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ABSTRACT

HIGH PRESSURE STRUCTURAL INVESTIGATIONS OF SOLIDS
USING X-RAY AND SYNCHROTRON RADIATION

A.E. HEATH

X-ray diftraction has been used to investigate the structure and structural
behaviour of several inorganic solids under variable pressure and temperature conditions.
A brief description of the diamond anvil cell (d.a.c.) and its applications to the high-
pressure investigations is given. A spectroscopic system built for pressure calibration is
discussed. plus an account of powder diffraction data analysis including a detailed
description of a software package engineered for the specific reduction of powder data
obtained under variable pressure.

Potassium nitrate (KNQO;) has seven polymorphs in the pressure range 0.0-4.0
GPa. This material has been studied with energy dispersive powder ditfraction (EDXRD)
to 9.3 GPa. The structure of the non-ambient phase IV refined by neutron diffraction at
0.36 GPa has been confirmed, the compressibility of the high-pressure phase measured
and found to be anisotropic with axial compression ratios a:h:c = 1.0:0.64:0.50.

The valence induced structural transition at 0.8 GPa in EuPd-Si» has been studied
using EDXRD and uni-axial compressibilities calculated. A basic explanation of the
electronic theory which accompanies the subtle shortening of the « lattice parameter in
the tetragonal asymmetric unit is also given.

The structures of two compounds CH;HgX (X = I, CI) have been investigated
using single crystal and angle-dispersive powder techniques respectively. The crystal
structure of methyl mercuric iodide is reported. CH3;HgCl has been observed above and
below the temperature induced I/I1 phase boundary at 162.5 K. A hypothesis detailing the
iso-structural nature of CH;HgCl low temperature phase II and the ambient phase 1 of the
analogous methyl mercuric bromide is also tested.
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CHAPTER 1

INTRODUCTION: AIMS AND TECHNIQUES



CHAPTER 1

Introduction: Aims and Techniques
1.1 Introduction

Diffraction-based techniques for obtaining structural information on solids have,
over many years, grown more specialised to cope with particular problems. The x-ray
determination of structure trom single crystals remains the most popular method, but has
many limitations when applied to systems under non-standard conditions. Extreme
temperatures or pressures can lead to some form of phase transition. Volumetric,
thermodynamic and spectroscopic based techniques have been used to characterise the
behaviour of these systems. However. to interpret these data it is often necessary to know
the accompanying structural changes. Consequently, there has been considerable world-
wide research into developing high-pressure diffraction-based techniques [1]. The major
part of the work presented in this thesis is devoted to developing synchrotron-radiation-
based techniques for high-pressure studies and associated methods of pressure calibration
and data processing.

1.2 Aims

The overall aim of this work was to use x-ray diffraction to elucidate structural
information in both known and unknown phases in the solid-state. Following from this. a
description of the mechanisms involved in these transformations can often be attempted.
The physical methods employed in this work have been refined, especially those
concerned with pressure calibration and data-processing.

Although recent advances in techniques |2] and especially in gasket designs |3]
have allowed collection of high-pressure x-ray diffraction data from single crystals, the
geometry of diamond anvil cells (d.a.c.s) restricts the range of reciprocal space over
which allowed reflection intensities can be measured. Moreover, the use of beryllium
backings limits the accessible pressure range to approx. 8 GPa. In phase transition
studies. the use of single crystal diffraction is further restricted as many structural

transitions involve a volume collapse. often causing single crystals to shatter.

For neutron diffraction. the small scattering cross-section (i.c. scattering factors)
requires a sample volume of several mm3, resulting in relatively massive pressure cells.
This leads to severe restrictions on the scattering geometry and the large amount of



sample limits the readily available pressure range to less than 2.5 GPa. The use of
spallation neutron sources relaxes some of the geometrical limitations, but is not
expected to increase the attainable pressure range to that currently available using x-rays.
However, the enforced larger sample size required for neutron techniques does allow for
meaningful intensity measurements and hence the possibility of applying Rietveld
refinement on a proposed high-pressure model to derive atomic parameters providing
such a model is known or can be deduced.

Rapid developments in the use of synchrotron radiation (SR) have made energy
dispersive x-ray diffraction (EDXRD) the primary investigative tool for high-pressure
studies of solids. The location of Bragg peak positions in the EDXRD spectrum may be
used to identity the Bravais lattice. the unit cell parameters and. in favourable cases.
elements of symmetry pertaining to the associated space group. Advances in Rietveld
techniques with SR have improved the use ot angle-dispersive powder diftraction. Little
success has yet been achieved at high-pressure with this method. since the intensity of the
monochromated incident beam is several orders of magnitude lower than that used in the
corresponding energy-dispersive experiment, presenting problems when the method is
used with the d.a.c.s used to obtain high pressure. The small amount of scattering
material coupled with this low incident x-ray intensity gives a weak diffraction signal;
which would lead to very long scan times and poor sighal/noise ratios. However. the
improved resolution of Bragg peaks would allow for study of lower symmetry high-
pressure phases than current methods allow. The increased number of measurable
reflections could be used for indexing patterns with more success. Small molecule
crystallography remains the most popular method for solving ambient phase systems.
However, some systems exhibit peculiarities under ambient conditions which render this
method impossible for structure solution. The sample required must be a single crystal of
a certain size with tew (preferably no) imperfections. In cases where such a crystal
cannot be formed recourse to powder-based techniques can attempt to provide an
acceptable answer. The section 2 of Chapter 6 details such a dilemma.

Extended X-ray Absorption Fine Structure (or EXAFS) has been used -
increasingl_y over the past twenty years as a qualitative tool for structural investigation.
The interference pattern observed in an EXAFS experiment reflects directly the net
phaseshift of an electron wave backscattered from atoms neighbouring the parent atom of
the wave. This electron wave comprises the product of the electron wavevector and the
distance travelled, but also includes contributions from the scattering process and from
the passage of the photoelectron out and back through the potential of the emitting atom.
The amplitude of the resulting oscillations depends on the number and electron cross-



section of the scattering atoms. Consequently, the distance of, type and number of nearest
neighbours of the excited atom can be derived from analysis of the measured EXAFS.

This x-ray based spectroscopic technique offers great potential when applied to
measurement of bond length variations as a function of pressure, particularly when a
structural phase transition is involved. but to date published work in this field is very
limited. Although the tunability and high flux of SR can be employed experimental
problems are again encountered due to the low intensity of the transmitted
monochromatic radiation through a diamond anvil cell. The d.a.c. also introduces a
significant problem into the data analysis because of Bragg diffraction of the incident x-
rays by the single crystal diamond anvils. These diftraction data are convoluted with the
observed interference pattern. It is essential that these features are removed. although
careful treatment of the data by way of mathematical deconvolution can achieve this. The
X-ray Absorption Near Edge Structure (XANES) region [4] utilises only a narrow energy
range in the incident beam which enables Bragg reflections to be readily avoided. As a
result. some high-pressure d.a.c.-based studies have been attempted making use of this
region |5.6]).

1.3 High-pressure Techniques

The main design features of the diamond anvil cells (d.a.c.) used for the high-
pressure work here are shown in Figure 1.1. This design of d.a.c. was pioneered in the
late 1950°s and since has undergone various design modifications. However, all have
retained the essential feature of compressing a sample between the parallel faces of two
opposed diamond anvils |7-11]. The cells used for all work presented here have been
developed within this laboratory [12]; the Mark III cell currently in use is produced in
two models. the Diacell and Dynocell. The former is rated for a working maximum
pressure of up to 15 GPa, the latter up to 100 GPa (i.e. a megabar) [13]. When the cell is
assembled, torce is generated either hydraulically or by compressing Belleville spring
washers by a simple screw mechanism. and is transmitted to the moving anvil holder via
the lever arms and presser plate. The light ports beneath each diamond permit the passage
ot electromagnetic radiation througlfthe diamonds and sarﬁple, Figure 1.2. Diamond is
transparent to laser light. No diffraction spots are observed from the diamond (single
crystals) during x-ray experiments due to the one dimensional nature of powder work and
small diffraction detection area.

The sample can be held in a hydrostatic environment when under pressure by
introducing it and a pressure transmitting medium into a gasket centered between the
anvil taces. This ensures that qualitative measurements can be made at high pressure



Figure 1.1

Schematic diagram to show main design
features of the diamond anvil cell
(the diacell: plan and side elevation)

Parts labelled are:

Cell body

Central insert

Fixed anvil holder
Moving anvil holder
Presser plate

Lever arms

Internal hydraulic ram
Knurled backing screw
Piston plate

Central pivot

Piston screw

Oil feed for hydraulic ram
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Figure 1.2

X-ray path through ad.a.c.
showing gasket, diamonds
and sample
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single pressure. The gasket is a piece of thin metal sheet through which a hole is drilled
(or spark-eroded) usually of diameter 0.1-0.4 mm. Gasket materials vary but the most
commonly used here is Inconel (a Ni/Cr/Fe alloy), stainless steel and molybdenum also
being employed. This choice of gasket materials is occasionally necessary if a sample
under investigation is found to react with a certain material. The pressure transmitting
medium usually employed is a 4:1 mixture of methanol/ethanol. Other mediums include
some inert gases (e.g. argon and neon), also glycerine is useful with pressures below 2
GPa (glycerine crystallises at pressures greater than 2 GPa). Techniques of diamond
selection. gasket preparation and sample loading are explained in detail elsewhere
| 14.15].

In experiments where the sample is held at high static pressures within a d.a.c.. it
is necessary to routinely examine pressure quickly and accurately. There are two versatile
methods which can be used to achieve this in powder diffraction work; the ruby
fluorescence technique and the use of internal calibrants. The former method is based on
monitoring the frequency shift of the R, and R, fluorescence lines of ruby. which result
from trace amounts of Cr3+ incorporated in the Al.Os lattice. The shift (7.6x10-2cm-! GPa-
1) is nearly linear to pressures above | Mbar and can be measured with an accuracy of
5x10-2 GPa or better [16-19]. A laser is used to excite the tluorescence from a small chip
of ruby embodied within the sample compartment on loading. This technique has been
employed in the high pressure work outlined in this thesis and required the design and
construction of a spectroscopic system to be used on site at the Daresbury Synchrotron
Facility. Full details of this system and the associated computer interfacing are given in
Chapter 2.

The use of internal x-ray pressure calibrants such as some rare gases (¢.g. argon
or neon) offer an attractive alternative for in siru pressure determination. These rare gases
act as pressure transmitting media, they are highly compressible with unit-cell lengths
which can be measured to one part in 104. The equation-of-state for these elements under
pressure are known and hence, pressures can be calibrated which are sensitive to 5 bars at
5 GPa. However, their presence further complicates a powder diffraction pattern and can,
occasionally, obscure vital information because of Bragg peak overlap of sample and
calibrant diffraction lines. The ruby fluorescence technique has been favoured in this
work since pressures can be calibrated prior to x-ray exposure and hence any necessary
adjustments made, also vital information relating to the hydrostatic state ot the sample
can be gained from the separation and shape of the R, and R- fluorescence lines [20] (see
Chapter 2).



1.4 Phase Transitions

The terms first and second order phase transitions used in this thesis require
definition. A detailed discussion of the thermodynamic and symmetry related properties
of structural solid-solid phase transitions would be out of place here; the following is
intended to introduce the concepts involved. However, several treatments which
approach the subject in depth using different arguments are available [21-23].

A solid-state phase change is stimulated when a particular phase of that solid
becomes unstable with respect to a given set of thermodynamic criteria. The choice
between types of transition as first or second order arises from the order of partial
differentiation required in the Gibbs equation to produce a term which becomes
discontinuous at the phase change [24]. The Gibbs free energy expression can be
expressed as:

dG =dE + PdV + VdP - TdS - SdT
.. dG = VdP - SdT (since dE = TdS - PdV)

The first and second order partial derivatives of this equation can be written as:

@
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where:
Cp = heat capacity. a = volume thermal expansivity, § = isothermal compressibility

Thus, first order transitions are characterised by discontinuity in volume change

(if pressure induced) and latent heat (if temperature induced). Any symmetry relationship -

between the space groups of the parent and daughter phases is not generally obvious
since commonly the two phases have very different structures (Chapter 4 shows both
phases to have the same space group). Attempts can be made to correlate the two groups
[25], but this requires knowledge of the crystal structures in both phases; that of the
daughter phase is not usually available.



Using diffraction-based techniques a first order transition is often observed as a
radical change in the powder pattern. Large volume decrease means reformation of the
asymmetric unit with different lattice parameters (and commonly symmetry) which alters
the observed dyy in both intensity and position. Hysterisis is also common in first order
systems and is observed as a difference in the critical temperature/pressure involved in
the change when approached tfrom either the forward or reverse direction [26,27].

The second order partial derivatives of the Gibbs equation show entropy and
volume remain continuous whilst a. f and C, undergo discontinuous change. The second
order transition is generally characterised by some form ot disordering process in which
the symmetry of the two phases is related in some way. The symmetry of the asymmetric
unit in one phase is generally higher than that in the other. In most cases, the higher
symmetry phase is found at lower pressure (higher temperature) and the lower symmetry
at higher pressure (low temperature). Although the first and second order definitions are
useful for comparison. in general most transitions display discontinuity in parameters

from both sets of thermodynamic criteria and hence show mixed order.
1.5 Synchrotron Radiation

Synchrotron radiation (SR) is emitted by electrons in circular motion with
velocities close to that of light. The Daresbury Synchrotron Radiation Source (SRS)
typically holds a beam of electrons with an energy ot 2.0 GeV and current of approx. 200
mA or greater (see Figure [.3). The circular orbit of the beam is sustained by bending
magnets located strategically around the ring. The characteristics of synchrotron radiation
are well documented elsewhere |28]. The radiation produced is a continuous spectrum
(so-called "white’ radiation) ranging from the infrared to the far x-ray region. SR is
emitted tangentially to the beam orbit with a very small angular divergence in the plane
perpendicular to its orbital plane (Figure 1.4). The resulting radiation is very intense and
highly collimated. By applying a stronger magnetic field locally the radius of curvature
of the beam becomes smaller and the emitted photons attain a higher (momentum)
energy. i.e. there is a shift to shorter wavelengths and harder x-rays are produced. This
effect is accomplished b); a so-called "wiggler” which is a combination of high- field (2.5
and 5 Tesla) supercooled magnets. The properties outlined above make SR an ideal
source of x-rays for diffraction-based investigations. The continuous nature of this x-ray
source is very useful indeed; tunability of incident radiation with a monochromator is
straightforward, this being especially important in EXAFS experiments and angle-
dispersive powder diffraction. White radiation is vital for any energy-dispersive
technique (vide infra). The relatively high intensity of incident x-rays in comparison to
conventional sources allows the beam to be reduced dramatically in cross-section for
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Figure 1.3

The Daresbury Synchrotron facility showing
beam lines and location of experimental hutches
and wiggler magnet
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Figure 1.4

Geometry of emission of Synchrotron
radiation by electrons in circular
motion. Velocity close to c.

1) W =0.25 mrad = 52" (for 2 GeV).

i) B - bending magnetic field L to
electron orbit.
(111) P - direction of polarisation






precision micro-collimation (e.g. during high-pressure d.a.c. experiments) whilst still
producing satistactory diffraction intensity from the sample. Although a rotating anode
can produce the above effects it is generally agreed that SR is superior [29].

There are, however, a number of disadvantages which have been encountered
while using the Daresbury SRS as an experimental source. Daresbury Laboratory is a
central facility which should be operational 24 hours per day, 7 days per week and large
numbers of users are scheduled to make use of the facility. Unfortunately, due to various
machine faults the Daresbury SRS had a record of enforced shutdowns over the period of
time when the work presented here was carried out. The wiggler magnet was not
generally reliable and has caused shutdowns of all experimental stations on the wiggler-
line many times. The large number of users means that allocated beam-time lost from a
schedule is very difficult to make up; all users can possibly suffer the same fate and one
simply hopes all will be well during one’s allocated experimental time.

1.5 Energy Dispersive X-ray Powder Diffraction
1.5.1 Introduction

The energy dispersive x-ray ditfraction (EDXRD) technique was developed by
Giessen and Gordon |30] in 1968. During the past two decades EDXRD has been applied
to single crystals, powders, amorphous solids and liquids for measurements of lattice
parameters, structure, temperature. absorpton factors. prefered orientation, stress and
particle size effects. An extensive literature survey was published by Buras in 1980 [31].

Energy dispersive powder diffraction is a technique related to the conventional
angular dispersive method as the Laue method is to the Bragg method. The latter
employs monochromatic incident radiation and the reflections appear at angles
determined by the lattice spacings d as shown by the Bragg equation:

dsin® = 22 = constant . -

In the energy dispersive method the reflections are generated from continuous x-
radiation at a selected angle 26. Combining the well-known relationship of wavelength as
a function of its energy E with the equation above the resulting expression given by Cole
[32] is:

Edsin@ = he/2 (where h is Planck’s constant)
If E is expressed in keV and d in A this equation becomes:
Edsinf = 6.19926 = constant



Therefore, when a white (polychromatic) beam of x-rays is incident on the
powder sample, the above equation shows for a fixed value of 20, discrete values of d
will produce reflections in an energy spectrum collected by an energy sensitive detector.
This is the principle of EDXRD.

The main characteristics and advantages of this method as compared with the
angular scan method can therefore be summarised as follows:

i) White, high intensity primary beam
i1) 0 fixed during experiments but can be optimised tor a particular experiment
1i1) All Bragg retlections recorded simultaneously

1.5.2 Experimental

The use of d.a.c.s for high-pressure work favours Debye-Scherrer scattering
geometry. because of the small sample size. gasket thickness and geometric constraints
on the x-ray paths due to the piston and cylinder design (see Figure 1.2). Some ambient
patterns were generated using a 0:20 setting of the specimen and detector with the sample
mounted on a flat plate. The angle 0 is taken between the incident beam and the specimen
surface. and 20 is the angle between the primary and diffracted beams.

A schematic representation of the high-pressure experimental setup is shown in
Figure 1.5. An ORTEC nitrogen cooled Ge semi-conductor detector was used for the
high-pressure scans. The resolution of measured reflections is dependent on the detector
system and the collimation of diffracted radiation (see Chapter 3.1). The maximum
resolution achieved was 165 eV at 5.9 keV. The d.a.c. was mounted on a remotely
controlled X YZ-translation stage. the DC stepping motors allowed the precise movement
necessary for alignment of the small sample compartment. The d.a.c. was positioned on
precision machined pegs on the mounting stage to allow for accurate replacement
following pressure adjustment. The cross-section of the primary synchrotron radiation
~was reduced to a circle of ~50 pm in diameter by a set of evacuated slits and pinholes.
" Because of the simultaneous recording of reflections and the highly intense primary
beam, the counting time used in this experiment is relatively short compared with other
powder methods. Further decrease of counting time is limited by the present maximum
count-rate of semi-conductor detectors (~ 103 counts/sec). In the high-pressure experiment
counting times are increased because of the reduced primary beam cross-section. In our
experiments 20-30 minutes was found to be optimum. This counting time was also found
to be dependent on the crystallinity of the sample and the scattering cross-sections of the
atomic constituents.



Figure 1.5

Schematic diagram to show the set-up
used in the EDXRD experiment
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The detector system comprised of the Ge (solid state) detector, from which a
signal was amplified to a multi-channel analyser (MCA). The amplifier was optimised
for each scan if a specific section of the pattern required intensive data collection.
Therefore., careful calibration between the detector and MCA was required after any
adjustment of amplifier "gain’. The well documented fluorescence energies (K, Kg, etc)
of several elements (e.g. copper. molybdenum, silver, ¢f¢) excited by a radioactive dial
source was used to form the correlation between channel number and energy (keV). A
least squares fit of energy to channel number always found a linear relationship (Figure
[.6). The experiments demanded absolute values for the lattice spacings and thus, the
diffraction angle © was required. This can be derived from the relative energy
displacements of a Bragg peak as the 20 diffractometer is moved (so-called difterential
measurements. see Chapter 3.1) or calculation of the angle from an ambient EDXRD
spectrum of a standard (e.g. silicon) where the d-spacings are known to high precision

and indexing the pattern is trivial.
1.5.3 Information obtainable from EDXRD

The data derived from EDXRD patterns can be used to establish the Bravais
lattice type. cell parameters and, in favourable cases. the space group. If the structure of
the high-pressure phase is known then pattern indexing is elementary and indexed
reflections can be followed as they move with pressure. During a phase transition a
combination of phases (especially if hysteresis is suspected in the system) can result in a
very complex but informative pattern. Observation of Bragg peaks which have split can
provide valuable information to the identity of this next phase. When the high-pressure
phase is unknown indexing can be difficult (in some cases impossible) to carry out
unambiguously. Most numeric algorithms require at least twenty resolved retlections
before any possible conclusion can be drawn about the dimensions and shape of the
asymmetric unit.

Information concerning the atomic positional parameters within the unit cell is
contained within the intensity of the observed Bragg peaks. However, the integrated
intensities obtained from the very small samples used in d.a.c.s are generally unreliable.
Such a sample contains a very small number of crystallites which. together with the high
collimation of the synchrotron radiation, leads to a small number of crystallographic
planes in the diffracting position. Thus. the measured integrated intensities depend rather
accidentally on the spacial orientation of a very limited number of crystallites. This
statistical problem means that refinement ot energy-dispersive profiles generated under
high-pressure conditions with Reitveld-type techniques is not generally feasible. A
solution to this dilemma is to use a larger quantity of sample, however, this would



Figure 1.6

Typical linear least squares fit of
channel number to energy (keV).

Fitting E(keV) =aX + b
(X = channel number)
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severely limit the accessible pressure range. Rotation of the sample around the axis of the
primary beam would improve counting statistics but this presents practical difficulties
with the d.a.c.s used here. High-pressure EDXRD is also prone to high background
counts from Compton (elastic) scattering by the diamonds surrounding the sample
compartment.

In conclusion, EDXRD is a powerful tool for high-pressure structural
investigation despite the limitations described above. Phase transitions are readily
observed making suspected changes simple to verify both quickly and accurately. The
other methods available for high-pressure x-ray solid-state studies have been briefly
discussed and all have their merits and disadvantages. A combination of techniques
would allow conclusions to be drawn more confidently regarding new structural phases
and the mechanisms of their formation.
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CHAPTER 2

A SOFTWARE PACKAGE FOR DATA ACQUISITION AND
ANALYSIS: APPLICATION TO A RUBY R-LINE
SPECTROSCOPIC SYSTEM



CHAPTER 2

A Software Package for Data Acquisition and Analysis:
Application to a Ruby R-line Spectroscopic System

2.1 Introduction

There are many different types of high pressure spectroscopic device [1] but the
attainment of very high static pressures in the solid state is simplest with Bridgman
opposed anvil cells. Of these. the diamond anvil cell (d.a.c.) is the most versatile [2.3]. It
has been used to generate pressures of up to 3.5 Mbar |4]. thus overlapping with the

lower end of the pressure range accessible by dynamic (shock wave) methods.

Accurate measurement of the hydrostatic pressure exerted on a sample by the
anvils is crucial to any such experiment. The most widely used secondary pressure
standard involves use of the ruby R, and R: fluorescence lines [5.6]. Their shift with
pressure is linear (7.6x[0-2 cm-t per GPa) up to at least 20 GPa. The general form of the
shift is represented by Equation 2.1 which has been shown to be valid to at least 2 Mbar
171

P(Mbar) = 3.808{|1 + (AWM -1} (2.1)

In the course of high-pressure work with energy dispersive x-ray powder
diffraction using synchrotron radiation at the Daresbury SRS facility, d.a.c.’s were used
to obtain the high-pressure powder spectra, and the sample pressure was calibrated using
the ruby R-line method. This calibration necessitated the construction of a spectroscopic
system which was interfaced to microcomputer for ease of data acquisition and analysis.
This chapter details the methodology of the real-time software designed to work with this
system and a brief outline of the system itself. Suggestions are also made for the
application of the software to other experimental tasks and other compatible micro-
computers.

2.2 The Spectroscopic System

The optical system is shown in Figure 2.1. A focussed laser beam was used for
stimulation of the fluorescence and a monochromator (Jobin-Yvon HR-320) coupled to a



Figure 2.1

R-line spectroscopic optical system



43SV NOI

NOSHV

1130 NANY
aNOWVIa

Y

b —

!

HOLVWOHYHOONOW
10 11NS

Y314




photomultiplier tube was used for detection. A large proportion of the high-pressure
systems studied by users are opaque to laser light and hence a back-scatter geometry was
adopted: this works equally well with laser-transparent samples.

The start position, rate of scan and scan range of the collected spectrum were
controlled by a scan controller (Jobin-Yvon). This controller, together with the photo-
multiplier voltage (PMV) amplifier was interfaced to the micro-computer (an Acorn BBC
model B) to allow real-time data acquisition.

2.3 Software
2.3.1 Introduction

The system is used by many different experimenters, and knowledge of the
operating system of the BBC model B cannot be assumed. The software was designed to
be as user-friendly as possible, not least as users are frequently tired since the
synchrotron facility is in 24hr/day operation. The system makes use of both colour and
sound to help the user calibrate a pressure as quickly and precisely as possible. All
programs were designed to be driven from a main-menu which can be activated with a
<SHIFT/BREAK> from the keyboard. Three programs are driven from the main-menu.

They are:

L. A “peaking up’ program to assist optimisation of the ruby fluorescence signal
from the d.a.c.. The cell is aligned in the laser beam using an XZ-stage operated
manually. As this is a simple operation, automation of the stage, although easy in
terms of both hardware and software, was considered cost-ineffective.

2. An acquisiton and analysis program for data from ruby at ambient pressure.
3. - An analogous program for high-pressure scans and calculation of pressure.

BBC BASIC was used throughout in conjunction with 6502 Assembler language.
The flexibility of BASIC coupled with the power of Assembler made the code easy to

read and understand, whilst giving the speed of execution required in real-time

computing.
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2.3.2 Peaking Program

A schematic ’flow’ diagram of the logic structure of this program is shown in
Figure 2.2. This program makes use of one of the four built-in analogue to digital
converters (ADC’s) of the BBC model B.

The function of this program is to display a representation of the fluorescence
signal strength from the sample. Several screens are employed, representing different
sensitivity levels., a lower level applying to a stronger signal (¢f use of GAIN on a chart
recorder). A marker is used to show the maximum attained at any one time.

The program is executed from the main-menu. The user is given the option of
help - this includes a brief explanation of the software system and attached hardware. On

execution two passes of the Assembler code are made to compile this into machine code

—.

in random access memory (RAM), Two passes are required since forward referencing is
used in the Assembler code. This code is split into modules. each module serving a

specific function (e.g. calculation of vector positions, line drawing, etc).

The ADC is stimulated and a value read. The ADC is capable of interpreting
analogue signals from the amplifier in the range 0-1.8 volts and converting these to
digital values between 0 and 65536. An error is flagged and the program temporarily
terminated if the ADC receives zero input. If the value is positive this is divided by a
scale factor in an attempt to scale the result to a magnitude comparable with the vertical
plot coordinates of the BBC screen (i.c. 0-1024). Initially the value of the scale factor is
two but this is automatically reset (it necessary) as described below.

The main section of the program is a loop which serves the purpose of drawing a
histogramic type block, the height of which is proportional to the scaled ADC value and
hence the analogue signal input. A loop is required since the display is animated by being
drawn twice using the same plot data; firstly in a colour to show up on the background
and then in the same colour as the background i.c. the block is deleted immediately after
it is drawn. The ADC signal is then comparea"with the previously attained maximum. If
the old maximum has been exceeded the marker is deleted (by being redrawn in the
background colour) and a new marker drawn in the appropriate place. The magnitude of
the vertical plot is then checked to see if it can still be represented on the screen (i.c.
vertical plot coordinates between 256 and 1024). If this is not the case the screen is
refreshed into another sensitivity level. If the signal becomes weaker a higher sensitivity
level is selected and the scaling factor halved. This results in a more sensitive observation
of the signal strength since as much ot the screen as possible is utilised in drawing the
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Figure 2.2

Flow diagram for peaking program
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histogram. The marker is redrawn in the appropriate place on the new screen. This
change of level is flagged; if the previous level contained the maximum signal strengfh
yet obtained, a message is written informing the user of the percentage signal strength
and the number of the previous level (levels range between | and 8, level | representing
the strongest signal) enabling more accurate re-peaking.

If the signal is stronger than the previous maximum level, the sensitivity level is
dropped. the screen retreshed. and the flag checked to see if the maximum level has been
reattained. It so the message informing ot the former maximum is deleted and the marker
redrawn 10 indicate the position of the old maximum. Thus, the main program is
animated by employing an endless loop; updating the histogramic block, marker and if
necessary the screen up to tive times per second.

When the ruby signal has been maximised. the program is exited by pressing the
space-bar. The keyboard buffer is tested during each cycle of the main program to check
it the space bar has becn pressed. If it has. a global variable is assigned for use by later
programs containing the scaling factor for the screen co-ordinates. The program

terminates and returns the user to the main-menu.
2.3.3 Acquisition and Analysis Programs

The data-acquisition parts of these two programs are identical. The schematic
flow diagram is shown in Figure 2.3. The analysis sections ditfer from each other and are
outlined later. The function of these two programs is to plot, in real-time, a ruby
tfluorescence spectrum and analyse the collected data for the R-line peak positions. The
high-pressure option is used to calculate the pressure exerted on a ruby chip from the
shifts of both the Ry and R peaks relative to the ambient positions. The programs also
give the R, and R. frequency difference as this parameter is a useful indicator of any
departure from hydrostatic conditions.

These programs are entered from the main-menu. Two passes of the Assembler
code are made to compile the 6502 code. This code is written in modules to perform
specific functions. such as “enabling” user interrupts, or directing these interrupts away
from the normal operating system handling procedures.

The program begins by inquiring the start position and direction the scan is to

take. Six hundred data points are collected over a 60 nm range. The screen is then cleared
and X-Y axes drawn (with appropriate intervals marked) for the subsequent spectrum.
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Figure 2.3

Flow diagram of software common
to acquisition programs
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Several compiled Assembler (i.e. machine code) routines are called as one
module. The user Versatile Interface Adapter (VIA) is used to connect the scan controller
to the computer. The VIA is a socket and a 6522 microchip which is programmed by a
machine code routine each time the program is executed. The VIA receives pulses along
one of two cables from the scan controller every 0.1 nm; the cables correspond to either
forward or reverse direction dictated by the controller. The VIA chip is programmed to
register these pulses as interrupts and to enable their detection by the 6502 central
processor unit (CPU) chip. Another routine redirects the action taken by the CPU when
its operations are interrupted to a polling routine (also written in Assembler code); this
polling routine simply assigns a value to a memory location as described below.

The program then executes a continuous loop checking the contents of a memory
focation addressed by a variable (Flag%). An addressing method is used here since this is
the most efficient way of assigning a variable which is passed between machine code and
BASIC. The content of this variable is set when an interrupt occurs from the VIA. The
value of the content of Flag% is given by the response of the polling routine to the pulse
trom the scan controller. The content code is defined by:

I = "Forward" pulse

2 ="Reverse’ pulse

3 ="Overflow’
When the content of Flag% is set the interrupt which has caused the polling routine to be
called is cleared in the hardware and the continuous loop escaped. The content code is
tested against the user-defined scan direction; if these are inconsistent the loop is re-
entered and the next interrupt awaited. If the content ot Flag% is 3 then Flag% has not
been cleared from the previous interrupt operation and hence the scan rate is too rapid for
the computer. In this case an errvor is displayed to the user and the scan would be restarted
with altered parameters.

The ADC is sampled and the value read scaled by a factor held in a global
variable trom the previous peaking program. If the direction condition is met the data
point counter is n_1onot0nicéily-increméntedand the scaled ADC value stored in an array
tor post-processing. The screen co-ordinates of the data point are calculated and the point
plotted on the screen. The content of Flag% is reset to zero and the number of collected
data points checked tor the end-of-scan condition. If this is not met control returns to the
continuous loop in preparation for the next interrupt from the scan controller.

On satisfying the end-of-scan condition (i.e. 600 data points collected) the
computer’s reaction to user-defined interrupts is reset to the default operating system

polling procedures. The spectral data are then smoothed and peak-searched with a
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standard Savitsky-Golay algorithm [8]. From this point the two programs differ in
operation and will be summarised seperately.

2.3.3 (i) Ambient data analysis

The peak positions of the R, and R, fluorescence peaks are written to the screen.
A schematic flow diagram is shown in Figure 2.4(i). The user is prompted for the date
and time when the ambient spectrum was taken. A data file (on disk) is opened, the date,
time and peak positions are written to it, and the file closed. The name of this data file is
always the same; the old version is automatically deleted by being overwritten. The
program ends returning control to the main-menu.

2.3.3 (ii) High pressure data analysis

Under pressure the fluorescence peaks not only shift, but may also deteriorate
relative to their initial condition. If non-hydrostatic components develop, the shape of the
peaks changes and they may even merge. Weak fluorescence output results in noisy
spectra and, in bad cases, it is possible for the search algorithm to find more than two
peaks in the high-pressure spectrum. The Savitsky-Golay algorithm operates first by
smoothing the stored data with a 9-point running average. Following this the numerical
first derivative in the data-set at each point is calculated and all possible peaks located.
The second derivative spectrum is then calculated around these peak positions -
information gained regarding the width of the peak can be used as criteria for 'noise’ (a
narrow weak signal) and this rejected. If the search has found more than two possible

“fluorescence signals these peaks are defined by vertical graticules drawn from the
wavelength axis to their origin. The user is prompted to pick the two peaks which best
represent the fluorescence maxima by entering the appropriate graticule numbers
(counted from the left).

The pressure-shifted peak positions of R, and R are written to the screen along
with the Ry/R» peak separation calculated in wavenumbers. A peak separation of 29+1
cm-1 implies the ruby inside the gasket is under hydrostatic conditions [6], if both peaks
are well-defined and their seperation deviates strongly from the ideal value the
experiment should be repeated using a tresh sample loading. The flow diagram for this
part of the program is shown in Figure 2.4(ii). The ambient data file is opened and the
date, time and band positions of the last ambient spectrum are read in and displayed. The
pressure (Equation 2.1) is calculated for each peak and displayed along with the averaged
value. On pressing the space bar the program ends and control returns to the main-menu.



Figure 2.4

Flow diagrams of remaining software for
(1) ambient data

(1) high-pressure data
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2.4 Development and Implementation

The spectroscopic system and software have been very successful for calibrating
pressures within d.a.c.’s. However, the software could be applied to a number of similar
problems which require sampling of an analogue signal at regular intervals. The system is
best suited to spectroscopic tasks but is not limited to this type of experiment. A simple
alteration of array dimensions (RAM permitting) would allow the collection of much
larger spectra. All 32 kilobytes of RAM can be utilised in the BBC model B if a so-called
shadow board is installed; this board provides memory mapping for the screen hence
treeing a substantial amount of RAM space. The tluorescence spectrum of ruby is
relatively simple to analyse for peak positions. The effects of pressure and noise on the
spectra were taken into account (smoothing, calculation of second derivative spectrum)
but the analysis algorithm could be extended by a user for more exacting sets of data. For
instance, provision could be made for intensity calculation, background subtraction and
interactive peak-picking. The physical interfacing of hardware is trivial, the only
requirement of the software being a systematic pulse to the user port of the micro when a
sampling of the ADC is required.

The software will run on any Acorn machine which is of a specification of the
BBC model B or higher. The only afteration required would be the addressing parameters
used for the operating system routines called by the various programs. Colour codes may
also differ for those users with monochrome monitors. The software is publicly available
and has been used at Daresbury Laboratory by several research groups involved in high-
pressure work. The Physics department at Leicester University have mounted the
programs on a BBC Master machine and use them in conjunction with their d.a.c. based

research.
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CHAPTER 3

Analysis of Powder Diffraction Data
Introduction

EDXRD is intrinsically a low resolution technique for measuring lattice
parameters. Buschert | 1] first used a triple axis spectrometer in 1965 for high-precision
lattice constant comparisons with an accuracy of | part in 107. Hart [2] discussed the
advantages of using such pseudo-non-dispersive techniques and obtained an accuracy of
| part in 107 when comparing the lattice parameters of two silicon wafers using a double
crystal arrangement. By the 1980s new techniques had been developed giving accuracies
which varied from a few parts in 10% to | part in 10v; all these methods were reviewed by
Hart [3] in a comprehensive survey in 1981.

Most high resolution techniques to date have required two or three detectors, one
or two x-ray sources and two or three crystals. Further, many of these experimental
arrangements required specially built equipment and commonly many man hours of
specialist labour.

This chapter outlines some of the possible errors found in powder diffraction
measurements with synchrotron radiation and details the principles involved in analysis
of collected data. A description is also given of a computer program, VARVEC, written
to automate the major parts of the analysis for any currently examined crystal system.

3.1 Theory of powder measurements

3.1.1 Principle of precision measurements

Angle dispersive powder diffraction analysis for lattice parameters is based on the
original Bragg equation: ’

2dsin@ =n7  (3.1)
where d is the distance between the planes reflecting the x-rays with wavelength A at the

diffracting angle ©. If all reflections are given general indices Akl then n=I.
Differentiating equation 3.1 with respect to its three variables gives:
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0d =0\ - cotfdd (3.2)
d A

which theoretically means the final accuracy in d should only be limited by the precision
with which 0 and A are known. In practice A is known to a very high degree of accuracy
when using (the angle dispersive) station 9.1 of the SRS since a triple axis Si crystal is
used as an incident beam monochromator. Extensive discussions of all possible errors
have been published by Hart |2,3]. Corrections to these type of measurements usually
include one for refraction which causes a shift of the Bragg peak position from that
calculated in equation 3.1 to higher angles. Absorption causes the Bragg peak to be
further displaced and distorted by dispersion, since it has a finite width, and added to this
is further dispersion caused by the finite width of the x-ray line itself. In EDXRD the
Bragg equation is rewritten in terms of energy:

Edsin® = hc2 = 6.19926 (keV.A) (3.3)

where h is Planck’s constant and E measured in keV. The accuracy of absolute lattice
spacing measurements is given in principle by the expression:

0d = -3E - cot6d0 (3.4)
E

derived from partial differentiation of equation 3.3 with respect to its three variables. The
final relative error OE/E associated with the measurements of energy E of a reflection is
made up again of two main contributory factors. The contribution from the linearity of
the detector system was determined from the energy calibration as being ~5 in 104
Calculation of the peak centroids in an EDXRD pattern leads to an inaccuracy of ~3 in
104. The theoretical full width at half maximum (FWHM) of an EDXRD peak given by
Buras et al (Et) [4] is:

AE; = [(AEp): + (AE 2|12 (3.5)

where AEj, is the broadening due to the detector and AE,; that from geometric effects.
Electronic noise, the energy required to create an electron-pair hole in the Ge crystal and
the statistical nature with which a photon deposits energy within the crystal all contribute
to detector effect. A detailed treatment of theory behind resolution of solid state detectors
‘has been given by England [5]. By differentiating equation 3.3 (keeping d constant) we
get:



(e

E

-cotfdo

gl

hence:
|AE| = cottd6.E

which shows the geometric effect of broadening of the diffracted beam will be greater
when © is small. Equation 3.5 represents the FWHM fully if there are no other
contributions. either from the asymmetric eftects of geometric and physical aberrations
[6] or broadening due to the sample |7]. The accuracy of the angular contribution to the
expression in equation 3.4 is dependent on the extent to which the absolute value of the
angle of diftraction is known. Using differential measurements the absolute values of d
and E are not required. Hence. a standard (¢.g. silicon) can be exposed to diftraction at
several ditfracting angles 0 and the differences in the relative Bragg energies used to

calculate the value of 20 (i.c. the diffractometer circle setting).
3.1.2 Compressibility measurements

In Chapters 4 and 5 EDXRD was used to measure the change in d- spacings of
poly-crystalline samples subjected to pressure. It the pressure P is established by some
independent means. such as the ruby R-line technique. then the compressibility B, can be
calculated. B, was given by Hazen and Finger |8] to be:

B =-1(Ad) (3.6)
d(AP)

If sufficient information is obtained from d-spacing measurements and the asymmetric
unit is known. changes in volume can be established and hence, the volume
compressibility B, given by:

B\' = 'l(M_) (37)
V(AP)

Equation 3.6 shows linear compressibility measurements are differential in type. They
are concerned with the relative change in the lattice spacings of the sample with pressure
from their values at zero pressure. In EDXRD the beam geometry is static'and involves
only the observation of changes in the positidl)s of the reflections on the energy scale.
The relevant equation is: '

Ad=-AE (3.8)

d E
from equation 3.4 which shows the scattering angle does not have to be known.
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However, the measurement of volume compressibility and uni-axial compression
for non-high symmetry problems demands knowledge of lattice constant variation with
pressure. These lattice constants are calculated from absolute (indexed) d-spacings and
thus, the absolute diffraction angle must be known. Chapters 4 and 5 show examples of
both volume and uni-axial compressibility measurements.

3.2 YARVEC: Program for analysis of high-pressure Bragg data
3.2.1 Introduction

The analysis of information present in a set of EDXRD patterns taken from a
sample subjected to varying pressure (or temperature) can be divided into five main

parts:
1) Detector calibration and calculation of diffraction angle 6
i) Measurement of peak centroids and conversion to lattice (d) spacings

iti) Indexing of Bragg reflections
iv) Calculation of lattice parameters
V) Calculation of uni-axial and volume compressibilities

Both (i) and (ii) above have been described in Chapter 1. If the crystal structure of the
sample is known (or at least the space group and lattice constants), a prediction of the
expected EDXRD spectrum can be generated with a computer program (e.g. DRAGON
[10] or EDPREDIC [11]). Peak-position matching between this and the observed
spectrum allows indexing of peaks originating from diffraction by the sample. Any other
peaks found in the pattern can usually be attributed to fluorescence from constituent
elements or so-called escape peaks generated by the solid state detection system. These
escape peaks are normally found to be 11.3 keV lower in energy than their parent (Bragg)
signal with ~10% the intensity and arise from a photo electron effect in the Ge single
crystal. Spectral deconvolution can often be attempted if these intensities overlap
suspected reflections. Impure sample or multi-phase systems can also complicate a
pattern. Very intense contributions to the spectra can arise if the gasket materizﬁ used in a
high-pressure device coincides with the incident x-ray beam. Careful use of slits, pin-
holes and gasket size in the experiment usually serves to remove these features from the
data.

The observed dyg can be used to generate lattice parameters. In simple crystal
systems such as cubic this procedure is trivial but many of the data from lower symmetry

Bravais lattices contain information relating to more than one lattice constant. For
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instance, the value of acl,,(h ~ 0. k~ 0, I~ 0) reflection originating from orthorhombic
lattice symmetry includes contributions from the three lattice parameters a, 7 and c¢. The
solution to this dilemma is to fit a set of calculated dhki based on the known unit cell via a
non-linear least squares method to the observed d*ki using the lattice constants {i.e. a, h, c\
a, (3 y) as fitting parameters. A brief description of the non-linear least squares method is
given below, followed by the application of this method to the powder-based problem
outlined above. The program VARVEC encompasses sections (iv) and (v) of the data
analysis and also includes calculation of estimated standard deviations (e.s.d.s) on all
solutions, error checking and re-calculation of ideal observed values to help with future

input data selection.
3.2.2 Non-linear least squares method
We define a function to be minimised as A;

AN - Atik (3.9)
As Aaic approaches / OK then; 1 A7 minimum

where the summation is over all i observations. If Aak is expressed as a function ofj
parameters, u. then
/K =/(U]-u:- L> u))

and A will be minimised when

0(Aa-) =0  (3.10)
cup

Differentiating equation 3.10 gives
E m.A.OA/cir =0

where o: is a weight applied to observation i. The partial derivatives of A may not be

linear, the Taylor series is therefore used to expand this expression to give:
A X(e)A/0U).(3A/(Mu,.m,)G, = X A.cA/diq.oj, (3.11)
1 i I

where £, represents the error in parameter J and oj, is the weight corresponding to

observation i. Equation 3.1 I can be expressed more simply in matrix form:

A£=B (3.12)
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the solution of equation 3.12 yields the error vector €. The set of fitting parameters is
added to this vector and the process repeated. This repetition represents an iterative cycle
which will continue until the function A is decmed minimised. This decision is based on
the ratio (over the last two cycles at any point in the iteration) of the so-called G
(goodness-of-fit) factor calculated for both the penultimate and final cycle. This G factor
is characterised by:

m

1
G = 100% x [Z u_J__}] 2 33
m-n

with m equal to the number of data available and w is the weight applied to each piece of
data. A value is decided for the G ftactor ratio below which the function is considered
minimised and iteration ceases. The initial parameter set has been successively updated
in each cycle and now represent the best fit set which successfully minimised the

function A.
3.2.3 Application of the Least Squares method to powder data

Application of the above theory to the variation of lattice constants with pressure
is commonly only successful if the Bravais lattice type is known. D-spacings are
generated from lattice parameters via the general expression used to represent inter-
planar distances for any crystal system:

d*2(hkl) = h2a®2 + k2b*2 + |2¢*2
+ 2klb*c*cosa® + 2lhc ascosp + 2hka*bicosy” (3.14)

(*indicates reciprical space)
and the minimum function A is expressed as:

A =d"obs) - d=(calc)  (3.13)

An initial set of parameters (starting values) for the lattice constants is required. If the
lattice had orthogonal vectors (tetragonal or orthorhombic symmetry) it was found that
this starting set can be random and refinement was still successful within a small number
of iterations. The partial derivatives shown in equation 3.11 are calculated by
difterentiation of equation 3.14 with respect to each variable (i.e. parameter to be
minimised). These partials are calculated and summed over all observations as expressed
by equation 3.11 to give the nxn square matrix (A) in equation 3.12. The resulting matrix
equation is solved and the error vector calculated. The initial parameters are updated and
iterations continue until the G-factor ratio between two cycles talls below 10-6,
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3.2.4 Description of algorithms

The program requires an input file of indexed d-spacings produced from a sample
which has undergone diffraction at various pressures (Figure 3.1). Also required is a set
of initial lattice constants, the Bravais lattice type and greatest number of reflections
recorded at any pressure.

The starting values given for the lattice variables are reformed into suitable fitting
parameters depending on the crystal system chosen. This simplifies the algebra involved
in partial differentiation (and hence the final algorithms), reduces the total number of
calculations and increases the speed and efficiency of solution. Each data set (or data
record) represents indexed d-spacings measured at one pressure. Due to preferred
orientation, tluorescence and/or sample deterioration under pressure it is possible that
some reflections were not measurable at certain pressures. Any piece of data which
previously could be measured but at higher pressure can not is expressed by a zero-value
in that column of the data file. The input routine sorts and compresses the data before
each pressure record is used in calculation.

For each d-spacing in a pressure record the minimum function A (equations 3.15
and 3.14), partial derivatives and weighting tactor are calculated. The weighting scheme
used here was proportional to d2; the solid state detector resolution was maximum at low
energies and convolution of peaks at high energy (i.e. low d) complicated peak centroid
measurement.

The set of linear equations used to invert the matrix A are solved by the Gauss-
Jordan (elimination) method. Iteration continues until the value of G-factor ratioed
against its previous value falls below 10-6. The original parameter conversion is reversed
and the best-fit set of variables is reformed to a set of real lattice constants. The volume
of the unit cell is calculated. The standard deviations of these solutions are estimated
from the diagonal elements of the inverted matrix produced in the final iterative cycle.
Combination of the e.s.d.s from the lattice constants gives a measure of deviation which
can be ascribed to the cell volume. The best-fit cell constants are used to calculate a set of
d-spacings matching the original observed set for that pressure. Hence, the user can
compare these lists for possible errors in the input file generated when indexing the
Bragg data or mis-interpretation of the original pattern. Finally, a reliability factor for the
refinement is calculated based on the well-known crystallographic weighted R-factor
[12].
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Figure 3.1

Typical input file to VARVEC
note:

i) Title record
it) Miller indices record

iii) Pressure records - format: P, dpy, dhi, ..



KNO3

0.83
1.6
2.0
2.58
3.0
4.58
5.1
7.36
9.3

PHASE IV

011

4.2971
4.2216
4.1918
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

200

3.7434
3.6999
3.6698
3.6588
3.6544
3.6251
3.5981
3.5683
3.4708

002

3.3814
3.3495
3.3292
0.0000
3.3212
0.0000
0.0000
0.0000
3.2257

201

3.2751
3.2410
3.2127
3.1911
3.1857
0.0000
0.0000
0.0000
0.0000

210

3.1060
3.0633
3.0373
3.0286
3.0210
2.9882
2.9702
2.9300
0.0000

020

2.7824
2.7590
2.7362
2.7244
2.7205
2.7031
2.6751
2.6479
2.6170

112

2.6959
2.6713
2.6532
2.6499
2.6485
2.6332
2.6183
2.5971
2.5603



3.2.5 Program implementation

The program VARVEC was written in FORTRAN-77 and consists of a main
module of approximately 100 statements and 21 subroutines. Input of the initial set of
lattice constants, data-file name and Bravais code are managed by a main-menu which
also serves to control the execution of calculations. The main module is responsible for
input/output management, control of flow to the main-menu, calls to the subroutine
responsible for a certain Bravais lattice type and the sorting and initial processing of
observed data from the input data file. The program also allows all main-menu options to
be saved for future processing of data from the same sample. All output files from the
program have the same name as the original input file but with different filename
extensions. A typical output file (extension ~.OUT") from the program is shown in Figure
3.2. Another output file bearing a ".GR[F" extension is produced as input to several
graphics packages to plot the solutions.

Some of the 21 subroutines perform specific functions which can be summarised

as follows:

CALCON Caiculation of weighting factor, goodness-of-fit and R-factor.

CHARCK Check input for possible internal conversion errors.

CHECK Check initial lattice parameters with respect to specified lattice type.

DCALC Calculation of d-spacings corresponding to indexed observables.

ERROR Output of (any) errors found by CHECK

HELP Output of information concerning program usage and definition ot crystal
system codes employed.

INTSUM Initialisation of variables to be summed

LOTOUP Lower to uppercase conversion

MENOUT Dump menu options to file for possible later recall.

MENU Main-menu routine which handles all input. HELP option and initiates
processing of data.

OUTPUT Writes all output to specitied files. Output consists of refined lattice
barameters. cell volume, standard deviations, R & G factors, final iteration
matrix equation and indexed obs/calc d-spacings for each pressure
observed. Creates file for graphics post-processing.

SETMAT Creates sets of linear equations.

SOLVE Inverts derivative matrix and solves linear equations.
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Figure 3.2

Typical page of output file from VARVEC

note:

i) Observed data printed out

il) Matrix equation and final inverted matrix printed
iii) Table Of d(,[,Jdcalc



KNO3 HIGH PRESSURE DATA
Pressure = 1.60 GPa Number of obs. = 7 R = 3.69% G = 0.0290

Obs. hkl: 011 200 002 201 210 020 112
Obs. 4: 4.2216 3.6999 3.3495 3.2410 3.0633 2.7590 2.6713

Param. - Value Standard Dev. Cell vol. = 273.081
------------------------ s.d. vol. = 9.2961E-01
a 7.391 1.5673E-02
b 5.513 9.6358E-03
C 6.701 1.3465E-02

Minimised matrix equation:

( 14.859 1.680 2.732 ) ( -1.163E-19 ) ( -5.794E-19 )
( ) | ) ( )
( 1.680 6.737 1.734 ) ( 3.487E-19 ) ( 2.511E-18 )
( ) ) ( )
( 2.732 1.734 11.312 ) ( 2.058E-19 ) ( 2.616E-18 )
Number of iterations performed in refinement = 7

Inverted matrix derived from final Iteration:

( 7.167E-02 -1.397E-02 -1.516E-02 ) Element(1,1) = 7.167E-02
( )

(-1.397E-02 1.573E-01 -2.074E-02 ) Element(2,2) = 1.573E-01
( )

(-1.516E-02 -2.074E-02 9.524E-02 ) Element(3,3) = 9.524E-02

Data correlation

hk 1l Observed Calculated
011 4.2216 ) 4.2576
2 0 0- 3.6999 3.6956
002 - 3373495 3.3506
201 3.2410 3.2361
210 3.0633 3.0698
020 2.7590 2.7567
112 2.6713 2.6700



MONO, ORTHO, RHOMB, TETRA & HEXA:

Creation of fitting parameters and calculation of minimum function,
partial derivatives and standard deviations of refined parameters and cell volume for
specified crystal system.

VARVEC was originally written to cope with the specific reduction of high-
pressure EDXRD data. Other programs have since become available (e.g. in the powder
diffraction program library, Daresbury Laboratory) which have similar functions.
Chapter 6 details a situation in which VARVEC, prediction and indexing programs, and
other cell refinement codes are used together to obtain maximum information from angle-
dispersive powder data.
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CHAPTER 4

HIGH PRESSURE X-RAY DIFFRACTION MEASUREMENTS ON
POTASSIUM NITRATE (KNO3) '



CHAPTER 4

High Pressure X-ray Diffraction Measurements
on Potassium Nitrate (KNO3)

4.1 Introduction

Potassium nitrate displays complex polymorphism with many reversible phase
transitions as a function of both temperature and pressure. Three solid phases are
accessible by temperature variation alone at ambient pressure (see Figure 4.1) with phase
I occuring at temperatures in excess of approx. 400 K. This phase is rhombohedral with a
calcite (CaCQs) type structure |[1]. Phase Il has only limited temperature stability at
ambient pressure (although rapidly increasing temperature stability with increasing
pressure) and is rhombohedral and ferroelectric |1,2]. Phase I, which occurs under
ambient conditions, is an antiferroelectric material with orthorhombic symmetry Pnmu, Z
=4(34].

Increase of pressure beyond the II-III-IV triple point at 0.3 GPa, 294.3 K yields
KNO; IV. Since discovery of this phase by Bridgman [5] a number of attempts have been
made to solve its structure. Early x-ray-based experiments were unsuccessful. Jamieson
studied KNO; 1V using powder diffraction and proposed a rhombohedral cell with Z = 18
[6]. The material was re-examined by Davis and Adams [7] who proposed an
orthorhombic space group (Pmn2,) with Z = 10. In view of these uncertainties Weir ef al
18] used single crystals grown under pressure from aqueous solution. They concluded that
the crystal was orthorhombic with a tetramolecular cell and ¢ = 558, » = 7.52 and ¢ =
6.58 A. Systematic absences were consistent with space groups P2b or Pmnb. In
addition. further phases found only at high temperatures and pressures have been
reported on the basis of differential thermal analysis to 4.0 GPa |9]. No structural
information concerning these phases exists. In this chapter EDXRD measurements (using
synchrotron radiation) have been used for accurately determining the lattice parameters
of KNO; IV as a function of pres;§;ure. This exercise has also extended the search for
further phases to higher pressures.

During the study a Rietveld refinement of KNO; IV at 0.36 GPa using time-of-
tlight neutron powder diftraction was published by Worlten et al [10]. This structure was
reported as orthorhombic Pnma with « = 7.4867, b = 5.5648 and ¢ = 6.762 A and Z = 4,
the atomic co-ordinates were different from those found in phase 1. Worlton ef al’s study
therefore confirmed the unit cell of Weir er al {8).



Figure 4.1

The phase diagram of KNO;
(Pistorius, 1976)
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4.2 Experimental

The finely powdered material was placed in an inconel gasket with a hole initially
of 200 um diameter, centered in a d.a.c.. A 4:1 mixture of methanol:ethanol was used as
the pressure transmitting medium, thus ensuring hydrostaticity. Pressure was determined
by the ruby R-line method. measured using back-scattering from an Ar+ ion laser (see
Chapter 2). Diffraction from the gasket was avoided by reducing the incident beam cross
section to approx. 40 um? using tantalum slits. The ditfraction angle used in all patterns
10.04° (20).

A large distance between the detector and the sample together with fine detector
slits ensured the highest possible resolution and signal/background ratio. A pure
germanium solid state detector with an energy resolution of 165 eV (FWHM) at 5.9 keV
was used. Exposure times were typically 1000 seconds. Diffraction patterns were

obtained as a function of increasing pressure.
4.3 Data analysis and results

Figures 4.2, 4.3 and 4.4 show examples of EDXRD spectra recorded as a function
of pressure. For each indexed (hkl) diffraction peak the interplanar spacing dy can be
calculated from the Bragg equation, written in terms of the corresponding photon energy
Ep:

Eidikisin® = he’2 = 6.199 keV.A -+ (4.1)

The peak positions (Ey) were accurately determined by fitting Gaussians to the
observable peaks using the GENIE data analysis package |11]. The observed peaks were
shown to have excellent Gaussian symmetry. The calculated values for dy were fitted
via a non-linear least squares method to the observed dyy, (obtained from equation 4.1)
based on an orthorhombic unit cell using the locally written computer program VARVEC
(see Chapter 3.2). The lattice vectors «. b and ¢ as fitting parameters. The function to be
minimised. A, was defined thus: '

A= dzlzzobs - dslzculc = d:i::nhs - h2as2 - k2h#2 - ¢ (42)
(*indicates reciprocal space)

Excellent agreement was obtained. as illustrated by the 2.0 GPa data. Table 4.1.



Figure 4.2

EDXRD indexed pattern of
KNOs; II at ambient pressure.
(e = escape peak of detector).
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Figure 4.3

EDXRD indexed spectrum of
KNO5 IV at 2.0 GPa
(e = escape peak of detector).
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Figure 4.4

The EDXRD patterns of KNO3 at

various pressures (GPa).
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The refined unit cell vectors are given in Table 4.2 and their pressuré
dependencies in Figure 4.5. The goodness of {it is characterised by a factor G, defined as:

1
G(%) = 100% x (2@_4:)2
m-n

where w is the weight for d,,, m the number of observed reflections at a given pressure
P, and n the number of fitting parameters (i.¢. three). The weighting scheme used was w
< d*hy.

The linear axial compressions (Figure 4.5) are anisotropic with gradients corresponding
to:

a:-5.6x102 A.GPa-t b: -3.6x10-2 A.GPa-t ¢: -2.8x10-> A.GPa-!

The axial compression ratios are therefore, a:h:¢c = 1.00:0.64:0.50. The variation
of the unit cell volume with pressure. dV/0P, gives a linear compressibility of -1.69x10"
2GPa-1, as shown in Figure 4.5. This is in good agreement with the macroscopic
compressibility measured by Bridgman [5] of -1.76x10-2 GPa-! (Walraten er al 1982)
[12].

4.4 Discussion
4.4.1 X-ray results

Potassium nitrate is an excellent example of a material which displays complex
structural polymorphism but which cannot be studied by high-pressure single-crystal
diffraction unless, as in Weir’s work. the high-pressure phase can be prepared directly.
The I/IV phase transition at 0.29 GPa is strongly first-order, with a volume decrease of
11.5%, which always causes single crystals to shatter. A similar decrease (15.54%)
occurs at the thermally induced III/1V transition [ 13].

Little change occurs in b at the II/IV transition but major movements take pface in
~the (ac) planes which result in considerable relative changes in ¢ and c, see Figu}es—4.6(i)
and 4.6(ii). Viewed down «, in phase II the NO;- ions are almost overlaid, although with
staggered N-O bonds. They are displaced substantially from each other along ¢ on
entering phase IV, and are rotated about axes through nitrogen and parallel to b. These
rotations result in columns of NO;-’s all tilted up (or down) in the same sense.
Concurrently, the K+ ions move along a with two consequences: (1) the coordination
number of K+ is increased from 9 (2.82 to 2.92 A) to 11 (2.79 to 3.06 A); (2) the
alternating layers of K+ and NOs- in phase II are replaced by mixed K+, NOs- layers.
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Table 4.1 Observed and calculated d-spacings for

KNO; at 2.0 GPa.
d(obs) I(obs) d(calc) hkl
A % A
3.6698 25.80 3.6655 200
3.3292 12.90 3.3280 002
3.2127 9.70 3.2108 201
3.0372 100.00 3.0437 210
2.7362 51.60 2.7310 020
2.6532 46.80 2.6498 112
2.4577 83.90 2.4640 202
2.2883 16.1 2.2939 301
2.1887 35.50 2.1900 220
2.1293 48.40 2.1235 103
1.8230 3.90 1.8294 222
1.7763 29.00 1.7561 031
1.6825 320 1.6812 411

Table 4.2 Variation with pressure of the lattice parameters of KNO; IV
and unit cell volume*

P(GPa) a(A) h(A) c(A) V(A3) G(%)
0.35 7.487(3) 5.565(2) 6.763(3) 281.75(30) 0.12
1.60 7.395(18) 5.507(15) 6.696(18) 272.70(1.2) 021
2.00 7.331(18) 5.462(14) 6.656(17) 266.50(1.2) 0.21
2.58 7.295(15) 5.449(12) 6.662(24) 264.80(1.3) 0.17
3.00 7.282(16) 5.441(13) 6.650(16) 263.50(1.0) 0.18
-~ 4.58 7.219(38) 5.400(27) 6.639(54) 258.85(2.8) - 0.38
5.10 7.175(26) 5.346(18) 6.613(38) 253.69(1.9) 026
7.36 7.097(49) 5.288(35) 6.571(71) 246.60(3.5) 0.51
9.30 6.944(18) 5.236(11) 6.461(13) 234.94 (90) 0.16

(The goodness of fit G for each data-set is also shown)
“estimated standard deviations are shown in parentheses



Figure 4.5

Variation with pressure of
unit cell parameters and volume ratio
(V, is the initial value for phase IV)
for KNO; IV.

Note:
Solid lines are extrapolated back to zero pressure:
this 1s not meant to represent the
compressibility in phase II.
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Figure 4.6

(1) Stereoscopic projection
down a for KNOs II.

(11) Stereoscopic projection
down a for KNO; IV






Comparison of the unit cell parameters suggests that the equivalences are:

II(ambient) IV(0.29 GPa) Change/A
a 64213 6.763 +0.34
b 54119 5.565 +0.15
C 9.1567 7.487 -1.67

where b has been kept in common (as it is perpendicular to the («¢) mirror plane) and «
and ¢ have been interchanged on moving from phase II to phase IV in order to give the

least change in each case.
4.4.2 Raman spectra

In the absence of definitive diftraction-based information a variety of other
techniques has been used to search for. and characterise. high-pressure polymorphs. Of
these, Raman spectroscopy has been one of the most important. The Raman spectrum of
KNO; at high pressures has been studied by a number of groups (Fong and Nicol 1971
[ 14], Buckelmann er «f 1976 |15]. Igbal ¢r ul 1977 |4]. Medina 1981 |16] and Adams and
Sharma 1981 |17]), showing that those of KNO; II and IV are so different trom each
other as to suggest an origin in different space groups. Indeed. Medina concluded that
"...it is obvious that phase IV cannot have the same space group as phase II: the spectra
are different in both the external mode region and the internal mode region’. The
resolution of this dilemma lies in recognising that the packing within the two phases is
quite different, despite the common site and factor groups.

Factor group analysis (f.g.a.) for the tetramolecular Prnma (=D,, '¢) cells of phases
Il and IV yields the results of Table 4.3. This requires eighteen Raman-active lattice
modes. The spectra of KNQO; II show five bands in this region, and KNOj; IV has six,
although band shape analysis suggests two turther (unresolved) contributions.

The spectrum of KNO; II has been accounted for by Ismail e al [18] who noted
that the crystal structure is only very slightly distorted from that of P3m, (Ds4). Selection -
rules for this structure are also given in Table 4.3. These selection rules allow five
Raman-active lattice modes, exactly as is observed. In contrast, the lattice mode spectrum
of phase IV is in better agreement with the D-, selection rules. Moreover, in the vs (E’ of
the D3y, ion) v(NO,), region appearance of four bands (1441, 1396, 1387 and 1370 cm-! at
2.6 GPa, [17]) is in precise agreement with the f.g.a. requirements. Phase II also shows
four bands (1446. 1385, 1361 and 1345 cm-1) but the two higher ones are very weak.
Thus, the intensities are most readily understood on the basis of the D3y-like model.
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Table 4.3 Factor group analysis and correlations of m§

translations; R = N03_ librations; I'(vib)

vibrations.

This column is identical with I(vib).

3

NO, "~

A: F.g.a.

p!6 N T T R T(vib) Activit

2h T A y
Ag 9 4 1 4 Raman
Blg 6 2 2 2 Raman
Bzg 9 4 1 4 Raman
83g 6 2 2 2 Raman
A, 6 2 2 2 Inactive
Blu 9 3 1 4 I.r.
B,u 6 1 2 2 I.r.
B3u 9 3 1 4 I.r.
oid No, T R [(vib) Activity
Alg 4 2 0 2 Raman
Azg 1 0 1 0 Inactive
E; 5 2 1 2 Raman
A, 1 0 1 0 Inactive
4y, 4 1 0 2 I.r.
ﬁ, 5 1 1 2 I.r.

B: Correlations

Crystaln b Site Ion Site ,5 Crystal

pl6 C (x2) D C D3

2h s 3h 3v 3d
A Byt By By, A vy 4y 4 At
ArB)+B ¥ By, A Vyr " 4 At
2(4,+B+By+ By, A+A! Vg £ E Eg+Eu
r re ‘4

+Au+Blu+82u+Bsu) A'+4 Vqs E E _Eg+Eu
NT = total no. of modes; TA = acoustic, T = optic branch

internal



The vy (E"in D
factor group require four components whereas only one is seen (715 cm-t), in exact
agreement with the Dj, rules. By 2.6 GPa in KNO; IV, there are two clearly resolved
bands together with a hint of an unresolved component on the low frequency side, more

) ®(NO,), region shows similar behaviour. In KNOz II the D2y

3h

nearly in accord with the Day rules.

Hence. although both KNO: Il and IV have the same atoms on the same set of
Wyckoft sites in the same space group. their vibrational spectra are very different
because the packing in phase II is very close to the symmetry of D, The spectra
faithfully reflect the change of structure accompanying the transition. It follows.
however. that a change of structure need not require a change of space group. This
highlights the dangers of applying spectroscopic techniques alone to investigate structure.
although in recent years they have been used to accumulate a considerable body of

information on phase behaviour.

‘5
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CHAPTER 5

A High-Pressure Study of a Valence Transition in EuPd,Si;

5.1 Mixed Valence and Valence Transitions

There are many mixed-valence compounds. such as Fe;O4 and CsAuCls, in which
an element exists simultaneously in two different stable valence states. Thus, Fe:O; is
more accurately represented as (Fell)(Feit1).03 and CsAuClz as Csa[ AulCl J[AumiCly].

In the solid state physics literature the term "mixed valence" is used in an entirely
different sense. and the field is further confused by application of the synonyms: "mixed
configuration". “fluctuating valence", and "fluctuating configuration". These terms
describe in a very loose and rather misleading way. complex solid state electronic band
structures in materials in which an element may_ adopt more than one electronic
conftiguration | 1].

Under a given set of experimental conditions, the band structure of such a solid
may in general be represented as a linear combination of the two notional "parent”
configurations,

W(total) = a, ¢, + bdn

Then, if these two electronic configurations are thought of as different "valence
states”, the material is aptly described as of "mixed valence", although it is clear that all
the atoms of the element in question in the solid have the same electron configuration.
Thus, the term "homogeneously mixed-valent" is often used to describe these systems, in
contrast with the "inhomogeneously mixed-valent" materials familiar to chemists, e.g.
Fe:0y4. The situation is closely analogous to that of an element adopting different
hybridisatibn schemes in its molecular compounds, although no chemist would describe
these as representing different valence states.

With variation of temperature or pressure the electronic levels of all materials are
altered in absolute and relative terms. It follows that W(total) will then have different
values of a; and by and that, in current solid state parlance, a change of valence is deemed

to have occured. The "average valency” R is defined in these circumstances by:

R = Xla |2/X|b,J2
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where the summation is over the occupied part of the conduction band. As temperature or
pressure is varied over a range of values, the accompanying changes in a; and by and
therefore also in R, are sometimes regarded as constituting a “"continuous valence
transition". The effect of "pressure tuning" in particular is to affect the relative and
absolute values of the electronic energy levels, commonly resulting in creation of a new
ground state of the system with radically different properties, ¢.g. insulator-metal and
spin-flip systems. The following example is given to help clarify these concepts. '

5.2 Example: The case of SmS

This solid has the rock salt structure and at s.t.p. is described nominally as
Sm2+§2- with the atoms having the outer electron configuration 4f65de6s2 and 3s23p+4
respectively. The 4f level is not far below the 5d. In solids the electron levels broaden
into bands. In the case of SmS the d-levels broaden and hybridise with the 6s band in the
process, but the f-levels, being buried well within the atoms, are little affected and remain
atomic to first order [2-4]. The resulting band structure may be represented by Figure 5.1.

Under pressure the bottom of the crystal-field-split d-band is lowered relative to
the t-level and eventually (at about 0.6 GPa) crosses it. This crossing is accompanied by
large volume and resistivity changes. and the colour turns from gold to black; in other
words, there is a classic insulator-metal transition. At and beyond this crossing point the
t-levels hybridise with d-levels on neighbouring atoms (symmetry forbids hybridisation
with d-levels on the same atom) but they remain close to their atomic levels in energy,
constituting a sharp peak in the density-of-states distribution. Figure 5.2.

Near this peak the wave functions are linear combinations of d-like and f-like
wave functions, the proportions varying rapidly near the peak. The wave function
represents a linear combination of atomic orbitals (l.c.a.0.) which is partly f5d and partly
6. The d-electron is relatively free in the lattice: thus, we may describe W(total) as
representing a linear combination of 3+ and 2+ valence states on the rare earth ion. This
is the only sense in which such materials are of "mixed valence". Sm2+ and Sm3+ do not
exist in SmS as separate entities, either as ordered or random mixtures. - — h

The "average valence" R defined above is not the "instantaneous valence"
because there are always fluctuations: thus, the local f-character will fluctuate around the
value represented by R. In this sense these compounds have “fluctuating valence".



Figure 5.1

Band structure in SmS
showing hydridisation of
6s, 5d and to a lesser extent, 4f

Figure 5.2

Density-of-states distribution
in SmS, showing sharp peak
around the 4f level
(Eg is the Fermi level)
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5.3 Other mixed-valence materials

The concept of "homogeneously mixed valence" in the sense used in solid state
physics is thus seen to be a piece of jargon associated with certain electronic band
structure effects, observed mainly in materials containing a rare earth (or lanthanide)
component. Because there are many possible materials of these types, a huge showcase
of physical phenomena exists. Nevertheless, the basic concepts used here are no different
from those traditionally associated with semiconductor physics and "band structure
engineering", which have delivered many important devices from diode lasers to high-T,
superconductors.

Particularly interesting systems, from the solid state physics angle, are those in
which f- and d-levels are in close proximity, such as in Ce and Yb and their compounds,
as these show many unusual effects as specific energy levels are tuned relative to each
other.

5.4 EuPd,Si; and related materials

A series of materials MRh,Si> and MPd-Si» (where M = lanthanide) exists. They
have the tetragonal (/4/mmm = D 17, Z = 2) ThCr.Si2 structure, represented in Figure 5.3
[5]. This structure type is of note in that the magnitude of the lattice constant a is
primarily set by the size of the lanthanide ion, whereas ¢ is mainly determined (in the
case of EuPd-Si») by the Pd/Si skeleton [6].

The compound EuPd-Si- is of special interest in that it shows a lattice volume
anomaly with respect to the other lanthanide isomorphs. It also shows a strong
temperature anomaly near 150 K in several physical properties. Mdssbauer data show a
large isomer shift (due to the Eu) between 77 and 300 K with reference to the shifts
observed in systems of di- and tri-valent europium |7]. The values of the average valence
obtained were ~+2.2 at room temperature and ~+2.9 in the limit T—0 K. Low
temperature x-ray diffraction work (on “powders) using monothomatic radiation has
shown that the lattice paramét—é'ra shortens as T apbroaches zero [7-9]. Figure 5.4 shows
these data, the function 1/¢.(0a/0P) giving a maximum representing the transition mid-
point. The S-shaped curve is characteristic of the slow change found in these compounds,
which follows from the europium ion shrinkage as the average valence increases. We
have studied the effect of pressure upon the lattice parameters of this compound at
ambient temperature, using energy dispersive x-ray diffraction.



Figure 5.3

ThCr,St, structure type
(I4/mmm, Z = 2)



~Unit cell of ThCr,Si,—type structure



Figure 5.4

Variation of lattice parameter a
with temperature in EuPd,Si..
Data collected using angle-dispersive
powder diffraction.
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5.5 Experimental

The pure sample of EuPd,Si> was prepared in a tri-arc furnace with excess Eu and
annealed at 1100 K for one week. The powder diffraction experiments were performed at
the Daresbury SRS with the diffractometer operating in energy-dispersive mode without
a monochromator and the detector operating at a fixed angle 20. A Diacell Products d.a.c.
containing inconel gaskets (0.2-0.3mm hole) was used for the high-pressure scans, the
pressure being determined by the ruby R-line method (see Chapter 2). A 4:1 mixture of
methanol/ethanol was used as a pressure transmitting fluid. The Bragg peak positions
were accurately determined using the GENIE data analysis package. Lattice parameters
were calculated at varying pressures using the computer program VARVEC (see Chapter
3).

5.6 Results

Two diffraction spectra collected under pressure using the sample of EuPd,Si. are
shown in Figures 5.5 and 5.6. The sharp, well-resolved Bragg peaks were indexed
successfully based on the tetragonal unit cell with « = b = 4237 A and ¢ = 9.851 A.
Although dominated by fluorescence peaks. the data collected showed very little elastic
(Compton) scattering which would manifest itself as background. The relatively small
number of reflections observed was due to the high symmetry crystal lattice.

The observed values for dyy were fitted to calculated dpg using ¢ and ¢ as fitting
parameters. Table 5.1 contains values of ¢ and ¢ calculated at various pressures with their
corresponding errors in parentheses. Figure 5.7 represents the variation of both lattice
parameters, a and ¢ to the highest recorded pressure, 3.1 GPa. These data show a wide
scatter, such that no attempt of any type of least squares fit should be attempted.
However, this behaviour is not totally unexpected (vide infra). Values of a calculated
from shifts in the da reflection fit the familiar S-shaped curve noted previously, Figure
5.8. The point of inflexion observed in the steepest portion of the curve implies a volume
decrease occurs around 0.8 GPa. . o -

5.7 Discussion

Figure 5.7 shows a wide scatter of data-points; the data do not fit using either a
linear regression analysis or, indeed. the S-shaped curve represented in Figure 5.8. These
results can easily be accounted tor by the etfects of uni-axial stress present in the sample
system. The anisotropic stress components affect differently the dpy spacings. Another



Figure 5.5

Energy dispersive powder
pattern of EuPd,Si- at
0.2 GPa

e = escape peak of detector
In = inconel gasket material
F = fluorescence
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Figure 5.6

Energy dispersive powder
pattern of EuPd,Si- at
2.0 GPa
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Table 5.1 Variation of lattice parameters with pressue in EuPd,Si,*

P(GPa)

043
0.63
0.79
0.92
1.31
1.81
3.11

a(A)
4.123(30)
4.118(26)
4.11528)
4.105(28)
4.138(25)
4.140(25)
4.116(38)

c(A)
9.723(132)
9.790(287)
9.761(315)
9.520(147)
9.676(164)
9.673(160)
9.381(370)

*calculated standard deviations are shown in parentheses

V(A3)
165.2(3.3)
166.0(5.3)
165.3(5.8)
160.4(3.3)
165.7(3.4)
165.8(3.4)
159.0(6.9)



Figure 5.7

Variation of lattice parameters
a (top) and ¢ between
0 and 3.1 GPa
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Figure 5.8

Variation of a with pressure
(where a is calculated
using d,,, data)
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very clear example of this phenomena is found in CeS [10] where the stress components
effect on the cubic lattice can be represented by the function:

[(hkl) = (h*k2 + k212 + I2h2)/(h2 + k2 + 12)2 (5.1)

which is minimum for h,0,0 reflections and maximum for h,h,h lines [11]. Clearly then,
the value of a should be calculated from h,0,0 lines as opposed to an average value
derived from all possible h,h,h lines. This conclusion has also been verified in the case of
CeAl, [12]. All experiments presented here were carried out in the hydrostatic
methanol/ethanol medium, and the ruby R-lines showed no sign of the formation of a
non-hydrostatic sample chamber. It is suspected that the very hard crystallites could have
been orientated in the sample chamber to be in contact with the diamond faces, and
therefore would experience greater pressure on some axes than the homogeneous
pressure produced by the surrounding fluid. This would explain the similar effects to
those seen in CeS and CeAl,, these cubic cases being extrapolated to this tetragonal
problem. These observations would not have affected the low temperature data shown in
Figure 5.4.

The a parameter variation calculated from the dag line gives a true representative
diagram. Again, this follows equation 5.1 in so much as h,0,0 lines provide reliable
information. The curve follows a smooth path over a 1.0 GPa range suggesting a gentle
contraction of a around 0.8 GPa. At ~2.0 GPa EuPd,Si- has lattice constants (a = 4.16 A,
¢ = 9.87 A) which compare exactly with those of SmPd,Si>. These two compounds are
isomorphous and hence this suggests the europium ion approaches the tri-valent state
(and size) at high pressure, the value of a depends primarily upon the europium ion
radius. The sample has undergone a "valence transition" between ~0.6 and 0.16 GPa
resulting from a hydridisation of 4t and 6ds bands and a volume collapse of 3.4%. This
volume reduction is equivalent to a decrease of the europium ion radius by 0.0385 A, and
assuming a linear relationship between valence and atomic radii (r2+ = 1.17 A, 13+ = 0.947
A) this gives an increase to the europium "valence" of about 0.2 at 2.0 GPa.

We are seeing the same band structure tuning effect with pressure as that
observed with temperature variation. The calculated increase in "valence" on the
europium ion of ~0.2 is of the same order of magnitude as that seen in CeS, where the
increase is ~0.25 but over a much greater pressure range (0 to 25 GPa) [10].
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CHAPTER 6

STRUCTURAL INVESTIGATIONS OF THE
METHYL MERCURIC HALIDES CH3HgX (X-= Cl, Br, I)



CHAPTER 6

Structural Investigations of the Methyl Mercuric Halides
(CH;HgX, X = CL,Br,I)

Introduction

The series of compounds CH;HgX (X = CL. Br. I) have been studied in detail
under high-pressure using Raman spectroscopy. This group of molecular solids is of
interest to the spectroscopist because its members exhibit phase transitions in which a
molecular internal torsion is implicated. These materials are ideal candidates for study
because of the simplicity of their structures and the existence of a single torsional mode.
Previous study | 1] has shown that each compound exhibits at feast one phase transition.
either with temperature or pressure, and a vibrational “soft mode™ has also been observed
in each. Detailed structural information is essential for unambiguous assignment of

spectra. and thus the understanding of phase transitions and their mechanisms.

In this chapter two of the series of compounds have been studied using x-ray
diftraction. The ambient crystal structure of the iodide has been solved. Structure solution
and low temperature investigation of the solid state phase transition for the chloride has
been attempted using Rietveld refinement and Bragg indexing methods.

6.1 Crystal Structure of Methyl Mercuric lodide
6.1.1 Introduction

As the structure of CH3;Hgl was unknown a single crystal x-ray ditfraction study
was undertaken to complete the structural information available for the methyl mercuric
halide phases under ambient conditions. The three crystal structures vary in detail but
comparisons are drawn between CH;Hgl and the analogous chloride and bromide.

6.1.2 Experimental

A commercial sample of Analar quality CH;Hgl was recrystallised from
ethanol/methanol and turther purified by sublimation using a “cold-finger’ apparatus. The
crystals were found to be thin platelets which over a certain size exhibited "twinning’;

consequently a small crystal was chosen. Methyl mercuric iodide sublimes in the



atmosphere at s.t.p. and the resulting vapours are also very toxic by inhalation. Therefore,
the crystal was sealed in a glass capillary prior to diffraction.

6.1.3 Symmetry and Cell

Oscillation and Weissenberg photographs were taken to establish cell constants,
crystal orientation and space group. The observed systematic absences indicated either
orthorhombic or monoclinic unit symmetry fitting the space groups Pbcm (Dap!t), Pbc2,
or P2,/c (Cay5) respectively. The unit cell parameters were later refined from 20-scan data
measured on the diftfractometer.

6.1.4 Crystal Data
CH;Hgl formula weight = 342

Space group  Pbcm
a=8704A b=7404A (=7226A

a=f=y=90 F(000) = 568

Cell volume = 465.7 A3 Z=4 D.=4.88gcm-=3
Crystal size =0.26 x 0.016 x 0.24 mm {001},{010},{100}
MMo-K,,) =0.7107 A u(Mo-K ) = 379 cm-!

6.1.5 Data Collection

All intensity data were collected on a Digital PDP-8 controlled Stoe 2-circle
diffractometer using the w-scan method. Acquisition of data, experimental control
parameters and data transfer were managed by a Sirius microcomputer interfaced to the
PDP-8. A total of 2208 reflections Akl was collected from all four quadrants (i.e. th, tk
and / = 0 to 8) and these data transferred to a mainframe Digital VAX 8600. Data work-
up was carried out by a locally written program STOWK [2]. The computer program
SHELX76 [3] was used for all subsequent calculations. The data were checked against
the symmetry specified by the orthorhombic -space group and 123 reflections were
rejected as systematically absent. The conditions lifniting posgible reflections in the space
group are: ) '

Okl k=2n
h0!l [=2n

However, some ’absent’ reflections which had been rejected were found to
diffract significantly (particulary those associated with the b glide perpendicular to a, e.g.
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0 1 2). These reflections are allowed in the monoclinic space group (P2 /). However,
from the results of various refinement models (vide infra), the highest symmetry model
(Pbcm) was eventually chosen. The presence in the data of these *absences’ could arise
from double reflection (Renninger effect), in which radiation reflected from two strongly
diffracting planes appears to arise by single reflection from a third [4]. Glide planes give
rise to many absences and apparent contradictions can usually be ascribed to double
reflection, although the Renninger effect generally exhibits itself by contributing
additional intensity to an allowed reflection. Imperfections in the crystal lattice (e.g. a
minor degree of "twinning’) may cause some unit cells to be misaligned with respect to
the mounting axis giving anomalous results. The resulting 2085 reflections in the data
were merged in order to average symmetry related peaks and 557 unique reflections were
obtained. This operation gave an R-factor of 3.5% indicating a favourable 'merge’.
Check reflection measurements made every 50 reflections in each layer indicated no
noticeable decay of the crystal during diftraction.

76.1.6 Structure Solution and Refinement

Structure solution and refinement were achieved again using SHELX76. The
heavy atom approach using the Patterson technique was employed to determine the
positions of the mercury and iodine atoms. A difference Fourier synthesis elucidated the
carbon position; unsurprisingly, the hydrogen atoms were not located.

A full-matrix least squares refinement of atomic positional parameters was
undertaken allowing anisotropic thermal parameters for all determined atoms. The
application of a standard weighting scheme resulted in the following crystallographic R-
factors:

R =5.89% Ry = 5.10%
where R = Z|IF, HFd/ZJF, 2 |
and Ry = Ew {(|F [{Fc))/ZwIF, 2} 12 with w = 8.837/{ 62(|F,})+0.00017|F,J}

Initial observations of Weissenberg p_hotograph_g suggested the spaée group
symmetry for CH;Hgl to be either Pbcm, Pbc2, (orthorhombic) or P2,/c (monoclinic).
The lattice parameters of the unit cell suggested the orthorhombic lattice (x = f =y =
90°) but some retlections expected to be systematically absent were found to be have
significant intensity. The possible explanations for this phenomenon are given above in
section 6.1.5. The original data were merged in both the orthorhombic and monoclinic
symmetries (monoclinic merge gave 1006 unique feﬂections, R = 3.1%) and separate
least squares refinement carried out for each model. Pbc2, is a polar space group and
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therefore the position of Hg was fixed to define the origin. The enantiomeric model for
this space group was also refined as a possible solution. Table 6.1 compares the least
squares parameters for each model and details any constraints imposed in refinement.

The lowest R-factors were found for the Pbc2, models but the thermal parameter
component Uj;; was of the same order throughout. Uss is the thermal parameter
perpendicular to the mirror plane in the Pbcm model. Here all atoms are forced to lie in
this mirror plane and therefore a significantly higher value of U3 would be expected if
this constraint were incorrect. The difference in the R-factors was very small between the
orthorhombic options; those of the monoclinic model having relatively high values. The
e.s.d.s of the diagonal thermal parameter components were lower in the higher symmetry
orthorhombic model than those of their counterparts where the screw axis replaced the
mirror plane. Consequently, the highest symmetry group (i.e. Phcm) was chosen, with all
the atoms on sites 4d i.e. Hg, I, and C on special positions (X,y,1/4).

6.1.7 Discussion

CH;3Hgl has near-linear molecules packed along a, with adjacent chains oriented
in opposite directions. The final positional and thermal parameters for all refined atoms
are given in Tables 6.2 and 6.3. Table 6.4 contains the relevant bond distances and anglé
calculated in the final structural model. The crystal structure of CH;Hgl is shown in
Figure 6.1.

6.1.8 Comparison of CH3;HgX (X = Cl, Br, I) structures

Table 6.5 lists the crystal data for the methyl mercuric series CH;HgX (X = Cl,
Br, I). The structure of CH;HgCl was reported by Grdenic and Kitaigorodskii in 1949 [5]
to be tetragonal with Z = 2 in space group P4/nmm (D7,,). However, comparison of the
Hg-Cl bond distance (2.5 A) with that in HgCl, (2.25 A) [6] and HgCl vapour (2.34 A)
[6] casts suspicion on the validity of this determination. An attempt was made to repeat
the structure determination but no quality single crystals could be grown, possibly due to
the high degree of disorder suspected in the chloride (vide infra). Oscillation and
Weissenberg photographs (although of very poor quality) agreed with the published
lattice parameters and tetragonal symmetry. However, the analysis derived from this
publication should be viewed with suspicion. The reported crystal structure is shown in
Figure 6.2. The bromide also adopts a tetragonal unit cell, PZZ,m with Z = 4 [7], the
structure is shewn in Figure 6.3.



Table 6.1 Comparison of refinement parameters for CH;HgI*

Symmetry NP+ R(%)

1P2y/c . 28 643
2 Pbc2, 27 547
2 Pbc2,¢ 27 5.60
3 Pbcm 19  5.89

Ru(%) RG(%)

6.13

4.78
4.94
5.10

Constraints placed on | to 3:

1 None
2 Hg z co-ord. fixed
ze " n 1"®

7.43
5.34
5.46
5.59

Uss(Hg)

0.0732(8)
0.0758(10)
0.0751(10)
0.0732(8)

Uss(I)

0.0717(12)
0.0733(15)
0.0750(14)
0.0725(12)

with enantiomeric atomic positions

3 All atoms fixed on (x,y,14), Uz and Uz fixed

+NP = number of refinement parameters.

*estimated standard deviations are shown in parentheses.

Us3(C)

0.0504(148)
0.0558(412)
0.0603(325)
0.0641(155)



Crystallographic results for CH;HgI

Table 6.2 Atomic parameters®

x/a v/b Z/c
Hg 0.1504(2) 0.0536(1) 0.2500
| -0.1527(3) 0.0534(2) 0.2500
C 0.4028(28) 0.0667(31)  0.2500

All atoms on special positions (x,Y,1/4)

Table 6.3 Thermal parameters®

Ui . Ua» Uzs Uiz
Hg 0.0477(9) 0.0625(7) 0.0732(8) -0.0006(8)
I 0.0507(14) 0.0620(10) 0.0725(12) 0.0007(14)
C 0.0056(104) 0.0508(131) 0.0641(155) 0.0001(11)

U3, Uas lie in mirror plane and are constrained in refinement

Table 6.4 Bond distances and angle*

Hg-1 2.638(3) A
Hg-CH3 2.199(24) A
H,C-Hg-I 177.5(6)°

*estimated standard deviations are shown in parentheses.



Figure 6.1

a) The crystal structure of methyl
mercuric iodide, CH;HgI

(-CH3 groups are shown by the narrowest ellipsoids)

b) Stereoscopic projection of CH;Hgl
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Comparison of structure in the CH;HgX series

Table 6.5 Crystal data for the CH;HgX (X = Cl, Br, I) series*

X a(Ay bA) c(A) Hg-X Hg-C C-Hg-X Z
Cl 462 462 939 251 2.06 180° 2
Br 691 691 883 2499(7) 2.40(9) 177(2)° 4
I 8.70 7.40 723 2.638(3) 2.20(2) 178(1)° 4
(1 723 740 8.70 " " " ")e

*q” =cin Pbcm

Table 6.6 Contact distances for Hg...X and CH;...CH3 in CH3HgX+

X Hg..X(A) Ne¢  CH3..CH3(A) Ne¢

Cl 3.27 4 4.2 4

Br 3.289(4) 2 3.76(9) 4
3.640(4) 2

I 3.699(0) 2 4.07(3) 2
3.704(2) 2 4.11Q2) 2

+N = number of closest contacts

*estimated standard deviations (where possible) are shown in parentheses.



The three structures are basically the same, with layers of methyls and HgX
alternating along z throughout the lattice. Table 6.6 lists the contact distances between
Hg-halogen and methyl-methyl groups calculated using the locally written computer
program GEOM [8]. Halving the CHs...CHj; distance gives an estimate of the overlap (if
any) of the methyl groups in neighbouring molecules taking the radius of a freely rotating
methyl group to be 2.1 A. Hence, the chloride with CH;...CH; = 42 A is expected to
have overlap to a small extent, it is postulated that hydrogen atoms of one group
intermesh with those of its nearest neighbour, like cogs in a gearwheel. The methyl
groups must be rotating in the chloride since they inhabit sites 2¢, the symmetry of the
latter in P4/nmm being 4mm (Cy,). a static methyl would require threefold site symmetry
(i.e. C;,). The resulting disorder could account for the inability of the chloride to produce
good quality single crystals, which in turn makes further single crystal x-ray work very
difficult. The CH;...CHz contact distances in the bromide and iodide suggest higher
degrees of overlap, especially in the bromide. The site symmetry found in both the above
(on 4e in PZZ,m and 4d in Pbcm) is m (o,); this mirror plane is compatible with a static
methyl group and hence ordered hydrogen positions.

By exchanging a and ¢ in the CH;Hgl unit cell the orthorhombic lattice can be
thought of as pseudo-tetragonal with a = 7.23 b = 7.40 A and ¢ = 8.70 A. The packing
arrangements in all three structures are similar, the C-Hg-X skeleton shows a small
deviation from linearity when X = Br and I but is supposedly linear in the chloride. The
fractional co-ordinates of each set of atoms along the packing direction z also show a
marked similarity (if ¢* = @ in Pbcm). In all three structures the contacting methyls are
central to the unit cell. It is interesting to note that the ¢ lattice parameter shortens as the
halogen size increases, the most densely packed of the three is the bromide, the increased
size of the halogen in the iodide driving the lattice to be pseudo-tetragonal (i.e:
orthorhombic) on crystallisation.
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Figure 6.2

a) The crystal structure of methyl
mercuric chloride, CH;HgCl

b) Stereoscopic projection of CH,HgCl
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Figure 6.3

a) The crystal structure of methyl
mercuric bromide, CH;HgBr

b) Stereoscopic projection of CH;HgBr
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6.2 Powder Investigations of CH,HgCl at different Temperatures
6.2.1 Introduction

Orthodox single crystal methods of structure determination in the case of
CH;HgCl proved impossible because of the poor quality of the single crystals obtained.
In the light of this, angle dispersive powder diffraction was used in an attempt to confirm
the structural model proposed by Grdenic ¢r al [S] for the ambient phase of this
compound.

The phase diagram of CH;HgCl deduced trom Raman spectroscopy [1] is shown
in Figure 6.4. The vibrational spectra suggest that the low temperature phase II of
CH;HgCl is iso-structural with the tetragonal ambient phase II ot CH:HgBr (P42,m. see
Table 6.5 for lattice parameters). The CH:HgCI (I) spectra were analysed to show a cell
doubling in the reported transition from phase 1 at 162.5 K. Diffraction data were
collected for CH;HgCl at 75 K in order to test the hypothesis of structural similarity
between the two phases of the chloride and bromide.

Rietveld analysis was attempted using the data collected at higher temperature but
this was not possible following the phase change as no complete structural model has yet
been proposed. The low temperature diftraction pattern was used to attempt Bragg peak
indexing of CH3;HgClI (1I).

6.2.2 Experimental

A commercial sample of CH;HgCl was recrystallised from methanol/ethanol and
tfurther purified by sublimation in a “cold- finger™ apparatus. The sample was ground to a
fine powder and sealed in a 0.5 mm glass capillary. The powder diffraction experiments
made use of the wiggler enhanced synchrotron radiation source at Daresbury on station
9.1. An incident wavelength of 1.0098 A was selected using a Si triple crystal
monochromator. Both experiments were carried out in an Oxford Instruments cryostat. A
copper block acts as a heat exchanger between helium gas. which cools _the rotating
capillary sample and liquid helium in contact with the block. The cryostat was calibrated
using the lattice parameter of silicon to be accurate within 0.2 K at temperatures above 30

~ K. Further calibration experiments using the inter-planar spacings of silicon showed the

zero-point-theta error to be -0.019°. The ambient phase was observed at 180 K to
_"_minimise thermal disorder and the low temperature phase at 75 K. The use of the cryostat
restricted the maximum 26 which could be used for data collection to approx. 80° but



Figure 6.4

Phase diagram of CH;HgCl
(Adams et al, 1988)
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preliminary experiments suggested measurable Bragg intensities could only be observed
in a collection range of 5-60°.

6.2.3 Analysis of Ambient phase data

The diffraction pattern of CH3;HgClI collected at 180 K is shown in Figure 6.5.
Where possible the Bragg reflections Akl have been indexed on the basis of the tetragonal
unit cell (P4/nmm, Z=2.u =b = 4.62 A, ¢ =9.39 A) put forward by Grdenic et al. The
resolution of the Bragg peaks was ~0.05" and the signal/noise ratio high enough to allow
measurement of even very low intensities.

The data were analysed wusing the computer program BENDALL
MULTIPATTERN [9.10] which consists of two seperate parts resident in the PDPL
program library available on the mainframe Dec VAX [1/780 at Daresbury. The initial
preparation of the data for Rietveld analysis was carried out by the program MPREP.
This allowed a user-defined baseline to be subtracted trom the pattern and calculated
peaks to be indexed. The output was a data file suitable as input to the refinement
program MPROF. Refinement of the data began with determining the scale factor
relating the observed and calculated intensity between the diftraction and model patterns.
The next step in the process was to refine the Bragg peak parameters (i.¢. the half-width
components and line-shape parameters). Several starting values for these parameters
were used but all yielded least squares convergence with a set of very high values tor the
calculated R-factors. The calculated and observed intensities of a large proportion of the
Bragg reflections were found to differ by substanial amounts as shown by the difference
plot of the pattern in Figure 6.6. In order to remedy the large differences the temperature
factors associated with Hg. Cl and C were refined seperately but this yielded no
improvement in the R-factors obtained.

6.2.4 Discussion of ambient phase results

The inability of the refinement to achieve R-factors below 40% (a plausible
starting value for further “refinement [11]) suggests that the model on which the
calculations in the Rietveld program were based was incorrect. The pattern can be
indexed efficiently using measured peak positions which suggests that the tetragonal cell
and unit vectors proposed in the original structural analysis are correct. Unfortunately.
the nature of Rietveld analysis does not allow a model that is "nearly’ correct to be the
basis of a successtul procedure towards the required goal. Hence, any information
regarding the actual molecular structure could not be used.



Figure 6.5

Powder diffraction pattern of CH;HgClI (I)
(T =180 K, A = 1.0098 A)
I = impurity
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Figure 6.6

Difference plot of observed and calculated
diffraction patterns for CH;HgCl (I)
Broken line - observed pattern
Solid line - calculated pattern
D - difference plot
‘|” - peak positions
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The original model postulated that Hg, Cl and C all were sited on special
positions 2¢ in the primitive space group. The scatrering'cross-section of Cl and C from
x-rays is sufficiently similar to allow the interchange of these two atoms between their
special positions which could produce confusion in the refinement of the structure. The
original space group is possibly incorrect giving extra intensity to some peaks whilst still
fulfilling the geometric constraints of the tetragonal symmetry. The neutron scattering
lengths of Cl and C are approx. 6 and 9 respectively. A neutron diffraction study may
well yield much more fruittul results since the site occupancy of these two atoms could
not be inter-changed without significant intensity alterations in the observed pattern.
Another possible solution could be found in collecting many more data with x-rays and
attempting structure solution ab initio using the conventional methods of single crystal
diffraction data.

In conclusion. without good single crystals of CH;HgCl in the ambient phase, and
access to further neutron or x-ray powder data. this structure cannot be solved to an
acceptable level. However. the work presented here challenges the original analysis and
should be further investigated using the complementary techniques outlined above.

6.2.5 Analysis of Low temperature phase data

The diffraction pattern obtained from the sample of CH;HgCl at 75 K is shown in
Figure 6.7. The pattern bears a strong resemblance to that collected at higher temperature.
However, some peak splitting and intensity variation suggests entry into a new phase.
The structure of this phase is unknown but the peak positions (hence the inter-planar
spacings) can be measured. Bragg peaks were fitted in turn to a pseudo-Voigt function
and their positions calculated. 37 reflections were measured successtully. The pattern
was initially indexed using a computer program written by Visser | 12| based on a method
proposed by de Wolff |13]. The most promising solution was a monoclinic unit (¢ =
4.857.b =9.311. ¢ = 3.460 A. B = 109.64°). The program attempts to index only the first
20 lines from the input data; of these 18 were successtully assigned Miller indices
indicating a high degree of success. This cell was furrl{er examined using the computer"
program NEWLAT | 14] which yielded another monoclmlc cell (w=346.b=9311,¢c=
9.151 A. B = 91.22°) having a volume twice that of the parent.

The similarity ot the lattice parameters of this transformed cell to those of a
tetragonal unit cell prompted further analysis. The lattice constants ¢ and ¢ were
intercianged and an average value taken between ¢ and b giving a “tetragonal” cell with
a=b=923.¢=346 A and f set to 90°. A prediction of Bragg positions based on this
cell was calculated using the locally written computer program POWDER [ I5]. This
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Figure 6.7

Powder diffraction pattern of CH;HgCl (II)
(T =75K,x=1.0098 A)
I = impurity
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prediction allowed the observed data to be re-indexed. These indexed d-spacingS were
used as input to VARVEC (Chapter 3.2) with a tetragonal Bravais lattice specified. The
refined solution was a cell with a = b = 9.26, ¢ = 3.41 A. Table 6.7 lists the observed and
calculated d-spacings of the 26 reflections used in the refinement.

6.2.6 Discussion of low temperature phase results

Adams and Pogson [1] suggest the /Il phase transition is first order in type and
related to a cell doubling of the Z = 2 asymmetric unit to that of the analogous ambient
bromide phase. The tetragonal cell refined for the low temperature phase of the chloride
(above) agrees with this conclusion. The density of CH;HgCl I is 4.16 gcm-3 at s.t.p.; this
quantity is calculated using the refined cell with Z'= 4 at 75 K to be ~5.7 gecm-3. The
material is expected to be more dense after the transition and the latter value is
reasonable. However, it seems improbable that the unit cells of the chloride (phase II)
and ambient bromide belong to the same space group. The first (and most intense)
retlection in the chloride pattern is the 100 at 6.27° (20). It the chloride had the space
group P42,m the first reflection would be the 110 at 8.84" since 100 is absent.

The powder data collected cannot be used to decide the space group of phase Il
unambiguously between the proposed tetragonal or re-set monoclinic cell. Indeed, in the
tetragonal case the Laue symmetry of the space group could be either P4/m or P4/mmm;
the one dimensional nature of powder data cannot distinguish between the two. Although
37 reflections were measured in the low temperature pattern this is only a fraction of the
expected Bragg peaks for either Bravais type. There are too few data indexed
unambiguously to show the specific groups of relections which allow the conditions
limiting possible reflections to be observed; hence selection from the possible space
groups cannot be made.

In conclusion, CH3;HgCl Il appears to show tetragonal or pseudo-tetragonal
(monoclinic) symmetry with a tetra-molecular unit cell. These results support the
previous Raman work but the definitive space group of the low temperature phase of this
material remains unknown.
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Table 6.7 Observed and calculated values of d,, for
CH,;HgCl II (tetragonal model)

hkl i) dicate)

100 9.3380 9.2604
200 4.6610 4.6302
120 4.1100 4.1414
220 3.2620 3.2740
101 3.2130 3.1997
300 3.1050 3.0868
11 3.0370 3.0243
130 29250 2.9284
320 2.5680 2.5684
400 23280 23151
301 2.2870 2.2884
410 2.2470 2.2460
311 22320 22216
420 2.0750 2.0707
401 1.8940 1.9153
411 1.8850 1.8756
340 1.8620 1.8521
331 1.8410 1.8383
510 1.8170 1.8161

440 1.6310 1.6370
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APPENDIX 1

Source code listing of program VARVEC

The function of this computer program is to refine the unit cell parameters of a
given crystal system, at different pressures, by fitting calculated inter-layer (d)
spacings to indexed observed data. These input data are calculated from the
measured Bragg peak centroids observed in either an angle or energy dispersive x-
ray powder pattern. The least squares procedure used in the refinement is non-linear
and is described in Chapter 3. Hence, the program requires starting values for the
unit cell (lattice) parameters.

VARVEC was written in FORTRAN 77 on a DEC Vax 8600 mainframe computer.
The program is menu-driven with a help facility. Only one input data file is required
and two output files are produced. The content and format of these files are
explained in Chapter 3. The starting values given by the user are checked to ensure
they agree with the lattice system specified. One subroutine, SECURE, is very
specific to the VMS operating system but may be omitted. Two NAG (Numerical
Algorithms Group) library subroutines are used to solve linear equations and invert
matrices. Chapter 3 includes a summary of the important subroutine functions. The
source code contains comments throughout.



Program Varvec

35 2 ok s e o o o o e ok 2 o 2 o 3 o 2 ok o 2 ok 2 o e ok o ok 3 ok o e ok ke o e A ok e ok

Author: Andy Heath
University of Leicester
Date: 20/1/87
Last
Update: 2/3/88

* * X ¥ F X *
* ¥ ¥ * * * *

sk 3k 3 o e afe 3k 3k 3 3 sk 3§ sk 3 3 s 3 3 3k 3 ok s 3k ok 3k 3k e ok 3 3k 3 ke ke 2 e e 3 e ok 3k

MODULES used are all subroutines (in FORTRAN7T).
Modules are in alphabetic order and are:

CALCON

CHARCK

CHECK

DCALC

ECHO

ERROR

FO1ABF (from NAG fortran library)
FO4AAF (from NAG fortran library)
HELP

HEXA

INTSUM

LOTOUP

MENOUT

MENU

MONO

ORTHO

OUTPUT

RHOMB

SETMAT

SECURE

SOLVE

TETRA

TRIC

0O 000000 00000000000 0000000O00000O0000O0O060O000a0

¢ All variables are specified at the beginning of each module.
c All format statements are in the order in which they are used
c (as much as possible).



c All format statements are at the beginning of any module which
c contains any I/0 to disk or terminal.

c FORMAT labels start at 100 and increase monotomically.

¢ GOTO labels are few and have values between 1 and 10

c ERROR labels have the value 999

sokdorsdokk MAIN PROGRAM BEGINS sokoksoknx

a0 a0 o600

common /index/index(100),dspace(100),line(79),dc(100)
common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)
common /infil/infile,title

real*8 mat,inv,vec,corec,oldpar(6),latpar,param(7)
real*8 pres,dspc(100),sd,R,Gmin

integer nobs,temp(100),ncycle,iflag2,ESC

integer index,npres,ncol,ixtal,nindex,nout

character infile*20,line*1,go*1,title*80

data nout /6/

c
100 format(ih$,al,’[3;1H’,al1,’[?]?)
101 format(ih$,al,’[10;4H’,al,’#6’,
* al,’ [imProcessing ...’,a1,’[om’,$)
102 format(1h$,ai,’{12;4H’,al,’#6Requested input file: ’,al,
& ’'[im’,a20,a1,’[Om’,al,’[13;4H’,al1,’#6’,
& ’cannot be opened - check access and spelling.’//)
103 format(ih$,a1l,’[23;1H’,al,’#6’,al,
& ’[imPress return to continue...’,al,’[0m’)
104 format(ih$,a1,’[62;1"p’,al,’[?71’,a1,’[?3h’)
c
ESC = 27
c

¢ Set the terminal up to the correct type and settings
c
write(nout,104) ESC,ESC,ESC
c
¢ Create LINE marker
c
doi=1,79
line(i) = ’-?
enddo
c



c Set HELP flag to zero to precipitate interactive additions to the
c menu. I.e. flag is reset if a default menu is loaded from disk.
c

ihelp = 0

c

¢ Execute front end of program - i.e. menu system
c

2 Call menu(ncol,ixtal,oldpar,infile,ihelp)
c
¢ Check the information given is consistent
c
Call Check(ixtal,oldpar,ncol,infile,iflag3)

c
c Check the value of FLAG3: a value of 1 indicates that CHECK found
c an error with the input parameters and will have given the user
c a relevant error message. Thus, return and reload the menu to allow
¢ modifications to take place.
c
c Set HELP flag to 1 to indicate to MENU to reload previous menu
c from scratch file on disk.
c
if (iflag3.eq.1) then
ihelp = 1
goto 2
endif

c
¢ All input parameters are now OK and hence program can now
c be executed.

c

write(nout,100) ESC,ESC

write(nout,101) ESC,ESC,ESC,ESC

Open unit 1 (INPUT) as the d-space file, unit 2 (OUTPUT) as the main
output file, unit 3 (OUTPUT) as the datagraf formated file for plotting
results.

O o0 o000

open(unit=1,file=infile,status=’o0ld’,err=999)
open(unit=2,file=infile//’ .out’,status=’new’)
open(unit=3,file=infile//’ .grf’,status=’'new’)

c
¢ Write out OUTPUT file header
c

iflag2 = 2

call output(nobs,Gmin,pres,ncycle,iflag?2,r,



* npres,nparam,ixtal)
Set error flag FLAG2 to zero - this indicates an error:

1) in a Bravias routine if the number of degrees of freedom
for the least squares is insufficient.

2) if the output file header is to be written.

3) if the output file END-OF-FILE marker is to be written.

a0 o0 o0 o0 0o60a0n

iflag2 = 0

c

c Read title

c

read(1,’(a80)’) title

c

c Read in the hkl’s for each dspacing from INPUT file
c

nindex = ncol*3

read(1,*) (temp(i),i=1,nindex)

c
¢ Set Number of pressure records to zero
c

npres = 0

c

c Read in record of pressure and d(hkl)
¢ Begin main loop to work down the INPUT file.

c
1 read(1,*,end=10) pres, (dspc(i),i=1,ncol)

c

¢ Count number of pressures

c

npres = npres+i

c

¢ Find any missing data in the dspacings at the given pressure and

c arrange dspace and index arrays acorrdingly.

¢ Therefore, count the number of observed d-spacings.

c

nobs = 0

c

do ii = 1,ncol
if (dspc(ii).ne.0.0) then
nobs = nobs+i
do i =1,3



npti = (nobs*3-3)+i
nptt = (ii*3-3)+i
index(npti) = temp(nptt)
enddo
dspace(nobs) = dspc(ii)
endif
enddo
c
¢ Call the appropriate Bravias routine for the structure given.
c This is dependant on the value of IXTAL.
c
If (ixtal.eq.1) then
call tric(nobs,Gmin,ncycle,R,iflag?2)
nparam = 6
else if (ixtal.eq.2) then
call mono(nobs,Gmin,ncycle,R,iflag2)
nparam = 4
else if (ixtal.eq.3) then
call hexa(nobs,Gmin,ncycle,R,iflag2)
nparam = 2
else if (ixtal.eq.4) then
call rhomb(nobs,Gmin,ncycle,R,iflag2)
nparam = 2
else if (ixtal.eq.5) then
call ortho(nobs,Gmin,ncycle,R,iflag2)
nparam = 3
else
call tetra(nobs,Gmin,ncycle,R,iflag2)
nparam = 2
endif
c
¢ Output the processed information into OUTFILE for each pressure
c
call output(nobs,Gmin,pres,ncycle,iflag2,r,
* npres,nparam,ixtal)
c
¢ Reset error flag (if necessary)
c (e.g. if a Bravias routine encountered a sparse data record)
c

iflag2 = 0

c

¢ Repeat with the next pressure
c

goto 1



Hence, end of main program.

Set IFLAG2 to indicate to OUTPUT to write END-OF-FILE marker

[ I 2 T o T o TR ¢ Y ¢ ]

10 continue
c
c Check SECURity before closing OUTPUT file.
c

Call Secure(2)

iflag2 = 3
call output(nobs,Gmin,pres,ncycle,iflag2,r,
* npres ,nparam,ixtal)

iflag2 = 0
c
c Close all input and output channels.
c
close (1)
close (2)
close (3)
c
¢ Return control to the menu for further I/0 or to allow
¢ the user to save the set menu.
c
ihelp = 1
goto 2
c
c Error message sent out if input file (d-spacing data file)
c is inaccessible for any reason.
c

999 write(nout,102) ESC,ESC,ESC,infile,ESC,ESC,ESC
write(nout,103) ESC,ESC,ESC,ESC
read(5,’(a)’) go
ihelp = 1
goto 2
c
End

c sokokkokokok END OF MAIN PROGRAM ook

Control comes here when pointer reaches the end of INPUT data file.




Subroutine Calcon(d,delta,G,Rtop,Rbot,w)

c -
c

¢ Calculate Condition factors for each iteration
c

real*8 d,delta,G,Rtop,Rbot,w

Decide on a criterion for the weighting factor

dk*2

Q0 "5 000
1]

G + wx(delta**x2)

Rtop = Rtop + wx(delta**2)
Rbot = Rbot + wx(1/d)**4
c

Return

End

c

c _—
c
Subroutine Charck(string,ierr)

C @ m——— [

c
integer ierr
character string*20
c
c Set error flag to zero value before checking the input
c
ierr = 0
c
c Check to see if user has entered option code and nothing else.
c
if (string(1:8).eq.’ ’) then

ierr = 1

return
endif
c
¢ Check string which should be a number for any characters
c which may cause an internal conversion error.
c
do i = 1,20

if (string(i:i).1t.’0’.or.string(i:i).gt.’9’) then

if (string(i:i).ne.’.’) then
if (string(i:i).ne.’ ?) then



ierr = 1
return
endif
endif

endif

enddo

c

return

end

c

c
c
Subroutine Check(ixtal,oldpar,hklmax,infile,iflag3)
P —

c

common /param/latpar(6),sd(6),vol,sdv

real oldpar(6)

real*8 latpar,sd

integer ixtal,iflag3,ierror,hklmax,ihelp,ierri,ierr2,ierr3
character infile*20

c

c Routine to check the input parameter data against the type of

¢ Bravis lattice requested. If parameters are missing they are filled
c in with default values.

c
c Set all internal error flags to zero
[

ierr1 = 0

ierr2 = 0

ierr3 = 0

c

¢ For orthorhombic lattice case
c All vectors should be non-zero

c
If (ixtal.eq.5) then
doi=1,3
if (oldpar(i).eq.0.0) then
ierr1 = 5
ierr2 = 1
goto 10
else
latpar(i) = oldpar(i)
endif

enddo



c
¢ All angles should be 90.0 degrees
c
do i = 4,6
if (oldpar(i).ne.90.0) then
if (oldpar(i).ne.0.0) then
ierrt = 5
ierr2 = 2
goto 10
endif
endif
latpar(i) = 0.0
enddo
c
¢ For rhombohedral lattice case
c All vectors should be equal and non-zero
c
else if (ixtal.eq.4) then
if (oldpar(1).eq.0.0) then
ierri = 4
ierr2 = 1
goto 10
endif
doi=1,3
if (oldpar(1) .ne.oldpar(i)) then
if (oldpar(i).ne.0.0) then
ierri = 4
ierr2 = 1
goto 10
endif
else
latpar(1) = oldpar(1)
endif
enddo
c
¢ All angles should be equal and non-zero
c
if (oldpar(4).eq.0.0) then
ierrl = 4
ierr2 = 2
goto 10
endif
do i = 4,6
if (oldpar(4) .ne.oldpar(i)) then



if (oldpar(i).ne.0.0) then
ierrl = 4
ierr2 = 2
goto 10
endif
else
latpar(2) = oldpar(4)
endif
enddo
c
¢ For hexagonal case
ca=>b<>0 and ¢ should be non-zero
c
else if (ixtal.eq.3) then
if (oldpar(1).eq.0.0.0r.oldpar(3).eq.0.0) then
ierr1 = 3
ierr2 = 1
goto 10
else if (oldpar(1).ne.oldpar(2)) then
ierri = 3
ierr2 = 1
goto 10
else
latpar(1)
latpar(2)
endif

oldpar(1)
oldpar(3)

(2]

alpha = beta = 90.0 degrees and gamma = 120.0 degrees

do i = 4,5
if (oldpar(i).ne.80.or.oldpar(i).ne.0.0) then
ierri = 3
ierr2 = 2
goto 10
endif
enddo
if (oldpar(6).ne.120.0) then
ierri = 3
ierr2 = 2
goto 10
endif

For Monoclinic lattice case
¢ All vectors should be non-zero

[e]



c
else if (ixtal.eq.2) then
doi=1,3
if (oldpar(i).eq.0.0) then
ierri = 2
ierr2 = 1
goto 10
else
latpar(i)
endif
enddo

oldpar(i)

90.0 (second monoclinic setting) and beta non-zero

0

alpha = gamma

if (oldpar(5).eq.0.0) then
ierrl = 2
ierr2 = 2
goto 10
endif
do i = 4,6
if (oldpar(i).ne.90.0) then
if (oldpar(i).ne.0.0) then
if (i.ne.5) then
ierri = 2
ierr2 = 2
goto 10
else
latpar(4) = oldpar(5)
endif
endif
endif
enddo
c
¢ For tetragonal case
c
else if (ixtal.eq.6) then
doi=1,3
if (oldpar(i).eq.0.0) then
ierri = 6
ierr2 = 1
goto 10
endif
enddo
latpar(1) = oldpar(1)



latpar(2) = oldpar(3)
c
¢ All angles should be 90.0 degrees
c
do i = 4,6
if (oldpar(i).ne.90.0) then
if (oldpar(i).ne.0.0) then
ierrl = 6
ierr2 = 2
goto 10
endif
endif
latpar(i) = 0.0
enddo
c
¢ For anything else which has yet to be commissioned
c

else
ierr3 =1
ierrl = ixtal
goto 10

endif

c

¢ Set error flag to zero - this prohibits recalling of MENU
c

iflag3 = 0
c
return
c
c Come here on error with input parameters
¢ Error routine delivers error message and flags are set up
c to save the previous menu, recall -the drawing of a menu and
¢ cause the new menu to be taken from the scratch file created
¢ by routine MENOUT.
c
10 call error(ierri,ierr2,ierr3)
ihelp = 1
call menout (hklmax,ixtal,oldpar,infile,ihelp,proc)
iflag3 = 1
c
return
end
c

C——= ———



[+

Subroutine Dcalc(nobs,rca,rcb,rcc,ral,rbe,rga)

[+
C

¢ Calculate dspacing for each observed hkl reflection from refined
c lattice parameters and compare with observed with respect to

c standard deviation of delta(hkl) function.

c

common /index/index(100) ,dspace(100),1ine(79),dc(100)
real dspace,dc,dcal,ra(3),rv(3),rca,rcb,rcc

real ral,rbe,rga

integer index,h(3),i,j,k,ii
character line*1

c

rv(1l) = rca

rv(2) = rcb

rv(3) = rcc

ra(i) = ral

ra(2) = rbe

ra(3) = rga

c

do 20 ii = 1,nobs
dcal = 0.0
npoint = (3%ii-3)

c

do 10 i = 1,3
h(i) = index(npoint+i)
dcal = dcal + (h(i)*%2)*(xv(i)**2)
10 continue

do 156 i = 1,3
j = MOD(i,3) + 1
k = MOD(j,3) + 1
dcal = dcal + 2*h(j)*h(k)*rv(j)*rv(k)*cosd(zra(i))
15 continue

dc(ii) = 1/sqrt(dcal)
20 continue

return
end

[
[
c

[+
[+

Subroutine Echo(on)

Description:




¢ Routine causes terminal to switch in and out of NOECHO mode for
c password entries. Very device dependant and will only work

c with a VAX. The other possible method is to use RTL calls to

c the LIB$ library routines but although this is successful it

¢ is time consuming and uses large CPU.

c

include ’($ttdef)’
integer istat,sys$qiow,sys$assign,bw2,on,sys$dassgn
integer*2 iosb(4),bw1(2)
external io$_setmode,io$_sensemode
character*3 devnam
character*1l buffer(8)
equivalence (bwi(1),buffer(1)), (bw2,buffer(s))
data devnam /’TT:’/
c
¢ Assign the terminal
c
istat=sys$assign(devnam,’ref (ichan),,)
if(.not.istat) call lib$signal(%val(istat))
c
¢ Sense the current characteristics
c
istat=sys$qiow(,%val(ichan),io$_sensemode,iosb,,,
& %ref (buffer),’%val(8),,,,) -
if(.not.istat) call lib$signal(%val(istat))
c
¢ Modify and reset characteristics
c
bw1(2)=132
if (on.eq.1) then
bw2=ibset (bw2, TT$V_NOECHO) ! IBSET TO INVOKE
istat=sys$qiow(,%val(ichan),io$_setmode,iosb,,,
& Y%ref (buffer),%val(s),,,,)
else
bw2=ibclr (bw2,TT$V_NOECHO) ! IBCLR TO CANCEL
istat=sys$qiow(,%val(ichan),io$_setmode,iosb,,,
& %ref(buffer),%val(s),,,,)
endif
c
if(.not.istat) call lib$signal(%val(istat))
istat=sys$dassgn(’val(ichan))
if (.not.istat) call lib$signal(%val(istat))
c
Return



Cm—m e —————— —————

Subroutine Error(ierrl,ierr2,ierr3)

c —— —_

c
integer ierrli,ierr2,ierr3,ESC,BELL
character system(6)*12,errpar(2)*6,go*1,info(2,6)#*31

data system(1) /’triclinic’/,system(2)
* /’monoclinic?’/,
* system(3) /’hexagonal’/,system(4)
* /’rhombohedral’/,
* system(b) /’orthorhombic’/,system(6)
* /’tetragonal’/

data errpar(2) /’angle’/, errpar(1) /’vector’/

data info(2,4) /’alpha = beta = gamma; alpha<>0 ’/,
* info(1,4) /’a = b = ¢c; a non-zero '/,
* info(2,5) /’alpha = beta = gamma = 90 ’/,
* info(1,5) /’a, b, ¢, <> 0.0 '/,
* info(2,2) /’alpha = gamma = 90 <> beta <> 0°/,
* info(1,2) /’a, b, ¢, <> 0.0 ’/,
* info(1,3) /’a = b <> ¢ all non-zero '/,
* info(2,3) /’alpha = beta = 90, gamma = 120 ’/,
* info(1,6) /’a = b <> ¢ all non-zero '/,
* info(2,6) /’alpha = beta = gamma = 90 '/

data nout /6/, ESC /27/, BELL /7/

c

¢ Print error message to screen depandent on the value of IERR1,2,3
c
100 format(ih$,al,’[H’,al,’[2]’)
101 format(ih$,a1,’[3;25H’,al,’#6’,al,al,’ [7Tm INPUT ERROR DETECTED

* ,aly,[om,)
102  format(///1h$,al,’#6’,
* ’Error detected .. Parameter input is not consistent with the
/
* 1h$,al,’#6°,
* ’crystal system specified.’//
* 1h$,al,’#6’,
* ’System specified was ’,ai,’[im’,a12,a1,’[0Om’,
* > and ’,al,’[im’,a6,a1,’[0m’,’ data is inconsistent’/
* 1h$,al1,’#6’,



* 'with the symmetry demanded by this lattice type.’//)
103 format(ih$,ai,’#6’,’The ’,ab,

* 7 data should have ’,a31)
104 format(ih$,al,’[23;1H’,al,’#6’,al,

* ’[imPress return to continue...’,al,’[0m’)

105 format(////1h$,al,’#6’,’Program not yet commissioned for the

2
’

* al,’[im’,al2,a1,’[0m crystal system.’//
* 1h$,al,’#6’,’Consult author about implementing this
* new routine.?’)
106 format(//ih$,al,’#6’,’This error will be corrected for you.’)

IERR1 holds the code for the lattice type
IERR2 holds the code for the type of cock-up (1=vector, 2=angle)
IERR3 has a value of 1 if a Bravias routine dosen’t yet exist

O 0 0 00

write(nout,100) ESC,ESC
write(nout,101) ESC,ESC,BELL,ESC,ESC
if (ierr3.eq.1) then
write(nout,105) ESC,ESC,system(ierri),ESC,ESC

goto 10
endif
write(nout,102) ESC,ESC,ESC,ESC,system(ierri1) ,ESC,
* ESC,errpar(ierr2) ,ESC,ESC

write(nout,103) ESC,errpar(ierr2),info(ierr2,ierri)
write(nout,106) ESC
10 write(nout,104) ESC,ESC,ESC,ESC
read(5,’(a)’) go
write(nout,100) ESC,ESC

C—————- ————

Subroutine Help
PR
c
integer ESC,BELL
character gox*1
data ESC /27/, BELL /7/
c
100 format(ih$,al,’[2]?)

101  format(ih$,al,’[1;25H’,a1,’#6’,a1,’ [7m ON-LINE HELP ’,at,’{Om?)



102 format(//ih$,al,’#6°,
&’Data file should contain powder peaks measured in units’/

& 1h$,al1,’#6°,
& ’of angstroms. The file should have INDEXS of each row of’/
& 1h$,al,’#6°,
& ’data as the first record and the following records are’/
& 1h$,al1,’#6°,
& ’formatted such that (eg. Pressure) is followed by columns’/
& 1h$,al,’#6°,
& ’of D-SPACINGS. XS refers to the Bravias lattice type’/
& 1h$,al,’#6’,
& *(i.e. Orthorhombic, triclinic, etc.) and are coded thus:’//
& 1h$,al,’#6’,
& ° TRICLINIC 1 MONOCLINIC 2  HEXAGONAL 3//
& 1h$,a1,’#6’,
& RHOMBOHEDRAL 4  ORTHORHOMBIC 6§ TETRAGONAL 6//
& 1h$,al,’#6’,
& ’The max no. hkls refers to the greatest number of indexed’/
$ 1h$,al1,’#6’,
& ’d-spacings in any one pressure record.’///)
103 format(ih$,a1,’[23;1H’,al,’#6’,al,al,

& ’[1mPress return to continue...’,ail,’[Om’)

c

¢ Draw help page

c

write(6,100) ESC

write(6,101) ESC,ESC,ESC,ESC

write(6,102) ESC,ESC,ESC,ESC,ESC,ESC,ESC,ESC,ESC,ESC
write(6,103) ESC,ESC,BELL,ESC,ESC

read(5,’(a)?’) go

write(6,100) ESC

c

return

end

c

C~——- o e e e e e e o . . P

c

Subroutine Hexa(nobs,G,ncycle,R,iflag?2)

€ mmmmmme—mememe—ee -

c

c Calculate delta,partial derivatives, and sets of linear equations
¢ for the hexagonal bravias system.

c




c
common /index/index(100),dspace(100),line(79),dc(100)
common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)
real*8 inv,R,Rtop,Rbot,latpar,sd,w,G,delta,d,mat
real*8 partl(3),param(3),dummyi(10,10),dummy2(10,10)
integer npoint,ncycle,nobs,iflagi,iflag2,nparam

c
c Set up number of parameters in iteration
c

nparam = 2

c

¢ Check for singularity of sparsity in matrix to be produced
c (i.e. the no. of degrees of freedom of the least squares is sufficient)
c ,
if (nobs.le.nparam) then

iflag2 = 1

return
endif
c
c Create fitting parameters from guessed lattice parameters
c
param(1) = 2.0/(latpar(1)*sqrt(3.0))

param(2) = 1.0/latpar(2)
c
ncycle = 0
c
¢ Initialise Variables to be summed to zero
c
1 Call Intsum(G,R,Rtop,Rbot,Delta)
c
c Count number of iterations
c
ncycle = ncycle + 1
c
c Start main loop over all the data at pressure P
c
Do 10 ii = 1,nobs
c
d = dspace(ii)
c
c Calculate partial derivatives of the equation
c

npoint = (3%ii-3)



X = (index(npoint+1)**2 + index(npoint+2)*»2

& + index(npoint+1)*index(npoint+2) )
partl(1) = -2.0 * X * param(1)
partl(2) = -2.0 * (index(npoint+3)*%*2) * param(2)

c
c Calculate the minimum function
c
delta = X * (param(1)#**2) +
& (index(npoint+3)**2) * (param(2)**2)

c
¢ Calculate condition factors
c

Call Calcon{(d,delta,G,Rtop,Rbot,w)
c
c Set up linear equations of the form Ax=B
c

Call Setmat(partl,delta,w,nparam)
[

10 continue
c
c Solve set of linear equations
c
idum = nparam+i
c
Call Solve(param,nparam,nobs,G,ncycle,idum,iflagi,

* dummy1 ,dummy?2)

c

c Test iflagl to see if reiteration is necessary (l=re-iterate)
c

If (iflagl.eq.1) goto 1

c

¢ Calculate standerd deviation on final parameter values

c and reform into origanal parameter type

c
latpar(1) = 2.0/(param(1)*sqrt(3.0))
latpar(2) = sqrt(1/param(2))

8d(1) = sqrt((4.0/(3.0%(param(1)**4)))*(G**2)*Inv(1,1))

8d(2) = sqrt((1.0/(4.0*(param(2)*%3)))*Inv(2,2)*(G**2))

c

¢ Calculate the cell volume and the standard deviation on this result
c
vol
sdv

(latpar(1)**2) * latpar(2) * sqrt(1.5)
(latpar(2)*latpar(3)*sqrt(1.5))**2ksd(1)**2
* + (latpar(1)*latpar(3)*sqrt(1.5))**2xsd(2)**2



* + (latpar(1)*latpar(2)*sqrt(1.5))**2%sd(3)**2

sdv = sqrt(sdv)

c

c Calculate the R factor
c

R = sqrt((Rtop/Rbot))*100

Subroutine Intsum(G,R,Rtop,Rbot,Delta)

C
C

¢ Initalise variables to be summed over each iteration
c Set all origanal matrix elements to zero

c

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)
real*8 mat,inv,vec,corec,G,R,Rtop,Rbot,Delta

c
G =0.0
R=20.0
Rtop = 0.0
Rbot = 0.0

Do 10 i = 1,7
vec(i,1) = 0.0
corec(i,1) = 0.0
Do 10 j = 1,7

mat(i,j) = 0.0
inv(i,j) = 0.0
10 continue

c

Return

End

c

c —_— - -

c
Subroutine lotoup(opt)

€ e
c
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c Takes a character, finds it’s ascii value, into the uppercase
c value if necessary, and returns the uppercase character.

[+



character*20 opt
c
idiff = ichar(’a’) - ichar(’A’)
c
do 10 i=1,20
if(opt(i:i) .ge. ’a’ .and. opt(i:i) .le. ’z’) then
opt(i:i) = char(ichar(opt(i:i)) - idiff)
endif
10  continue
c
return
end
c

e e e e e e e e e e e e e e e e e
c
Subroutine menout (hklmax,ixtal,oldpar,infile,ihelp,proc)

c —— —_—

c
common /files/menoutfil
real oldpar(6)

integer hklmax,ixtal,ihelp,proc
character infile*20,optcod(9)*2,menoutfil*20
Data optcod(1) /’DN’/,optcod(2) /’LA’/,optcod(3) /’LB’/,

& optcod(4) /’LC’/,optcod(5) /?AA’/,optcod(6) /’AB’/,
& optcod(7) /’AG’/,optcod(8) /’XS’/,optcod(9) /’NI’/
c
100 format(a2,1x,a20)
101  format(a2,1x,£7.3)
102 format(a2,1x,i2)
c
¢ Simply write out the present menu to a scratch file in the same
¢ format that would be expected from the user_input and then
c it’s quite straight forward to redirect the input channel to the
¢ scratch file.
c
¢ Create default parameters depandant on the value of IXTAL and
¢ what the user has already given.
c

if (proc.eq.1) goto 2
if (ihelp.eq.l.and.ixtal.ne.0) then
if (ixtal.eq.6) then
oldpar(2) = oldpar(1)
do i = 4,6
oldpar(i) = 90.0



enddo
else if (ixtal.eq.5) then

do i = 4,6
oldpar(i) = 90.0
enddo
else if (ixtal.eq.4) then
doi=1,3
oldpar(i) = oldpar(1)
enddo
do i = 4,6
oldpar(i) = oldpar(4)
enddo
else if (ixtal.eq.3) then
do i=1,2
oldpar(i) = oldpar(1)
enddo
do i = 4,5
oldpar(i) = 90.0
enddo

oldpar(6) = 120.0
else if (ixtal.eq.2) then
oldpar(4) = 90.0
oldpar(6) = 90.0
endif
endif
c
2 if (ihelp.eq.1) then
open(unit=10,status=’scratch’)
nout = 10
else
open(unit=20,file=menoutfil//’ .men’,status=’new’)
nout = 20
endif
c
c Write out the menu to either a scratch file or a pre-defined
c file to be written to disk and stored for another day
c
1 write(nout,100) optcod(1),infile
do i=1,6
write(nout,101) optcod(i+i),oldpar(i)
enddo
write(nout,102) optcod(8),ixtal
write(nout,102) optcod(9) ,hklmax
if (nout.eq.20) then



close (20)
open(unit=10,status=’scratch’)
nout = 10
goto 1

endif

rewind 10

c

return

end

c

c — ——

c
Subroutine Menu(hklmax,ixtal,oldpar,infile,ihelp)
c

c
common /files/menfil
real fval,oldpar(6)
Integer ESC,BELL,nline,ival,ixtal,hklmax,

& ihelp,ierror,ierr,proc
Character optrec(9)*40,optcod(9)*2,opt*2,val*20,infile*20
Character ans*2,menfil*20
c
c Store all options and codes in character data statements
c

Data optrec(1) /’Data file containing d-spacings v/,
& optrec(2) /’Lattice vector a
& optrec(3) /’Lattice vector b
& optrec(4) /’Lattice vector ¢
& optrec(5) /’Lattice angle alpha
& optrec(6) /’Lattice angle beta
& optrec(7) /’Lattice angle gamma
& optrec(8) /’Crystal System
& optrec(9) /’Max. no. indexed reflections
Data optcod(1) /’DN’/,optcod(2) /’LA’/,optcod(3) /’LB’/,
& optcod(4) /’LC’/,optcod(5) /’AA’/,optcod(6) /’AB’/,
& optcod(7) /’AG’/,optcod(8) /’XS’/,optcod(9) /’NI’/
Data nout /6/, ESC /27/, BELL /7/

c
100 format(ih$,al,’[2]?)
101 format(i1h$,al1,’[’,i1,’;8H’,al,’#6°,a32)
106 format(ih$,al,’[’,i2,?;8H’,al,’#6’,a32)
102 format(ih$,a1,’[1A’,a1,’[47C?,al, #6°,a2)
106 format(ih$,a1,’[21;11H’,a1,’#6’,’> Enter Option Code and
& new value:’/

:/’
1/,
)/,
)/’
’/,
°/,
*/,
'/



& 1h$,al,’#6’,a1,’[11CEnter ’,al,’[1mG0’,al,’ [Om to execute,’
& ,ai,’[im HE’,a1,’[Omlp,’,al,’{im SA’,al,’ [Omve menu,’
& ,al,’[im EX’,a1,’[Omit?)

107 format (1h$,a1,’ [21;46H’,$)

108 format(a2,1x,a20)

109 format(1h$,a1,’[?,i1,?;51H’,£8.4)

110 format(ih$,a1,’[’,i2,’;51H’,£8.4)

111 format(ih$,a1,’[’,i1,?;51H’,a20)

112 format(ih$,a1,’[’,i2,’;51H’,i2)

113 format (1h$,al,’[21;46H’,a1,’ [?K’)

114 format(ih$,al,’[1;11H’,al,’#6’,a1,’[Tm
&CALCULATION OF CRYSTAL LATTICE PARAMETERS’,al,’[Om?’)

115  format(ih$,al,’[3;6H’,al,’#6’,’Do you wish to load
&a default menu file [N] ? °,$)

116 format(ih$,ai,’[5;6H’,al,’#6’,’File containing
* default menu ? ?,$)

117  format(///ih$,al,’#6’,al,’Requested default menu file: ’,
& a1,’[im’,a20,a1,’[Om’,/1h$,a1,’#6°,
& ’does not exist - rerun or enter menu manually’//)

118 format(1h$,al1,?’[23;11H’,al1,’#6’,a1,al,’ [im INCORRECT RESPONSE
& - TRY AGAIN’,a1,’[Om’,$)

119 format(ih$,a1,’[23;11H’,a1,’[Om’,al,’[?]?)

120 format(ih$,a1,’[2;1H’,a1,’[?]?)

121 format(1h$,a1,’[10;6H’ ,al,al,’#6
*Menu file_name for writing to disk ? ’,$)

122 format(ih$,al1,’[23;1H’,al,’#6’,al,
* ’[imPress return to continue...’,ai,’[Om’)

123 format(ih$,al,’[23;11H’,al1,’#6’,al,al,’[im INPUT/VARIABLE
& MISMATCH - TRY AGAIN’,al,’[Om’,$)

124 format(ih$,a1,’[!p’,a1,’[731?)

c
if (ihelp.eq.1) goto 1
c

6 ierror = 0
c

¢ Clear the screen and write the program title at the top of the screen.
c

write(nout,100) ESC

write(nout,114) ESC,ESC,ESC,ESC

write(nout,1156) ESC,ESC

c

¢ Inquire if the user wishes to load a default menu file.

c

read(5,’(a)’) ans



call lotoup(ans)
c
c If the answer is affirmative then inquire the menu_file name
¢ and open the file.
c
if (ans(1:1).eq.’Y’) then
write(nout,116) ESC,ESC
read(5,’(a)’) menfil
call lotoup(menfil)
ihelp = 2
open(unit=11,file=menfil//’.men’,status=’o0ld’,err=999)
endif
c
c Clear the screen of all output except the program title
c
write(nout,120) ESC,ESC
c
¢ Execute SECURity for start of program
c
Call Secure(1)
c
c Start of main routine to draw the menu to the screen
c
1 if (ihelp.eq.1) write(nout,114) ESC,ESC,ESC,ESC

Loop over 9 times to get all data statements to the screen.

nline points to correct row on the screen for the output.

Format specifies either il or i2 for the row position in the output
therefore, must test to see if greater than row 9 has been reached.

o0 0000

Doi=1,9
nline = 2*i+1
if (nline.lt.11) then
write(nout,101) ESC,nline,ESC,optrec(i)

else
write(nout,105) ESC,nline,ESC,optrec(i)
endif
write(nout,102) ESC,ESC,ESC,optcod(i)
enddo
c
c Write out question banner.
c

write(nout,106) ESC,ESC,ESC,ESC,ESC,ESC,ESC,ESC,
* ESC,ESC,ESC,ESC



Control is returned to this label whenever input is required
Position cursor after question banner.

o o0 o6 a

2 write(nout,107) ESC
c
c If the 'HELP’ option was specified by the user the program reads
in
c the most previous menu from a scratch file opened in MENOUT as unit
10
c
if (ihelp.eq.1) then
read(10,108,end=3) opt,val
goto 4
else if (ihelp.eq.2) then
read(11,108,end=3) opt,val
goto 4
endif
c
c Read input from terminal for option code and new value for this option.
c
3 read(5,108) opt,val
c
¢ If the menu has just been redrawn due to help being asked for then
c destroy the scratch file and reset the help flag (IHELP) bach to
zero.
c
if (ihelp.eq.1) then
close (10)
ihelp = 0
endif
c
c Here the input is converted to uppercase and the input area in front
c of the origanal cursor position is cleared.
¢ Control jumps here if a menu is being loaded from a disk or scratch
file
c i.e. control does not wait for user interference.
c
4 call lotoup(opt)
write(nout,113) ESC,ESC
c
c If an error has been encountered in the input from either a menu_file
c or the interactive user a message to that effect is displayed.
c The error flag (IERROR) is reset to it’s origanal value of zero.



c
if (ierror.eq.1) then
write(nout,119) ESC,ESC,ESC
ierror = 0
endif
c
c This loop checks the input (from either disk or scratch file or from
the
¢ interactive user) for errors and then reads in the option values
into :
¢ variables with the correct format corresponding to their station
in life.
¢ This loop also writes out the updated information in the correct

place

c on the screen in the correct format.
c

Do i=1,9

c

¢ Check the inputed option against all options stored in data array
0PTCOD

c
If (opt.eq.optcod(i)) then
nline = i*2+1
if (nline.eq.3) then
c
¢ Deals with d-space filename
c
call lotoup(val)
write(nout,111) ESC,nline,val
infile = val
else if (nline.eq.17) then
c
¢ Deals with the Bravias lattice type code
c

call charck(val,ierr)
if (ierr.eq.1) goto 10
read(val,*) ival
write(nout,112) ESC,nline,ival
if (ival.ne.ixtal) then

ixtal = ival

ihelp = 1
call menout(hklmax,ixtal,oldpar,infile,ihelp,proc)
goto 2

else



ixtal = ival
endif
else if (nline.eq.19) then

c
¢ Deals with maximum nummber of observed d-spacings for any one pressure
c
call charck(val,ierr)
if (ierr.eq.1) goto 10
read(val,*) ival
write(nout,112) ESC,nline,ival
hklmax = ival
else
c
¢ The only thing that is left here is either a vector or an angle
c
call charck(val,ierr)
if (ierr.eq.1) goto 10
read(val,*) fval
oldpar(i-1) = fval
if (nline.lt.11) then
write(nout,109) ESC,nline,fval
else
write(nout,110) ESC,nline,fval
endif
endif
c
¢ Return control to the input-side of things since the option code
¢ entered was a valid one.
c
goto 2
endif
enddo
c
if (opt.eq.’GD’) then
c
c G0’ executes calculations
c
goto 5
c
else if (opt.eq.’HE’) then
c
¢ Write help to the screen
c

ihelp = 1



call menout(hklmax,ixtal,oldpar,infile,ihelp,proc)
call help
goto 1
c
else if (opt.eq.’SA’) then
ihelp = 0
write(nout,120) ESC,ESC
write(nout,121) ESC,BELL,ESC
read(5,’(a)’) menfil
call menout(hklmax,ixtal,oldpar,infile,ihelp,proc)
write(nout,120) ESC,ESC
ihelp = 1
close (20)
goto 1
c
else if (opt.eq.’EX’) then
write(nout,100) ESC
write(nout,124) ESC,ESC
stop ’COITUS INTERUPTUS’
c
else
c
¢ If control ever gets here then the user has made a mistake and typed
c in the wrong option code (ie not included in the set OPTCOD).
c

10 if (ierr.eq.1) then
write(nout,123) ESC,ESC,BELL,ESC,ESC
else
write(nout,118) ESC,ESC,BELL,ESC,ESC
endif
ierr =0
ierror = 1
endif
c
c Control is returned to the input-side from here with an illegal error
flag.
c
goto 2
c
c No menu file found
c

999 write(nout,117) ESC,BELL,ESC,menfil ,ESC,ESC,ESC
write(nout,122) ESC,ESC,ESC,ESC
read(5,’(a)’) ans



call lotoup(ans)

if (ans.eq.’EX’) stop

write(nout,100) ESC

ihelp = 0

goto 6

c

c Control comes here when it gets tired or the user so bored he/she
decides

¢ to actually run the program - God forbid !

The menu is saved in a scratch file to be retrived when the program
has processed the d-spacing data file

a o oo a

5 ihelp = 1
proc = 1
call menout(hklmax,ixtal,oldpar,infile,ihelp,proc)
proc = 0
ihelp = 0
c
return
end
c

c
c
Subroutine Mono(nobs,G,ncycle,R,iflag?2)

€ e

c

c Calculate sets of parameters, partial derivatives, delta, R and
¢ G values for an monoclinic unit cell

c

common /index/index(100),dspace(100),1line(79),dc(100)

common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)

real*8 inv,R,Rtop,Rbot,latpar,sd,w,G,delta,d,mat

real*8 partl(4),param(4),dummy1(10,10),dummy2(10,10)

integer npoint,ncycle,nobs,iflagi,iflag2,nparam

c
c Set up number of parameters in iteration
c

nparam = 4

c

c Check for singularity of sparsity in matrix to be produced
¢ (i.e. no. of degrees of freedom of the least squares is sufficient)
c



if (nobs.le.nparam) then
iflag2 = 1
return

endif

c

¢ Create fitting parameters from guessed lattice parameters

c
param(1) = 1,0/(latpar(1)*sind(latpar(4)))

param(2) = 1.0/(latpar(2))

param(3) = 1.0/(latpar(3)*sind(latpar(4)))
param(4) = 180.0 - latpar(4)

c

ncycle = 0

c

¢ Initialise Variables to be summed to zero
c

1 Call Intsum(G,R,Rtop,Rbot,Delta)
c
¢ Count number of cycles
c
ncycle = ncycle + 1
c

¢ Start main loop over all the data at pressure P
c
Do 10 ii = 1,nobs
c
d = dspace(ii)
c
¢ Calculate partial derivatives of the equation
c
npoint = (3%ii-3)
X = index(npoint+1)*index(npoint+3)*cosd(param(4))
partl(1) = -2.0*((index(npoint+1))**2*param(1)
& + X*param(3))

partl(2) = -2.0*(index(npoint+2)**2)*param(2)
partl(3) = -2.0*((index(npoint+3))**2*param(3)
3 + X*param(1))
partl(4) = 2.0*(index(npoint+1)*index(npoint+3)
& xparam(1)*param(3)*sind(param(4)))
c
¢ Calculate the minimum function
c

delta = (1.0/d)*%2
Do i = 1,(nparam-1)



delta = delta - (index(npoint+i)*#*2)*(param(i)**2)
enddo
delta = delta - 2.0*X*param(1)*param(3)

c
c Calculate condition factors
c
Call Calcon(d,delta,G,Rtop,Rbot,w)
c
c Set up linear equations of the form Ax=B
c
Call Setmat(partl,delta,w,nparam)
c
10 continue
c
c Solve set of linear equations
c
idum = nparam+1
c
Call Solve(param,nparam,nobs,G,ncycle,idum,iflagi,
* dummyi , dummy2)
c
c Test iflagl to see if re-iteration is necessary
c
If (iflagl.eq.1) goto 1
c

¢ Calculate standerd deviation on final parameter values
¢ and reform into origanal parameter type

c
latpar(4) = 180.0 - param(4)

latpar(1) = 1.0/(param(1)*sind(latpar(4)))
latpar(2) = 1.0/(param(2))

latpar(3) = 1.0/(param(3)*sind(latpar(4)))

8d(1) = sqrt((1.0/((latpar(1)**2)*sind(latpar(4)))**2)
& + (cosd(latpar(4))**2/(latpar(1)*(sind(latpar(4))*%2)**2)
& % (G**2)*Inv(1,1)))

sd(2) = sqrt((1.0/(param(2)**4))*Inv(2,2)*(G**2))

8d(3) = sqrt((1.0/((latpar(3)**2)*sind(latpar(4)))**2)
& + (cosd(latpar(4))**2/(latpar(3)*(sind(latpar(4))**2)*%2)
& *(Gx*2)*Inv(3,3)))

s8d(4) = sqrt(Inv(4,4)*(G**2))

c

c Calculate the cell volume and the standard deviation on this result

c

vol = 1.0



do i = 1, (nparam-1)
vol = vol*latpar(i)

enddo

vol = vol*sind(latpar(4))

c

sdv = ((latpar(2)*latpar(3)*sind(latpar(4)))**2)*(s8d(1)**2)
& + ((latpar(1)*latpar(3)*sind(latpar(4)))**2)*(sd(2)**2)
& + ((latpar(i)*latpar(2)*sind(latpar(4)))**2)*(s8d(3)%*2)
& + ((latpar(1)*latpar(2)*latpar(3)
& *cosd(latpar(4)))**2)*(8d(4)**2)

sdv = sqrt(sdv)

c

c Calculate the R factor

c

R = sqrt((Rtop/Rbot))*100

c

Return

Subroutine Ortho(nobs,G,ncycle,R,iflag?2)

c - - - — -

c
¢ Calculate sets of parameters, partial derivatives, delta, R and
¢ G values for an orthorhombic unit cell

c

common /index/index(100),dspace(100),1line(79),dc(100)

common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)

real*8 inv,R,Rtop,Rbot,latpar,sd,w,G,delta,d,mat

real*8 partl(3),param(3),dummyi(10,10),dummy2(10,10)

real rparam(3)

integer npoint,ncycle,nobs,iflagl,iflag2,nparam

c
¢ Set up number of parameters in iteration
c

nparam = 3

c

c Check for singularity of sparsity in matrix to be produced
c
if (nobs.le.nparam) then

iflag2 = 1

return



endif
c
c Create fitting parameters from guessed lattice lengths
c
do i = 1,nparam
param(i) = 1.0/(latpar(i)**2)
enddo
c
ncycle = 0
c
¢ Initialise Variables to be summed to zero
c

1 Call Intsum(G,R,Rtop,Rbot,Delta)
c
¢ Count number of iterations
c
ncycle = ncycle + 1
c
¢ Start main loop over all the data
c

Do 10 ii = 1,nobs
= dspace(ii)

Calculate partial derivatives of the equation

[ T o I o T = T o)

Do i = 1,nparam

npoint = (3*ii-3)+i

partl(i) = -1.0%(index(npoint)**2)
enddo

Calculate the minimum function

(9]

delta = (1.0/d)*%2
Doi=1,3

delta = delta + partl(i)*param(i)
enddo

Calculate condition factors

3]

Call Calcon(d,delta,G,Rtop,Rbot,w)

(g}

Set up linear equations of the form Ax=B



Call Setmat(partl,delta,w,nparam)

c
10 continue

c

¢ Solve set of linear equations

c

idum = nparam+i

c

Call Solve(param,nparam,nobs,G,ncycle,idum,iflagil,

* dummy1 ,dummy?2)

c

c Test iflagl to see if reiteration is necessary

c

If (iflagl.eq.1) goto 1

c

c Calculate set of dspacings from refined parameters
c
rparam(1) = sqrt(param(1))
rparam(2) = sqrt(param(2))
rparam(3) = sqrt(param(3))
Call Dcalc(nobs,rparam(1),rparam(2),rparam(3),90,90,90)
c
c Calculate standerd deviation on final parameter values
¢ and reform into origanal parameter type
c
do i = 1,nparam
8d(i) = sqrt((1.0/(4*(param(i)**3)))*Inv(i,i)*(G**2))
latpar(i) = sqrt(1/param(i))
enddo
c
c Calculate the cell volume and the standard deviation on this result
c
vol = 1.0
do i = 1,nparam
vol = vol*latpar(i)

enddo

sdv = (latpar(2)*latpar(3))**2*sd(1)**2
* + (latpar(1)*latpar(3))**2*s8d(2)**2
* + (latpar(1)*latpar(2))**2%sd(3)**2

sdv = sqrt(sdv)

c

¢ Calculate the R factor

c

R = sqrt((Rtop/Rbot))*100



Subroutine Output(nobs,Gmin,pres,ncycle,iflag2,r,
& npres,nparam,ixtal)

c —_ - -

c
common /index/index(100) ,dspace(100),1ine(79),dc(100)
common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)
common /infil/infile,title

realx*8 mat,inv,vec,corec
real*8 pres,dspc(100),s8d,R,Gmin,latpar
real*4 spres,slat(3),svol0,svol

integer nobs,ncycle,index,iflag2,ixtal,iparam,nparam
character pnam(6)*5,line*1,system(6)*12,infile*20,title
c

data pnam(1) /> a ’/,pnam(2) /° b 1/,

* pnam(3) /> ¢ ’/,pnam(4) /’alpha’/,
* pnam(5) /’beta ’/,pnam(6) /’gamma’/
data system(1) /’TRICLINIC’/,system(2)
* /MONOCLINIC’/,
* system(3) /’HEXAGONAL’/,system(4)
* /’RHOMBOHEDRAL’/,
* system(5) /’ORTHORHOMBIC’/,system(6)
* /’TETRAGONAL’/
c
100 format(ih1,79al)
101 format(/’ Pressure = ’,f6.2,’ GPa’,3x,’Number of obs. = ?,i3,

* 3x,’R =°,f6.2,’%’,3x,’G = ?,f8.4/)
102 format(ih0,’0bs. hkl: ’,8(3(i2),2x))
103 format(1hO,’Param.’,6x,’Value ’,10x,’Standard Dev.’,11x,
* ’Cell vol. = ’,£8.3,/,1x,?—~———- 1, Tx, ) —————— ’,10x,
I e et ’ 11x,’s.d. vol. = ?,1Pel10.4/)
104 format(/2x,a5,5x,f7.3,11x,1Pel10.4/)
105 format(/’ Minimised matrix equation:’//)
106 format(4x,’(’,3f9.4,2x,’)’,2x,°(’,1Pe11.3,2x,°)",
* 10x,’(’,1Pel11.3,2x,?)?)
107 format(4x,’(’,29x,’)’,2x,°(’,13x,’)?,10x,°(?,13x,?)?)
108 format(//’ Number of iterations performed in refinement = °’

* ,i4,//)



109 format(’ Inverted matrix derived from final Iteration:’//)
110 format(4x,’(’,3(1Pe10.3,1x),’)’,15x,’Element(’,il1,’,?,i1,?)

* ,1Pe10.3)
111 format(4x,’(’,33x,’)?)
112 format(ih ,’0bs. d: ’,8(£6.4,2x))
113  format(///’ ERROR IN DATA at Pressure ’,f6.2,° GPa’
[? mmmmmmm e 2/
’ Data too sparse for calculation of least squares analysis.’//
’ Only data available is ’,3(3(i2),2x),’ relections’//
? Advise guessed value at low weighting point °’,
'(ie. low d-spacing)’)
114 format(4x,’(’,2£9.4,2x,’)’,2x,’(’,1Pe11.3,2x,)?,
* 10x,°(’,1Pel11.3,2x,’)’)
115 format(4x,’(’,20x,’)’,2x,’(’,13x,?)?,10x,?(?,13x,?)?)
116 format(4x,’(’,4f9.4,2x,’)’,2x,’(’,1Pel11.3,2x,?)’,
* 10x,°(’,1Pe11.3,2x,)’)
117 format (4x,’(’,38x,?)?,2x,°(’,13x,?)?,10x,’(?,13x,?)?)
118 format(4x,’(’,2(1Pe10.3,1x),’)’,15x,’Element(’,i1,?,’,i1,’)

* X * X *

* ,1Pe10.3)
119  format(4x,?(’,22x,’)?)
120 format(4x,’(’,4(1Pel10.3,1x),’)’,15x,’Element(’,il,?,?,il1,?)

* ,1Pel0.3)
121  format(4x,’(’,44x,’)’)
if (iparam.eq.2.and.i.eq.2) j = 4
122  format(///’ *%x END OF OUTPUT DATA FILE’)
123  format(ihi,///’ *%% CRYSTAL LATTICE PARAMETER CALCULATIONS®/

* T —=2//)
124 format(//’ Calculation of the variation of unit cell parameters
with respect to’/’ an extrinsic variable (e.g. Temperature or
Pressure).’//’ The Bravias system which the calculations are
based on is ’,a12//’ The least squares analysis requires starting
values for’/’ the lattice parameters which are to be
calculated.’//’ These were given as:’//)

126 format(1h0,2x,a5,10x,f8.4)
126  format(//’ The program also requires a file containing indexed

* d-spacings’/’ as they change with the extrinsic variable.’//

* ' d-spacing file from which data drawn was : ’,a20///

* 7 Chronically bad data will be dealt with as is befitting to

* ¥ X * *

its
* very nature.’/’ REMEMBER: "Garbage In - Garbage Out"’)
127 format(ih ,4x,f6.2,4x,3(£f6.3,4x),4x,£7.2)



128 format(1hO,’Data correlation’//
* Bx,” hk 1’,5x,’0bserved’,6x,’Calculated’,5x,’Difference’//)
129 format(5x,3(i2),6x,f6.4,7x,f6.4,7x,£6.4)

c
nindex = nobs*3

c

¢ Check the error flag
c

if (iflag2.eq.1) then
write(2,100) (line(i),i=1,79)
write(2,113) pres/10.0,(index(i),i=1,nindex)
return
else if (iflag2.eq.2) then
write(2,123)
write(2,124) system(ixtal)
if (ixtal.eq.2) then
iparam = 4
else if (ixtal.eq.4) then
iparam = 2
else if (ixtal.eq.5) then
iparam = 3
endif
do i = 1,iparam
j=i
if (ixtal.eq.6.and.i.eq.2) j = 3
if (ixtal.eq.4.and.i.eq.2) j = 4
if (iparam.eq.4.and.i.eq.4) j = 6
write(2,125) pnam(j),latpar(i)
enddo
write(2,126) infile
return
else if (iflag2.eq.3) then
write(2,122)
return
endif
c
write(2,’(a80)’) title
write(2,100) (line(i),i=1,79)
write(2,101) pres/10.0,nobs,r*10.0,gmin*100.0
if (nindex.gt.24) then
write(2,102) (index(i),i=1,24)
write(2,112) (dspace(i),i=1,8)
write(2,102) (index(i),i=265,nindex)
write(2,112) (dspace(i),i=9,nobs)



else
write(2,102) (index(i),i=1,nindex)
write(2,112) (dspace(i),i=1,nobs)
endif
write(2,103) vol,sdv
do i = 1,nparam
j=i
if (ixtal.eq.6.and.i.eq.2) j = 3
if (ixtal.eq.4.and.i.eq.2) j = 4
if (nparam.eq.4.and.i.eq.4) j = §
write(2,104) pnam(j),latpar(i),sd(i)
enddo
write(2,105)
if (nparam.eq.2) then
do i = 1,nparam
write(2,114) (mat(i,j),j=1,nparam),corec(i,1),vec(i,1)
if(i.le.1) write(2,115)
enddo
else if (nparam.eq.3) then
do i = 1,nparam
write(2,106) (mat(i,j),j=1,nparam),corec(i,1),vec(i,1)
if(i.le.2) write(2,107)
enddo
else if (nparam.eq.4) then
do i = 1,nparam
write(2,116) (mat(i,j),j=1,nparam),corec(i,1),vec(i,1)
if(i.le.3) write(2,117)
enddo
endif
c
write(2,108) ncycle
c
write(2,109)
if (nparam.eq.2) then
do i = 1,nparam
write(2,118) (inv(i,j),j=1,nparam),i,i,inv(i,i)
if(i.le.1) write(2,119)
enddo
else if (nparam.eq.3) then
do i = 1,nparam
write(2,110) (inv(i,j),j=1,nparam),i,i,inv(i,i)
if(i.le.2) write(2,111)
enddo
else if (nparam.eq.4) then



do i = 1,nparam
write(2,120) (inv(i,j),j=1,nparam),i,i,inv(i,i)
if(i.le.3) write(2,121)
enddo
endif
c
write(2,128)
Do ii = 1,nobs
npoint = (3#%ii-3)
write(2,129) (index(npoint+i),i=1,3),dspace(ii),dc(ii)
enddo
c
¢ Write out to datagraf type file.
c

spres = pres/10.0
do i = 1,nparam
slat(i) = latpar(i)
enddo
svol = vol
if (npres.eq.1) svol0 = vol
c svol = vol/svol0
write(3,127) spres,(slat(i),i=1,3),svol
c
Return
End
c
c - -
c
Subroutine Rhomb(nobs,G,ncycle,R,iflag?)

c - - ———

c
c Calculate sets of parameters, partial derivatives,delta, R and G
c values for a rhombohedral unit cell.

c

common /index/index(100),dspace(100),1line(79),dc(100)

common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)

real*8 inv,R,Rtop,Rbot,latpar,sd,w,G,delta,d,mat

real*8 partl(2),param(2),X,Y,dummy1(10,10),dummy2(10,10)

real rparam(3)

integer iflagl,iflag2,npoint,ncycle,nobs,nparam,idum

c

¢ Set up number of parameters in iteration



c In R type space grp. have one vector and one angle
c
nparam = 2
c
¢ Check for singularity or sparsity in matrix to be produced
¢ (i.e. no. degrees of freedom in least squares is suffiecient)
c
If (nobs.le.nparam) then
iflag2 = 1
Return
endif
c
c Create fitting parameters from guessed lattice parameters
c

param(1) = (sind(latpar(2))/
& (latpar(1)*sqrt
& (1.0 - 3.0*(cosd(latpar(2))**2)
P + 2.0%(cosd(latpar(2))**3))))**2
param(2) = acosd(-1.0*(cosd(latpar(2))/
& (1.0+cosd(latpar(2)))))
c

¢ Initialise variables which are to be summed over each iteration
c and set all matrix elements in MAT and VEC to zero.
c

ncycle = 0
c
1 Call intsum(G,R,Rtop,Rbot,Delta)
c
c Count number of iterations
c
ncycle = ncycle + 1
c
c Start loop over all data
c
Do 10 ii = 1i,nobs
c
d = dspace(ii)
c
¢ Calculate partial derivatives
c

npoint = (3%ii-3)
X = index(npoint+1)**2+index(npoint+2)*%*2+index(npoint+3)**2
Y = ((index(npoint+1)*index(npoint+2)) +

& (index(npoint+2)*index(npoint+3)) +



& (index(npoint+1)*index(npoint+3)))*2.0

partl(1l) = -1.0*X - Y*cosd(param(2))
partl(2) = Y*param(1)#*sind(param(2))
c
¢ Calculate the minimum function
c

delta = 1.0/(d**2)-(X*param(1))-(Y*param(1)*cosd(param(2)))

Calculate condition factors

(4]

Call Calcon(d,delta,G,Rtop,Rbot,w)
¢ Set up linear equations of the form Ax=B
Call Setmat(partl,delta,w,nparam)

10 continue
c
c Solve set of linear equations
[+
idum = nparam+i
c
Call Solve(param,nparam,nobs,G,ncycle,idum,iflagi,

* dummy1 ,dummy2)

c
c Test iflagl to see if reiteration is necessary
c
if (iflagl.eq.1) goto 1
c
¢ Calculate standerd deviation on final parameter values
c
c NOT EASY !!
c
rparam(1) = param(1)
rparam(2) = param(2)
Call Dcalc(nobs,rparam(1),rparam(1),rparam(1),rparam(2),

& rparam(2) ,rparam(2))
c
¢ Reform into origanal parameter type
C
latpar(2) = acosd(1.0/(-1.0*(1+(1.0/cosd(param(2))))))

latpar(1) = sind(latpar(2))/
& (sqrt(param(1))*sqrt
& (1.0 - 3.0%(cosd(latpar(2))**2)



& + 2.0*(cosd(latpar(2))**3)))

c
¢ Calculate cell volume and standard deviation on this result
c
vol = (latpar(1)#**3)*sqrt(1.0-(3.0%(cosd(latpar(2)))**2)

& +(2.0*%(cosd(latpar(2)))**3))
sdv = 0.0 ! Give up.

c
c Calculate R factor
c

R = sqrt((Rtop/Rbot))*100

Cm————— ———————————

Subroutine Setmat(partl,delta,w,nparam)
c e -
c
c Set up linear equations of the form Ax=B
c
common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)
realx*8 mat,inv,vec,corec,delta,w,partl(nparam)
integer nparam
c
Do 10 i = 1,nparam
vec(i,1) = vec(i,1) + wxdelta*partl(i)
Do 10 j = 1,nparam
Mat(i,j) = Mat(i,j) + wxpartl(i)*partl(j)
10 Continue
Return
End
c

c- —_——

c
Subroutine Solve(param,nparam,nobs,G,ncycle,idum,iflagi,
* dummy1 , dummy2)

c - -
[+

c Use NAG routine to solve the set of linear equations for the system

[



common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)
real*8 mat,inv,vec,corec,param(nparam)
real*8 wkspace(100),dummyi(idum,idum),dummy2(idum,idum)
real*8 G,gold,gcomp
integer nobs,nparam,idum,ivec,icorec,m,ifail,ncycle,iflagl
data ivec /7/,icorec /7/,m /1/
c
iflagl = 0
c
c Vector on right of equation is negative
c
do i = 1,nparam
vec(i,1) = ~1.0*vec(i,1)
enddo

Move matrix into dummy variable since NAG routine converts
the true symmetric matrix into a condensed version with the
leading diagonal understood

OO0 000

do i = 1,nparam
do j = 1,nparam
dummy1(i,j) = mat(i,j)
enddo
enddo
c
ifail = 0
c
Call foO4aaf(Dummyl,idum,vec,ivec,nparan,
& m,corec,icorec,wkspce,ifail)
c
c
¢ Update the parameter values with corrections from equations
c
Do i = 1,nparam
param(i) = param(i) + corec(i,1)
enddo

= sqrt(G/(nobs-nparam))

Force the iteration around six times
Returns control to Bravias routine from which was called

O 000 a0

if (ncycle.le.6) then
Gold = G



iflagl = 1
Return
endif
c
¢ Set up comparison of G values found in the calculation
c
Gcomp = abs(1.0-(G/Gold))

c
if (Gcomp.gt.1d-04) then
Gold = G
iflagl = 1
Return
endif
c
c Call a NAG routine to invert the final matrix of sums
c which gave best fit of parameters
c
c Fill the upper triangle of the matrix to be inverted
¢ with the final matrix elements
c

do i = 1,nparam
do j = 1i,nparam
if (j.ge.i) then
dummy2(i,j) = mat(i,j)
else
dummy2(i,j) = 0.0
endif
enddo
enddo
c
ifail = 0
c
call £0iabf(dummy2,idum,nparam,inv,ivec,wkspce,ifail)
c
¢ Replace upper triangle of symmetric matrix with the inverse
¢ elements from the lower triangle
c
do i = 1,nparam
do j = 1,nparam
if(j.ge.i) then
inv(i,j) = inv(j,i)
endif
enddo
enddo



c
Return
End

c—— - —— ——

c
Subroutine Secure(passnum)

Stop other users from making use of this software system apart
from privileged users and also demand program passwords for
continuation of the system.

a0 0 o0 o0

Integer usernum,attempt,passnum,ESC,nin,nout
Character username*10,symbol*20,password(2)*10,priv*10,

% pruser(8)*10,name(8)*10,passat*10
Data password(1) /’NIVEA’/, password(2) /’FELDENE’/
Data pruser(1) /’TED '/, name(1) /’Andy’/
Data pruser(2) /’NJA '/, name(2) /’Lab Junior’/
Data pruser(3) /’HEATH '/, name(3) /’Andy’/
Data pruser(4) /’SEN '/, name(4) /’Simon’/
Data pruser(5) /’HATTON */, name(5) /’Pete’/
Data pruser(6) /’UNKNOWN ’/, name(6) /’Harjiit’/
Data pruser(7) /’DMA ’/, name(7) /’David’/

Data pruser(8) /’PWR ’/, name(8) /’Phil’/

Data ESC /27/, nin /5/, nout /6/

c
100 format(1ih$,al,’[2;1H’,a1,’[?]?)
101  format(ih$,ai,’[6;11H’,al1,’#6’,
& ‘’User status: ’,al,’[im’,al0,a1,’[Om’,’ for user ’,
& al,’[1im?,a10,a1,’[Om’)
102 format(ih$,al,’[8;11H’,al,’#6’,
& ’Password ? ’,$)
103 format(1h$,a1,’[10;11H’ ,al,’#6’,
& ’Password matches - hello ’,al0)
104 format(ih$,ai,’[23;1H’,al,’#6’,al,
& ’[imPress Return to continue ...’,ai,’[Om’,$)
105 format(ih$,a1,’[10;11H’,al1,’#6’,
& ’Password mis-match - you have ’,ai,’[im’,
& i1,a1,’[Om’,’ attempts remaining.’)
106 format(ih$,a1,’[10;11H’,a1,’ [?K’)
107 format(i1h$,a1,’[10;11H’ ,a1,’#6°,
& ’Password matches - goodbye ’,a10)
108 format(ih$,al,’[4;11H’,a1,’#6’,al,
% ’[4mIntroductory Security’,ai,’[Om’)



109 format(1h$,al,’[4;11H’ ,a1,’#6’,al,
& ’[4mOutput Security’,al,’[Om’)

110 format(ih$,al,’[4;11H’,al,’#6 )
c
¢ Clear the screen from the title down the page to the bottom.
c
write(nout,100) ESC,ESC
if (passnum.eq.1) then

write(nout,108) ESC,ESC,ESC,ESC
else

write(nout,109) ESC,ESC,ESC,ESC
endif
c
¢ Get the username from the VMS global symbol table.
c
Call 1lib$get_symbol(’user’,symbol)

username = '’ ’
do i = 1,20
if (symbol(i:i).eq.’,’) then
j=i
iz =0
10 j o= j+
i3 = jiv1

if (symbol(j:j).ne.’]’) then
username(jj:jj) = symbol(j:j)

goto 10
else
goto 20
endif
endif
enddo
c
¢ Check the username entered against the look-up table of
c allowed users.
c

20do i = 1,8
if (username.eq.pruser(i)) then
priv = ’privileged’
namenum = i
write(nout,101) ESC,ESC,ESC,priv,ESC,ESC,username,ESC
goto 25
endif
enddo
c



c Control comes here if username not matched.

C

priv = ’intruder’

write(nout,fmt=’(1h$,a1)’) 7 ! Sound terminal bell.
write(nout,101) ESC,ESC,ESC,priv,ESC,ESC,username,ESC
stop

c
¢ Get password from the now privelidged user.
c
25 attempt = 3
30 if (attempt.eq.0) then
if (passnum.eq.2) then
close (2)
call lib$spawn(’$ delete for002.dat’)
stop
endif
stop
endif
write(nout,102) ESC,ESC
Call echo(1)
read(nin,fmt=’(a)’) passat
Call echo(0)
Call lotoup(passat)
if (passat.eq.password(passnum)) then
write(nout,106) ESC,ESC
if (passnum.eq.1) then
write(nout,103) ESC,ESC,name(namenum)
else
write(nout,107) ESC,ESC,name(namenum)
endif
write(nout,104) ESC,ESC,ESC,ESC
read(nin,fmt=’(a)?)
write(nout,110) ESC,ESC
write(nout,100) ESC,ESC
else
attempt = attempt-1
write(nout,105) ESC,ESC,ESC,attempt,ESC
goto 30
endif
c
Return
End
c



Cmm—— e ——————— —_—— —-—— —————————————————

c
Subroutine Tetra(nobs,Gmin,ncycle,R,iflag?2)

c —~—- _— — -

c

c Calculate delta,partial derivatives, and sets of linear equations
¢ for the tetragonal bravias system.

c

common /index/index(100),dspace(100),1line(79),dc(100)

common /param/latpar(6),sd(6),vol,sdv

common /matrix/mat(7,7),inv(7,7),vec(7,1),corec(7,1)

real*8 inv,R,Rtop,Rbot,latpar,sd,w,G,delta,d,mat

real*8 partl(2),param(2),dummyi(10,10),dummy2(10,10)

real rparam(3)

integer npoint,ncycle,nobs,iflagl,iflag2,nparam
c

c Set up number of parameters in iteration

c

nparam = 2

c

c Check for singularity of sparsity in matrix to be produced
c
if (nobs.le.nparam) then

iflag2 = 1
return
endif
c
c Create fitting parameters from guessed lattice lengths
c

do i = i,nparam
param(i) = 1.0/(latpar(i)**2)

enddo
c
ncycle = 0
c
¢ Initialise Variables to be summed to zero
c
1 Call Intsum(G,R,Rtop,Rbot,Delta)
c
¢ Count number of iterations
c
ncycle = ncycle + 1
c

¢ Start main loop over all the data



c
Do 10 ii = 1,nobs

= dspace(ii)

Calculate partial derivatives of the equation

O 0 0 a0

npoint = (3*ii-3)
partl(1) = -1.0*(index(npoint+1)**2+index(npoint+2)**2)
partl(2) = -1.0*(index(npoint+3)**2)

Calculate the minimum function

(4]

delta = (1.0/d)**2
do i = 1i,nparam
delta = delta + partl(i)*param(i)

enddo
c
¢ Calculate condition factors
c
Call Calcon(d,delta,G,Rtop,Rbot,w)
c
c Set up linear equations of the form Ax=B
C
Call Setmat(partl,delta,w,nparam)
c
10 continue
c
c Solve set of linear equations
c
idum = nparam+i
c
Call Solve(param,nparam,nobs,G,ncycle,idum,iflagl,
* dummy1 ,dummy2)
c

c Test iflagl to see if reiteration is necessary
c

If (iflagl.eq.1) goto 1

c

¢ Calculate dspacings for refined parameters

c

rparam(1) = sqrt(param(1))
rparam(2) = sqrt(param(1))
rparam(3) = sqrt(param(2))



Call Dcalc(nobs,rparam(1),rparam(2),rparam(3),90.,90.,90.)
c
c Calculate standerd deviation on final parameter values
c and reform into origanal parameter type
c
do i = 1,nparam
8d(i) = sqrt((1.0/(4*(param(i)**3)))*Inv(i,i)*(G**2))
latpar(i) = sqrt(1/param(i))
enddo
c

c Calculate the cell volume and the standard deviation on this result

c

vol = 1.0

vol = latpar(1)**2*latpar(2)

sdv (2*latpar(1)*latpar(2))**2xsd(1)**2
* + (latpar(1)*%4*sd(2)**2)

sdv = sqrt(sdv)

c

c Calculate the R factor

c

R = sqrt((Rtop/Rbot))*100

c

Return

End

c

Cc—-- e — e ———————————————

c
Subroutine Tric(nobs,Gmin,ncycle,R,iflag2)

c

c Calculate delta,partial derivatives, and sets of linear equations
c for the trigonal bravias system.

c

© oo ok sk ek o o koo o s ok o o sk ok o o ol ok ko e e s ol o ko o o ke sk ks o ook

c YET TO BE COMMISIONED FOR TRICLINIC CASE

G o ok sk ok ok oo s s o o o o ook i oo o o ok s ok o o o e s o o ol o o ke sk ke s o o o

c

¢ Return

End




APPENDIX 2

Source code listings for BBC micro-computer programs

Chapter 2 describes the design of a spectroscopic system used to detect ruby
fluorescence from a diamond anvil cell. This system was interfaced to a BBC
micro-computer, the computer was used to record the fluorescence spectrum. The
first listing is for the 'peaking’ program. An analogue signal from the detector is
maximised by translation of the sample in a laser beam. The program uses colour
graphics to display the signal strength as an animated histogram. The histogram is
drawn as a ladder (with one rung) using 6502 Assembler language to make the
process as rapid as possible.

The second listing is for the data acquisition and analysis program. The input to the
computer is from a pulse produced by a scan controller every 0.1 nm. The program
reads the detector signal from an analogue to digital converter built into the BBC. A
real-time plot of intensity against wavelength is displayed. The pulse from the
controller is treated as an interrupt, and Assembler language is used to redirect the
default interrupt polling procedures to a routine which collects the data. When the
scan is complete, the stored data are searched for the ruby fluorescence peaks. The
pressure exerted on the sample is calculated from the shifted peak positions.

The high-level language used was BBC BASIC. The shortage of comments reflects
the limited memory space of this computer. Chapter 2 includes flow diagrams for
these programs and detailed explanations of how they operate.



Listing of 'Peaking' program



10%FX 16,1

20DIM SPACEY), 400

300SWRCH = &FFEE

40Data), = SPACE},

50Flag)=0

60START_OF_PROGY, = SPACE)+12
7001dadc’=0
80Sen),=8:Sen_level)=4

90REM

100REM= ==s====z===
110REM Start of machine code program
120REM

130FOR PASSY, = 0 TO 3 STEP 3
140P) = START_OF_PROGY

150REM

160[

170 OPT 0

180\

190\SETUP THE COUNTER

200\

210.NO_MODE_CHANGEY, LDX #0
220\

230\PUSH THE ’X’ POSITION ONTO STACK
240\

250LDA Data},

260PHA

270LDA Data+1

280PHA

290\

300\MOVE TO THE START POINTS
310\

320.Main_progy LDA #25

330JSR OSWRCH

340LDA #4

350JSR 0SWRCH

360LDY #0

370.Move_TO_POINTY LDA Dataj,Y
380JSR OSWRCH

390INY




400CPY #4
410BNE Move_TO_POINTY
420\

430\DRAW TO FOLLOWING POINTS
440\

450LDA #25

460JSR OSWRCH

470LDA #5

480JSR OSWRCH

490LDA Datal,

500JSR OSWRCH

510LDA Datal+1

520JSR OSWRCH

530LDA Datal+4

540JSR OSWRCH

550LDA Data)+5

560JSR OSWRCH

570INX

580CPX #2

590BEQ LADDER_TOPY
600LDA Datal,

610CLC

620ADC Data’+6

630STA Datal,

640BCC Main_prog/
650LDY Datal+1

660INY

670STY Datal+1

680JMP Main_prog/
690\

700\TOP OF THE LADDER
710\

720.LADDER_TOPY,
730PLA

740STA Datal+1

750PLA

760STA Datal

770\

780\MOVE TO TOP OF LEFT STRUT



790\

800LDA #25

810JSR OSWRCH
820LDA #4

830JSR OSWRCH
840LDA Datal,
850JSR OSWRCH
860LDA Datal,+1
870JSR OSWRCH
880LDA Datal,+4
890JSR O0SWRCH
900LDA Datal+5
910JSR OSWRCH

920\

930\CALCULATE TOP OF RIGHT STRUT
940\

950LDA Datal,
960CLC

970ADC Datal,+6
980STA Datal,
990BCC Draw_to_right,
1000LDY Datal)+1
1010INY

1020STY Datal,+1
1030\

1040\DRAW TOP OF BLOCK
1060\
1060.Draw_to_right
1070LDA #25

1080JSR OSWRCH
1090LDA #5

1100JSR OSWRCH
1110LDA Datal,
1120JSR OSWRCH
1130LDA Datal+1
1140JSR OSWRCH
1150LDA Data)+4
1160JSR OSWRCH
1170LDA Datal)+5



1180JSR OSWRCH
1190RTS

1200\

1210\DRAW MARKER FOR MAXIMUM
1220\
1230.Do_marker,
1240LDA #25

1250JSR OSWRCH
1260LDA #4

1270JSR 0SWRCH
1280LDA Datal+7
1290JSR OSWRCH
1300LDA Datal+8
1310JSR 0SWRCH
1320LDA Datal,+4
1330JSR OSWRCH
1340LDA Datal,+5
1350JSR OSWRCH

1360\

1370\CALCULATE MARKER RIGHT
1380\

1390CLC

1400LDA Datal+7
1410ADC Datal+9
1420STA Datal)+7
1430BCC Draw_marker?,
1440LDY Datal,+8
1450INY

1460STY Datal,+8
1470\

1480\NOW DRAW THE MARKER
1490\
1500.Draw_marker/,
1510LDA #25

1520JSR OSWRCH
1530LDA #b

1540JSR OSWRCH
1550LDA Datal,+7
1560JSR OSWRCH



1570LDA Datal,+8

1680JSR OSWRCH

1590LDA Datal+4

1600JSR OSWRCH

1610LDA Datal+5

1620JSR OSWRCH

1630RTS

1640\

1650\DELETE MARKER FROM OLD MAXIMUM
1660\

1670.Del_marker),

1680\

1690\MOVE TO CORRECT POSITION
1700\

1710LDA #25

1720JSR OSWRCH

1730LDA #4

1740JSR OSWRCH

1750LDA Datal+7

1760JSR OSWRCH

1770LDA Datal,+8

1780JSR OSWRCH

1790LDA Datal,+10

1800JSR OSWRCH

1810LDA Dataj+11

1820JSR OSWRCH

1830\

1840\CALCULATE THE MARKER RIGHT
1850\

1860CLC

1870LDA Datal+7

1880ADC Datal+9

1890STA Datal,+7

1900BCC Draw_del_marker,
1910LDY Datal,+8

1920INY

1930STY Datal+8

1940\

1950\DELETE THE MARKER



1960\

1970 .Draw_del_marker),

1980LDA #25

1990JSR 0SWRCH

2000LDA #5

2010JSR OSWRCH

2020LDA Data)+7

2030JSR OSWRCH

2040LDA Data¥+8

2050JSR OSWRCH

2060LDA Datal,+10

2070JSR OSWRCH

2080LDA Datal+11

2090JSR OSWRCH

2100RTS

2110]

2120REM

2130NEXT PASSY,

2140REM

2150REM End of machine code
2160REM======= ==== = ==
217OINPUT "PRESS RETURN KEY WHEN READY"A$
2180REMVDU 23;8202;0;0;0

2190VDU 28,20,30,39,1

2200MODE 1

2210REPEAT

2220%FX 17,1

2230Adc), = ADVAL(1)

2240IF Adc’>0 THEN AdcY%=Adc)/Sen’, ELSE PROCerror
2250F0R II=1 TO O STEP -1

22607Datal), = 200 MOD 256
2270Datal?1 = 200 DIV 256
2280Data,?2 = 100 MOD 256
2290Data}?3 = 100 DIV 256
2300Data}%?76 = 200

2310Datal,?74 = Adc’, MOD 256
2320Data),?5 = Adc’, DIV 256

2330GCOL 0,II
2340CALL START_OF_PROGY



2350NEXT II

2360IF Adc’>01dadc) THEN PROCmaximum

2370IF Adc’>1025 THEN AdcY=Adc)/2:PROCsensdown
2380IF Adc’%<200 THEN PROCsensup

2390PR0OCwrite

2400Stop$=INKEY$(0)

2410IF Stop$<>"" THEN GOTO 3000

2420UNTIL FALSE

2430REM===== ====

2440DEF PROCmaximum

2450Data),77=450 MOD 256

2460Data’78=450 DIV 256

2470Data79=50

2480GCOL 0,0

2490CALL Del_marker/,

2500Datal710=Adc), MOD 256

2610Data)?11=Adc), DIV 256

2520Datal,?7 =450 MOD 256

2530Data%?8 =450 DIV 256

2540GCOL 0,2

2650CALL Do_markery,

256001dadcY=Adc),

2570F1agl=0

2580ENDPROC

2590REM========== =======

2600DEF PROCsensdown
2610Sen’=Sen’*2:01dadc’=01dadc’/2:Sen_level’,=Sen_level)-1
2620F1ag%=FlagZ+1:IF Flag)=1 THEN Flag%=0:GOTU 2710
2630IF Flag)<>0 THEN GOTO 2720
2640Data),?7=450 MOD 256

2650Data),78=450 DIV 256

2660Data},?79=50

2670Data),?4=01dadc) MOD 256
2680Datal),?5=01dadc), DIV 256

2690GCOL 0,2

2700CALL Do_marker?

2710IF Flag’,=0 THEN FOR I=20 TO 22:PRINT TAB(20,I) " " :NEXT
I

2720ENDPROC




2730DEF PROCsensup
2740Sen%=Sen}/2:01dadc’,=01dadc’*2:Sen_level)=Sen_level)+1
2750IF Flag),=0 THEN PROCupdate

2760Flag¥=Flagi-1

277T0ENDPROC

2780REM========= ====

2790DEF PROCwrite

2800PRINT TAB(20,10) "ADC(Y) value: ";Adc’/10.0
2810PRINT TAB(20,15) "Sensitivity: ";Sen_level),
2820ENDPROC

2840DEF PROCupdate

2850Data),?7=450 MOD 256

2860Data¥?78=450 DIV 256

2870CALL Del_marker,

2880COLOUR 2

2890PRINT TAB(20,20) "Last maximum in"

2900PRINT TAB(20,21) "Sensitivity: ";Sen_level)-1

2910PRINT TAB(20,22) "ADC() value: ";0ldadc!/20.0

2920COLOUR 3

2930ENDPROC

2940DEF PROCerror

2950C0LOUR 1

2960S0UND 1,-15,128,5

2970PRINT TAB(20,2) "ERROR!":PRINT TAB(20,4) "Zero input to ADC
":PRINT TAB(20,6) "Press space bar":PRINT TAB(20,7) "to continue":COLOUR
3

2980Err$=GET$:IF Err$<>" " THEN GOTO 2980 ELSE FOR I=2 TO 7:PRINT
TAB(20,I)

" " :NEXT:ENDPROC

2990ENDPROC

3000CLG:CLS:PRINT "SIGNAL PEAKED...":CHAIN"MENU"

3010END



Listing of data acquisition and analysis program



1 QR M s e se sk o s sk ok o s o b ke s ok ok e o ok o oo ok oo o o ok

20REM=* *
30REM* Author: A.E. Heath *
40REM* Date: 10/6/87 *
SOREM* Function: Real-time data *
60REM* aquisition and *
TOREM* analysis of Ruby *
8OREM=* R-line spectrum. *
90REM* *
1 OOREM s s s o ok s sk ok s ol o ok ok oo o o ok ok s ok o ok
110REM

120REM*** Set up arrays and machine

130REM*** code space. Declare and

140REM*** initialse parameters and

1650REM*** variables.

160REM

170MODE4

180DIM Y(600): DIM M(9): DIM R_peak(2):DIM Wave(2)
:DIM Temp(2):DIM Amb(2)

190DIM 01dD$(20) :DIM 01dT$(20):DIM R1(20) :DIM R2(20)
:DIM Term$(20) :DIM 01dP(20) :DIM AmW(2)

200DIM MCY 400

2100SBYTE = &FFF4

220IRF = &FE6D
230DRB = &FE60
240IRQ2V = &206
260MOS_IRV = &71
260Flag/ = &70
2707Flagl = 0

280Num_ruby%=0

290*FX 16,1

300REM

310REM*** Machine code starts
320REM

330FOR Pass’, = 0 TO 3 STEP 3
340P% = MCY

350[ OPT O

360\

370\Reset the 0S at end of scan
380\

390.Reset?,

400SEI

410LDA MOS_IRV



420STA IRQV2

430LDA MOS_IRV+1

440STA TRQV2+1

460LDA #&97

460LDY #&18

470LDX #&6E

480JSR OSBYTE

490CLI

S500RTS

510\

520\Initialisation subroutine
530\

540.Set_up’

550SEI \no maskable interrupts
560LDA IRQ2V

670STA MOS_IRV

680LDA IRQ2V+1

590STA MOS_IRV+1

600LDA #Routine MOD 256

610STA IRQ2V

620LDA #Routine DIV 256

630STA IRQ2V+1

640\

650\Initialise User VIA

660\

670LDA #&97

680LDY #&50

690LDX #&6C \Set PCR to high-low
700JSR OSBYTE \transitions on CB(1&2)
710\

720\Enable interrupts for high-low
730\pulse on CB(1&2)

740\

750LDY #&98

760LDX #&6E

770JSR OSBYTE

780CLI \maskable interrupts renabled
790RTS \return to BASIC

800\

810\---=—==——mmmm e
820\

830.Routine

840\

860\Interrupt polling routine




860\

870TXA

880PHA

890TYA

900PHA

910\Is interrupt caused by scan ?
920\i.e. is bit 7 of IFR set ?
930LDA IRF

940BPL Exit%

950\Is motion flag set ?

960LDA Flag,

970BNE Overrun’

980\Is motion forwards or reverse ?
990LDA IRF

1000AND #&10

1010BEQ Advance’

1020\
1030\
1040\
1050\Motion is reverse...

1060LDA #02

1070JMP Store%

1080\

1090.Advance’,

1100\Motion is forwards...

1110LDA #01

1120JMP StoreY,

1130\

1140.0verrun

1150\Scan is too rapid- flag an error
1160LDA #03

1170\

1180.StoreY%

1190\Store value in A in Flag)
1200STA Flag%

1210\

1220.Exit%

1230\Restore status quo of 0S and
1240\exit from interrupt

1250\

1260\Communicate with DRB to clear
1270\interrut in hardware

1280CMP DRB

1290\




1300\Get all registers off stack

1310PLA

1320TAY

1330PLA

1340TAX

1350\

1360\Indirect through 0S to continue

1370\interrupt chain

1380JMP (MOS_IRV)

1390\

1400]

1410NEXT Pass/

1420REM

1430REM*** End of machine code

1440REM

1450REM-——~=~————~———— e m e

1460CLS

147O0READ R_test:Sens’%=Z/

1480PROCstart

1490PR0OCaxis

1500PR0OCplot

1510PROCpeaks

1520PR0OCoutput

15630PR0Cexit

1640END

1650REM-—— -

1560DEF PROCstart

1570Direc’=0

1680PRINT TAB(12,1) "Ruby R-line":PRINT TAB(3,2)

"High Pressure Data Aquisition'

1690INPUT TAB(0,6) "Scan direction (F/R) [F] ? " Reply$
1600IF Reply$="" OR Reply$="F" THEN Direc¥%=1 ELSE IF Reply$="R"
THEN Direc’.=2

1610IF Direc’=0 THEN 1590

1620PRINT TAB(0,8) "Scan origin read from controller (nm) "
1630INPUT Scan_start

1640IF Scan_start<9000 OR Scan_start>12000 PRINT TAB(0,10)
"#¥x*Error Out of range'":GOTO 1620

1650PRINT TAB(0,15) "Scan will be over range:"

1660PRINT TAB(0,16) FNform(Scan_start,1);" to ";FNform(Scan_start+60,1)
167OPRINT TAB(0,27) "Press any key to continue or E to exit"
1680Reply$=GET$

1690IF Reply$="E" THEN PROCexit

1700ENDPROC




1710REM
1720DEF PROCaxis

1730CLS

1740MOVE 79,23

1750DRAW 79,1000

1760MOVE 79,23

1770DRAW 1279,23

1780REM Annotate the axes

1790FOR I=200 TO 1000 STEP 200

1800MOVE 49,1

1810DRAW 79,1

1820NEXT I
1830Mve=10-10*(Scan_start/10-INT(Scan_start/10))
1840Mve=79+20*Mve

18560 FOR I = Mve TO Mve+1000 STEP 200
1860MOVE 1,3

1870DRAW I,23

1880NEXT I

1890ENDPROC

1900REM - -
1910DEF PROCplot

1920IF Direc’%=1 THEN X_counter’,=0 ELSE X_counter’=601
1930MOVE 79,23

1940CALL Set_up’

1950REPEAT ?Flag%=0

1960REPEAT UNTIL ?Flagl<>0

1970UNTIL ?Flag’=Direc

1980REM

1990REPEAT UNTIL ?Flag%<>0 AND ?Flag%=Direc%
2000REM Execute next bit if interrupt is enabled from user VIA
2010*FX 17,1

2020Y_value=ADVAL(1)/Sens’
2030num_pt%=num_pt%+1

20400N ?Flag) GOTO 2050,2100,2150

2050REM Come here if ADVANCING in scan
20680X_counter’%=X_counter’+1
2070Y(X_counter’,)=Y_value

2080PLOT 69, (79+X_counter*2), (23+Y_value)
2090GOTO 2190

2100REM Come here if REVERSING in scan
2110X_counter)=X_counter’-1
2120Y(X_counter’,)=Y_value

2130PLOT 69, (79+X_counter’*2), (23+Y_value)
2140G0TO 2190




2150REM Come here if scan is too fast

2160IF Direc)=1 THEN X_counter=X_counter’+1 ELSE X_counter’=X_counter’—-1
2170Y(X_counter’)=Y_value

2180PRINT "Error!!'"

2190REM Reset the flag and check to see if scan completed
2200?Flag¥=0

2210IF num_pt%<600 THEN 1990

2220CALL Reset/,

2230IF AY%<>1 THEN GOTO 2290

2240S0UND 1,-16,97,5

2250S0UND 1,-15,105,5

2260S0OUND 1,-15,89,5

2270S0UND 1,-15,41,5

2280S0UND 1,-15,69,10

2290PRINT TAB(4,26) "Press <SB> to continue"
2300PRINT TAB(4,27) "or E to EXIT"
2310Reply$=GET$

2320IF Reply$="E" THEN PROCexit

2330ENDPROC
2340REM-———--~——————————
2350DEF PROCpeaks

2360FOR I=26T027:PRINTTAB(4,I)"

":NEXT I:PRINTTAB(4,27)"Processing..."
2370FOR I=5 TO 590

2380Grad1=FNgrad(I)

2390Grad2=FNgrad(I+1)

2400IF Gradi>=0 AND Grad2<0 THEN PROCwidth(I)
2410NEXT I

2420ENDPROC

2430REM--- -

2440DEF FNgrad(II)

2450m=0

2460FOR 1=1 TO 4
2470m=m+(Y(II+1)-Y(II-1))*1

2480NEXT 1

2490=m/60.0

2500ENDPROC

2610REM - -

2520DEF PROCwidth(Z)

2530LOCAL secder:secder=0.0
2540secder=28+%(Y(Z-4)+Y(Z+4) ) +7*(Y(Z-3)+Y(Z+3))-8
*(Y(Z~-2)+Y(2+2))-17%(Y(Z-1)+Y(Z+1))-20%Y(Z)
2550secder=secder/462

2560IF secder<R_test THEN PROCruby(Z)




3000INPUT#X,AmW (1) ,AmW(2)
3010INPUT#X ,AmD$
3020INPUT#X,line$

3030IF AmD$<>Dat$ THEN PRINT '"#** ERROR: Dates on ambient parameter
and session files are different. Repeat ambient and final pressure
scans."

3040IF AmD$<>Dat$ THEN ENDPROC
3050IF EOF# THEN GOTO 3140
3060num=0

3070REPEAT num=num+1
3080INPUT#X,01dD$ (num)
3090INPUT#X,01dT$ (num)
3100INPUT#X,R1(num),R2(num)
3110INPUT#X,01dP (num)
3120INPUT#X,Term$ (num)
3130UNTIL EOF#

3140CLOSE#X

31650PRINT"Updating session file..."
3160X=0PENOUT ("SAVED")
3170PRINT#X,AmW (1) ,AmW(2)
3180PRINT#X,AmD$

3190PRINT#X," "
3200FOR I=1 TO num
3210PRINT#X,01dD$(I)
3220PRINT#X,01dT$(I)
3230PRINT#X,R1(I),R2(I)
3240PRINT#X,01dP (num)
3250PRINT#X > ¥4 3o o o e o o ofe o o ek !
3260NEXT 1

3270PRINT#X,date$
3280PRINT#X,title$
3290PRINT#X,R_peak(1),R_peak(2)
3300PRINT#X,Pres

3310PRINT#X , 79 sk 3¢ sk s 3¢ o ke o e ofe oo !
3320CLOSE#X

3330ENDPROC

3340DEF FNform(n,dec)
3350n=n*10"dec+0.5
3360=INT(n)/10"dec

3370DATA -0.05




