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Section One

Introduction



The objective of this work was to develop a computer program using 

the Configuration Interaction (Cl) method to investigate various mole­

cular properties. It was intended that the program should be constructed 

so as to be as adaptable as possible, particularly with respect to the 

choice of configurations which could be included in the Cl. To give 

this flexibility a list of configurations was to be kept, which would 

allow any arbitrary set of configurations up to the complete set of 

all the configurations it is possible to construct to be used in a 

calculation. It was essential, in implementing this, to find an 

efficient means of storing and handling these configurations.

These requirements were met by utilising the computer’s binary 
notation, which is ideal for the representation of configurations.

They are represented in a single word of computer memory by taking 

advantage of its internal bit structure: a bit set to 1 indicates an
occupied orbital while a bit set to 0 indicates an unoccupied orbital. 

Stored in this form, the computer’s assembler language can be used to 

manipulate the configurations and extract information from them.

One of the great problems associated with the Cl method is the 

sheer quantity of configurations which it is possible to construct.

This usually means that it is impossible to carry out anywhere near 

complete Cl calculations except with small basis sets and that the set 

of configurations must be cut down in some way. Unfortunately, it is 

very difficult to find a workable criteria for excluding configurations; 

though the individual contributions of configurations may be small, 

because of their number, it is difficult to be certain of their effect 

overall. However, the usual method of establishing a truncated set of 

configurations is to include only those that can be formed by up to a



given number of excitations from the ground state configuration. This 

approach has been followed in our scheme, allowing any excitation limit 

to be imposed up to that which gives a complete Cl calculation. Using 

this system it was found to be convenient to keep lists of the configura­

tions of the alpha and beta spins separately, which gives a saving in 

the storage required. These alpha and beta spin configurations can be 

combined as and when required to give the full configurations, which 

can be easily tested to reject any that are unwanted. This is something 

of a departure from the original intention, but still retains a good 

deal of flexibility.

The program is dealt with in detail in the next section and 

succeeding sections describe its application to the calculation of ESR 

and NMR hyperfine coupling constants.
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Section Two

The Configuration Interaction Program



Introduction

Following a brief discussion of the background theory of the 

Cl method, the remainder of this section is devoted to the way this 

method was implemented in the present program and the scope for 

development in the light of recent advances in the field.

The whole basis of the program is the use of the computer's

binary notation for the representation of configurations. This makes 

it necessary to give some details of the workings of a computer. 

Although it is to be understood that some of what is said will only 

be applicable to Control Data Cyber 70 and 170 models of computer,. 

most of the developments can be readily and efficiently implemented 

on other conputer models (with the possible exception of the population 

count instruction which adds up the number of bits set in a word). The 
Control Data assembler language is called Compass; a description of 

the most important of its instructions for our purposes is given in
an appendix at the end of this thesis.
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Theory

The starting point for these Cl calculations is a single deter­

minant wavefunction over molecular orbitals provided by an earlier 

Restricted Hartree-Fock (RHF) calculation. In the single determinant 

approximation there is no correlation between the positions of 

electrons of opposite spin. An electron is only affected by the 

average field of the other electrons, which does not allow for the fact 

that at any instant electrons of opposite spin would be expected to 
keep apart so as to minimise the repulsion between them. It is to 

overcome this defect and include electron correlation that the Cl 

method is used.

The ground state Cl wavefunction consists of a linear combination 

of Slater determinants corresponding to the RHF ground and excited 

states :

^ = I Cg (2.1)
K

The normalised determinants are of the form

$ = (N!) ^ det I (1) .i|;2(2) .i|;3(3) ( 4 )  I
= (N!)'^ det|ai(l).bi(2).a2(3).b2(4) ---....... |

with spin-orbitals

=ai =(j)ia, ip2 =bi =4)1$, ip3 = &2 = (f)2a, etc.

so that, for example, the symbol ^i(i) signifies that electron 1 is of 

alpha spin and occupies molecular orbital (f)i and so on.

Now Schrbdinger ' s equation takes the form

Hop Y = E T , (2.2)

4-



where Hop is the Hamiltonian operator

Hop = I h(i) + I g(i,j) (2.3)
i J>i

Here

h(i) = -jV^(i) - 'I Zv/xiV 
V

is the one-electron part of the Hamiltonian operator, describing both 

the kinetic energy and the potential energy in the field of nuclei of 

charge zv, of electron i and

g(i,J) = 1/rij

is the two-electron part, describing the interelectronic repulsion 

between electrons i and j. It is the electronic energy, E, that 

appears here; the intemuclear repulsion energy

V = I zy zv/r^v 
y>v ^

may be evaluated separately from the electronic terms.

The use of orthogonal molecular orbitals will be assumed through­

out this treatment, and in this case the matrix representation of 

equation (2.2) is

He = E g (2.4)

where the vector c has elements ck as in equation (2.1) and the 
Hamiltonian matrix H has elements

Hij = <$i|Hop|*j>

These latter can be readily expressed in terms of integrals over the 

molecular orbitals by, for example, using Slater's rules [1], of which 
a summary is given below.



Should the determinants and be identical then the inter­

action between them is

I + I I [<i|^i^j|gki^j> -
I l>J

(The numerical value of the interaction is given here, so that the 

labelling as to the electrons involved has been dispensed with.) For 

the off-diagonal matrix elements, there are non-vanishing results in 

only two cases. If there is just one difference between the deter­

minants (say f^%), then the interaction is

+ I [<Wj|g|Wj> - <̂î j|gkj'Î K>]
J

And if there are two differences, say and i}jj the inter­

action is

<4^^j|g|^K^L> - <^I^j|glWK>

Interactions between determinants with more than two differences 

between them are zero. The first term in the two-electron integral 
contributions is known as the coulomb integral and the second as the 

exchange integral. There is only an exchange integral if the spin- 

orbitals involved are of the same spin.

There remains the question of the parity, that is the positive or 

negative sign, of the interactions between determinants. The way this 

arises is best shown by taking a specific example:

and $2 = (e!)""* det|i(iA(l).V'c(2).to(3).te(4).i))G(5).i(iH(6)|

= -(6 !) det|i|)a (1) .>(<c(2) (3) . i()d (4) , i|)g(5) I

= (6!)‘‘5 det|t|)A(D.ite(2).i/)c(3).to(4).il)G(5).i|JH(6) |

G



= det|l|;A(l).ite(2).te(3).to(4).te(5).l|JH(6) |
$1 = (6!)"'’ det|\()A(l) .iCb(2) .'I<c(3) .i|)d(4) .i|if(5) .i|)g(6) 1

So that the interaction between and $2 is

= -<WF|g| W n >

the parity being negative.

The eigenvalue problem as expressed in equation (2.4) is solved 

by diagonalisation of the H matrix. This has been done using the 

iterative method of Nesbet [2] to obtain the lowest eigenvalue E and 

the corresponding eigenvector c. Starting with an initial guess for 

c (e.g. 1 for the dominant component of c and 0 for all the rest), an 

estimate is made for E:

E = I Ci Hij Cj (2.5)
ij__________

I ci'
i

This estimate is a minimum at the vector corresponding to the lowest 

eigenvalue. If one component of the vector c, say ci is varied by an 

amount Aci, holding all other components constant, the optimum choice 

for Aci is when

9E = 0 , Ci = Ci + Aci .

So differentiating equation (2.5)

dE = 2 % Hij Cj + Hii Ci - % Ci Hij Cj 2ci
dci j#i   = 0

I Cj: II Cj:

giving

2

7



I Hij Cj + Hii Ci - Eci = 0 . 
jfi

Therefore

c T  = I Hij Cj
j W _______
(E -Hii)

or ACi = qi
(E - Hii) (2.6)

where qi = I Hij Cj - Eci .
j

Here E should be evaluated for Ci'', but is approximated by that for the 

original Ci. Now if

D = I Cj:
j

then AE = ACi . qi (2.7)
D +AD

where AD = (2ci + àc±) Ac± (2.8)

A complete iteration consists of the adjustment of Ci, D, and E 

according to equations (2.6), (2.7), and (2.8) for all the components 

of the vector c successively. This is continued until the largest 

value of |Aci| in one complete iteration is less than a specified 

criterion.

A modification of the basic Nesbet procedure has been put forward 

by Shavitt [3]. This allows the use of just the lower triangular part 

of the Hamiltonian matrix.



The Configuration Interaction Program

The basic program structure can best be summarised under the

following headings.

[1] Generation of the spin-configurations. All the spin­

configurations which can be formed by up to a given number 

of excitations from the ground state configurations are 

generated. There will be both alpha and beta lists for an 

open shell system, but there need only be the one list for 

a closed shell system.

[2] Transformation of the one and two electron integrals. A 

Restricted Hartree Fock (RHF) calculation resulting in a

set of molecular orbitals will already have been carried out.

The integrals will have been evaluated for this calculation, 
so that they now need only be transformed from over the 

original atomic orbitals to the RHF molecular orbitals.

[3] Formation of the Hamiltonian matrix. This is done by 

application of Slater's rules. In the hope of cutting down 
the processing time, the terms between the alpha and between 

the beta spin-configurât ions are worked out beforehand. These 

are required repeatedly during the construction of the full CI 

matrix. The configurations are tested at this stage to see if 

they meet the various criteria which can be imposed, if they 

do not they are discarded.

[4] Diagonalisation of the Hamiltonian matrix. Nesbet's routine is 

used to diagonalise the Hamiltonian matrix and obtain the lowest 

eigenvalue and eigenvector [2]. The matrix is often sizeable;



but it is also sparse, so that the non-zero elements with 

their labelling as to row and column are held on backing store 

and read through once for each iteration.

Here we will principally be concerned with the third heading, 

that is, with the formation of the Hamiltonian matrix. It is at this 

stage that Compass routines are of such importance for the processing 

of the configurations.

Prior to embarking on the construction of the Hamiltonian matrix 

itself, the terms between the alpha and between the beta sp in-configura­

tions are assembled. This gives two ’spin-CI' matrices of order of the 

number of alpha and beta spin-configurations respectively. Using these 

matrices Slater's rules can be rewritten, distinguishing between the 

alpha spin orbitals a± and the beta spin-orbitals bi. Now the inter­

action between two identical configurations is

A + B + I <aibj|g|aibj> 
ij

where A is an element of the alpha spin matrix such that

A = I <ai|h|ai> + I [<aiajlg|aiaj> - Oiaj|g|ajat>] 
i l>j

and B is a corresponding element of the beta spin matrix. If there is 

a single difference between the interacting configurations, this must 

mean that the alpha sp in- configurât ions differ and the betas are the 

same or vice versa. For a difference between the alphas (a± ̂  aj) the 

interaction is

A' + I <aibk|g|ajbk> 
k

where the element of the alpha spin matrix

10



A" = <ai|h|aj> + % [<aiak|g|ajak> - <aiak|g|akaj>]
k

Two differences may appear with both in the alphas, both in the betas, 

or one in each. In the first two cases the interaction comes directly 

from the spin-CI matrices, as only spin-orbitals of one type are 

involved. For the alpha case the element would be

<aiaj|g[akai> - <aiaj|g|aiak>

However, the interaction involving both spins,

<aibj|g|akbi>

is found separately.

When the Hamiltonian matrix is constructed, the lists of spin- 

configurations are read through, and each alpha sp in - conf igurat ion 

is combined with any of the beta spin-configurations 0^ which produce 
an acceptable total configuration. This means that the elements of 

both the spin-CI matrices are accessed sequentially and are conveniently 

buffered in from auxilliary storage as needed. The elements are 

usually required for a number of interactions, for instance, the 

element Aij will contribute to all the interactions of the form

involving any acceptable beta sp in-configuration
B$ k> SO that a substantial time saving may be expected from the use of 

these spin-CI matrices. In addition, the remaining terms are generally 

simpler than those collected in the matrices, all the one-electron and 

exchange integrals for the two-electron parts of the interactions having 

already been evaluated.

It must be apparent how important it is to be able to establish 

the number of differences there are between spin-configurations. Once



this is done the necessary integrals which comprise an interaction have 

to be accessed. In our program these functions are carried out by 

Compass routines acting upon the spin-configurât ions stored as binary 

patterns. To understand the merits of this method we must also take a 

look at the way a computer functions.

Operands needed by the computer to implement arithmetical and 

logical machine instructions are transferred from central memory to 

its registers, from where the specialised functional units of the 

conputational section can access them. This allows much more rapid 

operation than would be possible if values were accessed directly from 

central memory. The registers are of three types: the eight X-registers,

XO to X7, hold 60-bit words (each bit of which may be set to 0 or 1) and 
are the principal data handling registers for computation; the eight 

A-registers, AO to A7, are operand address registers and allow transfers 

of information to and from the X-registers and central memory; the 
eight B-registers, BO to B7, are primarily indexing registers for con­

trolling counts. The way in which a floating point number is stored 
within a 60-bit word, whether in central memory or in a X-register, is 

shown in Figure 1. It can be seen that the binary representation is 

well suited to the storage of spin-configurations. These are set up 

from the 46th. bit downwards, so as to take up the position normally 

used for the integer coefficient. This allows the use of the important 

normalise instruction. More than 47 molecular orbitals can be used 

e.g. up to 94 if two words are used.

The Compass assembler language allows transfers to be made to and 

from the registers, and operands stored there to be used with the full 

range of individual arithmetical and logical machine instructions. The 

logical instructions are not generally available in higher level



FIGURE 1

The Structure of a 60-bit word as used to store a floating point number

59 47

0 10110101110 10010111..... 101101
/I 

/ I  
I I 

t I 
/ I 

I  I
\\\ \
\ \

Sign Bit Biased Exponent Integer Coefficient

Configuration $ can be stored as a bit pattern:

<D= %

46

00000000000 01101110100

Configuration displayed between bit 46 
and bit 0 of a 60-bit word.



languages, but are invaluable for extracting information from and 

making comparisons between configurations stored as a bit pattern. A 

selection of the most important of these instructions for our purposes 

is described in detail in the Appendix. It is necessary that the 

normalise instruction in particular should be understood for the dis­

cussion which follows so its operation is illustrated in Figure 2 

[4,5].

Examples of the way in which Compass routines were written to 

deal with the construction of the Hamiltonian matrix are shown in flow 

diagram foim in Figures 3, 4 and 5, which are based on some of the 
coding needed to form the spin-CI matrices, but the principles involved 

are quite general. Firstly it is necessary to establish how many 

differences there are between a pair of configurations (Figure 3). A 

logical difference instruction establishes which bits in the two 

configurations do not correspond, and these can be counted up by the 
population count instruction. For example, the determinants in Figure 

3,

Ti = det I i|)i \l)2 ^8 I

and Yz = det | \pi ips ^8 | 

are displayed as binary patterns (written here from bit 47 downwards)

Y i =  0 1 1 0 1 0 1 0 1  ......

Yz = 0 1 0 0 1 1 1 0 1  ------

Logical difference = 0 0 1 0 0 1 0 0 0  ------

The count is two i.e. there is one difference between the determinants 

corresponding to

Once the number of differences is known a specialised piece of



FIGURE 2. THE NORMALISE INSTRUCTION

B -Register X-Register
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Reduce exponent 
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FIGURE 3.

FLOW DIAGRAM TO ESTABLISH HOW MANY DIFFERENCES THERE ARE BETWEEN TWO CONFIGURATIONS

47

0110101010

010011101

logical
difference

001001000

0
%

population
count

11 11 1
if count = 0 if count=2 if count=4 if count
no difference 1 difference 2 differences > 4

exit from 
routine



FIGURE 4.

FLOW DIAGRAM TO EVALUATE THE INTERACTION FOR CONFIGURATIONS 
WITH ONE DIFFERENCE BETWEEN THEM

0010010000

normalise

Bl=2 10010000

clear bit 47 and 
normalise

B2=3 100000

0110101010
'

0100111010

%

'F,

logical logical
difference product

0100101010

clear bit 47 and 
normalise

bits 46-0  
all clear



FIGURE 5 - FLOW DIAGRAM TO FIND THE PARITY OF AN INTERACTION
47
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pairs of set bits
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sign bit set 
-  a negative
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59

left shift circular 
59 places
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coding to deal with each situation - there being either two, one, or 

no differences - is brought into play. If there are more than two 

differences, of course, the interaction is zero, so that the procedure 

begins again with a fresh pair of configurations. Figure 4 shows a 

flow diagram illustrating the coding which will evaluate the interaction 

between configurations with just one difference between them. The 

logical difference instruction finds the bits that do not correspond 

and the logical product finds those that do correspond in the pair of 

patterns. Next the positions of the set bits in each case, and so the 

orbitals they represent, have to be located; it is for this purpose 

that the normalise instruction is used. Continuing with our example 

we have:

Logical difference = 0 0 1 0 0 1 0 0 0
< ■ <  I

1 0 0 1 0 0 0 0 0  ----

The normalise instruction shifts the pattern two positions to the left 

so that bit 47 is different from the sign bit and automatically places 
the number two in a B-register (B1 say). Now bits 47 and above are 

cleared and the process repeated:

0 0 0 1 0 0 0 ----

1 0 0 0 0 0 0 ----

This time there is a left shift of three positions, which number is 

placed in a second B-register (B2 say). The first set bit was shifted 

two positions (Bl) and therefore represents the second set bit was 

shifted a total of five positions (B1+B2) and represents With 

this information the one-electron integral <4^|h|^s> can be accessed.



Looking now to the logical product of the two configurations:

=  0 1 1 0 1 0 1 0 1  -------

Yz = 0 1 0 0 1 1 1 0 1 -----

Logical product = 0 1 0 0 1 0 1 0 1 -----

The normalise instruction is used in a loop to give the positions of 

the set bits, which correspond to the orbitals ipi, and \pê

This allows the two-electron integrals to be accessed in turn:

<^2 ̂ slgl^l - <lp2 ^l|g|lp5 ^1>

<^2 4^|g|^4 - <lp2 ^4|g|^5
etc.

The interaction having been calculated, its parity must be found. 

The routine which was used to determine the parity is shown in flow 
diagram form in Figure 5. It is necessary to find the number of 
permutations needed to align the two configurations, and this is done 

by counting the number of bits which correspond in the two configura­

tions and are between the bits indicating differences. The count is 

shifted to set up the sign bit as a flag to indicate whether a change

of sign is to be made. In the example given in Figure 5 we have the

determinants

$1 = det IVi(l).4^(2).^3(3),4^(4).^7(5).^8(6).4^(7)I 
and $2 = det |^i(l).^3(2).^4(3).^5(4).^^(5).^7(G).^8(7)|

There are two differences between these determinants, ^2^4% and \pg 

The orbitals \p3, if;?, and if;a are present in both determinants and are 

situated between the differences, therefore three peimutations of the 

orbitals are necessary to align the determinants and the parity is nega­

t e



tive. The routine in this way reproduces the effect of rewriting the 

determinants as:

$1 = det |4^(l)-4^(2).4^(3).4^(4).^7(5).^8(6).^9(7)I 

and $2 = -det |4^(i).4^(2).4^(3).4^(4).^?(5).^8(6).(7)|

It has already been mentioned that it is the separate configurations 

of alpha and beta spin electrons that are kept so as to enable a saving 

in storage to be made. The full configurations are formed by running 

through the spin-configuration lists as and when necessary. There are 

a number of points to be considered in deciding which of the configura­

tions it is possible to form should be included in a calculation.

The number of possible configurations is often vast, increasing 

rapidly as the number of basis orbitals is increased, as shown in Table 

I, for a system of ten electrons. It is necessary, therefore, to be 
able to limit them in some way. The usual method is to include only 

those configurations which can be obtained from the ground state con­
figuration by up to a specified number of excitations. In our scheme 

this limit is applied to the spin-configurât ions at the time of their 

generation, but if two excitations are permitted, for example, this 

would still allow some three and four excitation total configurations 

to be formed. It would perhaps be convenient to have these included in 

the calculation, but unfortunately such a set of configurations will 

not yield a wavefunction which is an eigenfunction of the s^ operator.

For a singlet system these three and four excitation configurations 

have to be ignored entirely, but for a doublet system some of the three 

excitation configurations must be picked out and included to complete 

spin states otherwise only involving two excitation configurations.

Since our program has been applied mainly to doublet systems, it is



TABLE 1

Number of configurations for a system of ten electrons

Number of
orbitals Complete C.I. Single and double excitations only 

10 63,504 345

15 / 9,018,009 3,501

20 240,374,016 7,876

25 2,822,796,900 14,001



perhaps worthwhile considering in some detail the special problems 

associated with arriving at a wavefunction which is a spin eigenfunction 

with these systems.

The total spin operator

+ Sy^ + Sz^ (2.9)

where
N

Sy = I Sy(i) (y = x,y,z)
i=l

which have the properties

SxOt = h 3 Sx3 = b a
2 2

Sy-a = -iTi 3 Sy3 = a
2 2

SzOt = h a  Sz3 = -h 3
2 2

Expanding equation (2.9)
N N

“ Z Z $x(i) Sx(j) Sy(i) Sy(j) + S%(i) Sg(j) (2.10) 
1=1 j=l

It is convenient to introduce the operators

S+ = Sx + i Sy

and S. = Sx - i Sy ,

which for a one-electron system gives the results

S'""a = 0 , S'"'3 = ha,

S‘a = h3, S'3 = 0 .

Now S+S_ = (Sx + i Sy)(Sx - i Sy)
= SxSx + SySy - i(SxSy - SySx)



which because of the commutation relation

SxSy - SySx = ih Sz 

gives SxSy SySx “ S+S- ~h Sz •

So that, considering only the terms in Sx and Sy when i=j in equation 

(2 .1 0), we get

I Sx(i)Sx(i) + Sy(i)Sy(i) = I S+(i)S-(i) - h Sz(i). 
i i

and because

S+ (i)S_(j) = Sx (i) Sx ( j ) ■*■ Sy (i) Sy ( j ) ■ i [Sx (1) Sy ( j ) ■ Sy (i) Sx ( j ) ]
and S-(i)S+(j) = Sx(i)Sx(j)+ Sy(i)Sy(j)+ i[Sx(i)Sy(j)- Sy(i)Sx(j)]

the same terms when i=j are equal to

1 I 5[S+(i)S-(j) +S_(i)S+(j)] 
i j(/i)

Substituting these expressions into equation (2.10), we have

S^= I S+(i)S.(i) - hSz(i)+ I I Sz(i)Sz(j)+ I I l[S+(i)S.(j)+ S.(i)S+(j)]
i i j i J

(2.11)

Having regard for the properties of these operaters, we find for a 

system of p alpha and q beta electrons the equation

S ^ = h  (p+q) + (p -q )^  + h ^ I  Pij (2 .12)
2 4 i=l d=l

where Pij effects the permutation a(i) goes to 3(i) and 3(j) to a(j).

It is the permutation operator Pij which has to be considered when 

trying to construct a wavefunction which is a eigenfunction of the ŝ



operator. Only those determinants with but one unpaired spin, for the 

doublet systems being considered, have a <s^> value of 0.75 and in 

general it is a sum involving a number of determinants which have the 

desired <s^> value. Configurations representing an example of such a 

set of determinants are illustrated in Figure 6 . It can be seen that 

while configurations (a) and (b) need only one excitation from the 

ground state to construct, configuration (c) requires two. Because of 

this a configuration list limited by allowing only a certain number of 

excitations is unacceptable, some configurations which require one over 

the allowed number are always necessary to complete the set for a spin 

eigenfunction. This is easily coped with in our program, in which it 

is lists of spin-configurations which are kept. If both the alpha and 

beta spin-configurations are limited to a single excitation from the 
ground state then, apart from the one excitation full configurations 

that can be produced, there are also some two excitations and it is 
from amongst these latter that configurations such as (c) can be found. 

This is done by examining the singly occupied level of the ground state, 

if it is occupied by a beta but not by an alpha electron then the con­

figuration should be included.

Another approach would have been to have used states rather than 

single determinants in the configuration interaction. This would have 

removed the need to find the extra configurations representing single 

determinants to complete the eigen states of s^ and would lead to a 

saving in numbers of configurations. Determinants with only the one 

unpaired spin are an eigen state in any case and give no saving. But 

the permutation of three unpaired spins can be combined to give a 

quartet and two doublets, the latter being of the form

2 ifji - Jp2 -



FIGURE 6 - EXATÆPLE OF A SET OF CONFIGURATIONS COMPRISING AN EIGENSTATE
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and ipz - ^3 •

The use of states then would reduce the number of configurations 

with three unpaired spins to two-thirds of the original. For the case 

of five unpaired spins, there are ten possible permutations which can 

be combined to give five doublet states, thus giving a reduction to 

half of the original number of this type of configuration by the use of 

states. If a limit of two excitations from the ground state is imposed 

upon the configurations then five unpaired electrons would be the 

maximum that would be obtained.

There is no doubt that something approaching a halving of the 

number of configurations would be advantageous in certain instances, 

however such is the rapid manner in which the number of configurations 

increases with the increase in number of orbitals and so on, that the 

value of such a reduction is limited. Moreover the work which must be 
carried out in forming and using states as opposed to single deteimin- 

ants would be quite extensive, and since the coding of this would have 

to be specifically related to the number of determinants over which 

linear combinations were being constructed it would be out of keeping 

with the intended generality of the present program.

It is often the case that certain configurations will not contribute 

to the wavefunction for reasons of symmetry. These may be ignored in 

the calculation to obtain a saving in time and storage requirements.

This was done in our program by inputting as data a number of masks 

positioned in a word in the same way as the configurations themselves.

The masks have bits set to I's to indicate all the molecular orbitals 

of a certain symmetry, the configurations of this symmetry being the 

ones that are to be removed. Figure 7 shows how these are used to 

determine whether a configuration should be included in a calculation.



FIGURE 7 - FLOW DIAGRAM FOR THE MASKING OUT OF UNWANTED CONFIGURATIONS
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A logical difference instruction finds the unpaired electrons in the 

configuration; if an odd number of these should correspond to the 

orbitals designated by a mask, then a X-register is set negative as a 

flag to indicate that the configuration should be discarded.

Ideally one would wish to have the number of basis orbitals and 

the number of configurations used in calculations as large as possible, 

but inevitably these quantities are restricted in practice. The number 

of basis orbitals (N) determines the size of arrays needed for the one 

and two electron integrals. It is the two electron integrals, of which 

there are N**, which require the most storage. However, the requirement 

at the transformation stage can be readily reduced to or by the 

use of backing store. It is unfortunate that the method of constructing 

the Hamiltonian matrix used in our program requires the random access 

of the two electron integrals, and this means that they are best kept 

in core at this stage, if at all possible, rather than use backing 

store which would doubtless result in a large increase in processing 

time. The number of integrals to be stored are reduced to approximately 

N %  by removing those which are duplicated. This is done by imposing 

as an integral <IJ|KL> the conditions that

I >J 
I >K 
J

if I = K, then J >K.

This last condition is not imposed in our program. The integrals are 

stored linearly and are accessed by the use of formulae.

The Hamiltonian matrix is constructed and accessed during diagonali- 

sation element by element and row by row, so that backing store is very 

easily enployed, with only buffer areas needed in central memory. Even

2}



so, since the matrix's size is dependent upon the square of the number 

of configurations included in the calculation, there comes a point when 

the matrix will exhaust the readily available backing store. However, 

these problems are common to all conventional Cl programs and a great 

deal of research has gone into trying to make the most effective use 

of available conputer resources.

SÜ



Conclusion

Having stated some of the limitations of the present program it 

may be useful to describe the possible scope for development in the 

light of recent advances in the implementation of the Cl method. One 

line of approach has been to work with existing computational techniques, 

but to try and inprove the quality of the truncated Cl wavefunction in 

other ways. This has been done by defining a new set of orbitals, as 

in the Natural Orbital method [6]. Natural orbitals may be found by 

diagonalising the charge density matrix constructed from a Cl wave­

function. They then can be used as the basis of a second Cl calculation 

and so on, giving an iterative sequence that can be repeated until 

energy convergence occurs. Also the configurations included in a 

calculation may be subjected to a selection procedure in an endeavour 

to find those of most significance. Buenker and Peyerimhoff [7] have 
used such a method with the refinement of an extrapolation technique to 

account for those configurations which are discarded. The configuration 

selection approach was one with which one scheme was intended to be 

conpatible and could readily be implemented.

Computationally, the major impediment to progress in this field 

has been the calculation, manipulation, and diagonalisation of large 

Hamiltonian matrices. Roos [8] has presented a method which is capable 

of calculating Cl eigenvalues and eigenvectors directly from the one- 

and two-electron integrals, without the need to form the Hamiltonian 

matrix at all. This allows many more configurations to be included in 

a calculation (Roos estimates 40,000 configurations if lOOK words of 

store are available, which may be compared to something of the order of 

10000 if a Hamiltonian matrix is formed and has to be stored on disc).

\



Hausman, Bloom, and Bender [9], with their Vector method, have given a 

useful formulism for this approach. They define their wavefunction in 

terms of Slater determinants, written as a product of N single particle 

creation operators

$ = I r  a„ a g  aj, I o >  , (2.13)
ag— w a3— w

where is the coefficient for the corresponding Slater determinant.

The Hamiltonian operator can then be expressed as

Hop = I <a|Hi|3> a^ag + I  ̂ <a3|H2|y6> a^agagay. (2.14)
aB ctByô

Here Hi and Hz are the one and two-electron parts of the Hamiltonian 

operator respectively. But, since it is inconvenient to have to bother 

with these parts separately, they give a more useful form of the 
operator

Hop = I <a3|H|y6> a^ ag ag ay (2.15)
a3y6

where

<a3|H|y6> =—  <a|Hi|y><3|5> + 2<a3 |H2 |yô> (2.16)
N+1

With this method then, the term in Hop corresponding to the integral 

<a3|H|yô> will operate on all configurations with the orbitals y and ô 

occupied and the orbitals a and 3 unoccupied to give a second configura­

tion, with which the first will interact, where the reverse is true.

This method is very compatible with our scheme: the function of

annihilation and creation operators can be readily undertaken by logical 

instructions, acting on configurations stored as a binary pattern, using 

masks to designate the affected orbitals. However, the vector method



presentation tends to obscure the computational processes involved.

With the direct Cl method the vector v, with components

v± = I Hij Cj , 
j

is built up from the vector c and the integral list. Efficiency 

dictates that the integral list should be held on backing store and 

that it be read through consecutively once in an iteration, while the 

vectors v and c should be stored in core, so that they can be randomly 

accessed. For each integral, the indices i and j must be found for the 

pairs of configurations to whose interaction it contributes. For a 

truly general program, it would seem that this can only be done by some 

degree of searching, with a consequent lack of efficiency. The alter­

native is to classify and sort both the integrals and the configurations, 

so that formulae can be used to direct the integrals to the appropriate 

components of the vectors. This gives greater efficiency, but has the 

disadvantage that the program becomes very code dependent and is only 

applicable to a specific situation; the classifications to be used 
differ between singlet and doublet systems and for whatever level of 

excitation is to be allowed. It seems likely that this latter alterna­

tive would have to be adopted so as to give reasonable processing times, 

making it unlikely that our present scheme could be used.

It remains to look at the demands made by the direct Cl method 

upon the diagonalisation algorithm, with which it must be integrated.

The Nesbet routine has been described elsewhere, and it will be remem­

bered that the components c± of the trial vector are normally adjusted 

sequentially by

ACi = I Hij Cj - ECj , (2 .17)
(E - Hii)



which is a stable method for finding the lowest eigenvalue. If simul­

taneous change of all the components of the trial vector is used, this 

usually does not lead to convergence. Now with the direct Cl method 

simultaneous adjustment is required, since the vector He is built up ' 

as a whole from a single reading of the integrals every iteration, so 

that a new algorithm will be necessary in adopting this method. A 

number of different procedures have been enployed, but that of Davidson 

[10], based on the use of equation (2.17), but adapted to the Lanczos 

method [1 1], seems particularly attractive and has been used with the 

direct Cl method by Dacre [12]. It has the added advantage of being 

able to generate higher eigenvalues.



Section Three

The Calculation of Electron Spin Resonance 
Hyperfine Coupling Constants



Introduction

This section deals with the application of the RHF + Cl method 
to the evaluation of Electron Spin Resonance (ESR) hyperfine coupling 
constants. This method has already been used by Platt [13] to look 

at a number of radicals using mainly minimal basis sets, obtaining 
quite good results for a-radicals, but far from satisfactory results 
for 7T-radicals. In the case of the a-radicals, the direct contribution 
predominates and it would seem that a minimal basis is often able to 
describe this term with fair accuracy. Here a range of more 
extensive basis sets have been used to study the m-radicals NH2 ,
BH3", CH3, and NH3"̂ and the a-radicals BeOH and BeH.

Advantage was taken of the program’s flexibility to undertake 
complete and various truncated Cl calculations. It will be seen that, 
while it is perfectly possible to perform a complete Cl when using 
small basis sets, as the number of orbitals rises it becomes necessary 
to limit the excitations included in the calculations. Therefore a 
major aim of this work was to find a balance, within the limits of the 
computing resources available, between the size of the basis set and 
the proportion of the configurations taken into account, so as to
obtain reliable values of ESR hyperfine coupling constants.
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The NH? Radical

Cl calculations of isotropic hyperfine coupling constants for the 

NHz radical and other Tr-radicals using minimal basis sets have given 

poor results, the calculated couplings being close to twice the observed 

values [13]. In an attempt to obtain improved results, calculations 

were carried out for the NH2 radical as a test case using a range of 

basis sets. The geometry and the scaling factor for the hydrogen 

atomic orbital exponent in each case were the optimum for a minimal 

basis set calculation, namely R(N-H) =2.0 a.u, 6 (H-N-H) =105°, and 

S(H) =1.35.

The minimal basis set calculations presented in Table I used the 

gaussian expansions of Huzinaga [15], 9s-type and 5p-type for nitrogen 

and 6s-type for hydrogen. The greater than minimal sets of Table II 

were created by breaking up these expansions to form new orbitals, in 
which the coefficients retained the same proportions to one another as 

in the original Huzinaga Is and 2p orbitals where appropriate. For 
exanple, the (4sp/3s) basis was constructed by splitting the nine 

gauss ian functions of the Huzinaga Is atomic orbital on nitrogen into 

four new s-orbitals and the six functions of the hydrogen Is into three 

new s-orbitals. The details of these splittings are given in Table 

III. For each basis calculations employing the Unrestricted Hartree 

Fock method with annihilation of the contaminating quartet spin state 

and the RHF + Cl method have been performed.

The results of this series of calculations show a convergence of 

both the UHF and the Cl values for the isotropic hyperfine coupling 

constants of NH2 as more flexibility is introduced by extending the 

basis set. Conparison should be made with the experimentally observed 
values, which have been reported as



a(N) = 10.3 G and a(N) = 13.3 G
a(H) = -23.9 G [16] a(H) = -27.3 G [17]

The UHF method has been found to give quite reasonable values for

isotropic coupling constants using minimal basis sets, however, in this

case extending the basis leads to much poorer results. In contrast, 

the Cl couplings have approached the experimentally determined ones.

For example, the (9sp/3s) basis gavé

a(N). = 8.98 G
a(H) = -25.00 G .

This calculation included all single and the necessary double excita­

tions, a total of 174 configurations, and took some 230 seconds to 

execute on the University of Leicester’s Control Data Cyber 72.

Comparison of the results for the different basis sets shows that

the isotropic coupling constants are very significantly affected by 
uncontracting the s-orbital expansions, but hardly at all by splitting 

the nitrogen p-expans ion. The influence of the s-orbital contractions 

appear largely confined to the coupling of the nucleus on which they 

are centred, so that changes in the nitrogen contraction has little 

effect upon the hydrogen coupling and vice versa.

It is difficult to be certain about the effects produced by 

imposing various limits on the configurations included in a calculation, 

as it was only possible to use a range of limits for the smaller basis 

sets. However, it is noticeable that calculations including all single 

and necessary double excitations (CIl) do not give values for the iso­

tropic hyperfine coupling constants so very far from those obtained by 

including all single, double, and necessary triple excitations (CI2) or 

from the coup le te CI, even though many more configurations have been 

included in these latter calculations. If we look at the minimal basis.

2:



the values of the a(N) coupling are very close: 20.5, 20.7, and 21.3

for CIl, CI2, and complete Cl respectively. A greater difference is 

evident in the case of the a(H) couplings, with values of -38.6, -44.9, 

and -46.8. But it must be remembered that the number of tt-symmetry 

configurations (and only these will interact with the ground state) has 

risen from 13 for the CIl calculation to 69 for the CI2 calculation and 

169 for the complete Cl. Turning to the energies, it can be seen that 

such Cl2 calculations as it was found possible to carry out have given 

significantly lower values than the corresponding CIl calculations.

These results seem to show that, in trying to obtain reliable 

isotropic coupling constants, the emphasis should be placed on improving 

the basis set rather than trying to include the maximum number of con­

figurations in a calculation. It is inpossible to do both because of 

the explosion in the number of configurations as the number of basis 

orbitals increases. The (9s p/3s) basis is a total of 18 orbitals 

occipied by nine electrons, which would give a complete Cl involving 
over 26 million configurations. Even a Cl2 calculation would have over 

7,000 configurations, though this figure could be reduced by perhaps a 

half by retaining only the configurations of it-symmetry and, unfortun­

ately, time restrictions prevented such a calculation being performed.

A second series of basis orbitals were constructed by atomic RHF 

calculations upon nitrogen and hydrogen with all the s-type gaussian 

functions separated, but keeping the nitrogen p-expans ion contracted.

A scaling factor was not used for the hydrogen orbital exponents as it 

was thought that the flexibility introduced in the larger basis sets 

would remove the need for it. This provided a new set of nine s-orbital 

gaussian expansions for nitrogen and six for hydrogen for calculations 

on the NH2 radical. The results of Tables TV and V were obtained with

-5



various bases, starting with (2s p/ls) and adding on successive s- 

orbitals of lowest energy, and by including all single and necessary 

double excitations in the Cl. The comparatively good a(H) value for 

the minimal basis is fortuitous and arises from ignoring the optimum 

scaling factor for the hydrogen orbital exponent. Fairly good results 

for both isotropic coupling constants were achieved by using at least 

the (5s p/4s) basis, but the method offers little improvement in 

economy or accuracy over the first series of calculations. The best 

calculation of the second series, that is the one employing the 

(9s p/6s) basis corresponding to complete extension of the s-type 

expansions, involved 252 configurations and gave the isotropic coupling 

constants as
a(N) = 9.38 G
a(n) — -25.83 G .
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TABLE II

CI calculations for the NH2 radical 
[Energies in Hartree, couplings in Gauss]

BASIS SET CALCULATION ENERGY afN) afH) NO. OF CONFIGURATIONS

2s p/2s UHF -55.5325433 8.58 -19.07
CIl -55.5331418 20.32 -34.44 57
CI2 -55.583687 20.14 -39.83 753

4s p/ls UHF -55.5295986 6.37 -21.90
CIl -55.530403 9.02 -40.22 57
CI2 -55.595795 10.61 -45.29 299*, 753

2s p/3s UHF -55.5353052 8.90 -14.19
CIl -55.5359324 21.07 -24.66 83

4s p/3s UHF -55.5399283 4.92 -14.79
CIl -55.5404737 6.43 -25.00 109

7s p/3s UHF -55.5415684 5.65 -14.80
CIl -55.5421161 9.05 -25.00 148

9s p/3s UHF -55.5415692 5.61 -14.80
CIl -55.5421170 8.98 -25.00 174

2s p/4s UHF -55.5359087 8.74 -14.67
CIl -55.5365020 20.67 -25.76 109

3s2p/3s UHF -55.5299930 5.91 -13.99
CIl -55.5307149 9.11 -24.43 135

4s2p/2s UHF -55.538567 4.65 -19.92
CIl -55.5391455 5.77 -35.53 122

4s2p/3s UHF -55.5414930 4.79 -14.63
CIl -55.5421151 6.01 -24.79 148
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The BHa". CH:i. and NĤ '*' Radicals

Having found an approach which yielded reasonable results for the 

NHz radical, it was now applied to the BHa", CH3, and NHa'*' radicals. 

These radicals have been investigated using the Unrestricted Hartree- 

Fock with spin annihilation (UHFAA) method, giving satisfactory results 

for NHa"̂  [18] and for CH3 [19], but BH3" was calculated to be bent by 

9 degrees with an associated very large isotropic hyperfine coupling 

constant, a(B) [19]. However, further calculations by Over ill including 

orbitals appropriate to the boron anion gave the experimentally inferred 

planar geometry and inproved isotropic coupling constants [20]. It was 

intended to duplicate this work on these radicals with the RHP + Cl 
method.

The basis sets used for the RHP + Cl calculations were the Huzinaga

gaussian e:xpansions, 9s-type and 5p-type for the heavy atoms and 6s-type
for hydrogen, with additional 5p-type gaussian expansions for the anion 
or cation of the heavy atoms as given in reference 20. New s-orbitals 

were formed by breaking up the original expansions as had been done for 

NH2 . The bond lengths and hydrogen atomic orbital exponents were taken 

as 2.35 and 1.15 respectively for BH3’, 2.05 and 1.4 for CH3, and 1.95 

and 1.6 for NH3"̂, these being the optimised values for a minimal basis 

set calculation. All single and the necessary double excitation con­

figurations were included in each of the calculations.

These radicals are generally considered to be planar and in this 

conformation only an indirect coupling mechanism is operative. However, 

out-of-plane vibrations will introduce direct coupling and so augment 

the coupling constant for the planar radical; the extent of this effect 

can be seen from the calculated isotropic coupling constants of BH3', 

the direct and indirect terms of which are given in Table VII. The



estimation of the vibrational contributions to hyperfine coupling 

constants involves the calculation of total energies and hyperfine 

coupling constants at non-equilibrium nuclear conformations.

It is assumed that the zero-point energy vibrational modes execute 

simple harmonic motion:

v̂ib = exp(-axV2)

where x is the displacement from the equilibrium conformation and

ot = 2 y Evib

where y is the reduced mass and Eyib is the zero-point energy for the 

vibration:

Evib = ( v + 5)Ck/y)^ v= 0 , 1 , 2 ....

k being the force constant of the vibration defined by 

E = Eg + 5 k x^

Eo and E are the calculated energies at zero and non-zero displacements 

respectively.

The general variation of the isotropic hyperfine coupling constant, 

a, with X is

00

a = I Cn x“
n=0

If it is assumed that terms with n>2 can be neglected, and noting that 

for an harmonic oscillator terms with odd powers of x disappear, then 

this reduces to:

a = Co + Ü2 x%



where Co is the coupling constant calculated at the equilibrium nuclear 

conformation. Then <a>, the vibrationally corrected hyperfine coupling 

constant, is the mean value of the calculated coupling constants over 

the displacements sampled during the execution of the zero-point 

vibration, as is given by

<a> = <4Vib|a|^vib^ ~ Co + C2/(2ot)

The estimates obtained from this equation may not be satisfactory in 

situations where the simple harmonic approximation is unreasonable, 

for exanple with large displacements or small force constants.

The RHF +CI results incorporating zero-point out-of-plane vibra­

tional corrections for the BH3', CH3 and NH3''' radicals are given in 

Tables VI, VII, and IX respectively. Table X is a summary of these 

results, comparing them with the UHFAA results of Overill using the 

contracted Huzinaga 9s 5p/6s gaussian set with the addition of anionic 

and cationic 5p expansions and with the experimentally determined 
values.

In general the isotropic coupling constants determined by the 

RHF + Cl method are in excellent agreement with experiment, and offer 

an improvement over the UHFAA results, the exception to this is the 

anomalously high value for the carbon coupling constant of CH3. The 

inclusion of an anionic p-orbital is seen to have a significant effect 

in BH3" giving a reduction in the boron isotropic coupling constant 

from 22.56 to 7.7 G, which gives with the addition of the considerable 

vibronic contribution a value which is quite close to the experimentally 

determined one. On the other hand, the inclusion of anionic and 

cationic orbitals has little importance for the NH3''' and CH3 radicals.

The case of BH3" can be explained by supposing that the unpaired



electron is held relatively close to the boron nucleus, using only 

orbitals appropriate to the neutral atom, causing considerable inter- 

electronic repulsion with the B-H a-bonding electrons. This could only 

be relieved by the adoption of a pyramidal conformation in which the 

bonds were directed away from the non-bonding electron. This is 

remedied by inclusion of the more diffuse anionic orbital which allows 

the unpaired electron to be held further from the boron nucleus. The 

interelectronic repulsion with the bonding orbitals is reduced and the 

radical becomes planar.



TABLE VI

C.I. Results for the BH3' radical

Energies in hartrees; couplings in gauss 
force constant in a.u. (=1544 )

Basis 0 Energy a(B) a(H) No. of configurations

6s p°/3s 0 -26.3283894 22.56 -23.22 174

6s p°p'/2s 0 -26.3452886 7.70 -18.12 174
1 -26.3452687 7.89 -18.10
2 -26.3452087 8.46 -18.03
5 -26.3447794 12.42 -17.56

10 -26.3430991 26.24 -15.89
15 -26.3397557 47.78 -13.30
20 -26.3334386 74.64 -10.33

6s p°p'/2s a(B) Calculated value 7.70
Vibronic correction 15.39
Corrected value 23.09

a(H) Calculated value -18.12
Vibronic correction 1.87
Corrected value -16.25

Force constant 0.02359
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TABLE VIII

C.I. Results for the CH3 radical

Energies in Hartree; couplings in Causs; 
force constant in a.u. (=1544 Nm"^)

Basis 6 Energy a(c) a(H) No

6s p°/3s 0 -39.5527517 35.46 -27.22
2 -39.5526285 36.82 -27.00
5 -39.5519738 43.82 -25.85

10 -39.5494872 67.08 -22.19

6s p°p*p"/3s 0 -39.5580702 30.86 -26.30
2 -39.5579806 32.13 -26.08
5 -39.5574887 38.69 -24.97

10 -39.5546892 54.82 -10.44

6s p°/3s 6s p°p+pl
a(c) Calculated value 35.46 30.86

Vibronic correction 25.42 27.68
Corrected value 60.88 58.54

a(H) Calculated value -27.22 -26.30
Vibronic correction 4.23 4.73
Corrected value -22.99 -21.57

Force constant 0.0480 0.0347

174

252



TABLE IX
C.I. Results for the NHa'*' radical

Energies in Hartree; couplings in Gauss; 
force constant in a.u. (=1544

Basis 9 Energy a(N) a(H) No. of configurations

6s p°/3s 0 -55.8725836 15.56 -27.84 174
2 -55.8723074 16.04 -27.65
5 -55.8708487 18.56 -26.68

10 -55.8655372 27.24 -23.45

8s p°/4s 0 -55.8756110 15.75 -29.97 239
2 -55.8753443 16.23 -29.77
5 -55.8739355 18.11 -28.78

10 -55.8687972 27.28 -25.47

6s p°p+p-/3s 0 -55.8753672 16.43 -28.25 252
2 -55.8751309 16.91 -28.05

6s p°/3s 8s p°/4s 6s p°p+p"/3s
a(N) Calculated value 15.56 15.75 16.43

Vibronic correction 6.29 6.32 6.8
Corrected value 21.85 22.07 23.2

a(H) Calculated value -27.84 -29.97 -28.25
Vibronic correction 2.48 2.56 2.8
Corrected value -25.36 -27.40 -25.5

Force constant 0.1188 0.1149 0.112
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TABLE XI

Orbitals for BHa", CHa, and NHg'*' radical calculations

Heavy atom s-orbitals

No. of gaussians for orbital expansions

Is 2s 3s 4s 5s 6s 7s 8s

Total no. 
of orbitals 
formed

Hydrogen s-orbitals

No. of gaussians for orbital expansions

Is 2s 3s
Total no. 
of orbitals 
formed

3 3 2 1

2 3 3

Gaussians with the lowest exponents went to form the highest 
orbitals



The BeOH Radical

Brcm and Weltner have recently obtained the ESR spectrum of the 

isolated BeOH radical in an argon matrix. The reported hyperfine 

coupling constants were:

a(Be) = -94.3 G B(Be) = -1.4 G
a(H) = <1.8 G E(h) — ~0.4 G

The ESR spectrum was characteristic of a linear molecule [14].

RHF + Cl calculations were carried out for this a-radical using a

basis set consisting of Huzinaga gaussian expansions, 9s-type for 

berylium, 9s-type and 5p-type for oxygen, and 6s-type for hydrogen, 

with the addition of a ST0-5G expansion [27] for the berylium p-orbital. 

The geometry and scaling factors for the exponents of the berylium p- 

orbital and hydrogen s-orbital were optimised for the contracted basis, 

including all single, double, and necessary triple excitation configura­
tions in the calculations (CI2). These confirmed the presumed linear 

structure for the radical and yielded optimum values of R(Be-O) = 2.6 

a.u., R(O-H) = 1.8 a.u., Çr = 1.45, and CBe(P) = 1.1; details are 
given in Table XII.

A single calculation was performed with the s-orbitals uncontracted 

so as to give a (5s p/5s p/2s) basis. In the case of berylium and 

oxygen, the four gaussians with the lowest exponents were released from 

the Huzinaga Is-expansions to form new orbitals, leaving a set of five 

gaussians which have coefficients in much the same proportions to one 

another in both the Huzinaga Is and 2s-orbitals (see Table XIV). This 

is probably a much better basis, for its size, than the more haphazard 

ones used for earlier calculations. This calculation included all 

single and necessary double excitations (CIl).



The CI results obtained with the two basis sets are compared with 

experiment in Table XIII. It can be seen that the CIl calculation 

employing the (5s p/5s p/2s) basis gave very gratifying results for the 

coupling constants, the isotropic terms agreeing with the observed 

values to within the limits of experimental accuracy, while the aniso­

tropic terms are quite reasonable remembering that the basis was not 

set up with these in mind. Included in the table are the direct 

contributions to the couplings obtained from the uncorrelated RHF wave- 

function. These in general form a substantial proportion of the total 

and are much the same for both basis sets. Clearly it is in describing 

the indirect contribution that the (5s p/5s p/2s) proves superior to 

the (2s p/2s p/ls) basis.
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TABLE XIV

S-orbitals as used in f5sp/5sp/2s) basis for the BeOH radical

HUZINAGA GAUSSIAN EXPONENTS ORBITALS
Be 0

1741.38 7816.54
262.139 1175.82
60.3255 273.188
17.6239 81.1696
5.93258 27.1836

2.18473 9.53223

0.85895 3.41364
0.18062 0.93978
0.05835 0.28461

Is

2s

3s

4s
5s

HUZINAGA GAUSSIAN EXPONENTS 
H

ORBITALS

143.306 
. 21.5433 
4.93347 
1.41566 
0.472348

Is

0.172861 2s



The BeH Radical

Calculations were performed for the BeH radical employing 

Huzinaga gaussian expansions, 9s-type for berylium and 6s-type for 

hydrogen, with the addition of p-orbitals consisting of a single 

gaussian function with an exponent of 0.3 for berylium and 0.75 for 

hydrogen. The range of basis sets, for which results are presented in 

Table XV, were constructed by releasing successively the gaussians with 

the lowest exponents from the berylium 2s and hydrogen Is-orbitals.

The exception was the (5sp/4sp) basis for which the gaussians were 

released from the Is-orbital on berylium, the original 2s-orbital 

being dispensed with. In each case a value of 2.538 a.u. was taken 

for R(Be-H). The results may be compared with the experimentally 

observed hyperfine coupling constants:

a(Be) = -71 G B(Be) = -1.6 G
a(H) = 69 G B(H) = 1.2 G [34]

The calculated coupling constants for this range of basis sets 

show a convergence towards the experimental values, accompanied by a 

lowering in the energy, on moving to more extensive bases. However, 

there remains a discrepancy even with the (5sp/4sp) basis, the most 
extensive set used, and this is probably due to the inadequacy of the 

berylium p-orbital, the importance of which can be clearly recognised 

from the table.

Of particular interest are the calculations performed allowing 

different levels of excitation in the configuration interaction, the 

most comprehensive series of results being for the (4sp/2sp) basis. 

These show close to 95% of the correlation energy being provided by 

inclusion of the double and triple excitations consequent upon going



from the CIl to the CI2 type of calculation. Looking now at the iso­

tropic coupling constants, it can be seen that the hydrogen is affected 

to a greater extent than the berylium coupling by truncating the Cl. 

However, if only the indirect contribution is considered, the behaviour 

of both atoms’ couplings show some similarity; broadly speaking the 

CIl brings the contribution to within around 35%, the Cl2 to within 

10%, and the CI3 to within 1% of the complete Cl values. Hopefully 

calculations of this type can give an indication of the errors 

incurred when truncating the Cl, which becomes a necessity if fairly 

extensive basis sets are to be used.

LI
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Section Four

The Calculation of Nuclear Magnetic 
Resonance Coupling Constants



Theory

Nucleus-nucleus coupling involves the direct dipole-dipole inter­

action of the magnetic moments and also an indirect interaction by way 

of the electrons. In such a system as a liquid, where there is no 

fixed orientation for the molecules, the direct couplings are averaged 

to zero. There are three mechanisms for the indirect interaction : the 

Fermi contact, spin-dipolar and orbital contributions.

The Fermi contact interaction, which describes the coupling 

between the nuclear moments and the electron spins in contact with 

that nucleus, has the Hamiltonian operator

= Sn gç 3e  ̂^ (SCFkA) WA'Sk (4.1)
A k

where ge is the electronic g-value,

3e is the Bohr magneton,
is the magnetic moment of nucleus A,

Sk is the spin angular momentum operator for electron k, 

and ô(rkA) is the three-dimensional Dirac delta function for electron 

k at nucleus A, which has the property that

/£(Fk) 6(FkA) dFk = fCFjO

where f(Fk) is an arbitrary function of the co-ordinates of electron k

and FkA = Fk - Fa .

The operator for the dipole interaction between the nuclear moments 

and the electron spins, is given by

H’’ = geBe I I [3 (UA.rkA)(Sk.rkADrki= - (VA-Sk)rki']. (4.2)
A k



The nuclear moment - electron orbital interaction has an operator 

of the form

= 2 Be I I  (PA-LkA) Fki' (4.3)
A k

where LkA is the orbital angular momentum operator for electron k about 

nucleus A.

Of the cross-terms between these interactions, the spin-dipolar - 

Fermi contact cross-term is averaged to zero in liquids, whilst the 

spin dipolar - orbital and Fermi contact - orbital cross-terms are 

likely to be negligible unless the electron spin-orbital coupling is 

strong. In any event these cross-terms have not been evaluated in this 

work.

The observed nuclear spin-spin coupling interaction is of the

form

Eab = h Jab Ia Ib (4.4)

where Eab is the interaction energy between the nuclei A and B with

spins IA and Ib , h is Plank's constant and Jab is the observed nuclear 
spin-spin coupling constant between A and B. The magnetogyric ratio 

relates ya and Ia by

YA = Pa/(IAh) 

so that equation (4.4) can be rewritten as

Jab = Eab^ Ya yb h/2m (4.5)

where Ea b  ̂ is the second order energy of interaction of the nuclear 

magnetic moments ua and u b .



Eab' (4.6)
WA= 0

To obtain theoretical values of Ja b > we form a matrix which com­

prises the calculated Hamiltonian matrix with an added first row and 

column, as shown below.

11

Here Hoo is the energy of the unperturbed wavefunction Y = Zcj and

Voi = I Cj <0j|Vop|$i> . 
j

Using partitioned matrix techniques and following Lowdin, such a 

matrix can be solved to obtain

E = Hoo + % I Voi (H-Hoo Dl] ^ jo 
i j

(4.7)

Since Voi and V jo are sums of contributions from each nucleus, these 

may be evaluated separately (and then have the superscript A, B, etc.), 

when the relevant expression for the interaction energy between nuclei 

A and B is

Ï Ï [Voi* (H-Hoo I)J‘ Vjo® + Voi,® (H-Hoo Î>J' V (4.8)
1 j

since terms involving p^'^A snd pg.pg can be neglected from equation 

(4.6).

The matrix inversion was carried out using the biorthogonalisation



technique of Prosser and Hagstrom [26]. An iterative scheme would 

seem to be more generally suitable, and such a method can be formulated 

using the following equation

Ci"®" CE-Hii) = Vi + I Hij Cj°w C4.9)

where Vi is defined as Vqi above, and then

(2)
Eab = I (Ci*Vi®+ Ci®vf) . (4.10)

Unfortunately this method was found to run into convergence problems 

when an attempt was made to make use of it in the calculations presented 

here.



Results

The RHF + Cl method was used to calculate nuclear spin-spin coupling 

constants for the series of molecules CHi», NH3, H 2O, and HF, the Fermi 

contact, electron orbital, and spin-dipolar contributions being evalua­

ted in each case. The optimised minimal basis sets consisted of both 

SCF 9s, 5p/6s atomic orbital expansions [15] and Slater-type orbitals 

in the ST0-6G expansion [27]. Details of the molecular geometries and 

atomic orbital exponents are given in Table I and are identical to 

those used by Overill for SCFPM calculations [20]. The results are 

presented in Tables I and II, where the Cl couplings are compared with 

the relevant SCFPM and observed values.

As might be expected using only a minimal basis set, the calculated 

couplings are in poor agreement with experiment, however, a number of 

features are worthy of notice. The importance of the different contri­
butions to the couplings are in the order Fermi contact > electron 

orbital > spin-dipolar. It has been quite usual to evaluate only the 
Fermi contact term, but it can be seen that the electron orbital term 

can be of significance and this is particularly so for the H-F coupling. 

Though the other terms are fairly stable, the Fermi contact contribution 

to the X-H couplings show a marked divergence between the STO and SCF 

bases on descending the series CH^, N H 3 , H 2O, HF.

To obtain irproved results more extensive basis sets have to be 

used. This has been done by Overill using the SCFP method and excellent 

X-H couplings have resulted, though the H-H couplings are still much too 

large [20]. It would seem that an accurate description of the 

electronic correlation is important here, and better values have been 

obtained by Roos et al. [24,25] using a large configuration interaction.
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TABLE II

Results for the coupling constants in some polyatomic molecules 
using optimised minimal STO basis sets fin Hertz]

Molecule A-B Source Contact Dipolar Orbital Total

CH4 C-H SCFPM
C H S
Expt [28]

249.7
189.5

0.0
0.6

-0.1
0.04

249.6
190.1
125

H-H SCFPM
C H S
Expt [29]

- 34.1 
19.9

0.0
0.1

0.8
0.7

- 33.3
- 19.1
- 12.4

NH3 N-H SCFPM
C H S
Expt [30]

58.3
47.9

- 0.1 
0.0

0.4
0.3

58.6
48.2
±43.6

H-H SCFPM
C H S
Expt [30]

- 35.4
- 26.5

0.6 
- 0.1

1.5
1.5

- 33.3
- 25.1 
±10.4

H 2O 0-H SCFPM 
C H S  
Full Cl 
Expt [31]

- 1.4
- 0.4 

6.2

1.3 
- 0.11 

0.09

-5.1 
-4.8 
-4.8

- 5.2
- 5.3 

1.5
±79.0

H-H SCFPM 
C H S  
Full Cl 
Expt [32]

- 37.5
- 39.7
- 23.2

1.0
0.84
0.9

3.6
3.8
4.1

- 32.9
- 35.0
- 18.2 
± 7.2

HF F-H SCFPM 
Full Cl 
Expt [33]

-931.5
-725

-27.3
-30.8

217.4
152.1

-741.4
-604.5
530



TABLE III

Results for the coupling constants in some polyatomic molecules 
using optimised minimal SCFAO basis sets fin Hertz1

Molecule A-B Source Contact Dipolar Orbital Total

Œ 4 C-H scmA
C H S
Expt [28]

223.5
186.5

0.0
0.4

-0.1
-0.1

223.4
186.8
125

H-H SCFPM
C H S
Expt [29]

-65.3
-34.8

0.2
0.0

0.5
0.52

-64.6
-34.3
-12.4

N H 3 N-H SCFPM
C H S
Expt [30]

77.8
66.9

-0.2
0.0

0.4
0.4

78.0
67.3
±43.6

H-H SCFPM
C H S
Expt [30]

-52.4
-39.1

0.4
0.0

1.0
0.9

-51.0
-38.2
±10.4

H 2 O 0-H SCFPM 
C H S  
Full Cl 
Expt [31]

-92.7
-78.6
-72.6

1.5
0.16
0.14

-5.6
-5.3
-5.4

-96.8
-83.7
-77.9
±79.0

H-H SCFPM 
C H S  
Full Cl 
Expt [32]

-42.9
-46.1
-26.9

0.6
-0.5
-0.5

1.9
1.9 
2.0

-40.4
-44.7
-25.4
± 7.2

HF F-H SCFPM 
Full Cl 
Expt [33]

150.8
80.4

• -26.9 
-27.7

174.9
119.4

298.8
172.1
530



Appendix

Conpass Instructions



APPENDIX: C(M>ASS INSTRUCTIONS [5]

Logical Product Instruction

This instruction forms the logical product (AND function) of 60- 

bit words from operand registers Xj and Xk and places the product in 

operand register X±. Bits of register X± are set to 1 when the 

corresponding bits of the Xj and Xk registers are 1 as in the following 

exarple :

(Xj) = 0 1 0 1  
(Xk) = 1 1 0  0 
(Xi) = 0 1 0 0

Logical Sum Instruction

This instruction forms the logical sum (inclusive OR) of 60-bit 

words from operand registers Xj and Xk and places the sum in operand 

register X±. A bit of register X± is set to 1 if the corresponding bit 

of the Xj or Xk registers is a 1 as in the following example:

(Xj) = 0 1 0 1  
(Xk) = 1 1 0  0 
(Xi) = 1 1 0  1

Logical Difference Instruction

This instruction foims the logical difference (exclusive OR) of 

60-bit words from operand registers Xj and Xk and places the result in 

operand register Xi. A bit of the result is set to 1 if the correspond­

ing bits in the Xj and. Xk registers are unlike as in the following 

example:

0 1 0  1 
1 1 0  0 
1 0  0 1



Complement Instruction
This instruction sets all bits of a 60-bit word in an X-register 

to 1 which were 0 and vice versa.

Mask

This instruction clears an X-register and forms a mask in it. It 

defines a number of I's in the mask as counted from the highest order 

bit in the X-register. The completed masking word consists of I's in 

the high order bit positions of the word and O's in the remainder of 

the word.

Logical Shift

This instruction shifts the 60-bit word in an X-register left 

circular a number of places. Bits shifted off the left end of the 

X-register replace those shifted from the right end.

Population Count

This instruction counts the number of 1 bits in an X-register and 

stores the count in another X-register.

Normalize

This instruction normalizes the floating point quantity in an X- 

register. Normalizing consists of shifting the coefficient to the left 

the minimum number of positions required to make bit 47 different from 

59. This places the most significant bit of the coefficient in the 

highest order position of the coefficient portion of the word. The 

exponent portion of the word is then decreased by the number of bit 

positions shifted. The number of shifts required to normalize the 

quantity is entered in a B-register.

7L
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B. BURTON Ph.D. Thesis. 1978.
' A'♦Configuration Interaction and the Calculation of ESR and NMR 
’ 'Coupling Constants - B. Burton

A scheme is presented for a computer program using the 
Configuration Interaction method. To make the program as flexible 
as possible, lists of spin-configurations over RHF molecular 
orbitals are kept. These separate configurations for the alpha 
and beta spins can be combined to give the total configurations 
as and when necessary. It is shown how advantage may be taken of 
the internal bit structure of a computer word so as to store the 
spin-configurât ions as a binary pattern, which provides economical 
storage, and how information can then be extracted from them by 
means of the computer's logical machine instructions.

The Configuration Interaction method is applied to the 
calculation of magnetic resonance properties. The Electron Spin 
Resonance hyperfine coupling constants of the m-radicals NHz,
BH3", CH3 and NH3''' and the a-radicals BeOH and BeH are studied 
using a range of basis sets and allowing various levels of 
excitations to be included in the Cl. Rather more tentative 
results are presented for the Nuclear Magnetic Resonance coupling 
constants of CH^, NH3, H 2O and HF using only minimal basis sets.


