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CHAPTER
L

Introduction



Kinetics is defined by the Collins English Dictionary as
"the branch of chemistry concerned with the rates of
chemical reactions". This simple definition does not do
justice to a subject from which so much information on
systems, and in @particular aqueous systems, has been
obtained. The work presented in this Thesis identifies
pathways for the interpretation of kinetic results and in
this respect can be divided into two parts. Chapters 3 to 6
deal with the interpretation of patterns of rate constants
for reactions in binary aqueous mixtures and in aqueous
salt solutions. By way of contrast, Chapters 7 to 12 use
properties of aqueous solutions as a basis for predicting
trends in kinetic parameters.

For reactions involving ions important quantities are
transfer parameters for ions between solutions in water and
in binary aqueous mixtures. These thermodynamic properties
have been calculated by different authors (see for example
references 1-5). Chapter 3 develops a criticism of the

Wells3'6’7

approach towards these calculations. Chapters 4
and 5 describe how solubility data are combined with
kinetic data in an initial state/transition state analysis.
The role of added cosolvent on reaction rates is therefore
pinpointed in terms of the stabilisation/destabilisation of
reacting solutes. In particular cosolvent effects on the
alkaline hydrolysis of low—spin iron(II) diimine complexes
are investigateds. In Chapter 6 the effects of added salts
on rate constants for hydrolysis of the neutral substrate,
phenyl dichloroacetate9 and the para-methoxy derivative
are explained in terms of cosphere-cosphere overlap effects

involving added ionslo’ll.



The theme of aqueous salt solutions is continued in
Chapters 7 to 9. Chapter 7 introduces Pitzerrsl?~14
equations for activity coefficients of salts in solution
and discusses how mean ionic activity coefficients, Yoo

osmotic coefficients, ¢, and the excess Gibbs function, GE,

12-14

are related. In Chapter 8 Pitzer'’s equations are

15

combined with the ideas of Savage and Wood to yield

pairwise cosphere-cosphere group interaction parameters for

ions. In Chapter 9, Pitzer's13

equation for the activity
coefficients of single ions is used to explain trends in
rate constants for the alkaline hydrolysis of bromophenol

16

blue in aqueous salt solutions. In Chapter 10 attention

turns to a thermodynamic property called the internal
pressurel7, MNi. The analysis concentrates on obtaining
equations which describe the dependences of internal
pressures on temperature and pressure for water and
deuterium oxide. Equations which describe related
dependences of the temperature of maximum densities (TMD'’s)
are also reported for both systems. The merits of using Ii
= 0 isotherms for obtaining kinetic data are commented on.

Chapter 11 deals with excess pressuresla’19

in aqueous salt
solutions and aqueous solutions of neutral solutes. Various
methods for calculating excess pressures are investigated
leading to the conclusion that an excess pressure depends
on the definition of the volumetric properties for a given
systemzo. The final Chapter, Chapter 12, concentrates on
the unimolecular solvolysis of alkyl halides and seeks to
clarify the controversy concerning the 1isobaric heat

capacities of activation of such reactions. Partial molar

isobaric heat capacities are calculated using an



extrathermodynamic assumption proposed by Grunwald21 in

which activity coefficients of two substances X and Y, in
this case two different water structureszz, are related to
the molality of added solute Z (e.g. an alkyl halide) in
aqueous solution. Attempts are reported to derive an
absolute scale for partial molar isobaric heat capacities
of ions in aqueous solution.

A description of the equipment used for collecting
spectrophotometric data together with a description of the
methods wused to calculate rate constants is given in

Chapter 2.
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CHAPTER
2

Experimental details of
collection and data analysis



2.1 Introduction

This Chapter describes the methods by which kinetic data
were collected and gives details of the computer controlled
spectrophotometers used to collect absorbance data. A
method of analysis for a first order reaction is
summarised. Details of the computer programs which drive

and then perform the analysis are given in Appendix 1.

2.2 Kinetic Analysis

All rate constants reported in this Thesis are either first
or second order. However all reactions were monitored under
first order conditions. In a typical first order process
chemical substance A reacts to give product P; e.q.
A ————> P. The integrated rate equation for such a

reaction takes the following form;

1n([A]0/[A]t) = kt (2.1])
[A]0 = the concentration of substance A at time t=0
[A]t = the concentration of substance A at time t

Equation [2.1] can be written as shown in equation [2.2];
(A], = [A], exp (-kt) [2.2]

The concentration of substance A decreases exponentially
with time at a rate determined by the constant k.

The half life of the reaction, t1/2’ is defined as the time
taken for the concentration of substance A to fall to half
of its original value i.e. when t = t1/2' [A]t = (1/2)[A]°.

Hence;



t = 1ln2/k {2.3]

1/2
All of the reactions described in this Thesis were
monitored for at least 2.5 half lives.

In the case of second order reactions, the ISOLATION
METHOD was used to follow the reaction under pseudo first
order conditions. In a given chemical reaction two
substances A and B form product P; A + B —— > P. If k

is a second order rate constant;

-d{A)/dt = k [A][B] [2.4])

If substance B is present in large excess over substance A,
the concentration of B can be assumed constant throughout

the reaction and the term [B] incorporated into the rate

constant;

kObs = k [B] [2.5]
where kobs is a first order rate constant. The rate law can
now be written in a simplified first order form and as such
be treated in the manner shown earlier.

-d[A)l/dt = k [A] [2.6]

obs
An example of this type of behaviour (Chapter 9), concerns
the alkaline hydrolysis of the sodium salt of bromophenol
blue. A more usual pattern for the rate law concerns cases

where kobs is a linear function of [B]; the law takes the



following form.

k = k1 + k2 (B] [2.7]

obs
Here k1 describes a dissociative reaction and k2 describes
an associative reaction. Examples of this behaviour are
dealt with in Chapters 4 and 5.

All reactions were characterised by following the
change in concentration of either reactant or product with
time. A —convenient method of accomplishing this |is
spectrophotometrically, in which the changes in absorbance
with time are followed. The 1link between absorbance and
concentration is established through the Beer-Lambert law.
The absorbance, P, of a single substance A, in dilute
solution, in monochromatic light of wavelength, XA, is given

by equation [2.8].
P = loglo(Io/It) = sxl[A] [2.8]
where I, and I, are the intensities at wavelength X\ of the

incident and transmitted light.

ey = molar extinction coefficient of A at wavelength A\.

1 pathlength /m

[A] 3

concentration of species A /mol m

The total absorbance of a solution at wavelength X is
obtained as the sum over all substances;

P = ea[A]l + eb[B]l + e
Where €5 and e, are the molar absorption coefficients of

species A and B in the solution at wavelength A\.



For the simple first order reaction described earlier
the combination of equations [2.1])] and [2.8] leads to an
expression from which the rate constant can be obtained

directly from absorbance data.

At time t=0 P0 = ea[A]Ol + eb[Blol

At time t Pt = ea[A]tl + eb[B]tl

At time t=o P_ = eb[B]ml = ebl([A]0+[B]O)
(completion) = ebl([A]t+[B]t)

=> [Al = (P  + P, )/(e, 1l + g.1)

=> [A)t = (Pt + Pm)/(eal + ebl)

Therefore : ln{(Po—Pm)/(Pt—Pw)} = kt [2.9]

The UV/visible window has proved very useful, because in
this region the changes in absorption are dramatic for
solutions in which transition metal complex reactions are
undergoing reaction. The spectrophotometers are described
in the following section. The non-linear least squares
procedure used to solve equation [2.9) is dealt with in

Section 2.5.

2.3 The Hewlett Packard 8451A Diode Array Spectrophotometer

The Hewlett Packard 8451A diode array spectrophotometer, a
single beam, microprocessor controlled instrument, operated
in the UV/visible window over the wavelength range 190 to
820 nm. This spectrophotometer was capable of measuring
absorbances either every 0.1 of a second, at up to 25

separate wavelengths, or every 0.7 of a second for a full



spectrum. It «could reproduce a specific wavelength to
within + 0.05 nm and had a spectral bandwidth of 2 nm.

Central to the operation of the spectrophotometer
were two 8-bit microcomputers, the Z-80 and the HP 85A. The
Z-80 microcomputer controlled the internal hardware (lamp,
shutter, etc.) and performed measurements. The HP B85A
handled the data, controlled peripherals, and acted as an
interface between the user and the basic instrument. A
block diagram of the spectrophotometer is shown in Figqure
2.1,

Light from a deuterium lamp was focussed at the sample
cell (3 cm3 quartz, pathlength 1 cm) by an ellipsoidal
mirror, then reflected onto a monozone holographic grating
by a second ellipsoidal mirror. The grating dispersed light
onto a linear photodiode array. The photodiode array was a
series of 328 individual light sensitive cells and control
circuits etched onto a semiconductor chip. A shutter
positioned between the lamp and the optical mirrors, cut
off radiation from the lamp for measurement of dark current
before and after each sample measurement.

A series of BASIC programs guided the user through
procedures to set up the spectrophotometer, to collect and
then store on disk absorbance/time data. Details of such
programs are given in Appendix 1. The spectrum obtained
from each scan was displayed on a cathode ray tube and at
the end of each run a hard copy of the collected spectra,
together with the printed absorbances and time data, was
obtained from the in-built thermal printer/plotter. Figure
2.2 gives an example of the intial output from a typical

kinetic run. Once the data had been stored on disk to

-10-
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HELLO
FIRST ORDER LOG

SYSTEM-
WAVELEHGTH - 532
TIME STEP- 20
RUM TIiiE- 800
HUMBER OF READINGS 41
RANGE -
p.Fln
'm Absorbance
»? 2 S N o>
o

DATA ON DISC
THAT IS ALL.. FOLKS

FIGURE 2,2

Example of the output frcm the data-logging program
used on the HP 8451A Spectrophotcmeter. Alkaline
hydrolysis of Ccmplex C (see Chapter 5);

[NaOH] mol dm"* = 0.27; 0% MeOH at 298.15 K.

-12-



create a semipermanent record it could be recalled into the
computer built into the spectrophotometer by a separate
program which dealt with the kinetic analysis. Appendix 1
Section 2 describes such a program and Section 2.5 sets out
the mathematical methods used in such an analysis.

Within the spectrophotometer the sample cell was
housed in an insulated copper cell holder. The cell block
(Figure 2.3) was water cooled via a coiled small bore
copper pipe around its exterior and thermostatted by a
platinum resistance thermometer, connected to a Wheatstone
bridge, coiled around an inner copper block. If the bridge
was in balance then the system was at the correct
temperature and the heater coil, wrapped around the inner
copper block was switched off. 1f, however, the temperature
fell, the unbalanced bridge switched on the heater, via the
amplifier. Heating continued until the system was once
again at equilibrium. A temperature probe inserted in the
insulation between the two copper blocks and connected to a
microprocessor thermometer displayed the temperature within
the block. Once a sample cell was placed in the system and
allowed to reach thermal equilibrium over a period of
approximately five minutes then a constant temperature of

25.00 + 0.01 celsius was readily maintained.

2.4 The Unicam SP 1800 Ultraviolet Spectrophotometer

The Unicam SP 1800 was a UV/visible spectrophotometer with
a working range of 190 to 820 nm and a capability of
handling up to 3 sample cells and three reference cells
(Figure 2.4). Absorbance readings were obtained as a

function of time at a single wavelength. The

-13-
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spectrophotometer was directly connected to a
Microprocessor Instrumentation of Kinetic Experiments
(MIKE) interface which in turn was connected through a
digital voltmeter to a Hewlett Packard 9825A (24K)
minicomputer equipped with a real time clock, various
utility ROM cartridges and input/output pofts. The complete
system was controlled by a HEWLETT PACKARD BASIC program,
written by Dr.M.J.Blandamer.

After loading the program from a data cartridge the
user was prompted to supply information necessary to
initiate a run i.e. the number of cells to be analysed,
estimates of the initial and final absorbance readings, an
estimated rate constant, the number of readings before
calculation of a rate constant and finally the number of
readings between consecutive calculations. Once this
information had been entered, the correct wavelength set,
and the reaction in each cell initiated the kinetic run was
started by a simple keystroke. At time intervals calculated
from the input information, the computer supplied a ’'cell
select’ binary signal, unique to each cell, to the MIKE
interface. This signal was compared to the cell in the
light beam of the spectrophotometer wusing the ‘cell
identification’ signal. If the signals were not the same,
the cell block within the spectrophotometer was moved using
the 'cell select’ signal wuntil the correct cell was in
position. At this point a ’sample pulse’ was sent to the
digital voltmeter to accept an analogue absorbance reading
from the Unicam SP 1800 (a signal delay of 1.5 seconds was
incorporated into the system between the ’‘cell ready’ and

'sample pulse’ signals to allow the analogue meter on the

-16-



Unicam SP 1800 to settle). The absorbance reading was
encoded into binary by the digital voltmeter and fed back
into the minicomputer. Finally a signal was sent from the
minicomputer to the MIKE interface in order to clear all
lines in readiness for the next reading. Absorbance and
time data were stored in the computer’s memory for each
cell and printed out by a thermal printer together with the
iterative rate <constants calculated at wuser specified
intervals. At any point during a run a cell could be
'aborted’, by typing the cell number into the minicomputer;
this procedure had no effect on the remaining cells. When
all of the cells had been monitored for at least 2.5 half
lives the minicomputer calculated the final values of rate
constant, Pyr P, and standard deviation of the fit for each
cell using the method of non-linear least squares described
in the next section. At the end of each analysis first
order plots were obtained from the Hewlett Packard 7245A
plotter connected to the minicomputer.

The cell block within the Unicam SP 1800 was
thermostatted using the same method as described for the HP

8451A spectrophotometer (see Figure 2.3).

2.5 Method of Absorbance/Time Data Analysis

The analysis is based on the non-linear 1least squares
method described by P.Moore1

In a rearranged version of equation [2.9] the
absorbance at time t, P, is expressed in the following

t
form;

Pt = (Po—Pm) exp(-kt) + P [2.10]

-17-



Hence at a given time t the dependent variable absorbance,

Py is defined by the three independent variables P+ P

o’

and k.

(p_,P

t o k] [2.11]

The general differential of equation [2.11]] is given by
equation [2.12];

dP = (3P /3P ), (AP  + (3P /3P.) dp

Po,k

+ (3P /0k) b oo dk [2.12]

The differentials of equation [2.10] with respect to each

of the independent variables take the following form;

(2)1’1_'/2)190)Pm,k = exp(-kt) = oy [2.13]
(apt/apw)Po,k =1 - exp(-kt) = a, [2.14)]
(apt/ak)Po’Pw = —t(Po-Pw)exp(—kt) = o3 [2.15]

The analysis is initiated using estimates of Por Pgr
and k entered into the minicomputer at the beginning of the
run. From these estimates, absorbances Pt(calc), at each
time t are calculated and the differences between observed
and calculated Pt at each data point are obtained.
i.e. dPt = Pt(obs) - Pt(calc)

In order to improve the fit, Y and @y are calculated
from equations [2.13], [2.14] and [2.15] at each time step
t and the quantity Q, defined by equation [2.16], is

minimized.

-18-



2
Q = E (dP, - a;dP_ - o,dP_ - ojdk) [2.16]

When Q is at a minimum d4dQ/dX = 0.

2

dQ/dP0 = Eal dPO + Zalazde + £ula3dk - EaldPt =0 [(2.17)
2 -
dQ/dp_ = ZazaldPo + Zaz dp_ + Za2a3dk - EazdPt =0 [2.18]
2
dQ/dk = £a3aldPo + Za3a2de + Za3 dk - Ea3dPt =0 [2.19]
This information can be arranged in matrix form;
fa 2 La,a La,a dp Loa,dP
1 271 371 o 17t
2
Eazal Zuz Za2a3 de ZazdPt
2
Ea3a1 Ea2a3 Ea3 dk Za3dPt
X B Y
Thus ; Y = BX (2.20])

Calculated parameters oy, oy and oy are placed in
array X and equation [2.20] solved for B (i.e. for dPo’
dp_, and dk) using a linear least squares methodz. The
computed correctors improved estimates of PO, P_ and k;
i.e. Po(improved) = Po(previous) + dPo' Improved Pt(calc)
at time t is obtained from equation [2.10] and compared to
the observed absorbance Pt(obs). i1f the agreement between
Pt(calc) and Pt(obs) is poor, the cycle is repeated until

either E[Pt(obs)—Pt(calc)]2 is at a minimum or is

comparable to the magnitude of the estimated experimental
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precision. The analysis is complete and estimates of P, P

and k together with their standard errors are obtained.
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CHAPTER
3

Criticism of the Wells approach
to the calculation of single ion
transfer parameters



3.1 Introduction

2

Several criticisms were made by Blandamer et Ell' of the

methods used by wells3 >

to calculate transfer parameters
for ions. The major points of disagreement are summarised

below.

[1] The first and possibly one of the most important
points concerns the identification of the ion which is

3'4

transferred. Wells states that the target gquantity is

A(aqexz)p#(H+;sln;c—scale). However throughout the analysis
the solvated proton H+(H20)4 is identified3. In fact Wells3
describes the solvated 1ion H+(H20)5, in which an H20
molecule is weakly bonded to the trigonal pyramidal
H+(H20)4 structure at the apical position to form a
tetrahedral structure. This has the advantage that the
solvated protons can be treated as spheres of radius
3r(H20) (r is the radius of a water molecule) which can be
used in the Born6 equation. This structure is described as
a sphere of water molecules surrounding H3O+. Hence it is

not clear which ion transfer quantity is being

characterised. This point is important because;

A(aq»xz)p#(H+;sln;c—sca1e)
# A(aq»xz)p#(H3O+;sln;c—scale)

# A(aq»xz)p#(ﬂ+(H20)4;sln;c—scale)

3
Born equation is used to calculate the three quantities

The three ions H+, .ot and H+(H20)4 are different. If the

above then three different ionic radii are required.
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[2] At a key stage in the analysis an
extrathermodynamic assumption is made by Wells which
effectively sets the chemical potentials of pure alcohol,
ROH, and water equal. i.e. u (ROH;1;T) = y (H,0;1;T). This

3 to

has the effect of simplifying the non-Born contribution
the transfer chemical potential of " (c.f. Appendix 2

Section 1).

A(aq»xz)p#(H+;c—scale;non—Born;sln;T)

= a[p#(ROH2+;c—scale;sln;xz;T)—p#(H3O+;c—scale;sln;xz;T)]

= —a[RTan#(c—scale;sln;T)]

[3] At a stage in the analysis used to calculate
K#(c—scale;sln;xz;T) Wells3 appears to switch from a
description of the system in which ’alcohol + water’ forms
the solvent to a description of the system as an agqueous
solution. In effect it is assumed that the properties of
the aqueous mixture over the whole range of added Xpoy 2re

ideal. This assumption is invalid (c.f. Appendix 2 Section

2).

{4] Finally the standard states defined by Wells are

ill-defined and, on thermodynamic grounds, are of doubtful

5

significance. Wells™ has written the equilibrium equation

[3.1.5] of Appendix 2 Section 1 as;

+ +
(Hzo)xH solv + ROH (== [(HZO)x_lROH]H + H,O0

solv solv 2

Wells states that "the standard states of all species in

[equation above] are defined on the molar scale as solutes
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in the mixture for i = 1 mol dm_3 and y; = 1.0 with y»1.0
and [i]-»0". This statement requires that all substances are
solutes. This cannot be correct. At least one substance (or
a mixture of substances) must be the solvent.

Wells has responded4 to the ©points raised by
restating his method. Nevertheless Wells offers some new
definitions which are helpful in understanding  his
approach.

In an attempt to <clarify the problems it is
advantageous to consider the following descriptions of two
systems. System A is an aqueous solution of HY. The

chemical potential of ut in system A is written;

u(a*;aq) = ¥ (u*;aq) + RTInC(c(u*)?y(H+)2Y) sc ) [(3.1]

3

where limit(c(H+)aq»0) y(H+)aq = 1.0; c, = 1.0 mol dm ~ and

p#(H+;aq) defines the chemical potential of #t in a
solution where c(H+)aq = 1.0 and y(H+)aq = 1.0. System B is
a solution in which the solute is HY and the solvent is a

mixture of alcohol + water. The chemical potential of ut in

this system is written;

witix) = wt (5tix) + RTInC(e(uN) My ¥ e ) 13.2)

where Xq denotes the amount of water in the alcohol + water

system and limit(c(u*)*!s0) y(u")*' = 1.0; ¢ = 1.0 mol

3

dm™ u#(H+;x1) defines the chemical potential of ut in

solution in the mixture, mole fraction Xy where c(H+)X1 =
1.0 and y(a")*! = 1.0.

The transfer chemical potential of H+, imagined as a
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transfer of H' from system A into system B, is thus defined

by equation [3.3].
aagox,)p(a®) = pHatix)) - (e aq) [3.3]

3.2 Descriptions of a Solute, j, in a Solvent Mixture
"Water + ROH"
A given system contains nj moles of solute-j in a solvent

mixture which contains ny moles of solvent 1 and n, moles
of solvent 2. The mole fraction of solvent 1, Xq in the
mixture is given by nl/(n1+n2+nj) and similarly the mole
fraction of solvent 2, Xy in the mixture is given by
nz/(n1+n2+nj). If the volume of the system is V, then the
concentration of solute-j in solution, Cj' is given by
(nj/v). In such a system the <chemical potential of
substance 1 can be related to the mole fraction X4 using

equation [3.4].

py(sln;T;p) = p; (1;T;P) + RTIn(x,f,) (3.4)
where limit(xlel) f1 = 1.0. The reference chemical
potential for substance 1 is the pure liquid. If x, = 1 and
f1 = 1 then pl(sln;T;p) = ul*(l;T;p). In a similar fashion
the chemical potential for substance 2 is given by equation
[3.5].

*
uz(sln;T;p) = U, (1;T;p) + RTln(xzfz) [3.5])

where limit(xzel.O) f2 = 1.0. The reference chemical

potential of substance 2 is once again defined as the pure
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liquid i.e if Xy = 1.0 and f2 = 1.0 then pz(sln;T;p) =
uz*(l;T;p). The chemical potential of the solute-j in

solution is given by equation [3.6].

uj(sln;T;p) = uj#(sln;c—scale;T;p) + RTln[cjyj/cr] [3.6]
At constant x, and x, 1imit(cj90) vy = 1.0; c, =1 mol am™3.
The reference chemical potential, pj#(sln;c—scale;T:p) is
defined as chemical potential of solute-j in solution where

c, = 1.0 mol dm_3, vy = 1.0 and the solvent is a mixture at

J
constant X4 and Xoe
The Wells description of the same system is very
different. Here it 1is advantageous to define the mole
fraction of substance 1 in the mixture in the absence of
solute as xlo and similarly that of substance 2 as xzo. In
defining the chemical potential of the solute there is no

disagreement with the previous description.
pj(sln;T;p) = uj#(sln;c—scale;T;p) + RT ln[cjyj/cr] (3.7]

However the definitions of the chemical potentials of the
solvents wusing the Wells4 procedures disagree with the
previous descriptions. For solvent 1, it is recognised that
the solute may bind a number of solvent molecules to form a
new solute. Then the mole fraction of the solvent changes
when the solute is added.
W ° °
ul(sln;T:p;xl;xz;cj) = pp (sln;T;p;xl ;x, ;cj=0)

+ RTln(flw) [3.8]
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Similarly for solvent 2, the composition may change as a
result of incorporation of solvent 2 into the solute.
[+] o

#y(SIn;Tip;xyiXyic,) = py (sln;Tipixy ix, jcy=0)

+ RTln(fzw) [3.9]

Superscript w identifies definitions wused by Wells. The
standard states of substances 1 and 2 are defined in the
particular mixture, mole fractions xlo and xzo, where the
concentration of solute-j is zero4. flw and fzw are
activity coefficients for substances 1 and 2 in the
solution containing solute-j. By definition limit(cj+0) flw
= 1.0 and f2w = 1.0. The form of the dependence of flw and
fzw on cj is unknown. But the assumption is made that the
mixture (1+2) is fideal’ in the absence of solute-j; it is
perhaps better to write 'W-ideal’. Accepting the difference
between the two descriptions, it should be noted that
despite the difference between the standard states used in
the descriptions the same quantities in each case are being
defined. Therefore equations [3.4] and [3.8] yield equation
[3.10].
* w o ]
#q (1;T;p) + RTIn(x,£,) = p;"(aq;Tipixy ix, ;cj=0)
+ RTIn(£,") [3.10]

(] o *

1f plw(aq;T;p;x1 PXoy ;cj=0) is rewritten as {”1 (1;T;p) +
o o

RTln(x1 f1 )}, the latter still representing the chemical

potential of substance 1 in the pure solvent mixture, then

equation [(3.10] can be written in the form;
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* * o o
oy (1;T;p) + RTln(xlfl) = 4y (1;T;p) + RTln(xl fl )

+ RTln(flw) [3.11]

w

4] o
=> fl = (xl /xl)f1 fl (3.12])

o
14f1 .

In a similar fashion equations [3.5] and [3.9] yields

o
w
As cj»o, (x1 /xl)+l.0, fl 1.0 and £

equation [3.13].

w

o o
f2 = (x2 /xz)f2 f2 [3.13]

] [
As c;20, (x, /x;)-1.0, f2w+1.0 and f,»f, . Equations [3.12]

and [3.13] can be compared to equations 10 and 11 of
reference 4. For both equations it can only be assumed that
the dependence of flw on cj is sensible.

Returning back to the paper by Wells4, he defines a
chemical equilibrium;

(H+aq)mix + (ROH)mix <(=————=> (ROH2+)mix + (HZO)mix

. 9 . . . . + .
This equilibrium, as written, raises two points. H is

aq
defined by Wells as H+(H20)b where b»5. However in this
instance if the above equilibrium is to have the correct

3
mentioned in the introduction there is a lack of clarity in

stoichiometry then H+aq must be written as H,0'. As

defining the transferred 1ion; H+, H3O+, H+(H20)4 or

H+(H20)5. The latter equilibrium can be rewritten as;

H3O+(sln) + ROH(sln) < > ROH2+(sln) + H,0(sln)

One would normally analyse this equilibrium in the
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following way. At equilibrium,

w(ROH;X ;T;p) + w(H;0%;x ;T;p)

u(R0H2+;x1;T;p) + p(H,0ix,iT;p) (3.14]

In other words the sum of the chemical potentials of the
reactants in the mixture at constant X4 temperature, T, and
pressure, p, equals the sum of the chemical potentials of
the products in the mixture at the same Xq temperature and
pressure. In the normal way, using the equations shown
earlier in this Chapter, this equation can be expanded to

give;

p  (ROH;1;T;p) + RTLn(x(ROH)E(ROH))
+ ut(H30";x ;s1n;Tip) + RTInlc(H,0)y(H;0%) /c )
= u*(HZO;l;T;p) + RTln(x(HZO)f(HZO))

+ p“(R032+;x1;s1n;T;p) + RTln[c(ROH2+)y(ROH2+)/cr] [3.15]

By definition the Gibbs function for reaction, ArG#’ for

this equilibrium is written as;

ArG#(T;c—scale;xl) = p*(HZO;l;T;p) + p#(ROH2+;xl;sln;T;p)
- " (ROH;1;T;p) - w#(H30%;x ;s1n;T;p) [3.16]

#

= —RTI1lnK (sln;xl;T;p) {3.17]

Therefore;
# + + +
K"(x,3T) = [c(ROH,")y(ROH, )% £,] / [c(H50")y(H;0T)x,£,]

[3.18]

This same analysis is repeated using the terminology
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applied by Wells. Hence equation [3.14] is written;

p#(ROH;X,iX5iT;p) + u(H3O+;x1;x2;T;p)

= u(R0H2+;x1;x2;T;p) + u(H, 0%, :%,;T;p) (3.19]

Then;

4]
pw(ROH;xl X, iTip) + RTln(fzw)

# + ° ° +
+ u (H30 PXy ix, ;Tip) + RTln[c(H30+)y(H30 )/cr]
w ° o w
= u (Hzo;xl PXy iT:p) + RTln(fl )
o

o
+ p#(ROH2+;x1 iXy iTip) + RTln[c(ROH2+)y(ROHz+)/cr] [3.20)
Hence by definition using the Wells standard states;

# o o
ArG (T,c—scale,x1 PX, ) =
W (] ] # + o (]
v (Hy0;%x; jx5 ;Tip) + p (ROH, ;X; X, ;T;p)

#

w (] o + o [
- # (ROH;xy ;x5 ;T;p) - w (H30 jx; ;ix, ;Tip) [3.21)]

w o o
= —RT1nK (xl PX, ;T) [3.22]
Therefore;
° ° + + + +
K'(xy ixy ;T) = [£,"y(ROH," )c(ROH,")]/1£," y(H;07)c(H;307)]
[3.23)
Substituting the values of fl and f2' defined in equations
{3.12] and [3.13], into equation [3.18] gives equation
[3.24].

k¥ (Tix;) = ((c(RoH,")y(ROH, ) /(c(H,0M)y(H;0M)) )%, /x, ]
[£, /€, 10£;"/E,"] [3.24]
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According to Wells he requires ArGw(T;c—scale;xl) which is
calculated from equation [3.23). Two approximations are
made. The first sets the ratio of the activity coefficients
of ROH2+ and H30+ equal to one i.e. [y(ROH2+)/y(H3O+)] =
1.0. Whilst the second sets the ratio [£,"/f,"] = 1.0. Thus

from equation (3.24];
LE YY) = [f.x.f £, %, f£- %] = 1.0
1 75y = Eyx Eox, /8 %) £y %y T =1,

Hence;

o o

Kw(xl %y iT) = [c(ROH2+)/c(H3O+)] [3.25]

The outcome is in effect the characterisation of the ratio

c(ROH2+) to c(H30+) by the quantity Kw(xlo;x o;T). Although

2
it may be helpful to define this quantity it is important
to probe, using the analysis outlined above, the precise
significance of the property. Wells does not do this.
Rather he assumes that Kw(xlo;xzo;T) is directly related to
the difference between the standard chemical potentials of
ROH2+ and H30+ in the mixture. This is clearly incorrect as
can be seen from equation [3.21]. Thus Kw(xlo;xzo;T) is
also related to the difference in chemical potentials of
water and ROH in the solvent. This difference depends on
(a) the difference in the chemical potentials of pure ROH
and Hzo (b) the composition of the mixture and (c) the non-
ideal properties of the mixture. Therefore considerable

doubt remains over the transfer parameters reported by

Wells.
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3.3 Conclusions

The Wells method for the calculation of the transfer
chemical potential of ut is rejected in favour of a more
direct and less ambiguous technique. In the following two
Chapters which deal with transfer quantities, the TATB
assumption has been used as the basis of the calculations
used to obtain transfer chemical potentials of ions (see
Chapter 4). Hence reported trends in initial and transition
state parameters will differ in their conclusions from

those reported by We1152'7.
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CHAPTER
4

Alkaline hydrolysis of low-spin
iron(II) complexes in 'Urea +water'
mixtures



4.1 Introduction

This Chapter reports the effects of added urea on first
order rate constants for the alkaline hydrolysis of two
low-spin iron(I1) complex ions, [Fe(gmi)3]2+ and

[Fe(phen);1%* (see Figure 4.1).

—_— O

7" 7N

IR/ MeN NMe
phen gmi
FIGURE 4.1

The extrathermodynamic assumption based on transfer
parameters for tetraphenylarsonium tetraphenylboronate,

1-6 to

(TATB), is used in conjunction with solubility data
construct a Table of single ion transfer parameters
applicable to the urea + water system. Transfer chemical
potentials of the iron(II) complex ions, calculated from
solubility data1 and relevant single ion parameters, were
used to probe the effects of added urea on the transfer
chemical potentials of the initial and transition states
for the reactions of hydroxide ions and iron(II) complexes.
In Chapter 5 where kinetic data are analysed for reactions
in a binary mixture of methyl alcohol and water the
importance of well defined reference states is stressede.
In such systems the pure liquids, water and cosolvent are
most convenient. In this Chapter however the situation is
slightly different. Kinetic data are analysed for reactions
carried out in a Typically Non-agueous solvent system9

which is an aqueous solution of urea. The composition of
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the solvent is varied by changing the molality, m,, Or mass
per cent, wu%, of urea. In a given solution of wurea in
water which contains n, moles of wurea and ny moles of
water, the molality of urea, m,e in solution is given by m,
= nu/(nlml) where My is the molar mass of water. Similarly
the mass per cent of urea in solution, wu%, is given by wu%

= [(nuMu)/(n1M1+nuMu)]*100, where Mu is the molar mass of

urea.

4.2 Experimental

4.2.1 Materials

All solutions of urea were prepared by weight using Gold
Label ACS urea and fresh deionised water. A concentrated
solution of the sulphate salt of [Fe(phen);]°* was obtained
from Koch-Light Laborat%%ries Ltd. and used without further
purification.

[Fe(gmi)3]2+ was prepared by S.Radulovic using
iron(II) chloride, glyoxal and methylamine. The perchlorate
salt of this cation was prepared by precipitation following
addition of sodium perchlorate to the iron(II) complex
solution. A concentrated solution of the salt was prepared
in water. [Fe(phen)3]2+ produced a bright red solution in
water and was characterised by an intense absorption band10
in the visible region of the spectrum centered at Xmax =
510 nm. [Fe(gmi)3]2+ produced a violet solution in water
and was characterised by an intense absorption band11
centered at Xma = 554 nm (see Figure 4.2 and 4.3).

X

4.2.2 Reaction Mechanism

The complexes studied in this Chapter and Chapter 5 contain
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the iron atom in the +2 oxidation state, and as a result
the arrangement of six dJ electrons needs to be taken into
consideration. All of the complexes studied can be regarded
as having octahedral, o0n, symmetry and unlike the majority
of iron(II) <complexes they are low—spin. This |is
demonstrated by the electron occupation diagram (Figure
4.4) which represents the splitting of a set of 4 orbitals
by an octahedral eletrostatic crystal field. The iron
d2.2 and (22 orbitals are raised in energy whilst the
dn; dw and dm orbitals are lowered in energy.

| All of the iron(II) complexes investigated contain

the chelating unit shown below.

VAN

(—C
//’ "\\\
N N N~

*'N

The intense colours of these complexes in agqueous
solutions are believed to be due to transitions of 4
electrons from the iron atom to ligand orbitals to form a
metal to ligand charge transfer band. More precisely the
filled iron 4 orbitals, dw' dw and ‘QV push electron
density onto the lower lying vécant n antibonding orbitals
of the ligands -~ such transitions invariably occur in the
visible region and 1lead to the stabilisation of the
complex.

For the alkaline hydrolysis reactions studied in this
and the following Chapter, two possible positions of attack

of hydroxide ions on the complex have been discussedlz. The
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Energy level diagrams showing the splitting of a
set of d-orbitals by an octahedral electrostatic
crystal field.
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first involves direct attack at the central iron atom and
the second involves attack at the ligand (see scheme 1).
The second possibility is thought to be the more
plausib1e12'13.

Attack by hydroxide anions at the 2-position of the
complexed pyridine ring causes part of the aromatic
character of that ring to be lost, thus weakening the
iron-nitrogen bond. The proximity‘pf the OH-group to the

NS

central iron atom should aid the SNi\ transfer of OH from

=

the carbon atom to the iron and hence break the

iron-nitrogen bond. The ligand is then free to fall away.

N

(phen),Fe + OH" —> [(phen),Fe —» Products

*N

Such a mechanism points towards the formation of some
transient intermediate. Evidence for such intermediates has
been obtained from the investigation of the alkaline
hydrolysis of iron(II) hexadentate Schiff base in two

neutral water in oil microemulsionsl4’15.

4.2.3 Kinetics

Kinetics of reaction were measured under conditions in
which [NaoOH]>>[complex] corresponding to typical first

order conditions (see Chapter 2). The reactions were
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monitored using an HP 8451A diode array spectrophotometer,
by the decrease in absorbance at xmax with time. The data
were analysed using the non-linear least squares method
outlined in Chapter 2 to obtain estimates of the first
order rate constants. The rates of the alkaline hydrolysis

2+

reactions of both [Fe(phen)3] and [Fe(gmi)3]2+ ions are

known to follow the rate equation16;

—-d[complex]/dt = kllcomplex] + k2[comp1ex][Na0H] [4.1]

where kl is the first order rate constant for the aquation
of the complex and k2 is a second order rate constant.
Under conditions in which [NaOH]>>[complex] then an

observed rate constant is defined by equation [4.2].

obs = kl + k2[NaOH] [4.2]

Both kl and k2 are calculated using a linear least squares

procedure17. The rate of aquation characterised by kl was
found to be negligible compared to the rate of the second

order reaction under the conditions described above.

4.2.4 Solubilities

Solubilities were measured6’7

using either the absorbances
of saturated solutions in the UV/visible region or flame

photometry.
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4.3 The TATB Assumption and Calculation of Single Ion
Transfer Quantities

A given solution contains n, moles of water, n, moles of
urea and nj moles of added solute-j where nj < ny and n,.
At equilibrium the total Gibbs function of the system at

temperature T and pressure p is given by equation [4.3].

6*Y(sys:Tip) = nyu,*YUsysiTip) + nyu *Ysys;Tip)

+ njpjeq(sys;T;p) [4.3]
Any description of such a system must be consistent with
the same Geq(sys;T;p) and the same equilibrium chemical
potentials for each substance. In the following account the
system is described as a solution of substance-j in a
solvent composed of a mixture of ’'urea + water’8. Hence the

molality of solute-j is given by equation [4.4].

mj = nj/(nlm1 + nuMu) {4.4)
where M1 and Mu are the molar masses of water and urea
repectively. If the system has a volume V then the

concentration of added solute-j in solution is given by;

cy = nj/V (4.5]

The concentration of solute-j, Cj' is related to its
chemical potential in a solvent of composition wu% by

equation [4.6].
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. - . — # . L4 — . .
pj(aq,wu%,T,p) = ”j (aq,wu%,c scale;T;p)
+ RTln[(cjyj(aq;wu%))/cr] [4.6]
3

By definition limit(cj+0) yj(aq;wu%) = 1; c, = 1 mol dm ~.

The reference state of the solute is a solution in which c.

= 1.0 mol dm >

and yj(aq;wu%) = 1.0 and the chemical
potential of substance-j is described by
pj#(aq;wu%;c-scale;T;p). If solute-j is a salt which on

complete dissociation forms v ions (i.e v = v ,+v_) then the

+
chemical potential of the salt-j in a system of composition

wu% is given by;

uj(aq;wu%;T;p) = ﬂj#(aq;wu%;c—scale:T;p)

+ uRTln[(chyi(aq;wu%))/cr] [4.7])

where Q is a function of the stoichiometry of the salt ( =

(v U+U_u—)l/u )

+ Py, is a mean ionic activity coefficient

and where by definition limit(cj*O) y, = 1 at all
temperatures and pressures. The reference chemical
potential of the salt pj#(aq;wu%;c—scale;T;p) thus depends
on the composition of the agqueous urea solution and on the
corresponding reference chemical potentials of the ions. A
transfer chemical potential for solute-3j is defined as the
difference between the chemical potentials of the solute in
reference states in the solvent, urea + water, and in

water.

A(aqawu%)pj#(c—scale;sln;T;p) =

uj#(aq;wu%;c-scale;T;p) - pj#(c—scale;aq;T;p) [4.8]
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Hence for a 1:1 salt;

A(aq»wu%)pj#(c—scale;sln;T;p) =
A(aq»wu%)p+#(c—scale;sln;T;p)

+ A(aqéwu%)u_#(c—scale;sln;T;p) (4.9]

The single ion transfer parameters reported in this
Chapter are based on the extrathermodynamic assumption set

out in equation [4.10]).

A(aq»wu%)u#(Ph4As+;c—scale;T;p)

- A(aqéwu%)u#(Ph4B—;c—scale;T;p) [4.10]

i.e. the transfer chemical potential of the Ph4B_ anion, or
Ph4As+ cation, is defined as one half the transfer chemical
potential of the corresponding salt. The transfer chemical
potentials for Ph4AsBPh4 in various aqueous urea solutions
were taken from the work of Kundu and Dasz. These authors
reported transfer parameters on the mole fraction scale,
x-scale, and for consistency with previous work8 these
estimates were —converted to the concentration scale,
c-scale, using equation [4.11]8.
A(aq»wu%)uj#(c—scale) = A(aq»wu%)pj#(x-scale)
+ RTIn[(10%/M,)/(((10%—w %) /M, )+(w 3/M )} (p(aq)/p(w %)} ]
[4.11])

Here p(aq) is the density of water at ambient temperature
and pressure and p(wu%) is the density of a solution of
urea containing wu% urea at ambient temperature and
pressure. The densities of urea solutions in the region

5.67 w,% to 43.84 wu% were calculated wusing equation
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(4.12], taken from the work of Desnoyers et 118,

6 = 44.20 + 0.126m_ - 0.004m 2 [4.12]
v u u

where m, is the molality of added urea. Hence the volume of
the solution was calculated from equation [4.13].

3

vV/cm™ = 103

* ’f

Vi o+ mue, [4.13])
-1 * 3 -1

where M, = 0.018015 kg mol and V, /cm” g = 1.002961

(ref. 19). The mass of the solution was calculated from

equation [4.14].
M=1.0+ mM [4.14]
uu

Hence the density of solution was calculated in the usual
way by the combination of equations ([4.13] and [4.14].
Figure 4.5 shows a plot of the density of aqueous urea
solutions against the weight per cent of added urea over
the range 6¢ wu% <43.

Once this basis for single ion transfer parameters
(i.e. TATB) has been established, single ion transfer
parameters for other anions and cations readily follow from
solubility data of salts in aqueous wurea solutions. The
solubility of a salt-j in an aqﬁeous urea solution and pure
water are denoted by the symbols Sjeq(aq;wu%) and Sjeq(aq)
respectively. These solubilities are related to ‘the
reference chemical potential of the salt by equation

{4.15].
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A(aq»wu%)pj#(c—scale;sln;T;p) =
_ eq ew 2 eq e 2 eq
vRTln[(Sj (aq,wus)yi (aq,wuﬁ))/(Sj (aq)yi(aq))]
[4.15]
The assumption is made that, y+eq(aq;wu%))y+eq(aq) = 1.0.

4.4 The Self Dissociation of Water and Transfer Parameters
+ i
for H' and OH

The chemical potential of water in the solvent urea + water

is given by equation [4.16].
*
ul(aq;T;p) =y (1;T;p) + RTln(xlfl) (4.16]

where X, is the mole fraction of water in the system and f1
is a rational activity coefficient; limit(xlél) f1=1.0 at
all temperatures and pressures. At equilibrium, a small

amount of water undergoes dissociation.

H,0(sln) < > HYOH (sln)

The water in solution is in equilibrium with effectively a
1:1 electrolyte. The chemical potential of HYOH™ in water

is given by equation [4.17].

p(EYOH ;aq) = st (HYOH ;aq) + 2RT1n[(c(H*OH*)y+(H+0H'))/cr]
[4.17)

At equilibrium the latter two equations can be equated;

" (1;T;p) + RTIn(x,£,) = u*(ua*0H™;aq)

+ ZRTln[(c(H+0H_)y+(H+OH~))/cr] (4.18)
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A standard equilibrium constant for the self dissociation

of water is thus defined by equation [4.19].

o - *
A G (aq;T) = u#(H+0H jaq) - wq (1;Tip)

- —RTln[{c(H+OH—)y+(H+OH—)}2/(cr2xlf1)]aq [4.19]
where;
K #(c—sc le;T;aq) = -RTln[{c(H'OHT) (H+OH—)}2/(C 2y £ )1
w ateiliaq) = niic yi r "1°1''aqg
[4.20]

For dilute solutions (xlfl) is approximately unity. By

definition;
K #(c—scale'T'a ) = -1lo K #(c-scale°T°a )
PRy iliaq 910w itiad
+ .- + =y 2 2
= —loglol{c(H OH )y+(H OH )} /cr ] (4.21]

Turning to the effects of added wurea on the self
dissociation of water, the reference state for pure water
is retained however the reference state for H'OH™ is now
altered to depend on the composition of the system wu%.

Equation [4.21] can be rewritten;

. . # + -. . o. — * L d L d
ArG(aqlwu%lT) v (H OH raqrwu‘ﬁrT) Ul (]-rTrp)

# . .
—RTanw (aq,wu%,T) [4.22]

where;

Kw*(c—scale;aq;wu%;T) =

2

~RTIn[ {c(u*on™)y, (n*on™)}2/(c X160 aqwuy  [4-23]
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In dilute aqueous urea solutions the assumption which sets
(xlfl) = 1.0 is invalid. However an apparent quantity can

be defined using equation [4.24].

pKw#(c-scale;appar;aq;wu%;T)
—loglokw#(c—scale;appar;aq;wu%;T)

2

= -RT1n[ (c(u*on7)y, (#*on7)}?/c ] [4.24]

ag;wu%
The target quantity in this analysis is the transfer
parameter for the H'OH  electrolyte, A(aq*wu%)u#(H+0H_;
sln;T). This can be obtained through equation [4.25]; (cf.
equation [4.8]).

A(aq»wu%)p#(c—scale;sln;T) = p#

- p#(H+OH_;c-sca1e;aq;T) [4.25]

(H+OH_;c—scale;aq;wu%;T)

— *
[u#(H+0H jaqiw %;T) — wy (1;T;p)]

#

- wttoraqim) - py f(1iTip) ) 14.26)

[—RTan#

(c—scale;T;aq;wu%)] - [—RTan#(c-scale;T;aq)]
[4.27]
Then;
A(aq»wu%)p#(c—scale;sln;T) = RTln{xlfl}aq;wu%

+ RT[ln(lO){pKw(appar;c—scale;aq;wu%;T)

- pKw(c—scale;T;aq}] [4.28]
Hence the transfer parameters for HYOH™ are defined by the

difference between PK, parameters plus a correction factor4

for the non-ideal properties of aqueous urea solutions.
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4.5 Initial and Transition State Analysis

Under conditions in which complex concentration in solution
is small compared to hydroxide concentration within the
reaction mixture (cf. equations [4.1] and [4.2] )} the
second order rate constant, k2' is related to the molar
Gibbs function of activation, A*G#(c—scale), through

Transition State Theoryzo.

[(kyc_sh)/(kyT)] = expl-afc¥(c-scale)/mr)  [4.29]

3 and s = 1 second. These quantities

where ¢ = 1 mol dm~
are included to preserve dimensional consistency. h is
Plancks constant and kB the Boltzmann constant. It is
further assumed that the transmission is unity and/or is
independent of solvent composition. A transfer Gibbs

function of activation is obtained by considering second

order rate constants in water, kz(aq;T), and in aqueous

urea solution, kz(aq;wu%;T). .
A(aqawu%)A*G#(c—scale;T) = —RTln[kz(aq;T)/kz(aq;wu%;T)]
[4.30)
= A(aqéwu%)p$#(c—scale;sln;T)
- A(aq»wu%)p#(complex;c—scale;sln;T)
- A(aq»wu%)p#(OH—;c—scale;sln;T) [4.31)]

Hence the effects of added solvent on the transition state,
A(aqéwu%)p$#(c—scale;sln;T), can be calculated from the

appropriate solubility and kinetic data.
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A(aqﬁwu%)u*#(c—scale;sln;T) =
A(aqéwu%)A*G#(c-scale;T)
+ A(aq»wu%)p#(complex;c—scale;sln;T)

+ A(aq»wu%)p#(OH_;c—scale;sln;T) [4.32)

The overall effect of solvent on the initial state is
obtained by combining the transfer parameters for the two

reactants, complex and hydroxide ions.

# csln:T) =
A(aq-)wu%)uis (c-scale;sln;T) =
A(aq»wu%)p#(complex;c—scale;sln;T)

#

+ d(agow %)u (OH ;c-scale;sln;T) [4.33]

4.6 Results

Tables 4.1 and 4.2 report observed first order rate
constants for the alkaline hydrolysis of [Fe(phen)3]2+ and
[Fe(gmi)3]2+ ions in agueous urea solutions. The
dependences on hydroxide concentrations were fitted to
equation [4.2] using a linear least squares technique to
produce estimates of k1 and k2 for each urea solution.
Estimates of k2 together with their standard errors are
reported for both iron complexes in Tables 4.3 and 4.4. In
all cases rate constants kl’ describing the aquation rate,
were found to be negligibly small in comparison to the
second order rate constants.

Single ion transfer parameters, all expressed using
the concentration scale, are reported in Table 4.5 together
with the relevant literature reference. This information is
represented in plots of single ion transfer parameters

against wu% urea in aqueous solution; Figure 4.6. Single
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First order
[Fe(phen) ;1%

mixtures at constant ionic strength I=0.33 moldm™ 3

rate

Table 4.1

constants for

reaction

between

and hydroxide ions in water and urea + water

at 298K

wt% Urea
[NaOH]) 0 10 20 30
/moldm—3 104 k/s_1
0.0050 1.066 1.207 1.450 2.183
0.0075 1.307 1.545 1.888 2.360
0.0100 1.450 1.753 2.171 2.557
0.0150 1.853 2.224 2.449 2.891
0.0200 2.362 2.669 2.961 3.412
Table 4.2
First order rate constants for reaction between
['Fe(gmi);_l2+ and hydroxide ions in water and urea + water
mixtures at constant ionic strength I=0.33 moldm—3 at 298K.
wt% Urea
[ NaOH] 0 10 20 30
/moldm™3 10° kst
0.0050 2.63 3.48 3.98 4.98
0.0075 4.65 5.52 7.10 8.24
0.0100 5.51 7.02 9.69 11.66
0.0150 8.66 10.37 16.67 21.78
0.0200 11.40 14.77 22.95 30.67
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Table 4.3

Second order rate constants for reaction between
[Fe(phen)3]2+ and hydroxide ions in water and urea + water
mixtures at constant ionic strength I=0.33 moldm™ > and 298K

wt% Urea 103 k/dm3mol—ls_1
0 8.430  (+ 0.378)

10 9.528  (+ 0.366)
20 9.310 (+ 0.986)
30 8.038 (+ 0.428)

Table 4.4

Second order rate constants for reaction between
[Fe(gmi)3]2+ and hydroxide ions in water and urea + water

mixtures at constant ionic strength I=0.33 moldm-3 and 298K

wt% Urea 103 k/dm3mol_ls—1
0 5.696 (+ 0.297)

10 7.356  (+ 0.278)
20 12.727 (+ 0.258)
30 17.526 (+ 0.742)
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Table 4.5

Single ion transfer parameters (c-scale) from water to urea
+ water mixtures at 298K using the Ph4As+/Ph4B— assumption.

Units of transfer parameters are kJmol—l.
wt% Urea
ref 11.52 20.31 29.64 36.83
17 ut -1.19 -2.15 -4.06 -4.76
5 rLit 2.44 3.16 2.77 3.07
5 Nat 2.85 3.82 3.68 4.02
2 k' 2.64 3.66 3.47 3.77
5 Rb' 2.54 3.46 3.27 3.57
5 cst 2.44 3.26 2.97 3.07
2 Ph4As+/BPh4— -1.26 -2.99 -3.64 -4.23
+ oH " -1.78 ~2.12 ~0.96 -
6 clo,”" ~2.96 ~4.64 ~4.43 -
5 cCl° -2.58 -3.37 -3.01 -3.18
5 Br -2.78 -3.65 -3.41 -3.68
5 1 -2.88 -3.87 -3.71 -4.18
2 Pi -3.27 -5.33 -6.44 -7.33
3 Bro3‘** ~3.52 ~4.61 ~5.74 ~6.86
3 103”** ~5.53 ~7.16 -8.24 ~9.27
2k %
3 SO4 -2.53 -5.77 ~-7.78 -9.90
3 cro, 2t ~10.41 ~14.42  -17.61 ~20.86
3 Crzo72’** -6.33 ~9.80 ~13.23 ~15.38
* -~ values at 10, 20 and 30 wt% Urea
** - Single ion transfer parameters calculated from the
standard potentials of the silver-silver bromate,
silver-silver iodate, silver-silver sulphate, silver
-silver chromate and silver-silver dichromate
electrodes. + -
T — Calculated from H OH data from references 1,4 and 5.
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ion transfer parameters for Y ions were recalculated from
the data of Kundu and Mazumdar21 using estimates of
parameters for k* and €17 ions calculated by Das and Kundu2

using the TATB assumption. The transfer parameters for

+ 1,4,5

H OH from various authors show good agreement, see
Figure 4.7. However the estimates diverge at high wu%. A
single line was drawn through these points and values
interpolated from this curve were used in conjunction with
transfer values for H' ionsz1 to calculate single ion
transfer quantities for OH ions.

Solubility  data for  the  [Fe(phen);1°*  and
[Fe(gmi)3]2+ complexes were obtained by S.Radulovic7 for
the perchlorate salts. These data were used in conjunction
with transfer parameters for OH  and clo4' ions to
investigate the effects of solvent on the initial and
transition states for both complexes. Tables 4.6 and 4.7
report calculated initial and transition state transfer
chemical potentials as a function of wu%. The same
information is represented graphically for the

[Fe(phen)3]2+ and [Fe(gmi)3]2+ complexes in Figures 4.8 and

4.9 respectively.

4.7 Discussion

The Gibbs function for activation, A?G#,'for the alkaline
hydrolysis of [Fe(gmi)3]2+ cations decreased with increase
in wu% urea in solution and as a consequence the rate of
reaction increased at 298.15 K and ambient pressure with
increase in wu% urea. At 10 wu% urea both the initial and
transition states are destabilised. In the case of the

initial state this is due to the large destabilisation of
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Transfer parameters,

Table 4.6

for reaction of

[Fe(phen)

2+ .
3] with

hydroxide ions, from water to urea + water mixtures at 298K

on the c-scale. Units of transfer are kmol™l.
Wt.% Urea 0 10 20 30
1: *
a(agsw 3)atG(c) 0o | -0.30|-0.25| 0.12
a(agrw 2)pt(c) sare™ 0 | -3.97|-8.47 |-12.01
a(agrw 2)pt(e) (2c10,7) 0o | -5.92|-9.28 | -8.85
a(agow 2)p*(c) (re(phen) 12t | 0 1.95 | o0.81 3.16
a(agrw 2t (c) on” o | -1.78|-2.12 | -0.96
atagw w)u; Hie) 0 0.17 [ -1.30 | -4.12
#
s(agow,t)y, ¥ (e) 0 | -0.13|-1.55| -4.00
* ~ (c) represents (c-scale;sln;T)

** — galt is [Fe(phen)3(clo4)2]. Solubility data ref.7.
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Table 4.7

Transfer parameters, for reaction of [Fe(gmi)3]2+ with
hydroxide ions, from water to urea + water mixtures at 298K

on the c-scale. Units of transfer are kamol~ L.
Wt.% Urea 0 10 20 30
¥ *
a(agsw %)A"G(c) 0 | -0.63|-1.99| -2.79
atagow 3 ¥ (c) sart™ 0 | -2.88]| -7.54| -10.21
a(agow )% (e) (2c10,7) 0 -5.92| -9.28| -8.85
slagow $)p*(c) [Fe(gni) 1%* | 0 3.05| 1.74| -1.36
a(agow 3)u*(c) on” o | -1.78| -2.12| -0.96
A(aq»wu%)uis“(c) 0 1.27| -0.38| -2.32
#

aagow $), * (o) 0 0.63| -2.37| -5.10

* - (c) represents (c-scale;sln;T)
** — salt is [Fe(gmi)3(clo4)2]. Solubility data ref. 7.
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[Fe(gmi)3]2+ ions and only moderate stabilisation of the
hydrophilic hydroxide ions. However with increased wu% urea
both initial and transition states are stabilised, the
transition state to an increasingly large degree producing
a decrease in A*G#. The stabilisation of the initial state
at 20 wu% urea can be attributed to an increased
stabilisation of OH ions and the decreased stabilisation
of the [F‘e(gmi)3]2+ ions whilst at 30 wu% urea both the
complex and hydroxide ions are stabilised. This information
is summarised in Figure 4.11.

Turning to the alkaline hydrolysis of [Fe(phen)3]2+
cations it is clear, Fiqure 4.8, that rate constants for
this reaction mask considerable changes in the transfer
chemical potentials of the initial and transition states
when urea is added to the system. At 10 wu% urea the
effects on both the initial and transition state chemical
potentials are small. The transition state is marginally
stabilised and conversely the initial state is destabilised
due to the greater destabilisation of the [Fe(phen)3]2+
ions compared to the stabilisation of the hydroxide anions.
As a result an overall decrease in the Gibbs function for
activation is observed. At 20 wu% urea the transition state
is stabilised to a greater extent. The destabilising effect
of urea on [Fe(phen)3]2+ ions decreases and the
stabilisation of OH ions increases. Hence an overall
stabilisation of the transfer chemical potential of the
initial state was observed. A solvent containing 30 wu%
urea marks a crossover point at which [Fe(phen)3]2+ ions
are found to be stabilised to a greater extent in solution

than hydroxide ions. Hence the initial state can be seen to
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be greatly stabilised. The transition state is also
stabilised to a larger extent and as throughout the range
of urea solutions the effect on the Gibbs function for
activation was found to be marginal. This information is
summarised in Figure 4.11.

The trends summarised in Figures 4.10 and 4.11 are
complicated. It is not clear why hydroxide anions showed
such a degree of stabilisation in urea + water systems
whilst in methyl alcohol + water systems8 OH anions are
clearly destabilised. The merits of the initial state,
transition state analysis are however immediately apparent.
Modest dependences of rate constant, in both systems, mask
striking dependencies on wu% of both the transfer chemical
potentials of the initial and transition states.

An extension of the above approach to the analysis of
kinetic data would be to consider the effects of pairwise
group interaction parameters using the model developed by

Savagezz, Wood23 24.

and Lilley Although no more than a
broad indication of the trends of a parameter describing
pairwise interactions between wurea and the iron(II)
complexes can be obtained it is interesting to note that
pairwise interaction parameters, g(X<=>Y) where X and Y
denote functional groups, of g(CH2<=>CONH) and g(CONH<=>OH)
are 55 and -31 kJ mol_1 respectively. In other words added
urea destabilises the hydrophobic 1ligands around the
iron(II) atom i.e. a positive g(CH2<=>CONH) and
incorporating an OH group into the same hydrophobic ligand
produces a stabilising influence e.g. g(CONH<=>OH)<0. This

line of argument points a possible way forward in the

analysis of kinetic data describing reactions in aqueous
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solutions, by introducing thermodynamic parameters
describing group interactions. These pairwise interaction
parameters are investigated further in Chapter 7, which
describes the background to the subject, and Chapter 8
which develops a technique for calculating pairwise Gibbs
function cosphere-cosphere group interaction parameters and
shows how they may be used to calculate the
cosphere-cosphere overlap contribution to Setschenow
coefficients for gaseous hydrocarbons dissolved in agqueous

salt solutions.
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e
CHAPTER

5

Alkaline hydrolysis of low-spin
iron(II) complexes in 'Methyl
alcohol +water' mixtures



5.1 Introduction

This Chapter reports observed first order, and linear least
squares estimates of second order rate constants at 298.15
K for the alkaline hydrolysis of one tridentate and two
bidentate low-spin iron(II) complexes in binary mixtures of
methyl alcohol and water. These mixtures contained 0, 20,
40, 60 and 80 ideal volume per cent, v%(id), of the alcohol
(see Section 5.2.2 for a definition of v%(id)). The

structures of the iron(II) complexes are shown in Figure

5.1.
FIGURE 5.1 (L-L-L)
(L-u
A B c
QO] Me O] H Me [O] Me
N N N
NH NMe HN NH
\—“—/ \_*_/
[FetL-11 ] tai0,), [FetL-L-L), J(Ct0,),

Single ion transfer chemical potentials calculated using
the TATB assumption1 were used in an investigation of the
effects of added methyl alcohol on the transfer chemical
potentials of the initial and transition states involved in

chemical reaction (see chapter 4).

5.2 Experimental

5.2.1 Materials

The complexes were prepared from the appropriate amine,
carbonyl compound and iron(II) chloridez, by S.Radulovic,
and were precipitated as perchlorates by saturating the
iron(II) chloride solution with sodium perchlorate. The

methyl alcohol was 99.9% spectrophotometric grade.
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5.2.2 Kinetics

Concentrated aqueous solutions of the iron(II) complexes
(present as perchlorates) were used. Kinetics of reaction
between the iron(II) complexes and hydroxide ions were
monitored in 0, 20, 40, 60 and 80 v%(id) methyl alcohol +
water mixtures at constant ionic strength, I = 0.33 mol
dm™3 at 298.15 K. The composition of the solvent mixtures
was described in terms of ideal volume per cent, v%(id).
This term is defined for example in the case of 60 v%(id)
methyl alcohol as follows. If the volume before mixing of
the reaction mixture has a total volume V/cm3 then the
mixture contains (60/100)*V/cm3 of methyl alcohol. Constant
ionic strength was maintained by addition of sodium
chloride solution to the reaction mixture. In all systems

4

[complex] < 10 ° mol dm™3 and hydroxide ions were present

in vast excess compared to the concentration of the iron
complex. Reactions were monitored at five separate

hydroxide concentrations in the region, 0.05< [NaOH}/mol

-3

dm <0.18 for the tridentate complex, C, and 0.001 <

[NaOH]/mol dm™3 €0.020 for the two bidentate complexes, A

and B. Reactions were followed by monitoring the decrease

in absorbance at Xma with time using an HP 8451A diode

X
array spectrophotometer (see Chapter 2). For each complex
xmax was obtained from a full wavelength scan 190< X\/nm
<800 wusing a dilute aqueous solution of the complex;
Figures 5.2 to 5.4 (the program is included as Appendix 1;
program AWH 1). No change in the position of Xmax was noted
when methyl alcohol was added to the system. For complex A,
xmax = 572 nm, complex B, xmax = 550 nm and, complex C,

xmax = 592 nm.
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The solubilities4 of iron(II) complexes in methyl alcohol +
water mixtures were determined from the absorbances at Amax
of saturated solutions at 298.15 K. Transfer chemical
potentials of the hydroxide ion were taken from a

compilation1 based on the TATB assumption.

5.3 Results

The reactions are known to follow the rate 1aw3 given by
equation ([4.1) of Chapter 4. Reactions were allowed to
proceed for at least 2.5 half lives and in all cases the
absorbance P_ (see Chapter 2) was close to zero, indicating
that the reaction had gone to completion. Addition of
methyl alcohol to the reaction mixture containing complex C
produced a notable decrease in rate constant dependent on
the proportion of alcohol in the mixture. The effect of
added methyl alcohol on complexes A and B was not as
straight forward. Up to 40 v%(id) methyl alcohol the rate
constants for reactions involving complex A decreased
compared to the rate constant for reaction in aqueous
solution. However at higher alcohol concentrations, 60 and
80 v%(id), the rate constant increased slightly relative to
the lower alcohol concentration but at no time did it
exceed the rate constant for reaction in aqueous solution.
For complex B little effect on rate constant was produced
by 20 v%(id) methyl alcohol. However rate constants in 40,
60 and 80 v%(id) methyl alcohol increased relative to rate
constants in aqueous solution. Observed first order rate
constants for reactions involving complexes A, B and C are
reported in Tables 5.1, 5.2 and 5.3 respectively.

Second order rate constants were estimated using the
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Table 5.1

First order rate constants for reaction between complex A
and hydroxide ions in water and methyl alcohol + water
mixtures at constant ionic strength I=0.33 moldm_3 at 298K.

v(id) % MeOH
[ NaOH ] 0 20 40 60 80
/moldm™3 10° kst
0.001 3.59 1.82 1.82 2.74 2.90
0.005 14.43 11.24 9.66 10.75 12.65
0.010 26.01 22.92 19.16 21.99 25.56
0.015 40.16 33.14 27.88 32.17 36.92
0.020 56.13 42.62 38.35 40.90 47.98
Table 5.2

First order rate constants for reaction between complex B

and hydroxide ions in water and methyl alcohol + water
3

mixtures at constant ionic strength I=0.33 moldm - at 298K.
v(id) % MeOH
[NaOH] 0 20 40 60 80
/moldm”3 10° k/s71
0.001 0.50 0.41 0.50 0.94 2.60
0.005 1.02 0.95 1.65 2.26 5.04
0.010 2.00 1.77 2.38 3.91 7.83
0.015 2.48 2.50 3.37 5.67 9.92
0.020 2.93 3.08 4.01 6.80 12.80
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Table 5.3

First order rate constants for reaction between complex C
and hydroxide ions in water and methyl alcohol + water

mixtures at constant ionic strength 1=0.33 moldm—3 at 298K.
v(id) % MeOH
[NaOH] 0 20 40 60 80
/moldm™ > 104 k/s71
0.050 1.59 1.10 0.94 0.82 0.67
0.100 4.77 2.89 2.23 1.85 1.55
0.120 6.61 3.86 3.00 2.63 1.66
0.150 8.40 5.56 3.99 3.24 2.33
0.180 12.64 7.20 5.41 4.41 2.81
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method of 1linear 1least squares in which observed first
order rate constants, kobs' for each alcohol mixture were
fitted to equation [4.2] of Chapter 4. In all cases
estimates of kl were negligible compared to the estimates
of the second order rate constant k2' Plots of kobs against
sodium hydroxide concentration for complex A at 0, 20, 40,
60 and 80 v3%(id) methyl alcohol are included as Figure 5.5.
Estimated second order rate constants, kz, and their
standard errors for each complex are reported in Tables

5.4, 5.5 and 5.6.

5.4 Initial State, Transition State Analysis

Kinetic and solubility4 data were combined wusing the

procedures set down in Section 4.5 of Chapter 4 to obtain
the effect of added methyl alcohol on the initial and
transition states of each complex. In summary form the
effect of added <cosolvent on the initial state |is

calculated using equation [5.1].

A(aq»v%(id))pis#(c—scale;sln;T) =
A(aq»v%(id))p#(iron complex;c-scale;sln;T)

+ A(aq»v%(id))u#(OH_;c-scale;sln;T) {6.1]

The effects of cosolvent on the transition state can be

obtained using equation [5.2].

A(aq»v%(id))p;ﬂ(c—scale;sln;T) =
A(aq»v%(id))A*G#(c—scale;T)
+ A(aq»v%(id))p#(iron complex;c-scale;sln;T)

+ A(aqév%(id))u#(OH—;c—scale;sln;T) [{5.2]
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Table 5.4

Second order rate constants for reaction between complex A
and hydroxide ions in water and MeOH + water mixtures at
constant ionic strength I=0.33 moldm_3 and 298K

V$(id) MeOH 102 k/dm3mo1"ts™1

0 2.278  (+ 0.091)

20 2.153  (+ 0.059)

40 1.901  (+ 0.028)

60 2.035  (+ 0.050)

80 2.383  (+ 0.043)
Table 5.5

Second order rate constants for reaction between complex B
and hydroxide ions in water and MeOH + water mixtures at

constant ionic strength I=0.33 moldm—3 and 298K
V%(id) MeOH 103 k/am3mo1"1s7 1
0 1.312 (+ 0.118)
20 1.434 (+ 0.047)
40 1.810 (+ 0.137)
60 3.151 (+ 0.125)
80 5.257 (+ 0.171)
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Table 5.6

Second order rate constants for reaction between complex C
and hydroxide ions in water and MeOH + water mixtures at

constant ionic strength 1=0.33 moldm “ and 298K

V% (id) MeOH 10 k/dm*mol “*s ~
0 8.204 (+ 0.837)

20 4.737 (+ 0.313)

40 3.408 (+ 0.250)

60 2.722 (£ 0 .202)

80 1.637 (+ 0.096)
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where A(aq»v%(id))A#G#(c—scale;T) is obtained from the

estimated values of the second order rate constants, k2'

s(agove(id))ate* (c-scale;T) =

RTln[kz(aq;T)/kz(aq;v%(id);T)] (5.3]

Tables 5.7, 5.8 and 5.9 report calculated initial and
transition state transfer chemical potentials and Figures
5.6, 5.7 and 5.8 plot these data against v%(id) methyl

alcohol for complexes A, B and C respectively.

5.5 Discussion

The effect of added methyl alcohol on the transfer chemical
potential of the hydroxide ion is almost negligible up to
40 v%(id) methyl alcohol, with only a very slight
stabilisation effect at 20 v%(id) alcohol. However at 60
and 80 v%(id) methyl alcohol the hydroxide ion is
increasingly destabilised. These results can be explained
in the following way; hydroxide ions are sufficiently
hydrophilic to retain their hydration shell essentially
intact up to even as high as 60 v%(id) methyl alcohol. At
80 v%(id) methyl alcohol the hydroxide ions are then
greatly destabilised because there is insufficient water
to maintain their hydration shells. This effect is almost
the reverse of the trends shown in Chapter 4, where the
hydroxide ions are stabilised with increased proportion of
urea.

Cosolvent effects on the initial state transfer

chemical potentials (equation [5.2]) of complex A and C are
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Table 5.7

Transfer parameters, for reaction of complex A with
hydroxide 1ions, from water to methyl alcohol + water
mixtures at 298K on the c-scale. Units of transfer are

kJmol_l.

V(id)% MeOH 0 20 40 60 80
8(agove(id))a Gle)” 0 0.59 0.89 0.73 0.34
agsva(id))p*(crsatt™” 0 -2.63 -6.67 -9.67 -9.87
a(agovs(id)p*(er(2clo,")T 0 0.06 -0.16 0.34 3.16
(agovi(id)p*(c) a 0 -2.69 -6.51 -10.01 -12.93
a(agovs(id) )y t(c) on” 0 -0.12 -0.02 1.44 5.78
a(agsvs(id) )y, F(e) 0 -2.81 -6.53 -8.57 -7.25
8(agovs(id) ), *e) 0 -2.22 -5.63 -7.84 -6.92

* - (c) represents (c-scale;sln;T)

** — salt is the perchlorate salt of complex A.
Solubility data from ref.4.

T - Solubility data from Ref.6.
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Table 5.8

Transfer parameters, for reaction of <complex B with
hydroxide ions, from water to methyl alcohol + water
mixtures at 298K on the c-scale. Units of transfer are
kamol™ L.

V(id)% MeOH 0 20 40 60 80
A(aq»v%(id))A#G(c)* 0 -0.22 -0.80 -2.17 -3.44
alagove(id)pt(c) salt™ 0 -2.39 -4.39 -6.02 -3.35
A(aq»v%(id))u#(c)(2C104“)T 0 0.06 -0.16 0.34 3.16
a(ag-vi(id))ut(c) B 0 -2.45 -4.23 -6.36 -6.51
a(ag-vs(id) )t (c) on” 0 -0.12 -0.02 1.44 5.78
a(agove(id) )y, *le) 0 -2.57 -4.25 -4.91 -0.73
A(aq»v%(id))u*#(c) 0 -2.79 -5.04 -7.09 -4.17

* — (c) represents (c-scale;sln;T)

salt is the perchlorate salt of

Solubility data from ref.4.
Solubility data from Ref.6.
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Table 5.9

Transfer parameters, for reaction of complex C with
hydroxide ions, from water to methyl alcohol + water
mixtures at 298K on the c-scale. Units of transfer are

kamol~ L.

v(id)% MeOH 0 20 40 60 80
M(agsvi(id))ate(c)® 0 1.36 2.18 2.73 4.00
slagsov(id)pt(c) salt™ 0 -4.24 -7.77 -12.03 -12.51
dlagovs(id))u*(e)(2clo, )t 0 0.06 -0.16 0.34 3.16
A(aqav%(id))u#(C) Cc 0 -4.30 -7.61 -12.37 -15.67
a(agovi(id) )t (c) on” 0 -0.12 -0.02 1.44 5.78
A(aqév%(id))uis#(c) 0 -4.42 -7.63 -10.93 -9.89
bagavs(id)p, (o) 0 -3.06 -5.45 -8.20 -5.89

* - (c) represents (c-scale;sln;T)

** — salt is the perchlorate salt of complex C.
Solubility data from ref.4.

T - Solubility data from Ref.6.
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dominated by the increasingly large stabilisation of the
iron(II) complex in alcohol rich mixtures. However at 80
v%(id) methyl alcohol the destabilising effect of the
solvent mixture on the hydroxide ion is sufficiently
intense to produce a notable destabilisation of the overall
initial state relative to 60 v%(id) methyl alcohol. The
Gibbs function for activation, A*G#, for complex A
increases with increased methyl alcohol proportion up to 40
v¥(id). At 60 and 80 v%(id) methyl alcohol there are small
decreases in A*G#; however they are not large enough to
demand a change in sign. A similar situation can be seen
with complex C. However in this case there is no decrease
in A*G# at 40 v%(id) methyl alcohol. Indeed A*G# increases
almost 1linearly over the range 0 to 80 v%(id) methyl
alcohol. The effect of a positive change in the Gibbs
function for activation can thus be seen to be an artefact
of the increased stabilisatiion of the overall initial
state in alcohol + water mixtures relative to the
stabilisation of the overall transition state (defined in
equation [5.2]).

The solvent effects on the initial and transition
states of complex B are different from those on complex A
and C. The first point to notice 1is the reduced
stabilisation of the iron complex up to 80 v%(id) methyl
alcohol relative to the stabilisation of complexes A and C
in the same mixtures. Indeed at 80 v%(id) methyl alcohol
destabilisation of hydroxide ions is now the major
contribution to the destabilisation of the initial state
relative to 20, 40 and 60 v%(id) alcohol. The transition

state is stabilised to a greater degree than the initial
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state. However it too shows a marked destabilisation at 80
v(id) methyl alcohol due to the relatively large
destabilisation of the hydroxide anion. As a result the
decrease in the Gibbs function for activation, A*G#, with
increased alcohol proportion in the mixture can be seen to
be dominated by the effects of added methyl alcohol on the
transition state.

Comparison of Figures 5.6 and 5.7 reveals the
striking effect the introduction of a methyl group onto a
ligand can have on the kinetics of reaction. Indeed it is
not only the kinetics of reaction of the complex which are
affected but also the stability of the complex in the
alcohol + water mixtures. Hence the effects of
stabilisation/destabilisation by added cosolvent on the
initial and transition states are modified.

Just as the second order rate constants for the
nucleophilic attack of hydroxide ions at 5-methyl ferroin
are lower than those for the unsubstituted complex3, the
second order rate constants for complex B are lower than
those for complex A due to the electron release of the
methyl groups. The methyl group attached to the nitrogen
atom in complex B pushes electron density onto the nitrogen
atom thus increasing the strength of the nitrogen-iron
bond. The electron density around the iron atom will also
be increased. These two factors demand that nucleophilic
attack by hydroxide anions will be discouraged and hence
the second order rate constant, k2, decreases. The methyl
group in complex A is too far removed from the nitrogen
centre to produce such an effect.

Overall the transition state stabilisation follows

-89-



the same general pattern for the three iron complexes.
Stabilisation of the transition state up to 60 v%(id)
methyl alcohol is consistent with the dispersal of charges
on going from the initial to the transition state, and
hence transfer of the transition state to a less polar,
alcohol rich, solvent will result in a stabilisation of the
transition state. At 80 wv3%(id) methyl alcohol the
transition state becomes much less stabilised than at lower
methyl alcohol concentrations because the highly alcohol
rich solvent is not sufficiently polar to accomodate the
dispersed charges as adequately as at 60 v%(id) methyl

alcohol.
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CHAPTER
6

Salt effects on the neutral
hydrolysis of Phenyldichloroacetate
and its para-methoxy derivative



6.1 Introduction

Reaction rates in aqueous solution of both charged and

neutral solutes are sensitive to the addition of added

1,2,3

salts In this Chapter, rate constants for the neutral

hydrolysis of phenyldichloroacetate (PDCA) and the
para-methoxy derivative { p-OMePDCA) are reported for

reaction at 298.15 K in aqueous solutions containing MX and

+

R,NX salts where M = Lit, nat, k*, rp'

, ¢cst, R = Me, Et, Bu
and X = F , Cl1° and Br . In addition the dependence on

temperature was determined for the neutral hydrolysis of

3

p-OMePDCA in salt solutions containing 0.2 mol dm ~ and 0.9

3

mol dm_3 tetrabutylammonium bromide, 0.2 mol dm -~ and 0.9

3 tetrabutylammonium fluoride, 0.9 mol dm_3 tetra-

3

mol dm
butylammonium chloride and 0.9 mol dm— potassium bromide.
The dependence on temperature is reported for the p-OMePDCA
ester and the unsubstituted derivative over the temperature
range 293.15¢ T/K <318.15. Solvent isotope effects are
reported for the neutral hydrolysis of PDCA in aqueous
solutions containing 0.9 mol dm_3 Bu4NBr, Bu4NF, Me4NF and
CsF at 298.15 K.

Trends in rate constants are discussed in terms of
the properties of the salt solutions. In particular the
effect of cosphere-cosphere overlap is identified as a

major contribution to the observed patterns of kinetic salt

effects.

6.2 Salt Solutions

6.2.1 Ionic Hydration

Consider the situation in which a salt-j is added to water

such that in the resulting solution each ion is unaware of
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the presence of any other 1ion i.e. the solution is
infinitely dilute. For such a situation the hydration model
proposed by Frank and Wen4 for alkali metal and halide ions

is applicable (see Figure 6.1).

FIGURE 6.1

Model for ionic hydration in aqueous solution.

Three zones of solvent structure are identified within the
model . Zone A contains electrostricted water. Water
molecules within this zone represent the primary hydration
shell of the solute. Zone C contains water molecules
unperturbed by the presence of the anion and can be thought
of as the bulk solvent. Zone B contains water molecules in
a mismatch region between =zones A and C where the
organisation of the water molecules differs from that of
the bulk. The organisation within zone B is often called
"structure broken’ and the extent of the zone depends on
ion size. Large ions such as I and Br have large zone B
regions and are called electrostrictive structure breakers.

However for smaller ions such as F and Li+ zone B does not
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exist, these ions are called electrostrictive structure
formers. The hydration of tetraalkylammonium 1ions is
controlled by the apolar alkyl groups. These ions are
classed as hydrophobic water structure formers, the degree
of structure enhancement increasing with the size of the
alkyl group. The Me4N+ ion is often regarded as a structure
breaker whereas the Et4N+ ion appears to have no marked
structural effects on bulk waters. Hence only Pr4N+ and the

higher alkylammonium ions are regarded as structure

formers.,

6.2.2 Real Salt Solutions

To a first approximation a major contribution to the
non-ideal properties of aqueous salt solutions stems from
charge-charge interactions. The chemical potential of a 1:1
salt-j in aqueous solution is related to composition using

equation [6.1].
]
uj(aq;T:p) = pj(aq:T:p;mj=l;vj=l) + 2RTln(mjvi/m ) [6.1]

(-]
where vy, is the mean ionic activity coefficient and m =1

+
mol kg—l. Equation [6.1) can be written in the form;

o
uj(aq;T:p) = uj(aq:T;p:mj=1:vt=1) + 2RT1n(mj/m )

{———— ideal part >

+ 2RT1n(Y+) [6.2])

<- non ideal->

In very dilute solutions the hydration shells of

ions remain undisturbed such that there are no cosphere-
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cosphere interactions. The non-ideal part of the chemical
potential can be modelled for very dilute aqueous solution

by the Debye-Huckel Limiting Law (DHLL).

Iny, = —SY|z+z_|(I/m°)1/2 [6.3]

where I is the ionic strength ( = 0.5£m.zj2); |z+z_| the

J
modulus of the product of the charge numbers and SY depends
on the temperature and the dielectric properties of the
solvent.
In slightly more concentrated solutions the non-ideal

part of the chemical potential is modelled by K the Debye

~Huckel equation.
Inv, = (-s_lz,z_[(1/m)?) /(1 + Bl1/m )2 (6.4]

However, this equation is only a first approximation for in
dilute aqueous solution trends in lny+ cannot be predicted
by the Debye-Huckel treatment alone.—The presence of some
underlying pattern to lny+ led Desnoyers6 and workers to
draw attention to the effects of cosphere-cosphere overlap
as an important factor in determining the properties of
aqueous salt solutions. In effect in dilute solution

equation [6.4] can be extended to the form;

lny+ = Debye-Huckel + f(cosphere) [6.5]
Where f(cosphere) represents the effect of cosphere overlap
on 1ny+. If f(cosphere)<0 then there is a lowering of the

chemical potential of the salt, ”j' and hence a
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stabilisation of the salt solution. Conversely if
f(cosphere)>0 then My is increased giving a destabilising
effect.

Extension of the Debye-Huckel treatment to more
concentrated salt systems by the addition of new terms to
the equation has received interest from many workers. The
work of Pitzer7 in this area is particularly noteworthy and
is discussed in Chapter 7. The treatments discussed by
Pitzer are applied to group interaction parameters 1in
Chapter 8 and to the analysis of kinetic data for the
alkaline hydrolysis of the sodium salt of bromophenol

bluee’9

in Chapter 9.

Cosphere overlap effects are not limited to
interactions in salt solutions. The properties of solutions
containing salts and neutral solutes can also be understood
in terms of cosphere interactions. In this Chapter patterns

in kinetic parameters are discussed in terms of cosphere-

cosphere overlap effects.

6.3 Experimental

6.3.1 Preparation of Phenyldichloroacetate and the

para-Methoxy Derivative

3

Dichloroacetyl chloride (0.1 mol), dissolved in 15 cm™ of

absolute ether, were added dropwise to equivalent amounts

3 of absolute

of the desired phenol and pyridine in 50 cm
ether. This mixture was stirred for three hours under
nitrogen, in a flask fitted with a double surface water
condenser, at room temperature. The resulting mixture was

filtered to remove pyridine.HCl; crude ester was obtained

after evaporation of the ether. The ester was
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recrystallised from a 50/50 mixture of dried ether and 60
-80 dried petroleum ether. The product was characterised by
its melting point!® (pDCA 320.55 - 320.57 K, p-OMePDCA

335.35 - 335.95 K).

6.3.2 Investigation of the Kinetics of the Neutral

Hydrolysis of PDCA and its para-Methoxy Derivative

in Aqueous Salt Solutions.

The neutral hydrolysis in aqueous solution of PDCA and

11-15 shown in Scheme 1. Rate

p-OMePDCA has the mechanism
determining water-catalysed attack by water at the carbonyl
group forms two products, dichloroacetic acid and a

characteristic phenol.

H HC\Uz ; B Ea sl HCCL,CO,H
H \o/‘\/cgn —obs . Eliﬂt—-ﬁ--—o—-@—l} — .
! 0
W N\,
R ~ 8
0—H R
-H. |
R=H; PODCA i ! _

R =0Me; p-0MePDCA

Scheme 1

Reactions were monitored by observing the formation of
phenol using the HP 8451A diode array spectrophotometer at

a predetermined Xma (xma PDCA = 272 nm, A pOMePDCA =

X X max
288 nm). Solutions of alkali metal and tetraalkylammonium

2 ol dm3 hydrochloric

3

halide salts were prepared using 10

The acid inhibited
10

acid to a concentration of 0.9 mol dm

possible base catalysis of the reaction As a further
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precaution pH measurements of the solutions containing
tetraalkylammonium fluorides confirmed the solutions were
acid. Several preliminary studies were made of the effects
of added tetrabutylammonium bromide and potassium bromide
on the reaction rate (Figure 6.3 and Table 6.1). As a
result it was decided to study the effect of various added
salts at a common concentration of 0.9 mol dm 3. This
molarity gave a significant change in rate constant for all

added salts compared to the reaction rate in the absence of

added salt.

3 of a salt solution

In a typical kinetic run 2 cm
were pippetted into a 3 cm3 quartz cell which was placed in
the HP B8451A diode array spectrophotometer and allowed to
come to thermal equilibrium. After approximately f£five
minutes the reaction was initiated by adding to the cell
one drop of a very dilute solution of reactant in
acetonitrile. The reaction was monitored for at least 2.5
half lives and the absorbance/time data analysed using the
method of non-linear least squares to obtain the rate
constant (see Chapter 2). All reactions followed first
order kinetics and each run was repeated at least three
times to produce an averaged first order rate constant for
reaction in each salt solution. At worst the rate constant
was reproducible to within approximately three per cent.

OccaSicnally a rapid jump in absorbance was recorded
in the middle of a run - Figure 6.4. At first this was
believed to be due to phenol oxidatioan. However this
problem was resolved by ensuring the reactant and the salt

solution were thoroughly mixed.

No rate constants were obtained for the reactions in
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FIGURE 6.3

Dependence of log (k/ko) on concentration of added salt
(mol dm™%). DO = potassium bramide, O = tetrabutyl-
ammonium bromide.
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First order

PDCA

of potassium bromide

298K.

Table 6.1

rate constants for the neutral hydrolysis of

in aqueous solutions containing known concentrations

and

tetrabutylammonium bromide

KBr 107k log(k/ko)
/moldm_3 /s_l
0.00 3.263 -
0.10 3.175 -0.012
0.30 3.160 -0.014
0.50 3.102 -o.qzz
0.07 2.942 —0.645
1.00 2.489 -0.118
1.50 2.117 -0.188
Bu,NBr 103k log(k/ko)
/moldm_3 /s_l
0.00 3.263 -
0.10 2.895 -0.052
0.20 2.273 -0.157
0.30 1.869 -0.242
0.60 0.903 -0.558
0.90 0.240 -0.133
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Deperdence of absorbance on time at Apgx =274 for
the neutral hydrolysis of phenyldichloroacetate at
298 K. [Discontinuity in curve due to insufficient

mixing of reactant and aqueous salt solution.
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the presence of iodide salts because (i) iodide ions absorb
strongly in a charge-transfer-to-solvent transition in the
region of phenol absorbance and (ii) on irradiation iodide
anions produce the 13_ species which has a large charge
transfer band in the same region of the electromagnetic
spectrum. These bands effectively mask any phenol band
produced during the course of the reaction17.

Dependences of rate constant on temperature were
studied in a similar fashion by adjusting the temperature
of the thermostatically controlled cell block within the
spectrophotometer. The enthalpy of activation, A*Hm was
calculated using a plot of 1ln(k/T) against (1/T). The slope
of the graph yields the enthalpy of activation. K*Hw was

obtained to a higher degree of accuracy by a linear least

squares fit of the data to equation [6.6].
In(k/T) = A + B/T [6.6]

Here parameter B corresponds to the gradient of the graph.
A BASIC program for an HP 85 computer which describes a
linear least squares procedure is included for reference in
Appendix 1. The entropy of activation, A*S#, was calculated

using the Eyring equation [6.7].
k = (kgT/h)exp(-a¥u"/RT)exp(a¥st/R) [6.7]

where kB is the Boltzmann constant, h is Plank’s constant
and R is the gas constant.
In the solvent isotope studies it was necessary to

2 3)

replace the salt solutions containing HC1l (10 “ mol dm~
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with salt solutions containing deuterium chloride (10—2 mol

dm—3). DCl(aqg) was made by adding appropriate quantities of
37 weight per cent DCl in deuterium oxide to deuterium
oxide. The ratio of the observed rate constants in both

solvents is defined as the solvent deuterium isotope effect

(SDIP); equation [6.8].

SDIP = k(HZO)/k(DZO) [6.8]

6.4 Results

First order rate constants for reaction in the presence of
added salts for the unsubstituted and p-OMe substituted
reactant are given in Tables 6.2 and 6.3 respectively. This
information has been represented graphically in the form of
plots of 1ln(k/ko) (where ko 1is the first order rate
constant in the absence of added salt) against the anion of
the salt (Figures 6.5 and 6.6). Data for PDCA have been
taken from reference 16 over the same salt range as
p—-OMePDCA to give an overall picture for both reactants.
From these figures it is possible to see the rate retarding
effect of the chloride and bromide salts compared to the
rate accelerating effect of the fluoride salts. For the
bromide salts a pattern is established in which the rate
constants decrease in the order;

rb* > cs?

+ + +
> Me4N > Et4N > Bu4N
Intuitively one might expect the trend in rate constants
for the fluoride salts, to be the reverse of that described
for the bromide salts i.e. the largest rate constant would

be for the reactions conducted in the presence of

tetrabutylammonium fluoride. However there appears to be no
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Table 6.2

First order rate constants for the neutral hydrolysis of
PDCA in the presence of fluoride salts at a concentration

of 0.9 moldm > at 298K.
Added salt Rate Constant
2 -1
10 kobs/s
RbF 0.106
Me ,NF 1.491
Et4NF 1.880
Bu4NF 9.750
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e 6.3

Tabl

First order rate constants for the neutral hydrdlysis of

p—-OMe

PDCA

in the

presence

of

fluoride,

chloride and

bromide salts at a concentration of 0.9 moldm-3 at 298K.

Rate constant with no added salt ko/s 1=2.730x1073.
Added Salt Rate Constant
3 -1
10 kobs/s
NaF 6.782
KF 8.062
RbF 7.827
CsF 11.640
MeqNF 10.040
Et4NF 7.958
Bu4NF 6.518
Added Salt Rate Constant Added Salt Rate Constant
3 -1 3 -1
10 kobs/s 10 kobs/s
Licl 2.199 LiBr 2.108
NaCl 1.881 NaBr 1.897
KCl 2.063 KBr 1.965
RbC1 2.517 RbBr 2.209
CsCl 2.068 CsBr 1.953
Me4NC1 1.935 Me4NBr 1.613
Et4NC1 1.362 Et4NBr 1.110
Bu4NC1 0.262 Bu4NBr 0.173
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FIGURE 6.5

Log (k/k.) against anion X~ (where X" =F~, C17, Br")
for M* and RyN* for the neutral hydrolysis of phenyl-
dichloroacetate in aqueous solution at 298 K where
[salt] =0.9 mol dm~3.
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Log (k/ko,) against the anion X~ (where X~ =F~, C1~
and Br~) for M* and RyN* salts for the neutral
hydrolysis of para-methoxy phenyldichloroacetate
in ?queous solution at 298 K where [salt] = 0.9 mol
pa
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such trend. Despite this it should be noted that the change
in rate constant on going from Bu,NBr to Bu,NF is still the
largest observed for both esters.

Table 6.4 reports activation parameters for the
reaction of p-OMePDCA solutions containing 0.9 and 0.2 mol

dm ™3 tetrabutylammonium bromide, 0.9 mol am~3

tetrabutylammonium chloride, 0.9 and 0.2 mol dm-3
tetrabutylammonium fluoride, 0.9 mol dm—3 potassium bromide
and in the absence of added salt. The activation parameters
for the neutral hydrolysis of PDCA in the absence of added
salt are also reported in this Table. A plot of 1Iln(k/T)
against (1/T) for the neutral hydrolysis of p-OMePDCA in
the absence of added salt is included as Figure 6.7.
Inspection of these results identifies large changes in the
activation enthalpies and entropies of reaction which are
masked in the changes in rate constant. For example, in
the case of 0.9 mol dm—3 potassium bromide, an overall
decrease in the rate constant is observed. This could
normally be explained in terms of an increase in the
enthalpy of activation. However results point towards a
decrease in the enthalpy of activation which 1is over
compensated by a decrease in the entropy of activation.
Similarly, in the case of tetrabutylammonium bromide 0.9

mol dm—3

for which an overall reaction rate increase is
observed. This would normally be explained in terms of a
decrease in the enthalpy of activation. However the results
point towards an increase in A*H°° with a more than
compensating increase in the entropy of activation. These

patterns indicate the dominant role of the entropy term in

this type of reaction and points towards an explanation in
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Table

6.4

Activation parameters for the neutral hydrolysis of p-OMe

PDCA in aqueous salt solutions

of known concentration.

(a) no added salt

Temperature 103kobs A*G# -&FS#
/K /s-l kamol~ ! Ik tmo1~1
298 2.723 87.52 201.9
303 3.334 88.62 202.2
308 4.088 89.60 202.1
313 4.874 90.64 202.2
318 5.823 91.66 202.2
6¥ " /kamo1™! = 27.34+0.33
(b) 0.9 moldm > KBr
Temperature 103kobs KFG# —A*S#
/K /s—1 kdmol 1 Ik Imo171
293 1.603 87.40 223.6
298 1.965 88.42 223.3
303 2.259 89.60 223.5
308 2.689 90.67 223.4
313 3.046 91.86 223.6
8 H”/kamol™! = 21.88 +0.91
(c) 0.2 moldm73\Bu4NF
Temperature 103kobs K#G# —A*S#
/K /s—l kJmol"1 JI(_]‘mol_1
293 3.036 85.84 163.3
298 4.147 86.59 162.1
303 5.499 87.36 162.9
308 6.838 88.28 163.3
313 8.918 89.06 163.2
8 1™ /kamo17! = 38.00+1.06
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3

(d) 0.9 moldm Bu,NF
Temperature 103kobs A*G# —A*S#
/K /s_l kJmol_l JK-lmol—1
298 6.518 85.45 86.89
303 9.980 85.85 86.78
308 15.213 86.23 86 .86
313 21.505 86.77 86.95
A H®/kdmol™! = 59.55 +1.55
(e) 0.9 moldm—3 Bu,NC1
Temperature 104kobs A*G# -A*S#
/K /s—1 kamol ™! gk Imo11
298 2.615 93.47 189.8
303 3.288 94.50 190.1
308 4.340 95.37 189.9
313 5.497 96.34 189.9
318 7.058 97.28 189.9
aTH® /kamol™ ! = 36.86 +0.80
(f) 0.2 moldm"3 Bu,NBr
Temperature 103kobs A¢G# —A*S#
/K /s_1 kgmol~ 1 J!(_'lmol_1
298 1.694 88.81 196.6
303 2.085 89.80 196.6
308 2.562 90.79 196.7
313 3.207 91.73 196.5
318 3.861 92.74 196.6
8 H” /kamol™! = 30.22 +0.47
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(g) 0.9 moldm >

Bu4NBt
Temperature 104kobs b G# —A*S#
/K /s"1 kamol ™! JK—lmol—l
298 1.733 94.44 183.8
303 2.265 95.39 183.9
308 2.936 96.34 184.0
313 3.922 97.20 183.8
318 5.027 98.13 183.8
8T /kamo1™1 = 39.68 +0.62
(h) no added salt for the neutral hydrolysis of the
unsubstituted ester PDCA.
Temperature 103kobs &*G# —A*S#
/K /s—1 kamol ™! Ik Imo171
298.15 3.263 87.21 196.1
300.65 3.663 87.67 196.0
303.15 3.991 88.25 196.2
308.15 4.905 89.18 196.1
313.15 5.996 90.14 196.1
6 H”/kamol™! = 28.73+0.50

-111-




*PTO® DTIOTYOOIPAY (. WP TOW [Q°0 UT S38380R0IOTUOTPTAUSYd Axotzsu
~d 3o stsAToapiy Texansu syl I0F | M/ (L/T) .01 U3 3IsuTebe (I/)ul

L9 JENOId

A7 () O

9SE-€ EEE-E L€ S6L-€ SYl-€
T _ T T . T

~_

gLl

il
()

0-t1

-112~



which the structure of the solution is critical.

Solvent deuterium isotope effects (Table 6.5) are
consistent with work conducted by previous authors10 in
which it was concluded that the parameters vary with added
salt type and concentration i.e. the solvent isotope effect
is sensitive to change in solvent arrangement ardund the
reacting solute during the activation process. The
tabulated values are also in line with a mechanism which
involves water-catalysed attack by water at a carbonyl

groupls.

6.5 Discussion

In explaining the patterns observed in Fiqgures 6.5 and 6.6
one must first comment on the striking similarity they hold
with the pattern identified by Desnoyers6 in connection
with 1ny+. Figure 6.8 reproduces a Desnoyers type plot for
the salt; investigated during the course of this Chapter.

Table 6.6 summarisesle—21

1ny+ used for the salts
investigated. The patterns observed i; Figures 6.8, 6.5 and
6.6 can be explained in terms of cosphere-cosphere overlap
effects.

A starting point is the model for salt solutions
proposed by Gurneyzz, in which each solute molecule is
surrounded by a cosphere o0of solvent molecules. By
definition organisation of solvent structure within such a
cosphere differs from the organisation of the bulk solvent,
the organisation within the cosphere being characteristic
of each solute. The properties of these solutions can be
explained, at least in part, in terms of the impact of

cosphere-cosphere overlap in the solutionsG.
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Table 6.5

Solvent deuterium isotope effects for the neutral
hydrolysis of PDCA in the presence of known concentrations
(moldm™3) of added salts at 298K.

salt 103k (1,0) 103k (Dp,0) k(H,0) /k(D,0)
/st /s
0.9M Bu,NBr 0.303 0.082 3.690
0.9M Bu ,NF 9.750 4.745 2.055
0.9M Me ,NF 1.490 0.543 2.744
0.9M CsF 1.510 0.499 3.026

All rate constants are the average of at least 3 separate
runs.
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In y+ against the anions X~ (where X~ = F~, C1™ and
Br~) for Mt and RyN* salts in aca{ueous solution at

298 K where [salt] =0.9 mol dm™".
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Table 6.6

Activity coefficients, v+, of MX and R4NX electrolytes at

[salt] = 0.9moldm—3 in aqueous solvent at 298K. (where X=
F-, c1-, Br ; M= nit, na*, k', rb", cs*; R= Me, Et, Bu)
Salt Reference Y+ lny+
LicCl 21 0.764 -0.269
NaCl 21 0.659 -0.417
KC1 21 0.610 -0.494
RbC1l 21 0.590 -0.528
CsCl 21 0.553 -0.592
LiBr 21 0.789 -0.237
NaBr 21 0.687 -0.375
KBr 21 0.622 -0.475
RbBr 21 0.586 -0.534
CsBr 21 0.547 -0.603
NaF 21 0.582 -0.541
KF 21 0.646 -0.437
RbF 18 0.682 -0.383
CsF 18 0.710 -0.343
Me ,NC1 19 0.546 -0.605
Et4NCl 19 0.557 -0.585
Bu4NC1 19 0.625 -0.470
Me4NBr 19 0.483 -0.728
Et4NBr 19 0.427 -0.851
Bu,NBr 19 0.397 -0.924
Me ,NF 20 0.902 -0.103
Et,NF 20 1.192 0.176
Bu ,NF 20 1.785 0.579
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The overall influence of the solute on the structure
of water in solution <can be split into two types;
electrostrictive structure breakers and hydrophobic
structure formers. The effect of overlap between these
solutes was summarised by Desnoyers6 together with the
influence of overlap on the excess thermodynamic
properties, Figure 6.9.

Turning to the patterns observed in Fiqures 6.8, 6.5
and 6.6, in tetrabutylammonium bromide solutions,
cation-cation cosphere interactions dominate the properties
of the solution. Bu4N+ cations are strongly hydrophobic
whereas bromide anions are less hydrophilic than chloride
or fluoride anions. Attraction between the hydrophobic
Bu4N+ cospheres results in water being incorporated into
the overlap region between the cospheres. The total Gibbs
function of the system decreases to less than that for the
corresponding ideal solution (which 1is imagined as a
solution in which there are no cosphere-cosphere
interactions). The reaction rate is therefore retarded (c.f
a negative deviation from the DHLL for the 1ny+ plot).

The hydrophobic nature of R in R4N+ decreases in the
order;

+

Bu4N+ > pr,Nt > Et,N* > Me,N

4 4 4
Therefore a steady rate increase is observed on going down
the series as the hydrophobic effect becomes less dominant.
A corresponding increase in the total Gibbs function is
expected, although it will never exceed that of the ideal
solution.

The alkalimetal bromide salts have a very small and

similar retardation effect on the reaction rate. The total
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Gibbs function of these systems is only slightly less than
that for the corresponding ideal solution and a balance is
struck between hydrophilic-hydrophilic (same-sign) and
hydrophilic-hydrophilic (opposite-sign) cosphere-cosphere
interactions. The attraction between oppositely charged
ions slightly dominates the cosphere interactions, hence a
slight rate retardation is observed. The trend in log(k/ko)
for chloride salts is similar but less significant than for
bromide salts. Chloride anions are more hydrophilic than
bromide anions.

For the fluoride salts MF and R,NF the total Gibbs
function of the system is greater than the Gibbs function
of the ideal solution, as demonstrated by an acceleration
in reaction rate and a positive deviation from the DHLL for
the lny+ plot. The hydration characteristics of the
fluoride_ salts are dominated by the repulsion between
solute cospheres i.e hydrophobic-hydrophilic (R4N+—F—)
cosphere interactions for the tetraalkylammonium fluoride
salt solutions and hydrophilic-hydrophilic (same-sign),
(m*-m*) and (FT-F”) cosphere interactions for the alkali
metal fluoride salts.

The activation parameters for these reactions point
towards a more complicated situation than the above
explanation offers. However at this stage it is not
possible to identify any clear patterns.

As a consequence of the reaction being the attack of
water, one might expect a simple relationship between the
practical osmotic <coefficient and rate constants. 1In

o
particular a relationship between B coefficients (see

Chapters 7 and 8) and rate constants might be expected,
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(]
where 8 represents the pairwise interactions of the

solutes, both cosphere and hard-sphere, after the charging
process has been subtracted. In Chapter 8 it is shown how
Bo and salt concentration are related for apolar solutes in
salt solutions. Therefore it could be expected that a
correlation exists between Bo and the salt concentration
for the ester and for the transition state. This implies a
correlation exists between rate constants and7 Bo. Figure
6.10 shows a plot of 1ln(k/ko) against 6° in which there
appears to be a broad correlation. However scatter |is
observed. This is understandable because in principle Bo
could  be used to calculate independent Setschenow
coefficients of both the initial and transition states.
However a plot of ln(k/ko) against Bo effectively compares
Bo to the difference between the properties of the initial
and transition states. This procedure obviously magnifies
any error incorporated into the initial and transition
state parameters and so the plot provides an exacting test
for a possible correlation between 60 and kinetic
parameters.,

This Chapter has pinpointed cosphere-cosphere overlap
as an important factor in determining the properties of
aqueous salt solutions by wusing the neutral hydrolysis
water-catalysed reaction as a probe to investigate water
structure when various electrolytes are added. It has also
identified complicated underlying patterns which exist for
the enthalpies and entropies of activation in this class of

reaction. The theme of salt effects 1is <continued in

Chapters 7, 8 and 9.
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FIGURE 6.10

Log (k/k,) calculated fram the first order rate
constants for the neutral hydrolysis of para-
methoxy phenyldichloroacetate against B° parameters,
tabulated by Pitzer [Ref. 7].
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CHAPTER
/

Pitzer's Equations for the activity
coefficients of salts and the

relationship between osmotic coefficients,
activity coefficients and the Excess

Gibbs function



7.1 Introduction

In the previous Chapter it was shown how the effects of
added salt on rates of reactions between neutral species in
dilute salt solutions can be accounted for using treatments
based on the Debye-Huckel equations for the dependence of
the activity coefficients of ions on ionic strength. It was
also shown however, that the predictive power of these
equations diminished as the effect of cosphere interactions
and specific ion-ion interactions increased. In this
Chapter the equations of Pitzerl’z'3 are surveyed as a
method of extending qgquantitative treatments to more
concentrated salt solutions. In particular Pitzer's
equations are used as a basis for calculating Savage-Wood

parameters4’5'6'7

characterising pairwise Gibbs function
cosphere-cosphere interaction parameters. The stimulus for
this study originated in the task of accounting for
observed patterns in rate constants for chemical reactions
in solutions containing added electrolytese’g. In Chapter 9
the predictive power of Pitzer's equations and the
Debye-Huckel treatment is examined for mixed electrolyte
systems with reference to kinetic data describing the
alkaline hydrolysis of the sodium salt of bromophenol

10,11
e

blu in the presence of various added salts.

7.2.1 Ssalt Solutions

By definition the chemical potential of an ion-j in

solution is related to it’s molality m:i by equation [7.1].

uj(sln;T;p) = uj#(sln;T;P) + RTln{ijj/mol [7.1]
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(]
Where Y5 is the activity coefficient of ion-j; m = 1 mol

kg—l

; pj#(sln;T;p) is the chemical potential of ion—-j in
solution at the same T and p where mj =1 and y. = 1.
The chemical potential of a salt is related to the

chemical potential of cations and anions using equation

[7.2].

p(salt;sln;T;p) = vmu(M—cation;sln;T;p)

+ vxp(x—anion;sln;T;p) (7.2]
Here one mole of salt forms on complete dissociation v
moles of cations, M, and v, moles of anions, X. Also for

the salt in the reference state;

u#(salt;sln;T;p) = ump#(M—cation;sln;T;p)

+ vxp#(x—anion;sln;T;p) [7.31
By definition ;
Vo=vob oy [7.4)
v v+ v- v+ u-
v v-_ v-
and m, o= m,m (7.6]
also m, o= v,m, amd m_ = v_m, where m, is the molality of

the salt MX. Hence;

p(sln;salt;T;p) = u#(salt;sln;T;p) + RTln{m+v+y+ /m }

u_

+ RTln(m Yy Y /m"} [7.7]

or alternatively;

p(salt;sln;T;p) = p#(salt;sln;T;p)

+ RTIn{ (v, v_""m,% V) /(n")%)  [7.8]
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By definition; Q=wv

Hence;

p(salt;sln;T;p) = p#(salt;sln;T;p) + uRTln[(Qm27+)/m°}
[7.9]
Where 1imit(m2+0) Y, = 1.0 at all T and p. Then
p(salt;sln;T;p) 1is ghe chemical potential of salt in
solution at the same T and p where m, = 1.0 and Y, = 1.0.
By definition the chemical potential of the solvent

is given by equation [7.10].
%*
pl(sln;T;p) = #y (1;T;p) - v¢RTMlm2 {7.10]
Where ¢ is the practical osmotic coefficient, which for an
ideal solution equals 1.0; ul*(l;T;p) is the chemical

potential of pure liquid solvent at the same T and p.

7.2.2 Consideration of Excess Properties

According to equation ([7.9] the chemical potential of a

salt MX in ideal solution is given by equation [7.11].

p(salt;id;sln;T;p) = p#(salt;sln;T;p)

o
+ uRTln{(QmZ)/m } {7.11]
Hence the excess chemical potential of the salt
uE(salt;sln;T;p) is obtained from the difference

pu{salt;sln;T;p) - wp(salt;id;sln;T;p);

»¥(salt;sln;T;p) = vRTin(y,) [7.12]
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The chemical potential of a solvent in an ideal solution is

given by equation [7.13].
wy(id;sln;T;p) = p; " (1;T;p) - vRTM;m, [7.13]

Hence the excess chemical potential of the solvent is

given by equation [7.14].

= py(sln;T;p) - p,(sln;id;T;p)

=
=y
I

il
v
x
[y
|

= uRTM1m2(1—¢) (7.14)]

7.2.3 The Solution

A given solution contains n, moles of solvent and n, ( =
Mlnlmz) moles of salt MX. The excess Gibbs function of the

system is given by equation [7.15].

GE(sln;T;p;n1 moles solvent) = nlvRTM1m2(1—¢)

+ MlnlmzRTln(yi) [7.15]

=) GE(sln;T;p;n1 moles solvent)/(anT) =

uszl[(l—¢) + ln(yi)] (7.16])

By definition the excess Gibbs function of the salt MX in

lkg of solvent is described by equation [7.17].
GE(sln;T;p;wl/kg=l) = GE{sln;T;p;n1 moles solvent)/(nlml)
[7.17])

=> G®(sln;T;p;w;/kg=1) = RTm,[(1-4) + In(y,)] [7.18]

Communication of the changes in chemical potential of
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the salt and the solvent is obtained through the Gibbs

-Duhem equation at fixed temperature and pressure.
nldpl(sln;T;p) + nzduz(salt;sln;T;p) =0 [7.19]
In a solution containing 1 kg of solvent;

(1/M))d{s;" (1;T;p)-¢RTum M, } + m,d{u," (sln;Tip)

+ uRTln(szyi/mo)} = 0

Hence the Gibbs-Duhem equation for a salt solution can be

written;
dl-my¢] + mzd[ln(mz/mo) + 1n(y,)] = 0 [7.20]

This equation can be applied in two ways. If lny+ is known
as a function of m,, then (1-¢) can be calculated.
Alternatively if (1-¢) is known as a function of m,, then
Iny, can be calculated. [N.B. d[m,(1-¢)] = d[m,-m,¢] = 1 -
d(m2¢); further details are given in Appendix 3 Section

1.1.

7.2.4 Models for Salt Solutions

As described in Chapter 6 equation [6.3], the Debye-Huckel
limiting law, (DHLL), describes the mean ionic activity
coefficient as a function of the ionic strengthlz, I. The
equations in Appendix 3 Section 2 are used to obtain an

equation for the dependence of ¢ on ionic strength. Hence;

$-1 = -|z,2_|(S_/3)(my/m ) /2 [7.21]
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A quantity S¢ is defined by S¢ = (SY/3). Hence;

é-1 = —|z+z_|S¢(m2/m°)1/2

[7.22])

The Debye-Huckel equation for the mean ionic activity
coefficient of a salt in solution is given by equation
[6.4] of Chapter 6. The equations in Appendix 3 Section 3
yield an equation for the corresponding dependence of ¢ on

ionic strength. Hence;
(1-¢) = |z+z_|(SY/3)(I)l/zc(x) [7.23]

where x = b(1)1/2 and o(x) = (3/x3)((1+x) - (1/[1+x]) +
21ln(1+x)}.

The equations described above are restricted to the
DHLL and the full Debye-Huckel equation. In practice their

success is modest. Bronsted13 14,15

and Guggenheim sought to
extend the range in which lny+ could be predicted by basing
their theories on Debye-Huckel treatment and including
terms which took account of specific ion-ion interactions.
Pitzer argued that a better approach is through solution
theory which leads to a virial equation for (¢-1) in terms
of solute-solute interactions. As shown earlier an equation
for lny+ can then be obtained through the Gibbs-Duhem
equation.

7.2.5 Pitzer's Equations

Pitzer’'s equations are based on virial coefficients for
(¢-1) and hence for lny+. In summary form the equations for

-1 and 1ny+ are as shown in equations [7.24] and [7.25].
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- $ $ 2 3/2 ¢
-1 = |z+z_|f + m2(2umvx/u)B nx ¥ M {Z(UmUx) /vicC nx
[7.24]
2 2
Inv, = 12,2, €7 + my(2v 0, /v)BY  + m, (20v_v )32 vy

[7.25]

1. The Electrostatic f-Term

Pitzer considered various forms of this term, favouring

that given in equation [7.26]
£ = a%tir/m )2 (1sbcim )12y [7.26]

A¢ is the Debye-Huckel term (written above previously as
S¢). The equation for lny+ corresponding to the equation

for ¢ based on f¢DH can be calculated using the Gibbs-

(0]
Duhem equation; Appendix 3 Section 4. Hence;

Iny, = -lz z_|a*t((1/m" )12/ (14b(1/m") 12y

+
— (2/b)In(1+b(1/m )12y [7.27)

|

where A% = (aY/3).

2. The B Term

The second virial coefficient in the equation for ¢ was

based on the following form;

B = 8" + glexp(-a(1/m )17?) [7.28]

This form was selected as a result of calculating the

practical osmotic coefficient for a series of 1:1 and 2:1
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salts from equations in which all forms of f¢ and B¢ were
tested. According to Pitzer, this simple form has the
desirable properties of (i) finite wvalue at zero ionic

172 at low ionic

strength (ii) a rapid change linear in I
strength and (iii) a smooth approach to a constant value at
high ionic strength. The constant o« was independently
varied throughout the analysis and best general agreement
was obtained with « = 2.0.

Pitzer1 advanced arguments based on the results of

Card and Valleau16.

These require that Bo represents
contributions from interactions between 1like and wunlike
charges whilst Bl represents short range interactions
between unlike charged ions. Granted therefore that
equation [7.28] defines B¢ in terms of B° and Bl, an
integrated form of the Gibbs-Duhem equation yields BY also

o
in terms of B and Bl; Appendix 3 Section 5. Hence;

BY o = 28" + (281 /a’T)(1-[1+e1/ %~ (o®1/2) Jexp(-a1'/?)]
{7.29])
where I = (I/m°). For higher valence salts the possibility

arises that a B(z) term is required, in which case17;

p¢B(2) _ B(Z)mxexp(—a(l/mo)l/z) [7.30]
Consequently;
BYB(2) _ (282) /21y 11-11401t/2- (c®1/2) Jexp(-a1l/?)]
{7.31}
where I = (I/mo). Thus equation [7.29] can be written in

the form;
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Bme - 28 + (ZBl/aZI)[1—[1+a11/2—(a21/2)]exp(_all/z)]

+ (28'2) 1) 11141t (e®1/2) Jexp(-a1}/2) ] [7.32]
where I = (I/mo).

3. The C Term

¢

The third virial coefficient, C’, is specific for each salt
MX. The corresponding CY term is again calculated using an
integrated Gibbs-Duhem equation; Appendix 3 Section 6.

Hence;
cY = (3/2)c? [7.33]

The various terms were drawn together by Pitzer to yield an

equation for (¢-1) and lny+.

$-1 = —|Z+Z_|A¢(m21/2/(l+bm21/2)) +
Zmz(umvx/”)[B°+Blexp(—am21/2)+B(2)exp(-am21/2)] .
mzzlz(umux)3/2/u1c¢mx [7.34]

Inv, = -1z, z_|a%(m,2 2/ (14bm, %)) ~ |2 z_|a*(2/b)

ln(1+bm21/2) + 2m2[(2umux)/v]B° + 2my[(v_v ) /v]

((26/am,) (1-exp(-om, 2} [1+am, 2= (o®n,/2) 1))

+ 2my (v v ) v} ((2802)) selmy ) (1-(140m, /2= (a?ny) /2]

2
exp(—amzl/z)] + 2m22{(umux)3/2/u}(3/2)c¢ [7.35]

7.2.6 Extension of Analysis to Consideration of the Excess

Gibbs Function.

Pitzer extended the analysis based on (¢-1) to include

equations for the excess Gibbs function, GE (see Section
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7.2.3).
In his analysis the excess Gibbs function is defined
for a system in 1 kg of solvent as shown in equation [7.18]

or;
(cE/rT) = um,[1-¢ + lny,] (7.36]

Equation [7.36] is then expressed in an analogous form to

equations [7.24] and [7.25]; GE

= GE(sln:T:p:wl/kg=1)
(6°/RT) = £ + my%[2(v v )(B_ /;m )]

+ m23[2umux(umzm)]cmx/(m°)2 [7.37]

Parameters for the above equation can be obtained from the
full equation for (¢-1) and lny+ given by equations [7.34]

and [7.35]) respectively; Appendix 3 Section 7. Hence;

(6E/RT) = v_,l-1z,2_|A%(2/b)1n(14b(m, 1 2 /n")) ]
+ my2(2(v v ) (8 41281/ (o?my) ]
(1-exp(-om,’/2) (1+om,/2}} 1/m

o 2
+ mlr2vu ) oz tiet 21z, 1V ") 17.38)

7.2.7 The Savage-Wood Link

In a study of the properties of neutral solutes in aqueous

solutions Wood et Ql4'5'6'7

express the osmotic coefficient
as a power series in molality representing pairwise,
triplet, quadruplet..... interactions. Data are fitted to
an equation of the form;

2 3 -1
($-1)RT = gymy + g3ymyT 4+ g,myT 4+ ... 4 gnmzn [7.39]
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Here g, = pairwise interaction parameter, g3 = triplet
interaction parameter ......

From the Gibbs-Duhem equation (see Appendix 3 Section 1);

2 3 -1 2
lny2 = (l/RT)[{gzm2+g3m2 +g,m, +..+gnm2n +gzm2+g3(m2 /2)
+g,(my3/3) 4. eg (m," " /n-1)] [7.40]

Using equation (7.18];

2 3 4 n
=> G = [gzm2 +g3(m2 /2)+g4(m2 /3)+....+gn(m2 /n=-1)] [7.41])
Considering all but the pairwise interaction parameters as

being negligible, then in its simplest form equation [7.41]

can be rewritten as;
G~ = g,m, [7.42]

By analogy with the Savage-Wood approach, if Pitzer'’s
electrostatic interaction term, f, is subtracted from the
total excess Gibbs function then analogous ©pairwise
interaction parameters can be obtained for salt solutions.

An excess Gibbs function characteristic of all
pairwise ion-ion interactions except charge-charge
interactions is defined by equation [7.43].

(GE/rT1"® = GE/RT - £

= [GE/RT)™E - m22(2umux)s° [7.43]

o
In using only B8 , the above equation can be seen to
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represent all interactions between like and unlike charges.
Hence in the absence of a charge-charge interaction term a
cosphere-cosphere interaction term has been identified. For
a salt MX molality m, in solution then the total molality

of all solutes (cations + anions) is given by;

2 3 n_n
Then RT(¢-1) = 2m292+4m2 g3+8m2 g4+....+2 my 9,1

And assuming all but pairwise interactions are negligible

=> 16517 = g,(2m,%)
where;
2 2 2
9, = [(gppPy )/ (m +#m )]+ 29 ((m m )/(m +;m )"}
+[(9xxmx2)/(mm+mx)2] [7.44)

If MX is a 1:1 salt.

2 2 2 2 2 2
=> g, =[IpnMp /2my 4 [2g9, M, /2m, )4 (g, M, T/ 2m, 7 [7.45])

=> g, (172)09, . + 29 ] [7.46]

+
mx gXX

Hence;

= M U9mm * 290k * Ixx! (7.47]

By combining equation [7.47] with [7.43] a link has been
o
established between Pitzer’s B parameters and pairwise

cosphere-cosphere group interaction parameters.
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[}
(6°/RT1™® = (m,2/RT)(g__+2g_ +g ] = 2m,°B

o
=> 2B RT = [gmm + 29 +

mx gxx] [7.48]

7.3 Summary

This Chapter has outlined methods of deriving equations for
lny+ and the excess Gibbs function, GE, from Pitzers
equation for (¢-1) wusing the Gibs-Duhem and equation
[7.16]. The equation for the excess Gibbs function has been
further developed using a Savage-Wood type approach, to
produce an equation, [7.48), in which pairwise group
interaction parameters for salts can be obtained using
Pitzers 60 parameter. Thus Bo represents interactions
between 1like and wunlike charged species, after all
electrostatic interactions have been removed - in effect a
cosphere-cosphere interaction term.

Chapter 8 develops the theme of pairwise interactions

and reports pairwise group interaction parameters based on

the available osmotic data for a number of salts.
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CHAPTER
8

Pairwise Gibbs function
Cosphere-Cosphere Group
Interaction Parameters



8.1 Introduction

The previous Chapter examined how osmotic coefficients,
activity coefficients and excess Gibbs functions could be
used to obtain pairwise Gibbs function cosphere-cosphere
interaction parameters. This theme is continued here in a
quantitative method for analysing the rates of reactions
between ions in aqueous solution containing added

electrolytesl’z.

3

The analysis builds on the success of the
Savage-Wood additivity scheme, in which estimates of
solute-solute pairwise interaction parameters have been
successfully used in the analysis of kinetic data for
systems in which the impact of neutral solutes on reactions
involving neutral substrates are investigated.

This Chapter reports how osmotic coefficients for
ammonium, alkylammonium and azoniaspiroalkane halides can
be used to calculate pairwise group interaction parameters,
g(i<=>j), between the groups i and j where the symbols i
and j refer to the CH, group and ions I, Br , C1” and F .

Calculated pairwise interaction parameters are used
in estimating cosphere-cosphere contributions to Setschenow
coefficients for gaseous hydrocarbons dissolved in aqueous
salt solutions.

For a typical 1:1 salt M*X™ there are at least three
separate interaction parameters i.e. (M+<=>M+), (M+<=>X—)
and (X <=>X"). This highlights a problem. As one extends
the number of salts in the analysis, so the number of
unknowns (the pairwise Gibbs function cosphere-cosphere
group interaction parameters) is always larger than the
number of knowns (the number of sets of osmotic coefficient

data). Fortunately one can overcome this setback by
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developing an analysis using data for the alkylammonium
halide salts. The key to breaking the known-unknown problem
is the varying number of methylene groups around the
positively charged nitrogen atom in each salt. The Wood et
a1’!-?

methylene-methylene interaction parameter,
g(CH2<=>CH2), is assumed common to both ionic and neutral
solutes. For a given series of tetraalkylammonium halide
salts, e.g. R4NC1 where R = Me, Et, Pr and Bu, sufficient
equations are obtained which allow specific pairwise Gibbs

function cosphere-cosphere parameters to be estimated.

8.2 Analysis

Input data to the analysis were published osmotic
coefficients and molalities for agueous solutions
containing ammonium, alkylammonium and azoniaspiroalkane
halide salts. These data were fitted using a linear least
squares procedure to Pitzer'’s equation4 modelling the
dependence of the osmotic coefficient on molality (see
Chapter 7 Section 7.4.2). Calculated estimates for Bo, 81
and C were checked against Pitzers tabulated valuesd.
However the calculation of pairwise interaction parameters
needs only consideration of the calculated Bo parameters of
each salt. A non-electrical cosphere5 interaction term was
identified by equation [8.1]. This equation was based on a
procedure suggested by Guggenhi;ﬁG;[refer to Chapter 7
Section 7.2.7 ]

2 /]

(GE/RT] = 2v_v.m.%8 (8.1]

mx 2

This equation was used to obtain a quantity identified as
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g(salt), defined by equation [8.2], which is a function of

pairwise ion-ion Gibbs function interaction parameters.
o
g(salt) = 28 RT [8.2]
For a 1:1 salt of the type mtx~, g(salt) is expressed in

terms of <cation-cation, anion-anion and cation-anion

interaction parameters.

g(salt) = g(mt<=>m") + 2g(Mt<=>X") + g(X <=>X") [8.3]
Hence; _
° + + + - - -
2B RT = g(M <=>M') + 2g(M <=>X ) + g(X <=>X ) [8.4]

In the case of a tetraalkylammonium halide salt, g(salt)

was broken down into pairwise interaction contributions

7-9

using the Wood et al interaction parameter for

methylene-methylene interactions, g(CH2<=>CH2), and the

assumption that a terminal methyl group, -CH is

8,9

3I

equivalent to 1.5 methylene groups (in the case of an

ammonium halide salt the assumption was made that a
hydrogen atom was equivalent to one half of a methylene
group). Hence for tetrabutylammonium bromide;

+ Nt + Br)

g(Bu4NBr) = (4CH, + 12CH

3 2
(18CH, + NY + BrT)

=> g(Bu4NBr) = 324g(CH2<=>CH2)
+ 36g(CH,<=>N") + g(N'<=>N")
+ 36g(CH,<=>Br~) + 2g(N'<=>Br”) + g(Br <=>Br )

In the scheme above only the (CH,<=>CH,) wood ' ~?
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interaction parameter is known at this stage. Hence a

residual Y can be calculated; equation [8.5].
o
Y = 28 RT - 324g(CH,<=>CH,) (8.5]

The residual Y is related to the five unknowns (CH2<=>N+),
(N*¢=>N"), (CH,<=>Br”), (N'<=>Br”) and (Br <=>Br ). Further
equations containing these properties were obtained using

data for the tetraalkylammonium bromides i.e. Pr,NBr,

4
Et,NBr, Me,NBr and also using osmotic coefficient data for
the cyclic azoniaspiroalkane bromides and ammonium bromide.
Similar sets of equations were obtained for the fluoride,
chloride and iodide salts. In the case of chloride salts
the data set was supplemented using information describing
the properties of aqueous solutions containing monomethyl,
dimethyl and trimethylammonium chlorides. Each set of
halide salts introduced three new unknowns i.e. (CH2<=>X-),
(N*<=>X7) and (X <=>X"). In total there were twenty seven
equations containing fourteen unknown pairwise interaction
parameters which were estimated using a least squares
procedure. A linear least squares procedure proved
unsuccessful, in view of the structure of the input data. A
column reporting the number of pairwise interaction
parameters could be formed as a linear combination of one
or more of the other columns. A minimisation technique was
used in the form of a FORTRAN NAG library routine,
(FO4JDF). The outcome was a least squares estimate of
pairwise interaction parameters. Standard errors were

10

calculated using the output from NAG routine F04JDF (see

program listing presented in Appendix 4 Section 1).
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]

8.2.1 Setschenow Coefficients and Their Reltionship to the
Excess Gibbs Function. '

A given volatile substance U at temperature T and partial
pressure pu is in equilibrium with solute U in solution at
temperature T and pressure p in (i) an aqueous solution in
which the molality of added salt is zero, i.e. mj = 0 and
the molality of U is mueq.

U(gp;T;p") (————————> U(aq;T;p;mueq;mj=0)

and (ii) an aqueous solution in which the molality of added

salt is mj and the molality of substance U is mueq'

Ulgp;T;pY) < > U(aq:T;p;mueq;mj)

At equilibrium the chemical potentials of substance U in

these solutions are equal.

eq emem 9. - = eq .pem €9d.
v, (ag;Tim ,mj—O) = u (aq;T;m, ,mj)

u

=> p#(aq;T;p;id) + RTln[mueq(mj=O)yueq(mj=0)/m°]

=t TTers i eq eq °
= p"(aq;T;p;id) + RTln[m, (mj)vu (mj)/m ) (8.6]

Assuming substance U forms an ideal solution when mj = 0

i.e. yueq(mj=0) = 1.0, then;

eq - - eq eq
m (mj—O) = m, (mj)Yu (mj) [8.7]

A Setschenow coefficient is obtained by experiment and is

defined by equation [8.8].
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log,, (8 /S) = kM [8.8]

o
where ku is the Setschenow coefficient of substance U, §

is the solubility of the volatile substance U in an aqueous
solution containing no added salt and S is the solubility
of U in an aqueous solution containing mj moles of added
salt.

. ° eq -

i.e. s = m, (mj—O)

and S

eq
mu (mj)

Hence using equation (8.7]);

loglolmueq(mj=0)/mueq(mj)] = logloy eq(m.)
=> logloyueq(mj) = kumj
= eq -
=) 1nyu (mj) = 2.303kum. [8.9])

]
The total Gibbs function of a solution containing a 1:1
salt-j of molality mj and a volatile substance U of

molality mueq in 1 kg of water is given by equation [8.10].

G(total) = mj[pj#(sln;T;p) + ZRTln[Qmjy+/m°]
s °
+ mueq[uu#(sln;T;p) + RTln[mueqyu/m ]

+ (1/M))[u" (Hy0;1;T;p) - $RTH [2meem °91)  [8.10)

Hence the excess Gibbs function of the system is given by
equation (8.11].

E _ eq _ eqg
G = mj[ZRTlnyt] + m, [RT(lnyu)] + (1 ¢)RT[2mj+mu ]

- E - eq _ eq
=> G /RT = 2mjlnyi + my lnyu + (1 ¢)(2mj+mu ) (8.11]
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At constant temperature, pressure and molality of added
salt, mj;

E eq _ eq eq
(1/RT)[ 3G /amu ] = ij[dlnyi/dmu ] + lnyu

T;p;mj
- eq eq _
Z(mj+mu ){dé/dm "7 + (1-¢) [8.12]

According to the Gibbs-Duhem equation (at <constant

temperature and pressure) Enidyi=0. Hence;
_ eq ° eq eq_eq, °, _
d[¢(2mj+mu )]+2mjd1n[Qmjyi/m ]+mu dln[mu Yu /m ] 0

= - eq ~ eq eq =

=> (2mj+mu ydé ¢ + ijdlnyi + m, dlnyu + 1 0
(8.13]

Differentiating with respect to mueq yields equation

[8.14].

= eq, _ eq eq - =

=> 2mj[dlnyi/dmu ) 2(mj+mu )[dé/dm "=] + (1-4) 0
[8.14]

Substituting equation [8.14] back into equation [8.12]

produces a simplified equation for the differential of the

excess Gibbs function with respect to mueq.

= lny °9 [8.15]

E eq
(1/RT)[3G"/3m ]T;p;mj u

Hence the excess Gibbs function defined by the above
equation can be linked to the Setschenow coefficient of the
volatile solvent, ku, through equation [8.9]. Hence;

(l/RT)laGE/amueq] = 2.303k;m, (8.16]

T;p;mj
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Using the Savage-Wood type approach, outlined in Chapter 7
Section 7.2.7, an equation for the cosphere-cosphere
interaction contribution of the excess Gibbs function can
be developed for an aqueous salt solution containing trace
amounts of volatile substance U.

For a solution containing a 1:1 salt M'X™ where the
molality of cations is mj, the mblality of the anions is mj
and the molality of U is m, then a cosphere-cosphere

interaction contribution to the excess Gibbs function can

be defined using equation [8.17].

GE(sln;T;p;cosphere) = g(M+<=>M+)mj2 + 29(M+<=>X—)mj2
‘+<50¢¢5LQMJMu + g(X_<=>X_)mj2 + 2g(U<=>x')mjmu
+ g(u¢=>U)m > [8.17]

The differential of the excess Gibbs function with respect

to mu at constant T, p and m, can be written in the form;

[3G%/am ] - Zg(M+<=>U)mj + 2g(U<=>Xmy

T;p;mj
+ 2g(U<=>U)m (8.18]

Hence using equation [8.15];

1ny 9 = (2/RT)[g(M+<=>U)mj + g(Uc=>XTImy + g(U<=>U)Im, ]
But only trace amounts of U are present; mu=0
=> lny %9 = (ij/RT)[g(M+<=>U) + g(U<=>X")] [8.19]

u

Using equation [8.9] the interaction parameters can be
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linked to the Setschenow coefficient of the volatile
solute, ku

k, = (2/2.303RT) [g(M'<=>U) + g(U<=>X")] [(8.20]
In one example the volatile substance U is ethane and the
salt-j in solution is tetraethylammonium bromide i.e. C,Hg
in (CH3CH2)4N+Br_. Using the procedures adopted earlier for
terminal methyl groups, the situation can be reconsidered
as;

2%1.5(CH,) in (4*(1.5CH +CH2))N+Br~

2

= 3CH, in (10*CH2)N+Br"

2

=> g(nt<=>u)

+
3Og(CH2<=>CH2) + 3g(CH2<->N )

=> g(U<=>X") 3g(CH2<=>Br—)

Hence an estimate of the cosphere-cosphere interaction
contribution to the Setschenow coefficient of ethane in a
solution of tetraethylammonium bromide can be written as
equation [8.21].

k (2/2.303RT) [30g(CH,<=>CH,) + 3g(CH,<=>N")

ethane ~
+ 39(CH2<=>Br—)] [8.21]

The pairwise cosphere-cosphere interaction parameters of
equation [8.21] are obtained from the least squares

minimisation technique described earlier.

8.3 Results

A FORTRAN program was written to access osmotic coefficient

and molality data contained in data files for the twenty
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seven salts studied11_17, see Table 8.1. Appendix 4 Section

1 contains a program 1listing. All data referred to a
temperature of 298.15 K and were in the concentration range

0 < mj/mol kg-1 < 2.0. Of the three possible routes

available to calculate Pitzer’s Bo parameter, namely
through (1i) GE (ii) Y, and (iii) (¢-1) [refer to Chapter 7]
the third approach J;a the osmotic coefficient was used
within the program. This method is in line with procedures
adopted by Pitzer4. Estimates of Bo produced using a linear
least squares fit of osmotic data and molality data to

equation [8.22] were found to be in satisfactory agreement

with those tabulated by Pitzer®

(6-1) - £ = my[2v_v_/vl(B +Brexp(~am,'/?)]
+ m22[2(vmvx)3/2/ulc¢mx [8.22]

where f represents a coulombic interaction contribution to
the osmotic coefficient (refer to Chapter 7).

Figures 8.1 - 8.4 show plots of [(¢—1)—f]calc
(calculated from the best fit parameters to equation
[8.22)) against [(¢—1)-f]obS (calculated from the input
osmotic coefficient data) for four different salts used in
the analysis.

Table 8.2 reports the calculated 6° parameters for
the twenty seven salts investigated in the analysis
together with their standard errors. Deviations between
Bo(calc) and Bo(lit) can be explained in part by the
differing ranges of molalities covered in the calculation

of the literature values. Values of g(salt) for each salt
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Table 8.1

Salts and references to data used in the calculation of
pairwise cosphere-cosphere Gibbs function interaction

parameters. All data refer to a temperature of 298K.

No. Salt Reference
1 NH,Br _ 11
2 (CH3)4NBr 12
3 (C2H5)4NBr 12
4 (C3H7)4NBr 12
Sa (C4H9)4NBr 12
6 6,6ABr 13
7P 4,4ABr 13
8¢ 5,5ABr 13
9 NH,C1 14
10 (CH3)H3NC1 15
11 (CH3)2H2NC1 15
12 (CH3)3HNC1 15
13 (CH3)4NC1 12
14 (C,Hg) ,NC1 12
15 (C3H7)4NC1 12
16d (C4H9)4NC1 12
17 5,5AC1 13
18° 6,6AC1 13
19 (CH3) ,NF 16
20 (C2H5)4NF 16
21 (C3H7)4NF 16
22 (C4H9)4NF 16
23 NH4I 17
24 (CH3)4NI 12
25 (C2H5)4NI 12
26f (C3H7)4NI 12
27 5,5AI 13

a - 6.6 azonspiroalkane Bromide

b - 4.4 azonspiroalkane Bromide

¢ - 5.5 azonspiroalkane Bromide

d - 5.5 azonspiroalkane Chloride

e - 6.6 azonspiroalkane Chloride

f - 5.5 azonspiroalkane Iodide
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Camparison of observed and calculated [(¢-1)-f(my; Apx)] for
BuyNBr in aqueous solution at 298.15 K and ambient pressure.
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Camparison of observed and calculated [(¢-1)-f(my; Agy)]
for MeyNC1 in aqueous solution at 298.15 K and ambient
pressure.
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-150-



—_ °
- g i
« °
3 .
.
— .
3 .
No _2__ ®
M °
°
°
| |
-2 -1
2 ¢
10 [(qb-ﬂ-f(mj A )]
FIGURE 8.4

Camparison of observed and calculated [(¢-1)-f(mj; A;:fx)]
for PryNI in aqueous solution at 298.15K and ambient
pressure.

-151~



Table 8.2

Derived g° parameters for salts in aqueous solution at 298K

and ambient pressure.

lozso(cal

2

Salt c) 10"Standard error lozﬁo(lit)
NH,Br 6.037 0.214 6.24
(CH3)4NBr 0.739 0.348 -0.82
(C2H5)4NBr 0.416 0.260 -1.76
(C3H4) NBr -5.120 0.996 3.90
(C4H9)4NBr -1.919 1.511 -2.77
6,6ABr -14.007 1.099 -
4,4ABr -4.174 0.062 -
5,5ABr -9.963 0.030 -
NH4C1 4.467 0.025 5.22
(CH3)H3NC1 6.539 0.104 -
(CH3)2H2NC1 5.385 0.040 -
(CH3)3HNC1 5.567 0.098 -
(CH3)4NC1 5.576 0.128 4.30
(C2H5)4NC1 8.939 0.285 6.17
(C3H7)4NC1 8.808 0.992 13.46
(C4H9)4NC1 22.386 1.377 23.39
5,5AC1 2.094 0.274 -
6,6AC1 -4.153 0.228 -
(CH3)4NF 27.092 0.084 26.717
(C2H5)4NF 31.397 0.569 31.13
(C3H7)4NF 45.024 0.878 44.63
(C4H9)4NF 56.690 0.377 60.92
NH,I 5.816 0.197 -
(CH3)4NI 64.902 24.860 3.45
(C2H5)4NI -17.227 0.765 -17.90
(C3H5)4NI -27.862 1.229 -28.39
5,5A1 -24.401 0.106 -
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representing the effects of cosphere-cosphere overlap
within the solution, were then calculated using equation

(8.2). Hence using Woods '~ ?

estimate for the pairwise
(CH2<=>CH2) interaction the twenty seven equations for the
least squares minimisation technique were set up.

Figure 8.5 shows a plot of Yobs (calculated for each
salt wusing equations similar to [8.5]}) against Ycalc
(calculated from the 1least squares estimates of the
cosphere-cosphere interaction parameters). The resulting
pattern of the points indicates a satisfactory fit of the
data.

The fourteen pairwise cosphere-cosphere group
interaction parameters are reported in Table 8.3 in which

the (CH2<=>CH2) int:eract:ior17-9

parameter has been included
to complete the matrix. The parameters contained in the
latter Table were used to calculate the cosphere-cosphere
interaction contribution to the Setschenow coefficients for
a series of hydrocarbons in aqueous salt solutions using
procedures outlined in Section 8.2.1. Tabulated values of
these cosphere-cosphere contributions to the total
Setschenow coefficient are reported together with their

observed values18 in Table 8.4. The same information is

represented graphically in Figure 8.6.

8.4 Discussion

The decision to use 2 mol kg_1 as a cut off point for input
data to the analysis was based on the assumption that in
more concentrated aqueous salt solutions triplet,
qguadruplet ion-ion interactions have an increased influence

on the magnitude of the osmotic coefficient of each system.
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10-3 Ycalc

FIGURE 8.5

Camparison of observed and calculated Y parameters
(cf. equation [9.5]) for aqueous salt solutions at
298.15 K and ambient pressure. Numbers refer to
the salts listed in Table 8.1. Perfect agreement
between observed and calculated is represented by
the straight line running through the origin at an
angle of 45° to both axis.
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Table 8.3

Pairwise cosphere-cosphere group Gibbs function interaction
. -1
matrix calculated from osmotic data at 298K (3 MOL )

CH, Nt F- c1” Br~ 1~
CH ~34.0
Nt 255.4 | -871.0
F- 216.1 | -1153.1 | -576.5
c1 83.0 -498.2 - ~249.1
Br 68.8 -669.4 - - -334.7
1~ -112.5| 578.6 - - - 289.3
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Table 8.4

Derived cosphere-cosphere contributions to Setschenow
coefficients for a series of hydrocarbons dissolved in
agqueous salt soltions at 298K. (Observed Setschenow

coefficients were taken from reference 18)

System ku(calc) ku(obs)

1 CH, in NH,Br 0.090 0.054
2 CH, in Me ,NBr 0.042 -0.017
3 CH, in Et,NBr ~0.006 ~0.049
4 CH, in Pr,NBr -0.053 -0.082
5 CH, in Bu,NBr -0.101 -0.096
6 C,H, in NH,Br 0.135 0.065
7 C2H6 in Me ,NBr 0.063 -0.040
8 C,Hg in Et,NBr -0.008 -0.117
9 C,Hg in Pr,NBr . -0.080 -0.141
10 C,Hg in Bu,NBr -0.151 -0.155
11 C3Hg in NH,NBr 0.180 0.076
12 CyHg in Me,NBr 0.084 -0.059
13 C3Hg in Et,NBr -0.011 -0.158
14 CSHB in Pr,NBr -0.106 -0.187
15 C3H8 in Bu,NBr -0.202 -0.248
16 C,H,, in Me,NBr 0.105 -0.074
17 C4Hip in Et,NBr -0.014 -0.168
18 C4H10 in Pr,NBr -0.133 -0.227
19 CqHip in Bu,NBr -0.252 -0.286
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Canparison of calculated and observed Setschenow
coefficients for hydrocarbons in aqueous salt solutions

at 298.15K.

in Table 8.4.
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The accuracy 1is therefore reduced to which Bo can be
estimated from equation [8.22].

The Setschenow coefficients reported in Table 8.4
represent the non-electrostatic i.e. cosphere-cosphere
interaction contribution to a total Setschenow coefficient.
The contribution from coulombic type interactions is not a

19 claim to describe in

simple quantity. Long and McDevit
their treatment electrostatic interactions. Their equations
use the molar and partial molar volumes of salts and the
partial molar volume of the added volatile solutes. The
observed trends in Setschenow coefficients are understood
in terms of the occupation of solvent cavities i.e. a
non-electrostatic contribution. As Conway20 points out the
Long-McDevit treatment includes in part a cosphere
contribution. The data plotted in Figure 8.6 covers the
range negative to positive i.e. from describing salting-in
to salting-out. This observation suggests a basis for the
conclusion that an wunderstanding of the properties of
aqueous salt solutions has been established in terms of
group pairwise cosphere—cosphere5 intc=.-raction21"23
parameters. This conclusion is supported by a consideration
of the properties of cosphere-cosphere overlap discussed in
Chapter 6. The overlap of solute cospheres with similar
hydration characteristics is attractive i.e. the cosphere
-cosphere interaction parameter g(i<=>j) <0. However the
overlap of solute cospheres with dissimilar hydration
characteristics is found to be repulsive i.e. g(i<=>j) >0.
Turning to Table 8.3 the large positive value of

g(CH2<=>F_) (= 216.1) and the large negative value of

g(F <=>F ) (= -576.5) are consistent with this
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generalisation.

Appendix 4 Section 2 extends the interaction matrix,
Table 8.3, to a consideration of the interactions of the
potassium cation i.e. g(K+<=>K+), g(K+<=>CH2), g(K+<=>Cl—),
g(K+<=>Br_), g(K+<=>F_) and g(K+<=>N+) using the mixed salt

24

data of Wen et al Similar interaction parameters are

25 Jata.

calculated for the sodium cation using Rosenzweigs
The matrix is further extended by the calculation of the
interaction parameters of the nitrate anion, N03—, using
Bonner‘s26 compilation of osmotic and activity coefficient
data of the tetraalkylammonium nitrates. Extensions of the
matrix to include interaction parameters for other alkali

metal cations and other ions, for example the C104— anion

using the data of Bonner27, are expected.

8.5 A Look Forward

The success of a procedure based on the excess Gibbs
function which yields pairwise interaction parameters of
solutes in agueous solution points towards procedures which
use other thermodynamic functions for the same purpose.
Recalling trends in partial molar volumes of alkylammonium

salts discussed by Franks and Smith28

Saitozg, and the dependence on molalities of the partial

and by Wen and

molar heat capacities of salts discussed by Desnoyers et
2;30 it would prove interesting to investigate trends in
pairwise volume and heat capacity interaction parameters

i.e. V(i<=>3j) and Cp(i<=>j).
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)
CHAPTER

9

Salt effects on the alkaline
hydrolysis of Bromophenolblue



9.1 Introduction

Second order rate constants for the alkaline hydrolysis of

the sodium salt of bromophenol bluel 4

are dependent on the
concentration of added potassium bromide and
tetraalkylammonium halide salts, R,NX where R = Me and Et
and X = F , Cl°, Br and I . The reactions were studied

over an added salt concentration range 0.10< [added

salt]/mol dm™3 <2.0 at 298.15 K.
Trends in In(k,/k,), where k0=3.507 X 10—4 mol dm >
s_l is the second order rate constant at zero ionic

strength (taken from the work of Panepinto and Kilpatrickl)
and k2 is the calculated second order rate constant, were
analysed in terms of <dependences predicted by the
Debye-Huckel Limiting Law (DHLL; see Chapter 6) and
Pitzer's5 equation for activity coefficients of single ions
in aqueous salt solutions.

The results pointed towards the marked effect of
cosphere overlap on both the bromophenol blue dianion and
trinegative transition state. Mofeover the success of
Pitzer’s equation indicated a dependence of reaction rate
on ionic strength in contradiction to the theories reported

by Rudra and Das3

9.2 Experimental

The sodium salt of bromophenol blue was prepared using the
method of Amis and La Mer6. A concentrated stock solution
of the aqueous salt solution was prepared. The product of
reaction was characterised by an intense absorption band in
the visible region of the electromagnetic spectrum centered

*
at xmax = 510 nm which corresponds to a n to n transition.
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Reaction of bromophenol blue dianions with hydroxide ions

produces a carbinol species2 (see Figure 9.1).

1) 0
Br Br Br Br
@—c + OHW T—T—/— @— C —OH
50, S0,
Br Br Br Br
0 0
FIGURE 9.1

In a typical kinetic run, 2 cm3 of an aqueous salt

solution were added to 1 cm3

of sodium hydroxide solution
in a quartz cell such that the final concentration of added
salt was in the range 0.1 to 2.0 mol dm™3 and the final
hydroxide concentration was 0.1 mol dm_3 in the cell. The
cell was placed in the cell holder of either the HP 8451A
or Unicam SP 1800 spectrophotometers (see Chapter 2) and
allowed to attain thermal equilibrium at 298.15 K over a
period of approximately five minutes. The reaction was
initiated by adding one drop of the concentrated sodium dye
salt into the cell. After vigorous shaking, the
disappearance of the dye band was monitored at xmax for at
least 2.5 half 1lives. The reaction was overall second
order. However by ensuring the concentration of hydroxide
ions was in vast excess over the concentration of the
bromophenol blue salt, it was possible to monitor the rate

of reaction wunder pseudo first order conditions (see

Chapter 2).
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(dP/dt) = k [BPB] [9.1]
where k is the pseudo first order rate constant.
=> k' = k,[NaOH] [9.2]

Analysis of the absorbance/time data used the method
of non-linear 1least squares outlined in Chapter 2 and
produced estimates of the pseudo first order rate constants
k'/s_1 and hence estimates of the second order rate

constants, k,/mol dm~3 s—l.

9.3 Details of Data Analysis

The dependence of ionic activity coefficients on ionic
strength as predicted by the DHLL were calculated for
hydroxide ions, the bromophenol blue dianions and the
trinegative transition state using equations [9.3] to [9.5]

respectively.

Iny(OH™) = —SYz(OH_)Z(I/mo)l/Z [9.3]
lny(BPB2T) = _SYZ(BPBz—)Z(I/mo)l/Z [9.4]
Iny(ts3”) = —Syz(ts3—)2(1/m°)l/2 [9.5]

where SY = 1.1763, z is the charge number of the ion, I is
the ionic strength and m = 1 mol kg—l. The ionic strength
of the system was calculated from the definition used in
equation [6.3] of Chapter 6. So for a typical reaction

which contains added salt MX the ionic strength was
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calculated using equation [9.6].

2 2 2 2

I = 0.5[m + mNa+zNa+

OH-20H-
2

mNa+ZNa+ + [(9.6]

m z 2]
BPB2-"BPB2-
In practice the two terms originating from the sodium salt
of bromophenol blue are small and so equation [9.6] can be

simplified to the form shown in equation [9.7].
The dependence of the second order rate constant, k

2'
on ionic strength can thus be written in the form;

2-

In(k,/k,) = lny(oH”) + lny(eB®7) - Iny(tsST)

—SY(I/mo)l/z - 4SY(I/m°)1/2 + QSy(I/mo)l/z

_ °.1/2

=> ln(kz/ko) 4SY(I/m ) (9.7]
An alternative description of the role of charge-charge
interactions wused Pitzer’s equation for a single ion
activity coefficients. For a single anion X, Pitzer’'s

equation can be written in the form of equation [9.8].

= 7 2¢Y
lnyx = 2z, £f' + Zch[Bxc + (Emz)Cxcl + szaeca
A B C
L 2p’ 9.8
+ chma[zx B ca t Zxcca] [9.8]
D
c = cations of salts in system.
a = anions of salts in system.
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9.3.1 Term A

£Y represents the contribution of charge-charge
interactions and can be written in the form of equation

[9.9].

elect - 2 2
X X

2, 20-A, (172 /(14b117%)) & (2/b)1n(14b1'/%)))

1ny £Y

[9.9]

where I = (I/m ); A, = s./3 = 0.3903 and b = 1.2. Equation

¢
[9.9) describes the electrical part of the single ion
activity coefficient for the species involved in the
reaction. Hence the sum of all the contributing terms

defines a total electrical term, lnYGIGCt.

lnYelect - lnYelect elect 2—) _ 1nYEIGCt(t 3—)

(OH ) + 1lny (BPB s
[9.10)
In a similar fashion to the procedure used with respect to
equation [9.7) equation [9.10] can be simplified to the
form given in equation [9.11].

1ny®1e°t = aa ro(r/m’ )2 (1eb(1/m") 2

+ (2/b)1n(1+b(1/m )172)] 19.11]

9.3.2 Term B

The second term represents the effect of non-coulombic
ion-ion interactions i.e. cosphere-cosphere interactions/
overlap, on the activity coefficient. Within the context
of the reaction under study this term describes the effect
of sodium cations and added salt cations on the activity

coefficient of hydroxide anions.
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termB

{OH cosph} = ZEmC[Bx + (Emz)Cx ] [9.12]

C C

where Imz = Im_z = Im_z_. For the reaction under
» c’c a“a
investigation equation [9.12) can be written in the form of

equation [9.13].

termB

{OH cosph} = 2[mc[BOH_c + mCzCCOH_c] +
Mya+!Bon-Na+*™Na+?Na+Con-Nas+ )] 19-13]
where B,, . and Bg, .. . represent equations [9.14] and
[9.15].

o

Bor—c = B on—c * lzaloH_C/(aZI)1[1—(1+a11/2)exp(-a11/2)]
[9.14]

o

= 1 2 1/2
Bon-na+ = B on-nNa+ t [2B op_nas/ (e T)111-(1+0l

)
exp(-oIt”2)] [9.15]

where I = (I/mn) and B parameters were taken from Tables
compiled by Pitzers. Where tetraalkylammonium salts were
added to the reaction no data were available for
tetraalkylammonium hydroxide salts and so the B and C terms
for the chloride salts were used. This assumption was based
on the the similarity in ion size between chloride and
hydroxide anions7.

The terms C and C used in equation [9.13]

OH-c OH-Na+
represent equations [9.16] and [9.17].

C - c? 172

OH-cC on-c’ (212.2gy_1| ) [9.16]
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c - c? 172

OH-Na+ OH—Na+/(2|ZNa+ZOH_I ) [9.17]

C¢ terms were taken from Tables compiled by Pitzers.
A gquantity delta, 8, was defined from the difference
between the sum of the first and second Pitzer terms and

ln(kz/ko).

8 = In(k,/ky) - 1nv®1®°Y _ (on cosph] [9.18]

2

=> A = {BPB“ cosph} - {ts3—cosph} [9.19])

As denoted in equation [9.19]), A represents the difference
between the cosphere interaction effects of the bromophenol

blue dianion and the trinegative transition state.

9.3.3 Term C

Relevant data were not available for the bromophenol blue
dianion and the transition state trinegative anion. Hence
in the absence of any data this term was assumed to be

negligibly small and set equal to zero.

9.3.4 Term D

With the fourth term of Pitzer’s equation it was only
possible to investigate the effect of the anions and
cations present in the system on the hydroxide anion. As
with term C no relevant data for BPBZ™ and ts3™ were
available. If a salt MX is added to the reaction mixture,
Pitzers fourth term can be written in the form of equation

[9.20].
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1n termD 2_"

YoH- = My lZon- "B Mx * Zou-Cux!
+ mNa+mX[ZOH—2B:NaX * 2op-Cnax!
+ mMmOH—[ZOH—ZB mor * Zou-Cmon!
;
* mNa+mOH—IZOH—ZB naon * Zon-Cnaon!  [9-20]
where B'MX and Cux 2are used to represent equations [9.21]

and [9.22].

1/2

By = (280 0/ (e 21%) 11( 1401 +0.5a121)exp(—a111/2)—1]

+ IZB(Z)MX/(azzlz)][(1+a211/2+0.5a221)exp(—azll/z)—l]
[9.21]
_ ~* 1/2
Cux = Cux/ (212,74 1172 [9.22]

where I = (I/mo) and Tables compiled by Pitzer5 yielded B,
6(2) and C. The constants o, and oy equal 2.0 and 0.0
respectively in line with the suggestions of Pitzer and
Mayogra8

The final equation based on Pitzer’s equation was

obtained as the sum of the four terms described above.

9.4 Results

Table 9.1 reports second order rate constants for reaction
solutions containing added salts KBr and R,NX (where R = Me
and Et and X = F , €17, Br and I ) over the concentration

range 0.1< c/mol dm~3

<2.0. The results are summarised in
Figure 9.2 as a plot of ln(kz/ko) against ionic strength.
The tetramethylammonium salts accelerated the reaction rate
whilst the tetraethylammonium salts retarded the reaction

rate. The nature of the anion of the added salt had a
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Table 9.1

Second order rate constants for the alkaline hydrolysis of
the sodium salt of bromophenolblue in the presence of known
concentrations of aqueous salt solutions at 298K.

Molarity Me ,NF Me4NCl Me,NBr
/moldm—3 103)('2/dm3m01'_ls—l
0.00 0.656 0.656 0.656
0.25 1.089 1.012 0.943
0.50 1.334 1.133 1.001
0.75 1.526 1.226 1.014
1.00 1.679 1.309 1.026
1.50 2.102 1.435 1.056
2.00 2.533 1.588 1.077
Molarity Et4NI Et,NBr KBr
/moldm” 3 107k, /an3no1 71571
0.00 6.559 6.559 6.559
0.10 6.412 - -
0.25 5.343 6.362 8.990
0.40 4.207 - -
0.50 3.760 5.762 9.656
0.60 3.187 - -
0.75 2.677 5.193 10.137
1.00 - 4.549 10.317
1.50 - 3.971 10.562
2.00 - 3.532 10.853
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specific effect on reaction ratel. For both '£he
tetramethylammonium and tetraethylammonium halides the
reaction rate increased in the order;
F >Cl >»Br »1I

Potassium bromide had an effect on reaction rate very
similar to that produced by tetramethylammonium bromide.

A FORTRAN program analysed the kinetic data using the
methods described in Section 9.3. Appendix 5 contains a

listing of the program.

9.5 Discussion

The Debye-Huckel treatment of activity coefficients for all
added salts predicts a positive salt effect on the alkaline
hydrolysis reaction wunder consideration. This can be
understood in terms of the greater stabilisation of the
transition state of the reaction (charge -3) compared to
the stabilisation of the initial states (i.e. OH + BPB2~
ions). The stabilisation effect predicted by the
Debye-Huckel equation and calculated in the FORTRAN program
(Appendix 5) is illustrated in Figure 9.3. The Debye-Huckel
equation predicts an increase in reaction rate with
increase in ionic strength due to an increased
stabilisation of the transition state and hence a decrease
in the Gibbs function for activation.

In Pitzer’s equation the fourth term for each added
salt is negligible in comparison to the first two terms of
the equation for lnyj. The electrostatic, first term of the
full equation, for all added salts, predicted a positive

salt effect on reaction rate in a similar manner to the

trend predicted by the Debye-Huckel equation. Again the
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trend can be understood in terms of the increased
stabilisation of the trinegative transition state compared
to the initial state contributions. However, the magnitude
of the positive salt effect predicted by Pitzer’s
electrostatic term was smaller than that predicted by the
Debye-Huckel treatment. In comparison to the first term the
effect of Pitzer’s second term on ln(kz/ko) is small.
However, the nature of the added salt has, for the first
~time, been taken into consideration. Although not having a
dramatic effect on the overall pattern produced by Pitzer’s
full equation the second term follows the observed trends
in ln(kz/ko). For example, in the case of added
tetramethylammonium fluoride a positive salt effect is
observed and this is mirrored by a positive second term.
However in the <case of tetraethylammonium bromide a
negative salt effect was observed in the kinetics and in
this situation the second term of Pitzer’'s equation was
negative.

Pitzer's full equation predicts an overall positive
salt effect for the reaction under consideration over the
range of salts investigated, in line with the predictions
of the Debye-Huckel equation. Figure 9.4 reports predicted
trends in ln(kz/ko) calculated from the DHLL and Pitzer'’s
full equation together with the experimental results for
the addition of KBr to the alkaline hydrolysis reaction of
the sodium salt of bromophenol blue. However in calculating
this trend two important terms are ignored by the analysis,
namely the second term contributions to Pitzer’s full
equation which describes the effects of non-electrostatic,

charged species interactions (i.e. cosphere-cosphere
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interactions) for both the dinegative bromophenol blue
anion and the trinegative transition state. For Pitzer’s
full equation to accurately predict the observed trends in
ln(kz/ko) for various added salts the magnitude of the

2_cosph}—{ts?’_cosph} must be equal

difference between {BPB
to the quantity 8 defined by equation [9.18]. In real terms
this difference cannot be accurately calculated because no
B or C terms are available. However estimates of this
difference can be obtained using Bo, ﬁl and C parameters
which cover the complete range recorded by Pitzer for 3:1
and 2:1 salts. Using these ranges of estimates the cosphere
contributions of both the bromophenol blue dianion and
trinegative transition state were estimated using equations
similar to equation [9.13] which defines the OH™ cosphere
contribution. Using this technique, (subroutine cosphere of
the program contained in Appendix 5) it was found that the
magnitude of the difference between the cosphere terms of
the dianion and the trinegative transition state was
sufficient to explain the differences between the observed
trend in ln(kz/ko) and that predicted by the full Pitzer
equation. Figure 9.5 reports the range of ln(kz/ko) the
dianion and transition state cosphere terms cover based on

1 and C-terms taken from Pitzer's5

approximations for so, B
tabulated values for 2:1 and 3:1 salts.

The apparent success of Pitzer’s equation in
modelling the effect of added salt on the rate constant,
using equations containing ionic strength casts doubt on
the suggestions of Rudra and Das3. Based on the addition of

a number of salts to the same alkaline hydrolysis reaction,

they concluded the reaction was a demonstration of the
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FIGURE 9.5

Trends in 1n(kz/k,) at 298.15 K, calculated for the
bramophenolblue dianion and the tri-negative transition
state as predicted by Pitzer's equation using a range
of B° and B! values for 2:1 and 3:1 salts, plotted
against the molality of added cation, m¢/mol kg™!.
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Olson-Simonsen effect, in which ionic strength is of no
consequence to the rate of disappearance of the bromophenol
blue dianion. This is certainly not the situation observed
at the concentrations of added salt investigated in this
study. This conclusion is backed up by the work of Carmona1
et al who also found a dependence on ionic strength.
Turning now to the observed specific anion effect
identified from the reported second order rate constants.
According to the analysis described above this contribution
is catered for in Pitzer’s full equation by the third term.
However this was assumed to be zero. 1Ideally a plot of
ln(kz/ko) - A& against the molality of the cation of the
added salt produces a straight line of gradient defined by

the difference between the B dianion term and the

BPB2-¢
Byg3_o transition state term (see equations [9.14] and
[9.15])). However using the analysis described above the
pattern reported in Figqure 9.6 emerges. This pattern points
to the importance the third term of Pitzer’s equation and

identifies a method from which more precise estimates of B

parameters could be calculated in future work.
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CHAPTER
10

Internal Pressures of Water
and Deuterium Oxide



10.1 Introduction

This Chapter reports equations which describe the internal
pressure”, ni, as a function of temperature and pressure,
in the ranges 273.15<¢ T/K <£373.15 and 0 P/bar <1000, for
water and deuterium oxide. Quadratic equations which model
the pressure dependence of (i) the temperature at which ni
is equal to =zero and (ii) the temperature of maximum
density (TMD) are reported for both systems and the
distinction between equilibrium internal pressure ﬂi(A=0)
and an instantaneous/frozen internal pressure ni(a) is
discussed in terms of the structuredness of water in
conjunction with the Lumry two-state model2 (see Chapter
12).

Interest in internal pressure arose from work
reported in Chapters 4 and 5 which dealt with kinetics of
reactions in binary 1liquid mixtures. Solvent-solvent
interactions in such systems play a 1large part in
influencing the magnitude and sign of kinetic parameters
and so quantities which probe such interactions may provide
a handle for predicting trends in these parameters.
Internal pressures can shed light on the structuredness of
solvent mixtures as demonstrated by the work of

Leyendekker3'4

and also Hyne et gl?. By examining the
internal pressure of water and deuterium oxide it was hoped
to go some way towards establishing a quantitative method
of examining kinetic parameters for reactions carried out

in binary mixtures.

10.2 pDefinition and Methods of Obtaining Internal Pressure

The internal pressure of a system can be defined by
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equation [10.1].

L =T Ip/AT), - P (10.1)

T = temperature /K

(ap/aT)v Rate of change of pressure with temperature at
constant volume, V.

p = external pressure /bar

According to Frank 7 equation [10.1] portrays the
external pressure, p, as a 'residual squeeze’ which must be
applied 1in order to balance the expansive tendency
represented by the equilibrium thermal pressure T(ap/aT)v
with the contractive nature of ni. The internal pressure is
the weaker force.

Equation {[10.1] can be developed using the isobaric
expansibility, «, and the isothermal compressibility, KT
which are defined by equations [10.2] and [10.3]

respectively.

a = (1/V)(aV/aT)p [10.2]
i.e. the rate of change of volume with temperature per unit

volume at constant pressure.

Kp = —(1/V)(3V/3p), [10.3]
i.e. the rate of change of volume with pressure per unit
volume at constant temperature. The negative sign makes Kp
a positive quantity. When the pressure is increased the

volume of all stable phases decreases and so (BV/ap)T is

always negative.
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Combination of equations [10.2] and [10.3] leads to
an expression for (ap/aT)v which 1is substituted into
equation [10.1] to form the more widely used expression for

Hi; equation [10.4].

o/Kqg = {(l/V)(3V/3T)p}/[(—1/v)(av/ap)T}
= (ap/aT)V ‘
= i = Tle/Kg) =P [10.4)

The isothermal compressibility is closely related to

the isentropic compressibility, « which is defined by

SI
equation [10.5].

Kg = —(l/V)(GV/ap)S [10.5]
i.e. the rate of change of volume with pressure per unit
volume at constant entropy, S.
The isentropic compressibility is a relatively simple
guantity to establish experimentally. It is calculated from
sound velocity, c¢, wusing the relationship described by

equation [10.6].

c? = 1/(kgp) [10.6]
c = speed of sound /m g1
p = density /kg n3
Kg = isentropic compressibility /N m—2

The relationship between Kg and Kp uses the
mathematical expression shown below in equation [10.7]

which transposes the conditions on a partial differential.
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(BZ/BX)U (GZ/BX)Y - (BU/SX)Y(BY/BU)X(BZ/BY)x [10.7)

By applying this to Kg and K
(aV/ap)s = (aV/ap)T - (GS/ap)T(aT/aS)p(QV/aT)p [10.8]

From a Maxwell relationship;

— (38/93p)q = (3V/3T)p

Also (aS/aT)p (Cp/T) where Cp is the 1isobaric heat

capacity. Hence;
av/d = (9 V/3T T avV/aT 10.9
(3v/3p)g (3V/3p)y + (AV/3 )p( /Cp)( / )p ( ]
Multiplying both sides by -(1/V) yields equation [10.10].

=> -(1/V)(3V/3p)g = -(1/V)(3V/3p),
--(1/V)(3V/3T)p(T/Cp)(aV/aT)p (10.10]

Using equations [10.3) and [10.5], equation [10.10] can be

written in the form of equation [10.11].

Kg = Kp — (1/V)(3V/3T)p(T/Cp)(3V/3T)p | [10.11])

From equation [10.2];

R
It

(l/V)(QV/aT)p

I}
v
Q
<

It

(8V/3T)p {10.12)
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Hence, equation [10.11] can be written in the form;

Kg = Kp = [(TVaZ)/Cp] [10.13]

or alternatively;

2 .
Kg = Kp = [(Te )/(Cp/V)] [10.14]

Where (Cp/v) is the isobaric heat capacity per unit volume
/3 k™! m™3. cCombination of equations [(10.6] and [10.14]
leads to an -equation from which Kp can be directly

calculated from sound velocity data.
2 2
Kp = [1/(c”p)] + [(Ta )/(Cp/V)] (10.15]

The expansibility, o, is wusually obtained from density

measurements over a series of temperatures at set pressure.

10.3 Experimental

Estimates of o and Kp were taken from the papers

published by Fine and Milleroa’9 who based the calculation
of these quantities on recast forms of equation [10.16].
2

pvo,/(v° - vP) = B + AP + AP [10.16]

where P the guage pressure (p-1) atmospheres

v® = volume of liquid at gowuge pressure 0(i.e 1 atm.)

vP = volume of liquid at gouge pressure P
B,A;,A, = temperature dependent parameters
Equations for v° were taken from the work of Kelllo. By
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rearranging equation [10.16] into a form which defines vP

it is possible to obtain equations for « and Kep -

vP = (v® - v°p)/(B + A.P + A.P%) [10.17]

1 2

From equation {10.2] o (1/V)(3V/3T)p. Hence by
differentiating [10.17] with respect to temperature and
multiplying by (1/Vp) an expression for o is derived in
terms of VO, Vp, B, A

A, and P.

1" 72

« kL - (l/Vp)(GVO/BT)p—(P(BVO/BT))/(Vp(B+A1P+A2P2))
- Pv°[((aB/aT)+P(aAl/aT)+Pz(aA2/aT))

/ (VPB4 ajp + Ajp%) %)) [10.18]
According to equation [10.3].

= — p p
kp = —(1/vP) (3vF/3p)
Therefore differentiating equation [10.17) with respect to

pressure yields the isothermal compressibility; equation

{10.19].

kp/bar™h = (vO(B-A,2%)) /(VP(B + AP + A,RP)%)  [10.19]
A FORTRAN program was written which modelled equations
[10.17], [10.18] and [10.19] to produce values of V, a and
Kp and then went on to calculate internal pressures using
equation [10.4], over the range 273.15< T/K <£373.15 and 0K
p/bar <100. Internal pressures were fitted using a linear

least squares technique11 to equation [10.20]), which is
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based on a Taylor expansion about internal pressure ﬂi(n,e)

at temperature T = © and pressure p = n.

m,(T,p)/bar

M, (n,®) + a,(/K)(T-0) + aj(/bar)(p-n)

+ a,(/k%)(1-0)% + ag(/K bar)(T-0)(p-n)

+ ag(/k? bar)(T-0)(p-n)

+ a,(/K bar®)(T-0) (p-n)*

+ ag(/bar?) (p-m)? + ag(/K3)(1-0)3 [10.20]

The parameters © and n were set to 323.15 K and 500 bar
respectively. This method differs from that wused by

12

Leyendekker who based an analysis on the Tait equation

written in logarithmic form13.

A listing of the FORTRAN program is included in
Appendix 6 Section 1. A separate FORTRAN program, included
as Appendix 6 Section 2, calculated temperatures and
pressures at which Vv is at a minimum i.e. the temperature

of maximum density (TMD). These data were fitted by the

method of linear least squares to equation [10.21].

THD = THD(273.15 K;P=0) + a;(/bar)P + a,(/bar’)p®  [10.21]
The latter program could be modified to calculate the
temperature at which for a set pressure the internal

pressure is equal to zero. These data were fitted using the

method of linear least squares to equation [10.22].

T(N,=0)(/K) = ay(/K) + a,(/bar)P + az(/barz)Pz
+ a3(/bar3)p3 [10.22]
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10.4 Results

Tables of internal pressures for water and deuterium oxide
are included as Tables 10.1 and 10.2 respectively. Figures
10.1 and 10.2 reproduce these data as plots of internal
pressure as functions of temperature and pressure.
Alternatively the temperature/pressure surfaces of the
internal pressure for both systems are included as Figures
10.3 and 10.4. A most interesting trend is marked by
negative internal pressure at low temperatures. This can be
understood at various levels. In the first explanation,
negative internal pressures are simply a consequence of
negative expansibilities. Water below the TMD contracts
with an increase in temperature. The second view point,
stresses an explanation in terms of molecular organisation
as discussed in a later section. At low temperatures Hi
increases but at high temperature the internal pressure
decreases with an increase in pressure. Hence, at around
313 K for water and 318 K for deuterium oxide n, is
particularly insensitive to pressure.

The validity of derived parameters with respect to
equation [10.20) was decided using F—testsl4 of the
variance at the 95% confidence limit. For water only the
first seven terms proved to be significant whilst for
deuterium oxide nine parameters were needed to accurately
model the temperature/pressure surface. These parameters
are reported in Tables 10.3 and 10.4 together with their
standard errors calculated from the diagonal of the
variance/covariance matrix.

Internal pressures calculated using equation {10.20]

were subtracted from the internal pressures calculated from
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Table 10.1

Internal pressures for water over the ranges 273.15<T/K< 373.15
and 0< P/bar < 1000 calculated using equation [10.4]*

P/bar

t 0 100 200 300 400 500 600 700 800 900 1000

-367 —-274 —184 —-94 -—-64 9 163 243 321 396 467
—-320 -230 -—140 53 RR) 17 199 278 355 428 498
-273 —-185 -98 -—12 7 155 235 KR 388 460 429
=227 —141  -55 29 11 192 271 348 422 492 560
-8t -97 -13 69 150 230 307 382 455 524 590
-135 -53 29 110 189 267 343 416 487 556 621

-90 -9 71 150 227 304 378 450 520 5817 651
—44 34 112 189 266 340 413 484 553 619 681

WIS == 0O
NOLOWLOWwm

4.0 (0.4) 77 153 229 304 n 448 518 585 649 712

4.5 45 120 194 268 341 413 483 551 617 681 741

5.0 89 162 235 308 3719 449 518 585 650 AR 7

5.5 133 205 276 347 416 485 552 618 682 743 801
10 520 576 632 689 746 802 858 912 964 1015 1064
15 928 970 1012 1055 1099 1143 1186 1229 1270 1310 1349
20 1319 1347 1377 1408 1440 1473 1505 1537 1569 1599 1628
25 1693 1710 1729 1750 1771 1794 1816 1839 1862 1883 1904
30 2052 2059 2069 2080 2092 2106 2120 2134 2149 2162 2175
35 2396 2395 2396 2399 2404 2410 2416 2423 2430 2436 2442
40 2727 2718 2713 2709 2706 2705 2705 2705 2705 2705 2705
45 3044 3029 3018 3007 2999 2992 2985 2980 2974 2968 2962
50 3348 3328 3311 3296 3282 3270 3258 3247 3236 3225 3214
55 3639 3615 3593 3574 3555 3538 3522 3506 3491 3476 3460
60 3917 3889 3864 3841 3818 3797 3777 3758 3738 3719 3699
65 4182 4152 4124 4097 4072 4047 4023 4000 3977 3954 3930
70 4436 4403 4372 4343 4314 4287 4260 4234 4207 4181 4154
75 4677 4642 4609 4577 4546 4516 4487 4458 4429 4399 4370
80 4906 4870 4825 4801 4768 4735 4704 4672 4640 4608 4576
85 5124 5086 5049 SO13 4978 4944 4910 4876 4842 4807 4773
90 5330 5291 5252 5215 5178  Sl41 5105 5069 5032 4996 4958
95 5525 5484 5444 5405 5366 5327 5289 5250 S211 5172 5133
100 5709 5666 5624 5583 5542 5501 5460 5420 5378 5336 5294

%t =(T-273.15)/K; internal pressures recorded in bar.
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Table 10.3

Derived parameters and their standard errors for equation
[10.20] which predicts the internal pressure of water
over the ranges 273.15¢ T/K <£373.15 and 0<& P/bar

<1000.
Parameter Estimate Standard Error
3 -1
a, 3.2772x10 8.514x10
a, /K 5.4214x101 2.173x10"2
a,/bar ~1.3345x1071 2.692x1073
a, /K ~1.9429x107% 5.822x10 1
ag/K bar ~1.1732x1072 5.055x10 >
a6/K2bar 1.4494x10 4 1.841x107°
a. /K bar 2 1.3946x10°° 1.472x10""
Table 10.4

Derived parameters and their standard errors for equation
[10.20] which predicts the internal pressure of deuterium
oxide over the ranges 273.15¢ T/K £373.15 and 0< P/bar
€1000.

Parameter Estimate Standard Error
a 3.0317x103 9.408x10 1
a,/K 5.9693x10! 4.461x10 2
ay/bar —9.4450x10:i 2.435x10:z
a,/K ~2.3523x10 5.489x10
ag/K bar ~1.2970x10 2 4.572x107°
ag/Kybar 1.9410x10:: 1.665x10:3
a;/K bar 1.6969x10_5 1.464x10_6
a8/b§r 2.8231x10_4 5.360x10_5
ay/K 4.3171x10 2.175x10
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the data of Fine and MilleroB'9

to produce plots of the
residuals at each temperature and pressure for each system
(Figures 10.5 and 10.6).

A maximum error of + 35 bar was reported on equation
[10.20]) for both water and deuterium oxide systems.

The temperature of maximum density decreases in an
almost linear fashion with increase in pressure; Figure
10.7. The derived parameters to equation [10.21) with their
standard errors are presented in Table 10.5. A similar
situation is observed for the dependence of pressure on
temperatures corresponding to the condition that IIi = 0;
Figure 10.8. A Table of the linear least squares fitted
parameters to equation [10.21] together with their standard

errors are included as Table 10.6.

10.5 Discussion

For a closed single phase system the First and Second Laws
of Thermodynamics describe the change in thermodynamic

energy, duU, by equation [10.23].

du = TdS - pdv - AdE [10.23]

TdS describes the change in entropy, dS, at temperature T;
pdV describes the change in volume, dVv, at pressure p and
AdE is the product of the affinity for spontaneous change,
A, and the change in composition/organisation, dE.

In most cases interest is restricted to closed
systems at fixed temperatures and pressures in a state of
thermodynamic equilibrium. A corresponding minimum in the

Gibbs function, G; the 1latter is defined by equation
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Temperature of maximum density, calculated using egquation

[10.21] against temperature for (a) water and (b) deuterium
oxide. '
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Derived parameters and

[10.21] which predic

with change in pressure

Table 10.5

their standard errors for equation

ts the temperature of maximum density

for water and deuterium oxide.

Parameter water deuterium oxide
t.m.d(P=0)/celsius 3.9852 * 0.0012 11.4161 + 0.0323
lozal/bar -1.9964 * 0.0018 -1.9543 * 0.0322
106a2/bar2 -5.5560 +* 0.0528 ~1.9843 + 0.7315
Standard error
on t.m.d/celsius 0.0014 0.0340

Table 10.6

Derived parameters and their standard errors for equation
[10.22] which predicts the temperature atwhichTIi=0 with

change in pressure for both water and deuterium oxide.

Parameter water deuterium oxide
ay/K 277.1337 + 0.0002 284.3354 + 0.0002
10%a, /bar ~1.9882 * 0.0007 ~1.7630 * 0.0005
10%, /bar? ~6.2307 t 0.0514 ~5.8061 * 0.0312
10%a;/bar’ 1.3899 % 0.1049 9.4678  0.0518
104 Standard error

2.4701 2.7018

on T(Ri=0)/K
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[10.4]).
G=U}+pv - T.8 [10.24]

At equilibrium the affinity for spontaneous change, A, and
the change of composition/organisation, df, are zero.

In displacing a given system from a state of
equilibrium (I) to a nearby state (II) there are two
limiting pathways which need <consideration. (i) The
affinity for spontaneous change remains constant at zero
and the change in composition/organisation of the system is
cha‘racterised by Eeq(I)-)E,eq(II) where A is 2zero in both
states i.e. constant A; an equilibrium transformation. (ii)
There is no change in composition / organisation and the
affinity for spontaneous change is displaced A®9(1)-a(11)
i.e. an instantaneous/frozen process at fixed {, where df =
0.

This point establishes two separate definitions which
describe the internal pressure in such situations;

(i) Hi(A=O) (3u/3v) = T(a(A=0)/KT(A=0)) - p [10.25]

T,A=0
and
(ii) n, (&) (3U/3V)T’E = T(a(E)/KT(E)) - P [10.26]
Equation [10.25]) defines the equilibrium internal
pressure using the equilibrium expansibility and
equilibrium isothermal compressibility. The latter

8,9 and

quantities are those reported by Fine and Millero
used as the basis of the preceding analysis. Equation

[10.26] however, defines the instantaneous/frozen internal
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pressure calculated from the corresponding
instantaneous/frozen expansibilities and isothermal
compressibilities. Unlike «a(A=0) and KT(A=0), a( &) and
Kp(&) are not readily available. However kg (&) can be
obtained from ultrasonic data through the closely related
property, KS(E) the instantaneous isentropic
compressibility. The latter is identified by limit(véw)Ks
where v is the frequency of the sound wave. Endo15
estimates KT(E) at ten degree intervals over the range
273.15¢ T/K <373.15 at ambient pressure together with
estimates of «o(f) for both water and deuterium oxide

(a(£)[H,0) = 1.1822 x 1073 k! and «(%)(D,0] = 1.03244 x

1073 K_l). Using these values and equation [10.26], M0, (&)
is calculated, and the resulting trend with temperature, at
ambient p, is included as Figure 10.9 together with plots of
ni(A=O) over the same range. A third quantity, the

relaxational internal pressure, Hi(relax), is defined by

equation [10.27].
Hi(relax) = Hi(A=0) - Hi(E) [10.27]

ni(relax) can be regarded as being the configurational/
relaxational component of the equilibrium internal
pressure. For both systems Hi(A=0) approaches Hi(E) with
increase in temperature i.e. the relaxational component of
ni(A=0) increases with increase in temperature. This points
to the fact that structural changes, most 1likely due to
H-bonding, occur in the two systems which can be understood
if ni(E) is regarded as representing the attractive

component of H-bonding and Hi(relax) as representing the
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repulsive part of H-bonding.

Water at low temperatures has most of its hydrogen
bonding framework intact. From this it could be argqued that
in this situation the hydrogen bonds are repulsive in
nature i.e. when a hydrogen bond is formed between two
water molecules their centres of mass are pushed apart. In
this situation ﬂi(relax) dominates ni(A=0) leading to an
overall negative equilibrium internal pressure. However as
the temperature is increased, so there is a decrease in the
number of hydrogen bonds i.e. Hi(relax) becomes more
positive as the attractive component of H-bonding begins to
dominate - giving increasingly positive equilibrium
internal pressures.

This explanation is in agreement with the Lumry
two-state model of water2 (see Chapter 12 Section 12.2). At
lower temperatures the short-bonded form with its stiff,
repulsive bonds is most abundant. With increase 1in
temperature, increases in the degree of bending,
librational and rotational freedoms of the H-bonds, causes
more H-bond breaking and a subsequent domination of the
long-bond form.

This explanation also helps to explain the trends of
"i(A=0) in Figures 10.1 and 10.2 respectively.

The trend of TMD moving to lower temperatures with an
increase in pressure is also consistent with the Lumry
model. The two-state equilibrium between the short-bonded
and long-bonded structures moves over to favour the
long-bonded, low volume, high density state in a similar
manner to the effect of an increase in temperature at fixed

pressure, as described -earlier. Confirmation of this
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conclusion comes from the fact that there is an increase in
nearest-neighbour 0-0 co-ordination number with an increase
in pressurelG, as determined by X-ray diffraction methods.
From a kinetics point of view this work this work has
pointed towards using Hi isobars as a reference state for
reactions in aqueous solutions. Usually reactions in
aqueous solution are followed to obtain rate constants as a
function of temperature and pressure. A criticism of this
approach is that water at temperature Tl' (at constant
pressure), is a different media from water at temperature
Ty (at constant pressure), merely from the extent of
hydrogen bonding present in each system. As examined in
this Chapter an interesting ni isobar to use as a
reference state would be that at which Hi(A=0) is equal to
zero. This then describes states in which the external
pressure, p, is equal to the equilibrium thermal pressure,

T(93P/3T) at constant volume and affinity equal to

v,A=0
zero. There 1is however, at present a distinct 1lack of
kinetic data along the Hi(A=0) isotherm.

Preliminary investigations into the possibility of
using n, as a reference state for aqueous solutions are
promising, as demonstrated by Figure 10.10 which shows a
plot of 1n kObs against Hi(A=O) for the neutral hydrolysis
of phenyldichloroacetate. The relationship is linear and

demonstrates that the hydrolysis reaction is a function of

the organisation of the solvent structure.
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CHAPTER
11

Excess Pressures for Aqueous Solutions



11.1 Introduction

The task of accounting for trends in kinetic parameters for
reactions in aqueous solution in the presence of
electrolytesl’2 provided the stimulus for work presented in
this Chapter. Many authors comment on the intense pressures
operating on solvents in salt solutions, usually aqueous
solutions. However the basis for this statement is not
always clear and hence the aim of this study was to examine
the definition of this ’'excess pressure’. For the most
part, Gibson's3 concept of an excess pressure, discussed by
Harned and Owen4, is applied in the analysis of the
properties of solutions containing salts. The definition
used by Gibson is examined below, together with definitions
of excess pressures, pE, used by Leyendekkers's.

Originally an excess pressure was related to
solvent-solute interactions in solution. Tamman (cf. refs.
3 - 6) suggested that water in an aqueous salt solution is
subject to an additional pressure, pE, dependent on solute
type and concentration. However both the sign and magnitude
of an excess pressure are shown to depend on the definition
of reference volumes of the solvent and the solute. At one
extreme pE characterises solute-solute interactions whilst
at the other pE takes account of solvent-solute
interactions. Therefore the main aim of the work described
here was to explore different methods for calculating
excess pressures. These pressures express in different ways
the impact of solute-solvent and solute-solute interactions
in solution.

In developing this subject it is useful to examine

volumetric properties of solutions and to define a
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volumetric property, identfied by the symbol 'O’ and called

the occupied volume.

11.2.1 The Occupied Volume, O

The underlying hypothesis can be summarised in the
following terms. Within a given solution each mole of
solute occupies a volume Oj(sln;T;p) and each mole of
solvent occupies a volume Ol(sln;T;p). The occupied volume
for the pure liquid solvent is assumed equal to the molar

volume of the pure liquid solvent.
*
Ol(l;T;p) =V (1;T;p) (11.1])
In a solution molality mj, limit(mj+0) Ol(sln;T;p) =
Vl*(l;T;p). One aim of this Chapter is to show that a
calculated excess ©pressure depends strongly on the

definition adopted for occupied volumes.

11.2.2 Volumetric Properties

In terms of a thermodynamic description, the volume of a
solution prepared using 1 kg of solvent and mj moles of

solute-j is given by equation [11.2].

V(sln;T;p;wl/kg=1) = (1/M1)V1(sln;T;p) + mjVj(sln;T;p)
[11.2]
M1 is the molar mass of the solvent; V1 is the partial
molar volume of the solvent and Vj is the partial molar
volume of the solute. The latter two properties are defined

by the partial derivatives;
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V,(sln;T;p)

[3V(sln;T;p)/2n (11.3]

1]nj;T;P

Vj(sln;T;p) [8V(sln;T;p)/8nj] {11.4)

nl;T;p
Vl(sln;T;p) is the differential change in the volume of the
system when dn1 moles of solvent are added and Vj(sln;T;p)
is the change in the volume of the system when dn, moles of
solute are added. The following definitions are important
to equation [11.2].
limit(m;20) Vy(sln;T;p) = ij(sln;T;p)
and Limit(m;50) V,(sln;T;p) = v, " (1;1;p) [11.5]

Hence for an ideal solution;

V(sln;T;p;id;w,/kg=1) = (l/Ml)Vl*(l;T;p) + mjij(sln;T;p)
(11.6])
Vl*(l;T;p) and ij(sln;T;p) are reference volumetric
properties for the solvent 1 and solute-j respectively. The
quantities Vl(sln;T;p), Vj(sln;T;p), Vl*(l;T;p) and
ij(sln;T;p) are unambiguous and properly defined

thermodynamic variables.

11.2.3 Apparent Molar Volumes

The apparent molar volume of solute-j in a solution
containing 1 kg of solvent, ¢(vj), is defined by equation
[11.7].

V(sln;T;p;w,/kg=1) = (1/M )V, (1;T;p) + md(vy)  [(11.7)

where by definition limit(m;20) 4é(vy) = ¢(vj)°° =

ij(sln;T;p). In equation [11.7]) the non-ideal properties
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of the solution are loaded onto the solute. If the solution
is ideal then ¢(vj) is replaced by ¢(vj)m or ij. In other
words the non-ideal properties of the system are described
by the difference ¢(vj)—¢(vj)°. Alternatively an equation
can be written to load the non-ideality of the solution
onto the solvent using ¢(v1), the apparent molar volume of

the solvent.

V. (sln;T;p) [11.8]

V(sln;T;p;wl/kg=1) = (1/M1)¢(v1) + mJ j

The partial molar volume of solute-j and the apparent molar
volume of the solute are linked through equation [11.9].

(This is obtained as the differential of equation ([11.7]

with respect to mj)

Vj(sln;T;p) = ¢(vj) + mj[a¢(vj)/amj]T;p [11.9]

11.2.4 Calculation of an Excess Pressure, pE, Using the

Tait Equation.

A given solution contains solvent and solute, molality m..
As a starting hypothesis, it is assumed that one mole of
solvent in this solution occupies a volume Ol(sln;T;p). The
question of how Ol(sln;T;p) is defined 1is 1left for the
moment. It is also assumed that for a given solution
Ol(sln;T;p) differs from the molar volume Vl*(sln;T;p).
Therefore the excess pressure 1is calculated from the
pressure (p+pE) at which the molar volume of pure solvent,
Vl*(l;T;p+pE) equals Ol(sln;T;p). Hence an equation of
state is required for the solvent - and this role is

7

generally filled by the 1logarithmic form of the Tait

~-212-~



equation. In the case of water and aqueous solutions;
* *
—{V1 (l;T;n)—V1 (1;T;p)}) = dlln[(d2+n)/(d2+p)] [11.10]

This equation is satisfactory for water at 298 K over the
pressure range 1 to 1001 bar.

In the definitions of excess pressure explored later
in this Chapter the Tait equation is used in a form which
includes the occupied volume of the solvent in a given

solution.
—{Ol(sln;T;p)—Vl*(l;T;p)} = dlln[(d2+p+pE)/(d2+p)] [11.11]

The parameters dl and d2 were calculated using Fine and

Millero's8

molar volume data for water over the range 1¢
p/bar <1001 at 298.15 K. The calculation was based on
equation (11.10] using a FORTRAN program written by
Dr.M.J.Blandamer. The program used a Gauss—-Newton

minimisation technique to obtain estimates of d1 and d,.

(2.46696x10°° m3 mol™! and 2.99339x103 bar respectively)
These estimates are close to those reported by
LeyendekkerG.

11.2.5 Solutions

Combination of equations [11.2]) and [11.7] yields equation

(11.12].
*
-lvy(sln;T;p)-v, (1;Tip)] = mjmllvj(sln;T;p)—¢(vj)l (11.12]

This interesting equation 1links the properties of solvent
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and solute in a given solution, molality mj. In the
limit(mj+0) both sides of equation [11.12] tend to =zero.
For an ideal solution Vl(sln;T;p) = Vl*(l;T;p). If the
occupied volume for the solvent is the same as the molar
volume, the Tait equation (equation [11.10]) predicts zero
excess pressure for an ideal solution. This conclusion is
inconsistent with the concept of pE discussed by Gibson and
hence other methods of defining volumetric properties of
both solute and solvent are required.

Turning to equations {11.2], [11.7]) and [11.8] it is
interesting to note that V(sln;T;p;wl/kg=1) has been
defined in three separate ways, each description taking
account of the solute and solvent in different ways.
Stepping outside the terms of reference of classical
thermodynamics the situation can be summarised in the form

shown in equation [11.13}.

V(sln;T;p;wl/kg=1) = (1/M1)V1(?) + mjVj(?) [11.13])
Equation [11.13] does not describe how the volumetric
properties of the solvent or solute are defined. Granted

that this representation 1is possible then an excess

pressure can be calculated from the equation;
* E
-[V,(2)=V; (2)] = d;1n[(dy+p+p ) /(d,+p)] [11.14)

Clearly the size and magnitude of pE must depend on the

particular definition adopted for Vj(?).
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11.2.6 Addition of Solute to Solvent

The limiting partial molar volume, ij, is independent of
solute molality, mj, solution and hence remains constant as
more solute is added to 1 kg of solvent. However, consider
the situation in which a solute-j is added gradually to 1
kg of solvent. In nearly all instances the molar volume of
the solvent is likely to change. The extent of this change
is directly 1linked to the intensity of solute-solvent
interactions within the system. The change in volume can be
understood in terms of incorporation of solvent into solute
cospheresg. Hence as the molality of solute increases the
occupied volume of the solvent changes and so referring
back to the Tait equation the excess pressure pE reflects
the solvation characteristics of the solute.

For an ideal solution the volume occupied by the
solvent is described by the symbol Ol(sln;T;p;id). Hence
for an ideal solution with a given V(sln;T;p;id;wl/kg=1)
and defined Ol(sln;T;p;id) the occupied volume of the
solute, Oj(sln;T;p;id), can be calculated through simple

arithmetic.

V(sln;T;p;id;wl/kg=l) = (l/Ml)Ol(sln;T;p;id)

+ ijj(sln;T;P;id) [11.15)])

An excess pressure pE is calculated through the difference
[0, (sln;T;p)-v,"(1;T;p)] and to obtain this difference an
estimate of the occupied volume of the solute, Oj(sln;T;p),
is required. In some treatments it is assumed that the
occupied volume of the solute is independent of molality

i.e. the same for real and ideal solutions.
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i.e. Oj(sln;T;p;id) = Oj(sln;T;p) [11.16])

Thus for a real solution equation [11.15] can be rewritten

in the form;

V(sln;T;p;wl/kg=1) = (l/Ml)Ol(sln;T;p) + mjoj(sln;T;p)
(11.17]
Hence for a real solution combination of equations [11.7]

and [11.17]) yields equation [11.18].
*
-[0;(sln;T;p)-v; (1;T;p)] = ijlloj(sln;T;p)—¢(vj)] (11.18])

Deviations of the volumetric properties from ideal are
accounted for in terms of Ol(sln;T;p) on the left hand side
of the equation and by ¢(vj) on the right hand side of the
equation. This equation highlights a contribution to the
excess pressure arising from non-ideal solute-solute
interactions as well as the solute-solvent interactions
within the system. If all solute-solute interactions could
be turned off, then this would result in a pressure pE(id).
Turning to equation [11.18]) if pE is related to the
difference [Oj(sln;T;p)—¢(vj)] then the corresponding
pE(id) quantity could be calculated from the difference
[Oj(sln;T;p)—¢(vj)w]. In effect the difference in the
excess pressure caused by solute-solute interactions (i.e.

pC-pE(id)) is directly related to [¢(vj)-¢(vj)”1.

11.3 Methods of Obtaining Excess Pressures

11.3.1 Gibsons Procedures
3,10

Gibson identified two procedures for calculating
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excess pressures. The first approach takes into account
contributions made by the volumes of solvent Yl and solute
Yz in a solution prepared from Wy kg of solvent and wj kg
of solution. ¥, represents the volume of pure liquid at a
pressure (l+pE)/bar and Yj represents the volume which 1 kg
of solute contributes to the volume at a pressure p/bar =
1.0. Vl*(l;T;wl/kg=1;p/bar=l.0+pE) is the volume of 1 kg of
pure liquid 1 at temperature T and a pressure 1.0+pE. An

equation for the volume of the solution can be written;

V(sln;T;p/bar=1.0;w +ws) = w,V, " (1;T;w, /kg=1;p/bar=1.0+p")
+ ijj(sln;T;wj/kg=l;p/bar=1) {11.19]

If this solution had a total mass of 1 kg then equation

[11.19] can be written in the form;

V(sln;T;p/bar=1.0;(wl+wj)/kg=1)
* E
[wl/(w1+wj)]V1 (l;wl/kg=l;T;p/bar=1+p )
+ [wj/(wj+w1)]Yj(sln;T;wj/kg=l;p/bar=1) [11.20]

If the excess pressure, pE, is independent of pressure, p,
then equation [11.20] can be written for a solution under

an external pressure of 1000 bar.

V(sln;T;p/bar=103;(wl+wj)/kg=1)

*
= Ly /uy+ug) 1V, (l;T;wl/kg=1;p/bar=103+pE)

+ [wj/(wj+w1)]Yj(sln;T;wj/kg=1;p/bar=103) [11.21]

The difference in volumes of the solutions at p/bar = 1.0

.and p/bar = 1000 is given by equation [11.22].
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ApV(sln;T;(wl+wj)/kg=l) = )
[wl/(w1+wj)]ApV1 (l;T;wl/kg=1)
+ [wj/(wj+w1)]Aij(sln;T;wj/kg=l) [11.22]
where;
* * 3. _E
Ale (l;T;wl/kg=l) = V1 (l;T;wl/kg=1;p/bar=10 +p )
- Vl*(1;T;w1/kg=l;p/bar=l+pE) [11.23]

and

Aij(sln;T;wj/kg=l) = Yj(sln;T;wj/kg=1;p/bar=1000)
- Yj(sln;T;wj/kg=1;p/bar=1) {11.24]

Gibson developed this first analysis from two standpoints;
(1) the difference in compression of the solution and (2)
the difference in compression of the solvent. The first
method is the more direct and is based on equation [11.22].
Aij(sln;T;wj/kg=l), the compression of the solute is
replaced by Apvj*(sln;T;wj/kg=l), the compression of the
pure solute, and then on the basis that this term is
negligibly small compared to the compression of the
solution and solvent, is set equal to zero. Hence if the
change of volume of the solution is known for a pressure

change of 1 to 1000 bar, the excess pressure is calculated

from the Tait parameters.

Apv(sln;T;(w1+wj)/kg=1) = dlln[(d2+p+pE(G1))/(d2+p)]
(11.25]

=> p"(G1) = [(dy+plexp(8 V(sIn;T;(wy+ws)/kg=1)/d;}1~(d,+p)
(11.26]

However in the absence of satisfactory data, describing the
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volume of solutions with change in pressure, an independent
estimate of the occupied volume of the solute, Oj’ is
required. Equation [11.2], which characterises the volume
of the solution, is rewritten in terms of the occupied

volumes of both the solvent and solute.

V(sln;T;w,/kg=1) = (l/Ml)Ol(sln;T;p;GZ) + mjoj(sln;T;p;GZ)
[11.27]

SQCOAA
According to Gibsons”method, Oj(sln;T;p;GZ) is based on the
assumption that a solute melts on going into solution and
expands by 10%. Hence the volume of the solute in solution

using Gibsons second approach is assumed to be 10% greater

than the volume of the pure solute.
0,(sln;T;p;G2) = 1.10[vj*(s;T;p)1 [11.28]

This approach reflects Gibsons interest in the properties
of salt solutions. However there is no reason why this
approach cannot be applied to liquid solutes in solution
e.g. DMSO. For consistency it is assumed that the occupied
volume of a given liquid solute is equal to the volume of

the corresponding pure liquid.
Oj(sln;T;p;GZ) = Vj*(l;T;p) {11.29]

Equation [11.28] is based on the assumption that for all

systems Vj*(l;T;p) l.10[vj(s;T;p)]. Alternatively the
volume of the solution can be expressed in terms of the
apparent molar volume ¢(vj), see equation [11.7]. Combining

equations [11.7] and [11.27] produces equation ([11.30].
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*
-[0,(sln;T;p;G2)-V,; (1;T;p)] ijlloj(sln;T;p;GZ)—¢(vj)]

[11.30]

Hence from the Tait equation;

M1[O (sln;T;p; G2)—¢(v )]

m, d,1n[(d,+p+p"(G2))/(d,+p)]

(11.31)

and

P"(62) = (d,+p) (explmy, [0(sln;T;p;G2)-4(v,)1/d)1-1)

[11.32]
The excess pressure for a real solution, pE(GZ), assumed to
be pressure independent 1is calculated wusing equation
[11.32]. An ideal excess pressure pE(GZ;id) can be
calculated from equation [11.33] in which the apparent
molar volume ¢(vj) is replaced by the apparent molar volume

at infinite dilution ¢(vj)w.

pE(G2;id)= (d2+p)[eXP{ijIIOj(sln;T;p;GZ;id)-¢(vj)wl/dll—ll

[11.33]
Both pE(GZ) and pE(GZ;id) depend on the molality of the
solute and a plot of pE(GZ) against molality of added

solute, mj, is almost linear; Figures 11.1 to 11.6.

11.3.2 Relationship of the Part1a1 Molar Volume V (sln;T;p)
to the Excess Pressure p (GZ)
Equation [11.27] can be written in the form4;

V(sln;T;p;w,/kg=1) = (1/M;)[0,(sln;T;p;G2) - Vl*(lsT:p)]
+ (1/m)v, " (1;T5p) + m,05(sln;T;p;G2) [11.34]

Using the Tait equation;
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V(sln;T;P;Wl/k‘J:l) = (1/M1)V1*(1;T;P) + mjoj(81n;TFP;G2)

(dl/Ml)ln[(d2+pE(G2)+p)/(d2+p)] [11.35]

Differentiation of equation [11.35] with respect to the
molality of the solute, mj, at constant T and p yields an
expression for the partial molar volume of the solute in
terms of the excess pressure pE(GZ). The occupied volume of
the solute, Oj, is assumed to be independent of solute

molality.

L. - E E
vj(SlnyTrP) = [(dl/Ml)/(d2+p (G2)+P)][3p (Gz)/amj]T;p
+ Oj(sln;T;p;GZ) (11.36]

where [apE(GZ)/amj] is calculated from the gradient of

T:p
the plot of pE(GZ) against mj i.e. the differential of
equation [11.33] with respect to the molality of the

solute. From equations [11.9) and (11.29]};

E *
[ap™(G2) /am ]y, o = (dy+p)[(My/d)) (v, (1;T;p)-V (s1n;T;p)
*
exp{mjﬂl{Vj (1;T;i)—¢(vj)}/dl}] (11.37])
By replacing Oj(sln;T;p;GZ) with Vj (1;T;p) (see equation
[11.29]) a relative partial molar volume is obtained using

equation [11.36].

* E
Vj(sln;T:p)—Vj (1;T;p) = -[(d;/M;)/(d,+p+p (G2)]

E
[3p (GZ)/amj]T;p [11.38]

11.3.3 Compressions of Solutions, K(sln;T;p;w,/kg=1) and

the Excess Pressure, pE(GZ).

Differentiating equation [11.37] with respect to pressure
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at constant temperature, T, and molality of solute, mj,
leads to an equation relating the compression of the
solution and the solute to the excess pressure pE(GZ). In
this case the occupied volume of the solute,
Oj(sln;T;p;GZ), is assumed independent of pressure. The
excess pressure pE(GZ) is also assumed to be pressure

independent. Then;

[SV(sln;T;P;wl/kg=l)/8p]T;mj = (1/1‘411)[Z)Vl*(l;T;p)/'ap]T;mj
[(dy/M))/(dy+p+p®(G2)] + [(d; /M )/(dy+p)]

+ mj[aoj(sln;T;p;GZ)/ap] {11.39]

T;mj
The assumption that pE(GZ) is pressure independent is an
approximation on the grounds that pE(GZ) is related to the
partial molar volume of the solute, Vj(sln;T;p) by equation
([11.38]. An obvious difficulty arises concerning the
assumption which sets Oj(sln;T;p;G2) independent of
pressure. If Gibsons arguments are accepted whereby
Oj(sln;T;p;GZ) is replaced by Vj*(l;T;p) then it is a poor
assumption which sets this differential equal to zero. This
is supported by the realisation that the basis of the
analysis is the dependence of Vl*(l;T;p) on pressure (see
the Tait equation, equation [11.10]). Yet the procedures
require the dependence on p of Oj(sln;T;p;GZ) is equal to
zero. However accepting these assumptions equation [11.39]

can be written in the form;

~[(dy/M})/(dy+p+p®(G2)] = [3V(sIn;Tipswy/kg=1)/3ply. .

- (1/m)1av, " (1;p)/3ply - [(d /M) /(dy+p)]  [11.40]
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Hence an equation can be written in terms of the

compression of the solution and the solute.

-1(d;/My)/(dy+p+p©(G2))] = -K(sln;T;wy /kg=1)
+ (1/m)K " (1;T5p) - [(dy/M))/(dy+p)]  [11.41]
where;
K(sln;T;p;wl/kg=1) = —[’c)V(sln;T;p;wl/kg=1)/ap]T.mj [11.42)
and;
K, (1;7;p) = -(av, " (1;T;p)/0p]y [11.43]

Using the compressions of the solutions, and equation
[11.41]), the dependence of pE(GZ) on solute molality, mj,
can be obtained. Using the partial molar volume of the
solute Vj(sln;T;p) (see equation [11.36]) an ’estimate’ of
the occupied volume4 Oj(sln;T;p;GZ) can be obtained without

the need of any predefinition.

11.3.4 Procedures Used by Leyendekker

Leyendekker obtained an excess pressure pE(L) based on an

equation similar to equation [11.36].

V,(sln;T;p) = 0,(sln;T;p;L) - [(dy/M))/(dy+p+p"(L))]
E
[3p (L)/amj]T;p ({11.44)

where Oj(sln;T;p;L) is the occupied volume of the solute
according to Leyendekker and where Oj(sln;T;p;L) and pE(L)
are both assumed to be pressure independents. By definition

the compression of the solute is defined by equation
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[11.45].

Kj(sln;T;p) = —[BVj(sln;T;p)/ap] [11.45]

T;mj

where limit(m;>0) K;(sln;T;p) = Kj‘”(sln;T;p). Hence
differentiating equation [11.44] with respect to pressure
at constant temperature and molality provides an

alternative description of the compression of the solute.

E 2 E .
Kj(sln;T;p) = -[(dy/M)/(dy+p+p (L))" 11 2p (L)/amj]T,p

[11.46]

Thereforell;

© 2 E o
Kj (sln;T;p) = -{(d,;/M;)/(d,+p)"][3p (L)/9mj] (11.47)

T;p
Both equations demand that at fixed temperature and
pressure limit(mjAO) [Z)pE(L)/‘amj]T.p # 0. Further,
limit(mj+0) Vj(sln;T;p) - Oj(sln;T;p;L) = ij(sln;T;p) -
Oj(sln;T;p;L). Equation [11.44] can thus be rewritten in

the form;
Oj(sln;T;p;L) = ij(sln;T;p) - (d2+p)Kjw(sln;T;p) {11.48]

Equation [11.48] thus provides a definition for the
occupied volume of the solute in terms of the limiting
partial molar volume and it’'s partial differential with
respect to pressure, the 1limiting compression of the

12,13

solute K.". There is an element of uncertainty

]
involving the above definition of the occupied volume of
the solute, particularly the pressure independence of the

said quantity. However, this definition does provide a way
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forward to obtain the excess pressure pE(L). From equations

[11.30] and [11.31]};

*
—lol(Sln;T;P;L)—Vl (l;T;p)] = ijlloj(Sln;T;p;L)_¢(Vj)]
= d;In[(d,+p+p"(L)/(d,+p)] [11.49]

Hence using equation [11.48]};

mjnltvj (sln:T:p)—(d2+p)Kj (sln;T;p)-¢(vj)l
= d,In[(d,+p+p"(L))/(dy+p)] [11.50]

Therefore the excess pressure pE(L) is defined by equation

[11.51].

pZ(L) = (dy+p)lexp(msn, (V7 (sln;T;p)
- (dy+p)K;(s1n;Tip)-¢(vy)}sdy)-11  [11.51]

The gradient of a graph of pE(L) against molality is

defined by the differential of equation [11.51} with

respect to molality, mj, at fixed temperature and pressure.

E . ® . . _— . .
[ap (L)/amj]T;p = [Mllvj (Slanrp) Vj(S]-anIp)
~(d,+p)K;"(s1n;T;p) 11/1d;/(dy+p+p®(L)) ] [11.52]

Hence limit(mjéﬁ)
E 2 ©
[ap~(L)/dmsly. = [-My(dy+p)"Ky (sln;T;p)l/dy  [11.53]

A second procedure used by Leyendekker to obtain an excess

pressure pE(LZ) also uses equation [11.49]). The method uses
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the difference between the partial molar volumes at 1 and
1000 bars and assumes that the occupied volume,
Oj(sln;T;p;LZ) and the excess pressure pE(LZ) are pressure

independent.

¢(vj;p/bar=103) - ¢(vj;p/bar=1) =
E 3 3, E
(dl/mjml)ln[{d2+1+p (L2)}(d2+10 )/{d2+10 +p (L2)}(d,+1)]
[11.54])
Hence an excess pressure pE(LZ) is defined by equation

[11.55].
pE(LZ) = [dzz(x—1)+1001d2(x—1)+1000(x—1)]/[d2+1000—d2x-x]
[11.55]
where X is given by;

X = exp[ijl{¢(vj;p/bar=103—¢(vj;p/bar=l}/d1] [11.56]

11.3.5 Alternative Methods of Obtaining Excess Pressures

So far in this Chapter the methods of obtaining excess
pressures have depended on the prior calculation of a
volumetric property of the solute i.e. the occupied volume
of the solute Oj(sln;T;p). However in this Section an
attempt is made to calculate an excess pressure using no a

priori calculations.

(1) p°(4-v)
Combination of equations [11.2] and [11.9] leads to an
equation for the volume of the solution in terms of the

partial molar volume of the solute.
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V(sln;T;pjw,/kg=1) = (1/M;)V;(sln;T;p)
. . .[3 .)/om. 11.57
+ mJ[¢(vJ)+mJ[ ¢(v3)/ mle;p] ( )
In addition the volume of solution, V(sln;T;p;wl/kg=1), and
the partial molar volume, ¢(vj), are related to the
reference volume of the solvent, Vl*(l;T;p), by equation

(11.71].

Vl*(l;T:p) = (1/M1)[V(sln;T;P;W1/kg=1)-mj¢(Vj)] (11.58])

Combining the latter two equations yields an equation in

the form of the Tait equation.
* - 2
—[Vl(sln,T,p)-V1 (1;T;p)] = Mlmj [8¢(vj)/3mj]T;p [11.59]
Hence using equation [(11.10];
2 E
Mlmj [8¢(vj)/amj]T;p = dlln[(d2+p (¢—vj)+p)/(d2+p)] {11.60)
or alternatively;
E 2
P (¢—Vj) = (d2+P)[eXP((Mlmj [3¢(Vj)/3mj]T;p)/d1]-1] (11.61]
This definition is precise and as an added advantage the
difference Vl(sln;T;p)—Vl*(l;T;p) is an unambiguous
thermodynamic property the excess volume of the solvent in
solution, v,%(sln;T;p). If v,(sln;T;p)<0 then the solvent
is compressed because pE(¢—vj)>0 due to solute-solute
interactions. Similarly if VlE(sln;T;p)>0 then the excess

pressure is less than zero and the solvent has expanded due

to solute-solute interactions.

-227-



(ii) p®(é-v,)

A second procedure obtains an excess pressure, pE(¢—v1),
through the apparent molar volume of the solvent, ¢(v1).
The volume of the solution is expressed by two equations
one in which the non-ideality of the solution is loaded
onto the solute and the other in which the non-ideal
properties of the solution are placed onto the solvent (c.f

equations [11.7] and [11.8}).

(1/M)4(vy) + v "(sln;Tip) = (1/M)V; " (1;Tip) + myd(vy)
[11.62]
* ©
=> ¢(vy) = Vv, (1;Tip) = ij1[¢(vj)—Vj (sln;T;p)]) (11.63]

Hence using equation [11.14];

o E
ij1[¢(Vj)_vj (Sln;T;P)] = dlln[(d2+P+P (¢—V1))/(d2+P)]
[11.64)
Therefore the excess pressure pE(¢—v1) is defined by

equation [11.65].

pE(¢—v1) = (d2+p)[eXP{Mlmj[¢(vj)—Vj°]/d1}—ll [11.65]

The effect of solute-solute interactions is measured in the
above equation by the difference [¢(vj)—vjm(sln;T;p)]. In
the limit(mjAO) [¢(vj)—vjm(sln;T;p)] = 0 and pE(¢—v1) = 0.
A plot of pE(¢—v1) against molality is thus predicted to
have a gradient given by -equation [11.66]) at fixed

temperature and pressure.

jm(Sln;T;p)] =

14, [3p" (4-v)/om] . 1/(dy+p" (4-v) ) +p)

M1[¢(Vj)+mj[a¢(vj)/amj]T;p‘v
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Hence using equation [(11.9];
E ® . _ oo
[3p (¢_V1)/amj]T;p = (Ml/dl)lvj (Slanrp) vj(Sln,TrP)]
[d,+p®(4-v,)+p] [11.66]

In the limit(m.~0) [3pT(¢-v,)/3m.] - 0 and hence a plot
j 1 j'Tip
of pE(¢—vl) against mj passes through the origin and the
mj axis is a tangent to the curve.
Equation [11.64] yields an equation for the apparent
molar volume in terms of the partial molar volume at

infinite dilution, ij, and the excess pressure pE(¢ vl).

© E
¢(vj) = Vj (sln;T:p)—[dl/ijl]ln[d2+p (¢-vi)+p)/(d,+p)]
[11.67]
The volume of the solution can be defined using equation

[11.68].

V(sln;T;Piwl/k9=1) = (1/M1)V1*(1;T;P) + mjvjw

~ (d;/M)1n[(dy+p"($-v;)+p)/(d,+p)] [11.68]

The ideal properties of the solvent and the solute are
represented by the first two terms on the right hand side
of the equation above. This suggests that the non-ideal
properties of the solution are accounted for by the excess
pressure, pE(¢—vl). Differentiation of equation [11.68]
with respect to molality, mj, at constant temperature and
pressure yields an equation for the partial molar volume,

Vj(sln;T;p).

Vj(sln;T;p) = ij(sln;T;P) - (dl/Ml)[l/(d2+PE(¢—Vl)+P)]
E
[dp (4>—vl)/amj],1,;p [11.69]
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Differentiation of the partial molar volume with respect to
pressure at constant temperature and assuming dl' d2 and
pE(¢—vl) are pressure independent gives an equation for

Kj(sln;T;p).

Kj(sln;T;p) = Kjw(sln;T;p) + (dl/Ml)[1/(d2+pE(¢—V1)+p)2]
E
[9p (¢_v1)/amj]T;p (11.70])

Equations {[11.69] and [11.70]) resemble equations [11.44]
and ([11.46) used by Leyendekker. The difference lies in
equation [11.69) which contains ij in place of the
occupied volume Oj(sln;T;p;L) used in equation [11.44]). On
differentiation with respect to pressure ij(sln;T;p)
produces ij(sln;T;p). Leyendekker assumes Oj(sln;T;p;L) is
independent of pressure, and hence such a procedure
produces an element of doubt in the derivation of the

occupied volume, equation [11.48].

11.4 Applications of Excess Pressures

In this Section the four excess pressures pE(GZ), pE(L),
pE(¢—vj) and pE(¢—vl) are calculated for a range of aqueous
solutions. A Hewlett Packard BASIC program written to
perform such calculations is included in Appendix 7. The
example shown is set up for aqueous urea solutions.

(a) NaCl(aq)

The occupied volume, Oj(sln;T;p;GZ), required by Gibson's

second method was calculated using equation [11.28] in

which the molar volume of the pure salt14

3 -1

Vj*(sln;T;p) =

3 -1

27.009 cm™ mol Hence Oj(sln;T;p;GZ) = 29.71 cm® mol

Apparent molar volumes were calculated using an equation
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given by Desnoyers et glls.

-1 1/2

¢(vj)/cm3 mol 17.2928 + 0.074893n,

3/2

+ 1.658657mj

0.581723mj (11.71]

o
where m, = (mj/m ) and the apparent molar volume at

j
infinite dilution ¢(v;)” = 17.2928 cm® mol™l. The partial

molar compression at infinite dilution, ij, used to

calculate Oj(sln;T;p;L) was taken from the work of

16 4 1

Mathieson and Conway™ ; Kjw(aq;NaCl) = -49.6x10" em3 mol”

barnl. Hence the occupied volume Oj(aq;T;p;L) calculated in

3 -1 which is close to

the volume used by Leyendekker, namely 30.15 cm3 mol—l.

equation [11.48] equals 32.14 cm™ mol

Figure 11.1 shows plots of the four excess pressures
for NaCl(aq) mentioned at the start of this section. The
excess pressure pE(GZ) is positive, because Oj(sln;T;p;GZ)
>¢(vj) and is in close agreement to that predicted by
Gibson3. The excess pressure pE(L) is in very close
agreement to pE(GZ) being positive because
Oj(sln;T;p;L)>¢(vj). Similarly the excess pressure pE(¢—vj)
is predicted to be positive over the range 0¢ mj/mol kg_l
<2.3  because [24(v;)/am )y, >0. However pT($-v,) s
negative over the same range because ¢(Vj)>¢(vj)w i.e. the

non-ideal properties of the solute increase in importance

with increasing molality.

(b) BudNBr(aq)

Figure 11.2 reports plots of excess pressure against
molality where pE is calculated from equations for pE(GZ),

pE(L), pE(¢—vj) and pE(¢—vl). The apparent molar volume
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¢(vj) is related to molality by the equation17;

1

¢(vj)/cm3 mol™! = 300.40 + 1.865mj1/2

- 10.60mj [11.72]

3

where my = (mj/mo) and ¢(vj)°° = 300.40 cm mol_l.

The

occupied volume of the solute calculated from the density

14 3

of the solid and equation ({11.28] equals 266.63 cm

mol_l. Combination of 1limiting compressions of Bu4N+ and
Br~ ionsl® sets Kjw/m3 mo1~t bar_1 = -17.3. Hence the
occupied volume Oj(sln;T;p;L) is calculated through
equation [11.48] to equal 305.58 cm3 mol—l. Inspection of

these figures indicates the excess pressures predicted for
Bu4NBr(aq) must differ considerably from those predicted
for NaCl(ag). The excess pressure pE(GZ) is negative over

the range 0¢ mj/mol kg_l

<0.5 because ¢(vj)>0j(sln;T;p);
pE(L) is positive and of lower magnitude over the same
molality range because Oj(sln;T;p;L)>¢(vj). This arises
from the large negative value of ij for Bu,NBr which goes
to form Oj(sln;T;p;L). pE(¢—vl) is also positive over the
same molality range. However pE(¢—vj) is negative, a

pattern attributable to the dominant third term of the

equation for the apparent molar volume.

(c) Urea
Urea 1is included for study as an example of a neutral

solute which is a solid at 298.15 K and ambient pressure.
18

The dependences of apparent molar volume on molality is
predicted by equation [11.73].
3 -1 2
¢(vj)/cm mol = 44.20 + 0.126mj - 0.004mj (11.73]
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3 1

where mj = (mj/mo) and ¢(vj)w/cm mol ™ = 44.20. The

occupied volume Oj(sln;T;p;GZ) calculated from the density

14 3 -1

of the solid and equation [11.28] equals 49.49 cm™ mol

and the limiting compression of the solute was taken from

the work of Desnoyers et gll8, Kjw/m3 mol_l bar_l =

10 3 -1

-0.90x10" Hence Oj(sln;T;p;L) equals 44.47 cm™ mol ~. In

Figure 11.3 pE(GZ) is large and positive over the molality

range 0¢ mj/mol kg_1

<13 because Oj(sln;T;p;GZ)—¢(vj)>0.
However pE(L) procedes through a maximum at mj = 1.1 mol
kg_1 where pE(L)/bar = 3.2. Up to this point the difference
Oj(sln;T;p;L)—¢(vj) is positive. However with increasing
molality the second and third terms of equation [11.73]
begin to dominate until the difference Oj(sln;T;p;L)—¢(vj)
<0. Hence a negative excess pressure is predicted. Plots of
pE(¢—vj) and pE(¢—vl) against molality are similarly
dependent on equation [11.73] and hence both a positive and

negative excess pressure are predicted by equations [11.61]

and [11.65]) respectively.

(d) t-Butyl alcohol

The properties of aqueous solutions for this 1liquid (at

298.15 K and ambient pressure) fall under the Typically

19

Aqueous category Using equation [11.29] the occupied

volume of the solute Oj(sln;T;p;GZ) equals the molar volume

of the liquid, 94.96 cm3 mol—l. The dependence of ¢(vj) on
molality up to 0.38 mol kg—1 is given by equation
[11.741%0/11,
3 -1 °
¢(vj)/cm mol = 87.76 - 12.89(mj/m ) [11.74)
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21

o

the calculated22 Kj

and hence the occupied volume

Oj(sln;T;p;L) equals 86.63 cm3 mol_l, using equation

Using values from Lara and Desnoyers

1 1 9

/my mol =~ bar ~ = 0.375x10"

{11.48). Figure 11.4 reports plots of excess pressures

against molality over the range 0¢ mj/mol kg"l

£0.38 where
the excess pressures are calculated from equations for
pE(GZ), pE(L), pE(¢—vl) and pE(¢—vj) respectively. As a
consequence of ¢(vj) decreasing with increased molality the
difference Oj(sln;T;p;GZ)—¢(vj) is positive producing a
small but positive pE(GZ) at 298.15 K. However pE(L) is
negative because Oj(sln;T;p;L) is smaller than ¢(vj) over
the studied molality range. The difference Dbetween
Oj(sln;T;p;GZ) and Oj(sln;T;p;L) is demonstrated by these
two plots. The excess pressures pE(¢—v1) and pE(¢—vj)
follow similar patterns to those predicted for Bu4NBr(aq).

These similarities can be understood in terms of the

hydrophobic character of the solutes.

(e) DMSO and H 92

Dimethylsulphoxide and hydrogen peroxide are included as

examples in which there are strong solute-solvent
interactions. For DMSO the molar volume of the 1liquid
Vj*(l;T;p) and hence Oj(sln;T;p;GZ) was taken from the work
of Desnoyers et §i23; Vj*(l;T;p)/cm3 mol_1 = 71.29. The

dependence of ¢(vj) on molality over the region 0¢ mj/mol
-1

kg <10.0 was calculated from equation [11.75].
3 -1 2
¢(vj)/cm mol = 68.92 - 0.262mj +0.0515mj (11.75]
° o 3 -1
where mj = (mj/m ) and ¢(vj) /cm mol = 68.92. For

-237-



[T°TT "bTa ur se &sy] “ToyooTe TAING—3 ST 83nTOS
oy axoyM aanssaad JUSTWR Pue ) 867 I® UOTINTOS snosnbe ur
‘fw ‘o3nTos o X3TTeETOM UO ‘qd ‘oamssaad sseoxe Jo ssouspusdad

1T QANOTA

me Aoe\_e

8¢-0 S8Z-0 610

ot -

1eq/,d

-238-



[T°11 "brd ur se Aoy] -opTxoydnSTAYISWTP ST 3NTOS SYI SISYM
aanssexd JUSTqUER pue ) 86z I© uOTINTOos snoenbe ut ‘Fu
‘oanToOs JO AJTTETOW uo ‘qd ‘eanssead sseoxe JO seduspusdad

STTT JHNOIA
,-0Y 1owy/ [y
0-01 St 0-5 52
T T T T 00L-
0
00€
009

006

-239-



[T°11 *B1d uT se Asy] -oprxoxed usboapAy ST 93nTos a3
SI/yYM aanssead JUSTAUR pue Y 867 I© UOTINTOS snoenbe ut ‘fu
‘o3ntos o A3rTRTOW UO ‘gd ‘eamssead sseoxe JO ssowepusdeq

9 1T MNOTA

.. Dy _oE\_E

0-£l SL-6 89 SZ-€

Je
Q/gd

-240-



14,24 3 1

V.*/cm mol ™~ = 23.78 and the

]
dependence of ¢(vj) on molality2

1

hydrogen peroxide
4 in the region 0¢ mj/mol
kg = <13.0 was given by equation [11.76].
¢(vj)/cm3 mol™l = 22.4378 + 0.0204m - 1.128x10’4mj2
[11.76]
The dependences of the compressions of the solutes on
molality and hence values of ij(sln;T;p) could not be
located for either solute. Hence values of Oj(sln;T;p;L)
and therefore pE(L) could not be calculated. The excess
pressure pE(GZ) for both solutes is positive. However for
H,0, the increasing importance of the second and third
terms of equation [11.76] at higher molalities is
pinpointed by the curved nature of the dependence. These
contributions are also reflected in the plots of pE(¢—v1)
and pE(¢—vj) against molality for both solutes. It is
however the third term of equation ([11.75] which |is

responsible for the cross over, negative to positive, for

the pE(¢—vj) curve of DMSO.

11.5 Discussion

The effect of solute on solvent can be analysed by at least
two pathways. The first can be traced to the work of Bernal

and Fowler25

who used the concept of a structural
temperature for a solvent in solution. An extension of this
method uses the related extensive variable, the entropy,
which uses order-disorder concepts to explain the impact of
solute on water-water interactions. Such explanations lead
to terms such as structure-forming and structure-breaking

26

which are rarely quantitatively defined This method has
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been used to the near exclusion of the methods adopted by
Gibson.

Gibson's3 route can be seen to be based on the
intensive variable pressure, which is used to define an
excess pressure. The problems with this method centre on
the corresponding extensive variable volume and on the
definitions of reference volumes for solvent and solute.
For example there is no simple definition for the occupied
volume of the solute, Oj' which one can use. However, given
these problems it is still surprising to note that so few
authors have taken up the challenge of pursuing the ideas
of Tamman and Gibson to obtain a quantitative approach to
the understanding of the effect of added solute on a
solvent.

The plots shown in Figures 11.1 - 11.6 highlight the
fact that the calculated excess pressure depends on the
definition used to describe it. In particular this feature
is highlighted by the occupied volume, Oj, where it has
been shown depending on which definition is wused, either
Oj(sln;T;p;GZ) or Oj(sln;T;p;L), a different excess
pressure results. However the various definitions of excess
pressures analysed in this Chapter do not weaken the
overall approach. In fact it could be argued that these
different definitions set out to highlight specific key
features of the solute-solvent systems studied.
Nevertheless statements concerning the pressure operating
on solvents in salt solutions should be viewed with caution
if the statement is not accompanied by definitions of the
volumetric parameters. As a conclusion from this work, it

is suggested that the excess pressure defined by equation
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[11.65] i.e. pE(¢—v1) points a way forward in this field.
This is because the method utilises parameters which are

rigorous\y‘ defined.
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CHAPTER
12

Partial molar volumes and isobaric
heat capacities of solutes in
Aqueous Solution



12.1 Introduction

The calculations reported in this Chapter were prompted by
controversy concerning isobaric heat capacities of
activation, K*pr, for the solvolysis of alkyl halides in
waterl. According to Robertson3 the measured first order
rate constant describes a single activation process and
hence A*pr measures the difference between partial molar
isobaric heat capacities of the initial and transition
states: K*pr(aq) = pr(¥;aq) - pr(Rx;aq). But according
to Albery and Robinson2 the reaction is two stage such that
A*Cpm calculated from the dependence of k(obs) on
temperature is not a true heat capacity of activation.
Recently Robertsonl has considered this possibility but the
argument is not overwhelming because it ignores the role of
the solvent and the significant partial molar heat
capacities for solutes in aqueous solution. The possibility
has been raised that A*pr measures a contribution from a
coupled solvent reaction4. This interpretation is examined
in this Chapter. The partial molar isobaric heat capacities
and volumes of apolar and ionic solutes, Z, are examined in
this Chapter for a system in which substance Z is a solute
in aqueous solution in which there exists an equilibrium
between two states of water X and Y. Estimates are obtained
of the partial molar heat capacities of initial state Z and
transition state Z* in a first order unimolecular
solvolysis reaction. Hence by difference an estimate is
calculated for the isobaric heat capacity of activation.
The pattern in the dependence on temperature of the heat
capacity of activation is shown to resemble that calculated

on the basis of the Albery-—Robinson2 mechanism for
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solvolytic reactions.

The model describes a given system at constant
temperature and pressure containing X, Y and Z. Substances
X and Y are in chemical equilibrium. This general model
provides a basis for understanding the effects of added
inert solute, Z, on the solvent equilibrium envisaged in

the Lumry two-state model for water®.

12.2 The Solvent Equilibrium - Lumry’s Two-state Model

The solvent, water, within the aqueous solution of
substance Z is described in terms of an equilibrium between
two statess;

X(=———————=—=>3Y

The substances X and Y describe domains of water as
described by Lumry’s model6.

The model describes water in terms of a random
network of hydrogen bonded water molecules. Embedded within
this system are water clusters which have the correct
geometry to allow cooperative electronic and nuclear
rearrangements into short lived tetrameric hydrogen bonded
units. The minimum cluster size is the symmetrical pentamer
or tetrameric fragments both of which allow decreased bond
length with increased bond strength to the central water
molecule. The term ’'geometric relaxation’ is applied to the
fluctuation described by the shift between the long and
short bonded forms of water. Fiqure 12.1 gives a structural

representation of the geometric relaxation of the

pentameric cluster.

~-247-



FIGURE 12.1

Structural representation of the geametric
relaxation of a pentameric cluster neglecting
effects of neighbouring molecules [Ref. 6].

Short bonded form

This pentameric unit holds five water molecules which are
linked by stiff, 1linear H-bonds in which torsional and
rotational freedom is severely restricted. Because of it’'s
rigid nature this form has high molar volume (low density).
The molar entropy and molar enthalpy of such a unit is low
and much of the free volume associated with this species is
available to solutes.

Long bonded form

As the hydrogen bond length increases, the degrees of
rotational and torsional freedom of the system increases.
The tetrahedral constraint diminishes such that cluster
cooperativity is replaced by the simple pairwise hydrogen
bonds. The cluster has low molar volume (high density) and
the local free volume is utilised by water and becomes less
available to solutes.

In the equilibrium, substance X describes the short bonded
form and substance Y describes the 1long bonded form of
water. Lumry6 suggested parameters which describe this

equilibrium. 8 #H'/kd mol™! = 10.0 and a.c */3k lmo1™1 =
r L p
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8.0. An estimate for & V' ( = Vy*(l;T;p)—Vx*(l;T;p)) is not
offered by Lumry. However estimates of a similar volumetric

quantities based on two-state models for water are given by

other authorszo'Zl. In the calculation described in this

3 -1

Chapter Arv*/cm mol is set equal to -6.4 in line with

the suggestions of Davis and Litovitz7. In a later

3 mol_l.

communication, Lumry8 suggests that ArV* = -7.0 cm
This small difference produces an insignificant effect on

the final pattern which emerged from the calculations.

12.3 Grunwalds Extrathermodynamic Hypothesis

The impact of a chemically inert solute Z on the solvent
equilibrium between substances X and Y was analysed using
Grunwalds extrathermodynamic hypothesisg.

The chemical potential of species X is related to the

mole fraction composition of the equilibrium using equation

(12.1].

P

[.] *
ux(system;T;p) = Uy (1;T) + RTln(xxfx) +j[[vx (1;T;p)dp]
F [12.1]
where by definition in the 1imit(xx~’1.0) fx = 1 at all

temperatures and pressures. The standard state for species
(4]

X is the pure liquid at temperature T and pressure p

Similarly, the chemical potential of substance Y can be

written;

0 P
py(system;T;p) = py (1;T) + RTln(nyy) +J[[Vy*(1;T;p)dp]

PO

[12.2)
where the standard state for substance Y is the pure liquid

o
at temperature T and pressure p and where by definition
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limit(xyel.O) f 1.0. The chemical potential of solute 2Z

y
is related to molality, m_, by equation [12.3].

o o
uz(system;T;p) = v, (sln;T) + RTln(mzyZ/m )

P
+f[vz°°(sln;fr;p)dp1 (12.3]
PO

The standard state for substance Z is a solution in a

solvent comprising an equilibrium mixture of X and Y where

m, = 1 and Y, = 1 at temperature T and pressure p .
Limit(mZ+0) Y, = 1.0 at all temperatures and pressures; m°
= 1 mol kg_l.

According to Grunwalds hypothesisg the activity
coefficients of substances X and Y are related to the
molality m, of the solute Z in solution. The procedure is
adopted in which both lnfx and lnfy are linear functions of

m

2
[+]
lnfx = mez/m
o
1 =
nfy ﬁymz/T
=> ln(fy/fx) = Bmz/m where B = By-sx {12.4]

It is assumed that Z is an ideal solute in the equilibrium
solvent at all temperatures and pressures i.e. Y, = 1.
Hence derived parameters for solute Z in solution where m,

= 1 are the corresponding molar properties.

12.4 Analysis of a Unimolecular Solvolytic Process

In considering the equilibrium between the solvent species
there are two limiting cases to examine. (i) There are no
changes in organisation of the solvent i.e. § is held

constant. (ii) the affinity for spontaneous change A is
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held constant.

The chemical potential of solute Z measures the
change in the Gibbs function, dG, when dnz moles of Z are
added to the system. The chemical potentials for both of
the above 1limiting cases are related through equation
[10.7] of Chapter 10. Therefore;

[aG/anz]

[aG/anz] [GA/anz]

ns;T;p;A =
[9E/3A]

£;T;p;ns
[12.5]

ns;T;p; &
[3G/3¢k]

T;p:sns;nz T;p:ns;nz

The stability function states [3A/3(]<0. In the region near
chemical equilibrium and at thermodynamic equilibrium the
affinity for spontaneous change ,A ({= —[aG/GE]T;p], is
zero. Hence at equilibrium the triple product term on the
right hand side of equation [12.5] is zero and the equation
can be rewritten in the form;

[BG/an]

= [3g/anz] [12.6])

ns;T;p;A=0 ns;T;p; &

For a system in a state of thermodynamic equilibrium the
Gibbs function, G, is not a very sensitive test bed for
molecular models and descriptions. However, the partial
derivatives of G with respect to temperature, T, and
pressure, p, provide more criticall tests of a molecular
model. In such situations the triple product term of the
corresponding equations are no longer equal to zero. The
differential of the Gibbs function with respect to pressure
yields the volume, V, and the the differential of (G/T)
with respect to temperature vyields the enthalpy, H.

Equation [12.5) can be rewritten in terms of both of these
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quantities.

[BV/anz] = [aV/anZ] [aA/anz]

T;p;ns; &
[3V/3E&]

T;p;ns;A
[3&/3A]

T;p:;ns; §

(12.7]

T;p;ns;nz T;p;ns;nz

[GH/BHZ] = [GH/BHZ] [BA/anz]

T;pi;ns; §
[12.8])

T;p;ns; &
[9H/3E]

T;pins;A
[9E/3A]

T;p;ns;nz T;p:ns;nz

At equilibrium the triple product terms of equations [12.7]

and [12.8] are non-zero because [av/angvp'ns-nz and
’ ’ ’

are non-zero.

[3H/3E]

T;p:ns;nz

12.4.1 Calculation of the Triple Product Term of Equation
(12.7]
The affinity for spontaneous change within the solvent is

given by equation [12.9].
A = —[py(system;T:p) - v, (system;T;p)] (12.9]

For a solution dilute in solute Z (with dnz = ujdE where v,
is the stoichiometry, which is positive for products and

negative for reactants)

XY = ny/(ns+nz) = E/nS (12.10]

and similarly;

Xx = (ns—i)/ns ([12.11])

Using equations [12.1]), [12.2] and [12.9] - [12.11].
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[3A/23E] —RT[[aln(E/nS)/ail—[8in(ns-(E/ns))/aE]

T;p;ns;nz

+ [aln(fy/fx)/aﬁl]T;p;ng;nz [12.12]
= -RT[(n /&n.) + (n_/(n_(n_-§)))]
= -RT[n_/(&(n_-&))] (12.13]
or alternatively;
[aA/aE]T;p;ns;nz = —RT/(nSX§(l—xy)) [12.14)]

The second term of the triple product can be written;

[9a/3n_] -RT{dln(f /£ )/dn,] [12.15]

T;p;ns; &

Using Grunwalds hypothesis9 equation [12.15]) can be written

in the form;

[9a/9n_] —RT[dB(mz/mo)/dnz] [12.16]

T;pins;§

For a solution dilute in solute Z an expression for m, is

given by equation [12.17].

m, = {nz/(anx+nymy)} [12.17]

where Mx and My are the molar masses of substances X and Y.

=> [aA/anz]T;p;ns;E = —RT[d(BnZ/((anx+nyMy)/m°))/dnz]
[12.18]
= —RTB/m (anx+nyMy) [12.19]
= —RTB/m W [12.20]

where W is the mass of the solvent.
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The third term of the triple product can be written;

* * *
[av/aE]T;p;ns;nz = (VY -V, ) = sV (12.21]
where Vy* and Vx* are the molar volumes of pure substances
X and Y at temperature T and pressure p.
Combining equations [12.14), [12.20] and [12.21]
yields the triple product term of equation [12.7]); equation

[12.22].
= (B(E/(1-E))8 V'}/m'w [12.22]

Hence by rewriting §(1-§) in the form xyeq(l—xyeq)ns
equation [12.7] can be rewritten as;

[3V/8nz] = [3V/3nz]

T;p;ns;A=0 T;p;ns;§

- ° eq 1_x ed *
[nSB/m w]xy (1 Xy )Arv [12.23])
Alternatively equation [12.23] can be written in the form;
= = eq #
Vz(A—O) VZ(E ) + v, [12.24]

where VZ(A=O) describes the equilibrium partial molar

volume, [aV/anz] VZ(Eeq) describes the

T;p;ns;A=0"'
instantaneous/frozen partial molar volume, lav/anz]T;p;ns;t
and Vz# describes the configurational partial molar volume
and registers the sensitivity to a change in composition of

. ° eq,1_y €9 *
the solvent i.e. [nsB/m W]XY (1 Xy )Arv .

-254-



12.4.2 Calculation of the Triple Product Term of Equation
(12.8]
The triple product term of equation [12.8] <can be

calculated in a similar fashion to the method described
above for equation [12.7].

The third term of the triple product of equation
[12.8]) is given by equation [12.25].

* %* *

[aH/aa]T;p;ns;nz - (Hy -H_ ) = ArH [12.25]
where Hx* and Hy* are the molar enthalpies of the pure
substances X and Y.

Combining equations [12.14]), [12.20] and [12.25] it

is possible to write the triple product term in the form;

(B(E/(1-8))a B ) /m’W [12.26]

At equilibrium E/(1-&) can be written as xyeq(l-xyeq).
Hence equation [12.8] can be written;
[3H/2n,]

[aH/anz]T;p;ns;E
_ ° eqd,,_y €9g *
[nsB/m W]Xy (1 xy )ArH [12.27]

T;p;ns;A=0

or in the alternative form;
= = eq, _ ° eq,,_, ©d *
HZ(A-O) = HZ(E ) [nss/m w]xY (1 xy )ArH [12.28]
The differential of -equation [12.28] with respect to

temperature yields the equilibrium partial molar isobaric

heat capacity of substance Z.
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-0) = eq, _ ° eq _x ed *
CpZ(A—O) = sz(E ) [nsB/m W][d(Xy (1 XY )o H )/dT]

(12.29]

where sz(ieq) is the equilibrium frozen partial molar heat

capacity. Equation [12.29] can be simplified by carrying

out a product differentiation and allowing ¢ = (nsﬁ/mow).

Hence equation [12.30].

A=0) = ®d) _ ¢a c *x ®9(1-x °9
sz( ) sz(E ) ¢ GC ¥ ( y )

- ¢6_H (1—2Xyeq)(dxyeq/dT) [12.30]

where the third term on the right hand side of equation

[12.31], which 1later defines cpz#*, registers the

sensitivity of the solvent reaction to a change in
temperature. The second term reflects the contribution of
the solvent reaction to the equilibrium partial molar
isobaric heat capacity.

The molar enthalpies of substances X and Y are
assumed to be independent of pressure. Equation [12.30] can
be simplified further by assuming that ambient pressure, p,

°

o o
is equal to the standard pressure p . Therefore ArH = HY -
o

*
H = 8. H. The equilibrium constant for the reaction is

defined by equation [12.31].

K (1) = £%9/(n_-£°9) [12.31]
where ArGo(T) = —RTI1nK (T) [12.32]
- py°(1:T) ~ px (1;T) [12.33]
[+] -] o (o]
at p 8 ,H = H(1;T) - H (1;T) [(12.34]

2

Then [d£®9/dT] = [nsKo(T)/(l+K°(T))Z]ArHo/RT [12.35]
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-> c __H¥

_ eq o [ 2 °9 2
pz = —{¢(1-2Xy )JK (T)/[1+K (T)] }ArH /RT (12.36]

Using equation [12.31];

K (T)/[14K (T)]% = xyeq(l—xyeq) [12.37])

- - _ _ox ©9)x ©9(1_x €4 °2 pp? 12.38
> Coy (#01-2x °Nx °T(1-x N (8 n ?/r%)) [12.38]

Hence equation [12.29) can be written in its final form as

equation [12.39].

= = eq #
sz(A—O) = CPZ(E ) + sz [12.39]

where c__* - _ ¢x ®9(1-x ®%)s c__*

pz Y b4 r pz oy 5
eq eq eq

- ¢X 1-Xx 1-2X A _H RT 12.40
¢x *9(1-x °9) (1-2x D)8 w %/ [ ]
sz# is known as the configurational isobaric partial molar

heat capacity.

12.4.3 Isobaric Heat Capacities of Activation

For the first order unimolecular solvation of solute Z, a
transition state is passed through which can be 1labelled
AR The molar isobaric heat capacity of activation, A*C '

pz
is given by equation [12.41].

¥ - « A _ A=
A sz cp(z*,A 0) Cp(Z,A 0) [12.41)]

Hence using equation [12.39], A*sz can be re-expressed in
terms of the instantaneous and configurational isobaric

heat capacity contributions.
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>4
—++

@]
]

t, ,eq LI S . req ¥
pz = (ep(zFie8Dec Tz - rc (284 F(2))

gty o ¥ £.:8%) _c (g8 5
[Cp (z") Cp (z2)] + [Cp(Z ;E77) Cp(Z,E. )1 [12.42]

Using equation [12.41) the difference [cp#(z*)—cp#(Z)] can
be calculated as a function of temperature using B
parameters. In calculating this difference, which
characterises the effect of the initial and transition
state on the solvent equilibrium, it is assumed that the
impact registered by the difference between the initial and
transition states of the instantaneous/frozen isobaric

partial molar heat capacities is negligible.

12.5 Results

The dependence of sz#

298.15 K was analysed using a BASIC program written for an

on B in the range -1.0< B 21.0 at

HP 85 minicomputer. This program is included in Appendix 8.
Figure 12.2 summarises the results obtained from computer
analysis in graphical form. Estimates, by Perron and
Desnoyerslo, of the standard partial molar isobaric heat
capacities of neutral solutes in terms of group
contributions are included on the same figure.

Figures 12.3 and 12.4 show plots of the dependence of
c..” on B at 298.15 K on which single ion partial molar

pz
isobaric heat capacities, proposed by I+lepler11—13

et al
have been superimposed. In these plots it should be noted
that szm(H+) has been set equal to =zero. If this
assumption was modified then the observed positions and

orders of the single ion values on the plots would be

altered.
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#
pz
<373.15 over a range of B values was obtained from a

The dependence of C on temperature, 273.15¢ T/K

FORTRAN program, based on the BASIC program shown in

#
pz '
included as Fiqure 12.5 and a program listing is given in

Appendix 8. The C temperature/g surface has been

Appendix 8.

#

When Bg<0, C can be seen to increase with increase

pz

in temperature, however the effect of temperature steadily
decreases to the point at which for all temperatures, B and
sz# are equal to zero. In the region 0§ B 1.0, sz# can
be seen to decrease with increase in temperature, however
when B>1.0 the trend is once again reversed.

A second BASIC program for the HP 85 minicomputer
(Appendix 8) was written to calculate the difference
sz#(z*)—cp#(Z) using various combinations of B* and B.
Figure 12.6 shows the dependence on temperature of the
configurational partial molar isobaric heat capacities for
both the initial and transition states together with the
difference i.e. the dependence on temperature on the molar
isobaric heat capacity of activation, A*Cp#(aq). The
plotted curves are based on a calculation in which ‘3:F and B
have been arbitrarily set equal to -0.2 and 1.0
respectively. This Figure illustrates how a maxima in
A*Cp#(aq) emerges.

In a similar fashion to the above a BASIC program was
written which modelled the dependence of Vz# (i.e. VZ(A=0)
—VZ(Eeq)) on B in the range -1.0 B <£1.0 wusing the
relationship described in equation [12.24]). Fiqure 12.7

gives a graphical representation of this calculation on

which estimates of Vz# for neutral aliphatic solutes in
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10

terms of group contributions have been superimposed. In

addition to this, the B values obtained from Figure 12.2

#

from the C values of the same groups, have been added to

Pz
the plot. In all cases a shift along the B axis is noted.

12.6 Discussion

In discussing the trend observed in Figure 12.2 it is of

interest to note the experimental estimates of C # in

pz
terms of group contributions of neutral aliphatic solutes
scatter across B = 0. For the unimolecular solvolytic
reaction under discussion if 8<0 then the solvent
equilibrium shifts to favour the short bonded form, X water
species, whereas if B>0 the solvent equilibrium shifts to
favour the long bonded form, Y water species. It is however
too great a generalisation to suggest that if B<0 then a
structure breaking influence has been identified, likewise
if B>0 a structure forming influence has been identified.
This is because the 8 parameter <consists of two
contributing terms i.e. B = By—ﬁx. For example in a
situation in which B>0, one can imagine two separate
situations which could arise. (i) ﬁy)O and |Bx| < |By| and
(ii) Bx<0 and |Bx| > lﬁyl. In general terms sz# reflects
the extent to which both forms of water are stabilised and
destabilised. Similar comments are valid for Figures 12.3
and 12.4 where once again experimental data, szw,
straddles across B = 0.

Figure 12.7 shows the poor agreement between 8
parameters obtained from experimental Vzw and those

obtained from szw. This poor agreement is understandable,

because in identifying Vz°° with VZ#(aq) it has been assumed
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that v__(&°9) is negligible. However, V_"(&§%%) is an
intrinsic part of the molar volume and as such cannot be
regarded as negligible. A similar state of affairs 1is
identified with cpz(geq).

An attempt to derive an absolute scale for the heat
capacities of ions in solution from ionic volumes14 based
on VZQ(H+;aq;298.15K) = -5 cm3 mol_1 proved unsuccessful,
the calculated heat capacities giving unacceptably 1large
values for B.

In comparing B values produced by the above
quantities one is effectively comparing a first derivative
and a second derivative of the chemical potential, the
parent quantity itself being a first derivative property of
the Gibbs function. The problem of comparison lies in the
increasing degree of complexity required to define a
quantity each time one differentiates away from the central
property the Gibbs function.

A similar argument can be extended to the work of

15

Abraham and Marcus who have attempted to separate partial

molar heat capacities of salts in solution into their
contributing single ion values, using the TATB and TPTB

(see Chapters 3,4 and 5) assumptions in which;

cpz°(9h4p+;aq;298 K) = cpz°(ph4a‘;aq;298 K)

cpz°(ph4As+;aq;298 K)

Granted the success o0of such sub-divisions in obtaining

©}4,16 °17
o My
]

(see also Chapters 3,4 and 5) one

single ion values for v,
18,19

, and viscosity B
coefficients

hesitates in developing such a broad treatment to the
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isobaric heat capacity of salts in solution.

Turning to Figure 12.6 in which a calculation of the
molar isobaric heat capacity of solution has been
attempted. The values of B* and B used in the analysis were
set such that B* is small and B > 0 which corresponds to a
polar transition state and an apolar intial state. 1In
describing the observed negative trend in the molar
isobaric heat capacity of activation A*szﬂ(aq) for the
unimolecular solvolysis of a solute Z two models have been
suggested.

Robertson3 model used a three term equation, known as
the Valentier equation to calculate A*sz# from collected

kinetic data.
lnk = a; + aZ/T + a31nT [12.43])

where ajr Ay, and aj are used to calculate A*S#(T),

A*H#(T) and A*sz# respectively at temperature T. Hence
¥ #
A sz
kinetic data to the above equation. The trends observed in

is obtained from the linear least squares fit of the

Figure 12.6 emerge from a dominant, positive szm(z). If in
the limit cp”(z*;aq) - 0 and Cp~(z;aq)>0 then A*cpz”(aq)<o.
Albery and Robinson2 argued, the isobaric heat capacity of
activation is a temperature dependent phenomena and thus
the three parameter Valentier equation used by Robertson
was not strictly accurate. The argument progressed to
suggest the reaction does not take place through a
mechanism with one rate determining step. Rather it
proceeded through an intermediate e.g. an ion pair. The

following scheme was proposed;
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Then kobs = kl/(l+a) where o = (k2/k3). This scheme leads

# which is negative and depends on

¥
to an apparent A sz
temperature.
In the calculation shown in Figure 12.6 the sign and

# together with inverted bell shape of

magnitude of A*sz
the plot appear to agree with trends in A*szw(aq;T;p)
calculated from the kinetic data using the Albery-Robinson2
model. However it is difficult to ignore the role of the
solvent in determining both the sign and magnitude of the
molar isobaric heat capacity of activation. This gives rise
to the possibility that both the solvent equlibrium and
complexity in mechanism contribute to the observed trends
in A*sz#, neither models accounting for trends observed in
the experimental data.

The calculations presented in this Chapter point to a
method of wunderstanding the effects of solvent on the

isobaric heat capacity of activation.
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Section 1

Program MJB3 is written in Hewlett Packard BASIC for the HP
8451A diode array spectrophotometer. The program was used
for the collection of absorbance and time data for kinetic

analysis. The key to the arrays in line 70 is as follows:

P(5,100) - Dimensions array space for a maximum of 100
absorbance readings at up to 5 separate
wavelengths.

T(5,100) - Dimensions array space for the time readings

at which absorbance readings were taken for
each of the 5 wavelengths.

C(5) - Array contains the time step, C(1l) i.e. the
time between each absorbance reading and the
total run time, C(2).

L(5) - Contains the wavelengths to be analysed.

N(20) - Dimensions array space for the number of

readings, N(1), and the wavelength limits
between which the spectrophotometer scans.

Lower limit N(19) and upper limit N(20).

A summary of the main features of the program is given
below.

Line 80 is an error trap. If an error occurs when the
program is running then subroutine ERROR at 1line 870 is
invoked. This routine prints out the line number at which
the error has occurred and the error number. It also
terminates any measuring process.

Line 100 takes the user to a section of the program

(lines 480 - 780) in which the necessary information to
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conduct a run is entered into the spectrophotometer. The
user is prompted to answer a number of questions. Line 530
inquires how many wavelengths are to be analysed? Line 570
asks what are the wavelengths to be analysed? Line 610 asks
for the duration in seconds between absorbance readings?
Finally 1lines 700 to 750 ask what are the wavelength
boundries inside which the spectrophotometer should
operate?

Lines 110 to 180 instruct the user to take a suitable
reference run. This spectrum is automatically stored and
subtracted from the spectra of the sample under study.

Lines 190 to 310 ensure the absorbance reading of the
sample is taken at the specified wavelength (or
wavelengths), at the interval dictated by the time step for
the duration of the run calculated by the program as C(2).
Absorbance and time readings are entered into arrays P and
T respectively.

Line 320 terminates the absorbance and time measuring
process.

Line 330 gives a copy of the sample spectra on the
in-built thermal printer.

Lines 360 to 400 print out (or display) the collected
absorbance and time data.

Lines 410 to 440 copy the absorbance and time data

onto disk.
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290
300
310
320
330
335
336

337
340
350
360
370
375

380

400
410
420
430
440
450
460
470
480
490
500
510
520

! MJ83

! FIRST ORDEF
ALPHA

ERASE STATUS
OPTION BASE 1
Y$=IIY|I

DIM PCS, 100)
CC5>, LC5>

OH ERROR GOSUB 870

J=0

GOSUB 480

DISP "REFERENCE RUN?"
INPUT X$

IF X$#Y$ THEN 190

DISP "REFERENCE READY?"
INPUT XT

IF X*#Y$ THEN 140
REFERENCE

IF NMEAS=0 THEN 180

DISP "SAMPLE IN SYSTEM?"
INPUT X$

IF Xi#Y$ THEN 190
OVERLAY N(19),NC20),0,2
MEASURE 1,C(1),0,C(2)
SETTIME 0,0
FOR 1=0 TO
IF NMEAS=I
J=J+1

FOR K=1 TO
LEK))

GOSUB 800
NEXT K

NEXT I

STOP MEASURE

COPY

NC19)=0

DISP "PRINT DATA?"

FIVE LAMBDA

T(5,100) ,N(20>

N(l)-1
THEN 260

M @ P(K,J)=VALUE (

@ INPUT X

t

IF X$=Y$ THEN NC19)=1
DISP "DATA"

N<1l)=NCl)-1

FOR K=1 TO M

FOR 1=1 TO N'l) STEP 1

IF NC19)=1 THEN PRINT I TCK
I),P(K,I)

DISP I,T(K,I),P(K,I)

NEXT I

NEXT K

VOLUME ":D701" IS "MIKEl"
ASSIGN# 1 TO "DATA.MIKEl"
PRINT# 1 ; NC),P(),T(),L()
ASSIGN# 1 TO ¢t

PRINT "DATA ON DISC"

PRINT "THAT IS ALL, FOLKS"
END

CLEAR 0 PRINT "HELLO"
PRINT "FIRST ORDER LOG"
DISP 'SYSTEM"

INPUT AS

PRINT "SYSTEM=",6AS

700

740
750

760
770
780
790
800
310
320

330
940
850
860
370
380
890
900
910
920
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DISP "NUMBER OF WAVELENGTHS?
INPUT M

N(10)=M

FOR 1=1 TO M

DISP "WAVELENGHT/NM
INPUT LCD

PRINT "WAVELENGTH =
NEXT I

DISP "TIME STEP 2"
INPUT CCD

PRINT "TIME STEP=",C (D
DISP "NUMBER OF READINGS?"
INPUT Ncl)

C(2)=N(1)*C(1)

PRINT "RUN TIME=",6CC2)
NC1)=INTCCC2)/C(1))+1

I<I

PRINT "NUMBER OF READINGS="
NC1>

DISP "WAVELENGTH RANGE"
DISP "LOWER LAMBDA="

INPUT NC19)

DISP 'UPPER LAMBDA"
INPUT NC20)

PRINT "RANGE=",NC19),"To" NC
20)

DISP OK?"

INPUT XSt? IF XS#YS THEN 700
RETURN

END

! TIME

W=DATE

IF W=0 THEN TCK,J)=TIME Q@ RE
TURN

y=TIME

TCK,J)=V+24*60*60*DATE
RETURN

END

! ERROR

PRINT "ERRN=",6 ERRN
PRINT "ERRL=",6ERRL
PRINT "STOP MEAS"
GOTO 320

END



Section 2

Program MJB4 is written in Hewlett Packard BASIC. 1It's
function was to read the absorbance/time data collected by
program MJB3 and to use these data in a non-linear least
squares analysis. From this analysis an estimated rate
constant for reaction could be obtained. A brief summary of
the main program routines is given below.

Lines 10 to 90 initialise the program and dimension
array space for the data used in the analysis.

Lines 100 to 170 read absorbance and time data from a
disk into the program (n.b. these data are those collected
and stored by program MJB3).

Line 190 is a GOSUB statement which accesses lines
1110 to 1330 of the program. In this section the user is
prompted for an estimated rate constant, a guessed P, and a
guessed P_. These estimates are used in a non-linear least
squares analysis (see Section 2.5 of Chapter 2). A facility
for dropping data points from the analysis is also included
in this section of the program.

Lines 200 to 270 set up arrays and variables for the
data analysis.

Line 280 is a GOSUB statement which accesses lines
1350 to 1420 of the program. Line 1380 calculates P, from
the inputted guesses of Pyr Py and k (see equation ([2.10]
of Chapter 2) and 1line 1390 calculates the difference
between an observed absorbance and the calculated
absorbance, Pt’ The sum of the square of the residuals is
calculated in line 1400.

Lines 300 to 320 contain the first call to a plotting

routine contained in lines 1620 to 2110 of the program.
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This call produces a plot of absorbance against time of the
experimental data.

Lines 330 to 670 contain the non-linear least squares
analysis discussed in Section 2.5 of Chapter 2. The
procedure is iterative and either continues for 10 cycles
or comes out of the analysis cycle when the sum of the
square of the residuals is less than 1x107°.

Lines 680 to 1090 output the information obtained
from the analysis to the thermal printer. This includes the
standard deviation on the absorbance, a rate constant and
estimates of Py and P_. Two additional plots are available
in this section of the program. They are called from line
830 and utilise the plot routine which starts at line 1620.
The first plot compares the experimental absorbance/time
curve with that predicted wusing the estimates of Pt
calculated in the analysis. The second plot is a typical
first order plot of ln{(PQ—PO)/(Pw—Pt)} against time for
both the experimental data and data calculated from the
results of the non-linear least squares analysis. Standard

errors on all of the calculated parameters are printed out

in lines 930 to 950.
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10
30
50

70
30
90

100
110
120
136
140
150
160
170
180

190
290
210
220
230
240
250

260
270
280
290
300

310
320
330
340
350
360
370
380
390

400
410

420
430
440
450
460
470
430
490
500
510
520
530

! MJ64

CLEAR

ALPHA

0I3P 'HI"

DISP “GETTING DATA"

Yf="Y*“

i DATA ANALYSIS;FIVE LAMBDA
OPTION BASE 1

DIM Pe«5,100>,T (5,100 ) ,N<20),

L(5)

MASS STORAGE IS ™ 0701%
CRT OFF

VOLUME "=0701% IS "MIKEL"

ON ERROR GOSUB 1570

ASSIGN# 1 TO "DATA,MIKEl"
READ# 1 ; N<) ,PO ,Te>,LO
ASSIGN# 1 TO X

CRT ON

DIM C<5> 100,3>,0<100) .Y<1
00) ,A«3),2<1>,v<3,3>,U<3,100
>

GOSUB 1110

DISP "ANALYSIS UNDERWAY"

FOR B=1 TO N(10>

N*;7>=0 0 N<8)=0

N< 1?)=0

IF L(B)=0 THEN 1090

PRINT "SET",E,"WAVELENGTH:",
L *B)

S=0

I=H(1)

GOSUB 1350

N115/=0

REDIM X(I,3),0(I),¥Y(I).W<3,I

DISP “PLOT DATA?" 0 INPUT
IF X$=Y$ THEN GOSUB 1620
FOR K=1 TO 10

DISP "CYCLE",K

MAT Q=2ERO MAT A=2ER

MAT X=ZER@ MAT Y=ZER
GOSUB 1350

FOR J=1 TO N(1)
U=EXP (- (R*T (B, J)))
U

X(J,2)=1-U
X(J,3)=-(CC(1l)-C(2))*T(B,J)t
U)

NEXT J

MAT W=TRN (X)

MAT V=W*X

MAT W=INV (V) *W

MAT A=W*Y

G=R+A (3)

IF G>0 THEN 530

e X(J,1)=

PRINT "NEC RATE CONSTANT",G
PRINT "INPUT WAS",R

OISP "FIT ABORT"

GOTO 190

R=G 0 C(l)=Cfl)+A(l) e C(2)=
C(2)+A(2)
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540
550
560
370
530
590
600
610
620
630
640
650
660
670
680
690
700
710

120
730
740
750
760
770
730
790
300
310
320
330
340
350
360
370
330
390
900
910
920
930

940
950

960
970
930
990
1000
1010
1020
1030
1040

1050
1060
1070
1030
1090

GOSUB 1350

OISP 'RK="“,6R
DISP "SUM SQ RESIO=",S
H<3>=S

F=ABS (N(8)-N(7))
F=100*F/N(8)
IF F<.l1 THEN 670

NK7) =S

DISP "HAPPY"

INPUT XS

IF xs=Ys THEN 670

IF S< 00001 THEN 670
NEXT K

DISP "FIT COMPLETE"

DISP "DATA SUMMARY'?"
INPUT XSA M=0

IF X$=Y$ THEN M=1

DISP "PLOT RATE OATA""
INPUT XS« L=0

IF X$=Y$ THEN L=1

IF M=0 THEN 780

FOR J=1 TO N(1)

PRINT J,T(J),P(J),Q(J),¥(J)
NEXT J

S=(S/(N(1)-3))"(1/2)

PRINT "ST DEV ON ABS=",S
PRINT "RATE CONSTANT:",R
PRINT "P-ZERO:",C (1)
PRINT "P-INF=",C(2)

IF L:1 THEN GOSUB 1440
MAT V=TRN (X) *X

MAT V=INV (V)

! DISPERSION MATRIX

MAT Q:X*A

MAT Q:Y-Q

MAT Z:TRN(Q)*Q
Z(1l)=z(1)/(N11l)-3)

PRINT "ST OEV:",Z(l)-(1/2)
MAT V=(Z (1)) *V

PRINT "ST ERROR ON P-ZERO=".
v(!,1)=(1/2)
PRINT "ST ERROR ON P-INFIN:

",V (2,2)-(1/2)

PRINT “ST ERROR ON K=",V (3,3
>-U/2>
DISP "PRINT VAR-COVAR MAT?"
INPUT Xxs

IF xs=Ys THEN MAT PRINT V
DISP "CORR. COEFF?"

INPUT XS

IF xs#Ys THEN GOTO 1070

FOR K:1 TO 3
FOR L:1 TO 3
S§=V(K, L)/ (V(K,K)*V(L,L))" (!

/2)

PRINT K,L,S

NEXT L 3 NEXT K

NEXT B

DISP "THAT IS ALL,FOLKS"
PRINT "THAT IS ALL,FOLKS"



1100
1lie
1120

1130

END

PRINT "HELLO AGAIN"

DISP RUN NUMBER?" @ INPUT
N(18)

PRINT "NO .WAVELENGTHS:" ,N (1
0)

PRINT "RUN =",N(18)

PRINT "NUMBER OF DATA POINT
S=",N(1)

DISP "GUESSED RK"

INPUT R

PRINT "EST K=",R

DISP "GUESSED P-ZERO="

INPUT C (1)

DISP "GUESSED P=INFIN="
INPUT C(2)

PRINT "P-2ERO=",C<1l),"P-INF
IN=",C(2)

N(1)=H(1)-1

DISP "DROP POINTS?"
INPUT XS
=0

IF X$#Y$ THEN 1310
DISP "POINTS DROPPED:"
INPUT Q

N<1>=N<1)-Q

I=N<1>

RETURN

END

! CALC

S=0

FOR J=1 TO N(1)
Q(J)=(C(1)-C(2)) *EXP (- (R*T(
B,J)))+C(2)

Y (J)=P(B,J)-0(J)
S=S+Y (J) *Y (J)

NEXT J

RETURN

END

! PLOT DATA

N(19)=1

N(15)=0

DISP "COMPARISON PLOT?" i I
NPUT XS

IF X$#Y$ THEN 1510
N(15)=0

GOSUB 1620

DISP "FIRST ORDER PLOT?" @
INPUT XS

IF X$#Y$ THEN 1550
N(15)=1

GOSUB 1620

RETURN

END

! ERROR TRAP

PRINT "ERRN=" 6 ERPN
PRINT "ERRL=",6ERRL
DISP "ERROR"

STOP

! PLOT DATA

1630
1640
1650
1660
1670
1680

1631

1682
1690
1700

1701

1702
1710
1720
1730
1740
1750
1760

1770
1780
1790
1800
1810
1820
1830
1831
1840
1850
1860
1870
1880
1890
1900
1901
1910
1911
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

2110
2120
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M=B

GCLEAR

IF N<15)=0 THEN 1730

DISP "FIRST ORDER PLOT"

FOR K=1 TO I
P(M,K)=(P(M,K)-C(2))/(C(1)-

c(2) )

IF P(M,K)<0 THEN P (M,K)=0 @
GOTO 1690

P(M,K)=LOG (F(M,K))
P(M,K)=ABS (P (M,K))

Q(K)=(0(K)-C(2))/(C(1)-C(2)

)

IF Q(K)<0 THEN Q(K)=0
0 1710

Q (K)=LOG(Q(K))

Q (K)=A6S (0 (K))

NEXT K

G=AMAX (0)

LORG 5

G=G+G/10

SCALE - (T(M,I)/10),T(M,I)+T
(M,I)/10,-(G/10) ,G+G/10

H=T (M,I>/10

XAXIS O0,H,0,T(M,I)

H=G/5

YAXIS 0,H,0,G

PENUP

MOVE T (M,1>,PCM,1)

FOR K=1 TO I

IF PCM,K)=0 THEN GOTO 1860
MOVE T (M,K),P(M,K)

LABEL "+"

NEXT K § PENUP

IF NC19>=0 THEN 1920

MOVE TCM,1),0(1)

LINETYPE 1

FOR K=1 TO I

IF Q(K)=0 THEN GOTO 1911
DRAW T (M,K),Q (K)
NEXT K

PENUP

LDIR 90

H=T (M,I)/5

FOR K=H TO TCM,I)
MOVE K, .1
Z=INT (K)
LABEL VALS$ (Z)
LDIR O

H:G/5

FOR K=H TO G STEP H
MOVE TCM,I)/10,K
Z=INTC100*K) /100
LABEL VALSCZ)

NEXT K

SCALE 0,100,0,100
MOVE 50,50

& GOT

STEP H

@ NEXT K

LABEL "RUN NO.",VAL$CNC18))
FRAME

COPY

ALPHA @ RETURN

END



Section 3

This HP BASIC program, AWHl, was written to run on the
in-built HP 85A computer of the Hewlett Packard 8451A diode
array spectrophotometer. It’s purpose was to produce a scan
of a given sample in the region 190 to 820 nm and to report
the peak positions at which maximum absorbance occurred.
Line 30 of the program initialises the spectrophotometer.
Lines 50 to 110 give the user the option to take a scan of
some suitable reference - this spectrum is automatically
stored and then subtracted from the sample spectrum. Lines
120 to 170 take the spectrum of the sample under study. In
lines 171 to 180 the PEAK# command is used to return the
wavelength and absorbance readings of the 20 largest peaks
within the spectrum. Finally line 190 gives a hard copy of
the sample spectrum and the results of the PEAK# procedure

on the in-built thermal printer.
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' AWHI

i LAMBOR SCAN

ERASE S3TRTUS

JFTION BRSE !® GOSUB 228
DISP "REFEREMCE REQUIRED?"
IHPUT Y%

IF Ys#"Y" THEN 130

GISF "REF CELL IN FPOSITIQH?"
IMPUT ¥$%$

IF Y$&"Y" THEN 39
REFERENCE

IF NMEAS=93 THEN 119

DISP "SAMPLE IN POSITIONT®
DISP "CELL IN PLRCE?"
INPUT Y

IF Ys#"vY" THEN 129

MEASURE 1

PRINT "NO_";" LAMBOA ";"ARSQ
RBANCE"

IF NMERAS=9 ThEN 1r9

PERAK FIND

CALCULRATE

FOR X=1 TO PERK#(9)>

PRINT X;;; PERK#C(X)>;; ; VALUE(P
EAK# (K23

NEXT X

STOP MERASURE

CaOPY

DiSP "END OF RUN"

END

As="HELLO"

CLERAR

PRINT R$

PRINT "AWHL"

DISP "SYSTEM IS *

INPUT B*%

RETURN
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Section 4

Program ANDY3 is written in HP BASIC and was used to give a
linear least squares fit of a given set of data. In the
example set up in the program below the equation y = a; +

a,x is solved for a; and aj. In matrix form this problem

can be written as;

Yy ay 1 x
Y a, 1 x,
y3 1 x3
yn 1 xn
Y = B X

where n sets of data are available for analysis.

B can be calculated by performing the matrix operations

shown in equation |1] on matrices X and Y.

g8 = (xTx)~1 xTy 1]

where XT is the transpose of matrix X and ( )"1 refers to
the inversion of a matrix.

Turning back to the program, line 80 contains the
data which is read by line 100 into matrix Y and line 90
contains the data which is read into matrix X. Lines 110 to
190 calculate matrix B using equation |1| and print out the

results.

The variance of the fit can be calculated from

equation |2].
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o2 = (n-0)"t(v-x8)T(v-xp) 12

where n refers to the numbers of data points in the
analysis and ©® is the number of unknowns to be estimated.
The standard deviation is thus given as the square root of
the variance. Lines 200 to 340 of the program use equation
2 to produce an estimate of the standard deviation.

The variance-covariance matrix is used to find the
variances of the estimated parameters. The matrix is

calculated from equation |3].
6= ¢V 31

where V is the dispersion matrix, which is defined by
equation |4}.

v = (xTx)"!

141
The variances of the estimated parameters are obtained from
the diagonal of the matrix ©. Lines 350 to 450 of the
program carry out these operations.

Finally lines 460 to 490 calculate the residuals i.e.
the calculated Y values (obtained using the estimated
parameters) are subtracted from the values entered into

matrix Y at line 80.
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i AHDY 2

DPTION BRSE 1

CLERR

PRIMT "LEAST SGQUARES FITTIMG

PRINT

OIM YuSs. 640G, 20,402,220

DIM UCF,7Fa.3022,0010,TCS2
DRTA .QAvBB13243,  BBYBIE573,
90612155, . aBRZ7ES, .BRASSI2
DATA t..991.1,.9895,1, .81.1.,

915;1.- .‘3&'.

MAT RERD Y., X

MAT U=ZERw® MAT 3=ZER

MAT U=TRN(XI XX

MART U=IMNYJ{U>

MAT J=UXTRNC(R)

MAT S=UxY

PRINT "-———————————————————
PRINT "“CALCULRTED 8"

MAT PRINT S

PRINT "-—————rmm—m o
PRINT "ESTIMRTED YARIANCE"
DISP "HOW MANY DATA POIMTS?®
INPUT N

M=N-2

REDIM U(7, 1)

MAT U=X%5

MAT U=Y-U

MAT D=TRNCU>XU

MAT D=C1-N>XD

MAT PRINT D

PRINT " e
PRINT "STANDARD DEVIATION"
F=SQR<(D(13>>

PRINT F

PRINT "——-mm—vmmmmmm e m e -
PRINT "YARIANCE/COVARIANCE M
ATRIX"

MAT WU=TRN(X)>¥X

MAT V=INVW{W)

F=F~2

MAT V=(F>%xV

FOR I=1 TO 2

Z=SER(VY(I,.I)>

PRINT

PRINT “STANDARRD ERROR";I:Z

MAT T=X%x5

MAT Y=Y-T

MAT PRINT ¥

PRINT e
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Section 1

In calculating the transfer parameter for H+, Wells
imagines a solution containing 1 mole of H+X—, n, moles of
water and n, moles of alcohol, ROH. At equilibrium 1 mole
of hydrogen ions is present in the form o« mole of R0H2+ and
307, If 1 = H,0 and 2 = ROH and H;0" is used

to represent some solvated proton species then;

(l1-«) mole of H

G(system;T) = (nl—1+a)u1(system;T) + (nz—a)uz(system;T)

+

ap(ROH2+;system;T) + (l—a)p(H30+;system;T)

+ p(X ;system;T) [3.1.1)

The following hypothetical process is decribed for 1 mole

of hydrogen ions.

[H30+;aq;T] ———>(1—a)[H3O+;sln;x2;T] + a[ROH2+;sln;x2;T]

(3.1.2])

Hence the transfer chemical potential describes the

following comparison;

s (130" aq;T) —> (1-a)p® (H;0*;s1njc-scaleix,;T)

+ ap#(ROH2+;sln;c—scale;x2;T)
A transfer chemical potential can thus be .written;

A(aq9x2)u#(H30+;c—sca1e;sln;T) =
[(1—a)u#(H3O+;sln;c—sca1e;x2;T)
+ au#(ROH2+;sln;c—scale;x2;T]

- p#(H3O+;c-scale;aq;T)
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- [ﬂ#(H30+;sln;c—sca1e;x2;T) - p#(H3O+;c—sca1e;aq;T)]

+ a[p#(ROH2+;sln;c—sca1e;x2;T) - p#(H3O+;sln;c—scale;x2;TJ

[3.1.3]
In the absence of any chemical complexity o is zero and
hence the transfer quantity can be calculated using the
Born equation to determine the first term on the right hand
side of equation [3.1.3]. Henced;

#

A(g-»sln)y (H3O+;Born;c—scale;sln;T)

- —[(szzez)/(enrjzeo)](1—(1/er)) [3.1.4]
where N is Avogadro’s number, zj is the charge number of
ion-j, e is the electronic charge, rj is the radius of
ion-j and €, is the relative permittivity of the solvent in
which ion-j is dissolved.

This however is only one contribution to the total
transfer chemical potential of the ion, and attention in
the analysis switches to the second term on the right hand
side of equation [3.1.3]). Turning back to equation [{3.1.1],
if the system is dilute in H'X™ then (n1—1+a) = ny and
(nz—a) = n,. A chemical equilibrium involves H30+, ROH2+,

HZO and ROH;

+ +
H30 + ROH < > ROH2 + H20
=> ueq(H3O+;system;T) + ueq(ROH;system;T)

= ueq(ROH2+;system;T) + peq(HZO;system;T) [3.1.5]

The system can be described as a solution of solutes
ROH2+X_ and H3O+X_ in a solvent comprising 'H,0 + ROH'. If

the system has volume V at fixed temperature T and pressure
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p(=p ) then c(RoH,*) = [n(RoH,*)/v] and c(u0") =

2
[n(H3O+)/V]. Hence using 1 mole of H'x™, c(ROH2+) = (a/V)

and C(H3O+) = [(1-a)/V].

p#(H30+;c—scale;x2;sln;T) + RTIn[ (1-a)y(H30%;x,) Ve ]
(]

+ u# (ROH;1;T) + RTln(xzfz) =

u#(R0H2+;c—scale;x2;sln;T) + RTln[ay(R0H2+;x2)/Vcr]

+ p°(nzo;1;r) + RTIn(x f,) [3.1.6]

By definition the change in the Gibbs function for equation
[3.1.5] is given by equation {3.1.7].
+ o

;c-scale;xz;T) + u (HZO;I;T)

ArG#(c—scale) u#(ROH

2
o
y*(n30+;c—sca1e;x2;T) — 4 (ROH;1;T) [3.1.7]

—RTan#(c—scale;sln;xz;T)

where K#(c—scale;sln;xz;T) is an equilibrium constant.

Hence;

y#(ROH2+;c—scale;sln;x2;T) - p#(H30+;c—sca1e;sln;x2;T)
= —RTan#(c—scale;sln;xZ;T) + [uo(ROH;l;T) - p°(H20;1;T)]
[3.1.8]
Equation [3.1.8) describes the difference between the
chemical potentials of the solutes ROH2+ and H30+ in a
solvent 'ROH + Hzo' which contains Xy mole fraction ROH,
and where cg = 1 and yj =1 for j = H30+ and ROH2+.
K#(c—scale;sln;xz;T) = [ay(R0H2+;x2)(1-x2)f(H20)]

/ [(1—a)y(H30+;x2)x2f(ROH)] [3.1.9]

-286-



Turning now to equation [3.1.3) Wells uses equation [3.1.8]
to calculate the difference between the chemical potentials
of ROH2+ and H30+ to provide a second part to the transfer
chemical potential of Ht. However an extrathermodynamic
assumption is made in which po(ROH;l;T) is set equal to
po(HZO;l;T). Hence;

u#(R0H2+;c—scale;sln;x2;T) - p#(H3O+;c—scale;sln;T)

- —RTan#(c—scale;sln;xz;T) [3.1.10]

Thus equation [3.1.3]) can be rewritten in the form;

A(aqexz)p#

(H30+;c-scale;sln;x2;T) =
A(aq*xz)p#(H3O+;Born;c—scale;sln;T)

+ a[—RTan#(c—scale;sln;xZ;T)] [3.1.11]

The wvalidity of this extrathermodynamic assumption is

doubtfull.
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Section 2

Accepting the extrathermodynamic assumption identified in
Section 1 of this Appendix, the next stage of the Wells
analysis is to calculate « and K#(c—scale;sln;xz;T) by
experiment. A spectrophotometric approach is used to study

solutions containing H+X-, H,0, and MeOH together with a

2
base, B, p-nitro aniline. Two equilibria are envisaged in

these solutions;

(a) B + H,0' ¢(=—on—x> BH' + H

3 0

2
and
+ +

(b) B + ROH2 {==—=======)» BH + ROH
These equilibria can be described using two different
approaches. Description 1 assumes that the system is an
agqueous solution whilst description 2 identifies a

situation in which the solutes H O+, ROH2+ and B are in a

3
solvent mixture composed of "H,0 + ROH'.

Description 1

Equilibrium constants K#(c—scale;sln;T) for (a) and (b) are
defined using equations [3.2.1]) and [3.2.2].
K#l(c—scale;sln;T)(a) = [c(B)C(H3O+)/C(BH+)x1(H20)]

[yt (B)y" (uy0%) /vyt (BEY) £(H,0) ] [3.2.1]
K#l(c—scale;sln;T)(b) = [c(B)c(ROH2+)/c(BH+)c(ROH)]

(y'(B)y (0% syt (Bu )yt (ROB) T [3.2.2)

Activity coefficients for these equilibria under

description 1 are thus defined as;
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Fi(a) = [y'(B)y (5;0")/y" (BH*) £(H,0) ] (3.2.3]

rl(b)

[Yl(B)yl(ROH2+)/y1(BH+)y1(ROH)] [3.2.4]

The ratio of the equilibrium constants is given by equation

[3.2.5].

K#l(sln;c—scale;T)(b)/K#l(sln;c—scale;T)(a) =
[c(ROH2+)x1(H20)/c(ROH)c(H3O+)]

ty" (rom,* ) £(1,0) /y" (ROH)Y' (H30%) ] [3.2.5]

Description 2

Equilibrium constants for (a) and (b) are defined wunder

description 2 by equations [3.2.6] and [3.2.7].

K#Z(c—scale;sln;T)(a) = [c(B)c(H3O+)/c(BH+)xl(H20)]

ty2(Byy2(ny0t) /y?(BHY) £(H,0) ] 13.2.6]

K#Z(c—scale;sln;T)(b) = [c(B)c(ron,*) /c(BHY ) x, (ROH) ]

(y?(B)y”(ny0%) /y*(BE" ) E(ROK) ) [3.2.7]
The activity coefficients are thus defined as;

Fz(a)

[y*(B)y?(ny0*) /y? (BH") £(1,0)) [3.2.8]

Fl(b)

(y*(B)y? (ron,*) /y® (BHY) £(ROH) | [3.2.9]

The ratio of the equilibrium constants is given by equation

(3.2.10].

-289-



K#Z(sln;c—scale;T)(b)/K#z(sln;c~scale;T)(a) =
[c(ROH2+)xl(HZO)/xz(ROH)c(H3O+)]

[y2 (RO, %) £(H,0) /£ (ROH)y® (H;0%) ] [3.2.10]

Wells3 defines two quantities;

"1
il

1 [f(B)f(H3O+)/f(BH+)f(H20)] (3.2.11])

and

m
I

5 [f(B)f(ROH2+)/f(BH+)f(ROH)] [3.2.12]
The ratio (Fl/Fz) is thus defined by equation [3.2.13].
+ +
(F1/Fy) = [f(ROH)f(H3O )]/[f(HZO)f(ROH2 )] [3.2.13]

Using equations (3.2.3}, (3.2.4]), [3.2.8] and [3.2.9] the
ratios of the activity coefficients for description 1 and
for description 2 are given by equations ([3.2.14] and

[3.2.15] respectively.

(el (ar /et (b)) = (yt(rom)yt(u30%)1 / (£(H,0)y" (ROH,Y) ]
[3.2.14])

(F%(a)/F%(b)) = [£(RoH)y®(H30%)] / [£(1,0)y?(RoH,")]
[3.2.15]}
Wells states that at low Xos F1 = 1.0 and (Fl/Fz) remains
at unity. These assumptions are consistent with equation
[3.2.14]. In a given system the ratio yl(H30+)/y1(ROH2+) e
1.0 and in dilute aqueous solution y(ROH) = 1.0 and f(HZO)
= 1.0. Therefore Wells appears to have switched his
description of the system to that of an aqueous solution

from description 2, which he started with. In terms of
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4 would be found to

description 1 K#(c—scale;sln;T) and ArG
be independent of the amount of ROH in the system. Tansfer
chemical potentials can not be calculated wusing this
description. Only description 2 is applicable. Furthermore

at x(ROH)>0.1 the ratio (Fl/Fz) can no longer be unity,

because y(ROH) is no longer close to unity.
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Section 1

Example (i)

From equation [8.20];

d[—m2¢] + 1 + mzd[lnyi] = 0

or d[m2(1—¢)] + d[lny+] =0
=> fd[mz(l—cb)] = fmzd[1n7+]
() 0 -
ma
or 1-¢ = —(l/mzl/hzdllnv+l
o t
ma
=) -1 = (l/mZE/;ZdlnY+
o +

Example (ii)

—d[m2(¢—1)] + mzdlnyi =0

or —(¢—1)dm2 - m2d¢ + mzdlny+ = 0
=> —(¢—l)(dm2/m2) - d¢ + dlny+ =0
l‘l'|2 m2 m2
J[dlny+ =J[d¢ + (¢—1)(dm2/m2)
0 - 0 0
m2
=> 1ny+ = (¢-1) + (¢—1)d1nm2

- 0
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Section 2

m2 °
$-1 = (l/mz)erZ[—|z+z_|SY(Il/2/m )]
0

For a 1:1 salt;

ma °
[—|z+z_|/m2]SK/hzd(m21/2/m )
0 .

$-1

Hence;

o-1 3/2/3(m°)1/2]

[—|z+z_|/mzlsy[m2

-293-



Section 3

Where lny+ is defined by equation [7.24]; let x = b(mz)
and k = |z+z_|(sy/b).
=> dlny+ = [-kx/(1+x)]dx

“k[(1/(1+x)) - (x/(1+x)2)]dx

= —kdx/(14+x)2
Hence;
X
(1-¢) = (k/xz)jﬁxz/(1+x)21dx
0
N (1-¢) = (k/x2)[(14x) - (1/(1+x)) + 21n(1+x)]

In a form analogous to the limiting law;

(1-¢) (kx/3)[(3/x3)[(l+x)—(1/(1+x))+21n(1+x)]]

Hence;

(1-¢)

[(12,2_15_)/3b1b(m," 2/n") Jo(x)
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Section 4

ma
Iny, = (¢-1) + [(¢-1)dlnm
- o
with (1) = [—|z+z_|A¢Il/2/(l+bIl/2)]

=> lny, = [-|z+z_|A¢11:2/(1+b11/2)1
- 2
+ [—|z+z_|A¢Il/2/(1+b11/2)]dlnm
0
with dlnm = (dm/m) = (dI/I1)

=> lny, = [—|z+z_|A¢Il/2/(l+bIl/2)]I
|z+z_|A¢J[[Il/2/(l+b11/2)](dI/I)
- 0

Let x = b1l/% and dx = (bs2)1}/241
d1 = (2/b)1172dx = (2/b)(x/b)dx = (2/b%)xdx

I 1,2 1,2 I an 1,2
a1 =Jf[1 72 ,(1+b117 %) 1d1 /1] =Jf(1/1 /2y(1/(1+b1 2y a1

0 (o]

X
a1 =J[(b/x)(1/(1+x))(2/b2)xdx

0

X
a1 = (2/b)J[[dx/(l+x)] = (2/b)1n(1+x)
0

a1 = (2/b)1n(1+b11/?)
Hence;

lny, = [-|Z+Z_|A¢11/2/(1+b11/2)]
) 1/2

- lz,2_|A,(2/b)1n(1+b1""*)
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Section 5

For Bo;
o o "‘2
1ny+(6 ) = (4-1)B° 4 ($-1)dlnm,
- 0
o o m2 [ ]
=> lnv+(8 ) = my[(2v v )/v]B +J[m2[(2vmvx)/v16 (dm,/m,)
- 0
= 2m,((2v v ) V1B’
For Bl;

1,2

(¢1>—1)‘51 = 2m2(umux/u)61exp(—am2 )

From Section 2;

1ny+(61) = 2m2(Umvx/v)Blexp(—amzl/z)
) v [2m, ¢ )elexp(-am,1/2)d1
m2 vmux/v B exp —amz nm2
(]
= 2m2(umvx/u)Blexp(—umzl/zg
1 1/2
+ Z(Umvx/v)B‘[exp(—am2 )dm2
0
let —am2/% = _(1/2)x(o/m,/?)dn = dx
=> dm, = (-2/@)m, /%dx = (-2/0) (-x/@)dx = (2/0%)xdx
1 X 2
I = Z(Umvx/v)ﬁ J[(Z/a )xexp(x)dx
(]
1 2
=> I = 2(vv /Vv)B (2/07) [exp(x)[x-1]]
=> I = Z(Umux/v)Bl(Z/aZ)[exp(-amzl/z)[-amzl/z—l]]

-296-



=> 1= 2(v v /w8t (2/e®) [exp(-am,t2) (om!/2-1)41)

Applying this to the equation for lny+(61);

1/2

lny )

+ 2(umvx/u)81(2/a2)[exp(—amzl/z)(—am21/2—1)+1]

(B1)
+

= 2m2(vmvx/v)61exp(—am2

1/2

)
+ 8h(2/0%m,) lexp(-am,'/?) (mam, 17221 + 11]

2(vmvx/v)m2[51exp(—am2

1,2

2(v v /vimy [ (281 /a®n)) (1-exp(-am,'/?)

(1+am, /2 (o®n,/2)1}]
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Section 6

From Section 1;
ma
1ny+ = (¢-1) +j(¢—l)dlnm2

- 0

=5 lnyt = m22[2{(vm2£)3/2/v}lc¢mx
+fm22[2{(vmvx)3/2/v} it dinm,
0 .
= m, %120 v )3 % et .
+ [2{(umux)3/2/u}}c“’mxfmzdmz
0
= (3/2)my % (2((vv, )32 vy 1c?
Then;
1nv, Y = my22000,v,0 Y 20y 107,
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Section 7

(i) The £ term

From equation [7.38];

vmy(1-¢ + lny,] = [GE/RT]

Hence using equations [7.36]) and [(7.37];

f-term

=) [GE/RT] = vmz['z+z—|A¢(m21/2/(1+bm21/2))

1/2

|z+z_|A¢(m2 /(1+bm21/2))

|z+z_|A¢(2/b)ln(l+bm21/2)]

um2[—|z+z_|A¢(2/b)ln(1+bm21/2)]

(ii) The B term

Using equations (7.38], [7.36])] and [7.37];
o o (-]
[GE/RT]B = Um2[—2m26 (vmvx/u) + 4m25 (Umux/v)]
Hence from equation [7.391];

=> m22[2vmux]Bm B® _ umZ[ZmZBO(umux/u)]

X

(iii) The gl term

Using equations [7.38], [7.36] and [7.37]};
(cE/rT1B! - vmz[[2m2(vmux/v)Blexp(—amzl/z)}

{Zmz(vmvx/U)}[(Zﬁl/azmz)
(1-exp(-om,/?) (1+em2’/2-(om,/2)1}1]
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) UmZZ(Umvx/v”(zslazmz)[1_ex9(_°‘“‘21/2)[l+am21/2]}]

From equation [7.39];

2 Bl

2
m, Bmx Z(umvx) = um, (vmux/v)
[(261a®m,) (1-exp(-om,/2) [1+om, 721} ]
=5 Bnx®! = (28 /0®m, 1 (1-exp(-om, /%) [14am,1/2})
In summary, the combination the two terms for Bmxﬁo and

B Bl

nx results in an overall Bmx term for the excess Gibbs

function, equation [7.39].

Bux = B + tzsl/azmzl{l—exp(-amzl/z)[1+“m21/2]}

(iv) The C term

From equation [7.38]};
vmy[1-¢ + lny ] = (GE/RT]
and from equation [(7.39];
(6%/RT1¢ = my312v_v (v z )ic
Hence using equations [7.36] and [7.37];

m23[2umvx(vmzm)]cmx = um2[—2m22((umvx)3/2/u}c¢mx
3/2/\J}C4’mx]

2
+ 3m2 {(umvx)
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2
2m2 umux(umzm)cmx = vm2[m2 [(umvx)3/2/ulc¢mx]

- - ¢ 1/2

=> Cox (Cpx 72) (v v )™/ 2]
But v _|z_| = v_z ; then v _|z_z | = v_2 2

X m m’ x'"'m“x m-m
2 2_ 2

=> lzmzx| = vz, /vx = v Zn /Y Vg

_ 1/2 _ 1/2

=> [(umux) /Umzm} = l/lzmle
Hence;

- ¢ 1/2
Cmx = Cmx 7212521

The equation for the excess Gibbs function can thus be

written in full as equation [7.40].
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Section 1

The listing below contains the main subroutines of the
FORTRAN program PROJECT. This program was written to
calculate pairwise group interaction parameters from
osmotic coefficient data for ammonium, alkylammonium and
azoniaspiroalkane halide salts.

The subroutine at the head of the program sets up key
variables for the analysis and contains calls to other
parts of the program. The main subroutine however is
subroutine XION. Key arrays to be identified in this
section are;

xm2(i) - contains the molality of the salt.

gam2(i) - contains the activity coefficients of the
salt, Y-
xphi(i) - contains the osmotic coefficients of the salt,
$.
xni(ict,i,j) - contains the number of known specific
pairwise interaction parameters for each
salt.
y(ict) - contains the Y matrix used in the minimal
least squares analysis.
x(ict,i) - contains the X matrix used in the minimal

least squares matrix.

In subroutine XION, shown in the listing below, only
three salts, ammonium bromide, terabutylammonium bromide
and 6.6 azoniaspiroalkane bromide have been included to
give a feel of how the analysis was set up. In the full
analysis subroutine XION contained 27 salts.

Consider the tetrabutylammonium bromide salt within

this subroutine. The commented section details how the salt
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can be broken down into it’s —constituent pairwise
interactions. The variable ’'PIG’ contains the name of the
data file (in this example ’'data5.dat’) used in the call to
subroutine SALT. This subroutine accesses the data file
specific to tetrabutylammonium bromide which contains
molality, activity coefficient and osmotic coefficient data
for the salt in aqueous solution at 298 K. In the case of
the azoniaspiroalkane halides subroutine WSALT is accessed.
This subroutine differs from subroutine SALT only iﬁ the
fact that osmotic and activity coefficient data has to be
calculated from a set of equations. Hence data files for
the azoniaspiroalkane halides contain parameters for these
equations.

Within subroutine SALT (and WSALT) there is a call to
subroutine PIZ. This subroutine is wused to calculate
Pitzers B° parameter from the osmotic coefficient data (see
equation [7.34] of Chapter 7) using the method of linear
least squares, subroutine XLSQ. Hence on successful
completion of subroutines SALT (or WSALT) and PIZ the
program returns to subroutine XION with a wvalue for 5°
Multiplying 6° by 2RT gives g(salt) (see equation [8.2] of
Chapter 8) and once g(salt) is known it is possible to form
an equation for the unknown pairwise interactions. A Y
matrix is formed by subtracting the known pairwise
interaction parameters from g(salt) (in this case the
Savage-Wood interaction parameter for (CHZ—CHZ), and for
tetrabutylammonium bromide there are 324 such
interactions). The X matrix is formed from the number of
unknown pairwise interaction parameters for the salt.

In the full analysis this procedure is repeated for
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each of the 27 salts. At the end of subroutine XION the Y
and X matrices are solved for the wunknown pairwise
interaction parameters wusing a minimal 1least squares
procedure, subroutine YLSQ. A linear least squares
procedure proved unsuitable because of the structure of the

data.
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a o0 0 a0 0 o0 a0 o0 a0 o0 o0 0

0o a a0 o 0

90

100

95

program project

implicit double precision(a-h,o0-2)
common/linda/fiat

common/frog/flag
common/mike/xm2(40),ge(40),gam2(40),xphi(40),gs(40)
common/keith/beta0(100)

common/anne/rg, tk,int
common/andy/ai{(50,50),xni(60,40,40),yi(50)

Ak AA I A IR AR IRKRRAARKRARKARAAKR AR AR AR R A AR RN AR AR R AR A AR A Ak

* betaO( ) in keith for beta0 parameter

* ge = excess Gibbs function for

* solution in 1 kg of water
* xphi = osmotic coefficient

* xm2 = molality of salt

* gam2 = mean ionic activity coefficient

* ai(i,j)

total set of interaction parameters

* xni(i,j,k) = in solute i

* number of group k-j interactions
ARAKAKAKAKARARAARARAAAAKAAAANARARAAAA AR AAA AR A AAAR AR A& Ak kX
* rg = gas constant tk / kelvin = temperature
Ak A AAKARAARAAA A A AR A A AR AAAAAAAAARAARAAAAAAARAAA A AR A Ahkhkhkhkhhhh
rg=8.314314

tk=298.15

fiat=0.0

call head

call xion

ARAAAAAAAAAAAKRARAAANKKRAARAAAARKAAARARAAARAAAARAAAAAANRAAA A A A A KK

* subroutine xion analyses first 27 salts
LR EE SRS EEEE SR RS R REEREER RS R RERRRRRRER R RRRRREREEES

* construct output array

LR SR ES SRS RS REEEERRRR SRR R RRRRREXRER R R R R R R
write(6,90)

format(lh ,10x,'*** Qutput Data To Data File ***’)
open(unit=7,file="apar.dat’,status="0ld"’)

do 100 i=1,50

write (7,*) (ai(i,j),j=1,50)

continue

write(6,95)

format(1lh,10x,’** Data Over To Data File **')
write(6,10)
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10 format(lh ,20x,'That is all folks’)

end
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Q. O 0 o o0 0 o0 o a0 o a

11
10

13

subroutine xion

implicit double precision(a-h,o0-z)

common/frog/flag
common/keith/beta0(100)
common/mike/xm2(40),ge(40),gam2(40),xphi(40),gs(40)
common/anne/rg, tk,int
common/andy/ai(50,50),xni(60,40,40),yi(50)
dimension y(200),x(200,40),a(40,1)

character*50 pig
AAAAAAAAKAKAAAAAAKAKRAARAAAAAAAARAAAAAARAARARRAAAN R A A A A A A hk

* jan = 0 ; normal least squares

* jan = 1 ; special least squares for systems
* with singular w-matrix

* enter jan here

Ak A AAAARA AR ARAKRARNARARARNARAAARAAARA AR KRR AR AR AN AR A Ak hkh

* y(i) 1is input to least squares

* x(i,j) i= data points
* j = savage-wood parameter
* xml = molar mass of water

AAKXAARAAAAAAAAAAAAAAAAAARAAARAKRAAAA AR AR AAAAAAAAAAA A A A A&
jan=1

xml= 0.01815
AhkAAXAAAAAAAAAAAAAAARARAAA A A A AR A A A A AR ARAARAAK N Kk khkhhk
* clear arrays
KhkAAAAAAAKRKAAAAAKAARAAAAAAAAAAARAAAAAARAAAAARAAAARAAANA A A A A KA
m=0

jone=0

do 10 i=1,50

do 11 j=1,50

ai(i,j)=0.0

continue

continue

do 13 i=1,40

xm2(i)=0.0

gam2(i)=0.0

xphi(i)=0.0

continue

do 20 i=1,200

y(i)=0.0

do 21 j=1,40
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O N0 o o a0 a0 a0 o0 a0 a0 o0 o0 a0 00

21
20

30

33

32
31

x(i,3)=0.0

continue

continue

do 30 i=1,40

a(i,1)=0.0

continue

do 31 i=1,40

do 32 j=1,20

do 33 k=1,20

xni(i,j,k)=0.0

continue

continue

continue
AAAAKAAKKAAKRKKAARKRAAAKARAAAARAAARNKAARRKNAAKAAA A AR A AR A A A khhhdhii
* gavage-wood analysis

* parameters from J.J.Spitzer; S.K.Suri; R.H.Wood
* J.Soln.Chem., 1985,14,571.

* store in ai( , )

* 1 = ch2 2 = oh
* 3 = conh 4 = o
* 5 =n 6 = n+
7 = f- 8 = cl-
* 9 = br- 10 = i-
* 11 = h+ 12 =
* 13 = 14 = k+
* 15 = no3- 16 = clod-

* 17 = Na+
ARAAAAAAAAAAAKRAAAANKAAAAARARAAARRARNAAAAAAA A AR A AR AR A A A k&
ai(1l,1)=-34.0
ai(2,1)=29.0
ai(2,2)=-23.0
ai(3,1)=55.0
ai(3,2)=-31.0
ai(3,3)=-118.0
ai(4,1)=37.0
ai(4,2)=-22.0
ai(4,3)=-82.0
ai(4,4)=-57.0
ai(5,1)=46.0
ai(5,2)=-41.0
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a 0 a0 a0 a0 a0 a0 a0 o0 o0 0000000000

108
107

112

113

115
114

ai(5,3)=-42.0
ai(5,4)=-40.0
ai(5,5)=-27.0

I EEE R R R R R R R R R R RS RS R R SRR AR R R RRRERRER R R R R
* MAKE MATRIX SYMMETRICAL *
Ak kA Ak AAAARARAAAAAAAAA A A AAAAARA A AR A A KA hhhhhk
do 107 i=1,5

do 108 j=1,1

ai(j,i)=ai(i,j)

continue

continue

write(6,112)

format(1hl,10x,’'Savage — Wood Matrix')
write(6,113) (i,i=1,5)

format(lh ,5x,6(10x,1i3))

do 114 i=i,5

write(6,115) i,(ai(i,j),j=1,5)

format(lh ,2x,i3,5(2x,1pel5.6))

continue
AAAAAAARAAAARARAAAKARNAARAAARAAARARAAAAARAAAAAAA AR A A AR A K kkhk ik
* code for analysis

* bromide set

* a(l,1) = br-br- = ai(9,9)
* a(2,1) = ch2n+ = ai(6,1)
* a(3,1) = n+n+ = ai(6,6)
* a(4,1) = ch2br- = ai(9,1)
* a(5,1) = n+br- = ai(9,6)
* chloride set

* a(6,1) = cl-cl- = ai(8,8)
* a(7,1) = ch2cl- = ai(8,1)
* a(8,1) = n+cl- = ai(8,6)
* fluoride set

* a(9,1) = f£-£- = ai(7,7)
* a(10,1) = ch2f- = ai(7,1)
* a(1l1,1) = n+f- = ai(7,6)
* iodide set

* a(l2,1) = i-i- = ai(10,10)
* a(13,1) = ch2i- = ai(10,1)
* a(l14,1) = n+i- = ai(10,6)

AhAAAARAAAAAAAAARAARARAAARAAAARAAARARAAAAAAA A AR AR A AR A A kK
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A 0O a0 o000 o0a0a0a0a0o0a0ao0a0o0a0o0a0a00ao0o0a00a0a0qaq0

101

1001

ict=0

AhkhhkhkhhkhhkhhkhhhhkhhhkhhhkrAhkAhrhkrhhhhrhhhrk kb bk bk bk hhhkhhkhkhk

* use rif(ict.gt.0) goto xxx' as a skip around a solute
AhkhkhhhhkhhhArhAhhAAAAAAAAAARAAAA R A A AR AR AR A A A A A AR bk hkkhkhhkhhk
* call salts in turn
* test salt data by trapping to 999

* m =1 beta0

*om o= 2 plus betal

* m =3 plus c-term

* m =1 plus beta2 term (for high valence salts)
* use test to decide on m for each salt

* y(ict) is corrected ge(nonelec)

* minus known group interaction parameters
KA RRAAAKXAKANARNARAAKRAARARAANAAARARAARAAAARAAAAAAA KA A A A A A ARk

* call salt(m,ict,pig)

* m = number of parameters in least squares

* ict = set number

* gs{ict) = returned gcorr which is required

* g(salt) + (r.t.ml)/2

* pig = data file

AR AAAKRKAAARNKAARKARAAKRARAAAANAARRAAARAAAAARKRAAARAARAA AR AR AR KA & K&
* Ammonium Bromide

* g(nhd4+br-) = 4h + n+ + br-

* = 4.(0.5*ch2) + n+ + br-

* g = 4.ch2ch2

* 2.ch2n+ + n+n+

* 2.ch2br- + n+br- + br-br-

* g = 4.ch2ch2 + 4.ch2n+ + n+n+

* 4.ch2br- + 2.n+br- + br-br-
AEAAAAAAAAAAAAAKAAAARAAAAAAAAAAAAKRAAAAAARAAKRAARAARAAA AN AR Aok &

ict=ict+1l

m=3

write(6,101) ict

format(lhl,10x,’'Set count = ’,3x,14)
pig='datal.dat’

jone=3.0

call salt(m,ict,pig, jone)
betaO(ict)=2.0*rg*tk*betal(ict)
write(6,1001) betalO(ict)

format(lh ,10x,’g-salt = '1pel5.6)
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a a0 o a

write(6,2007)

2007 format(lh, '$%3%%3%33E4EELTHTLELTIEIIITELELTLI3339%3333333%%
SHEEEEETITLEITTITILIEIETILILIEILLLTITLETIEIH2339%%%
SEEEFEEIEIREERIERY )

xni(ict,1,1)=4.0
y(ict)=betalO(ict)-(xni(ict,1,1)*ai(1,1))
x(ict,2)=4.0

x(ict,3)=1.0

x(ict,4)=4.0

x{ict,5)=2.0

x(ict,1)=1.0

AAAAAAAAKXAKRAAAAKRAARAAAAAAAAARAKAAARA AR A A AA R A AR A A hhhhhkhkhkhhk
* Tetrabutylammonium Bromide

* g(budn+br-) = g(18*ch2 + n+ + br-)

* g = 324(ch2ch2)

* 18(ch2n+) + n+n+

* 18(ch2br-) + n+br- + br-br-

* g = 324(ch2ch2) + 36(ch2n+) + n+n+

* + 36 ch2br- + 2(n+br-) + br-br-

AAARNAAKAAAAAAAAAAAAAARAAARNAAAAARAAAAARAAAAAAAA AR A A A Ak hkhkhkhhk

ict=ict+1

m=3

write(6,101) ict

pig='data5.dat’

jone=3.0

call salt(m,ict,pig, jone)
beta0(ict)=2.0*rg*tk*betal(ict)
write(6,1001) betaO(ict)

write(6,2007)

xni(ict,1,1)=324.0
y{ict)=betaO(ict)-(xni(ict,1,1)*ai(1,1))
x(ict,2)=36.0
x(ict,3)=1.0
x(ict,4)=36.0

x(ict,5)=2.0

x(ict,1)=1.0
AhhAhkhhhkhhhhhAAAAA kAR AAAAAAAAAAARAARARAAAAAAAAA ALKk kkk
* 6.6 Azonspiroalkane Bromide

* g({(ch2ch2)6n+6(ch2)br-) = g(12*ch2 + n+ + br-)
* g = 144 ch2ch2
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a a0 a a

a o o0 o

503

517
516
515

* 12 ch2n+ n+n+

* 12 ch2br- n+br- br-br-
* g = 144 ch2ch2 + 24 ch2n+ + n+n+
* + 24 ch2br- + 2 n+br- + br-br-

B R R R R R RN SRR EEERREREE RS R EERRE RS SRR RN RS ERERER SRR EREES
ict=ict+l
m=3
write(6,101) ict

pig='data26.dat’

jone=3.0

call wsalt(m,ict,pig,jone)
betalO(ict)=2.0*rg*tk*betal(ict)
write(6,1001) betalO(ict)

write(6,2007)
xni(ict,1,1)=144.0
y(ict)=betalO(ict)-(xni(ict,1,1)*ai(1,1))
x(ict,2)=24.0
x(ict,3)=1.0
x(ict,4)=24.0
x(ict,5)=2.0
x(ict,1)=1.0
AhAAAAAAAAAAAAAA AR A A A A AR AAAAAAARAARAAARAAAARAAAAAAAA A Ak bk
* input complete

* End of Data Collection
AhkAAKAAKRAAKARNAAAAAAARAARAAARARKAARAAAARNAA AR AAA KA AR AN A A h A k&
write(6,503) ict

format(lh ,10x,'Number of Systems = ’,i3)

KAk AAhAAAAAAAAAAAAAAAAANAAAA A A AR A AR AR A LA A Ah Ak
* Symmetrise the xni( , , ) matrix *
* Set up for ipar *
AAAAAAAAKRAAAARAAAAAAAAAAARAAAAAAAAA A A A KA hh kA Ak
ipar=14

do 515 i=1,ict

do 516 j=1,40

do 517 k=1,j

xni(i,k,j)=xni(i,j,k)

continue

continue

continue
write(6,500)
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500 format(lh ,10x,'input complete’)
write(6,505)
505 format(lh ,20x,’ input matrix ')
write(6,501)
501 format(lh ,5x,'**%*%%x ggalt-residuals ***k&ikr)
do 177 j=1,ict
write(6,178) j,y(j)

178 format(lh ,2x,i5,3x,1pel2.2)
177 continue
write(6,179)
179 format(lh ,5x,'***%%x*x X Values **kkk%’)

if(ipar.le.9) stump=1
if(ipar.gt.9.and.ipar.le.18) stump=2
if(ipar.gt.18.and.ipar.le.27) stump=3
if(ipar.gt.27.and.ipar.le.36) stump=4
dice=9
if(stump.eq.1l) dice=ipar
write(6,506) (j,j=1,dice)
506 format(lh ,11x,i2,8(10x,i2))
do 510 i=1,ict
write(6,520) i,(x(i,j),j=1,dice)
520 format(lh ,i2,x,9(x,1pel0.1))
510 continue
if(stump.eq.l) goto 546
dice=18
if(stump.eq.2) dice=ipar
write(6,506) (j,j=10,dice)
do 530 i=1,ict
write(6,520) i,(x(i,j),j=10,dice)
530 continue
if(stump.eq.2) goto 546
dice=27
if(stump.eq.3) dice=ipar
write(6,506) (j,3=19,dice)
do 540 i=1,ict
write(6,520) i,(x(i,j),j=19,dice)
540 continue
if(stump.eq.3) goto 546
dice=27
if(stump.eq.4) dice=ipar
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write(6,506) (j,j=27,dice)
do 542 i=1,ict
write(6,520) i,(x(i,j),j=27,dice)

542 continue
546 continue
write(6,547)
547 fo[mat(lh , (B R EETE RS E SRR RS S EAEERSRRERESRRER R R AR R B

Shhkhkhhhhkhhhhhkhhhhhhhkhkkhhhhhh?)
write(6,5006)
5006 format(lh ,10x,**** Minimal Least Sq. So
Slution *#*xr)
call ylsqg(x,y,ict,ipar,a)
do 551 i=1,ipar
write(6,560) i,a(i,1)
560 format(lh ,10x,'a ',10x,i4,10x,1pel5.6)

551 continue
write(6,580)
580 format(lh ,5x,'Recalculation of gsalt residuals Using

$ Parameters from best fit’)
write(6,590)
590 format(lh ,10x, ‘comparison’)
s=0.0
do 600 i=1,ict
dum=(xni(i,1,1)*ai(1,1)) + (xni(i,2,2)*ai(2,2))
S+(xni(i,1,2)*ai(1,2))
do 610 j=1,ipar
dum=dum+(x(i,j)*a(j,1))
610 continue
diff = betal0(i) - dum
s=s+(diff*xdiff)
xdiff=((betal(i)-dum)/betal(i))*100.0
write(6,650) i,beta0(i),dum,xdiff
650 format(1lh ,10x,i3,3(3x,1pel5.6))
600 continue
s=dsqrt(s/(ict-1))
write(6,710) s
710 format(lh ,10x,'standard error = ', lpelb5.6)
999 continue
1333 continue
write(6,585)
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585 format(lh 'Sx"************************************
S***************************')

Ahkhkkhhkhkhkhkkhhhhhhkhhhhhhhhhhhrhrhhhhhhhhhkhhhkkhkk

* Convert matrix from local to global *
IR SRR RS R SRS RS R R R R XSS RRR R R SRR RERRE SR 8]
ai(6,1)=a(2,1)

ai(6,6)=a(3,1)
ai(9,1)=a(4,1)
ai(9,6)=a(5,1)
ai(9,9)=a(1,1)
ai(8,1)=a(7,1)
ai(8,6)=a(8,1)
ai(8,8)=a(6,1)
ai(7,1)=a(10,1)
ai(7,6)=a(11,1)
ai(7,7)=a(9,1)
ai(10,1)=a(13,1)
ai(10,6)=a(14,1)
ai(10,10)=a(12,1)
AAAAAAAAARARAAARAARRAAAARAAAAAAARAAAA A A AR A A A ALK
* Symmetrise the ai( , ) matrix *
AAAAAAAAAKAAAKRAAKRARAAAAAARKAAAAAKAAAAAARAAA A A A A A AKX
do 800 i=6,10
do 810 j=1,i
ai(j,i)=ai(i,j)
810 continue
800 continue
KhAAAAAAKRARAAAAAAAAARKAAARAAAAAARAAAAAAAA A A A KA NA
* Print out interaction matrix *
LE RS SRS EEEEREEREREEERREEEERRRREERERRRRER SRR RN
write(6,701)
701 format(lh ,10x,’interaction matrix’)
do 702 i=1,14
do 703 j=1,i
write(6,704) i,j,ai(i,J)
704 format(lh ,20x,i5,10x,1i5,10x,1pel5.6)

703 continue

702 continue
goto 997

9999 continue
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write(6,996) ict

996 format(lh ,10x,’'tape error at ict = ', i5)
997 continue

return

end

-316-



a o ao o

a o a o

subroutine piz(ndata,ict,nup,nun,izp,izn,alpha,jone)
implicit double precision(a-h,o0-2)
common/frog/flag

common/keith/beta0(100)
common/mike,/xm2(40),ge(40),gam2(40),xphi(40),g9s(40)
common/anne/rg, tk,int

dimension beta(200,30),yphi(200),a(30,1),ygam(200)
dimension yge(20)

write (6,7)nup,nun,izp,izn

format(lh ,10x,4(2x,1i5))

write(6,8) alpha

format(1lh ,10x,'alpha-gamma = ’,1pel5.6)
AAAAKRAAAAAAARAAKRNAARNRAAARAAAAAAAARNAARAAANAAAAAA A AN AN A
* subroutine to find terms in the pitzer equation
* Clear the Beta array
AAKAAEKRAAAAAAARAAARNAAARAAIAA A A A A A A AAAAA AR AR A A A A A kA
do 2 i=1,200

yphi(i)=0.0

ygam(i)=0.0

do 4 j=1,30

beta(i,j)=0.0
continue
continue
LB R R R EE R R R EE R R ERREEEEERRRRREER RS REES SRR R RS
* STEP (1) Calculation of beta0 from osmotic
* coefficient equation.

LEEEEEEEEERRERERERERSRREEREEEREERRREAREREER SR EEER RN
b=1.2
alpha=alpha/3.0
write(6,13)alpha
format(lh ,10x,’alpha-phi=',1pel5.6)
do 10 j=2,ndata
xionic= xm2(j)
one=xphi(j)-1.0
two=-alpha*(xionic**0.5)
three=1.0+(b*(xionic**0.5))
yphi(j)=one-(two/three)
vv=izp*izn
yphi(j)=dabs{vv)*yphi(j)
beta(j,1)=xm2(j)*(2.0*nup*nun/(nup+nun}))

-317-



0o o o o

10

50

150

110
120

111

1007
121
112

208

201

beta(j,2)=xm2(j)*dexp(-2.0*xionic**0.5)

$*(2.0*nup*nun/(nup+nun))

beta(j,3)=(xm2(j)**2.0)*((2.0*((nup*nun)**1.5))

$/(nup+nun))

$

continue

write(6,50)

format(lh ,10x,'Input’)

ipar=3.0

write(6,150)

format(lh ,10x,'molality’,10x,’yphi’,10x,
'betal’,10x,'beta2’,10x, 'beta3’)

do 120 i=1,ndata
write(6,110)xm2(i),yphi(i),(beta(i,j),j=1,ipar)
format(lh ,5(x,1pel5.6))

continue

if(jone.eq.0) goto 111

call xlsq(beta,yphi,ndata, jone,a)

goto 112

continue
do 121 i=1,3

ipar=i

call xlsq(beta,yphi,ndata,ipar,a)
write(6,1007) a(1,1)

format(lh ,10x,'beta0 =’,1pel5.6)

continue

continue
write(6,1007) a(l1,1)

if(ipar.eq.3) goto 1009

AA XA KA A AA R AR AKRARRAARAAAAAAAR AR A AA R A A ANARANAANAN KA A A h ok k
* Step 2...... Calculation of beta0 parameter from
* Pitzers In gamma+/- equation

KA A A ARAAAKAAAARAKRAARAARAAAAAAARA A AR R AR ARA A A A A A kA Ak hA K
write(6,208)

format(lh ,20x,'analysis two’)

do 200 j=2,ndata

do 201 i=1,6

beta(1,i)=0.0

continue

xionic=xm2(j)

one2=xionic/{(1.0+(b*xionic**0.5))
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200

205

230
220

223

221
224

301

$'

two2=(2.0/b)*dlog(1.0+(b*xionic**0.5))
three2=-alpha*(one2+two2)*abs(izp*izn)
ygam(j)=gam2(j)-three2

beta(j,1)=2.0*xm2(j)
beta(j,l)=beta(j,1)*(2.0*nup*nun/(nup+nun))
duml=dexp(-2.0*xionic**2)
dum2=1.0+(2.0*(xionic**0.5))-(0.5*%*4.0*xionic)
dum3=2.0/(4.0*xionic)
dumd4=dum3*(1.0-(dum2*duml))
beta(j,2)=dumd*(2.0*nup*nun/(nup+nun) ) *xionic
beta(j,3)=(xm2(j)**2)*(2.0*((nup*nun)**1.5))/(nup+nun)
continue

write(6,50)

write(6,205)

format(lh ,10x,'xm2’',10x,’gamma’,12x,’ygam’,b12x,
betal’,12x,'beta2’,10x,"beta3’)

do 220 i=1,ndata

write(6,230)xm2(i),gam2(i), ygam(i),(beta(i,j),j=1,1ipar)
format(1lh ,6(x,1lpel5.6))

continue

if(jtwo.eq.0) goto 223

call xlsg(beta,ygam,ndata,jtwo,a)

goto 224

continue
do 221 i=1,3

ipar=i

call xlsqg(beta,ygam,ndata,ipar,a)

write(6,1007) a(l1,1)

continue

continue
write(6,1007) a(1,1)

B R R B REEEEEEEEEEERAREEESSSS SRS RS RS R R R R R R R RS X R R RR R
* step3 calculation

* using ge

IR R R SRR R EEEE A REEEERSEEEEEE SRR RER SRR RS RRERES RS RS
write (6,301)

format(lh ,10x,’'analysis three’)

do 500 j=1,ndata

xionic=xm2(j)

one3=(4.0*xionic/b)
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two3=dlog(1l.0+(b*xionic**0.5))
yge(j)=ge(j)/(rg*tk)
three=-alpha*(one3*two3)
yge(j)=yge(j)-three
beta(j,1l)=(xionic**2)*(2.0*nup*nun)
if(j.ne.1l) goto 202
beta(1,2)=0.0
goto 203
202 continue
dum=2.0/(4.0*xionic)
duml=(1.0+(2.0*xionic**0.5))*dexp(-2.0*xionic**0.5)
dum2=1.0-duml
dum=dum*dum2
beta(j,2)=dum*(xionic**2)*(2.0*nup*nun)
203 continue
beta(j,3)=(xionic**3)*(2.0*nup*nun*nun*nup)
500 continue
write(6,50)
write(6,505)
505 format(lh ,10x,'xm2’,10x,'ge’,15x,'yge’,14x,
$'betal’,10x'beta2’,10x'beta3’)
do520 i=1,ndata
write(6,230)xm2(i),ge(i),yge(i),(beta(i,j),j=1,3)
520 continue
if(jthree.eq.0) goto 523
call xlsqg(beta,ygam,ndata,jthree,a)
goto 524
523 continue
do 521 i=1,3
ipar=i
call xlsq(beta,yge,ndata,ipar,a)
write(6,1007) a(l1,1)
521 continue
524 continue
write(6,1007) a{(l1l,1)
khhhhhkhhhhhhhhkhhhhkhhkhhkkrkhhhhhkhhkhhkhhhhhkhhhkhkhhkhhkhkhhkhhhkh
* now put parameters together
Ak A A A AAAARNAAKRARKAAAAANRAAARKAARAAAAAAAAAA AR A AN A hhdhih
1009 continue
betal0(ict)=a(1l,1)
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write(6,406) betaO(ict)

406 format(lh ,20x,'returned Bo to common block keith =
$ ',1pel5.6)
return
end
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Section 2
Extended pairwise cosphere-cosphere group Gibbs function
interaction matrix calculated from osmotic coefficient data

at 298 K. (3 Mot

Kt Nat NO,~

CH, 9.4 -5.3 -61
Nt 295 339 1.4
Kt 196 - -
Na+ - 31 -
P 324 - _
cl™ 174 - -
Br~ 190 401 -
NO;~ - - -112
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Program BPB

This 1listing contains the main subroutines wused in the
FORTRAN program BPB. The program was used to generate the
dependences on ionic strength of ln(k/ko) using the
Debye-Huckel equation and Pitzer’'s equation for reaction
between hydroxide ions and the sodium salt of bromophenol
blue in the presence of various added salts.

The first subroutine at the head of the program-
contains the calls from which all subsequent subroutines
are accessed. Rate data for each added salt and parameters
necessary to Pitzer’s equation were stored in separate data
files and read into the main program wusing subroutine
INPUT. The dependence of ln(k/ko) on ionic strength
calculated using the Debye-Huckel equation was calculated
in subroutine DEBYE whilst the same dependence predicted by
Pitzer’s equation was calculated from subroutines PELECTI1,
PELECT2 and PELECT4. The latter subroutines correspond to
the equations represented by terms A, B and D of equation
[9.8] discussed in Chapter 9. All of the data were
collected in subroutine COLLECT and were set up to be
printed out.

Subroutine COSPHERE represents an attempt to quantify
the cosphere contribution to Pitzer’s equation of the
bromophenol blue dianion and the transition state
trinegative ion. The calculation is based on 6° and Bl
values for various 2:1 and 3:1 salts tabulated by Pitzer.
Finally subroutine PLOT brings together all of the
calculated data and produces plots of the dependence of
ln(k/ko) on ionic strength for the experimental data,

calculated using the Debye-Huckel equation, the individual

-323-



terms of Pitzer’s equation and finally the £full Pitzer

equation.
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N0 o0 a0 a a0 a0 a0 a0 aa a0 o0 a0 a0 a0 o o o o0 o000

program bpb

implicit double precision(a-h,o-z)
common/andy/xm2(30),xcons(30),pitzer(30)
common/linda/ndata,bo,bone3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dhl1(30),xi(30)

LEREESEEEEE SRR RS RS E R R Rt RR R R RE R

* rg = gas constant tk / kelvin = temperature
AAkAAAAAAAAAAAAAARAAAAAAAITAAAAAAAAAAAA A A A A A A A A A A AR Ak hhkhhkk

* EXPLANATION OF ARRAYS

* TITLE POSITION ASSIGNMENT

*  xm2 andy contains molarity of added salt
*  xcons andy " 1n k/ko

* pitzer andy " overall pitzer contr.
* pel + pe2 + ped

* ndata linda " number of data points + 1
* b0 linda " beta0 for COH

* (C = added salt cation)
*  bone3 linda ‘ " betal for COH

*  btwo3 linda " beta2 for COH

* cterm3 linda " c term for COH

*  pel answer " pitzers electrical term
*  pe2 answer " pitzers second term
*  ped answer " pitzers fourth term
* dhll answer " total DHLL contribution
* o xi answer " ionic strength

kA hAXAARAAARAAAARNAARAANAAARAAARARAAAAAA AR AN AAANA AR AR A A AR AR
call paper(1)
ARXAAAAKAAARAKRKAAKRAARNARAARKRAAAARAAKNARNAKRAAAAAAR A A A AR AR h Ak
* paper(l) is a set up for the plot routine
AAAAKRAKAKAAARAAAAARARNAKRRAAARAAARAAAAAARAAA AR AR A A A A hkkhhkhhk
call head

call input

call debye

call pelectl

call Pelect2

call Pelectd

call collect

call cosphere

call plot

IEEE R SR RS EERERE RS SRR R R RRRRRRRRRRRRRR R R R R SR RS
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* routine GREND ensures plot is finished

KAk Ak A A XA AAAAAAARAAAAAR R A AR AR A A A AR A kA hkhhhhdhhhkhkhhkkhhkkhkkkk
call grend
write(6,10)
format(lh ,10x,'End of Program’)
end
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subroutine debye

LA R EEEEEEEEEEEEEREEEER R R RS R R RRRERRRRRERRE SRS R

* calculation of DHLL parameters for salts in aq sln.
c.c/{ Fm"-1 J K*-1 K}

A2 s7°2/(A"2 8”4 kg"-1 m"-2 kg m"2 §°-2

* = 1

* X

*

* alpha = mol”"-1 kg m"-3
AhAAIAARAAAAAARAAAARNAARARAAAAARARAAAARRNAAANAAAKRAARAAAAA AR AN AA
implicit double precision{(a-h,o0-z)
common/andy/xm2(30),xcons(30),pitzer(30)
common/linda/ndata,bo,bone3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dh1l1(30),xi(30)
common/huckel/dhlloh(30),dhllbb(30),dhllts(30)

kA ArkAAAAARAAA KA AR A A A ARAAAAA A AN AAAA AR A A AR AR AR AR A AR A

* EXPLANATION OF ARRAYS
* TITLE POSITION ASSIGNMENT
* dhlloh huckel contains hydroxide contribution to
* total DHLL term
* dhllbb huckel contains bpb anion contribution to
* total DHLL term
* dhllts huckel transition state contribution
* to total DHLL term
AAKAAAAAAARAARAAAAAAAAKRAAKRRARAAAARAAAARAAAA A AR AR AR RN AR AR
rg=8.31434
tk=298.15
g=3.0/2.0

an=6.022169e23

bk=1.380622e-23

ez=8.854185e-12

zpi=3.14159

rho=997.045

er=78.30

pc=1.602191e-19
alpha=(2.0*zpi*an*rho)**(1.0/2.0)
xl=pc*pc/(4.0*zpi*ez*er*bk*tk)
Xx1=x1**(q)

alpha=alpha*xl

write(6,12) alpha

format(lh ,10x,’'A-gamma = ’,1pel5.6)
L EE R EREEEEEEE SR RS R AR R R REE R AR R R RR R NS
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* A—gammma in pitzer
* A-gammma =1.173
AhAAAKAARKAAAAAAAAAAAAAAAAAAAAARKA AR A A A A Ak kh ik
* calculation of the DHLL for each salt
* =4 .A(gamma).I**0.5
* where I is the ionic strength
KhkAAAAAAAIAAAAAA A A A AR AKRAAAAAAAAAAAAA A A A A AR A A A A A A
write(6,5)
5 format(1lh ,13x,’I1.STRENGTH’,10x,'OH-DHLL’,10x, ' BB-DHLL’
$,10x,'TS-DHLL',10x’'TOTAL DEPENDENCE')
do 10 j=1,ndata
dhlloh(j)= -alpha * (xi(j)**0.5) * 1.0
dhllbb(j)= -alpha * (xi(j)**0.5) * 4.0
dhllts(j)= -alpha * (xi(j)**0.5) * 9.0
dhll(j) = dhlloh(j) + dhllbb(j) - dhllts(j)
write(6,20) j,xi(j),dhlloh(j),dhllbb(j),dhllts(]j)

$,dhll(j)
20 format{lh ,2x,i5,5(2x,1pel5.6))
10 continue
write(6,2007)

2007 format(lh, ' $%%%4FEELEETEEETEHETLEITTTIITILTLIIT333333333%
SHEEELEELETIFEIRLLLIETIELLTELILLIELFEERTEEIETRH2%1%
SEEITILLLILIE5%%%)

return

end
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subroutine Pelectl

implicit double precision(a-h,o0-2)

common/andy/xm2(30) ,xcons(30),pitzer(30)
common/linda/ndata,bo,bonel3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dh11(30),xi(30)
common/electl/peloh(30),pelts(30),pelbb(30)

LEEEE R SRR RS SRR RS ER SRR R R R ERRRRE SRR R R RS RRRRRRRSR

* EXPLANATION OF ARRRAYS

* TITLE POSITION ASSIGNMENT

* peloh electl hydroxide contribution to Pitzer
* electrical term

* pelts electl transit. st. contribution to Pitzer
* electrical term

*  pelbb electl bpb contribution to Pitzer elect
* term

IR R EE SR EE R R R RS E R RE SRR ER RS RRRRERR R RS R RS

* This subroutine takes into account the first Pitzer
* electrical term.
* It is non salt specific, and is calculated from the
* equation ;
* Pel = A*aphi[{I**,5/(1+bI** ,5)}+2/b.1In(1l4+b.I** ,5)]
AAAAAAKAARAAARARKAAARAKRARKA A A AR AARA A KA A AR AL AAAAAhhhhhikhkhkhk
b=1.2
aphi = 0.3903
write(6,110)

110 format(lh ,16x,’'I.STRENGTH',9x,'pelOH’,13x, 'pelBB’

$,13x’'pelTs’,13x,'total pel’)

do 10 j=1,ndata

Xi(j)**0.5/(1+b*(xi(j)**0.5))

part2 dlog(1.04b*xi(j)**0.5)

part3 =(2/b)*part2

partd = partl + part3

partl

peloh(j) = -1.0 * aphi * partd4
pelbb(j) = -4.0 * aphi * partd
pelts(j) = -9.0 * aphi * part4

pel(3j) = peloh(j) + pelbb(j) - pelts(j)
write(6,20) j,xi(j),peloh(j),pelbb(j),pelts(7)

$.pel(j)
20 format(lh ,i5,3x,5(3x,1pel5.6))
10 continue
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write(6,2007)

2007 format(lh, ' $%%%FFEEEEEITLLILELELEIEILLLLITLIELLELE30308%%
SEEEEEIEIFELIEELILLEERILRE AR EELILFLEHEELRTRLSE
SEEEEFEEEEEEETTL%Y )

return

end
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subroutine Pelect2

implicit double precision(a-h,o0-2z)

common/andy/xm2(30),xcons(30),pitzer(30)
common/linda/ndata,bo,bone3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dh11(30),xi(30)
common/untidy/qx(30),gxx(30),pea(30)
common/elect2,/bh(30),ch(30),bxc(30),cxc(30)

AhhhhrrArh kA rAr AR A A AARAAARARA AR AR A A AR A A AL A A hkhkhhkhhk

* EXPLANATION OF ARRAYS

* TITLE POSITION ASSIGNMENT

*  bh elect2 NaOH pitzer B term to Pitzer 2nd
* ch elect2 NaOH pitzer Cterm to Pitzer 2nd
* bxc elect2 COH pitzer B term to pitzer 2nd
* cxc elect2 COH pitzer C term to " "

* pea untidy bxc + cxc for COH

* gxx untidy In(k/ko)- pel - pe2

* gx untidy a stage in gxx

KRN IRAKRAKRANRKRKRAAAAKRAAARARNKRARAARAAAAAAARAA A AR AR AR A A AR AN AA

*salt specific routine, uses beta0 values calculated
* in the pairwise interactions program 'TEST'

AhhhkAhhhkhkhhhhkAr kA AAAAAAAAA KR AR AR KA A A AKA A A AR A A Ak kAh K

* pe2 = 2.Mc|[ Bxc + McZc.Cxc]

*

* Bxc = bOxc + 2blxc/alpha**2.1I [ 1-(l+alpha.I**0.5)exp
* (-alpha.1**0.5)]

*

* Cxc{gamma) = Cxc{(phi)/2]ZcZx|**0.5

AR KRAARKRRAARKRRAAARRAARKRAKRAARAAAAARAR AR A A KA A AR A AN N A A kR
* N.B in this section X = OH-

AhA A A AAKRAKAAKRAAAAKRARAKRAAKRAKRARAKRKAAAAAAARAARAA AR A A AN A A A AAK

alpha = 2.0

pe2(1) = 0.0
bxc(1l) = 0.0
cxc(l) = 2.5e-3
bh(1) = 0.0
ch(l) = 2.2e-3

pea(l) = 0.0
do 10 j=2,ndata

AhhhkhhhkhAhARXAARAKRAAAAAA AR I AARKRAA A AR AR AAA AR AR AR A AR AR A A kK&

* pe2 = 2.Mc| Bxc + McZc.Cxc]
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* Bxc = bOxc + 2blxc/alpha**2.1 [ 1-(l+alpha.I**0.5)exp
* (~alpha.1**0.5)]

*

* Cxc(gamma) = Cxc(phi)/2|z2czZx]|**0.5
AhkhkhhhhhhkrAAAAAARAAAAAARAAAAAARAAAAARAAAAAAAAAAAARA A AR A Ak khhhi
* N.B 1in this section X = OH-
KEAXAARKAAAAAAAARRAAARARKRARNAARAAAAAARAKRAAAANAANAAAA A A A A hkhhhk

AAKAA A AAARK AR R AARRAAKNAKRA AR RAKRARKR A AR A AR AR RAARRKRAAR AR KA KR AR

* Step 1: Calculation of Bxc

AAKAKAAAARAAAAAAKRAAAARAAAA A KA A A AR R A A AR IR R AR A A AN Ak Ak hkhkkk

terml = dexp(-alpha#*xi(j)**0.5)
term2 = 1 + alpha*xi(j)**0.5
term3 = 1 - (term2*terml)

if(xi(j).eq.0.0) goto 23
term4 = (2.0*bone3)/(alpha**2.0*xi(j))
if(xi(j).ne.0.0) goto 24
termd = 0.0
continue

bxc(j) = b0 + (termd * term3)
AAARAAAAAAAKAAAAARAARAAKAAAARAAARAA AR A AARAAAAARAAAAN A A AR A AN
* Step 2: Calculation of Cxc
* nb. |ZxZc|**0.5 = |-1.1|**0.5 = 1.0
KhAAKAAARAKARAAAARAAAAAAAAANAAAAARNAAARANAAARAAAAAA A A A KA AR K

cxc(j) = cterm3 / (2.0 * 1.0*%0.5)

AAARAARKR A AAAAAARAAAARAAAARAAARANAAARAAARA A AR A AARAA R AN A AN

* Step 3: Calculation of pitzer term for NaOH

AR AREEESERERRESEEEREE RS R R R R R EERE R
* NaOH beta0 bOh= 0.0864

* NaOH betal blh= 0.253

* NaOH cterm coh=0.0044

* xmoh = molarity of hydroxide in system = 0.1 mol dm-3
AAAAKAAAAIAAAAARAAAAAARAAA AR ARAA A A AR A A AR A A A Ak hkhhhk

xmoh = 0.1
bOh = 0.0864
bih = 0.253
coh = 0.0044

AR R R EEEEEEEERE R XSRS EEESEERERRR R R RS REEER RS R R R EEEEE]
dexp(-alpha*xi(j)**0.5)
1 + alpha*xi(j)**0.5

reml

rem2
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rem3 = 1 - (rem2*reml)
if(xi(j).eq.0.0) goto 33
rem4 = (2.0*blh)/(alpha**2.0*xi(j))
if(xi(j).ne.0.0) goto 34
33 remd = 0.0
34 continue
bh(j) = bOh + (remd * rem3)
ch(j) = coh / (2.0 * 1.0%*0.5)

AhhkhAAAAAAAAAAAKRKAAR KA A AR A AR AR A A A A Ak hrhhhhhhhhhhk

* Step 4: Calculation of total Pe2

AhA kA Ak AAAKAKAAARKRAAKRAAAAKAAARAKR AR A A AR A AAIAAA A A A A AR ARk k kK

pea(j) =( xm2(j)*(bxc(j) + (xm2(j)*1.0*cxc(3j))))

pe2(j) = 2.0 *(pea(j)+ (xmoh*(bh(j)+(xmoh*1.0*ch(j)))))
10 continue

write(6,20)
20 format(lh ,17x,'1I.STREN.’,11x,"Boh’,13x, 'Coh’

$13x,'Bxc’',13x,'Cxc"’)
do 30 i=1,ndata
write(6,40) i,xi(i),bh(i),ch(i),bxc(i),

$Scxc(i)
40 format(lh ,2x,i5,5(3x,1pel5.6))
30 continue
write(6,81)
81 format(lh ,16x,’ionic str.’,9x,'first-term’

$,7x'second term’)
do 85 i=1,ndata
write(6,86) i,xi(i),pel(i),pe2(i)

86 format(lh,2x,i5,3(4x,1pel5.6))
85 continue
write(6,2007)

2007 format(lh, ' $%3%3%333LLEELIELILTILLILLLLLETILTBIEBIEBRLBRY
SHEITTTTLLIETITLELETLTITITIETITLEITIEIITILTIE383%%%
SHETETETIEITLLL333% )

A A AAAAARAKRAAKRKRKAAARR AR RA KA KRR A hhhhhkhhhhhkhkhkkkhhkh

* Calculation of the Q quantity
AhkAKAAAKAKAAAKAAAAAAARAAAAKRA A A A RARAAAAAAAAA AR ALK A A K&
write(6,90)

90 format(lh ,9x,’I.Strength’,10x,’'In(k/ko) - Q')
do 100 j=1,ndata
gx(j) = pe2(j) + pel(j)
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gxx(j) = xcons(j) - ax(j)
write(6,95) xi(3j),qgxx(j)

95 format(lh ,4x,1pel5.6,5x,1pel5.6)
100 continue

write(6,2007)

return

end
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subroutine Pelectd

implicit double precision(a-h,o0-z)
common/andy/xm2(30),xcons(30),pitzer(30)
common/linda/ndata,bo,bone3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dh11(30),xi(30)
common/fiat/bonel,btwol,cterml
common/elect4/term(10,10) ,bone2,boned,btwo2,btwod

$,cterm2,ctermd

character*50 fox,check,namel,name2, name3,named
I EEEEEEEEEEEEEEEERRERREERR SRR SRR R R RS ER R R RRERR R SRR X

* EXPLANATION OF ARRAYS

* TITLE POSITION ASSIGNMENT

*  bone2 elect4 betal for NaOH

*  btwo2 electd beta2 for NaOH

* cterm2 electd C term for NaOH

*  bone{ electd betal for NaA (A=anion added salt)
*  btwod electd beta2 for NaA

* ctermd electd C term for NaA

*  term elect4 8 terms which form thePitzer 4th

AAAAAIKAAARAKRARAARAAAARAAAAARAAAAARAAARARA N AAAAAAR AR A AR A A A K

* Consider only added Cations and anions
I E R R R EEE SRR EEE R RS R R REREESERERRRRR RS RREE R R R R EE S

* pe(4) = Sum over all cations and anions of

* M(c).M(a) [Zx**2.B’ca + ZxC'ca]

* where;

* B'ca = 2.bl(ca)/alpha**2 . 1%*%2

* [l+alpha.1** 54+0.5%apha**2.1)

* exp(-alpha.I** .5)-1] + 2.b2(ca)/alpha2**2 1**2

* [1+alpha2.1** .5+0.5alpha2**2.1)exp(-alpha2.1** .5)-1]
* where ca is the salt added to the reaction

Kk hhkhkhhAAAARKARAAAAAAARAAAAAAA A KA AAA A AR A A A Ak hhkhkhhkhkkhkhhhi
* constants for analysis
FehhkhhAhhkhhhArAhAAAAAARAARAAANAAKAAA A A AAAAAARAAAAA A A AR A A Ak &K
alpha = 2.0

alpha2z = 0.0
AAAAAIAAAIAARAAAAKRARAAAANAAAAAARAAAAAA AR AAA AR A A A A hh ok kR

* We need the sum over all cations and anions =>

* the expression has the following form

* ln(gamma) = 2[ m(Na).m(oh)Zx"2.B'(Na+OH-) +

* m(Na).m(OH).Zx.C(Na+OH-) + m(c).m(OH).Zx"2.B'(c-OH)
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17

100

*

+m(c) . m(OH).Zx.C(cOH) + m(Na).m(a).Z2x"2.B’'(Na-a) +
* m(Na).m(a).zx.C(Na-a) + m(c).m(a).zx"2.B"(c-a) +
* m(c).m(a).Zx.C(c-a)

*

* A total of eight terms
AhhkAhk AR AR AAAAAAAAAA A AR AR ARRARKIA A AR A A AN A KAk ok Ak ki

* stepl: CALCULATION OF B’ TERMS

AAKA A A AAAAAAAAA A A A AAAARAARAAAAAA AR A A A A A AR AR A A A ARk Ak
* added salt B'(ca) is term(1)

* B’(NaOH) is term(2)

* B'(cOH) is term(3)

* B’(Naa) is term(4)
AhkAAAAAAAAAARAAARAAAAARAAA AR AR A AAN A AARAAAA A AN N A A kA
flag = 1
term(1,1)
term(2,1)
term(3,1)
term(4,1)
continue
do 100 j=2,ndata

partl = l+(alpha*xi(j)**0.5)+(0.5*alpha**2.0*xi(j))
part2 = (partl*dexp(-alpha*xi(j)**0.5))-1.0

part3 = (2.0/(alpha**2.0*xi(j)**2.0)) * part2

sectl = l+(alpha*xi(j)**0.5)+(0.5*alpha**2.0*xi(3j))
sect2 = (sectl*dexp(-alpha*xi(j)**0.5))-1.0

sect3 = (2.0/(alpha**2.0*xi(j)**2.0)) * part2
if(flag.eq.1) duml=bonel

if(flag.eq.l) dum2=btwol

if(flag.eq.2) duml=bone2

if(flag.eq.2) dum2=btwo2

if(flag.eq.3) duml=bone3

if(flag.eq.3) dum2=btwo3

if(flag.eq.4) duml=bone4

if(flag.eq.4) dum2=btwo4

partd = duml * part3

sect4 = dum2 * sect3

term(flag,j) = partd * sectd

continue

[
[=
.
[=

i
o O
(=

flag = flag + 1
if(flag.ne.5) goto 17
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Ak kA hhkhAAAAAKRRAAARARAK KA AR IR KA RARRAAAA A A A KA K
* END OF STEP 1

AAARAAAAAAAAAAKAAAAAKRAAAAAAAAAARA A A A AARA A AR AR A A A K

* step 2: CALCULATION OF C TERMS
AhkhkhhkrhhrhkhhrArrhhkrAAAAAAARAAAA A AR A AL A AAA A A AA A AAA AR
* term(5)= C{(ca)

* term(6)= C(NaOH)

* term(7)= c(cOH)

* term(8)= C(Naa)
KhhkhhhkhhAAAARAAAAAANAAAAAAAAARAAAAAARARAR A AR A A A AN AR
do 21 j=1,ndata

term(5,j) = cterml/(2.0%1.0)

term(6,j) = cterm2/(2.0*1.0)

cterm3/(2.0*1.0)

cterm4/(2.0*1.0)

term(7,3)

1

term(8,3j)
21 continue

AhhhkhhkAhhkAhAARAAAAAAAAIAAAA AR AR A A A AR AR AR AR Ak kA Ak

* END OF STEP 2
AAKAKRKARARKKRRARKARAARARRARAAAARARAAA AR A A KA Ak

* step3: Formation of the Pitzer fourth term
ARARAAARAAARAARNRNAAANAARKARAAARAAARAAANAAAAAA A A A A A A K

* in this situation Zx=-1.0 = charge on OH-

* xmo = molarity of NaOH = 0.1 mol dm-3

LA EEEREEE SRR R E R EE RS R R ERREEREXE RS R R R R REEE R R R 2R N
zx=-1.0

xmo=0.1

ped(1)=0.0

write(6,2007)

2007 format(lh,’3%3%3¥E3E3ELETLLLEIEIHEIETLTLETLLIETITIE39%3%%
SELTLITLEITILITLILILITLIEILITEIBILITILITILH35353%%
SEEEIETLEIEILTLLRY )

write(6,60)

60 format(lh ,16x,'I.Strength’,9x’'Fourth Term')

do 50 j=2,ndata

ped(j)= (term(1l,j)*zx**2.0*xm2(j)**2.0)
S+{term(2,j)*zx**2 . 0*xmo**2.0)
$+(term(3,j) *z2x**2 ,0*xmo*xm2(j))
$+4(term(4,j)*zx**2 . 0*xmo*xm2(j))
$+(term(5,j) *zx*xm2(j)**2.0)
$+(term(6,j)*zx*xmo**2.0) + (term(7,j)*zx*xmo*xm2(j))
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S+(term(8,j)*zx*xmo*xm2(j))

ped(j)= 2.0 * ped(j)
50 continue

do 80 j=1,ndata

write(6,70) j,xi(j),ped(j)
70 format(lh,2x,i5,4x,1pel5.6,5x,1pel5.6)
80 continue
9999 continue

return

end
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subroutine cosphere

implicit double precision(a-h,o-z)
common/andy/xm2(30) ,xcons(30),pitzer(30)
common/linda/ndata,bo,bone3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dh11(30),xi(30)
common/fiat/bonel,btwol,cterml

AAARAAAEKAKRAKR AR A A AAAAKIAAA A AR AAARAARARA R AR A AR R Ak hkh ki

* pe2 = 2.Mc[ Bxc + McZc.Cxc]

*

* Bxc = bOxc + 2blxc/alpha**2.I { 1-(l+alpha.I**0.5)exp
* (-alpha.I**0.5)]

*

* Cxc(gamma) = Cxc(phi)/2|Zczx|**0.5
AR AAKKAAAARAAAAAAAAARAARAAAAAAKRAAANAAAANAAARNA AR AR A A

* N.B in this section X = OH-
********************************ﬁ********************

* Step 1: Calculation of Bxc
AAKAAKAARKAAAAAARAAAAAAAAAARNAAANRAARARAANAAAA R AN R A AN A AR
alpha=2.0

WRITE(6,100)

format(1lh ,5x,’'THE TRINEGATIVE ANION’)

do 2 j=2,ndata

write(6,14) xi(3)

format(lh ,10x,'NEW VALUE OF IONIC STRENGTH = ’,1pel5.6)
do 4 b00=0.5,1.1,0.1

write(6,12) b00

format(1lh ,10x,’NEW VALUE OF BETAQ =',1pel5.6)

do 6 bl =5,10,0.2

terml = dexp(-alpha*xi(j)**0.5)
term2 = 1 + alpha*xi(j)**0.5

term3 = 1 - (term2*terml)

term4 = (2.0*bl)/(alpha**2.0*xi(j))

bxcc = b00 + (termd * term3)

write(6,10) j,b00,bl,bxcc,xi(j)

format(lh ,3x,i5,4(5x,1pel5.6))

continue

continue

continue

write(6,2007)
format(lh, " $%%%3%3532433E234E2432LH22493BH23598333%%%%
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SEFFEEEEIFEEELETEEELILELLLEIEEHLTELLLIFTEET235%%%
SEEFEIRRIRIRILR%Y)
write(6,20)
format(lh ,5x,'THE DINEGATIVE ANION')
do 22 j=2,ndata
write(6,34) xi(j)
format(lh ,10x,’'NEW VALUE OF IONIC STRENGTH = ',lpel5.6)
do 24 b00=0.2,0.7,0.1
write(6,32) b0O
format(lh ,10x,'NEW VALUE OF BETAQ =',lpel5.6)
do 26 bl =1.0,2.9,0.1

terml = dexp(-alpha*xi(j)**0.5)
term2 = 1 + alpha*xi(j)**0.5

term3 = 1 - (term2*terml)

term4 = (2.0*bl)/(alpha**2,.0*xi(j))

bxcc = b00 + (termd4 * term3)
write(6,30) j,b00,bl,bxcc,xi(j)
format(lh ,3x,i5,4(5x,1pel5.6))

26
24
22

continue

continue

continue
return

end
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subroutine plot

implicit double precision(a-h,o0-2)
common/andy/xm2(30),xcons(30),pitzer(30)
common/linda/ndata,bo,bone3,btwo3,cterm3
common/answer/pel(30),pe2(30),ped(30),dh11(30),xi(30)
common/fiat/bonel,btwol,cterml

real*4 ionic(30),dh(30),0one(30),two(30),four(30)
real*4 sconx(30),pitz(30)

hhhkhhhhhhkhhhhrhhhhhkhhhrhrhhhkhhhhhrhrhhhhhhhhhhhhhhhhkhh

* Convert from double to single precision
AAKKAKAKRAAAAKRAKKAAARARAAKXRKRAAKRKRRKRKRARKRAAAAAAAARNARNAARAAAAK
do 10 j=1,30

ionic(j) = xi(3j)

dh(j) = dhll(j)

one(j) = pel(j)

two(j) = pe2(j)

four(j) = ped(j)

sconx(3j) = xcons(j)

pitz(j) = pitzer(j)

continue

flag = 0.0

call gpstop(2)

call filnam(’'tmaf’)

continue

call lincol(0)

call pspace(0.15,0.85,0.15,0.85)
if(flag.eq.1.0) goto 103

call map(0.0,2.2,-1.0,7.0)
if(flag.ne.1.0) goto 104

continue

call map(0.0,1.5,-1.0,7.0)
continue

call axorig(0.0,0.0)

call axes

call ptplot(ionic,sconx,1,ndata,232)
call curveo(ionic,sconx,l,ndata)
call ptplot(ionic,dh,1,ndata,243)
call curveo(ionic,dh,1,ndata)

call lincol(2)

call ptplot(ionic,one,l,ndata,244)
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50

call
call
call
call
call
call
call
call
call
call
flag

curveo(ionic,one,1,ndata)
lincol(3)
ptplot(ionic,two,1,ndata, 245)
curveo(ionic,two,1,ndata)
lincol(4)
ptplot(ionic,four,1l,ndata,251)
curveo(ionic, four,1,ndata)
ptplot(ionic,pitz,1,ndata,235)
curveo(ionic,pitz,1,ndata)
frame

= flag + 1.0

do 50 j=1,30

ionic(j)=ionic(j)**0.5

continue
if(flag.eq.1.0) goto 100
return

end
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Section 1
The following listing contains the main subroutines of the
FORTRAN program H20D20 which was used to calculate the
internal pressure of water and deuterium oxide and to fit
the data wusing the method of 1linear 1least squares to
equation [10.20] of Chapter 10.

Subroutine DATA(JJ) contains the parameters for

8,9 to calculate the

equations wused by Fine and Millero
volumes, expansibilities and compressibilities for both
water and deuterium oxide. Subroutine VANALY sets up the
arrays and necessary variables from which the volumes
(subroutine VCALC), compressibilties (subroutine XCOMP),
expansibilities (subroutine XPAN) and internal pressures
(subroutine PANALY) are calculated. The same subroutine
also sets wup arrays for various plot routines e.g.
subroutines PIMAP and PIPLOT.

Finally the internal ©pressure, temperature and
pressure data are set up for equation [10.20] of Chapter 10
in subroutine XPIFIT. The data are fitted to this equation
using the method of linear least squares using a separate
subroutine (subroutine XLSQ) called from within XPIFIT.

At the start of the program the integer variable JJ
is set equal to zero, this ensures the program analyses
data for water. However on successful completion of
subroutine XPIFIT the program loops back to the start and
resets JJ = 1. The program then carries out the same
analysis for deuterium oxide and on successful completion

of XPIFIT for the second time the program is terminated.
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program h2od2o

AAAKAAAAAAAKAAAKAKXAARAARNAAAARAAANRAAAAAAAA AR A AR AR A A AKX A A K

* internal pressures
* A.W.Hakin & M.J.Blandamer
* University of Leceister

Thh Ak Ak kAR T h kAR h kR ke kAR IR I RA KRR KRR A AR AR A AR AR AR hdhhdk
implicit double precision(A-H,0-Z)
common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/anne/rk(50),prk(50),nrk,delta(500),point(500)
common/will/btot,altot,dtot,a2tot,zv,dog
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/jess/xtc

common/dan/kcont,setpi,excomp,pnew

AAAAA Rk ARARARAKRAAAARKRAAAAAARARAAARAAAAAAAAARAAKR A A A Ak hhhk
* internal pressure and kinetics
ArkhkAAAAAAAAAAAAAARAAAARAAA AR A ARAARAAARARKRAAAARAKRAAAAARAAAAAA A A Kk
KA hAhhA Ak AR AR A AR AR AAAA R IAA A A AR AAAAAAAARR AR A A A A hhhk
* anne is kinetics
AARARNRAARNKAARKAARARAARRAAAAAKRKRAAARAAARARAARARAA KA ARA A A AR A A A AL AN
itop=0

jtop=0

nout=6

LR SR SRS SR SR SR SRR RS RS SRXERRRRRRRER R R R R R RS R R 2 R R 8

* jij =0 water

* ji =1 d2o lind is a counter for plots
AARKAARKAARKAAKRAAAKRAAAARRARAAKRRAAAAARAANAARAARRAAAAAA A A A b &k
33=0

lind=1

dog=1

call paper{(1l)
continue
call head(jj)
call data(jj)
call vanaly
call xpifit
format(lh ,10x,’'signals’)
write(6,40) itop, jtop
format(lh ,10x,'itop=’, i3,2x,'jtop=',i3)
if(jj.eq.1l) goto 100
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jj=1
goto 200
100 continue
call grend
write(6,20)
20 format(1h0,20x,’'that is all, folks’)
end
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subroutine data(jj)
implicit double precision(A-H,0-2)
common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/anne/rk(50),prk(50),nrk,delta(500),point(500)
common/will /btot,altot,dtot,a2tot,zv,dog
KhkAhAAAAAXAAAAKRAAKRAAANARAANAARNARNAAAAAANAAAAAARANA A A A AN AR AR
* data from fine and millero

* water J.Chem,Phys., 1973,59,5529.

* d2o J.Chem.Phys., 1975,63,89.

*  b- parameters equation 6’
KhhhkAAAAAARAAAAAAAKRAAIAR AR AR AR A AAAA AR AR A A AR A A Ak Ahhhhkhhh
if(jj.eq.1) goto 10

KAk hARAAANAAARNAAAAAAAAKRARNKRAAKRAAAKRAAAKRAARRAAA A AAA A AR R A NN
* water data
AAAKRAKAAAAAAAAAAAAAAAARARAA A AR AAAAAAAA AR AAA AR AR R A AR A AN AR
b(1)=19654.320

b(2)=147.037

b(3)=-2.21554

b(4)=1.0478e-2

b(5)=-2.2789e-5
AhkhAAAAAAAAAAARAARAAAAAAARAAAAAAARAARAAARA AR AR AR A AR A A AR AN
* d0 parameters numerator for v0

* equation 6’

LA EEEREEESESEEEEEEEEEEERREREREREERRREERREREE SRR EEEE KRS R RS R
do(1)=1.00

d0(2)=18.159725e-3

ARXAAKAAAKRRAAAARAAARAARKRARARRRAAARAAAARRA A AR A AR A A AR AN AR AAkA

* al parameters equation 6"’
AAAAKAAAAAARAKAAKRAAAAAAAAAAAAAAAAAARAAAAKRARAAA A A A Ak Ak Ak
al(l)=3.2891

al(2)=-2.3910e-3

al(3)=2.8446e-14

al(4)=-2.8200e-6

al(5)=8.477e-9

AAKAKAKAAKAAKAAAAAAAAAKRRAAARAARAAAARARA AR AR A AR A AR AR AN A AR

* a2 parameters equation 6’'"'’

AhAIAARAKAAAAAAAKRAAAAAAARAAAARARAAAAAAARARARAA AR A AR AR A AR A AR Ak

a2(1)=6.245e-5
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a2(2)=-3.913e-6
a2(3)=-3.499e-8
a2(4)=7.942e-10
a2(5)=-3.299%e-12
LIRS ERE RS S EEEE RS RERRRRERRRRRRRRR R R R R R R REREEER R

* dv( ) denominator in volume eqn.

AAAAARAARAAAKAAAAAAAAAAAAAAAKRAAAAAAAAA A AR A AR ARA AR AL A KAk AK
dv(1)=0.9998396
dv(2)=18.224944e-3
dv(3)=-7.922210e-6
dv(4)=-55.44846e-9
dv(5)=149.7562e-12
dv(6)=-393.2952e-15
goto 20

hhkhkA kAR AAAAAAKAARNKAKAARAAARAANAAAAARAAANAARAAR A A AR AN kA&
* d2o data
AAARKKARAAARNRKRARARAARANAAKRRNARAANRAAAAARARA A A AR A A AR A A A kA
continue
b(1)=1.860737e4
b(2)=170.26
b(3)=-2.40556
b(4)=1.02703e-2
b(5)=-1.5680e-5
do(1)=1.00
d0(2)=17.96190e-3
al(1)=3.129069
al(2)=-4.53919e-3
al(3)=4.3252e-4
al(4)=-4.7659%9e-6
al(5)=1.6244e-8
a2(1)=1.07903e-4
a2(2)=-5.5471e-7
a2(3)=-1.6758e-7
a2(4)=2.384e-9
a2(5)=-9.301e-12
dv(1)=1.104690
dv(2)=20.09315e-3
dv(3)=-9.24227e-6
dv(4)=-55.9509e-9
dv(5)=79.9512e-12
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dv(6)=0.0
20 continue
write(6,100)
100 format(lh ,20x,’'input parameters’)
do 110 i=1,5
write(6,120) i,b(i)
120 format(lh ,2x,’'b’,2x,13,2x,'=",2x,1pel5.6)
110 continue
do 130 i=1,2
write(6,140) i,d0(i)
140 format(ih ,2x,'d’,2x,i3,2x,'=",2x,1pel5.6)
130 continue
do 150 i=1,5
write(6,160) i,al(i),a2(i)
160 format(ih ,2x,i3,2x,'al = ',1pel5.6,3x,'a2 = ',1pel5.6)
150 continue
do 180 i=1,6
write(6,190) i,dv(i)
190 format(lh ,2x,i3,2x,'dv = ', 1pelb5.6)
180 continue
return
end
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subroutine vanaly
implicit double precision(a-h,o0-z)
AhARAAAEAAAAAAAAIARAARAAARAAAAAA A AR A A AR A A A A A KA AR AR A A A KAk kKA

* calc of volumetric parameters for water

AhkhkAkAAARAAAAAAAKRAA AR AR AAAAAARAAA AR R AR A A Ak hhhhhkhhkhhkhhhk

common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/anne/tk(50),prk(50),nrk,delta(500),point(500)
common/pete/dvz,db,dal,da2,tcpi,ling,zpos(31,11)
common/will/btot,altot,dtot,a2tot,zv,dog
dimension z(40),hts(20,50),x(40)
I E R E R R RS R R R R R R R RS EEERERERERSREER AR REREERRR R R R SRR RS8R
* z is a plot dummy
* hts is for 3-d plot
IR E R EEE AR R R R RS R SRS RS ERSRSRE R RS RS RS R R R SRR R SRR EE RN
itop=0
jtop=0
write(6,10)
format(lh ,20x,'volumetric parameters’)
icount = 0
write(6,20)
format(lh ,25x,’fine and millero’)
AAKRKAARAKAARAAARRAARAAKRAKRAAAKRRAAARA A AN K ARARAAAAARAA KA A AKX
* set up for temp array (11,31) *
AKX KKAAKRKAAKRRKRKAAKRARRKARRNANAARAKRKRAR AR AN AR AR AAA AR AR A A A AL A& AKX
xts=0.5
do 30 i=1,40
icount=icount+1l
itop=itop+l
jtop=0
tc(i)=(i-1)*xts
if(i.gt.12) xts=5.0
if(i.gt.12) tc(i)=(i-11)*xts
tk(i)=tc(i)+273.15
A AKX KAAKRAAAAARKAAAAAKAAAAAARKAAAAAAAAKRAAAAAAAARARAAAA KA A A KA A
* Alternative setup for pi surface plot (i.e (11,21))*
AAAAIAKRARAAKRKRKIARANAAKRKRAKRAAARKRA A AARA AR RN AR Ahkhhkhhkkhhkkkkkk
xts=5.0
do 30 i=1,21
icount=icount+l
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itop=itop+l
jtop=0
tc(i)=(i-1)*xts
tk(i)=tc(i)+273.15
LA EEEEE SR SRR R R R R R R RS R R R R RS RS AR R SRR RS R R
* End of the alternative Setup *
FhAAAARKAAAARAKAARAAARAAAAARRANAR A A IR ARAAARRAARA AN AR KA A AR A X
do 40 j=1,11
jtop=jtop+l
p(j)=(j-1)*1.0e2
LEREE SRR SRS EREREEER R XSRS R R R R R RN
* 0 to 110 celsius
* 0 to 1000 bar applied pressure
* p( ) is held in bar
* pn is held in n m"-2
LA AR R RS RS RS EEREESEEEEEE RS ERREERRERRRRRR R R RSN
pn=(p(j)*1.0e5)+101325.0
xtc=tc(i)
pug=p(j)
AAAA A AR AR AARAAAAAA KA AR AAA AR AR RA AN A AR A AR Ak khhhkk
* vcalc called with
* xtc temp/celsius
* pug xs pressure/bar
* returns dum in cm”3 g“-1
KhhAAhkhhhARAAAAAARARAAARAAAAAAKNARAAAAAAA AR AR AR R AN A AR A Adhhk
call vcalc(xtc,pug,dum)
KhAhkAARAKAAAKRKARAKAAARAAARANANAARAAKRAAARRAAAAARKAAA AR AR A A A A AN
* vol(i,j) in cm”"3 g~°-1
Ak Ak hhhkhkhkrAAXAAAAAARARAAARAAARAAAAAKRAAAKAARAA AR AR AR A AR A A A&
vol(i,j)=dum
LA EEEEEEEEEE RS SRS SRR RS R R SRR RS R R RR R RRRRRRRE
* xcomp called with
* xtc = temp/celsius
* pug = xs pressure/bar
* dum = vol/cm“3 g”-1
* return ycomp/(N m"-2)"~-1
LEAEESEEREREREEEEERERERSREE RS RS R R R RS R R RN 2
call xcomp(xtc,pug,dum,ycomp)
comp(i,j)=ycomp

AAAAAAAAAKAAAAAAARAAAAAAAKARAAARAAAAKA AR KRAAR AR A A A AR A A A A A AKX
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* xpan called with

* xtc = temp/celsius

* pug/excess pressure/bar

*dum = vol/cm”3 g”-1

* return dum2 expansibility/K"-1

IR EEESEEREERE RS EEEEE SRR EES R R SRR R R R R R R R R ER SRS
call xpan{(xtc,pug,dum,dum2)

yexp(i,j)=dum2

A Ak h A A AR AR ARAA AR A AARRARAKRA AR AR A A AR AR kA A hhhhhh ki
* call panaly with

* xtc = temp/celsius

* pug = excess pressure/bar

* dum2 = expansibility

* ycomp = compressibility

* return with xpi/N m"-2 = internal pressure

I EEEE R R R R R R R R R R R R SRR RS R EEEEEREERRRRRERRERRRRE R RN SRR S
xtc=tc(i)

pug=p(3J)

call panaly(xtc,pug,dum2,ycomp, xpi)
pi(i,j)=xpi
continue
if(tc(i).ge.100.0) goto 177
continue
continue
write(6,178) icount
format(lh ,10x, "'number of data points=',14)
do 200 k=1,4
if(k.eq.l) write(6,50)
format(1h0,20x, 'volumes/cm”3 g~-1")
if(k.eq.2) write(6,51)
format(1h0,20x, 'expansibilities/K"-1")
if(k.eq.3)write(6,52)
format(1h0,20x, 'compressibilities/Pa"-1")
if(k.eq.4) write(6,53)
format(lh ,20x,’'internal pressures/bar’)
do 90 m=1,15,5
itop=m+4
if(itop.gt.11) itop=11
write(6,60) (p(i),i=m,itop)
format(lh ,4x,’'pg/bar’,7x,5(x,1pel5.6))
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write(6,61)
61 format(lh ,2x,’'temperature/K')
do 70 j=1,60
im=itop
if(k.eq.1) write(6,80)j,tk(j),(vol(j,i),i=m,im)
if(k.eq.2) write(6,80)j,tk{(j),(yexp(j,i),i=m,im)
if(k.eq.3)write(6,80)j,tk(j),(comp(j,i),i=m,im)
if(k.eq.4)write(6,80)j,tk(j),(pi(j,i),i=m,im)
80 format(lh ,i2,x,1pel5.6,5(x,1pel5.6))
if(tc(j).ge.100.0) goto 77
if(j.ge.icount) goto 77

70 continue
77 continue

if(p(i).gt.1.0e3) goto 777
90 continue

177 continue
200 continue

(AR R SR EREEEEEREEESRRRERRRREERERERRRRERRR SRR RS R R R

* int pressure plot
KA AARAAARNAARARAAAAKRAAARKRARNAAARAAARAAARAAR A A AN A AR A A KA Ak hdhh
ymin=pi(1,1)
ymax=ymin
do 4810 ix=1,icount
do 4820 iy=1,11
if(pi(ix,iy).lt.ymin) ymin=pi(ix,iy)
if(pi(ix,iy).gt.ymax) ymax=pi(ix,iy)
4820 continue
4810 continue
ymin=ymin-dabs(ymin/10.0)
ymax=ymax+dabs(ymax/10.0)
dod4310 i=1,11
dod4320 j=1,icount
zpos(j,i)=pi(j,i)
4320 continue
4310 continue
KAhhkhkhhAAkAARARIAAAAKAARRNARAAAAAAAAAAAARARNA A A A AR AR AR KAk ki
* attempt to plot internal press surface
AhAhkhkhh A kA A AAAAAARAAKRKAAARAARAAA AR AAAAA A AAARA AR A A A A A A Ak
call pimap
call piplot
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* 3-d plot
LR R R R R E RS SRR EEEREEEESRER SRS S RS RS R SRR R R EEE
write(6,1010)
1010 format(lh ,2x,'iso plot’)
write(6,1020)
1020 format(lh, 3x,’volumes’)
do 1030 i=1,50
do 1040 j=1,20
xtc=(1i-1)*2
pug=(j-1)*100
call vcalc(xtc,pug,dum)
hts(j,i)=dum
1040 continue
1030 continue
ifail=0
1099 continue
return

end
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subroutine vcalc(tcx,px,calcv)
implicit double precision(A-H,0-2)
common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/anne/rk(50),prk(50),nrk,delta(500),point(500)
common/will/btot,altot,dtot,a2tot,zv,dog

Ahh Ak ARXArAKX AR AKRAA A A AARAKRAARAARKRARAAARAAA AR AR AR AR AR AR hhkkk
* input tcx = temp/celsius

* px = pressure/bar (excess)

* output = calcv/cm”3 g~°-1

Ahh A A AARAKRARARRAAR AR R AR A AR AR AR AR KA AN AN A A AR A AR
btot=b(1)

altot=al(1l)

a2tot=a2(1)
ARKAAAKRKAAKRAANAAKAKAAAKRKAAAAKRKRRAAARKRAAAAKR AR A A ARA AR AR KA A A A A Ak XA
* calc b al and a2 1in eqgn 6.
AAKRKAAAKRKAAARKARAAARKAAARAKRAAKR AR AR AR ARAAARKR A AR A Akhhhhhkkhk
do 10 i=2,5

btot=btot+(b(i)*tcx**(i-1))
altot=altot+(al(i)*tcx**(i-1))
a2tot=a2tot+(a2(i)*tcx*x*(i-1))

continue

continue

dtot=dv(1)

do 20 i=2,6

dtot=dtot+(dv(i)*tcx**(i-1))

continue

continue

xkl=altot*px

xk2=a2tot*px**2

xk=btot+xkl+xk2

LI E R R R R R R R R SRR EEERRERRRRE RS RS R RRRRA R R R R R R R
* xk = pres.zv/(zv -calv)
AAAKAAAIAAAAKAAAKRRAAAAA AR A AR ARAKRRAARAAA A A AN A A A AN A AAhhhhhhk
zv=(d0(1l) +d0(2)*tcx)/dtot

calcv = zv —(px*zv/xk)

return

end
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subroutine xcomp(temp,pres,calv,ycomp)

implicit double precision(a-h,o0-2)

LA EEREEEREE SRR RS R R R R R R R RS RS RRRRREERRRERER R R R RN 2R
* calc of compressibility

* temp = t/celsius

* pres excess pressure/bar

* calv = volume/cm"3 g"-1

* return ycomp in (N m"-2)"-1 and not bar”-1

Fhh kAR AR AR A AR AAIR K AR IR KA A AARARAAARKAAARKRAA KA IR Ak kA K

common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/anne/rk(50),prk(50),nrk,delta(500),point(500)
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/will /btot,altot,dtot,a2tot,zv,dog

duml =btot-(a2tot*pres**2)

dum2 =btot+(altot*pres)+(a2tot*pres**2)
ycomp=zv*duml/(calv*dum2**2)

ycomp=ycomp*1l.0e-5

return

end

subroutine panaly(xtc,pug,xpan,ycomp,xpi)

implicit double precision(a-h,o0-z)

kAR AAAKAKARARARKRAARNAARAARARAARARAAAARAAA A AR A A AR hhhkhhhhk
* calculation of internal pressure;

* return calc in xpi

* at pressure pug/bar and xtc/celsius

AAARAKXRKAKAAAKRAARKAAKR AR A AA R A AARRARARARAAANAA AN AN AR AR AR A A AR kK

common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/anne/tk(50),prk(50),nrk,delta(500),point(500)
common/will/btot,altot,dtot,a2tot,zv,dog
pug=(pug+1.0)*1.01325e5
xpi=(((xtc+273.15)*xpan/ycomp) - pug)*1.0e-5

return

end
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subroutine xpan(temp,pres,calv,expan)
implicit double precision(a-h,o0-2)
A A A AAAARAAAARAAKAA A AR AAARA AR AR A A A A Ahhkhhhhkkhhhkhkkhhkikhkkhkhk

* temp = t/celsius

* pres excess pressure/bar

* calv

calc volume/cm”3 g~°-1
* return expan/K"-1

Ahhkhkhkkhhhhkhkh A A AAAAAAAAAAAA I AR A A A AL A A A Ak hkhhkk bk kkhik

common/mike/p(ll),tk(31),pi(31;11),tc(31),b(5),

$al(5),a2(5),dv(6),d40(2),vol(31,11),comp(31,11),yexp(31,11)

common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/anne/rk(20),prk(20)
common/will/btot,altot,dtot,a2tot,zv,dog

AhhAARAAAAAAKRARARKAAARAAAAA AR AR R AAAAAAARAAAR AN AARAN AR KA KA KK

* calc of expan.

Ak hhAhhhrhhhrhhhkArAARAAAAARIARARARAKRARAAR AR A A RIS AR AR A A&
db=b(2)

dal=al(2)

da2=a2(2)

ddv=dv(2)

do 20 i=3,5

xtc=temp**(i-2)
AATAKAARRAARAAARARAARAAKRAAAAKAAAAAAAARAA AR AR AR A A AN A AR AR A KA AKX
* calc db/dt

* dal/dt

* da2/dt
AAkAAIAAKRAARRNAARAAKRARANRAARRAAANAARRA AR R AR AR AARAAAARR AR AR A AR
db=db+(i-1)*b(i)*xtc

dal=dal+((i-1)*al(i)*xtc)

da2=da2+((i-1)*a2(i)*xtc)

continue
AARKAAAARNKARAAAAAAAAAAAA A AR A ARA A A AR AR A A A A hhhhhhhhhhhkhhkk
* calc dvO0/dt
AhkhkAAAAAAAAAAAARAA R AAARAAKR AR AAA A AR A AR A AR A Ak kA kA hkhhhhk
do 30 i=3,6

xtc=temp**(i-2)

ddv=ddv+((i-1)*dv(i)*xtc)

continue

duml = d0(2)/dtot

dum2=d0(1)+d0(2)*temp
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dum3= - dum2*ddv/(dtot**2)

dvz = duml+dum3

Ak hAA KA AAAKXAAARNAAAAAAAAANAAAANRAAAAAAAA A A AA A AR A A A A AR A A AA X AR
* first term in eqn 10 is dumd
KhkAhAhkAhkAAAAAKRAARARAKRARARKAA KA A AR AR A A AR AR AR AR A AAAA A Ak ki
dumd=dvz/calv
hhkhkhkhhArhkhrAAAhkARAAAAKRAAAKRAARAAARAAAARAA I AR A A AAA A AR A AR A
* second term is dum5
AhhhkhkhhhhhhkhhhhhrhA kA krAAr kA AAh A Ak A RARAAAAAAAAKAA A K k&
suml=(btot+(altot*pres)+(a2tot*pres**2))

dum5= - pres*dvz/(calv*suml)
AAAAIAAKRKRARKARNAAAAARAARKAARKAAARAARAAAAAARNAA A AR AARA AR A A KA AKX
* third term is dumé

AhAhhAAhArAAAAAARARAAARKAAARAKR AR AKRAAAANAAAAAAARAA AR AN AR A A AR kK

[

sum2 db+(dal*pres)+(da2*pres**2)

dum6 pres*zv*sum2/(calv*suml**2)
expan=dum4+dum5+dumé

return

end

-357-



0o aQa a0 o0 o a0

10

20

30

35
33

subroutine xpifit

KA KA A A AARKAFAAAARAAAKRARARAAKRAAAARKAARARAAAAAA AR AR AR AR A& kK
* analysis of internal pressures

* dependences on T and p

* fit pi dependence

* pi = al + a2.(t-tref) + a3.(p-pref) + ad.(T-tref"2)

* + a5.(t-tref).(p-pref) + ab6.(p-pref)”2
IARAAKAAAAKAAAAAAAAARARNAAARARAAARNAANAAAARARAAAARA A A AR A AR AR NAN
implicit double precision(a-h,o0-2z)
common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/anne/rk(50),prk(50),nrk,delta(500),point(500)
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/will/btot,altot,dtot,a2tot,zv,dog

dimension a(20),y(500),x(500,10),xt(10,500),w(10,10)
dimension wi(10,10),ycalc(500),picalc(40,11)

dimension z(500),unit(10,10),wkspce(10),wp(10,500)
dimension zx(1),xdelta(1,500),cx(30,30)

write(6,10)

format(lh ,10x,’pi -- lsq’)

AhkAAAAAAAArAA A AR AARARAAAAAAAAARAAA AR AR R A AR A AR Rhhdkhhhhi
* fit about midpoints
AAAAAAARAAARAAAAARAAARARNRAAARARKAARAAARARAARRRAARAARA A A AR ARRANAA A KA
tref=323.15

pref=500

write(6,20) tref

format(lh ,20x,"'tref/k="',1pel5.6)

write(6,30) pref

format(lh ,10x,’'pref/bar=',1pel5.6)
AAKKAAAAAAKAEAAARAAAAAAAAAAAARAAARAAAA AR AAAAAAARAN A A A AR A A

* clear arrays

LB SR SRS RS RS AR R AR RS RS RREERRERRERRRR R R RS R RERRRERERRRR R R R
do 33 j=1,500

y(j)=0.0

do 35 i=1,10

x(j,i)=1.0

continue

continue

AAAAAA A AR AR AARAAARKRAAAARARAAAAAA AR AR AR AR AR A AR AR A A Ak kR

* set up arrays
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110
100

130

1020

* jfit is counter
LR R SRR EEREEEE SR SRR R R R SRR RS SRR SRR RRERRRRR R RS E R ERE]
jEfit=0
do 100 i=1,31
do 110 j=1,11
jEit=jfit+1
y(jfit)=pi(i,j)
x(jEit,1)=1.0
x(jfit,2)=tk(i)-tref
x(jfit,3)=p(j)-pref
x(jfit,4)=x(jfit,2)**2
x(jEit,5)=x(jEit,2)*x(jfit,3)
x(jfit,8)=x(jEit, 3)**2
X(jfit,9)=x(jEfit,2)**3
x(jEit,6)=x(jEit,4)*x(jfit,3)
x(jEit,7)=x(jEit,2)*x(jEit,63)**2
x(jfit,10)=x(jEit,3)**3
continue
continue
write(6,130) jfit
format(lh ,10x,’number of points=',110)
AARAAAKRRAAAAAAAKAAANKRKAAAARARNAAAANAARARAARARNR A AR AR A A dhhhk
* least squares analysis
* set number of parameters and explore fit
AAAAARAAAKAKAKRKAAAAKAKRKKAAARARKRAAAARAAA A AR A A AR A AR A AR AR A A kAk
if(lind.eq.l) ipar=7
if(lind.eq.2) ipar=9
call xlsq(x,y,jfit,ipar,a)
write(6,1020)
format(lh ,10x,'end of analysis’)
return

end
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Section 2

Modification of the 1latter FORTRAN program produces a
program which calculates the temperature of maximum density
for both water and deuterium oxide as a function of
pressure. The modification is achieved by reﬁoving
subroutine XPIFIT from the program and replacing it with
subroutine TMD(JJ) which in turn <calls an external
subroutine F.

Subroutine TMD(JJ) contains NAG routine COSADF which
locates a zero of a continuous function in a given interval
by combination of the methods of interpolation,
extrapolation and bisection. External subroutine F, called
by the NAG routine, defines the function whose zero is to
be determined. In the context of this problem the
continuous function is the volume and hence for a given
temperature the NAG routine searches for a pressure at
which the volume is a minimum i.e. the pressure at which
the expansibility should be zero. Enclosing the NAG routine
within a 'do loop’ ensures several different temperatures
are examined,

The resulting temperature and pressure data are then
fitted using the method of linear least squares (subroutine
XLSQ called from within TMD(JJ)) to equation [10.21] of
Chapter 10 to produce an equation for the temperature of
maximum density as a function of pressure for both water

and deuterium oxide.
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10

13

15

subroutine tmd(jj)
implicit double precision(a-h,o0-2z)
common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/anne/rk(50),prk(50),nrk,delta(500),point(500)
common/jess/xtc

common/dan/kcont,setpi,excomp, pnew
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)
common/will/btot,altot,dtot,aztot,zy,dog

dimension vmin(50),tmin(50),pmin(50)

dimension a(20,1),y(500),x(500,10)

external f

KA A AAAAAARAAAANAAAAAARKAARKAAAKAAAAAANAAANRAA A A A A A A KA Kkhhhkhhh
* calc of TMD

AhAAA A AR A AARKAATAAARR AR AARAAKRAARAARARNARNANA AR AR A A AN AN AN KX
write(6,10)

format(lh ,20x,’'TMD calculation’)

kcont=0

I EEEE R EER R R R R R R R AR R R R R R R R R R R R R R RS REERR XX REER R RR R R
* determine pressure at which E is zero at given Temp.
AARAAAAAAAAAAAAAAAAKAAAA A A A A A A A A A A AAAAAAA A A A AR A AR A A KKK K& AKX
do 20 i=1,8

if(jj.eq.1l) goto 13

xtc = 4.0-(1-1)*1.0

if(i.eq.1l) xtc=3.984
AAARKAARRARAAARAARAAAARAARAAAARAANAKRAARAA AR AR ARAA AR AN AR N AR
* 3.984 from Kell and 11.44

* Gauss-Newton calc.

I B R R E R SRR R SR EEE AR SRR RS EER SRR RRERERERE R RS R 2]
goto 15

continue

xtc = 10.0-(i-1)*1.0

if(i.eq.1l) xtc=11.44

continue

tmin(i)=xtc+273.15

pug=0.0

if(i.eq.1) goto 60

ilast=i-1

pug=pmin(ilast)

write(6,62) xtc
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62 format(lh ,2x,’t/c=',2x,1pel5.6)
write(6,64) pug

64 format(lh ,2x,'input p/bar =',2x,1pel5.6)
ifail=0
xtcec=xtc
KAk hhhhhh Ak kIR AR RAR KA AR h AR A AR AR AR KRRk AR A kAR A KR A KR
* calls to vcalc and xpan are dummy to obtain
* contributing param.
Ak hhhhh R A AR A kR h kR kA RA R AR AR AR IR AR A hhAh kR hhhhdhkk

call vcalc(xtcc,pug,calcv)

call xpan(xtcc,pug,calcv,dum)

eta=0.0

eps=1.0e-8

xa=-100

xb=1.0e2

call c05adf(xa,xb,eps,eta,f,pug,ifail)
60 continue

write(6,70) pug
70 format(lh ,10x,’est p/bar=',2x,1pel5.6)

write(6,80) ifail
80 format(lh ,10x,’'ifail="'",2x,i3)

if(ifail.ne.0)stop

pmin(i)=pug

call vcalc(xtcc,pug,calcv)

call xpan(xtcc,pug,calcv,dep)

vmin(i)=calcv

write(6,100) i,xtc,tmin(i),pmin(i),vmin(i),dep
100 format(lh ,2x,1i3,2x,'t/c=",2x,1pel5.6,2x,"'t/k=",2x,

$1pel5.6,2x, "p/bar=',2x,1pel5.6,2x,
$'v/cm”3 g°-1 =',2x,1pel5.6,2x,'ex= ',1pel5.6)

20 continue

Ah kA KA AAAAAAKAAAKRARAKRKRAKAKRARAAAAA AR A AR A A AR AR AL AR AR Ak kkhi

* add further analysis here
hhhhhkhkAhkhrrAAAAAAAAAAAARAAARK AN AAA KA A A AR A A A Ak hdhkkhhkhhhhkhhk
write(6,701)

701 format(lh ,10x,’lsq analysis’)
do 400 i=1,500
do 410 j=1,10
x(i,j)=1.0

410 continue
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400

505

702
500

503

continue

AhhdhhhhA A AARAAAAAAAAAAAAKRARKRAKRAAARA KA AN AR AN AR A AR A Ak kX

* fit T as a function of p
AAAAKXAKRAARKAARAAAAAXAAAAAARKAAKRKAAAAAAKRARAAAARAAAAAANA A A A K AKX
write(6,505)

format(lh ,3x,'temp/c’,5x,'p/bar’)
do 500 i=1,8

x(i,1)=1.0

x(i,2)=pmin(i)

x(i,3)=pmin(i)**2
x(i,4)=pmin(i)**3
y(i)=tmin(i)-273.15

write(6,702) i,y(i),x(i,2)
format(lh ,4x,i3,2(3x,1pel5.6))
continue

jfit=8

do 503 ipar=2,4

call xlsq(x,y,jfit,ipar,a)
continue

return

end
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real function f(pug)

implicit double precision(a-h,o-z)

common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),
$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,11),yexp(31,11)

common/anne/rk(50),prk(50),nrk,delta(500),point(500)

common/jess/xtc

common/dan/kcont,setpi,excomp, pnew

common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11)

common/will/btot,altot,dtot,aztot,zy,dog

if(kcont.eq.1l) goto 500

if(kcont.eq.2) goto 700

xtcc=xtc

Xpug=pug

call vcalc(xtcc,xpug,calcv)

call xpan(xtcc,xpug,calcv,dumx)

AANAAKAAKKRARKKAIAARARAARARAKRAAAAKAAR AR AAR AN AR A AR A A A Ak h ki hhk
* btot dtot zZv

* altot aZtot dvz all known

* zv = v0 dvz = dv0/dt = s

* dbl dal da2

AAKAAAAARARAIXAAKRAAAARKAAAKRARAARARAAARAAA A AN AN A A AR A A AR Ak AKK
dum=btot + (altot*pug) + (a2tot*pug**2)
duml = - pug*dvz/dum
zdum=db+(dal*pug)+(da2*pug**2)
dum2=pug*zv*zdum/dum* *2
f=dvz+duml+dum2-setpi
write(6,110) pug
110 format(lh ,2x,’'in £( ), pug= ',1lpel5.6)
write(6,20) f
20 format(lh ,’f =',2x,1pel5.6)
write(6,30) calcv,dumx
30 format(lh ,2x,'v=',2x,1pel5.6,2x, " 'expan=",
$2x,1pel5.6)
Ak AR AAAAARAARAAAKRARAAAAA AR A AR A AN AAAKRK A AAAA A AR A A A A A hhhkhi
* expan should be zero
AAAAAKAKAAKAKAAKAKAAKARAAARAAKARARNA I AA AR AR R A A AR A Ak khhhhhdkdhkkhkh
goto 510
500 continue
write(6,207) pug
207 format(lh ,2x,’'in £, pug =', 1lpel5.6)
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call vcalc(tcpi,pug,calcv)

call xcomp(tcpi,pug,calcv,ycomp)

call xpan(tcpi,pug,calcv,expan)
f=((tcpi+273.15)*expan/ycomp)-(pug+l)-setpi
write(6,10) £

10 format(lh ,10x,'resid pi =',2x,1pel5.6)
goto 510

700 continue
ytc=pug

write(6,707) ytc

707 format(lh ,2x,’ in £, ytc= ', 1pel5.6)
call vcalc(ytc,pnew,calcv)
call xcomp(ytc,pnew,calcv,ycomp)
call xpan(ytc,pnew,calcv,expan)
denom=btot+(altot*pnew) + (a2tot*pnew**2)
xnum=btot-(a2tot*pnew**2)
duml=db-(da2*pnew**2)
dum2 = -2.0*(db+(dal*pnew) + (da2*pnew**2))*xnum/denom
dum3=-xnum*expan
f=duml+dum2+dum3
write(6,303) f

303 format(lh ,10x,’resid compress = ',1lpel5.6)
510 continue

return

end
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This program, written in HP BASIC, reports how the excess
pressures discussed in Chapter 11 can be calculated. In the
example shown the program is set up to calculate the excess
pressures of aqueous urea solutions. The following

variables have been used within the program;

V2 = the apparent molar volume at infinite dilution,
Vl mt
é( J)
K2 = the limiting compression of the solute, Kjw.

01 = the occupied volume of the solute, Oj’

M1l = the molar mass of water.
M(i) = the molality of urea in solution.
V(i) = the apparent molar volume of the solute, ¢(vj).

Obtained from a polynomial expression in molality.
D1 & D2 = the parameters d1 and d2 of equations [11.10] and
[11.11) of Chapter 11.
V1(i) = the differential of ¢(vj) with respect to molality,
multiplied by the molality of the urea.
The excess pressures are calculated in lines 160 to
340 of the program. On successful completion array Pl
contains the excess pressure pE(L), P2 contains pE(¢—vj),
P3 contains pE(¢—v1) and P4 contains pE(GZ). These
calculations are based on equations [11.51], [11.61],
(11.65]) and [11.32] of Chapter 11 respectively.
Lines 350 to 720 of the program collect together the
calculated data and produces plots of pE(L), pE(¢—vj),
pE(¢—v1) and pE(GZ) against molality on an HP 7475A

plotter.
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20
70
40
50
60
70

50
90

100
110
120
170

140
150

160
170
130
190
200
210
220
230
240
250
260
270
280
290
300

320
330
340
750
330
390
410
420
470
440
450
460
470
490
490
500
510
520
530
540
550
560
570

I GIBiOH PuPEP
' MULTI Pi OT
' UREA
I ANDY HAKIU WH'..' LEICESTER
OPTION BASE 10 CLEAR
DIM Ui25%~,Ui\25) .M(25)
DIM P1l(25).P2(25',P3(25>.P4i
:."
V2=44.2 0 K2=- 00009 O 01=.0
000424901
Dl= 00000246696 0 02=2993.39
4
Ml= 013015 0 F'=l
FOR 1=1 TO 25
M(I =I/2+ 5

I>=44 .2~.126*M (r.'- .004 tM( I
VI ¢Ip>= (.126- 003TM-;; I »'tM( I>

Al ='V2-U< i)-K2T'; D2+P> >t .0000
01

Al=A1*M1tMfI)

A2=EXP (Al D1)

A2=A21 (D2+P)

P1(I)=A2-\D2+P)

B1l=V1NEI 'T .000001
B1=BltM1*M(I)

B2=EXP (B1'D1)

B2=B2t (D2+P)

P2 (I'=B2-(024P;

Cl=mV2-V (I>)t 000001

C1=C 1*M1TM +I)

C2=EXP (Cl/Di:-

C2=C2t (D2+P)
P3(I)=C2- (D2 +F:'

El I t.000001

E1=01-El

E2=EXP (M(I)TM1*E1l

P4< I %= (D2+P)T (E2-

NEXT I

PLOTTER IS 705

X1=0

X2=AMAX M.

XI .'.4

XI-2,X2%2 .-

XAXI3 0.2,X1.X2

VAX I3 XI,200,-400

C:R 1=1 TO 25

PLOT MfI),Pl': 1/

NEXT I
LABEL
PEN 2
FOR 1=1 TO 25
PLOT M<I) ,fP2-'I »

SCALE

"LEYEN"

NEXT I

LABEL "BLAND.- HAK"
PEN 3

FOR I=1 TO 25

PLOT M (I),P3\I)
NEXT I

-367-

590
"500
610
620
630
640
650
660
670
680
690

700
710
720

PEN 4
FOR 1=1 TO 25

PLOT M:I P4<I
NEXT I

LABEL "GIBSON"
PEN 1

FOR S=X1 TO X2 STEP 2

MOVE 3,-75 0 LABEL VALE(S)
NEXT 3

FOR T=-400 TO 1600 STEP 200
MOVE XI-2/2,T 0 LABEL VAL$(I
NTCT£10;/10)

NEXT T

FRAME

END
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Section 1

Both of the programs reported below are written in HP BASIC
for an HP 85 computer. The first progranm, 8 INFO,
calculates the configurational partial molar heat capacity,
defined by equation [12.40] of Chapter 12, as a function of
B. Within this program the following variables are defined;

Cc1

eq eq *
—-¢X 1-X A
b Y ( Y ) rcpz

and c2 = -¢x_%9(1-x_%9)(1-2x_°9)a_n?/r7?
#%, "1, 5 (1-2x, 5 0 7/
where ¢ = [nsﬁ/m W]. The configurational partial molar heat

: #
capacity, sz
#

of sz are then stored on disk to be accessed when

required.

is thus obtained as the sum Cl + C2. Values

The second program, B PLOT, reads sz# data from the

#

disk into an array C and then produces a plot of sz

against B on an HP 7475A plotter.
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10
20
30
40
50
60
70
30
920
100
110
120
130
140
150
160
170
130
190
200
210
220
230
240
250
260

270
280
290
300
310
320
330
340

10 ! 6 INFO

20 OPTION BASE CLEAR

30 DIM 0(21)

40 FOR B=-i TO 1 STEP .1

50 J=Bt10+11

60 M= 018015 » F=8 314

70 H=10000 0 D=S 0 KO0=9

30 T=298 15

90 K=LOO (KO)+H/Rt( 1 298. 15-1/1)

100 k=EXP (K)

110 X=K/ (K+EXP (B))

i20 z=X

130 Cl=-(B/M*Zt (1-2Z)tD)

140 C2=-(B/M%Z*(1l-2)t(1-2£2)tH--2
(R4CT-2) >

150 C(J)=Cl+C2

160 PRINT B.:Z

170 NEXT B

130 VOLUME ":D701" IS "DATA H"
190 ASSIGN# 1 TO "CP.DATA H"
200 PRINT# 1 c)

210 ASSIGN# 1 TOo t
220 DISP "DATA ON DISC"
230 END

! 6 PLOT
OPTION BASE 10 CLEAR
SHORT C(21)

MASS STORAGE Is "=0701"
CRT OFF

VOLUME ":D701" IS "DATA H"
ASSIGN# 1 TO "CP.DATA H"
READ# 1 co

ASSIGN# 1 TO ¢t

CRT ON

DISP "DATA RECEIVED"
PLOTTER IS 705

GCLEAR

Y2=AMAX (C)

Y1=AMIN (C)

U=(Y2-Y1>/20

SCALE -1.1,1.1,Y1-U,Y2+U
XAXIS Y1, .1,-1,!

YAXIS -1,U,Y1,Y2

MOVE -1,Y1

FOR B=-1 TO 1 STEP .1
J=Btl0+11

PLOT B.C(J>

NEXT B

FOR B=-1 TO 1 STEP .1
MOVE B,Y1+30 @ LOIR 0 @ LABE
L VALS (B)

NEXT B

FOR S=Y1 TO Y2 STEP 2tU
S=INT(S)

MOVE -.9,3 @ LABEL VAL$(S)
NEXT S

MOVE -1,0 Q@ DRAW 1,0 @ PENUP
FRAME

END
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Section 2

This FORTRAN program, HEATCAP, is a modified version of the
programs reported in Section 1. The insertion of a
temperature loop within the program gives sz# as a
function of B and temperature. Hence using a graphics GHOST
package contained in subroutine SURFPLOT it was possible to

produce the temperature/B surface of the configurational

isobaric partial molar heat capacity.
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10

20

10
30

20

If

prnptnm hentcap

implicit double precision (a-h,o0-z)
common/andy/temp (11) ,beta (31) ,heat (11,31)
call paper(1)

program to calculate the temperature and beta dependence

of the isobaric partial molar heat capacity.

Calculates a partial molar isobaric heat capacity temperature
¢ beta surface
*******$$*************************$*****$********$********$*****
sum=-2.0

do 10 i=1,31

beta{i)=sum+((i-1.0)/5.0)

* * &

continue

do 20 .1=1,11

temp(j) = 263.15 + (J*10.0)
continue

xm = 0.018015

Xr = 8.314

xh = 10000.0

Xd = 8.0

xlo = 9.0

do 30 i=1,11
do 40 j=1,31
xk = dJog(xko) + xh/xr*(1/298.15-1/temp (i)l

xk = dexp (xk)

XX = xk/(xk+dexp(beta(j)))

zX = XX

cl = -(beta (J)/xm*zx* (1.0-zx )exd)

c2 = -(beta(j)/xm*zx* (1.0-zx)*(1.0-2*zx) *xh**2_ 0

$/ (xr* temp(i )¢»2.0))

hent(i,j) = cl+c2

con tinue

continue

call surfpiot

call grend

end

subroutine surfplot

implicit double precision (a-h,o0-2z)
common/andy/temp( 11) ,beta (31 ) ,heat(11,31)
real *4 cap( 11 ,31 ) ,t.em(11) ,bet(31)
integer ifail

do 10 1=1,1x

do 20 J=1,31

Ca (i.j)=hent (i, j)

cfintinue

continue

(all gpstop (2)

(all filnam( 'capacity')

call pspace(0.15,0.85,0.15,0.85)
call suraXe (3,273.15,-2.0, 10.0,0.2)
call surbas(1,1,0.0)

call surcol(0,2,31

ca Il surdir (()

call surindIOI

felI surplt(cap,I,11,11,1,31 ,31)
call ctrmap (18)

call picscen(0.5,-0.15, 'Isobaric Heat, Capacity

S Su: fac'e’)

rail ctrmag (10)
(all frame

te turn

ciflL

-371-



Section 3
This HP BASIC program, written for an HP 85 computer can be
divided into two parts. The first part of the program deals
with the calculations. On running the program the user is
prompted for two values of B. The first value is used to
represent a B value for the initial state, B(l), and the
second a B value for the transition state B(2). Using B(1)
and B(2) values of cp#(z¢) (c(2,5)) and cp*(Z) (C(1,§)) are
calculated at a series of temperatures using the method
adopted in program HEATCAP of Section 2. The difference
Cp#(z#) - cp#(z) is then calculated and stored in array
C3(3).

The second part of the program uses all of the
collected data to produce plots of cp#(z#), Cp#(z} and the
difference Cp*(Z#) - C #(Z) against temperature on an HP

p
7475A plotter.
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10
20
30

40
50

60
70

80

100
110
120

130
140
150
160
170
130
190
200
210
220
230
240

250
260
270

230
290
300
310
320
330
340
350
360

370
380
390
400
410
420
430

440
450
460
470
480

500
510

! 6 Cp plot
OPTION BASE 10 CLEAR
DIM X(50),C1(2,50>,Cc2(2,50),
c(2,50) ,M1(5).T(50),MO0(5),B(
2) ,C3(50)
FOR H=1] TO 2
DISP “B-PARAM".
B (N)
NEXT N
DISP "ISOBARIC CP OF SOLUTE
2 IN WATER"
M=.018015 0 R=8 314

DISP "ANDY HRKIN"
H=10000 0 D=B 0 K0=9

DISP "DELTA K/J MOL— 1 =";H
DISP "DELTA CP/J K--1 MOL~-1
=|I,D

FOR J=1 TO 50

N=(J-1) *2

T(J)=298+ (N-25)

DISP "T/K="jT<J)

K=LOG (KO) +H/R* (1/298-1/T (J) >
K=EXP (K)

DISP "K=";K

FOR N=1 TO 2

X (J)=K/ (K+EXP (B (N) >)

Z=X (J)

C1l(N,j)=-(B(N)/M*z* (1-2)*D)
C2(N,J)=-(B(N)/M*x2* (1-2Z)* (1-
2%xZ)4H-2/ (R*T (J)-2)>
C(N,J)=C1l(N,J)+C2(N,J)

DISP "X-EQ=" ;X J>

DISP "1ST TEPM=";Cl(N,J; O D
ISP "2ND TERh=":C2 (N, J)

DISP -TOTAL CP(Z)=";C(N,J)
NEXT N

c3(J)=C(2,J)-C(1,J)

DISP "DELTA CP=";C3<J>

NEXT J

DISP "END OF CALC"

GOSUB 370

GOSUB 540

DISP "THAT IS ALL FOLKS" 0 E
NO

DISP "PRINT DATA" 0 INPUT Q

IF Q#1 THEN RETURN

PRINT "Cp FOR SOLUTE "
PRINT "M.J .BLANDAMER"
PRINT "6-PARPMETER"

FOR J=1 TO 50

PRINT "POINT ";J 0 PRINT "TE
MP=" ;T J>

FOR N=1 TO 2

PRINT SUBST. ; N

PRINT 'CP1=";CICN .J>

PRINT CP2=" C2(N,J)

PRINT 'CP(Z)="jC<N,J)

NEXT N

PRINT 'DELTA CP=";C3(J

NEXT J

526
530
540
550
560

570
580
590

600
610

620
630
540
550

670
680
690
700
710
720
~30
740
750
760
770
780

790
300
310

320
330
340
350
860

970
380
390
900
910

1000
1010
1020

1030
1040
1050
1060
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PRINT "END OF DATA"

RETURN

DISP "PLOTTING"

MAT M1=ZERQ@ MAT MO=ZER

M1 (1)=AMAX (Cl) e MO (1l)=AMINE
cD

M1 (2)=AMAX (C2)
c2>

M1 (3) =AMAX (C:

@ MO (2)=AMIN (
@ MO (3)=AMIN (C

)

M1 (4) =AMAX (C3)
C3>

DISP "PLOTTER °?" 0 INPUT QO
IF Q0=1 THEN PLOTTER IS 705
0 GOTO 630
GCLEAR
Y1=AMIN (MO)
Y2=AMAX (M1)
IF Y1>0 THEN Y1=-10

IF Y2<0 THEN Y2=10

Y3=Y2+ABS (Y2/10)
Y1=Y1-ABS(Y1/10)
X3=(T(50)-T(1>>/5

X1=T (1) e X2=T(50)

Y0=Y3-Y1l @ Xe=X2-X1

S=Y1+ABS (Y0/10)

PEN 2

SCALE X1-7,X2+7,Y1-20,Y3+20
LAXES 20,Y0/5,273,Y1,373,Y2
DEG

FOR 0=273 TO 373 STEP 20
MOVE Q,S @ LOIR 90 @ LABEL V

@ MO (4)=AMIN (

e Y (2)=AMAX (M1)

ALS$ (Q) e NEXT Q

FOR 0=Y1l TO Y3 STEP 2IY0/10
Z=INT (Q)

MOVE 280,0 @ LOIR 0 0 LABEL
VALS (2Z)

NEXT 0

FOR N=1 TO 2

PEN 3

MOVE T (1),C(N,1)
LINETYPE 1 e FOR 1=1 TO 50 9

PLOT T(I),C(N,I) e NEXT I @
PENUP

NEXT N

IF 00=1 THEN PRINT "SP3"

PEN 4

MOVE T (1) ,C3kl>
LINETYPE 6 @ FOR 1=1 TO 50 »

PLOT T (I>.C3<I> 0 NEXT I @
PENUP
PEN 2
MOVE 273,0 0 DRAW 373,0 0 PE
NUP
LINETYPE 1
SCALE 0, 100,0, 100
PENUP @ PLOT 50,25,2
LABEL USING 980 TEMP/K
IMAGE 6A
PLOT. 80,50,2
LABEL "DELTA CP"
IMAGE 2A
PLOT 25,50,2 e LABEL "Bl=":
VALS$ (B (1>>;" B2=";VALS$ (B (2)
FRAME
IF OO#1 THEN COPY
IF 00=1 THEN CRT IS

RETURN



Section 4
The two programs reported below are written in HP BASIC for
an HP 85 computer. The first program, VOL INFO, calculates
the configurational partial molar volume at 298.15 K using
equation [12.23] of Chapter 12. These data are stored
immediately on disk.

The second program reads the volume data from the
disk into an array V1() and then produces a plot of the
configurational partial molar volume against B8 in the

region -1< B «<1.
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10 ! VOL INFO

20 OPTION BASE CLEAR

30 DIM VI (21)

40 FOR B=-1 TO 1 STEP .1

50 J=B*10+11

60 M= 018015 1 R=8.314

70 V=-6.4 @ 0=3 0 KO0=S

80 T=298.15 T H=10000

90 K=LOC (KO)+H/Ft(1/298.15-1/T)
100 K=EXP (K)

110 X=K/ (K+E$%P*B))

120 z=X

130 V1(J;=-(1tVt(B/M)tzt(1-2))
140 PRINT B:Z;V1(J)

150 NEXT B

160 VOLUME " :0701" IS "DATA H"
170 ASSIGN# 1 TO "CP DATA H"
130 PRINT# 1 : V10

190 ASSIGN# 1 TO ¢
200 DISP "DATA ON DISC"
210 END

10 ! VOL PLOT
20 OPTION BASE 1@ CLEAR
30 SHORT VI (21)

40 MASS STORAGE 1Is " :0701"
50 CRT OFF
60 VOLUME "=0701" IS "DATA H"

70 ASSIGN# 1TO "CP DATA H"
.30 READ# 1 ;V1o0

90 ASSIGN# 1TO ¥

100 CRT ON

110 DISP "DATA RECEIVED"

120 PLOTTER IS 705

130 GCLEAR

140 Y2=AMAX (V1)

150 Y4=AMIN (V1>

160 U=(Y2-Y1)/20

170 SCALE -1.1,1 1,Y1-U,Y2+U
180 XAXIS Y1, .1,-1..1

190 YAXIS -1,U,Y1,Y2

200 MOVE -1,Y1
210 FOR B=-1 TO 1 STEP .1

220 J=B*10+11
230 PLOT B,V1(J)

240 NEXT B
250 FOR B=-1 TO 1 STEP .2

266 MOVE B,Y1+l @ LOIR 0 @ LABEL

VALS (B)

270 NEXT B
280 FOR S=Y1 TO Y2 STEP 2-tU
290 MOVE -.9,8 0 LABEL VALS$ (S)
300 NEXT S

310 MOVE -1,0 @ DRAW 1,0 @ PENUP
320 FRAME

330 END
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KINETICS OF REACTIONS IN AQUEOUS SOLUTIONS

Andrew William Hakin

Abstract

Rate constants for chemical reactions in various aqueous
systems have been measured and analysed. A major part of
this thesis discusses the effect of added salts on the
reaction kinetics of organic substrates and the effect of
added cosolvent on iron(II) complexes in solution. The
thesis discusses the properties of aqueous solutions with
reference to the prediction of trends in kinetic
parameters.

Transfer chemical potentials for single ions in ’urea +
water’ mixtures have been estimated, using solubility data
for salts in conjunction with the tetraphenylarsonium
tetraphenylboronate assumption. Solvent effects on the
initial and transition states for reactions Dbetween
iron(11) 1,10-phenanthroline and iron(II) glyoxal bis-N
methylamine with hydroxide ions are also reported.

Solvent effects on initial and transition states for
reaction between three iron(II) complexes and hydroxide
ions in 'methanol + water’ mixtures are reported.

Effects of added salt’ on the neutral hydrolysis of
phenyldichloroacetate- and the para-methoxy derivative are
discussed in terms of solvent cosphere interactions between
ions. ' :

With ‘'regard to computer-based studies osmotic coefficients
for ammonium, alkylammonium and azoniaspiroalkane halides
have been used with Pitzer’'s equations and the ideas of
Wood et al to produce pairwise Gibbs function cosphere-
cosphere interaction parameters.

The effects of added salt on rate constants for the
alkaline hydrolysis of the sodium salt of bromophenol blue
are reported and analysed using Pitzer’s equation for the
activity coefficients of single ions in aqueous salt
solutions.

Internal pressures of water and deuterium oxide in the
region 273.15¢ T/K <£373.15 and 0 P/bar <1000 have been
calculated and fitted to an equation based on a Taylor
expansion about internal pressure Hi(n,e) at temperature T
= @ and pressure p = n.

Calculations are reported which shed 1light on the
controversy concerning the isobaric heat capacities for
activation for the solvolysis of alkyl halides in water.



