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Section One

Introduction



The objective of this work was to develop a computer program using
the Configuration Interaction (CI) method to investigate various mole-
cular properties. It was intended that the program should be constructed
so as to be as adaptable as possible, particularly with respect to the
choice of configurations which could be included in the CI. To give
this flexibility a list of configurations was to be kept, which would
~allow any arbitrary set of configurations up to the complete set of
all the configurations it is possible to construct to be used in a
calculation. It was essential, in implementing this, to find an
efficient means of storing and handling these configurations.

These requirements were met by utilising the computer's binary
notation, which is ideal for the representation of configurations.

They are represented in a single word of computer memory by taking
advantage of its internal bit structure: a bit set to 1 indicates an
occupied orbital while a bit set to 0 indicates an unoccupied orbital.
Stored in this form, the computer's assembler language can be used to
manipulate the configurations and extract information from them.

One of the great problems associated with the CI method is the
sheer quantity of configurations which it is possible to construct.
This usually means that it is impossible to carry out anywhere near
complete CI calculations excépt with small basis sets and that the set
of configurations must be cut down in some way. Unfortumately, it is
very difficult to find a workable criteria for excluding configurations;
though the individual contributions of configurations may be small,
because of their number, it is difficult to be certain of their effect
overall. However,  the usﬁal method of establishing a truncated set of

configurations is to include only those that can be formed by up to a



given number of excitations from the ground state configuration. This
approach has been followed in our scheme, allowing any excitation limit
to be imposed up to that which gives a complete CI calculation. Using
this system it was found to be convenient to keep lists of the configura-
tions of the alpha and beta spins separately, which gives a saving in
the storage required. These alpha and beta spin configurations can be
combined as and when required to give the fulllconfigurations, which
can be easily tested to reject any that are unwanted. This is something
of a departure from the original intention, but still retains a good
deal of flexibility.

| The program is dealt with in detail in the next section and
succeeding sections describe its application to the calculation of ESR

and NMR hyperfine coupling constants.
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Section Two

The Configuration Interaction Program



Introduction

Following a brief discussion of the background theory of the
CI method, the remainder of this section is devoted to the way this
method was implemented in the present program and the scope for
development in the light of recent advances in the field.

The whole basis of the program is the use of the computer's
binary notation for the representation of configurations. This makes
it necessary to give some details of the workings of a computer.
Although it is to be understood that some of what is said will only
be applicable to Control Data Cyber 70 and 170 models of computer,.
most of the developments can be readily and efficiently implemented
on other computer models (with the possible exception of the population
count instruction which adds up the number of bits set in a word). The
Control Data assembler language is called Compass; a description of
the most important of its instructions for our purposes is given in

an appendix at the end of this thesis.



Theory

The starting point for these CI calculations is a single deter-
minant wavefunction over molecular orbitals provided by an earlier
Restricted Hartree-Fock (RHF) calculation. In the single determinant
approximation there is no correlation between the positions of
electrons of opposite spin. An electron is only affected by the
average field of the other electrons, which does not allow for the fact
that at any instant electrons of opposite spin would be expected to
keep apart so as to minimise the repulsion between them. It is to
overcome this defect and include elecfron correlation that the CI
method is used.

The ground state CI wavefunction consists of a linear combination
of Slater determinants corresponding to the RHF ground and excited

states:

¥=) Cg % (2.1)
K

The normalised determinants are of the form

L=
i

(NI) 7 det |7 (1) .92 (2) . 93 (3) Y (4) ---- Py |
(N!) 7% det|a;(1).by(2).82(3).by(4) -----=----- |

with spin-orbitals

VY1 =a1 =¢10, Y2=b;=0¢18, VY3=az=¢a, etc.

so that, for example, the symbol y; (1) signifies that electron 1 is of
alpha spin and occupies molecular orbital ¢, and so on.

Now Schrodinger's equation takes the form

Hop \P=E‘¥, (2.2)



where Hop is the Hamiltonian operator

Hop = ] h() + | g, (2.3)
i

j>i

Here

h(i) = -1V3(1) - § 2y/ryv
- Vv

is the one-electron part of the Hamiltonian operator, describing both
the kinetic energy and the potential energy in the field of nuclei of

charge zy, of electron i and
g1, = /1y

is the two-electron part, describing the interelectronic repulsion
between electrons i and j. It is the electronic energy, E, that

appears here; the internuclear repulsion energy

V=] = 2V/Ryv

H>V

may be evaluated separately from the electronic terms.
The use of orthogonal molecular orbitals will be assumed through-
out this treatment, and in this case the matrix representation of

equation (2.2) is

He = Ec (2.4)
where the vector c has elements cg as in equation (2.1) and the
Hamiltonian matrix H has elements

Hij = <@i|Hop|2y>
These latter can be readily expressed in terms of integrals over the

molecular orbitals by, for example, using Slater's rules [1], of which

a summary is given below.



Should the determinants ¢;j and &j be identical then the inter-
action between them is

T <vrlhlup> + T T [<urvslglvmvs> - <vrvslglvsvr]
I I>J

(The numerical value of the interaction is given here, so that the
labelling as to the electrons involved has been dispensed with.) For
the off-diagonal matrix elements, there are non-vanishing results in
only two cases. If there is just one difference between the deter-

minants (say yr #yg), then the interaction is

<yr|h|vg> + ] [<v1vslglvrvs> - <vrvslglvgvg>] -
J .

And if there are two differences, say yp #yx and Yy #yg, the inter-

action is
<Yrvglglvrvr> - <vrvglglvive>

Interactions between determinants with more than two differences
between them are zero. The first term in the two-electron integral
contributions is known as the coulomb integral and the second as the
exchange integral. There is only an exchange integral if the spin-
orbitals. involved are of the same spin.

There remains the question of the parity, that is the positive or
negative sign, of the interactions between determinants. The way this

arises is best shown by taking a specific example:

(61)7% det |Pa (1) .U (2) . Ug (3) «Up (4) . Yg (5) .Y (6) |
(61)7% det|ya(1) .¥c(2) . ¥ (3) . YE(4) UG (5) . Yr(6) |

o,

and o,

-(61) 7% det |Ya (1) -Yc(2) Vg (3) .Up (4) . UG (5) .Yy (6) |
(61)7% det|ya (1) .VE(2) .Uc(3) .U (4) .Y (5) .Y (6) |



-(61) 7% det|wa (1) -Ug (2) .¥e(3) .¥p(4) .Yg(5) . Ug(6) |
(61)7% det | (1) .¥B(2) . Ve (3) . YD (4) YR (5) .G (6) |

¢,
So that the interaction between ¢; and ¢, is

<®; [Hop| 22> = -<ya|ya><¥ec|ve><yp|vp><¥G|ve><yBYF|g|VEVE>

-<yByr | g | VEVE>

i

the parity being negative.

The eigenvalue problem as expressed in equation (2.4) is solved
by diagonalisation of the H matrix. This has been done using the
iterative method of Nesbet [2] to obtain the lowest eigenvalue E and
the corresponding eigenvector c. - Starting with an initial guess for
¢ (e.g. 1 for the dominant component of ¢ and 0 for all the rest), an

estimate is made for E:

E = Z ci Hij Cj (2.5)
ij
Y ci?
i

This estimate is a minimum at the vector corresponding to the lowest
eigenvalue. If one component of the vector c, say ci is varied by an
amount Acj, holding all other components constant, the optimum choice
for Aci is when |

3E =0, c{ =ciy + Acy .
BC{

So differentiating equation (2.5)

dE = 2 7} Hij cj + Hii ci - Jci Hij cj 2¢y4
de. ini = 0

dCi 2
I o I cs?)

giving



2 Hij cj + Hii ci - Ec3 = 0 .

Jei
Therefore
Ci’ = z Hij Cj
jei
(E -Hii)

or Acy = Qi

(E -Hii)

(2.6)

where Qi = ) Hijcj - Ecy .

J

Here E should be evaluated for cy’, but is approximated by that for the

original cj. Now if

D = ZCJZ
J
then AE = Acy.qy (2.7)
D+AD
where AD = (2cy + Acy) Acy (2.8)

A complete iteration consists of the adjustment of ci, D, and E
according to equations (2.6), (2.7), and (2.8) for all the components
of the vector c successively. This is continued until the largest
value of |Aci| in one complete iteration is less than a specified
criterion.

A modification of the basic Nesbet procedure has been put forward
by Shavitt [3]. This allows the use of just the lower triangular part

of the Hamiltonian matrix.



The Configuration Interaction Program

The basic program structure can best be summarised under the
following headings.

[1] Generation of the spin-configurations. All the spin-
configurations which can be formed by up to a given number
of excitations from the ground state configurations are
generated. There will be both alpha and beta lists for an
open shell system, but there need only be the one list for

a closed shell system.

[2] Transformation of the one and two electron integrals. A
Restricted Hartree Fock (RHF) calculation resulting in a
set of molecular orbitals will alreadyvhave been carried out.
Thevintegrals ﬁill have been evaluated for this calculation,
so that they ﬁow need only be transformed from over the

original atomic orbitals to the RHF molecular orbitals.

[3] Formation of the Hamiltonian matrix. This is done by
application of Slater's rules. In the hope of cutting down
the processing time, the terms between the alpha and between
the beta spin-configurations are worked out beforehand. These
are required repeatedly during the construction of the full CI
matrix. The configurations are tested at this stage to see if
they meet the various criteria which can be imposed, if they

do not they are discarded.

[4] Diagonalisation of the Hamiltonian matrix. Nesbet's routine is
used to diagonalise the Hamiltonian matrix and obtain the lowest

eigenvalue and eigenvector [2]. The matrix is often sizeable;



but it is also sparse, so that the non-zero elements with
their labelling as to row and colum are held on backing store

and read through once for each iteration.

Here we will principally be concerned with the third heading,
that is, with the formation of the Hamiltonian matrix. It is at this
stage that Compass routines are of such importance for the processing
of the configurations. |

Prior to embarking on the.construction of the Hamiltonian matrix
itself, the terms between the alpha and between the beta spin-configura-
tions are assembled. This gives two 'spin-CI' matrices of order of the
number of alpha and beta spin;configurations respectively. Using these
matrices Slater's rules can be rewritten, distinguishing between the
alpha spin orbitals aj and the beta spin-orbitals bj. Now the inter-
action between two identical configurations is

A+ B+ ] <ajbjlglaibj>
ij

where A is an element of the alpha spin matrix such that

A =] <ajlhlag> + | [<ajaj|glajas> - <ajajlglajas>]
i i>j
and B is a corresponding element of the beta spin matrix. If there is
a single difference between the interacting configurations, this must
mean that the alpha spin-configurations differ and the betas are the
same or vice versa. For a difference between the alphas (aj #aj) the

interaction is

A + ] <ajby|glajbr>
k

where the element of the alpha spin matrix

Q



A = <aj|hlay> + | [<ajax|glajap> - <ajax|glaxas>]
k .

Two differences may appear with both in the alphas, both in the betas,
or one in each. In the first two cases the interaction comes directly
from the spin-CI matrices, as only spin-orbitals of one type are

involved. For the alpha case the element would be
<ajaj|glaka1> - <aiaj|glaiax>

However, the interaction involving both spins,
<ajbj|g|agby>

Ais found separately.

When the Hamiltonian matrix is constructed, the lists of spin-
coﬁfigurations-are read through, and each alpha spin-configuration ¢%
is combined with any of the beta spin-configurations 88 which produce
an acceptable total configuration. This means that the elements of
both the spin-CI matrices are accessed sequentially and are conveniently
buffered in from auxilliary storage as needed. The elements are
usually required for a number of interactions, for instance, the
element Aij will contribute to all the interactions of the form
<¢“i¢BkIHop|®aj®Bk> involving any acceptable beta spin-configuration
@Bk, so that a substantial time saving may be expected from the use of
these spin-CI matrices. In addition, the remaining terms are generally
simpler than those collected in the matrices, all the one-electron and
exchange integrals for the two-electron parts of the interactions having
already been evaluated.

It must be apparent how important it is to be able to establish

the number of differences there are between spin-configurations. Once



this is done the necessary integrals which comprise an interaction have
to be accessed. In our program these functions are carried out by
Compass routines acting upon the spin-configurations stored as binary
patterns. To understand the merits of this method we must .also take a
look at the way a computer functions.

Operands needed by the computer to implement arithmetical and
logical machine instructions are transferred from central memory to
its registers, from where the specialised functional units of the
computational section ¢an access them. This allows much more rapid
operation than would be possible if values were accessed directly from
central memory. The registers are of three types: the eight X-registers,
X0 to X7, hold 60-bit words (each bitAoflwhich may be set to 0 or 1) and
are the principél data handling registers for computétion; the eight
A-registers, A0 to A7, are operand address registers and allow transfers
of information to and from the X-registers'and central memory; the
eight B-registers, B0 to B7, are primarily indexing régisters for con-
trolling counts. The way in which a floating point number is stored
within a 60-bit word, whether in central memory or in a X-register, is
shown in Figure 1. It can be seen that the binary representation is
well suited to the storage of spin-configurations. These are set up
from the 46th. bit downwards, so as to take up the position normally
used for the integer coefficient. This alloWs the use of the important
normalise instruction. More than 47 molecular orbitals can be used
e.g. up to 94 if two words are used.

The Compass assembler language allows transfers to be made to and
from the registers, and operands stored there to be used with the full
range of individual arithmetical and logical machine instructions. The

logical instructions are not generally available in higher level



FIGURE 1.

The Structure of a 60-bit word as used to store a floating point number:

59 . 47 0
0 { 10110101110 | 10010111... ....101101

P ! v\ !

4 ot v\ /

: ! v !

Sign Bit| | Biased Exponent| [Integer Coefficient

Configuration ¢ can be stored as a bit pattern:

D = 91_'};.'I;.lP;.q€. qz.

46
0| 00000000000 | 01101110100...........

\ .

Configuration displayed between bit 46
and bit 0 of a 60~bit word.

(LS



languages, but are invaluable for extracting information from and
making comparisons between configurations stored as a bit pattern. A
selection of the most important of these instructions for our purposes
is described in detail in the Appendix. It is necessary that the
normalise instruction in particular should be understood for the dis-
cussion which follows so its operation is illustrated in Figure 2
[4,5].

‘Examples of the way in which Compass routines were written to
deal with the construction of the Hamiltonian matrix are shown in flow
diagram form in Figures 3, 4 and 5, which are based on some of the
coding needed to form the spin-CI matrices, but the principles involved
are quite general. Firstly it is necessary to establish how many
differences there are between a pair of configurations (Figure 3). A
logical difference instruction establishes which bits in the two
configurations do not correspond, and these can be counted up by the
population count instruction. For example, the determinants in Figure

3,

¥y = det | ¥1 V2 Yy Ys Vs |

det | ¥1 Vs ¥s Vs Ys |

and Y,

are displayed as binary patterns (written here from bit 47 downwards)

2 011010101 -------

010011101 -------

Y

001001000 -------

Logical difference

The count is two i.e. there is one difference between the determinants
corresponding to Yo # ¥s.

Once the number of differences is known a specialised piece of

14



FIGURE 2. THE NORMALISE INSTRUCTION

B-Register
18

X-Register
59

47

0 | 10000000000

0001001000........

The number of bit
positions shifted
is placed in

Reduce exponent
by number of bit
positions shifted.

Shift coefficient
to left until bit
47 is different

B-register. from bit 59.
} { {
...... 00011 0 {01111111100 |1001000.... ...




FIGURE 3.

FLOW _DIAGRAM TO ESTABLISH HOW MANY DIFFERENCES THERE ARE BETWEEN TWO CONFIGURATIONS

47

0110101010......

|

01001M01.......

|

logicat
difference

&

001001000.......

if count =0
no difference

<

p op ulation
count

if count=2 if count=4
1 difference 2 differences

if count
>4

<

LS

¥

I .
rexit from
| routine

<



FIGURE 4.

. FLOW DIAGRAM TO EVALUATE THE INTERACTION FOR CONFIGURATIONS
WITH ONE DIFFERENCE BETWEEN THEM

0110101010 Y —
0100111010 y, ——
\ \
logical logical
difference product
y ‘ :
0010010000...... 0100101010......
Y
normalise
- - A
‘ \ 4
' . clear bit 47 and
B1=2 10010000... . normalise
' \
‘| clear bit 47 and
normalise >
4 |
B2=3 100000.....
bits 46-0
all clear
v




FIGURE 5 - FLOW DIAGRAM TO FIND THE PARITY OF AN INTERACTION

47 _ 0
0111010111000.....
0101111110000.. ...
\ \
logical logical
difference product
00101010010.... ..
l . ‘ Y.
form a mask between 0101010110. .. ..

pairs of set bits

)

00111011M110.....
logical |
— product
|
0001000110.......
A
population
count
..... on
)
left shift circular
Sign bit set 59 places
-a negative 59 0
number

..001

s



coding to deal with each situation - there being either two, one, or
no differences - is brought into play. If there are more than two
differences, of course, the interaction is zero, so that the procedure
begins again with a fresh pair of configurations. Figure 4 shows a
flow diagram illustrating the coding which will evaluate the interaction
between configurations with just one difference between them. The
logical difference instruction finds the bits that do not correspond
and the logical product finds those that do correspond in the pair of
patterns. Next the positions of the set bits in each case, and so the
orbitals they represent, have to be located; it is for this purpose
that the normalise instruction is used. Continuing with our example

we have:

Logical difference = 00100100 0 -----
<«

100100000 -----

The normalise instruction shifts the pattern two positions to the left
so that bit 47 is different from the sign bit and automatically places
the number two in a B-register (Bl say). Now bits 47 and above are

cleared and the process repeated:

This time theré is a 1e£t shift of three positions, which number is
placed in a second B-register (B2 say). The first set bit was shifted
two posifions (B1) and therefore represents y,; the second set bit was
shifted a total of five positions (Bl +B2) and represents ys. With

this information the one-electron integral <y, |h|ys> can be accessed.



Looking now to the logical product of the two configurations:

¥,

011010101 -----

¥ 010011101 -----

010010101 -----

Logical product

The normalise instruction is used in a loop to give the positions of
the set bits, which correspond to the orbitals yi, Uy, Ys, and Pg.

This allows the two-electron integrals to be accessed in turn:

<y Ys|glvr ¥1> - <P2 Y1lglys ¥1>
<Pz Vslg|vs Vu> - <P ¢u|g|¢5 Yu>

etc.

The interaction having been calculateé, its parity must be found.
The routine which was used to determine the parity is shown in flow
diagram form in Figure 5. It is necessary to find the number of
permutations needed to align the two configurations, and this is done
by counting the number of bits which correspond in the two configura-
tions and are between the bits indicating differences. The count is
shifted to set up the sign bit as a flag to indicate whether a change
of sign is to be made. In the example given in Figure 5 we have the

determinants

9; = det |P1(1).P2(2).V3(3) . Y5(4).Y7(5).Vs(6) . Vg (7) |

and ®, = det |Y1(1).P3(2). Y4 (3).Ys(4) .6 (5) . Y7 (6) . Ys(T) |

There are two differences between these determinants, Y, # ¢, and (g # Ys.
The orbitals yj;, Y7, and P are present in both determinants and are
situated between the differences, therefore three permutations of the

orbitals are necessary to align the determinants and the parity is nega-

/}(.

(A



tive. The routine in this way reproduces the effect of rewriting the

determinants as:

o,

det |¥1(1).2(2).P3(3).Us(4).P7(5) Vs (6) . Ys (7 |

and @z = -det [Y1(1).94(2).P3(3).Ps5(4).P7(5).Ys(6) . Vs (7) |

It has already been mentioned that it is the separate configurations
of alpha and beta spin electrons that are kept so as to enable a saving
in storage to be made. The full configurations are formed by running
through the spin-configuration lists as and when necessary. There are
a number of points to be considered in deciding which of the configura-
tions it is possible to form should be included in a calculation.

The number of possible configurations is often vast, increasing
rapidly as the number of basis orbitals is increased, as shown in Table
I, for a system of ten electrons. It is necessary, therefore, to be
able to limit them in some way. The usual method is to include only
those configurations which can be obtained from the ground state con-
figuration by up to a specified number of excitations. In our scheme
this limit is applied to the spin-configurations at the time of their
generation, but if two excitations are permitted, for example, this
would still allow some thrge and four excitation total configurations
to be formed. It would perhaps be convenient to have these included in
the calculation, but unfortunately such a set of configurations will
not yield a wavefunction which is an eigenfunction of the s? operator.
For a singlet system these three and four excitation configurations
have to be ignored entirely, but for a doublet system some of the three
excitation configurations must be picked out and included to complete
spin states otherwise only involving two excitation configurations.

Since our program has been applied mainly to doublet systems, it is

=~



TABLE 1

Number

of configurations for a system of ten electrons

Number of
orbitals

10
15 /
20
25

Complete C.I.

63,504
9,018,009
240,374,016
2,822,796,900

Single and double excitations only

345
3,501
7,876

14,001



perhaps worthwhile considering in some detail the special problems

associated with arriving at a wavefunction which is a spin eigenfunction

with these systems.

The total spin operator

SZ = sz + Sy2 + SZ2
where
N
Sy = I Sy (v =x,y,2)
i=1

which have the properties

Sxoo. = h B SxB = N«
z - 2
Sya = -ih B SyB = -ih a
2 2
Sza = n o SzB = ‘1 B
2 2
Expanding equation (2.9)
N N
S2= J ] Sx(i) Sx(i) *+ Sy(i) Sy(3) + Sz(i) Sz(3)
i=1 j=1

It is convenient to introduce the operators

S+ Sx“'iSy

and S.

Sx'iSy,

which for a one-electron system gives the results

S*a = 0, S*8 = fha,
S™a = BB, S78 = 0.

SxSx + SySy - i(SxSy = Sny)

(2.9)

(2.10)



which because of the commutation relation

SxSy - Sny = ih Sz

gives SxSy + Sny S4S. -h Sz .

So that, considering only the terms in Sx and Sy when i=j in equation

(2.10), we get

Y Sx(i)Sx(i) + Sy(i)Sy(i) = } S4(1)S-(i) - h Sz(4).

1 1

and because

and  S-(i)S+(3) = Sx(i)Sx(3)+ Sy(i)Sy(3) + i[Sx(1)Sy(3) - Sy(1)Sx(I)]

the same terms when i=j are equal to

T 7 L[S+(i)S-(3) * S_(1)S+(9)]
i jJ#)

Substituting these expressions into equation (2.10), we have

S%= ] S+(L)S_(1) - hSz(i)+ } } Sz(1)Sz () + } } 1[S+(1)S.(3)+ S_(1)S4+(]
i i3 i3

(2.11)

Having regard for the properties of these operaters, we find for a

system of p alpha and q beta electrons the equation

P q
S?=1h (p+q) + 0% (p-q)> +Mh ] ] Piy (2.12)
2 4 i=1 j=1
where Pjj effects the permutation a(i) goes to B(i) énd B(3) to a(j).
It is the permutation operator Pjj which has to be considered when

‘trying to construct a wavefunction which is a eigenfunction of the s?



operator. Only those determinants with but one unpaired spin, for the
doublet éystems being considered, have a <s?> value of 0.75 and in
.general it is a sum involving a number of determinants which have the
desired <s?> value. Configurations representing an example of such a
set of determinants are illustrated in Figure 6. It can be seen that
while configurations (a) and (b) need only one excitation from the
ground state to construct, configuration (c) requires two. Because of
this a configuration list limited by allowing only a certain number of
excitations is unacceptable, some configurations which require oné over
the allowed number are always necessary to complete the set for a spin
eigenfunction. This is easily coped with in our program, in which it
is lists of spin-configurations which are kept. If both the alpha and
beta spin-configurations are limited to a single excitation from the
ground state then, apart from the one excitation full configurations
that can be produced, there are also some two excitations and it is

from amongst these latter that configurations such as (c) can be found.

This is done by examining the singly occupied level of the ground state,

if it is occupied by a beta but not by an alpha electron then the con-
figuration should be included.

Another approach would have been to have used states rather than
single determinants in the configuration interaction. This would have
removed the need to find the extra configurations representing single
determinants to complete the eigen states of s? and would lead to a
saving in numbers of configurations. Determinants with only the one
unpaired spin are an eigen state in any case and give no saving. But
the permutation of three unpaired spins can be combined to give a

quartet and two doublets, the latter being of the form

2 Y1 - P2 - Y3

t



FIGURE 6 - EXAMPLE OF A SET OF CONFIGURATIONS COMPRISING AN EIGENSTATE
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and Y2 - Y3 .

The use of states then would reduce the number of configurations
with three unpaired spins to two-thirds of the original. For the case
of five unpaired spins, there are ten possible permutations which can
be combined to give five doublet states, thus giving a reduction to
half of the original number of this type of configuration by the use of
states. If a limit of two excitations from the ground state is imposed
upon the configurations then five unpaired electrons would be the
maximum that would be obtained.

There is no doubt that something approaching a halving of the
number of cdnfigurations would be advantageous in certain instances,
however such is the rapid manner in which the number of configurations
increases with the increase in number of orbitals and so on, that the
value of such a reduction is limited. Moreover the work which must be
carried out in forming and using states as opposed to single determin-'
ants would be quite extensive, and since the coding of this would have
to be specifically related to the number of determinants over which
linear combinations were being constructed it would be out of Reeping
with the intended generality of the present program.

It is often the case that certain configurations will not contribute
to the wavefunction for reasons of symmetry. These may be ignored in
the calculation to obtain a saving in time and storage requirements.
This was done in our program by inputting as data a number of masks
positioned in a word in the same way as the configurations themselves.
The masks have bits set to 1's to indicate all the molecular orbitals
of a certain symmetry, the configurations of this symmetry being the
ones that are to be removed. Figure 7 shows how these are used to

determine whether a configuration should be included in a calculation.



FIGURE 7 - FLOW DIAGRAM FOR THE MASKING OUT OF UNWANTED CONFIGURATIONS
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A logical difference instruction finds the unpaired electrons in the
configuration; if an odd number of these should correspond to the
orbitals designated by a mask, then a X-register is set negative as a
flag to indicate that the configuration should be discarded.

Ideally one would wish to have the number of basis orbitals and
the number of configurations used in calculations as large as possible,
but inevifably these quantities are restricted in practice. The number
of basis orbitals (N) determines the size of arrays needed for the one
and two electron integrals. It is the two electron integrals, of which
there are N*, which require the most storage. However, the requirement
at the transformation stage can be readily reduced to N3 or N? by the
use of backing store. It is unfortunate that the method of constructing
the Hamiltonian matrix used in our program requires the random access
of the two electron integrals, and this means that they are best kept
in core at this stage, if at all possible, rather than use backing
store which would doubtless result in a large increase in processing
time. The number of integrals to be stored are reduced to approximately
N% by removing those which are duplicated. This is done by imposing

as an integral <IJ|KL> the conditions that

I1>J
13K
J>L
if I=K, then J>K.
This last condition is not imposed in our program. The integrals are
stored linearly and are accessed by the use of formulae.
The Hamiltonian matrix is constructed and accessed during diagonali-
sation element by element and row by row, so that backing store is very

easily employed, with only buffer areas needed in central memory. Even
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so, since the matrix's size is dependent upon the square of the number
of configurations included in the calculation, there comes a point when
the matrix will exhaust the readily available backing store. waever;
these problems are common to all conventional CI programs and a great
deal of research has gone into trying to make the most effective use

of available computer resources.



Conclusion

'Having stated some of the limitations of the present program it
may be useful to describe the possible scope for development in the
light of recent advances in the implementation of the CI method. One
line of approach has been to work with existing computational techniques,
but to try and improve the quality of the truncated CI wavefunction in
other ways. This has been done by defining a new set of orbitals, as
in ‘the Natural Orbital method [6]. Natural orbitals may be found by
diagonalising the charge density matrix constructed from a CI wave-
function. They then can be used as the basis of a second CI calculation
and so on, giving an iterative sequence that can Be repeated until
energy convergence occurs. Also the configurations included in a
calculation may be subjectednto a selection procedure in an endeavour
to find those of most significance. Buenker and Peyerimhoff [7] have
used such a method with the refinement of an extrapolation technique to
account for those configurations which are discarded. The configuration
selection approach was one with which one scheme was intended to be
compatible and could readily be implemented.

Computationally, the major impediment to progress in this field
has been the calculation, manipulation, and diagonalisation of large
Hamiltonian matrices. Roos [8] has presented a method which is capable
of calculating CI eigenvalues and eigenvectors directly from the one-
and two-electron integrals, without the need to form the Hamiltonian
matrix at all. This allows many more configurations to be included in
a calculation (Roos estimates 40,000 configurations if 100K words of
store are available, which may be compared to something of the order of

10000 if a Hamiltonian matrix is formed and has to be stored on disc).



Hausman, Bloom, and Bender [9], with their Vector method, have given a
useful formulism for this approach. They define their wavefunction in
terms of Slater determinants, written as a product of N single particle
creation operators
o = ) I agag----ay|o> , (2.13)
oB—w OB--w :

where T, is the coefficient for the corresponding Slater determinant.
The Hamiltonian operator can then be expressed as

Hop=] <alHi|B> ajag+ 1 ] <aB|H2|v8> agagasay. (2.14)

oB 1)

Here H: and H2 are the one and two-electron parts of the Hamiltonian

operator réspectively. But, since it is inconvenient to have to bother

with these parts separately, they give a more useful form of the

operator
Hop = ) <aBl|H|vS> ag ag ag ay (2.15)
oBYS
where
<aB|H|ys> =Ni <a|H; |y><B|6> + 1<oB|Ha|ys> (2.16)
. 1

With this method then, the term in Hop corresponding to the integral
<oB|H|y8> will operate on all configurations with the orbitals Yy and §
occupied and the orbitals o and B unoccupied to give a second configura-
tion, with which the first will interact, where the reverse is true.
This method is.very compatible with our scheme: the function of
annihilation and creation operators can be readily undertaken by logical
instructions, acting on configurations stored as a binary pattern, using

masks to designate the affected orbitals. However, the vector method



presentation tends to obscure the computational processes involved.
With the direct CI method the vector v, with components

vi =) Hijcj ,
J

is built up from the vector c and the integral list. Efficiency
dictates that the integral list should be held on backing store and
that it be read through consecutively once in an iteration, while the
vectors v and c should be stored in core, so that they can be randomly
accessed. For each integral, the indices i and j must be found for the
pairs of configurations to whose interaction it contributes. For a
truly general program, it would seem that this can only be done by some

degree of searching, with a consequent lack of efficiency. The alter-

native is to classify and sort both the integrals and the configurations,

so that formulae can be used to direct the integrals to the appropriate
components of the vectors. This gives greater efficiency, but has the
disadvantage that the program becomes very code dependent and is only
applicable to a specific situation; the classifications to be used
differ between singlet and doublet systems and for whatever level of
excitation is to be allowed. It seems likely that this latter alterna-
tive would have to be adopted so as to give reasonable processing times,
making it unlikely that our present scheme could be used.

It remains to look at the demands made by the direct CI method
upon the diagonalisation algorithm, with which it must be integrated.
The Nesbet routine has been described elsewhere, and it will be remem-
bered that the components cj of the trial vector are normally adjusted
sequentially by

Aci = ) Hijcj - Ecy , (2.17)
(E - Hii)




which 'is a stable method for finding the lowest eigenvalue. If simul-
taneous change of all the components of the trial vector is used, this
usually does not lead to convergencé. Now with the direct CI method
simultaneous adjustment is required, since the vector Hc is built up:
as a whole from a single reading of the integrals every iteration, so
that a new algorithm will be necessary in adopting this method. A
number of different procedures have been employed, but thét of Davidson
[10], based on the use of equation (2.17), but adapted to the Lanczos
method [11], seems particularly attractive and has been used with the
direct CI method by Dacre [12]. It has the added advantage of being

able to generate higher eigenvalues.
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Section Three

The Calculation of Electron Spin Resonance
Hyperfine Coupling Constants



Introduction

This section deals with the application of the RHF + Cl method
to the evaluation of Electron Spin Resonance (ESR) hyperfine coupling
constants. This method has already been used by Platt [13] to look
at a number of radicals using mainly minimal basis sets, obtaining
quite good results for a-radicals, but far from satisfactory results
for MT-radicals. In the case of the a-radicals, the direct contribution
predominates and it would seem that a minimal basis is often able to
describe this term with fair accuracy. Here a range of more
extensive basis sets have been used to study the m-radicals NH2,

BH3", CH3, and NH3™ and the a-radicals BeOH and BeH.

Advantage was taken of the program’s flexibility to undertake
complete and various truncated Cl calculations. It will be seen that,
while it is perfectly possible to perform a complete Cl when using
small basis sets, as the number of orbitals rises it becomes necessary
to limit the excitations included in the calculations. Therefore a
major aim of this work was to find a balance, within the limits of the
computing resources available, between the size of the basis set and
the proportion of the configurations taken into account, so as to

obtain reliable values of ESR hyperfine coupling constants.
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The NH, Radical

CI calculations of isotropic hyperfine coupling constants for the
NH, radical and other m-radicals using minimal basis sets have given
poor results, the calculated couplings being close to twice the observed
values [13]. In an attempt to obtain improved results, calculations
were carriéd out for the NH, radical as a test case using a range of
basis sets. The geometry and the scaling factor for the hydrogen
atomic orbital exponent in each case were the optimum for a minimal
basis set calculation, namely R(N-H) =2.0 a.u, 6(H-N-H) =105°, and
g(H) =1.35.

The minimal basis set calculations presented in Table I used the
gaussian expansions of Huzinaga [15], 9s-type and 5p-type for nitrogen
and 6s-type for hydrogen. The greater than minimal sets of Table II
were created by breaking up these expansions to form new orbitals, in
which the coefficients retained the same proportions to one another as
in the original Huzinaga 1s and 2p orbitals where appropriate. For
example, the (4sp/3s) basis was constructed by splitting the nine
gaussian functions of the Huzinaga 1s atomic orbital on nitrogen into
four new s-orbitals and the six functions of the hydrogen 1s into three
new s-orbitals. The details of these splittings are given in Table
III; For each basis calculations employing the Unrestricted Hartree
Fock method with annihilation of the contaminating quartet spin state
and the RHF +CI méthod have been performed.

The results of this series of calculations show a convergence of
both the UHF and the CI values for the isotropic hyperfine coupling
constants of NH, as more flexibility is introduced by extending the
basis set. Comparison should be made with the experimentally observed

values, which have been reported as



13.3 G
-27.3 G [17]

10.3 G and a(N)
-23.9 G [16] a(H)

a(N)
a(H)

The UHF method has been found to give quite reasonable values for
isotropic coupling constants using minimal basis sets, however, in this
case extending the basis leads to much poorer results. In contrast,
the CI couplings have approached the experimentally determined ones.

For example, the (9sp/3s) basis gave

8.98 G
-25.00 G .

a(N),
a(H)

This calculation included all single and the necessary double excita-
tions, a total of 174 configurations, and took some 230 seconds to
execute on the University of Leicester's Control Data Cybér 72.

Comparison 6f the results for the different basis sets shows that
the isotropic coupling constants are very significantly affected by
uncontracting the s-orbital expansions, but hardly at all byAsplitting
the nitrogen p-expansion. The influence of the s-orbital contractions
appear largely confined to the coupling of the nucleus on which they
are centred, so that changes in the nitrogen contraction has little
effect upon the hydrogen coupling and vice versa.

It is difficult to be certain about the effects produced by
imposing various limits on the configurations included in a calculation,
as it was only possible to use a range of limits for the smaller basis
sets. However, it is noticeable that calculations including all single
and necessary double excitations (CI1) do not give values for the iso-
tropic hyperfine coupling constants so very far from those obtained by
including all single, double, and necessary triple excitations (CI2) or
from the complete CI, even though many more configurations have been

included in these latter calculations. If we look at the minimal basis,



the values of the a(N) coupling are very close: 20.5, 20.7, and 21.3
for CI1, CI2, and complete CI respectively. A greater difference is
evident in the case of the a(H) couplings, with values of -38.6, -44.9,
and -46.8. But it must be remembered that the nﬁmber of m-symmetry
configurations (and only these will interact with the ground state) has
risen from 13 for the CI1 calculation to 69 for the CI2Z calculation and
169 for the complete CI. Turning to the energies, it can be seen that
such CI2 calculations as it was found possible to carry out have given
significantly lower values than the corresponding CI1 calculations.
These results seem to show that, in trying to obtain reliable
isotropic coupling constants, the emphasis should be placed on improving
the basis set rather than trying to include the maximum number of con-
figurations in a calculation. It is impossible to do both because of -
the explosion in the number of configurations as the number of basis
orbitals increases. The (9s p/3s) basis is a total of 18 orbitals
occupied by nine electrons, which would give a complete CI involving
over 26 million configurations. Even a CI2 calculation would have over
7,000 configurations, though this figure could be reduced by perhaps a
half by retaining only the configurations of m-symmetry and, unfortun-
ately, time restrictions prevented such a calculation being performed.
A second series of basis orbitals were constructed by atomic RHF
calculations upon nitrogen and hydrogen with all the s-type gauséian
functions separated, but keeping the nitrogen p-expansion contracted.
A scaling factor was not used for the hydrogen orbital exponents as it
was thought that the flexibility introduced in the larger basis sets
would remove the need for it. This provided a new set of nine s—orbitai
gaussian expansions for nitrogen and six for hydrogen for calculations

on the NH, radical. The results of Tables IV and V were obtained with



various bases, starting with (2s p/ls) and adding on successive s-
orbitals of lowest energy, and by including all single and necessary
double excitations in the CI. The comparativelf good a(H) value for
the minimal basis is fortuitous and arises from ignoring the optimum
scaling factor for the hydrogen orbital exponent. Fairly good results
for both isotropic coupling constants were achieved by using at least
the (5s p/4s) basis, but the method offers little improvement in
economy or accuracy over the first series of calculations. The best
calculation of the second series, that is the one employing the -

(9s p/6s) basis corresponding to complete extension of the s-type
expansions, involved 252 configurations and gave the isotropic coupling

constants as

1

9.38 G
-25.83 G.

a(N)

a(H)

)

~0
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TABLE II

BASIS SET

2s p/2s

4s p/1s

2s p/3s

4s p/3s

7s p/3s

9s p/3s

2s p/4s

3s2p/3s

4s2p/2s

4s2p/3s

CI calculations for the NH, radical

[Energies in Hartree, couplings in Gauss]

CALCULATION ENERGY
UHF -55.5325433
CI1 -55.5331418
CIz -55.583687
UHF -55.5295986
CI1 -55.530403
CI2 -55.595795
UHF -55.5353052
CI1 -55.5359324
UHF -55.5399283
CI1 -55.5404737
UHF -55.5415684
CI1 - -55.5421161
UHF -55.5415692
CI1 -55.5421170
UHF -55.5359087
CI1 -55.5365020
UHF -55.5299930
CI1 -55.5307149
UHF -55.538567
CI1 -55.5391455
UHF -55.5414930
CI1 5421151

-55.

a(N)

8.58
20.32

120.14

.37
.02
.61

.90
.07

.92
.43

(o)W = o [=>R{ele,)

.65
.05

o un

.61
.98

.74
.67

O 0o oo wn

2

.91
1

.65
.77

v A~ w0

.79
.01

N~

a(H) NO. OF CONFIGURATIONS
-19.07

-34.44 57
-39.83 753
-21.90

-40.22 57
-45.29 299%, 753
-14.19

-24.66 83
-14.79

-25.00 109
-14.80

-25.00 148
-14.80

-25.00 174
-14.67

-25.76 109
-13.99

-24.43 135
-19.92

-35.53 122
-14.63

-24.79 148
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The BH,;~, CH;, and NH,* Radicals

Having found an approach which yielded reasonable results for the
NH, radical, it was now applied to the BH3',VCH3, and NH;* radicals.
These radicals have been investigéted using the Unrestricted Hartree-
Fock with spin annihilation (UHFAA) method, giving satisfactory results
for NH;* [18] and for CH; [19], but BH; ™ was calculated to be bent by
9 degrees with an associated very large isotropic hyperfine coupling
constant, a(B) [19]. However, further calculations by Overill including
orbitals appropriate to the boron anion gave the experimentally inferred
planér geometry and improved isotropic coupling constants [20]. It was
infendéd to duplicate this work on these radicals with the RHF +CI
method. |

| The basis sets used for thé RHF + CI calculations were the Huzinaga
gaussién expansions,lgs-type‘and S5p-type fof the heavy atoms and 6s-type
for hydrogen, with additional 5p-type gaussian expansions for the anion
or cation of the heavy atoms as given in reference 20. New s-orbitals.
werevfbrnmd by breaking up the original expansions as had been done for
NH,. The bond lengths and hydrogen atomic orbital exponents were taken
as 2.35 and 1.15 respectively for BH; , 2.05 and 1.4 for CH;, and 1.95
and 1.6 for NH3*, these being the optiﬁised values for a minimal basis
set calculation. All single and the necessary double excitation con-
figurations were included in each of the calculations.

These radicals are generally considered to be planar and in this
conformation only an indirect coupling mechanism is operative. However,
out-of-plane vibrations will introduce direct coupling and so augment
the coupling constant for the planar radical; the extent of this effect
can be seen from the calculated isotropic coupling constants of BH; ,

the direct and indirect terms of which are given in Table VII. The

™
Uy



estimation of the vibrational contributions to hyperfine coupling
constants involves the calculation of total energies and hyperfine
coupling constants at non-equilibrium nuclear conformations.

It is assumed that the zero-point energy vibrational modes execute

simple harmonic motion:
Yyib = (a/m)% exp(-ox?/2)

where x is the displacement from the equilibrium conformation and
a=2u 531§

where‘u is the reduced mass and Eyip is the zero-point energy for the

vibration:

Evip = (v+ P /WT  v=0,1,2 .....

k being the force constant of the vibration defined by

Eo and E are the calculated energies at zero and non-zero displacements
respectively.
The general variation of the isotropic hyperfine coupling constant,
a, with x is
©

} Cpx®
n=0

W
1l

If it is assumed that terms with n>2 can be neglected, and-hoting that
for an harmonic oscillator terms with odd powers of x disappear, then

this reduces to:

a=Co+C2X2



where Co is the coupling constant calculated at the equilibrium nuclear
conformation. Then <a>, the vibrationally corrected hyperfine coupling
constant, is the mean value of the calculated coupling constants over
the displacements sampled during the execution of the zero-point

vibration, as is given by
<a> = <YyiplalPvib> = Co + C2/(20)

The estimates obtained from this equation may not be satisfactory in
situations where the simple harmonic approximation is unreasonable,
for example with large displacements or small force constants.

The RHF +CI results incorporating zero-point out—of—piane vibra-
tional corrections for the BH;™, (H; and NH;" radicals are given in
Tables VI, VII, and IX respectively. Table X is a summary of these
results, comparing them with the UHFAA results of Overill using the
contracted Huzinaga 9s 5p/6s gaussian set with the addition of anionic
and cationic 5p expansions and with the experimentally determined
values.

In general the isotropic coupling constants determined by the
RHF + CI method are in excellent agreement with experiment, and offer
an improvement over the UHFAA results, the exception to this is the
anomalously high value for the carbon coupling constant of CH;. The
inclusion of an anionic p-orbital is seen to have a significant effect
in BH; giving a reduction in the boron isotropic coupling constant
from 22.56 to 7.7 G, which gives with the addition of the considerable
vibronic contribution é value which is quite close to the experimentally
determined one. On the other hand, the inclusion of anionic and
cationic orbitals has little importance for the NH;* and CH; radicals.

The case of BH;~ can be explained by supposing that the unpaired



electron is held relatively close to the Boron nucleus, using only
orbitals appropriate to the neutral atom, causing considerable inter-
electronic repulsion with the B-H o-bonding electrons. This could only
be relieved by the adoption of a pyramidal conformation in which the
bonds were directed away from the non-bonding electron. This is
remedied by inclusion of the more diffuse anionic orbital which allows
thé unpaired electron to be held further from the boron nucleus. The
interelectronic repulsion with the bonding orbitals is reduced and the

radical becomes planar.



TABLE VI

C.I. Results for the BHi; radical

Energies in hartrees; couplings in gauss
force constant in a.u. (=1544 Nm °)

Basis 6 Energy a(B) a(H) No. of configurations
6s p°/3s 0 -26.3283894 22.56 -23.22 174
6s p°p~/2s 0 -26.3452886  7.70 -18.12 174

1 -26.3452687 7.89 -18.10
2 -26.3452087 8.46 -18.03
5 -26.3447794 12.42 -17.56
10 -26.3430991 26.24 -15.89
15  -26.3397557 47.78  -13.30
20 -26.3334386 74.64 -10.33

6s p°p~/2s a(B) Calculated value 7.70

Vibronic correction 15.39

Corrected value 23.09

a(H) Calculated value - -18.12

Vibronic correction 1.87

Corrected value -16.25

Force constant 0.02359
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TABLE VIII

C.I. Results for the CH; radical

Energies in Hartree; couplings in Gauss;
force constant in a.u. (=1544 Nm~!)

Basis 6 Energy a(c) a(H) No. of configurations
6s p°/3s ) 0 -39.5527517 35.46 -27.22 174
-39.5526285 36.82 -27.00
-39.5519738 43.82 -25.85
10 -39.5494872 67.08 -22.19
6s p°pTp~/3s 0 -39.5580702 30.86 -26.30 252
: -39.5579806 32.13 -26.08
-39.5574887 38.69 = -24.97
10 -39,5546892 54.82 -10.44
6s p°/3s 6s p°p*p/3s
a(c) Calculated value - 35.46 30.86
Vibronic correction 25.42 27.68
Corrected value 60.88 58.54
a(H) Calculated value -27.22 . -26.30
Vibronic correction 4.23 4,73
Corrected value -22.99 ~-21.57

Force constant 0.0480 0.0347



TABLE IX

C.I. Results for the NH;* radical

Energies in Hartree;

couplings in Gauss;
force constant in a.u. (=1544 Nm™!)

Basis 8 Energy a(N) a(H) No. of configurations
6s p°/3s -55.8725836 15.56 -27.84 174
-55.8723074 16.04 -27.65
-55.8708487 18.56 -26.68
10 -55.8655372 27.24  -23.45
8s p°/4s -55.8756110 15.75 -29.97 239
-55.8753443 16.23 -29.77
-55.8739355 18.11 -28.78
10 -55.8687972 27.28 -25.47
6s p°p*p~/3s 0 -55.8753672 16.43 -28.25 252
-55.8751309 16.91 -28.05
6s p°/3s 8s p°/4s 6s p°p*p~/3s
a(N) Calculated value 15.56 15.75 16.43
Vibronic correction 6.29 6.32 6.8
Corrected value 21.85 22.07 23.2
a(H) Calculated value -27.84 -29.97 -28.25
Vibronic correction 2.48 2.56 2.8
Corrected value -25.36 -27.40 -25.5
Force constant 0.1188 0.1149 0.112
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TABLE XI

Orbitals for BH;~, CHs;, and NH;* radical calculations

Heavy atom s-orbitals

No. of gaussians for orbital expansions

1s 2s | 3s| 4s| 5s | 6s 7s | 8s
Total no. 3 2 1 1 1 1
of orbitals -
formed 2 1 1 1 1 1 1 1

Hydrogen s-orbitals

No. of gaussians for orbital expansions

1s 2s 3s
Total no. 3 2 1
of orbitals
formed 3 3

Gaussians with the lowest exponents went to form the highest

orbitals




The BeOH Radical

Brom and Weltner have recently obtained the ESR spectrum of the
isolated BeCH radical in an argon matrix. The reported hyperfine

coupling constants were:

-1.4 G
~0.4 G

a(Be)
a(H)

-94.3 G B(Be)
<1.8 G B(H)

1
"

The ESR spectrum was characteristic of a linear molecule [14].

RHF +CI calculations were carried out for this o-radical using a
basis set consisting of Huzinaga gaussian expansions, 9s-type for
berylium, 9s-type and 5p-type for oxygen, and 6s-type for hydrogen,
with the addition of a STO-5G expansion [27] for the berylium p-orbital.
The geometry and scaling factors for the exponents of the berylium p-
orbital and hydrogen s-orbital were optimised for the contracted basis,
including all single, double, and necessary triple excitation configura-
tions in the calculations (CI2). These confirmed the presumed linear
structure for the radical and yielded optimum values of R(Be-0) = 2.6
a.u., R(0-H) = 1.8 a.u., &g = 1.45, and EBe(ﬁ) = 1.1; details are
given in Table XII.

A single calculation was performed with the s-orbitals uncontracted
so as to give a (5s p/5s p/2s) basis. In the case of berylium and |
oxygen, the four gaussians with the lowest exponents were released from
the Huzinaga ls-expansions to form new orbitals, leaving a set of five
gaussians which have coefficients in much the same proportions to one
another in both the Huzinaga 1s and 2s-orbitals (see Table XIV). This
is probably a much better basis, for its size, than the more haphazard
ones used for earlier calculations. This calculation included all

single and necessary double excitations (CI1).



The CI results oﬁtained with the two basis sets are compared with
experiment in Table XIII. It can be seen that the CI1 calculation
employing the (5s p/S5s p/2s) basis gave very gratifying results for the
coupling constants, the isotropic terms agreeing with the observed
values to within the limits of experimental accuracy, while the aniso-
tropic terms are quite reasonable remembering that the basis was not
set up with these in mind. Included in the table are the direct
contributions to the couplings obtained from the uncorrelated RHF wave-
function. These in general form a substantial proportion of the total
and are much the same for both basis sets. Clearly it is in describing
the indirect contribution that the (5s p/5s p/2s) proves superior to

the (2s p/ZS p/1s) basis.

s
—
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TABLE XIV

S-orbitals as used in (5sp/5sp/2s) basis for the BeOH radical

HUZINAGA GAUSSTAN EXPONENTS

Be

1741.38
262.139
60.3255
17.6239
5.93258
2.18473
0.85895
0.18062

~0.05835

HUZINAGA GAUSSTAN EXPONENTS

H

143.306

. 21.5433

4.93347
1.41566
0.472348

0.172861

0

7816.54
1175.82
273.188
81.1696
27.1836
9.53223
3.41364
0.93978

0.28461

ORBITALS

1s
2s
3s

4s
S5s

ORBITALS -

1s

2s

&y



The BeH Radical

Calculations were performed for the BeH radical employing
Huzinaga gaussian expansions, 9s-type for berylium and 6s-type for
hydrogen, with the addition of p-orbitals consisting of a single
gaussian function with an exponent of 0.3 for berylium and 0.75 for
hydrogen. The range of basis sets, for which results are presented in
Table XV, were constructed by releasing successively the gauésians with
the lowest exponents from the berylium 2s and hydrogen 1s-orbitals.
The exception was the (5sp/4sp) basis for which the gaussians were
releasedAf?cm the ls-orbital on berylium, the original 2s-orbital
being dispensed with. In each case a.valﬁe of 2.538 a.u. was taken
for R(Be-H). The results may be compared with fhe experimentélly

observed hyperfine coupling constants:

a(Be) -71 G B(Be) -1.6 G

a(H) 69 G B(H) 1.2 G [34]

The calculated coupling constants~for this range of basis sets
show a convergence towards the experimental values, accompanied by a
lowering in the energy, on moving to more extensive bases. However,
there remains a discrepancy even with the (Ssp/4sp) basis, the most
extensive set used, and this is probably due to the inadequacy of the
berylium p-orbital, the importance of which can be clearly recognised
from the table. | |

Of particular interest are the calculations performed allowing
different levels of excitation in the configuration interaction, the
most comprehensive series of results being for the (4sp/2sp) basis.
These show close to 95% of the correlation energy being provided by

inclusion of the double and triple excitations consequent upon going



from the CI1 to the CIZ type of calculation. Looking now at the iso-
tropic coupling constants, it can be seen that the hydrogen is affected
to a greater extent than the berylium coupling by truncating the CI.
However, if only the indirect contribution is considered, the behaviour
of both atoms' couplings show some similarity; broadly speaking the
CI1 brings the.contribution to within around 35%, the CI2 to within
10%, and the CI3 to within 1% of the complete CI values. Hopefully
calculations of this type can give an indication of the errors

incurred when truncating the CI, which becomes a necessity if fairly

extensive basis sets are to be used.
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Section Four

The Calculation of Nuclear Magnetic
Resonance Coupling Constants



Theory

Nucleus-nucleus coupling involves the direct dipole-dipole inter-
action of the magnetic moments and also an indirect interaction by way
of the electrons. In such a system as a liquid, where there is no
fixed orientation for the molecules, the direct couplings are averaged

to zero. There are three ﬁechanisms for the indirect interaction: the
Fermi contact, spin-dipolar and orbital contributions.

The Fermi contact interaction, which describes the coupling

between the nuclear moments and the electron spins in contact with

that nucleus, has the Hamiltonian operator

B = 3 ge 8e ] ] 6(Tka) wa-Si (4.1
Ak

where ge is the electronic g-value,
Be is the Bohr magneton,

'Mp is the magnetic moment of nucleus A,

Sk is the spih angular momentum operator for electron Kk,

and 8§(T'ka) is the three-dimensional Dirac delta function for electron

k at nucleus A, which has the property that
JE(re) 8(Tka) ATk = £(Ta)

where f(Tyx) is an arbitrary function of the co-ordinates of electron k
and I'ka = Tk -Ta.
The operator for the dipole interaction between the nuclear moments

and the electron spins, is given by

HD = geBe E L [3 (ua-Tka) (Sk.Tka)Tka® - (a-Sk)Txa’]. (4.2)
k

R



The nuclear moment - electron orbital interaction has an operator

of the form

H° = 2 Be ] } (na.Lxa) TkA® (4.3)
Ak

where Lxa is the orbital angular momentum operator for electron k about
nucleus A.

Of the cross-terms between these interactions, the spin-dipolar -
Fermi contact cross-term is averaged to zero in liquids, whilst the
spin dipolar - orbital and Fermi contact - orbital cross-terms are
likely to be negligible unless the electron spin-orbital coupling is
strong. In any event these cross-terms have not been evaluated in this
work.

The observed nuclear spin-spin coubling interaction is of the

form

Eap = h Jag I Ip (4.4)

where Epg is the interaction energy between the nuclei A and B with
spins IA and I, h is Plank's constant and Jag is the observed nuclear
spin-spin coupling constant between A and B. The magnetogyric ratio

relates pa and Ip by
Ya = ua/(1ah)

so that equation (4.4) can be rewritten as

JaB = Eag® va yB h/2m (4.5)

where Eapp? is the second order energy of interaction of the nuclear

magnetic moments pa and ugp,



Epg? = [62 Epp (4.6)

&m&m]UA=UB=O-

To obtain theoretical values of Jag, we form a matrix which com-
prises the calculated Hamiltonian matrix with an added first row and

colum, as shown below.

Hoo VoP =-mmm- Vi
V14 Hyp --—---- Hyj
N N !
1 1 ‘\\ !
:A : \\ ]
Vio Hiy-------Hii

Here Hoo is the energy of the unperturbed wavefunction ¥ = ZIcj ¢; and

Voi = Z CJ <®j |Vop|®i> .
J

Using partitioned matrix techniques and following Lowdin, such a
matrix can be solved to obtain
E=Hy+ ] ] Vo (H=Hoo D3} Vi (4.7)
i3
Since Vyi and Vj, are sums of contributions from each nucleus, these
may be evaluated separately (and then have the superscript A, B, etc.),

when the relevant expression for the interaction energy between nuclei

A and B is
DI Vot (H—Hoo ;' Vie® + Voi® (H~Hoo T Vio*] (4.8)
i

since terms involving up.up and ug.ug can be neglected from equation

(4.6).

The matrix inversion was carried out using the biorthogonalisation



technique of Prosser and Hagstrom [26]. An iterative scheme would
seem to be more generally suitable, and such a method can be formulated

using the following equation

Ci" (E—Hii) = Vi + ) Hjj C;°M (4.9)
i#j

where vi is defined as voj above, and then

)
Eag = ) (CiVi¥+ CPVY) . (4.10)
i
Unfortunately this method was found to run into convergence problems

when an attempt was made to make use of it in the calculations presented

here.



Results

The RHF'*CI method was used to calculate nuclear spin-spin coupling
constants for the series of molecules CH,, NH;, H,O0, and HF, the Fermi
contact, electron orbital, and spin-dipolar contributions being evalua-
ted in each case. The optimised minimal basis sets consisted of both
SCF 9s, 5p/6s atomic orbital expansions [15] and Slater-type orbitals
in the STO-6G expansion [27]. Details of the molecular geometries and
atomic orbital exponents are given in Table I and are identical to
those used by Overill for SCFPM calculations [20]. The results are
presented in Tables I and II, where the CI couplings are compared with
the relevant SCFPM and observed values.

As might be expected using only a minimal basis set, the calculated
couplings are in poor agreement with experiment, however, a number of
features are worthy of notice. The importance of the different contri-
butions to the couplings are in the order Fermi contact >electron
orbital >spin-dipolar. It has been quite usual to evaluate only the
Fermi contact term, but it can be seen that the electron orbital term
can be of significance and this is particularly so for the H-F coupling.
Though the other terms are fairly stable, the Fermi contact contribution
to the X-H couplings show a marked divergence between the STO and SCF
bases on descending the series CH,, NH;, H,0, HF.

To obtain improved results more extensive basis sets have to be
used. This has‘been done by Overill using the SCFP method and excellent
X-H couplings have resulted, though the H-H couplings are still much too
large [20]. It would seem that an accurate description of the
electronic correlation is important here, and better values have been

obtained by Roos et al. [24,25] using a large configuration interaction.
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TABLE IT

Results for the coupling constants in some polyatomic molecules

using optimised minimal STO basis sets (in Hertz)

Molecule A-B

CH,

H,0

Source Contact Dipolar

C-H SCFPM 249.7 0.0
CI1S 189.5 0.6
Expt [28]

H-H SCFPM - 34.1 0.0
CI1S 19.9 0.1
Expt [29]

N-H SCFPM 58.3 - 0.1
CI1S 47.9 0.0
Expt [30]

H-H SCFPM - 35.4 0.6
CI1S - 26.5 - 0.1
Expt [30]

O-H SCFPM - 1.4 1.3
CI1S - 0.4 - 0.11
Full CI 6.2 0.09
Expt [31]

H-H SCFPM - 37.5 1.0
CI1S - 39.7 0.84
Full CI - 23.2 0.9
Expt [32]

F-H  SCFPM -931.5 -27.3
Full CI -725 -30.8

Expt [33]

Orbital Total
-0.1 249.6
0.04 190.1
125
0.8 - 33.3
0.7 - 19.1
- 12.4
0.4 58.6
0.3 48.2
+43.6
1.5 - 33.3
1.5 - 25.1
+10.4
-5.1 - 5.2
-4.8 - 5.3
-4.8 1.5
+79.0
3.6 - 32.9
3.8 - 35.0
4.1 - 18.2
+ 7.2
217.4 -741.4
152.1 -604.5
530

0
Y



TABLE 111

Results for the coupling constants in some polyatomic molecules
using optimised minimal SCFAQ basis sets (in Hertz)

ANO

Molecule A-B Source Contact Dipolar Orbital Total
CH, C-H SCFPM 223.5 0.0 -0.1  223.4
CI1S - 186.5 0.4 -0.1 186.8.
Expt [28] , 125
H-H  SCFPM -65.3 0.2 0.5 -64.6
CI1S -34.8 0.0 0.52 -34.3
Expt [29] -12.4
NH3 N-H SCFPM 77.8 -0.2 0.4 78.
CI1S 66.9 0.0 0.4 67.
Expt [30] 43,
H-H SCFPM -52.4 0.4 1.0 -51.0
CI1S -39.1 0.0 0.9 -38.2
Expt [30] +10.4
H,0 O-H SCFPM - -92.7 1.5 -5.6 -96.8
CI1S -78.6 0.16 -5.3 -83.7
Full CI -72.6 0.14 -5.4 -77.9
Expt [31] +79.0
H-H SCFPM -42.9 0.6 1.9 -40.4
CI1S -46.1 -0.5 1.9 -44.7
Full CI -26.9 -0.5 2.0 -25.4
Expt [32] +7.2
HF F-H SCFPM 150.8 . -26.9 174.9 298.8 -
Full CI 80.4 -27.7 119.4 172.1

Expt [33] 530
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Compass Instructions



APPENDIX: COMPASS INSTRUCTIONS [5]

Logical Product Instruction

This instruction forms the logical product (AND function) of 60-
bit words from operand registers Xj and Xk and places the product in
operand register Xj. Bits of register Xj are set to 1 when the

corresponding bits of the Xj and X) registers are 1 as in the following

example:
X)) =0101
Xx) =1100
Xy) =0100

Logical Sum Instruétion

This instruction forms the logical sum (inclusive OR) of 60-bit
words from operand registers Xj and Xx and placés the sum in operand
register Xi. A bit of.register Xi. is set to 1 if the corresponding bit

of the Xj or Xx registers is a 1 as in the following example:

Xj) =0101
(X) =1100
(Xg) =1101

Logical Difference Instruction

This instruction forms the logical difference (exclusive OR) of
60-bit words from operahd registers Xj and Xk and places the result in
operand register Xj. A bit of the result is set to 1 if the correspond-
ing bits in the Xj and. Xk registers are unlike as in the following
example: | .

0101

1100
1001



Complement Instruction

This instruction sets all bits of a 60-bit word in an X-register

to 1 which were 0 and vice versa.

Mask

This instruction clears an X-register and forms a mask in it. It
defines a number of 1's in the mask as counted from the highest order
bit in the X-register. The completed masking word consists of 1's in
the high order bit positions of the word and 0's in the remainder of

the word.

Logical Shift

This instruction shifts the 60-bit word in an X-register left
circular a number of places. Bits shifted off the left end of the

X-register replace those shifted from the right end.

Population Count

This instruction counts the number of 1 bits in an X-register and

stores the count in another X-register.

Normalize

This instruction normalizes the floating point quantity in an X-
register. Normalizing consists of shifting the coefficient to the left
the minimum number of positions required to make bit 47 different from
59. This places the most significant bit of the coefficient in the
highest order position of the coefficient portion of the word. The
exponent portion of the word is then decreased by the number of bit
positions shifted. The number of shifts required to normalize the

quantity is entered in a B-register.
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t~ ... ''Coupling Constants - B. Burton
. RRY =

A scheme is presented for a computer program using the
Configuration Interaction method. To make the program as flexible
as possible, lists of spin-configurations over RHF molecular
orbitals are kept. These separate configurations for the alpha
and beta spins can be combined to give the total configurations
as and when necessary. It is shown how advantage may be taken of
the internal bit structure of a computer word so as to store the
spin-configurations as a binary pattern, which provides economical
storage, and how information can then be extracted from them by
means of the computer's logical machine instructions.

The Configuration Interaction method is applied to the
calculation of magnetic resonance properties. The Electron Spin
- Resonance hyperfine coupling constants of the w-radicals NH,,
BH3;™, CH; and NH3* and the o-radicals BeOH and BeH are studied
using a range of basis sets and allowing various levels of
excitations to be included in the CI. Rather more tentative
results are presented for the Nuclear Magnetic Resonance coupling
constants of CHy, NHs;, H20 and HF using only minimal basis sets.



