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CHAPTER
1

Introduction



Kinetics is defined by the Collins English Dictionary as 
"the branch of chemistry concerned with the rates of 
chemical reactions". This simple definition does not do 

justice to a subject from which so much information on 
systems, and in particular aqueous systems, has been 
obtained. The work presented in this Thesis identifies 
pathways for the interpretation of kinetic results and in 
this respect can be divided into two parts. Chapters 3 to 6 

deal with the interpretation of patterns of rate constants 

for reactions in binary aqueous mixtures and in aqueous 
salt solutions. By way of contrast. Chapters 7 to 12 use 
properties of aqueous solutions as a basis for predicting 
trends in kinetic parameters.

For reactions involving ions important quantities are 

transfer parameters for ions between solutions in water and 
in binary aqueous mixtures. These thermodynamic properties 
have been calculated by different authors (see for example 
references 1-5). Chapter 3 develops a criticism of the 
Wells^'^'^ approach towards these calculations. Chapters 4 
and 5 describe how solubility data are combined with 
kinetic data in an initial state/transition state analysis. 

The role of added cosolvent on reaction rates is therefore 
pinpointed in terms of the stabilisation/destabilisation of 

reacting solutes. In particular cosolvent effects on the 
alkaline hydrolysis of low— spin iron(II) diimine complexes 
are investigated®. In Chapter 6 the effects of added salts 
on rate constants for hydrolysis of the neutral substrate,

Qphenyl dichloroacetate and the para-methoxy derivative 

are explained in terms of cosphere-cosphere overlap effects 
involving added ions^®'^^.

— 1 —



The theme of aqueous salt solutions is continued in
Chapters 7 to 9. Chapter 7 introduces Pit z e r '
equations for activity coefficients of salts in solution

and discusses how mean ionic activity coefficients,
Eosmotic coefficients, <f>, and the excess Gibbs function, G ,

are related. In Chapter 8 Pi t z e r ' equations are
combined with the ideas of Savage and Wood^® to yield

pairwise cosphere-cosphere group interaction parameters for
ions. In Chapter 9, Pitzer's^® equation for the activity
coefficients of single ions is used to explain trends in
rate constants for the alkaline hydrolysis of bromophenol
blue^® in aqueous salt solutions. In Chapter 10 attention
turns to a thermodynamic property called the internal 

17pressure , Ili. The analysis concentrates on obtaining
equations which describe the dependences of internal 
pressures on temperature and pressure for water and 
deuterium oxide. Equations which describe related 
dependences of the temperature of maximum densities (TMD's) 
are also reported for both systems. The merits of using Ili 
= 0 isotherms for obtaining kinetic data are commented on. 

Chapter 11 deals with excess p r e s s u r e s ^ ® i n  aqueous salt 
solutions and aqueous solutions of neutral solutes. Various 

methods for calculating excess pressures are investigated 
leading to the conclusion that an excess pressure depends 
on the definition of the volumetric properties for a given 
system^®. The final Chapter, Chapter 12, concentrates on 

the unimolecular solvolysis of alkyl halides and seeks to 
clarify the controversy concerning the isobaric heat 

capacities of activation of such reactions. Partial molar 
isobaric heat capacities are calculated using an

— 2 —



21extrathermodynamic assumption proposed by Grunwald in
which activity coefficients of two substances X and Y, in

22this case two different water structures , are related to 

the molality of added solute Z (e.g. an alkyl halide) in 
aqueous solution. Attempts are reported to derive an 
absolute scale for partial molar isobaric heat capacities 
of ions in aqueous solution.

A description of the equipment used for collecting 
spectrophotometric data together with a description of the 
methods used to calculate rate constants is given in 
Chapter 2.
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CHAPTER 
2

Experimental details of 
collection and data analysis



2.1 Introduction
This Chapter describes the methods by which kinetic data 
were collected and gives details of the computer controlled 

spectrophotometers used to collect absorbance data. A
method of analysis for a first order reaction is 
summarised. Details of the computer programs which drive 

and then perform the analysis are given in Appendix 1.

2.2 Kinetic Analysis

All rate constants reported in this Thesis are either first 
or second order. However all reactions were monitored under 
first order conditions. In a typical first order process 
chemical substance A reacts to give product P? e.g.
A -----------> P. The integrated rate equation for such a
reaction takes the following form;

l n ( ( A l ^ ( A ] ^ )  = kt [2.1]
[A]^ = the concentration of substance A at time t=0 
[A]^ = the concentration of substance A at time t

Equation [2.1] can be written as shown in equation [2.2];

[A]^ = [A]^ exp (-kt) [2.2]

The concentration of substance A decreases exponentially 

with time at a rate determined by the constant k.
The half life of the reaction, t^yg, is defined as the time 

taken for the concentration of substance A to fall to half 

of its original value i.e. when t = t^yg, [A]^ = (1/2)[A]^. 
Hence ;
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ti/ 2  = ln2/k [2.3]

All of the reactions described in this Thesis were 

monitored for at least 2.5 half lives.
In the case of second order reactions, the ISOLATION 

METHOD was used to follow the reaction under pseudo first 
order conditions. In a given chemical reaction two

substances A and B form product P; A + B ----------> P. If k

is a second order rate constant;

-d[A]/dt = k [A][B] [2.4]

If substance B is present in large excess over substance A, 
the concentration of B can be assumed constant throughout 
the reaction and the term [B] incorporated into the rate 
constant ;

k o b s  =  k  ( B )  [ 2 . 5 ]

where k . is a first order rate constant. The rate law canODS
now be written in a simplified first order form and as such 
be treated in the manner shown earlier.

-d[A]/dt = kgbg [A] [2.6]

An example of this type of behaviour (Chapter 9), concerns 

the alkaline hydrolysis of the sodium salt of bromophenol 

blue. A more usual pattern for the rate law concerns cases 
where k^y^ is a linear function of [ B ] ; the law takes the

-7-



following form.

^obs ^ + %2 [B] [2.7J

Here describes a dissociative reaction and kg describes
an associative reaction. Examples of this behaviour are 
dealt with in Chapters 4 and 5.

All reactions were characterised by following the 
change in concentration of either reactant or product with 

time. A convenient method of accomplishing this is 
spectrophotometrically, in which the changes in absorbance 

with time are followed. The link between absorbance and 
concentration is established through the Beer-Lambert law. 
The absorbance, P, of a single substance A, in dilute 
solution, in monochromatic light of wavelength, X, is given 
by equation [2.8].

P = log^Q(I^/I^) = G^1[A] [2.8]

where I and I. are the intensities at wavelength X of the o t ^
incident and transmitted light.

= molar extinction coefficient of A at wavelength X.
1 = pathlength /m 

[A] = concentration of species A /mol m ®

The total absorbance of a solution at wavelength X is 
obtained as the sum over all substances;

P = e^[A]l + Gy[B]l +
Where g ^ and Gĵ are the molar absorption coefficients of 

species A and B in the solution at wavelength X.
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For the simple first order reaction described earlier 
the combination of equations [2.1] and [2.8] leads to an 
expression from which the rate constant can be obtained 

directly from absorbance data.

At time t=0 P = e: [A]^l + e. [B]^lo a o b o
At time t P^ = e^[A]^l + Gĵ [B]^1
At time t=« P^ = Cy[B]^l = Gĵ K  [A]^+[B]^)

(completion) = G^1([A]^+[B]^)

= > [A]^ = (P^ -f P„)/(e^l + c^l) 

=> [A]^ = (P^ + P=)/(Cal + c^l)

Therefore : l n [ (P^-P^)/(P^-P^)] = kt [2.9]

The UV/visible window has proved very useful, because in 
this region the changes in absorption are dramatic for 
solutions in which transition metal complex reactions are 
undergoing reaction. The spectrophotometers are described 
in the following section. The non-linear least squares 
procedure used to solve equation [2.9] is dealt with in 
Section 2.5.

2.3 The Hewlett Packard 8451A Diode Array Spectrophotometer

The Hewlett Packard 8451A diode array spectrophotometer, a 
single beam, microprocessor controlled instrument, operated 

in the UV/visible window over the wavelength range 190 to 

820 nm. This spectrophotometer was capable of measuring 

absorbances either every 0.1 of a second, at up to 25 
separate wavelengths, or every 0.7 of a second for a full

-9-



spectrum. It could reproduce a specific wavelength to 
within + 0.05 nm and had a spectral bandwidth of 2 nm.

Central to the operation of the spectrophotometer 
were two 8-bit microcomputers, the Z-80 and the HP 85A. The 
Z-80 microcomputer controlled the internal hardware (lamp, 
shutter, etc.) and performed measurements. The HP 85A 

handled the data, controlled peripherals, and acted as an 

interface between the user and the basic instrument. A 

block diagram of the spectrophotometer is shown in Figure 
2 .1 .

Light from a deuterium lamp was focussed at the sample
cell (3 cm® quartz, pathlength 1 cm) by an ellipsoidal
mirror, then reflected onto a monozone holographic grating 
by a second ellipsoidal mirror. The grating dispersed light 

onto a linear photodiode array. The photodiode array was a 
series of 328 individual light sensitive cells and control 
circuits etched onto a semiconductor chip. A shutter 
positioned between the lamp and the optical mirrors, cut 
off radiation from the lamp for measurement of dark current 
before and after each sample measurement.

A series of BASIC programs guided the user through 

procedures to set up the spectrophotometer, to collect and 
then store on disk absorbance/time data. Details of such 
programs are given in Appendix 1. The spectrum obtained 

from each scan was displayed on a cathode ray tube and at 
the end of each run a hard copy of the collected spectra, 
together with the printed absorbances and time data, was
obtained from the in-built thermal printer/plotter. Figure
2.2 gives an example of the intial output from a typical 
kinetic run. Once the data had been stored on disk to

— 10 —
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HELLO
FIRST ORDER LOG 
SYSTEM- 
WAVELEHGTH - 
TIME STEP- 
RUM TIiiE-
HUMBER OF READINGS 
RANGE-
' *■ A b sorbance

» ?  2 S

5 3 2
20
8 0 0
4 1

p. FI n

N) o>-T"
N)6

a m #

DATA ON DISC 
THAT IS ALL.. FOLKS

FIGURE 2 , 2

Example of the output frcm the data-logging program 
used on the HP 8 4 51A Spectrophotcmeter. Alkaline 
hydrolysis of Ccmplex C (see Chapter 5);
[NaOH] mol dm"^ = 0.27; 0% MeOH at 298.15 K.

-12-



create a semipermanent record it could be recalled into the 
computer built into the spectrophotometer by a separate 
program which dealt with the kinetic analysis. Appendix 1 
Section 2 describes such a program and Section 2.5 sets out 
the mathematical methods used in such an analysis.

Within the spectrophotometer the sample cell was
housed in an insulated copper cell holder. The cell block 

(Figure 2.3) was water cooled via a coiled small bore
copper pipe around its exterior and thermostatted by a 
platinum resistance thermometer, connected to a Wheatstone 
bridge, coiled around an inner copper block. If the bridge 
was in balance then the system was at the correct
temperature and the heater coil, wrapped around the inner 
copper block was switched off. If, however, the temperature 
fell, the unbalanced bridge switched on the heater, via the 
amplifier. Heating continued until the system was once
again at equilibrium. A temperature probe inserted in the 
insulation between the two copper blocks and connected to a 
microprocessor thermometer displayed the temperature within 
the block. Once a sample cell was placed in the system and 
allowed to reach thermal equilibrium over a period of 
approximately five minutes then a constant temperature of 

25.00 ± 0.01 Celsius was readily maintained.

2.4 The Unicam SP 1800 Ultraviolet Spectrophotometer

The Unicam SP 1800 was a UV/visible spectrophotometer with 
a working range of 190 to 820 nm and a capability of 
handling up to 3 sample cells and three reference cells 
(Figure 2.4). Absorbance readings were obtained as a 

function of time at a single wavelength. The

— 13 —



O'#
6-0

FIGURE 2.3
Diagram of the Thermostatted Cell Block positioned 
in the HP 8451A Spectrophotcmeter.

1.
2 .
3 .

4 .
5 .
6 .
7 .
8 . 
9 .

Osclllator 
Amplifier
Platinum Resistance 
Thermometer acting 
as an arm of Wheatstone 
Bridge 
Sample Cell 
Outer Copper Block 
Water Pipes 
Insulating Material 
Inner Copper Block 
Heater Coil

0

K\
\\\\\\\\\\\\\

^  ^  To plafinum
resistance 
thermometer

QJlQ̂  From platinum 

resistance 
thermometer

- 14 -



Ill

». »

in
CM00cr>-c U

bo a55

Q M

CM

-15-



spectrophotometer was directly connected to a 
Microprocessor Instrumentation of Kinetic Experiments 

(MIKE) interface which in turn was connected through a 
digital voltmeter to a Hewlett Packard 9825A (24K)

minicomputer equipped with a real time clock, various 

utility ROM cartridges and input/output ports. The complete 
system was controlled by a HEWLETT PACKARD BASIC program, 
written by D r .M . J .Blandamer.

After loading the program from a data cartridge the 
user was prompted to supply information necessary to 

initiate a run i.e. the number of cells to be analysed, 

estimates of the initial and final absorbance readings, an 
estimated rate constant, the number of readings before 
calculation of a rate constant and finally the number of 
readings between consecutive calculations. Once this 
information had been entered, the correct wavelength set, 
and the reaction in each cell initiated the kinetic run was 
started by a simple keystroke. At time intervals calculated 
from the input information, the computer supplied a 'cell 
select' binary signal, unique to each cell, to the MIKE 
interface. This signal was compared to the cell in the 
light beam of the spectrophotometer using the 'cell 
identification' signal. If the signals were not the same, 
the cell block within the spectrophotometer was moved using 

the 'cell select' signal until the correct cell was in 
position. At this point a 'sample pulse' was sent to the 

digital voltmeter to accept an analogue absorbance reading 

from the Unicam SP 1800 (a signal delay of 1.5 seconds was 
incorporated into the system between the 'cell ready' and 

'sample pulse' signals to allow the analogue meter on the
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Unicam SP 1800 to settle). The absorbance reading was 
encoded into binary by the digital voltmeter and fed back 
into the minicomputer. Finally a signal was sent from the 
minicomputer to the MIKE interface in order to clear all 

lines in readiness for the next reading. Absorbance and 

time data were stored in the computer's memory for each 
cell and printed out by a thermal printer together with the 
iterative rate constants calculated at user specified 
intervals. At any point during a run a cell could be 
'aborted', by typing the cell number into the minicomputer; 

this procedure had no effect on the remaining cells. When 
all of the cells had been monitored for at least 2.5 half 
lives the minicomputer calculated the final values of rate 
constant, P^, P^ and standard deviation of the fit for each 
cell using the method of non-linear least squares described 
in the next section. At the end of each analysis first 
order plots were obtained from the Hewlett Packard 7245A 
plotter connected to the minicomputer.

The cell block within the Unicam SP 1800 was 
thermostatted using the same method as described for the HP 
8451a spectrophotometer (see Figure 2.3).

2.5 Method of Absorbance/Time Data Analysis
The analysis is based on the non-linear least squares 
method described by P.Moore^.

In a rearranged version of equation [2.9] the 

absorbance at time t, P^ is expressed in the following 
form;

P^ = (P^-P^) exp(-kt) + P^ [2.10]

-17-



Hence at a given time t the dependent variable absorbance, 
P^, is defined by the three independent variables P^, P^,
and k .

?t = ^t [2.11]

The general differential of equation [2.11] is given by 
equation [2.12];

dP = OPt/3Po>P-,k'^*’o + <»Pt/3P.'po,kdP.
+ OP,./3k)p^ p„dk (2.121

The differentials of equation [2.10] with respect to each
of the independent variables take the following form;

( aP^/8P^)p^ = exp(-kt) = «2 [2.13]
(aPt/3P*)po k = 1 - exp(-kt) = [2.14]
(aP^/ak)p^ = -t(P^-P^)exp(-kt) = (Xg [2.15]

The analysis is initiated using estimates of P^, P^, 
and k entered into the minicomputer at the beginning of the 
run. From these estimates, absorbances P^(calc), at each 
time t are calculated and the differences between observed 
and calculated P^ at each data point are obtained.

i.e. dP^ = P^(obs) - P^(calc)

In order to improve the fit, , a-2 r and are calculated 
from equations [2.13], [2.14] and [2.15] at each time step

t and the quantity Q, defined by equation [2.16], is 
m in i m i z e d .

— 18 —



0 = E (dP^ - a^dPg - o^dP^ - agdk)^ [2.16]

When Q is at a minimum dQ/dX = 0.

dQ/dP^ = Ea^ dP^ + ^ Ea^^a^dk - Ea^dP^ = 0 [2.17]

dQ/dP^ = Ettgtt^dP^ + E«2 dP^ + ^o^^gdk - EagdP^ = 0 [2.18]

dQ/dk = Ettgtt^dP^ + Eag«2dP^ + E«g dk - Ea^dP^ = 0 [2.19]

This information can be arranged in matrix form;

Ea 1 E«2*i E*3*i

2*1 E«2«3

3*1 E«2“ 3

dP,
dp,
dk

Ea^dP^

%*2^^t
EagdP^

3

Thus ; Y = (3X [2 .20]

Calculated parameters , « 2 and ttg are placed in
array X and equation [2.20] solved for 3 (i.e. for dP^,

2dP^, and dk ) using a linear least squares method . The
computed correctors improved estimates of P^, P^ and k ;
i.e. Pg(improved) = P^(previous) + dP^. Improved P^(calc)

at time t is obtained from equation [2.10] and compared to
the observed absorbance P^(obs). If the agreement between
P^(calc) and P^(obs) is poor, the cycle is repeated until

2either E[P ^ (o b s )- P ^ (calc ) ] is at a minimum or is
comparable to the magnitude of the estimated experimental

-19-



precision. The analysis is complete and estimates of P,
and k together with their standard errors are obtained.
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CHAPTER
3

Criticism of the Wells approach 
to the calculation of single ion 

transfer parameters



3.1 Introduction
1 2Several criticisms were made by Blandamer e_t aj^ ' of the 

methods used by Wells^ ^ to calculate transfer parameters 

for ions. The major points of disagreement are summarised 
b e l o w .

[1] The first and possibly one of the most important 
points concerns the identification of the ion which is 
transferred. Wells s t a t e s ^ t h a t  the target quantity is 
Afaq^Xg)^ (H ; sin ;c -scale). However throughout the analysis 

the solvated proton H^tHgO)^ is identified^. In fact Wells^ 
describes the solvated ion H^fHgOjg, in which an H 2 O 

molecule is weakly bonded to the trigonal pyramidal 
H^(H 2 0 )^ structure at the apical position to form a 
tetrahedral structure. This has the advantage that the 
solvated protons can be treated as spheres of radius 
3r(H20) (r is the radius of a water molecule) which can be 
used in the Born^ equation. This structure is described as 
a sphere of water molecules surrounding HgO^. Hence it is 
not clear which ion transfer quantity is being 
characterised. This point is important because;

A(aq->X2 )// (H ; sin ; c-scale )

( aq->X2 )/w
A( aq->X2 )^^(H^( H^O) ̂  ; sin ; c-scale )

/ A(aq->X2 )/w (HgO ; sin ; c-scale )

The three ions H ^ , HgO^ and H^(H20)^ are different. If the 

Born equation is used to calculate the three quantities 
above then three different ionic radii are required.
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[2] At a key stage in the analysis an 
extrathermodynamic assumption is made by Wells which 

effectively sets the chemical potentials of pure alcohol,
o o

ROH, and water equal, i.e. fj (R0H;1;T) = fj (HgOfljT). This 
has the effect of simplifying the non-Born contribution^ to 
the transfer chemical potential of (c.f. Appendix 2
Section 1).

ftAfaq^Xg)^ (H ;c-scale;non-Born;sln;T)
= a[/w^(ROH2^;c-scale;sln;x2;T)-/(y^(HgO^;c-scale;sln;x2;T) ] 
= -a[RTlnK^(c-scale; sin ;T )]

[3] At a stage in the analysis used to calculate 
K (c-scale; sin ;X 2 ;T ) Wells appears to switch from a 
description of the system in which 'alcohol + water' forms 
the solvent to a description of the system as an aqueous 
solution. In effect it is assumed that the properties of 
the aqueous mixture over the whole range of added x^^^ are 
ideal. This assumption is invalid (c.f. Appendix 2 Section 
2 ) .

[4] Finally the standard states defined by Wells are
ill-defined and, on thermodynamic grounds, are of doubtful 
significance. Wells^ has written the equilibrium equation

[3.1.5] of Appendix 2 Section 1 as;

Wells states that " the standard states of all species in 
[equation above] are defined on the molar scale as solutes
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in the mixture for i = 1 mol dm  ̂ and = 1.0 with y-»1.0 
and [i]->0". This statement requires that all substances are 
solutes. This cannot be correct. At least one substance (or 
a mixture of substances) must be the solvent.

Wells has responded^ to the points raised by 
restating his method. Nevertheless Wells offers some new 
definitions which are helpful in understanding his 
a p p r o a c h .

In an attempt to clarify the problems it is 

advantageous to consider the following descriptions of two 
systems. System A is an aqueous solution of . The 
chemical potential of in system A is written;

A^H+;aq) = ^^(H+;aq) + RTln[ ( c ( h '̂ ) ̂ ^y ( H + ) ̂ ^ )/c^ ] [3.1]

where 1 imi t ( c ( ) ̂ ^->0 ) y(H^)^^ = 1.0; c^ = 1.0 mol dm  ̂ and
fj (H ;aq) defines the chemical potential of H in a 
solution where c(H^)^^ = 1.0 and y(H^)^^ = 1.0. System B is 
a solution in which the solute is and the solvent is a 
mixture of alcohol + water. The chemical potential of in 
this system is written;

where x^ denotes the amount of water in the alcohol + water 
system and limit(c(H^)*^^0) y(H^)*^ = 1.0; c^ = 1.0 mol
dm ^ . /y^(H^;xl) defines the chemical potential of in

_l_ X 1solution in the mixture, mole fraction x^, where c(H ) =

1.0 and y(H+)*l = 1.0.
The transfer chemical potential of , imagined as a
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transfer of from system A into system B, is thus defined 
by equation [3.3].

A( aq->X2 )/w( h '*’) = //^(h '̂ ;x ^) - ^^(H^;aq) [3.3]

3.2 Descriptions of a Solute, j, in a Solvent Mixture 
"Water + ROH"

A given system contains n^ moles of solute-j in a solvent 
mixture which contains n^ moles of solvent 1 and n 2 moles 
of solvent 2. The mole fraction of solvent 1, x^, in the
mixture is given by n^/(n^+n 2 + n ^ ) and similarly the mole 
fraction of solvent 2, X 2 , in the mixture is given by 
n 2 /( ni+n 2 + n j ) . If the volume of the system is V, then the 
concentration of solute-j in solution, c ^ , is given by 
(n^/V). In such a system the chemical potential of 
substance 1 can be related to the mole fraction x^ using 
equation [3.4].

( sln;T;p) = (1;T;P) + RTln(x^f^) [3.4]

where limit(x^->l) f ̂ = 1.0. The reference chemical
potential for substance 1 is the pure liquid. If x^ = 1 and 
f^ = 1 then /y^(sln;T;p) = ( 1 ; T ; p ) . In a similar fashion
the chemical potential for substance 2 is given by equation
[3.5].

^^(sln;T;p) = ^^*(l;T;p) + RTln(x 2 f 2 > [3.5]

where limit(x2^1.0) f 2 = 1.0. The reference chemical

potential of substance 2 is once again defined as the pure
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liquid i.e if = 1.0 and f 2 = 1-0 then ^^(sln;T;p) =
^2 (l;T;p). The chemical potential of the solute-j in 

solution is given by equation [3.6].

//j(sln;T;p) = ( sin ; c-scale ; T ; p ) + RTln [ c ̂ y ̂ /c^ ] [3.6]

At constant x. and x~ limit(c.^O) y . = 1.0; c =1 mol dm ^ . ± z 3 3 *-
The reference chemical potential, fj ̂ ( sin ; c-scale ; T ; p ) is 
defined as chemical potential of solute-j in solution where 

cj = 1.0 mol dm~^, y  ̂ = 1.0 and the solvent is a mixture at 

constant x^ and X 2 .
The Wells description of the same system is very 

different. Here it is advantageous to define the mole 
fraction of substance 1 in the mixture in the absence of

o o
solute as x^ and similarly that of substance 2 as X 2 • In 
defining the chemical potential of the solute there is no 
disagreement with the previous description.

/t/j ( sln;T;p) = ^ ( sin ; c-scale ; T ; p ) + RT ln[c^yj/c^] [3.7]

However the definitions of the chemical potentials of the 
solvents using the Wells^ procedures disagree with the 
previous descriptions. For solvent 1, it is recognised that 
the solute may bind a number of solvent molecules to form a 

new solute. Then the mole fraction of the solvent changes 

when the solute is added.

yc/̂ ( sin ; T;p; x^ ;X2  ; c j ) = yc/̂ (̂ sin ; T ; p ; xl ; X 2 ;Cj = 0)
+ RTln(fj^” ) [3.81

— 2 6 —



Similarly for solvent 2, the composition may change as a 
result of incorporation of solvent 2 into the solute.

w  ̂ ^p^ (sln;T;p;x^;X 2 ;Cj) = iJ^ (sln;T;p;x^ ;X2 ;Cj = 0)

+ RTlntfj” ) 13.9)

Superscript w identifies definitions used by Wells. The 
standard states of substances 1 and 2 are defined in the

o o
particular mixture, mole fractions x^ and X 2  , where the
concentration of solute-j is zero^. f a n d  f 2 ^ are

activity coefficients for substances 1 and 2 in the
solution containing solute-j. By definition limit(Cj^O) f^'^
= 1.0 and f 2 ^ = 1.0. The form of the dependence of f a n d
f o n  c. is unknown. But the assumption is made that the ^ ]
mixture (1+2) is 'ideal' in the absence of solute-j; it is 
perhaps better to write 'W-ideal'. Accepting the difference 
between the two descriptions, it should be noted that 
despite the difference between the standard states used in 
the descriptions the same quantities in each case are being 
defined. Therefore equations [3.4] and [3.8] yield equation 
[3.10] .

(l;T;p) + RTln(x^f^) = p^*\aq;T;p;x^ ;X 2 ;Cj=0)
+ RTln(fj^") [3.10]

w ® ® *If (aq;T;p;x^ ;X2 ;Cj = 0) is rewritten as [//̂  (l;T;p) +
o o

RTln(x^ f^ )}, the latter still representing the chemical 
potential of substance 1 in the pure solvent mixture, then 
equation [3.10] can be written in the form;
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fĵ  (l;T;p) + RTln(x^f^) = fj ̂ (l;T;p) + RTln(x^ )
+ RTlnCfj^” ) [ 3 . 1 1 1

w=> = (x^ /x^)f^ fg [3.12]

As Cj+0, (x^ /x^)+1.0, and + .
In a similar fashion equations [3.5] and [3.9] yields 

equation [3.13].

o
f 2  = (X2 /X2>^2  * 2”  ( 3 . 1 3 1

As c.->0, (X 2  /X2>->1.0, ( 2 * ^ 1  "0 and ^2^^2 ' Equations [3.121 
and [3.13] can be compared to equations 10 and 11 of
reference 4. For both equations it can only be assumed that

w

Returning back to the paper by Wells^, he defines a
the dependence of f̂  ̂ on cj is sensible 

Returning back 
chemical equilibrium;

(H^ )mix + (ROH)mix <==-==-> (ROH^^)mix + (HUO)mixaCj Z Z

This equilibrium, as written, raises two points. is
defined by Wells as where b>5. However in this
instance if the above equilibrium is to have the correct 

stoichiometry then ^^aq ^ust be written as HgO*. As 
mentioned in the introduction there is a lack of clarity in 

defining the transferred ion; H ^ , HgO^, H^tHgO)^ or 
H^(H20)g. The latter equilibrium can be rewritten as;

HgO^(sln) + ROH(sln) < > R0H2^(sln) + H^Ofsln)

One would normally analyse this equilibrium in the
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following way. At equilibrium,

//( ROH;x^ ;T;p) + yw( HgO"^ ; x^ ; T ; p ) =

yw(R0H2’’';x^ ;T;p) + yy ( H 2 O ; x^ ; T ; p ) [3.14]

In other words the sum of the chemical potentials of the 
reactants in the mixture at constant x^ temperature, T, and 
pressure, p, equals the sum of the chemical potentials of 
the products in the mixture at the same x^, temperature and 

pressure. In the normal way, using the equations shown 

earlier in this Chapter, this equation can be expanded to 
give ;

yt/*(ROH;l;T;p) + RTln ( x ( ROH ) f ( ROH ) )
+ A^(HgO+;x^;sln;T;p) + RTln[c(HgO+)y(HgO+)/c^]

= yw*(H20;l;T;p) + RTln ( x ( H 2 O ) f ( H 2 O ) )
+ p*(R0H2^;x^;sln;T;p) + RTln[c(R0H2^)y(R0H2^)/c^] [3.15]

By definition the Gibbs function for reaction, A^G , for 
this equilibrium is written as;

A^G^ ( T; c-scale ;x^ ) = yy* ( H 2 O; 1 ;T;p ) + yt/̂ ( R0H2^ ; ; sin ; T ; p )

- yy* (ROH; 1 ;T;p) - y y #  ( HgO'*’; x^ ; sin ; T ; p ) [3.16]

= -RTlnK*(sln;x^;T;p) [3.17]
Therefore ;

K*(x^;T) = [c(R 0 H 2 +)y(R 0 H 2 ^)Xifi] / [ c ( HgO'^ ) y ( HgO"^ ) X 2 f 2 ]
[3.18]

This same analysis is repeated using the terminology
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applied by Wells. Hence equation [3.14] is written;

/y( ROH;x^ ;X2 ;T;p) + //( HgO'*’; x^ ; X 2 ; T ; p )
= yt/( R0H2^;x^ ;X2 ;T;p) + //( H 2O ; x^ ; X 2 ; T ; p ) [3.19]

Then ;

yt/^(ROH;x^ ; X 2  ;T;p) + RTln (£ 2 ^) 
#+ p*(HgO^;x^ ;X 2  ;T;p) + RTln[ c( HgO+)y( HgO'*’)/c^ ]

= p*(H20;x^ ;X2 ;T;p) + RTln(f^*)
+ p*(R0H2^;x^°;x2°;T;p) + RTln[c(R0H2^)y(R0H2^)/c^] [3.20]

Hence by definition using the Wells standard states;

# 0 0A^G (T;c-scale;x^ ;X 2  ) =
//^(H20;x^ ;x2 ;T;p) + //̂  ( ROH 2 '’'; x^ ;X2 ;T;p)

- yy^(ROH;Xj^ ; X2 ;T;p) - /ŷ  ( HgO'*'; x^ ;X2 ;T;p) [3.21]

o o
= -RTlnK (x^ ;X2 ;T) [3.22]

The refore ;

K"(Xi°;X2°;T) = [fi"y(ROH2+)c(ROH2+)]/[f2*y(HgO+)c(HgO+)]
[3.23]

Substituting the values of f ̂ and £ 2  y defined in equations 
[3.12] and [3.13], into equation [3.18] gives equation 

[3.24].

k#(T;Xj) =
(3.24)
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According to Wells he requires A^G^ (T;c-sc a l e ; )  which is 
calculated from equation [3.23]. Two approximations are 

made. The first sets the ratio of the activity coefficients 
of ROHg^ and HgO^ equal to one i.e. [yfROHg^j/yfHgO^)] = 

1.0. Whilst the second sets the ratio [f^^/fg*] = 1.0. Thus 
from equation [3.24];

Hence ;

K*(x^ ;X2°;T) = [c(ROH2^)/c(HgO+)] [3.25]

The outcome is in effect the characterisation of the ratio 
c(R0H2^) to c(HgO^) by the quantity K^(x^ ;X 2 ;T). Although 
it may be helpful to define this quantity it is important 
to probe, using the analysis outlined above, the precise 
significance of the property. Wells does not do this.

o o
Rather he assumes that ;X 2  ;T ) is directly related to
the difference between the standard chemical potentials of
R0H2^ and HgO^ in the mixture. This is clearly incorrect as

w  ̂ ^can be seen from equation [3.21]. Thus K (Xĵ  ;X 2 ;T) is 
also related to the difference in chemical potentials of 
water and ROH in the solvent. This difference depends on
(a) the difference in the chemical potentials of pure ROH 

and H 2 O (b) the composition of the mixture and (c) the non­

ideal properties of the mixture. Therefore considerable 
doubt remains over the transfer parameters reported by 
W e l l s .
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3.3 Conclusions
The Wells method for the calculation of the transfer
chemical potential of is rejected in favour of a more

direct and less ambiguous technique. In the following two
Chapters which deal with transfer quantities, the TATB
assumption has been used as the basis of the calculations
used to obtain transfer chemical potentials of ions (see
Chapter 4). Hence reported trends in initial and transition

state parameters will differ in their conclusions from
2 7those reported by Wells ' .
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CHAPTER
4

Alkaline hydrolysis of low-spin 
iron(II) complexes in 'Urea + water'

mixtures



4.1 Introduction
This Chapter reports the effects of added urea on first 
order rate constants for the alkaline hydrolysis of two 
low-spin iron(II) complex ions, (Fe(gmi)gJ^^ and 
(Fe(phen)g]^^ (see Figure 4.1).

MeN NMe
gmi

FIGURE 4.1

The extrathermodynamic assumption based on transfer 
parameters for tetraphenylarsonium tetraphenylboronate, 
(TATB), is used in conjunction with solubility data^ ^ to 
construct a Table of single ion transfer parameters 
applicable to the urea + water system. Transfer chemical 
potentials of the iron(II) complex ions, calculated from 
solubility data^ and relevant single ion parameters, were 
used to probe the effects of added urea on the transfer 
chemical potentials of the initial and transition states 
for the reactions of hydroxide ions and iron(II) complexes. 
In Chapter 5 where kinetic data are analysed for reactions 
in a binary mixture of methyl alcohol and water the 
importance of well defined reference states is stressed®. 

In such systems the pure liquids, water and cosolvent are 
most convenient. In this Chapter however the situation is 

slightly different. Kinetic data are analysed for reactions
9carried out in a Typically Non-aqueous solvent system 

which is an aqueous solution of urea. The composition of
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the solvent is varied by changing the molality, m^, or mass 
per cent, w^%, of urea. In a given solution of urea in 

water which contains n^ moles of urea and n^ moles of 
water, the molality of urea, m^, in solution is given by m^ 
= n^/(n^M^) where is the molar mass of water. Similarly 
the mass per cent of urea in solution, w^%, is given by w^% 
= [(n ^ M ^ )/(n ^ M ^ +n^M^)]*100, where is the molar mass of

u r e a .

4.2 Experimental

4.2.1 Materials
All solutions of urea were prepared by weight using Gold 
Label ACS urea and fresh deionised water. A concentrated 
solution of the sulphate salt of [F e (p h e n )g ) was obtained 
from Koch-Light Laborato^t^ries Ltd. and used without further 
purification.

[Fe(gmi)g]^^ was prepared by S.Radulovic using
iron(II) chloride, glyoxal and methylamine. The perchlorate
salt of this cation was prepared by precipitation following
addition of sodium perchlorate to the iron(II) complex
solution. A concentrated solution of the salt was prepared
in water. [ Fe ( phen ) g ] produced a bright red solution in

water and was characterised by an intense absorption band^®

in the visible region of the spectrum centered at X. = ̂ max
510 nm. ( Fe ( gmi ) g ] produced a violet solution in water

and was characterised by an intense absorption band^^

centered at = 554 nm (see Figure 4.2 and 4.3).

4.2.2 Reaction Mechanism
The complexes studied in this Chapter and Chapter 5 contain
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the iron atom in the +2 oxidation state, and as a result 
the arrangement of six d electrons needs to be taken into 
consideration. All of the complexes studied can be regarded 
as having octahedral, Oh, symmetry and unlike the majority 
of iron(II) complexes they are l o w — spin. This is 
demonstrated by the electron occupation diagram (Figure 

4.4) which represents the splitting of a set of d orbitals 
by an octahedral eletrostatic crystal field. The iron 
d 2  2 and d 2  orbitals are raised in energy whilst the
V -V z

d , d and d orbitals are lowered in energy.>y yz z.v
All of the iron(II) complexes investigated contain 

the chelating unit shown below.

The intense colours of these complexes in aqueous 
solutions are believed to be due to transitions of d 

electrons from the iron atom to ligand orbitals to form a 

metal to ligand charge transfer band. More precisely the

filled iron d orbitals, d , d and d , push electronAV yz z.v ^

density onto the lower lying vacant n antibonding orbitals 
of the ligands - such transitions invariably occur in the 
visible region and lead to the stabilisation of the 
comp l e x .

For the alkaline hydrolysis reactions studied in this
and the following Chapter, two possible positions of attack

12of hydroxide ions on the complex have been discussed . The
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FIGURE 4.4
Energy level diagrams shewing the splitting of a 
set of d-orbitals by an octahedral electrostatic 
crystal field.
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first involves direct attack at the central iron atom and 
the second involves attack at the ligand (see scheme 1). 
The second possibility is thought to be the more 
plaus ible^^'  ̂̂ .

Attack by hydroxide anions at the 2-position of the 
complexed pyridine ring causes part of the aromatic 
character of that ring to be lost, thus weakening the 
iron-nitrogen bond. The proximity of the OH-group to the

'Mi
central iron atom should aid the SNi) transfer of OH from 
the carbon atom to the iron and hence break the 

iron-nitrogen bond. The ligand is then free to fall away.

/ N
(phen)Fe + OH

H O "

-► Products

Such a mechanism points towards the formation of some 
transient intermediate. Evidence for such intermediates has 
been obtained from the investigation of the alkaline 
hydrolysis of iron(II) hexadentate Schiff base in two 

neutral water in oil microemulsions^^'^^.

4.2.3 Kinetics
Kinetics of reaction were measured under conditions in 
which (NaOHJ>>(c omplex] corresponding to typical first 
order conditions (see Chapter 2). The reactions were
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monitored using an HP 8451A diode array spectrophotometer,
by the decrease in absorbance at X with time. The datamax
were analysed using the non-linear least squares method 
outlined in Chapter 2 to obtain estimates of the first 

order rate constants. The rates of the alkaline hydrolysis 
reactions of both {F e (p h e n )^ a n d  [Fe(gmi)g]^^ ions are 

known to follow the rate equation^^,’

-d(complex]/dt = k^[complex] + kgtcomplex][NaOH] [4.1]

where k^ is the first order rate constant for the aquation 
of the complex and k 2  is a second order rate constant. 
Under conditions in which [N a O H ]>>(c omplex] then an 
observed rate constant is defined by equation [4.2].

kobs = + kglNaOH] [4.2]

Both k^ and k 2  are calculated using a linear least squares
17procedure . The rate of aquation characterised by k^ was 

found to be negligible compared to the rate of the second
order reaction under the conditions described above.

4.2.4 Solubilities

Solubilities were m e a s u r e d ^ u s i n g  either the absorbances 
of saturated solutions in the UV/visible region or flame 
photometry.
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4.3 The TATB Assumption and Calculation of Single Ion 
Transfer Quantities 

A given solution contains n^ moles of water, n^ moles of
urea and n^ moles of added solute-j where n^ < n̂  ̂ and n^.

At equilibrium the total Gibbs function of the system at
temperature T and pressure p is given by equation [4.3].

sys ;T;p) = ( sys ;T ;p ) + ( sys ;T ;p )

+ n sys ;T;p) [4.3]

Any description of such a system must be consistent with
the same G ® ^ (s y s ;T ;p ) and the same equilibrium chemical
potentials for each substance. In the following account the
system is described as a solution of substance-j in a

0
solvent composed of a mixture of 'urea + water' . Hence the 
molality of solute-j is given by equation [4.4].

= nj/(n^M^ + n^M^) [4.4]

where and are the molar masses of water and urea
repectively. If the system has a volume V then the 
concentration of added solute-j in solution is given by?

C j = n j / V  [4.5]

The concentration of solute-j, c ^ , is related to its 

chemical potential in a solvent of composition w^% by 
equation [4.6].
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/w j ( aq;w^% ?T?p) = /v̂  ( a q ?w^% ; c-scale ?T ;p )
+ RTln((cjYj(aq;w^%))/c^] [4.6]

By definition limit(Cj^O) yj(aq?w^%) = 1 ?  = 1 mol dm~^.
The reference state of the solute is a solution in which cj 

1.0 mol dm~^ and yj(aq;w^%) = 1.0 and the chemical

potential of substance-j is described by
//j ( aq;w^% ?c-scale ;T;p) . If solute-j is a salt which on 
complete dissociation forms u ions (i.e u = u^+u_) then the 

chemical potential of the salt-j in a system of composition 

w^% is given by;

//j ( aq;w^% ;T;p) =  ̂ ( a q ;w^% ; c-scale ;T;p )
+ u R T l n [ ( Q c a q ; w ^ % ))/c^] [4.7]

where Q is a function of the stoichiometry of the salt ( = 
); y^ is a mean ionic activity coefficient 

and where by definition limit(Cj^O) y^ = 1 at all
temperatures and pressures. The reference chemical 
potential of the salt (aq;w^%;c-scale;T;p) thus depends 
on the composition of the aqueous urea solution and on the 
corresponding reference chemical potentials of the ions. A 

transfer chemical potential for solute-j is defined as the 
difference between the chemical potentials of the solute in 

reference states in the solvent, urea + water, and in 
water.

A( aq->w^% )/[/j ( c-scale ? sln;T;p) =

fj^ ( aq;w^% ?c-scale ;T?p) - /w ̂ ( c-scale ; aq ; T; p ) [4.8]
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Hence for a 1:1 salt;

A(aq^Wy%)pj (c-scale;sln;T;p) =
A( aq->w^% (c-scale;sln;T;p)

+ A( aq->w^% ( c-scale ; sin; T ; p) [4.9]

The single ion transfer parameters reported in this 
Chapter are based on the extrathermodynamic assumption set 

out in equation [4.10].

A( aq->w^% ) fj { Ph^As ; c-scale ; T ; p )
= A( aq->w^% )//̂  ( Ph^B~ ; c-scale ; T;p ) [4.10]

i.e. the transfer chemical potential of the Ph^B anion, or

PhjAs^ cation, is defined as one half the transfer chemical
potential of the corresponding salt. The transfer chemical
potentials for Ph^AsBPh^ in various aqueous urea solutions

2were taken from the work of Kundu and Das . These authors 
reported transfer parameters on the mole fraction scale, 
x-scale, and for consistency with previous work® these 
estimates were converted to the concentration scale, 

c-scale, using equation [4.11]®.
4 4

A(aq->wu%)/7j (c-scale) = A( aq->wu% )/y ̂ (x-scale)
+ RTln[(lo2/Mi)/(((lo2_Wy%)/Mi)+(Wy%/My)){p(aq)/p(w^%))1

[4.111
Here p(aq) is the density of water at ambient temperature 

and pressure and p ( w ^ % )  is the density of a solution of 

urea containing w^% urea at ambient temperature and 

pressure. The densities of urea solutions in the region 
5.67 w^% to 43.84 w^% were calculated using equation
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18[4.12], taken from the work of Desnoyers et al

= 44.20 + 0.126m^ - 0.004m^^ [4.12]

where m^ is the molality of added urea. Hence the volume of 
the solution was calculated from equation [4.13].

V/cm® = 10®V^* + m^*y ' [4.13]

where = 0.018015 kg mol ^ and V^*/cm® g ^ = 1.002961
(ref. 19). The mass of the solution was calculated from 
equation [4.14].

M = 1.0 + m^M^ [4.14]

Hence the density of solution was calculated in the usual 
way by the combination of equations [4.13] and [4.14]. 
Figure 4.5 shows a plot of the density of aqueous urea 
solutions against the weight per cent of added urea over 
the range 6< w % <43.J - u ~

Once this basis for single ion transfer parameters 
(i.e. TATB) has been established, single ion transfer 
parameters for other anions and cations readily follow from 
solubility data of salts in aqueous urea solutions. The 
solubility of a salt-j in an aqueous urea solution and pure 

water are denoted by the symbols S^®^(aq;w^%) and Sj^^(aq) 

respectively. These solubilities are related to the 
reference chemical potential of the salt by equation 

[4.15].
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A( aq->w^% )yw j ( c-scale ; sin;T;p) =
-vRTln[ ( S aq;w^% aq;w^% ) )/( S aq )y^( aq ) ) ]

[4.151

The assumption is made that, y^^^(aq;w^%)/y^®^(aq) = 1.0.

4.4 The Self Dissociation of Water and Transfer Parameters 
for and 0H~

The chemical potential of water in the solvent urea + water 
is given by equation [4.16].

yw^(aq;T;p) = //^*(l;T;p) + RTln(x^f^) [4.16]

where is the mole fraction of water in the system and f^ 
is a rational activity coefficient; limit(x^^l) f^= 1 . 0  at 
all temperatures and pressures. At equilibrium, a small 
amount of water undergoes dissociation.

HgOtsln) <----------   > H+OH (sin)

The water in solution is in equilibrium with effectively a 
1:1 electrolyte. The chemic; 
is given by equation [4.17].
1:1 electrolyte. The chemical potential of H^OH in water

/y(H'^OH";aq) = ^^(H+OH";aq) + 2RTln[(c(H+0H")y^(H+0H"))/c^]
[4.17]

At equilibrium the latter two equations can be equated;

/w^*(l;T;p) + RTln(x^f^) = ^^(H+OH ;aq)

+ 2RTln[(c(H+0H")y^(H+0H"))/c^] [4.18]
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A standard equilibrium constant for the self dissociation 
of water is thus defined by equation [4.19].

= -RTln[[c(H+OH )y^(H+OH ) ) ̂ /( c ^ ) ] ̂ ^ [4.19]
where ;

( c-scale ;T;aq) = -RTln[ [c(H‘’'OH“ )y^(H‘’'OH” ) }^/( c^^x^f ̂ ) ]^g
[4.20]

For dilute solutions (x^f^) is approximately unity. By 
definition;

# # p K ^ ^ (c-scale;T;aq) = -log^^K^^(c-scale;T;aq)

= -logio[(c(H+OH )y+(H+OH )}^/c^^] [4.21]

Turning to the effects of added urea on the self 
dissociation of water, the reference state for pure water 
is retained however the reference state for H^OH is now 
altered to depend on the composition of the system w^%. 
Equation [4.21] can be rewritten;

A^G(aq;w^%;T) = ^^(H^OH ;aq;w^%;T) - ^^*(l;T;p)

= -RTlnK^*(aq;w^%;T) [4.22]

where ;

(c-scale;aq;w^%;T) =
-RTlnt (c(H'^OH")y^(H'^OH~)} [4.23)
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In dilute aqueous urea solutions the assumption which sets 
= 1.0 is invalid. However an apparent quantity can 

be defined using equation [4.24].

pK^ (c-scale;appar;aq;w^%;T) =

-log^gK^ (c-scale;a p p a r ;a q ;w^%;T)

= -RTlnt(c(H+OH )y+(H+OH ) ) 1 [ 4 . 2 4 ]

The target quantity in this analysis is the transfer 
parameter for the H^OH electrolyte, A( aq-^w^% ( H^OH ;

sln;T). This can be obtained through equation [4.25]; (cf. 
equation [4.8]).

A( aq->w^% )/ŷ  ( c-scale ; sin;T) = ^^(H^OH ; c-scale ;aq;w^% ;T )
- /t/̂ (H'*’OH~; c-scale ;aq;T) [4.25]

= ;aq;Wy%;T) - * ( 1 ; T ; p ) ]
- [^^(H+OH";aq;T) - //^*(l;T;p)] [4.26]

= [- RTlnK^(c-scale;T;aq;w^%)] - [-RT l n K ^ (c - s c a l e ;T ; a q )]
[4.27]

Then ;

A(aq->w^%)yt/^(c-scale;sln;T) = ^Tln [ x^ f ̂

+ RT[ln(1 0 ) [pK^(appar;c-scale;aq;w^%;T)
- pK^(c-scale;T;aq]] [4.28]

Hence the transfer parameters for H^OH are defined by the 

difference between pK^ parameters plus a correction factor^ 

for the non-ideal properties of aqueous urea solutions.
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4.5 Initial and Transition State Analysis
Under conditions in which complex concentration in solution 
is small compared to hydroxide concentration within the 
reaction mixture (cf. equations [4.1] and [4.2] ) the

second order rate constant, / is related to the molar 
Gibbs function of activation, A^G^(c-scale ) , through 
Transition State Theory^^.

[ ( k 2 C j.sh )/( kgT ) ] = exp[-A^G^ ( c-scale )/RT ] [4.29]

where c^ = 1 mol dm”  ̂ and s = 1 second. These quantities 
are included to preserve dimensional consistency, h is 
Plancks constant and k^ the Boltzmann constant. It is 
further assumed that the transmission is unity and/or is 
independent of solvent composition. A transfer Gibbs 
function of activation is obtained by considering second 
order rate constants in water, k 2 (aq;T), and in aqueous 
urea solution, k 2 (a q ;w ^ % ;T ).

A(aq^w^%)A^G ^ (c-scale;T) = - R T l n [k 2 (a q ;T)/ k 2 (a q ;w ^ % ;T )]
[4.30]

= A( aq->w^% )//̂  ( c-scale ; sin ; T )
- A( aq->w^% ) /y ( complex ; c-scale ; sin ; T )
- A ( aq->w^% ( o h ” ; c-scale ; sin ; T ) [4.31]

Hence the effects of added solvent on the transition state, 
A ( aq->w^% )//̂  ( c-scale ; sin ; T ) , can be calculated from the 
appropriate solubility and kinetic data.
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A ( aq->w^% ) ( c-scale ; sin ; T ) =
A ( aq-»w % ) A^G^ ( c-scale ;T )u

+ A(aq->w^%)yw ( complex ; c-scale ; sin ; T )

+ A( aq->w^% )yt/̂ ( OH ;c-scale;sln;T) [4.32]

The overall effect of solvent on the initial state is 
obtained by combining the transfer parameters for the two 
reactants, complex and hydroxide ions.

A( aq->w^% )y[/̂ ĝ  ( c-scale ; sln;T) =
A ( aq->w^% ) yw ( complex ;c-scale;sln;T)

+ A( aq->w^% )yŷ  ( 0H~ ; c-scale ; sin ; T ) [4.33]

4.6 Results
Tables 4.1 and 4.2 report observed first order rate 
constants for the alkaline hydrolysis of [F e (p h e n )^ ]^^ and 
[Fe(gmi)g]^^ ions in aqueous urea solutions. The 
dependences on hydroxide concentrations were fitted to 
equation [4.2] using a linear least squares technique to 
produce estimates of k^ and k 2 for each urea solution. 
Estimates of k 2  together with their standard errors are 

reported for both iron complexes in Tables 4.3 and 4.4. In 
all cases rate constants k̂ ,̂ describing the aquation rate, 
were found to be negligibly small in comparison to the 
second order rate constants.

Single ion transfer parameters, all expressed using 
the concentration scale, are reported in Table 4.5 together 

with the relevant literature reference. This information is 

represented in plots of single ion transfer parameters 
against w^% urea in aqueous solution; Figure 4.6. Single
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Table 4.1

First order 
2 +

rate constants for reaction between
[Fe(phen)gl and hydroxide ions in water and urea + water

— 3mixtures at constant ionic strength 1=0.33 moldm at 298K

[NaOH]
/moldm” ^

wt% Urea 
10 20

lo'* k/s-1
30

0.0050 1.066 1.207 1.450 2.183
0.0075 1.307 1.545 1 . 8 8 8 2.360
0 . 0 1 0 0 1.450 1.753 2.171 2.557
0.0150 1.853 2.224 2.449 2.891
0 . 0 2 0 0 2.362 2.669 2.961 3.412

Table 4.2
First o rde r 

24-

rate constants for reaction between
[Fe(gmi)^] and hydroxide ions in water and urea + water

— 3mixtures at constant ionic strength 1=0.33 moldm at 298K.

[NaOH] 

/moldm ^

wt% Urea 
10 20

10^ k/s”l
30

0.0050
0.0075

0.0100
0.0150

0.0200

2.63 3.48 3.98 4.98

4.65 5.52 7.10 8.24

5.51 7.02 9.69 1 1 . 6 6

8 . 6 6 10.37 16.67 21.78

11.40 14.77 22.95 30.67
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Table 4.3
Second order 

2+
rate constants for reaction between

[Fe(phen)g] and hydroxide ions in water and urea + water
— 3mixtures at constant ionic strength 1=0.33 moldm and 298K

wt% Urea 1 0  ̂ k/dm^ mol-ls - 1

0 8.430 (+ 0.378)

1 0 9.528 (+ 0.366)

2 0 9.310 (+ 0.986)

30 8.038 (+ 0.428)

Table 4.4
Second order 
[Fe ( gmi )

rate constants for reaction between
and hydroxide ions in water and urea + water

— 3mixtures at constant ionic strength 1=0.33 moldm and 298K

wt% Urea 1 0  ̂ k/dm^ mol -Is'l

0 5.696 (± 0.297)

1 0 7.356 (± 0.278)

2 0 12.727 ( + 0.258)

30 17.526 (± 0.742)
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Table 4.5
Single ion transfer parameters (c-scale) from water to urea 
+ water mixtures at 298K using the Ph^As^/Ph^B assumption. 
Units of transfer parameters are kJmol ^ .

ref 11.52
wt%

20.31
Urea

29.64 36.83

17 h '*’ -1.19 -2.15 — 4.06 -4.76
5 Li + 2.44 3.16 2.77 3.07

5 Na'*' 2.85 3.82 3.68 4.02
2 2.64 3.66 3.47 3.77
5 Rb+ 2.54 3.46 3.27 3.57

5 Cs+ 2.44 3.26 2.97 3.07
2 Ph^As+/BPhj -1.26 -2.99 -3.64 -4.23
t OH -1.78 - 2 . 1 2 -0.96 -
6

_*CIO, -2.96 -4.64 -4.43 -
5 Cl" -2.58 -3.37 -3.01 -3.18
5 Br" -2.78 -3.65 -3.41 -3.68
5 l" — 2 . 8 8 -3.87 -3.71 -4.18
2 Pi"

_* *
-3.27 -5.33 -6.44 -7.33

3 BrO^ -3.52 -4.61 -5.74 — 6 . 8 6

3 1 0 3

2 -* *
-5.53 -7.16 -8.24 -9.27

3 s o /
2 -**

-2.53 -5.77 -7.78 -9.90
3 C r o /

2 -* *
-10.41 -14.42 -17.61 - 2 0 . 8 6

3 -6.33 -9.80 -13.23 -15.38

* _ values at 1 0 , 2 0  and 30 wt% Urea* * _ Single ion transfer parameters calculated from the
standard potentials of the silver-silver bromate, 
silver-silver iodate, silver-silver sulphate, silver 
-silver chromate and silver-silver dichromate 
electrodes.
Calculated from H OH data from references 1,4 and 5
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ion transfer parameters for ions were recalculated from
21the data of Kundu and Mazumdar using estimates of 

parameters for and Cl ions calculated by Das and Kundu^ 
using the TATB assumption. The transfer parameters for 

H^OH from various authors^'^'^ show good agreement, see
Figure 4.7. However the estimates diverge at high w^%. A 
single line was drawn through these points and values
interpolated from this curve were used in conjunction with 

transfer values for ions^^ to calculate single ion
transfer quantities for 0H~ ions.

Solubility data for the [F e (p h e n )^ 1 and
[Fe(gmi)g]^^ complexes were obtained by S.Radulovic^ for 
the perchlorate salts. These data were used in conjunction 
with transfer parameters for OH and ClO^ ions to
investigate the effects of solvent on the initial and 
transition states for both complexes. Tables 4.6 and 4.7 
report calculated initial and transition state transfer 
chemical potentials as a function of w^%. The same
information is represented graphically for the 
[Fe(phen)g]^^ and 

4.9 respectively.
[Fe(phen)g]^^ and [Fe(gmi)g]^^ complexes in Figures 4.8 and

4.7 Discussion
The Gibbs function for activation, A'G , for the alkaline 

hydrolysis of (Fe(gmi)^]^^ cations decreased with increase 
in w^% urea in solution and as a consequence the rate of 

reaction increased at 298.15 K and ambient pressure with 

increase in w^% urea. At 10 w^% urea both the initial and 

transition states are destabilised. In the case of the 
initial state this is due to the large destabilisation of
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Table 4.6
Transfer parameters, for reaction of [Fe(p h e n ) with 
hydroxide ions, from water to urea + water mixtures at 298K 
on the c-scale. Units of transfer are kJmol ^ .

Wt.% Urea 10 20 30

A ( aq->w^% ) A^G( c ) *
A( aq->w^% )p.̂  ( c ) salt** 
A(aq^w^%)^*(c) (2C10^“ )
A( aq-^w^% )fĵ  ̂( c ) [ Fe ( phen ) ̂  
A( aq->w^% )|̂  ̂( c ) 0H“ 
A(aq->w^%)^^g*(c)

A( aq->w^% )p^*(c)

0.30
3.97
5.92
1.95
1.78
0.17
0.13

0.25
8.47
9.28
0.81
2.12
1.30
1.55

0.12
- 12.01
-8.85
3.16

-0.96
-4.12
-4.00

* - (c) represents (c-scale; sin ;T )
* * - salt is (F e (p h e n )2 (C l O ^ )2 ]• Solubility data ref.7.
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2 + wi th
Table 4.7

Transfer parameters, for reaction of [Fe(gmi)^] 
hydroxide ions, from water to urea + water mixtures at 298K 
on the c-scale. Units of transfer are kJmol ^ .

Wt.% Urea 0 1 0 2 0 30

A(aq^Wy%)A G(c) 0 -0.63 -1.99 -2.79

A( aq->w^% ( c ) salt** 0 - 2 . 8 8 -7.54 - 1 0 . 2 1

A(aq^Wy%)^*(c) (2ClO^“ ) 0 -5.92 -9.28 -8.85

A(aq->w^%)|jL^(c) [ Fe ( gmi ) ̂ 0 3.05 1.74 -1.36

A( aq->w^% ( c ) 0H~ 0 -1.78 - 2 . 1 2 -0.96
A(aq-^w^%)|^ . g^(c) 0 1.27 -0.38 -2.32
A(aq^Wy%)^^*(c) 0 0.63 -2.37 -5.10

* - (c) represents (c-scale; sin ;T )
* * - salt is [F e (g m i )2 (C l O ^ )2 ]. Solubility data ref. 7
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(F e (g m i )^ i o n s  and only moderate stabilisation of the 
hydrophilic hydroxide ions. However with increased w^% urea 
both initial and transition states are stabilised, the 
transition state to an increasingly large degree producing 
a decrease in The stabilisation of the initial state
at 2 0  w^% urea can be attributed to an increased
stabilisation of OH ions and the decreased stabilisation 

of the [Fe(gmi)g]^^ ions whilst at 30 w^% urea both the 
complex and hydroxide ions are stabilised. This information 
is summarised in Figure 4.11.

Turning to the alkaline hydrolysis of [F e (p h e n )  ̂

cations it is clear, Figure 4.8, that rate constants for 
this reaction mask considerable changes in the transfer 
chemical potentials of the initial and transition states 
when urea is added to the system. At 10 w^% urea the
effects on both the initial and transition state chemical 
potentials are small. The transition state is marginally 
stabilised and conversely the initial state is destabilised 
due to the greater destabilisation of the [F e (p h e n )  ̂

ions compared to the stabilisation of the hydroxide anions. 
As a result an overall decrease in the Gibbs function for 
activation is observed. At 20 w^% urea the transition state 
is stabilised to a greater extent. The destabilising effect 
of urea on [ F e (p h e n )^ i o n s  decreases and the 

stabilisation of OH ions increases. Hence an overall 
stabilisation of the transfer chemical potential of the 
initial state was observed. A solvent containing 30 w^% 

urea marks a crossover point at which ( F e (p h e n )^ i o n s  

are found to be stabilised to a greater extent in solution 
than hydroxide ions. Hence the initial state can be seen to
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be greatly stabilised. The transition state is also 
stabilised to a larger extent and as throughout the range 
of urea solutions the effect on the Gibbs function for 
activation was found to be marginal. This information is 
summarised in Figure 4.11.

The trends summarised in Figures 4.10 and 4.11 are
complicated. It is not clear why hydroxide anions showed
such a degree of stabilisation in urea + water systems

8 —whilst in methyl alcohol -f water systems OH anions are 

clearly destabilised. The merits of the initial state, 
transition state analysis are however immediately apparent. 
Modest dependences of rate constant, in both systems, mask 

striking dependencies on w^% of both the transfer chemical 
potentials of the initial and transition states.

An extension of the above approach to the analysis of 
kinetic data would be to consider the effects of pairwise 
group interaction parameters using the model developed by 
Savage^^, Wood^^ and Lilley^^. Although no more than a
broad indication of the trends of a parameter describing
pairwise interactions between urea and the iron(II) 

complexes can be obtained it is interesting to note that
pairwise interaction parameters, g(X<=>Y) where X and Y 
denote functional groups, of g (C H 2 <=>C 0 N H ) and g(CONH<=>OH) 

are 55 and -31 kj mol ^ respectively. In other words added 

urea destabilises the hydrophobic ligands around the 
iron(II) atom i.e. a positive g(CH 2 <=>C 0 NH) and 
incorporating an OH group into the same hydrophobic ligand 

produces a stabilising influence e.g. g(CONH<=>OH)<0. This 
line of argument points a possible way forward in the 
analysis of kinetic data describing reactions in aqueous
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solutions, by introducing thermodynamic parameters 
describing group interactions. These pairwise interaction 
parameters are investigated further in Chapter 7, which 

describes the background to the subject, and Chapter 8  

which develops a technique for calculating pairwise Gibbs 
function cosphere-cosphere group interaction parameters and 
shows how they may be used to calculate the 

cosphere-cosphere overlap contribution to Setschenow 
coefficients for gaseous hydrocarbons dissolved in aqueous 
salt solutions.
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CHAPTER 
5

Alkaline hydrolysis of low-spin iron(II) complexes in 'Methyl 
alcohol + water' mixtures



5.1 Introduction
This Chapter reports observed first order, and linear least 
squares estimates of second order rate constants at 298.15 
K for the alkaline hydrolysis of one tridentate and two 
bidentate low-spin iron(II) complexes in binary mixtures of 
methyl alcohol and water. These mixtures contained 0, 20,
40, 60 and 80 ideal volume per cent, v%(id), of the alcohol 
(see Section 5.2.2 for a definition of v%(id)). The 
structures of the iron(II) complexes are shown in Figure 
5.1.

FIGURE 5.1
L-L

(L-L-L)

[Fell-LI,] (CIO,), [FelL-L-LI,](CIO,),
Single ion transfer chemical potentials calculated using 
the TATB assumption^ were used in an investigation of the 
effects of added methyl alcohol on the transfer chemical 
potentials of the initial and transition states involved in 

chemical reaction (see chapter 4).

5.2 Experimental
5.2.1 Materials
The complexes were prepared from the appropriate amine,

2carbonyl compound and iron(II) chloride , by S.Radulovic, 
and were precipitated as perchlorates by saturating the 

iron(II) chloride solution with sodium perchlorate. The 
methyl alcohol was 99.9% spectrophotometric grade.
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5.2.2 Kinetics
Concentrated aqueous solutions of the iron(II) complexes
(present as perchlorates) were used. Kinetics of reaction

between the iron(II) complexes and hydroxide ions were
monitored in 0, 20, 40, 60 and 80 v%(id) methyl alcohol +
water mixtures at constant ionic strength, I = 0.33 mol
dm ^ at 298.15 K. The composition of the solvent mixtures
was described in terms of ideal volume per cent, v%(id).
This term is defined for example in the case of 60 v%(id)

methyl alcohol as follows. If the volume before mixing of
the reaction mixture has a total volume V/cm^ then the
mixture contains (60/100)*V/cm^ of methyl alcohol. Constant
ionic strength was maintained by addition of sodium
chloride solution to the reaction mixture. In all systems
[complex] < 1 0 "^ mol dm~^ and hydroxide ions were present
in vast excess compared to the concentration of the iron
complex. Reactions were monitored at five separate
hydroxide concentrations in the region, 0.05< [NaOH]/mol
dm  ̂ <0.18 for the tridentate complex, C, and 0.001 <
[NaOH]/mol dm~^ <0.020 for the two bidentate complexes, A
and B. Reactions were followed by monitoring the decrease

in absorbance at X with time using an HP 8451A diodemax ^
array spectrophotometer (see Chapter 2). For each complex 

^max obtained from a full wavelength scan 190< X/nm
<800 using a dilute aqueous solution of the complex; 
Figures 5.2 to 5.4 (the program is included as Appendix 1;
program AWH 1). No change in the position of X^^^ was noted
when methyl alcohol was added to the system. For complex A,

X = 572 nm, complex B, \ = 550 nm and, complex C,luoX KlclX

^max = nm.
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FIGURE 5.2
Dependence of absorbance on wavelength of Iron (II) 
canplex, Ccmplex A.
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FIGURE 5.4
Dependence of absorbance on wavelength of iron (II) 
ccmplex y Ccmplex C.
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The solubilities^ of iron(II) complexes in methyl alcohol + 
water mixtures were determined from the absorbances at Xmax
of saturated solutions at 298.15 K. Transfer chemical 

potentials of the hydroxide ion were taken from a 
compilation^ based on the TATB assumption.

5.3 Results
The reactions are known to follow the rate law^ given by 
equation [4.1] of Chapter 4. Reactions were allowed to 
proceed for at least 2.5 half lives and in all cases the 
absorbance (see Chapter 2) was close to zero, indicating 
that the reaction had gone to completion. Addition of 
methyl alcohol to the reaction mixture containing complex C 
produced a notable decrease in rate constant dependent on 
the proportion of alcohol in the mixture. The effect of 
added methyl alcohol on complexes A and B was not as 
straight forward. Up to 40 v%(id) methyl alcohol the rate 
constants for reactions involving complex A decreased 
compared to the rate constant for reaction in aqueous 
solution. However at higher alcohol concentrations, 60 and 
80 v%(id), the rate constant increased slightly relative to 
the lower alcohol concentration but at no time did it 

exceed the rate constant for reaction in aqueous solution. 
For complex B little effect on rate constant was produced 
by 20 v%(id) methyl alcohol. However rate constants in 40, 

60 and 80 v%(id) methyl alcohol increased relative to rate 
constants in aqueous solution. Observed first order rate 
constants for reactions involving complexes A, B and C are 
reported in Tables 5.1, 5.2 and 5.3 respectively.

Second order rate constants were estimated using the
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Table 5.1
First order rate constants for reaction between complex A
and hydroxide ions in water and methyl alcohol + water
mixtures at constant ionic strength 1=0.33 moldm  ̂ at 298K.

[NaOH] 0 2 0
V(id) % MeOH 

40 60 80
/moldm ^ 1 0 ^ k/s 1

0 . 0 0 1 3.59 1.82 1.82 2.74 2.90
0.005 14.43 11.24 9.66 10.75 12.65

0 . 0 1 0 26.01 22.92 19.16 21.99 25.56
0.015 40.16 33.14 27.88 32.17 36.92
0 . 0 2 0 56.13 42.62 38.35 40.90 47.98

Table 5.2
irst order rate constants for reaction between complex
nd hydroxide ions 
ixtures at constant

in water and methyl alcohol 
ionic strength 1=0.33 moldm ^

+ wat€ 
at 298F

[NaOH] 0 2 0
V(id) % MeOH 

40 60 80
/moldm~^ 1 0 ^ k/s 1

0 . 0 0 1 0.50 0.41 0.50 0.94 2.60
0.005 1 . 0 2 0.95 1.65 2.26 5.04

0 . 0 1 0 2 . 0 0 1.77 2.38 3.91 7.83

0.015 2.48 2.50 3.37 5.67 9.92

0 . 0 2 0 2.93 3.08 4.01 6.80 12.80
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Table 5.3
First order rate constants for reaction between complex C
and hydroxide ions in water and methyl alcohol + water
mixtures at constant ionic strength 1=0.33 moldm"^ at 298K.

[NaOH] 

/moldm ^
0 2 0

V(id) % MeOH 
40 60

1 0  ̂ k/s - 1

80

0.050 1.59 1 . 1 0 0.94 0.82 0.67
0 . 1 0 0 4.77 2.89 2.23 1.85 1.55
0 . 1 2 0 6.61 3.86 3.00 2.63 1 . 6 6

0.150 8.40 5.56 3.99 3.24 2.33

0.180 12.64 7.20 5.41 4.41 2.81
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method of linear least squares in which observed first 
order rate constants, ^obs' each alcohol mixture were
fitted to equation [4.2] of Chapter 4. In all cases 

estimates of were negligible compared to the estimates 
of the second order rate constant k 2 . Plots of k^^^ against 
sodium hydroxide concentration for complex A at 0, 20, 40, 
60 and 80 v%(id) methyl alcohol are included as Figure 5.5. 
Estimated second order rate constants, k 2 f and their 
standard errors for each complex are reported in Tables 

5.4, 5.5 and 5.6.

5.4 Initial State, Transition State Analysis
Kinetic and solubility^ data were combined using the 
procedures set down in Section 4.5 of Chapter 4 to obtain 

the effect of added methyl alcohol on the initial and 
transition states of each complex. In summary form the 
effect of added cosolvent on the initial state is 
calculated using equation [5.1].

A( aq->v% (id))/u^g^(c-scale;sln;T) =
A( aq->v% (id) )// ( i ron complex ;c-scale;sln;T)

+ A(aq^v%( id) )/y^(OH~;c-scale;sln;T) [5.1]

The effects of cosolvent on the transition state can be 
obtained using equation [5.2].

A(aq->v%( id) )^^*(c-scale;sln;T)

A( aq->v% (id)) A^G^ ( c-scale ; T )
+ A( aq->v% ( id ) )/y ( i ron complex ; c-scale ; sin ; T )

+ A(aq->v%( id) )yt/̂ ( o h ” ; c-scale; sin; T) [5.2]
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Table 5.4
Second order rate constants for reaction between complex A
and hydroxide ions in water and + water mixtures at
constant ionic strength 1=0.33 moldm  ̂ and 298K

V%(id) MeOH 1 0 ^ k/dm 3mol-ls” l

0 2.278 ( + 0.091)

2 0 2.153 ( + 0.059)

40 1.901 (± 0.028)

60 2 .035 (± 0.050)
80 2.383 ( + 0.043)

Table 5.5
Second order rate constants for reaction between complex B 
and hydroxide ions in water and K e O M  + water mixtures at 
constant ionic strength 1=0.33 moldm  ̂ and 298K

V%(id) MeOH 1 0  ̂ k/dm \ o l ” ^s"^

0 1. 312 (± 0.118)

2 0 1.434 ( + 0.047)

40 1.810 (± 0.137)

60 3.151 ( + 0.125)

80 5.257 (± 0.171)
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Table 5.6
Second order rate constants for reaction between complex C
and hydroxide ions in water and MeOH + water mixtures at
constant ionic strength 1=0.33 moldm  ̂ and 298K

V%(id) MeOH 1 0  ̂ k/dm^mol ^s ^

0 8.204 (± 0.837)
2 0 4.737 ( + 0.313)
40 3.408 ( + 0.250)
60 2.722 (± 0 .2 0 2 )
80 1.637 ( + 0.096)
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where A ( aq->v% ( id )) ( c-scale ; T ) is obtained from the
estimated values of the second order rate constants, .

A ( aq->v% ( id )) A^G^ ( c-scale ; T ) =
RTln[k 2 (aq;T)/k 2 (a q ; v % (i d );T)] [5.3]

Tables 5.7, 5.8 and 5.9 report calculated initial and
transition state transfer chemical potentials and Figures 
5.6, 5.7 and 5.8 plot these data against v%(id) methyl

alcohol for complexes A, B and C respectively.

5.5 Discussion
The effect of added methyl alcohol on the transfer chemical 
potential of the hydroxide ion is almost negligible up to 
40 v%(id) methyl alcohol, with only a very slight 
stabilisation effect at 20 v%(id) alcohol. However at 60 
and 80 v%(id) methyl alcohol the hydroxide ion is 
increasingly destabilised. These results can be explained 
in the following way; hydroxide ions are sufficiently 
hydrophilic to retain their hydration shell essentially 
intact up to even as high as 60 v%(id) methyl alcohol. At 
80 v%(id) methyl alcohol the hydroxide ions are then 

greatly destabilised because there is insufficient water 
to maintain their hydration shells. This effect is almost 

the reverse of the trends shown in Chapter 4, where the 

hydroxide ions are stabilised with increased proportion of 
u r e a .

Cosolvent effects on the initial state transfer 

chemical potentials (equation [5.2]) of complex A and C are
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Table 5.7
Transfer parameters, for reaction of complex A with
hydroxide ions, from water to methyl alcohol + water 
mixtures at 298K on the c-scale. Units of transfer are 
kJmol ^ .

v(id)% MeOH 0 2 0 40 60 80

A ( aq->v% ( id ) f * ) A G ( c ) 0 0.59 0.89 0.73 0.34

A( aq->v% ( id ))|î  ( c ) salt** 0 -2.63 -6.67 -9.67 -9.87

A{ aq->v% ( id ))^*(c)( 2 C 1 0 j")T 0 0.06 -0.16 0.34 3.16

A( aq->v%( id) )p,*(c) A 0 -2.69 -6.51 - 1 0 . 0 1 -12.93

A( aq->v% ( id ))^*(c) OH" 0 - 0 . 1 2 - 0 . 0 2 1.44 5.78

A ( aq->v% ( id ))His*(c) 0 -2.81 -6.53 -8.57 -7.25

A ( aq->v% ( id )^ » ( c ) 0 - 2 . 2 2 -5.63 -7.84 -6.92

*
* *

t -

(c) represents (c-scale; sin ;T )
salt is the perchlorate salt of complex A
Solubility data from ref.4.
Solubility data from Ref. 6 .
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Table 5.8
Transfer parameters, for reaction of complex B with 
hydroxide ions, from water to methyl alcohol + water 
mixtures at 298K on the c-scale. Units of transfer are 
kJmol ^ .

V(id)% MeOH 0 2 0 40 60 80

A ( aq-^v% (id)) A*G( c ) * 0 - 0 . 2 2 -0.80 -2.17 -3.44
4 * *A ( aq->v% ( id ) )|A ( c ) salt 0 -2.39 -4.39 - 6 . 0 2 -3.35

A ( aq->v% (id))p,^(c)(2ClO^~)t 0 0.06 -0.16 0.34 3.16

A( aq^v% ( id ) )|j, ̂  ( c ) B 0 -2.45 -4.23 -6.36 -6.51

A( aq-^v%( id) )p,^(c) OH” 0 - 0 . 1 2 - 0 . 0 2 1.44 5.78

A( aq->v% ( id ) )u^g^ ( c ) 0 -2.57 -4.25 -4.91 -0.73

A( aq-^v% ( id ) )^^^ ( c ) 0 -2.79 -5.04 -7.09 -4.17

* - (c) represents (c -scale; sin ;T )
* * - salt is the perchlorate salt of complex B.

Solubility data from ref.4. 
t - Solubility data from Ref. 6 .
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Table 5.9
Transfer parameters, for reaction of complex C with
hydroxide ions, from water to methyl alcohol + water 
mixtures at 298K on the c-scale. Units of transfer are 
kJmol ^ .

V(id)% MeOH 0 2 0 40 60 80

A( aq->v% ( id ))A*G(c)* 0 1.36 2.18 2.73 4.00
A ( aq->v% (id) )(jL*(c) salt** 0 -4.24 -7 .77 -12.03 -12.51

A ( aq->v% ( id ))^#(c)(2ClO,")t 0 0.06 -0.16 0.34 3.16
A ( aq-+v% (id) )M,*(c ) C 0 -4.30 -7.61 -12.37 -15.67
A ( aq->v% (id) )|i*(c) OH" 0 - 0 . 1 2 - 0 . 0 2 1.44 5.78

A ( aq->v% (id) ) H l / ( c ) 0 -4.42 -7.63 -10.93 -9.89
A( aq->v% ( id ) 0 -3.06 -5.45 - 8 . 2 0 -5.89

*
* *

t -

(c) represents (c -scale; sin ;T )
salt is the perchlorate salt of complex C
Solubility data from ref.4.
Solubility data from Ref. 6 .
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dominated by the increasingly large stabilisation of the 
iron(II) complex in alcohol rich mixtures. However at 80 
v%(id) methyl alcohol the destabilising effect of the 
solvent mixture on the hydroxide ion is sufficiently 
intense to produce a notable destabilisation of the overall 

initial state relative to 60 v%(id) methyl alcohol. The 
Gibbs function for activation, A^G^, for complex A 
increases with increased methyl alcohol proportion up to 40 
v%(id). At 60 and 80 v%(id) methyl alcohol there are small 
decreases in A^G^; however they are not large enough to 
demand a change in sign. A similar situation can be seen 

with complex C. However in this case there is no decrease 
in A^G^ at 40 v%(id) methyl alcohol. Indeed A^G^ increases
almost linearly over the range 0 to 80 v%(id) methyl
alcohol. The effect of a positive change in the Gibbs 
function for activation can thus be seen to be an artefact 
of the increased stabilisatiion of the overall initial 
state in alcohol + water mixtures relative to the
stabilisation of the overall transition state (defined in 
equation [5.2]).

The solvent effects on the initial and transition 
states of complex B are different from those on complex A 
and C. The first point to notice is the reduced 
stabilisation of the iron complex up to 80 v%(id) methyl 

alcohol relative to the stabilisation of complexes A and C 

in the same mixtures. Indeed at 80 v%(id) methyl alcohol

destabilisation of hydroxide ions is now the major 
contribution to the destabilisation of the initial state 

relative to 20, 40 and 60 v%(id) alcohol. The transition

state is stabilised to a greater degree than the initial
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State. However it too shows a marked destabilisation at 80 
v%(id) methyl alcohol due to the relatively large 
destabilisation of the hydroxide anion. As a result the 
decrease in the Gibbs function for activation, A ^ G ^ , with 
increased alcohol proportion in the mixture can be seen to 

be dominated by the effects of added methyl alcohol on the 
transition state.

Comparison of Figures 5.6 and 5.7 reveals the 

striking effect the introduction of a methyl group onto a 
ligand can have on the kinetics of reaction. Indeed it is 
not only the kinetics of reaction of the complex which are 
affected but also the stability of the complex in the 
alcohol + water mixtures. Hence the effects of 
stabilisation/destabilisation by added cosolvent on the 
initial and transition states are modified.

Just as the second order rate constants for the 
nucleophilic attack of hydroxide ions at 5-methyl ferroin 
are lower than those for the unsubstituted complex^, the 
second order rate constants for complex B are lower than 
those for complex A due to the electron release of the

5methyl group . The methyl group attached to the nitrogen 
atom in complex B pushes electron density onto the nitrogen 
atom thus increasing the strength of the nitrogen-iron 
bond. The electron density around the iron atom will also 

be increased. These two factors demand that nucleophilic 

attack by hydroxide anions will be discouraged and hence 

the second order rate constant, k 2 y decreases. The methyl 
group in complex A is too far removed from the nitrogen 
centre to produce such an effect.

Overall the transition state stabilisation follows
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the same general pattern for the three iron complexes. 
Stabilisation of the transition state up to 60 v%(id)

methyl alcohol is consistent with the dispersal of charges
on going from the initial to the transition state, and 
hence transfer of the transition state to a less polar,
alcohol rich, solvent will result in a stabilisation of the 
transition state. At 80 v%(id) methyl alcohol the 
transition state becomes much less stabilised than at lower 
methyl alcohol concentrations because the highly alcohol 
rich solvent is not sufficiently polar to accomodate the 

dispersed charges as adequately as at 60 v%(id) methyl
a l c o h o l .
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CHAPTER
6

Salt effects on the neutral 
hydrolysis of Phenyldichioroacetate 

and its para-methoxy derivative



6.1 Introduction
Reaction rates in aqueous solution of both charged and
neutral solutes are sensitive to the addition of added 

1 2  3salts ' ' . In this Chapter, rate constants for the neutral
hydrolysis of phenyldichloroacetate (PDCA) and the 
para-methoxy derivative (p-OMePDCA) are reported for 
reaction at 298.15 K in aqueous solutions containing MX and 
R^NX salts where M = Li^, N a ^ , , R b ^ , Cs^, R = Me, Et, Bu
and X = F , Cl and Br~. In addition the dependence on 

temperature was determined for the neutral hydrolysis of
p-OMePDCA in salt solutions containing 0.2 mol dm ^ and 0.9

— 3 — 3mol dm tetrabutylammonium bromide, 0.2 mol dm and 0.9
mol dm^^ tetrabutylammonium fluoride, 0.9 mol dm  ̂ tetra-

_ o
butylammonium chloride and 0.9 mol dm potassium bromide. 
The dependence on temperature is reported for the p-OMePDCA 
ester and the unsubstituted derivative over the temperature 
range 293.15< T/K <318.15. Solvent isotope effects are 
reported for the neutral hydrolysis of PDCA in aqueous 
solutions containing 0.9 mol dm"^ Bu^NBr, Bu^NF, Me^NF and 
CsF at 298.15 K.

Trends in rate constants are discussed in terms of 
the properties of the salt solutions. In particular the 
effect of cosphere-cosphere overlap is identified as a 
major contribution to the observed patterns of kinetic salt 

e f f e c t s .

6.2 Salt Solutions
6.2.1 Ionic Hydration

Consider the situation in which a salt-j is added to water 
such that in the resulting solution each ion is unaware of
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the presence of any other ion i.e. the solution is
infinitely dilute. For such a situation the hydration model 
proposed by Frank and Wen^ for alkali metal and halide ions 
is applicable (see Figure 6.1).

I I 0  : I

\ /
X  B

C

FIGURE 6.1
Model for ionic hydration in aqueous solution.

Three zones of solvent structure are identified within the 
model. Zone A contains electrostricted water. Water 
molecules within this zone represent the primary hydration 
shell of the solute. Zone C contains water molecules 

unperturbed by the presence of the anion and can be thought 
of as the bulk solvent. Zone B contains water molecules in 
a mismatch region between zones A and C where the 

organisation of the water molecules differs from that of 
the bulk. The organisation within zone B is often called 
'structure broken' and the extent of the zone depends on 
ion size. Large ions such as I~ and Br” have large zone B 
regions and are called electrostrictive structure breakers. 
However for smaller ions such as F~ and Li^ zone B does not
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exist, these ions are called electrostrictive structure 
formers. The hydration of tetraalkylammonium ions is 
controlled by the apolar alkyl groups. These ions are 
classed as hydrophobic water structure formers, the degree 
of structure enhancement increasing with the size of the 

alkyl group. The Me^N^ ion is often regarded as a structure
breaker whereas the Et^N^ ion appears to have no marked

5 +structural effects on bulk water . Hence only Pr^N and the

higher alkylammonium ions are regarded as structure
f ormers.

6.2.2 Real Salt Solutions
To a first approximation a major contribution to the 
non-ideal properties of aqueous salt solutions stems from 

charge-charge interactions. The chemical potential of a 1:1 
salt-j in aqueous solution is related to composition using 
equation [6 .1 ].

o
//j(aq;T;p) = /w ̂ ( aq?T;p;mj = l ; Yj = l ) + 2RTln(mjy^/m ) [6.1]

0
where is the mean ionic activity coefficient and m = 1  

mol kg ^ . Equation [6.1] can be written in the form;

o/fy j ( aq;T;p) = ^y(aq;T;p;mj = l;y^=l) + 2RTln(mj/m )
<-----------  ideal part -------------- >

+ 2RTln(y+) [6.2]

<- non ideal->

In very dilute solutions the hydration shells of 
ions remain undisturbed such that there are no cosphere-
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cosphere interactions. The non-ideal part of the chemical 
potential can be modelled for very dilute aqueous solution 

by the Debye-Huckel Limiting Law (DHLL).

lny+ = -S |z^z_|(I/m [6.3]

2where I is the ionic strength ( = O.SEmuZj ); |z^^_| the
modulus of the product of the charge numbers and depends
on the temperature and the dielectric properties of the 

solvent.
In slightly more concentrated solutions the non-ideal

part of the chemical potential is modelled by the Debye
-Huckel equation.

lny+ = (-S |z+z |(I/m°)l/2)/(i + B(I/m°)l/2) [6.4]

However, this equation is only a first approximation for in 
dilute aqueous solution trends in Iny^ cannot be predicted 
by the Debye-Huckel treatment alone. The presence of some 
underlying pattern to Iny^ led Desnoyers^ and workers to 
draw attention to the effects of cosphere-cosphere overlap 
as an important factor in determining the properties of 
aqueous salt solutions. In effect in dilute solution 
equation [6.4] can be extended to the form;

Iny^ = Debye-Huckel + f(cosphere) [6.5]

Where f(cosphere) represents the effect of cosphere overlap 
on Iny^. If f ( cosphe re ) <0 then there is a lowering of the 

chemical potential of the salt, //. , and hence a
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stabilisation of the salt solution. Conversely if
f ( cosphe re )> 0 then is increased giving a destabilising
e f f e c t .

Extension of the Debye-Huckel treatment to more
concentrated salt systems by the addition of new terms to 
the equation has received interest from many workers. The 

work of Pitzer^ in this area is particularly noteworthy and 
is discussed in Chapter 7. The treatments discussed by 
Pitzer are applied to group interaction parameters in
Chapter 8 and to the analysis of kinetic data for the 
alkaline hydrolysis of the sodium salt of bromophenol
blue®'^ in Chapter 9.

Cosphere overlap effects are not limited to 
interactions in salt solutions. The properties of solutions 
containing salts and neutral solutes can also be understood 
in terms of cosphere interactions. In this Chapter patterns 
in kinetic parameters are discussed in terms of cosphere- 
cosphere overlap effects.

6.3 Experimental
6.3.1 Preparation of Phenyldichloroacetate and the

para-Methoxy Derivative 
Dichloroacetyl chloride (0.1 mol), dissolved in 15 cm^ of
absolute ether, were added dropwise to equivalent amounts
of the desired phenol and pyridine in 50 cm^ of absolute
ether. This mixture was stirred for three hours under
nitrogen, in a flask fitted with a double surface water
condenser, at room temperature. The resulting mixture was

filtered to remove pyridine.HCl; crude ester was obtained

after evaporation of the ether. The ester was

-96-



recrystal1ised from a 50/50 mixture of dried ether and 60
00 dried petroleum ether. The product was characterised by

10its melting point 
335.35 - 335.95 K ) .

(PDCA 320.55 - 320.57 K, p-OMePDCA

6.3.2 Investigation of the Kinetics of the Neutral
Hydrolysis of PDCA and its para-Methoxy Derivative 
in Aqueous Salt Solutions.

The neutral hydrolysis in aqueous solution of PDCA and
p-OMePDCA has the mechanism^^ ^^ shown in Scheme 1. Rate

determining water-catalysed attack by water at the carbonyl
group forms two products, dichloroacetic acid and a

characteristic phenol.

HCCI

H

R = H ;  PDCA 

R =OMe; p-O M ePDCA

obs Êô-
CljHC—  C 0

À
/>

6*

0  — H
1
H

HCCIjCOjH

Scheme 1

Reactions were monitored by observing the formation of
phenol using the HP 8451A diode array spectrophotometer at
a predetermined X (X PDCA = 272 nm, X. pOMePDCA =max max max ^

288 nm) . Solutions of alkali metal and tetraalkylammonium
— 2 — 3halide salts were prepared using 1 0  mol dm hydrochloric 

acid to a concentration of 0.9 mol dm ^ . The acid inhibited 

possible base catalysis of the reaction^^. As a further
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precaution pH measurements of the solutions containing 
tetraalkylammonium fluorides confirmed the solutions were 
acid. Several preliminary studies were made of the effects 
of added tetrabutylammonium bromide and potassium bromide 

on the reaction rate (Figure 6.3 and Table 6.1). As a 
result it was decided to study the effect of various added 
salts at a common concentration of 0.9 mol dm ^ . This 
molarity gave a significant change in rate constant for all 
added salts compared to the reaction rate in the absence of 
added salt.

In a typical kinetic run 2 cm^ of a salt solution 
were pippetted into a 3 cm^ quartz cell which was placed in 
the HP 8451a  diode array spectrophotometer and allowed to 
come to thermal equilibrium. After approximately five 
minutes the reaction was initiated by adding to the cell 
one drop of a very dilute solution of reactant in 
acetonitrile. The reaction was monitored for at least 2.5 
half lives and the absorbance/time data analysed using the 
method of non-linear least squares to obtain the rate 
constant (see Chapter 2). All reactions followed first 
order kinetics and each run was repeated at least three 
times to produce an averaged first order rate constant for 
reaction in each salt solution. At worst the rate constant 
was reproducible to within approximately three per cent.

O c c a S i O A a H y  a rapid jump in absorbance was recorded 
in the middle of a run - Figure 6.4. At first this was 

believed to be due to phenol oxidation^^. However this 
problem was resolved by ensuring the reactant and the salt 

solution were thoroughly mixed.
No rate constants were obtained for the reactions in
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FIGURE 6.3
Dependence of log (k/ko) on concentration of added salt 
(mol dm"^). □ = potassium bronide, o = tetrabutyl-
amnonium bronide.
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Table 6.1
First order rate constants for the neutral hydrolysis of 
PDCA in aqueous solutions containing known concentrations 
of potassium bromide and tetrabutylammonium bromide at 
298K.

KBr 
/moldm ^

lO^k

/s"l

log(k / k o )

0 . 0 0 3.263 -

0 . 1 0 3.175 - 0 . 0 1 2

0.30 3.160 -0.014

0.50 3.102 - 0 . 0 2 2(
0.07 2.942 -0.045
1 . 0 0 2.489 -0.118
1.50 2.117 -0.188

Bu^NBr
/moldm

lO^k

/ s - 1

log(k / k o )

0 . 0 0 3.263 -
0 . 1 0 2.895 -0.052

0 . 2 0 2.273 -0.157
0.30 1.869 -0.242

0.60 0.903 -0.558
0.90 0.240 -0.133
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FIGURE 6.4
Dependence of absorbance on time at Xmax =274 for 
the neutral hydrolysis of phenyldichloroacetate at 
298 K. [Discontinuity in curve due to insufficient 
mixing of reactant and aqueous salt solution.
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the presence of iodide salts because (i) iodide ions absorb
strongly in a charge-transfer-to-solvent transition in the
region of phenol absorbance and (ii) on irradiation iodide
anions produce the species which has a large charge
transfer band in the same region of the electromagnetic
spectrum. These bands effectively mask any phenol band

17produced during the course of the reaction
Dependences of rate constant on temperature were 

studied in a similar fashion by adjusting the temperature 

of the thermostatically controlled cell block within the
:t Qospectrophotometer. The enthalpy of activation, A'H was 

calculated using a plot of ln(k/T) against (1/T). The slope 
of the graph yields the enthalpy of activation. A'H was 
obtained to a higher degree of accuracy by a linear least 

squares fit of the data to equation [6 .6 ].

ln(k/T) = A + B/T [6 .6 ]

Here parameter B corresponds to the gradient of the graph. 
A BASIC program for an HP 85 computer which describes a 
linear least squares procedure is included for reference in 
Appendix 1. The entropy of activation, A^S^, was calculated 
using the Eyring equation [6.7].

k = ( kgT/h)exp(-A'^H”/RT)exp( A^^S^/R) [6.7]

where kg is the Boltzmann constant, h is Plank's constant

and R is the gas constant.

In the solvent isotope studies it was necessary to
— 7 — 3replace the salt solutions containing HCl (10 mol dm )
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— 2with salt solutions containing deuterium chloride ( 1 0  mol 
dm ^ ). DCl(aq) was made by adding appropriate quantities of 
37 weight per cent DCl in deuterium oxide to deuterium 

oxide. The ratio of the observed rate constants in both 
solvents is defined as the solvent deuterium isotope effect 
(SDIP); equation [6 .8 ].

SDIP = k(H20)/k(D20) [6 .8 ]

6.4 Results

First order rate constants for reaction in the presence of 
added salts for the unsubstituted and p-OMe substituted 
reactant are given in Tables 6.2 and 6.3 respectively. This 
information has been represented graphically in the form of 

plots of ln(k/ko) (where ko is the first order rate 
constant in the absence of added salt) against the anion of 
the salt (Figures 6.5 and 6 .6 ). Data for PDCA have been 
taken from reference 16 over the same salt range as 
p-OMePDCA to give an overall picture for both reactants. 
From these figures it is possible to see the rate retarding 
effect of the chloride and bromide salts compared to the 

rate accelerating effect of the fluoride salts. For the 

bromide salts a pattern is established in which the rate 
constants decrease in the order;

Rb"^ > Cs"^ > Me^N+ > Et^N+ > Bu^N+
Intuitively one might expect the trend in rate constants 
for the fluoride salts, to be the reverse of that described 

for the bromide salts i.e. the largest rate constant would 

be for the reactions conducted in the presence of 
tetrabutylammonium fluoride. However there appears to be no
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Table 6.2
First order rate constants for the neutral hydrolysis of
PDCA in the presence of fluoride salts at a concentration
of 0.9 moldm  ̂ at 298K.

Added salt Rate Constant

lo'kobs/s"'

RbF 0.106
Me^NF 1.491
EtjNF 1.880
Bu^NF 9.750
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Table 6.3
First order rate constants for the neutral hydrolysis of 
p-OMe PDCA in the presence of fluoride, chloride and
bromide salts at a concentration of 0.9 moldm-3 at 298K.

-1 -3Rate constant with no added salt ko/s =2.730x10

Added Salt Rate Constant

NaF 6.782

KF 8.062

RbF 7.827
CsF 11.640

Me^NF 10.040

Et^NF 7.958

Bu^NF 6.518

Added Salt Rate Constant Added Salt Rate Constant

LiCl 2.199 LiBr 2.108

NaCl 1.881 NaBr 1.897

KCl 2.063 KBr 1.965

RbCl 2.517 RbBr 2.209

CsCl 2.068 CsBr 1.953

Me^NCl 1.935 Me^NBr 1.613

Et^NCl 1.362 Et^NBr 1 . 1 1 0

Bu^NCl 0.262 Bu^NBr 0.173
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FIGURE 6.5
Log (k/ko) against anion X" (Wiere X" = F", Cl", Br“) 
for and RitN"*" for the neutral hydrolysis of phenyl­
dichloroacetate in aqueous solution at 298 K vÆiere 
[salt] =0.9 mol dm“ .̂
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FIGURE 6 . 6

Log (k/ko) against the anion X" (vÆiere X" =F”, Cl” 
and Br“) for M'*' and salts for the neutral
hydrolysis of para-methoxy phenyldichloroacetate 
in aqueous solution at 298 K where [salt] = 0.9 mol 
dm”3.
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such trend. Despite this it should be noted that the change 
in rate constant on going from Bu^NBr to Bu^NF is still the 
largest observed for both esters.

Table 6.4 reports activation parameters for the
reaction of p-OMePDCA solutions containing 0.9 and 0.2 mol

— 3 — 3dm tetrabutylammonium bromide, 0.9 mol dm

tetrabutylammonium chloride, 0.9 and 0.2 mol dm ^
tetrabutylammonium fluoride, 0.9 mol dm ^ potassium bromide
and in the absence of added salt. The activation parameters
for the neutral hydrolysis of PDCA in the absence of added

salt are also reported in this Table. A plot of ln(k/T)
against (1/T) for the neutral hydrolysis of p-OMePDCA in
the absence of added salt is included as Figure 6.7.
Inspection of these results identifies large changes in the
activation enthalpies and entropies of reaction which are
masked in the changes in rate constant. For example, in
the case of 0.9 mol dm~^ potassium bromide, an overall
decrease in the rate constant is observed. This could
normally be explained in terms of an increase in the
enthalpy of activation. However results point towards a
decrease in the enthalpy of activation which is over
compensated by a decrease in the entropy of activation.
Similarly, in the case of tetrabutylammonium bromide 0.9
mol dm  ̂ for which an overall reaction rate increase is

observed. This would normally be explained in terms of a

decrease in the enthalpy of activation. However the results
+ COpoint towards an increase in A'H with a more than 

compensating increase in the entropy of activation. These 

patterns indicate the dominant role of the entropy term in 
this type of reaction and points towards an explanation in
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Table 6.4
Activation parameters for the neutral hydrolysis of p-OMe 
PDCA in aqueous salt solutions of known concentration.

(a) no added salt 

Temperature 

/K

lO^kobs A^G* 
kJmol ^ - 1  , - 1  JK mol

298 2.723 87.52 201.9
303 3.334 88.62 2 0 2 . 2
308 4.088 89.60 2 0 2 . 1
313 4.874 90.64 2 0 2 . 2
318 5.823 91.66 2 0 2 . 2

H*/kJmol  ̂ = 27.34 ± 0 . 3 3

(b) 0.9 moldm ^ KBr
Temperature lO^kobs -A*S*

/K /s - 1 kJmol ^ - 1  , - 1  JK mol
293 1.603 87.40 223.6
298 1.965 88.42 223.3
303 2.259 89.60 223.5
308 2.689 90.67 223.4
313 3.046 91.86 223.6

Â f H*/kJmol“ ^ = 21.88 ± 0.91

(c) 0.2 moldm-3 Bu^NF
Temperature lO^kobs a"̂ G* -A^S*

/K / s - 1 kJmol ^ - 1  , - 1  JK mol
293 3.036 85.84 163.3
298 4.147 86.59 162.1
303 5.499 87.36 162.9
308 6.838 88.28 163.3
313 8.918 89.06 163.2

A*H ™/kJmol ^ = 38.00 ± 1 . 0 6
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(d) 0.9 moldm ^ Bu^NF

Tempe rature lO^kobs A^G* -A*S*

/K /s - 1 kJmol  ̂ JK ^mol ^

298 6.518 85.45 86.89
303 9.980 85.85 86.78
308 15.213 86.23 8 6 . 8 6
313 21.505 86.77 86.95

H*/kJmol ^ = 59.55 ±1.55

(e) 0.9 moldm  ̂

Temperature 

/K

Bu^NCl

lO^kobs

/ s - 1

a"̂ g ^
kJmol ^

-Afg#
- 1  , - 1  JK mol

298 2.615 93.47 189.8
303 3.288 94.50 190.1
308 4.340 95.37 189.9
313 5.497 96.34 189.9
318 7.058 97.28 189.9

a"̂ h */kJmol ^ - 36.86 ±0.80

(f ) 0 . 2  moldm  ̂

Temperature 

/K

Bu^NBr
lO^kobs

/s-1 kJmol
-Afg#
- 1  , - 1  JK mol

298 1.694 88.81 196.6
303 2.085 89.80 196.6
308 2.562 90.79 196.7
313 3.207 91.73 196.5
318 3.861 92.74 196.6

A^H */kJmol ^ = 30.22 ± 0 . 4 7
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(g) 0.9 moldm ^ Bu^NBr

Tempe rature lO^kobs A^G* -Afg#

/K kJmol ^ - 1  , - 1  JK mol

298 1.733 94.44 183.8
303 2.265 95.39 183.9
308 2.936 96.34 184.0
313 3.922 97.20 183.8
318 5.027 98.13 183.8

a"̂ h */kJmol ^ = 39.68 ±0 . 6 2

(h) no added salt for the neutral hydrolysis of the 
unsubstituted ester PDCA.

Temperature 10 kobs

/K /s - 1 kJmol ^ JK ^mol

298.15 3.263 87.21 196.1
300.65 3.663 87.67 196.0
303.15 3.991 88.25 196.2
308.15 4.905 89.18 196.1
313.15 5.996 90.14 196.1

AÎH*/kJmol ^ = 28.73 ± 0 . 5 0

-1
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which the structure of the solution is critical.
Solvent deuterium isotope effects (Table 6.5) are

consistent with work conducted by previous authors^^ in
which it was concluded that the parameters vary with added
salt type and concentration i.e. the solvent isotope effect
is sensitive to change in solvent arrangement around the
reacting solute during the activation process. The
tabulated values are also in line with a mechanism which
involves water-catalysed attack by water at a carbonyl 

15group

6.5 Discussion

In explaining the patterns observed in Figures 6.5 and 6 . 6

one must first comment on the striking similarity they hold
with the pattern identified by Desnoyers^ in connection
with Iny^. Figure 6.8 reproduces a Desnoyers type plot for
the salts investigated during the course of this Chapter.

18 — 71Table 6.6 summarises lny+ used for the salts
investigated. The patterns observed in Figures 6 .8 , 6.5 and
6.6 can be explained in terms of cosphere-cosphere overlap 

e f f e c t s .
A starting point is the model for salt solutions

2 2proposed by Gurney , in which each solute molecule is 
surrounded by a cosphere of solvent molecules. By 

definition organisation of solvent structure within such a 
cosphere differs from the organisation of the bulk solvent, 

the organisation within the cosphere being characteristic 

of each solute. The properties of these solutions can be

explained, at least in part, in terms of the impact of
cosphere-cosphere overlap in the solutions^.
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Table 6.5
Solvent deuterium isotope effects for the neutral 
hydrolysis of PDCA in the presence of known concentrations 
(moldm ^ ) of added salts at 298K.

salt lO^kfHgO)

/ s - 1

1 0 ^k(D 2 O) kfHgOl/kfDgO)

0.9M Bu^NBr 0.303 0.082 3.690

0.9M Bu^NF 9.750 4.745 2.055

0.9M Me^NF 1.490 0.543 2.744

0.9M CsF 1.510 0.499 3.026

All rate constants are the average of at least 3 separate 
run s .
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FIGURE 6 . 8

In Y± against the anions X" (vdiere X" = F", Cl” and 
Br“) for M'*' and Ri+N'*' salts in aqueous solution at 
298 K where [salt] =0.9 mol dm" .
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Table 6.6
Activity coefficients, y+ , of MX and R.NX electrolytes at

— 3 ~[salt] = 0.9moldm in aqueous solvent at 298K. (where X=
Cl , Br ; M= Li+, Na+, , Rb+, Cs+; R= Me, Et, B\

Salt Reference Y± lny+

L i d 2 1 0.764 -0.269
N a d 2 1 0.659 -0.417
KCl 2 1 0.610 -0.494
RbCl 2 1 0.590 -0.528
c s d 2 1 0.553 -0.592
Lier 2 1 0.789 -0.237
NaBr 2 1 0.687 -0.375
KBr 2 1 0.622 -0.475
RbBr 2 1 0.586 -0.534
CsBr 2 1 0.547 -0.603
NaF 2 1 0. 582 -0.541
KF 2 1 0.646 -0.437
RbF 18 0.682 -0.383
CsF 18 0.710 -0.343
Me^NCl 19 0.546 -0.605
Et^NCl 19 0.557 -0.585
Bu^NCl 19 0.625 -0.470
Me^NBr 19 0.483 -0.728
Et^NBr 19 0.427 -0.851
Bu^NBr 19 0.397 -0.924
Me^NF 2 0 0.902 -0.103
Et^NF 2 0 1.192 0.176
Bu^NF 2 0 1.785 0.579
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The overall influence of the solute on the structure 
of water in solution can be split into two types; 

electrostrictive structure breakers and hydrophobic 
structure formers. The effect of overlap between these 

solutes was summarised by Desnoyers^ together with the 
influence of overlap on the excess thermodynamic 
properties. Figure 6.9.

Turning to the patterns observed in Figures 6 .8 , 6.5 
and 6 .6 , in tetrabutylammonium bromide solutions, 

cation-cation cosphere interactions dominate the properties 
of the solution. Bu^N* cations are strongly hydrophobic 
whereas bromide anions are less hydrophilic than chloride 
or fluoride anions. Attraction between the hydrophobic 
Bu^N^ cospheres results in water being incorporated into 
the overlap region between the cospheres. The total Gibbs 
function of the system decreases to less than that for the 
corresponding ideal solution (which is imagined as a 
solution in which there are no cosphere-cosphere 
interactions). The reaction rate is therefore retarded (c.f 
a negative deviation from the DHLL for the Iny^ plot).

The hydrophobic nature of R in R^N^ decreases in the
orde r ;

Bu^N+ > Pr^N+ > Et^N+ > Me^N+
Therefore a steady rate increase is observed on going down 
the series as the hydrophobic effect becomes less dominant. 

A corresponding increase in the total Gibbs function is 

expected, although it will never exceed that of the ideal 
solut i o n .

The alkalimetal bromide salts have a very small and 
similar retardation effect on the reaction rate. The total
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Gibbs function of these systems is only slightly less than 
that for the corresponding ideal solution and a balance is 
struck between hydrophilic-hydrophilic (same-sign) and 

hydrophilic-hydrophilic (opposite-sign) cosphere-cosphere 
interactions. The attraction between oppositely charged 
ions slightly dominates the cosphere interactions, hence a 
slight rate retardation is observed. The trend in log(k/ko) 
for chloride salts is similar but less significant than for 
bromide salts. Chloride anions are more hydrophilic than 
bromide anions.

For the fluoride salts MF and R^NF the total Gibbs 
function of the system is greater than the Gibbs function 

of the ideal solution, as demonstrated by an acceleration 
in reaction rate and a positive deviation from the DHLL for 
the Iny^ plot. The hydration characteristics of the 
fluoride salts are dominated by the repulsion between 
solute cospheres i.e hydrophobic-hydrophilic (R^N^-F ) 
cosphere interactions for the tetraalkylammonium fluoride 
salt solutions and hydrophilic-hydrophilic (same-sign), 
(M^-M^) and (F -F ) cosphere interactions for the alkali 
metal fluoride salts.

The activation parameters for these reactions point 
towards a more complicated situation than the above 
explanation offers. However at this stage it is not 
possible to identify any clear patterns.

As a consequence of the reaction being the attack of 
water, one might expect a simple relationship between the 

practical osmotic coefficient and rate constants. In
o

particular a relationship between 0  coefficients (see 
Chapters 7 and 8 ) and rate constants might be expected.
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where 3 represents the pairwise interactions of the 
solutes, both cosphere and hard-sphere, after the charging 
process has been subtracted. In Chapter 8 it is shown how

o
3  and salt concentration are related for apolar solutes in

salt solutions. Therefore it could be expected that a
0

correlation exists between 3  and the salt concentration
for the ester and for the transition state. This implies a

7 ®correlation exists between rate constants and 3 • Figure
o

6.10 shows a plot of ln(k/ko) against 3 in which there 
appears to be a broad correlation. However scatter is

o
observed. This is understandable because in principle 3
could be used to calculate independent Setschenow
coefficients of both the initial and transition states.

0
However a plot of ln(k/ko) against 3 effectively compares
o

3 to the difference between the properties of the initial 
and transition states. This procedure obviously magnifies 
any error incorporated into the initial and transition 
state parameters and so the plot provides an exacting test

o
for a possible correlation between 3  and kinetic 
p a r ameters.

This Chapter has pinpointed cosphere-cosphere overlap 
as an important factor in determining the properties of 
aqueous salt solutions by using the neutral hydrolysis 
water-catalysed reaction as a probe to investigate water 
structure when various electrolytes are added. It has also 

identified complicated underlying patterns which exist for 

the enthalpies and entropies of activation in this class of 
reaction. The theme of salt effects is continued in 

Chapters 7, 8  and 9.
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FIGURE 6.10
Log(k/ko) calculated fran the first order rate 
constants for the neutral hydrolysis of para- 
methoxy g^enyIdichloroacetate against 3 ° parameters, 
tabulated by Pitzer [Ref. 7].
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CHAPTER
7

Pitzer's Equations for the activity 
coefficients of salts and the 

relationship between osmotic coefficients, 
activity coefficients and the Excess

Gibbs function



7.1 Introduction
In the previous Chapter it was shown how the effects of
added salt on rates of reactions between neutral species in
dilute salt solutions can be accounted for using treatments
based on the Debye-Huckel equations for the dependence of
the activity coefficients of ions on ionic strength. It was
also shown however, that the predictive power of these
equations diminished as the effect of cosphere interactions

and specific ion-ion interactions increased. In this
1 2  3Chapter the equations of Pitzer ' ’ are surveyed as a

method of extending quantitative treatments to more
concentrated salt solutions. In particular Pitzer's
equations are used as a basis for calculating Savage-Wood
p a r a m e t e r s ^ c h a r a c t e r i s i n g  pairwise Gibbs function

cosphere-cosphere interaction parameters. The stimulus for
this study originated in the task of accounting for
observed patterns in rate constants for chemical reactions

8  9in solutions containing added electrolytes ' . In Chapter 9
the predictive power of Pitzer's equations and the 
Debye-Huckel treatment is examined for mixed electrolyte 
systems with reference to kinetic data describing the 
alkaline hydrolysis of the sodium salt of bromophenol 
blue^^'^^ in the presence of various added salts.

7.2.1 Salt Solutions

By definition the chemical potential of an ion-j in 
solution is related to it's molality m^ by equation [7.1J.

yWj ( sln;T;p) = /y ̂ ̂  ( sin ; T ; p ) + RTln[mjYj/m } [7.1]
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o
where y^ is the activity coefficient of ion-j; m = 1  mol 
kg ; yt/j (sln;T;p) is the chemical potential of ion — j in 
solution at the same T and p where mu = 1 and yu = 1.

The chemical potential of a salt is related to the 
chemical potential of cations and anions using equation 
[7.2] .

yt/( salt;sln;T;p) = ( M-cat ion ; sin ; T ; p )

+ u^yty(X-anion;sln;T;p) [7.2]

Here one mole of salt forms on complete dissociation um
moles of cations, M , and moles of anions, X. Also for 
the salt in the reference state;

/y ( salt ;sln;T;p) = u^/y ( M-cation ; sin ; T ; p )

+ û /tŷ  (X-anion; sln;T;p) [7.3]

By definition ;

' ' = % +  + ''x- 17-41
U V+ u- U+ u- n  c 1

“ ■^m+ l^x- “ U  U  17.5)
and m [7.61

also m^ = u^mg amd m_ = u mg where m^ is the molality of
the salt MX. Hence;

/y( sln;salt;T;p) = /ŷ ( salt ;sln;T;p) + RTln(m^^^y^^^/m }

+ RTln[m ^“ y [7.7]
or alternatively;

/y( salt ; sin ;T;p) = yt/̂ ( sal t ; sin ; T ; p )
+ RTln[(u+v+v_v m 2 ^y+^)/(m°)V) [7.8]
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By definition; Q^=
Hence ;

# O/[/( salt;sln;T;p) = yw ( salt ; sln;T;p) + uRTlnffQmgY+X/m }

[7.9]
Where limitfmg^O) = 1.0 at all T and p. Then
yty( salt ; sln;T;p) is the chemical potential of salt in

solution at the same T and p where m^ = 1.0 and = 1.0.
By definition the chemical potential of the solvent 

is given by equation [7.10].

yt/̂ ( sln;T;p) = ^^*(l;T;p) - u^RTM^mg [7.10]

Where <[> is the practical osmotic coefficient, which for an
ideal solution equals 1.0; yw^*(l;T;p) is the chemical
potential of pure liquid solvent at the same T and p.

7.2.2 Consideration of Excess Properties
According to equation [7.9] the chemical potential of a 
salt MX in ideal solution is given by equation [7.11].

yty( salt ; id; sln;T;p) = yt/̂ ( sal t ; sin ; T ; p )
+ u R T l n [(Q m 2 )/m ) [7.11]

Hence the excess chemical potential of the salt
E

fj ( salt ; sln;T;p) is obtained from the difference
y w (  salt ; sln;T;p) - yw ( sal t ; id ; sin ; T ; p ) ;

yŵ ( salt ; sln;T;p ) = uRTln(y^) [7.12]
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The chemical potential of a solvent in an ideal solution is 
given by equation [7.13].

//̂  ( id; sln;T;p) = //^*(l;T;p) - uRTM^mg [7.13]

Hence the excess chemical potential of the solvent is 
given by equation [7.14].

'^l^ = Pi(sln;T;p) - ( sin ; id ; T; p )
= > f J ^  = uRTM^mgfl-*) [7.14]

7.2.3 The Solution
A given solution contains n̂  ̂ moles of solvent and n 2 ( = 

^l^l ”̂ 2^ moles of salt MX. The excess Gibbs function of the 
system is given by equation [7.15].

EG (sln;T;p;n^ moles solvent) = n^uRTM^m 2 ( 1-<I> )
+ M^n^m 2 R T l n ( ) [7.15]

.E> G (sln;T;p;n^ moles solvent)/(n ^ R T ) =

um 2 M^[(l-*) + ln(y+)] [7.16]

By definition the excess Gibbs function of the salt MX in 

1kg of solvent is described by equation [7.17].

E EG (sln;T;p;w^/kg=l) = G (sln;T;p;n^ moles solvent)/(n^M^)
[7.17]

= > G^( sln;T;p;w^/kg=l ) = uRTm 2 [ ( 1-<I> ) + In(y^)] [7.18]

Communication of the changes in chemical potential of

-127-



the salt and the solvent is obtained through the Gibbs 
-Duhem equation at fixed temperature and pressure.

n^dyw^( sln;T;p) + n 2 d/t/ 2 ( salt; sln;T;p) = 0 [7.19]

In a solution containing 1 kg of solvent;

( 1/M^ )d{/y^* ( 1 ;T;p)- 4>RTum2 M^ } + m 2 d{/c/2 ^ ( sln;T;p )
o•f uRTln(Qm 2 Y+/m )} = 0

Hence the Gibbs-Duhem equation for a salt solution can be 
written;

d[-m 2 *] + m 2 d[ln(m 2 /m ) + ln(y+)] = 0 [7.20]

This equation can be applied in two ways. If lny+ is known 
as a function of m 2 , then (1 -*) can be calculated. 
Alternatively if (1-*) is known as a function of m 2 , then 

Iny^ can be calculated. [N.B. d[ m 2 (l-<f>)] = d[m 2 -m 2 <f>] = 1 -
d( m 2 *); further details are given in Appendix 3 Section 

1 . 1 .

7.2.4 Models for Salt Solutions
As described in Chapter 6  equation [6.3], the Debye-Huckel

limiting law, (DHLL), describes the mean ionic activity
1 2coefficient as a function of the ionic strength , I. The 

equations in Appendix 3 Section 2 are used to obtain an 
equation for the dependence of <|> on ionic strength. Hence;
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A quantity is defined by = (S^/3). Hence;

= -|z^z [7.22]

The Debye-Huckel equation for the mean ionic activity 
coefficient of a salt in solution is given by equation 
[6.4] of Chapter 6 . The equations in Appendix 3 Section 3 
yield an equation for the corresponding dependence of on 

ionic strength. Hence;

(1-+) = |z+z_l(S 17.23)

where x = and a(x) = (3/x^){(l+x) - (l/(l+x)) +
2 1 n ( 1 + x )] .

The equations described above are restricted to the 
DHLL and the full Debye-Huckel equation. In practice their 
success is modest. Bronsted^^ and Guggenheim^^'^^ sought to 
extend the range in which Iny^ could be predicted by basing 
their theories on Debye-Huckel treatment and including 
terms which took account of specific ion-ion interactions. 
Pitzer argued that a better approach is through solution 

theory which leads to a virial equation for (<j>-l) in terms 
of solute-solute interactions. As shown earlier an equation 
for Iny^ can then be obtained through the Gibbs-Duhem 
e q u a t i o n .

7.2.5 Pitzer's Equations

Pitzer's equations are based on virial coefficients for 
(*-1) and hence for Iny^. In summary form the equations for 
<[>-1 and Iny^ are as shown in equations [7.24] and [7.25] .
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4-1 . |z+z_|f* + m2(2Vm"x/v)B+mx + “ 2 ^ ^ ^ V v )C
(7.241

1 "Y± = l=m=xlf^ + "*2 <2 % V ' ' > ® ' ' m x  + "*2 ^ ̂ ̂  ) ̂ / ^ v }
17.25]

1. The Electrostatic f-Term
Pitzer considered various forms of this term, favouring 
that given in equation [7.26]

A 4' is the Debye-Huckel term (written above previously as
S^). The equation for lny+ corresponding to the equation 
for (p based on can be calculated using the Gibbs-
Duhem equation; Appendix 3 Section 4. Hence;

Iny^ = -|z+z_|A+(((I/m°)l/ 2 /(i+b(I/m°)l/ 2 );

- (2/b)ln(l+b(I/m°)7/2)] (7.27]

where A* = (A^/3).

2. The B Term
The second virial coefficient in the equation for <p was 
based on the following form;

B* = e° + p7exp(-a(I/m°1^/^) (7.28]

This form was selected as a result of calculating the 

practical osmotic coefficient for a series of 1 : 1  and 2 : 1
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salts from equations in which all forms of f^ and were
tested. According to Pitzer, this simple form has the
desirable properties of (i) finite value at zero ionic

1 /2strength (ii) a rapid change linear in I ' at low ionic 
strength and (iii) a smooth approach to a constant value at 
high ionic strength. The constant a was independently 

varied throughout the analysis and best general agreement 
was obtained with a = 2.0.

Pitzer^ advanced arguments based on the results of
16 oCard and Valleau . These require that 3 represents

contributions from interactions between like and unlike
charges whilst 3^ represents short range interactions
between unlike charged ions. Granted therefore that

X ® 1equation [7.2S] defines B^ in terms of 3 and 3 r an 
integrated form of the Gibbs-Duhem equation yields B^ also

O 1
in terms of 3 and 3 ; Appendix 3 Section 5. Hence;

. 2p° + (2p^/a^I)(l-(l+al7/2_(„2j^2)]exp(-al7/2)1
[7.291

O
where I = (I/m ). For higher valence salts the possibility 
arises that a 3^^^ term is required, in which case^^;

Consequently ;
gTp(2) ^ (2p*^’/a^I)[l-[l+al7/^-(a^I/2)lexp(-al7/2)1

[7.311
O

where I = (I/m ). Thus equation [7.29] can be written in 
the form;
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B =  2 P °  +  ( 2 p 7 / „ 2 i ) ( i _ ( i  + „ i l / 2 _ ( „ 2 j ^ 2 ) ) e x p ( - a l 7 / 2 ) ]mx
+ (2g(2)/o,2i,[i_|i + all/2_(a2;/2)]exp(-all/2), (7.32)

O
where I = (I/m ).

3. The C Term

The third virial coefficient, C^, is specific for each salt 
MX. The corresponding term is again calculated using an 

integrated Gibbs-Duhem equation; Appendix 3 Section 6. 

Hence ;

= (3/2)C* 17.33]

The various terms were drawn together by Pitzer to yield an 
equation for (*-1) and Iny^.

4»-l = -|z^z_|A*(m2^/^/(l+bm2^/^)) +
2 m 2 (UmVx/v)t3 +3^exp(-am 2 ^ ^ ^ )+3^^^exp(-am 2 ^ ^ ^ )] + 

m2'(2("mVx''/'/"IC*mx 17.34]

lny+ = -|z^z_|A*(m 2 ^/^/(l+bm 2 ^/^)) - |z^z_|A*(2/b)
ln(l+bm 2 ^/^) + 2 m 2 [( 2 u ^ u ^ )/ u ]3 + ^^^[(u^u^X/u]
[(2 3^/a^m2){l-exp(-am 2 ^ ^ ^ )11 + 0^ 2 ^^^-(a^m 2 / 2 )J}]

-f 2 m 2 { ( {( 23^ ̂  ̂ )/afm 2 } [ 1 - [ l + am 2 ^^^- ( a^m 2  ) / 2  ]
exp(-am2^^^) ] + 2m2^{(Uj^u^)^^^/u}(3/2)c’’* [7.35]

7.2.6 Extension of Analysis to Consideration of the Excess 
Gibbs Function.

Pitzer extended the analysis based on ( 4>-l ) to include
Eequations for the excess Gibbs function, G (see Section
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7.2.3) .
In his analysis the excess Gibbs function is defined 

for a system in 1 kg of solvent as shown in equation [7.18] 
or ;

(G^/RT) = um 2 [l-* + lny+] [7.36]

Equation [7.36] is then expressed in an analogous form to 

equations [7.24] and [7.25]; G^ = G^(sln;T;p;w^/kg=l)

(g V t ) = f 4.
+ ,7.37]

Parameters for the above equation can be obtained from the 
full equation for (<f>-l) and Iny^ given by equations [7.34] 
and [7.35] respectively; Appendix 3 Section 7. Hence;

(G^/RT) = Vm2[-|z+z_|A*(2/b)ln(l+b(m2^/^/m ))]

+ m2^[ 2( Uj^u^) [ (3 +[ 23^/( a^m2 ) ]
[l-exp(-am 2 ^ ^ ^ )(l+om 2 ^/^]]]/m 

+ ‘7.381

7.2.7 The Savage-Wood Link

In a study of the properties of neutral solutes in aqueous 
solutions Wood ^_t aĵ "̂  ' ̂  ^ ^ express the osmotic coefficient 
as a power series in molality representing pairwise,

triplet, quadruplet  interactions. Data are fitted to
an equation of the form;

((|)-1)RT = g^m2 + + 9 4 ^ 2  ̂ + + ^n^2^  ̂ [7.39]
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Here = pairwise interaction parameter, g^ = triplet
interaction parameter ......
From the Gibbs-Duhem equation (see Appendix 3 Section 1);

lnY2 = ( 1/RT) ( {g2m2 + g3m2^+g4m2^+. .+gj^m2*^ ^+g2m2+g3(m2^/2 )
+gj(m2^/3)+...+g^(m2^ ^/n-1}] [7.40]

Using equation [7.18];

=> G^ = [g2m2^+g3(m2^/2)+g^(m2^/3)+....+g^(m2"/n-l)] [7.41]

Considering all but the pairwise interaction parameters as 
being negligible, then in its simplest form equation [7.41] 
can be rewritten as;

G® = 9 2 ”'2 ^ [7.421

By analogy with the Savage-Wood approach, if Pitzer's 
electrostatic interaction term, f, is subtracted from the 
total excess Gibbs function then analogous pairwise 
interaction parameters can be obtained for salt solutions.

An excess Gibbs function characteristic of all 
pairwise ion-ion interactions except charge-charge 
interactions is defined by equation [7.43].

[g V r T]"® = cf/RT - f

= > [G^RT)"® = m2^(2Uj^Uj^)P° [7.43)

In using only 3 , the above equation can be seen to
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represent all interactions between like and unlike charges. 
Hence in the absence of a charge-charge interaction term a 
cosphere-cosphere interaction term has been identified. For 

a salt MX molality m^ in solution then the total molality 
of all solutes (cations + anions) is given by;

m_ + m = 2 m^ m X 2

Then RT(<j>-l) = 2 m 2 g 2 + 4 m 2 ^g 3 + 8 m 2 ^g^+.... + 2 ^m 2 "g ^ _ 2

And assuming all but pairwise interactions are negligible

= >

where ;

If MX is a 1:1 salt.
m = m = m^ m X 2

92 =[9mm'"2^/7m2^] + [2g_^^in2^/2"'2^]^[9xx"'2^/7m2^) [7.45)

=> 9i = (1/2)[9mm + 2g^_ + g^^] [7.461

Hence;

[G^)"® = m22[gmm + 2g„x + 9^x1 ‘7.47)

By combining equation [7.47] with [7.43] a link has been
o

established between Pitzer's 3 parameters and pairwise 
cosphere-cosphere group interaction parameters.
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[g V r T]"® = (mZ^/RTllg^^+Zg^x+gx,] = Zm^Zg"

= > 2P°RT = [g^m + 29mx + ^xx'

7.3 Summary

This Chapter has outlined methods of deriving equations for 
Iny^ and the excess Gibbs function, G^, from Pitzers 
equation for using the Gibs-Duhem and equation

[7.16]. The equation for the excess Gibbs function has been 
further developed using a Savage-Wood type approach, to 

produce an equation, [7.48], in which pairwise group 
interaction parameters for salts can be obtained using

o o
Pitzers (3 parameter. Thus (5 represents interactions 
between like and unlike charged species, after all 
electrostatic interactions have been removed - in effect a 
cosphere-cosphere interaction term.

Chapter 8 develops the theme of pairwise interactions 
and reports pairwise group interaction parameters based on 
the available osmotic data for a number of salts.
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CHAPTER 
8

Pairwise Gibbs function 
Cosphere-Cosphere Group 
Interaction Parameters



8.1 Introduction
The previous Chapter examined how osmotic coefficients,
activity coefficients and excess Gibbs functions could be
used to obtain pairwise Gibbs function cosphere-cosphere

interaction parameters. This theme is continued here in a
quantitative method for analysing the rates of reactions
between ions in aqueous solution containing added 

1 2electrolytes ' . The analysis builds on the success of the
Savage-Wood^ additivity scheme, in which estimates of 
solute-solute pairwise interaction parameters have been 

successfully used in the analysis of kinetic data for 
systems in which the impact of neutral solutes on reactions 
involving neutral substrates are investigated.

This Chapter reports how osmotic coefficients for 
ammonium, alkylammonium and azoniaspiroalkane halides can 
be used to calculate pairwise group interaction parameters, 
g(i<=>j), between the groups i and j where the symbols i 
and j refer to the CH^ group and ions 1 ~ , Br” , Cl" and F .

Calculated pairwise interaction parameters are used 
in estimating cosphere-cosphere contributions to Setschenow 
coefficients for gaseous hydrocarbons dissolved in aqueous 
salt solutions.

For a typical 1:1 salt M^X there are at least three 
separate interaction parameters i.e. (M^<=>M^), (M^<=>X )

and (X < = >X ). This highlights a problem. As one extends 
the number of salts in the analysis, so the number of 
unknowns (the pairwise Gibbs function cosphere-cosphere 
group interaction parameters) is always larger than the 

number of knowns (the number of sets of osmotic coefficient 

data). Fortunately one can overcome this setback by
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developing an analysis using data for the alkylammonium 
halide salts. The key to breaking the known-unknown problem 
is the varying number of methylene groups around the 

positively charged nitrogen atom in each salt. The Wood e_t 
al^ ^ methylene-methylene interaction parameter,

g(CH 2 < = >CH 2 ) f is assumed common to both ionic and neutral 
solutes. For a given series of tetraalkylammonium halide 

salts, e.g. R^NCl where R = Me, Et, Pr and Bu, sufficient 
equations are obtained which allow specific pairwise Gibbs 

function cosphere-cosphere parameters to be estimated.

8.2 Analysis
Input data to the analysis were published osmotic
coefficients and molalities for aqueous solutions
containing ammonium, alkylammonium and azoniaspiroalkane
halide salts. These data were fitted using a linear least
squares procedure to Pitzer's equation^ modelling the
dependence of the osmotic coefficient on molality (see

o 1Chapter 7 Section 7.4.2). Calculated estimates for p , p 
and C were checked against Pitzers tabulated values^. 
However the calculation of pairwise interaction parameters

o
needs only consideration of the calculated p parameters of

each salt. A non-electrical cosphere^ interaction term was
identified by equation [8.1]. This equation was based on a

6procedure suggested by Guggenhiem ;[refer to Chapter 7 

Section 7.2.7 ]

Icf/RTl = 18.1]

This equation was used to obtain a quantity identified as
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g(salt), defined by equation [8 .2 ], which is a function of 
pairwise ion-ion Gibbs function interaction parameters.

o
g ( s a l t ) = 20 RT [8.2]

For a 1:1 salt of the type M^x", g(salt) is expressed in 
terms of cation-cation, anion-anion and cation-anion 
interaction parameters.

g(salt) = g(M+<=>M+) + 2g(M+<=>X ) + g(X <=>X ) [8.3]

Hence ;
20°RT = g(M+<=>M+) + 2g(M+<=>X") + g(x” <=>x") [8.4]

In the case of a tetraalkylammonium halide salt, g(salt)
was broken down into pairwise interaction contributions
using the Wood al^~^ interaction parameter for
methylene-methylene interactions, g (C H 2 <=>CH 2 ), and the
assumption that a terminal methyl group, -CHg, is

8  9equivalent to 1.5 methylene groups ' (in the case of an 
ammonium halide salt the assumption was made that a 
hydrogen atom was equivalent to one half of a methylene 
group). Hence for tetrabutylammonium bromide; 

g(Bu^NBr) = (4CH2 + I 2 C H 2 + N+ + Br“ )

= (I8 CH 2 + N+ + Br")

=> g(Bu^NBr) = 324g(CH2<=>CH2)

+ 36g(CH2<=>N+) + g(N+<=>N+)
+ 36g(CH 2 <=>Br“ ) + 2g(NT<=>Br") + g(Br“ <=>Br“ ) 

In the scheme above only the (CH 2 <=>CH 2 ) Wood^ ^
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interaction parameter is known at this stage. Hence a 
residual Y can be calculated; equation [8.5].

Y = 20°RT - 324g(CH2<=>CH2) [8.5]

The residual Y is related to the five unknowns (CH 2 < = >N^), 
(N+<=>N^), (CH 2 <=>Br“ ), (N^<=>Br") and (Br“ <=>Br“ ). Further
equations containing these properties were obtained using 
data for the tetraalkylammonium bromides i.e. Pr^NBr, 

Et^NBr, Me^NBr and also using osmotic coefficient data for 
the cyclic azoniaspiroalkane bromides and ammonium bromide. 
Similar sets of equations were obtained for the fluoride, 
chloride and iodide salts. In the case of chloride salts 
the data set was supplemented using information describing 
the properties of aqueous solutions containing monomethyl, 
dimethyl and trimethylammonium chlorides. Each set of 
halide salts introduced three new unknowns i.e. (CH 2 <=>X ), 
(N^<=>X ) and (X~<=>X ). In total there were twenty seven 
equations containing fourteen unknown pairwise interaction 
parameters which were estimated using a least squares 
procedure. A linear least squares procedure proved 
unsuccessful, in view of the structure of the input data. A 
column reporting the number of pairwise interaction 
parameters could be formed as a linear combination of one 
or more of the other columns. A minimisation technique was 

used in the form of a FORTRAN NAG library routine, 
(F04JDF). The outcome was a least squares estimate of

pairwise interaction parameters. Standard errors were 

calculated using the output^^ from NAG routine F04JDF (see 

program listing presented in Appendix 4 Section 1).
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8.2.1 Setschenow Coefficients and Their Reltionship to the 
Excess Gibbs Function.

A given volatile substance U at temperature T and partial
pressure p^ is in equilibrium with solute U in solution at

temperature T and pressure p in (i) an aqueous solution in
which the molality of added salt is zero, i.e. m^ = 0  and
the molality of U is m^ eq

U(gp;T;p^) < > u ( aq ; T ; p ; m^®'^ ; m  ̂= 0 )

and (ii) an aqueous solution in which the molality of added 
salt is mj and the molality of substance U is m^®^.

U(gp;T;p") < > U ( a q ;T ;p ;m ^ ® ^ ;m j )

At equilibrium the chemical potentials of substance U in 
these solutions are equal.

aq;T;m^®^;m^ = 0 ) = ( a q ;T ;m ^ ® ^ ;m^ )

> ( aq;T;p; id) + RTln [ m^®^ ( m ̂ = 0 ) ( m ̂ = 0 )/m ]
= /ŷ  ( aq;T;p; id) + RTln [ m^®^ ( m ̂ ) y^®^ ( m ̂ )/m ] [8 .6 ]

Assuming substance U forms an ideal solution when m^ = 0 
i.e. y^®^(mj= 0 ) = 1 .0 , then;

m^®^(mj=0) = my®9(mj)y^®9(mj) [8.7]

A Setschenow coefficient is obtained by experiment and is 
defined by equation [8 .8 ].
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log^Q (S /S) = [8 .8 ]

o
where k^ is the Setschenow coefficient of substance U, S 

is the solubility of the volatile substance U in an aqueous 
solution containing no added salt and S is the solubility 

of U in an aqueous solution containing tn̂  moles of added 
salt.

i.e. S = m^®^(mj=0) 
and S = m ^ ® ^ ( m j )

Hence using equation [8.7];

l o g i o [ n i u ® ^ ( m j  = 0 ) / m u ® ' ^ ( m j  ) ] = l o g ^ ^ m ^  )

eq

=> lny^®9(mj) = 2.303k^mj [8.9]

The total Gibbs function of a solution containing a 1:1 
salt-] of molality m^ and a volatile substance U of 
molality m^®9 in 1 kg of water is given by equation [8 .1 0 ].

# oG(total) = mu[pj*(sln;T;p) + 2RTln[Qm^y^/m ]
+ m^®9[p^#(gin;T;p) + RTln[my®9y^/m ]

+  ( l / M ^ ) [ / y * ( H 2 0 ; l ; T ; p )  -  < f » R T M ^  [ 2 m  ̂ + m ^ ® 9  j j [ 8 . 1 0 ]

Hence the excess Gibbs function of the system is given by 
equation [8 .1 1 ] .

G® = mj[2RTlny+] + m^®9[RT(lny^)] + ( 1 - «]» ) RT [ 2m ̂ +m^®9 j

= > cf/RT = 2mylny^ + m^^Slny^ + ( 1-<|) ) ( 2m^+m^®9 ) [8.11]
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At constant temperature, pressure and molality of added 
salt, m j ;

( l / R T ) t 3 G V 3 m ^ ® ‘ï)^_.p.^j . 2 mj|dlnY+/dmy*q] +
- 2(m.+m^^®‘3) (d+/dm^®'^] + (1 -+) [8 .1 2 )

According to the Gibbs-Duhem equation (at constant

temperature and pressure) Enudp^=0. Hence;

-d[*(2mj+my®9)] + 2mjdln[0mjY^/m ]+m^®9(jXn[m^®9y^eq/nj ] = 0

= > -(2mj+m^®9)d^ - + 2 mjdlny^ + + 1 = 0

[8.13]
Differentiating with respect to m^®9 yields equation

[8.14] .

=  >  2m  j [ d l n y ^ / d m ^ ® 9  ] _  2 ( m  j + m ^ ® ^  ) [ d ( | > / d m ^ ® 9  j +  ( l - < f > )  =  0

[8.14]
Substituting equation [8.14] back into equation [8.12] 
produces a simplified equation for the differential of the 
excess Gibbs function with respect to m^®9.

( l/RTXaGVam^^-ïj^.p.^. = iny^eq (8.15)

Hence the excess Gibbs function defined by the above 
equation can be linked to the Setschenow coefficient of the 

volatile solvent, k^, through equation [8.9]. Hence;

(l/RT)[3GG/3my*9)T.p.mj = 2.303k^mj (8.16)
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Using the Savage-Wood type approach, outlined in Chapter 7 
Section 7.2.7, an equation for the cosphere-cosphere 
interaction contribution of the excess Gibbs function can 

be developed for an aqueous salt solution containing trace 

amounts of volatile substance U.
For a solution containing a 1:1 salt M^X where the 

molality of cations is m ^ , the molality of the anions is m^ 
and the molality of U is m^ then a cosphere-cosphere 
interaction contribution to the excess Gibbs function can 

be defined using equation [8.17].

G ^ (sin ;T ;p ;cosphere) = g ( = )m^^ + 2g(M^< = >X )mu^
4- + g(x"< = >x")m/% + 2g(U< = >X“ )m^m^

+ g(U<=>U)m^2 [8.17]

The differential of the excess Gibbs function with respect 
to m^ at constant T, p and m^ can be written in the form;

I acVaniylçp.p.nij = 2g(M+<=>U)m. + 2g(U<=>X )m.
+ 2g(U<->U)m (8.18]

Hence using equation [8.15];

lny^®9 = (2/RT)[g(M+<=>U)mj + g(U<=>X )mj + g(U<=>U)m^]

But only trace amounts of U are present; m^eO

=> lny^®9 = (2mu/RT)[g(M+<=>U) + g(U<=>X )] [8.19]

Using equation [8.9] the interaction parameters can be
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linked to the Setschenow coefficient of the volatile
solute, k^.

k^ = (2/2.303RT)[g(M+<=>U) + g(U<=>X )] [8.20]

In one example the volatile substance U is ethane and the 
salt-] in solution is tetraethylammonium bromide i.e. CgHg 
in (CHgCHgi^N^Br . Using the procedures adopted earlier for 
terminal methyl groups, the situation can be reconsidered 

as ;

2 * 1 .5 (CH 2 ) in ( 4* ( 1. 5 CH 2 +CH 2 ) )N‘’’Br“
= 3 CH 2 in ( 1 0 *CH 2 )N'^Br“

= > g(M+< = >U) = 30g(CH2< = >CH 2 ) + 3g ( CH 2 < = >N"^ )
=> g(U<=>x“ ) = 3 g(CH 2 <=>Br“ )

Hence an estimate of the cosphere-cosphere interaction 
contribution to the Setschenow coefficient of ethane in a 
solution of tetraethylammonium bromide can be written as 
equation [8 .2 1 ].

^ethane " (2/2.303RT)[30g(CH 2 <=>CH 2 ) + 3 g(CH 2 <=>N+)
+ 3g(CH2<=>Br")] [8 .2 1 ]

The pairwise cosphere-cosphere interaction parameters of 
equation [8 .2 1 ] are obtained from the least squares 

minimisation technique described earlier.

8.3 Results
A FORTRAN program was written to access osmotic coefficient 
and molality data contained in data files for the twenty
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11 — 17seven salts studied , see Table 8.1. Appendix 4 Section
1 contains a program listing. All data referred to a 

temperature of 298.15 K and were in the concentration range 
0 < mu/mol kg  ̂ < 2.0. Of the three possible routes

o
available to calculate Pitzer's 0 parameter, namely 
through (i) (ii) and (iii) (<f>-l) (refer to Chapter 7] 
the third approach via the osmotic coefficient was used
within the program. This method is in line with procedures

4 0adopted by Pitzer . Estimates of 0 produced using a linear

least squares fit of osmotic data and molality data to
equation [8 .2 2 ] were found to be in satisfactory agreement
with those tabulated by Pitzer^.

(*- 1 ) - f = m 2 [2 u ^ u ^ / u ] ( 0  + 0 ^exp(-am 2 ^ ^ ^ )}

+ (8 .22)

where f represents a coulombic interaction contribution to 
the osmotic coefficient (refer to Chapter 7).

Figures 8.1 - 8.4 show plots of [(*-l)-f ] ^ ^ ^ 2

(calculated from the best fit parameters to equation 

[8 .2 2 ] ) against H  <I> - 1  )-f ] (calculated from the input
osmotic coefficient data) for four different salts used in 
the analysis.

o
Table 8.2 reports the calculated 0 parameters for 

the twenty seven salts investigated in the analysis 
together with their standard errors. Deviations between

o o
0  (calc) and 0  (lit) can be explained in part by the 

differing ranges of molalities covered in the calculation 

of the literature values. Values of g(salt) for each salt

-146-



Table 8.1
Salts and references to data used in the calculation of 
pairwise cosphere-cosphere Gibbs function interaction 
parameters. All data refer to a temperature of 298K.

No . Salt Reference

1 NH^Br 1 1

2 (CHgl^NBr 1 2

3 (CgH^i^NBr 1 2

4 (CgH^ijNBr 1 2

5 (CjHgijNBr 1 2

6 ^ 6 ,6 ABr 13
7^ 4,4ABr 13
8 ® 5,5ABr 13
9 NH^Cl 14
1 0 (CH^lH^NCl 15
1 1 (CHglgHgNCl 15
1 2 (CH^igHNCl 15
13 (CH^ijNCl 1 2

14 (CzHgljNCl 1 2

15 (C^H^i^NCl 1 2

16 (CjHgIjNCl 1 2

17° 5,5AC1 13
18® 6 ,6AC1 13
19 (CHjj^NF 16
2 0 (CjHgj^NF 16
2 1 16
2 2 (CjHgIjNF 16
23 NH,I 17
24 1 2

25 (CzHs'dNI 1 2

26 (CgH^I^NI 1 2

27^ 5, 5AI 13

a - 6 . 6  azonspiroalkane Bromide 
b - 4.4 azonspiroalkane Bromide 
c - 5.5 azonspiroalkane Bromide 
d - 5.5 azonspiroalkane Chloride 
e - 6 . 6  azonspiroalkane Chloride 
f - 5.5 azonspiroalkane Iodide
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1 0  [ W - I H d n ,

FIGURE 8.1
Corparison of observed and calculated [ ((j)-l)-f (mj ; A ^ ) ]  for 
Bui*NBr in aqueous solution at 298.15 K and ambient pressure.
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FIGURE 8.2
Ccmparison of observed and calculated [ (<|)-l)-f (mj ; A^)] 
for Met,NCI in aqueous solution at 298.15 K and ambient 
pressure.

-149-



FIGURE 8.3
Conparison of observed and calculated [ ((|)-l)-f (mj ; A,^)] for 
EtifNF in aqueous solution at 298.15 K and ambient pressure.
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FIGURE 8.4
Conparison of observed and calculated [ ((|)-l)-f (mj ; A,^)] 
for Prt,NI in aqueous solution at 298.15 K and ambient 
pressure.
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Table 8.2
Derived parameters for salts in aqueous solution at 298K 
and ambient pressure.

Salt 10^13° (calc) 210 Standard error 10^(3° (lit)

NH^Br 6.037 0.214 6.24
(CH2)4NBr 0.739 0.348 -0.82
(CgH^ijNBr 0.416 0.260 -1.76
(CgH^j^NBr -5.120 0.996 3.90
(CjHgIjNBr -1.919 1.511 -2.77
6 , 6 ABr -14.007 1.099 -
4 , 4ABr -4.174 0.062 -
5,5ABr -9.963 0.030 -
NH^Cl 4.467 0.025 5.22
(CH^lHgNCl 6.539 0.104 -
(CHgigHgNCl 5.385 0.040 -
(CH^)^HNCl 5.567 0.098 -
(CHgljNCl 5.576 0.128 4.30
(CgH^ljNCl 8.939 0.285 6.17
(CgH^i^NCl 8.808 0.992 13.46
(CjHgIjNCl 22.386 1.377 23.39
5,5AC1 2.094 0.274 -
6,6AC1 -4.153 0.228 -
(CHjj^NF 27.092 0.084 26.77
(CzHgj^NF 31.397 0.569 31.13
(C 3 H^)^NF 45.024 0.878 44.63
(CjHgIjNF 56.690 0.377 60.92
NH,I 5.816 0.197 -
(CHgl^NI 64.902 24.860 3.45

-17.227 0.765 -17.90
-27.862 1.229 -28.39

5, 5AI -24.401 0.106 -
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representing the effects of cosphere-cosphere overlap 
within the solution, were then calculated using equation 
[8.2]. Hence using Woods^ ^ estimate for the pairwise 

(CH 2 <=>CH 2 ) interaction the twenty seven equations for the 
least squares minimisation technique were set up.

Figure 8.5 shows a plot of (calculated for each
salt using equations similar to [8.5]) against Y^^^^ 

(calculated from the least squares estimates of the 
cosphere-cosphere interaction parameters). The resulting 
pattern of the points indicates a satisfactory fit of the 

d a t a .
The fourteen pairwise cosphere-cosphere group

interaction parameters are reported in Table 8.3 in which
7 — 9the (CH 2 <=>CH 2 ) interaction parameter has been included 

to complete the matrix. The parameters contained in the 
latter Table were used to calculate the cosphere-cosphere 
interaction contribution to the Setschenow coefficients for 
a series of hydrocarbons in aqueous salt solutions using 
procedures outlined in Section 8.2.1. Tabulated values of 
these cosphere-cosphere contributions to the total
Setschenow coefficient are reported together with their 
observed values^® in Table 8.4. The same information is 

represented graphically in Figure 8 .6 .

8.4 Discussion

The decision to use 2 mol kg ^ as a cut off point for input 
data to the analysis was based on the assumption that in 
more concentrated aqueous salt solutions triplet, 
quadruplet ion-ion interactions have an increased influence 
on the magnitude of the osmotic coefficient of each system.
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FIGURE 8.5
Ccnparison of observed and calculated Y parameters 
(cf. equation [9.5]) for aqueous salt solutions at 
298.15 K and ambient pressure. Numbers refer to 
the salts listed in Table 8.1. Perfect agreonent 
between observed and calculated is represented by 
the straight line running through the origin at an 
angle of 45° to both axis.

-154-



Table 8.3
Pairwise cosphere-cosphere group Gibbs function interaction 
matrix calculated from osmotic data at 298K (3" Kvou

C H 2 F Cl Br I

CH 2 -34.0

n '*’ 255.4 -871.0
f “ 216.1 -1153.1 -576.5
Cl" 83.0 -498.2 - -249.1
Br" 6 8 . 8 -669.4 - - -334.7
l" -112.5 578.6 - - - 289.3
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Table 8.4
Derived cosphere-cosphere contributions to Setschenow 
coefficients for a series of hydrocarbons dissolved in 
aqueous salt soltions at 2 9 8 K .(Observed Setschenow
coefficients were taken from reference 18)

System k ^(calc) k ^ ( o b s )

1 CH^ in NH^Br 0.090 0.054

2 CH^ in Me^NBr 0.042 -0.017
3 CH^ in Et^NBr -0.006 -0.049
4 CH^ in Pr^NBr -0.053 -0.082
5 CH^ in Bu^NBr - 0 . 1 0 1 -0.096
6 in NH^Br 0.135 0.065

7 in Me^NBr 0.063 -0.040
8 in Et^NBr -0.008 -0.117
9 in Pr^NBr -0.080 -0.141

1 0 in Bu^NBr -0.151 -0.155
1 1 C^Hg in NH^NBr 0.180 0.076
1 2 CgHg in Me^NBr 0.084 -0.059
13 CgHg in Et^NBr - 0 . 0 1 1 -0.158
14 CgHg in Pr^NBr -0.106 -0.187
15 CgHg in Bu^NBr - 0 . 2 0 2 -0.248
16 C 4 H 1 0  in Me^NBr 0.105 -0.074
17 C 4 H 1 0  in Et^NBr -0.014 -0.168
18 C 4 H 1 0  in Pr^NBr -0.133 -0.227

19 C^Hio in Bu^NBr -0.252 -0.286
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FIGURE 8 . 6

Conparison of calculated and <±>served Setschenow 
coefficients for hydrocarbons in aqueous salt solutions 
at 298.15 K. The numbers refer to the systans listed 
in Table 8.4.
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The accuracy is therefore reduced to which 0 can be 
estimated from equation [8.22].

The Setschenow coefficients reported in Table 8.4

represent the non-electrostatic i.e. cosphere-cosphere
interaction contribution to a total Setschenow coefficient.
The contribution from coulombic type interactions is not a

19simple quantity. Long and McDevit claim to describe in 
their treatment electrostatic interactions. Their equations 

use the molar and partial molar volumes of salts and the 
partial molar volume of the added volatile solutes. The 
observed trends in Setschenow coefficients are understood 

in terms of the occupation of solvent cavities i.e. a 
non-electrostatic contribution. As Conway^^ points out the 
Long-McDevit treatment includes in part a cosphere 
contribution. The data plotted in Figure 8.6 covers the 
range negative to positive i.e. from describing salting-in 
to salting-out. This observation suggests a basis for the 
conclusion that an understanding of the properties of 
aqueous salt solutions has been established in terms of 
group pairwise cosphere-cosphere^ interaction^^ 
parameters. This conclusion is supported by a consideration 
of the properties of cosphere-cosphere overlap discussed in 

Chapter 6. The overlap of solute cospheres with similar 
hydration characteristics is attractive i.e. the cosphere 
-cosphere interaction parameter g(i<=>j) <0. However the
overlap of solute cospheres with dissimilar hydration 
characteristics is found to be repulsive i.e. g(i<=>j) >0. 
Turning to Table 8.3 the large positive value of 
g(CH 2 <=>F ) (= 216.1) and the large negative value of
g(F <=>F ) (= -576.5) are consistent with this
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generalisation.
Appendix 4 Section 2 extends the interaction matrix,

Table 8.3, to a consideration of the interactions of the

potassium cation i.e. g(K^< = >K^), g ( k"’̂< = >CH 2 ) , g(K^< = >Cl"), 
g(K^<=>Br ), g(K^<=>F~) and g(K^<=>N^) using the mixed salt 

data of Wen je_t Similar interaction parameters are
2 c

calculated for the sodium cation using Rosenzweigs data.
The matrix is further extended by the calculation of the

interaction parameters of the nitrate anion, NOg , using
Bonners^^ compilation of osmotic and activity coefficient
data of the tetraalkylammonium nitrates. Extensions of the
matrix to include interaction parameters for other alkali
metal cations and other ions, for example the ClO^ anion

27using the data of Bonner , are expected.

.5 A  Look Forward
The success of a procedure based on the excess Gibbs

function which yields pairwise interaction parameters of
solutes in aqueous solution points towards procedures which
use other thermodynamic functions for the same purpose.
Recalling trends in partial molar volumes of alkylammonium

28salts discussed by Franks and Smith and by Wen and 
2 9Saito , and the dependence on molalities of the partial 

molar heat capacities of salts discussed by Desnoyers et 
it would prove interesting to investigate trends in 

pairwise volume and heat capacity interaction parameters 

i.e. V(i<=>j) and Cp(i<=>j).
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CHAPTER 
9

Salt effects on the alkaline 
hydrolysis of Bromophenolblue



9.1 Introduction
Second order rate constants for the alkaline hydrolysis of 
the sodium salt of bromophenol blue^~^ are dependent on the 
concentration of added potassium bromide and 

tet raalkylammonium halide salts, R^NX where R = Me and Et 
and X = F , Cl , Br and I~. The reactions were studied 
over an added salt concentration range 0.10< [added 
salt]/mol dm~^ <2.0 at 298.15 K.

— 4 — 3Trends in ln(kg/kg), where kg=3.507 x 10 mol dm 

s  ̂ is the second order rate constant at zero ionic 
strength (taken from the work of Panepinto and Kilpatrick^) 
and k^ is the calculated second order rate constant, were 
analysed in terms of dependences predicted by the 
Debye-Huckel Limiting Law (DHLL; see Chapter 6) and 
Pitzer's^ equation for activity coefficients of single ions 
in aqueous salt solutions.

The results pointed towards the marked effect of 
cosphere overlap on both the bromophenol blue dianion and 
trinegative transition state. Moreover the success of 
Pitzer's equation indicated a dependence of reaction rate 
on ionic strength in contradiction to the theories reported 
by Rudra and Das^.

9.2 Experimental
The sodium salt of bromophenol blue was prepared using the

method of Amis and La Mer^. A concentrated stock solution
of the aqueous salt solution was prepared. The product of

reaction was characterised by an intense absorption band in

the visible region of the electromagnetic spectrum centered
at X = 510 nm which corresponds to a n to ii* transition, max
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Reaction of bromophenol blue dianions with hydroxide ions
2produces a carbinol species (see Figure 9.1).

so:

0

+ OH OH

FIGURE 9.1

In a typical kinetic run, 2 cm^ of an aqueous salt
solution were added to 1 cm^ of sodium hydroxide solution
in a quartz cell such that the final concentration of added
salt was in the range 0.1 to 2.0 mol dm  ̂ and the final
hydroxide concentration was 0.1 mol dm  ̂ in the cell. The
cell was placed in the cell holder of either the HP 8451A
or Unicam SP 1800 spectrophotometers (see Chapter 2) and
allowed to attain thermal equilibrium at 298.15 K over a
period of approximately five minutes. The reaction was
initiated by adding one drop of the concentrated sodium dye
salt into the cell. After vigorous shaking, the
disappearance of the dye band was monitored at for at•* max
least 2.5 half lives. The reaction was overall second 

order. However by ensuring the concentration of hydroxide 
ions was in vast excess over the concentration of the 
bromophenol blue salt, it was possible to monitor the rate 

of reaction under pseudo first order conditions (see 

Chapter 2).
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(dP/dt) = k [BPB] [9.1]

where k is the pseudo first order rate constant.

=> k = k^lNaOH] [9.2]

Analysis of the absorbance/time data used the method 

of non-linear least squares outlined in Chapter 2 and 
produced estimates of the pseudo first order rate constants 

k /s  ̂ and hence estimates of the second order rate 
constants, kg/mol dm ^ s ^ .

9.3 Details of Data Analysis
The dependence of ionic activity coefficients on ionic 
strength as predicted by the DHLL were calculated for 
hydroxide ions, the bromophenol blue dianions and the 
trinegative transition state using equations [9.3] to [9.5] 
respectively.

lny(OH ) = -S^z(OH [9.3]

lny(BPB^ ) = -S^z(BPB^ )^(I/m'’)^^^ [9.4]

lny(ts^ ) = -SyZ(ts^ )^(I/m [9.5]

where S = 1.1763, z is the charge number of the ion, I is
O _1

the ionic strength and m = 1  mol kg . The ionic strength 
of the system was calculated from the definition used in 
equation [6.3] of Chapter 6. So for a typical reaction 

which contains added salt MX the ionic strength was
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calculated using equation [9.6].

I - 0.5[mQ^_ZQ^_ + +

"'Na+^Na+ "^BPB2-^BPB2-  ̂ [9.6]

In practice the two terms originating from the sodium salt 
of bromophenol blue are small and so equation [9.6] can be 
simplified to the form shown in equation [9.7].

The dependence of the second order rate constant, y 
on ionic strength can thus be written in the form;

Infkg/kg) = lny(OH ) + lny(BPB^ ) - lny(ts^ )

> Inlkg/kq) - 4S |9.7|

An alternative description of the role of charge-chargé 
interactions used Pitzer's equation for a single ion 
activity coefficient^. For a single anion X, Pitzer's 
equation can be written in the form of equation [9.8].

A B C

D

c = cations of salts in system, 
a = anions of salts in system.
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9.3.1 Term A

f^ represents the contribution of charge-charge 
interactions and can be written in the form of equation
[9.9] .

= z^^(-A^{(I^/^/(l+bI^^^)) + (2/b)ln(l+bI^/^)))

19.9]
O

where I = (I/m ); A^ = S^/3 = 0.3903 and b = 1.2. Equation
[9.9] describes the electrical part of the single ion 
activity coefficient for the species involved in the 
reaction. Hence the sum of all the contributing terms 

defines a total electrical term, Iny^^^^^.

InyGlect = lnySlect(0H-, + , ts^-)
[9.10]

In a similar fashion to the procedure used with respect to 
equation [9.7] equation [9.10] can be simplified to the 
form given in equation [9.11].

InyClect ^ 4A^( ( ( I/ra° l+b( I/m° )^/^) )
+ (2/b)ln(l+b(I/m°)l/2)] ( 9 . H ]

9.3.2 Term B

The second term represents the effect of non-coulombic 

ion-ion interactions i.e. cosphere-cosphere interactions/ 
overlap, on the activity coefficient. Within the context 
of the reaction under study this term describes the effect 

of sodium cations and added salt cations on the activity 

coefficient of hydroxide anions.
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{OH cosph)terms ^ + (Emz)C^^] [9.12]

where Emz = Em z = Em z . For the reaction underc c a a
investigation equation [9.12] can be written in the form of 
equation [9.13].

(OH cosph) terms ^ +

*Na+[BoH_Na+^*Na+^Na+^OH-Na+]^ [9.13]

where ^q h - c ^nd ®oH-Na+ represent equations [9.14] and 
[9.15].

BoH-c = e°OH_c + l2et^j,_^/(a2l)](l-(l + alt/2)exp(-«lt/2),

[9.14]

®OH-Na+ ^ OH-Na+ OH-Na+^* “  ̂) I ( ̂  ( 1 + aI ^  )
exp(-alt/2)l (9.15)

where I = (I/m ) and 0 parameters were taken from Tables 
compiled by Pitzer^. Where tetraalkylammonium salts were 
added to the reaction no data were available for 
tetraalkylammonium hydroxide salts and so the 0 and C terms 
for the chloride salts were used. This assumption was based 
on the the similarity in ion size between chloride and 
hydroxide anions^.

The terms and used in equation [9.13]

represent equations [9.16] and [9.17].

S h -c = I* 16,
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^OH-Na+ C*0H-Na+/(2|^Na+^0H-l  ̂ [9.17]

terms were taken from Tables compiled by Pitzer^.
A quantity delta, A, was defined from the difference 

between the sum of the first and second Pitzer terms and 

ln(kg/kg).

Û = Intkz/kg) - - (OH cosph} (9.18)

=> A » (BPB^ cosph) - (ts^ cosph) (9.19)

As denoted in equation [9.19], A represents the difference 
between the cosphere interaction effects of the bromophenol 
blue dianion and the trinegative transition state.

9.3.3 Term C
Relevant data were not available for the bromophenol blue 
dianion and the transition state trinegative anion. Hence 
in the absence of any data this term was assumed to be 

negligibly small and set equal to zero.

9.3.4 Term D

With the fourth term of Pitzer's equation it was only
possible to investigate the effect of the anions and
cations present in the system on the hydroxide anion. As

2- 3-with term C no relevant data for BPB and ts were 
available. If a salt MX is added to the reaction mixture, 

Pitzers fourth term can be written in the form of equation 
[9.20].
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■*■ ^^Na+^X^^OH- ® NaX ^OH-^NaX^
■'■ ^^MT0H-[^0H- ® MOH ■*■ ^OH-^MOH^
■’■ *Na+*OH-[^OH- ® NaOH ■*■ ^OH-^NaOH^ [9.20]

where B and are used to represent equations [9.21]

and [9.22].

B'mx = (2p^„jç/(a^^I^)][(l + a^I^/^ + 0.5aj^I)exp(-o^I^/^)-l)
+  [ 2 P * ^ ’j , ^ / ( a 2 ^ I ^ )  1( ( l  +  a 2 l ^ / ^  +  0 . 5 a 2 ^ I ) e x p ( - a 2 l ^ ' ^ ^ ) - l l

[9.211

C„X ” ^ * [9.22J

o 5  1where I = (I/m ) and Tables compiled by Pitzer yielded (3 , 
( 2 )(3 and C. The constants and « 2  equal 2.0 and 0.0

respectively in line with the suggestions of Pitzer and 
0

Mayogra .
The final equation based on Pitzer's equation was 

obtained as the sum of the four terms described above.

9.4 Results
Table 9.1 reports second order rate constants for reaction 
solutions containing added salts KBr and R^NX (where R = Me 
and Et and X = f” , Cl", Br” and l” ) over the concentration 

range 0.1< c/mol dm”  ̂ <2.0. The results are summarised in 

Figure 9.2 as a plot of ln(k 2 /kg) against ionic strength. 
The tétraméthylammonium salts accelerated the reaction rate 

whilst the tetraethylammonium salts retarded the reaction 
rate. The nature of the anion of the added salt had a
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Table 9.1
Second order rate constants for the alkaline hydrolysis of
the sodium salt of bromophenolblue in the presence of known
concentrations of aqueous salt solutions at 298K.

Molarity
/moldm” ^

Me^NF Me^NCl 
lO^kg/dm^mol” ^s” ^

Me^NBr

0.00 0.656 0.656 0.656
0.25 1.089 1.012 0.943
0.50 1.334 1.133 1.001
0.75 1.526 1.226 1.014
1.00 1.679 1.309 1.026
1.50 2.102 1.435 1.056
2.00 2.533 1.588 1.077

Molarity
/moldm” ^

Et^NI Et^NBr 

lO^kg/dm^mol” ^s

KBr

0.00 6.559 6.559 6.559
0.10 6.412 — -

0.25 5.343 6.362 8.990
0.40 4.207 — -

0.50 3.760 5.762 9.656
0.60 3.187 — -

0.75 2.677 5.193 10.137
1.00 - 4.549 10.317
1.50 — 3.971 10.562
2.00 — 3.532 10.853
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1specific effect on reaction rate . For both the
tétraméthylammonium and tetraethylammonium halides the 
reaction rate increased in the order;

F > Cl > Br > I
Potassium bromide had an effect on reaction rate very
similar to that produced by tétraméthylammonium bromide.

A FORTRAN program analysed the kinetic data using the 
methods described in Section 9.3. Appendix 5 contains a 
listing of the program.

9.5 Discussion
The Debye-Huckel treatment of activity coefficients for all 
added salts predicts a positive salt effect on the alkaline 
hydrolysis reaction under consideration. This can be 
understood in terms of the greater stabilisation of the 
transition state of the reaction (charge -3) compared to 
the stabilisation of the initial states (i.e. 0H~ + BPB^ 
ions). The stabilisation effect predicted by the
Debye-Huckel equation and calculated in the FORTRAN program 
(Appendix 5) is illustrated in Figure 9.3. The Debye-Huckel 
equation predicts an increase in reaction rate with
increase in ionic strength due to an increased 
stabilisation of the transition state and hence a decrease 

in the Gibbs function for activation.

In Pitzer's equation the fourth term for each added 

salt is negligible in comparison to the first two terms of 
the equation for I n y ^ . The electrostatic, first term of the 
full equation, for all added salts, predicted a positive 
salt effect on reaction rate in a similar manner to the 

trend predicted by the Debye-Huckel equation. Again the
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trend can be understood in terms of the increased 
stabilisation of the trinegative transition state compared 
to the initial state contributions. However, the magnitude 
of the positive salt effect predicted by Pitzer's 

electrostatic term was smaller than that predicted by the 
Debye-Huckel treatment. In comparison to the first term the 
effect of Pitzer's second term on ln(kg/kg) is small. 
However, the nature of the added salt has, for the first 
time, been taken into consideration. Although not having a 

dramatic effect on the overall pattern produced by Pitzer's 
full equation the second term follows the observed trends 
in ln(k 2 /kg). For example, in the case of added 
tétraméthylammonium fluoride a positive salt effect is 
observed and this is mirrored by a positive second term. 
However in the case of tetraethylammonium bromide a 
negative salt effect was observed in the kinetics and in 
this situation the second term of Pitzer's equation was 
n e g a t i v e .

Pitzer's full equation predicts an overall positive 
salt effect for the reaction under consideration over the 
range of salts investigated, in line with the predictions 
of the Debye-Huckel equation. Figure 9.4 reports predicted 
trends in Infkg/kg) calculated from the DHLL and Pitzer's 
full equation together with the experimental results for 
the addition of KBr to the alkaline hydrolysis reaction of 
the sodium salt of bromophenol blue. However in calculating 
this trend two important terms are ignored by the analysis, 

namely the second term contributions to Pitzer's full 

equation which describes the effects of non-electrostatic, 
charged species interactions (i.e. cosphere-cosphere
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interactions) for both the dinegative bromophenol blue 
anion and the trinegative transition state. For Pitzer's 

full equation to accurately predict the observed trends in 
Infkg/kg) for various added salts the magnitude of the

7 — 3 _difference between {BPB cosph}-{ts cosph} must be equal
to the quantity A defined by equation [9.18]. In real terms
this difference cannot be accurately calculated because no
0 or C terms are available. However estimates of this

o 1
difference can be obtained using 3 , 0 and C parameters
which cover the complete range recorded by Pitzer for 3:1 
and 2:1 salts. Using these ranges of estimates the cosphere 

contributions of both the bromophenol blue dianion and 
trinegative transition state were estimated using equations 
similar to equation [9.13] which defines the 0H~ cosphere 
contribution. Using this technique, (subroutine cosphere of 
the program contained in Appendix 5) it was found that the 
magnitude of the difference between the cosphere terms of 
the dianion and the trinegative transition state was 
sufficient to explain the differences between the observed 
trend in Infkg/kg) and that predicted by the full Pitzer 
equation. Figure 9.5 reports the range of ln(k 2 /kQ) the
dianion and transition state cosphere terms cover based on

0 1 5 approximations for 3 , g and C-terms taken from Pitzer's

tabulated values for 2:1 and 3:1 salts.

The apparent success of Pitzer's equation in
modelling the effect of added salt on the rate constant,

using equations containing ionic strength casts doubt on

the suggestions of Rudra and Das^. Based on the addition of

a number of salts to the same alkaline hydrolysis reaction,

they concluded the reaction was a demonstration of the
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FIGURE 9.5
Trends in ln(k2/ko) at 298.15 K, calculated for the 
bromophenolblue dianion and the tri-negative transition 
state as predicted by Pitzer’s equation using a range 
of 3° and 3̂  values for 2:1 and 3:1 salts, plotted 
against the molality of added cation, mc/mol kg"^.
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0 1 son-Simonsen effect, in which ionic strength is of no 
consequence to the rate of disappearance of the bromophenol 
blue dianion. This is certainly not the situation observed 
at the concentrations of added salt investigated in this 

study. This conclusion is backed up by the work of Carmona^ 

et al who also found a dependence on ionic strength.
Turning now to the observed specific anion effect 

identified from the reported second order rate constants. 
According to the analysis described above this contribution 
is catered for in Pitzer's full equation by the third term. 

However this was assumed to be zero. Ideally a plot of 

Intkg/kg) - A against the molality of the cation of the 
added salt produces a straight line of gradient defined by 

the difference between the ® b p b 2- c dianion term and the 
®ts3-c transition state term (see equations [9.14] and
[9.15]). However using the analysis described above the 
pattern reported in Figure 9.6 emerges. This pattern points 
to the importance the third term of Pitzer's equation and 
identifies a method from which more precise estimates of p 
parameters could be calculated in future work.
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CHAPTER
10

Internal Pressures of Water 
and Deuterium Oxide



10.1 Introduction
This Chapter reports equations which describe the internal

pressure^, as a function of temperature and pressure,
in the ranges 273.15< T/K <373 .15 and 0< P/bar <1000, for
water and deuterium oxide. Quadratic equations which model

the pressure dependence of (i) the temperature at which 11̂
is equal to zero and (ii) the temperature of maximum
density (TMD) are reported for both systems and the

distinction between equilibrium internal pressure n^(A=0)
and an instantaneous/frozen internal pressure nu(t) is
discussed in terms of the structuredness of water in

2conjunction with the Lumry two-state model (see Chapter 
12).

Interest in internal pressure arose from work 
reported in Chapters 4 and 5 which dealt with kinetics of 
reactions in binary liquid mixtures. Solvent-solvent 
interactions in such systems play a large part in
influencing the magnitude and sign of kinetic parameters 
and so quantities which probe such interactions may provide 
a handle for predicting trends in these parameters. 
Internal pressures can shed light on the structuredness of 
solvent mixtures as demonstrated by the work of
Leyendekker^'^ and also Hyne e^ a l ^ . By examining the 

internal pressure of water and deuterium oxide it was hoped 

to go some way towards establishing a quantitative method 

of examining kinetic parameters for reactions carried out 
in binary mixtures.

10.2 Definition and Methods of Obtaining Internal Pressure

The internal pressure of a system can be defined by
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equation [10.1] .

n. =TOp/3t)^ - p (10.1 )

T = temperature /K 
(9p/9T)^ = Rate of change of pressure with temperature at 

constant volume, V.

p = external pressure /bar

According to Frank ^ equation [10.1] portrays the 

external pressure, p, as a 'residual squeeze' which must be 
applied in order to balance the expansive tendency 
represented by the equilibrium thermal pressure T(9p/9T)^ 

with the contractive nature of n^. The internal pressure is 
the weaker force.

Equation [10.1] can be developed using the isobaric 
expansibility, a, and the isothermal compressibility, 
which are defined by equations [10.2] and [10.3] 
respectively.

a = (1/V)(9V/9T)p [10.2]
i.e. the rate of change of volume with temperature per unit 
volume at constant pressure.

= -(l/V)(9V/9p)y [10.3]

i.e. the rate of change of volume with pressure per unit 
volume at constant temperature. The negative sign makes 

a positive quantity. When the pressure is increased the 
volume of all stable phases decreases and so (9V/9p)^ is 
always negative.

— 182 —



Combination of equations [10.2] and [10.3] leads to 
an expression for (8p/9T)^ which is substituted into 
equation [10.1] to form the more widely used expression for 
n ; equation [10.4] .

a/K^ = {(l/V)(9V/9T)p}/[(-l/V)(9V/9p)^}

= (9p/8T)^
= > n. = T(a/K^) - p [10.4]

The isothermal compressibility is closely related to 
the isentropic compressibility, Kg, which is defined by 
equation [10.5].

Kg = - d / V )  ( 9V/9p)g [10.5]
i.e. the rate of change of volume with pressure per unit 
volume at constant entropy, S.

The isentropic compressibility is a relatively simple 
quantity to establish experimentally. It is calculated from 
sound velocity, c, using the relationship described by 
equation [10.6] .

c ^  =  l / ( K g p )  [10.6]
c = speed of sound /m s  ̂

p = density /kg m"^
_ 2Kg = isentropic compressibility /N m

The relationship between Kg and K^ uses the
mathematical expression shown below in equation [10.7] 

which transposes the conditions on a partial differential.
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(9Z/9X)y = (9Z/9X)y - (9U/9X)y(9Y/9U)%(9Z/9Y)x [10.7]

By applying this to Kg and K^;

(9V/9p)g = (9V/9p)y - (9S/9p)^(9T/9S)p(9V/9T)p [10.8]

From a Maxwell relationship;

-  (9S/9p)y = (9V/9T)p

Also (9S/9T)p = (Cp/T) where Cp is the isobaric heat
capacity. Hence;

(9V/9p)g = (9V/9p)^ + (9V/9T)p(T/Cp)(9V/9T)p [10.9

Multiplying both sides by -(1/V) yields equation [10.10].

= > - ( 1 / V ) (9V/9p)g = -(l/V)(9V/9p)y
-(1/V)(9V/9T)p(T/Cp)(9V/9T)p [10.10]

Using equations [10.3] and [10.5], equation [10.10] can be 
written in the form of equation [10.11].

Kg = Ky - (l/V)(9V/9T)p(T/Cp)(9V/9T)p [10.11]

From equation [10.2];

a = (1/V)(9V/9T)p 
=> aV = (9V/9T)p [10.12]
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Hence, equation [10.11] can be written in the form;

Kg = - l(TVa^)/Cp] [10.13)

or alternatively;

Kg = <T - [(Ta^)/(C_/V)) 110.14)

Where (C^/V) is the isobaric heat capacity per unit volume 
/J m ^ . Combination of equations [10.6] and [10.14]

leads to an equation from which can be directly
calculated from sound velocity data.

= (l/{c^p)) + ((Ta^)/(C / V ) ) [10.15)

The expansibility, a, is usually obtained from density
measurements over a series of temperatures at set pressure.

10.3 Experimental
Estimates of a and were taken from the papers

8 9published by Fine and Millero ' who based the calculation 
of these quantities on recast forms of equation [10.16].

PV°/(V° - vP) = B + A^P + AgP^ [10.16]

where P = the guage pressure (p-1) atmospheres
V° = volume of liquid at gckuge pressure 0(i.e 1 atm.)
vP = volume of liquid at gauge pressure P

B,A^,A 2 = temperature dependent parameters 
Equations for were taken from the work of Kell^^. By
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rearranging equation [10.16] into a form which defines V' 
it is possible to obtain equations for a and K^.

yP = (V° - V°P)/(B + A^P + AgP^) [10.17]

From equation [10.2] a = (1 / V ) (9V/9T)p . Hence by
differentiating [10.17] with respect to temperature and
multiplying by (1/vP) an expression for a is derived in
terms of V ° , vP, B, A ^ , A^ and P.

a /K“  ̂ = (l/vP)(9V°/9T)p-(P(9V°/9T))/(vP(B+A^P+A2p2))
- P V ° [ ((9B/9T)+P(9A^/9T)+P^( 9 A 2 / 9 T ) )
/ (V^B + A^P + A2P^)^)] [10.18]

According to equation [10.3].

K.J, = - d / v P )  ( 3vP/3p)y

Therefore differentiating equation [10.17] with respect to 
p r e s s u r e  yields the isothermal compressibility; equation

[10.19].

K^/bar"^ = (V°(B-A2P^))/(vP(B + A^P + A2P^)^) [10.19]

A FORTRAN program was written which modelled equations 

[10.17], [10.18] and [10.19] to produce values of V, a and
and then went on to calculate internal pressures using 

equation [10.4], over the range 273.15< T/K <373.15 and 0< 

p/bar <100. Internal pressures were fitted using a linear 
least squares technique^^ to equation [10.20], which is
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based on a Taylor expansion about internal pressure ll^(n,0) 
at temperature T = 0 and pressure p = n.

nu(T,p)/bar = nu(%,0) + a2(/K)(T-0) + a^ (/bar ) ( p-n )
+ a^(/K^)(T-0)^ + ag(/K b a r )(T-0)(p-n)
+ ag(/K bar)(T— 0) (p— n)
+ a^(/K bar^ ) ( T-0) ( p-ii) ̂
+ ag(/bar^)(p-n)^ + a ^ (/ K ^ )(T-0)^ [10.20]

The parameters 0 and n were set to 323 .15 K and 500 bar
respectively. This method differs from that used by 

12Leyendekker who based an analysis on the Tait equation 

written in logarithmic form^^.
A listing of the FORTRAN program is included in 

Appendix 6 Section 1. A separate FORTRAN program, included 
as Appendix 6 Section 2, calculated temperatures and 
pressures at which V is at a minimum i.e. the temperature 
of maximum density (TMD). These data were fitted by the 
method of linear least squares to equation [10.21].

TMD = TMD(273.15 K;P=0) + a^(/bar)P + a^f/bar^KP^ [10.21]

The latter program could be modified to calculate the 

temperature at which for a set pressure the internal 
pressure is equal to zero. These data were fitted using the 
method of linear least squares to equation [10.22].

T(n^=0)(/K) = aQ(/K) + a^(/bar)P + a^t/barZ)?^
+ agf/bar^)?] [10.22]
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10.4 Results
Tables of internal pressures for water and deuterium oxide 
are included as Tables 10.1 and 10.2 respectively. Figures
10.1 and 10.2 reproduce these data as plots of internal 
pressure as functions of temperature and pressure. 
Alternatively the temperature/pressure surfaces of the 
internal pressure for both systems are included as Figures

10.3 and 10.4. A most interesting trend is marked by 

negative internal pressure at low temperatures. This can be 
understood at various levels. In the first explanation, 

negative internal pressures are simply a consequence of 
negative expansibilities. Water below the TMD contracts 
with an increase in temperature. The second view point, 
stresses an explanation in terms of molecular organisation 
as discussed in a later section. At low temperatures II ̂ 
increases but at high temperature the internal pressure 
decreases with an increase in pressure. Hence, at around 
313 K for water and 318 K for deuterium oxide 11̂  is 
particularly insensitive to pressure.

The validity of derived parameters with respect to 
equation [10.20] was decided using F-tests^^ of the 
variance at the 95% confidence limit. For water only the 

first seven terms proved to be significant whilst for 

deuterium oxide nine parameters were needed to accurately 
model the temperature/pressure surface. These parameters 
are reported in Tables 10.3 and 10.4 together with their 

standard errors calculated from the diagonal of the 
variance/covariance matrix.

Internal pressures calculated using equation [10.20] 

were subtracted from the internal pressures calculated from
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Table 10.1
Internal pressures for water over the ranges 273.15<T/K<373.15 

and 0< P/bar< 1000 calculated using equation [10.4]“

P/bar
f 0 100 200 300 400 500 600 700 800 900 1000
0 -367 -274 -184 -94 — 64 79 163 243 321 396 467
0.5 -320 -230 -140 -53 33 117 199 278 355 428 498
1.0 -273 -185 -98 -12 72 155 235 313 388 460 429
1.5 -227 -141 -55 29 111 192 271 348 422 492 560
2.0 -181 -97 -13 69 150 230 307 382 455 524 590
2.5 -135 -53 29 110 189 267 343 416 487 556 621
3.0 -90 -9 71 150 227 304 378 450 520 587 651
3.5 -44 34 112 189 266 340 413 484 553 619 681
4.0 (0.4) 77 153 229 304 377 448 518 585 649 712
4.5 45 120 194 268 341 413 483 551 617 681 741
5.0 89 162 235 308 379 449 518 585 650 711 771
5.5 133 205 276 347 416 485 552 618 682 743 801
10 520 576 632 689 746 802 858 912 964 1015 1064
15 928 970 1012 1055 1099 1143 1186 1229 1270 1310 1349
20 1319 1347 1377 1408 1440 1473 1505 1537 1569 1599 1628
25 1693 1710 1729 1750 1771 1794 1816 1839 1862 1883 1904
30 2052 2059 2069 2080 2092 2106 2120 2134 2149 2162 2175
35 2396 2395 2396 2399 2404 2410 2416 2423 2430 2436 2442
40 2727 2718 2713 2709 2706 2705 2705 2705 2705 2705 2705
45 3044 3029 3018 3007 2999 2992 2985 2980 2974 2968 2962
50 3348 3328 3311 3296 3282 3270 3258 3247 3236 3225 3214
55 3639 3615 3593 3574 3555 3538 3522 3506 3491 3476 3460
60 3917 3889 3864 3841 3818 3797 3777 3758 3738 3719 3699
65 4182 4152 4124 4097 4072 4047 4023 4000 3977 3954 3930
70 4436 4403 4372 4343 4314 4287 4260 4234 4207 4181 4154
75 4677 4642 4609 4577 4546 4516 4487 4458 4429 4399 4370
80 4906 4870 4825 4801 4768 4735 4704 4672 4640 4608 4576
85 5124 5086 5049 5013 4978 4944 4910 4876 4842 4807 4773
90 5330 5291 5252 5215 5178 5141 5105 5069 5032 4996 4958
95 5525 5484 5444 5405 5366 5327 5289 5250 5211 5172 5133
100 5709 5666 5624 5583 5542 5501 5460 5420 5378 5336 5294

" I = (r— 273.15)/K; internal pressures recorded in bar.
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FIGURE 10.3
Tertperature, pressure surface of the internal 
pressure for water.
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FIGURE 10.4
Temperature, pressure surface of the internal pressure 
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Table 10.3
Derived parameters and their standard errors for equation
[10.20] which predicts the internal pressure of W a t e r

over the ranges 273 . 15< T/K <373.15 and 0 < P/bar
<1000.

Parameter Estimate Standard Error

®1 3.2772x10^ 8.514x10"^
a2/K 5.4214x10^ 2.173x10"^
a^/bar -1.3345x10“ ^ 2.692x10"^

-1.9429x10“ ^ 5.822x10“ ^
a^/K bar -1.1732x10"^ 5.055x10"^3 2 a^/K bar 1.4494x10“ ^ 1.841x10"^

2a^/K bar 1.3946x10"^ 1.472x10"^

Table 10.4
Derived parameters and their standard errors for equation
[10.20] which predicts the internal pressure of deuterium 
oxide over the ranges 273 . 15< T/K <373 . 15 and 0 < P/bar 
<1000 .

Parameter Estimate Standard Error

®1 3.0317x10^ 9.408x10“ ^
a^/K 5.9693x10^ 4.461x10"^
a,/bar -9.4450x10“ ^ 2.435x10“ ^

-2.3523x10” ^ 5. 489x10“ '*
ag/K bar -1.2970x10"^ 4.572x10“ ^
a^/K^bar 1.9410x10"^ 1.665x10“ ^V  6  A
a-,/K bar 1.6969x10"^ 1.464x10“ ^

2a«/bar
ag/K^

2.8231x10"^ 5.360x10“ ^
4.3171x10“ ^ 2.175x10“ ^
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8 9the data of Fine and Millero ' to produce plots of the 
residuals at each temperature and pressure for each system 
(Figures 10.5 and 10.6).

A maximum error of + 35 bar was reported on equation
[10.20] for both water and deuterium oxide systems.

The temperature of maximum density decreases in an 
almost linear fashion with increase in pressure; Figure 
10.7. The derived parameters to equation [10.21] with their 

standard errors are presented in Table 10.5. A similar 
situation is observed for the dependence of pressure on 
temperatures corresponding to the condition that II = 0 ; 
Figure 10.8. A Table of the linear least squares fitted 
parameters to equation [10.21] together with their standard 
errors are included as Table 10.6.

10.5 Discussion
For a closed single phase system the First and Second Laws 
of Thermodynamics describe the change in thermodynamic 
energy, dU, by equation [10.23].

dU = TdS - pdV - Ad^ [10.23]

TdS describes the change in entropy, d S , at temperature T; 
pdV describes the change in volume, dV, at pressure p and 
AdC is the product of the affinity for spontaneous change, 
A, and the change in composition/organisation, d^.

In most cases interest is restricted to closed 

systems at fixed temperatures and pressures in a state of 
thermodynamic equilibrium. A corresponding minimum in the 

Gibbs function, G; the latter is defined by equation
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IT- 273-15)/K
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FIGURE 10.7
Tenperature of maximim density, calculated using equation
[10.21] against tenperature for (a) water and (b) deuterium 
oxide.
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Table 10.5
Derived parameters and their standard errors for equation
(10.21] which predicts the temperature of maximum density 
with change in pressure for water and deuterium oxide.

Parameter wate r deuterium oxide

t.m.d(P=0)/Celsius 3.9852 ± 0.0012 11.4161 ± 0.0323

lO^a j^/bar -1.9964 ± 0.0018 -1.9543 ± 0.0322

1 0 ^ a 2 / b a r ^ -5.5560 ± 0.0528 -1.9843 ± 0.7315

Standard error 
on t .m .d/celsius 0.0014 0.0340

Derived parameters
Table 10.6

and their standard errors for equation
[10.22] which predicts the temperature at which TC.^O with
change in pressure for both water and deuterium oxide.

Parameter wate r deuterium oxide

ap/K 277.1337 ± 0.0002 284.3354 ± 0.0002

lO^a^i^/bar -1.9882 ± 0.0007 -1.7630 ± 0.0005

lO^a^/bar^ -6.2307 ± 0.0514 -5.8061 ± 0.0312

lO^a^/bar^ 1.3899 + 0.1049 9.4678 ± 0.0518

10^ Standard error
on T (Ti ĵ = 0 ) /K 2. 4701 2.7018
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[10.4].

G = U + p V - T . S  [10.24]

At equilibrium the affinity for spontaneous change, A, and 
the change of composition/organisation, are zero.

In displacing a given system from a state of 

equilibrium (I) to a nearby state (II) there are two
limiting pathways which need consideration. (i) The 
affinity for spontaneous change remains constant at zero 
and the change in composition/organisation of the system is 
characterised by ( I ) (  11 ) where A is zero in both
states i.e. constant A; an equilibrium transformation, (ii)
There is no change in composition / organisation and the
affinity for spontaneous change is displaced A®^( I )->A( II ) 
i.e. an instantaneous/frozen process at fixed I,, where d(, = 
0.

This point establishes two separate definitions which 
describe the internal pressure in such situations;

(i) n.(A=0) ( =  T(a(A=0)/K^(A=0)) - p [10.25] 
and

(ii) n. ( C) (9U/3V)^^^ = T(a(()/K^(K)) - P [10.26]

Equation [10.25] defines the equilibrium internal

pressure using the equilibrium expansibility and
equilibrium isothermal compressibility. The latter

8 9quantities are those reported by Fine and Millero ' and 
used as the basis of the preceding analysis. Equation 
[10.26] however, defines the instantaneous/frozen internal
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pressure calculated from the corresponding
instantaneous/frozen expansibilities and isothermal 
compressibilities. Unlike a(A=0) and K^(A=0), <x-{ K) and
K^(f.) are not readily available. However K^( K ) can be 
obtained from ultrasonic data through the closely related 
property, K g (^ ) the instantaneous isentropic
compressibility. The latter is identified by 1 imi t ( u->«) Kg 

where u is the frequency of the sound w a v e . Endo^^ 
estimates K^{ï.) at ten degree intervals over the range 
273.15< T/K <373.15 at ambient pressure together with 

estimates of «( ) for both water and deuterium oxide
( a ( = 1.1822 x 10“  ̂ K"^ and a(C)[D^O] = 1.03244 x
10  ̂ K ^). Using these values and equation [10.26], n^(?,)
is calculated, and the resulting trend with temperature^ at 
ambient p, is included as Figure 10.9 together with plots of 
n^(A=0) over the same range. A third quantity, the 
relaxational internal pressure, n^(relax), is defined by 
equation [10.27].

n^(relax) = n.(A=0) - n.(C) [10.27]

n^(relax) can be regarded as being the configurational/ 
relaxational component of the equilibrium internal 
pressure. For both systems n^(A=0) approaches ( (̂ ) with 

increase in temperature i.e. the relaxational component of 

n^(A=0) increases with increase in temperature. This points 

to the fact that structural changes, most likely due to 
H-bonding, occur in the two systems which can be understood 

if n^(j;) is regarded as representing the attractive 

component of H-bonding and 11̂  (relax) as representing the
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repulsive part of H-bonding.
Water at low temperatures has most of its hydrogen 

bonding framework intact. From this it could be argued that 

in this situation the hydrogen bonds are repulsive in 
nature i.e. when a hydrogen bond is formed between two 
water molecules their centres of mass are pushed apart. In 
this situation n^(relax) dominates n^(A=0) leading to an 
overall negative equilibrium internal pressure. However as 
the temperature is increased, so there is a decrease in the 
number of hydrogen bonds i.e. n^(relax) becomes more 

positive as the attractive component of H-bonding begins to 
dominate - giving increasingly positive equilibrium 
internal pressures.

This explanation is in agreement with the Lumry
2two-state model of water (see Chapter 12 Section 12.2). At 

lower temperatures the short-bonded form with its stiff, 
repulsive bonds is most abundant. With increase in 
temperature, increases in the degree of bending, 
1 ibrational and rotational freedoms of the H-bonds, causes 
more H-bond breaking and a subsequent domination of the 
long-bond form.

This explanation also helps to explain the trends of 
n^(A=0) in Figures 10.1 and 10.2 respectively.

The trend of TMD moving to lower temperatures with an 

increase in pressure is also consistent with the Lumry 

model. The two-state equilibrium between the short-bonded 

and long-bonded structures moves over to favour the 
long-bonded, low volume, high density state in a similar 

manner to the effect of an increase in temperature at fixed 
pressure, as described earlier. Confirmation of this
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conclusion comes from the fact that there is an increase in 
nearest-neighbour 0-0 co-ordination number with an increase 

in pressure^^, as determined by X-ray diffraction methods.
From a kinetics point of view this work this work has 

pointed towards using isobars as a reference state for 
reactions in aqueous solutions. Usually reactions in 
aqueous solution are followed to obtain rate constants as a 
function of temperature and pressure. A criticism of this 
approach is that water at temperature , (at constant 
pressure), is a different media from water at temperature 

f (at constant pressure), merely from the extent of 
hydrogen bonding present in each system. As examined in 
this Chapter an interesting isobar to use as a

reference state would be that at which (A = 0 ) is equal to 
zero. This then describes states in which the external 
pressure, p, is equal to the equilibrium thermal pressure, 
T(9P/9T)^ at constant volume and affinity equal to
zero. There is however, at present a distinct lack of 
kinetic data along the n^(A=0) isotherm.

Preliminary investigations into the possibility of 
using 11̂  ̂ as a reference state for aqueous solutions are 
promising, as demonstrated by Figure 10.10 which shows a 
plot of In k^j^g against n^(A=0) for the neutral hydrolysis 
of phenyldichloroacetate. The relationship is linear and 

demonstrates that the hydrolysis reaction is a function of 

the organisation of the solvent structure.
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CHAPTER
11

Excess Pressures for Aqueous Solutions



11.1 Introduction
The task of accounting for trends in kinetic parameters for
reactions in aqueous solution in the presence of 

1 2electrolytes ' provided the stimulus for work presented in 
this Chapter. Many authors comment on the intense pressures 
operating on solvents in salt solutions, usually aqueous 
solutions. However the basis for this statement is not 
always clear and hence the aim of this study was to examine 

the definition of this 'excess pressure'. For the most 
part, Gibson's^ concept of an excess pressure, discussed by 

Harned and Owen^, is applied in the analysis of the 
properties of solutions containing salts. The definition
used by Gibson is examined below, together with definitions

E 5 6of excess pressures, p , used by Leyendekker ' .
Originally an excess pressure was related to 

solvent-solute interactions in solution. Tamman (cf. refs. 
3 - 6 )  suggested that water in an aqueous salt solution is 
subject to an additional pressure, p^, dependent on solute 
type and concentration. However both the sign and magnitude 
of an excess pressure are shown to depend on the definition 
of reference volumes of the solvent and the solute. At one 
extreme p^ characterises solute-solute interactions whilst 
at the other p takes account of solvent-solute 
interactions. Therefore the main aim of the work described 
here was to explore different methods for calculating 

excess pressures. These pressures express in different ways 

the impact of solute-solvent and solute-solute interactions 
in solution.

In developing this subject it is useful to examine 

volumetric properties of solutions and to define a

-209-



volumetric property, identfied by the symbol 'O' and called 
the occupied volume.

11.2.1 The Occupied Volume, O
The underlying hypothesis can be summarised in the 
following terms. Within a given solution each mole of 
solute occupies a volume Oj(sln;T;p) and each mole of 
solvent occupies a volume 0^ ( sin ;T ;p ). The occupied volume 

for the pure liquid solvent is assumed equal to the molar 
volume of the pure liquid solvent.

0.(l;T;p) = Vi*(l;T;p) [11.1]

In a solution molality m ^ , limit(my40) 0^(sln;T;p) 
V^*(l;T;p). One aim of this Chapter is to show that a 
calculated excess pressure depends strongly on the 
definition adopted for occupied volumes.

11.2.2 Volumetric Properties
In terms of a thermodynamic description, the volume of a 
solution prepared using 1 kg of solvent and m^ moles of 
solute-] is given by equation [11.2].

V(sln;T;p;w^/kg=l) = (l/M^)V^(sln;T;p) + m ^ V ^ (sin ;T ;p )

[11.2 ]
is the molar mass of the solvent; V^ is the partial 

molar volume of the solvent and V  ̂ is the partial molar 
volume of the solute. The latter two properties are defined 

by the partial derivatives;
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V^(sln;T;p) = [9V(sin ;T ;p )/8 n ^ ]^ ^ ^ .p [11.3]

Vj(sln;T;p) = [9V(sin ;T ;p )/ 9 n ^ ^ ,p [11.4]

V^(sln;T;p) is the differential change in the volume of the 
system when dn^ moles of solvent are added and Vj(sln;T;p) 
is the change in the volume of the system when dn^ moles of 

solute are added. The following definitions are important 
to equation [11.2].

limit(mj^O) Vj(sln;T;p) = Vj*(sln;T;p) 
and limit(mj^O) V^(sln;T;p) = V^*(l;T;p) [11.5]
Hence for an ideal solution;

V(sln;T;p;id;w^/kg=l) = (1/M^)V^ (l;T;p) + muVj (sln;T;p)
[11.6 ]

(l;T;p) and Vj™(sln;T;p) are reference volumetric
properties for the solvent 1 and solute-] respectively. The 
quantities V^(sln;T;p), Vj(sln;T;p), V^*(l;T;p) and
Vj™(sln;T;p) are unambiguous and properly defined 
thermodynamic variables.

11.2.3 Apparent Molar Volumes

The apparent molar volume of solute-j in a solution 
containing 1 kg of solvent, <f>(Vj), is defined by equation 
[11.7].

V(sln;T;p;w^/kg=l) = (1/M^)V^ (l;T;p) + my*(Vj) [11.7]

where by definition limit(mj^O) <l>(Vj) = <(»(Vj) =
Vj™(sln;T;p). In equation [11.7] the non-ideal properties
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of the solution are loaded onto the solute. If the solution 
is ideal then is replaced by <f>(Vj)* or Vj™. In other
words the non-ideal properties of the system are described 

by the difference <j>(Vj )-<]>()” . Alternatively an equation 
can be written to load the non-ideality of the solution 
onto the solvent using <|>(v^), the apparent molar volume of 
the solvent.

V (sln;T;p;w^/kg=l) = (1/M^)*(v^) + mjVj"(sln;T;p) [11.8]

The partial molar volume of solute-j and the apparent molar 
volume of the solute are linked through equation [11.9]. 
(This is obtained as the differential of equation [11.7] 
with respect to m ^ )

V.(sln;T;p) = *(v.) + m . [ 9 <j> ( v . )/9m . ] [11.9]
J J J J J  ̂f y

11.2.4 Calculation of an Excess Pressure, Using the
Tait Equation.

A given solution contains solvent and solute, molality m ^ . 
As a starting hypothesis, it is assumed that one mole of 
solvent in this solution occupies a volume (sin ;T ;p ). The 
question of how 0^(sln;T;p) is defined is left for the 
moment. It is also assumed that for a given solution 
0^(sln;T;p) differs from the molar volume V^*(sln;T;p). 

Therefore the excess pressure is calculated from the 

pressure ( p+p ) at which the molar volume of pure solvent,
•k g(l;T;p+p ) equals 0^ ( sin ; T ; p ) . Hence an equation of 

state is required for the solvent - and this role is 
generally filled by the logarithmic form^ of the Tait
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equation. In the case of water and aqueous solutions;

-{ V ^ * (1;T;n)-V^*(1 ;T;p)) = d^lnitdg+ni/fdg+p)] [11.10]

This equation is satisfactory for water at 298 K over the 
pressure range 1 to 1001 bar.

In the definitions of excess pressure explored later 
in this Chapter the Tait equation is used in a form which 

includes the occupied volume of the solvent in a given 
solution.

[0^(sin;T;p)-V^*(1;T;p)} = d^lndtdg+p+p^i/fdg+p)] [11.11]

The parameters d̂  ̂ and d 2 were calculated using Fine and 
Millero's® molar volume data for water over the range 1 < 
p/bar <1001 at 298.15 K. The calculation was based on 
equation [11.10] using a FORTRAN program written by 
Dr.M.J.Blandamer. The program used a Gauss-Newton 
minimisation technique to obtain estimates of d̂  ̂ and d 2 • 
(2.46696x10 ^ m^ mol~^ and 2.99339x10^ bar respectively) 
These estimates are close to those reported by
Leyendekker^.

11.2.5 Solutions
Combination of equations [11.2] and [11.7] yields equation 
[11.12].

~[V^(sln;T;p)-V^*(l;T;p) ] = m^M^^ [ V  ̂ ( sin ; T ; p )-<f> ( v ̂ ) ] [11.12] 

This interesting equation links the properties of solvent
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and solute in a given solution, molality m ^ . In the
limit(mj->0) both sides of equation [11.12] tend to zero.
For an ideal solution V^(sln;T;p) = V^*(l;T;p). If the

occupied volume for the solvent is the same as the molar
volume, the Tait equation (equation [11.10]) predicts zero
excess pressure for an ideal solution. This conclusion is

Einconsistent with the concept of p discussed by Gibson and 

hence other methods of defining volumetric properties of 
both solute and solvent are required.

Turning to equations [11.2], [11.7] and [11.8] it is
interesting to note that V( sln;T;p;w^/kg=l) has been 
defined in three separate ways, each description taking 

account of the solute and solvent in different ways. 
Stepping outside the terms of reference of classical 
thermodynamics the situation can be summarised in the form 
shown in equation [11.13].

V(sln;T;p;w^/kg=l) = (1/M^)V^(?) + myVj(?) [11.13]

Equation [11.13] does not describe how the volumetric 
properties of the solvent or solute are defined. Granted 
that this representation is possible then an excess 
pressure can be calculated from the equation;

- [ ( ? )-V^*(?)] = d^ln[(d2+p+p^)/(d2+p)] [11.14]

Clearly the size and magnitude of p must depend on the 
particular definition adopted for V ^ (?).
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11.2.6 Addition of Solute to Solvent
The limiting partial molar volume, Vj™, is independent of
solute molality, m ^ , solution and hence remains constant as
more solute is added to 1 kg of solvent. However, consider
the situation in which a solute-j is added gradually to 1
kg of solvent. In nearly all instances the molar volume of

the solvent is likely to change. The extent of this change
is directly linked to the intensity of solute-solvent
interactions within the system. The change in volume can be
understood in terms of incorporation of solvent into solute 

gcospheres . Hence as the molality of solute increases the
occupied volume of the solvent changes and so referring

Eback to the Tait equation the excess pressure p reflects 
the solvation characteristics of the solute.

For an ideal solution the volume occupied by the 
solvent is described by the symbol (sin ;T ;p ; i d ). Hence 
for an ideal solution with a given V(sln;T;p;id;w^/kg=l) 
and defined (sin ;T ;p ; i d ) the occupied volume of the 
solute, O j (sin ;T ;p ; i d ), can be calculated through simple 
arithmetic.

V(sln;T;p;id;w^/kg=l) = {1 / M ^ )0^(sin ;T ;p ; i d )
+ m j O j (sin ;T ;P ; i d ) [11.15]

EAn excess pressure p is calculated through the difference 
[O^(sln;T;p)-V^*(1 ;T;p)] and to obtain this difference an 
estimate of the occupied volume of the solute, O ^ (sin ;T ;p ), 
is required. In some treatments it is assumed that the 
occupied volume of the solute is independent of molality 

i.e. the same for real and ideal solutions.
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i.e. O j (sln;T;p;id) = Oj(sln;T;p) [11.16]

Thus for a real solution equation [11.15] can be rewritten 
in the form;

V(sln;T;p;w^/kg=l) = (l/M^)0^(sln;T;p) + m ^0^ (sin ;T ;p )
[11.17]

Hence for a real solution combination of equations [11.7] 
and [11.17] yields equation [11.18].

-[0^(sln;T;p)-V^*(l;T;p)] = m [ 0 ̂ ( sin ; T ; p )-<|) ( v ̂ ) ] [11.18]

Deviations of the volumetric properties from ideal are
accounted for in terms of 0^(sln;T;p) on the left hand side
of the equation and by <]>(Vj) on the right hand side of the
equation. This equation highlights a contribution to the
excess pressure arising from non-ideal solute-solute
interactions as well as the solute-solvent interactions
within the system. If all solute-solute interactions could

Ebe turned off, then this would result in a pressure p (id). 
Turning to equation [11.18] if p^ is related to the 
difference [ 0 ̂ ( sin ; T ; p )-<|> ( v ̂ ) ] then the corresponding
g

p (id) quantity could be calculated from the difference 
[Oj(sln;T;p)-*(Vj)™]. In effect the difference in the 

excess pressure caused by solute-solute interactions (i.e. 

p^-p^(id)) is directly related to [ <|> ( v ̂ )-<j> ( v ̂ ) * ] .

11.3 Methods of Obtaining Excess Pressures

11.3.1 Gibsons Procedures
Gibson^'^^ identified two procedures for calculating

-216-



excess pressures. The first approach takes into account
contributions made by the volumes of solvent and solute
Y 2 in a solution prepared from kg of solvent and w^ kg

of solution. Y^ represents the volume of pure liquid at a 
Epressure (1+p )/bar and Y^ represents the volume which 1 kg 

of solute contributes to the volume at a pressure p/bar =
* K1.0. (1 ;T ;w ^ / k g = l ;p/bar = l .O+p ) is the volume of 1 kg of

Epure liquid 1 at temperature T and a pressure 1.0+p . An 
equation for the volume of the solution can be written;

* RV(sln;T;p/bar=1.0;w^+Wj) = w^V^ (l;T;w^/kg=l;p/bar=1.0+p )
+ WjYj(sln;T;Wj/kg=l;p/bar=l) [11.19]

If this solution had a total mass of 1 kg then equation 
[11.19] can be written in the form;

V(sin ;T ; p/bar = 1.0 ;(w^+Wj)/kg=l)
= [w^/(w^+Wj)]V^*(l;
+ [Wj/(Wj+w^)]Yj(sln;T;Wj/kg=l;p/bar=l) [11.20]
= [w ^ / ( w ^ + w .)]V^ (1;w^/kg=l;T;p/bar=l+p^)

If the excess pressure, p^, is independent of pressure, p, 
then equation [11.20] can be written for a solution under 
an external pressure of 1000 bar.

V(sin ;T ;p/bar = 1 0 ^ ;(w^+Wj)/kg=l)

= [w^/(w^+Wj)]V^*(1;T;w^/kg=l;p/bar=10^+p^)
+ [Wj/(Wj+w^)]Yj(sln;T;Wj/kg=l;p/bar=10^) [11.21]

The difference in volumes of the solutions at p/bar = 1.0 
.and p/bar = 1000 is given by equation [11.22].
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ApV(sln;T;(w^+Wj)/kg=l) =
[w^/ ( w ^ + W j )]ApV^*(1 ;T;w^/kg=l)

+ [Wj/(Wj+w^)]ApYj(sln;T;Wj/kg=l) [11.22]

where ;

ApV^*(l;T;w^/kg=l) = V^* ( 1 ;T;w^^/kg=l ;p/bar=10^+p^)
- V^*(l;T;w^/kg=l;p/bar=l+p^) [11.23]

and

ApYj(sln;T;Wj/kg=l) = Yj(sln;T;Wj/kg=l;p/bar=1000)
- Yj(sln;T;Wj/kg=l;p/bar=l) [11.24]

Gibson developed this first analysis from two standpoints; 
(1) the difference in compression of the solution and (2) 

the difference in compression of the solvent. The first 
method is the more direct and is based on equation [11.22]. 
ApYj(sln;T;Wj/kg=l), the compression of the solute is 
replaced by A ^ V ^ (sin ;T ;w j / k g = l ), the compression of the 
pure solute, and then on the basis that this term is 
negligibly small compared to the compression of the 
solution and solvent, is set equal to zero. Hence if the 
change of volume of the solution is known for a pressure 
change of 1 to 1000 bar, the excess pressure is calculated 
from the Tait parameters.

ApV(sln;T;(w^+Wj)/kg=l) = d ^ l n [ (d 2 +p+p^ ( G l ))/(d 2 + p ) ]
[11.25]

=> p^(Gl) = [(d2 +p)exp{ApV(sln;T;(w^+Wj)/kg=l)/d^}]-(d 2 +p)
[11.26]

However in the absence of satisfactory data, describing the
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volume of solutions with change in pressure, an independent 
estimate of the occupied volume of the solute, 0 ^ , is 
required. Equation [11.2], which characterises the volume 
of the solution, is rewritten in terms of the occupied 

volumes of both the solvent and solute.

V(sln;T;w^/kg=l) = (1 / M ^ )0^(sin ;T ;p ;G 2 ) + m ^ (sin ;T ;p ;G 2 )

[11.27]
ScCOAcl

According to Gibsons''method, 0  ̂( sin ;T ;p ;G2 ) is based on the 
assumption that a solute melts on going into solution and 

expands by 10%. Hence the volume of the solute in solution 
using Gibsons second approach is assumed to be 10% greater 
than the volume of the pure solute.

Oj(sln;T;p;G2) = 1.10[V /  (s ;T ;p )] [11.28]

This approach reflects Gibsons interest in the properties 
of salt solutions. However there is no reason why this 
approach cannot be applied to liquid solutes in solution 
e.g. DMSO. For consistency it is assumed that the occupied 
volume of a given liquid solute is equal to the volume of 
the corresponding pure liquid.

Oj(sln;T;p;G2) = v/(l;T;p) [11.29]

Equation [11.28] is based on the assumption that for all 

systems Vj*(l;T;p) = 1 . 1 0 [ ( s ;T ; p )]. Alternatively the
volume of the solution can be expressed in terms of the 

apparent molar volume <f>(Vj), see equation [11.7]. Combining 

equations [11.7] and [11.27] produces equation [11.30].
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-[Oj^ ( sln;T;p;G2 )-V^ (l;T;p)] = m [ 0 ̂ ( sin ; T ; p ; G2 )-<f> ( v ̂ ) ]
[11.30]

Hence from the Tait equation;

mjM^[0j(sln;T;p;G2)-*(Vj)] = d^ln [ ( d 2 +p+p^ ( G2 ) )/( CI2 +P ) ]
[11.31]

and

p^(G2) = (d2+p)(exp[mjM^[0j(sln;T;p;G2)-*(Vj)]/d^]-l)
[11.32]

The excess pressure for a real solution, p (G2), assumed to 
be pressure independent is calculated using equation

g[11.32]. An ideal excess pressure p (G2;id) can be 
calculated from equation [11.33] in which the apparent 

molar volume <f>(Vj) is replaced by the apparent molar volume 
at infinite dilution <|>(Vj)*”.

p^( G2 ; id )= ( d^+p) [ exp {m [ O ̂ ( sin ; T ; p ; G2 ; id )-<f> ( v ̂ “ ]/d^ } -1 ]
[11.33]

Both p^(G2) and p^(G2;id) depend on the molality of the 
solute and a plot of p^(G2) against molality of added 
solute, m j , is almost linear; Figures 11.1 to 11.6.

11.3.2 Relationship of the Partial Molar Volume V.(sln;T;p)
—  ] 

to the Excess Pressure p (G2).
Equation [11.27] can be written in the form^;

V(sln;T;p;w^/kg=l) = (l/M^)[0^(sln;T;p;G2) - V^ (l;T;p)]
+ (l/Mj^)V^*(l;T;p) + m  ̂( sin ; T ; p ; G2 ) [11.34]

Using the Tait equation;
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V(sln;T;p;w^/kg=l) = (1/M^)V^ (l;T;p) + m ^0^ (sin ;T ;p ;G 2 )

- (dj^/Mj^)ln( (d2+p^(G2)+p)/(d2+p) ) 111.35)

Differentiation of equation [11.35] with respect to the 
molality of the solute, m ^ , at constant T and p yields an 
expression for the partial molar volume of the solute in 
terms of the excess pressure pf(G2). The occupied volume of 

the solute, O ^ , is assumed to be independent of solute 
molality.

V.(sln;T;p) = - 1 ( dj^/Hj^ )/( d 2 +p® ( G2 )+p ) ] O p ®  ( G2 )/3m . ) .j,
+ Oj(sln;T;p;G2) [11.36]

where [ 9p (G2)/9m. ] is calculated from the gradient ofJ ? Pgthe plot of p (G2) against m^ i.e. the differential of 
equation [11.33] with respect to the molality of the 
solute. From equations [11.9] and [11.29];

O p ® ( G 2 ) / 3 m j  = (dj+p) ( (M^/d^) {v/(l;T;p)-Vj(sln;T;p}
exp[mjM^[Vj*(l;T;p)-*(Vj)}/d^}] [11.37]

By replacing 0^(sln;T;p;G2) with Vj*(l;T;p) (see equation
[11.29]) a relative partial molar volume is obtained using 
equation [11.36].

Vj(sln;T;p)-Vj*(l;T;p) = -[(d ^ / M ^ )/(d 2 + p + p ^ (G 2 )]

(3p®(G2)/3m.) [11.38]J  ̂f y

11.3.3 Compressions of Solutions, K(sln;T;p;w./kg=l) and
g z

the Excess Pressure, p (G2).
Differentiating equation [11.37] with respect to pressure
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at constant temperature, T, and molality of solute, m ^ ,
leads to an equation relating the compression of the

Esolution and the solute to the excess pressure p (G 2 ). In
this case the occupied volume of the solute,
O j (sin ;T ;p ;G 2 ), is assumed independent of pressure. The

Eexcess pressure p (G2) is also assumed to be pressure 
independent. Then;

[ av( sln;T;p;w^/kg=l = ( 1/M^ ) [ 8V^ (l;T;p)/9p]y,^j
- [(d^/M^)/(d2+p+p^(G2)] + ((d^/M^)/(d2+p)1
+ m.[90.(sln;T;p;G2)/9p] . [11.39]

J J ^ y " U

The assumption that p^(G2) is pressure independent is an 
approximation on the grounds that p (G2) is related to the 
partial molar volume of the solute, Vj(sln;T;p) by equation 
[11.38]. An obvious difficulty arises concerning the 
assumption which sets 0 ^ (sin ;T ;p ;G 2 ) independent of 
pressure. If Gibsons arguments are accepted whereby 
O j (sin ;T ;p ;G 2 ) is replaced by V^ (l;T;p) then it is a poor 
assumption which sets this differential equal to zero. This 
is supported by the realisation that the basis of the 
analysis is the dependence of V^*(l;T;p) on pressure (see 
the Tait equation, equation [11.10]). Yet the procedures 
require the dependence on p of 0 ^ (sin ;T ;p ;G 2 ) is equal to 

zero. However accepting these assumptions equation [11.39] 

can be written in the form;

-[(d^/M^)/(d2+p+p^(G2)] = [9V(sln;T;p;w^/kg=l)/9p]^, mj
- (1/M^)[9V^*(l;p)/9p]^ - [(d^/M^)/(d2+p)] [11.40]
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Hence an equation can be written in terms of the 
compression of the solution and the solute.

- [ (d^/M^)/(d2+p+p^(G2))] = -K(sin;T;w^/kg=l)

+ (l/M^)K^*(l;T;p) - [(d ^ / M ^ )/(d 2 + p )1 [11.41]
where ;

K(sln;T;p;wl/kg=l) = - [ 3V(sin ;T ;p ;wl/kg = l ) / 9 p ] . [11.42]
1 , m J

and ;

K^*(l;T;p) = - [ 9V^*(1 ;T ;p )/ 9 p ]^ [11.43]

Using the compressions of the solutions, and equation 
[11.41], the dependence of p (G2) on solute molality, m ^ , 
can be obtained. Using the partial molar volume of the 
solute Vj(sln;T;p) (see equation [11.36]) an 'estimate' of 
the occupied volume^ O ^ (sin ;T ;p ; G 2 ) can be obtained without 
the need of any predefinition.

11.3.4 Procedures Used by Leyendekker 
Leyendekker obtained an excess pressure p^(L) based on an 
equation similar to equation [11.36].

Vj(sln;T;p) = 0. ( sin ;T ;p ;L) - [(d^/M^I/Xdg+p+p^lL))]
O p ® ( L ) / 3 m . l „ . ^  ( 1 1 . 4 4 1

J  ̂r y

where 0 ^ (sin ;T ;p ;L ) is the occupied volume of the solute
Eaccording to Leyendekker and where O ^ (sin ;T ;p ;L ) and p (L) 

are both assumed to be pressure independent^. By definition 

the compression of the solute is defined by equation
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[11.45].
K.(sln;T;p) = - [ 9 V .(sin ;T ;p )/ 8 p ] . [11.45]J J , iiij

where limit(mj^O) Kj(sln;T;p) = K^ (sln;T;p). Hence 
differentiating equation [11.44] with respect to pressure 
at constant temperature and molality provides an 
alternative description of the compression of the solute.

Kj(sln;T;p) = -[(d^/M^)/(d2+p+p^(L ))^ ][9p^(L )/9m^]T ;p
[11.46]

Therefore^^ ;

Kj"(sln;T;p) = - [ ( )/( d 2 + p ) ̂  ] [ 9p^ ( L )/9m  ̂ ] ”^ , p [11.47]

Both equations demand that at fixed temperature and
pressure limit(m.-»0) [9p^(L)/9m.] 0. Further,J J 1 f P
limit(mj^O) Vj(sln;T;p) - O ^ (sin ;T ;p ;L ) = Vj™(sln;T;p) -
Oj(sln;T;p;L). Equation [11.44] can thus be rewritten in 
the form;

O .(sln;T;p;L) = V.*(sln;T;p) - (dU+p)K.*(sln;T;p) [11. J J ^ J 48]

Equation [11.48] thus provides a definition for the 
occupied volume of the solute in terms of the limiting 

partial molar volume and it's partial differential with 

respect to pressure, the limiting compression of the 
solute^^'^^, Kj™. There is an element of uncertainty 

involving the above definition of the occupied volume of 

the solute, particularly the pressure independence of the 
said quantity. However, this definition does provide a way
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forward to obtain the excess pressure p^(L). From equations
[11.30] and [11.31];

-[0^(sln;T;p;L)-V^ (l;T;p)] = m [ 0 ̂ ( sin ; T ; p ; L)-<|) ( v ̂ ) ]

= d^ln[(d 2 +p+p^(L)/(d 2 + p ) ] [11.49]

Hence using equation [11.48];

m.M^[V.” (sln;T;p)-(d^+p)K.” (sln;T;p)-*(v.)]
J J ^  J J

= dj^ln[ (d2+p+p^( L) )/(d2+p) ] [11.50]

ETherefore the excess pressure p (L) is defined by equation 
[11.51].

p^(L) = (d2+p)[exp[mjM^[Vj*(sln;T;p)
- (d 2 + p)Kj” ( sln;T;p)-<f>( Vj ) }/d^]-l ] [11.51]

EThe gradient of a graph of p (L) against molality is 
defined by the differential of equation [11.51] with 
respect to molality, m j , at fixed temperature and pressure.

[9p^(L)/9m. ] = [M., [ V .” ( sln;T;p)-V . ( sln;T;p)
J ^ f P  J J

-(d2+p)Kj*(sln;T;p)]]/[d^/(d2+p+p^(L )) ] [11.52]

Hence limit(mj->0)

[9p^(L)/9mj]^,p = [-M^(d2+p)^Kj*(sln;T;p)]/d^ [11.53]

A second procedure used by Leyendekker to obtain an excess 
Epressure p (L2) also uses equation [11.49]. The method uses
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the difference between the partial molar volumes at 1 and 
1000 bars and assumes that the occupied volume, 
Oj(sln;T;p;L2) and the excess pressure p^(L2) are pressure 

independent.

V j ;p/bar = 10^ ) - <f>( v^ ;p/bar=l ) =

( d j ^ / m . H j ^ ) l n {  ( d 2 + l + p ^ ( L 2 )  ) ( d 2 + 1 0 ^ ) / { d 2 + 1 0 ^ + p ® ( L 2 ) } ( d j + l )  1
(11.541

EHence an excess pressure p ( L2 ) is defined by equation 
[11.551 .

pG(L2) = [d2^(X-l)+1001d2(X-l)+1000(X-l)J/[d2+1000-d2X-Xj
[11.55]

where X is given by;

X = exp[mjM^[*(Vj;p/bar=10^-*(Vj;p/bar=l]/d^] [11.56]

11.3.5 Alternative Methods of Obtaining Excess Pressures 
So far in this Chapter the methods of obtaining excess 
pressures have depended on the prior calculation of a 

volumetric property of the solute i.e. the occupied volume 
of the solute Oj(sln;T;p). However in this Section an 
attempt is made to calculate an excess pressure using no a 

priori calculations.

(i) pf(*-v.)  J -
Combination of equations [11.2] and [11.9] leads to an 
equation for the volume of the solution in terms of the 
partial molar volume of the solute.
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V(sln;T;p;w^/kg=l) = (1/M^) ( sin ;T ;p )
+ m. [<f>(v.)+m.[3<|)(v.)/9m. ] ] [11.57]J J J J J  ̂f K

In addition the volume of solution, V(sln;T;p;w^/kg=l), and
the partial molar volume, <l>(Vj), are related to the

reference volume of the solvent, (l;T;p), by equation

[11.7] .
*V  ̂ (l;T;p) = (l/M^)[V(sln;T;p;w^/kg=l)-mj*(Vj)] [11.58]

Combining the latter two equations yields an equation in 

the form of the Tait equation.

-[V^(sln;T;p)-V^*(1 ;T;p)] = M ^ m ^ ^ [9^ (v ^ )/ 9 m ^ ]^ .p [11.59]

Hence using equation [11.10];

M^mj2[9*(Vj)/9mj]^,p = d^ln [ ( d 2 + p^ ( <f>-v ̂ )+p )/( d 2  + p ) ] [11.60]

or alternatively;

P^(*-Vj) = (d2+p)[exp((M^mj^[9*(Vj)/9mj]^,p)/d^]-l] [11.61]

This definition is precise and as an added advantage the 

difference V^(sln;T;p)-V^ (l;T;p) is an unambiguous 
thermodynamic property the excess volume of the solvent in 
solution, sin ;T ;p ). If (sin ;T ;p )<0 then the solvent
is compressed because p (<|>-Vj)>0 due to solute-solute

ginteractions. Similarly if (sln;T;p)>0 then the excess 

pressure is less than zero and the solvent has expanded due 

to solute-solute interactions.
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(ii) p^(<f>-Vĵ )
EA second procedure obtains an excess pressure, p 

through the apparent molar volume of the solvent, <j>(v^). 

The volume of the solution is expressed by two equations 
one in which the non-ideality of the solution is loaded 
onto the solute and the other in which the non-ideal 
properties of the solution are placed onto the solvent (c.f 

equations [11.7] and [11.8]).

(1/M^)*(v^) + MjVj™(sln;T;p) = (l/M^)V^*(l;T;p) + muffVj)
[11.62]

= > *(v^) - V^*(l;T;p) = m [ <f> ( v ̂ )-V ̂ sin ; T ; p ) ] [11.63]

Hence using equation [11.14];

mjM^[*(Vj)-Vj™(sln;T;p)] = d^ln[ ( d 2 +p+p^( ) )/( d 2 +p) ]
[11.64]

Therefore the excess pressure p (<f>-v^) is defined by 
equation [11.65].

p^(<f)-v^) = (d2+p)[exp[M^mj[*(Vj)-Vj*]/d^]-l] [11.65]

The effect of solute-solute interactions is measured in the 
above equation by the difference [ <f>(v̂  )-Vj” ( sln;T;p) ] . In 
the limit(mj^O) [ <]>( v^ )-Vj” ( sln;T;p) ] = 0 and p^(<f>-v^) = 0. 

A plot of pf(^-v^) against molality is thus predicted to 
have a gradient given by equation [11.66] at fixed 

temperature and pressure.

MU[*(v.)+m.[9*(v.)/9m.] , -V. (sln;T;p)] =-*• J J J
[d^[ 9p^( <f>-v̂  )/9m^ ]^.p]/(d 2 + p^( <]>-v̂  )+p)
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Hence using equation [11.9];
[9pG(t-v^)/9mj]y,p = (M^/d^)[Vj*(sln;T;p)-Vj(sln;T ; p ) ]

[ d2 + p^( <f>-v̂  )+p ] [11.66]

In the limit(m.->0) [ 9p^( <f>-v., ) / 9 m . ] = 0 and hence a plot] J  ̂? P
of pf(^-v^) against m^ passes through the origin and the 
mj axis is a tangent to the curve.

Equation [11.64] yields an equation for the apparent 

molar volume in terms of the partial molar volume at 

infinite dilution, Vj™, and the excess pressure p^(* v^).

*(Vj) = Vj*(sln;T;p)-[d^/mjM^]ln[d2+p^(*-vl)+p)/(d2+p)]
[11.67]

The volume of the solution can be defined using equation
[11.68].

V(sln;T;p;w^/kg=l) = (l/M^)V^*(l;T;p) + muVj"

- (d^/M^ )ln[ (d 2  + p^( <l>-v̂  )+p)/(d 2  + p) ] [11.68]

The ideal properties of the solvent and the solute are 
represented by the first two terms on the right hand side 
of the equation above. This suggests that the non-ideal 
properties of the solution are accounted for by the excess 
pressure, p^(^-v^). Differentiation of equation [11.68] 
with respect to molality, m ^ , at constant temperature and 

pressure yields an equation for the partial molar volume, 
V j (sln;T;p).

Vj(sln;T;p) = Vj"(sln;T;p) - (d^/M^ ) [ l/(d 2 + p ^ ( )+ p ) ]

[11.69]
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Differentiation of the partial molar volume with respect to 
pressure at constant temperature and assuming d^^, d 2  and 
p^(<f)-v^) are pressure independent gives an equation for 
Kj(sln;T;p).

Kj(sln;T;p) = Kj™(sln;T;p) + ( ) [ l/( d 2 +p^ ( )+p ) ̂  ]
Op®(4-v^)/9mjl.j,.p [11.70)

Equations [11.69] and [11.70] resemble equations [11.44] 
and [11.46] used by Leyendekker. The difference lies in 
equation [11.69] which contains in place of the
occupied volume O ^ (sin ;T ;p ;L ) used in equation [11.44]. On 
differentiation with respect to pressure Vj™(sln;T;p) 

produces Kj*(sln;T;p). Leyendekker assumes (sln;T;p;L) is 

independent of pressure, and hence such a procedure 
produces an element of doubt in the derivation of the 
occupied volume, equation [11.48].

11.4 Applications of Excess Pressures
E  EIn this Section the four excess pressures p (G2), p (L), 

E  Ep ( <f>-vj ) and p are calculated for a range of aqueous
solutions. A Hewlett Packard BASIC program written to 
perform such calculations is included in Appendix 7. The 
example shown is set up for aqueous urea solutions.

(a) NaCl(aq)
The occupied volume, 0 ^ (sin ;T ;p ;G 2 ), required by Gibson's

second method was calculated using equation [11.28] in
14 *which the molar volume of the pure salt V ̂ (sln;T;p) = 

27 . 009 cm^ mol ^ . Hence O j ( sin ; T ; p ; G2 ) = 29.71 cm^ mol ^ . 

Apparent molar volumes were calculated using an equation
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given by Desnoyers et

*(Vj)/cm3 mol  ̂ = 17.2928 + 0 . 0 1 A Q 9 3 m ^ ^  + 1.658657mj
- 0.581723m.3/2 [11.71]

o
where m^ = (mu/m ) and the apparent molar volume at 
infinite dilution <f>(Vj)* = 17.2928 cm^ mol ^ . The partial 

molar compression at infinite dilution, Kj™, used to 
calculate O ̂ ( sin ; T ; p ; L ) was taken from the work of 
Mathieson and Conway^^; Kj™(aq;NaCl) = -49.6x10 ^ cm^ mol ^ 

bar ^ . Hence the occupied volume 0 ^ (a q ;T ;p ;L ) calculated in 
equation [11.48] equals 32.14 cm^ mol ^ which is close to 
the volume used by Leyendekker, namely 30.15 cm^ mol ^ .

Figure 11.1 shows plots of the four excess pressures 
for NaCl(aq) mentioned at the start of this section. The 
excess pressure p ( G2 ) is positive, because O^ ( sin ;T ;p ;G 2 )
><|>(Vj) and is in close agreement to that predicted by

3 EGibson . The excess pressure p (L) is in very close
agreement to pf(G2) being positive because

EOj(sln;T;p;L)>*(Vj). Similarly the excess pressure p ( <|>-v̂  )
is predicted to be positive over the range 0< mu/mol kg ^

E<2.3 because [ 9<|>( v . )/9m . ] >0 . However p ( <f>-v̂  ) isJ J  ̂f P
negative over the same range because <[► ( v ̂ ) > <|) ( v ̂ ) i.e. the 
non-ideal properties of the solute increase in importance 
with increasing molality.

(b) B u ^NBr(aq)
Figure 11.2 reports plots of excess pressure against

E Emolality where p is calculated from equations for p (G2),
E E  Ep (L), p (t-v.) and p (<f>-v^). The apparent molar volume
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17<()(Vj) is related to molality by the equation ;

<J>(Vj)/cm^ mol  ̂ = 300 . 40 + l.OGSmu^/^ - lO.OOmy [11.72]

where m ̂ = (my/m ) and <f>(Vj)* = 300. 40 cm^ mol ^ . The
occupied volume of the solute calculated from the density

t[
-1

of the solid^^ and equation [11.28] equals 266.63 cm^

mo 1” . Combination of limiting compressions of Bu^N^ and 
Br ions^^ sets Kj™/m^ mol ^ bar  ̂ = -17.3. Hence the
occupied volume 0 ^ (sin ;T ;p ;L ) is calculated through 
equation [11.48] to equal 305.58 cm^ mol ^ . Inspection of 
these figures indicates the excess pressures predicted for 
Bu^NBr(aq) must differ considerably from those predicted 
for NaCl(aq). The excess pressure p^(G2) is negative over
the range 0 < my/mol kgT^ <0.5 because <]» ( v ̂ ) >0 ̂ ( sin ; T ; p ) ;

Ep (L) is positive and of lower magnitude over the same
molality range because O ̂ ( sin ; T ; p ; L ) > 4» ( v ̂ ) . This arises
from the large negative value of for Bu^NBr which goes
to form O j ( sin ; T ; p ; L ) . p^(<f>-v^) is also positive over the

Esame molality range. However p ( 4>-v^ ) is negative, a 
pattern attributable to the dominant third term of the 

equation for the apparent molar volume.

(c) Urea
Urea is included for study as an example of a neutral

solute which is a solid at 298.15 K and ambient pressure.
18The dependences of apparent molar volume on molality is 

predicted by equation [11.73].

4»(Vj)/cm^ mol ^ = 44 .20 + 0.126mj - 0 . 004mj^ [11.73]
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o w 3 — 1where m^ = (mu/m ) and <|>(Vj) /cm mol = 44.20. The
occupied volume O ^ (s l n ;T ;p ;G 2 ) calculated from the density

of the solid^^ and equation [11.28] equals 49.49 cm^ mol ^
and the limiting compression of the solute was taken from

the work of Desnoyers e_t a l ^ ^ , Kj*/m^ mol ^ bar ^ =
-0.90x10” ^^. Hence 0 ^ (sin ;T ;p ;L ) equals 44 . 47 cm^ mol” ^. In
Figure 11.3 p (G2) is large and positive over the molality
range 0< mu/mol kg~^ <13 because 0^ ( sln;T;p;G2 )-4>( v^ ) >0 .

However p (L) procédés through a maximum at mj = 1.1 mol
kg”  ̂ where p^(L)/bar = 3.2. Up to this point the difference
Ou(sln;T;p;L)-*(Vj) is positive. However with increasing
molality the second and third terms of equation [11.73]
begin to dominate until the difference ( sin ; T ; p ; L )-<(>( v^ )
<0. Hence a negative excess pressure is predicted. Plots of
E EP (t-Vj) and p ( <f>-Vj|̂ ) against molality are similarly

dependent on equation [11.73] and hence both a positive and
negative excess pressure are predicted by equations [11.61]
and [11.65] respectively.

(d) t-Butyl alcohol
The properties of aqueous solutions for this liquid (at
298.15 K and ambient pressure) fall under the Typically

19Aqueous category . Using equation [11.29] the occupied 
volume of the solute 0 ^ ( sln;T;p;G2) equals the molar volume 
of the liquid, 94.96 cm^ mol~^. The dependence of *(Vj) on 
molality up to 0.38 mol kg~^ is given by equation
[11.74]20'11.

*(Vj)/cm3 mol ^ = 87.76 - 12 . 89 ( m ̂/m** ) [11.74]
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Using values from Lara and Desnoyers^^ the calculated^^
/mg mol  ̂ bar  ̂ = 0.375x10 ^ and hence the occupied volume 
O j (sin ;T ;p ;L ) equals 86.63 cm^ mol using equation

[11.48]. Figure 11.4 reports plots of excess pressures 

against molality over the range 0< mu/mol kg ^ <0.38 where 
the excess pressures are calculated from equations for 
p^(G2), pf(L), p^(^-v^) and p^(t-Vj) respectively. As a 
consequence of <f>(Vj) decreasing with increased molality the 
difference O ̂ ( sin ; T ; p ; G2 )-(f> ( v ̂ ) is positive producing a 

small but positive p^(G2) at 298.15 K. However p^(L) is 

negative because O ̂ ( sin ; T ; p ; L ) is smaller than <f>(Vj) over 
the studied molality range. The difference between
Oj ( sln;T;p;G2) and O ^ (sin ;T ;p ;L ) is demonstrated by these

E Etwo plots. The excess pressures p ( <(>-v̂  ) and p (*-Vj)
follow similar patterns to those predicted for Bu^NBr(aq).
These similarities can be understood in terms of the
hydrophobic character of the solutes.

(e) DMSO and H ^Og

Dimethylsulphoxide and hydrogen peroxide are included as 
examples in which there are strong solute-solvent 
interactions. For DMSO the molar volume of the liquid

ieVj (l;T;p) and hence O ^ (sin ;T ;p ;G 2 ) was taken from the work 
of Desnoyers et ^ (1;T;p)/cm^ mol” ^ = 71.29. The 
dependence of <{>(Vj) on molality over the region 0< my/mol 
kg  ̂ <10.0 was calculated from equation [11.75].

<t>(Vj)/cm^ mol ^ = 68.92 - 0.262m^ +0.0515m^^ [11.75]

where m^ = (mu/m ) and <]>(Vj)”/cm^ mol  ̂ = 68.92. For
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hydrogen peroxide^^' Vj*/cm^ mol  ̂ = 23.78 and the
dependence of <f>(Vj) on molality^^ in the region 0< mu/mol 
kg  ̂ <13.0 was given by equation [11.76].

<f>(Vj)/cm^ mol  ̂ = 22 . 4378 + 0 .0204mj - 1.128x10 ^mu^
[11.76]

The dependences of the compressions of the solutes on
molality and hence values of Kj” (sln;T;p) could not be
located for either solute. Hence values of 0 ^ (sin ;T ; p ;L )

Eand therefore p (L) could not be calculated. The excess
pressure p^(G2) for both solutes is positive. However for
HgOg the increasing importance of the second and third
terms of equation [11.76] at higher molalities is
pinpointed by the curved nature of the dependence. These

Econtributions are also reflected in the plots of p ( <j>-v̂  ) 
and p ( <f»-vj ) against molality for both solutes. It is 
however the third term of equation [11.75] which is 
responsible for the cross over, negative to positive, for 
the p (*-Vj) curve of DMSO.

11.5 Discussion

The effect of solute on solvent can be analysed by at least
two pathways. The first can be traced to the work of Bernal 

2 5and Fowler who used the concept of a structural 
temperature for a solvent in solution. An extension of this 

method uses the related extensive variable, the entropy, 

which uses order-disorder concepts to explain the impact of 

solute on water-water interactions. Such explanations lead 

to terms such as structure-forming and structure-breaking 
which are rarely quantitatively defined . This method has

-241-



been used to the near exclusion of the methods adopted by 
G i b s o n .

Gibson's^ route can be seen to be based on the 
intensive variable pressure, which is used to define an 
excess pressure. The problems with this method centre on 
the corresponding extensive variable volume and on the 
definitions of reference volumes for solvent and solute. 

For example there is no simple definition for the occupied 

volume of the solute, 0 ^ , which one can use. However, given 
these problems it is still surprising to note that so few 
authors have taken up the challenge of pursuing the ideas 
of Tamman and Gibson to obtain a quantitative approach to 
the understanding of the effect of added solute on a 

sol v e n t .

The plots shown in Figures 11.1 - 11.6 highlight the 
fact that the calculated excess pressure depends on the 
definition used to describe it. In particular this feature 
is highlighted by the occupied volume, O ^ , where it has 
been shown depending on which definition is used, either 
Oj(sln;T;p;G2) or O ^ (sin ;T ;p ;L ), a different excess 
pressure results. However the various definitions of excess 
pressures analysed in this Chapter do not weaken the 
overall approach. In fact it could be argued that these 
different definitions set out to highlight specific key 
features of the solute-solvent systems studied. 

Nevertheless statements concerning the pressure operating 
on solvents in salt solutions should be viewed with caution 
if the statement is not accompanied by definitions of the 

volumetric parameters. As a conclusion from this work, it 
is suggested that the excess pressure defined by equation
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E[11.65] i.e. p (<f)-v^) points a way forward in this field. 
This is because the method utilises parameters which are 
rigorously defined.
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CHAPTER 
12

Partial molar volumes and isobaric 
heat capacities of solutes in 

Aqueous Solution



12.1 Introduction
The calculations reported in this Chapter were prompted by
controversy concerning isobaric heat capacities of
activation, A^Cp” , for the solvolysis of alkyl halides in
water^. According to Robertson^ the measured first order
rate constant describes a single activation process and
hence A^C * measures the difference between partial molar P
isobaric heat capacities of the initial and transition

states: A^Cp*(aq) = Cp” (f;aq) - Cp” (RX;aq). But according
2to Albery and Robinson the reaction is two stage such that

t  00A'Cp calculated from the dependence of k(obs) on
temperature is not a true heat capacity of activation. 
Recently Robertson^ has considered this possibility but the 
argument is not overwhelming because it ignores the role of 
the solvent and the significant partial molar heat 
capacities for solutes in aqueous solution. The possibility

i 00has been raised that A'Cp measures a contribution from a
coupled solvent reaction^. This interpretation is examined
in this Chapter. The partial molar isobaric heat capacities
and volumes of apolar and ionic solutes, Z, are examined in
this Chapter for a system in which substance Z is a solute
in aqueous solution in which there exists an equilibrium
between two states of water X and Y. Estimates are obtained
of the partial molar heat capacities of initial state Z and
transition state Z^ in a first order unimolecular

solvolysis reaction. Hence by difference an estimate is

calculated for the isobaric heat capacity of activation.
The pattern in the dependence on temperature of the heat
capacity of activation is shown to resemble that calculated

2on the basis of the Albery-Robinson mechanism for
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solvolytic reactions.
The model describes a given system at constant 

temperature and pressure containing X, Y and Z. Substances 
X and Y are in chemical equilibrium. This general model 
provides a basis for understanding the effects of added 
inert solute, Z , on the solvent equilibrium envisaged in 

the Lumry two-state model for water^.

12.2 The Solvent Equilibrium - Lumry's Two-state Model 
The solvent, water, within the aqueous solution of 
substance Z is described in terms of an equilibrium between 
two states^;

X< ---------- - >Y

The substances X and Y describe domains of water as 
described by Lumry's model^.

The model describes water in terms of a random 
network of hydrogen bonded water molecules. Embedded within 
this system are water clusters which have the correct 
geometry to allow cooperative electronic and nuclear 
rearrangements into short lived tetrameric hydrogen bonded 
units. The minimum cluster size is the symmetrical pentamer 
or tetrameric fragments both of which allow decreased bond 
length with increased bond strength to the central water 

molecule. The term 'geometric relaxation' is applied to the 
fluctuation described by the shift between the long and 

short bonded forms of water. Figure 12.1 gives a structural 
representation of the geometric relaxation of the 
pentameric cluster.
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FIGURE 12.1
Structural representation of the geometric 
relaxation of a pentameric cluster neglecting 
effects of neiglibouring molecules [Ref. 6].

Short bonded form
This pentameric unit holds five water molecules which are 

linked by stiff, linear H-bonds in which torsional and 
rotational freedom is severely restricted. Because of it's 
rigid nature this form has high molar volume (low density). 
The molar entropy and molar enthalpy of such a unit is low 
and much of the free volume associated with this species is 
available to solutes.
Long bonded form
As the hydrogen bond length increases, the degrees of 
rotational and torsional freedom of the system increases. 
The tetrahedral constraint diminishes such that cluster 
cooperativity is replaced by the simple pairwise hydrogen 
bonds. The cluster has low molar volume (high density) and 

the local free volume is utilised by water and becomes less 
available to solutes.
In the equilibrium, substance X describes the short bonded 
form and substance Y describes the long bonded form of 
water. Lumry^ suggested parameters which describe this 
equilibrium. A^H /kJ mol  ̂ = 10.0 and A^C^ /JK ^mol  ̂ =
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* * *
Jy

offered by Lumry. However estimates of a similar volumetric
8.0. An estimate for ( = V (l;T;p)-V^ (l;T;p)) is not

quantities based on two-state models for water are given by 

other authors^^' .  In the calculation described in this 

Chapter A^V*/cm^ mol” ^ is set equal to -6.4 in line with 
the suggestions of Davis and Litovitz^. In a later 
communication, Lumry® suggests that A^V* = -7.0 cm® mol . 
This small difference produces an insignificant effect on 
the final pattern which emerged from the calculations.

12.3 Grunwalds Extrathermodynamic Hypothesis
The impact of a chemically inert solute Z on the solvent
equilibrium between substances X and Y was analysed using

9Grunwalds extrathermodynamic hypothesis .
The chemical potential of species X is related to the 

mole fraction composition of the equilibrium using equation
[12 .1 ] .

rp *J [V^ (1;T;/[/̂ ( system; T;p) = fj^ (1;T) + RTln(x^f^) + /  [ " ( 1 ; T ; p ) dp J
JpO [12.1 ]

where by definition in the limi t ( x^->l. 0 ) f^ = 1 at all
temperatures and pressures. The standard state for species

o
X is the pure liquid at temperature T and pressure p .
Similarly, the chemical potential of substance Y can be 
written ;

o r  *// (system;T;p) = fj (1;T) + RTln(x f ) + /[V (l;T;p)dp]y y y y ĵ o y
[12.2]

where the standard state for substance Y is the pure liquid
o

at temperature T and pressure p and where by definition
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limi t ( Xy->1.0 ) fy = 1.0. The chemical potential of solute Z 
is related to molality, m ^ , by equation [12.3].

O 0
( system;T;p) = (sln;T) + RTlnfm^Yg/m )

+ I [V * ( sln;T;p)dp] [12.3]
V

The standard state for substance Z is a solution in a
solvent comprising an equilibrium mixture of X and Y where

0
m^ = 1 and = 1 at temperature T and pressure p .

Limit(m^->0) y^ = 1.0 at all temperatures and pressures; m° 
= 1 mol kg” ^.

9According to Grunwalds hypothesis the activity 
coefficients of substances X and Y are related to the
molality m^ of the solute Z in solution. The procedure is 

adopted in which both Inf^ and Inf^ are linear functions of

Infy =
= > ln(fy/f^) = pm^/m where (5 = [12.4]

It is assumed that Z is an ideal solute in the equilibrium

solvent at all temperatures and pressures i.e. y^ = 1.
Hence derived parameters for solute Z in solution where m ^ z
= 1 are the corresponding molar properties.

12.4 Analysis of a Unimolecular Solvolytic Process 
In considering the equilibrium between the solvent species 

there are two limiting cases to examine, (i) There are no 
changes in organisation of the solvent i.e. ^ is held 

constant, (ii) the affinity for spontaneous change A is
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held constant.
The chemical potential of solute Z measures the 

change in the Gibbs function, dG, when dn^ moles of Z are 
added to the system. The chemical potentials for both of 
the above limiting cases are related through equation 
[10.71 of Chapter 10. Therefore;

[ ®G/^n^ ] - [9G/9ngl^g,^,p.^ - I J ̂ .T;p;ns
l»t/aA'T;p;ns;nz(3G/a(lT;p;ns,nz <12.51

The stability function states [9A/9tl<0. In the region near 
chemical equilibrium and at thermodynamic equilibrium the 
affinity for spontaneous change ,A (= - [ 8 G / 9 ^ ^ ,p } , is
zero. Hence at equilibrium the triple product term on the 
right hand side of equation [12.5] is zero and the equation 
can be rewritten in the form;

<as/an;,ns,T,p,A_o = O G / » " z < n s , T ; p , Ç  <12.61

For a system in a state of thermodynamic equilibrium the 
Gibbs function, G, is not a very sensitive test bed for 
molecular models and descriptions. However, the partial 
derivatives of G with respect to temperature, T, and 
pressure, p, provide more critical tests of a molecular 

model. In such situations the triple product term of the 

corresponding equations are no longer equal to zero. The 
differential of the Gibbs function with respect to pressure 
yields the volume, V, and the the differential of (G/T) 

with respect to temperature yields the enthalpy, H. 

Equation [12.5] can be rewritten in terms of both of these
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quanti t i e s .

[av/an^l^.p.ng.A “ [BA/an^l^.p.^g.^

|3t/3A'T;p,ns,nziav/»(lT;p,ns,nz '12.71

[aH/Bn^l^.p.^g.^ - I ^T;p;ns ; ?; "  ̂ ^T;p;ns ; ̂

[3S/»A]T;p;ns;nz[3"/»t]T;p;ns;nz

At equilibrium the triple product terms of equations [12.7] 

and [12.8] are non-zero because [9V/9C]m,n.mc.n» andJL fPfllSfllZ
'3"/3t'T;p;ns;nz "on-zero.

12.4.1 Calculation of the Triple Product Term of Equation
[1 2 . 7 ]

The affinity for spontaneous change within the solvent is 
given by equation [12.9].

A = -[//y( system;T;p) - //̂  ( system; T ; p ) ] [12.9]

For a solution dilute in solute Z (with dn = u.dS where v.
Z J 1

is the stoichiometry, which is positive for products and 
negative for reactants)

Xy = ny/(ng+n^) = t/n^ [12.10]

and similarly;

Xx = (ng-t)/ng [12.11]

Using equations [12.1], [12.2] and [12.9] - [12.11].
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[9A/9t]T.p.ns;nz = -RT[ [ 91n( ̂ /Og )/9^ J-[ 91n( iig-( ̂ /ns ) )/9^]
. [9ln(fy/fx)/9t,]T,p;ng,n: [12.12]

= -RT[(ng/Sng) + (ng/(ng(ng-^)))]
= -RT[ng/(t(ng-t))] [12.13]

or alternatively;

'3A/3('T,p;ns;nz " - R T / ( (1 - X ^ )) (12.14]

The second term of the triple product can be written;

'aA/3n:lT,p,ns;S = - R T [ d l n ( f ^ / f ^ ) / d n J  (12.15)

9Using Grunwalds hypothesis equation [12.15] can be written 
in the form;

[ 9A/9n^]^.p.^g.^ = -RT[d(3(m^/m°)/dn^] [12.16]

For a solution dilute in solute Z an expression for m^ is 
given by equation [12.17].

m^ = (n^/(n^M^+nyMy)} [12.17]

where and are the molar masses of substances X and Y.

= > I 9A/9n^]^,p,^g,^ = -RT[d( (5n^/( (n^M^+nyMy)/m ))/dn^]

[12.18]
= -RTe/m*(n^Mx+nyMy) [12.19]

= -RTP/m°W [12.20]
where W is the mass of the solvent.
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The third term of the triple product can be written;

'3V/3t'T;p;ns,nz = <V ‘ '12-211

where V^* and v^* are the molar volumes of pure substances 

X and Y at temperature T and pressure p.
Combining equations [12.14], [12.20] and [12.21]

yields the triple product term of equation [12.7]; equation 

[12.22].

= [e(t/(l-t))A^V*]/m°W [12.22]

Hence by rewriting t(l-t) in the form Xy®^(1-Xy®^)ng 
equation [12.7] can be rewritten as;

[9V/9n^ ̂ T;p;ns;A=0  ̂BV/^n^ÏT;p;ns;^
-[n^e/m W]XyGq(i_XyG9)A^7 [12.23]

Alternatively equation [12.23] can be written in the form;

Vg(A=0) = [12.24]

where V^(A=0) describes the equilibrium partial molar 

volume, t ̂ ^/^^z^T;p;ns;A=0' describes the
instantaneous/frozen partial molar volume, [9V/9n ]„ ►

u
and describes the configurational partial molar volume
and registers the sensitivity to a change in composition of 

the solvent i.e. [n^p/m W ] X ^ ® ^ (l - X ^ ® ^ )A^V .
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12.4.2 Calculation of the Triple Product Term of Equation 
[12.8 ]

The triple product term of equation [12.8] can be 
calculated in a similar fashion to the method described 
above for equation [12.7].

The third term of the triple product of equation
[12.8] is given by equation [12.25].

(3"/3('T,p,ns,nz = >^2.251

where and are the molar enthalpies of the pure
substances X and Y.

Combining equations [12.14], [12.20] and [12.25] it
is possible to write the triple product term in the form;

At equilibrium t/(l-t) can be written as l -X^®^).
Hence equation [12.8] can be written;

[9H/an^ ̂ T;p;ns;A=0 ^9H/9n^ ̂ T;p;ns;^

or in the alternative form;

H_(A-0) = H - [n^e/m°W]X ®‘̂ {1-X ®'3)û H* [12.28]z 5 y y ^

The differential of equation [12.28] with respect to 
temperature yields the equilibrium partial molar isobaric 

heat capacity of substance Z.

-255-



Cp^(A=0) = - [ng9/m°W][d(Xyeq(i_Xyeq)A^H*)/dT]
[12.29]

where C is the equilibrium frozen partial molar heatpz
capacity. Equation [12.29] can be simplified by carrying

o
out a product differentiation and allowing ^ = (n^p/m W ) . 
Hence equation [12.30].

Cpz(A-O) = Cpz't*^) - ♦*cCp*Xy®^(l-Xy®‘3)
- +6^H*(1-2X ®9)(dX ®9/dT, 112.30)

where the third term on the right hand side of equation

[12.31], which later defines C registers thepz
sensitivity of the solvent reaction to a change in 
temperature. The second term reflects the contribution of 
the solvent reaction to the equilibrium partial molar 
isobaric heat capacity.

The molar enthalpies of substances X and Y are 
assumed to be independent of pressure. Equation [12.30] can 
be simplified further by assuming that ambient pressure, p,

O 0 0
is equal to the standard pressure p . Therefore A^H = H^ - 

o *
XH = A^H . The equilibrium constant for the reaction is

defined by equation [12.31].

where A^G°(T) = -RTlnK°(T) [12.32]
= //y (1?T) - //X (1;T) [12.33]

at p° A^H* = Hy°(l;T) - H^°(1;T) [12.34]

Then [dt^S/dT] = [ ngK° ( T)/( 1 + K° ( T) ) ̂  ] A^,H V r T^ [12.35]
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= > = -{<f>(l-2X^ ®'^)K°(T)/[1 + K°(T) [12.36]yz y t

Using equation [12.31];

K°(T)/(1+K°(T)1^ = X ®9(1-X ®9) (12.37)
“ > Cp2** - -(<K1-2X ®'ï)X ®‘ï(l-X ®‘5)[Aj.H°^/RT^)) (12.38)

Hence equation [12.29] can be written in its final form as 
equation [12.39].

Cp^(A=0) = Cp,((®q, + Cp,# (12.39)

where Cp^« = - ♦Xy®'ï(l-Xy®'ï) A ^ C p /
- *Xy®9(l-XyG9)(l-2Xy®^)A^H°^/RT^ [12.40]

Cp^ is known as the configurational isobaric partial molar 
heat capacity.

12.4.3 Isobaric Heat Capacities of Activation
For the first order unimolecular solvation of solute Z, a
transition state is passed through which can be labelled
Z^. The molar isobaric heat capacity of activation, A^C ,pz
is given by equation [12.41].

A^C^^ = C!(Z$;A=0) - C^(Z;A=0) [12.41]pz p p

Hence using equation [12.39], A^C can be re-expressed inpz
terms of the instantaneous and configurational isobaric 
heat capacity contributions.
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A^Cp^ = ICp(zf;C®9)+Cp2*(zf)) - |Cp(Z;t®9)+Cp2*(Z)l
= tC *(Z?)-C *(Z)| + |C (Z?;(®9)_c (z;t®9)] (12.42]

Using equation (12.41) the difference (C p * (Z^)-Cp*{Z )) can 
be calculated as a function of temperature using (3 

parameters. In calculating this difference, which 
characterises the effect of the initial and transition 
state on the solvent equilibrium, it is assumed that the 
impact registered by the difference between the initial and 
transition states of the instantaneous/frozen isobaric 
partial molar heat capacities is negligible.

12.5 Results
u

The dependence of C on p in the range -1.0< p >1.0 atpz
298.15 K was analysed using a BASIC program written for an
HP 85 minicomputer. This program is included in Appendix 8.
Figure 12.2 summarises the results obtained from computer
analysis in graphical form. Estimates, by Perron and
Desnoyers^^, of the standard partial molar isobaric heat
capacities of neutral solutes in terms of group
contributions are included on the same figure.

Figures 12.3 and 12.4 show plots of the dependence of
C * on p at 298.15 K on which single ion partial molar pz

11 — 13isobaric heat capacities, proposed by Hepler jet a_l
have been superimposed. In these plots it should be noted

that C ” (H^) has been set equal to zero. If thispz
assumption was modified then the observed positions and

orders of the single ion values on the plots would be
a l t e r e d .
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4
The dependence of C on temperature, 273.15< T/Kpz

<373.15 over a range of g values was obtained from a 
FORTRAN program, based on the BASIC program shown in 
Appendix 8. The , temperature/# surface has been

included as Figure 12.5 and a program listing is given in 
Appendix 8.

4
When #<0, C can be seen to increase with increase pz

in temperature, however the effect of temperature steadily

decreases to the point at which for all temperatures, # and

are equal to zero. In the region 0< # <1.0, C! _ can pz ^ j _ _ pz
be seen to decrease with increase in temperature, however 
when #>1.0 the trend is once again reversed.

A second BASIC program for the HP 85 minicomputer 
(Appendix 8) was written to calculate the difference
C *(zf)-C ^(Z) using various combinations of #^ and #. pz p
Figure 12.6 shows the dependence on temperature of the 
configurational partial molar isobaric heat capacities for 
both the initial and transition states together with the 
difference i.e. the dependence on temperature on the molar

t  4
isobaric heat capacity of activation, p The
plotted curves are based on a calculation in which #^ and # 
have been arbitrarily set equal to -0.2 and 1.0 
respectively. This Figure illustrates how a maxima in 
A^Cp^(aq) emerges.

In a similar fashion to the above a BASIC program was
4

written which modelled the dependence of (i.e. V^(A=0)
-Vg(5 )) on # in the range -1.0< # <1.0 using the^eq

relationship described in equation [12.24]. Figure 12.7 

gives a graphical representation of this calculation on
4

which estimates of V for neutral aliphatic solutes inz
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terms of group contributions^^ have been superimposed. In 
addition to this, the 3 values obtained from Figure 12.2 
from the values of the same groups, have been added to
the plot. In all cases a shift along the 3 axis is noted.

12.6 Discussion
In discussing the trend observed in Figure 12.2 it is of
interest to note the experimental estimates of in

^ pz
terms of group contributions of neutral aliphatic solutes
scatter across 3 = 0 .  For the unimolecular solvolytic
reaction under discussion if 3<0 then the solvent
equilibrium shifts to favour the short bonded form, X water
species, whereas if 3>0 the solvent equilibrium shifts to
favour the long bonded form, Y water species. It is however
too great a generalisation to suggest that if 3<0 then a
structure breaking influence has been identified, likewise
if 3>0 a structure forming influence has been identified.
This is because the 3 parameter consists of two

contributing terms i.e. 3 = ^y“ ^x* example in a
situation in which 3>0, one can imagine two separate

situations which could arise, (i) 3y>0 and 13̂  ̂I < |3y| and
(ii) 3%<0 and |3^| > 13y I • In general terms reflects
the extent to which both forms of water are stabilised and
destabilised. Similar comments are valid for Figures 12.3
and 12.4 where once again experimental data, C *,pz
straddles across 3 = 0 .

Figure 12.7 shows the poor agreement between 3

parameters obtained from experimental and those

obtained from C This poor agreement is understandable,pz
00 ftbecause in identifying with (aq) it has been assumed

— 266 —



that is negligible. However, is an
intrinsic part of the molar volume and as such cannot be
regarded as negligible. A similar state of affairs is 
identified with Cpz

An attempt to derive an absolute scale for the heat 
capacities of ions in solution from ionic volumes^^ based 

on V ^ ” ( ;a q ; 298.15k ) = -5 cm^ mol” ^ proved unsuccessful,
the calculated heat capacities giving unacceptably large 

values for 3.

In comparing 3 values produced by the above 
quantities one is effectively comparing a first derivative 
and a second derivative of the chemical potential, the 
parent quantity itself being a first derivative property of 
the Gibbs function. The problem of comparison lies in the 

increasing degree of complexity required to define a 
quantity each time one differentiates away from the central 
property the Gibbs function.

A similar argument can be extended to the work of 
Abraham and Marcus^^ who have attempted to separate partial 
molar heat capacities of salts in solution into their 
contributing single ion values, using the TATB and TPTB 

(see Chapters 3,4 and 5) assumptions in which;

Cpz*(PhjP+;aq;298 K) = C “ (Ph^B ;aq;298 K)
= C "(Ph^As"^;aq;298 K)

Granted the success of such sub-divisions in obtaining

single ion values for V , and viscosity B2 J
coefficients^^'^^ (see also Chapters 3,4 and 5) one 
hesitates in developing such a broad treatment to the
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isobaric heat capacity of salts in solution.
Turning to Figure 12.6 in which a calculation of the

molar isobaric heat capacity of solution has been

attempted. The values of 3^ and 3 used in the analysis were

set such that 3^ is small and 3 > 0 which corresponds to a
polar transition state and an apolar intial state. In

describing the observed negative trend in the molar

isobaric heat capacity of activation A^C ^(aq) for thepz
unimolecular solvolysis of a solute Z two models have been 
suggested.

Robertson^ model used a three term equation, known as
the Valentier equation to calculate A^C * from collectedpz
kinetic data.

Ink = a^ + ag/T + a^lnT [12.43]

where a^, ̂ 2 , and a^ are used to calculate A^S^(T),
A^H^(T) and A^C * respectively at temperature T. Hencepz
A^C__* is obtained from the linear least squares fit of the pz ^
kinetic data to the above equation. The trends observed in
Figure 12.6 emerge from a dominant, positive C *(Z). If inpz
the limit C *(Z^;aq) = 0 and Cp” ( Z ; aq ) >0 then A^C ” (aq)<0. P pz

2Albery and Robinson argued, the isobaric heat capacity of 
activation is a temperature dependent phenomena and thus 
the three parameter Valentier equation used by Robertson 

was not strictly accurate. The argument progressed to 
suggest the reaction does not take place through a 
mechanism with one rate determining step. Rather it 

proceeded through an intermediate e.g. an ion pair. The 

following scheme was proposed;

— 2 6 8 —



kl kgA <.. > B    > c

Then = k^/(l + e) where a = (kg/kg). This scheme leads
to an apparent which is negative and depends on
temperature.

In the calculation shown in Figure 12.6 the sign and
magnitude of A^Cp^^ together with inverted bell shape of
the plot appear to agree with trends in A^C *(aq;T;p)pz

2calculated from the kinetic data using the Albery-Robinson

model. However it is difficult to ignore the role of the
solvent in determining both the sign and magnitude of the
molar isobaric heat capacity of activation. This gives rise
to the possibility that both the solvent equlibrium and
complexity in mechanism contribute to the observed trends
in A^C ^ , neither models accounting for trends observed in pz ^
the experimental data.

The calculations presented in this Chapter point to a 
method of understanding the effects of solvent on the 
isobaric heat capacity of activation.
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Section 1
Program MJB3 is written in Hewlett Packard BASIC for the HP 

8451a  diode array spectrophotometer. The program was used 
for the collection of absorbance and time data for kinetic 
analysis. The key to the arrays in line 70 is as follows:

P(5,100) - Dimensions array space for a maximum of 100
absorbance readings at up to 5 separate

wavelengths.

T(5,100) - Dimensions array space for the time readings 
at which absorbance readings were taken for 
each of the 5 wavelengths.

C(5) - Array contains the time step, C(l) i.e. the 
time between each absorbance reading and the 
total run time, C(2).

L(5) - Contains the wavelengths to be analysed.
N(20) - Dimensions array space for the number of

readings, N(l), and the wavelength limits 
between which the spectrophotometer scans.
Lower limit N(19) and upper limit N(20).

A summary of the main features of the program is given 
b e l o w .

Line 80 is an error trap. If an error occurs when the 

program is running then subroutine ERROR at line 870 is 

invoked. This routine prints out the line number at which 
the error has occurred and the error number. It also 
terminates any measuring process.

Line 100 takes the user to a section of the program 

(lines 480 - 780) in which the necessary information to
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conduct a run is entered into the spectrophotometer. The 
user is prompted to answer a number of questions. Line 530 
inquires how many wavelengths are to be analysed? Line 570 
asks what are the wavelengths to be analysed? Line 610 asks 
for the duration in seconds between absorbance readings? 

Finally lines 700 to 750 ask what are the wavelength 
boundries inside which the spectrophotometer should 
operate?

Lines 110 to 180 instruct the user to take a suitable 
reference run. This spectrum is automatically stored and 
subtracted from the spectra of the sample under study.

Lines 190 to 310 ensure the absorbance reading of the 
sample is taken at the specified wavelength (or 

wavelengths), at the interval dictated by the time step for 
the duration of the run calculated by the program as C(2). 
Absorbance and time readings are entered into arrays P and 
T respectively.

Line 320 terminates the absorbance and time measuring 
proc e s s .

Line 330 gives a copy of the sample spectra on the 
in-built thermal printer.

Lines 360 to 400 print out (or display) the collected 
absorbance and time data.

Lines 410 to 440 copy the absorbance and time data 
onto disk.
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FIVE LAMBDA

T(5,100),N(20>
870

RUN?"

M @ P(K,J)=VALUE(

10 ! MJ83 
2d ! FIRST ORDEF 
30 ALPHA 
40 ERASE STATUS 
50 OPTION BASE 1 
60 Y$="Y"
70 DIM PCS,100)

C C 5 >, L C 5 >
80 OH ERROR GOSUB 
90 J = 0 

100 GOSUB 480 
110 DISP "REFERENCE 
120 INPUT X$
130 IF X$#Y$ THEN 190 
140 DISP "REFERENCE READY?"
150 INPUT XT 
160 IF X*#Y$ THEN 140 
170 REFERENCE 
180 IF NMEAS=0 THEN 180 
190 DISP "SAMPLE IN SYSTEM?" 
200 INPUT X$
210 IF Xi#Y$ THEN 190 
220 OVERLAY N(19),NC20),0,2 
230 MEASURE 1,C(1),0,C(2)
240 SETTIME 0,0 
250 FOR 1=0 TO N(l)-1 
260 IF NMEAS=I THEN 260 
270 J=J+1 
230 FOR K=1 TO 

L ■: K ) )
290 GOSUB 800 
300 NEXT K 
310 NEXT I 
320 STOP MEASURE 
330 COPY
335 NC19)=0
336 DISP "PRINT DATA?" 

t
337 IF X$=Y$ THEN 
340 DISP "DATA"350 N<l)=NCl)-l 
360 FOR K=1 TO M 
370 FOR 1=1 TO N'l) STEP 1 
375 IF NC19)=1 THEN PRINT I

I),P(K,I)
380 DISP I,T(K,I),P(K,I)
390 NEXT I 
400 NEXT K
410 VOLUME ":D701" IS "MIKEl" 
420 ASSIGN# 1 TO "DATA.MIKEl" 
430 PRINT# 1 ; NC),P(),T(),L() 
440 ASSIGN# 1 TO t 
450 PRINT "DATA ON 
460 PRINT "THAT IS 
470 END 
480 CLEAR 
490 PRINT 
500 DISP '
510 INPUT 
520 PRINT

530 DISP "NUMBER OF WAVELENGTHS?

@ INPUT X
N C 19 ) = 1

TCK

DISC"
ALL, FOLKS"

0 PRINT "HELLO" 
"FIRST ORDER LOG" 
SYSTEM"
A$
"SYSTEM=",AS

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
310
320
330
940
850
860
370
380
890
900
910
920

L< I

INPUT M 
N(10)=M 
FOR 1=1 TO M 
DISP "WAVELENGHT/NM 
INPUT L C D  
PRINT "WAVELENGTH =
NEXT I
DISP "TIME STEP ?"
INPUT C C D
PRINT "TIME STEP=",C(D 
DISP "NUMBER OF READINGS?" 
INPUT Ncl)
C(2)=N(1)*C(1)
PRINT "RUN TIME=",CC2) 
NC1)=INTCCC2)/C(1))+1 
PRINT "NUMBER OF READINGS=" 
N C 1 >
DISP 
DISP 
INPUT 
DISP 
INPUT 
PRINT 
20)
DISP 
INPUT 
RETURN 
END
! TIME 
W=DATE 
IF W=0 
TURN 
y=TIME
TCK,J)=V+24*60*60*DATE 
RETURN 
END
! ERROR
PRINT "ERRN=",ERRN 
PRINT "ERRL=",ERRL 
PRINT "STOP MEAS"
GOTO 320 
END

"WAVELENGTH RANGE" 
"LOWER LAMBDA="
NC19)
'UPPER LAMBDA"
NC20)
"RANGE=",NC19),"TO" NC
OK?" 
XSt? IF XS#YS THEN 700

THEN TCK,J)=TIME @ RE

-274-



Section 2
Program MJB4 is written in Hewlett Packard BASIC. It's 
function was to read the absorbance/time data collected by 
program MJB3 and to use these data in a non-linear least 
squares analysis. From this analysis an estimated rate 
constant for reaction could be obtained. A brief summary of 
the main program routines is given below.

Lines 10 to 90 initialise the program and dimension
array space for the data used in the analysis.

Lines 100 to 170 read absorbance and time data from a

disk into the program (n.b. these data are those collected 
and stored by program MJB3).

Line 190 is a GOSUB statement which accesses lines 
1110 to 1330 of the program. In this section the user is 
prompted for an estimated rate constant, a guessed P^ and a 
guessed P^. These estimates are used in a non-linear least 
squares analysis (see Section 2.5 of Chapter 2). A facility 
for dropping data points from the analysis is also included 
in this section of the program.

Lines 200 to 270 set up arrays and variables for the
data analysis.

Line 280 is a GOSUB statement which accesses lines 
1350 to 1420 of the program. Line 1380 calculates P^ from 
the inputted guesses of P^, P^ and k (see equation [2.10] 
of Chapter 2) and line 1390 calculates the difference 

between an observed absorbance and the calculated 
absorbance, P^. The sum of the square of the residuals is 
calculated in line 1400.

Lines 300 to 320 contain the first call to a plotting 
routine contained in lines 1620 to 2110 of the program.

-275-



This call produces a plot of absorbance against time of the 
experimental data.

Lines 330 to 670 contain the non-linear least squares 

analysis discussed in Section 2.5 of Chapter 2. The 
procedure is iterative and either continues for 10 cycles 
or comes out of the analysis cycle when the sum of the 
square of the residuals is less than lxlO~^.

Lines 680 to 1090 output the information obtained 

from the analysis to the thermal printer. This includes the 

standard deviation on the absorbance, a rate constant and 

estimates of P and P . Two additional plots are available
Q  CO

in this section of the program. They are called from line 
830 and utilise the plot routine which starts at line 1620. 
The first plot compares the experimental absorbance/time 
curve with that predicted using the estimates of P^ 
calculated in the analysis. The second plot is a typical 
first order plot of In { ( P^-P^ )/( P^^-P^ ) } against time for 
both the experimental data and data calculated from the 
results of the non-linear least squares analysis. Standard 
errors on all of the calculated parameters are printed out 
in lines 930 to 950.
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102*530afl
506070
3090

1 00 
1 10 120 
136 140 
150 
1 60 
170 180

190
290
210220
230240
250
260270
280
290300
310
320330340
350
360
370
380
390
400
410
420
430440
450
460470
430
490500
510520
530

! MJ64 
CLEAR ALPHA 
0I3P 'HI"
DISP “GETTING DATA"
Y f = " Y “
i DATA ANALYSIS;FIVE LAMBDA 
OPTION BASE 1
DIM P •: 5 , 1 00 > , T ( 5 , 1 00 ) , N < 20 ) , 
L(5)
MASS STORAGE IS “ 0701“CRT OFF
VOLUME "=0701“ IS "MIKEl"
ON ERROR GOSUB 1570 
ASSIGN# 1 TO "DATA,MIKEl"

; N <) , P O  , T •: > , L O  
1 TO X

READ# 1 
ASSIGN# 
CRT ON 
DIM C<5> 100,3>,Q<100).Y <1
00 ) , A •: 3 ) , 2 < 1 > , V < 3, 3 > , U < 3, 1 00 >
GOSUB 1110
DISP "ANALYSIS UNDERWAY"FOR B=1 TO N(10>
N*;7>=0 0 N<8)=0 N< 1?)=0
IF L(B)=0 THEN 1090
PRINT "SET",E,"WAVELENGTH:",
l *:b )S = 0 
I=H(1)GOSUB 1350 
Nll5/=0
REDIM X(I,3),0(I),Y(I).W<3,I
DISP “PLOT DATA?" 0 INPUT
IF X$=Y$ THEN GOSUB 1620FOR K=1 TO 10
DISP "CYCLE",K
MAT Q=2ER0 MAT A=2ER
MAT X=ZER@ MAT Y=ZERGOSUB 1350
FOR J=1 TO N(l)
U=EXP(-(R*T(B,J))) e X(J,1)=
U
X(J,2)=1-U
X(J,3)=-(CC(l)-C(2))*T(B,J)t
U)NEXT J
MAT W=TRN(X)
MAT V=W*X MAT W=INV(V)*W 
MAT A=W*Y 
G=R+A(3)
IF G>0 THEN 530
PRINT "NEC RATE CONSTANT",GPRINT "INPUT WAS",R
OISP "FIT ABORT"
GOTO 190
R=G 0 C(l)=Cfl)+A(l) e C(2)= 
C(2)+A(2)

540 GOSUB 1350
550 OISP 'RK=“,R
560 DISP "SUM SQ RESIO=",S370 H<3>=S
530 F=ABS(N(8)-N(7))
590 F=100*F/N(8)
600 IF F<.1 THEN 670
610 NK7)=S
620 DISP "HAPPY"
630 INPUT X S  
640 IF X S = Y S  THEN 670 
650 IF S< 00001 THEN 670 
660 NEXT K
670 DISP "FIT COMPLETE"
680 DISP "DATA SUMMARY'?"
690 INPUT XSA M=0
700 IF X$=Y$ THEN M=1
7 1 0  DISP "PLOT RATE OATA^"
1̂ 20 INPUT X S «  L = 0 
730 IF X$=Y$ THEN L=1 740 IF M=0 THEN 780 
750 FOR J=1 TO N(l)760 PRINT J,T(J),P(J),Q(J),Y(J) 
770 NEXT J
730 S=(S/(N(l)-3))^(l/2)
790 PRINT "ST DEV ON ABS=",S 
300 PRINT "RATE CONSTANT:",R 
310 PRINT "P-ZERO:",C(1)
320 PRINT "P-INF=",C(2)
330 IF L:1 THEN GOSUB 1440 
340 MAT V=TRN(X)*X 
350 MAT V=INV(V)
360 ! DISPERSION MATRIX
370 MAT Q:X*A
330 MAT Q:Y-Q390 MAT Z:TRN(Q)*Q
900 Z(l)=Z(l)/(Nll)-3)
910 PRINT "ST 0EV:",Z(l)-(l/2)920 MAT V=(Z(1))*V
930 PRINT "ST ERROR ON P-ZERO=".

V(!,!)-(1/2)940 PRINT "ST ERROR ON P-INFIN: 
",V(2,2)-(l/2)950 PRINT “ST ERROR ON K=",V(3,3 >-U/2>960 DISP "PRINT VAR-COVAR MAT?" 

970 INPUT X S
930 IF X S = Y S  THEN MAT PRINT V 
990 DISP "CORR. COEFF?"
1000 INPUT XS1010 IF X S # Y S  THEN GOTO 1070 
1020 FOR K:1 TO 3 
1030 FOR L:1 TO 3 1040 S=V(K,L)/(V(K,K)*V(L,L))^(! 

/2 )1050 PRINT K,L,S 
1060 NEXT L 3 NEXT K 
1070 NEXT B
1030 DISP "THAT IS ALL,FOLKS" 
1090 PRINT "THAT IS ALL,FOLKS"
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1 10 0  1 lie 
1 1 2 0

1130
I 140
II 50
1160 
i 170 
1 180 
1190 
1200 
1210 
1220 
1230
1240
1250
1260
1270
1230
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620

END
PRINT
DISP
N(18)
PRINT
0)
PRINT
PRINT

"HELLO AGAIN"
RUN NUMBER?" @ INPUT
"NO.WAVELENGTHS:",N ( 1
"RUN =",N(18)
"NUMBER OF DATA POINT 

S=",N(1)
DISP "GUESSED RK"
INPUT R
PRINT "EST K=",R 
DISP "GUESSED P-ZERO="
INPUT C(l)
DISP "GUESSED P=INFIN=" 
INPUT C(2)
PRINT "P-2ER0=",C < 1),"P-INF 
IN=",C(2)
N(1)=H(1)-1
DISP "DROP POINTS?"
INPUT XS 
Q=0
IF X$#Y$ THEN 1310 
DISP "POINTS DROPPED:"
INPUT Q 
N < 1>=N<1)-Q 
I=N<1>
RETURN
END
! CALC 
S = 0
FOR J=1 TO N(l)
Q(J)=(C(1)-C(2))*EXP(-(R*T( 
B,J)))+C(2)
Y(J)=P(B,J)-0(J)
S=S+Y(J)*Y(j)
NEXT J 
RETURN 
END
! PLOT DATA
N(19)=l
N(15)=0
DISP "COMPARISON PLOT?" i? I 
NPUT XS
IF X$#Y$ THEN 1510
N(15)=0
GOSUB 1620
DISP "FIRST ORDER PLOT?" @ 
INPUT XS
IF X$#Y$ THEN 1550
N(15)=l
GOSUB 1620
RETURN
END
! ERROR TRAP 
PRINT "ERRN=",ERPN 
PRINT "ERRL=",ERRL 
DISP "ERROR"
STOP
! PLOT DATA

1630 
1640 
1650 
1660 
1670 
1680
1631
1682
1690
1700
1701
1702 
1710 
1720 
1730 
1740 
1750 
1760
1770
1780
1790
1800
1810
1820
1830
1831 
1840 
1850 
I860 
1870 
1880 
1890
1900
1901
1910
1911 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 2000 2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 2100

M = B
GCLEAR
IF N<15)=0 THEN 1730 
DISP "FIRST ORDER PLOT"
FOR K=1 TO I
P(M,K)=(P(M,K)-C(2))/(C(1)- 
C(2) )
IF P(M,K)<0 THEN P(M,K)=0 @ 
GOTO 1690 

P(M,K)=LOG(F(M,K)) 
P(M,K)=ABS(P(M,K)) 
Q(K)=(0(K)-C(2))/(C(1)-C(2) )
IF Q(K)<0 THEN Q(K)=0 & GOT 
0 1710
Q(K)=LOG(Q(K))
Q(K)=A6S(0(K))
NEXT K 
G=AMAX(0)
LORG 5 
G=G+G/10SCALE -(T(M,I)/10),T(M,I)+T 
(M,I)/10,-(G/10),G+G/10 
H=T(M,I>/10 
XAXIS 0,H,0,T(M,I)
H=G/5
YAXIS 0,H,0,G 
PENUP
MOVE T(M,1>,PCM,1)
FOR K=1 TO I
IF PCM,K)=0 THEN GOTO 1860 
MOVE T(M,K),P(M,K)
LABEL "+"
NEXT K § PENUP 
IF NC19>=0 THEN 1920 
MOVE TCM,1),Q(1)
LINETYPE 1 
FOR K=1 TO I
IF Q(K)=0 THEN GOTO 1911 
DRAW T(M,K),Q(K)
NEXT K 
PENUP 
LDIR 90 
H=T(M,I)/5
FOR K=H TO TCM,I) STEP H
MOVE K , .1
Z=INT(K)
LABEL VAL$(Z) @ NEXT K
LDIR 0H:G/5
FOR K=H TO G STEP H 
MOVE TCM,I)/10,K 
Z=INTC100*K)/100 
LABEL VAL$CZ)
NEXT K
SCALE 0,100,0,100 
MOVE 50,50
LABEL "RUN N0.",VAL$CNC18))
FRAME
COPY .

2110 ALPHA @ RETURN 
2120 END
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Section 3
This HP BASIC program, AWHl, was written to run on the 

in-built HP 85A computer of the Hewlett Packard 8451A diode 

array spectrophotometer. It's purpose was to produce a scan 
of a given sample in the region 190 to 820 nm and to report 
the peak positions at which maximum absorbance occurred. 
Line 30 of the program initialises the spectrophotometer. 
Lines 50 to 110 give the user the option to take a scan of 
some suitable reference - this spectrum is automatically 

stored and then subtracted from the sample spectrum. Lines 
120 to 170 take the spectrum of the sample under study. In 
lines 171 to 180 the PEAK# command is used to return the 
wavelength and absorbance readings of the 20 largest peaks 
within the spectrum. Finally line 190 gives a hard copy of 
the sample spectrum and the results of the PEAK# procedure 
on the in-built thermal printer.
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10 ! AWHl
20 ! LAMBDA SCAN
30 ERASE STATUS
40 OPTION BASE 1@ GOSUB 220
50 OISP "REFERENCE REQUIRED?"
60 INPUT Yf
70 IF Y$#"Y" THEN 130
30 DISP "REF CELL IN POSITION?"
35 INPUT Y$
90 IF Y$#"Y" THEN 80 

100 REFERENCE 
110 IF NMEAS=0 THEN 110 
120 DISP "SAMPLE IN POSITION?" 
130 DISP "CELL IN PLACE?"
140 INPUT Y$
150 IF Y$#"Y" THEN 120 
160 MEASURE 1
164 PRINT "NO.";" LAMBDA ";"ABSO 

RBANCE"
170 IF NMEAS=0 THEN 170
171 PEAK FIND
172 CALCULATE
173 FOR X=1 TO PEAK#(0)
174 PRINT %;;;PEAK#(X);;;VALUE(P 

EAK#(X))
176 NEXT X
180 STOP MEASURE
190 COPY
200 DISP "END OF RUN"
210 END
220 A$="HELLO"
230 CLEAR 
240 PRINT A$
250 PRINT "AWHl"
260 DISP "SYSTEM IS "
270 INPUT B$
290 RETURN
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Section 4
Program ANDY3 is written in HP BASIC and was used to give a
linear least squares fit of a given set of data. In the
example set up in the program below the equation y = a^ +

^ 2^ is solved for a^ and a 2 . In matrix form this problem
can be written as;

yi =1 1

^2 =2 1 Xj

^3 1 X3
• •

yn

Y e X
where n sets of data are available for analysis.
0 can be calculated by performing the matrix operations 
shown in equation |1| on matrices X and Y.

T -1 T 0 = (X^X) X^Y |1

T — 1where X is the transpose of matrix X and ( ) refers to

the inversion of a matrix.
Turning back to the program, line 80 contains the

data which is read by line 100 into matrix Y and line 90

contains the data which is read into matrix X. Lines 110 to
190 calculate matrix g using equation |1| and print out the

results.

The variance of the fit can be calculated from 
equation |2 |.
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= (n-0) 1(Y-XP)T(Y-XP) |2|

where n refers to the numbers of data points in the 
analysis and 0 is the number of unknowns to be estimated. 
The standard deviation is thus given as the square root of 

the variance. Lines 200 to 340 of the program use equation 
2 to produce an estimate of the standard deviation.

The variance-covariance matrix is used to find the 

variances of the estimated parameters. The matrix is 
calculated from equation |3|.

where V is the dispersion matrix, which is defined by 
equation |4 | .

V = (X^X)  ̂ I 4

The variances of the estimated parameters are obtained from 
the diagonal of the matrix 0. Lines 350 to 450 of the 
program carry out these operations.

Finally lines 460 to 490 calculate the residuals i.e. 
the calculated Y values (obtained using the estimated 

parameters) are subtracted from the values entered into 
matrix Y at line 80.
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10 i ANDY 3 
20 OPTION BASE 1 
30 CLEAR
40 PRINT "LEAST SQUARES FITTING 
50 PRINT
60 DIM Y(5),X(5,2),V(2,2)
70 DIM U(7,7),S(2>,D(1),T(5)
30 DATA 000018243,000096573,

00019156..0002788..0003598 
90 DATA 1,.001,1,.005,1,.01,1,

015.1..02 
100 MAT READ Y ,X
110 MAT U=ZERG MAT 3=ZER 
120 MAT U=TRN(X)*X 
130 MAT U=INV(U)
140 MAT U=U*TRN(X)
150 MAT 5=U*Y
160 PRINT "-------------------------
i70 PRINT "CALCULATED 8"
130 MAT PRINT S
190 PRINT "----------------
200 PRINT "ESTIMATED VARIANCE"
210 DISP "HOW MANY DATA POINTS?"
220 INPUT N
230 N=N-2
240 REDIM U<7,1)
250 MAT U=X*S 
260 MAT U=Y-U 
270 MAT D=TRN(U)*U 
280 MAT D=(1/N)*D 
290 MAT PRINT D
300 PRINT "-------------------------

w  mim mm
310 PRINT "STANDARD DEVIATION" 
320 F=SQR(D(1>)
330 PRINT F
340 PRINT "-------------------------
350 PRINT "VARIANCE/COVARIANCE M 

ATRIX"
360 MAT V=TRN(X)*X 
370 MAT V=INV(V)
380 F=F^2 
390 MAT V=(F)*V 
400 FOR 1=1 TO 2 
410 Z=SQR(V(I,I))
420 PRINT
430 PRINT "STANDARD ERROR";I:Z 
440 NEXT I
450 PRINT "-------------------------
460 MAT T=X*S 
470 MAT Y=Y-T 
480 MAT PRINT Y
490 PRINT "_________________________
500 END
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Section 1
In calculating the transfer parameter for , Wells
imagines a solution containing 1 mole of H^X , n^ moles of 

water and 1X2 moles of alcohol, ROM. At equilibrium 1 mole 
of hydrogen ions is present in the form a mole of ROHg^ and 
(1-a) mole of HgO^. If 1 = H^O and 2 = ROM and is used
to represent some solvated proton species then;

G(system;T) = ( n^-l + a)/y^ ( system;T) + ( n 2 - a ) / / 2 ( system;T)
+ ayw( R0H2^ ; system;T) + ( 1-a)//( ; system ; T )
+ /y ( X" ; system; T) [3.1.1]

The following hypothetical process is decribed for 1 mole 
of hydrogen ions.

[HgO^;aq;T]  > ( 1-a) ( H^O'*’; sin ; X 2  ; T ] + a[ R0H2^ ; sin ; X 2  ; T )
[3.1.2]

Hence the transfer chemical potential describes the 
following comparison;

^^(HgO^;aq;T) --- > ( l-a)/L/^ ( H^O^ ; sin; c-scale ;X 2 ;T)

+ a/y (ROH 2  ; sln;c-scale ;X2 ;T)

A transfer chemical potential can thus be written;

A(aq->X2 )/y (H^O ; c-scale ; sin ; T ) =
[(l-a)/y (HgO ; sin ; c-scale ; X 2  ; T )

+ a/y (ROH 2 ; sin ; c-scale ; X 2 ; T ]
- (H^O ; c-scale ;aq;T)
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= [^^(H20^;sln;c-scale;x2;T) - ( H^o"^ ; c-scale ; aq ; T ) ]
+ a[//^ ( R 0 H 2 ^  ; sin; c-scale ; X 2 ; T ) - /y^ ( ; sin ; c-scale ;X 2  ;t J

[3.1.3]

In the absence of any chemical complexity a is zero and 
hence the transfer quantity can be calculated using the 

Born equation to determine the first term on the right hand 
side of equation [3.1.3]. Hence^;

# ,

A(g->sln)/ty (H^O ; Born ; c-scale ; sin ; T )
= -[(Nz.^e^)/(8nr.^E^)](l-(l/E^)) [3.1.4]

where N is Avogadro's number, z^ is the charge number of 
ion-j, e is the electronic charge, r ̂ is the radius of 
ion-j and is the relative permittivity of the solvent in 
which ion-j is dissolved.

This however is only one contribution to the total 
transfer chemical potential of the ion, and attention in 
the analysis switches to the second term on the right hand 
side of equation [3.1.3]. Turning back to equation [3.1.1], 
if the system is dilute in H^X~" then (n^-l + a) = n and 
(n2 ~a) = n 2 . A chemical equilibrium involves H^O^, R0H2^,
H 2 O and ROH;

+ ROH < > ROH 2 '*’ + H 2 O

= > /y®^( H^O^ ; system;T) + /y®*̂  ( ROH ; system ; T )
= /y®^(R0H2^;system;T) + yty®̂  ( H 2 O ; system; T ) [3.1.5]

The system can be described as a solution of solutes 
R0H2^X and H^O^X in a solvent comprising 'H2 O + ROH'. If 

the system has volume V at fixed temperature T and pressure
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p(=p ) then c(R 0 H 2 ^) = [n(R 0 H 2 ^)/V] and c(HgO^)
[n(HgO^)/V]. Hence using 1 mole of H^X , c(R0H2^) = (a/V)
and ctHgO^) = [(l-a)/Vj.

^^(HgO^;c-scale;x 2 ;sln;T) + RTln[ ( l-a)y ( H^O'*’;X2 )/Vc^ ]

+ fj (R0H;1;T) + RTln(X2f2) =
p*(R0H2^;c-scale;x2;sln;T) + R T l n [ a y ( R 0 H 2 ^ ;X 2 ) / V c ]

+ /w °(H20;1;T) + RTln(x^f^) [3.1.6]

By definition the change in the Gibbs function for equation

[3.1.5] is given by equation [3.1.7].

A^G^( c-scale) = ( R0H2^ ; c-scale ; X 2  ; T ) + // (H20;1;T)
- ( H^O'*’; c-scale ;X 2 ; T ) - /j (R0H;1;T) [3.1.7]

= - RTlnK^(c-scale; sin ;X 2 ;T )

u
where K (c-scale; sin ;X 2 ;T ) is an equilibrium constant 
Hence ;

/ŷ  ( R0H2^ ; c-scale ; sin ; X 2 ; T ) - /ŷ  ( H^O^ ; c-scale ; sin ; X 2 ; T )
= -RTlnK^ ( c-scale ; sln;X 2 ;T) + [/y (R0H;1;T) - yu (H^O^l;?)]

[3.1.8]
Equation [3.1.8] describes the difference between the 

chemical potentials of the solutes R 0 H 2 ^ and H^O^ in a 
solvent 'ROH + H 2 O' which contains X 2 mole fraction ROH, 
and where c. = 1 and y . = 1 for j = HUO* and ROH_*.

3 3 J z

(c - s c a l e ; sin ;X 2 ;T ) = [a y (R0H 2^ ;X 2 )(I-X2 )f (H 2O )]
/ [(l-a)y(H20+;X2)x2f(R0H)] [3.1.9]
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Turning now to equation [3.1.3] Wells uses equation [3.1.8] 
to calculate the difference between the chemical potentials 
of ROHg^ and to provide a second part to the transfer

chemical potential of . However an extrathermodynamic
o

assumption is made in which fj (R0H;1;T) is set equal to
o

fj (H20;1;T). Hence;

//̂  ( R0H2^ ; c-scale ; sin ; X 2 ; T ) - //̂  ( H^O^ ; c-scale ; sin ; T )
= -RTlnK^(c -scale; sin ;X 2 ;T ) [3.1.10]

Thus equation [3.1.3] can be rewritten in the form;

A(aq->X2 )/y (HgO ; c-scale ; sin ; X 2  ; T ) =
A( aq ^ ^ 2  ) /̂ ( H^O ; Born ; c-scale ; sin ; T )

+ a[-RTlnK^(c -scale; sin ;X 2 ;T )] [3.1.11]

The validity of this extrathermodynamic assumption is 
dou b t f u l ^ .
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Section 2
Accepting the extrathermodynamic assumption identified in 
Section 1 of this Appendix, the next stage of the Wells 

analysis is to calculate a and K (c-scale;sln;x 2 ;T) by 

experiment. A spectrophotometric approach is used to study 
solutions containing H^X , H^O, and MeOH together with a 
base, B, p-nitro aniline. Two equilibria are envisaged in 
these solutions;

and
(a) B + < ‘> BH^ + H 2 O

(b) B + R0H2^ <  > BH'^ + ROH
These equilibria can be described using two different 
approaches. Description 1 assumes that the system is an 
aqueous solution whilst description 2 identifies a 
situation in which the solutes HgO^, R0H2^ and B are in a 
solvent mixture composed of 'H^O + ROH'.

Description 1
iL

Equilibrium constants K ( c - s c a l e ; s l n ; T )  for (a) and (b) are 
defined using equations [3.2.1] and [3.2.2].

K*^(c-scale;sln;T)(a) = [ c ( B ) c ( Ĥ O"*" )/c ( BH ”̂ ) x^ ( H 2 O ) ]
[yl(B)yl(H20+)/yl(BH+)f(H20)] [3.2.1]

K*^(c-scale;sln;T)(b) = [c(B)c(R0H2^)/c(BH+)c(R0H)]

[yl(B)yl(H g O ^ )/ y ^ (BH^)y ^ (R O H )] [3.2.2]

Activity coefficients for these equilibria under 
description 1 are thus defined as;
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F^(a) = [yl(B)yl(H20+)/yl(BH+)f(H20)] [3 .2 .3 ]

F^(b) = [yl(B)yl(R0H2+)/y^(BH+)yl(R0H)] [3.2.4]

The ratio of the equilibrium constants is given by equation
[3.2.5].

sln;c-scale;T)(b)/K^^(sln;c-scale;T)(a) = 
[c(R0H2^)x^(H20)/c(R0H)c(H20+)]

[y ^ (R 0 H 2 ^ )f (H 2 O )/ y ^ (R O H )y ^ (H ^ O ^ )] [3.2.5]

Description 2
Equilibrium constants for (a) and (b) are defined under 
description 2 by equations [3.2.6] and [3.2.7].

K* 2 ( c-scale ;sln;T)( a) = [ c ( B ) c ( H^o"^ )/c ( BH"^ ) ( H 2 O ) ]
[y2(B)y2(H20+)/y2(BH+)f(H20)] [3.2.6]

K* 2 (c-scale;sln;T)(b) = [ c ( B ) c ( R0H2 ‘̂ )/c ( BH"^ ) X 2 ( ROH ) ]
[y2(B)y2(HgO^)/ y ^ (B H ^ )f (R O H )] [3.2.7]

The activity coefficients are thus defined as;

F^(a) = ty2(B)y2(H20+)/y2(BH+)f(H20)] [3.2.8]

F^{b) = [y2(B)y2(R0H2*)/y^(BH+)f(R0H]] [3.2.9]

The ratio of the equilibrium constants is given by equation 
[3.2.10].
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K ^ 2  ̂ sin ;c-scale;T )(b )/K^ 2  ̂ sin ;c-scale;T )(a )
[c (R 0 H 2 ^ ) ( H 2 O )/ X 2 (R O H )c (H ^ O ^ )]

[y2(R0H2^)f(H20)/f(R0H)y^(H20+)] [3.2.10]

Wells^ defines two quantities;

= [f(B)f(H20+)/f(BH+)f(H20)] [3.2.11]

and
F 2 = [f(B)f(R0H2+)/f(BH+)f(R0H)] [3.2.12]

The ratio (F^/F 2 ) is thus defined by equation [3.2.13].

(F 1 / F 2 ) = [f(R0H)f(H^0 ‘̂) ]/[f(H20)f(R0H2'^) ] [3.2.13]

Using equations [3.2.3], [3.2.4], [3.2.8] and [3.2.9] the
ratios of the activity coefficients for description 1 and 
for description 2 are given by equations [3.2.14] and 

[3.2.15] respectively.

(F^(a)/F^(b) ) = [yl(R0H)yl(H20+)] / [ f ( H 2 O )y^ ( R0H2 ‘̂ ) 1
[3.2.14]

(F^(a)/F^(b) ) = [f(R0H)y2(H20+)] / [ f ( H 2 O ) y^ ( R0H2 ‘̂ ) ]
[3.2.15]

Wells states that at low % 2 , F^ = 1.0 and (F^/F 2 ) remains 
at unity. These assumptions are consistent with equation 

[3.2.14]. In a given system the ratio y^ ( H^O^) / y ^ (R 0 H 2 ^ ) = 
1.0 and in dilute aqueous solution y(ROH) = 1.0 and f(H20) 

= 1.0. Therefore Wells appears to have switched his
description of the system to that of an aqueous solution 
from description 2, which he started with. In terms of
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description 1 K (c -scale;s l n ;T ) and A^G would be found to 
be independent of the amount of ROH in the system. Tansfer 
chemical potentials can not be calculated using this 
description. Only description 2 is applicable. Furthermore 

at x(ROH)>0.1 the ratio (^1 / ^ 2 ) can no longer be unity, 
because y(ROH) is no longer close to unity.
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Section 1 

Example (i )
From equation [8.20];

d[-m2*] + 1 + m2d[lny^] = 0

or d[m 2 (l-*)] + d[lny+] = 0

= >

or

r " 2 r™2
Jd[m2(l-*)] =

l-t = -( l/m2 )Jm2d[ Iny^ ] 

r"'2
= > <[>-1 = ( I/IÏI2  )

Example (ii)
-d[ m 2 ( <f>-l ) ] + m^dlny^ = 0 

or -(<|>-I)dm2 - m^d* + m^dlny^ = 0

= > - ( (f>-l ) ( dm2/m2 ) - d<f> + dlny^ = 0

m 2

= >

r'^2 r'^2 pf^2

J d l n y ^  = y d *  + J  ( <|)-1 ) ( dm2/m2 )

/
m2
( <J>-1 )dlnm2
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Section 2
r^2 1 o

>-l = (l/m^) / m 2 [-|z^z_|S^(I-"/ /m )]

For a 1:1 sait;

Hence ;

r'"2 1/2 0
• -1 = [ - Iz^z_|/m 2 ] /m2 d(m 2 /m )

+-1 = [-|z+z_l/m2]S
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Section 3
Where Iny^ is defined by equation [7.24]; let x = 
and k = |z^z_|(S ^ / b ).

=> dlny+ = [-kx/( 1 + x )]dx

= -k[(l/(l+x7) - (x / ( 1 + x )^ )]dx

= -kdx/(l+x)^
Hence ;

(1-+) = (k/x^)Ax^/ ( l + x ) ^ ) d x
Vfl

=> (1-+) = (k/x^)((l+x) - (l/(l+x)) + 21n(l+x)l

In a form analogous to the limiting law;

(1-+) - (kx/3)t(3/x^)t(l+x)-(l/(l+x))+21n(l+x)ll
Hence ;

(1-*) = [(|z^z |Sy)/3b][b(m2^/^/m )]a(x)
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Section 4
-mg
/(*-

Jr\

+ f[-|z+z |A,ll/2/(l+bll/2)|dlnm 
'/Q

with dlnm = (dm/m) = (dl/I)

=> Iny^ = I-|z^z |A.ll/2y(i+bil/2)j 
± + - 9 -I

- |z+z_|A* I (Î V̂(l+bÎ /̂ )l(dI/I)

Let X = and dx = (b/2)l^/^dl

dl = (2/b)I^/^dx = (2/b)(x/b)dx = (2/b^)xdx

ri r i
dl = /[ll/2/(l+bll/2)][di/i] =

•Jq Jn

■ r

I.

dl = /  (b / x )(l/(1+x))(2 / b ^ )xdx

X
dl = (2/b) / (dx/(l+x)] = (2/b)ln(l+x)

dl = (2/b)ln(l+bll/2)

Hence ;
1/2 _ 1 ,k t 1/2Iny^ = [-|z^z_|A^I  ̂ /(1+bI  ̂ )]

- Iz^z_IA^(2/b)ln(1+bI^^^)
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Section 5
o

For 3 ;
/

'"2 
(*-:

u

= > lny+(^ ) = + / m21 ( 2 )/v ] 3 ( dm2/m2 )
•^0

= 2m2[(2v^v^)/u]3

For 3 ^;

From Section 2;

Iny = 2m_(umu /v)3^exp(-am_^/^)± Z X zr"2 1 1/2
+ / 2m2 ( v m u ^ / u ) 3 exp(-am2 )dlnmi2 

•̂ 0

1 1/2 = 2 m ~ (umv^/u)3 exp(-am_ ' )^ ^ r”'2
+ 2(vmu^/v)3^ / exp(-am 2 ^^^)dm 2  

''o

let -am2^/^ = -(1/2)X (a/m 2 ^ ^ ^ )dm = dx

> d m 2  = (- 2 /a) m 2 ^^^dx = (- 2 / a ) (-x/a)dx = (2/a^)xdx

I = 2(v^u^/u)3^ f (2/a^)xexp(X)dx

> I = 2( Vjj^u^/u) 3^( 2/a^ ) [ exp( x) [ x-1 ] ]

> I = 2(u^v^/v)3^(2/a^)[exp(-am2^/^)[-am2^/^-l]]
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=> I = 2 ( 3 ^ ( 2 / a ^ )[e x p ( )(- a m ^^^-1)+l] 

Applying this to the equation for Iny^^^^^;

lny+^^^^ = 2 m 2 (vmu^/u)3^exp(-am2^^^)
+ 2 ( v^u^/u) 3^ ( 2/a^ ) [ exp(-am2^/^ ) ( -am2^'^^-l )+l ]

= 2(u^u^/u)m2[3^exp(-am2^/^)
+ 3^(2/a^m_)[exp(-am_^/^)(-amg^/^-l) + 1]]

= 2 (u^u^/u)m 2 ( (2 3^/a^m2) {1-exp (-ani2 ^^^ ) 
[l + am2^'^^-(a^m2/2) ]} ]
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Section 6
From Section 1;

Iny^ = ( + I (*-l)dlnm2

Then ;

+ / ' m V [ 2 { ( v ^ v / 3 / 2 / „ ) ) C * ^ ^ d l n m 2
Jn

+ l2((v„ v ^ ) ^ / V v ) ) C * „ ^  fmzdm,
*̂0

= ( 3 / 2 ) ( m / l 2 ( ( v ^ v / = ' / V v ) l C + ^ ^ )
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Section 7
(i ) The f term
From equation [7.38];

um2 [!-<!> + lny+] = [G^/RT]

Hence using equations [7.36] and [7.37];

> [Gf/RT]f"term  ̂ -um2[ | z^z_ | (m2^^^/{ l+bm2^'^^ ) )
-  |z^z_|A^(m2^/^/(l+bm2^/^))

- Iz^z_IA^(2/b)ln(l+bm 2 ^ ^ ^ )]

= um 2 [- Iz^z_1A ^ ( 2 / b )ln(l+bm^^^^)]

(ii) The 3 term
Using equations [7.38], [7.36] and [7.37];

[Gg/RT]3 = um2[-2m23 

Hence from equation [7.39];

= > - vm2(2ni2P°(v„v^/v)]

(i i i ) The 3^ term
Using equations [7.38], [7.36] and [7.37];

[G^/RT]^^ = um2[[2m2(u^u^/u)3^exp(-am2^/^)]
{2m2(v^v^/u)}[(2 3^/a^m2) 
(l-exp(-am2^^^)[l + am2^/'^-(a^m2/2) ]} ] ]
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= ){l - e x p ( )[1 + 0 ^ 2 ^^^]}1

From equation [7.39];

[(2 P^a^m2){l-exp(-*m2^/^)I I } I

= > Bmx^^ = ( 2 p^/a^m 2  ) {l-exp(-otm2 ^^^ ) ( l+ani2 ^'^^ 1 )

goIn summary, the combination the two terms for B ^ andmx
61B„„^ results in an overall B term for the excess Gibbs mx mx

function, equation [7.39].

®mx - G° + [2 p^/a^m 2 ]{l-exp(-am 2 ^/^)(l + am 2 ^'^^n

( i v ) The C te rm 
From equation [7.38];

um 2 [l-<f> + lny+] = [cf/RT]

and from equation [7.39];

Hence using equations [7.36] and [7.37];
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= ’«'"2 '”'2^ ' < %''x > '

But u^lz^l = u^z^; then u^|z^z^| = v ^ z /

Hence ;

The equation for the excess Gibbs function can thus be 
written in full as equation [7.40].
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Appendix
4



Section 1
The listing below contains the main subroutines of the 
FORTRAN program PROJECT. This program was written to 

calculate pairwise group interaction parameters from 
osmotic coefficient data for ammonium, alkylammonium and 
azoniaspiroalkane halide salts.

The subroutine at the head of the program sets up key 

variables for the analysis and contains calls to other 
parts of the program. The main subroutine however is 

subroutine XION. Key arrays to be identified in this 
section are;

x m 2 (i ) - contains the molality of the salt. 
gam2(i) - contains the activity coefficients of the 

salt,
xphi(i) - contains the osmotic coefficients of the salt,

xni(ict,i,j) - contains the number of known specific
pairwise interaction parameters for each 
s a l t .

y(ict) - contains the Y matrix used in the minimal 
least squares analysis. 

x(ict,i) - contains the X matrix used in the minimal 
least squares matrix.

In subroutine XION, shown in the listing below, only 

three salts, ammonium bromide, terabutylammonium bromide 

and 6.6 azoniaspiroalkane bromide have been included to 
give a feel of how the analysis was set up. In the full 
analysis subroutine XION contained 27 salts.

Consider the tetrabutylammonium bromide salt within 

this subroutine. The commented section details how the salt
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can be broken down into it's constituent pairwise 
interactions. The variable 'PIG' contains the name of the 
data file (in this example 'data5.dat') used in the call to 
subroutine SALT. This subroutine accesses the data file
specific to tetrabutylammonium bromide which contains 

molality, activity coefficient and osmotic coefficient data 
for the salt in aqueous solution at 298 K. In the case of 
the azoniaspiroalkane halides subroutine WSALT is accessed. 
This subroutine differs from subroutine SALT only in the 

fact that osmotic and activity coefficient data has to be

calculated from a set of equations. Hence data files for

the azoniaspiroalkane halides contain parameters for these 
equations.

Within subroutine SALT (and WSALT) there is a call to 
subroutine PIZ. This subroutine is used to calculate

o
Pitzers (3 parameter from the osmotic coefficient data (see
equation [7.34] of Chapter 7) using the method of linear
least squares, subroutine XLSQ. Hence on successful
completion of subroutines SALT (or WSALT) and PIZ the

0
program returns to subroutine XION with a value for (3 .

o
Multiplying 0 by 2RT gives g(salt) (see equation [8.2] of 
Chapter 8) and once g(salt) is known it is possible to form 
an equation for the unknown pairwise interactions. A Y 

matrix is formed by subtracting the known pairwise 
interaction parameters from g(salt) (in this case the 

Savage-Wood interaction parameter for (CHg-CHg), and for 
tetrabutylammonium bromide there are 324 such
interactions). The X matrix is formed from the number of 

unknown pairwise interaction parameters for the salt.

In the full analysis this procedure is repeated for
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each of the 27 salts. At the end of subroutine XION the Y 
and X matrices are solved for the unknown pairwise 
interaction parameters using a minimal least squares 
procedure, subroutine YLSQ. A linear least squares 

procedure proved unsuitable because of the structure of the 

d a t a .
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c

program project
implicit double precision(a-h,o-z) 
common/1inda/f i at 
common/frog/flag
common/mike/xm2(40),ge(40),gam2(40),xphi(40),g s (40) 
common/kei th/betaO(100) 
common/anne/rg,tk,int
common/andy/a i(50,50),xni(60,40,40),yi(50) 

******************************************************
c * betaO( ) in keith for betaO parameter
c * ge = excess Gibbs function for
c * solution in 1 kg of water
c * xphi = osmotic coefficient
c * xm2 = molality of salt
c * gam2 = mean ionic activity coefficient
c * ai(i,j) = total set of interaction parameters
c * xni(i,j,k) = in solute i
c * number of group k-j interactions
Q *****************************************************
c * rg = gas constant tk / kelvin = temperature
c

rg=8.31434 
tk=298.15 
f i at = 0 . 0 
call head 

call xion 
c * *
c * subroutine xion analyses first 27 salts
c * *
c * construct output array
c

wr i te(6 , 90)
90 format(lh ,lOx,'*** Output Data To Data File ***')

open(unit=7,file='apar.dat',status='old') 
do 100 i=l,50
write (7,*) (ai(i,j),j=l,50)

100 continue
wri te(6,95)

95 format(Ih,lOx,'* * Data Over To Data File **')
wr i te(6,10)
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10 formaitIh ,20x,'That is all folks') 
end
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subroutine xion
implicit double precision(a-h,o-z) 
common/frog/flag 

common/kei th/betaO(100)
common/mike/xm2(40),ge(40),gam2(40),xphi(40),gs(40) 
common/anne/rg,tk,int
common/andy/ai(50,50),xn1(60,40,40),yi(50) 
dimension y(200),x(200,40),a(40,l) 
character*50 pig

c * jan = 0 ; normal least squares
c * jan = 1 ; special least squares for systems
c * with singular w-matrix
c * enter jan here
Q ********************************************************
c * y(i) is input to least squares
c * x(i,j) i= data points
c * j = savage-wood parameter
c * xml = molar mass of water
c *******************************************************

jan=l
x m l =  0 . 0 1 8 1 5

c **********
c * clear arrays
Q * * * * * * * *

m=0
jone=0
do 10 i=l,50 
do 11 j=l,50 
ai(i,j)=0.0 

11 continue
10 continue

do 13 i=l,40 
xm2(i )=0.0 
gam2(i )=0.0 
xphi(i )=0.0 

13 continue
do 20 1=1,200 
y(i ) = 0.0 
do 21 j=l,40
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21
20

30

33
32
31

x(i ,j )=0 . 0
c o n t i n u e

c o n t i n u e

do 30 i=l,40
a(i,l)=0.0
c o n t i n u e

do 31 i=l,40
do 32 j=l,20
do 33 k=l,20
x n i ( i , j , k ) = 0 . 0

c o n t i n u e

c o n t i n u e

c o n t i n u e

**********************************************************
*  s a v a g e - w o o d  a n a l y s i s

p a r a m e t e r s  f r o m  J . J . S p i t z e r ;  S . K . S u r i ;  R . H . W o o d  

J . S o l n . C h e m . ,  1985,14,571. 
s t o r e  i n  a i (  , )

2 =  o h  

4 = 0 
6 =  n +

8 = c l -  
10 = i —
12 =

14 = k +
16 = clo4-

I = ch2
3 = conh 
5 = n 
7 = f- 
9 = br-
II = h +
13 =
15 = no3- 
17 = Na+

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

a i l,l)=-34.0
a i 2,1)=29.0
a i 2,2)=-23.0
a i 3 ,1 ) =55.0
a i 3,2)=-31.0
ai 3,3)=-118.0
ai 4,1)=37.0
ai 4,2)=-22.0
a i 4,3)=-82.0
ai 4,4)=-57.0
a i 5 ,1 ) = 4 6 . 0
ai 5,2)=-41.0
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ai(5,3)=-42.0 
ai(5,4)=-40.0 
ai(5,5)=-27.0 
******
* MAKE MATRIX SYMMETRICAL 
* * * * * * * * *

do 107 1=1,5 
do 100 j=l,i 
ai(j,i)=ai(i,j)

100 continue
107 continue

wri te(6,112)
112 format(Ihl,lOx,'Savage - Wood Matrix') 

write(6,113) (i,i=l,5)
113 format(lh ,5x,6(lOx,i3)) 

do 114 i=l,5
write(6,115) i ,(a i (i ,j ),j=l,5)

115 format(lh ,2x,i3,5(2x,lpel5.6))
114 continue 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * code for analysis
c * bromide set
c * a(l,l) = br-br- = a i (9,9)
c * a(2,l) = ch2n+ = a i (6,1)
c * a(3,l) = n+n+ = ai(6,6)
c * a ( 4 ,1 ) = ch2br- = a i (9,1)
c * a(5,l) = n+br- = ai(9,6)
c * chloride set
c * a(6,l) = cl-cl- = a i (8,8)
c * a(7,l) = ch2cl- = ai(8,1)
c * a(8,l) = n+cl- = a i (8,6)
c * fluoride set
c * a(9,l) = f-f- = a i (7,7)
c * a(10,l) = ch2f- = ai(7,1)
c * a(ll,l) = n+f- = ai(7,6)
c * iodide set
c * a(12,l) = i-i- = a i (10,10
c * a(13,l) = ch2i- = a i (10,1)
c * a(14,l) = n+i- = a i (10,6)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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c

c

ict=0 
****************

c * use 'if(ict.g t .0) goto xxx' as a skip around a solute

c * call salts in turn
c * test salt data by trapping to 999
c * m = 1 betaO
c * m = 2 plus betal
c * m = 3 plus c-term
c * m = 4 plus beta2 terra (for high valence salts)
c * use test to decide on m for each salt
c * y(ict) is corrected ge(nonelec)
c * minus known group interaction parameters

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * call salt(m,ict,pig)
c * m = number of parameters in least squares
c * ict = set number
c * gs(ict) = returned gcorr which is required
c * g(salt) + (r.t.ml)/2
c * pig = data file

c * Ammonium Bromide
c * g(nh4+br-) = 4h + n+ + br-
c * = 4.(0.5*ch2) + n+ + br-
c * g = 4.ch2ch2
c * 2.ch2n+ + n+n+
c * 2.ch2br- + n+br- + br-br-
c * g = 4.ch2ch2 + 4.ch2n+ + n+n+
c * 4.ch2br- + 2.n+br- + br-br-
c * * * * * * * *

ict=ict+l 
m= 3
write(6,101) ict 

101 format(IhlflOx,'Set count = ',3x,i4) 
pig='datai.dat' 
jone=3.0
call salt(m,ict,pig,jone) 
beta0(ict)=2.0*rg*tk*beta0(ict) 
write(6,1001) betaO(ict)

1001 format(lh ,10x,'g-salt = 'lpel5.6)
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wr i te(6,2007 )
2007 format(Ih,'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%' ) 

xni(ict,1,1)=4.0
ict)=betaO(ict)-(xni(ict,l,l)*ai(l,l)) 
ict,2) = 4 . 0 
ict,3)=1. 0 
ict,4)=4.0 
ict,5)=2.0 
ict,1)=1.0

**********************************************************
* Tetrabutylammonium Bromide
g(bu4n+br-) = g(18*ch2 + n+ + br-) 

g = 324(ch2ch2)
18(ch2n+) + n+n+
18(ch2br-) + n+br- + br-br-

g = 324(ch2ch2) + 36(ch2n+) + n+n+
+ 36 ch2br- + 2(n+br-) + br-br- 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ict=ict+l 
m= 3
wri te(6,101) ict 
pig='datas.dat' 

jone=3.0
call salt(m,ict,pig,jone) 
betaO(ict)=2.0*rg*tk*beta0(ict) 
write(6,1001) betaO(ict) 
wri te(6,2007 ) 

xni(ict,1,1)=324.0
ict)=betaO(ict)-(xni(ict,l,l)*ai(l,l))
ict,2 ) = 36 . 0
ict,3 ) = 1. 0
ict,4) = 36 . 0
ict,5)=2.0
ict,1)=1.0

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

* 6.6 Azonspiroalkane Bromide
* g((ch2ch2)6n+6(ch2)b r - ) = g(12*ch2 + n+ + br-)
* g = 144 ch2ch2
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c

c * 12 ch2n+ n+n+
c * 12 ch2br- n+br- br-br-
c * g = 144 ch2ch2 + 24 ch2n+ + n+n+
c * + 2 4  ch2br- + 2 n+br- + br-br-

****************************************
i ct=i ct+1 
m= 3
wr i te(6,101) ict 
pig='data26.dat' 

jone=3.0
call wsalt(m,ict,pig,jone) 
beta0(ict)=2.0*rg*tk*beta0(ict) 
wr ite(6,1001) betaO(ict) 
wr i te(6,2007) 

xni(ict,l,l)=144.0
y (ict)=betaO(ict)-(xni(ict,l,l)*ai(l,l)) 
x(ict,2)=24.0 
X (ict,3)=1.0 
X (ict,4 )=24.0 
x (ict,5)=2.0 
X (ict,1 )=1.0 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1

c * input complete
c * End of Data Collection
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1

wri te( 6,503 ) ict 
503 format(lh ,10x,'Number of Systems = ',i3)

Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * Symmetrise the xni( , , ) matrix *
c * Set up for ipar *
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ipar=14
do 515 i=l,ict
do 516 j=l,40
do 517 k=l,j
xni(i ,k ,j)=xni(i ,j ,k )

517 continue
516 continue
515 continue

wr i te(6,500)
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500 format(lh ,10x,'input complete') 
wr i te(6,505)

505 format(lh ,20x,' input matrix ')
wr i te(6,501 )

501 format(lh ,5x,'****** gsalt-residuals ******') 
do 177 i=l,ict
write(6,178 ) j,y(j)

178 format(lh ,2x,i5,3x,lpel2.2)
177 continue

wr i te(6,179)
179 format(lh ,5x,'****** X Values ******')

if(ipar.le.9) stump=l 
if(ipar.gt.9.and.ipar.le.18) stump=2
if(ipar.gt.18.and.ipar.le.27) stump*3 
if(ipar.gt.27.and.ipar.le.36) stump*4 
di ce = 9
if(stump.eg.1) dice=ipar 
write(6,506) (j,j=l,dice)

506 format(lh ,Ilx,i2,8(10x,i2))
do 510 i=l,ict
write(6,520) i , (x (i ,j ),j = l ,dice)

520 format(lh ,i2,x ,9(x ,IpelO.1))
510 continue

if(stump.eg.1) goto 546 
di ce = 18
if(stump.eg.2) dice*ipar 
write(6,506 ) (j , j = 10,dice) 

do 530 i=l,ict
write(6,520) i,(x(i,j),j*10,dice)

530 continue
if(stump.eg.2) goto 546 
di ce = 27
if(stump.eg.3) dice=ipar 
write(6,506) (j,j=19,dice) 

do 540 i=l,ict
write(6,520) i,(x(i,j),j=19,dice)

540 continue
if(stump.eg.3) goto 546 
di ce = 27
if(stump.eg.4) dice=ipar
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write(6,506 ) (j ,j = 27,dice ) 
do 542 i=l,ict
write(6,520) i,(x(i,j),j=27,dice)

542 continue
546 continue 

wr i te(6 , 547 )
547 format!Ih ,

write(6,5006 )
5006 format!Ih ,lOx,'*** Minimal Least Sq. So 

$lution ***')
call ylsq(x,y,ict,ipar,a) 
do 551 i=l,ipar 
write!6,560) i,a(i,l)

560 format!Ih ,10x,'a ',10x,i4,10x,lpel5.6)
551 continue

write!6,580)
580 format!Ih ,5x,'Recalculation of gsalt residuals Using

$ Parameters from best fit')
write!6,590)

590 format!Ih ,10x,'comparison')
5 = 0 . 0
do 600 i=l,ict
dum=(xni(i,l,l)*ai(l,l)) + (xni(i,2,2 ) *ai(2,2 ) ) 

$+(xni(i,l,2)*ai(l,2)) 
do 610 i=l,ipar 
dum=dum+(x(i,j)*a(j,l))

610 continue
diff = betaO(i) - dum 
s=s+(diff*diff) 
xdiff=((betaO!i)-dum)/beta0(i ))*100.0 

write(6,650) i,betaO(i),dum,xdiff 
650 format!Ih ,10x,i3,3(3x,lpel5.6))
600 continue

s=dsqrt(s/(ict-1)) 
write!6,710) s 

710 format!Ih ,10x,'standard error = ', lpel5.6)
999 continue 
1333 continue

write!6,585)
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505

810
800

701

704
703
702

9999

format(Ih ,5x,'
* * * * * * * * * * * * * * * * * * * * * * * * * * *  F J

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

* Convert matrix from local to global *
*****************
ai !6,1 )=a!2,l)
a i! 6,6 )=a!3,l)
ai !9,1 )=a!4,l)
a i!9,6 ) = a ! 5,1)
a i!9,9 )=a!l,l)
a i!8,1 )=a!7,l)
ai !8,6 )=a!8,l)
a i !8,8 ) = a ! 6,1)
a i !7,1 )=a!10,l)
ai !7,6 )=a!ll,l)
a i !7,7 )=a!9,l)
a i !10, l)=a!13,l)
ai !10, 6)=a!14,l)
a i !10, 10)=a!12,l)
******
* Symmetrise the ai( , ) matrix *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

do 800 i=6,10 
do 810 j=l,i 
ai(j,i)=ai(i,j) 
continue 
continue
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Print out interaction matrix *

write!6,701)
format!Ih ,10x,'interaction matrix') 
do 702 i=l,14 
do 703 i=l,i
write!6,704) i,j,ai!i,j) 
format!Ih ,20x,i5,10x,i5,10x,lpel5.6) 
continue 
continue 
goto 997 
continue
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write!6,996) ict
996 format!Ih ,10x,'tape error at ict = i5)
997 continue 

return 
end
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c

subroutine piz(ndata,ict,nup,nun,izp,izn,alpha,jone) 
implicit double precision!a-h,o-z) 
common/f rog/flag 
common/kei th/betaO! 100)
common/mike/xm2!40),ge!40),gam2!40),xphi!40),gs!40) 
common/anne/rg,tk,int
dimension beta! 200, 30 ),yphi! 200),a!30,1),ygam! 200) 
dimension yge!20) 

write ! 6 , 7 )nup,nun,izp,izn
7 format!Ih , lOx,4 !2x,i5)) 

write!6,8) alpha
8 format!Ih , lOx,'alpha-gamma = ',lpel5.6)

c * subroutine to find terms in the pitzer equation
c * Clear the Beta array

do 2 i=l,200 
yphi!i )=0.0 
ygam!i)=0.0 
do 4 j=l,30 
beta !i ,j)=0.0 

4 continue
2 continue

*************************************************
c * STEP ! 1) Calculation of betaO from osmotic
c * coefficient equation.
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

b=1.2 
alpha=alpha/3.0 
write!6,13)alpha 

13 format!Ih ,lOx,'alpha-phi=',lpel5.6) 
do 10 j=2,ndata 
xionic= xm2!j ) 
one = xphi!j )-1. 0 
two=-alpha*!xionic**0.5) 
three=1.0+!b*!xionic**0.5)) 
yphi!j)=one-!two/three) 

vv= izp*izn
yphi!j )=dabs!v v )*yphi!j ) 
be ta ! j ,1)=xm2!j )* ! 2.0*nup*nun/!nup+nun))
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beta(j,2)=xm2(j)*dexp(-2.0*xionic**0.5)
$ * ( 2.0 *nup*nun/(nup+nun))

be ta(j ,3) = (xm2(j)**2.0)*((2.0*((nup*nun)* *1.5))
$/(nup+nun) )

10 continue
write!6,50)

50 format!Ih ,10x,'Input')
ipa r = 3 .0 
write!6,150)

150 format!Ih ,lOx,'molality',lOx,'yphi',1 Ox,
$ 'betal',lOx,'beta2',lOx,'beta3') 

do 120 i=l,ndata
write!6,110)xm2!i ),yphi!i ),!beta!i,j),j=l,ipar)

110 format!Ih ,5 !x ,lpel5.6))
120 continue

if!jone.e q .0 ) goto 111
call xlsq!beta,yphi,ndata,jone,a)
goto 112

111 continue
do 121 i=l,3 
ipar=i
call xlsq!be ta,yphi,ndata,ipar,a) 

write!6,1007) a!1,1)
1007 format!Ih ,10x,'beta0 =',lpel5.6)
121 continue
112 continue

write!6,1007) a!1,1) 
if!ipar.e q .3) goto 1009

Q *********************************************************
c * step 2 ...... Calculation of betaO parameter from
c * Pitzers In gamma+/- equation
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

write!6,208)
208 format!Ih ,20x,'analysis two') 

do 200 j=2,ndata 
do 201 i=l,6 
beta ! 1,i)=0.0 

201 continue
xionic=xm2!j ) 

one2=xionic/!1.0+!b*xionic**0.5))
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two2=(2.0/b)*dlog(1.0+(b*xionic**0.5)) 
three2=-alpha*(one2+two2 )*abs(izp*izn) 
ygam!j)=gam2(j)-three2 
be ta(j ,1) = 2.0*xm2(j ) 

beta!j,l)=beta(],!)*(2.0*nup*nun/!nup+nun)) 
duml=dexp!-2.0*xionic**2)
dum2=1.0+!2.0*!xionic**0.5))-!0.5*4.0*xionic) 
dum3=2.0/!4.0*xionic) 
dum4=dum3*! 1.0-!dum2*duml))
beta!],2)=dum4* ! 2.0*nup*nun/!nup+nun))*xionic 
beta!],3)=!xm2!j)**2)*!2.0*!!nup*nun)**1.5))/!nup+nun)

200 continue
write!6,50) 
write!6,205)

205 format!Ih ,lOx,'xm2',lOx,'gamma',12x,'ygam',12x,
$'betal',12x,'beta2',lOx,'beta3') 

do 220 i=l,ndata
write!6,230)xm2!i),gam2!i ), ygam!i),!beta!i,]),]=!,ipar) 

230 format!lh ,6!x ,Ipel5.6))
220 continue

if!jtwo.e q .0) goto 223
call xlsq!be ta,ygam,ndata,j two,a )
goto 224

223 continue
do 221 i=l,3 
ipar=i
call xlsq!beta,ygam,ndata,ipar,a) 

write!6,1007) a!1,1)
221 continue
224 continue

write!6,1007) a!1,1)
Q * * * * * * * * * *

c * step3 calculation
c * using ge
Q * * * * * * * * * * * * * * * * * * *

write ! 6,301 )
301 format!Ih ,10x,'analysis three')

do 500 j=l,ndata 
xionic = xm2!j ) 
one3=!4.O*xionic/b)
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two3=dlog(1.0+(b*xionic**0.5)) 
yge(j)=ge(j)/(rg*tk) 
three=-alpha*(one 3*two3) 
yge(j)=yge(j)-three
beta(j,l)=(xionic**2)*(2.0*nup*nun) 
i f(j .n e .1 ) goto 202 
beta!1,2)=0.0 
goto 203

202 continue
dum=2.0/!4.0*x ionic)
duml=!1.0+!2.0*xionic**0.5))*dexp!-2.0*xionic**0.5)
dum2=l.0-duml
dum=dum*dura2
beta!j,2)=dum*!xionic**2)*!2.0*nup*nun)

203 continue 
beta!j,3)=!xionic**3)*!2.0*nup*nun*nun*nup)

500 continue
write!6,50) 
write!6,505)

505 format!Ih ,10x,'xm2',10x,'ge',15x,'yge',14x,
$'betal',10x'beta2',10x'beta3') 

do520 i=l,ndata
write!6,230)xm2!i ),g e !i ),yge!i),!beta!i,j),j=l,3)

520 continue
if!jthree.e q .0) goto 523
call xlsq!beta,ygam,ndata,jthree,a)
goto 524

523 continue
do 521 i=l,3 
ipar=i
call xlsq!beta,yg e ,ndata,ipar,a ) 
write!6,1007) a!1,1)

521 continue
524 continue

write! 6,1007 ) a!1,1)
c
c * now put parameters together

******************
1009 continue

betaO!ict )=a! 1,1)

c
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write(6,406) betaO(ict)
406 format(Ih ,2 0 x r e t u r n e d  Bo to common block keith 

$ ',lpel5.6) 
return 
end
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Section 2
Extended pairwise cosphere-cosphere group Gibbs function 
interaction matrix calculated from osmotic coefficient data 
at 298 K. ( J hAoL

NONa

61CH

295 339
196

31Na
324

Cl 174
401190

-112NO
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Appendix
5



Program BPB
This listing contains the main subroutines used in the 
FORTRAN program BPB. The program was used to generate the 
dependences on ionic strength of ln(k/kg) using the 

Debye-Huckel equation and Pitzer's equation for reaction 
between hydroxide ions and the sodium salt of bromophenol 

blue in the presence of various added salts.
The first subroutine at the head of the program 

contains the calls from which all subsequent subroutines 
are accessed. Rate data for each added salt and parameters 
necessary to Pitzer's equation were stored in separate data 
files and read into the main program using subroutine 
INPUT. The dependence of ln(k/kg) on ionic strength 

calculated using the Debye-Huckel equation was calculated 
in subroutine DEBYE whilst the same dependence predicted by 
Pitzer's equation was calculated from subroutines PELECTl, 
PELECT2 and P E L E C T 4 . The latter subroutines correspond to 
the equations represented by terms A, B and D of equation 
[9.8] discussed in Chapter 9. All of the data were 
collected in subroutine COLLECT and were set up to be 
printed out.

Subroutine COSPHERE represents an attempt to quantify
the cosphere contribution to Pitzer's equation of the
bromophenol blue dianion and the transition state

0 1
trinegative ion. The calculation is based on p and 3 

values for various 2:1 and 3:1 salts tabulated by Pitzer. 

Finally subroutine PLOT brings together all of the 
calculated data and produces plots of the dependence of 
ln(k/kg) on ionic strength for the experimental data, 

calculated using the Debye-Huckel equation, the individual
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terms of Pitzer's equation and finally the full Pitzer 
e q u a t i o n .
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program bpb
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1i nda/ndata,b o ,bone3 ,btwo3,cterm3 
common/answer/pel(30),pe2(30),pe4(30),dh11(30),xi(30) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* rg = gas constant tk / kelvin = temperature
********************************************************
* EXPLANATION OF ARRAYS
* TITLE POSITION ASSIGNMENT
* xm2 andy contains molarity of added salt
* xcons andy ft In k/ko
* pitzer andy If overall pitzer contr.
* pel + pe2 + pe4
* ndata linda ” number of data points + 1
* bO linda n betaO for COH
* (C = added salt cation)
* bone3 linda It betal for COH
* btwo3 linda tf beta2 for COH
* cterm3 linda It c term for COH
* pel answe r It pitzers electrical terra
* pe2 answer It pitzers second term
* pe4 answer It pitzers fourth term
* dhll answe r tt total DHLL contribution
* xi answe r It ionic strength

call paper(l)
*****
* paper(l) is a set up for the plot routine 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

call head
call input
call debye
call Pelectl
call Pelect2
call Pelect4
call collect
call cosphere
call plot

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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c * routine GREND ensures plot is finished

call grend 
wr i te(6,10)

10 formateIh ,10x,'End of Program')
end
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subroutine debye 
* *
* calculation of DHLL parameters for salts in aq sin.
* X = c.c/{ F m"-l J K"-l K)
* = A"2 s"2/(A"2 s"4 kgT-1 m"-2 kg m"2 s"-2
* ss 1
* alpha = mol"-l kg m"-3 
*********************************************************
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1inda/ndata,b o ,bone3,btwo3,cterm3 
common/answe r/pel(30),pe2(30),pe4(30),dhll(30),xi(30) 
common/huckel/dhlloh(30),dhllbb(30),dhllts(30) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* 
* *

EXPLANATION OF ARRAYS 
TITLE POSITION ASSIGNMENT
dhlloh huckel contains hydroxide contribution to

total DHLL term 
dhllbb huckel contains bpb anion contribution to

total DHLL term 
dhllts huckel transition state contribution

to total DHLL terra

12

rg=8.31434 
tk=298.15 
q=3.0/2.0 
an=6.022169e23 
bk=l.380622e-23 
ez=8.854185e—12 
zpi=3.14159 
rho=997.04 5 
er=78.30 
pc=1.602191e-19
alpha=(2.0*zpi*an*rho)**(l.0/2.0) 
xl=pc*pc/(4.0*zpi*ez*er*bk*tk) 
xl=xl**(q) 
alpha=alpha*xl 
write(6,12) alpha
formateIh ,lOx,'A-gamma = ',lpel5.6) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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c * A-gammma in pitzer
c * A-gammma =1.173
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * calculation of the DHLL for each salt
c * =4.A(gamma).I **0.5
c * where I is the ionic strength
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

wri te(6,5)
5 formateIh ,13x,'I.STRENGTH',10x,'OH-DHLL',10x,'BB-DHLL'

$,10x,'TS-DHLL',1Ox'TOTAL DEPENDENCE') 
do 10 j=l,ndata
dhlloh(j)= -alpha * (xi(j)**0.5) * 1.0
dhllbb(j)= -alpha * (xi(j)**0.5) * 4.0
dhllts(j)= -alpha * (xi(j)**0.5) * 9.0
dhll(j) = dhlloh(j) + dhllbb(j) - dhllts(j) 
write(6,20) j,xi(j),dhlloh(j),dhllbb(j),dhllts(j) 

$,dhll(j)
20 formateIh ,2x,i5,5(2 x,lpel5.6))
10 continue

wri te e 6 , 2007 )
2007 formateIh,'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%' ) 

return 
end
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c

subroutine Pelectl 
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1inda/ndata,b o ,bone 3,btwo3,cterm3 
common/answe r/pel(30),pe2(30),pe4(30),dhll(30),xi(30) 
common/electl/peloh(30),pelts(30),pelbb(30) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * EXPLANATION OF ARRRAYS
c * TITLE POSITION ASSIGNMENT
c * peloh electl hydroxide contribution to Pitzer
c * electrical term
c * pelts electl transit, st. contribution to Pitzer
c * electrical term
c * pelbb electl bpb contribution to Pitzer elect
c * term
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * This subroutine takes into account the first Pitzer
C * electrical term.
c * It is non salt specific, and is calculated from the
c * equation ;
c * Pel = 4*aphi{{I * *.5/(1 + bI* *.5))+2/b.In(1+b.I * *.5)1
c

b = 1.2 
aphi = 0.3903 
wr i te(6,110)

110 format(lh ,16x,'I .STRENGTH',9 x ,'pelOH',13x,'pelBB' 
$,13x'pelTS',13x,'total pel') 

do 10 j=l,ndata
parti = xi(j )**0.5/(1+b*(xi(j )**0.5))
part2 = dlog(1.0+b*xi(j )**0.5)
part3 =(2/b)*part2
part4 = parti + part3
peloh(j) = -1.0 * aphi * part4
pelbb(j) = -4.0 * aphi * part4
pelts(j) = -9.0 * aphi * part4
pel(j) = peloh(j) + pelbb(j) - pelts(j)
write(6,20) j,xi(j),peloh(j),pelbb(j),pelts(j)

$ fpel(j )
20 format(lh , i5,3 x,5(3x,lpel5.6))
10 continue
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wr i te(6,2007 )
2007 f o r m a t d h , '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%') 

return 
end
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c

c

* EXPLANATION OF ARRAYS
* TITLE POSITION ASSIGNMENT
* bh elect2 NaOH pitzer B term to Pitzer 2nd
* ch elect2 NaOH pitzer Cterm to Pitzer 2nd
* bxc elect2 COH pitzer B term to pitzer 2nd
* cxc elect2 COH pitzer C term to " ”
* pea untidy bxc + cxc for COH
* qxx untidy ln(k/ko)- pel - pe2
* qx untidy a stage in qxx

subroutine Pelect2 
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1inda/ndata,b o ,bone3,btwo3,cterm3 
common/answer/pel(30),pe2(30),pe4(30),dh11(30),xi(30) 
common/untidy/qx(30),qxx(30),pea(30) 
common/elect2/bh(30),ch(30),bxc(30),cxc(30)

0 * * * * 

c 
c 
c 
c 
c 
c 
c 
c 
c
c * * *
c *salt specific routine, uses betaO values calculated
c * in the pairwise interactions program 'TEST'

c * pe2 = 2.Mc( Bxc + McZc.Cxc)
c *

c * Bxc = bOxc + 2blxc/alpha**2.I [ 1-(1+alpha.I**0.5)exp
c * (-alpha.1**0.5)]
c *
c * Cxc(gamma) = Cxc(phi)/2|ZcZx|**0.5

c * N.B in this section X = OH-
*******************************************************
alpha = 2.0 
pe2(1 ) = 0.0 
bxc(1 ) = 0.0 
cxc(1 ) = 2.5e-3 
bh(l) = 0.0 
ch(l) = 2.2e-3 
pea(1 ) = 0.0 
do 10 j=2,ndata
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * pe2 = 2.Mc[ Bxc + McZc.Cxc]
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c A

C

c * Bxc = bOxc + 2blxc/alpha**2.I ( l-(1+alpha.1**0.5)exp
c * (-alpha.1**0.5)]
c *
c * Cxc(gamma) = Cxc(phi)/2|ZcZx|**0 . 5
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * N.B in this section X = OH-
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0 * * *

c * Step 1: Calculation of Bxc
A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * :

terml = dexp(-alpha*xi(j )**0.5 ) 
term2 = 1 + alpha*xi(j ) **0 . 5 
term] = 1 - (term2*terml) 
if(x i (j ).e q .0.0 ) goto 23 
term4 = (2.0*bone3)/(alpha**2.0*xi(j ) ) 
if(xi(j).ne.0.0) goto 24

23 term4 = 0.0
24 continue

bxc(j) = bO + (term4 * term3)
0 * * * * * *

c * Step 2: Calculation of Cxc
c * nb. |ZxZc|**0.5 = |-1.1|**0.5 = 1.0
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

cxc(j) = cterm3 / (2.0 * 1.0**0.5) 
c *****************************************************
c * Step 3: Calculation of pitzer term for NaOH
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * NaOH betaO bOh= 0.0864
c * NaOH betal blh= 0.253
c * NaOH cterm coh=0.0044
c * xmoh = molarity of hydroxide in system = 0.1 mol dm-3
c

xmoh = 0.1 
bOh = 0.0864 
blh = 0.253 
coh = 0.0044

reml = dexp(-alpha*xi(j)**0.5) 
rem2 = 1 + alpha*xi(j ) **0.5

-332-



c

rem3 = 1 - (rem2*reml)
if(xi(j ).e q .0,0) goto 33
rem4 = (2.0*blh)/(alpha**2.0*xi(j ) )
if(xi(j).ne.0.0) goto 34

33 rem4 = 0.0
34 continue

bh(j) = bOh + (rem4 * rem3)
ch(j) = coh / (2.0 * 1.0**0.5)

********************************************************
c * Step 4: Calculation of total Pe2
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

pea(j) =( xm2(j )*(bxc(j ) + (xm2(j )*1.0*cxc(j ) ) ) ) 
pe2(j) = 2.0 *(pea(j)+ (xmoh*(bh(j) + (xmoh*l.0*ch(j ) ) ) ) )

10 continue
wri te(6,20)

20 format(lh ,17x,'I.STREN.',llx,'Boh',13x,'Coh'
$13x,'Bxc',13x,'Cxc') 

do 30 i=l,ndata
write(6,40) i,xi(i),bh(i),ch(i),bxc(i),

$cxc(i )
40 format(lh ,2x,i5,5(3x,lpel5.6))
30 continue

wr i te(6,81 )
81 format(lh ,16x,'ionic str.',9x,'first-term'

$,7x'second term') 
do 85 i=l,ndata
write(6,86) i,xi(i),pel(i),pe2(i)

86 format(lh,2x,i5,3(4x,lpel5.6))
85 continue

wr i te(6,2007)
2007 format(lh,'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%' )

c * Calculation of the Q quantity
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

wr i te(6,90)
90 format(lh ,9x,'I.Strength',10x,'In(k/ko) - Q ' )

do 100 j=l,ndata 
qx(j) = pe2(j) + pel(j)
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qxx(j) = xcons(j) - qx(j) 
write(6,95) xi(j),qxx(j)

95 format(lh ,4x,lpel5.6,5x,lpel5.6)
100 continue

wr i te(6,2007)
return
end
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c * * * 1

c * EXPLANATION '
c * TITLE POSITION
c * bone2 elect4
c * btwo2 elect4
c * cte rm2 elect4
c * bone 4 elect4
c * btwo4 elect4
c * cterm4 elect4
c * te rm elect4

subroutine Pelect4
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1inda/ndata,b o ,bone3,btwo3,cte rm3 
common/answer/pel(30),pe2(30),pe4(30),dh11(30),xi(30) 
common/fiat/bone1,btwol,cterml
common/elect4/te rm(10,10),bone2,bone4,btwo2,btwo4 

$,cterm2,cterm4
character*50 fox,check,namel,name2^name3,name4

ASSIGNMENT 
betal for NaOH 
beta2 for NaOH 
C term for NaOH 

betal for NaA (A=anion added salt) 
beta2 for NaA 
C term for NaA 

8 terms which form thePitzer 4th
0 * * * *

c * Consider only added Cations and anions
0 * * * * * * *

c * pe(4) = Sum over all cations and anions of
c * M(c).M(a) [Zx**2.B'ca + ZxC'ca]
c * where;
c * B'ca = 2.b l (ca)/alpha**2.I**2
c * (1+alpha.I**.5+0.5*apha**2.I )
c * exp(-alpha.I * *.5)-1] + 2 .b2(ca)/alpha2**2.1**2
c * Il + alpha2.1 * *.5 + 0.5alpha2**2.1 )exp(-alpha2.1**.5)-11
c * where ca is the salt added to the reaction
0 * * * * * * * * * *

c * constants for analysis
c

alpha = 2.0 
alpha2 = 0.0

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * We need the sum over all cations and anions =>
c * the expression has the following form
c * In(gamma) = 2( m(Na).m(oh)Zx"2.B '(Na+OH-) +
c * m(Na).m(OH).Zx.C(Na+OH-) + m(c).m(0H).Zx"2.B'(c-0H)
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c

c * +m(c).m(OH).Z x .C(cOH) + m{Na).m ( a ).Zx"2.B '(Na-a) +
c * m(Na).m ( a ).Z x .C(Na-a) + m(c).m ( a ).Zx"2.B '(c-a ) +
c * m( c ).m ( a ).Z x .C(c-a)
c *
c * A total of eight terms
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * Stepl: CALCULATION OF B' TERMS
Q * * * * * *

C * added salt B'(ca) is term(l)
c * B'(NaOH) is term(2)
c * B'(cOH) is term(3)
c * B'(Naa) is term(4)

* * * * * * * * * * * * * * * * * * * * *

flag = 1 
te rm(1,1 ) = 0.0 
te rm(2,1) = 0.0 
te rm(3,1) = 0.0 
te rm(4,1) = 0.0 

17 continue
do 100 j=2,ndata
parti = 1+(alpha*xi(j )**0.5)+(0.5*alpha**2.0*xi(j )) 
part2 = (partl*dexp(-alpha*xi(j )**0.5 ) )-l. 0 
part3 = (2.0/(alpha**2.0*xi(j )* * 2.0)) * part2 
sectl = 1 +(alpha*xi(j )**0.5) + (0.5*alpha** 2.0*xi(j )) 
sect2 = (sectl*dexp(-alpha*xi(j )**0.5))-1. 0 
sect3 = (2.0/(alpha**2.0*xi(j )**2.0)) * part2 

duml=bonel 
dum2=btwol 
duml=bone2 
dum2=btwo2 
duml=bone3 
dum2=btwo3 
duml=bone4 
dum2=btwo4

i f(flag.eq.l 
i f(flag.eq.l 
i f(flag.e q .2 
i f(flag.eq.2 
if(flag.e q .3 
i f(flag.eq.3 
i f(flag.eq.4 
i f (flag.eq.4 
part4 = duml * part3 
sect4 = dum2 * sect3 
term(flag,j) = part4 * sect4 

100 continue
flag = flag + 1 
if(flag.ne.5) goto 17
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0 ***********
c * END OF STEP 1
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * step 2: CALCULATION OF C TERMS
(] * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * term(5)= C(ca)
c * term(6)= C(NaOH)
c * term(7)= c(cOH)
c * term(8)= C(Naa)
c

do 21 j=l,ndata 
term(5,j) = cterml/(2.0*1.0) 
term(6,j) = cterm2/(2.0*1.0) 
term(7,j) = cterm3/(2.0*1.0) 
term(8,j) = cterm4/(2.0*1.0)

21 continue
C
C * END OF STEP 2
Ç  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * step3: Formation of the Pitzer fourth term
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * in this situation Zx=-1.0 = charge on OH-
c * xmo = molarity of NaOH = o.l mol dm-3

zx = - l . 0 
xmo=0.1 
pe4(1 ) =0.0 
wri te(6,2007 )

2007 formateIh,'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%') 

wr i te(6,60 )
60 formateIh ,16x,'I.Strength',9x'Fourth Term')

do 50 j=2,ndata
pe4(j)= (term(l,])*zx**2.0*xm2(j )**2.0) 

$+(term(2,j)*zx**2.0*xmo**2.0)
$+(term(3,j)*zx**2.0*xmo*xm2(j ))
$+(term(4,j)*zx**2.0*xmo*xm2(j))
$+(term(5,j)*zx*xm2(j )**2.0)
$+(term(6,j )*zx*xmo**2.0) + (term(7,j )*zx*xmo*xm2(j ))
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$+(term(8,j)*zx*xmo*xm2(j )) 
pe4(j)= 2.0 * pe4(j)

50 continue
do 80 j=l,ndata 
write(6,70) j ,xi(j ),pe4(j )

70 format(lh,2x,i5,4x,lpel5.6,5x,lpel5.6)
80 continue
9999 continue

return 
end
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subroutine cosphere 
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1inda/ndata,b o ,bone3,btwo3,cte rm3 
common/answe r/pel(30),pe2(30),pe4(30),dh11(30),xi(30) 
common/fiat/bone1,btwol,cterml 

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * pe2 = 2.Mc[ Bxc + McZc.Cxc]
c *
c * Bxc = bOxc + 2blxc/alpha**2.I ( l-(1+alpha.1**0.5)exp
c * (-alpha.1**0.5)]
c *
c * Cxc(gamma) = Cxc(phi)/2|ZcZx|**0.5

c * N.B in this section X = OH-
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * Step 1: Calculation of Bxc

alpha=2.0 
WRITE(6,100)

100 formateIh ,5x,'THE TRINEGATIVE ANION') 
do 2 j=2,ndata 
write(6,14) xi(j)

14 formateIh ,10x,'NEW VALUE OF IONIC STRENGTH - ',lpel5.6)
do 4 b00=0.5,l.l,0.1 
wri te(6 ,12 ) bOO 

12 formateIh ,10x,'NEW VALUE OF BETAO =',lpel5.6)
do 6 bl =5,10,0.2 
terml = dexp(-alpha*xi(j )**0.5) 
term2 = 1 + alpha*xi(j ) **0 . 5
term3 = 1 - (term2*terml)
term4 = (2.0*bl)/(alpha**2.0*xi(j ) ) 

bxcc = boo + (term4 * term3) 
write(6,10) j ,bOO,b l ,bxcc,xi(j )

10 formateIh ,3x,i5,4(5x,Ipel5.6))
6 continue
4 continue
2 continue

wri te(6,2007)
2007 formateIh,'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
$%%%%%%%%%%%%%%%%%') 

wri te(6,20)
20 formateIh ,5x,'THE DINEGATIVE ANION')

do 22 i=2,ndata 
writee6,34) xi(j)

34 formateIh ,10x,'NEW VALUE OF IONIC STRENGTH - ',lpel5.6)
do 24 b00=0.2,0.7,0.1 
wr i te e 6,32 ) bOO 

32 formateIh ,10x,'NEW VALUE OF BETAO =',lpel5.6)
do 26 bl =1.0,2.9,0.1 
terml = dexp(-alpha*xi(j )**0.5) 
term2 = 1 + alpha*xi(j )**0.5
term3 = 1 - (term2* terml)
term4 = (2.0*bl)/(alpha**2.0*xi(j ) ) 

bxcc = bOO + eterm4 * term3) 
writee6,30) j ,bOO,b l ,bxcc,x i (j )

30 formateIh ,3x,i5,4(5x,lpel5.6))
26 continue
24 continue
22 continue

return 
end
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c

subroutine plot
implicit double precision(a-h,o-z) 
common/andy/xm2(30),xcons(30),pitzer(30) 
common/1inda/ndata,bo,bone3,btwo3,cterm3 
common/answer/pel(30),pe2(30),pe4(30),dhll(30),xi(30) 
common/fiat/bone1,btwol,cterml
real*4 ionic(30),dh(30),one(30),two(30),four(30) 
real*4 sconx(30),pitz(30)

c * Convert from double to single precision

do 10 j=l,30 
ionic(j) = xi(j ) 
dh(j) = dhll(j) 
one(j ) = pel(j ) 
two(j) = pe2(j) 
four(j ) = pe4(j ) 
sconx(j) = xcons(j) 
pi tz(j ) = pitzer(j )

10 continue
flag = 0.0 
call gpstop(2) 
call filnam('tmaf')

100 continue
call lincol(O)
call pspace(0.15,0.85,0.15,0.85) 
if(flag.eq.1.0) goto 103 
call map(0.0,2.2,-1.0,7.0) 
if(flag.ne.1.0) goto 104

103 continue 
call map(0.0,1.5,-1.0,7.0)

104 continue 
call axorig(0.0,0.0) 
call axes
call ptplot(ionic,sconx,1,ndata,232) 
call curveo(ionic,sconx,1,ndata) 
call ptploteionic,dh,l,ndata,243) 
call curveo(ionic,d h ,1,ndata) 
call lincol(2)
call ptploteionic,one,1,ndata,244)
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call curveo(ionic,one,1,ndata) 
call lincol(3)
call ptplot(ionic,two,1,ndata,245) 
call curveo(ionic,two,1,ndata) 
call lincol(4)
call ptplot(ionic,four,1,ndata,251) 
call curveo(ionic,four,1,ndata) 
call ptplot(ionic,pitz,l,ndata,235) 
call curveo(ionic,pitz,1,ndata) 
call frame 
flag = flag + 1.0 
do 50 j=l,30 
ionic(j)=ionic(j)**0.5 

50 continue
if(flag.eq.1.0) goto 100
return
end
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Appendix
6



Section 1

The following listing contains the main subroutines of the 
FORTRAN program H20D20 which was used to calculate the 
internal pressure of water and deuterium oxide and to fit 
the data using the method of linear least squares to 
equation [10.20] of Chapter 10.

Subroutine DATA(JJ) contains the parameters for
8 9equations used by Fine and Millero ' to calculate the 

volumes, expansibilities and compressibilities for both 
water and deuterium oxide. Subroutine VANALY sets up the 
arrays and necessary variables from which the volumes 
(subroutine V C A L C ), compressibilties (subroutine XCOMP), 

expansibilities (subroutine XPAN) and internal pressures 
(subroutine PANALY) are calculated. The same subroutine 
also sets up arrays for various plot routines e.g. 
subroutines PIMAP and PIPLOT.

Finally the internal pressure, temperature and 
pressure data are set up for equation [10.20] of Chapter 10 
in subroutine XPIFIT. The data are fitted to this equation 
using the method of linear least squares using a separate 
subroutine (subroutine XLSQ) called from within XPIFIT.

At the start of the program the integer variable JJ 
is set equal to zero, this ensures the program analyses 
data for water. However on successful completion of 

subroutine XPIFIT the program loops back to the start and 
resets JJ = 1. The program then carries out the same
analysis for deuterium oxide and on successful completion 
of XPIFIT for the second time the program is terminated.
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program h2od2o
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c * internal pressures
c * A.W.Hakin & M .J .Blandamer
c * University of Leceister

implicit double precision(A - H ,o-Z)
common/mike/p(11),tk(31),p i (31,11),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,11),comp(31,ll),yexp(31,ll) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/wi1l/btot,altot,dtot,a2tot,zv,dog 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11) 
common/jess/xtc
common/dan/kcont,setpi,excomp,pnew 

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * internal pressure and kinetics

c * anne is kinetics
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

i top=0 
j top=0 
nout=6

c * i j = 0 water
c * i j = 1 d2o lind is a counter for plots
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

jj = 0 
lind=l 
dog=l
call paper(l)

200 continue
call head(jj) 
call data(jj) 
call vanaly 
call xpifit 

30 format(lh ,10x,'signals')
write(6,40) itop, jtop 

40 format(lh ,lOx,'itop=', i3,2x,'jtop=',i3)
if(jj.eq.l) goto 100
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jj=l
goto 200 

100 continue
call grend 

wri te(6,20)
20 format(IhO,20x,'that is all, folks') 

end
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subroutine data(jj)
implicit double precision(A-H,0-Z)
common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),

$al(5),a2(5),dv(6),dO(2),vol(31,ll),comp(31,ll),yexp(31,ll) 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/wi11/btot,altot,dtot,a2tot,zv,dog 

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * data from fine and millero
c * water J .Chem.Phys., 197 3,59,5529.
c * d2o J.Chem.Phys., 1975,63,89.
c * b- parameters equation 6''
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

i f(j j .e q .1) goto 10

c * water data
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

b(l)=19654.320 
b(2)=147.037 
b(3)=-2.21554 
b(4)=1.0478e-2 
b(5)=-2.2789e-5 

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * do parameters numerator for vO
c * equation 6'
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

dO( D - l . O O  
dO(2)=18.159725e-3 

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * a 1 parameters equation 6''
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

al(l)=3.2891 
al(2)=-2.3910e-3 
al(3)=2.8446e-4 
al(4)=-2.8200e-6 
al(5)=8.477e-9

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * a2 parameters equation 6'''
0 * * * * *

a2(l)=6.245e-5
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10

a2(2)=-3.913e-6 
a2( 3 )=-3 . 499e-8 
a2(4 )=7.942e-10 
a2(5)=-3.299e-12 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* dv( ) denominator in volume eqn.
* * * * * * * * * * *

dv(1 )=0.9998396 
dv(2)=18.224944e-3 
dv(3)=-7.922210e-6 
dv(4)=-55.44846e-9 
dv(5)=149.7562e-12 
dv(6)=-393.2952e-15 
goto 20

* d2o data
* * *

continue 
b(l)=1.860737e4 
b(2)=170.26 
b(3)=-2.40556 
b(4)=1.02703e-2 
b(5)=-l.5680e—5
do 1 = 1.00
dO 2 =17.96190e-3
al 1 =3.129069
al 2 =-4.53919e-3
al 3 = 4 . 3252e-4
al 4 =— 4.7659e—6
al 5 =1.6244e-8
a2 1 =1.07903e-4
a2 2 =-5.5471e-7
a2 3 =- l .6758e-7
a2 4 =2.384e-9
a2 5 =-9.301e-12
dv 1 =1.104690
dv 2 =20.09315e-3
dv 3 =-9.24227e-6
dv 4 =-55.9509e—9
dv 5 =79.9512e-12
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d v (6 ) =0 . 0 
20 continue

wri te(6,100)
100 format(lh ,20x,'input parameters') 

do 110 i=l,5 
write(6,120) i,b(i)

120 format(lh ,2x,'b',2x,i3,2x,'=',2x,lpel5.6)
110 continue

do 130 1=1,2
write(6,140) i ,d O (i )

140 format(lh ,2x,'d ',2x,i3,2x,'=',2 x ,lpel5.6)
130 continue

do 150 i=l,5
write(6,160) i , al(i ),a2(i )

160 format(lh ,2x,i3,2x,'al = ',lpel5.6,3x,'a2 = ',lpel5.6) 
150 continue

do 100 i=l,6 
write(6,190) i,dv(i)

190 format(lh ,2x,i3,2x,'dv = ', lpel5.6)
180 continue 

return 
end
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c

subroutine vanaly
implicit double precision(a-h,o-z)

Q * * * * * * * * * * * *

c * calc of volumetric parameters for water
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

common/mike/p(11),tk(31),pi(31,11),tc(31),b(5),
$al(5) ,a2(5),dv(6),d0(2),vol(31,ll),comp(31,11),yexp(31,11) 

common/anne/rk(50),prk(50),nrk,delta(5GG),point(5GG) 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,ll) 
common/will/btot,altot,dtot,a2tot,zv,dog 
dimension z (4G),hts(20,50),x (4G)

Q * * * * *

c * z is a plot dummy
c * hts is for 3-d plot
Q  * * * * * *

i top=0 
j top=0 
wr i te(6,10)

10 format(lh ,20x,'volumetric parameters')
icount = 0 
wr i te(6,20)

20 format(lh ,25x,'fine and millero')
Q  * * * *

c * set up for temp array (11,31)
0 * * * * * * * * *

Xts=0.5 
do 30 i=l,40 
icount=icount+l 
i top=i top+1 
j top=0
tc(i )=(i-1)*xts 
i f(i . g t .12) xts = 5 .0 
if(i.gt.l2) tc(i)=(i-11)*xts 
tk(i)=tc(i)+273.15 

(2 * * * * * * *

c * Alternative setup for pi surface plot (i.e (11,21))*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c xts=5.0
c do 30 i=l,21
c icount=icount+l
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c itop=itop+l
c jtop=0
c tc(i )={i-1)*xts
c tk(i)=tc(i)+273.15
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * End of the alternative Setup *

do 40 i=l,ll 
j top=j top+1 
p(j)=(j-1)*1.0e2

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * 0 to 110 Celsius
c * 0 to 1000 bar applied pressure
C * p( ) is held in bar
c * pn is held in n mT-2
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

pn=(p(j)*1.0e5)+101325.0 
xtc=tc(i) 
pug=p(j)

(2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * vcalc called with
c * Xtc temp/celsius
c * pug xs pressure/bar
c * returns dum in cm"3 g*-l
c *********************************************************

call vcalc(xtc,pug,du m )
Q * * * *

c * vol(i,j) in cm"3 g'-l
(2 * * * *

vol(i ,j )=dum
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * xcomp called with
c * xtc = temp/celsius
c * pug = xs pressure/bar
c * dum = vol/cm"3 g/-l
c * return ycomp/(N m/-2)"-l
(2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

call xcomp(xtc,pug,dum,ycomp) 
comp(i,j )=ycomp

p * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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c

c * xpan called with
c * xtc = temp/celsius
c * pug/excess pressure/bar
c *dum = vol/cm"3 g/-l
c * return dum2 expansibi li ty/K'^-l
(2 *******************************************************

call xpan(xtc,pug,dum,dum2) 
yexp(i,j )=dum2

c * call panaly with
c * xtc = temp/celsius
c * pug = excess pressure/bar
c * dum2 = expansibility
c * ycomp = compressibility
c * return with xpi/N m*-2 = internai pressure

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

xtc=tc(i ) 
pug=p(j)
call panaly(xtc,pug,dum2,ycomp,xpi) 
p i (i ,j)=xpi 

40 continue
if(tc(i).ge.100.0) goto 177 

30 continue
177 continue 

write(6,178) icount
178 format(lh ,10x,'number of data points»',14) 

do 200 k=l,4
if(k.eq.l) write(6,50)

50 format(IhO,20x,'volumes/cm"3 g"-l')
if(k.eq.2) write(6,51)

51 format(IhO,20x,'expansibilities/K'-l') 
if(k.eq.3)write(6,52)

52 format(lh0,20x,'compress ibi1i ties/Pa"-1') 
if(k.eq.4) write(6,53)

53 format(lh ,20x,'internai pressures/bar') 
do 90 m=l,15,5
itop=m+4
if(itop.g t .11) itop=ll 
write(6,60) (p(i),i=m,itop)

60 format(lh ,4x,'pg/bar',7 x ,5(x ,Ipel5.6))
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61

80

70
77

90
777
200

4820
4810

4320
4310

write(6,61 )
forraat(lh ,2 x temperature/K') 
do 70 i=l,60 
im=i top
if(k.eq.l) write(6,80)j,tk(j),(vol(j,i),i=m,im)
if(k.eq.2) write(6,80)j,tk(j),(yexp(j,i),i=m,im)
if(k.eq.3)write(6,80)j,tk(j),(comp(j,i),i=m,im)
if(k.eq.4)write(6,80)j,tk(j),(pi(j,i),i»m,im)
format(lh ,12,x,lpel5.6,5(x,lpel5.6))
if(tc(j ).g e .100.0) goto 77
if(j .g e .icount) goto 77
continue
continue
if(p ( i ).g t .1.0e3) goto 777 
continue 
continue 
continue

* int pressure plot
****** * * * * * * * * * * * * * * * * * * * * * * * * * * *

ymin=pi(1,1) 
ymax=ymin
do 4810 ix=l,icount 
do 4820 iy=l,ll
if(pi(ix,iy).It.ymin) ymin=pi(ix,iy) 
if(pi(ix,iy).gt.ymax) ymax=pi(ix,iy) 
continue 
continue 

ymin=ymin-dabs(ymin/10.0) 
ymax=ymax+dabs(ymax/10.0) 
do4310 i=l,ll 
do4320 j=l,icount 
zpos(j,i)=pi(j ,i ) 
continue 
continue
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* attempt to plot internal press surface

call pimap 
call piplot
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* 3-d plot

wri te(6,1010 )
1010 format(lh ,2x,'iso plot') 

write(6,1020)
1020 format(lh, 3x,'volumes') 

do 1030 i=l,50 
do 1040 i=l,20 
xtc=(i-1 ) *2 
pug=(j-1)*100 
call vcalc(xtc,pug,dum) 
hts(j ,i)=dum 

1040 continue 
1030 continue 

ifail=0 
1099 continue 

return 
end
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subroutine vcalc(tcx,p x ,calcv)
implicit double precision(A - H ,0- z )
common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),

$al(5),a2(5),dv(6),dO(2),vol(31,11),corop(31,11),yexp(31,ll) 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,ll) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/wi1l/btot,altot,dtot,a2tot,zv,dog

p *********************************************************
c * input tcx = temp/celsius
c * px pressure/bar (excess)
c * output » calcv/cm*3 g/-l

btot=b(1) 
altot=al(1) 
a2tot=a2(1)

p * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * calc b al and a2 in eqn 6.
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

do 10 i=2,5
btot=btot+(b(i)*tcx**(i-l)) 
altot=altot+(al(i)*tcx**(i-l)) 
a2tot=a2tot+(a2(i)*tcx**(i-l))

30 continue
10 continue

dtot=dv(1) 
do 20 i=2,6
dtot=dtot+(d v (i)*tcx**(i-l))

40 continue
20 continue

xkl=altot*px
xk2=a2tot*px**2
xk=btot+xkl+xk2

Q * * * * * * * * * * * * * * * * * * * * * * * * * *

c * xk = pres.zv/(zv -calv)
(2 * * * * * *

zv=(dO(l) +dO(2)*tcx)/dtot 
calcv = zv -(px*zv/xk) 
return 
end
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subroutine xcomp(temp,pres,calv,ycomp) 
implicit double precision(a-h,o-z)

p **************************************
c * calc of compressibility
c * temp = t/celsius
c * pres = excess pressure/bar
c * calv = volume/cm*3 g"-l
c * return ycomp in (N m/-2)*-l and not bar*-l

common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),
$al(5),a2(5),dv(6),d0(2),vol(31,ll),comp(31,11),yexp(31,ll) 

common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/pete/dvz,d b ,dal,da2,tcpi,1ind,zpos(31,11) 
common/will/btot,altot,dtot,a2tot,zv,dog 
duml =btot-(a2tot*pres**2) 
dum2 =btot+(altot*pres)+(a2tot*pres**2) 
ycomp=zv*duml/(calv*dum2**2) 
ycomp=ycomp*l.Oe-5 
return 
end
subroutine panaly(xtc,pug,xpan,ycomp,xpi) 
implicit double precision(a-h,o- z )

Q * * * * * * * * * * * * *

c * calculation of internal pressure;
c * return calc in xpi
c * at pressure pug/bar and xtc/celsius

**************************************
common/mike/p(ll),tk(31),pi(31,ll),tc(31),b(5),

$al(5),a2(5),dv(6),d0(2),vol(31,ll),comp(31,ll),yexp(31,ll) 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,ll) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/wi11/btot,altot,dtot,a2tot,zv,dog 
pug=(pug+1.0)*1.01325e5
xpi=(((xtc+273.15)*xpan/ycomp) - pug)*1.Oe-5 
return 
end

c
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subroutine xpan(temp,pres,calv,expan) 
implicit double precision(a-h,o-z) 

c * * *
c * temp = t/celsius
c * pres = excess pressure/bar
c * calv = calc volume/cm"3 g"-l
c * return expan/K"-l
c

common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),
$al(5),a2(5),dv(6),d0(2),vol(31,ll),comp(31,ll),yexp(31,ll) 

common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,ll) 
common/anne/rk(20),prk(20) 
common/wi11/btot,altot,dtot,a2tot,zv,dog

p ********************************************************
c * calc of expan.
p ********************************************************

db=b(2) 
dal=al(2) 
da2=a2(2) 
ddv=dv(2 ) 
do 20 i=3,5 
Xtc=temp* *(i-2)

c
c * calc db/dt
c * dal/dt
c * da2/dt
Q ****************

db=db+(i-l)*b(i)*xtc 
dal=dal+((i-l)*al(i)*xtc) 
da2=da2+((i-l)*a2(i)*xtc)

20 continue
Q * * * * * * * * * * * * * * * *

c * calc dvO/dt
0 * * * * * * * * * * * * * * * *

do 30 i=3,6 
Xtc=temp* * (i-2) 
ddv=ddv+((i-l)*dv(i)*xtc)

30 continue
duml = d0(2)/dtot 
dum2=d0(1)+dO(2)* temp
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dum3= - dum2*ddv/(dtot**2) 
dvz = duml+dum3 

0 * * * * * * * * * *

c * first term in eqn 10 is dum4
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

dum4=dvz/calv
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * second term is dum5
* * * * * * * * * * * * * * * * * * * * * * * *

suml=(btot+(altot*pres)+(a2tot*pres**2)) 
dum5= - pres*dvz/(calv*suml)
* * * * * * * * * * * * * * *

c * third term is dum6
0 * * * *

sum2 = db+(dal*pres)+(da2*pres**2) 
dum6 = pres*zv*sum2/(calv*suml**2) 
expan=dum4+dum5+dum6 

return 
end

c

c
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c

subroutine xpifit

c * analysis of internal pressures
c * dependences on T and p
c * fit pi dependence
c * pi » al + a2.(t-tref) + a3.(p-pref) + a 4 .(T-tref"2)
c * + a5 . ( t-tref ) . ( p-pref ) + a6 . ( p-pref )''2 ....

implicit double precision(a-h,o- z ) 
common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),

$al(5),a2(5),dv(6),dO(2),vol(31,ll),corop(31,11),yexp(31,ll) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,11) 
common/wi11/btot,altot,dtot,a2tot,zv,dog 
dimension a(20),y(500),x(500,10),xt(10,500),w(10,10) 
dimension wi(10,10),ycalc(500),picalc(40,11) 
dimension z(500),unit(10,10),wkspce(10),wp(10,500) 
dimension zx(l),xdelta(1,500),cx(30,30) 
wr i te(6,10)

10 format(lh ,10x,'pi -- Isq')
************************

c * fit about midpoints
0 * * * * * * *

tref=323.15 
pre f=500
write(6,20) tref 

20 format(lh ,20x,'tref/k»',lpel5.6)
wri te(6,30) pref 

30 format(lh ,10x,'pref/bar=',lpel5.6)
0 * * * *

c * clear arrays
c * * *

do 33 j=l,500 
y(j)=0.0 
do 35 i=l,10 
x(j,i)=1.0 

35 continue
33 continue

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * set up arrays

c
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110
100

130

1020

* jfit is counter 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

jfit=0
do 100 i=l,31 
do 110 i=l,ll 
jfit=jfit+l

jfit)=pi(i,j)
jfit,l)=1.0 
j fi t ,2) = tk(i )-tref 
jfit,3 )=p(j)-pref 
jfit,4)=x(jfit,2)**2 
jfit,5)=x(jfit,2)*x(jfit,3) 
jfit,8)=x(jfit,3)**2 
jfit,9)=x(jfit,2)**3 
jfit,6)=x(jfit,4)*x(jfit,3) 
jfit,7)=x(jfit,2)*x(jfit,3)**2 
jfit,10)=x(jfit,3)**3 

continue 
continue
write(6,130) jfit
format(lh ,10x,'number of points»',ilO) 
* * * * * * * *

* least squares analysis
* set number of parameters and explore fit 
* * * * * * * * * *

if(lind.eq.l) ipar»7 
if(1ind.e q .2) ipar=9 

call xlsq(X,y ,jfit,ipar,a ) 
wri te(6,1020) 
format(lh ,10x,'end of analysis') 

return 
end
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Section 2
Modification of the latter FORTRAN program produces a
program which calculates the temperature of maximum density 
for both water and deuterium oxide as a function of
pressure. The modification is achieved by removing 

subroutine XPIFIT from the program and replacing it with 
subroutine TMD(JJ) which in turn calls an external 
subroutine F .

Subroutine TMD(JJ) contains NAG routine C05ADF which 
locates a zero of a continuous function in a given interval 
by combination of the methods of interpolation,
extrapolation and bisection. External subroutine F , called 
by the NAG routine, defines the function whose zero is to 
be determined. In the context of this problem the 
continuous function is the volume and hence for a given 
temperature the NAG routine searches for a pressure at
which the volume is a minimum i.e. the pressure at which 
the expansibility should be zero. Enclosing the NAG routine 
within a 'do loop' ensures several different temperatures 
are examined.

The resulting temperature and pressure data are then 
fitted using the method of linear least squares (subroutine 
XLSQ called from within TMD(JJ)) to equation (10.21] of 
Chapter 10 to produce an equation for the temperature of 

maximum density as a function of pressure for both water 

and deuterium oxide.
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c

subroutine tmd(jj)
implicit double precis ion(a-h,o-z) 
common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),

$al(5) ,a2(5),dv(6),dO(2),vol(31,11),comp(31,ll),yexp(31,ll) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/j ess/xtc
common/dan/kcont,setpi,excomp,pnew 
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,ll) 
common/wi11/btôt,altot,dtot,a2tot,zy,dog 
dimension vmin(50),tmin(50),pmin(50) 
dimension a(20,l),y(500),x(500,10) 
external f

c * calc of TMD
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

wr i te(6,10)
10 format(lh ,20x,'TMD calculation')

kcont=0

c * determine pressure at which E is zero at given Temp.
0 * * * * * * * * * * * * * * * * * * * *

do 20 i=l,8 
i f(j j .e q .1 ) goto 13 
xtc = 4.0-(i-1)* 1. 0 
if(i.eq.l) xtc=3.984 

0 * * * * * * * * * * * * * * * * * * * *

c * 3.984 from Kell and 11.44
c * Gauss-Newton calc.

* * * * * * * * * * * * * * * * * * * * ,

goto 15 
13 continue

xtc = 10.0-(i-l)*1.0 
if(i.eq.l) xtc=11.44 

15 continue
tmin(i)=xtc+273.15 
pug=0.0
if(i.eq.l) goto 60 
ilast=i-l 
pug=pmin( H a s t  ) 
write(6,62 ) xtc

c
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62 format(lh ,2x,'t/c=',2 x ,Ipel5.6)
wri te(6,64 ) pug 

64 format(lh ,2x,'input p/bar =',2x,lpel5.6)
i fai1»0 
xtcc=xtc

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * calls to vcalc and xpan are dummy to obtain
c * contributing param.
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

call vcalc(xtcc,pug,calcv) 
call xpan(xtcc,pug,calcv,dum) 
eta=0.0 
eps=l.Oe-8 
xa=-100 
xb=l.0e2
call c05adf(xa,xb,eps,eta,f,pug,ifail)

60 continue
write(6,70) pug 

70 format(lh ,10x,'est p/bar=',2x,Ipel5.6)
wr i te(6,80) ifai 1 

80 format(lh ,lOx,'ifai 1=',2x,i3)
if(ifail.ne.O)stop 
pmin(i)=pug
call vcalc(xtcc,pug,calcv) 
call xpan(xtcc,pug,calcv,dep) 
vmin(i )«calcv
write(6,100) i,xtc,tmin(i),pmin(i),vmin(i),dep 

100 format(Ih ,2 x ,i3,2x,'t/c«',2x,Ipel5.6,2x,'t/k-',2x,
$lpel5.6,2x,'p/bar= ' ,2x,lpel5.6,2x,
$'v/cm"3 g"-l =',2x,lpel5.6,2x,'ex= ',lpel5.6)

20 continue
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * add further analysis here
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * *

write(6,701)
701 format(lh ,10x,'lsq analysis')

do 400 i=l,500 
do 410 j=l,10 
x(i,j)=1. 0 

410 continue
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c

400 continue
0 *****************************************************
c * fit T as a function of p

* * * * * * *

wr i te(6,505)
505 format(lh ,3x,'temp/c',5x,'p/bar') 

do 500 i=l,8 
x(i,l)=1.0 
x(i,2)=pmin(i) 
x(i,3)=pmin(i)**2 
x(i,4)=pmin(i)**3 
y(i)=tmin(i)-273.15 
write(6,702) i ,y (i ),x (i,2)

702 format(lh ,4x,i3,2(3x,lpel5.6))
500 continue 

jfit«8
do 503 ipar=2,4 
call xlsq(X ,y ,jfit,ipar,a )

503 continue 
return 
end
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real function f(pug)
implicit double precision(a-h,o-z)
common/mike/p(11),tk(31),pi(31,ll),tc(31),b(5),

$al(5),a2(5),dv(6),dO(2),vol(31,ll),comp(31,11),yexp(31,ll) 
common/anne/rk(50),prk(50),nrk,delta(500),point(500) 
common/jess/xtc
common/dan/kcont,setpi,excomp,pnew
common/pete/dvz,db,dal,da2,tcpi,lind,zpos(31,ll)
common/wi11/btot,altot,dtot,a2tot,zv,dog
if(kcont.e q .1) goto 500
if(kcont.e q .2 ) goto 700
Xtcc=xtc
xpug=pug
call vcalc(xtcc,xpug,calcv) 
call xpan(xtcc,xpug,calcv,dumx)

0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c * btot dtot zv
c * altot a2tot dvz all known
c * zv = vO dvz = dvO/dt = s
c * dbl dal da2
0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

dum=btot + (altot*pug) + (a2tot*pug** 2) 
duml = - pug*dvz/dum 
zdum=db+(dal*pug)+(da2*pug**2) 
dum2 = pug* zv* zdum/dum* *2 
f»dvz+duml+dum2-setpi 
write(6,110) pug 

110 format(lh ,2x,'in f ( ), pug» ',lpel5.6)
wr i te(6 , 20 ) f 

20 format(lh ,'f » ',2x,lpel5.6)
write(6,30) calcv,dumx 

30 format(lh ,2 x ,'v = ',2x,Ipel5.6,2x,'expan»',
$2x,lpel5.6)

0 * * * * * * * * * * * * * * * * * * * * * * * :

c * expan should be zero
0 * * * * * * * * * * * * * * * * * * * * * * * !

goto 510 
500 continue

wr i te( 6 , 207 ) pug 
207 format(lh ,2x,'in f , pug =', lpel5.6)
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call vealc (tcpi,pug,calcv) 
call xcomp(tcpi,pug,calcv,ycomp) 
call xpan(tcpi,pug,calcv,expan) 
f=((tcpi+273.15)*expan/ycomp)-(pug+l)-setpi 
wr i te(6,10) f 

10 format(lh ,10x,'resid pi =',2x,lpel5.6) 
goto 510 

700 continue 
ytc=pug
wri te( 6,707 ) y tc 

707 format(lh ,2x,' in f, ytc= ', lpel5.6) 
call vcalc(ytc,pnew,calcv) 
call xcomp(ytc,pnew,calcv,ycomp) 
call xpan(ytc,pnew,calcv,expan) 
denom=btot+(altot*pnew) + (a2tot*pnew**2) 
xnum=btot-(a2tot*pnew**2) 
duml=db-(da2*pnew**2)
dum2 = -2.0*(db+(dal*pnew) + (da2*pnew**2))*xnum/denom 
dum3=-xnum*expan 
f=duml+dum2+dum3 
wri te(6 , 303 ) f 

303 format(lh ,10x,'resid compress = ',lpel5.6)
510 continue 

return 
end
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Appendix
7



This program, written in HP BASIC, reports how the excess 
pressures discussed in Chapter 11 can be calculated. In the 
example shown the program is set up to calculate the excess 

pressures of aqueous urea solutions. The following 
variables have been used within the program;

V2 = the apparent molar volume at infinite dilution,

K2 = the limiting compression of the solute, Kj*.
01 = the occupied volume of the solute, 0 ^ .

Ml = the molar mass of water.
M(i) = the molality of urea in solution.
V(i) = the apparent molar volume of the solute, *(Vj).

Obtained from a polynomial expression in molality.
Dl & D2 = the parameters d^ and d 2  of equations [11.10] and

[11.11] of Chapter 11.

Vl(i) = the differential of *(Vj) with respect to molality,
multiplied by the molality of the urea.

The excess pressures are calculated in lines 160 to
340 of the program. On successful completion array Pi
contains the excess pressure p^(L), P2 contains p^(*-Vj),
P3 contains Pg(<l>-v^) and P4 contains Pg(G2). These

calculations are based on equations [11.51], [11.61],
[11.65] and [11.32] of Chapter 11 respectively.

Lines 350 to 720 of the program collect together the
E Ecalculated data and produces plots of p (L), p ( 4>-v^ ) , 

p^(t-v^) and p^(G2) against molality on an HP 7475A 
p l o t t e r .
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IA I ÛIBiOH Ph PEP 590
20 ' MULTI Pi_OT "500
70 ' UREA 610
4 0  I ANDY HAKIU UHI'..' LEICESTER 620
50 OPTION BASE 10 CLEAR 630
60 DIM Ui25^,Ui\25).M(25) 640
70 DIM Pl(25).P2(25',P3(25>.P4i 650

25:.' 660
50 V2=44.2 0 K2=- 00009 0 01=.0 670

000424901 680
90 Dl= 00000246696 0 02=2993.39 690

4
100 Ml = 01 30 15 0 F"=l 700
110 FOR 1=1 TO 25 710
120 M(I :' = I/2+ 5 720
1 70 I > =44 .2^.1 26*M ( r.'- . 004 tM( I

PEN 4
FOR 1=1 TO 25 
PLOT M-: I P4< I 
NEXT I
LABEL "GIBSON"
PEN 1
FOR S=X1 TO X2 STEP 2 
MOVE 3,-75 0 LABEL VALf(S) 
NEXT 3FOR T=-400 TO 1600 STEP 200 
MOVE XI-2/2,T 0 LABEL VAL$(I 
NTCTfl0;/10)
NEXT T
FRAME
END

VI •. I ;> = ( . 126- 003TM-;; I :• 'tM( I > 
A1 = 'V2-U< i )-K2T'; D2+P> >t . 0000 
01
Al=Al*MltMfI)
A2=EXP(A1 Dl)
A2=A21(D2+P)

190 P1(I)=A2-\D2+P)
200 B1=V1■ I 'T .000001 
210 Bl=BltMl*M(I)
220 B2=EXP(B1'D1)
230 B2=B2t(D2+P)

P2(I'=B2-(02^P;
C 1 = ■: V2-V ( I > ) t 000001 
C 1 =C 1 *:M 1 TM •; I )

1 40 
150
160
170
130

240
250
260
270 C2=EXP (Cl/Di:-
280 C2=C2t (D2+P)
290 P3(I)= C2-(D2 + F:'
300 El I t . 000001
310 El=01- El
320 E2=EXP (M(I)TM1*E1
330 P4< I '• = (D2+P)T(E2-
340 NEXT I
750 PLOTTER IS 705
330 X1=0
390 X2=AMA X M . '
4 I 0 XI .'.4
4 20 SCALE XI-2,X2*2 . -
470 XAXI3 0.2,X 1.X2
440 VAX I 3 X I ,200,-400
4 50 C':,R 1 = 1 TO 25
4 60 PLOT M f I ),P1': 1/
4 70 NEXT I
4 90 LABEL "LEYEN"
490 PEN 2
500 FOR 1 = 1 TO 25
510 PLOT M <I),P2-'I ;•
520 NEXT I
530 LABEL "BLAND.- HAK"
540 PEN 3
550 FOR I = 1 TO 25
560 PLOT M (I),P3\I)
570 NEXT I
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Section 1
Both of the programs reported below are written in HP BASIC
for an HP 85 computer. The first program, (3 INFO,
calculates the configurational partial molar heat capacity,
defined by equation [12.40] of Chapter 12, as a function of
p. Within this program the following variables are defined;

Cl = - ♦ x / ' 3 ( l - x / ' ï ) Û ^ C p /
and C2 = -+X

0
where <(> = [n^p/m W ] . The configurational partial molar heat
capacity, C is thus obtained as the sum Cl + C2. Values pz
of C are then stored on disk to be accessed whenpz
required.

The second program, g PLOT, reads C data from thepz
disk into an array C and then produces a plot of C__^ ^ pz
against (3 on an HP 7475A plotter.
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10 ! 6 INFO
20 OPTION BASE CLEAR 
30 DIM 0(21)
40 FOR B=-i TO 1 STEP .1 
50 J = B t 10+11 
60 M= 018015 I» F = 8 314 
70 H = 10000 0 D=S 0 K0=9 
30 T=298 15
90 K = LOO(K0)+H/Rt( 1 298. 15-1/1) 
100 k=EXP(K)
110 X=K/(K+EXP(B)) 
i20 Z=X
130 Cl=-(B/M*Zt(l-Z)tD)
140 C2 = -(B/M%Z*(l-Z)t(l-2fZ)tH--2 

(R4CT-2) >
150 C(J)=C1+C2 
160 PRINT B.:Z 
170 NEXT B
130 VOLUME ":D 7 0 1 " IS "DATA H" 
190 ASSIGN# 1 TO "CP.DATA H"
200 PRINT# 1 C )
210 ASSIGN# 1 TO t
220 DISP "DATA ON DISC"
230 END

10 ! 6 PLOT
20 OPTION BASE 10 CLEAR 
30 SHORT C(21)
40 MASS STORAGE IS " = 0701"
50 CRT OFF
60 VOLUME ":D 7 0 1 " IS "DATA H"
70 ASSIGN# 1 TO "CP.DATA H"
30 READ# 1 C O  
90 ASSIGN# 1 TO t 

100 CRT ON
110 DISP "DATA RECEIVED"
120 PLOTTER IS 705 
130 GCLEAR 
140 Y2=AMAX(C)
150 Y1=AMIN(C)
160 U=(Y2-Yl>/20
170 SCALE -1.1,1.1,Y1-U,Y2+U
130 XAXIS Y l , .1,-1,!
190 YAXIS -1,U,Y1,Y2
200 MOVE -1,Y1
210 FOR B = -l TO 1 STEP . 1
220 J=Btl0+ll
230 PLOT B.C(J>
240 NEXT B
250 FOR B=-l TO 1 STEP .1 
260 MOVE B,Yl+30 @ LOIR 0 @ LABE 

L VAL$(B)
270 NEXT B
280 FOR S=Y1 TO Y2 STEP 2tU 
290 S=INT(S)
300 MOVE -.9,3 @ LABEL VAL$(S) 
310 NEXT S
320 MOVE -1,0 @ DRAW 1,0 @ PENUP 
330 FRAME 
340 END
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Section 2
This FORTRAN program, HEATCAP, is a modified version of the 
programs reported in Section 1. The insertion of a 
temperature loop within the program gives as a
function of (3 and temperature. Hence using a graphics GHOST 
package contained in subroutine SURFPLOT it was possible to 
produce the temperature/# surface of the configurational 

isobaric partial molar heat capacity.
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prnptnm hentcap
implicit double precision (a-h,o-z) 
common/andy/temp(11),beta(31),heat(11,31) 
ca11 paper(1)
♦ program to calculate the temperature and beta dependence
* of the isobaric partial molar heat capacity.
* Calculates a partial molar isobaric heat capacity temperature
♦ be t a surface*******$$*************************$*****$********$********$*****
sum=-2.0 
do 10 i = 1 ,31
beta{i)=sum+((i-1.0)/5.0)

10 continue
do 20 .1=1,11
temp(j) = 263.15 + (J*10.0)

20 continue
xm = 0.018015 
X r = 8.314 
xh = 10000.0 
X d = 8.0 
xl(o = 9.0 
do 30 i = 1 , 1 1 
do 40 j=l,31
xk = dJog(xko) + xh/xr*(1/298.15-l/temp(i)l 
xk = dexp(xk)
XX = xk/(xk+dexp(be ta(j ) ) )
z X = XX
cl = - ( be t a ( .j )/xm * zx * ( 1 . 0-zx ) ♦ xd )
c 2 = -(beta(j)/xm*zx*(1.0-zx)*(1.0-2*zx)*xh**2.0 

$/(xr* temp(i ) ♦ »2.0 ) ) 
hen t ( i , .j ) = c 1 + c2

10 con t i nue
3 0 continue

call surf piot 
call grend 
end
subroutine surfplot
implicit double precision (a-h,o-z)
common/andy/temp( 1 1 ) ,beta(31 ) ,heat( 1 1 ,31 )
real * 4 cap( 11 ,31 ) , t.em ( 1 1 ) ,bet(31 )
i nteger i f a i1
do 10 1=1,II
do 20 J=1,31
C’a ( i . .j ) =hen t ( i , ,j )

2 0 c fin t i nue
I f’ continue

(all gpstop(2)
(’all filnam( 'capacity')
call pspace(0.15,0.85,0.15,0.85)
call su ra X e( 3,2 7 3. 1 5,-2.0, 10.0,0.2)
ca11 surbas(l,1,0.0)
ca11 surco1(0,2,31
ca I 1 surd i r (())
caII sur i ndI 0 I
f • a 1 I s u r p1 t(c a p , I , 1 1 , 11 , 1 ,31 ,31 ) 
call c t rmap(18)
call picscen( 0.5,-0.1 5, 'Isobaric Heat, Capacity 

S S u I f ac'e ’ )
rail c t rmag(10)
(’ a 1 1 frame 
t e turn
Ctlfl
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Section 3
This HP BASIC program, written for an HP 85 computer can be 
divided into two parts. The first part of the program deals 
with the calculations. On running the program the user is 
prompted for two values of 0. The first value is used to 
represent a p value for the initial state, B(l), and the 
second a 0 value for the transition state B(2). Using B(l) 

and B(2) values of Cp^(Z^) (C(2,j)) and Cp^(Z) (C(l,j)) are 

calculated at a series of temperatures using the method

adopted in program HEATCAP of Section 2. The difference 
Cp«(Z+
C3(j) .

# 4
Cp (Zf) - Cp ( Z ) is then calculated and stored in array

The second part of the program uses all of the
collected data to produce plots of C ^ ( Z=f ) , C ^ ( Z ) and theP P

4  4
difference Cp ( Z ̂  ) - Cp ( Z ) against temperature on an HP
7475a  plotter.
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102030

40
50
60
70
80
90

100110
120
130 
1 40 
150 
160 
170 
130 
190 
200  
2 10  220 
230 
240
250
260
270
230
290
300
310
320
330
340
350
360
370
380
3 90 
400
4 10 
420 
430
440
450
460
470
480
4 90 
500
5 10

CP OF SOLUTE

! 6 Cp plot
OPTION BASE 10 CLEAR
DIM X(50),C1(2,50>,C2(2,50),
C(2,50),M1(5).T(50),M0(5),B(
2),C3(50)
FOR H=1 TO 2 
DISP “B-PARAM".
B(N)

NEXT N
DISP "ISOBARIC 
2 IN WATER"
M = .018015 0 R=8 314 
DISP "ANDY HRKIN"
H=10000 0 D=B 0 K0=9 
DISP "DELTA K/J MOL— 1 =";H 
DISP "DELTA CP/J K--1 MOL^-1 
= ",D
FOR J=1 TO 50 
N=(J-1)*2 
T(J)=298+(N-25)DISP "T/K="jT<J) 
K=LOG(K0)+H/R*(l/298-l/T(J)> 
K=EXP(K)
DISP "K=";K
FOR N=1 TO 2
X(J)=K/(K+EXP(B(N)>)
Z=X(J)
C 1 (N,j)=-(B(N)/M*z*(l-2)*D) 
C2(N,J)=-(B(N)/M*Z*(1-Z)*(1- 
2*Z)4H-2/(R*T(J)-2)> 
C(N,J)=C1(N,J)+C2(N,J)
DISP "X-EQ=" ; Xc: J>
DISP "1ST TEPM=";C1(N,J; 0 D 
ISP "2ND TERh=":C2(N,J)
DISP -TOTAL CP(Z)=";C(N,J) 
NEXT N
C3(J)=C(2,J)-C(1,J)
DISP "DELTA CP=";C3<J>
NEXT J
DISP "END OF CALC"
GOSUB 370 
GOSÜB 540
DISP "THAT IS ALL FOLKS" 0 E 
NO
DISP "PRINT DATA" 0 INPUT Q 
IF Q#1 THEN RETURN 
PRINT "Cp f o r  SOLUTE "
PRINT " M .J .BLANDAMER"
PRINT "6-PARPMETER"
FOR J=1 TO 50
PRINT "POINT ";J 0 PRINT "TE 
MP=" ; T-; J>
FOR N=1 TO 2
PRINT 
PRINT ' 
PRINT 
PRINT ' 
NEXT N 
PRINT ' 
NEXT J

SUBST. ; N 
CP 1 = " ; C IC N .. J > 
CP2=" C2(N,J) 
CP(Z)="jC<N,J)
DELTA CP=";C3(J

526
530
540
550
560
570
580
590
600
610
620
630
540
550
660
670
680
690
700
710
720^30
740
750
760
770
780
790
300
310
320
330340
350
860

970
380
390
900
910

920
930
940
950
960
970
980
990

PRINT "END OF DATA"
RETURN
DISP "PLOTTING"
MAT M1=ZER@ MAT M0=ZER 
M1(1)=AMAX(C1) e M0(l)=AMINf 
C D
M1(2)=AMAX(C2) @ M0(2)=AMIN( 
C2>
M1(3)=AMAX(C: @ M0(3)=AMIN(C
)
M1(4)=AMAX(C3) @ M0(4)=AMIN( 
C3>
DISP "PLOTTER ?" 0 INPUT Q0 
IF Q0=1 THEN PLOTTER IS 705 
0 GOTO 630 
GCLEAR
Y1=AMIN(M0) e Y(2)=AMAX(M1) 
Y2=AMAX(M1)
IF Y1>0 THEN Yl=-10 
IF Y2<0 THEN Y2=10 
Y3=Y2+ABS(Y2/10) 
Y1=Y1-ABS(Y1/10) 
X3=(T(50)-T(1> >/5 
X1=T(1) e X2=T(50)
Y0=Y3-Y1 @ Xe=X2-Xl 
S=Y1+ABS(Y0/10)
PEN 2
SCALE Xl-7,X2+7,Yl-20,Y3+20 
LAXES 20,Y0/5,273,Y1,373,Y2 
DEG
FOR 0=273 TO 373 STEP 20
MOVE Q,S @ LOIR 90 @ LABEL V
AL$(Q) e NEXT Q
FOR 0=Y1 TO Y3 STEP 2IY0/10
Z=INT(Q)
MOVE 280,0 @ LOIR 0 0 LABEL 
VAL$(Z)
NEXT 0
FOR N=1 TO 2 
PEN 3
MOVE T(1),C(N,1)
LINETYPE 1 e FOR 1=1 TO 50 9 
PLOT T(I),C(N,I) e NEXT I @ 
PENUP 

NEXT N
IF 00=1 THEN PRINT "SP3"
PEN 4
MOVE T(l),C3kl>
LINETYPE 6 @ FOR 1=1 TO 50 » 
PLOT T ( I > .. C3 < I > 0 NEXT I @ 

PENUP 
PEN 2
MOVE 273,0 
NUP
LINETYPE 1 
SCALE 0, 100,0, 100 
PENUP @ PLOT 50,25,2

0 DRAW 373,0 0 PE

LABEL USING 980 
IMAGE 6A 
PLOT. 80,50,2

TEMP/K

1000 LABEL "DELTA 
1010 IMAGE 2A 
1020 PLOT 25,50,2 

VAL$(B(1> >;"

CP"
e LABEL "Bl=": 
B2=";VAL$(B(2)

1030
1040
1050
1060

FRAME 
IF O0#l 
IF 00=1 
RETURN

THEN
THEN

COPY 
CRT IS
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Section 4
The two programs reported below are written in HP BASIC for 
an HP 85 computer. The first program, VOL INFO, calculates 
the configurational partial molar volume at 298.15 K using 
equation [12.23] of Chapter 12. These data are stored 
immediately on disk.

The second program reads the volume data from the 
disk into an array Vl ( ) and then produces a plot of the 
configurational partial molar volume against (3 in the 
region -1< p <1.
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10 ! VOL INFO 
20 OPTION BASE CLEAR 
30 DIM V I (21)
40 FOR B=-l TO 1 STEP .1 
50 J = B * 1 0 + 11 
60 M= 018015 1Ü R = 8.314 
70 V=-6.4 @ 0=3 0 K0=S 
80 T = 298.15 I? H= 10000 
90 K=LOC( K 0 ) + H / F t ( 1/298.15-1/T) 

100 K=EXP(K)
110 X=K/(K+E%P^B))
120 Z=X
130 Vl(J;=-(ltVt(B/M)tZt(1-Z)) 
140 PRINT B:Z;V1(J)
150 NEXT B
160 VOLUME " : 0701" IS "DATA H" 
170 ASSIGN# 1 TO "CP DATA H"
130 PRINT# 1 : V l O
190 ASSIGN# 1 TO t 
200 DISP "DATA ON DISC"
210 END

10 ! VOL PLOT 
20 OPTION BASE 1@ CLEAR 
30 SHORT V I (21)
4 0 MASS STORAGE IS " : 0701"
50 CRT OFF
60 VOLUME "=0701" IS "DATA H"
70 ASSIGN# 1 TO "CP DATA H"
.30 READ# 1 ; V l O
90 ASSIGN# 1 TO #c

100 CRT ON
110 DISP "DATA RECEIVED"
120 PLOTTER IS 705
130 GCLEAR
140 Y2=AMAX(V1)
150 Y4=AMIN(V1>
160 U=(Y2-Yl)/20
170 SCALE -1.1,1 1,Y1-U,Y2+U
180 XAXIS Y 1 , . 1, -1.. 1
190 YAXIS -1,U,Y1,Y2
200 MOVE -1,Y1
210 FOR B=-l TO 1 STEP .1
220 J=B*10+11
230 PLOT B,V1(J)
240 NEXT B
250 FOR B=-l TO 1 STEP .2 
266 MOVE B,Y1+1 @ LOIR 0 @ LABEL 

VAL$(B)
270 NEXT B
280 FOR S = Y1 TO Y2 STEP 2-tU 
290 MOVE -.9,8 0 LABEL VAL$(S) 
300 NEXT S
310 MOVE -1,0 @ DRAW 1,0 @ PENUP 
320 FRAME 
330 END
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KINETICS OF REACTIONS IN  AQUEOUS SOLUTIONS 

Andrew William Hakin

Abstract

Rate constants for chemical reactions in various aqueous 
systems have been measured and analysed. A major part of 
this thesis discusses the effect of added salts on the 
reaction kinetics of organic substrates and the effect of 
added cosolvent on iron(II) complexes in solution. The 
thesis discusses the properties of aqueous solutions with 
reference to the prediction of trends in kinetic 
parameters.
Transfer chemical potentials for single ions in 'urea + 
water' mixtures have been estimated, using solubility data 
for salts in conjunction with the tetraphenylarsonium 
tetraphenylboronate assumption. Solvent effects on the 
initial and transition states for reactions between 
iron(II) 1,10-phenanthroline and iron(II) glyoxal bis-N 
methylamine with hydroxide ions are also reported.
Solvent effects on initial and transition states for 
reaction between three iron(II) complexes and hydroxide 
ions in 'methanol + water' mixtures are reported.
Effects of added salt on the neutral hydrolysis of 
phenyldichloroacetate and the para-methoxy derivative are 
discussed in terms of solvent cosphere interactions between 
ions.
With regard to computer-based studies osmotic coefficients 
for ammonium, alkylammonium and azoniaspiroalkane halides 
have been used with Pitzer's equations and the ideas of 
Wood e_t al to produce pairwise Gibbs function cosphere- 
cosphere interaction parameters.

The effects of added salt on rate constants for the 
alkaline hydrolysis of the sodium salt of bromophenol blue 
are reported and analysed using Pitzer's equation for the 
activity coefficients of single ions in aqueous salt 
solutions.
Internal pressures of water and deuterium oxide in the 
region 273.15< T/K <373 .15 and 0< P/bar <1000 have been 
calculated and fitted to an equation based on a Taylor 
expansion about internal pressure n.(%,0) at temperature T 
= 0 and pressure p = n.
Calculations are reported which shed light on the 
controversy concerning the isobaric heat capacities for 
activation for the solvolysis of alkyl halides in water.


