A STUDY OF ARTIFICIAL SATELLITE RESONANCE

ORBITS DUE TO LUNISOLAR PERTURBATIONS

A THESIS SUBMITTED FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

by

S. HUGHES

DEPARTMENT OF ASTRONOMY

UNIVERSITY OF LEICESTER

1978



UMI Number: U435648

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U435648
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346






This thesis is affectionately dedicated to
the University of Leicester's CDC Cyber 72
computer with whom I have spent many

pleasant evenings.



Acknowledgements

I should now like to take this opportunity to thank the

people, organisations and machineé who have helped in the preparation
of this thesis, Firstly, I wish to thank my supervisor Professor
A.J. Meadows, for suggesting this project and for all his help and
guidance during the course of this work. Secondly, I should like to
thank Mr. D,G. King-Hele for his expert comment and moral support.
Many thanks to Mrs. Norma Corby for her excellent typing of the
manuscript. Thanks also to the Science Research Council for funding.
Finally, I must mention the machines wﬁo did all the boring algebra,
graph plotting and number crunching for this thesis, viz. the CDC
Cyber 72 computer at the University of Leicestef and the CDC 7600

computer at the University of lanchester.



CHAPTER 1:

CHAPTER 2:

APPENDIX 1:

APPENDIX 2:

REFERENCES

CONTENTS

THE GENERAL MOTION OF AN ARTIFICIAL SATELLITE

1.1

Elliptic Motion

Osculating Motion and the Lagrangian
Planetary Equations

Types of Orbital Chances

The Perturbations acting on an Artificial
Satellite

The Present State of Knowledge

LUNISOLAR GRAVITY AD DIRECT SOLAR RADIATION

PRESSURE RESONANCE ORBITS

2.1

2.2

Tﬁe Nature of the Resonance Orbits

The General Commensurability Condition
for Lunisolar Gravity and Direct Solar
Radiation Pressure Resonance Orbits

The Classification of Lunisolar Gravity
and Direct Solar Radiation Pressure
Resonance Orbits

The Thirteen Important Commensurability
Conditions

Discussion and Conclusions

SOME IMPORTANT HANSEN COEFFICIENTS

PUBLICATIONS

Page

12

46

49

49

52

57

61

179

181

189



CHAPTER 1

THE GENERAL MOTION OF AN ARTIFICIAL SATELLITE

1.1 Elliptic Motion

If the Earth was a sphere with a radially symmetric density
distribution, had no atmosphere, was situated in a Newtonian universe,
and was isolated from other bodies in the solar system, the orbit of an
artificial satellite would be an ellipse of constant size and shape in
a plane whose;direction remained fixed relative to the stars. Five
parameters, called orbital elements, a¥e required to characterise the
size, shape and orientation of a satellite's orbit. A sixth orbital
element defines the angular position of the satellite in its orbit.

Two angles specify the orientation of the orbital plane,
namely the inclination, I, of the orbital plane to the celestial equator
and the longitude of the ascending node, {1 , measured eastwards from
the vernal equinox, ¥, to the ascending node, N, (Figure 1.1). Three
further parameters define the size and shape of the orbit and its
orientation in the orbital plane. The size is specified by the semi-
major axis, a, and the shape by the eccentricity, e, (Figure 1.2).

The fifth orbital element is the argument of perigee, @ , the angle
between the ascending node and the perigee of the orbit, meas&red in
the plane of the satellite's motion (Figure 1.1). The last parameter

is the mean anomaly, M, defined by

M o= (_g_)’} (t - T) (1.1)
3

where U 1s the Keplerian constant GME, G is the gravitational constant,
ME the mass of the Earth, t the time and T the time of the most recent

passage of the satellite through perigee.
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Projection of an artificial satellite

orbit on the celestial sphere



all-e )

AUXI L. TARY CIRCLE ORBIT ELLIPSE

Figure 1.2

Definition of a, e, f and E
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In addition to the mean anomaly, two other variables are
often used to specify the angular position of a satellite in its
orbit., The first of these alternative variables is the true anomaly, f,
defined as the angle subtended at the Earth's centre by the satellite's
radius vector, r, and the direction of perigee»(Figure.1.2). The‘trueb
anomaly is related to r, a and e by the equation

r = a(l - e?) (1.2)
(1 + e cos )

The second alternative variable to M is the eccentric anomaly, E, the
angle between the vector CQ and the major axis AB of the orbit (Figure
1.2). It can be shown that M, £ and E are related to each other by

the set of equations (Brouwer and Clemence, 1961):

M = E - e sin E (1.3)
rcos f = a(cos E - e) (1.4)
2.1
rsinf = a(l - e“)* sin E (1.5)
2ar = a2a - eH? (1.6)
dM
r = a(l.- e cos E) 1.7
1.2 Osculating Motion and the Lagrangian Planetary Equations

In reality the Earth is not a sphere with a radially symmetric
density distribution; 1t does have an atmosphere and it is not situated
in a Newtonian universe isolated from other bodies in the solar system.
Consequently, the actual path of an Earth artificial satellite will be
somewhat different from an ellipse when these perturbing influences are
taken into account. Suppose at some'epoch, t,s» the disturbing acfion

of these perturbations ceases to exercise any effect on the satellite,



the orbit of the satellite would be an ellipse with constant elements
8,y €5y Igy W4, o and My. If the perturbations had ceased at an
epoch, t1, Jjust subsequent to t,, the orbit would have been an ellipse
w

with a different set of elements a , e 0, and M , say;

1’ I1’ 1’ 1

and so, too, for epochs t_, t3 o tn. Clearly, the perturbed orbit

2
6f‘an artificial satellite can be considered to be an osculating ellipse
whose orbital elements are functions of time; the position and velocity
vectors of the osculating orbit being equal to those of the true orbit.
The concept of an osculating orbit forms the basis for the derivation

of the Lagrangian planetary equations - a set of equations fundamental
to celestial mechanics. A brief discussion of these equations will

now be given.

For an unperturbed satellite, the vector equatiun of motion

relative to an inertial frame is

T o+ =0 (1.8)

"ol 15

If perturbing forces act on a satellite, the right-hand side of
equation (1.8) will not be zero. The perturbed equation of motion is

of the form

£+y£/!‘3 = F (1.9)

where F 1s the perturbing force per unit mass. In general, F will be
a function of the poéitional co-ordinates (x, y, z) and velocity
components (U, Uy» U,) of the satellite and a set of parameters
peculiar to each individual perturbing force. The force, F, can be
divided into two basic types - conservative and non-conservative. If

there exists a scalar potential function @(x, y, z) such that



4'
F = V9(x,y,z) = ('i g +33g +k gg) (1.10)
. dz

then the force, F, is said to be conservative; ;, 3 and ﬁ are a set
of unit vectors parallel to the Cartesian axes x, y and z centred at
the Earth (Figure 1.1). The scalar potential function @(x,y,z),
knowﬁ coﬁmonly as thé diéturbing function, is only dependent upon the
satellite's positional co-ordinates and the parameters of the perturbing
force (s). For a non-conservative force, F, no scalar potential
function exists which satisfies equation (1.10). In the non-conservative
case, F is a function of the positional co-ordinates (x, y, z) and
velocity components (Ux, Uy, Uz), and the parameters of the perturbing
force (s).

Let the orbital elements of the osculating orbit, now
functions of time, be dl’ az, a3, a4, as and ae, corresponding to
a, e; I, w, Q and M, respectively. The position vector, r, of the
satellite can be expressed as a function of aj (j =1,2 ... 6) and

the time (Smart, 1965), viz
r = r(a,t) (1.11)

On differentiating equation (1.11) with respect to time

¢ o r9ny L2 A (1.12)
dt ot C da . J
J=1 J

Since the velocity vectors of the osculating orbit and the actual orbit

are the same at any instant

'c_l_g_- = il'_: (1.13)
dt at

Using equation (1.13), (1,12) becomes



QD
™~

)

—_—, ] (1.14)
j=1 a(l
If (1.13) is then differentiated with respect to time
6
2 2 2
dr _dr r . ay (1.15)
2 2 da 3t
dt at 3;1

If the equation of motion of the osculating orbit (1.8) and the

corresponding equation (1.9 ) of perturbed motion for a conservative
2 2

force are used to eliminate oL and dr from (1.15), then
at2 dt2
6
.
r L]
L = a, = V@ (1.16)
J —
dadt

J=1

When V@ is expressed as a function of aj (j=1,2 ... 6), the vector

equations (1.14) and (1.16) can be solved for the six aj (Smart,

1953). The expressions for é, é, I, w, 1 and M are found to be

da = z(g)if o8 (1.17)
dt M M
de = __1 (g_g (-2 -a-edt g_g) (1.18)
dt (pa)le oM dw
dl = 1 (cot 19¢ - cosec I gg) (1.19)
dt ( “a)¥(1_92)£ w a0
dw (1 - e2)4‘)'f (1 . 08 - cot I ., _@_ﬂ_) (1.20)
dt (pa) e Jde (1_92) 0
an 1 . 99 (1.21)
dt (pa)*(l-ez)i sin I a1

¥ 2 3
a4 = (BN - (1-e) . g - 2(2_) ( (1.22)
dt (aSJ o( lia); de u



The derivative (g_{_{) in equation (1.22) refers to differentiation of
da

@ explicitly with respect to 'a': not through the dependence of M
on a. The six equations (1.17) - (1.22) are the Lagrangian planetary
equations for a conservative perturbing force.

If.Fr, FT and FN are the magnitudes of the radial, transverse
and normal components of the perturbing force, F, relative to the

orbital plane (Figure 1.3), the Lagrangian planetary equations can be

written in the alternative form (Roy, 1965).

3 d 2
da = 2 (_a___) [F e sin £ + a(1-e“) FT] (1.23)
dt a 2.3+ n r .
-e“)
2.4 1
de = (1-e7) (a ) [F sin £ + F_ (cos E + cos f)] (1.24)
- — r T
dt u
dal = r cos(w+f) . FN (1.25)
dt (ua)%(i_ez)i
2.% L _
dw = (1-e’) (g) [FT(1+ r )sinf—F cosf]
dt e m 2 r
a(l-e”)
- r gin(w +f) cot I . FN (1.26)
' % 2.%
(pa)® (1-e”)
& = r_sin (w +f) . Fy (1.27)
dt

(u a)* (1—e2)i sin I

dM = (L)* + 1 [a(i—ez) cosf ,F -2r F
dt 3 S e r r
a (upa)

e r

- rgin?f (1 + a(l-ez) ) FT] (1.28)
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Figure 1.3
Definition of perturbing force components,

Fr,- FT and FN
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Equations (1.23) - (1.28) are the Gaussian form of the Lagrangian
planetary equations: this form is applicable to both conservative
and non-conservative forces.
If the exact form of F or @ as a function of the positional

co-ordinates and velocity components of the satellite and the parameters
of the perturbing force‘is known, F or @ can then be expanded as a
function of the osculating elements, a, e, I, w ,f] and M with the
aid of the equations of elliptic motion. When F or @ is in this

form, the appropriate set of Lagrangian planetary equations can be used
to obtain 5, é, etc., as a function of the six osculating elliptic
elements., The resulting six differential equations, when integrated,
will give the time variation of the elliptic elements produced by the

perturbing force, F, or the disturbing function, @.

1.3 Types of Orbital Changes

The exact form of the expansion of F or @ in terms of the
osculating orbital elements and the parameters of the disturbing forces
for the various perturbations affecting the motion of an artificial
satellite has.been derived by a number of authors (Figure 1.4).
However, in all cases, the expansions can be expressed in terms of a

Poisson series, viz. (Deprit and ROW1J)469>

—
sin
A B (a,e,I) Yo +8 QO +n M+ U, (1.29)
2_/ i3 """ cos ! J J J J;
J
where Aj is a constant dependent on the perturbing parameters; Bj
is a function of a, e and I; Yj' nJ and Cj are integer constants;

and Uj is a function of certain of the perturbing parameters. In

general, U, is found to vary linearly with time. Such a Poisson series

J

can produce five types of changes in a satellite's orbital elements;



FORCE ACTING ON SATELLITE
ZONAL HARMONICS
TESSERAL HARMONICS

LUNISOLAR GRAVITY

AIR DRAG

SOLAR RADIATION PRESSURE

RELATIVITY

TIDAL: Body and Ocean

AUTHOR(S)
Cook (1966)

Kaula (1961), Allan (1965)

 Kaula (1962), Allan (1969),

Giacaglia (1974)

King-Hele (1964, 1966) °
King-Hele and Scott (1969),

King-Hele and Walker (1972,1976)
Hughes (1977)
Rubincam (1975)

Kaula (1969),
Musen and Estes (1972),
Musen and Felsentreger (1974),

Lambeck et al. (1974)

Figure 1.4 Authors of Various Perturbing Force Expansions
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they are
(1) Secular
(ii) Long-Period
(1i1) Short-Period
(iv) Resonant
(v) Interactive
Let us examine these in turn:
(1) SECULAR

A secular change in an orbital element causes a continuous
increase, or decrease, in its magnitude with time., For a conservative
perturbing force, such a change is produced by the set of terms,
gsec' in the Poisson series (1.29) which are independent of w,Q, M

and U, , viz,
J

gsec = j{: Aij (a,e,I) (1.30)
J

From the set of Lagrangian planetary equations (1.17) -

(1.22) it is seen that, if a, e and 1 are assumed to be approximately
constant, then the terms in gsec will produce linear and, hence,

secular changes in a satellite's argument of perigee, w, its nodal
longitude, , and its Mean anqmaly, M. The parameters a, e and I do

not suffer secular changes when a satellite is acted upon by conservative
perturbing forces.

The situation for secular changes produced by non-conservative
perturbing forces is somewhat different. If terms in F are of the form
shown in (1.30), then they will not automatically produce secular changes
in w, Q, and M, as they did for the case of a conserQative perturbing

force. This is because in the Gaussian-Lagrangian planetary equations



certain coefficients contain the periodic functions f, E and M. In
order for a term in F to produce a secular change in an orbital
element, it must combine with these periodic coefficients, as well as
the non;periodic coefficients, to form terms of the fornm, ¢sec' The
Gaussian-Lagrang;an planetary equations fpr which this is true will

givé secular variations in its appropriate orbital element.

(i1) LONG-PER 10D
It has already been seen that w and ] suffer secular

changes when a satellite is acted upon by conservative perturbing

forces. Consequently, the terms, glong in the Poisson series (1.29)
of the form
2 —Z A.B,(a,e,1) %P +L0 +U (1.31)
long ~ 33 ees (3¢ T 5 ] ’
J

resulting from a conservative perturbing force, will be slowly varying

periodic functions producing long-period changes in the orbital

elements e, I, @w,{] and M. Such changes are known as long-period

perturbations - the periods usually being of the order of several weeks.
For a non-conservative perturbing force, longéperiod changes

in an orbital element will occur if its time rate of change obtained

from the appropriate Gaussian-Lagrangian planetary equation contains

terms of the type ﬁlong' The orbital elements suffering long-period

changes will be dependent on the exact form of F. If F contains only

a normal component, FN' such that FN sin (w +f) equals a series of

the type (1.31), then long-period changes will be produced in the

orbital elements ! and @ (equations 1,23 - 1,28),
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(1ii) SHORT-PER 10D

A short-period perturbation in a satellite's elliptic
elements is one which has a period equal to, or less than, the
satellite's orbital period. Such changes for a conservative perturbing

force are produced by those terms, 2 in the Poisson series

short’
(1.29) which are dependent on the Mean anomaly. Here, M ~ the Mean

anomaly - has a period approximately equal to the satellite's orbital

period: @ igs therefore of the form
short

sin
¢short = Z Aij(a,e,I) cos (Yjw +§J.Q +nJ,M+UJ)
J

(1.32)
From the conservative form of the Lagrangian planetary equations, i.e.
equations (1.17) - (1.22), it is seen that, if ¢ contains terms of the

type @ rt’ then all six orbital elements can suffer short-period

sho
perturbations.

In the case of a non-conservative perturbing force, short-
period changes in an orbital element will occur if its time rate of
change contains a Poisson series of the type (1.32). A ﬁon-conservative

perturbation will, in general, also produce short-period changes in

all the orbital elements.

(iv) RESONANT

Under certain circumstances, when acted upon by a conservative
perturbing force the semi-major axis, a, the eccentricity, e, and the
inclination, I, of a satellite's orbit are such that they cause the
arguments, ¢ , of particular terms in the Poisson series (1.29) to

become approximately constant, i.e.
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j = Y (‘) Y ' 1.,
¢ YJU +€j +an+UJ.~o (1.33)

The periods of these so-called resonance terms are therefore very

large - a typical period being of the order of sever#l years. The
orbital elements suffering a resonant change will be dependent on

which angular variables exist in ¢. For example, if ¢ contains ohly Q,
then just I, w,f] and M can be affected.

In the case of a non-conservative perturbing force, a resonant
change will occur in a particular orbital element if its rate of change,
obtained from the appropriate GaussianfLagrangian planetary equation,
contains a term for which é ~ 0. The nature of resonance orbits
and the effect of resonant perturbations on a satellite's orbital
elements are discussed in greater detail in Chapter 2; special emphasis

being given to lunisolar gravity and solar radiation pressure resonance

orbits,

w) INTERACTIVE

An interactive orbital change is a combination of the previous
four types. All artificial satellites at any instant are subjected
not to one, but to a number of perturbations, each affecting its motion.
Since the effect of a given perturbation is dependent upon the position
and velocity of the satellite - which are affected by the other
disturbing forces, and vice versa - all the perturbations acting on
the satellite tend to interact with each other. This is reflected in
the expression for the time variations of its orbital elements. Such
expressions are found to contain not only terms with perturbing
parameters from a single disturbing force, but combinations of two,
or more, such sets of perturbing parameters arising from other
perturbations. The latter set of perturbations are known as interactive

perturbations.
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1.4 The Perturbations Acting on an Artificial Satellite

The main perturbations affecting the motion of an artificial
satellite are:

(a) the radially asymmetric nature of the Earth's gravitational

field;
(b) the gravitational attraction of the Sun and Mbon}
(c) solar radiation pressure;
(d) the Earth's atmosphere.

In addition, a satellite is subjected to a number of minor
perturbations which include:
(e) general relativistic effects;
(£) oceanic and body Earth tides.

We will examine these in turn,

(a) The radially asymmetric nature of the Earth gravitational field

Newton (1687) showed that, if the Earth was a sphere of
constant density, or a sphere with a radially symmetric density
distribution, then the Earth could be treated as a point mass, If
this was true, and no other forces acted on a safellite, its orbit
would be an ellipse having constant orbital elements with the Earth's
centre 4% one focus,

In reality, the Earth is not a sphere and its density
distribution is not radially symmetric. Consequently, the Earth's
gravitational potential, U, at an exterior point (r, 6, @) is dependent
not only on its radial distance, r, from the Earth's centre of gravity
but also on its geocentric latitude, 8, and its longitude, @, measured
eastwards from Greenwich along the celestial equator. If the non-
sphericity and inhomogeneity of tﬁe Earth is taken into account, its

gravitational potential, U(r,0,4), can be shown to satisfy Laplace's
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equation (Tisserand, 1892).

_La_(rza_u)+ 1 _a_(sine_a_l_l_)+ 1 2% = o
r2 or or rzsine 26 e r231n29 awz

(1.34)
The solution of (1.34)-for the Earth's gravitational potential can
be expressed as a double infinite series of spherical harmonics,
(Fitzpatrick, 1970), viz. |

n

hd ©0
G R\ \" R " m
U= Mg [1 - Jn(_g_) Pn(sine) + Z/ (_E_) Pn (sin®)
r n=2 r . ‘n=2 r m=1

x [Cn cosmd + S sinmﬂ]} (1.35)

y ’

where RE is the mean equatorial radius of the Earth; Pn (sin®) -~ the
Legendre polynomial of degree n and argument 6; an (s8in®) - the
associated Legendre function of degree n, order m and argument O,

Jn is the zonal harmonic coefficient of degree n. Lastly, Cn o and

’

Sn,m are the tesseral harmonic coefficients of degree n and order m.

The first term in equation (1.35) is the gravitational
potential the Earth would have if it was a homogeneous sphere: the two
subsequent sets of terms represent the latitudinal and longitudinal
dependence of the Earth's gravitational field, resulting from its
non-sphericity and inhomogeneity.

The zonal harmonic coefficients, Jn’ are the parameters
which characterise the longitudinally averaged shape and density
distribution of the Earth. In particular, the even zonals reflect
symmetries about the equator, whilst the odd zonals reflect the

asymmetries. For example, if only J_ was present in the Earth's

2
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geopotential, a polar cross-section through the Earth would be elliptical
in shape; similarly, if only J3 was present, the same cross-section

would be 'pear shaped'; and if only J, was present, the cross-section

4
would be cube shaped (see Figure 1.5). However, if all the ional
harmonics are included, then to a first approximation, the equation for

the polar cross-section of the Earth's shape, averaged over all

longitudes, is given by r = RE[ 1 - A(8) + A(O) - A'(8)] where

-

\ 2 3 2
A(®) = ;ZJ J P (sin®) - 1 n RE cos ©
n n > ° T
n=2
2 n 2R 3
At1(o) = 3J2P2(sin9) Arv(e) - A"T(8) + E A" (8)
H
n 2R 3 n 2R 3 2
Av(9) = JP(sin) - J P (0)+ o E - o E cos ©
2 2 2 2
2 u 2 U
6 2 2 2 2
+ terms of order (no Jz, J2 n_, { Jn ,Jnno ’JnJZ’ n > 21})

where nO is the angular velocity of the Earth; r - the distance from
the Earth's centre of a point on the surface at a latitude, ©. It
should be pointed out that the 'shape of the Earth' being discussed
here is the shape of the mean sea-level surface (continued under the
land). Such a surface is often called the gcoid, (figure 1.10).

In general, the changes in the Earth's gravitational field
caused by the even zonal harmonics lead to two major perturbations in
a satellite's orbit. First, the longitude of the ascending node, 1,
precesses secularly in a direction opposite to the Earth's rotation
(if the inclination of the orbit is < 900), and in the same direction

(if 1 is > 900). The rate of change of € is given by (King-Hele,

1958)



2ND HARMONIC 3RD HARMONIC

4TH HARMONIC 5TH HARMONIC

Figure 1.5

Form of 2nd-5th zonal harmonics
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2

an ~ - 39Rg (_g_) cos I (1.36)
dt 2a2(1-e2)2 \ ;3

Secondly, the major axis of the orbit rotates in the orbital plane,

éo that the argument of perigee, @ , changes at a rate given by

o2 , , ,
w ~ TR (L) (5 cos’I-1) (1.37)
3

4a2(1—e2) a

For a close (perigee height < 1600 Km) Earth satellite, the changes
in ? and @ can be of the order of several degrees per day. If
numerical values for the constants, U, RE and J2 are substituted into

(1.36) and (1.37), the rates of change of ! and @ are found to be

R 3.5 2 o
dQ ~ - 9.97(_}5_) (1-e”) " cos I deg/day (1.38)
dt a
and
3.5

(1—92)“2 (5 cos2 I-1) deg/day (1.39)

2

dv ~ 4.98 (5:‘.)
dt a

lﬂl is approximately zero for satellites in near polar orbits (i.e.

o M .0 o
I1~90): w 1is zero when cos I =1 1/4/5 or I = b3irorN6.6 . The orbital
inclination of 63.4o is often called the 'critical inclination'. If
the satellite's inclination is less than 63.4o the perigee advances

round the orbit in the same direction as the satellite's motion; for

I greater than 63.4o it moves backwards. The equations for ! and @

are not exact because the effects of the other even zonals J4, J ., etc.,

6

have been neglected. However, the J,_, terms are by far the most

2

important, since J_ is approximately 1000 times greater than subsequent

2

Jn' Recently determined values for J2 - J are given in Table 1.1,

20
The odd zonals aléo produce changes in 1 and ® , but their effects

are small, especially for satellites with near-circular orbits
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TABLE 1.1

Values of Zonal Harmonic Coefficients

(J2,J4 <+« from Wagner (1973); J3,J5 ess from King-Hele ﬁnd Cook (1974).)
10° J, 1082635 * 11 | 10° Iy - -2531 7
fe® J, - 1600 * 12 o9 J - 246 t o9
0% 3, 530 * 26 10 J, - 326 ¥ 11
109 Jg - 200 * 29 .|o9 Jq - 94 %12
io? 10 - 224 % 45 109 Iy 159 * 16
o9 J,, - 208 17 1o} Iy - 131 * 22
0% J,, - 166t 25 1o? J s 26 * 24
[0 e 3t ss5 Ioc’J17 - 258 + 19
(0 e - 86156 -
o g - 85 tet -
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(e < 0,03). The main effect of the odd zonal harmonics is to cause
long-period changes in the eccentricity and inclination of a satellite's
orbit.

If a satellite's orbital eccentricity is small, the usual set
of orbital elements a, e, I, »w , 1 and M are unsuitable for the study
of its motion. This situation arises because the perigee of the orbit,
and, hence, @ and M, becomes ill-defined as e tends to zero, The
result is that singularities occur in the Lagrangian planetary
equations for e, W and M when e = 0, For studies of near-circular
orbits, the variables a, ecos w , e sin w , I, w + M and () are
found to be more suitable (Cook, 1966). If the eccentricity is small
(which is true for most safellites launched to date), the long-period
changes in e, @ and I, caused by the odd zonal harmonics, can be
obtained from the subsidiary variables, Xy0 X

s X, and y2, defined

2 3

by (Hughes and Meadows, 1977)
x1 =4/ua x2 = xiesinw

}%

2 2
= 1 - .
Xa X, § (x," + ¥, )/% cos I (1.40)
yzz/xiecosw

The changes in X, x2, X, and y2 are given by

x, = constant (1.41)

O = - O »
X, = P/A+ (x, - P/A) cos{ y_ /(x_, = P/A)} (1.42)

2 2 2 2

ol- L 3 O&

y, = (x, =P/A) sin { Vo /Ry - P/A)} (1.43)
X, = X cos Io = constant (1.44)
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where
33 = R.\"
- 1
P=(5) ) W) & ntenrlo
a a n(n+1)
n=3 (1.45)
R .
A = 3J2 ( E) (u) (5 coszl -1) (1.46)
— | = -~ o
4 a 3
a
and
L 3 0. oi
= - - 1.
y2 y2 (¢4 Ax2 )t (1.47)
o * o * '
Io' x2 and y2 are the constants of integration obtained from the

initial conditions. The equations giving the long-period zonal harmonic
perturbations in the eccentricity, argument of perigee and inclination

can easily be obtained from (1,40) - (1.45), The results are

3

e= 1 [(P/A)2 + 2P (32‘ - P/A) cos | 32'/(22' - P/A) - At }] (1.48)
(ua) A
(1.49)

o * o * o *
o = tan—l[:P/A + (x, = P/A) cos{y, /(x, = P/A) - At} ]

(32 - P/A) sin {?2“/(32' - P/A) - At}

1= cos [cos I (1 -1 [e/me2p X -
o — =

(pa)

* * » "i'
cos i?z /(?c2 - P/A) - At} + (22 - P/A)z] ) ]
(1.50)

Since A is the secular rate of change of @ caused by the J_ harmonic,

2
and Pni(O) = 0 for even n, the variations in e and I for near circular
orbits are long-period changes produced by the odd zonal harmonics

in the geopotential. The corresponding equations giving the zonal

harmonic perturbations in the elements w + M and 1 , when e is small,
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have been given by Hughes and Meadows (1977),
* L
On eliminating Y, /(?c2 - P/A) from equations (1.42) and
(1.43), x2 and y2 are found to satisfy the equation

2 2 o*
(x2 - P/A)T + Y, = (x2

- P/A)z (1.51)
which is the equation of a circle in the (xz, y2) plane (see figure 1.6),

-
having a radius of lg - P/A| and centre at the point (P/A, 0).

2
The vector Z from the origin, 0, to the point (xz, y2) has a modulus

of (u a)* e and an argument, ® , measured antcleck wise relative to the
*

5 - P/A1 < P/A (figure 1.,6a), the

axis 0y2. Consequently, if |§
argument of perigee, ® , is restricted to the values, 7/2 - 6<&7/2 + ©
(when P/A > 0), and to the values 37 /2 - 6< w < 37 /2 + © (when

P/A < 0). The angle 6 is given by

6 = sin (AI?cz' - p/Al /P) (1.52)

ol'
For Ix2 - P/Al < P/A, the orbital eccentricity, e, varies between the
*

5 " P/Al > P/A

limits ( |P/a| ¥ I?cz’ - p/a ] )/¢( ua)%. Similarly, if | %

(figure 16b), the argument of perigee takes all possible values, and

the eccentricity varies between the limits ( lgz‘ - P/Al * |P/A| )/(;Ja)*.
The equation giving the zonal hafmonic variations in the

orbital elements a, e, I, @ , 0 and M for large, or moderate,

eccentricities have been obtained by a number of authors (Brouwer,

1959; Groves, 1960; Merson, 1961). However, since most satellites

launched to date have small orbital eccentricities (e < 0.03), a

solution valid for near-circular orbits will be generally applicable,

Recently, the perturbation theories of Hori and Deprit (Hori, 1966;

Deprit, 1969) have been used to obtain highly accurate solutions for

the motion of a satellite acted uﬁon by the zonal harmonicé (Aksnes,

1970; Deprit and Rom, 1969; Kutuzov, 1975; Kinoshita, 1976). Such

theories are based on the dynamical methods of Hamilton, Jacobi,
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Delaunay and Lie (Lie, 1888; von-Zeipel, 1916; Smart, 1953), and can
be applied to satellites having small or moderate orbital eccentricities
(e < 0.1)., The solutions obtained by these methods all céntain a
singularity for satellites with orbital inclinaéions equal to the
feritical inclination' of 63.4°, Thus the equations (1.42) and (1.43)
contain a singularity if A = 0 (i.e. if I ~ 63.4°). Opinion as to
the nature of the singularity at the 'critical inclination!'! is divided
into two schools. First, there are those who believe it results from
the physical nature of the motion for a satellite with an orbital
inclination of 63.40. Message et al. (1962) suggest that the
singularity occurs because of a resonance between the satellite's
orbital period measured relative to its node and its orbital period
relative to its perigee. The second school of thought maintains that
the t'critical inclination'! is due entirely to the method of mathematical
analysis adopted, rather than to any physical effect (Lubowe, 1969(1)).
Lubowe has compared, by numerical integration, the orbital changes
caused by the zonal harmonics in the geopotential for satellites of
differing orbital inclination. He concludes that there is no noticeable
difference between the 'critical inclination' and any other inclination,
More recently, Deprit (1977) has used the dynamical methods of Hamilton
and Lie to show that it is possible to generate two new ‘'critical
inclinations' away from 63.4o when a satellite's orbital eccentricity
is small.

The Earth's gravitational field, in addition to suffering
latitudinal variations, also undergoes variations with longitude
(Izsak, 1961; Kaula, 1963). The gravitational potential, Ulong'
representing the longitudinal variations, is given by the second set

of terms in equation (1.35), viz,
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o n
N ' GM_ ,R_N . m
U = ? E(E)P (sin ©) x[ C cos m@ + S sin mg ]
long el S n T n,m n,m
r \r
n=2 mn=1

(1.53)
The tesseral harmonics, like the zonal harmonicg, characterise the
Earth's shape and density distribution. The tesseral harmonics,
hqwever, not only reflect latitudinal variations, but longitﬁdinal
variations as well. In other words, the teéseral harmonics characterise
the longitudinal variations in the geopotential as a function of
latitude. The suffix n in equation (1.53) may be regarded as specifying
the latitudinal variations, and the suffix m - the meridional variations.
For example, if all the tesseral harmonic coefficients were zero except
those of the second order (m = 2, n = 2, 3 ...), then a cut along the
equator (or any other latitude) would reveal an approximately elliptical
cross-section. Similarly, if only the fifteenth-order tesseral
harmonic coefficients were present in equation (1.53), a cross-section
;f the equator would reveal a 15-petalled shape with maxima at 24o
intervals in longitude.

The variations of gravity with longitude usually produce only
very small orbital perturbations, because the satellite samples all
longitudes impartially and the perturbation effects tend to cancel
out. The so-called 'longitudinal Earth gravity! resonance orbits are
an exception to this rule. If a satellite is in an orbit which makes
B revolutions whilst the Earth rotates o times relative to the

precessing satellite, viz,

a(o+M x Bln - D)
(where no is the angular velocity of the Earth's rotation) the satellite
is said to be in a S : a resonance, The harmonics of order £ in
the geopotential can be regarded as having 'humps' every (360/ﬁ?)o in

longitude. Their effect on a resonant orbit will be the same for each
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consecutive set of a rotations of the Earth; so their influence
will build up day after day, while the effects of the other tesseral
harmonics tend to cancel out,

The changes in the orbital elements of a satellite
experiencing a 'longitudinal Earth gravity'! resonance of order f
provides a good method for determining the tesseral harmonic coefficients
of that order. This method has been used by King-~Hele, Walker and
Gooding (1975(1), 1975(11)) to determine the tesseral harmonic
coefficien;s of order 15, A satellite in a 15th-order resonance is
particularly well suited for the determination of tesseral harmonic
coefficients. It has an orbital period near 95 mins, which corresponds
to a satellite height of approximately 500 km, where air drag is
appreciable. Consequently, a number of satellites each year experience
15th-order resonance ag their orbit decays under the influence of air
drag. In principle, tesseral harmonic coefficients of order higher or
lower than 15 can be obtained by this method. In practice, a number
of difficulties arise when orders other than 15 are being considered.

A satellite in a higher order resonance will be subjected to a larger
drag effect owing to its lower orbit, and, hence, will pass through
resonance more quickly. This makes it difficult to obtain accurate
observations in sufficiently large numbers, before the satellite
passes through the resonance. On the other hand, a satellite in a
lower-order resonance will pass through the resonance more slowly.
Consequently, very few satellites can be found which are experiencing
resonances of order < 15,

The orbital inclination, I, of a resonant satellite is the
most useful orbital parameter for the determination of the tesseral
harmonic coefficients. First, if the resonant terﬁs in equation (1.53)

are expanded as functions of the satellite's orbital elements, their
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effect on I is of zero order in the eccentyicity, e (Allan, 1967(1),
1973). As a result, changes in I are important for satellites with
near-circular orbits - such satellites form the majority of satellites
launched to date. Second, the effect of the zdnal harmonics on a
satellite's orbital inclination is small, and can be accurately
rémoved. Lastly, accufate values of the inclination can be obtained
from the observational data. The standard deviation in I is usually
of the order of 0.0010, compared with a resonant change 1in the region
ot 0.02°,

The rate of change of I for a satellite in a near-circular
orbit due to the effect of the 15th-order resonant terms may be
written as (Allan, 1973)

1
15 , — —
dI = Q(_.u_)’(ig)sicis sin @ - Sig cos & }
dt a3 a

- CcOS - -~ CcOosSs
+ terms in (Cgp» Sz0) , 285 (C.py S, 00, 32
-— - cos +
1 . w .
+ terms of order 10e (Cn,15' Sn,15)sin (2 _ ) etc
(1.54)
where
13
Q = 0.5877 (15 - cos 1I)(1 + cos I) sin = I (1.55)

The resonance angle, ® , is defined by
= (w + M) +15(0 - v)

where ¥ is the sidereal angle. Exact 15th-order resonance occurs when

S15’ Cao

coefficients, and are related to the individual tesseral harmonic

&> = 0., The quantities C

15’ etc, are the lumped harmonic

coefficients by linear expressions of the form
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. = %s5,15 + U7%7,15 + Ue%10,15 + 21%21,15 + ...

15
Nis,15  Ni7,15 Nio,15 Na1,15

where the Qn's are coefficients dependent on the inclination I (Allan,

1973), and the Nn m's are normalising factors defined by

N = { 2(n-m)! (2n+1)/(n+m)3; ¥
n,m

Similar expressions exist for s, C and S s etc., which are linear
15, 30 30

functions of the tesseral harmonic coefficients S » C and
n,15 n,15
S etc. By fitting the theoretical changes in I to the observed

n,30

variations, the values of C E' , eté., can be determined for a

15’ "15
particular satellite. Values of these lumped coefficients obtained
.from a number of satellites at a variety of inclinations, all of which
are suffering 15th-order resonancé, give a set of simultaneous linear
equations in the unknown tesseral harmonic coefficients. These
équations can then be solved to obtain values for the coefficients of
order 15 and degree 15, 17, 19 ,.,; order 30 and degree 30, 32 ... 34,
etc. Since the expected magnitude of a typical Cn,m or Sn,m coefficient
2

is, according to Kaula's rule-of-thumb law, of the order of 10_5/n N
’
(Kaula, 1966), the 30th, 45th and higher-order terms are likely to be
considerably smaller than thosé of the 15th order. The values of the
tesseral harmonic coefficients of order 15 and degree up to 33 have
been obtained by King-Hele, Walker and Goovding (1975(1)) from the
analysis of 11 resonant orbits of inclinations of between 30° and 900.
Their results are given in Table (1.2). From the changes in the
orbital eccentricity of a satellite experiencing 15th-order resonance,
the tesseral harmonics of order 15 and eQen degree (n = 16, 18, 20,
22 ,..) can be obtained (Allan, 1967(11)). The values of the tesseral

harmonic coefficients of order 15 and even degree up to 22 obtained

by King-Hele, Walker and Gooding (1975(11)) are listed in Table (1.3).
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TABLE 1.2

*
Values of Tesseral Harmonic Coefficients of Order 15 and Odd Degree

(From King-Hele, Walker and Gooding (1975(1)).)

9 — 9 —
1 .
n 0 Cn,15 10 Sn,15
15 -23.5 * 0.8 -7.7 * o.8
17 6.3 Y 1.5 5.6 © 1.5
19 -25.1 ¥ 2.5 -7.3 % 2.3
21 27.8 * 3.6 -0.7 t 3.4
23 17.1 1+ 4.1 13.9 * 4.8
25 -1.,1 Y 3,0° 8.5 4.2
27 10.0 ¥ 3.3 6.7 X 2.7
29 -9.4%3,5 0.1 ¥ a,7
31 10.1 ¥ 5.4 3.8 5.6
33 1.1 % 5.7 3.1 Fs.8
B o~ —
C and S are the normalised harmonic coefficients, related
n,15 n,15
b i
to Cn,15 and Sn,15 y the equation
) = N s =
Cn,15 Cn,15/ n,15 Sn,15 Sn,iS/Nn,15
where Nn 15 is the normalising factor given by the equation
L

N5 = { 2(n-15)! (2n+1)/(n+15)? } b
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Values of Tesseral Harmonic Coefficients of Order 15 and Even Degrees

i6

18

20

22

(From King-Hele, Walker and Gooding (1975(11)).)

-13.7

-42,3

10.5

I+

1+

I+

-18.5

-34.7

29.8

20.2

1+
N
.
K

I+

3.4

5.2
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More recently, the 31:2 and 29:2 resonances have been studied (Hiller
and King-lele, 1977; Walker, 1977). Values for the lumped harmonic
coefficients were obtained, but more orbits of satellites experiencing
these resonances need to be analysed befofe anything can be said about

the individual tesseral harmonic coefficients.

(b) The gravitational attraction of the Sun and Moon

For an artificial satellite in a near-circular orbit (e < 0.03),
having an altitude of less than 1600 km (a/RE < 1.25), the effect of
lunisolar gravity perturbations on the orbit is small. The change in
the perigee height usually amounts to less than 0.2 km for a satellite
in such an orbit, the corresponding zonal harmonic perturbation being
of the order of 20 km. All six orbital elements suffer changes;
their variations being in general a combination of two, or more, of
the five types discussed in Section (1.3). The semi-major axis
undergoes only short-period fluctuations, and only &, ] and M
suffer secular changes due to lunisolar gravity perturbations.

The vector equation of motion for a satellite perturbed by
lunisolar gravity is (Roy, 1965)
jL
¥+ ur/ro = G L w' [ @ -o/8°-r/m7 (1.56)

i=1

*
where 1 = 1 refers to the Moon and i = 2 refers to the Sun; Mi is

the mass of the disturbing body; Ei is the position vector of the

disturbing body from the Earth; Ai is the distance of the satellite

from the disturbing body. The corresponding expression for the lunar

is

or solar gravity disturbing potential, Ui’

* 3
u, = GM; (/A , -z .R/R) (1.57)



28'

Now A 4 can be written as

3

A = R 1 +( r | =-2(xr ] cosé (1,58)
N N A G

i i

where 81 is the angle subtended at the Earth's centre by the satellite
, . _ , -1 , ‘ . :

and the disturbing body. Since Ai is the generating function for
the Legendre polynomials of argument 51 (Spiegel, 1974), and r . Ei =

r R, cos 8 , equation (1.57) becomes

h § i
. 5 n
U, = G .P_(cos i).(-i'-) (1.59)
R Ry
i n=2

The n = 0 term has been omitted from (1,59) because it is independent
of the satellite's co-ordinates and will therefore producc no changes
in its orbital elements. For a close Earth satellite the ratios

r/R1 and r/R2 are approximately 2 x 10-2 and 5 x 10—4, respectively.
The ratio, O , of the lunar and solar gravity disturbing functions,

U1 and Uz, at a point in its orbit is therefore approximately given by

*
3
! $
- = _111—2 M, (-R.z_) P (cos 8 ) (1.60)
*
| )
u, M, Ry Pz(cos 2)
V * »*
which, after the substitution of numerical values for Mi , M2 ’ R1
and Rz, becomes
)
o ~ 1.85 Fp(c089%,) (1.61)

Pz(cos 82)

Consequently, if the angular displacements of the Sun and Moon from

the line passing through the centre of the Earth and the satellite

are comparable (i.e. IOOS 51 |= Icos 52 I), the gravitational effect
of the Moon on a close Earth satellite is approximately twice that of

the Sun.
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If equation (1.59) is expanded as a function of the orbital
elements of the satellite and the disturbing body (Kaula, 1962;
Allan, 1969(11)), the Lagrangian planetary equations can then be
used to obtain expressions for the tiﬁe derivatives of the orbital
elements of a satellite perturbed by the gravitational influence of
tﬁe disturbing body. A number of authors (Kozai, 1959; Cook, 1962;
Smith, 1962; Gooding, 1966) have used this method to obtain the
lunisolar gravity perturbations in the orbital elements over one
revolution. ﬁowever, none of the above-mentioned authors gave explicit
analytical expressions for the general time .. variations.in the ... .
orbital elements produced by the gravitational influence of the Sun
and the Moon. This is, perhaps, not surprising considering the enormous
complexity of such a task (Fisher, 1972). More recently Cook (1973)
and Giacaglia (1974) have adopted a semi-analytical approach, obtaining
analytical expressions for the time derivatives of the orbital
elements and integrating them numerically by machine. As yet no-one

has published a complete analytical approach to this problem.

(c) Solar radiation pressure perturbations

The perturbations due to solar radiation pressure are small
for satellites of norﬁal construction, but can be large for balloon-
type satellites, which have an enormously large area-to-mass ratio
of the order of 10 cmz/gm. (A typical satellite of normal construction
will have an area-to-mass ratio of about 0.04 cmz/gm.) For example,
an oscillation in perigee height of 500 km was produced in the orbit
of the balloon satellite Echo 1 by solar radiation pressure
perturbations. The period of the cycle - about 10 months - was the
synodic.period of the perigee, that is the time it took to make one

rotation of the Earth relative to the Sun.
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Solar radiation pressure perturbations are of two types:
first, those resulting from the direct effect of the solar flux on
the satellite; and, secondly, those due to sunlight being reflected
or re-radiated back onto the satellite from the Earth's atmosphere.
The analysis of the effect of solar radiation pressure perturbations
oh artificial satellite orbits is one of the most difficult problems
in celestial mechanics. Let us examine each of the two types of solar
radiation pressure perturbations, beginning with the simpler of the
two - the direct perturbations.

In order to compute the direct effect of solar radiation
pressure on a satellite orbit it is necessary to make a number of
assumptions - some of which are not entirely correct. First, we
assume that the Sun's output of energy is known, and is constant.
Second, the solar radiétion flux varies inversely as the square of the
distance from the Sun's centre and is incident on the satellite in a
direction parallel to the line joining the centres of the Sun and the
satellite. Third, the area-to-mass of the satellite can be represented
by some mean value. Fourth, the properties of the reflection occurring
at the satellite are fully known, or can be represented by some known
average value. Lastly, the entry and exit of the satellite into the
shadow cast by the Earth can be represented by some simple model,
These are just a few of the more important assumptions that need to be
made about the direct solar radiation pressure perturbing function.

If these assumptions are accepted, then the vector equation of motion
of a satellite perturbed by direct solar radiation pressure is

(Hughes, 1977)

—-"2
Taourre = TSp e 2-€) ol - (1.62)
3

cm A
8
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L 3
where S° is the solar radiation flux at a distance, a , from the Sun's

.
centre; a - the semi-major axis of the Earth's orbit; € - the

fraction of the Sun's radiation absorbed by the satellite; A - the
average cross-sectional area of tﬁe satellite exposed to the Sun's
radigtiop; ¢ - the speed of light; m = the mass of the satellite;
finally, o 1is the 'shadow"parameter, which takes a value of 1 if

the satellite is in sunlight and a value of 0 if it is in shadow.

The corresponding expression for the solar radiation pressure disturbing

potential, Qrad' is

— .2 .
2 o= S, Aa (2 - €)T (1.63)

cmsA
This model, although perhaps the best available, stil) suffers from a
number of limitations and difficulties. In practice, the area~to-mass
ratio may not be well known; this is complicated by the fact that
most satellites are irregularly shaped and rotating in space. The
area-to-mass ratio in such cases will be an extremely complicated
function of time. Similar remarks also apply to a satellite's
reflective properties - which may be poorly determined, perhaps
varying over the satellite's surface and changing with time. In the
case of a satellite such as the laser ranging satellite, Lageos, which
is a sphere of uniform texture with accurately known values for A/ms
and € , the effect of direct solar radiation pressure on its orbit
will be well known.

Perhaps the most difficult and uncertain problem concerning
direct solar radiation pressure perturbation is the 'shadow effect!.
Two different types of approach have been used to allow for the
'shadow effect'; both of which rely on the assumption that o =1,

when the satellite is in sunlight, and O = 0 when in shadow. The

first method adopted by Bryant (1961), Escobal (1962) and Aksnes (1976)
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consists of initially determining whether, or not, the sateliite passes
into the Earth's shadow during the course of an orbit., If it does,
then the time of entry into the shadow and the time of exit from the
shadow are computed. Once these times are known, the expansion
of Qrad in termg of the orbital.elements of the satellite and the
Sun, together with the Lagrangian planetary equations, can be used to
obtain the perturbing effects of direct solar radiation pressure on
the orbit. The integration of the resultiﬁg differential equation is
carried out only during the times the satellite is iﬁ sunlight.

The second method approximates the step function
'» 1 sunlight
( 0 shadow
at any given time by some known function or Fourier seriec (Lala and
Sehnal, 1969; Ferraz-ﬁello, 1964), which is then expanded in terms
of the orbital elements of the satellite and the Sun. If the resulting
series for the 'shadow function', O , is inserted into the expansion
of Qx@d' the changes in the satellite's orbital elements due to direct
solar radiation pressure can be obtained. In this case, the integration
of the résulting differential equations is carried out over the whole
time interval - thé shadow function, O , having allowed for the
passage of the satellite into and out of the Earth's shadow. The
tshadow effect' is complicated by the fact that O is not a simple
step function which can only take values of O or 1. In reality, the
Earth's shadow is not cylindrical in shape as a simple step function
would suggest: it is, in fact, conical, with central regions of
umbra for which O = 1 and peripheral regions of penumbra where O lies
between 0 and 1.

The problems concerning the perturbing effect of direcf solar

radiation pressure on an Earth satellite are well known, but comparatively
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little attention has been given to the indirect effect of solar
radiation scattered or reflected from the Earth.. This lack of attention
is probably due in part to the fact that all estimates of the latter
effect suggest its magnitude is.smaller than that of direct radiation,
and therefore of less importance. It is also a more difficult
p?oblem; defying a simple, but realistic, analytical solution,

The Earth albedo radiation can be divided into 3 components -
the infrared, the diffuse and the specular., The infrared is largely
a re-emission of radiation received at other wavelengths; while the
diffuse and specular components are reflections in the optical of the
incident sunlight. The reflected radiation as a fraction of the
incident radiation is called the albedo, and is composed of diffuse
and specular radiation. If equilibrium is assumed (i.e. the Earth

returns as much radiation into space as it receives), then

a a + « =
D * S IR 1

where a is the albedo, and the suffixes D, S and IR indicate the
diffuse, specular and infrared components, respectively.
Since the optical albedo (a,D + a S) is about 0,4 (Allen,

1962), therefore « = 0.6, implying that equal consideration should

IR
be given to both the optical and infrared perturbations. It is
difficult to say what fraction of the optical albedo is diffuse and
what fraction is specular. However, since diffuse reflection is
produced by the continents, the clouds and snow fields, while only
very calm seas or lakes tend to produce specular reflection, a value
of xy = 0.04 would seem reasonable (Smith, 1966).

The Earth's albedo is, of course, a variable in both time

and position; but, in order to obtain an analytical solution for the

effect of albedo radiation on a satellite orbit, certain assumptions
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have to be made about the albedo which depart from reality and may
lead to inaccurate results. This, in essence, is the difficulty
concerning albedo radiation perturbations - how can the disturbing
function be simplified so tﬁat the problem remains solvable without
the model becoming unrealistic? Let us now consider the various
models proposed to calculate the perturbations in a satellite's
orbital elements due to optical and infrared albedo radiation,
beginning with the infrared models,

For the infrared albedo perturbations the simplest model that
could be introduced is a uniform flux acting radially from the centre of
the Earth and varying according to the inverse square law. Such a force
is indistinguishable from the central force term in the gravitational
and produces no perturbations in a satellite's orbit. The next simplest
model (Wyatt, 1963) is ;ne where every point on the Earth's surface
emits radiation according to Lamberts law. Wyatt showed by symmetry
arguments that the transverse component of the perturbing force is zero
and on integrating the radial components over the visible cap of the
Earth obtains an identical result to that obtained for the very simplest
model., Two ofher models were proposed by Wyatt, both introducing
latitudinal variations in the infrared radiations of the form
(1) cos & , and (2) C, +C, cos &, where 8 1is the lattitude and C,
and C2 are constants, In order to simplify the problem, wyatt assumed
that the photons move radially outwards from the Earth's centre and
that the obliquity of the ecliptic is zero., For these two models
Wyatt found no secular or long-period variations in either the
anomalistic period or the eccentricity. As yet no-one has attempted to
introduce a simple longitudinal variation into the infrared albedo
perturbations. The results of Wyatt do, however, tend to suggest that

simple models which assume smooth variations in the radiation with
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respect to position all produce 1little, or no,_perturbing effect on a
.satellite orbit. It may therefore be that any long-term infrared
perturbations will be due to asymmetries and irregulaiities in the
radiation, and that any simple model will automatically indicate
little, or no, effect.

In order to calculate the effect of optical albedo radiation
on a gatellite orbit it is necessary to compute the perfurbing forces
arising from the reflection of sunlight from the Earth according to
Lambert's law. This problem has been studied by a number of authors
(Cunningham, 1962, 1963; Levin, 1962; . Sehnal, 1963, 1965; Wyatt,
1963; Baker, 1965; Lautman, (1977(1)). However, in all cases
simplifications had to be made to the basic problem so that the models
remained solvable,

The first stuay that derived expressions for the perturbations
by diffuse reflection was Sehnal (1963), who obtained the changes in
the period and eccentricity for a uniform albedo model., He made the
additional assumptions that the force on the satellite is radial, the
Sun lies in the orbit plane, and the force is zero when the satellite
is Above the dark side of the Earth, For a satellite of the Echo 1
type in a near-circular orbit at a height of 1600 km, Sehnal found a
change of 5 x 10-3 in the period per orbit. Wyatt (1963) has also
considered diffuse albedo perturbation and proposed three simple
models. The first model is the same as Sehnal's, The second assumes
that the force varies as the cosine of the zenith angle of the Sun,

In the third, Wyatt tries to account for the fact that the Earth phase
function is more peaked than is predicted by diffuse Lambert reflection,
The most impértant result of Wyatt's study is that all three models

tend to suggest perturbations due to diffuse albeao radiation are about

8 to 10 percent of those produced by direct sunlight.
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The models_of Cunningham, levin, Baker and Lautmann are
considerably more complex ~ the berturbing forces being calculated
from the diffuse reflection of sunlight off the Earth according to
Lambert's law. Yet, in 511 cases, simplifications had to be made
(e.g. the assumption of a constant albedo). Perhaps the largest source
éf error in any of the models mentioned so far is the lack of latitudinal
variation. Much of the albedo variation is due to changing cloud cover,
which has well known variations with latitude. In addition, there
are the polar ice caps, which can add to other seasonal variations
in the albedo.(Lautman,(1977(11)) has taken these facts into account,
and has modified his original model to include a latitudinal variation
in the albedo of the form C1 + C2 sin2 8 , where C1 and C2 are constants.

Specular reflection has been discussed extensively by Wyatt.
Wyatt argues that the éize of the solar image on the surface of the
Earth for near satellites is only a few kilometres in radius; and,
hence, any waves or ripples on the surface of the sea will tend to
smear out the radiation. If this is true, the specular component of
the reflected radiation will be lost in the irregularities of the diffuse
radiation. Assuming Ys = 0.02, Wyatt has calculated the perturbations
in the eccentricity and the period of a satellite produced by specular

reflection, and found them to be negligible.

(d) The Earth's atmosphere

The Earth's atmosphere exerts a drag on an artificial satellite
in a direction opposite to that of the satellite's motion. Such a
drag force is due to the continual collisions of air molecules, atoms
and ions wifh the satellite. Since the density of the Earth's
atmosphere decreases rapidly with height (figure 1.7), a satellite in

an elliptical orbit is affected most by air drag at those points in its
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orbit yhich are closest to the Earth., Therefore, to a first
approximation, the effect of air drag is to retard the satellite as
it passes its perigee. The result is that its subsequent apogee
height is feduced, whilst its perigee height remains virtually
unaffected, The orbit therefore contracts and becomes less elliptical
(i.e. the semi-major axis, a, and the eccentricity, e, decrease
secularly). If the Earth's atmosphere were non-rotating and Spherical,
only the semi-major axis and the eccentricity of a satellite's orbit
would be affected by air drag perturbations. In reality, the Earth's
atmosphere is neithef stationgry nor spherical: it rotates at the rate
of 1 revolution per day and is oblate in shape with an ellipticity oi
about 0,00335, As a result of this atmospheric rotation, the satellite
is subjected to small lateral forces which slightly alter the orientation
of the orbital plane, leadihg to small secular changes in the inclination,
1, and small periodic changes in the longitude of the ascending node, f1
(King-Hele, 1964; 1966). The effect of the atmospheric oblateness is
to produce small periodic changes in the orbit's perigee,
- (Cook, 1961).

If a satellite is moving with a speed, V, relative to the
ambient air in a region of atmosphere of density, p , then the air
drag force, F, per unit mass acting on the satellite is given by

(King-Hele, 1964)

(1.64)

where CD is the aerodynamic drag coefficient; 'X the average cross-
sectional area of the satellite; .ms is its mass., In general, a
satellite will be subjected to lift forces, as well as drag forces.
Both types of forces will change with time if the satellite is spinning

and tumbling as it passes with varying velocity through regions of
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different density. In the absence of precise knowledge of the satellite's
attitude and the atmospheric density at any instant in time, it is not
possible to predict the satellite's exact path. Consequently,
approximations have to be made concerning lift forces, the variation

of atmospheric density and the choice of a suitable value for CD.

For practical purposes, it can be assumed that 1lift forces will avérage
out as the satellite's attitude changes. Indeed, Cook (1964) and
Fiddes (1975) have shown that lift generally has only a very small
effect, except for satellites of peculiar shapes with specific
variations of incidence (e.g., a flat plate, or a satellite which

"flips over" at perigee). The variation in density is usually chosen

to be a simple exponential change with height of the form (King-Hele,

1964)

p = ppo exp {(rpo - r)/H} (1.65)

where r is the distance of the satellite from the Earth's centre;

Ppo - the density at the initial perigee point, rpo; H - the scale
height. A number of refinements are often made to this basic model;
for example, the introduction of a scale height which varies linearly
with r. The day-to-night variation in the air density can also be
incorporated into the density model given by equation (1.65).

The choice of suitable values of CD for satellites of
differing shapes presents a great problem. This difficulty is due in
part, firstly, to the lack of a good aerodynamic theory and, secondly,
to the geometry and rotation of the satellite. However, Cook (1960)
has evaluated the drag coefficients of bodies of various shapes at
varying angles to the airflow, and derived mean values for rotating
bodies, In éll cases, the value obtained for CD was about 2.2 f 0.1,

The problems concerning the evaluation of'x are the same as those
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discussed in the section on solar radiation pressure perturbations.
If F is resolved into the components, Fr’ FT and FN' the

Gaussian form of the Lagrangian planetary equations can be used to

obtain tﬁe variations in the semi-major axis, a, the eccentricity, e,

and the inclination, I, over one revolution. The results are (King-

Hele, 1964)

. 21 .
- 2
Aa = "(fL.)CD X J pa’ (1tecosE)”? dE (1.66)
1
B o (1-ecosE) /2
2 .
- 1/2
be = -(A_ CD X J pa (l-ez) (1+ecosE) / cosE dE
n (1 o
s o ecos (1.67)
27
—_ 1
ALl = —(A )Xi CDJ pwrs/zsinl (1+ecosE) /2cosz(w+f)dE
2n 1/2 2.1/2
S u (1"3 ) (1.68)
where X is a function of w, V , r and I defined by
po’ ~po o
2
X = 1 - wr cos I (1.69)
()
\Y
po

here w is the angular velocity of the Earth's atmosphefe; Vpo - the
velocity of the satellite at the initial perigee point, rpo; Io - the
initial orbital inclination. The set of equations (1.66) to (1.69)
are of fundamental importance in air drag studies: they form the basis
for the development of the theory used in the determination of air
density and atmospheric rotation rates at various heights from the
analysis of satellite orbits (King-Hele, 1964; 1966; King-Hele and
Scott, 1969; King-Hele and Walker, 1972; . King-Hele, 1976). The
application of this theory to the Earth's atmosphere at heights above

150 km has yielded a number of important results concerning variations



‘40.

in wind speed and air density.

In the first plaée, studies of the changes in the orbital
inclination of satellites have shown that the Earth's atmospheric
rotation rate is not a constant, but a function of both time and
height. King-Hele apd Walker (1976) have used a number of earlier
ofbital determinations (e.g. Hiller, 1974; Walker, 1975) and séme new
determinations to obtain the variation of wind speed with height and
time (figure 1.9). The results obtained indicate that the rotation
rate averaged over all local times increases from near 1.0 rev/day
at 150 km height to 1.3 near 350 km (corresponding to an average
west-to-east wind of 120 m/s), and then decreases to 1.0 at 400 km
and, probably, to 0.8 at greater heights, As regards time variations,
the maximum west-~to-east winds occur in the evening hours 18~24 h
local time: these evening winds increase to a maximum of about 150
m/s at heights near 350 km and decline to zero at 600 km. In the
morning, 4~12 h local time, the winds are east-to-west, with speeds of
50-100 m/s above 200 knm.

The second important geophysical application of air drag
perturbations is the determination of atmospheric densities at various
heights and times from the analysis of decaying satellite orbits. From
such studies a number of important results are obtained,

Firstly, the atmospheric density decreases rapidly with
height. From figure 1,7 it can be seen that the density can change
by a factor of up to 106 in the height range 150-1000 km. Secondly,
the atmospheric density undergoes a number of variations with time:
for example, the air density is affected by solar activity, the density
being lowest at times of low solar activity and highest at times of
high solaf activity (see figure 1.7). Geomagnetic storms caused by
the solar wind also produce changes in the air density: the density

may increase by a factor of up to 6 at heights near 600 km. Even at



»

o8

8

1
Y
%2

mow > swl_‘d —< -0u= - W B O $O mﬂg Hm koﬂ &»..Ok ng_.Gn.. o oz W O mFV

<

05

w - O,

o¢s cI-=) 00 ees



41,

heights near 200 km, where the atmosphere is relatively insensitive to
solar activity, the density can increase by a factor of nearly 2

during a geomagnetic storm. However, the most baffling variation in
the air density is the semi-annual variation (Cook, 1969), (figure 1.8),
80 called because the density exhibits a minimuﬁ in mid-January every
yéar, rises to a maximum in April, decreases in May, suffers a deeper
minima in July and then rises to another maxima in late October,
usually higher than that in April (Jacchia, Slowey and Campbell, 1969).
This effect occurs at heights in the range 100-1000 km, the maximum
density exceeding the minimum by a factor of about 1.5 at 200 knm,
increasing to 2.5 at 500 km and then decreasing to about 2 at an
altitude of 1000 km., The amplitude of the semi-~diurnal variation is
hot directly dependent on solar activity, but varies from year to year,
Opinion as to the exact.nature of its long-term amplitude variation is
somewhat divided. Voiskovskii et al. (1973) maintain that the strength
of the semi-annual variation is irregular. It has also been suggested
that a three-year recurrence period exists (King-Hele and Walker,

1969; Cook, 1972). The cause of the semi-annual variation is not
known for certain, Cook (1969) has discussed a number of proposed
theories, but perhaps the most likely is that it arises from a seasonal
variation at heights below 100 km, increasing in amplitude as it rises

into more rarefied air (Volland, 1969a, 1969b).

(e) General relativistic effects

It is now known through the work of Einstein that the universe
is non-Newtonian and, hence, the inverse square law of gravitation as
formulated by Newton within the framework of Euclidian geometry is
only an approximation. Consequently, the actual orbit of an artificial

satellite about a spherically symmetric body will not he an ellipse.



Although Einstein and others developed the general theory of
relativity in terms of non-Euclidian geometry, an equivalent description
of a satellite's motion about a spherically symmetric body can be
obtained by retaining Euclidian geometry and modifying the law of
gravitation. Qn this approach, an artificial satellite orbiting
tﬁe Earth will be acted upon by a gravitational force, Egrav’ such

that (McVittie, 1962; Krause, 1962)

3 2 25
F av = GME r/r - 3GME h"r/c'r + terms of order J2, J3 ces Jn etc.

(1.70)
where ¢ 1is the speed of light and h - the angular momentum of the
satellite. The first term in equation (1.70) is the usual inverse
square force; the second term being the main relativistic perturbing
force. Other relativistic correction terms exist, but are of negligible
importance, the largest having a size approximately 1/1000th of that
of the main relativistic term. The corresponding disturbing potential,

Urel' of the main relativistic term is given by

U, = M h® (1.71)
c2r3

Rubincam (1975) has expanded equation (1.71) in terms of a satellite's
elliptic elements, and used the Lagrangian planetary equations to
obtain expressions for their time variation due to the main relativistic
perturbing force. For the six orbital elements, Rubincam found that
the inclination, I, and the longitude of the ascending node, {2,
were unaffected. The argument of perigee, ® , and the Mean anomaly,
M, suffer secular, as well as short-period, perturbations. The
remaining two elements, a, and e, suffer only short-period changes.,
For example, the secular rate of change in the argument of perigee,

Pyg] is such that
dt | sec
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3/2

- -1
dw - s a - e (1.72)
dt | 2 5/2 :

sec c a
The value of Fgg] for a typical satellite, such as Nimbus 6
p dt
sec

which has an orbit with a semi-majof axis of 7476 km and an eccentricity
of>0.0007, is found tb be about 8 x 10-'6 deé/day, compared with a o
corresponding zonal harmonic change of more than 2 deg/day. Such
changes are exceedingly small, and as yet cannot be separated from

the other perturbations acting on a satellite. However, with an
improved knowledge of satellite perturbations, and particularly those
due to radiation and tidal effects, it may become possible to measure
the relativistic forces acting on laser ranging satellites such as

LAGEOS and STARLETTE.

£) Oceanic and body Earth tides

Due to the gravitational attraction of the Sun and the Moon
on the Earth, its shape and density distributions are not constant, but
are, instead, periodic functions of time. The amount of tidal
deformation from the mean at a particular point on the Earth's surface
is dependent on the positions of the Sun and the Moon and on the
elastic and fluid properties of the Earth. As a result of such tidal
deformations, the geopotential is itself time dependent, which therefore
introduces additional perturbations in the orbit of an artificial
satellite, Perturbations of this kind are known as tidal perturbations,
and can be divided into two types - oceanic and body. The oceanic
perturbations are, as their name suggests, produced by the tidal
deformations of the Earth's seas and oceans. The body perturbations
result from the tidal deformations of the solid Earth.

If the Earth (assumed spherical) was perfectly elastic in

its solid parts and perfectly fluid in its seas and oceans, the tidal
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effects of the Sun and the Moon would deform the Earth at a particular
point by an amount equal to REZ(U1+U2)/GME' where U2 and Ui are the
disturbing potentials of the Sun and Moon, respectively (see Section
1.4b), evaluated at the point under consideration. Since the Earth is

neither perfectly elastic, nor perfectly fluid, the amplitudes are

reduced by factors as large as the Love numbers K_, K

L N K L] h
2 3 n The

situation is further complicated by the friction which accompanies the
deformation. This, together with the rotation of the Earth, causes
the tidal bulge to be carried forward, resulting in the tide being
high, not when the Sun or Moon is overhead, but at some later time. 1In
order to include this effect in the model, it is necessary to introduce

a second set of tidal parameters, € €. eee En’ known as the phase

2’ "3

lags. These will be defined shortly. It 1s these two sets of parameters -
the Love numbers and thé phase lags - which characterise the elastic

and fluid properties of the Earth. An accurate knowledge of such
parameters is of great importance in the understanding of the Earth's
interior and the motion of its seas and oceans. The analysis of

artificial satellite orbits provides a useful method for the determination
of the K's and€ 's,

The tidal deformation due to the Sun and the Moon at a

particular point on the Earth's surface is now given by

* 3 =2 n-1 * 3 = n-1
T\ \
M Rg k (Bg) P (cos™5,) + My By ReY P (cos™ 5.)
—_— k. nl == n 1 N K| = n 5
2 R M 2 R
My R 1 % R 2
1 n=2 2 n=2

(1.73)
where the angles "s 1 and n 32 are the angles subtended at the centre
of the Earth between the point under consideration and the nth fiptitious
Moon and the nth fictitious Sun, respectively. The nth fictitious Moon

has an orbit with the same values of a, e, I and @, but differing Q
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n
and M. The values of the longitude of the ascending node, 1

and the mean anomaly, nMi, for the nth fictitious Moon are related to

those of the real Moon by the equations

(1.74)

The corresponding expression for the disturbing potential, UTID'

acting on an artificial satellite due to the lunisolar tides is given by

2 . .
= = on-1
2 GM K R P (cos s ) (1.75)
n ———— n i
=1 TRy n=2 Ry "

where r is the geocentric distance of the satellite and s 1 and " 5
are the geocentric angles of the radius vector of the satellite to
the directions of the nth fictitious Moon and the nth fictitious Sun,
respectively.

A number of authors have proposed other tidal models, all of
which rely on the same basic approach used in obtaining the model
described by equation (1.75)., For example, Kozai (1965) assumes all
the phase lags to be equal, i.e. 62 = 63 = e €n; whilst Musen
and Estes (1972) put all the phase lags equal to zero. In a later
model, Musen and Felsentreger (1974) still have 62 = 63 = e €n =0,
but now take into account the oblateness of the Earth, The most
complicated model to date is the one proposed by Kaula (1969), which
includes the effects of latitudinal variations in a tide's amplitude
and phase, i.e. Kn = Kn (8) and €n = en (8).

Inconsistent values have been obtained for the Love numbers

and phase lags when such models are applied to specific satellite

orbits. Kozai (1968) analysed the tidal perturbations in the inclinations
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of three satellites with inclinations in the range 33o - 500, obtaining
values for the K2 Love number varying between 0.23 and 0.33 and phase
lags from 0° to 90. Newton (1968) has analysed the tidal perturbations
in the inclination and node of four polar satellites. Once again the
results were not consistent, K2 being ip the range 0.28 to 0.44,
while 62 varies between 0° and 2 - 50.

More recently, Lambeck et al. (1973) and Cazenave et al.
(1977) have pointed out that the values obtained for K2 and 62 by
Kozai and Newton are not in agreement with the expected values of
K2 = 0,3 and €2 < 0 - 50 for a solid - Earth. This implies that
the oceanic tides have a significant effect on a satellite orbit. A
better method of evaluating tidal perturbations, they suggest, would
be to have two separate models - one for the oceanic tides and one for
the body tides, instead of a unified model incorporating both oceanic
and body tides (Lambeck et al., 1974). This approach has the advantage
that it becomes possible to distinguish between the effects of oceanic
tides and body tides on a satellite orbit. Information can then be

readily obtained concerning the Earth's elastic properties, as distinct

from its fluid properties, and vice-versa,

1.5 The Present State of Knowledge

The perturbed motion of an artificial satel;ite presents
mathematicians with a dynamical problem of great difficulty that
defies a simple solution. This is due in part to the relatively
large number of perturbing forces acting on a satellite, and, in part,
to the uncertainties that arise in the development of mathematical
~models which adequately represent the physical nature of the perturbing
forces. Although substantial progress has been made in the subject's

twenty-year history = particularly in the determination of geophysical
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data from changes in the orbits of satellites - a number of unsolved
problems still remain,

Prior to 1957, very little was known about the Earth's
shape, excépt for the polar flattening, which wés thought to be about
1 part in 297.1 (Jeffreys, 1952), This situation was drastically
altered by the launchings of the first artificial satellites. Analysis
of the orbit of Sputnik 2 and of other satellites (Merson and King-Hele,
1958; King-Hele and Merson, 1959) showed that the accepted value of
the flattening was appreciably in error. The value now established is
_ 1 part in 298.25, so that the equatorial diameter exceeds the polar
diameter by about 42,77 km, which is about 170 m less than was previously
thought. Such a revision was not only important for artificial
satellite orbit theory but also for geophysics and geodesy. It was
“important for geophysiés, because it showed that the flattening was
significantly different from the hydrostatic value for a liquid Earth
of 1 part in 299.7 (Khan, 1973); and for geodesy, because some
measurements at that time were accurate to within 5 m, and an error
of over 100 m in the basic spheroid was unacceptable. Since then,
additional harmonics, both zonal énd tesseral, have been determined
with ever increasing accuracy, enabling geoid maps to be drawn (figure
1.11) with accuracies of 2 or 3 m (Richardson and Lerch, 1974), As a
result of such determinations together with the recent dynamical
methods of Deprit and Hori, analytical theories have now been developed
for the zonal harmonics perturbations on satellites, which are equal
in accuracy to those obtained by numerical integration (Kinoshita,
1976).

Two other significant advances also need to be mentioned.
Firstly, the deterﬁination of air densities and atmospheric winds for

various heights and times have greatly improved our knowledge of the
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Earth's atmosphere at heights between 150 km and 600 km. Secondly,
the recent work of Deprit (1977) on the problem of the 'critical
inclination' in satellite theory has finally settled the arguments on
this issue, which have lasted over twenty years (Message et al., 1962;
Lubowe, 1969(1), Lubowe, 1969(11); Garfinkel, 1969, 1970).
| Despite these great improvements, numerous problems and
deficiencies 8till exist. To illustrate this point let us mention
four particular examples. Firstly, no completely analytical theory
has been developed for the effect of lunisolar gravity on a satellite
orbit, although a number of good numerical and semi-analytical models
exist., Secondly, no satisfactory mathematical model exists which
adequately represents the physical nature of albedo radiation effects.
Thirdly, improvements need to be made to the theoretical representation
of tidal effects, if éatellites are to be used for accurate determinations
of Love numbers and phase lags. Fourthly, a purely analytical theory
for the combined effect of air drag and gravity on a satellite orbit
has not been attempted since the efforts of Brouwer and Hori (1961),
The theory obtained by them is only valid for satellites with virtually
circular orbits. |

It is hoped that the next twenty years of artificial satellite

orbit research will provide solutions to these outstanding problems,
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CHAPTER 2

LUNISOLAR GRAVITY AND DIRECT SOLAR RADIATION PRESSURE RESONANCE ORBITS

2.1 The Nature of the Resonance Orbits

An artificial satellite orbiting the Earth-is'subject to a
number of periodié perturbing forces. For example, the satellite's
orbital motion causes it to experience the same longitudinally averaged
geopotential every revolution; the rotation of the Earth and the
satellite's own motion combine to produce periodic variations in the
longitudinally dependent part of the geopotential acting on the
satellite; the perturbing influences of the Sun and the Moon are
'periodic by virtue of their motion and the orbital motion of the
satellite: and so on. This periodicity of the perturbing forces is
reflected in the expansion of their disturbing potentials as functions
of a satellite's orbital elements and the parameters of the perturbing
force. In such expansions, sine and cosine terms occur, having arguments

of the form & ¢, where

¢ = aw + {M+ BN +u (2.1)

8, a,B and { are integers and u is a linear function of certain

of the perturbing parameters. In the case of lunisolar perturbations,

u is a function of the argument of perigee, wD’ the mean anomaly, MD'
and the longitude of the ascending node, K)D' of their respective orbits
relative to the ecliptic plane. Each ¢ , because of the approximately
linear time dependence of w, @ , M and u (see section 2.3), will

cause the magnitude of the corresponding sine or cosine term in the
disturbing function expansion to oscillate periodically; the period

of the osciliation being dependent on the non-angular elements of a

satellite's orbit (i.e. the semi-major axis, a, the eccentricity, e, and



50,

the inclination i) and certain parameters of the perturbing forces.
Under certain circumstances, the semi-major axis, eccentricity and
inclination of a satellitet's orbit afé such that they cause the
periods of some of these terms to become nearly infinite. In such a
case, the argument,5-¢ » associated with one of these terms will be

approximately a constant, i.e.
$= aw+ {M+ BQ +0™ 0 (2.2)

A relationship of the type (2.2) is known as a commensurability condition;

a satellite whose orbital elements satisfy such a condition is said to

be in the commensurability ¢ ® 0, The orbits of satellites which are

in a commensurability (2.2) are called resonance orbits. A satellite

existing in the commensurability & & 0 will have an orbit which is

in resonance with those terms in the disturbing potential expansion
having arguments of the form 8¢ , where § is an integer; which may

be either positive or negative. Each of these terms has an amplitude
factor dependent on the satellite's a, e and 1 and certain paramecters

of the perturbing force. In the case of lunisolar gravity-perturbations,
these perturbing parameters are the mass of the disturbing body, the
semi-major axis, an, the eccentricity, eD, and the inclination, 1D'
of the disturbing body's orbit relative to the ecliptic plane. For

solar radiation pressure perturbations, the disturbing parameters are

a, e, i

D D D and a factor dependent on the solar constant and the

physical properties of the satellite. Since a satellite in the
commensurability @ & 0 is in resonance with a number of terms having
amplitude factors of differing magnitudes, the resonant changes in

the satellite's orbital elements is the sum of the effects of each of
these terms. The importance of each term Being determined by the size

of its amplitude factor. Furthermore, because of the quasi-secular
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nature of a resonant term, the chgnges in the orbital elements of a
satellite produced by a resoﬂant term are in general larger than those
produced by a non-resonant term having an amplitude factor of comparable
magnitude.

The literature on lunisolar gravity and solar radiation
pfessure resonance orbits is small., Cook (1962), in his paper on
lunisolar perturbations of artificial satellites, mentioned the
possibility of resonances occurring with some of the leading terms in
the lunisolar gravity and solar radiation pressure disturbing potential
expansions. The discussion given was valid only for those resonant
terms which produce changes in a satellite's orbital eccentricity
(i.e. those whose arguments depend on ¢ ). The method used in obtaining
the commensurability conditions, that of expanding the disturbing
potential term by term'and truncating the resulting series expansion,
is totally unsuitable for a general discussion of lunisolar resonance
orbits. Using this method of approach, only the leading terms in the
lunisolar gravity and solar radiation pressure disturbing potential
expansions which produce changes in e were considered. Consequently,
the leading terms dependént on {1, but independent of ®, were excluded,
In any general theory of lunisolar resonance orbits, it is necessary
to include all types of commensurabilities, and not just particular
cases as was done by Cook.

In this chapter, a general discussion of lunisolar gravity
and solar radiation pressure resonance orbits will be given with

particular emphasis on the following aspects.

(i) The classification of resonance orbits in terms of the

. general commensurability condition (2.2),

(ii) The form of the general commensurability condition when
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expressed as a function of the satellite's non-angular

orbital elements and the parameters of the lunisolar

perturbations.
(i11) The predominant resonance termé for each class of commensurability,
(iv) Examples of important resonance orbits for both lunisolar

gravity and solér radiation pressure perturbations.

(v) Criteria which determine whether, or not, resonance orbits

exist for a particular commensurability condition.

2.2 The General Commensurability Condition for Lunisolar Gravity

and Direct Solar Radiation Pressure Resonance Orbits

The lunisolar gravity and direct solar radiation pressure
disturbing potentials, R, when expanded as a function of a satellite's
orbital elements a, e, 1, ©w ,Q1 and M and the orbital elements of the
lunar or solar orbits relative to the celestial equator, are of the

form (Allan, 1969; Hughes, 1977)

© n n n
) n ) -— Ny = *
R=C a Ky (n-m)! F (1) F (i)
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where C = GMD and t = 2 for lunisolar gravity perturbations, MD being
the mass of the disturbing body (i.e. the Sun or Moon): for direct

golar radiation pressure perturbations
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— &2
c = -SOA(2-e)a o

cm
8

and t = 1; o = 1 when the satellite is in sunlight, and o = 0 when

the satellite is in the Earth's shadow, The quantity Kln is such that

*
K =1 and =2 form > O, The functions G (e) and H (e )
o Km n,p, n,h,Jj
— — - »
are the Hansen coefficients X?;E;pig;(e) and x(£32;15§n 2h)(e ) (see

-~ — L J
Appendix 1); the quantities Fn (1) and Fn m h(i ) are the modified

o,y y,

Allan inclination functions (Allan, 1965; Hughes, 1977), defined by

-l;n,m,p(i) = (n+m) ! z -1)* (2n—2pX 2p )

2n(n-p) ip! K o n-m=

(cos}i)3n_m_2p_2x (Bin}i)m-n+2p+2x
— *
with a similar expressiétn for Fn o h(i ). The starred quantities in
| Rl

(2.3) refer to the lunar or solar orbits relative to the celestial
equator,

The variations in the argument of perigee, aJD, and the
longitude of the ascending node, KYD, of the lunar orbit relatiQe to
the ecliptic plane are largely caused by the perturbing effect of the
Sun's gravity, and are approximately linear with periods of the order
of 9 years and 18.6 years respectively (Brown, 1895). However, the _
motions of w. and Q' for the Moon relative to the celestial equator
as a result of the Sun's gravity are somewhat different. Cook (1962)
has shown that Q' varies between -13° and +13° roughly every 18,6
years, the corresponding change in w“ is also non-linear, w. taking
about 9 years to a complete a cycle of 3600. In addition, the non-
linear variation in Q* also causes the inclination, 1., of the lunar
orbit relative to the celestial equator to oscillate between the limits

18.4° and 28.6° in a period of 18.6 years (Kozai, 1965), It will

therefore be found convenient in the subsequent analysis to expand the
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lunisolar gravity and direct solar radiation pressure disturbing
potentials as functions of a satellite's orbital elements relative to

the celestial equator and elements of the lunar or solar orbits (given

the subscript D) relative to the ecliptic plane. 1In such an expansion

the lunisolar elements aD, e_ and 1D are approximately constants,

D
whilst the three remaining elements aJD, (ID and Mb vary almost
linearly with time. For the Sun, the ?ates of change of a)D, (ID and
MD are approximately 4.71 x 10-5 deg/day, 0 deg/day and 0.99 deg/day,
respectively. The corresponding values for the Moon are 0.16 deg/day,
-0.05 deg/day and 13.07 deg/day. If the lunisolar gravity and Airect
solar radiation pressure disturbing functions are expanded in terms of
a satellite's orbital elements relative to the celestial equator and

the lunar or solar elements relative to the ecliptic plane, then,

following the method of Giacaglia (1974), equation (2.3) becomes

n
o n n_ n n
n m — -
R=C a (-1) K_K_ (n-s)! F (i) F (i)
Z/ n+1 ZJ Z‘ n S (n+m)| Z n’m'p n’s’h D
n=t (aD) m=0 s=0 * p=0 h=0

»®
ngP;
:Q
5
3
o
4
>
=
L
.
A~
UV

X [(_1)n+m-s Uz'-s cos § §(+)(n,m,p,q,h,j,s)} + U:'s cosi Q(-)

(n,m,p,q,h,J 98);] (2.4)

where
+ +
+ - m-.s —s-m
U= = (1) (cos Ep sin Bp a"T8  [ZPRz_1)™M] | (2.5)
(nts)! 2 2 +
az"=*% .
2 .
Z = cos (ED/2) ’ ED = obliquity of the ecliptic (2.6)
+) . _
¢ "’(n,m,p,q,h,i,s) = [(n-2p)w + (n-2p+q)M + (n-zh)wD + (n-2h+j)MD

+mQ + 8(Q +7/2)]
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and
Q(_)(n,m,p,q,h,j,s) = [ (n-2p)w + (n-2p+q)M - (n-ZthD - (n-2h+j)Mb

+m - s(Q +7/2) ] (2.7)

The Kaula inclination functions (Kaula, 1962) as used by Giacaglia,
have been replaced in (2.4) by the equivalent, but simpler, Allan

inclination functions, F (1) and F
n,m,p n

s,h(iD)°

A satellite in the lunisolar commensurability
. - . * L[] .. L] . H
¢ aw + M+ ney + YM) + ﬁQ+kQD 0 (2.8)

where a, B, {, n,Y and k are integer constants, will have an orbit

§(+)

which is resonant with those terms in (2.4) that are characterised

by the set(s) of integers n,m,p,q,h,j,s and & satisfying the relations

(m-2p)t = as

(n-2p+q)* = &

(n-2n)* = nd

(n-2h+j #*o= v (2.9)
m* = 5

st = k&

Similarly, a satellite in the lunisolar commensurability (2.8)
will have an orbit which is in resonance with those @(-) terms in
(2.4) that are characterised by the set(s) of integers n,m,p,q,h,j,s

and v satisfying the relations

(n-2p)" = av
(n-2p+q)~ = Ly
(n-2h)- = -nv
- (2.10)
(n-2h+j) = =Yy
m = pv

s = kv
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The (+) and (-) superscripts in (2.9) and (2.10) are used to distinguish the

Q(+) and Q(-)

resonance terms. In order to make the definition of

the commensurability (2.8) unique, it is necessary to place two
stipulations on equation (2.8). First, & & 0 must be a prime quantity.
Secondly, £ is defiped as a positive integer; if 8 = 0 then the

néxt non-zero integer constant immediately to its left in equation

(2.8) is defined as always being positive, i.e.Y > 0 if f = 0; if

¥=0 then 7 > 0: and so on. From this definition and the relations

(2.9) it follows that, in order for a satellite in a commensurability

(2.8) to be in resonance with §(+) terms, k and & must satisfy the
conditions
(1) B >0 § >0 AND k 2> 0
(i1) k>0
8§ >0
B=0
(2.11)
(iii) k <0
<o
B=0
(iv) k=0
—0 <8<w, & £O0
B =0

Hence, for f > 0, a satellite in the lunisolar commensurability (2.8)

can only be in resonance with §(+0 terms if k :Z 0. However, if

5 ()

B = 0, then resonance will occur with terms irrespective of the

value of k. Similarly, in order for a satellite in a commensurability

(2.8) to be in resonance with Q(-) terms, k and v must satisfy the.

conditions
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(i) B> 0 v >0 AND k< O
(ii) k> 0
v< O
B =0
(2.12)
(iii) k< O
v> 0
£ =0
(iv) k=0

-0 < V<0, v #0

Hence, for B > 0, a satellite in the lunisolar commensurability (2.8)

can only be in resonance with Q(-) terms provided k fg 0. However,

if £ = 0 then resonance will occur with Q(-) terms irrespective of

the value of k. Finally, it follows from conditions (2.11) and (2.12)

that, if k = 0, then a satellite in such a lunisolar commensurability

5(+) )

will be in resonance with both and terms.

2.3 The Classification of Lunisolar Gravity and Direct Solar

Radiation Pressure Resonance Orbits

For a close Earth satellite, the J2 harmonic in the geopotential
produces the greatest change in a satellite's perigee and node. The
rates of change of a satellite's argument of perigee, w , and its
nodal longitude, {! , caused by the J2 harmonic only are such that

(King-lele, 1958)

3.5
w e~ 4.98 (_If_E_I_) (1-e2) 2 (5 coszi-i) deg/day (2.13)

a

and
R+ 2.-2

-9,97 (.E) (1-e“) “ cos 1 deg/day (2.14)
a : '

D
2
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where RE is the mean equatorial radius of the Earth., The corresponding
rate of change of a satellite's mean anomaly, M, with the effect of

the J2 harmonic included is

. 3/2 3.5 _
M o~ 6135.7(_’_‘_15) + 9,97 (EE_) (1-e2)"3/2 (1-3/2 sin® 1) (2.15)
a a _ . o

If equations (2.13), (2.14) and (2.15) are substituted into (2.8),

then ¢ & 0 can be written as

. 3.5 1.5
¢ = 4.98q (f‘_ﬁ_‘.) (1-2)"2 (5 cos®1 - 1) + 6135.7(;( Eg)
a a
3.5 '
+ 9.97¢ (_I_{_Fi) (1-»e2)“3/2 a - % sinzi) + T)wD
a
L] 3'5 -
+ YMD - 9.978 (_Ii}i) (l—ez) 2 cos i
a
£ ~ 0. (2.16)

D

Since the semi-major axis, a, the eccentricity, e, and the
inclination, i, of a satellite's orbit are not constants, the a, e and
i contained in equation (2.16) have to be regarded as mean values, or
as constants of integration.

It is seen from (2.16) that & is, to a good approximation,
a function of a satellite's non-angular orbital elements and the

.

parameters ﬁb, éD and QD associated with the 1unar'or solar orbits
relative to the ecliptic plane. Clearly, the characteristics of a
resonance orbit (i.e. its orbital elements) depend entirely on the

type of commensurability in which the satellite exists (i.e. upon the
values of a«,fB, {, ¥,7n and k). The subdivision of resonance orbits
according to their commensurability condition is therefore the obvious

method of classification. The general commensurability condition (2.8)

can be divided into the following fifteen types for both lunisolar
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gravity and solar radiation pressure perturbations.

(1)

)

(3)

(4)

(5)

(6)

(7)

(8)

9)

{10)

(11)

(12)

(13)

(14)

(15)

e
I} H
I ] ] 1

1]

1

~
—

2w +/9i:1 ~0

aw +Y(a.:D+r.vtD): 0
Y(a.;D+1§1D) +ﬁ(.)_'~_' 0

aw +y((:)D+1:!D) +ﬁ6 ~0
ﬁ(.) + n(:)D + kéD: 0

aw + nwD
b s i 804 i o

aw +nw
UwD+Yr% +,BQ+kQD:
aw+'{|:aD+nwD+ﬁ(.')+mD:0‘
T]wD+kQD-_V_O

YMy + 7w

+kQD ~0

D +YI\..1D + k;ZDp_J

+ ~
bt K~ 0

(z and g # 0)

(a and vy # 0)

(y and 8 # 0)

(ay, B and y # 0)

(8 # 0: n and/or k # 0)
(x # 0: n and/or k # 0)
(¢ andf #0: 1 and/or k#0)
(@ andY #0: 711 and/or k#0)
(@ andyY #0: 7 and/or k#0)
(x,F and Y#0: 7 and/or k#0)
(n and/or k # 0)

&¢ # 0:  and/or k # 0)

aw+Yl:iD+§M+T)wD+ﬂQ+kQD:0 £ # 0)

For a close Earth satellite, the mean anomaly, M, executes several

complete revolutions per day, therefore a satellite in a commensurability

involving M, in which o, MD and {1 change by only a few degrees per

day at most, must have an orbit with an extremely large semi-major

axis,

Since most satellites launched to date have orbits with perigee

heights of less than 3200 km, very few satellites, if any, will be in
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commensurabilities involving M. Such a satellite would in any case be

too far away from the Earth to be observed. Consequently, commensurabilities

of this type, i.e. ~ 0 are only of minor importance, and will

¢15
therefore not be considered further in this chapter. The type fourteen

commensurability_ ¢14 =YMD + nwD + kQD ~ 0 can also be neglected,

since Mb is very much greater than wD or QD. For both the lunar and
solar cases, commensurabilities of this type can only occur for large
values of 7 and k. In such cases, the resonant terms will have

large n values and, hence, small amplitude factors of the order of

(a/aD)n, a/aD << 1, for close satellites.

Since wD and QD are small quantities for the solar orbit, it

follows that

1
~—
=3

[ 4, ]

SUN 7 ]SUN

~—
A
—
1]
—
A
—

—
A
—
m
~—
=
—

3~ SUN 9 "SUN (2.17)

—
RSN
—
11
—
A
—

—
&
1}
—
AN

—
H

6 SUN ~ 12~ SUN

or in the short-hand notation

[¢1]sun [¢i+6]stm i=1,2 ... 6 (2.18)

Hence, in the subsequent discussion only [¢i] y 1 =1,2, ... 6 will be

considered in connection with solar gravity and solar radiation pressure

perturbations. In the case of the Moon, wD and QD are approximately
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0.11 deg/day and -0.05 deg/day, respectively, it is therefore necessary

and [;.

to consider [¢1 ] i+6 ]MOON’

MOON i=1,2 ... 6 as separate

commensurability types. If, however, nwD + kQD ~ 0, then

[¢i ]MOON [ ¢i+6 ] MOON’

i=1,2.,. 6, The conditions for which

this occurs will be discussed later. We will now consider the

commensurability types ¢1 8 0 to ¢13 & 0 in greater detail.

2.4(1) The Type (1) Commensurability ¢1 = QR 0

A satellite in a type (1) commensurability is in resonance

§(+)

with those terms in the appropriate lunisolar disturbing function

expansion for which

+
(n-2p) = 0
+
q = 0
.\t
(n-2h+j) = O _ (2.19)
. 0 - lunar gravity perturbations
J T+ 4
-n +2h ~ solar gravity or solar radiation
pressure perturbations
+ +
nm = 1,2 ese N
+ 0 - lunar gravity perturbations
s = +
1,2 ... n - solar gravity or solar radiation
pressure perturbations
3 = 1,2 see 0O
The arguments of these terms are of the form &¢( ¢1+)MOON for the Moon
+ +
h =
(where ( ¢1 )MOON 1 ) and of the form 8§ (¢ 1 )SUN for the Sun, with

+ -
= ) > P
( ¢1 )SUN M+ nap.-+ kQD (k 20). Similarly, the & resonance

terms are given by
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(n72p)- = 0
q_ = 0
(n-2h+j) = 0 . (2.20)
A 0 - iuﬁaf gfa?ifyrpértuibétionsA
’ i —n~+2h— ~ solar gravity or solar radiation
pressure perturbations
m = 1,2 ... n_
N 0 - lunar gravity perturbations
° ) 1,2 ... n - solar gravity or solar radiation
pressure perturbations
v = 1,2 ,..

The arguments of these terms are of the form v(¥ 1—) for the Moon,

AOON

where (¢1—5 Q, and of the form v(¢1—) for the Sun, with

MOON — SUN

(¢1~)SUN: M+ nwD+kQD x < o).

Since h &/ 0 for a satellite in a type (1) commensurability,
a satellite will exist in this commensurability if it has a stationary
ascending node. From equation (2.14), this occurs when i 90°:
therefore the only constraint on a satellite's orbital elements for it
to be in the commensurability &1 ~ 0 is that it should have a polar

orbit., A resonance orbit of this type is known as an inclination

dependent resonance orbit.

The amplitude factor of any resonant term contains the factor

n

(a/a.) G (e) x H (e.). Since G (e) and H .(e_) are of
D n,p,q n,h,j D n,p,q n,h,j D
al

the order and eDl'jl , the factor (a/aD)n G (e)

n,p,q

. n |ql 131
Hn,h,j(eD) is proportional to (a/aD) e e

For a close satellite,
(a/aD)n is approximately (1/50)n for the Moon and (1/17,000)n for the
Sun., The eccentricities, ey of the lunar and solar orbits are

approximately (1/20) and (1/60) respectively, Clearly, the most

important resonance terms for any commensurability are those for which
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(a/aD)ne|QI eIJI is a minimum. A situation might arise in which
other factors greatly affect the size of a rcsonant term's amplitude

factor, thus causing the predominant resonant terms to have n, q and

la| e 13 being

'j valﬁes différent from those which result in (a/aD)ne
a minimum. For example, the magnitudes of the inclination functions

F (1) and F (i_) may produce such a situation. However, in
n,m,p n,s,h D

the;majority of cases, the predominant resonant terms can be determined

lql eDI‘jI should be a minimum, Such

from the condition that (a/aD)ne
resonant terms, in addition to satisfying the conditions (2.,9) and

(2.10) for their particular a, B, ¥, 1, { and k, must also satisfy

the restrictions on n, m, p, q, h, j and s implicit in equation (2.4),

i.e.
2 ﬁ; n $; o = lunisolar gravity perturbations only
1 ‘\< n < w = solar radiation pressure perturbations only
0 g; m < n
0o <p <n
0 S; h :g n
All lunisolar perturbations
0 S; ] s; n
-~ & g S w
—e €& S w
and the orbital restrictions, e < 1, (a/a) < 1 and

D “MOON
(a/a_) << 1, which are valid for all Earth satellites. The n, m,
D" SUN : P,
+) -
(+) s€ )

a, h, j, s, 6 and v values for the predominant & and

resonant terms of type (1) are given in tables 2,1(a) and 2.1(b),

respectively.
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TABLE 2.1(a)

§(+)

The n,m,p,q,h,j,s and & values for the Predominant Resonant Terms

.of a Satellite in the Lunisolar Commensurability .¢1 M o

+ + + + + + + +
n m p q h J s )
Lunar Solar
Gravity Perturbations
1 1 0 1 0 0 0,1,2 1
2
2 1 0 1 0 .0 0,1,2 2

TABLE 2.1(b)

The n,m,p,q,h,j,s and v values for the Predominant éF) Resonant Terms

of a Satellite in the Lunisolar Commensurability ¢1 X0
n m p~ q_ h~ 3— s v
Lunar Solar
Gravity Perturbations

1 1 0 1 0 0 0,1,2 1
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2.4(2) The Type (2) Commensurability ¢2 = w ™ 90

A satellite exists in this type of lunisolar commensurability
if its orbital inclination is approximately equal to that of the
'critical inclination' of 63.4 . The & resonant terms are those

for which

+

(n-2p) = 5

+
q = -39

G
(n-2h+j) = 0 (2.21)
+ 0 - lunar gravity perturbations
J = . . .
-n +2h - solar gravity or solar radiation
pressure perturbations

+
m = 0

+ 0 - lunar gravity perturbations
s

+
1,2 ... n -~ solar gravity or solar radiation
pressure perturbations

~oo< 8 g 00,6 #00

+
The arguments of these terms are of the form &( ¢2 )MOON for the

Mooy = @ » and of the form 8 ("/’2+)SUN for the

+
i = aw w_ + kQ > itd > 0 d
Sun, with ( ¢2 >SUN Fnwo+ kQ (k 2 0 if an

+
Moon, where (1/12 )

k < 0 if & < 0). Similarly, the Q(-) resonant terms for a type

(2) commensurability are those for which

(n-2p)~ = v

q— = -v

(n-2h+j)" = 0 ' (2.22)

_ 0 - lunar gravity perturbations

> ) -n +2h~ - solar gravity or solar radiation
pressure perturbations

m = 0

_ 0 - lunar gravity perturbations

s =

1,2 ... n - solar gravity or solar radiation
pressure perturbations

-0 <V<oo v£ZO



The arguments of these resonant terms are of the form v( ¢2-)MOON

for the Moon, where ( ¢ 2") @ , and of the form

MOON —

v(gb2 )SUN’ with (¢12 )SUN = aw + N

tkQ (k 2 0ifv < 0
and k < 0ifv > 0). R '

D

+)

The n,m,p,q,h,j, and s values for the predominant &

and Q(-) resonant terms of type (2) are given in tables 2.2,

TABLE 2,2(a)

. +
The n,m,p,q,h,j,s, v and 8 values for the Predominant Q(‘) Resonant

Terms of a Satellite in the Lunar Gravity Commensurability ¢ 8 0

2

66,
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TABLE 2.2(b)

+
The n,m,p,q,h,j,s, 8 and v values for the Predominant é( ) Resonant

Terms of a Satellite in the Solar Gravity Commensurability ¢2 s~ 0.

RESTRICTIONS .
I R TR T S S
ON (a/aD),e n,n m.,mn p,p 4,1 h,h J,j 8 ,8 S,v
AND e
D
if 0 0 -2 1 0 0,1,2 2
a_ _e_D_ <1 2
ay Ae
0 2 2 1 0 0,1,2 -2
2 1 0,1,2,3 1
— 0 1 -1
if 1 -1 0,1,2,3 1
3-—.
(&Xi&)ﬂ -
aj Ao 1 0,1,2,3 -1
L---—0 2 1
1 -1 0,1,2,3 -1

TABLE 2.2(c)

+
The n,m,p,q,h,j,s, 8 and v values for the Predominant Q(") Resonant Terms

[ad
~

0

of a Satellite in the Solar Radiation Pressure Commensurability ¢2

n ,n m ,m P ,p a ,q h ,h J 3 s ,s 8 ,v
1 0 0 -1 1 1 0,1 1
1 0 0 -1 0 -1 0,1 1
1 0 1 1 1 1 0,1 -1
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2.4(3) The Type (3) Commensurability g[:s = aw + O R 0

o,

The third important type of lunisolar commensurability, ¢'3 ~
is the generalised form of the two previous types, ¢1 ¥ 0 and
¥ = 0: ¢ = 0 reduces to ¥, ® 0 and ¥ “0,11’ o = 0 and
2 3 1 2
£ = 0, respectively. From equation (2.16), a satellite exists in the
lunisolar commensurabiiity ¢f3 &% 0, if its orbital inclination
gsatisfies the quadratic equation

2

5¢ cos”1 - 2B cosi -a =0 (2.23)
On solving (2.23), cosi is found to be given by

cosi = B ¢ (ﬁz + 5a2)& (2.24)

5a
Two cases of equation (2.20) need to be considered; first when a is
positive, and second when a is negative: [, by definition, is always
a positive integer. If a is positive, then

cosi = Bt (B%+ 50:2)% , (2.25)
5a

From equation (2.25), it is seen that there are two possible values

of i - i1 and 12 ~ which satisfy (2.23). If both gsolutions are real,

then one ~ i say = lies between Oo and 900, and the other, 12' lies

1’
between 90° and 180°. For both i, and 1, to be real

1
cosi1 = f +(ﬁ2+5a2)% <1 (2.26)
Sa
a +ve
and
cos:l2 = £ - (ﬂ2+5a2)% > -1 (2.27)
5a

On simplification, (2.26) and (2.27) become

2lal 2 B (2.28)

and

2l + 5 > 0 (2.29)
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respectively. Since ﬂal + [ is always positive, then, for a positive,
there must always exist a solution, 12, of (2.23), which lies between
90o and 180o for all values of Ial and  (a > 0). In addition,

when a 1is positive, i, can only exist if B is less than twice a.

1

When « is negative, equation (2.24) can be written as

cosi = - % ( ﬁ2 +5]a |2)§ (2.30)
5 |al

By analogy with the positive a case, it is found that, for a < O,

there must always exist a solution, 11 of (2.23) which lies between

o o | ists if 2 la] >

0" and 90 . A second real solution of (2.23) exists if 2|a| 2 B
The solution (s) of equation (2.23) for 4 2> a2 ~4and 4 20 2 0
are given in tables 2.3(a) and 2.3(b).

A satellite in a lunisolar commensurability of the type

~ . . +
¢3 % 0 is in resonance with those Q( ) terms for which

(n—2p)+ = ad
q+ = -ad
T
{(n-2h+j) = 0 (2.31)
+ 0 - lunar gravity perturbation
J = + .+ .
-n +2h = solar gravity or solar radiation
pressure perturbations
+
m = ﬂa
+ 0 - lunar gravity perturbations
s +
1,2 ... n - solar gravity or solar radiation
pressure perturbations
§ > 0
+
The arguments of these resonant terms are of the form 3§ ((/t3 )MOON
for the Moon, where ( ¢ +) = aw + [N, and of the form &§( ¢ +)
3 “MOON i ! 3 “SUN
for the Sun, with (¥ +) = aw + Nw_ + A + k0 (k } 0).
3 "SUN D D



70,

Similarly, the resonant Q(_) terms for a type (3) commensurability are

(n-2p)~

= qVv

q— = =QV.

(n-2h+j)" = 0 (2.32)
_ 0 -~ lunar gravity perturbation

’ ) -n +2h - solar gravity perturbations or solar

radiation pressure perturbations

m = fBv

_ 0 ~ lunar gravity perturbations

° ) 0,1,2 ... n_ - solar gravity or solar radiation

pressure perturbations
v > 0 |

(+

As with the ¢ ) resonant terms, the Q(—) resonant terms have

arguments of the form v((,ll3 )MOON and v( ¢f3 )SUN’ with (¢ 3 )M()ON =
ow - = aw < .
+ A and(¢3)SUN a +nwD+,@Q +1<QD (k & 0). The
. (+) (-)
values of n,m,p,q,h,j,s, & and v for the predominant & and &

resonant terms of type (3) for a particular a and f are given in
tables 2.4(a), 2.4(b) and 2.4(c).

The most important commensurabilities of a particular type
are those for which the amplitude factor, (a/aD)neIql eDl‘j| of the
predominant resonant terms is an absolute minimum., In the case of
lunar gravity perturbations, the most important type (3)

commensurabilities are

1) w+ 0 = 0
(2) -w+0Q N8 0
. . (2.33)
(3) 2w+ Q B O
(4) -20 +Q S 0

The amplitude factors of the predominant resonant terms for the set of
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commensurabilities (2.33) are of the order (a/aD)zez. The corresponding
resonant orbital inclinations for satellites existing in these

commensurabilities can he found from table 2,.3(a). They are:

(1) 46,4° and 106.9°
(2) 73.2° and 133.6°
(3) 56.1° and 111.0° (2.34)
(4) 69.0° and 123,9°

For solar gravity perturbations, the most important commensurabilities
of type (3) are also the set (2.33). However, the amplitude factors
of the predominant resonant terms are, in this case, of the order

2
(_a__j e , if (Q_X ill) < 1 , and of the order a_ 3 een
s a e an

D
D
if (E_Ii) > 1. Since (9___) << 1 and eD X% 1/60,
%p /€ %p 7 sun
the eccentricity, e, of a satellite existing in such a solar gravity
-6

commensurability would need to be very small (=~ 10 , if

(eﬁ_) = 1/17000 ) for the predominant resonant terms to have
D

amnplitude factors of order (g__)3 eeD.
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TABLE 2.3(a)

Solution of Equation 2.23 for Lunar Gravity Perturbations when
LZaZ2 -4 0KPALL

3 ..io,v 10

1 2 Préddminénf .Cdmmehsﬁrdbility
n lQ| ljl Condition
a e e
()
)
value
2 S
1 90.0 - (g__) Q= o
)
0 63.4 116.6 (L)zez 0w ~ 0
2p
1 46,4 106.9 (g__)zez w+r Q= O
®p
0.0 101.5 (g_)4ez w+20 % 0
)
- 98.5 (g__)eez w+30% 0
2
- 96,7 (g__)sez w+ 40 = 0
)
56.1 111.0 (szez 20+ 0 RO
2p
33.0 103.8 (_g__)4ez 20+ ™0
2p
58.8 112.7 (g._)ees 3w+ Q F
2p
53.1 109.5 (g_)sea 30 + 20 ®
8p
38.1 104.7 (g__)sea 30 + 40 ®
%p
60.0 113.6 (L)4e4 40 + O N
2p
51.6 108.8 a \%e* 40 + 30
%p




TABLE 2,3(a) CONTINUED
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a 110 120 Predominant Commensurability
n Iq Jl Condition
a e
(;_) e )
D
value
-1 73.2 133.6 (_a__) 2,2 ~w+ 0~ 0
ar
-1 78.5 180.0 (_q__) 4e2 ~-w+ 20 = 0
)
-1 81.5 - (_a__ )6e2 ~w+30 R~ 0
)
-1 83.3 - (9__)8.32 ~w+40 ® o
)
-2 69.0 123.9 (g__)zez 20 +Q ® o0
D
4 2 . -
-2 76.2 147.0 (9__) e 20 + 30 ® 0
D
6 AN
-3 67.3 121.9 (g_) e® 3w+ 0 R 0
D
6 : .
-3 70.5 126.9 (g__)ee 30+ 20% 0
)
8 6 . -
-3 75.3 141.9 (9__) e -3w + 40 % 0
)
-4 66.4. 120.0 (g__)4e4 40+ Q ® o0
B.D .
-4 71,2 128.4 (g,_) 'S ~aw + 308 0
a

i~




TABLE 2.3(b)
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Solution of Equation (2.23) for Solar Gravity and Solar Radiation

Pressure Perturbations when 4 2 a } -4 AND 0 £ < 4

a B ’iiov 'iéo' Predominant Value of  Commensurability
n_lal |5l Condition
a e e
(&)
N\a /-
Gravity Radiation
o 1 9.0 - (3._)2 (9_)2 Qom0
%p p
* » *
1 0 63.4 116.6 (g_)zez (i_)eeD w ® 0
“p p
* * 2 2 . 3 -
1 1 46.4  106.9 (_a__) e (g__)een' w+ Q RO
%D %p
3 3 . .
1 2 0.0 101.5 (3__) ee, (3.__) eey w+ 20~ 0
%D %D
1 3 - 98.5 (:a__)BeeD (9__)3eeD Ww+30 8 0
D D
1 4 - 96.7 (3_ )5eeD (g_)seen w+40 = 0
p %D
2 1 56.1  111.0 (a_)%2 (9__)2«32 20+Q R 0
\a, 2p
2 3  33.0  103.8 (g__ )4e2 (g.__)llez 20 + 30% 0
D \ap
3 1 588 112.7 (g__)seseo (g__)%%b 3w+ ® o
\ap %D
3 2 53,1 109.5 (9__ )3e3eD (g__):*eSeD 3w+ 20" ¢
aD aD
3 4 381  104.7 (g__)ﬁeaeo (a__)seseb 30+ 40 % o
p D
4 1 60.0 113.6 (L)4e4 (_a__ S 0+ ® 0
D D
4 3 516 108.8 (g_)“e" (9___ 2.1 40+ 30 % o
p )
*
if (aeD) > 1 Predominant (e_a__) neIQIe"jI value is (9_.__) SeeD
aDe aD %



TABLE 2,3(b) CONTINUED
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(o]
o i ° i Predominant value of Commensurability
1 2 .
n_lal_lil Condition
a e e
(;_) a0 e
D
Gravity Radiation
‘ * 2 L] L
-1 73.2 133.6 (g_)e -0+ Q%o
a
3_ 3 "
-1 78.5 180.0 (g_) (_a_l__) ee, -w + 208 0
p ®p
-1 81.5 - (g__ )See (9__)3ee -w +30% 0
p %p
-1 83.3 - (_z_a_ )%e (9__)5ee - w +40% 0
%p ®p
-2 69.0 123.9 (9__ )2e2 (&)zez 20 + 0 ® 0
D p
-2 76.2 147.0 (g_]4e2 (9_)%2 -2 + 30% 0
a aD
-3 67.3 121.3 (L)Sese (g___)sese W+ Q%o
aD a
-3 70.5 126.9 (L )3e3e (g_)3e3e -30w + 20 0
%D D
3 L] L]
-3 75.3 141,9 (_q_)se e (9_)5e3e -3w + 40™ 0
a a
~4 66.4 120.0 (9__)4e4 (g__)4e4 -4y +Q ® 0
a ka
-4 71.2 128.4 (9__ )494 (g__)4e4 -4y + 30% 0
2D %D
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TABLE 2,4(a)

) ()

The n,m,p,q,h,j,s, 8 and v values for the Predominant & and

Resonant Terms for a Satellite in a Lunar Gravity Commensurability ¢3 B0

RESTRICTIONS ON

+ . .
a and fB n ,n m,» p,p q,q h ,h j ,j s ,s §,v

a +ve

a>p « B 0 -a o/2 0 0 1
a even

a +ve

o 2 J) 2a 25 0 -2 a 0 0 2
o odd

a +ve, a < f
a odd, f odd or 2B 23 Jois -2 £ 0 0 2
a odd, B even

a +ve

2 < p g+ B (ﬂig"; o B 0 1
a even, B odd +1)/ 2

a -ve

la| > g |« B lal lal  lal/z o 0 1
la] even

xa =-ve

lal 25 dal 28  2al 2lal  lal 0 0 2
la] odd

[+4 -ve

lal < B B+ B ff;%l o] B2 0 1
la| even, B odd 2

a -ve, |a| < B

|al odd, g odd or 2B 26 g+l 2lal B

|a| odd, B even

o
o
\V]
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TABLE 2.4(b)

The n,m,p,q,h,j,s, 8§ and v values of the Predominant Resonant Terms

+ -
( ‘I’( ) and §( )) for a Satellite in a Solar Gravity or Solar Radiation

Pressure Commensurability, l/!3 ~ 0

RESTRICTIONS ON

+ - 4+ - + - + = 4+ -~ o+ = o+ -
«a and g n,n m,n P ,P qQ ,q h ,h J sd s ,8
a +ve
x> p o B 0 -a a/2 0 0,1...a
@ even
[
o +ve o e 0 -a a+1)/2 1 0,1...
«2p 7
L 3
o odd |« Jel 0 -~ (a-1)/2 -1 0,1...a
a +ve
a < B B+1 B (67;1) —a B+1)/2 0 0,1..a
& even, B odad )
a +ve [ B B @-a/2 -a (B+1)/2 1 0,1...a
a<f ]

a odd, B odd | B B PB-00/2 @« (p-1)/2 -1 0,1..a
o +ve T B+ B G-a+1) -«  (@B+2)/2 1 0,1..a
/2

a<f —_
a« odd, B even B+ B (9‘*“‘1)' - B/2 - -1 0y1e0ut
2

See table 2.4(c) for predominant solar gravity terms if a =1,



RESTRICTIONS ON

TABLE 2.4(b) CONTINUED

78.

« md B e LU R T A LS R

a -ve '

lal > 8 o] B lal  lal a2 0 0,1...a 1

la] even

a -ve lal* ) lal |a| ([a|+l) 1 0,1...x 1

2
la| 2 5 —
|a| odd Ial* B lal lal (!al-—l) -1 0,l...a 1
o 2
a -ve
g+t B G+ lal @+)2 0 o0,1...a 1

la|l < 5 laly/2

|a] even, B odd

a -ve [ B | I&i @+ lal G+1)/2 1 0,1...a 1
laly /2

la| < 8 —

laI odd, 8 odd L__ B B G+ |a| @-1)/2 1 0,1...x 1
la])/z

x -ve — B+ B @++ el @22 1 0,104 1
laly/2

la| < B —

IaI odd, B even|  F+1 5 @ +1+ lal “B/2 -1 0,1...a 1
|a|)/2

*

if a = -1 then see table 2.4(c) for predominant solar gravity terms.



TABLE 2,4(c)

The n,m,p,q,h,j,s, 8 and v values for the Predominant Resonant Terms

Q ("')

(§(+)

and

) for a Satellite in a Solar Gravity Commensurability

tw+QRo

RESTRICTIONS ON

& and B n ,n m ,m p ,p q ,q9 h ,h J »d 8 ,s8

a =1, =1

(EL_)i f2£)< 1 2 2 0 -2 1 0 0,1,2
aD e

a =1, g =1 3 1 1 -1 2 1 0,1,2,3

(E_X fg_)> 1 | 3 1 1 -1 1 -1 0,1,2,3
aD e

a = -1, =1

(a Y fig)-< 1 2 2 2 2 1 0 0,1,2

(oA s

« =-1, 8 =1 | 3 1 2 1 2 1 0,1,2,3

(g_ Xfp_)>1 3 1 2 1 1 -1 0,1,2,3
aD e
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2.4(4) The Type (4) Commensurability ¢14 = aw + y(wD LMD) & 0

A satellite in a commensurability of the type ¢4 8 0 is
. .
in resonance with those Q( ) terms in the lunisolar disturbing

function expansiohs for'whiéh

+ ‘
(n - 2p) = ab
Lt
(n - 2h + j) = v8
qt = -ab (2.35)
+ 0 - lunar gravity perturbations
J = + +
¥ - n + 2h =~ Solar gravity or solar
- radiation pressure perturbations
+ 0 - lunar gravity perturbations
s = +
0,i...n - Solar gravity or solar radiation
— pressure perturbations
m+ = 0
The arguments of the resonant terms are of the form §( ¢4+)MOON for
+
meMmm,wmxe(¢4)mmN= MJ+Y(wD+AbLzmdoftmaﬂwm

+

8 M i = )
(¢'4 )SUN for the Sun, with (l,lr4 )SUN w o+ M+ M kQD'

q, (+)

The n,m,p,q,h,j,s and & values for the predominant resonant

terms of a lunar gravity commensurability of type (4) are given in

tables 2.5(a) and 2.5(c); the corresponding values for a solar gravity,

or solar radiation pressure, commensurability, ¢4 & 0, are given in

tables 2.5(b) and 2.5(d).
Similarly, a satellite in a commensurability of the type

zﬁ4 &~ 0 will be in resonance with those 'i(-) terms in the lunisolar

disturbing function expansions (2.4) for which
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(n—2p)- = av
q- = -=-Qav
(n-2n+j)" = -yy (2.36)
_ 0 - lunar gravity perturbations
! ) -Yv—n-+2h- - Solar gravity or solar
' radiation pressure perturbations
- 0 - lunar gravity perturbations
° B 0,1...n- ~ Solar gravity or solar radiation
pressure perturbations
m = 0

The arguments of the Q(-) resonance terms are of the form

B £ M - = -
v( ¥ 4)MOON or the Moon, with ( ¢ 4)MOON aw + Y(wD %)' and of

the form v( ¢ 4)SUN

@(-)

The n,m,p,q,h,j,s and v values for the predominant resonant terms

of a satellite in the commensurability ¢f4 ¥ 0 are listed in tables
2.5(e), 2.5(f), 2.5(g) and 2.5(Ch).
If B is put to zero in equation (2.16) along with k and {,

then the orhbital elements of a satellite in a lunisolar commensurability

9’14 ~ 0 must satisfy

24,9 acoszi +YnDy *Y -~ 4,98a N 0 (2,37)
where
= W ! + 38
n ( b * S)) , (2.38)
and
4/7
y = a, (1-e%) / (2.39)
RE

. The lunisolar commensurability ¢'4 ® 0 represents a
departure from the three previous types in that it is not entirely

inclination-dependent, but depends also on the semi-major axis, a, and

for the Sun, where (¢-4)SUN = aw +ne; +YM +kO .
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the eccentricity, e, of a satellite's orbit., When ¥Y/a is positive,
the maximum value of y occurs at i = 900. The maximum value of y for

Y/% positive is given by
2/7
Ymax = [4-98 a] Y/a > 0 (2.40)
nDY

Similarly, when ¥/x < 0, the maximum value of y occurs at i = 0° and

1800, and its value is given by

Ymax = |:-—~'~1 9.92
n

]2/7 Y/a < 0 (2.41)
> A

&
Y

Now for a satellite to exist in orbit, a(i-e) > RE. If y is written

in the form
y = a(l-e)(1+e)
RE(1'62)3/7

then it is casily seen that y must always be greater than unity, since

(1+e)/(1-e2)3/7 23 1 and a(l-e) > RE. It therefore follows from

equations (2.40) and (2.41) that close satellites can exist in

lunisolar commensurabilities of the type ¢4 & 0 if

4.98 a > v n (2.42)

for y/m > 0 and

19,92 |a| > IYnD' (2.43)

for y/a < 0 .

If the appropriate condition (2,42) or (2.43) is not met for

a given a and v, then no close satellites can exist in the lunisolar

L .

ne

commensurability ¢4 = aw + Y(wD + MD) X 0. When the appropriate
values of nD for the Moon and the Sun are substituted into equations

(2.42) and (2.43), the criteria for the existence of satellites in
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solar and lunar commensurabilities of the type ¢4: % 0 become

5.05 lal > IYI Y/a >0
SUN
20.2 Ial > lyl Y/&_<_0
and (2.44)
0.38|a| > lyl : - y/a > 0
1.51 |a| > |yl y/a < 0

For solar radiation pressure perturbations, two commensurabilities

of the type ¢4 X 0 are theoretically possible, in which the amplitude

factors, (a/aD)neIQIe 'Jl, of the predominant resonant terms have an

D
absolute maximum of (a/aD)e. They are

(5) w+ (w_ +M) s 0
D D (2.45)

(6) -w + (wD + MD) % 0

Reference to conditions (2.44) shows that both of the solar
commensurabilities of the set (2.45) occur for close satellites, In

the case of lunisolar gravity perturbations, the most important

commensurabilities of the type ¢4 X 0 are (5) and (6) of the set

(2.45), if (a/aDe) < 1. The amplitude factors of the predominant

resonant terms are of the order (a/aD)zeZ. However, if (a/aDe) > 1,

then the most important type (4) commensurabilities for lunisolar gravity

perturbations are the set (2.45) plus

(7) W + 3(wD + MD) 2 0
(2.46)

144
o

(8) -W + S(wD + MD)

The predominant resonant terms in this instance (i.e, (a/aDe) > 1)
have amplitude factors of order (a/aD)se. From conditions (2.44),

it is obvious that both of the commensurabilities in the set (2.46) are
possible for solar gravity perturbations, but neither are possible for

lunar gravity perturbations. Finally, only commensurability (6) of
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the set (2.45) is possible for lunar gravity perturbations.

The graphs of the function (2.37) for the solar
commensurabilities (5) and (6) of the set (2.45) are given in figures
(2.1) and (2;2),'resbeétivély.v The graphs.of solar commensurabilitieé.

"(7) and (8) are given in figures (2.3) and (2.4) and the lunar

commensurability (6) in figure (2.5).
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TABLE 2.5(a)

+
The n,m,p,q,h,j,s and 8 values of the Predominant Q( ) Resonant Terms

for a Satellite in a Lunar Gravity Commensurability of the type ¢f4 R0

RESTRICTIONS ON

« and g nt ot p+ a nt j+ st 8
o +ve ¥ +ve B a’ 0 0 - (a=y)/2 0 0 1
« 2y — ;
a + ¥ even a 0 a a (a+yY)/2 0 0 -1
a +ve ¥ +ve B 2q 0 0 -2Q a4y 0 0 2
a >y _
a + ¥ odd 20 0 2a 2a a+y 0 0 -2
—
a +ve Y +ve Y 0 (r-a)/2 - 0 0 0 1
Yy > a —1
& + ¥ even Y 0 (y+a)/2 +a Y 0 0 -1
a +ve Y +ve B 2y 0 Y -2a 0 o] 0 2
Y> a —
@ + y odd 2y 0 Y+a 2a 2y 0 0 -2
Q ~-ve Y +ve [— Ial* 0 Ial la' (Ial-y) 0 0 1
la| 2> v — 2
*
lal + v even |« ] 0 |l j__lﬁ'*{) Y o -
_ 2
a ~ve ¥y +ve —2|a| 0 2|oc| 2|a| (Ial-—'{) 0 0 2
]al >y —
|| + ¥ odd 2lal o 0 -2 |l la |4y 0 0 -2
& -ve o +ve r Y 0 (Y+|a|) lal 0 0 0 1
v > |al ] 2
|a| + ¥ even Y 0 (Y-|a|) -—Ial Y 0] o -1
o 2
@ ~-ve Y +ve 2y 0 Y+|a] 2|al 0 0 0 2
v > o
la] + v odd 2y 0 y=la]  -2]al 2y o o0 -2

*

See Table 2.5(c) for predominant lunar gravity terms if a =

I+
[y
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TABLE 2.5(b)

+
The n,m,p,q,b,j,s and 8 values of the Predominant Q( ) Resonant Terms

for a Satellite in a Solar Gravity or Solar Radiation Commensurability

of the type slx4 o)

RESTRICTIONS ON ‘ S :
+ + + + + + +

a and ¥ n m p q J h 8 ]
« +ve Y +ve " 0 -« 0 (a=y)/2 0,1...0 1
a}'f — a—0 —
a + ¥ even L_ L—a « 0 (QW)/Z 0,1.ooa -1
— o - 1 (a-r+1)/2 0,d...0 1
« +ve ¥ +ve .
0 - -1 (a+r-1)/2 0,1...a 1
a >y - ]la—0—
a a 1 (@+y+1)/2  0,1...a -1
a + Yy odd r
| | @ a -1 (a+y-1)/2 0,1...0 -1
a +ve ¥ +ve * —o ~a Y—a ) 0,1...0 1
—da_—. o
Y > a « « ay a 0,1...0 =1
- % e— .
a -ve Y +ve Ial Ial 0 (|a|4Y)/2 0,1...% 1
la] + ¥ even o -lal o dalwyzz 0,100 -1
% -ve ¥ +ve lal o] 1 dalsy  0,1...0 1
2
l lal  Jal dal -1y o0,1...a 1
al >y — 2
lab—o—t
o -lal 1 dalersy) o -
2
la] + v oda K ~la] 4 laley-1y  o0,1...0 -1
T 2
% -ve Y +ve " o —lal =ldwr 0 0,1...0 1
— la|l—o0—
Y > |al B el lal —relal |al 0,1.00a -1

*
If o =} 1 then the predominant solar gravity terms can be found in

Table 2,5(d).
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TABLE 2.5(c)

(+)

The n,m,p,q,h,j,s and & values of the Predominant & Resonant Terms

. for a Satellite in a Lunar Gravity Commensurability ¥ o + ,SwD _i-___MD) N0

RESTRICTIONS ON

@ and ¥ n m p q h J s 8
a =1 Y =1 0 -2 0 0 0 2
2 — 0
1f(a)< 1
aDe 2 2 2 0 0 -2
a =1 ¥y =1 1 -1 1 ] 0 1
3 ~—— 0
it ((a) > 1
aDe 2 1 2 0 0 -1
a=-1 v =1 2 2 0 0 0 2
2 — 0
if(a)< 1
aDe o -2 2 0 0 -2
a=-1 vy =1 2 +1 1 0 0 1
33— 0
if(a)> 1
\a_e 1 -1 2 0 0 -1




TABLE 2,.5(d)

88,

+
The n,m,p,q,h,j,s and & values of the Predominant @( ) Resonant Terms

+

for a Satellite in a Solar Gravity Commensurability _

RESTRICTIONS ON

XL 2 M)

~

+ + + + A+ +
a and ¥ n m P q J s b
a =1 Yy=1 I——O -2 0 0,1,2 2
2 — 0 R
if a) <1 2 2 0 0,1,2 -2
aje a
a=1 ~y=1 1 - 0 0,1,2,3 1
3— 0—
if [ a ) > 1 2 1 0 0,1,2,3 -1
\aDe h
a=1 y=2 [0 -2 +2 0,1,2 2
2 —— 0 —
if ( a ) <1 | 2 2 -2 0,1,2 -2
aDeeD
a=1 y=2 1 -1 1 0,1,2,3 1
3 — 0 —
| 1 -1 -1 0,1,2,3 1
if( a ) > 1 2 1 1 0,1,2,3 -1
a_ee 3 0~
p°°D
2 1 -1 0,1,2,3 -1
a=1 vy 23 ™0 -2 2y-2  0,1,2 2
2 — 0—]
if N
( (1+Y))<1 | 2 2 2-2y 0,1,2 -2
a. e
DD
a=1 yv2 3 1 -1 Y-3 0,1,2,3 1
3— 0
if 2
( ce (1+Y)) >1 2 1 3-Y 0,1,2,3 -1

/cont.,

0




RESTRICTIONS ON

TABLE 2,5(d) cont.
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+ +
a and ¥ n+ ﬂl+ . p . q+ . j g - 8
a=-1 ¥ =1 2 2 Y 0,1,2 2
2—0
if( a) <1 0o -2 0 0,1,2 -2
aDe
x=-1 vy =1 2 1 0 0,1,2,3 1
3 0 __|
1f( a) > 1 | 1 -1 0 0,1,2,3 -1
aﬁe
@ = -1 y =2 2 2 2 0,1,2 2
2 — 0 —
if( a )< 1 | 0 -2 -2 0,1,2 -2
aDeeD
a =-1 ¥y =2 1 -1 -1 0,1,2,3 -1
/_1 -1 1 0,1,2,3 -1
3—0
if( a ) >1 \"2 +1 -1 0,1,2,3 +
aDeeD
|2 +1 1 0,1,2,3 +1
a =-1 ¥ 2 3 —2 2 2y -2 0,1,2 2
2 — 0 —
if 2
( (1+Y)) <1 | 0 -2 2-2Y 0,1,2 -2
ee
D°°D
£ 2 \ o 1 3 0,1,2,3 1
l(aee (1+Y))>1 Y- [ A
D D 33— 0—f
| 1 -1 3-y 0,1,2,3 =1




90,

TABLE 2.5(e)
)

The n-Jm-,p—Ji-Jh‘-Jj—Js_ and v values for Predominant ¢ Resonant Terms

for a Satellite in a Lunar Gravity Commensurability of the Type ¢‘4 o 0

RESTRICTIONS ON

@ and ¥ n m . p B | h J s \
@ +ve ¥ +ve a‘ 0 0 -a (a+y)/2 0 0 1
azy
@ + %Y even a‘ 0 « a (a—-y)/2 0o 0 -
a +ve ¥ tve 2a 0 0 -2a aty 0 0 2—
a >y
a + Y odd 2a 0 2a 2a a~y 0 0 -2
+ve ¥ +ve e 0 (y-a)/2 - a Y 0o O 1
Y > a
a + ¥y even Y 0 (y+a)/2 a 0 o o -1
a +ve ¥ +ve 2y O Y-a -2 2y 0 0 2
Y > a
a + vy odd 2y 0 Y+ 20 o 0 0 -2
*
a =-ve y +ve la| 0 lal |l (lal+y)z2 0 0 1
lal 2 v
»
Ial + y even Ial 0 0 —-lal (lal—Y)/Z 0 0 -1
*
a -ve ¥y +ve : 2|oc| 0 2|a| 210{' (lalw) 0 o0 2
la| > v
la| + v odd 2]« 0 0 ~2|al F1E% 0 0 -2
a -ve ¥ +ve v o (relalysa el Y o o 1
Iyl > lal
lal  + ¥ even Y o (y-lalyz -lal 0 0 o0 -
& -ve ¥ +ve 2Y 0 Y+|a| 210(] 2Y (] (0] 2
Iyl > lal
lal + y odd 2r o0 vy-la]  -2]a] 0 0 o0 -2

*

See table 2.5(g) for predominant lunar gravity terms if «

H



The n ,m ,p ,q ,h ,j ,s

TABLE 2.5(f)

and v values for the Predominant

@(—)
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Resonant

Terms for a Satellite in a Solar Gravity or Solar Radiation Pressure
Commensurability of the Type '¢4 3
RESTRICTIONS ON
a and ¥ n m p- q- h j- s v
a +ve ¥ +ve " ) -a . (a+y)/2 0 0,l...x 1
a}y o O —
a +ve Y +ve o - (a+y+1)/2 1 0,1,...0 1
/ 0 —a (a#w-1)/2 -1 0O,1.... 1
a >y -
a—0
\T o a (a=r+1)/2 1 0,1...a0 -1
a +ve Y +ve il [~ 0 - a a=-y O,t...a0 1
Y > a a — 0—
_a a 0 Yo 0,1...0 -1
»* -—
& -ve ¥ +ve lal  Jal  ddalsd/2 0  0,1...a 1
|a| >Y |a'—-—0-——
]al + Y even | O -lal (IaIJY)/2 0 0,1...0 =1
o -ve ¥ +ve Ial (la|+‘{+1)/2 1 0,1...Q 1
lal dal#-1)72 -1 0,4..a 1
la| > v lal—0
\i’ ~lal dal-y+1)2 1 0. -1
|« + y odd -|al (|al~{-1)/2 -1 O,1.00a0 -1
a ~-ve Y +ve "'al Ial "’Y'"‘Ial o,lnooa 1
Iyl > ol la|—o-
'al 0 Y~|a| 0,1...4 -1

*x.

If o = %1 then predominant solar gravity terms can be found in

table 2,5(h).
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TABLE 2.5(g)

The n-Jm-Jp-,q_,h-Jj_,s and v values for the Predominant ‘5(-) Resonant

Terms of a Satellite in:.a Lunar Gravity Commensurability of the form

e ey b
rW + (W + M) B O

RESTRICTIONS ON

a and Y n m o} q h J ] v
a =1 ¥ =1 0 -2 2 0 0 2
2 —0
1f(2a\< 1 2 2 0 0 0 -2
De) |
a =1 ¥y =1 1 -1 2 0 ) 1
3 —0
1f(aa)>1 > 1 1 0 0o -
De .
a =-1 v =1 2 2 2 0 0 2
2 0
if (a ) < 1 0 -2 0 0 0 -2
aDe) -
a = -1 vy =1 2 1 2 0 0 1
3—0
if a)>1 1 -1 1 0 0o -1
a_e
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TABLE 2.5(h)

)

The n-,m—,p_JqTJh-)j-,s- and v values for the Predominant & Resonant

Terms of a Satellite in a Solar Gravity Commensurability ¥ w +y (w +M_) ® 0

DD
RESTRICTIONS ON
a and Y n—, m p— q- h j- s v
.y

a =1 ¥y =1 0 -2 2 0 0,1,2 2
if (: )< 1 2—0—

e 2 2 0o o 0,1,2 -2
@ =1 vy =1 R 2 0 0,1,2,3 1
it ( a ) > 1 3— 0— '

4p® 2 1 1 0 0,1,2,3 -1
a =1y =2 [0 -2 2 -2 0,1,2 2
if( a )< 1 2 0—|

2p®p 2 2 0 2 0,1,2 -2
a =1y =2 1 -1 3 1 0,1,2,3 1

/L_1 -1 2 -1 0,1,2,3 1

if( a )> 1 3—0
apeey \"2 1 1 1

0,1,2,3 -1
2 1 o -1 0,1,2,3 -1
@« =1y 23 0 -2 2 2-2y 0,1,2 2
20—t
if ((——B
(' (1+Y)) <1 2 2 0 2y-2 0,1,2 -2
a_ee e
D" D
x =1y 23 1 -1 3 3~y 0,1,2,3 1
. a 3 — 0 —]
' A+ | > 1 2 1 0 y-3 0,1,2,3 -1
aDeeD L

/cont,.



TABLE 2,5(h) cont,

RESTRICTIONS ON

a and ¥ n m p 4 b §j 8
a =-1 v =1 2 2 2 0 0,1,2
2—0
11’(8.) < 1 0o -2 0 0 0,1,2
a‘De
a =-1 v =1 2 1 2 0 0,1,2,3
3—0
if a) > 1 1 - 1 0 0,1,2,3
aDe '
a = -1 y =2 2 2 2 -2 0,1,2
2—0—
1f( a )< 1 |0 -2 0o 2 0,1,2
4p®ep
[ 2 1 2 - 0,1,2,3
@« = -1 y=2 3—0—
__2 1 3 1 0,1,2,3
if( a )>1 1 0o -1 0,1,2,3
apeen 3 0 —
__1 -1 1 1 - 0,1,2,3
@ =-1 v 23 2 2 2 2-2Y 0,1,2
2 —0
if *‘————ja N |
( (1+y)) < 1 0 -2 0 2Y-2 0,1,2
a_ee o
DD :
@ = -1 ¥ 23 R 3  3-Y 0,1,2,3
3— 0~
a
if A+ > 1 1 - 0 -3 0,1,2,3
a ee Y Y ? ? H
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2.4(5) The Type (5) Commensurability ¢5 = Y(wD LMD) + BN N0

A satellite in a lunisolar commensurability of the type

<x,(+)

¢5 X 0 is in resonance with terms in the disturbing function

éxpahsions.(2.4) fdr.whiéh

(" - 2p+) = 0
(n - 2p + q)+ = 0
o+
(n - 2h + j) = «8 (2.47)

0 - lunar gravity perturbations

A+
J = + +
Y8 - n + 2n - Solar gravity or solar radiation
pressure perturbations
+ 0 - lunar gravity perturbations
s = +
0,1...n - Solar gravity or solar radiation
pressure perturbations
+
m = p£é
The arguments of the resonant terms are of the form 8(905+)MOON for
+
the Moon, where ( ¢4 )MOON = Y(wD + MD) + 1 , and of the form
5(¢ *) _ for the Sun, with (¢ . 1) = nu_ + YH + AR + kO,
5 "SUN 5 "SUN D D

The n,m,p,q,h,j,s and 8 values for the predominant §(+) resonant
terms of a lunar gravity commensurability of type (5) are given in

table 2.6(a). The corresponding values for a solar gravity, or solar

radiation pressure, commensurability ¢5 & 0 are given in table
2.6(b).

Similarly, a satellite in a commensurability of the type

¢5 ® 0 will be in resonance with those Q(-) terms for which
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(n - 2p? = 0

q = 0

(n - 2h + j) = -yv _ - : o (2.48)
_ 0 - lunar gravity perturbations

j = : . o :

-Yv - n +2h - Solar gravity or solar radiation
pressure perturbations
0 - 1lunar gravity perturbations

0,1...n- - Solar gravity or solar radiation
pressure perturbations

m = Bv

The arguments of the Q(—) resonance terms are of the form v( ¢5-)MOON

for the Moon, where ({,04-) = y( w o+ MD) + A , and of the form

MOON

- _ ) -
v(¢5 )s for the Sun, with (¢5 ) TM) + Mo+ B+ k 5

UN SUN

The n,m,p,q,h,j,s and v values for the predominant Q(_) resonant terms

of a lunar gravity commensurability of type (5) are given in table
2.6(c). The corresponding values for a solar gravity, or solar

radiation pressure, commensurability &5 ~ 0 are given in table 2.6(d).

For a close satellite to exist in a lunisolar commensurability

of type (5) its orbital elements must satisfy
* y 3.5 . o~
Y(wD + MD)y - 9.97 £ cosi & 0 (2.49)

The maximum value of ymax for a given ¥ and B is such that

ymax

= ( 9.978 )2/7 (2.50)

04
)

Since y is always greater than unity, the lunisolar commensurability

= W 1 = i i
¢,5 Y/( bt MD) + B 0 will exist if

9.978 > lYlnD (2.51)
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On substituting the appropriate values of nD for the Sun and Moon into
equation (2,51), it is found that a close satellite will exist in the

solar commensurability ¢5 ~ 0 if

100128 > o (2.52)

and in the lunar gravity commensurability ¢5 ~ 0 1if
0.758 > |Y| (2.53)

In the case of a type (5) commensurability, the theoretically possible
commensurabilities for which the predominant resonant terms in (2.4)

have n values of 2, q values of 0 and j values of zero are

(9) (;D + ﬁD) + E) ® 0

(10) 2(;D + ﬁD) +4 6 %0 (2.54)
(11) - (t:)D + ixD) + Q =~ o0

(12) - z(;uD + I\‘ID) £ 0 =

From equations (2.52) and (2.53), it is casily seen that no
commensurabilities of the set (2.54) are possible for lunar gravity
perturbations, whilst for solar perturbations all four of the set
(2.54) are possible., The graphs of the orbits of satellites in these

commensurabilities are given in figures (2.6) to (2.9).



TABLE 2.6(a)

+ + + + _+ 4+ +
The n ,m ,p ,q ,h ,j ,8 and & values for the Predominant &

(+)

Resonant Terms of a Satellite in a Lunar Gravity Commensurability

 of Type '9’!5 ~ 0

RESTRICTIONS ON

+ +
B and Y n’ m p+ q+ h 3
B +ve y+ve

Y B Y/ 2 0 0 0
Yy>p Yeven
B +ve y+ve

2Y 2B Y 0 0 0

Yy 2B  vyodd

B +ve y+ve

B> B+1 Jej B+1)/2 0 G+1-v)/2 0
B odd Y even

B +ve y+ve P>y
B odd yodd 28 2p3 B 0 G-y 0

or [ even ¥ odd

B +ve Y ~ve

ly] g Ixlzz o v ] 0
Iyl >8  lyleven ’
B +ve  y-ve

ol 28yl 0 2|yl 0
vl 28 lyload
B +ve Y-ve
B> |yl B+ g Bz o @uaxlyl o
B odd |Y'even 2

B+ve Y -ve
B>yl Bodd Iylodd 28 23 B 0 B+ vl
or pfBeven lylodd

o




+

+ + +
The n ,m ,p ,q ,h

+
,8

TABLE 2,6(b)

(+)

+
and & values of the Predominant & Resonant

99.

Terms for a Satellite in a Solar Gravity or Solar Radiation Pressure

~

Commensurability of the Type ¢5. % .0

RESTRICTIONS ON

f and ot m+ p+ q+ h+ J+ &t
B +ve Y+ve
Y>p B B Br2 0 0 Y8 0,1..5
¥ odd feven
B +ve ¥ +ve
Y 2 B 41 B+1 B (B+1)/2 0 0 v=B-1 0,1..8+1
£ odd Yeven
or B odd ¥ odd
£ +ve Y+ve

2 2 1 0 0 0 0,1,2
Y ::B =1
B +ve Y+tve G-+y+1)/2 1 0,1..8
B>y B el B/2 0
£ even Yodd Gx-1)/2 -1 0,+1..5
B +ve yY+ve
B>y B+1 B EB+1)/2 0 @Ber+1)/2 0 0,1..8+
P odd +Yeven
B +ve y+ve (F-y+2)/2 1 0,1..5+1
B>y BH—feu@B+1)/2—0
£ odd Yodd 0,1..0+1

B-0/2 -1

/cont,..



RESTRICTIONS ON

TABLE 2.6(b) Cont,
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£ and ¥ n m p Q h J s S
B +ve Y-ve
Iyl > 8 g B B2 0 B ﬂl-l 0,1..8 1
Y
IYI odd S even
B +ve y-ve
vl 2 B« B¥1 B (A+1) 0 B pH- 0.1+ 1
2 ||
B odd |y]odd,
£ odd IYleven_
B +ve Y-ve
2 2 10 2 0 0,1,2 2
£ =1 Y= -1
B +ve Y-ve Brlyl+) 1
2
B> |yl L—F—p/2—0 0,1..4 1
B even |Y|odd (/3+IYI-—1) -1
2
B +ve ¥Y-ve
B> |yl B+ P B+1) 0o @H+lyh o 0..1.6+1 1
: 2 2
B odd |y| even
B +ve ¥ -ve r—(ﬁ-l‘l'y‘|+2) 1
8> lyl 2
B+l B (@) 0 0..1..5¢ 1
2
B odd |y|odd G+lyl) -1
— 2




TABLE 2,6(c¢)
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The n_)m_,p-Jq-,h-J;j-Js- and v values for the Predominant Q(‘) Resonant

Terms of a Satellite in a Lunar Gravity Commensurability of the Type

RESTRICTIONS ON n m P h~ i v
£ and ¥
B +ve Y +ve
Y B x/2 Y 0
Y>p ¥ even
B +ve ¥ +ve
2y 25 Y 2y 0 2
Y >8 y odd
B +ve ¥ +ve
B>y B+l B (B+1)/2 (BH1+Y)/2 0
B odd ¥ even
B+ve  Y+ve P>Y
Y odd [ odd or 2p g B B+Y 0 2
Y odd 3 even
£ +ve Y ~ve
¥l 8 ly]/2 0 0
IYIZE lYl even
B +ve ¥ -ve
I¥l > 5 2h] 28 |yl 0 0 2
IYI odd
B +ve Y-ve
8> Iyl B+l B (BH1)/2 B+1-lxbsz o
|Y| even fodd
Bive Y-ve £>|v]
l¥] odd Bodd or 23 28 B Byl 0 2

l¥l odd B even




The n ,m ,p ,q9 ,h ,j ,8

TABLE 2,6(d)

and v values of the Predominant &

-)
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Resonant

Terms for a Satellite in a Solar Gravity or Solar Radiation Pressure

Cohménsurabiiify'of the Type 4¢5 = 0

RESTRICTIONS ON

£ and ¥ n  m p q- h~ i s v

B +ve y+ve

Y >F B B P2 0 B B~ 0,1..p5 1

¥ odd p even

B +ve Y +ve

Y 2 B+

p+ B (143) © B+l B+i-y 0,1..0+1 1

B odd fYeven or 2

B odd ¥ odd

B +ve ¥ +ve

2 2 1 0 2 0 0,1,2 2

B=xy =1

B +ve Y +ve B+Yy+1) 1 0,1..5 1
2

>

F>x B B Bz o

f even Yodd B+y-1) -1 0,1..8 1
2

B +ve  Y+ve

B >x Bt g (B+1) 0 (B+y+l) 0 0..1,.p+1 1

F odd +Yeven 2 2

B +ve yY+ve (B+y+2) 1 0..1,.6+1 1
2

B> B+l B (B+1) 0

2
B odd Yodd -1 0,1..5+ 1

_Sﬁ+Y)/2

/cont.,



RESTRICTIONS ON

TABLE 2.6(d) Cont.
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B and ¥ n m p a h J s v
B +ve ¥ -ve :
Iyl > 5 BB B2 o o Iyl 0,1..8 1
|Ylodd B even
B +ve y -ve
vl 2 s+ F+1 B (F+1) © o Iyl o,1..841 1
£ odd "{lodd, 2 -1
B odd ¥ even
B +ve ¥y -ve
2 2 1 0 0 0o 0,1,2 2
x| = p=
B +ve ¥y -ve _(ﬁ— lyk1) 1 0,1..8 1
2
B> Iyl f—— g —p/2—0—]
£ even |Y|odd (ﬁ—ly‘l—l) -1 0,1..5 1
=tk
B +ve ¥ -ve
55 Iyl B+l B (p1) o Br-lyh o o,1..81 1
2 2
£ odd IYl even
B +ve Y-ve (ﬁ- |Y|+2) 1 0,1..5+1 1
2
B> Iyl B B (B+1) 0—
2
Boda vl odd | - vz -1 o0,1..84 1
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2.4(6) The Type (6) Commensurability ¢6 = aw + X(MD i_MD) +00 = 0

The sixth lunisolar commensurability condition is a combination
of the five previous types: type (1) can be obtained if ® and ¥ are
zero; type (2) results if S and Y are put to zero; and so on.. However,
if «, B and ¥ are not zero, then the commensurability &6 ® 0 has
a set of properties different from those of type (1) to (5).

A satellite in a commensurability ¢6 ® 0 is in resonance

+
with those Q( ) terms in the lunisolar disturbing function expansions

(2.4) for which

(n - 2p)+ = ad
+
q = ~-ad
+
(n - 2h + j) = 8
(2.54)
+ 0 - Jlunar gravity perturbations
J =
+ + . o
-n +2h + 4§ =~ solar gravity or solar radiation
pressure perturbations
0 -~ lunar gravity perturbations
+
S =
+ . .
0,1...n - solar gravity or solar radiation
pressure perturbations
+
m = £é
§ >0
+
The arguments of the resonant terms are of the form 6( ¢6 )IIOON for
v

lunar gravity perturbations, where ( ¢6+) = aw + v wD + Mb) + [/ ;

BOON
+
and of the form 8(4&6 )SUN for solar perturbations, with
+ + + + +  + +
( ¢6 )SUN = aw +‘YMD + Mwp + £+ RQ]). The n ,m ,p ,q9 ,h ,j ,

+
s and & values for the predominant §(+) resonant terms are given in

tables 2.7(a) - 2.7(f). Similarly, a satellite in a lunisolar
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.
o

commensurability ¢6 X 0 is in resonance with those §(~) terms for

which

(n - 2p) = av
q- = =Qav
(n - 2h + j) = —yv
(2.55)
0 - lunar gravity perturbations
J'- =
-n + 2h - Yv - solar gravity or solar radiation
pressure perturbations
0 - 1lunar gravity perturbations
s- =
0,1...n- - solar gravity or solar radiation
pressure perturbations
m = £v
v > 0
The arguments of the Q(-) resonant terms are of the form v(qu-)MOON
and v( ¢6~)SUN’ where (¢ 6-)MOON and (¢ 6-)SUN have the same form as

in the ®(+> resonant case, The n_,m_,p—,q_,h—,j-,s and v values
for the predominant Q(_) resonant terms are given in tables 2.7(g) -
2,7(1).

For a close satellite to exist in a given type (86)

commensurability, the semi~-major axis, a, the eccentricity, e, and

the inclination, i, of its orbit must satisfy

3l
24.9 « coszi - 9,97 P cosi - 4.98a + ¥ n,y 5 % 0

(2,56)

On solving for y, equation (2.56) can be written as

7
y = [(4a.908a = 24.9a coszi + 9,978 cosi)/‘Y‘nD ]2/

(2.57)
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In order to obtain the criteria which determine whether resonance orbits

exist for the commensurability

¢6 = aw + Y,(QD‘*_

Q
o

I:JD).+ BE)

it is necessary to consider the four cases:

(a) a +ve Y +ve
(b) a+ve Y -ve
(c) a -ve Y +ve
(a) a -ve Y -ve
Case (a)

Define the function Z(i) by
Z(i) = (4.98a - 24.9a cos>i + 9.978 cosi)/Y ny (2.58)

-1
The stationary values of Z(i) occur at i = 00, 1800 and cos [ /4.99 a.
-1 o
If > 4.99a , then cos [(/4.99 a is imaginary, and only i = 0
and 180° need be considered., If f = 4,99 a, then cos“1 B/4.99a is
o . o) o
0", In this case, the stationary values are also 0 and 180 . The

second derivative of Z(i) with respect to i is found from equation

(2.58) to be

dZZ(i) = (49.8a cos2i - 9,970 cosi)/‘YnD (2.59)
di2
Since dzz/di2 is positive when i = 0° and 180° for 4.99a 23 B, Z(Oo)
o -1 2 .2
and Z(180 ) are minima. When i = cos (f /4.99a ), d Z/di” is
-1
negative for 4.99a > fF , hence Z(cos f /4.,99a ) is a maxima such

that

Z(cos—1 £/4.99a ) = (4,98 az + ,82)/a*{nD © (2.60)

L ]

For the commensurability ¢6 = aw +Y(wD + MD) +B0Q ® 0 to exist,
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y and, hence, Z must be greater than unity. The commensurability
max max

1]
5 = O therefore occurs for @ +ve, Y+ve and 4,990 2 B if

4.98a®+ % >a yng  arve,  Yive, 499>

(2.61)
When B > 4,99 «, dZZ/diz is positive for i = 180°, and negative for
i= 00. Hence, iff > 4.99a, Z(Oo) is the only maxima, its value

being given by
2¢0°%) = (9.978 - 19.924 )/t (2.62)

Therefore when S > 4,99 @, the commensurability 906 ® O with a and ¥

positive can occur if

9.97/5 > 19.92 a + Y, a+ve, Y+ve, f > 4,99 a  (2.63)

Proceeding as in case (a), it can be shown that, for cases (b), (c) and

(d), the lunisolar commensurability ‘/’6 & 0 can occur if

Case (b) a+ve, Y~ve

19.92 ¢ > |yl n *o.978 for 4.99 a 2 B
(2.64)
19.92a > |y n, - 0.97p3 for > 4.99a
Case (c) «-ve, Y +ve
19,92 |a| > Y, to9.978 for 4.99 a 2 f8
(2.65)

10.92 la|] > yn_-9.978  forB > 4.99 «
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Case (d) a -ve, Y=-ve

4.98 |la|l 2+ 82 > |al |Y|nD tor 4.99 la| > B
(2.66)
9.978 > 19.92 |«f +'|YlnD  forf > 4.99 |al

For solar radiation pressure perturbations, four commensurabilities of

type (6) are theoretically possible. For n=1 and j=0 resonant terms,

they are:
(13) ; + (;D + ﬁD) + b 2 0
(14) & - (;D + &D) + h & 0
(2.67)
(15) - b + (;D + ﬁD) + b = 0
(16) S e (;D + ﬁD) s ® 0

Similarly, for lunisolar gravity perturbations, eight commensurabilities
of type (6) are theoretically possible which have n = 2 and j = 0

resonant terms: they are (13) - (16) of the set (2.67) plus the

following

17 ) + M + ~

17) 20 + 2(wD D) 0 0

18 - M I~

(18) 2w z(wD + D) + 0 0

(2.68)

19 -2w w_ + M + ~

(19) 20 + 2( b D) 0 0

20 -20 - + ~

(20) 2 2(wD + MD) 9! 0

Consideration of equations (2.61) to (2.66G) shows that close satellite
orbits exist whose orbital elements satisfy the solar commensurability
conditions (13) - (20) and the lunar commensurability conditioﬁs (14),
(15), (18) and (19). The graphs of the function (2.58) for the solar

commensurabilities (13) -~ (20) are given in figures (2.10) - (2.17),
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whilst the corresponding graphs for the lunar commensurabilities (14),
(15), (18) and (19) are given in figures (2.18) - (2.21). The lunisolar

gravity commensurabilities (13) - (20) are the most important for

a_ e a_ e

satellite orbits for which ( a ) <1, However, if ( a ) > 1, then
D D

the most importanf lunisolar commensurabilities of type (6) are the

set (2.67), and

~e

;’ L] 6 ~ _ ] : + - N
(21) w + 3¢( b + MD) + 0 (31) W + 3(wD + MD) QX0

w w . Q - - o+ M)+ ~x
(22) + 3( b+ Mb) + 2 0 (32) w + 3(wD D) 20X 0

23 W + w + y + . ~ -. <+ . + h.{ + 3 ~ 0
24 W + [9) + M + Q ~ —. + . + M + 2(2 ~ 0
5 [ + ;JJ + Y + ~ - + . + .I + b ~

(2.69)

(26) W - 3(UD + MD) +0Q = 0 (36) -y - S(MD + MD) + 0 X 0

27 o - 3(‘:’9 + I:ID) F20% 0 (37) -u - S(c:JD " ICID) +20% 0
(28) w - 3(;’D + ﬁD) + 36 0 (38) -; - 3(;D + &D) + 3b 2o
(29) & - (ﬁ.’D + QD) + 26 2 0 (39) _; - (;D + ﬁD) + 2b =0
(30) w- ((I,D + iiD) £30% 0 (40) - - ((LD . £1D> +30 %o

The amplitude factors of the predominant resonant terms for these

commensurabilities are of the order ( a )3 e. From equations (2,61)
a

D
to (2.66), it is found that satellite orbits occur whose orbital
elements satisfy the solar commensurability conditions (21} to (40) and
the lunar commensurability cohditions (25), (27), (28), (29), (30),
(32), (33), (34), (35) and (40). Of the two types of commensurabilities

(i.e., solar and lunar), the lunar gravity commensurabilities (2.68) and
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(2.69) are likely to be the most important, since for the majority of
Earth satellites the lunar value of GMD(a/aD)se/aD is larger than the
corresponding solar value, The lunar value of a/aD is approximately
1/50 for a cioéevsatéliife; therefofe; Whén'e'<'1/50,'the'mdst
important lunar gravity commensurabilities of type (6) are the ones
with predominant resonant terms of order (a/aD)se. If e > 1/50, then
the most important lunar commensurabilities for such a satellite are
those which have predominant resonant terms of order (a/aD)zez. The
graphs of the function (2.58) for the lunar commensurabilities (25),
(27), (28), (29), (30), (32), (33), (34), (35) and (40) are given in

figures (2.22) to (2.31).
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TABLE 2,7(a)

+ . (+)
The n+,m+)p+J_cL+Jh+,,j+,s and & values for the Predominant & Resonant

~

Terms of a Satellite in a Lunar Gravity Commensurability jﬁ ~ 0 when

Nalanaj/or I¥| 28

RESTRICTIONS ON

2y £ and ¥ n m p q h J s 6
atve  Y+ve *

a2y a B 0 -a (a-y)/2 0 0 1
a — %Y even

a+ve Y+ve

a >y 2 25 0 -20 a4y 0 0 2

a =Y odd

x+ve  y+ve

Y >a Y B (y-a)/2 - 4] 0 0 1
Y - a even )

at+ve y+ve

a >y 2y B Y ~20 0 0 0 2
Y - a odd

a+ve Y-ve *

a 2 |yl « B 0 o @lyh 0 o 1
a + IY' even 2

a+ve  y-ve

« > |yl 2 2P 0 2a a+|y] o o 2
a+|-(| odd

a+ve Y~-ve

Iyl > « v ] g dyl-0) -a lv] o o0 1
IYI - a even 2

at+ve Y-ve

ly| > «a 2yl 25yl 2a 2|yl 0o o 2
lyl - g odd

» + . §(+)
If o« =1, v =11, See table 2.7(c) for the predominant

resonant terms,



RESTRICTIONS ON

TABLE 2,7(a) cont.,
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a, B and ¥ n m p q h Jj s
*

a-ve Y+ve : ~

fal 2+ ] B 1 la]  al-v) o 1
la] - y even 2

a-ve  Y+ve

la| >y 2la] 28 2lal  2lal el o 2
Ial -y odd

a-ve Y+ve

¥ > |af v g dad+vn  al 0 0 1
Ial + ¥ even 2

a-ve Y+ve

¥ > |af 2r 28 laloy  2la]l 0 o 2
lo| + Y odd f

*

X-ve ¥ -ve :

laf > Iyl la] 5 lal  lal  dal+y o 1
llxl + IYI even 2

a-ve y-ve

la] > |yl 2lal 28 2la]  2la]l |all] o 2
[al + |Y| odd

a-ve Y-ve

vl > lal vl & dyl+ |al lv] o 1
lal + IYI even l] )72

a-ve Y -ve

Iyl > lal 2yl 28 lyl+lal 2lal  2ly] o 2
lal + ly| oada
* it a = -1, Y = %1 then see table 2.7(c) for the predominant

(+)

) resonant terms.



Table 2.7(b)
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+ O+ o+ + L+ 4+ ) +
The n ,m ,p ,q ,h ,j ,s8 and & values of the Predominant Q( )Resonant

Terms for a Satellite in a Solar Commensurability of the Type ij

o~

0

RESTRICTIONS ON-

" when |a'| 2 B

+ +

ay # and ¥ m' p+ q+ nt J 8 8

a+ve  YHve B 0 -a (a-y)/2 (o] 0,1..a 1

«Z ¥

a —Y¥ even

a+ve +ve

a > Y Y ﬂ 0 - (a‘Y+1)/2 1 0,1..(1 1

a -y odd B 0 -a (a-y-1)/2 -1 0,1..a 1

a+ve Y+ve

Y>> a B Y - 0 Y-« 0,1..a 1

a+ve  y-ve

a2 |yl B 0 <« (+lylr/2 0 0,1..a 1

a + Y even

atve y-ve Iei 0 - (a+ly‘|+1) 1 0,1..a 1

a> |yl 2

« +y odd B o =« (at|y]l-1) -1 0,1..a 1
2

ad+ve Y-ve

Iyl > a g0 -a 24 a=ly] 0,1..0 1

if a =1 for a solar gravity commensurability then sece table

+
2.7(d) for the predominant <I>( ) resonant terms.,



RESTRICTIONS ON

Table 2,7(b) continued
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@y and Y n' o p o n' it s 8
a-ve y+ve *

la| >y lal £ lal lal dal-prz o 0,1..]al
lal -y even

Q-ve Y +ve »

lal > v lel 8 lal ol ol —y+1) 1 0,1..]«|
la' - odd 2

a-ve Y +ve ® .

lal -y odd lal 8 lal  lal dal-y1) = 0,1..]al
la| >y 2

X -ve Y +ve *

Y > lal lal” £ ol al 0 vlal  0,1..]al
o -ve Y -ve x

la| > |yl lal 8 lal lal da]+Iyh 0 0,1..]al
|a| + IYI even 2

a—-ve Y"Ve *

lal + |y| oda lal B lal  lal dal+lyl 1 0,1..]«|
jal > Iyl " 1372

a-ve Y -ve *

la|l + |y] oaa lal 8 el lal  dal+lyl -1 0,1..]«|
lal > |yl - 1)/2

a-ve Y -ve *

Iyl > lal ld™ 5 Jal  Jal el ekl 0,1..|al
) if @ = -1 then see table 2,.,7(d) for the predominant §(+) solar

gravity resonant terms,
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Table 2,7(c)

+ (+)

+ + + + + +
The n ,m ,p ,q ,h ,j ,s and & values for the Predominant & Resonant

Terms of a Satellite in a Lunar Gravity Commensurability tot (UD _+_MD1

+ 0 = 0
RESTRICTIONS ON
+ + + + + + +

« ,B and ¥ n m: p q h J s )

a=1,y=1,P=1

if(a) < 1 2 2 0 -2 0 0 0 2
aDe

a=1,8 =1,y=1

1f(a > 1 3 1 1 -1 1 0 0 1
aDe

a=-1, y=-1,=1

it a < 1 2 2 2 2 2 0 0 2
aDe

a=-1, y=-1,F=1

if a) > 1 3 1 2 1 2 0 0 1
aDe

xa=-1, y=1,8=1

1f(a) < 1 2 2 2 2 0 0 0 2
aDe

a=-1, y=1,=1

if a) > 1 3 1 2 1 1 0 0 1
aDe

a=1, y=-1,8=1

it ( a < 1 2 2 0 -2 2 0 0 2
aDe
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Table 2,7(d)

+ + + 4+ + + o+ +
The n ,m ,p ,q ,h ,j ,8 and & values for the Predominant ‘P( ) Resonant

Terms of a Satellite in a Solar Gravity Commensurability tw +Y (aJD M)

+ 0 % 9

RESTRICTIONS ON

+ .
«a, £ and ¥ n* m p+ q+ nt j+ st 8
a=1,¥ =1, =1
if( a ) < 1 2 2 0 -2 0 0  0,1,2 2
aDe
a=1,Y =1, =1
if( a ) > 1 3 1 1 - 1 o 0,1,2,3 1
aDe
a=1,% "2’ﬁ =1
it{ a <1 2 2 0 -2 0 2 0,1,2 2
kaDeeD
a=1,y = 2,8 =1 1 1 0,1,2,3 1
if( a ) > 1 3 1 1 -1
%D 0o -1 0,1,2,3 1
a-ltY/>/ 3, =1
if a
( (1ry))< 1 2 2 0 -2 0 2r-2 0,1,2 2
a_ee
D D
a=1,y2 3,8 =1
if 2
( - (A+y)) > 1 3 1 1 -1 0 Y-3 0,1,2,3 1
a_ce
D D
a=-1l,y =1, =1
if( a) < 1 2 2 2 2 0 o 0,1,2 2
aDe
a=-1,y =1,58 =1
it a > 1 3 1 2 1 1 o 0,1,2,3 1
aDe
a=-1,y =2, =1
it( a <1 2 2 2 2 0 2 0,1,2 2
a_ee




RESTRICTIONS ON

Table 2.7(d) continued
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+ + + + + ;
«a , B and ¥ n m p q h J s
a=-1,yvy=2,08=1 1 1 0,1,2,3
if ( a ) > 1 3 1 2 1
a e
p°°Dp 0o -1 0,1,2,3
«=-1, v 3,8 =1
a
i (—B
N ( 1+ Y)) <1 2 2 2 2 0 2y-2 0,1,2
a_ ee
D °D
a=-1,Y 2 3,8 =1
( (1+Y)) > 1 3 1 2 1 0 ~y-3 0,1,2,3
a_ee
DD
14 :f'i,Y =-1 ,ﬁ =1
if ( a ) < 1 2 2 2 2 2 o 0,1,2
aDe
a=-1,y =-1,8 =1
if ( a ) > 1 3 1 2 1 2 o 0,1,2,3
aDe
a =-1,y =-2,8 =1
if( a ) < 1 2 2 2 2 2 -2 0,1,2
aDeeD
a =-1,y ==2,6 =1 3 1 0,1,2,3
if( a ) > 1 3 1 2 1
a_ ee
D D 2 -1 0,1,2,3
a =-1,ly| 23,821
a
if
* ( ([Y|+1)) <1 2 2 2 2 2 2-2|y| 0,1,2
a_ee
D °D
4 :—1)lY| > Ssﬂ: 1
a
if 3
(a o (l'{|+1)J > 1 3 1 2 1 3 3-ly|] o,1,2,3

D D
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Table 2,7(d) continued .

RESTRICTIONS ON

+ + + + + +
@a, B and ¥ n  m p q h J s+
a=1,y=-1,4=1
if (a ) < 1 2 2 0 -2 2 0 0,1,2
aDe
a=1,y=-1,=1
if (a ) > 1 3 1 1 -1 2 o 0,1,2,3
aDe
a=1,y=-2,A=1
if ( a ) < 1 2 2 0 -2 2 -2 0,1,2
aDeeD
a =1,y =-2,0=1 3 1 0,1,2,3
if ( a ) > 1 3 1 1 -1
2p%%p 2 -1 0,1,2,3
a = 1;'YI 23:ﬁ= 1
a
if
1 ( (]Y|+1))< 1 2 2 0 -2 2 2-2ly] 0,1,2
aDeeD

a=19|Y|>3n@:1

if( o (?YT+1)) > 1 3 1 1 1
#p®®p

W

s-lyl o0,1,2
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Table 2.7(e)

+ + + + + + o+ +
The n ,m ,p ,q9 ,h ,j ,s and & values of the Predominant Q( ) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability of the Type

¥, % 0 wen B> |a] ana |yl

RESTRICTIONS ON

« , B and ¥ n+ m+ p+ q+ h+ j+ s+
a +ve ¥ +ve
B - « even B B @-a)/2 -a  (Bf~Y)/2 o o
B -x even
a +ve ¥ +ve
B -« odd Atl B BH-a)/2 -a (BH-¥)/2 0 0

8- odd

x +ve ¥ +ve
B -a o0dd,f -y even 28 28 B - 20 B-x 0] 0
or f-a even, B -y odd

o +ve ¥y ~ve

B - « even ’ B £ @B-a)/2 ~a (ﬁ+lYl)/2 0 o0
B + l'{l even

a +ve y -ve

B -« odd B+ B B-a+1)/2 -« (ﬁ+1+|x|) 0o o0
B+ |yl odd 2

a +ve Y -ve

B -aeven, ﬁ+|y odd 28 2P B - a -2« ﬁ+|Y| 0 o
orfi -a odd, B+ |y|even

a -ve Y +ve

B + laleven B g B+lalyz lal (B-y)/2 o o
B - Y even

® -ve Y +ve

B+ |a| odd F+1 B gg+1+|a|) |a| @+1-y)/2 0 O
B-x odd 2 '

x -v Y +ve

B + Taleven, B- ¥ odd %5 28 PB+lal 2lal B-y¥ o0 o0
or f+|q| odd, S -y even

a -ve ¥ -ve

B+ la] even BB B+lalysz lal  @+lxhrz o o

£+ IYI even

/cont....
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Table 2.7(e) continued

RESTRICTIONS ON

~-ve ¥ ~ve

B+lal  oda g1 B @rlal) |« a+lyh o o 1
B+ |y| odd 2

a -ve Y -ve
B+lal even, B+ly|oaa 25 2p p+lal 2lal  p+lyl 0 o0 2

or
B+ |a| odd, £ + I’{leven




+ + +
The n ,m ,p

Table 2.7(f)

+ 4+ o+ 4+ +
29 sh ,j ,8 and 8 values of the Predominant Q( )

121,

Resonant

Terms for a Satellite in a Solar Commensurability ¢'6 ~ 0 when

RESTRICTIONS ON

B> la| ana |y|

«, B and ¥ n m p q h J s )

@ +ve ¥ +ve

f-a even B B B—-ad)/2 -a (B-Yv)/2 0 o0,1..78 1

B~y even

a+ve ¥ +ve

£ -a odd f+l p B+1-a)/2 ~-a (Ff+1-y)/2 O 0,1../+1 1

B-y odd

a+ve ¥ +ve ' [ (B~y+1)/2 1 0,1..8 1

B -ua even B- B BG-w)/2 - a- '

B-x odd | (B-v-1)/2 -1 0,1..0 1

a +ve ¥ +ve _(ﬁ+2-y')/2 1 0,1..54+1 1

B- « odd B+l B B+H1-a)/2 -,

B-x even _fﬁLy)/z -1 0,1..p0+1 1

a +ve ¥ -ve

- a  even B B G-w/2 -q Brlyl/z 0o 0,1..p 1

ﬂ"l‘ IY’ even

a+ve ¥ -ve

B- a odd fH1 B G-a+1)/2 -q Ba+lyD) o o0,1..84 1

B+ Iyl oaa 2

% +ve ¥y -ve Belyls)y 1 0,1..8 1

g - « even B B G-a)/2 -a 2

B+ Iyl odd B+lyl-1) -1 o0,1..8 1
2

o +ve ¥ -ve (ﬁ+”fl+2) 1 0,1..8+# 1

f-a odd f+1 B B+1-a)/2 -q 2 _

B+ ly] even ' BG+lyldz -1 0,1..86 4 1
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Table 2,7(f) continued

RESTRICTIONS ON

@, f and ¥ nt m* p’ ¢ n' FM s
a-ve ¥ +ve g g Brlaldzz o] B2 0 0,1..8

B +la even ‘ ‘ '

- even

o -ve ¥ +ve :

B+ la| odd i1 B B+lal¥1) lal B+id)/2 0 0,1..8 #

B-x odd 2

@ -ve ¥ +ve : C(B-y+1)/2 1 0,1..8

B+ Ial even B B (ﬁ+|a|)/2 lal—

B-Y odd B-y-1)/2 -1 0,1..8

a -ve ¥ +ve [C(B-y+2)/2 1 0,1..0 +1

B+ Ial odd pH1 £ (A+F+|al) | o |

B - even , 2 B-1)/2 -1 0,1..8

a ~ve ¥ -ve

B+ |la] even B B (ﬂ+|a|)/2 Ial (ﬁ+|Yl)/2 0 0,1..8
L+ even
o -ve -ve
B+ IaT odd g1 B Brlal+) la| Ba+lyDh o o0,1..8 4
B+ lyl oad 2 2
@ ~ve y -ve ~Be+lyd 1 0,1..8
g+ |a| even g B Brlabrz a2
B+ |y| odd Blyl-1) -1 0,1..8

- 2
« -ve vy =ve C(B+lyl+2) 1 0,1..4#1
L+ lal odd L+l pB (1+6+ |al]) Ial“ 2
g+ IY' even 2 (,3+|'{l)/2 -1 0,1..0 +1
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Table 2.7(g)

)

The n_)m-,ilqzh-bjzs— and v values of the Predominant & Resgonant

Terms for a Satellite in a Lunar Gravity Commensurability {/16 ~ 0

with |a| anasor l¥l 2> B

RESTRICTIONS ON

@ ,B and ¥ n m p q j h s

a +ve ¥ +ve

aZy a B 0 -a 0 (a+y)/2 0
o +Y even

a +ve ¥ +ve
a >y 2a 28 0 -2a 0 (a+y) 0
a + ¥ odd

a +ve Y +ve

Y >« Y B (y-a)/2 -a 0 ¥ Y
Y - a even

a +ve ¥y +ve

Yy >a 2y 243 Y-a -2a 0 2y 0
Y- a odd

a -ve ¥ =-ve .

lal 2 |yl l]” |l lel 0 - dal-lxh o
lal = Iy| even 2

a -ve ¥ -ve

lal > |yl ' 2]a | 2p 2|al 2 |l 0 lac]- |yl Y
lal - ly| oad

-ve T -ve | ‘
{ Iy vl s dyltla  lal o 0 0
2

>
+ IYI even

a -ve T -ve
Iyl > |« 2lyl 26 Ivl+la]l 2]al
Iyl * la] odd

o
o
o

* ’ -
if |a| = +1 see table 2,7(i) for the predominant ‘I’( ) resonant terms



RESTRICTIONS ON

Table 2.7(g) continued
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“,F and ¥ nm P T b ,s
a -ve ¥ +ve

la| >y l|” 5 ] |l ¢lal+vdzz o
la| + Y even

a -ve ¥ +ve

lal > v 2la| 28 2lal 2|al lal+ vy 0
|a| + ¢ odd

a ~ve ¥ +ve :

v > |af vy 8 el lal Y 0
la] + y even

a -ve Y +ve

v > |al 2y 28 lal+y 2lal 2y 0
al + v odd .

X +ve Y -=-ve

a2 |y] lel” g 0 -a (a=lyhr2 o
o - |Yl even

a +ve Y -ve

a > |y 20 28 0 -20 a-ly] o
a = |y odd

a +ve Y -ve

Iyl > « vl 8 dyl-ez 0 0
l¥] = « even

& tve Y -ve

vl > « 2lyl 28 lyl-a -2q 0 0

Iy = « odd




The n ,m ,p ,q ,h ,j ,8

Table 2.7(h)

and v‘values of the Predominant Q(—)

125,

Resonant

Terms for a Satellite in a Solar Commensurability 416 N 0 with

ESTRICTIONS ON

@, B and ¥

l«] > B

a +ve Y +ve
a+ Y even
« 2 ¥

0,1..a

o +ve Y +ve

a >y

a4+ ¥ odd

0,1,.«x

0,1..(1

a +ve ¥ +ve

Y > a

0,1.-(1

a +ve Y -~ve

a2 ly
o - IYI even

q h J
~a (aty)/2 0
-a (a+y+1)/2 1
- (ary-1)/2 -1
- a a-y
~a (a=|yD/2 0

0,1..a

a +ve ¥ -ve

« > |yl

oq - IYI odd

- (a- +1) 1

0,1..«a

0,1,.«

a +ve Y -ve

Iyl > «

- 0 Iyl = a

0,1.,.Q

*

if a = 1 then see table 2.7(j)

gravity resonant terms

for the predominant i(-)

solar
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Table 2.7(h) continued

RESTRICTIONS ON

«a, B and ¥ n m P q h J s v

ad -ve Y +ve *

la| 2> v lal” 8 lal lal (lal+y)/2 0 0,1..lal 1
Ia' + ¥ even

oa -ve ¥ +ve *

la| > v el 8 lal Jal alsysd 1 0,1..0al 1
|a|+ Y odd 2

a -ve Y +ve *

la] >y el 8 lal lal dalsy-1) =1 0,1..0al 1
Ial + ¥ odd 2

a -ve ¥y +ve »

> lal lal” 8 ol lal [l lal  o0,t..0al 1

® =-ve +y-ve .

lal > 1] ol* 5 lal lal dal-ley o oa.dal 1
lal - lal even 2

qd -ve Y -ve »

la] > |yl lal” 8 lal lal  al-ly] 1 0,1..0al 1
lal = Iyl odda +1)/2

a -ve Y =-ve »

laf > Iy] lal” 8 lal lal  lal-lyl -1 0,1..0al 1
lal - Iy| oaa - /2

a -ve ¥y -ve » 4 :

IYI 5 lal lal B lal lal 0 IYl-'al O,l..ial 1

* i{f @ = -1 then see table 2.7(j) for predominant Q(—) solar gravity

resonant terms
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Table 2.7(1)

The n-,m;,p:,q—,h-,j—,s and v values for the Predominant Q(—) Resonant

Terms of a Satellite in a Lunar Gravity Commensurability * o ¥ (ab .i-__MD)_i.
0 = 0

RESTRICTIONS ON

@, B and ¥ n_ m p-. q_ h j- s v

a=1, y=1, =1 !

if (a) < 1 2 2 0 -2 2 0 0 2
a e

a=1, y=1, g =1

if a) > 1 3 1 1 -1 2 0 0 1
aDe

a=-1,y¥ =-1,0 =1

if a < 1 2 2 2 2 0 0 0 2
aDe

a:-],Y =1, =1

if a) > 1 3 1 2 1 1 0 0 1
a,e

a=1,y =1, =1

if a < 1 2 2 2 2 2 0 0 2
aDe

@=-1,y =1,8 =1

if (aa) > 1 3 1 2 1 2 0 0 1
De

a=1, y=-1, =1

if (:) < 1 2 2 0 -2 0 0 0 2
€

a=1,8 = 1,y =-1

if (a ) > 1 3 1 1 -1 1 0 0 1
a_e
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Table 2.7(j)

The n‘,m-,p-,qf,h-,j-,s‘ and v values for the Predominant Q(-) Resonant
Terms of a Satellite in a Solar Gravity Commensurability
t0 4 oy(a 4 M) 4+ QN 0
-***'*——‘L'D "—'D)
RESTRICTIONS ON
@ ,fF and ¥ n_ m p- q— h j- s v
e=1,y=1,=1
if(a) < 1 2 2 0 -2 2 0 0,1,2 2
a e
a=1,y=1,=1
if(a) > 1 3 1 1 -1 2 0 0,1,2,3 1
aje
a=1l,y=2,p=1
if( a )< 1 2 2 0 -2 2 -2 0,1,2 2
apeey
a=1,y=2,/=1 3 1 0,1,2,3 1
if( a ) > 1 3 1 1 -1
2p%ep 2 -1 0,1,2,3 1
a=1’Y>3:ﬁ=1
. a .
lf( (1+Y))<1 2 2 0 -2 2  2-2r 0,1,2 2
a_ee
D D
a=1,yv23,p8=1
if (———B
( (1+Y))>1 3 1 1 -1 3 3y 0,1,2,3 1
a_ee
D D
a ==1,y =1,=1
it ( a < 1 2 2 2 2 2 0 0,1,2 2
ape
a=-1,y=1,=1
if a > 1 3 1 2 1 2 0 0,1,2,3 1
aye,
a:—l,Y:Z,ﬂ.—.i
1 2 2 2 2 2 -2 0,1,2 2

if ( a ) <
aDeeD




RESTRICTIONS ON

«a, B and ¥

Table 2,7(j) continued
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[\

[

e
o]
o)
Y
[+
N—
v
-

K
1l
1
oy
-
=
]
I
[
™
I
-

["H
2
N
ml
0I®
[0}
N———’
A
[

ey

a=-1, Y='2:ﬁ=

if a ) >
a_ee

D D

[

Jj s

1 0,1,2,3
-1 0,1,2,3
2=-2Y 0,1,2
3-v 0,1,2,3

(0] 0,1,2

0 0,1,2,3

2 0,1,2

1

0,1,2,3

a=-1,1y <"3:ﬁ= 1
if (———2
( o (1+|’{|))<1

ap%ep

zlYl -2 0’192

a=-1,¥ £ -3,8=1

ig (——2
( o (1+|~{|))>1

(¢}
85%®p

lyl-s  o,1,2,3
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Table 2.7(j) continued

RESTRICTIONS ON

« , P and Y n m P q h i s v

a =1,y=-1,=1
if a) < 1 2 2 0o -2 0 0 0,1,2 2
aDe

if(a) > 1 3 1 1 -1 1 0 0,1,2,3 1

a =1,y ==2,8=1

if( a )< 1 2 2 0 -2 0 2 0,1,2 2
aDeeD
a =1,y =-2,=1 1 1
if( a )> 1 3 1 1 -1 0,1,2,3 1
*p°°p | o -1
a=t, y< -3,8 =1
a
if (——————
( (1+|Y|))<1 2 2 o0 -2 o0 2lyl-2 o,1,2 2
aDeeD

a =1, Yé ~3,8 =1

b
o
<
1
w

e 0,1,2,3 1

it (_...._._2.._.__._
D D




Table 2,7(k)
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The n-,m—,g-,(fjh—,j-,s_ and v values of the Predominant <I>(—) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability of the Type

b5 2 0 when B> |af and |y|

RESTRICTIONS ON
a, f and Y n m p‘ a h J v
o +ve ¥ +ve
B - even o) B G-a)/2 -a B+y)/2 0 1
B+ ¥y even
a +ve ¥ +ve
B - «a odd B+l B BHi-a)/2 -a  (f+i+y)/2 0 1
B+ Y  odd
a4 +ve ¥ +ve
B -a odd,f +Y even 28 2P B -2a B+y 0 2
orf -a even,

B +¥ odd
a +ve Y -ve
B-a even BB B=)/2 -« @-lyhsz o 1
B - |yl even
a +ve ¥ -ve
g - a odd B+l B @-a+1)/2 -a  (BH-|v]) o0 1
8- Iyl oda ' 2
X +ve ¥ -ve
B -aeven,B -lyloda 28 28 P -2a B-lrl o 2
orf - odd,

g - even
a-ve Y +ve '
B+ lal even B B B+lalyz el @z 0 1
B+ ¥ even
a -ve ¥ +ve
B+ la| odd g+ g Ba+la) el @2 0 1
B+ ¥ odd 2
o ~-ve ¥ +ve
ﬂ+|a| even,f +y odd 28 2p8 ﬁ+|a| Zlal B+ 0 2

g +la| odd, B+¥ even




RESTRICTIONS ON

@, B and ¥

Table 2.7(k) continued
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h
a-ve Y -ve ‘ ‘ ‘

B+ lal  even B B @+lahyz lal @-llyz 0 o 1
ﬁ-|Y| even

a-veAY—ve

B+ lal  oad pr1 f @Blal+) el @a-=lyl) o o 1
B-lyl odd 2 2

X-ve Y -ve

B+ |a even,

B- |y|oad or 28 2B Blal 2]« B-1Ivl o o 2
ﬁ+ alodd,

B- |Y| even




Table 2.7(1)
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The n-,m-,p_Jq—,h-,j‘,s- and v values of the Predominant q’(_) Resonant

~ Terms for a Satellite in a Solar Commensurability 'I/IG ® 0 when
B > la| ana |yl

RESTRICTIONS ON
a ,F and ¥ n_ m p_ q_ h J s
a +ve Y +ve
B -« even B B (B=a)/2 -a B+Y)/2 0 0,1..8
B+ even
o +ve Y +ve
g - a odd B+l B (BHl-w)/2 -a (FH+Y/2 0 0,1..08+
B +y odd
a +ve Y +ve CB+y+1)/2 1
B -a even B B (B-a)/2 - ad 0,1.. 8
B +x odd LB+Y-1)/2 -1
o +ve ¥ +ve @B +2+)/2 1
B -« odd g+ B (P+1-0)/2 -a- 0,1.. 8+1
B+ even L(B-P()/Z -1
oa +ve Y -ve
B-a even g B @-w)/2 ~a @-l¥ldz o o0,..8
B - Iyl even : '
a +ve ¥ -ve
B-a odd g+1 B @B-al)sz -« @BH-lxl) o o0,1..84
B - in odd 2
a +ve Y -ve —(ﬁ+1-|Y|) 1
B-a even B B B ~ad 2 0,1.. 8
B - Iyl oaa- | B-1-lxh -1

2
x +ve Y -ve TBe2-lyD 1

2
g - a odd B+l B B+H-0/2 - 0,1.. B+
A - lxl even | B-Ixhy/z




RESTRICTIONS ON

é.nd Y

Table 2.7(1) continued

134,

« ,B p
a =ve Y+ve
B + la|l even 8 G+lalrz lal g+yy2 0 0,1.8
Bf + ¥ even
a -ve ¥ +ve
B + la|l oaa B GAaa]) ol @HwdI2 0 0,105 4
B + xy odd 2
a -ve ¥ +ve -(,3+1+Y)/2 1
B+ |a| even B G+lal)/2 Ial" 0,1..5
B+ Iyl oda | B-1+7)/2 -1
a -ve Y +ve -(.B+Y+2)/2 1
B + lal oad B+ B+tlal) ek 0,1..8 +1
2
B+ even | (B+Y) /2 -1
a -ve ¥y -ve
B + |a| even B B+lalysz ol =lx¥hzz o o,1..8
g - Iyl even
a -ve ¥ -ve
B+ la|l odd B+ Gi+laly ol @r-lyh) o o0,1..5 #
g - |yl oad 2 2
o -ve Y ~ve (B+1- ) 1
2
g + |“l even Jel (ﬁ+|a|)/2 0,1..53
g - |yl oda B-1-|v) -1
2
a -ve ¥ -ve ( +2-| I) 1
2
B+ lal oda B + @++la) 0,1..8 +
2
B - Iyl even | (B-1yDrz
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2.4(7) The Type (7) Lunar Gravity Commensurability

- BQanw + M) R
__¢’7 B £ 70+ M 0

A satellite will exist in the lunar gravity commensurability

¢ ™ 0 if its orbital elements satisfy the equation

9.97f cos i = (1;wD + kQD) y3‘5 (2.70)

o
The maximum value of y occurs at an inclination of i = 0 , if

(77UD + kQD) > 0, and an inclination of 1800, if (77wD + kﬂb) < 0.

Such a resonance will be possible if ymax > 1, i,e, if

9,978 > InwD +-kQD| (2.71)

Since ;b and Qb for the moon are approximately 0.1 deg/day and -0.05
deg/day, respectively, In;D +-kéD| will, in general, be small,
provided 717 and k are small, However, large values of Inl and I k‘
imply large n values for the predominant resonance terms, and, hence,
small amplitude factors. Consequently, all type (7) commensurabilities,
except the very weakest, exist,

A satellite ip a lunar gravity commensurability J7 R 0 is
in resonance with those §£+) terms in the lunar disturbing function

expansion (2.4) for which

(n-2p)+ = 0
a = 0
(n-2n+)t = o
+ (2.72)
(n-2h’) = nd
m+ = ,88
S+ = kS
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+
The arguments of the resonant terms are of the form 3 (¥ " )MOON’

+ + + + +

+ + +
where (([‘7) = A0 +kQD+T’wD. The n ,m ,p ,q ,h ,j ,s

MOON
S ey e
and 8§ values for the predominant @ resonant terms of a 917 0
commensurability are given in fables 2.8(a) and 2.8(b).

Similarly, the Q(-) resonant terms are such that

(n-2p)~ = 0

q = 0

(n-2h+j)" = 0

(n-2h)" = -qv (2.73)
m = Bv

s = ~kv

v >0,k £ 0

The n-,m-,p—,q—,h—,j-,s- and v values for the predominant i'(_) resonant

terms of type (7) are given in tables 2.8(c) and 2.8(d).

The most important commensurabilities of the type l/J7 = o0

are those for which the amplitude factor (_a_l__ )n elc1| eDlJI is an

ap

a

absolute minimum, i.e. (a__)n eIql eDI‘jI = a__ 2 e The
D )

commensurabilities which satisfy such a requirement can be obtained

from tables 2.8(a) - 2.8(d), and are found to be the following

n t Q B0

o * 2Qb ® 0 (2.74)
[ ] + . -
20 I QD X 0

The orbital elements of the satellites which exigst in these
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commensurabilities are given in figures (2.32) - (2.37).

Until now it has been assumed that ney + kQD Z O.

However, if k and 17 are such that 27 = +k, then noy + kQD =0,
since QD & 0,16 deg/day and QD N8 - 0,05 deg/day. The two lunar
~ ~

gravity commensurabilities ¢1 ~ 0 and &7 X 0 will therefore be
equivalent, as will their corresponding resonance terms when 371 = 7 +k.
The most important occurrences of such a situation arise when
N=-1and k= -3 and =1 and k = +3, The amplitude factors of the

predominant resonant terms will be of the order (EL_) ¢ eDz; which,
a
D

for a close Larth satellite is about 10_9 times smaller than the
amplitude factors of the most important type (1) and type (7) lunar

gravity commensurabilities.
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Table 2.8(a)

+ + + + + + +
The n ,m ,p ,q ,h ,j ,s+ and 8 values of the Predominant @( ) Resonant
Terms for a Satellite in a Lunar Gravity Commensurability ¢7 = ﬁQD +
g_wD + kQD X 0 when B and/or k } qu :
RESTRICTIONS ON
+ +
B, kand 7 nt mt p+ q+ nt J 5 6
B > k feven
7 +ve 7 even B P B/2 o @-n/2 -1 k 1
k +ve
B2 k Podd
n +ve 7 even B+ F @B+1)/2 0 (B+1-1n) -n k 1
k +ve 2

B2 k n+ve  k+ve
P even mnodd 28 28 B 0 B-n -27 2k 2
or Bodd 7 odd '

B > k [ even

n-ve |n| even B B p/2 o  @+lnh2 |n] k 1
k +ve

B2 k podd

n ~ve neven B+ B (F+1)/2 0 B+ +il"7] ) ITII k 1
k +ve 2

B2 k N-ve k+ve

g even |n| oda 28 28 B o B+ |nl 2ln| 2 2
or B odd, |77' odd

k >3 k even

7 +ve 1 even k B k/2 0 (k-m)/2 -7 k 1
k +ve

k > k odd

n +ve 7 even k+1 B k+1)/2 0 (k+1-n)/2 =~7q k 1
k +ve

k >B8 7N+ve kt+ve
k odd 7 odd 2k 2p k 0 k-7 =27 2k 2
or k even N odd
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Table 2.8(a) continued

RESTRICTIONS ON

S T A,
B, kand 7 n m P q n" j *

k >3 n-ve k+ve

k even 7 even k g k/2 0 (k+|nl2 |7l k

k >3 n-ve ktve

k odd |n| even kt1 B (k)2 o  (x+1+|n]) |Inl k
2

k >f8 n-ve ktve

k odd |n]odd

or |nlodd, k even 2k 28 K 0 x+|nl  2ln] 2k




140,

Table 2,8(b)

+ + + + _+ + o+ +
The n ,m ,p ,q ,h ,j ,8 and & values of the Predominant Q( ) Resonant
Terms for a Satellite in a Lunar Gravity Commensurability ¢7 =
ﬁQ+kQD +1]wD = o'whenlnl > f and k
RESTRICTIONS ON
+ + + + + + +

B, n and k n m p q h J 8
n +ve 7N even

k+ve n B n/2 o 0 -7 k
n +ve n odd

k+ve 27 25 n 0 (0] =27 2k
n -ve Inleven

k+ve Inl g nlrz o Inl Il k

n -ve Inlodd
k+ve 2lnl 28 Iq 0 Inl  2[a] 2«




Table 2.8(c)
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The n-Jm—,p—,q—Jh-,j_,s_ and v values of the Predominant Q(-) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability. l/f7 =L +

ﬂ(:)D + kElD ™8 0 when [ and/or |ki 2 ]QL

RESTRICTIONS ON

B, kand 7 n m P q h J s v
B 2 Ikl n4ve, k-ve B B B/2 0 (B+m)/2 no k] 1
B even 7 even
B2 Ikl nive, k-ve
B odd 7 even B +1 B G+1)/2 (o] B+H1+m/2 n Ikl 1
Y B2 k| n+ve, k-ve
N odd feven, 2R 2B B 0 B+n 27 2|x] 2
or n odd p odd
B2 |kl n-ve, k-ve
B even |7n| even g g p/2 o B-Inly2 “lal Ix] 1
82 |kl ﬁ-ve. k-ve
B odd n|even £+ B B+1)/2 0 (B+1—‘n|) —|nl lkl 1
. 2
B2 |xl N -ve, k-ve
7 odd B even, 2% 28 B o B-lnl “nl 20kl 2
or nodd S odd
|k| > p +ve, k-ve
n even |k| even |kl g |u/2 o (xl+mr2 n k1
lkl >pB 1n +ve, k-ve
|| odd,n even lk|l+1 - B dx]+y/2 o dxl+1+mp 7 | k| 1
2
|k|>ﬁ N +ve, k-ve
7 odd |k|even 2lk| 28 || o |xl+n 2n 2|k 2

or 1 odd |k| odd




Table 2,.8(c) continued

RESTRICTIONS ON

A s kad 7 n

|ﬂ > B, n-ve, k-ve

| | x|
lk' even N even
lk‘ > f, N-ve, k-ve |k|+1
|k| odd 7 even
|k| > B, N-ve, k-ve
k| oaa Inl oad 2 k|

or Ikl even, lnl odd

P

B lxl/2
B (lkl+1)/2
2B x|

0

0

0

dxl-Inly

2

(lx|+1-
|77|)/2

lxc]-1nl

142,

J s

-Inl x|
~lal x|
-2ln] 2lx|

-

-

N
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Table 2,.8(d)

The n~,m-,p-,quh-Jj-,s and v values of the Predominant Q(-) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability ¢7 = BN +

TI__‘:’D + kéD ~ Orwh-en |77| > I9> é.nd Ikl |

RESTRICTIONS ON

B ,n and k n_ m p- q_ h j— s v
N +ve Teven n B n/2 0 n 1] Ikl 1
k~-ve
7 +ve Tnodd 27 28 n- 0 27 27 2]k| 2
k~ve
7 -ve |nleven Inl g lnlrz o Y = |nl x| 1
k-ve
n -ve |nl oda olnl 28 |nl o o -2ln] 2]k| 2

k-ve
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2.4(8) The Lunar Gravity Commensurability {118 = QW 470+ kQD M0

A satellite in the lunar gravity commensurability ¢8 8 0 is

(+)

in resonance with those & terms in the lunar disturbing function
expansion (2.4) for which
(n-2p)+ = ad
q+ = -ad
(n-2n)" = nd (2.75)
M = =-nd
s = k$é
m+ = 0
The arguments of the resonant terms are of the form 8(¢'8+)MOON’ where

+ + + + + + + +
(¢8 )MOON = aw + nup + kQD. The n ,m ,p ,q ,h ,j ,s and & v-~lues

+
for the predominant é( ) resonant terms of a type (8) commensurability
are given in tables 2.9(a) to 2.9(f).

Similarly, the Q(_) resonant terms are such that

(n~-2p)~

1]
K
<

(2.76)

J = qv
s = kv
m = 0

" The corresponding values for the predominant resonant terms
are given in tables 2.9(g) - 2.9(m).
In order for a satellite to exist in a type (8) lunar gravity

commensurability, the orbital elements must satisfy the equation

4.98a (5 cos2 i-1) + (nwD + kQD) y3'5 M0 (2.77)
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However, the commensurability ¢E§ %~ 0 will only occur if

the maximum value of y is greater than unity, i.e. if

= - 19, . o . ) .
ymax e 9 92.a > 1 a/(nwD +1(QD) < 0
ey +kQ))
(2.78
or Yoax = .4'98°f > 1 a/(nwD + kQD) > 0
(nwD-+kQD)

Since quD + kQD) is usually small (except for some very weak
resonances), the inequalities (2.78) will normally be satisfied, and
therefore all strong type (8) resonances will occur.

The most important type (8) commensurabilities are the ones

for which

(2.79)

2w

I+
J

R

o

e
) 3p

the amplitude factors being of order‘(g;_)zez. However, if (aeD ) > 1,
then the most important lunar gravity commensurabilities of type (8)

' 3
are those with amplitude factors of order (g;_) eeD s 1.e. the set
a

D
¥ ; + éD % 0
i(:)+(:)DféDz0
(2.80)
s et m s
i(‘o+¢;D13(.1on

For close Earth satellites a/aD is approximately 1/50, therefore the set
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(2.80) will only predominate over the set (2.79) for eccentricities,

which are less than about 10-3. ‘The two commensurabilities

Yo+ w5 +3QD ® 0 are of the type discussed in the previous

section, where 7 and k are such that nwD +kQD ® 0.
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+ o+ + )
The n ,m ,p ,q ,h ,j

+

Table

2.9(a)

+ +
,8 and

147.

+
8 values for the Predominant ‘I’( ) Resonant

Terms of a Satellite in the Lunar Gravity Commensurability _508 =

~

ELEN N aa 0
RESTRICTIONS ON}
@ and 7 n+ ln+ p+ q+ h+ ,j+ + 5
o +ve 7 +ve 0 -a (a-n)/2 -7 1
a > n a' 0
o + 7 even a a (a+n)/2 Y] -1
a +ve T +ve 0 -2a a-n =27 2
a>n 2a 0 —
a + 1 odd 2a 2a a+1 2n -2
o +ve T +ve —(-n-a)/z - 0 -N 1
n>a n 0 —
a + N even L(_‘IH-UL)/Z a n n -1
a+ve 1 +ve B n-a -2n 0 =27 2
n>a 27 0o —
o« + N odd n+a 2a 27 27 -2
C-ve T4ve el el del-mze 1

N _

Ial 2 n |a| 0
lal +7n even _ O -lal (I“I+Tl)/2 n -1
QA -ve N +ve 2|0C| 2|al l0€|-TI -2n 2
la] > 7 2lal 0 —
lal + 7N odd | O -2|a| Ifl|+'77 2n -2




Table 2.9(a) continued

RESTRICTIONS ON

148,

a and 7 | n - m : P oq : - h - J 8
a -ve 7 +ve - ‘ Kn+|a|)/2 |a| -0 -7 1
7> lal n 0
Ial + n even (q-|a|)/2 —|a| n n -1
a -ve 1 +ve n+|a| 2|a| 0 =27 2
n> |a| 27 0 ' :
lal + 17 oda n-lal  -2]al 2n 27 -2
* .

if @« = * 1, then see table 2.9(c) for predominant §(+) resonant

ternms.,
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Table 2,9(b)

+ + + + + .+ + +
The n ,m ,p ,9 ,h ,j ,s and & values of the Predominant §( ) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability ¢8 =

vael N
a+kQD 0

" RESTRICTIONS ON

+ + + + + + o+
a and Xk n m o} q h J s

o +ve k+ve

a > k a o 0 - a/2 0 k

"4 even

o +ve k+ve

a 2 k 2a 0 0 -2a a 0 2k

x odd

X +ve k+ve k> a
a odd k odd 2k 0 k-« -2 k 0 2k
or ® odd Kk even ’

e +ve k+ve
o even k> a k+1 0 (k+1-a)/2 -u (k+1)/2 0 k
k odd
o +ve k-ve .
a> |x| a 0 a a a/2 o |kl
o even : '
a +ve k-ve
a2 |x| 2 0 2a 2a a o 2]x] -
o odd
a +ve k—-ve.
Ikl > a |k|+1 0 (Jkl+l+a) «a (|k|+1)/2 0 |k]
a even Ikl odd 2
o +ve k-ve .
| x| > « 2|lk] o x|+« 20 |k | o |x|

@ odd |k| odd
or aodd |[k]| even
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Table 2.9(c)

+ + + + _+ .+ + +
The n ,m ,p ,94 ,h ,j ,8 and & values for the Predominant Q( ) Resonant
Terms of a Satellite in the Lunar Gravity Commensurability tw +aJD ° 0
RESTRICTIONS ON
‘ + + + + + + +
@ and 7 n m p q h J 8 8
a=1 7n =1 0 -2 0 -2 0 2
if ( a ) < 1 2 0o -4
a_e_e
DD 2 2 2 2 0 -2
a=1 1n =1 1 -1 1 -1 0 1
if ( a ) > 1 3 0 —
a_e e
DD
LZ 1 2 1 0 -1
a= -1 71 =1 2 2 ] -2 0 2
if ( a ) < 1 2 0 |
a_ee
DD 0 -2 2 2 0 -2
a=-1 n =1 2 1 1 -1 0 1
if ( a ) > 1 3 (]
aDeeD
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Table 2.9(d)

+ + + + o+ + +
The n ,m ,p ,q ,h ,j ,s and & values of the Predominant Q( ) Resonant

Terms for a Satellite in the Lunar. Gravity Commensurability oaw + 77GD +

. ksz ® o lal anasor Inl 2 x

RESTRICTIONS ON

+ + + + + + +

a,n and k n m p q h J s [
a +ve 717 +ve k+ve . :
aZ a 0 0 -0 (a-n)/2 -7 K 1
a even 7 even

or a odd n odd
a +ve 17 +ve kt+ve
a>n 2a 0 0 -2 a=-T =27 2k 2
a odd 7n even

or a even 7 odd
a +ve T +ve k-ve "
a2 a 0 a a (a+1)/2 n |k| -1
@ even T even

or a odd 7 odd
a +ve T +ve k-ve _
a> 7 2a 0 20 2a a+7 oan  2lk|l -2
a even 7 odd

or @ odd 7 even
a +ve 7 +ve k+ve
n>a n 0 (n-0)/2 -a 0 -7 k 1
& even T even

or @ odd 7 odd
a +ve T +ve k+ve
n>aQ 2n- 0 n-a -2a 0 -2n1 2k 2
a odd 7 even

or @ even 7 odd
a +ve 1T +ve k-ve
n>a n 1] (n+ad/2 a n n |k| -1
Q even 7] even

or o odd 7 odd
a +ve 1 +ve k—vej
N> a 2n 0 n+a 2a 27 an  2lxl -2
a odd 10 even

or g even 7 odd




RESTRICTIONS ON

@, 7 and k

Table 2.9(d) continued

152,

a-ve T +ve
lal 29

laleven 17 even

or lajodd 7 odd

(lal-m/2

a-ve TN+ve

lal > n

lelodd 7 even
or |ajeven n odd

o

2|al

a-ve TN+ve

lal 2 7

la]even mneven
or |alodd n odd

Cla]+m /2

a-ve n+ve k-ve

lal > n
lalodd Neven
or |aleven 7 odd

o

a-ve N+ve

? > |a
aleven Neven
or lalodd N odd

(n+|a|)/2

a-ve N+ve k+ve

n > |a
lalodd TMeven
or |a|even 7 odd

n+|a|

oa~-ve n+ve k-ve

7{>a
aleven Neven
or |lalodd nodd

m-lal>/2

X =-ve N+ve k~ve

n> la
Ialeven N odd
or |a]odd mneven

n-lal

et
-7 .k
-2n 2k
n lk’
2n  2|xl
“ X
-2n 2K
7 |x
an  2[x|

*
if |a|l = 1 then see table 2.9(e) for the

predominant resonant terms.
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+

+

+

+ o+ . (+)
,j 58 and & values of the Predominant &

Table 2.9(e)

153,

Resonant

Ternms for a Satellite in a Lunar Gravity Commensurability Yo+ wD

RESTRICTIONS ON

‘.’:(.);30
—'D —

+ + +
@, 7 and k n m' p q J 8
a= n=1 k=1
if( a ) < 1 2 0 0 -2 -2 2
)
a=1 n=1 k=1
if ( a ) > 1 3 0 1 -1 1
aDeeD
a=1 7n=1 k =-1
if( a ) < 1 2 0 2 2 2 -2
aDeeD
a=1 n=1 k =-1
if ( a ) > 1 3 0 2 1 1 -1
aDeeD
a=-1 7n=1 k=1
if( a ) < 1 2 0 2 2 -2 2
aDeeD
a=-1 7n=1 k=1
1f( a ) s 1 3 0 2 1 -1 1
aDeeD
a=-1 711 =1 k =-1
it{ a ) < 1 2 0 0o -2 2 -2
kaDeeD
a=-1 7n=1 k=1
a > 1 3 0 1 -1 1 -1
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Table 2,9(f)

+ + + + + + + ' +
The n ,m ,p ,q9 ,h ,j ,8 and & values of the Predominant-i( ) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability aw + nwD +

@, 0 x| > la| ana |n|

RESTRICTIONS ON

+ + + + + +

a, 7 and k n’ m p q " h J 8 8
a +ve N+ve k+ve

k - & ecven k 0 (k-a)/2 -« (k-n)/2 -n Kk 1
k -n even

o +ve T +ve k+ve

k - a odd k+1 0 (kH1-a)/2 - «a (k+1-11)/2 =71 k 1
k - n odd
a +ve n +ve k+ve

k-a even k-1 odd -2k 0 k-a -2a k-7 -2711 2k 2

or k-a odd k- even

o +ve T +ve k-ve
x| +aeven Ikl o (dxl+d/z «  (xl+msz 0 x|l -

Ikl + 7 even

a +ve n+ve k-ve
Ikl + o odd |kl+1 0 (|k|+1+a) a (|k|{+1+n) n Ikl -1
|x] +nodd ' 2 2

a +ve T +ve k-ve
hJ+amm | k| +neven 2]x| o lk|+a 2a lxl+n 27 2lkx] -2

or Ik +aeven k] +7nodd

a-~-ve T +ve k+ve

k + |a| even K o (x+lal)/2  |al x-ms/2 -1 «x 1
k- n even

a -ve 7] +ve k+ve

k + la| oad K+l o (xti+la]) 2|lal xH-m/2 -1 K 1

k - 7 odd 2




RESTRICTIONS ON

Table 2.9(f) continued

155,

@ , 7T and k n+ m p+ q+ - h+ j+ s+ 8

a -ve 1 +ve k+ve

k+la] odd k-nmeven 2k 0  k+la]  2]al (k-n) -27; 2k 2
or k+la| even k- 1odd

a -ve 1+ve k-ve

k| - la] even | x| o dxl-lal) -lal dxlemz 2 |kl -

k| + n even 2

a ~-ve 7 +ve k-ve ’

lx| - la| oda ll]+1 0o  dxl+1-  =lal dxlstsm) 7 x|l -

k| + 1 odd la]/2 2

a ~-ve T +ve k-ve

Ikl -|«]odd, |kl+neven 2|x] o lxl-l«l ~2lal x|+ on  2lx| -2

or |k|-|a|even,|k|+nodd




Table 2.9(g)
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The n_,m_,p_,q.-,h-,j—,s_ and v values of the Predominant Q(-) Resonant

Terms of a Satellite in the Lunar Gravity Commensurability 9118 =

aw +Nw - N o
nD

RESTRICTIONS ON

a and n n m P q h J s

a +ve 17 +ve B 0 -a (a+1)/2 n 0 1
a 2 n a' 0 —

«a + 1 even |« +a (@-n)/2 -n 0 -1
a +ve 7 +ve B 0 -2a a+ T 27 O 2
a>7n 2a 0 —

a + 7N odd | 2a 2a a-7n -2n71 O -2
X +ve N +ve T (n-a)/2 -a n n O 1
n>a n 0 —

a + 7 even | (N+a)/2 114 0 -n 0 -1
a +tve 17 +ve ~ n-a -2a 27 2n O 2
n>a 27 0 —

@ + 7 odd n+a 2a 0 -2n O -2
® -ve T +ve ~ el || (lalsmyz2 7 o 1
lal 2 n lal® 0

Ial +7] even B 0 -lal (Ial"'rl)/2 -7 0 -1
a -ve T +ve [ Zlal 2|a| |a|+77 2n O 2
la| > 7 2la]l 0 —

la] + 7 odd 0 ~2]al la]l-|n -2 0 -2

/continued



RESTRICTIONS ON

Table 2,9(g) continued

157,

a and n n m o) q h J ] v

@ -ve 7 +ve Tkﬂ+|al)/2 Ial n n 0 1

n>a n o0— |

la] + 7 oven L (n-laly/z -lal 0 -1 0 -

a -ve 7 +ve B n +|a| 2|a| 27 - 27 0 2
2n 0

lal + 7 odd n-lal  -2lal 0 —2n 0 -2

*

)

if « = Xlthen see table 2.9(i) for predominant &

resonant terms.



158,

Table 2,9(h)

The n-Jm-Jp—,gj,hflijs—J and v values of the Predominant §(~) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability ¢8 =

RESTRICTIONS ON

aw MO
+1<QD

a and k n m p q h s v
X +ve k+ve

x> k a 0 a o a/2 k -1
o even

a+ve k+ve

a2 k 2a 0 2a 2a o 2k -2
a odd

a+ve k+ve k> a

x odd Kk even -2k 0 k+a 2a k 2k -2

or a odd k odd

a+ve k+ve
k>« k+1 0 (k+1+a)/2 a (k+1)/2 k -1
a even k odd

a+ve k-ve .

a> |k a 0 0 -a /2 | | 1
X even

at+ve k-ve

a2 || 24 0 0 -2a a 2| k| 2
a odd

oa+ve k-ve

k| > « lk]+1 o 0 -« (xl+1)/2 | | 1
o even lkl odd

at+ve k-ve

x| > « 2lk| o 0 -2« Ikl 2] x| 2

a odd lk' odd

or a odd

|k| even
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Table 2.9(1i)

The n—,m-Jp-,g:Jh-,j—,s and v values of the Predominant Q(_) Resonant-

Terms for a Satellite in the Lunar Gravity Commensurabilities F w + w_® 0

D

RESTRICTIONS ON

« and 7 n m . o] q h J s v
a=1 n=1 0 -2 2 2 0 2
if ( a ) < 1 2 0 -

#p%®p | 2 2 0o -2 0o -2
a=1 n=1 1 -1 2 1 0 1
if ( a ) > 1 3 0o

25%°p 2 1 1 - o -
a=-1 n=1 T2 2 2 2 0 2
if( a ) < 1 2 0

?p®°p o -2 0o -2 0o -2
a=-1 n=1 [ o 1 2 1 0 1
it ( a ) > 1 3 0

25D | 1 -1 1 -1 o -




Table 2.9(j)
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The n~Jm-,p:Jg_,h-,j-,s- and v values of the Predominant é(-) Resonant

Terms for a Satellite in a Lunar Gravity Commensurability

wo + n;b + kﬁb % 0  la| anazer Inl 2 x|

‘RESTRICTIONS ON

or

or

or

or

or

or

or

a , 7 and k n m o) q h J s \'
a +ve T +ve k+ve .

aZ1nN aeven NMeven ¢ 0 o o (a=1)/2 =7 k -1
@ odd 7 odd

a +ve 1N +ve k+ve

x> & odd 7N even 2a 0 2u 2 a=7 -27n 2k -2
a even T odd ‘

& +ve 17 +ve k-ve .

a 2 n Q@ even 71 even g« 0 0 - (a+n)/2 n |k| 1
a odd 7 odd

a +ve 7 +ve k-ve

®>7 «evennodd 2¢ O 0 ~2a a+T) 2n |2kl 2
a odd 7 even

& +ve 1 +ve k+ve

n>a & even T even 1) 0 (Ha)/2 a 0 =1 k -1
@ odd T odd

a +ve T +ve k+ve

n>a @ odd M even 2n 0 THa 2a 0 =27 2k -2
@ even T odd

a +ve 7 +ve k-ve

n>a ®@ even 7) even 1) 0 (n-a)/2 -a n 7 Ikl 1
a odd 7N odd

a +ve T +ve k-ve

n>a a«&odd 7 even 27 O n-a -2 27 2n  |2k| 2

or a even 7 odd
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Table 2.9(j) continued

RESTRICTIONS ON

a , 7N and k n m P q h . j_ s v
a -ve 17 +ve k+ve . :
lal >0 la] o 0 dal  du]-m72 -n x -1
al even T cven
or |a] cdd 7 odd
a -ve 7 +ve k+ve
al > n 2la|l o 0 -2lal  Jal=-n -2n 2k -2
|a| odd 7 even
or |la| even 7 odd
T -ve 7 +ve k-ve .
al >q la] o ] lal  dal+m/z 7 x| 1
el even 7 even
or |a] odd 17 odd
a6 -ve TN +ve k-ve
lal > 7 2|lal © olal  2l|al lal+ 7 an 2kl 2
|a| odd n even
or lal even 7 odd
a -ve 1N +ve k+ve
1> lal 7 o @-lalyz -l 0 -1k -1
|a| even T even
or lal odd 1 odd
Q& -ve 7 +ve k+ve
1> |al on 0 n-lal -2]al 0 -27 2k -2
al odd I even
or |a| even 7 odd
a —vT n +ve k-ve
n > |a 7 o (mlaldsz a4l n n lkl
Ial even 7 even
or |a] odd 7 odd
o ~-v n +ve k—ve‘
n > lal 2n 0 n+elal  2]al 27 an 2|kl 2

lal even n odd
or |al] odd 7 even

*
if lal = 1 then see table 2.,9(k) for the predominant resonant terms.
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Table 2.9(k)

The n-,m-,p—,qf,h~,j-,s and v values of the Predominant ‘é-d Resonant

Terms for a Satellite in a Lunar Gravity Commensurébility Tuw+ wD

+

D

* RESTRICTIONS ON

a , 7 and k n m P q h J s v

a=171n1 =1 k=1

if ( ) > 1 3 0 2 1 1 -1 1 -1
aDeeD
a=17n =1 k =-1
if ( a ) < 1 2 0 0 -2 2 2 2 2
aDeeD
a=1n = 1 k =-1
it{ a ) s 1 3 0 1 -1 2 1 1 1
kaDeeD
a==11n =1 k=1
if ( a ) < 1 2 0 0 -2 0 -2 2 -2
aDeeD

‘IR



The n ,m ,p ,q ,h ,j ,s

2.9(1)

and v values of the Predominant i’(-)

163.

Resonant

Terms for a Satellite in a Lunar Gravity Commensurability

L] L] L]
~

k] > Ig]

and |77‘

aw W+ ~
+ 7 D kQD 0

RESTRICTIONS ON

a ,7 and k n_ p_ q- h j- s v
a+ve N +ve k+ve

k +a even k (k+a)/2 a (k=1)/2 -n k -1
k -1 even

a+ve 7 +ve k+ve

k +a odd k+1 (k+14a)/2 «a (k+1-m/2 -1 k -1
k -1 odd

a+ve 1 +ve k+ve
k +a even,k - 771 odd 2k k+a 2a k-7 -2n 2k -2
or k+ aodd,k - N even
a tve 7 +ve k-ve

k!l - a even Ikl (lkl-—a)/z - (|k|+Tl)/2 n Ikl 1
|k| + T even
o +ve 1 +ve k-ve

k! = « odd |k |+1 Uel+i-0 -«  dxlvem 1 1kl 1
k] + n odd 2 2
a +ve 7 +ve k-ve

x| - @odd, |kl +neven 2]|x| lk| ~a -2a lkl+n 2n 2]x] 2
or kl—aeven,lk + 7 odd
a -ve 1 +ve k+ve ]
k - |a| even k (k- |O£|)/2 -lal (k=-1)/2 -n k -1
k - 7 even
a -ve 1n +ve k+ve
k - Ialodd k+1 (k+1-|a|) _|a| (k+1-1m)/2 =7 k -1
k - 11 odd 2
a -ve 1 +ve k+ve

k-Ialevcn,k'-n odd 2k k-lal -2|a| ' k-7 =21 2k -2

or k-|ajodd,k~=n even




RESTRICTIONS ON

a ,7n and k

Table 2,9(1) continued

164,

n m P q h s v
a-ve T +ve k-ve
|k + |a] even Ikl 0. _(_Ik|+|a|). lal (Ikl+77)/2 n. Ikl 1
x|l +7 even 2
& -ve T +ve k-ve
Ikl + |«] odd lkl+1 o (Jxle1s lal  dxl+1+m 7 x| 1
k| + 71 odd lal/2 2
a -ve 17 +ve k-ve '
|x]+|aleven, |kl+noaa 2|x] o lx|+la] 2la]  (lx]+m on 2|k] 2

or
|k|+|a| odd, |k|+r;even
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2.4(9) The Type (9) Lunar Gravity Commensurability {119 = QW + Moy +

§Q+RQD & 0

The 9th type of commensurability ‘/’9 = oW 4 TIWD + AN +kQD &0

' needs very little discussion, since most of its properties can be inferred

from those already obtained for the commensurability type . ¢6 & 0,

A satellite which exists in a lunar gravity commensurability

(

of the type ¢f9 ~ 0, will be in resonance with those <I>+) terms in

(2.4) for which

(n-—2p)+ = ad

+
q = -af

(n-2n)" = 78

.+ (2.81)
J = -né
m" =. B8

s+ = k&

) > 0

Q(-) .

and those terms for which

(n-2p)- = aVv
q- = - av

(n-2h)~ = =7V

_ (2.82)
J = nv
m = fBv

s = —kv
v > 0

The predominant §>(+) resonant terms for a satellite in a type (9) lunar
gravity commensurability, such that lk |< a, B and 7, can easily be
obtained from tables 2.7(a)', 2.7(c) and 2.7(e), if ¥y is .replaced by n,
j=0by j =-n8, and st =0 by st = k6. If lkl is greater than a, S

+
and N then lkl replaces f inm the n column, corresponding changes
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. o+ + L (-
are made in the p and h columns. Similar remarks apply to the ¢
resonant terms, which can be obtained from the tables 2.7(g), 2.7(i)
and 2,7(k). However, in this instance, j = 0 is replaced by j = 7v.
The conditions for the existence of a. particular type (9) commensurability
are given by the equations 2.61 - 2.66, with YnD replaced by
w_ + kQ .
1 D D

The most important type (9) commensurabilities are those for

which (E—)n elq‘ e]l)Jl is an absolute minimum, i.e. the commensurabilities
a

D
+ w4+ EN )
- D
tzw+QtQD X 0
. . . (2-83)
’f.o,a,auzn*_‘rzpm 0
12w+0t20Dz 0
)
aD e
and the set
iwiwD+ﬁQ+kﬂD% 0 (2.84)

if a_ _e;[l > 1, where g =1,2,3 and k = -1,-2,-3,1,2,3 .
ap /e

The predominant amplitude factors of the set (2.83) are of order

a a

2
(9_) ez; whilst those in the set (2,84) are of order(_a_l___)3 eeD .
D D

From equations (2,61) to (2.66), it is found that all 88 commensurabilities

in the sets (2.83) and (2.84) can exist.
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2.4(10) The Type (10) Lunar Gravity Commensurability

= Qaw W _ + Q ~
Y10 £ N0 M+ kD 0

As was the case with type (9), the commensurability type

¢ ~ 0 needs very little discussion, most of its properties being

10
§(+) a (-

analogous to those of type (8)., The nd $ ) resonant terms for a

satellite in a lunar gravity commensurability are given by

(n-2p)+ = od

q = -ad
(20" = g8
+ (2.85)
J = 8§ ~ nd
m+ = 0
s+ = k&
and
(n-2p) = qv
a = - Qv
(n-2h) = =7vV
- (2.86)
J = =YV +7V
m_ = 0
S- = -kv
respectively.

(+)

The predominant & and é(-) resonant terms can be easily-
obtained from the tables 2.9(a) - 2.9(1) if 7 is considered to be

A .+ . .+
always positive; j = -n8 is replaced by j = ¥8 - 108, and
j- = n v is replaced by j_ = nv - yv. Keeping 17 positive goes
against the previously adopted sign convention, which would have made ¥

always positive. However, this change is convenient in that it readily

gives the predominant resonant terms for a type (10) commensurability.
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The conditions for the existence of a type (10) lunar gravity
commensurability can be inferred from those already obtalned for the

commensurabilities ¢4 & 0, if noY /o in equations (2.42) and

(2.43) is replaced by (YMD + M+ kQD)/a- , viz.

4,98 > 'Y};[D + na'JD + k;)D , . (2.87)
for (YB;ID + na;D + kf.lD)/a > 0
;nd 19.92a > ‘Y&D.* ";D'*kdn (2.88)
when (YI:ID + T]t:!D + k(.)D)/a < 0

The most important lunar gravity commensurabilities of type (10) when

a e

(Q__X _1_) < 1 are those which have predominant amplitude factors
D

proportional to (g__ )232 , i.e. the set

2p

Yw o+ + M) T ® 0
Tw (wD D) QD
(2.89)
+ + ~
w + + M 0 =
T2 2(wD D) b 0
llowever, if LX _1_) > 1, then the most important type (10)
2, e
commensurabilities are the set
tw w +MYEIa = o
+ oy + A~
(2.90)
+ ~
+ + ~
Tw+ 3((;)D MD) kﬂD 0

where k = -1,-2,-3,1,2,3., The amplitude factors of the set (2.90) are

3
proportional to (a ) e . From equations (2.87) and (2.88), it can
a .
D

eagily be seen that the only commensurabilities in the sets (2.89) and
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(2.90) which exist are

+ ~
- + + M - ~ 0
w (wD D) QD

(2.91)

- 2w+ 2(w, + M )T 0
w + 2(wy D) - Q

The satellite orbits which exist in the set of commensurabilities

(2.91) are given in figures (2.38) - (2.41).
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2.4(11) The Type (11) Lunar Gravity Commensurability

__:/f“ = QyD+yMD+ﬂQ +kQD ~ 0

A satellite exists in a type (11) lunar gravity commensurability
if ifs'ofbital elements satisfy the equation

9,978 cos i = (YMb + 'nwD +kQD) y3'5 ' (2.,92)

In order for a particular type (11) commensurability to occur, the

maximum value of y im equation (2.92) must be greater than unity, i.e. if

9.978 > Iyﬂb + nwD-+kéD| (2.93)

On substituting in the appropriate values of MD, wD and QD for the Moon,

equation (2.93) becomes
9.978 > |13.07y + 0.16n - 0.05 k (2.94)

+ -
The é( ) and Q( ) resonant terms for a satellite in a

commensurability ¢11 & 0 are such that

(n-2p)+ = 0
a’ = 0
(n-2n)"* = nd
. (2.95)
(n-2h+j) = «3
mt = 36
s = ké
5§ > o0
and
(n~-2p)~ = 0
q_ = 0
(n-2h)" = - qv , (2.96)
(n-2h+j) = -yV
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B
1]

Bv

-kv

+)

respectively, The predominant @ and 4’(-) resonant terms can be

' 4 }
easily obtained from tables 2.8(a) - 2.8(d), if j = -1n8 is replaced
by j+ = y6 - 18, and j- = N v is replaced by j- = v - XvV.

The most important type (11) commensurabilities are those for

R n ) . .
which (_:_a__) elql eDI ’)' is an absolute minimum, i.e. the

a
D

commensurabilities

+0; +1.1 .t. ~
A ¢ D »D) + Q QD 0
iZ(wD+MD)+QfQD ~ 0
(2.97)

1+

[34
(=]

L ] . . + L]
2(wD + MD) + 207 QD

+ y o+ ~
+ M + ~
- 2(wD AD) Q2 2QD 0

The predominant amplitude factors of the set (2.97) are of order (2__)2 o
D

However, consideration of equation (2.,94) shows that none of the set
(2.97) can exist. The next most important commensurabilities which can

. ' 4
exist are those of order (g_) s Coe

aD

+(wD+MD)+ZQ+QD ~ 0

Such commensurabilities are, however, very weak, and, therefore, of no

great importance: we will not consider them further.



172,

2.4(12) The Type (12) Lunar Gravity Commensurability

_(,1;12 = oW + qu + YMD+ B0 +kQD 0

The lunar gravity commensurabilities of the type &12 ~ O
are the mosf bohplicated comménsufabiiifiés diséuésédvso far in‘that
they haye the greatest nu@ber of terms, However,‘their propertieg are
easily found from those already obtained for other commensurability
types.

A satellite which exists in a type (12) lunar gravity

(+)

commensurability is in resonance with those & and é~) terms in (2.4)

for which
(n-2p)”" = ad
q+ = -ad
(n-2n)" = 78
+ (2.98)
(n-2h+j) = v
m = ps
" = k¢
8 > 0
and
(n-2p)~ = av
q = -av
(n-2h)~ = =nvV
- (2.99)
(n-2h+j) = =yvV
m = fBv
s~ = -kv
v > 0

+ -
The predominant é ) and Q( ) resonant terms for a type (12)

commensurability are obtained in the same manner as those of type (9),
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with the exception that j+ = 0 is replaced by j+ =-76 +y8 , and

j_ =0 by nv - ¥v. The existence conditions for a particular type
(12) commensurability can be obtained from equations (2,61) - (2.66)

it ‘{nD- is .replaced by Yiﬂ) + na;D + k(.)D e - Finally, the most important'.
type (12) commensurabilities will be those which have predominant

resonant terms of order (g__ )2e2 when (g_ Xl) <1, i,e. the set
ay e

[

+ .+ (w +é -
T w (D+MD)_ + 0 0

(2.100)

I+

20 T 2(w +M)1“2q)+0z 0

+ L] . L ] L]
w_ + M +
2“‘2(D,D)‘QD 20

4
2
o

3
and those which have predominant resonant terms of order (_a__) e when

®p
(E_X _1_) > 1, i,e, the set
ay e
tws Y (o) + M) + fA+kQ ® o0 , (2.101)
where ¥ = -1,-3,1,3; B =1,2,3 and k= -1,-2,-3,1,2,3. However
from equations (2.,61) - (2.66) with Yn, replaced by YMD +nwD +kQD

it is easily seen that, of the set (2.100), only

+
e

W - (W_ +M)+0 R0

“p D) - D

—w+ W _ +M)Y+0FQ R o
w + (@ + M) - D

. .

_ L] .+ N
2w 2(wD+MD)+Q_Q 0

. - .

- +2w_ + M + Q0
20 2(D D)

I+

X 0 (2.102)
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~20 +

°

2@ -
-2 +

are possible,

w -

. 1
are possible, where k= takes the values

. * +
2w . + M ) + .
2(D D) -

W M +E)+.
2(D+ D) 2 _QD

' . Y + -
2(wD + MD) +20 7T QD
2y

W+ M + 0
2(D D) b

Similarly, of the set (2.101), only
+ + ~
(wD MD) 0 +k QD

(wD + MD) + Q+kQD ~

(wD + MD) + 30 +kQD

L] L 1.
3(wD + N(ID) +20Q +k QD

+ M)+ 3
3(a)D D) Q +kQD
+ M) +
(wD D) 20 + kQD

(wD + MD) + 30 +kQD

L] L] 1.
3(wD + MD) +20 + kQD

3(w_ + M) + 3
Wy, + M) + 30 + 10,

(wD + MD) + 30 +kQD

. . .

3 Q
(wD + HD) + 3 +kQD

R

P2

1]

L+
8.
R

0

~s
~

~
~

3

-1,1,2,3.

174,
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2.4(13) The Type (13) Lunisolar Commensurability Condition

= + ~
_5013 U kQD 0

The last commensurability condition to be discussed is some-
what uhusuél'ih fhétbit isventirély indepehdenf 6f‘absétéliite‘s.
qrbital elements, depending solely on the nature pf the lunar and solar
orbits, All satellites therefore exist in every type (13)

(+) -) |

+
commensurability. The & and & resonant terms for such a

commensurability are given by

(n~2p)+ =0
a = 0
(m-2n)" = 15
+ (2.104)
J = -7
m+ = 0
+
s = k38
and
(n-2p)~ = 0
a = 0
(n-2h)~ = -nv
- (2.105)
J = v
m = 0
s = =kv
respectively.

For the Sun, n;D +-kéD is approximately zero for all normal
values of 7 and k. However, for the Moon, 11;D +-k6D is approximately
zero when 1 =1, k = 3., (It is only necessary to consider the
solution 7 = 1 and k = 3, since all other solutions give equivalent
commensurability conditions.) It will therefore be found convenient to

discuss the lunar and solar cases separately - starting with the lunar
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commensurabilities of type (13).

+ -
The predominant §( ) and i( ) resonant terms for the lunar
case are such that
+ + + + + + +
n=6!m=00p=3'q=01h=23J="215=618=2
and
n=6m =0,p =3,q =0,h =2,j =-2,8 =6, v=-2

& 2
The amplitude factors of these terms are proportional to ( a ) ey ¢

Lunar gravity resonances of type (13) are therefore very weak, and will
not greatly affect a satellite's motion.

The solar commensurabilities of type (13) are more complicated
owing to the greater variation of allowed values for 7 and k (7 being

always positive). The most important type (13) solar commensurability

.
~

occurs when 77 = 0 and k=1, i.e,. QD ~ 0, the predominant amplitude
. . 2 . (+) (=)
factor being proportional to (g_ ) « The predominant & and &

3

resonant terms for the general type (13) solar commensurability condition

nwy + kQD & 0 are given in tables 2,10(a) and 2.10(b).
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Table 2.10(a)

+ + + + + + + +
The n ,m ,p ,q ,h ,j ,8 and & values of the predominant Q( ) Resonant

Terms for a Satellite in a Type (13) Solar Commensgurability ¢f13 =

nw + 1K} ® 0 -
o, + 10 ® 0

- RESTRICTIONS ON

7n and k n m p q h J s 8
nN+ve k+ve
n> k n 0 n/2 0 0 -7 k 1
7 even
nN+ve k+ve
n 2 k 2n 0 n 0 0 -2 2k 2

n odd

n+ve k+ve
k >1 k+1 0 (k+1)/2
k odd 17 even

o

(k+1-m/2

{
3
=
-

n+ve k+ve

k> k odd 1 odd 2k 0 k 0 k-7 -2n 2k 2
or k even n odd

n+ve k-ve

7 >kl n 0 n/2 0 7 n |k 4
17 even
z+:e| K T_;eodd 0 n 0 27 2n 2|y -2

n+ve k-ve
| x| > 7 lkl+1 o (x]+1) o (x|+1+p 7 |x| -1
| kx| odd neven 2 2

n+ve k-ve
|k|>n Kk odd

n odd 2]kl o | x| o |kl +n 29 2|y
Ikl even . 71 odd

|
[



Table 2,10(b)

The n—)m P 1q:.:h 2d 48

and v values of the Predominant Q(—)
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Resonant

Terms for a Satellite in a Type (13) Solar Commensurability ¢13 =

Y]

/AN D

RESTRICTIONS ON

n and k n
N+ve k+ve

n> k n
7 even

N+ve k+ve

n2 k 21
n odd

n+ve k+ve
k>n k+1

k odd 7 even

n +ve k+ve k>n

k odd nodd 2k
or k even 7 odd
n+ve k-ve
n > Ik] n
7 even
N +ve k-ve
n 2 |k 2
n odd
n+ve k-ve
x| > n | x| +1

Ikl odd 71 even

n+ve k-ve |k|>n

|k| even n odd
or | x| odd,n odd

2|k|

o

o

(k+1)/2

n/2

(Jxl+1)/2

| x|

(=}

(k+1-1m)/2

27

(Ix|+1+7n)

lk| +n

-1

27

n

27

oKk

2k

| k]

2| k|

| x|

2|kl

-1

N
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2.5 Discussion and Conclusion

In this thesis, the properties of a class of artificial
satellite orbits known .as lunisolar fesonance orbits have been analysed,
Special emphasis has been given to five particular aspects of such
orbits - classification, orbital elements of resonant satellites,
predominant resonant terms in.lunisblar disturbing function(s), important
examples and existenée. Some general conclusions can ﬁow be drawn
concerning the orbits.

Firstly, lunisolar resonance orbits can be divided into
fifteen distinct types - a particular type being classified according
to its commensurability condition., Further analysis shows that these
fifteen types can be reduced to 3 basic classes ~ inclination dependent,
y and i dependent, and orbit independent. Types (1), (2) and (3) belong
to class (1); types (4) - (12) together with type (15) belong to class
2; the third basic class consists of types (13) and (14).

Secondly, the commensurability condition for the fifteen
types of lunisolar resonance orbits can be expressed as a simple
relationship between the three non-angular elements of a satellite
orbit (i.e. a, e and i), if the satellite ig sufficiently close to the
Earth., A satellite will exist in a particular commensurability if its
orbital elements satisfy such a relationship.

Thirdly, any satellite existing in a particular lunisolar
commensurability is in resonance with an infinity of terms in the
lunisolar disturbing function expansion{(s), not all terms having equal
weight owing to their differing amplitude factors., It has been shown
that the most important resonant terms are likely to be those for which

the amplitude factor (_31)11 elcdeDIJI is a minimum, This criterion
" i

D

has been used to determine the predominant resonant terms for the
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various commensurability types.
Fourthly, each type of resonance orbit has its most important
ich ( n ol il
commensurabilities, namely those for which [ a e e is an

ap

absolute minimun. So far as inclination dependent resonances are
concerned, the most important have been shown to occur at inclinations

ot 46.4°, 56.1°, 63.4°, 69.0°, 73.2°, 106.9°, 111.0°, 116.6°, 123.45900°
and 133.60. In the case of y and i dependent resonances, the orbits
which exist in 41 of the most important commensurabilities have been
obtained., (The results are given in Figures 2.1 to 2.41.)

Lastly, criteria have been found which determine whether, or
not, a particular-lunisolar commensurability can exist, i.e. whether
satellite orbits exist which satisfy the commensurability condition,

It has been shown that all inclination dependent commensurabilities

arce possible, each giving at least one resonant inclination, with a
maximumn of two, y and i dependent resonances only exist if the

maximum value of y obtained from the commensurabilities is greater than

unity.
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APPENDIX 4

Some Important Hansen Coefficients

A.l ~ Introduction

Hansen coefficients are series in the orbital eccentricity of
a satellite, or disturbing body, resulting from the expansion of the
perturbing potential (force) in the terms of the Keplerian elements

of the satellite and the disturbing body. The coefficients G

n,p,q(e)
and H , used in the text, are defined by
n,h,J(eD)
27
G (e) = Xn,(n-zp) (e) = 1 r cosi (n-2p)f - (n-2p+q)M; dM
n,p,q (n-2p+q) om =
© (1)
and
2T
+1
-(n+1),(n~2h) a "
I = X = ~ - -
In,h,J(eD) X(n—2h+j) (eD) L J (~2j cos {(n-2h) o
2w ° rD

(n-2h+j)H, }dMD (2)

The subscript D in (2) refers to the orbit of the disturbing body.
Plummer (1918) has shown how to develop (1) as a series in e

and the subsidiary variable B, given by
1
B = e/l 1+ (1 -eH¥] (3)

The result is

+c0
n, (n-2p) _ 2. =(n+1) L _ .0, (n-2p)
X(n-2prq) (&) = D Jg ln-2prade] X0, e @ (4)

O=~

where

(-ﬂ)q—e (izljF(-zpﬂ-e-i »—2n+2p-1,q-6+1; ﬁz) 6 < q
n, (n-2p) (

(n-2p+q),6 (&) =

e-q (2n—2p+

6-q 1)F(—2n+2p—q+9-1 »—2p-1,-q+8+1 ;ﬁ?‘)e } Qq

-3

(5)
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Je(ve) ig the ordinary Bessel function of degree, 6, i.e.

~ ve 2 ve h | >
Tove) = (sef |1 S CO IR G R ° 70
- el | 1.(e+1) - t1.2(e+#).(e+2) - - | (8)
1)@l o[ > o < o

and F is a hypergeometric function given by

F(a,b,c; x) = (1 + a,b.x + a.(a+l).b.(b+1) x2 S ) (7)
l.c 1.2.c.(c+1)
The leading term in the series for xn,(n—zp) (e) is of order
(n-2p+q)
la] la |+2 . ~(n+1),(n-2h) )
e + 0(e ) Similarly, the result for x(n-2h+j) (eD) in
terms of e, and Bl)’ where
- 2.3
ﬁD = eD/ {1 + 1 ey ;ﬁ (8)
is such that
+ 00
o)
~(n+1), (n-2h) _ 2.n L , ~(n+1), (n-2h)
(n-2h+j) (ep) = (A+5) Jo Lln-2ntide §X o ity e (op)
O=-co0

9)

=(n+1), (n-2h) (eD) is given by

(n-2h+j),6
j=6 (-2n+2h-j o ) o2 ]
(-8, ( i )F(Zn—2h+g-9,2h,3-—9+1,ﬁD) < j
-(n+1), (n-2h) (e )=
(n-2h+j),o D’ -2h

6-j . 2 .
(-;63 J (e-j) F(2h-j+8,2n~2h,-j+1+0; B °) © 23 o)

-(n+1), (n-2h)

The leading terms in the series for X(n-2h+J)

| 51

order e
D

(eD) is of

e Ij|+2)

+ 0( D .

Let us now consider the Hansen coefficients,

G (e) and H
n

n,p,q, j(eD)’ in greater detail, starting with Gn (e).

sh, »P»rQ
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. n, (n-2p)
A2 The Ilansen Coefficients G (e) {X,° (e)
n,p,q — { (n-2p+q) }

In Chapter 2, it was shown that, for close Earth satellites,
the only important lunisolar commensurabilities are those for which
(n-2p+q) = 0. Consequently, it is only necessary to consider here
n, (n~

o 2P)(e). 1If (n-2p+q) = 0, then the

the Hansen chfficient X
integral in (1) reduces to

27

X " = | (E)n cos { (n-2p) £} aut an
a
[o]

On changing the integration variable from the mean anomaly, M, to the
eccentric anomaly, E, equation (11) becomes

27

n,(n-2p)(e) = 1_ J (1 - e cos B cos mt dE (12)
2

%o

o
If we use the relation

cos £f = (cos E - e)
(1 - e cos E)

then (12) can be further transformed into

27 [m/2]

n,tm n+l-m u m-2u

Xy’ (e = 1__J (1-ecosE) , -1 (m Y (cosE-e)
27 o 2u
. -0
{ (1-ecosE)? - (cosE-e)Z} u] dE
(13)

where m = ln—2p| , and [m/z] signifies the integer part of m/2.

Equation (13) when integrated is
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n+1-m [m/2] u u m-2u+t+2v
+ — — —/ N -
hi . + -
I VD DD DD DD DR = an N )
t=0 u=0 v=0 w=0 x=t+2v 2y t

EIOEEmIR S

with y = m+2t-2u+2v+2wW -x . It is to be noted that, in (14), y can

only take even values.
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-(n+1),(n-2h) e )}

A.3 The lansen Coefficients I (e) {x(n-2h+j) D

n,h,j D—

Since some important lunisolar commensurabilities exist for

-(n+1).(n--2h)(e )

which (n-2h+j) # 0, it will be nécessary to consider x(n-2h+j) D

when (n-2h+j) # 0, but first let us discuss the Hansen coefficients

xag:“))’(“‘zh). If (n-2h+j) = 0, then the integral (2) reduces to
D
2m n+l
~(n+1 -
xo (1), (n=2n) D cos{ (n-2n) £ } ax (15)
0Ce.) Py o D D
D 2T T

On changing the integration variable from the mean anomaly, M_, to the

true anomaly, fD’ equation (15) becomes

. 21
~(n+1), m = 1 (1+e_ cos f )n-i cos mf_ df
0Cey) T3 (2n-1)/2 D D D D
21r(1—éD )
(16)
where m = In—2h| . If (16) 1is integrated, we find that
n-1

~(n+1).* .

x0§2+)),_m - 1 z 1 (n-l)( i )e; . 17)
-1 -3 i -
D (1_02)(2n )Y/2 iom ol i (i-m)/2

D

It is to be noted in (17) that (i-m) can only take even values. Also

. _ -(n+1),n
if m = n, XO(eD) . = 0.

If (n-2h+j) # 0, then equations (9) and (10) have to be used

to calculate H (e, ). The results for j = 0, * 1 and Y2 up to
n,h,j D

2
order (eD ) are given by
4

2 2 2
= 1 + - -
Hn,h,O(eD) (n-3n“ + iGhn 16h.) ey + O(eD ) .(18)




B on,1%p)

Hn,h,—i

Hn,h,+2(eD)

and

n,h,-2 eD

mm4hu)eD
(eD)

-3
(4h-n+1) e, + O_(eD )

(9n2+16h2—24hn—18h+14n+4) eb

(n2+16h2—8hn+18h—4n+4) eD2

186.

(19)

(20)

(21)

(22)
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Table T.1

Hansen Coefficients Xg’m(e) :1<$n £ 5,08mn<n

1 2 3 4 5
1+ _ei 1+ 3e2 1+3e2 + 3e4 1+ 5e‘2 + ‘15e4' 1+ 15e2 + 45e4' + 506
2 2 8 8 2 8 16
4
- 3e -2e- gi - 5e - 15e3 ~3e - 9e3 - 3e5 - 7¢ - 35e__ - 3596
2 2 2 8 2 8 2 4 16
2 4 4 4 6
5e2 15e + 15e 21e2 + 21e¢ 7e2 + 7¢ + 7e
- 2 4 8 4 8 16
5
- _ - 35e - 7e3 - Te - 21e3 - G3e
8 8 2 16
6
_ - _ 63e4 105e4 + 21e
8 8 16
- 231e5

16
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Table T.2

—(n+1),m(e ) : 1< n<5, 0 m<n1

Hansen Coefficients XO D

n
1 2 3 4 5
m
2 2 2 4
0 1 1 1+ e 1+ SeD 1+ SLD + 3eD
9
R R3 Rs 2“5 R7 2R7 Rg R 8R
3 3
2 3
1 - 5 % 3% + 2% “°p + "%
3 5 7
2R R 2R 8R7 Rg 2R9
2 2 2 4
o _ _ e 3eD SeD + eD
5 7
4R 4R 2R9 4Rg
e 3 e 3
3 - - - D D
7 9
8R 2R
o 4
4 - - - - D
16R9
1
2 -
where R = (1 - e “)?
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. A STUDY OF ARTIFICIAL SATELLITE RESONANCE ORBITS DUE

TO LUNISOLAR PERTURBATIONS

S. HUGHES

Abstract

A studf,of artificial satellite rcsonance orbits due to
lunisolar perturbations is given. Particular emphasis being placed
on the following aspects -
1. ' The classification of resonaﬁce orbits according to their
_commensurability condition.
2 The form of the commensurability condition when expressed in

terns of the orbital clementis of a satellite.

2. The predominant resonant teriis for _each commensuranility
condition,
o Criteria vhich determnine the existence or non-existence of a

particular commensurability condition.
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A solution is obtained for the motion of a satellite in a near-circular orbit
when acted upon by the zonal harmonics in the geopotential. It can be
applied, in particular, to the evaluation of the indirect effects of the
zonal harmonics on a satellite which is also acted upon by lunisolar
perturbations. This approach avoids some of the limitations inherent in
earlier solutions. Expressions are obtained for the time variations of all
the elliptic elements @, ¢, I, w, Q2 and M, and the solution is valid to the
first order of the zonal harmonics J, (r > 2) and up to the second order in
J,- It can be applied to non-equatorial satellites with orbital eccentri-
cities < 0.03 and inclinations not near the critical inclination of 63.4°.

1. INTRODUCTION

In any accurate theory for the motion of a close Earth satellite perturbed by
lunisolar gravity or solar radiation pressure it is necessary to include the indirect
effects of the zonal harmonics, since these produce changes in the amplitude and
argument factors of the terms contained in the lunisolar disturbing functions.
Before this can be done, a solution has to be obtained for the direct effect of the
zonal harmonics on a close Earth satellite orbit. The solution obtained must be
in a form which makes the calculation of the indirect effects of the zonal harmonics
as simple as possible. Although a theory intended for the evaluation of indirect
effects does not have to be as accurate as a theory designed for the direct effect
of the zonal harmonics (see, for example, Aksnes 1970; Kinoshita 19%6), it should
account for the first-order effects of J, (» > 2) and the effect of J, up to the second
order (i.e. J3). Since most satellites launched to date have small orbital eccentri-
cities (¢ < 0.03), a solution suitable for near-circular orbits is generally applicable.
For this reason, only near-circular orbits (¢ < 0.03) will be considered in the
- subsequent analysis.

A number of papers have discussed the motion of satellites having small-
eccentricity orbits; but all have been subject to certain limitations. Kozai (1959)
and Izsak (1963) have used the Lagrangian planetary equations (Smart 1953)
in the variables £ and 7 defined by

£ =ecosw, (1)
7 = esino,
[ 131 ] 52
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to obtain the first-order effects of the zonal harmonics.J,, Jyand J; on the eccentricity,
e, and argument of perigee, w. The variation of the other orbital elements was not
considered. Chebotarev (1963) has obtained expressions giving the time variations
of all the orbital elements; but his analysis is restricted to the J, harmonic only.
Cook (1966) has extended the analysis to include the first-order effect of J, and the
general odd zonal harmonie, but, like Kozai and Izsak, he has limited his discussion
to the elements ¢ and w only.

If the indirect effects of the zonal harmonics are to be studied for a satellite which
is also acted upon by lunisolar perturbations, then in a Lagrangian treatment it
will be found necessary to solve the six Lagrangian planetary equations by suc-
cessive approximation, rather than by direct integration of the differential equa-
tions. A canonic method of approach is therefore more suitable when indirect
effects have to be considered. In such a treatment, it is only necessary to perform
one integration and six differentiations in order to obtain the time variations of
the orbital elements.

In this paper, Delaunay—von Zeipel contact transformations will be used to
obtain expressions for the time variations of all the orbital elements of a satellite
when the eccentricity of the orbit is small ( < 0.03). The first-order effects of the
zonal harmonics J, (» > 2), and the effects of J, up to the second order, will be
included in the analysis.

2. THE CANONIC EQUATIONS WHEN ¢ IS SMALL

Brouwer (1959) and Kozai (1962) have used Delaunay-von Zeipel contact
transformations (von Zeipel 1916) to study the motion of close Earth satellites
when perturbed by the zonal harmonics. However, the solutions obtained for the
variables w and the anomaly, M, contain singularities when e = 0. Consequently,
the results are only valid for large or moderate eccentricity orbits (e > 0.03). This
situation arises because the perigee, and, hence, v and M, becomes ill-defined as
e tends to zero; with the result that the Delaunay variables L, ¢, H, I, g and h used
by Brouwer and Kozai are inappropriate for the study of near-circular orbits. The
Delaunay variables (Smart 1953) L, G, H, I, g and % are related to the osculating
elliptic elements by the expressions,

L = (ua)i, =M,
G =L(1—-e} g¢g=ouw, (2)
H = GcoslI, h = Q,
where u is the gravitational constant for the Earth, a the semi-major axis of the
orbit, I the inclination and Q the longitude of the ascending node.
The Poincaré variables (Smart 1953) z; and y; (¢+ = 1, 2, 3), defined by
@, =L, yp=1+g,
2, = ()t esing +0(e3), y, = (x1)}ecosg+O(e?), (3)
z, =H, Ys=nh
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appear, however, to be more suitable for use when e is small. For small e the terms
of O(e3) are negligible and will therefore not be considered further. The variables
xz; and y, (2 = 1,2,3) are the canonic equivalents of the Lagrangian variables
a, £ 5, I, 2 and (w+ M) usually adopted for the study of near-circular orbits
(Chebotarev 1963).

The Cartesian vector equation of motion for a satellite perturbed by the zonal
harmonics in the geopotential is

THurfrd = VR, (4)
where R is the longitudinally independent part of the geopotential, such that

R=—% Lt (ﬁr@

n
n=2RE

n+l
) P, (sinb), (5)

where J, is the zonal harmonic coefficient of degree n, Ry is the mean equatorial
radius of the Earth, and P, (sin 6) is the Legendre polynomial of degree n and
argument & (with & the geocentric latitude of the satellite). If R is expressed as a
function of the variables x; and y; (¢ = 1, 2, 3), then the canonic equations in x;

and y; are . =

x,i - aR a i -

Yy = _a/R%xj} =123 ©)
with B = p2/(223) + Bl y). (7)

The expression for the expansion of R as a function of the elliptic elements «, e
1, v, 2 and M (Cook 1966) is

R =~ (ufRy) 3 J(Bpfa) 1Py(cos ) Py(0) '3 Xy @100 (e) cos vl

—(2u/Bg) 5 T J(Ryfa)™+ (=) !f(n+3)1) P (cos ) P3(0)

x E}n X, @+D.s (e) cos {s(w— }m) + v M}, (8)

V= — a0

where Pj, (cos ) is the Legendre associated function of degree n, order s and argu-
ment cos I. The quantities

X;_ (n+1),0 (e) and Xv—(n+1). 8

are the Hansen coefficients expressed in terms of the eccentricity, e, and defined by
: 21
X, m+1)s8 (g) = 1/21:f (afr)»ticos (sf—vM)dM, (9)
0

where f is the true anomaly of the osculating orbit. For small e, X, ®+.s (¢) is of
the order /), Since ¢ is small (¢ < 0.03), and the J, harmonic is approximately
103 times larger than subsequent J, harmonics, only secular terms up to order
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Jye? and J,, long-period terms up to order J, e, and short-period terms of order
J,, need be considered further. Equation (8) now becomes

_ udy (R - R
e ( E) (3cos?I —1)(1+ 3e2) —E'f‘- Xz (7“3) F, (cos I) F,(0)
RE ZJ( a,) n(n+1)P w(cos I)PL(0)esinw
fl‘;z (R ) Pi(cosI)cos2(w+ ).  (10)
In obtaining (10), use has been made of the following identities (see appendix):

Xa‘(n+1),1(e) = %(n—l)e-*—O(ea) : (11)
Xg30(e) = 1+3e2+0(et) (12)
Xg@4D.0(g) = 1 +O(e2). (13)

On using (10) and the relations (2) and (3), B can be expressed as a function of
z; and y;. If terms of O(J, e?) and O(J, e?) are neglected, equation (10) becomes

Y e +3J2R2 %_1
22 4z x3 8«7 a2

+3J2R (ix_a_ 1) WU (R%u)” P, (x3fx,) P,(0)

8] x?

] J R n+1
-3 ﬂEs/xI( Eel") ?i?n+ I))P},(xs/xl)-P;L(O)xz

&y
Jp uARE
2‘: 2B P2(w,[x,) cos 2y,. (14)

In deriving equation (14), use has been made of the identity
2,2 .
cos] =23 (1 + {@y—“’}) + O(e?).

which is easily obtained from relations (3).

3. DELAUNAY-VON ZEIPEL CONTACT TRANSFORMATIONS
Suppose the variables z; and y, (¢ = 1, 2, 3) are changed to new variables «} and
y¥ (1 = 1, 2, 3) by means of the general functional equations
Ly = (L‘,,;(LU*, y*: t)
Yi = Ys(x*, y*,1)
Ifthe change of variablesis such that 2f and y¥ (¢ = 1, 2, 3) are canonically conjugate
with reference to a Hamiltonian R*(x*,y*,t), i.e.

iF = OR*[y!
g = — OR*[dx}

} (G =1,23). (15)

} (i=1,23) | (16)
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then the transformation of variables is called a ‘contact transformation’. The
general theorem stating the conditions for a variable transformation to be canonic
is as follows (Spiegel 1967).

If there exists a generating function S(z*, y) such that

vy = 05t ) | )
y¥ = 3S(z*, y)/out,

then z¥ and y¥ (¢ = 1, 2, 3) are canonically conjugate with reference to the Hamil-
tonian R*(x*, y*) given by -
R*(xz*,y*) = R(z, y)- (18)

R(x,y) can be expressed as a function of =; and y; once § is known. In the Delaunay—
von Zeipel method, S(z*,y) is chosen so that, to the order of accuracy required,
R(x,y) becomes a function of z¥ (+ = 1, 2, 3) only. Since B = R*, the new Hamil-
tonian R* is independent of y¥; consequently, =¥ is a constant and y¥ a linear
function of the time. The equations (17) are then used to obtain the old canonic
variables z; and g, as functions of the new canonic variables z¥ and . Finally,
the relatlons (3) give expressions for the time variations of the sa.telhte s osculating
elements, a, e, I, w, 2 and M.

Let S be chosen so that
3
S = X xfy; +8,(x*,y,) + Se(x*, yy), (19)

i=1
where S, (z*,y,) and S,(z*, y,) are the perturbed parts of S, i.e. each have a small
parameter dependent on the J, coefficients as a factor. With the use of equation
(19), the equations (17) become

oS, oS
= X* +— +——2, 20
C oy o, (20)

oS, oS8
Y=Y —_@U—;—@i- (21)

On substituting equations (20) into the right hand side of (14), and expanding
by Taylor’s theorem, neglecting powers of

95, 08, S, AP 08,)\ (08,
Jn(ayl)( > 2), ( yl) ’ szé(a—yl), Jz(a_yl) y3, Jny (ayl) (6_;1/2) and above,

R becomes

= pu® SR pt 3z} 3J, R%, ut (52
k= 2x*2+ 4o xz¥2 —1)+ 28.7:"337 ¥ —1

Rg p\7t1 ' 3J, R%, u* 5:::*2 oS
+3.]2R§;,u, (53:;,"2_ 1) (881)2+3J2R%/1.4 (53:;"2_ 1) 9

8z¥7  \zre s 8z¥7  \ 22 £
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< In 2 (Bgp\"™ (n—1) 1 (k) PL
n=3a By (xi”) (1) L n (@ [2E) Pa(0) 23
3 J, 1”' REﬂ)n+1 (m—1) L (o %) PL 38,

J AR2
+ 24/“' EP%(QJ3/$1 ) eos 2y,

Jo ' By AP3( [21) 38, g2 (38, . 3u? (08,)?
+ 4x6 dac¥ cos 2y, —* oy, x;ka(ay) 2x;=4(ay1)

3, 1 (LR a8,
_%;FE(?E) (333/%1 cos2yla (22)

If 8, and 8, are chosen such that
3J, R}, ut (5x§‘2 1) o o8, + 3J, R% pt (5:1:;‘2 B 1) (Qé‘_})z

*7 *2 2 *
daf x3 0Ys 8x77 xy2 /7

_ % o (REﬂ)"+1 (n—1) PL (¥ [x¥) PL(0) (aSI)

n= 3\/951 xf n(n+1) Yo
3J, B2, pt (5%?
oS,
5 = sk i PlGat o) cos2y, | (24)

then R becomes, on neglecting short-period terms of order J3,

B 2 JzﬂﬁEﬂ4(sx:2_l)+34R%ﬂ4(5x;2_1) -

*2 *6 %*2 *7 * 2
2z} 4x x; 8x} x3?

"”(RE"‘) P, (a¥[x¥) P,(0)

n= 4-R
W Jott  (Bgp\™™ (n—1) 1 (2% %) P1 *
nz:;\/xikRE( xfz) n(n+ I)P 3 [x1) Py (0) 3
S 1 By, dPZx xf)  9J3ucRY,
3;‘ ror P3(x¥ [} ((13*/ n_ 64ﬂ*10 [PR(a J«F)]2. (25)

R is now a function of ¥ only.

4, THE SOLUTION

The short-period terms depend on the anomaly, M, which has a period of less
than 2h for a close satellite. These terms are therefore of minor importance in a
first-order theory, simply causing a rapid oscillation in the otherwise smooth time
variations of the orbital elements. However, in a higher-order theory, short-period
terms can combine to produce secular and long-period changes in the orbital
elements of a satellite. It is for this reason that the short-period terms of order J,
have been retained. Now that these second-order secular variations have been
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obtained, the short-period terms are no longer required, and will not be considered
further.
Let A and P be defined by

3J, R%, xy 2
A= 43;;*7 (m*2 —1) | (26)
and d J. Bgp\* (n—1) 1 1
_r 27
Equation (23) then becomes
08,\2 P\ o8
== *_ )1 2 —
(5) + (= -2) g =0 (28)
The solution of (28) is A
08,[0y, = (P[A —af) + [(x§ — P[A) — 431}, (29)

which, when integrated, yields

S, = (f—; —xé‘) Yy + 3(2F — P[A)?arcsin [(:v;‘f—zP/A)] + by [(x}F — PJA)2— y31b. (30)

For the moment, both the positive and negative solutions for S; will be retained:
a full discussion of the duality of §; will be given in §5. Equations (20) and (21)
can now be used to obtain relations connecting the old canonic variables z; and y;
to the new canonic variables 2} and y¥ in the following form

xz; = zf, (31)

%y = P[A + (xF — P[A) cos {y5 [(x5 — P[A)}, (32)

Ty = ¥, ' (33)
P oA -

Y=yt +A[ ys + (aF — P[A)sin{y3[(zF — P[A)}] Lﬁ%‘f—g—;:_ > (34)

Ys = * (2 — P[A)sin{yF/(«F — P[A4)}, (35)

vo =93+ [V £ (@~ PlA)sin (o2 ] —PLAY] G5~z (39)

It only remains to determine the expressions for the time variations of z¥ and y¥.
Since B = R* is a function of the variables z¥ (3 = 1, 2, 3) only, the variables «*
are constants and the variables yF are linear functions of the tlme

The canonic equations for the variables «¥ and y} are

&} = OR*[oy}
gy = —OR*[0x}

(37)

where R* is given by equation 25).
The solution obtained here does not suffer from the difficulty usually encountered
in von Zeipel’s method: that of obtaining x; and y, as functions of 2} and y¥ when
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S is a function of the old canoniec variablés, ¥:» and the new canonic variables, z}.
Usually, in order to express «; and y; as a function of 2} and y} it is necessary to
proceed by a method of successive approximation. However, in the present solution,
z; and y; have been expressed exactly in terms of z} and y}.

Integration of (37) and (38) yields

xf = &F, (39)
x¥ = &¥F, (40)
xt =2, (41)
Yt = i“—(aR*/axl)t (42)
Y3 = g3 — (OR*[oxy) (43)
ys = g3 — (OR*[ox3)¢ (44)

where &F, 47, 3, 9T, 95 and g are the constants of integration determined from
the initial conditions. Expressions for OR*[0zf, OR* [0z} and OR*[0x¥ can readily be
obtained from (25).

5. DiscussioN
If the quantities B and f are defined as

B = (a¥ — PJA) (45)

and - B =1in—g¥/(x5 — P|A), (46)
then equations (32) and (35) can be written in the form

%, = P|A + Bsin (4t + B), | (47)

Yy = £ Beos (A4t+ ), (48)

which are the canonic equivalents of Cook’s equations (Cook 1966) for the time
variations of the Lagrangian variables £ and 7, respectively, namely

n = C[K + Bsin (Kt + 8),
£ = Beos (Kt +f),

where u\t = (n—1)
C = (;3) ﬂ§3Jn( a) n+1)P1(cosI)P}L(O),

K = %(&%)1} (RE) (5cos21—1)

If the positive solution of (30) is chosen, then equations (47) and (48), when multi-
plied by 1/,/z¥, are identical with Cook’s equations. If the negative solution is
chosen and B redefined as — B, then (47) and (48), when multiplied by 1/,/zf, are
again identical with Cook’s equations. It therefore follows that the duality of sign
occurring in equation (30) can be removed by a suitable choice of the arbitrary
constant B. A full discussion of equations (47) and (48) has been given by Cook.
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The time variation of the elliptic elements a, e, I, w, £2 and M can be recovered

from the relations
\

a = rifp, © = arctan (z,/y,),
e = (1/Jz,) (@3 +33)t, 2=y,

2_ 2\ -}
I=arcos[£§(1—x—2——-y2) ], M=y, —o,
Zy 2y

} (49)

The method of approach presented here has three major advantages over a
Lagrangian treatment. First, the time variations for all the elliptic elements have
been obtained. Secondly, in order to obtain the solution it is only necessary to
perform one major integration; that of solving (29) for 8,, whereas in a Lagrangian
approach a, e, ¢, w, 2 and M have to be obtained from the solution of six simul-
taneous first-order differential equations. Finally, a canonic approach is more
suitable for evaluating the indirect effects of the zonal harmonics on satellites
affected by lunisolar gravity and solar radiation pressure perturbations. The
inclusion of these indirect effects is directly obtained by the von Zeipel method
when the lunisolar disturbing function is added to R&.

The authors would like to thank Mr D. G. King-Hele, F.R.S., for a number of
helpful suggestions made during the course of this work. One of us (S.H.) thanks
the S.R.C. for financial support.

APPENDIX. EXPLICIT EXPRESSIONS FOR THE HANSEN
COEFFICIENTS Xg(»+t1:m(g)

By definition, Xg®+1:m (¢) is given by (Plummer 1918)

. 2m
Xgtm(g) — 2_1_1: (afr)rtrcosmfd M. (50)
0
By using the well-known elliptic relations
dM = (rfa)? (1 —e?)~2df (51)
and _a(1—e?)
r_(1+ecosf)’ (52)
equation (50) becomes
_ 1 [?"(1+ecosf)r-1
Xynthm(e) = E—RJ.D (1 e7)fen—D cosmfdf (53)

I

0 q=0

-1\ . . . . —-1)!
where (n q ) is the binomial coefficient (n—1)! Clearly, equation (54) can be

qln—1—¢q)!’
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developed as a series of multiple cosines in f, together with a constant factor. On
integration only the constant factor remains. The constant term results from the
combination of the cosmf term inside the brackets in (54) with the cosmf term
outside the bracket. The cosmf term inside the bracket is

(n—-1) 1 q -
5 55 (g m) o m 2O (55)
and, for m = 0, n=11 (q .
: q§0§1 (%Q) ) (56)

Substituting (55) and (56) into (54), when m % 0 and when m = 0, respectively,
and integrating yields

—(a41), _ 1 ""li n—1\( ¢
X5 m+D.0(g) = (1—ez)iCn—D q§o 2,,( g )(%q) e? (67)

and D my 1 1 (n— 1 q
Xsoromie) = e E3( g ) ) (58)

The summations in (57) and (58) are limited to even 1(g—m),q > mandm < n—1,
therefore

| L n11 (p—1
Xotrbmte) = Togpes 2, 7 (nq )(%(qqL m)) « (29)

If m = n, then Xg®+h:7(e) = 0.
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SATELLITE ORBITS PERTURBED BY DIRECT SOLAR
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DISTURBING FUNCTION
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Abstract—An expression is derlved for the solar radiation pressure disturbing function on an Earth
satellite orbit which takes into account the variation of the solar radiation flux with distance from the
Sun’s centre and the absorption of radiation by the satellite. This expression is then expanded in terms
of the Keplerian elements of the satellite and solar orbits using Kaula’s method. The Kaula inclination
functions are replaced by an equivalent set of modified Allan inclination functions.

The resulting expression reduces to the form commonly used in solar radiation pressure perturba-
tion studies (e.g. Aksnes, 1976), when certain terms are neglected. If, as happens quite often in
practice, a satellite’s orbit is in near-resonsnce with certain of these neglected terms, these near-
resonant terms can cause changes in the satellite’s orbital elements comparable to those produced by
the largest term in Aksnes’s expression. A new expression for the solar radiation pressure disturbing
function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation

pressure.

1. INTRODUCTION

In order to exploit the full accuracy of laser obser-
vations of artificial satellites for geophysical pur-
poses it is necessary to have a good theory for the
motion of an artificial satellite perturbed by solar
radiation; such a theory must include an accurate
expression for the solar radiation pressure disturb-
ing function expanded in terms of the Keplerian
elements of the satellite and solar orbits.

A number of authors have suggested models for
the effect of direct solar radiation pressure on
artificial satellites; all of these are, however, subject
to certain limitations. Cook (1962) proposes a
model in which the solar radiation flux is assumed
constant and directed along the line of centres
joining the Sun and the Earth. Kaula (1962) gives
an expression for the solar radiation pressure dis-
turbing potential expanded as a function of the
satellite’s orbital elements, but the expansion was
derived using the same assumptions as Cook. This
type of expansion has been used in a number of
studies of solar radiation pressure perturbations,
e.g. Brouwer (1963), Gooding (1966) and, more
recently, Aksnes (1976).

It may be argued that an accurate expression for
the solar radiation pressure disturbing function ex-
pansion is unnecessary because of the uncertainties
in the area-to-mass ratio and reflection characteris-
tics of a satellite, together with limitations in the
theory for the “shadow’ and “albedo” effects. But
errors of the order of several per cent incurred in

the removal of direct solar radiation pressure per-
turbation will not be negligible, when information
about the higher-order harmonics in the geopoten-
tial is being sought from laser observations. An
accurate expression is therefore necessary.

An obvious improvement to the existing model is
to assume that the solar radiation flux varies in-
versely as the square of the distance from the Sun’s
centre and is directed towards the satellite along
the line of centres joining the Sun and the satellite.
A model for the solar radiation pressure disturbing
potential and its expansion based on these as-
sumptions will now be derived.

2. THE FORM OF THE SOLAR RADIATION
PRESSURE DISTURBING POTENTIAL
Let S, be the solar radiation flux at a distance a*
from the Sun’s centre equal to the semi-major axis
of the Earth’s orbit, then the solar radiation flux, S,
incident on a sunlit satellite distant A from the Sun
is given by

Soa*?
5= W

If A is the average cross-sectional area of the
satellite exposed to the Sun’s radiation, & is the
fraction of incident radiation absorbed by the satel-
lite, and c is the speed of light, then the magnitude
of the radiation force, F,4, when the satellite is in
sunlight, is

_ S,a*?AQ2—¢)

-Frad - Azc . (2)
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In practice, the accurate theory developed here
would be applicable primarily for satellites with
constant A and ¢, that is, for spheres of uniform
surface textures, such as Lageos (1976-39A).

The vector form of (2) is

- Soa*zg(Z - E)

Fa=
TR cm, AS

o, (3)
where o =1 when the satellite is in sunlight and
o=0 when in shadow, m, is the mass of the
satellite and A is the position vector of the Sun
from the satellite. If (x, y, z) and (X, Y, Z) are the
Cartesian co-ordinates of the satellite and the Sun,
respectively, relative to a set of axes centred at the
Earth and in directions given by the unit vectors, i,
j and k, then (3) can be written as:

- SoAa*z(z 8)
cm,

o [ (X=x)i+(Y-y)i+(Z-2)k
{(X—xP+(Y-y)+(Z-2)P"

' Frad

]. 4)

On defining the solar radiation pressure disturbing
potential .4 by

rad vq)rad

(aq)rnd .aq)rad kaq)rad) (5)
ox

ay dz

then on equating equation (4) and (5) and integrat-

ing, ®,,4 is found to be given by
—S()Aa*z(z 8)

cm, A

q)nad (6)

Now A can be written as

r\e 2r
A—R[l-i'(—ﬁ) -Ecos 8]

where r is the distance of the satellite from the
Earth’s centre, R is the Earth-Sun distance and &
is the angle subtended at the Earth’s centre by the
satellite and the Sun. Since A™' is a generating
function for the Legendre polynomials of argument
cos &, (6) becomes

—S,A(2—¢)
cm,R

The n =0 term has been omitted from (8) because
it is independent of the satellite’s co-ordinates, and
will therefore produce no changes in its orbital
elements. Equation (8) is of a comparable form to
the expression for the lunisolar gravity disturbing

7)

(Drad =

o 21 P, (cos 8)1;—': (8)
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potential, viz.

o ©)
where Mp* is the mass of the Sun or Moon,
although the index of summation and the constant
term are different for the solar radiation pressure
case. Consequently, Kaula’s method (Kaula, 1962)
for expanding (9) in terms of the Keplerian ele-
ments of the satellite and solar orbits can be ap-
plied to (8). If Kaula’s inclination functions are
replaced by the simpler, but equivalent, Allan incli-
nation functions (Allan, 1965), then (8) becomes

—S,A(2—¢)a*?
g
cmg

(Drad =

o«

X Z #)n+1

n=1

g n=m)

L 0K

m=0

X Z ant.p(z) Z an,h('

p=0

X Z X552 (e) Z Xgls n2m (o)

g=-- j=—

xcos[(n=2p)w+(n—2p+qM—(n—-2h)w*
= (n—=2h+j))M*+m(Q—-Q*)], (10)

where the asterisked quantities refer to the solar
orbit relative to the celestial equator, and

Km={1 m=0

11
2 m#0. (1

The F, ., (i) and F,,,,(i*) are the Allan inclination
functions defined by

( _(+m)-1)
e ()= (n—p)!

o (") )

X (COS %i)Sn—m—Zp—-Zk (Sin %i)m—n+2p+2k

(12)

with a similar expression for F,,,,(i*). The quan-
n—2p ( 2p ) .
K ) and n—m—k in (12) are the

binomial coefficients.

. (2
tities

(2n-2p)!

2p!
kien—2p—k1 2

(n—-m—-k)!(2p—n+m+k)!’

respectively. The eccentricity functions, Xp;"52) (e)
and X132 (e*), are the usual Hansen coeffi-
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cients (Plummer, 1918). The a, ¢, i, », {) and M,
etc., are the usual symbols denoting the Keplerian
elements of an orbit. Since

(1" (- 1y = 1

and Q*=0, by definition, for the Sun, then on
replacing X570 (e) and X 3.k *(e*) with
the shorthand notation G,,,(e) and H,,;(e*), equ-
ation (10) becomes

—SoA(2—¢)
!ad_ cmg nzl(a*)“ !
-, (n—m)!
Z Z n.mp(l) Z Fn,mh(l

moo (n+m)l S

X Jio Gupale) .f Hn,h,j(e*)

gq=— j=—w

xcos[(n—2p)w+(n—2p+qM

—(n—2h)o*—(n—-2h+j))M*+mQ], (13)

where
F, (.) =————XEF, ( )
n,m,p l (J ])n m n,m,p t),

with a similar expression for F,,,,(i*). The quan-
tities F“,m,p(i) and F’,m,,(i*) are now real quantities.

The usual expression for the solar radiation pres-
sure disturbing function can be obtained if only the
long-period terms having n =1 and j=0 are consi-
dered: such terms are characterized by the set of
integers n, m, p, q, h and j given by

— — h=0] -
p=0 A L g=—1
Lh=1_
m=0 1
=
p=1 - -q=+1
L Lh=1.
n=1- - j=0.
— =0
p=0 - -gq=-1
Lh=1]
m=1-
[h=07]
p=1- - q=+1
L - [ h=11 _

From the definition of a Hansen coefficient (see
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Appendix 1), G,,-i(e) and Gy;,(e) are given by

2w

1
Gl,O,—l(e) =5; J

(]

(—é) cosfdM  (14)

Gyia(e) =2—17; r" (;:-) cos(—f)dM, (14)

0

where f is the true anomaly of the orbit. On
evaluating the integrals,

-3c
Gl,o,—x(e) = G1,1,1(e) = T (15)

From equation (39) derived in Appendix 1,
H,(e*) and H;q4(e*) are given by

%*2

Hl,l,o(e*)=H1.o.o(e*)=1—"7+0(e*4). (16)

If equation (12) is used to evaluate the Allan
inclination functions for terms with n=1 and j =0,
then, with the aid of (15) and (16), the expression
for the corresponding disturbing potential is

g0 _3S:AC-e)ae(1=e"2)
rad — 2cms
cos {w - (w* + M*)}
— 2¢sc*s* cos {w + (0* + M*)}
+ c2c*? cos {w - (w* + M*)+Q}
+ c*s*? cos {w +(0*+ M*)+Q}
+ s%c** cos {—w — (0* + M*) +Q}
+ s%s*? cos {— 0 + (0* + M*)+ Q}],

x [2csc*s*

(17)

where c¢=cosii, s=sin}i, c*=cos3i* and s*=
sin zi*. Equation (17) is Aksnes’s expression for the
solar radiation pressure disturbing function expan-
sion, although the form of the constant factor is
slightly different here, as a result of allowing for the
variation of solar flux with distance.

The next most important terms are those for
which n=1 and j==1, ie. terms of 0(ee*). If
equations (35) and (36) are used to evaluate the
Hansen coefficients H, ,(e*), H; 1 ,(e*), Hy1,-1(e¥)
and H,,_,(e*) to 0(e*), then

Hyo:(e*)=H; 1 1(e¥)= 2e*+0(e*’)
(18)
H1,1,1(e*) = Hl,o,—l(e*) =0+ 0(3*3) .

Using equation (12) to evaluate the appropriate
inclination functions and making use of equations
(18), the expression for the long-period terms with
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n=1and j=x1is ®.,, where

. _3ee*S,AQ2—¢)acm

rad —

cm,

% [2csc*s* cos (w — w* —2M¥)

— 2csc*s* cos (w + 0* +2M¥)

+ ¢2c*? cos (0 —w*—2M*+ Q)
+ c%s*? cos (w + w*+Q)

+s52c*? cos (—w —w*—-2M*+Q)

+s5%s*cos (—w+tw*+2M*+Q)]. (19)

Do any other n terms, apart from n =1, contri-
bute significantly to the disturbing function expan-
sion? Since for most close Earth satellites e is small
(e<0.03) and a/a*=1/20,000, it appears that only
the n=2 terms of long-period and zero order in e
and e* need to be considered. These are the terms
for which n=2, p=1, q=0 and j=0, that is

m=0 h=(
,,:2{,,,=1},,=1{h=1}q=0{,-=0.
m=2 h=2
(20)

If the solar Hansen coeflicients for the terms in (20)
which are of the order 1+0(e*?) are put equal to 1,
then on using (12) to evaluate the appropriate
inclination functions and the identity XZ%(e)=
1+3e%/2 (see Appendix 1), the disturbing potential
@, is given by
SR 0d (30
cmga 2
x[- 3G sin® i — 1)c**s*? cos 2(0* + M*)

+z(§ sini— 1)(5 sin® i*— 1)

+3cs(c®—s%)c*s* cos {2(w* + M*) +Q}

—3cs(c®—s%)c*s* cos {—2(0*+ M*)+Q}

+ 3cs(c?= s%)c*s*(c** —5*?) cos O

+3c%s%c* cos {—2(w* + M*)+2Q}

+3c%s%c*25*2 cos 20

+3¢%s%s™ cos {2(w* + M*)+20}]. (21)
It can be seen from equation (21) that the inclusion
of the n =2 terms of zero order in e and e* leads to
the appearance of a secular term, albeit with small
amplitude. Such a secular term produces secular

changes in the argument of perigee, w, the lon-
gitude of the ascending node, (), and the mean
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anomaly M, of the satellite’s orbit when substituted
into the Lagrangian planetary equations (Smart,
1953) for &, Q and M.

Similar expressions can be found for long-period
terms of 0(ee*’) with n=1, and long-period terms
of 0(e*) with n=2. These are less likely to be
important and are given in Appendix 2.

3. DISCUSSION

The ratio of the terms outside the square brac-
kets in (19) and (17) is 2¢*=0.033, so that ®L, is
by no means negligible; and its effect will be en-
hanced if some of the cosine terms are near reson-
ant, as quite often happens in practice. For exam-
ple, if a satellite has the following set of elements:
a=6960 km, ¢=0.007 and i=256.06° then, on
using the well-known expressions (King-Hele,
1958)

RE 35
©=5.0 (—a-) (1—€%)72(5 cos® i — 1) deg/day
(22)

and
. RE 3.5
Q=-10.0 (—a-) (1—-€*7*cos i deg/day
(23)

(where Rg is the mean equatorial radius of the
Earth) the argument of the first cosine term in (19)
is found to vary at the rate of 0.08 deg/day, whilst
the arguments of the other cosine terms are found
to vary at rates exceeding 2 deg/day. Similarly, the
arguments of the cosine terms in (17) vary at rates
exceeding 1 deg/day.

Let Y; (i=1,2,...
the satellite such that

6) be the orbital elements of

Yi=a Y4=
Y2=e Y5=\Oa
Y3=i Y6=M.

The Lagrangian planetary equations for Y; when
perturbed by one term in (13) can be written on
integration as (Smart, 1953)

Y~ v+ 20 [s‘“ - (wf’)]

(i=1,2,3...6), (24)
where Z,(Y) is a function of the satellite’s orbital
elements, ¢ is the argument of the perturbing term

and ¢ its time derivative. The symbol in square

‘brackets in (24) means either sin ¢ or cos §; sin
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should be used for Y,, Ys and Y, and cos ¢ should
be used for Y;, Y, and Y,; Y and ¢° are the
values of Y; and ¢ at time ¢t =0, If Q, is the ratio of
the change in Y; due to a near-resonant term in
(13) to that produced by a non-resonant term, then

R (S‘“(wn)— @)/

sin sin
( (lﬂ)‘;&

COS

(4/"))] (i=1,2,3...6). (25)

The subscript R denotes the near-resonant part of
(25). If terms of 0(e?) are neglected, then the ratios
Si=rZ(Y)/Z(Y) (i=1.2. 3...6) are given by

B (n—2p+q)rAr

1 (n=2p+qA
A
Sz=qR r
qA

_(coti(n—2p)—m cosec i)rAr
(coti{n—2p)—m coseci)A

(aAR ,BAR)
——ecoti—
de di /R

S4 = 26
dA A (26)
——ecoti—
de ai
dAr /A
Ss= __E =
9i
0AR A
(_+ 206348
de da
SG =
A dA
—+2ae—
de da

Suppose the integration of the Lagrangian planet-
ary equations is carried out from t=0 to T/2,
where T is the period of the near-resonant term;
equation (25) can then be written as

lll sin

"

The maximum values of |sin ¥°| and |cos ¢ix°| are
both unity. Consequently, if [sinyr’|=1, then
|cos ¢°] =0, and the |Q,] values for @, Q and M are
such that

Q> (Sr75 | (W=))|-

S:¥°
b
whilst the |Q;| values for a, e and i are zero.
Similarly, if |cos ¢i"| =1, then |sin yx°|=0, the |Q|
values for o, ( and M are now zero, whilst the |Q,|
values for q, e and i are given by (27). In practice
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|cos Yz°| and |sin ¢rx’] will have values between zero
and unity. For the sake of argument let us assume
that they are both equal, i.e. |sin gg°| =|cos ¥’|=
1/J2: equation (27) is now replaced by

J,O

IOiI=75|Si@ i=1,2,...6.

(28)

In the subsequent discussion it is assumed that
equation (28) holds. Equation (28) is not exact since
the effect of the Earth’s shadow has been neglected
but it should serve to give some indication of the
relative magnitudes of near-resonant and non-
resonant changes in a satellite’s orbital elements,
over a half cycle of the near-resonance. Further-
more in any accurate study involving near-circular
orbits (¢<0.03) the set of elements a, e cosw,
esinw, Q, i and o+ M (Cook, 1966) should be
used so as to avoid small divisors in e~ occurring
in the solution for the time variations of @ and M.
However in the qualitative discussion given here
the set of elements a,e, I, @, {} and M should
suffice.

If a satellite has the orbital elements: a=
6960 km, ¢ =0.007 and i=56.06°, then |Q,| and
|Qs| values for the near-resonant term and the
largest term in (17) are 0.20 and 0.24, respectively.
It is therefore possible for a near-resonance with a
@14 term to produce changes in a satellite’s orbital
eccentricity and inclination which are 20 and 24%,
respectively, of those produced by the main term in
®°,. The satellites 1965-53B, 1965-53C, 1965-
53D, 1965-53E, 1965-53F, 1968-70A and 1968-
70B have orbital elements approximately equal to
those considered in the above example. It is easy to
find orbits for which z° <0.08 deg/day: for exam-
ple, changing i to 56.21° would reduce ¢’ to 0.04
deg/day. The changes in e and i would then be 40
and 48% of those produced by the main term in
®2,. It should be remembered, of course, that
these changes occur over a half-cycle-of the near-
resonant term, that is, over about 6 yr if iz =0.08
deg/day. The effects would therefore be of little
importance in numerical day-to-day analysis of ac-
tual orbits; but it would be vital to include them in
any accurate theoretical study covering several
years.

Since the @2, terms are non-zero when & = 0, the
effects of thses terms in comparison with the @,
and ®},, terms, which are proportional to e, in-
creases as e tends to zero. Consequently, for a
circular orbit only the ®2, terms are present in the
disturbing function, when G =D+ DL+ D,
If the eccentricity is small (which is true for most
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Earth satellites launched to date) then the occurrence
of a near-resonance with a @2, term can produce
changes in the satellite’s orbital elements which are
comparable to those produced by the main term in
®,.4. For example, if a satellite has the following set
of orbital elements: a =7700km, ¢ =0.002 and i =
90.1°, then €}=0.01 deg/day and &=~-2.6
deg/day. Such a satellite is in near-resonance with
two terms in @4, but only the cos 2() term need be
considered since the value of the inclination func-
tion of the cos {) term is small when i=90° and is
zero for a satellite in an exact polar orbit. The
largest |Qs| value for this near-resonant term and
the term in (17) which produces the largest change
in i is 0.12. So when the eccentricity is small, a
satellite in a near-resonance with a ®2, term can
undergo changes in its orbital inclination which are
12% of those produced by the main term in &%,
though again only on a long time scale, about 25 yr.

Errors of the order of magnitude discussed in the
above examples incurred in the removal of solar
radiation pressure perturbations on artificial satel-
lites cannot be ignored if accurate geophysical in-
formation is sought from long-term laser observa-
tions of artificial satellites. It is therefore essential
in future studies of solar radiation pressure pertur-
bations on such satellites to include the @4 and
2,4 terms in the expression for ®,,4.
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APPENDIX 1
Important Hansen Coefficients

By definition, the Hansen coefficient X, "z,/" " (e*)
is given by (Plummer 1918)

S. HUGHES

- 1 -~2h —
Xalany M (e*) =

1 2w a\n+1
2 .[ (;)
x cos {(n=2h)f—(n—-2h+j)M}dM, (29)

where f is the true anomaly of the orbit. Plummer has
shown how to develop (29) as a series in e* and the
subsidiary variable 8 defined by

B=e*{1+(1-e**)"?}. (30)
The result is
X W (e =(1+ 7" Z Ji{(n—2h+j)e*}
§=—x
XX(,‘(”}',&,()"QH)(e*), (31)

where

—(n+1), (n—2h =
X(n‘"%.l,‘)"e (e®)=

2n+2h

o ) F(2n—2h+j—0,2h,j—0+1; 8%

oy
for (j-

i+ —-2h e e 2
(-B) "(_]+0)F(0+2h h2n—2h, —j+6+1;8%)

| for

—-j+6=0. (32)

Here Jo{(n—2h+j)e*} is an ordinary Bessel function of
degree 6 and the symbol F denotes a hypergeometrlc
function. It is clear from (31) and (32) that for small e*,
the Hansen coefficient X{;f";ﬂlff 2h)e*) is of order

e*. Since B =%e*+01e**) and

(n—2h+j)e*

To{(n—2h+j)e*}=— ( 5 )+O(e*°+z) 0=0

Jod(n—2h+j)e*}=(-1)* To{(n—2h+))e*} 6=0.

It follows that
li!

n _ d=(n=2h+i)°
XGhr (e = ), (i
8=0

6!
=2 :

x( j'f;z”)w{e*ﬁz} it j=0 (33)

or

i
2h+
XG0 =20 ) Z{ 1 *}lpl("__f)_

n—2h+j)
"“_

—2h .
X( . 9)+0{e*“'+2} if j<0. (34)
—j-

Hence H,,1(e*) and H, ) _;(e*) are obtained to order
e* if j=1 and j=—1 are substituted into (33) and
(34), respectively. On simplification, it is found that

(3n—-4h+1)e*

> +0(e*3)

Hn,h,l(e*) = (35)
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and

(4h—n+1)e*

5 +0(e*?).

H,-1(e*)= (36)

Similarly, if j= +2, the expressions for H, ,,(e*) and
H,, _,(e*) to 0(e*?) are

(9n*+16h*—24hn—18h +14n +4)e*?

Hn,h,+2(e*) = 8
(37)
and
n2+16h%—8hn + 18h —4n +4)e*?
Hyp—ale®) = ; ™
(38)

If the appropriate expressions for the Bessel and
hypergeometric functions are used, then, after a consider-
able amount of algebra, H, ¢(e*) is found to be given up
to 0(e**) by

(n—3n%+16hn—16h?%) e*?

Hn.h,o(e l‘!) =1+ 2

APPENDIX 2

Additional Terms in the Expression for ®,,4
On making use of equations (12), (13), (37) and (38),
the expression &4 for the long-period terms of 0(ee*?)
and with n=1 is found to be
5 81S,A(2-¢)aee*’
(I)rad =
16cm,

X [2csc*s* cos (o — w*-3M¥)

— 2csc*s* cos (@ + 0* +3M*)

+ c2c*? cos (0 —w*—3M*+Q)
+¢25*? cos (0 +0*—M*+ Q)
+s5%c* cos (—w—w*-3M*+Q)

815

+525*2 cos (— w + 0*+3M*+ ()
+Fesc*s* cos (0 — w* +M¥)
— & csc*s* cos (0 +w*— M¥)

CZC*Z
+ cos (w—aw*+ M*+Q)
27
23*2
+ > cos (w+w*+3M*+ Q)
szc*z
+ cos(—o—w*+M*+Q)
27
szs*z
+ 57 cos(—w+w*—M*+Q)]. (40)

Similarly, the expression @7, 4 for the long-period terms in
®, .4 of 0(e*) having n values of 2 is

-SA(2—¢€)a’e* 3e2
2cmea* cr(HT)
X [— 2 3sin? i—1)c**s*? cos (2w* +3M™*)
+3@3sin% i—1) c**s*? cos (20* + M¥)
+33sin? i—1) G sin® i*—1) cos *
—21cs(c2—5%)c*3s* cos (—20* —3M*+ Q)
+ 3cs(c®—s%)c*s* cos (—20* — M* +0)
+9¢s(c?—s3)c*s*(c*? - s*2) cos (—M*+ Q)
+9¢s(c?—5)c¥*s*(c** — s*%) cos (M* + (1)
- 3es(c?—s%)c*s*? cos 2w* + M*+(1)
+21cs(c*—s*)c*s*? cos Qu* +3M*+Q)
+2Lc252c* cos (—20* - 3M* +2Q)
cZsic*
2
+9¢252c*25%2 cos (— M*+20)
+9¢%5%c*25*2 cos (M*+2Q)
—3c%5%5** cos 2w* + M*+2Q)

C -
q)nd =

cos (—2w*—M*+20)

+%c%5%5* cos Qo*+3M* + 20)] . (41)



