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1 INTRODUCTION

In this study we shall be concerned with the small oscillations of a
canal-like body of water under the influence of a periodic disturbance in
the gravitational field - such as is produced by the action of the moon.
The purpose of the work is to explore the significance of the different
parts of the Coriolis force in determining the nature of the solution, and
to contrast the findings with those derived from Laplace 's equations . We shall
therefore find it appropriate to begin this discussionwith a review of the
assumptions underlying Laplace’s equations, and of the subsequent comments

which led to the formulation of the present problem.

Laplace considered the tidal oscillations of an ocean of comparatively
small depth covering a rotating globe. The motion of this fluid is mainly
horizontal, which led him to propose that the vertical acceleration of the
fluid particles be ignored. Under these circumstances the corresponding
equation of motion is reduced to the hydrostatic pressure law. Consequently,
the dynamic pressure may be replaced throughout the equations by the eleva-

tion of the free surface *, multiplied by a suitable constant.

In the continuity equation it then follows that the vertical velocity
is linearly related to the height above the ocean bottom, with the velo-
city at the free surface, determining the constant of proportionality.
Elsewhere, the small vertical component of velocity and all non-linear

terms could be regarded as negligible.

By this process, Laplace was led to formulate a set of three linear
differential equations in three unknowns; namely the two horizontal velocity

components and ¢. These he took as the governing equations for the flow.



Their subsequent application has been widespread to the many particular

fluid domains of interest to workers on the dynamical theory of the tides.

However, Laplace's equations were not without criticism. Firstly,
the neglect of vertical acceleration will depend on whether significant
variations in this direction can occur over a distance shorter than or
equal to the depth of the ocean. Such is the case when the motion takes
the form of "cellular oscillations", ie periodic changes in the velocity
components with increasing depth, including associated reversals of
sign. [ 2 ] established that such motions are permissible for a tidal

constituent of period 2w/c such that

2 2
g < ko

where w is the angular speed of the earth's rotation. The main force of
this criticism referred to the diurnal constituents for which o is

2
near w .

Furthermore, both [ 3 ] and [ 4 ], on retaining vertical acceleration
in the particular examples which they studied, found that the nature of
the motion depended in a fundamental ﬁay on the.sign of 1 - hwz/oz. This
led [ 3 ] to propose that solutions differing greatly from those obtained
via Laplace's equations would result when o < beo’. Also [ 4 ] pointed out
that for the seﬁi-diurnal constituent, in which o = huf, Laplace's
equations did not appear to be valid in the case of a flat circular basin

of uniform depth.



These various criticisms were taken up by Proudman [ 5 ]. Using
Soiberg's equations [ 3 ] or a simplified form of them in cylindrical
co-ordinates, he examined the solution for a number of fluid domains. His
findings for the different tidal constituents were then contrasted with
solutions derived from Laplace's equations. The results of this work
indicated that for two particular fluid domains Laplace's equations were
not always valid, but that elsewhere the necessary correction would only
be slight. The two domains in question were the circular sea of uniform
depth near the North Pole and a broad channel of uniform depth near the
equator. In thé former of these, Proudman found that the case of failure
was that of the semi-diurnal constituent as, indeed, had [ 4 ]. In the
latter it was the long-period constituent, where cellular oscillations

were found to occur.

These same two regions are the subject of the present study, with the
emphasis on solutiqns where the necessary correction should only be small.
Thus, among other things, Proudman's work has indicated that high accuracy
is obtained from Laplace's equations for the semi-diurnal constituent in a
broad equatorial canal. A similar statement would hold for a canal near
the North Pole when considering the long-period constituent. However, in
these two regions, Proudman's remarks were based on simplified equations
such that the description of vertical acceleration neglects the vertical
part of the Coriolis force. Similarly, the vertical velocity term was
also absent from the horizontal part of the Coriolis force. In the
present study these two terms are retaiﬁed, as they were by Solberg, and
spherical polar co-ordinates are used throughout. A detailed examination

is then made of the long-period constituent near the North Pole and the



semi-diurnal constituent near the equator. The findings from these more
general equations are then examined to see if Proudman's conclusions can

be verified or not.

The conclusions of the present work are distributed at the ends of

the relevant sections.



THE GOVERNING EQUATIONS

2.1 The Tide—Generating Force

In this section we shall develop an expression for the variations
in gravitational potential, at an arbitrary fixed point on the earth's
surface, associated with the apparent motions of a neighbouring body

such as the moon.

Figure 2.1

Thus, with reference to Fig2.1, let O and C be the centres of the earth
and moon respectively. Let the distance OC be denoted by D and let
the radius of the earth be denoted by r. Now the potential at P due
to the moon's attraction is given by -YM/CP where M denotes the moon's
mass and y is the gravitational constant. We may rewrite this potential
as

-YM

vee.. (1)
-
(D> - 2rD cos & + r)?

However, part of the gravitational force field acts to accelerate the
whole mass of the earth parallel to OC. The value of the acceleration
is yM/D* so, evidently, a uniform force field of intensity yM/D2 is the

essential part devoted to this motion. The associated potential at P



of this force field 1is

:%M>r cos § ceee. (2)
D

As our concern is only with motions relative to the earth's surface,
we must subtract this component from (1) whence we obtain an expression

for the potential of the relsative attraction at P which we shall denote

by @, ie
Q = 2 —YM > 1 + l?-r cos 6
(D" -2rDcos 6§ +r' )2 D
1
2 \2
= EM 1l - %%—cos s + E;- + l?—r cos §
D D
2 2
- M r _lr 3r | 25 _
= 1+ D cos § > 2 + 5 3 cos § +
D D
+ I? r cos §
D
2 2
-YM lr 3r 2
= —\|l-5—F+5~cosd§ — -
D 2 Dz 2 Dz

Writing a =4a+ YM/D which is such that zero potential is at the earth's

centre, we obtain

Q = =YM %-- cos’ 8 ceees (3)



Now, for the fixed point P on the earth's surface, the angle 6 varies
with time due to the motions of the earth and the moon. The principal
source of variation is, of course, the earth's rotation. However,
variations in 6 are more precisely related to the moon's hour angle

measured from some fixed meridian.

MOON

Figure 2.2

To analyse the character of this relationship, let 0 he the co-latitude
and p the longitude of the point P (where longitude is measured eastward
from some fixed meridian). Let A be the north-polar distance of the
moon (see Fig 2.2) and let a be the hour angle of the moon measured west

of the same fixed meridian. Then, in Fig 2.2.



NOG = A

HOG = a + §
NOP = 0
POC = 6

Let PE be an arc of the great circle which intersects the longitude
arc NC at right angles at E. By this construction we obtain two

right spherical triangles PNE and PCE. Call

POE = X

NOE = y

We now make use of some standard results in spherical trigonometry

which can be summarized as follows

Figure 2.3

In Fig 2.3, ABC is a right spherical triangle on a sphere of arbitrary
radius. By considering the right angled triangles EFG, EFO, EGO, GFO,

the following results are easily obtained:



sin b = sin ¢ sin B
cos ¢c = cosacosb
s ceee. (W)
cos B = tan a cot ¢
sina = tan b cot B

Thus, consider the right spherical triangle NPE in Fig 2.2. Using the

second of the formulae (4) we have

cos 8 = cos x cosy e (5)
and using the fourth formula in (4) we have

siny = tan x cot (a + ¢) . ceee. (6)

Consider, furthermore, the right spherical triangle CPE. Again,

from the second of formulae (4) we obtain

cos § = cos x cos (A - y)

= cos x (cos A cos y + sin A sin y)

cos A cos x cos y + sin A sin y cos x ceee. (T)

Then, eliminating cos x in the first of the terms of equation (7) by

using (5) we obtain

cos § = cos A cos 0 + sin A sin y cos x ceees (8)



Now eliminating sin y from the second of the terms of equation (8) by

using (6) we obtain

cos § = cos A cos 8 + sin A tan x cot (a + ¢) cos x

cos A cos 8 + sin A sin x cot (a + ¢) cee.. (9)

However, going back to the right spherical triangle NPE and using the

first of formulae (4), we have
sin x = sin 6 sin (a + ¢) veee. (10)

Hence, eliminating sin x from the second of the terms of equation (9)

by using (10), we obtain
cos § = cos A cos 6 + sin A sin 8 cos (a + ¢) vee.. (11)

Thus § is expressed in terms of the hour angle a, the north-polar
distance A, the co-latitude 6 and the longitude ¢. If we substitute

from expression (11) for cos & into our expression (3) for Q we obtain

2
Q = iYM!—(;-[cosAcose+sinAsin9cos (a+¢)]2)
[ 2 D3 3
2
= QYM r (1. coszA cos’ 8 - L sin 2A sin 26 cos (a + ¢) -
2 D3 3 2
- sin’A sin’6 cos’ (a + cb))
3 2 1 2 2 1
= 2YMEI-|=-cos’A cos’® - = sin 2A sin 26 cos (a + ¢) -
2 D’ 3 2

. . + +
31n2A smze [cos 2 (a2 ¢) l:l

10



2
2 . .
= -g—YM r_(i - cos’A cos’8 - T sin 2A sin 26 cos (o + ¢) -

D3 3 2
- %— sin’A sin’6 cos 2 (a + ¢) -
- % (1 - coszA)(l - cosze))
3 :r2 1 2 2 1 1 2 1 2
= EYM‘DT(E‘-COS A cos © -§+§-cos ) +§-cos A -

- % cos’A cos’e - %— sin 2A sin 26 cos (a + ¢) -

- % sin’A sin’® cos 2 (a + ¢))

Hence, if we let

H = __g'YMr—a' s e 0 e (12)
D
we obtain
- 3 2 _;) o _;) .
Qo > H(c?s A 3 (cos 6 3
1 . .
+ EH sin 2A sin 20 cos (a + ¢) + ..., (13)

+—;—H sin’A sin’6 cos 2 (a + o)

Each of the terms of (13) may be regarded as representing a partial

tide, and the results superposed.

11



For any given point P, both 6 and ¢ will have specific values
in the above expression. However, taking into account the detailed
motions of the earth and the moon, A and o will vary with time in a
rather complicafed way. Without entering into this complexity, it
may be noted that the variations of A and o will be of long period,
in which case it is clear that the expansion of (13) into a series
of simple harmonic functions of time will give rise to terms of

three distinct types.

First, we have the tides of long period, for which

Q = K'(cosze -%) cos (ot + €) cee.. (1b)
where K' is a constant. Laplace has called these tides the
'Oscillations of the First Species', the most important being the
"lunar fortnightly' where, in degrees per mean solar hour,

o = 1°.098/hr and the 'solar annual' where o = 0°.082/hr.

Secondly, we have the diurnal tides, for which

Q = K"sin 0 cos 0 cos (ot + ¢ + €) ceee. (15)

o

where K" is a constant and where o differs but little from the angular
velocity of the earth's rotation. Laplace called these tides the
"Oscillations of the Second Species" and they include the "lunar
diurnal" where o = 13°,943/hr and the "solar diurnal" where

o = 14°,959/hr.

12



Finally, we have the semi-diurnal tides, for which

e = K'" sin’6 cos (ot + 20 +€) eee. (16)
where K'"” is a constant and where o takes values close to twice the
earth's angular velocity. Laplace called these tides the
"Oscillations of the Third Species" and they include the 'lunar semi-
diurnal' where o = 28°.984/hr the 'solar semi-diurnal' ¢ = 30°/hr

and the 'luni-solar semi-diurnal' where ¢ is exactly equal to twice the

earth's angular velocity, ie ¢ = 30°.082/hr.

13



2.2 The Governing Equations

In association with an arbitrary point P on or above the earth's
surface, let (8%, 4%, R*) be co-ordinates representings its co-
latitude, longitude and radial distance measured outward from the
earth's centre. This then defines a system of spherical polar
co-ordinates rotating steadily with the earth's angular velocity

about the polar axis.

Figure 2.h

1k



Thus, inFig 2.4, ONis the north polar axis and w denotes the earth's
—'

angular velocity which has magnitude equal to w and direction ON.

The meridian NGS is the reference meridian from which longitude is

measured eastward.

In this co-ordinate system, the equations governing the motion
of an incompressible viscous fluid are those stating the conservation

of mass and momentum, ie
V.g* =0 ceee. (1)
Fer F + 2% . Va* + 20 x gt v x (wx ¥
cee.. (2)
- _ 1o
= —EVP*+g-vi(qu*)
where g* is the particle velocity and r*, t*, P¥, p, v, F represent
respectively the position vector, time, pressure, density, kinematic

viscosity and body force per unit mass. The body force will be

assumed to be conservative, taking the form
F = -vq - V(R¥*g) eeees (3)

where 2 is the driving potential of one of the partial tides

described earlier.

15



It is convenient to introduce in these equations a modified

pressure function p defined as follows
p = Pr+opla +R%) -Zolexr®) . (wxr¥) ... (k)

which allows equation (2) to be written in the form

)
p% 3F + 2% . V¥ + 20 x g¥

= —%—Vi)—-\)Vx(qu*) ----- (5)

The system of equations (1), (3), (4) and (5) then defines the vector

form of the governing equations.
Turning to the component form, let us suppose

g* = u*-é_ + v*i + w*.ﬁ_ ..... (6)

P -

vwhere 8, ¢, E are the unit vectors in the directions of increasing

0%, ¢*, R* respectively. The component form of equation (5) is then

Ju¥*  u¥* Ju* v¥ du* Ju*  wEy¥ y*?
+— + - + w¥* + - * -~
3t% TR* 6% R¥ sin 0¥ 20% ' " or* ' R* R¥ °°F 8

1 3p 2 2 Jw*
- * * = - = * - = .
20v¥* cos 6 OR¥ 0% + vl V u* + i 30 %
..... (1)
u*
R*zsinze*

16



av¥  u¥* yv* v¥* ov¥ ov¥ | yw¥y¥ iy
——— — + -
It * + R* 36% = R¥* sin 0% 9¢*% w* IR* + R* + R¥

cot 6% +

~

. 1 ap
+ * * + * * = - g LRI S
2w u* cos 6 20 w* sin 6 OR¥ sin 0F 36% (8)

* *
+ v Vzv*— v + 2 ow + 2 cos 6 QJu¥

*
R*sin’0* R¥’sin g% °¢ R¥ sin’ 0% 8¢*,

2
dw*  u* jw* v* dw* w*  (u*

2
+ v¥)
+ * . - .
5t* T R* 20% T R¥ sin 0% 3¢* T ¥ OR* R¥*

D %
— Dwv* sin 6% = - LB oo [¢? ux o 2 e _ 2 3u*

p OR¥ R R¥? 0%
eeee. (9)

- 2 u* cot 6% -
R*

2 av*
R*’ sin o% d0¥

where

o= 1 3*<sin9* 3 ) + 1 3 .
R¥’ sin 0% 99

1 9 (o429
R aR*\R aR*)

Furthermore, the continuity equation is given by

. 1 ov*
» »
(u* sin o%) + R¥ sin 0¥ 0¥ +

1 3
R* sin 0% 30%

ceee. (12)

17



We now proceed to simplify these equations as follows. First,
let the radius of the earth be denoted by r and the mean height of the
ocean be h. Let U and W denote, respectively, the typical horizontal
and vertical speeds of flow measured relative to the surface of the

earth. We may then introduce a non-dimensional scheme of variables

defined by
N
R¥ = r + hR u* = Uu
* = 9 v¥ = Uv
R (12)
o* = ¢ v¢ = Ww
t* = t/w P = pwlrp ’

which allows equations (T7), (8), (9) and (11) to be reduced to the

dimensionless form

3t+l+BR (u89+sin63¢+kl (l+BR)W3R+
+awvu - V0 cot 9) - 2v cos ©
cee.. (13)
- 2x 2
- -J-‘*:!._BR %‘E'+E V12u+__.i_2%!e’__ g 2vuz _
(1 + gR) (1 + 8R)® sin’e
. 2
2B cos 0 v
(1 + gR)’sin’0 °*
v e v, _v_3v v )
a11--'-1-0-BR (u ae+sinea¢+)‘1(l+BR)VaR"'aW"'uvcote +

18



_ 1 By
(1 + BR) sin 6 3¢

+ 2u cos 9 + 20w sin 9

2

+ E Vlzv- 8 3 v+
(L + BR)” sin’e
..... (1k)
2
+ 2 gw+
(l+BR) sin o %9
2
+ 2B cos 6 oJu
(1 + gR)%sin’e ¢
aa_w+ ae ( v, _V aw+)\(l+BR) _uz-i-v2 _
ot 1 + BR 30 sin 0 3¢ aR a
. 2\
-2vsin 8 = é%ﬁ+E aV w—-—z——z-w-
(1 + BR)
2 2
_ 28 ou 2B wucot 8 _
(1 +8r)* % (1 +gR)
_ 26" av
(1 + 8R)?sin 6 °¢
Bv a sin 6
(u sin 8) + — 3(1 + BR) BR[(]‘ +8R)>w] = o cee.. (16)
where
2 2 2
Vl2 = Bz aa—e(s:l.nege—) + 82 2 32 +
(1 + BR)"8in 6 (1L + BR) " sin" 0 \ 3¢
ceees (17)

1 9
+ ——————(l . BR)z R [(1 + BR) :,

19



and wherea, B, Al, kz, €, E are dimensionless quantities defined as

follows

! cee.. (18)

e = — eeee. (19)

E = —— eee. (20)

We may regard these as six non-dimensional parameters whose magnitudes

indicate the relative importance of the different terms.

The parameter € = U/wr is known as the Rossby number for the
flow andmultiplies all non-linear terms. To assess its magnitude we
note that U will be typically of order 1 fps whilst, at the earth's
surface, the basic rotation speed is of the order 1,000 fps. Hence €

. . -3 .
1s typically of order 10 , 1e we can assume that
e << 1 cenee. (21)

Non-linear terms in the governing equations may be neglected as a

consequence, the motion being one of almost rigid rotation.

To estimate the magnitude of the Ekman number, E, we note that v
is of the order 10~ ftz/sec and wh® is of the order 10° ftz/uc.

Hence E must be of the order 107° approximately. However, E multiplies

20



the most highly differentiated terms in the governing equations and,
to assess their importance, it is necessary to understand the
behaviour within the boundary layers.

N

r sin
dt

Figure 2.5

Thus, let us consider the Ekman layer at the ocean bottom where the
tangential velocity U is brought to its proper boundary wvalue by
viscosity. A fluid particle rotating with the boundary layer at P
(Fig 2.5 ) will be thrown outwards along PP ' owing to the existence of
centrifugal forces. In the process, angular momentum is gained
which, ultimately, becomes imparted to the ocean body. This acts
to counterbalance angular momentum taken from the ocean by tidal

forces and imparted to the orbital motion of the moon.

The Ekman layer therefore acts as a source of angular momentum
extracted from the rotating earth. Knowing the rate at which the

earth is slowing down we may then estimate the vertical speed of fluid

21



particles leaving 'the layer. Thus, let$; denote the depth of the
layer. We shall consider a ring of fluid through P centre C of
width rd® and depth§,. As the ring moves to P’ in time 4at, its gain
in angular momentum is 21rwp<SLUl r sin ® sin 20 d6 dt. Hence, for

the entire layer, the total rate of change of angular momentum is

dr, u 5
= - M wry, sin 6 sin 26 48 = §-Mieri ..... (22)
[+]
2
where M = bwpr 8,

)

Now, dw/dt denotes the rate of change of the earth's angular velocity,

so its rate of loss of angular momentum is given by

where Mi is the mass of the earth. Equating the expressions (22) and

(23) we obtain

~ _E_ dw '
U It ceees (20)
Now, M, is approximately 10°® 1bs and we may calculate the value of
lmpr2 to be approximately 1017 1lbs/ft. From observations of the
earth's rotation, the rate of change of angular velocity adds 1/1000 sec
to the day every 100 years. Hence dw/dt is approximately 102! rads/sec

and therefore U ~1/1008, fps. Conservation of mass then requires an

22



average vertical velocity of 10 fps from the layer. If we assume
that local variations are not too great, this clearly has a negligible

effect on the interior flow.

At the edges of the continents, sidewall boundary layers will
exist where the flow patterns can be quite complicated. However, with-
out entering into this complexity, we shall assume that these also have
a negligible effect on the interior flow so that terms involving E may

be dropped from further consideration.”

With the typical dimensions met on earth, an outstanding feature
of the flow system is the smallness of h compared with r. In such a
system we can expect that a fluid particle will rise through the height
h during the time that it takes to travel horizontally through the
distance r. Consequently W must be small compared with U and we can

write approximately

I ~ 7 (25)

With h = 100 ft and r = 2 x 10® ft this gives a = W/U ~ 10~*" which
suggests that vertical motion may be neglected. However, this ignores
the effect of the coriolis term w sin G which, near the equator, takes
on importance as the u cos 0 term (equation (14)) diminishes.
Accordingly, we shall examine the three-dimensional nature of the motion
and will assume the flow conditions are such that these terms may be

of significance when

g ~ 1lo"x (26)

1. However, tiiis assumption is subject to further review in 5 L.2
owing to the nature of the solutions obtained tdiere.

23



for the present purposes.

The simplified equations are therefore as follows

Ju 1 3p

L T2Veos 8 = ~Toamag e (27)
%%—+ 2ucos 6 + 2aw sin 8 = - T+ Bés in o %ﬁ' ----- (28)
%%F-— 2v sin§ = - %~%§- ..... (29)

é%—(u sin 6) + %%'+
..... (30)

o sin 68 3

TRy R L+ Br)? w] = 0O

Finally, we need :to consider the boundary conditions for the flow.

The ocean bottom will be assumed to be the rigid spherical surface

R = 0. Hence we must have

From angular momentum considerations we must also have

v » 0 as 6 + O, 7 vee.. (324)

24



Furthermore, we shall assume that the ocean is contained by axially-
symmetric walls of the type G(8, R) = d where d is a constant and
G(8, R) is a given function of 6 and R. The requirement that the

normal velocity vanishes on the surface then gives

Bu__ 3G , 3G

1 + BR 36 YR T 0, G(e, R) = 4 .... (32B)

At the free surface we shall assume that the pressure is uniform so
that P¥ is a constant. Hence

p -9 - A(L +BR) + u(1l + BR)® sin’8 = no, sy eee.. (33)

defines the equation of the free surface, R = R(8, ¢, t), where the

dimensionless parameters A, p are given by

= £

A= wy
d s e oo (3’")

= Wr

-

and where 2 is the dimensionless driving potential given by

Q = — ceee. (35)

As this surface must always consist of the same fluid particles, the
general surface condition dP*/dt* = O holds. Hence we may write
op*

agw _Pe = 0

25



ignoring small terms. In the dimensionless form, this last condition

becomes

(-5-0)

5t 3t = 0 veee. (36)

R=R(0,¢,t)

where k is the dimensionless parameter given by

In the next chapter we shall examine the solution of these

equations for the case of the semi-diurnal tide.

26



THE THREE;DIMENSIONAL TIDAL EQUATIONS IN THE

CASE OF THE SEMI-DIURNAL TIDE

3.1 The Perturbation Equations

In this chapter we shall examine the solution of equations 2.2
(27)-(30) when the driving potential has a period of approximately
12 hours. Certain features of these equations make the approach a
little easier if the period is exactly twice the earth's angular
velocity [1]. Such is the case with the luni-solar semi-diurnal fide.
However we may regard the period of other "Oscillations of the Third
Species”" as small departures from this value. Then, formally expanding
each of the dependent variables as a perturbation series in the small
term, we obtaln a sequence of problems where the approach of [1] may
be utilized. We present here the analysis of the zeroth-order and

first-order equations.

It is convenient to introduce the change of variables

Bz = 1 + B8R
[ ..... (1)
v = aw P = %—p
/
so that the governing equations become
3 _ L1 , \-
at 2V cos8 e - Z a¢ ' LI (2)
v e - -1 2
sg t 2ucos @ + 2v sin 6 = 5in 6 3¢ eeees (3)
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aw e - _2B
ol 2v sin 8 = 5a e (4)

] . ov sin 6 3 2
36 (u sin ) + 99 * Z 9z (z w)

We consider a disturbing potential which is of the form
Q = 2F(6, z) exp {-2it + iet + 2i¢} e (6)

where F(6, z) is a known function and € is a small quantity. The
problem is to determine the response of the ocean to this external

driving potential.

We shall look for a solution of equations (2)-(5) of the form

(u,v,w,P) = (u(e, z), v(e, z), w(e, z), P(e, z)) <

x exp {-2it + iet + 2i¢}

Substituting these expressions for u,v,w,P into the above equations

we obtain

. _ 1P
(-2i + ie)u — 2v cos 6 = T, ceee. (8)
(-21 + ie)v + 2u cos 6 + 2w sin® = - ——J%L——-P veee. (9)
z sin O

[}

[
~~
| ot
o
S

(-21 + ie)w - 2v sin @
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3 . . sin 8 9 2 _
T (u sin 8) + 2iv + o (z" w) =0 ... (11)
In equations (8), (9), (10), (11) we shall now try to obtain
solutions for (u,v,w,P) in the form
U o= u +eu Feuw + oeeee i (12)
° 2
v = Vv + gev +ezv + .... eeee. (13)
o 1 2
Wos owotew Few o+ oeeee . (14)
o 2
P = P +¢€P +€P + eeee  iean (15)
o 1 2

Hence, substituting these expressions into (8), (9), (10), (11) and

equating corresponding powers of € we obtain.

1 aPo
iy +v cos 6 = 2 38 e (16)
:i.Po
iv. -u cos 8 -w sin 6 = ~oin o eee.. (17)
laPo
iw +v sin 6 = > 9a e (18)
2 (u sin ) +2iv +HELR () - g ceees (19)

36 z 3z ‘2%

for the zeroth-order coefficients.
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Now, the determinant of the coefficients of w, Vo, W in (16),
(17), (18) vanishes which we may exploit in the following way.
Solving (16) and (18) for u and v respectively and substituting

in (17) we obtain

1 BE;
cos © [-—— - v cos 6}+ v +
o o

2z 06
oP P
+ sin 6 L_o _ v sin 6 = —2
2 9z o z sin O

Hence P satisfies
o

N

BP; cos 6 QP; 2F;
sin 6 —— + - 8 = 7 5o ee... (20)

the integral surfaces of which are generated by the integral curves

of the equations:

Zz sin 6 dP;

dz_ _ o _
Sin 5] - z cos 0 2P° cecoe (21)

Thus, the first equation of this set may be written as

z cos 6

which integrates to give

constant veee. (22)

Z cos O
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The second equation of the set can be written as

do - dP;

sin & cos 6 2P;
sec’eas _ o
tan 0O 2P

which integrates to give
2
P; cot 06 = constant

From (22), this last relationship may be rewritten as

P

[+]
= constant

(z sin 8)°
Hence we may write the general solution of equation (20) as
P = 2(z sin 8)® £(z cos 8)

[+]

where f(x) is an arbitrary function of x.

To obtain an expression for v, We now substitute for u and W

from (16) and (18) in (19) to give

av; 2 av;
. —_° .4 . _o
sin 6 cos © 20 z sin © 3z + 3v;

= .]_'. -]L_a_. in © 3P0>+sin6_§_(22 _apo)
21z 30 \**" Y 0 z 0z 3z

ce.. (25)



Substituting for P from (24) we then obtain

Bv; ) av;
sin 6 cos © EYS + 2z sin 6 S5z + 3v;

= Lz sin8 f(z cos8) + 2> sin @ £"(z cos 8)

which has integral surfaces given by the equations

de _ _ dz
sin 6 cos 6

.2
Zz sin ©

dv

(]

-3v + bz sin 0 f(z cos 6) + z3sin®6 £"(z cos 9)

Hence, from the first of these equations

dz _ sin 6 d6
Z cos O
zcos O = ¢ ces.. (26)

where c, is a constant. The second of the equations then gives

dv_ 3v, lwl ﬂcl) ﬂashfe f%cl)
= +
de +sinf)cos )

2 4
cos 6 cos 0
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3d0

inBcos O

. . . . . 3
An integrating factor for this equation is eI' = tan 6 so that

. .3 . 5
3
de o 1 1 1
cos 0 cos 6
. 3 _ 4 ; 3
ie v tan 6 = clf(cl) tan 6 + Z c f (cl) te, e (27)

where ¢, is a constant. From (26) we may rewrite equation (27) as

c
3

v = 2z sin 0 f(cl) + %‘(Z sin 6)3 f"(Cl) + ( )3
Z sin 8

o

Hence, on substituting for c, from (26) we obtain the general

solution for v, as follows

v o=z sin 0 f(z cos 8) + %-(z sinG)3 £"(z cos @) +

, a(z cos 8) S (28)

(z sin 6)3

where q(x) is an arbitrary function of =x.

To obtain an expression for w we now use equations (18), (24)

and (28) which give
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) . 2 2 .2
iv = z sin 8 f(z cos 0) + z sin" 6 cos 6 x

x £'(z cos 08) - % 2> sin @ £f"(z cos 0) -

_ q(z cos 8) (29)

z(z sin 6)2

For this to satisfy the boundary condition 2.2 (31) we must have

83 (l cos 6)
al=
8 = -l—sinze f(Lcos e)+isinze cos 6 x
B B 62

.2
sin 6O

. 4
x ' (Lcos 6)—-Sin—e—f"(-];cos 9)

8 68° g
.y _ 1 -1l .2 1 2 .
Hence writing n = B cos 6 so that — sin 0 = = N it follows that
B B
1 2 1 ?
an) = [ S -n ) ) +n{ 5 -n | £'(n) -

B B8

1 1 2 3 " ’
i L £ (n) veee. (30)
B

Accordingly, we can write equation (29) in the form
. . 2 2 .2
iw = 2z sin" 6 £(z cos 0) + z sin 6 cos 6 x

o

x £'(z cos 6) - % 2> sin'e £"(z cos 6) -

3k



2
S S ) zzcosze) f(z cos 8) +

3 .2 2
Z sin 6 B

2
2
+ z cos 6 j; - zcos 8| £'(z cos 8) - veve. (31)

8
1({ 1 2 2 3
-Zl =— - 2"cos’ 8| £"(z cos 8)

which contains one arbitrary function, f(x).

We now consider the conditions on the free surface. From the
equations (2), (3) and (%) we note that the pressure is undefined to

the extent of an arbitrary constant. Thus,

P = C + P(08, z) exp {-2it + iet +2i9}  ..... (32)

where C is a constant. From 2.2 (33), the equation of the free

surface 1is therefore

BC + {BP(6, z) - 2F(6, z)} exp (-2it + iet + 2i¢) - ABz +

ceees (33)
+ uBzzzsinfe = n
Now, at 6 = O, the mean height of this pressure surface is
1
2z = E‘(l + B), hence
BC - A1 +B) = ™ ceeee (34)
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Thus, the equation of the free surface is

7 = %—(1 +B) + %?—zzsinze + %E-{BP(G, z) - 2F(8, z)} x
..... (35)
x exp (-2it + iet + 2i¢)
The mean position of this surface will be given by
- 1 MB 2 in?
2 = 3 (1 + 8) +_A z sin" @
and this can be written with sufficient accuracy in the form
z = = (1+8) +% (1+8) sin’e
B AB
or
1 . 2
z = E—(l + B) [l + ¢ _sin 6} .
..... (36)

g = %(1+e) = 0(107°)

We shall now consider the kinematic condition 2.2 (36). As the last
. -6 . .y . .
term of (35) is only 0(10 ) we may take this condition to be satis-

fied on the mean surface (36). Hence we may write

n
o

2{BP0(6, z) - 2F(6, z)} - ki
cee.. (37)

_ 1 . 2
z = 3 (1 + B)(l + ¢ _sin e)
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Substituting for P and w  from (24) and (31) respectively, we

obtain

%-{28(2 sin 6)2 f(z cos 8) - 2F(6, z)} -~ z sin’ 6 f(z cos 8) -

2 . .
- 2°5in’ 8 cos 6 £f'(z cos 8) + %—z351n36 £"(z cos 8) +

1 1 2 2\
o = - z'cos’® f(z cos 8) + zcos 8 x  ..... (38)
z sin 6

B

2

B

1 2 2 2
x — - 2 cos 8 ) f'(z cos 8) -

]
o

- %- j;-— 22 cos 8 £"(z cos 0)

B

.~

. .2 . .
with z = %—(l + B)(l + € sin 6). Accordingly, when this value of z

is inserted in (38) we have a linear second order differential
equation for the determination of the function f. The function
F(6, z) has been discussed in 2.1 and it is clear that we have to

study the case of

F(e, z) = «x sin’@ vee.. (39)
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Thus the differential equation for f(n) is

2 2 2
-l;—BZ(zz—nz) £(n) -| (z> - n?) - 1—2—n2 x
B
1 2 2 3 vl 3
x (£(n) + nf'(n)) rl e =) oS- n’ £"(n) cee.. (LO)
B
_ bk 2 22
= k—z(z -n)
where
Z=l(l+6)(l+€sinze)= n
B o cos 6

We may now consider the remaining boundary conditions. Now, the
nature of the function v implies that condition 2.2 (32A) cannot be
satisfied for all z on 8 = O, n. Hence our attention will be
restricted to canal-like regions between two surfaces of the form

Bzcos® =4 il (k1)

where d is a given constant.

Figure follows
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Z COs

Figure 3.1

Physically, these surfaces are planes parallel to the equatorial

plane and distance d from it. It follows from the geometry that

ik2)
Now, from (16), (2U), (28) and (30) we have
luo = z sin 9 cos 0 f(z cos 8) - sin 0 (z sin 0)® f'(z cos 0) -
~ L1 cos 0 {z sim 0" ' (27cos ' - C08 0O
z Sin
Z7COS~0)~ f£(z coS 0) + z COS 0 X (Us)
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1 2 2 \? 1/( 1 2 2 \3 _»n
1
x|— -z cos 6 £ (z cos 8) - €\ 5 — zcos 8l £"(z cos 8)

8’ B

Hence, applying 2.2 (32B) we obtain

]
o

w ocos 6 - u sin® = 0 , Bz cos 8
which, from (31) and (41) 1leads to the condition
C e (§) - o ceeen (BB)

consequently two such surface conditions fully determine the function

f.

The case where the two values of d are given by
d = % , § small

is of particular interest. Under these circumstances we may treat
the sidewalls as vertical and the physical domain becomes the
"equatorial canal" of width 28/8. The foregoing analysis describes

the tidal theory in the canal when there is an appreciable vertical

velocity.

The first order coefficients in (8), (9), (10) and (11) yield

the equations

Lo



oP

° . 1 1 i
1w, +vlcos 6 = EW-‘-EuO ..... (45)
iv ~ucos 8 -~ wsin 8 = ——i—P +i-v (46)
1 1 1 Zsin ® 1 2 o  °7°°°

1 aPl 1
iw, +vsing = 53z Fo ¥ e (47)
) . . sin 8 9 ( 2
=< + L =
=8 (u151n 9) 2iv + 2 3 (z wi) o .. (48)

As with the zeroth-order equations we find that the determinant of the
coefficients of W, Vs W in (45), (46), (47) vanishes. Thus, from

equation (45)

= aPl . 1
1 2z 936 1 2

and, using (16), we then obtain

= _ i 1 _if i "o _
w = 55 35+ iv,cos 0 -3 S PRET) iv cos @ veees (49)
Also, from (4T)
. oP
1 1 . . 1
v, = -2——az+1v181n6+2w°

L1



which, using (18), becomes

Z)Pl . oP

1 = 2 9z 1 L} A

- ivosin 8 eee.. (50)

no|
N+

Now substituting for u and w in equation (46) using the expressions

(49) and (50) we obtain

i aPn 1 i aPo
S W fL[Ei o .
cos 0O 52 30 iv, cos 0 5 5z 30 iv cos 6 +
i a]?l 1/ 1 aPo
+1Vl + sin O 5V—1v131n6+§ 5 °z —1v051n6
= i i
Zz sin 6 y t 2 Yo
ie putting p = P + -J;P eees (51)
p 1 2 ° - Ny
we obtailn
3p , cos 8 3p 25 Fo
. + = - + — —————1 e eeee
sin 6 92 Z 9 z sin O 2vo 7z sin O (52)

Using (24), (28) and (30) we may express this in terms of the

function f£(z cos 8) as follows

. . dp ,cos 6 3p _ 2p 1 . \3 _m .
sin 0 o=+ =, — ¢ zsin6+3(zsme) £ (z cos 8)

k2



2 1 2 2 2
+ =~ -z cos @ £(z cos 6) + z cos 6 x
(z sin 0) B

..... (53)
2
x| L 22 cos’ 0 £'(z cos 8) -
2
B8
1({ 1 2 2 3
—g\ 5 —zcos’e £"(z cos 0)
B8
Now it may be observed that a particular integral of the equation
. 9y , cos 8 3y _ my - . s
sin 6 R R 36 R sin 0 a(R sin 6) G(R cos 8)
in which a, m and s are constant with s ¥ m - 1 is
a(R sin e)’“ G(R cos 8)
s+1-m
Hence a particular integral of (53) is
_I = %(z sin 9)4 £"(z cos 0) ———2———-2—x
4(z sin @)
2 2
—]2;'— 2200326 £(z cos 6) + z cos © —l? - zzcosze) X
B B oo (5h)

3
x £'(z cos 8) -% —];— - z%cos’e | £"(z cos 8)
B8
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To this must be added the complementary function which is of the same

form as for the zeroth-order analysis. Hence
- . 2 —
p = 2(z sin 6)° g(z cos 8) + B, e (55)

where g(x) is an arbitrary function of x. Using the relationships

(24) and (51) we obtain

P = 2(z sin 6)° g(z cos 8) + %—(z sin 8)* £"(z cos 8) -
(z sin 8)* f£(z cos 8) - —————l————;-x
2(z sin 0)
1 2 2 2
x = -z cos © f(z cos 8) + z cos B x
8
..... (56)
2
1 ’

2 2
x -z cos 8| f£'(z cos 8) -

2

B

3
- %‘ 3; - z%cos’8 | £"(z cos 8)
B

The solution of v, may now be obtained by substituting for u and

w, from (49) and (50) in equation (48). Thus we have

v v

P
. 1 . 2 1 _ 111 3 . 1
sin © cos 6 26 + z 81n © 3z + 3v1 = 21, 55—(51n ] ETH +

LYy



3p

sin
3P .
. sin
sin
3v v
sin cos sin
9z
or, writing
the above becomes
. v .
sin cos + z sin ~ + 3v TI<
ie, on dividing throughout by z sin

) ov cos
sin .
z sin

2z sin

opP
3z
-V
(57)
sin
Sin
9z 9z

sin

sin

z sin



In equation (58) we note that if h(z cos 8) is any function of

z cos 6 then

N |-

9 . ) . s sin 6
=5 [5111 8 =8 {(z sin 8) h(z cos 6)}:|+ z

x E[zz a_az {(z sin 8)° n(z cos 6)}]

cos 6 o . s
> 30 {(z sin 8)° h(z cos 0)} +

"

. 2
+ §in 0 82
Y

{(z sin 8)" h(z cos 8)} +

+ 2 sin 8 a_az— (z sin 6)° h(z cos 8)} +

2

+ 2z sin 8 —BT {(z sin 8)°" h(z cos 8)}

a2

cos 0
z

. 8- ] 1
(sz351n' ' cos 6 h(z cos 8) - (z sin 6)”

x h'(z cos 6)) + s_nzl_g_ X

- 2
x (s(s - 1) 2'sin’ 29 cos o h(z cos 8) -

L6



- s2°sin"0 h(z cos 6) - sz*'sin’ 6 cos 6 h'(z cos 6) -
- (s +1)2""" sin'e cos 6 h'(z cos 8) + (z sin 8)° " *h"(z cos e)) +
+ 2 sin 6 (szs—lsinze h(z cos 6) + cos 8 (z sin 8)°h'(z cos 6)) +
+ z sin 8 (s(s - 1)z %5in"6 h(z cos 6) + sz* 'sin 6 cos 8 x
x h'(z cos 8) + sz’ 'sin®@ cos 6 h'(z cos 6) +
+ cos 8 (z sin 8)° h"(z cos 6))

2 s-1 ., s—1 1.
sz sin' 7' 6 n(z cos e) + 2t 51n“16 h"(z cos o)

Using the above result, we find that on substituting in the RHS of

(58) for p and v we obtain

b7



, 6_3v K cos 0 3v K 3v
sin 9z z 30 z sin

1 , .
22 sin 0 8 (z sin 0) g(z cos 0) + 2(z sin 0) x

X g zcos 0 +— (z sin 0)» £"(z cos 0) +
+ "~ (z sin 0)~ £f"" (z cos 0)
g '(z cos 0)
2 (z sin 0)

. (z sin 0) f(z cos 0) + * (z sin 0)" x
z sin

X f"(z cos 0)1I

We have already observed that a particular integral is of the form

a(z sin 0)* * G(z cos 0) for each term and so we may write down the

solution for v as

V. = (z sin 0) g(z cos 0) + ~ (z sin O g"(z cos 0) +

+ "~ (z sin 0)~ f£7”(z cos 0) + (z sin 0)~ £ (z cos 0)
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(59)

+ (z sin 0) f£f"(z COS 0) + - A
(z sin 0)*

where Q(z cos 0) is an arbitrary function of z cos 0. Hence from

equation (57)

Vi = (z sin 0) g(z cos 0) + ”* (z sin 0)~ g"(z cos 0) +

+ |- (z sin 0)® f£'"(z cos 0) + * (z sin 0)~ £f"" (z cos 0) -

1. "~ (z cos 0) (z sin 0) f(z cos 0) +

z sin
(60)
+ (z sin 0) f£"(z cos 0) + 9p2.8)
(z sin 0)
-7 (z sin 0) f(z cos 0) -
- (z sin 0)~ f"(z cos Q) ——————————— ]
2(z sin 0)

We may now obtain the solution for w* by using equations (47), (56)

and (60) together with equation (30). Thus
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Iw

+ \ z7sin*8f" (z cos 0)

-z sin

q(z cos 0) cos

2z" sin* 0

12 Z Sin

z sin cos

q'(z cos 0)

kz sin

z sin
z sin
z sin f(z cos 0) -
z sin
z sin
12 z sin f (z cos
z sin f(z cos

cos f (zcos 0) -

q"(z cos 0)
z sin
f(z cos
g(z cos 0)

A3 , 24
2z sin O

z sin cos

sin



g(z cos 9)

3,2
2z sin O

ie we have

iwt = z sin®0 g(z cos 0) + z"sin”0 cos 0 g'(z cos 0)
T z"sin*0 g"(z cos 0) - \
z sin O
-~ z sin®” 0 f(z cos 0) - " z7sin”0 cos 0 %

f'(z cos 0) + 7~ z°sin'"™0 £7¢z cos 0) +

(61)
+ ~ 27sin*0 cos 0 f (z cos 0) -
1 5.6
gr z sin 0 £"" (z cos 0) +
z'sin O
cos 0 g'(z cos 0) q" (z cos 0)
4z sin O

+ ~ z sin”0 f(z cos 0) + ~ z7sin”0 cos 0 x
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x £'(z cos 8) - = 2 sin’6 £"(z cos 8) - a(z cos 6)

12 2z sin2 ¢]

We can now deal with the boundary conditions. From condition 2.2

(31) we must have

1
33 Q(Ecose)

.2
sin ©

.2 .
£51n8g(£cose) +1—251n26 cos B x

B B 8

I(l ) sin46 n(l )
x g cos 6 - ———g |T cos 8 -
B 68> ‘P

- I?B— sin’ 8 f(%cos 6) - —-12 sinze x
2B
' : . 4
xcosef(%cose) +%sln8x .....
98
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Ccos

Hence, writin

relationship

Q(h)

Accordingly,

iw z sin

q — cos
cos
gn ==% cos 0 so that sin
(62) can he written as
g(n) +
(n)
fl" (n)

we may write (61) in the form

CcOs

the

£ (n)



z sin g"(z cos 0) z sin £(z COS z sin

X cos z sin z sin
12
X cos (z COS 8) z sin f'"'" (z cos 8)
Z cos Z cos Z cos (z cos 8)
g(z cos
z sin z sin
Z cos cos 8) Z cos f(z cos
6z sin itz sin
Z cos Z cos f '(z cos 8)
2z sin
Z cos cos 8)
9z sin
Z COSs Z COSs £f"' (z cos 8)
12 z sin
Z COoS Ccos 8)

q(z cos 8)

3 .2,
z Sin z Sin 8



z*cos” 9 |g" (z cos 6)

2
zZ COS 6 q'(z cos 6) A gq(z cos e)

kz* sin* 0 82" sin* 0 z Sin

_cos 9 g'(z COS 9 "~ qg''"(scos 9 ~1 ~ sirfe £(, ,*"3 e +

Uz”*in’e ® 2

1 3.4
+ ~ z”sin”G cos 0 f'(z cos 6) -~ z"sin" f"(z cos 0) -

g(z cos 9)

2z*sin”~ 0

which contains one arbitrary function g{x)

We may rewrite this equation as follows

N~ N0) ~ Jjg(z cos 9) + z cos 0 g'(z cos 0) -

i—zZSig 0 gan cos ﬁ}

. 2
z sin
3,2

f(z cos 0) + 1 z cos 0 £'(z cos 0) -
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z COS

z sin z sin
12 .
Zz sin
& f£"(z cos 0) + cos z cos 0) z sin
Z COS
z sin
z sin
Z COS g"(z cos 0)
6z sin
Z COS f"(z cos 0)
12z sin
Z COS f'"'"(z cos 8)

q"(z cos 0)

8z sin

At the free surface we require the kinematic condition 2.2 (36)

to be satisfied. Now from (1), (j3) and (15) we have

= 6(-21i+1ie) ® (0, z)+eP” (0, z)) exp {-2it + iet + 2i"}



to first order in e. Hence substituting (6), (lU) and (65) into

2.2 (36) and equating corresponding powers of e we obtain

23P (e, z) - kiwWw| = 3pP"(0, z) - 2F(0, 2) (66)

for the first-order coefficients. Equations (37) and (66) may be

combined to give the equation

23P1 (0, z) - ki "W - " wj = 2(gP" (8, z) - 2F(8, 2z)) (67?)

where = (1 + B) (1+£ sin*8)

Substituting for P* (0, 2z), i "W - " w* and P* (0, z) we obtain

~ (z sin 0)" g(z cos 0) - g(z cos 0) + z cos0g"' (zcos0) -

1 2 .2 U, A\
- z sin 0 g (z cos 0;" X

1 2 2
—— z cos
. 2
z sin
3,2
z sin
2 2
Z COS ~ Ig"(z COS 8)
%zssinz'f
B(z sin 0)" f(z cos 0) - F(0, =z)
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(z sin 8)* f£"(z cos 0) + * (z sin 0)* £(z cos 0) +

L z2c0520 1 f(z cos 0) + 2z cos 0 X
k(z sin 0)
x I - 77cos*0 I fXz cos 0 -
1 1

2 2 "
6 z—zcosOlf(zcosO)

~ f(z cos 0) + "~ zcos O f'(z cos 0) ~ * z7sin”™0 x

1 2 2
- - Z COos
x £ (z cos 0) z sin2
Zz sin
~ f£"™z cos 0) + ~ =z cos O f (z COS 8)
1 2 2
Z COS
1 2 .2 flir » 3 .4 ~
A =z sin 8 f {z cos 0) z sin 6
3 .2
z sin O
- ZACOSM0 I AN = 22 1 f"" (z cos 0)
96z* sin* 0
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2 2
- Z COSs f (z cos 0) I q"(z cos 0)

12z* sin* 0 82" sin* 0

with z =" 1 + 3)*1 + E*sin”0 "

Accordingly, when this wvalue of z is inserted into the above we
obtain a linear second order ordinary differential equation for
the determination of the function g. Thus, with (39), the differen-

tial equation for g(n) is

»
w
N
N
N
I m
N

=" z{z" - nY gh) - (@' - n"' - n
lg(n) + ng'(n)j +| (' - n")' g" (h)
(zZ=2 - n"): + z(z= - q:): £f(n) - 68)
JAz(z: - n=) £"(n) + Az (z= - £(n) +
3z
I f(n) + n( 1 £'(n) -
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At the surfaces gz cos 9 = td the boundary condition 2.2

requires that

£" (n) f f(n) +*nf'(n)

f"(n) + nf'" (n)

nl) fllll(n)

12

q" (n)

cos

(32B)



COS 9 - u.sin 9 = 0 , 6z cos 9 = td

Hence, from (45) and (4-7) we must have

ap 3p
-cos 9 = 0 , gz cos 9 = 4d (69)

Now, using (56) and (30)

ap

89 = 4(z sin 9) z cos 9 g(z cos 9) - 2(z sin 9)” zsin9g' (z cos 9) +

+ 7~ (z sin 9 =z cos 9 £"(z cos 9) -

A

(z sin 9)* z sin 9 f (z cos 9)

- 2(z sin 9) z cos 9 f(z cos 9 +

+ (z sin 9)" z sin 9 f'(z cos 9) +

+ (z sin 9) ~ z cos 9 g(z cos 9) +
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+ ~ (z sin 0) *~ z sin 0 gq/(z cos 8)

and

3P 2

= 4(z sin 6) sin 0 g(z cos 0) + 2(z sin 0) cos 8 g'(z cos 6)

+ ~ (z sin 0)" sin 0 f"(z cos 0) + * (z sin O0) cos 0 x

X f (zcos 0) - 2(z sin 0) sin 0 f(z cos 0) -

- (z sin 0)" cos 0 f'(z cos 0) + (z sin 0) sin

A

g(z cos 0) - (z sin 0) ~cos 0 g'(z cos 8)

Hence (69) gives

2(z sin 0)" g'(z cos 0) + * (z sin O)™ £ '" (z cos 0) -
- (z sin 0)~ f'(z cos 0) - » (z sin 0) ~ ' (z cos 0) = O
on gz cos 0 = #d. Thus, eliminating
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and (70)

eITI-' -1 ' (1]

m'y) mfe)' &( r":r i (-f) m

Now, for the case of the equatorial canal we may take

z = "1 +9g)(1l +e ) = constant (71

neglecting terms of the second order in small quantities. In this
case (70) and (71) give two boundary conditions which, in conjunc-

tion with equation (65), fully determine g(n)-

As d increases, (71) becomes less accurate, eventually, for
values of d >> 0.05 the error becomes of the first order in € -
The value of z is then no longer a constant but, to first order in ,
is dependent on ne However, g(n) itself is the first order term in

the perturbation series and, as such, the net contribution of the

error is of order ee . Thus, if e and e are of comparable magnitude
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the net error is still of the second order. Accordingly, we shall

take (70) and (71) to apply throughout the range of values of d.
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3.2 The Differential Equations

It has been shown that the problem of determining the
functions @, v, , W, W, , P* } reduces to one of solving
the differential equations 3.1.40 and 3.1.68. We now turn to this
aspect of the problem, beginning the analysis by re-stating 3.1.40

together with its boundary conditions. Thus, we have

Az - fm) - 1 -8 P Y - Afm) 4 onfrm)s o+

1)

(2= - n")'

where z = ~ (1 + 3)fl + e sin®e + 0 ~ n @)
cos O

Equation (1) holds throughout the region -d * gp ~ d, where d is a
constant satisfying the inequality 0 < d ~ 1. At the boundaries we

have

(3)

Il
o

£'(-d/g)
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Now, from (2)

E COS
and
cos
Thus
2e
"T (1 + G)
A 1 +

ie, to sufficient accuracy, we have



Now using (4) and (5) we may eliminate z in (1)

and obtain

£ (n) 1 + 6)

-t2

ie multiplying through by

and bringing together corresponding powers of n,

we obtain



2 + lie

£(n)

2e



-e 9 - “ +;—i) n® £ (n)

1+ B'

1 +kE ) o+

+ (1 + 4e ) n
(o]

The coefficient multiplying f"(n) has no zeros in the interval
-2 n " ~ as shown in Fig 3.12. Furthermore, in this interval,

P P

all of the coefficients of the equation are finite, one-valued

and continuous. Accordingly, we look for a solution of the form

in; = + + + o+ + ...
fin; a, a,n anp an (T)

Expression (T) is substituted into (6) and the corresponding powers

of n are equated. The remaining arbitrariness is then resolved from
(3). However, in this process it is clear that we will find
= 0 8)
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For the even power terms we obtain

l1+5e —m—m—————-
° (1 +B)* (1 + 6)
1+ B 1 +Te - @+ (9)
(1 +B) * 1 + 6)
2e
2 + lie - 1l +9
1 + 1 + 1 + 3~
3e 1 .
- a 3 +22e - (I +9
1+ qg)" (1 + g)* 1+ g
(10)
1 + 5e
N
(1 +g)
(1 + g

TO



+ 2a. 1 + Te - 1l +9'

° 1+ g* 1+ g*

k o 2
6 . @+a9
(1 + 6)
3e 3e
+a 3+ 24e - T+ 9
1+ 9" @+ 9™ 1+ g~
n 2 + lite ) + 3 2 + lie -
k [) 4
(1 + 9g)
@1)
2e
(1 + g
1+ 9" 1+ sf
- a 3422@----f= m-mom m -
° (1 + g)* (1 +g)*
3e
(1 + g
1+ g

Tl



1
(1 +6) 1+ g

+ 5 1 + 5e

@+ + BLa. l1+Te _ mem————— J'

(1 + g)° (1 + B)

and then, for the subsequent even powered terms

_ee« ; a2(r_3) - a2(r—2) I (2r - U) (2r - 5) 9 -
1+ 6)
+ (2r - 3) 6 - (1 + B
(1 + B)'
3e
+a2(r-1) A (2r - 2)(2r - 3) 3 + 2lte -
@+3" @+ 3

3e @+ 6

1 + 3)°
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~ (2+1Aeo) -+ (2r - 1) 2 + lie

2e
1 +9'
1+ 9'

- a2r I 2r(2r - 1) 3 + 22¢ -

1 + 9'
3e
1+ 3
1
+ (2r + 1) 1 + 5 -
° (1 +3)

+2X2r +1) 1 + Te -

a + 3)

From equations (9)-(12) we may determine all of the coefficients in

terms of a . Furthermore, for sufficiently large N,
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(1 + 3)"

a+ 9"

(1 +3)

1 + 3)

1 + 3

(12)

@+

1 + 3"

gives:

2)



N-2 ~OUNE2 . AN-4 N-2 v 1 _ 0
3 5 7 o B 3 35 7 B
3 3 3 3 6
approximately. Thus, as N > %, — —--—-—=-3" (13)
% 1-2

From (3) and (T) we obtain

w

ar d
2a. + 4a — + 6a —-+ ... =0 (14)
2 4 2 6 .4

which resolves ao.

The complete set of equations (9)~(13) have been processed on
the computer and the results are shown in Fig 3.2 (a)-(h) and
Fig 3.3 (a)-(e). These two figures correspond to the two canal
depths given by 3 = 0.0001 (22,000 ft) and 3 = 0.001 (40,000 f£ft)
respectively. Various values of the canal semi-width, d, were taken
as shown on the figures. The value of the constant k is given from
2.2.37 in which the value of W/U was estimated as the value of 3-
This gave k = 0.03 for the 3 = 0.0001 case (Fig 3.2) and k = 0.3 for
the 3 = 0.001 case (Fig 3.3). The constant YXwas estimated from
2.1.12, 2.1.13 and 2.2.35. This constant, and hence the results, was
scaled by the value 2y x 10® (which, from 2.2.34, is approximately

1.4584 X 10”) for display pui’poses.

74



To obtain an understanding of the shape of the curves we may
observe, from (1), that the complementary function is approximately

given by

(COEFF) X £"(n) + = 0

where the value of COEFF can be obtained from Fig 3.12. Thus, for

the case B = 0.0001 and a canal semi-width * we have

6B 36

£" (n) = =-13.64B f£f(n)

The wavelength of these waves is 211/ E 3.64B. Thus, the number of

cycles in a distance of 0.2 is

0.2 _ cycles
B X WAVELENGTH 2776

and this result may be compared with Fig 3.2(h) which shows the

computed value for the same distance.
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similarly, for the case 3 = 0.001 and the same value of d we

have

n
o

f"(n) + f(n)

£" (n) 7.3*%8 £ (n)

The wavelength is now 21r//f.343. Thus, the number of cycles in a

distance of is

and this result may be compared with Fig 3.3(c).

The above gives us a simple check on the results obtained. It also
shows us that the wavelength is associated with the wvalue with

the longer waves corresponding to the deeper canal.

For the values of d considered. Fig 3.12 shows us that the
wavelength is approximately independent of d. The apparent change in
wavelength in the successive curves of Fig 3.2 or 3.3 is due to the
way the results are displayed. In fact the horizontal axis distance
scale 1is increasing so that the length of the axis always represents

the distance from the equator to the canal edge. Bearing this in
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mind, an examination of the curves of Fig 3.2 or 3.3 shows us that,
indeed, the wavelength is approximately constant for a given value

of 3.

A similar analysis has been made of the second differential
equation 3-1.68. The results are displayed in Fig 3.4 (a)-(e) and
Fig 3.5(a)-(f). As the complementary function is given by the same
equation the above comments will again apply. Thus Fig 3-5 (f£) shows
the case for d = 0.2, 3 = 0.001 and, again, the number of cycles is

approximately 2.5.

The phenomenon of resonance is displayed and for this reason, it

was not possible to compute g(n) for the larger values of d.

With the computed values of f(n) and g(n) it becomes possible to
determine the velocity components u, v, w for both the zeroth-order
and first-order terms of the perturbation series. The results are
displayed in Figs 3.6-3.11. Each of these components must be multi-
plied by a time-dependent term, namely cos (2wt + ewt + 2(>) for the
V component and sin (2wt +cwt +27) for the u and w components. For
display purposes, all of the components are multiplied by the constant

10~ .

It is of interest of compare the solutions obtained here with
that of [ 6 ]. In the latter the moon is assumed to describe an
orbit in the plane of the equator and the motion of any particular
fluid particle is assumed to be confined to a plane parallel to the

equatorial plane. The elevation of the free surface above the
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undisturbed state is then found to be given by

E = » -2' "2 2 2(nt + § + e) (I5)

where n is the angular velocity of the moon relative to a fixed

meridian, ¢ = where h is the undisturbed height, a is the radius of
3 2 3 , .

the earth and H = — YMa /gD where D is the distance between the

centres of the earth and moon, M is the moon’s mass and y is the

gravitational constant. From (15), the velocity component v can be

found to be given by

= - -2 ~212 2(nt + § + < (16)
c - na
Thus V is independent of the vertical co-ordinate. Turning to

Figlares 3.7 and 3.10 it can be seen that the variations in v are
indeed small in the vertical direction, with the most significant
changes occurring near the free surface. The amplitude of expression
16) is 2 X 10 ~ ft/sec which is comparable to the values for v shown

in Figures 3.7 and 3.10 namely

v ~ 30 x10~ = 3 X110 * ft/sec
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From (16) and the continuity equation, an expression may he derived

for w, namely

w = 3R — sin 2(nt + § + e) (IT)

where R is a vertical co-ordinate which is such that R = 0 at the
canal bottom and R = 1 on the spherical surface of radius a + h.

Thus w 1s proportional to the height above the bottom. Referring

to Figures 3.8 and 3.11 we see that this is indeed the case throughout
the domain. The amplitude of (@7) is 23R x (amplitude of (@16)).

Again this agrees well with the findings presented in Figures 3.8

and 3.11 where the amplitude at eg 20,000 ft when 3 = 0.001 is

o

approximately 6 x 10 ft/sec (from Figures 3.11) which is 23 % 1 % wv.

Turning to the elevation of the tide we see from 3.1.35 that the

amplitude of the periodic disturbance is given by

(3P - 2F) X 3a
Ap

ie (3z7f - k) sin”0 x ga
g3

Thus, taking the case of Figure 3.3(a) and taking z =73 (1 +3) x
(1 + E sin”0) the maximum value of the above expression is

1.0 X 10 ~ ft compared with one of 2.5 * 10 ft in expression (15)
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In both theories the time of minimum elevation occurs when the
moon is overhead, ie the tide is inverted. To see if this remains the
case as B increases, the progression of Figures 3.2(a) and 3.3(a) may
be followed by putting £', £" = 0 in equation (1). Ignoring terms

in n and above we then obtain

a formula which, incidentally, provides a means of checking the magnitudes

of the computed values of f shown in the figures.

The value of k varies with B. From equation 2.2(37) k = 3008
approximately, so the value of the expression on the LHS is zero when
the critical point B ~ 0.06 is reached. Above this point the sign of
f changes and the tides become direct. This compares with the critical
point B ~ 0.003 in [6] . Of course at the critical point the approxima-
tion f', £''= 0 in equation (1) no longer holds. The form of
equation (1) predictsno singularity at this point. However further
investigation would be necessary in order to find a solution which

satisfies the boundary conditions.

Thus, to summarize, the description of the tidal elevation is
qualitatively the same as that of [6] but differs in quantitative terms.
However in other respects the two theories agree fairly precisely.

As [6] is in accordance with Laplace's assumptions this finding supports

Proudman's work.
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THE THREE-DIMENSTONAL TIDAL EQUATIONS IN THE

CASE OF FORCED OSCILLATIONS WITH VERY LONG PERIOD

4.1 The Perturbation Equations

In this section we examine Laplace's "tidal oscillations of the

first species" where the disturbing potential has the form
Q = K(cosze - %—)cos ot

in which 6 represents colatitude and o takes values close to zero.
Where o = 0, simplifications in the governing equations would once
again allow the approach of [1] to be adopted. This suggests that,

for small o, we express the solution as a perturbation series in the
small term and then utilize [1] in each member of the problem sequence.
Following this approach we present beléw the development of the solu-

tions for the zeroth-order and first-order terms.

The linearised form of the governing equations may be written as

follows

du - _L120P

3t -2vcos 68 = Z 3 ceee. (1)
v . R § oP
——at+?ucose+2w51n9 = 7 sin @ 3¢ | ceee. (2)

oW . _ ;BP

ot 2v sin 6 = _-az veess (3)
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3 . v. . sin 6 93 , 2 _
=5 (u sin 6) + 5 T (z’w) = 0 ceees (W)

where

Bz 1l + BR

{ ceen. (5)

We consider a disturbing potential of the form

\

Q = 2F(8, z) expliet) R (6)

where F(6, z) is a known function and € is a small quantity. The
problem, once again, is to determine the response of the ocean to this

external driving potential.
We look for a solution to equations (1), (2), (3) and (4) of the

form

(u, v, w, P) = {u(e, z), v(e, z), w(e, z), P(6, 2z)}

exp(iet)

Hence, substituting these expressions for u, v, w, P into the above

equations we obtain

ieu - 2vecos 6 = —-=— i

1k9



n
(@]

iev + 2u cos 0 + 2w sin ©

.. (9)

i ' cee.. (10)

iew ~ 2v sin ©
9z

) . sin 6 9 , 2 _ ‘
o8 (u sin 0) + e (z w) = 0 eeee. (11)
In equations (8), (9), (10) and (11) we shall now express the
solutions for (u, v, w, P) in the form
2
u = u +eu +eu + ... ceee. (12)
.o 1 2 :
2
Vo= v otev +ev, o+ ... veee. (13)
Wo= wotew +teEW + ... ceee. (1k)
o 1 2
P = P +€P +€ P + eev  aeenn (15)
o 1 2

Substituting these expressions into the above equations and equating

corresponding powers of € we obtain

1 BPo )
v cos 6 = %5 5% C eee. (16)
u cos®+w sin® = 0 i (17)
[o] (o]
1 aPo
v, sin 8 = 5 55 eee.. (18)
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9 . sin 6 9 2
~ +._—_—-_—_ = *® o0 00
=0 (u% sin 6) . 32 (z w;) 0 (19)
for the zeroth-order coefficients. As in the previous section we

find that the determinant of the coefficients of wo, Vo, W in (16),
(17) and (18) vanishes. Thus, from equations (16) and (18) we may

eliminate \A and obtain

z cos 6 96 sin 6 9z et

This has the general solution
P = 2f (zsin®)  ..... (21)

where f(x) is an arbitrary function of x

From (18) we therefore find that

v. = f£'(zsin®) ..., (22)

[o]

Turning to the solution for W we see that, from equations (17)

and (19)
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oW . 2. OW
o _ sin 0 o
0z cos O 236

S 2z sin 6 + 2 sin © LA

.2
. sin 6 .
- W 2 sin 6 + =, sin ¢
]

cos ©

[}
(o]

3W° . awo sin2 5]
ie z cos O =, ~ sin 8 56 " cosd Yo 0 eee.. (23)

The integral surfaces of this equation are generated by the integral

curves of the equations

cos 6 dw
[+

dz dae -
zcos 6  -sin 6 .2 peee (24)
sin © w;

The first equation of this set can be written as

dz _ cos 6
z sin O

which integrates to give

(25)_

z sin &

n
(e}
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where c, is a constant. The second equation of (24) can be written

as

o sin 6
W cos ©

which integrates to give

c ceee. (26)

where c, is a second constant. Hence the general solution of (23)

is

w = cos 8 q(z sin 0) ceees (27)

(]

vhere q(z sin 6) is an arbitrary function of z sin 6.

We may now turn to the boundary conditions. From 2.2 (31) we

require that w =0at z= %u Hence we obtain

S’
1t
(@]

q(%shxe for all 6

so that

w = 0 cee.. (28)



Furthermore, from (17)
u = 0 ceees (29)
We consider now the condition on the free-surface. Once again,
from equations (1), (2) and (3) we note that the pressure is undefined
to the extent of an arbitrary constant. Hence we may write

P = C +P(6, z) exp(iet) ceeen (30)

where C is a constant. Hence, from 2.2 (33) we obtain

BC + {BP(B, z) - 2F(6, z)} exp(iet) - ABz +

..... (31)
+ uBzzzsinze = m

At 6 = 0 the mean height of the ocean is z = %{l + B8). Hence

BC - AL +8B) = m e (32)

Thus the equation of the free-surface is

1 B 2 .2 1
z = E{l + B) + 7% z sin 6 + I {gP(6, z) -

..... (33)

- 2F(0, z)} exp(iet)
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and its mean position will be given by

_ 1 Bu 2 . 2
z = 3 (1L +8) + 5, 2 sin 8

This can be written with sufficient accuracy in the form

2
z = L-(l +B) + Bu (1 +8) sin’ @
B8 A 2
B
ie z = %—(l + B)(1 + eosinze) .
e, = @+ = o@D L (34)

We next consider the kinematic condition 2.2 (36). Thus, at the

free surface, we obtain from (14), (15) and 2.2 (36)

2 .
Be(Po + e +eP + ...) — 2eF(8, z) + 1k(w; +ew +

+ e o+ ... )
2

Equating corresponding powers of & we then get

w =0 eere. (35)
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and BP - 2F(6, z) + ikwl = 0 veee. (36)

The zeroth-order condition is satisfied by virtue of (28). We will
return to the second condition after we have developed appropriate

expressions for the first—order variables of the solution.

From equations (8)-(15) we have

v,cos 8 = El;aaiel+%uo ..... (37)
ulcose+wlsine+-;—vo = 0 ceea. (38)

v,sin 6 = %aaizl+“'w0 ----- (39)

T (u sin 8) + Suzl 8 aaz (z2 wl) = 0 e (40)

for the first-order coefficients. Once again, the determinant of

the coefficients of u , v,, v inequations (37), (38) and (39)

1

vanishes. Also u and W are identically zero by virtue of (28) and

(29). Thus, eliminating v, between (37) and (39) we obtain

3P P

1 L. 2 ! ceen. (B1)
zZ cos 6 96 sin 6 23z :
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which has the general solution

P = 2g(z sin 6) ' ceee. (B2)

where g is an arbitrary function.

Hence from (37) we obtain
v, = g'(z sin 0) ceee. (43)

1

Furthermore, to obtain an expression for W, » We see that, from

equations (38) and (L40)
. . 2
51n9_3_(z2w) __g_(w sin” @
Z 3z 1 36 1 cos 8

_ i ( sin 6
2 96 Yo cos 6

oW, oW .2
ie Z cos O -4 - sin 9 X §&E—g-w
9z 36 . cos 6 1
1%, 3 Vo
= - + = —
2 26 2 sin 0 cos ©

Using (22), this last equation then becomes
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v, W, sin’e i ;
Z coS 9—3-;-—51n6—56—-m—w1 = 32 cos 8 £ (z sin 6) +
ceee. (Uk)
if'(z sin 0)
2 sin® cos 6
In this case, the auxiliary equations are
dz__ _ _ad8  _ 7y
z cos 8 ~ -sin 6 sin?6 i . e’
e = +
cos 8 " * o & cos o f 2 sin 6 cos O
..... (45)

The first equation of this set is similar to that of equations (24) and

gives us

where c, is a constant. The second equation of (45) may be written as

. ”
L sin6 .. ic cos 6 f (cl) .
a cos 6 1 2 sin ©

- ’
if (cl) 1

2 sin 6 cos © sin 6
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sine io,f " (choose if'(c, )

" - - 7= 7 "= niTTTirr
An integrating factor for this equation is & = ~  so that
d / \ ic*f" (c, ) 2if' (cJ
deUosedJd - - 2 sin'8 " sin' 28
which integrates to give
W 1c
S— = - f" + 1if! + e
cod 8 ; f k;l) cot © if'(c ) cot 20 +c (48)
where ¢ 1is a second constant. Thus, on substituting for < from

(46), we obtain the general solution of (44) as follows

W, = 1 z cos'6 f"(z sin 6) + " f +

+ cos 0 Q(z sin 0)

where Q(z sin 0) is an arbitrary function of z sin 0.

The boundary condition 2.2 (31) then gives us the following

identity in O.
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sin - — cos

and thus, if we write n sin and note that

cos cot 20

it follows that

(50)

- 2n

2nj7=— n

Accordingly, we can write (49) in the form

Z COs
2 sin

1 cos f (z sin

i6o



- 2z” sin* 0 ~

£'(z sin 0) (51)

which contains one arbitrary function, f(z sin 0).

We now consider condition (36) at the free-surface. From (21),

(51) we obtain

n {gf(z sin 0) - F(0, z)} - z cos”0 f"(z sin 0) -

+ cos 8 /-y - s'sin'8 f"(z sin 6) +

(52)
- 22°sin”0
Z SJ'..n H /—I - Zzs'i:%
x f'(z sin 0) = 0
with z =72 (1 +3)71 + E”sin”oj. Thus, when this wvalue of z is
inserted into equation (52) we have a linear second-order ordinary
differential equation for the determination of the function f. As
indicated in the introduction, F(0, z) takes the form.
F(0, z) = K"cos”0 ~ » < constant (53)

161



Hence the differential equation for £(n) is

4gf(n) _ (z* - n")f"(n) _ (2 - ) £'(n) =

k z zn
tYy f'"n) + \J 20 - X
n
h =% (1 + 1 + in% = —
where =z 3 ( 3){ e051n e } ~Tin 0

Turning to the remaining boundary conditions, the nature of the

solutions suggests that we consider axially symmetric boundary

surfaces of the form

3z sin 0 = d (55)

where d 1is a constant satisfying -1 ~ 4 ~ 1.

Figure follows
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z sin 0 = d.

S

Fiprure U.1

These surfaces are the right circular cylinders of radius

Condition 2.2 (33B) then gives i
ucos 6 +wsin 0 = 0 , 3z sin 0 = d
for the vanishing of the normal velocity. Using (12) and (17) this
becomes
0% +—eu1 +...) cos 04,(“2 + ) sin0 =0 (56)

on Bz sin 0 = d.
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In (56), the zeroth-order terms vanish by virtue of equation (17).

Furthermore, from (38), the first-order terms amount to the condition:
v = 0 , Bzsin® = d

which, from (22), yields

Two such conditions then fully determine the funection f.

Of particular interest is the case

-~

.-ﬁ
—_———
mINO'
~——
]
(@]

-~

where 61 and 62 are both small and are both of the same sign. This
describes a canal-like region around an ice-cap. Furthermore, by
virtue of the smallness of § and 8, its sidewalls may be considered

to be approximately vertical.

The expressions for v, and p involve the function g(z sin 8)
which, at the moment, remains arbitrary. In order to resolve this
further we must examine equations (8)-(15) for the second-order

coefficients. Thus we have
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v,cos 8 = £Z'7§;'+ %-ul ceess (59)

u cos 6 + wasin 9 + %-vl = 0 , ceees (60)

v,sin 8 = —]2'- %+;—wl cee.. (61)

%(uzsin 8) +%_9_38; (z2 wz) = 0 ' cee.. (62)

Now, from equations (60) and (62) we obtain

sinei(zzw)__a_(w sin20> _ ii(v sine)
Z 9z 2 20 2 cos © 2 936 I cos @
ie

v oW, . 2 . 9V iv

2 . 2 sin 6 _ 11 1

2 cos @ 9z - sin 8 3@ cos 62 2 236 +2 sin 6 cos 6 ceeee (63)
Hence, using (43), we obtain

BW2 aW2 sin26 1 "

T ‘"2  sin'6 _ i . .
7z €0sf—= - sin 6 —= - =0 W, 5 2cos g (z sin 6)

s e 000 (6)“')
ig'(z sin 8)
2 sin 6 cos ©
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vhich is identical in form to equation (44). Hence we may write down

the solution to (64) as follows

w = L, cos’e "(z sin @) + i cos 20 g'(z sin 8) _
2 2 & 2 sin ©
_%cos ] j-];—— 2> sin’ 6 g"(z sin 0) + ceee. (65)
B
L 22> sin’ ©

g'(z sin 0)

2
+ B
z sin 6‘/—13— - zzsinze
Bz

—

where we have satisfied condition 2.2 (31). The above expression only

contains the one arbitrary function g(z sin 8).

Returning, once again, to the kinematic condition 2.2 (36) at

the free—surface, the second-order condition yields
BPl + 1kW2 = 0

-1 . 2
on z =g (l+8)(l+eos1n 6)

Thus, from (42) and (66) we obtain

Lg

= cos 26
k

. 2 ” . ' v.
- - +
g(z sin 68) — z cos" 6 g (z sin 8) 5 & (z sin 6)
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+ COs z sin

2z sin

z sin

with z = Again, when this value of z is

inserted into (6?) we have a linear second order ordinary differential
equation for the determination of the function g. The differential

equation for g(n) can he written in the form

zn

(68)

where z = —

On a surface gz sin d we must have
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u, cos e + wzsin 8 = 0

Hence, from (60), this implies

n
o

v = 0 , Bz sin ©
which, from (43), yields

g(%) - 0 e (69)

The function g is then fully determined by two conditions of this

type. Clearly, the solution is

From (h2) and (43) we therefore have

(71)
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k .2 The Differential Equation

A

It has been shown that the functions {u”, } vanish
and that the problem of determining the remaining functions reduces
to one of solving the differential equation 4.1.54. In order to

proceed further, we shall begin by restating the differential equation

together with its boundary conditions. Thus, we have
A - ~ ]
e £(n) ;) f'(n) o
1 2
(= - ) —--n y 2 2
Z - n
f (n) + n
f'(n) = — - (2z* - 3n*)
3kz
where z = | (1 + g (1 + e,sin”e) = n g (2

Equation (1) holds throughout the region 6 3 3n 3 5" where 6” and 6"

are two constants of the same sign satisfying the inequalities.

0o ~ |6 « 1
(3)
0o ~ |63 « 1
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At the boundaries we have

f1-9=0

£'( 1= 0

Now, from (2)

sin 0 = (7T A ))
2 = - (L+6) 1+e, __3nl _+
(1 + 6)
(5)
+ 0
Also
( (22 - HZ.f 1+
2 2
[ Z -1
©6)
1 2
422 - nzj 1 + 0(3%)
2(z= - n')
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and

! z - =
ZZ_nZ _ B2
IT_2| TP TIC
82 B2
-1
z 82 ,
= 1 + T Y +o(s) (7)
2T—n
B

(zz __;L_) Zz _ 1 :
2 2
Bopln) - Bl () - A B L £7(n)
28 zn L
B
cee.. (8)
= hK, (2z° - 3n°)
3kz

where z is given by expression (5). Thus, multiplying (8) throughout

2

2 1 2 .
by 2z n(-- n ) we obtain
B
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On substituting for z from (5) and bringing together corresponding

powers of n we then have

2e
1 + B
-T (1 + 6) ( ) f(n) -

3(1+6)
6(1L + 6)

f'(n) 9
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+ (3 - hso)ns

The coefficient multiplying f"(n) has a zero at n = 0. Thus
considering, for the moment,,the complementary function let us look

for a solution of the form

CF = n (ao +an +a.2n2 + ) ..... (10)

The indicial equation then gives us

i}
o

[e(ec - 1) + c]a.0
ie S =0 (

Thus the indicial equation for c¢ has a repeated root. Furthermore,

it is clear that, on substituting (10) into (9):
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~ . c+1 c+3
For terms 1in n , N ,

kg

we obtain

1+ 6) L+6)
a =
8(1 +3) (e+2)
k3 3 °
"3(1 +3) 1
3 3(1 + 3)

+ (¢ +2)(c +1)

(1 + 3) (1 + 3)

3 (1 + 3)

17~

3, (1i +
3



and for subsequent terms

1l6e

2(r-2)

3(L + 3)
6(1 + 0©)
2(r-1)
(c + 2r)e 31 + 6)
6(1 + 6)
- 3e

2r
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(etor+ 21 (@ +8)}  (1+8)

g2 & & &eey - O
where r = 2, 3, 4, ....
Equations (12)-(14) represent a solution of ¢ = 0. A second

solution may be obtained by differéntiéiing (10) with respect to ¢
and putting ¢ = 0. Moverover, a particular solution to equation (9)
may be obtained by replacing the RHS of equations (12)-(1Lk) by the
coefficients of the RHS of (9). Thus, the general solution of f(n)

may be generated.

For sufficiently large N, (14) gives

3(1 +8) _ 1 _ 1
€o I: [ B(1L + 3)] & (N-1) Bz an) ¥

3
+ +
* = 38) -4 3 g N~ j;-a2(N+1) =0
B B 8
approximately. Thus, as N>« , a /a = g’ eeess (15)

The complete set of equations (12)-(1L4) together with the
boundary conditions (4) have been processed on the computer and

the results are shown in Figures 4.2 and 4.3. These figures show f
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for various values of the boundary parameters 61 and 62 and for

1
two values of the depth parameter B.

In order to check the results it may be observed that equation

(1) is approximately

Anf - Bf' - Bnf"

3
an + bn

where A, B, a, b are constant given. by

8¢ [2(1 + 8)°
a = 3k 84
2
A 8(1 +3B)
kB

PS

’
£os =

2c2n

3k 2 *
B
3
B B
(1+8)°  (1+8)
3 3
B B

ceee. (16)

1 The horizontal axis covers the distance from the north canal edge

The northerly and southerly bounds are the
corresponding bounds of gn

to the south edge.
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PS 2
" Ac.n +Ac.n - 2Ben - 2B n = + b’
. cx“ Czn C2T] 0271 = an n
Ac - UBe = a
1 2
and Ac2 = Db
_ b
02 = A
> eeo.. (18)
A
o

£ _ c + c+2 +

cF & aln °ce
' c-—1 c+1

. f = can + (c + 2)an + ...
cF o

"
cF

]
]

cle - :L)aonc“:l + (¢ +2)(c + l)alnc + ...

The indicial equation then gives

178



(19)

and, on equating corresponding terms in the higher powers, we obtain

Aa.o - B(c + 2):3.1 - B(c

Aa - B(e + h)a.z - B(e

Asg, X

+

2)(c + 1)a1

B(c + 2)2al

k) (e + 3)a,

Blc +4)'a

ete

Because of the repeated root in equation (19), a second function

. (20)

. (21)

may be obtained by differentiating the first with respect to ¢ and

putting ¢ = 0. Thus
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2A

3c (23)
(c +2)' (c + I’ (c +2Y (c + IO
etc
Bringing together these results we obtain the general solution for
(16) namely
2 A2 A 4 A
f = <, +cn +a 1+AX _n_
2! B' 2'it
2 2 4
1 +A n_+a, _n_ log n - (21t)
® 2! s' 2'U
- 26 (1) x1-.AL.Lilil1l,
2 B' 2'1t’
le
f = & +¢grl: +aij /I Xn
where IO and Kb are Modified Bessel functions. The relatively simple

form of this solution makes it a convenient means of checking the

results obtained in Figure U.2 and U .3 and results compared favourably
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Furthermore, the solution (24) shows the presence of a logarithmic

singularity in the function f, which is located at the pole.

Figures 4.4, k.5 and 4.6 show the computed velocity components
u, v, wl The component v must be multiplied by cos (ewt) and u and
wby € sin (ewt). All three components are scaled by the factor 500
for display purposes. From Figures 4.5 it can be seen that v is
independent of depth (c¢f § 3.2) but not of the canal width. The
symmetrical pattern exhibited in the narrow canals éives way to
one with large velocity changes near the southern canal boundary.
Indeed, the latter point is a feature of u as well, and there are
also large changes in w at the southern boundary for the wider
canals. These are all associated with a.similar large variation
in P, as demonstrated in Figures 4.3 and 4.2 (g), (h), (j), (k).
In practice, however, these solutisns will be modified by non-—

linear and viscous forces operating in-this region next to the

southern edge.

From Figures 4.6 it can be seen that the vertical velocity is
proportional to the height above the canal bottom (cf § 3.2).
However, the ratio of w/evis, at maximum, much bigger than B and

remains roughly in the proportion l:h.

Turning to the elevation of the tide we see from 4.1.33 that the-

amplitude of the periodic disturbance is given by

,B\%(SP—QF)xBa

1. The quantity NEP shown in the figures is the distance be@wgen
the canal's north edge to the pole, measured along a meridian.
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2wU

(BF - « sinze) x Ba
gB

ie
Thus for the case shown in Figure 4.2(a) we have an amplitude of
1:1 ft. The time of maximum elevation occurs when the moon is

overhead ie the tide is direct (cf § 3.2). This result compares

favourably with Laplace's theory for the long-period constituent

[6 1.

As for the other features of the motion, they may be contrasted
with Proudman's solution for a flat circular sea of uniform depth at
the North Pole [ 5 ]. Using cylindrical polar co-ordinates z, x, ¢,

where z is in the direction of the axis of the earth, he found

é% = J (Kx) cos MKz cos et

U Kg)\?

= = 8L 5 "(Kx) cos AKz sin et
€A 2 o

€

| eeve. (25)

2 o
€

, .
%— = EEKEA—-J "(Kx) cos MKz cos et

M- KB 5 (gkx) sin AKz sin et
cA E2 o J
1
b2 e ,
where A o= --“;— -1 and J isBessel's function of zero

€
order. Also, from the conditions at the free surface
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= _(A{E& sin AKh + cos AKh)Jo(Kx) cos €t
€
and the condition for u = O on the circular boundary x = ¢ gives
J '(ke) = 0 ceee. (26)

Thus K is inversely related to the length c.

It can be seenthat, depending on the choice of root in (26), AK
may be either small or large. In the latter case cellular oscilla-
tions will occur. However this arbitrariness is absent in the
solutions we have obtained owing to the non-cyclical nature of the

functions Io and Ko.

When AKh is small it follows from (25) that

j%- = -2u J,(Kx) cos €t
where
2 2
1 b - €
— F3 +

Thus for h = 2x10° £t and ¢ = 10° ft, v is approximately 3 x 10
ft/sec which is similar to the value 1/500 ft/sec shown in Fig L.5(B)

for approximately the same width.

The components u and w in (25) are both of the first order in e,
as they are in the solution we have obtained. But the magnitude of

the components is much larger in Proudman's case. Also, no large
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gradients are present in any of the solutions (25) so that viscous

and non-linear terms would be negligible there.

Thus we conclude that significant differences in the nature of
the solutions u, v, w are obtained when all parts of the Coriolis
force are present, as compared to the solutions (25) derived by

Proudman using the simplifications discussed in Section 1.
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LONG PERIOD AND SEMI-DIURNAL

TIDAL OSCILLATIONS

by
J L Adams

Abstract

A brief review is made of Laplace's equations governing tidal oscillations
and of the subsequent claims and counter-claims on their validity. The
purpose of this study is to investigate these claims further, with regard
to long period and semi-diurnal oscillations.

As the underlying assumptions are of importance, these are considered
first in some depth. A set of equations is thereby formulated which
differ from Laplace's equations in that extra terms of the Coriolis force
are retained. These equations are taken as the basis from which a
comparison is made with the previous findings.

Taking the semi-diurnal constituent first, a solution is derived in the
Equatorial Canal. Graphs are produced showing the velocity components as
functions of canal depth and width. These compare favourably with Laplace's
theory. However, whilst the description of the tidal elevation is qualita-
tively the same as before, there are significant quantitative differences.

In particular tides become direct only in a much deeper ocesui than previously
predicted.

Using a similar approach a solution is derived for the long period
constituent in a canal-like region near the North Pole. Whereas Laplace's
theory for this region gives a solution involving Bessel functions, these
become Modified Bessel functions in the derived solution. Arising from this,
some different effects are noted in the velocity components.



