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ABSTRACT

Parts I and II of this thesis have certain common features*
Thus both parts are concerned with molecules of the form (including 
XĤ "*"). Also a theoretical technique appropriate for dealing with 
molecular systems of the type mentioned - the single-centre method - 
features in Part I and Part II#

The united-atom approximation (UA) - an early single-centre 
approach - is used in Part I in calculations on AlH^, NeH'*’ and AH*. 
Properties evaluated include electronic energy, force constant, 
diamagnetic susceptibility and X-ray scattering factor# The performauice 
of the UA technique is discussed in relation to previous applications
of the method to ten and eighteen electron systems#

In Part II an analysis of Hartree-Fock-Roothaam (HFR) calculations
on CH^ and HF is presented# Single-centre calculations are included and
are related to polycentre calculations by means of one-electron 
expectation vaü.ues, electron density expansions and density contour maps# 
The expectation values calculated include multipole moments, ^ r ^ ^  
and X-ray scattering factors# Where possible comparisons with 
experimental results are made#
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CHAPTER I 
THE UNITED-ATOM APPROXIMATION

I

In its application to problems in quantum chemistry the 
single-centre method may be further simplified by representing 
each molecular orbital by a single analytic atomic orbitaüL,
This approach, which will be designated united-atom (UA), has been 
extensively used on hydrides of the neon and argon-like series' \  

Early calculations concentrated on the ten electron hydrides. 
Gasper^^) applied the UA approximation to OH , H^O and H^O* while 
Bishop et al^^) studied NH^, H^O amd HF. Bamyaurd amd Hake^^*^) 
published a series of papers on the argon-like series and were 
able to evaluate the performance of the approximation by comparison 
with experiment and with the results of other theoretical 
investigations.

The results of applications of the UA method, taking into 
account its inherent crudity, showed pleasing agreement with 
experiments in evaluations of moleculau? geometry, total electronic

( 5)energy amd other physical properties' Comparisons with more 
extensive calculations^on XI^ systems (X representing the heavy 
nucleus in the hydride molecule) further strengthened the case for 
the UA method as a simple approach capable of yielding reasonable 
results for many properties of interest#

In this work the range of UA calculations is extended to 
include the systems NeH*, AH* and AlH^ . Although experimental data
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on these systems is meagre, the UA results may be compared with 
those of other theoretical studies.

Details of the UA Approximation
/ g\

A full account of the UA method has been given elsewhere' 
The essential features of the method are reproduced here.

Molecular Orbitals

Each molecular orbital is approximated by a single atomic 
orbital of the form

0, ^ )  =  Nl** r*" (1.1)

Where denotes a real spherical harmonic and P(r)
is a polynomial in r. Explicit forms for the radial normalization

t-factor, N, appear below. These functions were originally used by 
Fock and Petrashen' '. The atomic orbitals appearing in the total 
wave function will be those appropriate to the united-atom of the 
molecule, i.e. the atom formed by coalescing all nuclei. Thus the 
electron configuration may be described as neon or argon-like when 
considering ten or eighteen electron systems respectively.

A set of orthonormal UA molecular orbitals is obtained by 
choosing the coefficients which appear in the polynomials P(r).
The resulting radial factors for the Is, 2s, 2p, 3s and 3p orbitals
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may be written:

R(ts)= Nis e .

R(2s) = Nzs[i - 3 

R  (2pi) = N)p- r c  

R ( 3 ^  =  l ^ î î F '  ®
_ ><ir

R(3r)= Napjl - +^c)r]r t
u)Kcfe i = %) y, Z"

ALto u 4-

(1:2)

< s  = [l^* + + 4(1-V+X) +3o/‘v3' +45D']
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3| (e< + S)[3(p^i)-

The Wave Function and Energy

Using the molecular orbitals defined in (1,1), the total 
wave function is expressed as a single determinant composed of 
orthonormal spin orbitals

= det \ <A«.... > (1.3)

The non-relativistic Hamiltonian within the Born-Oppenheimer 
approximation is utilized:

H  =  Y  H; +  2 1  "fee 2 1  (1-4)
i OK. V u>v

H^ is the Hamiltonian for the i^^ electron in the nuclear framework 
alone and is given as

H . = ^  "  Z l ^ ;  . 0-5)
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The distances r^, and are respectively, the distemce of the
i^^ electron from the origin, from the proton and from the
electron. R euid R . are the distances of the proton from the u u V
origin and from the V respectively.

Using the variational theorem, the total energy of the system 
is written as

r-Cpr* Igr-

The energy function (1.6) reduces to a sum of integrals of the usual 
form on introducing the UA wave function into (1.6). All integrals 
may be solved analytically and details of the integral solutions may 
be found in the Appendix. To determine the best energy in the 
context of the variational theorem it only remains to minimise the 
energy expression with respect to the parameters of the UA wave 
function. These are of course the exponents in the basis functions 
and the proton-heavy nucleus distance - the bond length of the system 
which may be treated as an additional variational parameter.

Optimisation of the total electronic energy for the ten and 
eighteen electron systems considered here was carried out on cui 
Elliot 803 computer. Using the optimum wave functions calculations 
were performed to determine other physical properties. A detailed 
report of the results of the calculations on AlU^ , NeH* and AH* 
appears in the next two chapters.
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CHAPTER II
PHYSICAL PROPERTIES OF AlH^

The Co-ordinate System

The co-ordinate system used for an XH^ molecule is shown in 
Figure 2,1, The bond angle is set equal to the tetrahedral angle 
©T.

From symmetry considerations a reduction in the number of UA 
wave function parameters cam be made by observing that for the 
co-ordinate system in Figure 2.1 the exponents for the 2p and 3p 
orbitals must be such that

fx = in, =  7% == -f (2.1)
tx  =  •= "Xl =  '*1.

Thie total number of variational parameters for AlH^ is thus reduced 
from ten to six including the bond length.

In Table 2.1 optimised energies for AlH^ at various bond 
lengths are presented. Included in the table are the results of 
Albasiny and C o o p e r ^ w h o  published their findings during the 
course of this work. These authors adopted a numberical SCF technique 
within the single-centre approximation. They included spherical 
harmonics, (G, , up to three in L  in the expansions of
their molecular orbitals and determined the radial factors in the
expansions numerically. They report results for spherical and non-



Co-ordinate system

X H ,for XH^ molecule

Figure 2*1

C o - ordinale system 

for X H molecule

Figure 2 2
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TABLE 2.1

ENERGIES AND VARIATIONAL PARAMETERS FOR AIH4-

BOND
LENGTH

ENERGY X P Y r

3.1322^ -242.0270 12.698
1

5.091 4.435 1.417 1.143

3.0 -242.0226 12.696 5.094 4.436 1.453 1.179
UA

RESULTS 3.2 -242.0258 12.696 5.092 4.434 1.399 1.126

3.25 -242.0237 12.695 5.092 4.434 1.386 . 1.114

SCF(S)

scf(n s)

3.137^

2.965^

-243.222

-243.734

a All quantities in atomic units
b Theoretical bond length
The SCP(S) and SCF(NS) results cire those of Albasiny and Cooper (reference 10)
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spherical cases; in the former only the first harmonic is retained 
in each molecular orbital, whilst in the latter the full angular 
dependence is utilized. The results for these two cases are 
included under the headings SCF(S) and SCF(NS) respectively in 
Table 2.1.

The final optimised energies in the UA calculations are such 
that chcuiges of one unit in the fourth figure of the exponents 
produced no changes in the seventh figure of the energy, eü.though 
larger exponent variations would do so.

Physical Properties for A1H^_

The simplicity of the UA wave function makes the calculation 
of several molecular properties quite straight-forward. The 
evaluation of the X-ray scattering factor, diamagnetic susceptibility 
and the breathing force constant is discussed in this section.

A. X-Ray Scattering Factor

The X-radiation scattered by molecules of a gas consists of a 
coherent part, which has the same wavelength as the incident radiation, 
and an incoherent component which has a continuous spectrum of 
frequencies less than that of the incident radiation. The incoherent 
component results from the Compton effect.

r 11 ̂Waller and Hartree' ' have made a detailed theoretical 
investigation of the scattering process and they showed that the total 
intensity of the scattered radiation is given, for one molecule, by
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I  .  z ( T r i % . r  ( - )

Where ^

1=1
-

(2.3)
gmd is the intensity which would be scattered by a free
electron on classical theory. Also \) and are the
frequencies of the initial and scattered radiation respectively 
and 2 and are the vectors defining the directions of the
initial and scattered waves. and eu?e the
initial and final wave functions of the system and N is the total 
number of electrons in the molecule. refers to the normal
state of the molecule. For the formula to be applicable, relativ- 
istic effects must not be important and y must be higher than 
the K-absorption frequency of the system. Thus the formula may be 
appropriately applied to predict X-ray scattering for light atoms 
and molecules using incident wavelengths with a lower limit in the 
region of 1

If coherent scattering alone is considered, then the initial 
amd final states of the system are the same and (2.2) reduces to

Ieoh (2.4)'
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Substituting for produces an expression for the mean
intensity of the coherent radiation

r

where is the electron density for the system and

X „  =  = K  fTr (2.6)
\

0  being the angle of scatter and \ the incident wavelength
The coherent scattering factor f( ) is defined by

fH*C) =  ^  - (2.7)
i  a

Theoretical investigation of the coherent and incoherent
( 22)X-ray scattering in atoms has been performed by Freeman' ' amd

(23) (4)Ibers' '• Banyard amd March' ' have shown that the scattering
factor may be expressed in a particularly simple form if the one-
electron density 9, is expanded in a series of spherical

harmonics, that is

pLr, 0, «#>) i t  ^  (2.8)

then
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where
p tr)I L*Vk (2.10)

W

Thus each radial term in the electron density expansion contributes
to the coherent scattering factor according to (2.9).

The UA one-electron density for AlH^ will be spherically
symmetric due to the symmetry constraints imposed on the 2p and
3p orbital exponents. In this case the scattering factor is given
by X C O  where

* —  \
if) (2.11)

(iCr)

Defining the radial density distribution D(r\ for N electrons by

T)(y) =  N (2.12)

(2.11) may be rewritten as

p(r) ( *C*~) <ir 
( 1 r )

(2.13)

In Figures 2.3 and 2.4, diagrams are presented showing the 
radial density distribution and the X-ray scattering curve respectively, 
computed from the UA wave function at the theoretical bond length 
of 3.1322 a.u. These results may be compared with those from 
Albasiny and Cooper's SCF(NS) wave function at a bond length of



- 13 -

2.965 a.u., which are also included in the diagrams. Only the 
contribution from the spherically symmetric term in the SOP density 
to the scattering factor is shown in Figure 2.4, since contributions 
from higher angulem terms are small in comparison.

B. Diamagnetic Susceptibility 
( 12)Van Vleck' * has shown that the total diamagnetic susceptibility 

of a molecule in a * state may be written

=  (2.14)

The second terra in (2.14), , represents a temperature
independent péœamagnetic contribution to ^  auid entails a 
knowledge of all excited states for its evaluation. An experimentally 
based determination of is possible, as has been shown by
Eshbach and Strandberg, if experimental values for the diagonal 
components of the electronic part of the molecular gyromagnetic 
tensor are available. The individual contributions, amd »
to the total susceptibility are gauge dependent, i.e. dependent on the 
gauge chosen for the vector potential, although the total susceptibility 
is gauge invariant.

For AlH^" the diamagnetic contribution, , to the molar
susceptibility is calculated here using the optimum UA wave function
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22
20

3 020 4 0
r

figure 2.3: Eadiaü. Density Distributions for AIH]
Curve a - UA, curve b - SCF(NS)

20
f

03 0 4  05
SIN 0A/

0-2

Figure 2.4: X-ray Scattering Factor for AlH^
Curve a - UA, curve b - SCF(NS)
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at the theoretical bond length. Introducing the radial density

distribution defined in (2.12), is expressed with respect to
-6the A1 nucleus as origin in units of 10 emu per mole as

^  =  - 0  7913 ■per-) r*- J r  (2.15)

In Table 2.2 values of are included for the UA wave function

and the SCF functions of Albasiny and Cooper.

C . Force Constant

Within the Born-Oppenheimer approximation, the solution of 
the wave equation for a molecular system is arrived at by solving 
first for the motion of the electrons in the fixed nuclear framework 
and then utilising the electronic solutions to solve for the nuclear 
motion. In mathematical terms this may be expressed as

Y  =  4 4

H e  4 4  =  Y e  (2-16).

The first equation in (2.16) refers to the separation of the 
problem into nuclear and electronic pêu'ts, the total wave function 
Ijy being written as a product of nuclear and electronic wave 

functions and respectively. The second and third
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equations are the wave equations for the electronic and nuclear motions 
respectively, the latter including the electronic energy as am 
extra potential energy term. It is customary to include in the 
potential energy of interaction of the nuclei and in discussing the 
variation of E^ with nuclear separation to speak of 'potential energy' 
curves •

In order to simplify the problem of the solution for the nuclear 
motions, a number of analytic forms have been suggested to describe

( 14)the potential energy curve' ', the simplest of which is the Morse 
potential for diatomics. For polyatomics a good approximation to the 
potential function in the vicinity of the equilibrium point is given 
by the quadratic form

ZV =  Xa Ç  4- ><« Z  (à^S +

(2.17)

where A  d and A  (X denote small changes in the bond length d
and the bond angle K  respectively. The force constants may be
interpreted as follows; for bond stretching, for bond
deformation, for bond-bond interaction, for angle-
angle deformation interaction and for angle-bond interaction.
Assuming that all are zero and all the A«L are equal at all
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times enables a definition of breathing force constant to be made 
from (2.17)* Thus utilizing the above conditions for A bonds 
gives from (2.17)

2V  = A f A d T  4- (2.18)

The breathing force constant, K  » is introduced as

(2.19)
A ( A d r

The force construits and K  may be determined from
experimental spectroscopic data, and for AlH^ experimentally based
predictions^^for these quemtities give * 1*675 and

S _ia 0.076, both in units of 10 dyne.cm .
A UA prediction of the force const am t is made here by

determining the total electronic energy E at four bond lengths
(see Table 2.1). Using a curve fitting routine which fitted a
quadratic to the energies determined according to

ET =  a R ' ’ + l > R - * - C (2.20)

the breathing force constant is determined as 

«  -  ( ® .  -  * -
(2.21)

Tk

being the theoretical bond length.
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In Table 2.2 values of for AlH^ are given for the
theoretical treatments discussed, together with the experimentally 
based value.

D. Discussion of Results for AlH^...............................  I . . . . — - —  -  — .... —  —  . ' 4—

The UA results for AlH^ may be compared with those of Albasiny 
and Cooper's SCF calculations in the light of UA and SCF calculations 
which have been performed for two other tetreihedral systems, 
and

Firstly, the UA electronic energy for AlH^ when expressed as
a fraction of the SCF(NS) prediction is 99.3 percent. The corresponding
fraction for and-PĤ "** is 99.4 percent in both cases. It should
be remembered in discussing the results for AlH^ that this represents
the least favourable eighteen electron system from the single-centre
point of view. It has been established in previous UA calculations

( 16^and for other single-centre techniques' ', that the results deteriorate 
as the number of off-centre nuclei increases and the charge on the 
heavy nucleus decreases. Hence UA energies get worse in going from HF 
to CH^. Such a trend is indicated for the eighteen electron series 
also, but is obviously not so marked as for the neon series. Comparison 
with experiment for Si gives the UA energy as 98.9 percent of the 
experimental and it is thought that the UA result for AlĤ "* should bear 
similcU? compcurison.

The theoretical bond lengths given by the UA model are larger 
them the SCF(ns) values for all three systems. Once again expressing
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TABLE 2.2
DIAMAGNETIC SUSCEPTIBILITY AND BREATHING FORCE 

CONSTANT FOR AlH ”

K "

UA -79.8 7.58

scf(s ) —88# 3 6.85

sof(n s) -76.5 9.96

EXPT.^ - 7.61

a is expressed with respect to the A1 nucleus in
units of 10“  ̂emty/mole.

b K  is given in units of 10̂  dyne/on

c See reference 15*
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the UA values as fractions of the SCF(NS) results, the figures 
105*6 percent, 103*9 percent and 102.6 percent are êirrived at for 
AlH^ , cuid respectively. From Table 2.1 it is seen
that the UA theoretical bond length is closer to the SCF(NS) value 
them is the SCF(s ) prediction. Similar behaviour occurs in 
theoretical bond length predictions for and .

The radial density distribution curves (Fig. 2.3) shows the 
UA model to predict a larger density in the L shell region when 
compared with the SCF distribution. It should be emphasized when 
discussing these curves that they correspond to different bond lengths 
and are thus not strictly comparable. Previous comparisons of D(r) 
as predicted by the UA method with results from extended basis set 
calculations^^ have indicated that the radial density distribution 
predicted is too small in the outer regions of the molecule. This 
results in a UA value for which is too small since this

Iquantity is sensitive to the density in the outer regions. This 
behaviour is not shown for AlH^ however, the UA prediction for 
being larger than the SCF(n s) value. Strict comparison again is 
not possible, since different bond lengths apply.

The only experimental result available for AlH^ is the value 
of the breathing force cons tant The UA approximation has tended
to produce values which are too large for this property, indicating 
a potential curve which is too sharp in the region of the minimum.
For AlH^ however, the value of given, by the UA approximation
is 99*6 percent of the experimental result. This may be compared
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with the SCF(NS) result which is 130 percent of the experimental.
The closeness of the UA force constant to the experimental result 
is thought to be fortuitous.

Taken as a whole, the results of this application of the UA 
approximation have further illustrated its usefulness as a simple 
and therefore computationally attractive technique. The use of a 
minimal single-centre basis set - the gross approximation which forms 
the crux of the method - still yields results for molecular properties 
which compare favourably with those of much lengthier calculations, 
as has been seen in this application to AlH^ .
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CHAPTER III 
THE RARE-GAS HYDRIDE IONS NeH+ AND AH'*’

Co-ordinate System
The co-ordinate system used for the O A  study of NeH^ and

AH^ is shown in Figure 2.2. The choice of exponents for the 2p
and 3p orbitals is immediately obvious. Thus = if ,

= lT' and tIk = ■>tu = 1  < > The
variational problem for NeH'*’ and AH'*’ is therefore one in five and
eight variational parameters (including bond length) respectively.

Table 3*1 includes the UA energies for the rare-gas hydride
ions, along with optimum pcirameter values. The results of Moran 

( 17^and Friedman' ', who used a modification of the Platt electrostatic
/ 4 g \

model' ' to predict diatomic force constants and internuclear 
distances, are also included in Table 3.1. The only energy calcul
ation which is useful for comparison with the UA results is that of 
Peyerimhoff(^*) who performed em LCAOSCF calculation on NeH^. The 
energy and theoretical bond length given by this calculation are 
included in Table 3,1.

In Table 3*2 the force constants for NeH"*" and AH'** given by 
the UA and Platt models are presented. Also included in this table 
is the force constant for NeH^ from the LCAOSCF calculation and the 
results for )Ĉ  predicted by the UA method for NeH’*’ and AH’*".
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TABLE 3.1
ENERGIES* AND VARIATIONAL PARAMETERS FOR NeH+ AND AH'*"

UA RESULTS

SYSTEM BOND
LENGTH

ENERGY of r r

AH+

3.113^
2.9
3.0
3.2

-524.5752
-524.5748
-524.5751
-524.5751

17.683
17.684
17.685
17.686

7.680
7.679 
7.681
7.680

7.033
7.035
7.036
7.036

7.023 
7.020 
7.020
7.023

3.235
3.235
3.235
3.235

2.686
2.692
2.689
2.683

2.574
2.560
2.568
2.577

NeH*

2.331^
2.1
2.2
2.45

-127.5703
-127.5699
-127.5702
-127.5703

9.710
9.710

9.711 
9.710

3.573
3.574
3.574 
3.573

2.910
2.926
2.919
2.904

2.833
2.626
2.828
2.836

OTHER CALCULATIONS

r
SYSTEM METHOD BOND

LENGTH ENERGY

a All quantities in atomic units
b Theoretical bond length
c Results of Moran and Friedman, 

reference 17

j AH* PLATT® 2.15^ -

NeH*

---— —

LCAOSCF*
PLATT

1.83^
1.53^

-128.6284

reference 19
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TABLE 3.2

PROPERTIES FOR NeH* AND AH*

SYSTEM METHOD k "

UA 0.17 -5.58
NeH* PLATT 5.52 -

LCAOSCF 5.29 -
UA 0.18 -16.84

AH*
PLATT 5.53 -

a The units of K  are 10^ dyne-on"^ 
b is referred to the heavy nucleus in units of

1O”  ̂emq/mole
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Discussion of Results
A. General Remarks

The UA results for the systems under study here show a 
marked departure from expected trends established in previous 
calculations on X  systems. The UA theoretical bond lengths are
considerably in excess of those resulting from the other theoretical 
studies. For AH* the UA theoretical bond length is 145 percent of 
the Platt model result, whilst for NeH* the corresponding figure, 
using the LCAOSCF result, is 127 percent. IN HF and HCL , which 
seem appropriate systems with which to compare the present results, 
the UA approximation gave bond lengths which were 90.2 percent and 
100.7 percent of the experimental values respectively.

The UA force constants are also markedly at variance with the 
LCAOSCF and Platt model results. For NeH*, the UA force constant is 
just 3 percent of the LCAOSCF value. As the energies in Table 3.1 
show, the UA potential energy curve is very flat in the equilibrium 
region for both systems. The optimum energies are very close to the 
UA rcure-gas atom results of -524.5736 a.u. and -127.5664 a.u. for A 
and Ne respectively.

The overall performance of the UA method when applied to NeH* 
and AH* is thus seen to be disappointing, particularly in its prediction 
of bond lengths where the approximation has met with some success in 
other studies. It will be seen in the discussion which follows, that 
an investigation of the forces acting on the protons in both systems 
is invaluable in elucidating the failure of the approximation in the
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present applications*

B. Forces on the Nuclei in a Molecule
The expectation value of the force on a nucleus N in a molecule 

is given by

e: (3.1)

where differentiation is carried out with respect to the co-ordinates 
of the nucleus N. The Born-Oppenheimer approximation has been assumed 
in the definition of F^, so that the electronic energy E represents 
the effective potential in which the nuclei move. Introducing the 
normalized wave function for the system, , and the energy function

E  =  (3-2)

F^ is given by

(3.3)

Using the Hermitian property of H, the sum of the first and third 
terms in (3.3) can be shown to be equal to
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The expression (3.4) is identical to zero for a normalized eigen
function of the Hamiltonian. This is a special application of the

(20 21 )Hellmann-Feynman theorem' * , for the particular case where
differentiation is carried out with respect to the nuclear co-ordinates, 
Thus for eua exact eigenfunction » the force on the nucleus is
given by

When represents an approximate wave function the terms
considered above do not necessarily vanish, so that (3.5) may not be 
equivalent to (3.1). For the particular case of the Hartree-Fock 
wave function the two definitions of force represented by (3.1 ) and 
(3.5) have been shown to be equivalent and it will now be shown that 
this is true for the optimised UA wave function. Consider the Z 
component of force, F^ . From (3.1) it follows that

(3.6)
For the UA wave function depends on the nuclear co-ordinates

implicitly through the dependence of the variational parameters,
, on the nuclear geometry. Considering again the first auid 

third terms in the force expression (3.6) for the UA wave function 
which contains jt variational parameters, the sum of these terms
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may be written

For the optimum UA energy, E
(3.7)

(3.8) may be re-written as

I O  'p.

(3.9)

Thus it is seen that for the UA wave function the expression (3.7) is 
zero auid that (3.5) is indeed equivalent to the original definition 
of force (3.1) for the case of this approximation.

Consider now the case of a diatomic hydride XH with charge Z 
on the heavy nucleus. Using (3.5) with the notation of Figure 2.2, 
the force on the proton, F^, is given by

where the summation over i goes over N electrons. In (3.10) F^ represents 
the non-zero component of force along the Z axis and R the bond length
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of the system. Introducing the one-electron density defined as

 (3.11)

N is the number of electrons in the problem. In (3.11) integration 
over all spin variables has been assumed. The force on the proton cam 
now be written as

_  Z. -  If’C'", ©H i V

A similcir expression holds for the force on the X nucleus. The expression 
for proton force (3.12) is precisely that which would be obtained by 
using classical electrostatics with ^ representing a
continuous charge distribution. This is an expression of the electrostatic 
theorem which enables a calculation of nuclear force from a straight 
forward application of electrostatics.

C. Force Calculation Using UA Wave Function
Having established that for the UA wave function the expression for 

proton force (3.12) is compatible with the original definition given in
(3.1), the forces on the protons in NeH* and AH* are now investigated.
The UA electron density may be expanded in spherical harmonics about the 
heavy nucleus in the following way

^(r, ©,

(3.13)
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The limited basis set used in the approximation results in a density 
expansion which consists of a spherically symmetric term and a
d-type term. Using (3.13) in (3.12) F„ reduces to 

r- ^  ^  —  2j?V
"  R'- R*'

A r (3.14)

The force on the heavy nucleus, F^, is given by

(r, 8, d f
(3.15)

This force simply reduces to -z/^2 for the UA density which is 
therefore not able to account for the expected equality (in magnitude) 
of the forces on the X and H nuclei.

Using optimised wave functions at various bond lengths, the 
proton forces in NeH* emd AH* have been determined using (3.14).
Figure 3.1 shows the proton force plotted as a function of the bond 
length for the two systems.

D. The Proton Force Results
The proton force curves (Figure 3.1) show the expected variation

of the force with bond length. For NeH , the force on the proton
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Figure 3.1: UA Proton Force for a - NeH*, b - AH*
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evaluated at the theoretical bond length is -0.0002 a.u., while for 
AH* the corresponding figure is zero to within four decimal places.
These figures result from extensive optimisation of the variational 
parameters entering the wave function.

A consideration of (3.14) is useful in discussing the poor 
performance of the UA approximation when applied to NeH* and AH*.
The first two terms in the expression for may be interpreted on
electrostatic grounds. These terms represent the contributions to 
the proton force made by the heavy nucleus and the spherically symmetric 
term in the electron density. The charge on the heavy nucleus is 
screened by the electronic charge contained within a radius equal to 
the bond length. The remaining two terms in the expression for F^
give the contribution of the angular term in the UA density to
this quantity.

Consider now the expression for F^ which results from a central- 
field study. In this case, only the first two terms on the right hauid 
side of (3.14) contribute to F^ since there are no angular terms in 
the electron density. Electrostatic equilibrium is established when

Prv

(3.16)

where is the theoretical bond length. Such central-field
studies have been performed for a number of XI^ systems where 
Z ^  10 (or 18) and have yielded reasonable bond lengths, e.g. in
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the application to AlH^ in Chapter I. For the rare-gas hydrides, 
however, a consideration of (3.16) shows that such a central-field 
approach would lead to infinite bond lengths. This is so because for 
these systems, Z, the charge on the heavy nucleus, is equal to the 
total number of electrons and hence must be increased to
infinity to completely screen the heavy nucleus. It follows that in 
order for a finite bond length to be predicted for the rare-gas 
hydrides, emgular terms must be present in the electron density and 
these terms play a more important role in the bonding process than in 
other applications of the UA approach to XH^ systems where, as mentioned 
above, their presence is not essential for the prediction of a 
satisfactory bond length. The addition of a single d-type term in the 
UA density for NeH* and AH* brings the proton in from infinity to the 
exaggeratedly large bond lengths given in Table 3.1. At these bond 
lengths the proton is barely penetrating the electronic charge 
distribution (17.96 electrons are contained within R'fU for AH*) and 
it is thus not surprising that the force constants calculated are very 
small since the proton is situated in a region of very small êuid slowly 
varying density.

This discussion has shown that the failure of the UA method 
when applied to NeH* aind AH* is due to the deficient description of 
density angularity inherent in the method. This feature of the 
approximation, although not serious in applications of the UA method 
to other XI^ systems, assumes major importance in the studies of the
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rare-gas hydride ions and results in the atypically poor predictions 
of bond lengths and force constants reported here.



PART II

ONE ELECTRON EXPECTATION VALUES AND ELECTRON DENSITIES 
FROM HFR WAVE FUNCTIONS FOR HF AND CH^
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CHAPTER 4
WAVE FUNCTIONS FOR HF AND CH^

Introduction
The matrix formulation of the Hartree-Fock approach to molecular

problems - the Hartree-Pock-Rootheein method (HFR)^^^^ - has been
utilized extensively in recent times. A great deal of theoretical
information on atoms and molecules has thus been gathered since the
HFR method was developed as a tractable computational approach to the
Hartree-Fock problem. Even at present, at a time when a great deal of
attention is being given to the problem of describing electronic
correlation, the HFR approach is still recognized as an extremely
useful prototype method capable of providing significauit results. At
this point it should be mentioned that the HFR method, using a truncated

( 25)basis set, provides sui approximate solution of the Hartree-Fock problem' '♦ 
With the use of an extensive, flexible, well optimised basis set however,
*Hartree-Fock limit' solutions may be reached within the HFR approach.
These solutions (and now the discussion is restricted to 'closed-shell' 
systems) have additional significance which is highlighted in the 
theorems of Holler and Plesset^^^^ and Brillouin^^^). Thus Hartree-Fock 
limit solutions provide electron densities and one-electron expectation 
values which are correct to second order in a perturbation treatment of 
electron correlation. Thus physical properties which may be represented 
by one-electron operators should be quite accurately determined using 
good HFR functions. The theorems referred to above give no indication
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of the magnitude of the error expected in one-electron expectation 
values derived from good solutions of the Hartree-Fock equations, 
although recent work^^^^ has been done on the evaluation of expectation 
value error bounds. No simple general result has emerged however.

This study will be concerned with HFR results for the ground 
states of HF and CH^, both of which have received a considerable amount

state of
Qp(l,16,29-35) the *A, state of CH^(‘' h a v e  been the 

subjects of a plethora of HFR calculations, each differing in the 
choice of basis set. This aspect of the HFR calculation - the choice 
of basis - is considerably arbitrary, although authors tend to be 
guided by the results of appropriate atomic HFR calculations emd by 
other molecular HFR bases.

The molecules considered here are both suitable for single-centre 
calculations and have been the subject of such HFR studies. In what 
follows the single-centre HFR functions will be referred to as OCE 
(one-centre expansion of molecular orbitals) to distinguish them Arom 
the results of the more common poly-centre calculations (PCE).

The purpose of the present study should be established at this 
point. First it is proposed to evaluate some one-electron expectation 
values A?om several HFR bases for HF and CĤ . Some of these expectation 
values will be related to physical properties of the systems which may 
be measured experimentally. As has been mentioned, good HFR solutions 
should provide good one-electron expectation values. A comparison with 
experiment should furnish a check of this conclusion. The other 
objective of this work is an electron density based analysis of the
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OCE HFR functions for HF and CH^ to be introduced later in this chapter* 
The lairgest PCE basis results will be used to provide an appropriate 
measure of the effectiveness of the OCE bases in describing the electron 
density in HP and CH^. Having given the aims of the present investi
gation the rest of this chapter will be teOcen up with a description of 
the HFR bases to be utilized.

!

HFR Wave Functions and Energies for HF and CH^
The closed-shell electronic configurations for HP and CH^ are 

described in the following way:

H F ( ' Z * )  ■ 

c w . C a . )  •'

The molecular orbitals (H0*s) for both systems are labelled in the usual 
way according to the irreducible representation of the appropriate 
symmetry point group ( for HF and T^ for CH^) to which they
belong. Orbital degeneracy exists for both systems with a doubly 
degenerate orbital eigenvalue giving rise to the 1C MG's in HF and 
a triply degenerate level in CH^ resulting in the T̂. MG's. The latter 
set of MO's are labelled according to their Cg symmetry about the 
co-ordinate axes (see Figure 2.1 for the co-ordinate system used for all 
the CH^ wavefunctions to be used in this section).

The basis functions used for all calculations appearing here are 
Slater-type functions (STF's) defined as
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STF^'v,l,"t,Y) =  r €J
', (4.1)

where (^is either a real or imaginéiry normalized spherical
harmonic. An MO of symmetry species \  , sub-species K  is written as

(4.2)

in which the are STF's or linear combinations of STF’s of the
appropriate symmetry. The coefficients CcX[v occur as eigenvectors 
in the HFR equations and are solved for iteratively.

The basis sets and energies for HF and CH^ will now be introduced 
steurting with PCE bases.

PCE Bases
One of the earliest extensive basis HFR calculations on CH^ was

( 39)that of Voznick' \  Five basis sets used by Voznick are included
here labelled as PCE(1-5). The largest basis (pCE(5)) is of particular
interest fi'om the point of view of the evaluation of one-electron
expectation values. The other bases (pCE(1-4)) are used to illustrate
the convergence properties of the PCE basis from an expectation value
point of view. In Table 4.1 the total energy is recorded for each
basis. Also shown is the orbital energy eigenvalue of the Tg orbitals
( 6  _, ) which corresponds to the first ionization potential. The 

2
experimental nuclear configuration was used with a bond length of
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TABLE 4.1 : HFR ENERGIES FOR CH,

Function
Number
of

STF's T2 -E^TOTAL

PCE(l)b 9 0.57196 40.073
PCE(2) 12 0.58185 40.096
PCE(3) 13 0.54460 40.164
PCE(4) 17 0.54401 40.180
PCE(5) 21 0.54341 40.181

OCE(l)C 22 0.43272 39.52841-
0CE(2) 28 0.48269 39.74423
0CE(3) 40 0.50175 39.87488
0CE(4) 47 0.51849 39.99588
0CE(5) 55 0.52523 40.03873
0CE(6) 63 0.52888 40.06563

40TAL(°^') -40.522

a Ail energies (in au) corresponding to R = 2.0665 au
b Results of Woznick (Ref. 39)
c Results of Hoyland (Ref. 40)
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TABLE 4.2 : HFR ENERGIES FOR HF

Function
Number
of

STF's
_E^TOTAL

PCE(l)b 6 0.46858 99.536145
PCE(2) 13 0.64514 100.03508

PCE(3) 23 0.65145 100.06051
PCE(4) 32 0.65008 100.07030

0CE(1)C 28 0.61609 99.88611
0CE(2) 43 0.64170 100.01996
0CE(3) 46 0.64823 100.05294
0CE(4) 48 0.64935 100.05925

^TOTAL^^^') -100,530

b
C

Ail energies are in au. The OCE results correspond 
to R 3 1.733 au whereas the PCE results were evaluated 
at R a 1.7328 au.
The results of Cade and Huo (Ref. 35)
The results of Hoyland (Ref. 40)
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TABLE 4.3 : PCE BASES FOR CH,

Function Al MO'S T2 MO'S

p ce(i ) ISc' 2Sc' is: 2,:' is:
PCE(2) ISc' 2S:, 2S^, is: 2?:' 2p:' is:
PCE(3) 1Sc, 2S:. 2S^. is:' is: 2p:' 2p:' is:' IS

PCE(4) ISc' 2S^. 2s3, is:, 13% 2?:' 2p:' 2p:' IS

PCE(5) ISc' 2s:' H ’ ^c' is:' is: 2p:. 2p:' 2p:' 2P

h

4
1S

18
h
1
h» 13

a The results of Woznick (Ref. 39)

BASIS KEY

= 0.03926 1S^ (9.8) + 0.35946 1S_ (6.5) + 0.61493 IS. (4.7)ISo 0.03926 IS

2s: 2Sc (3.96)

2s: 2Sc (2.38)

2s: 2Sc (1.55)
2S^ es 2Sc (1.04)

es 2Pc (3.26)

!2P: SB 2Pc (1.58)

2P: as 2Pc (1.01)

: 2Pc m 2Pc (0.78)

is: a ISh (1.0)

IS: ISh (1.5)
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TABLE 4.4 I PCE BASES FOR HF

Function MO'S TÇ MO'S

PCE(l) 1S^(8.7), 2S^(2.6), 2Pf(2.7), 1Sĵ (l.3) 2Pf(2.5)

PCE(2)
1S^(8.3), 2Sf(2.7), 2S^(10.5), 2p,(2.0) 
2Pf(4.5), 1S^(1.5), 2Ph(0.8)

2Pf(l.9), 2pf(4.3), 2p^(l.l)

PCE(3)

1S^(7.9), 1S^(14.2), 2Sf(l.7), 2Sf(3.0) 
3Sf(9.9), 2pf(l.5), 2Pf(3.0)
2Pf(6.2), 3Pf(3.9), 1Sjj(l.7), 18^2.0)
28^(1.2), 2Ph(2.l)

2Pf(l.l), 2Pf(3.l), 2Pf(6.2) 
3Pf(2.l), 2p^(l.5)

PCE(4)

18^(7.9), 1S^(14.1), 28^(1.9), 28^(3.2) 
38f(9.9), 2pf(l.4), 2pf(2.4)
2Pf(4.3), 2pf(9.0), 3df(l.8)
3df(3.4), 4ff(2.7), 18^(1.4)
18^(2.5), 28^(2.5), 2p^(2.9)

2Pf(l.4), 2Pf(2.3) 
2Pf(4.3), 2pjj(9.3) 
3df(2.l), 4ff(2.8) 
2pjj(l.8), 3d^(3.3)

a Results of Cade and Huo (Ref. 35)
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2.0665 au • In Table 4.3 the basis set for each calculation is
illustrated using a straight forward notation, i.e. J.S14 signifies
2U1 STF based on the hydrogen with n = 1, L = 0 and m = 0. The STF's
are listed according to the MO's in which they appear. Thus the
s-type functions on the hydrogens appear in both the A1 and Tg MO's
in different linear combinations. The smallest basis, PCE(1), is not
minimal due to the presence of a is carbon core function taken from

(41 ̂an HFR carbon calculation' No attempt has been made by Woznick to
optimise non-linear parameters (orbital exponents) in the basis. The
choice of orbital exponents for the s functions on the hydrogens was
arbitrary, whereas the exponents for the carbon-based orbitals were
taken from the carbon atom HFR ceLLculation mentioned above.

(35^In the case of HF, the calculations of Cade cuid Huo' ' provide 
a quintessential example of the application of the HFR technique. The 
functions for HF used here are chosen from an extensive study of first- 
row diatomic hydrides made by the authors which is remarkable for its 
clarity cuid thoroughness. Four PCE bases are shown in Table 4.2, each 
corresponding to a bond length of 1.7328 au - the experimental value. 
Extensive optimisation of non-linear parameters was carried out for all 
functions. The smallest basis, PCE(i), is minimal whereas the other 
two intermediate bases, PCE(2) and FCE(3) are described as double-zeta 

and saturated s add p respectively. ïn Table 4.4 the PCE bases are 
given.

The OCE Bases
The OCE HFR calculations on HF and CH^ undertaken by Hoyland^^^), 

represent attempts to reach the HF limit with an COE basis. A major
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problem which has to be overcome in OCE calculations is the representation 
of orbitals on the off-centre nuclei by STF's on the expansion centre#
This necessitates the presence of high n, 1 values in the STF's of the 
OCE basis in order to accumulate density at the protons, Hoyland 
solves the problem in a systematic way which will be illustrated by 
referring to HF. The results of Cade and Huo already described indicate 
that the most important function of <T" symmetry centred at the 
hydrogen nucleus is a is function with ^ value of about 1.4. This 
function was variationally expanded in terms of a set of STF's centred 
at a distance 1.733 au from the hydrogen (i.e. at the fluorine nucleus) 
using a hydrogen-like Hamiltonian with z = 1.4. The STF's used for 
the expansion have harmonics through 1 =8. A similar procedure was
used for the 7C orbitals, although harmonics up to 1 = 3 only were
used here. The STF's arrived at in this way were added to the Cade,
Huo fluorine basis to complete the OCE basis for HF. In the case of 
CH^ a similar procedure was adopted using a Hamiltonian with z » 1.2 
to determine the OCE representation of the hydrogenic orbitals, utilizing 
a bond length of 2.0665 au. The CH^ OCE basis included harmonics up to 
1 s 6 on the carbon, the carbon basis being tcücen from an earlier OCE 

calculation^
In Tables 4.2 and 4.6 OCE energies and bases for HF will be found,

whereas Tables 4.1 and 4.5 show the results for CH^. Four OCE bases 
are included for HF (0CE(1-4)) and six for CH^ (0CE(1-6)). Some 
description of the basis set nomenclature used in the tables is required 
here. The basis sets are listed according to the largest 1 value 
(l ^^) occurring in the MO expansions. Thus for CH^, the six OCE bases
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TABLE 4.5 : OCE BASES FOR CH,

Function I A1 MO'S T2 MO'S

Û (1,5.5)^, (1,9.5), (2,1.5) 
(4,2.0), (4,3.0), (6,2.3) 
(22,10.2)

oce(i) 1
i (2,1.37), (3, 2.95) 

(4,2.95), (4, 2.26) 
(8,2.68)

0CE(2) 2 (4,1.64), (14,6.31)

0CE(3) 3 (5,1.98), (19,8.65) (5,1.98), (19,8.65)

0CE(4) 4 (11,4.78) (11,4.78)

0CE(5) 5 (14,6.18)

0CE(6) 6 (20,9.0) (20,9.0)

a Results of Hoyland (Ref. 40)
b The figures in brackets give the ( A, ) values of the radial STF

associated with the tetrahedral harmonic of L value shown in the 
" second column.
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TABLE 4.6 : OCE BASES FOR HF*

Function 1 MO'S MO'S

O (1,7.9)^, (1,14.1), (2,1.9), (2,3.3), (3,9.93) 
(1,2.5), (2,1.3), (6,3.1), (34,19.0)

oce(i) 1 (2,1.41), (2,2.37), (2,4.28), (2,8.97), (3,1.66) 
(8,4.00), (25,13.97)

(2,1.16), (2,1.36) 
(2,2.33), (2,4.26) 
(2,9.30), (5,2.37)

2 (3,1.84), (3,3.37), (5,2.49), (23,12.64) (3,2.13), (5,2.28)

0CE(2) 3 (4,2.70), (5,2.36), (19,10.2?) (4,2.79), (6,2.25)

4 (12,6.22)

5 (14,7.37)

0CE(3) 6 (18,9.63)

7 (24,13.0)

0CE(4) 8 (30,16.48)

a Results of Hoylauid (Ref. 40)

b The figures in brackets give the ( A, If ) values of the radial STF associated 
with the spherical haurmonic of 1 value shown in the r second j column.
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have 1 3 1 - 6, whereas the four HF bases correspond to 1 »maoc max
1, 3, 6 and 8. The radial Slater parameters (n, ) associated with
successive L values (which defines a tetrahedral haurmonic occurring
in the MO expansion for CH^) are shown in brackets alongside the
value with which they are associated. In forming the basis with
1 = 1 the basis having 1 = 1 - 1 is simply added to the newmax maoc

functions associated with 1 = 1 . Di this way Hoyland's resultsmax
for HF cuid CH^ illustrate the convergence properties of the OCE bases
as a function of 1 - the largest spherical harmonic 1 value
occurring in them.

Comments
This chapter will be concluded with a few comments on the energies

and basis sets introduced. First, of all the HFR calculations included,
the Cade, Huo results for HF (the largest basis set - PCE(4)) represent
the closest approach to a true Hartree-Fock solution. Indeed the authors
state emphatically that their best calculation is at most 0.001 au above
the HF limit for HF. This result is due to the large, flexible, optimised
basis set used, including d and f functions on the fluorine. The

(42̂necessity of using such functions has been known for sane time' t in
order for a successful attack on the Hartree-Fock problem to be made.
The largest PCE basis for CH. (pCe(5)) gives an energy of -40.181 au.

(43)This may be compared with an estimate' ' of the Hartree-Fock limit for 
this molecule of -40.22 au. Thus the PCE attack on CH^ is less 
successful than that on HF due of course to the somewhat restricted 
basis used by Woznick. It should be mentioned at this point that a more

(44)recent calculation has been made on CH^ yielding an energy of -40.204 au.
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Results from this calculation will be referred to in later chapters*
The OCE results show the largest basis set for HF (0CE(4)) 

yielding an energy very close to the result given by the largest PCE 
basis (0.011 au higher). This result is achieved with 48 STF's 
compared with 32 STF's in the PCE basis. Thus the dimensions of the 
secular equations giving the MO's être considerably increased in going 
from a PCE to an OCE basis. This factor is off-set of course by simpler 
integral evaluation in the OCE case. Machine time comparison between 
OCE and PCE calculations is not possible here. The OCE performaince in 
the case of CH^ is less successful, with the largest basis yielding 
a total energy of -40.0665 au compared with the PCE result of -40.181 au. 
Factors governing the performance of OCE calculations in XH^ systems 
will be discussed in chapter.6; suffice it to say that the energies 
tabulated in this chapter certainly indicate the superiority of the OCE 
attack on HF to that on CH^.

This chapter has been concerned with defining objectives and 
presenting basis sets. In Chapter 5 the expectation values evaluated 
will be introduced amd tabulated aind electron density expansions for 
HF and CH^ (to be used in discussing the OCE densities) will be defined.
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CHAPTER 5
ELECTRON DENSITY EXPANSIONS AND EXPECTATION VALUES

The Electron Density Expansions
The one-particle density, which will be used extensively in what 

follows, is defined as

fU,) = N V  'I»' h") "  ''L
(5.1)

in which represents a normalized wave function and integration
is carried out over the co-ordinates (space and spin (x and s)) of all 
electrons but one. The resulting electron density is spinless (due to 
the integration over s.j) and integrates over all space to N, the number 
of electrons in the system.

The two molecular ground states which are of interest in this 
study, the 2^ state of HP and the A.j state of CH^, eu?e represented 
by wave functions which transform according to one dimensional, fully 
symmetric, irreducible representations of the symmetry point groups 
involved (Cooy for HF and T^^or CH^). Consider the action of a 
symmetry operator R on the electron density for such states. R is 
defined as

HR = RH (5.2)
and the operation considered is

=  N R

(5.3)
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The operator R may be taken inside the integration sign without altering 
the result of the integration* Also the infinitessimals dg are not 
changed by R due to its arthogonal character. Hence

R  (5.4)

Now due to the linearity of R,
so that

(5.5)
Since, as has been stated, the states of interest transform according 
to fully symmetric one dimensional irreducible representations, it 
follows that

Hence using (5.6) in (5.5)

(5.6)

(5.7)

Thus the one electron density possesses the same symmetry as the wave 
functions considered. This fact is of considerable importance in 
developing electron density expansions for CH^ êuid HF which will be 
useful in comparing the OCE and PCE results. Thus the type of 
éxpêuision envisaged separates the radial and angular co-ordinates of 
the electron:
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Oi£>

The discussion so far has indicated that the electron densities for
HF and CH^ transform according to the one dimensional, fully symmetric,
representations of the respective point groups. The amgular functions
appearing in the expansion (5.8) must also possess this symmetry.

In the case of HF, such functions are well known. They are the
Oj c

spherical harmonics (to be defined later) , so that for this
system the appropriate electron density expansion is

oo ^
9, <̂ >) =  ^  (5.9)

In the case of CH^, the angular functions appearing in the
electron density expansion must transform according to the represent
ation of T^. In the next section these functions (the tetrahedral 
harmonics) will be evaluated.

The Tetrahedral Harmonics
In this derivation of the tetrahedral harmonics, the method 

proposed by Altmann^^^^ is used. The general theory (which follows 
Altmann's presentation) is introduced first, followed by an application 
to the tetrahedral group T̂ .

Altmann's approach uses a well known group theoretical result 
which allows a function possessing a particular symmetry to be formed 
by projection. Thus using the spherical harmonics I^ as 
generator functions, suppose the transformations of  ̂ R
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under all operations of a point group are known. Then a function (j>
. tbwhich transforms according to the t irreducible representation may 

be generated according to the equation

R
where the ^  CR) are the characters of the i irreducible 
representation.i If R is a pure rotation, then using the fact that the 
spherical harmonics span (21 + 1) - dimensional representations of the 
rotation group allows R to be written as:

R x *  =
R

The matrix representatives have been given by Wigner^^^).
Altmemn modifies Wigner's results for use with unnormalized spherical 
harmonics defined as

(e, lÿ;) =. r ” (u>i0)e (5.12)

A rotation is specified by EwLt-f angles o(, f  (O ^ ^7^ ;
0 ^  p ^  7̂  ] 0 ^  Y ^  Ẑ TK ). Then, using the unnormalized form
of the spherical harmonics, the matrix representatives, C
^  rR(o(, , may be written asM M  I

 ̂ C J Y  y V
^  ^  ^ (5.13)
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where

cind

Also

Cr-'- =  ^

Z

 ̂/.A =
k ; v«

r=o (5.14)

H)'*''"' ( uuO!(L->-»'0!
(v^-r)! rf fu-r)! (>t.-V-r)!

in which

/-
V

rain (l - 1 + m)
max (l - m% 1 + m) (5.15)

ra min (r 21 -V )

In the case of point group operators R* which are not pure rotations, 
e.g. rotary reflections, then the operation may always be written as 
a product of the inversion and a rotation, i.e. R* » I R. The matrix 
representative of the inversion in the chosen basis is (-l)^ (-1 being 
the unit matrix) so that the matrix representative of R̂  may be obtained 
by multiplying the rotation result by (-1)^. Hence the result (5.10) 
may be used to project a function of the desired symmetry for any (finite)

.M.point group. After choosing a generator harmonic. Y  » the
. tkfunction belonging to the I irreducible representation is given by

combining (5.10̂  11 and 13) as
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= ^ x  (5.16)
R  M'

In order to simplify (5.16) the group G is divided into sets G ̂  ,
all elements of which have the same B angle. The sets G f are

A G '
partitioned into subsets G * * which belong to the same class (the
whole class need not be included in G )• An element of the group
will be labelled R* , t being a running index over those elements
having the same ^ angle and belonging to the same class. The 0( and 
Y  angles of the operations are denoted by and • The

expression (5.16) may thus be re-written

r  »h'  ̂ ^ '
Ch

For operations which involve the inversion, the term C G
must be multiplied by (-1)^. Equation (5,17) will be the 

fundamental result used in this section.
The values of ^ occurring for point groups are 0, emd 7C •

Altmann shows that for the special cases ^ = 0 and  ̂ syC considerable 
simplification occurs in the application of (5.17). For ^ = 1C the 
only spherical harmonic occurring on the RHS of (5.1l) is that for 
m* a -m and only one term survives in the coefficient
Similar behaviour occurs for ^ = 0; in this case only m*' = m occurs in
the summation over m^• These two results are summarized below where the 
two terms in the sum over r are presented

17
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s fc (5.18)

p , . A
L - kMe e Y.

The above theory is now applied to the present problem, i.e. the
generation of tetrahedral harmonics of type . In this case all
Y (R) = 1. Tabulation of the sum over t for all the T^ operations

in (5.17) (which depends on 1 only through a sign coefficient (-1)^ for
lon-rotations) shows that this term has a periodic structure, so that
only certain values of m euid m̂  need be considered. The values m̂ . takes
uce - 1 to + 1 for a generator \ ̂  . The tabulation referred to
establishes the following behaviour; for even 1 the only values of m
Leading to no-zero values of the sum over s (for all j? angles) are

0
n = 0, ^4, + 8  etc. or m = +_ 4n. Thus only generator functions 

-4 “v t V etc. need be considered in generating even 1 functions, 
ilso the values of m^ which appear are restricted to the values m̂  = + 4n. 
Chus the even 1 tetrahedral harmonics will be linear combinations of 
spherical harmonics  ̂  ̂ etc. The coefficient tables also
(stablish the following for odd 1 generators: the only values of m
leading to finite coefficients are m = ^ 2, ^6, + 10 etc. The values 
cf m* are restricted to the same values.

For the values of m and m* mentioned above, the summation over t 
is indicated in the table below. Included in brackets in the table is
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the sum over s (over those elements with the same ^ angle). The 
operations are divided according to their ^ angles. The twenty 
four operations in five classes consist of 3 rotations about the 
co-ordinate axes (see Figure 2.1.), six rotary reflections, 12 Cg 
rotations and six reflections.

^ = 0

f

Projection of Tetrahedral Harmonics 
Generator function

1 even | 
m =* + 4n m = 4

1 Odd 
 ̂(2 + 4n)

m' s m m' = -m m' = m m ' = -m
E 1 1

1 / A  ̂ Ia\2 14)
s+4,

2 2
s74,z

°2X
2 -2

°2 (4 Hy

«^5
2 -2

<^é
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The coefficients are:

1 even 1 odd

(2 + 4n)

+ (2 + 4n)

3b

3b

4x

4x

4u
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As an illustration of the use of the table consider the generator Y  2̂ '
Then the ^ = 0 and ^ contributions to the sum over r in (5*17)
according to (5.18), using the tabulated coefficients, is

0
4 y ;  4  4 y ;

The = ^^2 elements give the contribution

The total projected function is thus

The coefficient ^ is so that ^2 ( ^  ^ ) = 0. Thus there is no
type harmonic for 1 = 2. This is true for 1 = 1  and 5 also.

Altmann generates all Â  type tetrahedral harmonics up to 1 = 12. 
This list is extended here up to 1 = 16. In Table 5.1 the coefficients 
occurring in the harmonics are presented (the coefficients Ŝ , ^( )
were evaluated by computer). The spherical harmonics occurring in the 
tabulated functions are normalized real sphericad hairmonics:

•K|C /( 2 U \ ) (i*s&)coirU

/(2L+1) (L- p  Su*, h* <6
\  “ J  / t + k O !  ^
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g,Il which 0(̂ 0 =1 if m = 0 and 0 otherwise* The tetrahedral harmonics 
presented are normalized to unity and have the general form:

e/en 1

V  =  o,4,1 - 6 L
m '

(5.20)
Odd 1-

=  Z  X  ' *2,6,10 - 4 L

m '

In the case where more than one tetrahedral harmonic is associated with 
a given 1 value the functions have been arthogonalized by a technique 
suggested by Altmann. Thus

_  y
( a, 0 )  1 ^  p )  à n ,  =

where the superscript distinguishes between those harmonics with the 
same 1 value. The coefficients are presented in the tables to
ten significant figures.

The electron density expansion for CH. is thus written:

p(r,e, =  y  *") X (5.21)
' L=o

in which the summation over those tetrahedral harmonics associated with 
a given 1 value is implicitly assumed.

Diagrams of the tetrahedral harmonics up to 1 = 9 are shown in 
Figure 5.1. The diagrams show the functions in the plane containing
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Figure 5.1: Tetrahedral Harmonies
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HI, H2 and the C  nucleus in Figure 2.1 (Chapter 2, Part l). This 
is the plane for which ^  defining (f) in the usual way with
respect to the cartesiain's shown in the diagram. The left hand edge 
of each diagram is coincident with the z axis, about which the figures 
are invariant under a rotation. The 0 angles 6  = and

( ô p  being the tetrahedral angle) are indicated in 
dotted lines for all the diagrams. The proton lies in the direction 
0  = = 54° 44̂  for the chosen plane.

Expectation Values
Having established the electron density expansion for HF (in the 

case of HF, normalized spherical harmonics (5.19) are used in the
expansion) and CH^, the expectation values determined for both molecules 
will now be discussed. Where possible the expectation values will be 
expressed in terms of the radial terms R^(r) in the electron density 
expansions. The numerical techniques involved in the evaluation of the 
radial terms will be given at the end of this chapter.

The one electron density resulting from the closed-shell HFR wave 
functions under study is given as

hifX

=  z  ^  ^ «,<#>) (5.22)
Ü-1

where the are the doubly occupied MO’s of the system.
For HF, the radial terms are given as

=  />('■, 01 0 )  «141 (5.23)
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Also for CH,

= i-fi

The radial density distributions, which will feature in the discussion 
of results in the next chapter, are defined as

î>/v) =
(5.24)

Expectation values of the form are given as

<4> = T>(r) r Jr (5.25)

The values of n chosen here are -2, -1, 2 and 4. The expectation values 
are related to magnetic properties of the systems. The 

other two n values are included to stress the extreme inner and outer 
portions of the curve which will be useful for comparison purposes*

The purely diamagnetic contribution to the susceptibility, ^  has 
already been introduced in Chapter 2.; This quantity is given in terms of 
the unperturbed ground state wave function of a molecule in a homogeneous 
magnetic field, i.e.

(5.26)
For most systems only the rotational average of ^  is known, which is 
related to the principle-axis components of as
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The molar susceptibility is given here a ^

< A : =Av
lXr)r^ dr (5.27)

The magnetic shielding constant, , determines the magnetic 
field at a nucleus n in a molecule placed in a magnetic field,
Thus the field at nucleus n is determined as

(5.28)

As with the diamagnetic susceptibility, the magnetic,shielding constemt 
is appropriately treated by meams of perturbation theory and results in 
an expression for 0 ^  which is the ;sum of a diamagnetic and paramagnetic 
contribution:

À fh
« ;  =

The diamagnetic contribution is given in terms of the unperturbed wave 
function as

cl<r =  4Ë
3 h c ?
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which may be expressed as

=
e

Expectation values of the form

(5.30)

are presented for all the
HFR bases in Tables 5,2 and 5.3. Also included are the )C ̂  referred
to the fluorine and carbon nuclei. The diamagnetic shielding factor is
also presented for the heavy nuclei in both molecules. The experimental
results for ^  ^ shown in the tables were determined from the experimental
total y, and O. knowledge of the rotational magnetic moment of both

P(47)molecules which enabled a determination of

Multipole Moments

f to be made,

and Kielich
The multipole moment definitions used here are those of Buckingham 

(49)
(48)

Thus

r C, cLv
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TABLE 5.2

Cr"> FOR HF

Function < r - ' > < r - > < 0
cL C

oce(i) 331.14 27.228 13.689 58.737 -10.846 48.330
0CE(2) 331.00 27.184 13.803 58.710 -10.937 48.252
0CE(3) 330.99 27.172 13.830 58.571 -10.958 48.231
0CE(4) 330.99 27.170 13.834 58.531 -10.961 48.227

pce(i) 327.50 27.131 12.100 41.621 - 9.5872 48.158
PCE(2) 330.77 27.170 13.741 59.080 -10.887 48.227
PCE(3) 330.98 27.165 13.848 58.414 -10.972 48.218
PCE(4)
OBSERVED

330.98 27.168 13.805 57.824 -10.938 
- 9.2^

48.223

a Ail in au, referred to F nucleus.
-6referred to F nucleus, in units of 10 em 

units of 10  ̂emu.

\̂ /mole

d Reference 55
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TABLE 5.3

FOR CH,

Function <r-‘> <r-'>
A C

0%

oce(i) 138.81 16.826 36.121 305.22 -28.620 29.866
0CE(2) 138.84 '16.771 36.367 303.74 -28.815 29.769
0CE(3) 138.61 16.731 36.490 302.48 -28.912 29.698

0CE(4) 138.55 16.713 36.386 297.58 -28.830 29.666
0CE(5) 138.56 16.707 36.337 295.61 -28.791 28.655
0CE(6) 138.54 16.702 36.327 294.70 -28.783 29.646

pce(i) 132.02 16.191 37.951 320.91 -30.070 28.739
PCE(2) 136.49, 16.528 38.898 349.57 -30.820 29.337
PCE(3) 136.38 16.582 36.207 289.19 -28.690 29.433
PGE(4) 138.82 16.667 36.329 293.71 -28.785 29.584

PCE(5)
OBSERVED

138.39 16.670 36.252 

-33.69 + 0.72^

290.92 -28.724 29.589

Ail in au, referred to C nucleus

X r referred to C nucleus, in units of 10 
-5

“6 emiiymole
in units of 10 emu 

Reference 47
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f
+  r»t fs •+ t-pHs- ^t<i +  r ^ T j

i" r ^  ̂  ^  <̂ (*5̂  +  ^ois

(5.31)

or, in genercü.

^  f'"lA 2M-H Ai

i>r, ) C

where /*« ' ' ^ oV/SjTX and M0V|SiT5 --------- - y
cire components of the dipole, quadrupole, octupole, hexadecapole emd

tk / \general fv\ rank tensors respectively. In the equations (5.28)
is the charge density (including the charge on the nuclei) at the point
(X, Y, Z). The subscripted r ’s are X, Y or Z depending on whether the
subscripts have the value 1, 2 or 3. The 5 *s are Kronecker S  *s.

The potential due to a system of charges, at a point outside the 
distribution, is simply related to the multipole moments of the charge 
system. Consider a distribution of charges ê  at points X̂ ,̂ Ŷ r 
represented by vectors r^ from an origin 0. The potential at p(X, Y, Z), 
represented by R, where R )» r^ for all i, may be written

V ,
Z e;

i R - n l

The distance between ê  ̂and P, R^, may be expended in terms of derivatives
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with respect to r̂ ^̂  (X̂ , or Z^) at the origin. Thus

Then evaluating the derivatives occurring in the above expression gives

«V +  ® K S  ( S R x R j *  - R * "
V p  =  3 R ^

_l_ -iX_ç<£Ÿ 5 + Rp -► Rj
5  R ’’ J

(5.32)

For an axially symmetric charge distribution, each multipole moment is 
determined by a single scalor quantity (viz., ®  , — • )
In this case (5.32) becomes

‘V +  / i £ £ i ®  +  ■4- .JÜL (srtoif'e --

M > =  R

(5.33)
in which P is now the point (R, 0  ) relative to an origin on the axis of 
the charge distribution. Equations (5.32) and 5.33) show that the 

potential outside a charge distribution is the sum of contributions from 
a chcirge, dipole, quadrupole etc. located at the origin. The interaction 
of a charge distribution with an external field may also be written in a 
multipole expansion auid the interaction between two non-overlapping 
distributions may be treated in the same way. Early attempts to explain 
the attractive forces between molecules in a gas used static and induced
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multipoles to account for this phenomenon. Although these interactions 

cire now known to be overshadowed by quantum mechanical induction 

(dispersion forces) they are, nevertheless, important whenever the 

molecules are in fact polar.
In this study, the dipole and quadrupole moments of HF have been 

determined for all the HFR bases and included in Table 5.4. The OCE 
results are Hoyland’s, although these were redetermined here to check 
the numerical technique used with the OCE bases. Expressing the 
electronic contributions to the multipoles in terms of specific radial 
terms gives

oO
r

a
z

f
(r; ©I <it ==•

=  (Si' = - 2  =  - 2  € 1  =  - J f j

(5.34)

dr

Both formulae (5.34) refer the moments to the F nucleus as origin. For 
comparison with experiment it is convenient to express with respect
to the centre of mass of the system (located 0.08736 au from the F 
nucleus). In order to accomplish this, the following transformation 
is used!

R

where the origin ( 0  is referred to has co-ordinates (O, 0, R) with 
respect to the F nucleus. The dipole moment is independent of origin. 
Table 5.4 shows the separate nuclear and electronic contributions to JA
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and (@ , together with the total values.
For CH^, all components of the dipole and quadrupole moments are 

zero (due to the absence of R^(f*), the electron density
expansion already discussed). Also

S L  =- svz.

and

Once again expressing the electronic contributions to and Ç  ,

jf2̂  and Y  f terms of radial terms gives
mo

(5.35)
°rO

^ -I ̂  I Kjr)r^ dr

The results for CH^, giving and ^  in units of 10 ^^esu cm^ euid
-42 410 esu cm respectively, referred to the carbon nucleus as origin, 

are presented in Table 5*5 for the six OCE bases and five PCE bases.
All the experimental moments presented (except the dipole moment 

of HF - see reference 53) are taken from the tables of Stogryn and 
Stogryn^^^^. These authors suggest 'recommended' values for the 
moments of many molecules; the recommended values being the average of 
experimental and theoretical predictions. Some comments on these 
experimental values will be made in the following chapter.
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TABLE 5.4
DIPOLE^ AND QUADRUPOLE^ MOMENTS FOR HF

Function e/X X

oce(i )̂ —0.386 4.019 —0.166 3.466
0CE(2) -2.249 2.156 -1.045 2.587
0CE(3) -2.421 1.984 -1.257 2.375
0CE(4) -2.448 1.957 -1.285 2.347

pce(i) -2.9661 1.4379 -2.1751 1.4560
PCE(2) -2.5037 1.9003 -1.5949 . 2.0362
PCE(3) -2.3204 2.0836 -1.3978 2.2333
PCE(4) -2.4624 1.9416 -1.2803 2.3507
OBSERVED 1.8195^ 2.60^

a The total emd electronic contribution to the dipole moment (/^ 
and yuL ® respectively) are tabulated in Debye (10 esu em)

-26 2b The quadrupole moments are presented in units of 10 esu em

c The OCE results are those of Hoyland (Ref. 40)

d The results of Stogryn (Ref. 50)

e Reference 53.



- 73 -

TABLE 5.5
octapole^ and hexadecapole moments^ for CH,

Function iT ¥
OCE(l)C 0 12.087 0 10.684
0GE(2) -5.548 6.539 -1.2125 9.471
0CE(3) -7.773 4.314 -4.690 5.993
0CE(4) -9.568 2.519 -5.933 4.750
0CE(5) -9.918 2.169 -6.926 3.757
0CE(6) -10.12 1.967 , -7.242 3.441

PCE(l) -10.214 1.8733 —8•2966 2.3869
PCE(2) -11.130 1.0569 -9.1825 1.5010
PCE(3) -10.844 1.2430 -8.9102 1.7733
PCE(4) -10.610 1.4770 -8.6324 2.0511
PCE(5)
OBSERVED

—10.665 1.4216
4.5^

-8.6769 2.0066

a The electronic contribution to and the total octapole moment
( XL  ̂  and SÎT respectively) tabulated in units of esu

b The hexadecapole moment is given in units of 10*^^ esu cm^

c The OCE moments tabulated are those of Hoyland (ref. 40)
d The results of Stogryn (Ref. 50).

em
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The Bond Moment for CH,̂
Performing a unitary transformation on the HFR MO's leaves the 

wave function unchanged and thus represents the same physical situation. 
The bonding situation in CH^ may be described by performing such a 
transformation which produces four MO's which each have symmetry about 
each CH bond. The transformation envisaged assumes the inner shell 
MO ( ^  (lAj)), which is largely 1s^, to be coalesced with the carbon 
nucleus. The remaining four MO's ^  (2Â  ), 0  (T^^), (^2y)

(Tg^) are transformed to form 'equivalent' orbitals which have the 
symmetry described. The centroid of electronic charge for one such 
orbital, which has symmetry about CH,̂  (See Figure 2.1) is given as

(5.36)
in which r̂ j represents distance measured along the C-H^ direction. 
The bond dipole moment may be formed according to

A
= 2e ( c -  I )

where R is the bond length. The bond moment thus defined is calculated 
here for all the HFR functions used. Table 5.6 s howsexpressed in 
Debye.

X-Ray Scattering Factor
In Chapter 2(Part l), the coherent X-ray scattering factor, f(k), 

was defined as
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TABLE 5.6
BOND MOMENT FOR CH,

Function

oce(i) 0.9067 -0.6433^
0CE(2) 1.2638 1.1729
0CE(3) 1.3387 1.5542
0CE(4) 1.3582 1.6507
0CE(5) 1.3672 1.6965
0CE(6) 1.3753 1.7371

pce(i) 1.3812 1.7676
PCE(2) 1.4314 2.0218

PCE(3) 1.3944 1.8337
PCE(4) 1.3842 1.7829
PCE(5) 1.3853 1.7880

C  gives the centroid of electronic charge derived from an 
equivalent orbital measured along a CH bond.

The negative moment recorded for OCE(i) signifies polarity C H'*’.
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TABLE 5.7
COHERENT X-RAY SCATTERING FACTORS FOR HF AND CH,

HF

3C = fo fl ^2 "3

0.05 9.1611 0.2905 0.0565 0.0114 9.1659
0.10 7.2833 0.3287 0.1426 0.0609 7.2924
0.20 3.9802 0.0275 0.0815 0.1181 3.9829
0.30 2.4423 -0.0591 -0.0401 -0.0459 2.4438
0.40 1.8150 -0.0263 -0.0453 -0.0045 1.8158

0.45 1.6495 -0.0154 -0.0354 -0.0027 1.6500

CH,

fo ^3 ^4

0.05 7.9512 0.0819 -0.0147 7.9516
0.10 4.4721 0.3492 -0.1313 4.4876
0.20 1.8728 0.3019 -0.2929 1.9195
0.30 1.6031 -0.0050 -0.0508 1.6031
0.40 1.3546 0.0000 0.0163 1.3547
0.45 1.2255 0.0086 0.0009 1.2255

' a The x-ray scattering factor for HF is calculated for wave function 
PCE(4) - Cade-Huo (Ref. 35)
For CH^ the scattering factor is presented for PCE(5) - Woznik 
(Ref. 39)
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- f ' K )  -
L^O H%T-i

where CmDr

^  (1^) =  (2a )Vi f
r'"Wr

iKr)'

These results were obtained using the electron density expansion

CM ̂

(,=0
For the cases of HF emd CH^, using the electron density expansions 
defined here for these systems ((5.9) and (5.21)), the X-ray scattering 
factor is expressed as; 
a) HF

>o

tsO

Where

I J K.) =  v/Y ̂
(5.37)

b) CH,
t>o

f  K )  -  7  Cet)

where
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10-0

HF8-0

CH4-0

2-0

0.0 0-1

Figure $#2: X-Ray Scattering Factors for HF and CH.#
The crosses correspond to a fit of Thomer*s experimental 
results for CH^ (Ref* 51). |
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f?Jr) ... LevfA

iKr)''^

r

(r) K."") r*'dr •••• lo44
lKs1'^

(5.38)
The coefficients C^# are those appearing in the tetrahedral harmonics 
(5.20).

In order to investigate contributions to the scattering factor 
made by cingular terms in the electron density, the first four terms in 
the summation over 1 in (5.37) have been calculated for the largest PCE 
basis for HF. These are presented in Table 5.7 for several values of 
K =t \  . For CH^, again for the largest PCE basis, the
contributions , fg and f^ to the scattering factor are presented
in Table 5.7. The total scattering factors are presented in Figure 5.2. 
The crosses represent a fitting of Thomer’s^^^^ experimental results for 
CH^.

Numerical Techniques
The numerical methods used to determine the radial terms occurring 

in the electron density expansions for HF and CH^ will be described in 

this section. The computer programmes written to evaluate the radial 
terms were used to determine many of the expectation values introduced 
in this chapter, since, as has been shown, these expectation values depend 
on individual radial terms. Two distinct approaches were followed. In 
the case of the OCE bases the ( r) were determined by a very economic
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numerical technique which will be described in the next section. For 
the PCE bases numerical integration over angles was used to yield the 
R ^ ( e ).

Determination of the R ̂ (r ) for OCE Functions
The problem at hcind is the evaluation of the radial terms, R ̂  ( r ),

occurring in the electron density expansions for HF and CH^, which will
be written in the general form;

U
p(r,e, Aj^C©, 0) (5.39)

The summation over 1 is truncated for the OCE basis since the MO's are
finite expansions in spherical harmonics (L = 21 , where 1 is the' max mgix
maximum 1 value in the MO expansions).

Let the density be determined at M 0 ^ , ,  values for a given ,
where M is the number of terras occurring in the sum over 1 in (5.39).
The M values of ^ 2̂./ 0w)
may be considered to constitute a vector ^  in M dimensional space. The 
angular functions, k 4>) , may also be determined at the same
H Ù f (f> values, so that the vectors , k^,  (changing the sum
over 1 to one over j, where j goes from 1 to m ) may be formed. The 
vectors Ag, may be said to span an M dimensional space.

The components of the vector p  in this basis are just the radial terms
which are required, i.e. R^, R^f .....   R^. So rewriting (5.39)
according to the vector interpretation just described gives

_  A  _ p  =r V R.,- A-
I (5.40)
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The scalar product of two vectors in the space spanned by the basis
, is written as:m M
(Vi) \/2-) —  ^  vici-)vz(j-) (5.41)

3=1
Consider now a change of basis which produces an orthonormal basis 

Oj. The procedure used is the well-known Schmidt orthogonalisation 
process. Thus,

°2

°3

^2' 1̂

-  \
^3 ' ^2
'2 * ^2 y

.
^3 » ̂ 1
Ai *

(5.42)

Normalization of the vectors 01 resulting from (5.42) produces an orthon
ormal basis Oj, i.e.

(5.43)

Each of the Oj may be written

O j  = (5.44)

where elements of the transformation matrix (lower triangular
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in form). The vector p may now be expressed in terms of the
orthonormal basis, i.e.

M .
C-i 0 ;  (5.45)f  -j

r  *
where the components of ^ in the Oj basis are immediately given as 

Cj ~  ( Ç  ' (5.46)

Expressing (5.45) in terms of the initial basis A. by using the trans-
formation (5.44) gives

M  rl
(5.47)

i-l K = I
Comparing (5.47) and (5.40) gives R. as 

M  '
=  y  *Sk:j (5.48)

Thus (5.48) determines all Rj for a given r . The process is extended
to other r values by redetermining the p vector for each r ; in
each case the same basis 0. is then used to determine the components c.J <3
and hence the Rj according to (5.48). Thus once the anguleir functions 
have been determined at the M distinct values o£ Q- t (j> and the Schmidt 
process carried out, only M values of the density are required at each 

value to determine all the radial terms at each r .
The Schmidt process described above was carried out in double

precision arithmetic to guard against accumulative round-off error. The 
largest OCE basis for HF, 0CE(4), has seventeen terms in the electron
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density expansion (l = 0 - 16), whereas the largest CH^ basis, 0CE(6)» 
has eleven radial terms. In order to obtain good orthonormalization,
the whole 0 range (O ̂  O  7Ç.. ) was used. The final orthogonal
basis was found to be orthogonal to double-precision accuracy (20 
significant figures). The OCE expectation values tabulated in this 
chapter were obtained by numerical integration over individual radial 
terms evaluated by the technique described in this section (except in 
the case of the bond-moment, which was found by numerical integration
over three dimensions). The quadrature over radial terms was tested for
accuracy by checking normalization. For all OCE bases, normalization 
was achieved to at least six significant figures. The OCE expectation 
values are presented cind are expected to be accurate to five significemt 
figures (except in the case of the moments were Hoyland's four figure 
results are presented).

The PCE Bases
The evaluation of the radial terms in the case of the PCE bases 

will be illustrated by considering CH^. In this case, the radial terms 
required are given by the integral over angles;

r 9, 46) d») j-TL (5.49)

Equation (5.49) will be rewritten for the purposes of this discussion as

"A) (5.50)

The integral over (p implicit in (5.50) may be reduced to the range
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^  ^  'O' (see Figure 2.1, Chapter 2, for
the co-ordinate system used for CH^, defining spherical polars in the 
usual way with respect to the cartesian co-ordinate system shown). The 
integral over this range of (j) will be ^/4 of the integral over all 
due to the symmetry of the integrand, so that

;s:

R . L ' )  -  4-

0 tO

The integral over co-ordinate 0  is conveniently split into three 
ranges, i.e. 0  =(o - ^^2.) , { ^ / l ~

.and (^- 0̂ 4,) —  ) , where & p  is the tetrahedral angle.
In this way, the cusps in the density at the hydrogens occur at the 
ends of the 8  ranges which is suitable for numerical integration. 
The integrals (over Qi (f> ) for 0 =  O  — and
are in fact equal, so that only two ranges of 8  .need be considered.
Thus (5.51) may be written as:

%

p’(rj 0| ̂  <iOd ̂  4-

O-o (5.52)
The numerical integration technique used is that of gaussiani quadrature.
i.e,

NP oiM T

.f (>) dy. =  ^J (5.53)

-I
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where the weights, w^, and the arguments, x̂ , for an NPOINT gaussianl
( 52)quadrature are given in tables^ \  In order to generalize the result 

(5.53) for an integral over the range b ^ A: ^ a , a trans
formation of cirgument is required, i.e.

I f  V  =  4- ^

Then

.ffn) d)C =

t-=-l 
WPûiwT

=  ^  (5.54)

b j 
r

L= \Extending the formula to two dimensions, gives
y PO INT

a c.

in which

(5.55)

 ̂ Y« s  (d—c)ti-f 
Z  ^ Z

In (5.55), the same NPOINT quadrature formula is used over both 
dimensions ^ ). This quadrature formula was the one used to evaluate
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the integrals required (5.52). Some experimentation with the number of 
points, NPOINT, used in the quadrature formula was undertaken. For 
NPOINT = 20, the results for ( C ~ 0  —  , were

changing at most by three digits in the sixth figure, when compared with 
the results for NPOINT = 16. It was decided to use NPOINT = 20 for 
the evaluation of angular terms. The expectation values y j
Ç  etc required a further numerical integration over radial co-ordinate

r. In order to provide some kind of check on the results, the expectation
( 54)values provided by Pitzer' * for CH^ were re-evaluated. In all cases, 

the results checked to five figures - the PCE results presented in the 
tables in this chapter are given to this accuracy .
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CHAPTER 6 
DISCUSSION OF RESULTS

The interpretation of HFR wave functions has been carried out along
the lines of SCF population analysis^suggested by Mullikan. Diffi
culties in interpretation within the population analysis scheme occur 
when the wave functions being compared are constituted from widely 
differing basis sets of STF's. An extrene example of this problem 
arises when comparing the results of OCE and PCE bases - which is present 
in this study of HFR calculations for HF and CH^. For this reason the 
population analysis scheme is not resorted to in this discussion of 
results; the PCE and OCE results will be related by straight-forward 
comparison of expectation values and by comparing electron densities auad 
the electron density expansions introduced in Chapter 5* The discussion 
of expectation values tabulated in Chapter 5 is started with a consider
ation of the PCE results for HF éind CH^.

The PCE Results
This discussion of PCE results for HF cind CH^ will be opened with 

a few remarks on the incomplete PCE basis results, starting with CH^.
The three smallest PCE bases for CH^ - PCE(i-3) - mainly illustrate

the effect of changing the hydrogenic contribution to the MO's of the
system. The smallest basis - PCE(i) (not minimal due to the presence of 
the 1 s^ atomic SCF core orbital) has a significant contribution from the 
STF Is ̂  (l.O) in the T2 orbitals (see Table 4.3 for the PCE bases for 
CH.). This results in the expectation values and ^ r ^ ^
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(Table 5.3, Chapter 5) being larger than the values given by the largest 
PCE basis - PCE(5). In going to the function PCE(2) even larger values 
of ^  r^^ and ^ r ^ ^  are recorded together with significant increases 
in the electronic contributions to the multipole moments (Table 5.5).
The function PCE(2) has a single s function on the proton (ls ̂  (l .O)) and
this accounts for the behaviour noted above (all other functions have 
contributions from Is ̂  (i;5) which falls off more rapidly than Is ̂  (l.O)). 
Thus PCE(2) has significantly larger contributions from 1s^ (l.O) in the 
MO's (2A^) and (Tg X, Y, Z) producing larger densities in the 
outer regions than any of the other bases. The function PCE(3) includes
both Is ^ (l.O) and Is (l.5) in all its MO's with the former dominating
the latter in the Tg orbitals and vice-versa in the orbitals. The 
inclusion of 1s^ (l.5), with a diminution in the contribution from 
Is ^ (l.O) accounts for the decrease in ^  r^^ and ^ r ^ ^  in going 
from PCE(2) to PCE(3). The functions PCE(3-5) illustrate the effect of 
adding 2s and 2p functions to the carbon. The largest PCE basis for CH^
- PCE(5), which yields an energy of -40.181 au compared with an estimated 
HF limit of -40.22 au is deficient in that it does not include any STF's
with higher n and 1 values than those found in the minimal basis. The

(aa\ )more recent HFR calculation of Moccia et al' ' on CH^, referred to in 
Chapter 4, which utilizes s and p functions on the hydrogens and d and 
f functions on the carbon yields for the octapole moment, CL ,
I .10 esurcm . This calculation gives A p  as -27*07|.lo
and a value for ^ r ^ ^  of 35 3o3 a u  • These expectation values correspond 
to a bond length of 2.067 au. These functions are required to describe 
the distortion of atomic densities which accompanies molecular binding
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and also to reach the Hartree-Fock limit, Woznick has not attempted to 
minimize orbital exponents, although it would appear that this factor

(35)decreases in importance as the size of the basis is increased' '• The 
results for the incomplete bases for HF (see Table 4.4) are difficult 
to rationalize without going into detail, since the bases differ 
considerably. Suffice it to say that the minimal basis - PCE(i) gives 
results which are somewhat at variance with those from the three other 
PCE bases. This function is characterised by values of ^ r  ,
^ r  ^  which are smaller than those results given by any other basis 

and smaller values of ^r ^ ^  and ^ r ^ ^  (see Table 5.2, Chapter 5).
An investigation of densities at the nuclei show PCE(i) to have a smaller 
density at the fluorine nucleus and a larger density at the proton than 
any of the other PCE basis predictions. This factor is evident when 
comparing dipole moments for the PCE bases (Table 5.4). Incomplete PCE 
bases, such as those considered here for HF and CH^, have diminished in 
significance as more calculations have been performed which use large 
flexible bases (of the quality of that used by Cade and Huo for HF - 
PCE(4)) which provide more accurate information, within the HFR scheme.

A comparison of theoretical cuid experimental results is now in 
order. Experimental knowledge is not plentiful for either system. In 
the case of CH^ an experimental value ^ r^^^ is available
(Table 5.3), together with a result for the octapole moment^(Table 5.5). 
The experimental X-ray scattering curve, which represents a fit of 
Thomer's^^^^ experimental results is shown in Figure 5.2. Taking 
theoretical predictions for the largest CH^ basis (pCE(5)), a comparison 
with experiment for ^ r ^ ^  (and ) shows a theoretical value which
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is 8 per cent larger than the experimental. In the case of the octapole
moment the theoretical value is only 32 per cent of the experimental.
The experimental result in this case is highly dubious. Stogryn and
Stogryn^list multipole moments for many molecules and tabulate
•recommended* moments which are averages of experimental and theoretical
results. One such recommended value is the octupole moment, , of 

-34 34.5.10 esu cm included in Table 5.5 The theoretical predictions used
in producing the recommended value are those from single-centre calculations.
which are inappropriate for determining multipole moments (see discussion
of OCE results in this chapter). An experimental value foriZ, of 

-34 31.56. 10 " esu cm is listed by Stogryn and Stogryn which is much closer
-34 3to the theoretical prediction made here of 1.42.10 esu cm . No

experimental determination of the hexadecapole moment of CH^ has been
-42 4made - the theoretical result of 2.0066.10 esu cm is, as far as is

known, the only PCE HFR determination of this quantity to have been made.
The experimental and theoretical X-ray scattering curves (Figure 5.2) are 
seen to agree rather well. This is to be expected as previous deter
minations^^' of this property have shown it to be fairly insensitive
to the quality of the wave function for XH^ systems, depending, as it 
does, largely on the spherically symmetric term in the electron density.
The contributions to the scattering factor made by the angular terms 
shown in Table 5.7 support the conclusion that these contributions are 
insignificant and may be safely neglected.

( 53)For HF the only experimenteil results are those for the dipole' 
and quadrupole m o m e n t s a n d  ^ r ^ ^  ( )^^^^. Comparison with
experiment shows the largest PCE basis giving a dipole moment which is
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only 0.7 per cent in excess of the experimental value (Table 5.4). (All 
of the expectation values for the largest basis for HP together with 
others have been determined by McLean and Y o s h a m i n e ^ ) The quadrupole 
moment is 10 per cent less than the recommended value (Table 5.4) whilst 
the theoretical prediction of ^ r ^ ^  (and ) is 19 per cent in
excess of the experimental result (Table 5.2).

The dipole moment prediction for HP is especially pleasing - in full 
accordance with what might be expected for this calculation in the light 
of the Moller-Plesset^^^) theorems for Hartree-Pock wave functions. The 
quadrupole moment and ^ r ^ ^  are certainly less accurately determined 
although there is some doubt about the experimental. *recommended* value 
for ®  • Both HPR calculations for HP and CH^ give ^ r ^ ^  to be
significantly larger than the experimental values - the error of 19 per 
cent for HP would appear to be rather large and to throw doubt on the 
validity of the experimental value in this case.

A good check on the accuracy of HPR expectation values would appear 
to require more experimental work on a variety of properties including 
some not included here, e.g. polarzabilities suid quadrupole coupling constants,

This discussion of PCE results is concluded with a consideration of 
radial terms in the electron density expansions for HP and CH^ introduced 
in Chapter 5. The D(r) curves (Figure 6.1), in which the largest PCE 
basis results are shown in dashed lines, illustrate well the relative 
diffuseness of the electron density distribution in CH^ relative to that 
in HP. The radial terms as far as 1 = 6 in HP and 1 = 8 in CH^ are shown 
in Figures 6.2 and 6.3 respectively. These radial terms, together with 
their emgular parts, constitute elements in a sum which produces a total
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electron density of the appropriate symmetry for both systems* It will 
be noted that for CH^, from which the 1 = 1 , 2  and 5 terms are missing 
in the electron density expansion (see definition of tetrahedral harmonics 
in Chapter 5)» the radial terms peak at approximately the bond length 
and thus are responsible for describing deviations from spherical symmetry 
in the electron density at the protons. For HF, the PCE radial terms 
(Figure 6*2), indicate the presence of a strong dipole term (R^). This 
term, in conjunction with its angular counterpart ( C>C cos Q  ), would 
appear to be responsible for moving a considerable amount of chairge from 
behind the fluorine (f) nucleus into the bond region close to (within 
0.2 au) the F nucleus. The radial terms Rj - R^ (Figure 6.2) should 
produce effects in the deposition of charge near the proton (at 
Z = 1.7328 au). The rather remarkable behaviour of Rj is noted and this 
radial term, together with the d-type spherical harmonic it is associated 
with, will place significant amounts of charge in the bond region.

The radial terms just discussed will be reconsidered in the 
discussion of OCE results in the next section.

The OCE Results
In this section the convergence of radial terras in the electron 

density expansions for HF and CH^ given by the OCE bases will be illustrated 
and compared with the PCE results. The expectation values tabulated in 
Chapter 5 will be called upon to illustrate the discussion. Before'I
launching in on this appraisal of OCE results a few comments will be made 
on factors influencing the OCE performance in XE^ molecules. (A detailed 
exposition of these factors has been given by Moccia^^^^.) First eui 
obvious parameter affecting the accuracy of the OCE calculation is the
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charge on the neavy nucleus, X. (This consideration applies only to 
OCE calculations using the heavy nucleus as the expansion centre, as 
in XH^ molecules.) Thus the UA (united-atom) single-centre approach, 
which was utilized in Part I, performs better in the argon series of 
hydrides than in the neon s e r i e s ^ T h e  greater the charge on the 
heavy nucleus, the greater is the inner shell energy contribution to 
the molecular energy - which the OCE method can approximate rather well.
A second obvious factor is simply the number of protons - since the OCE 
technique meets great difficulty in describing density cusps at off 
centre nuclei, the number of such cusps will obviously influence the 
energetic performance of the technique. Both these factors place HF 
in an advantageous position over CH^ as far as the OCE technique is 
concerned. Thirdly the larger the bond length, the worse the OCE 
performance. This factor has been highlighted in the off-centre 
hydrogen atom calculations of Hoyland et al^^^^ which show the energy 
and dipole moment convergence (as a function of spherical harmonic 1 
value) to progressively get slower as the expansion centre - proton 
distance is increased. Lastly, the nature of the cusps at the protons 
and the density in the immediate vicinity of the protons is important.
The state of affairs existing in ionic species or in certedn excited 
states where large amounts of charge are removed from the proton regions 
- leaving a significantly smaller cusp than that found in the isolated 
hydrogen atom is a favourable one as far as the OCE technique is concerned. 
Taking the largest PCE basis results for HF and CH^ the charge density 
at the proton(s) in both molecules is 0.4217 au and 0.4860 au respectively. 
Hence it would appear that all four factors favour HF over CH^ from a
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single-centre calculation point of view. The fact that CH^ possesses 
a symmetry advantage over HF in that the 1 = 1 , 2  and 5 terms are 
missing from its density expansion, would appear to be overridden by 
the factors mentioned above.

The OCE Electron Density Expansions
To open this appraisal of the OCE results for HF and CH^, the

radial density distributions, D(r), given in Figure 6.1 are considered.
To illustrate changes in the distributions as a function of the OCE
basis set the additional diagrams found in Figure 6.4 have been included,
These latter diagrams indicate the change in D(r), A  D(r), relative to
the distribution given by the smallest basis set - 0CE(i) - for both
molecules. The A  D(r) curves are labelled by 1 - the maximum' ' ' max
spherical harmonic 1 value in the basis considered. Thus for both 
systems the distribution in the inner and outer regions would appear to
increasingly diminish on increasing the size of the basis set, this
behaviour being accompanied by an increase in D(r) in intermediate 
regions. (The above description ignores the small increase in D(r) for 
0CE(2) in CH^ very close to the carbon.) The expectation values ^ r ^  

given in Tables 5*2 and 5.3 (Chapter 5) for the OCE bases appear to 
support the general pattern evident from the ^D(r) curves. Thus 
^ r ”^ ^  , ^ r  ^  and ^ r ^ ^  for both HF and CH^ diminish

monotonically as the size of the basis is increased (ignoring once 
again the small increase in ^r ^  for CH^. The first two operators
emphasize inner portions of D(r) whereas ^ r ^  magnifies extreme
outer regions. The positive peaks in the /^D(r) curves account for the
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trend in ^ r ^ ^  for both molecules. The total D(r) curves for HF 
show the best OCE result approximating the PCE distribution closely all 
over space. Comparison between the best OCE and PCE results for ^r^^ 
(Table 5.2, Chapter 5) show the OCE results to differ from the PCE results 
by less than one per cent. (Since the OCE basis includes the PCE 
fluorine basis the closeness of ^ r  and ^ r  given by the two
techniques is not surprising.) The D(r) curves for CH^ (Figure 6.1) 
show two OCE distributions (OCE(i) and 0CE(6)) and the distribution from 
PCE(5)* a rather surprising result which emerges is that for both HF 
and CH^ the best OCE predictions of ^ r ^ ^  and ^ r ^ ^  are larger 
thcui the corresponding PCE results (see Tables 5.2, 5.3, Chapter 5).
The supposition that the OCE technique will produce low densities at 
the protons generally leads to the assumption that at least ^r^^ will 
be underestimated by the single centre method. However the underestimate 
of electron density at the protons (to be illustrated later in this 
chapter) has a corollary; electron density must be overestimated else
where in space. The OCE results for HP and CH^ suggest that the low 
density at the proton sites is compensated by larger densities in the 
outer regions than that predicted by the best PCE bases.

In summation the OCE functions appear to provide rather accurate 
radial density distributions for both molecules. The convergence of the 
OCE distributions is aptly described by the /}iD(r) curves which show an 
average movement of charge from inner at outer regions into intermediate 
regions encompassing the proton sites in both systems. These changes in 
D(r) reflect the attempt of the OCE functions to build up density in the 
bond regions - this point will be illustrated later with the aid of
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contour diagrams and density profiles.
The radial terms associated with non-spherical contributions to the 

electron density expansions will now be discussed. Figures 6.5A and 
6.5B illustrate the convergence of the radial terras for HF, while
Figure 6*6 documents the convergence of Ry R^ and R^ for CH^. The PCE 
results are shown in broken lines. These radial terms are of importance 
in that they determine the electronic contributions to the multipole 
moments of the molecular charge distributions (see Tables 5*4 and 5.5, 
Chapter 5 for multipole moments).

The dipole and quadrupole moment terms (R̂  and R^) in HF given by 
the largest OCE basis - 0CE(4) - are so close to the PCE results that 
only OCE curves are shown in 6.5A. The dipole and quadrupole moment for 
HF given by the best OCE function (Table 5.4, Chapter 5) differ by about 
one per cent from the PCE predictions. The 1 = 3-6 radial terms show 
larger differences when compared with the PCE ̂ results (Figure 6.5B) but, 
on the whole, the largest OCE basis - 0CE(4) - with spherical harmonics 
up to 1^^^ « 8 in its basis, appears to provide a rather good description 
of the first seven (including R^) radial terms in the electron density 
expansion for HF.

In the case of CH^, the first two radial terras and R̂ , giving 
rise to the octupole and hexadecapole moments respectively, appear to 
be quite well described by 0CE(6), which has 1^^^ = 6. The term Rg is • 
rather poorly defined and higher terms (not shown) rapidly deteriorate. 
The best OCE octupole moment is 40 per cent larger than the best PCE 
result, whereas the hexadecapole moment is 70 per cent larger than the 
PCE value. Of all the one electron expectation values determined, the
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multipole moments most severely test the OCE technique, these quantities 
showing a slow convergence as the OCE basis is extended in CH^ (Table 5.5, 
Chapter 5). Earlier work^^^^ which utilized spherical harmonics up to 
1 = 3  (and therefore comparable to the results for OCE(s) here) would 
appear to be inadequate for describing density angularity in CH^.

The OCE bond moments (Table 5.6, Chapter 5) show a large variation
as the size of the basis is increased. The smallest basis, OCE(i), gives 
the wrong sighi for (C H’*’). This quantity depends on the description
of the MO'S ^  (2A^) and cj) (Tg^ ^ ^ ) which will be shown in contour
form in the next section.

The Electron Densities
The figures appropriate to the discussion in this section will be 

the one electron density contour diagrams for HF and CH^, given for 
three OCE bases in the case of HP (0CE(1, 2 and 4)) in Figure 6.7, and 
for four OCE bases for CH^ (0CE(1, 3, 4 and 6)) in 6.9.

The CH^ contours are shown in a 'bonding-plane', one of the two 
planes containing the carbon nucleus and two hydrogen atoms. The left 
hand edge of all diagrams in Figure 6.9 coincides with the z axis in the 
co-ordinate system shown in Figure 2.1 (Part I, Chapter 2). Thus each 
of the diagrams may be reflected across the left-hand edge. The proton 
position is clearly marked on eacL diagram, this being located at 
(2.0665, 0  T/g) in polar co-ordinates centred on the carbon. For HF, 
the obvious plane containing the molecular axis is shown in Figure 6.7, 
the bottom edge of the diagram being co-incident with the molecular 
axis. As additional information which is useful in complementing these
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diagrams, two density profiles are shown for both HF and CH^ (Figure 6*8 
and 6.10 respectively). For HF the profiles give the density along the 
molecular axis in the bond direction ( 0, (̂  )) and behind the
fluorine nucleus ( ^ (r, "X , 4̂  ). In the case of CH^, Figure 6.10, 
shows profiles in the CH direction ( ^ (r, G  and in the
'opposite* direction with respect to the carbon ( ^ (r, X  - ^ ”̂ /^))

The profiles and contours for CH^ provide a graphic illustration of 
the build-up of electronic charge in the bond region for the OCE functions. 
A measure of the extent to which density is crowded into the bond regions 
is given by the density at the proton, which in going from OCE(i) to 
0CE(6)i increases from 0.06 au to 0.2 au. The profile ^  (r, À  - G t/^,
^Zq.) ('behind' the C nucleus) shows a concomitant decrease in charge 
in this region accompanying the increase in the bond. Comparison with the 
PCE profiles reveals the expected disparity at the proton site. The 
reorganization of OCE density which accompanies the extension of the 
basis set may be discussed with reference to the tetrahedral harmonics 
defined in Chapter 5 (Figure 5.1)• In going to larger bases more such 
harmonics are added in to the density expansion for the system. Thus in 
going from OCE(i) to 0CE(2) (l^^ = 1 and 2 respectively) the harmonics 
T3 and T4 (Figure 5.1) are added in to what was a spherically symmetric 
density produced by 0CE(i). The harmonic T4 appears to remove charge from 
the C-H bond direction and the 'unoccupied corner* direction - 
Q  = ( 7T - ̂  1Z2) shown in the Figure 5.1 (Chapter 5), since it has
negative lobes in both directions. However, T3 moves charge from the 
@  ^  - 01Z2 direction into the bond ( G" * ^ ^  - both directions
being marked in dotted lines in the diagrams. Since Eg is greater than
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a net amount of charge is moved into the bond and removed from the 
non-bonded corner, as is shown in the profiles (Figure 6.10). The OCE 
contours for CH^ (Figure 6.9) provide a graphic illustration of the 
build up of a tetrahedral charge distribution from an initially spherical 
one - 0CE(1). The function OCE(i) provides 97.6 per cent of the 
experimental energy of CH^. The energy lowering achieved by including 
harmonics up to 1^^ = 6 in 0CE(6) is just 0.54 au, to give a total energy 
of -40.065 au (Table 4.1, Chapter 4). Figure 6.9 shows the innermost 
contours with respect to the carbon nucleus (20, 4, 0.6) to be largely 
unaffected as the basis is extended. These contours describe density 
which is largely due to the non-bonding orbital (1Â ) which peaks
strongly at the carbon (composed largely of 1s^). Other features of 
the diagrams to be noted is the''squeezing in' of contours along the 
positive z direction and in the unoccupied corner region indicating a 
steady increase in charge removal from those directions. The largest 
OCE basis - 0CE(6) - is shown together with the PCE contour diagram in 
Figure 6.12 and affords an impressive illustration of the failure of the 
OCE technique in building up density at the protons.

The contours and density profiles for HF show the superiority of
the OCE attack on this molecule to that in CH^. (The OCE HF basis is
slightly more extensive than that for CH^, with 1^^ » 8 for HF and
1 a 6 for CH.. To afford a fair comparison the OCE basis 0CE(3) for max 4 '
HF should be compared with 0CE(6) for CH^, both with • 1^^ = 6. Even 
taking this into account the single-centre approach is still seen to 
favour HF over CH^.) The three contour diagrams (Figure 6.7) together 
with the profiles (Figure 6.8) show density being removed from behind
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the fluorine nucleus into the bond region. The largest OCE basis (0CE(4)) 

is seen to represent the electron density rather well over all space when 

compared with the PCE contours (Figure 6.11). Apart from the behaviour 

of the 0 .2 , 0 .3 , 0 . 3 5  (not valued in diagrams) and 0 . 4  contours in the 

region of the proton the overall shape of the contours appears to be very 
similar.

This discussion of the OCE results is completed with a few comments 
on the MO contours for CH^ shown in Figures 6.13 and 6.14. (Diagrams 
showing MO contours for HE* have been given by Cade et Three

occupied MO's for the system - 0(lA^), 0(2A^) and ^  (^2 2  ̂ shown 
in Figures 6.13 and 6.14. Again the bonding plane {(f> = is used
to illustrate these orbitals. The MO densities are normalized to two 
electrons for all diagrams. Comparing OCE and PCE results, the non
bonding MO ( ^ 6  (1A^) appears to be described very similarly by both 
techniques. This MO is largely 1s^. The usual cusp problem shows in 

the OCE description of the 0  (2A^) and 0 (^2 )̂ MO's which show bonding 
characteristics. Deviations from spherical symmetry in the density near 

the proton are clearly evident in both 0 (2A,̂ ) and 0 (^2 )̂ with charge 
being sucked into the bond. The -like character of the 0  (T^^) MO 

is obvious with the bonded upper-lobes forcing the nodal plane (not 

shown in diagram) downwards.

Concluding Remarks

At this point a brief summation of the discussion of results 
attempted in this chapter might be in order. First the largest PCE HFR 

results for HP and CH^ have been compared with the few experimental
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results available. Outstanding agreement has been found for the dipole
moment of HF, given as 1.9416b by the Cade, Huo function PCE(4),
compared with the experimental value of 1.8195D. The theoretical value
of quadrupole moment ( ) is approximately 10 per cent less than the
experimental result. The theoretical prediction of -10.938.10 ^
eraxymole, is significantly larger (numerically) than the experimental
result of -9.2.10  ̂emxy'mole, although the discrepancy here is large
enough to throw some doubt on the validity of the experimental value.
The quantities mentioned exhaust all known experimental result for HF.
The other physical properties mentioned, the fluorine magnetic shielding
factor (diamagnetic contribution) and X-ray scattering factor require
experimental results for comparison, but on the whole the largest POE
basis for HF appears to perform exceedingly well. In the case of CH^,
the theoretical predictions of octupole moment, ^  ̂  and X-ray scattering
factor have been compared with experiment, although the * observed' value
of octupole moment is rather dubious. ^  ̂  for CH^, as predicted by the
largest PCE basis, is about 8 per cent larger than the experimental
value, whilst the theoretical and experimental X-ray scattering curves
agree quite closely. No experimental results are knownfor the carbon
shielding factor in CH^, or for the hexadecapole moment of this molecule,
although both quantities have been evaluated theoretically here. The
largest PCE basis result for ^  , the hexadecapole moment in CH^, is

-42 42.0066*10 esu cm . No previous PCE evaluation of this quantity has
been made as far as is known.

The discussion of OCE results has utilized the best PCE results 
for comparison purposes and the electron density expansions and contour



-  117

diagrams have illustrated the convergence of the OCE technique as the
quality of the basis is improved by adding higher spherical harmonics
into the basis. The disparity in the performance of the OCE performance
in HF to that in CH^ has been highlighted, with the superiority of the
attack on HF being fully evident. Indeed the OCE HFR performance in HF
is very successful:- the technique predicts 99.5 per cent of the Hartree-
Fock limit energy and performs very similarly to the largest PCE basis
in its prediction of one-electron expectation values. The limitations
of the OCE basis used for CH. (with 1 = 6 for 0CE(6)) has been shown4 ' max ' ''
via the electron density contours and profiles indicating the insuff
iciency of the basis in coping with the 'cusp problem' presented at the 
hydrogens. A rather surprising result to emerge from the OCE calculations 
is the values of ^ r ^ ^  and ^r^^ which are larger than the PCE 
values for both molecules.

The future of the single-centre approach, of which the OCE HFR 
calculations here are one example, is somewhat doubtful as a general 
technique. Since the evaluation of multicentre two electron integrals 
is no longer an obstacle, (this factor led to the increasing employment 
of the single-centre approach) the role of the single-centre method would 
appear to be a specialized one, where the know factors influencing its 
performance operate to its advantage. The Hoyland OCE HFR calculations 

on HF certainly show the technique to be capable of yielding successful 
results when applied to an appropriate system.

A full vindication of the HFR technique requires much more detailed, 
accurate experimental work on a variety of molecular properties. The 
PCE results presented in this work have gone some way to illustrate its
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potential worth as a predicter of one-electron expectation values. The
{59)work of Bader et al^ ' which utilizes HFR wave functions to illustrate 

the bonding process via one-electron densities also presents an 
interesting example of the use to which the technique may be put. The 
computational problems inherent in accounting for electronic correlation, 
even in molecules of the size dealt with here, will for some time yet, 
leave the HFR technique in a commanding position, as a proven method of 
general applicability.
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APPENDIX

MOLECULAR INTEGRALS

The evaluation of the UA energy integral necessitates the 
evaluation of four distinct integral types;

X ( u ]  —

J

t /

^  f / J )

7-. t ' O'ui

(A.1)

The two electron integrals, F and G are the familiar coulomb and 
exchange types respectively. The integral I represents the kinetic 
energy of an electron described by orbital ^  plus its potential 
energy in the field of the heavy nucleus of the XH^ system with charge 
Z. The only two centre integral requiring evaluation is L, which gives 
the potential energy of interaction between an electron in and
a proton.,
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C o n s id erin g  th e  two e le c tro n  in te g r a ls  f i r s t ,  th e  ap p earin g

in  them may be expanded in  s p h e r ic a l harmonics and th e  u su a l an g u la r  

in te g r a t io n  perform ed. T h is  le a v e s  in te g r a ls  over r a d ia l  c o -o rd in a te .  

C onsider a G in t e g r a l .  A f te r  p e rfo rm in g  th e  an g u la r in te g r a t io n ,  t h e i r  

rem ains an in t e g r a l  o f  th e  ty p e ;

In  which

=  r

where

(A.3)

A lso

a

U+i-

So

(l.vlv)
r.

<4 t
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in which
vu.

/ *0

and s and t are the degrees of polynomials and respectively.
Consider now the integral over r^ in (A.2).

T
ji) =  Rf-1 '0 R W  0)

0 0 
•£> c*̂

RU\r.) R(jil'c) (

0 {■. (A.4)

Consider the integral over r. in the first part of (A.4), i.e.

z « -
0

(A.5)
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Let R = 1̂  + 12 + k + 2
A typical integral in (A.5) is

\M -(K4p^

IX (
» o

(*+f)
“R+U+l (a .6)

So, integrating over rj for the first term in (A.4):
od

#»? o
O

L

-  r ^ n
J IA\—0

R*-*' / jvi
t'-O

Writing S = l ^ + l ^ - k  + l, the integral over is:

f<+f)
I

f-̂ 0
P-!

6 ft: S4-6

[IrO
(A.7)



- 123 -

C onsider th e  in te g r a l  over r^ in  th e  second term  of (A.4), i.e.

r
k-i

(A .8 )

s+t f

Afl

0  e __________

...
(A.9)

u-0

In te g r a t in g  now over r j :

6 + t" r s+M

tM' HA

t O

W h  eJ
2j_____________________

, V'

-ï(s+(i)rj

v y

(A.10)
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Hence the radial G integral is finally obtained as:
s+e _

m ?-o

>rXA

4-

(R+- !
(A.n)

_ ( R + ^ y  y
/ y,l +

p--O

The F integral may be treated in a similar manner. Thus, the radial 
coulomb integral to be evaluated is:

T  /I

. U'-l 1

O 0 

*d

+ (A.12)

0 r.
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Introducing C k\ =" ^  yA and considering the first
o

integral over r^ in (A.12) i.e.

''j I ^r 2 u  jvv+tc+T.

VA =0

which gives: 
2-f

, f H  !
Cm

im -st-O-f L

f;

vOUfr̂ t M =  M,  + - k + 2 _  (A.13)

Considering now the integral over rj in the first terra in (A.12) i.e.

T fj, / " T u f È W L j £ ( ± ^ '"O'
where ^

k  k - V=

|s/ -=r -k I
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Thus the first term in (A.12) gives:

2î

A CVw I*'

iV'B-O 5i\-=-0

H+Vvt
( >r ft) ! I

>o

(A.14)
Now consider the second integral in (A.12), i.e.

rO

J J

The integral over r^ gives 
ij k•+w

—̂ t 
■̂=-0

, 4/
(k+'-H «;/ e

V.
^>0

where K = 21̂  + k - 1
Performing the integral over r. produces 

1, ^

V  r
l̂ t, Cĵ,

VĤ O

where L = 2I2 + k + 2
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So, finally, the radial P integral obtained is

{ (KI+VV.) I

(\?o

3>« L ,

4 ) l

M+„

(Li\ 4^1!

—  + fv)!
+ *»A

(A.15)
M)

Consider now the L-type integral species:
IC

L  < 4
R'-kil'l) ̂  r,, R! 7 d/j (A*16)

where |/ Id-̂ v
n

R

c

r;(4-1
= A_

For an X-H bond length distance R.
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Thus

X< R fSG

0

c  c/'i. +
21
L 'e. dr

R
M-i

e

i>

Hence, introducing
M = -21̂  + k + 2 
K = 21, - k + 1

L k,^) =  ^ «-+I
Ci^) |c(

+  R
V. (A.17)
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The final integral type to consider is the I type, i.e.

Ji S i *  J '  % ( a . 1 8 )

where

A.

%

nence

x - v '"  -  —

, ' S ^ j 9 , ç )

=  r  Î  z , . . 4
Ik, ̂'5-0

operating with h leaves the result
f>*>

/, W  -

-Zier
e

r^o

J —""zTj

J

f  r
r  (Uv^) — ^  c(Cn)
L 2- I .



- 130 -

So introducing S L  = 21 + m + m' and performing the radial integral 
gives :.

X(x) = -fUl

kwO Ik >0

(A.19)
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T h e electronic structure o f AIH4" has been studied by using a 
determinantal wave function constructed from  a minim al basis set o f one-centre 
atom ic orbitals o f analytical form. Besides the determination o f the 
m olecular energy and bond length, values were also found for the ‘breathing’ 
force constant, the coherent x-ray scattering factor and the purely diamagnetic 
contribution to the molar m agnetic susceptibility. T h e results o f the present 
treatm ent for AIH4" were compared w ith the recent calculations o f Albasiny  
and Cooper who used a one-centre Hartree—Fock approach w ithin a spherical 
and a non-spherical approximation. In the light of the relative labour 
involved in each treatm ent, the com parison o f physical properties proved to be 
quite favourable.

1. I n t r o d u c t io n

Several hydride m olecules of the argon-like series have been studied recently 
[1 ] by means of the united-atom  (U A ) approximation. T h e method em ploys the 
non-relativistic molecular hamiltonian, within the Born-O ppenheim er 
approximation, but makes the approximation that all the molecular orbitals are 
centred on the heaviest nucleus. Each molecular orbital is approximated by using  
one atomic orbital of analytical form, hence, the treatment involves the use o f a 
minimal basis set of wave functions. T h e orbital exponents are then varied in  
order to m inim ize the total molecular energy in accordance with the variation 
principle. Considering the sim plicity and comparative ease of application of this 
treatment, the resulting physical properties for the hydride m olecules compared  
favourably with experim ent [2]. In this paper the results o f a similar calculation  
are presented for the m olecular-ion A 1H 4~.

At the com m encem ent of this work, no other electronic structure calculation  
had been reported for AIH 4- .  H owever, as this article was in preparation, 
Albasiny and Cooper [3] presented numerical one-centre H artree-Fock wave 
functions for AIH4-  and P H 4+ for several values of the bond lengths using both a 
spherical and a non-spherical approximation. For each molecular-ion, the 
associated physical properties were also reported. Reference will be made to 
these SC F  results, where appropriate, in the following discussion.

2. C a l c u l a t io n  a n d  r e su l t s

T he united-atom  m odel has been discussed in detail elsewhere [1]. As 
before, the total wave function of determinantal form is constructed from  
one-centre orthonormal wave functions of the same general type as those used by 
Fock and Petrashen [4] and other workers [1, 5]. Since w e assume tetrahedral 
symmetry for the nuclear framework of AIH4- ,  the px, py and pz orbitals, w ithin a
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particular shell, will have a com m on variational parameter and therefore, in this 
instance, the electron density will possess spherical symmetry. A s in the  
treatment for som e o f the rare-gas hydride ions [6 ], all orbital exponents were 
regarded as variational parameters and were optim ized by means o f the energy 
m inimization proceduref. T h e bond length R  was also included in the 
calculations as an additional unknown parameter. T h e total energy E  obtained  
for the ground state o f AIH4" was — 242-0270J which corresponds to a theoretical 
value o f the bond length o f 3-132 a .u . By means of further energy m inim ization  
calculations for fixed values o f R  in the region o f the theoretical bond length, the  
‘ breathing’ force constant k for A 1H 4“ was found [1 ft] to be 7-58§. A n  
experimental value for k is 7-57 [8 ].

22 
20 

D(D 18

403020 r
Figure 1. T h e radial density distribution o f electrons for AIH4 . Curve {a) is determ ined  

from the U A  treatm ent. Curve (ft) was obtained by Albasiny and Cooper from the 
H artree-Fock schem e w ithin a non-spherical approximation.

T h e radial density distribution of electrons D{r) obtained from the U A  results 
associated with the theoretical bond length is shown in  curve {a) o f figure 1 ; for 
comparison, curve (ft) shows the corresponding electron density determined by 
Albasiny and Cooper [3] from the non-spherical one-centre SC F wave functions 
at the theoretical R  value. For a highly symmetric system  such as AIH 4- ,  the 
radial density distribution will determine, to within graphical accuracy, the shape 
of the coherent x-ray scattering curve. H ence, the electron densities shown in  
curves {a) and (ft) of figure 1 give rise [1 ft], respectively, to the x-ray scattering 
factors shown in curves {a) and (ft) of figure 2. N o  estim ates o f the experimental 
results are available for comparison. T h e radial density was also used, as before 
[1 ft], to determine the purely diamagnetic contribution I I  to the total molar

f  T h e authors w ould like to thank D r. R .B .  Hake for the use o f several o f  h is com puter 
routines.

I  U nless stated otherwise, all physical quantities given here are quoted in terms o f  
atom ic units, see [7].

§ T h e units for force constants used throughout this work are 10^ dyn/cm .
II Values o f xr, expressed w ith  respect to the heavy nucleus as the origin, are given in 

units o f 10“® electrom agnetic units per m ole.
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m agnetic susceptibility T he U A  density for AIH4"" gave a value for xr o f  
— 79-81, T h is result lies between the two S C F  values for %r obtained by  
Albasiny and Cooper. For AIH 4- ,  a theoretical value for the temperature 
independent paramagnetic contribution %h.f. to the molar susceptibility is not 
known by us. T h is ‘ high frequency ’ contribution to which vanishes for the 
case o f atoms as a result of their spherically symmetrical nuclear field, is extrem ely  
difficult to calculate since it requires a knowledge o f all excited electronic states. 
A n experim entally based value for xh.f. for AIH4 -  is also not known and, although  
it is possible to estimate [9] a value for the general lack o f experimental data 
for this m olecular-ion makes it difficult to suggest a m ost probable value for 
x(A 1H 4“) as was done earlier for the P H 4+ ion [1 6 ].

20
f

0 1 0 4
SIN

0 3 0 502

Figure 2. T h e  coherent x-ray scattering factor for AIH4~. Curves {a) and (6) are 
determ ined, respectively, from the radial densities given by the present treatm ent 
and the H artree-Fock approach w ithin the non-spherical approximation.

For convenience, the results m entioned above are summarized in the table. 
Included in the table are the values o f the physical properties for AIH 4" 

determined by Albasiny and Cooper from the one-centre numerical SC F treatment 
within the spherical and non-spherical approximation.

M ethod Energy
(a .u .)

Bond
length
(a .u .)

Force
constantf

k
X rï

U A § approach -2 4 2 -0 2 7 0 3-132 7-58 - 7 9 -8
A /C  § spherical -2 4 3 -2 2 2 3-137 6-85 - 8 8 -3
A /C  § non-spherical -2 4 3 -7 3 4 2-965 9-96 - 7 6 -5

f  T h e units for force constants used throughout this work are 10^ dyn/cm .
J Values o f %r, expressed w ith  respect to the heavy nucleus as the origin, are given in 

units o f 10~® electrom agnetic units per m ole.
§ U A , united-atom ; A /C , Albasiny and Cooper.

Comparison o f results for AIH4- .
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3 . D is c u s s io n

As anticipated, the table reveals that the present molecular energy for AIH 4"" 
is higher than that obtained from either of the one-centre SC F  approximations. 
H owever, if  the U A  value is expressed as a percentage o f the best SC F energy  
obtained by Albasiny and Cooper, it is found that the present result is in keeping 
with the corresponding energy ratios obtained for P H 4+ and S iH 4 [10], T he value 
for R  obtained from the present U A  approach is seen to be marginally better than  
the result derived from the spherical SC F treatment, however, the im provem ent is 
not as great as was observed for corresponding comparisons for the molecular 
system s P H 4+ and S iH 4 , As was observed for both PH 4+ and S iH 4 , the value for 
R  predicted by the non-spherical SC F  approximation is expected to be the m ost 
reliable result since, as discussed recently [6 ], the presence o f angular terms in the 
density w ill affect the overall force which acts on each proton.

T h e value of the ‘ breathing ’ force constant obtained here for AIH4" is in 
excellent agreement with experiment. However, because the U A  treatment 
normally provides k values for XH n molecules which are somewhat too large when  
compared w ith experiment, the excellence of the present result is thought to be 
rather fortuitous.

On the whole, the results obtained for AIH4 -  by means o f the present treatment 
are found to be quite satisfactory when compared with similar quantities derived 
from the more elaborate SC F calculations.

T h e  authors would like to thank Dr. R. B. Hake for the use of certain of his 
com puter routines. One of us (A. S.) also expresses appreciation for the award 
of a maintenance grant from the Science Research Council.
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The ground states of the rare-gas hydride ions NeH+ and ArH+ have been studied by means of the united- 
atom (UA) treatment. Values are reported for the energy, theoretical bond length, force constant, and the 
diamagnetic part of the molar magnetic susceptibility. However, the present work is primarily intended 
as a test of the UA approach and, as such, it was useful to compare the results with those obtained by the 
same treatment for HF and HCl. Also, it proved to be most instructive to analyze the forces which act on 
the protons within each molecular ion.

As anticipated, the UA treatment of NeH+ and ArH+ met with meager success. Nevertheless, the analysis 
provided considerable understanding as to why a similar study, applied to neon- and argonlike molecules, 
yields fairly reasonable values for the above molecular properties when compared with experiment.

I N T R O D U C T I O N

Th e  one-center approximation has been used 
extensively for hydride molecules of the neon- and 
argonlike series.^ Included within such an approximation 

are the simple united-atom calculations,^ the one-center 
expansion treatment of Moccia,® and also the numerical 
H artree-Fock calculations of Albasiny and Cooper.^ 
In a recent series of articles,® it was found that although 
the united-atom (UA) method was not as energetically 
favorable as the more elaborate one-center treatments, it 
did provide good values for the theoretical bond 
length, especially for the argonlike molecules. Also, 
tolerable values were obtained for the purely dia
m agnetic part of the total molar susceptibility and, 
when one considers the simplicity of the UA model, 
the calculated values of the “breathing” force constants 
were not too disappointing when compared with 
corresponding experimental quantities. Therefore, in 
an effort to explore the workings of the UA treatment, 
particularly its success at predicting bond lengths, it 
was decided to take the method to its limit by applying 
it to the study of the rare-gas hydride ions NeH + and 
ArH+.

Rare-gas hydride ions were observed originally in 
mass spectrometers and, since they possess only a 
short lifetime, a knowledge of accurate wavefunctions 
and the associated molecular properties would be of

 ̂See, for example, the work of R. A. Buckingham, H. S. W. 
Massey, and S. R. Tibbs, Proc. Roy. Soc. (London) A178, 
119 (1941); M. J. M. Bernal, Proc. Phys. Soc. (London) A66, 
514 (1953); C. Carter, Proc. Roy. Soc. (London) A235, 321 
(1956); A. F. Saturno and R. G. Parr, J. Chem. Phys. 33, 22 
(I960); D. M. Bishop, Theoret. Chim. Acta 1, 410 (1963); 
see also Refs. 2, 3, and 4.

® (a) R. Caspar, I. Tamassy-Lentei, and Y. Kruglyak, J. Chem. 
Phys. 36, 740 (1962); (b) K. F. Banyard and R. B. Hake, ibid. 
41, 3221 (1964) ; 43, 2684 (1965); 44, 3523 (1966).

®R. Moccia, J. Chem. Phys. 40, 2164, 2176, and 2186 (1964).
 ̂F. L. Albasiny and J. R. A. Cooper, Mol. Phys. 4, 353 (1961) ; 

Proc. Phys. Soc. (London) 82 , 289 (1963); 85, 1133 (1965); 
88,315 (1966).

®R. B. Hake and K. F. Banyard, J. Chem. Phys. 43, 657 
11965); 45, 3199 (1966).

considerable interest. In this context the two-center 
calculations on HeH+ and NeH+ carried out by  
Peyerimhoff® are particularly noteworthy. Although we 
report physical properties which result from our 
calculations on NeH+ and ArH+, the present work is 
primarily intended as a test of the UA model and, as 
such, we find it useful to compare the reliability of the 
present results with corresponding calculations^ ’̂ carried 
out on H F and HCl. Finally, it proved instructive to 
analyze the forces which act on the protons within 
NeH+ and ArH+.

CALCULATIONS
The details of the united-atom treatment applied to 

neon- and argonlike molecules have been discussed 
fully elsewhere.^ As in the previous calculations, the 
total molecular wavefunction for the ground state of 
each molecular ion was expressed as a single Slater 
determinantal function constructed from orthonormal 
one-electron orbitals of the type used by Fock and 
Petrashen.® The origin of the coordinate system  is 
taken to be the heavy atom and the proton is positioned 
on the z axis; hence, from symmetry considerations, 
the px. and Py orbitals within the same shell will have a 
common variational parameter. Within this symmetry 
restriction, the total molecular energy was then 
minimized with respect to all orbital parameters. It is 
noted that in our previous UA calculations,^'^ the H  
and 2s orbital exponents for the heavy atom were not 
varied but were preselected to have the neutral atom  
values.

Unfortunately, no experimental values of the bond 
length R  for NeH+ and ArH+ were known by us, hence, 
R  was included in each calculation as an additional 
variational parameter. The resulting energy E  and

® S. Peyerimhoff, J. Chem. Phys. 43, 998 (1965).
?R. B. Hake, “A Theoretical Study of Some Molecular Sys

tems,” Ph.D. thesis. University of Leicester, 1965.
* V. Fock and M. J. Petrashen, Physik. Z. Sowjetunion 6, 

368 (1934).
OiAZ
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T a b l e  I. Comparison of results obtained for NeH+ and A rH t

Method
NeH+ ArH+

E
(a.u.)

7?theoret
(a.u.)

k<̂ Xr* E
(a.u.)

^theoret
(a.u.)

Xr*

United atom» -127.5703 2.33 0.17 -5 .5 8 -524.5752 3.11 0.18 -1 6 .8 4

Two-center Hartree-Fock- 
Roothaan*»

-128.6284 1.83 5.29 . . .  . . . . . .

Modified Platt electrostatic model® 1.53 5.52 2.15 5.53

* P resent treatm ent.
The results of Peyerimhoff; see Ref. 6.

® The results of M oran and Friedm an; see Ref. 13.

See Ref. 11. 
“ See Ref. 10.

theoretical bond length i?theoret® for each molecular ion 
are reported in Table I. The electron densities associated 
with the above results were used to calculate the 
purely diamagnetic contribution Xr to the molar 
magnetic susceptibility %; see Table I. For complete
ness, the radial densities were also used to calculate 
the coherent x-ray scattering factor, however, for each 
system, the result was graphically indistinguishable 
from the corresponding curve derived from analogous 
wavefunctions for the appropriate rare-gas atom.

For each molecular ion, the optimization of all 
orbital exponents was repeated for several fixed R  
values in the region of the theoretical bond length and 
hence, as before,^*’ a “breathing” force constant k was 
determined.^^ The results are presented in Table I.

It is helpful in the discussion that follows if we have 
some knowledge of the forces which act on the protons 
within each system. For a diatomic hydride, the 
resultant force in the positive z direction which acts 
on the proton due to the effect of the heavy nucleus 
and the electronic charge cloud is given by

Fh
R? J

p(r,d ,  0)coso: 
52 dr, (1)

where Z  is the charge on the heavy nucleus, R  is the 
internuclear distance, and p(r, 6, 0) is the electron 
density. The volume element dr, which is situated at 
(r, 6, <t>) with respect to the heavy nucleus as the origin, 
is located at a distance S  from the proton such that 
a  is the angle between the z axis and the direction of S. 
The electron density for a diatomic system can be 
written, in general, as

p { r , e , < f > ) =  P n o { r ) Q n o { 9 ) ^ o { < t > ) . (2)

* Unless stated otherwise, all physical quantities given in this 
article are quoted in terms of atomic units [see H. Shull and 
G. G. Hall, Nature 184, 1559 (1959)].

All values of x and Xr (which is expressed here with respect 
to the heavy nucleus as the origin of the coordinate system) 
are given in units of 10~* emu/mole.

" The units for force constants used throughout this work 
are 10® dyn/cm.

However, in the UA treatment, with its limited angular 
dependence, we find that

p(r, 9,  <̂ ) =Poo(^)0oo(^)4>o(<^)+p2o(t')02o(^)4>o(0). (3)

Substituting Eq. (3) into Eq. (1 ), we obtain after 
some manipulation

1/2 rR / ^ \ l / 2  I
j  p o o ( r ) r ^ d r — 6 ^ - jR2 ^ 2 R*

' p2o(r) (4)
The terms which occur in Eq. (4) can easily be under
stood by the application of simple electrostatic theory; 
in particular, the second term represents a screening 
of the first or nuclear term from the proton. This 
screening effect arises from that part of the electronic 
charge cloud located within a sphere of radius R  which 
is centered on the heavy nucleus. The remaining inte
grals in Eq. (4) are obviously dependent on the angular 
term which occurs in the UA density. The curves (a) 
and (b) of Fig. 1 are obtained from Eq. (4) and show, 
respectively, the total force which acts on the proton 
in NeH+ and ArH+ for various values of R. For each 
system, the electron density was derived from optimized 
orbital exponents for the appropriate value of R.

0005

0004-
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0002 
Fh (a.u.)

OOOl

0 0
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F ig . 1. The force on the proton within NeH+ and ArH+ for 
different internuclear distances i?. Curve a is for NeH*’ and 
Curve b is for ArH+.
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DISCUSSION OF RESULTS

D ue to the difficulty of carrying out experimental 
observations on rare-gas hydride ions, it is not possible 
to compare the physical properties listed in Table I 
with experiment. However, a comparison with other 
theoretical work is possible. For NeH+, we have the 
results provided by Peyerimhoff® who carried out an 
extensive two-center LCAO MO SCF calculation after 
the manner of R o o t h a a n . 2̂ Also, a comparison of 
theoretical bond lengths and force constants for each 
system is possible by reference to the analysis of 
Moran and Friedman.^® These workers applied a 
modification of the Platt electrostatic modek^ to the 
study of several diatomic hydride ions. The appropriate 
results obtained from the above calculations are 
summarized in Table I.

For NeH+, it is seen that the physical properties 
predicted by the extension of P latt’s model, used by 
Moran and Friedman, agree reasonably well with the 
results obtained from the basic calculation of Peyerim
hoff. The energy for NeH+ given by the two-center 
calculation is observed to be about one atomic unit 
lower than the value given by the UA treatment. 
Such an energy difference is also observed for HF  
between the UA calculation2-^ and the elaborate one- 
center treatment of Moccia.® The values for Rtheoret 
and k given by the UA treatment of NeH+ are, re-' 
spectively, larger and significantly smaller than the 
corresponding quantities derived by the previous 
workers. If we consider the results of Peyerimhoff to 
be close to future experimental observations, then the 
trend of the present results is different from that found 
in previous applications of the UA model to both 
neon- and argonlike hydride systems.2'^ For those 
molecules it was found that, in general, the values 
obtained for F  theoret were in quite good agreement with 
experiment and also the results for the “breathing” 
force constant were, in each case, larger than the 
corresponding experimental data.

Similar conclusions are expected to hold for ArH+. 
The UA model provides a theoretical bond length 
which is larger than that obtained by Moran and 
Friedman and the present force constant, which is of 
the same order of magnitude as that obtained for 
NeH+, would again appear to be suspiciously small. 
Since the UA treatment of NeH+ and ArH+ appears to 
provide theoretical bond lengths which are much too 
large, the values for Xr reported in Table I will also 
be too large.

It would be helpful if we could understand why the 
values for Ftheoret and k predicted here for the rare-gas 
hydride ions do not follow the general trend found when 
the UA treatment was applied to other neon- and 
argonlike hydride systems. In this connection, the

C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
" r .  F. Moran and L. Friedman, J. Chem. Phys. 40, 860 (1964). 

T R. Platt, J. Chem. Phys. 18, 932 (1950).

study of the forces which act on the proton within 
each system is of particular interest.^® It is seen from 
Fig. 1 that in both cases, the total force acting on the 
H  nucleus is close to zero at the theoretical value for 
i?.̂ ® Similar results were found for the UA treatment of 
the corresponding diatomic hydride molecules H F and 
HCl. Such a result gives some measure of the sensitivity 
of the computer program which minimizes the total 
molecular e n e r g y  .̂2 por NeH+ and ArH+, the force on 
the proton tends to zero as F — . This is because the 
heavy nucleus is completely screened by the poo( )̂ term 
in the electron density while the force on the proton 
due to the angular terms in the density is zero at 
R =  cc. Hence, it follows that, if the electron density 
for these systems contained only a poo{r) term, the 
theoretical value for R  would, ideally, have to be 
infinite in order to give a zero force acting on the 
proton. On the other hand, if a similar situation 
occurred for H F and HCl, a balance between the first 
two terms of Eq. (4) is possible at values for R  which 
would be in fairly reasonable agreement with experi
ment. Such a central-field study of XH„ systems’® 
possesses similar features to the Platt electrostatic 
model.’̂  Therefore, for rare-gas hydride ions, in contrast 
with systems such as H F and HCl, a realistic prediction 
of the bond length depends markedly on the angular 
terms within the electron density. Hence, in the UA 
model, the p2o{r) contribution to the density plays a 
major role in providing a finite value for Rtheoret- On 
the other hand, the two-center treatment of Peyerimhoff 
for NeH+ should contain many well-described angular 
terms when the density is expanded in spherical 
harmonics about the heavy nucleus, consequently, 
this treatment should predict a bond length which may 
be in close agreement with experiment.

We have seen that the limited angular dependence 
which arises when the electron density is obtained from 
a UA treatment results in bond lengths for NeH+ and 
ArH+ which are too large. Such a situation also gives 
rise to a “breathing” force constant k which is much 
too small. The present treatment gives an electron 
density for each system which is small and slowly 
varying in the region of the proton.’® Therefore, it is 
not surprising that the molecular energy is also a 
slowly varying function of R, and hence k, which is

For an accurate wavefunction the resultant force on each 
nucleus within a diatomic system should be zero at the theoretical 
bond length. However, within the UA treatment, the heavy nuc
leus will experience no resultant force arising from the electron 
density, hence, the force acting on this nucleus will always be 
Z/R^, due entirely to the proton.

The force on the proton at the theoretical bond length is 
—0.0002 a.u. for NeH+ and zero, to within four decimal places, 
for ArH+.

"  The authors would like to express their sincere thanks to 
R. B. Hake for the use of several of his computer routines.

See, for example, K. E. Banyard, and N. H. March, Acta 
Cryst. 9, 385 (1956).

At iîtheoret the proton is only just penetrating the electron 
charge cloud for both NeH+ and ArH+. The number of electrons 
contained within the sphere of radius i?theoret, centered on the 
heavy nucleus, is 9.98 for NeH+ and 17.96 for ArH+.
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given by the second differential of E  with respect to 
R  and evaluated at i?theoret, will obviously be small.

From the above discussion we have seen that the 
UA treatment of NeH+ and ArH+ has not proved to 
be very successful. However, the analysis presented 
above has helped considerably in the understanding of 
the reason for this failure, further, it has also helped 
to explain why the UA treatment is capable, on the 
other hand, of providing reasonable values for the 
physical properties for H F and HCl, The arguments 
presented here can also be used to show why a similar 
study, when applied to the remaining neon- and argon

like molecules, does provide acceptable values for 
ĵ theoret and k when compared with experiment.
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