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CHAPTER I

INTRODUGTION

In this thesis we consider the properties of suspension flows
of diffeomorphisms, particularly products of thése flows. Also considered
are the cohomology groups of the insets of certain diffeomorphisms where
the non-warmdering sets contain Cantor sets.

Differentiable dynamical systems to which the title refers had its
origins with the work of Poincaré when the emphasis on the subject of
differential equations was changed from the quantitative to the qualitative
approach using topological (geometric) methods. Interest in this
qualitative approach declined in the early twentieth century mainly
because the period was taken up consolidating the foundations of algebraic
topology which had its beginnings with Poincard's homology theory.

During the 1950's and 1960's interest gradually returned to the
subject, combining topology and differential equations in the spirit of
Poincaré: In [26], the formulation of the fundamental question was stated
as a precise mathematical problem; it was the problem of classification
where one tries to give a generic system of differential equations.

A differential equation on a smooth compact manifold M is defined by

a vector field X on M such that the equation is given by x = X(x)
for x € M. By the existence theorem X determines a unique flow

(or dynamical system). The solution curves of X which are tangent to
X at every point of M are the orbits of the flow, (For precise
definitions of flow and orbit see below.) The topology put on f%%(M)
the set of all vector fields on M, is the C"-topology (rZ> 0). In
other words X,X' are close if their vectors and all their partial

derivatives up to order r are close.



With this notation the problem is one of finding an open dense
subspace of x (M) which can be described by some "simple" conditions.
Several of the ideas and constructions used in [26] in an attempt to
achieve this classification are investigated here.

We now define the fundamental definitions of dynamical systems

which are constantly referred to in the following chapters.

11 Definition

A diffeomorphism f of a manifold M is a homeomorphism f£: M-»> M

such that f and f~ ' are differentiable maps.

1.2 Definition
Aflow ¢ of a manifold M 1is a differentiable map ¢ : Mx R~ M,
such that V e R, ¢, : M> M is a diffeomorphism, where ¢t(x) = ¢(x,t),

and such that ¢s¢t= ¢ . In other words ¢ induces a 1-parameter

s+t
subgroup R -» piff(M).

Remark The vector field X 1is related to ¢ by

&, (x)
dt

= X(x) .

t=0

1.3 Definition

Given flows ¢4 on M,N respectively, then the product flow

¢ x¢ on Mx N is defined as
(¢x¢)t=¢>txz/:t: Mx N » Mx N.

1.4 Definition
The orbit of x € M with respect to the diffeomorphism f [flow ¢]

is the set {f"(x)|n e Z, the integers}[{¢t(x)|t'eR, the reals}].



1.5 Definition

If f e Diff(M), x e M is called a wandering point when there is

a neighbourhood U of x such that | IU f™(U) N U = &, the empty set.
m|> 0
A point will be called a non-wandering point if it is not a wandering

point. Ilet the collection of all non-wandering points be denoted by

Q =a(f).

1.6 Definition

et ¢ be aflow on M; then we have x 1is a wandering point

of ¢ if there is some neighbourhood U of x with | IU| lqﬁt(U) NU=8%,
tl> to
for some to > O. Iet the set of non-wandering points be

Q =0a) .

All the diffeomorphisms considered will satisfy Axiom A, defined

as follows [26].

Axiom A. For f ¢ Diff(M), (a) the non-wandering set is hyperbolic,
(b) the periodic points of f are dense in Q.

Hyperbolicity is defined in detail in [26].

SPECTRAL DECOMPOSITION OF DIFFEOMORPHISMS. Suppose f ¢ M-> M is

an Axiom A diffeomorphism. Them there is a unique way of writing Q as
the finite union of disjoint, closed, invariant indecomposable subsets

(or'"pieces") on each of which f is topologically tra:si.tive:

Q=Q1UQQU03 OQOUQk .

Corollary If £ :M> M is as above one can write M canonically

as a finite disjoint union of invariant subsets M = U K I(Qy) where
L=1

I(Qy) = fx e M£™x) > Quy, m> w}. I(Q;) will be called the inset

Of Ql L)



It was the attempts of many mathematicians during the 1950's and 1960's
to understand the global geometric picture of the phase portrait that
resulted in [26] giving various conjectures and many of the important
features in dynamical systems in higher dimensions. There are two
definite parts in Smales paper; they correspond to sections on
diffeomorphisms and flows. The discussion centres around the non-
wandering set.

A large part of the subsequent chapters is taken up investigating
a functorially defined "operator" I which given the pair (M,f), where
f is a diffeomorphism of M, gives Z(M,f) denoting a flow reflecting
the qualitative features of the diffeomorphism f. The "suspension" X
is defined as follows. Given a manifold M with diffeomorphism f +then
we have a diffeomorphism a ¢ Mx R » Mx R, R the real line, defined
by a(x,u) = (£(x),u-1). Identification of orbital points of « gives
us a manifold Mf. Denote the projection 1rf: Mx R =» Mf., then we
define a flow ¢ on M, by ¢v(1rf(x,t)) =7rf(x,‘c+v), v € R. Iet
¢ =2(M,F).

In chapter 2 we investigate the structure of products of suspended
flowse We shall see later in the chapter that such structures occur
naturally in applied mathematics. In chapter 3 we construct a more
general operator 2j for any positive integer Jj which gives a flow
derived from j-commuting diffeomorphisms of M. We consider j—suspension
flows and also the product of Jj and k suspension flows. The results
of chapter 3 follow a similar pattern to those of chapter 2. Chapter 4
is concerned with some algebraic properties of X and Xj. We show
that 2, and Zj have functorial representations with respect to suitably
defined categories. Also other operations on flows such as boundary flows

and the relations they have with 2 and 2j are investigated.



There exist diffeomorphisms with non-wandering sets which have
pieces (or subsets) homeomorphic to a Cantor sets, [25], [26], [33]. We
look at particular diffeomorphisms, one of which is the Smale "Horse-Shoe"
(for definitions see chapter 5), which exhibit these properties and
consider the structure of the insets of the Cantor sets. We use compact
¥ech cohomology [8], [31], [34], to find the cohomology groups of these
insets.

In Appendix 1, we consider an application of chapter 2, §5 to the
theory of Iie Group Bundles. Appendices 2 to 5 are devoted to definitions
and a lemma,

In the rest of this introductory chapter we will give examples to
illus trate the various aspects of dynamical systems which will be

investigated.

1¢7 The Simple Harmonic Oscillator; % + x = O. (e denotes

differentiation with respect to 1t).
We reduce this equation to a first order in two variables by taking
X =y. This gives

5c=y, &-‘-’"x

The orbits in (x,y) space (phase space) are concentric circles with

respect to the origin as in Fig 1.1.

h.y

TN
NP

Fig 1.1



By taking the first integration of X + x = 0, we have + =E

2
(a constant) and this is obviously the energy equation where energy levels

2%
2

correspond to the phase plane orbits of Fig 1.1.

If we restrict the energy E of the system such that E e [E;,E;]
with E; > 0 then Fig 1.1 is restricted to an annulus of first integrals
which one can easily see is a trivial suspended flow with respect to the

identity diffeomorphism on the interval {(X,O)l 2E, < x< E}.

1.8 The Bihammonic Oscillator; X +A;x = 0, ¥ + A,y = O.

Iet the new variables u,v be defined as follows:

® L
XxX=u, u=-MX

and y=v, v = =Ny -

This gives a first order autonomous differential equation in the variables
(x,u,y,v) € R*. The total energy of the system E is given by

M X+uP+ A ¥+ v2 = 2B, So we have the system represented in R*

with emergy surfaces on 3-spheres ss. The energy levels are foliated
by invariant 2-tori TZ. These tori are obtained as we very the energy
partition between the oscillators, say E,,E,. Then A\, x>+ u®=2E, and
Ap ya+ v? = 2E3. We can take angular coordinates o B, say, such that

X = (ml)cosa, u = 4/2E;, sina, y = (/2&7;) cosf and v= 2, sing .
Given the partition (E,,E;) then the .state can be realised by (a, 8),
i.e. the flow is restricted to a torus and periodic solutions will exist
if JA;  and f)\:’ are rationally related and almost periodic solutions will
£ill the torus when they are irrationally related. The phase plane
solutions can be represented as a product flow where each flow of the

product is a flow as in Fig 1.1 on R?.

1.9 Weakly Coupled Oscillators; X+M X+ey=0, Y+l y+ex=0.

We use the principle of narmal modes to obtain a solution. Iet the

normal modes be (£, n) such that



(é\ A(;), for some non-singular 2x 2 matrix A. Then we

~
N
1

obtain
i) = -A ();1 )\: ) AT (f}) and by choosing the matrix
A (’:1 ;g) A™' to be diagonal assuming Ale ;;3 # 0 we have the equations
¢+ A E=0
n+2'n=0

By considering the normal mode coordinates we have been able to
reduce the weakly coupled oscillator to an equivalent system to the
biharmonic oscillator. So we have been able to move from a system where
we could not express the system as a product flow to the 'normal' system

which is a product flow,

1.10 The Van der Pol Oscillator; X + u(x®-1)x+ x =0, p small.

let X = y; then the phase portrait equations are
=y

~u (2 -1 )j— X, with solution curves givenin Fig 1.2.

(40
I

Ny

(7
S

Fig 1.2



Note that for the choice of a small value for the parameter u the
differential equation 1.10 is only slightly perturbed from that of 1.7 which
corresponds to p = 0. However the phase portrait even though only a small
perturbation of 1.7, is topologically different to it, i.e. there is no
homeomorphism between the phase portraits throwing orbits onto orbits.

This phenomenon is described by saying the simple harmonic oscillator is
not structurally stable. However the Van der Pol is structurally stable
under sufficiently small perturbations. An extension of this equation

to that of the forced Van der Pol equation will give us scope to discuss
the phase portrait in the way the results of chapters 2 and 3 might be used
in applications.

The phenomenon we will discuss is the "locking-on" of the forced
Van der Pol oscillator. Often referred to as synchronization it was
known to Huyg?ns [16] who observed that two clocks slightly out of
synchronism when suspended on a wall became synchronized when fixed on
a thin wooden board. It was not until 1922 [30] that the present theory
of this effect was formulated by Van der Pol. The equation representing

the forced motion is given canonically by
% + p(x®=1)%+ x = coswot .

Suppose that the natural frequency of the oscillator is w. From
the equation we see that the forcrﬁTOSCillation has frequency wg .
Whenever this system is observed beats are detected. This is because
under observation the values w and w, are seen as rationally related.
Wle are observing a real system and the rational or irrational relationship
of w and we 1s not transient but locally constant on the rationals.
It is expected that as we allow wy » w the period of the beats will
increase indefinitely. This is true except that thé beats increase up
to a certain limit of the difference |w-wo|, at which the beats

disappear suddenly and there remains only one frequency woe. It appears



that the natural frequency of the oscillator « suddenly locks onto the
applied oscillating frequency wo when wo moves into the "zone of
synchronization". The reason for this phenomenon is that prediction
of the increasing period of the beats is made on the basis of linear
theory and the synchronization occurs from the presence of non-linearity
in the system. The theory hasbeen studied ingreat detail and it is used
for instance in keeping fluctuations in frequency of an electric current
to a minimum by locking the frequency onto some constant frequency
oscillator (such as a quartz oscillator). The language of the qualitative
theory used to describe this theory is as follows.

In the phase plane of the forced Van der Pol we have a 1st order

autonomous system in R® defined by

-y

7 = =u(xP-A - x + cosweT
T =1

where T 1is the dummy variable T = t. It is better to identify points
of T mod(2m/fwo) and realise the flow on S'x R as a result of this
identification. Also by identifications of 7T we have an induced
transformation of R® » R obtained from the intersections of orbits
of the dynamical system with 7 =0 and 7 = (2wl ).

locally a flow will be formed on a torus by considering the flow
restricted to the product of the natural oscillation with the forced
oscillation of the system. The resultant flow will be observed as rational
flows according to the rationality between w and wy. As the rational
flows get closer to the diagonal flow, i.e. 2as wo » w, we get a perturbatio
to a diagonal flow when wgo 1is sufficiently close to w. However, the
diagonal flow is not stable and by the very phenomenon of synchronization
in the real situation we must have stability, i.e. perturb the natural

oscillator a little from w, and it will "lock on" again. So we must

have a stable perturbation of the diagonal flow which gives a diagonal
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attractor. By Peixoto's Thearem [19] the generic perturbation will be
a flow with a finite number of attractors and repellors with orbits
spiralling between them.

It can be seen from these examples how product flows naturally occur.
In general, Whé§er we have two dynamical systems each with a stable attractor
brought into contact, then this is represented by taking the product (or if
one system is driving the other perhaps by a fibre bundle). However,
the product of two stable attractors is no longer stable in general and
therefore it is important to understand the product structure of such flows
in order to understand what possible attractors can arise as a result of
perturbations of the product flow,

The suspension of a diffeomorphism has been of great importance in
converting qualitative statéments on the nature of the non~wandering sets
of diffeomorphisms to similar statements on the non-wandering sets of flowse.
For instance non-density theorems on diffeomorphisms have been instantly
transferable to non-density theorems on flows [26].

An important step in analysing the qualitative behaviour of
diffeomorphisms came with the discovery of Anosov Diffeomorphisms [3].

The original examples given by Thom are the induced diffeomorphisms

£ P (n-torus) given by a linear automorphism P*or RO representable
by a non-singular matrix. fThese diffeomorphisms exhibited the property
that they were structurally stable, but that the non-wandering set was

the whole manifold. These diffeomorphisms disproved the conjecture of
1960 that Morse-Smale diffeomorphisms [22] were a generic system on all

smooth manifoldse.

1.11 _Definitions of Anosov Diffeomorphisms and Flows

A diffeomorphism f of M is said to be Anosov if T(M), the

tangent bundle of M with a Riemannian norm, has an invariant splitting

¥ the eigenvalues Ai satisfy . IAi| F 1
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under df, the differential of f. The splitting is a Whitney sum

(M) = TC(M) ® i%(M) such that there exist constants 0< ¢y < 1< ¢y

with |ae"(v)] < e,"lvl, ve TC(M) and |af"(v)| = e |vl, ve Te(M).

A flow ¢ 1is said to be Anosov on M if there exists an invariant

Whitney Sum of T(M) = T'(M) @ T, (4) @ T, (M) such that the components .
are invariant with respect to d¢t where T'(M) is the 1-dimensiomal
bundle defined by differentiating ¢£ with respect to ¢, TC(M) is

a contracting bundle with constants c¢,A(> 0) such that ldqbt(v)l < cs MV,
Ve To(M)’ and Te(M) is an expanding bundle with constants ¢y, p (> 0)

such that |, (v)| 2 o e”tlvl,v e T (1),

At present there are very few ways of constructing Anosov flows.
They are as follows:

1) Geodesic flows on the unit tangent bundle of Riemannian manifolds
with negative curvature;

2) Suspensions of Anosov diffeomorphisms.

Here we have an important class of flows where one of the main
methods of construction is by suspending Anosov dif feomorphismse

In chapter 5 we consider thecohomology [34] of the insets of various
diffeomorphisms. They are related to the ®harse-shoe" diffeomorphism
which is defined in chapter 5. It has part of its non-wandering set
homeomorphic to a Cantor set. The diffeomorphisms are Q
stable and were constructed to show that non-wandering sets are not
generically manifoldse. These diffeomorphisms, particularly the
"horse-shoe", came from a paper by Levinson [14] and the ideas presented
there were developed by Smale. Levinson's paper was concerned with the
Van der Pol equation with forcing term. It was consideration of the types
of transformations of the plane onto itself', which could occur in the way
indicated earlier, that led to these diffeomorphisms with complicated

non-wandering sets.
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Unfortunately chapter 5 is restricted in the sense that we have not
yet given an answer to & question such as "Given any diffeomorphism
f : M- M such that there exists an Qp C Q(f) which is homeomorphic to
a Cantor set, then what is the cohomology group of its inset?"

An answer to such a question would be of great importance particularly

in view of the following theorem.

SHUB (1972) [35] A Smale diffeomorphism has Q = {finite number of fixed

points, finite number of closed orbits, finite number of n-horse-shoes},
and the usual tranversality conditions between insets and outsets. Then
1)  Smale diffeomorphisms are structurally stable.
2) Smale diffeomorphisms are dense in the C°-topology.

[n-horse-shoes are defined in chapter 5].

If we had an answer to the question above then we would be able to
supersede the Morse-Smale Inequalities for Morse-Smale Diff'eomorphisms
by Smale Inequalities for the above system. What we can deduce from
chapter 5 is that Eech cohomology seems a promising tool for the analysis
of non-wandering sets and their insets in general. gech cohomology was
used successfully in the relatively simple case of lorse-Smale systems [=2]
where the non-wandering sets were only fixed points and closed orbits.

There also exists a corresponding theorem on Smale flows defined
analogously to Smale diffeomorphisms. An interesting problem concerned
with suspension and fhese two theorems is: "Is there a way of extending
the idea of a suspension to obtain a way of converting the theorem on
diffeomorphisms to the one on flows?". It has been suggested that this
might take the form of a finite number of discs placed in the manifold so
that every orbit intersects one of these discs at least once. We would then
have mappings of these discs by following the flow between intersections.
The mappings could then be investigated in the light of the theorem of SHUB

and by using the density of Smale diffeomorphisms possibly obtain the density



of Smale flows.
In the Appendix 1 we consider ILie Groups as a possible application

of chapter 2, B5 .

13
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CHAPTER 2

SUSPENDED PRODUCT AND BUNDLE DIFFEOMORPHISMS

We have seen in chapter 1 the importance of products of flows in
investigating interrelated systems and here we consider products of
suspended flows. The aim is to fina some relationships between suspensions
of various diffeomorphisms. For instance, suppose we take a product
diffeomorphism f x g : Mx N» Mx N then we also obtain the diffeo-
morphisms f ¢ M-+ M and g ¢! N-» N. We now have three pairs of
manifolds and diffeomorphisms (M,f), (N,g) and (M x N, f x g). Hence
we can obtain three pairs of manifolds and suspension flows
(Mg, 2Qu,8)),  (N» Z(N,g)) end ((Mx N)o &’ Z(Mx N, £x g)).

The relationship between the flows appears as a theorem in §1 together
with a corollary, and the proof is given in §2. A similar theorem is
given for bundle diffeomorphisms in 84 with a possible generalization

in §5.

81 STATEMENT OF PRODUCT THEOREM

We require the definitions of chapter 1 supplemented by the following:

2.%1.1 Definition
Two flows ¢ and ¢ on the manifolds M,N are said to be

diff'erentiably egquivalent or more briefly,equivalent,if there exists

a diffeomorphism h such that the diagram commutes

R —> N x R
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Remark. This is a very strong equivalence relation; much stronger than
the usual topological equivalence because it preserves time and is

a diffeomorphism of orbits onto orbits.

2.1.2 Definition. A flow ¢ on tlhie bundle

v > B —> X

is a fibre flow if all the fibres are invariant under the flow,

2.143 Definition. If further to 2.1.2 the flows on all fibres

are equivalent we call ¢ a uniform fibre flow (see 2.1.6 for a more

precise definition)..

2.7.4 PRODUCT THEOREM. Given diffeomorphisms f,g of the manifolds

M,N respectively then the product flow X(M,f) x Z(N,g) is a uniform
fibre flow on the bundle

(M x W),  ——> Uox N T st
xg

f g

Moreover the flow on the fibre is Z(Mx N, fx g).

2.1.5 Corollary. Products of suspension flows can never be

structurally stable.

Proof. By a theorem of Thom [20] a flow is not structurallystable
if there exists a first integral for which the flow is invariante. The

projection # will give the first integral. Hence we have non-stability.

Remark. Suppose f and g are Anosov diffeomorphisms, then f x g is
also an Anosov diffeomorphism and so Z(M,f), Z(N,g) and Z(Mx N, £ x g)
are stable Anosov flowse. By the theorem X(M x N, £ x g) is the fibre
flow which is stable. However the product flow Z(M,f) b Z(N,g) on

Mf X Ng is unstable. If we perturb the fibre flow on Mf X Ng by adding
a small gradient flow on S? with one sink and one source we obtain

a structurally stable flow on Mf. X Ng with one attracting fibre and one
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repelling fibre. Both of these fibres have restricted flows which are

Anosov,

24166 Definition. Given a bundle

T

v > B —> X and a flow ¢ on B, then

¢ 1is a uniform fibre flow with respect to the bundle if 3 a flow

¢ on V and 3 an atlas of bundle charts (U,h) where UC X and

h:Ux V>o"2(U) 1is a diffeomorphism such that the diagram commutes.

Ux ¥x R hx 1 —> 172(U) x R
1%y ¢
Ux V h - 73 (U)
p T
\ 1 :
U - U

[p is the natural projection of the first factor of the product.]

Notation. Given the manifold M and the diffeomorphism f: M- M

then let Hf denote the projection map

Hp t Mx R —> 1, .

2.1.7 Example. Here we take the simplest possible case of M and N
being point manifolds. It was this example which motivated the theorem for
general productse Iet f = g =1 be the identity maps on ¥ and N
respectively. The theorem is proved by the following series of lemmas.
The first of these lemmas is of general use in chapters 2 and 3 and is

cons tantly referred to.
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2.1.8 LEMMA. [29] ILet G be a Iie Group acting on a space X.
Consider the set of orbits X/G and the canonical map HX: X X/G.
Then defining the orbit space X/G to be the set of orbits with the
quotient topology,

1) HX:X» X/G is an open map

2) the topology on X/G is characterized as being the unique

topology making the map continuous and open.

Prod . The orbits of X by the action G are O}C

I

i¢g(X)l g € G},

1 X and

where ¢ is the action ¢ ¢ X x G- X such that qb,‘

%" Pea " %er.80

LetUC X be open; then ¢g(U) is open and therefore II(U) =
HX"l (HX(U)) is open being the union of all sets ¢g(U), g e G, (I(u) is
Jjust the orbit of U tunder the induced G oPeration).

By definition of the quotient topology, HX(U) is open. To prove 2),
consider more generally a map 7 ¢ X-» ¥ froma set X toa set Y.
Two topologies on Y making 7 continuous and open necessarily coincide.
Because if O is an open set of Y in one topology, 7~ *(0) is open in X

“and 7(r72*(0)) = 0 is also open in the other topology.

The proofs concerning the continuity of maps between quotient manifolds
are usually approached first of all by checking that the maps are well
defined. The continuity is proved by using the opemness properties of

the orbit projection maps IL, etec.

2.149 IEMMA.  Z(M,f) and X(N,g) are both flows on circles C,,Cp
say. let ¢ =Z(M,f) and ¢ =2(N,g) then ¢, and ¢, are identity

diffeomorphisms,

Proof . Iet « : Mx R> Mx R be defined by a(P,t) = (£(P),t-1) = (P,t)

where P represents the point manifold M. Then Mp = M x R/~, where
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~ denotes identification of orbital points of a.

We have the map Hf :Mx R> M, and so M, is given by

Mf=

{Hf(P,t)IHf(P,t) =Hf(P,t—1)}. Hence M, 1is a circle,

say Cy. The flow ¢ is defined by ¢_ Hf(P,t)=Hf(P,t+v), ve R. Putting
v = 1 and using the recurrence relations we have ¢1 is the identity

map of Mf.. In a completely analogous way we obtain that Ng is a circle
C; say and the flow ¢ 1is such that ¢r1 is the identity diffeomorphism

of Cg .

2.1.10 LEMMA . The product flow ¢ x ¢ on 0y x G 1is equivalent

to the diagonal flow A on the torus T2.

Proof. Define T? = R?/Z?, the quotient space of the real plane by
the lattice of integers. Iet o ¢ R? » T® be the natural projection map.

The diagonal flow A on T? is defined as:

)\tO'(u,v) = o(u+t,vet)

Choose fixed points C,°,C° € C;,Cs respectively. Then all
points of C; and C, are representable as (¢t1(01° ), ¢t2(cz° )) for
some t;,t; € R« Define h : C; x Cg» T® by h(¢t1(clo)’ ¢t2(cz°)) =
oty ta).

Using 2.1.9 we get

1) h is well defined.

@4, (C°), ¢y (€°)) = @y L, (6°)s 0y L, (C°))s 2,22 € 2.

o(ty,t2) = o (ty+2y ,t2+23)
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h7H(o(ty,t2)) = B (o (tawtast0422)) = {8y, (OD))py , (C2))] 01580 2
= 0 0
= (¢ (60), 4y (C2))
3) h is a homeomorphism.
Consider the diagram

]
Mx Nx Rx R h >R

X
HfXHg [ o
b ?

Cl X Cz -

R

Define h' : Mx Nx Rx R> Rx R by h'(P,Q,t,ta) = (t;,t2) then
h' is obviously a diffeomorphism. The diagram commutes. Given an open set

0C T2 we have from the commutativity,

h~1(0) =(Hf x Hg)h"l a1 (0) .

But h' and o are continuous and from 2.1.10 II, x Hg is open and

so h 1is continuous. Also, given an open set O0'C C, x C; we have

(h™*)-2(0') = n(0") = crh'(ﬂfx Hg)"l(O'). The openness of ¢ and h'
and the continuity of fo Hg ensure h™! is continuous. Hence h is

a diffeomorphism, because all maps used are differentiable of class ch (r} 1).

2.1.11 LEMMA. There is a diffeomorphism k of T° » T° which takes
the natural generators SY ,S*', onto the generators §'3,D where D is
a diagonal of the torus such that A 1is a uniform fibre flow on T° with

the bundle representation
1
D ——> 8% x D(= 1) I—s s

Proof. The diffeomorphism k is induced by the linear automorphism (2) :})

of R?®, The fibre flow on D is the restriction of A to D.
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2,1.12 LEMMA. Theflowon D say u =A|D :Dx R> D is

equivalent to Z(M x N, £x g).

Proof. The manifold M x N is a point (P,Q); the map
fx g : Mx N> Mx N is the identity. Then as before L(Mx N, £x g)
is a flow on a circle. A time-preserving diffeomorphism of D onto

Mx N will give the equivalence.
fx g

2.1.13  LEMMA. The product flow Z(M,f) x Z(N,g) is a uniform

fibre flow on the product

1 m 1
(MxN)fxg———-afoNg(-S x(MxN)f.xg)——-—> S
The flow on the fitre is Z(M x N, £x g).
§2 PROOF_OF PRODUCT THEOREM
2421 Definition. et £ : (Mx N)fx g T (M x N)fx g be the

diffeomorphism defined by ¥ fo g(x,y,t) = fo g(f(x) »¥st) where x € M,

ye N and t e R.

2e242 THEOREM. The flow A on ((M x N)f>< g>i" defined by

Av(Hf(fo g(x,y,t),m)) = Hf(ﬂ (x,y,t+v),u) is equivalent to the

fx g

product flow ¢ x ¢ on M, x Ng where ¢ = 2Z(M,f) and ¢ =2Z(N,g).

This is proved by the following lemmas.

26243 LEMMA. There are maps gy ,93 such that

————

q  ((Mx N)p g —> Mo

fx g

gz ¢ ((M x N)fx g>f _— Ng



21

These maps are defined by

> Hf.(x,t+u)

9 ¢ Hf(nfx g(x,y,t),u)

Q2 Hf(fo g(x’y,t):u) _")‘Hg(y’t)

Proof. 1) q, is continuous.

Consider the following diagram.

Mx Nx Rx R >M x R
fo gx 1
y
(M x N)p g ¥R I,
Iz
y
‘ - % >
((M x N)fx g)f — M,
The maps fo g and 1 are open and so fo g% 1 is open.

Also the maps Hf and Hf are open. Define the map q'; by g (x,y,t,u) =
(x,t+u). Then q'; is continuous.

The map gq; 1s well defined because we have the following diagram.

Hf(fog(x:Y:t),u> = Hfm&g(fnl+n2 (X>,gn1(y')’t'n1):u-n2)’nl sNg € Z

Q1 Q1

\
Hf(x,t+u) = Hf(f'nﬁ'n‘a (x),t+u = (ny+ng))

The diagram commutes

qutl (X,Y:t:u) = Hf(x,t"’u)

Cth(nfx gx 1)(X’y:tsu) = quf(fo g(xay’t):u) = Hf(x:t"’u) .
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Consider an open set 0; C Mf, then

(quil )—1(01) = ((thzCfogx 1))-1(01)

= (q')? Hf-l (0,) = (kagx 1)t Hfl @t (0,)

@t (0,) = Hf(nfxgx 1)(a" )—lnf-l (0,). Hence g"*(0,) is open
Thus g3 1s & continuous map.

2) gs 1s continuous.

Consider the following diagram.

t
Mx Nx Rx R 92 >N x R

fogx 1
Hg
(M x N)ﬂ(gx R
Iz
da R
((x Mg g)f > N,

The maps Hg’nf’xgx 1 and Hf are open as before. Define the map

qQ's by aq'2(x,y,t,u) = (y,t). The map q'; is continuous,

The map qg 1is well defined because we have the following diagram.

Hf(ﬁfxg(x,y,t),u) ’—'H’Em&g(fnl+n2(X):gnl(Y):t‘nl):u‘n’a)’ n,ng € 2 .

!

Hg(y,t) = Hg(gnl (y):t‘nl)

The diagram commutes

nglz (x,y,t,u) = Hg(y:t)

QSnf(fogx 1)(x,y,t,u) = qz(f%(ﬂfxg(x,y,t)m)) = Hg(Yst) .
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Consider an open set OaCN_, then
[4a's)72(0;) = (adllply, % 1))7(05)

= (%)M (o) = @y, x 1) 0E g5 (05)

= gy (0,) =I50T, g 1)(a'3)* g2 (0,).  Hence g3 (03) is open.

Thus gqg 1s a continuous map.

2244 LEMMA . let (xo,sg) € Mx R. There exists a homeomorphism
ry of g (La(x0,50)) with Ng» where Iy is the restriction of g

to q;7t (Hf(xo:so ))e

Proof. Given (xg0,s0) € M x R, Hf(xo,so) =Hf(f"(xo),so—n), ne Z and

so we have

(h_l Cnf(xo:so)) = {Hf.(nfx g(‘x»th)‘,ul)IX = f‘“(xo)?t+u = So-n, ¥ € N}

= Ix(L, (xosyst)su)l t+u = so, ¥ € Niu

fx g

Consider the restriction qzl q{l (Hf(xo,so)) =r; ; then

r (HE(H

£x g(XO,y,t)ssO"t)) = Hg(Y’t)

1) 1, is well defined

Hg@ﬂ(g(xO,y:t),So-t) = HF(H& g(XOsgnl (¥)st-ny 580 = (£, )))

ry Iy

N
Hg(y,t) = Hg(gn1 (), t=n;)

2) r, is 1-1.

From the definition of r;, r;"* = g7t (Hf(xo,so)) N gt .
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i}

Hence rl_l (IIg(yO’tO)) QJ.-I (Hf(XO)SO)) N {II?(fog(X,yo,to),u)IX € My, ue R}

1}

Hf(fog(xo :YO’tO>,SO - to)-

3) 1r, is a homeomorphism.

Since r; is 1-1 and the restriction of a continuous map we need only
to prove the continuity of r;"'. Consider the following diagram where

S1 = [(x0,7,%,30-t)y € N, t ¢ R} and 85 = {(Lp, (x0,7:t) 550~ t)|ye N, te R}

t
r'y

N X R ->31
l fogx 1I Sl
II
g P
l Hfl Sa
v r"t
Ng >q," 1 (Hf(XOsso))

Define r'; by r'y(y,t) = (X0,¥,t,80-t) which is obviously

a continuous map. The diagram commutes:

Uzl 82) (g x 1 82)7'y (558) = TR(T, (x0,55t) 80 = £).
7t IL(y, %) = HpUlpy (x0,55t)5 so=t) -
Consider an open set 0z C ql"l(ﬂf,(xo,so)). Then we have
(7 ) 72 (0s) = (Wgl 82) (g, x 1]81)rh )7 (05)
= L7277 0s) = (1) W, x 1181)7 (5l 55)72(05)

= r, (0s) = Hg(r'l )-I(Hf‘xgx 1| Sy )_1(Hfl Sz )—1(03) and so

1

r,(03) is open, i.ee 1r;”"! is a continuous map.

2e245 LEMMA . Let (yg,to) € NxR. There 1s a homeomorphism

r, of qgt (Hg(yo,to)) with Mo, where r; is the restriction of

gy to %—lmg(yo,to))~
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Proof. Given (yo,to) € NxR,Hg(yo,to) =Hg(g"(yo),to-n), ne Z and

so we have

P (Hg(Yo:to)) = {Hf(ﬂ (x,5,t),u)ly = 8"(yo), t=to—n, xe M, ue R}

f'xg

il

{Hf(nfxg(x’yO:tO):u)l xe M, ue Rg .

Consider the restriction q1| gzt (ﬂg(yo,to)) = ry, then
T (Hf(fog(stO:to):u)) = Hf(x,tcﬁ u).

1) 1r, is well-defined.

Hf(nfxg(x:yo ’to):u) Hf(ﬂfxg(fnl (X) sYosto ) sU=1 )

Iy Ty

Hf(x,to+ u) Hf(f’nl(x),tg+u— n, )

2) ro is 1-1.
From the definition of ry: rg”! = g~° mg(yo,to)) N q~t. Hence

ry"* (ILp(x0,50)) (x0,55t),u)l t+u = 50,5 €N}

P (Hg(YO:to)) N {Hf(n

fxg

Hf(ﬂfxg(xo,.’)fo »to)s80=to)

3) r; is a homeomorphism.

Singe 1ry; is a 1-1 and the restriction of a continuous map we need
only to prove the continuity of rz"'. Consider the following diagram
where T, = {(X,¥0stoss~to)|xe M, se Rl and T, =

{mfxg(x53’0:to),5-to)|x€ M, se R}.
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t
Mx R T2 o,
fogx 1|Tl
Hf Ta
Hf' Tg
r,~1 Jv
Mf >gp~t alg(Yo,to))

Define r's by r' (x,s) = (x,y0st0,8~to) which again is obviously

a continuous map. The diagram commutes:

(U§| T2 )(fogx 1Ty )r's (x,8) = H'f(nfxg(x:YO stoss—to)

r2—1 Hf(x’ S) = Hf(nfxg(xjy'o,t0>,s"to) .

Consider an open set 04 C g~? (Hg(yo,to)). Then we have

(I‘z_lnf.)-l (04) = (@f‘ Ty )(fogx 117 )rY )72 (0,)

= L7 (ra )2 (04) = %7 [y, x 1] m) 72 Qlgl 7a)72 (04)

= 1ry(04) =H:€.r'2'1 (.. x1m )'l(ﬂfl T )"2(04). The openness of r;(0,)

fxg
follows because Hf. is open, r'y is continuous and fogx 1|T, and

Hfl T, are restrictions of continuous mapse.

2.2.6 LEMVA. Denote an element of ((MxN) z then the

fxg)f by
mapping

> Mox N

k o ((MxN) " g

f‘Xg>f
z » (a(z),%(z))

is a diffeomorphism,

PI‘:QOf. 1) K is 1_10

let (a,b) ¢ Mo x Ng' Then «"*(a,b) = {q"*(a) N g~* (b)}.

Suppose we have elements 2,2 € k” (a,b) then 1z € q-(a), g1 (b)
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and zg € g~ (a), g"*(b). We have qg(z;) = qa(z;). However
21,22 € @  (2); hence (@l @™ (a))(z1) = (@la™ (2))(z2).  But we
have proved that qgl a"t(a) is a homeomorphism and so 2z; = 2. Hence

K is 1-10

2) k¥ 1is continuous.

The continuity of « follows from the fact that q,,q afe camtinuous

We now use the compactness of the manifolds M,N to obtain compact
menifolds ((MXN)fx.g)f and  Mox Ng. Hence we have x is a 1-1 continuous

map between compact spaces and so is a homeomorphism, [11].

Remark. It follows that « is a diffeomorphism since it is constructed

from differentiable maps,

2.2.7 LEMMA . The flow A on ((MxN)fxg)f. defined in 2.2.2 is

well defined.

Proof.
Hf(nfxg(x:lht) ’u) =H§(fog(fnl+nz (X) ’ M (.V) st-ny ) Uz )
Av }"v
Hf(nfxg(x:y’ t+V) ’u> = Hf(Hﬁ( g(fnl ha (x) :gnl (Y) ,t—-n1+v) Uy ) .
2.2.8 LEMMA. The following diagram commutes where ¢ = X(M,f).
_ g x 1 R
((Mx N)fxg)fo >Mox R
A ¢

((MXN)fXg)f‘ 4 > M,
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Proof.
¢vqlﬂT§(fog(x,y,t),u)) = ¢ JLa(x,t4u) = IL(x, t4usv)
q.].A'vG'—If(fog(x)y’t) ,U.)_—) =4 (HF(fog(x,y, t+V) ,'IJ.) = Hf(x’t+u+v) o
2.2.9 LEMMA . The following diagram commutes where ¢ = 2(N,g).
gax 1
((MxN)fxg)fx R >N, % R
A ¥
- : a,
((x0), )z N,
Proof.
¢’VQ2(HF(fog X:Y)t):u)) = ¢'va(3”1~7) = Hg(y,t-«-v)

QzAV(Hf(fog(X:y, t) ,u) ) = Qg (Hfa—[

fx g X,¥,t4+v),u)) = Hg(y,t+v) .

Lemmas 2.2.6, 2.2.7, 2.2.8 and 2.2.9 give the equivalence of

Theorem 2.2.2.

2.2.10 LEMMA . The flow A on ((MxN)fxg)F is a uniform fibre flow

on the bundle

4 - _ 7! 1
(Mx N)fXg———-.}((MXN)fXg)f'———’ S

Moreover the flow on the fibre is X(MxN, £X g).

Proof. The projection 7' is defined by
' (Hf(ﬂfxg(x,y,t),u) ———> p(u) where p is the natural

projection p : R——> R/Z .
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Let {U;,U;} be an open covering of R/Z defined as follows.

Uy = {p(u)|o< u< 1}

Uz

fp(W)|3/k < u< 5/4}.

B - A
Define h, : U; x (MXN)fxg" 7T.'"2(U, ) by hl(pg‘u), fog(x,y,t))
= Hf(ﬂfxg(x,y,t),u) where 0 < u< 1 is the value we take for u,
and By 1 Up x (WxN)p > 7" (U) by ba(p(u) I (x,5,t))
= IIf,(IIfxg(x,y,t),u) where 3/4 < u<5/4is the value taken by u.

Using {(Uy,hy),(U;,h,)} we have a fibre flow, with u = Z(MxN,fxg).

(o) J g, (o7, ) v )X (T2, (6,7,8),0),v)
1X u A
\ h \
(p(u)ﬂfxg(x,y,tW)) L —*-Hf(lexg(x,y,t+v,u)
P !
p(u) ! >p(u)

[ue (0,1)]s A similar result holds for (Us,h,).

242411 LEMMA With the results of 2.2.2, 2.2.6 and 2.2.10, we have

the uniform fibre flow in 2.1.4 by taking the projection 7 =7'k~t :

by
h'y =«khy and h's =«khy.

M, x Ng—» S' and the covering {U;,U;} of S' with coordinate functions

Proof. The following diagrams commute for i = (1,2).
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UG x (MxN)fxgx p—2ix1 >t (U )x R kxS (Ty)x R
1x p X Px ¢
v n y ‘ v
U x (MXN)fxg L >7'2 (U) -k~ (U)
P 7' 7'kt
v ) \ 1 2
Uy > U > Uy

The commutativity of the left-hand side of the diagram follows from
Lemma 2.2.10, The commutativity «A = (¢px ¢ )(kx 1) follows from Theorem
2+2.2. The commtativity of 7'k k = 1.7' follows immediately.

Using this information we have

@ x ¢)ehy x 1) = (¢ x ¢)k x 1)(hy x 1) = xr(hy x 1)
= khy(4 x p) = (khy)(1 x p)

(11'/("1 Y(khi) =7'hy = 1 .

It follows thmt the diagram commutes for i = 1,2,

Up x (MxN), x R (khy)x 1 >(r'k* ) (U )x R
fxg
1x u $x ¢
J \
ULX (MXN%S(g (Kh]_) o ('IT'K-I )-1 (UL )
p ke
y v
Uy 1 > Uy

Remark. Given any open covering {U;} of S' by careful choice of the
diffeomorphiems hiy then fibre flows can be constructed by a similar

‘method to the above.
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83. REMARKS ON THE PRODUCT THEOREM

Here we will discuss the choice of various mappings and particularly
f. TFirst of all we will show that the bundle notation in the theorem

is necessarye.

2.3.1 LEMMA . The result is not trivial, i.e. the bundle in 2.,2.2 is

not a trivial product.

T 1
(Mx N)fxg —> M Ng —_— 3

Proof. This follows from the fact that f (Mx N)fxg;')is not glways
diffeotopic to 1. However a simple counter-example will illustrate

the lemma more clearly. Define

8} = {umod 1lue R} =M and f : M-> M is defined by
f(umod 1) = (-umod 1); and

S3={vmod 1|ve R} =N and g : N> N is defined by

g(v mod 1) (-v mod 1). The diffeomorphisms f,g are reflections of

the circles S,',S;' respectively. Hence X(M,f) and X(N,g) are
flows on the Klien bottles «k; ,x3 say. The diffeomorphism fx g is
a map of the torus T® = 8, x S;' which reflects in both S, and S.t.

The mapping (fx g)* : R?® » R* which induces the diffeomorphism

fxg: T > T is given by (fx g)* =(51_?) : R? » R3, The group

generated by (51 j) ism Cy; the cyclic group of order 2. Then T?ﬂ(g

is not the praduct bundle 8 x T®. Now £ : T2 - T is defined
= fxg fxg

by f‘fog(u mod 1, vmod 1, t) = fog(—umod 1, vmod 1, t) and so
(T;xg)f is a bundle with structure group < generated by the diffeomorphism
= : 3 ) 1, ma -
f and so is of order 2. Hence (fog>f # Stx TfXg so that (T%Xg)f

is not a trivial bundle and the lemma follows,
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It should be pointed out that the diffeomorphism f : (MXN)fxg» (MxN)fxg
defined in 2.2.1 1is not the only choice that could be made to give
a similar theorem. We can best discuss the possibilities of other diffeo-

morphisms h: (MXN)fxg* (MxN)fxg that can be used by consideration of Fig.2.1

Fig. 2.1
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This diagram and its interpretation gives the intuitive insight into
the theory of this chapter.

Assume we take a (s,t) coordinate system. At the origin of the
(syt) system we associate the point (x,y) e MxN. We wish to relate
this diagram to fo Ng’ then it is a necessity that all points of the
integer lattice have to be associated with some points (x',y}) € Mx N,
For instance let (n,,ny) € 22 C R then with respect to the origin
O(x,y) this point represents (Hf(x,nl), Hg(y,ng)) € Mox Ng' But the
point also has a representation Hf(fnl(x),O),IIg(gnz(y),O). This means
that we should also associate to (n;,n,) the origin of a coordimate
system with respect to (£ (x),g2¢y)) ¢ MxN .

Since the praduct flow ¢ x ¢ on fo Ng has the effect of increasing
both s and t by the same amount the orbits are represented by diagonal
lines of slope +1. Iet the arbit that passes through o(x,y) be given

by D(, ) @ndlet U= fulue R}. Ve redefine points of the plane as
3

points of D(x y)x U as in Fig. 2.2.
H

Py Pe(x),y)
.t
f: 3
a P
(1,1)
0 5 ” — 33,0
(x,y) (f(x) :Y)

Fig. 2.2



The "U" real line is also along the s-—axis; a point P of the
(s,t) plane is given in (D(x,y)’U) coardinates by projections parallel
to U and D(x,y)' Then the point P = Cﬂf(x,s),llg(y,t)) becomes
(Hf(x,t), Hg(y,t)) € D(x,y) and s-t € U. It is by noting the
representations of the points in the plane with respect to other origins
that we obtain the bundle structure of 2.2.2. The crucial fact to notice
is that {D(X,y)lxe M, ye N] aan be identified with orbits of Z(MxN,fxg).
The map f was deduced from noting in Fig. 2.2 that
P = (t’u)(x,y) € D(x,y) x U and also P = (t’u_1)(f(x),y) € D(f(x),y) x U
The coordinate U was measured in the horizontal direction as an apparently
arbitrary direction. This is in fact the case and we can take U in any
direction. Another possibility would be to take U vertically as in

Fig. 243

D
t (X:Y)
A
P
OCx,y) / >5
U <I
Fig. 243

In Fig. 2.3 relative to (D(x y),U) coordinates we have the following
s .

relation:

P = (6m)ir,y) = (Bt g p)).
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2.342 LEMMA. Given two diffeomorphisms f;,f3 of M; then

Mf and Mf are fibre diffeomorphic if f; and f, are diffeotopic.
1 2

Proof. We have the bundles

. M 1
M ,Mfl > S

. T2 1
M > Mf,2 > S

let Hf and Hf be the usual projection maps. Suppose that

1 2
the diffeotopy between £, and f, is {du|0< u< 1} where do = £

and dy = f3. Then the fibre diffeomorphism h is given by

h(Hfl(x,,t)) =Hf2(f1'1dt(x),t)

2e3e3 LEMMA . Any two manifolds (Mxl\%.xghl and ((MxN%xé)h2 used
in 2.2.2 obtained by taking U in the directions s = (tan 6, )t and
s = (tan 6, )t respectively are fibre diffeomorphic. [6 is measured

anticlockwise from t=0 and —-37/L< 61, 62 < T/l )

Proof, They are fibre diffeomorphic by 2.3.2. The diff'eomorphisms
h, and h, are diffeotopic. The diffeotopy is constructed by taking the

interval of diffeomorphisms corresponding to 6 ¢ (6, 60 ] assuming 6, <6

84. SUSPENSTONS OF BUNDIE DI FFEOMORPHISMS

We wish to prove a result for bundle diffeomorphisms similar to
the one proved for product diffeomorphisms in §1. We use the definitions
already given in earlier sections,. In this section we commence with

a bundle of manifolds

N >B1T,M

and let (h,f) be the bundle diffeomorphism in the commutative diagram.
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p—21 3
f
M ———— M
Notation. Let N_ denote the fibre over x ¢ M, i.e. 77 (x) = N -
2ok Definition. et h: By - Bh be the diffeomorphism defined

by hIL (b,t) = I (), t) b € B, t € R.

2.4.2 ' Definition. The flow A on the bundle

Voe——> W —2— X

is called a local product flow if 3 flows ¢ on X and ¢ on V and

an atlas of local bundle charts (U,a) such that for x e UC X, 4 R[x],

an open set of R with 0 ¢ R [x] such that the diagram commutes.

{x} x Vx R[x] al {x} x 1 > ot (x) X R[x]
¢x ¢ A
v :
Ux V & > o~ 1(U)
projection o
Y
U 1 > U
24,3 BUNDIE THEOREM. Given the bundle of manifolds
N > B —~—> M, with bundle diffeomorphism (h,f)

—2 53
|

B
ﬂ!/ m
M f

—

=<
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then H a uniform fibre flow A on the bundle

1
Bh —_— (Bh)E LA > S', where the flow on the fibre

is X(B,h), such that A is also a local product flow on the bundle-

N, —-———>(Bh)E-—£L—> Mo

Moreover the flow on M, is Z(M,f) and the flow on N, is Z(N,1).

Corollary. A local product flow of the type above is not structurally
stable.
Proof. The projection #' provides a first integral for which the flow

is invariant, and so by the theorem of Thom [20] the flow is not

structurally stable.

The Bundle Theorem is derived from the following observationsa.
2.4 IEMMA. There exists a map q: (Bh)E - Mf defined by
QCHE(Hh(b,t ) :u) ) = Hf(”(b) :t"'u) .

Proof. 1) q 1is well-defined.

I.et n1 ,n2 € Z- Then

(T, (b,t)u) = TE(L (5™ 0% (b), £ - ny)u—ng)

Hf(zr:(b),t-i- u) = Hf..(w(hnlhn2 (b)),t+u=(n3+ ny))

2) g is continuous.

Consider the following diagram.
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q >

Bx Rx R > Mx R
Hhx‘l
thR Hf
I
VV A\
- q .
(8,5 > My

Define q' by q'(b,t,u) = (#(b),t+u); then q' is obviously

continuous. The diagram commutes:
IIeq' (b, tu) =Ia(w(b),t+u)

a H}"lmhx 1)(b:t’u) = qHH(Hh(h:t),u) = Hf(-:”(b)9t+u)'

Take an open set 0 C Mf; then

(10, x 1))7(0) = [,a')™*(0)
= q*(0) = H'E(Hhx 1)q"lﬂf'1(0).

Because HE and H.hx1 are open maps and q' and Hf are

continuous it follows that ¢ *(0) is open and so g is continuous.

2e445 LEMMA. Given (x0,50) € Mx R; then

¢ ([Lp(x0,80)) = Tl (b,yt),u)| t4u=s0, m(b) = x0]

m

Proof . Given (x¢,50) € M x R; q'l(l-[f(xo,so)) = q'l(Hf.(f‘"(xo),so—n), Vne Z.

We therefore have

¢ * (La(x0,50))

£M(x0); t+u=so-n}

{I-(T, (b, £) yu)| 7 (b)

{I=(l, (b,t) ,u)| 7(b)

Xo ,t+u= So}
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using the relations given. This follows because Hﬁgﬂh(b,t),u) =

=H5(nb(h""(b),t+n),u) where @(h™"(b)) = xo and t+n+u= sg.

2ele6 LEMMA. Given (Xo,S0) € Mx R, then there exists a homeomorphism
5Oy —— o [gCrors0)).

k
(Xo,so

Proof . The definition of k(xo so) uses the lemma 2.4.5. Iet us
>0

represent points of q’lﬂif(xo,so)) as in 2.4.5. ; then we define

¥(or50) 7 Ky, 00) M (bs8)) =T, (b,8),80= 1), 7 () = 0.

1) k is well-defined.
(Xo:so)

I (b,t) = (b,t-n), ne 2

k k
(xo:so) (xo,so)

IIH(Hh(b’t) ’3 o"t) = H-H(Hh(b,t—n),sb—t.pn)
) ton) = T, 700), 0,0 )

2) k(xo,so) is continuous .

Consider the following diagram where B, = {(b,t,s0-t)r (b) = x0}

and By = {{L(b,t),50~t)[7(b) = xo}.

Nox R _ (o) | g
Hl x 1 | B
anh
HEI By
\

k v
(N ) (xo’SO) >Q-101f(xo:so))




[] ' = - g =
Define k (x0,50 ) by k (xo’so)(b,t) = (b,t,s0-t), 7.(b) = xge

The diagram commutes.

k(xo,so)nl(b:t) = Hﬁ(nh(b:t):SO"t)’ '""(b) = Xge

W] Ba) ALyx 1By )iep, oy (0yt) = TIgQ (by6),50-t), 7.(b)=xo .
It follows that

k'-l.
(Xo 9380 )

(0) =T G, o ) @y 113)72 0T )" (o),

-1
for an open set 0C q (Hf(xo,so)). Hence we have k(xo’so) is
. . 1 .
continuous since II; 1is open, k (x0,50) is continuous and Hhx 1| B,

and HEIB,; are restrictions of continuous maps and therefore continuocuse.

3) k is a homeomorphism.
(%0580) P

We have k is a 1~=1 map. Also (N_ ), 1is a compact space
(%0580) Xo
because N is compact. The space q ! (Hf(xo,so)) is closed in (Bh)ﬁ
since g 1is continuous and Hf(xo,so) is closed in Mf. Because
(Bh)ﬁ is compact under the assumption that B is compact, we have a 1 -1

continuous map between compact spaces and so k(x s0) is a homeomorphism,
0330

2ebe7 LEMMA There exists an equivalence between the flow Z(Nx 1)
0

on (Nxo)1 and the flow Z(N,1) on N,.

Proof. A diffeamorphism between N, and N 1is used to construct the
(¢]
equivalence. The diffeomorphism is provided by a restriction of a local

chart map from 2.4.9.

248 LEMMA. The uniform fibre flow A of the bundle theorem is

defined by

Av(ﬂzmh(b:t)’u)) =II-I—1(Hh(b,t+v),u) .
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Proof. The atlas of local bundle charts which gives the lemma is

defined as follows.
Iet the covering [U;,Uz} of S* be defined by Uy = {p(u)|0< u< 1}
where p is projection p:R- R/Z = S' and U, = {p(u)|3/k< u< 5/},

Define a3 : Uy x Bh-> ’Ti"l(Ul) by ay (p(u),Hh(b,t))

= lT.H(Hh(b,t),u), where u is teken such that O< u< 1, and
o Uz x B = 7'73(0z) by @z (p(u),Il (b,t))

=HE(H.h(b,t),u) where u is taken such that 3/ < u< 5/ke

[For a proof that these constructions give diffeomorphisms see appendix 2.]
The proof now follows taking the flow on the fibre B tobe u = Z(B,h)

and the atlas {(Uy,x; ),(Ussxz )} We have commutativity

(p(u), 1L, (n,t),v) xS @0, (b,t),u),v)
1x u A
\ 4 \ 4
(p(),IL (b, t+v)) 2 ST (b, t4v) ,u)
P | LA
v 1
p(u) —> p(u)

where u e (0,1). A similar result holds when we take (Uz,xz ).

2.4.9 Definition. Iet (U',8) be an atlas of local bundle
charts for the bundle

N

v
to
2

=

2.4.10  Definition. Take an open covering {U}] of M, to be

def'ined as follows:



lllpte,s)lx e 0758 € (0,01, My(rellxe U7, s ¢ (3,5l

2iell LEMMA. Given the open covering {U} of M, then d an atlas

of local bundle charts (U,y) for the bundle

Ny —‘—>'(Bh)5 A M.

Proof . Let us take U =IL.(U'x U;) saye Then define a function

Y:Ux N - g M(u) C (B)p vy v(Lp(x,5),1 (y,t))

= Hl—l(ﬂh(e(x,y),t),s—t). In the definition we stipulate that at all times

s must take a value such that 0 < s< 1.

1) y 1is well-defined.
Under the conditions on the definition of ¥y the pofint
(Hf(x,s), I (y,t)) is defined uniquely up to Cle(x,s), I, (y,t)) =

(Hf(x,s), I,(y,t-n)), ne Z; but

i

Cﬂf(x,S): Hl(y’t)) (Hf 65:5)’ Hl(y’t-n))

(H-h-(ﬂh(ﬁ(x,Y) :t),s“t) H-H(Hh(lg (x:Y)’t"n)’s"(t"n)) .

Hence x 1is well-defined.

2) y preserves the bundle structure, i.e.« gy : Ux N, » U is

the projection from the first factor.
QY(Hf(x:S): Hl(Y:t)) = q(HE(Hh(ﬁ(x,y),t):s-t))
- L0 (x,5)),5)

—.—.Hf(x,s), [ is a local chart map and so

mP=projection onto first factor for local charts in bundle B].

3) Y 1is a homeomorphism.
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Consider the following diagram.

U'x U, x Nx R XY > Bx Rx R
'Hhx 1
\ 4
Hf|(U'x U], B, x R
g
v v \
1 N -
Hf(U x Uy )x Ny (%)h

Define ~' by yv'(x,s,y,t) = B(x,y),y.s-t), O0< s< 1. Hence

v~ is a diffeomorphism because B 1is a diffeomorphism. The diagram

commtes. Ilet (x,s,y,t) € U'x Uy x Nx R; then
Y(Hf X Hl)(x,s,y,t) = Y(Hf(x’s): HI(Y:t))
= HH(Hh(B (X’Y)’t),s't)

HE(Hh X 1)f'(x’3’y,vt) = HH(Hh X 1)(B(XJY):t:3"t)

= HH(Hh(B (XQY) st ) ’ S‘t) .

Now y is onto q~*(U) = q'l(IIf(U' x U;)) which is open in (Bh)ﬁ .
Suppose O is an open set of ¢ *(U) then O is an open set of (Bh)ﬁ .

Hence by commutativity of the diagram we get
¥72(0) = (10" x 0)) ' "2, x 1) @) (o).

Since Hf is restricted to an open subspace of M x R the restricted
map of II, 1is open. Hence y~2(0) is open and so y is continuous.

To check that y is 1-1 we have



HH(Hh ﬁ(x:}'):t):s-t) = HE(Hh(ﬂ(x’Y):t‘n>’s"(t_n))s n e Z.

(Hf(x’s)’ Hl(Y:t)) = C[If(xss): Hl(Y:t"n))

Hence y 1is 1-1. To prove y~! is continuous we require

a restriction of the diagram which gave the continuity of v. It

is the following diagram. Iet v'(U'xU; x Nx R) = A
Yl--1
U'x U x Nx Re< ACBx Rx R
Hfl (U' X Ul)x H1 I-I_hx 1IA
v
I, x 1(4) C B, x R
HHIHhx 1(4)
J{ Y'l ‘1/
Hf(U' x Up)x N < IIH(Hh x 1)(a) C (Bh)E

The fact that the previous diagram commutes and y and y' are 1-1
give commutativity of the above diagram. The set A 1is open in
Bx Rx R and so the restriction map of Hh x 1 1is open. It follows
that Hhx 1¢'(U' x §, x Nx R)) is an open subspace of B, x R.
Hence the restriction of HE is open. Using the openness of these maps
we obtain the continuity of y~'. Hence ¥ is a homeomorphism. In all
the defining diagrams of y and y~! differentiable maps are used and we
therefore obtain y 1is a diffeomorphism,

If we had considered the open set Hf(U' x Up) instead of Hf(U'x 0,),
then completely analogous theory with the restriction of s +to be such

that 3/ < s< 5/4 gives us the other local bundle chart diffeomorphisms.
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Hence we have an atlas of bundle charts.

2412 LEMMA . The flow A in the Bundle Theorem is the local product

flow as indicated using the atlas of local bundle charts (U_,Y).

Proof . Suppose Hf(x,s) € U= Hf(U' x Uy). Then let {v|ve R[Hf.(x,s)]}
be such that Hf(x,s+v) € U. We have commutativity in the following

diagram where ¢ = Z(M,f) and ¢ =2Z(N,1).

Ma(x,5)} x My x Rl (x,8)]—X 21 5 2@ (x,8)) x R (x,s)]

¢ x ¢ A
Jf v
Ux &y Y > ¢ (V)
projection q
V 1 \
U > U

85 GENERALIZATION

It can be seen that the Bundle Theorem is not a direct generalization
of the Product Theorem in the sense that a restriction of the former to
product spaces would not give us the latter.

There are various difficulties in producing such a theorem and it
iz only possible to go so far in the development of the theory. Here
we will give the starting definitions that would be required. The two
lemmas which appear here will not be proved as they have their analogous
statements in g4 and are proved by the same techniques. However

an application to the structure of ILie Group Bundles exists and is given



in Appendix 1, but it is not applicable to dynamical systems and only

gives the manifold structure and mentions . nothing of flows.

2¢5e1 Definition. Given the bundle of manifolds

N > B =2~ M then let (h,f) eand (k,f) be two

commutative bundle diffeomorphisms

B h,k > B
T ] T
£ M
M ——
Remark. Note hk™! : 7 1(x)-»n"*(x), Vxe M, because h and k

both have the same induced base mape

2.5.2 Definition. Given h,k as above define k : B+ B by

k(I (b,t)) =11, (k(b),t).

2.5.3 LEMMA . Given the bundle

t
B ———> (Bh)E —L  S* , then there exists
a map q: (Bh)E ——> M, which is defined by
Q(H-E(Hh(b:t):u)) = chﬂ(b):t‘*'u)-

24504 LEMMA. Given (%x¢,50) € Mx R then

q? (Hf(xo »S0)) is homeomorphic to (Nxo )hk'1

At this point we do not have a lemma analogous to 2.4.7. and even
if we had then there are difficulties in finding the atlas of local chart

bundles for the new bundle structure obtained from (Bh)l—{
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CHAPTER 3

j—SUSPENSIONS

In this chapter we extend the basic definition of suspension as
defined in chapter 1. The operator X produces a flow Z(M,f) on
a manifold Mf

j-commuting diffeomorphisms of a manifold M and construct a flow on

such that dim(Mf) = dim(M) + 1. Here we consider

a manifold of Jj dimensions higher than the dimension of M. We prove

results analogous to those of chapter 2 with some additional ones.

§1. DEFINITIONS AND NOTATION

We use the definitions of chapters 1 and 2 together with:

3101 Definition. Given commuting diffeomorphisms f;,...,f]
of a compact manifold M, then there exists a flow ¢ on a manifold

M? where £ denotes the j-tuple (fl,...,f_;) of Jj dimensions higher

than that of M called the j—suspension of (f3,...,fj) denoted by
Zj(M,f1,.00,Ff5). The construction is as follows. |

Iet o ¢ Mx B o> Mx B, i€ {1,...,5] be defined by

ap (Xytyseeest]) = (Fr(x)strsoeesti=T5000,t)5). Then

for c veee i} 2Z2@2@ ... @2 = ¢ (j-terms) acts freely on M x M

and the kesultant orbit space under G is the manifold Mf.. Furthermore
the flow ¢ on M x R} defined by (/JV(x,tl,...,tJ) = (Xyty + Vyeuertj+ v)

induces a flow ¢ on Mf- .

§2. Jj-SUSPENSIONS OF PRODUCT DIFFEOMORPHISMS

We consider a product manifold M x N and commuting product
diffeomorphisms f; X g1ye.¢5,fj X g ¢ Mx N> Mx N composed of the
diffeomorphisms £ ¢ M> M and gi: N=> N, i€ {1,.c..,3}.

We have the following theorem.



3.201 THE j-PRODUCT THEOREM. Given the Jj-tuples of diffeomorphisms

f£1s5e0e5f) and gyyee.58; of M and N respectively, then the product
flow Zj(M,%) x Z3(N,%) 1is a uniform fibre flow on the bundle

(M x N)a A M X N ey
X & f 8

Moreover the flow on the fibre is 2j(M x N, T x Ag).

[N is the j-dimensional torus].

Corollarye The product of two j—suspension flows is not structurally

stable.

Proof. We use the Integral Invariant Theorem of Thom [20]. We can
obtain a first integral by combining the projections = ¢ M%. X N'é -

and p, ¢ ™ > S, the projection onto the first generator of the torus
™. The projection pym ¢ M%.Q Nlé--» S* gives a first integral for which

the flow is invariant.

The theorem is proved by the following observations.

3.2.2 Definition. ILet h denote the j-tuple of diffeomorphisms
hy,.e. 83 where hy: (M x N)% y %-» (M x N)? y /é is defined by

hlﬂ%x% (x,y,t) =H?.‘x "g(ﬁ (x),yst)s [t € B denotes the j-tuple (ty,...,tj)].

34243 THEOREM. The flow A on ((M x N)% y %)% defined by
AU lly  alxy,2)sn)) = (T | 4(x,y,54y),u) where xe M, ye N
and t,u,v = (v,...,v) € B is equivalent to the product flow ¢ x ¢

on Mf.xNé where ¢ =ZJ(M,%‘) and ¢ =ZJ(N,§).

This theorem is crucial to 3.2.1. and is proved by the following

lemmas.
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Se2e4 LEMMA. There are maps q;,qz defined as follows:

——————

q ¢ ((rx N)%k?g)ﬁ" M,

o

((M x N)%xfg)'ﬁ» Ny

The maps q;,9; are defined by:

%m"h(ﬂ"fyfg(x:Y:tls“-stj ):ul:'-',uj )) = H%(x,tl +Upseeerty+ uj)

QS(Hf.l(ka'é(x:Y:tlﬁ‘"’tj):ul"":uj)) =H'é(Y:t1’°°-:tj)

Proof. 1) gy 1is continuous.

From the definition of gq; we have gq; 1is well-defined.

H'l\l(H%xAg(x’y"t) ’l’;) = H’fl(n%xfg(fnlt?]‘fjm‘l . (x) 98?1- . 'gfilj (¥)st1i-ny ... »tj—nj )s

Uy =0y 5 .. 0 U] —j)

q1 Q

y
H%(x,t1+u1,...,tJ+uJ)::H%(fnlf?%fn3+m5(x),t1+u1-(n1+m1),...,tJ+UJ-(ng+ng))

Consider the following diagram.

14
Mx Nx Rlx rJ 91 >M x RJ
H%k%>< 1
\ o I
(Mx N)%.x';5 x s
I
J/ v

v
=
53

((ux N);kﬂg)g G
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From 2.1.8 we have H’f&% x 1, H'ﬁ and Hg. are open maps. Iet qf

be defined by qf (X,¥st1seeestjstiseceruy) = (Kyty +upyeee,ty+ uj).

Then q{ is obviously continuous. The diagram commutes:

H'f‘.q{ = q"Hﬁ(H%kAgx 1) : Mx Nx Bx B —> M,

Iet 0, C Mf' be an open set; then

@31 (00) = (ol s x 1)) (0)
> ()0 = [y x )T 62 (0;)
= q;2(0,) =Hﬁ(ﬂ%&"gx 1)(q )2 H%"" (0,). Hence q;*(0,) is open.

Thus q; is continuous.

2) gz 1is continuous.
From the definition of g, we have q; 1is well-defined.

Hﬁm’ﬁ"g(x’Y:E) u) = H’ﬁ(ﬂh"g(f{ll tn-laf?” T (x) :81111- . '&IIIJ (¥)sti-m ... sty-nj )s

up-in; . -o:uJ"mJ)

7 \/
H’é(Y:tl: ceesty ) = H’é(&{l]-' . '&?J (Y):tl‘n]. seeestj—my )

Consider the following diagrame

MxNijij———-—gi——»NxRJ




51

Define g4 by qi(x,¥st1secestys Wseeesuy) = (Fotrseeerty)e Then

gs is obviously continuous. The diagram commutes:

Hqﬁ:qﬂﬁmh%xﬂ:MxNlexRi-»N%

&
Let 0, C N% be an open set; then
Mead)™(02) = (el lyy s x 1))7(05)

= (@) () = Wy x D)7 w7 (0)

= qa *(0;3) =H’1‘1(H'f‘,x’éx 1)(q3?)'lﬂ'é'1 (0g). Hence g (0,) is open.

It then follows that gqp is continuous.

34245 IEMMA . Given (Xo,sl,...,SJ) € Mx RJ, then there is
a homeomorphism r, of q{l'(ﬂ%(xo,sl,...,s_; )) with Ng where r, is

the restriction of g, to ql"l(H%(xo,sl,...,s_;)).

Proof . The set q~? (Hf(Xo,Sl,...,SJ)) = {Hﬁ(ﬂhg(xo,y,tl,...,tj),ul,...,u_;)l

SL = ‘tl+ U.L, i = 1,2,..0,j}.

The map r, 1is defined by

rlnﬁ(nf&g(xo:Y:tl:" «st) )’sl‘tl 3000:3J'tj) = H'é(y’tln- ~:tj)

Since r; 1is the restriction of a continuous map, it is continuous.

Note that r,"! = g,7* (lI%.(xo,sl,...,SJ)) N g '; using this we get
r].-l (H'fg(YO:tl’ﬂ-:tj)> = H%m%‘%(xo,yo,tl""’tJ),Sl_tl,"O’ sj—1tj )-

So we have r; is 1-1 and continuous. But r; is a map between compact
spacese This follows because H%(xo,sl,...,SJ) is closed in M%. and so
Q3 (H'ig(xo,sl,...,SJ) is closed in ((Mx N)f‘x’é)ﬁ and therefore compact.

Hence r; 1is a 1-1 continuous map of compact spaces and so r; is

a homeomorphism.
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3.2.6 LEMMA.  Given (Yostyiseeestj) € Nx B, then there is

a homeomorphism r; of g% (l'Lxg(yo,t,_,...,tJ)) with My, where T

is the restriction of g to g} Cﬂé(yo,t“...,tj)) .

Proof. By reasoning as before, we get
Q2-1 (H'é(yo:tl:”':tj)) = m'l‘,la-[%x“(x:yo,tl:"-’tj):u1’°°°’uj)}'
g

The map rp is defined by

rs m%(n%k%(x:yo:tl,”utj):n]."--suj)) =H%(x,tl+u1’°-°:tj+uj)

We get r, 1is continuous because it is the restriction of
a continuous mapping gq;. Also rp is 1-1. Note that
rat = gt (H’é(yo,tl,...,tj>) N ! and so it follows that
"t (H'f(xo’sli-ussj)) = H'ﬁalgk'fg(xo’YO’tl,“-,tj)sl"tl,-ousj"tj)-

Hence 1rg is both 1-1 and continuous. Again as far r; in 3.2.5, r3

is a map between compact spaces, and so rz 1is a homeomopphisme

3.247 LEMMA. Denote an element of ((MX N)%(Ag)h by z, then the
mapping
k ¢ z—> (q(2), g2(2)), is a homeomorphism.

K 3 ((MxN)gkAg)ﬁ —> Mx Ng .
Proof. As for 2.2.6.

Remark. In fact «k 1is a diffeomorphism since all maps used in the

construction are differentiable of class C" (r2> 1).

3.2.8 LEMMA . The flow A on ((Mx 1q)2,><¢g)?1 defined in 3.2.3 is

well-defined,

Proof . As for 2.2.7.
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34249 LEMMA. The following diagram commutes where ¢ = ZJ(M,%)

q x 1

((M x N)%x%)fl x R >M£, x R
A ¢
(G x Nl a)g N

Proof. Follows directly from the definitions.

3.2,10.  IEMMA. The following diagram commutes where ¢ =2j(N,%).

(M x N)iklé)hhx R 2 1 \Nléx R

((m x N)f‘x'é)?: da .

Proof. Follows directly from the definitions.

3.2.11 LEMMA. The flow A on ((M x N)%kzé)?l is a uniform fibre

flow on the bundle

(M x N)&% — ((M x N)f'>'<'g)h I -
Moreover the flow on the fibre is u =Z{Mx N,fx g).

Proof . The projection #' is defined by

! A(x,y,t),u) = her is th tural . jecti
T (nﬁ(ﬂf.xg( »¥st)u) = p(u) where p is the natural projection
p:RJ-vRJ/zJ:TJ.



et {Vi|ie I} be a finite class of open subsets of R

the projection p : RJ » Rri/zJ

such that

is a homeomorphism on restriction to each
Vi and {U UL

p(Vi)} 1is an open covering of ™ = Ri/Z), It can be

easily shown that such a cover exists.

Define ap : Uy x (M x N)%x'é > 7" (U) by a(p(@), Hgkhg(x,y,i))
= Hﬁm%x%(x,y,_‘g),g) where ue Vi.

Using the atlas {(Ug,xi)} we have a fibre flow with u = 2 (M x N,'i\’x é)

(p(a) Tl o (,758)yv) —EEds (I (T 2 (s, 8) ) )

1x u A
A , |
(p(a) gy 2 (6,5 143)) LTl @Iy 2 (6,75 4w) )
P T’
3 b
p(u) > p(u)

where ue Vi and v = (V,vyee.,v) € B,

3.2.12 LEMMA Using the results of 3.2.3, 3%.2.7 and 3.2.11 we have

the uniform fibre flow of 3.2.1 by taking the projection 7 = w'«k™!

Mf X Ng » N and the covering {Ui} with coordinate functions Bi = koy
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Proof. The following diagram commutes for i e T,

Up x (Mx N)ﬁ(?gx p_ux? o 7' (U) % pkx1 | k" (UYx R
1% A ¢x ¢
v v \
Uux (x Mg 8L L ¢vd(u)—— s i ()
p ' 7'kt
\
Ut 1 >Ut ! > Ui

The commutativity of the diagramfollows from lemmss 3.2.7, 3.2.9, 3.2.10

and 3.2.11,

It follows that the diagram below commutes for i € I

Ui x (Mx N)'ﬁ%x R (xat.) x 1 . cw;tK-l)-l(Ul)

1X p Px ¢
v v
Uy x (M x N)f'xé Kay > @) (U )
P 't
Y 1 \]
Ut —> Uy

83 (j,k)-SUSPENSIONS

3301 Definition. We define a (j,k) suspension of a mnifold M

and its diffeomorphisms f,,...,fj and a manifold N and its diffeo-
morphisms gyye..58k t0 be the product flow ZJ(M,%) x Zk(N,g) on

M%.xN'é-
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3.3.2 Definition. let %‘x 'é denote the k-tuple of diffeomorphisms
fl X gl, fz X gg,ooo,fJ X gj, 1 X gj+1’0.l’1 X gk : MX N" Mx No

Suppose J < k.

3e5e3 Definition. Iet hyy i = 1500453 be the diffeomorphisms defined

by
B a (557 tas e enti)) = g A(EL(x)575 805005 tk)-

Remark., In B2 we considered the special case of j=k. Obviously we

lose no generality in this section by taking j< k as in 3.%.2.

3.3k THE (J,k) PRODUCT THEOREM.  Given the Commuting j,k tuples of

diffeomorphisms f3,eee5f ), 81500058k Of the manifo lds M,N respectively then

the (j,k) suspension of these diffeomorphisms is a uniform fibre flow on

T
(MxN)%xfg——-—»M%xN% >
Moreover the flow on the fibre is Si(M x N, £ x &)-

Corollary. A (j,k) suspension is not structurally stable.

Remark. The lemmas required for this theorem follows a similar pattern
to those of chapter 2, gl The maps are not completely analogous because
of the non-symmetrical condition Jj< ke However, some of the proofs will

be abbreviated because of the similarity.

34345 THEOREM. Using 3.3.3, the flow A on ((M x N)%x;é)ﬁ defined by

Av%mh“g(x,y,h seeeyt k) U3 seee,U] )) = Avﬂiﬁm&’é(x,y,tz +Vy L3 +Vse0y tk‘*'V) ’
Upse..,uy))

is equivalent to the product flow ¢ x ¢ on My x N'é vhere ¢ =2} (m,%)
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To prove this, from which 3.3.4 follows, we require the following lemmas.

3436 LEMMA . There are maps Qq;,qs such that

a1 ((Mx N)“ﬂ(%)ﬁ — M/I>.

gz ¢ ((M x N)fx%)h-———%* N%

These maps are defined by :

%(%(Hﬁ(’é(x,y’tl 90 . o,tk),ul 9. .,U.J )) = H%(x,t1+u1 990 o,tJ+uJ )

Q2(IIB(H%X“g(xsy’t1’--utk):ul,"':uj )) = H’é(y’tlﬂ- utk)

Proof . 1) q; is well-defined and continuous. The continuity of q,

is proved by consideration of the diagram.

1
Mx Nx ka R’-—-—q-i——»Mx RS

H'fx“g x 1
¥ Iy
(M X N)f'x'é x R
Iy
! v
(Qrx M3 508 % , M

Define qi by qi(x’y,tl’o-o,tk,ul’-oo’uj) = (X,t1+ ul,oo.,tJ"' U.J).
Then the diagram commutes. By the techniques as used before we obtain

the continuity of gq,.

2) qo is well-defined and continuous. The continuity of qp

is proved by consideration of the diagram.
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1
MxNkaxRJ 93 >N><RJ
H%x'éx‘l
\
IR
(Mx N)f‘ngRJ g
i
v \
A A)A q2 N'\
((M x N)fxgh > g

Define q2 by qé(x’y’tl’ooo’tk,ul’lol’ U.J) =®’t1,ooo’tk)l 'Ihen
the diagram commutes. Again using the techniques of 3.2.4 we have that

gz 1is a continuous map.

3.3.7 LEMMA . Given (XosSyseses5)) € Mx BRI, there is a homeomorphism
ry of q{l(l'[%(xo,sl,...,SJ)) with Né\, where r; 1is the restriction of

g2 to QII(H%(XO:S:L,“-:SJ))'

Proof. From the definition of q; it follows that q;l(ﬂ%(xo,sl,...,Sj))

= {H?}(H%x"g(}{o,y,tl,...,tk),ul,-.o,llj)ly € N,t1+ u1 = Sl,oon,tJ"’ UJ = SJZ.
From the déf'inition of r; we have:

rlm%m%k'\g(xo:Y:tlv-—:tk)9u1:*”:uj)) =H%(yst1:°":tk)-
It follows that r,; is 1-1 because

r;I(H%(Y:tls-ﬂ:tk)) = H’flm%x'é(xO’y,tl:'-',tk):sl"tl:“"sj"t_] ) .

Hence r; 1is a 1-1 continuous map being the restriction of
ga ¢ ((M X N)f‘x'é)fl - Ng. The assumption of the compactness of M and N
give us that r; is a 1-1 continuous map between compact spaces and so

r; is a homeomorphism.
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3.3.8 LEMMA. Biven (yo,t!,.-.stk) € Nx RX, there is a homeomorphism
ry of q;l(H%(yo,t{,...,t{()) with M2, where r; is the restriction of

q to ﬁlmé(YO,t{:°“:tk))0

Proof. The set qglm'é(Yo:tl'.s-ﬂ,W')) = {Hﬁ(ﬂﬁ(lé(X,yo,t{,--.,‘tk'),u]_,ou,uj)I
xeM (u,...u;) € RJ}.

From the definition of 1r; we have:

| rgmﬁ(ﬂﬂg(x,yo,t{,...,m'),ul,...,u_])) =H:f(x,t1' + W yeeeytf+ ug).
It follows that 1r; is 1-1 because

r;lm%(xo,sl,...,s_])) =H%Cﬂﬁ(%(xo-,-yo,t{,...,t{),sl-t{,.._.,SJ—tj)} .

Hence ry; 1is a continuous 1-1 map between compact spaces for reasons which

we have previously discussed and so r; is a homeomorphism.

3.3.9 LEMMA. Denote an element of ((M x N)%'x%)ﬁ by 2z, then the

mapping k : z —> (q3(2),q3(2)) &s a diffeomorphisme

k o ((Mx N)%x'ézﬁ—-e My x Nng
Proof. As for 2.2.6.

3.3.10 LEMMA. The flow A on ((Mx N)%,leg);1 defined by 3.3.5 is

well-defined.

Proof. As for 2.2.7.

3.3.11  IEMMA. The following diagram commtes where ¢ = 3;(M,f).

((M x N)%x%)ﬁ x R _.._.9_1.5_1____>M£.. x R
A ¢
(v x N)f‘x'\g)ﬁ da S M

Proof. Follows directly from the definitions.
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363012 LEMMA. The following diagram commutes where ¢= 2 (N,é)'

A q'2X1 A
((M x N)%xfg)h x R >Ng x R

A ¢
(G x N 24 B .
g
Proof. Follows directly from the definitions.

Lemmas 3.3.9, 3.3.11 and 3.3.12 give the equivalence of theorem

3e345.

3.3.13 LEMMA. The flow A on ((M x N)&Ag)?1 is a uniform fibre

flow on the bundle
] A A A A '
(M X N) ——-—>((Mx N) ) LY |

A A
and the flow on the fibre is 2k (M x N,fx g).

Remark. The prodf is completely analogous to that of 3.2.11; however
we need the definition of the atlas of local charts and the projection ='
for the next lemma. With the usual notation:

Uy = {p(u)lu eW}. Definen'tys’ mg(n'fl(n%k'é(x:y’tu-- estk)sUyseearug)) =
p(ul,...,uj) and the atlas of local charts is given by {(Ul,a[)} where
ap ¢ Up x (M x N)%.x/é-»"n'(U[) is defined by of (p(u), H%,xfé(x,y,j_)) =

Hﬁ(ﬂ%x%(x,y,g),g_) where ue Vi, VWV ieI
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3.3.14 TEMMA. The projection 7 = 7'kt s Mf, X Né-» ™  anl the atlas
of local charts {(Uiskag)| te T ] give the structure for the uniform

fibre flow of 3.3.4e.

84  j—-SUSPENSIONS OF BUNDLE DIFFEOMORPHISMS

Consider the bundle of manifolds

T
N >-B >M

and the j-tuple of commutative bundle diffeomorphisms (hy ,f;),...(hj,£})

such that the diagrams commute for i = 1,2,¢..,J.

BB .3
™ l o
M L u
3ol Definition. Let the diffeomorphisms h' = (hj,...,h]) be

A
defined by h{ : By » By where h = (hysee.,hy) and h{(ﬂﬁ(b,tl,...,tj)) =

g (hi(b)ytaseensty)s 3= 15000,30

Notation Let N_ = 7" 1(x), the fitre over x in B.
A
Notation Iet 1 denote the j~tuple of identity diffeomorphisms

1 :Nx-> Nx.

3e4.2 THE j-BUNDLE THEOREM. Given the bundle of manifolds

T

N > B >M

and j-commuting bundle diffeomorphisms (hysf;),...,(hy,fj) with j derived
diffeomorphisms h{ : By - By, then 4 a uniform fibre flow A on the

bundle

]
BB——%(Bﬁ)ﬁ.—L—»'J}’, where the flow on the fibre is

Z3(B,h), such that A 1is also a local product flow on the bundle
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W —— (g ——l

A A
is Zj(M,f) and the flow on Ny is Zj(N,1).

The flow on M, y

£

Remark. Most of the lemmas required for 3..4.2 follow from similar

statements to those in the proof of previous theorems of this chapter.
However for completeness we will state the lemmas without proof except
for those concerned with construction of atlases of local charts which

we shall give.

3ol 3 IEMMA . There exists a continuous map gq: (Bi‘])ﬁ"' Mp defined
by

Q(Hfl,(nfl(b:.ﬁ) ’E) = H%-(‘”(b):tl"' Ugseesrtj+ uJ)

Jeolt LEMMA . Given (Xo,sl,...,SJ> € M x R]; then

q-l(r[%(xO’sl,.'-’SJ)) = {H“ht(nfl(b:tlﬂ-"tj)’S:I."tl:-~°,sj"t,])|7r(b)= xof-

346 LEMMA. Given (Xo,Sy5.++585) € Mx R} ; then there exists

a homeomorphism

K(Xo,so) : (Nxoy‘} "ﬁ"(q—lm’f(xo,sp...,sj))

3.6 LEMMA.  There exists an equivalence between the flow Zj(N_ 1)
0

)
on (Nxo)fi and the flow Zj(N,1) on M.

3die7 LEMMA. The fibre flow A of the theorem is defined by

Av(nfl. (Hﬁ(b,t_:_),g) = Hﬁ' (Hﬁ(b,tﬁv,...,t_]+v),u1,...,uj).

3.4.8 Definition. Let (U',8) be an atlas of local bundle charts

for the bundle
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3.9 Definition. Take an open covering {U} of Mp to be defined

with typical element

U= {l(xu)l xeU', ne Vi)

3.4..10 LEMMA . Given the open covering {U} of Mp then J an atlas

of local bundle charts (Uyy) for the bundle

M ——(By)y, ——>lp

Construction of atlas. Let us take U = H%.(U' x Vi) say. Then

Y : Ux Np> g *(U) 4is defined by Y(l'[%(x,sl,...,SJ), Hq(y,tl,...,tj))
= Hﬁ,mﬁ(ﬁ(x,y),tl,...,tj),31—t]_,...,SJ -tj). Again in this definition

we stipulate that s = (s;,...,5]) must take values such that s e Vi.

3411 LEMMA. The flow A in the j-Bundle Theorem is the local
product flow as indicated in 3.4.2 using the atlas of local bundle charts,

(U, 'Y') .

85. THE RELATIONSHTP BETWEEN _j and _Jj—~1-SUSPENSIONS

34541 THEOREM. Given the manifold M and j-commuting diffeomorphisms
fl,.--’fj and denotir)g fl ’ooc’i?] by % and fl ’oot,f:].'l by ﬁ then

% (M,£) 1is a local product flow on the bundle

Hy — iy s’
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The flow on the fibre is Z'.J_l(M,B) and the flow on the base 8!

is the unit flowe.

Remark. This gives a relationship between Zj and Zj.;. An example

of 2Zj for j=2 is the locking on phenomenon of the Van der Pol Osgillator
discussed in Chapter 1. This is the simplest example of the point
manifolds with identity diffeomorphisms giving the diagonal flow on the

torus, a perturbation of which is the local flow when the oscillator runs

synchronously.
3562 Definition. et fj : Mﬁ" M{r\l be the diffeomorphism defined

by Ellp(kstageeestyon) = Ia(E5 (0) 80 senertyoy) -

3.543 LEMMA. There exists a diffeomorphism « between M%. and
(Ml’;l)'f"l

Proof . Define « : Mp - (M'I:l)fj by la(xstyseeesty) =
Hfjmﬁ(x,tls---:tj-a.):tj)0 Then k 1is well-defined because

H%(x,tl seeesty) = Hf,(f{l’; P50 (x) y b1y 50 «stj-nj)

v
H?J(rl?l(x,tl’-oo’tj-l)’tj) = HFJ (]-[ﬁ(ff%..fjnj (x),tl"’nl,oo.,tj..l -nj_l )’tJ-nJ)

It is easily checked that k is a 1-1 map. We have that « 1is a

homeomorphism by consideration of the following diagram.
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K

Mx RI < >(Mx B3-*) x R
Kt
H'f' Hﬁ x 1
!
M’l‘lx R
H;J
1, K ,,
M > )—
f < T (Mﬁ £

Define the diffeomorphism ik by Ky (Xytyseeesty) = ((Xyty,eeey ty-1)sty).
We then have |
KII%=HEJ(IIBX 1)K1 s Mx R] > (Mﬁ)EJ
= (KH%)-]'(O]_) = (I'[fj(l'[ﬁx 1)y )"*(0, ), for an open set 0, C (Mﬁ)fJ
=> k~1(0,) =H%«{1(Hﬁx 1)"1(H§J)"1(01) and so x~*(0,) is open.
Therefore k 1is continuous.

Also we have
=1 _ ~1T]— (I~ . -1
Nagt =« HfJ(Hh" 1) + Mx BI"2 x R~ Ma,
Using this commutativity and the fact that «, 1is a diffeomorphism and
all the projection maps are open we have that &' is continuous. Hence

k is a homeomorphism. Again since differentiable maps are used to define

k and k"' we have that x is a diffeomorphism.
3¢5 & IEMMA . The flow A on the bundle
Mo ———> (Mp )= AN
h h )

WlBre A. iS defined by Av(nfjmﬁ(x’tl,ooo,tJ_.l),tJ)) = HEJmﬁ(x,tl“. V,...,
tyj-1+ v),tJ+v), ve R, is a local product flow where the flow on the

fibre is Z(M,h) and the flow on the base is the unit flow, ¢.
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Proof.  Define the atlas of charts (U,a) as follows. ILet {Uy,Us} be
a covering of S! where U; = {p(u)|0< u< 1} and U, = {p(u)| 3/4< u< 5/4}
where p is the natural projection p : R- R/Z = S'.

Define ay : Uy x Mp = 7' (U,) by oy (p(u),H’l;l(x,tl,...,tJ)) =
Hi—,J(Hﬁ(x,tl,...,tJ_l),u) such that in the definition u 1is made to
take a value O0< u< 1. Similarly we define o : Up x Mp » 7' (Uz)
by ap (§(u),ﬂﬁ(x,t1,...,tj-1)) = Hz,-j(n?l(x,tl,...,tj-ﬁ}z) where
3/h<u <5/ k. For reasons as to why o ,ap are diffeomorphisms see
appendix 2.

This atlas of local bundle charts is the one which we use to give
us the local product flow., Choose uy such that O0< w < 1. Let
Rlp(w )] = {p(u)l-w < v< 1 - uo}.

Then we have commutativity in the following diagram.

1
(P(uo):Hﬁ(x:tly-“’tj-l):v) oz >(H§J(H?I(X,t1,..o,tj_1 )’uo):v)
¢ x Zj-,(M,h) A
’ )
(pluo + v),Hﬁ(x,t1+v,...,tj-1+v) % \H-f.-J G-[ﬁ(x,tl-l-v,-..,tJ_1+V),Uo+V)
p 7'
NS ] 3
p(uo +v) > p(w +v)

A similar commutativity is obtained for a5 .

3.55 IEMMA. The diffeomorphism xk of 3.5.3 gives the equivalence
A
of the flow A on (Mﬁ)fj and Zj(M,f) on My .

Proof. The following diagram commutes.



Ma x R ke x A ﬁ(Mﬁ)fJxR
25 (u,%) A
iy — (g,
3.5.6 LEMMA. The atlas §(Uy, " ay )y (Uasiap )}

product flow ¢ x Zj (M,h) on the bundle

w 1
Mﬁ 'Mf >3

Proaf’ . This follows from 3.5.3 and 3.5.4.

gives the local

67
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CHAPTER 4

ALGEBRAIC PROPERTIES OF X2

§0. INTRODUCTION

In the previous two chapters we have loosely referred to 2 as an
'operator' purely as a descriptive term. In this chapter we will set
up categories and show that 2 can be represented algebraically as
a covariant functor with respect to these categories. Also considered
is the inter-relation between 2 and other operations on manifolds such
as the boundary of a manifold and the interior of a manifold., S imilar

results are stated for Zj, (J ¢ Z+).

§1. NOTATION and DEFINITIONS
We again consider all manifolds to be compact and of class ©CF (r2>1)
and all diffeomorphisms to be of class €7, (r2> 1). We define the various

operations

Lot o Notation. Iet M be a manifold with boundary and let a(M)

denote the boundary of M, which is a submanifold of M.

La1.2 Notation. Let M be as in 4.1.1 and take I(M) to denote

the interior of M, which is a submanifold of M.

Lo1J3 Definition. Let D(M) denote the double of the manifold M.
It is defined as follows. Let M be a manifold with non-empty boundary.
Teke Mo =Mx O and M; = Mx 1 as two copies of M. Then D(M) is
Mo U My, with points (x,0) and (x,1) identified for xe a(M).

A definition of the differentiable structure appears in Appendix 4.

The definitions of category and functor also appear in Appendix 3.
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§2. FUNCTORIAL REPRESENTATION OF X

L o241 Definition. Let the category 7T have as objects the pairs
(M,f) where M is a manifold and f is a diffeomorphism f: M- M.
Let the set of morphisms between (M,f) and (N,g) denoted by
[(M,f),(N,g)] be defined as the set of triples {(k,f,g)lk:M > N and

kf = gk:M-> N}.

Le2.2 Definition. Iet the category #s have as objects the flows
Z(M,f) which are suspensions of diffeomorphisms. Iet the set of morphisms
between Z(M,f) and 2(N,g), denoted by [Z(M,f), Z(N,g)], be defined as
follows., ‘The triple (k,f,g)* ¢ [Z(M,f), 2(N,g)] if k:M-> N and

kf = gk:M~»> N. ILet Il and Hg be the usual projection maps. Then

this means there is a well-defined map k(f,g): M, > N, given by
k(£,6)Mp(x,8) = I ((x),5s).

4.2.3 LEMMA 2 is a functor from the category M to the category 7

————

2 H Mm = 33.
Proof . 1) M is a category.

Referring to the definition in Appendix 2. We have already satisfied
conditions €1 and C2. Consider the triple ((E,e), (#,f), (G,g)) of

objects of ™M , Then a map is defined
[(B,e),(®,£)] x [(F,£),(c,8)] - [(E,e),(G,g)]

((P:e,f),(q’fsg)) -> (q_p,e,g).

This follows because
pe=fp ¢t E>F and gf =gq ¢t F> G
= q=ggf* 1 Fa G

= gpe = gof fp ¢ E> G
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= qpe =8qp ¢+ E=» G
= (qp,e,g) € [(E,e),(G,g)], hence C3 1is satisfied.
To satisfy C4 we take the identity morphism 1(E e) € [(E,e),(E,e)]
’

as the triple (1E,e,e). We have C1 — CL4 satisfied.

AC1. Let (p.e.f) € [(E,e),F,f)],(q,f,8) ¢ [(F,f),(G,g)] and

(r,g,h) ¢ [(G,g),(H,h)]. Then we have associativity:

((rsgsh)(st,g))(P’e’f) = (rq,f,h)(P,e’f) = (rQP:e,h>

' (r,g,h)(q,f,g)(p,e,f)) = (r,g,h)(qp,e,g) = (rqp,e,h)
Ac2. Let (p,e,f) ¢ [(E,e),(F,£)].  Then
(P:e:f)¢1(E’e) = (P,e:f)-(1Ese,e) = (P1E:e’f) = (P9e’f)

1(F,f)(p’e’f) = (1F’f,f)(P’e,f) = (1Fp,e,f) = (p,e,f)

2) 3 is a category.

We have defined the objects to satisfy C1. We must check that the
morphisms of [X(E,e), Z(F,f)] are well defined. ILet (p,e,f)* be such
a morphism then (p,e,f‘)"ﬂe(x,s) = Hf(p(x),s). However He(x,s)—_-
He(e"(x),s-n), ne Z and so (p,e,f‘)"ﬂe(e"(x),s—n) =Hf(pe“(x),s—n) =
Hf(f"p(x),s-n}=Hf(p(x),s). - This ensures (2 is satisfied. To check C3
let us consider the morphisms (p,e,f)*:X(E,e) > Z(F,f) and
(gsfyg)* ¢ 2(F,f) > Z(Gyg)e Then we have the map ((p,e,f)*(q,f,g)* »
(gpsesg)*s  The morphism (gp,e,g)* : Z(E,e) » 2(G,g) is well defined
because gqpe = gpq ¢ E»> G. The condition C4 1is satisfied by taking
15(u,c) &5 the morphi sm (4sf5£)*.  The two axioms AC1 and AC2 can

now be easily checked as above for the category .

3) Z_is a covariant functar.

We define the functor as follows X:M - Fg.
i) Given (E,e) € M., then I gives Z(E,e) € ¥

ii) Given (p,e,f) € [(E,e),F,f)] then Z(p,e,f) = (pse,f)* .
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The conditions F1, F2 hold.
- * _
F1. 2(1E,e,e) = (1E,e,e) = 1Z(E,e)
F2. Z((q,f‘,g)(p,e,f)) = Z(QP,e:g) = (qp:e,g)*

Z(q,f,8(pse,f) = (q,f,8)*(pre,£)* = (qp,e,g)*

§3 FLONS ON BOUNDARTES OF MANTFOLDS

Lol THEOREM Given the manifold M and diffeomorphism f: M > M,

let ¢ =Z(M,f) be the suspension flow on M.. ILet ¢:Mox R M, be

£ f
the induced group action on R. Then ¢la(Mf) x R:d (Mf.) x R a(Mf) is
well~defined and qSIa(Mf.) x R 1is equivalent to Z‘.(aM,fa) where

fa = £|aM: aM » 9M. This is proved by the following lemmas.

L.3.2 LEMMA. Given a manifold M with boundary and a diffeomorphism

f : M> M then f

, = £laM is a diffeomarphism of M onto dM.

Proof. Iet the differentiable structure on M be the collection of
coordinate neighbourhoods (U,h). Take a point x e 8M, then we have
f(x) € a4M. To prove this, suppose not, then f(x) ¢ V where V 1is some
coardinate neighbourhood of f(x) and by assumption k(f(x)) ¢ k(V) where
k(V) is open in R™. Iet U be a coordinate neighbourhood of x, then
h(U) € H" with h(x) ¢ R’™* = 9H", (H™ = half m-space). We then have
that the diffeomorphism kfh™' takes an open neighbourhood of h(x) in H"
into an open neighbourhood of kf(x) in R™ with h(x) ¢ dH™. This
contradicts Brouwer's theorem on invariance of domain [31]. So f(x) ¢ aM
and we have £|aM: oM » £(aM) C @M. In fact f£(dM) = dM. This follows
becguse f~! 1is also a diffeomorphism £~ : M> M and so f£~1(9M) C oM =

aM =f (f“l(am)) C f(@M) C M = f(0X) = aM.
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L3¢ 3 IEMMA. The manifolds (aM)f and a(Mf) are diffeomorphic.
)

Proof. With the usual notation we have that 3(Mf.) = (ﬂflaM X R)(E)M x R).
Consider the f'ollowing diagram where d : (M) g > a(Mf) is defined by

d(ﬂfa(x,t)) =Hf(x,t), X € dM, t € Re

1

IMx R >IMxR
Hfa Hf|aMxR
d >
(0 M)fa (Mp)

It can be easily checked that the diagram commutes

1) d 1is well-defined. This follows because f, (x) = fzx), for xe dM.

2) d is 1-1. We have d’l(ﬂf(x,s))=d""CfIf(f"(x),s-n))

It

{Hfa(f"(x),s—n)lx € aM, n ¢ Z}

{Hf (f‘an (x),s-n)|x € aM, n ¢ 2}
d
= Hfa (X,S)o
3) d is continuouse.

This follows from the commutativity of the diagram in the usual way noting
that Hfa is open and HfIaM x R 1is the restriction of a continuous map,
Hf. We have that d 1is 1-1 and continuous. Our assumption of M being
compact gives us that 9M is compact and so Mf, aMfa are compact.

Hence both 9M, and amfa are compacte The map d 1is between compact
spaces and so0 is a homeomorphism,

In fact since d is defined in terms of differentiable maps we have

that d 1is a diffeomorphisme

be 30l IEMMA. The diffeomorphism d gives the equivalence of

theorem L.3.1,
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Proof. The diagram commutes.
(aM)fa?j R dx 1 >6(Mf)xR
l
A ¢|a(Mf)><R
a
(aM)fa > a(Mf)

where A = Z(aM,fa).

Remark. By taking the inclusion i, :0M-> M we obtain a morphism

M
(iaM,fa,f‘) € [(a(M),fa’,(M,f)]. The functor 2 gives Z(a_(M),fa) and

Z(M,f) and the morphism (ia f*e [Z(aM,fa), Z(M,r)]

M’fa,

B4 FIOWS_ON INTERIORS OF MANTFOLDS

T THEOREM. Given the manifoldMand diffeomorphism f: M > M, let

¢ = Z(M,f) be the suspension flow on Mf. Then ¢| I(Mf) X R : I(Mf)xR-» I(Mf)

is equivalent to Z(I(M),fI) where f, = £l 1(M).

Remark. It follows from the fact that f'a is a diffeomorphism of @dM onto
itself that we have

£ I(M) » I(M) with f1 = £| I(M)-

We need the following lemmas for theorem L,4.1.
L2 LEMMA . The manifolds (I(m))f and I(Mf) are diffeomorphic.
I

Proof. We use the fact that I(Mf) = {Hf(x,t)lx e I(M),t € R}.

Define d, : I(M)fI-> I(Mp) by dl(IIfI(x,t)) = Hf(x,t),x e I(M),t ¢ R.
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The diagram commutes

I(M) x R ___1_._>I(M) x R
HfI HfII(M) x R
y Y
I(M)fI dy >I(Mf)

As for d we can easily check that d, is well defined and 1-1.
The continuity of d,; follows in the usual way from use of the commutativity

of the diagram. To prove the continuity of 47! consider the following

diagram.
I(M) x B——iX1 >Mx R
II II
£ f
v . \
I(M)f,I > Mg

where i 3 I(M) > M is the natural inclusion map (a diffeomorphism onto
its image). Because I(M) is open in M the inclusion map i : I(M) > M

is opeh. Iet O be an open set of I(M)f . Then
I

4 (0) = &l 0T2(0)) = Mpfa x 1M (o).

However d,(0)C I(Mf) C M, and since I(Mf) C M, is an open subset
it follows that d,(0) is an open set of I(M).
Hence d, 1is a homeomorphism. Because d; 1is constructed with

differentiable maps d; 1is in fact a diffeomorphism.

Laro3 IEMMA. The diffeomorphism d; gives the equivalence in

theorem 4.lie1e
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Proof. The diagram commutes
(M), x R dy X1 >T(M,) x R
I
" | () x R
(M) dy > I(M,.)
£ i

where u =Z(I(M),fI).

Remork. By taking the inclusion i @ I(M) > M we obtain a morphism

G, ,f ) e [(T(M),r.),(M,F)]. The functor X gives the objects
M I I

Z(I(M),fI) and X(M,f) and the morphism (:LM,fI,f)*.

Lol bl TEMMA. We have the relation

Z(iM,fI,f) = (iM,fI,f)iz : M > s,

§5 FLOWS ON DOUBLE MANIFOLDS

In 4.1.3, the definition of the double of a manifold, no mention was
made of its differentiable structure. This is supplied in Appendix 4

with the notation which we use here.

4e5.1 Definition. Given a diffeomorphism f ¢ M-> M we define

a homeomorphism fD : D(M) » D(M) as follows

fD io(x,O) = io(f(x),O), (X,O) € Mo

£y 11(x,1) = 4,(£(x),1), (x,1) e Wy

Remark. From consideration of the differentiable structure on D(M) we

cannot deduce in general that f : D(M) » D(M) is a diffeomorphism.

To by-pass this problem we must restrict our attention to the sub-category

N ¢ M where T = {(u,r)](D(u),£5) € T }.
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budpo2 THEOREM. The flow Z(D(M),fD)on D(M)f is topologically
D
equivalent to the natural flow on D(Mf) induced by the flow X(M,f)

on Mf. if the flows are defined.

Remark. The natural flow ¢ on D(Mf) induced by Z(M,f) on Mf.

is obtained by using the natural C" embeddings Jjo: (Mf)o N D(Mf) and

gy s (Mf)1 > D(Mf,). Let ¢ be the flow on D(Mf) such that the diagram

commutes
Qe x R —34 X1 55(0n)) x R
¢ ¥
(i) 5 (0

for i = 0.1.. The flow ¢ = X(M,f). The supposition of L4.4.2 is that

the flow ¢ defined in this way is differentiable.

Ldve 3 LEMMA. There is a homeomorphism h D(Mf) > D(M)f .
D
Proof. Let #,0 Dbe the usual projections 7 : Mx R ~» M and

o : D(M) x R~ D(M)f .
D

Define the maps ho,h; as follows

ho

Jo(ig)o + DO,

hy

5.0y + D)y

by ho(Jo(m(x,5),0)) = o(io(x,0),8) and 1y (j,@(x,s5),1) = o(iy(x,1),s).
In fact ho and h; are homeomorphisms onto their images and this is

proved now.
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The maps hg,h; are well defined. This is easily checked as follows.

For hgy we have
ho(Jo(m(x,5),0)) = ho(Jo(m (£"(x),5-n),0) = o(i0(£"(x),0),s-n)

= G(fBiO(xso)’s-n) = G(iO(X’O)’s), V ne Ze
We will prove that ho is a homeomorphism (h, follows by direct analogy).

Consider the following diagram

?
Mx Rx {0} bo —>Mx {0} x R
io X 1
N
Jomr io(Mo) x R
()
¥ N ¥
jo(Mf)o e >io(Mo )f:
D

where fD' = f‘Dl io(Mo) amd op =0|io(Mo). The diffeomorphism hy is
the map hb(x,t,0) = (x,0,t). The bicontinuity of ho, follows in the
usual way from the commutative diagram. All the maps in the diagram are
differentiable and so we get ho is a diffeomorphism. The fact of h,
being a diffeomorphism follows in a similar way.

Define the map h : D(Mf) -> D(M)f, by
D

1)  hf jo(Mf)o

ho

h,

"

2) jl(Mf)l

From the definitions hol (Jo(Mp)o N 51 (Mp)1) = Byl (Go(Mp)o N 52 (Mo)1)e

Using the lemma of Appendix 4 h is a homeomorphism.

Lol ol LEMMA . The homeomorphism h gives the topological equivalence
of the two flows of L..2.

Proof., The diagrams commute.
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hx 1

D(Mf) x R ,D(M)fDx R
¥ Z(o(u),£p)
D(M,) h >D(M)f
D

where ¢ 1is the induced flow on D(Mf) by Z(M,f) on Mg

86 ALGEBRAIC PROPERTIES OF 2Xj, je 2

In a similar manner to those definitions of §2 we have a functorial

representation of 2j between categories.

Lhe5at Definition. Let M j be the category consisting of objects
(M,fl,...,f_;) where f;,...,fj are commutative diffeomorphisms of M. The
morphisms [(M,F),V,8)] where P represents {f, seeesfy) and &
represents (gl,...,g_]) are triples, (k,%‘,%) sach that k 1is a continuous
map k : M> N such that kfi = gtk Mie {1,.0.,3)

LeHa2 Definition. Let :JSJ be the category consisting of objects
Z{M,f) and morphisms (k,F,8)* ¢ Z(M,?), 2(N,8)] such that k : M> N

is a continuous map where kf; = gtk : M> N .

Remark. This condition defines a map k(f‘,g) : Mf. - Ng by

kvﬁ(x, s) = wg(k(x),s).

4.5.3 IEMMA. 23 is a functor Xj : M » P

Construction. The functorial relations are

1) ) —2L 5 2;u,f)

A A 2 A A
2) (k,f,g).__i__.* (k,f,g)*
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CHAPTER 5

CANTOR-TYPE DIFFECMORPHISMS

§0. INTRODUCTION
In this chapter we discuss the cohomological analysis of some
diffeomorphisms which have non-wandering sets containing Cantor sets.
The main example which is described in detail is the diffeomorphism
originally derived from the study of recurrence in the forced Van der Pol
equation. Also described briefly is the 'n horse-shoe' referred to in
Chapter 1, which is crucial in the analysis of generic systems on n-manifolds.
The cohomologies of the insets of the diffeomorphisms given are
investigated using‘Eéch Cohomology theory. We do this by giving a cell-
decomposition of insets of an Axiom A diffeomorphism based on [21] which

is useful for the application of this cohomology theory.

§1. THE 'HORSE-SHOE DIFFEOMORPHIM" [26]

The 'horse-shoe' diffeomorphism is given by the map f : Q > R® where
Q= Go,y)slxl < 1,lyl €1} and R® is the two dimensional real plane.
It is usually extended to a diffeomorphism of S®, the two sphere.

The diffeomorphism can be described geometrically as follows.

D C

Fig. 5.1
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Let £ take Q onto the dotted image with A~ A', B» B', C-» C'
and D - D'. Also we require that f is linear on £ *(£f(Q)N Q) = PoU P,

where Pg,P; are shown in Fig. 5.2; it follows that f(Po) = Qo and

£(P,) = @ where QU @ = £(Q) N Q.

Qo

Po P,

(5%

Fig. 5.2.

We now define a system of subsets of Q.

. (r) _ _ .
5.1 Definition. Let Q =f(Q)N Q (= QU Q). From this
define inductively Q(n) = f(Q(n-l)) N Q. ILet Q(o) =Q and

) - 1) n g (= Pou By) and induetively Q™ - e (¢ (™M) 0 g

Define A = N.Q (V) then A is the non-wandering set of the
€

diffeomorphism f : Q » R® restricted to Q.
5.1.2 LEMMA. A is homeomorphic to a Cantor set.

Proof. From the linearity conditions on f we have Q(o) > Q(l) D oeee

) Q(n) D eeey and Q(n) consists of 2" horizontal segments. By taking
the intersections of all these sets this gives the classic construction of
Ix C, where I x Cp = {(x,y)||x] <1, ye C;} where C, is the usually
constructed Cantor set, Similarly we have Q(o) D Q(1 )3 oo D Q("") D eees
and this gives us on taking intersections, C, x I = {(x,y)|xe Cy,lyl € 1}.

Sowe have A = (Ix Ca) N (C, x I) = Cy x Gy, a product of Cantor sets

which is itself a Cantor set.
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5e1e3 Definition. Let IQ(A) be the inset of A on Q of the
diffeomorphism f and let OQ(A) be the outset of A on Q of f.

(OQ(A) being the inset of A on Q of f£~1).
51k . I@) = {(xy)e Qlxe C,} and OQCA) = {(x,7)e Qlye Ca}.

Proof . First of all we prove that {(x,y) ¢ Q|xeCy} C IQ(A).

Consider (x,y) e (C;y x I)NQ= D Q(-n). Then (x,y)e Q('"), v n2>o.
nZ2o

But we have Q(‘"c Q"("’l)c cee C Q(o) so that f£(x,y)e f(q(‘")) C ee

() tna so £0y) € 24 = oY

C f(Q(o)). Also (x,y) € Q
similarly it can be shown f2?(x,y) € Q(2>, £3(x,y) € Q(a) and so on.

Since N Q(n) = Ix C; is closed we have lim £f™(x,y)C 0 Q(n),
n>0 . m->co 1’20

(1im £™(x,y) is not necessarily a single point)
o ~>c0

Because (x,y) € Q(’"), V n> 0 it follows that f£(x,y)e f(q(’")) =

e @ ") n Qe e (@ N n e < M A ee) € Y,

-n -
From this it follows f"(x,y) ¢ N Q( ) if (x,y) € N Q( ") for m_2> O.
n2 o o
The set 9 Q(-n)( =Ix Cy) is closed and hence lim £f™(x,y) ¢ N Q(-n).
n-o m->»co n>0

. . . m (-n) _ (m)] _
Combining the results we have lim £ (x,y) e | N Q NnN{. NQ =A .

Hence {(x,y) € Q] xe€ C,}C IQ(A).

Now consider the set T = {(x,y) € Q/x & C;}. Ilet (x,y)e T.
Then (x,y) ¢ Q(_n°) = ox,y) ¢ Q(o). This means that all points
of T are eventually expelled from Q wunder the diffeomorphism f.
Once a point is expelled from Q in the global extension of f it never

returns to @ and so

IoA) = {Gy) € Qlx e Cy}

0,(8) = {(x,y) « Qlye G



5.1.5 Definition. Iet S be a finite set with discrete topology and
def'ine XS to be the set of functions from Z to S provided with the
compa ct—open topology, (Z has the discrete topology also). If ae Xq
the value of a at me Z will be denoted by anm. Thus a may be
thought of as a doubly infinite sequence of elements of S, i.e.

8 = (eee 8o18087000) Define « : Xg» Xg Dy @(a))m = amey.

The map « 1s a homeomorphism called the shif't automorphism of XS.

The mir (Xs,a) is called a shift of finite type.

54146 LEMMA.[26]. On A £ is topologically conjugate to a shift

automorphism.

diagram commutes

Proof. We need to produce a homeomorphism h : XS - A such that the
>X
S >

X s
|

h J h
A A

Given a point 2z ¢ A then it is captured by two infinite sets of

———————

inclusions. Let the components of Q(l) be Q15 Q12 and Q(g) be
Q215Q22s++3sQ24, and in general Q(") be Qpise-+»Qnz" . Similarly let
Q(“l) be Py3,Pyz5.-., and Q('“) be Ppyse--sPna®. Then 2z is
contained in the intersection of a bi-infiniteisequence

...,Qn.Ln,...,QnI ’Pl"l ,...,Pmn,.. . We then note that Qm’n is equal
to £7'(Qo)N Q or £"(Q )N Q and Pnjn isequal to f"(Qy) N Q or

£7"(Qu) N Q. Define h : Xy > A where S = {0,1}

Ba) = N £7(q, ).

N= - ®
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Then h(a) certainly represents a point of A. From the very
construction and uniqueness of the bi-infiinite sequence of inclusions
we have h 1is 1-1. Basic open sets of XS containing a € XS =

{blay=bli] < no} for any no.

hiblar=bil 1] < noj = %n_*rl, £7(Q, Nar=bil 1l < noI}

]

AN f—n°(Qa_ )N Fn°(Qano)

n

open set of A

It follows that h 1is an open map.

The basic open sets of A are of the form A N f‘.n°(Qil) N f'n°(Q]._2)

for i,,iz € {0,1}. Given A N f’n°(Qi )N fn°(qi ).
1 2

O E S CHDIE S (D)

fol£770(q; ) 0 £70(q, ) N £™(gy, ) £ 2, o < m no}

{blby = ag,mmo KL< no, £1(q, ) N £770(gy ) N £70(qy ) # 4l

Hence h 1is a homeomorphism.

We have, given a € XS

ha(a) = ha(a) = +fi° fn(Q(a(a))n)

n=

=N ™, )
n= =oo an-1

£°n £"(g, )
n= =oo an-1

fh(a).

This proves the conjugacye.



We now extend the diffeomorphism f : Q to a global diffeomorphism
of the two-sphere S®[26]. This is done by extending f to a map
fo > by mapping G diffeomorphically onto G* and F
diffeomorphically onto F* as in Fig. The map is defined so that it

contracts F onto F*

about some fixed point po in F'. Thus fo will be a diffeomorphism
of DR onto a subset of so that the non-wandering set la the disjoint
union of A and po. Finally fo is extended to g : so that

n(g) =AU PoU qo where qo is an expanding point outside of
Other diffeomorphisms can be constructed with similar properties to the
diffeomorphism already discussed. We take images of Q under similar

linearity conditions to obtain the following diagrams.

\Ho

Fig. 5.4
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A'

Fig. 5.5

Locally the diffeomorphisms are conjugate to shif't automorphisms on

3 and 5 symbols respectively.

8§2. A CELL-DECOMPOSITION OF A SPACE

Iet X Dbe a compact space and suppose there exists a finite class

o
of subspaces of X, {Xmlme (1,...,n0)} such that X = U Xp. We can
m=1

define a sequenceof subspaces as follows.
Let Yo =\J{XmI8Xm<; Xl o Suppose Ygseee3;Y¥y are already defined,

then define inductively
Yner = YiXnldXn C Ynl.

If such a decomposition of X exists i.e. ¥Yn = X for some n then

we have the following lemma.
5e2e1 LEMMA. Yn is closed iInX and Yn dis closed in Yp4p.

Proof. Iet Xme€ Yo; then XpC C&(Xm) = XmVU 3Xp = Xpe Hence

Xme Yo = Xm 1is closed: So Yo is a finite union of closed sets = Yo
is closed. We now proceed by induction. Suppose Y, is closed; then
Yner = UiXn|0Xn C Yol and so 9Yne; CU{0Xn|0Xn C Ya)l € Yn C Yneq -

Hence Yp4y 1is closede The subspace Yn 1is closed in Yp4, follows

immediately from Y, being closed in X.
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v
The type of cohomology used will be Compact Cech Theory [34]. By

using the exactness axiom we obtain

5e2e2 LEMMA. The following cohomology triangles are exact where

H* 1is the cohomology functor.

A

H*Yp >H*(X-Y,)

H*Yn4a

R
/ \
H*Y 61 >H*(Yns1-Yn)

Proof. Follows immediately from applying 5.2.1 to the axioms of H*

Remark. The homomorphism j* is induced from the inclusion map and §

is the cohoundary homomorphism.

We now wish to find a decomposition of a manifold into insets of
diffeomorphisms so that we can make use of 5.,2.2. Suppose we have an
Axiom A diffeomorphism f on a compact manifold M. Then we can use

the Spectral Decomposition Theorem of Smale (see Chapter 1).



87

He243 IEMMA . let f e Diff(M) satisfy Axiom A and suppose
(1) The decomposition of Q(f) = {Q1,004,0k} 3
(2) £ satisfies the no cycle property

i.e. /éa Sequence Qil"”’nin such that
I, )no(Q. )#% 1< j<n-1 and i, = i, ;
1J lj'l’l

(3) ™ a1@,) N I(Qﬂ) £ 8,000y then 5 o = iy,.00.5ip =8

such that 0@, ) N I(Qia) P O(QiJ)ﬂ I(Qijﬂ) ABsyeeey, and
O(Qim-l) N I(Qﬁ) £ .
Iet Yo = kLJ{I(Ql) =Q0;} and inductively
Yja =UIT@OIOI0:) € 5.

Then Yo <C ¥ C ¢eeC ¥Ygp =M for some n.

Proof. Iet us show that Yo #&. Iet a(p) and w(p) denote the
past and future limit sets of the orbit of p by the diffeomorphism f.

Consider first of all Q.3 If I@Q,)#Q, then J p, ¢ M-Q, such
that w(p,) < Q,. let alpy)<Qy; J#1 by condition (2). So
assume Jj = 2. Then by exactly similar arguments either IQz) =Q; or
3 pa € M -0Q, such that w(p,) CQa, Iet us suppose the latter, then
by condition 2 again afpy) C Qj where j# 1 or 2. Assume a(p,) C Q3.
Continuing in this way we must arrive at QP such that Qp: I(Qp), otherwise
we will violate the no cycle property. So Y, £ &

‘We also need to show that there exists ¥, = M far some n. Since
there are only a finite number of ('s we need to show that if Y; # M, then
Yis - YL £ &.

Let Qil’ Qiz""’ Qi be the Qi's in M - Y. We can assume every
orbit entering 0 i, originates in Y, otherwise by an argument similar to

the one above we could violate the no-cycle property in iQi ""’Qi }.
1
p
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It follows aI(Qil) C Yi. Suppose not, then aI(Qil) N Ny £#& for

some 0] € {Qil""’ni }. But by condition (3) J a sequence of orbits
from Qil to Q5. S% there is (using no cycle proPerty) some m such
that Q C M - Y such that Jx e Ti with afx) € Q,. But if xe Y,
then x € I(Qi ) say where I(Qi )C Y. Y is invariant under f and

Yi is closed go aI(ni ) C Y, qbut aI(Qi )NnQ_ #% since a(x)CQn
and w(x) C Q, so quﬂ Y. £8 = Q, C Ycll which gives the contradiction.

q
So no orbit enters Y; and therefore aI(Qi )C Yy and Q, Z Yy o
1 1

§3. THE COHOMOLOGY GROUPS OF THE INSETS OF THE 'HORSE—SHOE" DIFFEOMORPHISM

The horse-shoe diffeomorphism g : S* - S® has the non-wandering
set Q(g) = AN poVUV qo where A = Cantor set, po = sink and gqg = source.
Because qo 1is a source I(qo) = Qo. The inset of po,I(po) Wwill be an
open disc because locally we have an open disc as inset.

Using the cell decomposition we have

Yo = §I(qo)}s Y2 = {I(a0) U I(a)}, Ys = {I(q) U I(a) U I(po)} = S°.

5.3.1 LEMMA. H*(I(A)) is cohomologically trivial.

This results from the following considerations. We take the compact
pair (8%,Y,) noting S%2 - Y; = I(po), an open disc. We also note that
Y, 1is 1-dimensional from 5.1.; and so H*(Y;) will be {A,B,0,0,...}
for some groups A,B. H*(8?) = {2,0,Z,0,0,...} and H*(S*-Y;) =
§0,0,2,0,0,...} if we take the coefficient group to be the integers, Z.

Using 5.2.2 we have the following exact sequence.
0»0+A+2Z>0>0->B+>2Z2+2Z> 0>, etc,

By consideration of exactness we have A =2 and B= 0. We now use the
exactness of the pair (Y,,Yo) with H*Yo = {Z,0,0,...1. If we take
H*(I(A)) = B*(Y, - Yo) = {A',B',0,...} we obtain the exact sequence

3%
0> A'">2<5 25 B'5 0 0, etc.
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Two possible solutions are

HK{A)) = or H»(1(a)) =0 .

The following lemma gives 5.7.1.

5.3.2 LEMI/iA. The inclusion map j : Yo~ Yi is such that

j* : H»(Yi) > H-(Yo) 1is onto.

Proof. Let p ; Yi = vo be the projection map. Then pj =1 ; Yo-mvo.
Since the cohomology is functorial (pj)* =1 = j*p* = 1 and so j* is onto

The requirement j* is onto gives:

H»(I(A)) =0 .

§4. THE COHOMOLOGY GROUPS OF THE INSETS OF DIFFEOMORPHISMS
RELATED TO THE *HORSE-SHOE*

Consider the diffeomorphism h : Q” R* represented by Fig. 5»4 with

linearity conditions on h"~(h(Q) Pi Q). Then arguments similar to those
of §3 give us an extension to ho : -+ as in Fig. 5.6.
6
Fig. 5.G

The diffeomorphism ho takes G onto G' and F onto F*. The maps
are defined to be contractions of F and G onto F' and G respectively.
The contractions are defined about fixed points po e F and Pi € G

The diffeomorphism ho is extended to a diffeomorphism k : S* > S* by

adding an expanding fixed point outside of D~*. The non-wandering set
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Q(k) =A'U poU pp U qo where A' 1is a Cantor set, po and p, are
point sinks and qo 1is a point source.

The Cantor set A' 1is such that k : A' - A' - is topologically
+ X, where 8 is a finite set

S S
of 3 symbols. This is proved by a similar analysis to that of §1 .

conjugate to a shift automorphism a« ¢ X

5o o LEMMA. B*(I(A')) = §0,2,0,0,...3.

Proof., The cell decomposition is as follows:

Yo = {I(q0) = qo}; Yy = {I(qo) U I(A')}; Ys = S°.
How Yp = I(ao) U I(A') U I(po) U I(py) and so if we take the pair (S%,Y,)
then §%- Y, = I(po) U I(py). Hence H*(S*-Y,) = {0,0,2@2%,0,...}. Also
H*(s?) = {2,0,2,0,0,...}"
We use the exactness of the cohomology sequence for the pair (S2,Y;)
to get H*(Y,) = {Z,2,0,0,...}. Considering the exactness of the pair
(Yo,Y,) and using the fact that j*: H*(Y,) » H*(Yo) is onto we get

H*(I(A')) as required.

If we extend the diffeomorphism represented in Fig.5.% to a diffeo-
morphism of the sphere in a way analogous to that for h above, then we
shall obtain a non-wandering set A"U poVU p, U go of a Cantor set, two

sinks and a source.

Sele2 LEMMA . H*(z(aA")) = {0,2,0,0,..43.

An immediate extension of the horse-shoe diffeomorphism in 2-dimensions
was given in [25] for n-dimensions. This is embeddable in a sphere S".
However the methods required to analyse the cohomology groups of the insets
are completely amalogous to those of §3 and nothing new is required in the

analysise
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§5. THE SPINNING DIFFEOMORPHISM

In [26] a general contréiction is given far a diffeomorphism whose
non-wandering set is locally the product of a Cantor Set and a manifold
conjectured as generically the most complicated non-wandering set that
exists. The aim of this section is to show that we can still use the
techniques of gech Theory to give the cohomology groups of the insets
of this non-wandering set.

We will consider the particular construction obtained as an illustration
of the general construction of [26].

Let the manifold under consideration be S* and let £ : S* > S
be the expanding endomorphism given complex analytically by z —> z°.
Embed S' in D? x 8* as (0) x S*. Let A be such that 0< A < 1
and g, : D? x S* » D? x S* be defined as g)\(x,y) = (A\x,y)s Next let
¢:(0)x S* > D?®x S* be a C' approximation of the map O x S » D3®x S,
(0,y) = (0,f(y)) sdch that ¢ 1is an embedding. Iet T be a tubular
nei ghbourhood of ¢(S*) with fibres being the various components of
TN (D® x y) ; ye St Now extend ¢ to ¢ : D® x S* » T in a fibre
preserving way so that ¢ 1is a diffeomorphism. Consider h = gtrgA :

D? x 8t » D® x 8'. If A is chosen sufficiently small so that there are

no self intersections of T, then

A = N h"(D? x S*) has hyperbolic structure. Locally
m>o

A 1is the product of a Cantor set and an open interval. The Figure 5.7

shows the solid torus T = S' x D® and its image (which is dotted) under h.

Fig.5-7
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The solid torus T goes into itself as another torus T' winding
twice around the ariginal torus. This statement can be made more precise
using cohomology theory. Before we analyse the cohomology of the non-
wandering set, let us extend this to a diffeomorphism f of §°.

The construction is given in [33]. Iet S® t® the join of two
smooth 1-spheres SA and SB‘ Then SA and SB have tubular
neighbourhoods A and B which are chosen so that AU B = 8% and
AN B=1T?, a smooth torus. ILet S; be a smooth unknotted 1-sphere
passing twice around B; in its interior and let S-; be situated in 4,
just as S5; is in B.

Let T, C Int(B) be the boundary of a tubular neighbourhood (8-1)
of S.;. Then the linking numbers are e(s_l,sB) =2 = a(sA,sl). Hence
there is a diffeomorphism f : S® » 3® taking S.; to S, and Sy to 5.
We take f to send +#(S.;) to A and B to *2(s,).

We then have the non-wandering set:

§lim £"(x), x ¢ S® - Q

N~-» 400

Q0 =0(f) =A UA where A =
+ - +

lim £"(x), x € 8% -Q

n»-

}

§

!
and A_ 5
Since under this diffeomorphism {x|x ¢ 8%~} are eventually swept into
either B by £ or A by f£f™! we have:

A = N {f"(x)lxe B} amd A_= n {£(x)|xe A} .
+ n2o nzo

From the construction since le and f"llA are essentially the same,
i.e. both map the solid tai, B,A into their interiors winding them twice
around the original tori in the same way we have that A+ and A_ are homeo-
morphic to each other.

Let us now return to the diffeomorphism h ¢ D® x S » D? x S!.

Again denote D? x S by T, Our aim is to find the cohomology groups
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of N h"(T) and the following lemmas use the extensive notation of
n=0

directed sets and their associated limiting systems., The main elements

of this theory [8] which are used here aregiven in Appendix 5.

54541 IEMMA. [8] If (X,7) is an inverse system over the
B

«Q

directed set M and for each relation a < £ in M we have 77 1is a 1-1

map o Xﬁ into (onto) X , then for each « ¢ M, m  is a 1-1 map of X

into (onto) X .

5¢5.2 LEMMA. [8] If (X,mr) is an inverse system of compact spaces
over M, then
m,(x) = n 7B
a<pf
5e5e3 LEMMA. [8] The inverse limit of the following invekse system

[~ ]
is homeomorphic to N h™(T) (=A, the non-wandering set of h).
n=o0

TQF}LTI\‘h T3<—h ca."h Tn‘{ h Tn.g.lé——k—l— esse

where T, = T Vi e Z¢.

Proof. From 5.5.1 and 5.5.2 we have

co
mo (T) = nf\oh"(T), where T, is the inverse limit of the

>
inverse system. The map 7w 1is 1-1 and into by 5.5.1. because
7% = % 05 7 which is -1 amd into.

To show 7, 1is a homeomorphism we need to show w5! is continuous

<o
where 75 ¢ N h"(T) » T,. Now sets of the following type
n=o0

—1 - Iy
{ﬂa (Ua)l Ua open in Ta} are a base for the topology in T e
Given a basic set ’ﬂ’;l(Ua) for some U open in T, then
((mo )2)* ﬂ';i (Ua) = o (ﬂ';l(Ua)) = ﬂoﬂ;I(Ua). The relation

To = To' T, t T To gives us mo (u) =1rg1ra(U) where U 1is a basic open
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set of T,. But such an open set U is of the form w;l(Ua) for some

N _ -1 _ a -7 _
open set U in T . Therefore mo (V) =mo (7ra (Ua)) = g Tl‘a(’ﬂ'a (Ua)) =
rr.';‘(Ua) = ha(Ua) which is open because h is a diffeomorphism. So mg*

is continuous and therefore wy, is a homeomorphism.
5504 remma.  #*(A) = {2,6,0,0,...} where the group G = {m/2"|m,ne z}.

Proaof . For the diffeomorphism h ¢ T+ T we have induced cohomology map

h* ¢ H*T » H*T. We obtain the direct system
h* h* .
H*Ty ——>H*T; ————>H*T; —> ... with direct limit H*(T,)
Now T_= 3 h"(T) =A and so H*(T,) = H*(A). We have H°(A) =2
n=0

because A 1is closed and connected. Restricting our attention to HI(A)

we have the direct system:

Z (h*)Lﬁ‘ Z (1), > eee ces ——> H*(A) .

where (B*), : H(T) > H*(T) is given by § —> 2g where ge Z.
Let (m,n) ¢ H*(A) be the element represented by m ¢ H*(Tp). Then using
the definition of (h*),; we have the relation (m,n) = (2m,n+1). The
addition law is (m,n) +(m',n) =(m+m',n). Iet G = {m/2"|m,n ¢ Z} under
the usual addition; then

{(m,n)|(m,n) = (2myn +1), myn € Z} is isomorphic to G by ¢ say
where ¢(m,n) = m/2"., Since A 1is 1-dimensional we have determined the

cohomologye

Remark. Had we taken the situation where the torus T winds inside
itself p-times instead of twice, then the theory would have been analogous

with G = {m/p"|m,n € Z} with the usual addition.
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5.5.4 LEMMA. The inset I(A) of the diffeomorphism f : §° > 5% has
cohomology H*(I(A+)) = §{0,0,6,2,0,0,0¢00}.

Proof . The exactness of the cohomology triangle for the compact pair
(s®,A_) gives H*(8® -4_) = H*(ICA+)) = {0,0,6,2,05000e} Or §2,2,G,2,0,004}.

The openness of I(A+) gives H*(I(A+)) = §0,0,G,Z,0 000}

§6. n-HORSE-SHOE FIOW

In this section we wish to give the generalization of the horse-shoe
diffeomorphism and its counterpart in flows and suggest the progrgmme to be
followed from the elementary investigations of this chapter of which a brief

mention was made in the introduction. First of all we require:

5e6e1 Definition of Subshift of Finite Type
In 5.1.5 we defined the shift (XS,a) of finite type. ILet M = (m, )

be a n x n matrix of O"'s and 1's where n = |S|.

Define YS be a subset of X8 to be the set of all sequences a

such that if aj = s; and aysy = sk for any 1€ 2, then mjk = 1.

Then (YS,fIYS) is a_subshift of finite type.

56 2 Definition of n-horse—shoe flow

Iet £ : R™?' » R"™! be a diffeomorphism and suppose the restriction
to a Cantor Set CC R™! is a subshift of finite type i.e. a (n-1)-horse-shoe
then the suspension of the restricted diffeomorphism f|C : C» C,Z (C,f|C)

is called a n-horse-shoe flow.

Example. The "Horse-Shoe" Diffeomorphism

If we consider the restriction of f : Q- R?® to £72(Qn £(Q)) then
by the definition of f the restriction is a linear map. The following
picture is obtained for the restriction mapping where the dotted lines are

the images under f.
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e

Fig. 5.8

We have f(Po) = Q and f(Pi) = Qo Note from §1, f|Cx C is
conjugate to a finite shift automorphism and so there is no restriction
on the sequences and therefore the shift matrix M=Q In fact the
matrix M can be derived by noticing the intersections of Po»Pi with
F(Po),f(P1). Since all possible intersections occur the matrix is M

as above.

Example. A local diffeomoruhism conjugate to a subshift

Suppose we have the following 4 blocks each homeomorphie to D”x A
in E" and a diffeomorphism f : k" such that the restriction of f
to the blocks is a linear map. Let the blocks be denoted by symbols

81,82,5S3,54. Let the dotted lines denote the images under f where

SJ =f(Si), i = 1,2,5 and 4.

Fig. .9
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The matrix representing the subshif't automorphism is

v _ (T2 G (10 (oo
M = (02 I, where I; = 01 and 05 = 00/ *

Since we are not specifying that f should force all possible inter-

sections we have this diff'eomorphism gives a subshift.

The cohomological types of the insets of the diffeomorphisms
considered here have not yet in general been investigated. Connected
with this is the following problem briefly mentioned at the end of
Chapter 1, the answer to which would give us generalizations of the

Morse-Smale Inequalities for Smale Diffeomorphisms.

Problem. Given a Smale Diffeomorphism (p.12) then does the local
behaviour of the diffeomorphism, which when restricted to a Cantor set
is conjugate to a subshift of finite type, determine the cohomological

type of the associated inset.
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APPENDIX 1

LIE GROUP BUNDLES

Here we give some theory of ILie Groups to illustrate how the theory
of Chapter 2, §5 could be used.

Consider a ILie Group B with a closed normal subgroup G. Then the
group B has the structure of a bundle space B with base B/G and fibre
G where the projection m : B> B/G is the natural homomorphism.
Bundle mappings of B are obtained by letting B act on itself by left
translations. Let bo be the bundle mapping b, ¢ B» B induced by
left translations of by € B. Therefore the map bo is defined by
bo(b) = bob, be B ILet by be the induced map of the base

such that the following diagram commutes

bo >B

B/G Bo —>B/G

The map bo 1s defined by go(bG) = bobG. Iet bo,b, € B and
suppose we require bo = by; then bebG = bybG, ¥ be G = by = bygo
for some go € G. Suppose G 1is non-trivial and choose in the first

!
instance go # 1; then bo £ by, but bo = by.

Another conditionof Chapter 2,85 is that the bundle mappings commute,

i.e. EQEI = ‘5130 = bob]_ = blbO = b1€ob1 = b1b180 > goby = blgo.
Hence to satisfy the condition we require go ¢ Z, (b, ), the centralizer
group. If Z, (by) 4is non-trivial we have bg,b, : B+ B such that

bo,b; are not equal but induce the same base mape.
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(A.1).1  Definition. Let BEO be the suspended manifold of B by

the map ’Bo. Define 51' : BE > BE-O by 51' ﬂso(b,t) = ”Eo(blb’t)’

(A.1).2  LEMMA. Given the ILie Group bundle

G B —__»B/G, where G 1is a closed normal subgroup

and suppose ZG (B), thecentralizer of B in G is non-trivial, then
3 two dif ferent dif feomor phisms ‘50,31 of B which induce the same
base diffeomorphism and the bundle

_r_m! 1
>(BBo)b1’""""'>S

o

also has the structure of the bundle
_ _ Qq
Ggo—'—; (BEO )b{ > (B/G)_.QO

Remark. The assumption of the non-triviality of 2 (B) gives us
a structure in the bundle case which is the logical extension of the

product. However in the general bundle case no such extension exists.

Proof. From 2.5.3 we have that there exists a map
a ¢ (B )g—>(B/6),
where q is defined q(m=,(r= (b,t),u)) =7_ (@(b),t+u)
by bo bo
such that q'l(ﬂho(x,s)) =@x)60(51)'1 for x e B/G.

Given any x ¢ B/G 3 a diffeomorphism taking Gx onto the fibre Gy
The diffeomorphism is given as follows. ILet x = bG, say, then 3 an
induced diffeomorphism

b : G_ » G , then it follows that the

diffeomorphism bo(by )"t G~ G_ induces the diffeomorphism

(b2 )So(sl yr(eT)"t e Gy » &
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i.e. given g € G, then under the induced diffeomorphism we have

g —>b  bobilbg. Now b lbobilb = b™'b; gobilb = b™gob because

go € 2g (by). If under the supposition of the theorem we choose go
not only in the centralizer of b,but in the centralizer of B, then the
induced map is g —> gog which is independent of x € B/G.

It then follows that (GX)EQ(El)—l is diffeomorphic to G—é-o

WV x e B/G and so the lemma is proved.



101

APPENDIX 2

ATLAS OF IOCAL BUNDLE CHARTS

At several points in Chapters 2 and 3 an atlas of local bundle charts
has been given for the bundle

M > M, 58t

with the usual notation where M and the diffeomorphism f ¢ M —»M have

been defined in various ways. It is the intention here to indicate why

the bundle chart maps are in fact diffeomorphisms.

Construction of local bundle charts

Iet p denote the natural projection p : R~ R/Z = St.

Let the open covering {U;,U,} of S' be defined

Uy = {p(u)]o< u< 1}, Uy = {p(u)|3/h< u< 5/4}

Then we define the atlas {(U;,h;), (Uz,hy)} by
by : Uy x M— 77*(Uy)
(p(u),x) — ma(x,u) , O<u<
hy & Uy x M = 772(Up)

(p(u),x) => 7.(xu) ,  3/b< u< 5/
To show that h; 1is a diffeomorphism consider the following diagram.

Mx (0,1) ______—_-_—9 U, x M

N/

w 1(U1

The diagram commutes where d, is defined as the natural diffeomarphism
%(x,s) = (p(s),x)e By definition T, is a differentiable map and from

the commutativity gives us

hy =mdyt 2 Uy x Mo 772 (0, )
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It follows that h, 1is differentiable. It can be checked that bhy
is’ a homeomorphism. Hence h, 1is a diffeomorphism. We can similarly

show that hy 1is a diffeomorphisme



APPENDIX 3

CATEGORIES AND FUNCTORS

(A.3).1 Definition of Category

A category C cond3ists of
(C1) a class of objects A,B,Cye..;

(c2) for each pair (A,B) of objects a set [A,B], where the elements
1Y

are called morphisms from A to B with domain A and range

(we write o« : A»> B or A —>B for a € [A,B]),these sets
being pairwise disjoint, i.e. (4,B) # (4',B') implies
[4,B] n [A',B'] = &;
(C3) for each triple (A,B,C) of objects a map
[4,B] x [B,c] — [a,cC]
(«,8) —> P«
called composition of morphisms;

(C4) for each object A an element 1a

these data being subject to the two axioms:

(ac1) If a ¢ [A,B], B e [B,Cl,y € [C,D] then y(Bx) = (y8)x

(AC2) If a ¢ [A,B], then a1A = o, 1Ba = 0,

(A.B.)Z Definition of Functor.

let ( and $) be categories. A govariant functor F : (i - &

is the assignment

(F1) of an object FA of &) to each objpot A of (0 ;

103

€ [A,A] called identity morphisms;

(F2) of a morphism Fa : FA - FB of 9 to each morphism « : A- B of @ H

subject to the axioms

1FA

F@B).Pa) -

(aF1)  F(1,)

(4F2) F(Ba)
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APPENDIX &

THE DOUBLE OF A MANIFOLD

(Ad).1  Definition [18]. Iet M be a C'-manifold with non-empty
boundary. Then D(M) is the union of Mo =Mx 0 and M, = Mx 1,

with (x,0) and (x,1) identified whenever x ¢ da(M). Define the
differentiable structure on D(M) as follows: Iet po ¢ Uo» d(Mo) x [0,1)
and p; ¢ U,_. + d(My) x (~1,0] be product neighbourhoods of the boundary

of Mo and M,, and let p : U-» dMx (-1,1) be the homeomorphism induced
by po and py. A C" differentiable structure on D(M) is well-defined

if we require (1) P to be a CF diffeomorphism and (2) the inclusions

of Mo and M; in D(M) to be C' embeddings.

(A.l).2  LEMMA. Let X and Y be compact spaces and A and B

closed subspaces of X such that AU B = X. Let f,,f3 be homeomarphisms
fy :A>Yand f; ¢ B> Y such that £,(A)U £f2(B) = Y and

f.lAN B=rf,/ANB, then £ : X> Y defined by fla=Ff, and f|B =1,

is a homeomorphism.

Proof. Because of the overlap condition f is well-defined and 1-1.
Given V, an open set of Y, then £73(V) = £2((vn £,(4)) U (v £,(B))) =
£ (vn £,(8)) U £33 (v N £2(B)) = £18(v N £,(A)) U £33 (VN £3(B)). We have
that VN £,(A) and VN £3(B) are both closed in Y. Since f, and f,
are homeomorphisms it follows that f£~*(V) is the union of two closed sets
and hence closed. Similarly given U closed in X then f£(U) =
fF((UnNna)u (UNB)) =f(UN A)u £(uUn B) = £,(UN A) U £,(UN B).

Because U is closed, UN A and UN B are closed in A and B
respectively and so f£,(UN A), f,(UN B) are closed in f,(4) and f£,(B)
respectively since f; and f,; are homeomorphisms. Hence since

£1(A), £2(B) are closed in Y, then £,(UN 4) U £,(UN B) is closed in Y.

Therefore f 1is closed and so f 1is a homeomorphism,
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APPENDIX 5

DIRECT AND INVERSE SYSTEMS [8]

(A.5).1 Definition. A directed set M is a gquasi-ordered set such

that for each pair « B € M, there exists a y such that a <y and B < y.

(A.5).2 Definition. A direct system of sets {X,m} over a directed set

M is a function which attaches to a ¢ M a set Xa and to each pair d,,B

such that a < f in M, a map

B.
Ty .Xa»Xﬁ

such that for each o ¢ M

and for a < B < ¥

Y _ .Y
"ﬁﬂi =T

(A.5).3 Definition. Let {G,m} be a direct system over the directed
B

o is a homomorphism.

set M where each Goc is an abelian group and each 7w
Let 2G denote the direct sum of the groups {Ga}. For each a < g if

- 7B ;
gﬁ =T 8 then g, and gﬁ are said to be related. Iet Q be the sub

group of 2G generated by all related elements. Then the direct limit

of {G,mr} is the factor group

¢* = @6)/Q .

(A.5).4 An inverse systems of sets  {X,mr} _over a directed set M is

a function which attaches to each a € M a set Xa’ and to each pair
(0, 3) such that a < B in M, a map
T . ﬂ -»> Xa

such that

(4
T

a

Y _ .Y .
nﬁwﬁ-na, a< B <y in M.
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(A.5).5 The inverse limit X, of the inverse system of (A.5).k

is the subset of the product Hxa consisting of those functions x = {xa}

such that for each relation a < B in M

o s)

I
™

Define the progection 7w  : X by 7 (x) =x_.
prog g ¢ KXo Xy by ﬁ() 5

(A.5).6  LEMMA. Given the inverse systems of sets {X,r} with
inverse limit X_, then the direct system obtained by action of the Cech
cohomology functor H* on {X,r} has direct limit H*X, if the coefficient
group is abelian. [This is the receiving category we have used in

Chapter 5].
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ABSTRACT

Flows which are suspensions of auto-diffeomorphisms of manifolds
are studied in this thesis, The structure of the product of two such
suspended flows is investigated and its relétion'to product diffeomorphisms,
together with some simple statements concerning Anosov flows are given,

A generalization of suspension to deal with éﬁ& finite number of commuting
auto-diffeomorphisms is considered and analogous results to those obtained
above are proved together with some additional ones.

A functorial representation is given for suspended flows, Other
flow invariant operations on manifolds are considered for this class of
flows,

Also considercd are diffeomorphisms with non-wandering sets which
have parts homeomorphic to Cantor Sets, The cohomologies of their insets
are‘computed using Cech cohomology theory, This is a first step in the
problem of using lMorse Theory to obtain Morse~inequalities for Smale

diffeomorphisms as defined in the introduction,



FRRATA

Page 10, line 23 These diffeouotphisns disprove the conjecture [22]
that the set of Horse-Smale Diffeomorphisms on 4
smooth compact manifold is generic

Page 108, line 34 [34] M.A, Armstrong, Compact Gech Cohomology, (Lecture
notes by E.Cy Zeeman, University of Warwick, 1965,),



