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dii
GLOSSARY OF SYMBOLS

All vectors are underlined; matrices are denoted by capital Roman
letters; a superscript of T indicates transpose.

An underlined symbol without a superscript of t 1is a column vector
e.g. X 1is a column vector and 5? is a row vector.

The i th component of x 1is denoted X5 3 the component of A
in the i th row and j th column is denoted Aij .

Superscripted parentheses are used to denote values at an iteration
e.g. §F°) is the initial value assigned to x and EFP) is the
value of x after the p th iteration.

Superscripted square brackets (e.g. E[Q]) are used to denote
evaluation within a main iteration.

A superscript of * means a solution value

*

e.g. X, means the value of x at the first solution; this is denoted

*
X if there is only one solution.

Two norms are used:

n 2 %
el = mex xgl o amaxlh= 3 Il

1gign

where n is the number of components of x .

The following commonly-used variables have the meanings given below.

B an approximation to the Hessian matrix;

d initial displacement for the transistor model problem;

f the problem objective function;

. T
g the nx1 gradient vector of f : aaxf aaxf cos aaxf] H
: A B “n
. . . 92f

H the nxn Hessian matrix of f defined by H.. = ——— ;

1] axiaxj
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I the nxn unit matrix;

i,j,k,r general integer variables;

s,
J the mxn Jacobian matrix of s defined by Jij = 5—}23-;
j
m the number of simultaneous equations or component functions in
a sum of squares problem;
n the number of unknown variables;
P the iteration number except for Chapter V where it is the complex

frequency variable;

q normally an evaluation number within an iteration;

S an approximation to the inverse Hessian matrix;

S the mx1 vector of component functions in a sum of squares
problem;

X the nx1 vector of optimisation variables;

S an nx1 vector displacement of x ;

8 the objective function of the sub-problem in the second derivative
sum of squares algorithms;

A, u scalar search parameters;

g the mx1 vector of component functions in the sum of squares
sub-problem of the second derivative algorithms;

[\ the zero vector (either mx1 or nxl).
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CHAPTER 1

INTRODUCTION

One of the consequences of the development.of electronic computers
has been the growth of numerical optimisation theory and its application
to a wide variety of problems in many disciplines. The objective in
all such problems is to determine the optimal values of a set of
variagbles by minimising (or maximising) a function of those variables.
The function to be optimised, which is termed the objective function,
may have some direct significance. For example, in an engineering
environment the objective function'miéht represent the weight, the
strength or the cost of some component or structure. Alternatively
the objective function might be artificially constructed to reflect an
optimal state at its maximum or minimum value. .}f it is desired, for
example, to fit a mathematical model to numerical d#ta, a suitable choice
might be the sum of the squares of the differences betwéen the numerical
data and the corresponding values predicted by the model. In his book
on non-linear parameter estimation, Bard (1) lists a number of application
areas, from nuclear physics to the design of artificial limbs, in which
examples of this type occur. The data may bé obtained from experimental
observations, or derived from consideration of the desirable properties
of the device being modelled.

The book edited by Avriel, Rijckaert and Wilde (2) contains
optimisation problems from various branches of engineering: chemical,
electrical, civil and mechanical. One application included (Cutteridge
(3)) is the use of optimisation in electrical network design. Under the
direction of Dr. 0.P.D. Cutteridge, electrical network synthesis has been
a research area at the University of Leicester for a number of years,
early work being based on networks of fixed topology (e.g. Cutteridge
(4)), and more recent developments allowing the evolution of a network

from a basic structure (Cutteridge (5), Cutteridge and Di Mambro (6)).



This application is of the model-fittiﬁg variety where it is desired to
match parameters to values obtained from design considerations. The
methods developed rely heavily on optimisation techniques to attempt to
solve, at various stages, a set of highly non-linear simultaneous
equations. Experience has shown that the optimisation techniques which
are most successful are combinations of two basic algorithms (Cutteridge
(7),(8)), chosen for their complementary properties. The one normally
used for obtaining final convergence is based on the Gauss-Newton method,
which uses first partial derivatives of the individual functions forming
the sef of simultaneous equations. A second algorithm is necessary
because the Gauss-Newton method will not converge if the initial estimate
of the solution is too inaccurate.

It was against this background that the present research was undertaken.
The main question to be considered was whether any benefit could be obtained
from the use of second partial derivatives of the component functions.
Although there exist algorithms which make use of the second partial
derivatives of the objective function, to the author's knowledge there has
been no published algorithm for the solution of non-linear simultaneous
equations which makes use of the second derivatives of the component
functions. Although the former type of method can be applied to such
problems, there is evidence to suggest they are not as effective as the
custom-designed methods. |

Based on consideration of the next term in the Taylor series e&pansion
beyond those terms used by the Gauss-Newton method, several new algorithms
were developed and assessed on trial problems. The most difficult
problems were taken from the electrical network design application, although
several more simple problems from various sources were used during the
research to verify hypotheses and to check programming. The algorithms
were not written in any way which would bind them to a particular

application but could be applied to any set of simultaneous equations, or



indeed to the more general minimisation of a sum of squares, provided that
the second derivatives of the component functions are available. Thus

the scope of the work is multi-disciplinary.

1.1. Thesis layout

Chapter II gives the derivation of the basic equations for a selection
of optimisation methods. A complete survey of all ﬁethods was beyond the
scope -of this thesis so the content has been restricted to those methods
which make use of first or higher order derivatives or which gpproximate
derivatives by a numerical method using function values only. Even with
this restriction the content of Chapter II does not pretend to be complete;
however all algorithms used in this research and those closely related,
are included. Chapter II also contains a description of some factors
which influence the choice of an algorithm, and presents some conflicting
views on these topics.

Chapter III presents some basic numerical results using three of the
algorithms previously described. It aims to clarify some of the points
of the previous chapter and illustrates the effect of using the same basic
algorithm with different implementation details. The results also
demonstrate the superiority of a sum of squares algorithm over a general
function minimisation algorithm in the type of problem considered.

Chapter IV describes the development of second derivative sum of
squares methods and gives the results of various trials which were
conducted during that development on a transistor modelling problem. 1In
Chapter V, the final methods were further tested on problems taken from
the field of circuit design. The results of these two chapters show that
the second derivative method is more powerful than its first derivative
counterpart in that fewer iterations were required when convergence to the
same solution occurred and that the former method was able to converge to

a solution from less accurate estimates. In addition an example is given



to demonstrate that the extra range of convergence observed cannot

necessarily be obtained by use of a general function minimisation method.
Chapter VI examines some possible extensions to the new algorithms

including the use of alternative basic equations containing higher

derivatives.

1.2. Computing facilities used

During the period'of research (1972-1978), several computers have
been used. Initial invesﬁigations were carried out on the University
of Leicester's ICL-Elliott 4130 but by far the major part of the work was
done on the Rutherford Laboratory ICL 1906A using the George IV operating
system. Main access to the machine was via a MOP teletype terminal used
for on-line editing and job submission, and a GEC 2050 remote job entry (RJE)
station which was used to receive line printer output. The teletype and
RJE station were sited at the University of Leicester and were connected
to the mainframe via a Post Office Tariff 'T' line. Following the
closure of the ICL 1906A at the Rutherford Laboratory and during
periods when access via the above facility was not available, use was made
of the ICL 1906A at the University of Nottingham.

All programs containing optimisation algorithms were written in Algol
60 to run in fully automatic batch mode. Use was made of the Numerical
Algorithms Group (NAG) library of procedures for software for matrix
inversion and for the provision of a variable metric algorithm.

Figures 4.3 to 4.5 were produced on the Rutherford Laboratory III FR80
microfilm recorder. Flow charts were produced on the computer aided
design research group's configuration at Leicester, using the interactive

graphical program FLOW (9).



1.3 Notation

The author would like to draw the reader's attention to the glossary
of symbols situated at the beginniﬁg of this thesis and to add some
remarks. A superscript consisting of an integer expression enclosed by
parentheses indicates evaluation of the variable at that iteration,
€.ge i(pﬂ) means the value of x at the (p+l)th iteration. These
superscripts may be attached to scalars, vectors or matrices but are
~ sometimes omitted when no confusion can occur, Similarly, the independent
variables of certain functions may also be omitted. Thus _g_(icp)) may be

(p)

written g or merely g .



CHAPTER II

DERIVATIVE-RELATED OPTIMISATION METHODS

The objective of this chapter is to present some of the methods which
are applied to optimisation problems and to discuss some of the factors
which influence the choice and implementation of an algorithm, In parti-
cular, methods for local. unconstrained optimisation are considered,

Following some basic definitions and a short section to show the
relevance of the subject matter, the basic equations and their derivation
for a number of optimisation methods are given.. The methods are cate-
gorised according to whether they were designed for general function
optimisation or for sum of squares optimisation. They are further sub-
divided according to the order of analytical derivatives required.

There is an enormous number of such methods and a comprehensive survey
was beyond the scope of this thesis, The methods selected for mention are
those that have some bearing on the main research theme, i.e. thase methods
which make use of analytical derivatives or which attempt to approkimate
derivatives using function values only. Even with this restriction the
content is incomplete. However all methods which were used in this
research plus those closely related are included. Various publications
can be consulted for more extensive surveys, e.g. Kowalik and Osborne (10),
Powell (11),(12), Murray (13) and Lill (14).

It is épparent, and perhaps unavoidable considering the amount of
literature on the subject, that some algorithms are adorned with multiple
names and worse still, occasionally the same name is used fo; several
different algorithms. This is especially true of methods associated with
Newton, In naming these methods here, where the definitive reference
has been unobtainable, the author has attempted to be consistent with the

majority of workers in the field.



2.1. Basic definitions

The general, gfobal optimisation problem may be regarded as the
problem of finding the minimum value of a real function, the penalty or
objective function, defined by one or more variables. There is no loss
of generality here since the problem of finding the maximum value of a
function is merely the equivalent of minimising its negative. It is
assumed that the variables are real and continuous over the region of
interest. This is in contrast to the discrete optimisation problem of
integral variables.

Suppose there are n variables represented by the vector
: T
X= X2..eX
x=(x7 x2 n)

and f is the objective function defined for all x within the region
of interest R .
. %*
A global minimum is defined to be any vector x within R which

satisfies
£(x") ¢ £f(x) for all x within R .

It is therefore possible to have more than one global minimum.

A Local minimum is defined to be any vector x* within R which satisfies
£(x") € £(x) for all x within R” (2.1)

where R* 1is a neighbourhood of x* within R . If there is strict
inequality in Equation (2.1), the minimum is sometimes called a proper
local minimum (Kowalik and Osborne (10)) or a strong localminimum (Murray
(15)). It'is possible to have several local minima unless the objective
function is convex over R , in which case there is only one local minimum

which is also a global minimum,



If the components of x are permitted to take any.real value, i.e.
if R 1is equivalent to n-dimensional real space " , the problem is one
of unconstrained optimisation. In practical problems, there is often a
restriction on the possible values of component x's , in which case the
problem is constrained. In theirkreviehlof global optimisation methods,
Dixon, Gomulka and Szego (16) point out that use of a digital computer
automatically places upper and lower bounds on the variable values and
their definition of an unconstrained problem is modifed accordingly.
However, this author would like to distinguish between the problem and the
method of solution, believing that the definition of Diion et al. is

appropriate to the latter.

2.2. Relevance of local unconstrained optimisation

Since the advent of the digital computer much attention has been devoted
to methods for solving the local unconstrained minimisation problem.

The techniques developed have application outside their apparently limited
area and continue to have a major role to play in both constrained and global
optimisation studies.

In 1966, Box (17) gave a number of transformations which could be
applied to minimisation variables thus giving the means of respecifying
certain constrained problems so that they may be treated as unconstrained.
Furthermore, certain more complex constraints can be effectively imposed
by suitable definition of the objective function to which an optimisation
method for unconstrained problems is applied. Lootsma (18) has reviewed
such approaches.

Several algorithms for finding global minima require local optimisation
methods, including the class of methods known as the multistart algorithm
which is the most widely used global optimisation technique at the moment.

This algorithm has been specified by Dixon (19) as follows,



Step 1: select Xx at random;

Step 2: start a local minimisation algorithm from x with a

gradient termination criterion;

Step 3: test whether the final point is probably the global minimum

~and if so stop, otherwise return to Step 1.

Some examples of other global optimisation techniques which are not
multistart algorithms but nevertheless either require, or are able to make
use of, a local minimisation procedure are the method of Treccani, Trabattoni
and Szego, Evtushenko's method and Torn's clustering algorithm. The first
two methods are described by Dixon et al. (16) and some experience with the

use of Torn's method has been described by Gomulka (20).

2.3. Some methods for minimising a general function

Local minimisation of a function of unconstrained variables, where no
special assumptions of the form of the function are made, is attempted by
applying an algorithm which requires the evaluation of the function for
prescribed values of the variables. In addition, the algorithm may require
the first or second partial derivatives of the function with respect to the
variables. The majority of such methods require a single initial estimate

(o)

X of a minimum and from the supplied information construct a sequence
of points (in n-dimensional space) ﬁﬁl) , 5F2) ... which hopefully converge
to a minimum 5f . A notable exception to this general approach is Nelder
and Mead's simplex algorithm (21) which requires (n+l) initial points.

The simplest function that can have an unconstrained minimum is a

positive definite quadratic function:

u) = a+bx + 5 xA

where A 1is a positive definitive symmetric matrix.
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An iterative process for which there exists an integer r such that
from any point EFO) it is known that the minimum of u(x) will be
obtained in at most r steps is said to possess quadratic ferundination.

An algorithm is said to possess T 4fep second order convergence if

there exists a. p, and o such that
1P |, < o 1] 2P 1,37 for a1 p > p.

Most commonly used algorithms possess quadratic termination, while it
is necessary to restrict the objective function in order to prove second

order convergence for any algorithm (Dixon (22)).

2.3.1. Algorithms using second derivatives

It is appropriate to describe first one of the oldest optimisation
techniques, the Newton-Raphson method, which had its foundations in the
seventeenth century. It still has relevance today because it e#hibits
good terminal convergence properties. The method requires the
evaluation of second derivatives of the objective function and is based

upon the Taylor series expansion:

£x + 8) = £(0) + 8T + ...

where g is the gradient vector of f .
Ignoring higher order terms, differentiating, and equating the first

derivatives to zero, a necessary condition for a local minimum:
0=g+H§ | (2.2)
where H is the Hessian matrix of second partial derivatives of f .
Providing H 1is non-singular, the Newton-Raphson iteration is defined
by:

5(p'fl) = x®@ +,i(p) = <@ _ H(p)-lg(p) _ 2.3)



11

Clearly this algorithm minimises the quadratic function wu(x) in one
iteration. However, on a general function the algorithm may not
converge and as is apparent from observing that Equation (2.2) is derived
from the condition for a stationary point only, the sequence defined by

Equation (2.3) may converge to a non-minimum point.

For
these reasons, it is common practice to treat -H-Ig_ as a search
direction only, so that Equation (2.3) is redefined:

62

where the scalar A may be chosen merely to ensure a decrease in the

objective function or to locate the minimum of ¢(}) = fQ&qﬂ -AH(p)-lng))
to a certain accuracy.

Equations (2.3) and (2.4) cannot be used if H(p) is singular. One
possible remedy, described by Murray C23j, is a modification of Equation

(2.3) on the lines of the Marquardt-Levenberg method which was originally

intended for the minimisation of a sum of squares and is described in

Section 2.4.1. When applied to a general function, the method becomes:
<P 2 @ @), @)1 () (2.5)
where Q(p) is some specified matrix and A(p) is a scalar chosen so that

(H(P) + A(p)Q(p)) is positive definite and f(zﬁp+1)) < f(zﬁp)) . One
(r)

possible choice for Q is the unit matrix I .

(p)

This approach, including a similar choice for Q , has been used
by Cutteridge (8) who derives his basic equation from extension of the
steepest descent method (see next section) to include second derivatives.

From the equation:

n 2
5y = - u{af + 3 s, —-3—f—> (3=1,2,...,m) (2.6)
j
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which in vector-matrix form becomes

3

- u(g. + H_§_)

we have

-m-anTg

’

|o
L}

where | ’ A= - 1 .
u

In the form of Equation (2.5) this becomes:

P 2 () ) Pyl () (2.7)

which is merely Equation (2.5)Vwith Q(p) = -1,

Equation (2.7) forms the basis of Cutﬁeridge's gradiept-descent method,
further details of which are given later.

Other alternatives to Equation-(2.3), which still retain the use of
second derivatives, have been proposed by Greenstadf (24); ahd.by7Fiacco

and McCormick (25).

2.3.2. Algorithms using first derivatives

Mention has alréady been made of the steepest descent method which is
another old method having been devised by Cauchy (26) in 1847. It
requires the gradient vector g of first derivatives of the objective

function and defines a sequence of points by

i(P*‘l) = <P _ A(p)E(P)

where A(p) is chosen to minimise the function of one variable
o(A) = f(zﬁp) - Agﬁp)). The algorithm does not possess quadratic termina-
tion and it is generally accepted that in its basic form the method is

unsuitable for practical problems as convergence is often intolerably slow.
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Of more use in a practical situation is the class of first derivative
methods comprising the conjugate gradient algorithms, where the sequence

of points is defined by:

1(p+1) - 1(p) . A(p)X(p«*l)

(2.8)

2,_(P+1) (@ _ P X(p)

= £

5 (P) (p)

where is the univariate search parameter and a generates
different members of the class.

On a quadratic function, the first 'n directions y are mutually
conjugate with respect to the Hessian matrix, and therefore if \(P) 4
chosen to minimise ¢(A) = f(zﬁpl-xzﬁp+1)), the minimum of the quadratic

function will be located in at most n iterations.

The most well known algorithm of this class is by Fletcher and Reeves
(27), who in 1964 defined the parameter of Equations (2.8) as follows:
0 ‘ for p=0, n+ 1, 2(n+l),

@)= & PIT(P) .
i Sou way a otherwise.

(P) \)(p))\(p-l)

If the substitution a = - ) is made in Equations (2.8)
A

then we have:

PO RN AP (P) v(P) g (p-1)

here §@ L @) @)
Defining the values of A(p), O(P) to be those that minimise ¢(A,v) =
f(EFp) - Agﬁp) + v§FP-i)) yields the memory gradient method of Miqle

and Cantrell (28). The introduction of a two-dimensional search
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represented a departure from the normal trend in algorithm design -
which was further extended by Cragg and Levy (29), who included a
k-dimensional search with k < n in their supermemory gradient method.

An iteration of this method is defined by:

N ERNONENONOR SN

i=1
A further important class of methods and one which has attracted a
great deal of attention in recent years, is formed by those algorithms
which attempt to approximate Equation (2.4) by the use of first

derivatives only. These algorithms are characterised by the following

formulae:
MCEOINCO NN O NONES
s | @), ps@, s@, )

where s®) @) () e

—

-h_’(.p) - g_(.p+1) . g(p)

and F is a matrix function for updating S , an approximation to the
inverse Hessian.

(o) .

An initial value S° of S must be provided in addition to x
(o)

The general term for such algorithms is variable metric, but if S

is a positive definite matrix, and the condition:
s @)

is observed, the algorithm may be classified as quasi-Newton. The
derivation of this condition is from observing that for a quadratic

function:

s® - yu®
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The first version of Equation (2.9) was proposed in 1959 by 'Daviden (30),

who defined:

§8° Shh's

F(5,8,h) = — -
§'h” h'sh

(2.10)

Four years later, Davidon's algorithm was revised by Fletcher and Powell
(31) and ih this form proved to be one of the best first derivative

algorithms of the decade. In 1967, Broyden (32) suggested a family of

formulae:
58" Shh's .
F(S,8,h) = — - *ayy (2.11)
£n W sh
where
sh &
y(s,8,h) = - —
h'sh $'h
and o is a scalar which. generates the family.
Clearly the Davidon formula corresponds to o =0 . Dixon (33) has

shown that for a general function the sequence of points generated by
Equations (2.9) and Q2.11) is independent of o given perfect univariate
minimisation of ¢(A) = fQEFP) - AS(p)gFP)) at each stage.

A whole host of formulae have been proposed, but in 1970 Huang (34)

showed that almost all of them could be generated from:

psz" Shy"
F(S:_a_’}l) = =
h yh
where y(S,8,h) = a8 + BSh
and 2(S,8,h) =8 + nSh .

Here there are three independent parameters, p and the ratios a:B, Z:n .
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In addition, S may be asymmetric. This family includes Broyden's
class, which is obtained by setting p to 1 and restricting other
constants to keep S symmetric, leaving one free paraﬁeter;.

The inclusion of a k-dimensional search from consideration of
directions given by previous iterations to form supermemory variants
of quasi-Newton algorithms, and indeed other methods, has been examined
by Wolfe and Viazminsky (35).

Of the various quasi-Newton formulae proposed, one that is gaining
acceptance is the complementary Davidon-Fletcher-Powell formula,

obtained by writing:

a=h" Sh

in Equation (2.11). The name is derived from the fact that this matrix

updating formula is equivalent to:

n(P p(X  p(@) 5P (PITE(P)

gP*) _ () (2.12)

TR g T @IT g @) )

where B is an approximation to the Hessian itself. Note that the
formula given by Equation (2.12) is equivalent to the Davidon formula
with S, h and § replaced by B, § and h respectively. This formula
was proposed by Fletcher (36) and in his computer algorithm was applied
in the H-updat€ form.

waever, in 1972 Gill and Murray (37) proposed that quasi-Newton
methods should be implemented in the form of Equation (2.12) by using a
triangular factorisation of an approximation to the Hessian, thereby
reducing the adverse effects of rounding error and enabling advantage to
be taken of a sparse Hessian matrix. Details of computer programs and
results obtained using this method appear in a report by Gill, Murray and
Pitfield (38). Algorithms based on those written by Gill et al.using

Equation (2.12) have now replaced the Davidon-Fletcher-Powell algorithms.

in the NAG library.
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2.3.3. Algorithms using function values only

The design of a minimisation algorithm which does not require
derivative information explicitly has attracted the attention of many
researchers and.consequently there are a number of algorithms of this
type. These will not be reviewed here, but it is appropriate to mention
two algorithms based on a similar approach.  Given that an ekpression
for the evaluation of the objeetive function is available, it is always
possible to calculate derivatives numerically and apply one of the
algorithms of the previous section. A more formal procedure was
established by Stewart (39), who based his method on the Davidon variable
metric algorithm (Equations (2.9) and (2.10)) and prescribed when the
calculation of derivatives should use the central difference formula as
opposed to the quicker but less accurate forward difference formula.

Gill and Murray (37), whilst having reservations about Stewart's choice
of step”iength, similarly describe a strategy for incorporating numerical

derivatives in their variable metric procedure.

2.4, Some methods for minimising a sum of squares

Some methods designed specifically for the local minimisation of a
function comprising a sum of squares of component functions of unconstrained
variables will now be considered. Assuming there are m component
functions, the objective function may be defined by :

m
2
£0 = ] {s;(0), (2.13)
i=1
In addition to the values of the objective function and its derivatives,

there are now available values of the component functions 51(5) and

their derivatives.
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The minimisation of £(x) in Equation (2.13) is closely related to

the solution of a set of a simultaneous equations:
: T
s = (5100 52(0) ... s ()T =0

where the value of the objective function at any stage is equal to the sum
of the squares of the residuals of the simultaneous equations. However,
whereas there is a solution 5? to the simultaneous equations if and only
if f(éf) = 0 , this is not a necessary condition for Ef to be the
solution of the general sum of squares minimisation problem. The methods
to be considered are most suitable for the simultaneous equations problem,
though they may be applied to the minimisation problem even when the
solution does not yield a zero objective function. It is a requirement
that m > n .

The following two sections discuss some methods requiring and not
requiring first derivatives of the component functions respectively. As
far as the author is aware, there is no published algorithm which is
specifically-designed for sum of squares minimisation and makes use of

second (or higher) derivatives of the component functions.

2.4.1. Algorithms using first derivatives

Consider the Taylor series expansion of the component functions:
n asi(gg

si(§f§) = 51(5) + ‘2 -—————-Gj + ... i=1,2,...,m) (2.14)
j=1 ax.
J
If higher order terms are ignored, this may be expressed in vector-matrix

form:

where J 1is the Jacobian matrix of first derivatives.

Equating the right-hand side to zero, we have:
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0 =s(x) +J5 . (2.15)

If m=n, and providing J is non-singular, we may write

s =-Jsw . ‘ (2.16)

If however m > n , Equation (2.16) is not appropriate. The approach
then is to attempt to find the least-squares solution of Equation (2.15)
i.e. a value of § which will minimise the residuals of Equation (2.15).

This 'is obtained by writing

[ |52
38, S(_Di) * 6J] =0 k=1,2,...,n
36k gt 1 ja1 ij j
whence
lil ( Ii 3s; (x) 3s; (x)
. s.(x) + ) ] =0 k =1,2 n
j=1l 1 j=1 axj j axk > ’

which in vector-matrix form gives

J's +J°Js =0 - (2.17)

Thus if J'J is non-singular, we have
§=- 0NN, (2.18)

If m=n and J is non-singular then clearly this reduces to
Equation (2.18).

Equation (2.18) forms the basis of the Gauss-Newton method, which

defines:
4 (2.19)
i(p+1) - Z(-Cp) . i(p) -
where 3P and §FP) are functions of §Fp) .
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As in the Newton-Raphson iteration, it is common to introduce a

scalar X to Equations (2.17) so that

AMs + J'I8 = 0

— —

whence }—Cpﬂ) e S IR (Jcp)’rJ(.p))-l @)t i(.p) ) (2.20)

() 'ri (p)

Provided a point at which J = 0 has not been reached and
J(p)TJ(P) is non-singular, a value of X > 0 which will reduce the objective
function can be found (see Appenaix Ij; in this way divergence may be
prevented. However, there is still the problem of singularity of
J(p)TJ(P) . This can be avoided by the use of generalised inverses
(Fletcher (40)) which are applicable whatever the rank of the Jacobian.
For appropriate ranks, this method yields Equations (2.16) or (2.19).
Fletcher also proposed a similar modification to Equation (2.3) where the
Hessian may be singular.

An alternative method for avoiding the singularity problem is by
suitably modifying the matrix to be inverted. .The earliest method for the
Gauss-Newton procedure was proposed by Levenberg (41) in 1944; and later,

Marquardt (42) indepéndehtly proposed a similar method. The Marquardt-

Levenberg method is characterised by the equation:

RN OB ORI ONIPTEOLN) (2.21)

(p) (p)

where 0O is a positive definite matrix and A is a scalar. A
common choice of Q(p) is the unit matrix I so fhat as x(p) + o the
direction given is -J(p)Téﬁp) which, as cén be seen from Equation (2.13),
is in the direction of steepest descent.

It is appropriate to mention two variations on this theme, both of
which interpolate between the direction of steepest descent and the direction

given by the Gauss-Newton point when it exists. One method is due to Powell

and is described in the next section, the other is due to Jones (43).
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Jones proposed that the locus of possible points 5FP+I)CA) in the

Marquardt --Levenberg method be replaced by a spiral passing through the
(p)

Gauss-Newton point, through x

(p)

direction at x . In this way a search of the possible new points

,» and tangential to the steepest descent

could be conducted without the necessity for re-solving Equation (2.21).
In the event of singularity of JEP)TJ(P) » @ Marquardt-Levenberg modi-

fication is used to define a point to replace the Gauss-Newton point.

2.4.2, Algorithms using function values only

Approaches similar to those used for the minimisation of a general
function are used in sum of squares problems. In 1965, Broyden (44)
proposed formulae for updating the inverse Jacobian matrix of Equation
(2.16) for the solution ofnon-linear simultaneous equations. This approach
is the counterpart of the variable metric method, but because in this case
a matrix of first derivatives is replaced the method uses function values
only. Broyden saw his method as being an alternative to other techniques
for reducing the amount of computation which had been suggested earlier,
such as using a constant Jacobian for a certain number of steps.

The hybrid method due to Powell (45), (46) uses a Jacobian update
formula which maintains non-singularity. By use of the Jacobian approii—
mation the method obtains an approximation to the Gauss-Newton point
which is used directly to define EFP+1) providing the norm of the
correction vector is sufficiently small. If it is not, the new point
§Fp+1) is taken from the line of steepest descent or the line joining the
approximate Gauss-Newton point and the predicted minimum along the line of
steepest descent. The actual point selected is dependent on the required
norm of the correction vector.

Finally, the direct use of difference formulae for first derivatives

in methods for sum of squares minimisation has been tackled by Brown and

Dennis (47). They found the exclusive use of the forward difference
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representation to be adequate.

2.5. Relationship between Newton-Raphson and Gauss-Newton

Although Newton-Raphson and Gauss-Newton were described above under
different headings, the former being a general function minimisation method
and the latter a method for a sum of squares, they are quite closely
related. For ekample, it is quite possible to apply a sum of squares
method to a general function minimisation by equating eipressions for the
first derivatives of the function to zero, thereby creating a set of
simultaneous equations. If the Gauss-Newton method; in the form of
Equation (2.16), was applied to these derivative equations, the method
would be precisely the same as applying Newton-Raphson to the general
function in the first place.

It is also possible to apply a general function minimisation method to
a sum of squares function thereby ignoring the special form of the function.
If Newton-Raphson is applied thus, the resulting equations are not the same
as the Gauss-Newton equations. .

Writing Equation (2.17) in summation form gives:

? asi ? §..8si.asi ‘
S. s— *+ ) &, —_— === 0 k = 1,2,...,n) . (2.22)
jo1 1 axk 551 b P axj axk
From Equation (2.13) we have
m 3s, g m 3s. 3s, o 3%s,
of i 9¢f. i . i
-——=ZZ s, —= and ——=2}'[-.———-—+s.-—-——].(2.231
) jop L axk axjaxk 1o axj axk i aijxk

Substituting the above in Equation (2.2) gives

m asi n m
Z si 9x * Z . z

j=1 7i=1

( 3s, 3%s, ]
S, =0 (k=1,2,...,n)
ax Bxk i axjax.k
(2.24)
Equations (2.22) and (2.24) differ by the term involving second derivatives
and therefore it is often said that the Gauss-Newton method approximates

the second derivatives of the objective function by:
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m 3 as.
Z x. . (2.25)

"k

32f

axjaxk i

“lk >

However, the inference that Gauss-Newton is an approximation of Newton-
Raphson is, in the author's view, incorrect. An approximate method is
generally taken to mean one that gives inferior results to those given by
a more precise method. The results of the next chapter show that on
certain problems this is not the case with Gauss-Newton and Newton-Raphson,
and therefore the two methods should be considered to be distinct.

Finally it is appropriate to mention that since the Marquardt=Levenberg
methods are based on the two Newton methods, the relationship (2.25)
also exists between the general function version and the sum of squares

version (cf. Equations (2.5) and (2.21)).

2.6. Desirable properties of an optimisation method

Before assessing the suitability of an optimisation method fof a
particular problem or range of problems, it is necessary to consider the
desirable properties of the method in a practical rather than mathematical
sense. This question has been considered by Himmelblau (48), who has
presented one of the most extensive comparisons of optimisation algorithms
for minimising a general function; 15 problems were used to compare a
- total of 26 implementations from 15 basic algorithms. Himmelblau
states that it is generally accepted that an algorithm's robustness, i.e.
its ability to solve a range of problems, is the primary criterion to be
used in the assessment of a general purpose algorithm.

This should be the case, yet it would appear from published material
that a comparison of successful performance on relatively simple problems
is given far more emphasis. Furthermore, such comparisons often do not
give the computer time taken to termination, though in defence of this
it must be said that the actual central processor time used by a program

cannot be readily calculated on many machines, something that was recog-
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nised by Lootsma (49) in 1972 and is still apparent today (see Séction 4.7).

In practical situations the concern is only that type of problem
currently being posed. It is therefore the ability of the algorithm to
solve a restricted range of problems that is of primary importance rather
than its Suitability to the general purpose role. Unfortunately
practical engineering problems, such as those described later, are generally
more difficult than those problems used in published assessments, which
are therefore of limited use.

However, assuming suitable algorithms have been identified, their
efficiency in terms of computation time for the given problem becomes
relevant. This can only be calculated from previous assessments if they
included computation times, not only for the whole run, but for individual
steps of the problem solution such as function evaluation time, derivative
evaluation timé etc. The number of function evaluations or iterations is
also necessary, but without additional information is inadequate. In
order to complete the calculation of estimated computation time on the
user's machine,it is also necessary to know the relative computer performances,
for which the report by Verstege and Wichmann (50) is useful.

But the algorithm's success rate is of primary importance and its
efficiency is.of secondary importance. The development of faster computers
has caused a shift in the relative importance of these two characteristics
from the latter to the former and will continue to do so.

One further point which is often overlooked should be mentioned here,
namely performance of an algorithm on problems which it is unable to solve.
If it is possible to recognise that the algorithm is failing then the
adoption of an alternative strategy is enabled without further useless calcu-

lations. This ability may be regarded to be of tertiary importance.
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From the mathematical viewpoint, Wolfe (77), (78) derived conditions

for a general algorithm of the form:
pp*i) . *(p) , x*PhCp)

either to converge to a stationary point or to yield f(x) * when
applied to certain (loosely restricted) functions. These conditions
have been restated by Dixon (79) in a more simple form:
on a well behaved function, the above algorithm will satisfy the
termination criterion ||g(x)|| < providing that on a regular
subsequence of iterations the following three conditions hold:
(i) the direction of search 6 has a significant component in
the negative gradient direction;
(ii) the step taken is bounded away from zero;
(iii) the reduction in the objective function is bounded away
from zero;
and providing that on other iterations the objective function

value does not increase.

However, Wolfe's conditions do not guarantee that the limit point
of the algorithm is a solution of the problem under consideration. In
a minimisation problem the point reached may not be a minimum and if
the problem is the solution of a set of simultaneous equations, even a
limit point which is a minimum need not solve the equations. This may

be seen from Equation (2.23) where

g =2j\
Thus ¢ = 0 gives m-rank(J) non-trivial independent solutions for
Nevertheless, it would be expected that algorithms which always satisfy
Wolfe's conditions have a head start in attaining the property of

robustness though it is possible that a degradation of efficiency could

result.
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2.7. Factors influencing algorithm robustness and efficiency

The identification of the desirable properties of an optimisation
algorithm raises the question as to which factors influence the attainment
of such properties. The next sections discuss three factors which effect

robustness and efficiency, namely:

(i) the use of derivative information;
(ii) general function minimisation or sum of squares minimisation;

(iii) the univariate search type.

While the first two topics effect the choice of a method, the third effects
itsimplementation. The second assumes of course that the objective
function can be expressed as a sum of squares.

All three topics have been subject to conflicting views in the past
and some of these will be given. Wright and Cutteridge (51) have stated
opposing views on all three topics and on four others in addition:
variable transformations, multimodality problems, sampling methods and error

function definitions.

2.7.1. The use .of derivative information

The case for using first and higher order derivatives, as stated by
Wright and Cutteridge, is that the more information there is available at
any stagé of an optimisation procedure, the better can decisions be made.
Two points are made in support of the case against. First, derivative
information remote from the solution is far too local and second, in
highly non-linear space the Taylor series approximations, on which many
derivative methods are based, have little mathematical meaning.

Apart from the possibility that the use of derivative information is
ineffective, two other reasons for avoiding its use have been given. The

first is the amount of storage required (Ramsay (52)) and the second is

.
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that the calculation of analytical derivatives is sometimes a laborious -
task (Broyden (44)). However, the first objection should become less of a
problem since the reducing cost of computer hardware has meant that larger
core storage is feasible. Butlin (53), (54) has reported the production of
random access stores as large as 1015 bits. If the second objection is
really valid, the calculation of numerical derivatives is always a possibility.
However, this leads to furfher controversy. Ramsay is wary of the stability
and accuracy of numerical derivatives, an opinion emphasised by Wozny (55)
who states the view that no slope information is better than erroneous slope
information. On the other hand Jones (43) would even prefer the use of
numerical derivatives to analytical derivatives unless the latter are markedly
easier to compute than the original function.

The question on the value of the use of derivative information can
therefore be posed in two parts:

(1) to what order should analytical derivatives be used?

(ii) should a method be selected which approximates derivatives,
either numerically or by use of an updating formula, to an order
of one or more higher than those provided analytically?

These questions require answers from the point of view of robustness and speed.
An ekamination of Himmelblau's table of results, which presents an
ordering of the algorithms tested for the two main characteristics discussed
in Section 2.6 reveals that the top five algorithms used analytical deriva-
tives, though the use of analytical derivatives did not guarantee a higher
placing. Stewart's method, the only algorithm tested which used numerical

derivatives, was placed midway.

The construction of a hierarchy of mefhods is open to question on such
points as problem weighting and failure interpretation, but nevertheless,
Himmelblau's comparison shows that in practical problems, whilst the use of
derivative information shows merit, its mere inclusion is insufficient to

guarantee either improved robustness or improved speed.
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Unfortunately Himmelblau's survey did not include second derivative
methods. However, there is evidence elsewhere (e.g. Fiacco and McCormick
(25)) to suggest that they can be extremely beneficial. Indeed, Murray (23)
recommends their use unless the computation time for the second derivatives

is extremely large compared with that for the function and gradient.

2.7.2. General function minimisation or sum of squares minimisation

‘In 1966, Box (17) compared several algorithms by applying them to
some problems which could be expressed as sums of squares with zero residuals
at the solution. One of the conclusions reached was that when solving
simultaneous non-linear equations it was better to apply an algorithm
designed for this type of problem in preférence to doing an ordinary function
minimisation. The derivation of the Gauss-Newton method given in Section
2.4.1 would tend to support this hypothesis. However, the major factor
which casts doubt on the extension of this hypothesis for problems with non-
zero residuals is the "second derivative approximation' approach which was
described in Section 2.5.

Some recent wofk by McKeown (56) has clarified the situation.
From Equation (2.23), the Hessian matrix for a sum of squares problem may be

written in the form:

H=20J"J +W

where W 1is a matrix whose components are defined by:

32s,

m
W.. = Z S, Tt .
jk jop & axjaxk

1
McKeown presents numerical evidence with theoretical basis that the rate of
convergence of algorithms based on Equation (2.21) is dependent on the
largest absolute eigenvalue of (JTJ)-IW . When this quantity is large,

general function minimisation should be preferred.
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Clearly W is the zero matrix if all the s; are zero, such as at
the solution of a set of simultaneous equations, where McKeown's theory
suggests that the use of Gauss-Newton type methods is preferablg.

However, generally the quantity required to judge which type of method to
apply is unknown.

Some work by Betts (57) also has relevance here. His method builds
up an estimate E of W in much the same way as the quasi-Newton approxi-
mations. The search direction of the algorithm is either the Gauss-Newton
direction or the approximation to the Newton-Raphson direction obtained
by the replacement of W by E . The latter is used when it is suspected
that the algorithm has reached the neighbourhood of the solution provided
that sufficient iterations have passed to accumulate a realistic estimate
of W . Although this strategy is not in full alignment with McKeown's
theory, the results quoted for Betts' hybrid method are good for both zero

and non-zero residual problems.

2.7.3. The univariate search type

Many of the algorithms presented earlier require or are improved by a
univariate search which aims to reduce the objective function. There are
several questions involved here, the main one being the accuracy to which the
search should be conducted. The opposing views for a linear search expressed

by Wright and Cutteridge are:

(1) remote from the solution, where search directions are of
questionable meaning, the computation of accurate linear

searches is inefficient;

(ii) accurate linear searches reduce instability and can be used

to indicate multimodality.
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While it seems reasonable to assume that the use of an over-accurate
univariate search would involve needless calculation, a more surprising
result appears in the survey by Box who attributed certain instances of
failure to attempts to locate a univariate minimum too precisely. The
implication is that without proper safeguards; over-accurate univariate
minimisation can effect the robustness of an algorithm.

An alternative to univariate minimisation is the acceptance of the
first reduction in the objective function encountered; This for eiample
is the method adopted by Jones in his spiral sum of squares algorithm and
by Betts in his algorithm.

The form of the linear search in variable metric algorithms has
created a great deal of interest, and comparative studies have been done
by Dixon (58) and by Sargent and Sebastian (59), who also considered the
search accuracy in the Fletcher-Reeves conjugate gradient algorithm.
Dixon's investigations included termination of the univariate search once
a minimum had been bracketed as well as termination on the satisfaction of
more complex tests. Sargent and Sebastian considered a termination
criterion of the form:

|'X[q,ll - X[q-JII' < e,|,x-f°-‘1~1|
where l[q’}],.XIQJ are successive values of the search parameter within
an iteration and ¢ 1is a suitable small constant.

The balance of evidence from both papers was that accurate univariate
searches were undesirable. However, it must be emphasised that these
conclusions were reached from consideration of specific algorithms only
and apparently from the point of view of computational efficiency rather

than robustness. Univariate minimisation is still highly regarded in some

quarters,
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If minimisation is to be attempted to any accuracy, the question of
non-unimodality must also be considered. The most common attitude is to
apply a search which assumes unimodality thus avoiding a local minimum
selection procedure unless non-unimodality is discovered by chance. 1In
contrast to this method, the gradient-descent method of Cutteridge
(Equation (2.7)) attempts to find most local minima in its specialised
univariate search. In terms of the general correction vector § ,

Cutteridge's basic equation is:
s=-@-ADlg. (2.26)

The entire range given by real values of )\ 1is considered, thus including
as possible directions for § , the Newton-Raphson direction and in. the
limits as A + + =« , the directions of steepest ascent and steepest descent.
Clearly Equation (2.26) will give large components of § near values of A
which are eigenvalues of H . In practice, the components of § are
limited so that their absolute values do not exceed a prescribed amount,
thus defining § for all real values of ) . Hence, the objective function
is expressed as a multimodal function of A , the global minimum of which
is sought. Local minima may also be used in the complete method for
solving simultaneous equations (see Section 4.1).

It is interesting to note that with H of Equation (2.26) replaced
by J'I , assuming the problem is one of minimising a sum of squares, the
above gradient-descent method becomes Levenberg's method, even to the
point of following Levenberg's original recommendation of finding the
minimum of ¢(A) = fQ§ - (H - AI)-lg) . Such a version has also been
investigated by Cutteridge.

Although correction component limiting is necessary in the gradient-
descent method, other research done at Leicester (e.g. Cutteridge and
Dowson (60)) has indicated that it is a worthwhile aid to convergence of

the main algorithm when applied at each univariate search. For a given
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(positive) component limiting factor-'Gma » two interpretations have been

X

used:

1) ([ 5161) if || s ”°° £ Spax
Yi = Y6 5.0
R i el > Spax
C sl
[ osm if s s 8
y = < (2.27)
1 Spaxi M) i léi(A)l > 8
Te, 0T

N

where Y3 is the limited correction component. The limiting can be

applied during the univariate search or having completed the search although

the former would intuitively appear to be preferable. The introduction of

derivative discontinuities by the application of limiting techniques has been
demonstrated and discussed by Dowson (61) who devised improvements to the

univariate search of the Cutteridge gradient-descent algorithm.

2.8. Combining optimisation methods

It is probably unrealistic to imagine that any one optimisation method
can fulfil all requirements on a particular range of problems and therefore,
in an attempt to improve performance, the effect of combining two or more
methods into one algorithm has been investigated by several researchers.

In addition to those methods of this category previously mentioned, Phillips
(62) has considered a combination of non-derivative methods for general
minimisation. Performance was assessed using the criterion of the number
of function evaluations, computing time not being available;'onAprohlems in
which all the individual methods éonverged to the solution. The conclusion
was that the combination was generally slower than its component methods, due

mainly to the calculations performed to select the most appropriate method to

adopt.
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More extensive and more successful work has been done by Cutteridge
(3),(7),(8) and by Cutteridge and Dowson (60) whose two-part combination
methods have been applied to the simultaneous equations problem and have
been largely based on the Gauss-Newton* method. From a point sufficiently
close to the solution Gauss-Newton exhibits rapid convergence but on
difficult problems is unable to converge from a general starting point.
The idea conceived by Cutteridge was to use another method to attempt to
find, from a general starting point, a point from which Gauss-Newton can
successfully take over. Several methods have been tried for this role,
including Marquardt-Levenberg variations, conjugate gradients and quasi-
Newton methods. One of the most successful of these appears to be the
Marquardt-Levenberg based method of Section 2.3.1. This method, as well
as most of the others considered for the first part of the algorithm, is a

general function minimisation method.

2.9. Discussion

The first part of this chapter has presented factual information on
some methods for local unconstrained optimisation while the latter part has
attempted to demonstrate that there are different viewpoints on aspects of
the subject which still exist today. In general function minimisation the
use of quasi-Newton methods is extremely popular; it is suspected that this
is so even when second derivatives are available. Yet the advice of Murray
and the results of Cutteridge and Fiacco and McCormick indicate that thes use
of second derivatives can be beneficial in many instances. Furthermore, the
amount of computer storage required to retain second derivative values is of

reducing significance.

*
In the references cited, the method is often referred to as '"Newton-Raphson",

but according to the definitions given here the method is in fact Gauss-Newton.
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In sum of squares minimisation there are some similarities bétween
Betts' algorithm and Cutteridge's two-part algorithms, but whereas Betts
prefers the use of a sum of squares method remote from the solution and the
use of a general function minimisation method to give final convergence,
Cutteridge prefers the reverse. These two authors also appear to have
different attitﬁdes towards the desirability of accurate univariate
minimisation in their algorithms. The overall trend would appear to be to
eliminate sub-problem minimisation, though the memory methods, the latest
developments of which are quite recent, also oppose this tendency.

The trend towards combination optimisation methods would appear to be
justifiable since there exist certain difficult problems on which no one
basic method is able to exhibit rapid or even satisfactory convergence at
all stages. The question now posed is whether the combination of two

methods is sufficient.
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CHAPTER III

BASIC NUMERICAL RESULTS

In order to clarify some of the aspects covered in ChaptervII
basic numerical exerciﬁes were carried out on certain test problems
which could be defined by a set of non-linear simultaneous equations.
The various Newton methods were of particular interest, with special
regard to the effect that the use of correction limiting and
different search types had on the robustness of the algorithms and
the respective convergence ranges of the general function and sum of
squares minimisation methods when applied to the aforementioned
problems. The author felt that insufficient evidence had been
'presented, either internally or in published papers, to give a clear
picture on these topics. The results produced also provided a basis
for comparison of the performances of the developed algorithms which
are described in the next chapter.

The two main algorithms used for the present exercise were
Newton-Raphson (NR) and Gauss-Newton (GN), though at a later stage it
was thought that it would be useful to compare the performance of‘a
quasi-Newton algorithm with these, to which end the Gill-Murray-Pitfield
(GMP) method was used on selected problems. Also at this stage the
conventional steepest descent algorithm was run on some problems which

confirmed its poor convergence properties; these results are not presented.

3.1. The example problems

The examples selected were chosen to give a range of problems of
various degrees of difficulty. Each set of simultaneous equations had
at least one known solution. Thus it was possible-to tackle all the
problems as the minimisation of a sum of squares with zero residuals

at the solution, or as a general function minimisation.
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The problems are presented by giving the components s(x) ,

where it is desired to solve the set of simultaneous equations:

s(x) =0 .

The objective function in the minimisations was always defined as

follows:

Cm ,
£ = ) {s. ()}
i=1

3.1.1. Rosenbrock's function

Rosenbrock's function is a problem widely quoted in optimisation
studies and is given by the objective function defined above (with m=2)

where:

sy = 10(x;y - xf)

So 1-x1 .

The single solution is: 5; = (l,l)T

3.1.2. Modified Rosenbrock's function

The second example was a modification of Rosenbrock's function
designed to introduce further solutions whilst not increasing the degree
of the components of s beyond 2. The component functions were

defined by:

n
—
o
N
tad

Nro

]

Fd
T
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The four solutions are:

x1 = (,0D° , x3=(,-DF ,x5=(1,10" ad xj=(-1,-1D7 .



3.1.3. Higher degree single-solution equation pair (HDS)

The third example, abbreviated HDS, was designed to give a single

solution from a pair of simultaneous equations of higher degree:

3 3
2xl Xy = Xy

Sl =
S, = XX, - 8
. . * T
The solution is: x = (2,4) .

3.1.4. Higher degree multi-solution equation pair (HDM)

The next example (HDM) was one that had been used by a colleague in

some earlier work:

9y 3 3
X) Xy =X

Sy

S

2
2 6x1 - X, + X

2 2

The three solutions of this set of equations are:

*

x; = (2,4, x3=(0,00° and x; = (1.465,-2.507)" approx.

- 3 3 *
The Jacobian is singular at x

2

3.1.5. Miele's function

Miele's function, which is given by Cragg and Levy (29), is defined
as the objective function comprising the sum of squares of the components

of s where

s, = (exp(x;) - x2)2
s, = 10(x2 - x3)3

Sy = tan2(x3 - X)
s, = xf

Solutions to this problem are given by (0, 1, 1, 1 + k1r)T where k is

an integer. The Jacobian is singular at these points.

36
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3.1.6. Transistor model problem

The first engineering test problem used in this research was
originally supplied by the Marconi Company (63) and concerned the d.c.
modelling of transistors based on the extended Ebers-Moll model (64).
This describes the transistor in terms of a network which attempts to
reproduce the forward and inverse current gains. The functions to be
considered are effectively the net junction currents evaluated at sets

of measurement points (Yli , Y Y Y ., Ysi) , with i =1, 2,

2i * 731’ Tui
3, 4 in the example presented below.
The problem was to solve the set of simultaneous equations in eight

unknowns, given by:

_ -3 -3 N
5; = x3(1-x1x2)[exp{xu(Yli-Ygixe.lo -Ysix7.10 )}1-1] -Y5i + Yuixz

("]
{]

XX :
~173 (1- Y - -3 “3y1.11 -
Fl xlxz)[exp{xs(,Yli Y2i Yaixs‘lo +Yuix8'10 )}-1] Ysix1 + Y

i+y x, bi
for 1 =1,2,3,4,
- where
Y11 = 0.485, Y21~= 0.369, Y31 = 5.,2095, YL+1 = 23.3037
le = 0.752, Y22 = 1.254, Y32 = 10.0677, Yuz = 101.779
Y13 = 0.869, Y23 = 0.703, Y33 = 22.9274, qu = 111.461
Y1|+ ='0,982, qu = 1.455, Y3l+ = 20.2;53, Yuu = 191.267
and
YSi = Y3i + YL‘i for i =1,2,3,4 .

One solution to the above is given by:

*

X

x; = (0.9, 0.45, 1.0, 8.0, 8.0, 5.0, 1.0, 2.0)" .



In the context of electrical network design, where the parameter values
must be positive, g; is the only known solution. However, the eight

equations presented abowve do have at least one other solution, given by:

*
X

3.2. Algorithm implementation details

The basic equations for GMP, NR and GN were given in Chapter II.
An Algol pr@cedure for the GMP method was accessed from the NAG library.
Where there was a choice of parameter values for the procedure, the
recommendations of NAG (65) were followed where applicable. Successful
convergence was indicated by a test on HgH2 » the value of which was
required to be less than a prescribed amount. A value of 107% was
generally used. The other termination criterion encountered was the
completion of a prescribed number of function evaluations. 500 was
specified, although the NAG recommendation was many fewer, viz. 20n.
The NR and GN methods were programmed by the autﬁor. A refinement
was made to the basic NR method to ensure that the downhill direction
at the current point was chosen to define the new point. Thus Equation

(2.4) was modified as follows:

5.(

(p) (P) 7y (P) -1, (p)

where a = sign (g
Hence only positive values of A needed to be considered in the region of
A=0.

Equation (2.20) formed the basis of the GN implementation, though

because in all the problems considered the Jacobians were square matrices,

the non-generalised form was also used, i.e.

5(pn) = P A(p)JCp)-li(p) ) (3.2)

38

< (0.8985, 0.9740, 11.65, 3.251, 6.711, -8.764, 1.251, -0.5251)" .
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When m = n , Equations (2.20) and (3.2) are analytically equivalent,

but rounding errors may give different computed results.

)

3.2.1. Correction vector adjustment in NR and GN

Equations (3.1) and (3.2) include the search parameter A which,
as was discussed in Section 2.7.3, provides a means of scaling the full
correction vector. Four methods of scaling were examined in these

trials:

(1) no adjustment
(ii) bisection
(iii) bracketing

(iv) minimisation.

The second means of adjusting the correction vector, by limiting the
size of the correction components, was investigated in conjunction with
the last scaling method only.

Method (i), use of the full correction vector, simply required k(p)
to be set to 1 in Equations (3.1) and (3.2). No reduction in the
objective function was enforced.

The other three methods did enforce this restriction and therefore
required to examine ¢(A) = f(sz) + QFP)CA)) for various values of A

where

for MR : QFP)LA) = - aCP)AHCP)-lgFP)
and for N : Py = - @@

To denote values of A calculated within an iteration of the main
optimisation algorithm, a superscript within square brackets is used.

The bisection method consisted of successively halving A until

a value A[J] was found such that



sy < 400

The first value tried was A[o] =1 .

In method (iii), a search designed to bracket a univariate minimum
was used. It was based on the Fibonacci sequence and was a modified
version of one used by other research workers at Leicester. The

requirement was to find values A[i] s A[j] , A[k] of X such that
7\[1] < X[J] < )\[k]
sy < o0l ana 4003y < g ¥
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would then have been used to define the new point.

The first value of A was chosen thus:

a0l - minciys, AP, 2 P)/3)

(p)

where A was the selected value of A on the previous iteration

(defaulting to 1/3 if there was no previous iteration) and xép)

was
the value of A for which component correction limiting (see below)
would first occur. If necessary, further values of ¢(\) would be
evaluated by reducing XA wuntil a value A[i] was found such that
¢(A[i]) was less then ¢(0) . Thereafter, values of A were generated.
according to the Fibonacci sequence until a minimum had been bracketed.
Method (iv) took this process a stage further by attempting to locate
a minimum to a prescribed accuracy by ﬁse of a quadratic fit algorithm
devised by Cutteridge and Henderson (see Dowson (61)). This algorithm
assumes a unimodal function and attempts to prevent slow convergence by
restricting the quadratic interpolation points to lie within the central

80% of the region forming the bracket. The line minimisation was

terminated when

Il[j] ) A[i]l < erk[jh

and

|A[k] ) A[j]| < sIAIjJ]

where ¢ 1is the accuracy constant (0.01 was the value used).



Where correction vector component limiting was imposed it was according
to Equation (2.27). Limiting was imposed within the search, so that

the search function was redefined:

s = £+ you) |
where Yi(l) = | 6;(3) if Isi(k)l € 8 ax
8 axSi M)

TEZTTTT_ if lai(x)l > 68 o

for i =1,2,...,n and Gmax is the correction limit.

For bracketing purposes, Ac(p) was defined:
, () *max

c sy

3.2.2. Termination c¢riteria for NR and GN

The criteria used for termination of the NR and GN algorithms
were largely based on those developed by Cutteridge et al. A total of
six were used, though some were never evoked. In the following the
notation A(p) = ll§ﬁp)(l) H°° is used.

The six termination criteria were as follows.

T1l: maximum modulus correction component too small,

i.e. A(p) < g

. -6
where €; 1is a constant (10 was the value used)

This condition tests for convergence. Whereas for GN with m =n
such convergence, if it occurs, must be to a solution of the problem
expressed as a set of simultaneous equations, this is not the case for

NR where the above condition relates to the size of ||gﬁp) N, . It

41



is quite possible to have g =0 and s # 0 . At such a point the

Jacobian must be singular because of the identity g = 2JT§_ .

T2: scaling parameter too small,

N I

i.e. —A'E)

where ¢ is a constant (10-10 was the value used) .

2

This is an additional convergence criterion included as a safeguard.

Clearly the algorithms are unable to continue when A 1is very small.

T3: maximum modulus correction component too large,

(p) , (o)

i.e. €34
where €3 1is a constant (0.0l was' the value used)
This criterion tests for divergence.

T4: too many successive increases in the rate
of increase of the (same) maximum modulus

~ component,
i.e. A(p-l) = bk(P-lﬂ

for i =0,1,...,(r + 2) and any (constant) k

in the range k =1,2,...,n and

aP-3) _p-i-1)  (p-3-1) | (p-5-2)

for j 0,1,...,r where r is an integer

constant (2 was the value used)

Again,this is a test for divergence.

42



42a

TS5: failure of matrix inversion.

In these optimisation algorithms no attempt was made to cater for
singular matrices and so the computation was terminated in the event
of failure of the matrix inversion procedure, which was selected

from the NAG library.

T6: too many iterations.

A limit of the number of iterations was always specified as a

precaution to prevent the excessive use of computer time.

Termination criteria T2, T3 and 14 are predictions of singularity
of the matrix to be inverted and have been extensively tested by
Henderson (80) who showed that considerable computer time could be saved
by terminating the algorithm when one of these criteria were satisfied
rather than waiting for the inversion procedure to fail, assuming that no
attempt to continue from a point yielding a singular matrix was to be made
This was the case in the trials presented here. It could be argued that
by modifying the NR and GN algorithms at such points or by using a more
robust method based on NR and GN, such as those described in Chapter II,
termination due to matrix singularity could have been avoided. This was
not done because the context in which GN has been used for electrical
engineering problems at the University of Leicester makes the basic form
described here more appropriate.

The (N algorithm is generally used as one component of a two-part
algorithm because of the good terminal convergence properties. If N
fails to reach a solution then control is returned to the method forming
the other component (see Section 4.1). A more robust GN-based method
could not maintain rapid convergence along paths distant from the solution

and therefore if used it would merely be doing the job of the second
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component. Thus a basic form of (N is used. If this method approaches
a point where is singular, the unsealed optimisation variable
corrections become large indicating that the process is attempting to
move outside the region of solution feasibility or desirability. Rather
than attempt to continue the process from such a point it is preferred
to return control to the other method at its point of exit.

It should therefore be borne in mind that the methods being considered
for the terminal convergence role which are described in this and later
chapters are basic in that they do not attempt to overcome the singularity
problem and hence could be made more robust. The presented comparisons

of algorithms of this type are fair in that the handicap is common to all.

3.3. Results obtained

For each of the six problems of Section 3.1, the optimisation methods
used and results obtained are presented. The abbreviations N, Bi ,
Br and M are used to indicate the four correction vector adjustment
methods: no adjustment, bisection, bracketing and minimisation respectively
Tilus GNM means Gauss-Newton with univariate minimisation. Correction
limiting was only used on the transistor model problem.

In the tables that follow, one function evaluation is the evaluation

of the set of s components plus the corresponding objective function.

The number of derivative evaluations is not explicitly stated but may

be deduced from the algorithm t\“e and the number of iterations required.
Termination criteria for GVP are denoted by °’S', meaning successful
termination effected by the gradient test, and by 'F’ indicating failure
because the prescribed number of function evaluations was reached.

Termination criteria codes for NR and (N refer to those of Section 3.2.2.



3.3.1. Rosenbrock's function

Seven methods, namely NR/N , NR/Bi , NR/M , GMP , GN/N , GN/Bi

and GN/M were used on Rosenbrock's function from the standard

starting point EFO) = (-1.2, 1.0)
The results are given in Table 3.1.

method that were applied to NR and GN

T

vector proved to be by far the quickest.

All methods were successful.
Of the three types of scaling

, use of the full correction

3.3.2. Modified Rosenbrock's function

The same seven methods were applied to the modified Rosenbrock's

function from the starting point EFO) = (-30,5)T .

given in Table 3.2.
satisfied termination criteria T1 , it was found that two of them

converged to (-Y1/101,0)" which is not a solution of the simultaneous
equations but which yields g =0 .

necessarily less time, were needed for the univariate minimisation methods.

Termingtion Fiqal _ No. of No. of
Method | criterion objective . . function

satisfied function 1teratl°n$‘.qyaluations
NR/N 1 2.1x10"%° 7 7
NR/Bi 1 8.7x1072 | 22 29
NR/M 1 1.9 x 1072} 14 125
GMP S 2.3x1073 | 32 102
GN/N 1 0.0 3 3
GN/Bi 1 0.0 11 33
GN/M 1 2.1x107% | 16 111

Table 3.1 Rosenbrock's function

The results are

Although all of the Newton methods eventually

Fewer iterations, though not

44
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Termination Approx. Final No. of No. of
Method cri terion final point objective . . function

satisfied function Iterations evaluations

(-/i7i0T,0) 9.9 X10"* 19 19

NR/Bi (-/1/101.0) 9.9 X10«» 19 19

(-1,-1) 1.8 X10""» 8 81

(-1,1) 2.8 X10'~ 15 66

(-1,1) 2.4 X10" 9 9

(-1,1) 2.4 X10'~Mn 9 9

(1,1) 1.3x10_17 7 68

Table 3.2 Modified Rosenbrock’s function

3.3.3. HDS problem

Tlvree methods, GNN , GN/Bi and GNM , were applied to the higher

degree single-solution equation pair from the starting points (S.5)*,(50,50)"

and (500,500)”~. 1lie results, which are presented in Table 3.3, illustrate

the dangers of univariate minimisation in this problem. From two of
the starting points the univariate minimisation quickly reduced «%: to
yielding an objective function value of 64

zero, and a singular

Jacobian. In one trial the bisection method also converged to a point

where the Jacobian was nearly singular.

St?rttlng Termination Final No. of No. of
poin Method reri terion  objective it .rati n functi on
Jof=(x,,X2) jsatisfied function ¢ O15  evaluations
(5,5) GN/N 1 8.7 x10""” 7 7
(5,5) GN/Bi 1 1 8.7x10" " 7 7
(5,5) GNM 1 0.0 19 172
(50,50) GNN 1 1.4 X10'*» 12 12
(50,50) GN/Bi 0.0 13 15
(50,50) GNM 5 6.4 X100 59
(500,500) GN/N | , 1.5 X10""» 22 22
(500,500) GN/Bi 2 5.6 X10* 22 265
(500,500) GNM 5 6.4 X10" 3 61
Table 3.3 HDS problem
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3.3.4. HDM Eroblem

Four methods were used on the HDM problem: NR/N , NR/M , GN/N
and GN/M. The results from two star;ing points, CS,S)T and '
(500,500)T , are given in Table 3.4. Aithough NR/M terminated due
to singularity in both cases, it has to all intents and purposes
converged, giving a lower objective function that in some cases where
termination criterion T1 was satisfied. For all methods ultimate
convergence to (,0,0)T , when it occurred, was very slow due to

singularity of the Jacobian and Hessian at this point.

3.3.5. Miele’s function

Five methods were used on Miele's function: NR/Bi , NR/M , GMP ,
GN/Bi and GN/M. The starting point used by Cragg and Levy was L1,2,2,2)T.
However, both the Jacobian and Hessian are singular at this point so for
NR and GN two steepest descent iterations were used to move away from
the starting point and the standard optimisation algorithms used there-
after. Near the solution the matrices again became singular and a
further steépest descent iteration was used. Thus here NR and GN were
variations of the méthods used on the other problems. The termination
criterion was effectively Tl though applied to the steepest descent
correction vector. GMP , of course, was unaffected by these singularity

problems. The results of the trials are given in Table 3.5.

3.3.6. Transistor model

Eight methods, namely NR/N , NR/Bi, NR/M , GMP , GN/N , GN/Bi ,
GN/Br and GN/M , were tried on the transistor model problem which is
substantially more difficult than any of the preceding problems. Apart
from its extreme non-linearity, the component functions can produce very

large values even when parameter values are restricted to lie in the
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region of interest. Unless precautions are taken, an optimisation
algorithm is liable to attempt to calculate numbers outside the range

~ which can be held by the computer, thus giving floating point overflow
errors which normally terminate the program. In the computing
environment used, certain system software switches could be set to enable
continuation when some, but not all, overflow errors occurred. To have
prevented all overflow errors would have required additional programming
which would have effectively modified the optimisation algorithms des-
cribed in this chapter. It was decided neither to use the overflow
switches nor to do any specific programming to prevent overflow errors

in this set of trials. Thus for this problem only, an extra termination
criterion is introduced, that of an overflow error occurring, denoted

by '0'

It was stated earlier that for this problem the parameter values
should femain positive if an engineering design is to be realised. To
maintain this restriction, a variable transformation was used so that the
optimisation variables were the logarithms 6f the model parameters.

The initial model parameters were defined as specified displacements (d)

*
from the solution x; , so that

xgo) = max(x;i +d, 0.1) for i-=1,2,...,8

*

T T
where X, = (xq; X35 +.. X3g) = (0.9,0.45,1.0,8.0,8.0,5.0,1.0,2.0)".

The results of this set of frials is shown in Table 3.6. Where
convergence was obtained the number of iterétions is given; failure is
indicated by the letter 'F' followed by the code of the termination
criterion satisfied.

Overflow was a problem for method NR/N even for small values of d
and hence the number of trials for this method was restricted. Where
convergence was obtained, termination criterion Tl or S was evoked

except for GMP with d = - 0.1 . Here the NAG algorithm terminated
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with a message to the effect that the process did not seem to be
converging, even though the value of the objective function was low

(1.2x10° %

) , the objective function was decreasing and the rate of
decrease was increasing.
If the number of successful runs for each method is used to assess

performance, the methods in increasing order of merit for this example

are: NR/N , GMP , NR/Bi , NR/M , GN/N , GN/Bi , GN/Br , GN/M .

Starting
displifement NR/N | NR/Bi| NR/M | GMP | GN/N | GN/Bi| GN/Br} GN/M
0.4 * FO | F3 | FO | Fs | FS | F3 | Fs
0.3 * FO | F3 | FF | FS | F5 8 8
0.2 FO | F3 | F3 | FO 6 6 6 6
0.1 FO | 21 | 18 | FO 5 5 5 5
-0.1 FO | 40 | 14 | 39| 4 4 4 5
-0.2 FO | F2 | F2 | 45 5 5 5 5
-0.3 * 17 | 17 | FO 5 5 5 6
-0.4 * 19 | F2 | FO 7 7 6 6
-0.5 * FO | 41 | 70 | Fs 6 7 |7
-0.6 * FO | 26 | Fo | Fs 7 F5 7
-0.7 * FO | FO | FO | F5 | F5 8 9
-0.8 * FO | FO | FO | FO | FO | F3. |F3

Table 3.6 Transistor model

*

not attempted

+ . . e .
algorithm terminated although convergence was imminent

In all computer runs described so far, no correction limiting was
applied. The transistor model problem was used to examine the effect
of applying various limits Gmax in the GN/M method. The results are
given in Table 3.7 using the same conventions as for the previous table..
Based on these results, Table 3.8 shows, for each correction component

limit value, the number of runs terminating successfully and the

displacement range about zero throughout which convergence to the solution
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~ax 0.1 [ 0.2 0.3 (0.4 |0.5 | 0.6 1.0 [10°°
T8 | F4| F4| F35| F3 | ¥5 | F3| F3] F3
1.7 | 74| F3| F3| F3 | F3 | F3| F3| F3
1.6 | F4| F4| F3| F3 | F3 | F3| F3| F3
1.5 | 4| F4| F3| F3 | F3 | F3| F3| F3
1.4 | r4| F3| F3| F3 | F3 | F3| F3| F3
1.3 | 74| Fa| F3| F3 | F3 | F3| F3| F3
1.2 | F4| Fa| F3| F3 | F3 | F3| F3| F3
1.1 | F4| F3| F3| F3 | F3 | F3| F3| F3
1.0 | F3|{ 20| F3| F3 | F3 | F3| E3| F3
0.0 | F4| F4| 13| F3 | 10 | F3| F3| F3
0.8 | F3| F3| F3| F3 | 10 | 13| F3| E3 ‘
0.7 | 30| 16| F3| F3 | 10| 11| F3| F3
0.6 | 21| 22| 8| 10| 9 s| of 9
0.5 | 14| 10| 13| 14 | F3 | F3| F3| F3
0.4 | 11| 10| 10| 13 | F3 | FE3| F3| F5
0.3 | 8| 7| 7| 7| 7 71 71 8
0.2 | 7| 6| 6| 6| s 6| 6| 6
0.1 | s| s| s| 5] s s| 5| s
0.1 | 6| s| 5| 51| 5| 5| s
0.2 | 9| 6| s| 5| s s| 5| s
0.3 | 13| 9| 7| 71| 6 6| 6| 6
0.4 | 18| 11| 8| 8| 7 6| 6| 6
0.5 | 18] 11| 8| 8| 7 6| 7| 7
0.6 | 18| 11| 8| 7| 7 71 6| 7
0.7 | 18| 11| 9| 8| 7 71 7] 9
0.8 | 25| 14| 10| 10 8| F3| F3
0.9 | 30| 19| 14| 11 11| 14| F3
;1.0 | 20| 18| 15| 11 10| F3| F3
;1.1 | 28| 18] 14| 11 11| F3| F3

-1.3 27 17 13} 11
-1.4 27 17 13 11
-1.5 27 17 13¢ 11
-1.6 27 17 14| 13

9
10
10
10
-1.2 28 | 17 13| 11 10 10 F3 | F5
10
10
10
10 |
-1.7 27 20 17 | 13 11 11 F4 | 10

-1.8 27 19 F4 | 20 18 F4 F3 | F5
-1.9 33 18 34 | F4 F3 F4 12 | F5
-2.0 33 18 18 | F4 15 F4 12 | F5
- 33 18 F3 | F4 15 F4 10 | F5
-2, 33 18 F4 | F4 F4 F4 13| F5
- 33 18 F4 | F4 F4 F4 10 { F5

33 18 16 | 17 F4 F4 121 9
33 19 17 | F4 16 F4 14 | 13

i
BN PNNDNDNDDNDNDN
QWO NV LUNKE

F4 F4 F3| F4 F3 F4 15 | FS5
- F4 F3 F3| F3 F3 24 F3 | F5
-2, F4 F3 | F3| F3 F3 F3|- F3 | F5
-2, F4 F3 F3| F4 F3 F3 F3 | FS
- F4 F3 F3| F3 F4 F3 10 | F5

Table 3.7 Correction limiting on the transistor model problem

was observed. The results clearly indicate that in general the smaller
the correction limit the greater is the probability of success. The same
pattern was apparent in similar though much less extensive trials on NR

and GMP . However, the penalty for choosing too small a limiting value
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is that more iterations than are strictly necessary are used.

Although the general trend in the felationship between the correction
limit and the rate of convergence is clear from Table 3.8, there were
some results which did not conform and therefore cast doubts on the validity
of some of the terminatiqn criteria. These trials were rerun with the
suspect criteria removed; in no case was convergence to the solution

subsequently achieved.

Number of |d range

8 successful | of

max

- Tuns convergence
0.1 32 3.2
0.2 33 3.2
0.3 28 2.3
0.4 25 2.4
0.5 28 2.1
0.6 22 1.7
1.0 23 1.0
1050 13 1.0

Table 3.8 ' Summary of effect of correction limiting

3.4. Discussion

For the type of problem considered, i.e. optimisation of a function
which can be ekpressed as a sum of squares which is zero at the solution,
the evidence that GN is better than NR is substantial. For similar
correction scaling methods there was no case where NR reached a
solution and GN failed, although many examples of the converse were
found. When both methods were successful, GN almost always required
fewer iterations, the only exception was to be found in the trials on
Rosenbrock's function. Although no run timings are given, from the
form of the two algorithms it is clear that this would generally imply
that GN 1is quicker. Thus to describe GN as an approximation to

MR is misleading.
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On the other hand, the performance of GMP , one of the most
highly regarded quasi-Newton methods, is consistent with it being an
approximation to NR , although it has certain improved features which
were described in Chapter II. These features are undoubtedly a benefit
in a great number of cases, especially from the point of view of speed
of computation, although it should be remarked that GMP generally
required more iterations than NR/M. However, when the use of more
than one optimisation algorithm is possible the first consideration
should be which algorithms are likely to converge to a solution. The
results of the transistor model problem suggest that a suitable form of
NR is more likely to do so than the standard GMP method.

Thus the results show that the method using second derivatives (NR)
did better than the method which uses first derivatives to approximate
second derivatives (GMP) . The method which uses first derivatives and
makes no attempt to approximate second derivatives (GN) achieved a
better performance still. This does not necessarily mean that the use

of second derivatives is a retrograde step; it is essential to bear in

mind the type of problems that the algorithms were designed to solve.
Whilst this exercise demonstrates that merely using an algorithm which
employs higher derivatives is no guarantee that an improved performance
will be obtained, and indeed it shows that a considerably worse
performance can be encountered, an investigation into the use of second
derivatives in the type of problem described requires GN to be
compared with a second derivative algorithm for sdlving'simultaneous
equations.

On the method of correction scaling, the results appear to indicate
that while the N and Bi methods are superior for relatively simple
problems, some form of univariate minimisation is desirable on more

difficult problems. Apart from the evidence of the HDS problem, where
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examples of GN/M failing when GN/N succeeded were noted, a minimis-
ation method appears to be the safer policy to adopt. And yet
accepting the first point which reduces the objective function is highly
favoured by many algorithms designers; one possible explanation is that
their trial problems are not sufficiently complex.

Assuming that univariate minimisation is to be adopted the question
to be answered is to what accuracy should the search be taken. On the
few runs of bracketing only that were tried, the performance of the
univariate minimisation was not matched. This admittedly flimsy
evidence suggests that a higher accuracy should be sought.

The advantage and drawback of limiting corrections has been demon-
.strated, the problem being to choose the highest value of correction
limit which would produce convergence. However, no method of selecting
this optimum value for a given problem other than by user experience
through trial and error has been suggested. This difficulty would not
exist in a method which was inherently more stable and thus able to limit

correction values automatically.
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CHAPTER IV

DEVELOPMENT OF SECOND DERIVATIVE SUM OF SQUARES METHODS

Although there exist several algorithms for minimising a general
unconstrained function which make use of second derivatives, to the
author's knowledge theré has been no published work on the development
of a second derivative method designed specifically for the minimisation
of a sum of squares function or for the solution of a set of simultaneous
equations. It has been shown in Chapter III that on certain problems
the sum of squares method performs distinctly better than the general
function method. There are also indications from work done by others
that second derivatives are of benefit in general function minimisation.
The logical question was therefore whether a second derivative sum of
squares metho& could be developed which would improve further on the
performance given by existing methods applied to the aferementioned
problems. Could the convergence range of a second derivative method
eliminate the need for a two-part algorithm, or would the evaluation of
second derivatives prove to be an unproductive complication?

The development of algorithms in order to answer these questions
formed the major part of this research. It involved a continuous
process of modification based on trials conducted mainly on the transistor
model problem which was chosen since it represented an engineering
problem where there was clearly scope for improvement in the type of
optimisation algorithm under consideration. Later, a second engineering
problem was used for further trials.

Section 2.4.1 gave the derivation of the GN method from considera-
tion of the first two terms of the Taylor Series expansion. The methods
to be described here are based on inclusion of the second derivative

term, i.e.
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? 3s, () 1 E n 825.(x)
s.(x +68) F s, (x) + .= —_— 8. 6§, (i=1,2,...,m).
i =1 J J 2. 521 k=1 X, Bxk ik

As with GN , the right-hand side is then equated to zero:

n 3s. (x)

n 3%s, (x)
0= 500+ L0571 Lo

j=1 °7j j=1 k-laxjaxk

IM:S

Gij '(i=1,2,..f,m). (4.1)

Whereas a solution or least-squares solution to the equivalent set of
simultaneous equations for GN is obtainable by matrix inversion,
assuming the matrix is non-singular, there is no analytical method for
solving Equations (4.1) in the general case. It was therefore necessary
to devise an iterative method for this purpose.

This approach was justified by the reasoning that Equations (4.1)
should be easier to solve than the exact simultaneous equations for
functions with non-trivial third or higher derivatives, provided only
that a solution existed. Clearly for simultaneous equations with lower
order derivatives, such as those given by Rosenbrock's function and the
modified form of Rosenbrock's function, Equations (4.1) are an exéct
representation. Therefore, defining an iteration to be the process to

(p) e+ _ ) , @

get from x to ‘x , such problems would yield a
solution in one iteration from any starting point with XFO) defined

as § .

4.1. Initial attempts

The first attempts at solving Equations (4.1) can be summarised as

- follows:

(1) from the current point EFP) , use the(unscaled). GN

correction vector to give an estimate 6[°] of & ;

(ii) substitute the current estimate Q[QJ of § in a modified

. . . . +1
version of Equations (4.1) to obtain an improved estimate §;q ];
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(iii) do a univariate minimisation on the objective function
¢(A) = f(zﬁp) + Agﬁq+l]) and define §FP+1) to be the

point giving the minimum.

Two modified versions of Equations (4.1) were used to update the
estimate of § , both of which gave simultaneous linear equations in

the unknown vector éﬁq+1]:

n 9s. (x)
(@) 0=s.(0+ ) ——s 0yl 5w
=1 % d
n n as.(x) ‘
~where ¥, = %—Z 5————-—— slal Siq] ;
21 k=1 9%59% )

n 3s;(x) n 3s;(x)
(®) 0=s.(x) + ) { 1= % z 5[q] }6[q+1]
1 k=1

j= ij 3X. Bxk

(i=1,2,...,m).

Both versions were tried on Rosenbrock's function and both converged in
two iterations. This was an encouraging perfo;mance, bearing in mind
that Equations (4.1) were only approximated, which compares favourably
with all versions of GN (Table 3.1). On fhe transistor model problem,
however, success was not forthcoming. An initial displacement of
d = 0.5 from the positive solution was used which in hindsight séems to
be too large a step to have taken since GN/M only converges from this
point with fairly severe correction limiting imposed. Nevertheless,
with the introduction of further univariate searches iﬁ the scheme
described and with correction limiting imposed convergence to the solution
was obtained, though not consistently.

Using an approximation to Equations (4.1) at an early étage was
questionable since the results of Chapter III, some of which were
produced subsequently, have shown that using convergence as a criterion
the introduction of approximations is liable to make the algorithm perform

less well. Thus it appeared to be more logical to determine what could
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I
be achieved with exact corrections before attempting to approximate,

however beneficial such approximations may be by reducing computing
time. The limited success in the transistor model problem led to an
investigation of the use of exact corrections.

The first "exact' method adopted was to apply GN to Equations (4.1)
to solve fbr § to a reasonably high accuracy and then to minimise
¢(x) = £(x + A8) to give a new point. However, when thié process was
used on the transistor model problem GN ekperienced difficulty in
obtaining § . It was not known whether this was because there were no
real solutions or whether GN was an inadequate method to use on the
sub-problem of finding 6§ . At this stage of preliminary investigation
it was decided to make use of a more powerful optimisation method,
namely Cutteridge's two-part algorithm consisting of the gradient-descent
and GN methods. It was not ehvisaged that this algorithm would form a
part of any second derivative sum of'squares algorithm that might be
developed, but that it would provide a powerful research tool to aid such
development. The flexibility that was enabled by allowing the user to
specify algorithm parameters if their default values were unsuitable was
particulérly attractive. For example, one parameter specifies the
maximgm number of descent "levels' to be traversed.- By setting this
parameter to zero, the method reduces to a GN/M type algorithm. At
the other extreme, a number of 'restarts" from local minima found during
the univariate search, described in Section 2.7.3, can be prescribed in
the event that the method is unable to converge otherwise.

Figure 4.1 gives a simplified flowchart of the method; some of the
program path possibilities énd much of the detail have been omitted
for clarity. However, in general the program enters the GN phase at
the beginning of the run and re-enters after each descent iteration or

after restarting from a previously stored local minimum. One descent



58

Y

<<Ti 6N iterations \™ . do one 6N

completed ? / iteration
yes 1
es
éonverged ?y—*—}-
Y no

|

GN eJettion nao
indicated ?

- A? ues A

1 descent NS |do one descent iteration: || v
{evels traversed ? store restart data
yes L

r restarts >JEL_1,__" restart using | |
<: completed ? stored datag

yes

Y

FAILURE SUCCESSFUL
EXIT EXIT

i = max. no. of BN iteratiaons
(at each BN attempt)
1 = max. no. of descent tevels
r = max. no. of restarts

Figure 4.1 Cutteridge's two-part optimisation method
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level is traversed on each descent iterétion, restart data from the
higher levels being used first. If GN 1is unsuccessful, the next
descent iteration proceeds from the point given by the last descent
iteration so the GN path is discarded. The GN termination
condition on the number of iterations refers to the number since the
last GN starting point and not the total number executed during

the entire process.

4.2. Basic theory of methods

It was clear from the early work that Equations (4.1) were unsatis-
factory in that there was not necessarily a solution vector of real
components. This problem was solved by the introduction of a scalar in
a similar way to the scalar introduction in GN . Although the scalar
is applied directly to the correction vector, if it is included in the

simultaneous equations from which GN is derived, we have:

n Bsi(§)
0=12s;(0) + ] —— F (i=1,2,...,m) (4.2)
J=1 J
: n 3s,(x)
or 61—1)51(59 = si(x) + E -gi———— Sj (i=1,2,...,m)
. j=1 j

Thus Equations (4.2) are derived from the Taylor series expansion with
the left-hand side replaced by (l-x)si(gg instead of zero. Clearly
A would be expected to lie in the range 0 < X £ 1 so that a
reduction in the values of s; is more realistically anﬁicipated as
opposed to the rather grand expectation of solving the problem in one
iteration. The error in the approximation introduced by truncation
of the Taylor series increases as ) increases from zero and the
of

approximation is clearly invalid when o 0 , there being no

justification for choosing higher values of X .
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Applying similar theory to Equations (4.1), we obtain:

? asi(g) 1 ? n 851(5) ¢

0 =2as.(x) + ) 8. +3) = 8.6 (i=1,2,...,m) (4.3)
i j;i axj j 2j=1 k=13xj3xk jk

Higher order terms could be included similarly. Once again it is

reasonable to choose a value of X greater than zero but not greater
. ‘s . af
than the first positive value to yield Y 0.
The basic idea of the new method was to use Equations (4.3) to define
8§ for various values of X\ , choosing a suitable correction vector by
examination of the objective function f(x + §(})) . To substantiate

this idea, an existence theorem for implicit functions is quoted.

Let the set of simultaneous equations (A) be defined by:

mi(xl,xz,...,xk.xk+1,...,xk+r) =0 (i=1,2,...,k)

*

and let (A) be satisfied by x = x

Suppose that:

(1) the k functions w; are continuous in the neighbourhood

*
of x ;

(ii) the functions w; possess continuous first partial derivatives

in the neighbourhood of x"

.
3

(iii) the (k x k) Jacobian formed by the partial derivatives

of wy with respect to Xps XgseeesXy is non-singular

%*
at x

then there exists a unique set of continuous functions:

x; = W(xk+1,xk+2,...,xk+r) (i=1,2,...,k)

which satisfy (A) and reduce to x; (i=1,2,...,k) when

xk+j = x;+j (3j=1,2,...,1) . An outline proof of this theorem by

induction can be found in Khinchin (66).
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To apply the theorem to Equations (4.3) it is necessary to enforce
m=n . The right-hand sides of the equations are used to define the

functions wi(61,62,...,6n,k) (i=1,2,...,n) which are zero for A=0
W, 9s. dw,

_ . . i_7i _i_
and §=0 . At this point SE;- 3;;- and 0 s; - Thus the

conditions of the existence theorem are satisfied provided the functions
S (i=1,2,...,n) and their first and second partial derivatives with

respect to xj (j=1,2,...,n) are continuous in the neighbourhood of the
9s.

current point x and the (n x n) Jacobian given by Jij 3;5 is
j

non-singular at this point. Given these conditions, there exists a

value A such that Equations (4.3) can be solved for 0 g A < A.
Furthermore, a reduction in the objective function can be obtained by
a value of A in this range, unless the solution has been reached.
The proof is similar to the equivalent GN proof and is given in
Appendix I.

To extend the idea to the case m > n it is necessary to replace
Equations (4.3) by their generalised least-square forms which are
derived in the same way as the generalised GN method (Section 2.4.1.).
The resulting equations are:

?ﬂ (As, + g Eii 5. + &
. i j=13x j 2

i=1 j J j

g azsi 3s, E sti
§.8, ) (— + —————-5.)}'= 0
- k r j=13xj3xr j

(r=1,2,...,n). (4.4)

Defining the left-hand sides of Equations (4.4) to be

mrcsl,sz,...,an,x) for r=1,2,...,n we note that at A=0 and &§=0 :

.. 93s, awr m Ssi asi
e T N TR T
1 T J 1=1 T

Cde

for r=1,2,...,n and j=1,2,...,n .

Thus the implicit function existence theorem requires continuity of

S5 (i=1,2,...,m) , their first and second derivatives and non-singularity
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of J'J at the current point for a unique solution.giving §=0 at
A=0 . Once again, only positive values of ) need be considered
in order to reduce the objective function (Appendix I).

The genefélised equations were used in the numerical trials of
Chapter V by applying a least-squares technique to Equations (4.3},

which is analytically equivalent to solving Equations (4.4).

The solution of Equations (4.3) or their variants formed the heart
of the computer algorithms, and is much more difficult than the solution
of the GN equations because an analytical method is unavailable and §
is not generally a linear function of A , although such a form was
investigated later.

It was required to solve Equations (4.3) for various values of A
as determined by the univariate search procedure seeking to reduce
o) = f(x + §(A)) . At this stage s and its first and second deriva-
tives with respect to x are constant. This sub-problem of solving
for the unknown § was tackled by applying an optimisation method, the
objective function for which was:

0(8) = 2 {o, (&) y (4.5)

i=1
n 85 (x)

+1]
J=1 3xj J *37. 5=1 k= lax Bxk

where g. (5)-—15 (x) + Gk (i=1,2,...,m).

Although in the early stages the full power of the Cutteridge method
was brought to bear on these equations, the desirability of a more simple
method of solution was a prime consideration. During development of the
seéond derivative methods, the Cutteridge method was gradually reduced in
power until GN alone was used to attempt to solve the equations. This

was a significant step because what was in effect a second derivative GN
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method required nothing more complex than the repeated application of GN .
The results of Chapter III demonstrated a widely-held view that GN
exhibits good convergence properties provided its initial point is
sufficiently close to the solution. In the method of solution of
Equations (4.3), by judiciously varying A the problem was tailored to
fit the starting point. By making A small enough the solution to
Equations (4.3) can always be found from an initial estimate of 0 , or
better still the GN correction vector at x multiplied by A L Based
on the &(A\) so obtained, suitable extrapolation was applied to attempt
to solve for a higﬁér value of X and the process repeated as necessary.
The aim of this univariate search was to bracket the minimum of
f(x + §(1)) , whence interpolation could be applied to find the minimum
more precisely, using the same termination criterion as method (iv) of
vSection 3.2.1. The extrapolation had to balance two conflicting
factors: too many evaluations of & for various X 1is clearly
inefficient, too few give inaccurate estimates which can have the same
effect. However, inaccurate estimates can have a more disastrous
effect. Equations (4.3) can clearly have more than one solution.
Figure 4.2 shows plots of 1log. f(x + §(3)) against A for eight
distinct §-paths which are solutions of Equations (4.3) for the transistor
model problem with the components of x set to 1.0 above the
components of the solution 5: . The only solution of interest to this
algorithm is the one passing through §=0 . An inaccurate estimate
could cause a "solution jump" during the extrapolation process with a
resultant breakdown of the univariate minimisation procedure.
A further difficulty encountered by this method is that it is not
always possible to bracket the minimum. Figures 4.3 to 4.5, also taken
from the transistor model problem, show the three possibilities. In

Figure 4.3the paths of the eight solution components are reasonably well-
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behaved and the univariate minimum can be bracketed, though the question
of to what accuracy is relevant. InFigure 4.4 the solution components are
again well-behaved though the resulting objective function is non-unimodal.
For reasons already stated the aim would be to locate the minimum of
lowest positive A . InFigure 4.5, although the objective function is
steadily reducing as X increases, some of the solution components appear
to become complei at about A = 0.52, The univariate search would have
to be terminated at or before such a point without spending excessive

time looking for non-existent solutionms. It was also necessary to
consider how close to the limiting point the search should be taken.

The essential steps of the developed second derivative methods applied
to Equations (4.3) are shown in flowchart form inFigure 4.6. A singular
Jacobian necessitates termination of the method though in pragtice
continuation is possible after the application of another method to move
away from the singular point. Termination conditions were based on those
described in Chapter III using the GN corrections evaluated at the
beginning of each iteration. Conditions T1, T5 and T6 were
implemented as described,‘whereas in many runs conditions T3 and T4 were
merely flagged and the procedure allo&ed to continue in order to check their
validity. In only one run was convergence obtained after one of these
conditions (T3) was satisfied. Termination of the algorithm after an
unsuccessful solution attempt for X = €, , a small value, corresponds to
condition T2 . If the solution attempt for small X was successful,
gﬁA[O]) is sought where A[o] is a higher value based on information from
the previous iteration. Assuming success at this stage, bracketing is
attempted followed by univariate minimisation if bracketing is accomplished.
In all cases the method of attempting to solve Equations (4.3) was by use
of GN , initial estimates of § being based on information accumulated

during the iteration. It was quite possible for GN to fail to find
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Figure 4.6 Flowchart of second derivative method
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8(A) for a particular value of A , in which case a smaller value of
A , for which the estimates of § would be more accurate, would be
tried. If this failed, a still smaller value would be tried. The
process of repeating solution attempts could be terminated as soon as
Equations (4.3) had been solved for any value of X , not necessarily
the one originally specified. This was useful in the bracketing and
A[o] stageé, when the value of the objective function gave useful
information provided it was for a value of )\ greater than tﬁose for
which Equations (4.3) had already been solved. This was not the case
at the minimum location stage. . Here information had been gathered
from points around the minimum and therefore ¢ should have been
obtained relatively easily. If this was not so then a solution jump
was indicated and the algorithm was terminated so that remedial action

could be taken. In practice the algorithm is able to continue from

here.

4.3.1. Variations on the basic theme

The first implementation of the scheme just described met with
some success when tried on the transistor model problem. A number of
starting points were found from which the second derivative algorithm
converged whereas GN failed., However, there were also several points
from which GN converged and the new algorithm failed. Clearly further
attention to the details of the method were required. Also, research
at this stage was hampered by the amount of time taken by the many GN
iterations used in the attempts to solve for § ; it was therefore
necessary to pay attention to computing efficiency before the potential
of the algorithm had been assessed.

Nevertheless the algorithm showed promise and two variations were

investigated. The first was the incorporation of a linear search
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immediately before updating the current point (see Figure 4.6). Suppose
that for the pth iteration the outcome of the earlier minimisation,
or the bracketing attempt if it was unsuccessful, was a vector QFP)

The basic method, subsequently referred to as SDA, updated the problem

unknowns by the relationship:

L) @), )

—

The modified method, which will be called SDB, used the relationship:

E(-p+1) - <P . u(.pli(p)

where u(p) is the value of u which minimises ¢(u) = f(éFp) +q §FP)).

The second variation on SDA was to conduct a similar linear search
each time any §()) was found. This method will be called SDC.
SDC therefore contained a two-dimensional search, whereas SDB may be

regarded as approximating such a search.

4.3.2, Correction limiting

. The benefits of correction 1imiting,which were demonstrated in
Chapter III, demanded that consideration be given to the application of
this technique on the second derivative methods. In the A-search,
for each § found, correction limiting was imposed by setting to the
limit those components of § exceeding the limit, with bracketing and
minimisation attempted on the objective function values given by the
modified §&s . This corresponds to the method used on GN and NR ,
but since the search was no longer linear, it was not possible to
determine the exact point at which component limiting would occur,
although this could be estimated using GN corrections. Previous
bracketing algorithms developed at Leicester made use of the component
limiting points for each component, but in thé second derivative method

x[°])

the estimate of only the first limiting point was used (to define
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The second search would then be applied to the final limited [

4.3.3. Control of GN entry

If an attempt to solve for § at a particular value of )X was
unsuccessful, a new attempt at a lower value of X would normally be
initiated, The value selected would be based on the value of A for
which Equations (4;3) had already been solved.

Suppose that A, is the lowest unsuccessful value of A

Ap is the highest successful value of A
e is the value of ) for the new attempt

and Ad is the lowest value of ) for which the

objective function is of use.

A, Was defined by:

A = Xb + A

0.1 Qa - Xb)

i

where A

unless this caused Ao to cross from above Aq tobelow Ay , in which

case Ac would be set to Ad .

The process was repeated in the event of failure until the following

limiting condition was satisfied:
Aa - Xb< £y Ab (Ab > 0)
Aa< 65 ()b = 0)
where e, and €5 are specified constants. The latter condition was
an algorithm termination criterion comparable with T2 (Section 3.2.2).
If a solution attempt was successful for a value greater than or

equal to Aq s the process would terminate. If the value was less than

Ay a new attempt would be initiated for Ac =X * A and A would be
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doubled in preparation for the next attempt. Once again lc would be
reset if Ay was traversed.
This entry into the GN algorithm was controlled by an Algol real

procedure named PENFUN , the flowchart for which is shown in Figures 4.7(a)

and 4.7(b). The following Algol variables are used:
DR - the )\ increment A ;

IFLAG - to indicate whether Ac is greater than, equal

to or less than kd H

0K - boolean variable to indicate on exit whether the

objective function for RREQD was found ;
R - the current X value, AC 5

RFOUND

on exit, the highest value of A for which the

objective function was found if not for RREQD ;

RMIN - the minimum value of X for which the objective

function is of use, Ad 5

RREQD - the originally specified value of A for which
the objective function was required ;
RSUCC - the highest successful value of X , Ab .

Upon exit, the appropriate objective function value was returned
in PENFUN . The two successful eXits, in the terminology of Figure 4.6,
are EXIT A where the equations were solved for R=RREQD , and EXIT B ,
where tﬁe equations were solved for R3>RMIN . EXIT C occurred when

the limiting condition was satisfied.
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4,3.4. Univariate search method

PENFUN was called whenever it was desired to solve for § and so
existing procedures for bracketing and locating a univariate minimum had
to be modified since they assumed that the objective function value
would always be calculated whatever value of the variable was presented.
The bracketing process used by Cutteridge et al. was for the range
A 2 0 , requiring the value of the objective function at A =0 , i.e. ¢(0).
The objective function is evaluated at another value of X\ , A[O] and if
this is not less than ¢(0) further values of A are generated by the

formila: .

Aa1l _ g 1 ylal q=0,1,...

until one which gives an objective function less than ¢(0) is found or
until A reaches a prescribed small value and the bracketing attempt

fails (¢f. NR and GN termination condition T2 ). Assuming this

search does not fail, a value A[j] has been found such that ¢(A[j]) <$(0).
A second search using increasing values of X is then initiated until an
increase in the objective function is found. A pair of values enclosing

at least one minimuh can thus be determined. The values of A wused in

this part were generated by the Fibonacci sequence:
AP )
y+art]l | [i+al |, [5+a-1] q=1,2,... (4.6)
The Fibonacci sequence in this form was unsuitable for the second
derivative method because in the event of PENFUN failing for a particular

value of X , the next value generated would be much too large. For

example, with a starting value of 0.2 the normal sequence is:

0.2, 0.4, 0.6, 1.0, 1.6,
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but in the event of objective function evaluation failure at A = 1.0,

A = 0.64 would be attempted by PENFUN . If this were successful,
clearly the next value generated by the series, whether it be interpreted
as 1.6 or 1.24 , is too high. Instead, the Fibonacci sequence was

based on the distance from a point a , so that Equations (4.6) become:

NELS) Y £ I

yli*a+1] | A[ﬁ*Q] » y3rar] |

a q 1,2,... 4.7
where o 1is a constant.

a was set to zero initially. If the evaluation of ¢CA[J+q+1])
was unsuccessful but PENFUN returned with a value of A greater than

X[J+qj,the sequence was restarted with o set to A[J+qJ using the

value found as the first point. In the above example this would yield:
0.2, 0.4, 0.6, 0.64, 0.68, 0.72, 0.8, 0.92, 1.12,

However it was found beneficial to ensure that A = 1.0 was considered,

so the final bracketing algorithm would have produced:
0.2, 0.4, 0.6, 0.64, 0.68, 0.72, 0.92, 1.0, 1.32, 1.72, ...

A simplified flowchart of the bracketing procedure is shown in Figure 4.8.
It was programmed so that upper and lower bounds could be prescribed.
The notation used is as follows, It is desired to find three yalues,
X1, X2 and X3 , of the search parameter which give objective function

values Fl1 , F2 and F3 respectively such that
X1 <X2<X3, F2<Fl and F2 < F3,

On input, X1 is set to the lower bound; X2 1lies within the specified
range, F1 and F2 are given. XU is the upper bound and EXL is

the effective lower bound of X2 , calculated from prescribed accuracy
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START

set X2 to X
- and F2 to FCX) —
> 52 > Bx PO
no
=R El.
- Fi to F@ Y
and F2 to F3
 /
set X3 b reduce X2
modifFie _ observing
Fibonaccis effective
observing iower bound
upper bound
{ ' f
call PENFUN to ' call PENFUN to
evaluate F(F(xgga ; evaluate F(F(X§;=
pose : s se
:;2 actuatlly A wzp:ctmltg
returned returned
X > X2 ? >
no
set X3 to X ’
and F3 to F(X) Y

Figure 4.8 The bracketing attempt procedure
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conditions, and is greater than X1

There are five possible exits as follows:

EUB - effective upper bound caused by objective

function evaluation failure;

(04 - bracketing successful;

UB - objective function still decreasing at upper bound;

LB - value of objective function at lower bound not reduced;
ELB -~ effective lower bound caused by objective function

evaluation failure.

Eiit condition ELB should not normally have occurred but was included
to flag possible errors. In the main algorithm, univariate minimisation
was attempted only if the second exit occurred.

It is not necessary to describe the minimisation procedure as it
was based on the one mentioned in Section 3.2.1 and is described elsewhere.
Modifications were of course necessary to accommodate PENFUN and to flag

any failure of PENFUN .

4.3,5. Storing past solutions

For any given value of A , an estimate of the solution to Equations
C4:31.ﬁad to be supplied to GN for use as a starting point. This
estimate was based on previous solutions or if none existed, the GN
corrections for the overall problem at the current point. The simplest
estimate to use was merely & for the previous value of X i.e. a zero
Qrder interpolation/ektrapolation method. However, this was soon
rejected in favour of the linear based estimate of gﬁk[q+1])

lerd [l [a]
-—T—]# § ') (assuming A "™ # 0) . More sophisticated estimates,
A q —_—
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which were expected to improve efficiency, required further sets of past
values of A and § . Furthermore, the imposition of an uppér limit on
the number of sets to be retained required a decision as to which set to
discard when the 1limit had been reached.

The initial methods of generating § estimates were based oﬁ the

collocating polynomial in A. This can be expressed as follows:

k rk A=),
AQ) = .Z R (T-TH §-«'.} . (4.8)
i=1%j=1 "1 7j
j#1

where the degree of the polynomial is k-1, A; i=1,2,...,k) are
distinct values of A and 8; = §(,) (i = 1,2,...,Kk)

A(A) gives an estimate of &(\) which is straightforward to evaluate.

Until k sets of values had been stored Equation (4.8) was used with
k reduced appropriately, the first estiﬁate being based on the GN
corrections. Once the requisite number of sets had been retained, their
number was held constant by discarding old data in favour of newly
acquired data. Suppose we have the full quota of k sets of data corres-
ponding to A values A1, Xz, ..., Ak where XA; < Ay < ... < Ak . On
acquisition of further data the set discarded was either that corresponding
to X, or to A, . The criterion used was to try to maintain a balance
between the number of points above and below AP ,» where A was the

P
value giving the lowest objective function, ¢

b
The nece;sary‘steps are shown inFigure 4.9 where the new data is for
A= Ai at which the objective function is ¢i . First it was assumed
that A; was placed in the set and the revised lowest objective function
¢£ and corresponding A value A, Were determined. If the number of
points below Ar (rb, say) exceeded the number above (ra) , the A; set :
was discarded. | Conversely, the A set was discarded. If T, =T,

the set corresponding to the .» value furthest from A, Wwas discarded.
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“determine j such that
)\J < N < A‘\s:

—
|
Ar = A Ap = )\ Ar = )
oy = B ey pr = Pp
n = k-3 ry, = k-p ra = k-p+i
r, = p—-1
Y
<%r- M o< k= Ap ?>_"°+_
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- ' !
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reset pointers reset pointers
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set Ap to M
nd gpto gr
EXIT

Figure 4.9 Method of discarding data sets
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Finally the X order and value of p had to be reset.

With each A,¢ pair, § is stored. Rather than shuffle this data
around when the re-ordering was required, a system of pointers to fixed
array positions was used. Two short procedures were required to

administer the stored data.

4.4 . Results obtained using the transistor model problem

Following the implementation of the first versions of the procedures
described in the preceding sections, the transistor model problem was
attempted using method SDB. with a correction limit of 0.5 . The
linear d§-estimation technique obtained by setting k to 2 in |
Equation (4.8) was used. The results are shown in Table 4.1. which
for each successful run gives the number of complete iterations of the
second derivative method and in addition, the total number of GN
iterations that the method required for the subsidiary problem of solving
for § . Note that termination conditions T3 and T4 were Aof used
in these tests. Comparison with Table 3.7 shows that for the same
correction limit, there were_four starting points from which SDB
converged and GN . failed, namely for displacements d = 1.2, 0.4, -2.2
and -2.8. It was also pleasing to note that there were no starting points
from which GN was successful and 8$DB failed. The large number of GN\\
iterations which were required Qas attributed to the use of the linear
interpolation technique; further “tests using a better method were required.

More extensive trials were conducted using the quaératic §-estimation
technique obtained by setting k to 3 in Equation (4.8). First SDA
was used with and without correction limiting from positive starting dis-
placements. The results are shown in Table 4.2. At this stage termina-
tion conditions T3 and T4 were flagged but otherwise disregarded;

such an occurrence is denoted by parentheses.



Initial Termination | No. of No...of
displacement] criterion SDB GN
d satisfied iterations| iterations
1.6 2
1.4 2
1.2 1 11 286
1.0 2
0.8 1 5 114
0.6 1 5 115
0.4 1 S 165
0.2 1 3 30
-0.2 1 3 27
-0.4 1 5 188
-0.6 1 4 100
-0.8 1 6 100
-1.0 1 7 164
-1.2. 1 8 271
-1.4 1 7 251
-1.6 1 8 284
-1.8 1 8 355
-2.0 1 10 547
-2.2 1 10 544
-2.4 2
-2.6 2
-2.8 1 9 252
3.0 2
3.2 2

Table 4.1 Linear SDB method with correction limit
of 0.5 on transistor model problem
Initial Termination [ No. of No. of
displacement| criterion SDA GN
d satisfied iterations| iterations
1.2 (3)2 ’
1.0 (3)2
0.8 (3)2
0.6 1 6 81
0.4 1 6 98
0.2 1 3 21
(a) No correction limiting
Initial Termination | No. of No. of
displacement| criterion SDA GN
d satisfied iterations| iterations
1.2 (3)2
1.0 (3)2
0.8 (3)(4)2
0.6 1 S 78
0.4 1 5 103
0.2 1 3 21

(b) Correction limit of 0.5

Table 4.2

Quadratic SDA method on transistor

model problem

83
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Both methods showed one improvement over GN , from d = 0.4, but
the method with correction limiting was unsuccessful from d =-0.8 , a
point from which GN with the same correction 1limit reached the
solution (even though it failed with more severe limiting). It was
noted that linear SDB was successful from this point and later trials
showed that SDB was more successful generally. Results for the normal
quadratic SDB and SDC methods are shown in Tables 4.3 (no correction °
limiting) and 4.4 (correction limit of 0.5 ). Comparison with the
equivalent GN trials reveals that in the unlimited versions, SDB had
five successes above those of GN . These were ét d=1,2, 1.0, 0.8,
0.4 and -1.0. Thg success obtained from d = 1.2 was particularly
noteworthy as GN Hhad failed with all correction limits used. Further-
more, from d = 1.0 and d = 0.8 GN was successful only with one and
two particular correction limits respectively. The failure of SDB
from d = 0.8 was suspect and an examination of the results revealed
that during one iteration a solution jump had taken place; it was expected
that if this had been avoided the solution would have been reached.

SDC (unlimited) also revealed a solution jump, in this case in the
d = -1.0 run. The interpolation procedure was then unable to minimise
to the prescribed accuracy and the computer run time limit was reached.
In both this and the SDB example, the solution jump occurred at the
second value of )\ generated by the Fibonacci sequence, i.e. double the
first value. A higher initial value of « (Equation 4.7) would
probably have overcbme this. SDC (unlimited) had three successes not
obtained with GN (unlimited): d = 0.4, -0.8 and 1.2.

Using the correction limit of 0.5 in the second derivative methods.
improved the range of d for which the solution was reached but the
number of extra successes above those obtained with the equivalent GN
method did not increase. There were three extra which were from the

same starting points for both SDB and SDC, i.e. d = 0.4, -2.2 and -2.8.
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It was noted that the successful starting points for unlimited - SDB
was not a subset of those for the limited version, so in an attempt to
find -a method which would combine these successful starting points a
number of versions having different limiting factors (not legs than 0.5)
and different limiting methods on fhe two univariate searches, the
A-search and u-search, were investigated at this time and later. The
A-search being non-linear gave scope for such interesting possibilities
as limiting & components if they changed sign. However, these investi-
gations were unsuccessful and the aim was not realised.

Unlimited SDB registered twice as many successes as unlimited GN
for the set of (SDB) starting points investigated. It was therefore
thought to be worthwhile to consider ways of making the second derivative

algorithm more computationally efficient.

4.5. Factors affecting algorithm efficiency

The main area where improvements could be expected to be made was in
the calculatioﬁ of §(A). The algorithms already described for determina-
tion of which values of A to attempt to find § ﬁsing GN were thought
to be reasonably sound; apart from possible variations there four factors
relating to the univariate search which influenced the efficiency of the
algorithms were identified. These will be discussed in the following

sections.

45.1. GN initial point estimation

A comparison of Tabies 4.1 and 4.4 reveals ;hat use of the higher
order collocating polynomial substantially reduced the number of GN
iterations required to solve the sub-problem of finding & . The
estimétion of § presented to GN was clearly an important factor in

the efficiency of the algorithm. By raising the value of k in
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Equation (4.8),_cubic and quartic estimation methods were examinedrto
investigate whether further reductions in the number of GN iterations
could be obtained. |

'~ Further methods investigated were based on the collocating quadratic
in ¢ :

3 3 Gk -Gk.
A'kc,ak) = ) I [3"_-5—)‘3 ;\i} k = 1,2,...,n) (4.9)
i=1 Y=1 “kiTkj
j#l '
where Gki (i=1,2,3) are 3 distinct values of the kth component

‘of § and ki (i=1,2,3) are the corresponding values of A .

The evaluation of § wusing this method is a little more complicated than

for Equation (4.8). Ekpanding the right-hand sides of Equations (4.9)

gives a quadrafic.expression for each of the 6, . Substituting a

fourth value Ay of A fof Ak » it was a simple matter to determine,

fof each § component, whether the appropriate quadratic had real

solutions and to sglve for them if it did. This gave two estimates

of GkCAu); the one chosen was the ohe closer to the known value of

Gk(Ai) where A; 1is the closest retained value to A . If the

quadratic had no real roots, Sk(ki) was used as the component estimate.
Whereas Equafion (4.8) gives the same polynomial expression for

éach. § component, this was not the case when using Equations (4.9).

The reason for this more complicated method was that it could predict

when a § cbmponent was goipg complex. It was thought that since'it

was able to do this, it might be better at approximating the § curves

and that it might be possible to use the predictions of complex

components fo determine when to terminate the bracketing procedure.

This estimation method is subsequently referred to as ''quadratic reversed'.
The final method investigated, '"simplified quadratic reversed",

had similar aims and was based on Equations (4.9) but with A3 = Gk =0

3
(k = 1,2,...,n), i.e. a quadratic interpolation through the origin.



Thus this method required only two sets of values to be stored.

4.5.2. Termination of GN

The five criteria used to indicaté GN failure, T2 to T6 ,
were described in Section 3.2.2. Failure of GN for any particular
value of A was not a disaster and was to be expected on some
occasions. Even when the solution for § could have been reached
eventually, it may have been more beneficial to cease the attempt and
use a lower value of X , for which, in the bracketing stage, the
estimates of § were likely to be more accurafe. It was therefore
undesirable to allow GN tb continue indefinitely and the most
convenient means of preventing this was to set an upper limit on the
number of iterations (termination condition T6). The default number
in the Cutteridge algorithm was 200, too many for this application.
During development of the second derivative methods this figure was
gradually decreased. The final 1limit chosen was 10 iterations;
thefe were indications that a still lower figure might be better but
extensive tests were not undertaken.

The criterion used to indicate a successful termination of GN
in the above trials was T1 , i.e. a test on the size of the correction
components. This required at least one matrix inversion to find the
correction vector. It was decided to investigate termination of GN

if the objéctive function of .the sub-problem was sufficiently small,

i.e.

if 0(3) = <6
for suitable values of eg . This effectively reduced the restrictions
on the accuracy of &(1). If the original estimate of §(X)

satisfied the condition, no GN iterations were used.
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4.5.3. Termination of bracketing attempt

The conditicn for an upper limit on the bracketing attempt through
failure of GN , which would occur if components of § became complex,

was given in Section 4.3.3.
i.e. >\a = )\b < ey Xb

where Aa and Ab are the lowest unsuccessful and highest successful
values of X respectively. The higher the value assigned to e, ,
the more likely it was that termination of the bracketing attempt would

occur.

4.5.4. Termination of univariate minimisation

Assuming the bracketing attempt was successful, the univariate
minimisation came into play. The condition for termination of this

was described in Section 3.2.1 ,
i.e. Ix[j] - k[i][ < elk[j]l and ]X[k] - k[j]l < elx[j]I

where A[l] and A[k] form the current bracket and A[J] is a point
between the two. Raising the value of ¢ reduces the accuracy to

which the minimum is required.

4.6. Results of efficiency study

A number of timed trials.using SDB without correction limiting
were conducted for the various estimation procedures and various values
of €, g, and €¢ . Tﬁree starting points of the transistor model
problem from which GN failea were chosen for these trials:

d = 0.8, 0.4 and -1.0. )

The results obtained using the six estimation methods described

are shown in Table 4.5, Algorithm efficiency using the estimation

90
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methods based on Equation (4.8) improved as the order of the estimation
algorithm increased until a collocating polynomial of degree four was
used. The time taken by the three trials using théquartiqmethod was
the same as that taken by the linear method. The two metﬁods based
on Equations (4.9) took the longest time and examination of the resul;s
revealed that they were not particularly good at predicting non-real

values of § components.

SDB iterations (GN iterations)| Total time

Estimation _ _ _ taken

method d = 0.8 d=0.4] d=-1.0 (secs)
Linear 5(114) 6(95) 6(163) 143
Quadratic 5(111) 6(85) 6(134) 134
Cubic 5(110) 6(84) 6(132) 132
Quartic 5(115) 6(88) 6(154) 143
Quadratic reversed | 5(120) 6(97) 6(146) 145
Simplified quad-
" ratic reversed 6(163) 6(171) 6(188) 198

- Table 4.5 Results obtained using different estimation methods

Although the cubic estimation method was marginally better than the
quadratic, it was decided to continue to use the latter because it
required one fewerset of past values to be stored and because of its
compatability with the univariate minimisation procedufe. The retained
points were thoselused to define the new point and were therefore the
minimum number necessary to ensure the new point was surrounded by retained
data.

Table 4.6 shows the results for various values of €g , the GN
termination constant. The total time taken steadily reduced as €6
was increased until eventually two of the test runs failed to reach the
solution. This trial demonstrated that highly accurate values of §
were not required and that a reduction in computer time of 50% was

obtainable by accepting less accuracy.



SDB iterations (GN iterations) jiotal time

E6 d=08 d=0.4 d=-1.0 taken (secs.)
0.0 5(111) 6(85)  6(134) 134
10-10 5(109) 6(72)  6(142) 122
10. 8 5(105) 6(67)  6(133) 117
10..6 6(92) 6(54)  6(120) 104
10-4 6(81) 6(43)  6(98) 93
10-:2 6(54) 7(35)  6(80) 75
100 6(41) 6(24)  7(49) 66
102 not failed failed

attempted

Table 4.6 Results for various values of cg

Table 4.7 shows the results for various values of the bracketing
termination constant d+ , the best result being obtained with a value
of 5.0 . This implied that using the A generation scheme of
Section 4.3.4, once (N had failed during the bracketing stage it was
not worth attempting to refine the previous value of * . Because of
the A generation scheme used any value of e+ above 1.0 would have

produced exactly the same results.

SDB iterations (GN iterations) Total time

& d=08 d=0.4 d = -1.0 taken (secs)
0.05 5(111) 6(85) 6(134) 134
0.1 5(103) 6(85) 6(123) 130
0.2 5(103) 6(85) 6(121) 128
0.5 6(74) 6(85) 6(93) 111
5.0 6(57) 6(85) 6(88) 102

Table 4.7 Results for various values of

Table 4.8 shows the results for various values of the univariate
minimisation accuracy constant e , and indicates once again that strict
accuracy was not required. The best time recorded was for the run which

did no univariate minimisation, i.e. it attempted bracketing only.

SDB iterations (GN iterations) Total time

E d =0.8 d =10.4 d = -1.0 taken (secs.)
0.01 5(111) 6(85) 6(134) 134
0.1 5(111) 6(80) 6(133) 129
0.5 5(92) 6(72) 5(127) 113
10.0 6(90) 7(65) 6(121) 107

Table 4.8 Results for various values of e
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Having obtaiﬁed these results, the accumulative effect of
accepting lower accuracy was examined. €g was set to 10-2 s €y
to 5.0 and € to 10.0 . With the exception of ¢eg , these
were the values producing the quickest execution times; ¢€g was set
higher because of the observed danger of failure. In fact this
combination failed for d = -1.0 so &g was set to 10™* and the
trial repeated (Table 4.9). All three runs were successful and the
execution time recorded was the quickest to date, 60% less than for

the original method.

-

5DB iterations (GN iterations)| Total time
d = 0.8 d = 0.4 d = -1.0 | taken (secs)

.0 {10.0 7(26) 6(25) failed -
.0 ]10.0 7(32) 7(32) 8(63) 53

€g €y €

1077l 5
107 ]S

Table 4.9 Accumulative effect of easing accuracy requirements

The revised method was then tried from a range of starting points
first using no correction limiting and then using a correction 1limit of
0.5. The results are given in Table 4.10 together with the equivalent
results of the earlier method (taken from Tables 4.3 and 4.4). With one
exception the number of GN iterations for solving Equations (4.3)
was always fewer. The exception was for d = -2.2 with a correction
limit of 0.5 for which the new method was unsucéessful. This reinforces

the view that reduced accuracy should be accepted with caution when

convergence to a solution is in doubt. However, the solution jump problem
which occurred for d = -0.8 1in the earlier version of SDB (unlimited)
was no longer present. Although extensive trials were not conducted on

a revised SDC method, some tests were done and it was noted that the
solution jump for the d = 1.0 run was overcome as well.
Also included in Table 4.10 are the results of the revised SDB

method for a correction limit of 0.2 which had not been tried previously.
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As expected_the range of successful starting points increased though
there were only three improvements over the equivalent GN , at d = 1.4,
1.2 and 0.8. However, for‘all trials of the revised method there was
ﬁo occasion where SDB failed‘and the equivalent GN method was
successful. Furthermore, there were only three runs, all with a correc-
tion limit of 0.2 , where the number of GN iterations to the solution

was less than the number of SDB iterations to the solution.

Initial SDB iterations (GN iterations)
displacement No correction limiting Correction limit of 0.5 |Correction
d Previous result| New result | Previous result| New result| 1imit of 0.2
1.6 * * * * failed
1.4 fajiled failed * * 15(89)
1.2 6(209) 8(57) * ok 13(69)
1.0 6(88) 7(34) failed failed 11(64)
0.8 5(111) 7(32) 6(116) 6(44) 11(80)
0.6 6(69) 6(40) 5(74) 6(40) 13(91)
0.4 6(85) 7(32) 5(86) 5(35)" 6(44)
0.2 3(19) 3(10) 3(19) 3(10) 3(13)
-0.2 3(14) 3(7 3(14) 3(6) 5(11)
-0.4 3(27) 4(11) 5(59) 5(19) 9(49)
0.6 4(29) 4(16) 4(53) 5(20) 9(43)
-0.8° failed 6(57) 6(87) 7(36) 14(71)
-1.0 6(134) 8(63) 7(100) 8(62) 15(104)
-1.2 failed failed 7(109) 8(60) 15(95)
-1.4. failed failed 7(119) 7(68) 15(97)
-1.6 failed failed 7(137) 8(71) 13(137)
-1.8 * * 7(211) 12(200) 18(298)
-2.0 * * 13(627) 15(278) 19(373)
-2.2 * * 11(330)  failed 19(409)
-2.4 * * failed failed 23(435)
-2.6 * * failed failed failed
-2.8 * * 9(204) 9(99) *

*

not attempted

~ Table 4.10 Results of the revised SDB method and comparison with earlier

results

4.7. Computing time comparison of second derivative methods and GN

The amount of work done in an iteration of any of the second derivative
SD) methods clearly exceeds that done in a GN fteration. A comparison
of computing times for the methods was required but the research programs

as they stood were not suitable for this because as they contained the
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remains of many discontinued ideas their efficiency was impaired. It
was decided instead to isolate the main components of the algorithms

and to time these individually in order to construct a composite picture.
The facilities offered by the operating system to do this were limited;
it was necessary to repeat the required operation many times in order to
get a reasonably accurate estimate of the time taken for one such
operation. Using this method the follbwing times were recorded for the

transistor model problem;

evaluation of the objective function ng) : tf = 0.0017 seconds;
evaluation of the Jacobian : tj = 0.0052 seconds;
evaluation of all second derivatives : ty = 0.041 seconds;

given the above, extra time required for
evaluation of sub-problem objective

0.011 seconds;

function 6(8) : - tF =
given the above, extra time required for

evaluation of sub-problem Jacobian : oty = 0.012 seconds;
solution of simultaneous linear equations

using Crout's factorisation method : t, = 0.042 seconds.

These figures clearly indicate that the . SD methods will take longer
than GN , assuming convergence in both cases, unless the number of GN

iterations on the sub-problem is fewer than those required for the full

problem. This cannot be expected in general and in fact never occurred
on the transistor model problem. Using typical values for the number
~of function evaluations per iteration it was calculated that the ratio

of time taken on an SD iteration to that for a GN iteration on the
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full problem was approximafely 2j + 1 for SDA and SDB rising to

2j + 1.6 for SDC , where j 1is the number of GN iterations of the
sub-problem per SD iteration. This has been noted to vary from 2

to 20 which means that the SD method would normally takelseveral
times as long as GN if both converged to the same solﬁtion eveﬁ
allowing for tﬁé reduced number of SD iterations required. However,
it should be remarked that for the same size problem, tp and ty are
constant. Therefore the ratio becomes more favourable for the SD
method if the complexity of the objective function increases, even

though this could mean proportional increases in '% and ty -

Nevertheless, it was to be expected that the main use of the SD

algorithms would be when GN failed; The question arose as to whether
it was possible to determine when to change from the SD method to GN
during the optimisation process, i.e. to determine when a point had been
reéched from which GN would converge to the solution. It was thought
that one possible method would be to compare QLACP)) with the OGN
correction vector for the same value of A . However, even at a paint
from which GN would converge to the solution it was found that the two
sets of corrections could be quite different; different orders of magnitude,
even corresponding components.haﬁing opposite sign were noted. Thus it
was decided to adopt the method used in the Cutteridge algorithm, i.e.

to try GN from the initial point and from the points generated by each
iteration of the SD method, terminating GN acéording to the criteria
of Section 3§2.2.- The results using this method in conjunction with

SDB (unlimited) are given in Table 4.11. Eiecution times were reduced

in all cases,
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Initial Total no. No. of GN. |[Total no. of GN

“displacement of SDB iterations on|iterations on

d iterations sub-problem | main problem
1.2 3 31 40
1.0 2 18 30
0.8 2 16 25
0.6 0 0 9
0.4 2 16 15
0.2 0 0 6

-0.2 0 0 5 .

-0.4 - 0 0 6
-0.6 0 0 7
-0.8 2 39 19
-1.0 1 18 13

Table 4.11 Results using GN prior to each SDB iteration

4.8. Results obtained using basic problems

During the development of the SD methods all the other problems
described in Chapter III were used and the results obtained compared
with those of GN/N (for SDA) and GN/M (for SDB and SDC). These
resulté are not'fully presented here because a consistent set, that is
one with all the various parameters of the methods set to the same values
for each run, was never produced. However some general results may be
stated.

It was found that whenever the GN methods converged to a solution
the eqﬁivaleht SD° methéd converged to a solution, and when the two solu-
tions were the same, the SD method took fewer iterations. Normally,
the total number of GN iterations required by the SD method in solving.
Equations . (4.3)  exceeded those required by GN on the full problem.
An exception to this rule was observed for Rosenbrock's function where
both SDA and SDB reached the solution in one main iteration consisting
of 3 GN iterations. GN/N and GN/M took 3 and 16 iterations
respectively on this problem. |

It wés necessary to enforce the original accuracy requirements to

ensure that SDA and SDB converged to a solution of the modified
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Rosenbrock function in one iterétion; with relaxed accuracy requirements
two iterations were required. SDC required two iterations on this
- problem even with the original specification, and on Rosenbrock's
function it took five iterations. This was caused by non-unimodality
in the A-search thought to be due to inaccuracies in thé points given
by the u-search to which SDC 1is susceptible.

On the HDS problem, SDA converged from the three étarting
points but SDB and SDC failed ffom (50,50)° and (500,500)T ,
experiencing thebsame difficulty as GN/M from thése points. From

(5,5)° , SDC was again appreciably worse than the other two SD methods.
4.9, Discussion

Comparisons of the three SD methods with their first derivative
counterparts, have shown that in general the SD methods have a greater
range of convergence and when both types of method converge to the same
solution, the SD methods require fewer iterations; However, the use of
correction component limiting has been noted to cause some deviation from
the latter observationm. SDB and SDC , which include an extra
univariate search, have greater convergence ranges ;han SDA, which further
demonstrates the usefulness of this technique. The accuracy problems
that SDC encountered with the A-search on simple examples suggests
that SDB is the best of the three algorithms.

The convergence ranges of the SD methods were extended by the use
of correction component limiting, but not as significantly as for GN .
This result is not surprising because as the correction component limit
" is decreased, the directions given by the SD methods and by GN become
more similar. Thus there is little point in using an SD method if
severe correction limiting is to be imposed. However the remarks made

earlier indicate that this may not be a disadvantage. With no



correction component limiting the convergence range of SDB for the
tranSistor model problem was noted to be between two and three times
that of GN .
The dangers of inaccuracy have again been demonstrated. Although

a substantial reduction in computing time resulted from a relaxation of
the accuracy conditions, the robustness of the SD algorithms
eventually became affected though this may not have been due to the
reduced accuracy of the univariate search parameter. However, even
with this reduction in computing time, for most problems the SD
algorithms were unable to compete with the efficiency of their GN
counterparts when both converged. This will probably remain so unless
either Equations (4.3). can be solved more quickly or unless further
approximations are introduced. On the transistor model problem the
former is thought unlikely because an'evaluation of 6(§) took seven
times as long as an evaluation of f(é) even after the calculation:of
s and its first and second derivatives. = The introduction of further
approximations was avoided for the reasons already given. Thus it is
thought that the main benefit of the SD methods is to be derived when
GN fails. Certainly the complexity of the SD methods eliminates
any thought that they might replace the need for a two-part optimisation

method.
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CHAPTER V

APPLICATION OF METHODS TO RC CIRCUIT DESIGN

Further engineering test examples were taken from the field of
circuit design, an application area in which there has been a research
interest at the University of Leicester for a number of years. One
of the products of this research has been the develépment of a program
for the synthesis of 3-terminal lumped linear networks containing two
types of elements, resistors and capacitors, using the technique of
coefficient matching (Calahan (67)). Development of the program,
which is known as the Automafed Network Design Program (ANDP), is
still continuing and consequently several versions exist. One version,
written in Algol, was suitable for the incorporation of the second
derivative methods to facilitate further investigations.

The method of coefficient matching involves the use of an optimisation
algorithm and in the particular version of ANDP used this was a two-part
algorithm comprising the Fletcher-Reeves method of conjugate gradients
(CG) and GN , i.e. a genéral function method and a sum of squares method.

The results of Chapter IV indicated that the range of convergence
of the SD methods was greater than that of GN . As well as providing
further examples for testing this premise, the network design application
enabled the comparison of a general function method with the SD methods.
If the extra convergence range of the SD methods could be obtained with
- a few CG iterations, little or no benefit would be derived from their
use since they are far more complex. Alternatively, the results could
give an indication as to whether the use of a three-part optimisation

method would be beneficial.

5.1. The Automated Network Design Program

The main features of ANDP have been described by Cutteridge and
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Krzeczkowski (68) although the program given in the appendix of their
report does not correspond exactly to the version used by the author:

The performance of any 3-terminal RC network is defined coﬁpletely
by a triplet of short-circuit admittance functions which are ratios of
polynomials in the complex frequency. From an initial network, ANDP
attempts to find a suitable network structure complete with network
element values such that polynomials specified by the user are realised
to within a multiplicative constant by a prescribed accuracy. The
initial network, which is also specified by the designer, must yield
polynomials of the requisite degrees.

Given the values of the network elements, the corresponding poly-
nomial coefficieﬁts can be evaluated. Thus the problem is reduced to
one of solving a set of m simultaneous equations in n . unknowns where

m is the number of coefficients to be matchéd and n is thé number of
elements plus the number of common factors (see later). However, a suitable
solution to the equations, i.e. one with positive element values, may not
‘ always exist for the particular arrangement of RC elements under
consideration. For this reason, ANDP has an automatic facility for
adding ér removing- an element when it appears that the specified polynomials
will not be realised with the current topology. Thus the program relies
heavily on the optimisation algorithm used to attempt to solve the:simul-
taneous equations and for ﬁhis application, the two-part CG-GN algorithm
is the best of those tried so far (Krzeczkowski(EQJ).

The basic procedure is as follows. When an RC network topology
has been defined a number of CG iterations are evaluated followed by a
number of GN iterations. The criterion for changing from the former
method to the latter is based on the value of the objective function and
its rate of decrease over a number of iterationms. If_ GN succeeds in
reducing the objective function below a certain small value (1.0 x 10'13)

the network coefficients have been matched to the desirable accuracy and



102

and the Prdgram terminates. Otherwise one of the several alternative
GN termination criteria must be satisfied eventually indicating that
the polynomial coefficients are unlikely to be realised with the current
topology. The removal of an element is effected if over a nuﬁber of
iterations its value dec¢reases at an increasing rate. Since the
optimisation variables are the logarithms of the network elements,
element values must remain positife though thcy can become very small.
If neither element removal nor successful GN termination is indicated,
ANDP  will attempt to findka suitable element fo add to the network.
This is done by eiamining the effect of adding a single element to the
ekisting network between each pair of nodes in turn. Both types of
element, resistor and capacitor, are considered unless the current
topology already has an element of that type between the pair of nodes
under examination. The value assigned to the additional element is
the one which minimises the objective function when other variables
are held constant at their current values; the necessary value of the
new element can be calculated easily. For each of the new networks
thus defined, a single GN iteration is calculated. Those networks
in which the new element decreases in value are considered no further.
Also discarded are those networks which have too many variables whose
GN corrections eXceed a ceftain amount, this indicating ins;ability.
From the remaining networks, the one which has the lowest objective
function is chosen and the process restarted by applying CG iterations
to the new network. This network modification stage is known as the
virtual element analysis. Should all possible networks be discarded,
the program terminates having failed in its objectiQe. ANDP will
also terminate if one particular element shows a tendency to increase
at an increasing rate. The latest developmentsof ANDP include a

facility for changing the number of nodes of the network in the event
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of virtual element analysis failure (Savage (70)).

5.2, The trial problems

The actual example on which this investigation was based was
taken from the report by Cutteridge and Krzeczkowski. The desired
admittance functions are given by:

. -y - B2 A v - Ao
- 22 Ty R L, 12Tk

1122

where A, =4, = (p+a) (1197p3+56613.14p2+28368.584p+191.184)

(p + a) (3p3-1.14p2+197.176p+77.616)

>
1]

12

ALLyy" (p + a) (800000p2+408000p+3840)

and p is the complex frequency variable.

fhe inclusion of the common factor (p + @) 1is necessary to
eliminate the negative coefficient that would otherwise oécur in the
pol&nomial ekpression for A,, ; network theory demands non-negative
polynomial coefficients for an RC realisation. Thus 4,, , 4,5,

and A,, are quartics and & is a cubic which gives a total of 19

1122
polynomial coefficients. An attempt to match these coefficients there-
fore yields 19 equations.

The numbér of variables is equal to the number of network elements
plus one (for o). This quantity varies during a run of ANDP unless a
solution is found without the addition or removal of elements of the
original network topology. If the nctwork topology is altered the
effect of changes to the program is increased so that even minor changes
can radically modify the program path,

This was illustrated by the different solutions given by the version

of ANDP reported by Cutteridge and Krzeczkowski, which will be called
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ANDP1 , and the version of ANDP made available to the author>(ANDP2)
when both were used on the test problem with equivalent data. The

initial network in both cases consisted of 4 resistors, 4 capacitors

and 5 nodes plus the reference node 0 . Initial values of the
variables were set to 1.0 . The network modifications effected by
ANDP2 are shown in Figure 5.1. The first modification was the

addition of a resistor between ﬁodes 0 and 4 ; the second modification
waé the addition of avéapacitor between nodes 0 and 3 ; the third
and final modification was the addition of a resistor between nodes

1 and 2. ANDP1 1is reported to have made the same first and
second modifications, but a differeﬁt third modification. Three
subsequent topology modifications were required before the solution
neiwork (Soiution A) shown in Figure 5.2 was obtained. The solution
network given by ANDP2 (Solution B) is shown in Figure 5.3.

Since it would have been difficult to draw any conclusions from a
comparison of different versions of ANDP when topological modification
was necessary, it was decided to use initial network structures from
which a solution could be obtained by merely changing element and common
factor values. The two topologies used.were'those of Solution A and
Solution B , and will be denoted Topology A and Topology B respec—-
tively. Thus prior to topological modification the former having 12
elemehts yielded 19 simultaneous equations in 13 wunknowns and the
lattei having 11 elements gave 19 simultaneous equations in 12

unknowns.

5.3. The modified version of ANDP2

In order to assess the use of the SD algorithms on these problems
ANDP2 was modified to produce a third version, ANDP3 , to enable a

prescribed number of iterations of SDB or SDC to take place at the
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Figure 5.1 Network modifications given by ANDP2
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point when the program would normally have changed optimisation methods
from CG to Gﬁ . After the prescribed number of SD iterations
the program would enter the GN phase and proceed as normal. Thus
the optimisation algorithm became a three-part process comprising -

CG - SDB (or SDC) - GN . The second derivatives required were
calculated numerically. Since there were more simultaneous equations
than unknowns, generalised Gauss-Newton was applied to Equations (4.3)

in the SD methods.

A further modification to ANDP2 was the addition of a facility to

enable a prescribed number of extra CG iterations to be calculated at

the point when the optimisation method would normally have been changed‘

in favour of GN . This facility was used to compare CG with SDB

and SDC .

5.4, Results obtained

In the first set of trials ANDP2 and ANDP3 were supplied with
an initial network consisting of Topology A with element and common
factor values set to 1.0 , this being the initial value recommended in

Cutteridge and Krzeczkowski's report should no other information be

available. ANDP3 was tried with one and two iterations of each of the
two SD algorithms, a total of four runs. Neither ANDP2Z nor
ANDP3 reached any solution. ANDP3 with SDC failed with overflow

problems thle the other three runs all failed to find a suitable new
network at the first virtual element analysis.

Consequenfly the initial values applied to Topology A were moved
closer to the solution, by either halving or doubling as appropriate,
provided this did not overshoot the solution value. The new initial

vector of variables was therefore:

5(°) = (0.5,0.5,2.0,1.0,1.0,0.5,0.5,0.5,1.0,1.0,0.5,0.5,1.0) " .

108
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Once again ANDP2 failed to reach Solution A but ANDP3 with one
SDB iteration prescribed was successful. The criterion for changing
from CG was satisfied after 37 iterations; following the singlé
SDB iteration 14 GN iterations were required to reach the solution.
Use of SDC within ANDP3 égain failed. ’

A number of trials using additional CG iterations followed by the

normal process through GN were then conducted. The additional
iterations were used on the initial topology only. The results are
shown in Table 5.1. The standard version of ANDP2 entered a

virtual element analysis (VEA) after 3 GN iterations. The program
eventually failed at a later, unsuccessful virtual element analysis.

One or two extra CG iterations on the initial topology were sufficient
to direct the prbcess to a Solution, but not that of the initial topology.
The solution given is shown in Figure 5.4. Four or more extra CG
iterations always gave Solution A , though it is interesting to note

that the number of GN iterations required did not decrease monotonically
as the number of CG iterations increased.

Using Topology B with the recommended initial values ANDP3
converged to Solution B with either one SDB iteration or one SDC
iteration. 49 CG iterations were required before the CG termination
criterion was satisfied, thefeafter convergence to the solution was
obtained with one iteration of either SD method followed by 17 GN
iterations. The results for ANDP2 are shown in Table 5.2, Even
with extra CG iterations, Solution B was never obtained. The
basic version failed to reach any solution; at the first virtual element
analysis a resistor was added and the program eventually terminated at
a later virtual element analysis. Two of the runs reached a fourth
solution, Solution D , shown in Figure 5.5. Two other runs terminated

because the run time limit was reached although a generous amount of time
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was allowed enabling many topological modifications before the limit
became effective. Two further runs terminated at the first virtual

element analysis and one run failed because of a large element value.
5.5. Discussion

The application of the SD sum of squares optimisation methods to
RC network design has further demonstrated the greater range of
converéence to a solution that is obtainable by use of these methods in
preference to GN . This was the case on both of the trial initial
networks. On the first ekample use of CG iterations overcame the
convergence deficiency of GN . This was not so on the second example
where the CG-GN optimisation method failed to give the.required
solution, which in some senses was the solution closest to the initial
estimate, despite the calculation of CG iterations additional to those
normally used. In this case the new SD opt%misation methods were
undoubtedly of benefit. It is possible that in the second example an
alternative general function minimisation method would yield a point
from which GN would converge to the required solution, but after
several years of research on the network design program by various
workers, CG 1is still the favoured method for this application.

Of the two SD methods tried, SDB again appears to be better.
Although it would probably be possible to overcome the overflow problems
encountered by SDC , the implication is that SDB 1is more stable and

therefore more reliable.
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CHAPTER VI

FURTHER EXTENSIONS TO SECOND DERIVATIVE ALGORITHMS

The aim of this chapter is to discuss two extensions to the second

derivative algorithms which are more radical than those of Chapter IV;

(1) the use of solutions to Equations (4.3) other than

the one given by § =0 at A =0,
(ii) the use of equations other than Equations (4.3) or (4.4).

To simplify explanation, correction vectors § derived from the
vector function 6(A) satisfying the condition expressed in (i) are
denoted by §0 3 others are simply referred to as "alternative
correction vectors'" which are derived from "alternative solutions'" of
Equations (4.3). Thus "§ - method" is a general term which can be

applied to methods SDA , SDB and SDC .

6.1. Use of alternative correction vectors

Of the many possible real solutions of Equations (4.3) only one
has been considered so far. The question that arose was whether the
alternative solutions could be used beneficially. Two possible uses
were conceived: the provision of further solutions to a multi-solution
problem and the provision of an alternative strategy when a problem
solution was not reached by the particular ¢, -method in use. The first
of these can be illustrated by considering a multi-solution simultaneous
quadratic equation problem where m = n , e.g. the modified version of
Rosenbrock's problem, which is precisely represented by Equations (4.3).
The alternative correction vectors therefore yield alternative problem
solutions.

The provision of an alternative strategy when the go-method failed

was seen as analagous to the restart facility of the Cutteridge algorithm
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with the minor difference that the latter was based on univariate multi-
modality. It should be remarked that in the SD algorithms multi-
modality in the univariate searches (cf.Figure 4.4) provided a further
possibility for an alternative strategy but lack of time prevented

investigation.

6.1.1. Generation of altermnative correction vectors

Chapter IV described the method by which determination of § for‘
a particular value of ) was attempted based on the knowledge of the
solution to Equations (4.3) at X = 0 . Minor modifications to this
method enabled it to be applied to alternative solutions once §(A) had
been determined for some A , wherein lay the difficulty; no value of A
existed for which & could be immediately evaluated.

Initial attempts at finding alternative solutions used the Cutteridge
algorithm suitably modified. Instead of terminating the algorithm
when convergence was indicated (cf. Figure 4.1) the process was directed
to thé next restart point. The solution search was terminated when all
restart points had been used or when the prescribed computer run time had
expired. In order that some restart points were generated it was
necessary to force the first iteration to be 6f the descent type.

Trials on the use of alternative corréction vectors were required
but although the above method was moderately successful at generating
alternative solutions, it was very expensive in terms of both descent and

GN iterations. It was decided to attempt to generate solutions by
means of GN only and incorporate this method in the previously developed
algorithms. The occurrence of solutién jumps in earlier work suggested
that this was feasible and indeed some success was obtained by merely
applying GN from a starting point derived from changing the signs of

the starting point which yielded the § - solution.
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The version which was incorporated into the SD algorithms was
as follows. For ease of implementation e, , the value to which A
was set at the beginning of each SD iteration (see Section 4.3), was
chosen for the value of X at which solutions to Equations (4.3) would
be sought. The normal procedure was used to determine S,(e2) 5 if
this féiled further solutions were not generated. If go(ez) was
found it was defined as an origin from which orthogonal directions were
generated using the Gram-Schmidt orthogonalisation process (see
Birkhoff and MaclLane (71)), the initial directioﬁ being defined by the
original estimate of go(ez) that had been given to GN . Along the
orthogénal directions, on both sides of the origin, points were generated
by the Fibonacci sequence and at these the value of @ , obtained by
substituting for 8 in Equation (4.5), was examined. If a decrease in

8 was dis;overed, provided the previous point had given an increase in

8 , GN was initiated. This procedure is illustrated in Figure 6.1.
The first step length was calculated froﬁ the range of interest and the
number of points required, two parameters to the algorithm. When GN
converged to a new solution it was stored together with the GN starting
point to be used later to generate a further set of orthogonal directions
if required. Once the supply of new solutions had been exhausted the
algorithm would terminate.

The use of derivative information at the 6 evaluation stage was
also considered. For example, in Figure 6.1, a negative gradient at the
sixth point (counting from the left) would indicate the presence of a
minimum which could not be deduced from an examination of 6 values
alone at the points shown; However, in practice derivative evaluations

involved a lot of work for very little reward so their usage was dropped.
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6.1.2. Verification of generation method

In order to verify that the method of generating multi-solutions
was reasonably effective it was applied to two problems which were known
to have several solutions. The first one used was Brown and Gearhart's

four-cluster problem (72), which is defined by:

2 .
S (Xl - X9 )(Xl - s1in Xz)

sp = (cos xp - x1)(x2 - cos x3)

This pair of equations has an infinite number of solutions, four of which

are close together in the first quadrant. The approximate values of
these are:
* T * . T
x; = (0.68, 0.82) s Xp = (0.64, 0.80)
2 (0.71, 0.79)° "2 (0.69, 0.77)"
x, = (0.71, 0.79) T (0.69, 0.77)

Brown and Gearhart conducted extensive tests on this problem using

several déflation techniques from eleven starting points, only two of
which were reported. In no run were more than two of the four solutions
of the first quadraﬂt found; this was attributed to the tendency of the
application of deflation at a point to direct the optimisation algorithm
away from its vicinity.

The orthogonalisation method with GN included was applied from one
of the initial points given, namely (0.9, 1.0)T . GN was initiated
from this point to give a solution to define as an origin after which the
objective function was evaluated at 15 points in each orthogonal
direction on each side of the origin. GN wa; again used where indicated
and further sets of orthogonal directions were generated as solutions were

found.

When the search was restricted to the first quadrant, only two



solutions were found. When the search was expanded to four quadrants,
seven distinct solutions were found, including the four in the first
quadrant.

The second problem used was the modified Rosenbrock problem to
which the same procedure was applied from the initial point (-SO,S)T.
All four solutions were found in a total of 17 6N iterations.

The results of the two trial problems indicated that the method

was adequate at finding multiple solutions.

6.1.3. Results obtained

Initial trials on the use of alternative correction vectors were
conducted on the transistor model problem with the problem parameters
qonstrained. Figure 4.2 showed plots of log.f(x + §(A)) against 2
fof various &-paths found when the componentsof x were set to 1.0
above the components of 5; for the transistor model problem. The
path labelled "A" corresponds to the §o-solution. Of the remaining
§ - paths, five were traced back through A = 0 . These are labelled
"B, "c'", '"D'", "E" and "F'". From the initial point defined above, five
runs were conducted using one of the alternative correction vectors on
the first iteration and go-solutions on subsequent iterations. Apart
from this modification, the optimisation method used corresponded to SDB
with a correction limit of 0.5 . Normal SDB wusing only éo
solutions failed fo reach a problem solution from this point (see Table
4.10). The method using the alternative correction vectors fared no
better.

A similar procédure was adopted using two alternative § - solutions
from d = - 2.0 , this time with no correction limiting. Whereas the
normal SDB method failed, use of the alternative § - solutions in the

first iteration eventually led to the solution in each case. During

120
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further trials on both SDB and SDC a few more successes were recorded
from points from which the sequence of ¢ - solutionsfailed.

In order to examine this method further, and also to determine the
effect of using alternative § - solutions to find multiple solutions of
an application problem, the transistor model problem was used without
constraining the variables. In Section 3.1.6 two problem solutions
were given, one of wh?ch had negative.components. Although this second
solution is invalid in the engineering sense, it is perfectly valid when
used as an optimisation test case, It was also required to know how
the use of alternative §;—solutioné compared with simply generating
different initial points for the SD methods. Although GN was used
in the orthogonalisation procedure describea in Section 6.1.1, there was
no reason why this could not be substituted by SDB and the orthogonalisaZz
tion used to generate starting points for the original problem. Although
ideally the origin should be a solution, if one had not been found
previously an arbitrary point and direction could be used to start the
orthogonalisation. This technique was also tested on the unconstrained
transistor model problem using SDB .

Table 6.1 shows the results obtained using GN and SDB on the
transistor model problem without imposing the constraint of positive
parameter values. The table shows which, if either, of the two problem
solutions was given on a number of trials for variouws values of d ,

where as before the initial variable values were given by:
() _ * -
x; 0 = max(xli +d, 0.1) for i=1,2,...,8.

It is interesting to note that for each method the frequency of

*

convergence to X, 1is mot less than that achieved when the variables were

transformed, a result that might appear to be contrary to the findings or

opinion of other researchers Ce.g. Cutteridge and Dowson (60)). In this
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Solution 1 Xy

(0.9,0:45,1,0,8,0,8.0,5,0,1.0,2.0) "

* 1

Solution 2 x (0.8985,0.9740,11,65,3.251,6,711,-8.764,1.251,-0.5251)

olle

Table 6,1 Transistor model problem unconstrained
case the gingle known unrealisable solution did not prove to be a major
distraction, as might have been the case if there had been more such
solutions,

The use of alternative correction vectors and multiple starting points
was examined on all those trials of Table 6.1 which either failed to produce

. :
a problem solution or converged to x, . The two methods are denoted by

2

I and II respectively,

A flowchart of Method I is shown in Figure 6.2. Basically the

method followed the normal SDB method except that at each iteration the
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orthogonalisation was used to search for alternative correction vectors,
storing a maximum of two. If any were found these were used in turn to
define one modified iteration followed by use of the normal- SDB method
until termination was indicated. After the alternative correction
vectors had been used, the original SDB was continued. The results for
this method and for Method II are shown in Tabie 6.2. For Method I;
Table 6.2 shows the number of alternative correction vectors found on
the first five iterations and the result of pursuing the strategy
described. In no case were any alternative correction vectors found
after the third SDB' iteration. On the six trial points from which
nbrmal SDB failed completely, only one yielded 5; when Method I was
applied. On four of the six runs no alternative correction vectors were
found. Of the nine trial points from which SDB converged to 5; s
three gave 5; when Method I was used.

Method II consisted of using the orthogonalisation procedure on the
transistor model problem itself, but using 5; as the origin only if it
had been located by SDB . For those initial displacements from which

SDB failed to converge, implying that in a practical case 5; would not
have been known, the orthogonalisation was generated from the point given
by the initial displacement and 0 was used to define the first direction.
Table 6.2 shows the number of starting points so generated and the result
of using normal SDB from each. é; was found in seven cases out of the
nine where the orthogonalisation was started from 5; and in one case out
of the six which required the arbitrary initial direction.

The orthogonalisation procedure in both Methods I and II used 10
function evaluations in each direction and the maximum absolute value of
the variables, either Gi or Xy (i=1,2,...,8) as the case may be, was

100.0 . Smaller steps in the orthogonalisation, either by reducing the-

range or increasing the number of function evaluations, did not produce
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more alternative correction vectors for Method I at points from which
normal SDB failed. Because of the small number found, it is difficult
to draw conclusions on the use of alternative correction vectors in this
case. There does, however, seem to be a correlation between the per-
formance of the §0-method and the ease of finding alternatives. In
Method II, use of the arbitrary initial orthogonalisation direction
yielded more starting points than by using 5; as the origin, but the
success rate on these was no better than that of Method I unless finding
52 is counted as success.

The suitability of the use of alternative correction vectors for
finding multiple solutions of a problem is therefore open to doubt.
In the cases where SDB found E; similar numbers of starting points
were generated by Methods I and II; but whereas those for Method I were
more likely to converge to a solution, 15 out of 21 as opposed to 6
- out of 23 , Method II produced the known alternative problem solution
from a greater number of trial displacements d . It would appear that
the application of only one alternative correction vector is insufficient
to ensure that the path of the method is directed away from that given by
pure éo ~moves. -When SDE failed to converge, Method I was inefficient
at finding alternative correction vectors while Method II generated many

unproductive starting points, the overall success rates being identical.

6.2, Use of alternative equations

Two variations on Equations (4.3) were considered. The first
was intended to reduce the amount of computation in an iteration of an
SD method while hopefully retaining improved convergence properties
over GN . This amounted to a simplication of the equations to restore
linearity with respect to the correction vector. The second variation

was the inclusion of higher derivatives in Equations (4.3) with the
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intention of increasing the solution convergence range for a given

problem.

6.2.1. Linear correction vector

Section 4.1 mentioned that in the early stages of research GN was
applied to Equations (4.1) and if suc¢cessful a linear search to minimise
o(A) = f(§_+ A§) was used to define the new point. This is equivalent
to applying Method SDA to equations of the form:

n asipgg n 32s; (x)

0=2%s.(x) +x ¥ ) ——— 6.6
1 j= 1 k=1 axj axk j'k

ne~13

1
§, + =
aX. 2 .
1 j j

(i=1,2,...,m). (6.1)

This makes § a linear function of A so the equations need be solved
only once per iteration. In addition it was remarked earlier that
solutions to Equations (4.1), and hence also (6.1), do not always exist.
In the trials done subsequently, if a solution to Equations (6.1) was not
forthcoming, an alternative method was used for that iteration. The two
auxiliary methods considered were GN .and SDB . The results obtained
on the transistor model problem with positively constrained parameters
and no correction limiting are given in Table 6.3, which shows, for
those cases which converged to 5: , the number of iterations based on
Equations (6.1), the number of iterations requiring the auxiliary method
and the total number of GN iterations required in the attempts to
solve Equations (6.1). |
Let the methods using Equations (6.1) be denoted by SD(GN) and

SD(SDB) . Comparison with earlier trials for equivalent initial
displacements reveals that SD(GN) had one more success than GN

(cf. Table 3.7) and SD(SDB) had five more than GN but one less

than SDB (cf. Table 4.10) . The success achieved by SD(SDB) from

d = 1.4 had not been previously recorded by any method except with
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/

severe correction limiting imposed. An examination of the results
revealed that in certain cases an excessive nqmber of GN iterations
had been used in unsuccessful attempts to solve Equations 6.1).
Nevertheless, even taking‘this factor into account, it is interesting
to note that in most cases more GN iterations were required to solve
the subsidiary simultaneous equations in method SD(SDB) than in method
SDB . Bearing in mind that Equations (6.1) had to be solved once per
iteration whereas Equations (4.3) required solving several times per
iteration,.this result bears testimony to the difficulty of solving
Equations (6.1) and the efficiency of the procedures developed for SDB .
It is probable therefore that the aim of reducing computation time in
the second derivative method was not realised; the operating system

facilities did not permit easy verification of this conclusion.

6.2.2, Use of highgr derivatives

An obvious extension to Equations (4.3) is to include the third
derivative term or even higher derivative terms. vCertainly the result
of Section 4.2 regarding a reduction in the objective function for a
suitable choice of ~ A 1is still valid provided that the higher deriva-
tives are continuous in the neighbourhood of the current point. This
means that the computation procedure described in Chapter IV is
applicable to the revised equations.

Some preliminary trials.using Equations (4.3) modified to include
the third derivative term were conducted on the HDS and transistor model
problems. It was expected that the third derivative method would
require fewer iterations than the equivalent SD method when both con-
verged to the same solution, and that the third derivative method would
extend the range of solution convergence in the transistor model problem.

However, the former result was not obtained consistently and the latter
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result was not obtained at all. The reasors for this are not known:
the possibility of a program error or inaccuracy cannot be excluded.

The use of higher derivatives can also be applied to the generél
function minimisation method. Equations (2.6), which form the basis
of Cutteridge's descent method, can be extended to include avthird
derivative term thus:

: n 2 n n . 3
5-=‘“{-ai* i) G'Gka—%fzﬁ"}
=1 k=1 j=1 I K %59

(i=1,2,...,n). 6.2)

Since this is solved by § =0 at u =0, the methods of Chapter IV

are again applicable. Cutteridge et al. have noted considerable
improvement over the steepest descent method by the inclusion of the
second derivative term. The major difference between the Cutteridge
approach and that of the methods of Chapter IV is whereas in the former
approach all values of u are cbﬁsidered, the latter approach is

unable to cross the first discontinuity of the objective function.
Nevertheless, there is sufficient ewvidence to suggest that Equations (6.2)

merit investigation.
6.3. Discussion

Although the method of generating alternative solutions worked well
enough on the four-cluster and modified Rosenbrock problems, much more
difficulty‘was experienoced on the transistor model problem with
unconstrained variables, particularly on runs whe:e SDB failed to give

Tk
a solution. Even when SDB reached x

X, , the use of multiple

starting points has much to commend it since it is the simpler method.
These trials have therefore not produced any evidence that the use of

alternative correction vectors is beneficial.. .



131

The replacement of Eéuations (4.3) by ones which yield a linear
correction vector was e&pected to give a more efficient, if less robust
method. That it did not was surprising but the conclusion drawn was
that the procedures developed for the normal SD methods were
reasonably efficient.

The few numerical trials that were done on equations which included
higher derivatives were disappointing and suggest that further research
into these is required. Lack of time prevented investigation into
the use of higher derivatives in general function minimisation, but
extrapolating from a comparison of second derivative methods with first

derivative methods suggests that it would be worthwhile.
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CHAPTER VII

RESUME AND CONCLUSIONS

Chapter II presented a number of methods for local unconstrained
optimisation which were categorised according to whether they were
applicable to a general objective function or to one which could be
expressed as a sum of squares. The research undertaken by the author
has concentrated to a large extent on the use of sécond derivatives
in algorithms for the sum of squares problem. The reasons for this

were three-fold:

(1) several authors have suggested that the use of second
derivatives in general function minimisation can be of

benefit in many instances;

(ii) a good terminal performance is generally achieved by first
derivative sum of squares algorithms when applied to certain

problems in electrical circuit design;
(iii) there was a lack of second derivative sum of squares algorithms.

The first and third points were mentioned in Chapter II while the second
point was illustrated in Chapter III, which reported on a series of trials
conducted on a transistor model problem and also on a number of more
simple problems. Each problem could be formulated as the optimisation
of an objectivé function expressable 'as a sum of squares with zero
residuals at the solution. The three main algorithms used were Gauss-
Newton (GN) , Newton-Raphson (NR) and a quasi-Newton method due to
Gill, Murray and Pitfield (GMP) . Several'ﬁeans of adjusting the full
correction vectors given by the first two methods wefe also examined
since, as was explained in Chapter II, this was a subject on which

conflicting views were evident.
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A comparison of similar implementations showed that in general,
where convergence to the same solution was observed, GN féquired
fewer iterations than NR , implying that the former was more efficient
on this type of problem. GMP generally required the largest number
of iterations but as the form of the algorithm is different from the
other two and as computer run times were not obtainable to a suitable
accuracy no conclusion could be drawn regarding the relative efficiency
of GMP . 'However, on the transistor model proﬁlem, where convergence
to the solﬁtion was obtainable only from points quite near the solﬁtion,
it was obéerved that GN was better than all three forms of Nﬁ used
and GMP was worse than two of the NR implementations. Furthermore,
on the more difficult problems it was observed to be beneficial to seek
univariate minimisation at each iteration rather than to adopt the other,
less accurate correctionvscaling methods. It was concluded that
reduced accuracy should be accepted with caution even though faster run
times might be observed on simpler problems.  The benefits of correction
component limiting were also illustrated, but there are difficulties in
selecting a suitable limit to apply.

Thus research was directed towards the development of a second
derivative sum of squares method. Chapter IV described the investigation
of several possibilities and gave the results of the most successful
vergions. The methods developed were all based on equations derived
from the Taylor series in a similar way to the derivation of the basic
equations of the GN method. The solution of the new equations,
which is unobtainable analytically, was attempted by applying an auxiliary
optimisation method. In the final‘versions of the second derivative
(SD) algorithm, the optimisation method used was GN . Thus thg SD
method essentially consisted of the repeated application of GN to a

number of sub-problems.
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The results of Chapter IV demonstrated that the new SD methods
required fewer iterations than GN when both converged to the same
solution and that the SD methods extended the range of solution
convergence on difficult problems. The former result is only of
academic significance since the SD methods require far more calcula-
tions to be perfoémed and so are unlikely to compete with a successful
performance of their first derivative counterparts. However, the latter
result could mean the difference between finding and not finding a
solution. On the transistor model problem, it was observed that one

SD method had a solution convergence range of between two and three
times that of GN when no correction limiting was applied in either case.
Hence it is envisaged that the new methods would only be used in the event
of failure of the more simple methods.

In Chapter V two of the new methods were applied to problems in the
design of electrical networks comprising resistors and capacitors only.
The results demonstrated that the improved solution convergence range,
which was again observed, could not necessarily be obtained by merely
doing a few iterations of a general function minimisation method. In one
of the two trial networks investigated the problem solution was reached
using a three-part algorithm containing an SD method whereas it was not
obtained by use of the original two-part conjugate gradient/GN method
even though extra conjugate gradient iterations were calculated in an
attempt to obtain convergence. Thus there is evidence that optimisation
algorithms c¢onsisting of more than two methods may be worthwhile.

Chapter VI discussed some extensions to the SD algorithms using
alternative correction vectors and alternative basic equations. Numerical
trials showed that use of alternative gorrection vectors was unlikely to
be of benefit because of difficulties encountered in their evaluation and

the lack of success with those found. Results obtained by restarting the
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baeic algorithm from suitable points generated by an orthogonalised search
process proved to be more successful as well as requiring less computation.

Among the alternative basic equations considered was one which
produced a linear correctioﬁ vector, thereby eliminating the need for
applying the subsidiary optimisation algorithm more than once per
iteration. ‘However, it was found that on the transistor model problem
the number of iterations of the subsidiary method was not reduced and
the range of convergence was %mpaired. Thus use of these equations
was abandoned.

Chapter VI also included a short discussion on the use of third
derivatives in the basic equations, both for sum of squares minimisation
and for general function minimisatioh. Unfortunately, lack of time
prevented adequate investigation. This is considered to be an area
for further research.

Thus the case for use of any one of the present SD algorithms
rests with the improved convergence range it could give. It is
possible that a general function method in a two-part algorithm could
give a similar-improvement in which case the preferred method would be
the one generally requiring less computer time. The result of Chapter
V has demonstrated that it cannot be assumed that the improvement will
be obtained by a general function method.

A wider usage of the SD algorithms requires more computational
efficiency within an itefation; there are two methods of achieving this.
The first is to solve the basic equations of the SD methods more
efficiently. An indication of the viability of thereby producing a
method which would compete with the computational efficiency of a first
derivative method for a given problem may bé determined by an examination
of the times taken to compute the problem and sub-problem objective

functions. In the case of the transistor model problem such an
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approach is thought to be impracticable.

Tlie second method of achieving further computational efficiency is
by the introduction of approximations. Such an approach is liable to
adversely effect the convergence ranges of the algorithms but on certain
problems this may not be important.

It is clear that the second derivative sum of squares algorithms
suffer because no closed-form solution of their basic equations exists.
Tliis is not the case with second derivative general function minimisation
algorithms and therefore the effectiveness of their use can be more easily
assessed. As has been shovvn elsewhere, there is undoubtedly a great
number of instances where the use of second derivatives in general

function minimisation is beneficial.

Finally, one point needs further emphasis. The GN method used
here could have been extended to continue from points of singularity
which were not stationary thereby creating an algorithm to fulfil
the conditions of Wolfe’s convergence theorem. Although this was
not required for the reasons stated in Section 3.2.2, such a modification
might have extended the range throughout which convergence to a solution
was obtained. However, similar modifications could be applied to the
SD methods. It therefore remains an open question whether the observed
difference in solution convergence ranges would still apply to the

modified algorithms.
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APPENDIX I
TO SHOW THAT A POSITIVE VALUE OF THE SEARCH PARAMETER IS NORMALLY SUITABLE

IN THE GAUSS-NEWTON AND SECOND DERIVATIVE METHODS

For there to exist at the current point a value of A > 0 which
will reduce the objective function in the Gauss-Newton method or in

the second derivative method we must have at that point:

. a - \ '
&£+ 0] <o
A=0

We note that

[—:T f(3<_+§_()\))] [2 E _iJ‘ 2 s; ) 5o 7, (z) (I.1)
A=0

where X--Sc_+ s .

i) Gauss-Newton (m=n): if the component functions are
differentiable and the solution has not been reached, a suitable value
of A "exists.

The Gauss-Newton equation for m=n is

1]

As(x) +9T8 =0
. n 851(5)
e A0+ 1 —5—6 =0 (i=L,2,...m
j=1 j
n asi(g 348,

Ensuring that §(o) = 0 and substituting for the derivatives in Equation

(1.1):

[% £(x + g(x))] = 2 2 (s, (0} g
A=0

with equality af the solution. Hence result.
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(ii) Gauss-Newton (m#n): if the component functions are differen-
tiable and the gradient of the objective function is non-zero, a suitable
value of A exists.

From Equation (2.20):

If 3s (x) rf - m 3s,(x) 9s;(x)
) s; (x) - + ) 6. ) =0 (k=1,2,...,n)
sop 1 Xy 521 J i 8xj X,
m ds n 9. m 3s.(x) 93s.(x) ‘
. 1 l 1= 1~
Y osi(x) ==+ } ) =0 (k=1,2,...,n)
121 i ] j:I P\ i=1 axj 3xk

(I.2)

Ensuring that &(0) = 0 , making the appropriate substitution we have:

2
5 _ m n 9§, 851(5)
{ﬁf@l‘-*im)] =2l (.2 TR ] €0
i=1 ‘j=1 j
A=0

m 3s,

with equality when { 3 g—l =0 (k=1,2,...,n)
i=1 X

Hence result.

(iii) Second derivative method (m=n): if the component functions are
twice differentiable and a solution has not been reached, a suitable value
of A exists.

Equations (4.3) define the correction vector

rzl 3s, (x) 1 121 121 3%s, (x)
AS-()_() + A 6 + = ——-—6.6 = 0 (i=1,2,-..,m).
i j=1 ij j 2 j=1 k=1 axjaxk jk
n 93s.(x) 9§.. n n 32%s,(x) 58,
. T i 73 i= ) oo .
s @+ L ot Ll L 3x;0%_ O S =0 (G=L,2,....m).
I=1 J j=1 k=1 ]

Again ensuring that &§(o) = 0 , we have
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m
I:B—BA_ f(x + §_()\))] = -2 izl{si(zc_)}z g0
A=0

with equality at the solution.

Hence result.

(iv) Second derivative method (m#n): if the component functions
are twice differentiable and the gradient of the objective function is
non-zero, a suitable value of )\ exists.

Equations (4.4) define the correction vector:

{( 121 azsi asi 121 azsi
AS. + -68.6 } (—+ ————6.]}_.= 0
1 i 3 =13xj3x.k jk | axr j___laxjaxrj

asi _ 1 Ii
— 6. + =
9X. 2 .
1 J J =

"Weg
e

i 1k

(r=1,2,...,n)

At the point X = 0 , choosing § = 0 we have

15{( 121 Bsi aaj) Bsi}.
s, + ' =0 (k=1,2,...,n)
. 1 j=1 ij DN Bxk

1=1

which is equivalent to Equation (I.2). Hence result from (ii) above.
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ABSTRACT

THE USE OF SECOND DERIVATIVES IN APPLIED NUMERICAL OPTIMISATION

P. R. DIMMER

Local unconstrained numerical optimisation techniques are
applied to a vast number of problems from various branches of
engineering. The available methods may be divided into two
classes: those that assume no special form for the objective
function and those that require an objective function in the form
of a sum of squares. While there exist a number of methods of the
first class that use second derivatives, until now there has been
a lack of second derivative methods of the second class.

Although methods of the first class can be applied to an
objective function in the form of a sum of squares, it is generally
recognised that if the sum is zero at the solution methods of the
second class exhibit better terminal convergence. This is
demonstrated here using several examples, including a transistor
model problem where the objective function is defined to be the
sum of the squares of the residuals of a set of highly non-linear

e —_ _ _simultaneous equations. Problems_ Qﬁ_thls_type_ane_pmaleni_ln_ﬁ_______
methods for the design of electrical circuits. The main objective
of this research was to determine whether the use of second
derivatives could be of benefit in the solution of these problems.

A number of second derivative sum of squares optimisation
algorithms were devised, investigated and assessed using the
transistor model problem as a standard test case. The most
successful methods were then incorporated into a program for the
synthesis of three-terminal lumped linear networks comprising
resistors and capacitors. The development of the algorithms and
their performance on these and various other trials is described;
based on the results obtained some conclusions are drawn regarding
the areas where the new algorithms are likely to be of benefit,
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