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A b stract

The work described in this thesis was undertaken to obtain a unified treatm ent 

to  the controller size reduction problem in advanced robust control system de

sign. A common feature in state-space solutions to advanced control system de

sign, such as param etrizations of all stabilizing controllers and Hoo sub optim al 

controllers, is th a t a free param eter m atrix is contained in the param etrization 

to  give the designer freedom in designing the required controllers. However, 

this free param eter can provide unnecessarily high order controllers.

This thesis presents a new methodology for controller size reduction. The 

methodology utilizes the param etrization of all stabilizing controllers and Tioo 

sub optim al controllers, and then generates a set of low-order stabilizing con

trollers and a  set of low-order sub optimal controllers, respectively. The 

central idea is to achieve a low-order realization of a full-order controller, by 

deriving and solving two simultaneous matrix equations in order to  eliminate 

unobservable states. Orthogonal canonical forms are employed to solve these 

simultaneous equations. A consequence of the algorithms employed is th a t the 

order of the controller is reduced from n -b ng (or n ■+■ n^) to  n , (or n^), where 

n  is the order of the weighted plant and rig (or n^) is the order of the free 

param eter.

In design applications, a possible solution to the problem of combining the 

objectives of robust stability and performance requirements is to use a  loop 

shaping design procedure based on normalized coprime factor plant descriptions. 

The methodology obtained for low-order suboptimal controllers is extended, 

w ith slight modifications, to  one and two degree-of-freedom loop shaping design 

procedures.

The results are illustrated by numerical examples. Finally, a practical industrial 

problem of designing a low-order controller for a tetrahedral robot is considered 

by applying the methodology developed in the thesis.
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Chapter 1

Introduction

1.1 B ackgroun d

Advanced control system design addresses multivariable plants, high perfor

mance requirements, significant model uncertainties, and disturbance signals. 

Each of these characteristics forces the control system to be complex in some 

sense. A good measure of the  complexity of a linear state-space model is the 

dimension of its states, sometimes referred to  as the system order. Examples of 

high-order systems are; nuclear power plant (>  500 states); chemical processes 

(>  100 states); compact disc players (>  100 states); flexible spacecraft (>  20 

states), etc.

The complexity of a linear controller, like the plant under control, can also be 

measured by the dimension of its states. In present-day robust/optim al control 

system design w ith its emphasis on robust stability and robust performance 

of the closed-loop system, the complexity of the controller can easily exceed 

th a t of the  plant. In particular, Hoo optim al design typically leads to complex 

controllers, i.e., controllers of high state dimensions. For example, a standard 

Hoo design procedure generates a controller of the same order as tha t of the
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generalized plant model (including actuators and weighting functions) to be 

controlled.

The high complexity of a controller adversely affects cost, commissioning, and 

maintainability. In contrast, a  lo w er-o rd e r  co n tro lle r  would be desirable, be

cause it provides easier implementation (i.e., less on-line com putational require

m ents), easier test and commissioning, easier maintenance, and easier training 

for a p lan t’s operating personnel, etc. It is known, however, th a t there might 

be undesirable deterioration in the closed-loop performance when a low-order 

controller is being used in the place of a full-order controller.

It is therefore natural to wish to minimize control system complexity for high- 

order plant, subject to the achievement of satisfactory performance specifica

tions in the face of uncertainty. T hat is, it may be reasonable for us to look 

for a reduced-order controller instead of the best full-order controller thereby 

trading-off complexity against reduced performance. The concept of ‘simplicity’ 

in designing controllers is analogous in spirit to the following philosophy:

Things should be as simple as possible, but no simpler.

It is desirable therefore to reduce controller complexity from both  the design 

process and the final controller. The problem of reducing the dynamic order 

(i.e., McMillan degree) of the controller while retaining closed-loop stability and 

performance will be called the C o n tro lle r  Size R e d u c tio n  P ro b le m . It has 

become a research topic of great practical significance and has attracted  much 

interest from researchers.

1.2 M o tiv a tio n

W hile model reduction techniques have been well developed, the problem of 

controller size reduction is not easy and remains an open problem because of 

the following reasons:
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® The resulting controller is required to have the lowest possible order, for 

‘simplicity’, while capturing the im portant features of the control problem.

® Despite many previous efforts at the problem, a number of im portant 

issues - stability, robustness and performance - have not been properly 

addressed. Therefore, trade-offs between the controller size reduction and 

the allowable performance deterioration (due to controller size reduction) 

are to be made.

® The methodology for controller size reduction must be flexible enough 

to deal w ith controller structures, and should not lead to  sophisticated 

procedures.

In advanced control system design, robust/optim al controllers may be designed 

for complex multivariable feedback systems to  achieve stringent performance 

objectives in the presence of (unstructured) uncertainty. However, algorithms 

for synthesizing such controllers, e.g., Hoo optimization, are not able to explicitly 

constrain the complexity of the control law. A common feature in the available 

state-space solutions for

# param etrizations of all stabihzing controllers [75]

@ param etrizations of Hoo suboptimal controllers [18],[27]

@ param etrizations of robustly stabilizing controllers (using the normalized 

coprime factor plant descriptions) [28],[47]

® param etrizations of two degree-of-freedom (2-DOF) Hoo controllers [43]

is th a t a free param eter m atrix Q{s) (or # (s)) is contained in the param etriza

tion to  give the designer freedom in designing the required controllers. How

ever, the freedom in this param eter usually leads to unnecessarily high order 

controllers. Although a good model reduction technique can be applied to the
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control law to reduce its complexity, an alternative methodology for reducing 

controller size is seen as an im portant and valuable research goal.

1.3 R e la te d  L iteratu re

The literature includes much work on controller size reduction as well as on 

model reduction. In  the account th a t follows, however, only the m ajor results 

which provide a fundamental basis and motivation for the direction of this thesis 

are mentioned. More details of related literature can be found in the main text.

Fundam ental to control system design is the requirement of internal stability. 

A celebrated solution to the stabilization problem is the param etrization of 

all stabilizing feedback controllers for a given plant, using a free parameter. 

This was initially developed by Youla et al. [75] and generalized by Desoer 

et al. [15]. Such a param etrization provides a basis to the Hoo (sub)optimal 

control problem. The latter is an im portant problem in advanced robust control 

system design, where stabilizing controllers which satisfy an upper bound on 

the TYoo-norm of a certain closed-loop transfer function m atrix are to be found. 

Glover and Doyle [27] and Doyle et. al [18] have recently provided an elegant 

state-space solution to this problem via two Riccati equations. In this, the set 

of all Hoo suboptim al controllers is parametrized using plant data and a free 

param eter.

A simple, yet very useful design procedure based on Hoo optimization and ideas 

from classical control was introduced by McFarlane and Glover [47]. It is called 

the Loop Shaping Design Procedure (LSDP), and is essentially a one degree 

of freedom (1-DOF) design scheme. First the plant is modified by pre- and 

post-com pensating weights to  shape the open-loop singular values so th a t they 

correspond to  good closed-loop performance and robust stability properties as 

described by Doyle and Stein [19]. Then an Hoo robust stabilization property is
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solved to  maximize robustness with respect to perturbations in the normalized 

coprime factors of the shaped plant.

To introduce more performance objectives into the control problem, a 2-DOF 

scheme can be employed, e.g., Youla and Bongiorno [74]. An extended loop 

shaping design procedure in an T̂ oo setting was recently proposed by Limebeer 

et al. [43] building on the 1-DOF LSDP of McFarlane and Glover. In this 2-DOF 

scheme the extra degree of freedom is used for model-matching the closed-loop 

transfer function to an ideal response.

1 .4  C on tr ib u tion  and O rgan ization  o f  T h esis

In this thesis, we present a new and unified methodology to the  problem of con

troller size reduction in advanced robust control system design. By utilizing and 

suitably choosing a  free param eter, which is commonly involved in im portant 

param etrizations of controllers such as the Youla param etrization [75], Glover 

and Doyle’s param etrization [27] and Glover and McFarlane’s param etrization 

[28], an observable (or controllable) realization of a controller of low-order is 

obtained in each case. Consequently, the methodology improves the usefulness 

of such param etrizations in practice.

Design objectives for advanced robust control systems are more than ju st Hoo- 

norm  bounds. For example, we might have time domain requirements on rise 

time, settling time, overshoot, and undershoot, and there might be requirements 

on the controller size. The work in this thesis contributes to optimal yet small 

size controller design. The m ajor contributions of this thesis are covered in 

Chapters 4 to  8 and are considered to be:

* A low-order stabilization problem is solved in Chapter 4 using the Youla 

param etrization of all stabilizing controllers. A constructive algorithm for
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computing the low-order stabilizing controllers is developed in state-space 

form. The main elements of Chapter 4 have been published in [12],[30].

® It is shown in C hapter 5 th a t the order of Hoo sub optim al controllers 

param etrized by Glover and Doyle may be reduced, in a constructive way, 

by suitably choosing a free param eter $ (s). The bulk of Chapter 5 has 

been presented in [31].

9 Constructive algorithms are similarly given for computing low-order con

trollers from the 1-DOF and 2-DOF LSDP in Chapters 6 and 7, respec

tively. The results of Chapter 6 have been presented in [13].

® Illustrative examples are given to  verify the theory developed and to show 

the details of the steps involved. Further, in Chapter 8 , the theory devel

oped is applied to  a  practical industrial problem.

This thesis consists of 9 chapters, and we next give an outline of the main 

contents of the chapters th a t follow.

Chapter 2 : Prelim inaries

In this chapter, we review relevant results from linear systems theory. Included 

are orthogonal canonical forms, the Sylvester equation, the Lyapunov equation, 

coprime factorizations, norms of systems, relations between the Riccati equation 

and an TYoo-norm bound, and linear fractional transformations.

Chapter 3; M odel Reduction and Controller Size Reduction

In this chapter, an overview of the model reduction and controller size reduc

tion problem is given. Balanced realizations are introduced, followed by model 

reduction techniques such as modal residualization, balanced truncation, Han

kel norm model reduction, and coprime factor model reduction. Some existing 

results on controller size reduction are also described.
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.C h a p te r  4: L o w -O rd e r S tab iliz in g  C o n tro lle r  D esign

In this chapter, we derive an algorithm to generate a set of low-order stabilizing 

controllers, using the well-known Youla parametrization [75] of all stabilizing 

feedback controllers. The algorithm requires a solution to two simultaneous 

m atrix  equations. Pole assignability via output feedback is shown utilizing a 

separation property. An explicit formula for low-order stabilizing controllers 

is derived as a special case. Relevant issues are discussed, and a constructive 

algorithm is given together w ith numerical examples.

C h a p te r  5: L o w -O rd e r 77oo S u b -O p tim a l C o n tro lle r  D esign

In this chapter, low-order Tioo sub optimal controllers are derived by extending 

the  concept developed in Chapter 4 to the state-space solution of Glover and 

Doyle [27] for the standard  Hoo sub optimal control problem. A constructive 

algorithm  is given which requires a solution to two simultaneous m atrix equa

tions, as in Chapter 4, bu t subject to an Tfoo-norm constraint. Two numerical 

examples are presented to illustrate the results.

C h a p te r  6: L o w -O rd er R o b u s t  S u b -O p tim a l C o n tro lle r  D esig n

In this chapter, the so-called Hoo Loop Shaping Design Procedure (1-DOF 

LSDP) of McFarlane and Glover [47] is considered. It is shown th a t the pro

cedures discussed in Chapter 5 can be carried over to the 1-DOF LSDP, with 

only slight modifications, to derive low-order robust suboptimal controllers. An 

example is presented.

C h a p te r  7: A n  E x te n s io n  to  Hoo 2 -D O F  C o n tro lle r  D esig n

In this chapter, the results of Chapters 5 and 6 are further extended to the two 

degree-of-freedom Hoo controller design procedure (2-DOF LSDP) of Limebeer 

et al. [43].
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C h a p te r  8: A p p lic a tio n  to  th e  G E C -A ls th o m  T e tra h e d ra l  R o b o t

In this chapter, we consider a practical industrial problem of designing a low- 

order robust suboptimal controller for a tetrahedral robot, Tetrabot. The results 

of this thesis are applied to  the  problem to demonstrate their effectiveness and 

comparisons are made with a  “central” Tioo optimal controller which can be 

obtained using standard Hoo algorithms.

C h a p te r  9: C o n c lu sio n s a n d  F u tu re  R e se a rc h

This final chapter contains concluding remarks and suggestions for further re

search.

1.5 N o ta tio n

1.5.1 Symbols

All systems in this thesis are linear, multivariable, finite-dimensional and time- 

invariant, and possess real-rational transfer function matrices. The work is 

carried out in continuous tim e unless otherwise stated.

A (proper) transfer function m atrix is represented in terms of state-space data

by

’ A B  '

C D
C {s l -  A )-^B  + D

alternatively w ritten as (A, R , C, £>), where A, R , C  and D  are real matrices of 

appropriate dimensions and I  is the identity matrix. If R  =  0, the zero m atrix, 

then the system is strictly proper and we shall write (A, B ,C ) .  The m atrix A is 

asymptotically stable if and only if each of its eigenvalues has a strictly negative
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real part. In th a t case the system (A, R , C, D) is also called asymptotically 

stable.

S tandard notation is used as far as possible as listed below.

Vo
Af

A fcentral

Afloyj

denotes the controllability index, 

denotes the observability index, 

denotes the order of a full-order controller, 

denotes the order of a central controller, 

denotes the order of a low-order controller.

s

7^e[a:]

C"

QmXl

Aij

Imi

OmXi
Â ^

A ^

Af

A > 0  

A >  0
AI/2

det(A)

rank(A)

tr(A )

A^(A)

Anzî'n(-' )̂

Laplace variable, (s = jw  yields the frequency response.) 

Real part of x.

n-dimensional real Euclidean space, 

n-dimensional complex Euclidean space.

Set of real m  x  I matrices.

Set of complex m  x I matrices.

The ( i , j )  element of A. 

mi X TOj identity matrix. 

m  X I zero matrix.

Transpose of real m atrix A.

Transpose of complex conjugate of m atrix A.

Pseudo-inverse of matrix A.

M atrix A is positive semi-definite.

M atrix A is positive definite.

For m atrix A >  0, any square m atrix R  such th a t A =  B ^ B .  

Determinant of m atrix A.

Rank of m atrix A.

Trace of m atrix A.

The i-th  eigenvalue of m atrix A.

Largest eigenvalue of m atrix A.

Smallest eigenvalue of m atrix A.
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F (^)
(A)

spectral radius of A, i.e., max{|A| : A G A(A)}. 

The i-th  singular value of m atrix A.

Largest singular value of matrix A.

Smallest singular value of matrix A.

G(6)

deg(G)

<̂ 7Tim(G)

"RRoo

IkW lb

|k(i)|lrm>

IIGWII2
l|G (a ) |k

IIG W Ik
I|g (5)||h

G

V

X  := Y  

X = : y

denotes a transfer function matrix.

:= G ^(—5), i.e., the paraherm itian conjugate of G{s).

;=  G ^(s), i.e., the complex-conjugate transpose of G(s). 

Degree of G(s), i.e., the number of states of G(s). 

Largest singular value of G{s).

Smallest singular value of G(s).

Hankel singular value of G{s).

Lebesgue space of real rational matrices whose elements 

are proper and have no poles in the Jic-axis.

Hardy space of real rational matrices whose elements 

are stable and proper.

Lebesgue space of real rational matrices whose elements 

are strictly proper and have no poles in the jw -axis. 

Hardy space of real rational matrices whose elements 

are stable and strictly proper.

£ 2-norm of a real vector valued signal x(t).

RMS norm  of a real vector valued signal x{t).

% -norm  of a transfer function m atrix G(s).

Tfoo-norm of G(s).

RMS gain of C?(s), equal to its 00-norm.

Hankel-norm of G(s).

‘An element of.

‘For air.
‘Is not equal to ’.

‘y  is defined as X \

‘AC is defined as y ’.
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Finally, the notation X  :=  R ic
E  - W

- Q  - E ^
solution m atrix  X  to an algebraic Riccati equation:

is used to denote a stabilizing

# X  + X F -  X W X  +  Q =  0.

1.5.2 Abbreviations

ARE Algebraic Riccati Equation

BIBO Bounded-Input Bounded-Output

CAA Controllability Argument Approach

CAD Com puter Aided Design

CLHP Closed Left-Half Plane

CLTF Closed-Loop Transfer Function

CRHP Closed Right-Half Plane

DOE Degree of Freedom

LCF Left Coprime Factorization

LFT Linear Fractional Transformation

LQG Linear Quadratic Gaussian

LSDP Loop Shaping Design Procedure

LTI Linear Time-Invariant

MIMO M ulti-Input M ulti-Output

OAA Observability Argument Approach

PI Proportional plus Integral

PID Proportional plus Integral and Derivative

RCF Right Coprime Factorization

RMS Root Mean Square

SISO Single-Input Single-Output

SVD Singular Value Decomposition



C hapter 2

P  r elim inaries

2«1 In tro d u ctio n

In this chapter we introduce some well-known results on continuous tim e lin

ear tim e-invariant systems, which will be particularly useful in the following 

chapters.

Section 2.2, on linear systems theory, includes the state-space form of a  transfer 

function m atrix, operations in linear systems, controllability and observability. 

Orthogonal canonical forms are introduced in Section 2.3, and algebraic equa

tions such as the Sylvester and Lyapunov equations are reviewed in Section 2.4. 

In Section 2.5, definitions and an im portant theorem on coprime factorizations 

are given. Relevant norms of systems are introduced in Section 2.6, and a useful 

relationship between the Riccati equation and an "Koo-norm bound is discussed 

in Section 2.7. Finally, linear fractional transformations are reviewed in Section 

2 .8 , together w ith an alternative chain scattering description.

12
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2.2  S om e S y stem s T h eory

2.2.1 Transfer Functions

Consider a linear state-space model G{s) described by

x(t) = A x(t)  + B u(t), æ(0) =  0 (2.1)

y{t) =  C x(t) + Du{t) (2.2)

where x(t) £ 77.” is the state vector of the system, u{t) G 77.™ is the control

vector and y(t) G 7^ is a vector of measurements, and A  G 77.”^” , B  G 77."^™,

C  G 77.̂ ”̂ , and D  G 77.̂ ^™ are real matrices.

Taking Laplace transforms of (2.1)-(2.2), the resulting transfer function is

G{s) = C { s I - A ) - ^ B  + D  =
'  A B  '

C D
(2.3)

Note th a t (2.3) says nothing more than  (2.1)-(2.2); in other words, there is no 

implication th a t the realization is minimal or not.

Throughout this thesis, we will assume th a t the direct transmission m atrix of 

the plant model is a zero m atrix (Z) =  0), th a t is, the plant is strictly proper. 

This assumption of strictly properness is not essential and can be removed at the 

expense of more cumbersome formulas. Thus, this assumption may be justified 

not only by com putational simplicity but also by the fact th a t most real systems 

are indeed strictly proper.



Ch. 2. P R E LIM IN A R IES

2.2.2 Operations on Linear Systems

14

Under a  state similarity transformation, x — Tæ, system C?(5) =  (A ,B ,C ,D )  

becomes

3 0 0  =

where T  is invertible.

A B '  T A T -^ T B  '

C D CT~^ D
(2.4)

Given two systems defined by Gi{s) — (Ai, S i,  Ci, S i)  and ^ 2(5) =  (Ag, S 2, C2, Sg), 

a state-space representation of the series-connected system  is given by

G i(s) X Gg(^)
■ Ai S i ■

C l S i

' Ag Bg ■

[ c g Sg

Ai SiGg S iS g  ’

0 Ag Bg

Cl S 1C2 S iS g

Ag 0 Bg

SiCg Ai BiSg

SiCg Cl S iS g

(2.6)

(2.6)

There may be cancellations between the poles of one system and the transm is

sion zeros of the other, in which case this realization wiU not be minimal even 

if G i(a) and ^ 2(5) were minimal. A minimal realization can be obtained as 

described, for example, in Maciejowski [46, Section 8.3.5].

Given Gi{s) and Gg(3) as above, the state-space representation of the ‘parallel- 

connected system  is given by

Gi(a) ^ 2(5)

(2.7)

'  Ai Bi ■

+
Ag Bg

Cl S i Cg Sg

'  Ai 0 Bi

0 Ag Bg

_Ci Cg S i  +  Sg
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Again, this realization may not be minimal even if G i(s) and Gg(6) are minimal.

Given the system G{$) =  (A, S , C, S ) ,  we can obtain a state-space realization 

for the inverse system  as

(3-i(a)==
' A - B D ~ ^ C B D -i '

- D - ^ C D-^
(2.8)

provided the system is square (i.e., I — m ) and D  is nonsingular. If the system 

is not square, then a pseudo inverse D"' of D  can be used in the place of

Finally, a state-space realization for the dual system  is given by

3  (-s) — p T  (2.9)

and the parahermitian conjugate system  by

r - A
3*(s) =  G ^(—s) =  - —  -  . (2.10)

■ - A ? - c ? '

2.2.3 ■ C ontro llab ility  and  O bservability

For the system (2.1)-(2.2), the pair (A, B )  is controllable if, for each tim e U >  0 

and final state æi, there exists a continuous input u(t) such th a t the solution of 

(2.1) satisfies x ( ti)  =  Xi.

L e m m a  2.1 The following are equivalent:

1. {A ,B )  is controllable.

has independent rows.2. The matrix

3. The matrix

B  A B  A"-ijB

A - X I  B has rank n for all eigenvalues of A  in C.

4 . Xi(A + B F ) {i =  1, • • •, n) can be freely assigned subject to complex conjugate 

pairs by suitable choice of F .
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The pair (A, B )  is stabilizable when there exists an F  such th a t A +  B F  is 

stable.

L e m m a  2.2 The following are equivalent:

1. (A ,B )  is stabilizable.

2. The matrix A — AI R  j has rank n  for all eigenvalues of A  in CRHP.

3. The uncontrollable modes of the system matrix A  are stable.

We will now consider the dual notions of observability and detectability for the 

system (2.1)-(2.2). The pair (A, C) is observable if, for every ti  >  0, the function 

y(t), t  E [0 , ti], uniquely determines the initial state Xq.

L e m m a  2 ,3  The following are equivalent:

1. (A, C) is observable.

2. The matrix

3. The matrix A :^ -A I

has independent columns.

has rank n for all eigenvalues of A  in C.

4 . X i{A  + H C ) (i = 1, ■■■ ,n )  can be freely assigned subject to complex conjugate 

pairs by suitable choice of H .

5. (A^, C ^) is controllable.

The pair (A, C) is detectable when there exists an H  such tha t A + H C  is stable.

L e m m a  2 .4  The following are equivalent:

1. (A, C) is detectable.

2. The matrix A :^ -A I has rank n for all eigenvalues of A  in CRHP.

3. The unobservable modes of the system matrix A  are stable.

4 . (A^, C^) is stabilizable.

The following definitions, first introduced by Luenberger [45], are of particular 

im portance in this thesis.

D e fin itio n  2.5 The controllability index., z/c, of the system (2.1)-(2.2) is the
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least positive integer for which the matrix

B  A B  . . .  A''^~^B

has rank n. Similarly, the observability index., z/g, of the system (2.1)-(2,2) is 

the least positive integer for which the m atrix

~[T
(XT arc/T  . . .  ( y f r y . - i c r

has rank n.

A realization of G =  (A, B , G, D) is minimal if and only if (A, B )  is controllable 

and (A, G) is observable.

Consider the system (2.1)-(2.2) again and assume th a t C  is of full rank. In this 

case, it can also be assumed th a t the m atrix C  takes the form

C = Il Ozx(n-Z) ] •

It is then convenient to  partition  x, A and B  as

Xi
A =

All Ai2 B  =
Bi

A21 A22 Bg _

and accordingly write the system (2 .1)-(2 .2) in the form

Xi

«2

A ll Ai2 

Agi A22

Xi Bi
+

æg Bg

h  0
Xl

a=2

(2.11)

(2.12)

(2.13)

(2.14)

The following Lemma 2.6 relates observability to tha t of particular partitioned 

block matrices and will be of use later.

L e m m a  2 ,6  (Gopinath [29]) I f ( A ,C )  is completely observable, then so is 

(A22 , A12).
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P ro o f: Reference [29] gives a proof. We give an alternative proof below.

Since (A, C) is completely observable, the m atrix is of full column

rank for all eigenvalues of A  in C. Using (2.11)-(2.12), we have

(2.15)

and thus the right-hand side of (2.15) is of full ranlc. This is satisfied if and 

Ai 2

- A ll “  X I  Aig
A  — XI

C
= Agi Agg — XI

I  0

only if
Ago — XI

is of full column rank. By Lemma 2.3 this is equivalent

(Agg, Aig) is completely observable.

2.3  O rth ogonal C an on ica l Form s

Orthogonal transformations are useful for reducing a  linear system (2.1)-(2.2) 

into a canonical form in a numerically stable way, e.g., Petkov et al. [55] and 

Van Dooren et al. [69]. Such orthogonal canonical forms play an im portant role 

in obtaining low-order controllers as described in this thesis.

Using an orthogonal m atrix U, a controllable pair (A, B )  can be reduced to the 

so-called orthogonal canonical form  ( A c B f)  :=  {U'^AU,U'^B) with

(2.16)

where Uc is the controllability index of (A, R), B i is m i X m  and =

2 , • • •, î c) are m,- x matrices,

rank(R i) =  m i 

rank(Ai,;_i) =  m; i =  2, • • •, i/̂

'A ll Aig • • Ai,i,^_i Ai,i/„ Bi '

Agi Agg • ■ Ag,„^_i A2,i/c 0

Ac = 0 Agg • • A3,„^_i As,i/C Be = 0

0 0 ■ Az/c,i/c—1 Ai/c,!/c 0
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and the  numbers

m i +  mg -I------h my, =  n

are the conjugate Kronecker indices of the pair (A, R). The form (2.16) is also

said to  be the block-Hessenberg form  (or staircase form) of the pair (A, R).

A dual realization is available, by working with the pair (A^, C ^) instead of 

(A, R ) and then transposing the result. T hat is, an observable pair (A, C) can 

be reduced into the orthogonal canonical form (Aq, Go):

All Aig 0

Agi Agg Ags

Ao = U ^AU  =

0

0

0

Ai/o—1,1-

(2.17)

Ayo-1,1 Ay,_l_g Ay,_1^3

Al/o,l Ay,.g Ay, .3

Go =  CU  =  Gi 0 0 ••• 0 (2.18)

where Uo is the observability index of (A, G), Gi is Z x h  and Ai.;+i(z =  1, • • •, z/y-

1) are Zj X Z*+i matrices,

rank(Gi) =  h  

rank(A,,i+i) =  Ẑ +i z =  1, • • •, z/„ -  1

and the numbers

Zl >  Zg >  • • • >  Zy,

Zi +  Zg +  • • • +  Zy, =  n 

are the conjugate Kronecker indices of the pair (A, G).

R e m a rk  2 .7  The orthogonal canonical forms shown above provide a numer

ically reliable way to check for the controllability and observability of system 

(2 .1)-(2 .2 ). The m atrix Ay„y,_i (respectively Ay,_i.y,) is of full rank if the sys

tem  is completely controllable (respectively observable), otherwise Ay,.y,_i =  0 

(respectively Ay,_i,y, =  0).
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R e m a rk  2 .8  Stable com putational algorithms for finding these orthogo

nal canonical forms are available using the so-called staircase algorithm, e.g., 

Konstantinov et al. [40] and Boley [4].

the pair (A ,B )  is completely controllable:

Il2 

I22

A.

All A

Im2 0 A

0 Tms

(A, R ) can be further transformed

as in (2.19)-(2.20) below, provided

Al,y,-1 Ai,i/c

Ag.i/c-l Aa.i/g

Ag.y, —1 As.z/c (2.19)

Imy, 0

Bn = (2.20)

We next give an algorithm for obtaining the form (Ac, Be) as above, since the 

dual result of this form will be frequently used in this thesis.

1. Given A G 77.”^” and B  G 77.”^™, find a  controllability index z/g.

2. Do a singular value decomposition (SVD) on R  as R  =  U iE iV i,  and then 

build R(^) as

RW :=  U ^B G i I,

by choosing a suitable m atrix Gi, where m i = rank(R). Let Pi :=  Ui ^ 

and Qi := Gi. Then

A(i) ;=  p -^A P i.
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3. Partition as

21

A W  :=

and let mg :=  rank(A^iZj_

4. Do a SVD on A î  ̂ as A \̂  ̂ =  VgEgP^, and then build A î  ̂ as

L
:=  A gG g =

by choosing a  suitable m atrix Gg. Let

P-2 :=

then

0

Gg 0 Gg 0
and Q g :=

0 Rg-^_ 0 Jmi

A(") :=  ( f ifg ) - lA P ifg  

RM  :=  (RiRg)-"RQiQ2.

5. Partition  Â )̂

A M  :=

A g  AM AM

Tm, A g  A g  

0 A g  A g

and let m 3 :=  ran k (A g ).

6 . Do a SVD on A g  as A g  =  and then build A g  as

A g := R -fA M (;3 :

by choosing a suitable m atrix G3. Let

0

Ps :=
G3 0 G3 0

and Q3 :=
0 0 imz

then

AM :=  (PiPgP3)-U PiP2P3 

RM  :=  (PiPgP3)-:^RQiQ203.



Ch. 2. P R E LIM IN A R IES  22

7. Repeat this procedure until :=  rank(Ay^°~]_\).

8. Finally, we obtain

^(..-1 ) .=  ( f iP 2 . . .p ,J - lA ( P iP 2 . . .P y ,)  =  Ac

g ( . c - i )  . =  ( P i P 2 . . . P y J - i R ( Q i 0 2 . . . Q , J  =  R , .

By a dual argument, the pair (A, C) can be further transformed into the or

thogonal canonical form (Ao, Co) as in (2.21)-(2.22) below, provided the pair 

(A, C) is completely observable:

Ao =  M AM -'^  

A n

Agi

4
0

Agg
4
0

Ay,_l,l Ay,_l,g Ay,_1.3 

Ay,jl Ay,.g Ay, .3

0

0

I  I l'a 
0

Ay,,yo

(2 ,21)

C„ = N C M -

0
0 0 • • • 0 (2.22)

where the m atrix  M  is a product of an orthogonal matrix and diagonal matrices, 

and N  is a nonsingular matrix.

2 .4  A lgeb ra ic  E q u ation s

In this section, we give some properties of the Sylvester and Lyapunov equa

tions. The Sylvester equation and a  standard linear equation are to  be solved
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simultaneously in our methodology for deriving low-order controllers to be pre

sented later.

2.4.1 Sylvester Equation

The standard Sylvester equation is of the form

AJf -b %R =  C (2.23)

where A  G R G 77.™̂™ and C  G 77.”^™ are given matrices. Necessary and

sufficient conditions for the existence and uniqueness of a solution X  to  the 

standard  Sylvester equation are as follows, e.g., Kucera [41];

e A solution X  G 77.”^™ to the standard  equation exists if and only if the

matrices
' B  o '

and
' B 0

C -A 0 -A
are similar.

e The standard  equation has a unique solution X  if and only if 

77.e[Ai(A)] •+■ 77-e[Aj(R)] ^  0 Vz =  1, • • •, n and Vj =  1, • • •, m.

The equation (2.23) is also called the general Lyapunov equation. In particular, 

if R  =  A^, (2.23) is reduced to  the standard Lyapunov equation.

2.4.2 Lyapunov Equation

For the standard  Lyapunov equation

A^^X +  X A  +  Q =  0 (2.24)

w ith given real matrices A G 77.”^” and Q G 77.”^” , Q =  >  0, the following

facts are well known, e.g., B arnett [2]:
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1) If A  is stable, then the solution is X  =  dt.

2) If A  is stable, then X  is unique and positive definite. (X  >  0 if Q >  0).

Given the solution X  to (2.24), we may conclude the following stability prop

erties of the m atrix  A:

1) ne[Xi(A)] < 0 if X  >  0 and 0  > 0.

2) A is asymptotically stable if X  >  0 and Q > 0.

2 .5  C op rim e F actorization s

A num ber of well-known results on coprime factorizations found in Vidyasagar 

[70] will be used in this thesis, and are summarized below.

D efin itio n  2.9 Suppose M ,N  E TZHoo have the same number of columns. 

Then M  and N  are right coprime if and only if there exist U ,V  E R'Hoo such 

th a t

UW +  V M  =  I .  (2.25)

The relation (2.25) is called the (right) Bezout identity. It is possible to  repre

sent a possibly unstable transfer function in terms of two stable, coprime factors 

using a  right coprime factorization which is defined as follows.

D efin itio n  2 ,10  The pair (X, M ), where M ,N  E 'R-'Hoo, is a Right Coprime 

Factorization (RCF) of G{s) if and only if

(a) M  is square and det(M ) 0

(b) G =  X M - \  and

(c) N  and M  are right coprime.

Left coprimeness and a  Left Coprime Factorization (LCF) can be defined in an 

analogous way. Thus if (M , N )  is a LCF of G(s), then G =  M~~^N.
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L e m m a  2.11 Let (N ,M ) , ( M ,N )  be any RCF and LCF of G{s). Suppose 

U ,V  E R-'Hoo satisfy

U N +  V M  = I. 

Then there exist M , N  E RH^o such that

y  u M  -Û
- X  - M X  - V

= I.

(2.26)

(2.27)

The ordered pair of matrices in (2.27) is called a doubly coprime factorization  

of G(s). S tate space constructions of a doubly coprime factors will be described 

la ter in Chapter 4, Subsection 4.2.2.

For a  given G(s), there are infinitely many coprime pairs. A special pair is a 

normalized coprime factorization  which satisfies

M M* +  X X * =  I  (for an LCF) (2.28)

M*M +  X*X =  I  (for an RCF) (2.29)

and will be treated  later in  Chapter 6, Section 6.2.

2.6  N o rm s o f  S y stem s

In this section we review methods of measuring the size of an LTI system with 

input u and transfer function m atrix G{s). Of interest are the % -norm  and 

the Xoo-norm.

The H 2-norm  of the stable transfer function m atrix G(s) is defined as

/  1 poo \ 1/2
l|G(s)||2 :=  J^^tT{G *{jw )G {jw )) dw j (2.30)

and measures, for example, the RMS response of its output when the input is 

a white noise process, e.g., Boyd and B arratt [7, p .110]. The LQG theory is 

concerned with minimizing ||T ||2 for a suitably specified T{s).
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The T-Ceo-norm of the stable transfer function m atrix G(s) is defined as 

||G(3)|U  -  sup(A „„{G '(it»)G (i«,)))''“
weTz

=  sup (crraax{G{jw))) (2.31)
weiz

and is im portantly interpreted as the £g or RMS gain of the system G(s). This 

is because the RMS gain of a transfer function m atrix is defined as

i lG ( s ) |U . :=  sup 1 1 5 )^  (2,32)
lbl|rms#0 Ipllrms

which coincides w ith its £g gain

||Gu 1|2

where

||G (s )||rm ,=  sup (2.33)
Ihllz# 1I |̂|2

N 1 /2

lk(i)||2  :=  u ‘̂ (t)dt^

f  1 fT 
((*)l|rmj :=  R  v f{ t)d t\

R e m a rk  2.12 If the transfer function matrix is scalar, then

||Ks)||oo =  sup I g(;w) | . (2.34)
w£TZ

T hat is, the oo-norm is the highest value of the Bode magnitude plot. On 

the Nyquist diagram, the oo-norm is the maximum modulus of the frequency 

response G (jw ) over all real frequency w, i.e., the maximum distance from the 

origin to  the Nyquist diagram of G{s).

In control theory, the Hoo-norm of the closed-loop transfer function m atrix can 

be interpreted as the worst case energy gain (actually, ||G ||^  is the worst case 

energy gain, since represents energy). Hence, minimizing the Tfoo-norm of 

a  transfer function m atrix  is equivalent to minimizing the energy in the output 

signal due to  the energy in the input signal. A further property of the Tfoo-norm 

of a  closed-loop transfer function matrix wiU be used in Chapters 5, 6 and 7.
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T hat is, the 77oo-norm of a closed-loop transfer function m atrix is a particularly 

useful measure to  minimize because it enables robust stability guarantees to  be 

made.

2 .7  A lgeb ra ic  R icca ti E q uations and  

B o u n d s

The algebraic Riccati equation (ARE) plays a key role in optim al control theory. 

In this section, an im portant relationship between the solution to a certain ARE 

and an Tioo-xioTm bound is considered. It will be used in connection w ith an 

Tfoo-norm constraint on some auxiliary dynamics #(s) - a free param eter m atrix 

- to be discussed in Chapters 5, 6 and 7.

Consider the following ARE:

E ^ X  + X E -  X W X  + Q = 0 (2.35)

where E ,W ,Q  E 77.”^” , W  =  and Q =  Q^. For (2.35), we define a corre

sponding Hamiltonian m atrix as

M  =
E  - W  

- Q  - E ^
(2.36)

and define a unique stabilizing solution to (2.35) by X  =  X ^  and 77e[Aj(R — 

W X)] <  0, [16]. We may denote the stabilizing solution via its Hamiltonian 

m atrix  as

X  := Rlc [A4]. (2.37)

The existence of ARE solutions is closely related to satisfying Tioo-norm bounds 

as is now described. Let a transfer function matrix G(s) of appropriate dimen-
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sions be

G{s) =

For the following ARE:

(A -  B R f^ D '^C fX .y  +  Xn,(A -  B R ;^D ^C )

=  0

where

28

(2.38)

Ry = D ^ D - j M

S., =

the Lemmas 2.13 to 2.17 below show the relationships between the stabilizing 

solution of the ARE (2.38), its positive definiteness and an Hoo-norm bound on 

G(s). A proof of Lemma 2.13 can be found in [16] and proofs of Lemmas 2.14 

to 2.17 are given in Appendix A.

L e m m a  2 .13  There exists a unique stabilizing solution of the A R E  (2.38) i f  

and only i f  the Hamiltonian matrix

M -. :=
A -  B R f^D '^C  - j B R ^^B ^  

- ( A  -

has no jw -axis eigenvalues.

(2.39)

L e m m a  2 .14  The A R E  (2.38) has a unique stabilizing solution

:= R ic [A4.y]

i f  A  is stable and ||G(s)||oo <  7 .

(2.40)

L e m m a  2.15  ||G(s)||oo <  7  i f  the A R E  (2.38) has a stabilizing solution X ^

and A  is stable.

L e m m a  2.16  I f  the A R E  (2.38) has a solution X-y and A  is stable and 

o'maxiD) < 7 , then the solution X y  is positive definite.
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L e m m a  2.17  I f  the A R E  (2.38) has a positive definite solution X y, then A  

is stable and l|G(s)||oo <  7-

2 .8  L inear F raction al T ransform ations

In this section, we review the Linear Fractional Transformation (LFT) which 

provides a general framework for Hoo (sub)optimal design in Chapter 5. The 

alternative Chain Scattering Description (CSD) used in Chapter 6 is also briefly 

described.

Consider the augm ented (or generalized) plant P{s):

X =  Ax +  Bgw +  Bi'ui 

y =  Ggx +  D 22U +  D 21W 

z  =  Cix +  Digw 4- D iiw

(2.41)

(2.42)

(2.43)

where x{t) G 77” is the state, u{t) G 77™ is the vector of control signals, w{t) G 

R f  is the vector of all signals entering the system, y(t) G 77' is the vector of 

m easured outputs, and z{t) G 77-' are the controlled outputs. The vector w may 

include, for example, reference inputs, disturbances and sensor noise, while z is a 

vector of all the signals required to characterize the behaviour of the closed-loop 

system, which includes errors, process outputs and control inputs.

This system P{s) is shown in Figure 2.1 w ith a linear controller K {s). The 

combination is referred to as the S tandard Feedback Control Configuration.

Suppose th a t P (s)  is partitioned as

' A Ri B 2

P(3) = Gi D ll D\2

Gg •D21 D 22

(2.44)
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so th a t

with

Figure 2.1: S tandard Feedback Control Configuration.

P n ( s )  P i2(s) 

-PjlC-s) ^ 22(5)

z

. y .

w

u
f ll(6 )  Fl2(6)

P2l{s) P22(s)

Pij{s) = C i{sl — A) +  Dij i j  =  1,2

(2.45)

(2.46)

(2.47)

where A  : n x  n, B j : n x  rrij, Q  : pi x  n, Dij : pi x  rrij { i , j  =  1,2) are real 

matrices.

Then we obtain, using u = K {s)y,

and the closed-loop transfer function m atrix mapping input w to output z, i.e.,

:F ((f, JT) :=  f i i  +  jr(Z  -  f22Jir)-"f2i (2.48)

is called a lower Linear Fractional Transformation on K (s)  w ith the coeffi

cient m atrix P{s). In Tioo design the generalized plant P{s) would include the
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nominal plant, weighting functions, and interconnections required to malce the 

closed-loops, for example, from to to  z in Figure 2.1. The LFT represents a 

means of standardizing a wide variety of feedback arrangements, and is fre

quently used in Hoo control theory.

Let the representation of the controller be

K (s)  =
'  Ak Bk '

Ck Dk

then a state-space realization of the LFT, P i(P ,K ), can be expressed, e.g., 

Postlethwaite et al. [57], by

(2.49)
A  +  B ^D kBC^ B-iDCk 

Bk'DC2 Ak +  BkD22'BGk

B i  -f B2Dk'DD2i 

Bk'DD2i

C l -f- Di2Dk'DC2 Di2'DCk D ll  +  D i2D kD D 2i

where T> := { I  — and t> := ( I  — DkD22)~^- This realization is useful

for the com putation of the LFT. It should be noted tha t the realization (2.49) 

may not be a minimal realization.

If P21 exists (which implies pa =  m i), an alternative expression for IFi{P.,K) is 

given by a chain scattering description, namely:

f } ( f , % ) =  C5:D(G, TiT) :=  (GnJT +  Gi2)(G2iFT +  G22)-"

where G(s) is a (pi -b m i) x (m 2 -f P2) m atrix such that

(?ii(-s) Gi2(a) 

G2i {s ) C?22(-s)

(2.50)

(2.51)

and can be expressed as

= :r(P ). (2.52)
[ -P S 'P 2 2  Pj-j* J

Note th a t the symbol F is used to  denote the transform ation from a linear 

fractional transform ation m atrix P  to  a chain scattering description m atrix G.
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Conversely, when G22 exists, P  can be expressed as

Gli Gi 2 

0 I

G21 G22 

I  0

G 1 2 G 2 2  G i x  —  G 1 2 G 2 2 G 2 1  

G 22 —

(2.53)

(2.54)



C hapter 3 

M odel R eduction  and Controller 

Size R eduction

3.1 In tro d u ctio n

In modelling a dynamic system, the designer often tries to generate a reduced- 

order model which still gives a good representation of the true system. A 

compromise is usually to  be made between the simplicity of the model and 

the accuracy of the results from control systems analysis. The reduced model is 

treated  as if it represented the true system. It is hoped tha t the resulting control 

works when applied to  the true system. The designer is generally satisfied if 

he/she can obtain a reasonably simplified model tha t is adequate for the problem 

under consideration.

Unlike model reduction procedures, a controller size reduction procedure should 

take into account the presence of the plant and thus the closed-loop considera

tions, although some model reduction techniques can be used for controller size 

reduction.

33
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In this chapter, an overview of the methods for model reduction and controller 

size reduction is given. The chapter is organized as follows. Balanced realiza

tions are first introduced in Section 3.2. These represent a convenient structure 

for model reduction and/or controller size reduction. In Section 3.3, some model 

reduction techniques such as balanced truncation, Hankel norm  model reduc

tion, and coprime factor model reduction are reviewed. In Section 3.4, some 

existing approaches to controller size reduction are briefly described w ith some 

examples. Concluding remarks are given in Section 3.5.

3.2  B a lan ced  R ea liza tion s

A balanced realization of a transfer function matrix serve as a starting point 

either in model reduction or in conventional controller size reduction techniques. 

Hence a brief review is given here.

Let G(s) =  (A, P , C, D) be an asymptotically stable and minimal, I x m  system

having n  states. The associated controllability gramian is defined as

Pc :=  a  (3.1)

and the observability gramian as

:= 2^

By integrating the corresponding m atrix differential equations;

=  Ae^^PP^e^"'* -b e^*PP^e^^*A^
at

at
from 0 to  oo, respectively, it can be shown tha t Lc and L q satisfy the following 

Lyapunov equations

APc +  PcA^ +  P P ^  =  0 (3.3)
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A^Lo + LoA + C ^C  = 0.

36

(3.4)

The controllability gram ian is symmetric, positive definite and may be solved 

for S  such th a t

Pc = (3.5)

using Cholesky factorization. Similarly, the observability gramian P^ may be 

factored as

Lo = R  R , Lo > 0. (3.6)

Hankel singular values of the system G{s) are defined to be the positive square 

roots of the eigenvalues of PcPq (or equivalently PgPc), i.e..

(3.7)

Define U and V  to be the singular vectors of the singular value decomposition 

of the product SB F . Then

where

S R ^  = U 'SV^

E =  diag (<f,-(SH^)).

(3.8)

(3.9)

Suppose the state is transformed by a nonsingular m atrix Tb to x  = TbX to yield 

the realization

'  A Ê  ' TbB

C D D
G(6)

Then the gramians Pc and P<> are transformed to

'-bJ-'cJ-b

(3.10)

(3.11)

(3.12)
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and thus are not invariant under coordinate transformations. However, the 

Hankel singular values are invariant since

A ,.(P A ) =  A^(3^PcPcr(T') =  A,(PcPo).

If a nonsingular m atrix Tj is chosen as

then the  gramians are equal and diagonal, i.e.,

Pc =  Po =  S  =  diag (erf, o-f, • • •, erf) (3.14)

and by convention erf >  erf >  • • • >  erf >  0, where erf (z =  1, • • •, n) are the 

Hankel singular values of the system G(s) since

{erf} =  {[A,(PcPc)]'/'}

=  {[A,(5^PP^P)]^/^}

=  {[A,(PP^5'P^)]"/"}

=  {(7,(^P^)}

where {erf P P^)}  is the set of singular values of SR ^.

The state-space realization (3.10) is called a balanced realization, proposed by 

Moore [50], which implies th a t the observability and controllability gramians are 

bo th  equal to  the diagonal m atrix of the Hankel singular values. The states of 

such a realization are balanced between controllability and observability. Thus 

they represent a convenient structure for model reduction since those states 

having weak controllability and observability can be neglected without causing 

any imbalance in controUabihty and observability properties of the remaining 

states. Hence, the Hankel singular values give a good indication of the ‘minimal’ 

dimension of a system.
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A model reduction problem is an approximation of the original system by a low- 

order system, bu t does not necessarily mean a ‘minimal’ realization (defined in 

Section 2.2). Model reduction is particularly concerned with the plant rather 

than  controller, although its techniques can also be applied to the controller 

size reduction. The problem has received much attention and is reasonably 

well solved. In this section, we briefly review some im portant model reduction 

techniques.

3.3.1 Using M odal Residualization

The design of control schemes for linear SISO systems often hinges on knowledge 

of the transfer function of such systems. Suppose, in frequency domain terms, 

a stable transfer function m atrix is expanded in partial fraction form as

=  +  + (3.15)
S - P i  S - P 2  S - P n

with the (complex) poles pi ordered so th a t | | ^ ^ | |  are in descending order. Here 

the norm, H ^^H , can be either the 7^2-norm or the Tfoo-norm and indicates the 

am ount of contribution in a  general transient response. This procedure is called 

m odal residuahzation. Some term (s) having smaller contribution to  the effects 

on the  system response may be neglected, e.g., Franklin et al. [25, p .63]. So, 

model reduction using modal residualization is performed by truncating those 

of negligible norm, to give:

Gr{s) =  +  —^  +  +  —^  (3.16)
a -  Pi 3 -  P2 s - p k

| |G (6 ) -G X 4 || <  1 1 - ^ 1 1 +  . . .  +  1 1 ^ 1 1  (3.17)
a  — P k + l S — Pn

where Gt{s) is a truncated  transfer function, k < n .  This m ethod is a somewhat

crude approach and thus might not be optimal, even though it can often be 

successful. A direct transmission m atrix can be introduced in the state-space
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system of the truncated  model to  ensure tha t the reduced model has the same 

steady state, response as the original model. The m ethod can be extended to 

MIMO systems in th a t there will be a transfer function for each input and 

ou tpu t pairing.

3.3.2 B alanced T runcated  M odel R eduction

Balanced truncation as initiated by Moore [50] is a powerful model reduction 

technique for LTI systems. It is based on the balanced realization described in 

the previous section.

Inspecting the Hankel singular values of a  system will often reveal th a t some 

of them  are quite small compared to others. The states corresponding to those 

small Hankel singular values are both  difficult to control and observe. In other 

words, more energy is required to  excite them  and their effect on the output 

is also small. These less significant states may therefore be eliminated. This 

results in a lower-order model for the system.

If the realization (A, 5 ,(7 )  of G(s) is balanced and the matrices Â, 5 ,  C  in 

(3.10) and the balanced gramian S  in (3.14) are partitioned conformally as

A  =

E =

i n i ]

i s i i :

S i 0

0 S 2

> of i n

B  = C =
B 2

Cl C2 (3.18)

(3.19)

^  then a balanced truncated  model (7r(s) of reduced order k is

obtained as

Gr(s) = C i(s l  — Â ii) ^Ri (3.20)

by neglecting states associated w ith small Hankel singular values, S 2, in (3.19).
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Pernebo and Silverman [54] showed th a t the reduced order model Gr(s) = 

( i l l ,  J?i, Cl) is balanced and th a t if cr^ >  <Jj^i, then it is asymptotically stable 

and minimal.

This balanced truncated model reduction technique has the following frequency 

domain £co-n.orm error bound, Enns [21] and Glover [26]:

| |G ( s ) - C ? ,W ||„ < 2  £  (3.21)

where G r(s)  is a truncated  balanced realization and the a fi’s (i = k + 1, - • - ,n )  

are all considered to be small Hankel singular values of G (s)  th a t can be dis

carded.

A lim itation of this balanced truncated  model reduction technique is th a t it 

requires the original system to be minimal and asymptotically stable. W hen 

a  balanced realization is computed, practical difficulties may arise for system 

models having uncontrollable and unobservable states because the balancing 

transform ations are generally singular for such systems. These difficulties are 

overcome by Tombs and Postlethwaite [68] and by Safonov and Chiang [62]. 

For unstable plants, using the  fact th a t the coprime factors of any minimal 

system are always asymptotically stable, Meyer [49] developed a coprime factor 

model reduction m ethod by extending (unweighted) balanced truncated model 

reduction to  the case where the system is not stable. This will be described 

later.

3.3.3 Hankel Norm M odel Réduction

The Hankel norm  of (?(s), denoted by ||G(s)||jy, is the largest Hankel singular 

value of G{s) and is defined as

l|G(4IW := =  <y? (3.22)
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where Lc and Lo are as in (3.14). The Hankel norm is interpreted as the largest 

^ 2-gain from past inputs u(t) to  future outputs y(t), in the following sense:

||C?(5)||h =  s u p - K ^ ,  y(t) =  0, t < 0  u{t) =  0, t > 0.

It is noted th a t only the dynamic part (A ,5 ,C )  of G{s) influences the Hankel

The optim al Hankel norm model reduction problem is to  choose a reduced order 

model Gr{s) of McMillan degree k < n  such tha t the Hankel norm of the error 

system G{s) — (?r(a), i.e., ||G (s) — Gr(s)||iy is minimized. This Hankel norm 

model reduction gives an To^-norm error bound, Glover [26], as

| |GM-G.MIU <  Ê  (3.23)
3=6+1

where Gr{s) is the k-ih  order Hankel approximate w ith a particular choice of 

feed through term  D.

3.3.4 Coprime Factor M odel Reduction

Model reduction techniques such as balanced truncated model reduction and 

Hankel norm  model reduction require th a t the model to  be reduced is stable. 

The normalized coprime factor model reduction devised by Meyer [49] extends 

the  balanced truncated model reduction to  unstable plants, using the fact th a t 

coprime factors of any minimal system are always asymptotically stable.

Model reduction in a (left) coprime factor framework can be described as follows, 

McFarlane et al. [48]:

1. W rite G(s), the transfer function to  be reduced (with degree n), as G =  

M ~ ^N  where M ,N  G TZHoo are left coprime factors of G(s).
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2. Using an appropriate model reduction technique, either balanced trun 

cated model reduction or Hankel norm model reduction, approximate 

[N, M] of degree n  by [Nr, of degree k, k < n .

3. Form the reduced order transfer function Gr(s) (with degree k) by Gr =

3.3.6 M odel R eduction  and  R obustness

In doing model reduction for control purposes, singular value Bode plots of 

the reduced plant model and the modelling error are good indicators to  check 

whether a given reduced model is sufficiently accurate to  be used in the design 

of a control system with a prescribed bandwidth w^. Using the Coo error bound, 

it is possible to  associate a robust frequency Wr with a reduced model such tha t 

the model may be reliably used for controller design, Safonov et al. [63], The 

robust frequency Wr is an upper bound on the bandwidth Wi of any multivariable 

control system to  ensure robust stability. For example, in  order to  prevent a 

sufficient condition for stability from being violated at some frequency within 

the bandw idth, should be less than  Wr. For details, refer to [63].

3 .4  A p p roach es to  C ontroller S ize R ed u ctio n

Some model reduction techniques have been used for controller size reduction. 

For example, Yousuff and Skelton [76] stated tha t, if the controller is stable, 

the balanced truncated  model reduction technique can be used directly on it so 

th a t its uncontrollable or unobservable modes can be eliminated.

However, unlike model reduction procedures where only a dynamic system 

model is simplified, any controller size reduction procedure should take into 

account the presence of the plant and thus closed-loop considerations. T hat
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is, a controller size reduction procedure should preserve the closed-loop objec

tives such as closed-loop stability, closed-loop performance (without any serious 

deterioration), and robustness properties, etc. So, after controller size reduc

tion, it is necessary to reanalyze the design to check th a t any degradation in 

performance is not too significant. In this sense, controller size reduction is 

fundamentally different from model reduction.

Various controller size reduction methods have been studied and classified in 

Anderson and Liu [1] into the following three categories:

(1) plant model reduction followed by controller design

(2) controller design followed by controller size reduction

(3) direct low-order controller design.

These different approaches to controller size reduction are illustrated in Fig

ure 3.1. In this section, we summarize the procedure of each approach, its 

applications and some comments available on it.

3.4.1 P lan t M odel R eduction  followed by C ontro ller De- 

sign

In this approach, a model reduction technique is first applied to  a high-order 

plant based on open-loop system considerations. Then a controller is designed 

to  meet the control specifications, based on the reduced-order plant. A general 

comment on this approach is, as quoted from [1], that:

reducing the order of the plant by approximation at an early step in the 

process may lead to the undesirable propagation of the effects of that 

approximation and make the ultimate effect unclear.

For example, the controller designed on the basis of the reduced order model 

applies controls to  the true system and hence can inadvertently excite parts 

of the system th a t have been ignored (this is called control spillover). This
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category includes Choi et al. [14], McFarlane et al. [48], Postlethwaite and 

Feng [56] and Steinbuch [66].

3.4.2 C ontro ller D esign followed by C ontro ller Size Re- 

dnction

In this approach, a standard  controller of fuU-order is first designed to meet sta

bility and /o r performance requirements and then some model reduction m ethod 

is applied to  the full-order controller. Care should be taken during the controller 

size reduction step to  ensure th a t the stability and/or performance achieved in 

the first step does not seriously degrade. Yousuff and Skelton [76] using LQG 

control, and McFarlane et al. [48], Bongers and Bosgra [5], M ustafa and Glover 

[51] using 'Hoo control are examples which belong to this category.

A similar approach was introduced by Jonckheere and Silverman [35] bu t using 

a closed-loop methodology. T hat is, the open-loop system (which may be unsta

ble) is first compensated w ith a standard LQG controller, where two algebraic 

Riccati equations are needed - one for filtering and one for control. Balancing 

the solutions to these two Riccati equations, so tha t they are equal and diagonal, 

exposes the difficulty of filtering and controlling each state. By truncating the 

states corresponding to  small LQG-characteristic values (i.e., the diagonal ele

ments of the solution to  the LQG-balanced Riccati equations), a  reduced-order 

plant or reduced-order LQG controller is obtained.

It is, however, pointed out in [76] th a t this scheme does not guarantee to elim

inate any uncontrollable or unobservable modes in the controller which can 

arise in LQG design, since the LQG characteristic values are not measures of 

the observability/controllability of the controller states. The notion of LQG- 

characteristic values is extended in [51] to  Tico-characteristic values, which are 

then used as a basis for Tico-balanced truncation.
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3.4.3 A Direct Approach

In  this approach, the order of the controller is constrained (or fixed) prior to the 

controller design process and then the parameters defining a low-order controller 

are obtained, for example, either (i) by optimization of a performance index (or 

cost functional), Bernstein and Haddad [3] for Tiao control, or (ii) by using 

the  bounded real lemma, Hsu et al. [32], or (iii) by using a Lyapunov based 

approach, Iwasaki and Skelton [34].

Amongst others, we note th a t [32] obtains an observer-based controller of order 

n — p2 which stabilizes the plant and also satisfies l|jF;(P, A’)||oo <  7, where n  

and p2 are the dimensions of the state and the measured output, respectively. 

This resultant order is the same as we obtain later in Chapter 5, although the 

methodologies are different.

3.5  C on clu d in g  R em ark s

In this chapter, we briefly reviewed some im portant model reduction techniques 

and current controller size reduction approaches. In the following chapters, 

we will present a new methodology for controller size reduction in advanced 

robust control system design. The methodology developed in this thesis may 

be considered to  be a direct approach, since it generates a low-order controller 

of a certain order by solving two m atrix equations which are formed by plant 

da ta  and the free param eter matrix.
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Nom inal

Plant

Low-Order

Plant

Low-Order
Optimal

Controller

Full-Order

Controller

(1) Plant Model Reduction followed by Controller Design

(2) Controller Design followed by Controller Size Reduction

(3) Direct Approach

Figure 3.1; Diagram for Controller Size Reduction.
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Low-Order Stabilizing  

C ontroller D esign

4.1  In tro d u ctio n

One of the m ost fundam ental requirements in control system design is to  make 

the closed-loop system internally stable. This is called a stabilization problem. 

The param etrization of all stabilizing feedback controllers for a given plant, 

initially developed by Youla et al. [75] and generalized by Desoer et al. [15], is 

a  celebrated solution to the stabilization problem and provides a fundamental 

basis to  the 77oo optimal control problem. The order J\f of a, stabilizing controller 

by such a param etrization, however, can be unnecessarily “high” , since it can 

be shown tha t

Af < deg(G) -t- deg(Q)

where Q{s) is a dynamic free param eter in the param etrization to give the 

designer freedom in designing a required controller, and G{s) is the plant to be 

controlled.

46
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In this chapter, we utilize the param etrization of all stabilizing controllers for 

the low-order stabilizing controller design problem, and present a constructive 

way to find a set of lo w -o rd e r s ta b iliz in g  co n tro lle rs  of a  certain order. 

The key idea is to achieve a low-order realization (4.22) of a “full-order” con

troller Kstab(^) by eliminating unobservable states. We show tha t, if a low-order 

realization is possible, the order of the controller is reduced from a full-order 

of n  -f n , to  Mg, where n is the order of G{s) and n , is the order of Q{s). 

We further develop an algorithm to determine how low n , might be using a 

sequence of m atrix transformations as summarized in Theorem 4.8, Corollary 

4.9, and Theorem 4.12. The algorithm checks the conditions in Theorem 4.12 

and Corollary 4.9 successively until both are met. Then a low-order stabilizing 

controller is computed by the low-order realization (4.22). Our result

is th a t a low-order stabilizing controller of order n — Î always exists, where I is 

the number of plant outputs. Moreover, we show tha t the order may be much 

less than  n  — I, depending upon the existence of a special form of a m atrix F  

in (4.55). In  summary, the order Wiow of low-order stabilizing controllers as 

developed in this chapter is shown to  satisfy

Aflow S: deg(G) — 1.

The chapter is structured as follows. In Section 4.2, the notion of internal sta

bility is reviewed, and then the param etrization of all stabilizing controllers is 

outlined together with the ability to  assign poles. Section 4.3 is a central part of 

the chapter, where we show tha t a low-order realization (4.22) of all stabilizing 

controllers can be derived if two simultaneous matrix equations, (4.20)-(4.21), 

have a solution. We then solve the first equation (4.20) using an orthogonal 

canonical form, and the second one (4.21) by a standard linear equation solu

tion on the assumption of the existence of a m atrix F  having a special form as 

in (4.55). In Section 4.4, we examine how to find such a special form of m a

trix  F  since its existence is the only constraint to  deriving low-order stabilizing 

controllers. Then, in Section 4.5, a CAD algorithm for low-order stabihzing 

controller design is presented. In Section 4.6, an explicit formula for a set of
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low-order stabilizing controllers, as a special case, is derived using a special 

canonical form. We show in Section 4.7 tha t the low-order stabilizing con

trollers as characterized in the chapter provides a mechanism for closed-loop 

pole assignability via output feedback using a separation property. In Sec

tion 4.8, bounds on the order of low-order stabilizing controllers are discussed, 

and compared with some other existing results on the low-order stabilization 

problem. In Section 4.9, we confirm Kimura’s results, [38], on pole assignment 

by gain ou tpu t feedback using our approach and discuss an improvement on 

K im ura’s. In Section 4.10, some illustrative examples are presented to validate 

the algorithm  developed in the chapter and its relevant features. Concluding 

rem arks are given in Section 4.11.

4 .2  O b server-B ased  S tab iliz in g  C ontrollers

The param etrization of the set of all stabihzing controllers in terms of a  stable 

param eter m atrix  was first introduced by Youla et al  [75], based on fractional 

factorizations over the set of polynomial matrices. Youla’s param etrization, 

however, may cause the stabilizing controller to be improper. Desoer et a l  [15] 

removed this drawback by generalizing Youla’s param etrization based on frac

tional factorizations over the set of proper stable rational matrices. As a result, 

they showed th a t the set of all proper stabilizing controllers can be character

ized in term s of a proper stable param eter matrix. To use the proper stabihzing 

controller param etrization, a convenient state-space method for computing the 

fractional factorizations over the set of proper stable rational matrices was pro

posed by N ett et al  [52]. Also, Doyle [16] showed tha t the proper stabihzing 

controller param etrization can be realized as an observer-based controller w ith 

an added proper stable param eter matrix.

We begin this section by reviewing the notion of internal stability, and then 

outline the proper stabilizing controller parametrization. Finally, closed-loop
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4.2.1 Internal Stability

Consider a positive-feedback configiiration, as shown in Figure 4.1, where

0(3) :=
’  A B  '

C D
(4.1)

is assumed to  be stabilizable and detectable.

Figure 4.1: Diagram for Internal Stability.

From the feedback system of Figure 4.1, we have the following input-output 

relationship:

where

S : = { I -  GK)-

(4.2)

(4.3)

is a  sensitivity function m atrix. The standard definition of internal stability is 

given below. This definition requires all the closed-loop transfer functions to  be 

bo th  stable and proper.
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D efin itio n  4.1 The feedback system of Figure 4.1 is internally stable if and 

only if

(a) S', ATS", S-G, id -  JiTS'G €
and

(b) det(T -  GFT)(oo) 0.

It is im portant to realize from this definition, as clearly stated in [17, p .36], tha t 

it is not enough to  look only at closed-loop transfer functions, such as from r 

to  y. This transfer function could in fact be stable, so tha t y is bounded when 

r  is bounded (BIBO stable), and yet an internal signal could be unbounded, 

probably causing internal damage to the physical system.

In the following we will use ‘closed-loop stable’ to mean ‘internally stable’ unless 

otherwise stated.

4.2.2 Stabilizing C ontroller P aram etriza tion

Consider the feedback configuration of Figure 4.1 again, where G{s) E 'R.C}^'^ 

is a given plant of n  states to  be controlled, and K{s)  is a controller to  be 

designed for internal stabilization. W ithout loss of generality, we assume G(s) 

is minimal and, for simphcity, strictly proper (i.e., D  =  0).

Let G{s) have a doubly coprime factorization

G(3) =  W (3)M (s)-"

=  M(3)-:^W(3)

and also let 17(s), y (a ), Û{s) and V’(s) satisfy the Bezout identity, i.e..

y  - î f M  U I  0

-W  M N  V 0 I

(4.4)

(4.6)

(4.6)

where the transfer matrices N ,M ,N ,M .^ U ,V ,Û ,V  all belong to TZHo
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Then it is well known, for example, in [46, p.280] that the set of all stabihzing 

controllers for the given plant G{s) is given by

=  ( y  +  QjV)-XÉ7 +  QM )

for any Q(s) which belongs to  TlHao-

(4.7)

(4.8)

The param etrization of Kstab(s) in (4.7) and (4.8) is very powerful, because

# it provides the full set of the stabilizing controllers by means of fractional 

representations, once we know one stabihzing controller for the plant.

® the full set of the stabihzing controllers is simply characterized by a free 

param eter m atrix Q{s) E RHoo-

# a closed-loop transfer function m atrix related to performance can be writ

ten as a simple affine function of Q(s), which is then useful for the solution 

of an 77oo optim al control problem.

The stabihzing controher Kgtabi^) Figure 4.1 can now be replaced by the 

block diagram of Figure 4.2, which is an observer-based stabihzing controller 

w ith added dynamics Q{s).

The transfer matrices N ,  M ,  N ,  M ,  U, V , Û, V  can each be expressed in state- 

space form as follows, after choosing real matrices F  and H  such th a t A  -f B F  

and A -h  H C  are stable, [52]:

M (a) [7(s)

N (s)  V{3)

V{s) &(3) 

JV(s) M (s)

1 ' A -{-B  F B - H
= F I 0

C 0 I

1 '  A -k E C B H  '
= - F I 0

- C 0 I

(4.9)

(4 .10)
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Figure 4.2: Observer-Based Stabilizing Controller with Q{s).

Now suppose th a t Q{s) G in (4.7) and (4.8) has a state-space realization

Q(g) :=
'  Aq B,  ■

Cq Dq _
(4.11)

where the dimensions of matrices Aq, Eg, Cq and Dq are n , x riq, rig x  I, m  x  Ug 

and m  X Î, respectively. Then, from (4.7), or alternatively from (4.8), we have 

a state-space realization of all stabilizing controllers Kstab{s) given by

(4.12)
' A  + B F - { - H C - B D q C - H  +  BDg '

R-stabi,^̂  — A A

F  -  DqC B .  J

Bk '

Ck Dk
(4.13)

It is noted th a t Kstab{s) in (4.12) has a “formal” order (or “full-order”);

deg{Kstab) = n + ng
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which is a  state dimension equal to the sum of the states of G{s) and Q{s) 

together. By the term  “formal” order we mean the order before any pole- 

zero cancellations which might occur have been removed. It is also noted tha t 

Kstab(s) is strictly proper if and only if Q(s) is strictly proper.

By taking Q{s) — 0 either in (4.7) or in (4.8), a stabilizing controller Kstab{s) 

of order n  is obtained as

Rstab(^^  ̂ —
A - ^ B F  a r c - H

F 0

(4.14)

4.2.3 Pole A ssignability  of Stabilizing C ontrollers

In this section, we examine the poles of the closed-loop system formed as in 

Figure 4.1 by the plant G{s) in (4.1) and the controller Kstab^s) in (4.12). We 

will consider a state-space realization of ( I  — GKstab)~^-

The A-matrix, A ^,  of (J  — GKgtab)  ̂ can be expressed in state-space form as

A.i

A + B F - \ - H C - B D , C  BC, - H C  + B D ,C

B F  -  BDaC

A, B Q

BCq A 4- BDqC

(4.16)

By applying a state similarity transform ation to  (4.15) using a nonsingular 

m atrix T  given by

we obtain

I  0 I  

0 1 0  

0 0 1

T~^A ,iT
A + HC  

- B , C

0

An

B F - B D n C  BC, A + B F

(4.16)

(4.17)
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which is similar to  Ad- So, it is obvious tha t, when the controller Kstab(s) in

(4.12) is applied to  the plant G(s), the resulting closed-loop poles are the union 

of

® the observer poles (the eigenvalues of A -|- B C ),

# the state feedback controller poles (the eigenvalues of A +  B F ) ,  and

# the poles of the augmented dynamics (the eigenvalues of A,).

This fact shows th a t the familiar separation property of observer-based con

trollers still remains when a proper stable parameter matrix Q(s) is added to  as 

shown in Figure 4.2. In reality, as stated in Vidyasagar [71], not all of the poles 

will necessarily appear since the realizations constructed at the various stages 

need not be minimal. But it is certain th a t no new poles will appear other than  

the  ones mentioned above.

4 .3  L ow -O rder S tab iliz in g  C ontrollers

The realization of the controller in (4.12) may not be minimal. Chang and 

Yousuff [9] showed tha t, if the realization (4.12) is not minimal, the uncontrol

lable or unobservable modes of the controller are some subset of the eigenvalues 

of A  + B F  and A  + H C .  However, they did not address the problem of deriving 

such a subset. The prim ary purpose of this chapter is to find a subset for which a 

certain number of modes are unobservable or uncontrollable. As a consequence, 

we can find a set for which the order of the controllers does not exceed n ,, i.e., 

the num ber of states of the free param eter matrix Q{s). Furthermore, we will 

show th a t Ug can be less than  or equal to  n — I.

In Subsection 4.3.1, a low-order realization of all stabilizing controllers is char

acterized via two simultaneous m atrix equations, (4.20)-(4.21). The size of the
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solution m atrix X  G to these two equations, if X  exists, will determine

the order of the low-order stabilizing controllers. We will consider two cases:

(1) — I in Subsection 4.3.2 and (2) Ug < n — I in Subsection 4.3.3.

4.3.1 Derivation of a Low-Order Realization

One way to derive a set of low-order stabilizing controllers is to  apply a change 

of state coordinates on (4.12). We begin by applying a state similarity trans

form ation Ta; to Kstab(s) in (4.12):

' A  +  B F  +  B C  ~  BDqC - H  -t- BDg '

Rstabi^) —

F - D g C

Tm

and

" In 0 

% fn,

results in an alternative realization given by

Kstabi^) =
31,Bk '

Dk

\ f ^ .i i Xal2 Kbi

Ka21 %62

,  Ifcl K c2 Kd

(4.18)

(4.19)

where

BT.li

Ka21

Ka22

Kbi

Kal

Kd

=  A  +  B F  +  H C  +  B D g C - B C g X  

=  BCg

=  X B C g-kA ,

=  H  +  BDg  

— X H + X B D g + B g  

=  F  +  D g C - C g X

— Bg 

=  Dq.
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P utting  Ka2i and K d  equal to  zero in (4.19), we have the following tw o m a tr ix  

eq u a tio n s :

A ,% - Z ( A 4 - B C )  =  (4.20)

C g X - D g C  =  F. (4.21)

So, if there exists a solution m atrix X  G to (4.20)-(4.21), Kstah{s) in

(4.12) can be reduced to the following lower-order realization:

'  Ag4-X BCg Bg 4- X B  4- X B D g

D,
(4.22)

We refer to the controllers defined by (4.22) as lo w -o rd e r s ta b iliz in g  co n 

tro lle rs .  The order of low-order stabilizing controllers is in fact:

deg(B:;*.6) =  n ,

which is the same as th a t of Q(s), and thus it is obvious tha t X%̂ ĝ (a) in (4.22) 

is of lower-order ihzxi Kstab(s) in (4.12).

We obtained the low-order realization BTĴ ^̂ (s) of (4.22) by deleting the unob

servable states contained in Kstab{s), and thus the realization of BT^g^(a) may 

be completely observable as shown in the following Lemma.

L e m m a  4.2 Suppose there exists a solution matrix X  to (4-20)-(4-21). Then 

the realization of (4-^^) is completely observable if  and only if the

free parameter matrix Q(s) is chosen to be completely observable.

P ro o f: (Sufficiency) Since the pair (A,, Cq) is completely observable, there

exists an Hg such th a t eigenvalues of Ag 4- HgCg can be arbitrarily assigned by 

suitable choice of Hg. Now define Hg :=  Hg — X B .  Then, since

(Ag -f XBCg)  4" HqCq =  Ag 4- HqCq (4.23)

the eigenvalues of (A, 4-XBCg)4-B'gCg can also be arbitrarily assigned by suit

able choice of Hg. Hence, the pair (A, 4- XBCg, Cg) is completely observable.
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i.e., is completely observable.

(Necessity) Since the pair (vl, +  XBC g,  Cg) is completely observable, there 

exists an Hg such th a t eigenvalues of (Ag +  XBCg)  + HgCg can be arbitrarily 

assigned. Hence, by (4.23), the eigenvalues of Ag +  HgCg can also be arb itrar

ily assigned by suitable choice of Hg. This implies th a t the pair (Ag, Cg) is 

completely observable, i.e., Q(s)  is completely observable. ■

Realization (4.22) is in a convenient form for computing a set of low-order 

stabilizing controllers, when X  exists and is determined by equations (4.20)- 

(4.21). Figure 4.3 shows the closed-loop system formed by the plant G(s) in 

(4.1) and the low-order output feedback stabilizing controller Kl^^^(s) in (4.22).

r  =  0

Figure 4.3: O utput Feedback System with a Low-Order Dynamic Controller.

Equation (4.20), which is a  Sylvester equation (or a general Lyapunov equation), 

and linear equation (4.21) are of crucial importance in determining a low-order 

controller. Both equations are solved in the following subsections.

R e m a rk  4 .3  Alternatively we can apply a state similarity transform ation Ty 

to  Kstab(s) in (4.12) using a nonsingular matrix

T„ := In Y  

0 In.
(4 .24)
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We then, can obtain a lower-order realization of order n.  as

Da
(4.25)

if there exists a  m atrix Y  G which satisfies the following two m atrix

equations:

(A +  B f ' ) y - y A ,  =  R Q  (4.26)

Y B g + B D g  = H. (4.27)

C o ro lla ry  4 .4  Suppose there exists a solution matrix Y  to (4.26)-(4-27). 

Then the realization of in (4-^5) is completely controllable i f  and only

if  Q{s) is chosen to be completely controllable.

The procedure to  be presented for solving two equations (4.20)-(4.21) is based 

on the observability of the pair (A4r H C ,C ) ,  whereas the procedure for solving 

(4.26)-(4.27) is based on the controllability of the pair (A  -b B F ,B ) .  We shall

call the former the Observability Argument Approach (OAA), and the la tter the

Controllability Argument Approach (CAA). In the following, we will develop 

and state our results by the OAA and give the results by the CAA if necessary.

4.3.2 Stabilizing Controllers of Order n — /

It is well known in observer theory, [45], that if the rank of the m atrix C  is 

I, then a  state observer of order n  — I can be constructed to generate all the 

state variables. A state feedback m atrix  can then be used to stabilize the 

plant, given th a t the pair (A ,B )  is controllable. This implies the existence of 

stabilizing controllers of order n — I. We therefore consider the special case of 

order Ug — n  — I in this subsection.

We first assume without loss of generality tha t C  is full row rank and th a t by



Ch. 4. L O W -O RD ER STABILIZING CONTROLLERS  

a change of coordinates C  takes the form

h  O i x ( n - 0

59

(4 .28)

i.e., C  is partitioned into an ÎX I identity m atrix and an / x (n — /) zero matrix. 

Let A  be partitioned conformally as

A
-4-11 A i2 

-4-21 -̂ 22
(4.29)

where the matrices A n , A12, A21, A22 have dimensions o i l x l ,  î x { n  — l), {n — l ) x l  

and (n — I) X (n — I), respectively.

Suppose th a t X  and H  take the forms

and

H  =

(4.30)

(4.31)

where the dimensions of the matrices X i , X 2, i f i , H 2 are (n—l ) x l , { n —l ) x ( n —l), 

I X I and (n — I) X I, respectively.

From equation (4.20), we have the following two equations:

AqXi —

Ag%2 — I X l  X 2

All 4" H\

A21 +  H 2

A12

A22
0 .

(4.32)

(4.33)

The next Lemma shows the existence of the solution matrices X i  and X 2 to  

(4.33).

L e m m a  4.5 For any stable A ,, there always exists a matrix X i  and a non

singular matrix X 2 satisfying equation (f.SS).
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P ro o f: Equation (4.33) can be rewritten as

-^2^22 +  -<̂1 Ai2 =  Ag%2- (4.34)

Recall from Lemma 2.6 tha t the pair (A22, A12) is completely observable if the 

pair (A, C) is completely observable. It is therefore clear tha t, using Lemma 

2.3, the eigenvalues of A22 +  ^ A %2 can be freely assigned by a suitable choice of 

since the pair (A, C) is completely observable. In other words, there always 

exist a m atrix  ^  and a nonsingular m atrix W  such tha t

A22 +  $ A i2 =

W A 22 +  W $ A i2 =  AgW

for any stable Aq. Comparing this w ith (4.34), it is then obvious tha t we may 

take X i =  and X 2 =  W  as solutions to  (4.34), and in addition, tha t X 2 is 

nonsingular. ■

Notice from Lemma 4.5 tha t the nonsingular X 2 may not be unique since the 

similarity transform ation m atrix W  is not unique. However, if we are only 

interested in the eigenvalues of A, and not its exact form, then it follows from 

the proof of Lemma 4.5 th a t there exists a  such tha t A22 +  ^ A %2 has the 

same eigenvalues as those of Ag. In this case, therefore, we may simply let 

Aq =  A22 +  # A i2, and consequently X 2 = I  and X i  = Af.

Having found the solution matrices X i  and X 2 from (4.33), Bg can then be ob

tained from (4.32). Meanwhile, since the second equation (4.21) can be rew rit

ten as

X
Cg -D ,

c
(4.36)

where

X %2 '

c J 0
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is square and full rank, Cg and Dq can be computed by

C, =  7^ X 3- '  (4.36)

D , =  - f ^ + % - " X i  (4.37)

for any F  

Theorem.

partitioned conformally. So, we now have the following

T h e o re m  4 .6  Let C  be full row rank. Then the system G(s) =  ( A ,B ,C )  

always has low-order stabilizing controllers of order:

deg(X%t^&) =  n  -  J.

To summarize, we have shown in this subsection tha t under the assumption of 

full rank C  there always exist stabilizing controllers of order n — I, and th a t in 

the formulae for such controllers the only constraints on the choice of F  and H  

are th a t A  +  B F  and A  + H C  are stable.

4.3.3 Stabilizing Controllers of Order Less Than n — I

Let us reconsider equation (4.20):

A g X -X (A  +  B-C) =  B ,C .

In order to  find stabilizing controllers of order less than  n — I we now look for 

a full rank solution X  G with order rig < n — I.

Equation (4.20) will have a unique solution if Ag is chosen such th a t 77e[A;(Ag)] ^  

77.e[Ay(A +  HC)]. The standard approach to solve a Sylvester equation (4.20) 

may be useful when we are interested in the element matrices - Ag,Bg,Cq,Dg - 

of the free param eter Q{s), since Ag and Bg can be a priori chosen arbitrarily 

at the designer’s discretion. Here we are interested in the solution X  having 

the smallest possible rig.
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Unlike the standard  Sylvester equation considered in Subsection 2.4.1, equation

(4.20) has a great deal of freedom in the coefScient matrices, specifically in

Bq and H.  We therefore adopt, in this subsection, a different approach to solve

(4.20) making use of the freedom available. In our approach, Ag and H  will be 

first chosen arbitrarily bu t with the smallest possible n „  subject to the stability 

of Ag and A  + H C .  Then the solution X  of full rank Ug is found and Bg is finally 

decided in due course.

A s su m p tio n  4 .7  We assume th a t the plant G{s) =  {A ,B ,  C)  is minimal and 

C is full rank. (The full rankness of C  can be relaxed.)

As we saw in Chapter 2, Section 2.3, the pair (A, C) can be transformed into 

the orthogonal canonical form {Ao,Co)i

A„ = M A M - ^  =

Co = NCM~'^ =

All A i2 0

Agi A22 A23

-̂ Uo—1,3 

■̂ Vo,l -̂ Uo,2 ^Uo,3

I k 0  0  • • • 0

0

0

0 (4.38)

(4.39)

where Vo is the ohservabilHy index of (A ,C ), and A;_*(z =  are x li

matrices, and the numbers

? =  îi >  ?2 ^  ^  Co h  A  h  A  • • • +  C o  =  T i

are the conjugate Kronecker indices of the pair (A, C).

W hen the observable canonical form (Ao,<7o) is derived, the transformed B-  

m atrix is denoted as Bo :=  M B .  Using the form (Ag, Q )  of (4.38)-(4.39), the 

two equations (4.20)-(4.21) can therefore be transformed into:

A , % - % ( A , + % )  =  % (4.40)

(4.41)
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X  = X M ~ ^ (4.42)

S  = M H N - ^ (4.43)

B g  = B g N - ^ (4.44)

D g  =  D g N - ^ (4.45)

F  =  F M ~ \ (4.46)

The following Theorem gives the (possibly small) dimensions of a solution X  

to equation (4.40).

T h e o re m  4 .8  Equation (4'40) has full row rank solutions X  of dimensions 

11, X  n .

P ro o f; Partition  X  G and H  GRiJnxl

X  = H  =

S i

%

So.

where X{ G and Hi G

Then from equation (4.40) we have the two equations:

AqXi —

All +  S i

Agi +  Î Ï 2
=  B„

Ag X o  • • • X o

. ^ 2/0,1 +  Ho 

-  I . . .  1 A i= % iC i

(4.47)

(4.48)

where

Cl :— A i2 0 0 . . .  0
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A i  : =

A 22

A 32

.^23
A 33

0

A 34

A v o - \ , 2  A o o - l , Z  A o o ~ 1 ,A  

A o o ,2 ^2,0 ,3  ^2,0 ,4

0

0

0

Aoo—l,t/o

Note th a t the pair (Âi, Ci) is completely observable since (A, C) is completely 

observable. This can be easily proved by constructing the observability m atrix 

of (Ai, C l) and then checking its full rankness.

For a given A, (stable), Bg can be obtained directly from (4.47) with known X j

and [X2 ••• Noo\-

Equation (4.48) is similar in form to equation (4.40), and can thus be solved in 

the  same fashion. Repeat this procedure until we get

X î / o ' ^ l ' o i ^ o  -H -U o — 1  ^ 2/0 — 1 , 2 / g

4' Xo^ Xoo-lAo^-l^Oo)No^ — Ag.

Since (Ay,,:,,, Aoo-i,uo) is observable, we can always find an X^o-i and a nonsingu

lar Xo^ for any stable Ag. Calculating backwards, we can find Xo^-2, -^2/0-35 - "  , 

and hence Bg. The solution X  is full row rank, since X^o is invertible. This 

completes the proof. ■

Note th a t the solution X  as above is independent of H,  bu t depends on A and 

Ag only. A candidate for X^o is simply the identity m atrix (i.e., X^^ =  ^ ^ ) ,  

since we are more interested in the eigenvalues of A, than  the structure of Ag.

Theorem 4.8 applies directly to equation (4.20), and thus (4.20) has full row 

rank solutions X  G And as expected from Theorem 4.8, we have the

following Corollary.
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C o ro lla ry  4 .9  For rig — rig =  + L - i ,  - - -, " ,  =  -------h 2̂ =  "  -

respectively, there always exist full row rank solutions to equation (f.fO) and 

thus (4-20).

Corollary 4.9 indicates th a t the next step in finding a solution to (4.40) is 

to  increase the value of rig from Co to C« +  C .-i, and thus the next order of 

controllers will be Co +  Co-i-

By a  dual controllability argument approach (CAA), using the controllable 

canonical form (Ac, Be), we have the following two Corollaries.

C o ro lla ry  4.10 Equation (4-26) has full column rank solutions Y  of dimen

sions n  X rriô .

C o ro lla ry  4.11 For rig = rriô , rig =  +  rrio^-i, rig = rriô  H h m 2 =

n — m , respectively, there always exist full column rank solutions to equation

Let us now tu rn  to  the problem of solving the second equation (4.41):

CgX -  DgCc =  F

where F  can be arbitrarily chosen by the designer subject to the stability of 

Ag +  BoF. We rewrite equation (4.41) as

-  1 X
Cg - D g

Co
=  F (4.49)

and suppose without loss of generality tha t the solution X  G to equation

(4.41) is

X  — I X i X 2 • • • Xoo-i Xo^



Ch. 4. LO W -O RD ER STABILIZING  CONTROLLERS

with Xo^ =  Ii^^. Further, define a nonsingular matrix

66

T o : =

Ih 0 0

0 4  0

0 0 • • •

—X i —X 2

. . .  Q

. . .  Q

4 . - ,  0

such tha t

0 0 • • • 0X  :=  X T 2 =

Then, we have

Â:=T2-:^AoT2 B:=T2-:^Bo Ù:=Cor2 =  Co

and equation (4.49) becomes

)  Cl L
=  F T .  = :  F .C g  - D g

0 0 • • 0

h 0 • • 0 0

Thus, if there exists F  in the special form

F  = Fi 0 . . .  0 Fo,

then we can find Cg and Dg as

F ,

Do -FiN

using (4.54)-(4.55) and (4.45).

(4.61)

(4.62)

(4.53)

(4.64)

(4.66)

(4.66)

(4.57)

So far, we have shown how to find the element matrices which are required 

for computing a realization of KC^,,(s) in (4.22) of order Co- In addition, it 

was shown in Lemma 4.2 th a t XC^^(s) is completely observable if and only if 

the pair (A „Cg) is completely observable. Indeed, the system {Ag,Bg,Cg,Dg)  

can always be made observable in a  reduced form, say {Ag,Bg,Cg,Dg) ,  via a 

sim ilarity transformation. It is easy to show that these new element matrices
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still satisfy the two m atrix equations with a solution of smaller size and the 

m atrix  F  will not be affected. It is therefore possible to reduce the order of 

controller further. Consequently, we have a stabilizing controller of order not 

exceeding C„ as stated  formally in the next Theorem.

T h e o re m  4.12  The system (A ,B ,  C) has stabilizing controllers of order less 

than or equal to i.e.,

Aflow — Co

if  there exists an F  as in (4-55) which makes A  +  B F  stable.

The stability requirement of A B F  may prohibit a selection of F  which also 

satisfies (4.55). Suppose th a t the second equation (4.41) does not have a solution 

X  G 77.̂ '̂°̂ ”'. This implies th a t there does not exist an F  as in (4.55), and 

consequently th a t the algorithm fails to  find a low-order controller of order Co

in  such a case, we should increase the value of rig from C« to the next value, 

i.e., Co +  Co-1  (as per Corollary 4.9) and try  to find a state feedback m atrix F  

of similar structure to  (4.55) but now with more degrees of freedom. Thus, if 

it is found, the next order of controllers will be Co +  Co-i- This procedure can 

be repeated up to n , =  n — / until a suitable F  is found.

The determ ination of F  is considered, in the next section, in some detail. It 

will be shown later in Section 4.9 th a t a suitable F  always exists if rig is chosen 

such th a t the inequality n g > n  — m  — l + l  holds.

R e m a rk  4 .13  The system can be stabilized by a static output feedback 

m atrix  if there exists an F  as in (4.55) with =  0. Similarly, the existence of 

an F  satisfying (4.55) w ith Fi =  0 leads to strictly proper low-order stabilizing 

controllers.
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4 .4  D e ter m in a tio n  o f  F

As discussed in Section 4.3, F  shall be of the form:

F  = Fi 0 0 Fo.

as in (4.55) for the existence of Cg and Dg. This introduces a constraint in the 

algorithm developed in this chapter for generating low-order stabilizing con

trollers. The exception is the  case oi Ug = n — I, in which there is no restriction 

on F,  as already discussed in Subsection 4.3.2. This raises the following ques

tion: Under what conditions can we ensure the existence of a state feedback 

matrix F  such that A  •+• È F  be stable and F  is of the form in (4.55)? In the 

following, some different methods are suggested to  answer this question.

4.4.1 M ethod I: via a Search

Suppose th a t F  is partitioned as

F = [ A  fi; . . .  (4.58)

where F{ (i =  1,..., Uo) is an m x li matrix. Then, using (4.51), F  becomes

where

F  = F T . =

Fi =  F i -  FooXi (z =  1, ' 1)

(4.69)

(4.60)

(4.61)

In order for F  in (4.59) to have the special form (4.55), F  in (4.58) ought to  be 

of the following form:

F  = (4.62)
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where the X{ (z =  2, • • ■, i/q — 1) are already known, and Fi and F^^ can each be 

arb itrary  m x l \  and m x Co matrices, respectively. Then, F  can be determined 

relatively easily because only two param eters, Fi and F},,, are to  be tuned to 

obtain F  of the special form in (4.55).

A fundam ental restriction on F  is, however, tha t A q +  BgF  is stable. T hat is, 

we m ust have

7^e[A{(A^ +  B^F)] < 0  VC (4.63)

Note tha t

%e[A{(A 4- BF)] =  %e[A{(Ao +  B.F)] =  -Re[A<(Â + BF)].

The eigenvalues of Ao +  B^F can be easily obtained using readily available 

algorithms in, for example, M atlab. So, we may determine a required F  as 

follows:

s te p  1: Given A<,, Bg and X ,  choose F  in the form of (4.62), by selecting Fi

and Fo^.

s te p  2: Check if the stability constraint (4.63) is satisfied.

If yes, go to step 3.

If no, go to step 1 to  choose an alternative F . 

s te p  3: Compute F  =  FTg.

Exam ple 1 in Section 4.10 dem onstrates this approach.
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4.4.2 M ethod  II: v ia  an  A lgebraic R iccati E quation

Using equation (4.54): 

F  =

the problem of making A  +  B F  stable can be shown to be equivalent to  a stabi

lization problem via static output feedback, because of the following equality:

C g  - D ,
0 0 • • 0 Iriq

h 0 • • 0 0

where

W  :=  

C  :=

A - h B F  = A  + B W C

Cg - D g  ]  : m  X (I 4 - Ug)

X

C

(4.64) 

(4.66)

: (I 4- Ug) X n.  (4.66)

Namely, a system G{s) :=  (A, B, C)  which has n states, m  inputs and (Î -|- Ug) 

outputs can be stabilized via a static output feedback m atrix W  £ 

where n ,m  and I are all fixed but rig can be varied. Hence, if we can find a 

smaller sized W, we can make A -|- B F  stable with a smaller sized X .

To cope with the problem of making A -fi B W C  stable, we consider a feedback 

system H{s)  which comprises an open-loop plant G{s) and a  static output 

feedback W  G Then, the closed-loop system È (s )  can be expressed

B ( 6) :=
' A  + B W C Ê  '

C 0
(4.67)

and the stability of Â -(- B W C  is guaranteed if the feedback system È {s)  of 

(4.67) belongs to RTCoo-

Using Lemma 2.17 in Chapter 2, we can derive the following Lemma to check 

whether there exists a W  having smaller dimension such th a t the system Ê (s )  

is stable, and to find such a TU if it exists.
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L e m m a  4.14  Let H (s)  be as in (4-67) and 7  >  0. Then the system H (s)  

is stable with an 'Hgo-norm bound, ||B'(s)||oo < 7 , i f  there exists a unique sym

metric positive definite solution P  to the following ARE:

(Â +  +  F (Â  +  BTUd)") 4- =  0 (4.68)

for the designer selected W .

Given A, B  and C , the existence of a positive definite solution P  to ARE (4.68) 

depends on the choice of the m atrix W  and also on 7 . The scalar 7  can be any 

size, since it has nothing to  do with the poles of the closed-loop system formed 

by the  plant G{s) and the low-order stabilizing controller JfJj^^(s), bu t a large 

7  may be preferable for ensuring the existence of a positive definite solution P .

Therefore, F  can be determined by the following procedure:

s te p  1 Given A, Ê ,  C  and X ,  construct C  as in (4.66).

s te p  2 Set 7  to be a large value, e.g., 7  =  10^.

s te p  3 Select an arbitrary  output feedback m atrix W .

s te p  4 Solve ARE (4.68) for P .

If P  >  0, go to step 5.

If P  <  0, go to  step 3 to choose an alternative W .  

s te p  5 Compute F  = W C .

Example la  in Section 4.10 follows this approach.
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4.4.3 An Optimization M ethod

An optim ization technique is considered here to supplement the methods de

scribed in previous subsections which depend on trial and error techniques.

Firstly, the following procedure is suggested to strengthen the method in Sub

section 4.4.1. Let

s := À  + B F

and let /  be the following vector containing all the entries of F

where denotes z-th row of F.

s te p  1 Select an initial guess (iteration index j  =  0.)

(at j - th  iteration)

s te p  2 Calculate eigenvalues of H and check if 77e[Ai(H)] <  0 Vz.

If yes, stop.

If no, go to  step 3.

s te p  3 Transform S  into its Jordan form J  by a similarity transform ation 

using a nonsingular m atrix S  such tha t

S-'^ES  =  J.

Note th a t J  will be in diagonal form if S  is not defective (i.e., S  has n linearly 

independent eigenvectors).

s te p  4 If there are any eigenvalues with multiplicity greater than  1 , modify 

/L ) and go to  step 3 to  ensure th a t the eigenvalues are distinct.

s te p  5 Use a gradient m ethod to  obtain a new param eter on observing
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the following equality:

dXi(E) _ j . d E

for z =  1 , • • •, n and k = 1, - • •, m n,  where s*; denotes z-th column of S,  i.e.,

S  =  [s*i, S*2> ' " , -Sw] €  77.”' ”̂ .

s te p  6  Set j  = j  + 1 and then go to  step 2 .

Secondly, as an alternative to the m ethod in Subsection 4.4.2, a readily available 

M atlab command such as attgoal.m (in the Optimization Toolbox) may be used 

to find a desired output feedback m atrix W.

4 .5  A  L ow -O rder S tab iliz in g  C ontroller D esig n  

A lgor ith m

The aim of this section is to present a CAD algorithm for low-order stabilizing 

controller design, summarizing the procedures described in the chapter so far.

s te p  1 : Given a minimal realization of the plant G(s) =  (A, B, C) G ,
choose an observer gain m atrix H  G RA'̂ ’" subject to  the stability of A 4- J îC .

s te p  2 : Transform the pair (A, C)  into the required canonical form (Aq, Cg)

as in (4.38)-(4.39), and then find the observability index Vg and the Kronecker 

indices, h ,h ,--- , lug-

s te p  3: Set rzg =  Cg.

s te p  4: Choose any stable Ag G

s te p  5: F ind the solution m atrix X  to  (4.40), setting X^o =  Co •
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s te p  6: Com pute Bg £  using (4.44) and (4.47).

s te p  7: Define Fg as in (4.51).

s te p  8: Determine an F  in the special form (4.55) which also satisfies the

stability of A +  B F , using either method I or m ethod II or an optimization 

m ethod suggested in Section 4.4.

If F  is found, go to  step 9.

If F  is not found, go to  step 3 to  increase n , to the next level, e.g., from Cg to 

Co "h Co—l'

s te p  9: Com pute Cg and Dg as per (4.56) and (4.57), respectively,

s te p  10: Compute a low-order stabilizing controller as per (4.22).

4 .6  E x p lic it  Form ulae o f  Low -O rder S tab iliz in g  

C on tro llers

In this section we derive explicit formulae of low-order stabilizing controllers, 

using a certain canonical transformation.

Suppose a pair (A, C) is transformed to a more special canonical form (A&, C*),
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as is found in Yokoyama and Kinnen [73], as

I  

0

A., =

a  =

Ao

(4.69)

0 0 

2̂/0,1 0 0 • •

z, 0,x(n_,)]' (4.70)

Then, low-order stabilizing controllers may be explicitly expressed in state-space 

form in term s of the plant data and A, only. Two different cases, n , =  4  and 

n„ = n — I are considered.

4.6.1 Case 1 : =  Z»

For this situation, we can obtain the solution X  to equation (4.40) as

X Ag""-^ 0 A. 0 (4.71)

by direct calculation with X^, =  .

Define T2 as in (4.51) and follow the same procedure as in Subsection 4.3.3. 

Then, we have X , Ag, Bq, Cg and Dg as below:

X  = 0

Ag =  (any given stable m atrix with distinct eigenvalues)

Bo AX' 0 Ai

Ag 0 Aog-l,l — Aog,\ — Èog)N

Cg — Euo 

Dg =  - F i N
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where the dimensions of the matrices are X  : 4  X n, Ag : X 4 ,  Bg : C g  X I,

Cg :m  X Cg and D g '.m x l .

These give a set of stable transfer functions Q(s), of order 4 ;  m term s of all 

stable Ag and some H  and F . On substituting this characterization for Q(s) 

into the formulae for in (4.22), we obtain a set of stabilizing controllers

w ith order not bigger than  4 -  This is summarized in the following Theorem.

T h e o re m  4.15 I f  the assumption in Theorem 4-12 is satisfied, then a set of 

stabilizing controllers of order less than or equal to 4  w given by

where

Z^siot(^) • —
Akr Bkr
Ckr Dkr

Akr =  Ag +  BogFog

Bkr

(4.72)

(4.73)

Ckr

Dkr

=  ( [ Ag"° 0 ] -  Ag''°-  ̂ 0 ] All -  [ Ag""-  ̂ 0 ] Agi

  Ag 0 Ay^_i,i — Ay,,i — BogFi)N  (4.74)

=  Fog (4.75)

=  —F iN . (4.76)

P ro o f; By direct manipulation.

Similar formulae for order larger than 4  (e.g., 4  +  4 -1 )  • • ') can be obtained in 

the same manner. Note th a t the m atrix H  plays no direct role in the formulae 

for the set of low-order stabilizing controllers X%(g(,(a), but is present in the 

formulae for the free stable param eter m atrix Q(s).
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C ase 2 : rig, =  n  — I

In this case we assume th a t Cg of (4.70) is partitioned as

Cs =  I 1; Oix(n-i) ] 

and As of (4.69) is partitioned conformally as

-4sll As12 

421 422

where

4 i i  — 4 i  . 1 x 1  

-4sl2 —

A s22 =

J
0 0 • • 0

0
'. I X ( n  —  Ï)

0

0 0

0 0 0 

0 0 0

■. ( n  — l )  X ( n  — I).

By assuming without loss of generality th a t Ag has the form complying with
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that of As2 2 , i.e.,

78

Aa

A,9,2

k,3

0

'. {n — I) X (n — I) (4.77)

Aq̂ Oo 0 0

we can obtain the solution X  to equation (4.40) as

X  =  [ X i ] : (n -  0  X n (4.78)

where

r
: (n — I) X I.

Define T^ as in (4.51) and proceed in the same manner as in Subsection 4.3.3. 

Then, we have X , Bq, Cg, and Dg as follows:

I
X i = Ag 0

0

X  = 0 J

Bg =  (Ag^
I 0

— Ag
I 0

0 0 0 0
4 l l  — As21 — H2)N

Cg = Fg 

Dg =  - F iN

where F i , F^ and Û 2 are partitions of F  and È  defined by F Fi F 2 and

Consequently, the stabilizing controllers of order n — I are given by

:=

Akr Bkr
Ckr Dkr
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where
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I 0
— Ag

I 0

0 0 0 0

Akr — -dg +  B 2 F2

Bkr =  ( 4

Ckr ~  F2 

Bkr — —F iN

and Ê 2 is defined by B  =

(4.79)

4 i i  — 4 2 1  “  B2Fi )N (4 .80)

(4.81)

(4.82)

R e m a rk  4 ,16  For Ug = n — I, no restriction on F  is imposed, i.e., any F  

which makes A  +  B F  stable would be a suitable choice.

4 .7  P o le  A ssig n a b ility  o f  Low -O rder S tab iliz 

in g  C ontrollers

In this section, we examine the poles of the closed-loop system in Figure 4.3 

formed by the plant G{s) in (4.1) and the low-order controller X4&(.s) in (4.22). 

We consider the A-matrix of the state-space realization of (J  —

A state-space realization of (J  — GKCgf)~^ can be expressed as :

A -  B D g C  B C g  

- B g C -X B C -X B D g C  4 4 -X B C g - B g  -

- B B ,
- X B  -  XBDg . (4.83)

C  0 I

On applying a  state coordinate change to (4.83) using the transform ation m atrix 

Tg; as in (4.18), we have the  following representation:

A - B D g C 4 - B C g X BC, - B D g

-B ,C -X (A -H B C )4 -A g X 4 - B g  -  X H

C 0 I
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'  A  +  B F B C , -BD g
0 4 - B ,  -  X B

C 0 I

(4.84)

making use of equations (4.20)-(4.21). Representation (4.84) is similar to  (4.83).

It follows from (4.84) tha t, given the existence of a solution X  to (4.20)-(4.21), 

the poles of the closed-loop system are the union of the eigenvalues of A -f B F  

and the eigenvalues of A,.

By definition, both  A -t- B F  and Ag are stable. This means tha t the low- 

order controller Fj^^j(s) is guaranteed to  always satisfy the closed-loop stability 

constraint. Note th a t the separation property of all stabilizing controllers, as 

described in Subsection 4.2.3, is still present when the full-order stabilizing 

controller Ksiab(s) is replaced by low-order stabilizing controller Hence

all the closed-loop poles are assignable. Also note tha t the observer poles (i.e., 

eigenvalues of A -f B C ) are not closed-loop poles when a low-order controller 

Sltabi^) is used. Numerical examples in Section 4.10 illustrate this separation 

property precisely.

The separation property of the closed-loop poles can also be found, for example, 

in an observer-based controller [45] and in an LQG compensator, e.g., [46, 

p.227].

R e m a rk  4 .17  We have the to ta l freedom in selecting the poles of Q{s), 

namely, the eigenvalues of Ag, whereas the restriction on F  to  have the form in 

(4.55) in tu rn  restricts the eigenvalues of A-j-BF. This restriction was discussed 

in some detail in Section 4.4.

R e m a rk  4.18 W hen a CAA is adopted, the separation property will arise 

between the eigenvalues of A -f- B C  and the poles of Q{s), since it can then be
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shown th a t

’ A  + H C 0 B B , -b Y B ,

4 4

- C c y I

4 .8  L ow er-B ounds on  th e  C ontroller O rder

In this section, we briefly summarize some existing results on stabilization by 

reduced-order controllers, and compare them  with the new results developed in 

this thesis.

T he following notation is used.

Afiow : a  lower bound on the order of a dynamic stabilizing controller. 

n : num ber of states of the plant.

I : num ber of outputs of the plant. 

m  : num ber of inputs of the plant.

4.8.1 Existing Results

The low-order stabilization problem has received much attention by a number 

of researchers. Despite this effort, the low-order stabilization problem is still an 

open problem in the sense th a t most of the existing results provide only sufficient 

conditions for the existence of stabilizing controllers of a  certain order. We 

summarize in this subsection some of the existing results on the lower-bounds 

of the dynamic order of stabilizing controllers.

(1) Luenberger [45]: Corresponding to an nth-order system having I linearly 

independent outputs, a reduced-order observer of order

Afi n  — I
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can be constructed having arbitrary eigenvalues.

(2) Brasch and Pearson [8]: For arbitrary closed-loop pole placement, a dynamic 

compensator should have at least an order

® -Xfiow =  min(i/c - l , U g - l )

where z/g is the controllability index and i/q is the observability index of the 

plant.

(3) K im ura [38]: Almost arbitrary closed-loop pole assignability is possible by 

constant gain output feedback if n  <  m -|- Z — 1. However, a dynamic controller 

is required to achieve closed-loop stability if n > m - b Z —1. In this case, the 

minimum order of the dynamic controller is

® Afiow — "  — m  — Z-i-1.

(4) Linnemann [44]: SISO systems can be stabilized by a controller having the 

minimum order

® -Xfiow — "  — 1 — k

where k is the order of the first Hurwitz polynomial in the sequence of remain

ders occurring in the Euclidean algorithm on its application to the num erator 

and denominator polynomials of an nth-order system transfer function.

(5) Smith and Sondergeld [65]: The arbitrary  closed-loop pole placement proce

dure of Brasch and Pearson [8] may generate an unstable controller for closed- 

loop stabilization. In certain cases, the instability of a controller appears to 

result in poor overall system sensitivity to  variations in controller parameters, 

[64]. This leads to  a consideration of the strong stabilization problem, which
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means the stabilization of a closed-loop feedback system by an asymptotically 

stable controller. For strong stabilization of a single-loop plant, Smith and 

Sondergeld showed the following results:

® Afiow — d — 1 (if z=0)

® Afiow = n  + d — 2 (if z = l  and the plant is strongly stabilizable)

® Mow -3- oo (if z > 2)

where d is the relative degree of the plant and z is the number of zeros of the 

plant in the CRHP.

4.8.2 New Results

It was shown in Section 4.3 th a t the order of stabilizing controller, Miow{= 

can be varied from Cg (at its lowest) to n ~  I (at its highest). It is obvious tha t, 

when the observability index Ug is equal to 2, the order of controller is fixed at 

Migy, — n — I, and th a t if i/g > 3, Migw = Coi where Co is the dimension of block 

m atrix Â ĝ ^o m (4.38).

Similarly, using the controllability argument approach, the order of the con

troller can be fixed at = n — m  when =  2, or have a lower bound of 

Mow — rriog when Ug> 3.

Combining the above two results, we have the following lower bounds on the 

order of controller :

Migw =  m in(n — — iîv g ~ V g  = 2 (4.85)

=  m in(n — m, Co) if Uc = 2 ,U g> 3  (4.86)

=  min(mj,^, n -  I) if Ug >3,Vg = 2, (4.87)

=  mm{mog,Co) if ^cW g> 3. (4.88)
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This observation indicates tha t, when either n — Z or n — to is large, there is 

considerable scope for reducing the order of the dynamic stabilizing controller.

4.8.3 Comparison and Comments

Luenberger’s result (1) on low-order observers is standard. Results (2) and (3) 

in Subsection in 4.8.1 are, in general, considered by Keel et al. [37] to be too 

conservative due to  the essential requirement of arbitrary pole placement, when 

stabilization is the only requirement. Indeed, the order of stabilizing controllers 

can be further reduced by, for example, the new results in this thesis. Numerical 

examples in Section 4.10 verify this claim. Two results (4) and (5) in Subsection 

4.8.1 are applicable only to  the SISO case, whereas our new results can be 

applied to the MIMO case as well. Among others, K im ura’s results (3) will be 

revisited in Section 4.9 to  investigate more of the implications of the new results 

developed in this chapter.

4 .9  C om p arison  w ith  K lm ura's R esu lts

In [38], K im ura showed the following results on pole assignment by output 

feedback:

1. If a system having n  states, to inputs and Z outputs is minimal, and 

TO -j- Z — 1 > n (i.e., TO 4- Z >  n), then an almost arbitrary set of distinct 

closed-loop poles is assignable by constant gain output feedback.

2. The minimum order of the dynamic compensator required for almost ar

b itrary  closed-loop pole assignments is not greater than  n  — m  — I + 1.
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In this section, using the approach described in Section 4.3, we show th a t 

K im ura’s results above can be confirmed, and tha t it is possible to improve 

upon the second result.

4.9.1 Conûrmation

Let the order of low-order stabilizing controllers, satisfy

— Co +  -!-••• + — TO — Z-f-l (4.89)

and let the m atrix Fkuo have the form

Fkuo =  [ Fk Fk+i ■ ■ ■ Fog-i ] : TO X n ,. (4.90)

Then, from equations (4.53) and (4.55), we have the following:

Â +  Ê F  =  Â +  ê \  Fi 0 . . .  0 Fkoo]- (4.91)

By a similarity transform ation using a nonsingular n x  n  m atrix T3 given by

Z, 0 o '

T 3=  0 0 (4.92)

0 In. 0

we have

and

F  = F T . = F t..  0

using (4.91)-(4.92).

(4.93)

(4.94)

Therefore for the existence of low-order stabilizing controllers of order n , satis

fying (4.89), it is now required that

A + B F  =  A + B Fi Fkog 0

=  A + B K C

(4.95)

(4.96)
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is stable, where

^ : = [ A  A . .  ] : " ^ x ( Z  +  n ,) (4.97)

and

C :=  I  0 j : (Z +  n ,) X n. (4.98)

Note th a t C  7̂  ÔT3 .

From equation (4.96), the problem of finding an F  such th a t À  +  B F  is stable 

is equivalent to  a static output feedback stabilization problem for a system 

comprising (A ,B ,C ) .  Therefore, low-order stabiHzing controllers of order n , 

(>  72 — TO — Z-l-1) will exist if there exists a gain output feedback m atrix K  for 

the system (A, B , C) having n  states, to inputs and (Z + Ug) outputs.

Indeed, by K im ura’s first result, there always exists such a gain m atrix K  for 

almost arbitrary pole assignability if Ug > n —m —l+ l.  For the system (Â, B , C), 

this can be easily proved. T hat is, using condition (4.89), we have

TO -|- (Z -f- Tig) — 1 ^  TO -|- (Z -|- 71 — TO — Z 4- 1) — 1

which is identical to  the following inequality:

TO 4- (Z 4- n ,)  -  1 >  n. (4.99)

Inequality (4.99) meets the condition of Kimura’s first result, namely, the con

dition for the existence of gain output feedback, and therefore K  exists.

Thus, in the approach for deriving low-order stabilizing controllers (as described 

in Section 4.3), if we increase 7ig until it exceeds 71 — to — Z 4- 1, then we can 

always find F  (or F ) which not only satisfies the special form as in (4.55) but 

also makes A 4- B F  (or A 4- B F )  stable. Consequently, we can have dynamic 

outpu t feedback controllers of order n  — to — Z 4- 1 which stabilize the plant. 

This is a  confirmation of K im ura’s second result.
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R e m a rk  4 .19  If Ug — n — m  — I + 1, we have a stabilization problem by a 

sta tic ou tpu t feedback: i.e., find K  such th a t Â +  B K C  is stable where K  is 

m  X  (n — TO +  1) and C  is (n — to +  1) x n.

4.9.2 Improvement

Equations (4.41) and (4.54) in Section 4.3 are here reviewed in line with Kim ura’s 

result. In Subsection 4.4.2, we have shown tha t the problem of making A  +  B F  

stable is equivalent to an ou tpu t feedback stabilization problem of making 

A-{- Ê W C  stable, w ith

-  1 Xw = C,  - D ,  ] and c
as in (4.65)-(4.66).

As shown in the previous subsection, if the dimension of X  g j-gaches

or exceeds n — to — / +  1 (i.e., Ug >  n — to — / +  1), it is guaranteed th a t a 

static output feedback m atrix W  exists such that the eigenvalues of À  + B W C  

can almost arbitrarily be assigned. This is due to Kimura’s first result, and is 

summarized in the following Theorem.

Theorem  4.20 The system (A ,B ,C )  always has low-order stabilizing

controllers of order rig > n  — m  — l + l.

Moreover, in some cases, a suitable W  will exist for an X  of smaller dimension 

(i.e., rig < n — m  — I + 1). In Subsection 4.4.2, we considered how to  find 

such a TK. This implies th a t the  approach developed in this chapter could find 

controllers of smaller order th an  predicted by Kimura’s result. Example 2 in 

Section 4.10 illustrates this. O ther developments on the existence problem of a 

static output feedback m atrix can be found in Oh et al. [53] and the references 

therein, where the problem is solved via an optimization technique.
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4 .10  I llu stra tiv e  E xam p les

In this section, we present two numerical examples to illustrate the new algo

rithm  for low-order stabilizing controller design. All calculations were performed 

using M atlab on a  SUN work station. The first example is a MIMO system and 

we use the observability approach, whereas the second is SISO and we use the 

controllability approach.

4.10.1 Exam ple 1

The state matrices for this example are taken from Kimura [38], and describe 

a system with 3 inputs, 2 outputs and 5 states. The plant is given by G(s) =  

(A ,B ,C , D ), where

' A B  '

C D

'  0 1 0 0 0 0 0 0 '

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

_ 0 1 0 0 0 0 0 0 _

The corresponding transfer function m atrix is

1
G(s) =

and the open-loop poles are at

-0 .8090 ± i0 .5878 , 0.3090 ±  i0.9511, 1.0000.

This example is already in observable canonical form  as in (4.38)-(4.39), w ith 

li = 2, I2 = 1, h  — 1 and =  1, where =  4 is the observability index.
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So, we have

Ao — A, Bo — B , Co =  C, M  =  I 5, N  = I 2 

and choose an observer gain m atrix H  such that

A(A +  iTC) =  —1, —2, —3, —4, —5.

Since =  1, we set Mg =  1 and choose the arbitrary stable A, as A, =  —2. 

Then X  and Bg are determined to be

X  =  

B„ =

0 - 8 4 - 2 1

-0 .7320 -0.0065

A nonsingular m atrix Tg is then constructed by (4.51). If we choose the state 

feedback m atrix F  as

F
-12 -7 1  - 8  4 - 2

- 1  20 - 2 4  12 - 6

1 -8 0  -4 0  20 -1 0

then the eigenvalues of Ao +  B qF  are

-63.3498, -5.7614 ±14.8267, -0.1153,

and

-12 - 8 7  0 0 -

- 0.0121

F  = FT2 = - 1  -2 8  0 0 - 6

1 -1 6 0  0 0 - 1 0

which is of the special form in (4.55). Cg and Dg follow simply using (4.56) 

and (4.57). Finally, using (4.22), a low-order stabilizing controller X^g^(a) is 

com puted as

=

10 -91 -888 '
Akr - 2 12 87

Ckr Dkr - 6 1 28
- 1 0 - 1 160 _
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C =

which is a  Ist-order (unstable) controller. The resulting closed-loop poles are 

given by

-63.3498, -5 .7614 ±14.8267, -0.1153, -0.0121, -2.0000

which are the union of the eigenvalues of Ag + BgF  and Ag.

E x a m p le  l a  To dem onstrate m ethod II described in Subsection 4.4.2 for 

determining W  and thus F , we reconsider the plant model in Example 1 . Again, 

we aim to  find a Ist-order controller (i.e., n , =  1). So, we set Ag =  —2 and find 

X  as before. Then C  m atrix is built as

0 0 0 0 1

1 0 0 0 0

0 1 0  0 0

If we choose 7  =  10^ and an output feedback matrix W  6  as

- 2  -1 2  -5 5

- 6  - 1  55

-10 1 -1 6

then a positive definite solution P  to  ARE (4.68) exists. Having chosen such a 

W  and found a positive definite solution P , the state feedback m atrix P  =  W C, 

from equation (4.64), is computed as

-1 2  -5 5  0 0 - 2

- 1  55 0 0 - 6

1 -1 6  0 0 - 1 0

X

C

W  =

F

from which Cg and Dg are easily obtained. The eigenvalues of Â ±  B F  are at 

-16.9831 ±18.7452, -8.8934, -0.1285, -0.0120.

So, we may construct another low-order stabilizing controller of order 1 given

by

12s ±  62 55s ±  802

s +  536 -5 5 s  ±4606 

- s  ±  920 16s ±  6600

K I M s - 1 0
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This controller generates the closed-loop poles at

-16.9831 ±18.7452, -8 .8934, -0.1285, -0.0120, -2.0000

which also illustrates the separation property.

4.10.2 Example 2

To dem onstrate the controllability argument approach (CAA), we consider the 

following SISO unstable plant G(s) =  {A ,B , C):

’ 1 1 1 0 '
A B  ' 3 1 1 1
C 0 1 1 - 2 1

_ 1 0 0 0 _

Its transfer function m atrix  is

2s ±  3
« W  =  , 3 _ 8 , _ 6  

and the open-loop poles are at

3.1474, -0 .8186, -2.3289.

The plant matrices (A, B , C) can be transformed into the controllable canonical 

form  (Ac, Be, Cc) :

' 0.5000 6.2501 1.2363 1 '

Ac B e ' 1.0000 0.3824 1.1626 0

Cc 0 0.0000 1.0000 -0.8824 0

0.0000 1.1781 0.7276 0 _

having TOi =  1, mg =  1 and =  1, where ẑ c =  3 is controllability index.

Since =  1, we may sta rt with rig = 1. We set Ag =  —4 and then find Y  as
iT

Y  =  12.4998 -3.1175 1.0000



Ch. 4. LO W -O R D E R  STABILIZING CO N TRO LLERS  92

If we choose an observer gain m atrix  H  as

H  = -50.000 -6 .235  2.000
T

the eigenvalues of A H C  are at

-2.0986 ±  J6.7293, -1.6930.

Then, a Ist-order (stable) controller X ^ ^(s) is obtained using (4.25) as

74.9996s +  224.0003
^ g ggQ2

which results in closed-loop poles at

-2.0986 ±j6.7293, -1.6930, -4.0000.

This example dem onstrates pole assignability via the separation property be

tween A  + H C  and Ag.

4.10.3 A nalysis and C om m ents

The examples shown illustrate the following attractive features :

# The com putational algorithm for computing low-order stabilizing con

trollers is valid and easily implemented.

® A separation property holds for the closed-loop poles:

The closed-loop poles are the union of the eigenvalues of A +  B F  and the 

poles of Q(s), in the observability argument approach as in Example 1. 

In the  controllability arguments approach used in Example 2, the separa

tion property is between A-\- H C  and Q(s).

# The stability of the closed-loop is preserved when the fuU-order controller 

is replaced by the low-order controller.
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In Examples 1 and 2, using the same Q(s), we compute the (n +  n ,)th-order 

controller Kgtabi^) aa per (4.12), and then examine the normalized Hankel sin

gular values of Kgtabi^)- The results are given in Table 4.1, and clearly show 

th a t the low-order controllers obtained in the previous subsections are minimal 

realizations of the “formal” order controllers. That is, controllers having the 

same orders may be obtained using existing model reduction techniques. In

deed, using M atlab files balmr.m (for the balanced truncated model reduction) 

and ohklmr.m  (for the optim al Hankel norm model reduction), we obtained the 

low-order controllers of the same order as those we derived here.

Example 1 

(n =  5, Mg =  1)

Example la  

(m — 5, riq — 1)

Example 2 

(M =  3, Tig — 1)

l.OE-00

0

0

0

0

0

l.OE-00

0

0

0

0

0

l.OE-00

1.7E-13

4.0E-14

0

Table 4.1. Normalized Hankel Singular Values of Kstab{s)

Frequency responses can be used as a performance measure to evaluate the low- 

order controllers. For comparison purposes, the frequency responses (singular 

value plots in general) of the formal order controllers and the low-order con

trollers are shown in Figure 4.4 for Example 1 and in Figure 4.5 for Example 

2 .

Table 4.2 below compares the orders of stabilizing controllers which we obtained 

in Examples 1 and 2 by means of the algorithm presented in this chapter, with 

those predicted by others [8],[38],[44],[45].
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Example 1 Example 2

num ber of states (n) 5 3

number of inputs (m) 3 1

num ber of outputs (I) 2 1

controllability index (z/g) 3 3

observability index (uo) 4 3

Brasch/Pearson [8] 2 2

Kim ura [38] 1 2

Linnemann [44] N /A 1

Luenberger [45] 3 2

New results 1 1

Table 4.2. Orders of Low-Order Stabilizing Controllers.

4.11  C on clu d in g  R em ark s

A methodology for determining a  set of stabilizing controllers of smallest possi

ble order was presented in this chapter. Working from the celebrated parametriza- 

tion of all stabilizing controllers in terms of a  free stable param eter m atrix Q(s), 

we derived a low-order realization of (4.22) on the assumption of the

existence of a solution m atrix X  to two simultaneous m atrix equations, (4.20)- 

(4.21). The derivation was based on eliminating any unobservable states in the 

formal order controllers Ksigj,(s) given by (4.12). Two equations were solved 

to  find the smallest possible size of stabilizing controllers, using an orthogo

nal canonical transformation. As a result, we have shown tha t the order of 

stabilizing controllers may be less than  or equal to

The algorithm presented in this chapter for deriving low-order stabilizing con

trollers can be used either as a form of minimal realization or of model reduction 

of all stabilizing controllers Kstab{s) in (4.12), depending on the choice of the



Ch. 4. LO W -O RD ER STABILIZING  CO N TRO LLERS  95

special form of F  as in (4.55).

Some related issues, such as the determination of F  in the form (4.55), pole 

assignability of closed-loop poles by low-order stabilizing controllers, and con

firm ation of K im ura’s results, were also considered. Finally, two numerical 

examples were given to illustrate the application of the constructive algorithm 

and the results on controller size.

Although stabilization is of fundamental importance in control system design, 

it is not enough on its own to guarantee good performance. In the following 

chapters, the main idea and the solution m ethod described in this chapter will be 

extended to Hoo design where robust stability and some performance objectives 

can be addressed together.
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Singular Values of Controllers

(-) Formal-order controller 
(*) Low-order controller 
(—) Low-order controller by balmr jn  

(-.) Low-order controller by ohklrnr jn

1 0 * 10*

frequency (rad/sec)

Figure 4.4: Singular Values of Controllers for Example 1. 

Singular Values o f Controllers

(-) Fœrnal-order controller 
(*) Low-order amtroller 
(—) Low-order controller by balrnrro 
(-.) Low-order controller by ohklmr.m

10-* 10* 10“

frequency (rad/sec)

Figure 4.5: Singular Values of Controllers for Example 2.



C hapter 5 

Low-Order H o o  Sub-O ptim al 

C ontroller D esign

5.1 In tro d u ctio n

An im portant problem in advanced control system design is the Hoo suboptimal 

control problem, where stabilizing controllers which satisfy an upper bound on 

the "Koo-norm of a certain closed-loop transfer function m atrix are to  be found. 

The problem has recently seen the elegant state-space solutions, obtained by 

Glover and Doyle [27] and Doyle e t  al [18], via two Riccati equations. There, 

the set of all Hoo suboptim al controllers is parametrized using linear fractional 

transform ations and the so-called Q-parametrization.

Even though there is the freedom in the Q-parametrization to meet certain 

control design objectives, the Hoo sub optimal controller may have a “high” 

order, i.e.,

M  < deg((?) -t- deg(W ) 4- deg($) 

where G{s) is the nominal plant to  be controlled, TE(s) is the frequency weight

97
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ing functions selected by the designer and $ (s) is a free stable transfer function 

m atrix.

There are some approaches currently available for finding low-order Hoo con

trollers. For example, an early result by Limebeer and Hung [42] showed th a t 

for the Hoc suboptim al control problem, a controller w ith degree no greater 

than  th a t of the generalized plant (i.e., the nominal plant plus the weighting 

functions) exists; M ustafa and Glover [51] developed an Tioo-balancing method 

in which the Hoo characteristic values are computed and its small values are 

then truncated; and more recently, Hsu et al. [32] and Iwasaki and Skelton [34] 

gave some interesting results.

In this chapter, we present a new approach to low-order Hoo sub optim al con

troller design, which is similar in spirit to tha t developed in Chapter 4 of this 

thesis. We have shown in Chapter 4 th a t low-order stabihzing controllers can 

be derived by suitably choosing the free parameter m atrix Q(s) in the Youla 

param etrization of all stabilizing controllers. So, given the results of Chapter 

4, it is natural to  ask whether a size reduction on a class of Hoo suboptim al 

controllers is possible in the spirit of low-order stabilizing controllers. It is the 

purpose of this chapter to show th a t this is the case. Indeed, we will extend the 

methodology developed in Chapter 4 to  characterize lo w -o rd e r Hoo su b  o p ti

m a l co n tro lle rs , K ^ (s ) ,  of order less than  the order of the generalized plant, 

while keeping the Hoo-norm of a closed-loop transfer function m atrix within 

the prescribed value. So, the approach to be presented only requires the solu

tion to  two simultaneous m atrix equations, (5.34)-(5.35), and the satisfaction 

of an Tfoo-norm bound, (5.38). Consequently, it is shown th a t the order of Hoo 

suboptim al controllers may be reduced to

Mow =  deg(G) -fi deg(W ) -  p2 

or less for some plants, where p2 is the number of plant outputs.

The chapter is organized as follows. In Section 5.2 the now standard state-space 

solution to  the general Hoo suboptim al problem is briefiy outlined. In Section
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5.3, we derive a low-order realization, (5.33), of Tioo suboptim al controllers and 

show th a t controllers of order n — (or less) exist providing an ?foo-norm 

constraint is satisfied. The problem of the TYo^-norm constraint is considered in 

Section 5.4. A CAD algorithm for low-order Hoo sub optimal controller design 

is presented in Section 5.5. A related problem of controller size reduction in 

^ ( L Q G )  controllers is considered in Section 5.6. In Section 5.7 some numerical 

examples are given to illustrate the results of the chapter. Conclusions are given 

in Section 6.8.

5.2  S ta te -S p a ce  F orm ulae for th e  S u b -O p tim a l 

C on troller

Consider a generalized plant, P{s) described by

x{t) — A x{t) P  B i w { t ) B 2u{t) (5.1)

z(^) =  Cxx{t) -f- Dixw{t) 4- Di2u(t) (5.2)

y(t) = C2x(t)  4- D 2iw {t) 4- D 22'u(() (5.3)

where x(t)  G 71^ is the state vector, w (t) G is the exogenous input vector, 

ii(i) G is the control input vector, z(t) G is the error vector, and 

y(t)  G is the observation vector. The generalized plant P (s)  is given by

' A Bx B 2

P{s) = Cl Dxx D x2
Cg D 2X D 22

(5.4)

The Hoo optimization problem is to find

where the controller K {s) to be designed is chosen over all controllers which 

internally stabilize the generalized plant P{s). To represent both  robust sta

bility and performance objectives in the same Hoo minimization framework.
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an Hoo optim ization problem specification typically combines a number of fre

quency weighted closed-loop transfer functions and minimizes the T^oo-norm of 

the composite transfer function m atrix. In general, it is not possible to  solve 

for 7mm exactly and hence the so-called Hoo sub optimal control problem was 

introduced. The reduction in  stability margin incurred as a result of using a 

slightly sub optim al cost can be compensated by improved performance.

The Hoo suboptim al problem of finding a stabilizing controller Koo{s) such th a t

| |% ^ o o ) | |o o < 7  (6.6)

for some prespecified value of q (>  7mm) has been efficiently solved by Glover 

and Doyle [27] and Doyle et al. [18], using two Riccati equations.

This class of Hoo suboptim al control problem is considered in this chapter to 

develop low-order Hoo sub optim al controllers.

The questions we consider in this chapter are: Under what assumption does 

there exist controllers K ^ ( s )  of size less than n which also meet the Hoo-norm 

constraint:

I I W % ) I I . < 7  (5.7)

and how can we find such reduced-order controllers?

Glover and Doyle [27] have stated necessary and sufficient conditions for the 

existence of a stabilizing controller solving (5.6), and parametrize all such con

trollers. A brief summ ary of their work is given next.

The following assumptions are made on P{s):

A l .  (A, B 2,C 2, D 22) is stabilizable and detectable.

A 2 . Rank(£>i2) =  m 2 and rank(D 2x) =  Pz-

A 3 . D i2 and D 21 are transformed into

0
Dx2 =  and D 21 = 0 Z,,
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D ll =

by a  scaling of u and y, together w ith a  unitary transformation of w and z. And 

D ll is partitioned as

D im  D 1112 

D 1121 D 1122 

where D 1122 has mg rows and pg columns.

A 4 . The physical plant is strictly proper, consequently D 22 =  0.
A  — j w l  B 2

A S . Rank

A 6 . Rank

Cl D 12

A  —j w l  Bi  

C2 D 21

=  n +  mg Vto G R . 

=  n +  p2 Vw G %.

These assumptions are required for the following reasons:

A l is to ensure the existence of a stabilizing controller Koo{^)\ A2 is to ensure 

the properness of AT(s); A3 is for dimensional compatibility with D 12 and D 21; 

A4 is for simplicity only and thus can be relaxed; finally, bo th  A5 and A6 are 

to  avoid pole-zero cancellations on the imaginary axis and to  prevent P (s)  from 

having transm ission zeros on the jw -axis.

Define

and

where

yZmi 0
0 0

0
0 0

and D*i =
D ll

= D ll D i2
Dgi

(5.8)

(5.9)

(5.10)

Let Xoo > 0 and l^o ^  0 be the stabilizing solutions of the following Riccati 

equations:

A  -  D D -^D ^C i - B R - ^ B ^

-C ^(f-D i.A -:^D ^)C i -(A-DJZ-:^D^Ci):^
Xor. := Ric (5.11)
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and

Yoa :=  R ic
A  -  B iD j,R -^ C  - C ^ R - ^ C

(5.12)

Now define a state feedback m atrix E  as

Dll

Dig

Dg

(6.13)

where Du, Dig and Dg have m i — pg,pg and mg rows, respectively, and define an 

observer gain m atrix B  as

D ll Dig Dg (6.14)

where D u , Dig and Dg have pi — mg, mg and pg columns, respectively.

T he central results for the algorithm are stated in the following Theorem.

T h e o re m  5.1 (Glover and Doyle [27])

( I j  A  siabilizing controller exists, such that |lDi(D,Doo)lloo <  7, i f  and only i f

(i)

T ^  m.ax((Tmaa;[Diiii, D i i ig ] ,  D jj2 l]) (5.15)

and

(ii) there exist solutions X^o >  0 andYoo >  0 of (5.11) and (5.12), respectively, 

such that

(5.16)

(2) I f  (i) and (ii) above are satisfied, then all (rational) stabilizing controllers 

Koo{s), fo r which ||Di(P,Doo)||oo <  7, nre given by

D ^  =  Dz(D.,$) (6.17)
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fo r any rational $(g) G such that | |$ ( 6)

realization

Cl

C2

Di D2

D ll Dig 

Dgi 0

< 7 , where Ka has the

(6.18)

and

D ll — —Dii2iD^^^(7^T — D iiiiD ^^^) ^Dmg — Dugg

Dig G Dgi G PP2XP2 •matrices satisfying

DigD^2 =  I  — D iigi(7 ^J — D ^^iD iiii)  ^D ^2i

;  -  ^ ^ 12(7 ' ;  -  D iiiiD ^ iJ -^ D iiigD ^ D 2i

and

where

Dg =  (Dg +  Dig)Di2 

Cg =  —D2i(Cg +  Dig)D(X)

Di =  —Dg +  B 2D 1)  D ll

Cl =  DgDoo +  DiiDgi^Cg

i  =  A  +  D C  +  D g ^ C i

(6.19)

(6.20)

(5.21)

(6.22)

(6.23)

(5.24)

(6.25)

(5.26)

(5:27)

Figure 5.1 shows a diagram of an Hoo suboptimal controller comprising of Ka{s) 

and $ ( 3), as in (5.17).

The all-solution controllers Koo(s) such th a t ||D;(P, Doo)||oo <  7  are param eter

ized by the free stable $(a) constrained by ||$(s)||oo <  7 . In the next section, 

we will use the param eterization of Kooi.^) given by (5.17) to  reduce the order 

of the  Hoo suboptim al controllers.

Note th a t if D u  =  0 then the formulae in Theorem 5.1 are considerably simpli

fied, Doyle et al. [18].
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U

Figure 5.1: Diagram for an Hoo Sub-optimal Controller, K^o =  $).

5.3  L ow -O rder TYoo S u b -O p tim al C ontrollers

The formulae cited in the previous section represent an im portant result in 

optim al control theory. It is clear th a t we are always able to  obtain suboptimal 

controllers of size equal to, or less than, n  by simply choosing $ (s) as a constant 

m atrix  w ith largest singular value less than 7 , provided the feasibility conditions 

(5.15) and (5.16) are met.

For convenience, we rewrite all (rational) stabilizing Hoo controllers in (5.17) as

.^’00(5) =  (5.28)

for any rational $ (s) E g^^h th a t ||$(s)||oo <  7 .

Let $ ( 5) in (5.28) have a state-space realization

$ ( 3) :=
A^

(5.29)

where is stable, and : n ^ x  n^, Cÿ : mg X and : mg xpa,

respectively.
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Then, using (5.18) and (5.29), Koo{s) of (5.28) can be expressed as

(6.30)
A -|- RgDÿôg Bi H- WgD^Dgi

Woo(s) = BÿDgi

Cl + JDigDÿCg Du 4- DigDÿDgi

making use of a state-space realization of an LFT given in [57]. From (5.30), 

we see th a t all controllers iToo(-s) have a  state dimension of (n + n^) if there are 

no pole-zero cancellations between Ka(s) and $ (s), since

deg(JCoo) =  deg(Ko) +  deg(0) -  a  

= n + n^ — a

where a  is the number of cancellations between Ka{s) and $ (s).

R e m a rk  5.2 The “central” (or maximum entropy) controller, which is ob

tained from (5.28) by taking ^ (s ) =  0, has the realization

' A Bi '

Cl Du
Koo{s) ~

This “central” controller has an order:

Moentrai ~  deg(G) -f deg(TF)

=  n

and is widely used in Woo control. The freedom in the param etrization cannot 

easily be used to yield desirable closed-loop properties and hence usually is 

ignored.

5.3.1 Derivation of Rednced-Order Controllers

We begin by applying a state similarity transformation to Koo{s) of (5.30) using 

a nonsingular matrix

'  In 0T i:= (6.31)
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to find a new realization given by
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where

’ K a u Khi

K oo{s) := Ka22 ITtg

_ K ci K i

(6.32)

Wall = À  +  B2D^C2 — B2C,j,X

Wai2 =

W.21 = WÂ +  J^RgD^Cg 4~ Ŵ C*2 — X B 2 C ^X  — A ^ X

Wa22 = WWgdÿ +  Aÿ

Kb\ = B \  +  RgD^Dgi

Ww = X Ê i  A XÈ2D^D 2 i +  jB^Dgi

Wcl = Cl +  DjgD^Cg — Ê>i2C^X

K c2 =

Kd = D\1 +  D i 2D^Î)2\.

Ftom  the realization of Koo{s) in (5.32), we may obtain a  reduced-order realiza

tion, which we refer to  as the lo w -o rd e r Hoo s u b o p tim a l co n tro lle r:

X  Agd^ +  A^ X È \  +  WRgD^Dgx +  B^D  21

D ll + DigDÿDgx
(6.33)

if there exists a m atrix X  6  satisfying =  0 and Kc\ =  0, i.e., the

following two m atrix equations are satisfied:

where

A,j,X — X À  — B^C2 

C ÿ X -D ÿ Ô g  =  .F

A  — A  — B 2D 12C1 

F  = D TiC i.

(5.34)

(6.36)

(6.36)

(6.37)
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It is emphasized th a t W ^(s) in (5.33) has an order:

d e g ( lO  =  Mÿ

at most, which is obviously less than n +  the “formal” order of Koo(s) of 

(5.30), occurring in the  case of ce =  0. The realization (5.33) is in a convenient 

form for computing a set of low-order Hoo suboptimal controllers.

It is also interesting to  see th a t the two equations (5.34)-(5.35) are similar 

to  those required for finding low-order stabilizing controllers as described in 

Chapter 4. Thus, the methodology proposed in Chapter 4 for solving those 

equations might be applicable here. However, in the present chapter, we have 

a new constraint, i.e.,

||®(3)||oo =  116^ (̂31 — A^) ^B^ + D A\oo<'7  (5.38)

and, in addition, the freedom in the choice of F  is considerably limited. These 

two constraints indicate th a t the problem of finding low-order Hoo suboptim al 

controllers is more difficult than  th a t of finding low-order stabilizing controllers.

R e m a rk  5.3 The closed-loop transfer function (CLTF) formed by the gen

eralized plant P (s)  and the low-order controller W ^(s) can be computed from 

the following linear fractional transformation:

C L T F : = W W L )

using P (s )  in (5.2)-(5.4) and W ^(s) in (5.33).

5.3.2 7̂ 00 Sub-Optimal Controllers of Order ?% — pg

The existence of low-order Hoo suboptimal controllers depends on the solution 

of the two simultaneous m atrix equations, (5.34)-(5.35), subject to  an Woo-norm 

constraint, (5.38). In what follows we show how to find a solution m atrix X  

and a  suitable free param eter $ (a) to satisfy the two m atrix equations.
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The first equation (5.34):

Atj,X — X A  = J5̂ C*2

can be rather easily solved for X  E whereas the solvability of the second

equation (5.35):

Q Z - D ÿ C g  =  P

may be limited due to  the lade of freedom on F. In this subsection, we consider 

the special case of =  n — P2 in which C^ and D^ can always be found 

regardless of the structure of F.

A ssu m p tio n  5 .4  Assume tha t Cg E f^ill row rank.

To solve the problem for the case of =  n — pg, suppose th a t Cg takes the 

form

Cg = Ip2 Op2 X (n—P2)

Then, partition À  E conformally as

i  =
■̂ 11 .d.12

Agi Âgg

(5.39)

(5.40)

where A u : pg Xpg, Aig : pg x (n -  pg). Agi : (n -  pg) x pg, and Âgg : (n  — pg) x

(n -  pg).

Note from Lemma 2.6 th a t the pair (Âgg, Âig) is completely observable if the 

pair (Â, Cg) is completely observable.

Recall th a t we set =  n — pg, which will be the order of the low-order Woo 

suboptim al controller. Now suppose th a t X  E ^^id F  E W” 2̂xn

partitioned as

X  =  

F  =

Xi Xg

^  A

(5.41)

(6.42)
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where X i : { n - p 2) x p 2, X 2 : (n —p2)x (n -p g ) , Fi : mgXpg, andPg ; m 2X (n—pg).

Then, from (5.34), we have the following two equations:

A ^X i — X 1Â11 — X 2A 21 =  Bij) (5.43)

AÿXg — X 1Â12 — X 2Â 22 — 0. (5.44)

Equation (5.44) is equivalent to:

XgÂgg +  X 1 À1 2  =  AÿXg (5 .45)

As shown in Lemma 4.5, for any stable A^, there always exists a m atrix Xi 

and a nonsingular Xg which satisfy equation (6.45), provided the pair (A, Cg) 

is completely observable.

R e m a rk  5.5 The assum ption of observability of the pair (A, Cg) - and hence 

observability of the pair (Âgg, Âig) - can be relaxed when finding the solution 

m atrix X , since X  can also be found even when the pair (Â, Cg) is not completely 

observable. For details, refer to  Remark 5.9 later.

Having found X i and Xg, can be obtained from (5.43), and Cÿ and D^ can 

be com puted from (5.35) as

Cÿ =  FgX^^ (5 .46)

=  P g X ^ iX i-F i (6.47)

making use of (5.41)-(5.42).

Hence, we now have X , A^, B ^, C4, and D^ required for the realization (5.33), 

and can therefore compute an Hoo suboptim al controller of order n —pg, provided 

the Woo-norm constraint, ||^(s)||co <  7 , is satisfied.

W ithout loss of generality, the identity m atrix can be chosen as a candidate 

for Xg (i.e., Xg =  In-Pi)- III this instance, all the state-space matrices of

the  free param eter m atrix $ ( 5) can be found, in terms of an arbitrary m atrix
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X i e  by

Aÿ =  Âgg +  X iÂ ig  (5 .48)

B  ̂ =  A^Xi — X iÂ ii — Âgi (5 .49)

C  ̂ =  Pg (5 .50)

= % - P i  (5.51)

subject to  the stability of Aÿ. Hence, a solution m atrix X  and a suitable free 

param eter $ (s) to  the two simultaneous m atrix equations (5.34)-(5.35) are bo th  

characterized in term s of just X%, which can be chosen arbitrarily subject to 

the stability of A^. In addition, such a characterization of the parameters Aÿ, 

B^, Cÿ and D^ in terms of X i  may simplify the solvability of the Woo-norm 

constraint on $ (s) which we will discuss later in Section 5.4. Consequently, 

we have low-order Hoo suboptim al controllers of order n  — pg as stated  in the 

Theorem below.

T h e o re m  5.6: The generalized plant P{s) described by (5.^) has low-order

Hoo suboptimal controllers of order:

M o w  = n — p2

i f  Ô2 in (5.23) is fu ll row rank and i f  the Woo-Rorm constraint on $ (s) o f (5.38) 

is satisfied.

R e m a rk  5.7: In solving (5.44), Xg need not be the identity m atrix, as shown

in Lemma 4.5. In general, we need to  choose Aÿ as an arbitrary  but stable 

m atrix. Then, X i and Xg can be calculated from (5.45) and consequently B^, 

C4, and all depend only on A^. A^ is a suitable candidate if the resulting 

# ( 3) satisfies the Wco-norm constraint of (5.38).

An alternative solution to the two equations (5.34)-(5.35) is given in Appendix 

B, using an orthogonal canonical form as in (2 .21)-(2 .22).
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6.3.3 7̂ 00 Sub-O ptim al C ontrollers of O rder Less T h an

n - p 2

Recall th a t the order of W ^(s) is n^, which is the number of rows of the solution 

m atrix  X .  In this subsection, we consider the possibility of lowering the order 

of X ^ (s ) , th a t is, finding a lower n<p. The approach adopted in Subsection 4.3.3 

is largely used here.

Suppose the pair (Â, Ô2) is completely observable. Then the pair (Â, Ô2) is 

reduced to  the orthogonal canonical form (Aq, Co):

Ao =  M A M -^ =

A u Ai2 0

A21 A22 A23

-4-1/0—iji -41/0—1,2 4f/o—1̂ 3

4l/o,l M o,2 Aj/o,3

Co = N C 2M~^ z=\ X 0 0 • • • 0

0

0

0

4j/o-i,i.

(6.52)

(5.63)

as in Chapter 4.

Using the form (Ao, Co), the two equations (5.34)-(5.35) can be transformed 

into:

A^X — XAo — B^Co 

C éX  — DéCo =  F

(6.64)

(6.66)

where

X  =  XM-:^

Dÿ =  D ÿW -'

F  = P M - \

(6 .66)

(6.67)

(6.58)

(6.69)



Ch. 5. L O W -O RD ER SU BO PTIM AL CO N TRO LLERS 112

Assuming th a t the pair (Aq, Cq) is completely observable, we have the following 

Theorem which shows the possibility of lowering the order of K ^ (s ) ,  since 

may be reduced down to pa)- (This assumption is not restrictive. The 

case in which this assumption does not hold is discussed in Remark 5.9.)

T h e o re m  5.8 Equation (5.54) has fu ll row rank solutions X  G

P ro o f : The proof is similar to th a t of Theorem 4.8. H

From the above discussion it can be seen th a t if we set to be +  l^o-i^

• • •, n , then the corresponding solutions X  to  equation (5.54) may be found.

For an arbitrarily chosen can be obtained to satisfy (5.54), and the

corresponding C^ and can be found from (5.55). Using a similarity trans

form ation given by a nonsingular m atrix Tg, as in (4.51), such tha t

=

=

we can rewrite equation (5.55) as

0 0 0 I

1 0 ••• 0 0

0 0 • • 0 I
C^ ~D ^ =  F T 2

I 0 • • 0 0

So, if there exists an F  such th a t FT^ has the form

F T , 0 0

(5.60)

(5.61)

then  we can find C^ and to  satisfy (5.55), where * denotes a nonzero non

specified block m atrix. However, unlike the low-order stabilizing controller case 

in Chapter 4, there is little freedom on F  since F  =  î) ffC iM ~ ^  is almost 

completely determined by plant data. Although, the particular form of F  will 

exclude some choices of n^, we may still expect low-order Has suboptim al con

trollers of order less than  n  — pz-
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R e m a rk  5.9 In solving equation (5.54), we assumed the pair (Ao,Co) is 

completely observable. The case when this assumption is violated is now con

sidered. In this case, in (5.52) will be a zero block, as mentioned earlier

in Remark 2.7 of Chapter 2. Then, it can easily be verified by taking — 0 

th a t

X  — X i ■ ■ • Xuo-i 0%.x( (6.62)

will be a solution to (5.54), where X i, • • •, are obtained for a reduced-size 

pair (Ao, Co) by the same procedure as before, where

A„ =

Co =

All

Agi

Al2

A22

0

A23

-̂ z/o—2,1 2,2 -d-i/Q—2,3

•̂ Uo—1,1 -^1̂0—1,2 '^I'o—1,3

0

0

0

-d-i/ç—2,i/o—l
A j / j ,_ i , i /o _ i

Ip, 0 0 • • • 0 : P2 X (n -  L ) .

(5.63)

(5.64)

5 .4  TYoo-Norm C on stra in t on  $(g)

A sufiicient condition for the existence of low-order 'Has suboptimal controllers 

is the Tfoo-norm constraint on # (s) given in (5.38). T hat is, having found all the 

element matrices required for X ^ (s )  in (5.33), the 00-norm constraint on $ (s) 

has to  be checked. As we saw earlier in Chapter 2, Section 2.8, the following 

Lemma shows a connection between the TYgo-norm bound of a transfer function 

m atrix  and the existence of a positive definite solution X s  to  a certain ARE.

L e m m a  5.10 I f  the following A R E

(A* -  -b X^(A^ -

=  0 (5.65)
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has a positive definite solution X ^ , then A^ is stable and ||#(s)||oo <  7 , where

— 7^ip2 

S  ̂ =  •

In what follows, we propose some methods for finding a positive definite solution 

Xÿ to  ARB (6.65).

5.4.1 Search M ethod I

Since Aÿ, Bÿ, Cÿ and D^ are characterized in terms of X i as in (5.48)-(5.51), 

the existence of a positive definite solution matrix X ^  to ARE (5.65) depends 

on the choice of X%. Note tha t, from Lemma 5.10, the positive definiteness of 

X ^  guarantees the stability of Aÿ. This implies that X% can be chosen, w ithout 

considering the stability of A 4,, such th a t the solution X 4 to  ARE (5.65) is 

positive definite. So, by a search over X%, we may achieve the constraint of 

| |# ( 3) | |_  in (5.38).

To select an effective candidate X% as an initial point, we consider a result on 

the  00-norm  bound. It is known [6] th a t a lower bound 7 ;̂  and an upper bound 

'Yub on l|G(s)||oo, for G{s) = (A ,B ,C ,D ) ,  are given by

'fib = max{cTmog(jD),of}

■Jub =  cr.^ax(D) + 2 f 2 (^f
i=l

where a f  are the Hankel singular values of G{s). An interpretation from this 

is th a t the B -m atrix  can play an im portant role on the Tioo-norm bounds. We 

therefore attem pt to  make D 4, as small as possible and, using (5.51), select an 

initial X% as

X i =  FIFi . (5 .66)
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The following procedure is therefore proposed to find a positive definite solution 

X 4, to ARE (5.65).

s te p  1 : Set Xg =

s te p  2: Select an initial X i G as per (5.66).

s te p  3: Compute A 4,, B 4,, C4, and D 4, as per (5.48)-(5.51).

s te p  4; Solve ARE (5.65) for X 4,.

If X 4, > 0, stop.

If X 4, < 0, go to  step 2 to choose an alternative X%.

5.4.2 Search M ethod II

In Appendix B, the matrices A 4,, B 4,, C4, and D 4, are characterized in term s of 

X i. In particular, when Xg =  A 4, is given in (B.16) by

A a, = Ao22 +  X i Ao

w ith Ao22 and A023 fixed, and B 4,, C 4, and D 4, by (B.18)-(B.20), respectively. 

Hence, if A 4, is first chosen with some freedom in the left partition block (i.e., 

Ao22 +  X i), then X i can be decided correspondingly from the above equation. 

Bearing this fact and the stability requirement of A 4, in mind, a relatively crude 

search is proposed, in this subsection, as follows.

s te p  1 : Set X 2 =  J,

s te p  2 : Select an arbitrary  A 4, of the form:

A s = (^h{n—p2)xl2 -̂ o23

w ith a small number of a ,  say a  =  10~ .̂
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s te p  3: Com pute X ,  B^, C^ and Bÿ as per (B.17)-(B.20).

s te p  4: Solve ARE (5.65) for X^.

If Xÿ >  0, stop.

If Xÿ <  0, go to  step 2 to  increase a. (A reasonable upper limit on a. would be

a  sub optim al 7 , i.e., a  <  7 .)

5.4.3 An O ptim ization  M ethod

Alternatively, an optim ization technique may be adopted here. T hat is, to meet 

the requirements tha t 0 (g) G RHoo and |l#(g)||oo <  7 , we define 7% as

■ y i i - j - e  (5.67)

where e is a small positive number. We may then consider a set of constraints

(5.68)-(5.71) as below. Using the fact tha t a symmetric m atrix can be trans

formed to  a  diagonal one by an orthogonal transformation, we can try  to find an 

Xÿ and an orthogonal m atrix U such tha t X,^(:= U'^X^U) solves the following 

ARE:

-7 iX ÿ [/" 'B ÿ R ;'B ^(7 X ^  -  7 iZ/"'Cÿ =  0 (6 .6 8 )

and satisfies the following constraints:

X 4 =  d iag (zÿ ,i,- ..,% » ^) (5.69)

^  1 (5.70)

> 0. (6.71)

This is a standard  constrained optimization problem, for which various algo

rithm s may be applied.
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5.5 A  L ow -O rder S u b -O p tim al C ontroller  

D e sig n  A lgor ith m

In this subsection, we present a CAD algorithm for low-order Hoo sub optim al 

controller design, in which low-order controllers of order n — p 2 can be designed 

using the procedures described earlier in the chapter.

s te p  1 : Build a generalized plant P (s) as per (5.4), including weighting

functions where necessary.

s te p  2: F ind ■ymin such th a t

using reliable algorithms in, for example, Matlab and then select a suboptimal 

7  to  be 7  >  7mm.

s te p  3; Com pute all element matrices of Ka{s) in  (5.18), as per (5.19)- 

(5.26). This can be easily implemented using reliable algorithms in, for example, 

Matlab.

s te p  4: Compute À  and F  as per (5.36)-(5.37), and partition  À, Ô2 and F

as per (5.39)-(5.40) and (5.42).

s tep  5: Set X 2  =  In~v2-

t  Note tha t, as stated  in Remark 5.7, X 2 need not necessarily be the identity 

matrix.

s te p  6 : Select an arbitrary  X \,  and then compute A 4 , B 4 , C4 and D 4 as per

(6.48)-(6.61).

I t  Alternatively, as stated  in Appendix B, first choose A 4 as per (B.16) and 

then compute X ,  B 4 , C4 and D 4 as per (B.17)-(B.20).
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s te p  7: Solve ARE (5.65) for X ^.

If X 4 >  0, go to step 8 .

If X 4 < 0, go to step 6 to  repeat.

s te p  8 : Com pute a low-order Tioo suboptim al controller, AT^(s), as per (5.33).

The procedure described above is based on the given P (s) and the sub optimal 

7 , and thus modifications to  the procedure may be required, if necessary, in 

connection w ith the  choices of weighting functions and a suboptimal 7 .

5.6  A  R e la te d  P rob lem ; Low -O rder %  Sub- 

O p tim al C on troller  D esign

The aim of this section is to  show th a t the approach developed so far can be 

carried over to  the design of low-order %  suboptimal controllers.

Again consider P (s)  in (5.4) assuming B n  =  0 and B 22 =  0, i.e..

' A P i P 2 '

P(g) = c^ 0 B i2
B 21 0

(5.72)

The standard  ^ (L Q G )  design problem is to find a controller tha t minimizes 

the ?f2-norm of the transfer function from w to z, Tzw(s), where w represents 

a vector of zero mean white noise signals and z is used to  define performance 

objectives.

We review in this section the characterization of all stabilizing controllers K 2{s) 

of the %  suboptimal problem which satisfy ||7 ,̂u('S)||2 <  7  for some prespecified 

7 , Doyle et al. [18], and derive a reduced-order realization K l{s).

The following assumptions are made on P (s):
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A l .  (A ,B ijC i)  is stabilizable and detectable. 

A 2 . (A, B 2, C2) is stabilizable and detectable.

A 3.

A 4. P i

B 21

Cl Bi2 I — 

B ^ =  ^

0 I

Assumption A3 means th a t there is no cross weighting between the state and 

control input, and th a t the  control weighting matrix is the identity. Assumption 

A4 is dual to A3 and concerns how the exogenous signal w enters P{s): w 

includes both  plant disturbances and sensor noise, which are orthogonal, and 

the  sensor noise weighting is normalized and nonsingular.

Now define X 2 >  0 and I 2 ^  0 to  be the stabilizing solutions of the following 

Riccati equations:

X , :=
A -B g B f  

- C f C i  -A :r

- P i P f  - A

(6.73)

(6.74)

Having obtained X 2 and 3:2, define

and

Gc(a) :=

G f(s) :=

A +  B 2F2

C\ +  D 12F2

A +  H 2C2 P i +  R 2D 21

I 0

(6.76)

(6.76)

(6.77)

(6.78)

The following Theorem describes aU %  suboptimal controllers.
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T h e o re m  5.11 (Doyle et al. [18]) The family of all proper, real-rational 

stabilizing controllers K 2(s) such that ||T^u,||2  <  7  are given by

R2(g) =  F((M 2,0) (6.79)

for any 0 (s) G R H 2 such that | |0 (s)|H <  7  ̂— ( ||G cB i||| +  IIF2G/IH), where

A  4- B 2F2 H- H 2C2 - H 2 B 2 '

M2(g) = F2 0 I

- C 2 I 0

(6.80)

Let 0 (g) G 77.H2 in (5.79) have a state-space realization

0 (g) :=
'  Ag Bg '

Q Dg
(6.81)

where Ag G Then, in a similar manner to the Hoo suboptimal problem

case, as described in Section 5.3, we may obtain a reduced-order realization 

JiCJ(g) as

x ;(g )  =
Ag -H X B 2Cg Bg A X B 2Dg — X H 2

Cg Dg
(6.82)

if there exists a  m atrix  X  G satisfying the following two m atrix equations;

A g X -X ( A  +  H 2C2) =  -BgCg

CgX  +  D$C2 ~  F2.

(6.83)

(6.84)

So, it is obvious th a t the design of low-order H 2 suboptimal controllers can be 

achieved in a similar m anner to th a t developed above.

R e m a rk  5.12 The same argument can be applied to the  unconstrained H 2 

optim al state-feedback controller, which minimizes ||T ,,^||2 when the plant state 

is available for feedback, as defined in Rotea and Khargonekar [60, Theorem 2.6].
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6 .7  I llu stra tiv e  E xam p les

In this section, we present two examples to illustrate the results obtained in 

this chapter. In each case, we consider a weighted mixed sensitivity Hoc design 

problem of finding a low-order stabilizing controller K l^(s) such that

7W i 5
< 1 (6.85)

where S  := ( I  + is the sensitivity function, T  := G K l^{I -f- GK(^)~^ is

the complementary sensitivity function, and W{ (z =  1 , 2 ) are weighting func

tions used to tailor the solution to  meet design specifications. It is known, for 

example in [61], th a t the requirements for disturbance attenuation and robust 

stability can be readily handled by this formulation. In the standard configu

ration  of Figure 2.1, the problem has a generalized plant

(6.86)
Pll P12

P21 P22

- 7 W1G

0

I - G

This represents a  2-block Hoo problem.

5.7.1 Example 1: SISO Hydraulic Actuator Design

We will consider a SISO digital hydraulic actuator design example, taken from 

Chiang and Safonov [11]. The continuous time hydraulic actuator model G(s) 

is given by

9000G(g) =
g3-t-30g2 +700a 4-1000'

To design a digital control system, the following approach is adopted here;
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1 . Convert the continuous-time plant G(s) to the discrete-time plant G(z), 

by augmenting the plant w ith a zero-order-hold (ZOH) and including a 

sampler as shown in Figure 5.2.

2. Convert G{z) into the w-plane, see for example Franldin and Powell [24, 

Section 5.5].

3. Proceed w ith the design m ethod described in this chapter, as if it were 

in the s-plane, since control systems in the w-domain can be analyzed 

and designed using continuous techniques and then transformed back for 

discretization, [24].

4. After the design is done, convert the controller back into the z-plane via 

the inverse w-transform.

We omit step 4 in this example, and therefore the da ta  shown below are in the 

w-domain except when otherwise stated.

Z.O.H.

Figure 5.2: Digital controller by Z.O.H.

The model in the w-domain, G(w), will now be used in problem (5.85) w ith the 

weights as in [11], i.e..

=
0.01(6 -b 1)2

+ 1

and the same 7  given as 1.5.
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For this problem, we have n = 6 and P2 — I and thus =  n —p2 — 5. Therefore 

we generally expect to find a 6th-order controller as a “central” solution. In the 

following we derive a 5th-order controller, using the solution method described 

in Appendix B.

After finding the two equations corresponding to (5.34)-(5.35), we set n<j> =

P2 = 5, X 2 = Is and choose A^  = * Ao23 ] as per (B.16):

A s =

- 0.20  1 0 

0.06 -1 .9 8 E  +  01 1

0.09 2.33E +  02 -1.53F? +  02

0.04

- 0.10

-5.40E +  04 2.12.B +  04 -1 .5 3 S  +  02

2.78E +  01 -1.57.B +  00 -9 .2 0 E  -  03 -1 .5 2

We then find X , B^, C^ and D^ as per (B.17)-(B.20). This results in ||$(s)||oo =  
1.0565 (<  7 ). Hence, using (5.33) we can compute a 5th-order Hoo subopti
mal controller AT^(w) which is found to  be stable. The controller AT^(w) =  
{ A k r ,  B k r ,  C k r ,  % )  Is given by

Akr =

Bkr

Ckr
Dkr

-4 .0 7 E  +  02 - 1 .7 8 E - K 0 0  

-1 .2 6 £ ^ - |- 0 5  -8 .8 2 ^  +  02 

1 .1 5 £ ' +  06 8 .1 1 ^ -1 -0 3

1.39^7 +  08 8 .9 6 E - t - 0 5

- l .0 6 .B - b  07  -7 .2 4 E  +  04

2 . 6 3 A - 0 1

9 .1 5 S -b O O

-2 .3 2 E '-b 0 2

2.62^7 -  04

7 .7 9 Æ 7 -0 2

2.89157-01

2 . 8 3 A - 0 2  

8 .7 6 £ '- b 0 0  

-7 .99 .B  +  01

1.21Æ7-1-04 - 2 .3 4 A  +  02 - 9 .6 6 £ '- b 0 3  

6.83Æ74-02 6 .5 4 £ ' +  00 7.34157-4-02

3 . 2 2 B - 0 1  1.01Æ74-02 - 9 . 2 9 B 4 - 0 2  - l . l l E - b 0 5  8 .4 9 B  -b 03 

-3 .6 9 ^ 7 -1 -0 5  - 2 .5 1 £ 7 -h 03 2.37157 +  01 2 .2 7 Æ 7 -0 1  2 .5 5 B  +  01

294.58.

The poles of the closed-loop are at

{-364.24, -332.69, -202.08, -300.00, -14.38 ±  ;19.86, 

-14 .10  ±  ;7.40, -1 .00  ±  jO.0000005, -1.53}

and the 77oo-norm of the cost function is

| |J i ( P ,J s : i ) |U  =  0.9646

which is obviously less than  the prescribed value of 7  =  1.5.
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5.7.2 Example 2: MIMO Fighter Design
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In this subsection we consider a MIMO fighter design example, taken from Sa
fonov and Chiang [61]. The plant is the 2-input 2-output HIM AT experimental 
aircraft and is unstable. The longitudinal dynamics of the aircraft (trimmed at 
an altitude of 25000 ft and a speed of 0.9 Mach) are modelled by the state-space

description G{s) =
' a .

D ,

* - 2 . 2 5 6 7 £ ' - 0 2 -3 6 .6 1 7 0 -18.8970 - 3 . 2 0 9 0 ^  +  01 3.2509 - .7 6 2 6 0 0 ‘

9.2572Æ7-05 - 1 .8 9 9 7 .9831 - 7 .2 5 6 2 Æ 7 - 0 4 - .1 7 1 0 - .0 0 0 5 0 0

1.2338Æ7-02 11 .7200 - 2 .6 3 1 6 8.7582157-04 -3 1 .6 0 4 0 22 .3960 0 0

0 0 1.0000 0 0 0 0 0

0 0 0 0 - 3 0 .0 0 0 0 0 30 0

0 0 0 0 0 -3 0 .0 0 0 0 0 30

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 _

The singular value design specifications for this example are as follows:

(1) Robustness specification: -40 db/decade roll-off and at least -20 db/decade 

a t 100 rad/sec.

(2) Performance specification: Minimize the sensitivity function as much as 

possible.

The weighting functions Wi(s) and ^ ^ (s )  are taken as

W iW  =
s  -|- 0 .01

W2(s) =  

from [61] with 7  =  16.8.

1000
1 0 

0 0.0005s+  1

W ith  these weightings, the order of the generalized plant is eight. Thus, an 

8 th-order controller arises from a “central” solution, while we can generate a
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6th-order controller since = n ~  p2 = 8 — 2 = 6 . As in Example 1, after 

deriving the two equations corresponding to (5.34) and (5.35), we set = 6 , 

X 2 = le and choose A^ as

A s  =

.0050 0 1 0 0 0

0 -.0050 0 1 0 0

0 0 —1.05Æ7 +  01 6.84E -  03 1 0

0 0 7.40E 4- 03 -6 .7 1 E  +  00 0 1

0 0 - 3 .8 6 E - 0 1  3.51E

0 0 5.91E: -  01 -1 .6 9 E

05 - .363  -.0247  

04 1.210 -.1620

we then find X , B ^, C^ and D^, for which we have ||$(s)||oo =  0.9790 (<  7 ). 
Hence, we can compute a 6th-order Hoo sub optimal controller X ^ (s)  which is 
found to  be stable. The controller A"^(s) =  {Akr, Bkr, Ckr, Dkr) is given by

Akr

Bkr =

Ckr =

- 2 . 6 5 9 S  +  3 1 .576  - 1 . 1 0 9 g + l - 8 . 2 2 4 g  -  3 - 1 .5 6 1 g + l 2.479g + 0
- 1 .0 6 4 A  +  6 595 .8  - 2 .5 1 8 g  +  3 -6 .8 5 0 g  -  0 - 3 . 7 7 3 g  +  3 5 .6 4 6 g  +  2

-7 .6 9 0 jB  +  4 4 6 .4 4  - 4 . 1 7 3 g  +  2 - 1 . 1 9 0 g -  1 - 5 . 1 1 4 g  +  2 8 . 2 2 2 g + l

- 1 .3 1 0 £ ' +  7 6 .3 4 4  - 6 .8 1 6 A  +  4 - 1 . 5 8 5 g + l —9 .3 9 6 g  +  4 1 .5 1 6 g  +  4

4 .8 9 9 A  +  4 -29 .58  2 .5 8 5 g + 2 8 . 0 7 0 g - 2 3.257g +  2 - 5 .2 3 5 g + l
-3 .6 3 0 jB  +  4 21 .90  - 1 .9 0 2 g + 2 - 6.194g - 2 - 2.393g + 2 3 .8 4 2 g + l

1.843JB +  2 2.363g +  3 '

1.015g +  4 1 .0 4 8 B  +  6

7 .0 0 6 g  +  3 6 .6 5 6 g +  4

1 .6 0 5 g  +  6 1 .0 7 3 g  +  7

- 4 , 4 2 6 g  +  3 - 4 . 2 3 8 g  +  4

3 .1 9 9 E  +  3 3 .1 5 1 g +  4  .

2 .9 7 2 g  +  2 - 0 .2 0 5  3 . 2 7 0 g + l - 2 .8 5 1 g - 3 3 . 7 9 1 g + l -6 .3 0 6 g  -  1

-2 .7 2 4 g  +  3 1.608  - 1 . 1 9 4 g + l - 9 . 3 1 4 g - 3 - 1 . 5 5 1 g  +  2 2.457g +  0

- 1 . 6 4 8 g  +  2 -8 .4 9 8 g  + 1

4 . 6 5 6 g + l 2 .6 0 5 g  +  3
Dkr =

The closed-loop poles are positioned at

{-2001.30, -26 .28 , -28 .93, -6 .51 , -20 .53  ±  jl9 .93 , -21 .86 ±  ;18.45, 

-0 .6 9  ±  jO.25, -0 .259, -0.021, -0 .010, -0.010} 

and the Tfoo-norm of the cost function is found to be

| | W , % ) I I «  =  0.9775  ( < t ).
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5.7.3 Analysis and Comparison
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Both examples show th a t the stability property of the closed-loop system is 

preserved when the Hoo sub optim al controllers are replaced by the low-order 

controllers derived using the methods of this chapter. However, unlike the 

low-order stabilizing controller case in Chapter 4, the coupling in the Riccati 

equations (5.11)-(5.12) breaks the separation principle for the low-order Hoo 

sub optim al controller case.

In both  examples, for the same P{s) and # (s), we compute the (n  +  n<^)th- 

order controller Koo(s) as per (5.32) and then examine the normalized Hankel 

singular values of Koo(s). These are given in Table 5.1. The results exhibit 

clearly th a t the low-order controllers obtained in the previous subsections are 

minimal realizations of the “formal” order controllers, in the sense of balanced 

truncated  model reduction on the controllers.

Example 1 (n =  6 , =  5) Example 2 (n =  8 , =  6 )

l.OOOOE-00 1.4498E-01 

9.0051E-02 3.3346E-02 

2.5656E-04 5.3015E-12 

1.7450E-14 1.0963E-15 

7.2240E-16 3.7094E-17 

4.2444E-20

l.OOOOE-00 6.6079E-02 

2.9207E-02 1.1058E-02 

2.3364E-03 2.6847E-04 

9.5744E-06 2.9367E-09 

9.2848E-10 7.9077E-10 

4.8605E-10 7.6090E-11 

7.3000E-13 0

Table 5.1. Normalized Hankel Singular Values of Koo{s)

W ith  the same P (s)  bu t w ith $ (s) =  0 we have computed “central” controllers 

of order n, i.e., 6th-order for Example 1 and 8th-order for Example 2, using 

M atlab files hinf.m  (in the Robust Control Toolbox) and hinfsyn.m  (in the 

/i-Analysis & Synthesis Toolbox). The frequency responses of these “central” 

controllers and the controllers given by formulae (5.32)-(5.33) are shown in
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Figure 5.3 for Example 1 and in Figure 5.7 for Example 2. As seen in both 

figures and as expected theoretically, bo th  controllers generated by formulae

(5.32)-(5.33), although having different sizes, have exactly the same frequency 

responses.

Figure 5.4 for Example 1 and Figure 5.8 for Example 2 show th a t, although the 

“central” controllers cause a certain roll-off at high frequency, both  controllers 

by (5.32)-(5.33) make the cost flat over frequency. On the other hand, both 

figures show th a t, since the cost generated by (5.33) is the same as th a t by

(5.32), the closed-loop performance as well as the robustness of the closed-loop 

stability has not been degraded by the use of the low-order controller (5.33), 

instead of the “formal” order controller (5.32), in the feedback system.

Figures 5.5 and 5.9 show the singular values of the sensitivity functions, and 

Figures 5.6 and 5.10 the singular values of the complementary sensitivity func

tions.

5.8  C on clu d in g  R em ark s

This chapter has considered the problem of reducing the order of Hoo sub optim al 

controllers, i.e., stabilizing controllers which satisfy an Tfoo-norm constraint on a 

prescribed closed-loop transfer function. Starting from a param etrization (5.17) 

of all solutions to  the general Hoo sub optim al control problem, we first derived 

a low-order realization (5.33) on the assumption of the existence of a solution 

m atrix  X  to two simultaneous m atrix equations, (5.34)-(5.35), which are similar 

in structure to  those in Chapter 4 but are to be solved subject to  an Tf^^-norm 

constraint, (5.38).

The aim was to  eliminate any unobservable modes in the “formal” order of 

controllers given by (5.17). We then showed how to solve the two m atrix equa
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tions using an orthogonal canonical transformation. We further showed th a t 

the Tfoo-norm constraint can be tackled by checking the positive definiteness of 

a solution m atrix  to  a certain ARE (5.65). We showed, as a  result, th a t 

the order of the low-order Hoo sub optimal controllers may be equal to  n — p 2 

(or less). The algorithm developed in the chapter was summarized and demon

strated  by two numerical examples. The examples showed tha t the low-order 

Hoo suboptim al controllers preserved the closed-loop performance as well as 

closed-loop stability, w ithout any degradation.

It should be noted th a t the existence of a positive definite m atrix X ^  to ARE 

(5.65) depends heavily on the choice of the m atrix A^ which can be arbitrarily 

chosen as a stable m atrix. It is also noted th a t the dual approach of eliminating 

the uncontrollable states to  find a set of low-order Hoo suboptimal controllers 

can be carried out in a similar manner.
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S.V.S o f Controllers

(-) Formal-order controller 
(*) Low-order controller 
(-.) Central controller by hinf.m 
(—) Central controller by hinfsyn jn

I

10-1

Frequency (rad/sec)

Figure 5.3: Singular Values of Controllers for Example 1.

S.V.s of Cost Functions

-4 -

I
-10 (-) Formal-OTder controller 

(*) Low-order controller 
(-.) Central controller by hinf jn  
(—) Central controller by hinfsyiun

-12

-14

10-1 101

Frequency (tad/sec)

Figure 5.4: Singular Values of Cost Functions for Example 1.
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20

10

S.V.s of Sœsitivity Functions and 1/Wl

-10

-20 -

-30

•40 -

I I I I I n i l  I I I I I n i l  T '

W  l/W l Weighting 
+ >7 (-) Fœmal-order controller

(*) Low-order controller 
(-.) Central controller by hinf.m 
(—) Central controller by hinfsyn.m

M -80

-100

-120

-140

5Q* * 1 i a I mt t i t l.t Jtll I 1 ■ ■ ■ uti ■ I . ■ . É m . m
1 0 - :  1 0 - 1  1 0 0  I Q I  1 0 2  1 Q 3  1 Q 4

Frequency (rad/sec)

Figure 5.5: Sensitivity and Weighting for Example 1 . 

S.V.s of Complementary Sensitivity Functions and 1/W3
201 I' I 1111 III I I 111 nil

0 

-20 

-40 

-60-

(+) 1AV3 Wei^ting
(-) Formal-order controller
(*) Low-order controller
(-.) Central controller by hinf jn
(—) Central controller by hinfsyiun

Frequency (rad/sec)

Figure 5.6: Complementary Sensitivity and Weighting for Example 1.
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S.V.s of Controllers
100

(-) Formal-order controller 
(*) Low-ordo’ controller 
(-.) Central controller by hinf jn 
(—) Central controller by hinfsyn jn

1

10- ' 10° 10 '

Frequency (radAec)

Figure 5.7: Singular Values of Controllers for Example 2.
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Figure 5.8: Singular Values of Cost Functions for Example 2
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S.V.s of Sensitivity Functions and 1/Wl

I -20

(+) 1/Wl Weighting
(-) Formal-order controller
(•) Low-order controller
(-.) Central controller by hinf.m
(—) Central controller by hinfsyn.m

4 0 .+  +  + + +

-60

-% 3 10-1 10*

Frequency (rad/sec)

Figure 5.9: Sensitivity and Weighting for Example 2.
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-200
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Figure 5.10: Complementary Sensitivity and Weighting W3  ̂ for Example 2.



C hapter 6 

Low-Order R obust Sub-O ptim al 

Controller D esign

6.1 In tro d u ctio n

An im portant development in robust control system design was the robust sta

bilization 'problem of Glover and Mcfarlane [28] in which uncertainty is modelled 

by norm  bounded perturbations on the factors in a normalized coprime factor

ization of the plant. This method was enhanced by McFarlane and Glover [47] 

to  meet specifications on performance, by combining the robust stabilization 

problem with classical loop shaping techniques. The method was term ed the 

Loop Shaping Design Procedure (LSDP) and has been used to great effect on 

the design of controllers for a number of real problems, e.g., Hyde and Glover 

[33], McFarlane and Glover [47], Walker et al [72].

However, the order of the resultant controller is likely to be “high” , i.e.,

W  <  deg(G) -b 2deg(W) H- deg($) 

where G{s) is the nominal plant, W (s) is the weighting function and $ (s) is

133
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a stable free param eter. For designing low-order controllers, model reduction 

techniques can be applied to  the stable coprime factors of either the full-order 

plant or the  full-order controller. For examples, see McFarlane et al. [48] and 

Bongers and Bosgra [5].

In this chapter, we present a different approach to the design of low-order robust 

Tfoo controllers using LSDP. It is similar in spirit to the methodology developed 

in C hapter 4 for stabilizing controllers and in Chapter 5 for Rco sub optimal 

controllers. We will show th a t we can derive low-order robust controllers of 

order N'low  ̂ where

Aflow =  deg(G) -t- 2deg(W) -  p

by removing unobservable (or uncontrollable) states via a suitable choice of 

$ (s), where p  is the number of plant outputs.

The chapter is organized as follows. In Section 6.2, the normalized LCF robust 

stabilization problem and its op tim al/suboptimal solutions are reviewed. The 

results are then used in  Section 6.3 to construct a closed-form expression, (6.23), 

of low-order robust suboptimal controllers, which can be easily implemented 

provided a solution to  two equations, (6.24)-(6.25), exists and an Tfo^-norm 

constraint, ||$(s)||oo <  1, is satisfied. The methodology used in Chapter 5 is 

used here w ith some slight modifications. In Section 6.4, the LSDP is described 

in some detail, to show how low-order robust suboptimal controllers can be 

designed in a  straightforward manner. Section 6.5 presents a CAD algorithm 

for the approach. An illustrative numerical example is given in Section 6 .6 . 

Conclusions are given in Section 6.7.
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6.2  T h e  N orm alized  L C F R ob u st S tab iliza tion  

P ro b lem

In this section, the normalized left coprime factorization (LCF) robust stabi

lization problem and its optim al /  sub optimal solutions are sum m arized.

As we saw in Chapter 2 , Section 2.6, the plant model G{s) can be factored as

G(a) =  M (3) # (a ) (6 .1)

and the factorization (6.1) is said to be a normalized LCF of G(s) if M (s), iV(s) € 

RHcc, and

M M * -t- N N *  =  I . (6 .2)

Let G(s) — (A, B , C) e  be a strictly proper system having rig states.

Then, a  state space construction of a normalized LCF of the strictly proper 

system G{s) is given by

A ^ H C B H

C 0 I

where

H  =  ~ Z C ^

(6.3)

(6.4)

and the m atrix 2̂  >  0 is the unique stabilizing solution to the algebraic Riccati 

equation

A Z  +  Z A ^  -  ZC i^C Z  +  B B'^ = 0. (6.5)

Consider now the configuration of Figure 6.1 in which a perturbed model C?a (-s) 

is defined as

(ja(s) — (M -f- A ^) ^{N -|- Ajv) (6 .6)
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Figure 6 .1 : Coprime Factor Robust Stabilization Problem, 

where Am, A^v e  TZHoo-

To maximize the class of perturbed models defined by (6 .6 ) such tha t the con

figuration of Figure 6.1 is stable, we need to  find the controller K {s) which 

stabilizes the nominal closed-loop system and which minimizes 7  where

7  =
K

I
(6.7)

This is the problem of robust stabilization of normalized coprime factor plant 

descriptions as introduced in Glover and McFarlane [28]. From the small gain 

theorem, the closed-loop system will remain stable if

A n

A m
<  7" (6.8)
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6.2.1 O ptim al Solutions

The minimum value of 7  for all stabilizing controllers K {s) is 

and is given in [28] by

7o =  (1 - U - 1/2

(6.9)

(6.10)

From [28]

II [ # , M ] 11̂  = A __(^y(f+ ZF)-^)

where the  m atrix F  >  0 is the unique stabilizing solution to  the ARE

+  FA -  FBB^^F +  =  0. (6.12)

(6 .11)

Hence from (6.11), it can be shown th a t the optimal value 7  ̂ can easily be 

com puted by

7c =  (1 +  A „ „ ( z r ) ) V “ (6.13)

without any iteration. In the following subsection, we will consider the associ

ated suboptim al control problem and outline a characterization of all subopti- 

mally robust controllers together with a “central” suboptimal controller.

6.2.2 R obust S ub-O ptim al Controllers

A related problem to the optim al Hoo problem posed in Subsection 6 .2.1  is the 

suboptimal problem of obtaining the set of stabilizing controllers K {s)  such that

K

I
(6.14)
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where 7 (>  %) is some prespecified tolerance level for the allowable uncertainty.

A state-space characterization of all suboptimally robust controllers for the 

normalized LCF robust stabilization problem is given in [28]. T hat is, all sub

optimally robust controllers Knicf{s) such tha t (6.14) is satisfied for 7  >  7 o are 

given by a chain scattering description:

Rnlcfi^) ~ (Tii^ 4- Ti2)(Z,2l$ + L22)  ̂

for any $ (s) G with ||$(3)||oo <  1 , where

T il T i2 

T21 L 22

A  + B F

F Im 0

C 0

where

f  =  c f - i y ^

F  =

Q =  ( l - 7 3 ) f *  +  y 2 .

(6.15)

(6.16)

(6.17)

(6.18) 

(6.19)

R e m a rk  6.1 The “central” suboptim al controller which corresponds to 

$ ( 5) =  0 is given by

A  + B F  + 'y^Q -^Z C ^C

B ^ Y 0
(6.20)

Remark 6.1 above shows th a t a “central” suboptimal controller is synthesized 

by the solution of two A RE’s, (6.5) and (6.12), without an iterative search on 

7  which is normally required to solve problems.
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6 .3  Low -O rder R o b u st S u b -O p tim al C ontroller

D esig n

From our point of view in controller size reduction, it is noted th a t the character

ization, (6.15), of all suboptimally robust controllers involves a free param eter 

m atrix  # (s)  in a  chain scattering description, which will play a  key role in 

deriving low-order robust controllers in this chapter.

Let $ (s)  E in (6.15) have a state-space realization

B 4,
$(«) := — (6 .21)Gÿ Dfj)

where A^  G is stable. Then, substitution of (6.16) and (6.21) into (6.15)

results in the full-order controller of the form:

(6 .22)
Kail Kbi '

Ka22 Kb2

.  Kci Kd _

where

= A +  B F  4- f

=

Ka21 =

= Aÿ

=

=

TTci = F  4-

Ko2 =

Kd = —̂ T>0 .

Note from (6 .22) th a t the feedback controller Knicf(s) will have the “formal”
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order:

d e g ( K n i ^ f )  =  Mg +

140

As in Chapters 4 and 5, the realization of (6 .22 ) can be reduced via a state 

sim ilarity transform ation into the following low-order form, which we refer to 

as a lo w -o rd e r  r o b u s t  su b  o p tim a l co n tro lle r:

=

(6.23)

if there exists a m atrix X  G satisfying the following two m atrix equations:

where

A ^X  — X À  — B^C  

=  F

Â =  A +  B F  +  7^Q-:^BF +  7^Q-:^ZC^C 

C  =  )8C.

(6.24)

(6.26)

(6.26)

(6.27)

Again, in (6.23) has an order of at most

deg(F";,,y) =

which is obviously less than  the “formal” order of Knicfi^) of (6 .22).

6.3.1 Two M atrix Equations

It is not surprising to see th a t the two equations (6.24)-(6.25) are similar in 

structure to (5.34)-(5.35), and thus can be solved in a similar manner. We 

therefore leave out the details and state the following Theorem.
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T h e o re m  6.2 The plant G(s) described by (6.1) has low-order robust subop

timal controllers of order:

-  P (6.28)

i f  C  in (6.27) is fu ll row rank and i f  the Hoo-norm constraint of H$(s)|loo <  1 

is satisfied.

Note tha t, since F  in (6.25) has no freedom at all, the possibility of further 

reduction in controller size may not be expected from our algorithm developed.

6.3.2 T^oo-Norm Coi^traint on ||#(8)||oo

The Tfoo-norm constraint of ||#(s)||oo <  1 required in the characterization (6.15) 

can also be tackled in the same manner as in Section 5.4, w ith 7 = 1 .

6 .4  T h e L oop  Sh aping D esig n  P roced u re

Before describing a CAD algorithm for low-order robust controller design, we 

will first see, in this section, how the attractive robust stabilization problem 

can be enhanced to  give a reliable multivariable loop shaping design procedure. 

Our m ethod for designing low-order robust stabilizing controllers can be applied 

after loop shaping and therefore can be incorporated in the LSDP.

The classical loop shaping approach to  control system design aims to achieve 

certain specifications on the closed-loop system by selecting a controller which 

appropriately shapes the m agnitude of the open-loop transfer function. It has 

been applied to industrial systems over several decades and, for SISO systems 

and loosely coupled systems, the approach has worked well. But for tru ly  

m ultivariable systems a  reliable generalization of the approach has only recently



Ch. 6. LO W -O RD ER R O BU ST  CO N TRO LLERS IN  1-DOF LSDP  142

emerged. Based on the idea th a t a satisfactory definition of gain (range of gain) 

for a transfer function m atrix is given by the singular values of the transfer 

function m atrix, Doyle and Stein [19] in the early 1980’s showed how the classical 

loop shaping ideas of feedback design could be generalized to  multivariable 

systems. The term  multivariable loop shaping is now widely accepted to mean 

the shaping of singular values of appropriately specified transfer function matrix, 

Postlethwaite and Skogestad [58].

Multivariable loop shaping is in general non-trivial. A satisfactory loop shaping 

design procedure in conjunction with Tfoo control methods was recently devel

oped by McFarlane and Glover [47]. In this the normalized LCF robust sta

bilization problem described in Section 6.2 is extended to include performance 

requirements. The resulting design procedure will be called the one degree- 

of-freedom loop shaping design procedure (1-DOF LSDP), and is outlined as 

follows:-

1. The nominal plant G{s) is modified using a pre-compensator W i(s) and /o r 

post-com pensator W2(s), so th a t the shaped plant

G, =  WizGWi (6.29)

has desired open-loop singular values. (See Figure 6.2-a)). At low fre

quencies, the open-loop gains should be made large enough for good dis

turbance rejection and command following, while at high frequencies the 

loop gains should be made small enough to provide robustness and to 

reduce the effects of sensor noise. Further, the open-loop singular values 

can be given a particular cross-over frequency keeping in mind the desired 

closed-loop bandwidth and tim e response requirements. Now, define

Us

Ug

'̂ W2

=  deg(G.)

=  deg(G)

=  deg(ITi) 

=  deg(H^).
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Therefore

Us = ng-h +  Muc (6.30)

represents the order of the shaped plant.

2 . A feedback controller, Ks,nicf(^)j for the shaped plant (?s(s) is then syn

thesized which robustly stabilizes the normalized LCF of Gg(s), as shown 

in Figure 6.2-b):

G. =  (6.31)

The formulae given in (6.15) for an optimal or suboptimal controller (given 

7 ) can be applied to  Gs(s) to  get the “formal” order controller Ks,nicf(s).

From Ks,nlcji^)j ^ low-order robust sub optimal controller, can

be obtained. Note, from (6.22) and (6.30), tha t Ks,nicf{s) will have a

“formal” order:

deg(JfgjTi/c/) — T (6.32)

while the low-order robust suboptimal controller F^,nky(^) will have an

order:

(6.33)

as predicted by Theorem 6.2.

3. The final feedback controller, for the plant G(s) is then con

structed by simply combining the fuU-order feedback controller Ks,nicf(s) 

for the shaped plant Gs(s) w ith the weights to give

Kf,nlcf — WiKs,nlcfW'2 (6.34)

as shown in Figure 6.2-c). Similarly, the final low-order feedback con

troller, F y  wjgy(a), for the plant G(s) is given by

(6.36)
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with order:

=  (M, - p )  +

=  +  2(n«;i +  ) — p (6 .36)

 . AfloTjj.

Essentially, w ith the 1-DOF LSDP, the weights W i(s) and TF2(.s) are the design 

param eters which are chosen both  to  shape the open-loop singular values and to 

ensure th a t the optim al value jo  is not too large (usually less than  4). A large 

value of 7 o indicates th a t the specified singular value shapes are incompatible 

w ith robust stability requirements. The choice of suboptimal 7  is another design 

param eter for the low-order robust sub optimal controller design and is closely 

related to the  77oo-norm constraint, ||$(s)||oo <  1 .

6.5  A  Low -O rder R o b u st C ontroller D esig n  Al-

In this section, we present a CAD algorithm for low-order robust suboptimal 

controller design, summarizing the procedure described above.

s te p  1: Choose weightings, W i(s) and 14/2(5), to compensate the open-loop

plant G{s) so th a t the shaped plant Gs{s) has singular values of desired shape.

s te p  2: Com pute as per (6.13).

If 7o <  4, go to  step 3.

If 7 o >  4, repeat step 1 to  choose suitable weights, 

s te p  3: Select a sub optimal 7  such th a t 7  >  7 .̂

s te p  4: Com pute F  and Q as per (6.17)-(6.19).
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s te p  5: Compute A  and C  as per (6.26)-(6.27), and partition the pair (Â, C)

as in  (5.39)-(5.40) of Chapter 5.

s te p  6 : Set X 2 =  In-p-

I Note tha t, as stated in Remark 5.7, X 2 need not necessarily be the identity 

m atrix.

s te p  7: Select an arbitrary  X i, and then compute A^, C^ and D^ as per

(5.48)-(6.61).
f t  Alternatively, as stated in Appendix B, choose first A^  as per (B.16) and 

then compute X ,  B^, C^ and D^ as per (B.17)-(B.20).

s te p  8 : Solve ARE (5.65) for X ^, w ith 7 = 1 .

If X ^  > 0, go to  step 9.

If Xÿ <  0, go to  step 7 and repeat.

s te p  9: Compute a low-order robust suboptimal controller, XJ_„;^y(s), as per

(6.28).

s te p  10: To obtain the final low-order feedback controller, ATJ ̂ ^^^(s), pre/post

multiply X ”^cy(s) by the weighing functions as in (6.35).

The procedure described above is based on the given weighting functions and 

the sub optim al 7 , and thus modifications to the procedure may be required. 

For example, if one desires to improve the design, then he/she can modify the 

weighting functions in step 1 and repeat the design procedure; if one fails to 

find a positive definite solution to ARE (5.65) during steps 7 and 8 , the selected 

sub optim al 7  in  step 3 should be increased.
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6.6 Illustrative Exam ple
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In this section a numerical example for a SISO flexible spacecraft design is 

described to  illustrate the results of the chapter.

The system is a satellite w ith two highly flexible solar arrays attached, as con

sidered in [47]. The plant model is described in state-space form by

X = A x  -f- B u  -j- B v  

y — C x

where u is the control torque (N m ), a is a constant disturbance torque (iVm), 

y  is the roll angle measurement (rad) of the satellite, and

' A B  ’

C D

0 1 0 0 0

0 0 0 0 1.7319 X  10-®

0 0 0 1 0

0 0 —w^ 3.7869 X 10-"̂

1 0 1 0 0

where w =  1.539 rad /sec is the frequency of the flexure mode, and (  =  0.003 is 

the flexural damping ratio.

For the  loop shaping procedure, weighting functions are chosen to  be

c -L  0  4-
W 2{s) =  10000 X

and W i(s) =  I , as in [47]. Then, we have =  5 and p =  1, and thus =  4. 

The optim al value of 7  is then obtained as jo  =  2.34 using (6.13) and the 

“central” suboptim al controller of order 5 is obtained using (6.20).

We select a suboptim al 7  =  3 (>  7 o), and find all the element matrices re-
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quired for the low-order robust suboptimal controller, by choosing an as

' -0 .0510 1.0000 0.0000 - 0.0000

A/f, —

0 -0 .5222 1.0000 0.0000

0 -1.6359 0.0481 1.0000

0 -0.0018 -0.0181 -0.3912

Then, the Tf^oo-norm constraint is satisfied with | |$ ( s ) m  =  0.9763. So, using 

the realization (6.23), a low-order robust suboptimal controller of

order 4 is computed as

k :s,nlcf{s) =

-3.6961 0.5004 -0.0170 0.2405 -0.0057

2.4283 -0 .1894 1.0113 -0.1602 0.0028

5.7072 -0.8537 0.0747 0.6235 0.0086

-0.0427 -0.0076 -0.0183 -0.3884 0.0001

-1347.9 -184.80 -6.3000 88.900 -1.8373

The normalized Hankel singular values of Ks^nicfi^) of (6.22) are given by Table 

6.1  below:

1.0000 0.9990 0.0125 0.0021  0.0000

0.0000 0.0000 0.0000 0.0000

Table 6.1. Normalized Hankel Singular Values of Ks,nicf{s)

and justify the controller size reduction in the sense of balanced truncation.

Figures 6.3 to  6.5 show step responses for the two controllers, while Figures 

6.6  to 6.8  show frequency responses. All the figures indicate th a t the low-order 

suboptim al controller can replace the “central” suboptimal controller, w ithout 

any serious deterioration in performance. In particular. Figure 6.7 compares 

sensitivity measures and indicates th a t the closed-loop performance can be well 

achieved by a  low-order robust suboptimal controller. In Figure 6 .8 , singular 

values for the  shaped and achieved open-loop systems are shown to be closely 

compatible even when a low-order robust suboptimal controller is used.
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6 .7  C on clu d in g  R em ark s

In this chapter, we addressed controller size reduction in the 1-DOF LSDP. 

The controllers for the 1-DOF LSDP are characterized in terms of the shaped 

plant Gs(s) and a free param eter # (s). However, the order of a  controller using 

the 1-DOF LSDP is likely to be “high” . To reduce this order, by removing 

unobservable states via a suitable choice of $ (s), we have shown how to derive 

low-order robust suboptim al controllers of order:

Mow =  deg(G) +  2deg( W) -  p.

A numerical example was given to illustrate how a low-order controller could 

replace the “central” controller of order:

Mcentrai =  deg(G) -f 2deg(W)

without any serious deterioration in performance.
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a) The Shaped Plant

b) Tioo Compensation

c) F inal Controller 

Figure 6.2: The 1-DOF Loop Shaping Design Procedure.
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C hapter 7 

A n E xtension  to  2-DO F U qq 

Controller D esign

7.1 In tro d u ctio n

To introduce performance objectives into the control problem, a two- degree of 

freedom (2-DOF) scheme is often employed, e.g., Youla and Bongiomo [74]. 

Limebeer et al. [43] have recently enhanced the model matching properties 

of the 1-DOF LSDP by extending the design procedure to  a 2-DOF scheme. 

The feedback part of the controller is designed to  meet robust stability and 

disturbance rejection requirements in a manner identical to  the 1-DOF LSDP. 

An additional prefiîter part of the controller is then introduced to  force the 

response of the closed-loop system to follow tha t of a specified model M o ( s ) .  

However, the order of the resultant controller is again likely to be “high” , i.e.,

AT <  deg(G) +  deg(Mo) + 2deg(W) -I- deg(#)

where G{s) is the nominal plant, Mo{s) is a reference model, W (s) represents 

the weighting functions and $ (s) is a free stable parameter.

153
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In this chapter, we review the 2-DOF Hoo design procedure of [43] and show 

th a t the  methodology presented in previous chapters can be extended to  this 

2-DOF setting to reduce the controller order down to;

Mow =  deg(G) 4- deg(Mo) +  2deg(W) - p g - n i m

where pg is the num ber of outputs of G{s) and is the num ber of inputs of

The chapter is organized as follows. In Section 7.2, the 2-DOF Hoo design is 

summarized. A CAD algorithm for deriving low-order 2-DOF Tioo suboptim al 

controllers is described in Section 7.3.

T.2 A  2-D O F  D esig n

The control scheme for the 2-DOF Hoo design is shown in Figure 7.1. The 

reference model Mo(s) defines the desired response of the output. Although 

shown in Figure 7.1 it is only part of the problem formulation and not the 

controller implementation.

If the 2-DOF controller K (s)  is partitioned as K  

signal is given by

the control

(7.1)

in which is the prefilter, K 2 is the feedback controller, y is the measured 

ou tput of the system and /3 is related to  the reference input r  as described 

below. The prefilter is included in the system to ensure tha t

(7.2)

where Ty/s is the closed-loop transfer function mapping /3 to y . Exam ination of
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GA(a]

Figure 7.1: The 2-DOF Hoo Controller Design Scheme. 

F igure 7.1 shows tha t

u

y = p{I -  G IU y^G K ^

z

(7.3)

in which the scaling factor p is used to weight the relative importance of robust 

stability compared w ith robust model matching.

Equation (7.3) has several im portant properties. The (1,2) partition is equal 

to  equation (6.7) in Chapter 6 , and thus is associated with robust stability 

optimization. Indeed, if p is set to zero, the 2-DOF Hoo problem reduces to the 

standard  robust stability problem described in Chapter 6 , Section 6 .2 . The (2 ,1 ) 

partition  is used for matching the closed-loop response to  the ideal response, 

and the (1 ,1) block can be interpreted as limiting actuator use when following 

references. The scaling factor p >  1 is introduced into the problem to emphasize 

the  (2 ,1) partition  and to  de-emphasize (relatively speaking) the (1 ,1) and (2 ,2 ) 

partitions.
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Setting the problem up in a generalized regulator framework for Hoo optim iza

tion, the standard  control plant for this type of presentation is given by

Pll P12

P21 P 22

0 0 I

0 G

p M -i pG

p i 0 0

0 M -i G

(7.4)

from Figure 7.1.

Suppose the plant G(s) E has Ug states and is strictly proper. Suppose

also th a t the reference model Mo(s) E has 71  ̂ states. Then, defining

'  Ag b /
_Cg 0

and Mo(s)
' a . Bo '

Co Do

and substituting these into equation (7.4) gives the generalized plant P (s)  as

f ( s )  =
' A B i B 2

Cl D l l D i 2

_C2 D 21 D 22

'  Ag 0 0 ^C J ' By '

0 Ao -B o 0 0

0 0 0 0 Img

C'. 0 0 Ipg 0

pC /C o - / D o Pipg 0

0 0 pim-m 0 0

0 0 Ipg 0

(7.5)

where the m atrix  .^ >  0 is the unique stabilizing solution to the algebraic Riccati 

equation

AgZ  -t- ZAg (7.6)
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Now, by subm itting this generalized plant P{s) of (7.5) to  the standard sub

optim al problem described in Chapter 5, we can produce 2-DOF T-Ĉo controllers 

and also corresponding low-order controllers. As expected from the results in 

Chapter 5, the order of low-order 2-DOF Tioo controllers will be equal to

A fio w  =  {r i s  +  U m )  -  (rr irn  +  P g )

=  (Ma -  p g )  + (rirn -  rrim) (7.7)

or less, where

=  number

Pa =  number

Mjn =  number

=  number

A constructive algorithm for low-order 2-DOF Hoo controller design is discussed 

in the next section.

7.3  A  Low -O rder 2 -D O F  C ontroller D e sig n

A lgor ith m

We now present a CAD algorithm for Low-Order 2-DOF Hoo Controller De

sign, by combining the theory of Chapter 6 with the low-order Hoo suboptim al 

controller design described in Chapter 6 .

s te p  1: Select a  simple step response model for the closed-loop system;

th a t is, select Mo(s) in Figure 7.1. This is usually a diagonal m atrix of first or 

second-order lags. The speed of response of the ideal model must be realistic 

so as to avoid poor robust stability properties and excessive control signals.
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s te p  2 : Select loop shaping weights for the open-loop plant. This is used to

meet the closed-loop performance specifications.

s te p  3: F ind the minimal achievable value of j  (i.e., 70) which may be

calculated using (6.13).

If Jo <  4, go to  step 4.

If Jo >  4, go to  step 2 to  select alternative weights.

s te p  4: Select the scaling factor p for the 2-DOF problem to be 1 <  p <  3.

The scaling of p is a compromise between robust stability and model matching.

The smaller value of p generates the smaller value of j^ in  in step 6 below, 

Postlethwaite and Skogestad [58].

s te p  5: Build a generalized plant P (s)  as in (7.5).

s te p  6 : F ind jmin such that

using reliable algorithms in, for example, Matlab. This will always be higher 

than  Jo. In [43], a range of 1 .27  ̂ <  j^ in  <  ^Jo was suggested to give a good

compromise between the robust stability and robust performance objectives.

The loop shapes for the feedback loop wiU not be altered significantly provided 

a low value for jmin is achieved. The reciprocal of j^ in  is roughly proportional 

to  the  multivariable stability margin, [58].

s te p  7: Select a suboptim al 7  such th a t 7  >  jmin-

s te p  8 : Com pute all element matrices of Ka{s) in (5.18), as per (5.19)-(5.26), 

for the generalized plant P{s).

s te p  9: Com pute Â  and F  as per (5.36)-(5.37), and partition A, C2 and F

as per (5.39)-(5.40) and (5.42).



Ch. 7. LO W -O RD ER CO N TRO LLERS IN  2-DOF LSDP  159

s te p  1 0 : Set

f Note th a t, as stated in Remark 5.7, X 2 need not necessarily be the identity 

m atrix.

s te p  1 1 : Select an arbitrary  X i,  and then compute A^, C^ and D^ as

per (5.48)-(5.51).

ff Alternatively, as stated in Appendix B, first choose A^ as per (B.16) and 

then compute X , B^, C^ and D^ as per (B.17)-(B.20).

s te p  1 2 : Solve ARE (5.65) for Xÿ.

If Xÿ >  0, go to step 13.

If Xÿ <  0, go to step 11 and repeat.

s te p  13: Compute a low-order 2-DOF Hoo controller by substituting all the

element matrices into (5.33).

s te p  14: P re/post-m ultiply a low-order 2-DOF Hoo controller obtained by

the loop shaping weights to  compute the final low-order 2-DOF Hoo controller 

and rescale the prefilter to  achieve perfect steady state model matching.

The procedure described above is based on the given Mq(s), weighting functions 

and the suboptim al 7 , and thus modifications to the procedure may be required 

in a similar m anner described in Chapter 6 , Section 6.5.
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7 .4  C on clu d in g  R em ark s

In this chapter, controller size reduction in the 2-DOF LSDP was considered, 

by combining the low-order 1-DOF LSDP controller design of Chapter 6 and 

the low-order Tioo suboptim al controller design of Chapter 5. As a consequence, 

it was shown th a t the  order of low-order 2-DOF Hoo controllers can be reduced 

down to

f illo w  — i P s  P g )  4" iP m  '^ m )  

or less. A CAD algorithm for the design was also presented.



C hapter 8 

A pplication  to  the  

G E C -A lsthom  Tetrahedral 

R obot

8.1 In tro d u ctio n

In this chapter we apply the theory developed in this thesis to a practical sys

tem, the Tetmbot which is a  tetrahedral robot designed by GEC-Alsthom as 

a fast and accurate assembly robot. The Tetrabot is a novel device w ith a 

parallel-serial structure designed to  overcome many of the inherent disadvan

tages of conventional serial robots. In developing a controller for the Tetrabot, 

the designers of the robot adopted a conventional approach, by ignoring both 

the  nonlinearities and dynamic coupling between robot joints, Dwolatzky and 

Thornton [20]. An evaluation of their design indicates a need for more so

phisticated controllers capable of coping w ith multivariable nonlinear systems. 

Postlethwaite and Feng [56] first designed an Hoo optimal controller w ith rela

tively good performance.

161
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The aim of this chapter is to  dem onstrate the effectiveness, for the class of robots 

represented by the Tetrabot, of a low-order robust suboptimal controller as 

devised in this thesis.

The chapter is organized as follows. In Section 8.2, a linear model to  be used 

in the  controller design is introduced, together with control objectives. Then, a 

low-order controller is designed in Section 8.3, to dem onstrate the effectiveness 

of the methodology developed in this thesis. Concluding remarks are given in 

Section 8.4.

8 .2  M o d e l an d  C on trol O b jectives

Unlike the conventional robots of a serial configuration, the Tetrabot is a serial- 

parallel configuration robot. The Tetrabot shown in Figure 8.1 consists of a par

allel structure (of three linear actuator rods in 3 degrees-of-freedom) combined 

w ith a serial structure (of three wrist links in another 3 degrees-of-freedom). 

W ith this configuration, the  Tetrabot has the advantages of being potentially 

stiffer and more accurate than  a conventional serial structure. A conceptual 

diagram  of the mechanical structure is shown in Figure 8.2.

The original control design for the Tetrabot was based on the assumption th a t 

all six joints are decoupled, and a F I controller was used to  position each loop, 

Dwolatzky and Thornton [20]. They observed, however, th a t large displace

ments and high speeds caused the Tetrabot to display considerable overshoot 

and recommended th a t more advanced control strategies should be investigated.
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8.2.1 Dynamic M odelling
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For advanced control strategies, Feng et al. [22] developed a reasonably com

prehensive nonlinear model of the Tetrabot dynamics. From this model, linear 

models about various operating points can be obtained for controller design 

studies. One such linearized model for which we will design a low-order con

troller is given by:

where

B  =

G{s) =
' A B  '

C D
(8.1)

0 0 0 -2.7268 1.4443 1.4441

0 0 0 1.4446 -2.7252 1.4444
0 0 0 1.4446 1.4448 -2.7266

1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

C =

D  =  0 ,

-1 .8295 -0.5688 -0.6688

-0.6688 -1.8296 -0.6688
-0.6688 -0.6688 -1.8295

0 0 0

0 0 0

0 0 0

0 0 0 0.9994 0 0

0 0 0 0 0.9994 0

0 0 0 0 0 0.9994

The model represents the parallel structure only which can realistically be as

sumed to be decoupled from the 3-axis wrist. The open-loop poles of the model
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are at

±0.4042, 0.0 ±  i2.0420, 0.0 ±  ; 2.0421.

The frequency responses of the open-loop singular values are shown in Figure 

8.3.

The input variables are:

Ml Tml Drive torque of actuator drive rod 1

U2 = Tm2 Drive torque of actuator drive rod 2

. "3 _ TmS Drive torque of actuator drive rod 3

the ou tpu t variables are:

Vi Length of rod 1

V2 = h = Length of rod 2

.  .
h  _ Length of rod 3

and the state variables are:

Xi h

X2 h

X3 h

X4 h

Xs h

. ^ 6  . h

8.2.2 Performance Speciûcation

Control objectives are listed as below:

(1) good steady sta te  behaviour

(2 ) small overshoot at high speeds for large displacements

(3) robustness w ith respect to nonlinearities, dynamic coupling and variable 

payloads.



Ch. 8. AP P LIC A TIO N  TO A  T E T R A H E D R A L RO BO T

8.3  L ow -O rder C ontroller D esign
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Postlethwaite and Feng [56] designed an Hoo controller for the position control 

of the Tetrabot and showed reasonably good performance of the Hoo controller 

w ith respect to robust stability and disturbance rejection, in simulation on a 

full nonlinear model. The resultant Hoo controller had a  dynamic order of 15, 

including the necessary weight. We next design a low-order robust suboptimal 

controller for the Tetrabot.

8.3.1 The 1-DOF LSDP Scheme

We will consider the low-order robust suboptimal controller design m ethod dis

cussed in Chapter 6 . A diagram for the controller design is given in Figure 8.4. 

For the loop shaping procedure, a first-order weighting function is chosen as

then we have =  9, p =  3 and thus =  6 for this case.

In the following we obtain, for comparison purpose, a low-order robust subop

tim al controller of order 6 and also the “central” robust optimal controller of 

order 9. The optim al value 7  is found to  be 70 =  2.76 and we select a subopti

m al value of 7  =  15 (>  70). Then, all tuning matrices required for low-order
robust suboptimal controller are obtained, by choosing an A^ as

.1 0 1 0 0 0 1 .0 0 0 0 - 0 . 0 0 0 0 0 .0 0 0 0

0 - 0 . 1 0 1 0 0 - 0 . 0 0 0 0 1 .0 0 0 0 0 .0 0 0 0

0 0 - 0 . 1 0 1 0 0 .0 0 0 0 - 0 . 0 0 0 0 1 .0 0 0 0

0 0 0 - 1 4 7 .8 3 5 8 - 0 . 0 0 0 0 0 .0 0 0 1

0 0 0 0 .0 0 0 6 -43.6246 - 0 . 0 0 0 0

0 0 0 0 .0 0 0 7 0 .0 0 0 0 - 4 3 . 6 2 4 7

Then, the Hoo-norm constraint is satisfied w ith ||#(s)||oo =  0.9850. So, a low- 
order robust suboptimal controller of order 6 is computed by (6.24).
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The controller = {Akr,Bkr,Ckr,Dkr) is given by

A kr — 1.0Æ/ +  0 4 X

- 0 .0 1 4 9 0 .0000 0.0000 0 .0000 0 .0000 0 .0000

0 .0000 - 0 .0 0 5 5 - 0 .0 0 0 0 -0 .0 0 0 0 0 .0000 0 .0000

0 .0 0 0 0 0 .0000 - 0 .0 0 5 5 - 0 .0 0 0 0 - 0 .0 0 0 0 0 .0000

2 .1 7 6 9 - 0 .0 0 0 0 - 0 .0 0 0 0 - 0 .0 0 2 2 - 0 .0 0 0 0 - 0 .0 0 0 0

- 0 .0 0 0 0 0 .2300 0 .0000 0.0000 - 0 .0 0 0 5 - 0 .0 0 0 0

- 0 .0 0 0 0 - 0 .0 0 0 0 0 .2300 0 .0000 0 .0000 - 0 .0 0 0 5

B kr =  1 . 0 £ '4 - 0 3 x  

- 0 .0 3 3 9  

- 0 .0 0 8 2  

- 0 .0 0 8 2  

5 .0022  

0 .3537  

0 .3 5 3 7

Ckr =

Dkr

- 0 .0 3 3 9

- 0 .0 0 3 0

-0 .0339

0.0112

137 .4239

1 3 7 .4252

137 .4251

8 .5 6 5 9  2

2 .2 1 3 0  8

2 .2 1 3 0  2

0 .0 1 1 2  - 0 .0 0 3 0  

5 .0 0 2 3  5 .0022

0 .1 2 9 4  - 0 .4 8 3 2  

- 0 .4 8 3 2  0 .1294

4 8 .6 4 9 4  4 8 .6 5 2 0  0.7931

1 7 .8092  - 6 6 .4 5 8 0  0.7931

- 6 6 .4 5 8 8  1 7 .8054  0.7931

2130  2 .2130  

.5660 2 .2130  

2130  8 .5660

0 .8078

0 .2957

-1 .1035

0.8078

-1 .1035

0 .2956

Figure 8.5 shows the frequency responses of the two controllers, and Figure 8.6 

shows the frequency responses of the shaped and stabilized open-loop systems. 

Figures 8.7 and 8.8  show the plant output response to the output disturbance 

(from do to  y) and the  control efforts to  an input disturbance (from di to  u), 

respectively. The disturbance is quickly rejected, bu t with a relatively large 

control energy in a transient period. Figure 8.9 shows reference following (from 

r  to  y), and indicates good decoupling bu t there is still a large overshoot as 

mentioned in [20]. The (output) sensitivity function is shown in Figure 8.10.

It should be noted th a t the T^co-norm constraint of ||<&(s)||co <  1 resulted in the 

sub optim al 7  being chosen relatively large compared with the optim al 70. This 

consequently leads to a  degradation in performance.
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8 .4  C on clu d in g  R em ark s

We have dem onstrated in this chapter how a low-order suboptimal controller 

can work in the place of a corresponding “central” optimal controller. This was 

done by applying the design methodology to the GEC-Alsthom Tetrabot and 

by showing th a t the low-order controller as designed here, in general, achieves 

similar performance to the corresponding “central” controller.

The choice of weighting functions used to  shape the nominal plant model is 

crucially im portant for the success of the loop shaping design procedure for 

bo th  the “central” optim al and low-order suboptimal controller designs, but 

this choice may not be at all related to  the controller size reduction techniques 

developed in this thesis. In  addition, the choice of the design param eter 7  

required for the low-order robust suboptimal controller design is dependent on 

the TYoo-norm constraint. This was seen in the example where the choice of 

sub optim al 7  needed to be large in order for the constraint | | ^ ( s ) | l o o  <  1 to 

be m et. Consequently, some loss of performance arose since the loop shaping 

methodology requires 7  to be small.
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Figure 8.1: The GEC-Alsthom Tetrabot.

I
@  Support frame

®  Linear actuator rod

(3) 2 axis rotation * 1 axis transiatian joint

0  Toolptete

0  1 axis rotation joint

0  Radial arm

0  2 axis rotation + 1 axis translation joint 

0  3 axis rotation joint 

0  Anti-rotation rod 

1 axis rotation joint 

® .@ .@  Wrist links

Figure 8.2: The Mechanical Structure of the Tetrabot.
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Open-Loop gain frequency response
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-40

-60

-80

100

120
10-1 100 101

Frequency (rad/sec)

Figure 8.3: Open-Loop Gain of the Nominal Tetrabot Model.

Trajectory

Planning

Figure 8.4: Diagram for Controller Design (1-DOF LSDP).
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S.V.s of Controllers with Weights
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100

central optimal ( - )  
low-order suboptimal (-)

i

10 '

Frequency (rad/sec)

Figure 8.5: Singular Values of Controllers. 

Loq> gain frequency response
150

100

f
>to

(-) Shaped loc^ gain
( - )  Achieved lot^ gain using central optimal 
(-.) Achieved loop gain using low-order suboptimal

-50

-100
10-1 10 '

Frequency (rad/sec)

Figure 8.6: Singular Values for Shaped and Achieved Systems.
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OuQ)ut Response to Output Disturbance (iiq)ut=l)

0.8

0.6 ■

E
-  0.4

OS

By  central optimal ( - )
By low-order suboptimal (-)

-0.2

*
-0.4. ■ t  I i  I n

0 2 4 6 8 10 12 14 16 18 20

Time (secs)

Figure 8.7: Output Response to Output Disturbance Step. 

Control Energy against Irput Disturbance (ir^ut=l)

0.8 -

0.6 -

'i
-0.4.

By central optimal ( - )
By low-order suboptimal (-)

I I I

0 2 4 6 8 10 12 14 16 18 20

Time (secs)

Figure 8.8: Control Efforts to Input Disturbance Step.
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OuÇut Response - Reference Following (iiçut=l)
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By low-order suboptimal (-)
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Figure 8.9: Output Response - Reference Following.

Sensitivity
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-120

-140
10-1 100 101
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Figure 8.10: Singular Values of the Sensitivity Function.
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Conclusions and Future 

R esearch

9.1  C on clu sion s

This thesis has addressed the problem of controller size reduction in advanced 

robust control system design. M ethods have been given:

® to reduce the order of stabilizing controllers 

® to reduce the order of Tfoo sub optimal controllers

@ to reduce the order of robust suboptimal controllers (for the 1-DOF LSDP) 

9 to  reduce the order of 2-DOF Tioa controllers.

A common component in the synthesis of advanced robust controllers is a 

param etrization of controllers via a stable free •parameter, Q{s) or $ (s), which 

can lead to  controllers of “high” order. For this reason, model reduction tech

niques are frequently used. In this thesis, we have given an alternative method-

173
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ology for obtaining low-order controllers. The central idea in all the design 

methods considered was to take the param etrization of controllers and to  show 

th a t the order of such controllers could be reduced, by eliminating any unob

servable (or uncontrollable) states, if the corresponding free param eter, Q{s) 

or $ (s), solved two simultaneous m atrix equations (in all cases) and an 7ioo~ 

norm  constraint (in the Hoo cases). Orthogonal canonical forms were employed 

to solve the two m atrix equations, and a certain Riccati equation was used to 

tackle the Tfoo-norm constraint.

It was shown th a t in each design m ethod the low-order realizations could be 

expressed in state-space form following relatively easy computations, based on 

constructive algorithms. As expected, the low-order controllers performed in 

exactly the same way as in the “formal” order counterparts. The following 

results on the size of controllers were obtained:

1 . The order of all stabilizing controllers may be less than  or equal to  the 

num ber of plant outputs.

2. The order of all Hoo sub optimal controllers may be equal to  the order of 

the generalized plant minus the number of plant outputs.

3. The order of the 1-DOF robust suboptimal controllers may be equal to 

the  order of the shaped plant minus the number of plant outputs.

4. The order of the 2-DOF Hoo suboptim al controllers may be equal to  the 

order of the generalized plant (including reference model) minus the sum 

of the number of plant outputs and the number of reference model inputs.

Numerical examples were given to illustrate the algorithms developed and to 

confirm the results on controller orders. Examples showed th a t the low-order 

controller could work in place of the “central” one but w ith some deterioration 

in performance.
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9.2  R eco m m en d a tio n s for F uture R esearch

The methodology and the associated algorithms for controller size reduction as 

presented here raise a number of questions which require further research:

1. In the design m ethod for low-order stabilizing controllers in Chapter 4, 

there is considerable freedom in choosing the param eter matrices H  and 

Aq, while a special form of F  as in (4.55) is required to  obtain controllers- 

of the smallest possible order.

How do we search over the space of H  and Ag to obtain such a special 

form  of F , when it exists, without missing it?

How do we check i f  the space of F  of a certain order is empty?

2. In low-order Hoo sub optim al controller design (Chapter 5), low-order ro

bust suboptim al controller design (Chapter 6 ), and low-order 2-DOF Hoo 

controller design (Chapter 7), the difficult part of each of the algorithms 

is the selection of a free param eter m atrix $(s) which meets an Tfoo-norm 

constraint. Some approaches to  tackle this constraint were given, bu t 

there is a scope for more systematic and/or effective methods, particu

larly in view of the freedom in A^ as previously mentioned.

How can we tackle this problem in a more systematic way?

How can we check i f  the space o / # (s) o f a certain order is empty?

3. In low-order Hoo suboptim al controller design (Chapter 5), the possibility 

of lowering the order to  less than  n ~  p2 is limited by the structure of 

F  =  D ffC x, where Ci depends on Dgi-

How should we choose £>12 and D 21 from (5.20)-(5.21) for this purpose?

4. For the 1-DOF LSDP (Chapter 6) and the 2-DOF LSDP (Chapter 7), 

a reasonable value of a suboptim al 7  is required to  ensure th a t the loop 

shapes can be well approxim ated together with robust stability. In low- 

order controller design, this requirement may, in some cases (as seen in 

C hapter 8 ), be violated due to  the 00-norm constraint on $(g).
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Can we find a systematic way to relate a suitable selection of ^ (s )  with a 

reasonable value of'y?

5. A general question which applies to  all the design methods considered is: 

How can we find an “optimal” controller amongst the set of low-order 

controllers 9

Here, by “optim al” , we mean the controller which best meets the perfor

mance requirements amongst the set of low-order controllers.
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A ppendices

A p p e n d ix  A: P r o o ^  o f  L em m as 2 .14  - 2 .IT

1 . P r o o f  o f  L e m m a  2.14

Suppose A  is stable and ||G||oo <  7 - Then G*G — 7 ^! <  0. So, G*G — 7 ^! is 

invertible for all frequencies and [G*G — has no jw -axis  poles, where the

state-space realization of (<?*(? — 7 ^!)“  ̂ is given by

' A -  B R -^D '^C B R -^B '^ B R -^

(G*G -7^I)-^ = - (A  -

-R -^ D '^ C R -  J
'  H , *

* *

Thus, the A-m atrix of (G*G — 7 ^!) LT-y, has no jio-axis eigenvalues. Further, 

since we have the following equality:

I  0
-1

I 0
=

0 —7 I 0 - 7 l _

A -  B R -^D '^C

7CFS'-iC -(A  -

the Hamiltonian m atrix Mry in (2.39) has no jw-axis eigenvalues. Hence, using 

Lemma 2.13, we conclude th a t the ARE (2.38) has a unique stabilizing solution

X .. m
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2. P r o o f  o f  L e m m a  2.15

From the assumption th a t X.y is a solution to the ARE (2.38), we define M (s)

M (s) :=
A B

( - A y ) '/ '  _

(A.1)

Then it can be shown, by direct manipulations, tha t the following equality 

holds: .

(A.2)

Thus, G*G — 7^1  <  0. Since is the stabilizing solution to the ARE (2.38), 

the Hamiltonian m atrix  A4y in (2.39) has no jw -axis eigenvalues (from Lemma 

2.13) and thus (G*G — J^I)~^ has no jw -axis  poles, as seen in the proof of 

Lemma 2.14 above. This implies th a t — 7^1  <  0. Then, ||G||oo <  7  since 

A  is stable. H

3. P ro o f  o f  L em m a 2.16 

Rewrite the ARE (2.38) as

A £  X ,y  X y A  H” —  0 (A.3)

where

O := +  7 -:^D^C) +  7 -^G^C. (A.4)

Q in (A.4) is positive definite since CTmaa:(D) <  7 . So, from the Lyapunov 

equation (A.3) it is easy to see th a t, if A  is stable, the solution X.y is positive 

definite. H
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4. P r o o f  o f  L em m a 2.17

Since is the solution to  the ARE (2.38), the equality 7 ^1  — G*G = M *M  in 

(A.2) holds. So, we have ||G||oo <  7 . In addition, from the Lyapunov equation 

(A.3), it is easily verified th a t A  is stable since the solution is positive 

definite. This completes the proof. H
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A p p e n d ix  B: A ltern a tiv e  So lu tion  to  T w o E qua

tio n s  (5 .3 4 )-(5 .3 5 )

Let the pair (Â, Ô2) be transformed into the orthogonal canonical form (Ag, Co 

=  JVCzM-"), as in (2.21)-(2.22):

Ao =

A-i 4
0

A 22
ih
0

^ 1̂0 - 1,1 -^ i/o -1 .2  ^ î / o - 1 ,3

^ 1/0,1 -^1/0,2 -̂ 2,0,3

C o  — I -fii 0 0 • • • 0

where Uo is the observability index of (Â, Ô2), and = 1 , - ■ ■ ,Uo) axe k x  k 

m atrices, and the numbers

P2 = h  ^  ^  ^  £0 1̂ +  2̂ +  • • • +  ^

are the  conjugate Kronecker indices of the pair [A, Ô2).

Using the form {Ao, Co), the two equations (5.34)-(5.35) can therefore be trans

formed into:

A ^ X  —  X A o  —  B ( j , C o  

C ÿ Z - D ÿ C ,  =  F

(B.l)

(B.2)

where

X  =  X M ~^ (B.3)
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Âÿ = B ^N -^ (BA)

D , =  D ^N -^ (B.6 )

F = (B.6 )

To solve the problem for the case of =  n — p2j we partition  the form (Ap, Co) 

as shown below:

(B.7)

(B .8)

Ao =
Aoii 4  ' 

0
P̂2X(n~P2—l2)

Ao21 Ao22 Ao23

I OpzXZz Op2X(n-p2-̂ 2) I

where Aon •= : P 2  x  P 2 ,  ^ 0 2 1  : ( n  -  P 2 )  x p 2 ,  A 022 • { n  ~  P 2 )  x I2, and

A o 2 3  : { n  — P 2 )  X  { n  — P 2  ~  h ) -  The following Fact B 1 is useful in solving

)  is completely observable ifF ac t B1 The pair A022 ^023 

the pair (A, G2) w completely observable.

0
0

In the following, we assume for the sake of simplicity th a t I2 = P2, and suppose 

th a t X  is partitioned as

X : { n - p 2 ) x n

w ith X i and X 2 having p2 and n —p2 columns, respectively. Then, from (B .l), 

we have the following two equations:

A,^Xi — XiAoxi — X 2A021 =  (B.9)

A^X2 — X i j ^ J  0 j — X 2 Ao22 Ao23 j =  0 . (B.IO)

Equation (B.IO) is equivalent to

-̂ 2( Ao22 -d-023 d" -̂ 2 '"̂ 1 I  0 )-Vg  ̂ — A, (B .ll)



A PPEN D IC ES 182

from which we can find a m atrix X i and an invertible m atrix Xg for any stable 

Atf,. Obviously, X  obtained is of full rank. And, in turn , can be computed 

from (B.9).

In order to  solve (B.2), partition  F  as

F  — F\ F2 • ni2 X n

where Fi and F2 have p 2 and n —p 2 columns, respectively. Equation (B.2) can 

then be rew ritten as

Cé Xx X 2 - D a I  0

and, from (B.12), and D^ are computed as follows:

Q  =  . ^ x r "

D 4, =  GÿXx — Fi-

(B.12)

(B.13)

(B .U )

Hence, we have A ^, X ,  B^, C4, and D^, and can therefore compute an Hoo sub- 

optim al controller of {n — P2)fh order by making use of the realization (5.33), 

provided A^ is chosen such th a t | |$ ( s ) m  <  7 . Note th a t X , B^  and can be 

com puted from (B.3)-(B.5), respectively.

W ithout loss of generality, the identity m atrix can be chosen as a candidate for 

Xg in (B .ll) , i.e., Xg =  I .  In this instance, (B .ll)  becomes

A o22 ^o23 + Xx 1 0 =  A a. (B.15)

Thus, Xx can be chosen arbitrarily subject to the stability of A^, where Aÿ is 

computed from (B.15) by

A a = Aq22 +  -Xx Ao (B.16)

with Ao22 and A023 fixed. Consequently, the matrices X , B^, C^ and are 

com puted by

X  =  Xi Z M (B.17)
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P<l> — {A^Xi — XiAoii — Ao2i)iV (B.18)

C0 =  Ê2 (B.19)

Dÿ =  ( A X i- F i) iV .  (B.20)

Hence, a solution m atrix X  and a suitable free param eter $ (s)  to the two

simultaneous m atrix equations (5.34)-(5.35) are all characterized in term s of 

X i  only, which can be chosen arbitrarily subject to A^ in (B.16) being stable.
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