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Abstract

Sliding Mode Control and Estimation for Systems With
Mismatched Uncertainties Described by Polytopic Models

José Manuel ANDRADE DA SILVA

The problem of designing variable structure systems with sliding modes for
uncertain continuous-time plants involving mismatched parametric uncer-
tainties and matched uncertainties, nonlinearities and/or disturbances is
addressed in this thesis. Sliding mode control and estimation schemes are
proposed for this class of plants. Full and partial state information cases
are considered. The latter scenario corresponds to sliding mode controllers
using only measurable output signals, and comprises static and dynamic
output feedback approaches. The proposed synthesis frameworks are based
on linear matriz inequality methods and involve polytopic models. The
multi-model paradigm is also explored to study the use of a finite set of
Lyapunov matrices instead of a single Lyapunov matrix. Thus, a wider
number of systems and control engineering problems can be dealt with.
Control strategies using only measurable output signals are proposed for
designing a single sliding mode controller for the simultaneous stabilisa-
tion of a finite collection of plant models. Design methodologies for sliding
mode static and dynamic output feedback controllers based on linear ma-
trix inequalities are described. The problem of state reconstruction using
a discontinuous observer with sliding modes for systems with matched and
mismatched parametric uncertainties is also studied in this dissertation.
The mismatched uncertain component is considered as a disturbance whose
effect on the output estimation error has to be minimised. The observer
gain is synthesised by solving a convex optimisation problem involving lin-
ear matrix inequalities, with a polytopic description of the reduced-order
error system, in terms of He, performance. A detailed stability analysis is
carried out for the sliding mode observer and the class of uncertain sys-
tems considered. Throughout this thesis, several design examples illustrate
the proposed sliding mode control and estimation schemes, and computer
simulations are used to demonstrate their efficacy.



“I have yet to see any problem, however complicated,
which, when you looked at it in the right way,
did not become still more complicated.”

Poul Anderson (1926-2001)
New Scientist (September 25, 1969)

vi



Contents

Nomenclature

1

2

Introduction

1.1 A Brief Historical Overview of Sliding Modes . . . . . . . ... ... ..

1.2 Motivation and Literature Review . . . . . ... .. ... .. ... ...
1.2.1  Full State Information Approaches . . . .. ... .. ... ...
1.2.2  Output Feedback Methods . . . . . ... ... ... ... ....
1.2.3 Observer Schemes . . . . . .. ... ... ... . ... ...

1.3 Objectives . . . . . . . . . e

1.4 Methodology . . . . . . . . e

1.5 Structure of the Thesis and Contributions . ... ... ... ... ...

Variable Structure Systems With Sliding Modes
2.1 Introduction . . . . .. .. e
2.2 Ideal Sliding Mode Existence and Uniqueness of Solution . . . . .. ..
2.3 Sliding Surface Design Problem . . . ... ... .............
2.3.1 The Regular Form Approach . . . . .. ... ... ... .....
2.3.2 The Output Feedback Canonical Form Approach . ... .. ..
2.4  Properties of Sliding Mode Control . . .. ... ... ... .......
2.5 Variable Structure Control Laws . . . . . . .. ... .. ... ...
2.5.1 The Reachability Problem . . . .. ... ... ... .......
2.5.2 Existence of a Pseudo-Sliding Mode . . . . .. .. ... .....
2.5.3 Structure of the Control Law . . . . . .. ... ... ......
2.5.4  Continuous Approximation of the Control Law . . . . . .. ...
2.6 A Sliding Mode Observer . . . . . . .. . .. . i

2.7 SUMMATY . . . . e e

vii

Xv

© © N O s

10



CONTENTS

3 Linear Matrix Inequalities and Polytopic Models 40
3.1 Imtroduction . . . . . . . ... 40
3.2 Linear Matrix Inequalities . . . . . . ... ... ... ... . ... ... 40

321 Convexity . . . . . . . . e 41
3.2.2 Canonical and Other Forms of Representing LMIs . . . . . . .. 46
3.2.3 Standard LMI Problems . . .. ... ............... 47
3.24 LMI Properties and Features. . . . . . . ... ... ....... 49
3.2.5 Fundamental Mathematical Operations on LMIs . . . . ... .. 49
326 LMIRegions . ... ...... ... ... 52
3.3 Parametric Uncertainty Description: Polytopic Models . . . . ... .. 56
34 Summary ... e e e e e e e 61

4 State Feedback SMC for Systems With Mismatched Uncertainties 63

4.1 Introduction . . . . . . .. ... ... 63
4.2 System Description and Problem Formulation . . ... ... ... ... 64
4.3 State Feedback SMC Design Framework . . .. ... ... ... .. .. 65
4.3.1 Sliding Surface Design . . . . .. ... .. ... ... . . ..., 65
4.3.2 Control Law Synthesis . . . . ... ... .. ... .. ...... 69
433 Design Example . . . . ... ... 76

4.4 Summary ... . e e e 82
5 Sliding Mode Output Feedback Control: A Polytopic Approach 84
5.1 Introduction . . . . . ... ... . ... ... 84
5.2 System Description and Statement of Problems . . .. ... ... ... 85
5.3 Sliding Mode Static OQutput Feedback Control . ... ... ... . ... 88
5.3.1 Sliding Surface Design . . . . . . .. ... ... ... 88
5.3.2 Control Law Synthesis . . . . ... ... ... ... ....... 91
5.3.3 Design and Computer Simulation Examples: SMSOFC . . . . . 98

5.4 Sliding Mode Dynamic Output Feedback Control . . .. ... ... .. 104
5.4.1 Compensator-based Sliding Surface Design . . . . . . ... ... 104
5.4.2 Compensator-based Control Law Synthesis . . . . . . ... ... 107

viil




CONTENTS

5.5

5.4.3 Design and Computer Simulation Examples: SMDOFC . . . . . 110

SUMMATY .« v v ot e e e e e e e e e e e e e 114

6 Sliding Mode Output Feedback Control: Simultaneous Stabilisation 115

6.1 Introduction . . . . . . . . ... L 115

6.2 System Description and Statement of Problems . . . ... ... .... 116
6.3 SMSOFSS: Synthesis Framework . . . ... ... ... ... ...... 119
6.3.1 Switching Surface Design . . . . . . .. .. ... ... ..., 119

6.3.2 Control Law Design . . . . . . . . . ... .. ... 121

6.4 Design and Computer Simulation Example . . . . . .. ... ... ... 127
6.5 SMDOFSS: Synthesis Framework . . . . .. ... .. .......... 131
6.5.1 Compensator-based Sliding Hyperplane Design . . . . . . . . .. 131

6.5.2 Control Law Design . . . . . . ... ... .. ... ........ 133

6.6 Design and Computer Simulation Examples . . . ... ... ...... 137
6.7 SUMMATY . . . . . e e 146

7 Sliding Mode Observer 147
7.1 Imtroduction . . . . . . . ... e 147
7.2 System Description and Statement of Problem . . . . . ... ... ... 148
7.3 Stability Analysis . . . . . .. L 155
7.4 Design Framework . . . . ... .. ... ... o 166
7.5 Design and Simulation Example . . . . . ... ... ... . ... . ... 172
76 SUWMMATY . . . . . e e e e e e e 181

8 Conclusions 182
8.1 Concluding Remarks . . . ... ... ... ... ... . ... . ... .. 182
8.2 DBrief Suggestion for Future Research . . . . .. .. ... ... ... .. 186

A High-level Implementation of LMIs 188




2.1
2.2

2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

4.2

4.3

44
4.5
4.6

List of Figures

Block diagram of a double integrator system under VSC . . . . .. .. 14
Regions of the phase plane defined by the switching function o(t) =

y@OY) e 15
Phase portrait of a double integrator system under VSC . . . . .. .. 15
Phase portrait of a double integrator system under SMC . . . ... .. 17
Construction of Filippov’s solution Fay(6,%e) . » . . . o o v v oo oo o 20

A practical sliding motion (adapted from (Edwards & Spurgeon, 1998a)) 33

Approximation of the signum function by a sigmoid-like function (ﬁgure

adapted from (Edwards & Spurgeon, 1998b) pages 16 and 62) ..... 36
Convex set 41 and non-convex set 65 . . . . . . . .. ... 41
2-Dand 3-D Polyhedra . . . . . .. ... ... .. . ... 43

Geometric interpretation of convex hull of a set of points in 2-D and 3-D 44

Geometric interpretation of convex and concave functions. . . ... .. 45
Elementary LMI Region: Half-plane J2(h) . . . . . .. .. .. ... .. 53
Elementary LMI Region: Cone €((0,0)¢,c) . . . . . .« o oo oo .. 54
Elementary LMI Region: Disk @(cp,ra) - - 0 o v v v oo oo oo oo o 55
Elementary LMI Region: Vertical strip ¥5(h1,ha) . . . . . . ... . .. 56
Mapping of a Parameter Box in a Polytope of System Matrices. . . .. 60
LMI Region D(h, Cp,Tay @)« « o v o v v o i e e it e 69
Schematic Diagram of a DC Motor (Figure adapted from (Franklin et al.,

2002) Page B5) . . ¢ v e e e 76
Electric and Mechanic Diagram of a DC Motor (Figure adapted from

(Franklin et al, 2002) page 54) . . . . . . . e 7
Angular position 9(¢) [rad]. . . .. ... Lo o 80
Angular speed do(¢)/dt [rad/sec]. . . . ... L o L 80
Armature current i [A]l. .. ... Lo 81




LIST OF FIGURES

4.7
4.8

5.1
5.2

5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2

6.3
6.4
6.5

6.6
6.7
6.8

6.9

6.10

Armature voltage v (£) [V]. . . . . . . .. 81
Switching functions. . . . . . .. ... oL oo 82
LMI Region D(h, CnyTd) « v v v v e e e e e e e e 97
Closed-loop poles obtained when using only the linear part of the control

law . . e 100
Closed-100p TESPONSE . . v v v v v v v e 100
Control signal u(t) and switching function o(t) . . . . . . . P 101
Time evolution of the output signals y;(t), v2(t) and ys(t). . . . . . .. 103
Control signals uy(t) = 6,(¢) and us(t) = a(¢). . . . . . . . . ... 103
Time evolution of switching functions o (t) and oa(t). . . . . . . .. .. 104
Root locus for the system triple (Ay;, A1gy, Cyy) for § = §= —0.2 . . . 111
Root locus for the system triple (Aug, Aggy,Cpp) for 0=0=+402. .. 112
Response of the uncertain plant using the SMDOF controller . . . . . . 112
Control signal w(t) . . . . . . . . . . . . 113
Time evolution of the switching function o(t) . . . . .. .. ... ... 113
LMI Region D(RyCnyTd) v o v v e e e e e e e e e e 126
Time evolution of the output signals using the designed sliding mode

output feedback controller. . . . . . . . ... .. ... ... ... .. 129
Control signals ¢(¢t) and 7(¢). . . . .. ... .. oo 130
Switching functions vs time. . . . . . . ... ... .o L., 130

Time evolution of the output signals 41 and ys, and the unmeasurable

state z; for both operation modes of the plant . . . . . .. ... .. .. 139
Control signal u(t) for both operation modes of the plant . . . . . . .. 139
Switching function o(¢) for both operation modes of the plant . . . . . 140

Schematic Diagram of an n plates Gas absorber [adapted from (Luus,
2000)] . e 141

Eigenvalues of the sliding mode reduced-order system at each operating
condition of the gas absorber plant. . . . . . ... ... ... ... ... 143

Eigenvalues of (flai — lé’aGa(fa) for the set of operating conditions of the
gas absorber plant. . . . . .. ... ... Lo 144



LIST OF FIGURES

6.11 Time evolution of the output signals (continuous lines), and the unmea-
sured state variables (dotted lines) for the set of operating conditions of
the gas absorber plant . . . . . . . . ... .. oo

6.12 Control signals u; (¢) and wug(t) for the set of operating conditions of the
gas absorber plant . . . . .. ... oo

6.13 Switching functions o1(¢t) and o3(t) for the set of operating conditions
of the gas absorber plant . . . . . . ... ... ... ... . .. ...

7.1 Convex Region D(h,cp, 74, ) = D(0.1,0,6,7/4) for robust pole place-

ment of a full state feedback controller . . . . .. ... ... ......
7.2 Time evolution of the uncertain parameters 0;(t), 62(t) and 63(¢) . . . .
7.3 Time evolution of the true and estimated state z1(¢) . . . . . . . .. ..
7.4 Time evolution of the true and estimated state zo(t) . . . . . . . . . ..
7.5 Time evolution of the true and estimated state zs(¢) . . . . . . .. ...
7.6 Time evolution of the true and estimated state z4(¢) . . . . . . . . . ..
7.7 Estimation error e (1) = &1(¢) — (L) . ..o
7.8 Estimation error eg(t) = &2(¢) —z2(t) . . . . . . ..o
7.9 Estimation error eg(f) = &3(¢) —z3(t) . . . . . ...
7.10 Estimation error es(t) = &a(t) —xalt) . . . . . .. ..o oL

7.11 Time evolution of switching functions e, (¢) € R* . . . . . . .. ... ..

xii



Symbols

®) a Wl

125}

Im[s]
Re[s]

%((0,0)c; @)

D(cn,Ta)
H(h)
Ao
Z(s)

z

Nomenclature

The complex conjugate of s

The field of complex numbers

The open left-half complex plane

The System Matrix

The set of strictly positive integer numbers
The switchig gain matrix

The state matrix

The input distribution matrix

The output distribution matrix

The left Moore-Penrose pseudo-inverse of the matrix M
Null sub-space of the matrix M

Range sub-space of the matrix M

Projector

The imaginary part of the complex number z
The real part of the complex number z

Conic region centered at the origin of the complex plane C and at an
angle o with respect to the real axis of the complex left half-plane

Disk region centered at (—cp,0) in the complex plane C with radius 74
Half-plane delimited by a vertical line at (—h,0) in the complex plane.
The set of n x n Hermitian matrices

The Rosenbrock’s system matrix

State space

xiii




Nomenclature

max

min

§Rnxm
R,
I{es, €2)

S

maximise

minimise

The field of real numbers

The set of n x m dimensional real matrices

The set of strictly positive real numbers

The index set I(e1, e2)={e1,61+1, -+ , €2} where ¢1,e2 €Zy and €1 < g

The complex variable

Acronyms and Abbreviations

BMI
DC
DOF
dps
emf
EVP
FTC
GEVP
HOSMO
KVL
LMI
LOMP
LTI
MIMO
n.d.
p.d.
PDP

QMI

Bilinear Matrix Inequality

Direct Current

Dynamic Output Feedback
decimal places

electromotive force

Eigenvalue Problem

Fault Tolerant Control
Generalised Eigenvalue Problem
High Order Sliding Mode Observer
Kirchhoff’s Voltage Law

Linear Matrix Inequality

Linear Objective Minimisation Problem
Linear Time Invariant
Multiple-Input Multiple-Output
negative definite

positive definite

Positive Definite Programming

Quadratic Matrix Inequality

xXiv




Nomenclature

R.H.S.
s.p.d.

s.t.

SDP

SISO
SMC
SMDOF
SMDOFC
SMDOFSS
SMO
SMOF
SMSOF
SMSOFC
SMSOFSS
SOF

VSC

VSS

Right Hand Side

symmetric positive definite

subject to

Semidefinite Programming

Single-Input Single-Output

Sliding Mode Control/Controller

Sliding Mode Dynamic Qutput Feedback

Sliding Mode Dynamic Output Feedback Control/Controller
Sliding Mode Dynamic Output Feedback Simultaneous Stabilisation
Sliding Mode Observer

Sliding Mode Output Feedback

Sliding Mode Static Qutput Feedback

Sliding Mode Static Output Feedback Control/Controller
Sliding Mode Static Output Feedback Simultaneous Stabilisation
Static Output Feedback

Variable Structure Control

Variable Structure System

Xv



‘A1l truths are easy to understand

once they were discovered:

the point is to discover them. "

Galileo Galilei (1564 - 1642)

Introduction

1.1 A Brief Historical Overview of Sliding Modes

Mathematical control systems theory is a sub-field of applied mathematics whose
objects of analysis and design are signals and systems. This theory, built on a wide
range of disciplines such as algebra, matrix theory (linear algebra), differential or dif-
ference equations, optimisation, differential geometry, functional analysis and so on,
represents the abstract language of control systems engineering. Control theory deals
with modelling and analysis of dynamical systems, and the subsequent synthesis of con-
trollers and/or estimators satisfying a predefined set of performance requirements. The
latter might be required to reconstruct some variables of the system or when the over-
head costs associated with sensors may be prohibitive. Further tasks tackled in control

engineering are implementation, testing and tuning of controllers and estimators.

Variable Structure Control (VSC) is a nonlinear control scheme consisting of a
switched control law and a decision function which induces a discontinuous change in
the structure of a system. A particular class of variable structure controllers, which
use switched control action across a sliding surface, is Sliding Mode Control (SMC). A
sliding motion, governed by the dynamics associated with a sliding surface completely
defined by the designer, is the major mode of operation in Variable Structure Systems
(VSS) (Utkin, 1992). These control schemes appeared and were initially developed
in the former Soviet Union. V. Kulebakin and G. Nikolski can be considered as the
pioneers of SMC due to their work in the early 1930s (Utkin et ai, 1999). The work
by Kulebakin was concerned with the application of a vibration controller™ for volt-
age control of an aircraft DC generator (Kulebakin, 1932), whilst Nikolski investigated

~Sliding mode control corresponds to vibration control in contemporary terminology (Utkin et ai,
1999).



1.1 A Brief Historical Overview of Sliding Modes

the stability under sliding mode relays of a ship on a given course (Nikolski, 1934).
Nevertheless, VSC was formally studied and presented from a mathematical viewpoint
between the late 1950s and 1967 by S. V. Emel’yanov of the Institute of Control Sci-
ence in Moscow in the following publications (Emel’yanov, 1957) (Emel’yanov, 1959a)
(Emel’yanov, 1959b)! (Emel’yanov, 1967), and E. A. Barbashin’s work on stability the-
ory (Barbashin, 1967) at the Institute of Mathematics and Mechanics in Sverdlovsk.
These seminal publications defined a milestone establishing a new research area in con-
trol systems theory. However, as in the case of the stability theory of Lyapunov, VSC
theory was not known in western countries because all published work had been written
in Russian. VSC theory was expanded beyond the borders of the Soviet Union and
introduced in the West through several publications in English (Utkin, 1971) (Utkin,
1972) (Utkin, 1974) (Fuller, 1974) (Utkin, 1977) and (Itkis, 1976) making the funda-
mentals of this control scheme accessible to other researchers and engineers who became
interested in this new control theory.

Before the high potential of SMC was exploited, these control schemes had to
confront the scepticism of engineers in many practical applications due to the high-
frequency nature of the discontinuous control signal. Although this feature might be
appropriate in some applications, e.g. electric drives such as converters, in many others
it is counterproductive and not applicable to actuators because of the risk of deteri-
oration or even their complete break-down. Moreover, the high-frequency switching
control signal exhibited by sliding mode controllers (SMCs) can excite unmodelled fast
dynamics of the plant causing a finite frequency and finite amplitude oscillating trajec-
tory of the system along the sliding surface (Utkin et al., 1999). This system motion is
termed chattering. Note that in an ideal sliding mode, i.e. control signal switching at
infinite frequency, the system trajectory is constrained to lie on the sliding surface, and
hence there is no chattering phenomenon at all (Edwards & Spurgeon, 1998b). Obvi-
ously, such infinite frequency switching cannot be achieved physically. The chattering
phenomenon overshadowed the SMC theory until the advantageous characteristics of
order reduction (Utkin, 1992) (Edwards & Spurgeon, 1998b) and the invariance prop-
erty (DraZenovi¢, 1969) attracted the attention of researchers and engineers. A system
in a sliding mode is governed by reduced-order dynamics specified by the designer
when synthesising the sliding surface associated with the sliding mode controller. Fur-
thermore, a sliding mode controller, when appropriately designed, provides complete
insensitivity with respect to a class of uncertainty known as matched uncertainty: that
is, any uncertainty and/or disturbance signal enter through the input channel of the
system. In addition, the chattering problem was studied and several approaches to
mitigate the effects were proposed. For instance, the boundary layer approach (Slotine
& Sastry, 1983) (Slotine, 1984), observer-based approaches (Bondarev et al., 1985),

1Even though the term wariable structure system did not appear explicitly in any of these three
papers, the concept of change of structure by using a switching logic was illustrated (Utkin, 2002).

2



1.1 A Brief Historical Overview of Sliding Modes

cascade control using regular form or the block control principle approach (Drakunov
et al., 1990a) (Drakunov et al., 1990b) and the disturbance rejection approach (this
approach is a special case of integral sliding mode presented in (Utkin & Shi, 1996)).
Details of these chattering reduction solutions can be found in (Utkin et al., 1999). In
addition to the methods previously cited, it is possible to reduce (eliminate) the high
frequency oscillations exhibited by the switched control law by means of approximating
the discontinuous term. Saturation, power law interpolation and differentiable approx-
imations have all been employed to replace the switching term (signum or unit vector).
Note that the saturation approximation corresponds to the boundary layer method.
The power law interpolation smooths the relay function within a neighbourhood of the
origin. On the other hand, the differentiable approximation method does not imply
a boundary layer. Details regarding the approximations can be found in (Edwards &
Spurgeon, 1998b).

The concepts involving VSC were demonstrated, at the very beginning, for second-
order systems. However, several developments including different classes of systems
and mathematical descriptions have taken place over the years. Furthermore, various
forms of switching functions and control laws have been under constant study within
the VSS research community. In (Hung et al., 1993) three main periods have been
defined. The early stage of VSC from the late 1950s to 1970 represents the study of
VSC in which single input systems described using high-order linear differential equa-
tions or the controllable canonical state-space form, and quadratic switching functions
were considered. Later, multi-input linear systems represented in a general state-space
form not restricted to the controllable canonical form, and linear switching functions
in vector form were employed during the period 1970-1980. From the 1980s onwards,
more complex systems were considered, e.g. discrete-time systems, non-linear systems,
large-scale (or interconnected) systems, stochastic systems and delayed systems. Fur-
thermore, other control problems have been considered, e.g. tracking control, model
following, adaptive control, optimal control, static and dynamic output-feedback con-
trol. using only measurable state variables and so forth. The estimation problem of
state variables and faults applying sliding mode concepts has been also under con-
tinuous study. Surveys, tutorials, chapters in books on nonlinear control, and text
books have been published describing the theoretical fundamentals of sliding mode
theory, for example (Utkin, 1977) (DeCarlo et al., 1988) (Slotine & Li, 1991) (Utkin,
1992) (Hung et al., 1993) (Zinober, 1994) (Edwards & Spurgeon, 1998b) (Utkin et al.,
1999) (Emel’yanov & Korovin, 2000). SMC theory has been applied for solving a
large number of control engineering problems in different fields, e.g. chemical pro-
cesses, electrical systems, mechanical systems, electromechanical systems, aircrafts,
biological/biochemical systems, and so on (Dote & Hoft, 1980) (Hashimoto et al.,
1987) (Young, 1993) (Hung et al., 1993) (Utkin, 1993) (Fossas et al., 2001) (Msirdi &
Nadjar-Gauthier, 2002) (Biel-Sole & Fossas-Colet, 2004) (Sabanovic & Jezernik, 2004)
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(Utkin & Chang, 2004) (Goh et al., 2004) (Bartolini et al., 2004) (Herrmann et al.,
2008) (Alwi et al., 2008) (Tan & Edwards, 2008) (Pan et al., 2008) (Tan et al., 2008)
among other references.

1.2 Motivation and Literature Review

Uncertainties in mathematical models may arise from unknown dynamics, either
unknown or approximated numerical values of the parameters in the model, varying
parameters, and approximations in the modelling process. Closed-loop stability and
an appropriate robust performance in the presence of parametric or non-structured
uncertainties, external disturbances, measurement noise and unmodelled dynamics are
requirements to be considered when synthesising a control system. A sliding mode con-
troller, when appropriately designed, will guarantee closed-loop stability and complete
rejection of a class of uncertainty known as matched uncertainty. Although some sys-
tems can be categorised as uncertain plants with matched uncertainty, there are many
practical plants affected by mismatched uncertainties. The reduced-order sliding mode
dynamics will be affected by any mismatched uncertanty in the system. Most of the re-
search carried out on SMC and sliding mode estimation using Sliding Mode Observers
(SMOs) consider matched uncertainty, nonlinearities and/or disturbances. Compara-
tively few papers have studied the control (state feedback, static and dynamic output
feedback) and estimation (state reconstruction) problems for systems with mismatched

uncertainties.

Sliding mode control synthesis comprises two design problems. Firstly, the sliding
mode existence problem consists of synthesising a sliding surface in such a way that
the reduced-order dynamics exhibit the desired behaviour established by the designer.
Secondly, the reachability problem involves the design of a discontinuous control law
to drive the trajectory of the system onto the sliding surface and then to lie in the
subspace defined by the sliding surface.

1.2.1 Full State Information Approaches

There are several sliding surface design frameworks assuming that all state vari-
ables are available. Initially, sliding mode controllers were developed for the class of
systems with only matched uncertainties, disturbances and/or nonlinearities. Thus,
synthesis methodologies for sliding surfaces involving the so-called regular form and
based on quadratic minimization, eigenvalue and eigenstructure assignment were pre-
sented in (Utkin & Young, 1978) (El-Ghezawi et al., 1983) (Dorling & Zinober, 1986).
Subsequently, design approaches using Linear Matrix Inequalities (LMIs) (Boyd et al.,
1994) have been proposed in (Choi, 1997) and (Edwards, 2004). It is important to
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highlight that the design approaches cited above, concerned with pole placement, are
pointwise eigenvalue assignment methods.

The problem of sliding surface design for plants with full-state information and mis-
matched uncertainties has been studied and several approaches have been proposed.
The robust eigenstructure assignment method described in (Edwards & Spurgeon,
1998b) seeks to minimise the effect of the variations of the mismatched parameters. A
sliding mode control scheme which minimises the effects of the mismatched uncertainty
on the performance associated with the sliding surface has been presented in (Spurgeon
& Davies, 1993). In (Kim et al., 2000) an approach based on a Riccati inequality has
been proposed. A design methodology using pointwise pole placement is presented in
(Chen & Chang, 2000). Such a methodology considers the overall closed-loop system
instead of the sliding mode reduced-order system. The design of adaptive sliding sur-
faces to tackle mismatched uncertainty has also been considered in (Chang & Cheng,
2007).

Some sliding surface design approaches using LMIs have already been proposed. For
instance, quadratic stabilisation and pole assignment in a convex region of the left-half
complex plane was considered in (Arzelier et al., 1997) for a class of systems with norm-
bounded mismatched uncertainty. Arzelier et al. suggested, in the concluding remarks
of (Arzelier et al., 1997), the use of a polytopic representation as an extension of their
work. However, such an extension considering a polytopic description of the system
has not appeared in the literature. In (Takahashi & Peres, 1999) an H, guaranteed cost
design for systems with structured mismatched uncertainties (represented in polytopic
form) and mismatched disturbance signals was proposed. However, LMI regions were
not considered. In (Choi, 2003) the sliding mode existence problem was considered
for mismatched uncertainties represented in a norm-bounded form, and an invariance
property was proposed. These publications, based on LMI methods for systems with
mismatched uncertainties, have tackled only the sliding mode existence problem and
have not studied the reachability problem, and furthermore no design methodology for
the control law was proposed either. A sliding mode controller synthesis for systems
with norm-bounded mismatched uncertainties was proposed in (Sellami et al., 2007).
The class of system considered in (Sellami et al., 2007) has only norm-bounded un-
certainties affecting the state matrix, and takes into account uncertainty in both the
sliding mode existence and reachability problems. The sliding surface synthesis is LMI-
based involving pole placement in LMI regions, whilst the full-state feedback control
law (consisting of linear and smoothed discontinuous parts) is designed algebraically
following the ‘unit vector’ approach described in (Ryan & Corless, 1984). The particu-
lar form of the norm-bounded uncertainty is considered when designing the scalar gain
in the smoothed discontinuous component of the control law.
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As referred to previously, many of the early SMC approaches assumed that the
state vector is accessible, and hence all state variables are available to the control law.
Although this assumption has allowed real applications to be tackled, e.g. (Utkin, 1993)
and (Tan et al., 2008), this assumption is quite restrictive, as in many applications
only a subset of the state variables are physically measurable. This has given rise to
developments in two main directions. On the one hand, observer-based sliding mode
control, e.g (Xie, 2007) and (Pan et al., 2008), in which a state estimator or observer is
applied to reconstruct the state variables by means of measuring the input and output
signals of the plant. Then, a state feedback sliding mode controller can be designed.
State estimators, however, unless properly designed, can undermine the robustness
properties of state feedback control. On the other hand, Slkding Mode Output Feedback
Control (SMOFC) uses only plant output signals (Edwards & Spurgeon, 1995). This
kind of control can be classified into static (Zak & Hui, 1993) (El-Khazali & DeCarlo,
1995) (Edwards & Spurgeon, 1995) (Edwards et al., 2001) or dynamic (Kwan, 2001)
(Teixeira et al., 2006) (Chen & Saif, 2008). Details on the limitations of some existing
SMOFC designs are discussed in (Edwards & Spurgeon, 2000).

1.2.2 Qutput Feedback Methods

In general, static output feedback (SOF) is still an open problem, although several
approaches have been developed (Syrmos et al., 1997). Simplicity is the most attractive
feature of SOF whilst non-convexity is an important drawback when an LMI framework
is applied. Another relevant aspect of the SOF problem is that the dynamic output
feedback (DOF') control problem via compensator-based control can be recast as a SOF
problem (Syrmos et al., 1997). DOF control implies that further dynamics are added
to the control system in order to achieve some application dependent performance
requirements defined by the designer.

A small number of papers have considered Sliding Mode Output Feedback (SMOF)
controller design based on LMIs for systems with mismatched uncertainties. For in-
stance, an LMI-based SOF variable structure controller was developed in (Choi, 2002).
The proposed control law is a high gain control law which for some practical engineering
systems is not desirable as it may saturate the system actuators. This drawback can be
overcome through a dynamic variable structure output feedback control law. In (Choi,
2008a) an LMI-based sliding surface design approach considering H, performance was
presented. More recently, a compensator-based SMOF controller considering several
performance criteria (Choi, 2008b), and uncertain fuzzy systems (Choi, 2009) were
proposed. Another Sliding Mode Static Output Feedback (SMSOF) approach using
LMIs was developed in (Xiang et al., 2006) which neither requires coordinate trans-
formations nor solves a SOF problem. Again, the proposed control law belongs to the
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class of high gain control laws. The LMlIs involved in the design algorithm are rela-
tively complex and as the algorithm is iterative, its convergence depends on the chosen
initial conditions. Recently, in (Park et al., 2007) a dynamic output feedback variable
structure controller was presented.

In some particular cases when the Kimura-Dovison conditions (Kimura, 1975)
(Kimura, 1977) (Davison, 1970) are not satisfied (Edwards & Spurgeon, 1998a), SMSOF
control may not be applied. In such situations, an appropriately dimensioned dynamic
compensator is required in order to introduce extra dynamics to increase the degrées
of design freedom. This approach belongs to the class of dynamic output feedback
controllers.

The control theory problem of so-called simultaneous stabilisation consists of de-
signing a single controller, if such a controller exists, to stabilise a finite set of plant
models. The problem of simultaneous stabilisation can be formulated in several dif-
ferent contexts (Lee & Soh, 2004) (Wu & Lee, 2005) (Lavaei & Aghdam, 2007). For
instance, in the case of stabilising a nonlinear system, the envelope of operation may
be split into a finite number of operating conditions. Then, a linear model for each
operating point is generated in order to formulate the simultaneous stabilisation prob-
lem. Another significant application lies in the control engineering field of fault tolerant
control (FTC) systems. In this context a finite set of plant models is defined associated
with the fault-free and faulty behaviour of the plant. The fault-free condition corre-
sponds to an operating condition whilst the faulty behaviour is defined through a finite
sub-set of faults. These faults stem from plant, actuator and/or sensor malfunctions
which deteriorate the performance of the system or worse, cause a break-down in the
system. Also the simultaneous stabilisation problem can be considered to correspond
to a finite collection of plant models of an uncertain plant. In this case, the uncer-
tain parameters vary continuously or piece-wise continuously within a hyper-rectangle

defined by the upper and lower bounds of each uncertain parameter.

The problem of simultaneous stabilisation was initially introduced in (Birdwell
et al., 1979) for a particular class of LTI systems in the context of FT'C. Neverthe-
less, a literature review suggests that it was not until a few years later that the term
appeared in (Sacks & Murray, 1982) and (Vidyasagar & Viswanadham, 1982). The
problem of simultaneous stability still remains open despite research efforts to solve
this problem analytically. However, it is argued in (Cao & Sun, 1998) that numerical
algorithms can be applied when the analytical solution may not exist.

1.2.3 Observer Schemes

An observer or estimator is a dynamical system proposed initially to reconstruct
unmeasurable state variables using only input and output signals (Luenberger, 1964).
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However, over the years, its potential for monitoring systems has been widely exploited,
more precisely, in model-based fault detection schemes (Isermann, 2006). The state
estimation problem has been addressed from different paradigms, e.g. Luenberger ob-
servers (Luenberger, 1964), Kalman filters (Kalman, 1960), high-gain observers (Gau-
thier et al., 1992), adaptive observers (Marino & Tomei, 1995) and sliding mode ob-
servers (Edwards & Spurgeon, 1998b). A sliding mode observer (SMO) is a subclass
of nonlinear observer consisting of a nonlinear (possibly discontinuous) injection signal
which guarantees convergence of the state error vector in finite time and robustness

with respect to a particular class of uncertainties.

A discontinuous observer which induces a sliding motion on the output estimation
error space was presented in (Utkin, 1981) (Utkin, 1992). An SMO involving linear and
nonlinear output error feedback was proposed in (Slotine et al., 1986). In this paper,
the relationship between performance and the discontinuous component of the proposed
SMO is studied. In (Walcott & Zak, 1987), an SMO consisting of a Luenberger-like
component and a discontinuous injection signal was presented. The synthesis frame-
work considers bounded uncertainties/non-linearities and involves a constrained Lya-
punov problem requiring symbolic algebraic manipulation. A discontinuous observer
with a sliding mode was proposed in (Edwards & Spurgeon, 1994) where a systematic
design methodology considering a canonical form and norm-bounded uncertainties is
described. In (Sira-Ramirez & Spurgeon, 1994) the matching condition in the context
of SMOs for linear systems was studied. The equivalent control concept and the block
form for designing SMOs was considered in (Drakunov & Utkin, 1995). SMOs (based
on the Walcott & Zak and Edwards & Spurgeon observers described above), which do
not require the upper bound of the matched uncertainty/disturbance to be known, were
proposed in (Chen & Saif, 2006). The observer nonlinear injection signals are functions
of a time-varying gain computed using a first-order dynamic law. A synthesis approach
based on LMIs is described in (Tan & Edwards, 2001) for generating the gain matrices
of an SMO of the same form as in (Edwards & Spurgeon, 1994). An LMI-based design
methodology was proposed in (Choi & Ro, 2005) which does not necessitate change
of coordinates to obtain the canonical form required in (Tan & Edwards, 2001). Only
systems with matched uncertainties have been considered in the references cited above.

In all the work described previously the effects of the matched uncertainties are
rejected by the discontinuous injection signal. This is consistent with the invariance
property of sliding modes with respect to this class of uncertainty. Nevertheless, the
invariance property is not guaranteed with respect to any mismatched uncertainty in
the error system. Comparatively few papers have been devoted to the problem of
designing SMOs for systems with mismatched uncertainties. A notable exception is
the work (Koshkouei & Zinober, 2004) in which the problem is tackled via algebraic
Riccati equations. High order sliding mode observers (HOSMOs) built on the sliding
mode differentiator (Levant, 1998) have been employed to address the problem of state
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estimation for systems with unknown inputs. Results reported in (Fridman et al.,
2006), (Bejarano et al., 2007), (Floquet & Bardot, 2007) and (Chen & Saif, 2008)
represent significant contributions in this direction. (Fridman et al., 2008) presented
an overview of the recent contributions on HOSMOs and proposed estimation schemes
(observation, identification and fault detection) for linear systems with unknown inputs
which do not require a matching condition.

1.3 Objectives

The aims of this thesis are to twofold. One aim is to study the sliding mode ex-
istence and reachability problems for uncertain linear continuous-time systems with
mismatched parametric uncertainties. This class of uncertainty is of great relevance in
practical engineering applications. Matched uncertainties, nonlinearities and/or distur-
bances have to be also considered. The second aim is to propose synthesis frameworks
for designing sliding mode controllers (full state and only output information) and slid-
ing mode observers for plants with mismatched parametric uncertainties and matched
uncertainties, nonlinearities and/or disturbances. As discussed in Section 1.2, compar-
atively few papers have studied the state feedback, static and dynamic output feedback
control problems, as well as the state reconstruction problem using sliding modes for
systems with mismatched uncertainties.

The stability of the reduced-order sliding mode dynamics will be formally analysed
considering each class of sliding mode controller and sliding mode observer proposed
in this thesis.

This dissertation contributes to the study and analysis of newly proposed systematic
design methodologies for variable structure control systems with sliding modes for
plants with mismatched parametric uncertainties. Thus, control engineers will have
analysis and design tools enabling them to solve practical problems involving the class
of systems considered in this thesis. This research not only offers a breakthrough in the
theory of variable structure systems with sliding modes, but also in providing design
algorithms that can be used by engineers without the need to go into the mathematical
details which support the proposed synthesis methodologies.

1.4 Methodology

Abstract mathematical models for describing physical real world phenomena, were
first used by astronomers and mathematicians, e.g. Eudoxus, Ptolemy and Archimedes,
in ancient Greece (Haddad & Chellaboina, 2008). In this thesis, a mathematical model
constructed through a convex combination of N vertices defined in a matrix space,
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referred to in this thesis as a polytopic model, is considered to describe mismatched
parametric uncertainties. The associated stability analysis is carried out using Lya-
punov theory. LMIs (Boyd et al., 1994) represent a powerful mathematical tool for
formulating and solving problems in control and systems engineering which consist of
a set of matrix variables that may have specific structures defined by the designer. In
(Gahinet et al., 1995) it is asserted that LMIs have the following attractive features:
several problems can be recast as LMIs, such problems can be solved numerically in
an efficient way by means of convex optimisation algorithms, moreover, some mathe-
matical programming problems with multiple constraints or objective functions which
cannot be solved analytically can be tractable using LMI techniques. In this disser-
tation, LMI methods are the main mathematical tool applied for solving the analysis
and synthesis problems posed within this research work in the context of sliding mode
theory.

Design studies and computer simulations are performed in order to illustrate the
proposed design methodologies. Numerical examples and mathematical models of
plants with physical meaning are used throughout this dissertation to demonstrate
the efficacy of each proposed approach.

1.5 Structure of the Thesis and Contributions

The structure of this thesis and its contributions are presented in the sequel:

Chapter 2 describes the theoretical fundamentals of variable structure systems with
sliding modes. Existence and uniqueness of an ideal sliding mode is discussed from two
different perspectives: the Filippov method and the ‘equivalent control’ approach. The
existence problem is studied in detail and two canonical forms employed in this dis-
sertation are presented. Then, the main properties of sliding modes are demonstrated.
Next, the reachability problem is dealt with. The structure of the control laws con-
sidered in this thesis is given in general form in this chapter. In order to reduce high
frequency switching in the control law, due to the discontinuous term, a differentiable
approximation of the unit vector structure is presented. The state reconstruction prob-
lem using SMOs for systems with matched uncertainties is studied and the form of the
SMO considered in this thesis is presented. Finally, some concluding remarks are
drawn.

Chapter 3 comprises two parts: The first part presents the LMI methods as the
main mathematical tool applied in this thesis, whilst the second part describes the
representation of uncertain systems considering polytopic models. LMI methods are
formally discussed: this includes a study of the convexity property and different forms
of representation of LMIs. A formulation of the standard LMI problems is given.
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The main properties and characteristics of LMIs are studied in this chapter. Finally,
parametric uncertainty representations employing polytopic models are described in
detail.

The sliding mode control design problem for uncertain plants with both matched
and mismatched uncertainty considering full state information is discussed in Chap-
ter 4. A synthesis methodology is proposed for the design of sliding mode controllers
for both types of uncertainties. The proposed approach employs robust pole cluster-
ing in convex regions of the left-half complex plane using LMI methods and polytopic
models for solving both the sliding mode existence and reachability problems. This de-
sign methodology is an extension of the approach in (Arzelier et al., 1997). The sliding
mode existence problem is formulated as a state feedback problem for the reduced-order
system using a polytopic description, considering the mismatched uncertainty affect-
ing the state matrix. The control law is made up of linear and nonlinear components,
and their design is not independent, since one of the matrix variables obtained when
designing the linear component is part of the nonlinear term. The linear component
is synthesised via LMIs and a polytopic description of the system takes into account
the mismatched parametric uncertainties. The matched uncertainties, disturbances,
and/or nonlinearities are rejected completely by means of the nonlinear component.
Another feature of the design framework presented in this chapter is its simplicity when
compared to the other approaches cited in the earlier literature review. The approach
proposed in this chapter has been reported in (Andrade-Da Silva & Edwards, 2010a).

A design approach based on LMIs is presented in Chapter 5 for synthesising SOF
and compensator-based sliding mode controllers. This work is an extension of (Edwards
& Spurgeon, 2003) where only matched uncertainties were considered. The existence
and reaching problems are formulated from a polytopic perspective. The switching sur-
face design problem is recast in terms of LMIs as a static output feedback problem with
mismatched uncertainties. Even though several available numerical algorithms can be
applied in this chapter, the non-iterative algorithm proposed in (Benton & Smith, 1999)
is considered because of its simplicity. The control law consists of linear and nonlinear
parts. The problem of synthesising the linear part is solved via LMI methods consider-
ing a convex region of the complex left half-plane defined by the designer. The design
of the nonlinear component counteracts matched uncertainties, disturbances and/or
nonlinearities. The control law proposed in this chapter is different to the high gain
control laws presented in the other cited references for SMOF control. In addition, the
approach proposed here is less complex. Results regarding the static output feedback
approach developed in this chapter have been presented in (Andrade-Da Silva et al.,
2008a) and (Andrade-Da Silva et al., 2008b). The sliding mode compensator-based
scheme proposed in this chapter appears in (Andrade-Da Silva et al., 2009a). Further-
more, a compressed version of this chapter can be found in (Andrade-Da Silva et al.,
2009b).
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Different classes of plants and controllers have been considered in terms of simulta~
neous stabilisation (Howitt & Luus, 1991). In Chapter 6 variable structure controllers
with a sliding mode, using only measured output information, are explored. The plant
model belongs to the class of continuous-time systems described in the state-space by
a finite set of different state matrices, but common input and output matrices. Static
and dynamic sliding mode output feedback control strategies are proposed. The dy-
namic output feedback is compensator-based. The design methodologies proposed in
this chapter consists of two stages. Firstly, the sliding mode existence problem is for-
mulated as a static output feedback problem considering a family of LTI plant models.
Then, the algorithm presented in (Cao & Sun, 1998) is re-cast in the context of such an
existence problem. Secondly, the reachability problem is formulated using LMIs (Boyd
et al., 1994). The synthesis framework proposed in this chapter is an extension of
the work on sliding mode static output feedback control presented in (Edwards et al.,
2001) which allows only one plant model to be considered. Furthermore, the design
methodology differs from the approach in Chapter 4 as the conservatism in the solution
of the sliding mode existence problem is reduced by considering a. Lyapunov matrix for
each model, instead of using a common Lyapunov matrix for all models. A key feature
of the proposed approaches is that it allows the application of sliding mode static or
dynamic output feedback control to the problem of stabilisation of a nonlinear plant
linearised at several equilibria, uncertain plants with both matched and mismatched
uncertainties, fault tolerant control, and plants with several operational modes. This
is a useful contribution since most of the existing approaches, e.g. (Zak & Hui, 1993)
(Heck et al., 1995) (Edwards & Spurgeon, 1995) (Edwards et al., 2001), for designing
sliding mode output feedback control systems, are not able to be applied in such con-
texts. The sliding mode simultaneous stabilisation approaches proposed in this chapter
have been presented in (Andrade-Da Silva & Edwards, 2009a) and (Andrade-Da Silva
& Edwards, 2009b).

In Chapter 7 a sliding mode observer (SMO) analysis and design framework is pro-
posed for systems with mismatched uncertainties in the state matrix. The stability of
the state estimation error system considering mismatched uncertainties is addressed
using the concept of uniform ultimate bounded stability (also known as practical sta-
bility). The design methodology is based on LMI methods and employs a polytopic
description of the mismatched uncertainty for designing the gain matrices of the SMO.
The observer gains are obtained by solving an LMI optimisation problem for which
powerful computational tools are available, e.g. (Gahinet et al., 1995). An impor-
tant contribution of this work is that mismatched uncertainties are considered when
synthesising the gain matrices of the SMO rather than using only the nominal state
and output matrices. This feature is of practical interest since real world plants are
affected by parametric uncertainties. A compressed version of this chapter appears in
(Andrade-Da Silva & Edwards, 2010b).
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Finally, Chapter 8 provides the concluding remarks of this thesis and highlights
future research work including potential problems to be studied and possible extensions
of the contributions proposed in this dissertation.
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"A mathematical theory is not to be considered
complete until you have made it so clear that
you can explain it to the first man whom you

meet in the street"”

David Hilbert (1862 - 1943)

Variable Structure Systems
With Sliding Modes

2.1 Introduction

A Variable Structure System (VSS) is a class of nonlinear system whose structure
changes discontinuously based on a decision function called switching function. A
Variable Structure Control (VSC) is a nonlinear control scheme consisting of a switched
control law and a switching function. The main concepts of VSC are introduced in the
sequel by means of a classical example concerning a double integrator system. To this
end, consider the system in block diagram form shown in Figure 2.1.

Figure 2.1; Block diagram of a double integrator system under VSC
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The control law is of the form

-0.5y(0 ify{t)y{t) <0
uft) = (2.1)
—5y{t) otherwise

Notice that the decision rule which defines how the structure of the system changes
is given by a{t) = y{t)y{t). This switching function delimits two main regions in the
phase plane {y{t),y{t)) depending on the sign of a{t) as shown in Figure 2.2. The
dynamical behaviour of the VSC system is depicted in the phase portrait in Figure 2.3.

It is easy to sec the effect on the system’s trajectory produced by changing the structure
of the system.

a) < 0 a (t)>0

or () > 0 a (<0

Figure 2.2: Regions of'the phase plane defined by the switching function a{t) = y{t)y{t)

2.5

1.5

Figure 2.3: Phase portrait of a double integrator system under VSC
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Remark 2.1 Figure 2.8 shows a phase portrait of an asymptotically stable VSC in-
volving two simple harmonic motions (center points plotted in red and green colours).

SMC is a class of VSC which employs a switched control action across a sliding
surface defined through a switching function. SMC theory has aroused interest among
researchers due to its robust nature, its ability to decouple high-dimensional systems
into a set of lower-dimensional sub-systems, and for its applicability to SISO and MIMO
linear and nonlinear systems.

The state trajectory of a system under SMC usually consists of two dynamical
modes: the reaching mode and the sliding mode. These modes are also called the
sliding phase or the sliding motion, and the reaching phase respectively (Hung et al.,
1993) (Edwards & Spurgeon, 1998b).

Consider the uncertain linear time invariant (LTT) system described by
x(t) = Ax(t) + Bu(t) + Df(¢, x, u) (2.2)

where x € R" is the state vector, u € R™ is the input vector, A € R"*" is the
state matrix, B € R™*™ is the input distribution matrix, D € ®™* is the uncertainty
distribution matrix which is known, and the function f : %, x ®" x ®™ — R! represents
the lJumped sum of nonlinearities and/or uncertainties. This function is unknown but
norm bounded.

The sliding surface Fsr is defined as follows
For={x €R":0(t) =Tx(t) =0} (2.3)
where o € R™ is the switching function and T' € R™*" is the switching gain matriz to

be designed.

Notice that although the sliding surface defined above corresponds to a hyperplane
because of the linear switching function, some applications require nonlinear or time-
varying switching functions to be constructed (DeCarlo et al., 1988).

Definition 2.1 Let Sy be a sliding surface. The system trajectory x(t) € R™ between
an initial point X(to) = %o ¢ Fsr and any point x(t,) = Xo € Fsr such thatt < t, < co
where L, is the reaching time, is said to be in the reaching mode.

The condition which guarantees the system state trajectory is driven towards the
sliding surface is the so-called reaching condition.

Definition 2.2 Let Fsp be a sliding surface. If the system trajectory x(t) € Fer for
all t > t,, then the system is said to be in an ideal sliding mode.
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Recall the double integrator system, and define the following sliding surface

SsF = {x E caft) = y{t) + y{t) = 0} 2.4
together with the discontinuous control law
u{t) = -10sgn((T(t)) (2.5)

where sgn denotes the sign function. The phase portrait of the VSC system with a
sliding mode is shown in Figure 2.4. This plot illustrates the reaching and sliding

motions of the system when applied to the double integrator system.

0.2

0.1

-0.1

Sliding Mode
0.2
£0.3 )
Reaching Mode >

S04
-0.5
-0.6
-0.7

Sliding Surface”.
-0.8

0 0.2 0.4 0.6 0.8 1
¥

Figure 2.4: Phase portrait of a double integrator system under SMC

Generally speaking there are two main overarching control problems: the stabilisa-
tion or regulation problem, and the tracking problem. In an ideal sliding motion, the
stabilisation problem consists of driving the states ofthe system towards an equilibrium
point, typically the origin of the state space, whilst constrained to the sliding surface
S"sF- For the tracking problem, when in an ideal sliding mode, the system’s output
signals track a time-varying trajectory called the reference signal, while the system
trajectory is restricted to the sliding hyperplane y $F- The model-reference paradigm
belongs to the class of tracking control approaches, whereby the dynamics of the plant
follow the dynamics of an ideal reference-model. In (Edwards & Spurgeon, 1998b) a

reference-model approach via sliding modes is presented.

The remainder of this chapter is structured as follows: Section 2.2 presents the

concept of an ideal sliding mode, and its existence and uniqueness of solution from
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two paradigms. Filippov’s method is built on the theory of differential equations with
discontinuous right-hand sides. The other paradigm proposed in (Utkin, 1977) is the
equivalent control approach. In Section 2.3, the sliding surface design problem is
studied and two useful state space canonical forms are exhaustively described. That
is, the regular form (employed in the full state feedback case) and the output feedback
canonical from. VSC with sliding modes has several attractive features. The main
characteristics are introduced in Section 2.4 including the feature that the reduced-
order sliding mode dynamics have an invariance property (the robustness property of
SMC). Another noteworthy concept concerned with SMC is the notion of invariant zeros
which are related to the eigenvalues of the reduced-order motion governing the sliding
dynamics. The reachability problem is stated formally and the existence of a pseudo-
sliding mode is studied. The structure of the control law considered throughout this
thesis is presented and approaches to create continuous approximations of the control
law are also dealt with. An observer based upon sliding mode theory is introduced in
Section 2.6. Finally, some concluding remarks are drawn in Section 2.7.

2.2 Ideal Sliding Mode Existence and Uniqueness
of Solution

The classical theory of differential equations cannot be applied to VSS since the
equation

%(t) = Fer(t, x) (2:6)

which describes the closed-loop dynamical behaviour of the system (2.2), is discontinu-
ous with respect to the state vector x(t). In this case, the function Fgp, : & x R* — R
does not satisfy the so-called Lipschitz condition

[For(t,x1) = Feu(t, %2)|| < Llx1 — %o (2.7)

where L is the Lipschitz constant (Michel & Herget, 1981b). The function Fg,(f,x)
in (2.6) is said to be non-analytic (Marsden, 1974) (Utkin, 1992). This means that
Foo(t,x) is not defined at the discontinuity points, and hence the uniqueness of the
solution of is not guaranteed at that point.

The right-hand side of (2.6) can be classified as follows (Hung et al., 1993):

1. Relay type discontinuity: Fo,(¢,%) is a finite non-analytical function.

2. Relay type discontinuity with hysteresis: Fo (¢, %) is a double-valued non-analytical

function.

18



2.2 Ideal Sliding Mode Existence and Uniqueness of Solution

The theory proposed in (Filippov, 1964) allows a solution for (2.6) to be calculated
as the ‘average’ of the solutions obtained when the discontinuity point is approached

from different directions.

The sliding surface %, divides the state space £ into two domains: S* and S~
The closed-loop dynamics defined in (2.6) exhibit two structures:

FH(,x) ifxeSt
Feoo(t,x) = (2.8)
F(t,x) ifxeS~

Let x, € S be a point of discontinuity. Furthermore, let F+(¢,%,) and F~(¢,%,)
be defined as follows

FH(t,x,) = lim F(¢,x) (2.9)
xSt
X—Xg
and
F(t,x,) = lim F(t,%) (2.10)
XES™
X—Xg

The Filippov’s solution is obtained from
X(t) = WE(t,%0) + (1 — W) F™(1,%,) (2.11)
where the scalar 0 < p < 1 is such that the vector
Fao(t, %o) & pFt (4, %) + (1 — ) F~(¢,%,) (2.12)

is tangential to the sliding surface %e. Figure 2.5 depicts the construction of the
Filippov’s solution.

The equivalent control approach, proposed in (Utkin, 1977), is another method for
describing the dynamics of a VSS with a sliding mode. The equivalent control law, if
it exists, guarantees an ideal sliding mode on #sp. In order to define the notion of
equivalent control, consider the uncertain system given in (2.2). Furthermore, assume
that the uncertain term f(¢,x,u) in (2.2) is completely neglected, and the system
trajectory is in a sliding mode, i.e. o(¢) = I'x(¢) = 0. Differentiating o (¢) with respect
to time yields

6 =T(Ax(t)+Bu(t)) =0 for t>1, (2.13)

then, it follows from (2.13) that the equivalent control law is straightforwardly calcu-
lated as

uzo(l) = —(TB) T'TAx(t) (2.14)
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2.3 Sliding Surface Design Problem

which corresponds to the unique solution to the algebraic equation (2.13) by setting
&{t) = 0. The uniqueness of this solution requires the matrix (FB) to be nonsingular,
or from a geometrical viewpoint that the null sub-space of F and the range sub-space
of B (denoted by VV(F) and 7?.(B) (Michel & Herget, 1981b)), are complementary, i.e.
Af{r) n %(B) = {0}, (EI-Ghezawi et ai, 1983) (Dorling & Zinober, 1986).

The dynamics of the ideal sliding mode are given by
x(t) = Agqgx(t) - (1,, - B(FB)"'F) Ax(t) (2.15)

by substituting for (2.14) in (2.2) supposing f(*,x,u) = 0. This assumption is com-
pletely valid when the uncertainty under consideration is matched as will be demon-
strated later in the sub-section on sliding mode properties. Notice that the closed-loop
dynamics depend on the switching matrix F, which is synthesised by the designer be-
forehand based upon design specifications. Furthermore, the dynamics do not appear
to be directly influenced by the control action.

F"(f,Xq)

a(t) >0

a(0 <0

Figure 2.5: Construction of Filippov’s solution Fav(i, x,,)

2.3 Sliding Surface Design Problem

The problem of synthesising a sliding surface can be posed either as a state feed-
back or an output feedback problem depending on the availability of measurable state
variables. Two canonical forms are appealing for this purpose. Namely, the regular

form presented by Utkin in one of his seminal works on sliding mode control (Utkin,
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2.3 Sliding Surface Design Problem

1977), and the output feedback canonical form proposed in (Edwards & Spurgeon,
1995). The following two sections describe both canonical forms.

2.3.1 The Regular Form Approach

Consider the dynamical system described in state-space form V ¢ > 0 given in (2.2),
assuming that the uncertain term f{¢,x, ) is equal to zero, t.e.,

*x(t) = Ax(L) + Bu(t) (2.16)

and the sliding surface is defined in (2.3).

The following assumptions are made:

A-2.1 All state variables are measurable.
A-2.2 The input matrix is full rank, i.e. rank(B) = m.
A-2.3 The nominal pair (A,B) is controllable.

A-2.4 The matrix (I'B) is nonsingular.

From postulate A-2.2, there exists an orthogonal matrix Tz € £™*" such that

0

TEB = (2.17)

B,
where By € R™*™ is nonsingular.

Remark 2.2 Although the Gaussian elimination method can be applied to find the
transformation matriz Tr, QR decomposition is more appealing from a computational
viewpoint as an orthogonal matriz T is obtained. This allows the inverse of Tg to
be straightforwardly computed by transposition.

Using the similarity transformation x(¢) — Tgx(t) = %(¢), the system pair (A,B)
in (2.16) can be written in the so-called regular form (Utkin, 1977):

_ Ay A y 0
A= ~11 ~12 B-| (2.18)
Az Ay B,
where Aj; € Rv-mxn-m) A, ¢ R-mixm K, ¢ gmx-m) Ko, € Rmxm gnd
]§2 € R™*™ are known constant matrices. Moreover, the input matrix sub-block ]~32 is
such that det(By) # 0.
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2.3 Sliding Surface Design Problem

Thus, the system (2.16) in the regular form is given by
%1(8) = AnFi(t) + Aga%s(t) (2.19)
;{g(i) = Azlil(t) + Aggf{z(t) + lel(t) (220)

where equation (2.19) corresponds to the dynamics associated with the null space V' (T')
whilst (2.20) describes the dynamics of the range space R(B).

Conformably with the partition in (2.19)-(2.20), let
ITh=|T, T, ] (2.21)

where I’y € R™*(=m) gand 'y € Rmxm,

From assumption A-2.4, it follows that det(I'B) # 0, then
det(T'B) =det(TTETzB) =det(T'yBy) =det(I';)det(By) <= det(I) £ 0 (2.22)

since det(B) # 0.

The switching function o (t) is identically equal to zero when in the sliding mode
(Utkin, 1977):

o(t) =% (t) + T1%x2(t) =0 (2.23)
and hence
Ko = —(Tg) 'T%; V t2>1, (2.24)
Define the gain matrix Kg, € R™*(=m) a9
Ksr 25T (2.25)

Consequently, the dynamics associated with the null space A(T'), which describe the
sliding mode dynamics, are given by

il(t) = (A-ll - Angsp)il(t) (226)
Remark 2.3 The matriz Ty has no direct effect on the sliding mode dynamics since
it represents a scaling term of the switching matriz T'.

From (2.21) and (2.25) the switching gain matrix T' can be straightforwardly pa-
rameterised as follows (Edwards & Spurgeon, 1998b):

=T, [ K. L, ] Th (2.27)
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2.3 Sliding Surface Design Problem

The sliding surface design problem consists of synthesising a gain matrix Ks» such
that the reduced-order system (2.26) is stable, and then the switching gain matrix T’
given in (2.27) can be calculated.

Remark 2.4 The design of the switching gain mairiz T defined in (2.27) is equivalent
to a state feedback problem for the reduced-order system pair (An,Am) in which the
designer tackles the synthesis requirements associated with the desired dynamics of the
sliding mode reduced-order system (2.26).

The controllability property of the pair (All,Alg) is required to be able to find
a gain matrix Kgr which stabilises the sliding mode dynamics given in (2.26). As
asserted in (Edwards & Spurgeon, 1998b), the controllability of the system (2.16) is
related to the controllability of the pair (Au, Am). This equivalence is presented and
demonstrated formally in the sequel.

Theorem 2.1 (Edwards & Spurgeon, 1998b): The matriz pair (Au,Am) is control-
lable if and only if the pair (A, B) is controllable.

A

Proof (Edwards & Spurgeon, 1998b): From the controllability of the pair (A, B), it
follows the rank condition holds

rank { (sI,-A) B ] =n VseC (2.28)

Expression (2.28) can be written, using the state and input matrices in the regular
form given in (2.18), as

Tinm) — A —-A 0
rank (s X 3 1) 12~ . =n VseC (2.29)
—Ag; (sLp—Agz) Bs

Since by construction det(By) # 0 and By € ™™, then rank(B,) = m. This implies
vank [ (s, ~ A) B | =rank[ (sIpomy~ An) By |+ (230)

for all s € C. Therefore,
rank [ (sI,—A) B } =n <= rank [ (sTnemy — An) Agy ] =n-m (2.31)

for all s € C.
As argued in (Edwards & Spurgeon, 1998b), the controllability equivalence between
the (A, B) and (Au, Ayy) follows from the Popov-Belevitch-Hautus rank test.
Q.E.D.
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2.3 Sliding Surface Design Problem

2.3.2 The Qutput Feedback Cancnical Form Approach

The output feedback canonical form (Edwards & Spurgeon, 1995) is an approach
for designing sliding surfaces when only a subset of the state variables of the system
are measurable. This canonical form is based on a similarity transformation in which
the last p state variables correspond to the output signals of the system. Then, the
sliding surface design problem is formulated as a static output feedback problem.

Consider a dynamical system described in state-space form V ¢ > 0 by

x(t) = Ax(t) + Bu(t)
(2.32)
y(t) = Cx(t)
where x € R, u € ™ and y € RP.

In the output feedback case, the sliding surface is denoted by % and defined as
follows

For ={x €R": 0(t) =TCx(t) =Ty(t) = 0} (2.33)

where o0 € R™ and I" € R™>?.

The following are assumed:

A-2.5 The order of the system and the number of output and input signals
satisfy n > p > m.

A-2.6 The input and output matrices are both full rank, i.e. rank(B) =m
and rank(C) = p.

A-2.7 In the nominal triple (A, B, C), rank(CB) = m.
Since rank(CB) = m, there exists a similarity transformation x — Tox = % where
Te € R™™ has the form
Ng

To = (2.34)
¢]

in which Ng € ®**(™?) and the columns span the sub-space N (C).

In the new coordinate system, the output and input distribution matrices C and
B are transformed into

¢c=crii=]o0 1] (2.35)
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2.3 Sliding Surface Design Problem

and

. B
B=TB=|"_" (2.36)
Be:

where B01 € R-p)xm and Bg, € Rpxm,

From (2.35) and (2.36), it follows that CB = Bg, and rank(Be,) = m because of
assumption A.2-6. Then, the left pseudo-inverse BIJLZ can be defined as

Bl 2 (BE,Be,) 'BE, (2.37)

Also, there exists an orthogonal matrix T € RP*P such that

o]
T™Bgy = | _ (2.38)
B

where By € ®™*™ has the property det(By) # 0.

The similarity transformation % — TpX = X where

Iy —Be Bl
Tp=| P TG (2.39)
0 TT

brings the triple (A, B, é) into the output feedback canonical form (Edwards & Spur-
geon, 1995):

_ Ay A _ 0 _
A= |00 02 B=| _ C=|o 7| (2.40)
Ay Ay B, /

where Ay; € Rie=m)x(n=m) A, e Rlo-mixm A, e fmx(n—m) gnd Ayy € R™*™, The
state vector X is partitioned conformably with (2.40) as follows

- %1(t)
%)= |~ (2.41)
[ %a(t) }
Let
I'T = [ r, T, ] (2.42)

where T'; € ®7xE=m), Ty € R™*™ and det(Ty) # 0.
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2.4 Properties of Sliding Mode Control

Define C; € RE-m)x(n—m) g9
Cr2 [ Opomptnny  Tpom | (243)

and the gain K,r € R™*@-™) a5
Kor 2 T (2.44)

During the sliding mode the switching function o(¢) is identically equal to zero and
hence X3(t) = —KorCi%;1(t). Moreover, the null space dynamics satisfy

)_(1([,) = Allil(L) + Alzig(l}) (245)
it follows that
x1(t) = (A — AKorCi) () (2.46)

The reduced-order dynamics (2.46) correspond to an output feedback problem.

From (2.42) and (2.44), as shown in (Edwards & Spurgeon, 1995), the switching
gain matrix I’ can be parameterised as follows

C=T, [ Kor I, ] T (2.47)

where I's € R™*™,

Remark 2.5 The matriz T'y represents a scaling of T'. In this thesis, it is assumed
that T'y = B! to obtain TCB = 1,,.

The sliding mode output feedback existence problem consists of finding a gain
matrix Kor in such a way that (2.46) is stable and hence the switching gain matrix T’
defined in (2.47) can be straightforwardly synthesised.

2.4 Properties of Sliding Mode Control

Fundamental linear algebra notions (Michel & Herget, 1981a) (Cullen, 1990) and
the theory of projectors (El-Ghezawi et al., 1983) are used to describe the properties
of variable structure systems with a sliding mode.

The following lemma will be useful when demonstrating that the dynamics of the
sliding motion are governed by a reduced-order system.
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2.4 Properties of Sliding Mode Control

Lemma 2.1 (Bernstein, 2005): Let M; € ®™™ and M, € ®™<. Then,

rank(M; M) = rank(M, ) (2.48)

if and only if
R(M;M,) = R(M,) (2.49)
A

Proof See (Bernstein, 2005).

Proposition 2.1 (El-Ghezawi et al., 1983) (Edwards & Spurgeon, 1998b): The dy-
namics of the ideal sliding mode described by

(1) = (I,, - B(I‘B)_ll‘)Ax(L) (2.50)

Agpq

correspond to a reduced-order system whose dimension is n — m, and the eigenvectors
associated with any non-zero eigenvalues of the state matriv A are contained in the
null space of the switching gain matriz T.

Proof By defining
P, £ B(I'B)"'T (2.51)
it is straightforward to verify that P? = P, i.e. P is idempotent, and hence P, is a
projector.
Since by assumption rank(B) = m and rank(I'B) = m, it follows rank((I'B)~'T) =
m. Thus, by applying Lemma 2.1, it follows that
rank(P;) = rank(B) (2.52)

and equivalently

R(P1) = R(B) (2.53)

Therefore, the projector P, defined above, projects the space R" on the range sub-
space R(B) along the null sub-space A (T).

As before, since rank(B) = m and rank(I'B) = m, rank(B(I'B)~!) = m. Using
similar arguments as above, it follows that

N(P) =N(T) (2.54)
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2.4 Properties of Sliding Mode Control

Defining
PE (In — ?1) (2.55)

yields the following projector
P42, - BIB)IT (2.56)

which projects the space " on the null sub-space N(I') along R(B).

Since
R(I, — B(I'B)™'T") = N/ (B(I'B)"'T') = N(I) (2.57)

and
rank(I, — B(TB)™'T') = n — rank(B(I'B)™"'I) =n—m (2.58)
then the dimension of M (T') is n — m.

Therefore, the system (2.15), in which the projector P, = I, — B(TB)~'T" maps
the columns of the state matrix A on the null sub-space N (I"), is of order n—m. That
is, the dynamics of the sliding motion are described by a reduced-order system.

Let A; be a non-zero eigenvalue of Az, € R™*", and let v; be the associated
eigenvector. From (2.56), the following properties of the projector %5 can be verified

TP =0 (2.59)

and

TA=TPA=0 (2.60)

th

Moreover, considering the definition of the j** eigenvector v; in terms of its associated

eigenvalue )\;, along with (2.60), yields

I‘fpzAVj = AjPVj =0 (261)
This implies
Tv; =0 (2.62)
and
vy € N(T) (2.63)

where v, denotes the set of eigenvectors of the nonzero eigenvalues. This means that
the matrix Ay, only can have up to n — m nonzero eigenvalues.

Q.E.D.
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The sliding mode invariance property has been the key property which attracted
attention to variable structure systems with a sliding mode. This characteristic is

presented as a proposition and subsequently demonstrated applying projector theory.

Consider the uncertain dynamical system given in (2.2) and the sliding hyperplane
Fer ={x e R 0(t) =Ix(t) = 0} (2.64)

Proposition 2.2 (DraZenovié, 1969) (El-Ghezawi et al., 1983): The ideal sliding mo-
tion of the uncertain system given in (2.2) is invariant or, equivalently, insensitive to
the uncertainty £(¢,x,u) if R(D) C R(B).

Proof The time derivative of o(t) = I'x(t) is given by
o(t) = T{Ax(t) + Bu(t) + Df(¢,x,u)) (2.65)
Assume the system (2.2) is in a sliding mode, which can be written mathematically as
o(t)=0 and 6(¢t) =0 (2.66)

Then, the equivalent control law, resulting from (2.65) when considering (2.66) and
the premise that det(I'B) # 0, can be written as follows

o = —(TB) ~'T'(Ax(¢) + DE (4, %, u)) (2.67)

From the definition of P, in (2.56) and using (2.67) as the control signal in (2.2) yields

x(t) = PAx(t) + BDE(E, x, u) (2.68)

Assuming R(D) C R(B), i.e. the uncertainty is matched, then
D = BMp (2.69)

where Mp € ®™*! is a matrix constructed by means of elementary column operations.
Since P, is a projector (as demonstrated in the proof of the Proposition 2.1), the

following property follows straightforwardly
B =0 (2.70)

Consequently

P,D = B,BMp =0 2.71)
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Therefore, the uncertain system given in (2.2) is invariant, or equivalently insensi-
tive to the uncertain function £(¢,x,u).

Q.E.D.

In the following proposition and proof, the concept of invariant zeros in the context
of VSS with sliding modes is tackled. It is assumed that the state matrix A and the
input distribution matrix B are in the regular form described in Section 2.3.1. For
the sake of simplicity and succinctness of notation, the switching gain matrix I in the
coordinates of the regular form, defined in (2.21), is written as I', that is

T = [ T, T, ] =T 2.72)
where Iy € R™X(=m) gnd Ty € Rmxm,

Proposition 2.3 (Edwards & Spurgeon, 1998b): The eigenvalues of the sliding motion
are the invariant zeros of the system triple (A,f’»,f‘).

A
Proof (Edwards & Spurgeon, 1998b): The invariant zeros of (A, B, f‘) are given by
{s €C : 2(s) loses normal rank} (2.73)

where Z(s) is the Rosenbrok’s matrix

R(s) = (2.74)

(5In — A) B
0

Notice that the system triple (A,B,f‘) corresponds to a square systems, i.e. the
number of input and output signals are equal. This means that (2.74) loses rank if and
only if det(%(s)) = 0. Re-writing the matrix (2.74) using the regular form given in
(2.18) and the switching matrix T partitioned as in (2.72) yields

SI(n—m) - All _Alz 0
Z(s) = ~Ay sIn — Agy  Bs (2.75)
_rl —I‘Q 0

Since det(B,) % 0, it follows that

SI(n—m) - A11 _A12

det(%(s)) =0 <= det
~I'y -I,

=0 (2.76)
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The matrix in the right-hand side of the statement (2.76) accepts the following
factorization because, as shown in (2.22), det(T'y) # 0:

lSI(n—m)_All —Alz}: Tomy AT sInm —Ai, 0 ||Tem) @2.77)

-y -I, 0 I, 0 -yl Ksr In

where Ky is defined in (2.25) and Ana 2 A, — ApKgp. Note that the inner and
outer matrices in (2.77) have determinant equal to unity and only one matrix among
these matrices depends on s, hence

Sln—m) — Ay —Ag, slig—m) — Ay, 0

det = det (2.78)
—Fl —FQ 0 *1—‘2
= det (sL(p-m) — A1, )det(~T) (2.79)
From (2.22), it follows that
det(%Z(s)) =0 <= det(sLpom) — A11,) =0 (2.80)

which means that the eigenvalues of Ay, are the invariant zeros of the system triple
(A,B,D).

Q.E.D.

2.5 Variable Structure Control Laws

2.5.1 The Reachability Problem

The reachability problem is related to the suficient conditions which guarantee the
sliding surface

S ={xeR":0(t)=0, 0 € R™} (2.81)

is reached from any arbitrary initial point xo = %x(fy) ¢ . in the state space Z .
Therefore, a control law has to be designed such that the system trajectories are driven
to the sliding surface and remain on the surface thereafter.

The reachability conditions can be classified in terms of the domain of attraction
and the reaching time ¢,. Thus, there are local and global reachability conditions. The
reaching conditions most frequently found in the literature are: the direct switching
function condition (Emel’yanov, 1967) (Utkin, 1977) (Utkin & Yang, 1986), the Lya-
punov function condition (Itkis, 1976), the n — reachability condition (Slotine & Li,
1991), and the reaching law condition (Hung et al., 1993).
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Let Q» C R™ be a domain containing the origin of the state space 2~ C R". A
local reachability condition presented in (Utkin, 1977) (Hung et al., 1993) is given by

lim 6; <0 and lim ¢; >0 for jeI(l,m) (2.82)

o;—0F g;—0~

where ¢; denotes the time derivative of the j — ¢th component of the vector & € R™,
and I(1,m) is the index set given by I(1,m) = {1,2,--- ,m}.

For this condition, as stated in (Edwards & Spurgeon, 1998b), the sliding surface
is the set
S=SN0y={x€Qy:0(t) =0} (2.83)

The global counterparts of the condition (2.82), i.e. when Q5 = R", were presented
in (Emel’yanov, 1967) and (Itkis, 1976). These conditions are defined as

605 <0 for j € I(1,m) (2.84)
and the Lyapunov function based reachability condition
V(t) <0 when o(t) #0 (2.85)
where
V() =0T (t)o(t) >0 (2.86)

The main drawback of the reachability conditions defined above is that there is
no guarantee the sliding surface will be reached in finite time. In order to overcome
this disadvantage the following conditions have been proposed. In (Hung et al., 1993),
condition (2.85) is rewritten as

V(t) < —e, when o(t) #0 (2.87)

where ¢, is a positive scalar. The n—reachability condition (Slotine & Li, 1991) is given
by

%0‘? < —njlo;| with ; >0 for j € I(1,m) (2.88)

Nl

2.5.2 Existence of a Pseudo-Sliding Mode

In the non-ideal sliding mode (also referred as pseudo-sliding) the states are forced
to lie arbitrarily close to the sliding surface .%, instead of on the surface (Edwards &
Spurgeon, 1998b).
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Definition 2.3 Let e and 6 be positive scalars such that for any e there exists a 6
determining a sliding mode domain Vy <Z 5" Thus, any motion starting in a 6-
neighbourhood of T>" may leave an e-neighbourhood of Vy only through such an e-
neighbourhood of the boundary ofVy.

Figure 2.6 illustrates graphically the definition of the sliding domain 7>" C *
presented above.

AX,

Figure 2.6; A practical sliding motion (adapted from (Edwards & Spurgeon, 1998a))

Lyapunov theory is applied to establish sufficient conditions for the existence of a
non-ideal sliding mode. The following theorem establish such conditions (Utkin, 1992).
This result is directly related with the continuous approximation of the discontinuous
control law presented later in this chapter.

Theorem 2.2 (Utkin, 1992): Let be some region contained in 31" such thatV" ¢ fi.
If there exists a continuously differentiable scalar function V : %+ x X > %
satisfying the following conditions:

L Vi{tx,a) >0 if a 0 Vx Gf2. Moreover, on the spheres ||<{| = To Vx €

(a) inf V{t,'K.a) = " and >0 for r, 0
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(b) sup V(t,x,0)=H, >0 and li§0Hra =0
To

lloll=rs
where h,, and H,,k depend on r,.
2. The total time derivative of V(t,x,0) has a negative supremum V x € Q ezempt-

ing those points on the sliding surface where the conirol signal may be not defined,
and consequently V(t,x, o) does not exists.

Then, D is said to be a sliding mode domain.

A

Proof A detailed proof and remarks of the theorem above can be found in (Utkin,
1992) pages 47-49. Also in (Utkin, 1978) pages 83-86.

2.5.3 Structure of the Control Law

Several forms of variable structure control laws can be found in the literature, e.g.
switching scheme based control laws, relay control laws, unit vector control laws, and
so on (Hung et al., 1993) (Edwards & Spurgeon, 1998b). Many of the variable structure
control laws consist of two components: a linear term with either a state or output
feedback gain, and a discontinuous component. The control laws considered in this
thesis have the form

u(t) = u, (L) +uy(t) (2.89)
The linear component u(t) is of the form
u(t) = —Gz(t) (2.90)

where z(t) is either the state vector x(t) or the output vector y(¢) in the case of state
or output feedback SMC respectively. The nonlinear term is given by

-p(-)A—ngﬁg% if Bo(t) £ 0

uy(t) = (2.91)

0 otherwise

where p(t,z(t), u(t)) is a positive scalar function to be designed based on the norm
bounded matched uncertainty, A and E are appropriately dimensioned matrices to be
designed which depend on the problem addressed, and o(t) is the switching function.
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2.5 Variable Structure Control Laws

2.5.4 Continuous Approximation of the Control Law

The discontinuous term (2.91) produces finite high-frequency switching which in-
duces an oscillatory behaviour in the trajectory of the system along the sliding surface.
This phenomenon is the so-called chattering. In the case of an ideal sliding mode, the
switching action would be infinitely fast (DeCarlo et al., 1988). High frequency switch-
ing in the control law is undesirable because it may excite the unmodelled dynamics of
the system, and also it can affect the useful life time of the plant’s actuators and other
components. It is argued in (Utkin, 1993) that chattering implies inaccurate control,
high heat losses in electrical power systems and high wear of moving mechanical el-
ements. A decrease in chattering or even more its total avoidance, is at the cost of
degradation in terms of the invariance property. Therefore, a trade-off between insen-
sitivity and chattering reduction has to be considered when designing a VSC system
with a sliding mode. Many efforts have been made to reduce or even avoid chattering.
For example: the boundary layer approach (Slotine & Sastry, 1983) (Slotine, 1984)
whereby a continuous approximation of the discontinuity is used, the regular form so-
lution (the block control principle) (Drakunov et al., 1990a) (Drakunov et al., 1990b)
using a cascade control system with a sliding mode controller in the inner loop, the
observer based approach (Bondarev et al., 1985) for generating a sliding mode in an ob-
server loop, and the disturbance rejection approach (Utkin & Shi, 1996)-(Utkin et al.,
1999) consisting of an integral sliding mode in an auxiliary control loop. Nevertheless,
the most commonly applied approach, especially for relay and unit vector control laws,
is to smooth the discontinuous term of the control law. The continuous approximation
presented in (Burton & Zinober, 1986) and (Spurgeon & Davies, 1993) is considered
in this thesis and is given by

Zo(t)

U (t) = —p(-)A” TEe@] + =

(2.92)

where € € R, is a small constant defined by the designer. The continuous approxima-
tion introduced above replaces the discontinuous function signum

. Bo(t
sgn(Ho(t)) = ﬂé—agt—gn (2.93)
by the sigmoid-like function
Bo(t)
Vp= 2t (2.94)
© Bl +e

Figure 2.7 shows the signum function and the differentiable approximation given
by a sigmoid-like function.
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oL a
lai * 16ifG

> a

Figure 2.7: Approximation of the signum function by a sigmoid-like function (figure
adapted from (Edwards & Spurgeon, 1998b) pages 16 and 62)

The choice of e is a trade-off between performance (namely the invariance property)
and the requirement to produce a smooth control signal.

2.6 A Sliding Mode Observer

The problem of state estimation using measurable output and input signals has
been studied in the context of the sliding mode theory. The main structural difference
between sliding mode and Luenberger observers lies in using discontinuous output er-
ror injection vectors. This provides the very distinctive property of insensitivity with
regard to a matched type of external disturbance and/or system uncertainty. Thus,
sliding mode observers (SMOs) are more robust than the Luenberger counterpart. The
discontinuous injection signal, when appropriately synthesised, forces the observer’s
trajectories to reach in finite time and remain within a particular domain in the er-
ror space which defines a sliding surface in terms of the state estimation error. The
finite time convergence of the estimation error exhibited by sliding mode observers dif-
fers radically from the asymptotic behaviour of the estimation error in other observer
schemes. Furthermore, the structural constraint of observability, required in other ob-
server synthesis methodologies, is no longer imposed in some sliding mode observer
designs as demonstrated in (Edwards & Spurgeon, 1998b).

Although several forms of sliding mode observer have been proposed (Utkin, 1981)
(Walcott & Zak, 1987) (Utkin, 1992), the structure of the observer proposed in (Ed-
wards & Spurgeon, 1994) is adopted in this thesis. The main aspects and arguments
for the Edwards & Spurgeon observer are introduced succinctly in the sequel. For
more details the reader is referred to (Edwards & Spurgeon, 1994) and (Edwards &
Spurgeon, 1998b).
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2.6 A Sliding Mode Observer

Consider an LTT uncertain dynamical system governed by

x(t) = Ax(t) + Bu(t) + Df(t,x,u)

y(t) = Cx(2)

(2.95)

where x € R, u € R™ and y € RP. Matrices A, B, C and D are known constant real
matrices of compatible dimensions.

The following assumptions are imposed on the system in (2.95):

A-2.8 The order of the system and the number of output and input signals
are such that n > p > m.

A-2.9 The matrices B and C are full rank.
A-2.10 In the nominal triple (A, D, C), rank(CD) = m.
A-2.11 The matching condition R(D) C R(B) is satisfied.
A-2.12 The uncertain vector function f : R, xR*xR™ — R! is norm bounded.
Consider a sliding mode observer of the form (Edwards & Spurgeon, 1994):
%(t) = A%(t) + Bu(t) — Gre,(t) + Gyrv (2.96)
Y(t) = Cx(t) (2.97)

where G € R**? and Gy € R™P are design gain matrices. The matrix Gy, is a
Luenberger type gain matrix. The vector v € R? is the discontinuous output error
injection vector and will be specified in the sequel.

By defining the state estimation error as
e(t) £ %(t) — x(¢) (2.98)
it follows that the estimation error system dynamics are governed by

&(t) = (A — GLC)e(t) + Gy v — DE(4,x, 1) (2.99)

Utilising the assumptions A-2.8-A-2.12 there exists a similarity transformation
x — Tox = X with the state vector partition

x=|sf I }T (2.100)
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where %; € R and %; € R in which the state equation given in (2.95) can be
written as follows

1(t) = AnZ () + A (t) + Biu(t) (2.101)

Ra(t) = A% () + Ao (t) + Bau(t) + Dof (¢, %, 1) (2.102)
The observer state equation given in (2.96), in the new coordinates, takes the form

%1(t) = Auka(t) + Awa(t) + Biu(t) — Graey(t) (2.103)

%3(t) = An%, (1) + Anfa(l) + Bau(l) — Groey (1) + Onpav (2.104)

where e, = § —y is the output estimation error vector. The discontinuous output error
injection vector is given by

~p(t, 3, WDl R i y(t) £ 0

(2.105)
0 otherwise

where P, € RP*?P is a s.p.d. matrix, and the scalar function p : ®; x R x ®™ — R,
is designed in such a way that the estimation error system dynamics are completely
insensitive to the matched uncertainty f(-).

Remark 2.6 The form of the uncertain system given in (2.101)-(2.102) is similar to
the output feedback canonical form introduced in Section 2.3.2. Later in Chapter 7,
the discontinuous observer canonical form proposed in (Edwards & Spurgeon, 1994) is
extended to the class of systems with uncertainties in the state matriz.

Remark 2.7 Most of the existing design methodologies for the Edwards & Spurgeon
sliding mode observer, e.g. (Edwards & Spurgeon, 1994), (Edwards & Spurgeon, 1998b),
(Tan & Edwards, 2001) and (Choi & Ro, 2005) among others, deal only with uncertain
systems involving matched uncertainties. In this thesis, a new synthesis framework is
presented for designing sliding mode observers of the form proposed in (Edwards &
Spurgeon, 1994) but considering matched and mismatched uncertainties.

2.7 Summary

In this chapter concepts regarding VSC with sliding modes and state estimation
using a sliding mode observer have been discussed. The problem of synthesising sliding
surfaces considering nominal system matrices was formulated for the cases of full state
and output feedback control. T'wo canonical forms used in each of the aforementioned
cases were described in detail. The properties of VSS with a sliding mode have also
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been reviewed. The reachability problem has been studied and the form of the control
law considered in the remainder of this thesis was presented. Moreover, an approach
for reducing or even suppressing the high frequency switching of the control signal has
been described. The structure of a discontinuous observer, known as the Edwards &
Spurgeon sliding mode observer, was presented. It is worth pointing out that only
nominal LTI systems and LTI systems with matched uncertainties were considered in
this chapter.

The objective has been to introduce the theoretical foundations concerning VSS
with sliding modes underlying the analysis and design contributions of this thesis.
The next chapter introduces a useful mathematical tool applied in systems theory
for analysis and design purposes: that is, Linear Matrix Inequality methods. This
technique along with concepts of Lyapunov theory are the main tools employed in this
thesis for analysis and design.
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"You know my methods. Apply them!"
Sherlock Holmes - The Hound of the Baskervilles

Sir Arthur Conan Doyle (1859 - 1930)

Linear Matrix Inequalities

and Polytopic Models

3.1 Introduction

Since the sliding mode design approaches proposed in this thesis are based upon
Linear Matrix Inequality (LMI) methods, some of the most relevant theoretical ele-
ments concerned with this technique are reviewed in this chapter. Another subject
addressed in this chapter is the description of uncertain systems through a mathemat-
ical model involving a convex combination of vertices of the system matrices when
considering the upper and lower bound of each uncertain parameter in the plant. This
is the so-called polytopic representation of uncertain systems within a convex bounded
polyhedral domain.

This chapter is divided into two sections: LMIs are introduced in Section 3.2 where
basic definitions, LMI representations and key features of LMIs are presented. In
addition, standard LMI problems are formulated and the main mathematical tools
frequently applied when dealing with LMlIs are also described. Section 3.3 is devoted to
a discussion of the sources of uncertainty inherent in real-world systems and polytopic
representations of uncertain plants. This is the mathematical description used in this

thesis for modelling uncertain systems with parametric uncertainties.

3.2 Linear Matrix Inequalities

This section offers a brief revision of the main concepts of LMIs used throughout
this thesis. To this end, firstly, fundamental definitions regarding convex and affine

sets and functions are stated. Then, the key concepts of LMIs are derived using these
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definitions. Most of the material presented in this section is based upon the theory
described in (Boyd et ai, 1994) (Cabinet et ai, 1995) (Scherer & Weiland, 1999) (Boyd
& Vandenberghe, 2008).

3.2.1 Convexity

Definition 3.1 (Convex Set); Let V be a linear vector space. A set™ GV is said

to be a convex set if

livi+ (1 —ia)r: Gif 3.1

for any points vi, V2 € and any p E iit such that 0 < p < 1. That is, the line
segment joining any two points of if also lies in the set if. Otherwise, such a set is
called non-convex.

Convexity and non-convexity is illustrated geometrically in Figure 3.1. Clearly, set
% 1is convex since it is always possible to select two points v! and % in %%such that a
segment of line also belongs to the set %. On the other hand, there are points v| and

V> in % whose straight line segments have some points not in %.

Figure 3.1: Convex set and non-convex set %

Definition 3.2 (AfHne Set); Let si/ be a subset of a linear vector space V. si/ is an

affine set if
Vi =pvl b1 —r)uz Gsi/ 3.2)

vy v\, V2 Gsi/ and p E dt.

An affine set is also a convex set. This follows from the definition of convex set
given in 3.1.

Convex sets possess several important properties which are used to construct other
definitions presented in this section. For purposes of completeness, some of such prop-
erties are listed (Scherer & Weiland, 1999):
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Let %) and %% be any convex sets and let Vy be a normed vector space. Let a; and
as be any scalars, then:

1. The set
a6 = {v (v = ¢ with ¢ € ‘fl} (3.3)

is convex. Furthermore, the distributive property
(Ozl + 042)% = a4 + (34)
holds for any «; > 0 and as > 0.

2. The sum
‘(51+%:={v:v=cl+C2withc1€‘i€1andczE%”z} (3.5)

is convex.

3. Any linear transformation & : Vy — Vy preserves the property of convexity, i.e.
both the image set

T = {'El 1Dy = T with v, € %”1} (3.6)
and the inverse image set
TG, = {@1 T € %ﬁ} (3.7)
are convex sets.
4. The intersection set of two convex sets is convex. Formally,

NG = {vlzule‘flandvle%} (3.8)
5. The closure and the interior point of a convex set %, are convex.

Let V be a vector space and v a vector in V), a € R", ¢ € R™ are column vectors
such that a,c s 0, and scalars b,d € R. The following are examples of convex sets
(Boyd & Vandenberghe, 2008):

1. Hyperplanes defined by € = {v calv = b}4

2. Closed and open half-spaces given by €= {v ratv < b} and €= {v ratv < b}
respectively. Note that half-spaces are convex sets but not afline sets.
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3. Polyhedra (which stem from the intersection of hyperplanes and half-spaces)
defined by

= |v tajv <bifori 6 /(l,m) ,cjv =dj forj 6 7(1,p)] 3.9)
or in compact form
=|v :Av b ,Cv=4d| (3.10)

where
A = Cc = Cl 02 (3.11)

Here, the binary relation symbol  stands for componentwise inequality (also
called vector inequality) in eg u v means U <V for i G7(1,n). A

bounded/compact™ polyhedron is called a polytope.

Figure 3.3 shows polyhedra in and respectively.

(a) Polyhedron in (b) Polyhedron in fIi* (figure
taken from (Dattorro, 2005))

Figure 3.2: 2-D and 3-D Polyhedra

Definition 3.3 [Convex combination]: Let V be a vector space and ~ <ZV. A point
given by
(3.12)

is said to be a convex combination of the points Vj GIf forj G 7(1,n), if scalars pj
satisfy

N

Pj>0 for j G7(1,n) and =1 (3.13)
j=i

closed and bounded set is a compact set in an Euclidean space.
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3.2 Linear Matrix Inequalities

Note that the set containing all convex combinations of the points vj forj £ /(I, n)

1S a convex set.

Definition 3.4 [Convex hull]: The convex hull of a set 1f, denoted by conv(") is the
set of all convex combinations of points in "if, i.e.

conv(") = I MPjVj :vj€ Sf,>0forj € f(In)and ~//j = 1>  (3.14)
lj=i i=i J

The convex hull of a finite collection of points is a polytope (note that a polytope is
a closed convex polyhedron) and sinceconvexity is closely related to the set operation
of intersection, then the convex hull is also a convex set (Scherer & Weiland, 1999). The
convex hull conv(”) is the smallest convex set containing if (Boyd & Vandenberghe,
2008). Figure 3.3 shows graphically two examples of convex hulls. Note that further
points, besides the points at the vertices, are contained within each convex hull.

P2

PUs

Plh
P4

(a) Convex hull in (b) Convex hull in 32*

Figure 3.3: Geometric interpretation of convex hull of a set of points in 2-D and 3-D

Any convex optimisation problem consists of a convex objective function (also called
a convex cost function) and constraint functions. Since convex optimisation problems
are formulated throughout this thesis, a formal definition of a convex function is given
below.

Definition 3.5 Let * be a nonempty convex set. A function f :" " is said to be
a convex function if

£ {pvi+ (1 —my2) < pf{v\) + (1 —pffivf) (3.15)
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for any points fi, € "if and any /| € Rsuch that 0 < p < 1. The function f is
called strictly convex, if inequality (3.15) is a strict inequality whenever Vi ~ V2 and
0 <p < 1. The function f is said to be either concave or strictly concave, if — is

convex or strictly convex. ,

Note that an important feature of convexity is that any local minimum over a

convex set if corresponds to a global minimum.

Figure 3.4 shows examples of convex and concave functions to illustrate definition
3.5.

78%)

(a) Convex function (b) Concave function

Figure 3.4: Geometric interpretation of convex and concave functions.

Remark 3.1 Although the definition of a convex function has been given considering
a real valued function, it also applies to matrix (Hermitian™ and symmetric?) valued
functions. In such cases the inequality symbols <, <,> and > (defining binary relations
between real elements) are replaced by = > and "~ respectively.

Definition 3.6 Let % and % be convex sets. A function f : % is said to be
affine if
Slpvi + (- p)v2) = pfivi) + (- p)fivz) (3.16)

for any points vi, V: € and any /i € 11

If the convex sets éi and % are finite dimensional, then any function / : %
consisting of a linear function F : % and a constant fo 6 ie. f{v) = F{v)+fo
where u E is an affine function.

'A matrix M = M* s where * denotes transpose complex conjugate of M, and Jf"*"
stands for the set of matrices whose entries are complex numbers.

AAny matrix M = e
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Remark 8.2 A function f: R" — R™ is said to be affine if
Jx)=Ex+p (3.17)

where & € R™*" 4s q constant matriz and B € R™ is a constant vector. Thus, an affine

function consists of a linear function, i.e. Ex and a constant denoted in this case by

B.

Remark 3.3 All affine (and also linear) functions are both conver and concave func-
tions. Conversely, any convezr and concave function is affine (Boyd & Vandenberghe,
2008).

All concepts formally defined above are used to describe the elements of a power-
ful mathematical tool coined by J. C. Willems in (Willems, 1971) as Linear Matrix
Inequalities. This technique has been in constant deployment from theoretical and
practical viewpoints. The rest of this section is completely devoted to present funda-
mental definitions and concepts of LMIs used throughout this thesis.

3.2.2 Canonical and Other Forms of Representing LMIs

An affine matrix valued function of the form
m
F(x)=Fo+ Y xFi>0 (3.18)
i=1

is said to be a Linear Matriz Inequality where x € R™ is the vector of decision variables
whilst Fy, - -+ ,F,,, are Hermitian (or symmetric real) matrices.

Any LMI of the form given in (3.18) is said to be in the canonical form. Notice
that LMIs can be described in different forms. The most common representation forms
used in control systems are the following (Gahinet et al., 1995):

1. Matriz description of a set of LMIs: A system of LMIs given by

Fy (X) =0
F2l0 70 (3.19)
F,(x)>0

can be recast as a single LMI as follows
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Fix) 0 - 0
o () -0 (3.20)
0
0 . 0 F,®x

2. General Representation: In a large number of cases (for example, in control
engineering problems), LMI constraints are affine functions of matrix variables
X, for j € I(1,m). That is,

L(X, X, , X)) < R(Xy1, X, ,Xp) (3.21)

The matrix variables X; for j € I(1,m) usually have some sort of structure
which depends on the problem dealt with. For instance, the Lyapunov inequality
ATP+PA < 0 requires the Lyapunov matrix P - 0, which is the matrix variable
in this case, to be symmetric.

Particular cases of (3.21) are
Ly (X1,Xa,..., X)) <0
Lo (X4,Xo,..., X)) <0
2 (s ? ) . (3.22)
Ly (X1, Xa, ..., Xpm) <0
or
L, (Xl,Xz,‘..,Xm) <0
L, (Xl,XQ,...,Xm) <0

Ly (X1,Xs,...,X,) <0
Liy1 (X1, X, ., X)) < Ry (X1, Xo, -+, X) (8.23)

Lo (X1, Xa, .., X)) < Ro (X, Xy, -+, X))

Lq (Xl;XZa e 7Xm) < Rq-—k: (X17X27 e 7X'm)

3.2.3 Standard LMI Problems

LMI problems can be classified into three main groups (Boyd et al., 1994):
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1. The Feasibility Problem : This problem consists of determining whether a feasi-
ble solution x| satisfying LMI constraints, exists or not, and finding such a
solution if one exists. It must be pointed out that this kind of problem is not
concerned with the optimality of the solution and such a feasible solution may
not be unique.

2. The Linear Objective Minimisation Problem (LOMP) - The Eigenvalue Problem
(EVP) : This optimisation problem corresponds to minimising a linear objective
function (also called a linear functional on the decision variable x) subject to an
LMI constraint affine with respect to x. It can be formulated as

min  ¢T'x
xX
s.t. (3.24)
F(x) >0
This formulation is said to be Positive Definite Programming (PDP) whilst if the
constraint is of the form F(x) % 0 then it is said to be Semidefinite Program-
ming (SDP). Within the linear objective minimisation problem lies the Figenvalue
Problem (EVP) which is formulated as
min A
AX
b (3.25)
M —Fi(x) =0
Fy (X) >0
where F; and Fy are symmetric matrices depending affinely on x.
3. The Generalised Figenvalue Problem (GEVP) : This problem corresponds to

one of minimising the maximum generalised eigenvalue of two affine dependent
matrices of x. This LMI problem can be stated as

ﬂ:\nxn A
s.t.
AF(x) — Fa(x) > 0 (3.26)
Fi(x) =0
Fi(x) >0

where Fy, Fy and F3 are symmetric matrices depending affinely on x. Two
aspects must be highlighted with respect to this LMI problem. The first one
is regarding the quasi-convex characteristic of the GEVP instead of the convex
feature of the LOMP or EVP. The second one is that in some cases a GEVP can
be restated as a LOMP by means of a change of variables.
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Remark 3.4 Convexr programming is o particular type of mathematical optimisation
which includes least squares, linear programming, quadratically constrained quadratic
programming, quadratic programming, semidefinite programming, second-order cone
programmiang and geometric programming (Vandenberghe & Boyd, 1996) (Boyd & Van-
denberghe, 2008). This classification arises from the characteristics of both the cost
function and the constraints. For instance, a semidefinite program is concerned with
a linear objective function and an affine combination of symmetric positive definite
(s.p.d.) matrices (Vandenberghe & Boyd, 1996).

3.2.4 LMI Properties and Features

An LMI of the form (3.18) or (3.21) defines a convex constraint on the decision
variables. This is a key feature which implies that efficient numerical algorithms, e.g.
the Ellipsoid Algorithm and the Interior-Point Methods (details on these algorithms
can be found in (Bland et al., 1981), (Boyd et al., 1994) and (Scherer & Weiland,
1999)), can be applied. Such algorithms can determine whether or not an LMI con-
straint is feasible and if it is, then find a feasible point. Also, this sort of methods
allows convex optimisation problems with LMIs constraints to be solved. Furthermore,
convergence to a global minimum in polynomial-time is guaranteed by means of these
numerical algorithms (Boyd et al., 1994). In this thesis, the LMI control toolbox of
MATLAB (Gahinet et al., 1995) and the toolbox SeDuMi (Sturm, 1999) are used for
implementing and solving LMI problems. In the Appendix A of this dissertation, ex-
amples of code using commands from both toolboxes are shown in order to illustrate
the implementation of LMIs under the MATLAB environment.

Uncertain systems can be dealt with via LMI methods using different uncertainty
descriptions. For instance, uncertain state-space representations such as polytopic
models or affine parameter-dependent models; also, linear-fractional models of uncer-
tainty (Gahinet et al., 1995).

Another characteristic is concerned with the possibility of formulating optimisa-
tion problems involving different criteria, e.g. Hao and Ho, as a mixed problem via
LMlIs. This makes the LMI formulation more attractive and advantageous than classi-
cal optimisation methods since other performance or design requirements can be easily
incorporated rather than using a combination of criteria as a single one (Scherer &
Weiland, 1999).

3.2.5 Fundamental Mathematical Operations on LMIs

The most common LMI mathematical tools applied in this dissertation are outlined
in the sequel. The material presented here draws heavily on (Boyd et al., 1994) and
(Scherer & Weiland, 1999).
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1. Change of Variables : This operation allows some Nonlinear Matriz Inequal-
ities (NMIs) to be written as LMIs. It can be carried out through defining new
variables depending on the original decision variables. Nevertheless, there is a
fundamental condition new variables must fulfill: namely that the original ones
have to be recovered uniquely from the new decision variables.

2. Congruence Transformation :

Definition 3.7 P € %" gnd M € R™*" are said to be congruent matrices if

there exists a nonsingular transformation matriz T € K™ such that
M =TTPT (3.27)

Theorem 3.1 If P € R gnd M € R™"™ are congruent matrices then
M > 0 if and only if P > 0.

A

Proof This proof follows the same argument postulated in (Scherer & Weiland,
1999).

IfP > 0then x™Px > 0 V x € R and x # 0. Furthermore, since P
and M are congruent matrices then according to definition 3.7 there exists a
nonsingular matrix T € R™*” such that (3.27) holds and y = T~1x V x # 0.
So, P >0 > x™Px >0 but y=T"% Vx#0 Then xTPx =
yITTPTy = yTMy >0 < M > 0.

Q.E.D.
Remark 3.5 Theorem 3.1 means that definiteness of any positive definite (p.d.)
matriz is invariant under post and pre multiplication by a full rank real matriz.

3. Schur Complement : Nonlinear convex inequalities, e.g. quadratic matrix
inequalities, can be transformed into LMIs by means of the Schur complement
Lemma (Boyd et al., 1994).

Lemma 3.1 [Schur Complement Lemma/ : Let Q(x) = QT(x) , R(x) = R¥(x)
and S(x) be given affine matrices on x. Let

_| Q) s8x)
F(x) = [ ST(x) R(x) } (3.28)

be a block matriz. Then,

Fx)>0 <= R(X)>0 and Q(x)—-SE)RI(x)ST(x) -0 (3.29)
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Furthermore,
Fx)~=0 += Q) >0 and R(x)-STx)Q ' x)S(x) =0 (3.30)
A

The following proof of the Schur complement consists of applying a congruence
transformation as suggested in (Scherer & Weiland, 1999). Although the proof
is relatively simple, it is presented here to illustrate the use of this tool.

Proof (Necessity): Consider the congruence transformation with

I 0
T= B (3.31)
l —(RT(x))"ST(x) I j|
and F(x) given by (3.28). Then,

Q) - SR (x)8T(x) 0

TTR(x)T = [
0 R(x

>0 (3.32)
)
(Sufficiency): Consider

R(x) >0

(3.33)
Q(x) — SE)R1(x)ST(x) > 0

Since a system of LMIs can be written as a single LMI, then (3.33) can be recast
as the right hand side form of (3.32). Define a p.d. matrix W as follows

W [ Q) - SERGOSTE) 0 ] co sy
0 R(x)
Therefore,
L Qx) 869
T IWw-! = F(x) = (3.35)
(T7) l ST(x) R(x)

A similar procedure is applied for proving sufficiency and necessity in (3.30). In
such a case the transformation matrix to be considered is

. [I —(QT(x))"ls(x)} 00
0 I

Q.E.D.
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Other LMI tools, which can be found in parts of the technical literature regarding
LMI-based approaches (not described here because they are not used directly in this
thesis), are the S-procedure (Boyd et al.,, 1994), the projection Lemma (Gahinet &
Apkarian, 1994) and the Finsler Lemma (Finsler, 1937)(Boyd et al., 1994). For details,
readers are referred to the given references.

3.2.6 LMI Regions
An LMI region D is a convex sub-set of the complex plane C defined as
D={scC:fp(s) =2+ s®+307 <0} (3.37)

where 3 is the complex conjugate of s, B = ET and ® are appropriately dimensioned
real matrices and the matrix valued function fp is said to be the characteristic function
of D.

Theorem 3.2 (Chilali & Gahinet, 1996): A matriz M € R**" has all its eigenvalues
in the LMI region D and is called D-stable, if and only if there exists a s.p.d. matriz
X e %" guch that

Mp(M,X) =EB@X + & ® (MX) + &7 @ (MX)" <0 (3.38)

A
Proof See (Chilali & Gahinet, 1996).

Clearly, the relationship between the characteristic function fp in (3.37) and the
matrix inequality Mp(M, X) in (3.38) is given by

(1,5,3) «— (X, MX,XM7) (3.39)

which is useful when defining LMI regions as constraints in either feasibility or optimi-
sation problems.

Remark 3.6 Theorem 3.2 can be interpreted as a generalisation of the Lyapunov The-
orem regarding quadratic stability (Chilali et al., 1999). This can be seen by considering
the characteristic function

fr=s+5<0 (3.40)

which describes the open left-half complex plane. Then, it follows using (8.39) that
(8.40) yields

Mp(M,X) = 1@ (MX) +1® (XM7T) = MX+XMT <0 with X =X" =~ 0 (3.41)
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3.2 Linear Matrix Inequalities

By defining the change of matrix variables P = X it is easy to obtain the so-called
Lyapunov Inequality:

MAP + PM 0 with P = pT X0 (3.42)

The class of LMI regions considered in control systems are symmetric convex sets
with respect to the real axis. Furthermore, an LMI region can be obtained by intersec-
tions of elementary LMI regions (recall that convexity is closed under the set operation
of intersection) such as a half-plane stability region, disks, conic sectors, vertical and
horizontal strips. In the sequel, the most used fundamental LMI regions are formally
defined and shown graphically. The mathematical definition of each LMI region has

been drawn from (Chilali & Cabinet, 1996) and Chilali et al. (1999).

1. Let J*{h) be a half-plane stability region delimited by a vertical line at (—i,0)

in the complex plane, i.e. Re(s) < —#, as shown in Figure 3.5.

Im{C}

ReiC}

Figure 3.5: Elementary LMI Region: Half-plane Jff{h)

This convex region is characterised by
fx>(s) —s -hs -h 2% (3.43)

Then, from Theorem 3.2, the spectrum of a square matrix M, denoted by A(M),
lies in J(f{h) if and only if

Mv{M, X) = MX + XM"* + 2/iX <0 (3.44)
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3.2 Linear Matrix Inequalities

2. Let 0)c, @) be a conic region centered at the origin of the complex plane c
and at an angle a with respect to the real axis of the complex left half-plane as

shown in Figure 3.6. A conic region is characterised by the function

sin(u)(s ts) cos(a)(s —s)
f-D(s) - (3.45)
cos(0;3)(s —s) sin(Q) (s-f-s)

By considering Theorem 3.2, it follows that the eigenvalues of M lie within

"if((0,0)c, a) if and only if the matrix inequality

sin(o) ( MX + XM*) cos(a) ( MX - XM*)
AdD(M, X) = -(0 (3.46)
cos(q) XM”* - MX) sin(u) ( MX + XM*)

is satisfied for a s.p.d. matrix X.

Im{C}

Re{C}

Figure 3.6: Elementary LMI Region: Cone **((0,0)c, a)

3. Let "{cnWd) be a disk centered at (—e,,,0) in the complex plane C with radius
rd as shown in Figure 3.7.

A disk *{cn,rd) is described mathematically by the following function

-Vd s +c,
fn(s) = (3.47)
s+ -rd
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3.2 Linear Matrix Inequalities

Im{C}

Re{C}

Figure 3.7: Elementary LMI Region: Disk "{cn,rd)

The corresponding matrix inequality A4x>(M,X) is given by

-r-rfX IVIX + ¢, X
AdD (M, X) = (3.48)
XM" r + e»X —r X

Then, from Theorem 3.2, it follows that A(M) C JVYorifd) if and only if the

matrix inequality above is satisfied for a s.p.d. matrix X.

Let Vsihi, hg) be a vertical strip defined by
3"s{hi, hg) = {s GC : —2g < Re(,s) < —hi < 0} (3.49)

where hi, hg G 31+ A graphical representation of this region is given in Figure 3.8.

A vertical strip is described by means of the following characteristic functions

fx>i(s) —s + s + 2hi 3.50)

fx>2 () ——s —s —2hg (3.51)

In turn, two matrix inequalities can be established based upon Theorem 3.2 and

using (3.39) as follows
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3.3 Parametric Uncertainty Description: Polytopic Models

VWni(M,X) = MX + XM” + 2/gX 0 (3.52)

TWIRM, X) = MX + XM" + 2/igX > 0 (3.53)

Hence, AM) C %{hi, hg) if and only if the matrix inequalities (3.52)-(3.53) hold
for a single s.p.d. matrix X.

Im{Q

Re{C}

Figure 3.8: Elementary LMI Region: Vertical strip 1*(hi,hg)

3.3 Parametric Uncertainty Description: Polytopic

Models

A mathematical model is a simplified abstraction of a real world system that con-
siders only a subset of the dynamical characteristics depending on the relevant require-
ments or available information concerning a particular application. The uncertainties
in mathematical models may arise from unknown dynamics, either unknown or approx-
imated numerical values of the parameters in the model, varying parameters, approx-
imate considerations in the modelling process, for example linearisation of nonlinear
systems and neglected fast dynamics. Uncertainties can be classified as either internal
or external uncertainties. The former is concerned with dynamical phenomena, system
parameters and system structure. The latter is related to external stochastic signals

called disturbances or perturbations.

Internal uncertainties can be classified as follows:
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3.3 Parametric Uncertainty Description: Polytopic Models

1. Structured Uncertainties: The structure of the model is known but it has in-
complete or unknown information. A common case of structured uncertainty is
parametric uncertainty. In this case, the model structure is well known; however,
a finite number of parameters are uncertain. Such parameters lie in a bounded

interval defined by the lowest and highest possible numerical value.

2. Non-structured Uncertainties: This uncertainty arises from unknown causes or
structure, i.e. there is no information concerned with how the uncertainties affect
the system’s model. Furthermore, usually only an upper bound is available.

The control and estimation schemes proposed in this thesis are intended for con-
tinuous time uncertain systems. In particular, systems with mismatched parametric
uncertainties. The lower and upper bounds of the r components of the parameter
vector, which are constant and known, define a convex set in the parameter space.
Furthermore, if the system matrix (denoted by S € RP)*(+m) and composed of the
state, input, output and transmission matrices) is affine with respect to the vector of
uncertain parameters, then N = 2" system matrices can be established by consider-
ing all possible combinations of the parameters’ bounds. Each one of these matrices
corresponds to a vertex of a closed convex polyhedron. The convex combination of
such N vertices defines a polytope in the system matrices space. This mathematical
representation of parametric uncertainties is referred to in this thesis as a polytopic
model and is described in this section.

Consider the following linear time-varying system represented in state-space form
by

%(t) = A(t)x(t) + B(H)u(?) (3.54)
y(t) = C(t)x(t) + D{t)u(?) (3.55)

where x € R” is the state vector, u € R™ is the input vector, y € R? is the out-
put vector. The time-varying matrices A(t), B(¢), C(¢) and D(¢) have appropriate
dimensions.

The concepts of convex combination and convex hull stated in definitions (3.3) and
(3.4) were established for points within a convex set. These concepts can straightfor-
wardly be extended by considering system matrices, instead of points, as the objects
in a closed convex polyhedron, i.e. in a polytope. In this thesis, the system matrix of
(3.54)-(3.55), is defined as

S(t) & (3.56)
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3.3 Parametric Uncertainty Description: Polytopic Models

A polytope £ is the set of all convex combinations of N system matrices S; of the
form

for j € I(1,N) (3.57)

That is, the convex hull of {S1,S,,---,Sy}. These N system matrices are generated
for each vertex of the polytope &?. A polytope &2 is defined formally as follows

N N
P =CofS1,Sy, -+ ,Sn} = {Zp,ij P mg=1, p; > 0forje 1(1,1\/)} (3.58)

Jj=1 J=1

where N is the number of vertices of &?. The scalars u; with j € I(1, N) are said to
be the polytopic coordinates of S(t). From (3.58), it follows that the system matrix
S(t) belongs to a polytope & contained in the space of system matrices (in (Gahinet
et al., 1995) this polytope is called a fixed polytope of matrices).

Remark 3.7 Although the structure of the system matriz S(t) in (3.56) is perfectly
known, the components of the matriz S(t) might not be precisely known. However, the
system matriz belongs to a polytopic uncertain domain &, i.e. S(t) € &, where the
matrices S; for j € I(1, N) are known constant mairices and constitutes the vertices of
the polytope &P

The class of uncertain systems with affine uncertain parameters is studied and
represented using polytopic models in the remainder of this section. This study is of
practical relevance since such kinds of parametric uncertainty affect real world plants.
It is pertinent to draw to the attention of the reader that, in this dissertation, the
analysis and design frameworks proposed for synthesising sliding mode controllers and
observers consider systems with mismatched parametric uncertainties.

Let © C R" be the parameter space and let 8 = [6; 8, --- 0,]T be a vector of real
uncertain parameters where the uncertain parameter bounds

0,<6;<0; for iel(l,r) (3.59)

define a hyper-rectangle in ©. This convex set is also called parameter boz. The
uncertain parameter vector @ can describe two kinds of uncertainties: time-invariant
parametric uncertainties where @ may correspond to physical parameters which
are constant but unknown and for which only extreme values are known up to some
accuracy, or time-varying parametric uncertainties where @ represents a continuous
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3.3 Parametric Uncertainty Description: Polytopic Models

time real vector-valued function, i.e. 8(t) : R, — ©, whose upper and lower component
bounds are known. For the sake of generality, uncertain time-varying parameters 6;(t)
with ¢ € I(1,r) are considered. This consideration can be made since time-invariant
uncertain parameters can be seen as a particular case of time-varying parameters in
which 6(¢) is constant V ¢.

Consider a dynamical system with parametric uncertainties described in state-space
form by

x(t) = A(0(2))x(t) +B(0(2))u(t) (3.60)

y(t) = C(6(1))x(t) +D(0())u(t) (3.61)

where x € R" is the state vector, u € ™ is the input vector, and y € 3 is the output

vector. The uncertain matrices A (8(t)), B(0(t)), C(6(t)) and D(0(t)) are matrices

of appropriate dimension and are assumed to be affine with respect to the vector of

uncertain parameters ().

The system matrix for the uncertain system (3.60)-(3.61) is given by

A(6(1) | B(O()
C(0(1)) | D(6(1))

S(0(t)) = (3.62)

A polytope & so that S(6(t)) € & can be defined by calculating N = 2" system
matrices S; generated for each vertex of &7 and constructing the set of all convex
combinations of such system matrices as follows

N=2" N=27
P = CO{Sl,Sz,"' ;SN} = { Z ,LL]'S]‘ : z Hi = ]., i > OfOl'j & I(I,N)} (363)

j=1 j=1

where 7 is the number of uncertain parameters, and

for jeI(1,N=2") (3.64)

The system matrices S; for j € I(1, N) are obtained by considering all combinations
of the upper and lower bounds of the uncertain parameters. Figure 3.9 illustrates
a parameter box for § € R* and the associated polytope of system matrices S; for
jeI(1,8).
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3.3 Parametric Uncertainty Description: Polytopic Models

Parameter Box Polytope
in the Parameter Space of System Matrices

Figure 3.9: Mapping of a Parameter Box in a Polytope of System Matrices.

The uncertain matrices of the system given in (3.60)-(3.61) can be decomposed into
nominal matrices and uncertain matrices depending affinely on the components of the

uncertain vector 0(t) as follows

x(0

it

(A + AA(0(0)x(O + (B + AB(0(0))u(O (3.65)

(C+ACOM®))x(t) + (D + (3.66)

It has been shown that polytopic models describe affine parameter dependent sys-
tems for which upper and lower bounds are known up to some degree of accuracy.
Note that uncertain systems of the form (3.65)-(3.66) can be interpreted as linear
time-varying systems which can be represented using polytopic models as described at
the beginning of this section. Hence, for the sake of simplicity in the notation, the

following representation is considered

x(f) = (A + AA())X(t) F (B + AB{1))u{t) (3.67)

y{t) = (C+ AC{t))x{t) + (D + AD(t))u(t) (3.68)
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More precisely, in this thesis, the following particular case of (3.67)-(3.68) is considered

%(t) = (A + AA())x(¢) + B(u(t) + £(t, x,u)) (3.69)
y(t) = Cx(¢) (3.70)

where x € R is the state vector, u € R™ is the input vector, and y € R? is the output
vector. The uncertain vector function £(¢,x,u) : Ry x R* x R™ — R™ represents the
lumped sum of matched nonlinearities and/or uncertainties. It is assumed to be norm
bounded.

Remark 3.8 If all components of the vector of uncertain parameters are constant
for all instants of time, then the independent variable t € [0, oo) is dropped in the
uncertain matrices in (8.67)-(3.68) or (8.69).

3.4 Summary

A mathematical tool which is applied throughout this thesis, so-called Linear Matrix
Inequalities, has been described in this chapter. In this thesis, performance specifica-
tions and design constraints are formulated as LMI-based problems. LMI methods are
significant, for many reasons, but niost importantly because problems that cannot be
analytically solved, may be numerically tractable via LMI methods. There are several
computational software tools (free and commercial software) to solve efficiently feasi-
bility and optimisation problems involving LMIs, e.g. LMI toolbox of MATLAB ! and
SeDuMi 2.

The main definitions associated with convexity of sets and functions have been
presented. Furthermore, canonical and other forms of LMI formulations were formally
reviewed. Mathematical operations on LMIs applied in the subsequent chapters of
this thesis were presented. Concepts concerned with LMI regions (convex sets in the
open left-half complex plane defining stability regions) were given and elementary LMI
regions were defined in detail. These convex regions are employed in the synthesis
approaches proposed in the sequel.

In this chapter, different sources of uncertainty in mathematical models were stud-
ied. Here, uncertainties were classified into structured (for example, parametric uncer-
tainties) and non-structured uncertainties. Polytopic models, built on the concept of
convexity (convex sets, convex combination, convex hull), have been presented for de-
scribing uncertain systems. It was shown in detail how general linear time-varying and
affine uncertain parameter dependent systems can be described using polytopic models.

!Commercial add on toolbox from The Mathworks.
2Free software, which runs under the MATLAB platform, developed by J. F. Sturm (Sturm, 1999).
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3.4 Summary

Parametric uncertainties are of practical interest since such kinds of uncertainty affect
real world plants. Finally, it has been highlighted that parametric uncertain systems
represented by polytopic models are completely tractable via LMI methods. This is
relevant because mismatched parametric uncertainties are considered throughout this
thesis.
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,.to regard old problems from a new
angle, requires creative Imagination and

marks real advances in science. "

Albert Einstein (1879 - 1955)

State Feedback SMC for Systems
W ith Mismatched Uncertainties

4.1 Introduction

The invariance property (Drazenovic, 1969) of VSC systems with a sliding mode,
as demonstrated in Section 2.4, is one of the most attractive characteristics of this
nonlinear control scheme. This invariance can be guaranteed with respect to a class
of uncertainty and exogenous disturbances during the sliding motion, if the so-called
matching condition is satisfied, i.e. the uncertainties and/or disturbances lie within
the range space of the input distribution matrix. Although some systems can be
categorised as uncertain plants with matched uncertainty, there are many practical
systems affected by mismatched uncertainty.

In this chapter, a synthesis methodology is proposed for the design of sliding mode
controllers considering parametric mismatched uncertainties in the state matrix. The
proposed approach employs robust pole clustering in convex regions of the complex left-
half plane nsing LMI methods. The sliding mode existence problem is then formulated
as a state feedback problem for the reduced-order system using a polytopic description
considering the mismatched uncertainty affecting the state matrix. The control law is
made up of linear and nonlinear parts as established in Section 2.5.3. The linear part is
synthesised via LMI methods and a polytopic description of the design problem, whilst
the nonlinear component is of the form (2.91), and is synthesised in such a way that
the matched uncertainties, nonlinearities and/or exogenous disturbances are rejected

completely.

The structure of this chapter is as follows: Section 4.2 defines the class of systems

considered and describes the problem formulation. A design framework based on LMI
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methods and polytopic models is presented in Section 4.3 for synthesising sliding sur-
faces and control laws considering full state information. A design example involving
angular position control of a DC motor with parametric uncertainties is discussed in or-
der to illustrate the proposed methodology and its efficacy. Then, Section 4.4 presents
some concluding remarks.

4.2 System Description and Problem Formulation

Consider an uncertain dynamical system represented in state-space form V ¢ > 0 by
%(t) = (A+ AAWD)x(0) + B(u(®) + §(t.x, ) (1)

where x € R” is the state vector and u € R™ is the input vector. The uncertain
vector function (4, x,u) : Ry x ™ x R™ — R™ represents the lumped sum of matched
nonlinearities and/or uncertainties. It is assumed to be norm bounded.

Throughout this chapter, the following are assumed:

A-4.1 All state variables are available for measurement.

A-4.2 The input distribution matrix B is full rank.

Since rank(B) = m, there exists a similarity transformation x(t) — Tgrx(t) = %(¢)
such that the system nominal pair (A, B) can be written in regular form. That is,

. Ay A . 0
A=|” 11 i 12 B=" (4.2)
Ay Ay B,

where All c %(n—m)x(n—m)) A12 c %(n—m)xm’ A21 c %mx(n—m), A22 e ERmxm, and
]§2 € R™*™ are known constant matrices. Moreover, the input matrix sub-block ]:3»2 is
such that det(Bs) # 0.

In this thesis, for the sake of generality, uncertain time-varying parameters 6;(¢)
with ¢ € I(1,r) are considered. Furthermore, AA() is assumed to be affine in ().
The uncertain term £(¢, x, u) and all matched components of the uncertainty associated

with the state matrix, in the new coordinates, have been merged into {NA(t,}"c, u).

It is assumed that:
A-4.3 The matched uncertainty is bounded by

€a(t % w)ll < kallu(®)] + @(t, %) + ko (4.3)
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where @ : R xR"* — R, is a known function. Furthermore, 0 < ky < 1
and ky > 0 are known constant scalars.

The uncertain system matrix Aa(t) = A + AA(t) in the new coordinate system
therefore has the structure

A A N AAp(t) AAL®R)

A(t) = N
Ay Ay 0 0

(4.4)

The design problem to be addressed can be broken down into two stages: firstly,
design a sliding surface so that the sliding mode dynamics are stable despite the uncer-
tainties. Secondly, synthesise a control law which induces a sliding motion on the sliding
surface in finite time from any initial point in spite of the matched and mismatched

uncertainties in the plant.

4.3 State Feedback SMC Design Framework

The design framework proposed in this section starts from a polytopic representa-
tion of the mismatched uncertainty associated with the system matrix. Subsequently,
it makes use of LMI methods for synthesising the switching gain matrix I'. With regard
to the control law, both matched and mismatched uncertainties are taken into account
in the synthesis process.

4.3.1 Sliding Surface Design
Consider the sliding surface %5 defined as follows
For ={x € R" : 0(t) = Tx(t) = 0} (4.5)
where o0 € R™ and the switching gain matrix is given by (Edwards & Spurgeon, 1998b):

r =F2[ KSF 1. ]TR (46)

The switching function o(¢) and its derivative are identically equal to zero during a
sliding mode (Utkin, 1992). Hence

X2(t) = —KgpXi(t) (4.7
Consequently, the null space V' (I') dynamics satisfy

%1 (8) = ((Au + AAL () — (A + AAlz(t))Ksp)il(t) (4.8)
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Writing
Ann(t) = (A +AAL () (4.9)

and
Anip(t) = (A + AAL() (4.10)

implies the reduced-order dynamics involving mismatched uncertainties are given by
%(t) = (AAn(t) - Z\An(t)Ksp)il(t) (4.11)
Remark 4.1 Notice that the reduced-order system above does not exhibit the invari-

ance property as in the case of systems with only matched uncertainties.

Remark 4.2 The matriz Ty € R™™ has no direct effect on the sliding mode dynamics
since it represents a scaling term of the switching matriz T € R™*™,

Let S(t) be the pair (Aayy(t), Aaso(t)) given in block matrix form as
S() = | Aan(t) | Aara® | (412)

As 0(¢) € ©, and AA(t) is affine in 8(¢), in the sliding mode existence problem, a
polytope £73,. for S(t) can be constructed as follows

N N
P = {ZWSJ- Dy pp=1,p; 20 forje 1(1,1\/)} (4.13)

j=1 j=1
where NV is the number of vertices of &3, and
85 = | Rawy | Aany | (4.14)

The following is assumed:

A-4.4 the pairs (AAH s Amzj) for j € I(1, N) are stabilisable for all admissible
uncertainties in the hyper-rectangle contained in ©.

Proposition 4.1 Let Q; € RO—™X0=m) pe ¢ symmetric positive definite (s.p.d.) ma-
triz and Lige, € Rmx(v=m) sych that Kep = LROIQl"l. The reduced-order system (4.11)
is then quadratically stable if and only if

QA% + AnnQu — LE, ALy, — AnigjLing, <0 (4.15)

is satisfied for all j € I(1, N).
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Proof Necessity (=) Quadratic stability of the reduced-order system (4.11) means
that for a stabilising gain matrix K there exists a Lyapunov function

Vi(t) = X{ ()P1%1(2) > 0 (4.16)

where P; € R(m=m)*(=m) j5 4 5.p.d. matrix. Computing the time derivative of (4.16)

along the reduced-order system’s trajectories gives
Vi(t) = X7 ()P, (1) + X (P13 (8) < 0 ¥ %1(1) e R™ £ 0 (4.17)
Substituting (4.11) into (4.17), and manipulating algebraically yields
. T (% ~ T < N .
Vi(t) =%; ((AAll(t) —An(D)Ksp) Pr+Pi(Aan(t) - AA12(t)Ksp)> % <0 (4.18)

for all %;(t) € R™ ™ =£ 0, and hence the following Bilinear Matrix Inequality (BMI)
holds

‘A'I’Ii‘o(t)Pl + PlARo(t) <0 (419)
where
Ano(t) = Aani (1) — Appa(t)Ksp (4.20)

Since the hyper-rectangle is a convex set defined by the extreme values of 6;(t) € ©
for i € I(1,7), and the uncertain matrix AA(t) is affine in (%), the vertex matrices
for the reduced-order system (4.11), considering the definition of the polytope &7, in
(4.13) along with (4.14), are given by

Ano; = Aan; — Ang;Kep for j€I(1,N) (4.21)

The quadratic inequality (4.18) can be written as

N N
Vi(t) =% (Z piAro, P14+ Py ujARoj) %1 <0 (4.22)
j=1 j=1
or
N
S (Agojpl + PlARoJ) <0 (4.23)
j=1
Consequently
Afo,P1+P1Ano; <0 for j € I(1,N) (4.24)

since p; > 0 for j € I(1, N). This inequality is a BMI for each vertex of the polytope
e,

Pre and post-multiplying the set of BMIs given above by Q; £ P, i.e. applying
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a congruence transformation, yields
QlAZuJ‘ + AA]lel - QlKgpAzlzj - AAleKSF'Ql =< 0 (425)

for j € I(1,N). Defining a new decision variable Lz, = K¢zQ1 converts the BMIs
above into the LMIs defined in (4.15).

Sufficiency (<=) Suppose the LMIs in (4.15) feasible. Hence, there exist matrices Py
and K, which can be straightforwardly computed as follows P; = Q7! and Kgr =
LROlQl‘l. Then, after algebraic manipulation, it follows that

AL ()P +PrAn(t) <0

holds. Therefore, there exists a Lyapunov function V;(t) = XT (£)P1%X;(t) > 0 for the
reduced-order (4.11) such that Vi(t) < 0 V %i(f) # 0 . This, means that the
reduced-order system (4.11) is quadratically stable.

Q.E.D.

In addition to the quadratic stability guaranteed when (4.15) is feasible, pole place-
ment constraints can be imposed through an LMI region (Chilali et al., 1999) estab-
lished by the designer.

Let ##(h) be a half-plane stability region delimited by a vertical line at (—h, 0); let
D (cn,4) be a disk centered at (—c,, 0) with radius rq; and let 9((0,0), @) be a conic
sector centered at the origin of C at an angle o with respect to the negative real axis
of the complex left half-plane. The LMI region

D(h, cnyra, ) = F(h) NV D(cy, ) NE((0,0), @) (4.26)
shown in Figure 4.1 will be considered in this chapter.

Proposition 4.2 Let Q, € RM—™X(=m) pe o 5p.d. matriz and Lpo, € Rmxn-m)
be such that Ksp = Lipo, Q7. The reduced-order system (4.11) is quadratically stable
and MAaii; — Ap1a;Ksr) € D(h, cnyra, @) for j € I(1, N) if and only if the following
LMIs are salisfied

W, +2hQ; <0 (4.27)
“raQ1 Aan;Qu~ AnigLino, + cnQu <0 (4.28)
* —74Qu
; 0. T,
sin{c) cos(a) ¥; <0 (4.29)
s sin(a) ¥,
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where

i QIAAMj + AaUjQi — L 0i-"A12j ~ A AI2jLflO] (4.30)

and

Tj= AaUjQi — — AAILfIOi + L7 OiA ai2j 4.31)

Proof This follows from Theorem 3.2 and similar arguments applied in Proposition 4.1.

Im{C}

Re{C}

Figure 4.1: LMI Region 7){h,Cn,rd,a)

Remark 4.3 Notice that the LMIs (4-27)-(4-29) correspond to the half-plane stability
region Jt™h), the disk “{cn,rd), and the conic sector *{{0,0), a) respectively.

Remark 4.4 Propositions 4-1 and 4-2 are constructive since if the associated LMIs
are feasible, then the gain matrix can be calculated, and hence a switching gain

matrix of the form given in (4-6) can be designed.

4.3.2 Control Law Synthesis

Assume that an appropriate switching gain matrix F has been designed and define

the nonsingular transformation matrix

T, = (4.32)
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The change of coordinates %(t) — T,%X(t) = %(¢) yields

%1(t) = Aann (%1 (1) + Aara (8T %o (1) (4.33)

)—Cz(t) = I‘zA.Agl(t)l_{l(t) -+ FZAAgz(t)Fgl)_cz(i) + F2E2 (‘Ll(l:) -+ gA(t, X, 11)) (434)

where
Ann(t) = Apui(t) — Ana(OKsr (4.35)
Apor(t) = KspAan(t) + Agy — AgKgr (4.36)
Apn(t) = KsrApa(t) + An (4.37)

The transformed system (4.33)-(4.34) can be written in the compact form
%(t) = A)X(t) + B(u(t) + &4 (t, %, u)) (4.38)

where

[*““}:[ Rant)  Aan(ls’ Hm(t)]”Llrz()Bj (u()+ &t %) (439

Ro(t) ToAns(t) ToAng(®)T3' || Ralt)

_ An(t) Aw(t) %1 (¢) 0 o E s
_[ An(t) Asz(l) [iz(t) } ’ [ B, }(u(t) olhxw) (4.40)

Let P be a Lyapunov matrix partitioned as follows

P, 0
pa| ! =0 (4.41)
0 P,

such that P; € RO—mx(r=m) ig associated with the BMI (4.19) where Ago(t) = A1 (2).
The component Py € ™*™ will be designed in the sequel.

The control law consists of two components
u(t) =ur(t) + uns(t) (4.42)

where uy is the linear full-state feedback component and uyy(t) is the nonlinear part.
Although the control law above could potentially have only the nonlinear component,
the linear term has an important effect in that the gain of the nonlinear component
can be of a smaller magnitude.

The linear component uy(t) is taken to have the form

ug(t) = —Fx(t) (4.43)
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where F € R™*" and the nonlinear component is given by
)

A%, w) B 2Rl gy 20

unz(t) = [P 2%2(2)] (4.44)
0 otherwise

where the scalar function p(, %, w) is such that

[1Ball (R llur (Ol + @(t, %) + ka) + 1

pt,®,u) > 1~ Fan(Ba) (4.45)
where
with
w(Ba) = ||B5 || Bzl (4.47)

and 17 € R,. Note also that by construction Xa(t) = o(%).
Assume the matched uncertainty in (4.38) is equal to zero, and there exists a gain
matrix F in (4.43) such that
(A(t) — BF)TP + P(A(t) - BF) <0 (4.48)

is satisfied.

Since the parameter box in © is a convex set and the uncertain system matrix A(t)
is assumed to be affine in 6(¢), a polytope &%, can be constructed considering the pair
(A(t), B) as follows

N N
3@2}={ZMSWIZM=1, pi =0 forjéf(l,N)} (4.49)
=1 =1
where N is the number of vertices of £2%,, and
Sy i=[ A |B] forjel(t,N) (4.50)

Consequently, using the polytopic description given above, the matrix inequality
(4.48) can be written as

N N
S wi(A = BF) P+ P (A~ BF) <0 (4.51)

j=1 J=1
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N
with i =1and p; >0 for j € I(1, N), or equivalently as
7 7
=1
N
> (4 - BF) P+ P(4; - BF)) <0 (4.52)
=1

Since p; > 0 for j € I(1,N) a necessary and sufficient condition for (4.52) to hold
is that
(A — BF)™P +P(A; — BF) <0 forj € I(1,N) (4.53)

Write this matrix inequality conformably with (4.40) and partition the gain matrix

F=|rmn B (4.54)
then, (4.53) is equivalent to
T T
At P1+ PrAn (Azlj - 32-7:1) Py + P1 A, <0 (4.55)
* (A22j - 32]:2) TP2 +Py («4229' - 32]:2)

for j € I(1,N).

Introducing a change of variable Q = P71, i.e.
0 Pt o
Q =t (4.56)
0 Q, 0 Pt
and applying a congruence transformation, (4.55) is equivalent to

QAT + A Qu Q1 (A2 — Bzfl)T + Ai12;Q2 <0 (4.57)
* Qo (Asp; — Bzfz)T + (Asz; — BoF2) Qe

for j € I(1, N).

Defining further matrix variables

Li £ FQ: and Ly 2 FQp (4.58)
yields
QAT +An;Qu QuA5; — L{BY + A12;Qo <0 (459)
* QoA — L3 By + Az Qs — BoLs

for j € I(1,N).
72



4.3 State Feedback SMC Design Framework

These are LMIs with Qi, Qg2, Ly and Ls as matrix decision variables. The gain

matrix F in terms of these matrix variables is given by

F= [ Fi Fa ] = [ LiQ" L,Q;!

(4.60)

Proposition 4.3 The control law (4.42) with linear state feedback (4.43) and nonlin-
ear component (4.44) guarantees that a sliding motion takes place in finite time on the

the sliding surface . defined in (2.3) inside the sliding patch

Qs = {)_(1 ERNTT X e R™ ¢ IRy < 17’)’*1}

where

Y= max {H.Aglj - Bz]rln}

JeI(l,n)

and n € 4.

Proof Using

A8 70— ot et P
(t) = —7=R() — . % w)By s <

in (4.40) produces the following expression associated with the vector %X,

Salt) = oa ()% (8) + oa ()% (8) — P, 5, u>”%§;‘j—gﬁ + Bafa(t,%,u)

where

(1) = An(t) — BoFy

Do (1) = Ap(t) — Bo T

Consider the Lyapunov function

Va(t) 1= %3 (£)PaXo(t)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

Using the polytopic description of the pair (Ag; (), A2 (¢)) defined in (4.49) along with

the time derivative of (4.67) yields
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N -
N = - - o Pa%a(t) s N o
V'Z(t)"j;:u] <”Q{21jxl(t) +d22jx2(t) p(ta X, u) ”Pz)—cz(t)” +BZEA(t:x:u)) PQX?(t)
- . NG i1 NP
+Xy (t)Pzzﬂj(Wzljxl(t)+32722jX2(t) —pt. X, u)m*‘ﬁfa@;&“)) (4.68)
=1
where
;= Agry — Bay (4.69)
.Q{22]' = A22j - BQ]‘-Q (4:70)
Define
M; & o5, Py + Podd (4.71)

which is negative definite (n.d.) by design. This follows from (4.55) and a Schur
complement argument since (4.55) is equivalent to

(Asgj — BoF2) "Py + Py (A — BaFs) <0 (4.72)

Replacing M, in (4.68) and using the fact that
%5 PaBaéa(t, %, w)| < [PoXal|[|BallllEn(t, %, )| (4.73)

produces

. N N
Va(t) <285 (P2 ) 1 R (1) + %3 (£) D 1 MRa (1)
= =1
= 2||Pa%2(1) ]| (2(t, %, w) — (| Ballll€n(t, %, w)]]) (4.74)
From (4.45)-(4.47), it follows
(L, %,0) > (Bl (ks llus (Ol + @t %) + ko) + 1+ 5%, k1B [ |Boll - (4.75)

By rearrangement, inequality (4.75) becomes

p(t,%,w) 2 || Be| (ks (lar ()] + 5, %, wIB5 ) + $(t, %) + ka) + 2 (4.76)

and consequently

p(t.%,u) > || Bell (kallu()|| + @2, %) + k2) +1n (4.77)
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because
[a(@®)ll = fuz () + unp @] < lus@] + lavz @) < [l @l + (%, w)||B | (4.78)

Considering (4.3), in the new coordinates, inequality (4.77) can straightforwardly be
written as

Pt %, u) > || Ba|[l€a(t, %, w)] + 7 (4.79)

and hence

Va(t) < 28T(P2 Yy ooy %o () + 55 ()Y M Ra(t) — 2[Paka(t)llm  (4.80)

= =1
Finally, inside the sliding patch ||%; ()| < 7771, so

R N N
Va(t) < 2[[Pa%a (1) (Z pill o arllmy ™t = 77> +R5 () D> uiMiZa(t) <0 (4.81)

j=1 j=1

since

N
> uil ol <1 (4.82)
j=1
with
v = jgﬁ){ 721511} = jgﬁfﬁ){ | A21; — BoFa ||} (4.83)
and
N
You=1 and ;20 for jeI(1,N) (4.84)
=1

Therefore, the sliding motion occurs in finite time, provided %;(¢) remains in Qgp.

Q.E.D.

The design of the gain matrix F in (4.85) consists of finding a solution, if there
exists, to the LMI feasibility problem in (4.59).

Note, moreover, that the linear part of the control law in the original coordinates
is given by
UL(t) = —FTuTRX(t) = —FX(t) (485)

Since, p(t, %, 1) Z=TuTnx, p(t,x,u) and X2(t) = o'(t), the nonlinear component is given

by
L Poolt)
_p(t,x,u)B21”T§ZE_tgﬂ if o(t) £ 0

unz(t) = (4.86)

0 otherwise
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4.3.3 Design Example

Conversion of electromechanical energy using rotating electric machines involves
converting electrical energy into mechanical energy or vice versa. These machines
can be classified depending on its energy conversion function as generators or motors.
The former converts mechanical energy into electrical energy, and the latter absorbs
energy in electric form and converts it into mechanical energy. In turn, electric rotating
machines can be divided into Direct Current (DC) machines and Alternating Current
(AC) machines.

DC motors are commonly used as electromechanical actuators in control systems.
These kinds of motors can be found in many engineering applications, e.g. robotics,

machine tools, aircraft actuators, valve actuators, the automotive industry, etc.

In (Chapman, 2005) DC motors are classified according to the field and armature
connection into four main categories: (1) Separately excited DC motors, (2) shunt
wound DC motors, (3) series wound DC motors, (4) permanent-magnet DC motors, and
(4) compounded DC motors which can be cumulatively or differentially compounded

DC motors.

A DC motor as other rotating electric machines are made up of two main compo-
nents: the stator is the stationary or fixed part of the motor, whilst the rotor provides
a mechanical rotary motion. Figure 4.2 shows a detailed schematic representation of a

DC motor. The electromechanical diagram of a DC motor is presented in Figure 4.3.

Stator magnet

Brush

Rotor windings

Stator magnet

Shaft \ Commutator Brush

Bearings

Figure 4.2; Schematic Diagram of a DC Motor (Figure adapted from (Franklin et al,
2002) page 55)
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Figure 4.3: Electric and Mechanic Diagram of a DC Motor (Figure adapted from
(Franklin et ai, 2002) page 54)

From a control viewpoint, DC motors can be either armature or field controlled.
Since in this section an armature controlled DC motor is considered, only this scheme

is described. In this case, the field current zy is constant.

A mathematical model of an armature controlled DC motor can be constructed
following the concepts presented in (Franklin et ai, 2002) (Ogata, 2002). This model
comprises differential equations describing the electrical and mechanical dynamics of

the system. The torque generated at the motor shaft is given by
Tm(t) — hjda{t) (4.87)

where K- [Nm/A ] is a torque constant or electromotive force (emf) constant, and
ia{t) is the armature current [A]. The back emf voltage e{i) induced in the armature
is given by

_ d-ail)
=K
eft) by (4.88)

where Kg [Vsec/rad] is the electric constant, and i?(t) [rad] is the shaft angular po-
sition. By applying the Kirchhoffs Voltage Law (KVL), the following differential
equation can be written

dt dr (4.89)
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where L, [H] is the armature inductance, R, [Q2] is the armature resistance, and
ve(t) [V] is the armature voltage.

In order to obtain the differential equation governing the mechanical dynamics of
the DC motor, Newton’s second law for rotations is applied producing

d*9(t) , ,do(t)

Im dt? dt

= Kyia(t) (4.90)

By defining state variables as

(e

21(8) = 9() [rad] , z(t) = o

[rad/secl , z3(t) =i.(t) [A] (4.91)
and considering the armature voltage v,(t) as the input signal of the system, the

following state-space representation of a DC motor results from differential equations
(4.89)-(4.90):

0 1 0 0
x(t)=]0 - Kz |x(t)+]| 0 |u®) (4.92)

0 —Xe _BRa 1

Lo Lo La

The constant parameters are: the viscous friction coefficient b [Nmsec|, the motor
torque constant K. [Nm/A], the back emf constant K, [V/(rad/sec)], and the armature
resistance R, [()]. Here, the moment of inertia J;, [kgm?] and the armature inductance
L, [H] are assumed to be uncertain parameters. The uncertain moment of inertia J;,

can be written as

1 1

I Imo

+6,, (4.93)

where Jn, stands for the nominal inertia and the term § ,, is uncertain but bounded.

Define the error ratio &, £ (Le + La)/Lq. This allows the uncertain armature
inductance to be modelled as

1 1

o=+ (4.94)

where L,, denotes the nominal inductance.

The nominal parameter values of the DC motor under study are given in Table 4.1.
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Ry | Lay | Jing Ko K.
[9] | [H] | [kgm?®] | [Nm/A] | [V/(rad/sec)]
1.20 [ 0.05 | 0.135 | 0.60 0.60

Table 4.1: DC motor nominal parameters (Edwards & Spurgeon, 1998b)

It is assumed that the nominal viscous friction coefficient is b = 0.01 [Nmsec]. The
uncertain terms d;,, and dz,, are assumed to be —2.41 < §;, < 2.60 for 0.20 > J,, >
0.10 and |dz,] < 0.10 (which means that the armature inductance is known up to an
accuracy of 90 %).

A convex LMI region is defined so that the damping ratio is ¢ = 0.95 and the
natural frequency wy, = 2.0. To this end, let h = 1.9, ¢, = 0, ry = 13.0 and o = 0.3176.
The design framework proposed in this chapter yields the following switching gain
matrix

r=[4.1534 2.4110 1‘0000} (4.95)

where I'; = 1.

The eigenvalues of A(Aa11; — Anig;Ksr) for j € I(1,2) are { — 2.7468, —4.5362}
and { —1.9800, —12.5861}.

The linear component of the control law (4.85) is

'UL(L):[—4.5011 —2.2175 —0.4021}::(:5) (4.96)

The eigenvalues of the closed loop using (4.96) are {—25.9069, —3.0924 + 0.9283}
and {—1.9036, —15.1190 = 7.4268}.

The nonlinear part of the control law has been designed considering the scalar gain
k1 = 0.1. The known function ¢(¢,x) in (4.3) is given by

@(t,%) = 0.06]zs(t)] + 0.12]z3(t)| (4.97)

and ks = 0.

The following cases were considered: (1) the nominal plant; (2) the uncertain plant
with L = 0.046 [H] and J = 0.10 [kgm?]; (3) the uncertain plant with 7 = 0.046 [H]
and J = 0.20 [kgm®]. The initial condition considered in all the computer simulations
was [ 100 ]T. The time evolution of the state variables are shown in Figures 4.4,
4.5 and 4.6 for the three cases described above. Figure 4.7 depicts the control signals.
The switching function for each simulation case is shown in Figure 4.8.
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Nominal J and L
LowerJ and L=0.046 H
Upper J and L=0.046 H

0.5 2.5 3.5
time [sec]

Figure 4.4: Angular position ¢(¢) [radj.

Nominal J and L
LowerJ and L=0.046 H
Upper J and L=0.046 H

0.5 2.5 3.5
time [sec]

Figure 4.5: Angular speed d'd{t)/dt [rad/sec].
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Nominal J and L
Lower J and L=0.046 H
Upper J and L=0.046 H

0.5 2.5 3.5
time [sec]

Figure 4.6: Armature current ia [A].

Nominal J and L
Lower J and L=0.046 H
Upper J and L=0.046 H

0.5 2.5 3.5
time [sec]

Figure 4.7: Armature voltage Uo(t) [Vj.
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4.5
Nominal J and L
4 Lower J and L=0.046 H
35 UpperJ and L=0.046 H

2.5

0 Fwao o0
(S}

1.5

0

0.5

-0.5
0.5 1 1.5 2 2.5 3 3.5 4

time [sec]

Figure 4.8: Switching functions.

Figures 4.4, 4.5 and 4.6 show that the designed sliding mode controller stabilises
the DC motor in spite of the uncertain parameters J and L. After 2.5 sec, all state
variables are essentially at the origin in the state space. The control effort shown in
Figure 4.7 is smooth and from a practical viewpoint it is within an admissible range.
It can be seen in Figure 4.8 that a sliding mode occurs between about 0.1 and 0.2 sec

which can be considered fast enough for several engineering applications.

4.4 Summary

The effect of mismatched uncertainties on the reduced-order sliding mode dynamics
has been studied. A sliding mode controller design approach based on LMI methods
and a polytopic description of mismatched parametric uncertainties has been presented.

This class of uncertainties is of practical interest in real world applications.

The switching function and control law use full state information. Although this
assumption might be restrictive in some practical engineering problems, an argument
supporting the use of full state feedback is the existence of estimation approaches which

can reconstruct state variables.

The sliding mode existence and reachability problems have been dealt with using

polytopic models. Robust pole clustering in LMI regions, considering mismatched
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parametric uncertainties, has been employed for synthesising a parameterised sliding
surface. The control law consists of two components and its design also takes into
account both types of uncertainties. The gain matrix in the linear component of the
control law is obtained by solving an LMI feasibility problem. The design of the
nonlinear part is dependent on one of the matrix variables obtained when synthesising
the linear component.

An example, considering angular position control of a DC motor involving matched
and mismatched uncertainties, has illustrated the proposed synthesis framework and
demonstrated its efficacy through computer simulations.
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‘A mathematical problem should be difficult in order to
entice us, yet not completely inaccessible, lest it mock at
our efforts. It should be to us a guide post on the mazy
paths to hidden truths, and ultimately a reminder of our

pleasure in the successful solution"

David Hilbert (1862 - 1943)

Sliding Mode Output Feedback Control:
A Polytopic Approach

5.1 Introduction

Many of the early SMC approaches assumed that the state vector is accessible, and
hence all state variables are available to the control law. This was the most limiting
assumption made in the previous chapter. Although this assumption has allowed real
applications to be tackled, it is quite restrictive, as in many applications only a subset
of the state variables are physically measurable. Sometimes the state vector cannot
be measured because some state variables do not have physical meaning, or perhaps
software and hardware overhead costs to measnre them may be high. There are two
main ways of overcoming this problem: (1) static output feedback control, and (2)
dynamic output feedback control. In this chapter, a design framework based on LMIs
is presented for synthesising static and compensator-based output feedback sliding
mode controllers. The existence and reachability problems are formulated using a
polytopic description. The sliding surface and sliding mode control law design is based
on LMlIs. In this chapter, both matched and mismatched uncertainties are considered
when synthesising the output feedback sliding mode controllers.

This chapter is organised as follows: firstly, the class of systems considered, and
the formulation of the problems to be dealt with, are described in Section 5.2. Then,
in Section 5.3, a static output feedback sliding mode controller design methodology is
presented and design examples (a numerical example and one involving lateral control
of an aircraft) illustrate the proposed approach. In Section 5.4, dynamic compensa-
tion is considered in such a way that compensator-based output feedback sliding mode

controllers can be synthesised. A numerical example, involving a system which is not
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stabilisable via sliding mode static output feedback control, demonstrates the effec-
tiveness of the proposed methodology. Finally, some concluding remarks are drawn in
Section 5.5.

5.2 System Description and Statement of Problems

Consider an uncertain dynamical system described in state-space form V¢ > 0 by
x(t) = (A + AA(1)x(t) + B(u(t) + £(t,x,u))

y(t) = Cx(t)

(5.1)

where x € R™ is the state vector, u € R™ is the input vector, and y € 3? is the output
vector. The uncertain function £(¢,x,u) : Ry X R X K™ — R™ represents the lumped
sum of matched nonlinearities and/or uncertainties.

The following assumptions are postulated:

A-5.1 The order of the system and the number of output and input signals
satisfy n > p > m.

A-5.2 The input and output matrices are both full rank, i.e. rank(B) =m
and rank(C) = p.

A-5.3 In the nominal triple (A, B, C), rank(CB) = m.

As discussed in Section 2.3.2, from assumption A-5.3 there exists a similarity trans-
formation in which the nominal triple (A, B, C) of the system (5.1) can be written in
the output feedback canonical form (Edwards & Spurgeon, 1995):

A=| "0 B=| | ,C=]oT| (5.2)
Agr Ay B,

where A;; € RO-mx(n-m) A, e REo-m)xm A, e ER"‘X(”‘"‘), Agy € R™™ and B, €

R™*™ are known constant matrices. The state vector X is partitioned conformably

with (5.2) as follows

x(t)=[=7() =] (5.3)

Assuming all matched components of the parametric uncertainty associated with
the system matrix and &£(¢,x,u) have been incorporated into &, (%,%,u), the system
matrix

AA(t) = A+ AAQR) (5.4)
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in the new coordinates, has the structure

~ _ - A, A AAL () AA(
B =A+an(y= | 0 A | | AAal) Ade() (5.5)
Ay Ay 0 0
Throughout this chapter the following assumptions are considered:
A-5.4) The matched uncertainty term &, (¢, %, u) is bounded by
l€a(t, % W < Fullu@)ll + (2, y(2)) + ke (5.6)

where ¢ : ¥y x®P — R, is a known function. Furthermore, 0 < ky <1
and ko > 0 are known constant scalars.

A-5.5) The uncertain matrix AA(t) in (5.5) is affine with respect to the param-
eter vector 6(t) € ©.

The sliding surface %,y is defined as follows
For = {x € R :0(t) =Ty(t) =TCx(t) =0} (5.7)
where a(t) € ®™ and T' € R™*?. The switching gain matrix I' is parameterised as
T=T:| Kop I |T7 (5.8)

where T'y € R™*™ is nonsingular and Ky, € Rmx@-m),

Using similar arguments to those presented in Section 2.3.2, but now considering
the uncertain system (5.1) yields the following reduced-order system

%1 (t) = (AAn(t) - AAlz(t)Kopcl>i1(t) (5.9)
where Aan(t) = (An + ARy () (5.10)
Aznz(t) = (A12 =+ AAlg(t)) (511)

and Cj is defined in 2.43.

The reduced-order dynamics (5.9) correspond to an output feedback problem in-
volving mismatched uncertainties.

SMSOF Control Problem: Design a switching gain matrix I' of the form (5.8) such
that the sliding dynamics (5.9) are stable. Furthermore, synthesise a SMC law which
guarantees a finite time reaching phase from any initial point x(ty) = xo ¢ For in the

state space £ to the sliding surface.
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In some particular cases, the existence problem for systems given by (5.1) with
matched and mismatched uncertainties cannot be solved, as the following bilinear ma-
triz inequality (BMI) is not feasible (i.e. the uncertain reduced-order system (5.9) is
not static output feedback stabilisable):

(Aan(t) — Amz(t)Kopcl)TPl +P1(Aani(t) = Anip()KorC1) <0 (5.12)

where Aas;(t) and Aaqp(t) have been defined in (5.10) and (5.11) respectively.

This problem can be addressed by adding extra dynamics through a compensator
providing further degrees of freedom for synthesising a sliding surface. Consider a
dynamic compensator of the same form as in (Edwards & Spurgeon, 2003) described
by

%o(t) = Ex,(t) + Uy(t) (5.13)

where E € R7? and ¥ € R7*P, and a sliding surface in the augmented state space
Z., C R defined as

g = {a € B 04 (1) = Texe(t) + TCx(t) = 0} (5.14)

where x, = [x7 xT}T is the augmented state vector, 6,(t) € R™ is the augmented
switching function, whilst T, € ™*? and I" € R™*P are components of the augmented
switching gain matriz T, = [ T, T ] to be synthesised.

Let
UT = [\Ill \Ilz] (5.15)

where ¥, € RI*P-™) and ¥, € RIx™,

Consequently, the dynamic compensator (5.13), considering y(t) = Cx(t) = [ oT ])"c(t)
and the state vector partition (5.3), can be written as follows

Xe(t) = Bx,(t) + 1C1X1 (1) + PaRa(2) (5.16)

where
C1 = [ Opmyxtn-m) Tep-m) ] (5.17)

During the sliding mode,
Oq = 1‘101)"(1 -+ Fz)_iz -+ I‘CXE =0 (518)
Since I'; is nonsingular, equation (5.18) can be multiplied by T';? producing

Kopcl)—il + X9 + KCXC =0 (519)
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5.3 Sliding Mode Static Output Feedback Control

where Kor € R~ and K, € R™* are defined as

Kor 25T (5.20)

K. 25T, (5.21)

Now, consider the following set of first order differential equations describing the
dynamics of the null space N'(T,) of the uncertain system (5.1) given by

%1(4) = Aan(B)%1(t) + Aara(t)Ra(t) (5.22)

Then, substituting for %,(¢) from (5.19) in (5.22) and (5.16), yields the following
reduced-order sliding mode system

%1(t) = (Aa11(t) — Aar(t)KorCr)Ra (1) — Anra(t)Kexe(t) (5.23)
%xe(t) = (U1 — ¥Kor) C1%1 (1) + (B — oK) x(t) (5.24)

SMDOF Control Problem: Find B, ¥y, ¥y, K, and K, so that

(Aan(t) = Ap(DKorCi) —Anp(t)Ke

()=
(T~ T:Kor)C (B WK,)

(5.25)

is stable. This defines both the compensator and the augmented sliding surface (to be
discussed in Section 5.4). Furthermore, design a sliding mode control law such that
the sliding surface 5, is reached in finite time from any initial point x4(to) ¢ For,
in the augmented state space £, and a sliding motion takes place thereafter.

A

5.3 Sliding Mode Static Output Feedback Control

In the sequel, the existence and reachability sliding mode control problems are
formulated from a polytopic perspective via LMIs.

5.3.1 Sliding Surface Design

Let S(¢) be the block matrix form of the triple (Aay;(¢), Aaz(t), C1) given by

S(t) = [ AACH([') 1 Aan(® ] (5.26)

0
83




5.3 Sliding Mode Static Output Feedback Control

and let S; be the block matrix form of the triple (A‘Allj?AAl2j7 C,) given by

S; = (5.27)
then a polytope can be constructed as follows
N N
WZF={ZMSJ‘¢ZM=1, NjZOfOI'jEI(LN)} (5.28)
j=1 j=1

where N is the number of vertices of &3,. These vertices can be computed using

.
AAlkj = A+ AAlk:j = Ay + Z O;AA

i=1

2
9i={ﬂ1:§i} (5 9)
for k € I(1,2) and j € I(1, N =2") and C; is defined in (5.17). Note that permutation
of the uncertain parameters ¢; for ¢ € I(1,r), considering the upper and lower bounds,
is applied in order to calculate Amkj defined in (5.29).

The following is assumed:

A-5.6 The system triples (Aaqy;, Ang;,Cy) for § € I(1, N) are stabilisable and
detectable.

The vertices of the polytope &3, are said to be simultaneously stabilised by
the gain matrix Koy if there exists a s.p.d Lyapunov matrix P; € R(—m*(-m) guch
that

- - T — .
(AAllj - AA12jK0F01> Pi+P; (A/_\.llj - AmngOFC1) <0 (5.30)

for all j € I(1, N).

As the synthesis of the gain Kyr corresponds to a static output feedback problem
for the system triple (Aay;(t), Aara(t), C1) any available LMI approach for polytopic
models could be employed. Here the non-iterative LMI-based algorithm proposed in
(Benton & Smith, 1999) is applied. An important feature of Benton & Smith’s ap-
proach is its simplicity, but the main drawback is the difficulty in finding a suitable
state feedback gain K such that the system is Simultaneously K-Stabilisable and
Detectable (Benton & Smith, 1999).

The Benton & Smith algorithm is now formulated for the SMSOFC existence prob-
lem as follows:

Step 1) Define the N vertices of the polytopic model.

89
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Step 2) Define a degree of stability such that

AAllaj = A'Allj —+ aI(n,m) for ] S I(l,N)
Step 3) Solve the following optimisation problem

min  trace(Qsr)
s.t.
QSF - I(n—m)
QSFAXHU(J. + AAlijSF + YEFA};W + AAlijSF‘ <0
for jeI(l,N)

Step 4) Set Ksr = Y5, Q5.

Step 5) Solve the LMI feasibility problem
find ¢ and P,
s.t.
Pi-Ipnmy , €>0

- _ T - -
AAuaj + AA]zj KSF Pl + Pl AAna' + AAmjKSF <0
J

AzllajPl + PlAAua]- — 60?01 <0
for jeI(l,N)
Step 6) Solve the following LMI problem
find Kor
s.t.
_ _ T _ -
(AAllnj - A'AIZjKOFcl) P, +P; (A-Allaj - A‘AIZjKOF‘Cl) <0

for jeI(1,N)

Remark 5.1 The feasibility problem formulated in step 6 can be replaced by an opti-

misalion problem involving the minimization of a norm defined by the designer. Specif-

ically

min o
s.t.

o kT
k M

(AAllﬂ‘j - AAMJ'KOFCl)Tpl +P; (AAllo:j - AAm'KOFCl) =<0

for je€I(1,N)

where k = vector(Kor) and M is a p.d. matriz chosen by the designer. Thus, if
M =1 the optimisation problem corresponds to a minimisation of the Frobenius norm
(Benton € Smith, 1999).
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5.3.2 Control Law Synthesis

If a switching gain matrix I' given in (5.8) exists such that (5.9) is stable, then a
nonsingular change of coordinates ® — T% = % exists where

. To—m 0
fo | Tem N (5.31)
B'KorCy B;!
such that the triple (Aa (i), B, C) from (5.5) and (5.2) can be transformed into
R L An(t) Ann(t
Apt) =A+AA@W)=| ~ an(t) ) ana(t) (5.32)
Anoi(t) Aps(t)
N T
B=[o 1, ] (5.33)
I‘C‘=[0 Im] where Cz[o T] (5.34)

with T € ®P*? such that det{T} # 0. Noting the form of (5.31) it is evident that
equation (5.33) holds. The structure of I'C in (5.34), follows straightforwardly since
B;'=T,.

Let S(¢) be the block matrix form of the triple (AA(¢), B, €) given by

S(t) = [ﬂ‘E] (5.35)
¢ o

and let S; be the block matrix form of the triple (AAJ', B, €) given by

As, | B |
- for j € I(1,N) (5.36)
C |0

Sj:

Thus, a polytope can be defined as follows

N N
Py = {Zuij ) m=1, 4= 0forje 1(1,N>} (5.37)
=1 =1

where N is the number of vertices of &7%,. These vertices can be calculated using

An=A+3 044,

i=1

(5.38)

AAllj AAIQ]‘ }

0:=10::0:} Ana; Ansy

where B and € are defined in (5.33) and (5.34) respectively.
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The sliding mode dynamics are associated with
Apryj = Ay — ApgiKorCi for j € I(1,N) (5.39)
which are stable by design, and in turn
Anu(t) = Aau(t) — Apa(t)KorCi (5.40)
is stable by the convexity property of the polytope &7%..
Let P € R™*" be a Lyapunov matrix partitioned as follows

P, O
P= -1, (5.41)
0 P,

where Py € ROv-mx(n=m) a5 P, € Rmxm,

Consider the control law
u(t) =ur(t) + uns(t) (5.42)

with the linear component ur(¢) of the form
wi(t) = ~Gy() (5.43)

and the nonlinear part wyz(¢) given by

—p(t,y, w)P;" |£§8)” if Ty(t) # 0

ung(t) = (5.44)

0 otherwise

where

[Pl (ks llur ()]l + ¢t y) + ka) + 7
(1 = [[P2]lky)

ot y,u) > (5.45)

with > 0 as a design parameter.

The gain matrix G, in (5.43), is parameterised conformably with the output matrix
C defined in (5.34) and the partition of P given in (5.41), as follows

-

G= [ G, G, } T (5.46)

where G; € R™*=™) and G, € R™*™ are such that the following matrix inequality
holds
ATP+PA; <0 for jeI(1,N) (5.47)
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where

A= . Asiy A (5.48)
Apn; — Gi1Cy Apogj — Gy

for j € I(1,N).

Let Q be a sliding patch defined as

Q= {(5{1 € R %) € BM) ¢ %] < m—l} (5.49)
where
v= max {IIPz (Aaai; — G1Cy) 1]} (5.50)

Proposition 5.1 The control law (5.42)-(5.45) guarantees that the sliding patch ) is
reached n finite time and o sliding motion takes place on the sliding surface Fpp within
Q.

A
Proof Consider the Lyapunov function
V(t) = xT()Px(t) (5.51)
The time derivative of V/(¢) along the closed-loop system’s trajectories satisfies
. N ~ ~ ~ T
V(1) =D ui(Aag&(t) + Blu(t) +£a())) PX()
j=1
N
+ K OP Y g (Aai(e) + Blult) +E())) (5.52)
j=1
il A 5 i T A 2 T
=%"(1) ) pi(Aa; ~BGC) PR() + (Bluns(t) +4a()) P(2)
j=1

N
+XTOP Y 5 (Aa; ~ BGO)R() + 87 (PBuns(t) +4a()  (5.59)

— %) (i”f (AM - BGC)TP + P‘ZN“‘H]- (AA]. - BGC)) (1)
N réx(t) -

ez + 25T (£)PBEL(Y) (5.54)

— 28" ()PBp(-)P;!
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Let
I . . AT N . .
N2y (AA]- - BGC) P+PY y (AA]. - BGC) (5.55)
3=1 j=1
which is a negative definite matrix by design.

V(t) = XT(H)M&(t) — 22T (t)PBp(-)P;" rox(t)

12 kT PBEL(- 5.56
||rc,z(¢)||+ (PBEA() (5.56)

From the partition of P in (5.41) and the input matrix B defined in (5.33), it follows
straightforwardly that the structural property
PB = (r¢)"p, (5.57)
holds. Then, (5.56) can be written as

T (TCk(t))

/(%) = KT () MK (L) — 2p(-) (TCR(t)) oot + 287 (£) (DC) TPoéA (- :

V() = TN ~200) (POx(0) " oo+ 2 OE) Pabal) - (5:58)
= KT (HNIK(t) — 20(-)|[PCX()] + 2(TCR) P2 () (5.59)
< £ (OMX() — 2TEx) () — IP2AIEaC)) (5.60)

< KT(OMRE) — 2TEX@ (o) = 1Pl (@)l + 0() +2))  (56D)
Noting that

()] = lfuz ) + unc @Ol < el + luve O] < lup @l + pO)IPZ

< lar @] + p() (5.62)
since ||[P;*| < 1 because Py > IL,. Then, from (5.45) and (5.62), it follows

1P (k@ -+ ) + ka) < [Pl (ke (s (8) + () +00) + k) < p() =7 (563)

and, this in turn implies
() 2 [Pl (kallu(®)]l + o() + k) + 1 (5.64)
Thus, (5.61) becomes
V() < 2TOMz(t) — 2 TCx(E)||n <0 V() #0 (5.65)

and the system is said to be quadratically stable.
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T
Partition the state vector x = [ kT %3 ] . Consequently
Ty(t) = TCx(t) = Ro(t) (5.66)

Now consider the Lyapunov function

Vo(t) = %3 (1)Pa%s (1) (5.67)
Computing the time derivative along the closed-loop trajectories gives
. N ~ A
Va(t) = Z[Lj <2f{§(t)P2 (AA21]' bt Gl(}l)fq(t) + 2)ACP2I‘P2 (uNL(t) + §A())
j=1
+ %5 (t) <(AA22j - GZ)TPZ +Py(Ang; — Gz))‘fiz (t))) (5.68)

From the matrix inequality (5.47), it follows that

T () H,%5(t) < 0 (5.69)
where
~ N ~ T N ~
H, =) uj(Anz; — Ga) Pa+ P2y ptj(Anz; — Ga) <0 (5.70)
j=1 J=1

Furthermore, using (5.44) and re-writing (5.68) produces

N
Va(t) < %5 (OH%a(8) + ) 1y (2||ﬁ2(t)|i||P2(AA21j = G1C)|[[% @)l

A0~ 1P O+ 50+ k) (571)
Since
o) 2 P (kallu(®) ]| + ¢() + k2) +7 (5:72)
then
V,(0) < O R:0) + 2500 ﬁ;m(lf’z (Asm; — GO %@l —7)  (573)
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Inside the sliding patch defined in (5.49) along with (5.50) yields

Vo(t) < 2% D 1 (IP2(Anzr; — G1Ch) [y =) <0 (5.74)

j=1

which means that a sliding motion occurs inside the invariant set {2 defined in (5.49).
Therefore, a sliding motion occurs in finite time since the system is quadratically stable.

Q.E.D.

From (5.33)—(5.38) and (5.46), the matrix A; given in (5.48) can be expressed as
A; 2 Ay —BGC (5.75)

then it follows that

Agujpl +PiAx;  PrAag+ AEZUPQ - CILY

AjP+PA; = AL AT _ 1T
* PQA.A22J Lg -+ A-AZQjPZ L2

<0 (5.76)

for j € I(1, N) with

L1 S P2G1 and L2 £ P2G’2 (577)

The Lyapunov inequality (5.76) depends affinely on the matrix variables Py, Py,
L, and Ly. Therefore, an LMI problem can be formulated in order to design a gain
matrix G such that

Gl <% (5.78)

and

HP2AA21]' bl Llclli < Y (579)

However, the firstly inequality (5.78) has to be formulated in terms of the matrix
decision variables Ly and Ly defined in (5.77). This inequality can be expressed more
conveniently considering P from (5.41) and the parameterisation of G given in (5.46).
As shown in the sequel

IGI =[P [ Ly Ly IT) < [PII[ L2 1, JT)
since Py > I, by definition in (5.41). Then, it follows that ~
el <[l 1,177 (5.50)
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and therefore by ensuring

[ U L2 ]T < Ip (5.81)

inequality (5.78) is satisfied.

The poles of 4j for j € 7(1,TV) can be placed in an LMI region (Chilali et al,
1999) of the complex plane C established by the designer as discussed in Section 3.2.6.
Without any loss of generality, an LMI region characterised by the intersection of the
disk *{cn,rd) centered at (—”, 0) with radius and a half-plane delimited
by a vertical line at (—#,0) is considered. That is, V{h,Cn,rd) = S>{cnrd) n ]I f (h).
Figure 5.1 depicts the LMI region V{h,Cn,rd) under consideration

Im{C}

Re{C}

Figure 5.1: LMI Region V{h,Cn,rd)

In order to formulate an optimisation problem for synthesising the gain matrix G,

consider a partition of
AAS = forj G7(1,TV) (5.82)

where A aziij € and Aaxnj €

Then, choose any

(5.83)
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and solve the following LMI problem

min 9
s.t.
_¢I'm [ Ll Lz ]T_l
— \T <0
([Ll LQ]T ) -1, |
—Ym PZAAmj - LGy <0
A%;P> — CTLT “Vpom) | (5.84)
—rqP P.Aj +c, P
<0
CnP + .A;[‘P —T’dP

ATP +PA; +2hP < 0

P~1,

)
for j € I(1, N) in terms of the variables L;, Ly, P; and Ps.

If there exists a feasible solution to the optimisation problem (5.84) then choose
G, = P2_1L1 and Gy = P;lLQ (585)

and the proposed control law (5.42) with (5.84) guarantees that a sliding mode takes
place inside the sliding patch. Furthermore, the state trajectories will reach the sliding

patch in finite time and will remain within it.

Remark 5.2 Condition (5.78) imposes a minimum norm constraint in (5.84) with
respect to the decision variables Ly and L.

Remark 5.3 In some cases, the LMI region in (5.84) may have to be redefined in
order to find a feasible solution. In addition, the designer can set the parameters of the
LMI solvers (e.g. relative accuracy required on the optimal value, mazimum number of
iterations, feasibility radius, etc.) more conveniently for the same purpose.

5.3.3 Design and Computer Simulation Examples: SMSOFC

Example 5.1 The system considered in this example is taken from (Xiang et al.,
2006). Such a system belongs to the class of uncertain systems with mismatched
uncertainties. Another feature of this plant is that only a subset of the state variables
is available for measurement. The mathematical representation of the plant is given
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by
-3 +sin(?) 0 1 + sin(2t) 0
x(t) = 1 2 sin(4¢) x(t)+ | 1] (u(t) +sin(5t)) (5.86)
0 14sin(3) -2 0
010
y(t) = [ 110 ] x(t) (5.87)

The initial condition considered is the same as in (Xiang et al., 2006), i.e. x()| tmtp =
xo=[10 -1]%

Since rank(CB) = m, the system in (5.86)-(5.87) can be written in the regular
form (5.2) and consequently (5.5). Using the polytopic approach proposed in Section

5.3, the following switching gain matrix is obtained
r= [ 0.7327  0.2673 } (5.88)
and the gain matrix of the linear component of the control law (5.43) corresponds to
G-= [ 1.8829 1,1597} (5.89)

The closed-loop eigenvalues of A; for j=1,---,8 (i.e. the poles of the closed-
loop system when only the linear component of the control law is considered) are
shown in Figure 5.2 and the numerical values are the following {—2, —1.0425, —4},
{—0.4126, -2.6299, —4}, {—4, —2,—-1.0425}, {—3.7656, —1.6385 & 0.4807;}, {—1.0425,
-2,-2}, {-0.4126,-2.6300, -2}, {—2.0036,—1.9964,—1.0426}, and {—2.9440,
—1.0492 + 1.37525}.

The nonlinear component (5.44) with (5.45) is designed such that

o(t,y,u) = 3.1213|y; (£)] + 2.1213|ys(1)| + 1.4242 (5.90)

Furthermore, Py = 1.0030. In order to avoid high frequency oscillations in the control
signal, the nonlinear component (5.44) has been replaced by

—Af. —~1 I‘y t) i
umt):{ PP ey liire HTY0) £0 (5.91)
0 otherwise

and ¢ has been chosen as ¢ = 0.00001.

The closed-loop time response is shown in Figure 5.3. The control effort and the
time evolution of the switching function o (t) is shown in Figure 5.4. As expected there
is no high frequency switching in the control signal because of the smoothed unit vector
control structure considered in (5.91). The results obtained demonstrate the efficacy
of the proposed sliding mode static output feedback control system.
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1.5

0.5

-0.5

Figure 5.2: Closed-loop poles obtained when using only the linear part of the control
law

y1(t) = x1(t)
0.8 y2(t) = x1 (1) + x2(t)
0.6 - - x3(t) (unmeasurable state variable)
04

0.2

0.2
-0.4
0.6

-0.8

0.5 2.5 3.5
time [sec]

Figure 5.3: Closed-loop response
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u(t)
sigma(t)

0.5 2.5 3.5
time [sec]

Figure 5.4: Control signal u{¢) and switching function a{t)

Example 5.2 Consider the following lateral model of an aircraft (Anderson & Moore,
2007):

] ' 0 1 0 0 - L, (6) - 0 0
0 Lr At S
Ht) . 4 <M (1) .\ Ls. *rO (5.92)
19 (f) y 0 Yo -t ysr 0 d.(t)
. r{t) N’ AOO Lor(<) . ~ASY0 At .

where +>ft) is the bank angle [rad], p{?) is the sideslip angle [rad], r{t) is the yaw
rate [rad/sec], Sr{t) is the rudder deflection [rad], Sa{t) is the aileron deflection [rad],

~rs= {"r ~ Afg) and = {Ns"+ N"Ys,). It is assumed that
<Nt), 13{t) and r{t) are the output signals. The nominal parameter values of (5.92) are
given in Table 5.1.

Po ~00 Lro Apo ~00 Nro ‘%
239 475 078 -0.042 259 -039 0.086
~00 a0 SO Sa0

-0.11 0 0 -391 0.035 -253 031

Table 5.1: Aircraft nominal parameters
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Here, only Y}, Ls, and Nj, are considered uncertain. These parameters are assumed
to be

Ys(t) = 0.50| Y, |sin(10mt) (5.93)
Ly, (t) = 0.25|Ls,, | sin(4mt) (5.94)
N;, () = 0.25| N5, |sin(2mt) (5.95)

The gain matrix Ko has been designed such that the poles of the reduced-order
motion for each vertex are { —0.1518, —~1.5186} and { — 0.1650, —1.3975}. The
associated switching gain matrix is given by

3 [ ~0.0308 0.5243  —0.3880 } (5.96)

| —0.2565 —0.6857 —0.0095

The LMI region is given by the intersection of the disk D(c,,74) and the left half-plane
H(h) regions defined by ¢, =0, rq = 5 and h = 0.02. The gain matrix G is

(5.97)

G- 0.1242 0.7743 —1.3628
| —0.2871 —0.9447 0.4470

The nonlinear component (5.44) has been smoothed as in (5.91). The scalar valued
function p(t,y,u) has been designed as follows

p() = 0.35][uz | + 0.14(Iya ()] + Ixa(8)]) + 0.0014 (5.98)

The Lyapunov matrix Py is given by

(5.99)

[ 3047039 231.4102
27| 231.4102 177.5499

and € = 0.1 x 1073.

Figure 5.5 shows the bank angle rate y; () = ¢(t), the sideslip angle y»(¢) = 4(¢) and
the yaw rate y3(t) = r(t). It can be seen that the proposed SMSOF controller regulates
all output signals to zero and robustness is maintained in the presence of the unmatched
parameter variations. The associated control efforts ui(t) = 6,(t) and us(t) = §,(t) are
shown in Figure 5.6. The rudder and aileron input signals do not exhibit high frequency
oscillations and are within reasonable practical ranges. The switching functions ¢y ()
and o3(t) are depicted in Figure 5.7. The sliding motion occurs after approximately
0.6 sec and the system maintains the sliding mode thereafter.
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y1(t) [rad/sec]

y2(t) [rad]
y3(t) [rad/sec]

0.05
= 0
o
3
a-
o -0.05
- 0.1
0.15

time [sec]

Figure 5.5: Time evolution of the output signals yi{?), y:{t) and y;{1).

0.15
ul(t) [rad]
u2(t) [rad]
0.05
c
0
O
-0.05
- 0.1

time [sec]

Figure 5.6: Control signals vif:) = 6r{) and U. {t) = éa{1).
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0.06
0.04

g 0.02

V]

S

§

LL

« -0.02
-0.04
-0.06

time [sec]

Figure 5.7: Time evolution of switching functions ai{i) and a: {2).

5.4 Sliding Mode Dynamic Output Feedback Con-

trol

The Sliding Mode Dynamic Output Feedback Control (SMDOFC) design approach
developed in this section considers a polytopic formulation for the existence and reach-
ability problems and employs LMI methods. The sliding surface defined in (5.14) and
the dynamic compensator given in (5.16) are considered in this section. Moreover,
recall that the corresponding reduced-order sliding mode dynamics are governed by
(5.23)-(5.24).

5.4.1 Compensator-based Sliding Surface Design

The problem of designing the compensator gains and S as well as the gain
matrices K and can be written, using arguments similar to those in (Edwards &

Spurgeon, 2003), in a static output feedback fashion as follows:
(5.100)
where

Xai(i) = [ xjif.) xj(t) (5.101)
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AQ) = Anu(t) 0 B(t) = Apn(t) 0 C G 0 (5.102)
0 o0 v, I, 0 I,
K= {K"F Ke } (5.103)
v, E

Let ®(t) be the block matrix form of the triple (A(2), B(t),C), and let ®; be the
block matrix form of the triple (A;, B;,C). That is

500 — [Ay at) } 5.100

and

A; | B;
S; = |4~ (5.105)
cl|o
Then, S; € £7,.,, where the polyhedric closed convex sub-set
N N
Pora= { DowSii D =120 for je T(LN)} (5.106)
J=1 j=1

whose NV vertices are given by sub-matrices from (5.105) made up of the matrix C
defined in (5.102) and

A; = Ao+ éﬁiAAj 0,0 for j€I(1,N=2") (5.107)
- R ) i —or
B; Bﬁz_;a,AB, 0,30 for jeI(1,N=2) (5.108)
where
A; 0O AAy; O
Aga | TH AL 2 1 (5.109)
0 0 0 o0
A 0 AAyy; O
Boa | . AB; 2 12 (5.110)
W, -1, 0 o
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The following is assumed:

A-5.4) The system triples (A;, B;,C) for j € I(1, N), whose matrices have been
defined in (5.107)-(5.108) and (5.102), are stabilisable and detectable.

The reduced-order system (5.23)-(5.24) is output feedback stabilisable if there exists a
Lyapunov matrix P,y = PT, € Rvte-mx(nta=m) and a gain matrix IC such that the

following N bilinear matrix inequalities are satisfied
T
(Aj — BjC) Pay + Py (Aj - lecc) <0 (5.111)
for j € I(1, N).

As in the SMSOF control framework proposed in Section 5.3, if the matrix inequal-
ities (5.111) hold, then the vertices of the polytope £?¢ . are simultaneously stabilised

OFa

by the gain matrix . The adapted Benton and Smith algorithm (Benton & Smith,
1999) presented in Section 5.3.1 can be formulated in terms of the triples (A;,B;,C)
for j € (1, N) and P, in order to design the gain matrix K as follows:

Step 1) Define the N vertices of the polytope 479,

oFa’
Step 2) Define a degree of stability such that
Agj = Aj + alinygemy for je I(1,N)
Step 3) Solve the following optimisation problem
min  {race(Qsr,)

s.t.
Qspa - I(n+q~m)

Qsr, Agj + Aaj Qsr, + YEF':L B;'r +B;Ysr, <0
for ] S 1(17 N)
Step 4) Set Ksr, = Ysr, Qap,-

Step 5) Solve the LMI feasibility problem
find ¢ and P,
s.t.
Po - Inag-my , €>0

T
(Aaj + BJKSFE) Poi + Py (Amj + BstpE) <0
-Aszm +Pu1Ay —eCTC <0
for jelI(1,N)
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Step 6) Solve the following LMI problem
find €
s.t.
T
(Ao = BiKC) Pay + Par (Aas = BiKC) < 0

for jelI(1,N)

Remark 5.4 An optimisation problem involving the minimization of a norm, chosen
by the designer, may take place in the step 6 of the adapted Benton & Smith Algorithm.
For further details, see Remark 5.1.

5.4.2 Compensator-based Control Law Synthesis

Consider the following augmented matrices

2 WC 0 I, 0
Aaa(t) = { _ ] B, = [ _ ] Co= [ i } (5.112)
0 Ax(t) B 0 C

If a switching gain matrix I', = [, T'] exists such that the sliding dynamics in (5.23)
and (5.24) are stable, then a nonsingular change of coordinates x — Tox exists such
that the triple (A,a(t), Ba,Ca) can be transformed into

" . " Aannn (t)  Agara(t
Aar(®) = Aq + AAL () = “‘} au(®) ff an(?) (5.113)
Aanai(t)  Agaza(t)
~ T
B.=0 1, ] (5.114)
Teéa=[0 1,] where Ga=[0 T,] (5.115)

with T, € RE+0*@+9) guch that det{T,} # 0. As in the SMSOF approach in Section
5.3.2, the structure of T',C, follows since, by construction, I',C,B, = TCB = I,,..

Let

S(t) = Aa[f(t) B“] (5.116)
G o

(5.117)

i.e.
N N
Pin, = {Zwsjizw=1,w >0 for je I(LN)} (5.118)
j=1 j=1
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where the vertices are given by

Aanri;  Aanizj

(5.119)

~ ~

Aanj = A, + Z 0;A Ay
=1 Aanniy  Aanzej

0;={0,,8:}

Yy

for j € I(1,N = 27), and B, and C, are defined in (5.114) and (5.115) respectively.
The sliding mode dynamics are represented as a convex combination of

Aapr1j = A; — B;KC for j € I(1,N) (5.120)

which are Hurwitz by design, and in turn

Aaani(t) = A(t) — BiKC (5.121)

is stable by the convexity property of the polytope &%...

Let P, be a Lyapunov matrix partitioned as follows

P, 0
P,=| = Ttniq) (5.122)
0 PaZ

where P,; € Rr+a-m)x(nte-m) ig the Lyapunov matrix in (5.111) calculated by means
of the Benton & Smith algorithm, and P,, € R™*™,

Consider the control law
u(t) = ur(t) + unz(t) (5.123)

with a linear part uy(t) of the form
ur(t) = —Ggy,(t) (5.124)

where G, € R™*@+9 In (5.124), yo(t) = [ xT(1) yT(t) ]* € R@*9 is the augmented
output vector. The nonlinear component uyz(¢) is given by

_1 Puya(t .
—plt,y, W)P- 1% if Taya(t) £ 0
uy(t) = ? ITaya ()l (5.125)

0 otherwise

where p(t,y,u) is of the form defined in (5.45).
The gain matrix G, in (5.124) is parameterized as follows

1

Gﬂ = [ Gal G’a2 :lT; (5126)
where G,; € Rmx@+te—m) and G,, € R™*™. Suppose G, is chosen such that the
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following matrix inequality is satisfied
APy +Post; <0 for j € I(1,N) (5.127)
where

Aaaiiy Aanizj
% — Allj A12j (5128)

~ ~

Aanoij — GalC Aanzzj — Gaz

Proposition 5.2 The control law (5.128) along with (5.124) and (5.125) guarantees
that the augmented sliding patch

Q0 = { (%o, € R %0, € R ¢ Rl <7} (5.129)

where n > 0 is a design scalar and

7= max {[Poa(Auanyy ~ GurC)] . (5.130)
is reached in finite time, and a sliding motion on the surface Fpp, C § occurs.

A

Proof This follows straightforwardly from similar arguments as those applied when
proving Proposition 5.1.

Q.E.D.
The LMI-based controller synthesis approach described in sub-section 5.3 can be

applied to the augmented system triple (AaAj,Ba,éa) defined in (5.119), (5.114) and
(5.115) respectively. To this end, partition A,z as follows

AaAle = [ AaAlej AaA212j ] for j € I(1, N) (5.131)
where Agazi; € ™ HP) and Aungip; € B™<E=™). Then, choose any

v o> e { [Maaz; ||} (5.132)

and solve the following LMI problem:
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min P
s.t.
___1 |
_'lﬁ Im |: La,1 Laq } Tu.
—_\T <0
< [ Lal Laz ] Tu. ) —'ﬁb I(P+‘1)
1 PoyAanatj — La,C |
X Yim azvlaA21j ay =<0 (5133)
AEAlePaz - CTLEI =Vntg-m)
1Py Podi+c,P, |
¢ T <0
cnPo+ P, —1qP,
TP, + Posty + 2P, < 0
Pa > Lntg)

for j € I(1, N) where Ly,, Ly,, P,, and P,, are the decision variables.

The block matrices of interest G, and G, can be recovered, if the optimisalion
problem (5.133) has a solution, as follows

Go, =P 'L, and G, =P 'L, (5.134)

2

5.4.3 Design and Computer Simulation Examples: SMDOFC

Example 5.3 Consider the uncertain dynamical plant

146 1 -1 0
x(t) = 1 =1 0 |x@+ |0 (u®)+E&Exu)
4 0 2 1 (5.135)
010
v = {0 . 1]x<t)

where £(¢,x,u) = 0.5(sin (27t)z2(¢) + sin (47t)z3(t)) corresponds to the matched un-
certainty, and 6(¢) = 0.2sin(t) is the mismatched uncertain parameter.

The root loci of (Auj, Alzj, C,;) for j € I(1,2), considering the extreme values of
the mismatched parameter 8(t), are shown in Figure 5.8 and Figure 5.9 respectively.
Figure 5.9 demonstrates that the reduced-order system is not static output feedback
stabilisable. Therefore, a dynamical compensator is required to solve the SMC problem.

Defining ¥y = 1 and I'y = 1, the LMI approach proposed in Section 5.4.1 generates
the following matrix

(5.136)

o | —5:8603 4.6965
T | —4.7174 3.0759
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which determines the compensator and the switching gain matrix F.

The convex region is defined through =0, = 5and 4= 0.10. The gain matrix
G designed using the LMI method developed in this paper is given by

Ga = 253915 -23.5923  6.8839 (5.137)

The nonlinear part of the control law is smoothed as

ifr.y.W"o
wjivI(o (5.138)
0 otherwise

which can be straightforwardly computed from the matched uncertainty ~(LX, «).

Computer simulations were carried out using the initial condition xq= [1 — O]
The time evolution of the output signals y{#) and the unmeasurable state variable Xi{?)
is shown in Figure 5.10. The designed SMDOFC stabilises the plant (5.135) in spite
of the mismatched uncertain parameter s {#). Figure 5.11 depicts the corresponding
control signal whilst Figure 5.12 shows the switching function.

0.8
0,6
0.4

0.2

-0.2

0.4
Negative Feedback

20.6
Positive Feedback

-0.8

Figure 5.8: Root locus for the system triple (Am,A121,Cn) fors = 9 = —0.2
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0.8
0.6 -
0.4 -

0.2

-0.2 -

-04

Negative Feedback
-0.6

Positive Feedback

-0.8

Figure 5.9: Root locus for the system triple (Auz,A122,C12) ior s = 0 = 4-0.2

10
y*® Output Signal
8 yg(t) Output Signal
X (t) Unmeasurable State

0 5 10 15 20
time

Figure 5.10: Response of the uncertain plant using the SMDOF controller
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time

Figure 5.11: Control signal u{?)

Figure 5.12: Time evolution of the switching function a{z)
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5.5 Summary

A new sliding mode static output feedback controller (SMSOFC) based on LMIs for
systems with matched and mismatched uncertainties has been proposed in this chapter.
The existence problem and the reaching problem have been formulated using a poly-
topic description. Once the existence problem has been formulated as a static output
feedback (SOF) problem using a polytopic description, the switching gain matrix can
be designed using a numerical algorithm. In this thesis, the non-iterative algorithm
proposed in (Benton & Smith, 1999) has been adapted to tackle the sliding surface
design. The control law is made up of linear and nonlinear (switched) components.
The linear gains of the control law are numerically synthesised after formulating the
reaching problem from a polytopic perspective as in the existence problem. The de-
sign methodology can be implemented in a straightforward way. Computer simulations
have shown the efficacy of the newly proposed SMSOFC.

A sliding mode dynamic output feedback controller (SMDOFC) for uncertain plants
with matched and mismatched uncertainties has been also proposed in this chapter.
This control scheme represents an alternative when sliding mode static output feedback
cannot be applied. An augmented uncertain system is constructed in order to design
a compensator-based sliding surface. The existence problem is formulated as an SOF
problem. The adapted algorithm applied for synthesising a sliding surface for the
sliding mode static output feedback control scheme was re-adapted in order to deal
with an augmented polytopic model. It should be noted that other algorithms available
for polytopic models could be applied after carrying out a reformulation consistent
with the sliding surface design. As in the sliding mode static output feedback control
approach, the control law consists of two components. The linear part of the control
law is designed using LMI methods through an optimisation problem similar to that
used in the static output feedback case. The nonlinear part deals with the matched
uncertainty and is not independent of the linear component gain matrix.

The control laws in both proposed control schemes do not incur high control effort,
and do not induce chattering. The latter has been achieved by smoothing the discontin-
uous term in the nonlinear control component (see the nonlinear control parts defined
in (5.91) and (5.138)). Study designs and computer simulations have illustrated the
proposed approaches and have demonstrated their efficacy.
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“The important thing in science is not so much
to obtain new facts as to discover new ways of

thinking about them"

Sir William Lawrence Bragg (1890- 1971)

Sliding Mode Output Feedback Control:

Simultaneous Stabilisation

6.1 Introduction

In this chapter, a sliding mode controller using only measured output signals for
the simultaneous stabilisation of a finite set of uncertain systems is proposed. The
proposed controller belongs to the class of outpnt feedback controllers (static and dy-
namic). The synthesis methodology involves solving LMI problems. A noteworthy
feature of the approaches presented in this chapter is that both matched and mis-
matched uncertainties can be considered. Furthermore, these control schemes can be
also applied in the context of fault tolerant control (FTC), as discussed in Chapter 1,
where the operating conditions are regarded as the fault-free and various fault affected
plant models. Thus, a single output feedback sliding mode controller, if one exists,
simultaneously stabilises a plant when there are faults affecting the dynamics of the
system and in normal operating conditions. Here the class of faults considered affect
the state matrix, whilst faults associated with actuators (that is, faults in the input-
channel) can be interpreted as matched uncertainties.

This chapter is structured as follows: Section 6.2 describes the class of systems
considered and problems to be addressed. A sliding mode static output feedback
(SMSOF) controller design framework for the problem of simultaneous stabilisation
is proposed in Section 6.3. This comprises sliding surface and control law synthesis
for a finite set of plant models. Section 6.4 illustrates the SMSOF control strategy
applied to a lateral motion autopilot for a remotely piloted vehicle when different flight
conditions are considered. Then, as in Chapter 5, a dynamic output feedback sliding

mode control scheme is presented in Section 6.5 as an option for cases in which the

115



6.2 System Description and Statement of Problems

collection of models is not simultaneous stabilisable by a single static output feedback
sliding mode controller or the plant considered necessitates improvement of the closed-
loop response for all its conditions of operation. The design methodology consists of
synthesising a sliding surface and a control law considering a finite set of augmented
models involving further dynamics provided by a compensator. Two design examples
are presented in Section 6.6 to illustrate the proposed methodology. The first one
consists of a finite set of systems which are not static output feedback stabilisable. This
numerical example is presented in the context of robust FTC by considering fault-free
and faulty operation modes. The second example considers a six-plate gas absorber
whose operating conditions change depending on the load requirements. Finally, some
conclusions are drawn in Section 6.7.

6.2 System Description and Statement of Problems

Consider the following finite set of N LTI uncertain plant models

x(t)=Ax(l)+B (u(L) +&(L,x, u))
(6.1)
y(t)=Cx(t) , xo=x(0)

where x(t) € R" is the state vector, u(t) € R™ is the input vector, and y(¢) € R? is
the measurable output vector. The state matrices A; for ¢ € I(1, N), the input matrix
B and the output matrix C are constant matrices of appropriate dimensions. The
vector valued-functions &(¢,x, u) for ¢ € I(1, V) represent the lumped sum of matched
nonlinearities and/or uncertainties respectively.

Remark 6.1 The finite set of plant models (6.1) may represent an uncertain linear
system of the form %(t) = (A + AA)x(t) + B(u(t) +&(t,x,u), y{(t) = Cx(t) in which
extreme values of the uncertain parameters in AA are known up to some accuracy.
This allows matched and mismatched uncertainties to be considered straightforwardly.
Furthermore, in the context of fault tolerant control (FTC) where the operating condi-
tions are regarded as the fault-free and various fault affected plant models.

In this chapter the following are assumed:

A-5.1 The N models of the plant have state matrices of the same order n.

A-5.2 The order of the system (6.1) and the number of output and input
signals satisfy n > p > m.

A-5.3 The input and output matrices are both full rank, i.e. rank(B) =m
and rank(C) = p.
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A-5.4 In the nominal triples (A;, B, C), rank(CB) =m for all ¢ € I(1,N).

A-5.5 The matched uncertainty is bounded by

e {l&t =W} < kalu@ll +o(ty@) +k (6:2)

where ¢ : Ry x R — R, is a known function, whilst 0 < k; < 1 and

ks > 0 are known constant scalars.

As discussed in Chapter 2 and Chapter 5, the assumption rank(CB) = m guar-
antees a similarity transformation exists such that the system triples (Ai,B, C) for
i € I(1, N) have the output feedback canonical form (Edwards & Spurgeon, 1995):

_ Ay, Ay,
A = i 11; i 12;
A21i A22i

_[o
B=| _

where Aui S %(n—m)x(n—m)’ Al?,‘ € %(n—m)xm’ A21i € §Rmx(n—m)’ Aggi € %mxm, and

the sub-matrix By € R™*™ is non-singular and T € RP*? is an orthogonal matrix.
g

fori e I(1,N)

(6.3)
,C=[0 T]

Partition the states conformably with the structure of A; given in (6.3) so that X =
[T T )7 where %,(t) € ®™

Consider the sliding surface
For={x€R":0(t) =Ty(l) =0} (6.4)
where ¢ € R™, and the switching gain matrix is parameterised as in (Edwards &
Spurgeon, 1995):
=T Kop I, |T" (6.5)
where I'y € ®™*™ is nonsingular and Ko, € fmx@-m),

As in the previous chapter, for each of the models, the reduced-order sliding mode
dynamics are governed by

%1(t) = (A1y, — A, KorCr) %y (1) (6.6)
which corresponds to an output feedback problem. The sliding mode static output

feedback simultaneous stabilisation (SMSOFSS) control problem is stated as follows:

SMSOFSS Control Problem: Design a switching gain matrix I" of the form in (6.5)
which defines the sliding surface % in (6.4), such that the sliding dynamics (6.6) are
stable for all ¢ € I(1, N). Furthermore, synthesise a sliding mode control law which
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guarantees a finite time reaching phase from any initial point x(to) = %o ¢ For in the
state space Z.

A

As discussed previously in Sections 5.2 and 5.4, in some particular cases, the sliding
mode existence problem for systems given by (6.1) cannot be solved using static output
feedback sliding mode. In this situation, as discussed in Chapter 5, the problem can be
addressed by introducing further degrees of freedom through a dynamic compensator,
given by

).{C(t) = Exc(t) + \Illcl)_(l(t) -+ ‘I’gi{g(/)) (67)

where E € R1%¢, ¥; € RI*®—™) and Ty € ™. A sliding surface in the augmented
state space £, C R"*? can be defined as

Frops = {Xa € R 2 04(t) = Toxo(t) + LOx(t) = 0} (6.8)

where X, =[x} XT]T is the augmented state vector, and o,(t) € R™ is the aug-
mented switching function. The matrices I, € ®™*? and I' € R™*? can be viewed as

components of the augmented switching gain matrix
I'n=[T, T] (6.9)

where I', € 8™%? and I' € R™*P,
The matrix I’ is parameterised as in (6.5). In what follows the matrix T'; is decom-
posed as
r.=IK, (6.10)
where K, € R™>¢,
It can be demonstrated that the compensator-based reduced-order sliding mode
dynamics are governed by
il(t) = (Ani — A]_ZiKopcl)il(t) - A121chc(t) (611)
).(C('[I) = (‘I‘l - ‘I‘zKop)Clil(t) + (: - ‘I’ch)Xc(t) (612)
As in Chapter 5, the gain matrices K, and K, must be synthesised such that
(6.11)-(6.12) is stable, then the augmented switching gain matrix (6.9) can be calcu-

lated. The sliding mode dynamic output feedback simultaneous stabilisation (SMD-
OFSS) control problem can be stated as:
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SMDOFSS Control Problem: The SMDOF controller design problem consists of
finding &, ¥, ¥y, Ko and K, so that the

(Aui - AmiKopCl) —A;p K,

Ti =
(U, — TKor)C1 (B - T3K,)

(6.13)

are Hurwitz for ¢ € I(1,N). This defines both the compensator and the augmented
sliding hyperplane. In addition, a sliding mode control law for the collection of un-
certain dynamical models (6.1) has to be designed such that the sliding surface oy,
is reached in finite time from any initial point x,(ly) ¢ For, in the augmented state
space Z; C R™M. Once the sliding hyperplane is reached, the system trajectory is
governed by the reduced-order sliding motion (6.11)-(6.12).

A
6.3 SMSOFSS: Synthesis Framework

The design methodology proposed in this section breaks down into two phases. The
first one is concerned with synthesising the sliding surface by formulating a special static
output feedback problem for the finite set of plant models (6.1). In this section, the
LMI-based algorithm proposed in (Cao & Sun, 1998) has been adapted for finding, if
there exists, a gain matrix K. The second phase corresponds to designing a control
law using LMIs to ensure sliding is achieved.

6.3.1 Switching Surface Design

Consider a family of LTT uncertain plant models (6.1) and the corresponding finite
set of reduced-order subsystems given by the triple (A;1;, Ajg;, C;) defined in (6.3) and
(2.43) for i € I(1, N).

In this section, two results from (Cao & Sun, 1998) are reformulated in the context
of the sliding mode existence problem.

Theorem 6.1 The system triples (A1, Asa,, Cy) for i € I(1,N) are static output
feedback stabilisable if and only if there exist N Lyapunov matrices Py, € R—m)x(n-—m)
and a gain matriz Kop € R™*C-™) sych that the following Quadratic Matriz Inequal-
ities (QMlIs) are satisfied

A?lipli + PliAlli - PliAl%A’lr%Pli
+ (AL, Py, + KorC1)T (AL, Py, + KorC1) < 0 (6.14)

fori € I(1,N).
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Proof Follows from the same arguments in (Cao & Sun, 1998) adapted to the reduced-
order system (6.6).

The matrix variables in the QMIs above are Py, and K. These QMIs can be writ-
ten more conveniently by introducing additional variables X, of the same dimension
as Py, for i € I(1, N) such that

(Xli - Pli)TAl%AFlr%(Xli - Pli) =0 (6'15)

As a consequence of using the matrix inequalities (6.15) in (6.14) and the Schur Com-
plement, the following theorem is obtained.

Theorem 6.2 The system triples (Aqy,, Az, C1) for i+ € I(1,N) are static output
feedback stabilisable if and only if there exist N Lyapunov matrices Py, € RE—m)x(n-m),
N matrices X;, € RE=mx(=m) gnd q gain matric Kop € Rmx@=-m) sych that the
following QMIs are satisfied

3 (AL, P, + KorCy)T <

_ 0 6.16
(AL Py, + KorCh) —L, (6.16)

where
%i = A P+ P Ay, — Xy A AT Py, —Pr A, AT, X, + X0, A, A Xy, (6.17)
forie I(1,N).

A

Proof Follows from the same arguments in (Cao & Sun, 1998) adapted to the reduced-
order system (6.6).

Note that if X, are fixed, then the QMIs in (6.16) become LMIs with respect to
the matrix variables Py, and Kop. This represent a sufficient condition.

The iterative algorithm proposed in (Cao & Sun, 1998) has been adapted to syn-

thesise the gain matrix K, as follows:

STEP 1) Set j =1.
Select Q; = 0 and solve the following algebraic Riccati equations
(ARESs):

APy, +PLA, —PLAR AL P, +Q; =0 (6.18)

Assume X, = Py, with ¢ € I(1, N) as the solution.
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STEP 2) Solve the following optimisation problem with respect to a;, Py,; and Kop:

min oy
s.t.
] 3, — ayPy; (AirziPlij +KorC1)" <0 (6.19)
(A%, Py, + KorCr) ~In
Py, = PE—, =0 (6.20)
where

3, éA’fliPlij+P 1i,»A11i—X1,~j Alz,»A?ziPlij“P 1i; AlZiArfziniﬂ'XlijAlZiA'{% Xy,; (6.21)

for ¢ € I(1,N).

STEP 3) If «; < 0 then the static output feedback gain Ko simultaneously
stabilises (6.6). In which case STOP the algorithm.

STEP 4) Solve the following optimisation problem with respect to Py,; and Kop:

N
min Z trace(Py;;)
=1

s.t.
LMI given in (6.19)

Py, =Pf ~0

N
STEP 5) If » [ Xy, — Py,

< ¢ then go to step 6, else set X;,, =Py, and

i=1
j =3+ 1 then go to step 2. Notice that § represents a tolerance level
defined by the designer.

STEP 6) The finite set of reduced-order systems (6.6) may not be static output
feedback simultaneously stabilisable. Therefore, STOP.

6.3.2 Control Law Design

If there exists a switching gain matrix I" given in (6.5) so that the sliding dynamics
defined in (6.6) are stable for ¢ € I(1, N), then there exists a similarity transformation
% — T% = % which induces the following structure in the triple (Ai, B, (_J) from (6.3):
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R Apy Ay
A= 114 ) 124 (6.22)
Agr; Ay
. T
B=0 1] (6.23)
ré:[o Im] where C:[o 'T‘] (6.24)
with T € RF*) such that det{T} # 0.
The sliding mode dynamics are given by
Ay, = Ay, — A KopCy for i€ (1,N) (6.25)
which are Hurwitz by design.
Let P; for 7 € (1, N) be a finite set of Lyapunov block matrices satisfying
P, O
p=| " for i€ I(1,N) (6.26)
0 P

where the Py, € RO=™)*®=m) are obtained from Section 6.3.1 for i € I(1, N), whilst
the matrix Py € ®™*™ > I, will be calculated when designing the control law. From
the partition of P; in (6.26), and the input matrix B defined in (6.23), it follows that
the structural property

PB = (PC)'P, for ieI(1,N) (6.27)
is satisfied.
The control law to be considered is made up of two components
u(t) = uL(t) + uyr(t) (6.28)
where uz(t) is the linear output feedback component and uyz(t) is the nonlinear part.
The linear component uy,(t) has the form
ug(t) = —Gy(t) (6.29)

where G € R‘™*? is parameterised, conformably with the output matrix C defined in
(6.24) and the partition of P; given in (6.26), as

G=[G a|T" (6.30)

where Gy € RmxP-m) and G, € Rx™,
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The nonlinear component is given by

-1 Ty(t . .
—p(t,y, 0)P; ”%8“ if Ty(t) #0

uy(t) = (6.31)
0 otherwise
where the scalar function p(¢,y,u) is such that
Poll(k t t, k
oty u) > IRl luc @l + o(y) + k) + 7 (6.32)

(1 = [[Pz]lky)
with n € R a design parameter.

The following closed-loop matrix stems from applying (6.29) with (6.30) to the
family of plants in the new coordinate system given in (6.22)-(6.24):

s Ay, Ay,
A=A, -BGE = " e (6.33)
Agy; ~ GiCy Ag; — Gy

Suppose, the following matrix inequalities hold
ATP; +P;A; <0 for i€ I(1,N) (6.34)

where P; has been defined in (6.26), then the following can be proved:

Proposition 6.1 The control law (6.28)-(6.32) guarantees that the sliding patch
0= {(&1 € RO %5 € M) ¢ ||k < m-l} (6.35)
where n1 > 0 is a design scalar and

N = max {HPz(Am —GiCy) ||} (6.36)

ie(1,N)

is reached in finite time and a sliding motion takes place on the sliding surface For
contained in the domain Q.

Proof Consider the collection of Lyapunov functions

Vi(t) i= T (1)P:x(t) forie I(1,N) (6.37)
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Their time derivatives along the closed-loop system’s trajectories are given by
Vi(t) = ((As = BGC)R() + B(uns(t) + &()) "P(2)
+ X (P (A — BGO)%(t) + B (unz(t) + &())) (6.38)
=5T(t)((A; — BGC) P, + Pi(A; - BGO))x()

R ~ _ I‘y(t) . A A
- 2%TP,Bp()P5*! + 25T (O P;BE (- (6.39)
P oy + 2 OFB0)
Define
M; £ (A, - BGC)"P; + P;(A; - BGC) for i€ I(1,N) (6.40)

which are negative definite by assumption. Hence, the expression (6.39) can be written
as

(1) = %T VI %(1) — 25T (OP. Bo( P! I‘y(t) %T RES.

By using the structural property (6.27), it follows

Ti(t) =X (VL) — 200 IPER(E)]| +2(TCK(0) "Poéi () (6.42)
<KL (OVER(D) — 20() IDCK(0) | + 2 DO () [Pl &) (6.43)
< KT (NLK() - 2 TEXW) | (0() - [Pall (ke [u@ll + () + k) (6.44)

From (6.2) and (6.32), the following has already been proved in Section 5.3.2:
p(t,y, ) > |[Ps|| (Baflu(e) || + o(t,y) + k) + 1 (6.45)
Thus, (6.44) can be written as
Vi(t) < XT(¢)Mi%k(2) — 2|TCxk|lnp <0 VX(t) #0 and i€ I(1,N) (6.46)

Therefore, the finite set of V uncertain systems is quadratically stable.

Partition the state vector %(¢) conformably with the structure of (6.26), so that
x(t) = [ ®T(t) xI(¢) ]T where %; € R~ and %, € R™. As a consequence of (6.24),
it follows that

Ty(t) = TCR(L) = %a(2) (6.47)
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Define a finite set of Lyapunov functions
Vi () := %E (t)Pako(t) fori e I(1,N)
Computation of their time derivatives along the trajectories results in
Vo (t) =287 (1)Ps (AZL; — G1Cy) &1 (L) + %5 (2) ((Azgi — G2)TP2

+ Py (Aan, — Ga) ) Ra(t) + 25 (B)Po (unn (t) + ()

Let

H,, £ (Azzi - Gz)TPz + P, (Azz- - Gy)
which is negative definite as a consequence of (6.34). Therefore
Vi (t) =%3 (6)FL, %o (1) + 287 (£)Pa(Agy, — G1C1) % (2)
+ 2%5 ()P (unp(t) + &())
From (6.31)
Vou(t) <55 () HoiRo (1) + 2052 () [ 1P2 (A, — G1Ci) [[[1%: (1)l

= 2/[%a(8)| (p(-) = P2l

Since

() = [Pl (ksllu()] + () + k2) + 7

then

Vo (8) < 35 () HoRa(t) + 2] (O 1P2 (Aan, — GrC) [I%a(2) | — 2n[3a(2) ]

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

<25 ()Ha %o (2) + 2077 [ (8) | P2 (A, — GaCr) | — 2nll%2(1)]| <0 (6.54)

which means that a sliding motion occurs inside the sliding patch Q2 defined in (6.35)

with (6.36). Since the system is quadratically stable, the system trajectories enter the

domain (2 in finite time, and hence sliding occurs in finite time.

Q.E.D.

Remark 6.2 The Lyapunov sub-matrices P1; for i € I(1,N) in (6.26) are computed
when solving the sliding mode existence problem using the approach presented in Section

6.3.1.
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In what follows, the control law design problem is addressed using similar arguments
to those presented in Section 5.3.2. To this end, consider the expression in (6.34);

li + P liAiij P iiAi2j + AJijP2 —
Ai Pi+ Pidi = (6.55)
* P 2A22i —L2+ AM2iP2 —Lj

Since (6.55) depends affinely on the matrix variables Pi., P2, Li and L2; an opti-
misation problem based on LMIs for synthesising a norm bounded gain matrix G to
ensure (6.34) holds can be formulated considering an LMI region. Here such a convex
subset of the complex left-half plane C is characterised by the intersection of the disk
D{cn,rd) centered at {—Cn,0) with radius r*, and a half-plane H{A) delimited by a
vertical line at {~#,0) as shown in Figure 6.1.

Im{C}

Re{C}

Figure 6.1; LMI Region V{h,Cn,rd)

The formulation of an optimisation problem for designing G requires the partition
A2U = A211i Az2i2i fori € (1,A) (6.56)

where A21U € and A2i2i G

Choose any

(6.57)
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and solve the following LMI problem:

min P

(G

AgP, - OfLT

(L LZ]T_l}{O

-l
} <

PyAsy, — LGy
~VX(n-m) (6.58)
Pid; + cuP; }

<0

—raP;
CnPi + .A;‘[‘]_)z _TdPi
ATP; + Py A; + 2hP; < 0

P1i>—0

Py -1,

for 4 € (1,N) in terms of the matrix variables L, Lg, Py, and Ps. If there exists a
feasible solution to the optimisation problem formulated above, then the gain matrix
G can be calculated using

G, =Py,

and Gy =P;'L, (6.59)

and the proposed controller guarantees a sliding mode takes place in finite time inside
the sliding patch .

6.4 Design and Computer Simulation Example

Consider the lateral motion autopilot for a remotely piloted vehicle presented in
(White, 1990). The nonlinear aircraft system has been linearised around two operating
conditions. In this design example, the actuators’ dynamics have been neglected. The

state and input matrices corresponding to each flight condition are:

[ o 1 0 0 0 0
0 —7.867 —0.00939  3.58 2440 0
Ay = B, = (6.60)
980 0  —0255 —30.35 0 —469
0 0 03366 —0.304 0 —8.02
[ 0.0079 1 0 —0.0025 [0 0
0 —776 —0122 394 2376 0
A= B, = (6.61)
9.80 —0.0018 —0.267 —29.08 0 —450
0 —0215 0332 —0288 0 —7.812
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0100
Co=Ci=[0010 (6.62)
0001

The state variables are the roll angle ¢,.! [rad | , the roll rate p,, [ rad/sec ], the sideslip
velocity v, [ m/sec | and the yaw rate 7, [ rad/sec |. The control signals are the aileron
angle (.(¢) [rad] and the rudder angle 7,.(t) [ rad ]. It has been assumed, without any
loss of generality, the following matched vector-valued function

sin(t)

&lt,x,u) =& (¢, x,u) =0.5 z4(t) (6.63)
sin(2t)

impacts on the system.

In this example, there are two different input matrices Bo and B;. The nominal
input matrix has been considered as a common design input distribution matrix in the
approach presented in this work. This argument will be justified in the sequel. Let
B, with i € 1(0,1), k € (1,2), and ¢ 5 k be the k-th column vector of the i-th input
distribution matrix. Let 0;;, be the angle between the k-th column vector of the i-th
and j-th input matrices. It can be verified that 0g;; = 0°, and 6o = 0.3751°. Since
this angle is sufficiently small, it can be assumed Bj, = Bgyd. Therefore, it can be
assumed By &~ Byd where § € R is a scaling factor satisfying 0 < |§| < 1. Notice that

0 0 0 0
—2440 0 —23.76 0
5= (6.64)
0 —469 0 —45510
0 -802 0 —7.7824

when § = 0.9738. The matrix on the R.H.S. of (6.64) is the same as By in (6.61) to 2
dps.

The gain matrix Kor has been designed using the approach described in Section
6.3. The corresponding iterative LMI algorithm generates

—0.0763 —0.0410 0
- { ] 6

0.0384 0 —0.1247

The convex LMI region associated with the control law has been defined using ¢, = 0,

r¢ =20 and h = 0.10. The following gain matrix has been obtained

G= (6.66)

—0.5171 —-0.0223 —0.0565
0.0297 —0.0432 —-0.6491

1Subscript Ic stands for ‘lateral control’.

128




6.4 Design and Computer Simulation Example

This, in turn, results in A(A, —GC) for i G 7(1,2) as:

{- 6.1097,-1.7741, -3.1461 + 2.0421;} { - 5.8569, -1.7416, -3.1546 + 2.0466;}

The nonlinear component in (6.28) has been designed as

0.1538 0.0062 ry (O
0.0062 0.1765 lry(OII+£

(6.67)

where s = 1 x 10 » smooths the discontinuous term in order to obtain a chatter free

control signal.

Computer simulations were performed using the initial condition

x(0)= [04 04 08 04 (6.68)

The response of each model in terms of the output signals y{t) = [p,Nt) v,

is shown in Figure 6.2. This figure demonstrates that the designed sliding mode output

feedback controller simultaneously stabilises the plant at the considered operating con-

ditions. Figure 6.3 depicts the control signals which are within the permissible physical

range. The time evolution of the switching functions is shown in Figure 6.4.

Output Signals of the System triple (A*, B*, C").

Unmeasurable State Variable of the System
triple B, Cg).

Output Signals of the System triple (A*®, BA, C*).

Unmeasurable State Variable of the System
triple (A*, BA, C").

4 6 10
time [sec]

Figure 6.2: Time evolution ofthe output signals using the designed sliding mode output

feedback controller.
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0.4
Control Signals applied
0.35
Control Signals applied
0.3
0.25
© 02
.\?)
0.15
1
S ol
0.05
0
-0.05
0 2 4 6 8 10
time [sec]
Figure 6.3: Control signals C{z) and r(t).
0.01
g -0.01
0) - 0.02
C
o
M -0.03
0.04 ----—-—-—-- Switching Functions of the System (A", CH).
----------- Switching Functions of the System (A”, B*, C*).
-0.05
0 4 6 10
time [sec]

Figure 6.4: Switching functions vs time.
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6.5 SMDOFSS: Synthesis Framework

6.5.1 Compensator-based Sliding Hyperplane Design

If it is not possible to stabilise the set of plants using static output feedback, a
compensator must be introduced. As in Section 5.4, the problem of designing a dy-
namical compensator and a sliding surface is formulated in static output feedback form

as follows:
where
T
2(t) = xF(@) 1) | (6.70)
&::{A“io} Bp:{‘&m 0 } c:=[Cl 0} (6.71)
0 0 T, -I, 0 I,
[KOF K}
K= (6.72)
v, E

Consider a finite set of reduced-order subsystems given by the triples (A;, 5;,C)
defined in (6.71) for < € I(1,N). In the sequel, Theorems 6.1 and 6.2, as well as the
algorithm presented in Section 6.3, are re-formulated in terms of the system matrices
(6.70)-(6.72) in order to design a compensator-based sliding hyperplane.

Theorem 6.3 The system triples (A;, B;,C) for i € I(1,N) are static output feedback
stabilisable if and only if there exist N Lyapunov matrices Pgy, € Rrta-mx(ntq—m)
and a gain matriz IC € RIm+rOx@ra=m) gyeh that the following QMls

-A@"I‘Pali + Pali-Ai - PaIiBiBiTPali + (BiTPali + ]CC)T(B;'I‘PELL* + ’CC> < 0 (673)

forie I(1,N) hold.
A

Proof This follows from the arguments in (Cao & Sun, 1998) adapted to the reduced-
order system (6.11)-(6.12).

Theorem 6.4 The system triples (A;, B;,C) fori € I(1, N) are static output feedback
stabilisable if and only if there exist N Lyapunov matrices Py, € RvHa-mix(nte-m)
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N matrices Xq;, € ROTemIxta=m) gnd ¢ gain matriz K € REHOXEta—m) gych that
the following LMI

% (BIP,y, + KC)T

<0 6.74
(B Pay, + KC) ~Tintg) 67

where
5 = AfPoy, + Par, A — Xa, BB Pot, — Par, BB Xy, + Xo1, BiBF Xa,  (6.75)

holds for i€ I(1,N).
A

Proof This follows from the arguments in (Cao & Sun, 1998) adapted to the reduced-
order system (6.11)-(6.12).

In order to synthesise the gain matrix K, the iterative algorithm proposed in (Cao
& Sun, 1998) adapted in Section 6.3.1, is recast in terms of the system matrices (6.71)
as follows:

STEP 1) Set j = 1.
Select Qg = 0 and solve the following algebraic Riccati equation

(ARE):
ATPo1; + Porhi — Pori BB Py + Qi =0 (6.76)

Define Xgy,; = Pq1; with i € I(1, N) as the solution.

STEP 2) Solve the following optimisation problem with respect to a; and Pgy,;:

min «;
s.t.
3 — P, BfP,,, + KC)T
i~ 4Py (BPu, KT (6.77)
(B;IPalsj + ,CC) —I(m+(I)
Po,, =Ph, >0 (6.78)
where
3, IZA?Pal,-J- +Pay; A — Xal,-jBiBEPalij
= Pa1; BB Xavy; + X1, BB Xar,, (6.79)

for ieI(1,N).
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STEP 3) If a; < 0 then the SOF gain £ simultaneously stabilises (6.11)-(6.12).
In such a case, STOP the algorithm and set Py, = Py,

STEP 4) Solve the following optimisation problem:
N
min Z trace(Pay,;)

i=1

s.t.

LMI given in (6.77)

P, = P7,

ali;

=0

N
STEP 5) If Z“Xalu —Paill <9, then go to step 6, else set Xa1,; = Payy
i=1
and j = j + 1 then go to step 2.

STEP 6) The finite set of reduced-order systems (6.11)-(6.12) may not be static
output feedback simultaneously stabilisable. Hence, STOP.

6.5.2 Control Law Design

Consider the following system of augmented matrices:

E WwC 0 I, 0
Agi = ) By=| _ Co= _ (6.80)
0 A B 0o C

The existence of a switching gain matrix I, = [Ty T'] such that the sliding dy-
namics (6.11)-(6.12) are stable, is of crucial importance for establishing a nonsingular
change of coordinates %, —» TeX, = X, which brings about the following form for the
triples (Aai, Ba,Ca):

Aai _ f}alli -/EaIZi (681)
Awo1; Aag2i
~ T
B, = [ 01, ] O (6.82)
rC, = [ 01, ] where C, = [ 0 T, ] (6.83)

with T, € REOxE+) guch that det{T,} # 0. It is easy to see that the structure of
T.C, follows since by construction I'yCoB, = TCB = L,,.

Let P,, € RO+Ox(+0) for 4 € (1, N) be a finite set of Lyapunov sub-matrices of
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the form:

Pa, O )
P, = for ieI(1,N) (6.84)
0 P,

where the Pg;, € Rvra—mx(+a-m) are obtained from the adapted algorithm formu-
lated in Section 6.5.1 for ¢ € I(1, N).

The control law to be considered is of the form
u(t) =ur(t) + unc(t) (6.85)
The linear output feedback component is given by
ur(l) = —Gaya(l) (6.86)

where G, € R™*(®+4) js 50 that

1

Go=[Gu Gu|T. (6.87)
with Ggy € RM*@+H=m) and G,, € RM*™,
The nonlinear component is given by
21 Toya(t)
—p(t,y, q)P7 i e s if T,y,(t) #0
UNL(t) = 2 ”Faya(t)” (6.88)
0 otherwise
where
Py (% t t, k:
ot yom) > P2 (ke lur ()| + o(t, ) + ka) + 1 (6.89)

(1= [IP2[l1)
with 1 € R;. In addition, the augmented output vector y,(t) € R¥+9 is given by
vol®) = [xF®) ¥7() ]" (6.90)
Suppose the following inequality holds
Py, + Py ly, <0 for i€lI(1,N) (6.91)

where P,, is given in (6.84) and

~

Aa i Aa %
A gy = H = (6.92)

~

Awzi; = Gay,C Agazi — G,
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Proposition 6.2 The conirol law (6.85) along with (6.86)-(6.88) guarantees that the
sliding patch:

O = { (Rar € ROP %0 € R™) ¢ [Rarl] <117} (6.98)

where n > 0 is a design scalar and

7= max {[[Pa; (Auns ~ Ga€)l1} (6.94)

is reached in finite time and a sliding motion takes place on the sliding surface Fpr, C
Q, defined in (6.8).

A

Proof This follows straightforwardly by using similar arguments to those applied when
proving Proposition 6.1.

In the remainder of this section, an optimisation problem is formulated using LMI
methods, following a similar methodology as used in previous sections. Note that the
matrix 27, in (6.92) can be written in compact form as

Ay, 2 Agi — BaGoCo (6.95)
In addition, by defining matrix variables
Ly £2P,G, and L, 2P,G, (6.96)
it follows that

~’Zlgllil?ali + PaliAalli Pali/iami + A3211»PEL2 — CTLE1

%?Pﬂi-l_Pai Ay = . R
* PazAEQ% - Laz + AgﬂiPaz - L:fz

(6.97)
for i € I(1, N).

Using (6.97) the Lyapunov inequalities (6.91) are affine in the matrix variables Py,
Py, Lg, and L. An LMI problem can be formulated in order to design a norm
bounded gain matrix G, such that

Gall <% (6.98)

and
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||Pa2‘/i0121i - Lalc” <7 (6'99)

Inequality (6.98) has to be formulated in terms of the matrix variables Ly, and Lg,. It
can be straightforwardly proved that

—1
[Gall < H[ Lo, L, |T, ‘ (6.100)
Consequently, by ensuring by design
H[ Lu Lo JT. | < (6.101)

then inequality (6.98) is guaranteed to hold.

The LMI region to be considered is a convex region of the left half complex plane
characterised by the intersection of the disk D(cp,r4) centered at (—cy,,0) with radius
r4, and a half-plane H(h) delimited by a vertical line at (—h, 0) as shown in Figure 6.1.

The formulation of an LMI problem for synthesising the gain matrix G, requires
the partition
Ao, = [ Aty Ausa, } fori € (1, N) (6.102)

where gy, € RX®a-p) and Ay, € R™*@-™), To this end, choose any
A1, 6.1
7> max {[l Ao | (6.103)

and solve the following LMI problem:

min P
s.t.
—1
YT, [ Lo LT
—_\T <0
( [ La1 Laz ] Ta ) ﬁ"pI(IH‘Q)
~ A
A _'VIm Pa2Aa21z’ - Lalc <0
AEZliPaz - CTLE; —’Y:[(WA‘(I*"”) (6104)
—"rdPai Pa;%i + cnPa.i
<0
enPa, + AP, 74Py,
DEPo, + Py, + 2hP,, <0
Pali =0
P, - 1In
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for i € (1, N) in terms of the matrix variables Ly, , Ly, Pa1, and Pg,.

If a feasible solution exists to the LMI problem formulated above then the gain
matrix G, can be built from

Go, =P'L,, and G, =P 'L, (6.105)
and the proposed control law (6.85) with (6.86)-(6.88) guarantees that a sliding mode
takes place in finite time inside the sliding patch. Furthermore, the state trajectories

will reach the sliding patch in finite time and will remain within it.

6.6 Design and Computer Simulation Examples

In this section two examples illustrate the sliding mode dynamic output feedback
controller design approach proposed in the preceding two sections. The first example
corresponds to a system which is not static output feedback stabilisable. In this case, a

compensator-based sliding mode controller using only output information is employed.

In order to assess the proposed synthesis methodology in a plant with physical
interpretation, a process engineering application corresponding to a gas absorber is
considered as the second example. It is worth mentioning that another feature of the
compensator-based control scheme is to improve the system’s performance by intro-
ducing further dynamics.

Example 6.1 Consider the following system whose operation modes are determined
by the values of the parameter 6; for 1 € I(1,2):

11 -1 0 010

A,=11-6 0 B=|0 C:[O 0 1] (6.106)
4 0 2 1

£()1 = £()2 = 0.50( sin(27t)za(t) + sin(dnt)zs(t)) (6.107)

Here two operating conditions are considered. It is assumed that 6; = 0.8 corresponds
to a fault-free mode, whilst 6, = 1.2 represents a faulty operating condition.

It can be shown using root locus arguments that the sliding mode reduced-order
dynamics corresponding to the set of models above are not static output feedback
stabilisable. However, the sliding mode dynamic output feedback controller proposed
in Section 6.5 can be applied.
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Define ¥5 = 1 and I's = 1, then the following gain matrix which defines the
compensator and the switching gain matrix I is given by

| —8.6721 1.8676

K= (6.108)
0.8460 —1.2326

It can be shown this choice gives eigenvalues of the sliding mode reduced-order system
at '
{ —1.0682 % 1.8653; , —0.7638}

and

{ —1.4585 + 1.9615; , —0.3831}

respectively when 6; = 0.8 and 6, = 1.2.

An LMI region defined by ¢, = 0, r4 = 10 and h = 0.1 has been used when designing
the gain matrix G, and the Lyapunov matrix P,, via the LMI approach proposed in
this chapter. The following gain matrix has been synthesised

Ga=[3.0566 —11.4253 5.0032] (6.109)

The eigenvalues )\(Au - BuGaéa) for ¢ € I(1,2) are { — 0.6930 + 1.73885, —0.4192
—2.2306} and { —0.7920 = 1.91535 , —0.2256, —2.6261}. In the simulations, the non-
linear part of the control law has been smoothed in order to obtain a chatter free
control signal as follows: ’

oty WP el iy ) 0
ua(t) = Py, WP e f Fa¥a(t) # (6110)

0 otherwise

which can be straightforwardly designed considering the matched uncertainty functions.
The value of the constant ¢ has been chosen as 10 x 1076.

The initial condition xq = [ -1 10 ]T has been used for the computer sim-
ulations. In the sequel, the figures have been plotted considering both operation
modes for §; (black colour) and 8, (red colour). Figure 6.5 depicts the output sig-
nals y(¢) = [ Y Y2 ]T and the unmeasurable state z;(t) for both operation modes.
The system response demonstrates that the compensator-based sliding mode controller
stabilises the set of models (6.106)-(6.107) using only output information. The corre-
sponding control signals are shown in Figure 6.6 (which do not exhibit high frequency
switching). The time evolution of the switching functions o(¢) are presented in Fig-
ure 6.7. They are indistinguishable in both operating conditions of the system.
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-2
Vi (t) = Xg (t) Output Signal
en
Yg (t) = Xg (t) Output Signal
-5 (t) Unmeasurable State Variable
-6

time

Figure 6.5: Time evolution of the output signals yi and  and the unmeasurable state
Xi for both operation modes of the plant

e N
i

time

Figure 6.6: Control signal u{¢) for both operation modes of the plant
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0.8
-8 :1.2

10 15
time

Figure 6.7: Switching function a{¢) for both operation modes of the plant

Example 6.2 A gas absorber is a process plant which consists of n plates vertically
disposed inside an absorption tower. The dynamical behaviour of the plant depends on
the composition of the liquid and the vapor streams. This can be shown through the
application of the principle of mass conservation by performing a mass balance study
on the m-th plate of the gas absorber as in (Luus, 2000):

Hgajmi{t) + /1,. Zm(() = Z,,.(zm -1(() “ + Ggafym+\{t) - ymi{t)) (6.111)

where Xm{t) and ym{t) for m G 7(1, n) represent the composition of liquid and vapor
leaving the m-th plate [kg solute/kg inert], and 77,. are the inert liquid and vapor
hold-ups on each plate [kg], is the flow rate of inert liquid absorbent [kg/min], G,.
is the flow rate of inert gas stream [kg/min], and time ¢ [min]. As in (Luus, 2000), it
is assumed that both Ag" and are constant. The flow rates are expressed in terms
of the inerts to ensure that and Gg, remain constant from stage to stage, although
the physical flow rates change because of the absorption process. Also, the following

linear relation between the compositions in the liquid and vapor is assumed:
ymit) = a,.Zm(() for m€ /(1,n) (6.112)
Substituting equation (6.112) into (6.111) yields
7m(7) — ~Xm-I(t) - for m G/(1,n) (6.113)

~Subscript ga stands for ‘gas absorber’.
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Figure 6.8 shows a schematic diagram of an n plate gas absorber.

ml

m+1

n~l

Figure 6.8: Schematic Diagram of an n plates Gas absorber [adapted from (Luus,
2000)]

The state-space description of a sixth-order gas absorber system has been widely
used, e.g. (Bashein, 1971) (Howitt & Luus, 1993) and (Luus, 2000). This mathematical
model follows from the differential equation (6.113) for m G 7(1,6) and is given by

'd::’ el 0 0 0 0
a <ie” el 0 0 0
0 a d+1 1 0 0
— e € e
A = J (6.114)
0 0 d+1 1 0
e c €
0 0 0 d d+1 1
e € e
0 0 0 0 a _dEi
e e
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a T
00000
B= (6.115)
000001
where d = L, /Gyee and e = (H .00 + Ngo) [ Gpaiga-
The following output distribution matrix has been considered
100000
C=|1000100 (6.116)
0000O0O01

The nominal parameter values taken from (Luus, 2000) are L,, = 40.8 [kg/min],
G,. = 66.7 [kg/min], h,, = 75 [kg], H,. = 1 [kg] and «,, = 0.72. As argued in (Howitt
& Luus, 1993), the flow rates L,, and G,, may change during the operation of the
plant depending on the load requirements. Five operating conditions are considered,
and the corresponding flow rate values are given in Table 6.1.

k| Ly, [kg/min] | G,, [kg/min]
1 40.8 66.7
2 35.8 61.7
3 35.8 71.7
4 45.8 1.7
5 45.8 61.7

Table 6.1: Liquid and gas flow rates for a set of operating conditions (Howitt & Luus,
1993)

The gas absorber plant model can be written straightforwardly in the form (6.1)
considering the nominal parameters given above and embedding the changes in the
input matrix (6.115) in the matched uncertainty terms &(¢,x,u) for i € I(1,5).

After applying the methodology presented in Section 6.5.1 and choosing ¥, =
1.0 1.0 |, the following matrix is obtained in only one iteration of the iterative LMI
algorithm described in Section 6.5.1.

1.9634  1.8152
K=| —-17184 1.8842 (6.117)
0.3087 —-2.0785

The eigenvalues of the sliding mode reduced-order systems are shown in Figure 6.9.
An LMI region defined by ¢, = 0, rq = 10 and h = 0.2 has been used and the following
gain matrix has been synthesised as

. . 6211 .
G, = 0.9377  1.0612 0.621 1.7966 (6.118)
—0.2771 —0.6510 2.2488 —0.2482
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The eigenvalues A(Aoi ~ BaGaCa) E C_ for %G 7(1,5) are depicted in Figure 6.10. As
in example 2, the discontinuous component of the control law was straightforwardly
designed considering the matched uncertainties C,(-) for i G 7(1,5), and smoothed as
in (6.110). In this example, the scalar eis 10 x 10“~

The initial condition, considered in the computer simulations, is

X0 -0.0306 -0.0568 -0.0788 -0.0977 -0.1138 -0.1273 (6.119)

as used in (Howitt & Luus, 1993).

The dynamic response of the gas absorber system, for the set of operating condi-
tions, using the SMDOF controller proposed in this chapter is shown in Figure 6.11.
The control signals, as expected without high frequency oscillations, are depicted in
Figure 6.12. The switching functions are shown in Figure 6.13. It can be seen that the
sliding motion occurs after approximately 2 minutes for all operating conditions. The
overshoot in the time evolution of the switching functions reveals the variable structure

nature arising from the additional dynamics of the output feedback controller.

0.8
X  Model 1
0.6 X  Model 2
X  Model 3
04 X Model 4
X Model 5
f< 0.2
g 0-X XXXXX >40X
5)
-0.4
- 0.6

-4 -3 -1
Real Axis

Figure 6.9: Eigenvalues of the sliding mode reduced-order system at each operating
condition of the gas absorber plant.
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0.8
X Modal 1
0.6 X Modal 2
X Modal 3
0.4 X Modal 4
X Modal 5 #
5 0.2
S .
1o 0 X X X XXX >x m
t
E -0.2
-0.4 x X x
- 0.6
. 0.8
-3 -2.5 -2 -1.5 -1 -0.5

Raal Axis

Figure 6.10: Eigenvalues of {dai —BaGaCa) for the set of operating conditions of the
gas absorber plant.

Z g -005

4 6
tima [min]

Figure 6.11: Time evolution of the output signals (continuous lines), and the un-
measured state variables (dotted lines) for the set of operating conditions of the gas

absorber plant
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Figure 6.12: Control signals ui{t) and u”it) for the set of operating conditions of the
gas absorber plant
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Figure 6.13: Switching functions <7i(#) and a: (?) for the set of operating conditions of
the gas absorber plant
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6.7 Summary

An LMI-based design framework for sliding mode static output feedback control
systems which simultaneously stabilises a finite set of models has been proposed. This
approach can be applied to a set of uncertain linear systems. In both cases matched and
mismatched uncertainties can be dealt with. This is a noteworthy feature since most
of the existing sliding mode output feedback control approaches only tackle matched
uncertainties and a ‘one plant’ model. The existence problem has been formulated as
a static output feedback problem for the set of models under study. The LMIs involved
in the solution of the existence problems have as many Lyapunov matrices as models
considered. This reduces the conservatism compared to the case (in Chapter 5 for
example) when only one Lyapunov matrix is used for all models. The sliding mode
controller is static in nature and the control law consists of a linear and a nonlinear
component. The design of the linear component is carried out by solving an LMI-
based optimisation problem considering the set of models. The proposed sliding mode
static output feedback controller has demonstrated, through computer simulations, its
efficacy in simultaneously stabilising a lateral motion autopilot for a remotely piloted

vehicle when different flight conditions were considered.

A compensator-based sliding mode controller using only output information, which
simultaneously stabilises a finite set of models, has also been proposed. This synthesis
methodology can be applied when the collection of sliding mode reduced-order systems
is not static output feedback stabilisable. As in the sliding mode static output feedback
scheme proposed in this chapter, an interpretation of the different state matrices is that
they constitute mismatched uncertainty. An example involving a set of plant models
which are not static output feedback stabilisable has been stabilised by means of the
proposed sliding mode dynamic output feedback controller. A six-order gas absorber
operating under different conditions has been considered as a collection of models and
a single sliding mode dynamic output feedback controller is shown to stabilise the plant
in all the operating conditions considered. These two examples have demonstrated the
efficacy of the approach.
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"Measure what is measurable, and make

measurable what is not so. "

Galileo Galilei (1564 - 1642)

Sliding Mode Observer

7.1 Introduction

In many practical engineering applications the state vector is not entirely available
for use in the control law. There are two ways of overcoming this problem: control
schemes using only output information, and state reconstruction. Control schemes
considering only measurable output signals have been considered in Chapters 5 and 6.
Synthesis frameworks involving LMIs and polytopic models for plants with matched
and mismatched uncertainties have been proposed in Chapter 5 (static and dynamic
output feedback), whilst the multi-model paradigm along with LMI methods have been
considered in Chapter 6 (static and dynamic output feedback). In this chapter, the
problem of state estimation using a discontinuous observer with sliding modes, for un-
certain systems, is studied. The robust state reconstruction problem for plants with
matched and mismatched uncertainties is addressed here. A sliding mode observer of
the same structure as proposed in (Edwards & Spurgeon, 1994) is considered. The
proposed design framework is based on LMI methods and employs a polytopic descrip-
tion of the mismatched uncertainty for designing the gain matrices of the sliding mode
observer. Thus, a wide study of partial state information control engineering problems

for the class of uncertain systems referred to above is found throughout this thesis.

Stability of the estimation error system is studied for the nominal error system
and the uncertain error system. The concept of uniform ultimate bounded stabil-
ity (Ryan & Corless, 1984), also known as practical stability (Edwards & Spurgeon,
1998a), corresponds to a relaxation of the notion of asymptotic stability in the sense
of Lyapunov. Practical stability is useful when considering uncertain dynamical sys-
tems, since asymptotic stability might not be achievable in some cases. This concept
is exploited in the stability results for the uncertain estimation error system presented
formally in this chapter.
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This chapter is structured as follows: Section 7.2 describes the class of systems to
be considered and states the problem to be addressed. In this section, the canonical
form proposed in (Edwards & Spurgeon, 1994) is recast for the case of plants with
matched and mismatched uncertainties. Section 7.3 goes into detail studying the sta-
bility of the nominal and uncertain estimation error system as well as the stability of
the reduced-order error system. A design methodology based on LMI methods consid-
ering a polytopic description of the reduced-order estimation error system is presented
in Section 7.4. A design example illustrates the proposed synthesis framework and
demonstrates its applicability in Section 7.5. Finally, some concluding remarks are
given in Section 7.6.

7.2 System Description and Statement of Problem

Consider an uncertain system described in state-space form by

%(t) = (A+ AA)x(t) + B(u(t) + £(t, %, u)) (7.1)

y(t) = Cx(t) (7.2)

where x € R" is the state vector and xy = x(0) the initial condition, u € R™ is the
input vector, and y € R? is the output vector. The uncertain function &(¢,%,u) :
L x ™ x ™ — N™ represents the lumped sum of matched nonlinearities and/or
uncertainties. The uncertain system matrix AA(t) depends upon the time-varying
uncertain vector 8(¢) : Ry — ©, where © C R is the parameter space.

In this chapter, the following are assumed:

A-7.1 The number of output and input signals are such that n > p > m.
A-7.2 The input and output matrices are full rank, s.e. rank(B) = m and

rank(C) = p. Moreover, rank(CB) = m.

Define the following sliding mode observer of the same form as in (Edwards &
Spurgeon, 1998b):

%(t) = A%(t) + Bu(t) — Gre,(t) + Gnpv (7.3)

¥(t) = Cx(t) (7.4)

where Gz € R™*P and Gy, € R™**P are the gain matrices to be designed. The so-called

discontinuous output error injection vector ¥ € RP, which induces a sliding motion, is
given by
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—plt.y W) Bl Ry it eu(t) 0

V=

(7.5)
0 otherwise

where e, (t) = §(t) — y(t) is the output error system. The matrix Py € RF*? is s.p.d.,
and the matrix By € RP*™ will be defined later in the section describing the observer
synthesis framework. The scalar function p: R, X RP x R™ — R, satisfies

p(t,y,0) 2 kyflu(®) || + ot y () + ka+ 1 (7.6)

where k; and k; are known scalars, ¢ : 8, x R — R, is a known function, and n € .

By defining the state estimation error as
e(t) £ %k(t) — x(t) (1.7)
it follows from (7.1) and (7.3) that the error system dynamics are governed by

é(t) = (A - GLC)e(t) — AA)X(t) + Gyrv — BE(L, y,u) (7.8)

Under certain conditions the matched uncertainty can be completely rejected by
the discontinuous term v when appropriately designed. Nevertheless, the error system
dynamics (7.8) ave affected by the mismatched uncertainty associated to the matrix
AA(t) which cannot be cancelled.

The problem to be addressed consists of synthesising a sliding mode observer defined
in (7.3)-(7.4) which guarantees robust stable error dynamics and the existence of a
stable sliding motion in finite time on the sliding hyperplane

Fowe = {€(t) € R": e(t) = Ce(t) = 0} (7.9)

despite the uncertainties present in the plant (7.1)-(7.2). In this chapter, “robust
stable error dynamics” means %(t) — x(¢) within a certain domain o, in finite time
considering the maximum feasible attenuation level for the mismatched uncertainty
effect in the output error e,(¢).

Lemma 7.1 Consider the system described in (7.1)-(7.2). Under assumptions A-7.1
and A-7.2, there exists a similarity transformation x — ToXx = X so thal the uncertain
dynamical system (7.1)-(7.2) can be written as follows

x(t) = (A+ AAL))R(t) + B(ult) + €4t %, u)) (7.10)
y(t) = Cx(t) (7.11)
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with the nominal system triple (A, B, C) in the form

- All Alz = 0 3
A= _ B=| _ C= 7.12
[ Ay Ay [ B, ] [ 0T ] ( )

where

a)- The matrices Aqq € RE-Px(=D) gnd Ay € RP*(P) gre such that

_ A3, Ag
Al — 1 AL 7.13
we | R (713
_ A = =
Ag = [ _211 :l and Agj = { 0 Agl ] (714)
A212

with A9 € R and Ag € RE-™*®—r=7) for some r > 0.
b)- The pair (A3, A)) is completely observable by construction.

¢)- The eigenvalues of the matriz A, are the invariant zeros of the system
triple (A, B, C).

d)- The matriz By € RP*™ is partitioned as follows

(7.15)

with By € R™*™ g nonsingular matriz. The matriz T € K9P, in (7.12), is
orthogonal.

e)- The uncertain matriz AA(t) is given by
AA(t) = AAL(L) + AAL() (7.16)

where the mismatched component has the structure

(7.17)

AAL() = { AA(t) AAun(t) }

0 0

with AA11(t) € ROP*C-P) gnd AAy,(t) € ROPXP. The matched compo-
nent has the form

~ 0 0
Am(t) = [ AAg(l) AAs(l) ] (718)

with AAgy(t) € RPXOD) and AAyy(t) € RP>e,

150




7.2 System Description and Statement of Problem

f)- The matched uncertainty £a(¢, %, w) is given by
€a(t; %, 1) = AAnp(H)R(1) + £(t %, 1) (7.19)

where AA, (L) is such that AA,, = BAA,,,(t).
A

The proof of the Lemma above is mainly based upon the arguments used in Lemmas
1 and 2 in (Edwards & Spurgeon, 1995).

Proof Firstly, a nonsingular change of coordinates x — T¢x = Xy, which forces
the last p state variables of the system to be the plant’s output signals, is applied by
defining the transformation matrix

T, 2 (7.20)

where N, € R7("?) is such that its columns span the null space of the output matrix
C. Consequently,

Ag, A
Ay = | 0 T (7.21)
Aczx Asz
where Ag,, € RP*X(P) and
B
By, =| (7.22)
B,

where Bg, € R®P*™ and B,, € RP*™. As a result of the transformation

Cro=10 Ip] (7.23)

By assumption rank(CB) =m, then since C, By, = Bg,, it follows that rank(Bg,) =
m. This implies that an orthogonal matrix T € RP*F exists such that

TTB,, = (7.24)

Bs
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where By € ™™ is a nonsingular matrix. Another implication is that a left pseudo-
inverse BI}; € ™2 for B, can be computed given by

Bl = (BL B.,) 'BL, (7.25)

By applying a further nonsingular change of coordinates x;, — TaXr, = Xr, to the
system triple (ATG,BTC,CTC) where

Inp —Bo B
Ty 2 ‘"01’) ; ° (7.26)

it follows that the system triple (ATc ,Bag, CTC) in the new coordinates has the form

A A 0
ATB — By B12 BTB — - CTB — l: 0T ] (727)
Ale ABzz B,

Now, the sub-matrix A, € RMO~™*("=m) ig partitioned as follows

Ag, = (7.28)

where Ap € R=p)*("=p) If the pair (ABlm,ABlm) is unobservable, then a matrix
Tops € ROPIX(—P) exists so that
Af Ay

TobsABuuT;bi = — (7.29)
0 Aj

AsuTai=[0 Ag | (7.30)

where Ag; € R, Ag € RP~™*(=p—) and (Ag,, A%;) is observable (Edwards &
Spurgeon, 1995) (Edwards & Spurgeon, 1998a). This means that the pair (Ap,,,,,Az,,,,)
has been written in observability canonical form where the scalar » > 0 corresponds to
the number of unobservable states of (Ag,,,,, Ap,,,, )

An additional transformation matrix involving the sub-matrix Tys can be defined as

T, 0
T, A | T (7.31)
0 I,
so that the change of coordinates x;, — T Xy, = X yields
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.ZX= %11 {&12
Ay Ap

_Jo _
BZ{BJ C=|o ] (7.32)

where Aj; € ROPX(-0) jg given in (7.29), the sub-matrix Ay € RP*(~P) has the

structure

Ag = [ A ] (7.33)

B, = [ 0 } (7.34)
B,

The transformation matrix T, € R™" from the lemma statement is made up of the

with By € RRmxm,

transformation matrices defined during this proof, i.e.
T, =TTzT, (7.35)
and produces the change of coordinates x — X.

Now, it will be demonstrated that the A(A%,) are the invariant zeros of the system
triple (A, B, C). The invariant zeros of (A, B, C) are defined to be the set

{s € C: %(s) loses normal rank} (7.36)

where Z(s) is the Rosenbrock’s system matrix

Z(s) = l (7.37)

By considering the system triple (A, B, C) given in (7.32) with the matrix Aj; of the
form defined in (7.29), and the matrices (7.33)-(7.34) produce

R S B B
0 (sXn—p—r) — AgQ)
%(s) = { —Aom ] (sI, — Au) l: 0 } (7.38)
—Agip B,
I 0 T o |
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Since By € ™™ is nonsingular and T € RP*?, by using Agy; defined in (7.30),

Z(s) loses normal rank <= 2(s) loses normal rank (7.39)
where
(oT, - Ag.) _Ag,
2(s) = 0 (SI(n_p_T) - Agz) (7.40)
0 Ag,

Moreover, by construction the pair (Ag2, Agl) is completely observable, then from the
Popov-Belevitch-Hautus test

T pr) — A3
rank (st i ) &) =n—-p—r (7.41)
51
for all s € C. Therefore,
Z(s) loses normal rank <=> 2(s) loses normal rank <=> det(sI — AJ,) =0 (7.42)

which means that A(A¢;) are the invariant zeros of the system triple (A, B, C).

The uncertain matrix AA(t), partitioned conformably with (7.32) in the new coor-
dinates X, has the structure

AA(L) = (7.43)

AA () AAgs(t)
AAZl(ﬁ) AAzg (t)

This uncertain matrix can be decomposed into matched and mismatched uncertain
matrices, i.e. AA,,(t) and AA,(t), as follows

AA() = AAL(L) + AAL(L) (7.44)
where
A= lAAn(t) AAlz(t)} 7.45)
0 0
_ [ 0 0 ]
AAR(t) = B _ (7.46)
AAzl(t) AAQQ(t)
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Since R(AA,,) € R(B) the matrix AA,,(t) = BAA,,5(1); hence A.,,(t) can be
embedded into the matched uncertainty &, (¢, %, u) as follows

En(t, %, u) = AA,g(0)%(t) + £(t, %, 1) (7.47)

Q.E.D.

Remark 7.1 Stable sliding mode dynamics require that any invariant zeros M(A$;) €
C_. In this case, the pair (Au,Azu) is detectable and its unobservable modes are the
invariant zeros of the system triple (A, B, C).

In this chapter, it is assumed that
A-7.3 the matched uncertainty is bounded by

€5t %Wl < Blu@®)]| + @t y(1) + k2 (7.48)

where ¢ : Ry x R — R is a known function, and k; and ks, are known

scalars.
The observer (7.3)-(7.4) in the new coordinates X € " is represented by
%(t) = A%(t) + Bu(t) — Gre,(t) + G v (7.49)
y(t) = Cx(t) (7.50)

whilst the estimation error is defined by 8(t) = %(t) — %(¢).

Consequently, the estimation error system dynamics are described by

8(t) = (A — GLC)a(t) — AAL(B)X(t) + Gy —BEA(L, %, 1) (7.51)

In this chapter, a novel design framework based upon LMIs is proposed for designing
the gain matrices G and Gur.

7.3 Stability Analysis

This section provides the analytical results concerned with the practical stability
of the uncertain error system dynamics in (7.51). The ultimate boundedness stability
concept is used in most of the mathematical results in this section. Also, stability of
the nominal error system dynamics is studied.
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The following lemma. establishes a gain matrix G ensuring the matrix (A -G LC)
is Hurwitz. The structure of the associated Lyapunov matrix P, which satisfies the
Lyapunov inequality for the nominal error system dynamics, is also defined. The
matrix P has the same form as the Lyapunov matrix used in (Tan & Edwards, 2001).

Lemma 7.2 Let (A, B, C) be the nominal system triple defined in (7.12) with Ay €
Rex=P) pariitioned as follows

Ay = { ‘é}m ] (7.52)

where Agyy € RE-MIX(=0) Lt I, € RV-PX0-m) pe g design matriz such that )\(Au +
LAsi1) € C_ where Ay is a submatriz of A defined in (7.12). Let Gr, € R be o
gain matriz of the form

_ [ G ] _ [ —AyLTT + A TT + LTT AP } (759)

Gr=| = B -
E Grs — A LTT + ApTT — TT A

where G, € RO 2% gnd Gr, € RP*P. The sub-matriz T € RP*P is part of the output

matriz C, the matriz A € RP*P is a stable matriz constructed by the designer and

L e RO-0)%2 s given by

L=[L Oppxm ] (7.54)
Then, the nominal error system dynamics

8ty = (A -G.C)a(t) (7.55)

are stable and the following Lyapunov matriz inequality holds

(A—GpC)™P+P(A - GC) <0 (7.56)
where
_ P, P,L
=| .- _ S = 7.57
[ TP, P,+LTPiL ( )

with Py € RO-0Ix(—0) gnd Py € ROP are appropriately chosen s.p.d. matrices.

Proof Define a nonsingular change of coordinates & — T & = & where the transfor-
mation matrix T € R**™ is given by

Ty L
Ty=| 7 (7.58)
0 T
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In the new coordinates the nominal error system dynamics are described by

&) = (A -G 0)e(t)

where

A—- An A]_z _ A11+]_:4A21 —AH]TJTThiAzliTT—{—AlQTT-{—EAzzTT
TA, —TAyLTT+TAy,TT

AZI AQZ

Gy =

~TAnLTT + TAp,TT — A

@:[0 Ip]

Algebraic manipulation of (7.60)-(7.62) yields

~ ~ ~ o~ A-ll -+ flA_zl 0
=(A-G =
Ag=(A-G0) [ TRy

From the structure of (7.52) and (7.54), it follows
LAy =LAy,
Then, equation (7.63) can be written as

o All + LA.Q]J 0
TAy Asth

The Lyapunov matrix P in the new coordinates is given by

. - P, 0
P=(T)"PT = | =0
0 P,

where
P, = TP,TT
Consider the Lyapunov function

V(1) := 8T (1)P&(t)
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(7.59)
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(7.62)
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Taking time derivatives along the nominal error system’s trajectories yields

3 N AT ].31 +P1An AT P, .
Vi)=&t | " . 2 O (7.69)
PyAy (ASP)TPy + Py ASY

where All = Au + LAle and A21 = TAzl. Since by design the matrix A;gb € RP*P ig
a stable matrix, for a given s.p.d. matrix Qs € RP*? the following Lyapunov equation

(ASYTP, + Pr AR = —Q, (7.70)

has a solution Py. Then, a further Lyapunov equation can be written considering the
solution of (7.70) as follows

AP +P Ay = —(Qi + AL P,Q;'PoAy) (7.71)
where Q; € RP*(®-P) i3 g 5.p.d. design matrix. Note that by construction
Qi + AL P,Q;1PyAy - 0 (7.72)
Using (7.70) and (7.71), quadratic equation (7.69) can be written as

- (Ch + A;rleQg‘llsaAzl) ALP,

V(t) =&(1) i
PyAg —Q2

&(t) (7.73)

From the Schur complement, the expression on the R.H.S. of (7.73) is negative definite.

Hence, the nominal error system in the new coordinates given in (7.59) is stable.
Moreover, stability of the error system in the original coordinates follows from the
properties of similarity transformations. Finally, since the nominal error system is
quadratically stable, the following matrix inequality holds

(A - GLC)TP+P(A - G.C) <0 (7.74)
for G, and P defined in (7.53) and (7.57).
Q.E.D.
Now consider the uncertain error system dynamics governed by
&(t) = (A = GLC)&(t) — AAL()X(t) + Gy~ BEa(t %, u) (7.75)

where the matrix Gy, € R"*? is defined in (7.53) whilst the matrix Gy € R"*? has
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the same structure as in (Tan & Edwards, 2001):

- G LTt
Gyp=| P = (7.76)
Gniso T

with I, € RO~2)*? given in (7.54).

Note that both gain matrices G, and Gy are parameterised in terms of the sub-
matrix I which in turn depends only on L. The rest of the sub-matrices involved
in these two gain matrices are obtained directly from the state and output matrices
in the canonical form stated in Lemma 7.1. Notice that only the sub-matrix L has
to be designed. To this end, a synthesis framework, which considers the mismatched
uncertainties, is proposed in next section.

The form of the reduced-order uncertain error system is a consequence of applying
some of the statements and proof arguments of Lemma 7.2 to the uncertain error
system (7.75). Such a form is introduced in the following corollary.

Corollary 7.1 The sliding mode dynamics are governed by the reduced-order system
&1(t) = (Ayy + LAs1 )81 (1) — AR ()T (t) — ABas(t)Ra(t) (7.77)

where L € ROPXE-m) gnd Ay, € RO-X(=0) gre defined in Lemma 7.2.

Proof By applying the similarity transformation &(t) — TL&(t) = &(t) used in
Lemma 7.2, it is easy to show that the uncertain error system dynamics are governed
by
él(f/) = A.ué]_([) - AAll(L))_{]_([/) - AAlg(L)iz(t) (778)
&, (t) = Agi&y(t) + Ase, () + v — Bafa(t, %, 1) (7.79)

where Ay € ROPX(=P) and Ay € RPXP) are defined in (7.60). The submatrix
By € RP*P results from

N _ 0 0
B=T,B=| |= (7.80)
TB, B,

Also, in the new coordinates, the matrix Gy, defined in (7.76) is given by

~ _ 0
Gy =TrGyL = . (7.81)
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In the sliding mode, e,(t) = 0 and é,(¢) = 0, then
&1(t) = Apé () — AAL(D)R1() — AA(E)Ra(t) (7.82)
Since An = Ay, + LAy, it follows
&1(t) = (A +LAz)8:1(t) — AAL ()R () — AAs()Ra () (7.83)
but from the structure of I and Ay, given in (7.54) and (7.52) yields
&1(t) = (Anr + LAgn)& () — AAn ()R (£) — AAa(t)%a(1) (7.84)
Q.E.D.

In the absence of mismatched uncertainty, the error system dynamics are asymp-
totically stable (this is stated in Lemma 7.2). The error system is also asymptotically
stable when affected by only matched uncertainties. This follows from the invariance
property of sliding modes and Lemma 7.2. However, the error system dynamics given
in (7.75) are clearly influenced by the effect of the mismatched uncertainty. The con-
cept of practical stability is applied to conclude that the uncertain error system (7.75)
is uniformly ultimately bounded with respect to a domain defining an ellipsoid in the
state space. This domain is usually a small neighbourhood of the origin in the state
space. The following lemma is related to the practical stability of the uncertain error
system (7.75).

Lemma 7.8 Let Qz C R"™ be a bounded set defined by
0= {8(t) € R 1 [3(1)]l < 2IAALRE) I3+ ) (7.85)

where v, € R4, and vz € Ry is an arbitrary small design scalar. Assuming that
|AA,(BX®)|| s bounded, the estimation error &(t) is ultimately bounded with respect
to the set ;.

Proof Consider the Lyapunov function
V(1) := & (t)P&(t) (7.86)

where P is a s.p.d matrix of the form defined in Lemma 7.2. That is,
~ P, P.L
P=1_ (7.87)

with Py € R-P)X("=2) and P, € RP*P satisfying (A — GLC)TP +P(A-G.C) <0.
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Differentiating (7.86) with respect to time along the error system trajectories:

V(1) = 8% (t)Pa(t) + &% (H)Pé(t) (7.88)
=&"(t)((A - GLC)"P + P(A — G.C))a(t) — 28T ()PAA, (£)%(t)
+ 28" ()PGury — 28T (1)PBEL(¢, %, u) (7.89)

(A-GLO)"P+P(A-G.C)=-Qo =<0 (7.90)
where Qg € R is a s.p.d. matrix. Therefore,

V() € = Muin(Qo)lIe(t) | — 267 ()PAAL(1)%(2)

+ 28T () PGy — 28T ()PBE A (¢, %, 1) (7.91)
From (7.76) and (7.87),
_ 0
PGyr=| _ (7.92)
P, TT
In addition, by using
P, = TP,TT (7.93)
it follows
_ 0 _ 0
ctp, = TP, TT = | _ (7.94)
TT P,TT

Thus, the structural constraint
PGy, = CP, (7.95)

is obtained.

In order to determine the second structural constraint, consider the input matrix
given in (7.12) and the Lyapunov matrix defined in (7.87). The following expression is
easily obtained

PB = [ P,LB, } (7.96)

]._)2]:))2 + ETP]_]:BQ
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however from (7.15) and (7.54)

IiB,=0 (7.97)
and therefore
_ 0
PB=| (7.98)
P,B,

By using the output matrix given in (7.12) together with the equalities (7.93) and
By = TB; defined in (7.80),

I N 0 | o
TP, B, = TP, T By = | _ =| (7.99)
TT P,TT5, P,B,

Hence, from (7.98) and (7.99) follows that

PB = CTP,B, (7.100)

Substituting the structural constraints (7.95) and (7.100) into (7.91) produces
V() S = Anan(Q)12(0)|* - 287 ()P AR, ((1)
+ 28T (t)CTPyr — 28T (1) CT Py BoE o (8, %, 1) (7.101)

However, since e, (t) = C&(t), it follows

V() £ = Amin(Qo)[[8(1) |1 — 28T ()P AAL()(t)
+ 2e; ()Pav — 2 (1)PyBa a (1, %, 1) (7.102)

Rearranging the inequality above, after substituting for v from (7.5), results in the

expression
V() <= Amin(Qo)18(0) 2287 (P AR (H)%0)—2]Paey @) 1B (o) — IE(II) (7.103)

Considering the bound on the matched uncertainty given in (7.48) as well as the bound
on the scalar function p(¢,y,w), it is straightforward to verify that

p(ty,u) 2 [|€alt, %, w)ll +1 (7.104)
Then,

V(t) < —Amin( Qo)IB(E) 2+ 22maa (P [B(1) |AAu ()% ()| — 20/ Paey (1) 1B ln (7.105)
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By defining

_ Amin(Qo)
vy = e B) (7.106)

and rearranging (7.105), it is straightforward to show that
V(1) < Amaa(P) B (—nallB()| + 2 AALOR()]) ~2[P2ey (D[ Balln - (7.107)
Inside the set Qg

B < 2lAAL BB 17"+ (7.108)

and it follows that

V(1) < ~1¥edmas(P)[8(2)| — 2|2, (1) B2]ly < 0 (7.109)

for &(t) ¢ Q. Hence, the uncertain error system is ultimately bounded stable with
respect to the ellipsoid Q. This means, that the estimation error &(¢) enters the domain
Qz and remains within it thereafter.

Q.E.D.

Commensurate with the partition of the system triple (A, B, C) defined in (7.32)
and also by using (7.53) and (7.76), the error system dynamics (7.75) can be written
as follows

él(t) = Allél(t) =+ Algéz(t) - AAH)_(]_ (t) - AAlziz(t) — C_%Lley(t) -+ C_;lel 14 (7110)

ég(t) = A21§1(t) + Aggég(t) — @Lzey(t) -+ GNLQ v — BQEA(t,)_C, u) (7.111)

Consider a similarity transformation such that € — T ;& = & where the nonsingular
transformation matrix Ty € R™*" is given by

Iy L
T,=| ®? (7.112)
0 T

From (7.110) and (7.111), in the new coordinates, the uncertain error system dynamics
are governed by

&1(t) = Ané (1) — AA;LR (1) — AARs(L) (7.113)
éy(t) = Azlél(t) -+ A‘;g‘ey(t) +v— Bng (t, X, u) (7114)
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where Ay; € ROPX(—2) and Ay e RPX?) gre defined in (7.60), the matrix AL €
RP*P is a stable matrix by design, whilst By € PP is defined in (7.80).

In the sequel, it is demonstrated that a sliding motion is induced on the sliding
surface Foy, in finite time within a domain of attraction. This is an important result

since it guarantees the existence of a sliding motion.

Lemma 7.4 A sliding motion takes place after some finite time t, on the sliding sur-
face

Fons = {€(t) € R™ : €,(t) =Ce(t) =0} (7.115)
within the domain

2 = { (E1(0),0,(1)) : ITAz& (1) < 1Bolln — 7o } (7.116)

where v, € Ry is a small design scalar.

Proof From the definition of Ay given in (7.60), equation (7.114) can be written as
&,(t) = TAn& () + Asde, (t) + v — Baéa(t, %, 1) (7.117)

Consider the Lyapunov function
Vo(t) := ] (1)Paey(t) (7.118)

where Py € RP*? is a s.p.d matrix as defined in (7.93). Differentiating the quadratic
form (7.118) with respect to time, along the error system trajectories, gives

Vo () = & (1)Paey(t) + €] (t)Paey (t) (7.119)
Consequently from (7.117), it follows
Vo (t) =(TAn8:i (1) + Ae, () + v — Bala(t, %, u))TPzey(t)
+ e (6)P2 (T A 81(2) + Afpe,(t) + v — Béa(t, %, 1)) (7.120)

= e, () ((A32) Py + PaAs) e, (1) + 2e ()P2TAx & (1)

+ 2ey (8)Pav — 2¢; (1)P3Baa(l, %, u) (7.121)
but since

(AS2)TPy + PoAs = —Qq (7.122)
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where Qo € RP*P i a s.p.d. matrix defined by the designer, then

Vo(t) = — e] (t)Qaey(t) + 2e] (1)Py T Az 81 (2)

+ 2] ()Pov — 2e] (t)P2Boda (t, %, 1) (7.123)
Substituting for
Pse, (t)
v=—plt,y, WlB:ll 15w 7.124
p( )” 2“ ||P28y(t)” ( )

in equation (7.123) and rearranging using the Cauchy-Scharwz inequality yields

Va(t) = eg(t)Qzey(t) + QGE(t)PgTAglél(t)
— 20(t,, 0| B[ [Paey ()] — 267 ()PaBofa(t, %, ) (7.125)
<- e;f(t)Qzey(t) + QGE(t)PzTAmél(t)

- 2"32“ “PQey(t)” (p(t, Y u) - ”gA(t: X, u)”) (7'126)

From the bound on the matched uncertainty given in (7.48) and the bound on the
positive scalar p(f,y,u), the following relation can easily be demonstrated

p(t,y,u) > [[€a(t, %, 0)|| + 7 (7.127)
Then, ,
Vo(t) < — e (t)Qaey(t) + 2e) (/P2 T A28 (t) — 2| Ba|[P2ey(£) (17 (7.128)
< — ey (1)Qaey () + 2| Poey (1) (ITAn&(1)]| — |Bzn) (7.129)
In the domain
2 = {(E:(0),e,()) : ITAn&: (1)) < |1Bslln — 7 | (7.130)
it follows
Vo(t) < —e) (£)Qaey (1) — 2l|Paey () |70 < —2([Paey ()17 (7.131)

for all e,(¢) # 0.

From the following basic algebraic manipulation

[P2e, @)1= (Pae, () (P2ey (1)) =€ ()P2Paey (f) = (P5 e, (1) "Pa(Py *e, () (7.132)
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the inequality
1P 2e, (L)1 > Amin (P2)[1P3 *e, (6) 2 (7.133)

is obtained and furthermore
P56, (]I = (P}%ey(1)” (P e, (t)) = X (1)Pae,(t) = V4 (t) (7.134)
Then, the inequality given in (7.133) can be written as
[Paey ()1 = Amin(P2) Vo (t) (7.135)

From (7.131) and (7.135), it follows that

Va(t) € =295V dnin(P2) Vo () < 0 (7.136)

This inequality means that a sliding motion takes place on the sliding surface %, in
finite time and remains inside the domain £, V ¢ > t, thereafter.

Q.E.D.

7.4 Design Framework

The effect of the matched uncertainty &,(t,%,u) is rejected by the nonlinear dis-
continuous vector v, which depends upon the output estimation error injected into the
observer. This is consistent with the invariance property of sliding modes with respect
to the class of matched uncertainty. In this sense, sliding mode observers are more
robust than the classical Luenberger observers. The discontinuous output error injec-
tion vector, given in (7.5), is designed in such a way that the observer trajectories are
driven to the sliding surface (7.9) defined in the error space, and remain on the sliding
hyperplane. Nevertheless, the invariance property is not guaranteed with respect to
the mismatched uncertainty in the error system (7.51). Hence, the aim is to design a
sliding mode observer so that the effect of such uncertainty is maximally attenuated.
To this end, an LMI-based approach using the so-called Bounded Real Lemma (Boyd
et al., 1994) is proposed using a polytopic description of the mismatched uncertainty.
An optimisation problem based on LMI methods is formulated in order to synthesise
the matrix L € RO-P)*®-m) which is part of the matrix

L=[L 0p_pxm ) (7.137)

which defines the gain matrices G, and Gyy.
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Define

AA(t) = [ ~AA;(t)  —AA®) (7.138)

where AA;; (1) € ROPXE-P) and AA,(t) € ROPP are sub-matrices of the mis-

matched uncertain matrix

AR (L) = AA;(” AA:(L) (7.139)

which was established earlier in Lemma 7.1. Also, define the state vector
T
()= @) =5 | (7.140)

where %, € R P and %; € RP. Then, the uncertain reduced-order uncertain error
system from (7.113) can be written as

81(t) = (Ann + LAg1)8:(t) + AA,X(t) (7.141)

where Aj; € R-PX(0) and Agy; € RE-™X(-P) gre known constant matrices. The
gain matrix L is to be designed. The vector ¥ € R" is considered as an exogenous
disturbance input vector. The objective is to ensure

where
o 1/2
[€x(Dll2 = ( /0 é’f(t)él(t)dc> (7.143)
and

- 1/2
%)l = ( / xT(t)x(t)dt) (7144)
0
The constraint (7.142) is an H, performance index for all nonzero %X(t) € L2(0, c0).

Remark 7.2 The Hoo norm is the induced energy gain, and in the case presented in
this section corresponds to the worst case amplification of the effect of the disturbance
X in the reduced-order error system.

The following is assumed throughout this section:
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A-7.4 The matrix representing the mismatched uncertainty AA,; () is affine
with respect to the uncertain parameters denoted in vector form by 8(t) =
[01(2) 62(t) --- 6,(2)]". These uncertain parameters satisfy

9, <0, <8; for ielI(l,r) (7.145)

2

and they define a convex set in the parameter space © C R".

From the assumption above, the uncertain continuous-time system (7.141) can be
written in system matrix form as

S NUERE 2SO EX O
| Fo) l 0

(7.146)

and admits a polytopic representation given by

N A A A N
oons {Z s [ (Au+LAs) | Al ] :Y =1, ;>0 for je[(l,N)} (7.147)
=1 [ In—p) l 0 J =1

where N is the number of vertices of Z2¢™.

The Bounded-Real Lemma for a polytopic description presented in (Boyd et al.,
1994) is adapted for the reduced-order error system (7.141) as shown in the sequel.

Let &z be a positive scalar. The continuous-time system Xz, z(¢) defined in (7.146)
is said to be stable and satisfies

&1 (®ll2 < vaalx (@)l (7.148)

if there exists a s.p.d. matrix Py € RO-2)*(=2) guch that

(A + LAQll) P, + Pi(An + LAzu) +Inp PiAA,;
(PIAAulj)T —7§1~In

&T

<0 (7.149)

for j € I(1,N).

Different representations of the matrix inequality (7.149) are presented in the fol-
lowing lemma in which the equivalence between such formulations is stated and demon-
strated.
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Lemma 7.5 Let 35,z be the j-th continuous-time system denoted by
135 J

(Au + LAzu) 1 AAulj
In-p) ] 0

(7.150)

26151]' =

where A1y and Asq are known constant matrices of appropriate dimensions, L is a
design matriz. Let P, € RO-2x0-0) gnd Q, € ROPX0P) pe g.p.d. matrices, and
Ya,z € Ry s a constant scalar. The following matriz inequalities are equivalent:

(A1 +LAg) "Pr+P1 (A +LAg) + 1) +733 (P1AAL,) (P1AA,,;) T <0 (7.151)

(All -+ LAzll)T ]-51 + P i (All + LA211) -+ I(n_p) PlAAulj 1
R ) <0 (7.152)

(PlAAulj) _7515 I’ﬂ |

(Au + LAQII)Tpl + Pl (Au + LAQll) plAAulj I(n—p) T
(P1AAK,,)" 2,1, 0 | =0 (7.153)

I(n—p) 0 _I(n‘I’) i

(A + LAZII)T Q1+ Qi(Ay; +LAy,) Q1AAu1j Ip)
(QuaA,,)” . 0 <0 (7.154)
I("*P) 0 _A/éui:[(n—p)

A

Proof Applying the Schur complement to (7.151) yields straightforwardly either (7.152)
or (7.153), i.e. (7.1561) <= (7.152)-(7.153). With regard to the equivalence (7.152)
<= (7.153), this follows also by applying the Schur complement. Now, the equiv-
alence between (7.151) and (7.154) is demonstrated. Multiplying both sides of the
matrix inequality (7.151) by v; %

€1

and substituting for Q; = ;5 Py yields

(Au + LAzu)TQl +Qu (Au + LAzu)
- /A AR & AT
+ Vablinp) + Vo5 (Q1AAL;) (QiAAL;) " <0 (7.155)
Then, applying the Schur complement to the Riccati inequality (7.155) produces the
matrix inequality (7.154). Since (7.151) <= (7.152)-(7.153) and (7.151) <= (7.154),
the equivalence (7.152)-(7.1563) <= (7.154) follows immediately.

Q.E.D.
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The main result of this section proposes a synthesis method for designing a gain
matrix L through an optimisation problem involving LMIs. The following proposition
allows a gain matrix L to be designed for the polytopic representation of system (7.141).
This result consists of a convex optimisation problem formulated using LMIs methods.

Proposition 7.1 Consider a continuous-time reduced-order error system given in ma-

triz form by

(A +LAs;) ’ AAL (1)
Ttn—p) ’ 0

ea(t) = (7.156)

where A1y and Agy; are known constant matrices of appropriate dimensions such that
the pair (Ayy, Agyy) 4s detectable. The solution of the convex optimisation problem

7&15>%{1‘%11,FL Tas
s.t.
AT Qi+ QiAy + AL FT +FrAsn QuAAu;  Tpp
~ A% AT
(QlAAulj) —7515;In 0 <0 (7.157)
Ln) 0 —Yaelm—p

Q1 -0 (7.158)
guarantees
81(®)ll2 < 5,z lI%(E)]2 (7.159)

s

where 73,z = inf (75,5), and the gain matriz L can be straightforwardly computed as
L=Q7'F, (7.160)
A
Proof Suppose there exists a Q; > 0 such that

AT Qi+ QAL + AL FT + FrApy QuAAy;  Iny
(QuAA,)" 5,51 0 <0 (1.161)
I("*p) 0 —’751i1(n—p)

for j € I(1, N) for some F, € R-P*@-m) and ;- € R,

Defining and replacing Fz, = Q;L in (7.161) yields

(All + LAZH)T Ql + Ql (Au + LAZ]I) QlAAulj I(n—p)
(QAA,)" S 0 <0 (7.162)
I("_p) 0 —"75151(71,—17)
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for j € I(1, N).

From Lemma 7.5, the matrix inequality above is equivalent to the quadratic ex-

pression
T — — — — - _ — -
€ (t) (A11 +LA211)TP1+P1 (A11 +LA211)+I(n_p) PlAAulj €; (t) <0 (7 163)
%(t) (P1AA,,)" 2,1, || %(2)

for j € I(1,N). It follows
N - - —_ - — _
Z [Lj (érlr(t) ((A-ll + LA211)TP1 -+ Pl(Au + LA211))é1(t)
J=1

ez

+ 2é1T(t)131AAulj)‘c(t)) FET()8.(t) — 12 XT (%) <0 (7.164)

N

since p; > 0 and Z,uj =1forall j € I(1,N).
Jj=1

Consider the Lyapunov function

V(&) = &TP1&; >0 (7.165)
Then (7.164) is equivalent to
V(&1(0) + & (1)&1 (1) — X" ()%(1) < 0 (7.166)
where
3 N — — -
&)= 1 ((A11 + LAy )& (t) + AAuljic(t)> (7.167)

=1
which corresponds to the polytopic description of the uncertain reduced-order system
N

(7.141) with y; > 0 and )y =1 for j € I(1,N).

=1
By integrating (7.166) with respect to time along the time interval ¢ € [0, T'] and
assuming the initial condition &;(0) = 0, yields

T
VED)+ [ (G O8) - AAWOx0)d <0 (7.168)
o
Since V(&:(T)) > 0, the inequality (7.168) implies that

1Mz < vzl (D)2 (7.169)

A convex optimisation problem is required in order to find the greatest lower bound
of v5,5 € Ry, i.e. 755 € Ry, and the matrix variables Q; and Fr. To this end, the
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following optimisation problem is formulated

min Yerz
Y5,2>0,Q1,Fp
s.t.
AT Qi+ QA + AL FT + FrAsy QuAAy; Iy
(QuAAL,)" SRV 0 <0 (7.170)
Itn—p) 0 —Yer3l(n-p)
Q>0 (7.171)
for j € I(1, N).

Q.E.D.

Once the matrix L € RP*@-m) js designed then the observer gain matrices

G € ®? and Gy € R™*?, in the original coordinates, can be computed as follows

GL=T;'G, (7.172)
Gz =T;'Gyg (7.173)

where
T, =TTsT, (7.174)

with T, Tp and T, defined in (7.20), (7.26) and (7.31) respectively.

7.5 Design and Simulation Example

Here the design methodology presented in the last section is illustrated through a
numerical example involving a 4th order uncertain linear system.

Example 7.1 Consider an uncertain linear dynamical system described in state space
form by

—6 1+6; (t) 0 2+ ez(t) 0

x(t)= 8 _§ _1;93(0 (1) x(t)+ g (u(®)+€()) (7.175)
2 1 -2 ~1 1

y(t)=[g g (1) HX(L) (7.176)
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where

6:1(t) = 0.5sin(2t) 62(t) =sin(4t) 65(t) = 0.5sin(6t) £(-) = 0.5sin(107t) (7.177)

The system is alveady in the canonical form defined in Lemma 7.1 then T, = 1.
Another feature of the system represented in (7.175)-(7.176) is that the open loop
nominal system (61 (¢) = 62(t) = 65(¢) = 0) is unstable. This is easy to see by inspection
of the nominal system’s open loop eigenvalues

{—6.6799, —2.3793, 0.0296 + j1.6254} (7.178)

The uncertain parameters define a hyper-rectangle in the parameter space © € R?
when considering

[0.(8)] <05 @) <1 |6:(t) < 0.5 (7.179)

In addition, the state matrix is affine in 0(t) =[61(t) 6a(t) 6’3(t)]T. Thus, a polytope
PP composed of 8 vertices can be constructed using

- -6 1
Ay = 7.180
u [ 0 _2} (7.180)
- 0 6i; 0 06y .
AA,, = i i (1,8 181
’ [o 0 6, 0] or j € I(1,8) (7.181)
Ani=[0 3] (7.182)

The pair (A1, Ag1) is not completely observable but is detectable. Hence, only
one pole may be placed arbitrarily.

The convex optimisation problem formulated in Proposition 7.1 can be implemented
in MATLAB and has a solution giving 7%,z = 0.1863 as the worst amplification of the

é1T
disturbance effect and the gain matrix

L _ | —0-3383 (7.183)
~1.8087
for which
AM(Ayg + LAgy,)={ -6, —7.4260} (7.184)
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7.5 Design and Simulation Example

Furthermore,
| 033330 (7.185)
—1.8087 0
Defining
-13 0
A = 7.186
s[5 0] -

and Q; = I, the following Lyapunov matrix is obtained

P, = (7.187)

0.0385 0
0 0.0385

From (7.185) and T, = I, the gain matrices G, and Gy are computed using equa-
tions (7.53) and (7.76). Moreover, since the system is in the canonical form, the
observer gain matrices G = G, and Gy = Gy, are given by

41420 2
8.8952

G = | ! (7.188)
18.4260

0.4753 12

(=

0.3333 0
1.8087 0
(7.189)

0

1

0

The gain matrix (7.188) yields the following eigenvalues of the nominal error system,
i.e. when 61(t) = 05(t) = 05(¢) =0,

A(Ap — GC)={ — 13, —6, —13, —7.4260} (7.190)

where Ag € R**4 is the nominal state matrix in (7.175).

For simulation purposes a state feedback control law of the form u(t) = —Kgspx(t)
has been designed using the polytopic representation of the uncertain system (7.175)-
(7.176) and the LMI region shown in Figure 7.1.

The controller gain is given by

Kse=[ 32181 48737 -3.3614 3.9105 | (7.191)
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7.5 Design and Simulation Example

In order to demonstrate the ability of the proposed sliding mode observer to track the
state behaviour of the uncertain system (7.175)-(7.176), the following control signal is
used for the computer simulations

uft) = —CsFx(i) + 20 sin(s7r() (7.192)

Im{C}

Re{C}

Figure 7.1: Convex Region 7>{h,Cn,rd,a) = D(0.1,0,6,7/4) for robust pole placement
of a full state feedback controller

Computer simulation results are presented in the sequel using the initial conditions

Xo=[1 — 0 1]* andxo =[O O O O for the plant and observer respec-
tively. The time evolution of the uncertain parameters is depicted in Figure 7.2.

The true and estimated states are plotted in Figures 7.3-7.¢ for comparison. It
can be seen that after approximately 0.5sec the estimated states Xz {#) and X:{#) track
the true states perfectly. With regard to state variable X:{t) perfect tracking of the
estimated state is achieved after 2sec. A perceptible estimation error occurs in terms
of the true and estimated state variable xi{¢). However, |ei(i)| = |:ri(i) —xi(t)] < 0.08
after 2.5sec. This can be seen in Figure 7.7.

Estimation errors are depicted in Figures 7.7-7.10. These plots demonstrate the
effectiveness of the sliding mode observer design methodology for plants with mis-
matched uncertainties. The acceptable margin for the magnitude of the estimation
error is application-related and is part of the performance specifications. The time
evolution of the switching functions is shown in Figure 7.11. This plot shows that the
sliding motion is induced on the sliding hyperplane Yobs-
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7.5 Design and Simulation Example
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Figure 7.2: Time evolution of the uncertain parameters d\{z), ¢2(t) and s3(1)

True state variable x(t)
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Figure 7.3: Time evolution of the true and estimated state Xi{r)
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Figure 7.4: Time evolution of the true and estimated state Xz (t)
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Figure 7.5: Time evolution of the true and estimated state 23 (()
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Figure 7.6: Time evolution of the true and estimated state X« (?)
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Figure 7.7: Estimation error ei(t) =
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time

Figure 7.8: Estimation error 62(t) = X {t) —X {1)

time

Figure 7.9: Estimation error 63(t) = Xs /1) —Xs{1)
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Figure 7.10: Estimation error eN1) = Xi{t) —X.,{I)

time
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Figure 7.11: Time evolution of switching functions e*(t) G 3
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7.6 Summary

7.6 Summary

An LMI-based synthesis framework requiring only input and output signals from
the plant has been described for designing the gain matrices of a sliding mode observer.
The effect of the mismatched uncertain component is considered as a disturbance whose
effect on the output estimation error has to be minimised. The observer gain matrices
are parameterised in terms of only one design matrix. This matrix is obtained by
solving a convex optimisation problem involving LMIs with a polytopic description
of the reduced-order error system in terms of H, performance. A detailed stability
analysis has been carried out for the sliding mode observer and the class of uncertain
systems considered. A numerical example has illustrated the proposed approach and
demonstrated its efficacy through computer simulations.
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"If a man will begin with certainties, he shall end in doubts; but if

he will be content to begin with doubts, he shall end in certainties. "’

Francis Bacon (1561 - 1626)
The Advancement of Learning (1605)

Conclusions

8.1 Concluding Remarks

The problem of designing variable structure systems with sliding modes for un-
certain continuous time plants involving mismatched parametric uncertainties and
matched uncertainties, nonlinearities and/or disturbances has been addressed in this
thesis. Full and partial state information cases were considered. The proposed synthesis
approaches are based on LMI methods and involve polytopic models for describing the
mismatched parametric uncertainty which usually affects real world systems. The form
of the sliding mode control law considered throughout consists of linear and nonlinear

(discontinuous) components.

In the full state information case, a design framework for state feedback sliding mode
controllers has been proposed. Robust pole clustering in LMI regions, considering a
polytopic description of the reduced-order system governing the sliding dynamics, has
been employed for synthesising a parameterised switching gain matrix which defines a
sliding surface. The control law uses the state vector in its entirety. A feasibility LMI
problem has been formulated, involving a polytopic model of the plant, for designing
the gain matrix in the linear component of the control law. In turn, the switched part
of the control law takes into account the matched term associated with uncertainties,
nonlinearities and/or exogenous perturbations. The design of the nonlinear component
is dependent on the solution of the feasibility problem when synthesising the gain
matrix of the linear state feedback component. Angular position control of an uncertain
DC motor has demonstrated the applicability of the proposed state feedback sliding
mode control approach. In addition, computer simulations have demonstrated the

effectiveness of this control scheme.

New sliding mode control approaches using only measurable state variables have
been proposed in this thesis. Thus, only output signals are required for the class

of sliding surfaces and control laws considered. This is useful in many engineering
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applications since the state vector in its entirety might not be measurable because some
internal states are not available, lack physical meaning and/or software and hardware
overhead costs may be high. Two approaches have been proposed: sliding mode static
output feedback and sliding mode dynamic output feedback. Conclusions on these two
approaches are drawn in the sequel.

Firstly, an output feedback sliding mode controller which is static in nature and
uses polytopic models has been developed. The existence problem has been formulated
as a static output feedback problem in terms of a polytopic model of the reduced-
order sliding mode dynamics. Without loss of generality, an LMI-based algorithm was
adapted and can be applied to design the sliding surface. In addition, the control law
requires only output signals. The linear component is designed through an optimisation
LMI problem involving LMI regions and a polytopic model of the plant considering
the mismatched uncertainty, whilst the discontinuous term is designed in such a way
that the invariance with respect to matched uncertainties is achieved. As in the state
feedback approach, the design of the nonlinear part depends on one of the matrix
variables obtained if the optimisation problem formulated for the design of the linear
output feedback gain matrix has a solution. The control law does not incur high
control effort and does not induce chattering since the unit vector has been smoothed
using the differentiable approximation introduced in Section 2.5.4. Two design studies
have been carried out. The former corresponds to a numerical example borrowed
from a paper studying the problem of designing a sliding mode static output feedback
controller for systems of the class considered in this thesis. The latter is concerned
with the lateral control of an aircraft in which some parameters have been assumed
uncertain. Computer simulations were carried out in order to assess the proposed
sliding mode static output feedback control (SMSOFC) approach. The results obtained
were satisfactory and reflected the applicability of this new approach to solve control
problems when only output information is available.

Secondly, although the SMSOFC strategy proposed in this dissertation, and indeed
static output feedback in general, is the simplest approach when only a sub-set of the
state variables are available for measurement, it may not be applied in some particular
cases when a system is not static output feedback stabilisable or if the closed loop per-
formance requires improvement. In this thesis, a sliding mode dynamic output feedback
control approach has been proposed to deal with such situations. The reduced-order
system representing the sliding mode dynamics is augmented and described using a
polytopic model. Then, the sliding surface synthesis problem can be posed as a static
output feedback problem. The algorithm employed in the sliding mode static output
feedback control approach has been adapted and employed to design a compensator-
based sliding surface. The mismatched parametric uncertainty is considered in the
formulation of the problem using a polytopic description and LMI methods. With
regard to the control law design, an LMI optimisation problem using an augmented
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representation of the plant has been formulated in order to synthesise the linear out-
put feedback gain matrix. The switched component of the control law tackles the
mismatched uncertainties, nonlinearities and/or external disturbances. This part of
the control law, as in the previous described control schemes, is dependent on the
design of the linear component. An augmented output vector is used in both compo-
nents of the control law. A numerical example considering an uncertain plant, whose
reduced-order system is not static output feedback stablisable, has been used to illus-
trate the proposed control scheme. Simulation results have provided evidence of the
applicability of the sliding mode dynamic output feedback controller developed in this
dissertation using polytopic models and based on LMIs.

Another problem considered in this thesis was the synthesis of a single sliding mode
output feedback controller, if such a controller exists, for the simultaneous stabilisation
of a finite collection of plant models. One approach to the simultaneous stabilisation
problem is to split the operating space into a finite number of operating conditions.
This has practical relevance since it facilitates several applications, e.g. stabilisation of
uncertain plants; fault tolerant control where the operating conditions are regarded as
the fault-free and various fault affected plant models; stabilisation of plants investigat-
ing different operation conditions. The plant model belongs to the class of continuous-
time systems described in state-space form by a finite set of different state matrices,
but common input and output matrices. Furthermore a term associated with mis-
matched uncertainties, nonlinearities and/or exogenous perturbations is also included.
The problem of simultaneous stabilisation has been addressed from the multi-model
paradigm rather than using polytopic models in order to encompass a wider number
of systems and control engineering problems. Moreover, it facilitates exploration of
the use of a finite set of Lyapunov matrices instead of a single Lyapunov matrix as
in the strategies currently proposed in this thesis using polytopic models!. Synthesis
frameworks for static and dynamic output feedback variable structure controllers with
sliding modes have been proposed. These sliding mode output feedback control strate-
gies can be applied to a set of uncertain linear systems whose matched and mismatched
uncertainties can be dealt with. An interpretation of the different state matrices is that
they constitute mismatched uncertainty. This is a noteworthy feature since most of
the existing sliding mode output feedback control approaches only tackle matched un-
certainties and a ‘one plant’ model. Some conclusions about the deployed sliding mode
output feedback approaches are given below.

A sliding mode static output feedback controller design based on LMIs has been
proposed for the problem of simultaneous stabilisation of a finite collection of uncertain
system. The sliding mode existence problem has been formulated as a static output
feedback problem considering a family of uncertain LTI models. The LMIs involved

1The use of parameter-dependent Lyapunov matrices will be briefly discussed here in Section 8.2.
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in the solution of the existence problem have as many Lyapunov matrices as models
considered. An iterative algorithm involving LMIs was adapted to solve numerically
the sliding mode existence problem. An LMI optimisation problem has been formu-
lated in order to synthesise the linear output feedback gain matrix of the control law.
The nonlinear component is designed in such a way that the system response is not
sensitive with respect to the matched uncertainty. Moreover, as in the previous ap-
proaches proposed in this thesis, the design of the nonlinear component is dependent
on one of the matrix variables resulting from the solution, if such a solution exists, of
the LMI optimisation problem for the linear component. The proposed sliding mode
static output feedback controller has demonstrated, through computer simulations, its
efficacy in simultaneously stabilising a lateral motion autopilot for a remotely piloted

vehicle when different flight conditions were considered.

A design framework for a compensator-based sliding mode controller using only
output information, which simultaneously stabilises a finite set of models, has been
proposed. This synthesis methodology can be applied when the collection of sliding
mode reduced-order systems is not static output feedback stabilisable. Asin Chapter 5,
the reduced-order system, which describes the sliding mode dynamics, is augmented
by adding a compensator, consequently introducing further dynamics to the sliding
motion. A static output feedback problem has been formulated and the iterative algo-
rithm used for designing the sliding mode static output feedback controller has been
re-cast to design the compensator-based sliding surface. An LMI optimisation prob-
lem has been posed for designing the linear part of the control law considering an
augmented representation of the plant due to the inclusion of a compensator. An aug-
mented output vector is available to the control law. The nonlinear part of the control
law depends on the solution of an LMI optimisation problem for the linear component.
Two design examples have been considered. Firstly, a set of plant models which are
not static output feedback stabilisable have been stabilised by means of the proposed
sliding mode dynamic output feedback (SMDOF) controller. This makes the proposed
approach appealing. Secondly, a sixth-order gas absorber operating under different con-
ditions has been considered as a collection of models and a single SMDOF controller
stabilises the plant in all the operating conditions considered. These two examples
have demonstrated the efficacy of the approach through computer simulations.

An LMI-based design framework requiring only input and output signal from the
plant has been described for synthesesing the gain matrices of a sliding mode observer.
The observer gain matrices were parameterised in terms of only one design matrix. All
other components of the gain matrices are part of the system sub-matrices written in
a canonical form. The class of systems to which the design approach can be applied
consists of uncertain plants with both matched and mismatched uncertainties. The
effect of the mismatched uncertain component is considered as a disturbance whose

effect on the output estimation error has to be minimised. For this purpose, a convex
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optimisation problem is formulated using a polytopic description of the reduced-order
error system in terms of Ho, performance. This reflects the maximal amplification
of the disturbance which can be interpreted as the worst case gain of the reduced-
order error system with respect to the disturbance. The optimisation problem involves
LMIs and can be solved numerically using any available LMI software. An exhaustive
stability analysis has been carried out for the sliding mode observer and the class
of uncertain systems considered. The concept of practical stability, formally called
uniformly ultimate bounded stability, has been applied. The proposed methodology has
been illustrated through a detailed design involving a numerical example. The results
obtained from computer simulations demonstrate the applicability and effectiveness of
the approach.

8.2 Brief Suggestion for Future Research

The concept of quadratic stability, considered within the design frameworks in
Chapters 4 and 5, imposes the condition that a single Lyepunov matrix must exist
over the entire polytopic domain. This is an inherent source of conservatism that can
be reduced by considering parameter dependent Lyapunov matrices. Hence, a natural
extension of the work presented in the aforementioned chapters is: the formulation of
the sliding mode existence and reachability problems in terms of parameter-dependent
Lyapunov matrices, the study of LMI-based algorithms for state feedback and static
output feedback problems employing such classes of Lyapunov matrices, and the adap-
tation of the most suitable algorithms to the sliding mode context considering polytopic
models. Note that new nonlinear components for the control laws have to be developed
since such components, in the current approaches proposed in this thesis, depend on a
single Lyapunov matrix (P in the state and static output feedback cases, and P,y in
the dynamic output feedback approach).

Another area for future research lies in the investigation of the discrete-time coun-
terparts of the problems addressed in this dissertation. This could be pursued by ini-
tially considering a single Lyapunov matrix and then parameter-dependent Lyapunov
matrices.

The application of the design frameworks proposed in this thesis to real world plants
would be appealing as further research in the future. Technical issues associated with
the implementation of these variable structure controllers with a sliding mode and
involving sliding mode observers could be challenging though.

Another possible extension of the synthesis methodologies developed in this disser-
tation lies in considering more general mathematical models of the plant. For example,
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%x(t) = (A + AAL))x(t) + B(u(t) + £(t, %, 1)) + Dafn(t, x) + Dyfe(t) (8.1)

¥(t) = (C+ ACH)x(t) (52)

and
x(1) = Ax(t) + B(u(0) + &(t,x,u)) (8.3)
y(t) = Cix(t) (8.4)

for ¢ € I(1, N). These models are quite attractive from a passive fault tolerant control
viewpoint, since faults in sensors could be dealt with. Recall that faults affecting the
state and input matrix can be handled using the class of systems already considered
in this thesis. Nevertheless, the models presented in (8.1)-(8.2) and (8.3)-(8.4) allow
a wider class of systems to be considered. Note that, D,,f,, represents mismatched
uncertainties, nonlinearities and/or external disturbances which are not associated with
the state matrix, whilst D f¢(-) may be used for modelling faults.

Fault estimation using a sliding mode observer for plants with matched and mis-
matched parametric uncertainties described by polytopic models represents an impor-
tant area for future investigation. Its practical significance resides in the fact that real
physical plants are uncertain and their operation is subject to faults in any of their
components. Any fault has to be detected in order to avoid performance degradation
or even the complete breakdown of the system.
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"The purpose ofcomputation is insight, not numbers.’

Richard W. Hamming (1915 - 1998)

High-level Implementation of LMIs

The main attraction for posing problems as LMIs, is that LMI problems can be
tackled using efficient numerical tools and solved in polynominal time (Boyd et al,
1994). Solving and LMI problem involves (1) determining whether the problem is
feasible, and, if the problem is indeed feasible, (2) finding a solution. In this thesis,
the LMI toolbox of Matlab (Cabinet er al, 1995) and the toolbox SeDuMi (Sturm,
1999) have been used. Both of these toolboxes use interior point methodsL. With these
toolboxes, LMI problems can be formulated, in the Matlab environment, in a high-level
symbolic form which is relatively transparent to the user. The toolboxes then translate
these high-level symbolic forms into numerical optimisation problems and then solve

the LMI problems as described above.

In order to illustrate the implementation of LMI problems using the LMI control
toolbox of MATLAB and SeDuMi, partial pieces of code are presented in the sequel. It
is important to highlight that the code shown in this appendix represents only a small

fraction of all MATLAB scripts developed during this research project.

The following code, using commands of the LMI control toolbox, corresponds to the
switching gain matrix synthesis considered in the design example presented in Section
4.3.3.

“Details on the intericr-point methods can be found in (Bland e/ ai, 1981), (Boyd er a/, 1994)
and (Scherer & Welland, 1999).
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% Definition of LMIs
setlmis([]);

% Definition of Decision Variables
Q-1 = Imivar(l,[(n —m) 1]);
L1 =lmivar(2,m (n— m)]);

% Definition of the LMI Region as LMI constraints
% Strip constraint
fori=1:N
Imiterm([i 11 Q-1],1, (A_11{i})")s");
Imiterm([i 1 1 — L_1], -1, (A_12{i})")s');
Imiterm([i 1 1 Q-1], (2 % h), 1);
end

% Circle Constraint

fori=1:N
Imiterm([(2 +1) 11 Q.1}, —xd, 1);
Imiterm([(2 +1) 1 2 Q.1], A_11{i}, 1);
Imiterm([(2 +i) 1 2 L_1], A_12{i}, ~1);
Imiterm([(2 +1) 1 2 Q-1],cn, 1);
Imiterm([(2 +1) 2 2 Q_1], —rd, 1);

end

% Conic Constraint

fori=1:N
Imiterm([(4 +1) 1 1 Q_1], sin(alpha), (A_11{i}),’s);
Imiterm([(4 +1) 1 1 L_1], —sin(alpha) * A_12{i}, 1,s');
Imiterm([(4 + 1) 1 2 Q-1], cos(alpha) x A_11{i}, 1);
Imiterm([(4 4 1) 1 2 Q_1], —cos(alpha), (A_11{i}));
Imiterm([(4 + i) 1 2 L_1], —cos(alpha) * A_12{i}, 1);
Imiterm([(4 +1) 1 2 — L_1], cos(alpha), (A_12{i})");
Imiterm([(4 + 1) 2 2 Q-1],sin(alpha), (A_11{i})’,s);
Imiterm([(4 + 1) 2 2 L_1], —sin(alpha) = A_12{i}, 1,'s');

end

Imiterm([—7 11 Q-1],1,1);

LMI_Sys = getlmis;

% Feasibility Problem

[tmin_LMIP, x_feas LMIP] = feasp(LMI_Sys);
% Results

Q1 = dec2mat(LMI_Sys, x_feas_ LMIP, Q_1);
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L1 = dec2mat(LMI_Sys, x_feas_ LMIP, L_1);
K = L1 % inv(Q1);

Gamma = [K eye(m)];

In what follows, the optimisation problem in Proposition 7.1 is presented using
SeDuMi commands.

cvx_precision high

cvx_begin sdp

variable Q1((n-p),(n-p)) symmetric
variable FL((n-p),(p-m))

variable gamma

minimize (gamma)

QL >0

fori=1:N
[ Abar11" Q1+ Q1 % Abar_11 + A bar.211’ * FL/ + FL * A_bar_211

Q1 # DeltaA _bar_u_1{i} eye(n — p);

DeltaA baru 1{i}' * Q1 — gamma eye(n) zeros(n, (n —p));
eye(n —p) zeros((n —p),n) — gamma=xeye(n—p) < 0

end

cvx-end

L = inv(Q1) * FL
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