COOLIDGE €e in
their treatment of the hydrogen molecule, Method (c) is now
described as the splitting of the closed shell, (13)2, into an

open shell, (1s”18””), i.e. using different orbitals for



different spins (DODS).

Against the disadvantage of their slow convergence,
configuration interaction wave-functions have the advantage that
they may be generalized to systems with N greater than 2 without
great difficulty. However, no physical significance can be placed
on the configurations making up the total wave-function, To
overcome this disadvantage, the original CI wave-function may
be thrown into the form of the natural expansion, which is the
superposition of configurations of most rapid convergence within
a given basis. Details of the general theory of natural spin-
orbitals are given in the Appendix.

Wave-functions containing:ﬂz explicitly have enjoyed
very great success, but certain drawbacks limit their application.
Firstly, it seems impossible to give them a simple physical
interpretation, and secondly, extension to include cases with
more than two electrons produces extreme computational

difficulties.

In the following pages, an analysis is presented of wave-
functions which attempt to overcome the problem of electron
correlation as outlined above. So great was the accuracy of the
work of PEKERISc 7 that the "exact'" correlation energy has
been defined in terms of the difference between his energies and

those from a Hartree-Fock treatment (c.f. equ, 1(1)).



CHAPTER 2,

WAVE-FUNCTIONS AND ENERGIES.

Wave-functions?

The wave-functions studied in this analysis of electron
correlation are examples of two of the types of correlation, (a)
and (b), discussed in the previous chapter, Thus the first type
is a case of superposition of configurations, and the second
arises from the inclusion of inter-electron co-~ordinates explicitly.
For each treatment of the ground state, the total wave-~function
was factorized to give a product of space and spin. The anti=-
symmetric spin function was then integrated out, Details of the
individual treatments studied are given below, together with a
description of the wave-functions which were used as criteria
when comparing results,

Function It This was the extensive CI calculation of
WEISS ce { In undertaking this calculation, his purpose was to
investigate the method to see just how good were the results
obtainable using expansions tractable on the existing computing
equipment., At the same time, he sought a compromise between the
accuracy of the approximation and its usability. His resulting

normalized wave~functions for the two-electron series from

H™(Z=1) up to 06+(Z=8) were superpositions of thirty-five



configurations. These were all the possible configurations
which could be made up from the basis functions, which were:
is, 2s, 18, 2s”, 38”; 2p, 3p, 2p°, 3p”; 3d, 4d, 5d; 4f, 5%;
5g. (Here, the prime among a group of orbitals with the same
L quantum-number indicates a different orbital exponent.)
This led to fifteen (ss) configurations, ten (pp), six (dd),
three (£f) and one (gg). These basis functions were

P!
normalized Slater-type orbitals (STO’s ), defined by

|
N+~
4 -
. @mn 2 el Y 6,4

|
2mi] 2

where r, 9 ,¢ are spherical polar co-ordinates and me are
spherical harmonics, Seven orbital exponents were used, obtained
by optimization at a few selected points along the series, with
graphical interpolation in between. This entire process was
repeated for a 20-configuration function, but only the best
function is studied here.

Function II: The functions of GREEN ET ALUO) were chosen
as examples of accurate wave-functions which include correlation

by means of explicit, Hylleraas-type terms. The total wave-

function was of the form

Y2y = 1(r') f(rz) g(r“rz,rlz)
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and various analytical forms were chosen for the functions
I(rt) and g(rl,ré,rlz). The energetically "best" functions were,

for Z =1 - 5¢
I(ri) = exp(-ZrL) + c.exp(-kzri)
( Yy=1+ +pr )
glr, »x,,7 ar , +p(r -r, .

For Z = 6 -~ 8, the function g(q )T

2,r'lz) was the same as given

above, but f(rt) became a simple exponential,

Function III: This was the normalized CI function of

STUART and MATSEN o . The interest in such a wave-function
came about indirectly, through a study which was being made of
the molecular ion HeH'. (For details, see Part II.) In their
paper on HeH' Stuart and Matsen present limited CI functions
for the systems He and Lit (which HeH™ becomes at R =00 and

R = 0, respectively). These functions were included in the
present analysis for completeness and to test the correlating
ability of a relatively small basis set. They consisted of ten
configurations, made up from basis functioﬁs which were, as
with Weiss, normalized STO”s, The basis functions were 1s, Zs',
3s”; 2p, 3p; 3d, giving six (ss) configurations, three (pp) and
one (dd). Four independent orbital exponents were used, which

wore optimized iteratively., Thus this function afforded a nice
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comparison with the far more elaborate CI treatment of Weiss,
Function IV: For the "non-correlated" function, relative
to which the merits of the correlated functions were examined,

the Hartree-Fock function of the form

YU, = $lr) ¢l

was chosen, ¢»(ri) is the normalized self-consistent field (SCF)
function. For the purposes of ease of computation, these SCF

orbitals were chosen to be of analytical form. They were, for

CaXxi2)
H™, the fitted functions of CURL and COULSON , and for
He through to 06+, the "best®™ SCF functions reported by

()
ROOTHAAN, SACHS and WEISS .

The natural expansion, which has been mentioned earlier
and is described in detail in the Appendix, affords a useful way
of analysing correlation effects, For atoms, these effects may be
classified according to whether they are radial or angularCls{

If we constrain two electrons to the same radius vector, the

only way they are able to keep apart is by assuming different

(a) Table I p.648 of this paper contains some numerical errorss
C.A, Coulson, private communication, Corrections to the
analytical SCF wave-function for H™ have been given by these

authors, see ref,.(13).
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positions along that radius vector; this is known as "radial
correlation". Since s~functions are-independent of angles, this
is the only type of correlation which a wave-function composed
of s-functions alone can introduce. (This is the basis of the
split-shell technique, DODS, described above.) However, if we
instead allow the electrons some angular freedom, they are able
to keep apart by so-called "angular correlation". In the main,
angular correlation will be introduced if angularly-dependent
functions, p, d, etc., are used,

When a CI function is thrown into the form of the natural
expansion, the transformation matrix between the two forms is
in general block=-diagonal., The result of this is that some
natural orbitals are composed purely of s~functions, others
purely of p-functions, and so on.‘In the case of Weiss” CI
treatment, for example, the natural expansion reduces to fifteen
configurations, of which five are composed of s-type orbitals,
four of p-type, three of d-type, two of f-type and one of g-type.

(Each of these fifteen configurations has, of course, the 'S

symmetry of the ground state of the systems concerned,)

By truncating and re-normalizing the natural expansion it
is possible to analyse separately and in more detail the effects
of angular and radial correlation. Further explanation of this
is given in the next chapter, when the various calculated

expectation values are discussed, The results obtained in this
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study lend support to the resemblance, noted by other authorscwﬂz)
between the first natural orbital and the Hartree-Fock orbital.

Use is made of this apparent similarity during the analysis.

The wave-functions of PEKERIS( 7 )and of FRANKbWSKI and
PEKERIS(la)wwre chosen as criteria in this analysis of correlation.
Pekeoris has produced extremely accurate approximations for HT,

He and Lit, attempting to reach to within 0,001 e.V, of the

total nonrelativistic energies of the ground state of these

systems, His wave-function depends only on r ,r

d
2T, and r’z, an

is of the form

-‘_'-e(u+v+w) Oo
Y2 = e I ACLmnd LCud LCv) LQw)

L m n=0
where u,v and w are perimetric cB-ordinates. The coefficients
A are determined from the wave equation, and the L are norm~
alized Laguerre polynomials. Pekeris also presents numerous
expectation values, and these are taken as the standard when
comparison is made with those from the other treatments,

Frankowski and Pekeris have produced very accurate wave-

functions for the ground -states of the whole two-electron
isoelectronic series for Z = 1 - 10, These were variational
calculations containing the unconventional terms 1n(rl+rb),
[ln(r|+r2)]2 and (rf+§§;¢{ The results for these were better

than anything published previously, though to the accuracy
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required in this present analysis, they agree exactly with those

of Pekeris. Consequently we have used the Pekeris results for

Z =1 - 3 and the Frankowski and Pekeris results for Z = 4 - 8,
Interest in the He and Ii' wave-functions arose through

the aforementioned study of HeH', These systems, with the addition

of H-, form the beginning of the two-electron series., During the

study of these three systems, certain trends seemed to be

appearing, and it seemed of interest to extend the study to higher

members of the series. For these reasons, the presentation and

discussion of the results is in two sections. In Part A, H ,He

and Li* are analysed, in some considerable detail. Part B deals

with the next five members of the series, though in rather less

detail, Hence, the various tables and figures are labelled ™A"

or "B", depending on which of the two discussion sections they

concern.,

Energies:

Tables I A& B contain, in order of excellence, the total
energies obtained from the treatments listed above. The percen-
tage correlation energy is defined in terms of the results of
the elaborate calculations by Pekeris and by Frankowski and
Pekeris. The "exact" correlation enexrgy has been taken as the
difference between the Pekeris and the Hartree-Fock energies.

The energies calculated from the first natural orbital X, of



Weiss and of Stuart and Matsen for the various systems complete
the energy tables.

Tables [T A& B give the coefficients ¢, associated

i
with the natural orbitals Xi' in the natural expansions of 'the
wave-functions of Weiss, Each term in the natural expansion is
a configuration of S~-type symmetry, composed of basis orbitals
whose symmetry-type is represented in the tables by }‘i. . This

information proves useful later when Table ¥ is discussed in

conjunction with Tables IIA&B .,
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CHAPTER 3.

ELECTRON DENSITIES AND EXPECTATION VALUES,

In order to show up the extent and type of correlation
which the selected treatments contain, a number of density
functions and expectation values were calculated, Taking the
results of Pekeris as a standard, comparison was made, where
this was possible, between results calculated from the chosen
wave-functions and those from Pekeris’ work. The various
density functions and expectation values are described in some

detail below.

Density functions:

It is to be expected that the correlation within a wave=-
function would have a significant effect on the two-particle

radial density distribution D(r,,rz), which is defined as
%
Der,r) = 2 JJ YC12) Ye1,2) r|2 r:dnldoz 3(1)

where dQL = sinab deL d¢i and i =1 or 2, In these calculations

this function is such that

Oo Oo

J J D(rl,rz)dr'dr2 = 2. 3(2)
O O
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Thus, this function is a measure of the probability of the
electrons having, simultaneously, radial coordinates in the
range I, to T, +drl and r2 to r2 +dr2 « In particular, in a
wave-function which makes allowance for correlation, it is to be
expected that the value of D(r',rz) at rl=ré would be smaller
than that for a non-correlated function, and should itself be
small. In order to show up such facts as these, we have drawn

maps of the two-particle radial density difference function

AD(r',rz), which is defined as

AD(r ,r,) = D(r,,x)) - D(ryor), o s 3(3)
i.e. it is the difference between results from a correlated
treatment and corresponding results from the best non-correlated
treatment; the latter is here represented by the Hartree-Fock
approach,

The correlated approach studied here with the best energy
was that of Weiss, so AD(r',r2) maps were drawn using these
functions only. Further, it became difficult to represent them
on a reasonable scale for Z greater than 3, which explains why
the maps in Fig. | are only for H-, He and Li*, However, these
are quite sufficient to show up the incipient trends which occur.

Comparison between the different correlated treatments is

demonstrated in Fig, 2 , The curves here are of the function
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AD(r' =r2), the diagonal of the AD(rI ,r2) surface, plotted as
a function of T, =Tr,. All the studied correlated functions are
represented in this figure, including those of Stuart and Matsen
for He and Li*. From these curves it is possible to compare the
relative positions and depths of the minima which occur.
Tablell A gives more detailed information than Fig. 2 .
It contains the (rl,rz) co-ordinates of the maxima and minima in
each AD(r|,r2) surface. Since the differences are of limited value
on their own, they are accompanied in Table IIA by the absolute
values of the Hartree-Fock D(r|,r2).
The one-particle radial density distribution D(r,) is

required for the evaluation of several of the expectation values.

This function is defined as

Oo
D(r)) = JD(r,,rz) dr, 3(4)

(o
and will henceforth simply be referred to as D(r). Graphs of D(r)
for the various treatments are shown in Fig. 3 . They show
clearly the effects of correlation within the different approx-
imations. Once again, these are only drawn for H™, He and Li*
because they become graphically indistinguishable beyond Z = 3,
To assist in the interpretation of these curves, the origins for

He and Li%* have been displaced.
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Expectation values?

Quantum-mechanical averages of r"s

These quantities are important because, through their
dependence on different regions of the electron density D(r)
they are a guide to the accuracy of a particular approximation,
It was mentioned above that the evaluation of certain expectation
values requires the function D(r). Among these are the <r">,

where -2 § n € 4, They are defined by
<r"> = J.D(r) *" dar . 3(5)

This value is clearly the same whichever of the two electrons
is specified, so that in this work the values of <r" > have been

calculated to be consistent with the definition

<> =<+ r)> . 3¢6)
These average values are useful when estimating how good
a cortain approximation is at predicting the density in a part-
icular region, Consider, for example, r'2. This becomes very
large near the nucleus, Consequently, the function defined in
3(5) for n = -2 gives a good indication of how well the wave-
function is representing the density in this region, Similarly,

the function in 3(5) with n = 4 emphasizes the behaviour of the
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wave-function in the far-outer regions. Expectation values of
r" are presented in Tables IN A &B.

In Chapter 2 it was mentioned that the natural expansion
allows a method of analysing separately the effects of radial
and angular correlation. Each configuration in the natural
expansion for a two-electron atom is composed of basis orbitals
of a particular symmetry-type: s, p, d, etc. Thus, starting with
the natural expansion truncated to the first configuration
(which bears a strong resemblance to the Hartree-Fock function),
successive build-up to the total wave-function is equivalent to
adding in correlation:- radial from a "radial" configuration of
s-orbitals, and angular from an "angular" configuration of p, or
d, or £, etc., orbitals. If an expectation value is calculated for
each of the successive degrees of truncation, it may clearly be
seen how each type of correlation affects that particular
oexpectation value. In the case where the average values are of
r", information is given as to how correlation affects D(r).
Table ¥ contains values of <r"> calculated for different degrees

of truncation of the Weiss CI functions.

Nuclear diamagnetic shielding factor, o 3

When atoms are placed in a homogeneous magnetic field,

internal diamagnetic fields are brought about. This was shown by
Cl9—21)
the molecular beam experiments of RABI and his co-workers .



A Larmoxr precession of the electrons takes place and produces
at the nucleus a shielding field which is proportional to the
external field. The shielding factor is a measure of the extent
to which the effective field acting on the nucleus is altered
from the external field. Although the effect is small, it is
important in measurements of nuclear magnetic moments,

The nuclear diamagnetic shielding factor for atoms and

. L. 2223
ions is given by

o _ c_3<r~'> 3(7)
3 ,
where o is Sommerfeld’s fine-structure constant.

Atomic diamagnetic susceptibility, x 2

The concept of magnetic susceptibility is associated with
the interaction between a system and an external homogeneous
magnetic field, which induces a magnetic moment in the system,
For diamagnetic substances, X is negative and independent of
the temperature. With the nucleus as the centre of.reference,

C24)
the diamagnetic susceptibility is given by

% 2 €25
X = <0,79199 * 10 =~ <r°> . 3(8)

Because of the <r?> = dependence of this quantity, it is a
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test of how well a particular approximation represents the

density in the outer regions of the atom.

C26)
Root-mean-square deviation from the mean, Ar:

This quantity, though strictly speaking not an expectation

value, is defined as
2 212
ar= [ad,, - «2)7 3(9)

and is thus derived from expectation values,

Here, (rz)cv = <r?>/2 and (r)av = <r>/2, Evaluation of this
statistical quantity gives a measure of the spread or diffuseness
of each D(r) curve,

Values of ¢ , X and Ar are all presented in Tables¥YI A & B .

X-ray scattering factor, £(X):

The scattering of X-rays by an atom is due almost entirely
to the electrons in the system. When a monochromatic beam of
X-rays is scattered by a gas, the scattered radiation may
be observed to be a combination of two components. One of these,
the '"coherent" part, is characterized by having the same
frequency as the incident radiation. The other, the "incocherent™
part, arises from the Compton Effect, and has a series of

frequencies all lower than that of the incident rays. (This
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latter component will not be considered further in this work.)
The atomic scattering factor £(X) of an atom is the ratio
of the amplitude A of the radiation scattered by the atom to
the amplitude A, which an electron would scatter under the same
27>

conditions according to the classical theory . In terms of

intensities
2 _
£° = 145/ I, . 3(10)

Considering the spherical part of the density, the atomic
scattering factor may be defined as

Oo

£, (X) = 'D(r) sin 4rXr dr 3(11)

o 4rXr
where X = sin%/,\ . 8 is the angle of scatter and A is the
wavelength of the radiation.

Graphs have been drawn (see Fig, 4 ) of £, as a function

ofcipe variable X. When X tends to zero, f,, tends to the value
J D{r) dr , the number of electrons in the atom, For large X
vagLes, the scattering curve depends essentially on the inner

regions of the density. Thus, considered as a whole, scattering

factors are a manifestation of the overall density distribution.
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Other expectation values:

The average value of cos Y2 o where le is the angle
subtended at the nucleus by the electrons, gives a measure of
the angular correlation included in a wave—function( |5). For
a non-correlated wave-function, the average value would be
zero, leading to a corresponding value for 7!2 of 90°. For a
correlated wave~function, however, the tendency of the electrons
to avoid one another would lead to a value of <cos y12>-such
that the corresponding Y12 would be greater than 90° . TablesVIA&B
contain values of the complete quantum-mechanical average of
cos ¥, while Table Il A contains values evaluated at the
maxima and minima of the AD(rl,rb) surfaces.

Allied to <cos Y5> is the quantity <F'.f2>, which is

defined by

> = <rr

5 | T cOS y'2>. 3(12)

It is required in the investigation of the properties of two-
28>
electron systems using the oscillator strength sum rules .

The Dirac delta-functions ba(fl) and ba(Flz) occur in

the evaluation of relativistic corrections to the ground state
€29
energy. .In addition they are needed in the calculation of

C30)
certain radiative corrections . Their expectation values are
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defined by

3_
<6(r|)>

. _
¥(F,0) ¥CR,00 dr 3(13)

*
< 63(F|2)> J SRR SN PEL, 3(14)

Results for all these expectation values are given in

Tables Y1 A & B .



CHAPTER 4,

DISCUSSION OQF RESULTS,

For reasons mentioned previously it was found most
convenient to present and discuss the results of this work in

two sections. The first of these, Part A, deals with H™,He and

+
Li*, and the second, Part B, with the remaining systems, 302 -

o®t, with z = 4 - 8,

A, H™, He and Lits

The results in Table [ A for the total energies of the
systems show that the energies from the functions of Weiss and
of Green et al are each in very good agreement with the results
of Pekeris, each providing a steadily increasing percentage of
the Pekeris total energy as Z increases. Regarding the percentage
correlation energy the Weiss results show a steady decrease with
increasing Z and the Green et al values show a larger steady
decrease. Each provides a high percentage, however, and even
the limited CI treatment of Stuart and Matsen provides around
94% of the correlation energy.

Turning to the energies obtained from the wave-functions
truncated to the first natural orbital xl for the CI expansions

of Weiss and of Stuart and Matsen, a strong similarity is seen



to exist between these and the Hartree-Fock enexrgies, This is
most noticeable for He and Li'; for H~, the agreement is not
quite as good. The basic limitation, mentioned earlier, of the
Hartree-Fock approximation is strikingly illustrated for HT,
because its failure to predict a bound state is almost entirely
due to its inability to account fully for the correlation of
the electrons. These points thus lend support to the findings
of other workers ¢16472 regarding the closeness of X, and
Hartree~Fock energies for two-electron systems, By means of a
pertubation expansion, NAZAROFF and HIRSCHFELDER(:BI) have in
fact shown that the two orbitals begin to differ from each-
other in the second order.

Table IA comprises a 1list of the coefficients c, in the
natural expansion of the Weiss wave-~functions. These coefficients
correspond to configurations derived from basis orbitals of
symmetry AL « In view of the points mentioned above, it seems
reasonable to consider the wave-function truncated to the first
natural orbital configuration as the "non-correlated” function,
so that all succeeding configurations contribute to the corre-
lation in the system. This standpoint will be adopted in this
and later discussions,

The c, may be considered to provide a measure of the
relative importance of configurations composed of basis orbitals

of symmetry AL . As Z increases, ¢, increases whilst all the
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other coefficients decrease. If all those above the first are
to be considered as correlatihg configurations, then this may
be interpreted that correlation effects become relatively less
important as Z increases - a conclusion which may be also
reached from the energies in Table I A , Further, the e,
representing radial configurations show a more rapid decrease
with increasing Z than do those representing angular
configurations,

As well as these general trends, however, Table IIA allows
a clearer insight into the way correlation is introduced into

the systems as Z increases, For H™, c. corresponds to a radial

2
configuration, and is considerably larger than C3) which
corresponds to an angular configuration. For He, c, now
corresponds to an angular configuration, and is roughly equal to
C3» which now corresponds to a radial configuration. A similar
state of affairs exists for Li%, except that c, has now become
congiderably larger than Cqe This indicates a trend such that
in H-, the initial introduction of rxadial correlation is more
imporfant than that of angular correlation., The situation becomes
reversed for Li*, with He representing the transition stage, in
which radial and'angular correlation are almost equally balanced.
In order to extend this, a measure of the total radial

correlation "character" and of the total angular correlation

"character" are presented in Table IIA . These are, respectively,
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the sum of the squares of the ¢ which correspond to radial
configurations (other than the first) and the sum of the

squares of the c. which represent angular configurations., They
show a similar switch-over in relative magnitude, with He as the

approximate transition point.

The AD(:f.-I ,rz) surfaces in Fig. | are negative along
the diagonal, indicating the anticipated lowering due to
correlation of the CI density relative to the Hartree-~-Fock

density for T =r,. The three surfaces, drawn on the same scale,

2
show the effect of the increasing nuclear charge by being
pulled in strongly towards the nucleus. As may be seen from the
plots of AD(rl=r2) in Fig. 2 , the minima become deeper and
closer to the nucleus as Z increases. Whereas for He and Li* the
Weiss functions provide the deepest pa.ir of minima, for H™ the
results from functions I and II are more closely related. The
results from function III for He and Li‘ fit quite well into
the general pattern.

From the more detailed information in Table Il A, several
interesting points arise., The coordinates of the maxima and
minima in AD(rl ,rz) for functions I and II are in quite good
general agreement. The minima become larger in magnitude as Z

increases, but this quantity expressed as a fraction of the

Hartree-Fock value for D(r|=r2) becomes considerably smaller,
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A similar trend exists for the maxima. When <cos 7%, >rl " is
evaluated at a minimum, i.e. T =Ty, a‘more negative wvalue
(indicating a larger corresponding Y5 ) is obtained than when
the evaluation is made at a maximm, Finally, for the maximum
of each D(rl,rz) surface, the quantity (rz-rl) decreases
somewhat more rapidly than <cos 7,2>q vy as Z increases,
Examination of the D(r) curves in Fig, 3 reveals that as Z
increases, the correlated and non-correlated one-particle radial
density distributions soon become indistinguishable, to within
graphical accuracy. For H™, the Hartree-Fock density is more
contracted towards the origin than either of the correlated

densities, Though it is not evident from the graphs, a study of

the data for He and Li‘ shows a similar effect.

The most obvious trends from the <r"> values in Table IV A
are that, whereas for H the Weiss function gives a slightly
more diffuse D(r) than that obtained from the function of Green
et al, the opposite is the case for He and Li*, The results
from functions I and II show good agreement thtoughout with those
of Pekeris, and those from function III are also quite good by
comparison;

Although the <r"> values for He and Li% from the Hartree-

Fock funoctions are in quite good agreement with those from X



(Weiss), a large discrepancy occurs between these values for H™.
This may well be connected with the point noticed in the study
of Table I A , that the only discrepancy of any size between the
energies from the Hartree-Fock and the X, (Weiss) functions
was for H™,

From the Ar values also (TableVYIA), a large discrepancy
between Hartree-Fock and X, (Weiss) values only occurs for
H™., A study of the Ar values for functions I and II confirms
the trend apparent from the <> values, that whereas for H™ the
Weiss function gives a slightly more diffuse D(r) than that of
Green et al, the opposite is the case for He and Lit,

The results in Table ¥ allow examination to be made of
changes in <r"> as correlation effects are gradually introduced
into the wave-function, (This table should be studied in
conjunction with Table IIA , which contains information about the
symmetry~type of the basis orbitals composing each configuration
in the natural expansion.) Correlation seems to produce the
groatest effect in the values for H~, Further, the general
implication which these values reveal is that within each
natural expansion, the inclusion of configurations involving
s-orbitals causes D(r) to become more diffuse, whereas addition
of those composed of angular-type orbitals usually results in
a contraction, There seems to be no general rule at this stage

as to the number of terms required for convergence to the total
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The X-ray scattering curves in Fig. 4 become indistin-
guishable for He and LiY. For H™, the Hartree-Fock curve assumes
the same position relative to that for the correlated functions
as was found by SILVERMAN, PLATAS and MATSEN(32) in a study of
the scattering factors produced by various correlated and

uncorrelated functions, Included in Fig. 4 are curves for the

one-electron systems with the same Z values.

The nuclear diamagnetic shielding factor, o , and the
atomic diamagnetic susceptibility, X , depend on <r~!> and <r?>,
respectively, so that the values for these quantities in Table VI A
follow the same trends as were pointed out earlier for the <r">
values. HAVENS(33 )gives experimental values for X £for helium
of -1,906 at room temperature and -1,91 at liquid air temperature,
showing negligible temperature dependence,

Though there are no values for <cos 7, 5> from Pekeris,

comparison of <¥ .Tr,> values shows steadily improving agreement

72

between the results from Weiss and those from Pekeris, as Z
increases, For the Weiss functions, the values of Y,, corres-
ponding to <cos ¥, ,> ares for H, 7%, = 96,03°; for He, Y, =

93.69°; and for Lit, = 92,50°, The values from Green et al

Yi2

for <cos 7, >> and <i"| .§2> are considérably more negative than
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those of Weiss. The Stuart and Matsen values give only poor
agreement with those of Pekeris.

Values of the Dirac delta~function 63(§|) from functions
I and II are in reasonable agreement with the Pekeris values,

with the Weiss results in general being closer, The X, (Weiss)

values are in poor agreement with the corresponding Hartree-Fock

results. The Xl (Stuart and Matsen) and Hartree~Fock values
show a much better agreement for 63(5'2), whereas the Green et
al results show poorer agreement with the Pekeris wvalues with

increasing Z.

B. Be2*, B c**, n°*, of*:

The energy values of Frankowski and Pekeris are used as
the yardstick in Table 1 B . The percentage correlation energy
supplied by the Weiss functions seems to have reached a steady
value of about 98%, whereas the values of Greeﬁ et al for this
quantity show a continued steady decrease. The excellent agree-
ment found in Part A between the energies from the first natural
orbital X, and the Hartree-Fock treatment is seen to be maintained
throughout the two=-electron series, The effect of neglecting all
terms in the natural expansion of the Weiss wave-function other
than the first leads to energy differences from the total function

of 0.0406 (H™), 0,0428 (Lit), 0.0440 (Bs+) and increasing slowly



-36 =

to 0,0446 (06+). The "exact" correlation energy has values
0.0398 (H™), 0,0435 (Lit), 0.0448 8%%) through to 0,0454 (0%%),

The coefficients in Table U:B.show a continuance of the
trends developed by those in Table IIA, All above e, decrease
with increasing Z, and those corresponding to radial configurations
decrease more rapidly than those representing angular config-
urations. An assessment of the total radial and total angular
correlation "character"is again included.

From Table I B, it can be seen that the minima in AD(rI =r2) |
become deeper and closer to the nucleus as Z increases, though
their depths as a fraction of the Hartree-Fock values for D(r|=r2)
become considerably smaller. Similar features occur for the
maxima. All these trends are in accord with those from Part A,
Fig. 5 1illustrates graphically the variation in the magnitudes
of the maxima and minima as Z increases,

The <x"> vélues for X; and the Hartree-Fock functions
are generally close, but deeper examination reveals the following
pattern. For <r'2> and <r"'>, the X, values are consistently
larger than the Hartree-Fock results, whereas they are lower for
larger values of n. Referring back to Part A, a similar trend
existed for Li‘* although the change-over occﬁrred, not at <r~'>
but at <r’>. For He and H™, however, the X;, values are always

larger than the Hartree~Fock values.

A study of the <r"> values from truncated natural expansions
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again shows that the corresponding D(r) expand when configurations
involving s-orbitals are added in. The effect rapidly decreases,
however, as Z increases, and for this reason details are not
given., The effect of angular configurations was less clear cut,

In parefheses in Table [V B are the number of terms required in

the natural expansion for convergence to the total <r"> value

to be reached. These now show that the number of terms tends to
decreases with increasing Z.

Table YII contains values of the one-particle demnsity p (T)
at the nucleus for the CI wave~function of Weiss and the Hartree-
Fock function. The values for the former are consistently higher
than for the non-correlated function - an effect similar to that
found in a simple molecule, see Part II - for all values of Z,
Except for H™, the percentage change with respect to the Hartree-
Fock result is small, and decreases markedly with increasing
atomic number,

The values of <cos ¥,,> from the Weiss functions, in Table
¥iB, show the trend continuing from Part A, The corresponding
values of 7, are Be®* 91,89°, B3t o1.51°, c** 91.26°,

N5+ 91,08° and o®* 90,95 . The values from Green et al for
<cos )12> and <5|.52> are again rather more negative than the
corresponding Weiss results,

In a paper on the properties of the helium isoelectronic

(30>
sequence, DALGARNO and STEWART use pertubation calculations,
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and give formulae for the quantities <5'.52> and X ., These

formulae are

<r,.§2> = =-0,379 - 0,240 ,
23 24

-2
2

X = =0,79199
z Zz

+ 4,78125 + 4.,35616 .
3 24

Using these we have calculated values for <f|.52> and X , and
these are contained in brackets in Table¥IB, below the corres-
ponding Weiss results. For Z = 1 - 3, the results are as follows,

with the Weiss value first in each case?

<i|oi‘2> H_ -00676 ? -0.619 03
He -0,0646, ~-0,0624,

i* -0,0172, -0.0170.

X H™ -18,85 , =12,0 ,
Ho -1,889 , =1,878 .

it -0,707 , =0,711 .

Thus, the high accuracy which Dalgarno and Stewart expected from
their inverse-Z expansions is well justified, except in the case

of the lowest Z values,
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CHAPTER 5.

SUMMARY AND CONCLUSIONS,

The analysis presented in the previous pages allows some
remarks to be made about the particular methods of approximation
which wore studied and about the way they represent the

correlation in the systems,

The energy tables presented show that both the
configuration interaction and the explicitly correlated
functions give a good account of the electron correlation and
give high percentages of the Pekeris "exact™ energy. Even the
limited CI, function III, is able to give a reasonably high
percentage of the correlation energy.

These tables also show evidence which gives strong support
to the results of other workers as regards the similarity
between the Hartree-Fock orbital and the first natural orbital
for two-electron systems. The only discrepancy of any size in
the energies from each of these is for H™, The expectation
values calculated from each approximation are also in general
close together, and this similarity tends to improve for
larger values of Z, This is particularly noticeable for <>,

where, for H~, there is a large difference between their
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respective values for larger values of n. These results imply a
Z~dependence of the difference between the Hartree-Fock
prbital and the first natural orbital, in the sense that the
discrepancy decreases with increasing Z,

There is a certain amount of evidence in our results
which indicates that, as Z increases along the series, angular
correlation replaces radial correlation as being more important,
For instance, the natural orbital coefficients show that,
initially at least, radial correlation is more important in
H™ but angular correlation becomes dominant to a greater and
groater extent as we @ove up the series, The total correlation
"character" is also largely radial for H™, but this again
soon changes to angular and becomes increasingly so. Although
each of the c, (for i>1) decreases as Z increases, the ones
which represent angular configurations decrease slower than
those which represent radial configurations, Thus, while
correlation as a whole becomes relatively less important,
angular correlation decreases more slowly than radial.

Further, from the AD(r' ,r2) surfaces we saw that the
maxima and minima had magnitudes which became smaller and
smaller percentages of the corresponding Hartree~Fock values,
These effects could be explained by saying that the increasing
nuclear charge shows its effect by inhibiting the radial free-

dom of the electrons, hence causing a relative increase in
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correlation by means of angular separation.

The <r"> values calculated as a function of truncation
of the natural expansion show that, in general, D(r) becomes
more diffuse when a radial configuration is introduced,
whereas an angular configuration generally contracts it. These
conclusions are in accord with those of GODDAKD(34).

The expectation values calculated from the Weiss CI
functions generally have good agreement with those of Pekeris.
This is especially true for <¥,.F,> values. The results of
Groen ot al are also good by comparison with Pekeris for lower
Z values, but they become rather erratic for higher atomic
numbers. In particular, the values of <cos 7, ,> and <F,.Tp>
seem rathexr too negative, suggesting that the correlation
factors contained in these wave-functions over-estimate the
importance of angular correlation. Also, as indicated by the
A r values, the density seems to become over-diffuse with
respect to Pekeris, as Z increases.

The curves of the X-ray scattering factors showed that
changes due to correlation effects were small, as Z increased.
The agreement between £ ,(X) for H™ and the H atom at large X
is good, but this agreement is not apparent for He and Li',
Thus, though for H™ it might be conjectured that the "innex"
correlated electron was in a state similar to that for the one-

electron atom, this does not seem to carry over to systems



with higher Z values., In general, we tend to agree with RUSTGI
and TIWARI(SS) that it is not possible to extract any
reliable information on the angular and radial correlation of
electrons from the scattering factors.

The general agreement for X and <i,.§2> between the
Weiss results and those from the expansions of Dalgarno and
Stewart is good except for low Z values. This is an expected

result, in view of the inevitable slow convergence of their

inverse-Z expansions for such values.



H* Re Li*
WaT»function
Ener/gr v . Energy » asa  Energy A A%A
Ca.u.) corr.(*) —£ (a.u.) corr» E (a.u.) * corr.
I - Weiss 0-5275 99*2 2-9032 98*8 7*2792 98*4
11 - Green et ai 0-5273 98-7 2-9026 97-4 7-2781 95%9
I - S. and 2-9015 94*8 7*2771 93*6
(10-C .1.;
IV - Hartreo-Fock®)  0.4G80 o(m) 2-8617 o(m 7*2364 0<~
X,(Wel8s)(f) 0'4869 2*8617 772364
X,CS. and 2*8616 7*2364
PekerisA®A 0%5278 100~ A 2-9037 100~ ~ 7+2799 loot‘d
Table IA . Wave-functions and Energies, Z = 1-3.
<a) % correlation = 100 |*[e - E*.pl]

(b) Reference 8

(c) Reference 10 .

(d) Reference 1II.

(e) Reference 14 .

(f) First natural orbitals in the appropriate natural expansion

(g) Reference 7

(h) By definition.
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if lie U*
\ -1 .
1 -0-97152  (ej =0-59593 -0-99840 (o)
2 0-20768  (s) 0-06191  (p) 0-04149
3 0-11000 () 0-06163 (o) 0-03691 ()
4 0-01775 (d) 0-01265 (9 0-0C903  (q)
- 0-01574 ) 0-01114 (p; 0-00779 (p)
0-01411 (s 0-00790 (o) 0-00521 (a)
0-00585 (f) 0-00448 (f) 0-00326 (f)
1 8 c-00511 (4 0:0390 (9 0-00280 (d)
9 , c-00378 (r) 0-00328 (p) 0-00230 (p)
10 1 0-CO333 (s) 0-CC192 (s) 0-00131 (8)
1 0-00250 (g) 0-00180 (g) 0-00129 (g)
12 1 0-00205 (f) 0'00160 Cf) 0-00115  (£)
13 0-00181 () 0-00132 (4 0-00091 (d)
14 | 00161 () 0-00087 (p) 0-00055 (p)
15 1 0-00005 (s) 0-00065 (a) 0-00044 (o)
E C.AC\»if o0 04334 0 00386 0 00139
19 ¢ A
E CX4%) 0 01276 0 00417 000189
111
Table ELA . Coefficients c”, and symmetry of the basis
orbitals, associated with each in the natural expansion

of the Weiss Cl wave-functions, Z = 1-3,



1 4 5 6 7 1 8
X, ‘ @ " 0"+
1 -+99916 (s) --99947 (s) --99967 (0) --99978 (s) —99984 (a)
2 0-03112 (p) 0-02489 (p) 0-02072 (9) 0-01775 (p) 0-01554 (p)
3 0-02657 (a) 0-02052 (0) 0-01679 (B) 0-01422 (a) 0-01233 (a)
4 0-00694» (d) 0-00554» (d) 0-00476 (d) 0-00409 (d) 0-00361 (d)
5 0-00594 () 0-00479 (p) 0-00400 (p) 0-00346 (p) 0-00303 (p)
6 0-005G3 (s) 0-00309 (s) 0-00256 (c) 0-00219 (e) 0-00191 (a)
7 0-00254' (f) 0-00201 (f) 0-00172 (f) 0-00150 (f) 0-00131 (f)
8 0-00215 (d) 0-00174 (d) 0-00147 Cd) 0-00127 (d) 0-00112 (d)
9 0-00175 (p) 0-00140 (p; 0-00117 (p) 0-00101 (p) 0-00088 (p)
10 0-00099 (r.) 0-00081 (s) 0%00067 (C) 0-00058 (a) 0-00050 (g)
1 0-00098 (g) 0-000Co (g) 0-00066 (u) 0-00057 (g) 0-00049 (s)
12 0*00089 (f) 000065 (f) 0-00056 (i) 0-00049 (f) 0-00044 (f)
13 0-00068 (d) 0-00054 (d) 0-00045 (d) 0-00039 (d) 0-00034 (d)
14 0-00040 (p) 0-00031 (p) 0-00026 (p) 0-00021 (p) 0-00019 (p)
15 0-00034 (c) 0-00028 (n) 0-00023 (E) 0-00020 (a) 0-00017 (a)
E cAtX..s) 0-00070 0-00043 0-00028 0-00021 0-00015
1 A A
E cch'.s) 0-00106 0-0G068 0-00047 0-00035 0-00027
1
Table H B . Coefficients C|*, and symmetry of the basis

orbitals, associated with each Xj* in the natural expansion

of the Weiss wave-functions, Z = 4-8.
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Cyot«a liaxIm Hintan
up(r,, r.) 1
2 1T 2 A{.A2 r 2 G(',=Yn[
0*16 -.53410 4.9&S92
o'ic 0*Gf> 0*1679:". 2*96>39C
0*58 -*07606 1-74415
0*14 -*1»C429 9*35218
5 5~ 0'14 0.4G 0*21334 5*0472T)
C*46 —0(1774 2*72393
1
0*10 -*55485 11*14324
c 0*17? 0.58 . 0*26033 7-X0C9
0*33 — 11935 3*97193
0*10 —+68493 19*56/631
7 D’0Z 0-52 0*20951 6*91CC7
0*32 -'14110 5*74086
0*08 — 80293 23*04321;
3 O+ 0-0L  0*26 U*356(y)" 13*05598
0*28 -+ 16374 7*39508
L
Table PI B . Maxima and minima in the ADCr, surfaces for

the Weiss functions, Z = 4-8.



Syeteo

He

Li"”

Wavefunction

I - Weiss
Il - Green et al
IV - ilartree Fock
X|(Weiss)

Pokerie”?

I - Weiss
Il - Green et al
111 - S. and M.
IV - liartree Fock
(Weiss)

X| (S« and M.)

PekerisA*A

I - Weiss

Il - Green et al

I - 5, and H.

IV - Hartrec Fock
X|[(Weiss)

X] (s. and M.)

(a)

Pekeris”?

Table E A

2*2345

22412

2*1596

2*2125

12*037

12*025

12%043

11 991

12*01*3

12%022

12*035

29*858

29%822

29878

29*811

29*870

29*860

. Values of

(a)

-49 -

<r'> < r>
1 3656 5*4243
1*3683  5*3846
1*3694  5*044I
1*3693  5*3009
5*4204
3*3764  1*8587
3*3754  1*8592
3*3784  1*8574
3*3744  1*8544
3*3795 1*8546
3*3785  1*8543
3*3766  1*8589
5*3757  1*1455
5*3722  1*1450
5*3778  1*1449
5*3716  1*1440
5*3781  1*1445
5*3780  1*1442
1*1456

<r">

Reference 7

<rA> < >
23*792  150*25
23*412  147*61
19*394  105*57
22*501  137*98
23*827

2*3843  3*9212
2*5871  3*9312
2*3787  3*8950
2*3696  3*8811
2*3722  3*8889
2*3685 3"8683
2*3870

089215 0*88117
0*89295 0788415
089080 0*87794
089036 0*87865
0*89041 0*87845
088943 0*87576
0*89256

z = 1-3,

1243*8

1231*9

77116

1117*9

7*8759

7*9105

7*7594

7*7756

7*7867

76903

10551

1*0631

10473

10521

1*0507

1*0438
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»(b)

13
14

15

< r-2>

2-21247
2-25396
2-23394
2-23339
2-23320
2.23448
2-23441

2-23438
2-23439
2-23452
2-23451

2-23450
2-23450
2-23450

2-23450

Table

<r-'>

1-36927
1-37064
1-36561

1-36547
1-36547
1-36563
1-36562
1-36561

1-36562
1-36563
1-36565
1-36563
1-36563
1-36563

1-36563

g .

22-501

23-880

23-793

23-790

23-789

23-793

23-792

23-792

23-792

23-792

23-792

23-792

23-792

23-792

23-792

<re >

1117-9

1256-0

12441

1243-7

1243-5

12/3-9

1243-8

1243-8

1243-8

1243-8

1243-8

1245-8

1243-8

1243-8

1243-8

12-043

12-010

12-038

12-036

12-036

12-037

12-037

12-037

12-037

12-037

12-037

12-037

12-037

12-037

12-037

— 51—

m< >

3-37951

3-37547
3-57657
3-37638
3-37653
3-37642
3-37639
3-37638
3-37638
3-37638
3-37638
3-37638
3-37638
3-37638

3-37638

lie

2-37219

2-37317

2-38391

2-38393

2-38409

2-38427

2-38427

2-38428

2-38431

2-38435

2-38435

2-38435

2-38435

2-38435

2-38435

Values of selected <r">

4

7-78669

7-78068

7-87247

7-87195

7-87281

7-87498

7-87490

7-87491

7-8751¢

7-87587

7-87585

7-87584

7-87584

7-87585

7-87590

29-870

29-834

29-859

29-858

29-857

29-858

29-858

29-858

29-858

29-858

29-858

29-858

29-858

29-858

29-858

5-37810

5-37520
5-37587
5-37571

5-37567
5-37572
5-37570
5-37569
5-37569
5-37569
5-37569
5-37569
5-37569

5-37569

5-37569

0-89042

0-89066

0-89206

0-89207

0-89210

0-89213

0-89213

0-89213

0-89214

0-89215

0-89215

0-89215

0-89215

0-89215

0-89215

obtained from the

natural expansions of the Weiss wave-functions,

after m terms.

indicated by the dotted 1line.

of a total of 15 configurations.

(b) The symmetry

truncated

The convergence value for each <r"> is

Each expansion consisted

for the basis orbitals associated

with each additional configuration included in the

truncated expansion is obtained by inspection of Table HA

1.03071
1-05053
1-05490
1-05488
1-05495
1.05508
1-05508
1-05308
1-05510
1-05514
1-05514
1-05514
1-05514
1-05514

1-05514



System

He

LI

Table 21 A

Wavefunction

I - WeisB

Il - Green et al

IV - Hartree"Fock
X| (Weiaa)

Pekerlernnr

I - Weiss
Il - Green et al
1l and M.
IV - Hartree-Fock
(Weiss)
X, (S. and M.)

PekerisAAA

I - Weiss
Il - Green et al
I - s. and M.
IV - Hartree-Fock
(Weiss)
(s. and M.)

PekerisA*AA

(a) Reference

(b) Reference

(c) Due to the independent particle
Hartree-Fock treatment,
is composed of s-type orbitals,

a X 10*5

2'4240
2%4287
2*4307

2*4305

579931
5%*9913
5*9967
5*9896
5*9987

5.9969

59936

9.5419
9.5457
9*5457
9-5347
9*5462

9*5461

25

7

-52

X

-18*850
-18*549
-15*366
-17+828

-18*878

-1.8891

-1*8913
-1*8846
-1*8774
-1*8759
-1*8765

-1*8912

-0.70685
-0.70749
-0*70578

-0*70543
-0*70548

-0.70470

-0.70718

is identically zero.

Ar

2*1308
2*1113
1*8265
2*0557

2*1374

0*57315
0*57391

0.57167
0*57014
0*57113
0*56978

0*57408

0*34358
0*34459
0.34306
0*34347
034314
0*34265

0.34382

-0*10500

-0*10958
(0)
(c)

-0*06431
-0*07188

-0*03768

-0*04367
-0*04957

-0*02545

Some expectation values, 2

<coSy > <r_r>
12 1 2

-0*67622

-0*72913
(c)
(c)

-0*68731

-0*06455
-0*07549
-0*03724

-0*06474

-0*01717
-0*02080

-0*00986

-0*01725

< 6*cr,)>
1

0*16555
0*16672
0*15464
0*16168

0*16455

1*81558
1*80926
1*80949
1*79821

1*81465
1*80092

181043

6*86218
6*83225
6*86207
6*83702
686291

6*85040

6*85199

nature of the
and to the fact that X|
this quantity

12

0*2984 X i(T*

1%2984 X 1(T*

0 2742 X 1(f*

0*11717
0+14288

0*19093

019143

0*10635

0*57492
0%64537
0*77935

0*77170

053389



2 Syoten Wavefunction

11 - Weinc

11 - oraon ot cl
1 - Hartroe-Pod:

(Wejoe)

I - Weloc

mll - Green ot al
1 - Hartreo-Fock

(Woiss)

I - WeiCO

Il - G4r®.n ot ol
6 o
| - Hartroo-Fcd;

(Wei; c)

I - WeiCO

Il - Green ot al
1 - Hartrce-Fod:

(Woico)

I - Woico

11 - Groon ot al

8 ol\*
| - Hartroo-i'ock

(Vteiao)

Ar

0%24574

0-25166
0%24560

0%24552

0*19136

0-19720
1
,0*19151

0%1,126

0*15663

:'156 32
0 * 15668

0*15665

0*13266

0*13591
0*13266

0*13266

0*11506

0*11567

0*11502

0 *V1502

- 53 -

a X104

130915

12*8576
13*0903

13*0CX9

16*6413

16*5117
16*6404

ei(oavs}

20-1906

;%0 *1103
201906

201924

23*7'X)6

236625
23*7'+06

23*7424

27*2906

27*2143

27*2996

27%2924 |

L

co)

X

-*36714

(-*36976)A"A

38342
36734
-*36724
22491
(-*22596)
—23671
22462
22477
15168
(— 15223)
-*15383
— 19164
— 15162
-*10916
(-*10947)
— 11050
— 10915
—10913
06231
(—03253)
-03315
—08231

-+08229

< COS y >
y12 2>

—00686
-03292
(-*00686)(*)

-*04273 00997
(c) (c)
(c) (c)

-*00340

—02641

(-+00342)
—03470 00515

—00193
-.02203

(-.00194)

-*02810 -*00278

—00119
- 01890

(-*00120)
- 32379 —00173

-*00079
- 01657

(—oo00'0)

-*02379 -*00115

ok ok

Table 3CEB . Some expectation values, Z = 4-8.

(a) Reference 25

(b) The figures in parentheses are derived from
the inverse-Z expansions of Dalgamo & Stewart.

(c) Due to the independent particle nature of the
Hartree-Fock treatment,
is composed of s-type orbitals,

is identically zero.

and to the fact that X;
this quantity



v Sl

1 K“

2 Ho

3

5

6

7

6 0~
Table Vil

Welcs

0*53107

3-65124

13%7332

y i-4330

69-5780

122-964

198-434

299%805

Density pCf) evaluated at the nucleus.

— 54 —

Groon ot al

0*33342

3*61853

13*6669

32*7607

66-2518

121-805

196*793

297%660

liartkeodoc?c

030913

3'59627

13*6732

34*3585

69%4564

122*825

198*242

299*%609
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Fig. | . Maps of the two-particle radial density difference
AD(r|,r2> for H“ He and Li*. These are obtained by subtracting
the two-particle radial density D (r|,r2) for the Hartree-Fock
functions from the corresponding values for the Weiss functions.
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Fig, 2 . The two-particle density differences AD(r|»rz) for

H“, He and Li+, plotted as a function of r|=r.. The solid curves
represent the functions of Weiss (1), the dashed curves those of
Green et al (IlI) and the dots within circles those of Stuart and

Matsen (I11).
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D(r)

Fig. 3 . The radial density distributions D(r) for H, He and Li
The solid curves represent the functions of Weiss (1), the dashes
those of Green et al (Il) and alternate long and short dashes
those of Stuart and Matsen (111). Results from the Hartree-Fock
functions are represented by crosses. The origins have been
separated for clarity.
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Fig. 2 . The coherent X-ray scattering factor fA*CX) for H~, He

and Li*r vhere X=(sin®/2)/x. The solid curves represent the functions
of Weiss (lI) and the dashes those of Green et al (I1). Results from
the Hartree-Fock functions are represented by crosses. Also shown are
the X-ray scattering factors from the corresponding one-electron
systems.
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NATURAL EXPANSIONS FOR THE WEISS FUNCTIONS.

In the following pages are presented the natural expansions

of the wave-functions of Weiss for H™ through to ot

. Alongside
each coefficient is the symmetry of the basis orbitals composing
the corresponding natural orbital. Within each natural orbital

the basis orbitals are ordered as followst

1s 28 is” 28’ 3s”
2p 3p 2p° 3p” 3d
4d 5d af 5¢ 5g



NATURAL

COEFFICIENTS:

NATURAL

.52468
.00000
.00000

.95546
.00000
.00000

.00000
.49676
.00000

.00000
.00000
.13438

.00000
.21175
.00000

.17573
.00000
.00000

oy

11.
12.

13.
14.

15.

ORBITALS:

© o ® 9 v B~ W N R

— 61—

EXPANSION

© O O O 0O O O O O © o © o o o

’

.05643
.00000
.00000

.049614
.00000
.00000

.00000
.27499
.00000

.00000
.00000
.56201

.00000
.19278
.00000

.68233
.00000
.00000

.97152

20768

.11001
.01775
.01574
.01411
.00585
.00511
.00376
.00330
.00250
.00205
.00181
.00161

00005

WEISS

.58226
.00000
.00000

.03708

.00000

.00000

.00000

04388

.00000

.00000
.00000
.00000

.00000
.07968
.00000

.63147
.00000
.00000

[}

o o] Hh

[0}

v A& H ©

H

.05171
.00000
.00000

.17798
.00000
.00000

.00000
.23286
.00000

.00000
.00000
.00000

.00000
.27509
.00000

.13155
.00000
.00000

.11521
.00000
.00000

.34154
.00000
.00000

.00000
.00000
.00000

.00000
.35107
.00000

.00000
.00000
.00000

.02988
.00000
.00000



10.

11.

12.

13.

14.

15.

.00000
.00000
.00000

.00000
.00000
.79726

.00000
.91058
.00000

.47069
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.63400

.00000
.86200
.00000

.31102
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.93899

.00000
.26249
.00000

.76863
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.39720

.00000
.40200
.00000

.37324
.00000
.00000

-62"

.00000
.00000
.07085

.00000
.00000
.00000

.00000
.83402
.00000

.88488
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.16149

.00000
.00000
.00000

.00000
.97155
.00000

.63036
.00000
.00000

.00000
.00000
.93253

.00000
.00000
.00000

.00000
.55404
.00000

.65113

.00000

.00000

.00000

00000

.00000

.00000
.00000
.02165

.00000
.00000
.00000

.00000
.25800

00000

.09866
.00000
.00000

.00000
.00000
.00000

.00000
.17363
.00000

.00000
.00000
.00000

.88476
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.00000

.00000
.87359
.00000

.00000
.00000
.00000

.23647
.00000
.00000



COEFFICIENTS
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NATURAL EXPANSION

®IT U AW R

10.
11.
12.
13.
14.
15.

NATURAL ORBITALS:

.80993
.00000
.00000

.00000
.67022
.00000

27631

.00000
.00000

.00000
.00000
.27368

.00000
.28594
.00000

68995

.00000
.00000

©O O O © 0o o © o © O o o o o o

.03551
.00000
.00000

.00000
.34367

00000

.39473
.00000
.00000

.00000
.00000
.49618

.00000
.84345
.00000

.59918
.00000
.00000

.99598
.06191
.06163
.01265
.01114
.00790
.00448
.00390
.00328
.00192
.00180
.00160
.00132
.00087
.00065

WEISS

.13058
.00000
.00000

.00000
.04042
.00000

.81373
.00000
.00000

.00000
.00000
.00000

.00000
.03997
.00000

.32041
.00000
.00000

w 'Yl =" P g on

»w g & w0

He

.04664
.00000
.00000

.00000
.03881
.00000

.79650
.00000
.00000

.00000
.00000
.00000

.00000
.63209
.00000

.34839
.00000
.00000

0.01759
0.00000
0.00000

0.00000
0.00000
0.00000

0.220114
0.00000
0.00000

0.00000
0.26932
0.00000

0.00000
0.00000
0.00000

2.92986
0,00000
0,00000



10.

11.

12.

13.

14.

15.

.00000
.00000
.00000

.00000
.00000
.47737

.00000
.77523
.00000

.83500
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.56500

.00000
.39100

00000

.28100
.00000
.00000

.00000
.00000
.00000

.00000
.00000

306214

.00000
.02307
.00000

.34930
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.27979

.00000
.41397
.00000

.14122
.00000
.00000

- 64 -

.00000
.00000
.11662

.00000
.00000
.00000

.00000
.31192
.00000

.19498
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.16013

.00000
.00000
.00000

.00000
.61742
.00000

.54034
.00000
.00000

o

.00000
.00000
.88869

.00000
.00000
.00000

.00000
.82569
.00000

.29376
.00000
.00000

.00000
.00000
.00000

.00000
.00000
.034814

.00000
.00000
.00000

.00000
.51748
.00000

.53001
.00000
.00000

.00000
.00000

.00000

.00000

.83024

.00000

00000

.00000
.00000

.58996

.00000

.00000

.00000
.00000
.00000

.00000

.00000
.00000

0.00000

.93622

.00000

.00000

.00000

.00000

.08400
.00000
.00000
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NATURAL EXPANSION WEIss Li*t

COEFFICIENTS: 1. -0,99840 s

2, 0,04149 P

3. 0.03691 s

4, 0.,00903 d

5, 0.00779 p

6. 0.00521 s

7. 0,00326 f

8. 0,00280 d

9, 0.00230 p

10, 0.00131 s

11, 0.00129 9

12, 0.00115 1

13, 0,00091 d

14, 0.00055 P

15, 0.00044 s

NATURAL ORBITALS:

1, 0.85231 0.04635 0.08948 0.03039
0,00000 0.00000 0.00000 0.00000
0.00000 0,00000 0.00000 0.00000
2, 0.00000 0.00000 0.00000 0.00000
0.58720 0.43516 =0,03432 0.02599
0,00000 0.00000 0.00000 0.00000
3, -1,52435 =0,39537 0,94112 0.94246
0.00000 0.00000 0.00000 0.00000
0.00000 0.,00000 0.00000 0.00000
4, 0,00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.,00000 0.00000
0.25771 0.53288 0,00000 0.00000
5. 0.00000 0.00000 0.00000 0.00000
2,04759 =2,27589 =0,20443 0.40485
0.00000 0.00000 0.00000 0.00000
6. -3,04964 -0,37629 0.13206 0,00129
0.00000 0.00000 0.00000 0,00000
0.00000 0.00000 0.00000 0.00000

0.00873
0.00000
0,00000

0.00000
0,00000
0,00000

0,22001
0.00000
0.00000

0.00000
0.24772
0,00000

0.,00000
0,00000
0,00000

3.,44794
0,00000
0,00000



10,

11,

12,

13.

14,

15,

0.00000
0.00000
0,00000

0.00000
0.00000
~1,76755

0.00000
10,19700
0,00000

24,90400
0,00000
0.00000

0,00000
0,00000
0.00000

0,.00000
0,.00000
0,00000

0,00000
0.00000
11.52400

0.00000
=-11,94500
0,00000

-33.79700
0.00000
0.00000

0,.00000
0,00000
* 0,00000

0,00000
0.00000
2.45105

0.00000
-6.15276
0.00000

-10,61300
0,00000
0.00000

0,.00000
0.00000
0.00000

0.00000
0.00000
0.00000

0,00000
0.00000
-6,22169

0.00000
6.14078
0.00000

12,13700
0.00000
0.00000

-66 =

0,00000
0.00000
0.09363

0,00000
0,00000
0.00000

0,00000
-2,22886
0.00000

-5.89157
0,.00000
0,00000

0,00000
0,00000
0,00000

0.00000
0.00000
~3.16089

0.00000
0,00000
0,00000

0.00000
~-1,71856
0,00000

13.56700
0,00000
0.00000

0,00000
0,00000
0,91073

0,00000
0,00000
0,.00000

0.00000
-3.23942
0.00000

-7.16158
0.00000
0.00000

0.00000
0.00000
0,00000

0,00000
0,00000
3.02830

0,00000
0,.00000
0.00000

0.00000
8,38308
0.00000

-2,29123
0,00000
0,00000

0,00000
0,00000
0,00000

0.00000
-0,68819
0,00000

0,00000
0.,00000
0,00000

"'4 Y 598 30
0.00000
0,00000

0,00000
0.00000
1,00000

0,00000
0.00000
0,00000

0.00000
-5.95532
0.00000

0.00000
0,00000
0,.00000

15.56500
0,00000
0,00000



COEFFICIENTS ¢

—67-

NATURAL ORBITALS:

NATURAL EXPANSION  WEISS Be2”

1, -0,99916 s

2. 0.03112 P

3. 0.02637 s

a, 0.00694 d

5, 0.00594 P

6. 0.00338 s

7. 0.00254 f

8. 0.00215 d

0. 0.00175 p

10, 0.00099 s

11. 0.00098 9

12, 0.00089 f

13, 0.00068 d

14, 0.00040 p

15, 0.00034 s
0.87655  0.04803  0.06849  0,02271
0.00000  0.00000  0.00000  0.00000
0.00000 0.00000 0.00000  0.00000
0.00000  0.00000  0.00000  0.00000
0.54125  0.48116 -0.02979 . 0,02280
0.00000  0,00000  0,00000  0.00000
-1.69390 -0.37594  1,02271  1.02507
0.00000  0.00000  0.,00000  0,00000
0.00000  0.00000  0,00000  0,00000
0.00000  0.00000  0.00000  0.00000
0.00000  0.00000  0.00000  0,00000
0.21615 0.58658  0.00000  0.00000
0.00000 0.00000 0,00000  0.00000
2,38714 -2.46548 -0,27547  0.29832
0.00000  0.00000 0,00000  0.00000
-4,03066 -0.18169  0.48210  0,25789
0.00000  0,00000  0.,00000  0,00000
0.00000  0,00000 0,00000  0.,00000

0.00567
0.00000
0,00000

0,00000
0,00000
0.00000

0,22211
0,00000
0.,00000

0.00000
0,23550
0.00000

0.00000
0.00000
0,00000

3,75130
0.00000

-0,00000
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7. 0.00000 0.00000 0.00000 0.00000 0.00000
0,00000 0.,00000 0,00000 0.00000 0,00000
0.00000 0.00000 0,08535 0,.91867 0,00000

8. 0.00000 0.00000 0.00000 0.00000 0,00000
0,00000 0,00000 0.00000 0,00000 -0,57218
-2.00620 2,56514 0,00000 0.00000 0,00000

9, 0,00000 0,00000 0.00000 0.00000 0.00000
10.33500 -6,18426 -2.,19050 -3,39814 0,00000
0.00000 0.00000 0.00000 0,00000 0.60000

10. 29,08100 -11,88300 -7.59910 -8,23956 -5.,15691
0.00000 0,00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.,00000 0.00000 0.,00000

11, 0,00000 0.00000 0.00000 0.00000 0.00000
0.00000 0,00000 0.00000 0.00000 0,00000
0.00000 0.00000 0.00000 0.00000 1,00000

12, 0.00000 0.00000 0.00000 0.00000 0.,00000
0.,00000 0.00000 0,00000 0,00000 0,00000
0.00000 0.00000 -3,16113 3,02590 0.00000

13. 0,00000 0.00000 0.00000 0.00000 0,00000
0.00000 0.00000 0.00000 0,00000 -5.96801
11,48600 -6.,17058 0.,00000 0.00000 0.00000

14, 0.00000 0,00000 0.00000 0,00000 0.00000
11.76400 -6.,03135 1,75762 -8.32439 0,.00000
0.00000 0,00000 0,00000 0,00000 0,00000

15, -39,91700 13,77300 16,07000 -0,90479 16.83300
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0,00000 0.00000 0.00000
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NATURAL EXPANSION  WEISS

B3+

COEFFICIENTS:

OO, b wH
L]

10.
11,
12,
13,
14,
15.

NATURAL ORBITALS:

0.89907
0,.00000
0.00000

0.00000
0.51233
0.00000

-1.83900
0,00000
0.00000

0.00000
0.00000
0.18973

0,00000
2,57885
0.00000

-4,64279
0,00000
0.00000

-0,99947
0,02489
0.02052
0.00564
0.00479
0.00309
0.00201
0,00174
0,00140
0,00081
0,00080
0.00065
0.00054
0,00031
0.00028

0,04126 0.05500
0.,00000 0,.00000
0,00000 0.00000

0,00000 0.00000
0,50894 ~0.,02702
0,00000 0.00000

-0.33784 1.08396

0.00000 0.00000
0,00000 0.00000

0.00000 0.00000
0.00000 0.00000
0.61908 0.00000

0.00000 0,00000

-2,57163 ~0,31526

0.00000 0,.00000

-0,04913 0.70501

0.00000 0.00000
0.00000 0,00000

WO OO v O QO QOvown

0.01784
0.00000
0.00000

0,00000
0.02209
0,00000

1,08138
0,00000
0,00000

0.00000
0.00000
0.00000

0.00000
0.23712
0,00000

0.42085
0.00000
0.00000

0.,00397
0,00000
0.00000

0.00000
0.00000
0.00000

0,22606
0.00000
0.00000

0.00000
0.22928
0.00000

0.00000
0,00000
0,00000

3.91897
0,00000
0,00000
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7. 0.00000 0.00000 0.00000 0.00000 0,00000
0,00000 0,00000 0.00000 0.00000 0,00000
0.00000 0.,00000 =~-0,07761 1,07332 0.00000

3. 0.00000 0,00000 0.00000 0,00000 0,00000
0.00000 0.00000 0.00000 0,00000 =0.50640
-2,14061 2.62847 0.00000 0.00000 0,00000

9, 0,00000 0.,00000 0.00000 0,00000 0.,00000
10,40800 -6,19906 -2,16740 ~-3,.,48645 0.00000
0.00000 0.,00000 0.00000 0.00000 0.00000

10, 31.81500 =-12,71800 -8.74233 -8.80278 -5.65085
0,00000 0.,00000 0.00000 0.00000 0.00000
0,00000 0,00000 0.00000 0.00000 0.00000

11, 0.00000 0,00000 0.00000 0,00000 0,00000
0.00000 0,00000 0.00000 0.00000 0.,00000
0.00000 0.00000 0,00000 0.,00000 1,00000

12, 0.00000 0,00000 0.00000 0.00000 0.,00000
0,.,00000 0,00000 0.00000 0.00000 0,00000
0.00000 0,00000 3.16133 -2,97456 0,00000

13, 0,00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0,.00000 5,97428
-11,46200 6.,14079 0,00000 0.00000 0.00000

14, 0.00000 0.00000 0.00000 0.00000 0,00000
11.66000 -5,96928 1,77947 -8,28981 0.00000
0,00000 0.00000 0.,00000 0,00000 0,00000

15. 42,76100 -14,45700 -17.32400 0.26554 =-17,39500
0.00000 0,00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0,00000



COEFFICIENTS:

-7 -

NATURAL ORBITALS:

NATURAL EXPANSION  WEIss ¢

1. -0.99967 s

2, 0.02072 P

3. 0.01679 s

4, 0.00476 d

5. 0.00401 P

6. 0.00256 s

7. 0,00172 t

8. 0.00147 d

9, 0,00117 P

10. 0,00067 9

11, 0.00066 s

12, 0.00056 f

13, 0.00046 d

14, 0.00026 P

15. 0.00023 s
0.91382  0.03695  0.04593  0.01470
0.00000 0,00000 0.00000  0,00000
0.00000  0,00000 0,00000  0,00000
0.00000  0.00000 0.00000  0,00000
0.49308  0.52741 -0,02487  0.02133
0.00000  0,00000 0,00000  0,00000
-1,94039 -0.31137  1,12751  1.12004
0.,00000 0,00000  0,00000  0.00000
0.00000 0,00000 0,00000  0.00000
0.00000  0,00000  0,00000  0,00000
0.00000 0,00000  0.00000  0,00000
0.19312  0.61583  0.00000  0.00000
0,00000  0,00000 0,00000  0.00000
2.69859 =-2.63710 =-0.33890  0.19745
0.00000  0,00000  0,00000  0.00000
-5.27828  0.11976  0.93100  0.57768
0.00000 0,00000 0,00000  0.00000
0.00000  0.00000 0,00000  0.00000

0.00300
0,.00000
0.00000

0.00000
0,00000
0,00000

0,.,22875
0.,00000
0.00000

0,00000
0,22908
0.00000

0.00000
0.00000
0.00000

4,08073
0,00000
0,00000
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7. 0,00000 0,.00000 0,00000
0,00000 0,00000 0,00000
0,00000 0.,00000 -0,05843

8. 0.00000 0,00000 0.00000
0,.00000 0.,00000 0.00000
-2,15049 2,63445 0,.00000

9. 0.00000 0.00000 0.00000
10,44100 -6,20229 -2,15427
0,00000 0.00000 0.00000

10. 0.00000 0,00000 0,00000
0.00000 0,00000 0,00000
0.00000 0,00000 0,00000

11, 32,32900 -12,83100 -8,99112
0,00000 0,00000 0,00000
0,00000 0.00000 0.00000

12, 0,00000 0,00000 0,00000
0.00000 0,00000 0,00000
0.00000 0.00000 ~3,16174

13. 0.00000 0.00000 0,00000
0.00000 0.00000 0,00000
11,46100 -6,13859 0.00000

14, 0.00000 0.00000 0,00000
11,60400 -5,93572 1,79107
0,00000 0,00000 0.00000

15. -45,75800 15.33000 18,49500
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

0,.00000
0.00000
1,05526

0,00000
0.00000
0,00000

0,00000
-3,53311
0.00000

0,00000
0.00000
0.00000

=-9.19569
0.00000
0.00000

0.00000
0.,00000
2,98101

0.00000
0.00000
0.00000

0.00000
-8,.27109
0.,00000

0.47078
0,00000
0,00000

0,00000
0.,00000
0.00000

0,00000
-0,50094
0,00000

0,00000
0.00000
0.00000

0,00000
0,00000
1,00000

=5.42042
0.00000
0,00000

0.00000
0.00000
0.00000

0,00000
=-5.97477
0.00000

0,00000
0,00000
0,00000

17.94500
. 0.00000
0,00000
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NATURAL EXPANSION  WEISS N°7

COEFFICIENTS : 1. -0,99978 s

2. 0.01775 p

3, 0.01422 s

4, 0.00409 d

5. 0.00346 p

6. 0.00219 s

7. 0.00150 y

8. 0.00127 d

9. 0.00101 P

10. 0.00058 g

11. 0.00057 s

12. 0.00049 f

13, 0.00039 d

14, 0.00022 p

15. 0.00020 s

NATURAL ORBITALS:

1. 0.92441  0.03390  0.03918  0.01257
0.00000  0.00000  0.00000  0.00000
0.00000  0.00000  0.00000  0,00000
2. 0.00000  0.00000  0.00000  0,00000
0.48038  0,53932 ~0,02344  0,02114
0.00000  0,00000  0.00000  0,00000
3. -1.99647 ~0.29758  1.14789  1.13984
0.00000  0.00000  0.00000  0,00000
0.00000  0.00000  0.00000  0.,00000
4, 0.00000  0,00000  0.00000  0.,00000
0.00000  0,00000  0,00000  0,00000
0.17774  0.63609  0.00000  0.00000
5. 0.00000  0.00000  0.00000  0.00000
2,76614 -2.67337 =-0.35115  0,17396
0.,00000  0.00000  0.00000  0.00000
6. -5.32400  0.10728  0.96133  0.58346
: 0.00000  0.00000  0.00000  0.00000
0.00000  0,00000 0.00000  0.00000

0,00248
0.00000
0,00000

" 0,00000

0.00000
0,00000

0.23767
0,00000
0,00000

0.00000
0.22391
0,00000

0,00000
0,00000
0,00000

4,10647
0,00000
0,00000
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7. 0.00000 0,00000 0.00000 0.00000 0,00000
0.00000 0.00000 0,00000 0.00000 0,00000
0.00000 0.00000 =-0,03220 1,03050 0.00000

8. 0.00000 0,00000 0,00000 0.,00000 0,00000
0,00000 0,00000 0.00000 0.00000 ~0.,46852
-2,21763 2,66450 0,00000 0.00000 0,00000

9. 0.00000 0.00000 0,00000 0.00000 0.00000
10.,46800 -6,20852 ~2,14556 -3.56486 0.00000
0,00000 0,00000 0.00000 0,00000 0.00000

10, 33.62500 =13,23100 -9,52659 -9,35991 -5.77359
0.00000 0,00000 0,00000 0,00000 0,00000
0,00000 0,00000 0.06000 0,00000 0,00000

11, 0,00000 0.,00000 0.00000 0,00000 0,00000
0,00000 0.00000 0.00000 0.,00000 0.00000
0.00000 0,00000 0.00000 0,00000 1.00000

12, 0,00000 0,00000 0.00000 0.00000 0.00000
0,00000 0,00000 0,00000 0,00000 0.00000
0.00000 0.00000 -3,16211 2,98966 @ 0,00000

13, 0,00000 0.00000 0,00000 0.00000 0.00000
0,00000 0.00000 0.00000 0,00000 5.,97746
-11.44800 6.12334 0.00000 0.00000 0,.00000

14, 0,00000 0.00000 0.00000 0.00000 0,00000
-11.56400 5.91174 -1,79916 8.25791 0,00000
0.,00000 0,00000 0,00000 0.00000 0,00000

15, -46,17300 15,36800 18,74600 0,54568 18.,02900
0.00000 0.C0000 0.00000 0,00000 0,.00000
0.00000 0.00000 0.60000 0.00000 0,00000



NATURAL

EXPANSION WEISS

o6+

COEFFICIENTS:

[

WO wuhwioH
.

10,
11,
12,
13,
14,
15.

NATURAL ORBITALS:

0,92941
0.00000
0.00000

0.00000
0,47005
0.00000

-2,05613
0.00000
0.00000

0,00000
0.00000
0,18387

0,00000
2,83464
0,00000

~-5,98037
0.00000
0,00000

"0 . 99984
0,01554
0,01233
0.00361
0,00303
0.00191
0,00131
0.00112
0,00088
0.,00050
0.00049
0.00044
0,00034
0,00019
0,00017

0,03423 0,03481
0,00000 0.00000
0,00000 0,00000

0.00000 0.00000
0,54825 -0,02187
0,00000 0,00000

-0.28667 1,18125

0.00000 0.00000
0,00000 0,00000

0,00000 0.00000
0.00000 0.00000
0,62866 0,00000

0,00000 0.,00000
-2,71173 -0,.36499
0,00000 0,00000

0,27953 1,19573
0,00000 0,00000
0,.00000 0,00000

WO O aa®wOVD O o O WO wv

0,01099
0,00000
0.,00000

0,00000
0,02159
0,00000

1.,16731
0,00000
0,00000

0,00000
0,00000
0.00000

0.00000
0,15110
0.00000

0,76439
0.00000
0,00000

0,00207
0,00000
0,00000

0.,00000
0.00000
0,00000

0,.22950
0.00000
0,00000

0,00000
0,22526
0.00000

0,00000
0,00000
0,00000

4,25428
0.00000
0,00000



10.

11,

12,

13,

14,

15,

0.00000
0.00000
0.00000

0.00000
0.00000
-2.21435

0.00000
10,48500
0.00000

0.00000
0,00000
0.00000

34,07200
0,00000
0.,00000

0,00000
0.,00000
0.00000

0,00000
0.00000
~11.44800

0.00000
11,53200
0.,00000

49,39500
0,00000
0.00000
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0.00000
0.,00000
0,00000

0,00000
0,00000
2,66479

0.00000
-6,20893
0,00000

0.00000
0.00000
0.00000

-13,31800
0,00000
0.00000

0,00000
0,00000
0,00000

0,00000
0,00000
6.,12399

0.00000
~-5.89296
0.00000

~16.29400
0,00000
0.00000

0,00000
0.00000
-0 003851

0.00000
0.00000
0,00000

0.00000
-2 .1 3780
0.00000

0.,00000
0,.00000
0.00000

-9,76154
0.00000
0.00000

0.00000
0.00000
3.16205

0.00000
0,00000
0.00000

0.00000
1,80565
0.00000

-20,02300
0,00000
0,00000

0.00000
0,00000
1.03646

0.00000
0,00000
0.00000

0,00000
-3.59088
0,00000

0.00000
0,00000
0.00000

-9,74885
0.00000
0.00000

0.00000
0,00000
-2,98760

0.00000
0.00000
0.,00000

0.00000
-8.24708
0,00000

~-1,34349
0.00000
0.00000

v

0.00000
0.00000
0.00000

0.00000
=-0.46935
0.00000

0,00000
0,00000
0,00000

0,00000
0,00000
1,00000

-5.50880
0,00000
0,00000

0.,00000
0.,00000
0.00000

0.00000
5.97734
0,00000

0,00000
0,00000
0,00000

-18.,60300
0.00000
0.00000
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CHAPTER 1,

INTRODUCTION,

The helium hydride molecular ion HeH' is the simplest two-
electron heteronuclear diatomic system and as such plays a role
analogous to that of the hydrogen molecule in homonuclear systems.
The generally accepted equilibrium bond length is only slightly
greater than that of H,, and although the binding energy is only
about 40% of that of H,, it nevertheless forms quite a strong bond.
HeH' is a one-centre system both at R=0, when wo have the united atom
Li"', and at R=Oc, when we have the helium atom. Thus it is the
simplest molecule of the form MH™ (where M is an element whose
ionization potential is greater than that of the hydrogen atom),
which in the ground state dissociates according to MH"—>M + H+.

It was first observed around 1933( ! >, in mass spectrometers,
along with NeH' and AHY, Because these rare-gas hydride ions have
only a short lifetime and are formed in low concentrations,
experimental measurements of their properties are very difficult.
This in itself admits a need for accurate theoretical treatments of
the systems,

Besides this, however, HeH™' is particularly important because
He3H+ is the daughter ion which results when tritium in the tritium

hydride molecule undergoes B -decay. Investigation of this decay
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process has been undertaken theoretically, and it has been the sole
reason for the production of at least one extremely accurate wave-
function for the ground state of HeH,

Some knowledge of the molecular states of HeH* is also
desirable because it is thought to form an important constituent of
some stellar systems. The existence of a flux deficiency in the
spectra of certain stars was thought to be due to absorption by HeH
in the surface layers, WE}?.NERc : )used some theoretical treatments to
investigate this and discounted the explanation that the flux
deficiency was due to transitions from the ground to the first excited
state. He did not entirely rule out, however, the possible cause as
being transitions between higher excited states.

The points outlined above are ample explanation for the large
number of theoretical calculations which have been performed on HeH™*
since the early years of quantum mechanics. These calculations have
been extremely varied in type and accuracy. There follows a brief

roeview of the most important of these, the majority of which are

concerned solely with the ground state.

The theoretical treatment of HeH* began in 1933 when GLOCKLER

C3)
and FULLER applied the techniques of wave mochanics to the system.

They had predicted the existence of such an ion earlier. Then, when
o
BAINBRIDGE made his experimental observation of the system, they

sought to put this on a theoretical footing. They made two attempts
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at a quantum-mechanical solution. The first was based on the inter~
action of an excited helium atom and a proton, and the system was
found to be repulsive for all internuclear separations. The second
used the interaction of a helium ion with a hydrogen atom. On
neglecting one integral, because it would have taken too long to
evaluate, they obtained a binding energy of 8.1 e.V., and thought that
they had in fact obtained a satisfactory theoretical solution. The
neglected integral was the unsymmotric Sugiura integral, whose
inclusion reduces the binding energy from 8.1 e,V. to 3.6 e.V, We now
know that the ground state of HeH* connects energetically with a
helium atom and a proton, so that Glockler and Fuller were optimistic
in their conclusion. Thus the theoretical treatment of HeH* did not
begin in a very auspicious manner.

In 1938 COULSON and DUNCANS(JN(4 )made 8 comparative study on
HeH"’using various different types of wave-function. Among these were
& molecular orbital and a valence bond calculation, of which the
former was found to be better. Another of their wave-functions was of
the James-Coolidge type, and in 1940 'I‘OH( S )extended this work with a
ten- and a twelve- term James-Coolidge function. With the work of
EVE’I'I‘( ¢ )in 1956 we have the first really large calculation on HeH®,
Evett chose to extend Toh’s work with a twenty- and a twenty-three-
term James-Coolidge function. In doing so he was able to check Toh’s

results, whereby he found some numerical errors in the latter’s

work. Up to this point, calculations on HeH™' had predicted varied
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results for both the binding energy and the equilibrium bond length.
Evett’s results were 1,90 e.V.(a) and 1.432 a,u. respectively, which
are not very far from today's generally accepted values,

With the work of ANEXC.7)in 1963 we have another large-scale
calculation, a product of the age of high-speed computers. Anex
maximized the then available computing facilities in producing a
thirty-five-term configuration interaction wave-function with one-
electron basigs functions in elliptical co-ordinates, His values for
binding energy and equilibrium bond length of 1,931 e,V. and 1,446 a,u.
wore extremely close to those of Evett. Anex produced wave~functions
at four different bond lengths. He also produced a SCF wave-function,
which, in combination with the CI, gave information about the
correlation energy in the system. This was estimated at 0,045 a.u.,
and was found to be more or less constant with bond length.

In 1964 STUART and MATSEN( ® )published the first extensive one-
centre calculation on the ground state of HeH* . The total wave-
function consisted of a thirty-term superposition of configurations
using a basis of Slater-type orbitals, up to 101. The calculation
was done at twelve different values of the bond length, ranging from
0.1 a.u., to 5.0 a.u.,. In addition Stuart and Matsen presented limited

CI functions for Li* and He, These were constructed from ten config-

urations and conformed to the accuracy attained in the molecular

(@) 1 a.,u. = 27,2097 e.V,,
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calculation, The values of 1.852 e.V, and 1,464 a,u. for binding
energy and equilibrium separation fitted in well with the results of
Evett and of Anex, whilst the total energy (at 1.4 a.,u.) of

-2,9691 a.u, ranked third in excellence up to this point behind
-2,9742 a.u. of Anex and -2,9730 a.u. of Evett.

9
The calculation of PEYERIMHOFF in 1965 yielded the first

really extensive LCAO SCF function. BHATTACHARYAFIO)had produced a
simple LCAO but his results were optimistic because of incomplete
optimization of non-linear parameters. Peyerimhoft's was an extensive
study for a range of bond lengths, in which she used a 4x2 (four
orbitals centred on He, two on H) basis and a 7x5 basis to make up
the ICAD molecular orbital. The basis orbitals were STO s. In each
case, results were presented for orbital exponents optimized both at
1.455 a.u., (the equilibrium bond length) and at each R value, the
range of bond lengths being from 1.0 a.u. to 4.5 a,u.. Results for
binding energy and minimum total energy were 1.943 e.V. and
-2,93313 a.u. respectively.

Peyerimhoff was the first worker to present a wide range of
physical properties. Among these were spectroscopic constants and
the variation of the centre of charge with bond length. Also
presented were potential curves, curves of the variation of the forces
on the two nuclei with bond length, and density contours of the total
electronic charge in the molecule.

i)
WOLNIEWICZ, in 1965, was prompted into making his calculation
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by the wish to test a surprising experimental result. SNELL,
PLEASONTON and LEMING(iZ), working on the B-decay of tritium in
tritium hydride, had found that the molecule remained bound after
decay in 93.2% of cases. Wolniewicz attempted to test this unexpected
result but found that theoretical treatments of both the parent, HT,
and the daughter, HeH* (or more exactly He°H'), were unreliable. To
remedy this situation he produced a wave-function which has so far
given the lowest energy for HeH'Y, -2,97866 a.u. at the oequilibrium
bond length of 1,4632 a.u.. Basing his work on that of Evett, he
extended this from a twenty~three-term to a sixty-four-term James-
Coolidge function. For the binding energy he obtained 2,039 e.V. and
for the total energy at R=l.4 a.u, he obtained -2,97797 a.u., With
this extremely accurate and elaborate function he tested theoretically
the experimental result of Snell, Pleasonton and lLeming. He concluded
that the theoretical dissociation rate in the decay process was
somothing larger than 17.8%, much greater than the 6.8% predicted by
experiment. Wolniewicz believed his function to be "rather accurate®,
due to its high flexibility.

0f the later work on the ground state, that of HDYLANDSI3)18
worthy of note in that he used non~integral elliptical orbitals in a
part-SCF, part-CI study. The SCF results were compared with those of
Peyorimhoff, and indicated a very similar result with fewer terms.

Comparison of the CI work with that of Anex indicated that non-

integral n-values brought faster convergence than a truncated
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natural expansion.
14>

The work of HARRIS gave the same result that Anex found,
that the correlation energy was almost independent of internuclear
separation. This paper is one of the last to concentrate solely on
the ground state, and later work looks at some of the lower and
higher excited states. For instance, MICHELSCiS), in 1966,
examined fourteen excited states of I and T symmetry. Among the
most recent calculations, that by BARTOLOTTI and GOODISMAN(lc)is
interesting in that it invoked the bare-nucleus perturbation
theory, where the full interelectronic interaction is taken as a
perturbation. The equilibrium bond length obtained was 1.448 a.u.,
very close to the accepted value, whilst the energy at R=1,4 a.u.
was -2,97478 a.u., to be compared with the values of =2,97797 a.u.

by Wolniewicz and -2,9742 a.u, by Anex.

0f this extensive list of calculations on HeH*} one in
particular seems to stand out as being worthy of further investigation.
This is the one-centre calculation of Stuart and Matsen, No other
wave-function is presented over such a wide range of bond lengths,
In conjunction with this, the presentation of the wave~functions for
the He atom and the Li' ion offers a perfect opportunity to test
how the wave-function predicts the formation of the molecule, Using
a popular method, that of density difference maps, this has been

done. By means also of physical properties calculated at the
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different bond lengths, extra information has been obtained as to
the effect the proton has on the density, as predicted by this
approximation, as it changes its position relative to the He nucleus.
The results from these investigations are presented and discussed in
the next chapter.

Subsequent to his original calculation, ANEX together with
SHULL(|7)ana1ysed the configuration interaction wave-function into
the form of the natural expansion. They analysed both an all-sigma=-
basis wave-function and the total wave-funection in this way and
demonstrated the rapid convergence of the natural expansion from
the point of view of the energy. In addition they attempted to
rationalize the trends which appeared in the variation of the
natural expansion coefficients with bond length. We have analysed
the Stuart and Matsen wave-~functions into natural orbitals over the
entire range of bond length, and in Chapter 3 the results are
discussed in comparison with those of Anex and Shull. The Stuart and
Matsen wave-functions were composed of Slater-type orbitals centred
on the helium nucleus, whilst those of Anex were built up from
essentially two-centre functions. Here, then, is a splendid starting
point from which to test the natural expansion in reducing the
influence of the arbitrary nature of the choice of the basis set.

Results from this comparison are also presented in Chapter 3,



CHAPTER 2.

MOLECULAR FORMATION,

A popular and useful method of studying the changes which
occur when‘a molecule is formed is through the use of density

8
contours and density difference maps. The work of KERN and KARPLUS ,

9 20

BADER and HENNEKER , and BADER, HENNEKER and CADE s is
especially noteworthy in this connection, We begin this study of
Stuart and Matsen’s one-centre wave-function for HeH*'by presenting
maps of the one-electron density of the molecule~ion minus that of
an isolated helium atom. By drawing these maps for a wide range of
bond lengths, it may clearly be seen what effect the proton has on
the density in HeHY, as proedicted by this calculation, as its
proximity to the He nucleus increases.

These one-electron density difference maps are presented in
Fig. 1 (a) to (£). In Fig. 1 (a), it may be seen that the proton,
at 5.0 a.u, from the He nucleus, is having only a small effect on
the electron density. There has been a transfer of charge from the
side of the He nucleus remote from the proton into the region between
the nuclei, but the amount of this charge-transfer is slight.
Though it forms a build-up between the nuclei, this again is only

slight and it seems to be influenced more by the He nucleus than by

the proton, since the position of the maximum is at only about
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0.4 a.u. from the He nucleus. By the time the proton has moved in to
be 3.0 a.u. from the He nucleus, Fig. 1 (b), it is having a far
greater effect. The amount of charge transferred to the region between
the nuclei is considerably larger, and the density as a whole has
become more diffuse., The He nucleus is firmly embedded in the region
of negative density difference, whereas previously the zero contour
was only just to the right of this nucleus. The zero contour has
begun to be bent round towards the proton. The maximum of the pile-up
of charge has now moved out to 1.0 a,u. from the He nucleus, The same
trends continue, as may be gseen from Fig. 1 (c), when the proton is
at 2.0 a.u. from the He nucleus. The pile-up of charge has continued
and is now at a maximum at 1.10 a.,u.. The zero contour has bent
round more and is a little further still to the right of the He
nucleus.

The effect of the proton has thus far shown a gradual but
definite increase. The next diagram, Fig. 1 (d), shows the proton
at a distance of 1.4 a.u., from the He nucleus, very close to the
theoretical bond length of HeH+; the effect of the proton has now
become very strong. The charge build=-up between the nuclei, with its
maximm located at 0.9 a.u., is considerable. The zero contour has
been bent round more and more towards the proton, and the density
has become correspondingly more contracted. A charge build-up of
this kind is of course to be expected at around this bond length.

It is worth noting that the He nucleus is now only just, but
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nevertheless unmistakeably, in the region of negative density
difference, showing that the density on the heavy nucleus in the
molecule~ion at the equilibrium bond length is less than that in
the isolated helium atom. The negative contours are seen to be
being gradually drawn round with the zero contour. Moving on to
Fig. 1 (e), the proton is now 1.0 a.u. from the He nucleus,
considerably less than the equilibrium bond length for HeH'. The
approach of the proton towards the He nucleus appears to have forced
the zerc contour in front of it, because the He nucleus now resides
firmly in the region of positive density difference. The maximum of
charge is between the nuclei but proportionately closer to the
proton than has been the case so far. The position of the maximum is
approximately 0.75.a.u. from the He nucleus. The zero contour has
swung round markedly, enclosing the positive contours and drawing
the negative contours around with it. By the time the proton has
moved in to 0,1 a.u. from the He nucleus, see Fig, 1 (f), the
densgity of the ion has become very nearly spherically symmetrical.
The positive contours are now completely enveloped within the zero
contour and are almost semi-circular. Their slight variation from
oxact semi=-circular shape, plus the behaviour of the negative
contours in this case, indicate a very slight polarization of the
charge to the proton side of the He nucleus.

As remarked by Bader, Henneker and Cade, "as important as the

amount of charge is the exact disposition of charge in the molecule"
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This point is very well brought in these diagrams. When the intex-
nuclear distance is 5.0 a.u, there is already a pile-up of charge
boetween the nuclei, but this is so slight and so far from the proton
that one could hardly expect a respectable bond, As the proton moves
in, however, the situation rapidly improves. The amount of charge in
the "bonding region" increases and moves proportionately nearer to
the proton. In doing so it serves to exert a greater attractive force
on the proton, and at the same time to screen more effectively the
repulsion between the two nuclei. When the distance between the
nuclei is 1.4 a.u. we evidently have the optimum conditions, with a
good pile-up of charge between the He nucleué and the proton, and the
position of the maximum dividing the He - H distance very closely in
the ratio 2:1, Inside 1,4 a.u. the build-up has apparently become

too large and too close to the proton to give the best conditions

for stability in the system.

Though the density difference maps just discussed show most
clearly the behaviour of the electronic charge during molecular
formation, this may also be illustrated by the graphs of the one-
particle radial density distribution D(r). (See Part I, Equ. 3(4).)
In Fig. 2 these are plotted for Li*, He and some intermediate bond
lengths for HeH', The He atom D(r) could not be distinguished on this
scale from the HeH' R=5,0 D(r), so the latter is not shown. This is

also the case for R=3,0 and R=4.0, although close inspection of the
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data shows that the proton is beginning to have an effect in

making the corresponding D(r) spread slightly. This effect is most
marked for R=2,0 a.u., as shown, after which the proton begins to
pull charge in with it and makes the D(r) contract. The graphs show
that for smaller bond lengths the D(r) curves gradually begin to
resemble that for Li+, until for R=0.1 the respective D(r) curves
are indistinguishable. These results indicate that the proton, from
having very little influence at large values of R, so that the
density is little different from that for an isolated He atom, has

a gradually increasing effect as it is moved in, This is what one
would expect from such a system, which in the ground state dissociates
into a normal helium atom and a proton. Peyerimhoff and Anex found

a similar state of affairs in calculating the centre of negative
charge. Their results indicated that if the proton were within a
distance from the He nucleus smaller than the equilibrium bond length
then the charge cloud tended to follow it, but that if this distance
increased from R, the charge cloud moved steadily back towards the
unperturbed position which it would have in the He atom.

The graphical indistinguishability of the D(r) curves is a
disadvantage which may be overcome if we look instead at the values
of <r"> , where =2 ¢ n ¢ 4. (See Part I, Equ. 3(5).) In Fig. 3
these are plotted as a function of internuclear distance, and they
indicate the same trends as did the D(r) curves but with greater

clarity. For n=-2 and -1 the curves each have a minimm at R approx-
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imately equal to 1.8 a.u,. The curves for the positive values of n
each have a maximum at around R=2,5 a.u.. For n=1 and 2 the maximum
is barely perceptible but it becomes clearer for n=3 and very
pronounced for n=4, This indicates that in the middle regions of the
system the density is not greatly affected by the proton, but that
in the outer regions the density is most distended at values of R
around 2.5 a.u.. These conclusions underline those from the D(r)
curves and concur with those from the centre of charge calculations

of Peyerimhoff and of Anex,
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CHAPTER 3,

ELECTRON CORRELATION AND NSO ANALYSIS.

In the first section of this chapter we examine by means of
density differences and expectation values the electron
correlation present in the HeHt wave-functions of Stuart and
Matsen. Later, the results of a natural spin orbital analysis of
these functions are presented and compared with those from a

7
similar analysis on HeH¥ wave-functions by Anex and Shull,

The density difference map in Fig. 4 was obtained by
subtracting the one-particle density as predicted by the natural
expansion truncated to the first configuration from that for the
total wave-function for HeH+, at a common bond length of 1.4 a.u.,
This is intended to give a representation of the effect of correl-~
ation in the molecule, bearing in mind that the closeness of X,
to the SCF orbital leads to a good approximation to the uncorrelated
function. Fig. 4 shows some striking points. In the region between
the nuclei correlation evidently has the effect of removing charge,
whilst piling charge up on the nuclei themselves, The neatly
localized form of the increase of charge on the proton is rather
remarkable in view of the one-centre nature of the approximation

under consideration. Also very interesting is the increase of
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charge which correlation causes at right-angles to the bond axis,
on and around a line through the helium nucleus.

From the increase in charge on the nuclei, and the
simultaneous decrease between them, it might be conjectured that
the equilibrium bond length predicted by a correlated treatment
should be slightly greater than that from a non-correlated approach.
Thus, the lower charge between the nuclei in a correlated density
may cause the nuclear repulsion to be relatively more effective and
hence provide a corresponding relaxation of the bond length, The
equilibrium bond length R, as predicted by Peyerimhoff's SCF
function is 1,455 a.u.. The correlated functions of Wolniewicz and
of Stuart and Matsen predict 1.4632 a.u, and 1,464 a.u., respect-
ively, and so are in line with the above hypothesis, The values
of 1,446 a.u. and 1,432 a.u,, however, due to Anex and Evett,
respectively, are contrary to it. Actual figures therefore leave the
question an open one.

The discussion above is unsatisfactory in that the figures
given correspond to different approximations. It would be better if
a comparison could be made within the same model, between a correl-
ated and an uncorrelated function. Here again the Stuart and Matsen
functions would be most useful because they are presented at several
bond lengths very close to the equilibrium value. Potential curves
could be drawn corresponding to the total wave-functions and to the

natural expansions truncated to the first configuration. From each
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of these the equilibrium internuclear separation could be estimated,
and the question as to which is larger might be resolved in a more
rigid manner than the one used above,

The density differences along the internuclear axis in HeH?
for a selection of bond lengths are plotted in Fig. 5. Here again,
the density from the first NSO configuration has been subtracted
from that for the total function at the same bond length. In
general these curves have the features noticed in the density
difference map, Fig. 4. In each case there is a pronounced negative
minimum between the nuclei, accompanied by an increase of charge
at or slightly behind the nuclei. Only for R=1,0 a,u. is the
density at the He nucleus from the correlated function less than
that from the uncorrelated function, Inspection of data shows that a
pile-up of charge exists in the outer regions on a line perpendicular
to the internuclear axis through the helium nucleus for all the
R-values presented in Fig. 5, just as was noticed for R=l.4 a.u. in
Fig. 4. The height of this maximum is in general only a very small
fraction of that at the He nucleus itself and is therefore not easily
shown graphically. However, it seems to be a feature common to all
our difference functions,

In Table I we present values of <r"> (see Part I, Equ. 3(5)),
relative to the He nucleus, calculated for different bond lengths,
These are given as a function of the degree of truncation of the

natural expansions, and are therefore analogous to those in Part I,



Table V, The symmetry of the basis orbitals making up each natural
orbital may be ascertained from the tables of natural expansions
at the end of Part II, The values of <r"> soon converge to the
values from the total functions, with a maximum of six terms
being required for convergence, We observe the general trend that
in the inner and outer regions of the system, natural orbitals
composed of o-type orbitals expand D(r), whilst those composed of
-, 8=~ type orbitals usually contract it., This tendency is parallel
to that noticed for the atoms in Part I, where radial configurations
spread the density and angular configurations caused a contraction.
Finally, we note in passing that for <r>, which emphasizes the
middle regions of the molecule, there is a steady convergence to
the total value, regardless of the symmetry-type of the basis
orbitals composing the added natural orbitals.

In Fig., 6 are diagrams representing the variation of <cos 75>
(see Part I, Chapter 3) with internuclear distance R, On the right-
hand vertical axis we give values of %2 corresponding to the
<cos %o > values given on the left-hand vertical axis, The upper
graph, A, was calculated using the wave-function truncated to the
first natural orbital configuration; the lower graph, B, corr—
esponds to the total wave-function. Graph A shows a tendency towards
<cos ¥, >=0 (G P =90°) at R=0 (Li*) and at R=Oo (He). Considering
that the wave-function is uncorrelated, this is an expected trend.

For the united and separated atoms, <cos 7y, > should be exactly zero
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for a wave-function which does not include correlation, This was
found to be the case, see Part I. Thus, Curve A shows the expected
behaviour at the ends of the range of R, The question arises, what
happens to our convenient value of V|5 =90° for an uncorrelated
wave-function when we move from an atom to a molecule? Here, we
cannot expect the same argument to hold, since the extra positive
charge, in our case a proton{ causes polarization of the originally
spherical charge-cloud, Thus, although we cannot expect a value of
Y, equal to 90°, we can expect a value fairly near to 90°, simply
because it has this value at both ends of the range of internuclear
separation. Graph A shows clearly that the value of <cos ¥, > in
the molecule is at all times greater than that in the atoms. It has
a minimum value at around R=0,9 a.u. corresponding to 7“!=87.65°, so
that from the point of view of <cos 7, >, the uncorrelated system is
least atom~like at this bond length. Thus, this graph shows that in
the molecule the electrons are, on average, closer together than
they were in the united and the separated atoms.

Graph B, although of the same general shape as Graph A, is
considerably displaced towards smallexr <cos 712 > values, i.e.
towards correspondingly larger 7)o values, The values of <cos Y22
for Li* and He from the Stuart and Matsen functions are also marked
in Fig. 6. The ends of Graph B do not seem to approach these atomic
values, In attempting to rationalize this, it is instructive to

revert to Tables I A and VI A of Part I. In Table I A, it may be seen
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that for He, the function of Weiss predicts 98.8% of the correlation
energy whereas the Stuart and Matsen function predicts 94,8%.
Similarly, for Li*, the Weiss function gives 98.4% of the correlation
energy and the Stuart and Matsen function 93,6%., From Table VI A it
is seen that the values of <cos Y2 > for He are ~0,06431 and -0,03768,
and for Lit they are -0.04367 and -0.02545, for the Weiss and the
Stuart and Matsen functions respectively. Thus, although the
difference in the predicted percentage correlation energies is not
very large, the resulting values of <cos Y2 > are vastly different.
The Stuart and Matsen values are in fact only about 60% of the

Weiss values. The function <cos %2> thus appears to be a very
sensitive gauge of the amount of correlation predicted by a particular
wave~-function, for atomic systems.

Turning to HeH*, it is possible to calculate a rough value for
the percentage correlation energy at a particular bond length. For
convenience, we may follow Anex and consider that the correlation
energy is practically constant with bond length at a value of
about 0,045 a.u.. If we take Peyerimhoff’s energies as "uncorrelated"
wo may calculate percentage correlation energies for the Stuart and

Matsen functions according to:?

% correlation = 100 x [E(Stuart & Matsen) - E(Peyerimhoff)1/0.045 .

Using this expression, % correlation = 77 for R=1.0 a.u., 80 for
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R=1.4 a.u,, 85 for R=2,0 a,u., and 88 for R=4.,0 a.u.., Hence,
throughout the molecule the Stuart and Matsen wave-functions at no
time predict more than 90% of the correlation energy. This could
explain why Graph B does not tend to the atomic values, The single~
centre configuration interaction wave-function has two things
demanded of it. It has simultaneously to predict molecular form-
ation and put some electron correlation into the molecule. The
behaviour of Graph B indicates that the approximation is falling
down on this latter point. This is why it seems to be displaced
bodily upwards, away from the correlated atomic values,

The position of Graph B relative to the uncorrelated curve,
Graph A, is interesting. It is not the absolute values of <cos N2 >
but the values relative to Graph A which are important here, Fig, 4
and the curves of Fig. 5 showed that correlation tended to move large
quantities of charge away from the region between the nuclei., The
displacement of charge could result in the electrons being spread out,
and on average being further away from each other than in the

uncorrelated case., Graph B bears out this argument,

One of the claims for the natural expansion is that it reduces
the influence of the arbitrary nature of the choice of basis set. In
other words, wave-~functions built up from quite different basis
orbitals will have very similar NSO coefficients when put into the

form of the natural expansion. This property was extensively
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investigated by SHULL(2'), who analysed a very large number of
hydrogen molecule ground state wave-functions in terms of natural
orbitals. His analysis showed a very great similarity between all
the functions, with the natural expansion coefficients o being
relatively independent of the choice of basis functions, This close
correspondence increased if the bases approached completeness.

This valuable property of the natural expansion has found a
useful application in analysing the Stuart and Matsen wave-functions.,
The original configuration interaction functions contained thirty
configurations, made up from twenty-six single-centre basis orbitals
(sT0"8). Since the parameters were optimized at each of the twelve
bond lengths, the result was effectively a different basis set at
each R-value., This makes meaningful comparison between the twelve
functions almost impossible; hence the need for an analysis which
would somehow reduce the disparity between the functions,

It was mentioned earlier that Anex and Shull performed an NSO
analysis on Anex’s CI functions, These original functions were
composed of an essentially two-centre basis. Anex and Shull analysed
in terms of the natural expansion both a twenty-eight-term function,
made up from seven o basis orbitals, and a thirty-five-term function,
made up from six o, three r and two 6 basis orbitals. Thus, in the
former case the natural expansion had seven configurations and in the
latter case eleven. The original CI functions were produced by

optimization of non-linear parameters at four bond lengths, and are
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therefore subject to the same limitation as those of Stuart and
Matsen - meaningful comparison between them is almost impossible.
Anex and Shull performed the NSO analysis to reduce this disadvantage.

We have analysed the Stuart and Matsen functions in terms of
natural orbitals and have calculated various quantities at different
bond lengths. In addition, we have taken the opportunity of comparing
these natural expansions with the corresponding Anex and Shull results,
Since the original functions were built up in entirely different
ways, the natural expansion gives us a method of drawing parallels
betwoen two calculations which are, superficially at least, quite
different.

The results of the NSO analysis of the Stuart and Matsen
functions are presented at the end of Part II, together with with the
syﬁmetry of the basis functions composing each natural orbital. Since
there were twenty-six basis functions originally, one would have
expected there to be twenty-six natural orbital coefficients. In fact
thirteen of these were found to be effectively zero.

The curves in Fig. 7 show the variation of the first two
natural orbital coefficients ¢; (Graph A) and c, (Graph B) with R
for the Stuart and Matsen HeH' functions. The atomic values are also
indicated. The crosses represent the results of Anex and Shull,

Both Graph A and Graph B have turning points around R=1,9 a.u.. The
Anex and Shull results indicate the same general trend and are very

close to the Stuart and Matsen values. Whereas for ) the Anex and
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Shull results are usually higher, for c, they lie below the Stuart
and Matsen curve. In each case, A and B, the ends of the curves lie
very close to the atomic values. In the case of He in particular,
each curve approaches the atomic value asymptotically.

Further evidence of the closeness of the Stuart and Matsen and
the Anex and Shull results is given in Table II. The internuclear
distances R<1,0 a.u, and R=1.4 a,u. are the only two common to both
calculations, Comparison of the two sets of results shows a very
close correspondence between the magnitudes of the coefficients down
at least as far as the fifth. Beyond this the agreement is not as
good. This is understandable, because in each case the sum of the
squares of the numbers has to equal unity. In the case of the Stuart
and Matsen values this has to be "spread" over two more coefficients.
The effect of this is that in general the Stuart and Matsen values
are lower than the corresponding Anex and Shull values, with the
disparity becoming more noticeable for the smaller coefficients,
Considering the vastly different natures of the original approx-
imations, the extent to which the natural expansion coefficients
agree is remarkable, The symmetries of the basis orbitals composing
the natural orbitals are also seen to agree precisely, except for the
very last of all.

It seems appropriate at this point to make some comments on the
signs of the natural expansion coefficients, Table II shows that

there are disparities over signs between the Stuart and Matsen and
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the Anex and Shull results, even though the magnitudes of the
corresponding numbers are so close, The two-electron CI wave-function

¥ is expressible as a real quadratic form (see Appendix):

where ¥ 1is a row vector of basis orbitals and C is the matrix of the
coe‘fﬁcients. By means of the transformation X=yA this may be

reduced to

which is a sum of squares if ¢ is diagonal. This is what has been
done by throwing ¥ into the form of the natural expansion, The
number of terms in the diagonal form of ¥y depends on C , There are r
terms if the rank of C is r. Further, we may define the index p of
the quadratic form as the number of the r terms which are positive
and the signature s as the number of positive terms minus the number
of negative terms, = 2p-r. Thus in the case of the Stuart and

Matsen wave-functions the rank of the quadratic form is evidently 13,
the index 5 and the signature (-)3. For the Anex functions, however,
the quadratic form is apparently non-singular, its index is 1 and its
signature (-)9. The case with the Anex and Shull coefficients,

therefore, where the first coefficient is of different sign from the
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rest, though very common does not happen invariably. HAGSTROM and
SHULchzga)report a similar state of affairs for H,. A single-centre
calculation yielded sixteen non-zero coefficients, of which four apart
from the first were positive. Several of the positive coefficients
were non-negligible. A two-centre calculation, however(24), yielded
the "usual" scheme, with the first coefficient of different sign from
all the rest,

In order to compare the twelve wave-functions produced by
Stuart and Matsen we have followed a method used by Anex and Shull.
We look here for quantities which give a measure of the total
"character" of a particular symmetry type in HeH', The sum of the
squares of the NSO coefficients corresponding to o-configurations is
called the total " I character"” of the molecule; the sum of the
squares corresponding to r-configurations is called the total
" 1T character"; and so on. In order to obtain some correspondence
between the molecule and the atomic systems Li* and He, the total
S character + 1/; total P character + 1/g total D character of the
atomic systems is compared with the total L character of the moleculse;
36 total P character + ag total D character of the atomic systems is
compared with the total W character of the molecule; and so on. The
S, P, etc., character comes from squaring the coefficients in the
Li* and He natural expansions. Table III contains the results of this

work. There is a smooth variation of each symmetry character so

formulated, from Li* through the twelve different R-values to He. As
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the I character decreases, each of the T and A characters shows a
simultaneous increase. There is no minimum or maximum as was noticed
with the ¢, and ¢, variation in Fig, 7. Thus, the ¢, coefficient,
though very large, is not completely dominant,

The corresponding values from the Anex and Shull natural
expansions are, for R=1.0 a.u,?! £, 0,997927; W, 0,002009; A, 0,000058;
and for R=1.4 a.u.: Z, 0,997799; T, 0,002135; A, 0,000060, These are
extremely close to the Stuart and Matsen values, which is only to be
expected since we noticed a very strong correspondence between the
natural orbital coefficients themselves., In this manner, the rather
gross approximation as regards the "character" as defined above gives
us a slightly different way of looking at the comparison between the

two wave-functions.
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CHAPTER 4,

SUMMARY AND CONCLUSIONS,

This study of the molecular ion HeH' has been instructive in
soveral ways. By analysing the extensive configuration interaction
wave-function of Stuart and Matsen we saw how a good one-~centre
calculation predicted the formation of the molecule. The demnsity
difference maps drawn at different bond lengths showed clearly that
from being a one-centre system at large internuclear distances, HeH*
became more and more polarized as the proton approached the helium
nucleus. The proton tended to take charge with it until it coincided
with the helium nucleus, again forming & one-centre system,

The average values of r" also showed clearly how the
calculation predicted one-centre systems both at R=0 and at R=Oe,
They also showed that the proton greatly affected the density in the
outer regions of the system, especially around an internuclear
separation of about 2.5 a.u.. The conclusions from the density
difference maps and expectation values are in line with the centre of
charge calculations made by Peyerimhoff and by Anex, Their results
showed that as the internuclear separation was increased, the electron
cloud tended to follow the hydrogen nucleus at smaller R-wvalues, and
then showed a contraction towards the helium nucleus as R became

relatively large.
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Analysing the Stuart and Matsen functions in terms of natural
orbitals made possible a comparison which would otherwise have been
very difficult, We saw that this single-centre calculation and the
two-centre calculation of Anex gave natural orbital coefficients
which coincided to a very great degree of accuracy. It is worth
bearing in mind that the Stuart and Matsen CI wave-function was
composed from twenty-six basis orbitals, making thirty config-
urations, whereas the Anex CI wave-function had thirty-five config-
urations, made up from eleven basis orbitals. The natural expansion
had the effect of reducing the number of natural orbital config-
urations in the Stuart and Matsen case from the expected twenty-six
to thirteen, since thirteen coefficients were for all practical
purposes zero. The thirteen which were not negligible were then found
to be very close to the eleven from the Anex and Shull calculation.,
This similarity was evident both in the magnitudes of corresponding
coefficients and in the symmetry of the basis orbitals from which
they were composed. Hence, even though conceived and developed in
entirely different ways, the two HeH* calculations were shown to bear
strong similarities to each other. This conclusion is in line with
that of SHULL<2I)aa a result of his analysis of many varied hydrogen
molecule calculations,

The density difference map in Fig. 4 gave information as to the
effect of electron correlation in the Stuart and Matsen calculations.

Here again we used as a basis the fact, noted by several authors and
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confirmed by our own results in Part I, that the first natural orbital
configuration bears a strong resemblance to the self-consistent-field
function. Yet further evidence of this fact is given by Anex in the
case of HeH'., In addition to his CI work he made a SCF calculation, |
which for R=1.4 a.u, gave an energy of -2,93192 a,u., (Peyerimhoff’s
SCF value was -2,93259 a.u..) Calculating the energy from the first
natural orbital configuration he obtained -2,93177 a.u.. Using the
truncated natural expansion as our uncorrelated function, we saw that
the effect of correlation was to remove charge from the region between
the nuclei and to pile it up on or behind them., In addition, there was
a small increase of charge in the outer regions at right-angles to the
internuclear axis on and around a line through the helium nucleus.
These effects were noticed for all the bond lengths studied, from
small to large values of R,

The average values of cos Y|, appeared to give a rather sensitive
measure of the electron correlation in both the atomic and molecular
systems. In the first place, for He and Li* a large difference between
<cos 7), > values was noticed for functions which differed by only
about 4% in the predicted percentage correlation energy. Extension of
this to the molecule explained why the limits of the <cos 7, > versus
R curve for the molecule did not tend to the atomic values. A rough
calculation showed that the percentage correlation energy predicted
for the molecule was considerably lower than that for the atoms,., This

seemed to explain why the whole curve was displaced towards higher
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values of <cos Y2 > i.e, towards lower corresponding values of Yo -

The <cos y, > versus R curve calculated from the natural
expansion "uncorrelated" function showed the expected behaviour at its
limits. That is, it tended towards the atomic values of <cos y, >=0,
N2 =90°, for both the united atom Li* and the separated system He. The
curves for the uncorrelated function and the total function have
relative positions indicating that on average the electrons are
further apart in the latter case; This expected result is consistent
with the charge movements noticed in the correlated minus uncorrelated
density difference map and curves.

In their NSO paper on HeH', Anex and Shull discuss the
resemblance between the first natural orbital configuration and the
SCF function. They calculated the overlap between the first natural
orbital and the SCF orbital, and found that there was a trend of
increasing difference between the overlaps as R increased, and hence
an increasing difference between the orbitals. Two possibilities were
present; either the agreement between the orbitals iﬁcreased with
increasing atomic charge, or the agreement went through a minimm at
or beyond R=2 a.u.. Because of lack of evidence they were unable to
choose between these alternatives, Our results from Part I, however,
seemed to indicate that the effect of increasing 7 was to draw the
orbitals into better agreement. This of course does not preclude the

possible existence of a minimum as described above,



Finally, a few words must be said on the great usefulness
throughout this work of the natural expansion. It paid great
dividends in Part I in giving a more detailed insight into the
effects of radial and angular correlation. This was true to a lesser
oextent in Part II, but the technique came into its own when
comparison was made between the superficially different functions of
Stuart and Matsen and of Anex. In their original form no meaningful
comparison is possible, but the natural expansion showed that in
fact the functions were very similar, notably in the amount of E,T,
etc., "character" which each contained.

In a less direct but still very useful way, the natural
expansion has paid dividends through uncovering mistakes in published
data. In this connection we report two such errors. Firstly, in the
H™ wave-function of WEISStzs), p. 1829, Table I, the coefficient of
the 2p”3p” configuration should be 0.016493 and not 0,16493. Secondly,
in the HeH' function of Stuart and Matsen at R=1,2 a,u., p. 1468,
Table III, the coefficient of the 1s85g configuration has the wrong
sign. The nature of the natural expansion provides an immediate and
relatively simple check on data as presented in journals etec.., A
property such as this is extremely useful, since errors manage to
creep into the literature with almost every extensive calculation.
SHULLCZ')goes so far as to suggest that one should perform an analysis

of this kind wherever possible during the computations.
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R=0.1 R=1.0 R=1,4

" <r25| <> | <x?> | <02 <r> | <x?> | <r 2| <> | <x?>
1|27.,467|1,16871,1442|12,734|1.6933(4,1091(11,.835|1,8362{6.1884
2127.486{1.1691|1,1461{12,733(1.6944 |4,1026|11,841 |1,.8401|6,2592
3127.463|1,1693|1,1459|12,722]1,6948 |4,119711,825|1.,8404)6,2561
4 127.,453|1,1694|1,1458(12,724(1,6952 |4,1245]11,828 |1,8408 |6,2619
5 |27.452 1,1458{12,724 4,1246(11..,828 11,8409 (6,.2626
6 | 27.454 6.2625
o R=2.0 R=5.0

<r 25| <r> | <> | <272 <> | <xd
1/11,611(1,9279|9,1846{12,006|1,8580 |7,7929
2 {11,625(1,9351{9.2374{12,041 (1,8617 {7.9042
311,608 (1,9354(9,2291 |]12,019/1,8622 |7,8986
4 111,606 ]1,9356 {9.2288 {12,008 |1.8625 |7.8960
5 /11,608 (1,9357 19,2328 (12,010(1,.8626 |7.9014
6 7.9017

Table I, Values of selected <r"> from the natural expansions of the

Stuart and Matsen(B)

wave-functions for HeH' truncated after m terms,

The symmetry of the basis orbitals composing each natural orbital
may be obtained from the tables of natural expansions at the end of
Part II, Only the terms required for convergence to the values from
the total wave-functions are shown., Values of bond length R are in
atomic units,
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R=1.0 R=1.4

o STUART & MATSEN|ANEX & SHULL|STUART & MATSEN|ANEX & SHULL
1 0.996408 0.996410 o 0,995198 0,995233 ¢
2 -0,063610 -0,062039 o | -0,079150 =-0,077736 ¢
3 0.043489 -0,043673 0.045027 -0,044962 7
4 -0,031859 -0,033598 o | -0,031345 =~0,033406 o
S -0,007718 -0,007758 ¢ | -0,010792 =-0,009601 ¢
6 0.007403 -0,007736 = 0,007862 -0,008359 =
7 -0,006320 =-0,007294 6 | -0,008575 -0,007476 ¢
8 0.005914 -0,006560 7 0.006307 =-0,006722 =«
9 -0,003990 -0,006332 ¢ | -0,005044 =-0.006342 o

10 -0,003048 ¢ |=-0,004468 o | -0,003946 ¢ |=0,004710 ¢

11 -0,001077 o¢ |=-0,002290 ¢ | -0,001748 ¢ |[=-0,002311 ¢

12 -0,000309 7 -0,000403 7

13 0.000141 = 0.000194

Table II, Natural expansion coefficients and symmetry of basis
orbitals composin% the correspondin% natural orbitals for the
Stuart and Matsen‘®’ and the Anex¢7’ HeH* wave-functions. Values
of bond length R are in atomic units.
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r 1

Character u oa 0.5 1.0 1.2 1.3 1
E 0.998808 0.998689 0.998281 0,997972 0.997921 0.997850 0.997809
m 0.001225 0.001267 0,001667 0.001979 0.002054 0.002090 0.002127
4 0.000035 0.000029 0.000036 0.000039 0.000041 0.000042 0.000043

Character 1.5 1.6 2.0 3.0 4.0 5.0 He

E 0.997783 0.997790 0.997653 0.997448 0.997288 0.997244 0.997192
m 0.002153 0.002183 0.002307 0.002557 0.002664 0.002696 0.002720
A 0.000043 0.000044 0.000047 0.000054 0.000056 0.000058 0.000076

Table III. Symmetry "character" (for definition see text p. 105 ) as
calculated from the Stuart and Matsen”®” wave-functions. Values of

bond length are in atomic units.
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30
HeH R=0 5
20 He
°0° IO 20 rca.u.)

Fig. 2. Radial density distributions D(r) from the Stuart and
Matsen HeH*, He and Ii'* wave-functions . Values of bond length
R are in atomic units.
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20 29-88
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Stuart and Matsen HeH* wave-functions
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with bond length R for the
. The atomic wvalues are
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0.0 GO
0 GGI 0 0005
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He 0 0GGG5
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GG
GGGG5
H) ( G-GG25
GOGI

Fig. 4. Difference map of the one-particle density from the total
HeH function minus that from the natural expansion truncated to

the first configuration. The function is that of Stuart and Matsen'ﬂm
at a bond length of 1,4 a.u..
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Fig. 5. Difference curves plotted along the intemuclear axis of
the one-particle density Ap(f) from the total HeH* function minus
that from the corresponding natural expansion truncated to the
first configuration, for various bond lengths. Values of the bond
length R are in atomic units. The He nucleus is situated at the
origin. The Ap(r) values have been scaled up by a factor of 104,
The wave-functions are those of Stuart and Matsen
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Fig. 5. Difference curves plotted along the intemuclear axis of
the one-partiele density Ap(f) from the total HeH"*" function minus
that from the corresponding natural expansion truncated to the
first configuration, for various bond lengths. Values of the bond
length R are in atomic units. The He nucleus is situated at the
origin. The Ap(f) values have been scaled up by a factor of 10%.
The wave-functions are those of Stuart and Matsen "®*
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NATURAL EXPANSIONS FOR THE STUART & MATSEN FUNCTIONS,

In the following pages are presented the natural expansions
of the wave-~-functions of Stuart & Matsen for He, Li+, and HeH* at
twelve values of the internuclear distance. Alongside each
coofficient is the symmetry of the basis orbitals composing the
corresponding natural orbital. Within each natural orbital the basis

orbitals are ordered as follows:

He, Li*: 1s 2s” 3s”
2p 3p 34

HeH'ts 1s 2s” 3s° 2p 3p
4p 3d 4d af 5¢
5g 6g 6h 7i 83
9% 101 2p° 3p” 34d°
zpll Splf 3d'l zptll 3df‘l

L XX

3d



NATURAL EXPANSION STUART & MATSEN
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He,

COEFFICIENTS:

Ot WM
e o o

NATURAL ORBITALS:

3.

3.

6.

1,23261
0.00000

-1,92219
0.00000

0.00000
0.45118

-4,32703
0.00000

0,00000
-2,40758

0,.00000
0.,00000

0.99596
-0,06200
-0,03597
=0.00727
=-0,00585
-0,00539

-0,26778

0,00000

0,80919
0.00000

0.00000
0,57103

6.79347
0,00000

0.00000
2.38200

0.00000
0.00000

0vU O Vn un

0.03026
0,00000

1.44096
0.00000

0.00000
0.00000

-2,69049
0.,00000

0.00000
0,00000

0.00000
1.00000



NATURAL EXPANSION STUART & MATSEN
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Lit.

COEFFICIENTS:

U W

NATURAL ORBITALSS

2,

4,

1.13926
0.00000

-1,79229
0.00000

0.00000
0.42442

-4,48366
0.00000

0.00000
-2.41244

0.00000
0,.00000

-

0.99836
-0,03700
-0,02404
-0,00447
-0,00396
~0,00380

-0,14985

0.00000

0.51275
0,00000

0.00000
0.59743

6,79497
0,00000

0.00000
2,37552

0,00000
0,00000

OV vwvo v w

0,00657
0,00000

1.59749
0,00000

0.00000
0.00000

-2,51687
0.00000

0,00000
0,.00000

0,00000
1.00000
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NATURAL EXPANSION HoH+ R= 0,1
COEFFICIENTS: 1. 0.99839 o
2, -0,03559 o
3. 0.03476 ”
4, =0,02430 o
5. 0.00564 n
6. =0.00547 0
7. 0.00537 ”
8, -0,00393 a
9, -0,00388 o
lo. -0,00368 o
11, -0,00006 4
12, -0.00000 n
13. 0,.00000 L
NATURAL ORBITALS:
1, 1,11564 -0,04010 -0,08970 0.06064
0.04860 0.00419 -0,00003 0.00101
-0,00019 0.00056 0.00020 0.00011
0.00005 0.00003 -0,00041 =-~0,00064
0.00000 0.00000 0.00000 0,00000
0.00000
2, -1,59027 -0,16729 2,06620 -0,09563
-0,07664 =0,00660 0.00005 -0,00159
0.00030 -0.,00088 =-0,00032 -0,00017
-0,00008 -0,00005 -0,04281 -0,08776
0,00000 0.00000 0.00000 0.00000
0.00000
3. 0,00000 0.,00000 0.00000 0.00000
0,00000 0.00000 0,00000 0,00000
0.00000 0.00000 0.00000 0.00000
0,.00000 0.00000 0.00000 0.00000
0.40888 0,60926 0.00802 0,00214

0,00000

=-0,05401
0.00001
0,00007
=-0.00001
0,00000

0,08518
-0,00002
-0,00011
-0,00035

0,00000

0,00000
0,00000
0,00000
0.00000
0,04236



4,

7.

-0,29243
0.07103
=-0,00028
0,00007
0.00000
0.00000

0.00000
0,00000
0.00000
0.00000
-1,84008
0.,00000

0,00000
0.00000
0.00000
0.00000
0.00000
1.00000

0,00000
0.00000
0.00000
0.00000
1.58077
0.00000

1.09123
0.08776
-0,00034
0.00009
0,00000
0.00000

-|29=

-0,14554
0,00612
0.00082
0,00004
0,00000

0.00000
0.00000
0.00000
0,00000
1,99404

0.00000
0,00000
0.00000
0.00000
0.00000

0.,00000
0.00000
0.00000
0.00000
1.28778

-1,41316
0,00756
0.00101
0.00005
0.00000

0.45619
"0 000004
0,00029
0.27308
0,00000

0.00000
0,00000
0.00000
0,00000
-0 058000

0.00000
0,00000
0,00000
0,00000
0,.00000

0.00000
0.00000
0.00000
0,00000
0,.83057

0.32885
-0,00005
0,00036
0.88700
0.00000

0,08863
0.00148
0,00016
0.65348
0,00000

0.00000
0.00000
0.00000
0.00000
‘0 01 5474

0.00000
0,00000
0.00000
0,00000
0.00000

0,00000
0,00000
0,00000
0,00000
0,22155

0.10950
0.,00182
0.00020
-0,95585
0.00000

-0.07894
0,00001
0,00010
0.00050
0,00000

0.00000
0,00000
0,00000
0.00000
-0,01041

0.00000
0,00000
0,00000
0.00000
0,00000

0.00000
0.,00000
0,00000
0,.00000
=0,02508

-0.09754
0.00002
0.00013
0.88546
0,00000



10,

11,

12.

13.

-2,03299
-0,13091
0,00051
-0,00013
0.00000
0.00000

-4,38966
-0,01785
0.,00007
-0,00002
0.00000
0,00000

0.10087
-5,90459
0,02307
~0,00607
0.00000
0,00000

0,00000
0.00000
0.00000
0.00000
-20,16945
0,00000

0,00000
0,00000
0.00000
0.00000
-20,17522
0,00000

=130~

2,61832
-0,01128
=0,00151
~0,00008

0,00000

5.54436
-0,00154
-0,00021
=0.00001

0,00000

-0,09573
~-0,50875
-0.06799
-0,00364

0.00000

0,00000
0,00000
0.00000
0.00000
-13.,25177

0.00000
0,00000
0,00000
0.00000
-13.24977

"0059969
0.00008
-0,00054
-1,78375
0.00000

"1 019682
0.00001
-0,00007
1,16651
0.00000

0.00364
-0,02428
5,33888
0,00000

0,00000
0.00000
0,00000
0,.00000
13,.32346

0.00000
0,00000
0,00000
0,00000
~-13.33166

-0,16335
-0 000272
=0,00030
1,.86842
0.00000

-0,02227
=-0,00037
-0,00004
-1,10134

0.00000

=7.36750
-0,12263
-0,01336
0,58752
0,00000

0,00000
0,00000
0.00000
0,00000
32,72651

0.00000
0.00000
0,00000
0,00000

32.72691

0,14551
-0,00003
-0,00019

0,46319

0,00000

0,01984
-0.00000
=-0,00003

0,01075

0.00000

6,56277
=0.00121
-0,00850

0,22030

0,00000

0,00000
0,00000
0,00000
0.00000
=13,34677

0,00000
0,00000
0,00000
0.00000
13.34673
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0.00000

NATURAL, EXPANSION HeH+ R= 0,5
COEFFICIENTS: 1, 0,99779 .4
2, 0.03995 ”
3. -0,03734 o
4, -0,03533 o
5. 0.00645 "
6. =-0,00600 b
7. 0,00557 o
8. =-0,00491 o
9. -0 000446 (4
10. =0,00379 o
11, -0,00012 (4
12, -0,00010 L
13, 0,00005 L
NATURAL ORBITALS:
1, 0.90568 0.10197 -0,02153 0.,03723
0.00055 =0,00071 0,04806 -0,00578
-0,00506 0,01314 0.00453 0.00264
0.,00111 0.,00076 -0,00077 =0,00083
0,00000 0.00000 0.00000 0,.00000
0.,00000
2, 0,00000 0.00000 0.00000 0.,00000
0.00000 0,00000 0.00000 0.00000
0.00000 0,00000 0,00000 0,00000
0.00000 0,00000 0,00000 0.00000
0,32786 0.65107 0.03188 0.,02512
0,00000
3. -1,32364 0,37022 0,98495 0.13413
0,00200 ~-0,00257 0,17315 -0,02081
-0,01824 0.04736 0.,01632 0.00951
0.00399 0.00274 0,10700 0.10835
0,00000 0,00000 0,00000 0.00000

0.,11862
0,02353
0.00166
-0,00019
0,00000

0,.00000
0.00000
0,00000
0.00000
0.14218

0,42736
0.08477
0,00599
0,02039
0.00000



S.

7.

8.

0,91684
0.00144
=-0,01319
0,00288
0.00000
0,00000

0,00000
0.00000
0,00000
0.00000
-0,47981
0.00000

0.00000
0.00000
0,00000
0.00000
0.00000
1,.00000

0,00000
0.00000
0.,00000
0,00000
-2,39840
0,00000

-0,30841
0.00054
-0,00491
0,00107
0,00000
0,00000

0,35622
=-0,00185
0,03423
0,00198
0.00000

0.00000
0,00000
0,00000
0.00000
-0 Y 575&

0.00000
0,00000
0,00000
0,00000
0.00000

0,00000
0.00000
0,00000
0.00000
2,39841

0.,43064
-0,00069
0.,01273
0,00074
0.00000

-132=-

-1,60770
0,12516
0,01180
0,08374
0,00000

0,00000
0,00000
0,00000
0.00000
1,12775

0,00000
0.00000
0,00000
0.00000
0.,00000

0,00000
0,.00000
0,00000
0.00000
-0,07948

-0013731
0,04656
0.,00439

~2.41262
0,00000

0.09695
-0,01504
0,00688
0,08446
0.00000

0,00000
0,00000
0,00000
0,00000
0.86206

0.00000
0,00000
0,00000
0.00000
0,00000

0,00000
0.,00000
0,00000
0,00000
=-0,06041

0.03607
=0,00560
0,00256
2,15267
0,00000

0.30892
0.06128
0,00433
0,01568
0,.00000

0.00000
0,00000
0,00000
0,00000
-0,14866

0,00000
0.00000
0,00000
0.,00000
0,00000

0,00000
0,00000
0,00000
0,00000
0,02002

0.,11492
0,02280
0.,00161
0.20272
0,00000



1o,

11.

12,

13,

"0093173
0.00108
-0,00986
0.00216
0,00000
0,00000

-4,64543
0,00015
-0,00135
0,00030
0.00000
0.090000

0.,10668
0,02508
-0,22924
0.05015
0,00000
0.00000

0.00000
0,00000
0.00000
0.00000
3.24195
0,00000

0,.00000
0,00000
0.00000
0,00000
~-3.40796
0.00000

=133~

1,30649
-0,00139
0,02558
0,00148
0.00000

6.55544
-0,00019
0,00351
0,00020
0,00000

-0,15631
-0,03224
0,59503
0.03448
0,00000

0.00000
0,00000
0.00000
0,00000
7.12156

0,00000
0,00000
0.00000
0.00000
"7050459

=-0,41452
0.09353
0.00882
0.42266
0,00000

=-2,06509
0.01285
0,00121
=-0,00092
0,00000

0,04753
2,17551
0.20506
-2,70874
0,00000

0.00000
0,00000
0,00000
0.00000
=-4,01292

0,00000
0,00000
0.00000
0,00000
"3. 91721

0,07245
-0,01124
0.00514
=0,96972
0.00000

0,00995
-0,00154
0.00071
-0,06583
0,00000

1,68525
-0,26147
0,11954
-4 .48707
0.00000

0.00000
0,00000
0,00000
0,00000
~-10,21752

0,00000
0,00000
0.00000
0,00000
10,71680

0,23085
0,04579
0,00323
0,81887
0.,00000

0.03171
0,00629
0,00044
-0,23089
0,00000

5.,36963
1,06515
0,07522
-2,19641
0.00000

0,00000
0,00000
0,00000
0,00000
4,13193

0,00000
0,00000
0,00000
0.00000
3.95116



-134-

NATURAL EXPANSION HeH+ R= 1.0
COEFFICIENTS: 1, 0,99641 o
2, ~-0,06361 o
3. 0,04349 L
4, -0,03186 o
5. =-0,00772 c
6. 0,00740 T
7. -0,00632 6
8. 0,00591 ﬂ
9. -0,00399 o
10, -0,00305 o
11, -0,00108 4
12, -0.00031 L
13, 0,00014 v
NATURAL ORBITALS:
1, 0,89801 ~0,04536 0.14640 0.02672
0.14626 -0,01564 0.09405 =-0,01642
-0,01317 0.03219 0,01131 0.00686
0,00296 0,00207 0.,00004 -0,00213
0,00000 0.00000 0,00000 0.00000
0,00000
2, -0,96883 -0,21937 1,16792 0.08715
0,47709 =0,05102 0.30678 -0,05355
-0,04297 0.,10499 0.03689 0,02238
0,00965 0.00675 0,00195 0,14143
0,00000 0.00000 0.00000 0.00000
0,00000
3. 0,00000 0.,00000 0,00000 0,00000
0,00000 0,00000 0,00000 0.00000
0,.00000 0.,00000 0,00000 0.,00000
0,00000 0.00000 0.00000 0.00000
0.33306 0.63391 0,03761 0,03275

0.00000

0.01612
0.05328
0,00440
-0,00022
0.00000

0,05259
0.17379
0,01435
0,01219
0.00000

0,00000
0,00000
0,00000
0.,00000
0,16127



1.11217
0.28720
-0,02587
0.00581
0,00000
0,00000

-0,28636
=-0,62091
0,05592
-0,01257
0,00000
0,00000

0,00000
0,00000
0,00000
0,00000
-1,10799
0,00000

0,00000
0,00000
0,00000
0,00000
0,.00000
1,00000

0.00000
0,00000
0,00000
0,00000
-2.15510
0,00000

-135=

0.06529
-0,03072
0,06320
0,00406
0,00000

0,27488
0,06641
-0,13664
-0,00878
0,00000

0,00000
0,00000
0,00000
0,00000
0.05473

0,00000
0,00000
0,00000
0.00000
0.00000

0.00000
0,00000
0,00000
0,00000
2,57916

-1,47594
0.18468
0.02221
0.01145
0,00000

0.06098
-0,39927
=-0,04802

0,.34220

0,00000

0.00000
0,00000
0,00000
0,00000
1.03549

0,00000
0,00000
0,00000
0.00000
0.00000

0,00000
0.00000
0.00000
0,00000
-0,52259

0.05246
-0,03224
0,01347
0.24171
0,00000

~0,11342
0.06969
~0,02913
0.85427
0.00000

0,00000
0.00000
0,00000
0,00000
0.84063

0,00000
0.00000
0,00000
0,00000
0.,00000

0,00000
0.00000
0,00000
0.00000
-0,41491

0,03166
0.10462
0,00864
0,01561
0,00000

-0,06844
~0,22618
-0,01868
-0,23648

0,00000

0,00000
0,.00000
0.00000
0,00000
-0,13533

0,00000
0,00000
0.00000
0,00000
0,00000

0,00000
0,00000
0,00000
0,00000
0.16352



10,

11,

12.

13,

-4,73831
0,01145
-0,00103
0,00023
0.,00000
0,00000

0,19784
=-0,42290
0,033809
-0,00856
0,00000
0,00000

0.03557
~0,79968
0.07202
-0,01618
0,00000
0,00000

0,00000
0,00000
0,00000
0,00000
1,11543
0,00000

0,00000
0.00000
0,00000
0,00000
=-1,14104
0.00000

-136=-

6,73793
-0,00122
0.00252
0,00016
0.,00000

-0,31042
0,04523
=-0,09306
-0,00598
0.00000

-0,06856
0.08553
-0,17598
-0,01131
0,00000

0,00000
0.00000
0,00000
0,00000
5.,49706

0.00000
0,00000
0,00000
0,00000
-6,11103

-2,16618
0,00736
0,00089

-0,01136
0,00000

0,13449
"0 0271 94
-0,03270

0.65324

0,00000

0,04401
-0,51422
~0,06184
-2,69781

0.00000

0.00000
0.00000
0,00000
0,00000
-2,56198

0,00000
0,00000
0,00000
0,00000
-2,51197

0,00209
-0,00128
0.00054
=-0,00395
0.00000

-0,07725
0.,04747
-0,01984
-0,11278
0.00000

-0,14608
0.08976
-0,03751
3.32638
0,00000

0.00000
0,00000
0,00000
0,00000
-6 .61534

0.00000
0,00000
0,00000
0,00000
7.18039

0.00126
0,00417
0.,00034
0.,06036
0,00000

=-0,04662
-0,15405
-0,01272
0,99246
0.00000

-0,08815
-0,29130
-0,02406
0.46656
0,00000

0,00000
0,00000
0,00000
0,00000
2,75419

0,00000
0,00000
0.,00000
0.00000
2,56201



=137~

NATURAL EXPANSION HeH+ R= 1,2
COEFFICIENTS: 1. 0,99574 ]
2, -0,07284 o
3. 0,04428 L
4. -0 .03155 o
S. =-0,00941 o
6. 0.00766 i
7. =-0,00645 )
8, 0.00607 ”
9. =-0,00459 g
10, -0,00352 4
11, -0,00140 o
12, -0,00037 L
13. 0,00017 v
NATURAL ORBITALS:
1. 0.89170 -0,06857 0,18653 0.,03107
0.16825 -0,01921 0,10238 -0,01977
-0,01574 0.03785 0,01342 0.,00826
0.00362 0.,00252 =-0,00001 -0.00254
0,00000 0.00000 0.00000 0.00000
0,00000
2, -0,99069 -0,10902 1,10826 0.09400
0,509%00 -0,05813 0.30973 -0,05981
-0,04762 0.11451 0.04061 0.02498
0.,01095 0,00764 0.00603 0.13984
0,00000 0.00000 0.00000 0.00000
0.00000
3. 0.00000 0.00000 0,00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0,00000 0,00000
0.34608 0,62627 0,03489 0,02978

0,00000

-0,01193
0.,06101
0.00535

-0,00024
0.00000

-0,03608
0.,18456
0,01619
0.01069
0.00000

0.,00000
0.00000
0.00000
0,00000
0,15433



5.

7.

1.20269
0.29493
-0,02759
0.00635
0,.00000
0,00000

-0,69337
-0,72221
0,06757
-0,01554
0,00000
0.00000

0,00000
0,00000
0,00000
0.00000
-1,21976
0,00000

0.00000
0.00000
0,00000
0.00000
0.00000
1,00000

0.00000
0.00000
0.00000
0,00000
~2,08990
0,00000

-138~

~-0,46031
~-0,03368
0.06635
0.00442
0.00000

0.89924
0,08248
=-0,16247
-0,01083
0,00000

0.00000
0,00000
0,00000
0,00000
0.26275

0,00000
0.00000
0,.00000
0,00000
0.00000

0,00000
0.00000
0.00000
0.00000
2.56482

-1,02896
0.17946
0,02353
0,03345
0.00000

-0,16043
-0.43946
-0,05762
0,40022
0,00000

0,00000
0.00000
0,00000
0.00000
0,97434

0,00000
0,00000
0.00000
0,00000
0.00000

0,00000
0,00000
0.00000
0,00000
=-0,59901

0.05446
~-0,03466
0.01447
0,33398
0.00000

-0,13337
0.08487
-0,03544
0,75971
0.00000

0,00000
0.00000
0.00000
0.00000
0,76053

0,00000
0.00000
0,00000
0,00000
0,00000

0,00000
0,00000
0,00000
0.00000
-0,45379

-0,02090
0.10694
0.00938
0,01552
0,00000

0,05119
-0,26187
"0002297
-0,19699

0,00000

0.00000
0,00000
0.00000
0,00000
-0,10038

0,00000
0,00000
0.00000
0.00000
0,00000

0,00000
0,00000
0.00000
0.00000
0,17886



10.

11,

12,

13.

-4,17501
0.05039
=-0,00471
0.00108
0,00000
0,00000

0.,45841
-0,40573
0.03796
~0,00873
0.00000
0,00000

0.12004
-0,87335
0.08171
"0 001879
0,00000
0.00000

0.00000
0,00000
0,00000
0.00000
0.81261
0.00000

0.00000
0,00000
0,00000
0.00000
~0,79925
0,00000

-139~

6,76543
~0,00575
0,01134
0.00076
0,00000

=0,77900
0,04633
-0,09128
~0,.00609
0,00000

-0,22354
0.09974
-0,19648
-0.01310
0.00000

0.00000
0.00000
0,00000
0.00000
5.,16263

0,00000
0.00000
0,00000
0.00000
-5.88105

-2,89603
0,03066
0,00402

-0,05465
0,00000

0.,37185
-0,24689
-0,03237

0,72341

0.00000

0,12717
-0,53144
-0,06967
-2,63673

0,00000

0.,00000
0.00000
0.00000
0,00000
=-2.22086

0.00000
0.00000
0.00000
0.00000
-2.16356

0.00931
-0 .00592
0.00247
-0,00173
0,00000

-0,07493
0.,04768
-0,01991
-0 0281 33
0,00000

-0,16128
0.10263
-0,04286
3.22901
0,00000

0.00000
0,00000
0.00000
0,00000
"‘6 .00426

0.00000
0,.00000
0,00000
0.00000
6,63192

-0,00357
0,01827
0,00160
0.15472
0,00000

0,02876
=-0,14712
-0,01290

0,97254

0,00000

0,06190
~-0,31668
=0,02778

0,46385

0,00000

0,00000
0,00000
0.00000
0.00000
2,43110

0,00000
0,00000
0,00000
0,00000
2,22407



-140-

NATURAL EXPANSION HeH+ R= 1.3
COEFFICIENTS: 1, 0,99545 °
2, -0,07603 4
3. 0.04463 .
4, -0,03170 o
Se -0,01018 c
6. 0,00778 "
7. -0,00650 ]
8. 0.,00616 Ll
9. -0,00485 o
10. -0,00374 o
11, =-0,00157 o
12, -0,00038 w
13, 0.00018 4
NATURAL ORBITALS:
1. 0,89118 ~-0,07693 0.20072 0.03255
0.,17314 -0,02037 0.10466 -0,02090
-0,01677 0,04009 0.,01429 0.00885
0,00391 0.00273 ~0,00004 -0,00268
0,00000 0,00000 0,00000 0,00000
0,00000
2. -1,00114 ~-0,04877 1.,07205 0.09590
0,51011 -0,06001 0.,30834 -0,06156
-0,04941 0.11811 0,04209 0.02607
0,01152 0.00804 0,.00822 0,14008
0.00000 0,00000 0,00000 0,00000
0.00000
3. 0.00000 0.00000 0,00000 0,00000
0,00000 0,00000 0,00000 0,.00000
0,00000 0,00000 0,00000 0,00000
0.00000 0.00000 0.,00000 0.00000
0.35796 0.61827 0,03304 0.02763

0,00000

-0,02082
0.06369
0.,00576

-0,00025
0,00000

=-0,06133
0.,18763
0.,01697
0,01022
0.00000

0,00000
0.00000
0.00000
0.00000
0.14893



6.

7.

1.23394
0,.,28318
-0,02743
0,00640
0.00000
0.00000

-0.88342
-0,74713
0.07236
-0,.01688
0,00000
0,00000

0,00000
0.00000
0.00000
0,00000
-1,29115
0.00000

0,00000
0,.00000
0.00000
0.00000
0,00000
1,00000

0,00000
0,00000
0.,00000
0.00000
-2,04419
0.00000

-141 =

-0 06881 2
-0,03331
0,06557
0,00446
0,00000

1,24338
0,08789
~0,17300
-0 .01177
0,00000

0,00000
0,.00000
0,00000
0,00000
0.39531

0,00000
0,00000
0.00000
0,00000
0.00000

0.00000
0,00000
0,00000
0,00000
2,54408

-0,81889
0,17117
0.02337
0.04840
0,00000

-0,32566
-0,45160
-0,06165
0.42827
0,.00000

0.,00000
0.,00000
0.00000
0.00000
0,93549

0,00000
0.00000
0.00000
0.00000
0,00000

0,00000
0,00000
0,00000
0,00000
=0,64052

0.05324
-0,03418
0.01447
0,37535
0.00000

=-0,14046
0.09017
-0,03819
0,70240
0.00000

0.00000
0,00000
0,00000
0.00000
0,71063

0.00000
0,00000
0.00000
0,00000
0,00000

0.,00000
0,00000
0.00000
0,00000
=0,47100

-0,03405
0,10416
0,00942
0.01485
0,00000

0,08983
-0,27481
-0,02485
-0,18314

0.00000

0.00000
0.00000
0.00000
0,00000
=-0,07897

0,00000
0,00000
0,00000
0.,00000
0.00000

0.00000
0,00000
0,00000
0,00000
0.,18316



10,

11.

12,

13,

=3.87559
0.07401
-0.,00717
0,00167
0,00000
0.00000

0.55667
-0,33704
0.03749
~0,00874
0,00000
0.00000

0.16939
-0,89016
0,08622
-0,02011
0,00000
0,00000

0,00000
0.00000
0,00000
0.00000
0.68608
0.00000

0,00000
0.00000
0.,00000
0.,00000
-0,64653
0,00000

-142=

6,62891
-0,00871
0,01714
0,00117
0.00000

-0,98958
0,04553
-0 008962
-0,00610
0,00000

-0,32401
0,10472
-0,20611
-0,01403
0,00000

0,00000
0,00000
0,00000
0,00000
5.03736

0,00000
0.00000
0,00000
0,00000
-5,75011

-3.11494
0,04473
0,00611

-0,08725
0,00000

0.50352
-0,23395
-0,03193

0,77134

0,00000

0.18831
~0,53806
-0,07345
-2,60146

0.00000

0,00000
0,00000
0.00000
0.00000
-2,11093

0,00000
0,00000
0,00000
0,00000
-2.06480

0.01391
-0,00893
0.00378
0,00887
0.,00000

-0,07277
0,04671
-0 001978
=0,36772
0.00000

-0,16735
0,10743
-0,04550
3.18244
0.00000

0.00000
0,00000
0.00000
0.00000
-5,76276

0,00000
0,00000
0,00000
0,00000
6,.36002

-0,00890
0.,02722
0.00246
0,20160
0,00000

0.04654
-0,14236
-0,01287

0.,95714

0,00000

0.10703
-0,32742
-0,02961

0.,46553

0.00000

0,00000
0,00000
0,00000
0,00000
2,32597

0.00000
0,00000
0,00000
0.00000
2,12928



- 143 -

NATURAL EXPANSION HeH+ R= 1,4
COEFFICIENTS: 1, 0,.99520 o
2, -0,07915 4
3. 0,04503 T
4. "0.03135 o
S. -0,01079 c
6. 0,00786 L
7. -0,00657 o
8. 0,00631 ”
9. -0.00504 o
10, ~0.,00395 4
11, =0,00175 4
12, -0,00040 ”
13. 0.,00019 il
NATURAL ORBITALS:
1. 0.88635 -0,08125 0.21601 0,03359
0,17530 -0,02160 0.10616 -0,02187
-0,01782 0,04207 0.,01500 0,00937
0.00416 0.00292 -0,00007 -0,00280
0,00000 0.00000 0.00000 0.00000
0.00000
2, -1,01017 0.01069 1,03342 0,09699
0.50617 -0,06236 0.,30654 ~0,06316
-0,05144 0.,12147 0.04332 0,02705
0.01202 0.00844 0.01027 0.13927
0.00000 0,00000 0.,00000 0,00000
0.00000
3. 0.00000 0.00000 0,00000 0.00000
0,00000 0,00000 0,00000 0,00000
0.00000 0,00000 0.,00000 0.,00000
0.00000 0.00000 0.00000 0,00000
0.37443 0.60570 0.03091 0.02549

0,00000

-0,02738
0,06576
0.00613

=0.00025
0,00000

"0 .07906
0,18989
0.01769
0.00966
0,00000

0.,00000
0.00000
0.00000
0.00000
0.14363



1,23667
0.25509
~0,02593
0,00606
0.00000
0,00000

-1,07503
-0,76238
0.07748
-0,01810
0,00000
0,00000

0.00000
0.00000
0,00000
0.00000
-1,37480
0.00000

0,00000
0.00000
0.00000
0,00000
0,.00000
1,00000

0.00000
0.00000
0.00000
0.,00000
-1,98618
0.00000

~144-

=0 .86675
-0,03143
0.06122
0,00425
0.00000

1,60592
0.,09392
-0,18295
-0,01271
0.00000

0.00000
0.00000
0.00000
0.00000
0.54058

0,00000
0.00000
0,00000
0,00000
0,00000

0.00000
0.00000
0.,00000
0.00000
2,50056

-0,62371
0.,15448
0,02183
0,06878
0.00000

-0,51130
-0,46170
-0,06525
0.,45648
0.00000

0,00000
0.00000
0.00000
0.00000
0.89901

0,00000
0.00000
0.00000
0.00000
0.00000

0.00000
0.00000
0.00000
0,00000
-0,67204

0.04888
-0,03183
0.01363
0.42513
0,00000

-0,14609
0,09512
-0,04075
0.63259
0.00000

0.00000
0.00000
0,00000
0,00000
0.66129

0,00000
0,00000
0,00000
0,00000
0,00000

0,00000
0.00000
0,00000
0,00000
~-0,47644

-0,03984
0.09570
0.00892
0,01353
0.00000

0.11908
-0,28601
-0.02664
=0,17255

0.00000

0,00000
0.00000
0.00000
0,00000
-0,06157

0,00000
0,00000
0,00000
0,00000
0,00000

0,00000
0,00000
0.00000
0,00000
0.,17858



10,

11,

12,

13.

-3.56473
0,09649
"0 .00981
0,00229
0.00000
0.00000

0.,64376
-0,.36406
0.03700
-0,00864
0,.00000
0,00000

0,22278
-0,90128
0.09160
-0,02140
0,00000
0.00000

0,00000
0,.00000
0.00000
0,00000
0.69384
0.00000

0.00000
0.,00000
0.00000
0.00000
-0,66899
0,00000

=145~

6.41307
-0,01189
0,02315
0.00161
0.00000

-1,19814
0.04485
-0,08737
-0 000607
0.00000

-0,44302
0,11103
=-0,21629
-0,01502
0,00000

0,00000
0,00000
0,00000
0.00000
4,95946

0,00000
0,00000
0.00000
0,00000
-5.85289

-3.25801
0,05843
0.00826

=0,12709
0,00000

0,64823
-0,22048
-0,03116

0.82893

0,00000

0.26773
=-0,54582
-0,07713
-2,56111

0.00000

0,00000
0,00000
0,00000
0,00000
-1,92813

0.00000
0,00000
0,00000
0,00000
-1.83469

0,01849
-0,01204
0,00516
0,02926
0.00000

-0 006976
0,04542
-0,01946
-0,46051
0.00000

-0,17270
0.11245
-0 004817
3.13416
0,00000

0,00000
0.00000
0,00000
0,00000
“'5 069296

0,00000
0,00000

0.00000

0.00000
6,48187

=0,01507
0.03620
0.00337
0,25228
0,00000

0,05686
-0.13658
-0,01272

0.93685

0.00000

0,14077
-0,33812
-0,03150

0,.46662

0,00000

0.00000
0,00000
0.,00000
0,00000
2,15372

0,00000
0,00000
0,00000
0.00000
1,91043



-146 =

NATURAL EXPANSION HoH+ R= 1,5
COEFFICIENTS: 1. 0.99493 o
20 =0 .08242 4
3. 0.04530 L4
4, -0,03062 o
5. -0,01117 o
6. 0,00791 v
7. -0,.00663 ]
8. 0.00639 L
9. -0,00521 o
10, -0,00416 o
11, -0,00192 o
12, -0,00040 v
13, 0.00020 L
NATURAL ORBITALS:
1. 0.87625 -0,07862 0.23052 0.03383
0.17335 -0,02199 0,10632 =0,02269
-0.01838 0.04340 0.01559 0.00980
0.00438 0.00308 =-0,00012 -0,00287
0.00000 0,00000 0.00000 0.00000
0,00000
2. -1,01660 0,07614 0.,98379 0.09638
0,49379 -0,06264 0,30287 =0,06464
-0,05235 0.12363 0.04442 0.02793
0.01249 0.00876 0.,01345 0.,13663
0.00000 0,00000 0.,00000 0.00000
0.00000
3. 0,00000 0.00000 0,00000 0,00000
0,00000 0.00000 0.00000 0.00000
0.00000 0,00000 0,00000 0.00000
0,00000 0.00000 0.00000 0.00000
0,37839 0.60599 0,02870 0.02294

0.00000

-0 002972
0.,06725
0.00643

=0,00025
0.00000

-0.08467
0,19156
0.,01833
0,00920
0,00000

0,00000
0.00000
0.00000
0,00000
0,13665



5.

6.

1,20751
0.20410
-0,02164
0,00516
0,00000
0,00000

-1.28116
=-0,75583
0,08013
-0,01912
0,00000
0.00000

0.00000
0,00000
0.00000
0,00000
-1,39686
0,00000

0.00000
0,.00000
0,00000
0,00000
0.00000
1.00000

0.00000
0,00000
0,00000
0.00000
~1,97047
0,00000

-147~-

-0,99414
~-0,02589
0,05110
0,00362
0,00000

2,01855
0,09588
-0,18924
=-0,01341
0,00000

0.00000
0.00000
0,00000
0,00000
0.61386

0.,00000
0,00000
0.00000
0,00000
0,00000

0,00000
0,00000
0.00000
0.,00000
2,46730

-0,44300
0,12519
0.,01836
0.10245
0,00000

-0 073979
-0,46360
-0,06799
0.50041
0,00000

0,00000
0,00000
0,00000
0.00000
0.87839

0,00000
0.,00000
0,00000
0,00000
0,00000

0.00000
0.00000
0,00000
0,00000
-0,67782

0,03984
~0,02672
0,01154
0.47804
0,00000

-0,14752
0,09894
-0,04275
0.52793
0,.00000

0.,00000
0,00000
0,00000
0.00000
0.62013

0,00000
0.00000
0,00000
0,00000
0.00000

0.00000
0,00000
0.00000
0.00000
-0.46037

=0,03500
0,07918
0,00758
0.01139
0,00000

0.12960
-0,29321
-O 002806
-0,16891

0,00000

0,00000
0,00000
0.00000
0,00000
-0.04774

0.00000
0,00000
0.00000
0.00000
0,00000

0.00000
0,00000
0.00000
0,00000
0,16906



10.

11.

12,

13,

-3.21620
0,11291
-0,01197
0,00286
0,00000
0,00000

0,72332
-0,33362
0,03537
-0,00844
0,00000
0,00000

0,28338
-0,91839
0.09736
-0,02323
0,00000
0.00000

0,00000
0,00000
0,00000
0.00000
0,62910
0,00000

0,00000
0,00000
0,00000
0.00000
-0,59324
0,00000

-l48=

6,09625
-0,01432
0,02827
0,00200
0.00000

~1,41526
0.,04232
-0,08353
-0,00592
0,00000

-0,59252
0.11650
~0,22995
-0,01630
0,00000

0.00000
0.00000
0,00000
0.00000
4.89613

0.00000
0,00000
0,00000
0.00000
-5,79106

=-3.,33194
0.06925
0,01016
-0,17708
0,00000

0,81519
=-0,20463
-0,03001

0.92713

0,.00000

0,37710
-0,56330
-0.08262
-2,50184

0,00000

0,00000
0,00000
0.00000
0.,00000
-1,83327

0,00000
0,00000
0,00000
0,00000
-1,74264

0,02204
-0 001478
0,00639
0.06481
0.,00000

=-0,06511
0,04367
-0,01887
-0 .59084
0,00000

-0,17925
0.12022
-0 005194
3.09246
0,00000

0.00000
0,00000
0,00000
0.00000
~-5,56884

0,00000
0,00000
0,00000
0,00000
6,35049

=-0,01936
0,04380
0.00419
0,314338
0,00000

0,05720
-0,12942
-0,01238

0.90508

0.00000

0,15747
-0,35627
-0 003409

0.,47943

0,00000

0,00000
0,00000
0,00000
0.00000
2,06185

0,00000
0,00000
0,00000
0,00000
1,.82449



-149-

NATURAL EXPANSION HeH+ R= 1.6
COEFFICIENTS: 1, 0,99480 c
2, -0,08391 o
3. 0,04560 ”
4, -0,03074 o
S. ~-0,01156 4
6. 0,00800 v
7. -0,00669 ]
8. 0,00644 v
9. =-0,00532 o
10, -0.00434 4
11, ~-0,00207 4
12, -0,00044 T
13. 0.00022 L
NATURAL ORBITALS:
1. 0.87321 -0.07797 0.23840 0.03423
0,17145 ~-0,02229 0,10573 =~0,02313
-0,01890 0.04446 0,01606 0,01016
0.00458 0.00321 -0,00015 -0,00290
0.00000 0,00000 0.00000 0,00000
0,00000
2, -1,02807 0.13900 0.94345 0.09648
0,48326 -0,06282 0.,29801 ~0,06519
-0,05327 0,12531 0.,04527 0,02865
0.01291 0.00905 0,01565 0.13595
0.,00000 0.00000 0.00000 0,00000
0,00000
3. 0,00000 0,00000 0,00000 0.00000
0,00000 0,00000 0.00000 0.00000
0.,00000 0,00000 0.00000 0,00000
0,00000 0,00000 0.00000 0,00000
0,38509 0.60306 0,02648 0,02077

0.00000

-0,03296
0,06801
0,00670

-0,00025
0,00000

=0,.09290
0.19168
0,01888
0.00884
0.00000

0,00000
0,00000
0,00000
0,00000
0,13042



5.

7.

1.17963
0.17098
-0,01885
0.00457
€¢.00000
0,00000

-1,44072
"0 .74818
0,08248
-0,01998
0.00000
0.00000

0.00000
0.,00000
0.00000
0,00000
-1,45627
0,00000

0,00000
0.00000
0.00000
0.00000
0,00000
1,00000

0.00000
0.00000
0.00000
0,00000
-1,92601
0.00000

=|50=

-1,09296
-0,02223
0,04434
0.00320
0,.00000

2,38310
0,09726
-0,19401
~0,01402
0.00000

0.00000
0,00000
0,00000
0,00000
0.73705

0.00000
0.,00000
0,00000
0.00000
0.00000

0.00000
0.,00000
0.00000
0,00000
2.42584

-0,29505
0,10544
0.,01602
0,12921
0,00000

-0,97228
=-0,46138
-0,07008
0.,52245
0.00000

0.00000
0.00000
0.00000
0,00000
0.83695

0.00000
0.00000
0,00000
0,00000
0,00000

0.00000
0.00000
0,00000
0.00000
=0,71146

0,03413
=-0,02306
0,01013
0,51277
0,00000

-0,14937
0.10092
=-0,04435
0,45033
0.00000

0.00000
0.00000
0,00000
0.00000
0.56904

0.00000
0,00000
0,00000
0.00000
0.00000

0.00000
0.00000
0.00000
0,00000
-0,46190

-0,03287
0.06782
0.00668
0.00955
0,00000

0,14383
"0 ° 29677
"'0 002923
-0,16109

0.00000

0,00000
0.,00000
0.00000
0.00000
=-0,02699

0,00000
0,00000
0,00000
0,00000
0.,00000

0,00000
0.00000
0,00000
0.00000
0,16887



10,

11.

12,

13.

~2,90598
0.,12377
-0,01364
0.,00331
0,00000
0,.00000

0,80751
-0,31021
0.03420
-0,00828
0,00000
0,00000

0.34800
-0,92624
0.10211
-0,02474
0.00000
0.00000

0.00000
0.00000
0,00000
0.00000
0,44331
0,00000

0.00000
0.00000
0,00000
0,00000
-0,36179
0,00000

~I5]=

5.,74298
-0,01609
0.03209
0.00232
0.00000

-1,64006
0,04033
~-0,08044
-0 000581
0.,00000

-0,75196
0.12041
-0.24018
-0,01735
0,00000

0.,00000
0.00000
0,.00000
0,00000
4,69183

0,00000
0.00000
0.00000
0,00000
=5,58307

-3.,31252
0,07632
0,01159

=0,22425
0.,00000

0.,98677
-0 019130
-0,02906

1,01027

0,00000

0.49416
-0.57119
-0,08676
-2,44534

0,00000

0.00000
0.00000
0,00000
0,00000
-1,66929

0,00000
0,00000
0,00000
0,.00000
-1,59860

0.,02471
=-0,01670
0,00734
0.10445
0.00000

-0,06193
0,04185
=-0,01839
-0,70125
0,00000

-0,18491
0.12494
-0,05490
3.03454
0.00000

0.00000
0,.00000
0,00000
0,00000
-5 019620

0,00000
0,00000
0.00000
0,00000
5.92982

-0,02379
0,04909
0.,00483
0.38033
0,00000

0,05963
-0,12304
-0,01212

0,87124

0,00000

0.17805
-0 ° 36740
-0,03618

0,48170

0.00000

0,00000
0.00000
0,00000
0,00000
1,91036

0,00000
0.00000
0,00000
0,00000
1.68930



-|52=

NATURAL EXPANSION HeH+ R= 2,0
COEFFICIENTS 1, 0.,99459 (4
2, -0,08521 4
3. 0,04687 v
4, -0,03149 °
5. -0 0011 93 o
6 . 0000809 v
7. -0,00690 o
8. 0.00683 L
90 -0 000546 o
10. -0,00488 o
11, -0,00241 o
12, -0,00040 L
13, 0,00023 L
NATURAL ORBITALS:
1. 0,85495 -0,05103 0.24921 0,03334
0.15072 -0,02111 0.09627 -0,02303
-0,01940 0,04492 0,01651 0,01072
0,00497 0.00351 -0,00026 -0,00269
0.00000 0,00000 0,00000 0.00000
0,00000
2, -1,08037 0,39828 0,77395 0,09325
0.42148 -0,05903 0.26923 -0,06441
-0,05426 0,12563 0,04617 0,02998
0,01320 0,00980 0,02593 0,12937
0,00000 0.00000 0,00000 0.00000
0,00000
3. 0.00000 0.00000 0.00000 0,00000
0.00000 0,00000 0,00000 0,00000
0,00000 0,00000 0,00000 0,00000
0,00000 0,00000 0,00000 0.00000
0,41557 0.58660 0.01851 0.01241

0,00000

0,06577
0,00720
=-0.,00020
0,00000

-0,09729
0,18393
0,02012
0,00714
0,00000

0.00000
0,00000
0.00000
0,00000
0,10206



0.95094
0.04254
-0,00548
0.00140
0.,00000
0,00000

1.89672
0,64189
-0,08263
0,02117
0.00000
0.00000

0.00000
0.00000
0,00000
0,.00000
-1,65829
0.00000

0.00000
0.00000
0,00000
0.00000
0.00000
1,00000

0.00000
0.00000
0.00000
0,00000
1,75016
0.00000

-(53~

-1 012855
-0,00596
0.01268
0.00099
0.00000

~-3.65903
-0,08990
0.,19133
0.01493
0,00000

0,00000
0.00000
0,00000
0,00000
1,14898

0.00000

* 0,00000

0.00000
0.00000
0,00000

0,00000
0,00000
0.00000
0,00000
'2 .18967

0.,04255
0.02718
0,00466
0.25966
0,00000

1,94361
0,41002
0,07032
-0.60098
0.00000

0.00000
0.00000
0,00000
0,00000
0,73043

0,00000
0.00000
0.00000
0,00000
0,00000

0.00000
0.00000
0,00000
0.,00000
0,76454

0.00941
'0 .00650
0,00303
0.58353
0,00000

0.14201
-0,09810
0.04566
-0,11321
0,00000

0.,00000
0,00000
0,00000
0.00000
0.40107

0,00000
0.00000
0.00000
0,00000
0,00000

0,00000
0.00000
0.00000
0,00000
0,39912

-0 000982
0.01857
0.00203
0,00220
0.00000

-0,14816
0,28011
0.03065
0,13037
0.00000

0,00000
0,.00000
0,00000
0,00000
0.,01366

0,00000
0,00000
0.00000
0.00000
0,00000

0.00000
0.,00000
0.00000
0,00000
=-0,12210



10.

11,

12,

13.

-1,70393
0,09860
-0,01269
0,00325
0.00000
0.00000

0,97855
-0,18188
0,02341
-0,00600
0,00000
0.00000

0.60306
-0,97079
0.12497
-0,03201
0,00000
0.00000

0.00000
0,00000
0.00000
0,00000
0.38390
0.,00000

0,00000
0,00000
0.00000
0.00000
=-0.30399
0,00000

3.88099
-O 001381
0,02939
0.00229
0,00000

=-2,26225
0,02547
-0,05421
~0,00423
0,00000

-1,48578
0,13597
-0,28936
=0,02258
0.00000

0,00000
0,00000
0,.00000
0,00000
4,62768

0,00000
0,00000
0.00000
0,00000
~5,56137

-154 =

-2,62558
0,06298
0,01080

-0,41340
0,00000

1,55897
-0,11618
-0,01992

1.,49501

0,00000

1,10293
~-0.62011
=-0.,10635
-2,06638

0.00000

0.,00000
0,00000
0,00000
0.00000
=-1,37115

0.00000
0.00000
0,.00000
0,.00000
-1 028911

0.02181
=0,01507
0,00701
0.32071
0.00000

~-0,04024
0.02780
-0,01294
=1,30320
0,00000

-0,21477
0.,14836
-0.06905
2,69231
0.00000

0,00000
0,00000
0.00000
0,00000
-5,07005

0,00000
0000000
0.00000
0.00000
5,85684

-0,02276
0,04303
0,00471
0.67651
0,00000

0,04198
-0,07937
-0,00868

0,64715

0,00000

0.,22408
-0,42364
=0,04635

0.46094

0.00000

0,00000
0,00000
0,00000
0,00000
1,62414

0,00000
0,00000
0.00000
0,00000
1.41312



-|55=

NATURAL EXPANSION HeH+ R= 3.0
COEFFICIENTS: 1, 0,99545 o
2, -0,07116 o
3. 0.04936 ”
4, ~0,03478 o
5. -0.,01029 c
6. 0.00823 v
7. 0,00737 6
8. -0,00737 T
9. =-0,00567 o
1o, -0,00545 o
11, -0,00147 4
12, -0,00025 -
13. 0,00019 ”
NATURAL ORBITALS:
1, 0.84545 0,00399 0.22081 0.02374
0,07063 -0,00843 0,04986 ~-0,01326
-0,01236 0,02835 0,01096 0,00751
0.00373 0,00268 -0,00025 -0,00147
0.00000 0,00000 0,00000 0,00000
0,00000
2, -1,27986 0.94364 0.49716 0.06743
0.20062 -0,02394 0.14163 ~0,03765
-0,03511 0,08053 0,03115 0,02134
0,01059 0.00763 0.03831 0,10091
0.00000 0,00000 0,00000 0,00000
0.00000
3. 0,00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0,00000
0.00000 0,00000 0,00000 0,00000
0,00000 0.00000 0,00000 0,00000
0,44228 0.,57512 0.00777 0.,00303

0.00000

-0,00948
0.03813
0.00524

-0,00007
0,00000

-0,02693
0.10833
0,01489
0.,00310
0.00000

0,00000
0,00000
0,00000
0,00000
0.05121



0,51522
-0.00822
0.00144
=-0,00043
0.00000
0.00000

-2,14852
-0,30530
0,05343
-0,01611
0.00000
0.00000

0.00000
0,00000
0.00000
0,00000
-2,09231
0,00000

0.00000
0.00000
0,00000
0.00000
1,19254
0,00000

0.00000
0,00000
0.00000
0.00000
0,00000
1.,00000

-156 =

-0,68946
0,00098
-0,00330
=-0,00031
0,00000

4,90545
0.03643
-0,12255
-0,01160
0.00000

0.00000
0,00000
0.00000
0.00000
1,90722

0.00000
0,00000
0,00000
0,00000
-1,46403

0,00000
0,00000
0.00000
0.00000
0,00000

0.,10961
-0,00581
-0,00128

0,42033

0,00000

~3.,23252
=-0,21552
-0,04740
0,.58555
0.00000

0,00000
0,00000
0,00000
0,00000
0.46934

0,00000
0.00000
0.00000
0,00000
0,89806

0,00000
0,00000
0,00000
0,00000
0.00000

-0,00276
0,00154
-0,00087
0,56154
0.00000

-0,10262
0.05730
-0.,03248
-0,26849
0.00000

0.00000
0.00000
0.00000
0,00000
0,13495

0,00000

0.00000
0.00000
0,00000
0.24522

0,00000
0.,00000
0,00000
0,00000
0,00000

0,00110
-0,00444
"‘0 .00061
-0,00028

0,00000

0.04098
-0,16485
~-0,02266
"0 006385

0.,00000

0.,00000
0,00000
0,00000
0.00000
0,04095

0,00000
0.00000
0.00000
0,00000
-0,04402

0.00000
0.00000
0,00000
0.00000
0,00000



10,

11,

12,

13.

-0,79310
0.01086
-0,00190
0.00057
0,.00000
0.00000

-0,21146
0.00703
-0,00123
0.00037
0.00000
0,00000

-0,50469
0,88080
-0,15416
0,.04648
0,00000
0.00000

0.00000
0.00000
0.00000
0.00000
0,08382
0.00000

0.00000
0,00000
0,00000
0,00000
0.00570
0,00000

2,03601
-0,00130
0,00436
0,00041
0,00000

0,54603
-0.00084
0.00282
0.00027
0.00000

1.44912
-0,10510
0,35357
0,03348
0.00000

0.00000
0.00000
0,.00000
0.00000
4,51179

0,00000
0.00000
0.00000
0.00000
-5.,07429

=57~

"'1 054134
0,00767
0.00169

-2,19134
0.,00000

-0,41599
0.00496
0.00109
0.25283
0,00000

-1,22802
0.62179
0.13674
1.,17643
0,00000

0.00000
0.00000
0,.00000
0.00000
"'1 003438

0,00000
0,00000
0,00000
0,00000
=-1,00154

0,00365
-0,.00204
0,00116
2,15277
0,00000

0.00238
=-0,00132
0,00075
=-0,25540
0,00000

0.,29805
-0,16532
0,09370
-1,81804
0,00000

0.00000
0,00000
0,00000
0,00000
-4,66428

0.00000
0,00000
0,00000
0,00000
5,10037

-0,00146
0,00586
0,00081
0.04757
0.00000

=0,00094
0,00380
0,00052
0,98736
0,00000

-0,11823
0,47560
0.06537

~0,22487
0.00000

0,00000
0,00000
0.00000
0,00000
1.29746

0.00000
0.00000
0.00000
0.00000
1.,18753



-158-

NATURAL, EXPANSION HeH+ R= 4,0
. COEFFICIENTS: 1, 0,99585 o
2. -0,06448 o
3. 0.05039 L
4, -0,03580 c
5. -0,00895 4
6. 0.00828 v
7. 0.,00758 v
8. -0,00754 6
9. =-0,00587 4
1o, ~-0,00543 4
11, -0,00046 o
12, -0.00014 r
13. 0.00012 Ll
NATURAL ORBITALS:
1., 0.85703 -0,00664 0.21903 0,01551
0.01933 0.00068 0.01722 -0,00401
-0,00446 0,01103 0.00460 0.00324
0.00170 0.00125 -0,00015 =-0,00077
0.00000 0.00000 0,00000 0.00000
0.00000
2, -1,.,40085 1.,08861 0.50392 0.04205
0.05242 0.00185 0.04668 -0,01088
-0,01209 0,02991 0.,01246 0.00879
0.00461 0.00338 0.02808 0.06261
0,00000 0,00000 0.00000 0,00000
0,00000
3. 0.00000 0,00000 0.00000 0.00000
0,00000 0,00000 0.00000 0,00000
0.00000 0.00000 0,00000 0.00000
0.00000 0,.00000 0,00000 0,00000
0.44666 0.57406 0.00414 0,00093

0,00000

0.00946
0.01417
0.00233
-0,00003
0.00000

0.02565
0.03843
0.00632
0,00115
0.00000

0.00000
0,00000
0.00000
0.00000
0,02837



0,29190
-0,00069
0.00016
~0,00006
0.00000
0,00000

-2,39366
-0,08169
0.01883
-0,00718
0.00000
0.00000

0.00000
0,00000
0.00000
0.00000
-2.28296
0.00000

0,00000
0,00000
0,00000
0.00000
0.76625
0.00000

0.00000
0,00000
0.,00000
0.00000
0.,00000
1,00000
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"0 037382
-0,00002
=-0,00039
-0,00004

0.00000

5.48817
~0,00288
-0.04661
-0,00526

0.00000

0.00000
0.00000
0,00000
0,00000
2.19999

0.00000
0.00000
0.00000
0.00000
-0.92974

0.00000
0.00000
0,00000
0,00000
0,00000

0.04319
=-0,00061
-0,00016

0,44355

0.00000

-3.66319
-0,07275
~-0,01942
0.41443
0.00000

0.00000
0.00000
0,00000
0.00000
0.29975

0.00000
0.00000
0,00000
0.00000
0.95824

0,00000
0.00000
0,00000
0,00000
0,00000

-0,00055
0.00014
-0,00011
0,56535
0.00000

-0,06552
0,01698
-0,01370
-0,25972
0.00000

0,00000
0,00000
0,00000
0.00000
0.04828

0.00000
0.00000
0,00000
0.00000
0,14776

0,00000
0.00000
0.00000
0.00000
0,00000

-0,00034
-0,00050
-0,00008
-0,00003

0,00000

-0 .03997
-0,05989
~-0,00986
-0,03011

0.00000

0.00000
0.00000
0,00000
0.00000
0.02870

0.00000
0.00000
0.00000
0,00000
-0,01543

0.00000
0,00000
0.00000
0,00000
0,00000



10,

11,

12,

13,

0,49564
-0,00236
0,00054
-0,00021
0,00000
0,00000

-0,10299
0.00163
=0,00038
0.00014
0,00000
0,00000

-0,25316
0.54169
-0,12490
0,04763
0,00000
0,00000

0,00000
0,00000
0,00000
0.00000
0.04515
0,00000

0,00000
0.00000
0,00000
0.00000
0.00741
0,00000
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-1,22487
=-0,00008
-0,00134
=-0,00015

0.00000

0.25723
0,00006
0,00093
0.00010
0.00000

0.71594
0.01911
0.30906
0,03489
0,00000

0.00000
0.00000
0.00000
- 0,00000
4,61997

0.00000
0.00000
0,00000
0,00000
-4,94249

0.89616
-0,00210
=-0,00056

2,33789

0.00000

-0 01 9052
0.,00145
0,00039
0.05002
0.00000

-0,60446
0.48243
0.,12878
0,99387
0,00000

0,00000
0.00000
0,.00000
0,00000
-0,98783

0.00000
0,00000
0.00000
0.00000
~-0,96972

-0.00189
0,00049
"0 .00039
-2,30831
0,00000

0,00131
-0,00034
0,00027
-0,05212
0,00000

0.43452
-0.,11244
0.09084
-1,73954
0.00000

0.00000
0,00000
0.00000
0,00000
-4,72633

0,00000
0,00000
0.00000
0.00000
4,97554

‘-0 00011 5
=-0,00173
-0,00028
-0 .00702

0.00000

0.00080
0.,00119
0,00020
0,99817
0,00000

0.26503
0,39713
0.06536
-0,14159
0.00000

0,00000
0,00000
0.00000
0.00000
1,23936

0.00000
0,00000
0,00000
0.00000
1,17745
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NATURAL EXPANSION HeH+ R= 5,0
COEFFICIENTS:? 1, 0.99592 o
2, -0,06297 o
3. 0,05071 T
4, =-0,03599 (]
S. -0,00856 o
60 0000831 v
7. -0,00762 ]
8. 0,00761 ’
9. -0,00588 4
10, -0,00541 o
11, -0,00013 4
12, -0,00009 v
13. 0,00008 L 4
NATURAL ORBITALS:
1. 0.,85941 -0,01266 0,22194 0.01094
0.00276 0.00247 0.00540 =-0,00044
-0,00108 0,00328 0.00145 0,00098
0,00000 0,00000 -0,00010 -0,00048
0.00000 0.00000 0,.00000 0,00000
0,00000
2. -1,42678 1,07736 0.55022 0.,02932
0,00740 0,00663 0,01448 -0,00117
-0.00289 0.00880 0.00390 0.00262
0,00000 0.00000 0.01877 0.04031
0.00000 0.00000 0.00000 0.00000
0,00000
3. 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0,00000 0.00000 0,00000 0,00000
0.00000 0,00000 0.00000 0.00000
0.45142 0.57023 0.,00255 0,00036

0.00000

0,01189
0.,00419
0,00000
-0,00001
0,00000

0,03187
0,01124
0,00000
0,00054
0,.00000

0.00000
0,00000
0,00000
0,00000
0,01783



5.

7.

0.18291
-0,00006
0.00002
0,00000
0.00000
0,00000

=-2,51570
-0,01117
0.00437
0,00000
0.00000
0,.00000

0.00000
0,00000
0,00000
0,00000
-2,36119
0,00000

0.00000
0,00000
0,.00000
0.00000
0,00000
1,00000

0.00000
0.00000
0.00000
0.00000
0.46949
0.00000

-0,22521
-~0,00006
-0,00007
0.00000
0,00000

5.70114
-0,01001
-0.,01330

0,00000

0,00000

0,00000
0,00000
0.00000
0.00000
2,31431

0.00000
0,00000
0.00000
0.00000
0,00000

0.00000
0.00000
0.00000
0,.00000
-0,.57631
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0.01683
-0,00012
"0 000003

0,44656

0,00000

~3.76966
-0,02187
-~0,00589
0,26947
0,00000

0,00000
0,00000
0,00000
0.00000
0.18228

0.00000
0,00000
0.00000
0,00000
0,.00000

0.00000
0.00000
0,00000
0.00000
0,98486

-0 .00024
0.00001
‘0 000002
0.,57039
0.00000

-0,04429
0,00176
-0,00396
=-0,17909
0,00000

0,00000
0,00000
0,00000
0,00000
0.01860

0.00000
0,00000
0.00000
0.00000
0,00000

0,00000
0.00000
0,00000
0.,00000
0.09602

-0,00027
-0,00009
0.00000
~0,00001
0,00000

=-0,04814
-0,01698
0,00000
_0 001498
0,00000

0,00000
0,00000
0.00000
0,00000
0,01966

0.,00000
0,00000
0.00000
0.,00000
0.00000

0.00000
0.00000
0.00000
0,00000
-0,00612



10.

11,

12,

13,

0.32059
~0,00028
0.00011
0,00000
0,00000
0.00000

-0,05198
0.00014
-0,00005
0.00000
0.00000
0,00000

0.12707
-0,15598
0,06094
0,00000
0,00000
0.00000

0.,00000
0,00000
0,00000
0.00000
0.01775
0,00000

0.00000
0.00000
0.00000
0,.00000
0,01691
0.00000

-0,77635
=-0,00025
-0,00033
0.00000
0.00000

0.12737
0.00012
0.00016
0.00000
0.00000

=0,35595
-0,13977
-0,18561
0,00000
0,00000

0,00000
0.00000
0,.00000
0.00000
4,65924

0,00000
0.00000
0.00000
0.00000
-4,86579
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0,55753
-0.00054
-0,00015

2,38098

0.00000

-0,09274
0.00027
0.00007
0.01591
0.00000

0.29898
-0,30526
-0,08218
=-1.09700

0,00000

0.00000
0.00000
0,00000
0.00000
-0,96154

0,.00000
0.00000
0,00000
0,00000
-0,95037

~-0,00109
0.00004
=-0,00010
-2,35270
0.00000

0.00054
-0,00002
0.00005
-0,01669
0.00000

-0.,61834
0.02460
=0.05535
2,01810
0.00000

0.00000
0.00000
0,00000
0.00000
-4,73601

0.00000
0.00000
0.00000
0,00000
4,89473

-0,00119
-0.00042
0.00000
-0,00248
0,00000

0.,00059
0,00021
0.00000
0.99958
0.00000

-0,67201
"0 . 23705
0.00000
0.12482
0.00000

0.00000
0,00000
0.00000
0.,00000
1,20900

0.00000
0.00000
0.00000
0.00000
1,16984
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APPENDIX

The General Theory of Natural Spin-Orbitals:

In the configuration interaction (CI) approximation the
normalized wave-function of a system of N electrons may be

represented as a linear combination of Slater determinants:

v(x,,xz,,--..,xN) = EcKwK(x, ,xz,-.‘..,xN) A1)

where

=l
Yl g e i) = W 2dotCh ) A

2 kn

The elements ¥, of the determinant in A(2) are in general spin-
orbitals (molecular or atomic orbitals)£0). Each of these
determinants does not necessarily have the symmetry of the system
of which A(l) is the approximate wave-function, but the
determinants may be grouped into so-called "configurations', which
do have this symmetry. (This latter is the usual way of

representing a configuration interaction wave-function.)

Before the theory is developed further, it is necessary

(a) On a point of convention: if the suffices k',kz, etc.
in A(2) are arranged in numerical order, such that, for instance
k|<k2< ....<kN, then the Slater determinants A(2) are called

"ordered.
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to introduce some notation:
Consider two of the Slater determinants from the set A(l).

Let them be Yy and ¥ say, where

mp
2
Y = D2 detCH W, oo )
A(3)
"l’ﬁ
Y= OND Pdetay w02

The sets 'wk and ¥, are chosen from an extended basis set,
whose members are in general non-orthogonal, so that we can

define "non-orthogonality integrals" between them:
*
d(kL) = wka') \ﬁL(x') dx, . A(4)

The integral between the two Slater determinants in A(3)
may easily be shown to be N! times the integral of the
product of the diagonal term in Yx and the determinant in ¥ _ .
This in turn reduces to the determinant whose elements are

the various integrals defined in A(4). i.e.

* =L =l * *
Y. ¥ = (NDIND 2 NIH72 det
J K ¥ @x = (NDINB2 N kal...wkN et [, ¥ Jeo

(where the notation (dx) denotes integration over all

co-ordinates)
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= D, = detld(k )]. A(5)

KL

Thus, the element in the first row, first column of DKL is
»
wkl(xl) #tLI(x') dx,
the element in the first row, second column of D is
*( ) xpd
X
¥ 0 YL 9

and so on,

The (N-1)th-order cofactors of ¥y and ¥ _ are
det (1|k)  and  det (1|L) A(6)

respectively, where the 1 indicates that the first row has
been removed and the k(L) that the column containing a
particular ‘Pk(lﬁb) has been removed. (NB a cofactor is a
signed minor.) The (N-1)th-order cofactor of Dy is

correspondingly denoted by
Dy (k|L) A(T)

Both ¥Y¢ and ¥ may be expanded about their first rows,
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so that

3

v I-'/2K
(= NDPE o) det, CI]k>

L A(8)

Y = (N L (x ) det Cl|LD
L L\#Ll e[_l

K
The notation }k: indicates that the summation takes place only

over the spin-orbitals ¥,  which the particular set K
contains. It is worth noting that in the general case which we
are considering, that of non-orthogonal basis functions, the
Slater determinants such as Yx are not normalized.

In a way similar to that in which A(5) was derived, we

can show that, using A(6) and A(7),
det, (1|k) det, (1|L) (ax) = (N-1)! Dy (k[L),  A(9)

an expression which relates the cofactors of the determinants
Y¢ and ¥ with those of the determinant DKLof the non-
orthogonality integrals A(4).

Now let us define the first-order reduced density matrix
Y (xll lxl) for the system represented by the normalized wave-
function ¥ given in A(1). We have

*
y(x’l x) = NJ‘P(x’I.xz,...,xN) ‘P(xl,xz,...,xN) (dx:) A(10)
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The Prime on the x| coordinate indicates that, when calculating
thq expectation value of some operator, we put xr equal to x;
after the operation has been performed. The operator thus works
simply on the unprimed co-ordinates. The notation (dxi) indicates
that the integration takes place over all coordinates except X; e

According to A(10), we have for the total integral

J;(ﬁlxﬂ dx, = N . A(11)

Assuming that our normalized wave-function may be expanded
according to A(l), we may now obtain an expression for the

first-order reduced density matrix within this approximation

for v :
Substituting in A(10) for ¥ from A(1l):
L

* * /
y|xp=N|L C ¥ EC ¥ w) .
L K K K LL

Substituting from A(8) for Y and ¥ expanded about their

first rows:

/ N K % #* /
yixjx) = — | L EC_yx’>det ¢I]|k) x
1A TR (S R
: A(12)
£ \Ec /
x ¢ .
LT L¢Lx|>d¢tL(1|L> «dx’y
K
The double summation E £ , for example, means:
k
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for a particular set of spin-orbitals K, sum over all the wk
contained in that set, and then sum over all such sets K.

This can clearly be re~arranged as E (i::I) » which means: for a
particular spin-orbital Iﬁk from the extended basis set, sum
over all the sets K of spin-orbitals which contain that

particular \pk s, and then sum over all possible ’Pk .

Using summations re-arranged in this way, A(12) becomes
p N * , k)
= — C
'y(xl|x|) N!Jf 1pk x)? E CK dctK(IIk) X
Ly >(§)c det ¢l L) ¢dx’
) .
x : ’#L xl L. L e L x'

Using A(9) this becomes

NCN-D! * dod)
yd|x) = ————= I Py (x> $(x)LE C, D, k|L) C
1) TR R A i e 31 L
T yx A(13)
T ¥ X v Lo gexp (
Ck) (L) %
where y k) = E lz_ Cy DKI_tkll.) cL A(14)
cad
¥ (le) is Lowdin“s '"first-order density in the k-space'.

(a) The general theory of natural spin-orbitals for an
orthonormal basis set is given in: P,.-0O, Lowdin, Phys. Rev.97,

1474 (1955).
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It is a square matrix whose order is equal to the number of
basis orbitals being used in the approximation of ¥ . The
factor D'<L(k|L) is, of course, the (N-1)th-order cofactor of
DKL’ remaining from DKL_after the row containing ¢k and the
column containing ¥, have been removed. (see A(7)).

In order to obtain the natural spin-~orbitals (NSO’ s)
for the wave-function ¥ we need to derive the first-order
reduced density matrix y(xf xl) in the form given in A(13).
This in turn requires the production of the matrix 7(L|k),
doefined in A(14); it is this which proves the most tedious
task, since it includes the evaluation of (N-1)th-order
determinants in D, (k|L).

The natural spin-orbitals are defined as being that

orthogonal basis in which the first-order reduced density

matrix is diagonal.

In general, the form of 'Y(x{lxl) given in A(13) will
contain some cross-terms. It will become diagonal if 7(L|k)
be diagonal, i.e. only terms with k=l will remain. Thus,
from the original extended basis wk » wo wish to obtain the
NsO’s by means of a linear transformation using some matrix
A, as yet unknown.We wish this new basis to be orthonormal,
and at the same time to render the first-order reduced density
matrix into diagonal form, These stipulations may be

represented mathematically:
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X =X ¥ A
or, in matrix notation
X=Y¥A A(15)

Here, X represents a row-vector of the natural spin-orbitals
and f a row-vector of the original basis spin-orbitals. A is
the required transformation matrix, whose exact form we wish to
find. Thus in general, each NSO X  is a linear combination of
the original basis spin-orbitals wk , and there will be as
many NSO”s as there are basis orbitals.

The requirement that the X ‘s form an orthonormal set

may be written

%*

or

<xT|x >=1I A(16)

The notation 5'T represents the complex conjugate of the
transpose of X , so that since X is a row-vector, ZT'is a

column-vector; I is the identity matrix.
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Substituting for X from A(15) in the condition A(16):

A(L7)

[
°
1>
-t
1>
1>
[ ]
I =

where A= <yty> and is the "overlap matrix"; its elements
are the various overlap integrals d(kl) defined in A(4). The
orthogonality requirement for the x -basis thus leads to
condition A(17).

We also require that, expressed in terms of this ortho-
normal basis, the first-order reduced density matrix be
diagonal. Equation A(13) may be re-written in matrix notation

as folloivs:

-y(x'I ) = ¢ yyt . A(18)
Now from A(15)
¥= x4
and 11'=(A_-|)1' _)S't‘

Substituting for ¥ and !l_f in A(18):
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y(x’l|x,> = X é-'y &ht xT

y||x> will be diagonal in the x -basis if the matrix

be diagonal, i.e. if

where n is a diagonal matrix. Then we may write
/ t
YOl = x 0 x

or

(xp) A(20)

'y(x’ x) = L x*(x/) n,_ X
Ha Kk kO Tk Tk

in which form the first-order reduced density matrix is
diagonal. A(20) leads to the following normalization

condition from the total integral:
Zn =N A(21)
k

using equation A(11),

The diagonal elements n, of the diagonal matrix n are

known as the "occupation numbers' of the natural spin-orbitals xk.
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To summarize, the two conditions which must be satisfied
to obtain the transformation matrix A and the matrix of the

occupation numbers n are

>
-f
>
1>
(]
{r=

A(21) (a)

and Ay ! '

A(21) (b)

(=

Unlike the case described by Lowdin, our basis set of the
spin-orbitals wk is not an orthonormal one. In the orthonormal

case, A becomes the identity matrix, so that A(21) (a) reduces to

which is the condition that the matrix A be unitary. In the
case under discussion, therefore, A is not unitary, and the
two conditions A(21) (a) and A(21)(b) have to be satisfied
simultaneously to find the unique transformation matrix A,
One method of doing this is as follows:

Perform a unitary transformation on the overlap matrix A :

A(22)

Ic
>
c
]
1

Here, U is a unitary matrix whose columns are the eigenvectors
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of A . T is a diagonal matrix (not in general the identity
matrix) whose diagonal elements are the eignvalues of A .
Now let us define some matrix W, whose elements are given by

the relation
u,.

ij

By operating on A with W, we are forcing out the identity

W"'l =

matrix:

wia w=1 A(24)
Comparing A(21) (a) and A(24), it would appear that W and A are
identical. This is not true, however, since in general, A is
given by the product of W and some other matrix, X sayé

A=WX and AT=X w o, A(25)

The nature of X may be discovered by substituting from A(25) in

A(21) (a):

>
1<
>
k3
1

I
=

Using A(24) this becomes
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so that X is a unitary matrix. Thus, any unitary matrix can be
used, and A(24) will still be satisfied. To obtain the exact

form of X we use condition A(21) (b):
From A(25) A= Elwﬂ

so that A(21) (b) becomes

-4 - - -
X w'ycw htxHTan A(26)

Putting W'y (W= M, say, and using the fact that X is

unitary, we obtain
XtM x=n A(2T7)

If we perform this unitary transformation, we may obtain the
diagonal matrix of the occupation numbers, n. In addition, the
columns of X are formed from the eigenvecfors of M, so thét we
can obtain the product WX, which, as defined in A(25), is the
required transformation matrix A.

Using the quantities defined in this way, we may now

expand the wave-function in terms of the natural spin-orbitals.
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Determinants are formed with the NSO’s as elements, and the
so-called "natural expansion" of the wave-function is obtained
in terms of these new Slater determinants.

When exactly N of the NSO“s are fully occupied (i.e.
have occupation numbers equal to 1) we have a limiting case,
in which the natural expansion is reduced to a single Slater
determinant. From a convergence'point of view, this is obviously
the most favourable case. Even if only a small number of the n,
are non-zero (some being essentially zero), then the natural
expansion will only contain relatively few terms, leading to
an improvement in the convergence of the wave-function. It
can be shown that the introduction of the natural spin-orbitals
leads to an expansion of most rapid convergence within the
original basis.

cad
The Case of Two Electrons:

The general NSO theory dealt with above undergoes some
simplification in the special case of two-electron systems.
The configuration interaction singlet-state normalized wave-

function may in this case be written

(a) see, for example, P,-0., Lowdin and H, Shull, Phys. Rev.

101,1730 (1956).
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l“P (XPX ) =

LN . 2
; /é_kzL c det [¢ko 3 ¥, p] A(29)

k=S

Here we can use the well-known fact that, with a two-

with C

electron wave~function the singlet spin function may be

factored off from the determinants; re-writing A(29):

! - -
Yixpxd = E C g lf) ¢ (R ah) p2) -o@ B A(30)
kL /2-

Formation of the first-order reduced demnsity matrix (from

A(10)) gives
/ / / * _/ -
Yo |xp) = (ala+p/BY T Y (T y k) ¢ (T
ki

In this simplified case, Y(L|k)> is in general a sum of
products made up of coefficients and overlap integrals defined
in A(4). (These overlap integrals have taken the place of the
(N—l)fh?order cofactors DKLSklb) in A(14); in this present
case, of course, N-1 = 1;) In the partiéular case of an ortho-

normal basis, the matrix y simplifies further to

I~
"
10
|0
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where C is the coefficient matrix of the original configuration
interaction wave-function. The formation of Y is thus far
simpler in the two-electron case than in the general N-electron
case discussed above.

We have now to satisfy conditions A(21) (a) and A(21)(b).
In doing so, we obtain matrices A and n, as before. By
diagonalizing ¥ , the first-order reduced density matrix becomes
diagonal in the X ~basis. However, because of the particular
nature of the two-electron configuration interaction wave-
function, yet a further simplification is possible. The wave-

function '4’ is a real quadratic form in the original basis, i.e:

Y=y C ‘lf A(31)

where ¥ is again a row-vector of the basis spin-orbitals and

C is the matrix of the coefficients. Using the transformations

¥ = x Al and y= (ahtxt we have

by o x Alc abt xT

Condition A(21)(b) is hence replaceable by
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where ¢ is a diagonal matrix whose non-zero elements are the

coefficients in the natural expansion, for then

'W = X ¢ )('r

Thus, we have brought the wave-function itself to diagonal

form in the X -basis, In this simplified case,

*
¥ = I c X (D X (2 athp2)—a(2) B A(32)
Kk k' k k
V2

where the ¢, are the diagonal elements of c. This form is to

be compared with that in A(30). Now, within the X -basis the

first-order reduced density matrix is given by
o |xp = £ n X XD
v X = Ton XD XD
and A(32) gives
/ 2.,*
Yy |x = E c, X0 X,

k

omitting the spin functions, for convenience. Comparing these,

there evidently exists the relationship that

.
2
"y
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between the coefficients in the natural expansion A(32) and
the occupation numbers, in this two-electron case,

Thus, in this simplified case, there is no need to
produce Léwdin’s "first-order density in the k-space", the
7Y -matrix. We can operate instead on the matrix C of the
coefficients in the original CI wave-function., NB this is
purely a consequence of the fact that the two-electron wave-
function may be written as a real quadratic form, A(31), and
it is therefore strictly confined to the two-electron case.

If the original set of basis orbitals ¢k contains, say,
M orbitals, then the wave~function A(30) will contain
iM(M+1) terms, if all possible basis orbitals are used to form
configurations. The diagonal form A(32), however, will contain
only M terms, This enormous simplification cannot be expected
in the many-electron case.

Throughout this discussion we have used spin-orbitals, the
spatial parts of which may or may not be doubly-filled. If they
are doubly-filled, and we have two spin-orbitals for every
spatial orbital, we will correspondingly get two natural spin-
orbitals for every natural (spatial) orbital. In this case the
word "spin'" may be dropped from the expression ''matural spin-

orbital',
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cad
Example on the Two-electron Case:

Consider a simple configuration interaction normalized

wave-function:
Yy = ;mi[cl(lsls) + 02(1528') + C3(25'25')]. (i)

i.e, we have three configurations whose determinants are

composed of normalized Slater-type orbitals.

c, = 0,23586511 n(s) = 2.64
C, = 0.37591055 1(s”) = 1,95
C3 = 0.17935024 Jlszs‘d-r = § = 0,71103715

Writing out (i) in full:

= 1/|¢c 1s(l)a(l) 1s(1)B(1) 1s(1l)a(1) 2s”(1)B(1)

V2

+ 02

1s8(2)a(2) 1s(2)p(2) 1s(2)a(2) 2s”(2)p(2)

+  C,l287(1)e(1) 1s(1)B(L)| + C4|28"(1)a(1) 25”(1)A(L)

257 (2)5(2) 1s(2)B(2) 2s”(2)e(2) 28°(DAD)| | (i)

(a) data for this example is taken from J.D, Stuart and F.A.
Matsen, J. Chem. Phys. 41, 1646 (1964). See V¥ (2), Table II,

p. 1647,
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Factoring off the spin:

y = [c,1s(1)1s<z) + Cyls(1)287(2) + C,28"(1)18(2) +
c32s"(1)25°(2) | *  a(1)B(2) - a(2)B(1) (iii

Z

We have four distinct spin-orbitals, but since they are made
up from doubly~filled spatial orbitals, we can from now on
talk about two natural orbitals. We shall ignore the spin
function during this analysis. The spatial orbitals are 1ls and
2s”, which we shall label @ and @ respectively.
Construction of the y -matrix:

The first-order reduced density matrix is given, from

, 2 2
¥ (x| |x|) = 15(1)1s(1) (C; + C, + 2C,C,5)
+ 18(1)2s”(1) (C/C5 + C;C35 + C35 + C,C3)
-, ' 2
L d
+ 28" (1)1s(1) (C,C, + €38 + C3C 5 + C4C))
+ 287(1)28°(1) (C2+ c2 + 2¢.C,85) (iv)
2t 4 2%3 ’

so we can identify the elements of the y -matrix as

2 2
CI + C2 + 2C|Czs

(D |®)

0.32302814
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Y(OQ[@) = ¥(@|D) = C,Cy + C,Cs5 + C5 + CxCq

0.28663320

Y(@|®) =ct+ c§+ 2C,C45

0.26935098

Thus, the complete y-matrix is

I
]

0.32302814 0.28663820 ]

0,28663820 0,.26935098

The C-matrix will be:

Le]
L}

[ 0.23586511 0.37591055 ]

0.37591055 0.,17935024

The A -matrix will be:

A = 1.0 0.71103715 ]

0,71103715 1.0
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If wo use A and Y in the analysis, we get A and n :~

n = |0,99759759 0 0,56542539 -1,30494943

1>
]

0 0.00240200 0.51552846 1,32543469] .

(The sum of the occupation numbers is 1 and not 2 because a
factor of 2 was omitted from the first-order reduced density
matrix, equ. (iv).)

If we use A and C in the analysis, we get A and ¢ -

c = [0.99879829 0 ] A= [0.56542538 -1.3049294€]
’

0 -0,04901019 0,51552847 1.32543468

and ¢, = Ji—', ¢ = -/ 5 Thus, by two methods, we have the

complete natural expansion for ¥ in (i).



