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Abstract

The work described in this thesis was undertaken to obtain a unified treatment
to the controller size reduction problem in advanced robust control system de-
sign. A common feature in state-space solutions to advanced control system de-
sign, such as parametrizations of all stabilizing controllers and H, suboptimal
controllers, is that a free parameter matrix is contained in the parametrization
to give the designer freedom in designing the required controllers. However,

this free parameter can provide unnecessarily high order controllers.

This thesis presents a new methodology for controller size reduction. The
methodology utilizes the parametrization of all stabilizing controllers and He,
suboptimal controllers, and then generates a set of low-order stabilizing con-
trollers and a set of low-order H,, suboptimal controllers, respectively. The
central idea is to achieve a low-order realization of a full-order controller, by
deriving and solving two simultaneous matrix equations in order to eliminate
unobservable states. Orthogonal canonical forms are employed to solve these
simultaneous equations. A consequence of the algorithms employed is that the
order of the controller is reduced from n + n, (or n + ng4) to n, (or ny), where
n is the order of the weighted plant and n, (or ng) is the order of the free

parameter.

In design applications, a possible solution to the problem of combining the
objectives of robust stability and performance requirements is to use a loop
shaping design procedure based on normalized coprime factor plant descriptions.
The methodology obtained for low-order H,, suboptimal controllers is extended,
with slight modifications, to one and two degree-of-freedom loop shaping design

procedures.

The results are illustrated by numerical examples. Finally, a practical industrial
problem of designing a low-order controller for a tetrahedral robot is considered

by applying the methodology developed in the thesis.
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Chapter 1

Introduction

1.1 Background

Advanced control system design addresses multivariable plants, high perfor-
mance requirements, significant model uncertainties, and disturbance signals.
Each of these characteristics forces the control system to be complex in some
sense. A good measure of the complexity of a linear state-space model is the
dimension of its states, sometimes referred to as the system order. Examples of
high-order systems are: nuclear power plant (> 500 states); chemical processes
(> 100 states); compact disc players (> 100 states); flexible spacecraft (> 20

states), etc.

The complexity of a linear controller, like the plant under control, can also be
measured by the dimension of its states. In present-day robust/optimal control
system design with its emphasis on robust stability and robust performance
of the closed-loop system, the complexity of the controller can easily exceed
that of the plant. In particular, H,, optimal design typically leads to complex
controllers, i.e., controllers of high state dimensions. For example, a standard

Hoo design procedure generates a controller of the same order as that of the
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generalized plant model (including actuators and weighting functions) to be

controlled.

The high complexity of a controller adversely affects cost, commissioning, and
maintainability. In contrast, a lower-order controller would be desirable, be-
cause it provides easier implementation (i.e., less on-line computational require-
ments), easier test and commissioning, easier maintenance, and easier training
for a plant’s operating personnel, etc. It is known, however, that there might
be undesirable deterioration in the closed-loop performance when a low-order

controller is being used in the place of a full-order controller.

It is therefore natural to wish to minimize control system complexity for high-
order plant, subject to the achievement of satisfactory performance specifica-
tions in the face of uncertainty. That is, it may be reasonable for us to look
for a reduced-order controller instead of the best full-order controller thereby
trading-off complexity against reduced performance. The concept of ‘simplicity’

in designing controllers is analogous in spirit to the following philosophy:

Things should be as simple as possible, but no simpler.

It is desirable therefore to reduce controller complexity from both the design
process and the final controller. The problem of reducing the dynamic order
(i.e., McMillan degree) of the controller while retaining closed-loop stability and
performance will be called the Controller Size Reduction Problem. It has
become a research topic of great practical significance and has attracted much

interest from researchers.

1.2 Motivation

While model reduction techniques have been well developed, the problem of
controller size reduction is not easy and remains an open problem because of

the following reasons:
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e The resulting controller is required to have the lowest possible order, for

‘simplicity’, while capturing the important features of the control problem.

o Despite many previous efforts at the problem, a number of important
issues - stability, robustness and performance - have not been properly
addressed. Therefore, trade-offs between the controller size reduction and
the allowable performance deterioration (due to controller size reduction)

are to be made.

6 The methodology for controller size reduction must be flexible enough
to deal with controller structures, and should not lead to sophisticated

procedures.

In advanced control system design, robust/optimal controllers may be designed
for complex multivariable feedback systems to achieve stringent performance
objectives in the presence of (unstructured) uncertainty. However, algorithms
for synthesizing such controllers, e.g., He, optimization, are not able to explicitly
constrain the complexity of the control law. A common feature in the available

state-space solutions for

e parametrizations of all stabilizing controllers [75]
o parametrizations of H., suboptimal controllers [18],[27]

o parametrizations of robustly stabilizing controllers (using the normalized

coprime factor plant descriptions) [28],[47]

e parametrizations of two degree-of-freedom (2-DOF) H,, controllers [43]

is that a free parameter matrix Q(s) (or ®(s)) is contained in the parametriza-
tion to give the designer freedom in designing the required controllers. How-
ever, the freedom in this parameter usually leads to unnecessarily high order

controllers. Although a good model reduction technique can be applied to the
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control law to reduce its complexity, an alternative methodology for reducing

controller size is seen as an important and valuable research goal.

1.3 Related Literature

The literature includes much work on controller size reduction as well as on
model reduction. In the account that follows, however, only the major results
which provide a fundamental basis and motivation for the direction of this thesis

are mentioned. More details of related literature can be found in the main text.

Fundamental to control system design is the requirement of internal stability.
A celebrated solution to the stabilization problem is the parametrization of
all stabilizing feedback controllers for a given plant, using a free parameter.
This was initially developed by Youla et al. [75] and generalized by Desoer
et al. [15]. Such a parametrization provides a basis to the H, (sub)optimal
control problem. The latter is an important problem in advanced robust control
system design, where stabilizing controllers which satisfy an upper bound on
the H-norm of a certain closed-loop transfer function matrix are to be found.
Glover and Doyle [27] and Doyle et. al [18] have recently provided an elegant
state-space solution to this problem via two Riccati equations. In this, the set
of all M., suboptimal controllers is parametrized using plant data and a free

parameter.

A simple, yet very useful design procedure based on H, optimization and ideas
from classical control was introduced by McFarlane and Glover [47]. It is called
the Loop Shaping Design Procedure (LSDP), and is essentially a one degree
of freedom (1-DOF') design scheme. First the plant is modified by pre- and
post-compensating weights to shape the open-loop singular values so that they
correspond to good closed-loop performance and robust stability properties as

described by Doyle and Stein [19]. Then an H,, robust stabilization property is
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solved to maximize robustness with respect to perturbations in the normalized

coprime factors of the shaped plant.

To introduce more performance objectives into the control problem, a 2-DOF
scheme can be employed, e.g., Youla and Bongiorno [74]. An extended loop
shaping design procedure in an H,, setting was recently proposed by Limebeer
et al. [43] building on the 1-DOF LSDP of McFarlane and Glover. In this 2-DOF
scheme the extra degree of freedom is used for model-matching the closed-loop

transfer function to an ideal response.

1.4 Contribution and Organization of Thesis

In this thesis, we present a new and unified methodology to the problem of con-
troller size reduction in advanced robust control system design. By utilizing and
suitably choosing a free parameter, which is commonly involved in iﬁportant
parametrizations of controllers such as the Youla parametrization [75], Glover
and Doyle’s parametrization [27] and Glover and McFarlane’s parametrization
[28], an observable (or controllable) realization of a controller of low-order is
obtained in each case. Consequently, the methodology improves the usefulness

of such parametrizations in practice.

Design objectives for advanced robust control systems are more than just He.-
norm bounds. For example, we might have time domain requirements on rise
time, settling time, overshoot, and undershoot, and there might be requirements
on the controller size. The work in this thesis contributes to optimal yet small
size controller design. The major contributions of this thesis are covered in

Chapters 4 to 8 and are considered to be:

e A low-order stabilization problem is solved in Chapter 4 using the Youla

parametrization of all stabilizing controllers. A constructive algorithm for
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computing the low-order stabilizing controllers is developed in state-space
form. The main elements of Chapter 4 have been published in [12],[30].

s It is shown in Chapter 5 that the order of H,., suboptimal controllers
parametrized by Glover and Doyle may be reduced, in a constructive way,
by suitably choosing a free parameter ®(s). The bulk of Chapter 5 has
been presented in [31].

o Constructive algorithms are similarly given for computing low-order con-
trollers from the 1-DOF and 2-DOF LSDP in Chapters 6 and 7, respec-
tively. The results of Chapter 6 have been presented in [13].

o Illustrative examples are given to verify the theory developed and to show
the details of the steps involved. Further, in Chapter 8, the theory devel-

oped is applied to a practical industrial problem.

This thesis consists of 9 chapters, and we next give an outline of the main

contents of the chapters that follow.
Chapter 2: Preliminaries

In this chapter, we review relevant results from linear systems theory. Included
are orthogonal canonical forms, the Sylvester equation, the Lyapunov equation,
coprime factorizations, norms of systems, relations between the Riccati equation

and an He-norm bound, and linear fractional transformations.
Chapter 3: Model Reduction and Controller Size Reduction

In this chapter, an overview of the model reduction and controller size reduc-
tion problem is given. Balanced realizations are introduced, followed by model
reduction techniques such as modal residualization, balanced truncation, Han-
kel norm model reduction, and coprime factor model reduction. Some existing

results on controller size reduction are also described.
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.Chapter 4: Low-Order Stabilizing Controller Design

In this chapter, we derive an algorithm to generate a set of low-order stabilizing
controllers, using the well-known Youla parametrization [75] of all stabilizing
feedback controllers. The algorithm requires a solution to two simultaneous
matrix equations. Pole assignability via output feedback is shown utiliziﬁg a
separation property. An explicit formula for low-order stabilizing controllers
is derived as a special case. Relevant issues are discussed, and a constructive

algorithm is given together with numerical examples.
Chapter 5: Low-Order H,, Sub-Optimal Controller Design

In this chapter, low-order H,, suboptimal controllers are derived by extending
the concept developed in Chapter 4 to the state-space solution of Glover and
Doyle [27] for the standard M. suboptimal control problem. A constructive
algorithm is given which requires a solution to two simultaneous matrix equa-
tions, as in Chapter 4, but subject to an H.-norm constraint. Two numerical

examples are presented to illustrate the results.
Chapter 6: Low-Order Robust Sub-Optimal Controller Design

In this chapter, the so-called Mo Loop Shaping Design Procedure (1-DOF
LSDP) of McFarlane and Glover [47] is considered. It is shown that the pro-
cedures discussed in Chapter 5 can be carried over to the 1-DOF LSDP, with
only slight modifications, to derive low-order robust suboptimal controllers. An

example is presented.
Chapter 7: An Extension to H,, 2-DOF Controller Design

In this chapter, the results of Chapters 5 and 6 are further extended to the two
degree-of -freedom H,, controller design procedure (2-DOF LSDP) of Limebeer
et al. {43].
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Chapter 8: Application to the GEC-Alsthom Tetrahedral Robot

In this chapter, we consider a practical industrial problem of designing a low-
order robust suboptimal controller for a tetrahedral robot, Tetrabot. The results
of this thesis are applied to the problem to demonstrate their effectiveness and
comparisons are made with a “central” 7, optimal controller which can be

obtained using standard ., algorithms.
Chapter 9: Conclusions and Future Research

This final chapter contains concluding remarks and suggestions for further re-

search.

1.5 Notation

1.5.1 Symbols

All systems in this thesis are linear, multivariable, finite-dimensional and time-
invariant, and possess real-rational transfer function matrices. The work is

carried out in continuous time unless otherwise stated.

A (proper) transfer function matrix is represented in terms of state-space data
by

A

:=C(sI—A)B+D
1D (s ) +

alternatively written as (4, B, C, D), where 4, B, C and D are real matrices of
appropriate dimensions and [ is the identity matrix. If D = 0, the zero matrix,
then the system is strictly proper and we shall write (4, B, C). The matrix A is

asymptotically stable if and only if each of its eigenvalues has a strictly negative
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real part. In that case the system (A4, B,C, D) is also called asymptotically
stable.

Standard notation is used as far as possible as listed below.

Ve denotes the controllability index.

7 denotes the observability index.

N denotes the order of a full-order controller.
Neentral denotes the order of a central controller.
Niow denotes the order of a low-order controller.

3 Laplace variable. (s = Jw yields the frequency response.)
Re|z] Real part of .

R n-dimensional real Euclidean space.

cr . n-dimensional complex Euclidean space.
Rmx Set of real m X ! matrices.

cmxt Set of complex m x [ matrices.

Aj; The (%, 7) element of A.

I, m; X m; identity matrix.

Omxt m X | zero matrix.

AT Transpose of real matrix 4.

AH Transpose of complex conjugate of matrix A.
At Pseudo-inverse of matrix A.

AZ>0 Matrix A is positive semi-definite.

A>0 Matrix A is positive definite.

Al/? For matrix 4 > 0, any square matrix B such that A = B¥B.
det(A) Determinant of matrix A.

rank(4) Rank of matrix A.

tr(A4) Trace of matrix A.

Ai(4) The i-th eigenvalue of matrix A.

Amaz(A) Largest eigenvalue of matrix A.

Amin(4) Smallest eigenvalue of matrix A.
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p(4)
oi(A)
Omaz(A)
Tmin{A)

G(s)
G*(s)
GH(s)
deg(G)
Omaz(G)
Trmin(@G)
o (@)
RLeo

RHo
RL,

RH,

()]l

1z () llrms
1G(s)ll2
1G(s)lleo
G ()llrms
1G()l=

b bW < M

i

=<

Spectral radius of 4, i.e., max{|A\|: A € A(4)}.
The i-th singular value of matrix A.
Largest singular value of matrix A.

Smallest singular value of matrix A.

denotes a transfer function matrix.

= GT(—s), i.e., the parahermitian conjugate of G(s).
:= GT(3), i.e., the complex-conjugate transpose of G(s).
Degree of G(s), i.e., the number of states of G(s).
Largest singular value of G(s).

Smallest singular value of G(s).

Hankel singular value of G(s).

Lebesgue space of real rational matrices whose elements
are proper and have no poles in the jw-axis.

Hardy space of real rational matrices whose elements
are stable and proper.

Lebesgue space of real rational matrices whose elements
are strictly proper and have no poles in the jw-axis.
Hardy space of real rational matrices whose elements
are stable and strictly proper.

Ly-norm of a real vector valued signal z(t).

RMS norm of a real vector valued signal z(¢).

Ha-norm of a transfer function matrix G(s).

Heo-norm of G(s).

RMS gain of G(s), equal to its Heo-norm.

Hankel-norm of G(s).

‘An element of’.

‘For all’.

‘Is not equal to’.

‘Y is defined as X

‘X is defined as Y.

10
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Finally, the notation X := Ric

E -w
-Q -—-ET

solution matrix X to an algebraic Riccati equation:

ETX+XE-XWX+Q=0.

1.5.2 Abbreviations

ARE
BIBO
CAA
CAD
CLHP
CLTF
CRHP
DOF
LCF
LFT
LQG
LSDP
LTI
MIMO
OAA
PI
PID
RCF
RMS
SISO
SVD

Algebraic Riccati Equation
Bounded-Input Bounded-Output
Controllability Argument Approach
Computer Aided Design

Closed Left-Half Plane
Closed-Loop Transfer Function
Closed Right-Half Plane

Degree of Freedom

Left Coprime Factorization

Linear Fractional Transformation
Linear Quadratic Gaussian

Loop Shaping Design Procedure
Linear Time-Invariant

Multi-Input Multi-Output
Observability Argument Approach
Proportional plus Integral
Proportional plus Integral and Derivative
Right Coprime Factorization

Root Mean Square

Single-Input Single-Output

Singular Value Decomposition

is used to denote a stabilizing



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we introduce some well-known results on continuous time lin-
ear time-invariant systems, which will be particularly useful in the following

chapters.

Section 2.2, on linear systems theory, includes the state-space form of a transfer
function matrix, operations in linear systems, controllability and observability.
Orthogonal canonical forms are introduced in Section 2.3, and algebraic equa-
tions such as the Sylvester and Lyapunov equations are reviewed in Section 2.4.
In Section 2.5, definitions and an important theorem on coprime factorizations
are given. Relevant norms of systems are introduced in Section 2.6, and a useful
relationship between the Riccati equation and an H,-norm bound is discussed
in Section 2.7. Finally, linear fractional transformations are reviewed in Section

2.8, together with an alternative chain scattering description.

12




Ch. 2. PRELIMINARIES 13

2.2 Some Systems Theory

2.2.1 Transfer Functions

Consider a linear state-space model G(s) described by

I

a(t)
y(t)

Az(t)+ Bu(t),  z(0)=0 (2.1)
Ca(t) + Du(t) (2.2)

where z(t) € R™ is the state vector of the system, u(t) € R™ is the control
vector and y(t) € R! is a vector of measurements, and A € R™", B € R™™,
C € R™", and D € R'*™ are real matrices.

Taking Laplace transforms of (2.1)-(2.2), the resulting transfer function is

Al|B
C

Note that (2.3) says nothing more than (2.1)-(2.2); in other words, there is no

G(s)=C(sI-A)'B+D= . (2.3)

implication that the realization is minimal or not.

Throughout this thesis, we will assume that the direct transmission matrix of
the plant model is a zero matrix (D = 0), that is, the plant is strictly proper.
This assumption of strictly properness is not essential and can be removed at the
expense of more cumbersome formulas. Thus, this assumption may be justified
not only by computational simplicity but also by the fact that most real systems

are indeed strictly proper.
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2.2.2 Operations on Linear Systems

Under a state similarity transformation, £ = T'z, system G(s) = (4, B,C, D)
becomes
TAT | TB

Gle) = cr | p

ilB

where T is invertible.

Given two systems defined by G1(s) = (41, By, C1, D1) and Ga(s) = (4z, Be, Ca, Ds),

a state-space representation of the series-connected system is given by

AZ\BQ}

C | D,

e
01|D1

Ga(s) x Ga(s)

i

X

A, B,G; | BiD; |
= |0 A4 | B (2.5)
| C. DiC, | DiD, |
4, ol B, |
= | B.C, 4 |BiD, (2.6)
| D:iC, Ci|DyD, |

There may be cancellations between the poles of one system and the transmis-
sion zeros of the other, in which case this realization will not be minimal even
if G4(s) and G5(s) were minimal. A minimal realization can be obtained as

described, for example, in Maciejowski [46, Section 8.3.5].

Given G1(s) and G(s) as above, the state-space representation of the parallel-

connected system is given by

[ 4| By 4; | B,
Gi(s) + Ga(s) = C }D s { D, j‘
1 1
4, 0] B
= |0 4| B 2.7
& G |Dit+Dy
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Again, this realization may not be minimal even if Gy (s) and Go(s) are minimal.
Given the system G(s) = (4,B,C, D), we can obtain a state-space realization
for the inverse system as

A-BD-iC|BD™
-p-i¢ | D

Gl (s) = (2.8)

provided the system is square (i.e., [ = m) and D is nonsingular. If the system

is not square, then a pseudo inverse D' of D can be used in the place of DL

Finally, a state-space realization for the dual system is given by

AT | CT
GT(s) = 57 o7 (2.9)
and the parahermitian conjugate system by
—AT | T
G*(s) = GT(—s) = 5T | or | (2.10)

2.2.3. Controllability and Observability

For the system (2.1)—(2.2), the pair (4, B) is controllable if, for each time £; > 0
and final state z;, there exists a continuous input u(¢) such that the solution of
(2.1) satisfies z(¢1) = 1.

Lemma 2.1  The following are equivalent:
1. (A, B) is controllable.
2. The matriz [ B AB -.. A~'B ] has independent rows.

3. The matriz [ A—)M B ] has rank n for all eigenvalues of A in C.
4. M(A+BF) (i=1,--,n) can be freely assigned subject to complex conjugate
pairs by suitable choice of F.
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The pair (A4, B) is stabilizable when there exists an F such that A + BF is
stable.

Lemma 2.2 The following are equivalent:
1. (A, B) is stabilizable.
2. The matriz [ A-X B ] has rank n for all eigenvalues of A in CRHP.

8. The uncontrollable modes of the system mairiz A are stable.

We will now consider the dual notions of observability and detectability for the
system (2.1)-(2.2). The pair (4, C') is observable if, for every t; > 0, the function
y(t), t € [0,%1], uniquely determines the initial state .

Lemma 2.3 The following are equivalent:
1. (A,C) is observable.
T
2. The matriz [ CT ATCT ... (AT)Y1CT | has independent columns.

3. The matriz [ AT\ CF ]T has rank n for all eigenvalues of A in C.

4. N(A+HC) (i=1,---,n) can be freely assigned subject to comples conjugate
pairs by suitable choice of H.

5. (AT,CT) is controllable.

The pair (4, C) is detectaeble when there exists an H such that A+ HC is stable.

Lemma 2.4  The following are equivalent:
1. (4,C) is detectable.
T
2. The matriz [ AT —x1 T ] has rank n for oll eigenvalues of A in CRHP.

3. The unobservable modes of the system matriz A are stable.
4. (AT,C7) is stabilizable.

The following definitions, first introduced by Luenberger [45], are of particular

importance in this thesis.

Definition 2.8 The controllability indes, v,, of the system (2.1)-(2.2) is the
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least positive integer for which the matrix
[ B AB ... A»B ]

has rank n. Similarly, the observability indes, v,, of the system (2.1)-(2.2) is

the least positive integer for which the matrix
T
[om aer .. (amyeior |

has rank n.

A realization of G = (4, B, C, D) is minimal if and only if (4, B) is controllable
and (4, C) is observable.

Consider the system (2.1)-(2.2) again and assume that C is of full rank. In this

case, it can also be assumed that the matrix C takes the form

C= [ 5 Oy ] (2.11)

It is then convenient to partition ¢, A and B as

Apn A B
e= || A= | M2 o p_ | (2.12)
T2 An Ay By
and accordingly write the system (2.1)-(2.2) in the form
; Ay A T B
5-01 _ 11 A2 1 L (2.13)
T An Ao T2 By

<
!

T

K 0][1} (2.14)
T2

The following Lemma 2.6 relates observability to that of particular partitioned

block matrices and will be of use later.

Lemma 2.6 (Gopinath [29]) If (4,C) is completely observable, then so is
(Asz, A12).
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Proof:  Reference [29] gives a proof. We give an alternative proof below.

- Al

A
Since (4, C) is completely observable, the matrix is of full column

rank for all eigenvalues of A in C. Using (2.11)-(2.12), we have
An— A Ay
= Agy Ag— M (2.15)
I 0
and thus the right-hand side of (2.15) is of full rank. This is satisfied if and

A12

A— AT
C

only if is of full column rank. By Lemma 2.3 this is equivalent

22 —
(Asgz, A1z) is completely observable.

2.3 Orthogonal Canonical Forms

Orthogonal transformations are useful for reducing a linear system (2.1)-(2.2)
into a canonical form in a numerically stable way, e.g., Petkov et al. [55] and
Van Dooren et al. [69]. Such orthogonal canonical forms play an important role

in obtaining low-order countrollers as described in this thesis.

Using an orthogonal matrix U, a controllable pair (4, B) can be reduced to the
so-called orthogonal canonical form (4., B,) := (UTAU,U” B) with

All A12 e Al,uc—l Al,yc Bl
A21 A22 e A2,uc—1 AZ,uc
Ac = 0 Agz e A3,uc—1 AS,I/,; Bc = U (216)
L 0 0 T AVc»Vc“l AVc,Vc i 0 ]

where v, is the controllability index of (A4,B), By is m; x m and 4;;1(i =
2,:+-,V,) are m; X m;_; matrices,
rank(Bl) = my
rank(A;; 1)

B

3
I

R

CE 78
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and the numbers
my 2 Mg = 2m,,
mi+me+t--tmy,, =n

are the conjugate Kronecker indices of the pair (4, B). The form (2.16) is also
said to be the block-Hessenberg form (or staircase form) of the pair (4, B).

A dual realization is available, by working with the pair (4%, C7T) instead of
(4, B) and then transposing the result. That is, an observable pair (4,C) can

be reduced into the orthogonal canonical form (4,,C,):

Ay Ag 0 -+ 0
Ag Agz Ags
A, = UTAU = : : S0 (2.17)
Avo—-l,l -A-vo»—l,2 Auo——l,3 T Auo—l,uo
| A Auz Aus o A,
C, = CU=|¢C, 00 -- o] (2.18)

where v, is the observability index of (4, C), Cyis Ixly and A;ja(z =1, -, vo—
1) are I; X l;34 matrices,
rank(Cy) = I
rank(4;;41) = L i=1,",0—1
and the numbers

h2l> 21

= by,

h4+l+--+lh,=n

are the conjugate Kronecker indices of the pair (4, C).

Remark 2.7 The orthogonal canonical forms shown above provide a numer-
ically reliable way to check for the controllability and observability of system
(2.1)-(2.2). The matrix A,, .1 (respectively A,,_y,,) is of full rank if the sys-
tem is completely controllable (respectively observable), otherwise A, ,,—1 = 0

(respectively A, _1,, = 0).
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Remark 2.8 Stable computational algorithms for finding these orthogo-

nal canonical forms are available using the so-called staircase algorithm, e.g.,

Konstantinov et al. [40] and Boley {4].

Following Konstantinov et al. [39], the pair (A4, B) can be further transformed
into the orthogonal canonical form (4, B,) as in (2.19)-(2.20) below, provided

the pair (4, B) is completely controllable:

An Az e Ay A1,
[ I, O ] Ao o A Aoy,
A, = 0 [Im3 0] Ag 1 Ag .
0 0 I:Imv: 0} Au.;,u.;
[ 2 0]
0
Bc = 0
- 0 -

(2.19)

(2.20)

We next give an algorithm for obtaining the form (4., B;) as above, since the

dual result of this form will be frequently used in this thesis.

1. Given A € R™™ and B € R™™, find a controllability index v..

2. Do a singular value decomposition (SVD) on B as B = U; 2, VT, and then

build B® as

L.
BW .= UTBG, = [ :
0

by choosing a suitable matrix Gy, where m; = rank(B). Let P := U7

and @; := Gy. Then

AW = PrIAP.




Ch. 2. PRELIMINARIES ' 21

3. Partition A®) as

and let mq := rank(Agll)).
4. Do a SVD on A as A = U,5,V7, and then build A% as

Imz
0

AR =vTAla, =

by choosing a suitable matrix Gy. Let

nel@ 0| ianle 0]
0 Ut 0 Inm,
then
A® = (PP)'APP,
B® = (PP)'BQ:Q,.

5. Partition AP ag
AR AR AR
AD = I, A5 A
0 Af AQ
and let mg := rank(42).

6. Do a SVD on AY) as A = U, V7, and then build AY as
L,
0
Gs 0

0 In,

A(a) = (P1P2P3)—1AP1P2P3
B® (PP P3) ™ BQ1Q2Qs.

A5 = U5 A5Gy =

by choosing a suitable matrix Gs. Let

Gs 0

Py =
’ 0o T

and @3 :=

then
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(ve—1)
Veve—=1/"

7. Repeat this procedure until m,, := rank(A
8. Finally, we obtain

A1)

il

(Png .. 'P,,c)~1A(P1P2 A P,,C) = Ac

Bl (PP P ) ' B(QuQz - Qu) = Be.

By a dual argument, the pair (4,C) can be further transformed into the or-
thogonal canonical form (4,,C,) as in (2.21)-(2.22) below, provided the pair
(4, C) is completely observable:

A, = MAM™

; .
Ay { ’{t 0 0
0

I
Ag Az (;3 J 0
= . _ (2.21)

. : H . 0
I

Auo—l,l Auo—1,2 Au°—1,3 o ]
0

L Al/o,l -Auo,2 Avo,3 e Auo,uo

C, = NCM™!

= II] e
= _[0]00 0} (2.22)

where the matrix M is a product of an orthogonal matrix and diagonal matrices,

and N is a nonsingular matrix.

2.4 Algebraic Equations

In this section, we give some properties of the Sylvester and Lyapunov equa-

tions. The Sylvester equation and a standard linear equation are to be solved
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simultaneously in our methodology for deriving low-order controllers to be pre-

sented later.

2.4.1 Sylvester Equation

The standard Sylvester equation is of the form
AX+XB=C (2.23)

where 4 € R™"*, B € R™*™ and C' € R™™ are given matrices. Necessary and
sufficient conditions for the existence and uniqueness of a solution X to the

standard Sylvester equation are as follows, e.g., Kudera [41]:

e A solution X € R™™ to the standard equation ezists if and only if the

. B o B 0 .
matrices and are similar.
Cc -4 0 -4

e The standard equation has a unigue solution X if and only if
Re[Mi(A)] + Re[X;(B)]#0 Vi=1,---,nandVj=1,--+,m.

The equation (2.23) is also called the general Lyapunov equation. In particular,
if B = AT, (2.23) is reduced to the standard Lyapunov equation.

2.4.2 Lyapunov Equation

For the standard Lyapunov equation
ATX +XA+Q=0 (2.24)

with given real matrices 4 € R™™ and @ € R™", Q@ = QT > 0, the following

facts are well known, e.g., Barnett [2]:
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1) If A is stable, then the solution is X = [5° e4"' Qe dt.
2) If A is stable, then X is unique and positive definite. (X > 0 if @ > 0).

Given the solution X to (2.24), we may conclude the following stability prop-
erties of the matrix A:

1) Re[M(A)] <0 X >0and @ > 0.

2) A is asymptotically stable if X > 0 and @ > 0.

2.5 Coprime Factorizations

A number of well-known results on coprime factorizations found in Vidyasagar

[70] will be used in this thesis, and are summarized below.

Definition 2.9  Suppose M,N € RH,, have the same number of columns.
Then M and N are right coprime if and only if there exist U,V € RH,, such
that

UN+VM=1. (2.25)

The relation (2.25) is called the (right) Bezout identity. It is possible to repre-
sent a possibly unstable transfer function in terms of two stable, coprime factors

using a right coprime factorization which is defined as follows.

Definition 2.10 The pair (N, M), where M, N € RHeo, is a Right Coprime
Factorization (RCF) of G(s) if and only if

(a) M is square and det(M) 5 0

(b) G=NM™, and

(¢) N and M are right coprime.

Left coprimeness and a Left Coprime Factorization (LCF) can be defined in an
analogous way. Thus if (M, V) is a LCF of G(s), then G = M'N.
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Lemma 2.11  Let (N, M), (M, N) be any RCF and LCF of G(s). Suppose
U,V € RHe satisfy
UN+VM =1 (2.26)

Then there exist M,]V € RHe, such that
vV U M -0
-N M || N -V

The ordered pair of matrices in (2.27) is called a doubly coprime factorization

=1 (2.27)

of G(s). State space constructions of a doubly coprime factors will be described
later in Chapter 4, Subsection 4.2.2.

For a given G(s), there are infinitely many coprime pairs. A special pair is a
normalized coprime factorization which satisfies
MM*+NN*=I  (for an LCF) (2.28)
M*M +N*N=1I (for an RCF) (2.29)

and will be treated later in Chapter 6, Section 6.2.

2.6 Norms of Systems

In this section we review methods of measuring the size of an LTI system with
input v and transfer function matrix G(s). Of interest are the Hy-norm and

the Hoo-norm.

The Hz-norm of the stable transfer function matrix G(s) is defined as

o 1/2
16 = (5 [ (@ (0)6(w)) dw) (2.30)

and measures, for example, the RMS response of its output when the input is
a white noise process, e.g., Boyd and Barratt |7, p.110]. The LQG theory is

concerned with minimizing ||T'||; for a suitably specified T'(s).
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The Hyo-norm of the stable transfer function matrix G(s) is defined as
I6(3)lle = 5uR (mas( & (j0) G(Gw)))
= sup (Omer(G(jw))) (2.31)
WER

and is importantly interpreted as the £, or RMS gain of the system G(s). This

is because the RMS gain of a transfer function matrix is defined as

Gu TS
11G() I = G (2.32)
lleftrmezzo |[2]lrms
which coincides with its £, gain
IGull2
G(8)lrms = sup = 2.33
16l llullozo [l (2:33)
where
o 1/2
@l = ([ v a)
i L T 12
”u(t)”wns = Tl—{Iolof A u (t) i .
Remark 2.12  If the transfer function matrix is scalar, then
llg()lleo = sup [g(jw) |- (2.34)

That is, the co-norm is the highest value of the Bode magnitude plot. On
the Nyquist diagram, the co-norm is the maximum modulus of the frequency
response G(jw) over all real frequency w, i.e., the maximum distance from the

origin to the Nyquist diagram of G(s).

In control theory, the Ho,-norm of the closed-loop transfer function matrix can
be interpreted as the worst case energy gain (actually, ||G||%, is the worst case
energy gain, since ||u||? represents energy). Hence, minimizing the H,-norm of
a transfer function matrix is equivalent to minimizing the energy in the output
signal due to the energy in the input signal. A further property of the Ho,-norm

of a closed-loop transfer function matrix will be used in Chapters 5, 6 and 7.
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That is, the H-norm of a closed-loop transfer function matrix is a particularly
useful measure to minimize because it enables robust stability guarantees to be

made.

2.7 Algebraic Riccati Equations and H.~-Norm

Bounds

The algebraic Riccati equation (ARE) plays a key role in optimal control theory.
In this section, an important relationship between the solution to a certain ARE
and an H-norm bound is considered. It will be used in connection with an
‘Hoo-norm constraint on some auxiliary dynamics ®(s) - a free parameter matrix

- to be discussed in Chapters 5, 6 and 7.
Consider the following ARE:
ETX+XE-XWX+Q=0 (2.35)

where E,W,Q € R™"*, W = WT and Q = Q7. For (2.35), we define a corre-

sponding Hamiltonian matrix as

(2.36)

and define a unique stabilizing solution to (2.35) by X = X7 and Re[N(E —
WX)] < 0, [16]. We may denote the stabilizing solution via its Hamiltonian

maftrix as

X :=Ric[M]. (2.37)

The existence of ARE solutions is closely related to satisfying Heo-norm bounds

as is now described. Let a transfer function matrix G(s) of appropriate dimen-
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sions be

For the following ARE:
(A-BR;'DTCY'X, + X, (A— BR;'D"C)
—yX,BR;*BTX., — yCTS;'C =0 (2.38)

where

R, = DD -~

S, = DDT -4
the Lemmas 2.13 to 2.17 below show the relationships between the stabilizing
solution of the ARE (2.38), its positive definiteness and an He-norm bound on

G(s). A proof of Lemma 2.13 can be found in [16] and proofs of Lemmas 2.14
to 2.17 are given in Appendix A.

Lemma 2.13  There esists a unique stabilizing solution of the ARE (2.38) if

and only if the Hamiltonian matriz

A— BR:'DTC —yBR:*BT
M,y = v T (2.39)
yCTS;1C —(A—- BR;}DTC)T
has no jw-awzis ergenvalues.
Lemma 2.14 The ARE (2.98) has a unique stabilizing solution
X, = Ric[M,] (2.40)

if A is stable and {|G(s)|]eo < 7

Lemma 2.15  ||G(s)||ee < v if the ARE (2.38) hus o stabilizing solution X,
and A is stable.

Lemma 2.16  If the ARE (2.38) has o solution X, and A is stable and
Omaz(D) < 7, then the solution X, is positive definite.
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Lemma 2.17 If the ARE (2.98) has a positive definite solution X, then A
is stable and ||G(s)||eo < 7-

2.8 Linear Fractional Transformations

In this section, we review the Linear Fractional Transformation (LFT) which
provides a general framework for He (sub)optimal design in Chapter 5. The
alternative Chain Scattering Description (CSD) used in Chapter 6 is also briefly
described.

Consider the augmented (or generalized) plant P(s):

& = Az + Bsu -+ Byw (241)
y = 0255 + Dgzu + DQI’UJ ‘ (2.4:2)
z = 0137 + D12'u + an (243)

where z(t) € R™ is the state, u(t) € R™ is the vector of control signals, w(t) €
R* is the vector of all signals entering the system, y(¢) € R' is the vector of
measured outputs, and z(t) € R? are the controlled outputs. The vector w may
include, for example, reference inputs, disturbances and sensor noise, while z is a
vector of all the signals required to characterize the behaviour of the closed-loop

system, which includes errors, process outputs and control inputs.

This system P(s) is shown in Figure 2.1 with a linear controller K(s). The

combination is referred to as the Standard Feedback Control Configuration.

Suppose that P(s) is partitioned as

(2.44)
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P(s)

K(s)

Figure 2.1: Standard Feedback Control Configuration.

Pii(s) Pia(s)

= 2.45
Pn(s) Pals) >
so that
2| _ | Pu(s) Pufs) || w (2.46)
y Pz]_(s) PZZ(S) u
with

Py(s)=Ci(sI—A)'B;+D;; i,j=1,2 (2.47)
where A :nxXn, B;inxmy, C;:p;xn, D py xmy (3,7 = 1,2) are real
matrices.

Then we obtain, using u = K(s)y,
z = [Pu+ PipK(I— PpK)  Pylw
and the closed-loop transfer function matrix mapping input w to output z, i.e.,
FP,K) = Py + PK(I — PyK) Py (2.48)

is called a lower Linear Fractional Transformation on K(s) with the coeffi-

cient matrix P(s). In H,, design the generalized plant P(s) would include the
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nominal plant, weighting functions, and interconnections required to make the
closed-loops, for example, from w to z in Figure 2.1. The LFT represents a
means of standardizing a wide variety of feedback arrangements, and is fre-

quently used in H, control theory.

Let the representation of the controller be

Ay | By

K(s)=
(s) ARy

then a state-space realization of the LFT, F(P, K), can be expressed, e.g.,
Postlethwaite et al. [57], by

A+ B,D,DC, B,DCy, By + BoD DDy
B,DC, Ag 4 ByDyyDCy ByDDy (2.49)
Ci + D12 D DC, Dy, DO, l Dy + D13D DDy,

where D := (I — Dy D) and D := (I — DgDsp) 1. This realization is useful
fgr the computation of the LFT. It should be noted that the realization (2.49)

may not be a minimal realization.

If P! exists (which implies p; = my), an alternative expression for F(P, K) is

given by a chain scattering description, namely:
.7:)(P, I{) = CSD(G,I{) = (GHI{ + Glz)(GglK -+ Gzz)_l (250)

where G(s) is a (p1 + m1) X (mq + p2) matrix such that

z

G'u(s) Glz(s)
G2(s) Gaols)

Y } (2.51)

w Y

and can be expressed as

Py — PuP;'Py PPyt
——P{llez P2_11

G = =:T(P). (2.52)

Note that the symbol T’ is used to denote the transformation from a linear

fractional transformation matrix P to a chain scattering description matrix G.
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Conversely, when G55 exists, P can be expressed as

Gu Grz
0 I

P (2.53)

i

-1
Ga1 Ga
I 0

G12G57  Gui — G12G33 G
Gy —G3 G

} = T"Y@). (2.54)



Chapter 3

Model Reduction and Controller

Size Reduction

3.1 Introduction

In modelling a dynamic system, the designer often tries to generate a reduced-
order model which still gives a good representation of the true system. A
compromise is usually to be made between the simplicity of the model and
the accuracy of the results from control systems analysis. The reduced model is
treated as if it represented the true system. It is hoped that the resulting control
works when applied to the true system. The designer is generally satisfied if
he/she can obtain a reasonably simplified model that is adequate for the problem

under consideration.

Unlike model reduction procedures, a controller size reduction procedure should
take into account the presence of the plant and thus the closed-loop considera-
tions, although some model reduction techniques can be used for controller size

reduction.

33
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In this chapter, an overview of the methods for model reduction and controller
size reduction is given. The chapter is organized as follows. Balanced realiza-
tions are first introduced in Section 3.2. These represent a convenient structure
for model reduction and/or controller size reduction. In Section 3.3, some model
reduction techniques such as balanced truncation, Hankel norm model reduc-
tion, and coprime factor model reduction are reviewed. In Section 3.4, some
existing approaches to controller size reduction are briefly described with some

examples. Concluding remarks are given in Section 3.5.

3.2 Balanced Realizations

A balanced realization of a transfer function matrix serve as a starting point
either in model reduction or in conventional controller size reduction techniques.

Hence a brief review is given here.

Let G(s) = (4, B, C, D) be an asymptotically stable and minimal, [ X m system

having n states. The associated controllability gramian is defined as
L= /0 A BBTeA™ (3.1)
and the observability gramian as

e [ AT AT At
L= [ efTiCTCen dt. (3.2)

By integrating the corresponding matrix differential equations:

_(_%eAtBBTeATt — AeAtBBTeATt + eAtBBTeATtAT

%eATtCTOeAt — ATeATtCTOeAt + eAthTCeAtA

from 0 to oo, respectively, it can be shown that L, and L, satisfy the following

Lyapunov equations

AL+ L AT +BBT=0 (3.3)
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ATL,+ LA+ CTC =0. (3.4)

The controllability gramian L, is symmetric, positive definite and may be solved
for S such that

L.=8TS (3.5)

using Cholesky factorization. Similarly, the observability gramian L, may be

factored as

L,=R"R, L,>0. (3.6)

Hankel singular values of the system G(s) are defined to be the positive square

roots of the eigenvalues of L.L, (or equivalently L,L.), i.e.,

off 1= D(LoL)M? = u(LoLe)Y? i=1,-4 1. (3.7)

Define U and V to be the singular vectors of the singular value decomposition
of the product SRT. Then

SRT =yzvT C(3.8)
where

T = diag (0;(SRT)). (3.9)

Suppose the state is transformed by a nonsingular matrix T}, to £ = T}z to yield

the realization

~

. ilB TAT | T,B
8)= |—xT7=—1| = 3.10
) =121D ot | D (8.10)
Then the gramians L, and L, are transformed to

L, = ©L.Tf (8.11)

I

L, R e (3.12)
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and thus are not invariant under coordinate transformations. However, the

Hankel singular values are invariant since

Ai(-i-'c-zio) = Ai(TchLoTb——l) = Az'(LcLo)-

If a nonsingular matrix T} is chosen as
Ty = 2V2uTs-T (3.13)

then the gramians are equal and diagonal, i.e.,

A~

Le=1I5,=%= diag (cZ,08,..-,cH) (3.14)

and by convention ¢ > off > ... > 0¥ > 0, where off (i = 1,---,n) are the

Hankel singular values of the system G(s) since

{[’\i(LcLo)]llz}
{IM(STSRTR))?}
{IM(RSTSRT)?}
{o:(SET)}

{0}

(]

Il

where {o;(SRT)} is the set of singular values of SR”.

The state-space realization (3.10) is called a balanced realization, proposed by
Moore [50], which implies that the observability and controllability gramians are
both equal to the diagonal matrix of the Hankel singular values. The states of
such a realization are balanced between controllability and observability. Thus
they represent a convenient structure for model reduction since those states
having weak controllability and observability can be neglected without causing
any imbalance in controllability and observability properties of the remaining
states. Hence, the Hankel singular values give a good indication of the ‘minimal’

dimension of a system.
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3.3 Model Reduction Techniques

A model reduction problem is an approximation of the original system by a low-
order system, but does not necessaﬁly mean a ‘minimal’ realization (defined in
Section 2.2). Model reduction is particularly concerned with the plant rather
than controller, although its techniques can also be applied to the controller
size reduction. The problem has received much attention and is reasonably
well solved. In this section, we briefly review some important model reduction

techniques.

3.3.1 Using Modal Residualization

The design of control schemes for linear SISO systems often hinges on knowledge
of the transfer function of such systems. Suppose, in frequency domain terms,
a stable transfer function matrix is expanded in partial fraction form as
R R R

1 2 RS n

+
$—pP1 8 P2 S — Pn

G(s) = (3.15)

with the (complex) poles p; ordered so that [];—_%H are in descending order. Here
the norm, H;—f—;“, can be either the Hy-norm or the Hy,-norm and indicates the
amount of contribution in a general transient response. This procedure is called
modal residualization. Some term(s) having smaller contribution to the effects
on the system response may be neglected, e.g., Franklin et al. [25, p.63]. So,
model reduction using modal residualization is performed by truncating those

of negligible norm, to give:

G.(s) = U T (3.16)
S—p1 S — P2 S — Pk
Ry R,
G(s) - G, < =+ 3.17
IG(s) — G- (s)Il ||s»—pk+1”+ +|Is_pn!| (3.17)

where G,(s) is a truncated transfer function, k¥ < n. This method is a somewhat
crude approach and thus might not be optimal, even though it can often be

successful. A direct transmission matrix can be introduced in the state-space




Ch. 3. MODEL/CONTROLLER REDUCTION 38

system of the truncated model to ensure that the reduced model has the same
steady state response as the original model. The method can be extended to
MIMO systems in that there will be a transfer function for each input and

output pairing.

3.3.2 Balanced Truncated Model Reduction

Balanced truncation as initiated by Moore [50] is a powerful model reduction
technique for LTI systems. It is based on the balanced realization described in

the previous section.

Inspecting the Hankel singular values of a system will often reveal that some
of them are quite small compared to others. The states corresponding to those

small Hankel singular values are both difficult to control and observe. In other .
words, more energy is required to excite them and their effect on the output
is also small. These less significant states may therefore be eliminated. This

results in a lower-order model for the system.

If the realization (4, B, ) of G(s) is balanced and the matrices 4, B, €' in
(3.10) and the balanced gramian X in (3.14) are partitioned conformally as

. Ay A N B . A a

A = An h12 _ A1 O = [ & 6, ] (3.18)
A21 A22 B’l
¥ 0

T = ! (3.19)
0

where the dimensions of 4;; and ¥; are k x & for an integer k < n such that
off > ofl,, then a balanced truncated model G.(s) of reduced order % is

obtained as
G (s) = Cy(sI — Ayy)™' By (3.20)

by neglecting states associated with small Hankel singular values, ¥, in (3.19).
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Pernebo and Silverman [54] showed that the reduced order model G,(s) =
(fin, By, €)) is balanced and that if off > ofl,, then it is asymptotically stable

and minimal.

This balanced truncated model reduction technique has the following frequency

domain L-norm error bound, Enns [21] and Glover [26]:

IG(s) = Gr(9)lleo <2 30 o (3.21)
1=k+1
where G,(s) is a truncated balanced realization and the of’s (i =k +1,-++,n)

are all considered to be small Hankel singular values of G(s) that can be dis-
carded.

A limitation of this balanced truncated model reduction technique is that it
requires the original system to be minimal and asymptotically stable. When
a balanced realization is computed, practical difficulties may arise for system
models having uncontrollable and unobservable states because the balancing
transformations are generally singular for such systems. These difficulties are
overcome by Tombs and Postlethwaite [68] and by Safonov and Chiang [62].
For unstable plants, using the fact that the coprime factors of any minimal
system are always asymptotically stable, Meyer [49] developed a coprime factor
model reduction method by extending (unweighted) balanced truncated model
reduction to the case where the system is not stable. This will be described

later.

3.3.3 Hankel Norm Model Reduction

The Hankel norm of G(s), dénoted by ||G(s)||x, is the largest Hankel singular
value of G(s) and is defined as

NG(s)ller 2= {Amaa(LeLo)}'* = of (8.22)
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where L, and L, are as in (3.14). The Hankel norm is interpreted as the largest

Ly-gain from past inputs u(t) to future outputs y(¢), in the following sense:

lly@lla
@l YO

It is noted that only the dynamic part (4, B, C) of G(s) influences the Hankel

norm.

|G(s)|lzr = sup =0, t<0 u(®)=0, >0

The optimal Hankel norm model reduction problem is to choose a rediiced order
model G,(s) of McMillan degree k < n such that the Hankel norm of the error
system G(s) — G.(s), i.e., ||G(s) — G.(s)||s is minimized. This Hankel norm
model reduction gives an L-norm error bound, Glover [26], as

16(5) = Go()llow < 3 oF (3.23)

1=k+1

where G,(s) is the k-th order Hankel approximate with a particular choice of
feed through term D.

3.3.4 Coprime Factor Model Reduction

Model reduction techniques such as balanced truncated model reduction and
Hankel norm model reduction require that the model to be reduced is stable.
The normalized coprime factor model reduction devised by Meyer [49] extends
the balanced truncated model reduction to unstable plants, using the fact that

coprime factors of any minimal system are always asymptotically stable.

Model reduction in a (left) coprime factor framework can be described as follows,
McFarlane et al. [48]:

1. Write G(s), the transfer function to be reduced (with degree n), as G =
M™N where M, N € RH,, are left coprime factors of G(s).
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2. Using an appropriate model reduction technique, either balanced trun-
cated model reduction or Hankel norm model reduction, approximate
[V, M) of degree n by [N,,M,] of degree k, k < n.

3. Form the reduced order transfer function G.(s) (with degree k) by G, =

MN,.

3.3.5 Model Reduction and Robustness

In doing model reduction for control purposes, singular value Bode plots of
the reduced plant model and the modelling error are good indicators to check
whether a given reduced model is sufficiently accurate to be used in the design
of a control system with a prescribed bandwidth wy. Using the £, error bound,
it is possible to associate a robust frequency w, with a reduced model such that
the model may be reliably used for controller design, Safonov et al. {63]. The
robust frequency w;, is an upper bound on the bandwidth w; of any multivariable
control system to ensure robust stability. For example, in order to prevent a
sufficient condition for stability from being violated at some frequency within

the bandwidth, w;, should be less than w,. For details, refer to [63].

3.4 Approaches to Controller Size Reduction

Some model reduction techniques have been used for controller size reduction.
For example, Yousuff and Skelton [76] stated that, if the controller is stable,
the balanced truncated model reduction technique can be used directly on it so

that its uncontrollable or unobservable modes can be eliminated.

However, unlike model reduction procedures where only a dynamic system
model is simplified, any controller size reduction procedure should take into

account the presence of the plant and thus closed-loop considerations. That
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is, a controller size reduction procedure should preserve the closed-loop objec-
tives such as closed-loop stability, closed-loop performance (without any serious
deterioration), and robustness properties, etc. So, after controller size reduc-
tion, it is necessary to reanalyze the design to check that any degradation in
performance is not too significant. In this sense, controller size reduction is

fundamentally different from model reduction.

Various controller size reduction methods have been studied and classified in

Anderson and Liu [1] into the following three categories:

(1) plant model reduction followed by controller design
(2) controller design followed by controller size reduction

(8) direct low-order controller design.

These different approaches to controller size reduction are illustrated in Fig-
ure 3.1. In this section, we summarize the procedure of each approach, its

applications and some comments available on if.

3.4.1 Plant Model Reduction followed by Controller De-

sign

In this approach, a model reduction technique is first applied to a high-order
plant based on open-loop system considerations. Then a controller is designed
to meet the control specifications, based on the reduced-order plant. A general

comment on this approach is, as quoted from [1], that:

reducing the order of the plant by approximation at an early step in the
process may lead to the undesirable propagation of the effects of that

approximation and make the ultimate effect unclear.

For example, the controller designed on the basis of the reduced order model
applies controls to the true system and hence can inadvertently excite parts

of the system that have been ignored (this is called control spillover). This




Ch. 3. MODEL/CONTROLLER REDUCTION 43

category includes Choi et al. [14], McFarlane et al. [48], Postlethwaite and
Feng [56] and Steinbuch [66].

3.4.2 Controller Design followed by Controller Size Re-

duction

In this approach, a standard controller of full-order is first designed to meet sta-
bility and/or performance requirements and then some model reduction method
is applied to the full-order controller. Care should be taken during the controller
size reduction step to ensure that the stability and/or performance achieved in
the first step does not seriously degrade. Yousuff and Skelton [76] using LQG
control, and McFarlane et al. [48], Bongers and Bosgra [5], Mustafa and Glover

[51] using H,, control are examples which belong to this category.

A similar approach was introduced by Jonckheere and Silverman [35] but using
a closed-loop methodology. That is, the open-loop system (which may be unsta-
ble) is first compensated with a standard LQG controller, where two algebraic
Riccati equations are needed - one for filtering and one for control. Balancing
the solutions to these two Riccati equations, so that they are equal and diagonal,
exposes the difficulty of filtering and controlling each state. By truncating the
states corresponding to small LQG-characteristic values (i.e., the diagonal ele-
ments of the solution to the LQG-balanced Riccati equations), a reduced-order

plant or reduced-order LQG controller is obtained.

It is, however, pointed out in [76] that this scheme does not guarantee to elim-
inate any uncontrollable or unobservable modes in the controller which can
arise in LQG design, since the LQG characteristic values are not measures of
the observability/controllability of the controller states. The notion of LQG-
characteristic values is extended in [51] to He-characteristic values, which are

then used as a basis for H.-balanced truncation.
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3.4.3 A Direct Approach

In this approach, the order of the controller is constrained (or fixed) prior to the
controller design process and then the parameters defining a low-order controller
are obtained, for example, either (i) by optimization of a performance index (or
cost functional), Bernstein and Haddad [3] for M., control, or (ii) by using
the bounded real lemma, Hsu et al. [32], or (iii) by using a Lyapunov based
approach, Iwasaki and Skelton [34].

Amongst others, we note that [32] obtains an observer-based controller of order
n — py which stabilizes the plant and also satisfies || F)(P, K)||o < 7, where n
and p, are the dimensions of the state and the measured output, respectively.
This resultant order is the same as we obtain later in Chapter 5, although the

methodologies are different.

3.5 Concluding Remarks

In this chapter, we briefly reviewed some important model reduction techniques
and current controller size reduction approaches. In the following chapters,
we will present a new methodology for controller size reduction in advanced
robust control system design. The methodology developed in this thesis may
be considered to be a direct approach, since it generates a low-order controller
of a certain order by solving two matrix equations which are formed by plant

data and the free parameter matrix.
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Nominal (1) Low-Order
Plant Plant
2 ~ 3 1
(2) NG 1
~
R ~
Full-Order Low-Order
Controller - Optimal
(2) Controller

(1) Plant Model Reduction followed by Controller Design

(2) Controller Design followed by Controller Size Reduction

(3) Direct Approach

Figure 3.1: Diagram for Controller Size Reduction.




Chapter 4

Low-Order Stabilizing

Controller Design

4,1 Introduction

One of the most fundamental requirements in control system design is to make
the closed-loop system internally stable. This is called a stabilization problem.
The parametrization of all stabilizing feedback controllers for a given plant,
initially developed by Youla et al. [75] and generalized by Desoer- et al. [15], is
a celebrated solution to the stabilization problem and provides a fundamental
basis to the H,, optimal control problem. The order A of a stabilizing controller
by such a parametrization, however, can be unnecessarily “high”, since it can

be shown that

N < deg(G) + deg(Q)

where @)(s) is a dynamic free parameter in the parametrization to give the
designer freedom in designing a required controller, and G(s) is the plant to be

controlled.

46
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In this chapter, we utilize the parametrization of all stabilizing controllers for
the low-order stabilizing controller design problem, and present a constructive
way to find a set of low-order stabilizing controllers of a certain order.
The key idea is to achieve a low-order realization (4.22) of a “full-order” con-
troller K .5(s) by eliminating unobservable states. We show that, if a low-order
realization is possible, the order of the controller is reduced from a full-order
of n + n, to ng, where n is the order of G(s) and ng is the order of Q(s).
We further develop an algorithm to determine how low n, might be using a
sequence of matrix transformations as summarized in Theorem 4.8, Corollary
4.9, and Theorem 4.12. The algorithm checks the conditions in Theorem 4.12
and Corollary 4.9 successively until both are met. Then a low-order stabilizing
controller K7, ,(s) is computed by the low-order realization (4.22). Qur result
is that a low-order stabilizing controller of order n — [ always exists, where [ is
the number of plant outputs. Moreover, we show that the order may be much
less than n — [, depending upon the existence of a special form of a matrix F'
in (4.55). In summary, the order M, of low-order stabilizing controllers as

developed in this chapter is shown to satisfy

Mow < deg(G) - l'

The chapter is structured as follows. In Section 4.2, the notion of internal sta-
bility is reviewed, and then the parametrization of all stabilizing controllers is
outlined together with the ability to assign poles. Section 4.3 is a central part of
the chapter, where we show that a low-order realization (4.22) of all stabilizing
controllers can be derived if two simultaneous matrix equations, (4.20)-(4.21),
have a solution. We then solve the first equation (4.20) using an orthogonal
canonical form, and the second one (4.21) by a standard linear equation solu-
tion on the assumption of the existence of a matrix F' having a special form as
in (4.58). In Section 4.4, we examine how to find such a special form of ma-
trix " since its existence is the only constraint to deriving low-order stabilizing
controllers. Then, in Section 4.5, a CAD algorithm for low-order stabilizing

controller design is presented. In Section 4.6, an explicit formula for a set of
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low-order stabilizing controllers, as a special case, is derived using a special
canonical form. We show in Section 4.7 that the low-order stabilizing con-
trollers as characterized in the chapter provides a mechanism for closed-loop
pole assignability via output feedback using a separation property. In Sec-
tion 4.8, bounds on the order of low-order stabilizing controllers are discussed,
and compared with some other existing results on the low-order stabilization
problem. In Section 4.9, we confirm Kimura’s results, [38], on pole assignment
by gain output feedback using our approach and discuss an improvement on
Kimura’s. In Section 4.10, some illustrative examples are presented to validate
the algorithm developed in the chapter and its relevant features. Concluding

remarks are given in Section 4.11.

4.2 Observer-Based Stabilizing Controllers

The parametrization of the set of all stabilizing controllers in terms of a stable
pﬁrameter matrix was first introduced by Youla et al. [75], based on fractional
factorizations over the set of polynomial matrices. Youla’s parametrization,
however, may cause the stabilizing controller to be improper. Desoer et al. [15]
removed this drawback by generalizing Youla’s parametrization based on frac-
tional factorizations over the set of proper stable rational matrices. As a result,
they showed that the set of all proper stabilizing controllers can be character-
ized in terms of a proper stable parameter matrix. To use the proper stabilizing
controller parametrization, a convenient state-space method for computing the
fractional factorizations over the set of proper stable rational matrices was pro-
posed by Nett et al. [52]. Also, Doyle [16] showed that the proper stabilizing
controller parametrization can be realized as an observer-based controller with

an added proper stable parameter matrix.

We begin this section by reviewing the notion of internal stability, and then

outline the proper stabilizing controller parametrization. Finally, closed-loop
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pole assignability by stabilizing controllers is considered.

4.2.1 Internal Stability

Consider a positive-feedback configuration, as shown in Figure 4.1, where

A B
c\|D

is assumed to be stabilizable and detectable.

G(s) = (4.1)

() G(s)

K(s) [ Y

_a_\-l-

Figure 4.1: Diagram for Internal Stability.

From the feedback system of Figure 4.1, we have the following input-output

relationship:
I+ KSG KS
R ) (4.2)
y SG S d
where
S :=(I-GK)" (4.3)

is a sensitivity function matrix. The standard definition of internal stability is
given below. This definition requires all the closed-loop transfer functions to be

both stable and proper.
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Definition 4.1 The feedback system of Figure 4.1 is internally stable if and
only if

(a) S, KS, SG, I+ KSG € RHo

and

(b) det(I — GK)(o0) # 0.

It is important to realize from this definition, as clearly stated in [17, p.36], that
it is not enough to look only at closed-loop transfer functions, such as from r
to y. This transfer function could in fact be stable, so that y is bounded when
r is bounded (BIBO stable), and yet an internal signal could be unbounded,
probably causing internal damage to the physical system.

In the following we will use ‘closed-loop stable’ to mean ‘internally stable’ unless

otherwise stated.

4.2.2 Stabilizing Controller Parametrization

Consider the feedback configuration of Figure 4.1 again, where G(s) € RLIX™
is a given plant of n states to be controlled, and K(s) is a controller to be
designed for internal stabilization. Without loss of generality, we assume G(s)

is minimal and, for simplicity, strictly proper (i.e., D = 0).

Let G(s) have a doubly coprime factorization

G(s) N(s)M(s)™* (4.4)

M(s)™N(s) (4.5)

i

and also let U(s), V(s), U(s) and V(s) satisfy the Bezout identity, i.e.,

Vv -0 Io
i M} ] (46)

0 I
where the transfer matrices N, M N M, U, V,U,V all belong to RH .

M U
N V

I




Ch. 4. LOW-ORDER STABILIZING CONTROLLERS 51

Then it is well known, for example, in 46, p.280] that the set of all stabilizing

controllers for the given plant G(s) is given by

Kotar(s) (U+MQ)V+NQ)™ (4.7)

(V +QN)™(U + Qin) (4.8)

for any Q(s) which belongs to RHu.

The parametrization of Kges(s) in (4.7) and (4.8) is very powerful, because

@ it provides the full set of the stabilizing controllers by means of fractional

representations, once we know one stabilizing controller for the plant.

e the full set of the stabilizing controllers is simaply characterized by a free

parameter matrix Q(s) € RH,.

e a closed-loop transfer function matrix related to performance can be writ-
ten as a simple affine function of @(s), which is then useful for the solution

of an H,, optimal control problem.

The stabilizing controller Kg,;(s) in Figure 4.1 can now be replaced by the
block diagram of Figure 4.2, which is an observer-based stabilizing controller
with added dynamics @Q(s).

The transfer matrices N, M, N, M, U, V, U, V can each be expressed in state-
space form as follows, after choosing real matrices F and H such that A + BF
and A + HC are stable, [52]:

y 1 |4+BF|B -H

() Uls) | _ 7 17 o (4.9)
N(s) V(s) ] c 0 I
. .1 |A+mC|B E
Ml I e e (4.10)
N(s) M(s)w C 0 I
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" Q)
B I AT
++w ++
O B O 1s {7 [O——
A
C |«

Figure 4.2: Observer-Based Stabilizing Controller with Q(s).

Now suppose that Q(s) € RHTX! in (4.7) and (4.8) has a state-space realization

4,| B,

4.11
c. D, (4.11)

Q(s) ==

where the dimensions of matrices A,, By, C, and D, are ng X ng, ny X I, m X n,
and m X I, respectively. Then, from (4.7), or alternatively from (4.8), we have

a state-space realization of all stabilizing controllers Kq(s) given by

[ A+ BF+HC-BD,C BC,|-H+BD,
I{stab(s) = —qu Aq Bq (412)
F —D,C ¢, | D,

[ A | B
| ¢ | Dy

It is noted that K3(s) in (4.12) has a “formal” order (or “full-order”):

. (4.13)

deg(Kstab) =n 4 g
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which is a state dimension equal to the sum of the states of G(s) and Q(s)
together. By the term “formal” order we mean the order before any pole-
zero cancellations which might occur have been removed. It is also noted that

Kiap(s) is strictly proper if and only if Q(s) is strictly proper.

By taking Q(s) = 0 either in (4.7) or in (4.8), a stabilizing controller K;q(s)

of order n is obtained as

I{stab (S) =

(4.14)

A+BF+HC|-H
F o |

4.2.3 Pole Assignability of Stabilizing Controllers

In this section, we examine the poles of the closed-loop system formed as in
Figure 4.1 by the plant G(s) in (4.1) and the controller K.4(s) in (4.12). We

will consider a state-space realization of (I — GK )7t

The A-matrix, Ay, of (I — GKgqp)™" can be expressed in state-spaee form as
A+BF+HC-BD,C BC, —HC+ BD,C
Ag = -B,C A, BC, . (4.15)
BF - BD,C BC, A4+ BD,C

By applying a state similarity transformation to (4.15) using a nonsingular

matrix T given by

I 0TI
T:=|0T10 (4.16)
001
we obtain
A+HC 0 0
T AT = ~B,C A, 0 (4.17)

BF—BD,C BC, A+BF
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which is similar to Ag. So, it is obvious that, when the controller Kyq(s) in
(4.12) is applied to the plant G(s), the resulting closed-loop poles are the union
of

o the observer poles (the eigenvalues of A+ HC),
e the state feedback controller poles (the eigenvalues of A + BF'), and

o the poles of the augmented dynamics (the eigenvalues of 4,).

This fact shows that the familiar separation property of observer-based con-
trollers still remains when a proper stable parameter matrix Q(s) is added to as
shown in Figure 4.2. In reality, as stated in Vidyasagar [71], not all of the poles
will necessarily appear since the realizations constructed at the various stages
need not be minimal. But it is certain that no new poles will appear other than

the ones mentioned above.

4.3 Low-Order Stabilizing Controllers

The realization of the controller in (4.12) may not be minimal. Chang and
Yousuff [9] showed that, if the realization (4.12) is not minimal, the uncontrol-
lable or unobservable modes of the controller are some subset of the eigenvalues
of A4+ BF and A+ HC. However, they did not address the problem of deriving
such a subset. The primary purpose of this chapter is to find a subset for which a
certain number of modes are unobservable or uncontrollable. As a consequence,
we can find a set for which the order of the controllers does not exceed n,, i.e.,
the number of states of the free parameter matrix Q(s). Furthermore, we will

show that n, can be less than or equal to n —{.

In Subsection 4.3.1, a low-order realization of all stabilizing controllers is char-

acterized via two simultaneous matrix equations, (4.20)-(4.21). The size of the
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solution matrix X € R™*" to these two equations, if X exists, will determine
the order of the low-order stabilizing controllers. We will consider two cases:

(1) ng = n — [ in Subsection 4.3.2 and (2) n, < n — [ in Subsection 4.3.3.

4.3.1 Derivation of a Low-Order Realization

One way to derive a set of low-order stabilizing controllers is to apply a change
of state coordinates on (4.12). We begin by applying a state similarity trans-
formation T}, to Kses(s) in (4.12):

A+BF+HC-BD,C BC,|—H+ BD,
Kua(s) = —B,C A, B,
F—D,C ¢, | b,
and
I, 0
Tpi=| " (4.18)
X I,
results in an alternative realization given by
| Kau K.
Ktap(s) LA | By P © (419
stabl8) = = Ka °
" oo . (4.19)

where

K,1 = A+BF+HC+BD,C—BCX
Ku,o = BC,
Koy = XA+ XBF+XHC+XBD,C+B,C—-XBC, - AX
Kaw = XBC,+ 4,

Ky, = H4+BD,

Ky = XH+XBD,+ B,

Ky = F+D,C-CX

K, = C,

Ky = D,
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Putting K 9 and Ky equal to zero in (4.19), we have the following two matrix

equations:

AX — X(A+HC)
C,X - D,C

B,C (4.20)
F. (4.21)

So, if there exists a solution matrix X € R™*™ {o (4.20)-(4.21), Kyp(s) in

(4.12) can be reduced to the following lower-order realization:

A,+XBC,| B, + XH + XBD,
¢, | D,

Kop(s) = (4.22)

We refer to the controllers defined by (4.22) as low-order stabilizing con-

trollers. The order of low-order stabilizing controllers is in fact:
deg(K30) = nq

which is the same as that of Q(s), and thus it is obvious that K7,,,(s) in (4.22)
is of lower-order than K.s(s) in (4.12).

We obtained the low-order realization K7, ,(s) of (4.22) by deleting the unob-
servable states contained in Kyqap(s), and thus the realization of K7,,,(s) may

be completely observable as shown in the following Lemma.

Lemma 4.2  Suppose there exists a solution matrizc X to (4.20)-(4.21). Then
the realization of K7, (s) in (4.22) is completely observable if and only if the

free parameter matriz Q(s) is chosen to be completely observable.

Proof: (Sufficiency) Since the pair (4,4, C,) is completely observable, there
exists an H, such that eigenvalues of 4, + H,C, can be arbitrarily assigned by
suitable choice of H,. Now define H, := H, — X B. Then, since

(4, + XBC,) + H,C, = A4, + H,C, (4.23)

the eigenvalues of (4, +XBC,)+ H,C, can also be arbitrarily assigned by suit-
able choice of H,. Hence, the pair (4, + XBC,, C,) is completely observable,
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ie., K7,,(s) is completely observable.

(Necessity)  Since the pair (4, + XBC,, C,) is completely observable, there
exists an H, such that eigenvalues of (4, + XBC,) + H,C, can be arbitrarily
assigned. Hence, by (4.23), the eigenvalues of 4, + H,C, can also be arbitrar-
ily assigned by suitable choice of H,. This implies that the pair (4, C,) is

completely observable, i.e., Q(s) is completely observable. ]

Realization (4.22) is in a convenient form for computing a set of low-order
stabilizing controllers, when X exists and is determined by equations (4.20)-
(4.21). Figure 4.3 shows the closed-loop system formed by the plant G(s) in
(4.1) and the low-order output feedback stabilizing controller K7, ,(s) in (4.22).

-—-———;,O__._____> G(s) -

K. ()

Figure 4.3: Output Feedback System with a Low-Order Dynamic Controller.

Equation (4.20), which is a Sylvester equation (or a general Lyapunov equation),
and linear equation (4.21) are of crucial importance in determining a low-order

controller. Both equations are solved in the following subsectious.

Remark 4.3 Alternatively we can apply a state similarity transformation T},

t0 Koiap(s) in (4.12) using a nonsingular matrix

I, Y

Ty ==
oo,

. (4.24)
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We then can obtain a lower-order realization of order n, as

A, +BCY |B,
C,+D,CY ~ FY | D,

Koap(s) = (4.25)

if there exists a matrix ¥ € R"*" which satisfies the following two matrix
equations:

(A+BF)Y —YA4,
YB, + BD,

BC, (4.26)
H. (4.27)

Corollary 4.4  Suppose there ewists a solution matriz Y to (4.26)-(4.27).
Then the realization of K7, (s) in (4.25) is completely controllable if and only
if Q(8) is chosen to be completely controllable.

The procedure to be presented for solving two equations (4.20)-(4.21) is based
on the observability of the pair (A + HC, C), whereas the procedure for solving
(4.26)-(4.27) is based on the controllability of the pair (4 + BF,B). We shall
call the former the Observability Argument Approach (OAA), and the latter the
Conitrollability Argument Approach (CAA). In the following, we will develop
and state our results by the OAA and give the results by the CAA if necessary.

4.3.2 Stabilizing Controllers of Order n —

It is well known in observer theory, [45], that if the rank of the matrix C is
I, then a state observer of order n — [ can be constructed to generate all the
state variables. A state feedback matrix can then be used to stabilize the
plant, given that the pair (4, B) is controllable. This implies the existence of
stabilizing controllers of order n — I. We therefore consider the special case of

order n, = n — [ in this subsection.

We first assume without loss of generality that C is full row rank and that by
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a change of coordinates C takes the form

C= [Iz Orx(n-1) ] (4.28)

i.e., C is partitioned into an { x ! identity matrix and an ! X (n — ) zero matrix.

Let A be partitioned conformally as

A Ap
A21 A22

A= (4.29)

where the matrices A1, A1z, Ao1, Az have dimensions of Ix [, [ X (n=1), (n=0)x!

and (n — 1) x (n — 1), respectively.
Suppose that X and H take the forms
X = [Xl X, ] (4.30)
and
T
H=|nHf Hf | (4.31)

where the dimensions of the matrices Xy, X5, Hy, H are (n—1)x 1, (n—0)x(n—1),

I x ! and (n — ) x [, respectively.

From equation (4.20), we have the following two equations:

A H,
Aq.Xl - [ Xq X2 ] uth = Bq (4'32)
A1 + Hy
A
Aq-X2 - [ X1 X2 ] 12 = 0 (4-33)
22

The next Lemma shows the existence of the solution matrices X; and X, to
(4.33).

Lemma 4.5 For any stable Aq, there always ezists @ matriz X; and a non-

singular matriz X, satisfying equation (4.33).
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Proof: Egquation (4.33) can be rewritten as
XoAay + Xy Arp = A X, (4.34)

Recall from Lemma 2.6 that the pair (Asg, As2) is completely observable if the
pair (4, C) is completely observable. It is therefore clear that, using Lemma
2.3, the eigenvalues of Ay, + WA, can be freely assigned by a suitable choice of
U, since the pair (4, C) is completely observable. In other words, there always

exist a matrix ¥ and a nonsingular matrix W such that
Agg + VA1 =WIAW

ie.,
WAyp +WUA,, =AW

for any stable 4,. Comparing this with (4.34), it is then obvious that we may
take X3 = WU and X, = W as solutions to (4.34), and in addition, that X is

nonsingular.

Notice from Lemma 4.5 that the nonsingular X, may not be unique since the
similarity transformation matrix W is not unique. However, if we are only
interested in the eigenvalues of A, and not its exact form, then it follows from
the proof of Lemma 4.5 that there exists a ¥ such that Ay, + UA;, has the
same eigenvalues as those of 4,. In this case, therefore, we may simply let
Ay = Ags + ¥ A;,, and consequently X, = I and X; = ¥.

Having found the solution matrices X; and X, from (4.33), B, can then be ob-

tained from (4.32). Meanwhile, since the second equation (4.21) can be rewrit-

ten as
[ ¢, -p,] Xor (4.35)
C
where
x] [x Xz}
o I 0
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is square and full rank, C, and D, can be computed by

Cq = F2X2-1 (4.36)
Dq = —F1+F2X2—1X1 (4:.37)

for any F:= [ F R } partitioned conformally. So, we now have the following

Theorem.

Theorem 4.6  Let C be full row rank. Then the system G(s) = (4, B,C)

always has low-order stabilizing controllers of order:

deg(Kly) =n — 1.

To summarize, we have shown in this subsection that under the assumption of
full rank C there always exist stabilizing controllers of order n — [, and that in
the formulae for such controllers the only constraints on the choice of F and H
are that A+ BF and A + HC are stable.

4.3.3 Stabilizing Controllers of Order Less Than n — 1

Let us reconsider equation (4.20):
A, X - X(A+ HC)=B,C.

In order to find stabilizing controllers of order less than n — ! we now look for

a full rank solution X € R™*" with order n, < n — 1L

Equation (4.20) will have a unique solution if Aq is chosen such that Re[A\;(4,)] #
Re[A;(A + HC)]. The standard approach to solve a Sylvester equation (4.20)
may be useful when we are interested in the element matrices - 44, B,, Cy, Dy -
of the free parameter Q(s), since A, and B, can be a prior: chosen arbitrarily
at the designer’s discretion. Here we are interested in the solution X having

the smallest possible n,.
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Unlike the standard Sylvester equation considered in Subsection 2.4.1, equation
(4.20) has a great deal of freedom in the coefficient matrices, specifically in A,
B, and H. We therefore adopt, in this subsection, a different approach to solve
(4.20) making use of the freedom available. In our approach, 4, and H will be
first chosen arbitrarily but with the smallest possible n,, subject to the stability
of A; and A+ HC. Then the solution X of full rank n, is found and B, is finally

decided in due course.

Assumption 4.7 We assume that the plant G(s) = (4, B, C) is minimal and
C is full rank. (The full rankness of C can be relaxed.)

As we saw in Chapter 2, Section 2.3, the pair (4, C) can be transformed into
the orthogonal canonical form (4,,C,):

A, = MAM™'=| : S (4.38)
Avo—l,l Avo-—l,z Auo—l,s o Aua—-l,uo
i Auo,l Auo,z AVO,S e Auo,uo

C, = NC'M‘1=[I,1 00 .. 0] (4.39)

where v, is the observability indez of (4,C), and A;;(t = 1,--+,v,) are [; X [;

matrices, and the numbers
l=h2hL2>2-21, htb+-+l,=n

are the conjugate Kronecker indices of the pair (4, C).

When the observable canonical form (4,,C,) is derived, the transformed B-
matrix is denoted as B, := MB. Using the form (4,,C,) of (4.38)-(4.39), the

two equations (4.20)-(4.21) can therefore be transformed into:

AX -X(A,+HC,) = B,C, (4.40)
Cc,X - D,C, (4.41)

i
=51}
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where
X = XM
H = MHN™!
B, = B,N7!
D, = D,N7!
F = FrM-L.

63

(4.42)
(4.43)
(4.44)
(4.45)
(4.46)

The following Theorem gives the (possibly small) dimensions of a solution X

to equation (4.40).

Theorem 4.8  Eguation (4.40) has full row rank solutions X of dimensions

I, X n.

Proof: Partition X € R ** and H ¢ R™ as

where X; € R%*k and H; € REX,

Then from equation (4.40) we have the two equations:

Ap+H,

where

(4.47)

(4.48)
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0
Asz Ass Aszq 0
: : : 0

Avemr2 Avem1s Avemra o Avmiw,
AU012 AVc;s 'A‘V014 e AVo,Un

Note that the pair (4;, ;) is completely observable since (4,C) is completely
observable. This can be easily proved by constructing the observability matrix
of (;11, (i’l) and then checking its full rankness.

For a given A, (stable), B, can be obtained directly from (4.47) with known X;
and [X, -+ X,

Equation (4.48) is similar in form to equation (4.40), and can thus be solved in

the same fashion. Repeat this procedure until we get
AXy, — XA, = Xoom1 A1,
ie.
Xoo(Avowo + X X1 Ayg1,0,) X0 = Ay

Since (Ay, voy Avo—1,,) is observable, we can always find an X,,—; and a nonsingu-
lar X, for any stable 4,. Calculating backwards, we can find X,,,_5, X, s, -, X1
and hence B,. The solution X is full row rank, since X,, is invertible. This

completes the proof. H

Note that the solution X as above is independent of H, but depends on 4 and
A, only. A candidate for X,, is simply the identity matrix (e, X, = I, )

since we are more interested in the eigenvalues of A, than the structure of A,.

Theorem 4.8 applies directly to equation (4.20), and thus (4.20) has full row
rank solutions X € R™**. And as expected from Theorem 4.8, we have the

following Corollary.




Ch. 4. LOW-ORDER STABILIZING CONTROLLERS 65

Corollary 4.8 Forn, =1, ng=10,+l-1, " ng=lL,+ +h=n—1
respectively, there always exist full row rank solutions to equation (4.40) and

thus (4.20).

Corollary 4.9 indicates that the next step in finding a solution to (4.40) is
to increase the value of n, from I, to I, + l,,—1, and thus the next order of

controllers will be 7, + l,,—1.

By a dual controllability argument approach (CAA), using the controllable

canonical form (4., B.), we have the following two Corollaries.

Corollary 4.10  FEquation ({.26) has full column rank solutions Y of dimen-

s10m8 X My,

Corollary 4.11 For ng=m,,, ng =My, +My_1, -+, Ng =M, 4+ +my =
n — m, respectively, there always exist full column rank solutions to equation

(4.26).

Let us now turn to the problem of solving the second equation (4.41):

¢, X -D,C,=F

where F' can be arbitrarily chosen by the designer subject to the stability of
A, + B,F. We rewrite equation (4.41) as ‘

[Oq —D, ] |:§ :l =F (4.49)

and suppose without loss of generality that the solution X € R *" to equation
(4.41) is

X=[X1 .X2 e Xy-l X,,O] (450)
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with X,, = I, . Further, define a nonsingular matrix T

[ I, 0 0 0 ]
0 I,
Ty = : : (4.51)
0 O Iluq-l 0
X =X, ~Xy-1 L,
such that
X’::XT2=[0 0 - 0 [,%}. (4.52)
Then, we have
A=T""AT, B:=T7,"'B, C:=CT,=C0C, (4.53)
and equation (4.49) becomes
_ 0 0 -0 I, - .
(¢, -p, ] = FT, = P, (4.54)
L 0 --00
Thus, if there exists F' in the special form
ﬁ=[p1 0 . 0 1310] (4.55)
then we can find C,; and D, as
¢, = F, (4.56)
D, = —-FN (4.57)

using (4.54)-(4.55) and (4.45).

So far, we have shown how to find the element matrices which are required
for computing a realization of K7,,,(s) in (4.22) of order l,,. In addition, it
was shown in Lemma 4.2 that K7,,,(s) is completely observable if and only if
the pair (4y,Cy) is completely observable. Indeed, the system (4,, B,, Cy, Dy)
can always be made observable in a reduced form, say (Aq,éq,é’q,]jq), via a

similarity transformation. It is easy to show that these new element matrices
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still satisfy the two matrix equations with a solution of smaller size and the
matrix F will not be affected. It is therefore possible to reduce the order of
controller further. Consequently, we have a stabilizing controller of order not

exceeding [, as stated formally in the next Theorem.

Theorem 4.12  The system (A, B, C) has stabilizing controllers of order less

than or equal to l,,, i.e.,

Mow < qu

if there exists an ' as in (4.55) which makes A + BE stable.

The stability requirement of A+ BF may prohibit a selection of F which also
satisfies (4.55). Suppose that the second equation (4.41) does not have a solution
X € Rw*n. This implies that there does not exist an ¥ as in (4.55), and
consequently that the algorithm fails to find a low-order controller of order [,,,.
In such a case, we should increase the value of ny from [, to the next value,
ie., I, + l,,—1 (as per Corollary 4.9) and try to find a state feedback matrix £
of similar structure to (4.55) but now with more degrees of freedom. Thus, if
it is found, the next order of controllers will be ly, + lyo—1. This procedure can

be repeated up to n, = n — ! until a suitable F is found.

The determination of F' is considered, in the next section, in some detail. It
will be shown later in Section 4.9 that a suitable F' always exists if ng is chosen

such that the inequality n, > n —m — [+ 1 holds.

Remark 4.13  The system can be stabilized by a static output feedback
matrix if there exists an ' as in (4.55) with F,, = 0. Similarly, the existence of
an F' satisfying (4.55) with By = 0 leads to strictly proper low-order stabilizing

controllers.
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4.4 Determination of F

As discussed in Section 4.3, £' shall be of the form:
ﬁ‘:[ﬁ'l 0 --- 0 ﬁ'uD]

as in (4.55) for the existence of C, and D,. This introduces a constraint in the
algorithm developed in this chapter for generating low-order stabilizing con-
trollers. The exception is the case of ny = n — I, in which there is no restriction
on F', as already discussed in Subsection 4.3.2. This raises the following ques-
tion: Under what conditions can we ensure the ezistence of a state feedback
matriz F' such that A + BE be stable and F' is of the form in (4.55)2 In the

following, some different methods are suggested to answer this question.

4.4.1 Method I: via a Search

Suppose that F' is partitioned as

‘o

F:[ﬁl B, oo B p] (4.58)

where F; (i =1,...,1,) is an m X [; matrix. Then, using (4.51), F becomes

F=FL=[# B - B B,] (4:59)

where
Ai = —i—FVoXi (7::‘17"'71/0”“1) (460)
k, = F,. (4.61)

In order for F in (4.59) to have the special form (4.55), F' in (4.58) ought to be
of the following form:

F=|R RZ - RZur K] (462)
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where the X; (i =2,--+,v,—1) are already known, and F; and F, can each be
arbitrary m x Iy and m x I,, matrices, respectively. Then, F' can be determined
relatively easily because only two parameters, 7} and F,,, are to be tuned to
obtain F' of the special form in (4.55).

A fundamental restriction on F is, however, that 4, + B,F is stable. That is,

we must have
Re[M(4, + B.F) <0 Vi, (4.63)
Note that
Re[\i(A 4+ BF)] = Re[\(A, + B.F)] = Re[Mi(4 + BF)].

The eigenvalues of 4, + B,F can be easily obtained using readily available
algorithms in, for example, Matlab. So, we may determine a required P oas

follows:

step 1: Given 4,, B, and X, choose F in the form of (4.62), by selecting h2)
and F,,.

step 2:  Check if the stability constraint (4.63) is satisfied.
If yes, go to step 3.

If 70, go to step 1 to choose an alternative F.
step 3: Compute F' = FT;.

Example 1 in Section 4.10 demonstrates this approach.
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4.4.2 Method II: via an Algebraic Riccati Equation

Using equation (4.54):

\ _ 0 0 .-+ 0 I
=[o. -n. q
L, 0 ---00
the problem of making A+ BF stable can be shown to be equivalent to a stabi-

lization problem via static output feedback, because of the following equality:

A+BF=A+BWC (4.64)
where
W= [cq —Dq]:mx(l+nq) (4.65)
. X 0 - 0 I
= . = ? .l+n X n. 4.66
& Lo - 0 (I +ny) (4.66)

Namely, a system G(s) := (4, B,C) which has n states, m inputs and (I4+mny)
outputs can be stabilized via a static output feedback matrix W € Rmx(Hna),
where n,m and ! are all fized but n, can be varied. Hence, if we can find a
smaller sized W, we can make A + BF stable with a smaller sized X.

To cope with the problem of making A+ BWC stable, we consider a feedback
system H (s) which comprises an open-loop plant G(s) and a static output
feedback W € R™*(4"4), Then, the closed-loop system H(s) can be expressed

as

H(s):= &

R A+BwWC | B
; (4.67)

and the stability of A + BWC is guaranteed if the feedback system H (s) of
(4.67) belongs to RHy,.

Using Lemma 2.17 in Chapter 2, we can derive the following Lemma to check
whether there exists a W having smaller dimension such that the system H(s)
is stable, and to find such a W if it exists.
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Lemma 4.14  Let H(s) be as in (4.67) and v > 0. Then the system H(s)
18 stable with an M, -norm bound, ||I§*(s)||co < 7, if there exists a unique sym-

metric positive definite solution P to the following ARE:
(A+BWEYTP + P(Ad+BWE) + ZPBBTP + ,lyofo 0 (468)
b7
for the designer selected W.

Given A, B and €, the existence of a positive definite solution P to ARE (4.68)
depends on the choice of the matrix W and also on . The scalar v can be any
size, since it has nothing to do with the poles of the closed-loop system formed
by the plant G(s) and the low-order stabilizing controller K7, ,,(s), but a large

~ may be preferable for ensuring the existence of a positive definite solution P.
Therefore, ' can be determined by the following procedure:

step 1 Given 4, B, € and X, construct ¢ as in (4.66).

step 2  Set v to be a large value, e.g., v = 108,

step 3  Select an arbitrary output feedback matrix W.

step 4 Solve ARE (4.68) for P.
If P >0, go to step 5.
If P €0, go to step 3 to choose an alternative W.

step 5 Compute F=wC.

Example la in Section 4.10 follows this approach.
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4.4.3 An Optimization Method

An optimization technique is considered here to supplement the methods de-

scribed in previous subsections which depend on trial and error techniques.

Firstly, the following procedure is suggested to strengthen the method in Sub-
section 4.4.1. Let

E:=A4+BEFeR™™
and let f be the following vector containing all the entries of £'

f = [fl*sz*;' ' '7fm*]T € R™™

where f;. denotes i-th row of F.
step 1  Select an initial guess f(©. (iteration index j = 0.)

(at j-th iteration)

step 2 Calculate eigenvalues of = and check if Re[N(E)] <0 V.
If yes, stop.

If no, go to step 3.

step 3  Transform = into its Jordan form J by a similarity transformation

using a nonsingular matrix S such that
STIES = J.

Note that J will be in diagonal form if Z is not defective (i.e., = has n linearly

independent eigenvectors).

step 4 If there are any eigenvalues with multiplicity greater than 1, modify

F9 and go to step 3 to ensure that the eigenvalues are distinct.

step 5 Use a gradient method to obtain a new parameter f+%), on observing
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the following equality:
O (E) _.T o=

ofr S*ib‘ﬁsm‘

fori=1,---,nand k=1,.--,mn, where s,; denotes :-th column of S, i.e.,

S = [5*175*21 M ')s*n] € Ran_

step 6 Set 7 =j+ 1 and then go to step 2.

Secondly, as an alternative to the method in Subsection 4.4.2, a readily available
Matlab command such as attgoal.m (in the Optimization Toolbox) may be used

to find a desired output feedback matrix W.

4.5 A Low-Order Stabilizing Controller Design
Algorithm

The aim of this section is to present a CAD algorithm for low-order stabilizing

controller design, summérizing the procedures described in the chapter so far.

step 1:  Given a minimal realization of the plant G(s) = (4, B,C) € RLE™,
choose an observer gain matrix H € R**! subject to the stability of A+ HC.

step 2: Transform the pair (4, C) into the required canonical form (4,,C,)
as in (4.38)-(4.39), and then find the observability index v, and the Kronecker

indices, Iy, lg, -+, 1y,
step 3: Set n, =1,.
step 4:  Choose any stable 4, € R"a*"a,

step 5:  Find the solution matrix X to (4.40), setting X, = I, .
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step 6: Compute B, € R"*! using (4.44) and (4.47).
step 7: Define T;, as in (4.51).

step 8  Determine an F' in the special form (4.55) which also satisfies the
stability of A+ BF, using either method I or method II or an optimization
method suggested in Section 4.4.

If F' is found, go to step 9.

If F is not found, go to step 3 to increase n, to the next level, e.g., from [, to

luo + luo—l-
step 9: Compute C, and D, as per (4.56) and (4.57), respectively.

step 10: Compute a low-order stabilizing controller as per (4.22).

4.6 Explicit Formulae of Low-Order Stabilizing

Controllers

In this section we derive explicit formulae of low-order stabilizing controllers,

using a certain canonical transformation.

Suppose a pair (4, C) is transformed to a more special canonical form (4, C,),
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as is found in Yokoyama and Kinnen [73], as

_ i -
Ay 0 0
0
I
o [ } 0
0 .
A, = . . . ) (4.69)
I
A 0 0 . [ J
0
Ay 0 0 0
¢, = [Il le('n.—l)]' (4'70)

Then, low-order stabilizing controllers may be explicitly expressed in state-space
form in terms of the plant data and A, only. Two different cases, n, =1, and

ng = n — [ are considered.

4.6.1 Casel: n;=]I,

For this situation, we can obtain the solution X to equation (4.40) as

X’:[ [Aq""‘l 0] [Aq"°'2 0] [Aq 0] 4, ] (4.71)

by direct calculation with X,, = I,,.

Define T3 as in (4.51) and follow the same procedure as in Subsection 4.3.3.
Then, we have X y Agy By, Cg and D, as below:

X = [o e 0 I,VO]

A, = (any given stable matrix with distinct eigenvalues)
B, = ([Aq"" 0]—[Aq"°”1 o]An—[A;o-2 o]A21
~-~—[Aq O]A,,o_l,l—A,,ml—I?,,o)N

¢, = F,

D, = -BN
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x 1,

‘o

where the dimensions of the matrices are X : Lo xmy Ay ly, X Ly, Byt l,,

C,:mxl,, and Dg:m x L.

These give a set of stable transfer functions Q(s), of order I,,, in terms of all
stable A, and some H and £. On substituting this characterization for Q(s)
into the formulae for K7, ;(s) in (4.22), we obtain a set of stabilizing controllers

with order not bigger than [,,. This is summarized in the following Theorem.

Theorem 4.15  If the assumption in Theorem 4.12 is satisfied, then a set of

stabilizing controllers of order less than or equal to I, is given by

Kro(s) Agr | Brr e
8) = .
stab Ckr -Dkr ( )

where
Ayw = A +B,FE, (4.73)
By = ([ A 0 ] - [ At 0 ] An - [ A7t 0 ] A
—rcr [ Aq 0 ] Auo—l,l - Auo,l - BVOFI)N (4‘74)
Crr = Fvo . (475)
D, = —EN. (4.76)
Proof: By direct manipulation. L

Similar formulae for order larger than ,, (e.g., !y, +{,,—1, ' * ) can be obtained in
the same manner. Note that the matrix H plays no direct role in the formulae
for the set of low-order stabilizing controllers K7;,,(s), but is present in the

formulae for the free stable parameter matrix Q(s).
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4.6.2 Case2:n;=n-1

In this case we assume that C; of (4.70) is partitioned as

Cs= [ I Oixgn-ny ]

and A, of (4.69) is partitioned conformally as

As - Asll Asl2
Ale As22

where

Asn = Au:l)(l

o] o
Aslg = 00 ---0 lx(n-—l)
L0
4 |
0 0 0
0
oo 1]
Az = | | ) ) ) t(n=0)x(n=-1I).
. . 0
i
0 0 0 .-
0
|00 o - 0

By assuming without loss of generality that A, has the form complying with
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that of A9, ie.,

I
Ags 0 {0] 0
A= : ' : ) 0 (n=0Dx(n=1)
I
| Agwe ] o - 0

we can obtain the solution X to equation (4.40) as
X = [X'l In__,] i(n=0Dxn
where

I

Xl = Aq

0} (n—=0)xL

78

(4.77)

(4.78)

Define T3 as in (4.51) and proceed in the same manner as in Subsection 4.3.3.

Then, we have X, By, Cy, and D, as follows:

%= o]

I 0 I 0 N
B, = (Aq2 0 0}‘149[0 0 A1 — A — H))N
c, = B
D, = —-EN

where 13'1, By and H, are partitions of F and H defined by F= [ B £ ] and

R N 1T
#=a7 87|
Consequently, the stabilizing controllers of order n — [ are given by

Ay | By,

K:ta.b(s) = [ Ck Dk
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where
A, = A+ BB (4.79)
I 0 Io A
By, = (47 0 0 — A, 0 o Asn — A1 — BoF)N - (4.80)
Cn = I (4.81)
Dy = —EN (4.82)

N n . . T
and By is defined by B= | BT BT | .

Remark 4.16 For n, = n — I, no restriction on F is imposed, ie., any F
which makes 4 + BF stable would be a suitable choice.

4.7 Pole Assignability of Low-Order Stabiliz-

ing Controllers

In this section, we examine the poles of the closed-loop system in Figure 4.3
formed by the plant G(s) in (4.1) and the low-order controller K7,,,(s) in (4.22).
We consider the A-matrix of the state-space realization of (I — GK7,,;)™ .

A state-space realization of (I — GK',,; )" can be expressed as :

A-BD,C BC, —BD,
—B,C — XHC — XBD,C' A,+XBC,|-B,~XH - XBD, |. (4.83)
c 0 ] I

On applying a state coordinate change to (4.83) using the transformation matrix

T, as in (4.18), we have the following representation:
A—-BD,C+ BC X BC,| -BD,

(I-GKny)™ = | -B,C—X(A+HC)+ A,X A, |~B,— XH
c o | I
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A+BF BC,| -BD,
= 0 A, |~-B,—XH (4.84)
c o | I

making use of equations (4.20)-(4.21). Representation (4.84) is similar to (4.83).

It follows from (4.84) that, given the existence of a solution X to (4.20)-(4.21),
the poles of the closed-loop system are the union of the eigenvalues of A + BF

and the eigenvalues of A,.

By definition, both A + BF and A, are stable. This means that the low-
order controller K7, ,(s) is guaranteed to always satisfy the closed-loop stability
constraint. Note that the separation property of all stabilizing controllers, as
described in Subsection 4.2.3, is still present when the full-order stabilizing
controller K;qs(s) is replaced by low-order stabilizing controller K7, ,(s). Hence
all the closed-loop poles are assignable. Also note that the observer poles (i.e.,
eigenvalues of 4 + HC') are not closed-loop poles when a low-order controller
K7,5(s) is used. Numerical examples in Section 4.10 illustrate this separation

property precisely.

The separation property of the closed-loop poles can also be found, for example,
in an observer-based controller [45] and in an LQG compensator, e.g., [46,
p.227).

Remark 4.17  We have the total freedom in selecting the poles of Q(s),
namely, the eigenvalues of A,, whereas the restriction on F to have the form in
(4.55) in turn restricts the eigenvalues of A+ BE. This restriction was discussed

in some detail in Section 4.4.

Remark 4.18 When a CAA is adopted, the separation property will arise
between the eigenvalues of A+ HC and the poles of Q(s), since it can then be
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shown that
A+HC 0 |BD,+YB,
(I_ GK.:tub)_I = _ch Aq Bq
¢ cor| I

4.8 Lower-Bounds on the Controller Order

In this section, we briefly summarize some existing results on stabilization by
reduced-order controllers, and compare them with the new results developed in

this thesis.

The following notation is used.

NMow : @ lower bound on the order of a dynamic stabilizing controller.
n : number of states of the plant.’

{ : number of outputs of the plant.

m : number of inputs of the plant.

4.8.1 Existing Results

The low-order stabilization problem has received much attention by a number
of researchers. Despite this effort, the low-order stabilization problem is still an
open problem in the sense that most of the existing results provide only sufficient
conditions for the existence of stabilizing controllers of a certain order. We
summarize in this subsection some of the existing results on the lower-bounds

of the dynarmic order of stabilizing controllers.

(1) Luenberger [45]: Corresponding to an nth-order system having [ linearly

independent outputs, a reduced-order observer of order

o Niow=n-—1
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can be constructed having arbitrary eigenvalues.

(2) Brasch and Pearson [8]: For arbitrary closed-loop pole placement, a dynamic

compensator should have at least an order

e Mpow = min(v,—1,v,~1)

where v, is the controllability index and v, is the observability index of the

plant.

(3) Kimura [38): Almost arbitrary closed-loop pole assignability is possible by
constant gain output feedback if n < m 41— 1. However, a dynamic controller
is required to achieve closed-loop stability if n > m 4 [ — 1. In this case, the

minimum order of the dynamic controller is

o NMiow=n—m—1+1.

(4) Linnemann [44]: SISO systems can be stabilized by a controller having the

minimum order

e Mpw=n—-1—k%k

where k is the order of the first Hurwitz polynomial in the sequence of remain-
ders occurring in the Euclidean algorithm on its application to the numerator

and denominator polynomials of an nth-order system transfer function.

(5) Smith and Sondergeld [65]: The arbitrary closed-loop pole placement proce-
dure of Brasch and Pearson [8] may generate an unstable controller for closed-
loop stabilization. In certain cases, the instability of a controller appears to
result in poor overall system sensitivity to variations in controller parameters,

[64]. This leads to a consideration of the strong stabilization problem, which
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means the stabilization of a closed-loop feedback system by an asymptotically
stable controller. For strong stabilization of a single-loop plant, Smith and

Sondergeld showed the following results:

@ Maw =d-1 (lf Z=0)
e Mow=n+d—2 (if 2=1 and the plant is strongly stabilizable)

0 Niw — 0© (if z > 2)

where d is the relative degree of the plant and z is the number of zeros of the
plant in the CRHP.

4.8.2 New Results

It was shown in Section 4.3 that the order of stabilizing controller, M, (= n,),
can be varied from I, (at its lowest) to n—{ (at its highest). It is obvious that,
when the observability index v, is equal to 2, the order of controller is fixed at
Niow = n — [, and that if v, > 8, Moy = [, where [, is the dimension of block
_ matrix 4,,,, in (4.38).

Similarly, using the controllability argument approach, the order of the con-
troller can be fixed at N, = n —m when v, = 2, or have a lower bound of

Niow = m,, when v, > 3.

Combining the above two results, we have the following lower bounds on the

order of controller :

Now = min(n—ILn—m) fv,=v,=2 (4.85)
= min(n —m,l,) Hr.=2,1,2>3 (4.86)
= min(m,,n—1) Hv,23v,=2 (4.87)

= min(my,,,) if v,v, > 3. (4.88)
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This observation indicates that, when either n — [ or n — m is large, there is

considerable scope for reducing the order of the dynamic stabilizing controller.

4.8.3 Comparison and Comments

Luenberger’s result (1) on low-order observers is standard. Results (2) and (3)
in Subsection in 4.8.1 are, in general, considered by Keel et al. [37] to be too
conservative due to the essential requirement of arbitrary pole placement, when
stabilization is the only requirement. Indeed, the order of stabilizing controllers
can be further reduced by, for example, the new results in this thesis. Numerical
examples in Section 4.10 verify this claim. Two results (4) and (5) in Subsection
4.8.1 are applicable only to the SISO case, whereas our new results can be
applied to the MIMO case as well. Among others, Kimura’s results (3) will be
revisited in Section 4.9 to investigate more of the implications of the new results

developed in this chapter.

4.9 Comparison with Kimura’s Results

In [38], Kimura showed the following results on pole assignment by output
feedback:

1. If a system having n states, m inputs and [ outputs is minimal, and
m+1—12>n (ie, m+!>n), then an almost arbitrary set of distinct

closed-loop poles is assignable by constant gain output feedback.

2. The minimum order of the dynamic compensator required for almost ar-

bitrary closed-loop pole assignments is not greater than n —m — [+ 1.
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In this section, using the approach described in Section 4.3, we show that
Kimura’s results above can be confirmed, and that it is possible to improve

upon the second result.

4.9.1 Confirmation

Let the order of low-order stabilizing controllers, n,, satisfy
ng =l +lpat -+ h2n-—m-1I0+1 (4.89)
and let the matrix 1:7;% have the form
P, = [ﬁ’k 13";;.,.1 e B, By ] 1M X R (4.90)

Then, from equations (4.53) and (4.55), we have the following:

A+BF=A+E[@1 0 -~ 0 Fk,,] (4.91)

By a similarity transformation using a nonsingular n x n matrix 73 given by

I, 0 0
T3 = 0 0 In—l-—nq (4.92)
0 I, 0
we have
A=T"'AT, B=T3"'B (4.93)
and
F=FTy= [ B By, 0 } (4.94)

using (4.91)-(4.92).

Therefore for the existence of low-order stabilizing controllers of order n; satis-

fying (4.89), it is now required that

A+ BF = A+E[ﬁ3 Ey, 0} (4.95)
= A+BEKC (4.96)
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is stable, where

R= [ B B ] X (14 1) (4.97)
and
C’::[I 0]:(l+nq)><n. (4.98)

Note that € # CTs.

From equation (4.96), the problem of finding an F such that A + BF is stable
is equivalent to a static output feedback stabilization problem for a system
comprising (4, B, ). Therefore, low-order stabilizing controllers of order n,
(= n—m—1+1) will exist if there exists a gain output feedback matrix K for

the system (ﬁ:, B, $) having n states, m inputs and (I + n,) outputs.

Indeed, by Kimura’s first result, there always exists such a gain matrix K for
almost arbitrary pole assignability if n, > n—m—I+1. For the system (A, B,0),

this can be easily proved. That is, using condition (4.89), we have
m+(l+n)—12m+(I+n-—m—-I1+1)—-1
which is identical to the following inequality:
m+({+n,)—1>n. (4.99)

Inequality (4.99) meets the condition of Kimura’s first result, namely, the con-

dition for the existence of gain output feedback, and therefore K exists.

Thus, in the approach for deriving low-order stabilizing controllers (as described
in Section 4.3), if we increase ng until it exceeds n — m — I+ 1, then we can
always find ' (or F) which not only satisfies the special form as in (4.55) but
also makes A + BEF {or A + BF) stable. Consequently, we can have dynamic
output feedback controllers of order n — m — [+ 1 which stabilize the plant.

This is a confirmation of Kimura’s second result.
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Remark 4.19 Ifn, = n—~m — [+ 1, we have a stabilization problem by a
static output feedback: i.e., find K such that A + BK( is stable where K is
mx(n-—m+1)and Cis (n —m +1) X n.

4.9.2 Improvement

Equations (4.41) and (4.54) in Section 4.3 are here reviewed in line with Kimura’s
result. In Subsection 4.4.2, we have shown that the problem of making A+ BE
stable is equivalent to an output feedback stabilization problem of making
A + BW stable, with

s
Il
$
I
.aw’
B

(=%
Qx
]

» N>

as in (4.65)-(4.66).

As shown in the previous subsection, if the dimension of X € R™*" reaches
or exceeds n —m — [+ 1 (i.e., ng 2 n—m — [ 4 1), it is guaranteed that a
static output feedback matrix W exists such that the eigenvalues of A+ BWC'
can almost arbitrarily be assigned. This is due to Kimura’s first result, and is

summarized in the following Theorem.

Theorem 4.20 The system (A,B,C) always has low-order stabilizing

controllers of order ng >n—m — 1+ 1.

Moreover, in some cases, a suitable W will exist for an X of smaller dimension
(i€, ng < n—m —1+1). In Subsection 4.4.2, we considered how to find
such a W. This implies that the approach developed in this chapter could find
controllers of smaller order than predicted by Kimura's result. Example 2 in
Section 4.10 illustrates this. Other developments on the existence problem of a
static output feedback matrix can be found in Oh et al. [53] and the references

therein, where the problem is solved via an optimization technique.
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4,10 IMustrative Examples

In this section, we present two numerical examples to illustrate the new algo-
rithm for low-order stabilizing controller design. All calculations were performed
using Matlab on a SUN work station. The first example is a MIMO system and
we use the observability approach, whereas the second is SISO and we use the

controllability approach.

4.10.1 Example 1

The state matrices for this example are taken from Kimura [38], and describe
a system with 3 inputs, 2 outputs and 5 states. The plant is given by G(s) =
(4, B,C, D), where

[0 1 000(000]
00100[100
ne 00010/010
2'—|—5_00001001
10000/000
10000[(000
(0100000 0|

The corresponding transfer function matrix is
1 2 8% s
5
s —1 s $3 §2

—0.8090 £ 50.5878, 0.3090 & 70.9511, 1.0000.

G(s) =

and the open-loop poles are at

This example is already in observable canonical form as in (4.38)-(4.39), with

=2, lb=1, I[g=1andl, =1, where v, = 4 is the observability index.
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So, we have
A,=A, B,=B, C,=C, M=I;, N=1
and choose an observer gain matrix H such that

AA+HC) = ~1,-2,—8,~4, 5.

Since I, = 1, we set n, = 1 and choose the arbitrary stable 4, as 4, = ~2.
Then X and B, are determined to be

X=[0—84—21]

B,

[ —0.7320 —0.0065 ] .

A nonsingular matrix T} is then constructed by (4.51). If we choose the state
feedback matrix F as
-12 =71 -8 4 -2
F=| -1 20 —24 12 -6
1 —-80 —40 20 -10

then the eigenvalues of 4, + B,F are
—63.3498, —5.7614 + 74.8267, —0.1153, -0.0121

and
-12 87 0 0 -2
F=FLh=| -1 -28 00 -6
1 -160 0 0 —-10
which is of the special form in (4.55). C, and D, follow simply using (4.56)
and (4.57). Finally, using (4.22), a low-order stabilizing controller K7, ,(s) is

computed as

10| -901 888

K7(5) Apr | Bir -2 12 87
§) = =

stab Ckr Dkr —6 1 28

-10} -1 160
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which is a 1st-order (unstable) controller. The resulting closed-loop poles are

given by
—63.3498, —5.7614 £ 74.8267, -—0.1153, -0.0121, -—2.0000

which are the union of the eigenvalues of 4, + B,F and 4,.

Example 1a  To demonstrate method II described in Subsection 4.4.2 for
determining W and thus 17", we reconsider the plant model in Example 1. Again,
we aim to find a 1st-order controller (i.e., ny = 1). So, we set 4, = —2 and find

X as before. Then ¢ matrix is built as

N 00001
e | X
C=|.|=|10000

c

01000

If we choose v = 10 and an output feedback matrix W € R®*® as

-2 ~12 -55
W=| -6 -1 55
-10 1 -16

then a positive definite solution P to ARE (4.68) exists. Having chosen such a
W and found a positive definite solution P, the state feedback matrix F' = W,
from equation (4.64), is computed as
-12 -85 0 0 -2
F=| -1 5500 -6
1 -16 0 0 10
from which C, and D, are easily obtained. The eigenvalues of A+ BF are at
—16.9831 + 78.7452, —8.8934, —0.1285, —0.0120.

So, we may construct another low-order stabilizing controller of order 1 given
by
12s + 62 55s + 802
, 1
Koan(s) = ——75 | +536 —5bs+4606
—s+920  16s+ 6600
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This controller generates the closed-loop poles at
—16.9831 £ 58.7452, —8.8934, —0.1285, —0.0120, —2.0000

which also illustrates the separation property.

4.10.2 Example 2

To demonstrate the controllability argument approach (CAA), we consider the
following SISO unstable plant G(s) = (4, B, C):

A|B
cio

Its transfer function matrix is

2s+3
8 —8s—8

G(s) =
and the open-loop poles are at

3.1474, —0.8186, —2.3289.

The plant matrices (4, B, C) can be transformed into the controllable canonical
form (A¢, B., Co) :

0.5000 6.2501 1.2353 |1
1.0000 0.3824 1.1626 |0
0.0000 1.0000 -—-0.8824 |0
0.0000 1.1781 0.7276 |0

Al B,
C:1 0

having my =1, mq =1 and m,, = 1, where v, = 3 is controllability index.

Since m,, = 1, we may start with n, = 1. We set 4, = —4 and then find ¥ as

T
Y = [ 12.4998 —3.1175 1.0000] .




Ch. 4. LOW-ORDER STABILIZING CONTROLLERS 92
If we choose an observer gain matrix H as
T
H= [ —50.000 —6.235 2.000]
the eigenvalues of A + HC are at
—2.0986 + 76.7293, —1.6930.

Then, a 1lst-order (stable) controller K;tab(s) is obtained using (4.25) as

74.99965s - 224.0003
s+ 9.8902

I{:tab(s) =
which results in closed-loop poles at
—2.0986 £ §6.7293, —1.6930, —4.0000.

This example demonstrates pole assignability via the separation property be-
tween A+ HC and A,.

4.10.3 Amnalysis and Comments

The examples shown illustrate the following attractive features :

e The computational algorithm for computing low-order stabilizing con-

trollers is valid and easily implemented.

e A separation property holds for the closed-loop poles:
The closed-loop poles are the union of the eigenvalues of A + BF and the
poles of Q(s), in the observability argument approach as in Example 1.
In the controllability arguments approach used in Example 2, the separa-
tion property is between A + HC and Q(s).

e The stability of the closed-loop is preserved when the full-order controller

is replaced by the low-order controller.
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In Examples 1 and 2, using the same Q(s), we compute the (n + n,)th-order
controller K;q5(s) as per (4.12), and then examine the normalized Hankel sin-
gular values of Kqp(s). The results are given in Table 4.1, and clearly show
that the low-order controllers obtained in the previous subsections are minimal
realizations of the “formal” order controllers. That is, controllers having the
same orders may be obtained using existing model reduction techniques. In-
deed, using Matlab files balmr.m (for the balanced truncated model reduction)
and okkimr.m (for the optimal Hankel norm model reduction), we obtained the

low-order controllers of the same order as those we derived here.

Example 1 Example 1a Example 2
(n=56n,=1)](n=8n,=1) | (n=38,n,=1)
1.0E-00 1.0E-00 1.0E-00

0 0 1.7E-13
0 0 4.0E-14
0 0 0
0 0
0 0

Table 4.1. Normalized Hankel Sihgular Values of Ky,(s)

Frequency responses can be used as a performance measure to evaluate the low-
order controllers. For comparison purposes, the frequency responses (singular
value plots in general) of the formal order controllers and the low-order con-

trollers are shown in Figure 4.4 for Example 1 and in Figure 4.5 for Example
2.

Table 4.2 below compares the orders of stabilizing controllers which we obtained
in Examples 1 and 2 by means of the algorithm presented in this chapter, with
those predicted by others [8],[38],[44],[45].
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Example 1 | Example 2

number of states (n)
number of inputs (m)
number of outputs ({)
controllability index (v.)
observability index (v,)
Brasch/Pearson [8]
Kimura [38]

Linnemann [44] N/A
Luenberger [45] 3

HON B W N W R

IR = N ONwWw W = =W

New results . 1

Table 4.2. Orders of Low-Order Stabilizing Controllers.

4.11 Concluding Remarks

A methodology for determining a set of stabilizing controllers of smallest possi-
ble order was presented in this chapter. Working from the celebrated parametriza-
tion of all stabilizing controllers in terms of a free stable parameter matrix Q(s),
we derived a low-order realization K7, ,(s) of (4.22) on the assumption of the
existence of a solution matrix X to two simultaneous matrix equations, (4.20)-
(4.21). The derivation was based on eliminating any unobservable states in the
formal order controllers K;,;(s) given by (4.12). Two equations were solved
to find the smallest possible size of stabilizing controllers, using an orthogo-
nal canonical transformation. As a result, we have shown that the order of

stabilizing controllers may be less than or equal to [,,.

The algorithm presented in this chapter for deriving low-order stabilizing con-
trollers can be used either as a form of minimal realization or of model reduction

of all stabilizing controllers Kias(s) in (4.12), depending on the choice of the
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special form of £ as in (4.55).

Some related issues, such as the determination of ' in the form (4.55), pole
assignability of closed-loop poles by low-order stabilizing controllers, and con-
firmation of Kimura’s results, were also comsidered. Finally, two numerical
examples were given to illustrate the application of the constructive algorithm

and the results on controller size.

Although stabilization is of fundamental importance in control system design,
it is not enough on its own to guarantee good performance. In the following
chapters, the main idea and the solution method described in this chapter will be
extended to He, design where robust stability and some performance objectives

can be addressed together.
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Singular Values of Controllers

(-) Formal-order controller
(*) Low-order controller
(5 Low-order controller by balmrjn

(-.) Low-order controller by ohklrnrjn

10+ 10+

frequency (rad/sec)
Figure 4.4: Singular Values of Controllers for Example 1.

Singular Values of Controllers

(-) Feernal-order controller
(*) Low-order amtroller
(9 Low-order controller by balrnrro

(-.) Low-order controller by ohklmr.m

10+ 10+

frequency (rad/sec)

Figure 4.5: Singular Values of Controllers for Example 2.
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Chapter 5

Low-Order Hoo Sub-Optimal

Controller Design

5.1 Introduction

An important problem in advanced control system design is the H., suboptimal
control problem, where stabilizing controllers which satisfy an upper bound on
the Heo-norm of a certain closed-loop transfer function matrix are to be found.
The problem has recently seen the elegant state-space solutions, obtained by
Glover and Doyle [27] and Doyle et. al [18], via two Riccati equations. There,
the set of all H,, suboptimal controllers is parametrized using linear fractional

transformations and the so-called Q-parametrization.

Even though there is the freedom in the Q-parametrization to meet certain
control design objectives, the M. suboptimal controller may have a “high”

order, i.e.,
N < deg(G) + deg(W) + deg(®)
where G(s) is the nominal plant to be controlled, W(s) is the frequency weight-

97
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ing functions selected by the designer and &®(s) is a free stable transfer function

matrix.

There are some approaches currently available for finding low-order H,, con-
trollers. For example, an early result by Limebeer and Hung [42] showed that
for the H, suboptimal control problem, a controller with degree no greater
than that of the generalized plant (i.e., the nominal plant plus the weighting
functions) exists; Mustafa and Glover [51] developed an Hoo-balancing method
in which the He characteristic values are computed and its small values are
then truncated; and more recently, Hsu et al. [32] and Iwasaki and Skelton [34]

gave some interesting results.

In this chapter, we present a new approach to low-order Hy, suboptimal con-
troller design, which is similar in spirit to that developed in Chapter 4 of this
thesis. We have shown in Chapter 4 that low-order stabilizing controllers can
be derived by suitably choosing the free parameter matrix Q(s) in the Youla
parametrization of all stabilizing controllers. So, given the results of Chapter
4, it is natural to ask whether a size reduction on a class of He, suboptimal
controllers is possible in the spirit of low-order stabilizing controllers. It is the
purpose of this chapter to show that this is the case. Indeed, we will extend the
methodology developed in Chapter 4 to characterize low-order H., subopti-
mal controllers, K’ (s), of order less than the order of the generalized plant,
while keeping the He,-norm of a closed-loop transfer function matrix within
the prescribed value. So, the approach to be presented only requires the solu-
tion to two simultaneous matrix equations, (5.34)-(5.35), and the satisfaction
of an He-norm bound, (5.38). Consequently, it is shown that the order of He,

suboptimal controllers may be reduced to
Niow = deg(G) + deg(W) — p2

or less for some plants, where p, is the number of plant outputs.

- The chapter is organized as follows. In Section 5.2 the now standard state-space

solution to the general H,, suboptimal problem is briefly outlined. In Section




Ch. 5. LOW-ORDER H., SUBOPTIMAL CONTROLLERS 99

5.3, we derive a low-order realization, (5.33), of H,, suboptimal controllers and
show that controllers of order n — p; (or less) exist providing an H.,-norm
constraint is satisfied. The problem of the Ho-norm constraint is considered in
Section 5.4. A CAD algorithm for low-order H, suboptimal controller design
is presented in Section 5.5. A related problem of controller size reduction in
H2(L.QG) controllers is considered in Section 5.6. In Section 5.7 some numerical
examples are given to illustrate the results of the chapter. Conclusions are given

in Section 5.8.

5.2 State-Space Formulae for the H,, Sub-Optimal

Controller

Consider a generalized plant, P(s) described by

2(t) = Az(t)+ Biw(t) + Byu(t) (5.1)
2(t) = Ciz(t) + Duw(t) + Dyu(t) (5.2)
y(t) = Coz(t) + Daw(t) + Dogu(t) (5.3)

where z(t) € R™ is the state vector, w(t) € R™ is the exogenous input vector,
u(t) € R™ is the control input vector, z(t) € R is the error vector, and

t) € R¥ is the observation vector. The generalized plant P(s) is given by
Y &

Pls) = | Gy (5.4)

C;

The Hs optimization problem is to find
Ksia%g%fizing ”ﬁ(P’ K)“w = Tmin (55)

where the controller K(s) to be designed is chosen over all controllers which
internally stabilize the generalized plant P(s). To represent both robust sta-

bility and performance objectives in the same H,, minimization framework,
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an He, optimization problem specification typically combines a number of fre-
quency weighted closed-loop transfer functions and minimizes the H-norm of
the composite transfer function matrix. In general, it is not possible to solve
for Ymin exactly and hence the so-called H,, suboptimal control problem was
introduced. The reduction in stability margin incurred as a result of using a

slightly suboptimal cost can be compensated by improved performance.

The Ho suboptimal problem of finding a stabilizing controller Ko(s) such that
[1FUP, Koo)lloo < v (5.6)

for some prespecified value of (> vmin) has been efficiently solved by Glover
and Doyle [27] and Doyle et ol. [18], using two Riccati equations.

This class of H,, suboptimal control problem is considered in this chapter to

develop low-order H,, suboptimal controllers.

The questions we consider in this chapter are: Under what assumption does
there ezist controllers K1 (s) of size less than n which also meet the Heo-norm

constraint:
[|F(P, K ) oo < ¥ (5.7)

and how can we find such reduced-order controllers?

Glover and Doyle [27] have stated necessary and sufficient conditions for the
existence of a stabilizing controller solving (5.6), and parametrize all such con-

trollers. A brief summary of their work is given next.

The following assumptions are made on P(s):
Al. (4, B,,C,,Dy) is stabilizable and detectable.
AZ. Ra,nk(Dlz) = Mgy and I&nk(Dzl) = Pa.

A3. Dj; and D, are transformed into

Dyp =

} and D21=[0 Ipz]

m2
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by a scaling of v and y, together with a unitary transformation of w and z. And

Dy, is partitioned as
D1y Due
Di1g1 Diies

where Dy199 has my rows and p, columns.

-Dll =

A4, The physical plant is strictly proper, consequently Dys = 0.

A5. Rank A-jul B =n+4+my YweR.
Cl -D12
' A—jwl B
AG. Rank IO i p, VweR
C, Dy

These assumptions are required for the following reasons:

Al is to ensure the existence of a stabilizing controller K(s); A2 is to ensure

the properness of K(s); A3 is for dimensional compatibility with Dya and Dgy;

A4 is for simplicity only and thus can be ielaxed; finally, both A5 and A6 are

to avoid pole-zero cancellations on the imaginary axis and to prevent P(s) from

having transmission zeros on the jw-axis.

Define
R = Dz‘Dl _ 7217711 0
* 0
and
R:= D*lth; - 721}’1 0
* 0 0
where
D
Dl* = [ .D11 .D12 ] and D*l = "
Dy

(5.8)
(5.9)

} . (5.10)

Let X > 0 and Y, > 0 be the stabilizing solutions of the following Riccati

equations:

X = Ric

A— BRDLC, —BRB?
~C¥(I — D1.RDY)C, —(A— BRDE.C)Y

(5.11)
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and
A-B,DLR'C —CTR-C
Y., := Ric o, N . (5.12)
—By(I - DflR‘lD*l)Bf —(4- B, DLRC)T
Now define a state feedback matrix F as
By
F = —RYDLC,+B™X,)=| R, (5.13)
Fy

where Fi,, Fi5 and Fj have my — py, pa and m, rows, respectively, and define an

observer gain matrix H as
H:= —(BDY 4+ Y..CT)E = { Hy Hy H ] (5.14)

where Hy1, Hip and H; have p; — mg, my and ps columns, respectively.
The central results for the algorithm are stated in the following Theorem.

Theorem 5.1 (Glover and Doyle [27])
(1) A stabilizing controller emists, such that ||Fi(P, Ko )llew < 7, if and only if
(i)

7 > max(Tmaz[Di111, Di1tz], Omas| D111, DYyl (5.15)

and

(%) there exist solutions Xoo > 0 and Yoo > 0 of (5.11) and (5.12), respectively,
such that

A XooYoo) < 72 {5.16)
(2) If (i) and (%) above are satisfied, then all (rational) stabilizing controllers
Koo(5), for which ||Fi(P, Ke)lleo < v, are given by

Koo = Fi(K,, ®) (5.17)




Ch. 5. LOW-ORDER H., SUBOPTIMAL CONTROLLERS 103

for any rational ®(s) € RHT2*P2 such that ||®(s)]lee < 7, where K, has the

realization

K.(s) = (5.18)
and
Dyy = =D119a D% (v* = D111 D%11) "  Diyyg — Dings (5.19)
Dyy € Rm2xm2 gnd Doy € RP2*P2 are any matrices satisfying
DypDY, = I— Dys(y*I = DL D) DL, (5.20)
DLDy = I—DLo(v* — Dy DLyy)  Divna (5.21)
and
B, = (By+ Hyy)Dyy (5.22)
G = —Dy(Cy + Fi3)Zs (5.23)
By = —H,+B,D;lDy (5.24)
& = FRZe+ DnDiCs (5.25)
A = A4+HC+B,D3 ¢ (5.26)
where
Zoo = (I =4 Yoo Xoo) ™t (5:27)

Figure 5.1 shows a diagram of an M., suboptimal controller comprising of K,(s)
and ®(s), as in (5.17).

The all-solution controllers Ko(s) such that ||F(P, K )||eo < <y are parameter-
ized by the free stable ®(s) constrained by ||®(s)||e < 7. In the next section,
we will use the parameterization of K (s) given by (5.17) to reduce the order

of the M, suboptimal controllers.

Note that if Dy; = 0 then the formulae in Theorem 5.1 are considerably simpli-
fied, Doyle et al. [18].
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K,(s)

> B(s)

Figure 5.1: Diagram for an H,, Sub-optimal Controller, K, = F(X,, ®).

5.3 Low-Order . Sub-Optimal Controllers

The formulae cited in the previous section represent an important result in
optimal control theory. It is clear that we are always able to obtain suboptimal
controllers of size equal to, or less than, n by simply choosing ®(s) as a constant
matrix with largest singular value less than v, provided the feasibility conditions
(5.18) and (5.16) are met.

For convenience, we rewrite all (rational) stabilizing He, controllers in (5.17) as
Koo(s) = Fi(K,,®) (5.28)

for any rational &(s) € RHZ2*P2 such that ||®(s)||e < 7.

Let ®(s) in (5.28) have a state-space realization

€ RMos (5.29)

where Ag is stable, and Ay : ng Xng, By : ng X g, Cp 1 Mo Xng and Dy : mg X po,

respectively.
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Then, using (5.18) and (5.29), K(s) of (5.28) can be expressed as
A + Equséz .égc’qs Bl + B2D¢D21
Ko(s) = | ByC, Ay | BybDy (5.30)
Gy + Di2DyCe jleCqS | Du + b12D¢f)21

making use of a state-space realization of an LFT given in [57]. From (5.30),
we see that all controllers K, (s) have a state dimension of (n +ngy) if there are

no pole-zero cancellations between K,(s) and &(s), since

deg(K o)

i

deg(K,) + deg(®) — «

= n+n¢—a

where « is the number of cancellations between K,(s) and ®(s).

Remark 5.2 The “central” (or maximum entropy) controller, which is ob—
tained from (5.28) by taking ®(s) = 0, has the realization

- a

This “central” controller has an order:
Ncentral = deg(G) + deg(W)
=n

and is widely used in H control. The freedom in the parametrization cannot
easily be used to yield desirable closed-loop properties and hence usually is

ignored.

5.3.1 Derivation of Reduced-Order Controllers

We begin by applying a state similarity transformation to Keo(s) of (5.30) using

a nonsingular matrix

I, ©
Ty = 5.31
1 X I (5.31)

T
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to find a new realization given by
Ka.ll I{a12 -K-bl

Koo(s) 1= | Kuz1 K | Kip (5.32)
Kcl I{CZ K.d

where

Kar = A+ ByDyCy— BiCyX
Kuy = B.Cy
Ken = XA+XByDyCy+ ByCo— XBoCyX — AgX
Koy = XByCy+ Ay
Ky = Bi+B,DyDy
Ky = XBy+XB;DyDy + ByDy
Kq = Ci+ DDyl — DiaCyX
Ko = DGy
Ky = Dy + D1DgDyy.

From the realization of K(s) in (5.32), we may obtain a reduced-order realiza-
tion, which we refer to as the low-order H,, suboptimal controller:
XByCy+ Ay | X By + XB,Dy Doy + ByDoy

-D12C¢ I Dy + DiyDyDyy

K" (s) = (5.33)

if there exists a matrix X € R™*" satisfying K,o = 0 and Ky = 0, i.e., the

following two matrix equations are satisfied:

AsX — XA = By, (5.34)

C3X —DgC, = F (5.35)
where

A = A-B,Dj¢, (5.36)

F = Dpié, (5.37)
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1t is emphasized that K7 (s) in (5.33) has an order:
deg(KL) =ng

at most, which is obviously less than n + ng, the “formal” order of K(s) of
(5.30), occurring in the case of & = 0. The realization (5.33) is in a convenient

form for computing a set of low-order H,, suboptimal controllers.

It is also interesting to see that the two equations (5.34)-(5.35) are similar
to those required for finding low-order stabilizing controllers as described in
Chapter 4. Thus, the methodology proposed in Chapter 4 for solving those
equations might be applicable here. However, in the present chapter, we have

a new constraint, i.e.,
12(s)lloo = ICo(sI — Ag)™ By + Dyllos < 7 (5.38)

and, in addition, the freedom in the choice of Fis considerably limited. These
two constraints indicate that the problem of finding low-order H,, suboptimal

controllers is more difficult than that of finding low-order stabilizing controllers.

Remark 8.3 The closed-loop transfer function (CLTF) formed by the gen-
eralized plant P(s) and the low-order controller K7 (s) can be computed from

the following linear fractional transformation:
CLTF := F(P,K.,)

using P(s) in (5.2)-(5.4) and K7 (s) in (5.33).

5.3.2 He Sub-Optimal Controllers of Order n — py

The existence of low-order H,, suboptimal controllers depends on the solution
of the two simultaneous matrix equations, (5.34)-(5.35), subject to an Heo-norm
constraint, (5.38). In what follows we show how to find a solution matrix X

and a suitable free parameter ®(s) to satisfy the two matrix equations.
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The first equation (5.34):
AsX —XA = ByC,

can be rather easily solved for X € R™¢*" whereas the solvability of the second
equation (5.35):

CyX —DyCy = F

may be limited due to the lack of freedom on F. In this subsection, we consider
the special case of ny = n — py in which Cy and Dy can always be found

regardless of the structure of E.
Assumption 5.4 Assume that ¢, € RP2*" is full row rank.

To solve the problem for the case of ng = n — py, suppose that C, takes the

form
Cr = [ Loy Opox(n—p2) ] : (5.39)
Then, partition A € R*** conformally as
< An Ai (5.40)
Aoy Ag

where Ay 1 py X Pa, Aya t P2 X (N —p3), Agy 1 (n— pa) X po, and Ay, (n—p2) x
(n ~— pa2).

Note from Lemma 2.6 that the pair (Azz, Au) is completely observable if the
pair (4, Cy) is completely observable.

Recall that we set ng = n — py, which will be the order of the low-order He,
suboptimal controller. Now suppose that X € R(-P2)Xn and ' ¢ Rm2Xn gre

partitioned as

X = [X1 X2] (5.41)

Fy
Il

&

&

(5.42)
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where X; : (n—p3)Xpa, Xz : (n—pa)x(n—=p3), F1 : myxpy, and Fy : myx (n—p,).

Then, from (5.34), we have the following two equations:

AgXy — X1Ay — Xl = B, (5.43)
A¢X2 - -Xl-g.lz - Xz.zg.zz = 0 (54:4:)

Equation (5.44) is equivalent to:
XpAg + X1 4y = 44X, (5.45)

As shown in Lemma 4.5, for any stable A4, there always exists a matrix X;
and a nonsingular X, which satisfy equation (5.45), provided the pair (4, ;)

is completely observable.

Remark 5.5 The assumption of observability of the pair (4, C;) - and hence
observability of the pair (fizz, Ayp) - can be relaxed when finding the solution
matrix X, since X can also be found even when the pair (A, 02) is not completely

observable. For details, refer to Remark 5.9 later.

Having found X; and X,, B, can be obtained from (5.43), and Cy and Dy can
be computed from (5.35) as

cy = Bx;? (5.46)
D, = BX7'X, -F (5.47)

making use of (5.41)-(5.42).

Hence, we now have X, Ay, By, Cy and Dy required for the realization (5.33),
and can therefore compute an H,, suboptimal controller of order n—p,, provided

the Ho-norm constraint, ||®(s)||e < 7, is satisfied.

Without loss of generality, the identity matrix can be chosen as a candidate
for X; (i.e., Xy = I,—p,). In this instance, all the state-space matrices of

the free parameter matrix ®(s) can be found, in terms of an arbitrary matrix
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X1 € Rln=p2)xp2 hhy

Ay = Ap+ Xidio (5.48)
By = AgXy — XAy — Ay (5.49)
Cy = By (5.50)
Dy = BXy-F (5.51)

subject to the stability of A;. Hence, a solution matrix X and a suitable free
parameter @(s) to the two simultaneous matrix equations (5.34)-(5.35) are both
characterized in terms of just Xj, which can be chosen arbitrarily subject to
the stability of A4. In addition, such a characterization of the parameters A,
By, Cy and Dy in terms of Xy may simplify the solvability of the Ho,-norm
constraint on &(s) which we will discuss later in Section 5.4. Consequently,
we have low-order H,, suboptimal controllers of order n — p; as stated in the

Theorem below.

Theorem 5.6:  The generalized plant P(s) described by (5.4) has low-order

Hoo suboptimal controllers of order:
Mo’w =n—DpD2

if Cy in (5.88) is full row rank and if the Ho,-norm constraint on ®(s) of (5.98)
18 satisfied.

Remark 5.7: In solving (5.44), X need not be the identity matrix, as shown
in Lemma 4.5. In general, we need to choose Ay as an arbitrary but stable
matrix. Then, X; and X, can be calculated from (5.45) and consequently By,
Cs and D all depend only on Ag. Ay is a suitable candidate if the resulting
®(s) satisfies the Hoo-norm constraint of (5.38).

An alternative solution to the two equations (5.34)-(5.35) is given in Appendix

B, using an orthogonal canonical form as in (2.21)-(2.22).
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5.3.3 Ho Sub-Optimal Controllers of Order Less Than

n—p2

Recall that the order of K7 (s) is ng, which is the number of rows of the solution
matrix X. In this subsection, we consider the possibility of lowering the order
of K7, (s), that is, finding a lower n4. The approach adopted in Subsection 4.3.3

is largely used here.

Suppose the pair (fi, C’z) is completely observable. Then the pair (4,C5) is
reduced to the orthogonal canonical form (4,,C,):

A, = MAM™ = : : | (5.52)
Auo—l,l Auo—1,2 AV°—1,3 e A-1/°-~1,z/o
L Aug,l AVO,Z AVO,S e Aua,uo

C, = NGM™=|1, 00 -- 0] (5.53)

as in Chapter 4.

Using the form (4,,C,), the two equations (5.34)-(5.35) can be transformed

into:

AX - XA, = ByC, (5.54)
CsX —DyC, = F (5.55)
where
X = XM (5.56)
Ed> = B¢N*1 (5.57)
Dy = Dy4N? (5.58)
F = FM™t. (5.59)
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Assuming that the pair (4,,C,) is completely observable, we have the following
Theorem which shows the possibility of lowering the order of K7 (s), since ng
may be reduced down to (< pz). (This assumption is not restrictive. The

case in which this assumption does not hold is discussed in Remark 5.9.)
Theorem 5.8 Eguation (5.54) has full row rank solutions X € Rwex",
Proof: The proof is similar to that of Theorem 4.8. |

From the above discussion it can be seen that if we set ng to be I, L, + I, -1,

-+, m, then the corresponding solutions X to equation (5.54) may be found.

For an arbitrarily chosen A4, By can be obtained to satisfy (5.54), and the
corresponding Cy and Dy can be found from (5.55). Using a similarity trans-

formation given by a nonsingular matrix Tj, as in (4.51), such that

XTI, = [00~--01]

CTy = [I 0 --- 0 0]

we can rewrite equation (5.55) as

[C D ] 00 0Ly o (5.60)
P o 00 ” '
So, if there exists an F' such that F'T, has the form

then we can find Cy and Dy to satisfy (5.55), where # denotes a nonzero non-
specified block matrix. However, unlike the low-order stabilizing controller case
in Chapter 4, there is little freedom on F since F = D3}E M~ is almost
completely determined by plant data. Although, the particular form of F will
exclude some choices of ng, we may still expect low-order H,, suboptimal con-

trollers of order less than n — p,.
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Remark 5.9 In solving equation (3.54), we assumed the pair (4,,C,) is
completely observable. The case when this assumption is violated is now con-
sidered. In this case, 4,,-1,, in {5.52) will be a zero block, as mentioned earlier
in Remark 2.7 of Chapter 2. Then, it can easily be verified by taking X, =0
that

X = [ X Ka O, ] (5.62)

will be a solution to (5.54), where Xy, ---, X, _; are obtained for a reduced-size

pair (4,,C,) by the same procedure as before, where

Ax Asg 0 0
Ag Aso Ags 0
A, = : 0 (5.63)
Apgzt Apgmzg Apgmzz r Auzpea
| Ave-11 A1z Auem1s o At |
¢, = [ L, 00 -0 ] ipe X (n—1,). (5.64)

5.4 He-Norm Constraint on ®(s)

A sufficient condition for the existence of low-order H,,, suboptimal controllers
is the Ho-norm constraint on ®(s) given in (5.38). That is, having found all the
element matrices required for K7 (s) in (5.33), the Hoo-norm constraint on ®(s)
has to be checked. As we saw earlier in Chapter 2, Section 2.8, the following
Lemma shows a connection between the M -norm bound of a transfer function

matrix and the existence of a positive definite solution Xy to a certain ARE.

Lemma 5.10  If the following ARE

(Ag — BeR3' DS Cy) Xy + Xy(Ay — ByR5' D} Cy)
~yX4BsR3'B Xy —vC35;°Cy =0 (5.65)
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has a positive definite solution Xy, then Ay is stable and |[{®(s)||w < 7, where

Ry = Dg‘Dqs—-'szm
Sy = DgDj —4’In,.

In what follows, we propose some methods for finding a positive definite solution
X, to ARE (5.65).

5.4.1 Search Method 1

Since A4, By, Cy and Dy are characterized in terms of X; as in (5.48)-(5.51),
the existence of a positive definite solution matrix Xy to ARE (5.65) depends
on the choice of X;. Note that, from Lemma 5.10, the positive definiteness of
X, guarantees the stability of A4. This implies that X can be chosen, without
considering the stability of Ay, such that the solution X3 to ARE (5.65) is
positive definite. So, by a search over X;, we may achieve the constraint of

[|8(5)]]oo in (5.38).

To select an effective candidate X; as an initial point, we consider a result on

the Heo-norm bound. It is known [6] that a lower bound ;; and an upper bound
~Yub o0 ||G(8)]|eo, for G(s) = (A, B,C, D), are given by

Yib max{Tmas(D), ‘7{{}
Yub = Umaa:(D) +2 Z 0';'H
i1

where off are the Hankel singular values of G(s). An interpretation from this

2
is that the D-matrix can play an important role on the Ho,-norm bounds. We
therefore attempt to make Dy as small as possible and, using (5.51), select an

initial Xy as

X, = [ By, (5.66)
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The following procedure is therefore proposed to find a positive definite solution
X, to ARE (5.65).

step 1:  Set Xo = I,,.
step 2: Select an initial Xy € R™*?2 as per (5.66).
step 3: Compute 4y, By, Cy and Dy as per (5.48)-(5.51).

step 4: Solve ARE (5.65) for X,.
If X, > 0, stop.
If X, <0, go to step 2 to choose an alternative X;.

5.4.2 Search Method II

In Appendix B, the matrices Ay, By, Cy and Dy are characterized in terms of
X,. In particular, when X, = Loy Ag is given in (B.16) by

Ay = [ Avr + X1 Aozs ]

with Ao and Aggs fixed, and By, Cy and Dy by (B.18)-(B.20), respectively.
Hence, if Ay is first chosen with some freedom in the left partition block (i.e.,
Asza + Xl), then X7 can be decided correspondingly from the above equation.
Bearing this fact and the stability requirement of A4 in mind, a relatively crude

search is proposed, in this subsection, as follows.
step 1:  Set X, = I,,.

step 2: Select an arbitrary 44 of the form:

A¢ = [ "‘aI(nv—pg)xlz Ao23 ]

with a small number of a, say a = 1073,
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step 3: Compute X, By, Cy and Dy as per (B.17)-(B.20).

step 4: Solve ARE (5.65) for X,.

1f X4 > 0, stop.

If Xy <0, go to step 2 to increase a. (A reasonable upper limit on « would be
a suboptimal v, i.e., @ <.)

5.4.3 An Optimization Method

Alternatively, an optimization technique may be adopted here. That is, to meet

the requirements that ®(s) € RHe and ||®(s)]|w < 7, we define v as
M=y —€ (5.67)

where € is a small positive number. We may then consider a set of constraints
(5.68)-(5.71) as below. Using the fact that a symmetric matrix can be trans-
formed to a diagonal one by an orthogonal transformation, we can try to find an
X4 and an orthogonal matrix U such that X4(:= UT X4U) solves the following
ARE:

UT(A¢ - B¢R;1D2C¢)TUX¢ + X¢UT(A¢ - B¢,R;1D§C¢)U
—nXUTBsR;*BjUXy — iUTCTS;'CU =0 (5.68)

and satisfies the following constraints:

Xy = diag(Tpa,--- 7§¢,n¢) (5.69)
Tpi 2 Tt i=1,-+,mp—1 (5.70)
Tgmy > 0. (5.71)

This is a standard constrained optimization problem, for which various algo-

rithms may be applied.
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5.5 A Low-Order H, Sub-Optimal Controller
Design Algorithm

In this subsection, we present a CAD algorithm for low-order M., suboptimal
controller design, in which low-order controllers of order n — p; can be designed

using the procedures described earlier in the chapter.

step 1:  Build a generalized plant P(s) as per (5.4), including weighting

functions where necessary.

step 2:  Find v, such that

K stabilizing
using reliable algorithms in, for example, Matlab and then select a suboptimal

v to be ¥ > Ynin.

step 3: Compute all element matrices of K,(s) in (5.18), as per (5.19)-

(5.26). This can be easily implemented using reliable algorithms in, for example,

Matlab.

step 4: Compute A and F' as per (5.36)-(5.37), and partition 4, C; and F
as per (5.39)-(5.40) and (5.42).

step 5: Set Xo =1, ,,.
1 Note that, as stated in Remark 5.7, X, need not necessarily be the identity

matrix.

step 6: Select an arbitrary X;, and then compute Ay, By, Cy and Dy as per
(5.48)~(5.51).

11 Alternatively, as stated in Appendix B, first choose A4 as per (B.16) and
then compute X, By, Cy and Dy as per (B.17)-(B.20).
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step 7:  Solve ARE (5.65) for X.
If X; > 0, go to step 8.
If X4 <0, go to step 6 to repeat.

step 8: Compute a low-order H, suboptimal controller, K7 (s), as per (5.33).

The procedure described above is based on the given P(s) and the suboptimal
v, and thus modifications to the procedure may be required, if necessary, in

connection with the choices of weighting functions and a suboptimal +.

5.6 A Related Problem: Low-Order Hy; Sub-
Optimal Controller Design

The aim of this section is to show that the approach developed so far can be

carried over to the design of low-order H, suboptimal controllers.

Again consider P(s) in (5.4) assuming Dqy =0 and D, =0, i.e.,

P(s) = (5.72)

The standard H2(LQG) design problem is to find a controller that minimizes
the Ha-norm of the transfer function from w to z, T;.(s), where w represents
a vector of zero mean white noise signals and z is used to define performance

objectives.

We review in this section the characterization of all stabilizing controllers Kjy(s)
of the Hy suboptimal problem which satisfy ||T,y(s)||2 < 7 for some prespecified

v, Doyle et al. [18], and derive a reduced-order realization K3 (s).

The following assumptions are made on P(s):
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Al. (4,B;,C) is stabilizable and detectable.
A2. (4, B,,C,) is stabilizable and detectable.
A3. D};[cl D12]=[0 I].

0

A4,

IS

D21
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Assumption A3 means that there is no cross weighting between the state and

control input, and that the control weighting matrix is the identity. Assumption

A4 is dual to A3 and concerns how the exogenous signal w enters P(s): w

includes both plant disturbances and sensor noise, which are orthogonal, and

the sensor noise weighting is normalized and nonsingular.

Now define X, > 0 and Y3 > 0 to be the stabilizing solutions of the following

Riccati equations:

A —B,Bf
X, = Ric 272
~cTc, -4
AT -crIc
Y, = Ric 22
-BBf -4
Having obtained X, and Y5, define
R = -BIX,
H, = -Y;CF
and
A+ ByFy | I
Go(s) = ks
Ci+ DB | 0
A+ HyCy | By + HoDyy
Gy(s) = |
| o

The following Theorem describes all H, suboptimal controllers.

(5.73)

(5.74)

(5.75)
(5.76)

(5.77)

(5.78)
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Theorem 5.11 (Doyle et al. [18])  The family of all proper, real-rational
stabilizing controllers Ky(s) such that ||[T,y,||2 < v are given by

Ky(s) = F1(M3,0) (5.79)
for any ©(s) € RHa such that [|O(s)||3 < 4 — (||GeB12 + || FoGy)2), where

A4 By F, + HyCy { ~H; B,
My(s) = F 0 I {. (5.80)
-Cy I 0

Let ©(s) € RH, in (5.79) have a state-space realization

Ag | Bs

O(s) ==
(s) )\ D,

(5.81)

where Ay € R"*", Then, in a similar manner to the H,, suboptimal problem
case, as described in Section 5.3, we may obtain a reduced-order realization
Ki(s) as

As+ XByCy | B+ XB,Dy — XH,
09 I Do

Ki(s) = (5.82)

if there exists a matrix X € R"*" satisfying the following two matrix equations:

AgX — X(A+ H,Cy)
CoX + DyC,

—B,C, (5.83)
B. (5.84)

]

So, it is obvious that the design of low-order H; suboptimal controllers can be

achieved in a similar manner to that developed above.

.Remark 5.12 The same argument can be applied to the unconstrained H,
optimal state-feedback controller, which minimizes ||T,||2 when the plant state
is available for feedback, as defined in Rotea and Khargonekar [60, Theorem 2.6].
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5.7 Illustrative Examples

In this section, we present two examples to illustrate the results obtained in
this chapter. In each case, we consider a weighted mixed sensitivity H,, design

problem of finding a low-order stabilizing controller K7 (s) such that

I [ 7?; ] lloo < 1 (5.85)

where S 1= (I +GKZ,)™" is the sensitivity function, T := GKI (I +GKZ )" is
the complementary sensitivity function, and W; (¢ = 1,2) are weighting func-
tions used to tailor the solution to meet design specifications. It is known, for
example in [61], that the requirements for disturbance attenuation and robust
stability can be readily handled by this formulation. In the standard configu-

ration of Figure 2.1, the problem has a generalized plant

(5.86)

This represents a 2-block He problem.

5.7.1 Example 1: SISO Hydraulic Actuator Design

We will consider a SISO digital hydraulic actuator design example, taken from
Chiang and Safonov [11]. The continuous time hydraulic actuator model G(s)
is given by

9000
% - 80s2 + 700s + 1000°

G(s) =

To design a digital control system, the following approach is adopted here:




Ch. 5. LOW-ORDER H., SUBOPTIMAL CONTROLLERS 122

1. Convert the continuous-time plant G(s) to the discrete-time plant G(z),
by augmenting the plant with a zero-order-hold (ZOH) and including a

sampler as shown in Figure 5.2

2. Convert G(z) into the w-plane, see for example Franklin and Powell [24,
Section 5.5].

3. Proceed with the design method described in this chapter, as if it were
in the s-plane, since control systems in the w-domain can be analyzed
and designed using continuous techniques and then transformed back for

discretization, [24].

4. After the design is done, convert the controller back into the z-plane via

the inverse w-transform.

We omit step 4 in this example, and therefore the data shown below are in the

w-domain except when otherwise stated.

_...:_,_O_? —  K(2) —-g—-» Z.0.H. | G(s) >

Figure 5.2: Digital controller by Z.0.H.

The model in the w-domain, G(w), will now be used in problem (5.85) with the

weights as in [11], ie.,

(5 +1)°
i) = GoieT Iy
Wils) = 5 +1

3.16(335 + 1)

and the same « given as 1.5.
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For this problem, we have n = 6 and p, = 1 and thus ny = n—p, = 5. Therefore
we generally expect to find a 6th-order controller as a “central” solution. In the
following we derive a Sth-order controller, using the solution method described

in Appendix B.

After finding the two equations corresponding to (5.34)-(5.35), we set ny =
n —py = 5, Xy = Iy and choose 4, = [ *  Ags ] as per (B.16):

[ —0.20 1 0 0 0|
- 0.06 —1.98E+01 1 0 0
Ag=1| 009 233E+02 —1.53E+02 1 0
0.04 —5.40E+04 212E+04 —1.53E +02 1
| —0.10 2.78E+401 —157E+00 —9.20E—03 —1.52

We then find X, By, Cy and Dy as per (B.17)-(B.20). This results in [|®(s)]]c =
1.0565 (< 7). Hence, using (5.33) we can compute a 5th-order H,, subopti-
mal controller K7 (w) which is found to be stable. The controller K7 (w) =
(Akr; By, Ciry Dir) is given by

—4.07TE+02 —178E+00 263E—-01 252E—04 2.83E—02
—-126E4+05 —8.82E402 9.15E-+00 7.79E—-02 8.765-+00

Apr = LISE+06 8.11E+03 -232E402 289E—01 —7.99E+ 01
139E+4+08 8.96E+05 121E+4+04 -234E402 —9.66E+ 03
—1.06E+07 —T7.24E+04 683E-+02 6.54E+4+00 7.34E402
T
By, = [ 3.22E—-01 1.01E+02 -929F+02 —1.11E-+05 8.49F +03 ]
Gy = [ —3.69E+05 —2.51E403 2.37F+401 2.27TE—01 2.55E+01 ]
Dy = 294.58.

The poles of the closed-loop are at

{—364.24, —332.69, —202.08, ~300.00, —14.38 & j19.86,
—14.10 £ 57.40,—1.00 £ 70.0000005, —1.53}

and the H.-norm of the cost function is
| F(P, K& |oo = 0.9546

which is obviously less than the prescribed value of v = 1.5.
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5.7.2 Example 2: MIMO Fighter Design

In this subsection we consider a MIMO fighter design example, taken from Sa-
fonov and Chiang [61]. The plant is the 2-input 2-output HIMAT experimental
aircraft and is unstable. The longitudinal dynamics of the aircraft (trimmed at
an altitude of 25000 ft and a speed of 0.9 Mach) are modelled by the state-space

4 | By
description G(s) = =
Cy | Dy
| —2.9567TE—02 —36.6170 —18.8970 —3.2090E + 01 3.2509 —7626| 0 0]
9.2572F — 056  —1.8997 9831 —T7.2562E — 04 -.1710 —-.0005| 0 O
1.23388—02  11.7200 -—2.6316 8.7582E —04 -31.6040 22.3960| 0 O
0 0 1.0000 0 0 0{ 0 O
0 0 0 0 —30.0000 0130 0
0 0 0 0 0 -—30.0000| 0 30
0 1 0 0 0 0 0 o0
| 0 0 0 1 0 0| 0 0

The singular value design specifications for this example are as follows:

(1) Robustness specification: -40 db/decade roll-off and at least -20 db/decade
at 100 rad/sec.

(2) Performance specification: Minimize the sensitivity function as much as

possible.

The weighting functions Wi(s) and W3(s) are taken as

0.01s 41
M) = oo <P

82 1 0
Wals) = 1000[0 0.00053+1]

from [61] with v =16.8.

With these weightings, the order of the generalized plant is eight. Thus, an

8th-order controller arises from a “central” solution, while we can generate a
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6th-order controller since ng = n —p; = 8 — 2 = 6. As in Example 1, after
deriving the two equations corresponding to (5.34) and (5.85), we set ny = 6,
X, = I and choose Ay as

[ —.0050 0 1 0 0 0]
0 —.0050 0 1 0 0
A= 0 0 —1.05E+01 6.84E — 03 1 0
0 0 T740E+038 —6.71E+00 0 1
0 0 ~3.86E—01 3.51E—05 —.363 —.0247
0 0 591E—01 —169E—04 1.210 —.1620

we then find X, By, Cy and Dy, for which we have ||®(s)||e = 0.9790 (< 7).
Hence, we can compute a 6th-order H, suboptimal controller K7 (s) which is
found to be stable. The controller K7 (s) = (Akr, Biry Cir, Dir) is given by

[ —2659E+3 1576 —1109E+1 —8224E—3 —1561E+1 2.479E+0
—1064E+6 5958 —2518E+3 —6.850E—0 —3.773E+3  5.646E +2
4, o | TOWE+4 4644 —41BE42 -110P-1 -5IME+2 822251
~1310E+7 6344 —6816E+4 —1585E+1 —9396E+4 15165 +4
4809E+4 —2058 2585E+2 B80T0E—2 325TE+2 —5.235E+1
| —3.630E+4 2100 —1.902E+2 —6.194E—2 —2393E+2 3.842E+1
[ 1.843E4+2 2363E+3 |
1015E+4  1.048E +6
5. = | TOGE+3  66565-+4
L605SE+6 LOT3E+T
—4496E+3 —4.238F +4
| 3.199E+3  3.151E+4 |
o - [ 2079E+2 —0205 3200E+1 —2851E—3 S791E+1 —6.306E—1
—2724E+3 1608 —L104E+1 —0.314E—3 —1551E+2 2457E+0
e = [ 1648E+2 —8.498E+1 | .
AB56E+1  2.605E+3

The closed-loop poles are positioned at
{—2001.80, —26.28, —28.93, —6.51, —20.53 = j19.93, —21.86 - j18.45,
—0.69 == y0.25,—0.259, —0.021, —0.010, —0.010}
and the Ho-norm of the cost function is found to be

IF(P, KL )| = 0.9775 (< 7).
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5.7.3 Analysis and Comparison

Both examples show that the stability property of the closed-loop system is
preserved when the Ho, suboptimal controllers are replaced by the low-order
controllers derived using the methods of this chapter. However, unlike the
low-order stabilizing controller case in Chapter 4, the coupling in the Riccati
equations (5.11)-(5.12) breaks the separation principle for the low-order Ho,

suboptimal controller case.

In both examples, for the same P(s) and ®(s), we compute the (n + ng)th-
order controller K, (s) as per (5.32) and then examine the normalized Hankel
singular values of K (s). These are given in Table 5.1. The results exhibit
clearly that the low-order controllers obtained in the previous subsections are
minimal realizations of the “formal” order controllers, in the sense of balanced

truncated model reduction on the controllers.

Example 1 (n=6,ny,=5) | Example2 (n = 8,ns = 6)
1.0000E-00 1.4498E-01 || 1.0000E-00 6.6079E-02
9.0051E-02 3.3346E-02 || 2.9207E-02 1.1058E-02
2.5656E-04 5.3015E-12 || 2.3364E-03 2.6847E-04
1.7450E-14 1.0963E-15 || 9.5744E-06 2.9367TE-09
7.2240E-16 3.7094E-17 || 9.2848E-10 7.9077E-10
4.2444E-20 4.8605E-10 7.6090E-11
7.3000E-13 0

Table 5.1. Normalized Hankel Singular Values of K(s)

With the same P(s) but with ®(s) = 0 we have computed “central” controllers
of order n, lLe., 6th-order for Example 1 and 8th-order for Example 2, using
Matlab files hinfm (in the Robust Control Toolbox) and hinfsyn.m (in the
p-Analysis & Synthesis Toolbox). The frequency responses of these “central”

controllers and the controllers given by formulae (5.32)-(5.33) are shown in




Ch. 5. LOW-ORDER H. SUBOPTIMAL CONTROLLERS 127

Figure 5.3 for Example 1 and in Figure 5.7 for Example 2. As seen in both
figures and as expected theoretically, both controllers generated by formulae
(5.32)-(5.33), although having different sizes, have exactly the same frequency

responses.

Figure 5.4 for Example 1 and Figure 5.8 for Example 2 show that, although the

“central”

controllers cause a certain roll-off at high frequency, both controllers
by (5.32)-(5.33) make the cost flat over frequency. On the other hand, both
figures show that, since the cost generated by (5.33) is the same as that by
(5.32), the closed-loop performance as well as the robustness of the closed-loop
stability has not been degraded by the use of the low-order controller (5.33),

instead of the “formal” order controller (5.32), in the feedback system.

Figures 5.5 and 5.9 show the singular values of the sensitivity functions, and
Figures 5.6 and 5.10 the singular values of the complementary sensitivity func-

tions.

5.8 Concluding Remarks

This chapter has considered the problem of reducing the order of H,, suboptimal
controllers, i.e., stabilizing controllers which satisfy an He,-norm constraint on a
prescribed closed-loop transfer function. Starting from a parametrization (5.17)
of all solutions to the general H,, suboptimal control problem, we first derived
a low-order realization (5.33) on the assumption of the existence of a solution
matrix X to two simultaneous matrix equations, (5.34)-(5.35), which are similar
in structure to those in Chapter 4 but are to be solved subject to an H,-norm

constraint, (5.38).

The aim was to eliminate any unobservable modes in the “formal” order of

controllers given by (5.17). We then showed how to solve the two matrix equa-
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tions using an orthogonal canonical transformation. We further showed that
the H-norm constraint can be tackled by checking the positive definiteness of
a solution matrix Xy to a certain ARE (5.65). We showed, as a result, that
the order of the low-order He, suboptimal controllers may be equal to n — p,
(or less). The algorithm developed in the chapter was summarized and demon-
strated by two numerical examples. The examples showed that the low-order
Hoo suboptimal controllers preserved the closed-loop performance as well as

closed-loop stability, without any degradation.

It should be noted that the existence of a positive definite matrix X, to ARE
(5.65) depends heavily on the choice of the matrix A4 which can be arbitrarily
chosen as a stable matrix. It is also noted that the dual approach of eliminating
the uncontrollable states to find a set of low-order H,, suboptimal controllers

can be carried out in a similar manner.
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S.V.S of Controllers

(-) Formal-order controller

(*) Low-order controller

(-.) Central controller by hinf.m
(9 Central controller by hinfsynjn

10-1

Frequency (rad/sec)
Figure 5.3: Singular Values of Controllers for Example 1.

S.V.s of Cost Functions

-4 -

-10 () Formal-OTder controller
(*) Low-order controller
-12 (-.) Central controller by hinfjn

(9 Central controller by hinfsyiun
-14

10-1 101

Frequency (tad/sec)

Figure 5.4: Singular Values of Cost Functions for Example 1.
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S.V.s of Seesitivity Functions and 1/W1

20 I T ITInil I 1 1 1Inil T

10

-10

W 1/W1 Weighting
30 +>7 (-) Feemal-order controller
(*) Low-order controller

40 (-.) Central controller by hinf.m

(— Central controller by hinfsyn.

5Q* *1ialmt titltJdl 11 wemti wI.mBn. m

10-: 10-1 100 Q1 102 1Q3

Frequency (rad/sec)

130

m

1Q4

Figure 5.5: Sensitivity and Weighting for Example 1.

S.V.s of Complementary Sensitivity Functions and 1/W3
201 rruimm I I 111mil

() 1AV3 Wei ting

(-) Formal-order controller

-100

2120 (*) Low-order controller
(-.) Central controller by hinfjn
-140 (9 Central controller by hinfsyiun

Frequency (rad/sec)

Figure 5.6: Complementary Sensitivity and Weighting

for Example 1.
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S.V.s of Controllers
100

(-) Formal-order controller

(*) Low-ordo’ controller

(-.) Central controller by hinfjn
(9 Central controller by hinfsynjn

10-: 10° 10

Frequency (radAec)
Figure 5.7: Singular Values of Controllers for Example 2.

S.V.s of Cost Functions

0
-2
[ %)
-6
-8
-10 (-) Formal-order controller
(*) Low-order controller
-12 (-.) Central controller by hinfm
(-) Central controller by hinfsyn.m
-14

10-2 10- 100 101 1Q2 103 105

Frequency (rad/sec)

Figure 5.8: Singular Values of Cost Functions for Example 2
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S.V.s of Sensitivity Functions and 1/W1

40 + 4444+ (+) 1/W1 Weighting
(-) Formal-order controller
(*) Low-order controller

-60 (-.) Central controller by hinf.m
(— Central controller by hinfsyn.m

-%3 10-1 10+

Frequency (rad/sec)

Figure 5.9: Sensitivity and Weighting for Example 2.

S.V.s of Conq}lementary Sensitivity Functicms and 1/W3

200
150
100
-50 (9 1/W3 Weighting
(-) Formal-order controller
-100 (*) Low-order controller
(-.) Central controller by hinf.m
-150 (-) Central controller by hinfsymm
-200

10® 10«

Frequency (rad/sec)

Figure 5.10: Complementary Sensitivity and Weighting W3 * for Example 2.



Chapter 6

Low-Order Robust Sub-Optimal

Controller Design

6.1 Introduction

An important development in robust control system design was the robust sta-
bilization problem of Glover and Mcfarlane [28] in which uncertainty is modelled
by norm bounded perturbations on the factors in a normalized coprime factor-
ization of the plant. This method was enhanced by McFarlane and Glover [47]
to meet specifications on performance, by combining the robust stabilization
problem with classical loop shaping techniques. The method was termed the
Loop Shaping Design Procedure (LSDP) and has been used to great effect on
the design of controllers for a number of real problems, e.g., Hyde and Glover
[33], McFarlane and Glover [47], Walker et al. [72].

However, the order of the resultant controller is likely to be “high”, i.e.,
N < deg(G) + 2deg(W) + deg(®)
where G(s) is the nominal plant, W(s) is the weighting function and ®(s) is

133
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a stable free parameter. For designing low-order controllers, model reduction
techniques can be applied to the stable coprime factors of either the full-order
plant or the full-order controller. For examples, see McFarlane et ol. [48] and

Bongers and Bosgra [5].

In this chapter, we present a different approach to the design of low-order robust
Hoo controllers using LSDP. 1t is similar in spirit to the methodology developed
in Chapter 4 for stabilizing controllers and in Chapter § for H. suboptimal
controllers. We will show that we can derive low-order robust controllers of

order N,,, where
Mow = deg(G) + 2deg(W) —-P

by removing unobservable (or uncontrollable) states via a suitable choice of

®(s), where p is the number of plant outputs.

The chapter is organized as follows. In Section 6.2, the normalized LCF robust
stabilization problem and its optimal/suboptimal solutions are reviewed. The
results are then used in Section 6.3 to construct a closed-form expression, (6.23),
of low-order robust suboptimal controllers, which can be easily implemented
provided a solution to two equations, (6.24)-(6.25), exists and an Hy-norm
constraint, ||®(s)|lec < 1, is satisfied. The methodology used in Chapter 5 is
used here with some slight modifications. In Section 6.4, the LSDP is described
in some detail, to show how low-order robust suboptimal controllers can be
designed in a straightforward manner. Section 6.5 presents a CAD algorithm
for the approach. An illustrative numerical example is given in Section 6.6.

Conclusions are given in Section 6.7.
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6.2 The Normalized LCF Robust Stabilization.
Problem

In this section, the normalized left coprime factorization (LCF) robust stabi-

lization problem and its optimal/suboptimal solutions are summarized.

As we saw in Chapter 2, Section 2.6, the plant model G(s) can be factored as
G(s) = Mi(s) ™ N (s) (6.1)

and the factorization (6.1) is said to be a normalized LCF of G(s) if M (s), N(s) €
RHe and

MM*+ NN*=1. (6.2)

Let G(s) = (4, B,C) € RLEX™ be a strictly proper system having n, states.
Then, a state space construction of a normalized LCF of the strictly proper

system G(s) is given by

L. A+HC|B H
ERAE (6.3)
c 0 I
where
H=-2zC" (6.4)

and the matrix Z > 0 is the unique stabilizing solution to the algebraic Riccati

equation

AZ 4+ ZAT - ZCTCZ + BBT = 0. (6.5)

Consider now the configuration of Figure 6.1 in which a perturbed model Ga(s)

is defined as

GA(S) = (M + AM)_l(fV -+ AN) (66)
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Ga(s)
s s
! » Ay Apnr |
' N R :
: 2 N e M_l In
' i
K(s)

Figure 6.1: Coprime Factor Robust Stabilization Problem.

where Apr, An € RHeoo.

To maximize the class of perturbed models defined by (6.6) such that the con-
figuration of Figure 6.1 is stable, we need to find the controller K(s) which

stabilizes the nominal closed-loop system and which minimizes v where

K
7=II[I

This is the problem of robust stabilization of normalized coprime factor plant

(I = GE)™ M|oo. (6.7)

descriptions as introduced in Glover and McFarlane [28]. From the small gain

theorem, the closed-loop system will remain stable if

I [ 2; } oo < 7. (6.8)
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6.2.1 Optimal Solutions

The minimum value of v for all stabilizing controllers K (s) is

%= uBhing | [ I}" ] (I = GEY™ Moo (6.9)
and is given in [28] by
o= &, 51 | (6.10)
From [28]
I [ N, M ] Il = Amaa(ZY (I + 2Y)7) (6.11)
where the matrix Y > 0 is the unique stabilizing solution to the ARE

ATY + YA-YBBTY +CTC =0. (6.12)

Hence from (6.11), it can be shown that the optimal value v, can easily be

computed by
Yo = (1 + /\muw(zy))l/z (613)

without any iteration. In the following subsection, we will consider the associ-
ated suboptimal control problem and outline a characterization of all subopti-

mally robust controllers together with a “central” suboptimal controller.

6.2.2 Robust Sub-Optimal Controllers

A related problem to the optimal H., problem posed in Subsection 6.2.1 is the

suboptimal problem of obtaining the set of stabilizing controllers K(s) such that

i

(I = GE)™ ™l < 7 (6.14)
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where 7(> 7,) is some prespecified tolerance level for the allowable uncertainty.

A state-space characterization of all suboptimally robust controllers for the
normalized LCF robust stabilization problem is given in [28]. That is, all sub-
optimally robust controllers Kyof(s) such that (6.14) is satisfied for 4 > v, are

given by a chain scattering description:
Knios(8) = (L11® + L) (Lsn @ + Ly) ™" (6.15)

for any ®(s) € RHT*? with ||®(s)||e < 1, where

A+ BF i —72Q_TB ”)’2ﬁ—1Q_TZCT
Ly Ly
= F In 0 (6.16)
Ly Loy _
c 0 -8,
where
= (-1 (6.17)
F = -BTy (6.18)
Q = (1-7)L+YZ (6.19)
Remark 6.1 The “central” suboptimal controller which corresponds to

®(s) = 0 is given by

A+ BF +$QTZC7C | QT ZCT
BTY |0

Kﬁch(s) = (6.20)

Remark 6.1 above shows that a “central” suboptimal controller is synthesized
by the solution of two ARE’s, (6.5) and (6.12), without an iterative search on

~ which is normally required to solve H,, problems.
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6.3 Low-Order Robust Sub-Optimal Controller
Design

From our point of view in controller size reduction, it is noted that the character-
ization, (6.15), of all suboptimally robust controllers involves a free parameter
matrix ®(s) in a chain scattering description, which will play a key role in

deriving low-order robust controllers in this chapter.

Let @(s) € RHTX? in (6.15) have a state-space realization

Ay | By
Cs | Dy

where Ay € R™*"™ is stable. Then, substitution of (6.16) and (6.21) into (6.15)

B(s) := (6.21)

results in the full-order controller of the form:

Ko Kaz | Kot
Knie(s) = | Kany Kam | Kio (6.22)
Ka KoK

where

Kua1 = A+BF+4*QTZCTC —+*8Q-TBD4C

Kaz = —v"Q7TBC,

Ky = pByC

Koy = Ay

Ky = ¥*BQTBDy—+*Q 720"
Ky = —pBy

Ka = F+BDsC

Ko = C

K, = —BD,.

Note from (6.22) that the feedback controller K.;(s) will have the “formal”
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order:

deg(Knlcf) = ng + Ng.

As in Chapters 4 and 5, the realization of (6.22) can be reduced via a state
similarity transformation into the following low-order form, which we refer to

as a low-order robust suboptimal controller:

—XQ TBCy + 44 | ¥*BXQ-TBD, - XQ"TZCT — BB,

Kpor(s) =
tef Cs ! -BD,

(6.23)

if there exists a matrix X € R™*" satisfying the following two matrix equations:

AgX —XA = B,C (6.24)
CyX —-DyC = F (6.25)
where
A = A4+ BF+*QTBF++*QTz07C (6.26)
¢ = BC. (6.27)

Again, K} ¢(s) in (6.23) has an order of at most
deg(Krics) = ng

which is obviously less than the “formal” order of K.z(s) of (6.22).

6.3.1 Two Matrix Equations

It is not surprising to see that the two equations (6.24)-(6.25) are similar in
structure to (5.34)-(5.35), and thus can be solved in & similar manner. We

therefore leave out the details and state the following Theorem.
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Theorem 6.2  The plant G(s) described by (6.1) has low-order robust subop-

timal conirollers of order:
deg(Kpyp) =ng — p (6.28)

if C in (6.27) is full row rank and if the He-norm constraint of ||@(s)||e < 1
18 satisfied.

Note that, since F' in (6.25) has no freedom at all, the possibility of further

reduction in controller size may not be expected from our algorithm developed.

6.3.2 H-Norm Constraint on ||®(s)||e

The Heo-norm constraint of ||®(s)|[ < 1 required in the characterization (6.15)

can also be tackled in the same manner as in Section 5.4, with v = 1.

6.4 The Loop Shaping Design Procedure

Before describing a CAD algorithm for low-order robust controller design, we
will first see, in this section, how the attractive robust stabilization problem
can be enhanced to give a reliable multivariable loop shaping design procedure.
Our method for designing low-order robust stabilizing controllers can be applied

after loop shaping and therefore can be incorporated in the LSDP.

The classical loop shaping approach to control system design aims to achieve
certain specifications on the closed-loop system by selecting a controller which
appropriately shapes the magnitude of the open-loop transfer function. It has
been applied to industrial systems over several decades and, for SISO systems
and loosely coupled systems, the approach has worked well. But for truly

multivariable systems a reliable generalization of the approach has only recently
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emerged. Based on the idea that a satisfactory definition of gain (range of gain)
for a transfer function matrix is given by the singular values of the transfer
function matrix, Doyle and Stein [19] in the early 1980’s showed how the classical
loop shaping ideas of feedback design could be generalized to multivariable
systems. The term multivariable loop shaping is now widely accepted to mean
the shaping of singular values of appropriately specified transfer function matrix,
Postlethwaite and Skogestad [58].

Multivariable loop shaping is in general non-trivial. A satisfactory loop shaping
design procedure in conjunction with H., control methods was recently devel-
oped by McFarlane and Glover [47]. In this the normalized LCF robust sta-
bilization problem described in Section 6.2 is extended to include performance
requirements. The resulting design procedure will be called the one degree-
of-freedom loop shaping design procedure (1-DOF LSDP), and is outlined as

follows:-

1. The nominal plant G(s) is modified using a pre-compensator Wi(s) and/or
post-compensator Wo(s), so that the shaped plant

Gs = WQGWl (6.29)

has desired open-loop singular values. (See Figure 6.2-a)). At low fre-
quencies, the open-loop gains should be made large enough for good dis-
turbance rejection and commeand following, while at high frequencies the
loop gains should be made small enough to provide robustness and to
reduce the effects of sensor noise. Further, the open-loop singular values
can be given a particular cross-over frequency keeping in mind the desired

closed-loop bandwidth and time response requirements. Now, define

ny = deg(Gs)
ny = deg(G)
Mgy 1= deg(Wl)
Ny, = deg(Ws).
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Therefore
Mg = Mg + Ny + Ny (6.30)

represents the order of the shaped plant.

2. A feedback controller, K ,.s(s), for the shaped plant G4(s) is then syn-
thesized which robustly stabilizes the normalized LCF of G,(s), as shown
in Figure 6.2-b):

G, = M'N,. (6.31)

The formulae given in (6.15) for an optimal or suboptimal controller (given
7) can be applied to G,(s) to get the “formal” order controller K nic5(s).
From K nicf(s), a low-order robust suboptimal controller, K7 ;..(s), can
be obtained. Note, from (6.22) and (6.30), that Kjs(s) will have a

“formal” order:
deg(Ks,ngcf) = Ns+ng (6.32)

while the low-order robust suboptimal controller K7 . +(s) will have an

order:
deg(Kgpes) = ns—p (6.33)
as predicted by Theorem 6.2.

3. The final feedback controller, Ky ,1.5(s), for the plant G(s) is then con-
structed by simply combining the full-order feedback controller K 1.7(s)
for the shaped plant Cs(s) with the weights to give

Kimics = W1Ksnies W (6.34)

as shown in Figure 6.2-c). Similarly, the final low-order feedback con-

troller, K} ,;.¢(s), for the plant G(s) is given by

K mior = Wik oi Wa {6.35)
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with order:

deg(K},nlcf) = (s~ D)+ Nuy + Ny
= Ny +2(Nuy + Nw,) — P (6.36)
= -/\[low-

Essentially, with the 1-DOF LSDP, the weights Wy(s) and Wy(s) are the design
parameters which are chosen both to shape the open-loop singular values and to
ensure that the optimal value -, is not too large (usually less than 4). A large
value of 4, indicates that the specified singular value shapes are incompatible
with robust stability requirements. The choice of suboptimal «y is another design -
parameter for the low-order robust suboptimal controller design and is closely

related to the Ho-norm constraint, ||®(s)||e < 1.

6.5 A Low-Order Robust Controller Design Al-
gorithm

In this section, we present a CAD algorithm for low-order robust suboptimal

controller design, summarizing the procedure described above.

step 1:  Choose weightings, Wi(s) and Wy(s), to compensate the open-loop
plant G(s) so that the shaped plant G;(s) has singular values of desired shape.

step 2: Compute 4, as per (6.13).
If v, < 4, go to step 3. .
If v, > 4, repeat step 1 to choose suitable weights.

step 3: Select a suboptimal 7 such that v > «,.

step 4: Compute 8, F and @ as per (6.17)-(6.19).
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step 5: Compute A and € as per (6.26)-(6.27), and partition the pair (4, C)
as in (5.39)-(5.40) of Chapter 5.

step 6: Set Xy = I,_,.
1 Note that, as stated in Remark 5.7, X, need not necessarily be the identity

matrix.

step T:  Select an arbitrary Xi, and then compute Ay, By, Cy and D, as per
- (5.48)-(5.51).

11 Alternatively, as stated in Appendix B, choose first 4, as per (B.16) and
then compute X, By, Cy and Dy as per (B.17)-(B.20).

step 8:  Solve ARE (5.65) for X, with y=1.
If X4 > 0, go to step 9.
If Xy <0, go to step 7 and repeat.

step 9: Compute a low-order robust suboptimal controller, X7, (s), as per
(6.23).

step 10: To obtain the final low-order feedback controller, K7 ,,;.+(s), pre/post
multiply K7 ,;.:(s) by the weighing functions as in (6.35).

The procedure described above is based on the given weighting functions and
the suboptimal <, and thus modifications to the procedure may be required.
For example, if one desires to improve the design, then he/she can modify the
weighting functions in step 1 and repeat the design procedure; if one fails to
find a positive definite solution to ARE (5.65) during steps 7 and 8, the selected
suboptimal # in step 3 should be increased.
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6.6 Illustrative Example

In this section a numerical example for a SISO flexible spacecraft design is
described to illustrate the results of the chapter.

The system is a satellite with two highly flexible solar arrays attached, as con-

sidered in [47]. The plant model is described in state-space form by

z = Az + Bu-+ By
Cz

1l

Y

where u is the control torque (Nm), v is a constant disturbance torque (Nm),

y is the roll angle measurement (rad) of the satellite, and

(01 0 0 0
0 L -5
e 0 0 0 |17319x10
=00 1 0
clp 0
0 0 —w? —2(w |3.7859 x 10~4
10 1 0 0

where w = 1.539 rad/sec is the frequency of the flexure mode, and ¢ = 0.003 is

the flexural damping ratio.

For the loop shaping procedure, weighting functions are chosen to be

Wi(s) = 10000 x > +SO'4

and Wi(s) = I, as in [47]. Then, we have n, =5 and p = 1, and thus ny = 4.
The optimal value of v is then obtained as v, = 2.34 using (6.13) and the

“central” suboptimal controller of order 5 is obtained using (6.20).

We select a suboptimal v = 3 (> v,), and find all the element matrices re-
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quired for the low-order robust suboptimal controller, by choosing an 4, as

—0.0510  1.0000  0.0000 -0.0000
0 —-0.5222 1.0000  0.0000
0 —1.6359 0.0481  1.0000
0 —0.0018 -0.0181 -0.3912

Then, the He-norm constraint is satisfied with ||®(s)||e = 0.9763. So, using

Ay =

the realization (6.23), a low-order robust suboptimal controller K7, «(s) of

order 4 is computed as

[ _3.6061  0.5004 —0.0170  0.2405 | —0.0057
24283 —0.1894 1.0113 —0.1602| 0.0028
Kl ()= 57072 —0.8537 0.0747 0.6235| 0.0086
—0.0427 —0.0076 —0.0183 —0.3884 | 0.0001
| —1847.9 —184.80 —6.3000  88.900 | —1.8373

The normalized Hankel singular values of K n1.5(s) of (6.22) are given by Table
6.1 below:

1.0000 0.9990 0.0125 0.0021 0.0000
0.0000 0.0000 0.0000 0.0000

Table 6.1. Normalized Hankel Singular Values of K 105(s)

and justify the controller size reduction in the sense of balanced truncation.

Figures 6.3 to 6.5 show step responses for the two controllers, while Figures
6.6 to 6.8 show frequency responses. All the figures indicate that the low-order
suboptimal controller can replace the “central” suboptimal controller, without
any serious deterioration in performance. In particular, Figure 6.7 compares
sensitivity measures and indicates that the closed-loop performance can be well
achieved by a low-order robust suboptimal controller. In Figure 6.8, singular
values for the shaped and achieved open-loop systems are shown to be closely

compatible even when a low-order robust suboptimal controller is used.
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6.7 Concluding Remarks

In this chapter, we addressed controller size reduction in the 1-DOF LSDP.
The controllers for the 1-DOF LSDP are characterized in terms of the shaped
plant G,(s) and a free parameter ®(s). However, the order of a controller using
the 1-DOF LSDP is likely to be “high”. To reduce this order, by removing
unobservable states via a suitable choice of ®(s), we have shown how to derive

low-order robust suboptimal controllers of order:
Niow = deg(G) + 2deg(W) — p.

A numerical example was given to illustrate how a low-order controller could

replace the “central” controller of order:
Ment‘ral = deg(G) + Zdeg(W)

without any serious deterioration in performance.
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—1 Wa(s) " G(s) " Was)
a) The Shaped Plant
Gs(s)
Co T k
| Wa(s) " G(s) N Wals)
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L e e e 3

¢) Final Controller

Figure 6.2: The 1-DOF Loop Shaping Design Procedure.
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Figure 6.3: Output Response to Disturbance Input Step.
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Figure 6.5: Output Response - Nominal Input Energy.
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Figure 6.6: Singular Values for Input Disturbances.
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Figure 6.8: Singular Values for Shaped and Achieved Systems.
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Chapter 7

An Extension to 2-DOF Ho

Controller Design

7.1 Introduction

To introduce performance objectives into the control problem, a two.degree of
freedom (2-DOF) scheme is often employed, e.g., Youla and Bongiorno [74].
Limebeer et al. [43] have recently enhanced the model matching properties
of the 1-DOF LSDP by extending the design procedure to a 2-DOF scheme.
The feedback part of the controller is designed to meet robust stability and
disturbance rejection requirements in a manner identical to the 1-DOF LSDP.
An additional prefilter part of the controller is then introduced to force the
response of the closed-loop system to follow that of a specified model M,(s).

However, the order of the resultant controller is again likely to be “high”, i.e.,

N < deg(G) + deg(M,) + 2deg(W) 4 deg(®)

where G(s) is the nominal plant, M,(s) is a reference model, W{(s) represents

the weighting functions and @®(s) is a free stable parameter.

153
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In this chapter, we review the 2-DOF ‘H,, design procedure of [43] and show
that the methodology presented in previous chapters can be extended to this

2-DOF setting to reduce the controller order down to:
Ny = deg(G) + deg(M,) + 2deg(W) — py — M,
where p, is the number of outputs of G(s) and m,, is the number of inputs of

M,(s).

The chapter is organized as follows. In Section 7.2, the 2-DOF H,, design is
summarized. A CAD algorithm for deriving low-order 2-DOF ‘H,,, suboptimal

controllers is described in Section 7.3.

7.2 A 2-DOF H Design

The control scheme for the 2-DOF H,, design is shown in Figure 7.1. The
reference model M,(s) defines the desired response of the output. Although
shown in Figure 7.1 it is only part of the problem formulation and not the

controller implementation.

If the 2-DOF controller K(s) is partitioned as K = [ K K, ] the control
signal is given by

B B
u—~[I{1 Kg]{y} (7.1)

in which K, is the prefilter, K; is the feedback controller, y is the measured
output of the system and S is related to the reference input r as described

below. The prefilter is included in the system to ensure that
1Ts — Molloo < 7972 (7.2)

where T,g is the closed-loop transfer function mapping 8 to y. Examination of
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Figure 7.1: The 2-DOF H,, Controller Design Scheme.

Figure 7.1 shows that

u p(I — K,GY 'Ky Ko(I — GE,)™ 1Mt
y | = p(I — GE,)"'GK, (I~ GE,)" 1M1 { } (7.3)
z P(I — GK,)'GEKy — M,) | p(I — GER)* M~

in which the scaling factor p is used to weight the relative importance of robust

stability compared with robust model matching.

Equation (7.3) has several important properties. The (1,2) partition is equal
to equation (6.7) in Chapter 6, and thus is associated with robust stability
optimization. Indeed, if p is set to zero, the 2-DOF H,, problem reduces to the
standard robust stability problem described in Chapter 6, Section 6.2. The (2,1)
partition is used for matching the closed-loop response to the ideal response,
and the (1,1) block can be interpreted as limiting actuator use when following
references. The scaling factor p > 1 is introduced into the problem to emphasize
the (2,1) partition and to de-emphasize (relatively speaking) the (1,1) and (2,2)

partitions.
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Setting the problem up in a generalized regulator framework for ., optimiza-

tion, the standard control plant for this type of presentation is given by

U
y - r
Py | Py p
z —
5 | For | Pr2 N
- y -
0 0 I
0 M
= | —p*M, pM™|pG é (7.4)
ol 0 0 u
0 M1|@

from Figure 7.1.

Suppose the plant G(s) € RLIg*™s has n, states and is strictly proper. Suppose
also that the reference model M,(s) € RLE?*™m has n,, states. Then, defining

G(s) = 4 B"} and  M,(s) := i}i
c,| o . C,| D,
and substituting these into equation (7.4) gives the géneralized plant P(s) as
(4, o | o zcr|B, ]
0 A4, -B, 0 0
A B | B 0 0 0 0 | In,
P(s)=|C,|Dy|Dyy |=|C, 0 0 L, |0 (7.5)
Cs || Doy | Do pC ono "P2Do Png 0
0 0 | pln, O | O
¢, 0 0 L, | 0 |

where the matrix Z > 0 is the unique stabilizing solution to the algebraic Riccati

equation

A7+ ZAT - ZCIC,Z + B,BY = 0. (7.6)
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Now, by submitting this generalized plant P(s) of (7.5) to the standard H,, sub-
optimal problem described in Chapter 5, we can produce 2-DOF H,,, controllers
and also corresponding low-order controllers. As expected from the results in

Chapter 5, the order of low-order 2-DOF H,, controllers will be equal to

Niow = (s + nm) — (M + pg)
(ns - pg) + (nm - mm) (7'7)

or less, where

ns = mnumber of states of the (shaped) plant
pg = mnumber of outputs of the plant
n, = number of states of the reference model

m,, = number of inputs of the reference model.

A constructive algorithm for low-order 2-DOF H,, controller design is discussed

in the next section.

7.3 A Low-Order 2-DOF Ho Controller Design
Algorithm

We now present a CAD algorithm for Low-Order 2-DOF H,, Controller De-
sign, by combining the theory of Chapter 6 with the low-order H,, suboptimal

controller design described in Chapter 5.

step 1: Select a simple step response model for the closed-loop system;
that is, select M,(s) in Figure 7.1. This is usually a diagonal matrix of first or
second-order lags. The speed of response of the ideal model must be realistic

so as to avoid poor robust stability properties and excessive control signals.
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step 2:  Select loop shaping weights for the open-loop plant. This is used to

meet the closed-loop performance specifications.

step 3: Find the minimal achievable value of v (i.e., v,) which may be
calculated using (6.13).
If 4, £ 4, go to step 4.

If v, > 4, go to step 2 to select alternative weights.

step 4:  Select the scaling factor p for the 2-DOF problem to be 1 < p < 3.
The scaling of p is a compromise between robust stability and model matching.
The smaller value of p generates the smaller value of v, in step 6 below,
Postlethwaite and Skogestad [58].

step 5: Build a generalized plant P(s) as in (7.5).

step 6: Find 9,4, such that

of  |[F(P K)o

Tmin = Kstzébilizing

using reliable algorithms in, for example, Matlab. This will always be higher
than v,. In [43], a range of 1.2y, < Ymi < 37, was suggested to give a good
compromise between the robust stability and robust performance objectives.
The loop shapes for the feedback loop will not be altered significantly provided
a low value for v, is achieved. The reciprocal of vy, is roughly proportional

to the multivariable stability margin, [58].
step 7:  Select a suboptimal v such that v > v,:,.

step 8: Compute all element matrices of K,(s) in (5.18), as per (5.19)-(5.26),
for the generalized plant P(s).

step 9:  Compute A and F as per (5.36)-(5.37), and partition A, Gy and F
as per (5.39)-(5.40) and (5.42). ’
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step 10: Set Xy = I, —ptnm—rm-
7 Note that, as stated in Remark 5.7, X; need not necessarily be the identity

matrix.

step 11:  Select an arbitrary Xy, and then compute A4, By, Cy and Dy as
per (5.48)-(5.51).

1t Alternatively, as stated in Appendix B, first choose A4 as per (B.16) and
then compute X, By, Cy and Dy as per (B.17)-(B.20).

step 12:  Solve ARE (5.65) for X,.
If X4 > 0, go to step 13.
If X4 <0, go to step 11 and repeat.

step 13: Compute a low-order 2-DOF H,, controller by substituting all the

element matrices into (5.33).

step 14:  Pre/post-multiply a low-order 2-DOF #,, controller obtained by
the loop shaping weights to compute the final low-order 2-DOF H,, controller

and rescale the prefilter to achieve perfect steady state model matching,.

The procedure described above is based on the given M,(s), weighting functions
and the suboptimal v, and thus modifications to the procedure may be required

in a similar manner described in Chapter 6, Section 6.5.
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7.4 Concluding Remarks

In this chapter, controller size reduction in the 2-DOF LSDP was considered,
by combining the low-order 1-DOF LSDP controller design of Chapter 6 and
the low-order H.,., suboptimal controller design of Chapter 5. As a consequence,
it was shown that the order of low-order 2-DOF H,, controllers can be reduced

down to
Mow = (ns _pg) + (n'rn - mm)

or less. A CAD algorithm for the design was also presented.




Chapter 8

Application to the
GEC-Alsthom Tetrahedral
Robot

8.1 Introduction

In this chapter we apply the theory developed in this thesis to a practical sys-
tem, the Tetrabot which is a tetrahedral robot designed by GEC-Alsthom as
a fast and accurate assembly robot. The Tetrabot is a novel device with a
parallel-serial structure designed to overcome many of the inherent disadvan-
tages of conventional serial robots. In developing a controller for the Tetrabot,
the designers of the robot adopted a conventional approach, by ignoring both
the nonlinearities and dynamic coupling between robot joints, Dwolatzky and
Thornton [20]. An evaluation of their design indicates a need for more so-
phisticated controllers capable of coping with multivariable nonlinear systems.
Postlethwaite and Feng [56] first designed an H,,, optimal controller with rela-

tively good performance.

161
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The aim of this chapter is to demonstrate the effectiveness, for the class of robots
represented by the Tetrabot, of a low-order robust suboptimal H,, controller as

devised in this thesis.

The chapter is organized as follows. In Section 8.2, a linear model to be used
in the controller design is introduced, together with control objectives. Then, a
low-order controller is designed in Section 8.3, to demonstrate the effectiveness
of the methodology developed in this thesis. Concluding remarks are given in
Section 8.4.

8.2 Model and Control Objectives

Unlike the conventional robots of a serial configuration, the Tetrabot is a serial-
parallel configuration robot. The Tetrabot shown in Figure 8.1 consists of a par-
allel structure (of three linear actuator rods in 3 degrees-of-freedom) combined
with a serial structure (of three wrist links in another 3 degrees-of-freedom).
With this configuration, the Tetrabot has the advantages of being potentially
stiffer and more accurate than a conventional serial structure. A conceptual

diagram of the mechanical structure is shown in Figure 8.2.

The original control design for the Tetrabot was based on the assumption that
all six joints are decoupled, and a PI controller was used to position each loop,
Dwolatzky and Thornton [20]. They observed, however, that large displace-
ments and high speeds caused the Tetrabot to display considerable overshoot

and recommended that more advanced control strategies should be investigated.
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8.2.1 Dyunamic Modelling

For advanced control strategies, Feng et al. [22] developed a reasonably com-
prehensive nonlinear model of the Tetrabot dynamics. From this model, linear
models about various operating points can be obtained for controller design
studies. One such linearized model for which we will design a low-order con-

troller is given by:

G 418 8.1
©)=17Tp (8.1)
where
[ o 0 0 —2.7258 1.4443 1.4441 |
0 0 0 1.4446 —27252 1.4444
Y 0 0 0 14446 14448 —2.7256
1.0000 0 0 0 0 0
0 10000 0 0 0 0
0 0 1.0000 0 0 o |
[ _1.8205 —0.5688 —0.5688 |
—0.5688 —1.8205 —0.5688
5 _ | —0-5688 —0.5688 —1.8295
0 0 0
0 0 0
0 0 o |
[0 0 0 09994 0 0
¢ = 00 0 09994 0
(000 O 0 0.9994
.D = 03)(3.

The model represents the parallel structure only which can realistically be as-

sumed to be decoupled from the 3-axis wrist. The open-loop poles of the model
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are at
+0.4042, 0.0 £ j2.0420, 0.0 j2.0421.

The frequency responses of the open-loop singular values are shown in Figure
8.3.

The input variables are:

Uy Tr1 Drive torque of actuator drive rod 1

I

ug | = | Tono Drive torque of actuator drive rod 2

Ug T Drive torque of actuator drive rod 3

the output variables are:

" L Length of rod 1
y2 | = | lp | = | Length of rod 2
Ys I3 Length of rod 3

and the state variables are:

Ty Z1
To llz
T3 ig
Ty B h
Ts lz
i Ze 1 L lg ]

8.2.2 Performance Specification

Control objectives are listed as below:

(1) good steady state behaviour

(2) small overshoot at high speeds for large displacements

(8) robustness with respect to nomnlinearities, dynamic coupling and variable

payloads.
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8.3 Low-Order Controller Design

Postlethwaite and Feng [56] designed an H, controller for the position control
of the Tetrabot and showed reasonably good performance of the H,, controller
with respect to robust stability and disturbance rejection, in simulation on a
full nonlinear model. The resultant He, controller had a dynamic order of 15,
including the necessary weight. We next design a low-order robust suboptimal

controller for the Tetrabot.

8.3.1 The 1-DOF LSDP Scheme

‘We will consider the low-order robust suboptimal controller design method dis-
cussed in Chapter 6. A diagram for the controller design is given in Figure 8.4.
For the loop shaping procedure, a first-order weighting function is chosen as
_100(s + 1.5)
W(s) = 7 0.00008) =

then we have n, =9, p = 3 and thus ng = 6 for this case.

In the following we obtain, for comparison purpose, a low-order robust subop-
timal controller of order 6 and also the “central” robust optimal controller of
order 9. The optimal value 4 is found to be 4, = 2.76 and we select a subopti-
mal value of y =15 (> 9,). Then, all tuning matrices required for low-order
robust suboptimal controller are obtained, by choosing an 4, as

—0.1010 0 0 1.0000 —0.0000 0.0000
0 -0.1010 0 —0.0000 1.0000 0.0000
Ay = 0 0 -0.1010 0.0000 ~0.0000 1.0000
0 0 0 -147.8358 —0.0000 0.0001
0 0 0 0.0006 -—43.6246 —0.0000
i 0 0 0 0.0007 0.0000 —43.6247 |

Then, the H-norm constraint is satisfled with [|®(s)||e = 0.9850. So, a low-
order robust suboptimal controller K7, +(s) of order 6 is computed by (6.24).
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The controller K7 ;.+(s} = (A&r, Biry Ciry Diy) is given by

Ay = 10E+04x
[ —0.0149  0.0000  0.0000  0.0000
0.0000 —0.0055 —0.0000 —0.0000
0.0000  0.0000 —0.0055 —0.0000
2.1769 —0.0000 —0.0000 --0.0022
—0.0000  0.2800  0.0000  0.0000
| —0.0000 —0.0000  0.2300  0.0000
By = 10E+03x
[ —0.0339 —0.0339 —0.0339
—0.0082 —0.0080  0.0112
—0.0082  0.0112 —0.0030
5.0022  5.0023  5.0022
0.3537  0.1294 —0.4832
0.3587 —0.4832  0.1204
[ 137.4230  48.6494  48.6520 0.7931
Crr = | 1374252  17.8092 —66.4580 0.7931
| 187.4251 —66.4588  17.8054 0.7931
[ 8.5659 2.2130 2.2130
Dy = | 22130 85660 2.2130
| 2.2130 2.2130 8.5660

0.0000  0.0000
0.0000  0.0000
—0.0000  0.0000
—0.0000 ~—~0.0000
—0.0005 —0.0000
0.0000 —0.0005
0.8078  0.8078
0.2957 -1.1035
~1.1035  0.2956

166

Figure 8.5 shows the frequency responses of the two controllers, and Figure 8.6

shows the frequency responses of the shaped and stabilized open-loop systems.

Figures 8.7 and 8.8 show the plant output response to the output disturbance

(from d, to y) and the control efforts to an input disturbance (from d; to u),

respectively. The disturbance is quickly rejected, but with a relatively large

control energy in a transient period. Figure 8.9 shows reference following (from

r to y), and indicates good decoupling but there is still a large overshoot as

mentioned in [20]. The (output) sensitivity function is shown in Figure 8.10.

It should be noted that the He,-norm constraint of ||@(s)||e < 1 resulted in the

suboptimal 4 being chosen relatively large compared with the optimal v,. This

consequently leads to a degradation in performance.
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8.4 Concluding Remarks

We have demonstrated in this chapter how a low-order suboptimal controller
can work in the place of a corresponding “central” optimal controller. This was
done by applying the design methodology to the GEC-Alsthom Tetrabot and
by showing that the low-order controller as designed here, in general, achieves

similar performance to the corresponding “central” controller.

The choice of weighting functions used to shape the nominal plant model is
crucially important for the success of the loop shaping design procedure for
both the “central” optimal and low-order suboptimal controller designs, but
this choice may not be at all related to the controller size reduction techniques
developed in this thesis. In addition, the choice of the design parameter v
required for the low-order robust suboptimal controller design is dependent on
the Hy-norm constraint. This was seen in the example where the choice of
suboptimal 7 needed to be large in order for the constraint ||®(s)|le < 1 to

be met. Consequently, some loss of performance arose since the loop shaping

methodology requires 7 to be small.
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Figure 8.1: The GEC-Alsthom Tetrabot.

@ Support frame
® Linear actuator rod
(3) 2 axis rotation * 1axis transiatian joint
0 Toolptete
0 1axis rotation joint
0 Radial arm
0 2 axis rotation + 1 axis translation joint
0 3 axis rotation joint
0  Anti-rotation rod
1 axis rotation joint

®.@.@ Wrist links

Figure 8.2: The Mechanical Structure of the Tetrabot.
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Open-Loop gain frequency response

120
10-1 100 101

Frequency (rad/sec)

Figure 8.3: Open-Loop Gain of the Nominal Tetrabot Model.

Trajectory

Planning

Figure 8.4: Diagram for Controller Design (1-DOF LSDP).
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100
i
150
100
f
>
to
-50
-100

Figure 8.6: Singular Values for Shaped and Achieved Systems.

S.V.s of Controllers with Weights

central optimal (-)

low-order suboptimal (-)

10

Frequency (rad/sec)
Figure 8.5: Singular Values of Controllers.

Log> gain frequency response

(-) Shaped loc” gain
(-) Achieved lot” gain using central optimal

(-.) Achieved loop gain using low-order suboptimal

10-1 10

Frequency (rad/sec)
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OuQ)ut Response to Output Disturbance (iiq)ut=1)

0.8 By central optimal (-)
By low-order suboptimal (-)

0.6 .
E
- 0.4
os

-0.2

*
-0.4. ut 1 i In
0 2 4 6 8 10 12 14 16 18 20

Time (secs)
Figure 8.7: Output Response to Output Disturbance Step.

Control Energy against Irput Disturbance (ir*ut=I)

0.8 . By central optimal (-)
By low-order suboptimal (-)

0.6 -

0 2 4 6 8 10 12 14 16 18 20

Time (secs)

Figure 8.8: Control Efforts to Input Disturbance Step.
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OuCut Response - Reference Following (ii¢ut=1)

1.4
%
1.2
1
I 0.8
0.6 By central optimal (—
3 By low-order suboptimal (-)
06 04

Time (secs)
Figure 8.9: Output Response - Reference Following.

Sensitivity

~0

co

-100 By central optimal (--)

By low-OTder suboptimal (-)
-120

-140
10-1 100 101

Frequency (tad/sec)

Figure 8.10: Singular Values of the Sensitivity Function.
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Chapter 9

Conclusions and Future

Research

9.1 Conclusions

This thesis has addressed the problem of controller size reduction in advanced

robust control system design. Methods have been given:

@

to reduce the order of stabilizing controllers
e to reduce the order of H,, suboptimal controllers

o to reduce the order of robust suboptimal controllers (for the 1-DOF LSDP)

@

to reduce the order of 2-DOF H,, controllers.

A common component in the synthesis of advanced robust controllers is a
parametrization of controllers via a stable free parameter, Q(s) or @(s), which
can lead to controllers of “high” order. For this reason, model reduction tech-

niques are frequently used. In this thesis, we have given an alternative method-
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ology for obtaining low-order controllers. The central idea in all the design
methods considered was to take the parametrization of controllers and to show
that the order of such controllers could be reduced, by eliminating any unob-
servable (or uncontrollable) states, if the corresponding free parameter, Q(s)
or &(s), solved two simultaneous matrix equations (in all cases) and an Hoo-
norm constraint (in the H,, cases). Orthogonal canonical forms were employed
to solve the two matrix equations, and a certain Riccati equation was used to

tackle the Heo-norm constraint.

It was shown that in each design method the low-order realizations could be
expressed in state-space form following relatively easy computations, based on
constructive algorithms. As expected, the low-order controllers performed in
exactly the same way as in the “formal” order counterparts. The following

results on the size of controllers were obtained:

1. The order of all stabilizing controllers may be less than or equal to the

number of plant outputs.

2. The order of all H,, suboptimal controllers may be equal to the order of

the generalized plant minus the number of plant outputs.

3. The order of the 1-DOF robust suboptimal controllers may be equal to
the order of the shaped plant minus the number of plant outputs.

4. The order of the 2-DOF H,, suboptimal controllers may be equal to the
order of the generalized plant (including reference model) minus the sum

of the number of plant outputs and the number of reference model inputs.

Numerical examples were given to illustrate the algorithms developed and to
confirm the results on controller orders. Examples showed that the low-order
controller could work in place of the “central” one but with some deterioration

in performance.
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9.2 Recommendations for Future Research

The methodology and the associated algorithms for controller size reduction as

presented here raise a number of questions which require further research:

1. In the design method for low-order stabilizing controllers in Chapter 4,
there is considerable freedom in choosing the parameter matrices H and
A,, while a special form of Fasin (4.55) is required to obtain controllers.
of the smallest possible order.

How do we search over the space of H and A, to oblain such a special
form of I, when it exists, without missing it?

How do we check if the space of F' of a certain order is empty?

2. In low-order H,, suboptimal controller design (Chapter §), low-order ro-
bust suboptimal controller design (Chapter 6), and low-order 2-DOF H,,
controller design (Chapter 7), the difficult part of each of the algorithms
is the selection of a free parameter matrix ®(s) which meets an He-norm
constraint. Some approaches to tackle this constraint were given, but
there is a scope for more systematic and/or effective methods, particu-
larly in view of the freedom in A4 as previously mentioned.

How can we tackle this problem in a more systematic way?

How can we check if the space of ®(s) of a certain order is empty?

3. In low-order H, suboptimal controller design (Chapter 5), the possibility
of lowering the order to less than n — p; is limited by the structure of
F= f)ﬁl €4, where C; depends on Dy,

How should we choose Dyy and Dy from (5.20)-(5.21) for this purpose?

4. For the 1-DOF LSDP (Chapter 6) and the 2-DOF LSDP (Chapter 7),
a reasonable value of a suboptimal v is required to ensure that the loop
shapes can be well approximated together with robust stability. In low-
order controller design, this requirement may, in some cases (as seen in

Chapter 8), be violated due to the Hoo-norm constraint on @(s).
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Can we find o systematic way to relate o suitable selection of @(s) with a

reasonable value of v?

5. A general question which applies to all the design methods considered is:
How can we find an “optimal” controller amongst the set of low-order
controllers?

Here, by “optimal”, we mean the controller which best meets the perfor-

mance requirements amongst the set of low-order controllers.
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Appendices

Appendix A: Proofs of Lemmas 2.14 - 2.17

1. Proof of Lemma 2.14

Suppose A is stable and ||G||e < 7. Then G*G — %I < 0. So, G*G — +*I is
invertible for all frequencies and (G*G —~2I)~! has no jw-axis poles, where the

state-space realization of (G*G — v2I)~! is given by

[ A—BR:1DTC BR:'BT BR;!
(@G—7 D) = | —2CTS;)C  —(A—BR;DYC)T | CTDR;?
| —R;'DTC R;*BT | Ry
. H, | *
o * * '

Thus, the A-matrix of (G*G —%I)7!, H,,, has no jw-axis eigenvalues. Further,

since we have the following equality:

-1
I 0 I 0
H, =
0 —I 0 —I

the Hamiltonian matrix M., in (2.39) has no jw-axis eigenvalues. Hence, using

A - BR;'DTC —yBR;'BT
yCTS;*C —(A- BR;'DTC)YT

Lemma 2.13, we conclude that the ARE (2.38) has a unique stabilizing solution
X, ' ‘ "
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2. Proof of Lemma 2.15

From the assumption that X, is a solution to the ARE (2.38), we define M(s)

as

M(s) = A ! 5

= —(=R,)"M*(yBTX,, + D'C) [ (—R)V? (A1)

Then it can be shown, by direct manipulations, that the following equality
holds:

VI - G*G = M*M. (A.2)

Thus, G*G — %I < 0. Since X, is the stabilizing solution to the ARE (2.38),
the Hamiltonian matrix M., in (2.39) has no jw-axis eigenvalues (from Lemma,
2.18) and thus (G*G — +?I)™ has no jw-axis poles, as seen in the proof of
Lemma 2.14 above. This implies that G*G — 72 < 0. Then, ||G||e < 7 since
A is stable. )

3. Proof of Lemma 2.16

Rewrite the ARE (2.38) as
ATX, + X, A+ Q=0 (A.3)
where
Q= —y(B*X,+ ' DTC)' R} (BTX, + v DTC) + 47 CTC.  (A4)

Q in (A.4) is positive definite since 0.0(D) < 4. So, from the Lyapunov
equation (A.3) it is easy to see that, if A is stable, the solution X, is positive
definite.
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4. Proof of Lemma 2.17

Since X, is the solution to the ARE (2.38), the equality 42 — G*G = M*M in
(A.2) holds. So, we have ||G||e < 7. In addition, from the Lyapunov equation
(A.8), it is easily verified that A is stable since the solution X, is positive
definite. This completes the proof. ]
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Appendix B: Alternative Solution to Two Equa-
tions (5.34)-(5.35) |

Let the pair (4, C;) be transformed into the orthogonal canonical form (A,, o)
= (MAM™,NC,M™), as in (2.21)-(2.22):

[ I
App la 0 e 0
0
I
Ay Agy N } 0
0
4, = _
: 0
Il/
Avo-—l,l Avo—1,2 Auo—l,a e Io }
0
L ‘AVo,l AVo'z 'A‘Va,3 te AVoyVo

Co=[m oo 0]

where v, is the observability index of (4, (), and A; (i = 1,---,,) are [; X [;

matrices, and the numbers
p=hzkbz-2l, htb+-+il,=n

are the conjugate Kronecker indices of the pair (4, C‘z).

Using the form (4,, C,), the two equations (5.34)-(5.35) can therefore be trans-

formed into:

4,X — XA, = B,C, (B.1)

CyX -DyC, = F (B.2)
where

X = XM™? (B.3)




APPENDICES 181

qu = .quN_l (B4:)
D, = DyN! (B.5)
F = FM™. (B.6)

To solve the problem for the case of ny = n — p,, we partition the form (4,,C,)

as shown below:

I
4, = |4 ozl Orextopamte (B.7)
AoZl{ Ao22 Ao23
C, = [Ipz Opzxtz Opzx(n*-m—h)] (B.8)

where Aoy = Ag1 : P2 X P2, Aoar (0 — p2) X P2, Asez + (n — p2) X Iz, and
Aozs + (n—p2) X (n — pa — I3). The following Fact Bl is useful in solving
(B.1)-(B.2).

Fact B1  The pair ([ Aozs Aoss ], 0

I
[ g jl 0 }) is completely observable if

the pair (A, C,) is completely observable.

In the following, we assume for the sake of simplicity that I, = p;, and suppose

that X is partitioned as
X = [X1 X'z]: (n—p)xn
with X and X, having p; and n — p, columns, respectively. Then, from (B.1),
we have the following two equations:
ApXi — XA — Xodom = By (B.9)
4% =% 1 0| -%[ Am 4m] = 0 (B.10)

Equation (B.10) is equivalent to

Xz([ Aoz Ao ] + X1 X, [ I ])Xgl = A4 (B.11)
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from which we can find a matrix X; and an invertible matrix X, for any stable
Ayg. Obviously, X obtained is of full rank. And, in turn, By can be computed
from (B.9).

In order to solve (B.2), partition F' as
F:[Fl Fz]: mg X n

where Fy and F, have p, and n — p, columns, respectively. Equation (B.2) can

then be rewritten as
and, from (B.12), Cy and Dy are computed as follows:

Cy = BRI (B.13)

.D¢ = C¢X1—F1. (B14)

Hence, we have Ay, X, By, Cy and Dy, and can therefore compute an He, sub-
optimal controller of (n — p,)th order by making use of the realization (5.33),
provided Ay is chosen such that [|8(s)|loo < v. Note that X, B, and Dy can be
computed from (B.3)-(B.5), respectively.

Without loss of generality, the identity matrix can be chosen as a candidate for
X, in (B.11), i.e., Xp = I. In this instance, (B.11) becomes
[ Aozz Agss ] + X [ Io ] = Ay. (B.15)

Thus, X; can be chosen arbitrarily subject to the stability of Ay, where A4, is
computed from (B.15) by

Ay = [ Apzo + X1 Aoss ] (B.16)

with A, and A,z fixed. Consequently, the matrices X, By, Cy and Dy are
computed by

X = [X1 1M (B.17)
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By = (A¢X1—X1Ami —~ Aw)N (B.18)
Cy = B (B.19)
Dy = (FBpX - F)N. (B.20)

Hence, a solution matrix X and a suitable free parameter ®(s) to the two
simultaneous matrix equations (5.34)-(5.35) are all characterized in terms of

X, only, which can be chosen arbitrarily subject to 44 in (B.16) being stable.
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