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SOME EFFECTS OF LANGMUIR CIRCULATION ON SUSPENDED PARTICLES IN LAKES
~ AND RESERVOIRS

By T. BURANATHANITT

ABSTRACT

The quantitative extent to which the large-scale organised water
motion in the surface waters of lakes and reservoirs, known as Langmuir
circulation, affects the distribution and settling of suspended particles,
especially the algae, is not known and has been ignored in the conventional
modelling of water quality. Since the settling of these particles is
an important process in determining water quality, the present study
investigates the Langmuir circulation effect by means of a mathematical
model, based on the two-dimensional advection-diffusion mass transport
equation describing the temporal and spatial distribution of suspended
particles in a typical Langmuir cell. The Langmuir circulation flow
field and turbulent diffusion coefficients are empirically modelled by
relating these variables to the environmental parameters.

It has been shown that Langmuir circulation does affect particle
distribution and settling. For particles with small sinking speeds, the
circulation causes intense mixing, resulting in essentially uniform
distribution of particles over the Langmuir cell, For particles with
high sinking velocities, aggregation of particles can occur, giving
rise to considerable reduction in sinking losses.

Two preliminary laboratory experiments have been performed. The
wind-wave tank experiment suggests that the Langmuir circulation scale
of motion is dependent on the significant height of the surface waves,
thus providing an empirical means of determining the size of Langmuir
cells from environmental variables. The particle-settling tank experiment
holds promise as a means of studying the effect of circulating flows on
the distribution and settling of particles.
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 1 INTRODUCTION

The large-scale organised flow structure in the surface waters of

lakes and reservoirs, known as Langmuir circulation, is described.
Attention is then drawn to the need for understanding the probable réle
and extent of this circulation on the suspension and settling of
phytoplankton and sediment particles, particularlyin relation to modelling

of water quality in lakes and reservoirs.



CHAPTER 1 INTRODUCTION

1.1 Langmuir Circulation - an organised large scale flow structure.

In open waters such as lakes and oceans, when the wind speed is
in excess of a critical value (about 3 m/s;i a banded structure appears
on the water surface, with the bands or stripes lying more or less in
the direction of the wind. The stripes may be composed of algae or
organic foam, or accumulation of surface debris, all of which are
indicative of the convergence of the surface waters. In the absence of
natural surface tracers such as these, scattering cards, pieces of paper
or dye onto the water surface, has also shown that convergénce stripes
exist (Assaf et al., 1971; Harris and Lott, 1973). Surface water in the
stripes seems to move downwind faster than water in between the stripes.
Measurements of vertical velocities beneath the surface indicate
downwellings beneath the stripes (or convergence lines) and upwellings
between them. A picture emerges of an organised circulation, composed of
pairs of counter-rotating longitudinal helical roll vortices, axes parallel
to the wind direction (see Fig.%1). This wind-induced circulation in lakes
and oceans was first recognised by Langmuir (1938), and has subsequently
become known as Langmuir circulation.

Published literature indicates that the most variable feature of
Langmuir circulation is the convergence line spacing (row spacing), ranging
from 2 to 25 m in lakes and from 2 to 300 m in the ocean (Pollard, 1977).
At any one time circulation cells of different sizes may co-exist
together, smaller and less well-defined stripes occuring between the
larger, well-defined and more persistent ones (Scott et al., 1969;

Walther, 1967; Assaf et al., 1971). However, many investigators, noting
only ?he well-defined stripes, have reported a somewhat regular spacing of

the stripes (Langmuir, 1938; Myer, 1968; George and Edwards, 1973).

*
(Scott et al,1969)



Precise circulation depth is difficult to measure, but, in stratified
water bodies, the vertical dimension of the largest circulation cells

is generally believed to correspond to the surface mixed layer depth

in lakes (the epilimnion) and oceans. Alternatively, the cell depth

may extend to the bed in shallow waters. The circulating motion in
Langmuir cells is relatively strong and appears to be related to the

wind speed. The maximum downwelling speed is approximately 1% of the
wind speed and nearly one quarter of the surface wind drift (Scott et al.,
1969) . The maximum upwelling speed is about one-third or so of the
maximum downwelling (Langmuir, 1938).

Mechanisms proposed for the generation of Langmuir circulation prior
to 1971 were reviewed by Faller (1971). Six mechanisms were discussed,
namely, shearing instability of the Ekman Layer; coupling of atmospheric
vortices to water; thermal convection process; cross-wind stress
variation caused by a surface film; transfer of energy of surface ripples
to the Langmuir cells by action of the surface films; and interaction
of surface wave trains. Most of these have been discounted either because
they do not agrée with field observation or they fail to provide enough
energy to create circulation of observed strengths. Wind and surface wave
interaction has received most attention. More recently, sophisticated
theoretical models have been developed based on the physics of either
wind and waves, or waves alone (Leibovich and Ulrich, 1972; Craik and
Leibovich, 1976; Leibovich, 1977a; Leibovich and Radhakrishnan, 1977;
Garrett, 1976; Gamelsrgd, 1975; Leibovich, 1977b; Craik, 1977; Mobley
and Faller, 1977). Because of the complexity of the phenomena and the
extreme difficulty of performing tests, all the plausible theories suffer
from lack of verification data, while some models have been discarded
because of their unjustified assumptions or because their predictions
contradict available observations. At the present time there is no

universally accepted rational theory of Langmuir circulation and much work



remains to be done in the theoretical development. This should proceed
hand in hand with verification processes.

Despite these difficulties and lack of precise knowledge concerning
physics of the circulation, limited information on the general features
of the circulation, in combination with empirical correlations of some
of the observed variables, will be shown to provide useful data for study
of some Langmuir-circulation related problems. The Langmuir circulation

concept is developed in greater detail in Chapters 4 and 5.

1.2 Significance of Langmuir Circulation to the Water Resources Field.

One of the most important parameters in determining water quality
and ecological state of water resources systems such as lakes and reservoirs,
is the production and distribution of microscopic plant life (i.e.
phytoplankton). Since phytoplankton is the dominant producer of organic
materials in water impoundments, significant changes in population because
of the changes in the aquatic environment can affect many water quality
parameters and lake ecology. Accurate understanding of the processes which
influence the changes in phytoplankton population is vitally important in
water quality management.

In stratified 1ékes, active production is usually confined to the
epilimnion or the mixed layer. The net production of phytoplankton depends
on, among other factors, their vertical distribution in relation to the
photic depth, that is the depth of light penetration where photosynthesis
can take place (Fig.d.2). The distribution of phytoplankton population
remaining in suspension and its motion in and out of the photic zone may
be expected to affect the phytoplankton production in the mixed layer.

The above motion may be induced by a large-scale advection in the mixed

layer such as Langmuir circulation.



5.

Another important factor which depends on and, in turn, affects the
total amount of phytoplankton in the mixed layer, is the sinking loss, i.e.
the quantity of phytoplankton that sinks out of this layer. Determination
of this is important since it is a major process by which particulate
matters and raw organic ﬁaterials are removed from the epilimnion to
supplement the nutrient pool and sedimentation in the impoundment. If
recycled back into the epilimnion, these nutrients can enhance further
phytoplankton growth.

Distribution and sinking of other suspended particles, such as
sediment particles obtained from catchment runoff, may also be similarly
affected by Langmuir circulation. Suspended sediments are important to
lake water quality because they are the principal cause of water turbidity
which can alter the photic depth and hence affects phytoplankton production
in the mixed layer. Furthermore, some types of sediments are capable of
forming floc blankets in the presence of weak agitating water currents.
These can sink at a higher velocity than individual particles and can take
some algae down with them. This gives rise to further sinking loss of
phytoplankton (Smith, 1975).

In view of the critical importance to water quality of phytoplankton
and sediment distributions in the mixed layer, any investigation to
determine the nature and extent of the effects of Langmuir circulation on
these particles would be a valuable step to a better understanding and hence

more accurate modelling of primary productivity in lakes and reservoirs.
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 2 EFFECTS OF LANGMUIR CIRCULATION ON

PARTICLE SUSPENSION - A review of

existing models and an outline of

the present study.

A review is made of previous investigations concerning the
effects of Langmuir circulation on the distribution of particulate
matters in the mixed layer of large water bodies and the~
associated sinking loss from this layer. The present study is
then introduced. This offers an alternative approach, by
accounting explicitly for the advection and turbulent transfer
of particles within a Langmuir cell, to determine the relative
significance of the circulation phenomena in modelling the

distribution of suspended particles (e.g. phytoplankton).



CHAPTER 2 EFFECTS OF LANGMUIR CIRCULATION ON

PARTICLE SUSPENSION - A review of

existingﬁmodels and an outline of

the present study.

2.1 A Brief Review of Previous Field Investigations.

Few field observations concerning the distribution of
particles in Langﬁuir cells have been published. Those reported
are qualitative in nature and inadequate to illustrate how particles
are aggregated in the cells. For instance, Stommel (1949) reported
an observation in a lake that Langmuir circulations concentrate
phytoplanktoh into 1iﬁear arrays in the direction of the wind.
Similar phenomena have also been observed in a shallow reservoir
by George and Edwards (1973). Because the observed plankton
include phytoplankton as well as zooplankton, the motility of
the latter makes it impossible to separate how phytoplankton alone
are affected by the circulation. Observations by Sutcliffe et al.
(1971) that surface film and organic phosphate were concentrated
in‘the convergences may perhaps indicate the ability of the
circulation to aggregate buoyant particles, but its effects on the
non-buoyant particles are not known. Therefore the rdle of Langmuir
circulation in forming concentrations of particles and dictating

both their distribution and sinking loss rates is not adequately

described by the existing field observations.

2.2 Review of Existing Models.

Analytical models also have subsequently been used to give

a more complete picture of how particles might be affected by



Langmuir circulation. Complex phenomena are being described,
consequently few models exist which are worthy of close study.

Two of these are reviewed below.

2.2.1 The Model of Stommel.

Following Langmuir's early observations and his speculation
as to the existence of wind-driven circulation (Langmuir, 1938), the
first analytical model designed to investigate the suspension and
settling of solid particles in a series of steady helical cells
(analogbus to those proposed by Langmuir) was made by Stommel (1949).
His study was initiated by an observation in a lake that a greater
variability in plankton counts was obtained when net tows were taken

up or down wind compared with those made across wind. Stommel

10.

considered whether Langmir circulation was responsible for concentrating

plankton in lines. Evaluating the trajectories of small particles
sinking passively through steady regular convection cells of the
Langmuir form (Fig. 2.1), his model showed that different types of
trajectories were obtained depending on the ratio of the particle
sinking velocity to the maximum upward velocity. Fig. 2.2
illustrates the trajectories of solid particles settling through a
Langmuir cell under various conditions.

The case most relevant to the phytoplankton suspension
problem is when particles fall (or ascend) at a lesser speed than
the maximﬁm vertical speed in the cells (Fig. 2.2B). His model showed
that closed trajectories in the form of oval shaped '"retention region"
are developed in the upward currents, in which particles, once
trapped, are retained, whilst particles outside the retention region

sink out of the cells. The size of this retention region decreases
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with increasing particle sinking speed.

Although with laminar flow a ''retention region" (i.e. a
region that particles neither leave nor enter) exists, with
turbulent flow a loss of particles occurs. The simplicity of
Stommel's model is such that it is impossible to assess the likely
distribution of particles in the circulation zoﬁe and the particle
sinking loss from it. Nevertheless the idea of a retention region
trapping some particles to re-circulate within the cell, leads to
the general belief that the circulation is retaining particles
which might otherwise sink out of the mixed layer.

Hutchinson (1967) extended Stommel's concepts to consider the
means. by which phototaxic organisms maintained a given depth despite
moderate vertical movement (Fig. 2.2D). Later Smayda (1970) used these
concepts to show that for marine diatoms with a relatively high
sinking speed of 500 m/day in a weak circulation field, the ratio
of the sinking speed to the maximum upwelling speed was within the
range in which the circulation can be expected to influence the
phytoplankton suspension. For typical sinking rates of most diatoms
(typical sinking speeds ranging from 0.003 to 0.03 cm/s), his model
showed that water current velocities of only 0.01 to 0.001 of those
observed in the circulation cells would keep the bulk of phytoplankton

species in suspension in the euphotic zone.

2.2.2 The Model of Titman and Kilham.

Since Stommel's work appeared in 1949, little further
development occurred until 1976, when Titman and Kilham attempted to
estimate the effect of Langmuir circulation pattern on the sinking
loss rates of phytoplankton from the mixed layer. They modified Stommel's

model of circulation to include the observation that the maximum
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upwelling speed is generally half of that of the maximum downwelling
speed (Fig. 2.3A). A typical calculation assumed Langmuir circulation
of 10 m depth, a particle sinking speed of 85 m/day, and a maximum
rate of downwelling of 1 cm/s. This model used Stommel's particle
trajectory method to separate Langmuir circulation into a retention
region and an outside region from which particles could migrate from
the cells (Fig. 2.3B).

Although Titman and Kilham's results indicate that particles
may be kept in prolonged suspension within Langmuir circulation with
a large reduction in sinking loss, certain aspects of their model
are questionable, and this casts doubt on the results obtained.

For example, their model is unclear in considering the partitioning
of particles between the retention region and that outside. Similarly,
the mechanism for transferring particles from the retention region and
the subsequent sinking of these particles from the mixed layer lack
credibility. The assumption of a constant exchange rate of 2.0 /day
appears unrealistic and has no physical foundation. Such a turbulent
transfer process should be dependent upon the turbulent intensity in
the mixed layer, which may somehow be related, among other parameters,
to wind speed and water stability. Their method of estimating
particle loss rates is unsubstantiated and their approximation of

the circulation shape to a square form is an oversimplification. It
is evident that the physical representations of the circulation, its
turbulent transfer processes, and the method of calculating loss rates
from it, as used in Titman and Kilham's model, are unsatisfactory, and

these will not be considered further.
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2.3 The Present Study.

The ability of Langmuir circulation in keeping a
significant volume of suspended particles to continually re-circulate
within the mixed layer appears to be demonstrated. But the
relationship between this re-circulation of particles to the particle
aggregation and sinking loss cannot be adequately described by the
available models and field investigations to date.

The problem could be investigated by making direct measurements
of the variables concerned in a lake or reservior. For example,
Rutherford (1976) suggested field measurements on certain labelled
particles or organisms. Such measurements must be made across the
circulation cells and over a wide range of prevailing winds, thermal
conditions and turbulence structures. For complete understanding,
the prevailing temperature profiles, turbulence distribution, velocity
field, and particle concentrations, must be measured simultaneously.
Such an experimental undertaking is, however, beyond the limit of
the present technical capability (Fasham, 1978). In view of this
limitation, a mathematical model study is a necessary step to justify
the large-scale costly experimental project, and, in addition, provides
a theoretical framework for such a field sampling programme.

The present study, with the following main objectives, is
proposed:

1. To develop a mathematical model based on an advection-diffusion
mass transport equation, in which particle transfers by water motion
and turbulence are explicitly described, for investigating the
influence of Langmuir circulation on particle distribution and
sinking loss (Chapter 3);

2. To determine the significance of Langmuir circulation effects in

the modelling of particle distribution and sinking loss in the
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mixed layer, by comparing the results of the present two-dimensional
model with those predicted by the conventional zero - (i.e. one-
layer mixed compartment) and the one-dimensional models. (Chapter 7);
To enhance understanding of the circulation phenomena by carrying
out preliminary laboratory experiments, obtaining experimental
evidence, and thereby exploring the possibility of physical
modelling, within the laboratory, of the circulation phenomena

(Chapter 8).



Fig. 21 The streamlines of an ideaiised vertical section across o

pair of convection ceils. The arrows show the direction of
water flow.

(Convergence) (Divergence)
Downwelling  Upwelling Downwelling Upwelling

Fig. 2-2 The trajectories of phytoplankton cells settliiv; through a Langmuir
convection cell under various conditions. The streamlines represent direction of
movement of phytoplankton with depth. To right of upwelling(convergence) area,convection
cell rotates clockwise, and counter-clockwise to left. A, Trajectories of phytoplankton

ticles whose sinking speed is just sufficient to settle out of the convection cell
= 1). B, Trajectories of phytoplankton particles whose sinking speed is one half

0.5) of those in panel A. The shaded area represents a zone of closed trajectories,
or the rerion of retention where phytoplankton cells swirl around; outside of this
region they sink through the convection cell. C, Solid lines represent the streamlines
of Langmuir convective motion. Dashed lines are the boundaries of the "regions of
retention" for phytoplankton particles sinking at various speeds relative to that of
current velocity (R values). D, Trajectories of mobile organisms seeking to maintain
themselves below and near surface in convection cells leading to their accumulation in
the convergences located approximately at the areas in D where the trajectories collect
at the extreme left and right. A,B,C modified from Stommel (1949); D from Eutehinson(1967).
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Fig' 2*%3 A, Vertical cross-section view of Langmuir circulation as produced by
a model modified from Stommel (1949). Tangential vectors are velocity vectors. The
solid closed curves are streamlines, paths followed by small parcels of water. The

vertical scale is depth below the surface; horizontal scale is horizontal distance.

3, Streamlines of grapgh A on which are superimposed the trajectories followed by particles
with a sinking rate of 85 m/day (broken line curves). The region within the outermost
trajectory is the region of retention for particles of this sinking rate. (After Titman
and kilham (1976).
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Fig 24 Loss rates for particles of various sinking rates
as predicted by the algebraic relationship (loss = S.R./depth;
curve a) and for the particles in the circulation system of Fig.2.3
(curve B), ( After Titman and kilham, 1976 )
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 3~ THE MATHEMATICAL MODEL

The development of a model describing the distribution of
suspended matter in a typical Langmuir cell is outlined, based on
the simplified two-dimensional time dependent advection-diffusion
mass transport equation for particles in turbulent flow. A |

~general method of solution is briefly described.

17.
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CHAPTER 3 THE MATHEMATICAL MODEL

3.1 Basic Principles.

The dispersion of particles, such as phytoplankton and
sediments, within the main body of turbulent flow may be represented
by an advection-diffusion process. In this process, particle
distribution results from combined action by local time-mean
velocities and diffusion caused by both molecular and turbulent
transfer. Such a representation has been found to explain adequately
many particle-suspension problems, notably those associated with
sediment transport and sedimentation.

The differential equation describing the time-distribution
of conservative suspended material in a turbulent flow field is
derived from the statement of the material mass conservation principle

(Sayre, 1968), to give

oC aC aC oC _ 93 aC ) aC 9 3aC
3c UV ¥y W3z © §§'(€x ax) * 3y (ey By] * 3z (ez az] (3.1)
in which t = time;
X, ¥, z = cartesian coordinates;
C = turbulent-average concentration of material,

expressed in mass per unit volume of suspension;
U, Vv, ¥ = x, y, z components of water velocity, respectively;
e, = corresponding turbulent diffusion coefficients
which include molecular diffusivity.
For non-conservative materials such as phytoplankton, additional terms
representing the rate of change of concentration caused by sources
and sinks of the material, such as those produced by biological and

chemical reactions, need to be added to the right-hand side of
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equation (3.1).

Considering equation (3.1), the first term on the left-hand
side denotes the local change of concentration of material with
time. The 2nd, 3rd and 4th terms are the advective fluxes of
material. The terms on the right-hand side represent the diffusive
fluxes of the material. Sayre (1968) discusses in detail the
assumptions implicit in the derivation and application of this
equation and notes that it describes the diffusion process
satisfactorily if the substance is in solution form or if the solid
particles to which it is applied are of low concentration, so that
the volume occupied by the solids is negliglble.

For small volume concentrations, equation (3.1) applied to,

the diffusion of suspended particles becomes

aC aC aC ?3C _ 3 aC ] aC ] aC
Ut Vs s o (esx SEJ * 5§'[€sy ay] Y (Esz Bz]

(3.2)

in which Ug» Vs and Ws are the velocity components of the suspended
particles rather than the water velocity, and €y Esy and €cyq denote

the coefficients of diffusion for the suspended particles in the x, y, z-
directions, respectively. The solution of equation (3.2) yields the
concentration distribution of particles, provided that the velocities

and diffusion coefficients for the particles are known at all points

and times throughout the flow system, togethér with the specifications
of appropriate boundary conditions. Such provisions cannot be

realised in practice and hence to achieve practical solutions various

simplifications must be made to the equation.
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3.2  Simplifications to the Basic Equation.

If the particles are smaller than the size of the smallest
scale of turbulent eddies, they will tend to follow the turbulent
components of the fluid. This situation is closely approximated
by most suspended particles in lakes (e.g. for phytoplankton, the -
typical size range is about 5 um to 1500 um; its density is
roughly 1.01 to 1.03 times that of water; and the smallest scale
of turbulence in lakes is in the order of 1 cm or so). Such
particles may be regarded as being passively carried by the water
motion, and at the same time, sink slowly at their

sinking speeds with respect to the surrounding water. Hence

1
S
' = '
v Ve o
w' = w; ,
(3.3)
Us = U s
Vs =V s
Ws = W+ WT

are assumed to hold, in which U, V and W are the fluid velocity
components and US, Vs and Ws are the solid particle velocities; WT is
the fall velocity or sinking speed in turbulent water; z - direction
is taken to be positively downward; and the primed quantities are
the velocity fluctuations. After combining the above equation with

equation (3.2), the governing equation becomes

aC aC aC sC _ 9 oC 3 aC
et UV 3y " W+ Wp) 55 = 3§'[€sx 3?} * 3y (esy 5;4

0 oC
+ ﬁ (ESZ E] . (3-4)
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Experiments have shown that for small particles within the Stokes'
range, a condition satisfied by most phytoplankton and sediment
particles in a lake, the mean fall velocity is approximately that
in still water (Rouse, 1938; Brush et al., 1962; Murray, 1970).
With this assumption the sinking speed can be measured directly or
estimated analytically.

It is assumed that the mechanisms that control the mass and

momentum transfer of fluid are identical (Reynolds' anology), i.e.

= ¢ (3.5)

where ¢, is the eddy viscosity or coefficient of diffusion for

M
momentum, and €  is that for fluid mass. The validity of the Reynolds
analogy may be criticized since it can be argued, for instance, that
the’pressure fluctuations in turbulent fluid can transport momentum
but not mass. However, Jobson and Sayre (1970) were among others who
found experimentally that the turbulent diffusion coefficient for
fluid mass, €’ is,at least . as a first approximation, equal to

the turbulent diffusion coefficient for momentum, e Now, if the

"
solid particles follow the motion of the fluid, as explicitly assumed

in equation (3.3), then an equality such as €_. = €. i = x,v, z

si i’
exists. Experimental evidence by Brush et al. (1962) shows that this
assumption is valid for small particles within the Stokes' range.

Therefore, in the present model it will be assumed that

€ = € = e_ . (3.6)

€ = Be_, (3.7)
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could be used, in which B is a pr0poftionality coefficient, which
decreases from unity with increasing particle size, implying that
large suspended particles have higher inertia and so do not respond
to all the velocity fluctuations within flow.

With the above simplifications, equation (3.4) can now be

written
aC aC aC aC _ 3 aC ) aC ) aC
st U Vgt W) 5 = a—x[exs;eJ +—a_)—r'(€yW] * 32 (ezsz‘]’

(3.8)

that is, the flow and diffusion parameters of the suspended particles,
such as phytoplankton, in turbulent flow can be approximated by those
of the flow, as well as by the particle sinking speed in still water.

So far the governing equation applies to the conservative
or inert particles and may not be strictly satisfied by phytoplankton
cells which are characterised by growth. In these circumstances an
additional term representing the time-rate of change of concentration
due to net growth, F (that is, the net balance between production by
photosynthesis and loss rate by respiration, mortality, grazing, etc.),
must be added to the mass balance equation. In its simplest form, this

term can be expressed as

F = kC, - (3.9)

in which k is the net growth coefficient or net production rate, and
C is the concentration of phytoplankton. Since the phytoplankton

growth rate depends on several factors, such as”nutrient conditions,
light iﬁtensity, temperature, respiration rate of the cells, grazing

rate, etc. (Rutherford, 1976), it cannot be reliably determined



23.

- without complete knowledge of the influencing variables. For
simplicity and to enable the phytoplankton suspension in Langmuir
cells to be studied in isolation from other phenomena, growth rates -
are ignored, i.e. phytoplankton cells are assumed to behave

similarly to inert particles.

3.3 The Simplified Governing Equation and General Method of

Solution.

If the Langmuir circulation is essentially steady for a given
environmental condition, and the time taken for it to become fully
established is short compared with the time of interest, it can be
considered that a fﬁlly—developed steady circulation flow field
occurs simultaneously at the onset of the appropriate wind. Langmuir
circulation is assumed to be orientated with its longitudinal axis
parallel to the wind direction and extending across the lake and
a typical Langmuir cell can be used to study effects on particle
suspension. Since steady uniform motion of the water in the direction
of the wind has no effect, other than to move particles uniformly in
the direction of the wind, the problem may be considered to be two-

dimensional and equation (3.8) reduced to

aC aC aC _ 3 aC d 3C
'a—t"'VW'!-(w-\"WT)-é?— —3-)7(6)’—3—)’-}+_37{€23—Z]. (3.10)
The x-axis is directed downwind, the z-axis positively downward from
the origin at the lake surface, and the y-axis transversely along
the water surface.

Equation (3.10) can be solved numerically, by integrating its

finite difference approximation, for the spatial and temporal
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distribution of particle concentration within the Langmuir cell. To
obtain the solution the following quantities must be specified:

(1) the extent of flow field, i.e. the width and depth of
a Langmuir circulation;

(ii) the flow field and diffusion field, i.e. V, W, ey and-eZ
of Langmuir circulation at all points and time;

(iii) the sinking speed of particles, WT;

and (iv) appropriate initial and boundary conditions.

Since for a given condition, similar Langmuir cells are
assumed to be formed, each being a mirror image of its adjacent cells,
then a typical cell may be studied in isolation. The boundary
conditions appropriate to this situation are:

(1) There will be no particles leaving the cell through the

top and side boundaries;

(ii) Turbulent exchange of particles across the bottom
boundary of the cell is neglected because of the
suppression of turbulence there by very stable layers
of underlying water. Only advective flux of material
occurs across this boundary.

With such boundary conditions, a solution of the finite differeﬁcg
equation 1is marched forwards in time to give particle distribution
in the cell at future successive time intervals. Other quantities,
such as sinking loss through the bottom boundary of the circulation

cell at various times are thereby estimated.

3.4 Non-dimensionalisation of the Governing Equation.

To obtain generalised data, equation (3.10) is non-dimensional-

ised using the following variables:-



and t*

in which LO

= C/CO

= ¥/,

= z/Lo

= V/Uo

= W/UO

= wT/Uo
= e/(LOUO)

= t/(L,/U)

.
b
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(3.11)

is the characteristic length, Uo the characteristic velocity

and Co the characteristic reference concentration. The non-dimensional

equation written in conservation form is then

acr 2

3tr T Gy

The limits
y*
z*

and t*

in which Ac is the convergence line spacing (twice the Langmuir
circulation cell width) and T is the total time of simulation
corresponding to a time interval over which the Langmuir circulation
characteristics vary significantly.

The specification of Langmuir circulation variables, i.e.

the cell geometry, velocity and turbulent diffusion fields will be

(V*C*) + T*

of integration become

from 0 to AC/(Z Lo)

from 0 to D/Lo

from 0 to T*( = T/(LO/UO)) ;

discussed in Chapters 4 and 5.

3 * *\ox
Z [(W +WT)C]

.
b

.
b

Finite differencing solution

techniques, the handling of the boundary conditions, and values of the

variables of the problem are deferred until Chapter 6.



analyses of the basic numerical results, including the comparison of
these with those from some typical zero- and one-dimensional models

usually employed in water quality studies, follows in Chapter 7.

26.
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 4 LANGMUIR CIRCULATION OBSERVATIONS

AND PARAMETER CORRELATION

Because of the present lack of a satisfactory Langmuir
circulation theoretical model, published data on basic structures of
the circulation, e.g. the shape, scale of motion, and associated
velocities, are examined in some detail. The purpose of this is to
obtain relevant information to aid the construction of an empirical
model of the circulation for the present study, to be developed in
Chapter 5, and to establish typical ranges of the circulation
variables in lake and reservoir environment. Correlation
relationships, which attempt to relate the circulation variables to the
environmental parameters, such as wind/wave parameters, and the mixed

layer depth, are also discussed.
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CHAPTER 4 LANGMUIR CIRCULATION OBSERVATIONS

AND PARAMETER CORRELATION

4.1 Introduction

Since Langmuir (1938) first produced evidence of the existence
of 7ro0ll vortices in the surface layers of lakes and oceans, which are
now named after him, a number of thepretical explanations have been
advanced for their generating mechanisms. As yét, no theory has received
unanimous acceptance. Many have been shown to be inadequate (Scott
et al., 1969; Faller, 1971; Pollard, 1977). The more recent and
plausible ones tend to employ complex parameterisation and are often
based on questionable assumptions that need justification. Because
of the complexities, these models are not thoroughly tested. The
theories of Langmuir circulation up to 1971 have beenAfeviewed by
Scott et al. (1969), Craik (197) and Faller (1971). A review of the
more recent developments is made by Pollard (1977). Although important,
the theoretical explanation of the cause of Langmuir circulation is not
directly relevant to the present study, which is concerned with the
consequences of the circulation on suspended matter. However, a
brief summary of these theories with references is tabulated in Table
4.1.

Despite the lack of an established and well-proven theory, the
circulation's pattern and magnitude of flow, the scale of motion (e.g.
the width and depth of the circulation), and the variations of these
features with the changes in the prevailing conditions, may be
established from field and laboratory observations. The empirical

model derived by this prodedure can be useful, at least as a first
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approximation, in studying the consequences of the circulation on
some processes in lakes. Because the literature often contains
conflicting observations on Langmuir circulation variables, it is

therefore necessary to examine observations in some detail.

4.2 General Features of the Circulation.

Observations made by Langmuir (1938) and by numerous other
investigators (see Table 4.2) show clearly that when a sufficiently
strong wind (above 3 m/s on the average) blows over lakes and oceans,

a parallel system of organised roll-type vortices is rapidly

formed below the water surface (Fig. 4.1), which may extend down to

the bottom of the mixed layer. Velocity measurements indicate that

the shape of the circulation takes the form of alternate left- and
right-hand vortices, aligned more or less along wind, with the speed
of downwelling water greater than that of the upwelling flow. The
surface velocities are found to be strongest in the convergence zones
(regions of downwelling), varying approximately sinusoidally across

the cell width (Gordon, 1970; Langmuir, 1938). The difference between
the downwelling and upwelling velocities (Langmuir, 1938; Myer, 1971;
Maratos, 1971; Harris and Lott, 1973) suggests that the circulation
cell is asymmetric, with the downwelling flow concentrated in a zone
under the convergence line occupying a third or less of the cell width.
Myer (1971) found that the onset of the circulation was characterised
by downwelling under a newly formed streak, in a jet up to 1 m wide,
which could penetrate through stable stratification (Fig. 4.2), ;nd

the width of the jet tended to increase with water stability. The
observation by Welander (1963) also confirmed that the downwelling is

in a form of concentrated jet.



30.

4.3 Response to the Wind.

Langmuir circﬁlation does not normally exist when the wind speed
is less than about 3 m/s (Faller and Woodcock, 1964; Harris and Lott,
1973; Ichiye, 1967; Langmuir, 1938; Myer, 1971; Scott et al., 1969;
Welander, 1963), though Katz et al. (1965) plotted the rib spacings in
dye patches down to zero wind speed, and Ichiye remarked that
striations in dye patches could exist even in calm seas if there was
a pronounced swell. When the wind speed was less than 3 m/s, Myer
observed the circulation to form in Lake George, New York, but this
almost always occurred under surface cooling (unstable) conditionms.

The response of the circulation to the wind appears to be
relatively rapid. After the onset of winds larger than 3 m/s, Langmuir
circulation develops within a few tens of minutes. Katz et al. recorded
that, when thk 5 m/s wind shifted through 70 degrees, the initial rib
patterns consisting of three large ribs were broken up in 30 minutes, and
a number of small ribs developed, aligning with the new wind direction.
Langmuir noted lines of seaweed realigning themselves within 20 minutes
when the wind direction shifted by 90 degrees. Scott et al. observed
that streaks formed almost instantaneously in a lake when wind rose
rapidly to speeds greater than 3 m/s. On the other hand, Maratos
(1971) estimated that streak orientation responded within minutes to
major wind shifts. Welander, however, suggested that the reorientation
was initially confined to a relatively thin surface layer. He found
that 10 minutes after a shift in 9 m/s wind, surface streaks had arranged
themselves in the new wind direction and surface floats converged into
these streaks, but the floats at 1 and 2 m depths continued to move in
the original direction. The length of the response time was not

measured by Welander.
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It appears therefore that when the depth of the circulation
is relatively shallow, suéh as in a iake situation, the response
time is more rapid than with the much deeper circulation cells in
the ocean. The response may begin at the surface, as described by
Welander, and works its way down but, in all cases, the total response

time is within a few tens of minutes or less.

4.4 Scale of Motion

The spacing between streaks or convergence iines is considered
to be an indication of the lateral sizes of the Langmuir cells.
Most invesEigators have reported that streak spacing is somewhat regular,
implying that the cells are relatively uniform in size for a given set
of meteorological conditions (Scott et al., 1969). Table 4.2 shows
that the most frequently observed feature of Langmuir circulation is
the row spacing, ranging from 2 to 25 m in lakes and from 2 to 300 m in
the ocean. In many cases, cells of several different scales are
reported to exist together at any one time. Langmuir (1938) reported
100 to 200 m streak spacing on the sea surface with smaller streaks in
between, and in Lake George, New York, he noted that between well-
defined, persistent streaks there were numerous smaller and less well-
defined ones. When the mixed layer is very deep, Assaf et al. (1971)
reported a hierarchy of two or three cell sizes coexisting in the ocean
off Bermuda, and Harris and Lott (1973) stated that, in Lake Ontario,
the distance between streaks (3-4 m) increased with time, new streaks
forming between streaks already observed. Scott et al. (1969) said that
one to three poorly-defined streaks frequently appeared between long,
well-defined ones, and that the poorly-defined streaks disappeared

quickly when the wind died. Faller and Woodcock (1964) may have
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observed the same phenomenon, though they assumed that the larger
spacings they saw were actually two or three cell widths apart.

The reason for the ocarrence of these poorly defined transient
streaks is: not clear. The streaks might be caused by the natural
variability of the wind/wave field which tends to produce circulation
cells of various sizes apart from the dominant ones, or it might
be related to the dynamic features of Langmuir circulation during a
transient period. Harris and Lott (1973) offered one explanation
based on their observation of row spacings in Lake Ontario. They
usually observed oil, fat, and other pollutants collecting in streaks,
which made them visible. When such oil and fat streaks were carried
down into the water column (as were leaves and flotsam in Langmuir's
observation), their appearance between the existing streaks in the
upwellings could account for the generation of new streaks between the
existing ones, and this would explain the disappearance of the
existing streaks. Harris and Lott often observed that every second
streak is heavily marked by its surface film. Another explanation
of the existence of small vortices (small scale streaks on the water
surface) was given by Faller (1978). He had observed in a laboratory
test that a light wind blowing over a regular pattern of relatively small
amplitude waves could produce vigorous circulation. This, he believed,
is the primary generating mechanism of Lané;ir circulation. With
irregular wind-generated waves the primary mechanism will generate
transient circulation cells of many scales. Larger, secondary scales
of circulation may form by non-linear interactions of the primary
circulation cells, which may grow to dominate the entire pattern of
flow throughout the fluid layer. However, it is often noted that the
occurrences of many scales of circulation are more frequent under

certain circumstances. In lakes, Myer (1971) reported that secondary



33.

streaks were often observed in cases of surface cooling (unstable).

In larger bodies of water, such as the ocean or the Great Lakes,

Assaf et al. (1971) had observed two coexistent sets of streaks

under moderate winds (5 to 15 m/s wind speeds), with the spacing of the
larger streaks equal to the depth of the mixed layer.

Observations that record- all streak spacings, regardless of their
appearénce, may not be a good measure of the dominant scales deeper
in the water. Katz et al.'s results supported this viewpoint, showing
that, for the same wind, smaller convergence line spacings were
measured at the surface than below. Myer's observations, based on the
shapes of the isotherms and the motion of drouges, indicate the
shallow existence of the small scale circulation and the increase of
the circulation scale with depth (Myer, 1971).

The only explicit observations of the depth of Langmuir
circulation (of the dominant scale), and hence the cell width to depth
ratio, were made by Myer (1971). Taking the depth of the circulation
to be the depth at which isotherm displacement was no longer
observable, he found the penetration depthsof 2 to 7 m in Lake George,
New York, under stable (surface heating) conditions for 2 to 6 m/s
winds. Following the interpretation made by Pollard (1976), Fig. 16
in Myer (1971) seems to indicate that the ratio of streak spacing to
the penetration depth is about 1 to 3 under stable conditions and
0.2 to 0.3 for unstable conditions. Elsewhere in Myer (1968), typical
values of this ratio for Lake George were also given, being about 1.4
for stable conditions and 0.3 if unstable. In the absence of any more
relevant information, it is considkered that these values be used, as a
first approximation, to estimate the relative size of Langmuir circula-
tion cells in inland lakes of moderate sizes.

The factors which control the circulation scales have not been
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unambiguously determined. Langmuir (1938) found, in Lake George,
larger streak spacings (15 to 25 m) in October and November than in
May and June (5 to 10 m), suggesting a correlation with depths of the
seasonal thermocline. Scott-et al. (1969) supported this observation,
finding significant correlation between the streak.separation and the
depth to the first stable layer. Apparently in this case, Langmuir
circulation. in Lake George did not usually mix the diurnal heat input
right down to the seasonal thermocline (at about 10 m depth) but

formed a secondary thermocline a few metres above it. Other authors,
for example Faller and Woodcock (1964), did not find this correlation
with the depth of the thermocline, in the oceanic situations, to be
significant. On the other hand, Faller and Woodcock (1964) and Maratos
(1971) obtained significant correlation betw?en wind speed and streak
spacing, an observation not supported by Scott et al. (1969). However,
with data obtained from Lake George, Myer (1971) noted a small increase
in the mean streak spacing with increasing wind speed.

. For oceanic cases, several correlated relationships have been
reported for Langmuir circulation scale of motion (see Table 4.2). No
unified relationship is evident. The general difficulty arises from
lack of adequately comprehensive field data on Langmuir circulation
(e.g. streak spacing, depth of the circulation or the depth of the
induced mixed layer, upwelling and downwelling speeds), and those
of prevailing environmental conditions (e.g. wind speed, and parameters
associated with the state of surface waves, such as wavelength, wave
height, fetch, wind duration, etc.). However, in lake and reservoir
situations, there appears to be no relationship for the scale of
Langmuir circulation in the literature. Although the data obtained in
Lake George studies (e.g. Scott et al. (1969), and Myer (1971)) seem
to be the most comprehensive to date, their nature prevents comparison

with those from oceanic observations. For example, Scott et al. (1969)
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measured all streaks regardless of their appearance, while Faller and
Woodcock (1964) and Maratos (1971) apparently measured only the large-
scale well-defined streaks. Faller (1971) attributed this observational
difference to the effects of different heights of the observer's viewing,
for the scale of the observed spacings often appears to be related to
the size of the boat being used. Maratos (1971), on the other hand,
measured row spacings from aerial photographs taken from a helicopter

at some height (about 366 to 91 m) above the ocean.

4.5 Some Empirical Correlations between the Langmuir Circulation

Scale of Motion and Wind/Wave Parameters.

The correlated relationships, referred to in the preceding
section and summarised in Table 4.2, are based on statistical analyses
of the observed data in order to relate the circulation scale of motion
(the convergence line spacing and/or the circulation depth to the wind
speed (Faller and Woodcock, 1964; Katz et al., 1965; Maratos, 1971)
or to the depth of the mixed layer (Faller and Woodcock, 1964; Maratos,
1971). Such simple relationships cannot be expected to portray
adequately the response of the circulation scale of motion to the
complex changes in the environmental state of the water body. However,
in such a complex phenomenon involving several variables, the method
of dimensionﬁl analysis may be applied to group the significant
variables affecting the quantities under consideration. The resulting
relationship can then be used to determine whether or not there is some

form of generalised relationship between the non-dimensional variables.
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4.5.1 Basic Rationale

To identify the significant variables affecting the
circulation scale of motion, the following view of the phenomena is
adopted.

Langmuir circulation is considered to be fundamentally
generated by wind/wave interactions, and the resulting downwelling
motion brings warm water downwards against density stratification to
a depth where stability is strong enough to resist further penetration.
This depth, where the balance between Langmuir circulation mixing and
the stability of the water column occurs, corresponds to the depth of
the mixed layer. Being inhibited at this depth, the downwelling water
accumulates and spreads laterally forming some natural equilibrium
séale of circulation apropriate to this depth and to the strength of
the supplied downward energy. If this depth of penetration is shallow
and the wind is strong, more water will be accumulated and consequently
the width of the circulation cells increases. If the erosion of the
stable interface is slow,then a quasi-equilibrium may be assumed to
exist between the cell spacing, the depth of the cell, and the wind/
wave actions which provide the energy to carry water downwards.
Therefore, the row spacing (an indication of the lateral dimensions
of Langmuir cells) is expected to be dependent, at least, upon the
depth of the circulation (the miked layer depth) and the parameters
expressing the wind/wave action, i.e.

AC = ¢ (D, wind/wave parameters) , (4.1)

in which Ac is the cell spacing, and D is the cell depth.
Generally, the most basic parameters which govern the wind/
wave actions are wind speed, fetch length and wind duration. However,

if the combined effects of wind speed, fetch length and wind duration
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can be approximately described by a single characteristic parameter

of the surface waves, such as the significant wave height (H;), or the
:

dominant wave length (Aw), equation (4.1) may then be written in a

non-dimensional form as
>‘c < Aw
ol e [3 o -_] . (4.2)

The functional relationship given by equation (4.2) forms a basis to
test an approximate generalised relationship for Langmuir circulation
scales. The choice of H% is deliberate so that the number of wind/
wave variables can be reduced to a single parameter for easy
comparison between data obtained from different places with varying
wind speed, fetch length, and wind duration. When Hj is not directly
measured, some empirical relationships are availablesto relate it to
wind speed, fetch length, and wind duration. For example, Wu (1973)
proposed an empirical formula to predict wave growth with fetch under

on
a steady wind, based,extensive correlated data of Wiegel (1964) from

both natural situations and wind-wave tanks,

: 0.466
—— = 0.0031 ( L ] , (4:3)

applicable for gF/Wyz less than 103, in which H% is the significant
wave height (defined as the average height of the largest one-third
waves); Wy is the wind speed at the anemometer height y (usually
taken to be 10 m); g is the gravitational acceleration; and F is
the fetch length.

Similarly, Bretschneider (1966) gave two empirical formulae,

in which, for intermediate fetches, i.e. Fo (= gF/W?0 ) < 1.4 x 104,



and, for fully-developed seas, i.e.

2
W

= 0.28(ﬂJ
g

wWih—

Equations (4.3), (4.4) and (4.5) are superimposed in the
diagram taken from Wiegel (1964) (see Fig.4,3).
Unfortunately, since most published data on Langmuir

circulations do not contain sufficient information to determine H; ,
3
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(4.4)

4.5)

the more general correlations such as equation (4.2) cannot be tested.

However, by the following reasoning, an approximate correlation test
of oceanic data may be made.
Usually wave fields in open seas are not fetch-limited, and

wave heights depend on wind speed and, to some extent, on the wind

duration. For low wind speed blowing for some time, the wave field is

very close to being fully developed (Bretschneider, 1966).

a case, the significant wave height (H;) depends on the wind speed alone
3

(see equation 4.5). Hence

Ae = (W),

in a non-dimensional form,

A w2
£ - f |
D gb) °’

which may then be used to correlate the observed aceanic data.

(4.6)

4.7
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4.5.2 Correlation of Oceanic Data

Available oceanic data of Maratos (1971) (Wh= 3 to 8 m/s;
D = 9 to 11 m) and those of Faller and Woodcock (1964) (Wn= 4 to
11 m/s; D = 17 to 62 m), which cover a wide range of conditions,
have been plotted in Fig. 4.4. The plotted results clearly suggest
some form of correlation according to equation (4.7). There is one
data point of Faller and Woodcock that deviates from this trend.
This deviation may be caused by the uncertainty of row spacing
measurements in the open sea. Because of lack of surface tracer,
convergence zones can exist without being visible, so it is quite
possible that this reading was taken for two, rather than one
spacing. If this row spacing were reduced by half, then the plotted
point would fall on the correlated trend. A curve has been drawn
tentatively through the plotted points to indicate this trend.
Bearing in mind the assumption made of a fully-developed sea, which
may not be strictly valid, and the unsteady features of the row
spacing, Fig. 4.4 is encouraging. Without any better correlations, it
is suggested that it may be used to estimate the scale of Langmuir
circulation at sea.

However, the results reported by Assaf et al.- (1971) do not
support this correlation. Assaf et al.'s results (Wn= 10 to 15 m,
and D = 30 to 87 m) give the ratio of cell spacing to the mixed
layer depth (AC/D) consistently about 1.0. No explanation can be
given though it is possible that the reported cell spacings and wind
speeds could have been subjected to some kind of averaging, thus
affecting the results. Faller and Woodcock's results give the
cell spacing to the mixed layer depth ratio of approximately 1.1

on the average, and so do those of Maratos. Thus it seems that, as
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a good first approximation, either the cell spacing of the Langmuir
circulation that extend down to the mixed layer dépth could be
assumed to be equal to the mixed layer depth, or better still Fig.
4.4 could be used.

As far as lakes and reservoirs are concerned, there is no
generalised relationship published for the scale of Langmuir
circulation. Lake George data are perhaps the most comprehensive to
date, but the reported data cannot be used to substantiate a
relationship such as equation (4.2). To do this, characteristic
variables pertinent to surface wind waves, in addition to those of
Langmuir circulation, must be known. If the wave heights are not
measured directly, at least fetch lengths with the corresponding
wind speeds must be recorded, so that information concerning
surface waves may be predicted by some empirical formulae such as

equations (4.3) to (4.6).

4,5,3 Correlation with Wind/Wave Parameters

In the absence of better data, éttention has reverted to
laboratory tests on Langmuir circulation in order to obtain
additional data to correlate the parameters.

Recent laboratory experiments on Langmuir circulations by
Faller and Caponi (1978) show that the scale of Langmuir circulation
may be related to the characteristic scale of the wind-generated
surface waves. In these experiments, Langmuir circulation was
generated by blowing air over the water surface. By introducing dye
(KMnOu) on to the bottom of the tank, the spacing of the cells which

extended down the water depth was observed from the regular spacing of
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the longitudinal dye bands formed across the tank (Fig. 4.5).
Faller and Caponi found that these row spacings were related to the
scale of surface waves, represented by the average dominant wave
length in their experiments. The results for various combinations
of water depths (from 2 to 15 cm), fetch lengths (1.27 to 4.77 m),
and winds (which produced wave lengths between 6 to 13 cm) were

plotted in the non-dimensional form according to the relationship

>\C }\W
T = $ (’75] (4.8)

in Fig. 4.6,'in which D is the water depth, taken to be the mixed
layer depth in natural situations. It should be noted that equation
(4.8) is basically the same as equation (4.2) discussed earlier.
The use of a non-dimensional representation makes possible direct
comparison with field observational data. Several field observations
including those of Faller and Woodcock (1964) had also been plotted
in Fig. 4.6, but these consistently fell at the lower end of the
points plotted from laboratory data.

In the absence of specific records about surface waves,
these oceanic data had been assumed to represent fully-developed seas
and wave lengths were computed from an empirical formula given by
Neumannand Pierson (1966). In view of uncertainties in laboratory and
field measurements of wavelengths and row spacings, as well as other
experimental errors, it is quite plausible that a universal relationship
in the form of equation (4.8) may exist. A smooth curve drawn
through the cluster of experimental points, passing generally to the
left of the oecanic data to account for the possibility that the

sea might not be fully-developed, demonstrates the relationship
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A A,
5 = 4.8 [1 - exp {- 0.5 5—-} } , (4.9)

in which D is the water depth in the wind-wave tank or the mixed
layer depth for natural cases; Aw is the dominant wave length of

the surface waves. The scattering of the oceanic data was attributed
to the influences of such factors as the surface heat flux, internal
waves, the strength of the thermocline, etc., which may not be
significant in the laboratory tank. Faller and Caponi (1978)

also discussed in detail some other lines of reasoning that equation
(4.9) might not be applicable as a universal relationship.

In order to corroborate Faller and Caponi's results, an essenti-
ally similar experiment was conducted by the author (Chapter 8).
Results obtained, also plotted in Fig. 4.6, follow those of Faller and
Caponi. In this experiment the significant wave height (H;) was also
measured and used as the principal variable rather than th: wave
length. Results according to equation (4.2), i.e. XC/D = ¢(H%/D),
are given in Fig. 4.7. The figure shows that the scale of Langmuir
circulation can also be correlated by'equatibn (4.2), and a smooth
curve has tentatively been fitted through the plotted points. It should
be noted that these results are no more accurate than those used to
establish equation (4.9).

To test the prediction of Langmuir cell scale of motion for
fetch-limited situations such as those in lakes and reservoirs, a
typical state of water surface leading to streaking in Lake George
as given in Liebovich and Ulrich (1972) may be used: values for
Qavelengths varying from 2 to 4 m, the average amplitude of the

order of 4 cm when the wind speed is 4 to 5 m/s. For this wind

speed, the tYpical depth of Langmuir circulation (or mixed layer)
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estimated ffom-Myer's (1971) data is about 3 m. Taking H; to be 1.61
times the average wave height, as suggested by Wiegel (1924)»Hl

is estimated to be 12.3 cm, which leads to Hl/D = 0.0234 and ’

AW/D = 0.545. Curves in Fig. 4.6 and 4.7 prSdict the ratio of

row spacing to cell depth of 1.3, which lies in the range of value

1 to 3 reported in Myer (1968, 1971). Myer also quotes a

typical value as 1.4. Another condition given by George and Edwards
(1973, 1976) for a shallow reservoir has been considered. In Eglwys
Nynydd in Wales, Langmuir circulations with row spacings of 4 to 6 m
were observed to extend to the bottom of the reservoir, whose depth

is 3.5 m on the average. Taking a typical wind speed to be 4 to6 m/s
and the fetch length of 800 m for the mid-lake conditions, H;/D

is estimated to be 0.029 and this, by Fig. 4;7,gives a predizted value
of AC/D = 1.5. Comparing this predicted value with the observed cell
spacing to depth ratios of 1.14 to 1.70, with an average of 1.43, the
prediction by Fig. 4.7 is considered satisfactory.

Since no better methods exist for the prediction of Langmuir
circulation scale, the correlation given by Fig. 4.7 in terms of
the significant wave height is used to give an estimate of the
relative size of Langmuir circulation cells in lakes.

More accurate and extensive observations in laboratories and
natural situations and a significant overlap of the data are desirable
in order to substantiate equations (4.2) and (4.9). In laboratory
experiments conducted so far, the relative scale of wave height to
the depth of mixed layer is large and probably not realised in the
natural situation. In real situations, however, the scale of the
waves is relatively small especially in the fetch-limited situations.
Therefore most prototype data fall on the lower end of the scale.

But while one can rationalise the difference between the two types of
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observations so that a single curve appears to fit all data, it
may be argued that the two classes of data arise from different

physical situations and thus may not fall on the same curve.

4.6 Velocity Observations and Correlations

- There is unanimous agreement that the surface velocity in
the direction of the wind is larger in convergence or streak zones than
out of them. Langmuir ,laid a cord on the surface perpendicular to
the streak lines and noted that it developed well-defined waves,
forwards (in the direction of the wind) in the streaks and backwards
out of them (see Fig. 4.1). Gordon (1970), Harris and Lott (1973),
Ichiye (1967), and Katz et al. (1965) using computer cards and dye
have all noted the same effects and have variously estimated the
shear velocity between the flow in the convergence and divergence zones
as 1 to3, 5tol0, 6 and 17 cm/s.

There have been several attempts to measure the downwelling
velocity in the convergence zone, and the corresponding upwelling
between them. Langmuir, Scott et al., Sutcliffe et al. (1963) and
Harris and Lott used drag plate current meters. Langmuir also watched
the downward motion of dye in a convergence zone, while Gordon
estimated the upwelling velocity from the rate of divergence of
coloured dye. Myer (1971), in addition to dye studies, estimated
vertical velocities from the displacement of isotherms (Fig. 4.2). He
found the downward motion to be concentrated in the form of narrow
jets under .streaks (i.e. 0.2 to 1 m; c/f the observed row spacings of
2 to 10 m) with the downwelling velocity increased from the surface

and maximum at about half the depth of the circulation ( the depth
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at which isotherm displacement was no longer observable). Myer
observed that the downwelling speed appeared to decrease below this
maximum to zero at some lower depth. From repeated crossing of the
same streak, maximum downwelling speeds in the jet were estimated
to be 2 to3 cm/s in stable conditions, and 5 cm/s or more in
unstable conditions. Woodcock (1950) measured the vertical velocity
necessary to submerge the pelagic Sargassum that accumulate in the
streaks. Maratos (1971) compared the sinking rate of fine sand in and
between the streak zones with the sinking rates in still water to
estimate the vertical velocities in Langmuir circulation.

Faller (1971) reviewed dataﬁpn downwelling (prior to 1971)
and correlated the vertical downward velocity (wd) with the wind

speed (Wn) by

_ -2
wy = 0.85 x 10 Wn, for Wn> 3 m/s, (4.10)

which gives the downwelling speed roughly 1 cm/s per 1 m/s wind.

The plot of Wy V.s. Wnas published by Scott et al. (1969), which

includes data of Sutcliffe et al. (1963), Woodcock (1944), as well as
data collected from Lake George, is shown in Fig. 4.8, on which

equation (4.10) is represented. Harris and Lott's (1973) data from

Lake Ontario have also been plotted and these can be fitted approximately
on the same straight line, though some scatter of points about the

line is observed. The scatter of Lake Ontario data may probabiy

indicate that w3 is not dependent solely on Wn. Recalling the previous
discussion that Langmuir circulation may be related to wind/wave

action, a speculated correlation therefore is,

Wy H)
3
——— = ¢ (—D——] . (4.11)
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For oceanic situation, where H; can be described by wind speed,
3

this relation becomes
2 2
w W
4 [_E] . (4.12)

Whether or not these correlations are valid cannot easily be tested
from the existing published data, because not all relevant parameters
required in equations (4.11) and (4.12) were measured in the field
test programmes. For the present, therefore, equation (4.10) will

be used to compute the maximum downwelling velocity.

So far as is known, complete measurements of the velocity fields
associated with Langmuir circulation have never been attempted, for
example, very few observers have measured upwelling velocities.
Langmuir (1938) estimated the upwelling rate between dye streaks as
1 tol.5 cm/s, about one-half of the downwelling velocity, which he
observed. Gordon's (1970) estimate, made from dye observations, was
similar.

A few references to horizontal velocity measurement
perpendicular to the wind can pe found (Langmuir, 1938 ; Woodcock,

1944 ; Harris and Lott, 1973 }. Although these velocities can be
inferred from tﬁe convergence of floating materials into streaks,
only Langmuir has estimated their magnitude. By tracking surface

debris he estimated a transverse velocity to be 2 to 3 cm/s.
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Theories of Langmuir Circulation

Theory

Convective instability,
rolls aligned by wind.

Coupling with atmospheric
rolls.

Modification of wind
ever surface slicks.

Instability of Ekman
spiral.

Damping of capillary
waves in slicks provides
radiational stress to
drive rolls.

Interaction of two
linear wave-trains.
"Eddy pressure" of
surface waves.

Interaction of pairs of
inviscid wave trains in
in a shear flow.

Instability of shear
flow in a rotating
system.

Interaction of pairs of
viscous wave trains in a
shear flow.

Interaction of waves and
with
(a

surface current,
wave dissipation
"feed-back loop"

Interaction of wave
trains with shear flow.

Interaction of wind and
pairs of wave trains, an
integration of Navier-

Stokes equations.

Instability of random
wave field with an
average uniform Stokes'
drift, likened to
thermal convective
instability.

Origin

Analogy with atmospheric
boundary layer, see
review by Kuettner
(1971) .
Unknown, mentioned by
Stomrael (1951).

Welander (1953).

Faller (1964).

(1967) ; a
forerunner of Garret's
(1976 ) theory/ below.

Kraus

Stewart and Schmitt
(1968)

Faller (1969).

craik (1970).

Gammelsrdd (1975)

Craik and Leibovich
(1976) .

Garrett (1976)

Leibovich (1977),
Leibovich and

Radhakrisman (1977).

Mobley and Faller (1977)
Craik (1977), Leibovich
(1977b) .
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4.1

(mainly after Pollard (1976))

Present status

Not a primary mechanism, as cells often observed to
grow in stable conditions and break down stable

stratification.

Discontinued, atmospheric vortices move too fast

over ocean surface.
Discontinued, atmospheric vortices move too fast
'over ocean surface; energy supply 100 times too
small (Myer, 1971).

Not a primary mechanism, cannot account for the
observed growth rates.

Discontinued, as cells may exist in the absence of
surface contaminants. Also energy supplied too

small to explain the observed rates.

Discontinued, cannot provide vorticity.

Discontinued, cannot provide vorticity.

Discontinued by Leibovich and Ulrich (1972),
inviscid theory creates vorticity of wrong sign.

predict cell
(Pollard,
cells cannot grow to detectable level

1977) .

Appears unlikely, basic state doubtful,
structure in conflict with observations
1976) ;
(Leibovich and Radhakrisnan,
Appears unlikely, predicts maximum wave amplitudes
in divergence zones in conflict with observations.

Qualitatively, can explain all observed features of
circulations; requires quantitative testing
(Pollard, 1976); model deviates from the understood
usage of wave-mean-flow interaction analysis,
(Leibovich

1977) .

several assumptions need justification
and Radhakrisnan, 1977; Mobley and Faller,

Time-independent version of basically the same model
of Craik and Leibovich (1975);
appropriate for the action of the model mechanism,

under conditions

numerical solution of primitive Navier-Stokes
(Mobley and
wave height highest in upwelling

but authors

equations shows no Langmuir circulations
Faller, 1977);
regions in conflict with observations,
raise doubt about field observations; untested.

Early yet in development, still some doubt as the
rate of growth of vortices heavily depends on the

grid size used in numerical integration; untested.

General physical processes similar to Craik and
(1976) and Leibovich (1977a),
(Mobley and Faller, 1977);

Leibovich
would fail

probably
untested.
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Fig. 4.2 Downwelling velocities under streaks breaking
through stable stratification (from Scott,et al.,1969)

(a) Thermal structure near the surface layer for a case in
which streaking was just beginning. First streaks were observed

at 3 minutes after time =zero.
at 1 minute past time zero.
for more than 10 minutes.

(c)
(After Myer, 19

(b) Streaking had been observed
Streaking had been observed
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Dimensionless wind speed, .W_z
gD

_Fig.44 Correlation between the row spacings_with wind speed

and depth of the mixed layer (oceanic data).
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 5 A MODEL OF LANGMUIR CIRCULATION AND THE TURBULENT

DIFFUSION COEFFICIENT RELATIONSHIP

A model of flow pattern and the eddy diffusion coefficients
within a Langmuir cell are described. These relationships are
empirical, with the flow model containing several of the observed
features discussed in the preceding chapter and the turbulent
diffusion coefficient being connected to the wind speed. 1In
combination, these provide an adequate representation, for the
present study, of the turbulent flow in a typical Langmuir cell in

the mixed layer.

59.
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CHAPTER 5 A MODEL OF LANGMUIR CIRCULATION AND THE TURBULENT

DIFFUSION COEFFICIENT RELATIONSHIP

5.1 The Langmuir Circulation Model

An empirical model of the circulation within Langmuir vortices
will be developed for the present study, using the information on the
observed characteristic features of the circulation and how these
features vary with the environmental conditions, which were
established in Chapter 4. Since it is based on few observed parameters
and on limited knowledge of the magnitude of the downwelling and
upwelling velocities, it is not possible for the model to be
sophisticated. However, it contains several essential characteristic
features which are observed in the real situation. The following
assumptions are made:-

The two-dimensional circulation cells should have an
asymmetrical shape because of the difference in the downwelling and
upwelling velocities. The water motion is intensified in the form of
a jet under the convergence zone, with the width of the downwelling
jet assumed to be 0.1 of the convergence line spacing (row spacing),
approximately corresponding to the observation reported by Myer (1971)
The depth of the circulation is taken to be the mixed layer depth.
Small-scale or transient circulations, when existing, will extend only
a short distance down from the water surface in comparison with the
circulation scale of interest (the mixed layer depth) and, hence,
will be ignored. Wave motions will not be considered, the lake
surface being assumed to be a rigid 1id. Myer (1971) observed that the
downwelling velocity appears to increase from the water surface to a

maximum value somewhere around the mid-depth and decreases again to
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zero at the bottom of thé cell. Therefore, at depth z = 0.5 D,
where D is the total depth of the cell, as shown in Fig. 5.1, the
flow is assumed to be non-divergent and the vertical velocities
approach their maximum values. At this depth the downwelling and
upwelling are assumed to vary sinusoidally in the y-direction

across the cell width, in which for 0 <y < 0.4 X,

c
W(y,z = 0.5D) = -W_cos |22X
1 . u B\ ;
V(}’,Z = O.SD) = O 5
and for 0.4X_ <y < 0.5% _,
c c
.
s =0 = oo (F-5X]
~C
<
V(y,z = 0.5D) = 0,

where W(y,z) and V(y,z) are mean vertical and horizontal velocities

at point (y,z), respectively; Wu is the maximum upwelling mean
velocity; wd is the maximum downwelling mean velocity; and AC is the
row spacing. The coordinate system is shown in Fig. 5.1. The
variations of the vertical velocities are also assumed to vary
sinusoidally with depth z. The appropriate expression for the vertical

velocity components are given by

Sty . TZ .
- Wu cos (Ej\—;] sin (—-[-)—] , for 0 £y g O.4>\c 5 (5.1a)
W(y,z) =

5w Sy . TZ
Wy cos (—— - ——;J sin (TTJ , for 0.4AC £y g O.SAC. (5.1b)
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From continuity, LU 0, from which

{4 Ac S5ty .
gwu ) sin (ﬂ;’] cos (D] , for 0 £y ¢ O-4>\C 5 (5.2a)
V(y,z) =
1 >\c 5w Sty mZ
| g-wd 5 sin {—5'— —KZJ @Tﬂ , for 0.4A. £y ¢ 0.5>\c (5.2b)

Also from the flow continuity consideration,

Wy - (5.3)

The mean flow pattern may be obtained from these velocities by

defining V = %%— and W = -%% , in which ¢ is the stream function:
4 Ac Sy mZ
p = §'wu — sin &IX;J sin {—5J , for 0 sy £ 0.4X. ; (5.4a)
and,

1 Ac S S mZ
v = 75..wd = sin f__ - __ZJ sin {——] , for 0.4X, sy ¢ O.SAC.
(5.4b)

The flow pattern according to the above equations is plotted in Fig. 5.1.
Equations (5.1a) and (5.1b) result in an upwelling velocity

smaller than that deduced from Langmuir's observation (1938), the

latter being about %—to %-of the downwelling. With the assumption of

sinusoidal variations, larger value of W, could be obtained by

increasing the width of the downwelling jet, for example, if the jet width
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were 0.167>\C s Wu equals %‘Wd . However, such a large size of

downwelling jet is in conflict with Myer's observation. In view

of the uncertainties in the field measurements of the upwelling and

downwelling velocities, it will be assumed that the model equations

(5.1), (5.2) and (5.3) are representative. This is a crucial

assumption since the particle distribution in a Langmuir cell may be

expected to depend on Wy; as well as on the general flow pattern. It

is noted that Assaf et al. (1971) have also used Wu = %—Wd in their

analysis.

To relate the circulation flow field to the environmental

parameters, the downwelling velocity wd is expressed in terms of the

wind speed W by the empirical equation described in Chapter 4,

Wd =

0.85 x 1072 W, . (4.10)

Expressing the velocity components in non-dimensional form,

using the non-dimensional variables described in Chapter 3, the

equations become

W (y*,2%) = A

1

and,

Vi(y*,z%) =

\

f

*

W *
- Tg-cos (%gz;J sin (wz*), for 0 < y* < O.4Ac*; (5.1a")
c
* *
Wd* cos (E% - %2%-} sin (wz*), for 0.4Xc < y* < O.SAC*;
(5.1b")

*

W
d * . Smy*
—— ¢ sin [%] cos (mz*), for 0 < y* £ 0.41_%; (5.2a")

*

w *
< A" sin (5—” - 51'2’—] cos (mz*), for 0.41_% 5 y* £ 0.50.%;

*
27X,
(5.2b")
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and,

W = 0.85x 1077, 4.10")
in which,

Wro= W/Woo; 0 VE o= VW WgR o= Wg/Wyo

y* = y/D ;  z*¥ = z/D ; A* = Ac/D

Since Wd* is a constant, the only variable required to specify the

non-dimensional mean velocity field is Ac* (= AC/D).

5.2 Estimation of the Turbulent Eddy Coefficients (e, and eyl

In the present mathematical model, the mass transfer coefficients
for suspended matter in the lake environment have been assumed to be
equal to the turbulent coefficients for momentum transfer (eddy viscosity)
which are related to the Reynolds stresses, generated by the wind.
These eddy coefficients are not only a function of spatial location
but also depend on wind speed, current structures, and the thermal
stability of the water. The latter factor is known to suppress
turbulence and hence to reduce vertical turbulent mixing. In the
mixed layer, however, the temperature distribution is essentiallyv
uniform and the effects of density stratification may be ignored.
Hence the eddy coefficients may be assumed to be described by their
neutral values.

Little is known about the form of these eddy coefficients.
Direct determinations from the statistical properties of turbulence
fluctuations, or from the concept of turbulent energy cascade processes
through eddies of various sizes, are not sufficiently well-developed
for practical applications. In practice therefore, eddy coefficients

are specified by some form of empirical or semi-empirical relationships
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with little support from fundamental studies. Sometimes, indeed,
they are regarded as being constant. Despite this difficulty, an
empirical model of vertical eddy coefficient is adopted for this
study. This model proposed by Bengston (1973), in which the eddy
viscosity in the vertical (ez) is related to wind speed and the

depth of the thermocline (the size of the largest eddy scale) by

e 2.0 x 107 W_D (5.5)

and is taken to be constant through the depth of the mixed layer.
This model is simple and satisfactorily predicts a greater rate of
turbulent mixing with wind speed and with increasing thermocline
depth. The latter implies enhanced mixing due to turbulence and
hence a greater diffusion coefficient. However, the model is based
on field data derived from small to moderate-sized lakes, where the

thermocline depth was not greater than 15 m.

*

Defining €, ez/(Wn D), equation (5.5) is rewritten

-5
2.0 x 1077 . (5.5")

Field measurements show that the horizontal coefficients of
diffusion are larger than those in the vertical direction by about one
to two orders of magnitude. This difference arises from the
different scales of horizontal and vertical turbulence. The horizontal
diffusion coefficients are found to be strongly dependent on the

spatial scale and follow the 4/3-power law (Murthy, 1972), in which

WIF

1
3

g, « const. €°2° ;| where g, is the horizontal eddy coefficient of

H H
diffusion; € is the rate of turbulent energy dissipation; and 2 is the
length scale. Density stratification in the water column affects the

vertical diffusion and this reinforces the difference between the two

diffusivities. Hence, when dealing with the local scales of the order
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of few metres or less (as is the approximate size of the computational
grid used in the present numerical study) one cannot be certain

of their relative magnitudes. However, it is generally admitted

(e.g. Bowden, 1970) that, for a scale of the order of metres or less,
Kolmogorov's laws of locally isotropic turbulence apply fairly well

in all three-dimensions. Therefore it could by assumed that, if the
computational grids are small enough and density stratification is
negligible, then the eddy coefficients of diffusivity may be regarded

as isotropic. i.e.

€ = ¢ . (5.6)
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 6 THE FINITE DIFFERENCE APPROXIMATION

A finite difference numerical method is used to approximate
the partial differential equation governing the advection and
diffusion transport of suspended particles. This chapter gives the
summary of the governing equations established in the preceding
chapters, followed by a description of the finite difference
representation, the treatment of initial and boundary conditions,
the input variables, and some practical tests on stability and
accuracy of the finite difference scheme.

The computer program listing and corresponding flow chart

are given in Appendix I.
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CHAPTER 6 THE FINITE DIFFERENCE APPROXIMATION

6.1 Summary of Equations

The basic equation is the dimensionless mass balance
equation for the suspended particles in two-dimensional flow,
written in conservation form:

*
aC 3

+
*

at*  ay 2*

.. * *
3 * *, Lk 3 + oC 3 * aC
(v*c*) + (W*+ wHc*y = [e ] + [e ,
3 [ PC ] ay* LY ay*) az* Uz az*)t

(3.12)

in which the starred quantities are the non-dimensional variables
given in equation (3.11). C* denotes the mean concentration of
particles; t* is time; y* and z* are the cartesian coordinate
system; V¥ and W* are the mean horizontal and vertical velocity
components of the flow; w;’ is the sinking speed of the particles;
and e;: and e; are the eddy diffusion coefficients. In non-
dimensionalising these variables, the characteristic length (Lo)

is the depth of Langmuir cell D , the characteristic velocity (Uo)
is the wind speed Wn , and thé reference concentration (Co) is
the initial concentration.

The velocity distribution in a Langmuir cell is given by

the non-dimensionalised velocity profiles:

( W; Say* * : *
- 7r-cos(2i—¥-]sin(wz ) , for 0 ¢y < 0.4A:', (5.1a")
~ C .

Wo(y*,2") = <

. *
wd* cos( L 5“1’ } sin(rz™), for 0'“:5 y* < o.sxc* ,

(5.1b")
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and, ( Wd* . Sy * . . .
TT'AC 51n(27;r] cos(mz ), for 0 gy ¢ O.4>\c N
Viy*,z") = < (5.2a")
wr «
d .x . |5 Sty * * * *
L = Xc 51n[2 b ]cos(nz ), for 0.4Ac £y ¢ O.SAC,

(5.2b")

in which the maximum downwelling velocity Wi‘ (= wd/wn) is given by

the empirical equation,

* . -2
Wd = 0.85 x 10 . (4.10")

The eddy diffusion coefficients are assumed to be constant over

the Langmuir cell region and given by the empirical relationship,

y (— e [ 2] -2 k10 5.5
Ey‘—-@)‘)—ez —-@-— x 1 . (,.)

In the subsequent discussion, for convenience, the superscript
(*) will be dropped from the non-dimensional variables.

Basically, for a given spatial distribution of velocities and
diffusion coefficients and specified initial and boundary conditions,
equation (3.12) can be solved by integrating the finite difference
equation which approximates to it. The solution is advanced in time
to yield distribution of particles in a Langmuir cell at various

time intervals.

6.2. Finite Difference Representation

The flow region corresponding to a single Langmuir cell is
divided into a finite number of grid volumes by a rectangular mesh

as shown in Fig.6.1. The variables are defined at the intermediate
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lﬁcations given in Fig.6.2, in which the concentration is specified
at the centre of the grid volume, and the velocity components and
diffusion coefficients are located at the interfaces of thé grid
volume. This grid structure allows the finite difference approxi-
mations to equation (3.12) to be derived directly frbm the integral
form of the mass conservation law for each volume element. The
procedure has several advantages over other grid arrangements,
including better physical interpretation of each term in the finite
difference equation and ease of handling of the boundary conditions,
and the resulting finite difference schemes conserve mass of particles
over the flow region.

Because the explicit finite difference schemes have been shown
to impose severe restrictions on the integration time step to be
prohibitively small for stable solutions of equation (3.12), an implicit
method of solution is adopted. The alternating-direction implicit
(ADI) method proposed by Peaceman and Rachford (1955) has been used.
This method makes use of a splitting of the time step for multi-
dimensional problems to obtain an implicit formulation, which requires
only the inversion of a tridiagonal matrix in the solution. It
possesses several good properties, first, for linéarised problems, its
accuracy is to the second order in time and space. Then, when used
with centred-space derivatives, the scheme is free of numerical
diffusion (Roache, 1972; Peaceman, 1977), a desirable property inlthe
present context. Further, the anticipated unconditional stability of
the method allows larger time steps than could be obtained by explicit
methods.  The scheme is efficient and well suited to problems with

rectangular boundaries.
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Applied to the particle mass transport equation (3.12), the
Peaceman-Rachford alternating-direction implicit (ADI) method advances

the solution from time level n to n + 1 1in the following two

steps:-
Step 1: (Row sweeping, i.e. explicit in z- , implicit in y-)
Ci*j*' Cij s x* g n. 8 sc)”” s 5" 6,
At/2Z =-g-)—,-(VC) —EE(WSC) +-6—}-;(€y'gs; ‘+3.z—{€.z-6—z_"°)

Step 2: (Columm sweeping, i.e. explicit in y- , implicit in z-)

n+l *%
C.. - C.. * %k +Y
Al i . 8 .8 n+l 8¢ 8C S &€

At/2 8y Vo) 8z (wsC) * 8y sy Sy T 52|52 32 » (6.2)

in which, Ci. " are the cbncentrations at the centres of grid volumes;
g%-, etc. are the finite difference analogues of the space derivatives.
The intermediate values CI; have no physical meaning. Ws stands for
the vertical component of velocity for solid particles, and is equal to
W+ WT . At is the time interval between time levels n + 1 and n .
Centred differencing is used for space derivatives. Referring

to the grid structure and variable locations in Fig.6.1 and 6.2, the

space derivatives are approximated by

3(VC) . 8(VC) _ VE.CE - VW.CW
= i o (6.3)

Advection across _ Advection across
. the right face the left face

Ayij J ’
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BINC) SO s cs - Ny

3z 8§z Az. . ’
1)

(6.4)

_ the bottom face " the top face

Az, . J>
1]

J Advection across Advection across }

where VE, VW, WS, WN and CE, CW, CS, CN are the velocities and
concentrations at the right, left, bottom and top of the grid volume,
respectively. The concentrations at the interfaces are inter-

polated from the values at the centres of the two bordering volumes.

That is,
CE = (1 - SE).cij + SE.Ci+1,j l
> (6.3.)
CW = (1L - SW.C. . . + SW.C., J
' i-1,j ij
where SE = (yi+1 - yi)/(yi+2 -,
and  SW = (y; -vy; )/ (v, -y -
Similarly,
csS = (1 - SS).cij + ss.cij+1, 1
J> (6.4)
CN = (1 - SN).Ci’j_1+ SN.Cij.
where SS = (zj+1 - zj)/(zj+2 - zj) s
SN = (Zj - Zj-l)/(zj+1 - zj-l)'

73
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For uniform grid spacings, SW, SE, SS and SN are all

equal to 0.5.

The diffusion terms are differenced as follows:-

3C) aC
y 3yl ~ v 3y)y
_a_{e ac)
9z |y dy)
Ayij
€ €
- —YE (¢ c..) AN C )
- . . = - » = . A N e = . . s
Ayij-AyE i1+1,] 1] Ayij-Ayw 1] i-1,]
— v ~ b ' —
Diffusion through Diffusion through
the right face the left face.
(6.5)
and,
€ €
a( ac] zs ZN
— e, —| = 5¥————— (¢, ., . -C..) - —— (C., -C., . )
9% Z 93z Azij.AzS ;,J+1 ij Azij.AZN 1) 1,7-1
— 7 - = ~ —
Diffusion through Diffusion through
the bottom face the top face.
(6.6)

Tt can be shown that the above finite differencing is capable of
physical interpretation and obeys the integral conservations of mass
over the grid volume (ij).

Substituting equations (6.3), (6.4), (6.5), (6.6) into
equations (6.1) and (6.2) and re—arranging terms, the following

equations are obtained:



For the first one-half time step (y-sweep),

* % * % *ode
. C. . + BB..C.. + CC,.C., . = DD, (6.7)
i "i-1,3 - 1 13 1 1+1,)]

in which the coefficients are given by

U A =) N At.e y ]
i ~ 17 - D
i i 2Ayij 2Ayij.Ayw
[, . At.VE.(1 - SE) At.vWw.sWw . “t-SuE At.e g
BB; =11+ 78 T 78 ¥ Zby...hy. | Zby...A
L Yij Yij Y158 Yij Sy
cCc. - [At.VE.SE At.evp }
s - s
i i 2Ayij 2Ayij.L\yE
CAt.WN.(1 - SN) . Ot-Can @
DDi = 2Az ¥ 28z, ..5z R
L ij ij %N t2J-1
L[, _At.WS.(1 - SS) | At.aN.SN _ OFfps  AT-Egy @
' 2hz, . 20z, . 2Az, . .AZ 2Az, . .Az ij
ij ij ij S ij N
. [_ at.ws.ss | 4% Css ]
2Azij 2Azij.AzS i,j+1
For the second one-half time step (z-sweep),
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Equations (6.7), (6.8) result in a tridiagonal system of linear
simultaneous equations which can be efficiently solved by the Thomas
algorithm (von Rosenberg, 1969) which is a modified Gaussian elimination
procedure. However, in order to keep the round-off error from building

up, the tridiagonal matrix is required to be diagonally dominant, i.e.
BB| > [AA] + [ccf (6.9)

for every row of the matrix. Diagonal dominance results if the cell

VA WgAz

_e—y and ——e—-] <2, In the case of the cell Reynolds
y z )

number > 2, limitations on the size of the time step At has to be made

Reynolds numbers

to satisfy the conditions in equation (6.9). A criterion is used, in

which the time step

. . 2 Ay L 2 Az
At s_.mln.{mln. TVET < WD min. TwsT - [WN[)} . (6.10)

6.3. Initial and Boundary Conditions

The initial and boundary conditions applicable to the problem
are as follows:-

(1 Initial condition

The initial distribution of particles in a Langmuir cell is

assumed to be uniform.
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(2) Top and side impermeable boundaries (boundaries Bl’

B, and B; 1in Fig.6.1)

The physical condition at these boundaries requires that there
will be no advective and diffusive fluxes of materials across the
boundaries. Using the grid structure shown in Fig.6.l1, this requirement
is handled by setting to zero the adVective and diffusive flux.terms on
the faces of the grid volumes that coincide with the boundaries.

(3) Bottom permeable boundary (boundary B4)

There is no diffusive flux across this boundary surface.
Only an advective fiux can take place. These conditions are satisfied
by putting the diffusive flux terms for the faces of the grid volumes
lying along this boundary to zero. The non-zero advective flux which
gives rise to the sinking loss of material from the Langmuir cell, is
compufed from the values of the concentrations and velocities at the
boundary. The concentration values are estimated by linear extrapola-
tion from the values of the concentrations at the centres of two interior
grid volumes nearest to the boundary, i.e., referring to Fig. 6.1 and

6.2,

(6.11)

cs - SNZ).Ci + SNZ.C.
3

i Nz-p = (- NZ-1 i,NZ-2 °

in which SNZ = - (Z.. - Y/ (Zer - ) , and (NZ-1) is the
Iz - Iz Nz - Nz,

number of grid volumes in the z-direction.

6.4. Values of the Input Variables

Values of the independent variables of the problems, representing
typical conditions found in lakes and reservoirs, are listed in Table
6.1 in their dimensional magnitudes. When combined, these variables

yield 4 basic non-dimensional variables which are also tabulated in



Table 6.

1. Hence, given an initial concentration of particles in

non-dimensional unit at time zero, the particle distribution and

*

changes in their total mass in a Langmuir cell at various time t

*
to T
sinking
A.

1

. Time of simulation =

. Row spacing/cell depth (A: =

. . . . . *
can be determined for various combinations of cell sizes AC

(rising) speed w;

Table 6.1

Values of Variables

Dimensional variables

. Depth'of the mixed layer

= Langmuir cell depth (D)

. Row spacing/cell depth (AC/D)
. Wind speed (Wn)

. Sinking (or rising) speed of

particles (WT)

time that Langmuir

circulation phenomena vary significantly
Initial concentration

Non-dimensional variables

A /D)

. Particle sinking (or rising) speed

(W; - wT/wn)

Time of simulation (T* = TWn/D)

Initial concentration (CS)

Ranges of values

3 to 10m
0.5 to 2.5

3 to 10 m/s
1 to 200 m/day

1 hour, or more

any value

0.5 to 2.5

1077 to 1073

102 to 5 x 10"

100
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6.5. Some Practical Tests on Stability and Accuracy of the

Finite Difference Scheme

Some knowledge of the stability and accuracy of the adopted
finite difference scheme may be acquired by comparing the computed
numerical results with the known solutions of the equations of similar
type. Comparisons of this nature aids wverificatiom of computer
coding and provides indication of the optimum grid length and time step
sizes to be used in solving the problem. Since there is no closed
form solution available for the two-dimensional advection-diffusion
equation, a simplified one-dimensional equation (c.f. equation 3.12)

having a known analytical solution has been used, in the present study,

for comparison tests. This equation is
ac | Ji.(uc) = e ?ZC (6.12)
at  ax T tx x% ! :

in which C 1is the concentration; U is the constant velocity;
€4 is the constant diffusion coefficient; x and t are the distance
and time, respectively. These varisbles are non-dimensional.

Subjected to the following initial and boundary conditions:-

C(o,t)

= 1.0 , for t 30
C(x,0) =0 " x>0
C(“,t) =0 "t 2 0 )

the analytical solution is given by (Ogata and Banks,1961)  *

C(x,t) = %-exp [gfq erfc ri—:égzjl + %-erfc {E—l—EET] » (6.13)
X 2(ext)2 2(ext)§



&0

in which erfc [ ] denotes the complementary error function. The
solution is exact for 0 ¢ x £ 1.0 , provided that the concentration
front has not advanced more than %- from x =0 . In the calculations,
the diffusion coefficient e is set equal to 2 x 10" and the
velocity U 1is varied between the values anticipated in a Langmuir

cell, i.e. from 1003 to 9.5 x 1073 , and numerical solutions are
obtained for several combinations of grid sizes and time steps.

In all cases, uniform grids have been employed, ranging from 20 to

100 grid points, The results of some of these comparisons are
shown in Fig. 6.3 to Fig.6.9.

The numerical solution has a general tendency to oscillate

about C = 1.0 in the region behind the front. This overshoot (or
wiggle) is a typical characteristic of the centred-in-distance
differencing of spatial derivatives. The overshoot decreases as
either the diffusion coefficient or the number of grid intervals
increases. Reducing the time step At does not improve the situation.
Roache (1972) has found that, by keeping the grid Reymolds number
ng% to be less than 2 , these overshoots can be eliminated. This

€
X

condition places a rather severe restriction on grid size to be
excessively small and, consequently, requiring very small time step
length, which is impractical. However, for the present grid arrange-
ment, the shape of the front is well represented, in general, énd no
large artificial (numerical) diffusion is apparent, indicating that the
alternating-direction implicit method, with centred space differencing,
possesses minimal artificial diffusion. For the severest case, when
U=9.5x10° , the comparison shows that satisfactory resolution
and accuracy can be obtained with a 50 wuniform grid when the

dimensionless time step is about 2 , with some oscillation occurring
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over parts of the solution. Fig.6.9 shows clearly that arbitrarily
large values of At cannot be used in this scheme even though the

von Neumann stability analysis indicates unconditional stability.
Nevertheless, the alternating-direction implicit scheme has been found
to permit the use of larger time step lengths than would be possible
with typical explicit methods, thus saving considerable computer time
in long simulation rums. |

A time step length as large as 4 dimensionless units has
been found to satisfy the condition for diagonal dominance of the
tridiagonal matrix (equation 6.9). Trial runs have been made to
solve the twq—dimensional advection-diffusion equations for the Langmuii
circulation problem (equation 3.12), using this time step length and a

50 x 50 uniform grid. In this case, no overshoot was observed and
thé solution remains stable even when the time step is increased to

10 dimensionless units. But, using this large time step,(10 units), the
tridiagonal matrix is no longer diagonally dominant and hence inaccurate
solution might have been obtained.

The disappearance of overshoots in the two-dimensional cases
when the flow velocity is. variable throughout the flow field is
similarly noted by Roache (1972). He has observed that no overshoot
is experienced if the Reynolds number of the grids in the vicinity of
the flow boundaries are kept below 2 . In the présent case, the

maximum velocity at the boundary grids is 1073 , and using with 50

uniform grids, i.e. Ay = Az = 0.02 and with e =¢_ =2 x 107° R
L,

the maximum grid Reynolds number is 1 x 10 TSO.OZ = 1.0 , thus
2 x 10

confirming Roache's observation.
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Grid
Volumes VE =V(i,j) average velocity
N over the right face
|' VW= V(i-1, j) = average velocity
N Cli j) over the left face
W l VWl _;_ _ls-VE WS=W(i,j) = average velocity
l over the botfom face
l WN=W(i j-1) =average velocity
S
WS over the top face
y(i-1) y(i) y(i+1) y(i+2)
_l = Ayw T AyE L .
‘ y ‘ Z(j“')
J ‘
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+Z |
|
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AZ Ci=ridh e C0 3yl Syl
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E E
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Y [W(ij) :
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Fig_6-2 Variable definitions and locations
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 7  NUMERICAL RESULTS AND THEIR ANALYSIS

Computed time-distributions of particle concentration in
a Langmuir cell were obtained by numerical solution of the finite
difference equation developed in Chapter 6, for various conditions
of cell geometry and sinking (or ascending) speed, starting from an
initial uniform distribution. Some examples are shown to illus-
trate the general distribution patterns of both buoyant and |
settleable particles in the cell. To assess the relative signi-
ficance of Langmuir circulation effects in modelling particle
distribution and sinking loss, predictions of time changes in the
mass concentration within the mixed layer which have been obtained
from conventional zero- (well mixed epilimnion) and one-dimensional
models are compared with those computed by the present two-dimensional
representation. A method by which the effects of Langmuir
circulation could be included in these conventional models is outlined.
Finally, a comparison is made between the Langmuir circulation's
effect on loss rate, predicted by the present model, with that of

Titman and Kilham (1976).



CHAPTER 7  NUMERICAL RESULTS AND THEIR ANALYSIS

7.1. Basic Information

Most computations of the computer program listed in Appendix I
were made on the CDC Cyber 73 at the University of Leicester.
A limited number of runs were also.made on the much larger and faster
CDC 7600 computer at the University of Manchester Regional Computing
Centre. In all calculations, a 50 x 50 uniform grid
(i.e. Ay” = Az* = 0.02) and the timestep&ength At = 4.0 were used.
This combination represents a compromise between accuracy of solution
and the available computing time. One typical simulation, from
t"=0 to 5 x 10% ; takes approximétely 6 hours on the Cyber 73
and about 20 minutes on the CDC 7600.

A large number of solutions were obtained by varying the row
spacing to depth ratio Az between 2.5 and O‘S,and the sinking (or

ascending) speed W; between 1 x 1072 to 1 x 107% at conveniently
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selected increments. Results are in the form of spatial distribution

of particles over a Langmuir cell, the calculated sinking flux and

total sinking loss at various selected times between t* = 0 and

5 x 10 . Computation terminates when either the end of simulation

is reached or the mass of particlés remaining in theiLangmuir cell
falls to a negligible amount (i.e. about 0.1% of the original mass).
Only selected examples are given in this chapter, further solutions

are available from the author.
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7.2. Particle Distribution Patterns

7.2.1. Non-buoyant particles

Figure 7.1 illustrates the evolution with time, from an
initially uniform distribution, of the particle distribution pattern,
for a large row spacing-to-depth ratio Az = 2.0 and a large
dimensionless particle sinking speed W; =1x107° . Initially,
transient patterns develop with the downwelling motion advecting low
concentrations from the surface downwards, pushing high concentrations
at the lower boundary of the cell upwards. During this time period
concentration gradients are greatest.  These are subsequently smoothed
out by mixing which is developed in the circulation, resulting in the
general aggregation of particles within the central portion and the
upwelling side of the cell, while particle concentration in the surface
layer and in the downwelling zone remains very low. Maximum concen-
tration occurs at about mid-depth and at y* about 0.55. At time t”
about 2000 to 3000, an equilibrium pattern of distribution develops,
after which the relative distribution of particles in the cell is
invarient, implying an equilibrium between the mixing and the sinking
loss out of the cell. Concentration contours have been plotted to
show the particle relative distribution pattern, contour 6 vrepresenting
the mean concentration at that time. The position of contour 6 in
relation to the lower boundary of the cell is significant in that it
indicates whether the sinking flux of material out of the cell occurs at
a concentration greater or less than the mean value. In Fig.7.1
material flux from the cell occurs at a concentration value which is

much less than the mean. In this example, as t* reaches about

2 x 10% , a negligible quantity of particles is left in the cell.
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In Fig.7.2, the particles in the same circulation cell
(A: = 2,0) have a smaller sinking speed (W; =1x107°) . The
development of the distribution pattern is generally similar to that
in the.earlier example, except that concentration gradients throughout
the cell are very small. Essentially uniform concentration occurs
over most parts of the cell with the exception of somewhat lower values
near the surface and immediately under the convergence line. The time

taken to develop the equilibrium pattern of concentration distribution

is longer than for the previous case, t* being about 4000 to 5000 .

*

T

the concentration distribution is essentially uniform over the cell,

were lower than 1 x 107°

If the sinking speed W (not illustrated),
indicating that if particles have low sinking speeds (say, W; less
than 1 x 10-5), Langmuir circulation becomes a stirring mechanism
.which rapidly smoothes out any concentration gradients created by the
sinking loss.

Figures 7.3 and 7.4 depict the particle distribution patterns
when A; = 0.5, i.e. in cells of small width-to-depth ratio. The

® and 1 x107° respectively. At

sinking speeds, Wp . are 1 x 10°
the higher sinking speed,. the aggregation of particles into a local
maximum is still pronounced in the upwelling zone (at z” approximately
0.3), but more lateral mixing occurs in this case. Although the
general particle distribution is non-uniform, the concentration at the
lower boundary of the cell is equal to tﬁe mean concentration in the
cell, hence the sinking loss may be expected to be similar.to that in a
well-mixed situation. Equilibrium distribution develops at

t* = 1000 to 2000 . At the smaller sinking speed (Fig.7.4), particle
distribution is essentially uniform throughout the cell excépt for the

shallow layer immediately below the surface (to z* some 0.5 units)

and under the convergence line,
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It can therefore be seen that the higher the sinking speed and
the larger the cell width-to-depth ratio are,the more readily particles
can be aggregated by Langmuir circulation into local regions of high
concentration and low concentration. High concentrations generally
extend from the central part of the cell, where the maximum occurs, to
the upper part of the upwelling region. The concentrations
immediately below the surface and in the convergence region represent
minimum values. In the vicinity of the cell lower béundary, values
are generally below the meén concentration.

"With small particle sinking speeds (say W; less than 1 x 10_5),
the enhanced circulation and mixing gives rise to an esseﬁtially uniform
distribution of particles, where concentration differences are difficult
to detect. As the cell width-to-depth ratio decreases, lateral mixing
is enhanced, giving rise to lesser concentration gradients in fhat
direction. However, with high partiéle sinking spééd (say, when W;
greater than 1 x 10-5),,aggregation of particles occurs in the form of
an elongated zone occupying the central part of the cell and the upper
portion of the upwelling region. The maximum concentration centre
moves towards the upwelling zone as the cell width decreases.

Since it is generally oBseryed that essentially uniform concen-
tration occurs when the particle sinking speed W; <1lx 107° regardless
of ‘cell width-to-depth ratio, therefore W; =1x 107° may be.regarded

as the limit conditions for non-buoyant particles, below which Langmuir

circulation cannot cause particle aggregation.

7.2.2. Buoyant Particles

For buoyant particles, the general patterns of concentration

distribution with time are illustrated in Figs. 7.5 and 7.6 for a row



96

3

spacing-to-depth ratio X: = 2.0 and ascending speeds W; of -1 x 10~

and - =1 x107° , respectively. The early transient evolution is
basically similar to those of settleable particles inverted. Upward
motion enhances the buoyant effect in rapidly bringing more particles
to the surface, though some are swept back to lower depths by the
downwelling. Figure 7.5 shows that very high particle cbncentration
occurs under the convergence line. At the centre of the cell, the
concentration is generally higher than those in the upwelling zone and
near the cell lower boundary. In this case, equilibrium distribution
is reached between time t* = 2000 to 3000

In Fig.7.6 (A: = 2.0 and W; =-1x 10-5) s a concentration

difference of about 4% is still observed between the maximum and the

minimum, With buoyant particles, it has been found that uniform

*

T

magnitude smaller than the case shown in Fig.7.6. Also with buoyant

. . . p -6
distribution occurs over the cell at W_, -1 x10 , an order of

particles, no local maxima in the form of central cores are established.

7.3. Effect of Cell Width-to-Depth Ratio on the Retention of

Non-Buoyant Particles

The effects of Langmuir cell width on the distribution pattern
of settleable particles have been illustrated.in Section 7.2.1.
Here, the influence of the cell width on the retention of particles
within the celliand hence on the sinking loss rate is shown by plotting,

for a fixed value of sinking speed, the mean concentration C~ at

various times against the row spacing-to-depth ratio A: . Figure 7.7
represents the case when W; =1x 1072 and A: varies between 2.5
and 0.5 . It can be seen that cells with larger width-to-depth

ratios retain more particles in suspension thus reducing sinking loss.

- Superimposed on Fig.7.7 is a curve showing the variation in the mean
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concentration with time for the well-mixed Langmuir cell. The graph
clearly demonstrates that as the cell width-to-depth ratio decreases

the well-mixed situation is approached,

7.4. The Extent of Langmuir Circulation Effects in the Modelling

of Particle Distribution and Sinking Loss

The extent of the circulation effects in the modelling of
particle distribution within the mixéd'layer and the sinking loss from
it can be investigated by comparing the particle distribution profiles
and sinking loss obtained from the present two-dimensional model with
those predicted by some conventional models employed in practical
water quality study, which ignore Langmuir circulation effects.

Typical representations of these conventional models are the zero-
dimensional well-mixed compartment model and the one-dimensional model.
The well-mixed compartment model assumes a uniformly mixed epilimhion
at all times. Ignoring the diffusive transfer of material through the
lower boundary, the change in the mean concentration C with time- t
for particles of sinking speed W.. in the epilimnion of depth D is

T

given bv the governing equations

= W
3 _ T= \
3x-"DC (7.1)

whose solution is

wT
- - -t
Clt) =C_ e (7.2)
where E; is the initial concentration at t =0 . Written non-
dimensionally, equation (7.2) becomes
% ‘l' *
T* () = e VTt (7.2%)



The one-dimensional model is based on the advection-diffusion
formulation describing only the variation with depth of quantities of

interest; lateral uniformity is assumed. The governing equation is

aC™ d * * ) * 3C* .
E TR G T (Fz 5'2'*] : (7.3)

in which W; is the dimensionless sinking speed of the particle; and
e: is the vertical eddy diffusion coefficient. Equation (7.3) is
subjected to the same boundary conditions in the vertical direction as
the present model (equation 3.12). The solutioﬁ to it can be obtained
from the present two-dimensional model simply by making lateral velocity
component V* zero. A review of thevphysical concepts of these two
conventional models may be found in Rutherford (1976) .
Figures 7.8 and 7.9 show variations of the mean concentration

at various times from t* = 0 , for A: = 2,0 and 0.5 , respectively,
with different values of sinking speeds from 1 x 10°% to 1 x 107°

In the two-dimensional model (equation 3.12), the mean concentration is
obtained by averaging over the Langmuir cell, and in the one-dimensional
model, by averaging éver the mixed layer depth. The figures show
clearly that, at any time, the one-dimensional model predicts a smaller
quantity of particles remaining in the mixed layer (and hence a larger
sinking loss) than those predicted by the zero-dimensional well-mixed
compartment and the two-dimensional models. For the case considered,
i.e. A = 2.0 , when the particle sinking speeds are high, the two-
dimensional model predicts a lower sinking loss from the mixed layer
than do the two conventional models, and predictions from the former
approach those from the zero-dimensional (well-mixed) model as the

sinking speed decreases. = When Az = 0.5 (Fig.7.9), the predictions

by the two-dimensional and the well-mixed models are in c¢loser agreement
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at all sinking speeds, being comparable for low sinking speeds but less
comparable with somewhat higher sinking loss at high sinking speeds.
These figures demonstrate the significant effect in lakes and reservoirs
of Langmuir circulation in considerably reducing sinking loss, at least
for particles with the dimensionless sinking speed W; greater than

-5
1 x 10

7.5. Effective Sinking Speeds

Langmuir circulation effects may be incorporated in the zero-
dimensional (well-mixed) model and in the one-dimensional model by
using effective sinking speeds in place of the particle terminal fall
speeds. These effective sinking speeds are those speeds at which
particles would have to sink, to give equivalent concentration profiles
and sinking losses observed in Langmuir circulation. Because a
direct determination of these effective sinking speeds is beyond
present technical capability (discussed in page 13), the current
numerical study can be useful in providing simulated data on concentra-
tion profiles and sinking losses, from which effective sinking speeds

may be determined.

7.5.1. The Well-Mixed Compartment Model (zero-dimensional)

The effective sinking speed for this model may be determined

*

T

prediction of the mean concentration fE* as that from the two-

by computing the value of W._ in equation (7.2')which gives the same
dimensional model at the corresponding time. Figures 7.7, 7.8 and
7.9 indicate that the concentration-time curve plotted semi-
logarithmically consist of two portions, a non-linear portioﬁ in the

early time and a straight line portion after an equilibrium particle
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distribution pattern has been established. If the time step At”™
used in the zero-dimensional model were larger than the time to reach
equilibrium distribution tE , then the simulation for one time step
" can be divided into two parts, from t* =0 to tE and from

t* = ty to At* . Using these two sub-steps, two values of
effective sinking speeds are entailed, the first to obtain, from the

initial concentration, the mean concentration at tE , and the second

to compute the mean concentration at the end of the time step At* .

That is,
- W .t s (7.4a)
'C't - -C'o e effl E
E .

- _ - W U(At’t )

amd T, =C_.e °f2 E (7.4b)
t t
E
in which the non-dimensionalised parameters are implied without
specifying them by means of superscripts * ; E£ is the mean
. _ E

concentration at tE : CAt is the mean concentration at the end of
any time step At ; weffl and weff2 are the effective sinking
speeds applicable for times between 0 and te and t > te
respectively.

Using results from the present two-dimensional model with
Langmuir circulation, weffl and Weff2 can be found as follows.
By inspection, in most cases, tE is found to be g 6000 . Taking
ty = 6000, E; = 100 , and Eﬁ tobe C at t = 6000 f£from the
two-dimensional results, then equation (7.4a) gives for Weffl s

In(C_/C.)
_ o' E ‘ _
Weeer = 7% ' (7.5)

E



101

Similarly, from (7.4%),

1n(EfE /T, ,)
Wegea™ (BT - t5) (7.6)
In equations (7.6), Egt and At can be any corresponding values on
the linear portion of the C v.s. t curve. Figures 7.10 and 7.11
illustrate the variation of the effective sinking speeds Weffl and
Weffz , respectively, for various yalues of sinking speed wT and
row spacing-to-depth ratio XC . Expressing these effective sinking

speeds as a fraction of the terminal fall speed of the particle, the
ratio of the effective sinking speed to particle fall speed as a
function of WT and A, can be prepared. A representative example
for weffz/wT is shown in Fig.7.12.

If the time step At in the zero-dimensional model is less than
6000 , the effective sinking speed is a function of At as well as of
WT and Ac . Figure 7.12a illustrates the variation of the ratio
weff/wT with At (<6000) and WT for Ac = 2.5. Similar curves

can be prepared for other values of Ac .

7.5.2. The One-Dimensional Model

It is proposed that the effective sinking speed for the one-
dimensional model be determined as follows. Using the vertical concen-
tration profiles at various times simulated by the two-dimensional
model, the one-dimensional equation is solved, yielding appropriate
values of sinking speeds at various depths and times.

In the present derivation, the foilowing definite-difference
structure has been adopted, in which, referring to the grid structure

in Fig.7.13, for the grid volume j ,
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n+l n
ac C. -C.
3t|. At ) (7.7)
j
n+3 n+3z n+3
3 (WC) _ (WS.CS) "% - (WN.CN) ' °© (7.8)
9z . Az, :
J j
where
WS = W, , )
J
WN = wj-l s
n+}  n+ld o (7.9)
CS=C. ,=13(C. . +C ,
o1 = 2G5 v G )
n+3 n+3
= = 1(C. C.
CN CJ'% 2( j + j- ) ’ J

that is, the spatial’'derivatives are centred in distance and in time

plane at n + } . All the symbols have their own usual meanings as
already established in Chapter 6. = The concentration at time level

n + 3 is the average of the values at times n + 1 and n , i.e.

1
A2 1™ e . (7.10)

The diffusion term is approXimated by

; 3C 2 g, n+3  n+} €, n+3 n+}
32'[€z SZJj. = ZE;Q (Cj+1_ Cj ) - ZE;Q (Cj - Cj-l) . (7.11)

Substituting equations (7.7), (7.8), (7.9), (7.10) and (7.11)
into equations (7.3) and rearranging, the general equations for grid

volume j 1is
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W. .JAA. + W..BB. = CC. 7.12
-1 T i’ (7.12)
’
a2 ne
where AAJ = -Z—AT.- (CJ + Cj-l )
J
1 1
n+s3 n+3
_ At
By g G T G )
n+1 n €_.At N+ n+3 e, At n;% n+3
and CCj = (Cj - Cj) - A_ij (Cj"'l - Cj ) + _-AT.Z (Cj - Cj-l) )
n+s n+1 n .
with C =3(C +C)

Equation (7.12) is subjected to the same boundary conditions at the lower
permeable boundary as described for two dimensional case (See Chapter 6).
This results in NZ - 1 simultaneous equations, where NZ is the number

of mesh points,

B - cc. . .
W BB cc, (7.12a)
‘wl.AAz + W2.BB2 L= CC2 (7.12b)
Wy.AA; + W,.BB, = cC, (7.12¢)
! !
| !
! |
l l
W, .AA. +W,.BB, = cc (7.12d)
RTINS Rt j
f l
x I
! |
| |
WNz-2Mnz-1 Wyz-1 BBz = COnzoy (7.12e)

At At time-increments, the coefficients AAj’ BB., and CCj
J
may be readily computed from the known values of concentration profiles.

Then equation (7.12a) gives
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W, = CCl/BB1 . (7.13a)

Substituting this in equation (7.12b), W2 can be obtained, i.e.

s Ady
W= 5e - Wit Bpe - (7.13b)

CC. AA,
Wj = §§§-- Wj_1 . EE?- . (7.13c)

Hence all Wj valueé, from j =1 to NZ -1, can be determined.
Figures 7.14 and 7.15 illustrate the computed effective sinking speeds
for the one-dimensional model adopted in this section, with At given

by the usual criterion At g min. (Az/W,., Azz/sz) , and Az = 0.1

3

3

for the sinking speeds of 1 x 10°° and 1 x 1073 , Tespectively,

and A, equals 2.0 .

7.6. Comparison of the Effective Sinking Loss Rates with Titman

and Kilham's Results

A comparison of the predicted effective sinking loss rates has
been made in Fig.7.16, with Titman and Kilham's example (Titman
and Kilham, 1976) for the case of the downwelling speed equals
1.0 cm/s and the row spacing-to-depth ratio of 2.0 . The present
calculations predict effective loss rates to be generally smaller
than the conventionally used loss rates in zero-dimensional well
mixed models, when particle sinking speeds are high. The effective
loss rates converge to the conventional values for low particle
sinking speeds. In all cases, the present estimates are larger than

those of Titman and Kilham.
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Fig. 7.1 Particle distribution in a\Langmuir cell
* *
at various times t , for dimensionless sinking speed Wq =
- -
1x10™> and cell spacing-to-depth ratio }_ = 2.0 .

Values of contours are shown adjacent to the plets.
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Fig. 7.2 Particle distribution in a Langmuir cell
] [ ]
at various times t , for dimensionless sinking speed WT =

- *
1x10 > and cell spacing-to-depth ratioo lc = 2.0 .
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[N

Fig. 7.3 Particle distribution in a Langmuir sell

* *
at various times t , for dimensionless sinking speed WT =

- *
1x10 3 and cell spacing-to-depth ratio Zb = 0.5 .
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Fig. 7.4 Particle distribution in a Langmuir cell

* *
at various times t , for dimensionless sinking speed WT =

- *
1x10 > and cell spacing-to-depth ratio kc = 0.5 .
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Fig. 7.5 Particle distribution in a Langmuir cell
* *
at various times t , for dimensionless sinking speed WT =

: - *
-1x10"> and cell spacing-to-depth ratio )"c = 2.0 .
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Fig. 7.6 Particle distribution in a Langmuir cell

. * L]
at various times t , for dimensionless sinking speed WT =

*

--‘1x10"5 end cell spacing-to-depth ratio Rb = 2.0 .

129



PLOT 7.6 (a) LAMBDA= 2.00 T=
Wr= -0 .I00E-04

0.2

0.5

0.0 0.2 0.4

plot 7.6(b) LAMBDA= 2.00 T=
WT= -0.100E-04

0.20000E03

0.6

0.8

0.40000E03

0.6

0.8

SK'GEN.M C.

0."00

KaX. r- 0.104
KbAN G.. 0.100
MIN. U 0.961

FOLO SO aw
(]
m
o
@

ORIGINAL C-
MAX. r.
KbAN C-
ML.N. f.

CONTOURS
bl

1- 0,04
2- 0.104
’03
102
101
100
90"
974
96’
94B
945

~
coocooo0000



PLOT 7.6 (c) LAMBDA- 2.00 T--
WT- -0.100E-04

0.8

0.0 0.2 0.4

PLOT 7.6(d) lambda- 2.00 T-
WT- -0 .i0O0E-04

0. 10000B04

0.6

0.8

0.20000E04

0.6

0.8

131

ORIGINAL c. 0.100 fc03
MAX r- 0.'0C ho3
KtAN C. C.100 t03
MIN. G-  0.923 ho2
CONTOURS

.. 0,104 EO03
2. 0.04 bo03
3. 0.103 EO03
4% 0.102 EO3
5- 0.101 t03
6= 0.100 b03 (MbAN C)
74 0.984 b02 m
6~ 0.969 EU02
9. 0.954 EO02
10i. C.93S  b02
11, 0.932 b02

ORIGINAL C- 0.100 L03
MAX. r- 0.100 h:03
MLAN C. 0.100 c03
MIN. f- 0.923 t02
CONTOURS

1. 0.104 EO3
2u 0.104 103
3; 0.103 103
4- 0.102 EO03
5- 0.101 03
0.100 b03 (M.AN Q
7- 0.964 EO02
6~ 0.961l: b02
9~ 0.953 LC2
10. 0.938 EO02
11. 0.932 b02



PLOT 7.6 (e)

LAMBDA= 2.00 T=
WE=: -0 .100E-0A

0.0

0.0 0.2 0.4

LAMBDA= 2.00 T=
WT= -0.100E-04

PLOT 7.6 (f)

0.0 0.2 0.4

0.A0000EO4

0.6 0.8
0.60000E04
0.6 0.8

ORIGINAL C. .10
MtVJ C. C.100
MIN. 1.. 0.923

CONTOUSG
] 0.102
0.101
0.100
o 9100
0,904
§ 002
0.954 4,
P oem1 11

ORIGINAL C— 0.100
MAX. C- 0.104
MtAN C. 0.100
MIN. C. 0.323
CONTOURS

1- 0.103 ho3
2- 0.103 EO3
3- 0.102 ho3
4- 0.101 t03
5-  0.100 b03
6- 0.100 DbO03
78 0.9C4 <02
c. 3.969 =32
9- C.9s4 =02
10- 0.930 =32

11- 0.932 b02

132

E03

L03
-02



dimensionless mean concentration C (= C/cg)

133

~N

—_
(@

—
o,
1

101

10

0 5000 10000 15000 18000
dimensionless time t*(=tWn)
D

Fig. 7. 7. Effects of variation of cell size (Ac*) on the mean concentration
of particles (T* in a Langmuir cell at various time t*
Curve (a) represents the situation where the maximum
upwelling velocity is a half of the maximum -downwelling
velocity and A * = 20




~}3pow jbUOISUBWIP - 0J3Z puv’|apour 0| 'jPpow (-Z Kq papipasd so w.k spaads bupjuIs
JOUOISUWIP -UOU SNOIIDA PUD Q-7 unux 01j0J qd3p-0}-b01I0US ~M0) 10) "aull} JDUOISUSWIP-UOU JO UDI}IUNJ D ST U0}|DIJUIIU0I 57>1150 Gbaw |DUOISUSWIp ~UON  §-L DI

(0 Mi=), 4 suny puoisuawtp oy

- 0000€ 00052 00002 0005t 00001 000 0
n A i i ' 1 r 1 I 1 1 1 A1 I A i " N n i A ' n P | 2 P} ' 1 I A > "
P 11-0
Q-7 —— ,
~0J87 — == —— 0.2~
O e T ORS 0ixs-2 oLxi o
B N\ ETV L 0us Ol M
_oLx1 ‘ ,
eh oLxS- 2 ,0LX5Z € \ _/. \ [ |
N v~ N ,.0LXS \ \ J
x/ X f

Y
(=}
-

o
~—

=400t

( °) /g=) » ) UOILDJIIUZIUCI UDAW |DUDISUBWIP - UON



135.

“}3pouw |0UOISUBWIP -0J3Z PUD 'jBpow (-i ‘|3pow -z Aq pasnpasd so ° 3 spaads bunjuis Jouoisuawp
~UOU SNOIJDA pUD ‘G. o < o1joJ yjdap - o4 -bulInds MoJ Joj wi} JOUCISUSWIP—UOU JO USI}OUNS D SO UCIJDIJU3IU0I m_u_tca UD3W |oUoISUAWIP - UON 6 L 014

OOOOm 000SZ 000 00061 cooL 000s 0
TN WORNS TD W N SR SN T B 1 § S T S S VAN ST WU ST S N WA SN VA TR SN U S S WA MY S S SHr U WA N T ST W SHN T SHNT SN SN U AN SN W W SN NS WU TN A T SR T S N E OF
rf
- ( ﬂ =) « 1 WY |pUOISUBWIP ~UON
0-7 ——— ;
g-0R7 ~— ——— |[5-0 e\ 5 01 xS
g-f— = —— 1
\ 0LxS-Z g oLt «nOJm -0l M
oLxL \ / / , ,_
N _0LxG.-Z \ \
AN LN \ \ \ b
// AN \ \ \ ” | =
//. // // / / ’ — 5 :
o~ N \ \ \ 1 . Ey
~ N \ \ \ _ 2
A AN \ \ \ | _ ° 3
N, i a
N WA W
s h N\ \ _ 2
N N \ \ \ ’ 5
N // W\ \ i | m
~ \ \ N1 o
0L x{ // N\ \ \ \ \ . Ed
~3 ~ .// // // / / “ “ W..
RSN AN A\ AN L 3
~ . N ! ™
/// /././ ) // /// / M | ﬂ_/*
=
) ~ : N \ \ 2!
0L%S TSy AN AN\ \ /., , o
S- § =~ N\ _ —
~— // / N \ _ T.OF
-~ — — =~ ~3 =~ / // \ _
//‘ == \ N \ !
/././ /// // N // _
mlo_‘xm = . ~ N N // _ ﬁ.
|
|
’. -
L\
| |
,./1
Sl 01



0009 Sipnba (,}) BWi} SSIUOISUBWIP UYM
(£2Y) 9ZIS })23 SSUOISUBWIP JO SIBN|DA SNOWDA O ‘spaads Bunuis
SsajuolsusBWIp }suIbbD 3jpJ SSO] BAII3YD  SSIjUoISUBWIP JO 101d 0L £ B4

o 1
- M paads bBunjuis
mlO_‘_ 11 .w N ) . alﬂ—.. Ll , | : mlO—.Q_‘
ml
/A%,
osJ%
S i Q.
/JMO B —h
S 2
[ 2
| (1]
- O
GOt @
-
a
)
- o|=
— *®
S-¢ B
0-¢ B
Gl i
o.—u.} 1°POW Q- 0437 -
0009 = 5} SWi} SSIUOISUBWIP 04 |
o}

m.ou* X lmmlUF



137

*FB pasds buijuis

0l o] ol
€~ | S B R i 1 L 1 7 | N T Y | | A1 1 1 S-
ol
ml
|
"0009 uby} !
,_ﬁum._mu SI (4) 2WI} SsojU0ISUSWIP r.TE
U3YM*( 5\ ) 3ZIS 1133 SS3UoISuaWIp
0 S3an)DA SNOIJDA Joj 'spaads
bAIUIS JSUIDDD 9]0 SSO] 9AI§I9})9
SSa)uolsuaWip jo joyd LI £ bid R
S g
0-¢ o
G-l B
0-1 I
0009 <, } 2wl SSI|UOISUWIP Jo] X
UoI}IpUOd paxiw-1)3 i
IHIPU0d PaxXiw-113M 7 19poj -043Z Jog -m|9
m.OH K

*

© 9JDJ SSO) 3A1433443

I
M



138

0009 upy} JopRIb SI 4} Bwi} UYM

“(£2X) 9zIS 1B SSIJUOISUBWIP JO SIN|DA BWOS 10}
‘paads Bupuis 9pipipd |puoisuswip - uou jsuipbp  paads
Buiyuis |puiwia} 0} paads 2A1}09442 JO OlDI 3Y} JO 101d

( MWin=) 2w pasds Bupus
* .0l

J I 1 ] 1 ) 1 S S N B | 1 1

-0t

FANWARIE!

19PO Q-0437

UOI}IpuUOd

paxiw __m;\\‘ il

§-0= 2\

0009< 4} BWI} SS3JUCISUBWIP oo

I R .| — — | — — —

L9.0

paads Bupuis oiiod
poadS BUMUIS 9AI9}}3




139

0009 uby} sSs9)
yjbua) dsys awi} 8y pub.G-Z=,X oijps yydap-o} - buonds
MOJ 10} ‘paads jo |poijund pup yjbua) doys -awnp yum paads

1104 9iipd 0} paads Buiuls AId8Yd Jo onps Jo suoyplmp ozl 7 Bl

L1V dajs awi} sssjuoisuawip

OOOO——._ ] 1 1 1 1 1 OOO—‘ 1 1 1 OOF
L 1 1 1 1 1 .N.O -
a
(0l x1 L
Q.
o
a
90 s
4 0L %S g
X
3
,.N.O n
®
)
o
#IO_‘XW.N Lw.o muuf
&
3.
3
v@O —_
4 0L %1 -+
6. 0L*g =
¢ O1*GZ N
oLx1 R -0l &
S- [}
1 o
M a
L.«MW
e
1°poW Q — 0437
L7.1

0009 >4}V ‘G2 = 7Y 404



. E., (1)
: Ci)
+
£.(2) W.
7 z$ 1
J Ci2)
+
YW,
WN &, Wi
Y Ci-
g, Cie cGj)
+ +
-Gy €5(js1)
v ]
TS "W

1]
CiNZ-2)
+

{
C(Nz-1)
+

Ez(NZ)

o

\J
Wyz-1

Z)

Z12)

Z(j)
3

AZ;
Z(j+1)—Y¥

Z(NZ-2)

Z(NZ-1)

Z INZ)

Fig 7 13. Grid structure and variable locations
in 1-D model

140



141

6679
€050

(KA Y
¢ce'e

3¢°C
684°6

€060

(Ho A

= g2
0/

= 0/2

=~ 072
=0/

o7

= 0/1

= 0/2

*c-OTXT = Ly pue 02 = o& JO3J ‘TopoWl TEUOTSUSWIP-sUO ayj

ut *N syadsp pue *u*mEHp Jo suot¥ouny se spasds BUTHUTS SATA093Id +T1°Z.°STd

u .
-(d/ M3 =) 3 IWIL SSTINOISNIWICQ

,01 ot

01
6849 S v ¢

68295 4% ¢ z g

{1

UL

-4

L ] )

q T

I

____L__ [l 1 _.____. | ' ______. 1

1

OO~ 0 N & N

Amomoooe.o = 10 001°0 =20 000°¢ = YOBWYT <c0-30001°0 = LA

o

@AdS TIVA TVNIWEL /033dS INIMNIS IAT1D3443



142

mloﬁxanws pue o’z = m& J03 TOpOW TEUOTSUSWTP-3UO U3 UT 2 yardep sSsoTUOTSUSWTP pue

1 SWT] SOOTUOTSUSWTP JO SUOTROUNJ se spaads SUuIMUTS 9AT30913F GT°/Z *BTd
*

u
(a/ ma =) *p HNIL SSHINOISNIWIA

682 92 S % z 4
T T T T . T Nlo_v

,01

) T 1 —

6829 5 % ¢ [

1 T

T
|
M

L 1%

o -1S

= =19

= =14

B 18

- =01

- 2
eoe's - 0/2 -
CoL°C - 0/2 £
00y'0 =~ /2 Y
005'5 = /7= <
002'0 = 0/2)= o
CCe'0 = Q/7
0C3'9 0/ A
C06'C - 0/2= , m
occt ¢ os2 onu |-

1 L 1 — 1 1 1 Y 1 1 1 H _ i1 1 i 1 i 1 i

¢040005°0 = 10 00L°0 = zd 0Q00°C = vagWwvy1l %0-30001°0 = LM

QIS TV TNDMEL/Q33dS ONINNIS IATLIT44T



—
(]

T
> ]
o
E -
[o)]
_~ -
d
(28
wn -
0
°
1 -
- /
1 5
01 T T T 1. 1T11T7rT T 1 | L L]
1-0 10 ' 100

sinking speed (m day™)

_Fig._7-16 Loss rates for particles of various sinking_speeds,
as_predicted by algebraic_relationship_(loss rafe =

sinking_speed/ depth; curve A}, Titman and Kilhams
model ?curve ), and present model (curve C) for

A¢/D=2-0, depth D=10m, wind speed W, =1ms—.




144

SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 8  PRELIMINARY LABORATORY EXPERIMENTS ON LANGMUIR CIRCULATIONS

Two preliminaryllaboratory experiments are described, the purposes
of which are understanding basic mechanisms involved in Langmuir circula-
tion phenomena. The first experiment was devised to investigate the
dependence of the Langmuir circulation scale of motion on wind-wave para-
meters, in order to find some approximate criteria for estimating Langmuir
cell size from environmental data. The second experiment is concerned
with the effects of a circulating motion, analogous to that in a Langmuir
cell, on the distribution and settling of suspended particles. Although
natural conditions cannot be precisely modelled because of laboratory
limitations and little appreciation of the relative significance of the
similitude criteria, many fundamental features of the.circulation and the
general behaviour of suspended particles in the circulating motion are

exhibited.
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CHAPTER 8 PRELIMINARY LABORATORY EXPERIMENTS ON LANGMUIR CIRCULATION

8.1, A Wind-Wave Tank Experiment

Recent laboratory experiments on Langmuir circulation performed
by Faller and Caponi (1978) have shown that the scale of the circula-
tion can be related to the dominant wave length of the surface wind-
generated waves. In order to corroborate their results and hence to
test a relationship of the form

A H1/3
— = § |—= (8.1)

in which Ac is the row spacing (twice the Langmuir cell width), D
is the cell depth, and Hy3 is the Significant wave height, an
essentially similar experiment in a wind-wave tank was conducted.

This relationship (equation (8.1)) is considered to be more convenient
than that of Faller and Caponi in that, it has been shown elsewhere
(Chapter 4), the significant wave height H,/3 is a function of wind
speed and fetch length.

8.1.1. Experimental Apparatus and Procedure

Langmuir cells were generated in a wind-wave tank which had
been modified from a wave channel of dimensions 10m (length) x 0.9m
(width) x 0.30m (height), by installing a wooden roof over the channel
(see Fig.8.1). An air stream was drawn over the channel by an axial
fan mounted at its end. The test section, located at the middle
part of the channel, was covered by a removable perspex roof. The
channel floor at the test section was painted thte to provide a good

contrast for photographs. During the experiment, water depth was
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varied between 3 to 5cm with the roof fixed at 23 cm above the
channel bed. A sloping beach was provided at the outlet end of the
channel to minimise wave reflection. Although air speed was varied,
it was not precisely measured in this experiment; only rough
indications were obtained from a hand.-'held anemometer in the inlet
section.

The average dominant wavelength A, of wind-generated waves
was measured from photographs of the wave profiles visible through
thé glass side of the tank. Treating these photographs as represen-
ting a continuous record of a wave train for a given water depth and
wind speed, the lengths of successive waves were obtainea by measuring
the distance between the wave crests by means of a linear scale
located in the photograph. Approximately 10 to 20 waves were
considered adequate for averaging since, from visual observation,
wave lengths did not differ appreciably.

A conductivity probe, Fig.8.2, fitted near the side of the tank,
was used to measure water surface displacement at the test section as a
function of time, from which data on the significant wave height, H% ,
were determined. The prbbe consists of two 1lmm diameter heating
wires, separated by a distance of 2mm , and Qtretched vertically,
perpendicular to the water surface, between two fixed supports.  Water
between these two wires forms a conducting medium and the displacement
of its surface alters the resistance between the wires. This
resistance was measured by an a.c. excited bridge arrangement. The
output signal representative of the wave pattern was traced by a pen
chart recorder. No attempt was made to linearise the response. The

probe was calibrated before each series of experiments.
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Observations of the cell spacing Ac were made by sprinkling
potassium permanganate (KMnO,) dye crystals across the tank
immediately before the coﬁmencement of the experiment. Once forﬁed,
the spacings of the cells that extend down the water depth were
evident from the somewhat regular spacing of the longitudinal dye
bands which formed =eross the: tank. Figure 8.3 shows, in a schematic
diagram, the position of these dye bands at the bottom of the tank in
relation to the Laﬁgmuir cells. Photographs were taken at intervals
of the dye pattern development for subsequent determination of average
cell spacing. Figure 8.4 illustrates some examples of the dye bands

as viewed from above the test section.

8.1.2. Determination of Average Cell Spacing

The experiment is similar to those conducted by Faller and
Caponi (1977, 1978) who described the evolution of the dye bands.
Current observations, which accord with their description, were as
follows:

Soon after the arrivals of waves at the test section, intense
downward motion becomes apparent in the dye pattern at the tank bed.
This downward motion quickly aligns dye layers into regular bands and
the width of the bands increases with time. The confluence of dye
into bands indicates the presence of Langmuir circulation (see Fig.8.3).
After about 2 to 3 minutes, the number of bands appears to be
relatively constant though the position of the bands may change with
time, which makes determination of their number difficult. The
appropriate time interval was selected as the bands reached.a somewhat
steady state and the average cell spacing lc was determined at this

time, taking two cells per wavelength, by
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Ac = 2W/NC s (8.2)

in which W 1is the width of the tank; Nc is the number of cells
inferred from the dye system, which is equal to (nb +n, - 1);

ny is the number of dye bands, and n, .is the number of clear lanes
across the width of the tank.

8.1.3. Determination of Wave Height, H%

From the water displacements recorded on the pen chart recorder,
a samplé of 100 or more waves were used to determine the significant
wave height H,/3 . For each wave length, the wave height was deter-
mined by subtracting the height of the intervening trough from the
average height of successive wave crests, or in the case of successive
troughs, it is found by subtracting the average height of the two
bordering troughs from the height of the two intervening wave crest.
A calibration -curve was used to convert the heights of the crests and
troughs into water depths. The significant wave height Hy3 was then

determined by averaging the largest one-third of the wave heights.

8.1.4. Results

A gummary of results obtained is given in Table 8.1. The dimen-
sionless cell spacings AC/D are shown as a function of dimensionless
average dominant wave length AW/D in Fig.8.5, and are seen to confirm
the results of Faller and Caponi. The experimental data AC/D are
plotted against H%/D in Fig.8.6, together with some data from natural
situations, in which a fully developed s€2 1is assumed. -From both

sets of data, the trend of these data points indicates some correlation
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between Langmuir cell spacing (AC/D) and the significant wave height
(H%/D) of wind waves, suggesting that they are essentially the same
phenomena. A dash-line is tentatively drawn to show this trend.
This curve is drawn towards the left of field data to account for the
possibility of overestimating the significant wave height HV

3

8.2. A Particle Settling Experiment

The primary objects of this experiment are to illustrate the
mechanism by which settling of particles is affected by Langmuir

circulation and to obtain quantitative data.

8.2.1. Experimental System

The experiment was carried out in an open-top clear perspex tank
of the outer dimensions 0.5m (length) x 0.5m (height) x 0.18m (width},
filled with tap water of ‘the temperature about 20°C . The tank
(illustrated'in Fig.8.7) consists of two compartments separated by means
of a withdrawable steel plate, The upper chamber represents the
circulation cell of approximately square section (0.4m x 0.38m) with
the width of 0.15m , in which motion is induced by two belt systems
situated in the chamber and driven at variable speeds from outside by
two electric motors. Only parts of the belts are exposed to water.

The right belt is driven faster than the left one which runs at a fixed
slow speed. The lower compartment represents the quiescent region

below the Langmuir circulation cell and contains three particle collection
boxes. Above and inside these boxes, horizontal motions are eliminated

by honeycomb sections.
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8.2.2. Flow Measurements

Flow measurements and quantitative data on the speed and direction
*
of the circulation were obtained by stroboscopic photography. Expandable

translucent polystyrene particles, of the diameter between 420 to

500 pym , were used as tracers. These particles have a specific gravity
between 1.03 and 1.05 . They were immersed in water at 95°C for
5 seconds and then cooled quickly to below 60°C . This resulted in

a white appearance with the specific gravity reduced to about 1.0 .

A 1 kW (14" troush) light source was enclosed in a box with a double
slit arrangement to give a light beam some 12mm wide over the central
length of the chamber. A strip mirror was installed below the honeycomb
to augment illuminatioﬁ in the lower part of the chamber. The camera
used is the Hasselblad 500 ELM (80 mm lens) with Kodak Tri-X 120 films.
The reflected light entering the camera was mechanically intérrupted

by a 400 mm diameter aluminium disc having 6 equally spaced slots

cut from its edge; the solid portions between the slots being of the

same length as the slots. This disc was mounted on the spindle of a
variable speed electric motor. For a certain predetermined exposure
time, dependent on the speed of the circulation system, a series of dashes
on the photographic plate was thus produced, from which flow measurements
and velocities could be deduced. Some photographs of the flow patterns

obtained by this technique are shown in Fig.8.8.

8.2.3. Velocity Measurements

From a series of dashed streaks on the photographs, which were
traced over a known interruption frequency, the magnitudes of the velocity
vectors, and hence horizontal and vertical components of velocity, were

determined. This was done by comparing the length between the centres

*
(Naib, 1966 )
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of adjacent dashes with a linear scale included in the photograph. By
repeating measurements on several photographs taken under identical
conditions, mean values are obtained by an averaging procedure. Since
these velocities are obtained at random points over the flow, an inter-
polation procedure can be used to estimate the velocities at regular
grid points for easy presentation and averaging. In these experiments,
the distances bet@een the distances between centres of selected dashes
covering most parts of the photograph were derived on a digitisation
table, relative to the known dimensions of the reference axes in the
picture, which were the left and lower boundaries of the illuminated
plane. A computer program, written to compute the length of any

line from a pair of digitised coordinates, gave local orientations and
velocity vectors. Finally, the program interpolated these velocities
at regular grid points and plotted the vectors. Four different circu-
lation patterns were produced by varying the belt speeds, and shown in

Figs. 8.9 to 8.12.

8.2.4. Particle Sinking Loss Measurements

From the measurements of sinking loss of particles at the end of
an elapsed time, the mean rate of sinking of the particles in the circu-
lation cell can be determined. Untreated polystyrene particles,
having a specific gravity between 1.03 and 1.05 , diameter between

420 and 500 pym , and an average terminal fall speed in still tapwater
(18°C to 20°C) of 0.5 cm/s , were used. At the beginning of the
experiment, 5.0 grams of the particles were introduced in a circulation
of known profile, the water being stirred gently to obtain as uniform a
concentration as possible, with the plate separating the upper and lower
chambers closed. At time zero, the plate was pulled out and the

particles began to settle. When a very small amount of particles remained
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in the circulation (some 9 to 10 minutes), the separation plate was
closed. Water and particles in the upper chamber were drained.off and
no attempt was made to recover them. The particles in the collecting
boxes were dried and weighed. During the circulation, it was generally
observed that a small number of particles escaped through the gaps at

the belt openings and were lost from the system.

8.2.5 Results

From the photographs of the flow patterns and velocity vectors
shown in Figs. 8.9 to 8.12, it is seen that intense water motion in the
downward direction was induced by the belt in the form of a narrow jet,
accelerating along the solid boundary and deflecting at the bottom right
hand corner into the main flow. In general, circulating flows were
created though they are not symmetrical. It is impossible to control
the shape of the circulation. Secondary flow was observed near the
left boundary, giving rise to some mixing there. The centre of
circulation is, in all cases, at about the cell centre.

Using nigrosine dye as an indicator it was apparent that the flow
in the laboratory apparatus is laminar but unsteady, the latter arising
from both belt movement and the oscillation of the water surface. In
effect, this introduces some degree of mixing in the circulation but at
a lower level than a turbulent mixing action. The jet on the right
side of the figures and the flow close to the lower boundary cause some
transfer of particles by entrainment out of the central core. Particles
were seen to be circulated around the cell by the motion imposed by the
rotating belts. The unsteadiness of the flow results in particles
coming into contact with the right side of the cell, being entrained into

the downward jet, subsequently moving to the lower boundary and sinking.
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Similar settling could well occur with turbulent diffusion processes
but with a greater particle transfer to the outer zone resulting from
the strong turbulent mixing.

At the end of an elapsed timefgpproximately 9.50 minutes a
small quantity of particles were observed to be left in suspension,

The losses by sinking were measured and these are summarised together
with other circulation variables in Table 8.2. The distribution of
these sinking losses across the cell width are shown in Fig.8.13, and
are generally the same in all four cases. These curves show there is
an increase in sinking towards the upwelling zone. The measurements
indicate that the total sinking losses also are approximately the same
in these four cases, being about 4.0 grams out of the initial particle
mass of 5.0 grams. This equality of the total sinking losses and
essentially similar distribution of sinking losses across the cell width
suggest that the increase in belt speed has had little effect on the
degree of mixing and particle transfer. Such a consequence is antici-
pated from the flow conditions obtained. Since the flow is laminar,
increasing unsteadiness, brought about by higher belt speeds, does not
have a significant effect on particle transfer.

If the experimental results are compared with calculations made
when turbulent diffusivity is present and which result in complete
mixing,the latter condition leads to only 2.52 x 10'3 grams of particles
remaining in circulation after 9.5 minutes, that is practically all
particles settle out. The comparison suggests that circulation
currents do affect the particle settling rate. If the laboratory experi-
ment and this calculation are conéidered to represent lower and upper
bounds to the particle sinking problem, in a practical situétion the

amount of particles remaining in suspension will lie between these two



154

extreme cases, sinking losses depending on the intensity of turbulence
present. For the laboratory experiment, the ratio of the effective
sinking speed to particle fall speed is estimated to be 0.2 . Using
the computer prediction model described in Chapter 6 to be representa-
tive of settling in a Langmuir cell, then, for the conditions of cell
spacing-to-depth ratio (AC/D) = 2.0 and (range of) particle fall
speed to maximum upwelling speed ratios used in the experiment, the
computer model predicts the ratio of effective sinking speed to fall
speed to lie between 0.4 and 1.0 , these values being higher than
that determined experimentally under unsteady laminar flow conditions.
It is thus apparent that Langmuir circulation does reduce the particle
sinking loss, the degree of such reduction apparently decreasing as
turbulence intensity increases. With high turbulent intensity, the
fully mixed situation is approached. |

An indication of particle aggregation in the circulation region
may be obtained by photographing particles in the model cell at an
instant of time after the circulation has commenced. By dividing the
cell region into several equal grid volumes, the number of particles
in each indicatesthe relative particle concentration distribution over
the cell. An example is shown in Fig.8.14 at time 3.0 minutes
after zero for the experimental condition number 3 . Particle
aggregation is present, and the concentration contours generally resemble
those obtained by the computer model described in Chapter 6, i.e. a high
concentration core is present in the upwelling zone and small particle
concentrations may be seen under the convergence region and in the

downwelling zone.
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8.3. Significance of Experiments

8.3.1. The Wind-Wave Tank Experiment

Natural conditions cannot be modelled in this experiment because
of laboratory limitations and the difficulty of appreciating the
relative significance of similitude criteria. These demand that
both geometric and dynamic similarity are attained.

Sincé Langmuir circulation is generated by interactions of wind
and waves and is affec¢ted by a number of environmental factors, the
characteristic length A of the circulation is anticipated to be a

function of the variables listed below.

shape,

depth of water, D

wave height, H

local velocity of wind, Wn

local velocity of water, Wa
gravitational acceleration, g
water density, p

local air density variation, Apa
water viscosity, u

air viscosity, My
surface tension force in water, o
thermal conductivity of water, k

specific heat of water, c

local temperature of water, Tw .

Thus

f(}\’ Shape’ D, H, wn: W ., g, o, Apa: H Uas o, k, ¢, TW) = 0. (8-3)

a

Dimensional analysis of these variables yields 11 dimensionless groups,
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P H
i.e. %-; shape ; Wn 7?— - (Reynolds number of wind) ;
a
w2

Ww %? - (Reynolds number of water) ; gg- - (Froude number) ; Apa/p ;

2
oWH . W |

p - (Weber number) ; %?-— (Prandtl number) ; i (Ekert number) ;

W

olog 3 w/u, .
In any experiment it is impossible to satisfy all these conditions

simultaneously. A number of gross assumptions must be made.

(1) Effects of Reynolds number are neglected, assuming that
the characteristics examined do not vary appreciably with Reynolds
number. This is a necessary assumption if Froude number dependency
dominates the problem for Froude number and Reynolds number cannot be
satisfied simultaneously. However, if Langmuir circulation is
turbulence-driven, it is, at least, necessary for the test to be con-
ducted at such a Reynolds number that the water flow under experimental
conditions is turbulent. This places a restriction on the gize of

acceptable test apparatus.

(ii) Weber number effects are neglected, assuming that the tests
are not going to be conducted at such a small scale that surface tension

“forces: become significant.

(iii) Ekert number effects are neglected, assuming in the first
instance that the Langmuir circulation phenomenon is not significantly

temperature driven.

(iv) The air-water interface is modelled with a laboratory air-
water interface so that p/pa and u/u_a are the same for the model

and the full scale.
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(v) The Prandtl number conditions is assumed to be satisfied.
Under these restricted conditionms,

W2 Ap
X a} (8.4)

H
= f shape,—D-,EH-,-p—

o>

and.

Since the water velocity can be related to the wind speed,,if geometric
similarity is achieved, the wave height is a function of wind speed,

thus ignoring the effect.of Apa/p , equation (8.4) can be reduced to

N LY
5= £ @ °T shape , (8.5)

where D 1is the water depth which influences Langmuir circulation,
being the total water depth if the lake is shallow or the thermocline
depth if the lake is deep. Shape in the above equation implies
correct geometrical scaling of the surrounds. It is anticipated that
the modelled waves will be distorted to some minimal extent, but the
gross features of the circulation phenomenon are produced.

Equation (8.5) has been used in Chapter 4 to correlate oceanic
data on the size of Langmuir cells with wind speeds, assuming open
sea situations in which shape is not an important parameter. The

correlating curve (see Fig.4.4) suggests a form

L
T = f [—g—D-J (8.6)

where A is the row spacing and D is the thermocline depth.

Natural conditions which resemble those in the laboratory are
those in shallow lakes and mud flats, where regular Langmuir circulation
has often been observed to extend down to fhe bed. Becau;e of depth
limitation in the laboratory apparatus and the necessity to raise the

wind speed high enough (usually greater than 3 m/s) to produce
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gravity waves, the range of Froude number in the prototype cannot be
reproduced in the model apparatus. Taking typical values of wind speed
in lakes to be 10 m/s and water depth (or thermocline depth) of 10m,
then the Froude number for this condition is about 1.0 .  Using
laboratory wind speed = 3 m/s and water depth of 6 cm , the Froude
number achieved is about 15.0. Because of this lack of similitude,
laboratory results must be viewed with caution,.

Following Faller and Caponi's (1977, 1978) presentation, the
present experimental data have been plotted in Fig.8.15 according to

the equation

A 2

L. |4 -

D-f[D] ’ (8.1)
in which Froude number effects have been ignored. The plotted points

show a correlating trend, suggesting that the results may not be parti-
cularly sensitive to changes in the Froude numbef. It could be that
the effects of wind speed have been largely absorbed by the surface

wave height, and the Langmuir circulation scale is more dependent on

the available energy s$tored in the waves. Published data, predomin-
antly those éf Faller and Woodcock (1964), have been superimposed in Fig.
8.15% . assuming fully-developed oceans in which the significant wave
heigﬁt can be estimated from wind speed. Although there is some
scattering of data, an apparent trend can be observed, implying that the
relationship suggested by equation (8.1) is applicable.

These field data fall on the lower end of the plot, .havimgsmall
values of H%/D , and the data Qere obtained under different values of
Froude number from those in the laboratory. From the plotted points,
it is apparent that these two sets of points follow a similar correla-

ting curve or at least are close members of a family of curves,
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suggesting that they are subjected to essentially the same phenomena.

A smooth curve has been tentatively drawn slightly to the left of the
oceanic data to account for an overestimate of the significant wave
height HZ s through both sets of data, to indicate the correlating
trend. It may be argued that since there is a differencé iﬁ the lower
boundary gf Langmuir cells (the thermocline for the oceanic cases,
whereas this boundary is rigid in the laboratory), a single curve
should not be drawn through both sets of data. If this were the case,
the erodible boundary curve should lie somewhat below the laboratory
points, indicating a slightly smaller cell width because some energy
has been spent in eroding the thermocline. However there is not
enough overlap of data to indicate where such a curve should lie.

Also the oceanic data are too scattered to position this curve accurately.
More data in the intermediate values are required to justify this argu-
ment. For the present, the experimental data may well represent an
extreme case of the Langmuir cell extending to the bottom and the
oceanic data represent an extreme condition of deep Langmuir cells with
erodible boundaries. An empirical prediction such as this is required
so that an estimate may be made of Langmuir circulation effects on
sinking loss of particles (Chapter 7), which is dependent upon the cell
spacing-to-depth ratio A./D .

More accurate and extensive measurements on Langmuir circulation
in laboratory and natural conditions are certainly required if a signi-
ficant overlap of data is to be obtained, and to further substantiate
the correlation equation (8.1), in which it is assumed that Froude
number effects have little influence compared with the H%/D ratio.

In the field investigation, additional measurements of the‘surface wave

variables, including wind speeds, wind direction and fetch lengths are
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needed. The effects of difference in the lower boundary could well be
investigated in the laboratory by using erodible fluid boundaries,
through the use of two immiscible fluids (a diagrammatic sketch of such
an arrangement is illustrated in Fig.8;16). This would provide data
on an extreme condition for the Langmuir cell with an erodible lower
boundary, through which an improved empirical curve could well be drawn.
In future laboratory experiments, efforts should be made to minimise
the surface tension effects by generating waves with large enough
heights, say, greater than 20 mm . In the present experiment, the
generated-waves could have been influenced, to some extent, by surface

tension forces because of the smallness of theirheights.

8.3.2. The Particle Settling Experiment

Just as in the wind-tank experiment, complete dynamic similarity
of the circulation flow and of the particle motion cannot be achieved
in the laboratory apparatus described above. The similarity in the
distribution of particles in a circulation cell and the sinking loss from
it demands that similarity is achieved in modelling both the circulation

flow and the particle motion.

8.3.2.1. The Circulating Flow

Similarity in both the mean flow and the turbulent eddies 1is
necessary if advective and turbulent (diffusive) transport of particles
in the cell is to reproduce the natural situation. Because of Reynolds
number limitations the turbulent condition cannot be achieved in tPe
present apparatus. Treating the water motion induced by the belt to
be analogous to that over a flat plate of characteristic length D which
travels in still water of kinematic viscosity v at a uniform speed U ,

the critical Reynolds number required for transition to turbulence is
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about 2 x 10® (Francis, 1975). The maximum value presently obtained
is about 1.2 x 105 , resulting in an unsteady laminar flow in the cell.
Because of this limitation, the results obtained are not quantitatively
significant but give a pictorial representation of the circulating flow
in a cell and the behaviour of particle settlimg through it. Qualita-
tively, the model has demonstrated the circulation effects in causing
reduction in sinking losses.

It is apparent that the most important ctiterion of similarity
for the circulating flow is the Reynolds number. To achieve a
sufficiently high Reynolds number, a larger model and probably a faster
bei£ speed would be required. Assuming the critical Reynolds number,
based on the downwelling velocity at the belt and the depth of water,
to be 2 x 10® , the depth of water (i.e. the size of the tank), D ,
may be related to the downwelling velocity, U , by D(m) 3>ZU(m/s)
For instance, if the tank size is 2m x 2m, then the belt must induce
a water speed of at least 1 m/s .

Although turbulent circulating flow in the laboratory apparatus
can be produced by increasing the tank size and perhaps running at
higher belt speed, the resulting circulation may not be strictly similar

to that within Langmuir cells for at least two reasons:-

(a) Generating Mechanisms. Because of differences in the

generating mechanism, i.e. mechanically generated in the laboratory
apparatus while the real Langmuir circulation is caused by a highly
complex interaction of surface wave and wind effiects, it is unlikely the
flow pattern and the velocity profile will be reproduced exactly.

There ié little data available about the circulation shape and velocity
profile within the cell. Thus it is probable that only the gross |

features of the circulation will have been adequately reproduced.



(b) Turbulent Intensity. The flow in the epilimnion of a lake
can become turbulent at ; Reynolds number which is much less than the
criterion R_ =2 x 106 based on the moving flat plate (in the vertical
direction) analogy. For example, taking the downwelling speed in a
lake under, say, 4.0 m/s wind to be 0.04 m/s and the mixed layer
depth of 5.0m , the Reynolds number for this condition is 2 x 103
There are reasons to believe that the flow in the mixed layer is turbulent
under this condition (Hutchinson, 1957; Mortimer, 1974; Smith, 1975).
However, it must be appreciated that the natural phenomenon is much
more complex than the laboratory situation and the model of a boundary
layér generated on a moving surface is unlikely to be directly applicable
to full scale. In the full scale situation the flow is strongly three-
dimensional in character and the transition and may well be affected by
dimensions in the plane normal to the Langmuir cells.

Having established turbulent flow in a laboratory model of a
Langmuir cell, the model would serve a valuable rdle in quantitatively
assessing the effect of such a cell on particle distribution and sinking
rates. Under laboratory conditions, experiments of this sort are much

more readily performed than in the natural environment.

8.3.2.2. Particle Motion

Similarity of concentration distribution of suspended particles
will result if the bulk transport of these particles in similar flow -
systems are in similitude. This requires, in addition, the satisfaction
of non-dimensionalnumbers governing the motion of discrete particles
within a turbulently flowing fluid. Exact similarity of both the flow
patterns and the resulting particle transnort cannot be achieved in the
current experiment because all the requisite similitude criteria have

not been satisfied.
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In a turbulent flow system, particle distribution and hence

sinking loss will significantly depend upon the following variables:-

U,D,d,Vf‘sL-,ings'D)st

in which u = the flﬁid dynamic viscosity ; p = the fluid density ;

d = the particle diameter (size); Vf = the characteristic fluid
velocity ; L = the characteristic length for a fluid ; pg = the particle
(grain) mass density ; g(ps - p) = the specific weight of particle in
fluid. Dimensional analysis of the above variables yields the
following Aimensionless products, which represent a possible form of

similitude criteria:-

Ved Ve L

- S
g ’ d’

v lats - Dd]
in which, s = ps/p = the density ratio; and v = u/p the fluid
kinematic viscosity. Study of thesg parameters indicates that the
dynamical reproduction of particle transport using the same prototype
fluid in a small scale model is not péssible, hence a number of gross

approximations have to be made.

(i) The effects of changes in the Reynolds number CVfd/v)
is not significant if the Reynolds number is sufficiently high for

turbulent flow to be established (Yalin, 1971).

(ii) The effect of the density ratio s(= ps/p) , apart from
its inclusion in the specific weight in the term Vf/[g(s - l)d]%
(or alternatively in the terminal settling velocity), will be neglected.
Yalin (1971) argues that this approximation is plausible if the

properties to be simulated are related to the totality of the moving



grains (i.e. to the transport of granular materials en masse), not
to the motion of the individual grain. Adequate prediction of the
sediment transport rates in open channels shown by many sediment
transport models which neglect the ratio s , provides some evidence

that the influence of s on the transport rate is minimal.

(iii) The ratio L/d cannot be satisfied identically in a small
scale model. This ratio must be neglected and its significant is
conjectural.

Hence the only remaining criterion to be satisfied is that the

effective Froude number ,

Ve

—_—

[g(s - 1)d]?
should be the same for the model as for the prototype. An alternative
form of the Froude number has been used by Rouse (1940)‘by replacing
[g(s - l)d]% by WT , the terminal fall velocity of particles, and
the similarity criterion becomes
Ve

W

This form of the similarity criterion, in which the particles are
characterised by W, , has been used in section 8.2.5 to compare
qualitatively the sinking loss rates from the present experiment with

the computer predictions.

8.3.3. General Conclusions

It is concluded that laboratory experiments do have a potential

role to play in studying certain aspects of Langmuir circulation
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phenomenon and its effects, such as the.dependence of the geometry of
the circulation cells on the wind/wave parameters, and the distribution
and settling characteristics of particles in the turbulent circulating
flow analogous to a Langmuir cell. The wind/wave tank experiment
illustrates the mechanism by which the circulations are developed and
the particle settling experiment, by isolating the circulating
phenomenon, is capable of being conducted under the necessary similitude
conditions. The difficulties experienced with the present laboratory
equipment, which are common to all types of experimentation on scale
models, arise from the inability to satisfy all the similitude require-
ments because of the laboratory limitatiéns. However, by keeping
only those siﬁilarity criteria that are significant, adequate
similarity may be claimed for practical purposes, as shown by the wind/
wave tank experiment. Although the results of the present experi-
ments are necessarily illustrative, several methods of measurements .
have been established, which could well be used in future investigations.
Reduction of the similitude criteria in section 8.3.2.2 of this study
must be regarded as conjectural, requiring further experimentation and

field data for verification.
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A.C. BRIDGE

AND
CARRIER AMPLI-
FIER CATHODE-RAY
OSCILLOSCOPE
X-AXIS
! -electrodes
TIME-BASE
probe
UNIT

PEN-CHART RECORDER

(a) Schematic diagram of the conductivity probe unit

w" # J #" MICKIW

(b) Photograph showing the conductivity probe and recoding

devices used in the wind-wave tank experiment

Fig. 8.2 1Illustrations of the conductivity probe

arrangement for measuring wave heights
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Fig. 8.4 Photographs showing dye bands in the wind-wave tank
for various conditions as viewed from above the test-
section. (a) Run No. 5; (b) Run No. 7; (¢) Run No. 8;

(d) Run No. 10. (see Table 8.1 for details)
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Fig. 8-7 (a) Schematic diagram of the basic apparatus for

studying particle settling in circulating flows.
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Ve

Fig. 8.7(b) Photograph of the particle settling tank and the

light strobing device.
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(a)

(b)

Fig. 8.8 Examples of photographs of the flow patterns obtained by
stroboscopic photography, (a) the exposure time is short;

(b) exposure time is long.
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(a)

EQUALS 16 CM/S

1 i (®)
v
. i
v
; i

WIDTH

Fig. 8.9 Circulation flow pattern for experimental condition number 1;
(a) the photgraph of flow pattern; (b) velocity vectors

deduced from photograph in (a)
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(a)

EQUALS 36 CM/S

(b)

v
I

v
1
I v
/ Y

Fig. 8.10 Circulation flow pattern for experimental condition number 2
(a) the photograph of flow pattern; (b) velocity vectors
deciuced from photograph in (a)
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(a)

EQUALS 60 CM/S

()

\7

WIDTH

Fig. 8.11 Circulation flow pattern for experimental condition number 3,
(a) the photograph of flow pattern; (b) velocity vectors
deduced from photograph in (a)
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(a)

(b)

\7

WIDIH EQUALS 60 CM/S

Fig. 8.12 Circulation flow pattern for experimental condition number 4,
(a) the photograph of flow pattern; (b) velocity vectors
deduced from photograph in (a)



Table 8.2

Summary of Results of Particle Settling Experiment

Experimental condition No. 1 2 3 4
| Belt speed (Variac setting
Right 105 115 120 125
Left 102 105 105 104
Av. max. upwelling
velocity (wu) om/s 4.0 7.0 8.3 13.0
Av. max. downwelling
velocity (wd) em/s 11.5 16.7 40.0 32.0
Flow pattern and velocity Fig.8.9 Fig.8.10 [Fig.8.11 [Fig.8.12
Particles: diameter ym = 500 500 500 500
fall speed (WT) cm/s 0.5 0.5 0.5 0.5
Centre of rotation: x” 0.55 0.55 0.55 0.55
y* 0.45 0.45 0.45 0.55
W /W 0.34 0.42 0.21 0.40
| _u d
WT/Wu 0.12 0.07 0.06 0.04
Original mass of particle
at t=o) (grams) 5.0 5.0 5.0 5.0
Total sinking loss at
£=9.5 min., (grams) 3.993 3.971 3.971 4.111
Note Dimensions of experimental cell:

0.38m (height) x 0.41m (length) x 0.15m (width)

180
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_Legend
Condition 1

upwelling_ downwelling_

0'8— - —0— "

W

Weight of particles (grams)

| I | |
0 0-2 04 06 0-8 1:0
Distance from the leff/ceu width

Fig. 8-13 Distribution of particle sinking_losses across the cell
width in various experimental conditions at time 9-50min
from_beginning, original weight =5-0grams.
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(a)

(b)

An example of the relative distribution of particles in the
particle settling tank deduced from photographs for experiment-
al condition No. 3- (a) and (b) are photographs taken at about
3.0 minutes after the start of the experiment, at 4 seconds
apart; (c) the average particle counts for 10x10 uniform grid
after being corrected for unequal light beam width; and (d) the
contour of relative particle distribution obtained from (c),
units on the contours are arbitrary.
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laboratory conditions real situation
(A) wind (B)
wind

velocity distribution
(large bottom shear)

Tb

A VAV VARY ;o
bottom of the tank taken

to be equivalent to the

bottom of the mixed layer

bottom of lakes

wind

(€)

water layer

some suitable / interface
tracer which will

stgy-erTthe interface

tbetween layer dense fluid
(preferably in

powder form 1

bottom of tank

Fig. 8.16 (a) and (b) Waves and vertical velocity profiles in a
wind wave tank and in a lake, (c) Schematic diagram of
a recommended wind-wave tank, using two layers of fluids
of different densities with tracer or dye introduced at
at the interface to represent closer to real situations.
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SOME EFFECTS OF LANGMUIR CIRCULATION ON

SUSPENDED PARTICLES IN LAKES AND RESERVOIRS

CHAPTER 9 -  RELEVANCE OF LANGMUIR CIRCULATION TO WATER QUALITY

PROBLEMS

The relevance of the basic findings of the present study to
water quality problems, especially in the modelling of algal
population in the mixed layer of lakes and reservoirs, is discussed.

Suggestions for further work are outlined.
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CHAPTER 9  RELEVANCE OF LANGMUIR CIRCULATION TO WATER QUALITY PROBLEMS

9.1. Water Quality Models

Accurate prediction of changes of algal population and suspended
matter in the mixed layer is important in the management of water
quality in lakes and reservoirs. Two types of mathematical model
have been commonly used for quantitative predictionms. These are the
one-dimensional model in which the variations of the quantity in the
vertical direction are described, and the zero-dimensional well-mixed
compartment model, in which the constituents in the epilimnion are
regarded as being uniformly distributed at all times. In these models
the changes in suspended matter are considered to result from sinking
and turbulence, and, if the constituent is algae, the changes due to
biological processes such as photosynthesis, respiration, etc., are also
included. The effect of large-scale water currents, such as the
Langmuir circulation, which could carry suspended particles throughout
the mixed layer depth in a circulating motion and thus alter the net
settiing of particles from a given location, are not accounted for in
these models. Baca et al. (1974) have shown that their one-dimensional water
quality model is particularly sensitive to the value of sinking speed of
algae. Thus there is a need to specify more accurately the settling
rates of algae in the mixed layer if reliable and realistic predictions
of the algal population are to be obtained. In view of the manner
in which Langmuir circulation readily forms in lakes when the wind
speed exceeds 3 m/s , a common occurrence, the significance, or otherwise,
of the effect of this circulation on the settling rates of algae and
other suspended partiﬁles are required to be ascertained quantitatively.

This constitutes the principal aim of the present study.
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9.2. Significance of Langmuir Circulation to the Settling of Algae

and other Particles

9.2.1. Summary of Relevant Results

Langmuir circulation has been shown (Chapter 7) to affect particle
distributicn within it and the extent of the effect is dependent upon
the dimensionless sinking (fall) speed of the particle W; , cell
spacing-to-depth ratio A: , and dimensionless time t* . As a rough
rule, it has been found that for the dimensionless sinking speed
W; § 1 x 10'5 , 1.e. particles with small settling velocity in a strong
¢irculating current, Langmuir circulation produces essentially uniform
particle distribution over the cell, regardless of the cell size (A:)
3

and time (t*) . For w; >1x107° up to 1x 10~

used), a varying degree of particle aggregation occurs in the Langmuir

{the maximum value

cell, depending on the dimensionless cell size A: and dimensionless
time t~ . Comparisons between the bredictions by the two-dimensional
(Langmuir cell) model, the one-dimensional model, and the zero-dimen-
sional model, of the total quantity of particles remaining in the mixed
layer at the end of various times (see section 7.4), show clearly that
‘the one-dimensional model always gives an underestimation while the
zero-dimensional model only underestimates the particle quantity when
W; is greater than 1 x 10> .  This indicates that, when Langmuir
circulation is present, the settling speeds in the one-dimensional model
and the zero-dimen;ional model (when W; >1 x 10'5) must be smaller
than the conventionally used values.

In order to avoid gross error in the prediction of the suspended

particles in the mixed layer, effective sinking speeds must be used,

which are defined as the net sinking speeds in the conventional models
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which give equivalent particle distribution profiles and sinking
losses as those in the Langmuir cell (see section 7.5). Based on
the numerically simulated data of the particle distribution in the

Langmuir cell, the variations of the effective sinking speeds with

*

T

*
dimensionless time t are illustrated for the zero-dimensional model

dimensionless cell size k: , dimensionless sinking speed W, , and
in Figs. 7.10, 7.11, 7.12, and 7.12a. A percentage reduction in the
sinking speed as large as 63% is obtained for A: = 2.5 and

* 4

- * -
WT 1x10 3 , whereas for WT =1 x 10 , the reduction falls to

about 10% (c.f. Fig.7.12).
“ The effective sinking speeds for the one-dimensional model are
illustrated as functions of dimensionless time t  and dimensionless
depth 2"  for the cases of A: = 2.0 and W; =1x10"% and

1x107°, respectively, in Figs. 7.14 and 7.15 . In these cases,

the variations of the effective sinking speeds are complicated especially
during the early transient period (t* < 6000) , making them cumbersome
to apply in practice. To simplify the picture, these effective speeds

are averaged throughout the simulation period and presented as a

* *
function of WT for the case of Ac

2.0 in Fig.9.1. In general, the
effective sinking speed decreases with depth to a short distance below
the water surface and %hen increases with depth to the still water value
at the lower boﬁndary of the mixed layer, Since essentially uniform
distribution results when W; <1x 10_5 , in this case the effective
sinking speed (wefé) may be equally well defined by the linear increase

from zero at the lake surface to the terminal fall speed (WT) at the

lower boundary, i.e.
- (A ‘
Woee(2) = (5« Wy (9.1)

in which =z = depth from the lake surface; D = depth of the mixed layer.
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9.2.2. Langmuir Circulation Effect on Algal Particles

The above discussion applies in general for suspended particles

with varying sinking speeds approximately in the range of 1 m/day to

200 m/day under the wind speed of 3 m/s to about 10 m/s , which
should cover most conditions in lakes, the heavy sinking speeds belonging
to the coarse sediment particles. Before discussing the implication
of Langmuir circulation effect on algal particles, it should be noted
that there are basically two types of simulation models concerning the
prediction of algal population dynamics and patterns of productivity.
The first type of model, exemplified by those of Chen and Orlob (1972),
Maié (1973), and Tang (1975), treats the phytoplankton as a single
unit, without regard to differences among species. The other type of
model, e.g. Rutherford (1976a), attempts to simulate the seasonal
periodicity in individual species in relation to the succession of
algal species and the magnitude of algal bloom. In this type, several
species of algae are considered and each is characterised with species-
specific sinking speeds and other biological parameters.

Values of sinking rates of some freshwater phytoplankton have
been published in the literature (Hutchinson, 1967; Titman and Kilham,
1976; Lund, 1959). From these published data, a range of values may
be established in whi;h for healthy cells of the phytoplankton, the
sinking rates lie between 2.1 to 0.0 m/day , and for senescent cells,
between 7.0 to 0.0 m/day . It is algo noted from several simula-
tion models of the first type that the maximum value of the sinking rate
used is about 1.0 m/day . Based on these values and the minimal
wind speed ¢f 3 m/s , the maximum value of the non-dimensional sinking
speed for the growing cells would be 8.7 x 1076 and, for the senescent

cells is 2.7 x 107° . Therefore it can be concluded that for most
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*

T

under the wind speed which can create Langmuir circulation. In such

phytoplankton in freshwater the value of W, is far less than .1 x 107°
cases, Langmuir circulation is strong, creating essentially uniform
distribution of particles throughout the cell regardless of the value
of Langmuir cell size (A;) . There is therefore no need to correct
the sinking loss term in the zero-dimensional model. However, in the
one-dimensional model, effective sinking speeds must be used to give
uniform distribution and these speeds may be estimated from equation (9.1).
For the water quality models which simulate several algal species,
some of the algal species may have higher sirking rates, for instance the
di;foms, whose sinking speeds may be as high as 18.0 m/day for the
growing cells, and higher for the senescent cells. Using these

sinking speeds and a wind of 3 m/s , WS is about 7.0 x 107> , when

T
some aggregation of particles occurs in the Langmuir cell and, hence,
correction to the sinking loss terms in both models will need to be ﬁade.
Reduction to the sinking loss as high as 6% can occur in the zero-
dimensional model, while in the one-dimensional model, further reduction
in the effective sinking speeds is evident from Fig.9.1. Even a small
percentage of particles, retained in the mixed layer, may be significant
to the total population since the retained algae will be continually
swept in and out of the euphotic’ zone, where growth by photosynthesis

is active, giving rise to some significant increase in population over

long time durations.

9.2,.3. Effect on Other Particulate Matter

Apart from algal particles, other particulate matter and organisms,
such as the sediment particles, zooplankton, detritus or dead cells, are
similarly affected by Langmuir circulation. Because the dead cells

will settle slower there will be a greater opportunity for them to be
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decomposed by bacteria thereby réleasing their nutrient contents to the
epilimnion and stimulating further growth potential to the algae. The
reduction in the net settling of sediment particles not only affects
turbidity in water, which is related to growth of algae, but may have
relevance to the sedimentation process in the lake or reservoir as well.
Retained sediment caused by the Langmuir circulation will be carried
further by the surface current and deposit over larger distance downwind
from the point of entry.' However, the distribution of zooplankton

is expected to be different from that of the inert particles because of
their ability to swim and orientate themselves according to light
inténsity and Langmuir circulation currents, hence the effective sinking

speed concept is not applicable to these organisms.

9.3. Model Limitations

The foregoing discussions are based on the computed particle
distribution in a Langmuir cell obtained from a two-dimensional
advection-diffusion equation, in which suspended particles are treated
as being passive contaminants to turbulent flow. In the present study
Langmuir circulaticn is assumed to occur in stratified lakes. In
shallow lakes where the cells extend to the bed, no re- suspension of
particles back into tﬁé main flow has been assumed to occur (i.e. no
scouring), The most severe limitation to the model is the necessarily
empirical nature of the circulation flow field. However, at the
present state of knowledge, in which no well-proven theoretical model
exists, it represents the best available information. The structure
of the model is basically sound, being based on the two-dimensional

advection-diffusicn mass transport equation, but it relies on the appro-

priate description of advective flow field and turbulent diffusion



parameters. The subprocess models, e.g. the Langmuir circulating
flow, turbulent diffusion, and particle sinking, have been separately
considered and selected on their merit in their individual processes.
Once inter-related, the combined model has been shown to provide some
quantitative assessment and insight into the effect of the circulating
flow in the Langmuir cells on the distribution and settling of
suspended particles, especially the algal particles, the most important
constituent affecting lake and reservoir water quality. Although
field and.experimental data are unavailable for verification, this
analytical study demonstrates that Langmuir circulation effects on the
sef%ling characteristics of suspended particles and algae, which have
been ignored by most modellers, demand a more careful evaluation before
accurate prediction can be anticipated from the conventional water

quality models.

9.4. Suggestions for Further Work

1. Verification of the model predictions of particle
distribution is clearly required. This entails
simultaneous measurement of the concentration of some
labelled particles of known sinking speed, at sufficient
points in a Langmuir cell after it has been formed for
some time in a lake. Wind speeds must be recorded
as well as the size of the Langmuir cell (i.e. the width
and depth). A number of these measurements at
sﬁccessive time intervals would be required. At the
present stage of experimental technique this would be

a sophisticated and demanding study.

193
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The importance of Langmuir circulation in causing algal
aggregation can also be investigated quantitatively by
making surface fluorescence profiles perpendicularly and
in parallel to the wind airection at a time when the
Langmuir circulation has been clearly observed. Such a

measurement cannot differentiate between algal species.

The model prediction .depends on the reliability of the
input. Attempts should be made to obtain more detailed
information on both the velocity field and the turbulent
diffusion field associated with Langmuir circulation.
This requires both the development pf a technique and
suitable instrumentation, such as remotely-controlled
hot-film anemometer. Having established the velocity
field, the method of interpretation of results in terms

of turbulent diffusion coefficients is of real significance.

In view of extreme difficulties in making field measurements
to assess the effect of Langmuir circulation on the distri-
bution and settling of particles, laboratory experiments
conducted in a circulating flow tank provide an alternative
way of gaining useful information. In terms of the
ability to regulate the parameters associated with the
particles and the circulating flow, such experiments are
much more readily performed in the laboratory than in the
natural environment. In order to produce turbulent flow,
it would be necessary to increase the tank size, say, to

about 3.0m depth and the belt speed to about 1 m/s .



More accurate and extensive measurements on the scale

of motion of Langmuir circulation in both laboratory

and natural environment are certainly required in order
to further substantiate the empirical relationship
between the cell spacing-to-depth ratio (XC/D) and

the dimensionless significant wave height (H%/D) , given

in Fig.8.6.
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CONCLUSIONS

1. Langmuir circulation affects particle distribution and hence
sinking loss from the mixed layer, the extent of this effect depending

*

primarily upon the dimensionless sinking speed WT and the ratio of

*
cell spacing-to-depth Ac. (Sections 7.2 to 7.5)

*
2. When the dimensionless time is about t = 6000, an equilibrium
exists between the relative distribution of particles in a Langmuir cell,
in which there is a balance between the sinking loss and the advective

and turbulent tranfers of particles. (Section 7.2)

3. When the dimensionless sinking speed W; is less than or equal
1x10-5, the effect of the circulating flow and turbulence being large
compared with the settling velocity, the particle distribution is essenti-
ally uniform throughout the Langmuir cell and is independent of the
dimensionless cell size .A: and dimensionless time t*. When W; > 13(10‘5
aggregation of particles results, with particles being concentrated in the
central and upwelling regions. This effect becomes more pronounced as

W; and A: increase but approches the uniformly distributed condition

*
as the dimensionless cell size Ac and/or the dimensionless sinking speed

*
WT decrease. (Section 7.2)

4. Comparisons of suspended particle prediction by the conventional
one-dimensional model.and the- zero-dimensional model on the one hand with

the two-diménsional model on the other show that the one-dimensional model

*

consistently predicts larger sinking losses for all values of WT

*
and A

c

*
while the zero-dimensional model gives larger sinking losses when WT is
- * L 3

greater than 1x10 5. If WT Z 1x10 > , the prediction by the zero-dimens-
ional model is identical to that of the two-dimensional model. The

settling speeds wused in both the one-dimensional model and the zero-

- *
dimensional model (when W s 1x10-5) must be reduced in order to produce
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the distribution profile and sinking losses observed when Langmuir

circulation is present. (Section 7.4)

5. The effect of Langmuir circulation on particle suspension may
be incorporated into the conventional models by utilising the effective

sinking speed in place of the terminal fall speed. Generally, the
) .
T’

*
one-dimensional model, it is also a function of z . (Section 7.5)

* * ‘
effective sinking speed is a function of W Ac , and t , and for the

6. In the zero-dimensional model, when the dimensionlesss particle
*

T
. * -
fall speed of the particle. But when WT is > 1x10 > the effective is

sinking speed W., is 2 1x10™~ the effective speed equal to the terminal
smaller than the terminal fall speed, specific values for a large cell
*
spacing-to-depth ratio Ac = 2.5 being some 90% of the terminal fall speed
* - * -
when W_ = 1x10 4 and some 37% when WT is as large as 1x10 3.

T
(Section 7.5.1)

7. In the one-dimensional model, the effective sinking speed .
concept must be applied regardless of farticle sinking speed. Its value
is generally smaller near the lake surface, gradually increasing to the
terminal fall velocity at the lower boundary of the mixed layer. For W;
2 1x10'5 where uniform distribution of particle occurs, the effective
sinking speed may be taken as increasing linearly from zero at the lake

surface to the terminal fall speed at the lower boundary of the mixed

layer. (Section 9.2.1)

8. Considering the range of sinking speeds for various freshwater

*

T

less than 1x10_5under nornal wind conditions in lakes and reservoirs, thus

algal cells, it is found that for phytoplankton W.. is (with some exceptions)
uniform distribution results in the Langmuir cell. No correction to the
sinking speed is needed in the zero-dimensional model, but in the one-

dimensional model a linear increase of effective sinking speed with depth
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must be incorporated. (Sectiéns 7.5.2 and 9.2.2) <

9. The sinking speed of the diatom cells, which are much
heavier than the phytoplankton, are reduced by as much as 6% as a
consequence of the Langmuir circulation. Though smali, this could

cause a significant population increase. (Section 9.2.2)

10. The gross features of Langmuir circulation can be modelled
in the laboratory provided that adequate similitude criteria are
observed. @~ In the wind-wave tank, laboratory results and few published
field data suggest that the Langmuir cell (dimensionless) scale of
mot;on (AC/D) is related to the (dimensionless) significant wave height

(ﬂ%/D) , and the effect of Froude number on the phenomenon is minimal.
In the particle-settling tank, it would appear that significant results

could be obtained if flow Reynolds number and particle Froude number

similitude are observed. (Sections 8.3.1 and 8.3.2)
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APPENDIX I

COMPUTER PROGRAM LISTING

The computer program for the computation of the particle
distribution and settling in a Langmuir cell is included. Although
the program has been written specifically for a 51 x 51 uniform
grid system, the extension to include sther numbers of grid points,

non-uniform grid spacings, or variable diffusion coefficients is

straightforward. The inputs to the program are:-

1./' Number of mesh points in y- and z- directions (NY, and NZ) ;
2. Langmuir cell spacing-to-depth ratio (LAMBDA) ;

3. Dimensionless sinking speed of particles (WT) ;

4, Time interval to write vertical profile of particle (TSTEP) ;

5. Time step to be used in the integration by the ADI-CDS finite

difference method (DT) ;

6. Maximum number of time step for the run (DNT)

The graphical subroutine library GHOST, which is a common
subroutine library available at many computer installations, is used
throughout for graphical outputs.

A condensed flow diagram illustrating the major operations of

the program is given.



St trt

Ueail input Uata on i;riil, I..C. .ami sinking;
speed:- NX,NY,l.A'mii\,irr

Head time interval to compute averatti
vertical profile of concentration; ISI LI

CAl.l, UFGUIfi - Specify coordinates of mesh

points in v- and diections (uniform)

CAlL.l. AVCVf.l. - Compute average ve loci tv
e-omponents V,W in L.C, (defined profile)

CALL DIFFUS - Specify values of diffusion

coefficients (constant over L.C.)

Read time step for integration of
governing entiat ion : DI

Set maximum simulation time
T'LAX = 5x10%*

CALL INIT1 - Initialise concentration

Read max. no. of computation cycles *%or
the run (i.e not to cxced time limit)
:DNT

Begin the computation to obtain concent
I ration distribution and other sinking
loss data from time level n to n+l
H until DNT cycles completed ( start the
~ time loop)

Is
writing of concentra-
< tlm prritli'j ruquired ? A e
Yes
CALL PROFIL - Compute average concent-

ration profile and save results

Ston
I'UNI'M ci'iico SaVl' all results
lit rat 1on rixovl ilata aiu
rot" I lo ot current ilata for
naft Ir 1o restart run
CAlL.l. rnfQllNl - Comp.ute cone.
distribution at next tinn
evci n+l by the AO1-CHS
method
Is
T>L\X reached?
end of simulatioi
(DNT cycles)
reached
C'1Ass 1
0.01
CALL CMASS -
compute mass
left in L.C. plotting
also % error contours of cone
in mass conser- qui red
vation
CALL CPLOT - Con
crate plotting
codes by GHOST
subroutine 1lib-
CALL CPRINT Is rary

printing of
CALL CPRINT concentration distr

ibution required

Compute COCPF,
and print FLUX,
TLSINK.and
COEFF

tesu

required

Compute sinking loss parameters:
FLUX, TI.SINK at the end of elapsed
time t

bpccity parameters tor printing and
plotting results: .NTPLT1l, NTPLOT2,
NTPLOT3

M/iLiIMK in THK caii'ri’ATion:; ( in 'niK HAin IT'IrihAH )
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1070

10 00

1100 MW FO"*OA- (1HI /1(0 ,Ft Y,

20no

10
20 01

20 02
2003

20

2004

5000

1400

r>7'ir.oA'i MATM(IriojT , OUTDIT , TAP" , T h,rA*-10.rA« 11, TA"- 1 TrNfMIT ,
*rAP"'’'-01Jdn )T)
nf-A( LAMPn
T-rr'-.ro (i«T
r, T 11'' V( T,fTt,m(F\ f),” (0Ofi,sn),riTA 'ini.'.n)
nT'-- TT" (% 1),V"' 1), (' 1)
"nr-m't '7, N,c ."'»".1 AP
r-nMvj.-..,/o APAlc ,V,7 , N7, JT
raM'-n'i/onriPT/’ ¥n T ,LAHTM
PPOCOfM J
oonr,-.Av TO OALOOLAT" TT*U O0TO TOJTJON 0% PARoTTCLP
CPMOC'.'TPA TTOO \'TTHTO A L"NGHOTp CT O"L'TIO'I AOO Pfl1PTTOL'”
0 TOKT"A 1700 FPOO IT PPP A GIV"N OTOKT 03 OPPPO
(0T), tA'l0O"MTP OTPCULATIPN (LA%0ORA), ANO 3RTO
PTOQprTT-4TTOO (0Y.NZ)
V.'PTTr A OATS AT THF OPGTMNTNF, OF FTL"S TQ 3TApT TH- FJLFG
TTE£0T-1ngq
V'Pim('>,107q) TT"3T
rpp-'M (101/'v,T3)
WPET+121 IT-ST
WO ITr(A) IT~3T
XPTT®(ln) IT- T
WOIT™ (11 ,Pn0) TT-ST
FOPOC T (tv, rs)
SWITCH 00 PLOTTF» AOO CP'CIFY MAXIMUM MUMOPR OF ppAMAS
PALL DAP P(n
PALL 3P3T0=(13)
ppAO CAIOP, ST ZF OF LAOr/oJIP PFLL, STtKiNO SPPFQ
FFAO( 1,1%0:") NY, 07, LAMAOA ,WT
FO-'OAT (71T, FP ,T,r1ln. ()
WPITF (7,11"') OY,0Z,LA"OPA,WT

iswn AT 4 ANO pfrj,1TS/OF X ,1F (1M
*T 3,3Y.3007%, I7,TY,2 IHWTOTH-TO-0FDTH

»0=,rIn.)

PFAO TIMF 1OTFPVAL TO WPJTF COOPFNTPATION PROFTLF ON
PFAO (1,17qr) tST'P

FqoqAT (F 11, ¢£)

K=7TTE (7, 170, fi, TSTFp

FCPMAI (IMO,ZuTCTFP =,F11.4)

nrcioc OONSTEfiNTS

PT=W.T'ATAO (1.0

Woro. OF''-2?

SP'"CT'"Y COOPOIOATFS OF S'MnS§

CALL UFCRIO

PO'-'PUTF AVF.TAp.r VFLOCI TIFS V &NO W
CALL AVCVFL

PPTMT T0'- COMPUTFO VFLOCTTIFS

"ATIO=,F5.3,3X,1"'«HSINKIN3

»)/1HO,1Y ,3HNY =,
S"FE

FILE 1i

ii=(0Y-n /10
JJ= IT
VIY$-'V- 1
M07=07—1
WPT TF (?
Bw* (I%O 7qy, POHWO7170NTAL AV3 FLOWS (V'S),/7IX ,2f (LH*)//)
PO 11 1,007,3
U'PTTF (—>,onni > j (u( T,j) ,1=1, 0NY?, IT) ,V (NNY2, J)
FO7'" IT (7y ,TW 7= , M ,3X, 11 (1PP1 1.3))
Wn TTP (W, 2gn ®) (1,1=1, NOY“, IT), ,00Yg
FOPMAT (//11X,11(3X,?HI=,1I3,3X))
WPTTF (2,20"3)
format (IHO, 71 X, 2LHVF2TTCAL AV3 FLOWS (W'S),/2IX,?((IE»5//)
no 20 J=1,NW7,JJ
KRTTF (2,21~1) J, (W (T,J), 1 1 ONY, 11),W (NNY,J)
WPTTF (2,?0cC2) (I,1=1,N0Y, ) ONY
SPFpicY VALUES OF OIFfoSTOO COFfc xr;i foTS
caLL diffus
PFAO LFOGTH or TIMF STFP
PPAO (1,2004) oT
FOPMAT (Fil.U)
TMAX=3."F+q
n' T
P*L T=0T/7
NT'-'Av=IMA X/OT * 1
'W'PIT'" (7,9q, OT«TN,T«AY,nTMAX,OT
*3H6..VATr{/lX FF,r, Tva= Fll 4,3%, SH'IMAX ,F11.4,3X,SHEHNTMAX=,16,3X,
r=
WPTTF- FT yFp OATA IN ftlg 3
WATIF '3) WT ,IA'tOOA, NY ,NZ , 0T, NT*A X
WPTTF (T) (Y (I),T=1,NY)
WP'TF (3) (7(J) ,3=1,237)
WRPIT'-(3) (F( ) ,3=1,"17)
WPTTF (7) ((V(I,Jd) ,I=1,NNY *) ,J=1 ,NNT7)
WPITF (7) {(w(T,J31 ,I1=!,0NY),J=1,NO 7)
WPTTF INITIAI DATA 00 Ft,r n
WPITP(!1,1401) WT,LAOnnA, TSTFP
FOPOAT (1X,F11.4,IX,FF. 7, IX,Fil.4)
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TNTTTALISF mNCFN Tp0UTTON AT T= 0
CALL TNTT1

CONPUTF INITIAL MASS IN L1.0.
CALL MAS': ('IMASS)

CMASSn=P"AFS

KPTr-(7) CMaz1so

WPTTF (r,FFno) rNASSO
[eoYe oY FOPMAT (I1INO ,3SMCRIGI NIL MASS OF PARTI''LFS IN L.C. ~-,IPFU.3)

INITI ALICE TOTAL "ASS Or PAPTICLF IN L.C. AT T= 0
TLSINK-0.0

PEAO NAY IMUM NUMOPP OF C~"MPUTA TION CYCLES FQP THIS RUN

PFAs (<,qr04) ouT
4004 FOPMA T (IF)
k'PTTFC7,i, nns) ONT
4nCS FQouar</1/,SM ONT =,TS/1"°1)

g INTTTALISF CoOUNTING iNOi“Es F”0 ?Fsm Ts TO OF WRITTEN ON
c FILES 4 ANO 11, ANO NUMOFpING OF CONTOUR PLOTS
r
TC7, )\'T:%
|.)ij.,iorc-
KCOUNT=1
r 00vr»',TF PA3TTCLF FLUX, TOTAL STNYINC LOSS, AND COOPPST ION
r COFFFIGIFMTS
C
4000 FOPPAT (tX. 1PMTTRF STFP (Nt ,4Y ,ouT TMf (tr), (y ,®LnMASS FLUY OF PAPTIC

*1.F,3Y,PPMTOTAL ACS OF o APT ICLF ,4X , 1 xON)

40 01 FO agaT (1y S (LM» ) '/"E'Q (LUO ).,e'\i,lsmpuT pf. L.C. / XT, GX,PP-TSINYING 0
*yT OF I,'./WT, ty, 1iHCnFFFTri PIT/7ny ,p« (1 (»),3x ,2 (1 ),3x,11 (17%,))
WPT TV (p,Lon 3)

4003 FOPMAT (1MO)
FIT1=1
NTPANT 1.mrjT
TF(NT .oF . TMAy) NT -» aTM 'y

SAV/f SOMO'II FO pfsnlTS IN F[lf U

WPTTF (0) WT,LAMPOA,t|Y,N?

CO"P ITF T.TTT-.AL FL.JY OoF PAPTICLF O'T L.
FL'Iv=n,p

IF(WT.IF.P.O) SOTO 73

no 77 =", N Y

OYT | %Y (TM) -Y (T,

nFLMY =G (7 ) *0Y I)

(7,
77  FLUX =FL!IX4PFi fjy

C COMPiJTF PAPTICLF CPNCFEFNI PAT ION OISTp TO'ITION
Cc
73 OP on N=NT1,NT?
NNN=N-1
T=N'"1l»nT
C
c TF-1 IF WPTTTNG OF VFpTICAL CON*FNTPATTON profFTLF prq,,T JPO
TTTMT -TNT (T)
ITSTrmz TNT (TSTFP) .
IFfEMOOdTIMr, iTSTF3),ro. :) CALL pPOFIL (T ,NUMOF )
C PFFT-ic TNOPFur+iTS TO pptnT pFSULIS
¢ IF(T.LF.i1.nc,3, Nplot 1=10
IF(T.Lf,1.0F43) NPLPT?z?%r
F(T.LF.1l.pF,3) NPLPT 3=0P
TF(T.F. T.1 .QP,7) NPLOT 3=0"0
IF (¢t.GT.1.AF,T.ANP. r.1f. 1.0E+4) NPLnil =10 n
IF(T,r, T.1.nF*3.ANO.T.Lr.1.nFT4) nplot?=200
IF (T.GT.1,1E+4) NFLOT; =s on
IF (T,GT .1 .0E*-4) NPLOT? =10Fq
C
C 00OPy-KFrPTNG TOTAL MASS OF PApTICLES SINKING oUI OF
C L.C. at 7 .Jp of FLAPSFn TIMF Jj
C
IF(N.rp,NTi ) r-0TO0O ¢2
PLOSS1=nL0SS7
DLOSSp=FLUY
TLSINM=TLSTNx+n.0*O0T* (0OLOSCltnt 08S87)
r0T0 F3
0?2 DLOSS?=flux
C
C TFST IF poINTING OF PprFrGuIlI.TS TO RF OONF
C

03 TF (MOO (NNN, mdlpT 1) ,NF .n) GOTO 01,
F(N.Fro.I) CCOFF=L,n
IF (N. NF. 1) C':p "'"F=TLCTNK/ (CMASSOXT »
WPTTF(P,43jnP) N, I ,FL'JX, TLSINM ,CCOFF
4912 FWOPP7MTA=I((q4)y,TTG iFuyv’,rClClp.fAénX’C7'7’Lr.’Y rtL.4,12X,F7.3)
icONNr =rcou''r+1

Cc
TEST IF ppIG'TTNG CF CONCFNTPATTON TO RF OONF
C
04 TF (MOO ('MS'", OT.p).NT, 0) GOTO 7Q
IF(WT.ET.n.) carL. Cepd NT (N,T)

IF(Wr.LF.9) caLL FPOTLJT (N, T)



rOMOlITr DAPTTCLF MACS CmSF'~“VATTON PP-'PR AT TM” SAME TTRF
TO pojMT CONSE'ITRATTTH O0TSTPI ITIOM

?Ay ynS§§Pt§I%Sn cM ACCT LS TH'<*wT )*1Q0.9/0MASFO

4100
c TEST IF MO PAPTICLES LEFT IN LANGMUIR CIRC'JLAITON
¢ IF(CMASS.LT.9.0n GOTO 50
TFST IF PLOTTING OF CONCENTRAIION OISTPITJIION RFQJIPED
A 70

i'ygrl (‘MIN, tiPLOIS ) .NE . 0.OR .NNN .F0 .0f GoTO 71

CALL CPLOT(T,KCnjNT)
KCOUNT=YCOUNT+1
71  nONTINDF

TEST IF ENO OF SIMULATION REACHfoO
IF(N.EO.NT2) GoTO 55
COMPUTE CONCFNTPATION OISTPinUTION

CALL FP'-ONl (OFLT, FLUX)
SO CONTINtLF
55 coNTINUF

Gnon FORMAT dHi?5&HNO?'"0F Pf-*mltS OFTNG SA'/fo IN FILE TORRES
»PUM=,I£0
IF (N.FC.NTMAX) GOTO 62

k'PITr (50) WT, LA-200A ,NY, N7

WRTTrd 0) ", T,FL'Jy ,TLSINK,CCOEF
WPTTF (13) YCOUNT
WPTTF(IO) ((C(I, I),l=1,NNY) ,J=1,NNT7)

Cc

57 03 FOP" AT (id G (LH*) 6THCEM PUT AT TONS INCOMPLETE, PPOG? AM SAVES

'
#LLPWING OATA AT N=,T6,5 (1M*1)
WPTTF (7,530(1) M,T ,FL )y, LSIM<,CCO

5300 FOP'1AT(IMn,'7'.iN=,6IF,3Y, ' 'HT 1.4

¢Eli,*., <x ,5MCCO' F= .FP. 7)

WP TTF (7, 5"05) KCO'INT

5305 FO"1AT (11-0,1X,3w</CDNNT =,T6)
IF (XT.5T7.3.) CALL ~ppT"T(N,T)
IF(WT.LF.0. I caLrL EppP !NT(N,T)
GOTO Ff-

F? WPIIF<?,5600)

5603 Po7', AT (5Id, 5 (d)») ,?0HS TMULAT ION COMPLETED ,5 (IH*))
CO''T INL'F
CALL GPFxn
FTCP
END

ORPU, 1~ AVCVFL

BEAL LA“pOA
COMMON V,W,c.cSIAP
rnvvn\, /040, /c,V, 7 7, \'T
Co"MON cch’:T/’N'p,P 1 AhppA

o

c

c

c

c

c

c

P_

c STAPT TO OOMPUTF VS POW 'd ROW FpOM g=i TQ J=NZ-1
[

nTVTOr=n .4»IA' (FDA
FArTnP= n,2<W“d'qudA/PT
AA=]1 .RC»PT /LAMPPA
$5.0*PI/LA"00A

=t\]' -
NNY7$NY-7
MN7="d-i
00 1 J=1,NN7
71=2(J*1)
7P=2Z( 1)
F"'T79=21-72
a—stm(PI*71) -SIN(PT*72)
no 1 1=1,NNY
Yi =Y (I +n

TFST IF v TS IN THE PF*y p\| PF UPWF11ING OP OOWNWELLTNG
TF (YT. IF NniVTOF) r=sTN(ARA*Y1)
1E(Yi,r,7.nrvrnF) n=siN (2 .5*0oT-on*Yi )

1 Vd,J)=FACTOP»R*A/n71J

COMPUTF W'S COLUMN OY COLUMN Feos 1=1 TD T=NY-1
00 2 T=
Yl=Y d f

=d )
1

1,NNY1
1
v7
DY7J=y
TF (Y

LFYZMVIOF A=SIN (AA*Y1 )-SIN(AA*Y7)
A%F% E’d'EI%TBE’ A&os%‘( r5pf&T88*Y£L§P‘(z‘P5§Z&TBB 4
00 7 J%I ,NN7
P=ST '1£PTH71)

2 w(T,J) =- (pact OP»P»A/0YIJ' £WT

PPT JBN
END

THIS

THF

FF
,3X,58FLUX=,F11.4,3X,7THTLSTNK-,

fq
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SURPO’JTTne niPr'Js
NnT"TNSTOM F (- 1),Y(Ft),7(ry)
OMMMOM/PAPAIF .V ,2 ,MV ,tj7 ,HT

C TO 00"P()TF THF VAi i;fs pr VFOTTCAlI. COEFFTCTFMTC QF OTFFUSTON BY A
C STMPLF pmPTPTCAL pf aT10NOMTrP: - /
c F=2.0F-5"wWTMr) sPFFOXOFPTH QF THF YHFPMOCLINF
G THF COFFriCTFt'TS ARF ASSU"Fr, TO QF HOMSTAMT IM THF yIXEO LAYE?.
n
r, -
PO 1 J-i,N7
F(J) =p. "F-f.
1 rOtlITTMMF
Vp TTF (74 no0)
ino rOPMAT(1H1,p7HniFFUSTnM COFFrTCTFMTS/iY,2?2(IH*)>
WDIiTF(7,20n) ((.5,F(j)),j"i,M7)
20D  rriP'IAT (7y,?m)=,16,f,Y,F11,4)
pETlpM
F MO
0'37;>0' (r; MIT tmyTi
HI-4r>JS 7CM p f£i.6 .ET ), ,0 (Fo, '.1) ,0 (FT,5%) ,0o-tap ( n,r 0)
S"'F'r.T/- VF4 ),y (%4) ,7dn
FOMM )M ,M.n,W0LAP
F-T-V 7-1/'MP"' /" ,V ,7 v LT JTr
con
c
¢ OF CONPFMTRATT INC AT ALL GPTH POINTS TO A CONSTANT VAHIF
C ____________________________________________________________________
) MW >gy-y
MN7=M7-1
no 1 j=t,nn'7
no,_ 1 _1=1,MMY
1 c(T,J)=109.n

PFT IJPN
FNO
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aecaaeno(n

cocooo

11

13

14

15

16

21

30
10

Sijpop.jTTMF
ni "F NE TOM V (

oF (0T , F{.ljx

40
HTYFNETOM F (ry

31

0

M1 13x )
,5q ) ,W(50d. 0),C (F,q,5P ) ,0STAS' (51, 50)
) Y (5¢) ,7 (Ft)
nTMF‘ISJO‘lP( ), F (51)
;'P"MOM STA
Y, 7

v,
nO’dON/PAPA/F , MY, M7, Wr

r.1fPPOMTTMF TO OO"P|JTF rriMEFiiTPi TTOM HTST?T"'UTTOM 0" pA~TTCLfr
IM L.O. AT TTMF T+or GTV'M ISTTIAL COMPFM TPATIOM AT TT'*f J by
AHT PF TUQn 'JSTNG TPQ"A- ALGORITHM TO GOLVG TOIOUAGDMAL SYSTEM
FOI) AT TOMS

riYi=MY-y
N71=Nz-1
POW CALCULATiOMS (v - SWEEP)

COPPUTF COFFrTCTENTS ARA, nR,CC ,00 ANO T»-'EM 0 (1), G(I)

no 11 ,!=1,M71
071 3=7 (3d) -7 (J)

F?=0T/07yJ

no -'1 1=1,MY1

nYTJ=Y (111)-V (T)

FY = 5% (F(j+y)+r(J))

ry*r0T/0YTJ

TF(T.FO. 1) GOTO 11

TF(T.Fn,NY1l) GOTO 12

VE=V (T,J)

VW=V (T-1,J)
§2=(Y(Td)-Y(T))/ (Y (T»P)-Y(T))
SM= (Y (TI-Y (T-1))/ (Y(T+1) -Y(T-1))
nYF = . SA (Vv (T,7)-Y(T))

OyWw=.5M Y (d 1)-Y (*-1))

AA=F 17 (-V'd (1.-SW)-FV/nYM)
m=14dFd (VFE* (1.-FF)-VW*SWtFY/OYF+FY/OYW)
PPYPT-A*»0 (T-1)
CC=E‘y'('/F*':F_EY/0YF)

0(1)=00/00

GOTO 13

VFE=V (T,J)

SF= (Y (T+4)-Y(T))/(Y(T+P)-Y(I))
r|Yr=,EX(Y(T+7)-Y(1) )

A5=1.

PP=1dFy» (1/F» (1,-GF )fFY/CYF)
CC=Fy» (VF'SF-FY/JjYF,

0(7)=G6G/OR

GOTO 13

VW=V (T-1 ,J)

M AR LT A KA LI ARRAILAEY
AA=Fy* (-V.)* (1, SW)-FY/nY'V)
PP=y.*F<» (-VvW»GW»FY/nYW)
PP=PO-AA»0 (T-1)

GC =1.

n (T) =r7pn

TFEfJ.Fs.1i) GOTO 14
TF(g .FO0O.MT71) GOTO 15
wFsw (I, ;)
i =W (T,,l 1)

Jfd

/(7 (3 )-1(3))
/(T(td ) -7 £3- 1))
)

(wM» (1.-SM) +F 7' /0/M1

FF:F(T,t)Ml.t- * (-Id* (1.-GS)+WM*S''-F0G/0 7G-F ?M/0-'M))
;=G ( T,,JAl)»FPf {.WE»SStF /S/0 1S)

nnr-FAFCA

Gpr0 1-

S ((I,))

s= (4 (J4d -7 Jd /(1T @,)-M J))

FT1-rF Jd )

07E-. Fd ' ( P)-7 (,)d

FFro.

FFd (r,) . (1.*FP, (_NS» (1.-GS' -'7S/P78) !

GG =G (T, 41)*L2d -'IG«sF ,F 's /0 /G

pp-cr 4fF, GG

GOTO yG
WM=M(T,J-1)
ws-M (T, 1)

(l IF.l,l)WS=F.
F7 zF ( J

n7M—FdX(J -7(3-D )

SM= (7 (J) -7 (J-1 Z (jt1) -7 (.1-1

sus _(_‘()OT(J/ ))/( (3t 1) ( ))

FF $S (d J- 1) *F ®» (-ws *SM 3+WM » (1 .-SM ) 4F 74|/r)IM)
FF-G (4 , I) »(1.4-F?7 (-WG* (1.-SNZ)FWM*SN-F TN/O07N))

GG=1,
n0OzFF+FC*rG
TF(T.rM.1l) S
IFd.GT.d G
rOMTTM'F

n )=on/00
(T)=(nn-AA*G(I-1))/00

PTPFniGT COMCAMTPATTOM AT HALF TIME RyFr 9Y BACK SUBSTITUTION

rsTAP (MYl J)=6 (MY 1)

VIYy''=MY-"
no xq k=1 ,MY''
T=MY1l-<

CSTAP(T,j)=G(I)-3(T)*CSTAR(I+1,J)
CO''T IMMF

OF
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oo

[eNelel loXele]

61

F?

63

64

65

66
60

35
£10
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COLUMN CALCULA TIONS (Z - CWFFP)
CO"PILITF COI'FrxCTFNTS AA,BR,CC,m, ANO THFN B(J), C.(J)

rn 5n T=1,"Yi

nYTJ=Y fT+l)— (T)

Fl=or/r'YT]J v
no 60 J=1, N7l

nz T i-Z E 111 )= é,))
FV=,G» (JE1)£F (J))
F7=0T/P7T g

IF {J.FO. 1) GOTO 61
TF( J.FO.N71) GOTO 62
oo i
F7C:F(jgn
FIN=" (J)
nTES.5<(7(j+2)-7(J))
nz'js , EM 7(301)—7(J—n
SC=(2(J+11-"(J))/ (1(Jf2) -2 () )
SN=(7{J)-7(J-1))7(2(J+")=7(J-n)
aA=F?» (-vit:s» (I .-CN )-FIN/07N)
pri%$l.4F?MWS'' (t.-SC)-wri*GNtF7S/n7StFTM/ 07N
nc=F2"' (ws*CS-FzS/nzs)
pn%pn-AA*r; ( J-1 )

(J) =CC/0B
GOTO 6Y
g%é@%Tﬁi)d
0z2S8=.5" (Y£jd) -7(J) )
SC=(T(J+1)-7(J))/(Z2(Jt2)-7(J)
AAS1. 0
PO-y .+FO )TFT1S/028
cc=F72, (N é EE ng/ ) )
B (J)
GOTO 6
WN = (r, 1-1)
WC="1(1,J
IF (wT.LF.1.0) WS=0.
F7"=F(J
rIM=. eM 7 (Jty)-7 (j-1) )
FN= -7(3- 7(J,-1)-7(J-1
SN7- F ?J 07 f/ﬁ%%{( I AL
BA=FT» (WCNZ-WN* (1.-SN)-F7N/n7M)
PC=l.+F7 EWFv(y. St|7)-WN*SU»FZN/0ZN)
RE=0B-AR *0 (J-y', —
cc=q
P (J)=GC/RO
TF(T.Fn.y) GOTO 64
IF (T .t"C.MYl ) GOTO 65
VErv (T.J)
Vi=v (T-1 ,Q
OYF=.F* (Y (T,-.) ¥ (T))
nYV=.5» (V(Tdy) Y (T-1))
SE={Y(T+y)-X(T))/(Y(T-t=-"")-Y(I))
Sy = (Y (I)-Y (T-1))/ (Y (T4y)-Y<T-1))
FF 0ETa0(T-1, J)*F4, -G y>4.FY/r, Y VI

F=~STa'J(i, j) » Cy, +F * ((vr*fy.-GF) « uytrGw-FY/OYF-Fy/0Yy) )
GG CSTA'7(T4-1, J)»Fy,( VF»GF4-FY/OYF
norFF%%rJrro

GOTO
VE=V(T,,n

CYFz.G» (Y (14-'7)-Y }T)I
CE=(Y(T4.yi-Y(I) )/ (Y (r+7)_Y(i))

FF=1

Fr:CGTéF(T J)»(1.4Fy* (-VFT(1.-GF)-FY/0YE;))
GG=CGTIP(T41l,J)»Fy» (-VEF»=F«.pYZnYF)
POrFi—;EEr +GG

GOTO

'-dv (1-1,1) R )

OY¥:,5»(Y(T4—1)—Y(T—1n

cws (Y (T1-Y(T-1>)/(Y1I*y)-Y (T-t)1

FF% GTAD (T-y, ))»Fy, (Vwu» (*.-GH)+FY/0Yw)
X (1. +Fyf (WCW-FY/OYW) )

TF ().Fn.M G (J) =Cn/00
ji=(nn-ARa*Gij-1))/BO

coMirNir

FGTIMATF CONCFNTOATTON AT FNO OF TIiMF ETFR RY RACK SURGTTTUTION

C(T,N71)=G(Nz1 )

N7?2=N7-2

no K'=1,\72?

J=NTy-w

c (T,J) =G (J)-B (J) »C( I, Jg4-11
COMTINUF

COMOUTF FLUX O0'IT OF L.C. AT TRF [NO OF TTHF TNCoFMFKJT. PUT FLUX:
ZFPO FPP BUOYANT PAPTir.L'G. FLUX GFK[FI..,LLY GIVEN 0Y EG*yG

FG TTMATE CG OY LTMFAP FyTOAPOLATI OU FPOM VALUES OF C AT TWO
AOJACFNT NOOF poINTs TNGTOFr L.C.

J=MTy
07TJr7(Jd ) =7 (3J)
07*! =, 5M 3(@a4y)-2z1J-1) )

SN7=-.F*nzlJ/n7N
E‘LUX=1.

TF(WT.LF.1.11 GOTO 30
no 35 T=1,NY1
PYTJ=Y(Td )-Y (T)

CG=(1 .-0'dd"'" (T,.n *S'1Z»C (T, J-1)
PF| i)x-pEtf av TJ

FINx* rLuxfm$%LUY

PFyjv.]

z-jp



1090

Iflt-i
109°?

lololole]

10Pg

*

1091
1097

SUninUTINC rpPINT (N, T)

n TM-»SION vn, X "-n,9C) ,C1TA')(90,90)
mm“ITON rés ; Yésl) 7( 1)
CONNON/PfI*A/'" , Y, 7T,MY, NZ, NT

TO p"*TMT OONOTNTO ATTON AT NFLFOTm G*TO AOTNTS I

F-~O"NAT

WPTT- (* 1091) T

cnP'MT (IHO, T']Y, owrwr 0I*T?IHUTTON 0" "APTIOLF CONOFNT'AAT ION AT
yr T-,JPi*11.U, 5N(N=, LIH) L /)])

T: NY-1)/i0

TP-(N7.L*.91 ) JJ=1

I rrj/4OT.914AN0.NZ.1“.101)

MY

NNZANZ-1I

00 1 Jd=1,NN7,03J

UPTTT (~.109 1) ,1, (0(T,J),7=i, NNV,Tn .0 (NNY , J)

OP'IT]\"jr

VHT 1<- (?, ?) (I,T-1,NNY ,IT), INY
rO*'MT!Ty,*M;=,T77,TY,11('r»cil.T))
TO "1AT (//11X,11 (1Y, -'4T7-,T1,7Y M
PFTNPN

£NO

£

SN'*-'ONTTNF >"A00 ("MAOO)

nIMr 0T N V( ,90),W (ST, l),O(ST,rq),r—lla( n rq,
nr .y-.j-jq.j r(r,,,V( ) /(%)

$0- IN ¥

r" (MMn'l/" VIPA/' »,"Y,ﬂ7, T

gijovgi) TT';p T0 OOAPNTr rToOTAL HA 0 0% 'A-JT-tr
PMAACNT'IO TN L.P. AT TI''- T. Arr'1M-0 THAT
r.0-'OPNT'"AT TON 90* FAOH OONTPOLVOLU""' "0 0TVPN

0Y THF VALUE AT THP OPNTHr OF Tur yOLUVE
ONAS"=n.n

SUN IJp HASP OF DAoTTOLF °?0W OY POW OVF"
TH- LANO-UIp r.T":ULATION O'TLL

MNZ=NZ-1

h'NY=Ny-1

no 1 j=i, NNz

nzT i=7 (j+1 ) -z (J)
PQ B TPi, NNY
OYIJrV(T+1)-Y(T)
n0O""AOSpO(T,J)*n¥YTj*07r]
FM AOSP FNASS +00,NASS
FONT TN'JP

FONT TNIIF

P-TIJ"N

FNO

S'JOPOUTTNE r;PPTNTEN,T)
90

0 TNP NS I0ON vV (.P ), N<P m0),C(9q,5%5),0STAP (90.90)
niNPNS-~ON P (91),Y .11, (91)

F.PP"ON V,W,0,C1TAf

FOMVON/PAPA/P,Y,7,NY,NZ,"T

N
NT pap>TTOL? FONCENTPATON OIST°injTION
F

S'JPPOUTTNP TO PP
I -FOpPNAT

AT GPin POINTS

wpTTp (?, 1n9n) T ,N

FOPNAT (1Hn, 7qy,FTMTHP OTSTPIPUPION O PAOTICLF C3N1FNTPATION AT
NP T=,1PP11l. , IN (T'p , TF , IH) ,//)

PNVPN Y/ i

INYp"NT (PNY)

1p (PNY-JINY. 1T ,!.) JNYp JNV4-1

IF (PHA.LT. 1.) INYpI

IF(w.LP.91) JNzp 1

IP(N7.M .91.Arn.NZ.LE.111) JN/p?

NMYpN Y-1

NN'7=N7-1

no 1 )=1,un-', Ju7

KOITF (?,1191) J,(G(T,J),T=i,NNY,JNY) , C(NNY,J)
rO “'TTiiUP

FPITP (P, 119-') (1 T=1,mny, JNY), NNY
rnT'NAT<lu.->,1iy,'.uj = lo gqi (PP.1) )
FO'~'MT (IMg, AH I— AX °T ('Z.AX) ,1'")
pr TU?N

FNO

TI

TT
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1

10 09
nr'0
10 19

lmo

TTM-' 'MUT TMC Jrr,->T'1

AL
TK'"u11m1 r(9'» Y (9OM /(n
rOU’r/'IIJA/L,Y,’MYM’.
ro*"< M't /OMUM T/ un oy LA M

91lr''>0l|TT*!* TO GF-ir-PATP Uf TroP-i 9" TFS

nPLYp.9%|.A''"pnA/ (iY¥Y-1)
OPL7pl./£'17-1)

on 1 ipltUY

YrMpit- -DTnrLY

no ' )=1,

(9 = (3-1 )60”7

UPrTr (T

FD- UAI(unI']Y t*MY (T)/1 y,".u**»*/ mo)
UPTTP (T, io?n; ((T,Y(T)) ,Tpl,'|Y)

r0 NAT (1 Y ,7HT , Fs . 1)

VPTTP (0,1019)
FOAUAT (MO /1y ,9HZ (JI)/ 1y, '.Ht »e%/1HO)

WPTTP (®, inoo) ((J,7 (J)), )=1,N7)
FOPNAT (1X,7HJ p, ry, 3Y ,F9. 7>
PFTURM

FNO

SUnnmi TT( rA A''9PLO

cr"[ I
fTMr..9TnU " ("n,9A),U(9q, F) (P-0, 9n ) ,"FT AP (90 , HWn)
nrUP-1; T,vy r(-(),Y (91| ,/(" (

F U' ,w, "I, PRT AP
F.n'"'"OUZ.DAT.'a /T ,V ,7 ,NY, U’ ,vr
FO'~unM/FPf'ST7 UO,nT ,LAunnA
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PUPAOUTTUP TO FOUPIITP AV-PAfjPHONT70"'"'T ANO VAT H AL

yp ! PFTTTF9 09 CAPTIF (.F UTTWTUKTM'-Fc cq T.
TN THIF oo it'TJP JPWFLLTUF VELOFTTY FOU'LF A HALT
nou''JudLL Tur. ypLOFTTY.

COucUTF Hn'->I70NTAL yPLOF TTTFS (V) “ON *y ROW

OIVinPrL A'T,0A/1.0
FAFTOP-UO*!. ANPna/d.O’'PD
0zP.O'PT/LAUOOR

Pr0/p.0

NYI="|Y-1

NVp=%Y-p

M71=17-1

no 1n J=1 ,\'71

7TP=7 (J +1)

71=2(1)

nzTJ=72-21
rC-FrU(PI*77)-FrN(nT»71)

TFFT I1IF Y IN PPFION OF IJPWFLLIMF O“ nOWNWFLLTUF

IF(YP.I9.07 yT09 ) OR-FIU(P*YT)
IF (VP.FT.PI 77P9) pp=FTU(1.9*P1-0*Y7)

V(It.l)FFACTOn* np»FF/071J
FT'T I'jiic
FONT T'lUF

rOMPUTF VF“TIFAL VFLOFTTTFS (W) FOLU"N RY COLUMN
no 10 T=1,uYl

YocY (I+1)

Y1=Y (I)

0YTJ=Y?2-Y1

TF(Yn.| F.0iVIPF) FF=Fri(c*YZ)-FTN{

P
IF (Y! .FF.OTYyTOF) OF=F TU(1.9 »PT-0+Yn
r(Yl.LT.nTyiPF,ANn.Y?.FT.niyi09) C
SFIU(°’ Y1)

no 40 j=1,Nzi

77=7T»JM

PRrFTU fPy»7P)
W(T,,J)=-(FACTOP*Rn»CC/OYIJ) +-WT
rOMTINUF

FONT TNUF

PFTUM»N

FNO

) -
C=

1.

n
FIN(1.9+cl-Fevi1)
FIN(1.9*PI-0*Y?)
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nri
ny ve='r TOM vy (90 ,FT ) ,U( 9qg,sn)»,F (9g”°cig>,r*-yac»95”°r o)
nT-r~"STON r (M1),X @n ,’ (F1)
rov'iq., V,W,F,rSTAC
n AMO'I/PACE/ F,Y, 7, nY, U7 ,wr

SU0CQ (iyyNE yo ¥o-PLJTP A AGC FOMCFMIcrTTON pnoFTL" «T
TTur 1, usyNI UNTmPM VFAy y*AL G“I0 07=1711

“oncoilTTHF cpnryL <T, MUHRT ?)
r- MéP)

>>'NY:NY*';

H/TTc (?, 1101) T,MUHR90

COMMIT (lm, pommcam FFMFF*'TPGTION V.S. nEOTH.1X.HT =, FI 1. 4,
»ly, 7TMMUMBrR=,TF/iy,?q(lH*>/?X,1HK, 1X,4HC (K)//)

TNTTTMTSF QATA

»'1=
UP =c
FOMTTNUF
SUM=1.0

no 111 J-«i,M?

PO 111 T=1,MMY

SUH =SIdM +F (1 ,J)

r.OMTTMUF

FS'JM (<) =SU“7 (F»91 )
WYTTF (9, 1201) vy, "'SUM (K)
FOCMAT (1X,I2,1Y,91ii, (»)

MI=M14.9
£ ®rM /4c
K=Y+ i

I'*"IM1.LT.S1) GOTO 10

WOTTF HATA OM FILF 11

WAITF (11,1110) numor2, T

FO“NYAT (iy,19, iy,Fii.£4)

WYITF (11 ,IMO) (FS'JM(K) ,K=1, 10)
FORMAT (9 (1Y, F!(, 7))
NUMO"-PrNUMBERvV1

PFTUPN

FNO
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SUPOOUTTNF GPLOH T, xr.OMNY)
PEAL LAMOnft

RTYONSTON V(womo )4 (50,91)  (90,50) (HSTAP (50,50)
AmFNSTON F (01 ) cr (5 i} 7(91)

nIMFUS TON 2 (91,%0),HT (11)

COMMON V,W,S,0STAP

r0«'~ON/D AOf /F ,Y,7 ,NY, N7, U

COPMON/OONIT/WO, PT, LAMnOA

T,L
FOUTVALFNCF (A,CSTAP)

SNOPONTTNF TO PLOT PAPTTr| F OTSTP TO0l) TTONS TN A L.C.
AT A SrLFOTFQ TIMF, USTNG "GHOST LTRPAFY".
NNY=NY-1

NN7=N?-1

COMDUTF sum oF PAPTICLF Hf1SS LErT TN LANGMUIR CFLL

MASS =
(rZOMTsTSN I

COUTTNUF
00 100 J=1,NM7

s
g B

I,J)) CMAY=A(T,J)
I,J)) CMIN=A(I )
A

o
=]
HOM 1 =2 <

(@]
=
L H
=
— o 2 e Za =
u:ﬂweu
=

[T T TRl
L]

XMAYr 1.9*LA*"nnA
YMYsi-1.1

n0Y = V"AY/9.

nny Y=1.9 *%» AYTNNY
YMAX1=YHAX-00XY
YMTULl-Y'~"TH+nOYY

Usc* reosT PLNTTTUG POUTTUFS TP "LOT SnAoys

CALL 01<

TF (MOO ( NT, B) .N9 .q) GOTO 7»

Tr ("1 ( T,® .90 .q) coTrOo TO
COITTNHF

r.AIL conAn9(1.79;;,q9.e,7r;,-, .sq"n.01I)
GALL Fcpocr (0.25, n. 79, ).",0.09)
GOTO n

CO'IT T")i)r

cAaLL CcSCA'"'F(n. 125,1.979, 1.1,1.49)
carL, CSOAF9(q.T9,0.79,1.q9,1.5)

CONTINUF

CALL CTc=A9 (")

CALL PLACF( 1[1)

CALL TYDFCS I'.acroT ,9)

CALL TYPFENT (K"'OuNT)

CALL CTC':Lir, (11)

CALL Pl AC

CALL TYPFCS 7’c a—‘QOA: ;1)
CALL TYOPMr(LAMROa ?)

CALL TYorrs (IH = ,9)
caLL Typc«|C(T,9)

CALL PLACr(ll,q)

caLL TYPrcs(,,MWT= ,4)

CALL TYPFK,r (wT ,1)

CALL MrP(X“TN,YMAY,i.n,1.1)
CALL WTMOOW(YMTN, XHAY,1.q,1.1)
CALL nOooFP

scat ST ‘uny 1)
POT"T7:—1 i9 'AX
POTNTYrI. 99YYHly
CALL PLOTC-r (COTNT7, 1.59, 1H7, 1)
CALL nLOTCqg(POTNTy.1.1 lHY 1)
CALL WT»'nnw(yHTNl,yMAYl,l oq, .i1)
CALL pFODFH



FF

CALL CnuTPA(A,I,51,50,1,91,91 ,HT,1,11*

CALL CTP A9 (91

TF (M09 (Y90'JNr,T) .MF.0)

IF(M'in(YCnU'IT, T) ,FQ.1)

CALIL PLAFF(i,1)

CALL TVPPCS(1?HnPT9TNAL C= ,17?)
q11.1,9)

CALL CSnACF (0.7,
CALL CSPftCE( 0.7,

CALL TYPFMF

CALL °LACF(9,?)

CALL TYPFC"(muMAX. C= ,8)
CALL TYPONF (CMAX,5)

cALL PLAcrm, 1

CALL TYPFCY9 (hh"TAN C= ,1»
call TYP94T(-mfan,9)

CALL OLACTr(5,4)

call TYDFCF ( c= ,11
CALL TYPFNF (C'TTM, 5)

CALL OLACF<5,7

cALL TYP9CS(mHCONTOU*“S,8)
DO Go Y=1,11

J<=<

CALL C“LUFn

TC( JE.LT. in) CALL SPACE(l)
CALL TYDFNKJO

CALL TYOFCS(?H= ,?)

CALL TYPFrr (HT (K) ,5)
TC(J<.MF.G) 90T0 6G

CALL SPACE (1)

cALL TYOFCS (1H (MEanxn 0, 8)
COUTTNUF

TF(MOn (<COUNT.?).E0.0)
PpFTUN

END

CALL FRAME

L

.0
0

’
’

0.
0

5
0

’
i

0.
0.

1
4

5
)

*
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