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Man wants to know, 

and when he ceases to do so, 

he is no longer man

Fridtjof Nansen 1861-1930
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INTRODUCTION

Von Laue's discovery of the diffraction of X-rays by crystals in 
1912 was of great importance in that it helped to confirm the wave nature 
of X-rays and provided the basis for the demonstration of crystal structure. 
After the discovery of X-rays by Rontgen in 1895, various workers carried 
out experiments designed to disclose the nature of X-rays. Particularly 
noteworthy are Barkla’s demonstration of the polarisation of X-rays in 1905, 
and several rather inconclusive attempts, by Rontgen and later other workers, 
to diffract X-rays by fine slits. Whilst these experiments indicated that 
X-rays were a wave phenomenon, W.H.Bragg's interpretation of the ionisation 
of gases by X-rays as a photoelectric effect suggested a corpuscular nature 
and thus right up to the end of 1911 there was debate as to the true nature 
of X-rays. Following discussions with Ewald in early 1912 on interatomic 
distances and the properties of short waves in crystals, von Laue proposed 
that since the wavelength of X-rays and the interatomic distances were 
thought to be of similar magnitude then the ordered structure of a crystal 
ought to produce a diffraction effect. He went on to demonstrate this 
effect and thus confirmed the wave nature of X-rays, as well as demonstrating 
the internal structure of crystals. Later in 1912 W.L.Bragg interpreted 
the diffraction of X-rays by a crystal in terms of reflection of the incident 
X-ray beam by planes of atoms in the crystal and at the suggestion of C.T.R. 
Wilson demonstrated this by reflecting a beam off a cleaved face of mica.

The first interpretations of X-ray diffraction by von Laue and W.L. 
Bragg were chiefly concerned with the geometry of the phenomenon and were 
thus inadequate to determine the intensity or the shape of the diffraction 
maxima. In 1914, Darwin developed, on the basis of the Bragg reflection 
concept, a theory that predicted the form of the crystal diffraction profile 
(or line spread function) and hence the form of the diffraction maxima.
The theory, although blemished by its neglect of absorption in the crystal, 
was innovative in that it allowed for refraction and took account of the 
interaction between incident and reflected waves within the crystal i.e. the 
theory was dynamical. Other notable early treatises on X-ray diffraction 
include a more general dynamical theory by Ewald in 1917 and a development 
of the latter by Laue in 1931 assuming a 3-d periodic dielectric crystal 
model. An important innovation to the theory of Bragg reflection is found 
in the work of Prins in 1930. He modified Darwin's work by introducing a 
complex refractive index thus taking account of absorption in the crystal. 
This modification produced a function found to give a very satisfactory 
quantitative description of Bragg reflection.

Much of the early interest in the clarification of the Bragg reflec­
tion phenomenon for its own sake, led to important applications. For



instance, W.H. Bragg  ̂built the X-ray spectrometer in order to study the 
X-rays reflected at any angle off a crystal face. However his son W.L. 
BraggZ used the instrument to determine crystal structure by observing the 
reflections off different faces of a crystal. In conjunction with this 
work W.H.Bragg^ studied the spectra of the metals used in the X-ray target 
and by choosing a suitable crystal face was also able to measure the wave­
lengths of these spectra. This pioneering work by the Braggs thereby laid 
the foundations for two important branches of the physical sciences namely, 
crystal structure analysis and X-ray spectroscopy. It is interesting to 
note that X-ray spectroscopy came into being at a time when modern atomic 
theory was in its primary stages so that the early spectroscopic data^ on 
inner shell electron transitions that was made available, played a major 
role in the determination of the electronic structure of the elements^.

The interpretative study of complex X-ray spectra, such as the satel­
lites of strong emission lines and fine structure at absorption edges has 
been hampered throughout its history by the problem that observed spectra 
include broadening contributions which reduce the usefulness of the result. 
Under the most favourable measurement conditions using high resolution 
Bragg spectrometers the limit to resolving power, in the sense of the 
Rayleigh criterion of visible optics, is dictated by the width of the crys­
tal line spread function. In principle, it is possible to make further pro­
gress by resort to any of several available methods to deconvolve this func­
tion from the data set. However, such deconvolution clearly requires suit­
ably precise knowledge of this crystal function; the determination of this 
function with this precision has traditionally presented severe difficulties 
In any case even if such a function had been available, then previously the 
use of it in a deconvolution would have presented a computational task of 
large proportions. In general therefore spectroscopists have applied 
approximate deconvolution procedures assuming simple analytical functions 
for the crystal function. This situation has become increasingly unsat­
isfactory as spectral measurements have become more precise and demand for 
more detailed analysis of spectra has become higher. The development of 
computers over the last fifteen years or so has put a different complexion 
on this situation in that they provide a means of executing deconvolutions 
efficiently - particularly with the development of the fast Fourier trans­
form. However the paucity of data for crystal functions is incommensurate 
with such computational power and thus it would seem worthwhile to pursue 
the matter of determining these functions. This study proposes a method 
using computational techniques to obtain a crystal function from a 
2-reflection measurement and investigates the usefulness of the method.,



Whilst the research topics crystal structure analysis and X-ray 
spectroscopy have been pursued for more than fifty years now, and are 
still active, a new impetus was given to the application of Bragg 
reflection in the mid 1960s. This came from the realisation of the 
tremendous potential that the technique has for the study of material 
in the plasma phase. Radiometric theory predicts that the most power­
fully emitted wavelengths for an optically thick plasma at about lO^K are 
in the X-ray waveband and furthermore the same result is predicted for an 
optically thin plasma by atomic theory. Optically thin plasmas, which 
include all synthetic plasmas and certain important natural plasmas are 
of particular interest in that the strength of the spectral emission 
lines of such plasmas can be measured and these strengths in turn can be 
used to determine source temperature, composition, density and volume.
Bragg diffraction analysis of the emission spectra of high temperature 
plasmas was introduced in the early 1960s, both in the laboratory^ 
and space? and is now in widespread use and of increasing importance. 
Excellent spectra have been recorded by use of large area flat scanning 
Bragg monochromators® equipped with multiple grid input collimators and 
gas proportional counters.

The application of Bragg X-ray spectrometry to plasma studies 
differs somewhat from applications such as X-ray fluorescence spectrometry® 
and electron probe microanalysis. ®̂ In material chemical
analysis and also other applications like the measurements of atomic 
energy levels, only the relative (among different wavelengths) efficiency 
calibrations of the measuring apparatus are required. For applications 
to material analysis, calibration may be made by use of pre-analysed or 
synthesized standards. In plasma studies no such standards are available 
and thus in cases where knowledge of the amount of plasma in the source and 
hence the absolute power in the beam at each wavelength is required, then 
quantitative beam power spectrometry must be employed. One now requires 
really for the first time precision knowledge of the intensity of 
reflection systematically with wavelength for a wide range of Bragg analy­
sers. This thesis reports a comprehensive attack, both by calculation 
and measurement, on that problem.

One problem encountered in the analysis of the spectra of astro­
nomical plasmas recorded by Bragg spectrometers is that of wavelength 
calibration. This is a serious matter since for example the spectrum 
of the solar corona contains emission lines from many elements over a wide 
range of temperatures (and therefore from elements present in various



ionisation states) and thus there is risk of misidentification of lines.
A suitable formulation of a wavelength scale for a Bragg spectrometer is 
given by the Bragg dispersion function, defined in Eqns.(2.1), (2.2), 
which is a development of the simple Bragg equation (Eqn.1.5) taking 
into account effects of dispersion and temperature. The pre-calibration 
of a flight Bragg spectrometer required to determine the Bragg dispersion 
function is very time consuming and can be avoided by using a self­
calibration technique^! using recognisable lines in the recorded spectrum. 
Such a technique is normally quite adequate but is subject to uncertainties 
if there are large, rapid temperature changes during the recording of the 
spectrum or if there is anomalous dispersion (due to the absorption edge 
of a constituent element of the crystal) at wavelengths between calibration 
wavelengths. These problems may be overcome by careful inflight tempera­
ture monitoring and a knowledge of the Bragg dispersion function for the 
flown spectrometer. For the latter purpose investigations are carried 
out in the present study.

The thesis gives a full account of methods used for measurement 
and for calculation of Bragg analyser reflection properties and exercises 
those methods for three typical materials. As an illustration of the new 
applications of X-ray techniques the thesis closes with two examples of 
cases in which methods developed here have been applied to serve the 
research work of others.
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CHAPTER 1 

THEORY OF BRAGG REFLECTION

1.1  Introduction

A theoretical knowledge of the magnitude and wavelength dependence of 

crystal characteristics is important for the following reason. It  forms a 

useful set of guidelines for an experimental measurement program particularly  

in the selection of measurement wavelengths required to give representative 

crystal characteristic wavelength dependency plots. The characteristics of 

any crystal sample are in general dependent upon the degree of crystal 

perfection of the sample. Therefore, in order to relate measured values to 

this factor, a comparison of measured values with values derived from 

theoretical models based on varying degrees of crystal perfection, is required. 

The two fundamental models adopted are the perfect lattice and mosaic models 

which are respectively ideally perfect and ideally imperfect lim iting cases.

An understanding of these models and the calculations based upon them may be 

obtained from a brief outline of the Bragg reflection theory. The treatment

given in this chapter assumes .a knowledge of fundamental crystallography as

12
outlined in standard texts.

1. 2 Geometry of Lattice Scattering

A crystal is a three dimensional array of atoms in which a group of 

atoms is repeated at regular intervals in space. I t  is therefore convenient to 

think of a crystal as based on a repeating array  of points, a lattice, with an 

identical group of atoms around each lattice point. In 1912 von Laue 

suggested that since crystal lattice spacings are several times the magnitude 

of X-ray wavelengths and atoms act as scattering centres then a crystal should 

act as a three dimensional diffraction grating. A subsequent experiment by



von Laue and his collaborators%howed that passing a narrow beam of X -rays  

through a zinc blend crystal produced on a photographic plate a pattern of 

spots which corresponded to that expected on the basis of diffraction by a

three dimensional grating. This phenomenon led von Laue to propose an

1 4explanation of X -ra y  diffraction.

Consider a plane wave of wave vector k© incident on a line of atoms 

which form part of a lattice array of atoms with one atom per lattice point.

The line of atoms is essentially a linear diffraction g ra tii^  in which a the

vector separation of the atoms is the period of the grating. The radiation 

w ill be scattered in all directions but diffraction maxima w ill only occur in 

directions in which the phase difference between waves scattered at different 

atoms is zero. We can thus expect from simple geometrical considerations 

to predict the condition for constructive interference. Figure 1 .1  shows 

that the phase difference between waves scattered at adjacent atoms is

a = (2 i r / X )  (OC-AB) = ( 2 i r / X )  ( ( a . k ^ ) /  | | - ( a . k o ) / | k o  | )

= 2 it ( k ^ - k p )  ( 1 . 1 )

since [kg] = |ko| = l /x  

The waves w ill be in phase if

a.(iSa “ ko) = (1.2)

where h is an integer. Equation (1 .1 ) is the well known grating equation 

which may also be derived for the other two component linear gratings (of 

periods b and c) of a three dimensional grating. The condition for a 

diffraction maxima from such a grating is that all three equations are 

simultaneously satisfied. Thus three equations known as the Laue equations 

are obtained.

a.(k -  kp) = h



Figure 1.1 Geometry of the phase difference between waves scattered by 
two adjacent atoms

Geometry of diffraction based on Bragg's model

RECIPROCAL
SPACE

REAL
SPACE

o y

Figure 1.3 The relationship of the components of the electric vector of 
scattered electromagnetic radiation at P to the components 
of the electric vector of the incident radiation at 0



-  ko) = k

ç . ( k -  ko) = 1 (1 .3 )

The integers h, k and 1 may be shown to be the M ille r  indices of a fam ily  

of lattice planes (Ref. 15, p .31) from which diffractions arises, k is the 

wave vector of the wave diffracted from this fam ily of planes. The three Laue 

equations may also be written as the single vector equation. (Ref. 16, p .84)

k -  ^  = G (1 .4 )

where G, a reciprocal lattice vector, is normal to the diffraction planes 

and has a magnitude which is the reciprocal of the spacing of the

diffraction plane (R e f.IS , p .17 ). I t  may be expressed as G -  h£* +

kb* + i£ *  where a * , b* , c *  is the vector set reciprocal to a, b, c. Since 

G is perpendicular to the diffracting planes and |k | = | ko| a simple

geometrical interpretation of the occurence of diffraction maxima may be 

given as shown in F ig*1 .2 .The vectors k and kg make equal angles with the 

diffracting planes and therefore the diffracted beam can be considered to be

the result of reflection of the incident beam by the stack of diffracting planes.

17
Bragg adopted this informal approach to X -ra y  diffraction by explaining the

spot patterns of Laue's experiment in terms of reflection of an X -ra y  beam by

planes of atoms. For the sake of introducing Bragg's model the planes shown

in F ig . 1*2 can be considered as planes of atoms of M ille r  indices (h ,k , I), t

t  A distinction must be made between rational and non-rational planes. The 
form er type have a real existence in the sense that they correspond to planes 
of atoms in the crystal whilst the latter type are imaginary planes associated 
with nth order reflections from a rational plane. The M ille r  indices (h .k , I) 
of a rational plane have no common factor. The M ille r  indices of an n 
order reflection may be expressed as nh, nk, nl. For the sake of 
convenience, in the general formulation of diffraction phenomena the two 
kinds of indices are distinguished by the use of parenthesis for indices 
representing a rational plane and no parenthesis for indices representing 
a reflection, viz (h, k, I) and h, k, 1 respectively.



Unlike specular reflection the reflected beam is produced only at certain 

values of the glancing angle e.  These values are governed by the condition 

that the waves from different planes must be in phase i. e. the path difference 

between the waves must be an integral number of wavelei^ths. From Fig. 1. 2 

this may be expressed as 

nX ~ AB + BC 

which expressed in terms of the plane spacing

, (1.5)

where n is the order of diffraction. The relation, known as Bragg's Law, may 

also be derived from Laue's treatment by equating the magnitudes of the two 

sides of Eqn. ( 1.3 ). It  is clear, from Fig. 1 .2 , that |k -ko | = 2sin e/x 

and from standard texts (G) = l /d ^ k l expressing this explicitly in terms of 

the reflection order (G) = lA ih ,  nk, n l = n /d (h , k , 1)

This section has emphasized that the phenomenon observed by Laue is one 

of diffraction but can be looked upon in terms of reflection of X -rays  from a 

stack of atomic planes. This latter viewpoint is based on the simple Bragg 

model to which there w ill be recourse since it lends itself to the discussion of 

X -ra y  scattering at crystal surfaces.

Whilst the condition for constructive interference has now satisfactorily 

emerged from simple geometry, of course physical models and their algebraic 

description w ill now be needed to described the strength of the diffracted beams.

1 .3  Atomic Scattering

1. 3.1 Definition of the atomic scattering factor in terms of electron scattering 

The interference maxima of Bragg reflection arise from the radiation

t It  is common practice to merge the reflection order with the M ille r  
indices. Bragg’s Law which becomes X=2dnh,nk,nl sin 6, 
is expressed in this form in the computer programs used in this study.



scattered by atoms associated with the lattice points of a crystal. A knowledge 

of the characteristic ratio of the scattered and incident wave amplitudes 

associated with each atom type is fundamental to the determination of the 

magnitude of the interference maxima. Almost all the scattering of an atom 

is done by the electrons and therefore it is instructive to consider briefly  

scattering by a free electron. Thomson calculated the scattering by a 

free electron on the basis of classical electrodynamic theory and thus 

predicted only the scattering of coherent radiation i.e . scattered radiation 

of the same wavelength as the incident radiation. Whilst electrons in atoms 

do not behave as free electrons and wave mechanical theory must be 

introduced to predict incoherent scattering, Thomson's theory is nevertheless 

worth considering because the derived scattering intensity of an electron 

provides a convenient unit of scattering.

Consider a beam which travels along the path OX (see Fig .1 .3 )  

and impinges on an electron at O. In order to determine the nature of the 

scattered wave at point P which is a distance r  from O it is useful to resolve 

the electric vector of the incident beam into two components E^y and E^^ 

which are respectively parallel and perpendicular to the plane GXP. The 

electric vector components of the scattered wave at P are given according to 

Thomson by

E  ̂ = -(e2/(m c2r))Eoz (1.6)

Ey = -(e2/(mc2r))EQy cos 

where 8g is the scattering a n g le .T h e  resultant electric vector of the

t I t  is convenient in future expressions to introduce a polarisation 
coefficient p with unit value for the electric vector component 
perpendicular to the plane of scattering ( a -  polarisation) and value 
|cos2 e| for the electric vector component parallel to the plane of 
scattering ( tt -  polarisation).
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scattered wave is given by

( 1 . 8 ),

I f  the incident beam is unpolarised

^oy - ^oz - 2 E q (1.9)

Since the intensity of the incident and scattered beams I q and I  respectively 

are proportional to the square of their electric vectors Eqns (1*6) to (1*9) 

may be combined to give

I  = Io[e4/(m 2c4r2)] Rl + cos26g)/2] ( l. lO )

This relation is called the Thomson scattering equation. The factor(l+cos2eg)/2  

is called the polarisation factor for an unpolarised prim ary beam.

Atomic scattering is quantitatively defined in terms of electron 

scattering as follows: the atomic scattering factor f  is the ratio of the 

scattered amplitude due to a given atom to that due to a single classical 

electron under identical conditions. The scattering factor may be more 

explicitly designated f  ( 9g,k) where k = 2ttA  .

Since it  is the electrons of an atom that give rise to scattering the development 

of the calculation of atomic scattering factors has gone hand in hand with the 

development of atomic theory. These parallel developments are outlined 

below.

1 .3 .2  The calculation of atomic scattering factors

a. Early  developments
14,19 20

The very earliest treatments of X -ra y  diffraction by Laue and Darwin 

took account of atomic scattering and indeed Darwin realised that atomic 

scattering power depended on the spatial distribution of electrons in an atom.

The firs t calculations of atomic scattering were based on classical electron 

scattering theory and classical atomic theory, the latter assuming the 

concept of instantaneous electron configurations in the atom. According to
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classical scattering theory each electron is so loosely bound in the atom that 

i t  may be regarded as a free electron for which scattering intensity is given 

by Thomson's formula (Expression(1.10)). I t  is assumed that the electron 

orbital dimensions are sim ilar to the atomic dimensions and the wavelength 

of the incident radiation; consequently in the forward direction f -  Z the 

atomic number but for ^  ^ o phase differences w ill arise between the 

scattered waves from electrons in different parts of the atom and thus f w ill 

decrease with increasing angle of scattering. Since electron distributions 

vary from one atom type to another so the f, 6 g dependency w ill also differ.

The scattering factor may be calculated from classical theory in terms 

of N atoms arranged in a crystal lattice (Ref. 21 Chapter 3). F irs t consider 

that each atom in the crystal contains a single electron. An average is 

taken over the instantaneous positions of the electrons by assuming the crystal 

to be a composite atom that contains all the electrons. The probability that 

an electron lies within a given element of the composite atom is N times the 

probability that one lies within the corresponding element of volume of a 

single atom chosen at random. Let p (r) dx be the probability that an electron 

in any atom lies within a volume element dx whose position with respect to 

the atom is given by the vector _r. Then the amplitude scattered by the 

composite atom is 

N

where (() is the phase difference arising from a given electron being non­

coincident with an atom centre and hence also with a lattice point. The integral 

is taken over the volume of a single atom. Expression (1.11 ) shows that 

the scattering amplitude for the whole lattice may be expressed in terms of 

each lattice point being occupied by an atom scattering f times the amplitude

'* i(|)
p (r )e  dx (1.11)



12

scattered by a single electron, where

f = p(£)e^'^dx (1.12)

The classical treatment assumes the average atom to be spherically symmetrical

and thus derives the following

f = U(r)sinurAi r dr (1.13)
0

where U(r) dr is the probability that an electron lies between radii r  and r  + dr 

in any atom, u (r) = 4%r2p(r) and u = 4 n (s in e )A . For multi­

electron atoms it is necessary to define radial probability functions U i( r ) . . .  l^ (r )  

which give the probability that in any atom electrons of any given type lie

between the radii r  and r  + dr. Hence U(r)dr in (1.13) becomes

U(r)dr = ^ U (r) dr. 
n

The classical theory of atomic scattering falls short in that it treats only

22
coherent scattering whereas in reality  incoherent or Compton scattering occurs

23
and contributes to background scattering. Compton form ally introduced 

incoherent scattering into the classical theory using the classical formula for 

the intensity scattered per atom by a monatomic gas which is given by

1 = 1 (1 - f^) + (1.14)
n

where f^ is the scattering factor of a given electron in an atom and the

summation is over all electrons in the atom. He suggested that the term f2

arises from coherent scattering and the term (1 - from incoherent
n

scattering. Quantum theory showed this to be form ally correct but 

nevertheless this interpretation was rather arb itrary . C learly more 

sophisticated treatments were required fo r dealing with atomic scattering.

b. The high frequency lim it

Early calculations of atomic scattering factors based on classical 

scattering theory adopted the assumption that the frequency of the incident 

radiation was much greater than the natural frequencies of the electrons.

This allowed a simple calculation of scattering factors valid to within the
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conditions of the assumption. Later calculations by wave mechanical 

methods derived atomic scattering factors taking account of scattering for 

incident radiation frequencies close to characteristic electronic frequencies 

and treated the calculation for high frequency incident radiation as a lim iting  

case. Atomic scattering factors thus required a numerical form consisting of 

the sum of the two types of terms, a constant frequency independent term  

(the high frequency iim it term) associated with normal dispersion and 

frequency dependent terms associated with anomalous dispersion. The 

calculation of the frequency independent term is discussed below and the 

frequency dependent terms in Subsection 1 .3 .2 . c.

i. Semi-classical approach Hartree^^ made the firs t attempt at determining 

the high frequency lim it atomic scattering factor designated f^ by calculating 

the classically derived ra d ia l probability function U(r) on the basis of Bohr 

atomic theory. This theory, the cornerstone of the old quantum theory, 

regarded the electrons of an atom as being in discrete energy states and 

orbitals. Hartree estimated the orbital dimensions from X -ra y  and optical 

data and using the time -  average method outlined in Subsection 1. 3. 2. a 

obtained U(r) from which fg was calculated by numerical integration of 

Eqn.( 1 .1 3 ). Comparison of experimental and calculated curves of 

f^ ((s in 0 )/A )  ) where 6 = 0^/2 showed systematic deviations,in particular, 

humps in the calculated curves for low angles. Nevertheless Hartree's  

calculations provided a useful indication of the magnitude and 9 dependency 

of scattering factors.

ii. Wave mechanical method The calculation of atomic scattering factors 

using classical scattering theory with the Bohr atomic model gave values of 

the right order but the method was theoretically unsound. I t  was only the 

advent of modem quantum theory that allowed proposition of a unified theory
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25,26
of scattering. The quantum theory of scattering differed fundamentally from 

classical theory in that im plicit in classical theory was the assumption of 

exact determination of electron configurations whereas according to quantum 

theory only the probability of finding an electron in a given region could be 

determined. The quantum theory used the method of wave mechanics to set 

up a wave equation appropriate to a particular atom under consideration. 

Schrodinger derived from the wave equation, an expression of the same 

form as the equation derived from electrical theory which relates charge 

density P to current density j_. This latter equation is given by

+ div j = 0

The terms derived by Schrodinger corresponding to P and j_ are called the

Schrodinger charge density and current density. One method of treating 

atomic scattering is to regard the atom, in the absence of incident radiation, 

to be in a stationary state such that the Schrodinger charge and current 

density are tim e- independent. The incident radiation is then regarded as a 

perturbation of the atomic field that causes periodic variations of the current 

density which give rise to scattered radiation. The scattered radiation is 

then calculated from the laws of classical electrodynamics for a current 

distribution undergoing periodic variation. Full accounts of the method are 

given in Ref. 21 and wave mechanical texts. I t  is important to note that for 

the high frequency lim it case the current density is proportional to the charge 

density and that  ̂ the scattering factor for coherent radiation for an atom 

containing one electron in the state n is given by

f n,n

where lù is a wavefunction associated with u the solution of the wave n

equation. The scattering factor for the whole atom may be obtained by 

summing Eqn.( 1 .16) over all electrons in the atom assuming that the
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total wavefunction may be expressed as a product of Z individual electronic 

wavef unctions. Equation (1.16) differs from Eqn.(1.12) in that the probability

I I 2P(r) is replaced by the probability calculated by wave mechanical

I 12methods. In effect this means that e|^^| , the Schrodinger charge density

is treated as a classically scattering charge density, ip being so
n

2
normalised that dv = 1 , so that the probability of finding an

electron somewhere is unity. The radi a l probability function U(r) of ( 1.13) 

now becomes equal to The wave mechanical theory.takes

account of incoherent scattering by associating it with transitions from one 

atomic state to another.

The quality of f-values calculated by wave mechanical methods w ill depend 

upon the assumptions and approximations used in formulating the wave equation. 

Early  forms of the equation were based on the assumption that only the nuclear 

field acted on the electrons of an atom. This assumption took no account of 

the field acting on a given electron due to the other electrons in the atom. 

Hartree^® included the effect of other electrons by representing it as part of 

the central field. The problem for the atom was thus expressed in terms of 

Z independent wavefunctions which allowed for the interaction of electrons. Y 

the total wavefunction of the atom, obtained from the product of the individual 

electronic wavefunctions is used in the method outlined above to calculate the 

atomic scattering factor. In order to calculate the individual electron wave­

functions Hartree used the self consistent field method. This involves 

estimating from atomic theory the field V (r) acting on an electron. This 

'in itia l' field value is then used in the radial wave equation for an electron in 

a central field, given by

d^P
dp2 ^  {E - V(r)} - P = 0 (1.17)
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where P = n p  the radial wavefunction, E is the energy of the electron and 

Z is the angular momentum quantum number. Equation ( 1 .17 ) is integrated 

using a tria l value of E which is adjusted such that the solution exponentially 

goes to zero for large r. The integration gives a value of P which may be 

used to determine the contribution of an (n,&.) electron group to the total 

potential V (r) and this is compared with the assumed contribution of this 

group to the initial V (r). I f  there is a discrepancy, the initial field value 

must be adjusted to give self consistency. This procedure is carried out for

each electron group.

2 9 3 0Fock and Slater independently developed Hartree's method by 

suggesting that since individual electrons cannot be identified then ^  should 

be expressed in a determinant form to take account of the exchange principle. 

The best value of Y may be determined by the variation method which leads 

to a set of simultaneous differential equations for the electronic wavefunctions. 

The equations, called the Hartree-Fock (HF) equations, may then be solved 

by a method analogous to the self consistent field method. The Hartree-Fock  

method requires considerable computational labour because each electron

moves in a slightly different potential field and so must be treated as a
31

separate problem. Slater simplified this method by setting up an average

potential field in which, it was considered, all electrons moved. Furthermore

the exchange charge (the charge removed from the total field to give the field

acting on a single electron) was replaced by the corresponding value for a

free-electron gas whose local density is equal to the density of actual charge

at the position in question. This simplified method for calculating scattering

factors became known as the Hartree-Fock-S later method.

It  should be noted that the methods outlined ignore spin and relativistic

effects, the latter being particularly relevant to scattering by heavy atoms
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and when the incident radiation frequency is very high. Crom er and Mann 

comment in their comparison of the Hartree-Fock-S Iater, Thom as-Ferm i- 

Dirac, Hartree and D irac-SIater models that, apart from relativistic effects, 

the HF model is the best free atom approximation and HF scattering factors 

may be used for atoms lighter than Cs (Z = 55) •

c. Frequency dependent terms

When the frequency of the radiation incident on an atom j approaches 

characteristic electronic frequencies, anomalous scattering occurs because 

frequency dependent quantities that contribute to the scattering factor 

become significant. The required generalised form of the scattering factor 

is given by

(1.18)J Uj j j

where is the frequency independent term and A f ’ and Af" are

respectively the real and imaginary frequency dependent terms of the scattering

factor. Since the refractive index of a m aterial is related to the scattering

factors of the constituent atoms (see Subsection 1. 6. 2.b) anomalous dispersion

occurs, hence Af' and Af" are commonly referred to as the real and

imaginary anomalous dispersion terms. The high frequency constraint

hitherto imposed on the calculation of scattering factors must now be removed

to allow calculation of the anomalous dispersion terms.

i. Screened hydrogenic approximation To begin the calculation it is noted

that, on the Bohr model, each atom has characteristic frequencies

corresponding to transitions of each electron from its ground energy to any

higher unoccupied bound state or to the positive continuum. On this semi-

classical model one can expect the frequency dependent scattering terms,

which are now sought, to be significant only where the incident radiation
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frequency is of the order of one of those characteristic frequencies. Further, 

i t  is easily shown from the Bohr model, that the wavelengths corresponding to 

these characteristic frequencies are always very much larger than the radius 

of the (rest energy) Bohr orbit of that electron. Under these conditions the 

calculation may regard the scattering electron as a dipole oscillator, albeit 

with a large set of characteristic frequencies. The frequency dependent 

terms have significant values only under conditions where the dipole 

assumption is a close approximation to reality, no such restriction applies 

to the calculation of the frequency independent term (see below). A wave 

mechanical exposition easily confirms this argument and, indeed, allows 

calculation of those higher order frequency dependent multipole terms and 

shows them always to be small. On this Bohr model, the semi-classical 

result for the scattering factor of a bound electron is easily found, see for 

example Ref 21 , as^

p f  (w) = p [w2(dg/dWg) /(w2 -  0)  ̂ -  I k w)]dw^ ( 1 .1 9 )" J (jj 4 4 s
q

where q specifies the quantum numbers of the particular electron considered, 

w is the angular frequency of the incident radiation. is the resonance 

angular frequency of a particu lar hypothetical classical dipole which is one 

of a set, distributed in frequency with density (dg/dm^q near and whose 

aggregate scattering behaviour simulates that of a single q-type electron.

is the angular frequency corresponding to a transition of the q-type 

electron from its bound state to the firs t vacant excited state î <q is a

factor included in the equation which describes the motion of each oscillator 

and which describes the net effect of damping mechanisms, p is an angular

 ̂ More generally the integration should be shown over all frequencies, but 
Wq is the firs t frequency at which (dg/dWg)qhas significant value. Note 

that the standard texts usually take Wq as the frequency corresponding to 
excitation to zero energy. I t  is better to take this as an approximation 
which is useful in some cases but not in general.
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factor which depends upon the inclination of the radiation polarisation to the 

scattering plane. This factor may be normalised from the definition of the 

scattering factor and shown explicitly as the polarisation coefficient 

in final results e.g. E q n s .  (1 -6 5 ) ,(1 .7 3 ) .  Then fo r each atom o f type j .

£ Cü>) = I  f  (lo) (1 .20)
q

Rationalising expression (1.19),

f  (w) = fq(w) + iAfq(w) (1 .21)

where

[[[ùj2(ci)2-y2) (dg/dùj ) ]/[(tû -tü̂ ) +<2 dw (1.21a)s s q s q s
“ q

I.e.

fq(w) = f^q + Afq(w) (1.21b)

where

and

f
oq

{(dg/dWg)q}dWg (1.21c)
(1)

q

Afq(w) =
(jO

qand also

[J[ŵ  ((jü̂-cô) - K̂ ü)̂ ) (dg/do) ) ] / [(oĵ-(jĵ) ̂ +K̂ ü)“̂]]]dü) (1.21d)

Af"((i)) = IJk w3(dg/dw ) /[((û -(D̂ ) + <̂ (D̂ ]]] d(jj (1.21e)q w ^ q s q  ̂ s q s
The term (1. 21c) is just the oscillator strength of a q-type electron. For 

w >> both Expressions (1. 21d) and (1. 21e) vanish and the only contributions 

to the summation (1.20) are terms like (1.21c) which then total to the element 

atomic number Z, i.e . they reduce to total to the dipole value of 

( i.e . the value for 0  ̂= 0 ), as expected. As noted above, though the dipole 

approximation may be justified for calculation of both Af^((jo) or Afg(w) , 

wherever their values are significant compared with that of f( 8g,k) , this 

approximation is not generally justified for the frequency independent part.
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Therefore in all that follows we replace the summations (1. 20) of terms like 

(1. 21c) by the Hartree-Fock results of Ref. 32. Next, it is noted that for 

any plausible value of the integrand of (1. 21e) differs significantly from 

zero only when co very nearly equals Wg so that (1. 21e) may be written as

Af" (w) = 2 K (jo (̂dg/do) ) 2to dü) /  [ k^oô ] (1 .2 1 f)
q  q  S ' q

where in this small significant range we take (dg/dw g)q as effectively constant 

and w =Wg in the firs t power but not in the second power. Then

Afq(w) = 2Kqw2(dg/dWg)q.n/KqW = ( tt/ 2) w (dg/doj^)^ (1 .2 1g )

and independent of the precise value of the damping constant, so long as its 

value is small in the context defined.

At this point the semi-classical calculation essentially fails because

neither classical physics nor old quantum theory q u a n tita tiv e ly  defines the

hypothetical function (dg/dwg)q and it is usual to make appeal to em pirical

data (in fact to absorption coefficients) to find values of this function. However,

it is noted that a wave mechanical exposition results in expressions which may

be given form ally identically with (1.19) through (1. 21) in which the oscillator

density is given as m atrix elements of the ground and excited wavefunctions.

Given the oscillator density function, either from the wavefunctions or from

em pirical data, insertion in (1.21) followed by numerical integration and the

summation (1.19) is sufficient to find the solution in any case. However,

inspection of particular cases reveals the possibility of substantial simplifying

approximations which allow further analytical progress and thus relieve the

computation time needed. F irs t it  is noted that from (1. 21d) and (1. 21e),

both Afq(w) and Af^fw) go to zero for w >> . In circumstances

 ̂ The condition for this is simply that << except whei^
w = Wg. By inspection of (1. 21e) even an upper lim it of kq at 10

illustrates how very closely the condition is met.
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where w > and where the range of w/to q  for which Af ’ (to), Af" (to)

are required is always restricted as ( to/tOq)/  ̂ 1 inspection of (1.19) shows 

that no plausible value of Kq can produce results for A f  (to) ,Af"(to) sensibly 

different, in this range, from those given by setting Kq to zero. Under this

condition (1.21d) reduces to
.00

Af ' (to) = {tô (dg/dto ) /  (tô -tô )}d(o (1.21h)
q  ̂ ^ 4  s s

q
and (1. 21e) vanishes. However this does not mean that the imaginary part 

of (1. 21) vanishes for note that the integrand in (1. 21 h) has a pole at to = tô ; 

but the integrand is well behaved either side of the pole so that the integration 

may be made along a contour on a complex plane as^

q
{tô  (dg/dto ) / (tô -tô  ) }dto + i  (7r/2) to (dg/dto ) (1.211)

S S Q S S S Q

^q
= Af^ (to) + lAfĴ (to) (1 .2 1 j)

where Af̂ (to) = P {(oM dg/dto )/(tô -tô ) }dto (1.21k)
Jüjq  ̂  ̂q s s

and Af^ (to) = (ïï/2)to (dg/dto )̂ ̂  (1.21il)

whence it is seen that, though (1. 21 e) vanished, an imaginary term exactly

like (1.21 g) is recovered; this is required for internal consistency to

prevent a discontinuity in the imaginary term as Kq 0.

T The P in (1. 21i) denotes that the principal part of the integral is to be 
taken, in this case, as

t O < , - E

lim
£->0

{tô  (dg/dto ) / (tô -tô ) }dto + 
L/ ( 0  ^  ^  s s

{tô  (dg/dto^)^/ (tô -top }dWg
q

and this is finite.

i|: Note that the standard text. Ref. 21 , is form ally incorrect (at its
Expressions 4. 43,4-.4 3 a ,p .149 to give Expressions (1. 21 d) and (1. 21 e) 
above as mutually consistent results for Af^ and Af" .L ite ra l evaluation of 
these results is overestimation of Afgj by exactly factor 2 can be seen 
from (1. 211) above. The erro r arises when Ref. 21 sets Kq to zero in its 
Expression (1. 21d) and retains non-zero <q in its exposition of (1. 21e).
This is internally inconsistent since both expressions are devolved from 
the single expression (1.19) in which Kq appears only once and the constant 
must be at least single valued. The e rro r in Ref.21 is removed if only 
the principal part of the integral is included in its Expression 4. 43 and 
its result 4. 43a is regarded as originating in the residual of the integral 

and not in the manner given by Ref. 21 as its Expression 4. 40.
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Next, if the excitation energies for L-shell electrons of an irradiated  

atom are very fa r below the range of incident radiation energies then Af^(œ), 

Af (̂üj) may be safely set to zero for all these so that only K-shell electrons 

need be considered. For low Z elements the contributions and Af|^(w)

are not negligible but they are still only minor contributions to fj. Therefore 

a firs t order approximation for them w ill leave negligible residual e rro r in 

fj ( w). Thus, all that is now needed for results is insertion of a reasonable 

approximation of (dg/doj.^)^ in (1. 21k), (1. 211) for theK electrons for 

w  ̂ 2w^,followed by the summations (1.21b), (1.21) and (1.20). For these 

K-electrons it can be argued that hydrogenic wavefunctions are a good 

approximation and in those cases where, as above the anomalous terms 

are not large, we can expect negligible residual errors in fj from use of it.

This approach has the advantage that (dg/dw can be found analytically and 

hence A f ’ (w) and Af"(w) may also be found analytically. Honl 

modifed Sigiura's hydrogenic analysis by modelling the field in which each 

K-electron exists as of central form due to the nuclear charge moderated by 

a screening term due to the other K-electron and adding a constant potential 

term to allow for the effects of the outer orbitals. Honl's result^^ is  given 

by Ref. 21 as

(dg/da.^) = (2®e‘ V9aj^) ( [ 4 / ( 1  - 6^)^] (w ^ /w )^ -[l/ (1 - (w^./m) " } ( 1 .21m)

where 5^ = (A - 911/X^)/A;

A = Z|  + 1.33 X lO'^Zg + 3.55 X 10‘ ^°Z® + 11.7 x lO'^^Z® 
and Zg z Z - 0 .  3. Putting this In (1 .21k), (1.211) gives *

Af^(cü) = (2^ e '‘* / 9 ) { [ 4 /  ( l-6 ^ )^ ](w ^ /w )^  log^ | (u/u^) 1 1-

[1 / ( 1 - 6 ^ )3 ]  (2(w^/w)^ + (w^/w)^ logg|[(w /w^) - l ] / [ ( w /w ^ )  + 1 ] | ) }

(1.21n)

Af|)(w) = C 2^e '" /9 )ir(4 /(w /w ^)^ (l - d^)^- l/(w/w^)^ (1-6^) 3 ). fo r  w/w ,̂ > 1 

= 0 , fo r  w/(Dj, < 1 (1.21o)
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I t  should be noted that the calculation above applies to favourable 

cases. In any situation where any absorption edge of a constituent element 

occurs within (or even near to) the wavelength range of use of an analyser, or 

where an absorption edge other than a K-edge is significant, some of the 

approximations used above may not be adequate and other methods of evaluating 

(1. 21d), (1. 21e) w ill be needed.

ii. Semi-em pirical approach The oscillator density function (dg/dw^)^ may 

be evaluated by relating it to an em pirically determined quantity. Referring to 

Sections 1. 5 and 1. 6, the fractional amplitude scattered by a plane of unit 

cells is

q = iN d (X /s in 0 ) F (0^ ,k) (e^/mc^)p (1 .22)

where 0 is the glancing angle, 0^ is the direction of scattering with

respect to the incident beam and P is the polarisation coefficient. Any

imaginary term in F ( 0 ^,k) i . e  a Af"(w) term, resu lts  in  a corresponding

term inq i . e .  Aq”, being tt out of phase with the incident beam, so that in the

forward direction the resultant fractional amplitude is (1 - Aq") • Thus the

fractional loss in amplitude per plane traversed is

Aq" = Nd(e2/mcP)(X/sin0)^ I  Af"(w) (1.23)
j  q

and the fractional loss in intensity per unit distance traversed is

2(e^/mc^)N x l  I  Af"(w) = N U (w) = u (w) (1 .24)
j  q j  q ^

where y^is the linear absorption coefficient of the m aterial. Combination 

of (1. 21g) and (1. 24) gives

(dg/dw ) = (mc/2ir^e^) y (w ) (1 .25)
0 4  4  b

where y^ is the atomic photoelectron absorption coefficient (or photoelectric 

cross section) of q-types electrons at angular frequency . Appeal 

may now be made to measured data. Extensive absorption coefficient 

measurements show the following em pirical relationship
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-P
= ( V V  ' “ s " “q ( j _26)
= 0 , w < ws q

where <̂ q is taken as the frequency for excitation to zero energy, i.e . 

excitations to bound states are neglected. This neglect is not generally justified 

and can result in serious errors in crystal param eter calculations at 

wavelengths within a few per cent of an absorption edge of a constituent atom. 

Furthermore for some orbitals, particularly the outer orbitals of high Z 

elements,the form of (1. 26) is a poor approximation in general.

In circumstances to which (1. 26) applies, provided measured values of 

Uq(tOq) and Pq are available, th e n A f’ (w) , Af^(w) may be found by 

numerical integration of Expressions (1. 21d) and (1. 21e). Unfortunately it is 

difficult to measure accurately especially for low energy absorptions

in high Z elements. Alternatively there is resort to calculation of 

from wavefunctions, a method which avoids the shortcomings of (1. 26).

However, in cases where (1. 26) is applicable the calculation may be simplified 

by assuming the functional form of (1. 26) so that the wave mechanical 

calculation is required at one frequency only. A literature search reveals the 

required wave mechanical results, though in a slightly different form. Putting 

(1. 26) into (1. 25) and the latter into a particular q-term  in .(l. 19) results in

P + 1 r -P
f  (w) = g 2a(w/oj ) w  ̂ [w ^/(w^-w^-iK w)]dw (1.27)q q q q j s s q - ' s

q
where

g = (dg/dw ) dw = (mc/2TT^e2) [w / (p  - l ) ] y  (w ) (1.27a)
q j w q  s q s  q q  q

Therefore assuming the functional form of (1. 26) calculation of the oscillator

strength of is equivalent to calculation of y (w^) . In view of the

36
availability of the Thomas-Reiche-Kuhn sum rule, g  ̂ rather than y (w^) is  

normally calculated. The lengthy procedure of numerical integration of
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Expressions (1. 21d) and (1. 21e) may be avoided by using P arra tt and 

Hempstead’s^  ̂ evaluation of (1. 27) which is given by"̂

f  (w) =g z(w/w ) { 1 -  ( i r a z \  ^^^/sinwa) +az^  ̂ } ( 1 .27b)
 ̂ ^  ̂ jn-i k=o when |z |  ̂ 1

f . M  = g Z(w/w ){1  +az" I  (1.27c)
" 4 4 ](=o  ̂ when | z |

where o<aEn/m= 5  (p ^ -l)  <1 ,z h (1+iri^) /  [ (üj/(d^) (1+4^)] ,Tiq=Kq/w and y=e 

Expressions (1. 27b), (1. 27c) are the closed forms of Parra tt and Hempstead’s

result, obtained when a is rational i.e . n and m are integers.

Furthermore a particular value of a (or p^) is assigned to a given

36 37 38
orbital.

Evaluation of (1. 27b), (1. 27c) for each orbital in the atom j, followed by 

summation in (1.20) results in values of fj (oo) which, from (1.21.) and (1.21b), 

may be written as

f j  (cj) = Z + Af j  (w) + i  Af j  (w) (1 .28)

where each of the terms is a summation of dipole terms since Expression 

(1.19) was written for a set of dipole oscillators. The dipole approximation 

is appropriate for the anomalous dispersion terms but not in general for the 

normal dispersion term and therefore it is necessary to replace Z by the 

Hartree-Fock value of f . Application of the P arra tt and Hempstead 

method to crystal calculations are outlined in R e f s .  39 and 40 . 

i i i -  Full wave mechanical treatment The hydrogenic wavefunction 

assumption and the power law derivation of (dg/dwg)q are inadequate for the 

calculation of Af ’ (w) ,Af’’(w) terms fo r heavy atoms fo r these approximations

The simple results for Kq = 0 discussed in Subsection 1. 2. c. i is in very  
close agreement with that of P arra tt and Hempstead’s for all values of 
w to within less than 1% of Wq for any plausible value of k.̂. Expression 
(1. 26) is often a poor approximation that close to the edge so that there 
is doubtful need to retain KqT̂ O and therefore doubtful need to prefer 
(1.27b), (1.27c) to the sim pler expressions of James.
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do not apply to the outer orbitals, of such, atoms. A more rigorous method is

required and this may be found in the wave mechanical approach which

derives expressions identical in form to (1.21d), (1.21e) giving the oscillator

density as the co-ordinate m atrix element 

(dg/dWg) = (2m/3t)üJ^^| .r.4 dr | (1.29)k —  n — '

where ij; is the co-ordinate wavefunction for a q-type electron in its rest 
k

state, that for the electron in the state to which the incident radiation

firs t momentarily excites it, is the angular frequency corresponding to

the transition k n, t  is Planck’s constant divided by 2? and the 

integration is made over all space. The function (1.29) must be evaluated 

for sufficient values of to allow integration of Expressions (1. 21d),

(1. 21e) to adequate precision. Expression (1. 211) is based on approximation 

sufficiently good to allow its use in the determination of Af’’ (w) thus 

necessitating evaluation of (1. 29) at the excitation frequency only but for 

evaluation of Af ’ (w) an integration over the frequency function of

(1. 29) is still required. For photon energies slightly less than the binding 

energy of q-type electron, (1. 29), and consequently (1. 211), can be expected 

to be rapidly varying functions for the cases of those orbitals which are 

easily excited to unoccupied bound states. If  these excitations to bound 

states are neglected and the integrands in (1. 21d), (1. 21e) only allow for 

excitations to the positive energy continuum, then those integrands are much 

more slowly varying functions and may thus be defined for few evaluations of 

(1.29) so reducing the labour for determination of Af^Co)) and Af|j (w ). In 

consequence there is considerable loss of accuracy in those results for 

excitation frequencies near those corresponding to excitation to bound states 

but little  loss of accuracy for other photon energies. This approximation is 

incorporated in Expressions (1. 21d), (1. 21e) by integration over wq to «
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41 +
rather than 0 to « as is more properly the case. Cromer and Liberman 

calculate the photoelectric cross section as (1. 29) for each orbital of each 

atom for five values of selected by the Gauss-Legendre integration 

method. Interpolation through the five values gives the form of the cross 

section versus curve and (1. 21d) is applied to this form whereupon after a 

5-point Gauss-Legendre integration, Af ' (w) is obtained. The value of (1. 29) 

is also required for the incident beam frequency in order to evaluate (1. 21g). 

The value of (1. 29) at these frequencies can be found by adaptation of Cromer 

and Liberman’s method so as to interpolate the required values from the 5 

tabulated values, somewhat assisted by the 5 additional values they lis t for 

the standard crystallographic frequencies. An example of the adoption of 

Crom er and Liberman’s calculations in the determination of Bragg reflection 

properties for a heavy atom crystal is given in Ref. 43.

1 .4  Unit Cell Scattering

Each atom in a unit cell scatters a wave of amplitude f^ (8^ ,k) and 

phase • Such a wave may be represented by a vector on an Argand 

diagram as shown in F ig .1 .4  and the wave may be expressed as f^ (0^,k;)e^+i. 

The composite wave scattered by the N atoms in the unit cell is given by the 

resultant F which is the sum of the atomic vectors. The quantity F is the 

unit cell scattering factor (also known as the crystal structure factor) which

 ̂ Cromer and Liberman develop their dispersion results from relativistic  
quantum theory of scattering. They retain the relativistic formulation for 
the major terms contributing to Af ’ and Af’’ and use a non-relativistic  
approximation for the minor terms. The cross sections like (1. 29) they 
evaluated from the Brysk and Zerby^^ relativistic photoelectric cross 
section program using D irac -Kohn-Sham relativistic wavefunctions in the 
program. They restricted their calculations to dipole terms, neglected 
excitations to bound states and also neglected damping. For further 
details of their calculations Ref. 41 should be consulted.
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Figure 1.4 An Argand diagram representation of the amplitude f and 
phase (f) of a wave scattered by an atom in a unit cell

-  #

Figure 1.5 A two dimensional unit cell containing an atom with fractional 
co-ordinates x and y . The reflecting planes hk are 
also shown
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may be written as
N

(1.30)F(8 ,k) = I  f. (9 ,k) exp(i<j).) 
s j= i  J ^

An expression for 4>j suitable for computation may be derived with the aid 

of Fig-1. 5 which shows a two dimensional unit cell containii^ an atom having 

fractional co-ordinates x and y. The hk reflecting planes are represented by 

a series of lines which cut the a axis in h parts and the b axis in k parts. 

Adjacent lines scatter with a phase shift of s o  that a translation of a /h  

parallel to the a axis corresponds to a phase shift of 2tt . I f  the scattering 

atom is firs t considered to be at the origin 0 where the phase value may be 

ry a rd e d  as zero then a translation xa paralle l to the a axis produces a 

phase shift (|)̂  given by

(J) /̂2tt = xa/ (a /h ) = hx (1.31a)

and s im ilarly  a translation yb parallel to the b axis produces a phase shift 

given by

(j)^/2ïï = y b /(b /k ) = ky (1.31b)

The total phase shift of the scattering atom for the three dimensional case 

is thus

4) = + 4)̂ = 2ir(hx + ky + Z z )  (1.32)

and substitution into Eqn. (1.30) gives
N

F(0 ,k) = I  f (0 ,k)exp[27ri(hx. + ky. + Z z . ) ]  (1 .33)
5 j  =  ̂ 4 5 J J J

I t  is appropriate at this point to introduce a temperature factor

exp (-T^^^) which takes account of the diminution of the crystal structure

factor due to thermal vibration of the crystal atoms . Expression (1 .33)

N
becomes = J  (e^,k)exp(-Tj^^pexp[2Tri(hx.+ky^+4zp] (1.34)

1 = 1
The inclusion of temperature effects w ill be discussed further in Section 1. 7.
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1. 5 Scattering from a Plane of Unit Cells

The amplitude of a wave reflected by a plane of unit cells may be determined

by the Fresnel zone treatment. In Fig 1. 6 point S is the source of radiation

and the amplitude of the reflected wave is required at point 0. The point P is

such that SPO is the shortest distance from S to 0 via the plane. M  is a point

on the plane such that SMO is greater than SPO by V 2  and thus the locus of

the point M is the boundary of the firs t Fresnel zone the area of which is

(ir r^r^/Cr^ + r^)J (X /s in8) (1.35)

where r^ and rg are the distances SP and OP respectively. The whole plane

may thus be divided into successive Fresnel zones. The Fresnel zone

treatment, which normally deals with a wavefront containing the sources of

a large number of Huygen wavelets, is applicable because each zone contains

a large number of unit cells so that a continuous distribution of scattering

points can be assumed. The Fresnel construction shows that the resultant

amplitude for the whole plane is half that due to the unit cells lying within the

firs t Fresnel zone and the resultant amplitude due to the firs t zone is 2A

times the sum of the amplitudes due to the individual unit cells. Furthermore

the phase of the wave at O is V2 behind that of a wave scattered at P. It  

2 1may be shown using Eqns.(1.6 ), (1.35 ) that, q, the ratio of the scattered

amplitude to the incident amplitude is given by

1 TT r ir 2  X ^F(e k)eZ ^
- 2 HEe m r ' P 7

where p the polarisation coefficient is defined in the footnote on page 9

and n is the number of unit cells per unit area. The phase lag may be

allowed for by expressing q, the reflection coefficient in the form -iq , since

- i - ï ï / 2
e = - i . I t  is more convenient to express n in the form n = Nd, where

N is the number of unit cells per unit volume and d is the crystal planar 

spacing. Given that the incident wave is plane or nearly so, such that r^> > r„ ,
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Figure 1.6 Scattering from a plane of unit cells - the Fresnel zone 
construction

Scattering from a number of planes

Scattering from a block below the surface of a mosaic crystal
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the reflection coefficient of a plane of unit cells may be expressed as

- iq  = + lNd( X /s ine) F(e^,k)p(e^/m c^) (1.37)

1. 6 Bragg Reflection by Idealised Crystal Structures

The theory of Bragg reflection is well defined for the cases of two

idealised crystal models: the ideally perfect crystal and the ideally imperfect

crystal. These two models, which are defined more fully below, lend

themselves to two reflection theories: the ideally imperfect model to the

kinematical theory and the ideally perfect model to the dynamical theory.

The suitability of the theories to the appropriate models w ill become apparent

from the followii^ outlines of the theories.
'

1 .6 .1  The kinem atical theory - the ze ro -ex tin c tio n  l im it

The re f le c tio n  o f X-rays by a th in  c rys ta l may be described in  

terms of the kinem atical theory which is  based on the fo llow ing assumptions :

a. the intensity of the incident beam is uniform throughout the crystal.

b. the interaction of the incident and scattered waves is negligible. 

Assumption a is valid,for since the crystal is thin,there is little  loss of 

intensity due to absorption as the incident beam passes through the crystal.

Also if the crystal were thick the upper planes of the crystal would reflect the 

incident beam and thus the intensity of the beam incident on the lower planes 

would be greatly diminished. Darwin called this phenomenon prim ary  

extinction.

In assessing the validity of assumption b it is necessary to understand 

how the scattered beam may interact with the incident beam. Since the crystal 

planes are parallel, the wave reflected from a given plane can be reflected again 

by the-plane above and this, tw ice-reflected  beam w ill be in the same direction 

as the incident beam. The magnitude of the twice-reflected beam from a
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single plane is negligible; therefore the effect is only of importance when it 

accumulates over a large number of planes and so may be neglected for a thin 

crystal.

Consider a thin crystal made up of n planes of spacing d which reflects 

a a-polarised beam at glancing angle 0 (see F ig .1 .7). The region of the 

crystal which contributes to the scattered radiation at point Q is a cylinder 

having Q PP’P" . . .  as axis and a diameter a few times that of the firs t  

Fresnel zone. The phase difference between the waves scattered by 

successive planes is 4 tt d (s in 0 )/X . The resultant amplitude at Q is only 

significant in the region of the Bragg angle 0^ at which angle the phase 

difference is an integral number times 2 t t  and thus effectively zero. For 

the Bragg region let 0 = 0g + 6 where 8 is small so that the phase 

difference is given by 5 = 47rd 8(cos0g)'/X . On the basis of the

kinematical theory the resultant amplitude A is given by

A/A^ = q { l + q ( l  - (1 .38)

where Aq is the amplitude of the incident radiation and q , the scattering 

amplitude of a single plane, is given by (1 .37) . The reflection

coefficient i.e . the ratio of the intensities of the reflected and incident beams 

is obtained by multiplying (1. 38) by its complex conjugate to give

P(3) = |q |^ [s in ^ (n B 8 )]/[s in 2 (B 6 )] (1 .39)

where B=27rd(cos0g)/X. Expression (1.39) is of the same form as that of a 

diffraction grating of n elements and thus for large n, P(3) has a small but 

finite width. In fact P(3) is an example of a crystal diffraction function or

crystal line spread function the definition of which is given in experimental

45
terms in Chapter 2. Bragg pointed out that the integral of this

This is the Bragg angle calculated from the simple Bragg law as given 
by Eqn. (1.5 )
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function is a measure of a crystal’s 'intensity of reflection'. This integral is 

called the Bragg reflection integral and is denoted by Rc. It  may be expressed 

in terms of experimentally measurable quantities by considering the ideal 

Bragg experiment (see Chapter 2 ) in  which the c rys ta l is  scanned at 

an angular velocity w, the incident beam has a cross sectional area S 

and the beam intensity, i.e . the energy passing per unit area in unit time, 

is I q • I f  it takes a time dg/w to rotate the crystal through the small 

angular range d3 and the reflected beam intensity throughout this ra i^e is 

I q P ( 3 )  then E the total energy reflected in  the Bragg re f le c tio n  range is  given by

E = l '  S o P(3) dg/w or Ew/I^ = S P(3) dg = SR  ̂ (1 .40)

Substitution of (1. 37), (1. 39) into (1.40) following the procedure of Ref. 21, 

p. 39 gives

E(jo/Î  = (N^X^/sin20g) I F(29g,k) I 2 p^(e^/mc^)^ (ndS/sin0g) ( 1 . 4 1 )  

The factor ndS/sin0g is the volume of the crystal that is intercepted by 

the cylinder which has base area S and an axis that lies along the direction of

reflection. Denoting this volume by Av, (1. 41) becomes

Ew/I^ = QAv where Q= ( N ^ X ^ / s i n 2 0 g ) | F ( 2 0 g , k ) |  ̂ p2(e^/mc^)^ ( 1 . 4 2 )

Equation (1.42) states that the total energy E reflected by a crystal that is 

sufficiently small for absorption to be neglected is proportional to the crystal 

volume and is independent of the crystal shape.

The following discussion shows that Eqn.(1.42) is also applicable to 

large real crystals. The diffraction profiles of such crystals are usually 

considerably broader than is predicted by Eqn.(l. 39) indicating the presence 

of imperfections in these crystals. Darwin suggested that the imperfections 

were due either to warping in the atom planes or to cracking. The latter  

suggestion led him to propose that most crystals are made up of small blocks 

(or domains), each block being a perfect crystal. The atomic planes of
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separate blocks are nearly parallel such that all the blocks are distributed 

in orientation over an angular range which, although small, is greater than 

the width of the response function of a s ii^ le  block. Ewald later called this 

model the ’mosaic’ crystal model. Darwin adopted the mosaic crystal model 

rather than the model based on atomic plane warping because mathematically 

it was easier to handle. Later experimental evidence shows in fact that most 

crystal imperfections are due to mosaic structure rather than warping. 

Nevertheless the mosaic model is an oversimplification since imperfections 

in crystals are caused by dislocations, strains, intersticial atoms, e tc ., 

rather than by the crystal being simply divided into discrete blocks.

The diffraction profile characteristics of a mosaic crystal depend upon 

the size of the blocks and the distribution function of the block orientations. 

Clearly if this distribution function is broad so the diffraction profile of the 

crystal is also broad. If  the blocks are large then there are integrated 

intensity losses due to prim ary extinction which is discussed above. If  the 

block orientation distribution function is narrow, it is highly probable that a 

block in the crystal interior which is orientated to reflect,w ill receive an 

incident beam of diminished intensity since a s im ilarly  orientated block 

nearer the surface w ill reflect the beam. Darwin called this effect secondary 

extinction. Clearly extinction is small,and accordingly the Bragg reflection 

integral is high,when the crystal domains are small and their orientation 

distribution function is broad. The lim iting case of zero extinction, often 

referred to as the ideally mosaic or ideally imperfect model, provides a 

useful model for calculating the reflection integral of an imperfect crystal. 

Although few crystals are ideally imperfect a comparison of measured 

reflection integral values with those calculated from the Darwin zero-extinction  

lim it gives a measure of the degree of imperfection of real crystals. Some
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crystals can be made to approach the ideally imperfect state by undergoing 

various treatments as described in Chapter 4.

Since the crystal domains of an ideally mosaic crystal are optically 

independent i. e. reflections from different blocks are incoherent with respect 

to each other, the total intensity reflected by the crystal is simply the sum of 

the intensities reflected by the individual blocks. Figure 1. 8 shows a mosaic 

crystal in which a block of volume dv, lying at a depth z below the crystal 

surface, is irradiated by a beam of cross sectional area Sq and intensity I ’q. 

The radiation reflected by this block travels a distance 2z cosec 9^ through the 

crystal and therefore is reduced in intensity by a factor e ^ti^zcosecSg ^^ere  

is the linear absorption coefficient. I f  dE is the contribution of this block 

to the total energy E reflected on rocking the crystal at an angular velocity w

through the angular range of reflection, then by Eqn (1 .42)

o)dE/I^ = Q Q-^:^2Zcosec9g (1 .43)

The total energy reflected by the crystal is obtained by integrating (1 .43) 

over the volume of crystal that is irradiated. Noting that the volume of 

the small block is S^cosecOg dz this integration yields

Ew/I^ = Q S^e 2y£zcosec0g = Q S^/2y^ (1.44)

or

W lQ  = Rq = Q/2y^ (1.45)

where y=I^S^) is the total energy per unit time incident on the crystal. 

Substituting for Q from Eqn.(1.4 2) the Bragg reflection integral for the Darwin 

zero-extinction lim it is

Rq = (N ^A ^/sin20g)|F (20g,k)|2(p2/2y^)(e2/m c2)2 (1.46)

Since the reflection integral for unpolarised radiation is the mean of those

for the cr- and tt- polarised cases, then for an unpolarised beam



35

Rq = CN^xVsin20g) lF(20g,k) |2[(1 + cos^20)/4y^] (e^/mc^)^ (1.47)

Equations corresponding to (1.47 ) may be obtained for the Bragg reflection 

integral of the Darwin zero-absorption lim it and the Prins perfect lattice 

lim it both of which are discussed in Subsection 1. 6 .1.

1. 6.1 The dynamical theory

The dynamical theory of X -ra y  reflection provides a theoretical frame­

work for describing Bragg reflection by perfect crystals. The theory is 

based on the assumption that the interaction between incident and scattered 

radiation inside the crystal medium is non-negligible. In 1914, only two years 

a f te r  the discovery o f X-ray d if f ra c t io n , Darwin^° proposed the f i r s t  dynamical 

theory of X -ra y  diffraction. Soon afterwards Ewal(^^ independently presented 

a treatment which involved regarding the crystal as a lattice array of electric

dipoles and considering a dynamic equilibrium between the wave-field within

4 7
the crystal and the dipole oscillations. In 1931 Laue developed Ewald’ s 

treatment and expressed the theory in terms of the solution of the Maxwell 

equations for a medium with a periodic complex dielectric constant. The 

Darwin treatment, although less general and elegant than the Ewald-von Laue 

treatment, gives a more straightforward account of X -ra y  diffraction by 

perfect crystals and so this approach is adopted below. Full accounts of the 

Ewald-von Laue treatment are given in Refs.48,49,21 and 50.

a. Reflection by a perfect crystal with negligible absorption -  the ze ro -  

absorption lim it

Darwin’s formulation of the dynamical theory involved considering 

X -ra y  reflection by a series of parallel planes as shown in Fig. 1.9. Each 

plane is indexed by the value of r  where r  » 0 for the surface plane. The total 

incident and reflected waves at a point just above the r^^ plane are denoted by 

Tj. and respectively. The diffraction profile is obtained from Sq/ T q the
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ratio of the reflected and incident waves at the crystal surface. Darwin 

calculated the ratio by setting up a pair of difference equations based on the 

following considerations which take account of the interaction between incident 

and reflected radiation in the crystal. Sj-, for instance, is the sum of the 

reflected part of T j ,  and the transmitted part of Sj. ^  ̂ whilst  ̂ is the sum 

of the transmitted part of Tp and the part of Sj. + i  which is reflected from the 

lower side of the r^^ plane. The reflection coefficient -  iq for a plane of unit 

cells is given by Eqn.(1.37). The amplitude -iqg of the forward scattered 

wave is obtained by calculating Eqn.(l.'57) for 0^ = 0 . The amplitude

of the incident beam after transmission is the resultant of the incident 

amplitude (of unit value) and the forward scattered amplitude i. e. 1 -  iq^ > 

and this is referred to as the transmission coefficient. The path difference 

for two successive planes is d sin0 and therefore the value 8^ + 2  just 

below the r^^ plane is , where (j) = (27r/X)d sin0 .

The following difference equations may now be constructed

= - iqT^ + (1 - (1.48)

V l  = (1-49)

where q is the reflection coefficient of the lower side of the plane. I t  should 

be noted that q differs from q for a polar crystal. Substitution for 8^ +  ̂

in (1.48) by an expression derived from (1. 49) and for S j .  from a corresponding 

expression with r  diminished by one, gives

(1 -  iq o ) (T r . i^  T^^^) = + Cl - (1.50)

A tria l solution of Eqns.(l. 48), (1. 49) and (1. 50) is given by

T r , i = x T n  (1.51)

where x is independent of r. Substitution of (1.51) in (1. 50) gives the following 

(1 - iqo) ( (1 /x )  + x) = qqe" *̂** + (1 - iq^) (1.52)

Apart from the phase factor the value of T changes little  for successive planes.
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Since only values of 0 near the Bragg angle 0 are important the value of
D

the phase factor is nearly equal to m-rr . From these considerations x 

may be expressed as

X = (1 - C l.53)

where  ̂ is small and may be complex. I t  is convenient to introduce a

quantity v given by

(j) = imr + V , (1 .54)

v = 0 when 0 = 0 ^ .
Substituting from (1.53) and (1. 54) into (1.52), expanding, and neglecting

terms of powers higher than two, yields

= qq - (q^ + v)^ (1 .55)

Now substitution of (1. 51) into (1. 48) and (1. 49) gives S .̂  ̂  ̂ = xS^ and

substitution of this into (1. 48) putting r = o gives

Sg/T^ = - i q / [ l  -  x ( l  -  iqQ )e '^*] (1 .56)

Substituting for x and expanding e"^^ and retaining only firs t powers

of small quantities in the expansion of the denominator.

Sq/T o = -  q /[q^ + V ± ((q^ + v)^ -  qq)^] (1 .57)

In the case of zero absorption it is convenient to divide throughout by

(27r/X)dcos0^ ^here 0^ is the Bragg angle corrected for the refractive index)

and introduce the following quantities

E = 0 - 0̂  = (q^ + v ) /( (2 ir /X )d  cos0^) (1 .58)

s = q /((2w /X )d  cos0^) (1 .59)
Noting that q = q for the case of zero absorption, (1. 57) becomes

V ^ o  " -  s /[c  ± -  s ^ )b  (1 .60)

The ambiguity of sign in the denominator is resolved by the condition that

S^/T^ < 1 . The ratio of the reflected and incident beam intensities

*

at the surface is given by I / I q = (So/ T o)(So/ T q) and for Sq/ T q given by

(1.60), I / I q as a function of e is referred to as the Darwin zero-absorption 

response function P (e) . The values of this function for the three principal
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angular ranges are as follows

e < - s , PCe) = s^ / [ e - (e  ̂ -

- s <  f < + s , P(e) = s^ / [ e  ̂ + - E^] = 1 (1 .61)

E > + s , P(e) = s^ / [ e + ( e  ̂ - s^)^]^

The function is distinctive in that it  is flat topped and in the flat or middle 

region (- s < e < + s ) reflection is 100%. Figure 1.10 shows a plot of the 

Darwin zero-absorption response function in which the angular variable is e /s . 

The function is symmetrical about the corrected Bragg angle 6^. The full 

width at half maximum of the function is given by

= 3s/2^ (1 .62)

The integral of the Darwin zero-absorption response function is obtained by

summing the integrals of the function for the three angular ranges considered 

above in Eqn.(l. 61) thus

r - s
R = c P(E)dE

+s
P ( e ) d E  + P ( E ) d E  ( 1 . 6 3 )

-S E = S

= s/3 + 2s + s/3 = 8s/3 (1 .64)
Substituting for s from Eqns.(l. 37), (1. 59) and noting that for the small

angular range of significant reflection 0„,0 , are interchangeable, the in te g ra l
D A

of the Darwin zero-absorption response function is given by

\  = (8/3TT) (NX^sin20g) |F(20g,k) | p (e^/mc^) (1 .65)

It  should be noted that in (1. 65) F ( 20^,k ) does not include anomalous
6

dispersion terms.

b. Reflection by a perfect crystal with absorption -  the general (Prins) 

perfect lattice lim it

Darwin attempted to take account of absorption of radiation due to the 

photoelectric effect and incoherent scattering by introducing an absorption 

factor h such that the transmission coefficient at each plane became l-h - i (^ .  

Later in his treatment of the dynamical theory Darwin ignored the factor h 

explaining that it was only introduced in the firs t instance to give validity to
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introducing a complex refractive index given by

n = 1 - 5 - iB (1.66)

where 5 and B are respectively the real and imaginary parts of the unit 

decrement of the refractive index. ̂  References 21 and 52 show that

6 + iB = I (5. + 16.) = I (x2e2/2nmc2)(l/V)f (0,k) (1.67)
j  ̂  ̂ j

In this expression V, the volume of the imit cell, can be found from the 

expression V = M/(pN^) where p is the material density, M  is the gram 

molecular weight and is Avogadros number. From (1. 67) it follows that

a = la. = y(e2/mc2)(l/2n)(l/V)x2(f (0,k) +Aft(w)) (1.68)
j   ̂ J

B = Is. = j;(e2/mc2)(l/2ir)(l/V)x2AfV(u) Cl-69)
j j  ̂ +

In the Prins method 6 and B are equated with by the following expression

- (6 + iB) = (A/27rd) sinSgP^ (1*70)

The corresponding equations for q and q are as follows
- (D^ + IB^) = (X/27Td)sin6gq (1.71)

- (D̂  + IB^) = (A/2nd)sin8gq (1.72)

where %  £ t̂Le Prins (unit cell) parameters are given by
[fy26g,k)/f.(0,k)])exp(-Tj^^pexp[+,

-2Trni (hx.+ky .+£z .) ] (1.73)] J J

Substituting (1. 70), (1. 71) and (1. 72) into (1. 57) the ratio of the intensities of

the incident and reflected beams P(8 - 6̂ ) is given by

It is easily shown as follows that a complex refractive index takes account 
of absorption. Consider a wave travelling in a direction x in a medium of 
refractive index n. The displacement at a point x is obtained by 
multiplying by the factor exp - i (2tt / A ) nx which for a complex refractive 
index may be written as exp-i (2tt/A) (l-6)x exp - (2'tt/A) Bx. Thus B the 
imaginary part of the refractive index is concerned with the diminution of 
the wave amplitude with increasing x which corresponds to absorption.
B may therefore be related to u , the linear absorption coefficient, 
thus B = (A/4n)p% (1.66a)
This relationship may be derived from comparison of Expressions (1.24), 
(1.69).

t
In the Darwin method the refractive index is considered real so that 
n =1-6=1-(A/2Fd)sin6_qD o '
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P(0 - 8g) = [{(D^ + iB^)}/{c ± [ĉ  - (D̂  + iB^jCDg + iB^]^}]^
(1.74)

where c = cos6gSin0g(0 - 0g) - 6 - 16

Expression (1. 74) is known as the Prins response function for the perfect

lattice lim it or more generally as the Prins curve. The curve, as can be

seen in Fig 1.11 is asymmetric due to absorption. It  is roughly centred about

the angle 8^ given by

0 ^  -  0 B  =  6 s e c 0 g c o s e c 0 g  ( 1 . 7 5 )

The right hand side of (1.75) represents the correction to the Bragg angle 

due to the refractive index. It  is convenient in calculation to adopt 0^ as the 

origin for angular measurement and to introduce the angular variable I  

defined by

& =  ( 8  -  e ^ ) / ( 0 ^  -  0 g )  =  6 " ^  ( 0  -  0 g ) s i n 0 g c o s 0 g  -  1 ( 1 . 7 6 )

Eqn. (1. 74) now becomes
9 I  2

+ ( 1 . 7 7 )

which is the form of the Prins function given in Ref. 52. The integral of

the function w ill be discussed in Subsection 1. 8. c.

1 .7  Inclusion of Temperature Effects

The thermal energy of crystal atoms causes them to vibrate about their 

mean position and consequently the in-phase scattering expected from a plane 

of static atoms is destroyed to some extent. The amplitude of atomic 

scattering is reduced and this is taken into account theoretically by multiplying 

the atomic scattering factor f of a given atom by a temperature factor of the 

form exp-T^^^ such that

where f^ is the atomic scattering factor at absolute temperature T and 

is the atomic scattering factor when the atom is at rest. Debye^^ presented
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the firs t extensive treatment of temperature effects in which he considered 

that each atom vibrated independently and that atomic energies were governed 

by Boltzmann statistics. Clearly, on account of interatomic forces, the 

assumption of independent vibrations was unreasonable and so using a method 

presented by Born and Karman^^, Debye recalculated his results to include 

interatomic forces and thus obtained the following expression for the exponent 

of Eqn. (1.78)

M = C3h^/m^k0)[ ( $ (x ) /x )  + ( 1 /4 ) ] (sin^e/A^) (1 .79)

where h is Planck's constant, m^ is the atomic mass, k is the Boltzmann 

constant, x = 0/T  , where © is the characteristic temperature of the 

crystal and *(%) is a function of x, values of which are given in Debye's 

paper and Ref. 52. Debye's treatment applied to crystals with only one atomic 

species so that the total correction for temperature effects is simply obtained 

by multiplying the crystal structure factor by exp -  M. Waller^^ reassessed 

Debye's treatment to find that Debye's temperature factor was too small by a 

factor of two and so he introduced the temperature factor exp -  2M, later to 

be known as the Debye-Waller factor, where M is given by Eqn. (1. 79). 

Extensive discussions of the Debye-Waller factor are given in Refs. 21,52,56

49 and 57. W aller also extended Debye's treatment to deal with crystals of

more than one atomic species. In general Debye-W aller temperature factors 

are not easily evaluated since they require knowledge of characteristic  

temperatures which may not be readily available. A more successful approach 

to temperature effects finds its roots in the work of W aller and James^® who 

expressed the temperature factor as follows

exp-(2 it  ̂ < u^>)/d^ = exp-[Btt̂  < u^>](sin^0)/A^ (1 ,80)

where <u^> is the mean square displacement of an atom from the reflecting
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plane. In the last fifteen years it has been common practise in crystallographic 

literature to present, alongside atomic co-ordinate data, temperature 

parameters necessary to calculate the exponents in Expression (1. 80). There 

are two types of temperature parameters and these are discussed below using 

the nomenclature of Ref .12.

Isotropic temperature parameters If  the restoring forces acting upon a

vibrating atom are the same in all directions then the field of restoring forces 

is  said to be is o tro p ic . For such a f ie ld  the temperature fa c to r o f an atom is

expressed in terms of an isotropic temperature parameter B which is equal to

8tt̂  < u  ̂ > . Thus

exp-T^^^ = exp-B (sin20)/x2 (1 .81)

The dimensions of B are in square Angstroms. In crystallographic

literature, values of B may be given for individual atoms or m erely for 

atomic species. Quite often a param eter U(= < u  ̂ > ) is presented from  

which B may be calculated.

Anisotropic temperature parameters The field of restoring forces in general 

varies with direction and is therefore described as anisotropic.The nature 

of such a field is taken into account by expressing the exponent of Expression 

(1. 80) in terms of a six parameter t e n s o r . ^ ^ T h i s  param eter is 

derived by expressing the left hand side of Expression (1. 80) in terms of the 

reciprocal lattice vector so that

l/d ^  = = (ha* + kb* + &c*)(ha* + kb* + £c*)

= h2a*2+k2b*2+£2c*2+2hka*.b*+2k£b*.c*+2£hc*.a* (1 .82)

Each of the terms in Eqn. (1. 82) must be multiplied by its characteristic

< > to give

h2a*2+U22k2b*2+U22£2c*2+2u^^cos(a*b*)hka*b*

+ 2u22Cos(b*c*)k£b*c*+2Ug^cos(c*a*)£hc*a* (1 .83)
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and thus

exp-T^^^ = exp-2ïï2(U^^h2a*^+U^^k^b*^ + U^^£^c^+2U^2^^^*t»* + 2U^2k£b*c*

+2U^^£hc*a*) (1.84)

where Û 2  " » e tc .

Another common expression for the anisotropic temperature coefficient is 

given by

e=q>-Thki = exp-(6^^h2.6^^k2*B3jH2+6j^hk*6^jkilt6jj)lh) (1.8S)

Values of the U and B parameter series are given in crystallographic literature.

The consequences of temperature effects with respect to the parameters 

of crystal response functions may be discerned from the Darwin zero- 

absorption and Prins perfect lattice models. I t  is clear from Expressions

(1. 65) and (1. 62) that for the Darwin model both and are reduced

6 1
and indeed Batter man has observed reflection integral reduction and thermal

narrowing in silicon crystals. It  is worth noting that temperature effects 

increase rapidly with diffraction order and indeed it was found for the ADP 

calculations of this work that firs t order reflection integrals were reduced by 

 ̂ 1 %  whereas fourth order reflection integrals were reduced by ~ 20%.

The Darwin model still predicts a region of total reflection but one which is 

reduced in range. In the case of the Prins perfect lattice model a reduction 

in P(£) over the whole range of the function might be expected and indeed from 

calculations this is found to be the case.

1. 8 Numerical Evaluation

Computer programs were written to calculate the functions derived from 

the idealised crystal models discussed in this chapter. General computational 

details are given below and further details are given in Appendix A. Details of 

data sources for a given crystal are included in the relevant crystal study
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chapter.

a. Darwin zero-extinction lim it

Expression (1.46) was programmed to give an analytical calculation of 

for a , 77 polarised cases and the unpolarised ( u ) case, was

calculated from Af” terms using Expression (1. 24). The value of was

62
outputted and compared with experimental values. The 2 - reflection integral 

R cc,u was determined from R g. ^ using Expression (2. 54) with polarisation 

factor k=cos^29. The above calculations are part of the EWALD program,an  

o u tlin e  of which is given in Appendix A.

b. Darwin zero-absorption lim it

i. Analytical computation The function and its integral were calculated from 

Expressions (1. 61) and (1. 65) respectively for a and tt polarisations. The 

value of the function for unpolarised radiation is, for a given point, the 

average of the a and tt values at that point. S im ilarly the reflection 

integral for unpolarised radiation is the average of the a and ir integrals. 

The width of the function for a and t t  polarisations was calculated from 

Expression (1.62). Evaluation of the width for unpolarised radiation is outlined 

in Paragraph ii below.

The 2-crystal response function P (6) (where 6 is measured from the 

parallel position (see Section 2. 3. 3) for a given polarisation is obtained from  

the autocorrelation of P (e), thus

P (6) = P(e)P(e-6)de / P(e)de (1 .86)

Since P (e) is symmetric it need only be evaluated for 6 3 O. I t  is convenient 

to evaluate (1. 86) for two cases: Case 1 6 < 2s; and Case 2 3 > 2s, where

s is defined by Expression (1. 59). It  is convenient to break down (1. 86) into 

a series of integrals^ ̂  and for Case 1 it can be shown that
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P (B) = 3/8s{2s - 6 + 2 P Ce) de + 2
s

P(e)P(£ - 6)de} (1.87)
s+3

A s im ilar expression may be derived for Case 2. The firs t integral contains

the rapidly changing part of the Darwin function and can be evaluated by

integration of Expression (1. 61) for e > s to give 

s+6

P(e)de = { (1 /u  ) [ ( 1 /3 u4  -  1] -  ( l / u j [ ( l / 3 u b  - 1 ]} (1 .8 8 )
jg  ̂ ^  ^

where = s + 3 + /(s + 3 )^-1 , = s + /s^ - 1

Evaluation of the second integral requires lengthy algebra. The Integral may 

be expressed as a series of six integrals, five of which can be evaluated by 

means of hyperbolic or algebraic substitutions and the remaining integral can 

be evaluated using elliptical functions and integrals. Details and results of 

the algebraic manipulations are given in Ref 63. A s im ilar procedure

to that of Case 1 is required for Case 2.

The 2 -re fle c tio n  function widths fo r  the a and w p o la ris a tio n  are 

calculated from the expression w ^=1.32 w, (R e f. 52  ̂ Eqn. 9.71) which is 

derived in Ret 63. The 2-re f le c t io n  function width fo r the unpolarised  

case is evaluated num erically as described in tiie next paragraph. The 2- 

crystal reflection integral is calculated from Expression (2. 54) using the 

polarisation factor k = |cos2e|. 

ii. Numerical computation

Since thé 1 -re fle c tio n  function and i ts  in te g ra l are e a s ily  obtained 

analytically there was no need to proceed with numerical evaluation. The 

2 -re fle c tio n  function can be determined num erically using Expression (1.87). 

The last integral of this expression and other integrals arising from Case 2 

can be integrated using Simpson's rule. This integration method requires 

an odd number of points in the tail and flat regions of the Darwin function.

The program achieves an odd number of points by calculating the half width 

of the flat region and then adjusting the inputted step length accordingly. As 

a result of this ^^(3) and P^(3) are evaluated at different points and
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so instead a mean value, P^(3) must be determined by interpolation. Some 

of the integrals involved have infinite lim its and so it is necessary to integrate 

with finite lim its and iterate until sufficient accuracy is achieved. The widths 

of Pg(8),  P^(3),  Py(3) as w ell as P^(e) are determined 

num erically by scanning the array holding the computed function to find the 

position which holds a value just less than half the maximum. Linear 

interpolation is then used to determine the width. A ll reflection integrals are

calculated analytically. An o u tlin e  o f the program DARWIN, which 

calculates the Darwin zero-absorption function numerically and analytically  

is given in Appendix A. I t  should be noted that evaluation of F(2 9g,k)  

for the Darwin zero-absorption function excludes anomalous dispersion terms.

c. Prins perfect lattice lim it

i. Analytical computation The Prins integral was calculated (see Appendix A, 

Program EWALD) using the analytical expression derived by Afanas'ev and 

Perstnev?^ The elliptical integrals of their expression were calculated by a 

power series summation but where the series were slow to converge the 

approximations introduced by Afans'ev and Perstnev were applied. For full 

details Refs . 63 and 64 should be consulted. The 2 - re f le c t io n  

integral was calculated using Expression (2 .50) .

ii. Numerical computation The Prins function p(%) was generated by 

programming Expression (1. 77). The a and it  values of the functions 

at a given point were averaged to give the value for unpolarised radiation.

The widths of P(£) for the three polarisation cases were evaluated by 

determination of the half peak height value and linear interpolation between 

the points on either side of this value. The reflection integrals were calculated 

by numerical integral of the function using Simpson’s rule. The 2 - reflection 

function p(g) (where g is the angular deviation from the central position) was
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generated by numerical convolution using Simpson's rule to calculate areas. 

The curve for the unpolarised case was generated as for the 1 - reflection  

curve. The widths and integrals of P(3) for the three polarisation cases 

were determined numerically as above. Details of numerical calculations 

for the Prins perfect lattice lim it are given in  the o u tlin e  o f  

Program PRINS in Appendix A.
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CHAPTER 2

PRINCIPLES OF THE MEASUREMENT PROCEDURES 

FOR CHARACTERISATION OF BRAGG ANALYSERS

Introduction

Characterisation of the Bragg response for an analyser entails the 

determination, of the Bragg dispersion function, and of the line spread function, 

over the X -ra y  wavelength range spanning the short wavelength and 2d lim its of 

the crystal. In order to proceed with an em pirical evaluation of these functions, 

they must be defined with respect to experimentally measurable quantities.

The Bragg dispersion function

This function is essentially a form of the Bragg equation corrected for 

the characteristic dispersion of the Bragg analyser. I t  relates X , the 

incident beam wavelength, d>p the lattice period at temperature T(°C) and 0  ̂ ^ 

the angle, at the position of the interference maximum, between the external 

incident ray and the diffracting plane of the crystal for the n?  ̂order. It  may 

be expressed as

nX = 2d-p sin 0^ ^ (2.1)

2dT sin (8^ + A0(X,T))

where d^ = d^g (1 + a (T -  18)) (2 .2)

In these expressions is the solution to the simple Bragg equation for

wavelength X, 0 = sin  ̂ (nx/2d ), a is the linear expansion coefficientB T

in the direction normal to the diffracting planes and A0 ( x , T) is the

contribution to 0  arising from dispersion. Geometrical refraction theory,
x,n

52 fbased upon Snell's Law, easily shows that

A0 = 6  sec 0 cosec 0  (2.3)

t  Angles w ill be denoted by 0  , in generic expressions, in cases where the
approximation 0  ̂ n = 0 g is valid and in cases where the distinction
between q- ana q is unimportant.

X, n B
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where g is defined as the unit decrement of the refractive index and is 

calculated as Expression (1. 6 8 )

<5 = = Z^e2/mc2) ( 1 / 2 tt) (1/V ) (0,K) + (w))

This expression clearly shows that A0  is wavelength dependent. Noting that 

foj (0 ,k )  and Af. (w) are associated with normal and anomalous dispersion 

respectively then (2. 3) can be expressed as

A0 = ( 6 ^ + 5^) sec0 C O S 0 C0  (2 .4)

where 5^ are respectively the normal and anomalous dispersion

contributions to 6  . I t  should be noted that foj (0 ,k )  and Af are wavelength 

independent and wavelength dependent respectively. Note also that (1. 6 8 ) reveals 

a temperature dependence in A0 arising from the term in 1 /V . However since 

it w ill be seen from later discussion that A0  is a small quantity the 

temperature dependence of that small quantity arising from the expansion 

coefficient a (where a is of the order of 1 part in 10^ per Kelvin) w ill be 

negligible for the range of laboratory temperature of concern.

The required quantities for the complete description of the dispersion 

function are d i 8 , ct and A0  ( X) .

The line spread function

It  is observed and predicted from crystal diffraction theory that the 

Bragg reflection of an X -ra y  beam, of infinitesimal beam spread and of 

infinitesimal bandwidth, occurs over a small angular range as a result of the 

finite width of the crystal line spread function. In this small angular range the 

reflected beam intensity I is given by

1(0) = P ^ ( 0 ) I o  (2.5)

where Iq is the incident beam intensity, 0  is the crystal aspect angle to the 

incident beam, X is the wavelength of the incident beam and ( 8 ) is the value 

of the line spread function at a given 0 . The variation of P^ (9) with 9 over
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the angular range of significant reflection gives the profile of this function at 

wavelength X . The function profile changes with wavelength hence crystal 

characterisation requires determination of the profile over the crystal wave­

length range. This determination must for reasons given in the Introduction 

reveal the integral and shape of the profile.

The integral of the function may be defined with reference to an 

idealised experiment where the beam characteristics are as above. If  the 

crystal aspect angle is changed at a constant rate d6 /d t *  ^  then the total 

count, E, obtained in scanning a range of 9 , which embraces the region of 

significant Bragg reflection, is

r® 2
E = lo P, ( 8 ) d e/w (2 . 6 )

Because this function tends to zero relatively quickly away from the peak of

P  ̂ ( 0 ), the result of this experiment is not sensitive to the values of sensibly

chosen lim its to the integral, so that the Bragg reflection integral can be

written as 
V 2

^  P ^ ( e ) d 0 = R c  (2 .7)

I t  is useful, particularly when discussing the measurement of the reflection 

integral, to express Rq from (2. 6 ), (2. 7), as

Rg = w E /lo  (2.8)

The two important parameters associated with the shape of the profile  

are the width Wg (more strictly  defined as the full width at half maximum 

.fVfhm ) and the peak value P^.

2.1 Measurement of d^g, ot and A 6  ( x f ^ ’ ^̂

The value of dig and a were determined by the following method. 8  ̂

defined in Eqn. (2.1), was measured, at several different temperatures at 

a wavelength for which 6^(see Eqn. (2. 4)) is negligible, and in chosen order.
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Since 6 a  is negligible, each 9  ̂ ^ value can be corrected for the value of 

to give 0g and consequently, by the simple Bragg equation (Eqn. (1. 5)), 

di". For this purpose either calculated or measured values of 6  ^  at that 

wavelength may be used. It  w ill be seen from following that there is good 

confidence in the use of calculated values, without consequential loss of 

precision , on fixing dig. A weighted least squares fit  on a plot of d against 

temperature T gives by Eqn. (2 .2 ), dig and ct .

Values for a 0 (X) were obtained in the following manner. At 

wavelengths where 6 A is non-negligible several measurements of 0  ^ were 

made at each wavelength. Since it was not possible to maintain the spectro­

meter temperature constant,the temperature for each 0  ̂ ^ measurement was 

noted. At each point in the wavelength data set 0 g  was calculated for the 

temperature associated with that point using the previously determined dig and a 

Then for that point A0 was determined from the expression 

A0 = 0, - 0R (2.9)
A  , n  D

A0 was determined at all points in the data set for the given wavelength and 

the adopted value of A0 was simply the mean of these values.

Equation (2.1) describes X as a function of 0  ̂ ^ and therefore any 

experiment which attempts to determine this function must itself show the 

dependence of X upon 0^ ^ i. e. it must be dispersive. The incident beam 

wavelength in such an experiment cannot be measured without knowledge of 2 d j .  

Therefore X can only be obtained by use of reference lines with accurately

predetermined wavelengths. This leaves e as the only unknown and it canX,n
then be measured.

It  is now important to discuss the criteria  for reference line selection

and the choice of method for 0  measurement.X,n
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a. Selection of reference wavelengths

Reference wavelength lines were selected after careful study of the data

66
sources for Bearden’s tables of X -ra y  wavelengths. The following points 

were taken into consideration;

i. The e rro r assigned to the value by Bearden and his general

comments upon the work. In the wavelength region relevant to 

this work the e rro r was about lOppm.

ii. The instrument employed to measure the wavelength. The most

accurate measurements have been carried out on double-crystal 

spectrometers and tube spectrographs.

iii. The attention paid to sources of e rro r such as instrument 

misalignment, temperature variations and dispersion effects.^^

iv. The use of reference lines such as W Ka^ , and Cu K a j as a

means of calibration of the work.

V .  The use of an element or compound as a target m aterial. This

point is particularly relevant to the wavelength region studied in 

this work in which a large proportion of the lines were generated 

from elements unsuitable in their elemental state as target 

m aterials for reasons of either low melting points or chemically 

too reactive. The chemical shifts of K a^,wave lengths in this 

region are of the order of 100 ppm and so are very significant. In 

recent years a considerable amount of work has been done on 

measuring chemical shifts^^ ' ^^and so,for lines where a compound 

must be used and the shifts are known accurately,Bearden's 

tabulated wavelengths (usually given for the element) have been 

corrected accordingly. The e rro r in the chemical shift determination 

must be combined with Bearden's listed erro r.
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vi. The laboratory where the measurement was made. In the 

relevant wavelength region many of the lines were measured 

at the John Hopkins University and Uppsala, both highly 

reputed laboratories with much experience of X -ra y  wavelength 

measurements.

v ii. The number of different workers who have studied a line. A 

useful check of the validity of a wavelength value is the external 

consistency obtained if a sufficient number of workers have 

independently made measurements.

v iii. Line breadth. The accuracy with which the peak of a line can be 

located is inversely dependent upon the line width. The line 

width increases with wavelength and so where possible shorter 

wavelengths should be used.

ix. Line intensity. I f  the line intensity is high then statistical 

counting errors w ill be lower. The most intense lines in the 

region of interest were the Ka^ lines of the elements 11 < Z 

^  35 and the La^ lines of the elements 30< Z ^ 60.

X .  Accepted wavelength standardst In the wavelength region under

consideration the following two lines have been accepted by

In Bearden's wavelength tables the prim ary standard is the wavelength of 
the line W Kc  ̂ which is

W K a i = 0. 2090100 Â 
wher^ the A, a new unit of length introduced by Bearden, may d iffer from  
the A unit by 5 ppm. The conversion factor between these units is an 
experim entally determined quantity and w ill change as further work is 
done. In this and Bearden's work the wavelength of a line in Â units is 
related to the energy E of the line by the following relationship.

X( A) = 12.398105/E(Kev)
Nevertheless where it is not essential to kngw wavelength values to 5 ppm 
accuracy, following common practice the A unit w ill s till be used.
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Bearden as secondary standards 

X Cu Kci^" 1. 540562 A + 5.. 2 ppm 

X Cr Kai = 2. 293606 A + 5. 2 ppm

A great deal of work has been done on the wavelength determination

of A1 Kct  ̂ and this line is generally accepted as a secondary

standard in the longer wavelength region.

X A1 Ka  ̂ = 8.339j4A ± 12 ppm

The wavelengths of these secondary standards refer to lines 

generated from an element target m aterial.

x i. Suitability of the target m aterial. The target m aterial should in 

general be easily obtainable, have a high melting point (or high 

thermal conductivity), and if in the form of a compound the

, element under consideration should be combined with a light 

element to ensure a high beam intensity for the required wavelength.

x ii. The complete set of wavelengths chosen must give a clear

definition of A9 (X) over the required wavelength range.

The lines (in the wavelength region relevant to this study) which meet these

i*c rite ria  are listed in Table 2.1 below. The wavelengths given are those of 

lines produced by element target m aterials. In cases, in this study, where 

a compound target m aterial was used for line generation, the wavelength value 

appropriate to line generation from the element, was adjusted to take account 

of chemical shift.

t  Details of the references which report the wavelength determinations 
are given in the appendix of Ref. 6 6 .
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Table 2. 1 Reference wavelength lines

Line Wavelength E rro r

*
( A) (ppm)

Cu Koti 1.540562 5

C r Ka 2.293606 5

T i 2. 74851 7

Ca Ko^ 3.35839 9

Ag L a i 4.15443 1 0

Ru L a i 4.84575 1 2

Si Kai 7.12542 14

A1 Kal 8.33934 1 2

b. Measurement of 0,____________________A ,n
In principle 0^^^ is obtained by measuring the crystal angles for the 

Bragg peaks when the crystal is in Positions A (solid lines) and B (dashed 

lines) as shown in Figure 2 .1a . The angular difference between the crystal 

positions is 180° - 2 0 ^ ^  . This method eliminates the zero angle e rro r  

which arises from uncertainty in the precise direction of the incident beam. 

The crystal angle is read from a circular angle scale which is attached 

concentrically to the crystal turntable.

The listed wavelength value for a reference line refers to the peak 

of the line which is only one point on its spectral profile. In order to refer  

the line profile and peak to the angle scale it is necessary to correlate points 

on the line profile with crystal angle. Norm ally the intensity across a line 

profile changes rapidly with wavelength, so it is important that the variation

of wavelength with crystal angle is small. 6  must therefore be
A p.
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measured in a high dispersion mode. It  is also important that the wavelength 

range reflected by the crystal for a given position is small., 9^ ^ must 

therefore be measured in a high resolution mode. These conditions may be 

achieved by the following two methods.

i. The incident beam is collimated so that the beam divergence 

at the crystal is small therefore allowing only a small angular 

and wavelength range to fulfil the Bragg condition. This is the 

basis of the 1 - reflection method.

ii. The incident beam is monochromated so that for any given crystal 

position only a small wavelength range is received by the crystal. 

Monochromation may be achieved by employing a f irs t crystal to 

select a small wavelength range using the Bragg condition. This 

is the basis of the 2 - reflection method.

Details of the dispersion and resolution of the above two methods are given 

in Ref. 65.

In view of the fact that the m ajor part of the wavelength range being 

studied was in the soft X -ra y  region the single crystal reflection method 

was chosen for the following reasons. Although the resolution afforded by 

the 1 - reflection method is, at short wavelengths, poorer than that cf the 

2 - reflection method, the form er method is advantageous at longer wavelengths 

because its geometrical window (see Expression (2.18 )), for given s lit 

settings, does not increase with wavelength, whereas the 2 - reflection

geometrical window (due to vertical divergence) is roughly proportional to

65
wavelength. At longer wavelengths absorption becomes significant and so 

there are considerable beam power losses on successive reflections. It  

should be noted that at low wavelengths the single crystal method w ill require 

high collimation in order to gain sufficient resolution and this w ill be at the
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expense of beam power. I t  is in this wavelength region that the 2 -crystal 

method clearly wins out in terms of resolution and beam power.

The single crystal reflection instrument is shown schematically in 

Figure 2. ]alooking along the turntable axis. An X -ra y  beam from source X  

is collimated by slits and S2  and is reflected by crystal C through an angle 

of 2 9^. The reflected beam is received by a detector which has a

window appreciably larger than the beam size. The Bragg reflection peak 

is observed by plotting reflected beam intensity against crystal angle as the 

crystal is slowly rotated about the small angular range where the Bragg 

condition is satisfied for the given reference line.

The crystal diffracting planes are aligned so that they are parallel 

to and contain the rotational axis of the crystal turntable. The la tter is 

called the spectrometer axis and is norm ally aligned parallel to gravity  

which defines the vertical direction. The slits are aligned so that the line 

joining their vertical centres and horizontal centres is parallel to the plane 

of dispersion (orthogonal to the spectrometer axis) and passes through the 

spectrometer axis. The ray passing through the s lit centres is called the

central ray. The angular separation of the Bragg peaksfor Ibsitions A and 

B,that is in fact measured by this instrumentais 180° -  2e^([Tneas.) and 

corrections arising from experimental conditions must be applied to 0  ̂

(meas. ) in order to obtain 9  ̂ . Since there is a close link between 

these corrections and measurement uncertainties^ they are discussed 

together in the next section.

Since prim ary interest is in the Bragg dispersion function for firs t  
order reflection, measurements were made for this order. In further
text in this section this order is assumed.
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c. Sources of e rro r and their containment

The errors and corrections on 0  ̂ arise from two principal sources; 

geometrical aberrations and physical sources. Included in the firs t category 

are instrumental misalignment, beam geometry, angle scale, peak location 

and source movement. The errors and corrections of the second category 

are associated with the physical phenomena, absorption and thermal 

expansion. Where appropriate procedures are implemented to minimise 

the sources of e rro r. In most cases, e.g. vertical beam misalignment, it 

is possible to minimise the source of e rro r to an unknown residual the 

upper lim it on the magnitude of which is governed by the accuracy of the 

minimising procedure. This residual contributes to the uncertainty on 8  ̂

and thus it is necessary to calculate this contribution. In other cases, where 

the experiment dictates a source of non-zero value (e.g. vertical divergence) 

or where minimisation is not possible (e.g. absorption) a correction, calculated 

from the magnitude of the source, must be applied to 0 ^(meas.). Note also 

that the uncertainty on the magnitude of the source in question w ill contribute 

to the uncertainty on 0  ̂ .

I t  is important in any measurement that the errors do not obscure 

the quantity being measured, hence some tolerance must be placed upon e rro r  

magnitudes. Typical values of A0(X) are about 250 ppm in 0  ̂ and the 

change in over a crystal wavelength range is also about 250 ppm in

0  and therefore the total e rro r on 0  must be lim ited to the order of
X X

+ 20 ppm. In all further discussion of errors the + symbols w ill normally be 

omitted but all quoted e rro r values must be regarded in this + form. It  is
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useful to note that a 20 ppm e rro r on a typical 9  ̂ value, 45 degrees, is 3

arc seconds. Since, e is determined by a least squares fit to a set ofX ;T
9  ̂ values which are measured at different temperatures, the e rro r lim it 

on each measurement can be relaxed conditional to a standard deviation on 

9  ̂ of 20 ppm. Useful values of dig and a  may be obtained from 9  ̂

measurements in which the e rro r lim it is of the order of 50 ppm. This 

emphasis upon e rro r tolerances w ill be reflected in the following discussion 

of the aforementioned e rro r sources and in later discussions for individual 

crystals.

i. D iffractor settings

(1) Rotational axis misalignment. The instrument is norm ally aligned such 

that the vertical centres of the slits lie in the horizontal plane. I f  the 

rotational axis is not vertical then the angle between the crystal plane of 

dispersion and the horizontal plane w ill be different for Positions A and B. 

This w ill introduce vertical misalignment m and a crystal lattice tiltd  .

Y , 5 are defined below along with (?9^Y) , a9^ (6)the respective errors 

arising in 9  ̂ from the residual Y and ô after machine alignment.

Figure 2 JLb shows a crystal with a rotational axis which makes an 

angle dp with gravity (z). X  X ’ is the horizontal plane. In the figure the 

crystal rotational angle 6  is such that 6  ’, the angle between the crystal 

normal and X X ’ is a maximum. These values of 9 and <5* shall be called 

9  ̂ and 0  ̂ respectively. I f  (p and 6 ' are small the general

t
expression for 6  is

f f
6  = 4  cos (9-9^) + (2 . 1 0 )

The value of 9  ̂ with respect to the spectrometer angle scale is 

dependent upon the line of the axis projected into the plane of dispersion. In
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general this is not known and so it is not possible to assign an absolute 

value to s ' , However the amplitude of the cosine function is <(, and 

therefore the maximum effective crystal t ilt  change is . C learly  

the maximum possible change in vertical misalignment is also 2 ^  . On 

the basis that the s lit system lies in the horizontal plane, (p is minimised 

by aligning the rotational axis of the turntable to the local gravity vector. 

Full details are given in Subsection 3 .3 .3 .  The unknown residual o(p 

that remains after alignment is treated as a contribution to the uncertainty 

on 0  ̂ and must be limited such that this uncertainty is within the following 

tolerance. With < 30" the resultant and o8 , (Y ) 'o n  a 45°
A A

Bragg angle are negligible i. e. < 1 ppm and typically for o 6  <  3' and 

cY < 1 ' then the resultant o8^(5,Y) (see below) is also negligible.

(2) Mounting eccentricity. If  the crystal diffracting planes are displaced 

horizontally from the spectrometer axis by E then the lateral displacement 

D of the reflected beam is given by D = 2 E cos 9  , The glancing angle 

is not affected by the crystal eccentricity, and as the detector window is 

wide enough to cope with the beam displacement no correction to the 

measured angle is necessary. Nevertheless it is important that the 

eccentricity is as small as possible otherwise the incident beam w ill strike 

different areas of the crystal surface for Positions A and B. Mounting 

eccentricity is minimised by using optical alignment techniques to align 

the crystal mount reference plane, against which the crystal face locates, 

such that it is parallel to and contains the rotational axis (see Subsection 

3 .3 .3 ) .  The maximum distance along the crystal surface between the 

areas of crystal irradiated at reflection positions A and B for a residual 

aE is 2 aE/tan 0  . For a typical beam width of 0. 2  mm, if aE < 20 ym 

then the reflecting crystal surface area at Positions A and B w ill not change
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by more than 20% for 9 > 5^. The total shift of the beam across the 

detector window between Positions A and B for an eccentricity E is 4 E cos 9 . 

Again it is important that the eccentricity is minimised because at soft X -ra y  

energies non-uniformity in the window transmission may introduce erro rs  

which are difficult to estimate.

(3) Lattice t i l t . This w ill be defined in its positive sense using the convention 

of Ref. 6 S. The lattice tilt  6  is the angle by which the normal to the diffracting  

planes lies above the plane of dispersion. Lattice tilt  gives rise to a shift in 

the peak position which may be calculated from (2.11) below. The minimisation 

of 6  involves setting the crystal lattice planes parallel to the rotational axis. 

Since lattice planes are not necessarily paralle l to the crystal face, the 

alignment incurs optical and X -ra y  alignment methods as given in Subsection 

3 .3 .3 .  The uncertainty on arising from the residual dô is given by

a0 ^(6 ) = ( tan 0 ^ ) / 2  (2 . 1 1 )

A typical uncertainty in the lattice tilt  a5 of 3’ would result in an e rro r of 

0. 5 ppm for a 45° Bragg angle.

The relation (2.11) may also be used to calculate the required 

correction to 0. (meas.) fo r  a known 6  . The R.H.S. o f (2.11) must be

subtracted from 9 ^(meas.).

(4) Scan speed irregu larities . Since the crystal is scanned automatically 

through the peak it is important that the scan speed is uniform and that there 

is no irregular movement during the scan. I t  is difficult to estimate the 

resultant uncertainties and so it is essential to minimise the above phenomena 

such that the uncertainties are negligible i. e. of the order of 0 . 1 " over a 

complete scan. During a scan the detector and crystal rotate at a 2:1 scan 

speed ratio. Non-uniformities in the transmission across the detector window 

w ill cause distortion of the peak profile if this ratio is not maintained constant.
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Again uncertainties are difficult to estimate but a tolerance on the d rift of 

the detector of 10 arc sec (0. 00025 in) gives rise to negl^ible uncertainty.

ii. Beam settings

(1) Horizontal beam misalignment. This is the angle X, in the plane of 

dispersion through which the s lit system as a unit must be rotated, about an 

axis parallel to the spectrometer axis, in order to make the central ray pass 

through the spectrometer axis. For X *  O let the line joining the horizontal 

s lit centres and the spectrometer axis be called the line of co-linearity. X 

is minimised by adjusting the positions of the slits such as to locate a beam of 

light, that passes through slits of small width, symmetric about a fine wire  

which assumes the line of the rotational axis (see Subsection 3 .3 .4 ) .  The 

measured angle 180 - 29^(meas.) w ill not be affected by the magnitude of 

the residual ax because the shift in the crystal angle necessary to attain the 

Bragg condition in Position A w ill be compensated by an identical opposite 

shift for Position B. The incident beam w ill strike the same area of the 

crystal for positions A and B but w ill be shifted along the crystal face from 

the spectrometer axis by R sin ax/sin 9 where R is the distance between the 

spectrometer axis and the point at which the central ray crosses the line of 

C O -linearity. For purposes of estimation this point can be taken as the mid­

point of the s lit separation. If  the detector is aligned, as is norm ally the 

case, centrally about the angle 2 9 where 9 is the angle between the crystal 

and the line of co-linearity then for Positions A and B the beam w ill strike the 

same area of the detector which is a distance DD' from the centre of the 

detector given by

DD' = R sinax cos ox + (H + R sin^ax ) tan ax (2.12)

where H is the distance between the spectrometer axis and the detector.

Note that DD' is independent of the Bragg angle.
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The e rro r resulting from horizontal movement of the X -ra y  target 

focal spot is difficult to estimate but, with the experimental conditions used, 

it w ill be small. This is because the s lit widths, which are of the order of

0 . 2  mm, are small in comparison to the width of the focal spot which, 

measured from photographs of the source, is approximately 2. 0 mm. Thus 

movement of the focal spot w ill cause little  change in the intensity distribution 

across the slit. In view of the size and sporadic nature of this e rro r, it has 

been neglected in the final e rro r  analysis but, is still regarded as a factor 

which may contribute to the spread of repeated results.

(2) Horizontal Divergence. The horizontal divergence of a ray is the angle a

in the plane of dispersion between that ray and the central ray.  ̂ the maximum 

value of OL is controlled by the s lit widths. Horizontal divergence broadens 

the peak but provided the source is uniform over the s lit width then the 

profile w ill be symmetric, thus there w ill be no change in the determined 

peak position. There w ill however be a greater e rro r in determining the peak 

position due to peak broadening. Clearly for reasons of beam power 

requirements a must be non-zero but its magnitude must be limited in order 

to keep peak broadening to a minimum. It  is shown from photographs of the 

source intensity distribution that the focal spot, which is of uniform intensity, 

is approximately 2mm wide. Since typical s lit settings are of an order of 

magnitude less, it is reasonable to assume that the intensity distribution over 

the s lit width is uniform and thus gives rise to negligible e rro r in the peak 

location. The uncertainty in 8  arising from peak broadening is difficult to 

estimate but peak broadening as mentioned above contributes to the uncertainty 

in the peak location, an estimate of which is given in the discussion on peak 

location.

(3) Vertical beam misalignment. The vertical beam misalignment Y is the
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ai^ le  by which the central ray lies below the plane of dispersion. I t  causes a

shift (calculated from (2.13)) in the peak position to a larger angle and is

minimised by aligning the vertical s lit centres to a plane perpendicular to the

spectrometer axis (see Subsection 3 .3 .4 ) .  The uncertainty on 9  ̂ arising

from the residual cY is calculated from the following expression

= ( 0 ^ 2  tan 0 ^ ) / 2  (2.13)

In the 1 - reflection instrument used, the s lit separation was 700 mm and each

slit was aligned to + 0.1 mm. Using these figures and a Bragg angle of 45°

“ 3 "then o9^(y) is 8  X  10 which clearly can be neglected.

(4) Vertical divergence. The vertical divergence of a ray is the angle ^  by 

which the ray lies below the plane of dispersion. The maximum vertical 

divergence 4^̂  allowed by the s lit system is given by

[Ca + b)/2]/L (2.14)

where a and b are the heights of Slits and respectively and L is the s lit  

separation. Vertical divergence causes an increase in the angle of the peak 

position and since for reasons of beam power requirements s lit settings and 

hence 'P must be non-zero, the following correction must be applied to 

0 ^ (meas.)

A8 ^(^) = ((a^ + b^)tan0^)/(24L2) (2.15)

For typical s lit settings a -  b -  5 mm and L -  700 mm, 9  ̂ -4 5 °  then

= 0 .9” . The uncertainty in the s lit settings + 0.1 mm gives rise

to a negligible uncertainty o n  9  ̂^

(5) Combined lattice t ilt  and vertical misalignment uncertainty. I f  <5 and Y 

are both non-zero, there is a shift (calculated from (2.16)) in the peak 

position (towards a sm aller angle if the product 6 Y is positive). 6  and Y 

are minimised as outlined above. The uncertainty on 0. arising from the 

combination of the residuals a ô  and oY is given by



65

a0 . (ô ,Y )  = a6 aY/cos0 . (2.16)
A A

Using the figures already quoted for a 6 ,aY and 0  ̂ the resulting uncertainty 

a0^(6,Y) is 0 . 075" which again may be neglected.

( 6 ) Resolution. The precision with which 0 is defined for the peak position 

of the Bragg diffraction profile is plainly degraded by any factor such as 

horizontal divergence which broadens the peak. To minimise peak broadening 

the measurements of 0  ̂ should be conducted at the highest wavelength 

resolution obtainable. The resolution of a spectrometer is its ability to separate

two lines which are close in wavelength, the wavelength difference being AX .

70
Quantitatively it may be indicated by

AX/X = w^/tan0^ (2.17)

In Equation (2.17) is the width of the instrumental window function where 

the width for this and other functions denotes the full width at half-maximum  

intensity ( fwhm ). In the case of the single crystal reflection instrument the 

instrumental window function is the convolute of the geometrical window function 

and the crystal line spread function. I f  the width 'b' of Slit 8 2  is equal to or 

greater than that of then the width of the geometrical window function is 

given by

W g = I  (2.18)

where L is the separation of the slits controlling horizontal divergence.

In the interest of beam power it pays to increase Wg until it approaches 

Wg, the width of the crystal line spread function, but not to the extent that Wg 

contributes dominant peak broadening. Unfortunately in order to obtain 

reasonable beam power Wg was set to about 40" which is approxi mately twice 

typical Wg values. This contributes considerably to the uncertainty in the peak 

location which is discussed later. Nevertheless this setting for Wg gave good 

separation of 0-2  doublets for the short to mid-range wavelengths; for
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longer wavelengths doublet separation was poorer but in any case resolution 

at these wavelengths was lim ited by wq.

iii. Angle reading. Discrepancies arise between the true and measured angle 

through which the crystal is rotated to obtain reflections at Positions A and B, 

due to the following factors:

a. eccentricity of the circular angle scale about the turntable 

rotational axis

b. non-circularity of the angle scale

c. errors  in the positions of the angle scale lines

d. maladjustment of the optical m icrom eter verniers

e. m icrometer reading e rro r

f. errors  arising from scaling the chart recorder baseline

The firs t three factors are taken into account by calibrating the angle scale
71

and a commonly employed method uses pairs of microscopes to read the 

scale at various intervals thus intrinsically calibrating the scale. The method 

employed in this laboratory differs fundamentally in that the angle generated 

by rotation of the turntable from one angle setting to another is measured 

independently by attaching a calibrated angle gauge block to the turntable and 

noting an autocollimator's reading obtained by reflection off the sides of the 

gauge block for the two angle scale settings. In this way the angle scale 

correction A0  ̂ (ang. ), which must be made to 0^ (meas.) is obtained. Full 

details of the method are given in Subsection 3. 3. 2. The following factors give 

rise to uncertainties in the angle scale calibration.

(1) Angle gauge block calibration. The accurately known angle of the block 

has a value near to that of 2 0  ̂ (meas. ). The block is made up of one or 

more angle gauges and the uncertainty on the block is obtained by 

combining the calibration uncertainties of the individual gauges. The
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calibration uncertainly cited by the National Physical Laboratory is + 1" 

for each guage. A t3 'picai block consists of 4 angle guages. It  should 

be noted that the true angle of each guage as measured by the National 

Physical Laboratory differs by the order of 1" from the nominal angle 

and this discrepancy must therefore be taken into account in the angle 

scale calibration.

(2) Angle setting The uncertainty at each crystal angle setting due to the 

m icrometer reading erro r is 1 ” and so the uncertainty on 2  9^ (meas. ) is

Æ " .  ^

(3) Autocollimator reading. The uncertainty associated with each auto­

collim ator reading is 1 " and again the uncertainty on 2 0  ̂ (meas.) is 

/J . t

Factor d. arises from the uncertainty in setting the 10' division and the 2"

division verniers of the optical m icrometer (see Subsection 3. 3. 2). The

uncertainty in setting the 10' division vernier is 1". Setting the 2"

division vernier requires two m icrom eter readings and since the uncertainty 

on each reading is 1" the uncertainty in setting the vernier is ^2. The 

measurement of 2  0 ^(meas. ) requires two readings of the m icrom eter and so 

the uncertainty due to vernier maladjustment on each m icrom eter reading 

must be combined giving an uncertainty of /F " .  I t  should be noted that 

uncertainties due to factor d. would be avoided if the angle block was made up 

to exactly 2 9^ (meas. ) but for reasons given in Subsection 3. 3. 2 this would 

generate other uncertain ties. Factor e. contributes an uncertainty " on 

2 0^(meas. ). Factor f. arises from errors in the angle division m arks of the 

chart recorder baseline. These marks were made at regular angular intervals  

during the course of each scan by reading from the turntable angle scale. The

Uncertainties were combined by the method of probable erro rs  defined 
in Subsection d. below.
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peak angle was determined by interpolation between baseline angle scale marks. 

The uncertainty on each chart recorder mark is 1" and the resultant uncertainty 

on 2 0  ̂ (meas. ) is 2". A ll the above uncertainties were combined and halved to 

give a total angle reading uncertainty on 0  ̂(meas. ) of ~ 2 ", an uncertainty 

on 0 = 45° of 13 ppm.

iv. Peak location. In order to correlate wavelength with crystal angle it is 

necessary to refer the incident beam reference wavelength to a point on the 

single crystal rocking curve. This curve is asymmetric as a result of two 

factors:

a. spectral line asymmetry

b. crystal window function asymmetry due to absorption

Through historical tradition^ the wavelength of a line is listed as the peak of the 

spectral line profile and although this profile is modified to some extent by 

convolution with the instrumental function it was nevertheless decided that the 

peak of the observed single crystal rocking curve should be adopted as 

corresponding to the reference wavelength. To locate the peak,chords parallel 

to the abscissa were drawn across the curve at various heights and a curve 

was drawn through the midpoints of these chords. The peak was defined by the 

point at which thebisector curve in tersects  the rocking curve (see F i g . 2.2)  

This peak is often called the 'extrapolated peak' and a statistical e rro r analysis 

of this peak location method has been done by Yap The chief

advantage of this method is that the main body of the curve is employed thus 

eliminating the need to rely purely on the data points at the top of the curve 

where statistical errors severely affect judgement of the peak intensity.

The e rro r in the peak location is dependent upon counting statistics in 

that the standard deviation of each data point is Æ f  where R is the count 

rate at that point on the curve and T is the time sample. Data point errors
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will in turn give rise to errors in the mid-points of the chords 

drawn across the curve.

The time required to plot the peak w ill also give rise to errors  in that 

a long scan duration w ill render the scan susceptible to changes in source 

intensity and other variations e.g. temperature. In order to minimise the 

peak location error,factors which contribute to peak broadening (e.g. poor 

resolution) must be minimised and a compromise must be reached between 

good counting statistics and a reasonable scan duration. The peak location 

e rro r was estimated from the spread of the chord mid-points about the line 

drawn through them. A typical uncertainty in peak location was - 2" an 

e rro r  of 12 ppm on a 45° Bragg angle.

v. Absorption. Structures in the beam path give rise to absorption and since 

the latter is a rapidly varying function of wavelength the absorption difference 

across a line profile gives rise to asymmetry and consequently a small peak 

shift. Shackletf^ , on the basis of the approximately cubic dependence of 

absorption with wavelength estimated the peak shift to be A0 = 0 .6 y^x(a/X)^tan0

where A0  is  in  arc seconds, is  the lin e a r  absorption c o e ffic ie n t

of an absorber of length x in the beam path, X is the line wavelength in 

angstroms and 'a' is the half width at half maximum in mil 11-angstrom s. The 

main contributions to absorption (excluding that of the crystal which is dealt 

with below) arise from the 6 y: Melinex source window and self-absorption at 

the source target but these cause negligible peak shifts. I t  should be noted 

that se If-absorption in the target may also arise, in addition to normal 

absorption, from overlap of the emission line with absorption lines or 

absorption edges of target m aterial elements. In the present study all 

emission lines were far removed from spectral absorption features of target
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elements.

The Prins theory of crystal diffraction predicts that if absorption is 

non-negligible then the long wavelength side of the single crystal diffraction  

pattern w ill be lower than the short wavelength side. This results in asymmetry 

and a slight shift of the peak of the spectral line towards a sm aller Bragg 

angle. Due to the complex nature of the Prins formula it is difficult to obtain 

an analytical expression for the shift. In this work the shift was obtained by 

calculating the Prins diffraction profile as a function of angle for the required  

wavelength and graphically measuring the angular difference between the 

centroid and the centroid reference which is the Bragg angle corrected for the 

index of refraction. The measured angle is corrected by addition of this 

shift A0^(abs.).

v i. Temperature variations. Temperature changes during the course of a 

0  ̂ determination cause a change in 0  ̂ due to thermal expansion of the 

analyser.

Temperature variations are minimised by allowing sufficient time for 

thermal stabilisation of the instrument and its environment, and by lim iting  

scan durations so that the temperature difference between reflection Positions 

A and B is small. Half this temperature difference combined with the 

temperature reading uncertainty (0.1°C) was regarded as the temperature 

uncertainty aT  for a 0  ̂ measurement. The resultant e rro r o0(T) in 

0  ̂ is calculated by differentiation of the Bragg equation with respect to 

temperature, giving:

a 0 ^(T) -  -  a tan 0  ̂ aT (2.19)

Equation (2.19) states that c 0  ̂ (T) is proportional to a and it is this 

param eter which w ill determine the tolerated temperature uncertainty. In 

the case of PE T where a is nearly an order of magnitude greater than that
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of other X -ra y  analyser crystals, serious problems were encountered. This 

is clearly illustrated by Jenkins and de Vries^ in a plot of the variation of 

20 per°C with 20 for various crystals (Fig. 2. .3 ). From their graph it was 

calculated that a temperature uncertainty of 0 . 5°C would give rise to an erro r  

of approximately 80 ppm on 9  ̂ for PE T at 45°.

The treatment of uncertainties arising from temperature variations is 

dealt with in the following section.

d. Final measurement uncertainties on di a, a and A0 (X)^̂  ’

i. Correction and measurement uncertainty on 0% The final correction

to 0 ^(meas. ) can be summarised in the following expression:

0  ̂ = 0^(raeas.) - A d ^ ( i p )  + A0^(abs.) ± A0^(ang.) (2.20)

in which all terms are defined above.

The measurement uncertainties on 9  ̂ discussed above are combined

by the method of probable errors to give the final measurement uncertainty a0 .̂

The method of probable errors may be summarised as follows. I f  oA, aB

and aC are independent errors incurred in the measurement of X  then the

probable e rro r on X  is given by

ox/x = [ ( a A / A ) 2  + ( aB/B)^ + ( o C /C ) ^ ]^  (2.21)

Since differing experimental conditions and settings cause differences in final

measurement uncertainties then, rather than give a typical uncertainty value,

details of the particular values are given with the experimental results.

ii. Measurement uncertainties on di« and a Both d%g and a were determined 

from a plot of d against temperature T as outlined in the introduction to 

Section 2.1. The uncertainty on the d values arise from the uncertainties on

9g i A and T. Since the uncertainty on 6 ^ is small with respect to a0  ̂

then the approximation a0g = 0 0  was made. I t  should be noted that for 

the present case a0 . excludes the contribution from temperature variations 

since the latter is taken account of in the least squares analysis. The uncertainty
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ad ( 9  ) contributed to d by a 8  can be calculated from the firs t 0  

B B

d ifïe ren tia l of the Bragg equation thus

adC0g) = (nAcos0^/2sin^0^)a9g (2.,22)

where a0  is in radians. The uncertainty ad[A] on d due to the uncertainty 

aA on A is calculated from the firs t A differential of the Bragg equation thus 

ad(A) = (n/2sin0_)aA (2.23)D

where aA in Angstrom units is the uncertainty on the reference wavelength

which if appropriate includes the chemical shift uncertainty. The contribution

to ad arising from T is dealt with below in the least squares analysis. The

total uncertainty ad on d is calculated by combining the uncertainties

contributed by 0  and A using the method of probable errors. The method 
B

outlined for calculating ad may be summarised in terms of partial

derivatives. I f  f is a function of m%, m g ,.........m^, and a^, a g a^ are

the uncertainties on these te rm s then o  the total uncertainty on f (m i, mg,

m^) is given by

a^ =

78

2
' 3 f ' 2 f 3 f ' 2 f 3 f 1

[am j °1 " ° 2  " ........." (2.24)

A number of factors determine the form of the least squares analysis 

of the plot of d against T and consequently these factors also affect the 

uncertainty estimation for d^g and a . The uncertainties on T were 

considerably larger than the uncertainties on d and therefore a linear regression 

of T upon d is appropriate. The uncertainties on the points of the plot are  

unequal due to variations in the temperature uncertainties and therefore to take 

account of this a weighted linear regression is required. The uncertainties on 

the d values were combined into the T uncertainties (see Paragraph c .v i above) 

by means of the firs t temperature differential of Eqn. (2 .2 ) using the value of 

a  derived from an unweighted linear regression of T upon d. The factor 

l / ( a T )  was used to weight each point in the weighted linear regression and 

from this regression the values and standard errors of dĵ g and a were obtained.
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iii. Measurement uncertainty on A6 (A) Equation (2.9) shows that the total

uncertainty cAG on each A9 value at a given wavelength (see introduction to

Section 2.1) arises from the uncertainties and cr0 . For the following
A B

data reduction(/0^ includes the contribution arising from temperature variations.

The uncertainty a0 arises from ad and aA.ad is determined from the plot 
B

of d against T  (see Paragraph ii above) using the expression

ad^ = (ad + ( ( T -  T)a(ad)^)^ (2.25)

where T is the temperature at which 0  ̂ is  measured. T, the value of T,

at the centroid of the data points, is given by  ̂ W .T V   ̂ W. where W. is the

weighting factor for each data point, d is the value of d at T = T and ad is

the uncertainty on d. a(ad) is the uncertainty on the slope of the plot. o0 (d)

the uncertainty on 0g arising from . ad is calculated using the reverse form

of Expression (2. 22). , the uncertainty on 8g arising from aA , is

calculated from the firs t A differential of the Bragg equation thus

a0g(A) = aA/C2dcos0) (2.26)

Combination of a0 (d) and a0 (A] gives a0 which combined with 
6 B B

a9^ gives aA0 for a givm A8 value. Since the uncertainties on the A0 

values of a given wavelength are unequal the best value of A0 is the weighted 

mean of these values and this is given by Ĵ Ŵ A0̂ /Ĵ VL where W ^(=l/(aA0)^)

is the weighting factor for the ith value of A0 . The uncertainty on the
1

weighted mean, aA0 , is l / (  I  V/.)^.

2. 2 The Line Spread Function

2 .2 .1  Measuremient of its integral

The integral of the line spread function was defined in Expressions (2. 7) 

and (2. 8) on the basis of an idealised experiment using a beam, the beam spread 

and bandwidth of which are both infinitesimal. In practice the beam is 

characterised by finite beam spread and bandwidth. The intensity of such a
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a beam, incident upon a crystal, is given by
X 2  01

I  = o
r • m f

0 -

m
G(a,i|;) J (A)dad^dA

(2.27)
m

where a and ip the horizontal and vertical divergences of a given ray

are defined in Section 2 .1 . a and ih , the maximum values of these
m ^m

quantities, are determined by the collimator geometry. G (a,^) is the 

angular distribution function which depends upon the source angular intensity 

distribution and the collimator transfer function. J(x) is the source spectral

function. The reflected intensity for such a beam is
i-a•A2

i c e )  =
ra

0 :

m

m
P(8)G(a,^)J(A)dad^dA (2. 28)

where 8 is the glancing angle of the general ray onto the crystal. By 

analogy with the derivation of (2. 8) the following expression is derived from

(2.28)

01 •'A 1 J

m
P (0)G (a ,^ )J  (A)dadi|)dAd0

la
R = -rp-

C rA 2
m (2.29)

m ram

Aj  •'0 l a
G(a,i|)) J (A)dad^dA

ra.R'^may be defined as the measured reflection integral for the general beam 

condition experiment.

A knowledge of the variation of R'^ with differing beam conditions is 

necessary for the determination of R^. It  is found in general that provided 

the wavelength region being studied is not too near to an absorption edge of a

crystal atom then P(0)d0 varies slowly with wavelength and so for the
1

case of a parallel beam the numerator of (2. 29) may be written as
•02

0̂1
F \(8 )d0

A2

J(A)dA (2.30)

Substitution of (2. 30) into (2. 29) yields R'  ̂ = R^ a result which is valid if 

P^(8) is constant between the wavelength lim its A and a .

In their consideration of the dependence of R'  ̂ upon beam spread 

Compton and Allison (Ref. 52 , p. 398) noted that in keeping with the properties 

of convolution integrals, if the widths of the functions (8) and G(a, ip ) d iffer
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greatly then the integrals can be separated and thus R'  ̂ = R^. Evans

79
and Leigh extended these considerations by investigating theoretically

and experimentally the case in which the widths of P^(8) and G(a,ij;) are

s im ilar. They established that R’ = R and is invariant with beamspread.
c c

for this condition also.

I t  can thus be concluded that within the given lim its, R^ does not 

change with varying beamspread and bandwidth of the incident beam. In the 

following section which deals with 1 - reflection measurement of R^, the 

experimental methods described are based upon these conclusions.

a. 1 - reflection methods

In the laboratory R^ values can be measured in a 1 - reflection mode 

by scanning the crystal through the Bragg reflection angle range of a given 

emission line in the incident beam spectrum. This spectrum norm ally includes 

other emission lines and a Bremsstrahlung continuum all of which must be 

regarded as contamination in that all components of the spectrum contribute to 

I^ but only the spectral range encompassed in the crystal scan contributes to E. 

C learly an uncorrected 1̂  value would give rise to a measured R^ value 

severely in e rro r. The following methods were devised in an attempt to over­

come this problem.

i. Use of fluorescent excitation. I f  the X -ra y  beam is generated by fluorescent 

excitation then the continuum contribution is negligible, but the spectrum still 

contains other emission lines. In the hard X -ra y  region it is possible, in

certain cases, by choice of a suitable f i l t e r ,  to isolate a desired emission line.
80

This method,which has been employed successfully by Kestenbaum for 

emission lines in the 1. 66 to 5. 71 X wavelength region,is inapplicable at 

longer wavelengths because isolation of an emission line cannot be achieved but 

overriding this is the fact that fluorescent excitation sources are very inefficient 

in this wavelength region.



76

ii. D irect methods using electron excitation. A beam of high intensity but 

with a significant continuum contribution may be obtained by direct electron 

excitation. It  may be argued that if such a beam is approximately mono- 

chromated using suitable filte rs then can be measured by scanning the 

crystal at a constant rate through the f ilte r  pass band spectral region and 

provided is constant over this range then Eqn. (2. 8) can be applied.

This wide-scan method has the following disadvantages:

(1) I t  is inefficient in that f ilte r  pass bands are broad and 

therefore excessively long scan durations are required.

(2) I t  is inapplicable if the long wavelength cut-off of the f ilte r  

pass band exceeds the crystal 2d value.

Reference 79 outlines a method which in principle is equivalent to 

the wide scan method but eliminates the above disadvantages. The spectrum 

of a filte r  pass band is mapped by setting the crystal to reflect a particular 

wavelength of the pass band and the reflected beam is counted over a suitable 

time interval. This procedure is repeated for other wavelengths of the pass 

band until the relative strengths of all components in the reflected beam are 

measured. The same relative strengths w ill apply to the incident beam and 

thus the I q value for the desired emission line can be calculated. If  the 

filte r  pass band exceeds the test crystal 2d value then a prelim inary  

calibration of the pass band spectrum can be made using a crystal with 

sufficiently large 2d. This method,which seriously takes account of continuum 

radiation,facilitates the direct measurement of R^ using a single crystal.

The procedure entailed is still relatively time consuming but the R^ values 

obtained can be regarded as standards by which to judge the values obtained 

from indirect, rapid methods.

iii. The relative method. In this method R^ is measured by using a beam
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for which the incident intensity of the spectral component reflected is known.

The direct absolute method outlined above may be employed to measure the Rc 

of a prospective standard crystal and this crystal in turn used to calibrate the 

incident beam of the test crystal. In the calibration, Eqn. (2. 8) is applicable 

to the determination of I q for the small spectral region of interest regardless 

of beam contamination. The test crystal is then inserted and its R^ is measured. 

To correct for the variation in beam intensity and composition during the course 

of the whole operation it is necessary to re-calibrate the beam using the 

standard crystal.^ ^

This method, although more efficient than the absolute method, suffers 

in that errors are accumulated over the three experiments and indeed may be 

impossible to apply if the source is affected by the repeated release and 

generation of the tank vacuum.

b. 2 - reflection methods

1- reflection methods are in general too inefficient for routine R q  

measurements, for by necessity they are designed to take account of the 

contamination radiation in the incident beam. If  the beam can be monochromated 

sufficiently, to remove this contamination then, it is possible to decrease the 

time required for a measurement. It  is upon this principle that the use of two 

crystal methods is based. In such a method a stationary monochromator 

crystal (Crystal A) is used to select, by means of the Bragg condition, a small 

wavelength range from the source beam. The reflected beam then forms the 

incident beam for the test crystal (Crystal B) which is scanned through the 

Bragg reflection region as in the single crystal mode.

Bragg reflection at Crystal B can be achieved in either of the crystal 

configurations shown in Fig. 2 .4 . In Configuration 1 the beams incident

on Crystal A and reflected from Crystal B are on the same side of the beam



Configuration 1 The plus position

w.

(b) Configuration 2 The minus position

Figure 2.4 Principal configurations of the 2-reflection spectrometer 
The line RR' is parallel to the face of Crystal A
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between the two crystals. In Configuration 2 they are on opposite sides.

If  the face of Crystal A is adopted as a reference line then for 

Configuration 1 the angle w through which Crystal B has rotated to achieve 

this configuration is

= 8m + «n (2.31)

S im ilarly  for Configuration 2

^2 = " - - V  = '  + <2.32)

The dispersion D of the instrument, calculated by differentiation of 

the simple Bragg equation for the two cases is thus

D = ^  = M £m.± ^ .S.n ,2 .33)
Q  A  A

where the upper and lower signs refer to Configurations 1 and 2 respectively. 

Clearly the dispersion of the instrument is greater for Configuration 1 hence 

its application to spectroscopic studies. Reflection integrals are normally 

measured in Configuration 2 as the angular range of the Crystal B scan 

necessary to embrace the spectrum of the beam incident upon it is less than 

that for Coifiguration 1.

Allison and W i l l i a m s ^ ^  devised a notation referring to Configurations 

1 and 2 as the plus and minus positions, in keeping with the nature of Eqn. 

(2 .33). More specifically a configuration labelled (m, -n ) means that 

Crystal A is set for a reflection of order m and Crystal B is set in the minus 

position for a reflection of order n.

As a consequence of using a crystal monochromator, the beam incident 

upon Crystal B is polarised. This is due to Crystal A response varying with 

the polarisation angle of the unpolarised beam from the source. Equation 

(2 .8 ) only applies to individual polar components of the polarised beam. 

Conceptually it is possible to distinguish between these components but in 

practice only the total intensity of the incident and reflected beams can be
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measured. In accordance with this lim itation the 2 - reflection integral may 

be given by

Eib/Ig = I  eP u/ I  iP (2.34)
P P

where I^ is the intensity of the beam incident upon Crystal B and superscript p 

refers to the polar components. A 2 - reflection integral can be measured very  

quickly and in view of this it is worth investigating the relationship between 

this quantity and R^, in order to calculate the latter. From the above 

discussion it is clear that such a relationship w ill be dependent upon the beam 

polarisation and it w ill therefore act as a pointer towards measurement 

methods for which beam polarisation can be eliminated or corrected for. The 

problem of relating R^ to a 2 - reflection integral is normally approached by way 

of a geometrical description of the 2 -crystal spectrometer. The equation of

the instrument window is applied to the special case of two identical crystals in

21 52
the (n, -n ) parallel position. * Since this study is concerned chiefly with firs t

order reflection integrals the (1, -1 ) position w ill be discussed. The unique

properties of this position allow the equation to be simplified so facilitating the

derivation of the R , R relationship where R is the 2 - reflection integral c cc cc

for this position (see below). The geometrical description of the instrument is 

sufficiently tedious to obscure the simple relationship between the 2 - reflection 

rocking curve and the line spread function and so details are given in Appendix B. 

A brief study of the geometrical approach included in the discussion of the (1 ,-1 )  

parallel mode w ill enable comparison of it with a more direct and simpler 

approaclf^which is outlined in dealing with the more general (1, -1 ) asymmetric 

and orthogonal configurations.

i. The (1, -1 ) parallel mode. Consider the 2 - reflection system where the two 

crystals are Identical, the crystal faces are parallel to their respective turn­

table rotational axis and the crystals are operated in the parallel mode (see
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above). Taking the case of an unpolarised beam incident on Crystal A this beam 

may be regarded as being composed of two orthogonally plane polarised 

components, the o -  and components. The electric vector of the G- component 

lies in the plane perpendicular to the plane o f incidence of the crystal and the 

electric vector of the w - component lies in the plane of incidence. The 

intensity of the beam I can be expressed in terms of the intensities of the a- 

and TT- components.

I = la + 1 ^  (2.35)

For an unpolarised beam

la  = I tt = 1/2 (2.36)

If  the 2 - reflection system is aligned to the tolerances prescribed in Subsection

2. 2. 2, a geometrical analysis shows that, the power reflected from the face of

Crystal B in either polarisation component, may be expressed in terms of
t  +

simple convolutions of the lines spread function thus:

Pcc<« = S PC6)PCS + 9)de (2 .37)

where S is a constant which is proportional to the intensity of the beam incident
*

upon Crystal A. 8 is the glancing angle of any ray onto Crystal A • 3 is

the angular rotation of Crystal B from that position which satisfies the Bragg

t
In order to avoid obscuring the simplicity of relation (2.37) the geometrical 
analysis required to derive this expression is given in Appendix B. The 
lengthy three-dimensional trigonometry is required only to explore the 
effects of vertical divergence and horizontal divergence in the beam. This 
analysis is particularly relevant to the shape of the 2 - reflection profile  
since this is more sensitive than is the integral, to  these effects. Once 
the analysis is taken far enough to determine the lim its within which these 
effects are negligible, then one w ill normally wish to have the sim plicity  
of working within those lim its.
Since the line spread function of Expression (2.37) is wavelength specific 
it should be written as but this explicit form has been omitted so as 
to avoid cumbersome expressions.
In the geometrical analysis of Appendix B the arguments of the line spread 
functions are referenced to the Bragg angle of the general ray in order to 
express the function arguments only in terms of the quantities under 
consideration. These quantities are no longer relevant to the present 
discussion thus it is convenient to express the arguments simply in terms 
of the glancing angle.
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condition for the central ray so that ( 9  + 3 ) is the glancing angle of the

general ray to Crystal B. The total power reflected from Crystal B is found

by integrating over all rays to obtain 3 ) which is the 2 - reflection

rocking curve. The 2 - reflection integral is found by integrating P^^( g )

with respect to 3 summing the integrals for the o -  and tt- components

and normalising to the intensity of the beam incident upon Crystal B
■pir

. 6 2

cc
3:

p (e)P ( 6+e )d8 +s  ,
a I o a P^C0)P,(B^6)de] d6 ^2.38)

P C0)d8 + Sa 7T P (8)d8ÏÏ

The lim its of the 3- integration encompass the angular range of significant 

Bragg reflection at Crystal B. The line spread functions are finite only over 

a small angular range centred about their peak angles. Outside of this 

range P^^( 6) w ill be zero and so the lim its of the g-integration can be 

extended to + "  without affecting the value of the integral. For an unpolarised 

beam incident upon Crystal A, from Eqn. (2. 36), and the S terms in

Expression (2. 38) cancel. This expression may now be written as

Pa(e )P ^ C 3 + 8 )d 8 d3  + P^(e)P^(3+8)d8dg (2.39)

cc
P C9)d8 + 

.00^
P (8)d0

The properties of convolution integrals as discussed in Appendix C allow (2. 39)

to be considerably modified, yielding
2p 2

P (0 )d 0
.0 0  °  .

+ P^C9)d0

cc
P ( 0 ) d 0  + P^(0)d0

R + R
e g  CTT

R + R
CO CTT

(2.40)

where R and R are the single crystal reflection integrals for pure
C o  CTT

cT-polarised and pure TT-polarised beams. They are related to R^ for an 

unpolarised beam by the following expression

“ (Rco ^riT )/2CTT (2.41)

R can be expressed in terms of R by introducing a polarisation ratio defined 
cc c
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as

k ( 8  ) = I^cTT^^ca ( 2 . 4 2 )

Equation (2. 40) becomes

R = R ( l + k ^ ) / ( l + k )  (2.43)cc ca / V / \ /

Using Eqns. (2.41) and (2.42)

Rgg = 2Rg (1 + k ^ )/( l + k)^ (2.44)

The value of k is dependent in a complex manner upon such factors as absorption, 

extinction and crystal defect density and hence no general analytical expression 

for its calculation has been given. However, from Darwin theory (Ref 21 ,p.59) 

the values of k for two limiting cases may be obtained. For a perfect crystal 

with zero absorption k = |cos 2 9| whilst for a mosaic crystal k = cos 29 

I f  the pair of crystals used in the 2 - reflection method can be identified with these 

lim iting cases then

For Perfect Crystals with zero absorption

-  S  «CC -  )' ^CC (2.45)

For Mosaic Crystals

(2- « )

The correction functions Cp and C^ are plotted in Fig. 2.5a which shows 

that the correction applied to R^^ is a maximum at a 45° glancing angle. The 

k values for real crystals normally lie between the values for the perfect and 

mosaic cases. If  k is unknown for a pair of crystals then the uncertainty in the 

correction is large for glancing angles near to 35° and 55°. The worst case 

correction e rro r at a given angle is incurred if C^ is used to correct R^^ 

under the assumption that the crystals are mosaic, when in fact, they are  

perfect, non-absorbing. The true R^ value w ill exceed the recorded R^ value 

by the factor Cp/Cjjj which is plotted in Fig. 2.5b. The figure shows that the 

e rro r in the recorded R^ is as great as 32% near to 35° and 55°.
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The relationship between the Bragg reflection and 2-reflection 
integrals as a function of Bragg angle for the two Darwin 
limits k = Icos28I and k = cos^ 29
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Figure 2.5b The worst case error that may be incurred by use of the
inappropriate Darwin correction in the calculation of Bragg 
reflection integrals from 2-reflection measurements
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An additional source of uncertainty arises from the fact that in a few

cases k values for real crystals have been reported which lie outside the range

84
determined from Darwin theory. Jennings observed a k value for a L iF  

mosaic monochromator which not only lay outside the lim its but was in excess 

of I cos 2  6  I . He explained the result in terms of a large secondary extinction.

Nevertheless the 2 - reflection method in the (1, -1 ) parallel mode may 

be used to determine accurately if the uncertainty in the correction to Rcc

is small or if there is good evidence from other experiments about the nature 

of the crystal and the value of k.

ii. The (1, -1 ) asymmetric configuration. When Crystals A and B have different

2d values then for a (1, -1 ) reflection the crystal faces are not paralle l. The

total count E, obtained by scanning Crystal B through the region of significant

Bragg reflection is

E -  R . I /  w (2.47)ab o

where Rab is the 2 - reflection integral associated with the pair of crystals A and 

B. The desired quantity is Ry the reflection integral of Crystal B. The 

relationship between R.^ and Ry can be derived by a simple line of argument 

as outlined below.

Consider an unpolarised beam incident upon Crystal A. I f  the horizontal 

beam spread function h(a) of this beam is broader than the Crystal A line spread 

function and is constant over the range of this function then the reflected intensity 

is proportional to R^. The reflected beam is the incident beam for Crystal B, 

and the intensities 1^^ and in the cr- and ir-components w ill be proportional 

to R^^ and respectively. The following can therefore be written

I / I  = R /R  = k (2.48)oir 0 0  aw aa a

I -  I  + I -  I  (1 + k ) (2.49)
o oa ott o q  u

The total count reflected off Crystal B may also be resolved into a- and
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components to give

'  V ^ b a + V b / [ ( " + V < ^ ]

-  I R, (1 + k  k j / [ { l  + k  )w] 
o Da a b a

Unless ^ = 1  the beam incident upon Crystal B is polarised but the required 

quantity R^ is the reflection integral for an unpolarised incident beam. 

Substitution for R^^ in (2. 50) using (2. 41), (2. 42) gives

E -  2I^R^ (1 + k y  [(1 + k^) (1 + kj^) M ] (2. 51)

whence by comparison with (2. 47) and using R^ as the generic term for the

1 - reflection integral

\ b  '  + *̂ a ] (2- 52)

If  the crystals are identical then clearly (2.52) reduces to (2.44) which was
t

derived, using a geometrical approach, for this special case.

Equation (2.52) shows that it k^ is maintained constant by using a fixed

test crystal and wavelength then as k 1 so R , ^ R  . I t  has been stated
a ab c

previously that from Darwin theory the value of k lies between the two lim its
a

I I 2cos 2 9. and cos 2 0 . .  C learly if 8 ,  is close to either zero or tt/S
A A A

t
The geometrical approach which dealt with the (1, -1 ) parallel mode can be 
extended to embrace the asymmetric configuration mode in which the 
instrument is dispersive. For this case the X-integral of the rocking curve 
cannot be separated out in the same way as for Expression (2. 37) (see 
Appendix B) because the arguments of the line spread functions are A- 
dependent. This w ill also mean that the shape of the rocking curve is A- 
dependent. The expression equivalent to Expression (2. 39) w ill contain a 
A-integral but if the reflection integrals R^^ ^  and R^^  ̂ are slow 

functions of A then they become constants in' the A-integration which 
thus becomes triv ia l. The A-integrals in the numerator and denominator 
cancel out and R is thus not affected by the A-integration. By analogy 
to Expression (2?40) R -  (R R + R R )/(R  + R ) and by
substitution of polarisation ratios k and^lZ an  ̂Equation identical to 
Eqn. (2. 52) is derived. ^
It  should be noted that Eqn. (2,48) is written for monochromatic beam 
but in the light of the preceding discussion the derivation of Eqn. (2. 52) 
remains valid.
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then k^*l regardless of whether the crystal is perfect or mosaic and the 

polarisation correction and its uncertainty w ill be small. The geometry of 

the Leicester instrument and of many others does not allow operation near ‘tt/2

but the small angle condition may be fulfilled by using a crystal with a large 2d.

83
Evans et al applied the large 2d method to three test crystals ADP,

KAP and PET. With each crystal they used a number of different mono­

chromators and found that as the 2d of the monochromator increased so R ,ab
79

approached R^ obtained previously by a single reflection method. Extra­

polation to 8 -  0 in fact gave in each case an R value which was in 
A ab

excellent agreement with R^.

iii. The orthogonal configuration. This method derives its name from the

fact that the rotational axes of the two crystals are orthogonal. It  was devised

to be used in conjunction with a conventional 2 -crystal method in order to

eliminate the polarisation correction. Suppose either R^^ or R^^ has been

measured using the appropriate (1, -1 ) parallel mode or (1, -1 ) asymmetric

configuration mode, the rotational axis of one of the crystals may now be

rotated through 'tt/ 2 about the direction of the test beam. In many instruments

it is more convenient to adjust the axis of Crystal B and the following arguments

apply to this situation.

As a result of the adjustment, the planes of dispersion of the two crystals

are perpendicular and therefore a component of the test beam considered as

IT -polarised at Crystal A w ill be regarded as a -polarised at Crystal B and

vice versa. The integrated count for the reflected intensity from the Crystal B

scan for such a configuration is

E " = r V  I /w  (2.53)ab o

where the superscript 1 refers to the orthogonal mode. Proceeding as for 

the (1, -1 ) non-parallel mode
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‘o . (2-54)
1

= ^ o a < V

*  W b + v / [ ( ^ + y ^

whence, by comparison with Eqn. (2. 53)

\ b  = \  2(k^ + y / [ ( l + y  C l+ k ^ )] (2.55)

I f  R was obtained from either R , or R^, then a polarisation correction would 
c ab ab

be necessary but this may be avoided, as shown by the following summation of

R , and R ab ab

‘'ab '  + ( k ^ - y ] / [ ( l * y ( l * y ]  (2.56)

= 2R,
1

The R values obtained by averaging R , and R “, measurements have been 
c ab ab

found to be in good agreement with values obtained by 1 - reflection methods.

c. Choice of favoured method

The 2 - reflection methods that have been described enable R to bec

measured more efficiently than is possible using 1 - reflection methods but at 

the expense of being compelled to take beam polarisation into account. The 

previous discussion shows that (1, -1 ) parallel measurements incur the largest 

errors  due to uncertainties in the polarisation corrections. For a given Bragg

angle these uncertainties can only be reduced if there is good evidence from

85
other measurements (Ref. 81, p. 104) or the crystal condition , as to appropriate 

polarisation ratios. The (1, -1 ) asymmetric configuration method, which is as 

efficient as the (1, -1 ) parallel method, minimises the polarisation correction 

uncerta in ties  and indeed has proved itself to be useful for routine measurements. 

The method which combines the orthogonal mode with one of the other modes, 

eliminates the polarisation correction and is therefore not susceptible to
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correction errors. The results obtained are accurate but the method is rather 

slow in that two measurements are required and the alteration of the Crystal B 

rotational axis entails considerable adjustment of the instrument.

It  was decided that the (1, -1 )  asymmetric configuration method should 

be implemented to measure the values of the crystals studied in this work, 

especially as there is no difficulty in procuring monochromator crystals such 

as phthalates and stearates which are of larger 2d.

d. Sources of e rro r and their containment

1. Alignment conditions. The following discussion considers measurements 

for which the rotational axes of the crystals are mutually parallel and the line 

of the axes defines the vertical direction. Details of the important points 

concerning instrument alignment for 2 -crystal studies are given in Subsection

2. 2. 3 along with alignment tolerances.

The integrals R^^ and R^^ are slowly varying functions of rotational 

axis misalignment, crystal tilt  and vertical beam misalignment, thus the 

respective alignment tolerances for rocking curve measurements can be 

relaxed by an order of magnitude for integrated reflectivity measurements.

It  is important that the line of the test beam central ray passes through 

the rotational axis of Crystal B and that there is no crystal eccentricity. This 

w ill ensure that when R^ is measured for a number of wavelengths, the test 

beam w ill be incident upon the same area of the crystal surface for each Bragg 

angle and thus errors arising from R^ variations due to a non-uniform crystal 

surface w ill be eliminated. This w ill also apply to scans of larger angular range 

at small Bragg angles. Furthermore the detector is aligned as described in 

Chapter 3 and so both of these misalignments w ill cause a shift of the beam 

from the horizontal centre of the detector window (see Subsection 2. 2 .2 . e).

The criterion governing the beam geometry is that the beam should be
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contained within the surface area of Crystal B and the detector window. Plainly 

if part of the test beam, incident upon Crystal B, is lost to the detector, 

for example by 'spilling o ff the end of the crystal, then the normalisation of 

the integrated count by the test beam intensity w ill be in erro r. The vertical 

and horizontal slits are required m erely as aperture stops. It  should be noted 

that the size of the reflecting area of Crystal B w ill change with the glancing 

angle. I f  the surface is non-uniform the horizontal aperture may require 

adjustment to ensure that the area size is constant for measurements at 

different wavelengths. Apart from this the s lit settings are not critical.

ii. Measurement uncertainty on Ip. The beam intensity and scan settings 

are optimised to give good counting statistics together with a reasonable scan 

duration. Further details are given in Subsection 3 .4 . 3. The intensity of the 

test beam is measured before and after the scan to give I^ and I^ respectively. 

The errors  on these measurements are

alo^ = /  and al^^ = /  (2.57)

where Cj is the integrated count of the beam intensity over the sample time 
h

t^. I^ is the average of I ^  and I q ^  and therefore from (2.21)

oIq = [(c l^  / i f  *  (olg j i f f  (2.58)
1 2

iii. Measurement uncertainty on E. The measured integrated count E ^  of a 

rocking curve represents the sum of the wanted peak counts E and the background 

count Eg hence:

E = E -  E^ (2.59)m B

The background count is measured in the following way. The background count

rate is measured at two Crystal B positions referred to as 1 and 2. Both

crystal positions are far removed from the peak position which lies midway

between them. The average of the two count rates is multiplied by the scan

time to give the background count. If  I and 1.̂  are the two measured
B i Bg
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background count rates then the associated errors  are

olB i = and alg^ = (2.60)

where C is the integrated background count over the sample time at 
h

crystal position n. . The errors  in sample and scan times is negligible.

The e rro r a I on the average background count rate I  is determined

by combining cjt /2  and /2  using an expression analogous to (2. 58).
B2

The e rro r on the background count for the scan is

aEg = o ig .t  (2.61)

where t is the scan time.

The e rro r on is calculated from the expression

aE = m m (2.62)

Finally cE^ and aE^ are combined by the method of probable erro rs  to 

give aE.

iv. Measurement uncertainty on The scan speed oo is measured using the 

following relationship

to = A 0/t (2.63)

where A0 is the angular range of the scan and t is the scan time. For scan 

ranges greater than about 2 arc minutes aA0 the e rro r on A0 is negligible 

and so the e rro r on w can be ignored. For short scans

acj = aA 0/t (2.64)

V .  Uncertainty due to polarisation. The polarisation correction C to a

2 - reflection integral measurement is given from (2.52) by

c= [(1 + y  ci + y ] / [ 2 ( i  + k ^ y ]  (2.65)

From (2. 26) and (2. 65)

= [ —L z r i + k

2 2 -, , 2

(aC)2 = I  5------ 2
(ak^) +

i - ka
2(1 L2C1 + kak^)d

(o k ,) '

Equation (2. 66) shows that for low glancing angles at Crystal A, aC is small
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because crk the uncertainty in k is small and k is near to unity. If  there 
^  a a

is little evidence concerning the value of k then (Prins k value - cos^26)/2

may be used as a measure o f ak .

e. Final measurement uncertainty on

The measured quantities E, w and I^ defined by Eqn. (2.47) are

related to R^ by the fam ilia r equation

R^ = CEoj/I^ (2.67)

where C is defined above. The uncertainties aC, aE , aw and a I  are
o

combined using (2. 21) to give the final measurement uncertainty on R^.

2 . 2 . 2  Measurement of the function

The Bragg response, or line spread function P^(e) is defined in 

Expression (2.5) in terms of an idealised beam incident on the crystal surface. 

An experimentally observed rocking curve consists of the profile of P^(8) 

convolved with, other functions contributing to the instrument window function, 

and with the beam spectral function if the experimental mode is dispersive. 

D irect measurement of (8) can only be achieved if experimental conditions 

are such that the associated convolution integral is dominated by the profile  

of P^(8) . The measurement methods described below were devised to fulfil 

these conditions.

a. The 1 - reflection method. It  is shown by Expression (2.28) that if P^(8) 

is to dominate the experimental rocking curve then the widths of G(a,\p) 

and J(A) must be small with respect to the width (w^) of P ^ ( 8 ) . The crystal 

may be aligned and the incident beam collimated such that the effects of

vertical divergence upon the rocking curve are negligible and so G(a,tp) may

86
be represented by h(a). Blake and Pass in introduced an experimental

arrangement shown schematically in Figure 2.6.  for which both h(a) and 

the effective J(A) are sm aller than w^. The horizontal beam spread of the
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Figure 2.6 Schematic diagram of the 1-reflection fine slit method

4 - 8 ;

Figure 2.7a Asymmetric cut Bragg reflection.
The dashed lines indicate the angular width of the beam

CRYSTAL A

C RYST AL B

Figure 2.7b Crystal configuration for the asymmetric cut method
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incident beam is lim ited to 2a^<< by a pair of fine slits. The wavelength 

spread received at the detector is lim ited by a fine s lit of width w «  Lw^. I f  the 

spectrum of the emission line involved in the Bragg reflection is much broader 

than the line spread function then on rotation of either the detector or crystal, 

variations in the received reflected intensity w ill be due to ( 9  ) only.

Definition of which improves as the slits are narrowed, is lim ited by

the beam intensity losses which can be tolerated. A  true definition of (0 ) 

requiring infinitely narrow slits is clearly not realised. Nevertheless the method 

may be applied in the soft X -ra y  region, where w^ values are sufficiently large, 

to yield reasonable measurements of P^ (0 ). The method is in general lim ited by 

low intensities due to the small solid angle and bandwidth required by the method.

b. 2 - reflection methods

i. Asymmetric cut method. If  the diffraction planes of a crystal are not parallel 

to the surface then for the case of Bragg reflection and 0 ,̂ the angles of the 

incident and reflected beams with respect to the crystal surface, w ill d iffer as 

shown in Fig. 2.7a. The dynamical theory of X -ra y  diffraction predicts for an 

asymmetric reflection that, if 0 . is sm aller than 8̂  the angular width of the 

beam and the angular range of refection are contracted. This phenomenon may 

be expressed q u a n tita tiv e ly  by considering the angular range o f to ta l  re f le c tio n  

from a lattice plane which is given by

w = (sin 0./sin 0 w (2.68)
r  1 r  s

for the reflect beam, w^ is the angular range for a symmetric reflection. A 

sim ilar expression w ill apply to the width of the line spread function of a real 

crystal. For a highly asymmetric reflection at glancing incidence, w^ w ill be 

appreciably sm aller than w^. This property of asymmetric reflections has 

been utilised by various workers to obtain beams of low beam spread
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which can be used to study the line spread function of another crystal. One 

particular experimental arrangement uses a 2 - reflection parallel configuration 

as shown in Fig. 2.7b. Crystal A which is cut asymmetrically, is set for

glancing incidence. Crystal B which reflects sym m etrically is scanned to give 

a rocking curve. Equation (2. 33) shows that in the parallel configuration the 

instrument is non-dispersive and so the rocking curve is independent of the 

beam spectrum.

The rocking curve differs fundamentally from the curve obtained from

symmetrical reflection at both crystals for the latter is the convolution of the

identical line spread functions of the crystals. In the asymmetric case, the

width of the line spread function of the reflected beam from Crystal A is much

less than the width obtained from symmetric reflection. Crystal A line spread

function therefore has only a small influence upon the rocking curve which

consequently w ill be dominated by the line spread function of Crystal B. In

order to achieve this condition Crystal A must be cut such that w^/w^ -  0. 2.

For a 45° Bragg angle this is achieved if the lattice planes are inclined 42 .5 °

to the crystal surface so that 0, = 2 .5 °. The intensities I. and I of theI 1 r

prim ary and reflected beams respectively are related to 0. and 0  ̂ by the

. 15expression

I / I .  = sin 8 /s in  8 (2.69)r  I 1 r

For the above conditions, (2. 68) and (2. 69) show that I^ /I.  = 0. 04 and thus the 

method suffers severe intensity losses by comparison with the (1, -1 )  

symmetric mode. For the latter mode typical beam intensities off Crystal B 

are 50c/sec. A typical count rate of approximately 2c/sec for the asymmetric 

mode would cause considerable counting statistic problems if the rocking 

curve were to be clearly defined. The method also suffers in that it is 

extremely expensive to cut crystals asymmetrically.
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ii. A second approach to the problem is possible in the 2 - reflection mode and 

it is this second approach which is exploited, perhaps for the firs t time, in 

this work. Discussion of this method is deferred to Subsection d. below so that 

the reader may compare this chosen approach with the complete list of options 

over which it is favoured.

c. 3 - reflection methods

The reflection of a beam from two crystals in the dispersive (n, +n) 

position produces a beam which has a very small bandwidth and beam spread.

This beam may be used to study the line spread function of a third crystal 

which can be set in either a plus or minus position. In order to minimise 

distortion of the rocking curve due to the monochromator crystals, the line 

spread functions of these crystals must be much narrower than that of the test 

crystal. This can be achieved by the following reflection techniques at the 

monochromator crystals:

89
i. Asymmetric cut reflection. The principles involved are described 

in Subsection 2. 2. 2. b.
90

ii. High Order Reflection. Bubâkovâ et al used this method to observe 

the line spread function of G e ( l l l )  using three G e ( l l l )  crystals in

(3, 3, +1) configurations.

iii. Use of monochromator crystals or another diffraction plane of the

test crystal which have suitably narrower line spread functions.
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Bengtsson et al studied G e ( l l l )  using quartz (1120) as mono­

chromator crystals and clearly saw the asymmetry of the line 

spread function.

Technique ii. and normally technique iii. are limited to small wavelengths 

and Bragg angles, and so cannot be applied to the soft X -ra y  region. A ll three 

techniques incur large intensity losses because three reflections are involved
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and also the line spread functions of the monochromator crystals are 

narrow.

d. The presently chosen: Ç1, -1) method with theoretical modelling

In the preceding methods the approach has been to attempt direct 

measurement of with undesirable convolved components in the measured

function contained within tolerable limits. Of course some further 

progress may be possible by solution for by deconvolution of the

extraneous components, where these are known, by any of several numerical 

methods now well established. Indeed the power of these established 

computational methods is now such that, under certain special conditions, 

it may be possible to recover the desired function even if one of the 

extraneous functions is not, by comparison, a minor one. With this in 

mind consider the 2-reflection [1, -1) function given by Expression (B.S). 

Note that for proper machine settings and so forth the rocking curve 

under these conditions is defined solely by (the polarisation components 

of) P^(0). In this case therefore (neglecting for the moment 

considerations of polarisation) recovery of P^(6) essentially requires 

only the recovery of P^(0) from its own autocorrelation. Unfortunately 

as von Laue was the first to show, it is easy to see that it is impossible 

to perform this recovery directly and unambiguously without further 

information. This point can now be revealed in a most illustrative 

way by making the attempt to perform the deconvolution in Fourier 

transformed space. It will be immediately observed that a sign ambiguity 

occurs in taking the square root of every frequency component in the 

discrete Fourier transform of the data set. The inverse transform to 

arrive at P^(0) is then clearly seen to be indeterminate. However, 

following von Laue’s suggestion, suppose P^(0) is postulated a priori, 

well-founded upon good Prins calculations, substantiated by good agreement 

with measurement of its integral (see Subsections 1.6, 2.2.1), and suppose 

this a priori prescription for P^(0) is used to numerically predict the
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2 - reflection function, by evaluation of Expression (B. 8). Then further suppose 

that the measured function proves to be identical with that predicted. Although, 

for the reasons given above, there can never be ultimate proof, this is, taking 

all things into account, persuasive evidence to believe that the original 

postulate for P^(8) was correct and should be regarded as the line spread 

function for the analyser. Von Laue was prepared to go further and say that 

if the measured function differed, but only marginally, from that predicted 

then one might with justification, attempt modification to the postulated 

and thus to iterate until the predicted curve is adequately consistent with that 

measured, and then to regard that final modified P^(e) as the line spread 

function for the analyser. There is not much evidence that von Laue’s 

suggestions have been implemented very frequently due perhaps to the great 

labour incurred in iterating through the numerical convolution of Expression 

(B. 8). However the general availability of fast computing machines now 

totally removes that difficulty. The remarkably precise agreement 

demonstrated throughout this work between measured and calculated values 

for the reflection integral (i. e. the integral of P̂  (g)) strongly suggests that 

the function P̂  (0) may often be well determined by this method using only the 

simple 2 - reflection (1, -1 ) method and without need of the greater difficulty  

and complexity of the methods discussed above. However m pursuing von 

Laue’s suggestion, because of the difficulty in demonstrating the uniqueness 

of the result, it might be prudent to impose an additional condition namely that, 

during iteration, modifications to P^(g) may be permitted only so as to model 

such conditions of the lattice as are believed to exist according to other 

Information.

I t  is reasonable to modify P  ̂( g), as given by the Prins function. 

Expression (1.77 ), on the well-established basis that a real lattice contains 

’holes’ due to missing atoms, lattice displacements and contaminant atoms.
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The radiation scattered from such defect points is incoherent with respect to 

radiation scattered by other parts of the lattice and thus the total scattered 

beam suffers energy loss. This energy loss is equivalent to absorption and 

can therefore be modelled by introducing into the Prins function, an additional 

term which increases the calculated crystal absorption coefficient. Since the 

absorption coefficient is related to 3 (given by Expressions (169 )) by 

(1,66a), this lattice condition may be modelled by multiplying 3 by the factor 

1 + X .  Recalling the above remarks we note that we shall perm it this modelling 

only for such values of x as shall result in minor, and not gross, changes to 

P^(e'). The model might be viewed as having 'f irs t  order perturbation' validity. 

We shall see later that under these conditions the technique has the general 

effect of reducing the computed Pgg values and has lesser effect on the w^c 

values.

In the discussion of the zero-extinction model (see Section 1. 6. 1)
20,44

the concept of a domain structure, as proposed by Darwin, was discussed.

Experimental evidence shows that domain structure is a common imperfection
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of real crystals. Clearly, for the near perfect crystals under consideration, 

the width of the domain orientation distribution function is narrow compared 

with that of the (extreme) ideal mosaic. Indeed it is shown in this study that 

this distribution function width w ill often be small with respect to the width of 

the Prins function. Nevertheless, since the domain structure lattice disorder 

tends to broaden the line spread function, it seems reasonable to model this 

effect by allowing each domain to be represented as having a line spread function 

P^(9 ’ ) and to allow the zero values of each of the set of 8 * angle scales to be 

distributed with a Gaussian spread about the zero value of the 0 scale. If  we 

do this then our attempt to model the effects of the domain structure w ill in fact 

not change the extinction in the crystal as it really ought to do. However, if 

the fwhm of this spread to be modelled is small compared with the width of
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P^(0) then the change in the extinction w ill be small and there is no serious 

e rro r incurred in our neglect of modification of the extinction. In this respect 

it is again true that our modelling technique w ill only accurately describe 

analysers whose behaviour is a small perturbation from that of the perfect 

lattice. The technique w ill not be a good approximation if taken too far.

In the event, it was learned during the course of this work that the 

mosaic structure of the analysers used was such that no fit  to the far wings of 

the measured (1, -1 ) rocking curve could be obtained by use of the above two 

techniques alone. In general the wings of the measured (1, -1 )  rocking curve 

were often much more extended than those of the self-convolution of the Prins  

function as modified by the above two techniques so optimised to produce a 

good fit to the peak and to the main body of the curve. This fact was one of 

the surprises of the work and the real origin of the effect is not understood. 

However, it seemed possible that a good fit to the wings might be obtained by 

supposing that a small fraction of the domains were members of a second 

population characterised by a very much larger Gaussian spread in their 

orientations. For such a population the modelling technique above would incur 

serious neglect of the change in extinction and therefore, on the face of things, 

is not an adequate way to describe their behaviour. However, generally only 

a very small fraction of the domains were members of this second population 

so that the overall effect of this neglect would then itself be small. Thus if  the 

observed elevated wings are really  due to such a second minority domain 

population, then inclusion of this second Gaussian spread, calculated without 

attention to the change in crystal extinction could therefore be expected to 

greatly improve the f it  to the wings but would leave the computed reflection  

integral a little short of the proper value.

It  should be noted that the firs t modelling technique models an energy
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loss process (by increasing the effective value of ) and therefore lowers

the computed whereas the Gaussian spreading technique, although based on

the domain structure model, neglects to reduce secondary extinction and

therefore has no effect upon R^. The above modelling procedures were applied

individually or in combination, in an iterative mode until agreement to within

a few per cent was obtained between corresponding points on the computed and

experimental (1, -1 ) rocking curves. Where wing studies of the (1, -1 ) rocking

curve were made, agreement extending to 3 or 4 orders o f magnitude 

down on was sought.

e. Sources o f e rro r and th e ir  containment

The principal source of e rro r in the measurement of a (1, -1 )  rocking 

curve is curve distortion in the form of peak broadening and asymmetry. This 

distortion arises from geometric aberrations namely instrument misalignment 

and beam geometry. Unless otherwise stated, the procedures required to 

minimise sources of e rro r are given in the discussion of e rro r sources 

associated with the measurement of the Bragg dispersion function (Subsection

2 . I . e . ) .  Tolerances on the residual aberrations, which remain after 

minimisation (see Subsection 2. I . e .  ), must ensure that curve distortion is 

negligible in order that the observed (1, -1 ) rocking curve should arise purely 

from the crystal line spread functions. The tolerances should be such that the 

effect of peak broadening and asymmetry are within the lim its of the measure­

ment uncertainty of the (1, -1) rocking curve. Therefore peak broadening must 

contribute less than 2% to the curve fwhm and the asymmetry ratio r 

defined in Fig 3.12b must be within the lim its 0.99 < r <  1.01. Details of 

geometrical aberrations and associated tolerances are outlined below. 

i. D iffractor settings

(1) Axes divergence from paralle lity . The geometrical analysis for the
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1-crystal case (Subsection 2.1. c. ) can be extended to the 2-crystal case if 

is now regarded as the angle between the two rotational axes. The effect of 

axial misalignment upon vertical misalignment is not relevant to the study of 

crystal line spread functions as is shown below.

In order that the crystal tilts remain aligned for rocking curves obtained 

over a range of Bragg angles it is necessary to lim it the magnitude of 2<t> 
to a small fraction of the residual tilt  misalignment (aô ) tolerance. Details of 

the effect of t ilt  misalignment on a (1, -1 ) rocking curve are given below.

Axes divergence is minimised by aligning both rotational axes to the local 

gravity vector as outlined in Subsection 3. 3. 3. A tolerance of 10" on the 

residual w ill satisfy the condition 2act)<aô

(2) Mounting eccentricity. If  Crystals A and B are displaced horizontally from 

their rotational axes by and Ey respectively then the maximum shift of the 

beam along the surface of Crystal B for glancing angle 0 is

S = 2 Ea dot 0 + E^ cot 0 (2.70)

The shape of the rocking curve is sensitive to the macrostructure of the crystal 

and so if the surface is non-uniform the beam shift S w ill cause differences in 

the curves obtained at various wavelength which cannot be accounted for in 

terms of changing wavelength. The width of the test beam measured along the 

surface of Crystal B is normally about 2 cm s. Thus a maximum beam shift a6 

of 1 mm arising from the residuals aÊ  ̂ and oE^ for the complete Bragg angle 

range, w ill give rise to a relatively small change in the effective nature of the 

crystal surface which contributes to reflection. In the residual eccentricity 

tolerance estimation put aE^ -  aE^ = a E . For a typical Bragg angle 

range of 5 -  65° in order that oS < 1mm then a E< 30 jj .

The maximum displacement of the beam reflected from Crystal B is 

given by

D = 2 Ea dos 0 + 2 E^ C O S 0  (2.71)
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I t  is important that D is as small as possible in order that non-uniformity in 

the detector window transmission does not affect the comparison of curves 

measured at different Bragg angles. For the above Bragg angle range and o  E 

tolerance the maximum shift (uD) of the reflected beam across the detector 

window is < 70 y . For a 1° scan rocking curve at 8 = 44-45®, crD < 1 .5y .

In the discussion of all alignment tolerances it is assumed that the 

detector is aligned as described in Chapter 3.

(3) Lattice tilts . Combined lattice tilts and vertical divergence give rise to

peak broadening and peak intensity reduction, as is clearly illustrated in Fig. 3 J 2c

94
Schnopper in te rp re ted  th is  as aris in g  from a loss of  reso lu tio n  which in  

turn results from an increase in the instrumental window function width. For 

the (1, -1 ) parallel configuration this function may be written as

WCB) = j I 
P

g W P(v) P(B + e )̂dvdT|  ̂ (2.72)

where all terms are defined in Appendix B. Crystal tilts and vertical divergence

94give rise to negligible dispersion and so peak broadening due to A-dependence 

of the line spread function arguments w ill be small. Thus for the present 

discussion the line spread functions can be regarded as <S-functions (for both 

polarisations); Expression (2. 72) then becomes

W(3) = B gC*) <S(v)6(3 +v - + E )dvdi|,

= B
where B is a constant. Expression (2. 73) is called the geometrical window

g(i|^)6 (3 - E  ̂+ E^)di|;

function due to vertical divergence. Introduction of the full expressions for 

and from Eqns. (B. 2) and (B.3),  using the approximation n = ® n, gives

(2. 74)

W(3) = B g(^)5&3+ [g(62-62jtan8 - 2ô^tan9 -26 6,tan0 ] + ((6 +6 )^/cos0 )}d^ 
J & u H 3 . i i d . D r i  3 u  n

The terms in square brackets only affect the position of the geometrical window
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function and may be ignored when considering the shape of the (1, -1 ) rocking 

curve. Thus Expression (2.74) becomes

W(3) = B g(ip)6{ 3+ [ (6  +6, )i^/cos9 ]}d^ (2.75)
J a  D n

The exact form of W( 3) w ill depend upon SC'I') but its width w^ w ill be

the width of g(^scaled by the factor (6^ + 5^)/cos 6̂ . In order for the (1, -1 )

rocking curve to be the convolution of the crystal line spread functions only, the

width of the geometrical window function must be zero. This is achieved when

<5̂  + 6 ̂  = 0 i .e .  when the crystal normals are parallel.

The crystal tilts need to be aligned such that either

i. d .  - 5  or ii. 6 = 6 , - 0
a b a b

The smallest (1, -1 ) rocking curve widths measured in this study are

about 10" and thus it is reasonable to put an upper lim it of 0. 5" on w^. It  is

now necessary to evaluate w^ for experimental conditions in order to estimate

the necessary tolerance on the t ilt  residual that remains after t ilt  minimisation.

Figure 2. 8a shows a pair of slits of heights ’a’ and 'b' which define the

vertical divergence of a beam incident upon Crystal A. \p , ip , ijj and
c+ c- m+

4) are defined with respect to the plane of dispersion X X ' . If  Y the beam 
m -

misalignment is zero then 4̂  , -  4̂  - 4 '  and 4j , -  4j u,® c+ c- c m+ m -  ̂m

The target intensity is uniform in the vertical direction and so the angular 

intensity distribution g(ip) is constant for |i|;| < and decreases linearly

I I 9 5with 4j for < | (j; | $ g(ip) as a normalised function is given by

g.('P) =

I t (2.76)1 / ( 4 ^  + 4̂ )  f o r  I I ^  ^
m e c

where = (b - a) /2L and 4j^  = (b + a) /2L (2.77)

The function g ( ip) which is plotted in Figure 2.8b has a width ip +  ip .
m c

The form of g ( 4 j  ) given in (2. 76) may be used in (2. 75) to give
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W(3) =
(^m - I el 3 (2.78)

- |3/R|)B^/R fo r  RiP^<|b | < Rij;̂

where = B/ (*2  - and R = [6 + 6 . ) /cos 0 (2.79)m e  a D n

Figure 2.8c shows a plot of W(B) for -  1. The width of the (1, -1 )  

geometric window function calculated from (2. 78) is

\  V  (2.80)

Substitution from (2. 77) gives

w^ = R b / L  (2.81)

In the interest of minimising w^ the second vertical s lit is norm ally  

located between the crystals rather than before Crystal A. This choice of s lit  

location is discussed in Paragraph iii. below. Equation (2.81) shows that w^ 

is dependent upon crystal tilts, the Bragg angle and the s lit geometry and so 

all of these experimental factors must be taken into consideration when 

deciding upon the tolerance for the t ilt  residual (where o 6  -  a  ( S ^  + 5y)). 

For typical settings b -  4mm, L -  700 mm, 0 -  45°, o6 must be set at 1' to 

ensure Wg < 0.5".

Crystal misalignment normally introduces asymmetry into the (1, -1 )  

rocking curve due to non-uniformity of the beam intensity distribution in the 

vertical plane. For sim plicity assume a point X -ra y  source illuminating the 

f irs t crystal. When the crystals are tilted each ray from the source w ill 

contribute its own (1, -1 ) curve at a slightly different setting of the spectro­

meter. I f  the intensity weighting of the rays is not uniform the net (1, -1 )  

curve w ill show asymmetry. The effect disappears when the t ilt  e rro r  is zero 

since all contribution to the net (1, -1 ) curve occur at the same angular setting?^

Figure 3.12cshows that for values of <5, for which the condition <5 + 6 , - 0b a b

is nearly satisfied the peak is more sensitive to peak broadening than to 

asymmetry with changing 5  ̂ and so the tolerances given above are sufficient 

to ensure negligible asymmetry.
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(4) Scan speed irreg u larities . The discussion given for the Bragg dispersion 

function (see Subsection 2.1. c. i. ) is also appropriate to the measurement of 

the line spread function.

ii. Beam settings

(1) Horizontal beam misalignment. If  the centre ray of the test beam does not 

pass through Crystal B rotational axis then the beam w ill strike different areas 

of the crystal as the Bragg angle is changed. The associated problems are  

described in Subsection 2.1. ii. The misalignments which cause the beam 

displacement are as follows:

(a) E rro r in the setting angles of Crystal A and the source. The instrument

is aligned such that radiation of wavelength  ̂ is reflected along the principal

axis by Crystal A. In practice the crystal is set at w by the angle scale
3-X

using the principal axis as a reference line as shown in Fig. 2. 9a. If  the crystal 

is set at w^^ + P then for the same Bragg reflection the reflected beam w ill 

make an angle P with the principal axis. The test beam w ill be shifted along 

the face of Crystal B by

-  R sin p/sin 0^ (2. 82)

where R is the distance between the rotational axes (57cms). For the Bragg 

angle range 5 -  65° if p <0.6'  then the total shift of the beam M  < 1mm.

The beam w ill strike the same area of the detector window regardless of 8^.

The distance between the horizontal centres of this area and of the window may 

be calculated from Eqn. (2.1 2) replacing aX by P . For the above tolerance 

on p' this distance is 0.12 mm.

(b) Source focal spot misalignment. This misalignment is the distance x in 

the horizontal plane between the focal spot horizontal centre and the line which
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Figure 2.9 The effect of error in Crystal A angle setting upon beam 
misalignment.
RR’ , the principal axis, passes through the rotational 

axes.
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is both paralle l to the incident beam and passes through Crystal A rotational 

axis. The shift of the beam along Crystal B surface is x /s in  8 . For the above 

range of 9 if x< 0.1 mm then the total beam shift is < 1mm. Again the 

receiving area of the detector window is independent of 0 and the distance 

between the centre of this area and of the window centre is simply x.

(2) Horizontal divergence. In order to obtain an undistorted (1, -1 )  rocking 

curve it is required that the horizontal angular intensity distribution h(a) is 

constant over the region of observation. I f  this condition is not fulfilled then 

the convolution given by Expression (B. 8) w ill be weighted by h(a). A narrow  

or non-uniform h(a) w ill also cause spectral distortion which may be shown 

mathematically by assuming h(a) to be a <S-function. Expression (B. 7) 

now becomes

PCv)P(3 + V  -  + e ^ ) ô  -  v)g(i|̂ )J (X)dvdiĵ dAPceCB) .

Setting 8^ -  6^ -  0 and transforming variabies
X y  \  X

P(y )P(8 + y)JPceCB) = o tan0 .no ^ no
If  the spectral distribution varies in the region that the convolution is non-zero
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then this w ill introduce spectral interference.

Distortion arising from both sources may be eliminated by using slits  

that are wider than the source focal region. This w ill ensure that h(a) is 

dominated by the s lit transfer function rather than the focal region non-uniform  

intensity distribution. In the Leicester instrument the X -ra y  source is about

2 .4  mm wide and may be regarded as a firs t slit. For a s lit located between 

the source and Crystal A, h(a) has a form analogous to Expression (2. 76). The 

widest and most uniform h(a) distribution is obtained if Slit 2, which is 26 cms 

from the source is  set at 5.6mm such th a t the beam width at 

Slit 3 is just less than 13mm, the maximum aperture of this slit. Providing the 

beam is contained within both crystal surfaces, then h(a) is reasonably constant
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over 42'. This is adequate for the crystals studied in this work, if the crystals 

are in reasonably good condition. I f  the mosaic model applies then the rocking 

curves may be very broad in which case distortion w ill arise. If  the crystal 

surfaces are non-uniform the s lit controlling horizontal divergence may need 

to be adjusted to ensure that the reflecting area size is the same for different 

wavelengths.

(3) Vertical beam misalignment. Vertical misalignment, defined in Subsection

2.1.  c. , alters the position but not the profile of the (1, -1 ) geometric window

function. From Fig.2.8a and Subsection i. above, for a vertical misalignment
Y

(2.85)

S im ilar relationships hold for i|;^_^and . The expressions for g(^ ) and

W( 3) obtained for these conditions are identical to Expressions (2. 76) and (2. 78)

respectively apart from the appropriate lim its. Hence the (1, -1 ) rocking

9kcurve shape is independent of vertical beam misalignment.

(4) Vertical divergence. It  is shown by Eqn. (2. 80) that the vertical divergence 

of the beam w ill only affect the (1, -1 ) rocking curve shape if the crystal tilts  

are misaligned L e . ^ g. In practice the slits controlling vertical

divergence must be set according to the estimated t ilt  alignment uncertainty such 

that the geometrical window function width Wg is much sm aller than the width

of the se If-convolved line spread function. The magnitude of Wg arising from  

typical s lit settings and lattice tilt  uncertainty is calculated in Subsection i. 

above from Eqn. (2.81).

iii. Discussion of s lit locations

In a rigorous quantitative analysis, the horizontal and vertical divergence 

of the beam should be defined by slits located before Crystal A.

Consider firs tly  the vertical divergence slits; for any s lit location other 

than the above, in the presence of misalignment, there w ill be vertical
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divergence in excess of that predicted from s lit geometry alone. Nevertheless 

in order to reduce vertical divergence the second s lit may be located either 

between the crystals or after Crystal B. Equation (2. 77) may still be used to 

give a good approximation of the vertical divergence. For these alternative 

s lit locations the vertical beam misalignment w ill depend upon the crystal tilts  

as well as the slit misalignment.^^ This w ill not affect the (1, -1 ) rocking 

curve shape which is shown in Subsection ii. above to be independent of vertical 

misalignment.

I t  is desirable for (1, -1 ) rocking curve studies that the horizontal

divergence should be as lai^e as possible and thus there is no need for the

alternative s lit locations. For the purpose of numerical analysis the beam

should be collimated before Crystal A such that, the beam is contained within

both crystal surfaces, and no other apertures affect the beam geometry.

f. Final measurement uncertainties

The measurement uncertainty on the (1, -1 ) rocking curve fwhm was

estimated on the basis of the scan counting statistics. This uncertainty aw^c

was + 1 sample bin width for the tyjxcal statistics given in Section 3.4.  If  the

uncertainty in the counts in each sample bin is high then the correspondence

between this uncertainty and distance on the abscissa axis was estimated and

this was used to determine ow^g.

The measurement uncertainty in the peak count rate (1^) is given by

o I  = ~~ (2. 86)
P t

where C is the total count in the bin or bins from which I is calculated and t
P

is the time over which the count C was accumulated. The measurement

uncertainty on p is obtained by combining the uncertainties on the peak count 
cc

rate and the incident beam intensity (see Subsection 2. 2 .1 . d. ) using the 

following expression
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(2.87)

Implementation of the (1, -1 ) method with theoretical modelling 

(working within the experimental lim its prescribed above) provides a means of 

generating the Bragg analyser line spread function. Measurement of this 

function at wavelengths throughout the Bragg reflection wavelength range gives 

a fam ily of line spread functions which give a complete quantitative description 

of the analyser.



Plate 3.1 General view of the Leicester 2-reflection Instrument



Plate 3.2 General view of the Leicester 2-reflection instrument (with 
vacuum chamber lid removed) and the counting electronics
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Plate 3.3 Plan view of the instrument in the (1, -1) position

Plate 3 , h  General view of the instrument in the (1, ~1 ) position
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CHAPTER 3

THE LEICESTER 2 -  REFLECTIO N INSTRUMENT

3.1 Instrument Geometry

The demand ten years ago for routine calibration of crystals used in 

X -ra y  astronomy rocket experiments necessitated the construction of the

Leicester 2 - reflection instrument. It  has a 2 -axis geometry, based upon

98
that employed by P a rra tt, and can be set to the (+n, -n ) non-dispersive 

•position thus enabling measurement of crystal diffraction characteristics.

General views of the instrument are shown in Plates 3.1-4, Simpli­

fied diagrams of the instrument are shown in Fig.3.1. The crystal

turntables, source and detector are all contained within one vacuum chamber. 

Turntables A and B have fixed vertical axes and have independent rotational 

drive mechanisms. The source and detector rotate about the axes of 

Turntables A and B respectively and again have independent drive mechanisms.

The coarse rotation of crystals, source and detector is fully motorised 

and so the Bragg angular range 5-65° may be studied during an evacuation 

period. This facilitates a rapid determination of the variation of crystal 

characteristics with wavelength. Fine rotation is achieved by tangent arm  

drives giving a scan range of 5°. This range is sufficient to accommodate 

even the broadest rocking curves such as those characteristic of mosaic 

crystals . The detector can be located to monitor the beam incident upon 

and reflected from Crystal B thus enabling the normalisation of the reflected 

beam necessary for reflection integral measurement.

The collimation of the instrument is shown schematically in Fig. 3. 2.

A ll s lit widths are adjustable both horizontally and vertically. The upper and 

lower dimensions above each s lit are the maximum width and height
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respectively. Dimensions of the source focal spot and detector window are 

also given. Reflection integral measurement only requires containment of 

the beam to Crystal B surface and the detector window and this is achieved 

easily by appropriate s lit adjustment.

The generation of distortion-free (1, -1 )  rocking curves imposes 

tolerances upon crystal t ilt  alignment and further conditions upon beam 

collimation. The crystal mountings faciltate alignment to the tolerances 

given in Sections 2.1 and 2. 2. Detailed description of the mountings and 

crystal alignment procedure is given in Sections 3. 2 and 3. 3 respectively.

The beam must be collimated such that the horizontal divergence is much 

greater than the (1, -1 ) rocking curve fwhm. . The maximum horizontal 

divergence of the s lit system is 64 minutes of arc and so the necessary 

condition is satisfied for all crystals studied. In practice the horizontal 

s lit widths had to be reduced in order to accommodate such factors as crystal 

length, Bragg angle and the need to use small areas of crystal surface for 

reflection. These factors are discussed in more detail in Chapter 2 and the 

chapters dealing with particular crystals. In spite of reduction, the 

horizontal divergence was still greater than the (1, -1 ) rocking curve fwhm 

in nearly all cases. The beam is also collimated vertically  to minimise the 

effect of vertical divergence, discussed in Chapter 2. The large separation 

of 70 cms between Slits 1 and 3 gives the advantage as shown by Eqn. (2. 81) 

of lim iting vertical divergence distortion to a negligible level without the loss 

of beam intensity incurred if small s lit settings had to be used.

Conversion to a 1 - reflection instrument is readily achieved by removal 

of Crystal A and rotation of the source such that the beam passes through 

Crystal B rotational axis. The beam is collimated by Slits 1 and 3, the large 

separation of which provide adequate resolution for 2d determinations and 

absorption edge studies.
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3. 2 Design and Construction

3 .2 .1  General features

A prim ary objective achieved in the instrument construction is the 

decoupling of the instrument proper from its vacuum envelope. This ensures

no disturbance of the instrument alignment when the vacuum chamber is
99

evacuated. Applying Deslattes approach, the instrument and vacuum chamber 

are coupled ' independently to a third, rigid, structure in such a way that 

interaction between these prim ary elements can take place only through 

distortion of the third element. ' The third structure is a concrete plinth sunk 

into the foundations of the building. The instrument base,of machine cast 

mehanite,is supported by three steel p illars embedded in the concrete plinth. 

The circu lar vacuum chamber base plate rests independently upon the concrete 

plinth and is sealed to the steel p illars by knife-edge seals.

The crystal turntables and the mounting block for tangent drive 

micrometers rest kinematically upon the instrument base plate which in turn 

is supported kinematically, thus allowing complete levelling adjustment.

The detector is fixed to a ring which is concentric with and attached to 

Turntable B assembly. The source is built upon a heavy arm which extends 

from a s im ilar ring on Turntable A assembly. The source is a sealed vacuum 

unit which eliminates the need for a high chamber vacuum norm ally required 

for X -ra y  generation. A working chamber vacuum (10  ̂ mmHg) using a 

Welsh No 1398 "Duo-Seal" roughing pump, is thus achieved within minutes; 

an important factor in routine work which may involve changing crystals and 

s lit settings several times during a working day. The roughing pump stands 

on the floor by the concrete plinth and evacuation is achieved through a port 

in the vacuum chamber base plate. Other ports in this base plate provide for 

electrical and water supplies, a vacuum release valve with chamber pressure
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monitoring using a P irani Gauge (Edwards M6A). The steel lid of the vacuum 

chamber seals to the base plate by means of an 'O' ring along its rim .

Perspex covered ports in the lid allow inspection of angle scales and moving 

parts.

3 .2 .2  Constructional details

a. Bearings The purpose-built precision bearing of each crystal turntable 

is shown for Turntable A assembly in Fig. 3. 3. A 2. 5 inch diameter hardened 

steel shaft C, ground to better than 5 micro inch roundness, runs in a pre- 

loaded journal which provides radial stability of the axis. The journal D , 

made of Flurosint has a low coefficient of sliding friction with hardened steel. 

The complete assembly of the turntable exerts no radial load on the bearing, 

thus there is no increase in friction with turntable load, and negligible wear 

on the journal bearing. The crystal table is mounted on a 7 inch diameter 

steel base plate E fixed perpendicularly to the steel shaft. Thrust bearing 

is provided by means of a 6 inch diameter aluminium-caged ball-bearing  

race between the lapped faces of the steel plate and a steel ring fixed to 

the main block of the turntable assembly (main thrust bearing plate F ). 

Variations in ball-bearing size of about 5 microinch are averaged out by using , 

a large number of ball-bearings resulting in a coning angle less than the 

measurement lim it 0.1 second of arc. Coefficients of rolling friction are 

lower than coefficients of sliding friction and thus there is little  increase in 

friction with the longitudinal load of the crystal table upon the bearing.

Relaxation of performance tolerances on the source and detector bearings 

is integral to their essentially identical construction. Concentricity of the 

source rotation about the Turntable A axis is achieved as follows. The turn­

table axis is aligned to the centre of the main thrust bearing plate. The 

source attachment ring locates about the rim of the bearing plate by means
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of three 1 2 0 °-spaced ball races one of which is spring-loaded. Thrust bearing 

is identical in type to that of the crystal tables.

b. Anglo scales The angular setting of each crystal table is recorded by 

means of an engraved glass divided circle fixed to the base of the bearing 

shaft and centred about the rotational axis. An l l v  12w lamp housed in the 

vacuum chamber base plate illuminates the scale from beneath and a m irro r-  

lens system projects the image of the 1 degree division graduated lines on to 

a frosted glass screen. The graduated lines are subdivided and the scale 

read by means of an optical micrometer which contains a 10 minute of arc 

division scale and two prisms, one of which has a 2 second of arc division 

scale engraved upon it. The angle between the prisms is adjustable, so 

allowing the alteration of the dispersion of the combined prisms required in 

the adjustment of the m icrometer (see Subsection 3.3 .2).  The optical 

micrometers give a reading accuracy of 1 second of arc.

c. Crystal mountings Paramount to the design of the crystal mountings is 

the need to minimise crystal stress, resulting from location, so that 

perturbation of the lattice planes and the rocking curves is reduced. The 

fundamental feature of the crystal mountings (Fig. 3.4) consists of three 

adjustable ball-ended screws to which the surface plane of a mounted crystal 

is tangential. The balls enable alignment of the crystal planes to the plane 

parallel to and containing the turntable rotational axis. The lower ball is 

fixed to a remotely controlled micrometer spindle which facilitates vertical 

t ilt  adjustment during X -ra y  alignment. The crystal is normally mounted 

such that direct contact of the crystal surface with the balls is avoided because 

the pressure required to hold the crystal in place may cause surface damage 

or induce stress in the crystal. Most crystals supplied for study are mounted 

on to a metal substrate by means of a rubber adhesive which isolates the
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crystal from stress in the substrate. The crystals are normally cut to a 

Philips block dimension (45 x 22mm). The vertical spacing of the balls is 

greater than the height of the block so that the latter can be fitted in an 

aluminium submount frame (Fig. 3. 5) which makes direct contact with the 

balls. Adjustable beryllium-copper strip springs on the back of the submount 

hold the crystal surface lightly against three aluminium blocks which have 

faces coplanar with the locating face of the submount. The faces of the 

aluminium blocks are sufficiently large that stress due to location is much 

less than would result from a three-ball location. The submount locating 

face makes firm  contact with the brass balls by means of three rods spring- 

loaded against the back face.

d. Source Three important characteristics of the X -ra y  source (Fig. 3.6)  

make it particularly useful in the measurement operation of the 2 - reflection 

instrument. I t  is lightweight and easily mobilised by mounting it at the end 

of a rotating arm extending from Turntable A. The high radiation energy out­

put (0. 5 kilowatt) produces a beam reflected off Crystal B of sufficient 

intensity for good experimental counting statistics. The source vacuum is 

independent of the instrument vacuum chamber and for the reason outlined in 

Subsection 3. 2.1 this makes for a rapid pump down cycle of the chamber.

The source anode and cathode operate at earth and negative H. T. and 

are housed in a hollowed 2. 25 inch aluminium cube. The anode or X -ra y  

target is a water-cooled cylindrical copper finger which may be rotated 

remotely by means of a gear wheel fitted to its base meshing with another 

gear wheel a sector of which is external to the aluminium cube. The cathode 

is a straight filament of 6 thou diameter tungsten wire aligned parallel to the 

target axis and located about 2mm away from the target surface. The target 

and filament assembly are each mounted on aluminium end plates which fitted
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with ’O' ring seals, bolt against the sides of the aluminium cube.

Tungsten contamination of the target focal spot is reduced by locating the 

filament at the side of the target and focussing the electrons by a negative H. T. 

electrode. The electrode is simply a metal strip attached to a filament 

terminal and curved around the target. A window cut in the metal strip in 

front of the focal spot allows the X -rays  generated to reach the source window. 

Henke and Tester have constructed a source employing a more sophisticated 

electrode in order to place the filament on the opposite side of the target to 

the focal spot thus further reducing contamination. The rotational facility  of 

the Leicester source allows uncontaminated areas of the target to be presented 

to the cathode without dismantling the source.

In much of the experimental work requiring excitation of emission lines 

the target was coated with a layer of fine powder consisting of a mixture of 

appropriate m aterials. The fine powder layer is formed by grinding the 

m aterials in a pestel and m ortar, adding a few drops of a liquid (usually 

distilled water) to make a thin paste, painting this on the target and then 

drying the coating with the aid of a heat lamp. The coating applied is thin in 

order to avoid thermal and electrical insulation which produce unstable 

source operation.

Norm ally the target m aterials were compounds of the elements of the 

required lines as they are often more available and more suitable than the 

elements themselves. It  is essential that the materials have high melting 

points (>700°Q in order to remain solid at the high temperatures of the target. 

Oxides were most commonly used but where an oxide was unsuitable it was 

found advisable in the interest of a high X -ra y  intensity to choose a compound 

in which the element is combined with atoms of small atomic weight. I f  a 

knowledge of the line wavelength is critical then the element
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or a compound with known chemical shift must be used.

The X -ra y  exit window is at the end of an aluminium channel machined 

from the same block as the aluminium cube. The source vacuum is isolated 

from the chamber vacuum by a thin transmitting plastic window supported at 

the rectangular aperture of the channel by a 1mm pitch grid. The thin 

window is clamped between an 'O' ring seal fitted to the end of the channel and 

a rectangular plate containing an aperture which bolts against the channel. 

Choice of window m aterial depends upon the wavelength of the radiation to be

O
studied. For  ̂ < 15A aluminised melinex of 6ym thickness is chosen

O
whereas for X > ISA stretched pol^'propylene of approximately lym 

thickness is used. The stretched polypropylene windows are extremely 

delicate and often do not survive more than one pump down cycle of the main 

chamber.

The source chamber connects,by means of another endplate containing

a valve,to a vacuum line fitted to the main chamber roughing pump. A firs t

stage rough vacuum is thus obtained. The source is provided with an ion

pump (Ferranti FJD8) of 8 litre, sec pumping speed that connects to the

source chamber by a steel pipe welded to a bolting plate. The ion-pump and

roughing pump operate in conjunction to improve the rough vacuum. Once a

-4pressure of about 10 Torr is achieved the ion-pump can take over

completely from the roughing pump and the latter can be disconnected by

-8closing the end plate valve whence an independent source vacuum (10 Torr) 

may be achieved.

The source and ion-pump bolt to a vertical aluminium plate which bolts 

against another vertical aluminium plate that is part of the source mounting 

table. Secondary location of the two plates in their interface plane is provided 

by adjusting screws which allow vertical and horizontal translational



116

alignment of the source in the plane tangential to the radial source arm . The 

source mounting table has a circular base that is mounted at the end of the 

source arm . The bolt holes in the base are machined such that the base 

location can be adjusted by rotation about a vertical axis which passes through 

the focal spot. The focal spot and window may thus be aligned with Turntable 

A rotational axis.

Two H. T. power supplies provide for high and low energy X -ra y  

production. The output of these supplies are respectively 30kv -  13mA 

(Hartley Measurements Ltd. Model 421) and 5kv -  250mA (A. P. T. Electronic 

Industries Model 5705). The power supplies operate in conjunction with an 

emission stabilised A. C. filament supply unit (A. P. T. Electronic Industries 

Model 6246) which operates over the emission current range 0. 4 -  270mA.

The filament is connected to the power supplies by means of lead through 

connectors which emerge into an electrical junction box. In order to prevent 

electrical breakdown when the vacuum chamber is evacuated, the terminals  

in the junction box and the internal terminal in the spectrometer base are 

encapsulated in 'Sylgard' resin.

e. Detector The detector (shown in Fig. 3. 7) is a gas flow proportional

counter chosen because of its high quantum efficiency, moderate energy

101
resolution and negligible counting losses due to dead time effects. The main 

body of the detector is an earthed aluminium cyclinder of 2. 5 inch diameter 

and 0.75 inch length. The anode is a high potential horizontal 50 ym diameter 

tungsten w ire held diam etrically by glass to metal seals in the walls of the 

detector body. The terminals of the seals external to the detector body are  

encapsulated in 'Sylgard' resin to prevent electrical breakdown in the vacuum. 

The resin is supported in aluminium arms which screw to the detector body. 

The detector has two windows, one for measuring the beam reflected off
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Crystal A and the other for the beam reflected off Crystal B. Each window 

is a 1 inch square aperture in a plate which screws to the open end of the 

detector body. A fine grid is placed over the internal side of the aperture 

with grid bars aligned 45° to the vertical. Alignment of the bars parallel to 

the vertical causes modulation of the detector signal as the detector is moved 

across an X -ra y  beam due to interaction of the shadow patterns of the source 

window grid bars, the vertical edges of the collimating slits and the detector 

window grid bars. The grid supports an inner window of 1 ym stretched 

polypropylene that is clamped by a double 'O' ring seal between the plate and 

the detector body. It  is essential that the windows are earthed in order to 

eliminate continuous discharge behaviour caused by charge build up at the 

windows due to low penetration soft X -rays . The internal sides of the 

windows are coated with a layer of graphite and earthed through the body of 

the detector. The graphite coating is applied by dipping stretched 

polypropylene in a 10% solution of Alcohol Dag in isopropanol. The graphite 

is washed from the external surface of the polypropylene which makes 

direct contact with the grid. The transmission ratio of the two windows 

over a required wavelength range are measured as described in Subsection 

3 .3 .8  in order to make corrections to experimental results for differences 

in window transmission.

The detector and H. T. cable are insulated from the spectrometer in 

order to eliminate counter signal interference due to earth loops in the 

spectrometer metalwork. A perspex cover plate is used at the cable entry  

port and the detector is mounted on a perspex block which is screwed to a 

ring on Turntable B assembly.

The gas employed is a 90% Argon/10% Methane mixture at 1 atmosphere 

pressure which flows through the detector via an inlet and an outlet pipe in
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the wall of the detector body.

The counter was tested by observing the pulse height spectrum of an 

Fe^^ source. A typical spectrum for this counter is given in Re£81. I t  

was found that after several months of routine operation the resolution of the 

counter deteriorated. This was due to deposition on the anode w ire of 

hydrocarbon polymers which could be removed by lightly brushing the 

w ire with isopropanol.

f. Coarse drive System The four rotating elements of the instrument, i. e. 

crystal turntables A and B, the source and detector, can be located at any 

position within the angular ranges dictated by instrument geometry (see 

Section 3.1) by means of the coarse drive system. The coarse drive system 

for each turntable assembly is incorporated in a set of rings concentric about 

the turntable rotational axis. I t  may be described with the aid of Fig. 3. 8 

making special reference to Turntable A assembly. At the centre of the 

assembly is the crystal table which is rig idly fixed to the turntable bearing 

shaft. The table consists of a central crystal mounting platform (ring 1) and 

a ring which has gear teeth at i t s  outer rim (ring  2 ). The c rys ta l tab le  

is driven by a stepping motor and worm gear drive contained in the crystal 

drive ring (ring 3). This ring is maintained stationary by a radial arm  

extension which is spring-loaded against the crystal fine drive m icrometer. 

Ring 3 also contains two spur gears which maintain the ring concentric about 

the crystal table. One of the spur gears is spring-loaded to ensure positive 

meshing between the crystal table gear teeth and the anti-backlash gear wheel 

of the drive ring gear box. The spring loading is adjusted by means of a grub 

screw which sets the position of a metal strip which impinges on the axial pin 

of the spur gear via a spring.

The design of the source coarse drive is the same in principle as that 

of the crystal drive. The source mounting arm is an extension of the source
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assembly ring (ring 4) which, like ring 2, has gear teeth at its outer rim .

The drive motors and gears are contained in the source drive ring (ring 5) 

which is maintained stationary by means of a radial arm spring-loaded against 

the source fine drive micrometer.

Turntable B assembly differs only in that the detector is mounted 

directly on top of the detector assembly ring which is the counterpart of ring 

4 described above.

g. Fine drive system Precision scanning of each rotating element is 

achieved by means of a tangent arm drive consisting essentially of a radial 

arm driven by a micrometer, the spindle of which is perpendicular to the arm. 

The tangent arm drives are shown in Fig. 3. 8 and are described in the following 

text with specific reference to the source and Crystal A drives. The fine 

drive micrometers are clamped in blocks which are supported on a large 

block mounted kinematically on the instrument base plate. Important features 

of the 1 inch traverse crystal m icrometer include a non-rotating spindle and a 

large drum with a vernier readable to 1 x 10  ̂ inch. The m icrometer is 

driven by an I. M . C. step servo motor and two precision speed reduction gear 

boxes.

The crystal radial arm engages with the m icrometer spindle by means 

of spring-loaded contact between a hardened stainless steel plate screwed to 

the end of the radial arm and a steel ball attached to a block which clamps the 

spindle. The ball is fixed to an adjusting screw thus allowing adjustment of 

the tangent drive radius. Side 'play’ of the m icrometer spindle in its collar 

causes irregularities in angle generation of several seconds of arc and is 

eliminated by attaching a spring between the base of the radial arm and the 

block clamped to the spindle.

Tolerances on the crystal tangent drive movement may be relaxed for
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the source/de te G tor tangent drive movement (see Subsection 2 .1 . c). The

source fine drive employs a 2 inch traverse m icrometer with a rotating

-4spindle and a vernier readable to 1 x 10 inch. The end of the spindle makes 

direct spring-loaded contact with a steel ball at the end of the source drive  

ring radial arm . The steel ball, as in the crystal tangent drive, is attached 

to an adjusting screw so allowing adjustment of the radial arm length. The 

tangent arm drives for Crystal B and the detector are identical to those of 

Crystal A and the source respectively.

The 2:1 velocity ratio of the detector and Crystal B scan and also the 

source and Crystal A scan is obtained by a combination of feeding the pulse 

generator signal to the m icrometer motors, through a divider c ircu it and by 

using appropriate gearboxes between the motor and m icrometer. The 

adjustable steel balls allow final adjustment of the 2:1 ratio and also the 1:1 

ratio required when scanning the crystals simultaneously. Since the motors 

are powered by a common pulse generator the ratios are maintained at all 

possible scan velocities.

h. Detector and source position monitors The location of the source and 

detector at the 2 0 settings is monitored by a simple optical system shown 

schematically in Fig. 3 .9 . In fra-red  radiation from an emitting diode is 

reflected off a m irro r mounted below the crystal and then off a m irro r  mounted 

at the base of the source or detector. The latter m irro r is aligned such that, 

at the 2 0 position, the beam is reflected back along the same path and some 

of the radiation is transmitted, through the 45° plate, to quadrant photocell.

The photocell signal is fed to a differential am plifier and then to a simple 

ammeter. A broad response profile may be obtained by scanning the detector 

or source through the 2 0 position. The quadrants of the photocell are  

connected such that in the centre of the profile the signals from the two pairs  

of quadrants are nearly equal. This produces a sharp dip at the centre of the
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profile which gives a location sensitivity of about 2 minutes of arc.

The location of the detector, when set to receive the beam reflected off 

Crystal A (re fe rred  to as the detector p o s it io n ), must also be monitored, 

For this purpose a m irro r is mounted on the detector base on the side 

opposite to that of the 2 9 location m irro r.

i. Collimation The instrument is provided with three pairs of slits. Each 

pair consists of two sets of brass jaws which determine the horizontal and 

vertical divergence of the beam. The slits open symmetrically about a 

centre line by means of a screw and spring mechanism. I t  should be noted 

by future operators that the slits do not close sym metrically about the centre 

line and that future s lit designs should eliminate this fault. Each pair of 

slits is mounted in a block which is held in position by adjusting screws thus 

allowing vertical and horizontal translational adjustment and alignment of 

the s lit centre lines parallel to the rotational axes and the plane of dispersion.

Two pairs of slits (Slits 1 and 2) collimate the beam incident upon 

Crystal A and these are mounted at the ends of the collimator assembly 

immediately in front of the source. The collimator assembly, built on a 

platform extending from the source mounting block, has provision for 

mounting a Soller collimator which in the present work was only used in the 

optical alignment of the instrument.

A third pair of slits (Slit 3) is mounted between the crystals on a screening 

shield, a curved aluminium plate which screens stray radiation from the 

detector. This pair of slits acts as a field stop aperture and may also be 

used in conjunction with Slit 1 to provide longer base-line beam collimation 

than that of Slits 1 and 2. This allows larger s lit apertures for a given beam 

divergence.

j. F ilters  A twelve position aluminium disc filte r wheel, fitted to the
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platform of the collimator assembly intercepts the beam after Slit 2. The 

disc is furnished with removable aluminium plates to which the filte rs  are 

attached. The wheel is rotated remotely by means of a twelve position Ledex 

switch.

3 .2 .3  Counting electronics

A block diagram of the counting electronics is shown in Fig. 3.10.

Most units form part of a N. I .M .  system which facilitates rapid change of 

modules and addition of further modules. The detector is powered by a 

0 -  3kv high voltage power supply (Ortec Model 456) operating in positive 

polarity. The detector signal is fed to a pre-am plifie r (E .G . & G. University 

Series Model 249) a ll components of which are rated to 3. Okv. The pre­

am plifier is fitted with an open circu it/short circuit switch to protect the 

transistors during switching on and off the detector H. T. or the vacuum 

chamber roughing pump if the detector H. T. is on. The pre-am plifie r  

output is fed to the main am plifier (Ortec Model 485) which also contains the 

power supply for the pre-am plifie r. The am plifier output is fed to a single 

channel pulse height analyser (Ortec Model 406A) which determines by 

discriminator gates the energy passband to the counting units. The am plifier 

output is displayed on a multichannel pulse height analyser (Northern 

Scientific NS600) and a cathode ray oscilloscope (Telequipment Model D67).

The analogue ratem eter (Ortec Model 449-2) is fitted with audio output 

and logarithm ic/linear output to a chart recorder. The latter facility  was 

not employed due to indistinct separation of sampling bins typical of analogue 

output. Logarithmic/1 inear output to the chart recorder is provided by a 

four figure display digital ratemeter (Nuclear Enterprises Model 4622). The 

ratem eter sample time settings is altered in steps which were often too coarse 

and so in the latter part of the work the ratem eter was coupled with a clock
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(Nuclear Enterprises Model 4624) which enabled finer adjustment of the 

sample time. The tim er (Ortec Model 773) and counter (Ortec Model 775) 

both have six figure digital display and are coupled such that the duration of 

the counter operation is slave to the tim er which may operate for a p re-set 

time or infinity. The final display of the detector output is on a multi-speed, 

multi-response range chart recorder (Esterline Angus Servo Speed). A 

potentiometer (Beckman Helipot) provides fine adjustment of the pen response.

The complete counting system is tested and adjusted by switching off 

the detector and feeding into the pre-am plifie r the signal from a tail pulse 

generator (BNC Model BH-1).

3. 3 Adjustment and Alignment

3 .3 .1  Bearings

Coarse adjustment of radial location of each bearing shaft was achieved

by four 90^-spaced horizontal screws G (see F ^ .3 . 3) which screwed into the

main thrust bearing plate and impinged on the outer walls of the split journal

bearing assembly. The detector or source drive ring was removed in order

to gain access to these screws. Three 120 °-spaced vertical screws H which

fix the split journal bearing to the turntable assembly provided fine adjustment

of radial location. Access to these screws as to a ll other screws in the split

journal bearing was gained by holes J in the turntable baseplate E .

Eccentricity of the turntable to the main thrust bearing plate was

measured and adjusted accordingly by mounting a mitronic on the turntable 

baseplate such th a t the m itronic arm was in  lin e  w ith the diameter

of the turntable. The mitronic needle rested against the outer rim of the 

main thrust bearing plate and so any eccentricity of the turntable gave rise, 

as the turntable rotated freely, to needle deflection which was accurately
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monitored. The ranges of needle deflection for complete revolutions of

“ 3 -4Turntables A and B were 1 x 1 0  inch and 5 x 10 inch respectively.

Clearance between the split journal bearing and the bearing shaft was

adjusted in the following way. Three 120°- spaced screws K (see Fig. 3 .3)

which attach the split ring to a mounting ring L were loosened. Screw M (see

Fig. 3. 3) which varies the ring splitting was adjusted to give the required

clearance and the three screws were tightened again. Screw M was also

used for fine adjustment of clearance. Sideplay in the turntable bearing was

measured using a mitronic in the fo llow ing manner. The bearing was

locked by maintaining the crystal drive stationary. The mitronic

stand was clamped to any stationary part of the instrument and the mitronic

needle was located against the rim  of the crystal turntable. Finger pressure

was applied to the diam etrically opposite rim  and sideplay was measured by

noting any difference in the needle position before and after the pressure was

applied. These measurements were repeated at several other points on the rim

of each turntable. The maximum sideplay for each turntable bearing was 

- 63 X  10 inch.

Sideplay tolerances on the source or detector mounting rings are not as 

critical as for the crystal turntables and so the spring-loaded ball race (see 

Subsection 3. 2. 2. a) was adjusted until any sideplay detectable by hand was 

eliminated. The ball race loading was adjusted by means of a grub screw, 

access to which is gained from the side of the turntable assembly.

3 .3 .2  Angle scales

The divided circle and optics of each angle scale can only be adjusted 

from below the turntable assembly and so each assembly was in turn mounted 

on to a purpose built steel frame. The divided circle is furnished with screws 

which adjust its concentricity about the bearing shaft but this adjustment was 

unnecessary in this work. The m irror-lens system was adjusted such that the
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projected area of illuminated scale was central and square on the viewing 

screen and the engraved scale lines were focussed at the plane of the 2 second 

of arc vernier scale. The 10 minute of arc division vernier scale was adjusted 

so that two adjacent lines on the engraved scale were projected on to the 0 and 

60 minute of arc marks of the vernier scale. The angle between the two 

prisms in the optical m icrometer was adjusted so that when the 2 second of 

arc division vernier scale was moved through its complete range (10 minutes 

of arc) the projected engraved line appeared to move 10 minutes of arc on the 

10 minutes of arc division scale. Movement of the ilium inatii^  lamp slightly 

disturbs the projection of the engraved lines and from time to time the lamp 

position had to be checked and adjusted as necessary.

In the present study the determination of d ,a and A6(X) required  

the calibration of Turntable B angle scale. The calibration involved rotation 

of the turntable through a given angle and comparison of angle scale measure­

ment of this angle with that of an independent method. This method entailed 

mounting an angle block, of accurately known angle, on the turntable, 

obtaining an autocollimator reflection from a face adjacent to the angle 

and then ro ta tin g  the angle scale through the angle, calcu lated  to give

a re fle c tio n  from the other àdjacent' face o f the block. I f  the true angle 

generated is different from the angle apparent from the angle scale then the 

reflected beam wül be displaced from the incident beam. This displacement 

was measured by the autocollimator so calibrating the angle scale for the 

particular angle generated.

The angle blocks consist of hardened steel combination angle gauges 

rung together to give the required angle. The angle of each gauge is 

determined to an accuracy of ±  1 .0  second of arc. For each wavelength 

involved in the determination, the angle block was made up to 29 and the 

turntable was rotated from and to the experimental angle scale settings. The
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angle block was in fact made up to the nearest degree so using fewer angle 

gauges than required for the exact 26 , thus lim iting the uncertainty on the 

angle block. A block of small linear dimensions is also less cumbersome 

than a large block and is easily clamped to the turntable thus reducing the 

probability of block movement during turntable rotation. No more than 5 

gauges were required in any angle block. Since the block is made up to the 

nearest degree the m icrometer vernier settings w ill be the same at the two 

reflection positions and therefore uncertainties due to maladjustment of the 

verniers w ill be eliminated in ’the angle scale calibration. The maximum 

discrepancy between the true and apparent angle generated was approximately 

20 seconds of arc.

3 .3 .3  Turntable axes and crystals

The turntable axes were aligned mutually parallel by independent 

adjustment of each axis to the local gravity vector using a Talyvel, an 

electrical levelling device sensitive to inclination changes of 0.1 second of 

arc. The instrument baseplate was levelled approximately by locating the 

Talyvel head on the polished baseplate of one turntable,parallel to the line of 

the mounting feet A and C (see Fig. 3. U  ) and then,without rotating the 

turntable, locating the Talyvel perpendicular to this line. This was repeated 

for the other turntable settings noting the Talyvel readings throughout. The 

whole procedure was repeated for other turntable settings until the trend in 

the Talyvel readings showed the general t ilt  of the instrument. The 

instrument baseplate was aligned by adjusting the mounting feet A, B and C.

Each turntable axis was aligned parallel to gravity by clamping the 

Talyvel head to the turntable baseplate and rotating the turntable by hand 

through a complete revolution. If  the axis is not parallel to gravity the 

Talyvel reading w ill vary sinusoidally with an amplitude corresponding to the
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axis offset angle. The mounting feet E, F and H, I  of turntable assemblies A 

and B respectively were adjusted to reduce the Talyvel reading variations to 

a minimum. The axis were aligned paralle l to gravity to within 0.3 second 

of arc and mutually parallel to within 0. 6 second of arc.

The manufacturers tolerance on the angle between the crystal surface 

and the lattice planes is 2 minutes of arc consequently, if the crystal surface 

is optically aligned such that it is parallel to and contains the rotational axis, 

the latter alignment w ill be disturbed negligibly by X -ra y  alignment of the 

lattice plane tilts. The ball-ended screws which define the crystal surface 

plane were adjusted in the following way. The position of the rotational axis 

in the horizontal plane was located by means of a travelling microscope 

which had two-directional translation in the horizontal plane. A card with 

a fine cross cut into it was lightly fixed on to the turntable and whilst viewing 

the cross through the microscope, the turntable was rotated by hand and 

card moved in a reiterative manner until the centre of the cross remained 

stationary as the turntable rotated. The microscope cross-hairs were aligned 

to the centre of the cross which was now in line with the rotational axis. The 

card was removed and the cross-hairs acted as a reference for locating the 

position of the rotational axis in further alignment.

A rectangular glass plate (supplied by Ealing Optical Works Ltd) with 

faces parallel to 1 second of arc and aluminium-coated on one side was lightly 

clamped in the crystal mountings with the m irro r  face, which assumed the 

crystal surface plane, making direct contact with the ball-ended screws.

These screws were adjusted to align the glass block approximately to the 

vertical and the top edge of the m irro r face to the microscope cross-hairs.

An autocollimator was also set up to obtain a reflection off the m irro r face 

and then after a turntable rotation of 180° off the back of the m irro r face.
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The tilt  m icrometer and autocollimator were adjusted until the reflected beams 

off the front and back of the m irro r face were coincident in height with the 

incident beam thus locating the face parallel to the rotational axis.

The two alignment procedures required to align the m irro r to the 

microscope cross-hairs and the autocollimator are interdependent in the 

sense that adjusting the screws to satisfy one alignment condition disturbs 

their settings satisfying the other alignment condition. Consequently the 

alignments were repeated in conjunction with one another until both conditions 

were satisfied. The accuracies of the tilt  alignment and centralisation to the 

rotational axis were 1. 0 second of arc and 20 micron respectively. The 

alignment procedures were repeated, without moving the autocollimator, for 

the other turntable. The autocollimator settings required for alignment of 

both turntables differed by 0. 6 second of arc thus confirming the accuracy of 

the rotational axes alignment.

It  should be noted that the m irro r t ilt  altered when the sprung clamping 

rods were overtightened. It  is essential that the m irro r (or crystal submount) 

is lightly clamped and the three clamping rods make positive contact and 

exert equal pressure.

The crystal diffraction planes are in general not precisely parallel to

the crystal surface and therefore had to be aligned by an X -ra y  alignment
94

method which is described below with the aid of Fig. 3.12. Crystals A and

B were set in the (1, -  1) configuration with the t ilt  micrometers set to the

nominal optical zero tilt  setting. A series of rocking curves was generated

over a range of Crystal B tilt  m icrometer settings to determine the optimum

setting at which w and P simultaneously had minimum and maximum  ̂ cc cc

values respectively and the asymmetry ratio was unity. At this optimum 

setting the diffraction planes of Crystals A and B were parallel and therefore
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with respect to the (1 ,-1 )  rocking curve profile studies for which peak 

position is not important no further alignment was required (see Subsection 

2 .2 .2 ). For single and double crystal dispersion mode studies the diffraction  

planes must also be parallel to the rotational axes. Crystal B and its submount 

frame were then rotated through 180° about the axis normal to the crystal 

surface and by the above procedure the optimum tilt  m icrometer setting was 

determined. Figure 3*12'â shows that the difference between the two optimum 

tilt  m icrometer settings is twice the t ilt  e rro r of Crystal A. Appropriate t ilt  

adjustments were made to Crystals A and B to align their diffracting planes 

parallel to their respective rotational axes. Removal of Crystal A converted 

the instrument into a single crystal spectrometer for which the crystal is 

correctly aligned. The diffraction planes were aligned to an accuracy of -  ±3 

minute of arc. I t  was found that for crystals supplied by Quartz and Silice 

the optimum tilt  settings were only a few arc minutes from the optical zero  

t ilt  settings and therefore the single crystal alignment tolerances (see 

Section 2.1) were satisfied merely by inserting the crystal and sub mounts 

with the t ilt  m icrometer at the optical zero t ilt  setting.

3 .3 .4  Slits

The slits defining horizontal divergence were aligned in the following 

manner. The cross-hairs of a travelling microscope were set on a vertical 

60ym diameter w ire stretched across a groove in the locating face of an empty 

crystal submount mounted on Turntable A. The turntable was rotated by hand 

and the submount was adjusted within the location plane until the whole w ire  

appeared stationary as it rotated and was thus aligned to the rotational axis.

The centres of Slits 1 and 2 were aligned, using the travelling microscope, to 

the line parallel to and midway between the walls of the collimator assembly.
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A light beam, defined by the slits set to 0.1 mm,projected on to a translucent 

film  (Kodak),an image of the wire which was viewed from behind the translucent

f ilm  by a tra v e llin g  microscope. The source mounting bloc]; to 

which the collimator assembly is fixed was rotated about a vertical axis to 

align the light beam symmetrically in the horizontal plane about the w ire.

The alignment method for Slit 3 , s im ilar in principle to that for Slits 

1 and 2, involved clamping an aluminium block, containing an axis s lit of 9 

minutes of arc divergence, in the c rys ta l mountings o f Turn­

tab le  B. The s lit block design facilitated symmetrical location of the s lit 

about the plane tangential to the ball-ended screws and hence about the 

rotational axis also. A light source was placed behind the axis s lit and with 

Slit 3 open the turntable was set such that the beam was symmetrical about 

the w ire on Turntable A. The w ire image was again viewed by means of the 

translucent film  and travelling microscope as described fo r S l i ts  1 and 2 

alignment, s l i t  3 location was adjusted to the position at which the image 

of the s lit opened sym m etrically about the wire image as the s lit was opened.

The accuracy of s lit image centralisation about the w ire image was + 10  ym.

In the above alignment Turntable B was set at the zero Bragg angle 

setting and therefore switching the wire and axis s lit gave this setting for 

Turntable A. Turntable zero Bragg angle settings were determined to an 

accuracy of + 5 minutes of arc.

Alignment of the slits defining vertical divergence to the plane of 

dispersion was accomplished by setting the slits to the same height using a

 ̂ Turntable B assembly and the fine drive m icrom eter support table 
must be aligned (see Subsections 3 . 3 . 3 ,  3 . 3 . 6 )  p rio r to the alignment 
of Slit 3 as the screening shield which supports Slit 3 is screwed to 
these. The shield must be located such that Slit 3 position is rigidly  
fixed, with no disturbance of or stress induced in the kinematic 
location of the turntable assembly and the support table.
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vertical traverse travelling microscope. This necessitated alignment of the 

optical axis of the microscope to the plane of dispersion because the 

instrument construction dictated a different distance between the microscope 

and each slit. The microscope alignment involved clamping an 18 inch bar 

horizontally and centrally to Turntable A crystal mountings. The turntable 

was set to align the bar roughly colinear with the microscope barrel which 

pointed approximately along the line joining the turntable centres. The 

microscope was mounted on an adjusted levelling table and focussed with no 

parallax on the end of a horizontal pin attached perpendicularly to one end of 

the bar. The turntable was rotated through 180° and the cross-hairs were 

reset on the pinpoint. Any apparent difference in the height of the pin was 

due to offset of the optical axis from the plane of dispersion since the locus 

of the pin is in this plane. The height and inclination of the microscope 

barrel were adjusted reiteratively until the height discrepancy was eliminated.

The microscope barrel height was then adjusted to set the cross-hairs  

at the mid-height of the ball-ended locating screws of the crystal mountings. 

The centre of each s lit was then aligned to the cross-hairs to an accuracy of 

+ 0.1mm. The s lit settings were checked by shining a light through Slits 1 

and 2 which were set to small apertures and checking that the beam was 

symmetrical about the centre of Slit 3.

The aligned microscope was used to check that the source and detector 

move in the plane of dispersion by observing that they maintained the same 

height throughout their rotation ranges.

3 .3 .5  Source and detector position monitors

The source position monitor was aligned by inserting a m irro r in 

Turntable A crystal mountings and setting the turntable and source arm to



132

reflect a narrow beam defined by Slits 1 and 2 on to the horizontal centre of 

Slit 3. A ll slits were previously aligned as described in Subsection 3 .3 .4 .

The monitor m irro r on the source drive ring was then adjusted to set the 

m eter needle to the dip position. A second m irro r was mounted on Turntable 

B to reflect the beam on to the detector window. The illuminated area of 

the window was viewed from behind the detector which was positioned such that 

the area was central and the windows were perpendicular to the beam. The 

operative monitor m irro r at the base of the detector was adjusted as described 

above. The detector was then set behind Slit 3 and the other m irro r on the 

detector base was adjusted. The accuracy of the m irro r  alignments was + 2 

minutes of arc in terms of source or detector movement.

3 .3 .6  Coarse and fine drives

The loading of the spur gears of each coarse drive ring must not be so 

high as to impede the coarse drive movement but must be sufficient to 

eliminate play in the drive ring location in order to maintain the effective 

length of the radial arm constant and prevent slipping when the fine drive is 

in operation. The loading for each crystal drive ring is particularly critical, 

and adjustment involved noting the turntable angles generated by consecutive, 

equal movements of the fine drive micrometer. The loading was increased 

until the generated angles (3 minutes of arc) were equal to within the angle 

scale reading e rro r. It  should be noted that for all fine drive scanning in 

alignment and experiment, the coarse and fine drive backlash were removed 

over 10 degrees and 10 minutes of arc respectively.

The fine drive micrometer support table shown in Fig. 3.11 was aligned 

by placing a Talyvel on the table surface and adjusting the mounting feet X,

Y and Z. The table base was lightly clamped,without disturbing the Talyvel
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reading, to the instrument baseplate by screw S and a sprung washer. Each 

fine drive m icrometer was aligned such that at the midpoint of the traverse  

range the spindle was perpendicular to the radial arm . Each m icrom eter 

was clamped about the spindle collar in a heavy block screwed to the support 

table. The clamping was sufficient m erely to hold the m icrometer firm ly  in 

position since excessive clamping distorted the collars and impeded the 

spindle movement.

The effect of spindle sideplay of the crystal fine drive micrometers 

was demonstrated by using the complete m icrom eter traverse to generate 

consecutive 1 degree angles and noting the m icrometer scale intervals. 

Irregularities in the micrometer scale intervals were equivalent to as much 

as 10 seconds of arc turntable rotation. The m icrometer scale intervals 

required to generate 1 degree angles should be sm aller at the centre of the 

m icrometer traverse than at the extremities as a result of the tangent drive 

but this trend was not obvious.^

The fine drive speed ratios were set by fine adjustment of the lengths of 

the radial arms. The ratio of either the source -  Turntable A or detector -  

Turntable B was adjusted before the Turntable A -  Turntable B ratio in order 

to preset the source or detector radial arm length such that the ball-bearing  

determining this length located against the end of the m icrometer spindle 

throughout the m icrometer traverse range. The following sequence was 

adopted for the ratio adjustments:

a. detector-Turntable B 2:1 ratio using a preset detector radius

b. Turntable A-Turntable B 1:1 ratio using the Turntable B radius 

preset by a.

c. source -  Turntable A 2:1 ratio using the Turntable A radius preset by b.

The 2:1 ratios were adjusted in an identical manner but specific reference

 ̂ Details of spindle sideplay elimination are given in Subsection
3.2.2.g.
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w ill be made to the detector^ Turntable B ratio. The detector and turntable 

were scanned in the reflection configuration through the fine drive range and 

the position monitor reading was noted at regular angular intervals. The 

turntable radius arm length was adjusted to minimise d rift in the readings.

The readings oscillated about a mean over the 5 degree crystal scan range 

with a pitch of approximately 5 degrees and an amplitude equivalent to a 

drift in detector position of 12 seconds of arc or 1 .3  x 10  ̂ inch. S im ilar 

results to these were obtained for the source-Turntable A ratio.

The 1:1 ratio of the turntables was adjusted by scanning the turntables 

simultaneously and comparing at a 1 degree intervals the angle generated on 

one turntable with that of the other turntable. After adjusting the speed ratio  

the discrepancy between the generated angles was typically 1 second of arc  

and this discrepancy averaged out over the 5 degree scan range.

3 .3 .7  Source

The source alignment involved producing an X -ra y  photograph of the 

source by a pin-hole camera method as outlined  as fo llow s. S l i t  .1. was set to  

a small aperture (0. 2 mm square) to form the pin-hole and the film  was 

placed in a holder mounted on Turntable A. A beryllium filte r  was placed 

behind Slit 1 to block light from the source. A pair of cross-hairs located at 

the centre of Slit 2 produced an image on the film  which referenced the source 

position about the centre line of the slits. The procedure for taking a 

photograph involved converting the laboratory to a darkroom, operating the 

source at typical experimental power settings, inserting the film in a holder 

through a port in the spectrometer lid and evacuating the vacuum chamber for 

several minutes. The photograph showed a target area (2 .4  mm wide and 

7. 0 mm high) of uniform emission and the source position was adjusted (see
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Subsection 3. 2. 2. d) to set the image of this region symmetrical about the 

image of the cross-hairs. This adjustment was achieved with an accuracy 

of approximately 0.1 mm.

3. 3. 8 Measurement of the detector window transmission ratio

The incident and reflected beam intensities of Crystal B are measured 

using different windows of the double-sided detector and therefore any 

measurements which involve ratioing the input and output power of a reflected 

beam (e.g. peak reflectivity and integrated reflectivity measurements) 

require correction for differences in transmission between the two windows. 

The windows at which the incident and reflected beams are monitored are 

arb itra rily  labelled ’External' and 'Internal' respectively on account of their 

positions with respect to the centre of Turntable B. The internal to external 

window transmission ratio at a given wavelength was determined by measuring 

the intensity of a beam monochromated by reflection off Crystal A , firs tly  

with the detector in the I q measurement position i. e. immediately behind 

Slit 3,and then with the detector behind Turntable B crystal mountings with 

Crystal B removed. The intensity measurement at the I q measurement 

position was then repeated to ensure that there was no change in the beam 

intensity. The window transmission ratio was simply the ratio of the count 

rates at the two detector positions and this was used to correct observed I q 

values of measurements at the given wavelength. The ratio determination 

was repeated at other wavelengths to give a plot of transmission versus 

wavelength for the wavelength range over which crystal characterisation 

measurements were to be made.
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3 .4  Operational Procedures 

3 .4 .1  Prel im inary procedures

P rio r to a comprehensive crystal characterisation the computer 

programs (see Appendix A) were run for the crystal under study and derived 

plots showing the wavelength dependence of crystal characteristics were used 

to guide the experimental programme. The emission line and continuum 

wavelengths, at which measurements were made, were selected to give a true 

representation of the wavelength dependence of the measured characteristics 

over the required wavelength range. It  was essential to have p rio r knowledge 

of the detector window transmission ratios (see Subsection 3. 3. 8) for the 

wavelengths selected because if the ratios were determined after the crystal 

characterisation there was a risk of invalidating measurements if the fragile 

detector windows were damaged in between the time of the measurements 

and the determination of the required ratios. I f  the crystal to be characterized 

was susceptible to attack from the laboratory atmosphere then the (1, -1 )  

rocking curve studies were conducted firs t since the parameters of the (1, -1 )  

rocking curve are senstive to the crystal condition. This was particularly  

important for measurements on perfect crystals for only in the case of perfect 

crystals which have suffered no deterioration can the perfect lattice model be 

tested experimentally.

The firs t experimental procedure was the preparation of the source which 

involved inserting a filament and plastic window and coating the target with a 

cocktail of the m aterials necessary to generate the required emission lines.

I f  more than say ten emission lines and thus more than one target loading 

were required the firs t cocktail contained m aterials necessary to generate the 

t ilt  alignment emission line. In general, t ilt  alignment is required before 

any measurements and so the s lit apertures were set according to the criteria
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given in Subsection 2. 2 .2 . These shall be designated as nominal s lit settings 

for in the course of the tilt  alignment further adjustment is normally required.

The crystal tilts were then aligned by the X -ra y  method outlined in Sub­

section 3. 3. 3. The alignment was performed at a wavelength for which 

is sm all\see Subsection 2. 2. 2) and counting statistics are good. Operation 

procedures for generating the (1, -1 ) rocking curves required by the t ilt  align­

ment method are given in detail in Subsection 3 .4 .3 . Crystal bending strain, 

lattice defects and non-uniformity in the crystal surface cause peak broadening 

which is partia lly  dependent upon the size of the crystal surface reflecting area.

The dependence o f  the p ro f ile  c h a ra c te ris tic  upon th is  area is  

shown for ADP in Fig .6 .8  in which the area is expressed in terms of the size 

of slit apertures determining the area size. It  was possible in the cases of the 

crystals studied to reduce the nominal slit aperture settings in order to 

minimise peak broadening and still maintain a sufficiently high beam count rate 

and a > where a  is the horizontal beam divergence (see Section 2 .1). 

Since (1, -1 ) rocking curve studies contribute a major part to crystal charact- 

isation, details of crystal scan preparations are given in Subsection 3. 4. 3.

3. 4. 2 Bragg dispersion function studies

The fundamental measurement required in defining the Bragg dispersion 

function was the measurement o f 6  ̂ (defined in  the in troduction  to  

Chapter 2) at various reference emission lin e  wavelengths using a s ingle  

crystal configuration. Each reference line was selected according to the

criteria  given in Subsection 2 .1 . a and the source target m aterial chosen to 

generate that line was either the element of the emission line or a compound 

containing the element for which the chemical shift of the line was known. The

apertures of Slits 1 and 3 could be set sufficiently small to fulfil the resolution

t  . ~  ~----------------------------------------------
Since w^  ̂ decreases with decreasing wavelength the selected
wavelength was near the short wavelength end of the o < X < 2d range.
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and vertical divergence conditions given in Subsection 2.1 . c. and yet give an 

acceptable beam count rate. I f  the angle between the crystal face and the 

diffraction planes is large or unknown the crystal tilts would have to be aligned 

by the 2 - reflection X -ra y  alignment method outlined in Subsection 3. 3. 3. In 

the case of crystals studied, the tolerance of the manufacturer^ on the above 

angle was about 2 minutes of arc and therefore the crystal could be aligned 

to within the required tolerance (see Subsection 2 .1 . c) by setting the tilt  

m icrometer at the nominal optical alignment setting as outlined in Subsection 

3 .3 . 3.^ The crystal temperature was measured by hanging a mercury 

thermometer inside the spectrometer immediately above the crystal. The 

thermometer was sealed in a glass tube at atmospheric pressure to ensure 

that the tank vacuum did not affect the thermometer readir^. The supports of 

this tube insulated the tube from the walls of the spectrometer. The errors  

incurred in this method of crystal temperature measurement are discussed 

in Chapter 4.

The procedure for the measurement of 0^ involved scanning the crystal 

through the peak of the emission line for the crystal configurations A  and B 

shown in Fig .2 . la .  The incident beam intensity was measured (see Sub­

section 3 .4 . 3) before and after each scan m erely to ensure that there was no 

significant intensity change during the course of the scan. P rio r to each scan 

electronic levels were set (see Subsection 3 .4 .3 )  and the crystal was scanned 

rapidly through the peak to determine the final scan range and settings. The 

latter were selected to give about 30 sampling bins in the peak fwhm and 

5, 000 counts per bin. In the interest of avoiding excessive scan durations, 

which introduced errors due to

 ̂ Société Quartz et Silice, 8 Rue d’Anjou, 75 -  Paris 8. Supplied by 
Nuclear and Silica Products Ltd. , 44-46 The Green, Wooburn Green,
High Wycombe, Bucks, HPIO OEU, UK.

^ Nevertheless the X -ra y  alignment method was employed to ensure 
correct alignment.
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changes in source intensity, the scan range was normally little  more than 

the peak fwhm. The chart record was marked and the temperature was 

recorded at regular angular intervals throughout the course of the scan. The

position of each peak was determined from the curve through the mid-points 

o f horizonta l chords drawn at d iffe re n t heights through the curve. To f ix  d^  ̂

and a  , measurement of 0  ̂was repeated fo r  a chosen wavelength at d iffe re n t  

temperatures over a 10°C range. The crystal temperature was adjusted by 

altering the temperature controlled laboratory a ir  conditioning. The crystal 

assumed a new temperature very slowly over a period of several hours due 

to the thermal in e r t ia  of the spectrometer resulting from its large mass.

The angle scale was calibrated for each wavelength by the method given in 

Subsection 3 .3 .2 .

3 .4 .3  (1, -1 ) Rocking curve studies

a. General procedure Slit settings for the (1, -1 ) rocking curve at the tilt  

alignment wavelength were decided upon by the procedure and crite ria  outlined 

in Subsection 3 .4 .1 .  At longer wavelengths and hence higher Bragg angles 

larger horizontal divergence s lit apertures may be used for beam reflection 

off a given surface area. This yields higher beam count rates and also 

increases ct the horizontal beam divergence, which is necessary if 

ct > w^  ̂ is to be maintained because for the crystals studied w^  ̂

increases with wavelength. For any wavelength at which slit settings were 

increased (1, -1 ) rocking curves were obtained for the sm aller and larger 

slit settings to ensure that there was no change in the profile.

The nominal setting of Turntable A for a typical (1, -1 ) rocking curve 

was determined by adding the calculated Bragg angle to the zero Bragg angle 

setting. Turntable A was located at this setting and the source was located 

at the 20 reflection position using the position monitor as a reference. If,
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as is normally the case, emission line radiation is reflected, then Crystal A 

and the source must be set at the peak position of the line to obtain maximum 

count rate. The detector was set behind Slit 3 to monitor the beam reflected 

off Crystal A. Maintaining the phase monitor dip position throughout,the 

crystal and source were located at other angle settings in several minutes of 

arc intervals from the nominal setting and were finally located at the setting 

which gave the maximum count rate.

A proportional counter energy spectrum of the beam reflected off Crystal 

A was obtained on the multichannel analyser set to accumulative mode. The 

spectrum is normally made up of contributions from low energy am plifier 

noise, radiation due to specular reflection if 9 is low, the desired emission 

line radiation, continuum and second order radiation if the source voltage is 

above twice the excitation potential of the emission line. Norm ally the source 

was operated at just below twice the excitation potential but if, for the purpose 

of obtaining a high count rate, a higher source voltage was required then the 

detector resolution was normally sufficient to separate firs t and second order 

radiation. The am plifier gain and detector voltage were set to give sufficient 

separation, between wanted X -ra y  signal and unwanted signal on the pulse 

height spectrum, to allow discrimination between them. The lower lim it of 

the detector voltage was such that the number of wanted X -ra y  signal electrons 

collected was at least three orders of magnitude greater than the number of

electrons coming from the counter am plifier system. The upper lim it was

101
determined by the lim it of proportionality in the detector response. The 

desired energy band of the spectrum was isolated, such that the counting 

electronics only monitored radiation in this band, by means of the upper and 

lower gate levels of the single channel analyser. Each level was set by 

observing on the multichannel analyser a narrow band pulse from the pulse
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generator then adjusting the pulse energy to the upper or lower lim it of the 

required energy band and by observing the ratem eter display adjusting the gate 

level to the point at which it just discriminates against the pulse. The selected 

energy band was checked to ensure there was no contamination from low 

energy noise and second order radiation. The check involved determining the 

transmission of the beam through a selection of filte rs and comparing the 

measured transmission values with those obtained from calculated plots of 

transmission against wavelength based on literature values of linear absorption 

coefficients. I f  the reflected beam was of low intensity the low energy 

noise could contribute a high proportion to the pulse height spectrum making it 

impossible to separate this noise from the desired energy band. In such a 

case a suitable filte r was inserted in the beam throughout measurements at 

that wavelength to discriminate against the low energy noise.

Crystal B was set in the (1, -1 ) configuration at the nominal angle setting 

determined as for Crystal A. The detector was located at the 26 reflection 

position again using the position monitor as a reference. The resultant count 

rate was usually zero because the (1 , - 1 ) rocking curve fwhm is often 

considerably sm aller than the uncertainty in the nominal crystal position and 

so Crystal B and the detector were scanned (if  w^  ̂ $ 20 seconds of arc) or 

pulsed by the coarse drive about the nominal position in order to locate the 

peak. A pulse height spectrum of the beam reflected off Crystal B was 

accumulated and the single channel analyser gate levels were set as described 

above. The source power was then adjusted if necessary to a beam intensity 

sufficient for good counting statistics (see Subsection 3. 4. 3. b). The instrument 

was now prepared for (1 , - 1 ) rocking curve measurements.

b. Linear profile study The central region or main body of a (1, -1 ) rocking 

curve may be adequately defined by linearly plotting the count rate of the beam 

reflected off the second crystal against the crystal position. This is easily
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achieved by automatically scanning the crystal at a constant angular velocity 

and monitoring the reflected beam on a linear response chart recorder. A 

useful prelim inary to a linear profile study was a rapid scan through the 

peak region of the (1 , - 1 ) rocking curve to obtain approximate values of 

and which then guide the choice of scan settings. The linear profile

study involved measuring the intensity of the beam incidents upon Crystal B 

before and after the (1 , - 1 ) rocking curve scan in order to check that the 

intensity did not change by more than a few per cent and to determine the 

average intensity for the scan which is required for the measurement of 

The detector was set behind Slit 3 and by the procedure described in 

Subsection 3 .4 . 3. a the single channel analyser gate levels were set and the 

scaler-tim er was set to accumulate approximately 10, 000 counts. If  the 

incident beam count rate was less than 2 0 c/sec then in the interest of 

efficiency less counts were accumulated and the background count rate, which 

for low beam intensities makes a significant contribution to the total count 

rate, was also determined. The background count rate determination involved 

offsetting the detector from Slit 3 and, retaining the same electronic settings, 

accumulating sufficient counts for the uncertainty in the background count rate 

to be less than ~ 1 % of the true beam count rate.

After measuring the initial incident beam intensity, crystal B was set 

to the (1 , - 1 ) peak position with the detector at the 26 reflection position and 

the single channel analyser gate levels were set for the scan and background 

count rate determinations. Crystal B and the detector were then offset from 

the peak to the side of the peak at which the scan was to be started in order 

to determine the initial background count rate. The logarithmic wing studies 

showed that the full range of a (1 , - 1 ) rocking curve was normally about 

sixty times the fwhm and using this criterion Crystal B and the detector
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were offset well outside this range. The background count rate was 

determined over a 1000 sec time period. Crystal B and the detector were 

then set at the scan start position removing coarse and fine drive backlash 

as described in Subsection 3. 3. 6 . The scan start position was determined by 

the scan range which was normally about ten times the fwhm . The settings 

of the peak count rate, the digital ratem eter sample time, the scan speed and 

the chart recorder were based on the following crite ria . An accurate 

determination of and w^  ̂ requires a peak with 25 sampling bins per

fwhm, 2 0 0 0  counts per bin at the peak, a scan duration of ideally no more 

than 2  hours (to ensure negligible change in source intensity), a chart record 

ordinate axis setting giving a peak height of about 1 0  cms and a chart recorder 

speed which results in the fwhm corresponding to about 4 cms on the chart 

record. Typical scan settings were as follows: peak count rate ■ 200 c/sec 

sample time = 1 0  secs; scan duration ~ 2  hours; chart recorder speed = 2 0 0 mm/ 

hr. Immediately before the scan was started the starting angle, sample time, 

fine drive pulse frequency, chart recorder speed and the correspondence 

between chart recorder ordinate axis and count rate, we re noted. The counter­

tim er was set to zero, the multichannel analyser screen was cleared and 

using the pulse generator the energy of a pulse was set to the gate level energies

in turn using the digital ratem eter to find the energy at which the pulse is 

discriminated against. The pulse signal was accumulated on the multichannel 

analyser and in this way the gate levels were marked on the multichannel 

analyser baseline. This was to ensure that throughout the scan, during which 

the multichannel analyser accumulated counts, no unwanted radiation was 

included in the energy band defined by the gate levels and the signal 

corresponding to the desired radiation did not move out of this energy band 

due for instance to change in am plifier gain or detector voltage. To start
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the scan the Crystal B and detector fine drive m icrometers, counter-tim er, 

and multichannel analyser on accumulate mode were set running and the 

continuously running chart recorder was marked. At the end of the scan the 

finish angle was noted. Also noted we re , the tim er reading which by means 

of a plot of scan speed against fine drive pulse frequency checked that the scan 

speed was uniform^and the counter reading which gave a rough check on . 

Crystal B and the detector were offset from the peak and the background count 

rate determination was repeated. The two positions of Crystal B for the 

background count rate determinations are symmetrical about the peak. The 

detector was then set behind Slit 3 and after resetting the gate levels the final 

beam intensity was measured.

A curve was drawn by hand through the stepped chart recorder trace and 

from this curve and the peak count rate were measured. The scan 

background count rate was subtracted from the peak count rate and this was 

divided by the average incident beam intensity corrected by the detector 

window transmission ratio (see Subsection 3 .3 .8 ) to give

If  the peak count rate is low an inordinate scan duration is required to 

obtain a peak with counting statistics sufficiently good for an accurate 

determination of P . In  this case P may be measured separately after
CC CO

the scan as follows. The intensity of the beam incident upon Crystal B was 

measured and then Crystal B and the detector were positioned at small 

angular intervals about the peak position using the fine drive m icrometer 

scales to set the intervals and at each position a count rate was accumulated 

for a time period sufficient for good counting statistics. The peak count rate 

could easily be determined to an accuracy of + 2 % from a hand plot of count 

rate against Crystal B position. Finally the measurement of the incident 

beam intensity was repeated and from the average beam intensity and peak
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count rate; both corrected as outlined above, was calculated. The

method employed for this measurement of P^^ is used in the logarithmic 

profile study and so this measurement could be included as part of that study.

c. Logarithm ic profile study The wings and peak of a (1, -1 ) rocking curve 

differ in height by orders of magnitude and therefore in order to represent 

both on the same plot the ordinate axis scale must be logarithmic. An 

automatic scan method using a logarithm ic response chart recorder is 

inadequate because for example in the fa r wings the count rate is so low that 

a long sample time would be required to yield good counting statistics and 

thus to give an adequate number of sample bins in the "fwhm an excessive 

scan duration would be required. In general scan settings would have to be 

varied for different regions of the peak and this would create practical 

difficulties. This problem was overcome by stationing Crystal B and the 

detector at suitable positions in the (1 , - 1 ) rocking curve range and at each 

position determining the count rate over a time period sufficiently long to 

yield good statistics. In detail the method began by determining the initial 

incident beam intensity as given in Subsection 3. 4 . 3. b. The detector and 

Crystal B were then located near the (1, -1 ) rocking curve peak position and 

after resetting the electronic levels they were stationed at positions around 

the centre of the peak and the count rates at these positions were measured 

in order to determine accurately the peak position (and also the peak count 

rate from which P^^ can be calculated (see Subsection 3 . 4 .  3Jb)). The crystal 

and detector were stationed at positions increasingly further from the peak 

until they were outside the (1 , - 1 ) rocking curve range at which point only the 

background count rate was measured. A logarithm ic plot of count rate against 

crystal position was made during the course of the measurements in order to 

guide the choice of crystal positions such that the minimum number of count
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rate measurements were made in defining the (1, -1 ) rocking curve. In the

far wings of the curve counting times of 1 0 0 0  secs were required and so the

incident beam intensity was measured occasionally in order to monitor intensity

changes during the long time period required by this experimental method.

The incident beam intensity was also measured at the end of the experiment.

The count rate for each crystal position was corrected for the background

count rate and divided by the incident beam intensity corrected by the detector

window transmission ratio and plotted on a Ic^arithmic scale against crystal

position which is defined with respect to the peak position. Typical plots

showed the wings extending to 3 or 4 orders of magnitude down on the peak.

d. Measurement of the reflection integral and polarisation ratio Two types

of measurements using 2 - reflection modes were required in the measurement

of reflection integrals and polarisation ratios. These were measurements

performed in the parallel (1, -1 ) mode and R  measurements in the
ab

asymmetric reflection mode. The procedure for R^  ̂ measurements was

essentially identical to the procedure used in the linear profile study, the

main differences being that the scan was over the full range of the (1 , - 1 )

rocking curve (determined in the logarithmic profile study) and therefore a

higher scan speed was used in order to lim it the scan duration to a reasonable

time period. I f  the peak count rate was low then the background made a

significant contribution to the total count and therefore it was important to use

a long counting time in the background count rate measurement to obtain a low

uncertainty in the scan background count.

The procedure for R measurements involved inserting a large-2d  
ab

monochromator into Turntable A crystal mounting and then aligning the source 

and monochromator as described in Subsection 3 .4 . 3. a. The operation 

procedure was then identical to that of the R measurements.
CC
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e. Measurement procedures for perfect and non-perfect crystal samples 

Definitions and processing of perfect and non-perfect samples are given in 

Chapter 4. In the (1, -1 ) rocking curve studies of perfect samples, two 

crystals were removed from their dry-atmosphere sachets and immediately 

inserted into the crystal mountings of Turntables A and B and the vacuum 

chamber was immediately evacuated. If, during the course of measurements 

involving perfect samples, the tank vacuum had to be released, the crystals 

were immediately transferred to a desiccator. A given crystal sample was 

always inserted in the same turntable throughout all measurements using that 

sample, so that small differences between the crystals in surface quality 

and crystal characteristics did not affect the results.

In all (1, -1 ) rocking scan studies of non-perfect samples, the perfect 

sample used in Turntable A for perfect crystal studies was retained as the 

monochromator and the non-perfect sample was inserted in Turntable B as 

the test crystal. The reason for this procedure is that the single crystal 

response of the f irs t crystal can be determined by unfolding the (1 , - 1 ) 

rocking curve of the perfect samples. This means that only the single crystal 

response function of the non-perfect sample is unknown and this may be 

determined by unfolding the perfect sample single crystal response function 

from the measured (1, -1 ) rocking curve of the non-perfect sample. The 

present study was restricted to comparing only the (1 , - 1 ) rocking curve 

parameters of perfect and non-perfect samples but for future work a 

comparison of the parameters of the respective line spread functions is 

suggested.

3 .4 .4  Absorption edge studies

In the wavelength region of an absorption edge is normally a rapidly 

varying, discontinuous function of wavelength. 2 - reflection methods for
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reflection integral measurements are unsuitable for such a wavelength region 

because it is impossible to interpolate between reflection integral values 

measured at different wavelengths and defining by numerous

measurements would be inefficient. The problem was overcome by making a 

single crystal scan through the wavelength region that encompasses the 

absorption edge. This wavelength region also included wavelengths at either 

side of the edge at which the reflection integrals had been measured by a 

2 - reflection method. These measured reflection integral values were used to 

calibrate the intensity versus wavelength curve obtained from the scan.

The instrument was set up in a single crystal configuration with the 

crystal inserted in Turntable B and Slits 1 and 3 defining the horizontal 

divergence of the beam such that the resolution is high enough to resolve the 

edge and any e%e fine structure which may be present. In the wavelength 

region immediately spanning the edge and at the reflection integral calibration 

wavelengths a reasonably flat continuum source spectrum was required since 

the presence of an emission line in these wavelength regions would distort 

or even mask the characteristic shape of the intensity versus wavelength 

curve. Any traces on the target of elements which give rise to such emission 

lines were removed by cleaning the target. This entailed dipping the target 

for about 10 sec in an etching solution of 6 . 5 mis distilled water, 1ml HCl 

(1 .16), 30 mis H2 SO4  (1.83), 12.5 mis HNO3  (1.40) and then rinsing 

thoroughly in distilled water.

I f  the crystal is a chemical compound the absorption edge of the 

particular constituent element w ill normally be shifted in energy from the 

absorption edge of the pure element because of chemical combination. In 

order to determine the edge shift and also calibrate the angle scale with 

respect to wavelength the target was lightly coated with compounds which
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produced two reference emission lines. The wavelengths of the reference 

lines were sufficiently far removed in wavelength from the edge and the 

reflection integral calibration wavelengths as not to disturb the intensity 

versus wavelength curve in these regions.

Prelim inaries to the crystal scan entailed stationing the crystal at both 

ends of the scan range in order to select the single channel analyser gate levels 

necessary to encompass the continuum energy at both ends of the scan. The 

crystal was then scanned rapidly through the entire scan range in order to 

decide upon the scaling of the chart recorder ordinate axis and also the sample 

time and scan speed required to define clearly the edge and any fine structure. 

The crystal was then scanned using these final settings.
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CHAPTER 4

CHARACTERISATION OF PENTAERYTHRITOL (002)

4.1 Introduction
0

Pentaerythritol (PET, C(CH^OH)^, 2d - 8.74 A) is noted for its 

high reflection efficiency i.e. high reflection integral. Large 

(- 15 X  8 X- 8 cm^) near perfect samples can be economically grown 

(from water solution) on a commercial scale. PET cleaves easily along 

the commonly used (002) planes so that precision cutting and optical 

finishing is not required in sample preparation. The above factors 

combined with a lattice period of d - 4.37A for the (002) planes, 

render PET (002) a particularly useful Bragg analyser in the 3 - 8A 

soft X-ray region. PET analysers have thus found application in 

X-ray fluorescence analysis, in the study of laser initiated high- 

temperature high-density plasmas and was chosen for use in 

astronomical studies in the ANS spacecraft and in NASA’s HEAO-B 

spacecraft. Clearly PET (002) is sufficiently useful to merit study.

The only notable previous study is that of the author's 

predecessor Leig^^ in which PET was one of several crystals studied 

briefly, as part of a pilot study for a more extensive programme of 

work. The following study combines and continues the earlier work, 

to give a detailed characterisation of PET (002) through calculation 

and measurement.

4.2 Data Sources and Details of Numerical Evaluation

The atomic co-ordinates and unit cell parameters were obtained
102

from Wyckoff (Vol. 5, p.7). At the time of executing the PET 

calculations allowance for temperature effects was made by the Debye- 

Waller method only (see Sec. 1.7). It is uncertain what value should
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be chosen for the Debye temperature factor M but not significant

effect on results was found for any value in tie range of 0 < M < 0.1
103which are reasonable limits to M sô  M was set to zero. A later

inclusion in the calculations allowing for isotropic and anisotropic

temperature parameters prompted a search for such parameters. Since
104only crude isotropic temperature parameters were available it was

finally decided that there should be no inclusion of temperature

effects in the PET calculations. The crystal density (1.39 grms/cc)
105

was given in the manufacturers data sheet.

Atomic scattering factors required for all crystals studied 

were calculated from analytical expressions based on calculations 

using Hartree-Fock wavefunctions (see Sec. 1.3 and Appendix A).

Since the constituent atoms of PET are low Z elements and 

the photon energies relevant to Bragg scattering are considerably 

higher than the absorption edge energies of these atoms, the 

approximations employed in deriving Expressions (1.21k),(1.212) can 

be made. Also the K:electrons of the constituent atoms of PET can 

be approximated as hydrogenic wavefunctions and thus Honl's 

calculation is appropriate to the calculation of the anomalous 

dispersion terms of atomic scattering factors. Expressions (1.21n),(1.21o) 

were evaluated for all K-shell orbitals in PET. It is clear from 

Expression (1.24) that once Afj(w) is found for a given atom, then 

the linear absorption coefficient is easily found. This was done

and the results compared favourably with the measured data of Stainer's
62

catalogue thus generating confidence in the employed Honl calculations. 

Linear absorption coefficients were calculated from anomalous 

dispersion terms, for PET and all other crystal calculations.
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4.3 Bragg Dispersion Function Measurements

Measurements of the Bragg dispersion function were made using 

a good quality UK5 crystal sample. The emission line Ca Ka^ was 

chosen for measurement of d^^ and a since at this wavelength 

the contribution to 6^ from anomalous dispersion is 0.2" and 

therefore can be neglected. The Ca Ka^ line was generated using 

CaO and hence the wavelength of the line was corrected for chemical 

shift. Numerical details of the shift and corrected wavelength are 

given in Table 1. The uncertainty on the wavelength arising from 

uncertainty on the chemical shift could only be estimated on the 

basis that chemical shift values are quoted to 0.01 é.v and therefore 

any error in the chemical shift must be a small integral number times 

this value. Although only one value for the chemical shift could be 

traced, for other lines for which there are more than one measured 

value, the values vary by about 0.02 ev and this was adopted as the 

uncertainty on the chemical shift of the Ca Ka^ line.

Measurements of 9^ were made over the temperature range 

18 - 25°C. Details of the measurements together with the corrections 

to 9^(meas.) are given in Table 1. The uncertainty on 0^ 

measurements (excluding uncertainties due to temperature variations) is 

2 . 2".

A calculated value for A0 of 13.5" was subtracted from each 

0̂  value to give 6g values. A plot of d (derived from 0g) against 

temperature T is shown in Fig. 4.1. The best line through the points, 

obtained from a weighted linear regression of T upon d , gives values 

for d^g and a as below. Literature values are also shown.

di8 (A)
4a (x 10 )

This work 4.367910.0003 1.110.1

Literature values 4.36310.001^^ 1.210.08’°̂
4.3710.01
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Clearly there is good agreement between the measured values of this 

work and literature values. It should be noted that the centroid of 

the data points in Fig. 4.1 is close to 23°C rather than to 18°C.

Since the standard error on points along the best line is a minimum 

at the centroid it is preferable for the centroid of the data 

points to be close to the standard crystal lograohic temperature 18°C.

This could not be achieved due to the difficulty of maintaining the 

instrument temperature lower than about 17°C. The more accurate value 

for d obtained at 23°C is d^^ = 4.370310.OOOIA . In spite of the 

above difficulty the uncertainty on d^g is considerably smaller than 

the uncertainties of previous measurements.

The determination of A0 (X) for PET required measurement of 

A0 at wavelengths near the middle and the long wavelength end of the 

PET wavelength range. The emission line Cl Ka^ was selected for 

measuring A0 near the middle of the wavelength range. This line 

was selected on account of the fact Bearden's wavelength tables gives 

the wavelength for NaCl and since this was used as the target material 

in this work there is no need to correct for chemical shift. However, 

this emission line is omitted from Table 2.1 which lists reference 

wavelength lines for this wavelength region. This table was compiled 

after the present work and on reflection if this table had been available 

at the time of this work then Cl Ka^ would not have been chosen. 

Nevertheless Bearden's error estimate for Cl Ka^ wavelength is 21 ppm 

(see Table 4.2) which is adequately small for the present work. The 

emission line Si Ka^ was selected for measuring A0 at a long wavelength, 

The line was generated using SiC for which the chemical shift is known. 

Numerical details of the shift and corrected wavelengths are given in 

Table 4.3. The uncertainties on 0^ measurements for Cl Ka^ and 

Si Ka^ are 2.3" and 2.76" respectively. These uncertainties exclude
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uncertainties due to temperature variations. A6 was evaluated, 

by the method outlined in Section 2.1, for Cl Ka^ and Si Ka^ 

using the results shown in Tables 4.2 and 4.3 respectively 

together with a and d^g determined from the Ca Ka^ data.

The measured and calculated results are as follows

Line * A0 (calc.) A0 (meas.)
(A) (arc sec) (arc sec)

Cl Ka^ 4.7278 21.2 13.9±5.6

Si Ka^ 7.12453 46.9 45.2±9.5

The two measured values are shown on a plot of calculated A0 (X) 

in Fig. 4.2.^

A comparison of measured and calculated values of A0 shows 

that the measured A0 values reveal the general trend of A0 (X) 

but the uncertainties on the measured values are too large to allow 

a clear definition of A0 (X) . The magnitude of the uncertainties 

is due mainly to the large uncertainty on 0̂  arising from temperature 

variations which in turn arise from the large ct of PET. Uncertainties 

arising from this source are approximately 5 times greater than those 

arising from other sources discussed in Subsection 2.I.e. Furthermore 

the method employed for temperature measurement incurs uncertainties 

which are difficult to estimate. For instance the thermometer measures 

the temperature inside the vacuum chamber but does not measure the 

crystal temperature directly. If the determination of A0 (X) is to 

be part of future measurement programmes then crystal temperature 

control and measurement must be significantly improved. In summary, 

the large a of PET allows accurate measurement of a itself but 

gives rise large uncertainties on A0 (X) .

'Note that, for the analysers studied (with the exception of ADP), 
the contribution to A0 from anomaloüs dispersion is too small 
to allow graphical distinction between A0 and the contribution 
to A0 from normal dispersion alone.



Line
Target material 
Chemical shift 
X (corrected)

Ca Ka 
CaO 1
-0.41ev *
3.35876±0.00004A

Corrections to 0^(meas.)

A0(ang.) 
A0 (ijj)
A0(abs.)

8 . 2"
-0.4"

0 . 2"

Tempe
(

Scan 1

rature
°C)

Scan 2

Mean
Temp.
(°C)

0 ̂(meas. )

17 .3 18 .9 18. 1 22° 36' 46" 22° 36' 54"

20 0 21 0 20.5 22° 36' 25" 22° 36' 33"

20 .2 21 4 20. 8 22° 36' 21" 22° 36' 29"

21 3 22 5 21.9 22° 36' 10" 22° 36' 18"

22 2 23 0 22.6 22° 36' 06" 22° 36' 14"

23 0 24. 2 23.6 22° 35' 52" 22° 36' 00"

23 3 24 9 24. 1 22° 35' 51.5" 22° 35' 59.5"

23. 6 25. 0 24. 3 22° 35' 50" 22° 35' 58"

24, 3 24. 8 24. 55 22° 35' 46.5" 22° 35' 54.5"

Table 4.1 PET (002) Bragg dispersion function
Measured data for Ca Ka,



Line
Target material 
Chemical shift

Cl Ka 
NaCl
No correction^required (see text) 
4.727810.0001Â

Corrections to 9^(meas.)

A0(ang.) 
A0(4)
A0(abs.)

6.3"
•0 . 6"
0.4"

Temper
(°C

Scan 1

ature
)
Scan 2

Mean
Temp.
(°C)

0^(meas.)

17.5

22.4

24.2

19.8

23.3

25.1

18.65 

22.85

24.65

32° 46’ 20" 

32° 44' 49" 

32° 44' 27"

32° 46' 26" 

32° 44' 55" 

32° 44' 33"

Table 4.2 PET(002) Bragg dispersion function
Measured data for Cl Ka,

Line
Target material 
Chemical shift 
X (corrected)

Si Ka
SiC
0.22 ev *
7.1245310.00013A

Corrections to 0^(meas.)

A0(ang.) 
A0 (ij,)
A0(abs.)

3.3"
- 1 . 2"
1.7"

Temper
(°C

Scan 1

ature
)
Scan 2

Mean
Temp.
(°C)

0^(meas.)

17.1 18.7 17.9 54° 39' 32" 54° 39' 36"

23.0 23.8 23.4 54° 36' 53" 54° 36' 57"

22.9 24.1 23.5 54° 36' 12" 54° 36' 16"

25.8 26.7 26.3 54° 34' 33" 54° 34' 37"

25.7 27.1 26.4 54° 34' 12" 54° 34' 16"

Table 4.3 PET(002) Bragg dispersion function
Measured data for Si Ka
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Figure 4.1 PET(002) Lattice period versus temperature plot for
Ca Ka; measurements.
The plot shows the measured data points and the best line 
obtained from a weighted linear regression of T upon d
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Figure 4.2 PET(002) The shift of P,(0) from the simple Bragg angle 0
due to dispersion
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4.4 Line Spread Function Measurements

4.4.1 The Bragg reflection integral

a. Comment on the calculated results

Two (related) matters are immediately clear from inspection 

of Fig. 4.3. The Darwin zero-absorption result is everywhere quite 

close to the Prins result, even near the long wavelength limit.

This can be interpreted as being due to the unit cell absorption 

cross section being everywhere much smaller than the corresponding 

scattering cross section. This factor also causes the Darwin 

zero-extinction function to be everywhere much larger than the 

Prins result. This latter is interesting. Figure 4.3 shows that 

in any spectrometer whose total light throughput is proportional 

to a sample of PET (002) which is described by the zero-

extinction function is more ’efficient’ than a perfect sample by
o oabout factor 4 at 7A and by more than factor 10-̂  at lA . Although

the primary interest of this work is in first order diffraction it is

useful to have information on higher order results for the sake of

users making higher order measurements and also in order to estimate

where necessary the magnitude of higher order contamination in first

order experimental studies. The calculated results for orders

n = 1-4 are shown in Fig. 4.7. The higher order results are over

an order of magnitude down on the first order result and therefore

it can normally be expected that higher order contamination of

reflected first order radiation will be small.

b. Measurements

Nearly all measurements of the Bragg reflection integral 

were made using the dispersive asymmetric 2-reflection configuration

t Superscript n refers to the reflection order. Wherever this 
superscript is omitted, first order reflection should be assumed.
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with potassium acidphthalate as the monochromator. The 

values for aged material were derived from R values of the
CC

(1,-1) parallel configuration. R^ was also derived from R^^

measurements for perfect material at long and short wavelengths 
0

8.34 and 2.75A since at these wavelengths the uncertainty in 

the polarisation correction required to evaluate R^ from R^^ 

is small thus little extra advantage is gained from the asymmetric 

configuration method. The results presented have been corrected 

for polarisation bias incurred in 2-reflection measurement methods.

i. Perfect material Several samples of solution grown PET,

cleaved to expose the 002 planes, were obtained.^ They were

handled, shipped and stored prior to use with some care and in

sealed desiccated containers. Results of R^ and R^^ measurements

are shown by filled circles in Figs. 4.3, 4.4 respectively. The

general key to the graphs Is given on the page preceding them.

Measurement uncertainties on R values of all materials are inc
general 6% or less arid on R^^ values, 2% or less. Fuller details 

of measurement uncertainties are given in Tables 4.4, 4.5.^ The 

measured values are everywhere satisfying close to the predictions 

of the Prins model so that from this (restricted) point of view the 

material may be regarded, even in its surface layers, as possessed 

of nearly perfect lattice structure. This latter conclusion must 

be tested against the results of other crystal characteristic 

measurements.

ii. Aged material. Following the above study the samples were in 

intermittent use in general laboratory conditions for a period of

 ̂Manufactured by: Quartz et Silice, 8 rue D'Anjou, 7508 Paris. 
Supplied by: Nuclear and Silica Products Ltd., 44-46 The Green, 
Woobum Green, High Wycombe, Bucks. HPIO OEU, U.K.

 ̂ In general measurement uncertainties are included in the result 
tabulations rather than in the figures (as error bars]in order to 
avoid confusing the figures.
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about two years, and the measurements were repeated; measured 

results for the sample used two years previously for the fresh 

stock study are presented (open circles) in Fig. 4.3, 4.4. The 

R results were derived from R values hence the measurement
C CC0 o

uncertainties on R^ at 4.85A and 7.13A are appreciably 

greater than at other wavelengths (see Table 4.4) on account of 

the larger uncertainties on the polarisation corrections, a full 

explanation for which is given in Section 2.2.1. A dramatic change 

in the properties of the sample is clearly seen and this is 

attributed to chemical attack on the material by the laboratory 

atmosphere. It can be expected that any such chemical action will 

disturb the lattice in such a way as to reduce both the primary and

secondary extinction coefficients and thus change the function 

R^ (X) in the direction of the zero-extinction limit.

iii. Sample spread of characteristics. It follows from the above 

description of the marked aging instability of the characteristic 

of the given sample that one must expect substantial spread of the 

characteristics of a given selection of samples according to their 

individual histories. However, based on tests of three samples, it 

has been found that the quality of analysers supplied by Nuclear

and Silica Products Ltd. is such that analysers,when freshly supplied, 

are closely described, say to within a few percent, by the typical 

result shown in Fig. 4.3.

iv. Processed material. The large factor which separates the 

zero-extinction and perfect lattice functions for R^ (X) suggest 

that, at the expense of crystal resolving power, it is possible to 

increase the reflection integral by damaging the crystal surface 

thereby reducing extinction. The manufacturer supplied samples of
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PET which had been subjected to a proprietary process in order to 

induce such surface damage. This process was solution etching 

using water as the solvent. Measured results for R and R
^ C CC

for one such treated sample are shown as open triangles in

Figs. 4.3, 4.4. This shows that substantial improvement in the

efficiency of the material is indeed achieved compared with that

of the perfect material. However, this function is still a long

way short of the theoretical limit.

It was thought that perhaps a 'less gentle' damage process

might produce further improvement. Samples of PET (002) were

subjected to a number of more or less violent damage processes

which included rapid recrystallisation of the surface from water

solution, steam blasting, and grit blasting using 50yA1^0^grit.

Most such processes could be controlled to produce a uniform matt

surface but X-ray testing showed erratic ill-formed Bragg peaks

(see Subsection 4.4-2). One such process, though, always gave

reproducible Gaussian-like shapes. This process was a gentle

hand polishing with a No. 220 silicon carbide grit. This treatment

also resulted in a uniform matt surface. The measured results for

R^ and R^^ for the SiC abraded samples are represented by filled

squares in Figs. 4.3, 4.4 respectively. These show that, for 
o

example, at 3.36A the net improvement over the value for the perfect 

sample is about factor 6 with only about factor 2 remaining to 

reach the theoretical limit.

c. The polarisation ratio

In order to use a Bragg analyser for the measurement of 

polarised beams, or to determine such polarisation by use as 

polarimeter^^a separate knowledge of the two functions (X),

^ca required. Since R^ (X) is available as above then
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from Eqns. 2.4 U  2.4 2,, it is seen that the additional knowledge

of the polarisation ratio k^ (X) allows calculation of (X),

R^ (X) . At chosen wavelengths R and R were measured by ca *  CC c
the (1, - 1) parallel method and (1, - 1) asymmetric configuration 

method respectively and k was determined from the quotient 

Rcc/^c using Eqn. (2.44). Measured values of R^c^^c ^ >

as a function with 0g , are shown as filled circles on Figs. 4.5,

4.6 respectively. Measurement uncertainties on R^^/R^ are 

~ 6% or less. Upper and lower limits on k values are given in 

Table 4.6. Also shown are the result derived from the Prins perfect 

lattice calculations and the trivial solutions k(8g) = | cos20g | , 

cos^ 20g which respectively arise at the Darwin zero-absorption and 

zero-extinction limits. The measured values of the perfect material 

are close to the perfect lattice limit for 0 < 45° whereas for 

0 > 45° the measured values tend towards the zero-extinction limit.

A possible interpretation of this behaviour is that the bulk of the 

crystal material is indeed well described by the Prins calculation 

but that the topmost surface layers are much less perfect and better 

described by the zero-extinction limit. It can be expected that 

measurements at longer wavelengths with smaller extinction depths, 

and higher absorption, will be more sensitive to surface damage 

than short wavelength measurements. However, the trend in the 

measured k (0g) result does not appear to be in accordance with the 

measured R^ (X) result nor with the measured ,ŵ ,̂ (̂ ) results,

both of which indicate that the sample is close to the perfect lattice 

limit at all wavelengths. The w^(X) , w^^(X) results in Figs. 4.8,

4.9 respectively show that if the material is mosaic then the mosaic 

spread must be very small. The difference in the trends of the k(0„)D
and (X) , w^(X) , w^^(X) results prompts the following comments.
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The uncertainties on the k(8g) result are much higher than on

the other results so that a strong Case explaining the difference

cannot be built upon the basis of the former result. It is also

possible that at long wavelengths k(9g) is much more sensitive

to mosaic characters than the other results. In the case of

, for example. Fig. 4.3 shows that the difference between

the Prins perfect lattice and zero-extinction limits decreases

with increasing wavelength so that at longer wavelengths (where

for reasons discussed above mosaicity ought to be more significant)

R^(X) is less sensitive to crystal mosaicity. Figure 4.6 shows

that for k > differences between the Prins and zero-extinction

limits are of comparable magnitude at short and long wavelengths

so that sensitivity towards mosaicity is also comparable.

The measured values for the manufacturer's processed material

are shown as open triangles in Figs. 4.5, 4.6. At small angles the

values lie between the perfect lattice and zero-extinction limits.

This is to be expected on the basis of the Î (X) result of the

processed material. At high angles following a trend similar to

that exhibited by the perfect material the R /R and k values
^ CC c

have gone to the mosaic limit. These results indicate that the
o 0damaged layer has thickness comparable to the 7A (8=55 ) penetration

o 0depth but is not so thick as the 3A (9=20 ) penetration depth.

Measured values for the SiC abraded sample (represented by filled

squares in Figs. 4.5, 4.6) show that for 0>32° or so ; (and thus for 
o

X>4.4A) the sample is quite closely described by the zero-extinction 
o olimit. At 0 ^ 30 (X 'v 4.3A) there is a transition towards 

behaviour close to the Prins prediction as the wavelength apparently 

becomes short enough to penetrate the surface damage.
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It is interesting to note that there are reports in the

literature of values of k lying outside the Darwin limits of
8 4 , a 0 8

I COS 26 I and cos^ 28 . On occasion this has been observed in 

this laboratory but the cause has been due to an experimental 

procedure mistake, for instance not allowing sufficient scan 

range to encompass the extensive wings of a mosaic crystal 

rocking curve. A repeat run after removal of the mistake has 

always yielded an interpretable result. Figure 4.6 shows that 

the long wavelength point of the SiC abraded sample is below 

the cos^20 limit. This point was calculated from data runs 

made for the purpose of , R^ determinations only and has

much larger uncertainty (shown by its error bar) than would 

normally be accepted. Allowing for the large uncertainty, the 

point plotted is not inconsistent with Darwin theory.

d. Discussion

The satisfactory agreement between the calculated and

measured R^(X) and R^^(X) results for the case of the perfect

material is an important indicator of the freedom from error in

the methods of both calculation and measurement. The indication

from R /R and k measurements, of some mosaic character in CC c
the surface layers is to be expected on account of the softness 

and high water solubility of PET. With the calculation of the 

perfect case supported by direct measurement in this way, there 

is little chance that the calculated zero-extinction limit can 

be much in error, even though no material could be found to closely 

approximate to that limit. It is noted that the very large calculated 

ratio of the zero-extinction to perfect lattice limit R^(X) values 

can be expected to cause vulnerability in the stability of the 

characteristic of given sample against given surface damage.



162

Recognising again that PET is in fact highly water soluble, a 

fairly substantial age changing of the characteristic of an 

initially near-perfect sample can be expected. Such changes 

were in fact measured. It follows that one can expect substantial 

spread in the R^ (A) characteristics of different analysers 

according to their individual histories. The process of producing 

a mosaic crystal sample might be thought of as little more than 

accelerating the change that occurs anyway on exposure of PET to 

the atmosphere. It should be noted that increase of spectrometer 

efficiency in this way is achieved, as shown and discussed in 

Section 4.4.2 below, at the expense of loss of resolution due to 

broadening of P^ (8) .



Li A Perfect Processed
ne 0

(A) Di rect Fit
Aged

S,OoS SiC grit 
polished

Ti Ka 2.75 5.3^ 5.52 21.7

Ca Ka 3.36 19.1 17.6 39.9

K Ka 3.74 7.2 15.2

Ru La 4.85 8.1 7.46 12.7±9% 15.4 23.0

Nb La 5.73 8.1 7.92 12.2

P Ka 6.16 8.6 8.28

Si Ka 7.13 13.2 13.4 16.7±8% 17.2 16.6

Cont:Lnuum 7.9 22.9 23.2

A1 Ka 8.34 45.1 ^

±6% ±5% ±5% ±6%

Table 4.4 PET (002) Measured values of the Bragg reflection
integral R (rads x 10^) 

f  cResult derived from R measurement. All other
results are derived from R , measurements.ab

A Perfeict Processed
Line 0 Direct Fit Aged S,QaS Sic grit

polished

Ti Ka 2.75 5.6 5.60 22.8

Ca Ka 3.36 21.3 18.8±4% 42.8

K Ka 3.74 7.0 17.8

Ru La 4.85 9.75 9.73 19.9 21.3 36.0

Nb La 5.73 14.3 14.2 23.7

P Ka 6.16 17.0 16.6

Si Ka 7.13 19.6 19.3 27.3 28.6 30.4±4%

Conti.nuum 7.9 26.0 25.6

A1 Ka 8.34 46.9

±1% ±1% ±2% ±1%

Table 4.5 PET (002) Measured values of the 2-reflection
integral R (rads x 10^)cc



X e Perfect Processed
(A) (degrees) Direct Fit S,QaS SiG grit 

polished

2.75 18.37 0.783

3.36 22.65 0.59 (.86)
(.47) 0.58

3.74 25.38

4.85 33.77 0-38 [;34) 0.289 0.24 (.27)
(.21) 0-14 [in]

5.73 41.05 0-07 0.056

6.16 44.91 o-oo6[;"^’o) 0.000

7.13 54.80 0-18 (:l5) 0.203 0.10 (.14)
(.07) 0 -os

7.9 64.87 0.46 0.517

Table 4.6 PET (002) Measured values of the polarisation factor k
Upper and lower limits are given in brackets.



Key to summary graphs

Darwin zero-absorption limit 

Darwin zero-extinction limit 

Prins perfect lattice limit 

Perfect material 

Aged material

Processed material - manufacturer's treatment 

Processed material - SiC grit polished.
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Figure 4.3 PET(002) Bragg reflection integral



Â( Â)

Figure 4.4 PET(002) 2-reflection integral



en g-a

O

S

g

o

om

Ocsi

O

O
O GO vû u n Om CM

ctS?H00tu
+ -Ic
co
+->o
<v
4-1(U4i

0)
-C

co
• H
+->oofH
oo
co•t-l
+->cJt/1
•H

cd

r̂ joo
E — '  uD-

LO

300
CM



Os

O) o
oo

en

O

OLO

O

s

o
CÛGD

O
o  os OO
^  CD Ô

LH
Ô  CD

om  fsi V—
Ô  CD CD

uo
■puCTJ(p

pc3to
•H
Pa
oCu

CM
OO

wÛ,

vû

O)u3co
•H
U-



n=1

n=3

n=2 ||

A(A)

Figure 4.7 PET(002) Bragg reflection integral for reflection orders 
n = 1 - 4
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4.4.2 The function

a. Measurements

i. Perfect material. Two fresh samples of PET were used to generate

a series of (1, - 1) rocking curves. Values of w^^ , (AX/X)^^ ,

for these rocking curves are presented in Figs. 4.9, 4.11, 4.13.

Measurement uncertainties for all materials except SiC grit polished

samples are typically 3% on w^^ , (AX/X)^^ and 2% on P^^ .
o

Fuller details are given in Tables 4.7, 4.8. For X > SA there is 

a good agreement between the measured and the calculated perfect 

lattice result. For short wavelengths and hence low glancing angles 

there is a large difference between the calculated and measured 

result. This is due to the measurements being made under broad 

beam conditions, i.e. the beam width at Crystal B is > 2mm . At

the low glancing angles of short wavelengths large areas of crystal

surface are irradiated and therefore ’ripple’ in the lattice planes, 

arising from bending strain and imperfect crystal growth, becomes 

significant. Also since the line spread function is narrow at short 

wavelengths, lattice defects will, in terms of distortion of the 

function, have a proportionately greater effect at short wavelengths 

than at long wavelengths. The distortion of (1, - 1) rocking curves 

at low glancing angles (at short wavelengths) is treated more fully 

in Chapter 5. Taking the effect of the broad beam condition 

into account and the possibility of crystal mosaicity as discussed 

in Subsection 4.4.1, Fig. 4.9 shows that if the crystals are mosaic 

to any degree then the mosaic spread must be very small.

In view of the fact that at all but the shortest wavelength 

measurements, the agreement between calculated and measured results 

is good, an attempt was made to fit the self-convolution of perfect 

lattice function to the measured (1, - 1) rocking curves. A fit to

within a few percent of the peak and fwhm of each rocking
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curve was obtained. Details of the fit parameters are given in

Table 4.9 and in Figs. 4.16, 4.17, 4.18. An outstanding feature
o

of these results is that at 2.75A , where the difference between

measured and calculated results is large, the fit parameters are

strikingly different from the parameters at other wavelengths.
0

This is because at 2.75A a large perturbation of the perfect

lattice function was required in order to obtain a fit. At other

wavelengths the fit parameters are such as would be expected for

a small perturbation of the perfect lattice function, i.e. the

fwhm of the major Gaussian spread function is narrow with

respect to the perfect lattice function, and the minor Gaussian

spread function makes a very small contribution to the total

spreading of the perfect lattice function. The fit to the (1, - 1)

rocking curve is presented superimposed on the rocking curve for

each wavelength in Figs. 4.19.1a, ....4.24.1a. The self-convolved

perfect lattice fit function is shown by the continuous line and the

(1, - 1) rocking curve by the dotted line. These figures show that 
0

apart from at 7.9A the fit is good to all regions of the rocking 

curves.

The parameters w^ , (AX/X)^ , of the perfect lattice

fit function are shown as filled circles in Figs. 4.8, 4.10, 4.12.
0

For X > 5A the fit result still closely follows the trend of the 

perfect lattice result which is to be expected since the required 

perturbation to the perfect lattice function in this wavelength 

region is small. It is also worth noting that the difference 

between the fit and perfect lattice result is close to the difference 

between the measured result and the 2-reflection perfect lattice 

result. Intuitively this is a reasonable outcome. The fit functions 

obtained in the wavelength range were thus regarded as acceptable
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approximations to the-perfect material-line spread function.
0

The results for the fit function at 2.75A are far removed from the

perfect lattice function. In view of the gross perturbation of

the perfect lattice function required to obtain a fit at this

wavelength this fit function was regarded as an unacceptable

description of the perfect material line spread function.

Plots of the fit and Prins perfect lattice functions for

a - jiT - polarised and unpolarised radiation are presented in

Figs. 4.19 - 4.24. In all cases the curve with lower peak

reflection and higher wings is the fit function. It is noticeable

that the shape of the fit function is closer, at long wavelengths,

to the perfect lattice function than at short wavelengths. This

is due to the fact that only a small degree of perturbation of the

perfect lattice function was required at the longer wavelengths.
o

For example, at 4.85A a 30% adjustment of the width of the 2-crystal
o

perfect lattice function was required whereas at 7.13A this

adjustment was only 10%. It is useful with regard to the point made

to compare Figs. 4.19 - 4.24 with Figs. 6.19 - 6.27for ADP (101) the

measured result for this crystal being close to the calculated result 

at all wavelengths.

ii. Aged material A description of the aged material is given in

Subsection 4.4.2 above. Measured results for w , (AX/X) arecc cc
shown as open circles in Figs. 4.9, 4.11 respectively, for

this material shows an increase over the perfect material by about 

factor S at all wavelengths. This increase can be attributed to the 

fact that chemical attack by the laboratory atmosphere gives rise 

to mosaic character in the crystal. In terms of the simple domain 

structure model the broad domain orientation distribution caused 

by chemical attack increases the line spread function fwhm and
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consequently . Since there is no limiting value for the fwhm

and peak of the 2-reflection zero-extinction function one cannot 

judge where the measured results lie with respect to the zero- 

extinction and perfect lattice limits. Only a comparison with 

other samples of varying degrees of crystal perfection is possible.

iii. Sample spread of characteristics. The above results show, as 

was found for the Bragg reflection integral, a large change of 

characteristics between perfect and aged samples and therefore a 

considerable spread of characteristics is to be expected for samples 

which have undergone varying degrees of aging and treatment.

Again there was only a small spread of characteristics for the 

freshly supplied near-perfect samples.

iv. Processed material. It is clear from the aged sample results

that the increase in the Bragg reflection integral, above the perfect

sample value, is at the expense of loss of resolution. This is also

found for the manufacturer's surface treated samples, results for

which are shown as open triangles in Figs. 4.9, 4.11, 4.13. w^^

is up by factor 4 on the perfect sample result and P^^ is down by
0

about factor 2.5 for X > 5A but towards shorter wavelengths the 

difference in P^^ between the perfect and processed sample result 

decreases rapidly. The latter suggests that distortion of the 

(1, - 1) rocking curve at small glancing angles (see paragraph i. above) 

is not as predominant as it is for perfect samples. Note that the 

processed sample w^^ , P^^ results follow the trend of the perfect

lattice result even at low angles. This is to be expected for since 

the 2-reflection line spread function fwhm is large so the effect 

of those defects accentuated at low glancing angles will be less 

significant. This of course assumes that some of the defects at 

least do not increase in proportion to the fwhm increase. One



167

such defect for example is that arising from bending strain.

In the attempt to increase reflection efficiency, by 

subjecting samples to various surface treatments (outlined in 

Subsection 4.4.1), it was important to find a treatment which 

did not incur severe loss of resolution or, distortion of the line 

spread function. The treatments to which samples were subjected 

are outlined in Subsection 4.4.1 and the measured characteristics 

are presented in Table 4.10 for Si Ka and Nb La . The rocking 

curve for the steam blasted sample shows a relatively small 

increase in w^^ above the untreated sample but as mentioned 

previously this technique was rejected since it produced no 

increase in the reflection efficiency. The characteristics of the 

sand blasted and SiC polished samples are similar; w^^ for these 

treated samples is up by factor 7 on the untreated sample. The 

grit blasting technique was rejected because, as seen in Fig. 4.25b, 

the rocking curve has high wings with only a small fraction of the 

counts in the main body of the peak. The rocking curve of the

SiC polished sample, shown in Fig. 4.25d has a Gaussian - like shape 

with most of the counts in the main body of the peak. The rocking 

curve of other samples polished with SiC were similar with respect 

to shape and parameters thus showing the repeatability of the 

technique. The sand blasting technique on the other hand gave 

non-reproducible rocking curves. The SiC polishing treatment was 

thus chosen as the techniques used to increase sample reflection 

efficiency. The (1, - 1) rocking curve parameters for a pair of 

SiC polished samples are shown as filled squares in Figs. 4.9,

4.11, 4.13. The low P^^(X) characteristic of the SiC grit 

polished samples gives rise to low count rates, hence on account 

of poorer counting statistics the measurement uncertainties on
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w , ( AX/ X) and P values are higher than for other materials cc cc cc
(see Tables 4.7, 4.8). The most notable feature of the results is 

the high wavelength dependency of the parameters. This is also 

seen in the Bragg reflection integral result. The result shows 

no sign of rocking curve distortion at small 6 , an explanation 

for which is given above.

b. Discussion

Agreement between the measured and calculated result for 

perfect material is good except, for reasons summarised below, at 

short wavelengths. This confirms, as for the (X) result, the 

validity of the calculations and measurements.

At all but the shortest wavelength implementation of the 

procedures discussed in Subsection 2.2.2.d successfully produced 

model (1, - 1) functions which closely matched the measured functions; 

the model line spread functions generated by this process were indeed 

only small perturbations from their parent Prins calculations. 

Consequently there is a good confidence, from the arguments of 

Subsection 2.2.2.d that these modelled line spread functions are 

rather good estimates of the behaviour of the analyser.

At the very shortest wavelength X 2.75 implementation of 

the same procedures appears to be equally successful in producing 

a model fit to the data but the perturbations required to the parent 

Prins function were uniquely in this case proportionately much 

larger hence there is correspondingly lower confidence that the 

model line spread function is a unique representation of the 

behaviour of the analyser. The reason for the difficulty found 

at this short wavelength (and for the related discrepancy between 

the measured and calculated result referred to above) became 

apparent in a subsequent investigation (see Subsection 5.4.2) when
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it became clear that an additional factor was involved. Specifically, 

at small glancing angles fixed aperture measurements refer to very 

much larger working areas of the crystal and the chance of a 

macroscopic lattice deformation occurring in that used area quickly 

increases. This kind of defect is not explicitly modelled in the 

fit procedures. The apparent success in obtaining a fit is 

therefore due to fortuitous adjustment of those free parameters 

in the program originally included to model other processes. The 

net result of all this can be summarised in the statement that there 

is lower confidence than usual that the result reported at X 2.75 

is uniquely correct.

Throughout all measurements a correspondence between increase 

in (X) and loss in resolution was found. This is to be expected 

since for any reduction in the extinction limitation on R^ there is 

a commensurate increase in the width of the orientation distribution 

of the crystal domains. The (1, - 1) rocking curve width is some 

3 arc minutes for a sample which has received the manufacturer’s 

proprietary surface treatment and is some 20 arc minutes for the SiC

grit polish method. Note that line peak count rate actually
83

diminishes once the width of (0) is taken above the angular

width of the beam collimation used, even though the value of R^

may be further increasing. That is to say that, in such a case,

the beam collimation in use must be widened, so as to be kept larger

than the width of P^ (0) , for advantage to be taken of the

increased beam throughput capability of the analyser. In materials

analysis machines, for instance, where beam collimation to 6 arc

minutes is used, the manufacturer's surface treatment process

discussed above is about optimum for most efficient operation.

In cases where the loss of resolution that accompanies change of

collimation to 30 arc minutes can be tolerated (e.g. in the detection

of line radiation from X-ray stars) a further substantial improvement 
is available by the grit abrasion method.



Line X
0
CA)

Perfec
Direct

t
Fit

Aged Proc 
S ,QaS

essed 
SiC grit 
polished

Ti Ka 2.75 42±8% 42.0 212±3%

Ca Ka 3.36 204 144 946±3%

K Ka 3.74 35 254±4%

Ru La 4.85 35 34.7 173 172 1361±6%

Nb La 5.73 50 49.9 209

P Ka 6.16 57 56.8

Si Ka 7.13 69 69.0 185 214 1805±9%

Continuum 7.9 92±9%

±3%

95.6

±2% ±2%

Table 4.7 PET (002) Measured values of the 2-reflection
fwhm w (arc sec) cc

Line X
o
(A)

Perfeci
Direct

t
Fit

Procès
S,QaS

ssed 
SiC grit 
polished

Ti Ka 2.75 0.203±3% 0.204

Ca Ka 3.36 0.218 0.065±1%

K Ka 3.74 0.300

Ru La 4.85 0.441 0.443 0.192 0.041±2%

Nb La 5.73 0.464 0.463

P Ka 6.16 0.469 0.471

Si Ka 7.13 0.441 0.441 0.185 0.027±4%

Continuum 7.9 0.392±2%

±1%

0.411

±2%

Table 4.8 PET (002) Measured values of the 2-reflection peak
reflection Pcc



X
0

(A)
Absorption
Correction

Major
Gaussian
fwhm
(arc sec)

Minor
Gaussian
fwhm
(arc sec)

Ratio 1 Ratio 2 wc
(arc sec)

Pc

2.75 2.4 9.865 50 0 .8 0.2 26.9 0.334

4.85 1.25 4.765 50 0.95 0.05 21.8 0.575

5.73 0.75 7.10 50 0.95 0.05 32.7 0.415

6.16 0.88 7.55 50 0.95 0.05 38.5 0.368

7.13 0.89 3.60 50 0.95 ■ 0.05 43.3 0.523

7.9 1.20 63.3 0.609

Table 4 .9 PET (002) F it  parameters and ch arac te ris tics  o f the
f i t  lin e  spread function .

Surface
Treatment

Nb Lot X5.73 Si Ka X7.13

■'cc
[radxlO^)

wcc
(arc sec) Pcc %cc

(radxloS)

w
cc

(arc sec)
Pcc

Untreated 18.9 133 0.24 25.1 164 0.26

Sand b lastin g 30.4 843 0.053 26.8 956 0.036

Steam b lastin g 16.0 235 0.123

SiC polishing 38.1 884 0.054 30.5 928 0.040

Table 4.10 PET (002) Measured ch arac te ris tics  fo r the surface
treatments used to increase the Bragg 
re f le c tio n  in te g ra l.
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Figure 4.8 PET(002) 1-reflection fwhm
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Figure 4.9 PET(002) 2-reflection fwhm
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Figure 4,10 PET(002) 1-reflection resolution
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PET(002) 2-reflection resolution



W/

Figure 4.12 PET(002) 1-reflection peak reflection
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Figure 4.13 PET(002) 2-reflection peak reflection
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Figure 4,14 PET(002) 1-reflection fwhm for reflection orders n = 1 - 4



n =1

n = 3

X ( Â )

Figure 4.15 PET(002) 1-reflection resolution for reflection orders n = 1 - 4



Gaussian
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Figure 4.16 PET(002) fwhm of the major Gaussian used in the fit
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Figure 4.17 PET(002) fwhm of the minor Gaussian used in the fit



Absorption
Correction

Figure 4.18 PET(002) The model lattice defect parameter



Notes on the theoretical modelling graphs

1. In Fig.X.Y.la the 2-reflection fit function is represented by 

the full line and the measured (1,-1) rocking curve by the 

dotted line.

2. In figures showing the fit and Prins perfect lattice functions,

the two functions are distinguished by the higher peak reflection 

of the Prins perfect lattice function. In the far wing regions 

(shown in the logarithmic plots), in cases where there is a 

difference, the fit function is higher than the Prins perfect 

lattice function.

3. P (6) and P,(3) refer to 1- and 2- reflection functions 

respectively.
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CHA.PTER 5

CHARACTERISATION OF ETHYLENEDIAMINE D - TARTRATE (020)

5.1 Introduction
0

Ethylenediamine d-tartrate (EDdT, CgH^^N^Og, 2d = 8.797A)
o

is a useful analyser for the 3 - 8A soft X-ray region in that 

it is possessed of moderate reflection efficiency and large 

specimens of good chemical uniformity can be grown. EDdT (020) 

has approximately the same 2d spacing as PET (002) and in 

fact these two analysers complement each other for studies in the 

above wavelength region; the calculated reflection efficiency of 

EDdT is some 40% down on that of PET (see Figs. 4.3, 5.2.) whereas 

the calculated resolving power of EDdT is approximately 60% higher 

than that of PET (see Figs. 4.10, 5.10). EDdT does not cleave 

along the (020) plane and therefore has reflecting properties that 

depend on sample preparation. In view of the high potential 

resolving power of EDdT and the obvious application to spectral 

studies it is useful and interesting, to determine as part of a 

full characterisation, whether or not currently manufactured samples 

fully exhibit this crystal characteristic and if so, the stability 

thereof.

Several brief studies of EDdT have been made previous to 

this study. These include, the pilot study precursory to this work
a\by Leigh, and sample preparation studies (through the observation of 

rocking curve profiles) by other workers. The above studies will 

be referred to during the course of this more comprehensive study.

5.2 Data Sources and Details of Numerical Evaluation

All crystallographic data was obtained from Ref.112.

The anisotropic temperature parameters given in this reference were
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employed in the crystal calculations. Since, as for PET, the 

constituent atoms of EDdT are low Z elements and the photon 

energies of the Bragg reflection region are much higher than the 

absorption edge energies of these atoms then it was appropriate
f f

to use Honl’s formulae for calculation of anomalous dispersion 

terms. Expressions (1.21n), (1.21o) were evaluated for all 

K-shell orbitals in EDdT . Details of atomic scattering factor 

and linear absorption coefficient calculations are given in 

Section 4.2.

5.5 Bragg Dispersion Function

In view of the large temperature uncertainties incurred 

in the measurement of the Bragg dispersion function it was decided 

that no further measurements should be made until an appropriate 

crystal temperature control and monitoring system is installed 

into the instrument. Nevertheless a plot of calculated A0 (X) 

is shown in Fig. 5.1 and literature values of d^g and a are 

as follows:

0
^18 a (xlO^)

MZ "44.399±0.003 0.203
113

4.408±0.003

5.4 Line Spread Function Measurements

5.4.1 The Bragg reflection integral

a. Comment on the calculated results

The main point of interest in the calculated results is that 

apart from the lower for EDdT the results for EDdT and

PET have the same general form. Again the Darwin zero-absorption 

result is everywhere quite close to the Prins result due to the
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Figure 5.1 EDdT(020) The shift of from the simple Bragg
angle (9 ) due to dispersion B
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unit cell absorption cross section being everywhere less than the

corresponding scattering cross section and correspondingly the

Darwin zero-extinction function is everywhere much larger than

the Prins result. The Darwin zero-absorption result is, however,

further removed from the Prins integral particularly at higher

wavelengths than for PET and as a result the ratio of the Darwin
o

zero-extinction to Prins integral is lower. At 7A the ratio is 
o

3 and at lA it is 80 . Calculated results for higher orders are 

shown in Fig. 5.6. The higher order results are over an order of 

magnitude down on the first order result so that contamination of 

reflected first order radiation by reflected higher order radiation 

will normally be small.

b . Measurements

Bragg reflection integral measurements for fresh and aged 

material were made using the asymmetric 2-reflection configuration 

with a rubidium acid phthalate monochromator,at wavelengths where 

the uncertainty on the polarisation correction is large. At 

wavelengths where this uncertainty is small, values were

derived from (1, - 1) parallel configuration measurements.

All processed material R^ values were derived from R^^ 

measurements in order to avoid executing the excessively broad 

scans characteristic of the asymmetric 2-reflection configuration 

for such material. A mosaic polarisation correction can be applied 

with confidence at all wavelengths for the processed material. All 

results presented below have been corrected for polarisation bias 

incurred in 2-reflection measurement methods.

i. Perfect material Two samples of solution grown EDdT , cut and 

solution polished to the 020 planes were obtained.^ The samples

 ̂Manufactured by: Quartz et Silice, Samples 5044, 5045.
Supplied by: Nuclear and Silica Products Ltd.
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were stored , prior to use, in sealed desiccated plastic sachets

and during the course of the measurement programme the samples,

when not in use, were stored in a silica gel desiccator. Results

of R and R measurements together with measurement c cc *
uncertainties are given in Tables 5.1, 5.2 and are shown by filled 

circles in Figs. 5.2, 5.3. The measured values are everywhere 

close to the Prins result, a good indication that the lattice 

structure of the perfect material is close to the Prins perfect 

lattice model.

ii. Aged material A study of the effects of sample aging on

(X) was made using a sample^ which had been employed occasionally

over a period of about 5 years and had received considerable exposure

to the laboratory atmosphere during that time. The results of R^

and R^^ measurements are indicated by open circles in Figs. 5.2,

5.3 respectively. The change in the R^ result is quite small,

especially when compared with the effect of aging in PET. The

largest measured change in R^ was found, as expected, at the
oshortest wavelength employed, 2.75A , where the zero-extinction to 

perfect lattice limit R^ ratio is high. Even at this wavelength 

R^ had only increased by factor 1.25. This indicates that, with 

regard to normal laboratory usage and storage, EDdT is not very 

susceptible to chemical attack and that its crystal lattice 

structure is quite stable.

iii. Sample spread of characteristics. The above results show that 

the R^ characteristic of EDdT changes little with sample aging 

and therefore once a given sample has been calibrated its R^ (X) 

result can be used with confidence for several years thereafter.

 ̂Quartz et Silice Sample B
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iv. Processed material. In spite of the small increment in (X)

with sample aging, the large difference between the zero-extinction

and perfect lattice limits suggests that sample reflection efficiency

can be substantially increased by inducing mosaic character using a

surface damage technique. Following the success obtained with PET

(see Section 4 . 4 . 1 ) ,  a sanple of EDdT was polished with SiC grit

No. 220. The results are shown as filled squares in Figs. 5.2, 5.3.

The improvement in the reflection efficiency is dramatic. The
o

increase over the perfect material is by factor 2 at 6A and by 
o

factor 6 at 2.75A with less than factor 2 to reach the zero- 

extinction limit.

c. The polarisation ratio

At each of fdur wavelengths R^^ and R^ for a perfect 

sample were measured by the symmetric (1, - 1) method and the 

dispersive asymmetric method respectively. The polarisation ratio 

k(6g) was then calculated at each pair of R^^ , R^ values using 

Eqn. ( 2 . 4 4 ) .  The measured values of Rcc^^c and k ( 8 ^ )  are

shown on Figs. 5 . 4 ,  5 . 5  respectively as filled circles. Uncertainties 

on the measured values are shown by error bars. Figures 5 . 4 ,  5 . 5  

show that at 9 < 4 5 °  the measured result is quite close to the 

Prins result. This was also found for PET ( 0 0 2 )  and in Paragraph 

4 . 4 . 1 . C  was accounted for in terms of the penetration of the incident 

beam below the surface layers such that reflection occurs in the bulk 

of the crystal which is well described by the Prins perfect lattice 

model. At 9 > 4^ the measurement uncertainties are too large to 

allow unequivocal comment on the trend of the measured result but 

there is a suggestion that measured values are close to the Prins 

result at long wavelengths. Further comment is made in the 

discussion to follow.
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d. Discussion. The close agreement between all calculated and 

measured results for perfect material gives confidence in the 

calculation and measurement methods. It is sometimes found in 

other analysers that although there is quite good agreement in 

the (X) , R^^ (X) results, there is a shift towards the

zero-extinction limit in the Rcc^^c ' ^ results at longer

wavelengths. The trend of the long wavelength results for 

EDdT is rather masked by measurement uncertainties, but there 

is no strong evidence of such a shift. This indicates, taking 

into consideration the lower penetration at long wavelengths, 

that the lattice structure of the measured EDdT sample is near 

to the perfect lattice limit even in the surface layers. This 

accords with the measured R^ (X) result given above.

The most interesting feature of the results is the fact 

that although the calculated R^ (X) ratio for the zero-extinction 

to perfect lattice limit is large, only a small increase in R^ (X) 

due to sample aging was observed. This shows that EDdT suffers 

little damage from exposure to the laboratory atmosphere or from 

occasional usage as a Bragg analyser. Consequently the spread, in 

the R^ (X) characteristic of samples which have undergone varying 

degrees of aging, will be small. Nevertheless moderately severe 

damage to the crystal surface, such as that produced by the polishing 

technique described, causes large increases in R^ (X) thus 

revealing the magnitude of the above calculated ratio. It can be 

expected therefore that samples which have undergone different 

surface abrasion processes will exhibit a large sample spread in the 

R^ (X) characteristic.



Line X
0
(A)

Perf
Direct

ect
Fit

Aged Processed
t

t t
Ti Ka 2.75 3.7±8% 4.6 21.7

K Ka 3.74 4.5 3.93

Ru La 4.85 4.7 4.35 5.3 12.2

Mb La 5.73 5.0 4.80

P Ka 6.16 5.6^ 5.01 5.8^ 10.0

Si Ka 7.13 7.7 7.84

A1 KB 7.96 14.0 14.6 14.4 15.5

±5% ±5% ±10%

Table 5.1 EDdT (020) Measured values of the Bragg
reflection integral (radxlO^)

t Result derived from R measurement. Allcc
other results are derived from R^y measurements

Line X
0 Perfect Aged Processed
(A) Direct Fit

Ti Ka 2.75 3.8±8% 4.7 22.2

K Ka 3.74 4.5±9% 4.21

Ru La 4.85 5.7 5.68 7.5 16.9

Mb La 5.73 9.3 8.51

P Ka 6.16 11.2 9.99 11.6 20.0

Si Ka 7.13 12.5 11.5

A1 KB 7.96 15.5±5% 16.0 14.8±7% 17.6±5%

±3% ±5% ±10%

Table 5.2 EDdT (020) Measured values of the 2-reflection
integral R^^ (radxlO^)



Key to summary graphs

For R^(X)

Darwin zero-absorption limit

Darwin zero-extinction limit

Prins perfect lattice limit

Perfect material*

Aged material

Processed material - SiC grit polished

• Measured value derived from R , measurementab

▼ Measured value derived from R measurementcc
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Figure 5.3 EDdT(020) 2-reflection integral
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Figure 5.6 EDdT(020) Bragg reflection integral for reflection
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176

5.4.2 The function

a. Measurements

i. Perfect material. A study of (9) was made by means of

a series of (1, - 1) rocking curves for a pair of freshly siçplied

samples. A preliminary study showed that rocking curves were very

sensitive to the size of the crystal surface reflecting area. This

is clearly seen in Fig. 5.7 which shows the variation of w^^ with

the aperture of the slit (slit 3, see Fig. 3.2) controlling the beam

size at crystal B . Reduction of the slit aperture at a given

wavelength lowers the measured w^^ such that the latter approaches

the perfect lattice value.^ This is illustrated by the measurements 
o

made at \  5.73A where a reduction in slit aperture width from 4mm

to 0.4mm reduces w by factor 3. It is thought that the high wcc cc
at large aperture settings is due to undulations in the lattice 

planes which arise from bending strain and general disorders in the 

crystal lattice. If it is assumed that the pitch of the undulations

is of the same order of magnitude as the dimensions of the larger

reflecting areas employed then,in reducing the slit aperture, only 

a small region within the pitch of an undulation reflects the incident 

beam and thus the Bragg condition is fulfilled over a small range of 

crystal aspect angle. This is of course a simple-minded interpretation 

of the observed phenomenon since crystal lattice disorders are far 

more complex than is suggested here. It would appear in any case 

that the pitch of the disorder is macroscopic (i.e. of the order of 

millimeters) rather than microscopic (as found for example in mosaic 

structure) for if the latter were the case w^^ would be fairly 

insensitive to the slit aperture variations used in this study.

•j* It was found (as illustrated in Fig. 5.7) that excessive clamping 
pressure used in mounting the crystal increased the measured w 
due to induced bending strain. The crystal was therefore 
clamped as lightly as possible.
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For a given slit aperture setting the factor which the measured 

w^^ is above the perfect lattice result is greater at short 

wavelengths than at long wavelengths. There are several reasons 

for this. The larger crystal surface reflecting area arising 

from the low glancing angle at a short wavelength results in 

further rocking curve distortion due to the effects discussed 

above which are associated with reflecting area size. At short 

wavelengths the perfect lattice w^^ is small and therefore 

any lattice defect will have a proportionately larger effect 

than at longer wavelengths where w^^ is greater. It should 

also be noted that for a given slit reduction the factor by which 

Wqc decreases is greater at shorter wavelengths than at long 

wavelengths. This is because for a given reduction, say x , 

in the slit width the illuminated crystal surface area is reduced 

as a function of %/sin 0 , and since the defect density is low, 

at short wavelengths (small 0) there is a greater reduction in the 

effective defect density in the illuminated area than at long 

wavelengths. The result of an earlier EDdT study in this
I

laboratory by Léigh is shown as upright crosses in Fig. 5.7. It 

would appear from the result that the problem of reflecting area 

size was not tackled in that study.

Since distortion-free (1, - 1) rocking curves were required

in the present study it was necessary to reduce slit apertures in

order to minimise the above effects. Unfortunately, the extent to

which the slit apertures could be reduced was limited by^beam

count rate losses and also the necessity to keep the horizontal

angular intensity distribution h(a) as broad and uniform as possible

in order to minimise distortion of the (1, - 1) rocking curve (see

Subsection 2.2.2.e.ii). The value of w for the smallest slitcc
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apertures are shown as asterisks in Fig. 5.7. Even for this 

aperture setting, the measured w^^ result is not as close to the perfect 

lattice result at short wavelengths as it is at’longer wave­

lengths which indicates that the effect of the above disorder 

is not entirely removed. Nevertheless the general trend of

the measured and calculated results is very similar and in any
ocase Fig. 5.7 shows that at X > 3.74A the use of smaller slit

settings would produce little or no further reduction in w^^ .

After optimisation of the slit aperture settings the lattice
o

tilts were aligned at X 4.85A . The selection of this wavelength

for the alignment was based on the criterion that although w^^

is smaller at shorter wavelengths the counting statistics at the

chosen wavelength were much better.

In the study of the perfect material, the slit settings

indicated by asterisks in Fig. 5.7 were used at X 2.75, 3.74, 
o

4.85A : at longer wavelengths larger slit settings were used

since, provided the increment was not too much, this introduced no

further distortion into the (1, - 1) rocking curve. The larger

settings allowed a higher beam count rate and maintained the

horizontal angular intensity distribution greater than w^^ .

A study of the main body and wings of each rocking curve was made

as described in Section 3.4. Measured values of w^^ , (AX/X)^^ ,

for perfect material are shown as filled circles in Figs. 5.9,

5.11, 5.13 respectively and w^^ , values are listed in

Tables 5.3, 5.4 together with measurement uncertainties. Comment

and explanation concerning the discrepancy between measured and

calculated Prins perfect lattice result at short wavelengths is
o

given above. At X > 5A the measured and calculated results follow 

a very similar trend. Nevertheless, the measured result is some way 

from the calculated result; approximately 25% above in the case of
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the w result. This difference is not related to the size of cc
the reflecting area since the results obtained for smaller areas 

were identical. It would appear that even after the manufacturers 

surface preparation by solution polishing, a small degree of 

mosaicity remains. Even so, as mentioned in the discussion to 

follow the results compare favourably with those of other workers.

The measured and calculated results for the perfect material 

were sufficiently close to justify an attempt to fit the self­

convolution of the Prins function to the (1, - 1) rocking curve.

A fit to within a few percent of w and P of the (1, - 1)^ cc cc
O

rocking curve was obtained at all wavelengths apart from X2.75A .

At that wavelength the large perturbation of the Prins function 

required to obtain a fit to w^^ and P^^ produced a poor fit to

the overall shape of the (1, - 1) rocking curve. In any case the

large perturbation required at this wavelength renders the fit 

procedure invalid. The parameters used to obtain a fit at the other 

wavelengths are listed in Table 5.5. and the widths of the major and 

minor Gaussian spread functions are plotted in Figs. 5.16, 5.17 

respectively. Figure 5.13 shows that at 3.74, 4.85A the Prins P^^ 

result is well above the measured result and consequently an absorption 

correction was required in the fit procedure at these two wavelengths.

At all other wavelengths only the two Gaussian spread functions were 

required to obtain a fit. The fwhm of the major Gaussian spread

functions is a small fraction of that of the Prins function at all

wavelengths thus showing that only a small perturbation of the Prins 

function was required to obtain a fit. The most interesting feature 

of the fit parameters is the trend in the widths of the major and 

minor Gaussian functions towards higher values with increasing 

wavelength. This result is to be expected on the basis that at 

longer wavelengths the penetration depth is smaller so that greater
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spreading of the Prins fun et ion is required in order to model 

the effect of surface damage upon the perfect crystal line spread 

function. Conversely at short wavelengths the incident beam 

penetrates further into the crystal so that a greater proportion 

of the beam is reflected by the more uniform layers below the 

surface. Since the reflection behaviour of these lower layers 

is well described by the Prins model, only narrow Gaussian spread 

functions are required to obtain a fit to the measured rocking 

curve. It should also be noted that, in accordance with the 

discussion given in Subsection 2.2.2, the minor Gaussian function 

makes a small contribution to the total spreading of the Prins

function. Figures 5.18.1a, ........ 5.23.1a present for each

wavelength a linear plot of the fit to (1, - 1) rocking curve 

superimposed on the rocking curve. The 2-reflection perfect 

lattice fit function is shown by the continuous line and the (1, - 1) 

rocking curve by the stepped line.Logarithmic plots of these curves

are shown in Figures 5.18.1b,........ 5.23.1b with measured points

obtained from the (1, - 1) rocking curve wing studies shown as 

dots. In all cases the fit obtained is good to 2 or 3 orders of 

magnitude down on P^^ . Unfortunately, the rather low count 

rates obtained with the small slit settings did not allow accurate 

measurement in the extreme wings of the rocking curves.

The parameters w^ , , P^ of the perfect lattice

fit function are shown as filled circles in Figs. 5.8, 5.10, 5.12.

The fit w^ , (AX/X) results follow the trend of the Prins results 

at all wavelengths and as expected from previous experience with 

PET the fit result is about 25% above the Prins result which is 

the same amount by which the rocking curve characteristics are 

above the 2-crystal Prins result. This feature also characterises 

the P^ result as may be seen by comparison of Figs. 5.8, 5.9.,
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consequently the trend towards a larger difference between the

measured and Prins P results at short wavelengths is in evidencecc
in the fit and Prins P results. On the basis of the abovec
results the fit function parameters obtained at each wavelength 

were regarded as a good approximation to those of the perfect 

material line spread function.

Plots of the fit and perfect lattice functions for 

o-,w-polarised and unpolarised radiation are presented in Figs.

5.18 - 5.23. In all cases the curve of lower peak value is 

the fit function. The most striking feature of these plots is 

that the characteristic asymmetry of Prins perfect lattice function 

is not seen in the fit function at any wavelength. This indicates 

that although the required perturbation to the perfect lattice 

function is not large, it is sufficient to mask the shape of this 

function. It would appear that the fit procedure has been rather 

'stretched^and that although the parameters of the fit function are 

reasonable, it is probable that the shape of the fit function does 

not fully describe that of the perfect material line spread function.

ii. Aged material. A description of the aged sample is given in

Subsection 5.4.1. Measured values of w , (AX/X) and Pcc cc cc
are shown as open circles in Figs. 5.9, 5.11, 5.13 respectively.

At long wavelengths there is little difference between the aged 

and perfect material values. The trend towards a greater difference 

between the aged and perfect material results at short wavelengths 

is similar to the trend found between the perfect material and 

perfect lattice results. This suggests that undulations in the 

lattice of the aged sample are causing a deceptively high w^^ 

at short wavelengths. Since the slit aperture settings were 

already very small it was not possible to prove the above point
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by reducing them further. Taking the high values at short

wavelengths into consideration the aged material result is very

much in accordance with the results of R measurements i.e.c
the effects of aging upon the line spread function of EDdT 

are small.

iii. Sample spread of characteristics. The perfect material 

results show that over most of the Bragg reflection wavelength 

range the (1, - 1) rocking curve of EDdT is susceptible to 

distortion associated with undulations in the crystal lattice, 

therefore all discussion of the sample spread of characteristics 

must be given in the light of this fact. The slit apertures 

used in this study eliminated distortion at long wavelengths and 

results indicate that for this wavelength range and experimental 

condition a group of samples which have undergone varying degrees 

of aging may be expected to have a small spread of characteristics 

In the short wavelength region distortion of the (1, - 1) rocking 

curve was so severe that not even the very small slits used were 

able to completely eliminate this effect. Results show that for 

given slit aperture settings the sample spread of characteristics 

is large and thus before using a given sample as an analyser, 

calibration is required with great attention paid to factors

such as the reflecting area size and the clamping pressure 

required to mount the sample for if the latter is excessive then 

bending strain will be introduced into the crystal lattice.

iv. Processed material. A comparison of the effect of various 

abrasion techniques upon the (1, - 1) rocking curve for the case 

of PET is given in Subsection 4.4.2. The surface of a sample of 

EDdT was abraded using the chosen SiC grit abrasion technique. 

All the (1, - 1) rocking curves of this processed sample were 

well formed and near-Gaussian in shape. Measured values of w
cc
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(AX/X)^^,P^^ are shown as filled squares in Figs. 5.9, 5.11,

5.13 respectively. The results show that the abrasion process 

has produced an increase in (X) above the perfect material 

result (see Subsection 5.4.1) at the expense of an order of 

magnitude loss in resolution. The apparent absence in the results 

of low angle distortion of the (1, - 1) rocking curve indicates 

that this effect has been completely masked by the large mosaic 

spread of the sample domains. The w^^ (X) and P^^ (X) results 

are highly wavelength dependent. Indeed the processed material 

P^^ (X) result is considerably more wavelength dependent than 

the perfect material result. This is possibly due to the fact 

that the low extinction characteristic of the sample allows full 

advantage to the short wavelength X-rays to penetrate further into 

the crystal than the softer long wavelength X-rays, consequently 

the short wavelength X-rays are reflected by the more uniform 

crystal lattice below the surface.

b. Discussion

The perfect material w^^ (X) , (AX/X)^^ (X) , P^^ (X) 

results are quite close to and follow the trend of the calculated 

results, except at short wavelengths for reasons given above.

Once again this confirms that the methods of calculation and 

experiment are free of gross error. The measured results are 

not as close to the calculated results as is found for PET 

(at long wavelengths) and ADP which indicates that there is still 

some room for improvement in sample preparation. Nevertheless the 

results compare favourably with those of other workers. The small

reflecting area used in this study provides a resolving power 

, ̂  -  1 - 7  Y I D  ^ . RiirpV Af  a 1(AX/X) - 1.2 X 10 ^. Burek et al, for admittedly larger

reflecting area (100 cm^), obtained a resolving power - 4 x 10 

Both these values need to be compared with the potential resolving 

power = 1 X 10 It is interesting to note that Burek et al
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j i i
mention that 'Unzicker and Meekins have obtained large samples 

of EDdT whose rocking curves were so narrow that the crystals 

must be nearly perfect*.

Although the difference, 25%, between the perfect material 

and calculated results is not gross; it is sufficiently large, in 

view of the results of the fit procedure, for one to question 

the validity of fit for this case. It is noted in Paragraph i. 

above that the parameters w^ , (AX/X)^ , P^ of the fit line 

spread function seem reasonable but nevertheless the perturbation 

required in the fit procedure is sufficiently large to produce a 

fit function which is quite different in shape from the Prins 

function.

The aged material study showed that under normal laboratory 

conditions EDdT shows small change in w^^(X) , P^^ (X) with sample

age. This accords with the results of Burek et al who found that 

their perfect material w^^ (X) result was stable even after 

exposing a sample to a 100% humidity atmosphere for a day and to 

large radiation doses.

A comparison of Figs. 5.2, 5.9 shows that the SiC grit 

abrasion method may be used to greatest effect at short wavelengths. 

The loss in resolution incurred in this technique is everywhere an 

order of magnitude down on the perfect material but the gain in 

reflection efficiency is much greater at short wavelengths than 

at long wavelengths. From a comparison of the perfect and processed 

material results it can be concluded that within the limitation of 

producing well-formed rocking curves then one can expect a 

considerable spread in the rocking curve parameters for various 

surface damage processes.



Line
X
(A)

Per
Direct

feet
Fit

Aged Processed

Ti Ka 2.75 15±13% 22 141

K Ka 3.74 17±12% 17.0

Ru La 4.85 23±3% 23.4 27±5% 327

Mb La 5.73 32±6% 32.1

P Ka 6.16 39±7% 38.6 41 506

Si Ka 7.13 52±4% 52.0

M  KB 7.96 76±8% 75.4 91 700±22%

±9% ±9%

Table 5.3 EDdT (020) Measured values of the 2-reflection
fwhm w^^ (arc sec)

Line
X0
(A)

Perl
Direct

feet
Fit

Aged Processed

Ti Ka 2.75 0.40 0.31 0.14

K Ka 3.74 0.39 0.399

Ru La 4.85 0.38±2% 0.381 0.38 0.041

Mb La 5.73 0.42 0.415

P Ka 6.16 0.43±6% 0.418 0.41 0.029

Si Ka 7.13 0.35±2% 0.352

A1 KB 7.96 0.33 0.336 0.26±6% 0.019±11%

±4% ±3% ±4%

Table 5.4 EDdT (020) Measured values of the 2-reflection
peak reflection Pcc



X
o

(A)
Absorption
Correction

Major 
Gaussian 

fwhm 
(arc sec)

Minor 
Gaussian 

fwhm 
(arc sec)

Ratio 1 Ratio 2 “c
(arc sec) Pc

3.74 1.0 3.0 25 0.95 0.05 11.1 0.603

4.85 0.5 3.625 45 0.95 0.05 14.7 0.496

5.73 5.0 90 0.95 0.05 21.0 0.386

6.16 6.5 160 0.97 0.03 26.1 0.330

7.13 8.0 130 0.97 0.03 32.7 0.403

7.96 11.0 180 0.98 0.02 48.6 0.505

Table 5.5 EDdT (020) Fit parameters and characteristics of the fit
line spread function
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Figure 5.7 EDdT(020) Variation of w with measurement conditions cc
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Figure 5.8 EDdT(020) 1-reflection fwhm



■^cc(A]
(arc sec)

A ( A )

Figure 5.9 EDdT(020) 2-reflection fwhm
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EDdT(020) 1-reflection resolution
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EDdT(020) 2-reflection resolution
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EDdT(020) 1-reflection peak reflection



■ P c c (X )

A(Â)

EDdT(020) 2-reflection peak reflection
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Figure 5.14 EDdT(020) 1-reflection fwhm for reflection orders
n = 1 - 4
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Figure 5.15 EDdT(020) 1-reflection resolution for reflection
orders n = 1 - 4
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Figure 5.16 EDdT(020) fwhm of the major Gaussian used in the fit
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Figure 5.17 EDdT(020) fwhm of the minor Gaussian used in the fit



Notes on the theoretical modelling graphs

1. In Fig.X.Y.la the 2-reflection fit function is represented

by the smooth line and the measured (1,-1) rocking curve by

the stepped line.

2. In Fig.X.Y.lb the 2-reflection fit function is represented

by the full line and the measured points of the (1,-1)

rocking curve are represented by dots.

3. In figures showing the fit and Prins perfect lattice functions, 

the two functions are distinguished by the higher peak 

reflection of the Prins perfect lattice function. In the far 

wing regions (shown in the logarithmic plots), in cases where 

there is a difference, the fit function is higher than the Prins 

perfect lattice function.

4. P^(8) and P^(6) refer to 1- and 2-reflection functions

respectively.
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CHAPTER 6

CHARACTERISATION OF AMMONIUM DIHYDROGEN PHOSPHATE (101)

6.1 Introduction

Ammonium dihydrogen phosphate (ADP, NH^ H2 PO^, 2d = 10.64 A) 
has found wide application in X-ray spectroscopy by virtue of its 

moderate reflection efficiency and high resolving power and 

because large high quality samplesmay be easily produced on a 

commercial scale. The (101) lattice planes of ADP are particularly 

useful in solar atmosphere spectral studies because the lattice 

period allows ADP (101) to be used to measure the spectrum to a
O

little longer than lOA . This latter is important in that a strong 

and dâgnostically useful multiplet of the He - like spectrum of
O

Mg XI lies at 9.1 - 9.3A . Because these lines lie just outside

the 2d range of most other similar analysers, ADP (101) has been much

favoured for spectral measurement of the solar atmosphere. High

quality spectra, using ADP (101), have been available for some years

but interpretation of these spectra has been impeded by the lack

of knowledge of R^ (X) for ADP (101). Deslattes et af^^ offer
109helpful comments concerning R^ (X) as do Burek et al, though 

neither offers numerical values. Burei^Ogives calculated 

predictions but these are not supported by measurement. Parkinson 

and Pye et al^^ both quote unpublished values by Evans and Leigh, 

which values were found during preliminary explorations prior to 

the work reported below. A clear intention of the undertaken study 

was to obtain R^ (X) as part of full characterisation of ADP(101) 

in order to allow retrospective interpretation of existing published 

solar atmosphere spectra, and to provide this information for the 

benefit of new measurements, including NASA's Solar Maximum Mission.

ADP does not cleave along the (101) lattice planes and 

therefore reflection properties are dependent on sample
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preparation. Deslattes et al report that large highly perfect single

crystals of ADP can be grown from solution and that after cutting to the 

desired planes samples can be restored to perfection by solution polishing.

There is some'debate (details of which are given in the final discussion 

of results) as to the long term stability of perfect sample reflecting 

properties and therefore a useful contribution to this debate was sought 

in the investigation to follow.

6.2 Data Sources and Details of Numerical Evaluation

Crystallographic data including anisotropic temperature parameters 

were taken from Ref.119. It was necessary to use a method more powerful 

than Honl's, for calculating the frequency dependent terms of f , (26,k) 

for the reason that since the contributions arising from the L-shell 

electrons of phosphorous could not be neglected then the requirement for 

Honl's method that the electrons may be approximated by hydrogenic wave- 

functions is not met. Resort was made therefore to the methods of Parratt 

and Hempstead and of Cromer and Liberman. Preliminary calculations of 

reflection characteristics showed that outside the immediate vicinity of
Othe PK edge region (5.5-6.0 A) (which neither method is sufficiently 

powerful to deal with) there was negligible difference between the results 

obtained from these two methods.^ Therefore all calculated results 

presented here were derived using the simpler method of Parratt and 

Hempstead. Points of note concerning the implementation of this method 

are as follows. In spite of the fact that there is doubtful need to 

retain ^ 0 (see footnote to Paragraph 1.3.2.c.ii) the classical value 

of was used throughout. f.(26,k) was calculated for each atom in ADP

for 1 < A < 10.5 A (a cautionary note for wavelengths close to the PK 

edge is given at the end of this section) by using (1.27b), (1.27c), making

f fPreliminary calculations were also performed using Honl's method, the 
results of which showed a 5% difference [in the Prins characteristics) 
from the other methods in the 6-8 A region but were not sensibly 
different at longer wavelengths and below the PK edge.
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suniiriat i ons as i n  ( ] . 2 U )  and th e n  s u b s t i t u t i n g  f  \  f o r  Z as n o te d  i n

Paragraph 1.3.2.c.ii. In making these calculations,values' of from
120

Bearden and Burr were used. For all K orbitals values n = 7 ,m = 8

(i.e. P = 2.75) were used. For the phosphorous L orbitals values 
K ^

n = 2 , m = 3 (i.e. P^ = 2.33) were used and for the and

orbitals values n = 3 , m = 4 (i.e. P. = P. = 2.5) were used.
1̂1 ÎII

These values are recommended by various authors including Parratt and
37 36 38

Hempstead, Cromer and Dauben and Templeton. The K-electron osci­

llator strengths for H , N and 0 were calculated from James (Ref.21, 

Expression (4.60)) and K-, L-, L-^, electron oscillator strengths

for P from Cromer.

Although Bragg reflection characteristics were calculated at all 

wavelengths in the range given above it was seen from the reflection 

integral measurements to follow that the power law assumption (1.26) is 

inadequate to predict characteristics at wavelengths to within a few per­

cent of the phosphorous K edge. For this reason some figures have been 

left incomplete in the region 5.5 - 5.9 A and the reader is cautioned 

that within this region the calculated results are subject to large uncer­

tainties. This matter will be discussed further in the course of this 

chapter.
6.3 Bragg Dispersion Function

For reasons given in Section 5.3 the Bragg dispersion function was 

not measured. A plot of calculated A6(X), given in Fig.6.1, clearly shows 

that the enhanced anomalous dispersion at the P K absorption edge has a 

relatively small effect upon the general form of A6(A). Literature values

of d^„ and a aire as follows:

dl8(AJ a(x 10^)

5.3201±G.0006^^®
5.329*°^

1210.216

Modifications of 'edge' frequencies due to effects of molecular and solid
bonding were neglected. Though these modifications are often not precisely 
known it is possible to make usefully accurate theoretical estimates and 
it might have been better to use those. Their neglect allows (very slight) 
distortion of the calculated results presented.
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Figure 6.1 ADP(101) The shift of P^(8) from the simple Bragg angle
(0g) due to dispersion. The dotted line shows the contribution 
to A9 from normal dispersion alone
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6.4 Line Spread Function Measurements

6.4.1 The Bragg reflection integral

a. Comment on the calculated results
o

It is seen from Fig. 6.2 that for X < 2 A the Prins 

perfect lattice and Darwin zero-absorption results are quite close 

thus indicating that in this wavelength region the unit cell 

absorption cross section is much scalier than the corresponding 

scattering cross section. At longer wavelengths, particularly 

near the P K edge, the Prins result is well below the Darwin 

result. This is to be expected since the Darwin calculation 

takes no account of the enhanced unit cell absorption cross 

section associated with the P K edge. Correspondingly at short 

wavelengths the zero-extinction result is an order of magnitude 

above the Prins result but at longer wavelengths the two results 

are considerably closer. It should be noted that on the low 

wavelength side of the P K edge the zero-extinction result 

gradually approaches the Prins result but on the high wavelength 

side of the edge the zero-extinction result rises rapidly above the 

Prins result. This may be interpreted with the aid of Fig. 6.7 

which shows that at X/X^ < l,Af” and hence the unit cell absorption 

cross section increase steadily with increasing wavelength whereas 

at X/X^ " 1, Af" falls abruptly and so there is a correspondingly 

decrease in the absorption cross section. Since the zero-extinction 

result is a function of y it is much more sensitive than the Prins 

result to changes in the absorption cross section so that the fall 

in A f a t  the edge will cause a larger increase in the former 

result than the latter.

b. Measurements

Except where noted, all measurements reported below were 

made by the dispersive asymmetric configuration 2-reflection method
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using rubidium acid phthalate(OOl) as the monochromator. The 

results graphed have been corrected for the (small) residual 

polarisation bias that remains even with this method.

i. Perfect material. Several samples of solution grown ADP 

crystals were obtained.^ These samples had been sawn and 

solution polished to expose the (101) planes. They were 

carefully handled, shipped and stored prior to use and contained 

in sealed desiccated sachets. The results of measurements of

(X) made by the dispersive asymmetric configuration 2-reflection 

method are shown by the filled circles in Fig. 6.2. Measurement 

of (X) , (the results of which are shown by filled circles in

Fig. 6.3) allows evaluation of the polarisation coefficient 

R^^ (X)/R^^ (X) = k (X) (see below). In order to determine k (X) 

efficiently, R^ , R^^ were measured chiefly at wavelengths where 

the uncertainty on k (X) is high i.e. at 0-35° and 55° (see 

Subsection 2.2.1.b). Once the function k (X) is available it is 

then possible to make further measurements of R^ (X) by the 

alternative method of use of the symmetrical non-dispersive (1, - 1) 

2-reflection configuration (see Subsection 2.2.1.b). Some additional 

values of R^ (X) found by this method are also included in Fig. 6.2, 

distinguished as filled triangles. The final characteristic determined 

as a best fit to these2setsof data points is shown as the medium full 

line on Fig. 6.2. The net uncertainty on this characteristic 

embracing both systematic and random effects is about 5%. Fuller 

details of measurement uncertainties are given in Table 6.1. From 

Fig. 6.2. it is noted that, as can be expected, the effects of 

anomalous dispersion and absorption by the phosphorous K-shell 

electrons are very significant to the values of R^ (X) in the

 ̂Quartz et Silice, Samples 992,993
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immediate neighbourhood of the phosphorous K edge. In this 

neighbourhood the variation of (X) is too rapid for 

economic definition of the function by the point by point method 

as described above. The 1-reflection scan method described in 

Subsection 3.4.4 was therefore implemented.^ In the restricted
O

interval 5.5 - 5.9A the results of this method did not confirm 

the calculated predictions as in Fig. 6.2. The circumstances 

that give rise to this appear to be as follows. The standard 

texts, e.g. James (Ref. 21, pl47, 155) give various approximate 

solutions for the integration of the semi-classical dispersion 

equation for the case where the absorption coefficient may 

accurately be taken as a power law with wavelength. It was clearly 

seen that those approximations progressively failed for photon 

frequency taken ever closer to the edge frequency. Parratt and 

Hempstead gave the exact integration for the general case of the 

power law assumption. This enables the scattering factors 

fj (20, k) to be calculated continuously through the ’edge’ 

frequency, without revealing a pole in the function, provided that 

some suitable approximation is chosen for the radiation damping 

constant. The computer programs used in the present calculations 

were developed to take advantage of this exactitude and, in part, 

were motivated by the intention to use them in this present 

calculation of the effect of the phosphorous K-edge on the 

diffraction behaviour of ADP. In the event, preliminary measurements 

reveal severe structure in the scattering factor of ADP near the 

phosphorous K-’edge' frequency which we interpret as due to 

resonance line scattering. Since this effect destroys the validity 

of the power low assumption within several percentage points of the

 ̂Details of the evaluation of R (X) from this method are 
given in Ref. 81, p.179. ^
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'edge' frequency the algebraic exactitude of the Parratt and Hempstead
•j*integration is not helpful to this particular problem. The effect of 

resonance line absorption/scattering by oxygen atoms on the diffraction 

behaviour of KAP has been known for some years, e.g. Burek^^^, but this 

had been thought an exceptional case.* In the light of present exper­

ience it may not be exceptional. It appears that at soft X-ray wave­

lengths, where the K-edges encountered are those of relatively low Z 

elements (and therefore outer orbitals are often unfilled right down to 

principal quantum number n =3) resonance line absorption/scattering 

effects may be endemic. In this case, all calculations of Bragg diffrac­

tion properties which use simple functional representations of the frequency 

dependence of absorption coefficients should be regarded as unreliable within 

several percentage points of the nominal 'edge' frequency unless they are 

supported by careful measurements throughout that waveband.

At present, analysis of the results of the 1-reflection scan method is
122in progress using methods for the calculation of anomalous dispersion

terms which are more powerful than those described in Chapter 1. A full

report will be given when this work is finished. For the time being the

author is obliged to leave Fig. 6.2 incomplete for the waveband 5.5-5.9 A,

though outside this band the results are reliable within the limits specified.

Until the above matters are cleared up it is recommended that ADP (101)

diffractions should not be used for spectrometric work in this waveband. It is

clear that the caution might well be extended to the use of other analysers at

Parratt and Hempstead were themselves aware of the existence of resonance 
line scattering,as is clear from their paper. At the somewhat harder X-ray 
energies to which they directed their work they were more concerned with 
the indirect way in which the phenomenon affected the calculation (via the 
effect the resonances have in obscuring the correct choice of 'edge' freq^ 
uency) rather than the direct effect on the scattering factor. It was noted 
from our preliminary work as above that the phosphorous K^'edge' in solid 

^ADP is about 7 e-volts above the value listed by Bearden and Burr^^ü,
Note that later in his paper (his Fig.21) Burek himself predicts a semi- 
classical dispersion shape, bereft of resonances, for the function R^(A) 
for ADP in the neighbourhood of the phosphorous K-edge from his own Parratt 
and Hempstead calculation. He had no measured data to protect him from 
omission of the resonance effects.
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wavelengths near absorption edges of their constituents until they

are carefully examined. The matter is of some importance. The

effect in KAP became known only after a feature in KAP diffracted

spectra of the solar corona had been erroneously assigned to a
12 3plasma emission line. The feature was of course due to a

spurious line-like enhancement of the continuum spectrum by the
124resonance scattering of oxygen atoms in the KAP lattice.

The spectra of natural plasmas near 10^ K (e.g. solar flares)
o

will be densely packed near 5 A with emission lines from Li-like 

to 0-like iron and there will be serious risk of similar error 

arising from the same effect in ADP until the matter is clarified.

116 109
ii. Aged material Both Deslattes et al and Burek et al commented

upon the tendency for the diffraction properties of ADP (101) to change

significantly on exposure to the atmosphere, though neither gave

quantitative data. During earlier studies in this laboratory on
35 40diffraction from the PET (002) and KAP (001) planes, evidence

was found for time changing of the behaviour of those lattices also,

and quantitative descriptions were given. From the point of view of

astronomical applications it is plainly important to have this

information for ADP (101) also. Therefore several further samples

which had been in routine use in our laboratories for about five

year were examined. They had been much used (in vacuum) as diffraction

analysers during that period, and so had received substantial

radiation doses at their surfaces. During most of the periods

of storage between usage they were exposed to the (undesiccated) local

atmosphere. Their characteristic (X) functions had in fact

been measured, by methods as above, when they were new with results

indistinguishable from those of Paragraph i above for wavelengths

longer than the phosphorous K edge, and results only slightly

different at shorter wavelengths. Remeasurements were made after
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five years usage and (X), R^^ (X) results are shown as the 

open circles on Figs. 6.2, 6.3 respectively. These values do not 

show much change compared with the values for the fresh stock, 

except at the shortest wavelength at which measurement was made
O

(2.75A), where there is an increase of 31%. This is just as is 

to be expected from examination of the calculated Darwin zero-
40extinction and Prins characteristics, cf Lewis, Maksym and Evans. 

Further comment relevant to this matter is added below.

iii. Sample spread of characteristics; flown samples. As noted

above, two samples of ADP (101) produced five year apart, both

(when fresh) showed characteristics barely distinguishable from

that calculated, except at the shortest wavelengths. This was

found to be the case also for several other fresh samples which have

been examined over the years. However, in Tables 6.1, 6.2 the

measured values of R^ (X), R^^ (X) respectively for two further

samples of special interest are shown. These results are not shown

because they lie too close to other points to be included there).

These are the values for analysers recovered after observations^
117 11in space as extensively reported by Parkinson, Pye et al, 

and many other articles published and in the press, which refer to 

rocket serial numbers as indicated. Independent analysis of spectra 

published by these authors should refer to Table 6.1, (and use the 

graphs of Fig. 6.2 to guide interpolation) for the relevant calibration 

data. It is noted that these values are also not much different from 

those for fresh stock, except (again) at the shortest wavelength 

measured. It can be concluded that of a total of about eight samples 

studied, none differed by more than about 3% from the theoretical

 ̂On SKYLARK rocket vehicles, serial numbers 804, 1101, 1206.
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characteristic except for wavelengths below about 3.5À, where 

there is a clear systematic trend for the values of (X) to 

increase slowly with the age of the sample.

iv. Processed material In the-study of pentaerythritol

analysers, see Chapter 4, a means of substantially enhancing the

reflecting power of the analyser was found essentially by

reducing both the primary and secondary extinction effects 
21

in the sample. In the present case there is less scope for 

achieving that end, at least at the longer wavelengths. It can 

be seen from Fig. 6.2 that the zero-extinction characteristic 

tends towards the perfect crystal limit at long wavelengths, so 

there is not much room for improvement. However, the SiC 

abrasion process was applied with results as shown by the filled 

squares on Figs. 6.2, 6.3. As can be expected from remarks made
O

above there was substantial improvement in the efficiency at 2.75A 

but some degradation in performance was found at the longer wavelengths, 

There is therefore doubtful value in attempts to improve the reflection 

efficiency of ADP (101) at long wavelengths.

c. The polarisation ratio

At each of three wavelengths the 2-reflection integral was 

measured by both the dispersive asymmetric method, and by the symmetric 

(1, - 1) method. At each of these wavelengths the pair of values 

then allows of unique determination of k (9g) from the measurements 

alone by the use of Eqn. (2.44). The measured values of Rcc^^c 

and k (0g) are shown on Figs. 6.4, 6.5 respectively as filled circles. 

Measurement uncertainties are indicated by error bars. Note that 

interpolation then allowed determination of values of k (Ŝ ) atO
certain other wavelengths for which the values of R^(X) could be 

fixed from the symmetric (1, - 1) measurements alone. The filled
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triangles in Fig.6.2 were fixed in this way. Figures 6.4, 6.5 show 

that apart from a small angular region just above the phosphorous K 

edge then the Prins perfect lattice and zero-extinction results are quite 

close. There is a tendency for the measured values to move closer to 

the zero-extinction limit with increasing 0^ . This was found and 

explained for PET(002) in Chapter 4.

d. Discussion

Figures 6.2 -6.5 present results of a somewhat exhaustive study, 

both by calculation and measurement, of the first order Bragg response 

of ADP(101) . The calculations have embraced three limiting cases, so 

that the separate effects due to a perfect lattice, due to anomalous 

dispersion and to absorption, and due to lattice disorders, can be seen. 

Measured data presented includes results for fresh and nearly perfect 

samples, used samples, samples recovered from space, and abused samples. 

The agreement of calculation with measurement is regarded as satisfactory, 

and this leaves little room for doubt as to the validity of either.

The reader may use Figs. 6.2 -6.5 for independent interpretation of 

published solar spectra obtained during the rocket flights indicated.

It is also found that the spread of characteristics for different samples 

of ADP(101) , at least supplied by the manufacturer indicated, is 

sufficiently small that others may use these data as calibrations of 

their crystals also,provided these are well cared for in the manner indi­

cated. For users who fear confusions of their spectra by higher order 

diffractions from ADP(101) , the calculated response, both for the 

perfect lattice and zero-extinction cases, for the first few orders are 

shown in Fig.6.6. Although these have not been checked by explicit 

measurement the calculations differ but trivially from those made for the 

first order as above, so that the convincing agreement achieved for that 

case leaves little room for these higher order results to be in error.
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For interest, the reader should note that the integral response for a 

room temperature vibrating lattice, is depressed by only " 1% below 

that of a static lattice for first order reflections. The depression 

increases rather rapidly with order, though, and is ~ 20% in fourth 

order.

Line X

(A)
Perfect Aged* Skylark  ̂

Flight Samples 
1206 804/1101

Processed*

Ti Ka 2.75 3.34*± 1% 4.34 3.85 3.45 5.8 ± 8%
K Ka 3.74 3.9
Ru La 4.85 3.53 ± 1% 3.6 3.3 2.5
S Ka 5.37 2.9+
Nb La 5.73 2.1+
P Ka 6.16 3.5 3.7 ± 6% 33 ± 6% 3.5
Si Ka 7.13 4.5+ ±2%
M  Ka 8.34 5.8 5.9 5.5 5.4 4.4
Mg K3 9.52 9.7+

± 5% ± 3% ± 3% ± 3% ± 4%

Table 6.1 ADP(101) Measured values of the Bragg reflection integral
R (rads x 10^)

+ cResult derived from R measurement. Other results are
derived from R , measurements, ab

Line X0
(A)

Perfect Aged Skylark 
Flight Samples 
1206 804/1101

Processed

Ti Ka 2.75 3.37 4.40 3.90 3.49 5.8 ± 8%
K Ka 3.74 3.71
Ru La 4.85 3.98 4.1 3.96 3.0
S Ka 5.37 3.74
Nb La 5.73 3.0 ± 4%
P Ka 6.16 5.8 6.1 5.8 5.8
Si Ka 7.13 8.8
M  Ka 8.34 10.5 10.6 9.9 9.8 7.9
Mg Kg 9.52 11.8 ± 4%

± 1% ± 2% ± 2% ± 2% ± 2%

Table 6.2 ADP(101) Measured values of the 2-reflection integral
R (rads x 10^) cc

Fit R^ and R results are identical to the Prins 
results shown in Figs.6.2 and 6.3
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Figure 6.2 ADP(101) Bragg reflection integral
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Figure 6.3 ADP(lOl) 2-reflection integral
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6.4.2 The function

a. Measurements

i. Perfect material Two fresh ADP samples were used to generate

(1,-1) rocking curves at selected emission line wavelengths in the Bragg 

reflection wavelength range. A preliminary study showed that at short 

wavelengths the rocking curve fwhm was extremely sensitive to the 

size of the width of the beam incident on the crystal faces. This is
o

clearly illustrated in Fig.6.8 which shows that at 2.75 A reduction 

in Slit 3 width from 3.5mm to 1.0mm produces a reduction in w^^

from 20 arc secs to 12 arc secs. An explanation for this phenomenon 

is given in Subsection 5.4.2. Further reduction of Slit 3 width to 

0.5mm produced no change in w^^ and so the 1.00mm setting was 

employed for short wavelength (1,-1) rocking curves. At longer wave­

lengths larger Slit 3 settings were used since within certain experimentally 

determined limits this incurred no broadening of the rocking curve and 

allowed the beam divergence to be substantially greater than w^^ . The 

lattice tilts were aligned at 2.75 A since at this wavelength w^^ is 

smaller than at other emission line wavelengths used in the study.

A study of the main body and wings of each rocking curve was made

as described in Section 3.4. Measured values of w^^ , (AA/X)^^, P^^

for perfect material are shown as filled circles on Figs.6.10, 6.12, 6.14 

respectively. Measurement, uncertainties on w^^, (AA/X)^^ values

are typically 3% and on P^^ values 1.5% . Fuller details are given
O

in Tables 6.3, 6.4. Apart from at 5.73 A the measured result is 

satisfyingly close to the Prins perfect lattice result. At present 

no thorough calculation of the Prins function taking into account resonance 

line excitations exists for the ADP(101) P K edge wavelength region 

and so it is difficult to make comment on the discrepancy between the
o ,measured and calculated results at 5.73 A . Since, with the exception of
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the above discrepancy, the measured result is within less than 10% of

the calculated result, an attempt to determine the line spread function

by the fit procedure was in order. An effort was made to obtain a

fit at 5.73 A also^in spite of the doubt in the calculated result and

the difference ( '' 25%) between the measured and calculated result at

this wavelength. A fit of the self-convolution of the Prins function

to within a few percent of w^^ and of the (1,-1) rocking curve

was obtained at all wavelengths. The parameters used to obtain a fit

are listed in Table 6.5 and the widths of the major and minor Gaussian

spread functions are plotted in Figs. 6.17, 6.18 respectively. At 9.52Â

a small absorption correction was used in the fit procedure in order to

bring the calculated P down to the measured value but at all other® cc
wavelengths only the two Gaussian spread functions were required. The 

fwhm of the major Gaussian spread function is everywhere small with 

respect to that of the Prins function thus showing that only a small per­

turbation of the latter function was required to obtain a fit. It should 

be noted that as observed for EDdT the widths of the major and minor 

Gaussian spread functions increase with increasing wavelength. An 

explanation of this feature is given in Subsection 5.4.2. It is noted 

that in accordance with the discussion given in Subsection 2.2.2, the 

minor Gaussian function makes a small contribution to the total spreading 

of the Prins function. Figures 6.19.la,6.20.la,...6.27.1a present for

each wavelength a linear plot of the fit to the (1,-1) rocking curve 

(continuous line) superimposed on the rocking curve (stepped line). 

Logarithmic plots of these curves are shown in Figs.6.19.lb,6.20,lb,... 

6.27.1b with measured points obtained from the (1,-1) rocking curve wing
O

studies shown as dots. Apart from at X 7.13 A where the fit P is^ cc
about 6% lower than the measured P^^ , the fit obtained is good to 2 

or 3 orders of magnitude down on P^^ .
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The parameters (AX/X)^,P^ of the line spread function 

derived from the fit are shown as filled circles on Figs.6.9,6.11,6.13 

respectively. The fit result is everywhere close to the Prins result
O

except for the anomalous discrepancy at 5.73 A in the w^(X) and 

P^(X) results. The pattern of the fit and Prins result is thus very 

similar to that of the 2-reflection measured and calculated results.

In view of this fact (and, related to this, the small perturbation 

required in the fit procedure) the fit function parameters can be 

regarded as being very close to those of the true line spread function. 

This conclusion is verified further in the plots of the fit and Prins 

perfect lattice functions for a-, tt- polarised and unpolarised 

radiation presented in Figs.6.19 - 6.27. In all cases the curve of 

lower peak value and with higher wings is the fit function. These 

plots show that the perturbation of the Prins function required in the 

fitting procedure is so small that in most cases the fit function still 

has a similar shape to the Prins function. It is therefore most 

probable that the fit functions obtained are a good representation of 

the perfect sample line spread function, at least in the main body of 

the function curves. In the far wings of the plots there is consider­

able discrepancy between the fit and Prins curves and therefore in these 

regions the fit curve can only be used as a guide as to the behaviour 

of line spread function.

ii. Aged material. A study of the effects of aging on the line spread

function was made by measuring (1,-1) rocking curves using an aged

sample (described in Subsection 6.4.1) as the test crystal and perfect

sample as the monochromator. Measured values for w , (AX/X) ,Pcc  ̂ 'cc cc
are shown as open circles in Figs.6.10,6.12,6.14 respectively. In view 

of the small difference in R^(X) with sample aging the change in the
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(1,-1) rocking curve parameters is surprisingly large. A possible 

explanation is that since the increase in w^^(X) is but a small 

fraction of Prins perfect lattice w^(X) , the mosaic spread in the aged 

sample must be small so that secondary extinction is high. Also as

commented upon in Subsection 6.4.1 the fact that the R^(X) zero 

extinction limit is not far from the Prins perfect lattice limit does 

not allow much increase in R^(A) for an enhancement in mosaic character,

iii. Sample spread of characteristics; flown samples It would appear

from the above result that the sample spread in the w^^(X),P^^(X) 

results is appreciably larger than that found in the R^^(X) results.

This was verified by the results for the Skylark 1206 and 804/1101 

analysers shown as open triangles and open squares respectively on Figs.

6.10.6.12.6.14. These figures show that the results for the two rocket 

analysers are appreciably removed from each other and also from the perfect 

and aged sample results. It is therefore essential that a given sample 

should be calibrated before usage and thereafter checked periodically.

iv. Processed material In view of the fact that the aim of the SiC grit 

abrasion technique, namely to increase R^(X), had not been achieved 

there was little value in studying the effect of the technique upon the 

(1,-1) rocking curve and so results are not included in Figs.6.10,6.12,

6.14. Nevertheless as a point of information the (1,-1) rocking 

curves observed were possessed of very high wings, whilst w^^ was up 

by an order of magnitude and P^^ down by a factor 30 on the perfect 

material result.
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b. Discussion

The perfect material w^^(X), (AX/X)^^(X),P^^(X) results are 

everywhere close to the Prins result indicating not only the validity 

of calculating and measuring procedures but also the high surface 

quality produced through solution polishing. It is noteworthy that 

there is good agreement between the results presented here and those 

(where available) of other workers. Deslattes et al^^® in a study of 

the perfection of solution grown, solution polished samples quotes for 

one crystal pair (AX/X)^^ = 1 x 10  ̂ and P^^ =0.25 at 8.34 A.

In the present study the values (AX/X)^^ = 1 x lO’  ̂ and P^^ = 0.27
o

at 8.34 A were obtained.

The closeness of the measured results of the perfect material 

and the calculated results allowed the fit procedure to be executed 

within the limitations outlined in Subsection 2.2.2.d. i.e. only small 

perturbations to the Prins function were required. Consequently 

the shapes of the line spread functions obtained from the fit were still 

close to those of the original Prins function shapes. This suggests 

that the line spread functions obtained are very good approximations to 

the true line spread functions and one may conclude that in cases such 

as this one where perturbations to the Prins function are small the 

validity of the results of the fit procedure is high.

The observed broadening of the (1,-1) rocking curve due to 

sample aging should be considered in the light of the study made by 

Deslattes et apllG'llB which it was found that exposure of a pair

of crystals with (101) surfaces to 50% relative humidity for about 

one month produced significant broadening in the 202 reflection 

(1,-1) rocking curve. However Burek et al^^^ found that the 

reflectivities and widths of freshly solution polished samples were
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stable for months, even when the samples were exposed to 100% relative 

humidity for a day and to accumulated irradiation to several days 

total exposure. It is difficult to make comparisons between the 

treatments applied by Deslattes and Burek but since the exposure times 

used in the latter treatment are relatively short it is most likely 

that this treatment is considerably less severe. Burek’s findings 

suggest that provided ADP samples do not undergo severe attack then 

(1,-1) rocking curve parameters are stable for several months at least. 

This is borne out in the present study by the results for the Skylark 

804/1101 sample. This sample had been exposed intermittently to the 

laboratory atmosphere during a period of at least 1 year and yet the 

increase in w^^(X) is less than 10% above the perfect material result 

The results for the aged material in the present study suggest that in 

time sample deterioration becomes very significant.

Line
X
(A)

Perfect 
Direct Fit Aged Skylark 

Flight Samples 
1206 804/1101

Ti Ka 2.75 10.9 10.84 15.2 ± 5% 13.6 12.0
K Ka 3.74 14.5 14.39
Ru La 4.85 21.5 21.67 27.9 24.8
S Ka 5.37 24.4 24.30
Nb La 5.73 28.6 28.59
P Ka 6.16 25.2 25.28 31.8 29.1
Si Ka 7.13 37.8 ± 1% 37.76
AZ Ka 8.34 54.3 ± 1% 53.87 63 61 58
Mg KB 9.52 87 87.02

± 3% ± 3% ± 3% ± 3%

Table 6.3 ADP(101) Measured values of the 2-reflection fwhm
w (arc sec) cc
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1
Line

X
(A)

Perfect 
Direct Fit Aged

I

Skylark 
Flight Samples 

i 1206 804/1101
; Ti Ka 1 2.75 0.437 0.438 0.295 ; 0.320 0.400
I K Ka I 3.74 0.362 0.361
1 Ru La 4.85 0.256 0.250 0.160 0.182
' S Ka 11 5.37 0.209 0.207

Nb La ! 5.73 0.132 0.135
P Ka 6.16 0.324 0.330 1 0.221 0.252

, Si Ka 7.13 0.338 0.318
: A& Ka 8.34 0.272 0.266 ! 0.195 0.208 0.235
: Mg K6 ! 9.52 0.186 ± 4% 0.187
1 1 ±1.5% ±1.5% ±1.5% ±1.5%

Table 6.4 ADP(lOl) Measured values of the 2-reflection peak 
reflection Pcc

XO
(A)

Absorption
Correction

Ma j or 
Gaussian 
fwhm 

(arc sec)

Minor | 
Gaussian i 
fwhm ! 

(arc sec)'

! ' 
Ratio 1 Ratio 2

-----1
W !c

(arc sec):
P !

'  I1
1 2.75 1.125 25 i 0.92 0.08 7.47 0.700 j
3.74 1.00 45 !1 0.94 0.06 9.53 0.580 '
4.85 2.25 70 i 0.97 I 0.03 13.2 :0.374 1
5.37 2.00 70 i' 0.96 1 0.04 14.3 ;0.287 1
5.73 3.75 70 !! 0.93 ! 0.07 16.8 10.172 i
6.16 2.50 80 0.96 0.04 15.6 i 0.389 !
7.13 4.50 130 0.97 1 0.03 24.6 10.272 '
8.34 5.00 1 150 0.97 0.03 33.4 0.264
9.52 0.1 5.00 j 190 j 0.95 0.05 50.9 0.291

Table 6.5 ADP(101) Fit parameters and characteristics of the fit
line spread function



3
10

+ B.LE1GH

. Wcc 
(arc sec)

2
10

3 5"

2 0 "

X ( Â )
10° 10 201

Figure 6.8 ADP(101) Variation of with Slit 3 width (mm)



• W c(X )
(arc sec)

Note th a t resonance Une 
exc ita tions  are no t included.

Â(Â)

Figure 6.9 ADP(101) 1-reflection fwhm



• Wcc(X) 
(arc sec)

Mote th a t resonance Une 
e xc ita tio n s  are no t included.

A ( A )

Figure 6.10 ADP(101) 2-reflection fwhm



10

•3
10

A10

N ote th a t resonance Une 
exc ita tio ns  are no t included.

A (A )
10

Figure 6.11 ADP(lOl) 1-reflection resolution



•o
;v

Note th a t resonance Une 
exc ita tio ns  are no t included.

MA)

Figure 6.12 ADP(lOl) 2-reflection resolution



>c(A)

Note th a t resonance Une 
exc ita tions  are no t included.

X(À)

Figure 6.13 ADP(lOl) Irreflection peak reflection



Pcc(X)

•. V

Note th a t resonance Une 
exc ita tions  are no t included.

Â(Â)

1 10 20

Figure 6.14 ADP(101) 2-reflection peak reflection



10

• W c ( X )
(arc see)

n«1

10

n.3|

X)

10

Mote th a t re-jonance tine 
excitations are not included

A(A)
10

Figure 6.15 ADP(lOl) 1-reflection fwfim for reflection orders n = 1 - 4



n=1

n=2

n=3

Note th a t resonance Une 
e xc ita tions  are no t included.

A(A)

Figure 6.16 ADP(lOl) 1-reflection resolution for reflection orders
n = 1 - 4



10

Major 
Gaussian 

fwhm  
(arc sec)

10’  -

10 -

I d ’

T--------1------1-----1----1— I—I—r

A ( A )

1 10 20

Figure 6.17 ADP(lOl) fwhm of the major Gaussian used in the fit



Gaussian
(arc sec)

Figure 6.18 ADP(lOl) fwhm of the minor Gaussian used in the fit



'o

?? TCD O

(U+->
cti

•H

O

O
•H
B

cijÛÛ
O

13
(D

CL,

s

o
o
QOLO

o o o

0)4->cd
c

•H

fH
o

J

cd00
o

+J

T)
<u

■M
o

LO

CN
r<

c
o

•H
■p
cd

•H
13
cd
u

13CD
CO

•H

cd

o
§■3

o
m

o
ro

LO

C D (D
ro
Ô

o
CD

13
<3
U3
CO
cd
(3
E

C
o

•H
P
Cd

•H
13
cd
C.

13
<3CO

•HCh
cdf—I
o
CL 13 
C <3 3 P  P  
•' .H  r-\ P 

CÛ.
w  ^

<< c
CL Cd

O
P
CD
L O

o

00lO

QO CN OO

13
<3
U3CO
cd
<3
Ê

13C
cd

CO (3
3 P

13 O 3
(3 •H
P P 3
cd C3 u

3
3 3 3
o c p O

cd 13
o (3 CD

P '—'
P r<

c •H CL
o t p
•H
p 13 ca
cd 3
•H cd
13 CL
cd (3
U U

•H
13 P
<3 P
CO 3 o
•H
P
Cd P 3,

U Q
o o <
CL P
3 p3 (3

CL
CO CD

CD 3
•H

^  P lD
Cl CL

O
<3Ch
3
CO

LU
CL
<

C5
cc
o
L L

C O<
CO

LU
Q

i

<
u

E—
LUCC
O
LU
E

§
COUJ



o

?too

oo
L O

00 L O CM

rt
c

•H

7O

u
ÛÛ
o

T 3<D+-)
O

73O
+->

4-1

73C
C3

OU
•H+->+->
0}

+-> 01 o C 
O o

4-1 -H  ÎH -M 
CD U  O, C 

33
en 4 -, C

•H  7 3
4i CD 

CL +-> Cj 
/•— \ <—* 
CD 3  

'  CD D>-i 
r-C 03 

CL CD

lO

SR

T

<3)
LO

OO
L O

O00 CNIO

0
•(->cd
C
•iH-3
3h
O

U
•H LT3
E

D3
+-* 04

!h r<
Cd
oo 03
O ■P

C
0

X 3
O

•H to
2 E

O
7 3 CD0
+-> 3
+-> O
O •H

P
t o Cd

03
•H
UO cd
oCL,

<A
Cd

7 3
7 3 c
'— ' 3

O

7 3
0
P
P
•H4L
7 33cd
7 3
0
P
3

7 3 rL
0 3
4-> O■M
• H 34-t 0

7 3 03
c 3cd •H

U
0 Cl
o

•H
+-I CD

Cd r<
CL

4-) C/3
0 C
0 o

4h  - h
A  +J O
0 O
to C3 CL
03 4-1 Q
C <

•H  73
3-1 0

CL -Mcd 04
/---V 1—1
CD 3 C33
w  ( j

t= r-l
cO

Cl  o
0
u3
443

O •H



‘CN

'oO o

-ou
o

uaM
o

73
04-1
■M
o

o
V)e
CN

oo ■o o

0
■M«

-a
o

u03Ciû
o

-a
0■N4->
o

bO
<<

c
o
•H
•prt
•H-a
03p

- 30
t/5
•HfH
03

O
ê-
3

-3
0P
3
t/3
03
0

"3
§

On

oro

L D
CD

(73
CD O

(bo

"3
0P
3
t/3
3
0

-33
P

■ 3
03
• H
P3
O
ê-’S3 P

p  

 ̂cp
C Ûw  X! 
-< C C- 3

R
In
•SCN

O
In

G

o

ro
o
C N

CD00 (N

t/3 0
C P

33 0 30 • H
P P 3
3 0 0
p C p
3 3 3
CJ 4 u 0
3 - 3
0 0 CD

P
P r <

C • H eu
0 ( p

• H
P - 3 CÛ
3 C

3 r <
33 CP
3 0
?H U

• H
- 3 P0 P
t/3 3 0

• H p
U
3 P eu0 Q
0 0 <

C P
3 03h

3 0
CD 3 CN

• H
MOeu eu 0P
3
cc0 • H



n

o

•S<N
•o

O+->oJ
C

T 3U
O

U
03
OO
O

T3
D
W
+->
O

CN

Inn
*o
( N

(N

'O

<u
4->
03
C

• H
T 3f-iO

M
03CÛ
o

+J

" 3
(U
■M

K )

(û
+->
C
<u
co
i-o
o

co
•H+->
03
U)

•H
U
03

O
CL,

" 3
C
03

03
0)

+J
• H
4-t

O

CN

• O
(N

O LD fN
Ô

CD

03
<3

4-t

+-<
O
<3
4-t
f-t
(3 U

“■g
<J) 4-t 
C

• H  0 3
fH <3 CL +J 

03
rH

CD 3  w O 
O-i 

r< 0 3
C- o

CN
"mro

LO

•S

o

ro
CN

O00 CNo

03
(3

•M

•H
4 h

03
C
03

<3
O

•H+->
+J
03

w cm 
u c
(3 O 
4 h  - h  fH +-> 
<3 O 
CL, C

co 4 h  
C

• H  0 3  
fH (3 

C l + l  
03/—\ r—t CD 3w  o
03C, o

03
C
3

03
<3+->
03
1—4
3O
03
O

t/3
C

•H
fH

CL

O

CL
Q<

O
CN

43
<3
fH
3
CÛ



T _ .

‘m

'Oo

orn
Ô OO

■o
o

ErC

«3OûO

73
+->
+-)O

en

CNI

‘o'O 'O

730
?H
3enoj
0
E

C
O

•H
+->rt
•H
7373
u

73
0en

•H

73
O0h73c 0
3 ■(->

■M •> -HM-î
C Û

^  C 
û , 73

03
.O

OJ

ro

o
Ol

.8

Ol

oOJ0 3

0
•l-J
73
3

•H
7 3
U
o
0

•H

■M
•H

3
Wl
O

i—H

Æ LO
+-> 0 0
•H
S TT

73 <<
0
+->
•p 3
o O

•H
3 - P

3
•H
73

0 3
'—' P

73
tn 0
3 en

•H
P
3

73 O
P
3

73
0
P
3
en
3
0
E

en 73
3 3

•H 3

3, 73
0

73 P
0 3

P
3 3
r-i en 0
3 3
0  O 3
1—t "i—t 0
3 P
0 0

3 Œ>
3

3 (p r<
O P
•H 73
P 0
3 P CÛ

• H  P
73 -H r <
3 p P
0

73
73 3
0 3
en O

■H 0 r-t
0 0
3 -H

1 +->
O P <
P  3
3 ^
3

p I—I
*> 0 •

/—< 0
CD P eN

'  P
r< 0 O

Cu ÇL,
0
p
3
0 0

0 •H



o
en

CM

o

(N

*o

c3
C

•H
"Ou
o

-C

• H
fHcüMO

■M

T3
(U

CN

■OO

+->cd
C

• H  
-O
fH
O

fHCdûû
O

-d
d)+->
•p
o

ud
00

r<

tA'
p
c
CD
Co

ïu

p
cd
c/5

• H
fH
Cd
i-H
OPL

-dc
cd

-d
CD

00

o

o
CM

O

-d
CD
P
P

•H
p

-dc
cd

(D
CD

• H
P
P
Cd

P c/5 
O  C  d O 

p  -H  
fH P
CD O
PL p: 

3
c/5 P  
C

• H  - d  
Pi CD 
P P

cd
/—\ '-H
CD 3

' od-H
f< cd 

P  u

o00
CN

O

o

.o

o(N

-d
CD
P
P
•H
P

-dc
cd

CD
u•iH
P
P
Cd

P c/5 
O  C  
CD O 

P  - H  
P P 
CD O P 3
V) P  
3

■H -d
P  CD 
p  p 

cd/-\ t-H
CD 3 

' O  t= t Cd
P  O

p

'd

cd

- d
CD
PCd
3
U

cdo

pÛ<

CNI
cO
CD
P
3OC



‘n

m

o o o

om

cd
C

• H-a
o

o
• H

-̂1Cd
O

T5<U
■M•MO
O,

13<Uf-(
3

cd
D

C
o

•H
■p
cd

• H13
cd
p

13
(U
en

•H
U
Cd

O3-13
a  <u3 p 

p 
•' -H/"—\ 4-4

ca

^  C 
O- cd

O

o
oo

'o

R
'en
•5
ro

O
o
'en
o
ro

O
00
•o
ro

m ro o
o

0)
p
cd

•H
13
3o
o
•H
EX
p
-H
3
Cd
Oû
o

p
•H UO
3 r <

13
e>
p
p Co o
ï-4 •H
O h P

Cd
•H
13

U cd
f-t

13tn CD
cd en

•H
f-t
Cd

13 O
O-
c3

13
CD
P
3en
Cd
CD
E
13
0
cd

13 ■
en CD
C P

13 O Cd
<L) -H
P P 3
Cd u O

r - l  0 1—t

3 3 cdo 4-1 CD

cd 13(J O CD
P

•V P -<
C  "H C -
O  4 h
•H
P 13 ca
cd C
•H cd r<
13 û-
cd <ü
o  ü

•H
13 P
CD P
en cd o
•H 1—4
f-t
Cd P D -r—t CD a
O  <D <
0-4-4
C  O
3 CD

O- 1—1

V en (N
CD C CN

' -H
-< O 43o. o.

<D
P
3
oc

u • H
'—' P-



'cO

t
■o ■O

O4->03
C

•H
T3UO

u03ÙOO
£
+->

T3<U
•PPO

o

0)
p
03
C

•HT3fHO

P
•H
fH
03
DûO

p

T30)
P
PO

X")
L/3
r <

t/3
P
C
(U
c
0

1
o

c
o

•H
p
03
t/î
•H
fH
03

r-H

O
D-

C03

ro
a>

ro

o

ro
to
ro

Lf) fNro

03
O
P
P
P
-O
5
d>
o

•H
P
P
03

P t/1 
O  C  
<D O 

^P -H  
fH Ptu O
^  § 
t/1 P  
C

•H  0 3  
fH CD 
CL P  

03
i-H 

CD 3  w  o 0<-H
r< 03 

CL O

O
Ol
o
ro

en

ro

ld ro

03<D
P
P
•HP
03
C03
03<D
P
03

O

03 3tD u
P
P 03•H O
P t/l
03 C
C •H
03 P

P
<D
O
•H CDP
P r<
03 P

P t/l
O C
(D O t—1

P  -H O
U PCD CJ
P  c p

3 Qt/1 P <
3•H 03
3 CD
P  P rsi

03
rsi

CD 3 (N/ o
t=i-H cO03

P  U CD
P
3
Ciû•H

U P



m

7

ac
•H
" O

O
a
•He
•M
•H

CO
OC
o

4-)
• HS
T3o+->
■MO
O,

(NIm

O
ro

S

tototoo

13
fH
o

fH
cOûû
O

”3
O4-1+->
O

CO
LO

r<

C
o
• H
+->
cO
• H
13
cOfH
13
OV)
• H
fH
cO

OCh
C
p

13
(U
fH
ClA
cOC
E

13
C
CO

O o

13
C
fH
3
(O
cO
CD

§
• H
■M
cO
• H
13
cO
fH

13
03t/î
• H

fH
cO
i-H
O
C h 1 3  
c  03 P -t-> 

+->

L|h
ca

"NC 
C L CO

L O
m

fO o(N I

lA 1 3
C 03

1 3 o P
03 • H cO
•M •M
a U P

C U
p p rp
o <4H cO

CJ
cO 13
CJ 03

•P CD
P

c •H
o cp Cl
• H
■M 13
a
•rH

C
as

1 3 /-<
CO 03 CL
fH CJ

•H
" 3 P
03 P ip
(O CO O
• H

fH
cO P CL1—H CJ Q
O 03 <

( p
c fH
p 03

CL

CO CO
Œ5 c

• H
CNI

r <  fH vO
CL CL

03
P
P
û û

O •HU,



ro

ro

•o 'o

fVJro

ro
ro

ro

'o

03C
•H03
U
O

o
•H

u
OSbû
O

•03
o

o

03

to

LO

r <

t/1+-»
53
co
i-oo
co•H
•p
03to

•Hu
03

-T3C
03

0 3OP
P•HP
0 3
C
03

0 3
0)

IT)

ro

ro
o

o

0 3
<3

P

- o
c
03

<3
O

P to o C 
<3 O 
P  -H 
U P
(3 oPh c 

p
to P
c• H 03 
Jh (3 
P  P 

03
/---\ i-HCD 3 
w  o  

t>-t r<03 
P  O

o
S
ro

o
\ dro
%

ro <N

0 3
<3
P
P
• H
P

T 3
C
03

(3
O

•1-4
P
P
o3

P too c
<3 O 
P  -H  fH +->
<3 O
o . §

to Pc
• H  0 3  
fH (3 
P P 

03
-̂-- 4 r-H
CD 3  
w  or̂-H

r < r t  
P O

fH
P

P
Q<

to
(N

lD
(3
P
300

p



'o'oo

n3
C

T3
O

cdceO

•M

-O
(U

■p
o

o
'o
• ï ï
ro

'O'O OO

73
O

J-i
cdtsûO
Xp

7 3<U
P
PO
O ,

\0
X
r<

73
Cd

73
<3en

• H
'm
Cd

r—i
Oce.
C
3

7 3
(3C
3en
cd
(3
e

o
po

en CMP
O oo

co
• H
p
cd

• H
73
cdCl

73
(3
en

• H
Cl
Cd

OCC73
§

P 
•> *H

P
C Ûw  -O r< C  
CL Cd

ro
ro

• ï ï
ro

CN o
ô

en
o Ô

en C
C cd

• H
C 73

CL 3
P

7 3 cd
3
P 3
cd U

en
3 C cd
O 0 u

1—1 • H
r t P
0 U CD

C
3 r <

3 P P
0

• H 7 3
P 3 Q û
Cd P

•H P
7 3 • H P3 Pc

7 3
7 3 C
3 cdtn 0

• H 3
Cl 0
cd •H P

P P
0 P <cc Cd
c
3

p
3
3 'd-

CD P CM
Cl

r <  3 cO
CL C h

3
Cl
3
Oû

U • H



rsi’iT)
m

o
m
m

7

0 )+->03

T3
O

U
•H
E

fHOS
00
o

•H

- 3

+ J
O

o
( N

V)
m

‘o 'oo

03
C

• HT3f4
o

O•H
E
•p
■HU
o3
00o

p
•H

-a<u
p

vO

\ 0

to
p
c1)
co
I*o
u

co
•H
p
03
U)

• H
fH
03

o
(Z ,

73
c
03

7 3
<U
P

n
CN

“m
n

m

i ( N

If)
m

o

73
(U

P

P

7 3
C
03

<U
u
• fH 
p  
p
03

P tou c
CD O 

P  - H  
fH  P
CD Ü P C
to P  
c

•rH 73
fH  <D 

Cu P 
03

/---\ i-HŒ> 3 
'  o
t > - t  

r< C 3  P O

m

CN
rsi
*Lnro

CN
(3

t=i-H 
r< 03P u

p

73
C
03

7 3
CD
P
03

73
0 3
p o
p
■H cd
P 0

73 to
C C
OS •H

fH
0 P
u

•H
P CD
P03 r <

P

P to
O c
0 o
P •iH

fH p o
0 o
P c

3 p
CO P Q
c <
•H 73
fH 0
P p

cd CN

CD 3 7 j-
o CN

vO
CD
fH

3
OO

• H



LD

O O

O
ô

es
o

(U+->
03
C

•H"O
o
a

•He
%)
•H

03tûO

-C4-1
•H3
T303+J+->O

-a
0)
fH3
t/3
03
03e
co

•H
+J
03

• HT3
03
fH

T )
03
t/3

•HfH
03
i-H
OChT3 
C 03 
3  +->

•P  
H -H  Mh

C Ûw  t3 ^ C 
IX  o3

O

fS

es

'o ■o

(N I

UD
Ô

(NI
Ô

03
P
03
C

• H"O
fHO

J
p
• H
fH
03MO

x:
p i-H
•H «

r ^

0 3
03
P
P C
O o

•H
( X p

03
•H
0 3

o o3
'— ' fH

t/3
0 3
3

03 t/3
•H
P
03

0 3 O
X

t/3

c
3

03
3
P
3
t/3
03
3
e

0 3
c
3

0 3
3

C P
0 3 o 03
03 •H rH
P P 3
03 O 3

c
3 3 3
O P 3

03 03
O 03 CD

P
P r <

C •H X
O P

• H
P 03 CÛ
03 C
•H 3 r <
03 X
03 3
fH Ü

0 3
•H
P

03 P
t/3 03 o
•H
fH
03 P X
i-H U c
O 3 <
( X M h

C fH
3 3

Ph I-H

t/3 LT3
CD C tN I

• H
r <  fH cO

X
3
P
3
W3

(J • H
N-' X



o

Ty

o 'o

(U
■Mrt
C

•H
"3
O

+->

T3
<D
+->
+->O

O

<D+->
a
c

• H-3
o
CJ

5
+->
• H

3tiû
o

• H3
T33
■M+JO
a,:

CO

r <

inwc
3
co
i"o
u

co
•H
•p
3
CO

•H
U
3
OCJ

- 3

3

CO
In

m

•S

CÛ CM
O

o

-3
3

-3
C
3
3
3

P  >J) O C 
3 O 

( p  - H  P P 
3  O 
CP C
CO ( p
3

• H  - 3
P 3  
CL P  

3
\ I—t

CD 3  
w  CJ 0--H

r< 3  
D , CJ

un
o
“cN

Oro

OcO

33
3
P
P
• H
cp

33
3
3
3
3

•H
P
P
3

P  (0 
3 C 
3 O 

cp  .p  
P P  
3 3

‘̂ 1CO Ch
3

• H  t 3  
P 3  
CL P  

3
,—< I—t 
CD 3  
w  CJ 

t
r-< 3  

CL 3

33
3
P
P
• H
Cp

33
3

33
3
P
3
3
3
3
3
to
3

• H
P

CL

CL
Q<

LD
(N
cO

Dû
•H
CL



UD

-*•o'O

ru

O

CN

i__
o
ô

UD
O

ru
o

o•p
03C

•H"Ou
o

e
p
•H

03DûO

P
•H

T3
O
P
PO

T30)
373
03<U
E

CO
•H
P
03•p-i

T3
03

-O03
73

•H
fH
03

o
&"S
3 P 

p  •' "H\ (p 
CÛw  -O

r<C  
CL 03

lT)

S
o■oo

o
ro
CO
ro
ir>

oro
UD
ro

oUD

03
P
03
C

•H
-3UO
U

•H

P
•H
fH
03
M
O

3 -
X to
P
•H 00
2 PC

T3
03
P c
P o
O •H

P
CL 3

•H
33
3

O P

33
3

73 73
03 •H

P
3

O
-3 CL

C
3

«
33
3
P
3
73
3
03
E

33

3

33
73 03
C P

-3  O 3
3  -H
P  P 3
3  O O

r-H 3
3  3 3
O (p U

rp
3  -3
o  03 CD

P
•> P r<

C  "H
O Uh

•H
P  -3 OÙ
3  C

•p  3 r<
■3 CL
3  3
fH  O

•H
33 P
CD
73 3 O

•rH t-H
fH
3  P Cl

1—( u Q
O 03 <
CLUh
C  fH
3  3

CL

\ 73 UD
CD C ru
w  -H

<< P U3
CL CL

03
P
3
Oû

O •H
'—' CL



o
m

o

ro
LD

C
•H"Ou
o
o

•H
E
%]
•H4̂
c3üOO

-d
<ü+j
+->o

8

UO

8

LD

03C
"d
o
u

•H
E

03ûûO

T 3d

O
ex

"d

M
00
r<
VI•pcdCO
!•OO
co

•HP
03
t/)
•HX
03

Oex

T 3C
03

ro
CDro
LD

ro
\dro
m

Tdd

p

Tdc
03

dd
•H
P
P
03

p  t/3a c: d o
p  -HX pd u ex c3
t/3 P  C
•H -dX d X  p  

03/— \ I—I
CD 3  w  o 

D — I 
r <  03 

C l. o

8
un

R
UDro
IT)

ru o

-ddpp•pp
-dc
03.

dd
•H
P
P
03

d  C d o
p  -H 

P  d d

t/3 P  C
•H -den d X  p  

03
/ V I— (
CD 3 w  o ï=i—' 

p:o3 X  d

"ddpp
•HP
TdC
03

-ddp
03

3d
I—I
03
d

t/3
C

•HenX

XQ<

VO
Csl

cO
dX
3Oû



o

o

o rs
O

d)
• p03
C

•H
"DfHO

p
•HfH
03üO
O

rC
P

T 3
(U
P
P
O

mvû

'O 'o

<u
p
03C
T3PO

•H
P
03
Où
o

p
•H
2

T3
(D
P
P
O

CM
LO

O'.

co
•H
p
03

•H
-O
03
P
T3
0>
t/)

•H
P
03

O
O,

§

<NI

O

oro
O o o

-a
(U
P
3c/3
03
(U
E

C
O

•H
P
03

•H03
03
P
03
<D
c / 3

•H
P
03

P 0 3
C eu
3 P

P
•H
P

<3Û
0 3

-<  C
Cl 03

03

O

ro03

8

g03
ro O

ô
(NItn

o

c/3
C

03 O 
<3 -H 
P  P
03 U

g §
O Ph

o3 03  U ü 
P  
P  

C  -H O Pt 
•H
P  0 3  
03 C 

• H 03 
0 3
03 ü 
P U 

•H 
0 3  P  
03 P  
c/3 03 

•H I—I 
P
03 P  
^  U
O euDhP 
C P 
3 eu

\ C/3 
CD C  

/ -H 
i-<C p

Cl. cl.

0 3
eu
P
3
c / 3
03
(U
S

0 3
C
03

03
eu
P
03

3
O

03
a

CLa<

CM

lO
eu
P3
Où



■o

s

o
m

'en
i£)

TTrO

0
■Mf3
C
•H

'M
O

OJÜû
o

•M

" O
0
-PPO

o
mU3

S
o 'o

03
C
• H
"O

o

J
pos(5Û
O

03
0
p
p
o

I—I
Ch

( N
i_n
o
r<

(/)
p
c
0
co

oo
c:o
• p
p
03
(/)
• H
P
o3
p
O
CP

-o
c
03

03
0

U3

O

03
(NI
ro
t D

m
ô

L O
O

O
O

r>io o

0 3
0
P
P
•HtM
0 3
C
03

0
O

P  t/3 
O C  
0 o
( p  - H
p  p  
0 o 
(P c
t/3 t p
c
•H  0 3  
p  0  
CL  p  

03
P

CD 3  
w  CJ 

t D P  0̂3 
CL O

rn
UD

L O On
cb o

03
0

P4
03
C
03

0
U

P
03

P  t/3 O C 0 O 
( p  - H  
P  P  
0 0 P, C
t/3 P
C
• H  0 3  
p  0  
C l  p  

03
>—\ p
CD 3  
w  o  

t = p  
r< 03 

C L  O

Ul
0 3
C
03

0 3
0
P
03
p

3
03
O

t/3
C
• H
P
CL

CL

<

(N

UD
0
P
3tP3
UL



204

CHAPTER 7

BRAGG REFLECTION CALCULATIONS FOR SORBITOL HEXA-ACETATE (110)

7.1 Introduction

The confidence gained in the calculated results in previous 

crystal studies is an incentive to calculate the Bragg reflection 

characteristics of the rather interesting analyser sorbital hexa- 

acetate for which only scanty measured data is available. Interest

in sorbitol hexa-acetate (SHA,CgHgOg(COCH3)g, 2d = 13.88A) as a Bragg
12 5analyser was aroused in the early 1960s by Gavrilova’s report, that

for Cu Ka radiation the reflection efficiency^ of SHA is up by a

factor 3 on PET. This result was confirmed by Ruderman and Michelman ^

and also by Leigif \ the latter finding SHA to be up by a factor 2 on PET.

These findings must however be treated with caution since without 

further information from calculations and experimental studies interpre­

tation is difficult. This matter is addressed further in Section 7.3. 

SHA is a potentially useful crystal for X-ray fluorescence analysis in 

the 9-14A wavelength range.Currently used analysers suffer from the 

disadvantages of either exhibiting crystal fluorescence (e.g. ADP) or 

low angular dispersion due to a large 2d (e.g. phthalates, stearates).

SHA provides sufficient angular dispersion in the above wavelength
127region and X-ray fluorescence studies at Mg Ka have shown that,as a 

result of containing only low Z elements,background contamination in the 

Mg Ka region due to crystal fluorescence is negligible. Indeed, although 

SHA has a lower reflection efficiency than ADP (.by factor 2) the problem

The expression reflection efficiency is commonly found in X-ray spectro­
metry nomenclature. It is dependent upon the geometric conditions under 
which the crystal is used as well as the reflection integral (see Ref.128)
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of variable background contamination due to P Ka fluorescence radiation 

when using ADP, favours the use of SHA for routine measurement of Mg Ka 

radiation. In the case of the measurement of Na Ka there is little 

possibility that SHA will supercede RAP since the contamination free 

background could not compensate for the very high reflection efficiency 

losses.

Extensive use of SHA is hampered by the difficulties encountered
127 128 129in the production of high quality samples.' ' In particular, 

temperature variations during growth cause thermal stresses in the 

crystal which lead to cracking. Crystal samples also tend to exhibit 

twinning. However in the last decade significant improvements have

been made in sample preparation and it is possible, in principle at 

least, to produce SHA commercially. With this and the potential use­

fulness of the crystal in mind it is worth studying this analyser albeit 

mostly by calculation. The following calculations augment the 

reflection integral measurements of Leigh on a single crystal of SHA 

which showed appreciable thermal cracking. Expense prevented the 

procurement of two samples and hence rocking curve studies were not made. 

In any case it is worth waiting until high quality samples are available 

before carrying out such a study.

7.2 Data Sources and Details of Numerical Evaluation

130The crystal structure of SHA was determined by Dr. D.R. Russell 

of the Chemistry Department of Leicester University using a sample

supplied by Isomet Corporation^. This structure determination also
t

Isomet Corporation, 433 Commercial Avenue, Palisades Park, New Jersey,
07650, USA,
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provided anisotropic temperature parameters for oxygen atoms and isotropic 

temperature parameters for carbon and hydrogen atoms and these were used 

in the calculations to follow. The crystal density was obtained from 

Ref.129. Since the constituent atoms of SHA have lowZ numbers and the 

reflection wavelength range is well removed from the absorption edges 

of those atoms, it was appropriate to use Honl’s method to calculate 

anomalous dispersion terms.

7.5 Comment on the Calculated Results

At present the lack of measured values of the linear expansion 

coefficient a does not allow an evaluation of the Bragg dispersion 

function. However, in anticipation of this datum becoming available, 

the calculated function A8(A) is shown in Fig.7.1 and literature 

values of d are given as follows:

,127
d^3 = 6.99510.005 A

,130
dgQ = 6.94110.007 A

The calculated R^(X) results are shown in Figure 7.2. Also 

included are the measured values of Leigh for a single crystal of SHA 

supplied by Isomet Corporation. The calculated results show the 

commonly observed large separation between the Prins and Darwin zero- 

extinction results at short wavelengths. A comparison of the 

calculated and measured results at short wavelengths shows that the 

crystal sample has considerable mosaic character. In view of the 

thermal cracking in the sample this is not surprising. In order to 

interpret the aforementioned SHA and PET results of Gavrilova and 

others it is instructive to compare Figure 7.2 with Figure 4.3 which 

summarises calculated and measured R^ data for PET. Clearly at 1.54 A
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the calculated of PET is higher at the Prins perfect lattice limit

and particularly so at the zero-extinction limit. This suggests that 

the measured result for SHA appears higher only because a mosaic SHA 

is being compared with a perfect PET. If the SHA and PET samples were 

of comparable quality then undoubtedly PET would show a higher 

reflection efficiency.

Figure 7.2 also shows a depression in the SHA Prins, zero- 

extinction and measured R^[A) results in the 9.5Â region. In view of 

Darwin zero-absorption result at 9.5 A this suggests a high unit cell 

absorption cross section. Clearly this is a disadvantage for X-ray 

fluorescence analysis of Mg containing materials previously discussed 

in Section 7.1. The small separation of the Prins and zero-extinction 

results in this wavelength region shows that there is little to be 

gained in R.̂  from surface abrasion processes.

The calculated k(8g) results shown in Figure 7.5 are remarkable

by virtue of the low Prins result for 8 > 45°. Indeed the Prins result

is very close to the zero-extinction limit. SHA is therefore a

potentially useful crystal in polarimetry experiments where analysers
107

possessed of a low k[8g) characteristic are required.

A plot of Rq CA) for reflection orders 1 - 4  as shown in 

Figure 7.6 demonstrates that second order R^ [A) is non-negligible and 

that care must be taken in first order measurements to ensure that 

second order contamination is eliminated or taken into account.

Figures 7.7 - 7.14 present calculated results which relate to

the width and peak of the line spread function. For the reader

interested in the application of SHA to spectroscopic studies, the

(AA/X)^(A) plot given in Figure 7.9 is of most interest. A typical

value (AX/A) = 1.15 x 10  ̂means that the resolving power of SHA isc
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comparable with that of ADP for which = 1.2 x 10 . Provided

high quality samples can be produced commercially, SHA clearly shows 

promise for use in X-ray spectroscopy.

7.4 Conclusions

The above calculations show that outside the 2d limit wave­

length regions, SHA is comparable to ADP with respect to R^(X) and 

(AX/X)^(A) results. A comparison of both measured and calculated 

results for SHA and PET indicate that SHA has the lower R^(X] and that
O

measured results to the contrary at 2.75 A are deceptive because a

mosaic SHA sample result is being compared with a perfect PET sample

result. The calculations also show that SHA has an appreciable

second order R^(X) and that care will be needed in avoiding second

order contamination in first order measurements. SHA is potentially

useful in X-ray fluorescence analysis particularly for Mg Ka radiation

where on account of low background contamination due to crystal

fluorescence it provides a useful alternative to ADP. Unfortunately

it is not possible to achieve the reflection efficiency of ADP at Mg Ka

On account of alowk(0 ) characteristic at 0 > 45° SHA shows promise
B

as a polarimetry analyser. Furthermore by virtue of high potential 

resolving power SHA may well find application in X-ray spectroscopy.

It can be concluded from the above summary that SHA could be made use 

of in X-ray astronomy, although in large area crystal experiments the 

difficulty of growing crystals free of thermal stressing and 

twinning may be inhibitive. It is to be hoped that in the not too 

distant future high quality SHA samples will be commercially available.
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CHAPTER 8

CALIBRATION DATA FOR THE ARIEL 5 BRAGG SPECTROMETER

The main thrust of this thesis has been the application of 

calculation and measurement techniques to the thorough characterisation 

of particular Bragg analysers. The reliability of these techniques 

borne out by good agreement between theoretical and measured results 

and the high efficiency with which they can be applied has indeed led 

to their application to routine, but nevertheless important, calibration 

of analysers used in other research work. In this chapter a report is 

given of the calibration of graphite (002) and lithium fluoride (200) 

used in the Ariel 5 Bragg spectrometer and in Chapter 9 a report of the 

calibration of ADP (101), gypsum (,020), KAP (001) and RbAP (001) for 

use in the American Science and Engineering (AS § E) rocket studies of 

the solar corona. Both reports are presented in their original form. 

Other work carried out but not given here include the calibration of 

PET (002) for use in X-ray analysis studies at Pye Unicam, Cambridge, 

and the calibration of various analysers for use in X-ray diagnostic 

experiments at the Rutherford Central Laser Facility.
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Abstract. The principal characteristics of the Ariel 5 Bragg spectrometers arc reported. In particular the 
preparation and calibration of the crystals are discussed and the calibrations presented.

1. Introduction

The A rie l 5 X -ray astronomy spacecraft (previously known as U K-5) carries a pair of 
conventional coarsely collimated flat crystal spectrometers for study of the spectra of 
night sky X -ray bright objects. Since launch (on 15 October, 1974) and to the time of 
writing the instruments have operated correctly in all respects; the scan mechanisms, 
control and data electronics are all functioning correctly and the gas proportional 
counters have shown stable performance and low background noise rate.

To the time of writing, observations on which the instrument has received 
substantial exposure include a thorough search of the SCOX-1 spectrum from the Fe 
XXV! Lyman line to the K-shell ionisation lim it. The spectra of both CAS A  and the 
Tycho SNR have been examined for the presence of Si x iv  Lyman a and the Fe x x v  
resonance line. A  polarisation study of the Crab continuum spectrum has also been 
made.

A ll these results w ill be discussed elsewhere. O ur present purpose is restricted to 
establishing the instrument calibrations upon which the interpretation of these data 
depend. The salient features of the instrument design are given in Table I. The 
(wavelength-dependent) detector quantum efficiencies may triv ia lly be calculated

T A B LE  I

The salient design features of the Ariel 5 spectrometers

Lithium
Analyser type: Graphite 002 fluoride 200

Aperture: 221 cm
Collimation: Hexagonal honeycomb, FW H M  =  T
Scan limits: @ (") 31.8-69.6 23.3-61.6

A (A) 3 .5 - 6.3 1.6- 3.5
E (keV ) 3 .5 - 1.9 7 .7 - 3.5

Detectors: window 0.0034" Be 0.005" Be
gas mix 75% argon, 15% xenon,

10% methane 
fill pressure 900 mms mercury
gas depth 2 cm

Space Science Instrumentation 2 (1976) 313-323. A ll Rights Reserved. 
Copyright ©  1976 by D. Reidel Publishing Company, Dordrecht-Holland
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from the data given in the table using well-established mass absorption coefficients, 
for example those of Stainer [1]. In the remainder of this paper we are concerned 
with the more difficult matter o f the calibration of the efficiency of the Bragg analyser 
crystals.

2. Definitions

If  the direction of the maximum collimator transmission is directed to an X-ray star 
then the beam incident on the crystal is sensibly parallel and the glancing incident 
angle to the crystal is 0. I f  the source emitted a single monochromatic wavelength. A, 
arriving at the spectrometer at unit power cm~^, then the power diffracted from the 
crystal into the detector is Px(0), and Px(0) is sharply peaked about the value of 0 
which satisfies the Bragg condition

A = (2 d ln )  sin 0

d is the period o f the crystal lattice and n is the order o f diffraction. We have 
discussed elsewhere [2 ] the difficulties of using calibrations of the fractional reflec­
tion Px{0). However, i f  the crystal is rotated at constant speed o> through the region 
of significant Bragg reflection, then the total energy received by the detector, if  the 
(monochromatic) input beam power is /q, is

=  / o | PAe) de/to =  IoR Ja ,  (1)

where Rc is the reflection integral. In a search for emission lines the A rie l 5 
spectrometers are operated in a manner which implements Equation ( I)  and the 
required efficiency calibration is R^.

In order to observe a continuum spectrum from the source it is sufficient, in order 
to measure the power /o (A ) at wavelength A, to maintain 0 constant and the power 
received by the detector is then [2 ]

J(0) =  7o(A)ARc cot 0, 

so that again the reflection integral is the required calibration.

3. Calibration of the Graphite Crystals

Since in X-ray astronomy the source power I q is always small, it is important to use 
the best available crystal efficiency. Lyttle  and Bingham [3 ] pointed out the advan­
tages of graphite from this point of view and Kestenbaum [4] made a study of the 
properties of commercially available graphite. Professor Novick’s group have used 
the material fo r rocket- and satellite-borne spectrometers and have extensively 
reported their work [5].

The raw material procured fo r use in A rie l 5 was obtained from the same 
manufacturer as used by the Columbia group (Union Carbide Corporation) though
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our preparation procedure was different (see Appendix) and the Bragg reflection 
characteristics were correspondingly different.

Figure 1 shows a summary of calculated and measured values for the reflection 
integral, as a function w ith wavelength, in which the Leicester and Columbia values 
are compared. The lower curves marked P are calculations for a perfectly regular 
graphite lattice according to the zero absorption Darwin lim it, the upper curves 
marked M  are for ideal mosaic crystal samples calculated according to the Darwin 
zero extinction lim it. The Columbia results are plotted from the data in Reference
[4]*. The Leicester calculations use mass absorption coefficients from Stainer [1], 
and our own calculations o f the unit cell scattering factor. The latter is based upon the 
atomic coordinates given by W yckoff [6 ] and the carbon scattering coefficients of 
Doyle and Turner [7]. The result of the calculation puts the unit cell structure factor F  
in the range 16.1 to 17.4 according to the uncertainty in Wyckoff’s atomic coordi­
nates. Professor Novick has pointed out to us the searching investigation of Ergun [8 ] 
which produces a sim ilar value.

In Figure 1 the crosses are the Columbia measured values from Reference [4 ] and 
the single point at 4.75 Â  fo r a sim ilar sample prepared at Leicester is in quite good 
agreement -  to about 15%. In fact there is no reason to expect better agreement than 
this because we have found that the amount of extinction in a thin graphite sample is 
dependent upon the method of sectioning, mounting, etc.

In the case of the A rie l 5 instrument there are several constraints on the scan lim its 
which can be used in a given observation and these place an upper lim it on the desired 
crystal diffraction width. The particular sample, of which one test result is shown by 
the open square at A 4.75, was prepared in order to try to reproduce the maximised 
Columbia Rc values. The fu ll w idth at half maximum (FW HM) of Pxid) for this 
sample, however, exceeded 1® and was substantially too wide for use on A rie l 5. We 
therefore evaluated an alternative sectioning and mounting technique to find a 
narrower mosaic spread. The techniques as finally adopted for the preparation of the 
flight crystals were as described in the Appendix. These methods produced a FW H M  
mosaic spread of about 20' (see below), which was suitable for use on A rie l 5. These 
circumstances forced us to accept the increased extinction that inevitably accom­
panied a reduction in the mosaic spread and the consequent reduction in the 
reflection integral. The final A rie l 5 calibrations, shown by the solid line of Figure 1, 
thus show a penalty o f about factor 2 in efficiency compared with the measurements 
of Kestenbaum.

For crystal samples w ith such wide mosaic spreads as are relevant here, it is a 
simple matter to make usefully accurate measurements of the shape of the diffraction 
profile f\(^ )a s  well as of the integral Thus the dispersion in d of the natural w idth

•  In the verbal presentation of this paper at the Symposium our slide of Figure 1 compared the Leicester 
calculations as shown here with Columbia calculations taken from Kestenbaum, Columbia Astrophysics 
Contribution No. 89 (February, 1973). Our calculations were at variance with these data, but the 
discrepancy was removed in the revision to the Columbia data (10 May 1973) given in Reference [4] of 
which we were then unaware.
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Fig. 1. Calculated and measured values for the Bragg reflection integral of graphite cleavage planes in 
first order. The curves marked M are the calculated Darwin mosaic limit; the full line is the Columbia 
result (Ref. [4]), the broken line is our result. The curves marked P are the Darwin perfect lattice zero 
absorption limit; the broken line is the Leicester result and the dashed line is from Ref. [4]. The open 
square is an early Leicester measured value for comparison with the Columbia measured values given by 

the crosses. The solid line through the full circles is the ftnaJ Ariel 5 calibration.
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Fig. 2. The mosaic spread of graphite cleavage planes measured (in first order) with Ru radiation at 
A4.85, (a) for an early Leicester sample, (b) for an Ariel 5 sample.

o f fluorescent X-ray lines is generally less than 1 m illiradian and it is easy to set slit 
w idths to maintain the test beam parallel to about 1 m illiradian also. Under these 
conditions a recording o f the count rate (normalised to the count rate in the test 
beam), as 8 is scanned through the reflection, is a good approximation to P x ( 8 ) .  

Figure 2a shows an example o f such a record for the first high efficiency sample and 
Figure 2b shows a typical profile fo r the flight material.

Figure 3 shows the FW H M  of P x { 6 )  plotted with wavelength. This shows our first 
test sample to have a somewhat larger spread than the Columbia material and the 
fligh t material to have a substantially smaller spread than either. A ll the experimen­
tal data show much larger d iffraction widths than are predicted by the Darw in zero 
absorption perfect crystal model, results of which are shown for comparison.

Figure 4 shows the fractional peak value of Px { 8 )  graphed w ith wavelength. Note 
that, curiously, the A rie l 5 material does not show substantially higher fractional 
reflection than the Columbia material, despite the narrower profiles for P x { 8 ) .  I t  is 
doub tfu l whether these conclusions are much affected by differences in measurement 
conditions. The collimation used fo r the Columbia measurements was 0.19° and that 
used in the Arie l 5 calibrations was 0.15°. As Kestenbaum noted, this effect leads to 
underestimation of the peak fractional reflection and overestimation o f the F W H M  
of P x { 6 ) ,  but in both cases this is more like 10% than a factor o f 2.
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Fig. 3. The full width at half maximum for first order graphite cleavage plane reflections graphed with 
wavelength. The lower curve is the calculated Darwin result for a perfect zero absorption lattice. The 
crosses are Columbia results from Ref. [4], the open square is a comparable Leicester result and the Ariel 

5 calibrations are given by the solid line through the full circles.
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Fig. 4. The fractional reflection at the peak of the diffraction profile for graphite. The Ariel 5 values are 
given by the solid line through the full circles. The open circles are Columbia results (Ref. [4]), the open 

square is a Leicester result for the early Leicester sample.
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Fig. 5. The reflection integral for first order LiF reflections. The faint curve is the calculated Daruin 
mosaic limit, the broken line is the calculated Darwin zero absorption perfect lattice limit and the solid line

is the measured Ariel 5 calibration.
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Fig. 6. The measured (Ariel 5 sample) fractional reflection at the peak of the diffraction profile for first
order LiFdiffraction.



322 K. D. EVANS ET AL.

4. Calibration of LiF Crystals

The lithium fluoride crystals used for the Ariel 5 high energy spectrometer were 
standard commercial grade material procured from Nuclear and Silica Products Ltd. 
The calibration procedures were as for the graphite considered above. Figure 5 
shows the measured reflection integral Rc graphed with wavelength and compared 
with the calculated Darwin limits. Figure 6 shows the peak fractional reflection Px{6) 
graphed with wavelength. In these data the systematic underestimation due to the 
effects of non-zero beam spread and bandwidth (see above) is more significant 
because the diffraction profiles are narrower. Figure 7 shows a (1, - 1 )  two-reflection 
rocking curve at A 3.45. The FWHM is 609".

• 10' 9 '

Fig. 7. A two-reflection (1, -  1) rocking curve for first order LiF in Ca KaA3 .45 radiation.
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Appendix

Preparation of the Graphite Crystal Panel for Ariel 5

Union Carbide grade ZY B  graphite (mosaic spread 0.8®± 0.2® FW HM ) was selected 
and procured in pieces 1 inch square by ^  inch thick. Our in itia l experience w ith 
cleaving the graphite made it clear that cleaved crystal thicknesses of the order 
0.01 inch were feasible as production items, providing that the thin crystal was fu lly 
supported during the cleaving operation. Ideally, cleavage should be initiated with a 
very thin blade: the strongly diverging blade of our Zeiss microtome was then 
unsuitable and was replaced by a commercial, single edged razor blade.

The production sequence was as follows:
(1) To each large face of a graphite slab a (1 square inch by 0.1 inch) magnesium 

alloy substrate was attached using epoxy cement. This sandwich was attached to the 
microtome carriage with a thermoplastic wax (commonly used to fix geological 
specimens during grinding, etc.).

(2) The blade on the microtome was used to initiate cleavage 0.01 inch from the 
upper substrate by attacking the graphite slightly towards one corner. The cleavage 
was then completed by hand and any stepping caused by torn layers was removed by 
peeling away the excess, from both faces, with tweezers.

(3) A  new upper substrate was then attached with epoxy and the cleavage 
repeated until all the graphite was used.

(4) A  crystal array sub-unit was formed of six of the 1 square inch crystals. These 
were waxed face down together onto an optical flat and then attached to a 
magnesium alloy sub-frame with enough epoxy cement to ensure that they stayed 
parallel.

(5) A fte r removal of all the wax from the sub-unit, individual crystals were 
cleaned-up by removing thin layers of graphite from their surfaces w ith adhesive 
tape.

(6) Using the Leicester 80 foot X-ray facility, measurements were made on each 
sub-unit of

(a) the reflection integral and the mosaic spread at a number of X-ray
energies

(b) the angular relationship between the peak of the reflection and the lower
face of the sub-unit.
Using specially machined shims a set of sub-units was then mounted, w ith crystals 

parallel, on a master frame.
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CHAPTER 9

THE CALIBRATION OF BRAGG X-RAY ANALYSERS FOR USE IN 
AS SE ROCKET STUDIES OF THE SOLAR CORONA

The attached is a report of studies commissioned by American 

Science and Engineering Inc., 955 Massachusetts Avenue, Cambridge, 

Massachusetts 02139, U.S.A. The company had procured several large 

Bragg analyser crystals for use as the major optical elements in an 

instrument to be flown on high altitude rockets for the purpose of 

diagnosis of the condition of the sun's atmosphere. Extensive 

studies of the characteristics of these analysers were conducted by the 

present author and reported to the company. The methods used in the 

studies were as discussed in this thesis and details were made available 

to the company. Final results given to the company were as in the 

attached brief report which is reproduced here without further comment 

or modification (apart from updating the references) as one example of 

the contribution this present work has made to the work of others.
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1. W avelength Calibration. Although collimated Bragg spectrometers maybe

used to determine the coronal spectrum with a 

wavelength precision of about 1 part in 20, 000 we have previously argued^’ that 

i t  is generally preferable to establish this precision wavelength scale by self­

calibration of the recorded spectrum using carefully selected reference lines.

However, as a protection against gross error, it  is our normal practice to note the 

nominal Bragg angles at which each wavelength is reflected during the efficiency  

and resolution measurements given below. No particular care is taken to achieve 

precision in measurement of these angles (a zero error of up to 10 arc minutes could 

be present). However, i t  was noted that a ll reflections occurred at the expected 

angles within say ± 1 5  arc minutes. Angles were measured relative to the mechanical 

face of the crystals and S .Q  & S nominal 2d values were used.

2. Reflection Integrals. All samples were calibrated using the 2-reflection
2

asymmettric method described by Evans et a l .

The raw measured values are shown by individual points. In some cases a small 

calculated correction is applied to produce the final characteristic which is then 

shown as a solid line. Where two samples of a given material have been measured 

the second sample was studied at fewer wavelengths which were sufficient to show 

consistency. For comparison typical measurements on comparable Leicestar material • 

is shown as a faint line . The calculated predictions of the Darwin imperfect lim it  

are also shown (as a broken line) for comparison.

3. Resolution- Though it  is not entirely satisfactory it  is world­

wide practice at the present time to characterize  

the resolution of Bragg x -ra y  analyzers as the fu ll width at half maximum (FWHM) 

of the 2-reflection (1, -1 ) symmettrical rocking curve as described in the standard 

texts (notably x-rays in Theory and Practice, A .H.Com pton, S.K. A llison, Von 

Nostrand, New York 1935). The results are shown as a solid line through the 

measured values (no correction need be. applied to the raw data in this case).

Where two samples of the same material were tested no significant differences 

between the two were found. Except in the case of gypsum, typical previous



measurements on Leicester material are shown for comparison by flin t lines.

The broken curves represent the FWHM of the calculated zero absorption Darwin 

lim it single-reflection curves.

In  a ll the measurements the firs t crystal was a Leicester sample of comparable 

quality to the AS&E test sample (which was always mounted for the second reflection).

W e considered that the quality of both gypsum crystals was worthy of special 

note. They are probably the best samples we have seen at Leicester.

References :
1. Evsuis, K.D., Hutcheon, R.J. and Pye, J.P. : The wavelength calibration and 
resolution of the Leicester solar coronal Bragg spectrometer, Space Sci. Instrum.
2, 339 (1976).

2. Evans, K.D., Leigh, B. and Lewis, M. : The absolute determination of the
reflection integral of Bragg X-ray analyser crystals. Two-reflection methods. 
X-ray Spectrom. 6, 132 (1977).



  CALCULATED VALUES (DARWIN IMPERFECT LIM IT FOR
REFLECTION INTEGRAL,ZERO ABSORPTION LIMIT FOR RESOLUTION)

  MEASURED VALUES ( TYPICAL LEICESTER SAMPLES)

MEASURED VALUES A S. AND E SAMPLE 1 
WITH CALCULATED POLAR6ATI0N CORRECTION.

AS ABOVE FOR AS. AND E SAMPLE 2.

FINAL CALIBRATION FOR A S. AND E 
SAMPLE 2



(10" rads)

P K ABSORPTION EDO:

102 93 5 6 7 8
X  ( A u )

BRAGG REFLECTION INTEGRAL CALIBRATIONS. AS AND E SAMPLES —  ADP

F.W.KM.

(A R C M IN )

1.0

08

06

0.4

0.2

01

J -

4 5 6 7 8 9
WAVELENGTH X (M 

R ESO L UT IO N  C A L I B R A T I O N S .  A S S E  S A M P L E S  -  ADP.

10



(1 0 'rads)

X (Au)
BRAGG REFLECTION INTEGRAL CALIBRATIONS. AS AND E SAMPLES — GYPSUM

FWHM.
(A R C M IN )

5 6 7 8 9 10 n 12
W A V E LE N G T H  \  ( I )

R E S O L U T I O N  C A L I B R A T I O N S ,  A S B E  S A M P L E S  -  G Y P S U M



10 rads)

F.W.KM.

(A RC M IN )

08

06

0.4

02 20 22 24

W A V E LE N G T H  X ( A )
RESOLUTION C A L I BR A TI O NS ,  ASBiE S A M P L E S  -  KAP



(10 rads)

8 10 12 U 15 18

BRAGG REFLECTION INTEGRAL CALIBRATIONS, AS AND E SAMPLES —  RAP

F.W.H.M.

(A R C M IN )

20

8 10 12 14 18 20 22 2416
W AVELENGTH X (A  )

RESOLUTION CALIBRATION, ASBE SAMPLES -  RbAP,



211

CONCLUSIONS

The main purpose of this work has been the full characterisation 

of selected Bragg analysers both by measurement and calculation. This 

has involved applying efficient measurement techniques, some only 

developed in recent years, and taking advantage of available computational 

methods to calculate Bragg reflection characteristics based on models 

proposed early this century. In general where comparison between measure­

ment and calculation is possible, e.g. between the results for fresh 

perfect crystal samples and the Prins perfect lattice model, agreement is, 

in general, remarkably close. This indicates the power of the Bragg 

reflection models and the validity of the measurement techniques applied.

The Bragg dispersion function study for PET showed that within 

the limits of measurement uncertainties the measured A0(X) result agree 

with the well-attested calculated results. The main problem of the 

study was temperature control and measurement so that for future studies 

significant improvements are required in this area.

The effects of crystal aging upon Bragg reflection characteristics 

have been clearly demonstrated, and particularly so in the case of PET for 

which increases in the characteristic are very significant. This

result is to be expected for PET on account of its softness and high water 

solubility and hence its high susceptibility to attack from the laboratory 

atmosphere. The calculated results for the Darwin zero-extinction limit 

indicate that it is possible to increase of a given sample above

the measured aged sample results. Various treatments were applied to 

samples in an attempt to accelerate the aging process which in effect 

meant an increase in the mosaicity of the samples. The manufacturer's 

(Quartz et Silice) solution etching treatment, which was applied to PET
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samples, produced a considerable increase in . The SiC

abrasion technique brought about an even larger increase for PET and 

was applied with success to EDdT samples also. Unfortunately the 

R^(A) result for ADP was not improved significantly by the abrasion 

technique and indeed the calculated results show that, due to the 

relatively small difference between the Prins perfect lattice and zero- 

extinction limits, there is little room for improvement in any case.

One of the surprises of this study was the structure found in 

the P K absorption edge of ADP . This was later accounted for on the

basis of resonance line scattering. Similar but even more severe

structure has been observed in the 0 K edge of KAP in this and other

laboratories. An analysis of the PK edge is in progress at present.

The lesson to be learned from these observations of such structure is 

that presently available anomalous dispersion term calculations are 

sufficiently powerful outside an absorption edge wavelength region as is 

clearly demonstrated by good agreement between measurement and calcula­

tion, whereas within such a wavelength region these calculations are in 

general inadequate so that calculated results must be regarded with 

caution and should be supported by measurement. With regard to future 

work, the Bragg reflection technique shows great promise as a means of 

testing, and thereby modifying, theoretical descriptions of absorption 

edges.

Two important practical matters were highlighted in the [1,-1] 

rocking curve studies. In order to obtain undistorted curves, crystal 

mounting must be as stress-free as possible. The presence of macro­

scopic defects (such as bending strain] in crystal samples is very 

common and in consequence rocking curve widths are sensitive to the mag­

nitude of the irradiated crystal surface area. This was clearly
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illustrated by the excessively broad rocking curves obtained at low

glancing angles for which (for fixed slit width settings) reflecting

areas are large. The closest agreement between measured and calculated

(1,-1) rocking curve characteristics was found for ADP . Indeed

differences between measured and calculated w results for thiscc
analyser were less than 10%, thus showing the high sample quality
resulting from both crystal growth and solution polishing. A lesser

degree of agreement was found for EDdT and PET although in the latter

case this was to some extent due to the fact that the crystal surface

reflecting areas were large. These results seem reasonable in view of

the fact that the softer organic materials are more susceptible to

chemical attack and mechanical stress. Increases in w due tocc
sample aging were found to be commensurate with increases in due to

the fact that reduction in the extinction limitation on R resultsc
from spreading of the orientation distribution of the crystal domains. 

Accordingly sample aging produced large changes in both w^^ and R^ . 

for PET and small changes in both these characteristics for EDdT .

This study has gone some way towards clarifying the effects of aging 

upon ADP which has been under debate due to seemingly contrary obser­

vations. It would appear from the present (T,-l) rocking curve studies 

that ADP ages slowly but in time (5 years or sol will degenerate 

appreciably. It was found that several of the surface treatments 

applied to increase reflection efficiency (e.g. sand blasting and steam 

blasting) produced mis-shapen rocking curves often with excessively high 

wings. On the other hand the solution etching and SiC grit abrasion 

techniques produced well-formed rocking curves. It should be noted 

that only relatively few techniques were tried since essentially the aim 

was to show that reflection efficiency could be significantly improved.
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There is room for considerably more experimentation in this area parti­

cularly in say the application of any one technique in varying degrees.

This study has presented a method for obtaining the line spread 

function of a crystal sample by means of fitting the self-convolution 

of the Prins function to the (1,-1) rocking curve. Perturbations to 

the Prins function were such as modelled the effects of lattice defects. 

The method as far as it has been developed was applied with greatest 

success to the ADP samples used in this work. This is due to the 

fact that since measured and calculated results for this analyser are 

close, in order to obtain a fit the required perturbations to the Prins 

function were small and therefore the conditions upon which the fit 

procedure is based were met. As a result the fit line spread 

functions for ADP were still possessed of the characteristic asymmetric 

shape of the present Prins functions. In the case of PET larger per­

turbations of the Prins function were required but these were still 

sufficiently small to give satisfactory results at all but the shortest 

wavelengths. At these wavelengths the fit procedure in its present 

state was not able to accommodate the macroscopic defects accentuated at 

low glancing angles. Clearly a useful future ejcercise would be to 

develop the procedure further such that these defects can be successfully 

modelled. In the EDdT study significant discrepancy between measured 

and calculated results was found so that appreciable perturbations of the 

parent Prins functions were required and accordingly there is less 

confidence in the results of the fit. This highlights the fact that at

present the fit procedure is only applicable when there is good agreement 

between measurement and calculation. Since for many crystal samples

such agreement is not found it is worth investigating methods for 

modelling lattice defects which have a severe effect upon crystal line
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spread functions. In conjunction with this a useful future study 

would be a test of the fit procedure involving comparison of the fit 

and measured line spread functions, the latter being determined 

possibly by one of the methods discussed in Subsection 2.2.2. The 

problem of low count rates associated with these methods could be 

overcome by the use of powerful synchrotron X-ray sources.
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APPENDIX A 

COMPUTER PROGRAMS

Over the last few years several computer programs, which

execute Bragg reflection calculations, have been written at
t

Leicester for the following reasons. Calculation of Bragg 

reflection characteristics as predicted by the models discussed in 

Chapter 1 allows, through comparison of measured and calculated 

results, comment on the quality of the sample under study. The 

calculated results indicate the salient features in characteristic vs. 

X results and so are of assistance in planning an experimental study 

of a particular analyser e.g. in the choice of emission line wave­

lengths at which measurements are made. The fit procedure (see Sub­

section 2.2.2.d) used to determine the crystal line spread function is 
clearly dependent upon computational techniques. The 1-reflection 

absorption edge studies (see Subsection 3.4.4) requires programs to 

analyse the 1-reflection scans and thence to relate the observed 

and theoretically predicted edge s t r u c t u r e . T h e  various 

programs written, resulting from the above motivation, have been 

collected together to form a suite of programs which have identical 

data input formats and share a common library of subroutines.

The general organisation of individual programs may be apprec­

iated with the aid of Fig.A.l. For the sake of clarity and brevity 

many calculation stages, particularly those common to two or more 

programs, are stored in the library of subroutines. The latter

The development of the computer programs has required the assistance 
of several workers, a list of whom is given in the author’s 
acknowledgements.
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includes three subroutines for calculating atomic scattering factors, 

distinguished by the use of the Honl, Parratt and Hempstead, and 

Cromer and Liberman methods for calculating the anomalous dispersion 

t e r m s . A l s o  included are three subroutines for evaluating the 

geometric structure factor for a given atomic species using Debye-Waller, 

isotropic and anisotropic temperature parameters.

Input data for each program is divided into two blocks:

a. Crystallographic data - this is the data given by crystal 

structure analysis e.g. lattice parameters, atomic 

co-ordinates, temperature parameters, crystal density etc.

b. Atomic data - required for the calculation of atomic 

scattering factors. This data includes parameters 

relevant to the method chosen for the calculation of 

anomalous dispersion terms.

The data is fed on to two separate tapes designated by the main program. 

The latter also designates the subroutine for calculating geometric 

structure factors and hence from above the temperature parameters. The 

subroutine for calculating atomic scattering factors is also selected. 

Attached to each program is a common crystallographic data input routine 

called subroutine CRYSTAL. This subroutine reads the crystallographic 

data from tape and calculates the geometric structure factor for a 

given atomic species using the selected temperature parameter subroutine. 

The main program then goes into a wavelength loop within which the 

selected subroutine for calculating atomic scattering factors is called.

•f* Common to each of these subroutines is the evaluation of f . 
using the analytical expression given in Ref.32.
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the main calculations of the program are executed and the data is 

outputted.

General outlines of the programs relevant to the present work 

are given on the following pages. In order to avoid repetition 

of details given above, only step d. of Fig.A.l is covered in the 

outlines.

Program a. Designate i.tapes for
crystallographic, 
atomic and output data

ii.temperature parameters
iii.method for calculating 

anomalous dispersion 
terms

b. Call subroutine CRYSTAL - see below
c. Call subroutine which reads atomic 

data and calculates atomic 
scattering factors using designated 
method for anomalous dispersion

X loop terms
d. Execute required calculations using 

the subroutine library and data 
from subroutine CRYSTAL

e. Output data

Subroutine
CRYSTAL a. Read crystallographic data

b. Call subroutine for calculating 
geometric structure factors using 
selected temperature parameters

c. Output geometric structure factors 
for atomic species

Library of subroutines

Figure A.1 General program structure
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DARWIN PROGRAM

This program computes the Darwin zero-absorption function

P(e) and its integral from analytical expressions. There is a choice

of numerical or analytical calculation of the 2-crystal function P(3).
Full details of this program are given in Ref.63. Subscripts a, tt

and u refer to the a - ,  ir-polarised and unpolarised cases respectively.

Calculate the structure factors (excludes anomalous dispersion 
terms) and parameters for a and it polarisationsi
Adjust step length to give odd number of points in tail and 
flat regions of functioni
Calculate P^(c) and P^(c) analyticallyi
Calculate P^(e) by averaging P (e) and P (e)i
Determine w numericallyI
Calculate w and w analytically

C,a C,7T|

Calculate R ,R and R analyticallyc,a c,ïï I c,u

f  }
Calculate P^(6) and P^(6) numerically Calculate P (3) and P^(3) analytically

i  \
Calculate P^(3) from P^ (3) and P^ (3) Calculate P (3) from P^ (3) and P^ (3)i i
Determinew ,w and w numerically Calculate w and w analytically

c c ,  a CCjTT CC,U  ̂ j  CC,G CC,1T

Determine w numerically  I cc,u

Calculate R^^ analytically
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PRINS PROGRAM

This program computes the Prins perfect lattice limit crystal 

response function P(£) and calculates its characteristics numerically. 

The function is convolved numerically to generate the 2-crystal response 

function P(3) and the characteristics of this function are calculated 
numerically. Full details of this program are given in Ref.131.

Calculate the refractive index terms 6. and 6.
Calculate the Prins D and B factors and total 
values for 6 and 3

i
Calculate the deviation from the Bragg angle and 
the effective 2d -spacing

\
Calculate P^(£) and P^(£)

i
Calculate P^(£) by averaging P^(£) and P^(£)

\
Calculate R ,R and R numerically using Simpson’s
rule C'* C'U

i
Determine w ,w and w numericallyc,a" c,7T I  c,u /
Generate P^(3) and P^(3) by numerical convolution of 
single crystal response functions

\
Calculate P^(3) by averaging P^(3) and P^[3)

i
Calculate R values and w values numericallycc I cc
Calculate the Prins polarisation factor k and 
the ratio R /Rcc,u c,u I
Calculate centre of P (£) by locating point at which 
area of curve up to tKis point is half the total area. 
Calculate deviation from Bragg angle and the effective 
2d -spacing for this angle

i
Graphical output of 1- and 2-crystal response functions
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EWALD PROGRAM

This program calculates analytically 1- and 2-reflection crystal 

characteristics for the Darwin zero-extinction, Darwin zero-absorption 

and Prins perfect lattice models. Full details of this program are 

given in Ref.63.

Calculate structure factor (excludes anomalous 
dispersion terms for Darwin zero-absorption model)

i
Calculate linear absorption coefficient from 
anomalous dispersion terms

i
Calculate R ,Rc <n-a-nd R for the three models
and w ,w for^Darwin^iero-absorption limit c,a c,TT I  ^
Calculate R for the three models and w , 
w for tRe'^Darwin zero-absorption limiR^’̂CC,7T I

Calculate polarisation ratios for the Darwin zero- 
extinction and zero-absorption limits

i
Calculate the deviation from the Bragg angle and 
the effective 2d-spacing

FIT PROGRAM

This program models defects found in real crystals in order to 

fit the self-convolution of the Prins perfect lattice function to the 

measured (1,-1) rocking curve. The graphical output of the perturbed 

Prins perfect lattice function describes the true line spread function 

of the measured crystal. The FIT program is essentially the PRINS program 

modified in the manner described in Subsection 2.2.2.d. i.e. the total 

value of 3 is multiplied by the factor 1 + x and the generated Prins 

function is numerically convolved with major and minor Gaussian spread 

functions. The fractional contribution of each of these two Gaussians to 

the spreading process is set by multiplying the amplitude of the Gaussian by 

the appropriate fraction. In order not to affect the integral of the 

parent Prins function the two fractions must add to unity.
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GEOMETRICAL DESCRIPTION OF THE 2-CRYSTAL

SPECTROMETER WITH SPECIAL REFERENCE TO

THE (1, -1] POSITION

Consider a 2-reflection system as described in Subsection 2,2,1,
For an upolarised incident beam, which has a central ray of wavelength

T'making an angle 9^^ [the Bragg angle for with Crystal A surface^
the general ray of this beam will be characterised by its wavelength X , 
horizontal divergence a and vertical divergence , The intensity 
of the beam reflected from Crystal B is given by the following expression

(B 'l)

X G ( a , ^ ) J [ A ) d a d ^ d A

where 1) Superscript ’p ’ refers to the polarisation component
2) Subscripts ’a’ and 'b’ refer to Crystals A and B
3) Subscripts ’m ’ and ’n' refer to the reflection orders of 

Crystals A and B
4) P^ and Py are the respective line spread functions
5) The arguments of P^ and P^ are the differences between the

^2 A a
r m

I
0 -a P 

m

glancing angle of the given ray and the appropriate Bragg
t ra;
tan6

angle 0 or 0 for that ray m n /

6) z = m
d0m
dA  ̂ (A -  A J  = (A -  A J

0

7) 3 is the angle of rotation of Crystal B from a reference 
position at which the glancing angle for the general ray is

" z^±a + e^. 3 is positive in the direction of
increasing glancing angle.

8) E (̂ ,6 ) and c. ,6.) the corrections to 0 and 0 due to3- 3- D E D in n
vertical divergence and crystal tilt (6) are given by the 
following expressions
E^ = - 2(̂ 2 + 5^)tan n + ip5^/cosn (B.2)

S±" - + G%)tan8̂̂
+ [1/COS0 ] [±26^cos(0 ±6 )sin0 ± 2^6 cos(0 ±0 ) n-" a n m̂  m  ̂ a n m

- 25g5^sin0^ + ̂ 6^] (B.3)

where n = 0̂ ^ + 3 - a and the upper and lower signs apply to
the plus and minus positions respectively.

9) and are the maximum values of ip and a respectively.

A geometrical proof of Expressions CB.1),(B.2) and (B.3) is given in
t  ~ —— — — — —

All Bragg angles mentioned in this discussion are corrected for the
crystal refractive index.



223

5 2 , 6 5
Standard texts. The nomenclature and conventions of Ref.65 have 

been adopted.

If  the slits controlling the horizontal divergence of the beam incident 

upon Crystal A are sufficiently wide and the line spread functions are not 

excessively broad then,for a given wave length, Bragg reflection w ill occur 

over a small range of a values. Now G( cc,\p ) may be represented by the 

product

= hCa)g(^) (B.4)

I f  h(a) is a slowly varying function (which is the case for wide slits and a 

narrow source) then the change in h(a) over the small range of significant a 

values can be neglected and so the incident beam intensity w ill be independent 

of a . Under these conditions Eqn. (B .4) can be written as

= gC^) (B. 5)

The lim its of the a -  integration can also be extended t o + “ without affecting 

the value of the integral.

In the light of these points, and transforming variables such that 

v= - a.Expression ( B . l ) ,  for one polarisation component, becomes

=

where the lim its of the ip -  and X -  integrals are as above.

For the (1, -1 ) parallel position the following simplifications may be

made.

P = P, Providing the crystals are identical a,m b,n ^

0 = 0  and therefore z  =no mo n ™

Expression (B. 6) now becomes

(B .7)Pcc(S) = PCv)P(6 + v -  e +e )g(*)J(A)dvd*dX
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The arguments of the line spread functions are independent of z and therefore 

independent of A and so the instrumental mode is non-dispersive. This 

property may also be derived from Eqn. (2. 35). The functional forms of the 

line spread functions are slowly varying with wavelength and so the A -integral 

may be separated out. I t  is shown in Subsection 2. 3.1 that g(i|;) gives rise to 

the geometrical window function W( g) which convolves with the line spread 

functions to give the (1, -1 ) rocking curve. I f  the terms e  ̂ and are 

negligible, W( g) has a very small width and so Expression (B. 7) becomes

J(A)dA

= S

P(v)P(B + v)dv 

P(v)PC6 + v)dv'^ (B.8)

where S is a constant which is proportional to the intensity of the beam incident

upon Crystal A. It  is thus shown that for the (1, -1 ) position, under the

conditions outlined above, ( B . l )  reduces to the relatively simple expression

(B. 8) which entails only the convolution of the line spread functions.
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APPENDIX C

INVESTIGATION OF A PROPERTY OF CONVOLUTION INTEGRALS

Consider the convolution integral

P(0)P(6+ 0)d0d6 ( C . l )

which appears in the numerator of Expression (2.48). This double integral 

can be simplified in the following manner. Replacing the variable 3 by a new 

variable Y where

Y = 3 + 0 ; dy = d3 (C.2)

Expression (C . l )  becomes

PC0)P(Y)d0dY (C.3)

Taking the inner integral firs t, since this integration is with respect to 0 , 

P (y ) may be regarded as a constant thus giving

P(0)P(y)d0 = PCy ) P(0)d0 (C.4)

Introducing the outer integral of (C.3) gives

[P(y ) P(0)d0]dy (C.5)

The term P(0)d0 is a constant and thus (C.5) may be expressed as

( P(0)d0) P(Y)dy (C'6)

The lim its of integration for each integral are the same and since y differs 

from 0 by a constant and not by a multiplication factor, the two integrals are 

equal. Therefore

P C0 ) P (3 + 0)d0d3 = [ P(0)d0]
(C .7 )
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ABSTRACT

A Quantitative Description of Bragg Analysers 

Ray Hall

A detailed programme of methods for calculating and measuring 
crystal Bragg reflection characteristics is presented. The character­
isation of an analyser involves determination of, as a function of wave­
length, the Bragg dispersion function (defined in Chapter 2) and R^, 
w ,P^ the integral, width and peak respectively of P^(8) the crystal 
line spread function (or diffraction profile). Calculations are based 
on the Prins perfect lattice, Darwin zero-extinction and zero-absorption 
models,outlines of which are given. Measurement methods for determining 
the Bragg dispersion function and P^(8) of an analyser are described.
A comparison of various 1- and 2-reflection techniques used to 
measure Rc(^) is made and from this it is clear that the chosen 2- 
reflection methods,with the inclusion of appropriate polarisation 
corrections,provide an efficient means of measuring this characteristic. 
Likewise a comparison is made of 1-, 2- and 3-reflection techniques 
previously used to determine P^(0) and a new technique is introduced'. 
This latter involves perturbing the calculated Prins function so that a 
fit between the self-convolution of.the perturbed function and the (1,-1) 
rocking curve is obtained. Only perturbations which model the effects'' 
of known lattice defects are allowed. Within the limits'discussed the 
perturbed function describes the true P (0) . Emphasis is placed upon 
instrument alignment, and measurement conditions required,in all measure­
ment techniques'used. A description of the Leicester 2-crystal spectro­
meter and its alignment is included,together with measurement procedures.

The above methods are applied in full characterisations of the 
analysers PET (002), EDdT (020) and ADP (101) . Also included are 
calculated results for SHA (110) which allow interpretation of previous 
studies made by measurement alone. The thesis concludes with two brief 
reports of crystal calibration studies for the satellite UK5 and for 
American Science and Engineering. These reports illustrate the applica­
tion of the methods used in this study to other research work.


