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" ELECTRON CORRELATION EFFECTS
mazmmn;
AND A STUDY OF
FLUCTUATION POTENTIALS IN ATOMS

by
Jeffrey Sanders

ABSTRACT
Firstly, the origin of the electron correlation problem is outlined
and some approaches to its solution are discussed.

In Part I, the difference between the exact and Hartree Fock (HF)
inter-electronic potentials experienced between a pair of electrons,
known as the fluctuation potential, is used to investigate the effect of
correlation on small atoms. They are analysed in terms of radial and
angular components of correlation and the dominance of angular-based
correlation for a large nuclear charge is seen.

In Part II, a new technique for examining the effects of electron
correlation on molecular systems is developed. This is subsequently used
to investigate the ground states of the H, and Hg molecules in position
and momentum—-space.

By employing a natural orbital analysis, it was found for molecules
that correlation could be examined in terms of the redistribution in
electronic probability parallel to the bond (z-correlation), axially
around the bond (¢-correlation) and perpendicular to the bond in all
directions (p-correlation). The origins of these components were analysed
mathematically and their effects on the two-particle electron density
were displayed. In position-space, although z-correlation was found to be
the most dominant, all types of correlation were seen to increase the
mean inter-electronic separation. In momentum-space, however, ¢ and
p—correlation acted to increase the mean inter-electronic momentum
whereas z-correlation acted in opposition to this and had the effect of
increasing the probability of locating both electrons travelling parallel
to the bond in the same direction. This was compared with the work
performed on atomic systems and the HeH'F molecular ion.

For the electron-deficient Hg ion, the investigation provided
evidence to suggest that there are three distinct ‘bonding regions’ bent
towards the centre of the molecule.



General Introduction -

A description of the stationary state behaviour of
electrons in atoms and molecules is given by solving the

time-independent Schrdédinger equation(l):

H ¥Y(xq,X5,...Xy) = E Y(x5,%5,...X0). (11)

The co-ordinate X5 represents both the space and spin

vectors of the ith

electron, H is the Hamiltonian, E is the
energy of the state and ¥ is the wavefunction of the system.
The wavefunction, from the fundamental principles of quantum
mechanics, contains all the information it is possible to
know about the state. For a molecule, the Born-Oppenheimer

approximation(z)

may be applied; that is, since the motion
of the nucleii is very much slower than the electrons, due
to the difference in mass, the molecule may be represented
by a frame of fixed, point-charge nucleii. By making the
customary approximation of ignoring all interactions other

than Coulombic forces, the Hamiltonian for a molecule

consisting of N electrons and M fixed nucleii may be written

as
N N
o
H =Z h (r;) +z 1/t 40 (12)
i=1 i>3=1 |

where the bare nucleii Hamiltonian is

ho(ri) = (-1/z)vf =) z/rg,- o (13)
A=l

th :th

The Coulombic repulsion between the i and j electrons is



given by l/rij, whereas ZA/riA represents the attraction

th

between nucleus A, of charge 2 and the 1 electron and

th

A’
(—1/2)V§ is the kinetic energy operator of the i electron.
Unfortunately, due to the electrostatic interaction terms in
the Hamiltonian, the Schrddinger equation may only be solved
exactly for one-electron atoms, and for the H; molecule. For
multi-electronic systems recourse must be made to

approximate methods. (Atomic units have been used throughout

this work and have been summarised in Appendix I.)

One of the first attempts to obtain an approximate
solution to the Schrddinger equation was envisaged by
Hartree(3). This entirely intuitive approach assumed that
each electron moves 1in a spherically averaged charge

(4) and

distribution of all the other electrons. Slater
Gaunt(s) independently showed that, within this
approximation, the optimum solution of the Schrdédinger
equation was a wavefunction in the form of a simple product

of one-electron functions, ie
PHartree(X1rXpr - Xy) = ¢(Xp)e(Xp) .. dylxy).  (14)

These one-electron functions, by convention, are known as
spin-orbitals and may be either atomic or molecular based.
It is obvious that the main defects in this method are
firstly, that the Pauli exclusion principle(s) is not obeyed
and secondly, that it takes no account of the
indistinguishability of electrons. If the spin-orbitals are
constructed to be normalised and orthogonal to each other,
both problems are overcome simultaneously by arranging the

orbitals in the form of a Slater determinant(7). The energy



optimised wavefunction arranged in this form is known as the
self-consistent field (SCF) wavefunction and may be written

as

$1(x9)  dy(xy) - o o d(xy)

-1/2 $1(x5)  5(x5) .« . . d(x,)

Sop(XprXgra--Xy) = (NI)

(15)
where the factor (N!) 172 simply ensures that the total
wavefunction is normalised to wunity. The spin-orbitals

contain parameters which, by applying the variational
principle(a), may be adjusted to produce the most highly
energy-optimised wavefunction. The form of such spin-
orbitals may be chosen arbitrarily, the choice obviously
being guided by any previous knowledge of approximate
wavefunctions. The ideal SCF wavefunction, that is to say
the wavefunction that contains the N best possible choices
of energy-optimised spin-orbitals, is known as the Hartree
Fock (HF) wavefunction. Most SCF wavefunctions contained in
the literature are accurate and thus may be thought of as
good approximations to the Hartree Fock wavefunction (for
example see references 9, 10 and 11). A more complete review
of the energy optimisation process, as derived by Fock(lz),

is contained in Appendix II.

One of the principal assumptions of the Hartree Fock
method is that the inter-electronic potential energy of an
electron, located at some point in space, depends only upon

the averaged positions of the other electrons. It therefore



follows that, even by employing the HF wavefunction, there
is an inherent deficiency in describing the Coulombic
electron-electron repulsion. Indeed, the Hartree Fock theory
predicts that the probability of locating two electrons with
anti-parallel spins at the same point in space is non-zero.
Any possible improvement to the accuracy of the HF theory
must introduce a ‘correlation’ effect between the motions of
the electrons, which introduces a region around each
electron largely devoid of other electrons. Correlation in
this context refers to the residual error in the Hartree
Fock model when describing the electron-electron Coulombic

interactions.

An idea as to the extent to which the HF wavefunction of
a system is in error may be obtained by evaluating the
correlation energy associated with it. By exploiting the

(13)

widely used definition of Lowdin the correlation energy

may be written as

Bcorr = Bexact ~ Bur- (16)

Since the Hartree Fock energy is always an upper-bound to
the exact energy, the correlation energy is a negative
quantity. This definition, although straightforward, has the
disadvantage of being based on two quantities, neither of
which can be known exactly. As an example, for the ground
state of the two-electron ions, the correlation energy is
approximately -0.04 a.u. which then increases proportion
-ately with the atomic number of the system. Although this
is a relatively small contribution, of the order of only a

few percent of the total energy for small systems, it is



comparable in magnitude to many chemically observable
properties. Sudh properties, for example, include the
difference between spectroscopic states, binding energies

and rotational barriers in molecules.

By considering the 1S state of the H ion, a Hartree
Fock analysis yields an energy of about -0.48 a.u.. One
would predict from this result that the ion would emit an
electron to form a hydrogen atom, with the 1lower, and
therefore more stable, energy of -0.5 a.u.. But, by
including correlation in the system the exact energy becomes
-0.52 a.u. and therefore the H~ ion is stable. Thus, the
actual existence of the H ion can only be predicted by the

inclusion of electron correlation.

The carbon atom, which has a ground-state energy of
approximately -40 a.u. and a correlation contribution of
about -0.4 a.u., provides another example of the importance
of correlation. Chemical bond energies are typically of the
order of -0.2 a.u. per molecule and hence cannot be
calculated reliably using HF wavefunctions. It is therefore
necessary, by studying the effect of correlation on atoms
and molecules, to seek methods of improving the HF

wavefunctions and their associated energies.

The Hartree Fock approximation represents an
approximation to the description of the electron-electron
interaction. Hence, electron correlation may be studied by
investigating a function that represents the difference
between the exact Coulombic repulsion term 1l/r,. and the

]

~5-



Hartree Fock equivalent. This function is known as the
fluctuation potential and has considerable advantage in that
the exact solution is represented rather than an
approximation. The fluctuation potential was first

(14) and since then little

introduced by Sinanoglu
quantitative analysis has been performed on it. Part I of
this thesis forms an investigation into the structure,
properties and the viability of the fluctuation potential as
a tool in the understanding of electron correlation.

In an historic paper of 1928, Hylleraas(ls)

proposed
three methods of constructing correlated wavefunctions, all
of which form the basis of present day techniques. In his

(16) noted that the wavefunction for

first method Hylleraas
helium can be regarded as a function of Lyr Iy and P that
is the distances of the two electrons from the nucleus and
the separation between them, respectively. He obtained
extremely accurate energies for the system as correlation
could be introduced explicitly into the wavefunction by the
inter-electronic distance term Tyg- Many authors (for
examples see references 17-19) have employed the Hylleraas
approach to create explicitly correlated wavefunctions.
Particularly noteworthy is the work of Pekeris(zo), who in
1958 computed a series of Hylleraas-type wavefunctions for
the helium-like ions, and that of Kolos and Roothaan(ZI), in
1960, for the hydrogen molecule. These calculations have
remained virtually unsurpassed in accuracy until the present
day. Unfortunately, attempts to extend these methods to
systems with more than two electrons have met with very

little success as elliptical co-ordinates are difficult to



construct for systems with more than two electrons(zz).

It 1is possible to <construct a wavefunction for a
molecule directly from those of its constituent components.
This technique, known as the valence bond (VB) method, is
attractive as it implements, in a clear-cut way, much of the
experience of chemistry. A fundamental requirement of any
electronic wavefunction is antisymmetry with respect to the
interchange of electrons stemming from different atoms,
leading to the exchange contribution of the total energy.
Physically it can be seen that this forces the wavefunctions
of the participating atoms to overlap. The magnitude of the
exchange energy, and consequently the strength of the
covalent bond may therefore be determined broadly by the
degree of non-orthogonality between the relevant orbitals.
Because of the 1large number of iterative calculations
required, until recently, interest in this approach has been
fairly limited. Due to much Dbetter modern-day VB

(23,24)

techniques and computer facilities, this approach is

becoming more attractive and is consequently gaining in

popularity(zs’zs).

The third, and most widely used, method of evaluating
correlated wavefunctions is that = of configuration
interaction (CI). The CI wavefunction is expanded as a

linear combination of Slater determinants &, ie

Y(él'§2""iN) = j{:ci@i(§1'§2""§N)' (17)
i

Each of the determinants does not necessarily contain the



symmetry of the system, but they are wusually grouped
together to form ‘configurations’ which do possess this
symmetry. The coefficients c; are taken as those which
minimise the total energy according to the wvariational
principle. The major advantage of this technique is that if
a complete set of configqurations 1is wused, that is an
infinitely large number, the trial wavefunction Y will
become the exact wavefunction of the system. In practice the
number of configurations that can be handled conveniently is
limited. However, the more confiqurations that are employed,
the better the calculated energy becomes. The principal
disadvantages of this method are firstly that, it is not
obvious which configurations will be most effective in
lowering the energy and secondly that, the energy
convergence of a CI expansion is often extremely slow. The
first problem has been overcome by arranging the CI
wavefunction in natural spin~orbital form, that is
rearranging the wavefunction to produce the fastest energy
convergent series (see Appendix III for further details).
Also, in the 1light of the considerable improvement in
computer hardware design and modern CI analysis

techniques(27—29), many highly accurate wavefunctions for

(30,31) and molecules (32,33)

small and medium-sized atoms
have been obtained. Accurate CI wavefunctions are
consequently employed throughout this work as approxim-

ations to the exact wavefunction of the systems.

As all of the wavefunctions have been energy-optimised
by applying the wvariational ©principle, the energies

associated with them are upperbounds of the experimentally



measured exact energy. The amount of electron correlation
contained in a particular wavefunction, and hence its
quality, can therefore be ascertained by comparing its

energy with the exact energy E and the Hartree Fock

exact

limit EHF’

$corr = (ECW -~ EHF) x 100 / (E - E (18)

exact HF)'

where Ecw is the energy of the correlated wavefunction.

The determination of the effect of electron correlation
in atomic and molecular systems can be seen to be of
fundamental importance when designing correlated
wavefunctions and is a field of active research. In a
classic paper of 1961, Coulson and Neilson(34) formulated an
inter-electronic density function f(rlz) which could be
evaluated at both the correlated and HF levels of accuracy.
The difference between these curves Af(rlz), known as the
Coulomb hole, then accommodates a simple physical picture of
the average extent to which electronic charge is repelled
from an electron as a result of its instantaneous
interaction with other electrons due to electron
correlation. This approach has subsequently been developed
and is the basis of present-day studies into the effects of
electron correlation. Unfortunétely, since there 1is no
unique origin, this method has rarely been used profitably
to investigate the very important field of correlation in

molecular systems.

In Part II of this thesis a new correlation function,

based upon the initial definitions of the Coulomb hole, is



developed to study the effect of electron correlation in
molecules. It ﬁay be generated totally numerically and
therefore has the advantage that it is independent of the
type of wavefunction that is used to describe the electron
distribution. It also overcomes the mathematical problems
that arise when considering multi-centre systems. This
function has subsequently been employed in the analysis of
the effect of correlation in the H, and H; molecules, which
represent the simplest multi-electron bi and tri-centred

molecules.

-10-



PART I

A STUDY OF THE FLUCTUATION POTENTIAL
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CHAPTER I.1

Introduction

The effect of electron correlation on atoms and
molecules is to produce a region in space around each
electron that is largely devoid of other electrons(l'i‘l).
This is a consequence of the fact that, in the Hartree Fock
(HF) model, each electron only experiences a potential due
to the averaged effect of all the other electrons whereas an
electron actually experiences a potential due to the
instantaneous locations of all of the other electrons. The
difference between the exact and HF potentials, which is
known as the fluctuation potential, can therefore be used to
measure the effect of correlation on a system.
Investigations using the fluctuation potential have
considerable advantage over the conventional techniques that

involve correlated wavefunctions'l-i-2)

in that, as the
exact potential is simply the Coulomb repulsion term rzé,
the total effect of correlation can be observed. Also, since
only HF orbitals are employed, the necessary integrations

are simple and easily evaluated.

Mathematically, the exact non-relativistic potential
experienced between two electrons (definéd as electron 1 and

2) is simply

-1

\'4 L5 (r.1.1)

Exact(£1'£2)

in atomic units (see Appendix 1 for further details). If we

now confine our discussion to atoms, the potential between

-12-



electrons 1 and 2 when described by the HF energy optimised

spin orbitals ¢a and ¢B may be written as

r

VHF<¢Q(§1)'¢B(§2)) = ¢a*(§l)rzé¢a(§l)d§1

N RSP TNE AL

- RaB(El\ - Rﬁa(§2\

(see Appendix 2 (Equation (A2.27)) for derivation), where

(I.1.2)

Raﬁ(fl) is an HF operator. The fluctuation potential,
which will be defined here as n(¢a(§1)¢3(52)), is then

simply the difference between equations (I.1.1) and (I.1.2),

ie
nUb,(x1)rbglny)) = T1E - | b "(xg)rThey(xy)de
a'=1'""gt=2 12 a ‘2177127 a'=1""=1
[~ * -l
- ¢6 (52)r12¢6(§2)d§2
+ RaB(Eb + RBa(ﬁﬂ
(I.1.3)
The operator Rae(-}fl) cannot be evaluated at a specific

point in spaceaLglthough, for electrons possessing anti-
parallel spins, ‘1t is =zero due to spin-orthogonality
properties (see Appendix 2). This brief investigation will
therefore concentrate on the more important f£fluctuation
potentials that exist in doubly occupied electronic shells

where electrons possess oppositely aligned spins. In such

cases the fluctuation potential may be written as

-13-



n(o (%) 05(x0)) = £7z = | ¢, (x)r730 (%) )dx,

n

* -1
- | ¢p (Bp)rppeglxy)dx,.

(1.1.4)
This function describes the effect of correlation on the
inter-electronic potential between a pair of electrons with
opposing spin. For a molecule, an equivalent expression may
be defined by solving the appropriate multi-centre

Schrédinger equation.

The fluctuation potential n(¢a(§1),¢6(§2)) is defined in
exactly the same way as the ‘residual fluctuation potential’
of Sinanoglu‘l*1:3/4)  ne has also defined a related, but
more complex, function which he has called the ‘complete
fluctuation potential'(l'i's). It is used extensively in the
method of ‘successive partial orthogonalisations'(1‘1‘6—9)
but is not helpful in studying correlation effects as it
contains additional terms. Consequently only the
n(¢a(§1),¢s(§2)) function (residual fluctuation potential)

will be considered further in this investigation.

For an atom possessing N-electrons there are N(N-1)/2
electron pairs and therefore N(N-1)/2 distinct fluctuation
potentials which combine to produce the total correlation
effect. As the shell structure in correlated electron
densities is largely maintained, it has been postulated that
the fluctuation potentials have a relatively short range yet
this has never been investigated fully. Furthermore, since

(1.i.8)

the early work performed by Sinanoglu the

-14-



fluctuation potential has received only limited

attention(l'i’lo’ll)

and no thorough investigations have
been performed into its structure, magnitude and properties.
By considering two and four-electron atoms, the form,
properties and ability of the fluctuation potential to

describe atomic correlation effects will be investigated in

this initial section of the thesis.

-15-



CHAPTER I.2

Investigation into the Fluctuation Potential

This investigation will consist of three main parts. The
first consists of investigating the form of the fluctuation
potential, the second with its ability to describe the
effects of electron correlation and the third with its

range.

(I.2.1) Form of the Fluctuation Potential

The fluctuation potential for electrons with opposite
spin n(¢a(5l)¢6(§2)), as defined in Equation (I.1.4)
consists of three distinct terms. The first is simply the
inter-electronic Coulombic repulsion term rI% and the

remaining two integrals describe the HF potential. The

integral

-1
J bglxy)r 5 ¢glX;y)dx,
represents the potential experienced by electron 1 due to

the effect of electron 2 described by spin-orbital g and,

similarly

J ¢a(§l ) ‘Ié ¢a(§1)d£1

represents the potential experienced by electron 2 due to
the effect of electron 1 whilst located in spin-orbital a.

To understand the form of the fluctuation potential further,

-16-



it proves necessary to investigate the structure of one of
these integrals, say, the potential experienced by electron
2 due to the the averaged effect of electron 1 when

described by spin-orbital «, Va(EZ)' where

volry) = I b (21177 b (%)%, - (1.2.1)

We may expand rI% in terms of spherical harmonics(l'ii'l)

and, for s-type spin orbitals, by integrating over the spin
and angular components of vector X4 and Xq va(rz) may be

written as

r, ®
-1 * 2 *
va(rz) =, J Ra (rl)Ra(rl)rldr1 + J Rm (rl)Ra(rl)rldr1
rl=0 'r1=r2

(1.2.2)
where Ra(rl) is the radial component of ¢a(§1). For s-type
orbitals, the potential 1is spherically symmetric with
respect to the nucleus. From equation (I.2.2) we see that
the potential experienced at the nucleus (ie when r, = 0)
will be <rIl> for the chosen orbitals and, far £from the
influence of the nucleus, it will tend to ral. This is
obviously the Coulombic potential that would be experienced
due to an electron being located at the nucleus. In the
intermediate regions, however, the potential will be
affected by the probability distribution arising from the
particular spin-orbital. As examples, the radial components
of certain 1ls and 2s orbital HF potentials for the four
electron series have been presented in Figqure (I.2.1). (The
(1.i1.2)

HF energy-optimised orbitals of Clementi and Roetti

have been employed in the evaluation of these functions.)

-17-



We see from Figure (I.2.1) that the range of the HF
potentials is commensurate with the probability distribution
appropriate to the particulaf orbital and the HF potentials
reflect the shapes of the orbital probability distributions.
The magnitude of the potentials at the nucleus, which has
been shown to be equal to <rIl>HF, increases with increasing
values of Z. The <rIl>HF expectation values are presented in
Table (I.2.1B) where, for 1s orbitals in the two, three and
four electron systems considered, we may establish the
relationship

cets, =z -0.32 (1.2.3)
by simple a ‘best fit line’ technique. For 2s orbitals the
corresponding relationship is

-1
<£]7>,¢ = 0.26 2 - 0.52 (I.2.4)

with an error of approximately one percent. The HF potential
at the nucleus is hence directly proportional to the nuclear
charge. Further, the dotted curves in Figure (I.2.1)
represent the function rzl which, as may be seen from
Equation (I.2.2), is the potential associated with a system
whererthe electrons are exceedingly close to the nucleus,
and therefore the nucleus must possess a very high charge.
These curves therefore represent the as ymptotic limit for
both the 1ls and 2s HF potentials. We see from Figure (I.2.1)
that the 1s orbital distributions are closer to this limit
than the 2s potentials although, even for the 2s orbital,

further than four atomic units away from the nucleus, rgl

-18-



represents a good approximation to the 2s HF potential.

(r.2.2) The Effect of the Fluctuation Potential wupon the

Electronic Probability Distribution

Like all two—-electron functions, the fluctuation
potential is dependent upon seven variables. Consequently,
to be able to display this function, we must either fix or
integrate over certain dimensions. In this section we

investigate two such approaches.

[{A] The Fluctuation Potential for a fixed location of
electron 1.

By locating a test electron, electron 1 say, at a point
in space, the number of variables in the £fluctuation
potential is reduced considerably. Not only is the number
reduced by the three co-ordinates of electron 1, but, for
atoms, the remaining distribution is axially symmetric with
respect to the line from the nucleus to the test electron
(defined as the z-axis), making the function dependent on
only two variables. It may therefore be plotted, using a
contour diagram, in a plane containing the nucleus and fixed

electron (defined as the xz-plane).

If the location of electron 1 is fixed then the integral

-1
J- ¢p(§_ JT12 ¢ﬂ(§:l)d§2

is simply dependent upon the location of the test electron.

-19-



In this case, to be able to compare the form of the
fluctuation poténtial on different systems, it 1is more

appropriate to define the ‘partial fluctuation potential’

S(rq, £, ) for electrons with opposite spins as
S(ry, , £y ) =135 = | o (x )7L ¢ (x)dx (1.2.5)
-1’ =2 12 o« =1 TT12 e =TTy T

This function has the advantage that, far from the influence
of the nucleus and the test electron, it will tend to zero
rather than to a constant. Consequently, it has been plotted
in Figures (I.2.2) and (I.2.3) for the two and four electron
series, respectively. In all case the test electron has been
located at a distance of <r1> a.u. from the nucleus and, to
be able to compare surfaces, they have been scaled so that
the width of each diagram corresponds to the radius that
encompasses 95% of the total charge associated with the
particular shell. This radius and the relevant expectation
values are presented in Table (I.2.1). Also, to aid in the
interpretation of the diagrams, the positive contours are
represented by solid curves, the zero contour by a dotted

curve and the negative contours by broken curves.

The exact inter—electronié potential II% may be thought
of as that experienced between two electrons which are
described by a CI wavefunction that is constructed from an
infinite number of configurations. Because of this, the
fluctuation potential may be analysed in terms of ‘radial’
and ‘angular’ components of correlation which have

identical meaning to that employed in past investigations

-20-



into the effect of correlation on atomic systems(1'11'3_8).

The density associated with the roving electron will
obviously be redistributed to the region of lowest potential
around the nucleus B . A dominance
of radial correlation is therefore characterised by contours
of equal potential formed by concentric spheres centred at
the nucleus. This relocates the probability density
associated with the roving electron either towards or away
from the nucleus. In a similar way, angular correlation is
identified by the equi-potential contours forming cones with
their apices centred on the nucleus. A maximum will be
located along the direction from the nucleus to the test
electron and the minimum contour will be 1located on the
opposite side of the nucleus. The probability of locating
the roving electron on the opposite side of the nucleus to
the test electron will therefore be increased irrespective
of the distance of both electrons from the nucleus. However,
in practice it is impossible to observe correlation effects
in atomic systems which consist of either total radial or
total angular correlation. Nevertheless, these models allow
us to investigate the effect of correlation on atoms in
terms of the relative importance of radial and angular

correlation.

The partial fluctuation potentials for the K shells of
some two-electron systems are presented in Figure (I.2.2).
From Figure (I.2.2A) we see that, for the case of H , the
minimum is almost centred on the nucleus. This indicates

that radial correlation is most dominant and has the effect

-21-



of redistributing the probability of locating electron 2

closer to the nucleus.

By increasing the nuclear charge and passing along the

two-electron series up to O6+

(Figures (I.2.2B)-(I.2.2H)),
we see that the minimum moves away from the nucleus, the
magnitudes of the surfaces increase and the 2zero contour
changes from concave 1in shape to convex. This may be
attributed to an increase in the relative importance of
angular correlation. These observations are consistent with

the work performed by Banyard and Baker(l'ii-7r3)

on the
He-like series and are also characteristic of K shell
correlation effects in three and four electron
systems(l'ii‘s'g). The effect may be explained by realising
that, as the nuclear charge is increased, the gradient of
the HF electron-nuclear potential curve becomes greater. For
a large nuclear charge, with a rapidly varying potential
curve, it therefore becomes more energy-efficient to
increase the inter-electronic separation by increasing the

probability of locating the electrons on opposité sides of

the nucleus rather than on a purely ‘in-out’ basis.

By comparing Figure (I.2.2A) with (I.2.2B) we see that
the greatest change in the partial fluctuation potential
surfaces is between H and He. This is a reflection of the
instability of the H~  ion which, at the HF level, is

predicted as being unstable.
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Partial fluctuation potential surfaces have also been
evaluated for the K shells of three and four electron ions
but were found to be almost graphically indistinguishable
from the two electron results. This indicates that, at the
HF level, the potentials experienced between K shell
electrons is almost independent of the presence of 2s

\

electrons.

The partial fluctuation potentials for the L shells of
some four-electron systems are presented in Figqure (I.2.3).
Like the two-electron series, we see an increase in the
importance of angular correlation between Li~ and 06+
although for the L shell, even Li  contains a large
component of angular correlation. Due to the double maxima
in the 2s-orbital probability distribution, except for Li ,
two minima are seen in the fluctuation potential surfaces.

Again, the instability of the negative ion is apparent when

comparing Figure (I.2.3A) with (I.2.3B).

Inter-shell fluctuation potentials obviously exist
between K and L shell electrons. For electrons with opposite
spins the fluctuation potentials have the same form as
either the K or L shell fluctuation potentials and, for
electrons with the same spin, as discussed earlier, their
evaluation is complex due to the HF integral operator.
Consequently, inter-shell fluctuation potentials have not

been considered in this analysis

~23-



[B] Profile of the Fluctuation Potential.

It is importént to investigate the effect of electron
correlation on atomic systems as the position of the test
electron 1is varied with respect to the 1location of the
nucleus. This may be accomplished by realising that the
maxima and minima of the partial fluctuation potential
surfaces are located on the z-axis. Thus, if a contour
diagram is constructed from the profiles of the partial
fluctuation potential along the z-axis for different
locations of the test electron, very 1little information is
lost. The forms of these diagrams were found to be similar
for all of the K shells and L shells considered.
Consequently, as typical examples of these surfaces, only
the K shell of He and the L shell of Be have been presented

in Figure (I.2.4)

From Figure (I.2.4A) we see that, when one electron is
located on the nucleus in He, the other electron experiences
a spherically symmetric potential that 1is everywhere
positive. Radial correlation therefore accounts for all of
the correlation effect in this case and acts to redistribute
the probability of locating the roving electron further from
the nucleus. Once the test electron is removed from the site
of the nucleus, however, a minimum develops on the surface
that, when the test electron is far from the nucleus,
becomes centred on the nucleus. At this point, radial
correlation is once again dominant although, due to the
negative region at the nucleus, it redistributes the
probability of locating the roving electron closer to the

nucleus.
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When the test electron is at intermediate distances from
the nucleus, angular correlation has an effect. The greatest
effect would be expected at the same distance from the
nucleus as the the test electron. For He this was found to
be 0.6 a.u. from the nucleus which represents 62% of the

expectation value <ry>.

The partial fluctuation potential profiles for the L
shell of Be are presented in Figure (I.2.4B). Like the K
shell of He, when the test electron is located on the
nucleus, the roving electron experiences a repulsive
potential and hence is relocated further from the nucleus.
As the test electron is moved from the nucleus, however, two
minima are formed, one of which becomes coiﬁcident with the
nucleus and the other tends to 1.4 a.u. fpom thé nucleus.
Thus, when the test electron is far from the nucleus, the
probability of locating the roving electron at the nucleus
and at 1.4 a.u. from it is increased predominantly by radial
correlation. Angular correlation will have its greatest
effect when the minimum is located at the same distance as
the test electron from the nucleus. In this case, it occurs

at about 1.8. a.u. from the nucleus.

We have therefore seen that, for-both shells considered,
when the test electron is close to the nucleus, radial
correlation acting to redistribute the probability of
locating the roving electron further from the nucleus is
most dominant. As the test electron is moved further from
the nucleus, the effect of radial correlation is reduced and

the angular correlation component becomes greater. By
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locating the test electron further from the nucleus,
however, radial correlation gains in importance once more
but now acts to redistribute electronic probability closer

to the nucleus.

(I.2.3) the Range of the Fluctuation Potential

As discussed earlier, it has been presumed that the
fluctuation potential, being the difference between two
relatively long-range potentials, is itself short-
ranged(l'ii‘lo’ll). From our analysis into the correlation
effects in two and four electron atoms, however, we mnmust
conclude that this is not the case. If we allow <ry> to
represent the average distance of the test electron from the
nucleus, it can be seen immediately from Figures (I.2.2) and
(1.2.3) that the fluctuation potential in both the K and L
shells possesses a range of the order of the radius that
contains ninety five percent of the enclosed charge. This
suggest that the fluctuation potential is not short-ranged.
The only exceptions to this are seen in the H and Li~ ions
which have been shown to exhibit unusual characteristics. To
support this argument, we see from Figure (I.2.4) that even
when the test electron is located on the nucleus, the range
of the fluctuation potential can be séen to be commensurate

with the ‘size’ of the atomic shell.
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System <r11>HF <£1>pp Range of Shell
H™ 0.68822 2.4663 5.951
He 1.6873 0.92723 2.082
it 2.6873 0.57237 1.238
Be* 3.6874 0.41418 0.898
g3+ 4.6875 0.32448 0.698
cd+ 5.6875 0.26676 0.575
N+ 6.6875 0.22646 0.488
of+ 7.6876 0.19675 0.389

Table (I.2.1A) The 2 Electron Series

System <rIl>HF <ry1>up Range of Shell
Li~ K 2.6853 0.57290 1.255
L 0.24956 5.7483 12.32
Be K 3.6807 0.41488 1.028
L 0.52252 2.6494 5.488
Bt K 4.6746 0.32499 0.805
L 0.78015 1.7982 3.598
c2*t x 5.6772 0.26741 0.665
L 1.0341 1.3720 2.705
N3t ok 6.6757 0.22701 0.568
L 1.2866 1.1119 2.175
od* « 7.67429 0.19720 0.472
L 1.53910 0.93592 1.582

NB

Table (I.2.1B) The 4 Electron Series

(1) ‘Range of Shell’ is defined as that radius which
encompasses 95% of the total charge associated with
the shell at the HF level.

(2) Clementi and Roetti HF energy-optimised orbitals were

used(l‘ii'z).
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(A) K shell Potentials
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x'”ﬁe

Va(rz)

Figure (I.2.1) The radial components of the Hartree Fock
inter-electronic potentials va(rz) experienced by electron 2
due to electron 1 being located in (A) the K shell and (B)
the L shell of certain four electron atoms.
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® Location of nucleus
X Location of test electron
® Location of minimum of surface

Figure (I.2.2A-D) The partial fluctuation potential surfaces for certain
two electron ions scaled such that the border of each diagram corresponds
to the region that contains 95% of the total charge associated with the
shell (see Table (I.2.1) for values). The test electron is located at
<r > in each case.
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Figure (I.2.2E-H) The partial fluctuation potential surfaces for certain
two electron ions scaled such that the border of each diagram corresponds

to the region that contains 95% of the total charge associated with the
shell (see Table (I.2.1) for values).

The test electron is located at
<r. > in each case.

-30-



L
L )
L )
L J
]
L
]
[
]
*
°
L
.
3
.
®
L]
L]
L
L]
[ 2
L )
L 4
L3
L
L]
L]
L]

Location of nucleus
Location of test electron
Location of minimum of surface

ORXO)

Figure (I.2.3A-B) The partial fluctuation potential surfaces for the L
shells of certain four electron ions scaled such that the border of each

diagram corresponds to the region that contains 95% of the total charge
associated with the shell (see Table (I.2.1) for values). The test
electron is located at <r > in each case.
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Location of nucleus
Location of test electron
Location of minimum of surface

02 .40)

Figure (I.2.3C-F) The partial fluctuation potential surfaces for the L
shells of certain four electron ions scaled such that the border of each
diagram corresponds to the region that contains 95% of the total charge
associated with the shell (see Table (I.2.1) for values). The test

electron is located at <r > in each case.
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(A) The K Shell of He
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Fluctuation Potential Profile along z —axis

(B) The L shell of Be

Figqure (I.2.4) Fluctuation potential profiles along the
z-axis with different locations of the test electron for (A)
the K shell of He and (B) the L shell of Be.
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CHAPTER I.3

Summary of Fluctuation Potential Investigation

The fluctuation potential, which is defined as the
difference between the exact and HF potentials experienced
between a pair of electrons, describes the effect of
electron correlation on the inter-electronic potential. It
has a considerable advantage over functions that employ
correlated wavefunctions to study the effects of
correlation{l-#13:1) in tnat the total effect of correlation
is observed. Furthermore, since only HF wavefunctions are
employed in the definition of the fluctuation potential, it
is relatively simple to evaluate. Unfortunately, it proves
difficult to evaluate fluctuation potentials between
electrons in different shells with identical spins. It has
been reported, however, that these inter-shell correlation
effects are relatively ’small and therefore wunimportant
compared with intra-shell effects(l‘iii‘z).

By fixing the location of one of the -electrons,
correlation effects have been analysed in the K and L shells
of certain two and four electron ions in terms of the
relative composition of the radial and angular components of
correlation. We have seen that, as the nuclear charge of the
system 1is increased, the effect of anqular correlation
becomes most dominant. This was attributed to the fact that

the angular redistribution of electron probability is

preferable to radial movements in a rapidly varying
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electron-nuclear potential field.

Profiles of the fluctuation potential along the axis
that passes through the nucleus and the test electron were
evaluated for different locations of the test electron. From
this we found that, when the test electron is very close to
the nucleus, radial correlation is most dominant, acting to
relocate the probability density associated with the roving
electron further from the nucleus. As the test electron is
moved from the nucleus, the effect of angular correlation
increases rapidly to reach a maximum when the fixed electron
is located at about sixty percent of <r;> for the systems
considered. However, when the test electron is far from the
nucleus, and the system is almost ionised, radial
correlation becomes dominant once more, this time acting to
redistribute the probability of locating the other electron
closer to the nucleus. These results were found to be

consistent with past investigations(l‘lll'3-6).

It was discovered that the fluctuation potential is a
long range function that can be wused to investigate
intra-shell correlation effects accurately and relatively
simply. We therefore conclude that it is a valuable function
that may be employed in studying the effect of electron
correlation on atomic and molecular systems to obtain
complementary information to that acquired from existing

functions.
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PART II

CORRELATION EFFECTS IN Hz AND H;
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CHAPTER II.1

Introduction

The effect of electron correlation can be measured by
examining how the charge density of a pair of electrons is
redistributed by the inclusion of correlation to a
particular system. For an N-electron system all of this
information is contained in  the difference between the
correlated and non-correlated second-order reduced-density
matrices. Hence, the correlation effect between electrons 1
and 2, say, is contained in Ar_ . (x],x}|X,,X,) which, by

direct analogy with the definition of correlation energy

(equation I6), may be defined as

AT orr (X1 X519, X5) = Top(X{,X51%y,%X5) = Tpp(x{,X51%1,%5).
(II.1.1)

The second-order reduced-density matrix(2-1-1)

associated
with a general, normalised wavefunction ¢, which may be

correlated or non-correlated, is given by

T(x]1,X31%1+%5) = N(N—l)/ZJw*(ﬁi.gé, s XE V(X Xy e X))
d§3d§4...d§N, (I1.1.2)

which, by convention, 1is normalised to the number of
electron pairs within the system. The notation implies that
integrations should be performed over the space and spin
co-ordinates of all electrons except for electron 1 and 2.
The primes indicate that when evaluating the expectation

value of some operator, X1 is put equal to Xy after the
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operation has been performed and consequently the operator
acts only upon the unprimed co-ordinates. Using the method
of successive partial orthogonalisations first proposed by

Sinancglu(z'i'z),

the correlated wavefunction may Dbe
expanded into electron cluster formﬂ This allows the second-
order density to be partitioned approximately into its
pair-wise components; the uncorrelated wavefunction, on the

other other hand may be partitioned exactly, thus

N
AT corr(2]rX51%; /X)) =Z”ij(ii'ié‘il'-’iz) : (11.1.3)
i>j=1
The i and j values label occupied spin-orbitals and hence
permits the effect of correlation to be observed in ‘intra’

and ‘inter-electronic shells’(z'l'B—s).

Unfortunately, since Arcorr is a kfunction of six
variables, it is extremely complex to study. Most approaches
of analysing the effect of correlation have found ways of
reducing the number of these variables, either by
integrating over, or fixing some of them. Information is
'always lost by doing this, but by examining, for example, a
radial based function in tandem with an angular function, an
overall view of the effects of éorrelation may be
constructed. Molecular-based <correlation functions are
further complicated since, ﬁo gain specific information
about the redistribution of the electrons with respect to

the nuclear framework, they must also envelop the ‘'symmetry’

of the molecule.
The first attempt to study the effect of correlation in
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single-centre systems was by Coulson and Neilson(z'l‘s). As

correlation represents an improvement to the description of
the electron-electron interaction, they noted the importance
of evaluating the change in probability of finding two
electrons with a separation of L19 = |£1 - 52]. This
difference function, known as the Coulomb hole, may be

defined as

AE(ry,) = J“cocr(ﬁi'ié'El'iz’d21d22d51d£z/d‘12'
(11.1.4)
where the integrations are performed over all variables

except for any reference to r,,. It therefore follows that
JAf(rlz)dr12 =0, (11.1.5)

which simply states that no electronic charge is lost or
gained, merely redistributed around the system. Since 1961,
at least two other definitions of the Coulomb hole have been
proposed. Gilbert(2°i'7) has suggested that Af(rlz) should
be weighted by a factor of rI%, thereby providing a better
indication of the relationship between the correlation
energy and the size of the Coulomb hole. Tatewaki and

Tanaka(z’i‘s)

, on the other hand, claim that Af(rlz)rzg is a
more appropriate quantity for investigation since the
resulting hole is a measure of the change in electron
probability per unit volume. Neither of these two
alternative definitions appears to have found much favour,

possibly due to the fact that both lack some of the

conceptual simplicity of the original suggestion.
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In direct analogy to the definition of Af(rlz) by Coulson

and Neilson it is possible to define an ‘angular’ hole as
AP(y) = jArcorr(Ei’ié'§1’§2)dgld£2d£ld£2/d7‘ (Ir1.1.6)

In this case the integration has been performed over all
variables except for <y, the inter-electronic angle with
respect to the nucleus as the origin. These functions have
been employed with some success to both the ground states of

several atoms(z'i‘9'14) as well as to a few excited

states(z'i'15—17).

With molecules, however, misleading
information may be obtained due to their lower order
symmetry. For example, with H, there is a high probability
of discovering both dedhng close to either of the nucleii
with a separation of 1.4 a.u. as well as them being close to
the same nucleus. This will distort and complicate the
Coulomb hole curve. Also, there is the added difficulty of
having no natural choice of origin to define the inter-
electronic angle when evaluating AP(y). Even with these
difficulties certain molecular systems have been
(2.1.18,19)

studied and an overall view of the probability

redistributions has been successfully obtained.

The Coulomb hole functions produce a description of the
total <correlation effects in atoms but much of the
information has been integrated out. For example, it is of
considerable interest to investigate how correlation varies
as one of the electrons, electron 1 say, moves with respect
to the nucleus. Consequently, the partial Coulomb hole

Ag(rlz,rl) may be defined as
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8g(ryprry) = Jaréorr(ii'ﬁé'51’52)dgldgzdildﬁz/drlzdrl'

| (I1.1.7)
The partial Coulomb hole represents the probability
redistribution due to the instantaneous location of electon
1 at a distance rq from the nucleus due to correlation. It

therefore follows that

Af(rlz) = Jbg(rlz,rl)drl. (1I1.1.8)

Selected partial Coulomb hole curves for certain values of

L, were employed first by Boyd and Coulson(z'i'ls)

3 1

to study

the correlation effects in the 2°5 and 2°S states of helium.

Since then Banyard and his co-workers have developed £full
surfaces in isometric projection of Ag(rlz,rl) and employed

them widely to investigate the effects of correlation in

(2.1.20) (2.1i.17) (2.1.12,14)

the two , three electron

systems for both ground and excited states(z'i'lG’la). Inter

and four

and intra shell correlation effects have also been analysed,
as well as the effect of ‘radial’ and ‘angqular’ based

correlation types.

Obviously it is possible to introduce an angular partial

Coulomb hole Ag(rlz,rl,alz) which may be defined such that

bg(ryp,ry) = [Ag“lz"1'“1z)d“12'

(2.1.21) (2.1.22)

Banyard(z'i'zo), Tatum and Moiseyev have

chosen %9 to represent the inter-electronic angle with
respect to the nucleus, however Boyd and Ugalde(2‘1‘23)

have chosen it to be the angle between the nucleus, electron
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1 and electron 2. This has the advantage that the angular
features of thelcorrelation may be investigated from the
point of view of the reference electron rather than the
nucleus. Both definitions of the angle may be used, however,
to study the angular aspects of the partial Coulomb hole. It
must be emphasised that techniques of studying the effect of
electron correlation in atoms, other than those outlined in
this brief discussion, are possible. The work of Lennard-

(2.1.24) (2.1.25,26)

Jones and Pople and Berry and co-workers

is of particular note.

In recent years considerable progress has been made in
the experimental determination of X-ray, photon, and

(2.1.27) ,nd these reflect the

electron-scattering profiles
nature of the momentum distribution of the target electrons.
In order to evaluate accurately momentum distributions it is
therefore desirable to understand the effects and
consequences of electron correlation in momentum-space. To
study correlation in this important complementary space
Banyard and Reed(z'i'za) have formulated the ‘Coulomb shift’

Af(plz) by employing momentum-space wavefunctions in

equation (II.1.4) and hence obtaining

8f(pyy) = Jrcorr(gifgélgl,gz)dgldgzdgldgz/dplz. (11.1.9)

The vector g; represents both the momentum and spin-vectors
of electron 1, whereas p, and g, represent the individual
momentum and spin-vectors, respectively. Using this approach
it is also possible to derive momentum-space partial Coulomb

shifts and the other momentum-space functions using the
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same technique as used in position-space. The momentum-space
correlation functions are known as ‘shifts’ rather than
‘holes’ as it was found that Af(plz) usually possesses more
than one major minimum or maximum, thus making it difficult

to define a ‘hole’.

Coulomb shift functions have consequently been used to
investigate the effect of electron correlation in momentum-
space on the ground and excited states of certain atoms and

molecules(z'i'28—31).

Comparison between momentum and
position-space correlation effects have then been observed.
For example, ‘radial’ and ‘angular’ correlation effects
reinforce each other in position-space yet oppose each other
in momentum-space. It 1is also worthwhile to study
correlation for certain small molecules using conventional
Coulomb shifts as their momentum density distributions are
single-centred and hence the point p=0 represents a unique
origin(z'i’la).

Because of the problems in utilising both the position
and momentum-space <correlation functions to describe
molecular systems, in general, methods must be devised to
evaluate molecular Coulomb holes which embody the ‘symmetry’
of molecules yet are practicable in their evaluation. One
such technique involves the use of intracule and extracule
density functions.

Using the notation proposed first by Eddington(z'i'32),
Coleman(z’i'33) defined the extracule and intracule

functions, for identical particles, to be
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Ry, = (ry + ,)/2 (1r.1.10)

and
Ly = I - Iy (Ir.1.11)
respectively. From equations (II.1.10) and (II.1.1l1), I and

L, may then be expressed as

= Ryy + L1957/ (1I.1.12)

I, = Ryy - L1575 - (1r.1.13)

and, by simply inserting these definitions into equation
(I1.1.2) and integrating over spin-variables, the
second-order reduced-density space matrix may be rewritten

as

T(R{p/Ei2IRyp0E12) = Jr(ii'ii'il'iz’dﬂlqiz (11.1.14)

since the Jacobian of the transformation is unity. The

extracule density is therefore defined by

—

B(Ryp) = Jr(Rizr£iZI512,£12)dglz (II.1.15)
and the intracule density by
I(rgy) = ‘[F(Biz'EizlElzrﬁlz)dglz- (11.1.16)

These functions inherit the normalisations of the T matrix,
that is being equal to the number of electron pairs in the

system, consequently
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Ja(glz)dglz =,JI(£12)d£12 = N(N-1)/2 (11.1.17)

where the integration limits are chosen to be appropriate to

the co-ordinate system used.

The extracule density is the probability density function
of the centre of mass of an electron pair. It can be seen
that E(R,,)dR,, represents the number of electron pairs
contained within the volume element dR,, at some point R,,.
As E(R,,) contains information about the location of
electron pairs it is of interest to chemists. It is also

possible to define an extracule Coulomb hole as
AE(BIZ) = ECI(Elz) - EHF(BIZ) (1r.1.18)

which obviously represents the redistribution of the centre
of mass of the electron pair due to correlation. Extracule
density functions have been evaluated for the ground states

of the lighest elements(Z-i-34)

but attempts to interpret
the information contained within them have met with limited

success.

As the intracule density represents the probability
density function with respect to the inter-electronic
displacement, it is much more important in the study of
electron correlation effects. The intracule Coulomb hole may

be written as

8I(r;,) =1I Igp(Zip)- (11.1.19)

crfEiz)

Obviously 4I(r,,) is a function in three dimensional space

and hence ways must be found to reduce the number of
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dimensions further to simplify the presentation of the
function. The Coulomb hole of Coulson and Neilson can be
seen to be a specific example of the intraéule Coulomb hole
where angular integration has been performed to fabricate a
function that is only dependent upon the inter-electronic

distance rather than the vector displacement.

Lester and Krauss(2'1’35) were the £first to try to

develop an intracule Coulomb hole to describe the effect of
correlation 1in molecules. They simply evaluated the
intracule density for selected orientations of the electron
pair relative to the nuclear frame, thus allowing them to
investigate electron correlation in the equilateral and
linear conformations of the H; molecule. Unfortunately the
results obtained by Lester and Krauss must be considered as
unreliable Pue to the poor quality of the wavefunctions used
by them (the magnitude of the energy of their CI

wavefunction is 1less than the accepted present-day HF

limit(2-1-36))

Thakkar and Smith(z'i’7) have studied a spherically
averaged intracule Coulomb hole Ah(rlz). This is of the same

(2.1i.8)

form as that of Tatewaki and Tanaka and, of course,

this is related to the Coulson and Neilson Coulomb hole by
_ 2
Af(rlz) = 4nrlz Ah(rlz). (Ir.1.20)

Although this function exhibits all of the problems
associated with the conventional Coulomb hole when applied
to molecules, it has the advantage that it reveals the

short-range correlation effects that have been masked in

—46-



Af(rlz) by the volume element 4nri2. In the same vein Sharma

and Thakkar(z’i‘lg)

have also <created a ‘cylindrical’
intracule Coulomb hole in an attempt to encapsulate the
symmetry of axially symmetrical molecules. Yet another
approach has been to evaluate the intracule density in a
particular molecular plane(z'i'19’38). Studies have been
performed successfully on H, and N, and the effect of the
electrons being near the same or different nucleii may be
observed indirectly. Unfortunately, although a detailed
picture may be obtained by subsequently generating the
planar intracule Coulomb hole, for the example of H2, the

nuclear reference point is lost, thus making it difficult to

analyse.

From this brief discussion it may be seen that many
techniques have been developed for examining the intracule
Coulomb hole for molecules (a review of the intracule and
extracule density methods may be seen elsewhe;e(z‘i‘39)).
None of these functions, however, give any information about
the redistribution in electron probability with gespect to
the actual framework of the molecule. As this represents the
most logical and important reference frame available,
functions that could describe the effect of electron
correlation with respect to this frame would be of great

interest. In the light of this, two independent attempts to

include the nuclear frame will be discussed.

By simply integrating over the dimensions of particle 2,
the one-particle density function p(£1) may be obtained,

that is
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plry) = Jr(iirii|§1r§z>d21d§2- (Ir.1.21)

The difference between a correlated and non-correlated
one-particle density has been employed by Duben and

Lowe(2.i.40)

as a measure of the effect of electron
correlation in the H3+ molecule. As the nuclear sites may
still be 1located they were able to evaluate one-particle
density profiles along particular 1lines through the
molecule. They made certain conclusions concerning electron
correlation in the molecule, and in addition, they compared

the efficiencies of certain CI wavefunctions to incorporate

electron correlation.

For axially symmetric molecules, by integrating either
longitudinally or transversely and locating electron 1 at a
certain point in space, Doggett(z’i'41’42) has formulated
the transverse and 1longitudinal correlation holes. The
molecule is set to 1lie along the z-axis, hence the

longitudinal hole is given by

« n
AL(L,,2q) = J J 8T opp(X]/X51%1,%5)do doydé,p,de,
0=0 $=0 (11.1.22)

whereas the transverse correlation hole is

® x
AT(rarey) = J J 8Tcorr(%ir231%y,Xy)dg,dg;dé,dz,.
zZ2=—0 ¢=0 (II.1.23)

The longitudinal correlation hole consequently represents
the change in probability of finding electron 2 at some

distance 254 irrespective of ) and ¢2, due to the
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instantaneous location of glectron 1 at r;. In a similar
way, the transverse hole represents the <change in
probability of finding electron 2 at a distance Py from the
z-axis as a result of locating electron 1 at r;. These
functions are able to utilise the axis of the molecule as an
origin and thus can reflect the axial symmetry of the
system. When viewed together they give a detailed account of
the effect of correlation. Obviously, however, they are

restricted to linear molecules.

Unfortunately there are no functions to date for
describing the effect of correlation that can reflect the
symmetry of any general molecule but still maintain explicit
reference to the nuclear framework. The purpose of this work
has therefore been to develop logically functions that have
this ability. They must augment existing definitions yet be
general enough to allow the effect of correlation in any
molecule to be investigated. Any of the many accurate
correlated wavefunctions that already exist should thus be
usable in the generation of these functions and hence their
definition should be independent of the type or size of the

basis set of the wavefunction employed.
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CHAPTER II.2

Molecular Eléctron Correlation Functions

It is possible to investigate the effects of electron
correlation by using both one and two-electron functions.
Only general information may be acquired from the one-
particle density though since the effect of one of the
electrons has been averaged out over all space.
Consequently, to gain specific information about the charge
relocation due to correlation, two-particle density
functions must be employed. Molecular correlation functions
are further complicated by the need to maintain reference to
the location of the nucleii, and also to incorporate the
symmetry of the molecule. This allows the charge
redistribution due to the effect of electron correlation to
be investigated with respect to the arrangement of the
nucleii, this being the most important, logical and easily

analysed reference frame available.

All of the information <concerning the relative
distribution of a pair of electrons, electron 1 and 2 say,
is contained in the second-order reduced-density matrix (see
equation (II.l1.2)). Since, in this analysis, no operators
will act upon the matrix, the ‘dash’ notation may be
omitted. Also, to form a purely spatial function, the spin
vectors of electron 1 and 2 may be integrated out, allowing

it to be written in the form
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*
dxgdx,...dxy. (I1.2.1)

This function has been the mathematical foundation of many
past analyses of correlation effects and will be employed in-
this work.

Following Banyard and Reed(z'ii°l), by employing
momentum-space wavefunctions in equation (II.2.1), it is
possible to define momentum-space equivalents of the
position-space correlation functions by using exactly the
same derivation processes. This analysis will therefore be
restricted to position-space, apart from stating the formal
definitions of the most important momentum-space correlation

functions.

(II.2.1) The One-Particle Density Functions

The one-particle density function 9(51) represents the
probability of locating electron 1 at some point defined by
Iy when the influence of electron 2 has been integrated

over all space, and hence it may be expressed as
p(Ly) = J T(ry,r,y)dz,. - (11.2.2)

The vector r; may be expressed in terms of the three
cartesian co-ordinates X910 ¥q and Zg- Thus, by fixing one of
these variables, it is possible to define a one-particle
density surface that reflects the symmetry of the molecule.

The volume under this surface is not normalised but is equal
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to the probability of locating electron 1 somewhere within

the chosen molecular plane.

In keeping with previous definitions, electron
correlation may be studied by examining the difference
between the correlated and Hartree Fock one-particle
densities, ie

bp(ry) = oLy = P(Iy)pp- (11.2.3)
Ap(£1) represents the change in probability of 1locating
electron 1 at a point defined by the vector Iy when the
influence of electron 2 has been averaged over all space.
The volume under the A-surface is, in general, non-zero and
is a measure of the amount of charge brought into the plane
due to correlation. The momentum-space A-one-particle planar
density Ap(El) represents the change in probability of
locating electron 1, with momentum p,, when the effect of
the momentum associated with electron 2 has been averaged

over all space.

Since Ap(£1) is a function of Iy the positions of the
nucleii may be located with respect to the origin of Ly
whereas if it were purely a function of vecfor Li5r the
inter-electronic displacément, this obviously could not
occur. Its use is limited, however, to measure only an
averaged correlation effect due to thé integration that has
been performed. One-particle density functions therefore
form only a small portion of the investigation into

correlation effects. For a more detailed analysis recourse

must be made to the two-particle density functions.



(IT1.2.2) The Two-Particle Density Functions

Even by restricting the analysis to one particular
plane, the two-particle density is still a function of four
variables and consequently is difficult to analyse. In a
similar way to the derivation of the partial Coulomb hole,
by fixing the position of one of the electrons, electron 1
say, with respect to the nuclear frame we have defined a new

function; the partial planar two-particle density. This is

only a function of two variables, and hence may be
represented on a contour diagram. It also has the added
advantage that, because no integration has been performed
apart from in the generation of T(r,,r,), it may be
generated numerically for any wavefunction, thus enabling

any molecule to be studied.

Since correlation represents an improvement to the
description of the -electron-electron interaction, it is
important to study the 1location of the roving electron,
electron 2, with respect to the position of the fixed
electron. The partial planar density V(Elz,gl), for a fixed

value of Iy is given by

V(£y9029) = T(Ly,295)09, (I1.2.4)

where ISP which is restricted to be a function of two

dimensions, is expressed as

L1y = I; - I,. . (I1.2.5)
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The inclusion of the multiplying factor Lys in equation
(II1.2.4) enables V(ry,,r;) to be interpreted as the
probability of discovering the roving electron at a position
located by the vector A EPY relative to the fixed electron,
and simultaneously finding the fixed electron at a point
defined by r,, relative to the nuclear frame. Again the
volume under the surface is not normalised, but in this
instance it is equal to the probability of finding the fixed
electron at the point defined by I whilst the roving

electron is located somewhere within the chosen plane.

The redistribution in probability due to correlation is
then given by the difference between the correlated (CI)
partial planar density and the equivalent Hartree Fock

density,
BVEypeZy) = VEZyorEyler — V(E32/E) Iyp- (11.2.6)

The volume under the AV(r,,,r,) surface represents both the
probability of discovering electron 2 in the chosen plane
and also electron 1 being located at the point defined by
;- A particular point on the A-partial planar surface
consequently is a measure of both the increase in the
probability of 1locating the roving electron at a point
defined by r;,, relative to r,, and also the fixed electron
being located at a point defined by I due to correlation.
Similarly, a point on the momentum-space density surface
AV(EIZ,El) represents the change in probability of locating
electron 2 with momentum p,,, relative to p,, and electron 1

possessing a momentum of p; due to correlation.
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Although AvV(r,,,r;) is technically a function of r,,,
since I, is defined with respect to the vector Ly which is
itself defined with respect to a known origin, the nuclear
sites may still be identified. This surface is therefore of
fundamental importance in the investigation of electron
correlation in molecules as it contains all of the
information necessary to describe the redistribution in
probability with respect to the fixed electron and the

molecular frame in the plane.

As r,, is constrained to be a function of only two
dimensions, it may be expressed, relative to the location of
the fixed electron, using the co-ordinates Ly, and &, where
£y, represents the distance between the two electrons and ¢
is an angular co-ordinate. Since, in general, no natural
choice of origin exists, € cannot be defined with respect to
the molecular frame. It is therefore defined as the angle
subtended in an anti-clockwise direction, between the axis
with highest symmetry and the vector L1p- This has the
advantage that ¢ defines the same direction for any fixed
electron position in a particular plane or in any plane
parallel to it. An example of this can be seen in Figure
(I1.5.3B) for the xz-plane of the H, molecule 1in
position-space. Here the axis of highest symmetry is
obviously the z-axis, and thus € is defined as the angle
between a line parallel to this axis and the line connecting
the roving electron to the fixed electron. The ranges of the

co-ordinates are
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and (I1.2.7)

Although Av(r12'€'£1) contains a full account of the
effect of electron correlation in the plane, it must be
shown on a rather complicated contour diagram. In an attempt
to derive simpler functions, it is possible to integrate
either over the angular or radial co-ordinates of
AV(rlz,e'El) to produce either a radial or an angular
partial planar Coulomb hole. Consequently, we have defined

two more functions: (a)The radial partial planar Coulomb

hole which is given by
2n
85(r,,) = J av(r,,,e,y) de. ' (11.2.8)
e=0

(b)The angular partial planar Coulomb hole, which is defined

as

AU(g) = J AV(rlZ'S'El) drlz. (1r1.2.9)
r12=0

The reference to the fixed electron position, r,, has been

implied in the definitions of AS(rlz) and AU(e). The areas

defined by these functions are the same and equal to the

volume under the A-partial planar surface, thus

® 2n © 2n
J AS(rlZ)dr12 = J AU(e)de = J J AV(rlz,e)drlzde.
r12=0 e=0 r12=0 e=0

(11.2.10)

Formally, the radial partial planar Coulomb hole represents
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the simultaneous change in probability of finding electron
2, the roving eiectron, at a distance P from electron 1,
and of finding electron 1 at the point specified by I- The
angular partial planar Coulomb hole represents the change in
probability of finding the electron 2 along a direction
specified by the angle €, relative to the 1location of
electron 1, and, at the same time, the change in probability
of discovering electron 1 at the point specified by Iy-
Although explicit reference to the nucleii is partially lost
in these functions, they may be employed together to gain an
insight into the overall effect of correlation in the plane.
The As(tlz) and AU(e) curves may also be used to make simple
comparisons between the quality of different wavefunctions

when describing correlation effects.

In keeping with past work, the momentum-space Coulomb
holes are known as Coulomb shifts. Consequently, a point on
the momentum-space partial planar Coulomb shift AS(plz) is a
measure of both the change in probability of discovering
electron 2, with a momentum of P13 relative to the momentum
P of electron 1, and also of discovering electron 1 with
momentum p,. The momentum-space angular partial planar
Coulomb shift AU(e) is similarly defined as the increase in
probability of discovering electron 2 with a momentum in the

¢ direction and also finding electron 1 with a momentun of

Pi-

These partial planar Coulomb holes and shifts are

defined in the same manner as the conventional partial
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Coulomb holes derived by Boyd and Coulson(z'ii'z), and

developed and wused extensively by Banyard and his

co—workers(z'ii‘3—5).

We may also examine ‘inter’ and
‘intra’ electronic shell correlation effects by using the
shell partitioning technique as developed first by Banyard

((2.11.6) (2.11.7)

and Masha from the work of Sinanoglu

By
making a sensible choice of fixed electron position and
molecular plane, the effect of electron correlation may be
studied extensively in any molecule by employing a
combination of AV(rlz,e), AS(rlz) and AU{(e) and the
momentum-space equivalents. These functions form the basis
of the subsequent investigation into the effect of electron

correlation in position and momentum-space on the H, and H;

molecules.

The definitions of the three most widely used functions

in each space are summarised overleaf.
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Definition of the Position-Space Correlation Functions

The A-Partial Planar Density Av(rlz,é,gl)

A point on the surface represents both the change
in probability of 1locating the roving electron
at this point and simultaneously the change 1in
probability of finding the fixed electron located
by the wvector I with respect to a predefined

origin, due to the effect of correlation.

The Radial Partial Planar Coulomb Hole

A point on the AS(rlz) curve is a measure of the
change in probability of locating the roving
electron at a distance £y, away from the fixed
electron in the chosen plane and also of locating
the fixed electron at the point defined by r,,
with respect to a predefined origin, due to the

effect of electron correlation.

The Angqular Partial Planar Coulomb Hole

A point on the AU(e) curve represents the change
in probability of 1locating the roving electron
along a direction defined by ¢, relative to the
fixed electron, and also of 1locating the fixed
electron at the point specified by r;, with
respect to a predefined origin, due to the effect

of electron correlation.
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Definition of the Momentum-Space Correlation Functions

The A-Partial Planar Density Av(plz,e,El)

A point on the surface represents the change in
probability of locating electron 2 with a
momentum specified by P, and &, relative to Py
and of discovering electron 1 with a momentum of

Pyr due to the effect of electron correlation.

The Radial Partial Planar Coulomb Shift

A point on the AS(plz) curve represents the change
in probability of locating electron 2 with a
momentum of p,,, relative to p,, the momentum of
electron 1, and also of finding electron 1 with a

momentum of Py due to the effect of correlation.

The Angular Partial Planar Coulomb Shift

A point on the AU(e) curve in momentum-space
represents the change in probability of 1locating
electron 2 with a momentum along a direction
given by &, relative to p,;, the momentum of
electron 1, and also of discovering electron 1

with a momentum of Py due to the effect of

electron correlation.
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POSITION-SPACE ANALYSIS OF HZ AND B;
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CHAPTER II.3

The H, and Ht Systems

The Hy and H; molecules have been chosen to test the
viability of the partial planar technique mainly because
they represent the simplest stable, multi-electron, diatomic
and polyatomic molecules available. Due to the diatomic

nature of the H, molecule, it is also possible to categorise

+
3

molecular-ion, on the other hand, is more complicated to

the main correlation-types for such molecules. The H

study than the H, molecule since the axial symmetry has been
lost and thus it proves to be an ideal example to test the

partial planar theory on a general system.

From the —early pioneering work of Heitler and

London(2.iii.1) (2.iii.2)

and James and Coolidge » Hy has been

recognised as the natural bridge between the quantum
mechanical study of atoms and molecules. It is consequently
disturbing to discover that, whilst experimental and
theoretical results for small atoms have a history of

excellent agreement with each other, major discrepancies

occur in the case of Hz(z.iii.3—5). For example, only in

cakylafo
recent years has the Compton profile of Hz been alculaled

accurately using highly correlated wavefunctions and been

found to be consistent with experimental results(2’111‘6'7).

This was only achieved by employing wavefunctions that
contain a high degree of electron correlation and describe
the rotational and vibrational effects of the

(2.iii.8,9)

molecule well. By investigating the effects of
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correlation on Hy it should be possible to create shorter
wavefunctions, that are obviously easier to manipulate,
without 1lo sing the high degree of awur acy that is

necessary in such calculations.

+
3

ion in electrical discharges in gaseous hydrogen. It is

In 1912 Thomson(z‘ill'lo) discovered the existence of the H

produced whenever an Hy molecule is in collision with an H;

molecular-ion. 1Initial experiments were concerned with

evaluating bending and stretching modes (2+#1i.11)

scattering cross sections(2‘111‘12'13). Surprisingly, it was

and

not until 1978 that experimental evidence was produced by
(2.ii1.14) to confirm the earlier
(2.1ii1.15)

Gaillard and his co-workers

+
that H3

is arranged in an equilateral triangle conformation. We also

theoretical prediction of Christoffersen

note that the infrared spectrum of H; and D; was only

discovered(z'iii‘16'17) in 1980 (an improved analysis has
recently been performed(2-iii-18),
(2.1iii.19)

and the microwave

spectrum in 1985,

Current theoretical and experimental interest in the H;
molecular-ion is still quite high due to its possible role

in thermonuclear devices(z'lll'zo), its suggested effect

upon the thermodynamic behaviour of certain metals(2-111.21)
and its postulated astrophysical significance as a

participant in ion-molecular reactions(?-111:22,23)

A
precise knowledge of electron correlation effects in this
system would be extremely useful in order to obtain more

accurate theoretical results in these fields.
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As discussed in Chapter (II.2), some attempts have been
made to study the effects of electron correlation in H; by
either considering the difference between the correlated and
non-correlated one-particle densities(z'iii'24) or
directional Coulomb holes(z'iii'zs). The results, however,
have proved difficult to analyse and consequently provided
little information. It would therefore seem appropriate to
attempt to obtain a more detailed, but easily analysed,

account of the correlation effects in Hg.

’

In addition to studying the correlation effects in Hy
and Hg to test the wviability of the partial planar
technique, useful information may also be gained from this
work that 1is essential in order to evaluate more precise

theoretical results.
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Chapter II.4

Position-Space Wavefunctions

As discussed earlier, electron correlation is usually
studied by approximating the exact non-relativistic
wavefunction by a highly correlated Configuration
Interaction (CI) wavefunction and the Hartree Fock (HF)
wavefunction by an accurate Self-Consistent Field (SCF)
wavefunction (see Appendix II for a more complete discussion
of Hartree Fock theory). There are no constraints on the
types of basis functions that can be used in wavefunctions
to generate partial planar Coulomb density surfaces but,
since it is intended to extend this analysis into
momentum-space, wavefunctions containing explicit reference

to the inter-electronic distance cannot be used.

(I1.4.1) The H2 Molecule

A wide variety of wavefunctions have been evaluated at

both CI and SCF 1levels of accuracy for the hydrogen

(2.iv.l-6).

molecule The best available wavefunction was

found to be that of Kolos and Roothaan(z'lv'7). This is a

fifty-four term wavefunction written in confocal ellipsoidal
co-ordinates (also termed prolate spheroidal co-ordinates)
but unfortunately also containing the inter-electronic

distance r;,. Using a method devised by Davidson(z'lv'e),

(2.iv.9)

Davidson and Jones have transformed the Kolos and

Roothaan wavefunction into natural orbital {NO)
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form(Z.iv.lO)

(see Appendix III). By curtailing the
wavefunction to incorporate only the first ten natural
orbitals and renormalising, 97% of the correlation energy
can still be accounted for, this being better than any of
the other available wavefunctions. The natural orbital form
of the wavefunction is again written in confocal ellipsoidal
co-ordinates but has the advantage that there is now no
dependence on the inter-electronic distance, hence
alleviating the problem associated with converting it into
momentum-space.

(2.iv.9)

The Davidson and Jones wavefunction can be

written in position-space as

. X:(il)xi(EZ) ifm=0
Y(EIIEZ) =Z”i * * . (II.4.1)
i=1 X;(E)X;€Ey) + X ()X () if m 2 0

where the natural orbitals X;(r) are of the form

15
X;(£) = (20322072 o ek ik g2y mi/2 (g op2)mis2
k=1
exp(imi¢)exp(—aa). (II1.4.2)

The quantum numbers n, j and m are given by Davidson and
Jones, the exponent a was fixed by them to be 0.995 for all
orbitals and the bondlength R was chosen to be the
near-equilibrium value of 1.4 a.u.. The co-ordinates are
defined in Figure (II.4.1) such that

§ = (rA + rB)/Z

(I1.4.3)
h = (rA - rB)/Z

and ¢ is the conventional azimuthal angle.
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A property of expressing the wavefunction in natural
orbital form is that the configurations are arranged to
produce the fastest energy convergent series(z'iv'll),
consequently electron correlation is introduced in the most
rapid and 1logical manner. The ground state of the molecule
is of 12{:+symmetry, hence the wavefunction must also be
symmetrical under all transformations of the D,, 9group. By

employing the Davidson technique(z'iv's),

all matrix
elements that are functions of basis orbitals of different
symmetry type vanish, thus allowing Davidson and Jones to

compute each symmetry type separately.

It can be seen, from Table (II.4.1) that the first
natural orbital is by far the most dominant term in the
expansion and, by using it alone, the energy obtained is
virtually at the Hartree Fock limit. Using the wavefunction
expansion devised by Sinanoglu(z'iv’l3), Davidson and Jones
explain that the first natural orbital may be considered as
being equivalent to the Hartree Fock wavefunction to within
the second order of a perturbatidn expansion. Also, Schwartz

and Schaad(z‘iv’4)

have devised an SCF wavefunction that
yields an energy of -1.3342 a.u., which is further from the
Hartree Fock limit than the first natural orbital of the
Davidson and Jones wavefuﬁction. For these reasons, and to
eliminate any possible basis-set dependency, the first

natural orbital has been used in this analysis as a reliable

approximation to the Hartree Fock wavefunction.

The second, third and fourth natural orbitals have

occupation numbers of the same order of magnitude (see Table
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(Ir1.4.1)) and should therefore be considered together. The
second natural 'orbitai is of o, Symmetry and therefore
correlation is introduced in a direction parallel to the
bond. The third, however, being of m, Symmetry, brings in
electron correlation angularly around the bond. The fourth
natural orbital, which has % symmetry, then incorporates
electron correlation in directions perpendicular to the bond
axis. From these observations it can be seen that, for
axially symmetric molecules, electron correlation may be
partitioned along the three orthogonal directions of the
cylindrical co-ordinate system. This is similar to the more
symmetrical atomic <case where, wusing natural orbital
expansions of wavefunctions, electron correlation has been
classified as either radial or angular(z'iv'l4-15). Thus, if
the Davidson and Jones wavefunction were curtailed to use
only the first two natural orbitals and renormalised to
unity, the effect of z-correlation alone could be
incorporated into the wavefunction. In a similar way, by
using the first three, then first four natural orbitals, ¢
then p-correlation types are introduced into the
wavefunction. It is interesting to note that the
wavefunction curtailed to embody the first four natural
orbitals, and therefore including the cumulative effects of

Z, ¢ and p-correlation, can account for 89% of the

correlation energy.

The remaining six natural orbitals only account for 8%
of the correlation energy and have very much smaller, but
similar in magnitude, occupation numbers. The symmetries of

these orbitals represent the six possibilities of coupling
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the three major types of correlation together. Consequently
they may be considered as second order corrections to the
wavefunction and will be included in the wavefunction

collectively.

In summary, therefore, we see that the natural orbital
form of the wavefunction has the advantage iﬁ that it allows
us to investigate the effects of different types 6f
correlation. The first natural orbital can also be used as
an accurate approximation to the Hartree Fock wavefunction.
Moreover the whole wavefunction can be transformed into
momentum-space where a corresponding examination may be

undertaken.

(II.4.2) The HY Molecule

(2.iv.16-19) (2.iv.20-27)

Both single and multi-centre
electronic wavefunctions have Dbeen evaluated for the
equilateral triangle conformation of the Hg molecule._The
lowest energy CI wavefunction available was found to be that
of Salmon and Poshusta(z'iv'zs). It has a fixed nuclear
separation of 1.65 a.u. and a total non-relativistic energy
of -1.34335 a.u.. Thus, if the value for the exact energy is
taken as -1.34470 a.u.'2:%V-20) ap4 the Hartree Fock limit
as -1.30007 a.u. the Salmon and Poshusta Qavefunction
incorporates 97% of thé total correlation energy. The
wavefunction consists of the linear combination of fifteen
configurations in the form of Singer polynomials(z'iv°2),

hence
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15

¥(ry,1,) = }Z:ci[l + Pyl [ZIT]®,(K;,1,) (II1.4.4)
i=1

where the Singer polynomial ¢.(r,,r,) is of the form

2 - 2
¢,(r,,r,)=exp [‘ai(£1'§1i) =29;(£y=8y3)-(£p=85;)-b;(£5-85;)7 -

(11.4.5)

The constants Cir 25+ 9y and bi together with the vectors
(2.iv.26)

S,; and S,; have been given by Salmon and Poshusta
The vectors §,, and 5S,;, locate Gasssian-type expansion
centres and are constrained to be in the plane of the
molecule. The operator Pqs is simply the permutation
operator and therefore represents an interchange of electron
labels whereas IT represents a summation- over all twelve
elements of the D3, Symmetry group. Foftunately, since the
expansion centres are all contained within the plane of the
molecule, it is sufficient to sum over the six elememts of
the C3V sub-group. Consequently, ail_of the centres of the
Singer polynomials must undefgo a three-fold rotation about
the centre of the molecule and then all of these generated
points are reflected in.the xz-plane (a reflection in the
xy—p;ane, the plane of the ﬁolecule, does not occur with C3y
symmetry). The co-ordinate system used to describe Hg is
shown in Figure (II.4.2). Thus, after these operations have
been performed, the Salmon and Poshusta wavefunction

actually consists of the combination of one hundred and

eighty independent Singer polynomials.
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To avoid any possible basis-set dependency arising in
the analysis, the SCF wavefunction was chosen to be also in
Gaussian form. The best SCF wavefunction available for

equilateral H3+ was that of Schwartz and Schaad(z'iv'27).

It
is constructed from the product of two one-electron
molecular orbitals, each one consisting of a 1linear
combination of fifﬁéen unnormalised 1s fléating Gaussian

type orbitals (GTO). The Schwartz and Schaad wavefunction

may therefore be written as
*
SscplEysLp) = & (r))e(r,) (II.4.6)

with the molecular orbital ¢(r) given by

5
ap) = Y e ["?‘E) + 93(5) + ¢3(x) |- (11.4.7)
i=1
The three nucleii are labelled A, B and C and thus, for
example, the symbol ¢?(£) represents an unnormalised 1s GTO,
with exponent a; centred at a distance di from nucleus A
along a line extending from it towards the centre of the
- molecule. The advantage of this is that, although the
molecular orbitals are built wup from fifteen Easis
functions, Schwartz and Schaad have only been required to

optimise five independent sets of parameters.

Unfortunately the Schwartz and Schaad wavefunction has
been energy-optimised at a fixed nuclear separation of
1.6405 a.u. whereas the separation for the Salmon and
Poshusta wavefunction was 1.65 a.u.. For this reason it was

decided to extend the inter-nuclear separation of the
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Schwartz and Schaad wavefunction to 1.65 a.u.. This was
performed, firsfly by keeping the distance di the same
fraction of the nuclear separation, resulting in the
transform

d§1'55) - d§1'64°5) x (1.65/1.6405). (I1.4.8)

The exponents of the orbitals, on the other hand, were
transformed to maintain the full width at half the maximum
height of the orbitals as the same fraction of the nuclear

separation to give

o(1.65) _ _(1.6405)

¢ ¢ x (1.6405/1.65)2.  (I1.4.9)

By utilising the standard computer package Gaussian
82(2'iv'29), the 1linear expansion coefficients of the
extended bondlength wavefunction were energy reoptimised and
the parameters obtained are shown in Table (II.4.2). The
total energy associated with this wavefunction is -1.29906
a.u., which is not significantly different from the energy
of -1.29955 a.u. that is obtained from the original Schwartz
and Schaad wavefunction. The extended Schwartz and Schaad
wavefunction has therefore been used, in this analysis, as

an accurate approximation towards the Hartree Fock

wavefunction for Hg at a bondlength of 1.65 a.u..
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N, |uy o? '| ' sym.| Total Energy |%correlation|type
canflguratlon con.| (a.u.) of

(a) {added (b) (c) (d) corr.
1 0.991058 9% -1.133467 -0.3870

2 -0.099473 L -1.151939 44.86 z

3 ~0.065109 L -1.162811 71.49 ¢

4 -0.054810 69 -1.169884 88.82 P

5 -0.011845 "y -1.170660 90.72 {dp}
6 —-0.009967 o -1.171185 92.01 {zz}
7 -0.009745 %Y -1.171691 93.25 {pz}
8 -0.009723 8g -1.172178 94.44 {¢¢}
9 ~0.009362 T, -1.172742 95.82 {¢2}
10 | -0.006552 o -1.173032 96.53 {pp}
HF % -1.133625 0.00
Exp ~1.174475'®)| 100.00

(a)

(b)

(c)

(d)

(e)

N, is the number of configurations employed in the

wavefunction.

by has been defined in equation (II.4.1) and also u§=ni,
where n; is the occupation number of the configuration.

Symmetry of configuration added.

$correlation has been defined with respect to the
Hartree Fock limit as
$corr = (Ei - EHF) X 100/(Eexp - EHF)'

see reference (2.iv.1).

Taple = (II.4.1) Occupation numbers and correlation energies

of the Davidson and Jones wavefunction for H2 at a fixed
bondlength of 1.4 a.u..
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i c a; d1

1 0.038021 0.221479 0.246439

2 0.112565 0.735221 0.165356

3 0.085695 ‘ 2.66357 0.059684

4 0.055738 | 11.90808 0.007181

5 0.029452 82.47117 0.000102
Nuclear Energy = 1.818182 a.u.

Electronic Energy -3.118088 a.u.
Total Energy = -1.299906 a.u.

-V/T (virial theorem) 2.0060

MNable (II1.4.2) The coefficients of the extended Schwartz

and Schaad wavefunction for H§ as defined by equation

(11.4.7).
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CHAPTER II.5

Results for H, in Position-Space

(2.v.1)

ten natural orbital
(2.v.2)

The Davidson and Jones
approximation of the Kolos and Roothaan wavefunction
has been used in the generation of the subsequent results.
Also, to highlight the axially symmetric nature of the
hydrogen molecule, standard cylindrical co-ordinates have
been employed in this analysis with the z-axis defined to
lie along the bond direction (see Figure (II.4.1)). The
first natural orbital in the Davidson and Jones wavefunction
has been used to represent the Hartree Fock 1limit. By
curtailing the wavefunction to encompass only the sum of the
first two, three, four and finally the full ten natural
configurations and then renormalising to unity, the effect
of introducing z, ¢, p and second-order correlation may be
observed respectively. In the diagrams that follow, the
abbreviations 1NO, 2NO, 3NO, 4NO and 10NO obviously refer to
the number of natural orbitals employed in the renormalised

wavefunction.

As discussed earlier, the resulﬁs-may be divided into
one and two-particle density functions, with the
two-particle density functions forming the main section of
the investigation. For both types of planar function it is
important to vpresent the HF densities as well as the
A-densities in order to gain insight into the relative

importance of correlation at a particular point in space.
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Both types of function are therefore shown. To accentuate
the geometry of each surface, certain contours are chosen

from the following sets:

Hartree Fock Surface Contours
1 0.0001 6 0.02
2 0.0005 7 0.03
3 0.0025 8 0.04
4 0.0075 9 0.10
5 0.010 10 0.15
A-Surface Contours
1 -0.0050 15 0.0001
2 -0.0040 16 0.0002
3 -0.0030 17 0.0003
4 -0.0025 18 0.0005
5 -0.0020 19 0.0007
.6 =0.0015 20 0.0009
7 -0.0011 21 0.0011
8 -0.0009 22 0.0015
9 =-0.0007 23 0.0020
10 -0.0005 24 0.0025
11 -0.0003 ' 25 0.0030
12 -0.0002 26 0.0040
13 -0.0001 27 0.0050
14 0.0000 | 28 0.0060
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Also, on the contour diagrams the negative contours are
represented by broken curves, positive contours by £full
curves and the zero contour by a dotted curve. It must be
emphasised, however, that not all of the possible contours
are represented on each surface, merely a selection that are
chosen to highlight the geometry of the distribution. The

following abbreviations are also used:

x = position of fixed electron, located relative
to the nuclear frame

® = position of nucleus.

This analysis has been performed at the, generally
accepted, equilibrium bond length of 1.4 a.u. The full width
of the surfaces is 8 a.u., thus, on the smaller surface
views, 9 millimetres corresponds to 1 a.u. and on the larger

surface, (Figure (II.5 .1)), 1 a.u. is 18 millimetres.

(II.5.1) The One-Particle Density Results

The obvious plane to choose in order to highlight the
symmetry of the H2 molecule is the plane containing the two
nucleii, defined as the xz-plane. From this, any other
one-particle density plane may be generated since, due to
the axially symmetric nature of the molecule, contours in
perpendicular planes to this would simply form concentric
circles about the bond axis. The folldwing results are

therefore concerned only with the xz-plane:
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» X

Figqure (II.5.1) The H, position-space HF one-particle
density, p(£1), in the xz-plane with y = 0.
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(A) 2NO - 1NO (B) 3NO - 1NO
z - correlation (z + ¢) - correlation

(C) 4n0 - 1nO ' (D) 10N - 1O
(z + ¢ + p) - correlation (z + ¢ + p + 2nd order)

'~ correlation

Figure (II.5.2) The position-space A-one-particle densities,
8p(ry), in the xz-plane with y = 0.
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(ITI.5.2) The Two-Particle Density Results

When examining two-particle density functions, both the
plane to be studied and the fixed electron position must be
chosen. The fixed electron is located with respect to the
nuclear frame, hence the £first 1logical choice of f£fixed
electron position is mid way between the two nucleii
(position [I]). The second choice, position [II], is then on
a nucleus and, to examine the effect of electron correlation
when an electron is behind the nucleus, position [III] is
chosen to be a half bondlength (0.7 a.u.) past the nucleus.
These three fixed electron positions still maintain the
axial symmetry of the system and therefore the logical
choice of plane of investigation is the plane containing
both nucleii, chosen to be the xz-plane. These results are
presented in Figures (II.5.4-11). A perpendicular plane of
investigation to this would simply result in A-partial
planar density surfaces constructed from concentric contours
which could easily be generated from the xz-plane. The
xy—-plane results for positions [(I], [(II] and [III] therefore

have been omitted from this analysis.

Obviously ¢-correlation can have no effect £for the
above, axially symmetric, cases and consequently certain
off-axis fixed electron positions should be studied. Postion
[IV] is defined as being a half bondlength, in a
perpendicular direction to the bond, away from the mid bond
position. In exactly the same manner, position [V] is chosen
to be at a half bondlength off-axis from position [II], the

nucleus, and position {[VI] is the same distance from
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position [III]). Figures (II.5.12-19) represent the results
obtained bybexamining the xz-plane. Since the axial symmetry
is lost in these cases, the xy-plane must also be considered
in order to build up a complete view of the effect of
correlation; these results are displayed 1in Figures
(I1.5.20-27). The fixed electron positions have Dbeen
summarised in Figure (II.5.3A) and it should be noted that
this choice of positions and planes, because of reflection
and rotational symmetry, represents a view of the most
important regions of the charge distribution in the H

2
molecule.

When examining fixed electron positions in the plane
containing the nucleii (xz-plane), & is defined as the angle
between a line parallel to the z-axis and the vector r,, in
an anticlockwise direction (see Figure (II.5.3B)). This has
the advantage that U(e) for the first three positions needs
only to be generated for half of the range as it is
symmetrical about € = 180°. Similarly, due to the mirror
symmetry in the xz-plane, by defining € with respect to the
x-axis, only € up to 180° needs to be considered when

generating U(e) in the xy-plane (see Figure (II.5.3C).

The following results therefore represent a survey of

the partial planar density functions:
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—1[111]>( (vil X

g2 k—r2—]
—S 1y (vl X
R/2

——l-lll>< [1v] X

X

Figure (II.5.3A) The locations of the chosen fixed electron
positions of the partial planar distribution functions for
hydrogen in position-space. The equilibrium bond length, R, is

1.4 a.u..

4
{ 2
| :1,

T

12 T12

€
X
2 % 1
®
Y

Figure (II.5.3B) & Figure (II.5.3C) The definition of the
angle £ and the distance Ly9 when analysing correlation effects

in (a) the xz-plane or (b) the xy-plane.
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(A) Position [I] (B) Position [II]

(C) Position [III]

Figure (II.5.4) The Hartree Fock V(ry5,ry) distribution

functions for positions [I], (II] and [III]) in the xz-plane’
with y = 0, '
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0.05 = (A) Radial Distributions

0.06 4
P—
P Position [I)
&r‘ 1 Position [II]
/5] 0. 24 4 Position [III])

0. 00

(B) Angular Distributions

0.08 +
Position [1])
0.0¢ 4
o Position [II)
W 5
~ Position [II11]}
o 0.04 +
0.3 .‘\
1 oo
0.00 — = -
0 90 180

Figure (II.5.5) HF partial planar distribution functions for

HZ' with electron 1 fixed at positions [I]), [II] and ([III]
(see Fig.(II.5.3)) and electron 2 moving in the xz plane,

were obtained by appropriate integration of Fig.(II.5.4).
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z z
~T>N
- \
37T KON
- /’ \\_f -
/N > X VAN e
l: \) '\ ‘::’ 4
~—’ \\...//
(A) 2NO - 1NO (B) 38O - 1INO
Zz - correlation (z + ¢) - correlation

(C) 4NO - 1NO o - (D) 10NO - 1NO

(z + ¢ + p) = correlation )(z + ¢ + p + 2nd order)
- correlation

Fiqure (II.5.6) The partial planar A-surfaces, AV(£12,£1),
for fixed electron position [I] (see Figure (II1.5.3A) for the
definition), with the roving electron located in the xz-plane

with y = 0.
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0. 01 T
(A) Radial Holes
- _ f12
_ 0. 00 /\\:“3_# B
N 3 4 <
-4
u -
2 Key to graphs (A) & (B)
-0.01 + 2NO-INO « o o o « «
3NO-INO = = = — = —
4N°-1NO = e ™ e ™ o
] 10NO-1NO
-0.02 4
(B) Angular Holes
0. 001 T
- eo
0. 200
[ -]
(A
2 -0. 001 4

-0. 202 A

-0.003 =

Figure (II.5.7) Partial planar Coulomb holes for H
(see Fig.(II.S.B)F

electron 1 fixed at position [I]
electron 2 moving in the xz plane,
appropriate integration of Fig.(II.5.6).

-88-

were

, with
and
obtained by



(A) 2NO - 1INO (B) 3NO - 1INO
z - correlation (z + ¢) - correlation

(C) 4NO - 1NO (D) 10NO - 1NO
(z + ¢ + p) - correlation (z + ¢ + p + 2nd order)
~ correlation

Fiqure (II.5.8) The partial planar A-surfaces, AV(£12,£I),

for fixed electron position [II] (see PFigure (II.5.3A) for
the definition), with the roving electron located in the
xz-plane with y = 0.
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0.2

12
0.00
H
(A) Radial Holes
-0.02 -m
-0.04
Key to graphs (&) t (B)
2NO-1INO ..........
3NO-1NO ——————————-
4NO-1NO .
0.02 —r 10ONO-1NO ——————————-—
0.01 ..
o
w
D
< 0.00
180
(B) Angular Holes
Figure (II.5.9) Partial planar Coulomb holes for H-, with
electron 1 fixed at position [II] (see Fig. (11.5.3); and

electron 2 moving in the xz plane, were obtained by
appropriate integration of Fig. (II.5.8).
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() 2NO - INO (B) 3NO - INO

z - correlation (z + 9 - correlation
\/
N4
© 4NO - iNO (D)1ONO - INO
(z+ §+ p - correlation z+ + p+ 2nd order)
- correlation

Figure (II.5.10) The partial planar A-surfaces,
for fixed electron position [III] (see Figure (II.5.3a) for
the definition), with the roving electron located in the
xz-plane with y - 0.
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0.004 T

a 0-002..
\ 12
0. 000
0 002 .. (A) Radial Holes
-0. 004 J.
Key to graphs (A) & (B)
2NO-1NO .
3NO-1NO ---
0.006 T 4NO-1NO -
1ONO-1NO ---
0. 002 -
o
W
D
<3 0. 000
(B) Angular Holes
Figure (ITI.5.11) Partial planar Coulomb holes for , with

electron 1 fixed at position [III] (see Fig. (11.5.3)r and

electron 2 moving in the =xz plane, were obtained by
appropriate integration of Fig. ~
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> X

(A) Position [IV] (B) Position [V]

»
>

(C) Position [VI]

Figure (II.5.12) The Hartree Fock V(£12'£1) distribution

functions for positions [IV], [V] and ([VI] in the xz-plane
with y = 0.
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0. 04 ‘
T ° [ °
(A) Radial Distributions
n 0o03d
dﬂ Position [IV]
;;; ". /Position [v)
0.02¢ Position [VI]
0.01 4
- r
12
0. 00 + + - + = ]
0 1 2 3 4 5
0.04 . R
(B) Angular Distributions
— 0.03
o Position [IV]
W
— Position [V)
o

0.02 4 Position [VI)

c.o1 4

0.00 . —— . -

.0 90 182 270 360

Figure (II.5.13) HF partial planar distribution functions for

HZ' with electron 1 fixed at positions [IV], [V] and [VI]
(see Fig.(II.5.3)) and electron 2 moving in the xz plane,

were obtained by appropriate integration of Fig.(IX.5.12).
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® 2NO - INO ® 3NO - iNO

(z + < - correlation

z - correlation

+ 15

© 4NO - INO

D) 10NO - INO
z + f+ p) _ correlation

(z + #+ p + 2nd order)

- correlation

Figure (II.5.14) The partial planar A-surfaces,
for fixed electron position [IV] (see Figure (II.5.33)

the definition), with the roving electron 1located in
xz-plane with y - O.
. 95.

for
the



0. 003

0. 002 --
0.001 --
12
0. 000
<N
A -0.001 --V
(A) Radial Holes
o
-0. 003 --
-0. 004 ..
-0. 005 --
—0. 006 Key to graphs (&) & (B)
2NO-1NO . .
3NO-1NO ---
4NO-1NO - .
10ONO-1NO ---
0. 0012 -.
0. 0008 -- (B) Angular Holes
0. 0004 --
D
< 0.0000
180 270 360
-0. 0004 --
-0. 0008 --
Figure (11.5.15) Partial planar Coulomb holes for with
electron 1 fixed at position [IV] (see Fig. (II.5.3)) and

electron 2 moving in the xz plane, were obtained by
appropiate integration of Fig.(ii. 5.14).
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(B) 3NO - 1INO

(A) 2NO - 1INO .
(z + ¢) - correlation

z - correlation

(C) 4NO - 1NO (D) 10NO - 1NO
(z + ¢ + p) — correlation (z + ¢ + p + 2nd order)
| - correlation

Fiqure (II.5.16) The partial planar s-surfaces, aV(ry5.2y), -
for fixed electron position [V] (see Figure (II.5.3A) for the
definition), with the roving electron located in the xz-plane

With y = 0.
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0. 002 --

12
0. 000
<N
(A) Radial Holes
-0.002 — &
<3
-0. 004 --
-0. 006 -L Key to graphs (A) & (B)
2NO-1NO . .
3NO-1NO ---
4NO-1NO - .
10NO-1NO ---
0.006 T
0. 004 ..
0.002 m-
0. 000
270 360
-0.002 - (B) Angular Holes

Figure (11.5.17) Partial planar Coulomb holes for H-, with
electron 1 fixed at position [V] (see Fig. (II.5.3)) and
electron 2 moving in the xz @plane, were obtained by
appropriate integration of Fig. (II.5.16).
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() 2NO - INO ®) 3NO - INO
z - correlation (z + *) - correlation
/T3
© 4NO - INO (D) 1ONO - INO
(z + 4+ p) - correlation (z + 4+ p + 2nd order)
- correlation
Figure (II.5.18) The partial planar A-surfaces, AV (2i2'1li)’

for fixed electron position [VI] (see Figure (II.5.3A) for
the definition), with the roving electron located in the
exz-plane with y - 0.
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0.003 T

0. 002 --
<N
™1 0.001 —
® 12
< 0.000
Radial Holes
-0.002 --
Key to graphs (&) & (B)
-0. 003 J-
2NO-1NO . .
3NO-1NO ---
4NO-1NO -
10NO-1NO ---
0. 004 -r
0. 002 --
0-000
180 270
Angular Holes
-0. 002 L

Figure (II.5.19) Partial planar Coulomb holes for H., with
electron 1 fixed at position [VI] (see Fig. (II.5.3))"* and
electron 2 moving in the xz plane, were obtained by
appropriate integration of Fig. (Ii.5.18).
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> X “\\to x

; oy

(A) Position [IV] : (B) Position [V]

> \to x

\ey

(C) Position [vI)

Figure (11.5.20) The Hartree Fock V(£12'£1) distribution
functions for positions [IV], [V] and [VI] in the xy-plane
with z = 0.
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0.020 +

(A) Radial Distributions
o. 016 L o
:j position [IV]
V) 0.0:2 4
~ Position [V]
) J
Position [VI]
0. 008 4+
0.004 4
T ' 7 r
0. 000 e} + + + —— e v 4
0 1 2 3 4 g
0.020 + i
(B) Angular Distributions
0.0i6 4+
—~ T Position [1V]
°
.0i2 4+
:ﬂ 0. 91 Position [V)
o 1 Position [VI)
0. 008 4
0. 004 +
e 0
0. 030 = —_— ,
0 90 180

Figqure (1I.5.21) HF partial planar distribution functions for

Hz, with electron 1 fixed at positions [IV], ([V] and (VI]
(see Fig.(II.5.3)) and electron 2 moving in the xy plane,

were obtained by appropriate integration of Fig.(If;g‘éo)
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- () 2NO - INO B) 3NO - INC

z - correlation (z + *) - correlation

/
©) 4NO - INO (D) 10NO - INO
(z+ g+ p - correlation (z + ®+ p + 2nd order)
- correlation
Figure (II.5.22) The partial planar A-surfaces, AV~r*gfC*),

for fixed electron position [IV] (see Figure (II.5.33) ~for

the definition), with the roving electron 1located in the
xy-plane with z - 0.

-103-



12

0.000
(N
Radial Holes
-0. 004 ..
Key to graphs (A) & (B)
-0. 006 1 2NO-1NO .
3NO-1NO -
4NO-1NO -
10NO-1NO —
0. 0016 -r
0.0012 --
0. 0008 --
W 0. 0004 -
D
<3
0. 0000
180
-0. 0008 --
Angular Holes
Figure (II.5.23) Partial planar Coulomb holes for with
electron 1 fixed at position [IV] (see Fig. (II.5.3)) and

electron 2 moving in the =xy @plane, were obtained by
appropriate integration of Fig. (II.5.22).
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@) 2NO - INO

Z - correlation

© 4NO - INO
(z + 6+ p) - correlation
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(B) 3NO - INO

z+ *)- correlation

(D) 10NO - iNO
> + §+ p+ 2nd order)

- correlation
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12

0.000
<N
(A) Radial Holes
0. 004 -m Key to graphs (&) & (B)
2NO-1NO . .
3NO-1NO ---
4NO-1NO - .
10NO-1NO ---
-0. 006 -L
(B) Angular Holes
0. 000
0 €0
W
D
o
-0.001 --
-0.002 --
Figure (II.5.25) Partial planar Coulomb holes for , with
electron 1 fixed at position [V] (see Fig.(II.5.3)) and

electron 2 moving in the xy plane, were obtained by
appropriate integration of Fig. (II.5.24).
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\
(&) 2NO - iNO (B) 3NO - INO
z - correlation (z + - correlation
©) 4NO - iNO D) 10NO - INO
(z + * + p - correlation z + £+ p+ 2nd order)

- correlation

Figure (II.5.26) The partial planar A-surfaces,
for fixed electron position [VI] (see Figure (II.5.33)
the definition), with the roving electron 1located in

xy-plane with z - 0.

for
the



12

0. 0300 -
(N
H
-0.0002 - V .
(A) Radial Holes
-0. 0006 -- 2NO-1NO .
3NO-1NO ---
4NO—iNO — .
10ONO-1NO ---
(B) Angular Holes
0.0000
o] )@
W
"0. 0001 —
D
<0
-0.0002 --
-0. 0005 --
LO. 0005 1
Figure (11.5.27) Partial planar Coulomb holes for H-, with

electron 1 fixed at position [VI] (see Fig. (II.5.3)r and
electron 2 moving in the xy plane, were obtained by
appropriate integration of Fig. (II.5.26).
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CHAPTER II.6

Discussion of H2 Results in Position-Space

(IT.6.1) The One-Particle Density Analysis

In order to discuss the effects of correlation, it will
be useful to consider first the one-particle distribution of
electrons as described by the Hartree Fock (HF) wavefunction
in the plane containing the nucleii (xz-plane). In this way,
a theoretical ‘model’ of the system at the uncorrelated
level may be constructed, and then the changes which occur
in that model as a result of introducing electron
correlation may be analysed. As anticipated, the HF
one-particle density surface, shown in Figure (II.5.1),
possesses two distinct maxima, each associated with the
location of a nucleus. From these maxima the electron
probability decays and at large distances from the nucleii

ellipsoidal contours may be observed.

The effect of electron correlation on these surfaces,
8p(ry), is shown in Figure (II.5.2). It can be seen that
they have a complex structure and have a range of the same
order as the HF density. To be able to understand the
structure of these diagrams, however, it is first necessary
to investigate the mathematics of the functions.

As the Davidson and Jones wavefunction(Z'Vi°1) is

constructed from ten orthonormal natural orbitals, the

one-particle density for the wavefunction, curtailed to
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employ the first M natural configurations, pM(El), may be

written simply as

M

pylEy) = Z{: Am”i x;(El)Xi(El) (II.6.1)
i=1

where AM, the renormalisation constant, is defined as

M
2
Ay = 1/ E: by (II.6.2)
i=1

As all of the terms in A, are positive, then

Ay 1 > Ay > Ay q- (1II.6.3)

The A-one-particle density ApM(El) connected with the

M-natural orbital wavefunction may be written in the form

M

im]

M
o= E:Amufxg(gl)xi(gl) - (Al-AM)uixz(gl)Xi(gl).

=2 (I1.6.4)
Since (Al'— AM) is positive, ADM(EI) may be considered as
the sum of contributions from the correlating orbitals, from
which a portion of the HF density is subtracted due to the
renormalisation of the wavefunction. Electron correlation in
the one-particle density is therefore due to the
redistribution in electronic probability from the HF model
into the correlating orbitals. Thus, by utilising equation
(II.6.4), it is possible to express ADM(El) for M = 2, 3, 4

and 10 as
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Bp,(ry) =  0.009974 X,(r,)X,(r;) — 0.009974 Xj(r;)X,(r;)
| (I1.6.5)

Bpg(ry) =  0.009931 X5(r;)X,(r;) + 0.004255 X3(r;)Xz(r,)
- 0.014186 X, (r;)X,(r;) (11.6.6)

8o (ry) = 0.009902 Xj(r,)X,(r,) + 0.004242 Xj(r;)X(x;)
+ 0.003006 Xz(El)X4(£l) - 0.017150 XI(El)xl(El)
(I1.6.7)

Bpyo(ry) = 0.009902 X5(r,)X,(r;) + 0.004242 X3(r;)X5(r,)
+0.003002 Xj(r,)X,(r;)
+ 0.000670 Xg_10(L;)Xs_14(Kp)

- 0.017804 Xj(r;{)X;(r;). (I1.6.8)

The notation x;_lo(gl)xs_lo(gl) refers the cumulative effect
of the last six natural, which, as discussed earlier, only
contribute to a second-order <correlation effect in the

wavefunction.

Before proceeding further with the discussion it is
useful to sketch the shape of the one-particle density
functions associated with each of the main natural orbitals
separately. The density from the first natural orbital has
already been presented in Figure (II.5.1) and need not be
considered further. The second natural orbital produces the
one particle density shown in Figure (II.6.1A). Due to the
axial symmetry of the system the zero contour, as usual
represented by a dotted line, actually defines a plane of

zero influence which is a perpendicular bisector of the
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Figure (II1.6.1)

Sketches of the xi(El)xi(El) probability
surfaces for 2 < i < 4 where xi(gl) has been defined in
equation (II.4.2). The surfaces are viewed in the xz-plane
and are aligned in the z-direction.
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molecular axis. Maxima then occur at the sites of the
nucleii. The tﬁird natural orbital one-particle density is
shown in Fiqure (II.6.1B). In this case the zero contour
defines a line passing along the z-axis with a torroid of
maximum probability enclosing the molecule. The zero contour
for the fourth natural orbital is ellipsoidal in shape with

a ridge of maximum probability along the bond axis.

We can now investigate the A-one-particle density
surfaces. The second natural configuration has the greatest
effect upon the correlation energy and is responsible for
introducing a ‘left-right’ correlation effect. Due to the
alignment of the molecule with respect to the co-ordinate
system we have defined this to be z-correlation. An
examination of equation (II.6.5) discloses that 0.9974% of
the probability associated with electron 1 is transferred
from the HF description of the molecule to the second
natural orbital one-particle density. Figure (II.5.2A) may
therefore be generated by mentally subtracting the BHF
one-particle density surface from the z-correlating natural
orbital surface. Since most of the charge-associated with
the second natural orbital is located at the nucleii, this
region remains positive. But, in the mid b&%d region the HF
density 1is greater, making the surface negative. The
influence of the Hartree Fock density on the second natural
orbital density is therefore to split the zero contour to
generate two ellipsoids around each of the nucleii and form
the region of largest negative effect in the centre of the
bond. Consequently, z-correlation has the effect of moving

charge from the mid bond region to the region slightly
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behind each of the nucleii in the one-particle density

approximation.

By including the third natural orbital in the
wavefunction ¢—correlation is introduced into the
A-one-particle density surface. Equation (II.6.6) reveals
that 1.14186% of the total charge is moved from the HF
description into the z and ¢—correlating orbitals
collectively. Virtually no difference is observed in the
amount of charge moved into the second natural orbital, thus
an extra 0.4255% of the charge is transferred into the third
natural orbital from the HF orbital. To construct Figure
(I1.5.2B) x;(il)XS(El) may therefore be added to Figure
(II.5.2a) and then extra HF density is subtracted to
compensate. As the ¢-correlating dénsity has no effect along
the z-axis, the electronic probability is reduced in this
region due to the influence of the HF probability which is
obviously non-zero, causing the magnitude of the maxima at
the nuclear sites to be diminished slightly. Charge is built
up, though, in the regions at the side of the molecule,
consequently contracting the region covered by the negative
contours and ‘flattening5 out of the zero contours. It is
impossible to interpret classically the effect of
¢-correlation in an axially symmetric one-particle density,
hence the resulting diagrams' can only represent a

generalised result.
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Equation (II.6.7) demonstrates that 0.3002% of the charge
is move into the fourth natural orbital. Also, since once
again the occupation numbers of the other electrons remain
almost wunchanged, Figure (II.5.2C) may be generated by
adding X,(r;)X,(r;) to Figure (II.5.2B) and subtracting
additional charge associated with the HF orbital. Davidson
and Jones(z'Vi'l) have defined the correlation introduced by
the fourth natural orbital to be ‘in-out’ correlation. In
view of the co-ordinate system used we have defined this to
be p-correlation. Contrary to the effect of z-correlation,
p—correlation actually increases the charge in the mid bond
region and slightly decreases the charge in the vicinity of
the nucleii. This causes the zero contours to join up and
form an enclosed region of negative charge in the centre of

the molecule.

The remaining six natural orbitals have a negligible
effect on the one-particle density and in fact, from
equation (II.6.8), it can be seen that only 0.0670% of the
total charge is associated with all of them, this being only
about 4% of the total redistributed charge. Through close
scrutiny of Figure (II.5.2D) it appeafs that these orbitals
only slightly contract the | range of the contours.
Nevertheless, since Figure (IT1.5.2D) represents the
redistribution in density due to the full Davidson and Jones
wavefunction, it is very important as it represents the most
accurate view of the overall effect of electron correlation

on the one-particle density of the Hy molecule.
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The main glqbal feature to note is that correlation is
responsible for transferring electronic probability from the
mid bond region to Jjust behind the nucleii. Similar
observations have also been made in one-particle density

studies of the memt(2-Vi.2) (2.vi.3)

and LiH molecules. It is
also particularly pleasing to note that these results are in
accordance with the second-order perturbation analysis

(2.vi.4)

performed by Grimaldi on the nitrogen and carbon

(2.vi.5)

monoxide molecules.

By employing a similar argument as that wused by

Ruedenberg in diatomic hydrides(2-1V-6) (2.vi.7)

and water
it can be seen that the kinetic energy of the electrons will
increase as they are brought closer to the nucleii and hence
experience a larger electro-nuclear attractive force. For a
molecule in equilibrium, though, the potential energy must

compensate within the virial theorem(z‘VI'e), that is

potential energy / kinetic energy = -2. (I1.6.9)

If the kinetic energy increases by say an amount AE, due to
correlation, then the potential energy must decrease by 24E
to compensate. The sum of the kinetic and potential energies
will therefore be lower, producing a more stable system, by

the amount AE.

It is also interesting to note that, when each of the
correlating orbitals is included in the Davidson and Jones
wavefunction, a certain amount of charge is transferred into

them. This quantity then remains virtually unchanged when
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subsequent orbitals are introduced into the wavefunction. As

commented upon by Shull(2°Vi'9)

, this is a common feature of
natural orbital expansions where the occupation numbers are
essentially independent of the type or size of the basis set
used. It seems that electronic probability is transferred
into each of these orbitals to a predefined level which is
almost independent of the presence of the other correlating
orbitals. Also, since correlation is introduced into the
one-particle density by moving charge from the HF
description into doubly occupied correlating orbitals, only
a very ‘general’ picture of the effects of correlation may

be observed.

One-particle density surfaces are useful in discussing
the effects of correlation on HZ' and we have seen how
correlation increases the stability of the system. However,
it has also been noted that only an averaged view of
electron correlation can be seen due to the influence of one

of the electrons being integrated over all space.

(IT.6.2) The Two-Particle Density Analysis

[A] Form of Position-Space Functions

An accurate view of the effects of correlation may only
be obtained by —considering two-electron distribution
functions(z‘Vi'lo’ll); these results consequently represent
a realistic interpretation of how electron probability is
redistributed due to electron correlation. Before the

characteristics of the surfaces and curves can be discussed,

the mathematical form of the partial planar distribution
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functions should be investigated.

Since no integration has been performed in the generation
of the partial planar density, it is mathematically more
complex than the one-particle density function. For the

Davidson and Jones wavefunction(z‘V1'1)

curtailed to embody
only the first M natural confiqurations with electron 1
fixed at a point specified by Iy the partial planar density

surface VM(£12’£1) may be defined as

M
3 * .
VM(£12'£1) - ZAMﬂiﬂJrlz [1] (£1’£2) [31(51152)1
i,3=1 (11.6.10)
where [11(51'52) represents the ith configuration. The

renormalisation constant Ay is given in equation (II.6.2)

and obviously

By a simple rearrangement of equation (II.6.10), VM(£12'£1)

may be rewritten as

M
VM(EIZ'EI) 'ZAMﬂiﬂjrlz [[i]*(£1152) [j](£1'£2)
i33=1
1] 0] * \
+ [il(ry,25) [3] (£y,25) }
M
2 . . 2
+ZAMllir12 [i] (5115_2) [1](£1r£2)- (I1.6.12)
i=1

Since this analysis is performed in the xz-plane, where all
of the configurations are real, VM(£12’£1) may be simplified

to
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M

i33=1

M

-+§:Amp§rlz 81%(x,, 2,0+ (I1.6.13)
i=1

Thus A8V,(r,,,r;), the effect of electron correlation on the

partial planar density surface, will be

M
i>3=1
M
‘*EzAmﬂfrlz (11%(z; ., 55)
i=3
= (A, = A -p% [11%(2,, 1) (II.6.14)
1~ By)rizH 1Lyl -6.

Immediately it can be seen that the last two terms in the
A-partial planar density AVM(EIZ’EI) are similar in form to
the A-one particle density ApM(El) which, as discussed
earlier, oﬁly introduces an averaged correlation effect. The
two—particlé density functions, however, contain additional
off diagonal terms; it is these thﬁt muét be responsible for
introducing correlation with explicit reference to the

position of the fixed electron. We may write A4V,(r,,,r;) as

M
AVM(£12c£1) = j{: aierl2 [i](£1,£2) [j](£1,£2)
i>j=1
M
+§E:aij £12 [112(£1r£2) (II.6.15)
i=1
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where, by definition,

aij = ”i”jAM (II.6.16)

for all values of i and j except for aj, when
a;, = —(A, - A )u> (I1.6.17)
11 1 m’'H1- -9

The importance of each term in equation (II.6.15) may
therefore be obtained by the appropriate value of aij'
Values of aij for the main correlating orbitals, ie M = 2, 3

and 4 are presented below:

Table (II.6.1) values of aij when M=2

i —m———

j
1 2
1 -0.009974 -0.099369
{ 2 0.009974
Table (II.6.2) values of aij when M=3
] —
i
1 2 3
1 -~-0.01486 -0.098467 -0.064765
3 2 0.009931 0.006500
3 0.004255
Table (II1.6.3) values of aij when M=4
i —
j
1 2 3 4
1 -0.017150 -0.098649 -0.064570 -0.054356
3 2 0.009902 0.006481 0.005456
3 0.004242 0.003571
4 0.003006
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The values of aij are virtually independent of the size of

the basis set employed and the diagonal elements in a;; are

J
the same coefficients as obtained in the A-one-particle
density analysis. This allows us to analyse separately the
effects of z, ¢ and p-correlation as the magnitude of, for
example, z-correlation will be almost identical in all four
surfaces. The other main feature is that the magnitudes of
the a4 terms, although negative, are at least a factor of
ten bigger than the other values of aij‘ These terms must
therefore be responsible for introducing the main
correlation effects. This means that the term i = 1, j = 2
will bring z-correlation into the system, i = 1, j = 3 will
introduce ¢—correlatioh and i = 1, j = 4 will introduce
p—correlation. Before proceeding further, however, we will
investigate the form of the products of the natural
configurations, paying particular attention to the product

of the first natural configuration with the others.

If the m, and mj magnetic quantum numbers in the Davidson
and Jones wavefunction are both zero, which occurs in most

configurations, then

(il(ey, ) 030(4,2,) = Xi(£1)xj(£1)xi(£z)xj(£2)' (II.6.18)

In cases when m, and mj are non-zero, the product of the
configurations must be expressed as the linear combination
of such products of natural orbitals. Thus, for electron 1
located at Iy xi(El)xj(El) is a constant which multiplies
the probability surface xi(£2)xj(£2) of electron 2 for miao;

for non-zero m, and mj a linear combination of these terms
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is obtainéd. The surfaces xi(E)xj(E) are therefore extremely
useful as they may be used, not only to investigate the
shape of the distribution of electron 2, but also to
evaluate the probability of 1locating electron 1 at ;-
Consequently they have been sketched in Figure (II.6.2)
using the conventional notation of a full curve to represent
positive contours, broken curves for negative contours and a
dotted curve to represent the zero contour. These surfaces
may now be used in the analysis of the characteristic
effects of the three main types o0f correlation in the

A-partial planar surface.

When M=2, only z-correlation is introduced into the
wavefunction. As the coefficient aj, is by far the largest,
it is the term a,,2r;,X;(r;)X;(E3)Xy(,5)X,(2,5) that s
responsible for introducing the main z-correlation effect.
Figure (II.6.2) shows that the X;(r)X,(r) surface has a
maximum associated with one nucleus and a minimum, of the
same magnitude but of opposite sign, at the site of the
other nucleus with the zero contour perpendicularly
bisecting the bond-axis. Suppose now that the fixed electron
is located on the positive side of the zerobéontour. If the
roving electron is also on the poéitive side then the total
contribution to the A-surface will be negative due to the
sign of a7 although, once the electron moves into the
negative region of Xl(E)Xz(E) the total contributioh will
then be positive. A similar argument may be applied when the
fixed electron is located on the negative side of X,(r)X,(r)
to obtain corresponding results. This term therefore has the

effect of increasing the probability of locating the roving
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X, (E)Xy(E)

Xy ()X, (x) Xo(r)X,(K)

Xy (r)X3(r) Xa(r)X3(x) X3(z)Xx3(r)

X1(r)Xx,(x) Xy ()X (x) X3(r)x,(r) Xq(Z)X,4(E)

Figure (II.6.2) Sketches of the xi(g)xj(g) probability
surfaces for 1 < i,j < 4 where xi(g) has been defined in
equation (II.4.2). The surfaces are viewed in the xz-plane
and are aligned in the z-direction.
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electron in the vicinity of the nucleus that is furthest
from the fixed.electron and decreasing the probability of
locating the roving electron near to the closest nucleus. As
the P term can have no effect on the zero contqur it
remains bisecting the bond, irrespective of the location of

the fixed electron.

The remaining two diagonal terms only account for 5% of
the total effect and thus only introduce minor perturbations
to this picture. The term azzrlzxg(gl)xg(gz) simply adds
probability to the regions around both nucleii and
allrlzx%(gl)xi(gz), due to ajq being negative, reduces the
probability over the entire surface. This has the effect of
causing a slight bending of the zero contour towards the
region of positive probability. It is interesting to note
that if the fixed electron is located on a locus that is
equidistant from each of the nucleii, the only non-zero
contribution will be from the i = 1, j = 1 term. Since this
is due only to the renormalisation of the wavefunction, we
may conclude that z-correlation can have no effect along
this 1line. The effect of z-correlation, however, will
increase in magnitude as the fixed electron is located

closer to one particular nucleus.

When M=3, ¢—correlation is introduced into the
wavefunction and, from past experience, we would expect that
the main correlation effect would be described by .the
function 2a;3r;, [1)(r,,r,)(3]1(r;,r,). If this analysis is
followed through in detail it can be seen that this function

consists of the sum of two terms. The first is of the form
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2a13r12x1(£1)x3(£l)x1(£2)x3(£2) and as a consequence
Xq(r)X3(r) is shown in Figure (II.6.2). It possesses a zero
contour which forms a plane of zero influence perpendicular
to the x-axis and therefore passes through the z-axis. An
elongated maximum may be observed at one side of the
molecular-axis and a minimum, of equal magnitude, at the
other. The second terﬁ is of the same form as this except
that it is centred in the yz-plane and therefore the
xz-plane corresponds to its nodal pléne and need not be

considered in this analysis.

Applying the same argument used to investigate
z-correlation, we see that ¢-correlation decreases the
probability of locating the roving electron on the same side
of the bond as the fixed electron and increases the
probability of discovering it on the opposite side. As
expected, ¢-correlation can have no effect when the fixed
electron is located on the major axis of the molecule but,
when the other terms are included allrlzxi(gl)x%(Ez), it
will once again cause the zero contour to bend towards the
positive region of the surface. The remaining terms have a

negligible effect on the surface and are not considered.

p—correlation is introduced mainly by the term
239 4T19X (Ey )X (29 )Xy (E5)Xy(E5) . The  Xy(r)X,(r) surface
consists of a ridge of maximum probability along the entire
length of the bond, an elliptically shaped zero contour and
a negative region at larger distances from the molecule.
Thus, if electron 1 1is 1located in the same region of

xl(g)x4(£) as electron 2, the total contribution to the

-125-



electronic probability will be negative whereas, if they are
in different reéions, the contribution will be positive. It
follows that p-correlation acts to redistribute the
probability of finding the roving electron to distances
further from the bond in all directions if the fixed
electron is within the positive region of X,(r)X,(r).
Although, once the fixed electron is located further from
the nucleii, in the negative region of xl(g)x4(£), it
becomes energetically more feasable to move the roving

electron closer to the nuclear frame.

In'short, the main contributions to the A-partial planar
surfaces originate from the product of the first natural
configuration with the correlating configurations and all
other terms have only a very sméll effect. This enables
simple ‘classical’ characteristics of the main types of
correlation to be envisaged and the individual A-partial
planar surfaces to be analysed in terms of their relative

compositions of z, ¢ and p-correlation.

[B] Test Electron fixed on Molecular Axis

The first three fixed electron positions to be considered
are located on the z-axis. To create a basis from which the
correlation effects may be applied, the HF A-partial planar
distribution functions are shown in Figure (II.5.4). These
surfaces possess maxima in probability in the vicinity of
the nucleii and zero at the position of the fixed electron
due to the effect of Lyp- The appropriate radial and angular
distribution functions are also displayed in Figure

(I1.5.5). Whilst the effect of the nucleii may be seen to a
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certain extent the relative magnitude of each of the

distributions is particularly apparent.

The effect of correlation in position [I] is wunusual
because, due to the fixed electron being located in the mid
bond position, both the z and é¢-correlation components may
have no effect. This can be observed in Figures (II.5.6A)
and (II.5.6B) since both surfaces are very shallow and
negative with the imprint of the allrlzx%(El)xi(gz)
renormalisation term clearly visible. The minima in Figure
(II.5.6B) are deeper than the minima in Figure (II.5.6A) by
a factor of all(M-3)/a11(M-2) = 1.5. The inclusion of
p~correlation in Figure (II.5.6C) has a dramatic effect on
the A-surface. As predicted, charge associated with electron
2 is removed from around the nucleii to regions further
away, in particular behind each of the nucleii and also a
characteristic ellipse shaped zero contour may be seen. As
demonstrated in Figure (II.5.6D), only minor changes are
introduced by the inclusion of the remaining six natural
configurations. Thus, when one of the electrons is fixed
instantaneously at position [I], the total «correlation
effect is due almost entirely to p-correlation. This is
emphasised by examining the partial planar Coulomb holes
shown in Figure (II.5.7). The first two radial and angular
Coulomb holes are small and negative but a relatively large
contribution is introduced by the fourth natural

configuration.

Since this example retains the axial symmetry of the Hy

molecule, it may be thought that the area contained within
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the As(rlz) and AU(e) curves should be zero as this, by
definition, - represents the probability of 1locating the
electrons in the chosen plane. This is not the case. The
partial planar holes are functions of the positions of two
electrons and hence the change in probability of locating
the fixed electron at position [I] must also be taken into

account.

The fixed electron is located on the site of a nucleus in
position ([II] and, as demonstrated by the one-particle
analysis, this represents the most 1likely position of
electron 1. Fiqure (II.5.8A) shows that z-correlation has a
relatively large effect on the A-surface. As predicted, the
zero contour almost bisects the bond and a slight bending
towards the region of positive probability due to the
a,,7,,X3(x;)x3(£,) term can be seen. This highlights how
unimportant these minor terms are. Apart from this effect,
the probability of discovering the roving electron near to
the nucleus on which the fixed electron 1is 1located is
reduced but is increased in the vicinity of the other

nucleus.

There is very little difference between Figure (II.5.8A)
and Figqure (II.5.8B) indicating that é¢-correlation has no
effect. The inclusion of p-correlation however does have a
marked effect on the A-surface. The probability of
discovering the roving electron near to the fixed electron
is reduced and a minimum is observed on the bond axis. The
zero contour becomes ellipsoidal in form and encloses the

region of negative probability.
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The remainiﬁg configurations, as demonstrated in Figure
(IT.5.8D), have the effect of slightly contracting the area
covered by the contours and also increasing the depth of the
minimum. From the partial planar Coulomb holes in Figﬁre
(ITI.5.9) the relative magnitude of each of the types of
electron correlation may be observed. For example, the
difference in the curves between employing two and three
natural configurations is almost graphically indistinguish
-able, demonstrating that ¢-correlation has no effect. The
curves generated from the wavefunction curtailed to
encompass only two configurations, on the other hand, are
relatively large which indicates the importance of
z-correlation. These curves nevertheless represent averaged
views and some information is 1lost. For 1instance, the
generation of the minimum on the bond axis in Figure
(I1.5.8C) cannot be observed as it is masked by the much

larger magnitude of the maximum.

Position [III] is defined by the fixed electron being
located at a half bond length (0.7 a.u.) behind the nucleus
on the z-axis. We observe from Figure (II.5.10A) that the
probability of discovering the roving electron near to the
closest nucleus to the fixed electron is diminished but it
is increased around the furthest nucleus. é¢-correlation has
no effect, as shown in Figure (II.5.10B) whilst Figure
(I1.5.10C) demonstrates that the effect of p-correlation is

also very much reduced.
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Interestingly, the 1last six natural configurations
introduce small p—co;relation characteristics. Since the
zero contour remains virtually at the same position in these
diagrams we may conclude that z-correlation is by far the
most dominant contribution to the total effect. This is also
demonstrated by the partial planar Coulomb holes (shown in
Figure (II.5.11)) as they all are almost identical. The
increase in the importance of z-correlation may be explained
by realising that, as the fixed electron is 1located at
greater distances from the nucleii, the electron-electron
repulsion effect, which 1is responsible for introducing
correlation, will act increasingly only in the z-direction.
However, when the fixed electron is located at extremely
large distances from the nucleii, where the distance between
the nucleii is negligible compared to the distance from the
nuclear frame to the fixed electron, the fixed electron will
experience only one nuclear force. 1In this case, the
correlation effect will be identical to the correlation
redistribution in the wunited atom ofv H2' helium, and

consequently p-correlation will dominate.

It 1is also possible to study suffaces that are
perpendicular to the xz-plane for position [I], [II], and
[IITI], however, they would be axially symmetric and hence
could be generated from the A-surfaces in the xz-plane. The
axial symmetry would also cause the As(rlz) curves to be
simply 2n times the axial profile of the A-surfaces and the

U(e) curves to be horizontal lines.
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[C] Test Electron Fixed off Molecular Axis

Positions [IV], (V] and ([VI] do not possess axial
symmetry and consequently the study of the A-partial planar
surfaces in the xy-plane is worthwhile. In addition, due to
the lower-order symmetry, the angular partial planar holes
in the xz-plane, for these fixed electron positions, must be
extended to the full range for € of 0 2 2rn in order to

encapsulate the full angular redistribution in probability.

To aid this discussion, the correlation effects observed
in the xz-plane will be discussed concurrently with the
xy-plane results. The xz-plane HF partial planar
distributions are displayed in Figure (II.5.12) and the
xy—plane functions are shown in Figure (II.5.20). The
surfaces are perpendicular views of the same probability
distribution resulting in their contours being coincident
along the common 1line of intersection, in this case, the

x—-axis.

Position [IV] is located by the fixed electron being
situated at a half bond length (0.7 a.u.) from the mid bond
position on the x-axis. Since this position is still on the
plane that bisects the bond, again 'z-correlation has no
direct effect. The minima observed in Figure (II.5.14a),
like position [I], are due simply to the renormalisation of
the wavefunction and F?gute (I1.5.22A) is a perpendicular
view of this. The minima are moved slightly away from the

the nucleii due to the effect of the r,, term.
This is the first fixed electron position for which
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¢~-correlation has a relatively large effect on the
A-surface. Froﬁ Figures (II.5.14B) and (II.5.22B) we see
that the probability of locating the roving electron on the
same side of the molecule as the fixed electron is reduced
but it 1is increased on the other side. Two minima are
generated rather than one single minimum as the surface is
fixed to be zero at the position of electron 1. As the fixed
electron is located at further distances from the nucleii on
the x-axis, though, one would expect that they would become
one. In both the xz and xy-planes, as predicted, the =zero
contour is seen to bend towards the region of positive
probability due to the renormalisation of the wavefunction
when the ¢-correlating configuration is introduced.
Subsequently, p-correlation causes the probability to be
reduced in the neighbourhood of the nucleii and the =zero
contour to form into an ellipse that encloses the region of
negative probability. From these observations we see that
the total electron correlation effect is due to a large
contribution of both ¢ and p-correlation. The corresponding
partial planar Coulomb holes shown in Figure (II.5.15) and
(IT.5.23) clearly illustrate this point as, contrary to most
of the holes already discussed, all of the curves are
discernible from each other. It is important to note that
¢—correlation has a greater effect on the angular planar
holes than the radial holes. In Figure (II.5.15B) it can be
seen that ¢—correlation overcompensates in the
redistribution of probability and creates a large maximum
when € = 90° ( ie along a direction towards the mid bond
position). This may also be observed in the xy-plane by

examining Figure (II.5.23B). This illustrates the need for
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studying both radial and angular based Coulomb holes in
tandem to gain a complete insight into the total effect of

electron correlation.

When the fixed electron is located at the side of a
nucleus, as in position [V], =z-correlation once again
contributes a large effect to the A-surfaces (see ?igure
(I1.5.16A)). Even though the fixed electron is located in an
asymmetric position, it is pleasing to observe the standard
z-correlation effects. The -equivalent surface in the
xy-plane is not so interesting as only a cross-sectional
view of the minimum at the site of the nucleus may be seen.
This lack of detail is expected when.attempting to measure a
movement in the z-direction by examining the xy-plane. The
introduction of ¢-correlation in Figure‘ (II.5.16B) causes
the zero contour to still curve towards the positive region
on the surface although, in this example, it is inclined at
approximately fifty degrees to the bond axis. From this it
could be inferred that the total electronic correlation
effect consists of almost fifty percent contributions from
each type of correlation. The inﬁroduction of p-correlation
complicates this picture as the characteristic ellipse
shaped zero contour is observed in Figure (II.5.16C) and
also (II.5.24C). The size of the ellipse is relatively
large, indicating that the effect of p-correlation is small
and thus the fixed electron must be approaching the =zero
contour on the X,(r)X,(r) surface (see Figure (II.6.2) for
further details). The remaining configurations have the
effect of contracting the area covered by the zero contour,

however, from Figure (II.5.16D) we observe that the symmetry
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of the ellipse is lost.

The effect o0f z-correlation on position [(VI] (shown in
Figure(II.5.18A)) is surprisingly similar to position [III]
(see Figure (II.5.10A)). Again, when ¢-correlation is
introduced, the 2zero contour becomes inclined to the bond
axis. In this case though it is very much larger, indicating
that the contribution from z-correlation is greater than in
position [V]. The importance of =z-correlation may be
illustrated by examining the A-surfaces in the xy-plane
(Figure (II.5.26)). All four of the surfaces are negative
and exhibit the general shape of the z-correlation surface
first seen in Figure (II.5.24A). Figures (II.5.19A) and
(IT.5.27A) show that z-correlation accounts for almost all
of the radial Coulomb holes though the angular holes once
more highlight the small but appreciable effect of
¢~correlation. The inclusion o0f »p-correlation in this
example, although it has a relatively small effect, is of
considerable interest as the zero contour clearly curves to
the region of positive probability rather than, as in all
the previous A-surface, to the negative. From this it must
be concluded that the fixed electron is located in the
negative region of the X,(r)X,(r) surface. In this region
p-correlation acts to increase the electron probability in
the bond region. To test this hypothesis X,(r)X,(r) was
evaluated at position [VI] and this was found to be the

case.
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(D] Summary

In summary, we have observed that the three major types
of correlation, namely z, ¢ and p, are responsible for
introducing almost all of the electron correlation and
combine in various waYs depending upon the location of the
fixed electron. In particular, the terms

239,09 5X (E1 )Xo (21 )X (E5)X5(E5)

2313712% (1 )X3(E1 )X (E5)X3(E,) and

23, ,4015X7(E1)X4(29)X1(£5)X,(2,5)
introduce over ninety percent of the z, ¢ and p-correlation,
respectively. Since the 1location of electron 1 has been
fixed, it 1is the constant 2a12x1(£1)x2(£1), that gives a
measure of the importance of z-correlation and the
probability surface X1(£z)xz(£2) that actually describes the
distribution of electron 2. Hence, if it is assumed that all
of the correlation is introduced by these three terms, the
percentage contribution from each of the correlation-typés,
for a specific location of the test electron defined by r,,

may be expressed as

$age Z-corr = |2a12 xl(El)XZ(El)I x T (11.6.19)
%age ¢-corr = [2a;5 X;(r;)X3(ry)| x T (I1.6.20)
tage p-corr = |[2a;, X;(r;)X,(r;)| x T (I1.6.21)

where
T = 1/( [2a;, X;(ry)X(z) | + [2a73 Xq(£p)X3(0q)]
+ |2a;, X0 )X, () |)
14 A==l (11.6.22)
Since these relationships are true for all values of r,,
they may be represented by contour diagrams in chosen planes

(see Figure (II.6.3) for the xz-plane of Hz). Formally these
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surfaces represent the percentage contributions from the
main correlation types that are imparted upon electron 2,
whilst travelling in the plane containing electron 1 and the
two nucleii, due to the instantaneous location of electron 1

at El.

The surface representing the contribution from
z—-correlation is given in Figure (I1.6.3A7)). Since
z-correlation has the effect of transferring elegtron
probability from the wvicinity of the closest nucleus to
electron 1 to the furthest, it can have no effect along the
plane that is equidistant from each of the nucleii. However,
as electron 1 is located closer to the nuéleii, the relative
contribution from z-correlation increases towards maxima
behind each of the nucleii. Within the adopted
approximation, the maxima are located at the intersection of
the zero contours from the ‘¢ and p-percentage contribution
surfaces’ (see Figure (IT.6.3B) and (11.6.3C)) and
consequently at these points z-correlation is responsible
for the entire correlation effect. Bearing in mind that
z-correlation is the most dominant correlation-type, it may
appear at first sight puzzling that the area where it
possess a sizeable influence is relatively small. We must
remembered, though, that this area is a region of high
probability and therefore z-correlation has the capacity to
move a large amount of charge between the nucleii which has

a large bearing upon the correlation energy.

From Figure (II.6.3B) we see that the influence of

¢—correlation increases rapidly as electron 1 is located at
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30

(d) Percentage z-correlation (B) percentage “-correlation

(C©) percentage p-correlation (D) regions where each
correlation-type is

most important

Figure (II.s .3) The percentage contributions from 2z, < and
p-correlation to the total correlation effect in the
xz-plane using Equations (11.s .19-21) and also the regions

where each correlation-type accounts for more than fifty

percent of the total effect.
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further distances from the bond axis to reach a maximum of
one hundred peréent at the intersection of the zero contours
from the z and p-percentage contribution surfaces. Since
this maximum 1lies almost 1.5 a.u. from the bond, the
probability density is relatively small when compared to the
on-axis density, and hence the contribution from
¢—correlation to the total contribution is less important

than the z-correlation contribution.

Close to the molecular frame, p-correlation has the
effect of redistributing electron probability to regions
further from the molecule. 1Indeed, as shown in Figure
(IT.6.3C), this type of p-correlation is responsible for all
of the correlation when electron 1 is located in the mid
bond position. As the effect of z and ¢-correlation increase
to their maximum 1levels, the effect of p-correlation
dimminishes until an elliptical zero contour is obtained.
Far from the molecule, however, the effect of p-correlation
once again becomes dominant, but now the movement in
probability is towards the molecular axis. The probability
density is.tiny for large I and consequently this region is
unimportant physically. Nevertheless, it is pleasing to note
that the contours become radial in nature at these large
distances and hence, tend towards lﬁhe redistribution one
would expect to observe in the He atom. The effect of
p-—correlation is therefore the most complex as it is
responsible for relocating probability in two opposing

directions depending upon the location of electron 1.
The important regions of each of the correlation-types,
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defined by contributing over fifty percent of the total
correlation effect, are presented in Figure (II.6.3D) from
which it can be seen that only over a relatively small area

of the surface there is no dominant correlation-type.
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CHAPTER II.7

Results for H; in Position-Space

For the purposes of this analysis, the correlated and
non-correlated electron distributions for the equilateral

triangle conformation of the Hg molecule have been evaluated

from the Salmon and Poshusta'2-Vii-1)

(2.vii.2)

and the Schwartz and
Schaad wavefunctions, respectively. Both wave
functions are written in Cartesian co-ordinates, with their
origins fixed at the centre of the triangle formed by the
nucleii. As seen in Figure (II.4.2), the x-axis has been
defined to bisect nucleus A, the y-axis to be parallel to
the line BC and the z-axis to be perpendicular to the plane
of the molecule. For convenenience, we have used this
co-ordinate system for the analysis of correlation effects
since, by fixing one of the co-ordinates, it is relatively

simple to define a plane that is either parallel or

perpendicular to the molecule.

The contours used in these surface views have been
chosen from the same set as was employed in H, (see Chapter
(11.5) for further details). The negative contours are still
represented by broken curves, the positive contours by full
curves and the zero contour by a dotted curve. In addition,

the definitions

x = position of fixed electron which is located

relative to the nuclear frame
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@ = position of nucleus

have been used. This analysis has been performed at the near
equilibrium nuclear separation of 1.65 a.u.. The full width

of the surfaces is 8 a.u. and consequently 9 millimetres

corresponds to 1 a.u..

(II.7.1) The One-Particle Density Results

The one-particle density distribution p(£1) and the
difference in the one-particle density due to electron
correlation Ap(£l) have been evaluated in both the xy and
xz-planes. Due to the three fold symmetry of the molecule, a
comprehensive view of the electron probability distribution

in the molecule may be built up from these planes.
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(Ale(z;) (B) olx)
xy-plane (z = 0) xz-plane (y = 0)

.o
.o" Se,

(C) bp(ry) ‘ (D) 8p(ry)

xy-plane (z = 0) xz-plane (y = 0)

Figure (II1.7.1) The one-particle density and A-one-particle
density for H; in the xy-plane (with z = 0) and the xz-plane

(with y = 0).
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(I1.7.2) The Two-Particle Density Results

Like the .one—particle density, the Hartree Fock
V(Elz'rz) functions and the partial planar distribution
surfaces AV(£12,£1) have been evaluated in both the xy and
xz-planes. Consequently, the fixed electron positions have
been chosen to lie on the x-axis and are summarised in
Figure (II.7.2A). By fixing the distance between succesive
electron positions to be 0.4763 a.u. (ie 1.65/(243) a.u.),
position [A] may be used to investigate the effects of
correlation outside of the nuclear framework. Position ([B]
is then located midway between two nucleii in the classical
bonding region, position [C] 1is at the centre of the
molecule and position [D] is midway between the centre of
the molecule and a nucleus. The fixed electron is located on
a nucleus in position [E] and position [F] is once again
outside of the nuclear frame, this time near to a single
nucleus. By evaluating the V(£12,£l) and AV(£12,51) surfaces
for these fixed electron 1locations and chosen planes an
extensive view of the effect of electron correlation on the

H; molecule may be gained.

For reasons of space, both the HF distribution functions
and partial planar Coulomb holes for both planes have been
presented on the same graphs. It is also noted that, to
enable comparisons to be made between curves from different
fixed electron locations, the same scale has been used for
all six positions. We have defined € as the angle subtended
between the x-axis and the vector r,, in an anti-clockwise
direction. Hence, due to the symmetry of the system, U(e)

and AU(e) have only been presented for 0° < € < 180°.
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Figure (II1.7.2A) The locations of the chosen fixed electron
positions of the partial planar distribution functions for H;
in position-space. The equilibrium nuclear separation, R, is
1.65 a.u. and the constant, r, has been chosen so that

r = R/243 = 0.48 a.u..

X

:E ——
‘@—”'N

£~

Figure (II.7.2B) & Figure (II.7.2C) The definition of the
angle ¢ and the distance P when analysing correlation
~effects in (B) the xy-plane (C) the xz-plane.
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(A) V(Elz'sl) . (B) V(EIZ'EI)
Xy-plane (z = 0) xz-plane (y = 0)

(C) AV(EIZ’EI) (D) AV(£12:£1)
Xy-plane (z = 0) * xz-plane (y = 0)

h
Figure (II.7.3) The Hartree Fock V(£12'£1) suriacesL:rd(:Q:
fixed electron position
av(ry,5.,2,) surfaces for

Figure (II.7.2A) for the definition).
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(B) Angular Distributions

Figure (11.7.4) Partial planar Coulomb holes and

distribution functions for H;, with electron 1 located at
position [A] (see Figure (II.7.2A) for definition) and
electron 2 moving either in the xy-plane or the xz-plane.
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(A) V(ry,,19) (B) V(ry5.Iq)

| xy-plane (z = 0) xz-plane (y = 0)

(C) &V(ry,,z;) (D) &V(ry5,I9)
xy-plane (z = 0) xz-plane (y = 0)

Figure (II.7.5) The Hartree Fock V(ry5+r;) surfaces and the
av(r,,,r,) surfaces for fixed electron position [B] (see
Figure (I1.7.2A) for the definition).
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(B) Angular Distributions

Figure (I1.7.6) Partial planar Coulomb holes and

distribution functions for Hg, with electron 1 located at

position [B] (see Figure (II.7.2A) for definition) and

electron 2 moving either in the xy-plane or the xz-plane.
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xy-plane (z = 0) xz-plane (y = 0)

xy-plane (z = 0) xz-plane (y = 0)

Figure (I1I.7.7) The Hartree Fock V(ry5+;) surfaces and the
AV(ElZ'El) surfaces for fixed electron position [C] (see
Figure (II.7.2A) for the definition).
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(B) Angular Distributions
Figure (1I1.7.8) Partial planar Coulomb holes and
distribution functions for H;, with electron 1 located at
position [C] (see Figure (I1.7.2A) for definition) and

electron 2 moving either in the xy-plane or the xz-plane.
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xy-plane (z = 0) xz-plane (y = 0)

xy-plane (z = 0) . xz-plane (y = 0)

Figure (II.7.9) The Hartree Fock V(r,,,r;) surfaces and the
av(r,,,r;) surfaces for fixed electron position [D] (see
Figure (II.7.2A) for the definition).
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Figure - (II.7.10) Partial planar Coulomb holes and
distribution functions for Hg, with electron 1 located at
position [D] (see Figure (II.7.2A) for definition) and
electron 2 moving either in the xy-plane or the xz-plane.
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Figqure (I1.7.11) The Hartree Fock V(£12'£1) surfaces and the

8v(r,,,r,) surfaces for fixed electron position [E]
Figure (II.7.2A) for the definition).
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Figure (11.7.12) Partial planar Coulomb holes and

distribution functions for H;, with electron 1 located at
position [E] (see Figure (11.7.22) for definition) and
electron 2 moving either in the xy-plane or the xz-plane.
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(C) av(r

xy-plane (z = 0)

xz-plane (y = 0)

Figure (iI.7.13) The Hartree Fock V(Elz,gl) surfaces and the
8v(ry,.x;) surfaces for

fixed electron position [F)] (see
Figure (II.7.2A) for the definition).
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Figure (II.7.14) Partial planar Coulomb holes and

distribution functions for Hg, with electron 1 located at

position

[F] (see Figure (II.7.2A) for definition) and

electron 2 moving either in the xy-plane or the xz-plane.
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CHAPTER II.S8

Discussion of Ht Results in Position-Space

Since Hg consists of three atoms yet only two electrons
to bind them together, it is the simplest example of an
electron-deficient system. Surprisingly, this type of bond

is extremely strong, the binding energy of H; being almost

twice that of H2(2.viii.l).

An investigation into the
effects of electron correlation on this system would
therefore be very interesting as it could disclose
information concerning electron-deficient systems.
Consequently, this analysis has beeﬁ performed with the Hg

molecule in its most stable nuclear conformation of an

equilateral triangle with a nuclear separation of 1.65 a.u..

(II.8.1) The One-Particle Density Analysis

The HF one-particle density p(£1) has been presented
for the xy-plane (z = 0), the plane containing the molecule,
and the xz-plane in Figures (II.7.1A) and (II.7.1B),
respectively. Maxima of probability are associated with the
sites of the nucleii, however, there is no build up of
probability between them that would be characteristic of a
‘normal’ two-electron bond. Instead it appears that
probability is drawn towards the centre of the triangle
formed by the nucleii to create one central bond. By

evaluating profiles of one-particle density functions in
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specified directions, Duben and Lowe(z'V1ll'2) have observed
this effect and noted that it is typical of electron

deficient bonding.

The effect of electron correlation on the HF
one-particle density, given by Ap(£1), is presented in
Figures (II.7.1C) and (II.7.1D). At first sight the redistr-
ibutions appear to be complex but the overall effect is to
incre#se the the probability of discovering the electrons
nearer to the nucleii. This property was seen earlier for
the H2 molecule, and similar accounts have been reported for

many other systems (for example Hen' (2.Viii.3)'

(2.viii.4) (2.viii.5),

N2 and CO These authors have also
noted that electron probability has been transferred from

the regions where bonds have been formed.

Returning to H;, it 1is apparent that electron
probability is reduced in two distinct regions within the
molecule. From Figure (II.7.1C), three small minima may be
observed near to the centre of the molecule, each of which
may be associated with a particular ‘bonding region’. From
this, it seems that there are three distinct, but only
partially occupied, o-type ‘bonds’ which, due to the
electron deficient nature of the system, are bent towards

the centre of the molecule(z‘Viii's).

The second area from which probability is transferred
may be seen from Figure (II.7.1D) to be above and below the
molecular plane. The minima are much deeper than in the

other region and, .by considering the three-fold symmetry of
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the molecule, we may observe that they actually form volumes
of reduced probébilities above and below the plane of the
molecule. This is a consequence of the fact that, since the
Schwartz and Schaad HF wavefunction is constructed f£from
floating 1ls Gaussian orbitals located along the principal
axes only, in attempting to describe the bonding accurately,
it has been forced to overcompensate in the amount of charge
located in these regions. This effect would be very much
less well pronounced if a numerical HF wavefunction had been
employed. Nevertheless, this emphasises the need to include
configurations constructed from 2p STO or GTO orbitals with
their nodal planes centred in the plane of the molecule in

the correlated wavefunction.

(II1.8.2) The Two-Particle Density Analysis

Like the one-particle density surfaces, the partial
planar distribution functions have been evaluated in both
the xy-plane (the plane containing the molecule) and the
xz-plane (perpendicular to the molecule). The six chosen
fixed electron locations, defined by ([A] - [F], lie on the
x-axis and are equidistant from each other (see Figure

(II.7.27A) for the location of these points).

The HF V(£12'£1) surfaces for the xy-plane and xz-plane
have been presented in Figures (II.7.3A) and (II.7.3B),
respectively for location [A]. There are two regions of high
probability associated with the two closest nucleii but a

much larger maximum in the vicinity of the furthest nucleus.
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Thus, as would be expected, when electron 1 is 1located
closer to two of the nucleii, the probability of locating
electron 2 around the other nucleus is greater. By comparing
the areas covered by the contours in both planes, it is also
possible to build a three dimensional model of the shape of

the electron probability distribution.

The effect of electron correlation on position [A] is
shown in Figqures (IX.7.3cC) and (Ir.7.3po). Electron
probability has been transferred from the region near to the
closest nucleii and between them to the vicinity of the
furthest nucleus. The shape of the 3zero contour is also
particularly interesting as it defines the 1locus where
correlation has no effect. From Figure (II.7.3C) we see that
it bisects the x-axis very close to the centre of the
molecule and then, at larger distances from the molecule, it
forms an wunusual ‘butterfly wing-shape’. This feature is
also present in the xy-plane but much less pronounced,
indicating that the two closest nucleii are at least
partially responsible for the effect. The distribution at
the ‘edge’ of the winés may be interpreted as being due to
the effect of correlation redistibuting probability between
the nucleii whereas the shape near to the molecule is due

mainly to radial correlation effects.

The S(rlz), U(e), As(rlz) and AU(e) curves for the xy
and xz-planes are all displayed in Figure (II.7.4). The
first maximum of the S(rlz) curve in the xy-plane
corresponds to the distance that the two nearest nucleii are

away from the fixed electron and the inflection may be
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attributed to the furthest nucleus. The xz-plane curve is
very similar to the xy-plane except that the influence of
the two nearest nucleii is less pronounced. This may also be
illustrated in Figure (II.7.4B) by examining the U(g) curve.
The maximum at € = 0° is a result of the nucleus on the
x-axis and the maximum at € = 60°, which is missing in the
xz-plane curve, to one of the other nucleii since the third
nucleus would be located at € = 300°. Apart from the maxima
at € = 0° in the AU(e) curves, it is impossible to identify
the location of the nucleii from the shapes of the partial
planar Coulomb holes alone. It is interesting to note that,
except for the slightly greater magnitude in the xy-plane,

correlation has a very similar effect in both planes.

The fixed electron is located mid way between two
nucleii in position [B] and the HF planar distribution
surfaces are shown in Figures (II.7.5A) and (II.7.5B) for
the =xy and xz-planes, respectively. Again, from Figures
(II.7.5C) and (II.7.5D), we see that correlation has the
effect of removing electron probability from the centre of
the molecule and near to each of the closest nucleii and of
building it up around the furthest nucleus. The range of the
correlation effect in the y-direction is very much reduced,
however, due to the partial cancelling out of the effect of
the fixed electron by the nucleii. The zero contour still
exhibits the wusual ‘butterfly-wing’ shape in the xy-plane
although, in this case, it is bent very much further back
due to the closer proximity of the nucleii and, in the
confines of the nuclear triangle, it is more curved. This

increase in curvature is associated with an increase in the
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importance of radially-based correlation.

The geometry of the molecule is highlighted by the
S(rlz) and U(e) curves (see Figure (II.7.6)). Slightly
misleading information may be derived from the S(rlz) curve
in the xY—plane as the maximum is again due to the combined
effect of two nucleii, each contributing half of the total
effect. Eiectron correlation then simply transfers electron

probability from the closest nucleii to the furthest.

Position [C] is located by electron 1 being fixed to be
in the centre of the triangle formed by the nucleii. It is
therefore reasonable that the partial planar distribution
surface, shown in Figure (II.7.7A), should consist of three
identical maxima at the sites of each of the nucleii. Figure
(II.7.7B) illustrates that there is no ridge of probability
between the nucleii that could be associated with
conventional bonding in the same way as the oné particle

density function.

The effect of correlation on this fixed electron
position proves to be very interesting. Firstly we note that
the zero contour is contained within the molecular frame and
the nucleii 1lie almost wupon it. By examining Figure
(II.7.7C) and (II.7.7D) we see that the zero contour forms a
slightly distorted sphere. Correlation has the effect of
transferring electron probability from within the nuclear
triangle, and in particular in front of each of the nucleii,
to distances further from the molecule, especially directly

behind the nucleii. Hence, almost all of the correlation
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effect is ‘radially’ based. This is illustrated further by
examining the ahgular holes shown in Figure (II.7.8B). These
curves almost form horizontal lines, demonstrating that the

redistribution is almost spherically symmetric.

In position [D], the fixed electron is located closer
to the single nucleus than the two off-axis nucleii. We see,
therefore, in Figure (II.7.9C), that correlation has the
effect of shifting probability from the closest nucleii to
the two nucleii further away. The characteristic ‘butterfly
wing’ shaped zero contour reappears in this diagram, except
that it now is bent in the other direction. Close to the
nucleii, the zero contour is curved which suggests that a
large amount of correlation is still due to movement in a

radial manner.

The fixed electron is located on the site of a nucleus
in position [(E}. From Figures (II.7.11A) and (II.7.11B) it
may be seen that away from the immediate vicinity of the
fixed electron the HF partial planar distribution function
is almost axially symmetric with respect to the line joining
the other nucleii. Here too, correlation has the effect of
redistributing electron probability from just in front of
the fixed electron to the vicinity of the other two nucleii.
The =zero contour is more flat than in position [C],
indicating that, 1like Hy,, a greater contribution to the
total <correlation effect is due to movement in the

x-direction (obviously, because of the different orientation

of the axis, this is z-correlation in Hz).
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The final fixed electron location, position [F], is
again outside thé triangle and a very large reduction in the
probability distribution may be observed (see Figures
(II.7.13A) and (II.7.13B)). In this 1location -electron
correlation transfers probability from the closeét nucleus
to the furthest nucleii but this time the zero contour is
almost straight when inside the nuclear triangle. This
suggests that almost all of the correlation effect is due to
movement in the x-direction. Although the wing-shape of the
zero contour is pronounced, we note that this is the first
fixed electron position where the shape is more exaggerated

in the xz-plane than in the plane of the molecule.

In summary we see that, as the fixed electron is moved
from position [A] to [F] the effect of correlation in the
x-direction decreases and in-out (radial) «correlation
compensates until it accounts for all of the correlation
effect at the centre of the molecule. By drawing closer to a
nucleus again the relative contribution of correlation in
the x-direction increases again. From the work performed on
Hy, however, we would expected that, by moViné further from
thé molecule, the relative effect of radial Dbased
correlation would become dominant once more but would now
redistribute electron probability in directions towards the

centre of the molecule.

If the fixed electron locations are rotated by 120° and
240° about the centre of the molecule to coincide with the
other two principal axes identical results would be

obtained. Consequently, we note firstly the importance of
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redistributing probability between the centre of the
molecule and eéch of the nucleii. This 1is similar to
z-correlation in Hz except, of course, that there are  now
three nucleii and the function must be antisymmetric with
respect to each of them. From the results we can see that

this type of correlation is the most important.

Correlation may also be analysed in terms of a radially
based component. In view of the symmetry of the molecule, it
is more logical to define this type of correlation as being
perpendicular to each of the principal axes in all
directions and may be introduced by including configurations
of o symmetry. This is similar to p-correlation (defined in

g
the Hy work) but superimposed in three directions.

Finally, an angular component of <correlation is
necessary that consists of independent rotations about the
" three principal axes. This effect cannot be observed in the
chosen fixed electron positions since they all lie upon a
principal axis and possess a high level of symmetry. This
angular effect may be used to transfer electron probability
to a region below the molecule when electron 1 is located

above it.

Functions of these three forms could be wused to
incorporate the major amount of electron correlation in the
system although, to improve the energy of the wavefunction
further, second order correlation effects must be
considered. Like HZ,.there are six independent second-order

functions and each would possess the symmetry that is
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associated with the product of two of the main correlation

types with each other.

The analysis demonstrates the importance of including
configurations constructed firstly from 2p orbitals fixed on
the nucleii and pointing towards the centre of the nuclear
triangle to describe <correlation effects between the
nucleii. Furthermore, configurations consisting of s-based
orbitals that are located on the principal axes are needed
to introduce radial-based correlation. Finally,
configurations constructed from 2p orbitals with their nodal
planes centred in the plane of the molecule are important to
introduce correlation effects above and below the plane of

the molecule.
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CHAPTER II.9

Summary of Position-Space Analysis

The effects of electron correlation have been analysed
in the ground states of the H2 and Hg molecules in terms of
both one and two-electron probability distributions by
employing the planar techniques described in Chapter (II.2)

The natural orbital(Z-ix-1)

(2.ix.2)

arrangement of the Kolos and

Roothaan (2.ix.3)

wavefunction by Davidson and Jones
was used to describe the electron distribution in the Hz_
molecule. By writing the wavefunction in this way, it has
been possible to compute densities from natural orbitals for
each symmetry type separately. The first natural orbital,
which has by far the greatest effect, was shown to be an
accurate approximation to the HF wavefunction. The second
natural orbital is of o, Symmetry with respect to the centre
of the bond and was therefore responsible for introducing
correlation by redistributing electronic charge between the
nucleii in directions parallel to‘thé molecular axis. Due to
the alignment of the molecule with respect to the
co-ordinate system, this has béen defined as z-correlation.
In a similar way, the third natural orbital, which possesses
L symmetry with respect to the bond, introduced correlation
by allowing electron probability to be redistributed axially
around the bond and consequently has been defined as

¢-correlation. The fourth natural orbital, which possesses

% symmetry, is responsible for introducing correlation in
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all directions perpendicular to the bond and hence has been
defined as p-correlation. The remaining six natural orbitals
taken together were found to contribute only about eight
percent of the correlation energy and, by examining the
symmetries of these orbitals, it was observed that they
represented second order effects to the first three main
correlation types. Thus, they were seen to play only a minor

role in introducing correlation effects.

In a similar way to that in which atomic correlation
effects were analysed in terms of ‘radial’ and ‘angular’
correlation(z'iXi‘4), the effect of electron correlation on
H2 was analysed with respect to the relative composition of
z, ¢ and p-correlation. A similar type of analysis to this

could be used to investigate the effects of correlation on

individual bonds in multi-bonded molecules.

(I1.9.1) The One-Parifcle Density

The HF one-particle density surface p(£1) and the
difference due to correlation Ap(El) were evaluated in the
plane containing the nucleii for both molecules and also
perpendicular to the molecule for H;. The effects of z, ¢
and p-correlation were observed for H, although, without
explicit reference to the other electron, only a very
general view of the effects of correlation could be

observed. ,
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We found that electron correlation has the effect of
transferring electronic probability from the regions where
bonding occurs to the vicinity of the nucleii for both
molecules. This was seen to be consistent with observations

(2.ix.5,6) .4 indicates that the HF

made on other systems
description of the molecule overcompensates in the amount of
charge redistributed into the bonding region in molecular
formation. Consequently, evidence of a conventional ¢ bond
could be seen in the H2 molecule whereas, in H;, o-type
bonds were seen to bend towards the centre of the nuclear
triangle due to the electron deficient nature of the system
(obviously these are only partial occupied). In the case of
H;, however, much greater amounts of electron probability
were also removed from regions above and below the plane of
the molecule. This is a result of the fact that, since the
HF wavefunction for H; is constructed from 1ls GTO’s located
along the principal axes, by attempting to describe
accurately the bond formation in the plane 6f the molecule,
it has been forced to overcompensate in the amount of charge
located in these regions. This emphasised the importance of
including configurations that are constructed from 2p-type

STO or GTO orbitals with their nodal planes corresponding to

the plane of the molecule in the correlated wavefunction.

(I1.9.2) The Two—-Particle Density

The partial planar distribution functions V(r;,,r;) and
the difference in the function due to correlation AV(r,,,r,)

as defined in Chapter (II.2) were used to obtain a realistic
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interpretation of the effects of electron correlation on H,
<+
and H3.

Approximately ninety percent of the total effect of
correlation on the H2 molecule was found to be due to the
product of the HF wavefunction with the 1z, ¢ and
p~correlating configurations, respectively. These three
terms were then analysed mathematically and simple pictorial
views of each of the different types of correlation were

obtained.

It was seen that, when the test electron was in the
centre of the molecule, the greatest contribution was from
p—correlation redistributing electronic probability away
from the molecule. When the test electron was located closer
to one particular nucleus, however, the z-correlation
component became more dominant and when it was located to
the side of the molecule, ¢-correlation had a greater
effect. At extremely 1large distances from the molecule,
though, the importance of p-correlation became greatest once
more, this time redistributing electronic probability
towards the nucleii. In general, however, at regions of
large electronic probability, z-correlation characteristics
were seen to dominate the partial >planar distributions,
indicating the importance of orbitals possessing ¢, Symmetry

when describing conventional e¢-bonds. -

The test electron was fixed on a principal axis in the
investigation of the effects of correlation on the Hj

molecule. The importance of ‘radial-based’ correlation (cg
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symmetry) could be easily seen when the test electron was
located at the centre of the molecule. Once it was moved
closer to one nucleus, however, the predominant correlation
movement very rapidly became in a direction from the closest
nucleus to the furthest. Unfortunately, due to the high
degree of symmetry in the chosen 1locations of the test
electron, ‘angular-based’ correlation, although present in
the correlated description of the H; molecule, could not be

seen.

The radial and angular partial planar Coulomb holes
which are generated by either angular or radial integration
of the relevant A-partial planar distribution surfaces
proved to be 1less useful than the full surfaces.
Nevertheless, they were relatively simple to evaluate once
the surface had been computed and enabled comparisons to be
made between different A-surfaces. For example, £from the
radial holes, the effect of correlation upon the mean
inter-electronic separation and the magnifude of the effect

of correlation could be easily seen.

In summary, the partial planar distribution surface
technique has been successful in describing the
position-space correlation effects on the H2 and Hg
molecules. The most important types of symmetry in the
correlated description of the molecules and the regions
where bonding occurs were observed. Furthermore, rudimentary
principles concerning the effect of electron correlation in

multi-centred systems have also been discovered which, in

future, could be applied easily to more complex molecules.
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MOMENTUM-SPACE ANALYSIS OF Hz AND H-;
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CHAPTER II.1l0

Introduction to Momentum-Space

The primary effort in quantum mechanical calculations is
directed towards the determination of the appropriate
wavefunction for a given system. Usually such functions are
defined with respect to the positions of the constituent
particles in the system but this is by no means unique. For
ihstance, given an N-electron atom or molecule, it is
equally possible to discuss the behaviour of the electrons
in terms of their momenta. More formally, we may consider
the system wavefunction, not in position-space, but in
momentum—space(z‘x'l). Recently, a number of studies have
shown that, as well as being able to provide valuable new
information about certain chemical properties such as bond
formation and scattering profiles, momentum-space
calculations also contribute additional insight into the

~effect of electron correlation on the system.

From the early ©pioneering work of Eve(z‘x‘z),

(2.x.3) (2.x.4)

Bragg and Gray more than three-quarters of a

century ago, the historical development of this subject has
been rather disjointed and has been summarised in an
excellent review by Stuewer and Cooper(z'x’s). Much of the
work associated with momentum-space has been concerned with
evaluating accurate Compton profiles as this is a means by
which experimental and theoretical work may be compared.

(2.%.6)

Within the impulse approximation it is possible to
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show that, for an isotropic system, the Compton profile J(q)

is

J(q) = %_ J [I(p)/pldp (Ir.10.1)
p=q
where q is the projection of the electronic momentum along
the scattering vector (see for example references (2.x.7)

and (2.x.8)). We may express I(p) as

n 2n
I(p) = J [ o(p) p? sine de d¢ (11.10.2)
0=0 $=0

and p(r) represents the one-particle density. However,

Dirac(z'x'l)

has shown that position and momentum-space
orbitals are Fourier transforms of each other. Thus by
examining equation (II.10.3) it may be seen that p(p) is
simply the momentum-space one-particle density and hence
I(p) is the radial momentum distribution. By employing

accurate momentum-space wavefunctions, however, it is

possible to evaluate Compton profiles directly.

Additional information concerning the effect of electron
correlation may also be acquired through momentum-space
studies. As mentioned briefly in Chapter (II.1l), Banyard and
Reed(z’x'g) discovered that, relative to the HF description,
radial-based correlation increases the probability of a

large momentum separation p;, = |p; - p,| and decreases the
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occurrence of smaller values of Pyg- However, they also
found that the effect of introducing angular-based
configurations is to produce, on average, an enhanced
alignment between the momentum vectors p, and p,. They
concluded, therefore, that radial and angular based
correlation effects for atoms with 1S symmetry acﬁw in
opposition to each other. It is interesting to compare this
with position-space calculations where both radial and
angular correlation effects seek  to increase the
inter-electronic separation and thus augment each other. A
comparative analysis of the effects of the 2z, ¢ and
p—correlation correlation for the hydrogen molecule 1in
momentum and postition-space would <consequently prove

intriguing.

In this chapter it 1is also wuseful to discuss the
physical interpretation of momentum-space. For example,
although a high momentum corresponds to a large kinetic
energy and therefore to an electron very close to a nucleus,
the site of a nucleus can not be specifically located in
momentum-space. Also, for the case of homonuclear moleculeé,
the momentum distributions are single-centred since the
momentum of an electron associated with each of the nucleii
is identical. The origin in momentum-space, that is when
p=0, corresponds to an electron at rest and hence far from
the influence of the nucleii. Due to the Fourier transform,
however, no information may be obtained as to the direction
of the electron relative to the nuclear frame. All that may
be concluded 1is that the electron 1is 1located on an

infinitely large sphere, centred on a nucleus. There is
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therefore an inverting effect Dbetween ©position and
momentum-space. 'Hence, rather than the distribution of
valence electrons 1in position-space being diffuse and
difficult to analyse, in momentum-space the distribution
becomes peaked and short ranged. This is very useful as it

emphasises the region in the molecule where bonding occurs.

The complimentary nature of the information obtained
from the position and momentum distributions suggests that a
full wunderstanding of correlation effects requires the
analysis to be performed on both spaces. In accordance with
this, the following chapter outlines the techniques used to
transform the position-space wavefunctions into momentum-
space. Our earlier analysis of the correlation effects in
H,, using a natural orbital approach, and H; has then been

repeated in momentum-space.
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CHAPTER II.1l1l

Wavefunctions into Momentum-Space

There are two fundamentally different approaches to
evaluating wavefunctions in momentum-space. The first is to
formulate the Schrddinger equation directly in terms of the
electronic momenta and _then solve it, evaluating the
wavefunction directly in momentum-space. The Schrddinger

equation can be written as

(p2/2m)Y(El,Ez,..BN) + [V(El,EZ,..EN) - E]Y(BI,EZ,..EN) =0
(Ir.11.1)
in momentum-space. The N-electron momentum-space
wavefunction is represented by Y(py/Pyr--Py) and
V(pys/Pyr--Ry) 1is related to the Fourier transform of the
position-space potential energy term V(£1'£2"'£N)’ The
" Schrédinger equation has therefore been transformed from a
differential equation 1in position-space to an integral
equation in momentum-space and, for this reason, evaluation
of the momentum-space wavefunction by this method is

(2.xi.1)

mathematically complex. Svatholm has developed an

iterative method of solving the equation, based upon the

Gauss-Hilbert variational principle and the Kellogg theory

(2.xi.2)

of iterated functions . McWeeny and Coulson were able

to obtain approximate wavefunctions for the  helium

atom(2.xi.3) (2.xi.4)

and hydrogen molecule using this
technique, but with 1limited success. They concluded that

this method was impracticable for larger systems due to the
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vast number of iterations required to obtain solutions of

sufficient accuracy.

Fortunately, the second approach is much simpler to use
and wutilises the many highly accurate position-space
wavefunctions that already exist. It has consequently
enjoyed much more popularity and will also be used in this

analysis. Dirac has shown(2¥1-3)

that the position and
momentum-space wavefunctions are simply Fourier transforms
of each other. The one-electron position-space spin-orbital
¢(r,o) can therefore be expressed in terms of its

momentum-space equivalent ¢(p,o) as

$(r,a) = (Zu)-B/ZJME,g)eiE’EdE- - (11.11.2)

The integration is understood to be performed only over p
and hence the spin-functions remain unchanged in either type

of space. Obviously equation (II.11.2) can be rearranged as

$(p, o) = (2n)‘3/zj¢(£,g)e‘12°£d£ (I1.11.3)

and can therefore be wused to transform the individual
spin-orbitals of +the position-space wavefunction into
momentum-space. It also follows that if the orbital were a
function of the positions of two electron the transform

would be

¢(21,22) = ((Zn)—3/2)2[¢(£1,£2)exp(-i(gl.£1 + 22.52))d£1d£2.
(IT.11.4)
Perhaps the most attractive features of the transformation

method are firstly, the form of the wavefunction is
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preserved in momentum-space. That is to say, since the total
wavefunction may be transformed into momentum-space by
simply transforming the individual basis-functions, the
orbitals, configurations and consequently the complete
wavefunction are constructed in the same way in each type of
space. Secondly, since no approximations have been made,
exactly the same amount of energy can be accounted for in
each wavefunction. The only problem is that wavefunctions
containing explicit reference to the inter-electronic

distance cannot be transformed directly.

The same wavefunctions as used in the position-space
analysis of the Hy and Hg molecules will therefore be used

to investigate the momentum-space correlation effects.

(IT.11.1) The H2 Molecule

As discussed earlier in this thesis, the natural orbital

wavefunction of Davidson and Jones(z'Xl’s)

was used to
investigate the effects of correlation on the hydrogen
molecule as it could describe both the CI and SCF levels of
accuracy. By performing a Fourier transform on the position-
space representation of the wavefunction, it may be used to
investigate momentum-space effects. In positidn;space the H

2
wavefunction may be written as

1 _l i ___2
¥(r,,ry) = E My * . .
i=1 X; (E)X(Ey) + X(r)X(Ey) i€ m 2 0

(II.11.5)
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where

. 15
X; (L) = (2/R>3/2(2u>‘1/2zz:ckanknjk(52-1)m1/2(1—n2)m1/2
k=1 exp(im, ¢)exp(-ak).(II.11.6)
The constants Cpr Dy jk' m. and « have been given by
(2.xi.6)

Davidson and Jones To transform this wavefunction
into momentum-space the natural orbitals xi(E) must be
Fourier transformed, the transformed orbitals then being
substituted back into equation (II.11.5) to form the
complete momentum-space version of the Davidson and Jones
wavefunction. A problem arises, however, as the natural
orbitals are expressed in confocal ellipsoidal co-ordinates,
making it exceedingly difficult to employ an analytical
approach to carry out the necessary integrations. A semi-

numerical method. has therefore been developed and will be

demonstrated in the following analysis.

For the confocal ellipsoidal co-ordinate system the

incremental volume dr is given by(Z'Xi-7)
dr = (r/2)%(&? - n?)dE dn ds (11.11.7)
where 1 < E (=
-1 < n <1
0 < ¢ < 2m.

It is also possible to expand p.r with respect to nucleus A

as the origin to produce
A 1 A . SR - |
p-Lr=prTr (cosepcose + 51nep51ne cos(¢p - 4)), (1I1.11.8)

the nuclear geometry being illustrated in Figure (II.4.1).
It is obvious, however, that p‘cose; is simply the component

of momentum parallel to the =z-axis and p‘sineb is the
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component of momentum perpendicular to it, hence we may

define

p cosep = P,

and (11.11.9)

P 51n6p = pp
where 2z and p have their wusual cylindrical co-ordinate
connotations. By examining the geometry of the molecule it

can also be shown that

rPcose® = (R/2)(1 + En)

and (I1.11.10)

r2sine® = (R/2)[(E2 - 1)(1 - n2)]i/2.

Equations‘(II.ll.Q) and (II.11.10) can now be substituted

into equation (II.11.8) to give

B-L = P,R(L + En)/2 + p RI(E® - 1)(1 - n®) 1 %cos(e, - ¢)/2.
(I1.11.11)
The momentum-space natural orbital 1s constructed by
substituting equation (IIll1l.6) into equation (II4113) and
then introducing equations (II.11.7) and (II.11.11). The
integration over the ¢ variable is separable, thus allowing

the natural orbital to be written as

' 15
X;(p) = (2m)7%(rs2)3/2 J J §:ckanknjk[(Ez-l)(l-nz)]ml/z
k=1
exp(-«) (£2-n®)exp[-ip,R(1+EN) /211, (&n)dEdn

(Ir.11.12)
where
I,(&n) = Jexp(imi¢)exp[—ippR[(52-1)(1—n2)1/2cos(¢p—¢)/2}d¢.
(II.11.13)
If the substitution
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¢ = ¢p - n/2 + B S (11.11.14)

is made to equation (I1.11.13) it can be rearranged to give
2n

I,(En) = exP(imi(¢p-n/2))JexP[—i(ppR/2)[(52-1)(1—h2)]1/2
6=0
sing + mﬁ]ds. (Ir.11.15)

This equation, however, can be compared with the generating

function of a Bessel function(?-%1-8)

Jn(z) = (1/2n)Jexp(izsinB - mB)ds,
thus allowing equation (II.11.15) to be written as

. 2 2,.1/2
I,(&n) = ZnexP(lmi(¢p—n/2))Jm(ppR[(E -1)(1-n")1 /2).
(Ir.11.16)

The ¢ integration being accomplished, equation (II.11.16)
may be substituted into equation (II.11.12) to form the

remaining § and n integrals
15 _
X{(p) = (2n)-1(R/2)3/2exp(imi(¢p—n/2))J [j{:ckanknjk
k=1 :
[(82-1) (1-n%) 1™/ 2exp(-ak) (£2-n?)exp(-ip R(1+EN)/2)

Jm(ppR[(Ez—l)(l—nz)ll/z)dEdn. (II.11.17)

The integrals in equation (II.11.17) are not separable and
therefore are extremely difficult to evaluate in general. It
was therefore decided to employ numerical techniques to
solve them. The whole natural orbital was transformed into
momentum-space at once rather than individual |Dbasis
functions (as shown), as it 1is simpler to integrate
numerically one function consisting of the sum of fifteen

terms, rather than to perform fifteen individual
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integrations.

By a simple rearrangement, the natural orbital Xi(E)

becomes
Xi(E) = (Zu)-l(R/2)3(2exp(imi(¢p—n/2))exp(—isz/Z)
[Ai(pz,pp) - iBi(pz,pp)], (Ir.11.18)

where

15
Ai(p,.p,) = J Jj{:ckinkhjk[(Ez—l)(l—nz)]ml/zexp(—ai)(ﬁz—hz)
k=1

Ia(p RI(E2-1) (1-n*)17/%/2) cos (p,REN/2) dEdn
(I1.11.19)

15

By (p,.p,) = [‘[Echa“kan[(az-l)(l—nz)1m1/2exp<—a£)(az-n2)
k=1

Iu(p RU(EZ-1) (1-n*)1/2/2) sin(p REN/2) dEdN.

(I1.11.20)

Unfortunately, since the integrals are functions of the
nomentum-space co-ordinates P, and pp, they must be
evaluated for each momentum position. Certain
simplifications, however, do arise by considerihg the
symmetry of the functions with respect to the integration
over the n variable. All of the terms contained within
Ai(pzpp) and Bi(pzpp) are symmetrical about n =0 except for
sin(szEn/Z) contained in Bi(pzpp) and the njk terms for
some of the orbitals. Davidson and Jones have chosen the
jk's to be either all even or all odd for a particular
natural orbital. Consequently if the jk's are even then

Bi(pzpp) will be zero and if they are odd, Ai(pzpp) will be
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zero. Further, since the non-zero functions are symmetrical

about n = 0, the integration 1limits may be altered to

produce
1 15 | .

A(p,/p,) = zJ J Y e nd*ree?-1) (1-n%) 1 Zexp(-at) (£2-n7)
o ° k=1

3P RI(E2-1) (1-n%) 1772 /2) cos (p,REN/2) dEdN

(I1.11.21)
for odd values of jk and, for even values of jk’
1 15 . -
By(p,.p,) = zJ ‘[ D e e nI*r(g2-1) (1-n?) 1™ Zexp(~at) (£2-n?)
oo U k=1

Ia(p RU(E?-1)(1-n*) 1172 /2)sin(p,REN/2) dEdN.

(Ir.11.22)

Ai(pzpp) and Bi(pzpp) are easily evaluated for each value of
P, and pp required by employing a standard Gaussian double-
integration computer library routine. These calculated
values for Ai(pzpp) and Bi(pzpp) can then be substituted
into equation (II.11.18) to evaluate the natural orbitals.
The orbitals, applying equation (II.11.5), are subsequently
used to compute the magnitude of the total momentum-space

wavefunction at the chosen co-ordinates.

It is interesting to point out. that single-centred
cylindrical co-ordinates have evolved naturally in this
analysis from the two-centred confocal ellipsoidal
co-ordinates used in position-~space. This compares
favourably with the recognised cylindrical-symmetry of the

momentum-density in bi-polar systems(z‘Xi'g).
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(I1.11.2) The HY Molecule

As the CI wavefunction of Salmon and Poshusta(z'XI'lo)

and the SCF wavefunction of Schwartz and Schaad(z‘Xi'll)
have been used to study the position-space correlation
effects, they will be wused again to investigate the
equivalent effects in momentum-space. Since both
wavefunctions are written in Cartesian co-ordinates they may

be transformed into momentum-space by entirely analytical

 techniques.

As mentioned in Chapter (II.4) the Salmon and Poshusta

wavefunction can be expressed in the form

15
¥(r,,r,) = zizci(l + P,)[ETI8, (.15, (I1.11.23)
i=1

the Singer polynomial @i(gl,gz) being given by
8.(C,,C,)=exp|-a:(Li=8,:)2=2G. (£s=51:).(Ls=5-:)=b: (L =5,:)>
i‘L1Ly Pl-a; L1721 93117273/ -1E37253/P3 372557 |-

(I1.11.24)

The constants a;r 9y b,

; and c; as well as the vectors S,

(2.xi.10)

i
and S,;, are given by Salmon and Poshusta The
permutation operator Piz simply interchanges the electron
labels and the operator IT represents a summation over all
of the elements in the C3v symmetry group. Fourier
transforms will thus be performed on the Singer polynomials
and then equation II.11.23) will be used to construct the
momentum~space representation of the Salmon and Poshusta

wavefunction.
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Any general Singer polynomial may be rearranged as

_ 2 2 2. 2
®.(ry,r,) = exp ‘ai§1i‘zgi§11‘§2i-bi§21]exP[—Elai—EZbi

+£1.(Gi(El)+igl)+£2.(Hi(22)+i22)-£l.£2291]

(I1.11.25)
where
Gi(Ry) = 23;5,; + 29;5;; - ipy
and : (II.11.26)
Hi(Rp) = 2b;Sy; + 29;8,; - ipy-
Equation (II.11.25) can now be substituted into the Fourier
transform equation (equation (II.11.4)) to express the

momentum-space Singer polynomial in the form

_ -3 2 2 2
#;(Ry/Rp) = (27) exPl“ai§1i‘zgi§11°§21‘bi§21] fexP['biiz
*EZ'Hi(Ez’]E‘Ez'El’dEZ'
(II.11.27)
the function E(EZ) being given by

E(ry,/py) = Jexp[—aigi + £,.(G;(py) - 29152)]d£1.

Obviously E(Ez) can be separated into three Cartesian-type
integrals where
dr = dx dy dz

and -0

A
]
8

-0

In
<
IA

IN
N
In

It can be seen that these integrals are of the standard

form(2.xi.12)
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1/2

Jexp('szxz + tx)dx = (n/sz) exp(t2/452), (I1.11.28)

and therefore the Iy integration may be performed

immediately to produce E(Ez) as

3/2

E(r,.p;) = (n/a )3 2exp|(6,(p;) - 29;r,)%/4a,|. (11.11.29)

This expression for E(rz) can now be substituted into
equation (II.11.27) and the resulting equation rearranged in

quadratic form with respect to I, to give

2 2
exp(-2;57;-29;5;3-58537P;5;)

-3 3

8 (p;,py) = (21) 3 (n/ay )3/

2 2

J. GXP[—(bi-gi/ai)gz - I5.G;(py)9;/23; + (H;(py)
+ G, (py)%/4a;) |dr

i'By i’ |%k2e
By utilizing equation (II.11.28) again, the I, integration
may be performed in a similar way to the integration over
ry. Once this has been performed, after a little

manipulation, the Singer polynomial reduces to the

surprisingly simple form of

.32 2 2 . .
¢;(pysPy)=ki”"exp|-a;k;py-b;k;p5-1S,;.p 18, .Py+9;k;P; -Py/2
(I1I.11.30)

The constant ki’ which is positive for all values of i, is

defined by
‘ 2
k;, = 1/4(aibi - 9i)- (Ir.11.31)
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The full Salmon and Poshusta wavefunction in momentum-space

is then simply

15
Vv(py/Ry) = j{:ci(l + Py )[ET]®,(pq/Ry) - (II.11.32)

i=1

The Schwartz and Schaad wavefunction 1is written in

position-space as
bscp(LprLp) = &(r;) e(r) (I1.11.33)

where the molecular orbital ¢(r) may be expressed as

5
#(r) = Zciwi‘(g) + 42(x) + #5(r)). (I1.11.34)

i=1
The orbital ¢?(£), for example, is then represented by an
unnormalised 1ls Gaussian orbital with exponent a; ., centred
at a distance d.1 from nucleus A towards the centre of the
molecule, the remaining two orbitals being expressed in a
similar way. For convenience, if the centres of these

orbitals are located by S say, then equation (II.11.34)

jl
may be rearranged to give the molecular orbital in the form

¢(r) = Zc. ¢j(£) (IT.11.35)
j=1

where the basis orbital is
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2 .
¢j(£) exp['aj(E §j) l. (Ir.11.36)

By then using equation (II.11.3) the momentum-space

representation of the orbital is

¢5(p) = (zn)‘3/2Jexpt—aj(g - §j)2 - ip.r)dr.
(11.11.37)
This integration 1is of the .same form as the standard
integral used previously (II.11.28) and thus equation

(I1.11.37) becomes
65(p) = (2a5)3 2expl-p?/4a; - is,.pl. (11.11.38)

Hence the full Schwartz and Schaad wavefunction in momentum-

space is

3/2 2 2
SCF(Rl’RZ) =zz: zzzcjck(4a ay ) / exp[-21/4a. - Ez/4ak
j=1 k=1 + i85.pp + i5y. Ez]

(11.11.39)
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CHAPTER II.1l2

Results for H, in Momentum-Space

The Davidson and Jones wavefunction(Z'Xii'l) has been
transformed into momentum-space semi-numerically and used to
generate the results presented in this chapter. The symmetry
of the momentum distribution is ellipsoidal, with axial
symmetry about the z-axis, and hence cylindrical
co-ordinates remain the most logical choice. Thus, since the
form of the wavefunction is maintained in momentum-space,
the renormalised wavefunction curtailed to embody the first
two, three, four and then all ten of the natural
configurations may be used to investigate the momentum-space
z, ¢, p and second-order correlation effects, respectively.
Also, the first natural configuration may still be used to
represent the Hartree Fock wavefunction. The abbreviations
1NO, 2NO, 3NO, 4NO and 10NO refer to the number of natural

orbitals used in the renormalised wavefunction.

Like the position-space analysis of HZ’ the results may
be divided into one and two-particle density functions, with
the two-particle functions forming the major section.
Contours are chosen from the same sets as used in position-

space to highlight the geometry of the system, namely:

-190-



Hartree Fock Surface Contours

1 0.0001 6 0.02

2 0.0005 7 0.03

3 0.0025 8 0.04

4 0.0075 9 0.10

5 0.01 10 0.15

A-Surface Contours

1 -0.0050 15 0.0001
2 -=0.0040 16 0.0002
3 -0.0030 17 0.0003
4 -0.0025 18 0.0005
5 -0.0020 19 0.0007
6 -0.0015 20 0.0009
7 -0.0011 21 0.0011
8 -0.0009 22 0.0015
9 -0.0007 23 0.0020

10 -0.0005 24 0.0025

11 -0.0003 25 0.0030
12 -0.0002 26 0.0040

13 -0.0001 27 0.0050
14 0.0000 28 0.0060
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The negative contours are also represented by broken curves,
the positive contours by full curves and the zero contour by

a dotted curve.

In momentum-space it is impossible to locate explicitly
the site of a nucleus, however, the following definition may

still be employed:

x = position of the fixed electron which 1is

defined with respect to the origin at p = 0.

The full width of each of the surfaces represents 8 a.u. of
momentum. On the smaller surfaces, 9 millimetres corresponds
to 1 a.u. of momentum whereas, on the one-particle density
surface (Figure (rr.12.1)), 1 a.u. of momentum is

represented by 18 millimetres.

(IX.12.1) The One-Particle Density Results

Following the position-space study of the one-particle
density, the pxpz-plane, with py = 0, is examined in
momentum-space. The momentum-space one-particle density
inherits the axial symmetry of the position-space function,
resulting in contours in perpendicular planes to this

forming concentric circles an d, as a consequence, would

prove uninteresting.
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Figure (II.12.1) The H, momentum-space HF one-particle
density, "(El)' in the pxpz-plane with py = 0.
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Figqure (II.12.2) The momentum-space A-one-particle densities,
Ap(El), in the pxpz-plane with py = 0.




(1I1.12.2) The Two-Particle Density Results

In momentum-space we cannot locate electron 1 with
reference to the nuclear frame, nevertheless, it 1is
important for it to be defined with reference to the
momentum distribution of the molecule in some way. It is
therefore reasonable to locate electron 1 with respect to

the mean momentum of an electron, <pi>.

The first position is chosen to be at p, = 0. Positions
{ii}, {iii}, and {iv} are then defined by electron 1
possessing a momentum given by Py = 0.5<pl>, <py> and
1.5<pl> respectively with py and P, equal to zero. The HF
distributions, A-surfaces and partial planar Coulomb shifts
for these electron positions are presented in Figures
(¥r1.12.4-13) for the pxpz-plane and in Figures (II.12.14-23)
for the pxpy—plane with py = 0. Similarly, positions {v},
{vi} and {vii} are defined by electron 1 having a momentum
defined by P, = 0.5<pl>, <py> and 1.5<p1> with px'and py
equal to zero. As these positions maintain the axial

symmetry of the momentum distribution the PP -plane

results have not been presented, however, the pxpz—plzne (py
= 0) distributions are displayed in Figures (II.12.24-31).
The chosen momentum values of electron 1 are summarised in
Figure(II.12.3A). It is also possible to locate electron 1

with a momentum where Pyr P and p, are all non-zero. The

Y
physical interpretation of the effects of correlation on
such a surface, however, would be difficult to envisage and

hence they are not considered.
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Successive theoretical calculations have evaluated <py>

to be 0.929 a.u.'2-%¥11:2) .14 0.92845 a.u.(2-%11.3)  ppig s

consistent with the experimentally derived result of
0.93a.u. = 0.01a.u.(2’X11‘2). Consequently for the purposes

of this analysis
<py> = 0.93 a.u..

In the pxpz—plane, ¢ has been defined as the angle
subtendended between a line parallel to the pz-axis and the
vector p,, in an anticlockwise direction (see Figure
(I1.12.3B)). This means that for the first four values of
Py although there is two fold symmetry about the px—axis,
the angular distribution functions must be generated for the
full range of & (ie 0° < ¢ <£360°). Nevertheless, this
definition is consistent with previous definitions and it
allows all of the angular distribution £functions in the
pxpz—plane to be compared together. In the pxpy-plane, e is
defined with respect to the px-axis as. shown by Figure

(I1.12.3C).

The following results consequently represent a survey
of the effect of electron correlation on H2 in

momentum-space:
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— {vii} X

0.5<p1>

—— (vi} X

0.5<p1)

1 (vIX

o.5<p1>

1 iy X (ii} X {iiiy X (iviX —> p_

] o.s<pl> ! o,5<p1> -+¢—0.5<p1>—v{

Figure (II.12.3A) The location of the chosen fixed electron
positions of the partial planar distribution functions for
hydrogen in momentum-space. The expectation value

<py> = 0.923 a.u.

Figure (II.12.3B) & Figure (II.12.3C) The definition of the
angle € and the distance Pia when analysing correlation
effects in (B) the pxpz-plane or (C) the P,P
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(A) position (i} , ' (B) position (ii}

(C) position {iii} | (D) position {iv}

Figure (II.12.4) The momentum-space Hartree Fock V(Py5sRy)
distribution functions for positions {i}, {ii}, {iii} and
{iv} in the pxpz-plane with py = 0.
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0.4 4

" (A) Radial Distributions

Position {i}

Position {ii}

N Position {iii}
i
2 2l position {iv}
/)]
P12
0.0 - * )
0 ) 2 3 4 5
(B) Angular Distributions
0.15 ¢ Position {i}
Position {ii}
Position {iii}
0.10 4 Position {iv}
® 0.05 |
oo
0. 00 A * ’
0 %0 180 270 360
Figure (II.12.5) HF partial planar momentum distribution

functions for Hy, with electron 1 fixed at positions {i},

{ii},

{iii} and {iv} (see Fig.(II.12.3)) and electron 2

moving in the P,P, plane, were obtained by appropriate
integration of Fig.(11.12.4).
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(A) 2NO - INO (B) 3N0 — INO

rrelation (z + ¢) - correlation
z - co

(C) 4NO - 1NO (D) 10NO - 1INO

(z + ¢ + p) - correlation (z + ¢ + p + 2nd order)
- correlation

Figure (II.12.6) The partial planar A-surfaces, AV(BIZ'El)'
for fixed electron position {i} (see Figure (II.12.3A) for
the definition), with the roving electron located in the
pxpz-plane with py = 0.
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0.02 =« (A) Radial Shifts

12
0.00
o™
tH
-0. 02
-0. 04 ..
-0.06 -m
2NO-1NO . .
3NO-1NO ---
-0.08 = 4NO-1NO - .
10ONO-1NO ---
- .10 L
0.000
270
-0.002 --
-0. 004 --
-0. 006 =
Angular Shifts
-0.008 ..
-0.010 &I
Figure (IT.12.7) Partial planar Coulomb shifts for H: ,

with electron 1 fixed at position {i} (see Fig. (II.12.3))
and electron : moving in the p”p* plane, were obtained by

appropriate integration of Fig. (:: .12.6).
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(A) 2NO - 1NO (B) 3NO - 1INO
z - correlation (z + ¢) — correlation
P, P,

(C) 4NO - 1NO ' (D) 10NO — 1NO
(z + ¢ + p) - correlation (z + ¢ + p + 2nd order)
-~ correlation

Figure (II.12.8) The partial planar A-surfaces, AV(EIZ'EI)’
for fixed electron position {ii} (see Figure (II.12.3A) for
the definition), with the roving electron located in the
P,P,-plane with'pY = 0.
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0.00
I
(A) Radial Shifts
-0.02 -m
Key to graphs (A) & (B)
2NO0-1NO
-0.04 .. 3NO-1NO ---
4NO-1NO -
10NO-1NO ---
0. 004 T-
0.000
o
w
D
<3
-0.004 .- (B) Angular Shifts
Figure (II.12.9) Partial planar Coulomb shifts for ,

with electron 1 fixed at position {ii) (see Fig. (il.12.3))
and electron : moving in the p”p” plane, were obtained by

appropriate integration of Fig.(II.12.s).
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(A) 2NO - 1NO (B) 38O - 1NO
z - correlation (z + ¢) - correlation

(C) 4NO - 1NO (D) 10NO - 1NO
(z + ¢ + p) - correlation (z + ¢ + p + 2nd order)
- correlation

Figure (II.12.10) The partial planar a-surfaces, AV(p15/P1) ¢
for fixed electron position {iii} (see Figure (II.12.32A) for
the definition), with the roving electron located in the
pxpz-plane.with py =0,
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0.004 =

(A) Radial Shifts

0. 002 --
0.000
-0.002
-0. 004
Key to graphs (A) & (B)
2NO-1NO . .
3NO-1NO ---
4NO-1NO - .
10NO-1NO —
0.003 -r
0.002 ..
w 0.001
D
<3
0.000
270
-0.001 m- .
(B) Angular Shifts
-0.002
Figure (11.12.11) Partial planar Coulomb shifts for ’

with electron 1 fixed at position {iii} (see Fig. (ii.12.3))
and electron 2 moving in the p”p” plane, were obtained by

appropriate integration of Fig. (ii.12.10).
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(A) 2NO - 1NO ' (B) 3NO - 1NO
z - correlation (z + ¢) — correlation
pl
A ;pl
esssesvec’ \/ o ® (_—
(C) 4NO - 1NO (D) 10NO - 1INO
(z + ¢ + p) - correlation. . (z + ¢ + p + 2nd order)

— correlation

Figure (II.12.12) The partial planar s-surfaces, AV(EIZ,BI),
for fixed electron position {iv} (see Figure  (II.12.3A) for
the definition), with the roving electron located in the
pxpz-plane with py = 0.
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-0.0015
Key to graphs (A) & (B)
2NO-1NO . .
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4NO-1NO - .
0.003 T 10NO-1NO ---
0.002 --
0.001 .-
o
W
D
< 0.000
180 270 360
(B) Angular Shifts
- 0.001
Figure (11.12.13) Partial planar Coulomb shifts for

4

with electron 1 fixed at position {iv} (see Fig. (II.12.3))
and electron 2 moving in the p”p”* plane, were obtained by

appropriate integration of Fig. (II.12.12).
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(A) position {i} : (B) position {iif

(C) position {iii} (D) .position {iv}

Figure (II.12.14) The momentum-space Hartree Fock V(BIZ'RI)
distribution functions for positions {i}, {ii}, {iii} anad

{iv} in the pxpy—plane with p, = 0.
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(A) Radial Distributions
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(B) Angular Distributions
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Figure (II1.12.15) HF partial planar momentum distribution.
functions for HZ’ with electron 1 fixed at positions {i},
{ii}, {iii} and {iv} (see Fig.(II.12.3)) and electron 2
moving in the pxpy plane, were obtained by appropriate
integration of Fig.(II.12.14).
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' - correlation

Fiqure (II1.12.16) The partial planar A-surfaces, AV(ElZ'El)'
for fixed electron posiion {i} (see Figure (II.12.3A) for the
definition), with the roving electron located in the

Pxpy-plane with p, = O.
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(A) Radial Shifts

0.02T
0. 00
(N
-0.02
-0. 04 -
-0. 06
2NO-1NO . .
3NO-1NO ---
008 - 4NO-1NO - .
10NO-1NO ---
T .10 —
Q. 000
° 90 180
W
D
<3 —. 002 --
-0. 004
-0. 006 --
(B) Angular Shifts
-0. 008 -
Figure (11.12.17) Partial planar Coulomb shifts for ’

with electron 1 fixed at position {i} (see Fig. (II.12.3))
and electron : moving in the p”p” plane, were obtained by

appropriate integration of Fig. (II.12.16).
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(A) 2NO - 1NO

z - correlation

(C) 4NO - 1NO

(z + ¢ + p) — correlation

Figure (II.12.18)

PP

y—plane with P,

-
»

(B) 3NO - INO

(z + ¢) - correlation

(D) 10NO - 1NO

(z + ¢ + p + 2nd order)

~ correlation

The partial planar A-surfaces, AV(p;5/Py)

for fixed electron position {ii} (see Figure (II.12.3A) for
the definition),

with the roving- electron located in the
= 0.
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(B) Angular Shifts
Figure (11.12.19) Partial planar Coulomb shifts for H: ,

with electron 1 fixed at position {ii} (see Fig. (II1.12.3))
and electron : moving in the p”p”* plane, were obtained by

appropriate integration of Fig. (11.12.18).
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Figure (II.12.20) The partial planar‘A-surfaces, &v(p;5/P;1 ).
for fixed electron position {iii} (see Figure (1I.12.3a) for

the definition),

pxpyeplane with p, = 0.

with the roving electron 1located in the
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(B) Angular Shifts
Figure (11.12.21) Partial planar Coulomb shifts for

4

with electron 1 fixed at position {iii} (see Fig. (II.12.3))
and electron : moving in the p”p plane, were obtained by

appropriate integration of Fig. (Ii.12.20).
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Figure (II.12.22) The partial planar A-surfaces, aV(pqy4+Py) .
for fixed electron position {iv} (see Figure (II.12.3A) for
the definition), with the roving electron located in the

PP

Y-plane with P, = 0. ‘
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Figure (11.12.23) Partial planar Coulomb shifts for

with electron 1 fixed at position {iv} (see Fig. (II.12.3))
and electron : moving in the p”p” plane, were obtained by

appropriate integration of Fig. (II.12.22).
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Figure (II.12.24) The momentum-space Hartree Fock V(Py3/R;)
distribution functions for positions {v}, {vi} and {vii} in
the pxpz-plane with py = 0.
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Figure (II.12.25) HF partial planar momentum distribution
functions for Hz,'with electron 1 fixed at positions (v},
{vi} and {vii} (see Fig.(II.12.3)) and electron 2 moving in
the P,P, plane, were obtained by appropriate integration of
Fig.(II.l12.24). ‘
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P, ;!

(C) 4NO - 1NO ' - (D) 10NO - 1NO
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- correlation

Figure (II.12.26) The partial planar A-surfaces, Av(Elz'BI)'
for fixed electron position {v} (see Figure (II.12.3A) for
the definition), with the roving electron located in the
pxpz-plane with py = 0.
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Figure (11.12.27) Partial planar Coulomb shifts for

with electron 1 fixed at position ({v) (see Fig. (II.12.3))
and electron : moving in the p”p”* plane, were obtained by
appropriate integration of Fig. (II.12.26).
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The partial planar A-surfaces, 8V(py5+B; )

for fixed electron position {vi} (gee Figure (11.12.3A) for

the definition),

with the

pxpz-plane with PY = 0,

roving electron 1located in the
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Figure (11.12.29) Partial planar Coulomb shifts for ,

with electron 1 fixed at position ({vi} (see Fig. (II.12.3))
and electron : moving in the p”p”* plane, were obtained by

appropriate integration of Fig. (ii.12.28).
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CHAPTER II.13

Discussion of Hy Results in Momentum-Space

The first general obser§ation to make when considering
all of the momentum-space electron distributions displayed
in Chapter (II.12) is that they are single-centred in nature
and possess an ‘ellipsoidal-type’ symmetry that is aligned
to be perpendicular to the bond. Thus, as noted by
Coulson(z'Xiii’l), the presence of the bond decreasés the
mean component of the velocity along the bond axis but

increases it in perpendicular directions.

(IT.13.1) The Momentum-Space One-Particle Density Analysis

In order to obtain a theoretical model of the electron
momentum distribution in the H2 molecule, the uncorrelated
one-particle density in the xz-plane is presented in Figure
(Ir.12.1). It inherits the axial symmetry of the
position-space distribution but contains a maximum at the
origin. For small values of momentuﬁ, the electron is far
from the molecule and hence only experiences what is
effectively a single nuclear force; the contours are
consequently almost circular in form. Higher momentum is
then associated with the electron coming nearer to the
nuclear frame where it is employed in bonding, where the

contours develop into a characteristic ellipse-shape which
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is accentuated as the momentum is increased.

By considering the A-surfaces, shown in Figure
(I1.12.2), we see that they have a complex structure and
their range 1is comparable with the range of the HF
one-particle density itself. It has already been pointed out
that an advantage of transforming a wavefunction into
momentum-space using the Fourier transform technique is that
the form of the function is preserved and only the natural
orbitals need to be transformed. Consequently, the
A-one-particle density has the same mathematical form as

the position-space A-one-particle density and may be written

as
M
2 * 2 _*
i=2

(Ir.13.1)
The momentum-space natural orbital xi(El) is defined in
equation (II.11.18), from which it is easily seen that the
* . . .
product X;(p;)X;(p;) is real. The renormalisation constant

Ay is given by

M
: 2 f
Ay = 1/ E: My - (11.13.2)
i=1

Due to the mathematical similarities between the position
and momentum-space analysis, the occupation numbers are
identical and are given in equations (II.6.5), (II.6.6),
(IT.6.7) and (II.6.8), and hence are not repeated here. It

is necessary, however, to remind ourselves that electron
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Figure (I1I.13.1) Sketches of the x;(El)xi(Bl) probability
surfaces for 2 < i < 4 where X;(p) has been defined in
equation (II1.11.18). The surfaces are viewed in the
xz-plane and are aligned in the z-direction.
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correlation is introduced into the one-particle density by
the transfer of probability from the HF description of the
molecule into the correlating orbitals (see Chapter (II.6.1)
for further details). In addition, since the occupation
numbers are virtually independent of the number of
configurations employed in the generation of the surfaces,

the different correlation types can be examined separately.

The probability surfaces, defined by x;(El)xi(El),
differ from the equivalent position-space surfaces and
should be discussed before considering the A4-one-particle
density surfaces further. The xI(El)xl(Bl) surface
represents the HF one-particle-density and is given in

Figure (II.12.1).

Figure (II.13.1A) shows that there is a nodal plane in
the x;(gl)xz(gl) probability surface when p, = 0 and maxima
occur at approximately ¥1 a.u. from the origin on the
pz—axis. The probability decreases rapidly from these maxima
in the pz—direction but in the Py and py_ directions the
reduction is much 1less steep.' The pz—axis on the

. *
¢-correlating surface, X3(El)x3(El)’ represents a node and a
torus shape of maximum probability, centred on the pz-axis
may be observed. Furthermore, the decay from this maximum is
again faster in the pz-direction than in either the p, Or py
. . . %*
direction. The p-correlating surface X4(R1)X4(py), on the

other hand, contains an ellipsoidal shaped zero contour with

a maximum of probability at the origin.
It must be noted that the magnitudes of the shifts in
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probability due to correlation Ap(El) is generally greater
than in the position-space results even though both
distributions possess the same occupation numbers and the
orbitals are normalised. This is due to the fact that, since
the position-space space orbitals are two-centred, the
probability is spread over a greater area than the
momentum-space orbitals and hence a similar percentage
redistribution in probability will yield a larger effect. We
note also that, as a result of the requirement for ApM(El)
to be equal to ApM(—El) to enable the total averaged
momentum of the system to remain =zero, thg A-surfaces all

possess éggr—fold symmetry.

Z-correlation only is introduced in Figure (II.12.237).
This has the effect of reducing the probability of locating
electron 1 with a low momentum but increasing it when p, =
1.0 a.u. and the zero contours have a slight tendency to
bend towards the positive regions of the surface. The
surface may be generated by mentally subtracting Figure
(IT1.12.1) from the z-correlating surface (Figure
(Ir1.13.1A)). We see, therefore, it is the effect of the
xI(El)xl(El) HF surface that is responsible for the minimum
at the origin. Although this surface is not an exact
representation of the momentum distribution in the
equivalent position-space surface, Figure (II.5.2A), certain
comparisons may still be made. For example, Figure
(II.12.2A) can be interpreted as reducing the probability of
locating electron 1 in a region of low momentum, ie far from

the influence of the nucleii, yet increasing the probability
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of discovering it with higher values of momentum, especially
in the z—direction. This compares favourably with Figure
(IT.5.2A) 1in position-space where the probability of
locating electron 1 is reduced far from the nucleus and in
the mid bond position but increased just behind the nucleii,

i.e. in regions of high momentum.

The effect of é¢-correlation, as well as z-correlation,
is included in Figure (II.12.2B). As the occupation numbers
vary only slightly, the shape of Figure (II.12.2B) may be
generated by adding Figure (II.13.3]B) to Figure (II.12.23a)
and then subtracting additional HF probability to
compensate. It is therefore the effect of the third natural
orbital that causes the zero contours in Figure (II.12.2B)
to form into an ellipse-type shape. The area covered by the
positive region is thus increased yet, due to the effect of
the HF orbitals, the height of the maximum is decreased and

the depth of the minimum increased.

Surprisingly, we see that p-correlation, which is
introduced in Figure (II.12.2C), has the’opposite effect to
z and ¢-correlation as the magnitude of the minimum is
decreased. The maximum at the centfe of the XZ(El’X4(El’
probability surface must therefore be greater than the
maximum associated with the HF probability distribution.
Contrary to the effect of the other correlation-types
p—correlation therefore has the effect of increasing the
probability of discovering the electron with a small
momentum and hence, in position-space, far from the

influence of the nuclear forces. This agrees with the
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position-space surface where the maxima associated with each

of the nucleii are reduced slightly.

The remaining six natural orbitals have very 1little
effect on the A-one-particle density as demonstrated by
Figure (II.12.2D); this diagram nevertheless represents the
most accurate view of the effect of electron correlation on
the momentum-space one-particle density. The gross effect of
correlation is seen to decrease the probability of locating
the electron with low momentum and to increase it with a
higher momentum in the pz—direction. Thus, Ap(El) offsets,
in part, the general increase of momentum in the pxpy—plane
that is associated with bond formation. This effect has also
been observed in HeH' by Banyard and Reed(z'Xiii‘z). The
overall increase in momentum, however, must be responsible
for introducing additional stability to the Hz system. As
argued in Chapter (Ir.6.1), an increased momentum
corresponds to a larger electronic kinetic energy and, if
the wvirial theorem(z‘Xiii'3), is to hold, the potential
energy will lower by twice as much, and hence lower the
total energy. This has been reit erated by Epstein and
Tanner(z’Xiii'4) but with particular reference to momentum
distributions. They were also able to conclude that

correlation has the effect of increasing the values of <pn>

for n > 0 and decreasing them for n < 0.
When equation (II.10.1) is-considered, it can be seen

that the improvement 1in the Compton profile due to the

effect of electron correlation is
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I &—— 8

8J(q) = % [aI(p)/pP] dp (I1.13.3)
p=q
where
n 2n
AI(p) = J [ 8o(p) p? sinede d¢. (I1.13.4)
0=0 ¢=0

This provides a relationship between the A-one-particle
density and the improvement to the Compton profile from
which certain observations can be drawn. As AI(p) 1is
essentially the angular average of Ap(p), it will have a
similar form as the A4-one-particle densify. It may then be
argued that, for large values of g, A4J(g) will be positive
and for small values of g AJ(qg) will be negative; the most
negative value, of course, being found at q = 0.
Consequently, electron correlation has the effect of
reducing the magnitude of the Compton profile of Hy for
small wvalues of q but increasing it, and therefore its
range, at larger values of gq. It is known that when q = 0,
this corresponds to scattering £from the outer electrons
whereas, as q increases, electrons closer to the nucleus are
responsible. The change in the shape of J(q) due to electron
correlation is therefore simply a further reflection of the
fact that charge is moved closer to the nucleii. The effect
of correlation on the Hy profile was first noted by Brown
Smith(Z.xiii.S)

and and was employed to reduce the

discrimination between theory and the experimental results
of Eisenberger(z'XIll'G). It was not until the vibrational
and rotational effects were also included(z'X1ll'7),

however, that the accuracy of the experimental results could

-233-



be finally confirmed.

(IT1.13.2) The Momentum-Space Two-Particle Density Analysis

[A] Investigation of the momentum-space functions

The mathematical form of the momentum-space A-partial
planar distribution surface 4V(p,,,p;) is similar to the
position-space surface. We see from equation (II.11.18),
however, that the momentum-space natural orbitals are, in
general, complex even in the pxpz—plane. Consequently,
8v(p,,+p;) for the Davidson and Jones wavefunction curtailed

to M natural configurations, must be written very precisely

as
M
) L3 * ]
i,j=1
*
- Alﬂlﬂlplz (1] (21122) [11(21122)'

(I1.13.5)
where the notation [il1(p;,R,y) represents the ith
momentum-space natural configuration and A is the

M
renormalisation constant (see equation (II.13.2)). Equation

(II.13.5) may then be rearranged to be

M

A .
AV(E].Z'B].) = Zaijplz [ [i] (21122) [J](EI'EZ)
153=1

# [i1(py.p,) [i17(pq.p,)
1'&2 1’2
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M
+§E:aiiplz [i]*(gl,gz) (i1(p;,py)

i=1 (I1.13.6)
where the renormalised occupation numbers aij are given in
Tables (II.6.1), (II.6.2) and (II.6.3) for M = 2, 3 and 4
respectively. For the magnetic gquantum numbers, m, and mj,
both equal to zero, the product of the natural

configurations may be written as

[117(py Ry [31(Ry Ry) = Xi(Rp)X5(Ry)X; (Ry)X5(Ry) (IT.13.7)

but a linear combination of such functions must be used for

non-zero values of m, or mj.

The first term of equation (II.13.6) is in the form of a
function added to its complex conjugate and hence must be
equal to twice the real part of [i]*(El'EZ)[j](Bl'EZ)‘ The
remaining two terms may also be shown to be real, hence
making AV(p,,,p;) itself real in momentum-space. We must now
investigate the mathematical form of the A-surface paying
particular attention to the contributions - from the main

correlating terms.

From equation (II.11.18), the momentum-space natural

orbital is in the form

3/2

Xi(E) = (Zn)—l(R/Z) exp(imi(¢p—n/2))exp(—isz/Z)

[A;(p,,p,) - iB;(p,.P )] (I1.13.8)

where
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1 ©
15
A (p,.p,) = 2 J J }: CENIK Lee2-1) (1-n%) 1 Zexp (- k)
n=0 g=1 k=!
(e2-n?)a (p RI(E2-1) (1-n%)11/2/2)

N ~

cos(p,REn/2) dE dn (I1.13.9)

and

nk

By(p,/p,) = 2 % (e2-1) (1-n?) 1™/ Zexp(~at)

Il%o—'

II;—-,B

x
[\/]H

[ 3]

1/2

(g%-n )Jm(ppR[(Ez-l)(l—nz)] /2)

sin(szin/Z) d§ dn. (11.13.10)

It is also understood that if the jk's, the powers of nh in
Ai(pz,pp) and Bi(pz,pp), are even values for a particular
choice of ‘i’ then Bi(pz,pp) will be zero and Ai(pz,pp) will
be zero for a natural orbital with odd jk values. All of the
contributions to the 4V(p,,,p;) surface must therefore
originate from combinations of Ai(pz,pp) and Bi(pz’pp)
functions. They are very similar in form and, in fact, only
differ by either a cos(p,REn/2) or sin(szEh/Z) term. This
has the effect of causing Ai(pz,pp) to be at its maximum
value when p, = 0, whereas Bi(pz,pp) will contain a nodal
plane at this 1location. Thus, Ai(pz,pp) possesses ag
symmetry about the x-axis whereas Bi(pz,pp) possesses o
symmetry. If m, = 0, bath Ai(pz,pp) and Bi(pz,pp) will have
their maximum values at pp = 0, but for m, = 1l or 2, due to
the Bessel function, they will be both zero along the

pz-axis. Thus, although at first sight these functions

appear to be extremely complex, they are of surprisingly
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simple form.

The aj, occupation number has the largest magnitude and
it is therefore the term
* *
a,,P1,(01] (py,py)[21(Ry/Ry + [1)(Ry,py) (2] (Rg/Py))
that is responsible for the introduction of z-correlation.
By substituting the natural orbitals into this term we

obtain

* *
= =-2a,,p;,k A;(p;)By(R;) Aj(p,)By(p,) (II.13.11)

where k is simply the normalisation constant of the
momentum-space natural orbitals. In a similar way to the
position-space analysis, it is useful to sketch the form of
the one-particle probability surfaces, in this case defined
by A,(p)B,(p). From these surfaces, both the importance of
the type of correlation due to the location of electron 1
with momentum p, as well as the structure of the actual
redistribution of electron 2 due to correlation may be

observed.

We see, from Figure (II.13.2), that the AI(E)BZ(E)
surface bears a striking resemblance to the equivalent
position- space surface except, of course, that the nuclear
sites may not be located and a negative sign occurs. This is
expected as the momentum-space natural orbital should be of
the same type of symmetry as the position-space orbital.
Indeed, it has been shown that the angular distributions of
the orbitals remain unchanged in either type of

space(z.xiii.9).
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If the fixed electron is located on the positive side of
the Al(E)BZ(E) surface the probability of also locating the
roving electron on this side will increase as the negative
sign of a;, will cancel with the negative in equation
(Ir1.13.11). Also, the probability of 1locating the roving
electron on the the other side will decrease. A similar
argument may also be used when the fixed electron is located
on the negative side of the surface and similar results are
obtained. Thus, in momentum-space, z-correlation has the
effect of increasing the probability of discovering both
electrons with momenta in the same pz-direction and
decreasing the probability of locating them with momenta in
opposite directions. This type of correlation is directly
analogous to the angular-based correlation effect in atomic
work. The greatest changes occur at p, = <py> and -<py> with
Py and py = 0. Interestingly, we note that z-correlation can
have no effect in momentum-space when P, = 0, i.e. when
either or both of the electrons are travelling in directions

perpendicular to the bond axis.

The effect of the other two terms associated with
z-correlation is firstly, from the i = 1, j = 1 term, to
reduce the magnitude over the whole surface very slightly,
causing the zero contour to bend towards the region of
positive probability. The i = 2, j = 2 term then makes the

entire surface more positive.
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The term
% ' *
a;3P15 (1117 (py,p,) [31(pg,py) + [11(Rg,py) (317 (Ry,Ry)),
which is responsible for introducing the main ¢-correlation
effect, is more complex than the other terms as my = 1. By

substituting, in the pxpz—plane, we have

ay3r1,(1117(py,p,) [31¢Ry,R,) + [11(py,p,) 1317 (py/py))
= 2a;3r),k Ap(py)Ag(py) Ap(Ry)3(Ry) cos(8,(1)-4 (2)).
(Ir.13.12)

Thus, if ¢p(1) is defined to be =zero, the probability
surface Al(E)A3(E)cos¢p is of interest. It is consequently
the angular dependency that is responsible for the nodal
plane at ¢p(2) = n/2 and the negative region when ¢p(2) = n.
Therefore, when the sign of ajj is included in the
calculation, ¢-correlation has the effect of reducing the
probability of locating both electons with momenta in the
same ¢p—direction but increasing the probability of locating
them with momenta in opposite directions. It can be seen
that ¢-correlation can have no effect when either of the
electrons is travelling solely in the pz—direction. The
remaining terms that are introduced with é¢-correlation have
also been sketched but have very 1little effect on the
probability distribution of the surface. The HF
renormalisation term, that 1is the Al(E)Al(B) surface 1is
again responsible for the slight bending of the zero contour
to the region of positive probability. This type of
correlation has no direct analogy in atomic calculations as
it represents the distribution in directions perpendicular

to the bond axis.
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It is the term
* ' *
a;4Py, ([117(py,py) [41(R1/R,y) + [11(RgsR,) 141 (pg,Ry))
that is responsible for introducing the major p-correlation

effect. It is possible to show that

a1 41,1117 (pysp;y)141(py,py) + [11(Ry,0,) 1417 (py,p,))
= 2a,,p;,k A (p; )2 (p;) Ap(py)A,(p,)  (II.13.13)

which is real. It is the choice of coefficients Cp» defined
in equation (II.13.4), in the summation of the fourth
natural orbital that causes the A;(p)A,(p) surface to
possess a negative region for large momentum and also the
zero contour to be of ellipsoidal form (see Figure
(I1.13.2)). It therefore follows that if the fixed electron
is located within the positive region of the surface is with
a relatively small momentum, the probability of locating the
roving electron with a high momentum, i.e. in the negative
region of the A,(p)A,(p) surface, will increase. When the
electron 1 possesses a high momentunm, however, the
probability of locating electron 2 with a small momentum
will increase. The effect of p—correlation in
momentum-space 1is therefore to increase the difference
between ﬁhe magnitudes of the momenta of the electrons,
irrespective of any difection. Also, if the fixed electron
is located within the positive region of the A,(p)A,(p)
surface, the zero contour encloses the region of positive
probability of Av(ElZ’El)’ whereas the negative region is
enclosed if the fixed electron was located with a high

momentum.
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We can summarise the above observations by noting that
in momentum—spaée, relative to the Hartree Fock model,
z-correlation has the effect of increasing the prdbability
of locating both electrons in the same pz-direction and
¢—correlation increases the probability of 1locating the
electrons in opposite px-directions. Depending upon the
location of one of the electrons, p-correlation can then
either act to increase or decrease the momentum of the other
electron. Using this information, we are now in a position
to analyse the actual 4V(p,,,p;) surfaces and the partial
planar Coulomb shifts in terms of the relative composition
of z, ¢ and p-correlation. We have defined the momentum of
the test electron to be in the px-direction (perpendicular
to the bond) and the in the pz-direction (parallel to the
bond).

[B] Increasing momentum of test electron in the px-direction

The V(Elz’El) surfaces corresponding to positions {i},
{ii}, {iii} and {iv} (see Figure (II.12.3A) for the
definitions) are displayed in Figure (II.12.4) for the
pxpz-plane and Figure (II.12.14) for the pxpy—plane. Like
the one-particle density functions(z'Xiii‘l), we can see
that the component of momentum in the pz-direction, that is
parallel to the bond direction, is reduced. In directions
perpendicular to the bond, however, the distributions are
almost radially symmetric. The radial and angular
distributions (Figures (II.12.5) and (II.12.15)) illustrate
graphically the relatively large magnitude of the

momentum-distributions as compared to the position-space

distributions. We may also observe, however, that the
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distributions are more short ranged in momentum-space and
they decay rapidly as the momentum of electron 1 |is

increased.

Electron 1 is defined to posses no momentum in location
{i}. This 1is an extremely interestiﬁg position as it
corresponds to an electron that is far from the influence of
the nucleii and hence may be thought of, in position-space,
as lying on an infinitely 1large sphere, centred at a
nucleus. This is equivalent to the H,y molecule being ionized
and therefore electron correlation has the effect of
modifying the momentum distribution of electron 2 to
resemble the distribution that would be observed in H; at
this bond length. From Figures (II.12.6A) and (II.12.16A) we
see that the only effect of 2z-correlation is seen in the
renormalisation of the HF wavefunction. Similarly, from
Figures (II.12.6B). and (II.12.16B) it can be seen that
¢—correlation also has only an effect due to the
renormalisation as one would predict from the previous
discussion. The introduction of p-correlation, however, has
a dramatic effect upon the A-surface as shown in Figures
(II.12.6C) and (II.12.16C). The probability.bf locating the
roving electron with a high momentum is increased and the
probability of a low momentum is decreased in both planes.
The pxpz—plane exhibits a characteristic ellipse-type

symmetry, whereas the PP -plane is axially symmetric.

Y
Nevertheless, the global feature is that the mean momentum
of the roving electron is increased in all planes which, in
position-space, corresponds to the charge being drawn closer

to the nucleii from all directions. It is pleasing to note
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that the importance of p-correlation at small momentum
values of electfon 1l has already been predicted from the
position-space analysis (see Figure (II.6.3D)). The effect
of the remaining six natural orbitals in momentum-space,
which introduce a second-order correlation effect, is small
as it is wvirtually indistinguishable from the surface that
has been generated by employing only the first four
configurations. The relative importance of p-correlation is
again emphasised by the partial planar Coulomb shifts,
Figures (II.12.7) and (II.12.17). Also, the axial symmetry
of the pxpy—plane is illustrated by the AU(e) curves being

horizontal lines.

Since location {ii} is fixed on the px—axis, in this
instance with Py = 0.5<p1>, we see from Figures (II.12.8A)
and (II.12.18A) that z-correlation has no effect again.
However, as first observed by Banyard and Reed for
He(z’Xiii‘a), the effect of angulaf correlation increases
with an increase in the value of p,. From Figures (II.12.8B)
and (II.12.18B) we note that the probability of discovering
the roving electron in the vicinity of the fixed electron is
reduced but an increase in probability is observed in the
-Py direction. The zero contour bends slightly towards the
region of positive probability in the usu$1 manner in the
pxpy-plane but, in the pxpz-plane, a dramatic bending of the
zero contour is observed for large values of pP,- This is due
to the fact that the decay in probability in the
pz—direction is rapid and hence the magnitudes of both the
correlated and HF V(p,,,p;) surfaces will become extremely

small relatively quickly. Only a slight perturbation to
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oV(py,+pPy) will consequently be required to alter the sign
of the surface. In this case, it is due to the negative
contribution associated with the renormalisation of the
wavefunction. The introduction of p-correlation only reduces
the magnitude of the maximum very slightly, though, a large
enclosed area of negative probability is introduced, centred
at Py, = 0. This leads us to conclude that p-correlation is
responsible for increasing the momentum of electron 2 and
hence electron 1 must still be located within the positive

region of the Al(E)A4(E) surface.

The angular shifts for this location are particularly
interesting (Figures (II.12.9B) and (II.12.19B)) in that it
would appear that ¢ and p-correlation act in opposition to
each other. In particular, we note that ¢-correlation
increases the probability of locating the roving electron in
a direction towards Pp =0 ( & = 90° for the pxpz-plane but
€ = 180° for the pxpy—plane). By introducing p-correlation,
though, a drastic reduction 1in probability along this
direction may be observed. If the associated A-surfaces are
subsequently examined, however, it may be seen that
p—correlation reduces the probability in the area around the
origin which completely overwhelms the maximum behind the
origin that is due to ¢-correlation. The angularly averaged
effect of ¢ and p-correlation in this case is to act in
opposition to each other but the radial shifts show that the
mean p;, distance is increased with the inclusion of

different correlation-types.
The effect of z and ¢-correlation in position {iii} is
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very similar to position {ii} (see Figures (II.12.10A&B) and
(IT1.12.20A&B)) although, in this <case, the effect of
p—correlation is very much reduced. In both the PyP, and
pxpy-planes a minimum is observed, centred at the origin,
indicating that this fixed electron position is still within
the positive region of the A,(p)a,(p) surface. Nevertheless,

the curvature of the zero contour in the pxpy—plane is
very slight which suggests that the effect of p-correlation
is relatively minor. In the pxpz—plane, the zero contour
bends rapidly towards the negative region of the surface as
would be expected but then turns swiftly back towards the
positive region. This is again a consequence of the fact
that the probability is very small in this region'and the
fixed electron is very close to the boundary between the
positive and negative regions of A (p)a,(p). The
p—correlation characteristics are then slightly emphasised
by the introduction of the second-order configurations as
shown in Figures (I1I.12.10D) and (II.12.20D). The relative
importance of ¢-correlation may be seen in the partial
planar Coulomb shifts shown in Figures (II.12.11) and
(IT1.12.21). We see that almost all of the correlation is due
to the introduction of the third natural configuration and

consequently to ¢-correlation.

The distributions observed in position {iv} are very
small, nevertheless, some interesting characteristics
emerge. Zz-correlation still has no effect although, from
Figures (II.12.12B) and (II.12.22B), the usual ¢-correlation
characteristics are apparent. Figures (II.12.12C) and

(Ir1.12.22C) show that, contrary to the previous fixed
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electron locations, p-correlation now has the effect of
increasing the mggnitude of 4V(p;,,p;) at the origin and is
responsible for enhancing the bending of the zero contour
more towards the region of positive probability.
[C] Increasing momentum of test electron in pz-direction

The HF V(Elz'El) surfaces for locations {v}, {vi} and
{vii} are presented in Figure (II.12.24) for the pxpz-plane
but, since these momentum values maintain the axial symmetry
of the system, thg pxpy—plane surfaces are radially
symmetric and consequently have not been shown. The
associated HF S(plz) and U(e) curves are displayed in Figure
(IT1.12.25) and again the rapid decay in magnitude of the
distributions as the momentum of electron 1 is increased is
particularly evident. Also, due to the symmetry of the
positions (i.e. U(e) = U(180-¢)), only half of the range of

the U(e) curves has been presented.

As predicted, =z-correlation has a marked effect in
position (v} (see Figufe(II.lZ.ZGA)). We see that the
probability of 1locating electron 2 with a momentum in the
same p,-direction as electron 1 is increased with the
probability of locating them in opposite directions being
decreased. The curvature of the zefo contour is very small
indeed, indicating that the HF renormalisation effect is
negligible when <compared to the total z-correlation
contribution. From Figure (I1.12.26B) we see that
¢~correlation now has no effect on this fixed electron
location. However, due to the slight increase in the

curvature of the zero contour and the small decrease in
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probability over the entire surface, the contribution of the
HF natural configuration may be observed. Probability is
removed from the —region around the origin with the
introduction of p-correlation as demonstrated in Figure
(IT1.12.26C) and the zero contour bends initially to
encompass the negative probability region. This suggests
that the fixed electron position is within the positive
region of the A,(p)A,(p) surface. The subsequent addition
of the second-order correlation effects then only introduce

a very small perturbation to this distribution.

It can be seen from the As(plz) curves (Figure
(IT.12.272a)) that =z correlation works to decrease the
inter-electronic momentum Pis and then p-correlation has the
effect of increasing Pyp: A completely different picture may
be obtained from the angular shifts where both 2z and
p-correlation decrease the probability of 1locating the

roving electron along a line towards the origin.

The two maxima that were observed in the previous
location have formed into one when =z-correlation is
introduced at location {vi} and very little difference is
seen when ¢-correlation is included in the V(p,,,p,) surface
(figure (IT1.12.29B)). From Figure (II.12.29C), however, we
see that »p-correlation also has almost no effect,
suggesting that this fixed electron position lies virtually
on the border between the positive and negative regions of
the A,(p)A,(p) surface. As we would hope to find, the
AS(plZ) and A(e) curves demonstrate that z-correlation has
the effect of decreasing the P12 separation but ¢ and
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p-correlation contribute very little to the total curves.

Standard 2z and ¢-correlation characteristics may be
observed in position {vii} (Figure (II.12.30)) but as this
location is within the negative region of A,(p)A,(p), a
marked increase in probability is observed at the origin and
the zero contour is bent towards the positive region of the
surface. These effects are reflected in the associated

shifts in Figure (II.12.31).

[D] Comparison with Hen'

This newly acquired information may be employed to
understand further the shape of certain other Coulomb shift
functions. As an example of this, we have presented the
partial Coulomb shift Ag(plz,pl,el) evaluated by Banyard and
Reed(z'Xiii'z) in the study of the effect of electron
correlation on the HeH' molecular-ion in Figure (II.13.3).
The Ag(plz,pl,el) function simply represents the change in
probability of locating electron 2 with a momentum different
from that of electron 1 by an amount Pyy irrespective of
direction, and electron\possessing a momentum defined by Py

and 8,. It is therefore related to our 4V(p,,,p;) functions

and certain comparisons may be made.

Banyard and Reed have defined el to be the angle
subtended between P1 and the bond axis, consequently in
Figure (II.13.3A), when 61 = 0°, this describes the
redistribution in probability when electron 1 is travelling
parallel to the bond. It can now be seen that the first

shallow minimum at small values of Py is due to
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p—correlation acting to remove electron probability from the
vicinity of Py, = 0. At larger values of Pyr @ huge maximum
is observed which we may attribute to the dominant effect of
z-correlation. Far from the origin the z-correlation effect
is augmented by p-correlation that is now acting to increase

the probability at Py = 0.

A completely different picture is obtained when el = 90°
and electron 1 is moving perpendicular to the bond. Again,
for small values of Py, @ minimum is obtained due to the
effect of p-cdrrelation but, as expected, z-correlation now
has no effect. Instead a deep minimum may be observed due to
the combined effect of ¢ and p-correlatién both,acting to

increase the P, separation.
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CHAPTER II.1l4

Results for Ht in Momentum-Space

Using the formulae derived in Chapter (II.1l1l), the

momentum-space versions of the Salmon and Poshusta(z'X1v'1)

d(2.xiv.2)

and Schwartz and Schaa wavefunctions have been

used to generate the results displayed in this chapter.

The same sets of contours that were used in the H,y
analysis (see Chapter (II.12) for values) have been employed
in these surfaces. The negative contours are'represented as
usual by broken curves, the positive contours by full curves
and the zero contour by a dotted curve. In addition, where
applicable, the notation |

x = location of electron 1 which possesses a momentum of

Ry

is employed. The full width of all of the surfaces

corresponds to 8 a.u. and consequently 1 a.u. of momentum is

represented by 9 millimetres.

(I1.14.1) Thé One-Particle Density Results

;, the HF

Like in the ©position-space analysis of H
momentum~-space one-particle density distribution p(El) and
the difference due to the effect of correlation Ap(El) have
been evaluated in both the pxpy-plane (parallel to the plane
of the molecule) and the pxpz-pléne (perpendicular to the

molecule.
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Figure (II.14.1) The one-particle density Ap(Bl) and
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A-one-particle density Ap(gl) for H; in the PP
P, = 0) and the p _p_-plane (with Py = 0).
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(I1.14.2) the Two-Particle Density Results

The same format that was employed in the position-space
analysis of Hg has been used in the presentation of these
results. In other words, we have evaluated V(BIZ'BI) at the
HF level and AV(RlZ'El) for the pxpy-plane and usually the
pxpz—plane with the associated partial planar Coulomb Shifts

for each location of electron 1.

The chosen values of momentum assigned to electron 1
have been defined in Figure (II.q(FZA). The first location
was chosen such that electron 1 possesses no momentum and
obviously this represents a system where the electron is far
from the influence of the nucleii. The next three locations,
{b}, {c} and {d}, are concerned with increasing the momentum
of electron 1 in the px—direction; in a direction that is
perpendicular to one bond and at sixty degrees to the other
two. The remaining locations, {e} and {f}, are then defined
by electron 1 possessing a moment¥m purely in a direction
that is perpendicular to the plane of the molecule. Only the
plane that is parallel to the plane of the molecule (ie the
pxpy—plane (z # 0)) has been considered fog these two

positions.
As defined in Figures (II.14.2B&C), ¢ is defined as the

angle subtended between a vector that is parallel to the

p,—axis and the vector p,, in an anticlockwise direction.
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Figure (II.14.2B) & Figure (II.14.3C) The definition of the
angle € and the distance P13 when analysing correlation
effects in (B) the pxpy—plane and (C) the pxpz-plane.
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(I1.14.2a) for the definition).
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CHAPTER II.15

Discussion of Hg Results in Momentum-Space

The momentum-space arrangements of the Salmon and

Poshusta CI wavefunction'2-XV-1l)

(2.xv.2)

and the Schwartz and Schaad
HF wavefunction have been used to generate the
results in this section. Before proceeding with the
discussion of the results we shall first investigate the

forms of the chosen wavefunctions.

When comparing the Salmon and Poshusta wavefunction in
momentum-space (Equation (II.11.30)) with that of Schwartz
and Schaad (Equation (II.11.39)), the only difference in
format between them is the presence of the term
exp(g;k;p,.pP,/2) in the Salmon and Poshusta wavefunction.
This term therfore is responsible for introducing
correlation into the H§ molecule. It may be re-expressed as
exp(gikiplpzcosY), where y is the angle subtended between
the two electronic momentum vectors. Since this term is
multiplied by a positive coefficient, when formed into a
density it has the property of increasing the probability of
locating the electrons with a . small inter-electronic angle ¥y
and decreasing the probability of locating them with a large
inter-electronic angle. Consequently, the term is
responsible for increasing the probability of locating both
electrons travelling in the same direction and decreasing
the probability of 1locating them travelling in opposite

directions. It therefore introduces mainly an angular
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correlation effect which is responsible for reducing the
mean inter-electfonic momentum. Interestingly, this term is
derived from  the expression  exp(-2g9;r,.r,) in the
position-space Singer polynomial (see Equation (II.4.5) for
further details). By expressing this term in the same way as
before, we may see that it 1is also responsible for
introducing angular correlation. Due to the negative sign in
the exponent, the term has the opposite effect to that
previously observed in momentum-space and favours locating
the electrons with a large inter-electronic angle. The
probability of discovering the electrons on opposite sides
of the molecule is therefore enhanced and the probability of
finding them on the same side is reduced. This demonstrates
mathematically how angular correlation in position-space has
the effect of increasing the mean inter- electronic distance
whereas, in momentum-space, it has the opposite effect and

reduces the inter-electronic momentum.

Recently, Regier and Thakkar have transformed floating
Gaussian orbital based CI wavefunctions for H , He and Lit

into momentum—space(z'xv'3’4).

These wavefunctions are of
the same form as the Salmon and Poshusta wavefunction except
that the terms exp(—i§2i.gl) and exp(—i§li}22); containing
the expansion centres, do not occur in them. Since these
terms are totally imaginary, they lead to a <cosine
distribution function rather than an exponential decay in
the two-particle electronic density and thus have equal
effect for all values of p, and'E2 and are periodic. This

function is therefore responsible for describing the

molecular nature of the system.
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(I1.15.1) The Momentum-Space One-Particle Density Analysis

From Figure (II.l14.1A), we see that the momentum-space
one-particle density p(El) in the pxpy—plane possesses
symmetry such that p(p;) = e(-p;). It also inherits the
three-fold symmetry of the position-space representation of
the molecule, making the total distribution six-fold
symmetric. Another, more informative, way of accounting for
the shape of the distribution is to envisage the Hg molecule
as the conglomeration of three H,y molecule-type systems
located at 120° to each other. From the work performed on

2(2.xv.5)l however, we know that the momentum of the

H
electrons is increased in directions perpendicuiar to the
bond. Hence, the two ‘corners’ that are located on the
px—axis of Figure (II.14.1A), for eiample, are due to the
distribution of electrons associated with the ‘bond’ formed
between the two nucleii that are located off the px—axis. In
a similar way, the remaining maxima may be seen to be a
result of the remaining two ‘bonds’. It should be
rememembered, however, that, although we have discussed
three distinct ‘bonds’, they cannot be thought of as

conventionally occupied o¢-bonds due to the electron

deficient nature of Hg.

The effect of electron correlation on the one-particle
density Ap(El) is shown in Figures (1r.14.1c) and
(II.14.1D). They demonstrate that correlation in
momentum-space is responsible for a general increase in the
electronic momentum. Surprisingly, only at exrémely high

momentum values can the six-fold symmetry that was observed
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in p(El) in the pxpy-plane be seen and at all other momentum
values the Ap(Rl) surface is almost radially symmetric. In
the perpendicular plane to this, the pxpz—plane, we observe
an increase of momentum in the pz-direction from small P,
values to form maxima at P, = * 1.5 a.u.. In position-space
we have seen that, due to the 1limitations of the HF
wavefunction, correlation has the effect of compressing the
electronic charge cloud above and below the plane of the
molecule (see Chapter (II.8)). It is known, however, that as
the density of a charge cloud increases, the kinetic energy
and therefore the momentum of the electrons also increases
due to the larger electron- electron repulsive forces. This
increase in momentum is then observed on the 4p(p,) surface

in the pxpz—plane.

(II1.15.2) The Momentum-Space Two-Particle Density Analysis

The first location of electron 1, location {a}, is when
it possesses no momentum and is far from the influence of
the nucleii. A result of this is that the six-fold symmetry
of the HF distribution in the pxpy-plane is preserved. In
addition, the HF V(p,,,p;) distributions in. the pxpy—plane
(Figure (II.14.3a)) and the p p -plane (Figure (II.14.3B))
bear a striking resemblance in form to the one-particle
density functions in the same planes (Figures (II.14.1A) and

(I1.14.1B)).

From Figure (II.14.3C) we see that the effect of

electron correlation in the pxpy—plane is almost radially
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symmetric over nearly all of the surface. However, at high
momentum values. six small minima may be observed. By
comparing this diagram with Figure (II.1l4.3A) we note that
correlation has the effect of reducing the probability of
locating electron 2 with a momentum perpendicular to the
‘bonds’ which, from the Hy analysis, may be attributed to
‘¢—correlation’. By examining the A-surface in the
pxpz-plane (Figure (II.14.3D)) it may be seen that the zero
contours that were associated with the six minima in the
pxpy—plane form almost parallel lines. This indicates that
the effect of ¢-correlation on them is almost independent of

the momentum of electron 2 in the pz—direction.

The next three locations of electron 1 are concerned
with gradually increasing the momentum of the electron in
the px—direction. This means that the velocity of electron 1
is increased perpendicularly to one of our partially
occupied ‘o-type bonds’ and at thirty degrees to the other

two.

In location {b} electron 1 possesses a momentum of
0.5<p1> in the px—direction and, from Figures (II.14.5A) and
(I1.14.5B), we see that the HF V(Blz’El) surfaces are
similar in form to the 1last 1location except that the
six-fold symmetry in the pxpy—plane is less well defined.
The effect of electron correlation is different from that
seen previously as demonstrated in Figure (II.14.5C) and
(I1.14.5D). It is found that, in both planes, the
probability of discovering electron 2 with a very low

momentum is reduced but the probability of discovering it
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with a momentum in the same direction as electron 1 is
increased. This is due to the effect of electron correlation
redistributing electronic probability in directions parallel
to the ‘bonds’ (defined as z-correlation in the analysis
performed on H, due to the alignment of the bond). The
shapes o*-the six minima have also been altered slightly.
The minimum on the positive side of the px-axis, which is
due to ‘bonding’ perpendicular to the px—axis, has been
expanded in area and depth whereas the two off-axis minima
remain almost at the same position with respect to the
origin of the co-ordinate system although their shapes have
been altered. The minima on the negative side of the px-axis

may still be located but are less well defined.

The deep minimum at low momentum can be seen still to
dominate the Coulomb shifts (Figure (II.ngab). Indeed, we
see that the minimum is so large that the radial shifts
remain negative over virtually their entire range and also
the minimum at € = 180° dominates the angular shift. This
suggests that at this momentum value of electron 1, radial

correlation is still the most important correlation effect.

The momentum of electron 1 is increased to <py> in the
px—direction to define 1location {c}. We see from Figure
(I1.14%A) that the distribution is almost radially
symmetric in the pxpy-plane although the distribution in the
pxpz—plane posseses elliptical geometry. The large minimum
that was observed in the previous A-surfaces has been moved
to more negative values (Figures (II.14.9C) and (II.1473D))

and the maximum of the surface now lies on the other side of
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electron 1. The shallow minima that are observed at high
momentum, however, remain almost at the same location 1in

space and their shapes vary only slightly.

Due to the close proximity of the maximum point of the
surface to electron 1 in 1location {c}, the radial shift
becomes first positive then negative ( Figure (II.14.%3)).
This emphasises the relative increase in importance of
correlation parallel to the ‘bonds’. Thus, for example,
configurations that are constructed from 2p6 orbitals based
on the nucleus and pointing towards the centre of the
molecule will now have the greatest effect in lowering the

energy.

Electron 1 was given a momentum of 2<p1> a.u. in
location {d}. We see that the HF V(p,,,p;) surfaces, shown
in Figures (II.14.QA) and (II.14.QB), are almost identical
and the magnitudes of the distributions are very small. From
the A4-surfaces we see that the probability of 1locating
electron 2 at p, = 0 is now increased. From this we note
that radial correlation 1is now acting to decrease the
momentum of electron 2. The small outer minima are slightly
larger than befaore but they remain at the ﬁame position in
space. These observations suggest that this correlation
éffect (¢-correlation) is 1largely independent of the

momentum of electron 1.

In the remaining two locations we investigate the effect
of increasing the momentum of electron 1 in the pz—directiod

with Py reduced to zero. For reasons of brevity, surfaces
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parallel to the pxpy—plane only have been presented for

these two locations.

Electron 1 has been assigned a momentum of 0.5 <py> in
the pz—direction in location {e} and the surfaces are given
in Figure (II.14.10). The HF V(p,,,p,) surface for location
{e} is very similar to that of 1location {a}. This is
demonstrated by the fact that the radial distribution S(plz)
in 1location {e} 1is only a factor of two 1less than in
location {a} whereas the depth of the minimum in AS(plz) is

a factor of five less.

With location {f}, we see from Figure (II.14.11A) that
the HF V(p,,,p;) distribution is almost radially symmetric,
however, the six minima may still be seen on the A-surface
although their size is now dim inished. The minimum near to
the origin on the last surface has now developed into a
maximum in this location. The importance of the maximum is
illustrated by the partial planar Coulomb shifts (Figure
(I1.14.13)) as they are both positive over their entire
range. Again this maximum may be attributed to a more
precise description of the electronic _probébility
distribution in the regions above and below the plane of the

molecule in position-space.

To summarise, from this brief survey there seems to be
three ‘distinct bonding regions’ in H;. The observed
correlation effects in the pxpy—plane were almost consistent
with the effect that would be observed from three Hy
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molecule-type ‘bonds’ 1located at sixty degrees to each
other. From the' position-space analysis we have seen that
they are actually bent towards the centre of the molecule
but, of coure, they cannot be thought of as conventional
fully occupied o-bonds due to the electron deficient nature
of H;. Thus, considerable new insight has been gained into

the bonding arrangement of the molecule.
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CHAPTER II.1l6

Summary of Momentum-Space Analysis

(2.xvi.l)

The Davidson and Jones Salmon and

(2.xvi.2)

Poshusta gl2.xvi.3)

and Schwartz and Schaa wave-

functions were transformed into momentum-space by employing

(2.xvi.4) .13 the effects of

the Fourier transform technique
correlation on the electron momentum distributions in the H,
and Hg molecules were investigated. For the case of Hz,
correlation effects were again studied in terms of motions
parallel to the bond (z-correlation), axially around the
bond (¢-correlation) and perpendicular to the bond
(p~-correlation). This allowed us to compare the effect of

each type o0f —correlation in momentum-space with its

equivalent position-space version.

(I1.16.1) The One-Particle Density

The HF one-particle momentum density p(p;) and the
difference in it due to the effects of electron correlation
8p(p;) were evaluated in surfaces for the electron
travelling parallel to the plane of the molecule and, for

the Hg molecule only, perpendicular to the molecule.

For both molecules a greater momentum was observed
perpendicular to each bond than parallel to them; this was

consistent with the early theoretical work performed by
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Coulson(z‘XVI‘s). It was therefore possible to associate

certain areas df the one-particle density surfaces with
momentum distributions of specific bonds. For example, the
one-particle momentum density for the electron travelling
parallel to the plane of the H; molecule was found to be
six-fold symmetric. This was explained by realising that it
was the combined effect of three elliptically-shaped
densities distributions arranged perpendicular to each of
the o-type bonds (obviously, due to the electron deficient
nature of Hg, conventional fully occupied o-bonding does not

occur between any given pair of nucleii).

For H,, the overall effect of electron correlation on
the one-particle density surface was to reduce the
probability of discovering electron 1 with a small momentum
and to increase the probability of 1locating it with a
momentum parallel to the bond. For the case of H;, however,
the A-surface (4p(p,)) was found to be almost radially
symmetric when the electron was travelling parallel to the
molecule although, in the perpendicular plane, a
redistribution from low to high momentum in the pz-direction
could be seen. This was attributed to a better description
of the electronic probability distribution above and below

the plane of the molecule.

The Compton profile of an atom or molecule, J(q), was
shown to be related to the radial momentum

distribution(z’XVi's).

The angularly integrated A-surface
thus gave a measure of the improvement in the Compton

profile due to correlation effects. Consequently, for low
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values of q, J(gq) is reduced since Ap(El) is negative but,
for higher values, it is increased. This was shown to be
consistent with previous calculations performed upon other

systems(z.xv1.7,8)

(II.16.2) The Two-Particle Density

The momentum-space HF partial planar distribution
surfaces V(EIZ’EI) and the 'A—partial planar distribution
surfaces 4V(p;,,p;) were used to study the effect of

electron correlation on the H2 and Hg molecules.

The form of AV(ElZ'El)' for HZ' was analysed in terms of
its composition of z, ¢ and p-correlation. It was observed
that in momentum-space, with respect to the HF model,
z-correlation has the effect of reducing the mean inter-
electronic momentum whereas it 1is 1increased by ¢ and
p-correlation. This was found to be contrary to the effect
of correlation in position-space where all correlation types
were seen to be responsible for increasing the
inter-electronic separation. These observations represent
the molecular analogue of the atomic work performed by
Banyard and Reed(z’XVi’g’lo). They reported that, relative
to the HF model, both radial and angular-based correlation
acted to increase the average inter-electronic separation in
position-space, but in momentum-space they discovered that
the effects acted in opposition to each other. We have
therefore observed that z-correlation acts in a similar way

to angular correlation in atoms and, as would perhaps be
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expected, p-correlation behaves in the same fashion as
radial correlation. In addition, ¢-correlation in molecules,
which has no counterpart in single-centred systems, has been

seen to act in the same way as radial correlation

The form of the Salmon and Poshusta wavefunction for Hs
was more complicated to analyse than the Davidson and Jones
wavefunction for Hy, nevertheless certain comparisons
between the position and momentum-space forms of it were
made. For example, it waé seen that correlation in
position-space has the effect of increasing the angle
subtended between the position wvectors of the electrons
whereas, in momentum-space, the angle subtended between the

momentum-space vectors is reduced.

For each chosen momentum of electron 1, the AV(p1,+R1)
surfaces for Hz were analysed in terms of the relative
contributions from the three major correlation-types. When
the test electron was located with a very small momentum, ie
far from the influence of the nucleii in position-space,
p—correlation dominated the AV(BlZ,El) surface. The ¢
component of correlation became dominant as the momentum of
the test electron was increased perpendicularly to the
molecular bond and it was noticed that z-correlation had no
effect when either of the electrons were travelling solely
in this direction. Once the test electron acquired a
momentum parallel to the molecule bond, however,
z-correlation was seen to be responsible for increasing the
probability of locating both electrons with momenta parallel

to the molecular bond in the same direction. These
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observations were then employed to shed new light on the
partial Coulomb shift surfaces Ag(plz,pl,el) evaluated by

Banyard and Reed(z‘XVi‘lo) for the HeH' molecular-ion.

Electron correlation was found to be responsible for
reducing the probability of locating the electrons
perpendicular to each o-type ‘bond’ in the H; molecule, and
was attributable to ¢-correlation. This effect was
investigated as the momentum of electron 1 was increased
perpendicularly to one of thé bonding regions and was found
to be almost independent of the momentum of the test
electron. By increasing the momentum of electron 1
perpendicular to the plane of the molecule correlation

effects in the pz—direction were seen.

The study of the momentum-space correlation effects in
molecules using partial planar techniques has been seen to
be extremely useful and gives complementary information to
that obtained from position-space investigations. In
particular, the effect of bonding is highlighted in momentum
-space and it is also interesting fo note that, as for
atomic systems, the different components of correlation act
in opposition to each other in momentum-space. Future
studies into the effect of electron correlation on larger
molecular structures should therefore take the form of

tandem investigations in position and momentum-space.
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APPENDIX I

Atomic Units

Atomic units (a.u) have been used throughout this thesis

and must therefore be defined.

Mass:

Length:

Time:

Momentum:

Energy:

For a

F.L.Pilar,

1 a.u. of mass is defined as the rest mass of an
electron, namely, m = 9.10953 x 10-31kg.

1 a.u. of length is defined as the radius of the
first Bohr orbit of atomic hydrogen,

ie 0.52918 x 10 10p.

1 a.u. of time is the time required for an
electron to travel 1 a.u. of length in the first

Bohr orbital of atomic hydgrogen,2.42354 x 10”17

l.a.u. of momentum is equal to the instantaneous
momentum of an electron in the first Bohr orbit

of atomic hydrogen, 0.19926 x 10 23Ns.
l.a.u. of energy is defined as twice the
ionization potential of the hydrogen atom, being

27.210eV or 4.35956 x 10 187.

more complete discussion on atomic units s

S.

ee

'Elementary Quantum Chemistry’, McGraw-Hill Book

Company: New York (1968) page 175.
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APPENDIX II

The Hartree Fock Technique

It is well known that the Schrédinger equation cannot be
solved exactly for more than one electron due to the
electron-electron interaction term in the Hamiltonian. The

N-electron Schrdédinger equation is usually written as

H Y(§1'§2""§N) = E

exact

ekacty(ﬁl'ﬁzr'--ﬁN) (A2.1)

where the exact Coulombic Hamiltonian, for atoms, is defined

by
N
-1
exact = E:( A% /2 - Z/r ) + }:rij (A2.2)
i=1 i>j=1
or N
-1
exact Zho(r ) + Z 1] (A2.3)
i=1 i»j=1

h°(ri) being the Dbare nucleus Hamiltonian. The exact

space-spin wavefunction is represented by Y(§1’§2""§N)' If
N

the electron-electron repulsion term j{:r_l

i were replaced by

i>j=1
the sum of N, one-electron potentials, and the wavefunction
were written as the product of one-electron space-spin
functions the N-electron Schrddinger equation could then be
rearranged as N one-electron Schrﬁdingef equations and
hence, easily solved(ii‘l). These substitutions are known as
the Self-Consistent Field (SCF) approximation, the most
accurate and highly energy optimised SCF wavefunction being
termed the Hartree Fock wavefunction. The Hamiltonian is

therefore approximated to
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N N

Hoop = Zho(ri) + Zvi(gi), (A2.4)

i=1 i=1
where V.(x.) is the repulsive field experienced by the ith
electron, described by the ith spin-orbital, due to the

presence of the remaining N-1 electrons. By convention the
subscripts refer to spin-orbital 1labels whereas the

{
bracketed numbers refer to electron labels.

Only antisymmetric energy states are observed for
Fermions, hence the wavefunction, as well as being split
into one-electron spéce-spin orbitals must also Dbe
antisymmetric with respect to the interchange of electrons,
as the Hamiltonian is symmetric. Consequently, it follows

that the SCF wavefunction can be written as
boop(XyrXyr e X)) = ALo (%), 0,5(%5), . by (x)). (A2.5)

The ¢’s represent the one-electron spin-orbitals and A is
the antisymmetrizing operator. If the orbitals were
constructed to be orthonormal to each other then a
convenient way of expressing the wavefunction would be in

determinantal form, ie

QSCF(El'EZ’ .. -iN) = (N! )—1/2det{¢l(§1) r¢2(§2)l .. -¢N(§N)}-
(A2.6)

The constant (N!)"l/2

simply ensures that the wavefunction
has been normalised to wunity. The spin-orbitals contain
optimising parameters that can be varied to produce the
wavefunction that yields the 1lowest possible energy. An

expression for the SCF energy must therefore be formulated

and a method developed to find the conditions that are
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necessary to energy optimise it.
In general the energy associated with an unnormalised

SCF wavefunction is defined as

%*
Escr = J scriexact ¥scpd®1 9%y - - dXy/ J scr¥scrd¥9%;- - - Xy
(A2.7)

By rearranging and substituting for H using equation

exact
(A2.3), equation (A2.7) can then be expressed as

N
* %* o
ESCFJQSCF scpdX dx,. . .dxy = IQSCFZZZh (r;)egopdx dx,...dxy
i=1
. N
* -1,
+ I@SCFZE: i SCFdxldxz...dx (A2.8)
i>j=1

Clearly this equation 1is simply a statement of the

conservation of energy for atomic systems. By making the

definitions
’ s .
a=1
and thus

[4 [ r r ’ v r
p(-}sl'§2' ~'°§N‘§11521-- -EN) =det{9(_§1§1)lp(§2§_2)l- --P(ENEN)}l

(A2.10)
the dashes indicating that if the functions are acted upon
by an operator it is only the unprimed co-ordinates that are

affected, equation (A2.8) becomes
4 14 ’
ESCFJ°(§1'§2""§N|51'52""EN)dfld§2"'d§N
E:h°(ri)p(§l,§2,...§N|§l,§2,...5N)d§1d§2...d§N

i=1
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N

~1 oy ’ [
+ j{:rijp(il’EZ'"’EN'El'EZ""EN)dildEZ"'diNzAz 11)
i>j=1 :

The three terms of equation (A2.11) will now be investigated

separately to determine a more convenient expression for

Egcp- Firstly, it can easily be shown that

r 14

’
ESCFJp(El’§2’"’iNlil’EZ'"’EN)d§1d§2"'d§N = NlEgop-

(A2.12)
As the operator in the second term of equation (A2.11) is
only a function of the position of the ith electron, the

remaining integrations can be performed immediately,

resulting in

N

14 4 r
}Z: Jh°(ri)p(§1,§2,...§N|§1,§2,...EN)dildiz...diN
i=1
N
r
= (N-l)!E: Jh°(ri)0(§i§i)d§i
i=1
or, by using equation (A2.9), it can be written in full as
N

E: Jho(ri)p(il’EZ’"‘§N'§1'§2""EN)d51d§2"'d§ﬁ
i=1
N

N
= (N-1)! E: }Z: J¢a*(§i)h°(ri)¢a(5i)d§i. (A2.13)
{=1 &1

The summation over the electron labels x; does not have any
effect on the integration and therefore it gives rise to N

identical terms,

N
E: Jh°(ri)p(§1,§2,...§N|§l,§2,...§N)d§ld§2...d§N
i=1

N
- N(N-l)!j{:¢a*(§i)h°(ri)¢a(§i)d§i. (A2.14)
a=1

The integrations in the third term of equation (A2.11)
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th

can be carried out except over the positions of the i and
jth electrons to give
N

_1 r r r d d d

rij°(51'§2’"‘5N|51’52""EN) X1dx,. . .dxy
i>j=1

N
-— ’ 14
= (N—Z)!Ez J;iﬁdet{p(iiii),p(ijgj)}dﬁidij. (A2.15)
i>j=1

By expanding the determinant in equation (A2.15) and
realising that the summations over the ith and jth electron

labels do not have any effect upon the integrations, thus
producing N(N-1)/2 identical terms, it can be written

as
N

- 14 r 14
z: Jri§p(51’52""5N|§l'52'"‘iN)dildEZ"'diN
i>j=1

N N
* * -1
= (N(N-l)/Z)(N—Z)! E: E: ‘[¢a (Ei)¢6 (ij)rij(¢a(§i)¢s(§j)
a=]l B=1

- ¢B(§i)¢a(§j))d§id£j- (A2.16)

An expression for the SCF energy can now be obtained(ll'z)

by substituting equations (A2.12),(A2.14) and (A2.16) into

equation (A2.11) and dividing throughout by a factor of N!

to give
N N N
Eqep = » |®, (X;)h°(r.)é (x.)dx, +1/2 6. (X )4, (X5)
SCF e =i i’ Te'=1""=1 a =i'"B ‘=3
a=1 a=1 B=1
-1
rij(¢a(§i)¢6(§j) - ¢6(§i)¢a(§j))d§id§j (A2-17)
which can be rearranged in the form
N N
* o * * -1
Egep =Z Jd»a (x;)h%(r; )¢ (x,)dx, +Z J% (-’Ei”’s (§j)rij
a=1 a>pB=1

(¢a(5i)4’6(3‘-j) - ¢B(§i)¢a(5j))d§id§ (A2.18)

j.
These two equations represent expressions for the SCF
energy. The conditions to ensure that the ESCF has been
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energy optimised, maintaining the subsidiary conditions that
the spin-orbitals should remain normalised to unity and

orthogonal to each other, must now be established.

By exploiting the method of undetermined
multipliers(ii'3) we obtain
N N
* %*
8[ESCF +§E:kaaf¢a (§1)¢a(§i)d§i + [Xaﬁf¢a (Ei)¢6(§i)d§i
a=1 a>B=1
*
+ xBaJ¢B (§i)¢a(§i)d§i]] = 0, (A2.19)

where the A’s are the undetermined multipliers and have been
chosen so that Xaﬁ = Xﬁa' The first term in the equation
ensures optimum SCF energy, the second, normalisation and
the last terms, orthogonality. For ESCF to be at its minimum
value each spin-orbital must be optimised and thus, from

equation (A2.18), aESCF is given by

SESCF = J8¢a*(§i)ho(ri)¢a(§i)d§i + J¢a*(§i)h°(ri)8¢a(§i)d§i
N ~

* * -1
+) |80, (x1)857 (X5)E75(8, () 0g(x5) = $g(x;)6 (x))dx dx;

N
* * -1
+Z by (%5105 (X5)T735(80 (X)05(% ) = dg(x;)8,(x4))dx, dx,

(A2.20)
then a simple rearrangement produces
8ESCF = J8¢a*(§i)[ ho(ri)¢a(5i)
N
* -1
+ZJ¢B <5j)rij(¢a(51)¢6(§j) - "’s(ii”’a(ij”dij dx,
g=1
+ (complex conjugate of the above). (A2.21)
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The expression is now substituted into equation (A2.19) and

rearranged as

N

jwa*(gi)[w(riw (x;) + ZJ¢B*(§j)rI§(¢a(Ei)¢B(5j)
g=1
N

- ¢ (x;)9, (x ))dx Z)‘aa o X5) +Zka6¢s(§i)]d§i

a=1 o> fB=l
+ (complex conjugate of this expression) = 0. (A2.22)

This equation is in the form of a function added to its
complex conjugate being equal to zero. The solution can
therefore be chosen so that the function, and therefore its
conjugate, are each zero. Further, the remaining equation

can be expressed in the form
J8¢ (x,)£ (x ,x ) =0,

and for this to be true in general, the solution 1is that

fa(ﬁi'ij) = 0. This can be written in full as

N

6=1

N
+Z ou:x X ) +Z)\a6¢ (x ) = 0. (A2.23)
o=1 a>B=1

By combining the X’s and converting the matrix containing

them into diagonal form(ii‘4), it follows that

-289-



, N
° . * -1
he(r;)e (x;) + ¢a(§i)§: J 9g (Ej)rij¢6(§j)d§j
B=1

N
- E}%{$¢B*(§j)rz§¢a(5j)dfj = -e_¢_(x;)
B=1 (A2.24)

where the energy required to ionize the electron in the ath
spin-orbital is given by -€,. By defining the HF integral
operator Rae(ii) such that

* -1
Ryg(%i) ) P(X5) = og(x4) J g (§j)rij¢a(§j)d§j

(A2.25)
Equation (A2.24) may be rearranged in the from
[ he(r,) + Vv _(x,) ] ¢ (%;) = —e ¢ (x;) (A2.26)
where
N
v_(x;) = Z b (X )E7 e (x.)dx, - R_(x
e 2y L [te (2y)mistelay)ox ag'1) :

(A2.27)
[ The potential experienced between two electrons (electron
1l in spin-orbital « and electron 2 in spin-orbital B, say)
may be written as -\

A “&

* hia *
Vap(E10%y) = [#g (XpWhg(xy)dxy + |4 (21 o (x))dx;
- Ra5(§ﬁ - Rﬁa(id)~L (A2.28)

which 1is the potential experienced by electron 1 due to the

averaged effect of electron 2 added to the potential

experienced by electron 2 due to the averaged effect of

electron 1. ]
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Equation (A2.26) may now be seen to be in the form of a
one-electron Scﬁrﬁdinger equation where Va(ii) represents
the potential "experienced by electron ‘i’ due to the
averaged effect of the other electrons. Unfortunately, the
operator Ras(fi)? may not be evaluated at a given poiné??n
space due to the complexity of the mathematics.
Nevertheless, the spin-orbitals, and hence the total SCF
wavefunction, may be optimised wusing equation (A2.25).
Fitstly(ii's), an arbitrary set of spin-orbitals is chosen
(the choice, o0f course, being guided by any previous
knowledge of approximate atomic wavefunctions). The
spin-orbitals are |used, in conjunction with equation
(A2.25), to obtain an improved version of ¢a(§i). This
process is repeated for the other orbitals, exploiting the
best available spin-orbitals to calculate the potentials, to
evaluate a better optimised set of orbitals. The entire
procedure is repeated until it has been judged that the
forms of the spin-orbitals have converged, at which point
the set of simultaneous equations has been solved. By
substituting these energy-optimised spin-orbitals into the
SCF wavefunction (equation (A2.6)), the optimal energy for
that choice of basis set can be obtained. With a suitable
choice of spin-orbitals extremely accurate SCF wavefunctions
have been evaluated(ii'G'g)vand may subsequently be used as
excellent approximatiohs to the ideal Hartree Fock

wavefunction.
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APPENDIX III

The General Theory of Natural Spin-Orbitals

Any normalised configuration interaction (CI)
wavefunction, describing an N-electron system, may be
represented by a linear combination of Slater determinants.
By increasing the number of determinants employed in the
series, the total energy associated with the wavefunction
will become nearer to the experimentally derived value. The
rate of convergence to this value, however, cannot be
predicted, consequently the importance of each determinant
in the expansion and the number of determinants required to
give any desired accuracy is difficult to ascertain. Much
interest has therefore been focused on a method to evaluate
the wavefunction with the most rapidly energy convergent
series possible. Léwdin has shown(iii’l) that this occurs
when the spin-orbitals contained within the determinants
diagonalise the first-order reduced density matrix. This
particular choice of spin-orbitals defines the natural
spin-orbital (NSO) set as it may be specified uniquely for

each system.

Before investigating the method wused to arrange a
wavefunction in natural orbital form it proves necessary to

introduce some fundamental mathematical formulae.
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(A3.1) Mathematical Formulae

As discussed earlier an N-electron CI wavefunction may be

written as

Y(Xq/XpreeaXy) =j{:ci§i(§1,§2,...§N) (A3.1)
i
where the Ci's are linear coefficients and the Slater

determinants @i(51'52""5N) are defined by

8 (%) X Xy, 0 Ky) = (Nz)‘1/2det{¢§(§1),¢§(§2),...¢g(§N)}.
(A3.2)

The factor (NI)_]'/2

simply ensures that the determinant is
itself normalised to unity and the co-ordinate X1 for
example, represents both the space and spin co-ordinates of

the first electron. The elements ¢l in the ith

determinant
are spin-orbitals (either molecular or atomic) taken from an
extended basis set. Although an individual determinant does
not necessarily possess the symmetry of the full system they
are grouped together to form ’‘configurations’ which do have

this symmetry. The angular momentum and spin properties are

thus preserved only in the entirety of expansion (A3.1).

Consider two of the Slater determinants from the

wavefunction, Qk and @1 say, where obviously

8 = (N!)‘1/2det{¢§(51>,¢§(§39,...¢§(xN)}
and (A3.3)
¢ = (Nz)‘l/zdet{¢i(5l),¢§(52),...¢§<xN)}.

Overlap integrals may be defined between the spin-orbitals
in these determinants as, in general, they are

non-orthogonal, ie
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d];i - Jq,];*(il)(pl];(i*)d_}gl. (A3.4)

The integral between the two Slater determinants defined in
equation (A3.3) may be shown to be N! times the integral of
the product of the diagonal term @k and the determinant in

@1, or expressed mathematically

J@]’:@ldgldiz...dgl\] - (N!)(N!)-lJ-¢];*(§1)¢1]§*(_}52)...¢§*(§N)

det{tbi(il) b (xy) e .¢I];(§N)}d§1d§2. .dxy

(A3.5)
- Dkl.
kl . .
D can then be simply defined by
kl kl .kl kl
D = det{daa’dbb""dnn}‘ (A3.6)
Both ¢

Kk and @l may be expanded about the first rows of

their determinants producing

(k)
8, = (n1)"1/2 Z¢ak(§l)detk(1|a)
[ 2

and (k) (A3.7)
4 = (Nz)‘l/zZ«psl(gc_l)detl(lls)
B
(k)

The notation zz: emphasises that the summation takes place

[ 3
only over the spin orbitals that are contained in the kth
determinant. The (N-l)th order cofactors of LI and $, are
defined by detk(lla) and detl(llﬁ) respectively and the 1
indicates that the first row has been removed from the
complete determinant whereas the « (or B) indicates that the

ath (or Bth) column has been erased.
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In a similar way to that in which equation (A3.5) was

derived it may also be shown that
d k 1 _ kl
et"(l|a)det™(1|B8) ,d52"'d5N = (N-1)!D""(a|B) (A3.8)

where Dkl(a|6) is a (N—l)th order cofactor of Dkl. The
expression relates the cofactors of the determinants Qk and

kl

¢, to those of the determinant D™, containing the

non-orthogonality integrals.

(A3.2) The Derivation of the First-order Reduced Density

Matrix

The first-order reduced density matrix Y(Eilil) for the
system represented by the normalised <CI wavefunction
¥(Xy,X5s...%y) can be expressed as

r %* r r r
Y(X1%9) = N|Y (X1,%5,...X0)¥(Xy X5, .. .x)dx,dx,. . dx .

(A3.9)
The prime on the x, co-ordinate indicates that when

evaluating the expectation value of an operator, 5; is put
equal to X, after the operation has been performed and

consequently the operator only acts wupon the unprimed

co-ordinates.

By substituting the expression for the wavefunction

(equation (A3.1)) into equation (A3.9) it yields

’ *
v(xy1xq) = NJ ch kacléf dx,dxg...dx,.
k 1

If equation (A3.7) is now employed, the determinants @k and

¢, may be expanded about their first rows to give
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| (k) (1
(x.1x,) = N(N1)~t e, ) ¢ *M(x,)detF(1]a) ) ¢
RAR R E- : k o =1 1
k o 1 B
1
| ¢]B'(§1)det (1]8)dx,dxy...dxy. (A3.10)
(k)
The double summationzz: E:infers, firstly sum over all of
k o

the spin-orbitals contained in the kR

determinant and then

sum over all possible determinants. This can be clearly
(a)
rearranged as ., meaning sum over the determinants
o k

that contain a member from the ath

spin-orbital set and then
sum over all possible spin-orbitals «. By rearranging the

summations in this way equation (A3.10) can be expressed,

(o (
v(x1%,) = N(N!)‘lf Z¢a*(51)}jckdetk(1|a)z ¢B(51)§
o k . B8 1l
cldetl(llﬁ) dx

dx dx

2d%3. . .dx,.
The integrations are then seen to be in the form of equation

(A3.8) and thus produce

: a) (B)
Y(iilil) = N(N!)_l(N"l)!§:¢a*(§£)¢5(51§£f §i¢kal(u|B)cl.
o, B k 1

By a simple rearrangement the first-order reduced density

matrix may then be written as

vixylx) = ) 6 (510 v(alB)bglny) - (A3.11)
ﬁ:ﬁ
where yv(«x|B) is defined by

(o) )
v(e|B) =Z ickal(aIS)cl, (A3.12)
k1
The first-order reduced density matrix «can thus be

calculated from (A3.11). It is, however, a tedious task to

compute as (N—l)th order co-factors of determinants
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containing overlap integrals must be evaluated.

(A3.3) Natural Spin-orbitals for an N-electron System

A natural spin-orbital (NSO) may be expressed as a linear

combination of the original spin-orbitals,ie

Xy =Z. Y- (A3.13)
1

or in matrix notation

X =¢A. ) ‘ (A3.14)
A row-vector of the NSOs is given by X, ¢ represents a
row-vector of the original spin-orbitals and A 1is a
transformation matrix. The NSO’'s are defined to be
orthonormal and also, as mentioned earlier, must diagonalise
the reduced density matrix(iii'l). These two stipulations

may be expressed mathematically:

(A3.3.I) Orthonormality

This condition can be written in matrix form as

T =1 (A3.15)
where the notation represents the transpose of the matri#.
By substituting equation (A3.14) into (A3.15) we obtain
A" o7 s a> = 1. (A3.16)
As matrix A is constructed solely of numbers it may be

removed from the integration to give

ataa-=1 (A3.17)
where |
8= <o

and obviously 4 is the overlap matrix between the original
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basis spin—orbitals. It can also be seen that if these

spin-orbitals were orthonormal then 4 = I, reducing equation

(A3.17) to éTé = I and thus definiﬁg A to be any unitary

matrix(iii'z).

(A3.3.II) Diagonalisation of the first-order reduced density
matrix _

From equation (A3.11l) the first-order reduced density matrix

can be written as

14 T .
y(§1|§1) = ¢y ¢ . (A3.18)
Equation (A3.14) is again employed to substitute for ¢,
resulting in
' -1 -1
v(xq1%;) = XA " x (
and by defining a new matrix n as

Ly a™ht (A3.19)

n=a
the density matrix can be written,
! U
v(x;0%4) = Xn X' (A3.20)
r
It can now be seen that y(x;[x;) will be in diagonal form if
the matrix n is also diagonal. Further, by integrating

equation (A3.20) over electron 1 we obtain

N =an. (A3.21)

k
This infers that the sum of the elements in the diagonal

matrix n is equal to the number of electrons in the system.
Because of this, the -elements of n are known as the

‘occupation numbers’ of the NSO’s.

-299-~



To summarise, the two mathematical conditions to be

satisfied simultaneously when selecting NSOs are

T

>

AA=1 (A3.22) for orthonormality and

1.1

-1 ) = n (A3.23) where n is diagonal,

AT y (A

ensures the density
matrix is diagonal.

(A3.4) A Simplification for the Case of two Electrons(iii:3)

It is well known that for a singlet two-electron
wavefunction the spin-function can be factorized out of the

Slater determinants giving

ly(x,,x,) = }:ckl¢,’:(£1)¢l(52)(2)‘1/2 a(ys(g)—s(ya(g)],
k,1
(A3.24)
or in matrix notation omitting the spin-functions
1 *
¥(r,,r,) = ¢ C o . (A3.25)

Here r represents purely the space co-ordinates of the
electron, consequently ¢ is a row vector of space-orbitals
and C is a matrix containing the coefficients of the
original wavefunction. By substituting for ¢ in equation
(A3.25) using only the spatial component of equation (A3.14)

we obtain

1

1 - -1
¥(r;,r) = XA~ C (A

T xT. | (A3.26)

The wavefunction may therefore be written in the form

My = x ¢ X wher ¢ = ﬁ"g(&“)’ (A3.27)
By simple manipulation the first-order reduced density
matrix is then simply

' 2 1
v(x,lxq) = X & X .
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This matrix will subsequently be in diagonal form if ¢ is
also diagonal. It is therefore possible to solve equation
(A3.27) instead of equation (A3.19) for the two-electron
system, thus alleviating the problem of computing the ¥
matrix. Further, by comparing equation (A3.26) with equation
(A3.20) it can be shown that

n = c? | (A3.28)

and thus for a particular element of n,

_ 2
n, = Cp.

The simplification for the two-electron system is purely
a consequence of the fact that the wavefunction can be

written in quadratic form.

(A3.5) Solving the Equations

The simultaneous equations to be solved for the

N-electron case are

ataa-1 (A3.29)
with
ity aHT = (A3.30)

and for the two-electron case
T

A'AA=1 (A3.31)
with '
a7l cahHt - .. (A3.32)

Once y or C have been evaluated the N-electron equations can
be solved in exactly the same way as the two-electron
equations. This analysis will therefore restrict itself td
solving equation (A3.29) with equation (A3.30) on the
understanding that, by simply substituting C for y, the

other two equations may be solved.
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Firstly a wunitary transformation is performed on the

overlap matrix 4 to obtain

vl AU =T. (A3.33)

Here U is a wunitary matrix whose columns represent the
eigenvectors of 4 and T is a diagonal matrix containing the

eigenvalues of 4. If the elements of a matrix W are defined

such that
1/2
.= U, T.. .
WlJ UlJ 2 JJ)
This forces out the identity matrix from equation (A3.33)
giving
W' AwW=1I. (A3.34)

Comparing equations (A3.29) with (A3.34) it would appear

that W and A are identical. This is not the case ,however,

as, in general, A is given by the product of W and some

other transformation matrix X, ie

A = W X. (A3.35)

By substituting equation (A3.35) into (A3.29) the nature of

X may be discovered, thus

x"whawzx =1

By comparing this equation with equation (A3.34) it

immediately reduces to

x" x = 1.

So, to satisfy equation (A3.29), X may be any unitary
matrix. To solve equation (A3.30), equation (A3.35) is

substituted into it to become

lwly ) xhHt - a.

By defining W—]'I(E-l)T = M and using the fact that X is

unitary this equation may be rearranged as

x" M x = n. (A3.36)

If a unitary transformation is thus performed on the known
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matrix M, the eigenvalues obtained f£ill the diagonal matrix
of occupation numbers n. In addition, the columns of X are
constructed from the eigenvectors of M. As W and X are now
known A can be evaluated using equation (A3.35). The natural
spin-orbitals can then be constructed by employing equation

(A3.14).

(A3.6) A Solved Example

The simple two-electron CI wavefunction of Stuart and
Matsen(iii'4) will be used to highlight the principles of
transforming a wavefunction into natural spin-orbital form
(see also ref(iii.5)). The wavefunction is formed from the
linear combination of three normalised configurations and is

given by

¥(x;,%,) = (2)—1/2[ ci{1sls} + c,{1ls2s} + c3{252$}]

(A3.37)
where c, = 0.23586511,
c, = 0.37591055,
cy = 0.17935024

and J 1s(r)2s(r)dr = s = 0.71103715.
Equation (A3.37) can be written in full as

1s(1)a(l), 1s(1)B(1)

_ o172
CY(xy,%,) = (2) [ ¢,

1s(2)a(2), 1s(2)B8(2)
1s(1)a(l), 2s(1)B(1) 2s(1)a(l), 1s(1)B(1)

+Cz +02

1s(2)«(2), 2s(2)8(2) 2s5(2)a(2), 1s(2)8(2)
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2s(1)a(l), 2s(1)B(1)
+ C3 :

. ] (A3.38)
2s(2)a(2), 2s(2)B(2)

After factorizing out the spin component of the

wavefunction, the space-function becomes

Y(r;,2y) = c,1s(1)1s(2) + C,1s(1)2s(2) + c,2s(1)1s(2) +
c32s(1)2s(2). (A3.39)

As can be seen, there are four distinct spin-orbitals but,

as they are made up from two doubly filled spatial orbitals,

only two natural orbitals need be considered.

The first-order reduced density matrix is  easily
evaluated from equation (A3.39) as
r 2 2
v(x,1%,) = 1s(1)1s(l)lc] + c5 + 2c,c,S]

2
+1s(1)2s(1)[c ey + cyC38 + €55 + c,c4]
+29(1)1s(1l)[cgc, + cgs + C3Cy8 + cycq]

2 2
+2(1)2s(1)[cy; + c3 + 2c,c3S8].
Y(Eilil) is then written in the form
! T
v(xi1%1) = ¢y ¢

where y is defined as

X

_ [ci + c% + ZSclcz, clc2 + Sclc3 + Sc% + c2c3]
2 L]

2 2
clc2 + Sc1c3 + Sc2 + czc3, c2 + c3 + 28c2c3

The matrices y, C and A are therefore

[ 0.32302814, 0.28663820 ] [ 0.23586511, 0.37591055 ]
Y = c =
- 0.28663820, 0.26935098 - 0.37591055, 0.17935024
1.0 0.71103715
and A= .
0.71103715, 1.0

Many different methods exist for solving the equations and

for more complicated examples standard computer 1library
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subroutines should be employed. However, for this
particularly simple example the following analytical

technique provides insight into the method.

Equation (A3.33) states
T

Uu 4u-=r-r
and thus this expression is left multiplied by U we
‘obtain

AU=UT. (A3.40)

The columns of the unitary matrix U has columns representing
the eigenvectors of A and T is a diagonal matrix containing

the eigenvalues of 4. U and T can therefore be defined as

([a ][] ) mee [22,):

By substituting these forms of U and T into equation (A3.40)

I

two equations are formed,namely

I

40, =0, I

and
40

Xy I

2 =85 A
but for non-trivial solutions

det(a - Xll) =0 (A3.41)
and

det(4 - ng) = 0. (A3.42)

Firstly, by solving equation (A3.41),

1-x1, 0.71103715
0.71103715, 1-)
the solutions Xl = 1.71103715 or Xl = 0.28896285 are
obtained. By solving equation (A3.42) in the same way we
obtain kz = 0.28896285 or Xz = 1.71103715. These results
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imply that Xl and xz can be placed in T in any order as this
simply specifieé the arrangement of Hl and 22 in U. T may
therefore be defined to be
{ 1.71103715, 0.0

T =
- 0.0, 0.28896285
To evaluate U equation (A3.40) can be written,

(6 - xll)gl =0 (A3.43)
and

(8 - Xzz)gz = 0. (A3.44)

If U; and U, are expressed as

, u u
u, - [ al ] and gz - [ a2 ]
Up1
then equation (A3.43) becomes
-0.71103715, 0.71103715 u
0.71103715, 0.71103715
The solution is obviously u_ , = u,, and for U, to be
normalised it must be of the form
0.70710678
Ul = -
0.70710678
Solving equation (A3.44) in the same manner results in the
solution Uiy = —Up, to give
0.70710678
U, =
-0.70710678
and therefore the matrix U is constructed as
[ 0.70710678, 0.70710678 ]
.U = .
0.70710678,-0.70710678

1/2

By definition W,. = U (T..)" , thus

37 %3 s
[ 0.54057416, 1.31541865 ]

W =

- 0.54057416,-1.31541865

and by simple matrix algebra
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1 [ 0.92494247, 0.92494247 ]
W o o= .

0.38010714,-0.38010714
At this point the method for the two-electron‘ and
N-electron cases differ slighiky, for the purposes of

completeness in this example, however, both will be shown

concurrently.
For the N-electron case gY = y-l Y (E_l)T (A3.45)
whereas for two-electrons M. = E-l [« (E-I)T. (A3.46)

By simple manipulation we therefore have

( 0.99723995, 0.01887167 )
M
-y ( 0.01887167, 0.00275999

(0.99842136, 0.01986934 )

[ 0.01986934,-0.04863328 )
Then by performing unitary transforms on these matrices,

defined by equation (A3.36), we obtain X+ Xer D and ¢ as
(0.99982013, 0.01896618 )
Ky ) L 0.01896618,-0.99982013 ,'

(0.99982014, 0.01896616 )

§C = ’
{ 0.01896616,-0.99982014 |
( 0.99759792, 0.0 \

n =

= L 0.0, 0.00240200 J
f 0.99879827, 0.0 \

c =

= L 0.0, ~0.04901019 )

then
5 0.99759799, 0.0 ]
C = . .
= 0.0, 0.00240200

It can be seen that X is equal to X, and gz is equal to n,
showing that the two methods are equivalent. The sum of the

occupation numbers is 1 and not 2 as a factor of two was
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omitted from the first-order reduced density matrix.
Using equation (A3.35), the matrix A can be evaluated as

[ 0.56542539,-1.30492941 ]
A = .

0.51552846, 1.32543467

This allows the two natural orbitals to be written as

X(1ls) = 0.56542539¢(1ls) + 0.515528464(2s) (A3.47)
and
X(2s) = -1.30492941¢(1ls) + 1.32543467¢(2s). (A3.48)
(iii.4)

The full Stuart and Matsen CI wavefunction can thus

be expressed as
-1,2 1s(1)e(l), 1s(1)B(1)
Y(El'ﬁz) = (2) 0.99879827
1s(2)a(2), 1s(2)B(2)

2s(1)a(1l), 2s(1)B(1)
-0.04901019

2s(2)a(2), 2s(2)B(2)
where the orbital labels refer to the natural-spin orbitals

evaluated.
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