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(1)
SUMMARY

During the past decade, many techniques for computer-aided circuit
design have been suggested and investigated, but none have been
developed to the stage where the designer is redundant. The research
described herein concerns the apolication of one technique, the method
of coefficient matching, to the synthesis of lumped, linear, passive,
3-terminal networks with no mutual inductances. The author developed
a program which,with further development, could perform the entire
design process with no designer interaction. Further, the author con-
siders problems where the classical synthesis methods are unsuitable .
e.g. the synthesis of non-series-parallel networks with no series-
parallel equivalent.

The coefficient matching procedure is based on selecting a starting
nétwérk which yields the correct polynomial structure and achieving a
solution by component value adjustment and network evolution. The closer
the starting network to a feasible topology, the more rapid the convergence
to a solution. It is shown that the suitability of a starting network
can be analysed on the basis of the information obtained from the different
but equivalent forms of the admittance functions. The significance of
common factors is discussed and the influence of various types of common
factors on the network realization is investigated.

For cases when the initial starting network is remote from any feasible
solution, sophisticated techniques allowing substantial topological modifi-
cation during network evolution are required. These techniques were
developed by the author on the basis of element and node addition and
elimination.

A Fortran IV program has been developed by the author welding together

all these aforementioned techniques for topological modification. The



(ii)

program makes large topological modification automatically during the
design process. The effectiveness and efficiency of these techniques

and the program are illustrated by a variety of synthesis examples.
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CHAPTER 1

INTRODUCTION

Techniques for the synthesis of electrical networks can be subdivided,
in general, into two categories, namely, interpolation techniques and
realization techniques. Interpolation techniques are used té find network
characteristics which can be realized exactly, and which approximate the
desired performance of the required network sufficiently well. Realization
techniques produce explicit networks from the exactly realizable character-
istics obtained by the interpolation techniques. The electrical networks
considered in the present work are lumped, linear, constant parameter,
passive,3-terminal networks having no mutual inductance.

Before the advent of the modern high speed digital computers, realiza-
tion techniques for these networks depended on what are called 'classical

1,2,3,

techniques These techniques are based on a set of necessary and

sufficient conditions4_7. All such techniques rely on 'series-parallel’
decomposition of the given functions (series decomposition of impedance
functions, parallel decomposition of admittance functions) to successively
simplify them into two or more simpler forms. Decomposition is continued
until the simplified functions are recognized as impedances or admittances
of some realizable networks. These simplified networks are then
reassembled to construct the required network.

In 1968, Fialkow8 showed that soﬁe feasible performance functions cannot
have a series-parallel realization, which means that they cannot be realized
by employing the classical methods.  In addition, classical techniques take
no account of the constraints on the range of element values, presence of
parasitics, and sensitivity of the network performance to slight perturba-
tions in some of the element values. The aforementioned limitations of the

classical techniques show the need of a new synthesis technique to overcome

these limitations.



During the past decade, due to the fast development of high speed
digital computers,‘new synthesis techniques have been developedg_12
which are knowrf as 'Computer-Aided Electrical Network Design'.  These
techniques, using computers and employing optimization techniques, aim
to manipulate large numbers of interacting variables in an iterative
fashion with respect to the design objectives, independent of the network

configurations.

There are two main modes of operation for using a computer, namely:

i) The 'Interactive' or 'On-line' mode in which the designer
is able to interfere during run time in order to take the

critical decisions.

ii) The ‘'Automated' or 'Batch' mode where some 'algorithm'

endeavours to replace 'insight'

In the latter mode of operation, all decisions are made automatically by
implementing in the program all expected possibilities. Potentially,
batch mode will require more core storage than the interactive mode but
it is less hazardous. Batch mode is the mode of operation which is used
in running the programs used in this research or, in other words, automated
design technique has been used in the pfesent work.

In 1964, Calahan13 realized the possibilities of using computers in
filter design. Since then, a variety of new ideas for network synthesis

14-20

using Computer-Aided Design techniques have been developed . Many

of these techniques are independent of the classical restraints or the types

of network which can be considered. Further, these techniques proved to
be feasible in filter designlz’ls, design of distributed networks14 and
many other applicationsls-zo. The demand for synthesis of highly complex

circuits (e.g. integrated circuits) lead to further practical design
techniques such as schemes for the calculation of network sensitivities,

first presented by Hachte| and Rohrer63.



For the last seven years or so, a group of researchers has worked at
the University of Leicester under the supervision of Dr. 0.P.D. Cutteridge.
They have considered a number of different approaches to Computer-Aided
Network Design, both in interactive mode21, and in batch mode22-24.

One of these approaches, the 'Coefficient Matching' technique in batch
mode has been widely used22'27. In the coefficient matching technique,
the required network performance is specified in the form of a set of
polynomials in the complex frequency variable p , with real positive
valued coefficients. This technique was first suggested by Calahan13’14.
Starting from an arbitrary initial network structure of the proper con-
figuration and complexity to yield polynomials of the same order as the
required network, a computer program employing optimization technique
calculates the corresponding polynomial coefficients and formulates an
error function which embodies the design criteria. This error function
measures the difference between the performance required and that actually
achieved. An optimization algorithm is used until either a complete
matching between the required and the calculated performance is obtained
or until some other pre-specified criteria are satisfied. These criteria
give an indication of necessary modification to be made to the current
network topology. After the modification takes place, and in some cases
more than one modification may be necessary, optimization is repeated
until finally a network is obtained which can realize the required perfor-
mance. There are no constraints on the type of network configuration to
be realized and any constraints on the element values can be easily
included, hence, the Automated Network Design technique overcomes the well
known severe limitations of the classical methods.

Further investigation of this technique would be of considerable
interest to design engineers and circuit theorists. Furthermore, from a

technological viewpoint, it is important to investigate how far the

substantial power of modern computers can be of use for aiding or testing



a design, and how far the current stage of program development is removed
from a fully automated design facility.

The development of a fully automated electrical network synthesis
program, in general, is a very difficult and complex task. In the long
term, the final goal of automated network design is to make it possible
for the user to input the required network performance, specified in any
form, directly to the program and have as the output one design, or more,
which fulfils the requirements together, perhaps with the layout and
integrated circuit mask. These techniques would be applicable for any
type of linear network, active or passive and could include mutual
inductance. In the short term, the development of an automatic program
capable of synthesising RLC lumped linear networks having no mutual
inductance, with no restrictions on the network configuration and regardless
of the manner in which the performance is specified, is a first stepping
stone towards the achievement of this goal.

In the direction of developing aﬁ'automated network design program to
synthesize 3-terminal lumped, linear networks with no mutual inductance,

22’24, and still continuing, at the University of

work has taken place
Leicester, using coefficient matching techniques. Before the beginning
of the research described in this thesis, an Algol 60 program had been

developed24 with the following features;

(1) An algorithm capable of calculating, rapidly and efficiently,
both the coefficients of the relevant network polynomials and

their first derivatives with respect to all the possible

elements in the networkzs’zg.

(ii) An option for selecting a variety of methods of error function

representation24’30.



(iii) A moderately successful optimization algorithm31 using some of

the special properties of multilinear functions.

(iv) Provision for modifying the network topology by adding or
removing elements with the constraint that the order of the
required set of polynomials be unchanged during the topological

modifications.
(v)  The facility of varying one common factor at a time.

The program was restricted to 3-terminal RC networks with a fixed number
of nodes. |

The research described in this thesis is a direct extension to the
aforementioned work. The discussion in the present work is limited to
3-;ermina1,1umped, linear, passive networks with no mutual inductance..
The network may consist of the combination of any two types of element (i.e.
RL, LC or RC) or all the thrée types of element (RLC). Further the
process of topological modification of the network has been extended to
permit the addition or removal of nodes as well as elements and to allow
for a change in the order of the required set of polynomiéls to occur
whilst so doing. In other words, most of the limitations of the previous
work have been overcome in respect of lumped, linear network synthesis.
It is also possible, although is not considered in this thesis, to extend
this technique to synthesize n-port problems.

Some of the basic principles which are of considerable importance
in gaining a full understanding of the automated design technique are
described in Chapter 2. In the design technique adopted in the present
work, the network analysis is carried but on the basis of nodal analysis.
Chapter 2, therefore describes the evaluation of netwqu polynomials using
thé nodal admittance matrix. Further, the relevance of information

which can be obtained from the various equivalent forms of representation



bf these admittance functions, which was not known before, is pointed out.
The significance of topological analysis and any common factors that may
be present is also discussed. Common factors play an important role in
the synthesis of electrical network. A new concept of the 'degree of
connectivity' has been developed on the basis of the relationship between
network polynomials and the network complexity by investigating some
series-parallel networks only.

The coefficient matching technique and the optimization algorithm
form the backbone of the automated design technique adopted in the present
work. A review of these techniques and their important aspects are
described in Chapter 3. ?or any 3-terminal lumped, linear RLC network,
the optimization algorithm used in the present work would consistently
obtain a feasible set of network element values satisfying the desired
performance from any arbitrary set of starting values if the cofrect topology
for the network was selected at the outset. In this case the solution is
achieved readily without any difficulty and the automated design of the
network presents no problem. However, it is unlikely that the designer would
choose the correct topology for his starting network, especially if he does
not know a solution or it is not possible to find one with alternative methods
(e.g. classical methods). In this case some topological modifications may
be necessary and should be carried out automatically. Thus the automated
modifications of network topology, sometimes called automated network
evolution, also form an essential part of the automated network design.

The concept of automated network evolution in the present work has
been developed on the basis of the addition or removal of nodes as well as
elements, and other possible variations to the design procedure, such as
common factor variation, to increase the probability of satisfying the
performance required. The variation of common factors and altering the

order of the required set of functions might or might not accompany the



aforementioned modifications. The principles of automated network
evolution are described in detail in Chapter 4.

The criteria for network modification have been implemented in a
computer program written and developed by the author in FORTRAN IV,

Various other modifications have been included in the Fortran program
which were not present in the previously developed Algol 60 version, in
order to increase the accuracy and efficiency. The Fortran program and
its comparison with the Algol version have been described in detail in
Chapter 5. The efficiency and reliability of the program and the
feasibility of the coefficient matching technique in linear network
synthesis have been demonstrated by some case studies in Chapters 6 and 7.

Chapter 6 deals with the synthesis of some two-element kind 3-terminal
networks. Some non-series-parallel networks cannot have a series-
parallel equivalent as Fialkow8 pointed out. However, for such a network
a verygéodapproximate series-parallel realization may be achieved as is
demonstrated by an example in Chapter 6. Another example is presented in
that chapter which establishes the feasibility of the concept of the degree
of connectivity (which was introduced in Chapter 2).

In Chapter 7, a case study of an RLC realization of a non-series-
parallel network with no series-parallel equivalent is described. This
realization employed the addition of an extra node, element addition,
element removal and the variation of up to three common factors simultan-
eously. The RLC realization of a non-series-parallel network having no
series-parallel equivalent, involving the addition of an extra node,
employing automated network design has not been previously achieved. The
examples described in Chapters 6 and 7 show the future potential of the
autohated network design technique.

Finally, the author's overall conclusions with respect to his work,
including a discussion of the directions and areas of possible further

investigations, are presented in Chapter 8.



CHAPTER 2

SYNOPSIS OF SOME RELEVANT THEORY OF LUMPED LINEAR ELECTRICAL NETWORKS

2.1. Introduction.

It was pointed out in Chapter 1 that coefficient matching forms
the basis of the automated network design technique adopted in the
present work. In this technique_the coefficients of the network
admittance functions, expressed as polynomials in p , the complex
frequency, are matched.

Automated design is often dependent on the selection of the initial
starting network. Thus automated design is greatly facilitated and
simplified if the starting network is selected such that it provides a
responselclose to that required. For a suitable starting network, the
optimization algorithm will readily provide the network element values
and provide a solution.

Topological analysis and the different but equivalent forms of
representation for the network admittance functions are very helpful in
estimating a good starting network. These are described in detail in
this chapter. The significance of the equivalent formsof representation
for network admittance functions was not known before.

A starting network estimated only on the basis of the above two
considerations can, sometimes, be misleading. The reason for this seems
to be due to the large difference in admittance level between input and
output of some network polynomials (i.e. the relative magnitude of the
coefficients). However, the constraints imposed by the relative
magnitudes of the coefficients of the network polynomials can be overcome
by using common factors. Therefore, the significance of common factors
in the realization of series-parallel and non-series-parallel network is

described in this chapter. Further, a new concept of a 'degree of



connectivity' has been introduced on the basis of the relationship between
the common factors and the relative magnitudes of the coefficients of the

network polynomials.

2.2. Nodal Analysis and the Network Admittance Functions.

The analysis of networks in the present work is by means of the
characterisation of the networks by a nodal admittance matrix. The
network performance employed is the three short-circuit admittance
functions or the four principal polynomials of the network. To calculate
these functions, consider the RLC transformerless 3-terminal network T

shown in Fig.[2.1] upon a nodal basis.

L[+ L,

b

'?'0

Figure [2.1] A three-terminal network

The ground terminal is taken as node 0 (reference node) and input and
output terminals as nodes 1 and 2 respectively. The remaining nodes
are identified so that each branch consists of at most a resistance,
inductance and a capacitance in parallel. Hence the branch admittance

between nodes i and j , y.. (i#j) is of the form (ap + b + c/p),

ij
a>0,b>0and ¢c > 0, where
p 1is the complex frequency variable,

a 1is the value of capacitance in Farads,
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b 1is the value of conductance in Siemens,

. . . - . -1
and c¢ 1is the value of inverse inductance <" - -~~~ . in Henrys .

For passive, linear, lumped networks yij = in . The admittance

y.. 1s defined as
ii

Y.i = ) y.. (i=1,2,...,n1), (2.1)

where nl+l is the total number of nodes including node 0 .
The nodal admittance matrix Y (nlxnl) , whose diagonal elements are
yii and off-diagonal elements are _yij , yields the nodal admittance

determinant A where
A =detY (nlxn;) . (2.2)

The branch admittance yij , Which is in the form (ap + b + ¢/p) , can be
more conveniently represented by %-(ap2 + bp + ¢c) . The common
multiplier of all elements of a row G% in the matrix Y may be taken
out and yij becomes a quadratic in p with non-negative éoefficients.

Writing Alk for the cofactor of the 2k'th element in A , and

, . .
Alkpq for the cofactor of the pq'th element in Azk , then the terminal

currents I1 and I, are relatedl’2 to the terminal voltages E; and

E, (see Fig.[2.1]) by

Iy = YBy * Yok, I
I =Y E +Y E (2.3)
2 21 1 22 2
where
A22 I1
Y11 = = ——1 Input admittance when the output
Ar122 Ejlg o4
2 terminals are short-circuited.
by . .
le-— 3 = — Transfer admittance when the input
1122 B lg 4

terminals are short-circuited.
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Transfer admittance when the output

2 terminals are short-circuited.
A11 I2
Yy, = i = E_¢ Output admittance when the input
1122 2'E =0
1 terminals are short-circuited.
Because the network is composed of reciprocal elements only, y.. =VY..,

ij ji

Arp = Bp1 and Y, =Y, .

The three admittance y-parameters Y11’ Y12 and Y22 or the four
principal polynomials Aj;;, 432, 432 and A;122 are functions of p,
the complex frequency, and their coefficients are multi-linear functions
of the network elements. These functions determine completely the
performance of the network as far as current and voltage at nodes 0§, 1
and 2 are concerned, i.e. the external performance. Any two networks
that satisfy the same set of performance functions are said to be

equivalent. The determinant A and its cofactors A;j, Ayp , A5 and

Ay122 satisfy Jacobi's theoreml’z, namely
BA1122 = Dy1bap - A%y, (2.4)

When the technique of coefficient matching is discussed in this thesis,
the coefficients referred to will be the coefficients of the various
powers of p in the four principal polynomials.

The mesh impedance matrix can be used as an alternative to the nodal

admittance matrix. The latter was preferred for the following reasons:

1} The nodal method automatically yields the external equations
in the form desired for a 3-terminal network. The mesh method,
as straightforwardly applied, yields external equations of a

two-pert and not necessarily of a 3-terminal network.



12

2) In 3-terminal networks, the number of meshes is, in general,
more than the corresponding number of nodes for any networkz,
i.e. using the nodal admittance matrix represents a network in

a more compact form.

3) The nodal admittance matrix is a sparse matrixlz, and using the
special characteristics of sparse matrices will take less core

store, speed up the calculation and increase the accuracy.

2.3. Topological Analysis of Electrical Networks.

An alternative method for evaluating the four principal polynomials
Ay1, 812, Ao and Apjop is the topological analysis method.  With this
method, it is particularly easy to see the relationship between the
network elements and the coefficients of the network polynomials when the
network contains a small number of the relevant 2-trees and 3-trees.
Thus it could help in selecting a suitable starting network and in
developing successful criteria for network evolution. In this section
some basic definitions and theorems for graph theory are introduced (for
more details see Shu-Park Chanzz).

Let T be a three-element kind 3-terminal network with N nodes

plus the reference node O . The input and output terminals are nodes
1 and 2 respectively. Suppose T 1is composed of n elements.
Each element is connected between two of the N+1 nodes. Each node,

with the possible exception of the three external nodes, is the inter-
section of at least two different types of element. Nodes 0, 1 and 2
may be connected to one element only. The following theorems and

definitions may be considered.

Definition 1: A tree of the network T 1is a connected subnetwork that

contains all the nodes but does not contain any loops.



Theorem 1

Definition 2:

Definition 3:

Definition 4:

Definition 5:

Definition 6:

Theorem 2

Theorem 3

13

Every tree contains exactly N elements.

A 2-tree of a tree is a subset of N-1 -elements of that

tree.

A 3-tree of a tree is a subset of N-2 elements of that

tree.

A tree admittance product T,(y) is the product of the

admittances of the N elements of that tree.

A 2-tree admittance product Tz(y) is the product of the

admittances of the N-1 elements of that 2-tree.

A 3-tree admittance product T3(Y) is the product of the

admittances of the N-2 elements of that 3-tree.

The determinant of the admittance matrix A 1is equal to
the sum of the tree admittance products of all the trees
of the network.

a= § Ty
alli 1 (2.5)

: The cofactor .A12 of A 1is equal to the sum of the 2-tree

admittance products of all the 2-trees which satisfy the

following conditions

a) There is a direct path between nodes 1 and 2.
b) There is no direct path between nodes O and 1
c) There is no direct path between nodes 0 and 2

i} i |
= 1 T 0. (2.6)

Al
2 a11i



Theorem 4:

or

Theorem 5:

or

Theorem 6:

14

The cofactor A;; of A is equal to the sum of the

2-tree admittance products of all the 2-trees which

satisfy the following conditions:

a)

b)

There is a direct path between nodes 1 and 2 or,
there is a direct path between nodes 0 and 2 , but

not both.
There is no direct path between nodes 0 and 1.

i
Ayp=812 + ] T,(y,A11-812) (2.7)
alli

The cofactor A, of A is equal to the sum of the 2-tree

admittance products of all the 2-trees which satisfy the

following conditions:

a)

b)

There is a direct path between nodes 1 and 2 or,
there is a direct path between nodes 0 and 1 , but

not both.

There is no direct path between nodes 0 and 2 .

: .
Bpp=bip + 1 T, (¥,822-012) (2.8)
alli

The cofactor Ajjz2o2 1is equal to the sum of all the 3-tree

admittance products of all the 3-trees which satisfy the

following conditions:

a)
b)

c)

There is no direct path between nodes 1 and 2 .
There is no direct path between nodes 0 and 1 .

There is no direct path between nodes 0 and 2 .

The notation used for the 2-tree and 3-tree admittance products first

appeared in Krzeczkowsk124. Although this notation is not standard, it

is straight forward. The subscript indicates a tree, 2-tree or 3-tree
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respectively. The y in the brackets indicates that T 1is a function
of the admittance of the network elements.
From the aforementioned theorems and definitions we can draw the

following conclusions:

1) For symmetrical networks Y11= Y22 (hence A;; = Az3) and the
input and output terminals must be connected to similar elements.
Further, input and output terminals must be subjected to a

symmetrical topological modification, if any takes place.

2) From theorems 3,4 and 5 above, the 2-trees of A;; are included
in the 2-trees of Ail and Aj>. Any coefficient in the
cofactors Aj;; , Aj2 and Ay, is equal to the sum of the 2-tree
admittance products of all the relevant 2-trees composed of the
elements which can yield the corresponding power of p . Thus
if the céefficients of any power of p in Ay , Aj2 and 45y

are equal, they should correspond to identical 2-trees.

2.4. Equivalent Forms of the Admittance Functions.

In the present work the performance of the network is specified by
the three short-circuit admittance parameters (Y;;, Yi2 and Yj3) written
as a ratio of two polynomials or the four principal polynomials of the
network considered in Section 2.2. However there is some relevant
information which can be obtained from the other equivalent forms of
representation of these admittance functions. This information may help
in selecting a more suitable starting network and in providing a better
understanding of the automated network design technique.

For RC 3-terminal network, the three short-circuit admittance functions
Y

Y and Y,, may be formulated as a set of poles, zeros and multi-

112 "12

plicative constants. In this case, the zeros of the polynomials 4A;; ,

Ay2 and Ay become the zeros of their respective network admittances.
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The zeros of the polynomial A;j5, become the poles of the short-circuit

admittance functions. For example Y;; can be written as
A a pi+ n-1, +a
_ B22 AP *an_ P teeeaes o
Y11 - A1122= K b mb lTl-l+ +b
Pt m—1p ..... . o
PRI Bk
(p-zl)(p-lz) ...... (p~£m) (2.9)
where
ai,i=0,1,...,n are non-negative coefficients of Aj,
bj,j=0,1,...,m are non-negative coefficients of Ajj55
m< n
ki,i=1,2,...,n are the zeros of Y11
lj,j=1,2,...,m are the poles of Yiu

K is the positive valued multiplicative constant.

An alternative form of writing the admittance functions is the

partial-fraction expansion, where

v Az2 If qlp
= =qp+aq * TR
11 Ar122 o ;2 (%)
A12 m c.p
- Y = ——=¢cp*+C + z +—
12~ Ayq22 o 4o, ()
Y "1 i+ 3 AP 2.10
= = + .
22~ Eyyzp %Pt sop (P72) (2.10)

where

li (iél,...,m) are the finite poles of Y,,,-Y;, and Y,, respectively.

q,,C, and d_ are the residues at the pole at zero of Y;1/Ps -Yio/P
and Y,,/p respectively.

9525, and d, are the residues at the pole at infinity of Y, -Y,,
and Y,, respectively.

q;5¢3 and di are the residues at the finite poles of Yll/p’ -le/p

and Y,,/p respectively (qi > 0, di > 0 and c; may be negative).
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For RC networks the residues q;» di and c; are real. For RLC
networks the residues are real if the poles are real and complex
conjugate for complex-conjugate polesss. For RC networks in general if
q, ¢ and d are the residues of the poles in Yy;, -Y;, and Y,, respectively,

’

then the residues q, ¢ and d satisfy the residue condition , namely
qd = c2. (2.11)

A special case of equation (2.11) is the compact residue condition where

¢2 , c # 0. (2.12)

qd

Further, if

q d = lcl R (2.13)
then the residues are compact and equal.
From the topological analysis (Section 2.3) and equations (2.12) and

(2.13) we can conclude the following:

1) If the residues at the pole at zero are non-zero, compact and
equal, then the coefficients of po in Ay; , Ay and Ay, must

be equal.

2) If the residues at the pole at infinity are non-zero, compact
and equal, the polynomials Aj;;, Aj2 and Az; must be of the
same order and the coefficients of their highest power must be .

equal.

In any admittance function (i.e. RLC and two-element kind networks),
if there is a factor in common between the numerator and the denominator,
then the residue at the finite pole corresponding to this common factor is
Zero. Further, if the four principal polynomials A;;, Ay , Apo and
Ay122 have a common factor, then the residue at the finite pole corres-
ponding to this common factor is zero in each of the three admittance
functions. of course, strictly speaking, such admittance functions do not

possess poles at these points.
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The role played by common factors in network synthesis is discussed
in the next section.

To summarize, the equivalent forms of representation of the network
admittance functions can be helpful in estimating a good starting

network, if the starting network is selected such that:

1) It yields the same spread of powers as the required set of

polynomials.
2) It yields the same number of poles and zeros.

3) It yields the same number of residues. The relevant residues
in the calculated and required set of functions should have the

same sign.

Example 1

Suppose that the network shown in Fig.[2.2] is selected to
synthesize the admittance functions of equations (2.14) (originally given

by Luca134)

B, 6p"+343p3+1092p2+773p+6 A
Y = =
11 An122 6 (p3+6p2+11p+6)
_ 1 D 15p . 35p
=p + €-+ P+1 + p+2 + 0+ 3
. Byp  phep3+2pZep+l
12 81122 (p3+6p2+11p+6) f’
- 1 _ 15p/2 _ 35p/3
TPt ol T Tpe2 p+3
Ay 36p*+533p3+1572p2+1183p+36
Ya2 = Bi120"
1122 36 (p3+6p2+11p+6)
J
_ 1 P 15p/4 . 35p/9
_p+g—+p+1+ +2 + +3 (2.14)
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Figure §2.2] Starting network to synthesize equation (2.14)

Although the network shown in Fig.[2.2] yields the required spread
of powers, it cannot yield residues of the same sign as those in -Y;,,
for any range of positive element values (see Section 6.5). Further, for
starting element values all equal to unity, there is a common factor (p+1)
in Aq3, 212 , 832 and Aj;j22 . This information cannot be obtained by
considering the four principal polynomials in the rational function form
only.

The equivalent forms representing the short-circuit admittance
functions can be of a great help in developing the synthesis technique.
In case the technique adopted for network synthesis fails to achieve a
realization, the equivalent forms may help in investigating the cause of
failure (see Section 6.5). Moreover, the equivalent forms might give a
better idea of how far the current realization is removed from a final

solution.

2.5. Common Factors.

In Chapter 1 it was pointed out that the aim of the coefficient
matching technique is the development of a network and finding suitable
element values which realize the required set of network polynomials
exactly to within a multiplicative constant. In Section 2.2, it was

pointed out that the network performance employed in the present work is
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the short-circuit admittance functions Y,y -Y;, and Y,, where

A A A
22 12 11
= vy, =Y., = and Y, = 2,15
11 7 Ay122 7 12 BAyg22 22 M22 ( )
A more general form to write equation (2.15) is
KA KA, - KA
22 12 11
Y, = o, =Y, = o = .
11 7 Ray1gp * 12 T KBy1a2 and Yaz KA1122 (2.16)
where K 1is a multiplicative factor. If K 1is non-zero, positive

and finite, it will not affect the properties of the admittance functions
in any way. Similarly, the introduction of common factors in the
numerator and denominator of the admittance functions, will not affect the
external characteristics. For example, if common factors of the form
(p+a1)(p+a2)....(p+ak) are introduced in equation (2.16) fhen,

by, Kby, (prar) (prag)...... (p+oy)

11 =3 = , etc. (2.17)
1122 KA1122(p+ay) (p*ag) ... (p*ay)

Equations (2.15), (2.16) and (2.17) are completely equivalent. However
“an RC network yielding the functions of equation (2.17) would have k more
nodes than a network yielding equation (2.15)‘or (2.16). Classical
methods of network synthesis often generate many excess common factors
before the required functions are realized.

Elementary network theory requires that at least one common factor be
presented in order to synthesize the short-circuit admittance functions
(originally given by Fialkows)

(p+1) (1197p3+56613.14p2+28368.584p+191.184)

Yip =Yy, =

(p+1) (800000p2+408000p+3840)

(p+1) (3p3-1.14p2+197.176p+77.616)
Yy, = (2.18)
(p+1) (800000p2+408000p+3840)

The reason for this is the presence of the negative coefficient in the

numerator of the transfer function. In this case common factors play

a decisive roles’ss.
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For some examples, such as the set of admittance functions given by
equations (2.14), theory gives no obvious reason or guide to the number,
if any, of excess factors required. The best realization for this set of
functions published by Cutteridge36 had fourteen elements and two common
factors. Later, Hansen and Wanet37 presented an LC realization whose
RC equivalent has two linear common factors, and used one less network
element than did Cutteridge's realization. The reason that this set of
functions required common factors seems to be due to the large difference
in the admittance level between the input and output. The relationship
between the coefficient of the network polynomials and the required
number of excess factors is established by the author and the concept of a
'degree of connectivity' is infroduced later on in this section. Thus
common factors play an important role in the synthesis of electrical
network§ in generalss. In order to understand this role, let us consider
the effect of introducing a common factor in a set of four principal poly-

nomials Ay; , Aj2, A22 and Aj132 and their corresponding network T .

Mg = a0+a1p+a2p2+......+anpn(ai>(),i=1,...,n) ?

Ayp = bo+b1p+b2p?+ ...... +bnpn(bi may be negative, i=1l,...,n)

by, = co+c1p+c2p2+ ...... +cnpn(ci20,i=1,...,n) (2.19)
Byypp = d +d;prdpe... .. +d-p"(d;>0,i=1,...,m,msn)

If a common factor of the form (p+2), a>0 is introduced in equations (2.19)

then,
Alq = (p+a)dy; = a_a+(a_+oaj)p+ +(a_  +oa )pn+1
11 11 0 o 1JPteeeven n-1 n
N n+l
Ayp = (p+a)ldyo = boa+(bo+ab1)p+ ,,,,,, +(bn_1+ubn)p
A;z = (pta)lhsp = coa+(co+ac1)p+ ,,,,,, +(cn_1+acn)pn+
Mi22 = (praddyioe da+(d +ad))ps...... +(d_ +d )" (2.20)

The introduction of a common factor has the following effects:
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A] Analytical Effects

i) A change in the value of each coefficient. Thus in the case
of negative coefficient (equations (2.18))} a common factor of a

27,35 (1.14 < o < 191.176
3

proper value 1.14 ) will mask the presence

of the negative coefficient.

ii) A change in the ratio between the relevant coefficients in the
different cofactors, e.g. consider the relevant coefficient in

Ay; and Ayp in equations (2.19) and (2.20), then

ao aao ao
—_—r —— = —
b ab b

(o] (o) (o]
a a +aa

— ) e——— .
b, ~ b_* b,

Further, the ratio between the coefficients of the same cofactor

is also changed e.g. for A;; and Ap,

iii) The number of the non-zero coefficients has increased by four

(one in each cofactor).

iv) No change in the external characteristics.

B] Topological Effects.

To multiply the four principal polynomials by the same common factor
necessitates the addition of an extra node, thus increasing the number of
possible network elements. This in turn will result in an increase in
the number of alternative topologies to choose from. Further it will

result in an increase in the number of trees, 2-trees and 3-trees in
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general, Thus, the possibility of sharing fewer elements between the
various 2-trees and 3-trees is increased.
To summarize, the introduction of a common factor produces the

following:
1) Changes in the values and the number of the non-zero coefficients.

2) Changes in the ratio between the relevant coefficients in the
different cofactors as well as the ratio between the

coefficients of the same cofactor.

3) An increase in the number of nodes, thus an increase in the
number of possible alternative topologies (i.e. possible network

elements).

4) As a result of 3) , the number of possible 2-trees and 3-trees

is increased.

5) Since the coefficients are the admittance products of the
relevant 2-trees and 3-trees, thus the possible difference in

the relative magnitude of the coefficients can be increased.

6) As a result of 4) and 5) network polynomials with large
difference in the admittance level between the input and output
will probably not be realizable with a minimum number of nodes.
However, a realization may exist if one or more common factors

(hence nodes) are introduced.

The concept of the 'degree of connectivity' was developed based upon
the above items. In order to define the degree of connectivity consider

the following example.



24

Examnle 2

Suppose that equations (2.19) is to be realized by an RC network.

In order to generate network polynomials of the same degree as the
required polynomials, the necessary minimum number of nodes, in addition
to the reference node, is equal to (m+2) , where m is the maximum
order of p in Ajj22

For a network with a minimum number of nodes, the number of alternative
topologies which can yield the required spread of powers is finite. Thus,
the number of 2-trees and 3-trees is finite. The set of required network
polynomials often imposes some constraints on the required topology (e.g.
symmetry, compactness, etc...). Hence a network with a minimum number of
nodes may never yield the required topology. However, these constraints
may be overcome if the number of nodes is incfeased, as the number of
possible topologies will increase.

Let us consider that the degree of connectivity is some measure of the
number of different topologies which are possible for a network with a
given number of nodes. Then a network composed of the minimum number of
nodes has a low degree of connectivity. A network which is composed of
more than the minimum number of nodes required is a network with a higher
degree of connectivity. The degree of connectivity is to be increased
(increase the number of extra nodes) until the constraints imposed by the
required set of network polynomials are satisfied.

More discussion is given in Appendix A and an example is given in

Section 6.5 to establish the existence of the degree of connectivity.

2.7. Summarz.

In the introduction of this chapter, the main aim was explained as
follows. To use automated network design techniques efficiently, all the
possible information from the given set of network polynomials should be

considered. The investigation was valuable as the following new



25

contributions were achieved.

1) The significance of considering the various different but
equivalent forms of admittance functions was pointed out. This
is very helpful in estimating a good starting network. Further
it might help in explaining the odd behaviour of the optimization

algorithm.

2) The role played by the common factors in the network synthesis
was established on the basis of the relationship between the
coefficients of the network polynomials and the required degree
of the network complexity. Further a new concept of the degree
of connectivity was introduced to justify the existence of such

a relation.

To summarize the main results of this chapter, some of which are
original, we can say the following.

The maximum spread of powers of p , the complex frequency, within
the set of four principal polynomials will decide the minimum number of
nodes of the required network. The configuration of a suitable starting
network is estimated on the basis of the information obtained from the
various equivalent forms of the admittance functions and the topological
analysis of a variety of trial networks intuitively conceived as possibly
yielding network polynomials of the correct order. Any difficulties may
hopefully be overcome by using common factors. Common factors play a
decisive role in the synthesis of non-series-parallel networks possessing

no series-parallel equivalent.
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CHAPTER 3

REVIEW OF THE COEFFICIENT MATCHING TECHNIQUE

AND THE OPTIMIZATION ALGORITHM USED

3.1. Introduction.

In order to introduce a network design problem to the computer,
to solve it automatically, i.e. without human intervention, it is
necessary that the desired network specifications should be expressed
in analytical form. A simple analytical form is always freferable
to a complicated form as the complexity of the algorithm to solve the
network synthesis problem is often in direct proportion to the method of
specifying the required response. One of the methods for specifying the
required response accurately, and fairly simple to program, is the
rational function form in p .

In some synthesis problems, the specification may not be given
analytically as a rational function but may be presented in the form of a
curve or a table etc. In this case, it is convenient to transform the
required specification into some other equivalent specification, where
the latter is‘simpler to handle. It was demonstrated that a synthesis
problem specified in the time domain may be transformed to the frequency
domain without a loss of generalityss. Furthermore, network specification
given in the form of frequency response may be approximated, to a reasonable
degree of accuracy, by a ratiqnal function in p , the complex frequencysg.
Although such transformations may not always be possible, or easy, they are
very important in order to employ computers automatically.

To solve a synthesis problem starting ffom the rational function form,

e.g. the short-circuit admittance functions, there are two methods:-
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1) By comparing the zerosof the polynomials of the desired and

calculated performance functions (pole-zero matching).

2) By comparing the coefficients of the polynomials of the desired

and calculated performance functions (coefficient matching).

Although pole-zero matching and coefficient matching techniques are very
similar (instead of matching the roots of the polynomials, we match their
coefficients), the pole-zero matching technique would suffer from
involving additional computationZI. The coefficient matching technique
is the technique adopted in the research described in this thesis and is
considered in some detail in this chapter.

The coefficient matching technique was first introduced by Calahan14’15
who acknowedged that its general features were suggested to him by Orchard.
This technique assumes that the desired network performance functions are
given in the form of polynomials in p , whose coefficients are to be
matched exactly by some network function to be designed. While not all the

performance functions of the synthesis problems are given in rational

function form, they can often be transferred to that form within a reasonable
14,15

>

degree of accuracy. Calahan and Temes have stated that, using
coefficient matching techniques in electrical network synthesis is not only
convenient and efficient but also 'versatile' and has '"extraordinary
convergence properties'. The power of the technique, which is sufficiently
demonstrated further on in this thesis, is a further justification for
formulating the synthesis problem in such a form.

In the coefficient matching technique, a reliable optimization
algorithm is to be employed in order to match the required and calculated
network performances iteratively. The current state of the art in optimi-
zation techniques is such that it is not always possible to solve all the
complicated and highly specialized problems that can occur in network

synthesis. Practically all currently available optimization techniques

only guarantee the convergence to a 'local minimum' not necessarily to a



28

'global minimum' (exact solution).
A designer planning to employ optimization techniques in network

synthesis is faced with two alternatives:

1) To adapt the currently available optimization algorithms,
making maximum use of the special characteristics of the
problem under consideration, to greatly improve the existing

0-42

. 4 . .
techniques (e.g. gradient descent, quasi-Newton, etc.).

2) To develop a new optimization technique to solve the problem.
Some of these techniques which are yet in the developing

stages are adaptive random techniques43'45, heuristic method§6_48,

analytic approaches48'5l, etc.... .

Since the development of a new optimization technique is a complete
research project by itself and is not the theme of this research, the
alternative employed is that which is first discussed.

In Calahan's original formulation of coefficient matching, the
coefficients of the desired and calculated polynomials were matched by
constructing a simple linear error function to embody the design criteria.
Later on, a more satisfactory method for error representation was

developed24’27.

Further, a variation was introduced for adjusting the
value of '"mormalising variable'", which increased the range and the
reliability of the method. These methods are summarized and discussed
in this chapter.

For a realization of a linear passive electrical network to be
feasible, it is necessary that all the element values obtained be non-
negative. Methods of constraining the network element values to the
positive domain are described and one such technique, the use of logarith-

mic transformation, which is employed in this research, is compared with

other relevant methods.
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3.2. The Coefficient Matching Technique.

3.2.1. Introduction.

The coefficient matching technique is the technique employed in this

research which was first described by Calahan14’15.

His main supposition
was that the required network performance given in the form of a polynomial
T(p) say, in p the complex frequency. In Section 2.2, the analysis of
the network by means of the characterisation of the network in nodal
admittance matrix form to yield the network performance in the form of
polynomials in p was given. In this section the coefficient matching
technique used is discussed.

For any two-element kind network with nl nodes, plus the reference
node, node 0 , while there are nl(nl+l) maximum possible elements, the
three y-parameters, if regarded a; rational functions of the network poly-
nomials, will only provide the designer with up to (4nl-2) independent
pieces of information21 (3(n1-1) zeros, (nl-2) poles and 3 normalizing
factors). In general, we will have more elements (variables) than indepen-
dent coefficients (equations); in other words an underdefined system, a
case where it is not easy to predict how an optimization algorithm will
react. The situation becomes more difficult as nl , the number of nodes,
increases or three-element kind networks are considered (number of possible
elements is 3nl(nl+l1)/2).

In Calahan's original formulation of coefficient matching, only the
coefficients of a single specified rational function were considered.

He circumvented the constraint of the underdefined problem by fixing the
values of sufficient number of elements to ensure a finite number of
solutions. Later, a more general approach was suggested by Cutteridggé’S{
He pointed out that simultaneous matching of the coefficients of the three
short-circuit admittance functions could be attempted. Furthermore, by

fixing the values of some of the maximum possible number of elements at

zero and varying the rest of the elements, n elements say, such that
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n s m where m is the number of independent coefficients, the under-
defined problem transferred to an overdefined (n < m) or defined
problem (n =m) . The selection of such a set of n elements and
the alteration of the elements of this subset are to be discussed in
Chapter 4.

The general features of the coefficient matching technique can be

written as follows:

Let xj(j=1,2,...,n] be the current values of the network elements.

Let ai(i=1,2,...,m) be the given values of the coefficients of.the
polynomials to be matched.

Let ci(i=1,2,...;m) be the corresponding values of the coefficients

a. actually achieved for given element values xj.

i
Let the desired function be given byg’12
m .
-2-1
2 aijR,
j=2+1
T (p) = 4 (3.1)
d 2 -1
Y a.p

1

In Section 2.2 it was shown that the coefficients of the network
polynomials are multilinear functions of the network elements, hence for
a starting network of the proper configuration and complexity, the

calculated network function has the same form

m g1

L 2 x)p’

=0+1
T (p) = 15 : (3.2)
z c (x)pl-l
it=

i=1

In general, the coefficients ci(zg will not be equal to a; . Hence

m error functions can be constructed by matching the required coefficients
ay to within a constant multiplier with those obtained by calculating cy
for the current element values xj . These m error functions will be

zero valued when an exact matching is achieved i.e.
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when

c. = Kai (3.3)

where K 1is the constant multiplier needed since, in general, only
proportionality (rather than equality) can be achieved between the

a; and c; - The problem has now been transformed to solving m
simultaneous equations in n unknowns, and can be solved as an

optimization problem.

3.2.2. Calculation of Coefficients and their First Derivatives.

In order to achieve a solution by matching the values of the given
and calculated set of coefficients, the values of the calculated
coefficients are to be calculated after each iterative alteration in the
element values. Hence, the efficiency of the coefficient matching
technique depends on the speed of evaluation of the coefficient values and
also, if required, their first derivatives with respect to the element
values. |

From the several computer algorithms developed during the last few
year522’23’28’29’52’64 for calculating coefficient values, the
technique used in this research was that developed by Cutteridge and

22,23,28,29

Di Mambro It is rapid and efficient. Because this

technique has already been well documentedzz’zs, only the special features
of that technique are considered in this section. The main theme is
to evaluate the coefficients of the four principal polynomials Ayj, 4:92,
Ar2 and Ayj159, which are cofactors of the determinant A of the nodal
admittance matrix (see Section 2.2), and also, when required, their first
derivatives with respect to the network element values.

As a first step, the admittance determinant A for the specified

network topology is created with the current element values. The

elements of A will be quadratics in p divided by p for RLC networks.
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Suppose the coefficients of one of the principal network polynomials,
Ay, say, are to be calculated. If A;;(p) of order r ,; is evaluated

at r+l values of p(p=pl,p2,. ) respectively then

cesPLy

- r -1 - - r— —
1 P, . cen P, <y A11(P1)
T

1 t | I ] {

i ! ' | | ]
L | l | = ! (3.4)
t ! | ] ! !

! l | | |

| I l | 1 I

1 1 ! ] f !

1 p P c AL (P, )
K r+l r+y L T) L 11 Y r+1 i

o I
where A;;(p) = P+ P+ .... +C P

Since p;,p2,... are known, the values of Cy2CysC .cr can be

’pr+1 22"

obtained by multiplying both sides of equation (3.4) by the inverse of
the Vandermonde matrix, namely the square matrix of order ((r+l) x (r+l1))
on the left hand side of equation (3.4).'

Be#ause the derivative of a determinant with respect to one of its
elements is equal to the corresponding cofactor and,the elements of Aj;
are functions of the network element values, then if element xj is

connected between nodes q and zero then

11qq

and if element X; is connected between nodes q and t , then

11tt (p;) (3.6)

3(A11(Pi))/3xj =

Alqu B 2A11qt

Hence, from equations (3.5) and (3.6) and (3.4), if the values of
B(All(pi))/axj are known, where a(All(pi))/ij is the derivative of

Ay, with respect to element xj evaluated at P=P; > then
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ac.

can be obtained by replacing c; by 5;5 and All(Pi) by
j

3(A11(Pi))/3xj respectively in equation (3.4) and evaluating as for

The evaluation of the coefficients and their derivatives can be
performed more rapidly if the special proverties of the principal
polynomials are considered. Ay, A;2, Agp and Aj;22 can be evaluated
simultaneously as they only differ by a row and a column, the rest of
their elements being identical. The method was developed by Cutteridge

28,29 and used Gaussian elimination.

and Di Mambro
If All(pi) is the determinant of the matrix Mll(p=pi), then the

inverse of M;,, MI% equals the adjoint matrix of M;; divided by All(Pi)’

and Adj(M11(p=pi)) is the transpose of the matrix of cofactors of Mll(Pi)'

Hence, by evaluating Co’cl""’cr and their first derivatives

ac 3c. ’ ac
5}9" 525-, ...... s 5;2' all the required information can be obtained.

J ] J
For more details see Di Mambr022’23.

3.3. Error Functions.

Once the current coefficients are evaluated, as discussed in the
previous section, the formulation of an error function which embodies the
design criteria must be considered. This function will be a measure of
the error between actual and desired network response, comparing the
corresponding coefficients, one by one. The optimum network (a solution)
is the one for which the error function is minimized to zero value.

When using coefficient matching technique, given the four principal
polynomials Ay; , Ajp, App and Aj1322 , it is necessary to find a network
which yields a set of polynomials such that the coefficients of these
polynomials exactly match the corresponding coefficients of the given

network polynomials.
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Let m be the total number of coefficients in the network poly-
nomials to be matched.

Let n be the number of elements needed to construct a starting
network of proper configuration and complexity. The element values of
this network are to be adjusted iteratively until the specified network

polynomials are exactly matched.

Let aifi=1,2,...,m) be the given values of the coefficients of the
polynomials to be matched.

Let ci(i=1,2,...,m) be the corresponding values of the coefficients
a; actually achieved for given element values, xj .

Let K be the multiplicative constant.

If fi(i=1,2,...,m) is an individual error function measuring the

difference between the current value of the coefficient ¢ and the

corresponding value of the coefficient a; then, at a solution,
£f.=0 if ci=Kai(i=1,2,...,m). (3.7)

It is clear that c; and f; are functions of the element values xj,

i.e.

C. = 0(Xy,X5,.00.,X )
1r72 n (i=1,2,....,m) (3.8)

lag]
[}

w(K,ai,xl,xz,....,xn)

From the above, given the required network polynomials coefficients (ai)
and the coefficients generated by the suggested network (ci) , a set of
simultaneous equations (fi) can be obtained by comparison between the
corresponding coefficients. This problem has a solution if a set of
non-negative element values Xx is reached such that the error function
vector f =0 .

The sequence of values of a given fi(i=1,...,m) obtained during
the iterative process used to solve f = 0 , need not necessarily be

monotonically decreasing. However a single overall objective function
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F can be constructed such that the value F will decrease monotonically
and this function can be used to monitor the géneral progress towards
a solution.

Throughout the work described in this thesis, minimization of a
least-squares type of overall error function is used as it is particularly
well suited to network optimizationlg. The least-squares overall

function can be written as
s 2
F= 1 £ (3.9)
i=1

which is a special case of the more general least p'th performance

functiong
F= ) |fiwi|p (3.10)
alli
where W is a weighting function and | | represents the absolute
value. Temes and Zaig’53 claim that values of p from 4 to 10 cause

equation (3.10) to be an increasingly good engineering approximation to a
minimax criterion, which is the limiting case of equation (3.10) when

P+« . Minimax approximations were not considered in this work because:

1) A solution will be achieved by solving for f =0, i.e.
the notion of non-linear equation solving is used rather than

that of function minimization.

2) Derivative information when using minimax errors is discontinuous,
hence, the use of gradient optimization methods would not be

possible.

The importance of this alternative is not considered in this research.

m
2
If F=f.£= ] £ and, at a solution £=0, then F = 0.

1=1,54 54

There are several ways in which the individual error function fi

can be formulated.



36

1) Absolute error function:
f. =c. - Kai (3.11)

It is unacceptable for Cis K or ai>>-0 and it has the

trivial solution fi =0 if c; = 0 and K = 0.
2) Relative error function:
£, = -1 (3.12)

It is unacceptable for K or a; > 0 and it is insensitive

to large changes in c; when c; < Kai (see Krzeczkowskf4).
3) Double sided relative error:

£ =+ .1 (3.13)

30,54 and which

It is a form which was suggested by Cutteridge
proved to be very suitable for coefficient matching technique
when 4 is a non-negative multi-linear function of the non-
negative elements of the network as - = < fi < + o for

0 < c; €+ @, fi will vanish if, and only if, c; = Kai.

There is no possibility of any trivial solution because fi >+ ®

when c; or K->o0.

The formula of equation (3.13) was that chosen for this research, on the
basis of compromise. Although it increases the degree of non-linearity
of any space and could introduce a greater number of local minima, it
represents the error function more efficiently and will be less affected
by extreme values of X (which will affect the values of ¢y ).

A study of the most efficient way to implement the multiplicative
constant K in the error formula, when using coefficient matching technique,

24,30

was carried out at Leicester Since the final value of K at a
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solution cannot be predetermined, the problem is to choose the value of K
so that it can speed up the rate of convergence and to increase the range
in which xj can be considered. Three different formulations of K

have been considered:

1) K is varied in the same manner as the network element values Xx.

In this case there are (n+l) variables.

2) K 1is represented as a multi-linear function of the network

element values x , i.e. considered as an extra coefficient Cne1”

3) K 1is replaced by one of the coefficients of the given set of
polynomials, a* say, and the rest of the coefficients
normalized with respect to it. In this latter case equations

(3.11), (3.12) and (3.13) are

c; a,
f£=—= - (3.14)
C. a
i
{c./c*\
£.= | -1 (3.15)
1 a /a*
\¢17 %1/
( %) *
c./c a./a
£ = |— - |/ (3.16)

In case 3 above (equation (3.16)), although the number of variables has
been reduced by one, the complexity of the functions has been increased
from a set of multi-linear functions c; to a set of ratios of multi-
linear functions ci/c* , in the network element values xj . For cases
1 and 2 above, it has been illustrated24 that the rate of convergence
of the optimization algorithm will improve if K is calculated in an

analytical manner.

Writing 2
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then
SE m 3fi m c1 a1
=2 L fiaw =2l |- m g
i=1 i=1 1t Koa, i
i
m f1 c1 Ka.
= -2 .2 K |Ka, ¢
i=1 1 1
m c Ka c, Ka.]
= .2 z 1 i i i,
. Ka, c Ka. c.J
i=1 i i i i
2 2
m 1 ci Kai
= -2 .2 X Ka.| C. (3.17)
i=1 i i

For an electrical network with passive elements, the value of K must be
positive and real. Whence the only feasible value for K to realize

equation (3.17) is

m rcC. m .
K = z.il = (3.18)

Substituting the value of K obtained from equation (3.18) into F ,

then

m fc, m [a_)
F. =2!5Y X/ Y3 |-2m. (3.19)
The strategy for using the information about K so obtained, which proved
very successfu124, is to use the fomula for K whenever f or F(x,K)

are evaluated, updating K to the new optimum value.

3.4, The Optimization Algorithm used in the Coefficient Matching Technique.

3.4.1. Introduction.

In the previous section it was shown how the synthesis problem of
finding the network element values to realize a given set of principal
network polynomials was transformed to the equivalent analytical problem

of finding the values of Eﬁxj > 0) which solve the QY&ﬂtion £f=0 and
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SR . 2
hence minimize the overall error function F where F = ) f,

Numerous constrained and unconstrained optimization techn;;&es have been
developed and compared to find an algorithm which is most efficient (e.g.
see references 4o, 41, 41). Unfortunately, the current state of the art
in optimization techniques is still not capable of dealing with complicated
and highly specialised problems such as the solution of a multi-modal,
multi-dimension overall error function F representing the performance of
an RLC network. Further, these techniques can only guarantee to find a
local minimum, not necessarily a global minimum, if one exists.

In the meantime, it was shown24 that any algorithm used in coefficient
matching is problem dependent and the form of the individual error function
and the overall error function to be used is very important. This fact
was proved to be valid within the experience gained by the author with
several well known optimization algorithms. Hence, in the rest of this
section, the main features of a two-part Conjugate Gradient and Gauss
Newton algorithm suggested by CutteridgeSI, which is employed in the present
work, is introduced. A further justification for employing this algorithm
is given in Chapter 6 in the form of a case study comparing the results
obtained with those obtained by other algorithms.

The main strategy in the two-part algorithm is as follows. The Gauss
Newton method produces rapid convergence towards a solution of a set of
non-linear simultaneous equations provided a sufficiently near starting
point is available. Further, a linear search is constructed along the
vector of corrections to obtain a minimum value of the overall error function
F . In general, the starting network element values are not near to the
solution values required. To overcome this difficulty,the Gauss Newton
algorithm is preceded by a preliminary section in which a single function,
the overall error function F , is minimized by the Conjugate Gradients
method. Far from a solution, the Conjugate Gradients method is basically

relatively stable in contrast to the Gauss Newton algorithm.
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Restating the notation used:

X is the vector of current element values xj,j=1,2,...,n.
f is the vector of individual error functions fi,i=1,2,...,m. fi=0 if ci=Kai.

m
F is the overall error function F = X fi , F=0 at a solution (fi=0).
i=1

Let J(mxn) be the Jacobian, the matrix of the first derivatives of the
function f, with respect to the network element values xj such that the

th afi -1 T
ij element is Jij =55 J " and J are the inverse and the transpose

]
of the matrix J respectively.
3F (x)

Let g =2 JT.‘£ =

» j=1,2,...,n be the Gradient vector.
8xj

3.4.2. The Conjugate Gradients Algorithm.

The Conjugate Gradients algorithmvused in this research is a Fortran IV
translation of the Algol version published by Fietcher and Reeves55
Let X, be a given starting point in the space variables.
Let t denote the number of the current iteration starting with t=1

The iteration requires the gradient

g = &(x.). (3.20)

the search direction gt is defined by

t=1,n+1,2n+l1,... (3.21)
+ B8.d t=2,3,...,n;n+2,n+3,...,2n (3.22)
where B, 1is a scalar quantity

t

_ g
B = ——_-t . (3°23)
B
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The value of is obtained by searching for the least value of F(iO
from along the direction
Thus

(3.24)
where is the value of a obtained by performing a linear search for

the value that minimizes the function of one variable c})(a where

- F(x* + ad?) (3.25)

The Conjugate Gradient algorithm guarantees convergence to a solution
(F=0) in n iterations if F 1is a quadratic (convex) function. This is
not the case in coefficient matching technique as F is, in general, a
multi-modal function (i.e. possessing more than one minimum) as shown in
Fig.[3.1]. This figure represents the shape of an overall error function

F as a function of one element value (i.e. in one dimension).

Figure [3.1] A plot of the overall error function value F against

the value of one element x

The result of the Conjugate Gradient algorithm depends critically on
the first search direction being the steepest descent direction. Therefore,
when applied to general functions, it is usual to reset the search direction
to the steepest descent direction every n iterations. In general, if
jc is any arbitrarily chosen vector, the initial rate of convergence of F

is rapid, but after a certain number of iterations a plateau is reached.
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The rate of reduction in the value of F becomes negligible. In this case,
the gradient vector g 1is zero or very near to zero.

Then either,

1) g=0 and F=0 i.e. a solution is reached or ,

2) g=0 and F#0 i.e. a local minimum is reached.

Thus, the Conjugate Gradients algorithm is useful to move from a poor initial
guess as it reduces the value of F rapidly. However, it should then be
replaced by another algorithm when the rate of decrease stops or becomes

very small. Such an algorithm is the Gauss Newton algorithm.

3.4.3. The Gauss Newton Algorithm.

The Gauss Newton algorithm for solving an overdefined set of equations
is based on a Taylor series expansionlz. The condition for a minimum for

a function f of a single variable xj is

32

X

of
T 0 and >0 (3.26)

J

O_J.N

Consider the case of f when it is a function of two variables, Xy and X,
say. If near a minimum, f is expanded in a Taylor series about the minimum

x=X , then the first few terms are

3£ (%) 3£(R) 2 32£(x)
£(R+8x) = £(R) + (x-})) -g;;-'+ (x,-%,) -g;;—'+ 5’[(X1-21) __3§?_
32£(8) , 32£(8)
+ Z(XZ-XZ) (Xl-xl) _3?1372 + (xz-xz) —-;(—;2—] . (3.27)
If 6x' = [(x,-%,) (x,~%,)], then
32f 32f
x4 9X,9X
Ereex) = £R) + B Ay ex s Zaxl| ! L2 0sr (3.28)
: X 9% 32f 32f

9x,3X, ax;

where 8x and gﬁ are << 1 .
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In a more general way, if f 1is a function of n variable Xx then,

. _ ara oy T 1 . T[_32%f
£(x+6x) = £(x) + (VE(x)) 8x + 5 & [j{xi—agj—]éx (3.29)

where zf(g) is the gradient of f(ﬁ) and is a column vector. Since g

is a minimum of £(x) , then any small change &x away from g_ must

increase f(x) . As f(x) ilg and $x and 6&f <<< 1 then,
A T
£(X) = (VE(x)) 6x . (3. 30)

If £ is a vector of n functions, and each is a function of n variables

X , then
J(nxn) . 8x(nx1l) = - f(nx1) - (3.31)
The Newton Raphson algorithm is

Xeo1 = % + Atggt (3.32)

where t denotes the number of the current iteration starting with t=1 .
lt is the value of A obtained by performing a linear search for the

value that minimizes the function of one variable ¢ () where
¢t(k) = f(xt+A§;t) (3.33)
!
On the (t+l) th iteration we have

8x = - I L, - (3.34)

J , the inverse of J will only exist when J 1is a non-singular square
matrix.
If the system of equations is overdefined, so that there are m

equations in n unknowns (m>n) , the Taylor series expansion gives

J(mxn) . éx(nxl) = - f(mx1). (3.35)
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The least-squares solution of these equations can be written explicitly
as

sx(nx1) = - (L.HaTE . (3.36)
" This is the well-known Gauss Newton method.
It is bad practice to determine the solution of equation (3.36) by forming
the matrix (JT.J) since this increases any ill-conditioning of the
problem. Instead,the equations (3.35) are best solved using Householder's
transformationss6. An appropriate routine from the Iwu§7library was used
for this purpose.

The Gauss Newton algorithm usually gives rapid convergence to a
solution F=0 (equivalently f=0) if a good estimate of the solution values
are available. However when using coefficient matching technique this is
not the case in general, and the initial estimate for the element vector x
is far removed from the design goal. Potentially, equation (3.29) is no
longer an acceptable approximation for the Taylor expansion. Under these

conditions, §&x could be very large, which could steer x to a region

where J 1is singular. From equation (3.34), if 8x=0, then either

(i) =0 i.e. a solution, or ,

(ii) JT.EFO and f#0 i.e. a local minimum.

The chances of the Gauss Newton algorithm reaching a solution will
increase if it is preceded by a preliminary section to move from a poor
initial guess to values of variables that are sufficiently near to those

required by the Gauss Newton algorithm.

3.4.4. The Joint Conjugate Gradients/Gauss Newton‘Algorithm

As shown in Section 3.4.3., the Gauss Newton algorithm produces rapid
convergence towards a solution of a set of non-linear simultaneous

equations provided a sufficiently near starting point is available so that
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the approximation of.the Taylor series expansion of equation (3.29) will

be valid. Similarly, in Section 3.4.2 it was shown that the Conjugate
Gradients algorithm gives initially rapid convergence from arbitrary
staring values, but will eventually reach a plateau from which convergence
to a solution is unlikely. Cutteridge31 suggested that a joint-algorithm,
using Conjugate Gradients, remote from a solution and switching to Gauss
Newton near to a solution would combine the better features of each
algorithm and give convergence to a solution from starting values from
which either algorithm used exclusively would fail.

It was found, by solving many different examples, that to pre-determine
an empirical or semi-empirical criterion for the optimal point at which to
switch from one algorithm to the other was impossible. The reason for this
is that the performance of both the two algorithms depends on the form of
the error function and the problem to be solved (see Section 3.2 and
Krzeczkowski24). The method which was suggested by Cutteridge31 proved to
be very successful. Briefly, this method is to try for convergence in the
Gauss Newton section initially and after every Conjugéte Gradients iteration,
returning to the latter algorithm for one iteration if the Gauss Newton
algorithm fails to reach a solution. This process is repeated until
convergence in Gauss Newton is finally obtained. Figure [3.3] gives a

general flow diagram of this strategy.
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starting

values of
variables xq

K g |
Calculate

g2(x),d(x) and Conjugate Gradients

new Xx. Store them.

* e

Calculate

£ xt+1, and Gauss Newton

£(x, +1)

8x

Figure [3.3] A flow diagram representation of the two-part strategy

The criteria for adjudging when to abandon the Gauss Newton algorithm
and to return to the Conjugate Gradients algorithm is discussed in the
next chapter.

Subsequent to the algorithm described above, Di Mambrozs, using the
coefficient matching technique, developed an optimization algorithm based
on Levenberg's algorithm. For a network with nl nodes, the
algorithm developed by Di Mambro needs approximately 5n16 operations per
iteration. Using the two-part algorithm to obtain similar results (see
Chapter 6) only n12m? operations per iteration are needed (approximately),
where m  is the number of coefficients to be matched. The reason for
that is the two-part algorithm does not require the same amount of linear

searchzs.
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3.5. Transformation of Variables.

Most optimization algorithms, including those used in the present work,
converge best if the error function surface contours are circular or

nearly sols. This occurs when all variables increments ij have
roughly the same effect in reducing the error function fi , 1.e.

of. of,

ax% = Bxl .31 # 32 . (3.37)
i1 j2

Moreover, the negative gradient points almost directly towards the
minimumls. Because this is not the general case in the synthesis of
linear, passive electrical networks, a useful technique is to work with
relative rather than absolute increments of the variable xj . Further,
in network synthesis, only real non-negative elements are to be considered
in order to achieve a feasible realization.

The use of logarithmic variables (the base of the logarithm is
irrelevant since it merely introduces a multiplicative constant21), which
was first suggested by Temes and Calahanls, seems to be a very convenient
transformation. The reason for that is it fulfills the aforementioned
two requirements. If the optimization is carried out in terms of the

logarithmic variable, i.e.,

zj = log x. (3.38)
then
1) The gradient vector g and the matrix of the first derivatives,

J , becomes

afi of, X, - 9f,

= 2 ] _ i
3z, _ 9x, ' alogx, _ j ax. (3.39)

i.e. it provides the scaling factor which improves the convergence

characteristics15
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2) For 0 < x: <1, -o< log xj € 0 and 1 g xj < + ®

| _ %
Xeyy =X - @ (A —) . | (3.40)

Thus, the range of log xj for 0 < xj < 1 has been made equal to the
range of log xj when 1 < xj £ + @,

Because the starting element values xj 2 0, there is no possibility
that the element values become negative as when leig_o , log leiE - =,
Further, an initial element value of xj = 1 seems adequate as it is
equidistant from % « |, Thus there is no perturbation in favour of any
particular extreme (i.e; + ») ., Electrically, when working with
variables that are dimensionally admittances, 1log leig-w~ corresponds to
an open circuit and log leiﬂff © corresponds to a short-circuit. In the
first case the element value will be zero. In the second case, the
elemént will be shorted, i.e. the two nodes connected to this element will
be connected together.

It was Suggested23 that numerical difficulties might result as xj
tends to zero and log x; tends to minus infinity. In practice, these
apparent difficulties were made use of by considering them as an indication
that the element, which shows this tendency, be open-circuited (or
conversely short-circuited). As the element will still have a finite value
when it is removed, a discontinuity in the value of the overall error
function F will follow. This is to be discussed in more detail in the
next two chapters.

An alternative method for variable transformation, using squared

. . . 2
variables, has also been tried and with some success 3’58. Because the

logarithmic transformation, the method chosen by the author and other515’21’

22,24 , has proved to be perfectly satisfactory, no detailed investigation

was made of possible alternatives.
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In general, constrained optimization should be avoided if
unconstrained methods are made possible by a simple transformationls’ZI,
although working with natural variables is the best as this preserves the

multilinear aspects of the network coefficients. The only disadvantage

of the latter technique is the possible arrival at a negative, unrealizable

solution, which merely wastes time.

3.6. Summary

In this chapter the author reviewed the coefficient matching technique
and the optimization algorithm used, which form the backbone of the
automated design technique adopted.

Because of the difficulty and complexity of the network synthesis
problem, a compromise between pragmatic and theoretical research attitudes
is necessary for dealing with the issues of selecting different techniques
and algorithms. No particular method or technique can as yet be
recommended as the optimal method for all possible problems. The author's
attitude was influenced by the simplicity of the methods described in
this chapter and by practical evidence that the methods were rapid, reliable
and efficient in linear network synthesis using computers automatically.

The optimization algorithm was adopted from those currently available,
making use of the special characteristics of the linear networks. The
technique used is successful in finding a solution, if one exists, for any
initial starting values.

The various sections in this chapter can be summarised as follows:

1) The form of the error function representation plays a decisive
role in the rate of convergence to a solution of the optimization algorithm.

The best method for the error function representation is
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2) The rate and the range of convergence is improved to a great

extent if the value of K , the multiplicative constant, is evaluated

analytically. This value is updated such that the equation gf'= 0 is
always satisfied, using
1
mooc, 2 m a, 2 *
=1 @/ 16D ]
i=p i i=1 i

3) The logarithmic transformation of variables is used to constrain
the values of the network elements to the positive domain. Further,
a logarithmic transformation scales the corrections which improves the

performance of the optimization algorithm.

4) The coefficient matching technique employing the Conjugate
Gradients/Gauss Newton optimization algorithm is efficient, rapid and
reliable in finding the solution for a network synthesis problem. The
implementation of the aforementioned recommendations increase the

efficiency of the technique further.
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CHAPTER 4

THE CONCEPT OF AUTOMATED NETWORK DESIGN

4.1 Introduction

As a result of numerous test runs carried.out by the author with
two-element kind and three-element kind networks containing up to ten
nodes and with up to three variable common factors, it was found that the
optimization algorithm described in the previous chapter would
consistently obtain a feasible set of network element values satisfying
the desired performance, from any arbitrary set of starting values, if
the correct initial topology for the network was selected. In this case
the solution is achieved readily without any difficulty and the automated
design of the network presents no nroblem. However, it is unlikely that
the designer will choose the correct topology for his starting network;
especially if he does not know a solution or it is not possible to find
one by using alternative methods (e.g. classical methods).

If a suitable solution topolégy is not known to the designer, there
are two alternatives should the algorithm fail to find a solution with an

arbitrary topology:

1) To repeatedly select a new topology until one yields a solution,

which is clearly inefficient, or ,
2) To develop a technique to modify the starting network.

This technique would make use of the information obtained by the designer
from the method of failure of the optimization algorithm. This informa-
tion could be employed to develop the criteria for modifying the selected
network in an evolutionary manner. Hence, in case the initially
selected network topology proves unsatisfactory and can never yield a

feasible solution, this chapter introduces ideas for changing the topology.
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These ideés are based on the information obtained during the failure in
the optimization algorithm. Potentially, this will lead to a suitable
network (both topology and element values) which realizes the required
set of functions exactly. Thus an efficient optimization algorithm is
only the first building block in developing a more general and complex
automated synthesis technique.

The concept of topological alteration was first introduced by

138

Rohrer16 in 1967. Later, Director and Rohrer ¥ indicated that virtual
element sensitivities of least squares performance functions would be
useful as a criterion for element addition to a network when necessary.

Using the coefficient matching technique for 3-terminal RC network
synthesis, criteria for removing or adding elements, with the constraint
that the order of the required polynomials is unchanged during the

24 at the University of Leicester.

topological modification, were developedzz'
The present work is a direct extension to the latter.

In this thesis only 3-terminal lumped, linear, passive networks, with
no mutual inductance, are considered. These networks may consist of
the combination of any two types of elements (e.g. RL, LC, RC) or all the
three types of elements (RLC). More sophisticated techniques for
topological modification are considered in this chapter which overcome the
limitations of the previous work23’24.

Using the coefficient matching technique described in the previous

chapter, the following were achieved:

.

1) New criteria for removing or adding elements.

2) Criteria for adding or removing nodes with the possibility
~ that the order of the required network polynomials may change

during the topological modification.
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3) A method for modifying the values of up to three common factors

at the same time.

Sometimes, in RLC networks, element addition or element removal may
change the order of the calculated polynomials. Further, node addition
or node removal always corresponds to a change in the order of the required
polynomials. In general, modifying the common factors helps, in
obtaining solutions as shown in Section 2.5.

Before describing the details of the criteria developed for network
modifications, it is convenient to introduce some terms, in the following

three sections, which are used very frequently.

4.2. Virtual Elements

In Section 3.2 it was shown that the network synthesis problem is, in
general, an underdefined problem and that there are more possible elements
that might be considered than the number of the independent coefficients to
be matﬁhed.

In practice, to consider all the possible elements in order to achieve
a solution using an optimization technique is very slow, if at all possible.
Furthermore, the Gauss Newton algorithm described in Section 3.4 would
break down as the Jacobian is singular for an underdefined problem. For
these reasons, only a subset of the total set of variables can be
considered at a time in order to speed up the rate of convergence and to
avoid ill-conditioning. This subset of variables corresponds to those
network elements which were used to construct the starting network. These
elements are initially non-zero. The rest of the possible elements are
to be "frozen'" at zero values and are known as the virtual elements.
Further, any element or elements from the non-zero subset which have been
driven close to zero (open-circuited) or infinity (short-circuited) by the

" optimization algorithm will be added to the virtual elements.
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Similarly, those virtual elements which have the greatest tendency
to go positive or which cause the largest reduction in the overall error

function may be added to the non-zero subset.

4.3, Starting Networks

The subset of network elements selected as non-zero valued elements
from the total possible set of elements construct the starting network.

The selection of the starting network is confined by the structure of the
required network polynomials. The spread of powers of p , the complex
frequency, is helpful in deciding the minimum number of nodes for the
starting network. The network configuration may then be estimated on
the basis of a topological analysis (Section 2.3) and the information
obtained from the various equivalent forms of the admittance functions
(Section 2.4). Previous design experience is also of great help in
selecting a starting network.

The starting network should be of the proper configuration and
complexity in order to yield the required degree of polynomials. Any
network realizing a given set of admittance functions must have a minimum
number, nl say, of nodes. A realization with nl+r nodes will, in
general, introduce r common factors of unknown value (see Section 2.5).
Thus even starting from a feasible topology, the optimization algorithm
must obtain solution values for the network element and the common factors.
In the author's experience, the introduction of even one common factor of
unknown value degrades the performance of the optimization algorithm more
than the introduction of several new elements. Thus in the present work,
an optimum design is considered to be the one with a minimum number of
nodes rather than a minimum number of elements.

For a starting network composed of the minimum number of nodes
required, if the selected network fails to achieve a solution, more elements

may be added by increasing the value of some virtual elements from zero.
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An alternative method for selecting the starting network is to select a
network with more elements, and perhaps more nodes, than those required.
In this case a solution may be achieved by removing any elements which
tend to be open circuited or short circuited. The latter is less
efficient because of the reasons mentioned above. Moreover, in general,
the optimization algorithm is less efficient as the number of elements
under consideration is increased.

The minimum number of nodes can be defined as follows:

1) For RC or RL networks the minimum number of nodes, nl ,
is equal to the order of the denominator polynomial in the short-circuit
admittance function plus three. Thus if the order of the denominator

polynomial in the short-circuit admittance function is mll22 say, then
nl = ml122 + 3 .

2) Using the same notation of 1), then the minimum total number

of nodes for an RLC or LC network is

nl = 3 + “‘—1%—23 , if ml122 is EVEN ,
or n1=3+“—‘11—2§-il, if mll122 is ODD .

The minimum number for each type of element in a 2-element kind
network is given by the minimum number of nodes minus two. Each node must
be connected to at least one of each type of element if these elements are
to be effective in generating the required set of network polynomials.
Furthermore, the network elements of a particular type should not form any
loops for the same reason. For RLC networks similar conditions are
applied.

In Section 3.5 it was shown that an initial element value of xj =1

seems appropriate when using the logarithmic transformation. For
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0 < xj <1, -=«g log xj £ 0 and for 1 < Xj £+, 1« log xj € +
whence xj = 1 gives an initial starting value whose transformed value
is equidistant from * « , Thus, there is no bias on xj in favour of

the short-circuit condition (log xj = + » ) or the open-circuit

condition (log Xy = - )

4.4, The Strategy of Automated Network Design

In Chapter 3 it was shown that the problem of finding the network
which can yield a particular set of admittance functions could be
transformed to an equivalent optimization problem 'Find the values of
the vector §ﬁxj > 0) which minimizes the overall error function F ,
where F = .§ f:".' Further in Section 3.2 it was shown that this
problem is ;:lunderdefined problem since, in general, there are more
variables (elements) than independent equations (coefficients). To
overcome this difficulty the problem is transformed to an overdefined or
exactly defined problem. This can be achieved by considering, at any
one time, a subset of the set of all possible variables.

Let n be the total number of possible variables (elements).

Let x be the vector of element values (xj >0, j=1,2,...,n).

Let m be the number of independent equations (coefficients).

Let n_ be the number of variables to be considered at a time

e

Let X, be the vector of the corresponding element values.

The subset of elements X, corresponds to those network elements which
construct the starting network, i.e. the subset of non-zero valued
elements. The rest of the elements nv(nv=n-ne) are the virtual
elements which are frozen with zero values (see Section 4.2) i.e. the

corresponding vector X, = 0.
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In this context, it is better to consider the synthesis problem as the
problem of minimizing a single function (the overall error function F ) with
respect to a number of degrees of freedom (e.g. number of nodes, number of
elements, type of elements, ...). From the geometrical viewpoint, this
function can be represented by a space S of n dimensions containing an
unknown number of minima. The selection of any subset of n, elements
with starting element values 52 corresponds to a starting point pg on

a subspace Si» of S , where the search for a global minimum will be

confined. After t iterations, EZ will be adjusted to 52 and p:
to pz within the same subspace s,. If at p: a global minimum is

reached, i.e. the overall error function F=0 , then a solution is achieved
where n, represents the solution topology and 52 represents the vector
of the solution element values. This condition may be achieved if the
initially selected topology is a solution topology. However, if the
search in the subspace s; led only to a local minimum, i.e. the optimiza-
tion algorithm fails to achieve a solution; the result obtained is useful

in:

1) Strongly suggesting that the subset n, does not have a solution.
2) Providing network element values which give a much lower

magnitude for the overall error function than the starling values.

In order to explore the possibility of a solution in the rest-of S,

the search is to be continued in another subspace say, which corresponds

)
to a modified subset of elements n; . In other words the initially

starting network may be modified as follows:

1) By removing one or more elements. These elements are to be

added to the virtual elements (see Section 4.5).

2) By adding one or more elements. These elements are to be

selected from the virtual elements (see Section 4.6).
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The process of changing from one subspace to another within S is to be
repeated until a global minimum is found. However, in some cases, all
the subspaces of S may be examined and no solution be found. Then the
search has to be continued in a new space s”. The transformation of

the search from one space S to another space S~ may be achieved by:

1) Removing one node or more from the current set of nodes

(see Section 4.5).

2) Adding one node or more to the current set of nodes (see

Section 4.6).

Potentially, any change in the number of nodes will alter the order of

the required set of polynomials. In general, after any topological
modification, a check should be made to ensure that the initial requirements
are still fulfilled.

To summarize, the selection of a suitable starting network which
provides a response close to that required is of a great advantage. Such
a network would need a minimum amount of topological alteration, if any,
to achieve a solution. Hence ahy information which can be used in
selecting such a network is of a great help. The author succeeded in
obtaining the required information by making use of the various equivalent
forms of the admittance functions, the topological analysis and the concept
of the degree of connectivity discussed in Chapter 2. The block
diagram in Fig.[4.1] shows the main features of the evolutionary approach
in automated design using the coefficient matching technique.

It should be noted that the information obtained by the designer from
the failure in the search in one subspace is very useful and relevant when
conducting another search in another subspace, within the frame of the same
space (i.e. element addition and element removal). However, it is very
difficult to say the same thing when relating the information obtained in

one space to another space (node addition or node removal).
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The structure of the design procedure shown in Fig.[4.1] may be

summarized as follows:

1) Select a starting network using the criteria described in

Section 4.3.

2) Check that this network fulfils the requirement discussed in

Section 4.3.

3) Use the optimization algorithm to alter the element values

iteratively, trying to reach a solution.

If the value of the overall error function F 1is reached below a certain
minimum value ¢ , depending on the accuracy of the computer used

(e < 10"18 say) , an accurate solution has been reached. If the value
of F 1is reached below a certain minimum value € say (e~ < 10’“) and
no further improvement could be achieved then, in this case, an engineering

solution has been reached.

4) If F > e then the possibility of making a minor topological
alteration should first be considered, i.e. adding or removing
elements, or both, depending on the criteria available at the

time.

5) Modify the topology accordingly and repeat steps 2), 3) and

maybe 4) , if necessary.

6) If all the minor alterations are exhausted and no exact solution
has been reached then, if F ¢ €” the current solution achieved
could be accepted as an engineering solution or, add or remove

a node according to the criteria available at the time.
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7) Modify the topology and the order of the given set of polynomials

accordingly and repeat steps 2) to 5)

8) 1If an exact solution has not yet been achieved, repeat steps
6) and 7) then return to 2) wuntil the minimum value of F

is obtained.

4.5. Network Evolution by Reduction.

If a starting network is selected such that:
a) it yields polynomials of the correct order,

b) there are equal numbers of network elements and independent

coefficients,
c) and it has the correct configuration and complexity,

then the optimization algorithm is certain to converge to a feasible solu-
tion from any set of initial element values. However, if the starting
network contains more elements, and perhaps nodes than required, some of
the excess elements, and maybe nodes, must be removed in order to achieve

a solution.

4.5.1. Element Removal.

If the logarithmic transformation is used to constrain the element
values to the positive domain (see Section 3.5), it is theoretically
impossible for any element value to become identically equal to zero.
However, in practice, the effect of an element on the coefficients will be
zero when its value with respect to the other elements in the network is
less than the computer accuracy. Thus an element with such a low value
can be removed from the network. To reach such a low value for an

element when using the two-part optimization algorithm described in Section
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3.4 and employing the logarithmic transformation, a large number of

iterations are usually required. During this period, the value of that

element will decrease monotonically. Hence this could be considered as
. . . . . 5

another criterion for element removal. On this basis, Cutteridge 9

suggested a criterion for element removal which the author and others24
investigated and found to be very successful. If the element value is
decreasing in the Gauss Newton algorithm, it must be associated with a
negative Gauss Newton correction.

Hence

Xt = xg'l. exp(AGx?nl)

J
if xt < xt7! , then exp(kdxF_l) <1
J J J
t-1
i.e. euaﬁ ) <1 hence 6% < 0.

Cutteridge's criterion for element removal was as follows!
'If the correction associated with a particular element is negative over a

certain number of iterations, and if the absolute value of that correction

is increasing monotonically, then the element should be removed.'

ice. If - 8xt ts-axids-axti s - oaxtlsusxt > 0
J J J J J
then the xjth network element should be removed.

In practice, when this criterion was tried with several different
examples, it was found that, occasionally, it would indicate the removal
of an element unnecessarily. Hence, whilst using this criterion, the
author found that if its removal is indicated after three trials in Gauss
Newton section (not necessarily in succession), from different starting
values for the network elements, it would lead to a better criterion for
element removal. The different starting values for the network elements
can be obtained by performing one iteration in the Conjugate Gradient
section each time, starting from the values obtained from the previous

Conjugate Gradient iteration.
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As a result of employing this criterion for element removal, an
element may be removed while its value is still of comparable magnitude
with the other element values in the network, and thus while it is still
contributing significantly to the current value of the overall error
function F . Hence, the current value of F 1is badly perturbed.
Generally, the value of the error function F will rise after the
removal of an element when using the above criterion. However, if its
removal was strategically necessary, then the value of F will fall
rapidly after a few Gauss Newton iterations to below the value of F
immediately before removal i.e. its removal was justified. On the
other hand, if the element value is increasing in the Gauss Newton

algorithm, it must be associated with a positive Gauss Newton correction.

Hence
t t-1 t-1
X, = X. .e Adx.
3 3 xp( ; )
if xt > xo! , the exp(xéxF—l) > 1
J J J
t-1

i.e. e(xaxj ) > 1 , hence ij >0

If the correction associated with a particular element is increasing and
the order of magnitude of this correction is relatively high, then
equation (3.29) is no longer an acceptable approximation to the Taylor
expansion for this element and the element should be short-circuited.

If this indication reoccurs in the Gauss Newton algorithm section after
three trials from different starting values for the network elements, this
element is short-circuited. Further, it was found that, especially
with sophisticated networks, the correction associated with a particular
element may oscillate between very high positive and very high negative
values on every successive passages through the Gauss Newton section.
The optimization algorithm has become unstable. Hence an element

associated with such correction values is also to be removed. The last
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two criteria for element removal was developed by the author.
The methods of element removal described here may remove more than one
element simultaneously if each of these elements fulfills the criteria

for element removal.

4.5.2. Node Removal

Some starting networks, although they generate the required set of
network polynomials, may contain nodes in excess of the minimum number
required. In Section 2.5 it was shown that excess nodes can generate
common factors in the network admittance functions, some of which may be
redundant. These redundant common factors correspond to the nodes which
can be removed without preventing the network from generating the required
set of network polynomials. Further, excess nodes bear the penalty of
corresponding excess elements.

Wright21 and Spence60, working in the frequency domain, developed
different methods for node removal. Di Mambrozs, employing the
coefficient matching technique developed a further method for node removal.
This method was applied to 2-terminal RLC networks where the realization
has been generated by the Bott Duffin synthesis technique.

The author has developed his own techniques for node removal. These
techniques are applicable to 3-terminal networks composed of any two types
of elements (e.g. RC, LC, RL) or all three types of elements (RLC)

They proved to be simple and efficient (see Section 6.3). These techniques

are applied under the following circumstances, see Fig.[4.2] :

1) The method of element removal developed by the author (Section
4.5.1) may remove more than one element simultaneously. As a result of

successive element removal, one of the following two cases will occur:

(1) A node might be left unconnected to any element, i.e. an

isolated node, Fig.[4.2a].
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(ii) One of the internal nodes may be connected to one other node

only by one element or more in parallel, Fig.[4.2b].

In both cases, such a node is not effective in generating the required

set of network polynomials and it can be removed.

2) If the optimization indicates that two nodes, i and j say,
should be short-circuited (the branch admittance becomes very large)
then all elements connected between these two nodes are removed and the

two nodes replaced by one node, Fig[4.2c].

3) If a node & 1is connected to three other nodes by three elements
of the same type forming a 'Star' connection, this node may be removed by

a simple 'Star-Delta transformation', Fig.[4.2d].

k
\ r'd
A | e //. \
c —— . / \
¢ 3 St J / \
/’ \\ // N t ~ \
/’ A L, S \
. & ____ N
(a) (b) (¢) ¢ 3
(d)

Figure [4.2] Node Removal

The procedure developed employing the aforementioned techniques for

node removal consists of the following steps, see Fig.[4.3].

1) Starting from an initial network which yields the required
spread of powers and with element values all unity, apply optimization to
this network employing the two-part optimization algorithm described in

Section 3.4.
- -21 3
2) If a solution is achieved (F £ 10 ) terminate the program.

3) Check if the criteria for element removal are fulfilled. If
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yes, then one or more elements are driven to nearly zero (open circuit) and/

or to a very large value (short circuit).
4) If not, then check for other criteria (element addition).

5) Before removing any element, check if any condition for node

removal will be fulfilled if elements are removed.

6) If the element or elements removal will not lead to node removal,

then remove the appropriate elements. Return to step 2) .

7) If the element or elements removal will lead to node removal,
then (i) reset the values of all the current elements, including those
to be removed, to their values in the last Conjugate Gradient

iteration.

(ii) Calculate the approximate value of the redundant common factor,

which corresponds to the node to be removed as follows:

~Let C be the value of all the current capacitors connected

to the node to be removed.

Let G be the value of all the current conductances connected

to the node to be removed.

Let T be the value of all the current inverse inductances

connected to the node to be removed.

Then, the approximate value of the redundant common factor is
equal to

(P rgpe g (4.1)

If there are no capacitors connected to the node to be removed, then the

approximate value of the redundant common factor is equal to

b+3) - (4.2)
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8) The approximate value of the redundant common factor is to be
compared with all the values of the current excess common factors which
are of the same order. The excess common factor which is the nearest

to that calculated is to be removed.

9) Remove the element, node and common factor. Alter the required

set of polynomials accordingly.
10) Return to step 2)

This process is to be repeated until a solution is achieved.

4.5.3. Comparison with other methods of Node Removal

Working in the frequency domain Villalaz and Spence60 described a
very effective method for reducing complicated equivalent circuits.
This method, although somewhat crude, is simple and works well. Also
in the frequency domain, Wright21 developed another method for node
removal. This method mainly relies on the experience of the designer
when working in an interactive mode.

Using the coefficient matching technique, the method developed by

the author has the following advantages over that developed by Di Mambro23

1) It is applicable to 3-terminal networks composed of any two

types of elements or all three types of elements.

2) It does not need high accuracy or special sophisticated

algorithms.

3) In general, the roots of a polynomial are very sensitive to
the values of its coefficients. Hence, unless the exact value
of the redundant common factor is removed, the solution

achieved may not be an exact one.
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4.6. Network Evolution by Growth

To alter the topology of a starting network by removing elements and

possibly nodes is only effective if the starting network contains a root

network capable of yielding a solution. Unfortunately, this is not
always the case. Hence for a more general design program, there must
exist the capability of adding elements as well as nodes. These

modifications are to be made, preferably on the basis of the properties
of the network under consideration. A program capable of element and
node addition, together with the removal of redundant elements and nodes
when necessary, would clearly give scope for major modifications to the

‘topology, though in rather a piecemeal fashion.

4.6.1. Element Addition

While the criteria for element and node removal were relatively
simple to devise, the problems involved with element and node addition

are greater. For element addition the following must be considered:

(1) To adjudge that the network currently being optimized will

not yield a solution and that element addition is necessary.
(ii) To determine the type, position and value of element.

This is a very difficult task even for a simple RC "network as there are
many possibilities to be considered. For the addition of a resistor
to aanl node network, there are nl(nl-1)/2 possible positions, less the
number of resistors already present.

The idea of adding elements to a network was first introduced by
Rohrer16. Later, work of Director and Rohrer18 indicated that virtual
element sensitivities of least squares performance functions would be

useful in element addition.
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Using the coefficient matching technique and employing the joint
Conjugate Gradients/Gauss Newton optimization algorithm (see Chapter 3),
the optimization algorithm will fail to make any further reduction %n the
value of the overall error function F when a local minimum has been

reached.

ie. JE=0 and  £40. (4.3)

From experience obtained with the algorithm, it is unlikely to converge
to a local minimum when a true solution exists. Thus this is a suitable
criterion for element addition which was first introduced by Krzeczkowski24
Further, it was found24 that, with some test problems the rate of conver-
gence of the error function F is very slow and it could be improved by .
element addition. Krzeczkowski24 introduced the following
criterion:
' If more than fifty consecutive Gauss Newton iterations are

performed without element removal being indicated and, if

the value of F is still greater than 10>, then a new

element is to be added. '
These two criteria have also been employed by the author and found to be
successful.,

For some test problems the value of the error function F in the
Gauss Newton algorithm will oscillate between two points of equal values.
If this criterion is to be repeated after commencing from three different
Conjugate Gradient iterations, then a new element is to be added. Further,
if the joint Conjugate Gradient/Gauss Newton algorithm becomes unstable
because of successive failure in the linear search in the Gauss Newton
section after commencing from three different Conjugate Gradient itera-
tions, a new element is to be added.

The last two criteria were developed by the author.
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When the criteria for element addition are satisfied, there is still
the problem of the number, type, position and value of the element to be
added. The efficiency of the element addition technique is very
dependent on the optimal choice being made consistently and rapidly.
Director and Rohrer18 published a technique for element addition in specific
places based upon the steepest descent algorithm. At the point of addition,
the designer selects the eleﬁent to add from the virtual elements with the

most negative gradients. Di Mambrozs’58

developed an alternative
algorithm which was successful. Both methods require the derivatives
of the network coefficients with respect to the virtuél elements at the point
of addition. Cutteridge61 has suggested a technique for element
addition based upon the calculation of the optimum values of virtual elements.
This technique is simple and allows for quantitative comparison of the
various possibilities. This technique was developed and employed by the
author and others24

In Chapter 3 it was pointed out that the formulation of the individual
error functions, f. , and the overall error function F employed in the

1

present work is

s I(ai m 5
£ G and F=1 £ . (4.4)
i i i=1
Further it was shown that K should be chosen such that g%—= 0.
Then
moc2 m a? i
c-[I@D/1@]
i=1 i i=1 7i
and
m ci2 m ai2 3
F:z[_g (E'/X(E."] - 2m . (4.5)
1=1 71 1=1 "1
Suppose a virtual element, value u , is introduced in the network. As

the polynomial coefficients é; are multilinear functions of the network

element values, then
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»

(4.6)

. = C. + C.
c1 1 uey o

where c¢. 1is the value of 5; when uy = 0 and ci is the value of

(75%5 when u =0 .

*
Now, replacing ¢y by c; in equation (4.5) will clearly alter the value

of F. If ¢; and c; are kept constant, an optimum value of u
can be found by solving Fmin = %5 =0. Unfortunately it is not

possible to find a closed form expression for an optimum value of u .in
this case. However, a numerical linear search procedure can be
conducted over positive values of u on the function &(u) where

m c. + uc, ? a, 2
) ] 4.7)

m
o(u) = [2 (l—a—i] - (c—'ﬁ?

i=1 i i=1 71 i

Cutteridge61 suggested that when analysing and calculating u and

Fmin for all possible virtual elements, the element which gives the best
reduction in the value of F 1is the element to be added. Later
Krzeczkowski24, using the same technique, suggested that the optimal
element to add is the element whose value u 1is the greatest. In both
cases, an element whose value was negative should be disregarded.

In practice, by solving many different examples the author found the

following:

1) If the starting topology is very close to that known to have a
solution (i.e. with only one element missing), then the element to add is

that which both reduces F the most and whose value u 1is the greatest.

2) If the starting topology needs the addition of more than one
element in order to achieve a solution, then the optimal element to add is
either the element which reduces F the most or else the element whose
value u 1is the greatest. However, in general, this element u, say,
has the second largest ratio of (ui/Fi) (where My is the element value

and F, is the corresponding value of the overall error function F ).
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3) Usually, the optimum value of the new element obtained from
analysis is relatively low (see Tables (1) and (2)). The main reason
for this is that the current elements already existing in the network
partiy compensate for its absence. If the value of the new glement is
taken equal to its optimum value obtained from the analysis, considerable
number of iterations would be wasted to increase its value in order to be
effective in the calculation. On the other hand, if the new element
value is boosted to a larger value (10 to 100 times the optimum value say),
this might cause difficulty in the optimization algorithm as it has to
compensate for the introduction of a new element with large value.
Further, if the newly added element is to be removed later, this means
that the optimization algorithm would take a larger number of iterations
to reduce its value. Hence, as a compromise, the author found out that
instead of inserting the new element with the optimum value obtained by
analysis, it was inserted with a value equal to the geometrical mean of
the element values existing in the network, the rate of convergence of the
overall error function F could be greatly improved.

Accordingly, the technique developed and adopted by the author for

element addition is as follows:

1) Analyse and calculate u , F_. and (u/Fmi ) for all possible

min n

virtual elements,

2) If the virtual element which has the largest ratio (u/Fmin)

reduces F the most, then add this element.

3) If not, then add the virtual element which has the second

) .

largest ratio (u/Fmin

4) Instead of inserting the new element with the optimum value
obtained by analysis, insert it with a value equal to the

geometrical mean of the element values already existing in

the network.
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4.6.2. Node Addition

The different technique for topological modification described so

far may converge to a local minimum with a value of F in the range

10'4 to 10-10 (see Chapter 7), and then no further reduction in F is
possible. There is no way of breaking out from such regions of
difficulty without adding a new node. In other words, if the starting

network does not provide the degree of connectivity required to overcome
the constraints imposed by the required set of polynomials, then an extra
node (or more) must be added (see Sections 2.5 and 6.5). Adding or
removing nodes necessitates the addition or removal of common factors.

In the case that the addition of a new node is necessary, the problem
is much more difficult when using the computer design program. The main
difficulties associated with node addition are caused by the number of
extra variables which are introduced. For node addition the following

must be considered:

1) To adjudge that the network currently being optimized will not

yield a solution even with element addition.

2) To determine the position of the new node and the number, type
and values of the elements associated with it. A new node must
be the intersection of at least two network elements of
different types, each connected to other nodes, if this node is

to be electrically meaningful.

3) To determine the value of the corresponding common factor to be

introduced.

. 2 . . s
Di Mambro 3 has described several strategies for node addition based
s .24
upon the splitting of some of the network elements. Later Krzeczkowski
suggested another two strategies, node addition by Delta-Star transformation

and node addition by duplication. The aforementioned strategie523’24
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were based on the possibility of formulating a closed form expression to
calculate the optimum value of the new common factor. This form
depends on the type of the individual error function employed. Each
method of formulating the individual error function will give a unique
expression, if one exists, for the optimum value of the new common factor.
The difficulty occurs when the optimization algorithm uses a type of error
function which has no closed form expression for the optimum value of the
common factor, which was the case in the aforementioned works. However,
they assumed the feasibility of using an alternative form of the
individual error functions, which does yield a closed form expression,
purely at the node addition stage. Thus one error function was used to
embody the design criteria namely

c; Kai
. T o e —— 4.8
f1 Ka. c. ° (4.8)
i i
and another error function to calculate the optimum value of the common

factor namely
f. = Kc. - a, . (4.9)

The author found that, in practice, this assumption of using an
alternative form of the individual error function, which does yield aclosed
form expression, purely at topological alteration, is not feasible even

for element addition.

Example
The network shown in Fig.[4.4] was selected to synthesize

equations (4.10) .

_ (p+20) (p+1.65) (1197p+56613.14p2+28368.584p+191.184)
11 - Y22 T (p+20) (p+1.65) (800000p +408000p+3840)

_ (p+20) (p+1.65) (3p°>-1.14p +197.176p+77.616)
12 = = (p+20) (p+1.65) (800000p +408000p+3840)

(4.10)
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C,=1,C, =8.8
= 6.4, G, = 13.82
-6
Gy = 3.5x107,G,=Gg=0.0014
12.13,T; = 5.66,

r, = 0.07, T, =0.105

(o]
-
Il

—
1]

Figure [4.4] Initial Network to Realize Equation (4.10)

For the element values shown in Fig.[4.4], the optimization algorithm
reached a local minimum J.£=0, fi #0) . At this point, the
optimum values of all possible virtual elements and the corresponding
values of Fmin were calculated. Table (1) shows the results obtained
for individual error functions given in equation (4.8). Table (2) shows
the results obtained when eqﬁation (4.9) was employed to calculate the

value of virtual elements in a program using equation (4.8).

By comparing Tables (1) and (2) we can notice the following:

1) The two different error functions give a difference of
approximately thirty fold in the value of the overall error function F

(printed as FSSQ in Tables (1) and (2)).

2) For several elements (e.g. inductance between nodes 0 and 4),
while one error function gives a negative value, the other error function
gives a positive value. Since the strategy for element addition
ignores negative valued virtual elements, thus the two results obtained

in TaBles (1) and (2) are inconsistent.

If the technique developea for element removal, node removal and
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element addition fail to make any further improvement in the topology
under consideration, a new node may be added if anyone of the following

conditions is fulfilled:

1) The program removes an element which has just been added in
the previous stage of topological modification and it is repeated for all

virtual elements with positive optimum values.
2) All the possible virtual elements have a negative optimum value.

3) The addition of all the possible virtual elements, one at a
time, will fail to make any further reduction in the value of the error

function F .

4) The addition of a new element will contravene the constraints
imposed by the required network polynomials on the required network (e.g.
compactness, symmetry, etc.).

24
The strategy suggested by Krzeczkowski for node addition by delta-

star transformation was developed and employed by the author. In case
any of the aforementioned conditions is fulfilled, a new node is added

as follows, see Fig.[4.5].
1) Check if any of the conditions for node addition is fulfilled.

2) In the network under consideration, search for all the three
elements of the same type in the network, connected in the form of a

delta as shown in Fig.[4.6a].

3) If there are more than one group of three elements connected in the
form of delta, select the delta connection whose nodes are connected to

more elements with other nodes.

4) Using a standard transformationl, the elements of the delta

network can be replaced by the star network of Fig.[4.6b]. The
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equivalent values are functions of the old values as shown.

5) Add a new element of a type different from that of the delta
network to the new node; the value of the new element is set equal to

((xa+x5+xc)/3)(see Fig.[4.6]).

Thus, by the delta-star transformation and the addition of a new
element, a new common factor of the form (p+l) (or (p2+P)) is added

to all four principal polynomials.

6) Modify the order of the required set of polynomials accordingly.

Return to step 2) .

7) Vary the values of the common factor and the network elements,

alter the topology if necessary, until a solution is finally achieved.

An example for the synthesis of RLC network employing node addition

is given in Chapter 7.

4.7. Common Factor Adjustment

4.7.1. Introduction

In Section 2.5 the significance of common factors in the synthesis
of electrical network using the coefficient matching technique was
pointed out. In Section 4.5 it was shown that the removal of an extra
node necessitates the removal of a redundant common factor. In Section
4.6 it was stated that the addition of an extra node necessitates the
introduction of an extra common factor. Further, in some examples of
RLC networks, the addition of an element may require the introduction of
a new common factor. In general, if a solution is not known for a given
set of short-circuit admittance functions then, neither theory nor previous
experience will help the designer in determining beforehand the number of

common factors and the associated number of extra nodes, necessary to
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achieve a realization. Further, there is no way of predicting the
final values to be taken by the common factors when a solution is achieved.
Thus in a general network design program capable of altering the number
of nodes of a given network, such as the program employed in the present
work, facilities must exist for removing, adding and changing the values
of common factors. In Section 4.5 the author described the strategy adopted
ty evaluate and remove a common. factor when removing an excess node. In
Section 4.6 the strategy adopted to introduce an extra common factor and its
starting value when adding an extra node was described. 1In this Section,
the author describes the strategies developed for modifying the values of
common factors.

Krzeczkowski =~ introduced several strategies for adjusting the value
of one common factor. These strategies were developed for 3-terminal

RC networks with a fixed number of nodes. The strategies developed by

the author are for 3-terminal two-element kind and three-element kind

networks. Hence the adjustment of up to three common factors is
considered. Further, the common factor considered in reference 24 was
of the form (p+a) . In the present work three different forms of common

factors are considered.

4.7.2. Common Factor Adjustment using the Optimization Algorithm

As shown in Section 2.5, the introduction of a common factor of the
form (p+a) to the set of four principal polynomials of the form given in

equation (2.19) will produce the following:
1) An increase in the number of the non-zero coefficients by four.
2) An alteration to the values of the coefficients.

In this case, the Conjugate Gradient/Gauss Newton optimization algorithm
will adjust the network element values xj,j=1,...,n so that the overall

error function F 1is minimized.
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Then
m+4 9 ci Kbi
R S
1=1 1
1
M+l ci2 M+ bi2 * ’
and K= [Z G/ 1 & :' , (4.11)
i=3 "1 i=1 i
where bi = ai_1 + aa, .

The derivatives of the individual error function fi with respect to o

are directly available.
Then

. a, .
.22 1 (4.12)

In general, the optimization algorithm adopted in the present work, which
was discussed in Section 3.4, requires the values of the error functions

fi and their first derivatives with respect to all the variables in order
to find a global minimum. If a common factor (p+a) 1is to be
included of unknown value o it can be considered as an extra variable.
The values of the network elements and o at a solution can be obtained

as follows:
1) Start with an estimate for the values of x and a .

2) From the required coefficients ai,i=1,...,m calculate bi,i=1,

..,m+4
3) Calculate ci,i=1,...,m+4 .
4) Calculate f. . Evaluate K and F . If F # 0 then,

5) Calculate Sfi/axj and Bfi/aa where i=1,...,m+4 and

j=1,...,n .
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6) Perform a Conjugate Gradient or Gauss Newton iteration to

obtain the correction for x and a
7)  Update x and o . Return to step 2) .

If other forms of the common factor are required such as (p%+ap+B)
(quadratic common factor) or (p2+2pcose+p2) (conjugate complex pair) ,
then in this case bi =a; ¢ aa; . + Bai . Further if several common
factors of unknown values are required, then they can be adjusted in the
optimization routine in the same way as o

From the experience gained by solving several examples, the afore-
mentioned strategy was found to be efficient only if the starting network
was composed of the number of nodes required to yield a solution.
However, if the addition of an extra ndde is necessary, this method might
lead to instability in the optimization algorithm. The reason for this
is that the optimization algorithm is very sensitive to the order of the
required polynomials and the values of their coefficients. During
optimization, the values of the network elements and the common factors
are adjusted according to the tactical information available at the time.
This information will often lead to a local minimum within the error space
of the current number of nodes. The common factors will start having
large corrections which might lead to extreme values for the common factors.
In the meantime, the reduction in the value of the error function F is
very small. However, this difficulty can be overcome by employing the

strategy described in the next section.

4.7.3. Adjustment of Common Factor by Linear Search and Optimization

In order to overcome the difficulties described in the previous
section a new strategy for adjusting the value of the common factors is

developed. While modifying the values of the network elements,



xj,j=1,...

such that:

1)

2)

3)

4)
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,n, K and k :common factors say, if a stage is reached

The value of the error function F 3 10

The reduction in the value of the error function is very small

(e.g. 0.1%).

The maximum absolute correction corresponding to the values of

the network elements is <« 0.1%

Some of the common factors are associated with a large positive
correction (10% say) while the rest are associated with a

large negative correction.

Then the following strategy is to be used instead of that described before,

until the

1)

2)

3)

4)

5)

6)

7)

value of the error function F is reduced below 10

Reset the values of the current elements and common factors to

their values in the last Conjugate Gradient iteration.
Calculate ci,i=l,...,m+4k .
Calculate bi,i=1,...,m+4k .
-6 ,
Calculate fi . Evaluate K and F . If F > 10 continue.

Modify only the value of the largest common factor by 10% of
its current value while keeping the values of the rest of the

common factors fixed.

Apply a linear search to the values of all the common factors to

find an optimum value for F .

Keep the values obtained from step 6) for the k common factors

fixed, evaluate Bfi/axj,i=1,...,m+4k and j=1,...,n .
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9)

10)

11)

81

Perform five Gauss Newton iterations. If the rate of
convergence of F improved by more than 0.5% , then continue

in Gauss Newton algorithm.

If not, return to step 5) . Repeat steps 6) to 8)
Each time halve the amount of correction (e.g. 5%, 2.5% ...) .

If no improvement then,

Repeat steps 5) to 8) by selecting the second largest common

factor. Return to step 2) .

-6
If F <10 then use the strategy described in the previous

section until a final solution is achieved.

4.8, Summary

In this chapter the theme has been the development of techniques to

modify the starting network. This has been successfully achieved by

developing the following criteria:

1)

2)

3)

4)

5)

Criteria for changing the topology by element removal.

Criteria for changing the topology by element addition.

Criteria for changing the topology by node removal, and
altering the order of the required network polynomials by

removing the corresponding excess common factor.

Criteria for changing the topology by node addition, and
altering the order of the required network polynomials by

introducing extra common factors.

Increasing the range of feasible solutions by common factors

variation.
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Although the present techniques overcome the limitations of the

. 23,24
previous works

, the efficiency and power of the present techniques
could be improved by further investigations and particularly in the

following areas:

1) Topological modifications by adding and removing elements

simultaneously.

2) Topological modifications by adding and removing nodes

simultaneously.

3) Developing more efficient strategies for adjusting the values

of the common factors.

4) The present technique can be greatly enhanced by further

investigation in the concept of the degree of connectivity.
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CHAPTER 5

COMPUTER PROGRAMS FOR AUTOMATED NETWORK DESIGN

5.1 Introduction

In the previous two chapters the concept of automated network design
using the coefficient matching technique has been described. Programs

using this concept are capable of:

1) Optimizing an overall error function F to obtain, for a
particular topology, the network element values which yield

the required set of network polynomials.

2) Modifying the current network topology by element removal.

3) Modifying the current network topology by element addition.

4) Modifying the current network topology by node removal.

5) Modifying the current network topology by node addition.

6) Altering the order of the required network polynomials by

removing excess common factors.

7)  Altering the order of the required network polynomials by

introducing extra common factors.

8) Enlarging the field of possible realizations by adjusting the

values of up to three common factors simultaneously.

The process of developing an automated network design program, using
the coefficient matching technique, has been under consideration at
Leicester University since 1969. During this period, several programs

for the synthesis of lumped, linear 3-terminal RC networks were
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developed22’23’24’54.

The language employed in these programs was
ALGOL 60 and most of the work was performed on an ICL(ELLIOTT) 4130
computer.

For reasons of machine availability, higher accuracy and speed, a
FORTRAN IV program was developed by the author. < During the period of this
research, the early development work was performed on the ICL(ELLIOTT) 4130
computer. Later an ICL 1906A computer was used. Finally much of the
computation in the present work was performed on the CDC Cyber 72 and
CDC 7600 computers. In general, the American computers do not support
efficient Algol compilers. Further, FORTRAN IV is a more universal
language and Fortran programs are often faster and more accurate.

Because of basic differences between the Fortran and Algol languages,
and to avoid any‘duplication in work, the first version of the Fortran
program was developed from the flow diagram representation of the Algol
version which wasavdilable at that time,

In this chapter, the author describes how the techniques developed in
Chapters 3 and 4 were implemented in one Fortran IV program for the
synthesis of lumped,linear 3-terminal two element-kind and three element-

kind networks. Further a comparison with the previously developed Algol

program is given.

5.2. Basic Differences between the Algol and Fortran Languages

The facilities provided by any programming language will impose certain
constraints on the way it is used. The following are the basic differences

between the Algol and Fortran languages.

1) Arrays:

a) In Algol programs:

i) The array subscripts may be negative, zero or positive.

ii) The length of arrays and hence of dependent
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routines can be changed during the running of the
program i.e. Algol provides the facility of

dynamic arrays.

iii) A particular array is limited to the block where it

has been declared.

b) In Fortran programs :

i)  The array subscripts must be positive.

ii) The length of arrays is defined on the basis of the
largest dimension which may be required. Thus if
less than this largest dimension is used, the excess

store required is wasted.

iii) A particular array is normally available in only one

segment of the program.

2) DO Loops and FOR Statements:

a) 1In Algol programs the initial parameters of FOR statement

may be negative, zero or positive.

b) In Fortran programs the initial parameters of DO 1loops

must be positive.

3) Subprograms :

a) In Algol programs:

i) The subprograms are known as Procedures.

ii) The facility of using recursive procedures exists.

iii) The parameters in a procedure may be called by name or

by value.



b)

iv)
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Blocks can be nested within blocks to any depth and

declarations of procedures can be made at the head

" of any block. A procedure can of course be called

V)

only within the block in which it is declared.

Procedures can assign values to variables which are
declared outside that procedure, at some higher level,
and which have not been explicitly declared as procedure

parameters.

In Fortran programs:

i)
ii)

iii)

iv)

V) A

The subprograms are known as Subroutines.

farmuwier
A subroutine,can only be called by name.
Fortran has no block structure as has Algol. Thus,
subroutines are declared linearly and cannot be nested
one within another. Calls on subroutines can be made
from either the main program or any other subroutine
except that a subroutine cannot call itself nor can two

subroutines call one another mutually.

In Fortran, it is conventional to declare the main
program as the first block and then there is no
restriction on the order of the subsequent subroutines.
However, with some Fortran compilers, the subroutines and

the main program can be declared in any order.

subroutine can assign values to variables outside its

boundaries only through its parameters and 'common blocks'
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5.3. The Main Features of the Previously Developed Algol Program

5.3.1. Programming

The Algol program24’54 made great use of the facility of declaring
procedures within the inner members of nested blocks. Further all the
arrays were dynamic arrays. Both facilities are not allowable in
Fortran and meant that the preparation of an equivalent Fortran version

of the Algol program was a far from straightforward matter.

5.3.2, Type of Networks

The program was used for the synthesis of lumped, linear 3-terminal

RC networks with a fixed number of nodes.

5.3.3. The Error Functions

The individual error functions fi were obtained from

£, =2 -1 , i=1,...,m (5.1)

and K =

&y /8 &y
—_— / —_—
i=1 21 i=1 %4

I
nr~3s

m
The overall error function was F = ) ff . A realization was accepted
i=1

-16

when the value for the overall error function F g 10 was obtained.

5.3.4. The Optimization Algorithm

The optimization algorithm employed was the joint Conjugate Gradient/
Gauss Newton algorithm i.e. the same algorithm as that described in Section

3.4 of this thesis.
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5.3.5. Topological Modifications

Techniques for removing or adding elements were developed. One
constraint was that the order of the required network polynomials be

unchanged during the topological modification. In brief

i) An element was removed if its value with respect to the other
elements was too small or it had been associated with an increasingly

negative correction.

1T -7

ii) An element was added whenever ||(JTJ) f[| < 107" and
F>10° or if the optimization algorithm reached a plateau. All
possible virtual elements were analysed. The element chosen was the

one with the largest positive value given by the equation

»

o ci v cicl T c1
T2 a-,za—_u—)

u = i=1 3§ i=1 4 1 1=1 1 1=1 (5.2)
m ci’ o lcl v C , |
,z a. .2 a.a, .z a. z G—4
i=1] "1 i=1 "i1i i=1 i i=1

where c{ and u are as described in Section 4.5.

5.3.6. Common Factors

Only one common factor of the form (p+a) could be considered at
any one time. The common factor could be fixed or vafiable. The
value of the common factor was adjusted, when necessary, by the global
optimization algorithm. = In this case the common factor was considered

as if it was an extra element.

5.3.7. How the Program was Used

In order to use this program, the initial topology was suggested by

the designer. Once the designer had specified:
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i) the required set of polynomials to be realized,

~i1i) an initial topology .of proper configuration and complexity

yielding polynomials of the correct order,
iii) an initial value for the network elements,
iv) an initial value for the commop factor, when required, and
v) whether the common factor was fixed or variable,

then no further designer interaction with the program was possible,

The topology was evolved until either
i) a feasible solution was obtained
or ii) a time limitation was exceeded.
In the latter case, the synthesis technique was considered to be.

incapable of yielding a solution.

5.4, The Limitations of the Algol Program

Within the scope of lumped, linear 3-terminal RC networks the Algol

24,25,54,59

program proved to be moderately successful However, the

program had the following limitations:

1) The program had no facilities for the addition or removal of
nodes. Thus before using the program, the designer had to choose an
initial topology which yielded network polynomials of the correct order

and to decide whether a common factor was needed or not.
2)  The program could only synthesize RC networks.

3) The program could only adjust one common factor of the form

(p+a) by global optimization.
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4)  The program employed the individual error function of the form
given by equation (5.1). This form of error function representation is

.. 2
not very eff1cumtt4.

5) Because there were no facilities for node addition, the method
of topological modification could converge to a local minimum with a value
. -4 -10 . .
of F 1in the range of 10 to 10 and no further reduction in F was

obtained.

6) Because there were no facilities for node removal, the method
of topological modification could remove elements until one of the
polynomials was no longer of the correct order required, and then the

program would fail due to numerical difficulties.

7 The topological modification strategy could only remove one

element at a time.

8) The optimization procedure used was a joint Conjugate Gradient/
Gauss Newton algorithm. .The Conjugate Gradient algorithm evaluated the
corrections to the network element values on th; basis of their gradients.
Thus it would still make progress even if there weré more variables in the
network than independent coefficients. The Gauss Newton algorithm
obtained the corrections by solving equations (3.36) using Householder's
transformation556. With this method it is not possible to solve an
underdefined system of linear equations and consequently it is not possible

to use the Gauss Newton algorithm where there exists more variable elements

than independent coefficients.

5.5 The Main Features of the FORTRAN Program Developed

Because of the basic difference between Algol and Fortran languages
(see Section 5.2) and the complexity of the automated network design program,

the first version of the Fortran program was a transformation rather than a
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translation from the Algol program.

5.5.1. Progzamming

The Fortran program was developed specifically for use on a variety
of computers. Thus, the program was written using standard Fortran IV.
Any special features available with a particular compiler were avoided.
The main segment of the program provided a link between over twenty sub-
routines. Each subroutine was to perform a particular task. All
arrays were defined on the basis of the largest possible nﬁmber of
elements which could be required to synthesize the network under consid-
eration (up to 10 nodes, 21 elements and three variable common factors).
Thus if less than this largest number was used, the excess store requested
was wasted. The different algorithms were constructed so that they
evaluated the required values with maximum efficiency and accuracy.
Because of this and the basic difference in accuracy between Fortran and
Algol compilers, better accuracy is achieved in the Fortran program.
Further, the overall speed of the Fortran program was at least 10% faster

than the Algol program.

5.5.2. Type of Networks

This program was constructed for the synthesis of lumped linear
3-terminal networks. The networks could consist of the combination of
any two types of elements (e.g. RL, LC, RC) or all the three types of

elements (RLC) .



92

5.5.3. The Error Functions

The individual error functions fi were obtained from equation
(3.13), where

i Kai
fo = —— - —— , i=1,...,m .

i Ka. C.
ai i

K was chosen according to the formula given by equation (3.18), where

1
[re

c-leta.

i=1
m
The overall error function F = } ff . A realization was accepted
. -21 1o . .
if a value of F <« 10 was obtained (for a machine of 64 bits word

length e.g. the CDC Cyber 72).°

5.5.4. The Optimization Algorithm

The optimization algorithm employed was the joint Conjugate Gradient/

Gauss Newton algorithm (see Section 3.4). It is very similar to the
algorithm used in the Algol version. The linear search techniques were
altered in order to obtain higher accuracy. The two-part optimization

algorithm would transfer to the Conjugate Gradient algorithm from the

Gauss Newton section if:
(1) the step length obtained in the linear search was negative,
(ii) one of the elements was to be open-circuited (value too small),
(iii) one of the elements was to be short-circuited (value too large),
(iv) the Jacobian was singular or near singular,

(v) the overall error function F started to oscillate between two

values.
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5.5.5. Topological Modifications

The criteria for removing or adding elements and nodes which were
described in the previous chapter were employed. The order of the
required network polynomials could be changed during the topological

modifications when necessary. Further,

i) The criteria for element vemoval were as described in Section

4.5.1.

ii) The criteria for node removal were as described in Section

4.5.2.

iii) An element was added whenever ||(JTJ)';JTf |[2< 1077 and
F > 10"6 or if the optimization algorithm reached a plateau.
All possible virtual elements were analysed as described in
Section 4.6.1, the element chosen being the one with the

largest positive ratio (optimum injection value/Fmin).

iv) The criteria for node addition and the value of the new common

factor so included were obtained as described in Section 4.6.2.

5.5.6. Common Factors

The program could consider the following forms for the common factor
i) (pta) , @ >0 i.e. linear factor

ii) (p2+ap+B) i.e. quadratic factor

iii) (p2+2pcos6+p?) 1i.e. complex conjugate pair of factors

iv) Any combination of the above forms.

The program could adjust the values of up to three common factors
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simul taneously. The value of the common factor could be adjusted, if
necessary,‘either by including it among the other independent variables

in the optimization processes or by a linear search as described in

Section 4.7. Further, for some examples with a large number of variables

the following facilities existed:

i) To adjust the values of the common factors while keeping the

network element values fixed.

ii) To adjust the network element values while the common factor

values were fixed.
iii) To adjust the values of all the network element and common factors.
These facilities were found to be very useful in some difficult examples

such as that given in Chapter 7.

5.5.7. How to Use the Program

In order to use this program, the designer has to specify the following:

i) The required set of polynomials to be realized.

ii) An initial topology of proper configuration and complexity

yielding polynomials of the correct order.

iii) Initial values for the network elements.

iv) 1Initial values and types for any common factors, that are required.

V) Whether the common factors are fixed or variable.

No further designer interaction with the program is possible. The
topology is evolved and the order of the required set of polynomials may be
altered by the program until a final topology and element values yielding

the required set of network polynomials is achieved,or until a time limit is
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exceeded. The latter possibility is considered as a failure of the

synthesis routines.

5.6. Additional Features Introduced.

The Fortran program introduced the following additional features.

5.6.1. Programming

It is written in a more universal language which is implemented on

all the computers currently available.

5.6.2. Type of Networks

The program can synthesize any lumped linear 3-terminal network

consisting of any types of elements.

5.6.3. The Error Functions

The program employs the most efficient form available to evaluate

the individual error function fi .

5.6.4. The Optimization Algorithm

The optimization algorithm used combines the Conjugate Gradient
and Gauss Newton algorithms. The Gauss Newton algorithm obtains the
corrections for the network element values by inverting the matrix of the
first derivatives JTJ . Sometimes, for certain element values JTJ is
very near1y>singu1ar. The author found that the singularity in JTJ can
be avoided if a different set of starting values for the network elements
is used. This can be achieved by performing one iteration in the
Conjugate Gradient section. The Conjugate Gradient algorithm can make
progress even if the number of variables in the network is more than

independent coefficients.
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5.6.5. Topological Modifications

The program extends the scope of the type and complexity of the

network which can be synthesized as follows.

i) It can synthesize any two-element kind 3-terminal networks

- as well as three-element kind 3-terminal networks.

ii) It employs more sophisticated criteria for element removal.

iii) It can remove nodes.

iv) It employs more efficient methods for adding new elements.

V) It can add nodes.

5.6.6. Common Factors

The Fortran program enlarges the field of possible realizations by
considering different forms for the common factors. Further it employs
several techniques to adjust the values of up to three common factors

simultaneously.

5.7. Limitations of the FORTRAN Program

Although the Fortran program developed by the author succeeded in
overcoming most of the limitations of the previously developed Algol

program, it still has the following limitations:

1) The program has no facilities for multiple topological altera-
tions i.e. it cannot remove an element and add another element
simultaneously. Further, while it is possible to remove more than one

element at the same time, only one element can be added at a time.
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2) Theoretically, the optimization algorithm employed can hangle
very large topologies. In practice, the accuracy of the calculations
depends on the order of the required set of polynomials and the number of
network elements. The accuracy decreases as the order of the required

polynomials increases or the number of network elements increases.

3) The efficiency of the optimization algorithm is sensitive to
the values of the common factors, especially when far from a solution.
A carefully selected starting network and common factor values can be of

a great help to the functioning of the program.

4)  Although the optimization algorithm employed (see Section 3.4)
proved to be reliable and efficient, the Gauss Newton algorithm obtains
the correction by solving equations (3.36) using the Housholder's
transformation556. With this method it is not possible to solve an
underdefined system of linear equations and consequently, it is not possible
to use the Gauss Newton algorithm where there exist more variable elements

than independent coefficients.

5) It was observed for some starting networks , that the initial
element values being all equal may cause the matrix of the first

derivative JTJ to be singular.

5.8. Summary

In this chapter the author described the Fortran program which he
had developed. This program employs the techniques which were described
in the previous two chapters. The main theme of the present chapter can

be summarized as follows:

1) To explain the reasons for developing a Fortran program.

2) To summarize the main features of the previously developed Algol

program and its limitations.
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3) To briefly introduce the main features of the Fortran program

developed and the additional features introduced.
4) To explain the limitation of the Fortran program.

In general none of the methods or criteria employed in the Fortran
program is 'absolute' in the sense that, none is incapable of furthér
improvement, or the collection of methods incorporated will always prove
successful for all lumped, linear, 3-terminal network design problems.
The efficiency and scope of the program developed can doubtless be
improved by further investigation, for example, into the concept of the
degree.of commectivity (see Section 2.5) and by the introduction of
multiple topological modification. However, the existing program

promises much for the future.
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CHAPTER 6

CASE STUDIES I : ATTEMPTED SYNTHESIS OF SOME

TWO-ELEMENT KIND 3-TERMINAL NETWORKS

6.1. Introduction

In Chapters 4 and 5 of this thesis, the author described different
techniques for altering the network topology and showed how they were
implemented in an automated manner in a Fortran program using the
coéfficient matching technique. The final form of these techniques was
defermined by a systematic study involving numerical experimentation.
Such techniques must be assessed by their efficiency in solving practical
examples. The wider the range of practical examples with which these
techniques can cope, the more useful they are. The synthesis of some
networks, such as non-series-parallel networks having no series-parallel
equivalent, cannot be achieved by classical techniquess.' The author
established that this class of network has a very special transfer phase-
frequency characteristic which is given in Appendix B . The realizations
for such networks are a further justification for the de?elopment of
automated design techniques.

Computers have had a dominant influence in the present work. Most
of the results described in this thesis were obtained by using the
Leicester University CDC Cyber 72 computer. The early work was carried
out using an ICL(ELLIOTT) 4130 computer. For a variety of reasons,
an ICL 1906A computer and a CDC 7600 computer were also used.

During the course of this research a considerable number of design
examples were produced. The examples presented in this chapter have
been selected to illustrate the current possibilities in the synthesis of

two-element kind networksusing coefficient matching techniques.
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6.2, Case Study 1 : Program Efficiency

In order to adjudge the speed, flexibility and accuracy of the
Fortran program developed, some of the examples which had been solved

2 . . s . . . s
before 4 using the coefficient matching technique were considered initially.

6.2.1. Network Realization with Fixed Common Factor

The example shown in Fig.[6.1] to realize the set of functions given

by equations (6.1) is of particular interest for the following reasons:

1) The final network which can yield an exact realization is a
non-series-parallel network possessing no series-parallel equivalent.

Thus it could not be synthesized using classical methods.

2) The author established that this set of functions has a special
transfer phase-frequency characteristic which was not previously known

and which is described in detail in Appendix B .

3) The final realization obtained from the starting network shown
in Fig.[6.1a] was not possible to achieve using a fixed common factor by

the Algol program used in previous work24.

4) As a result of using a fixed common factor, the final realization
(originally given by Fialkows) was obtained in the relatively short time
of two minutes, compared with 45 minutes for the realization obtained
by using a variable common factor24 (both times refer to run times on the
ICL(ELLIOTT) 4130 computer).

The set of equations realized by the network of Fig.[6.1f] are

Y =y = 11 _ (p+1) (1197p3+56613,14p2+28368.584p+191.184)
11 22 Aj122 (p+1) (800000p2+408000p+3840)

Y. = A1z _ (p*1) (3p3-1.14p%+197.176p+77.616)
12 ~ Ay102  (p+1)(800000pZ+408000p+3840)

(6.1)



Initial element values :~
Ci =G =10°(i=1..4)
Initial error function = 2-25 x 106

Cs

INITIAL
STRUCTURE

Final error function =167 x10°

ADD CAPACITOR 4
value 1-7 x10™" between nodes 0 & 31

Initial error function = 9:8 x 103 3

Final error function =4-07

ADD RESISTOR
value 2-02 between
nodes 0 & 2

Initial error function =477 x 102
Final error function = 2-:985

ADD RESISTOR L
value 400 between nodes 0 83 1

. FIG [6-1] NETWORK REALIZATION WITH FIXED COMMON FACTOR

(b)



Initial error function = 4-81x 102 ‘

Final error function = 4-86 x 107° 3

ADD RESISTOR 5 (d)

value 44 x10™° between
nodes 0 8 &4

Initial error function = 5-25x 1072 3

Final error function = 9-1x 10"5.

(e)
REMOVE RESISTOR 1

value 2-6 x 10-"° between

nodes 08 2
4
3
FINAL 1 2 ( ‘r )
STRUCTURE
Final error function =1-84 x 10°2 A

Final element values :-
C1 = 20. Cz s 5‘3015. C3 = CL =0‘0015. Cs =0-597
G1=G2=0:07, G3=0-3948, G, =2-256, Gs5=0-1392 & Gg=0-004

FIG. [6-1] - CONTINUED




101

This set of functions, when the common factor (p+1) is included,
consists of the rational functions, a full quartic divided by a full

cubic in each case. Thus the minimum number of nodes for a realization
must be five plus the reference node 0 . For realizing non-zero
coefficients for pL+ and po in A;2 and 4;; , a minimum of four capaci-
tors and four resistors is required. However, since the coefficients

of pL+ in Ay aﬁd Ay, are not equal (hence the residues at the pole at

ity in Y11 } and Y,,  are not equal to that in -Y ) then there

12:
must exist a purely  capacitive path between nodes 0-1 and 0-2 (see
Chapter 2). Similarly, since the coefficients of po in Ay; and A2
are not equal, then there must exist a purely resistive path between nodes
0-1 and 0-2 . Thus any realization of (6.1) must have at least one
capacitor and one resistor more than the minimal number required to
realize A;op .

The initial topology selected (Fig.[6.1a]) contained only four
capacitors and four resistors since this was sufficient to yield poly-
nomials of the order required. Figs.[6.1b] to [6.1f] show the five
topological modifications which were made by the program before a solution

was obtained. From detailed analysis of the computer printout

produced, there are several items of interest:

1) The starting network with all the element values equal to unity

yielded one extra finite pole than those required.

2) The time taken between topological modifications was very uneven.
During a total run time of two minutes, one minute was spent obtaining a
local minimum with the initial topology. The other minute was spent in
optimizing the value of the network elements and performing another three

topological modifications until a solution was reached. The reason was

that, for the initial starting network, the matrix of the first derivatives
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was near-singular and the Gauss Newton algorithm made correspondingly slow
progress. However, once the first local minimum was reached, the
program added suitable elements and the final solution was achieved very

rapidly.

3) Between the addition of elements in stages, the value of the
overall error function, F , decreased monotonically. Since the strategy
adopted (see Section 4.6) required that the value of the new element
added be equal to the geometrical mean of the current_existing elements
in the network before recommencing optimization, the value of F
necessarily increased after each element addition. However after only
two Gauss Newton iterations the value of F was reduced below its value
before the element addition. This justified the efficiency of the

technique developed for element addition.

4) The second element to be added was a resistor between nodes 0
and 2 , and it was subsequently removed two stages later. This may be
considered to cast doubt on the efficiency of the element addition tech-
nique. However the fault can also be considered to be more with the
problem than the design method by virtue of the existence of a number of
exact realizations for the required network functions with different
topologie524’27. For example, if the program added a resistor between

nodes 0 and 1 instead of a resistor between nodes 0 and 3, an

alternative realization would be achieved as given in the next example.

6.2.2. A Further Non-Series-Parallel Realization

The example shown in Fig.[6.2], to realize the set of functions

given by equations (6.1), is of ‘particular interest because:

1) The final realization obtained had never previously been published.



Initial element vaolues -
Ci = Gi =10%(i =1.....5)
Initial error function =1-499 x 10°

INITIAL

STRUCTURE (a)

Final error function =5717x1075 ¥,

ADD RESISTOR
value = 0-19 between
nodes 0 & 1

2
initial error function =2.247x10
Final error function =4-857x 10~ %3

(b)

ADD RESISTOR
value = 0-2286 between
nodes 0 & 2

Initial error function = 4x10"

FINAL (c)

STRUCTURE

Final error function = 6:7x 1077

Final element vaives=C,=5-97, C,=19-668
C; = 52267, C.= Cs=00015

G1= G2 20069416, G3=0-142 .

G, =0392, G,= 2221, Gg= G, =0-000583

FIG. [6-2] STRUCTURAL CHANGES LEADING TO A NEW REALISATION
OF FUNCTIONS OF EONS.(6-1)
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2) It illustrates‘the effect of the starting network on the final
solution. In general, the values of the current elements in any
topology compensate, to a limited extent, for the absence of elements
necessary for an exact realization. The way in which such a compensation
is fulfilled depends on the current topology and element values.
Accofdingly, this will influence the optimization algorithm and the local

minimum reached.

3) The initial starting network yielded the required number of
poles, right sign of residues and the required spread of powers of p .

Further, the solution was obtained in less than one minute.

4) The two realizations shown in Fig. [6.1] and [6.2] together

24,54,59 illustrate that the

with other realizations published elsewhere
problem of network synthesis is, in general, a multimodal problem, i.e.

it is a problem with several equivalent solutions. Further, there must,
in general, be an even greater number of quasi-equivalent realizations
(very good approximate solutions) to any problem. However the technique
developed, although employing an optimization algorithm that assumed

unimodality, was successful in achieving realizations from initial networks

far from a solution in respect to both element values and structure.

6.3. Case Study 2 : Realizations by Network Reduction

The following set of short-circuit admittance functions (originally
given by Cutteridgesg) are realized by the networks shown in Figs. [6.3]

and [6.4].

y. o 12(4p3+15p%125)p+1) (p+2) (p+3)
11 (p+1)2(p+2)2(p+3)2

.y, = P2(p+1) (p*2) (p+3)
127 (p+DZ(p+2) L(p+3)2

y = (4p3+15p2+12p) (p+1) (p+2) (p+3) 6.2)
22" 12(p+1)2(p+2) 2 (p+3)2 .




Initial element wvalues -
C;=Gi=10%(i=1....8)
initial error function = 8-08 x10°

INITIAL STRUCTURE
Final error function = 2-32x 102

REMOVE C;=1-18 x1072

Initial error function = 2:32 %102
Final error function = 12-12
REMOVE G,= 1-64x 10~

Initial error function =12-9
Final error function = 1:498
REMOVE C1=1-75x10"*

Initial error function = 1:496

Final error function = 8:085x 107

REMOVE Cg= 3-167 x10~*
Gg=9-2x 107¢

REMOVE NODE 4
& Common factor = (P+ 3)

FIG [6-3] REALIZATION BY NETWORK REDUCTION -EXAMPLE

{a)

(b)

(c)

(d)




Initial error function = 1-675 x10"2
Final error function =1-4 x 1073
REMOVE C,=1-18 x 1073

Os= 1-18x 1073

REMOVE NODES 5
& Common factor = (P+1)

initial error function =3-84x107*
FINAL STRUCTURE
Final error function=857x 10"

Final element values -
C,=12-998, C,=10-058, Cs=1-667
Cg=0-944, G,=18-754, G,=00625,
G,=27-88, G,=1-361, Gg=0-2708

FINAL STRUCTURE
REDRAWN

(e)

(q)

FiG. [6-3] -CONTINUED
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This example, shown in Figs.[6.3a] to [6.3f] , was selected for

the following reasons:

1) It demonstrates that the program is capable of removing nodes

and elements using the techniques described in Section 4.5.

2) Cutteridge59 published two other realizations. He achieved
his realizations by using a different technique. Thus the most

important conclusions to be drawn from the results described here are:

a) There are many apparently equivalent realizations (at least

four) for such a simple set of functions.

b) It is reasonable to conjecture that there must be an even

greater number of quasi-equivalent solutions.

c) Such a multiplicity of exact and quasi solutions are
undesirable when using an optimization algorithm that
assumes unimodality, especially if the network modification

strategy employed is also viewed 'unimodally'.

Figs.[6.3b] to [6.3f] show the five topological modifications which
were made by the program, before a solution was attained. From detailed
analysis of the computer printout produced, there are several items of

interest.

1) The time taken between topological modification was once again
very uneven. Thus of a total run time of eight minutes, half was spent
removing the first two elements, in almost equal time. The second half
was spent removing five elements, two nodes and optimizing the value of
the final network elements until a solution was achieved. The reason was
that, at the start, there were more elements than independent coefficients.

Thus the matrix of first derivatives was near-singular. Hence the
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optimization algorithm performed, in the first stage of topological
modification, more conjugate gradient iterations than were performed in
all the following stages. However the optimization algorithm finally

overcame this difficulty.

2) The value of the overall error function F decreased monontoni-
cally throughout the design process, except when the resistor between
nodes 0 and 4 was removed. This was because the element removed was
associated with a large negative correction and its value was relatively
large on removal. However, the removal of this resistor was justified
because after removal, the value of F decreased in ten Gauss Newton
corrections from 12.94 to 3.12 , while the value of F immediately
before removal was 12.12.

Fig.[6.4] shows another realization for the set of functions given in

equation (6.2). The initial starting topology shown in Fig.[6.4a] is
the same as that in Fig.[6.3a]. However, in this example, the initial
element values are all equal to unity. This example illustrates the

effect of the initial starting element values on the performance of the
technique developed. Figs.[6.4b] to [6.4f] show the five topological
modifications which were made before a solution was attained. From the

computer output produced there are several items of interest.

1) The time taken between topological modifications was as uneven
as in the previous example. However, in this case, one third of the
total time of ten minutes was spent removing the first node and a second
third optimizing the values of the final network elements until a solution
was reached. This was because the starting element values caused the
optimization algorithm to converge to the nearest local minimum
(F = 3.54 x 10'13). The program removed three elements and converged to

this quasi-solution in less than two minutes.



Initial element values :-

Ci =G =10°(i=1.,8)

Initial error function =662 x10°

INITIAL
STRUCTURE

Final error function = 61-07

REMOVE G2 = 0-564

Initial error function = 42-07
Final error function = 16-46
REMOVE C, =46 x 10725

initial error function =8-85
Final error function = 1-08
REMOVE G =7-025 x 1073

Initial error function =0-965

Final error function = 3-54x10""

(quasi - solution)
REMOVE Gg = 4-7x10°°,
Co =4 bx 1079

REMOVE NODE 4 &
Common factor = (P + 1)

FIG. [6-4] REALIZATION BY NETWORK REDUCTION - EXAMPLE 2

T¢ T

(b)

(c)

(d)



Initial error function = 4-58x10™2

Final error function =2-74x1073

REMOVE Gs=1-05x10",
C;=3-68x10"% &

REMOVE NODE 5 &
Common factor = (P+3)

Initial error furiction = 1-77 x 1072
FINAL STRUCTURE
Final error function =175 10"

Final element values:-

C,=10, C3=0-5, C,=13-09,
Cq=1-667 C4=0809, G,=23-9965
G, =21-82, G;=2-181, Gg=0-333

FINAL STRUCTURE
REDRAWN

FIG. [6.4] - CONTINUE D

3
Ce Gs
G, G
7 Z,
Os ° TC
¢ Ce Gs
7
TG TCs
3

(e)

(f)
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2) Contrary to the previous example, after the removal of the first
node, the value of the overall error function F jumped from 3.54 x 10713
up to 4.585 x 10-2 . This was because the current network elements at
the quasi-solution were reduced to relatively low values to compensate
for the existence of the extra elements. All of the network elements

connected to the internal nodes had values which were much less than their

values at the final solution.

3) For the two examples, in both cases node 4 was removed before
node 5 . However the redundant common factor, which was removed with
node 4 , was (p+3) in the first exampie and (p+1) in the second example.
This was because the sequence in which the elements were removed in each
example was different. In Section 4.5, it was shown how the elements
which are connected to the excess node at the time of removal decide the

value of the redundant common factor.

6.4. Case Study 3 : New Set of Admittance Functions having no Exact

'Series-Parallel' Realization

. . . . . . 8
The set of short-circuit admittance functions given by Fialkow

(equations (6.1)) has the following combination of particular characteristics:

1) Y11 = Y22 .

2) The residues at the finite poles are compact.
3) Non-compact residues at the poles at zero and infinity.

4) One of the coefficients in the numerator of the transfer

admittance function (-le) is negative.

Thus this set of functions can only be realized by a non-series-parallel

network8’24. Later Krzeczkowski24, with a theoretical approach,
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succeeded in obtaining a realization having altered Fialkow's set of
functions to a set with equal residues at the pole at zero. In the
example in this section, the author investigates the possibility of
formulating a set of functions similar to those given by Fialkow8 but
with compact residues at the poles at zero and infinity.

Before going into the details of this investigation attention is

drawn to the following:

1) It was not possible to formulate such a set of functions that
were known to be realizable using any known theoretical approach; instead,
the synthesis of several such sets of short-circuit admittance functions
was tried using the program developed. It was rather difficult to find

an exact realization for the different selected sets of functions.

2) The search for networks which can realize the required set of
functions was limited to networks having the minimum number of nodes (in
this case five nodes plus the reference node, node 0 ). Thus, during
the process of topological modification, if a local minimum is reached where

the criteria for node addition are satisfied, the program will be stopped.

The best result was obtained from the example shown in Fig.[6.5].
The network shown in Fig.[6.5c] yielded a quasi-realization for the

following set of short-circuit admittance functions:

_ (p+0.5) (100p3+32344,84p2+16271.3351p+77.381616)

Y..= Y

11° ‘22 (p+0.5) (800000p2+408000p+3840)
v.. - (p*0.5)(100p3-0.5p+172.17383p+77.381616) 6.3)
-T2 = (p+0.5) (800000p2+408000p+3840) y

The following comments are made with respect to this example:

1) Because of the negative coefficient in the numerator of the
transfer admittance function, this set of functions cannot have an exact

series-parallel realization. However a very good quasi-realization



Initial element values:-

INITIAL STRUCTURE

Initial value of error
L
function = 6.4 x 10

Final error function=46.7

Remove Resistor

Value 0.5 between nodes 3 and 5 14

Initial error function = 46,01

Final error function = 1.46

Remove Capacitor
-4
Value 1.9 x 10 between

nodes 0 and 4

(b)

Initial error function = 1.44

Final error function = 1.56 x 10-6 C1

(@]
L[}
(@]

I

= 0.00025, :
(c)

(@]
"
~
o)

L]
N

...,CL* = 8.383

D
|
(9}
[}

0.0403,

7]
1

36.98 ..,

op]
I

= 0,00026 ,

= 3.994 x 10~

~
I

Figure [6.5] K Series-Parallel Quasi-Realization for the Functions of

Equations (6.3)
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could be obtained (F = 1.56 x 10-6) that was series-parallel in form.

2) The example shown in Fig.[6.5] is one of several attempts to
produce an exact realization of the set of functions given in equation$§
(6.3). It was found that the value of K , the constant multiplier,
was very sensitive to the corresponding topology, e.g. forfhetwork
composed of 5 mnodes, plus reference node, and four elements, the value

-6 =14
of K can vary from 10 to 10 for different element distributions.

3) In the example shown in Fig.[6.5], two topological modifications
were made before the overall error function F ceased to reduce further.
This was because all the possible virtual elements to choose from were
of negative values. However, this does not prove that this set of
functions cannot be realized by a network containing only $5ix» nodes.

It can only be considered as aﬁ indication that such a realization is very
difficult to achieve using network evolution. Further it is a strong

evidence for the need to grow a new node.

6.5. Case Study 4 : The Degree of Connectivity

The initial starting network shown in Fig.[6.6] is selected to
realize the following set of admittance functions,

a;p  a,p  ayp

Y =p + l~+ + +

11 6 p+l p+2 p*+3
N a,p . a2p/2 a3p/3
12 TP T T T Tprz T Tpe3

1 &P azp/4 a3p/4
Y22 = P + 6- + p+1 + p+2 + p+3 (6‘4)—

35 (originally given by Luca134).

with a; = 1, a, = 15 and a

The best realization for this set of functions published by

. 36
Cutteridge™ had fourteen elements and two common factors. Later, Hansen
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and Wanet36 presented an LC realization whose RC equivalent realization
possesses two common factors, and uses dne less network element than did
Cutteridge. Existing linear network theory gives‘no guide to the
number, if any, of excess common factors required to achieve a solution.
Thus the realization of the set of functions given in equations (6.4)
represents a very good case study to investigate into the concept of the
degree of connectivity introduced in Section 2.5.

Another reason which made this example of particular interest is that
the results shown in Fig.[6.6] are very similar to those obtained by
Di Mambro23 who employed a completely different optimization algorithm
and topological modification strategies.

In solving this example, two different approaches were used, namely:

1) To start from any.of the published realizations hoping that the
program would remove elements and nodes until a new realization was

obtained with a lesser number of nodes. This approach was unsuccessful.
2) To adopt the following approach:

i) Try to reach a solution starting from a network with the minimum
number of nodes (i.e. no common factor) which could still yield

the required spread of powers.

ii) If a solution was not possible with the minimum number of nodes,

to investigate the reasons for failure.

iii) As described in Section 2.5, if the failure was caused by a
large difference in the admittance level between input and
output (i.e. the degree of connectivity),then try to find
another example which could establish the concept of the

degree of connectivity.



Initial element values :-
Ci=Gi =10°({ =1...,5)

Initial error function = 2-62 x102 <1 C,

INITIAL STRUCTURE

Final error function = 85-99

REMOVE CAPACITOR
value 0-77 between nodes 0 &5

Initial error function = 99-55

Final error function = 12-66
REMOVE RESISTOR | 5 0 2 (b)
value 2:3 x 10”2 between

nodes 0 & 5

Initial error function = 12-58

Final error function =374
ADD CAPACITOR 1 2 (¢)
value 0-617 between _
nodes 0 & 1

Initial error function = 3-94

Final error function = 3:36
ADD CAPACITOR 1 0 2 (d)
value 0-752 between
nodes 0 & 2

FIG. [6-6) ATTEMPTED SYNTHESIS OF FUNCTIONS OF EQUATION (6-4)

O —i




Initial error function = 4-0 , 1

Final error function = 2-798
ADD RESISTOR S 0 {e)
value 2-13x10"2 ’

between nodes 0 & 2

" Initial error function = 2795 3
Finat error function = 2-781
ADD RESISTOR 5 ' (f)
value 2-56 x 1072
between nodes 08 1

Initial error functionz 2-77
Final error function = 2:75

ADD CAPACITOR (g}

value 7-97x10~¢
between nodes 0 & 3

initial error function = 2-75 3
Final error function =2:75 ¢y

No further improvement as (hl

the optimum values of the
remaining virtual elements

are all negative C; = 26, C, = 0.644,
Cy = 4.381, C, = 0.386,
Cg = 0.349, Cg = 0.299,
FIG. [6-6]) CONTINUED C., = 0.0133,G1 = 14.76,
G, = 37.84, G, = 0.1668,
Gq = 0.4364, GS = N.N136,
G6'= 0.0189



110

Figs.[6.6b] to [6.6h] show seven topological modifications which
were made by the program before the overall error function F ceased to
converge. From the computer printout produced, there were several

items to consider.

1) The starting network yielded the following set of functions:

L 3 2
Y =Y = All _ 3p +20p +34p +20p+3
11 22 Ayioa - 6p3+22p2+22p+6

0.311p , 0.689%
p+0.451  p+2.215

[}

p.,1l
> 7"

b 3 2
Yy o= 12 3p +8p +10p +8p+3
12 A1122 " 6p°+22p<+22p+6

0.311p _ 0.689p
p+0.451 ~ p+2.215

1}
rors

+%- (6.5)

Equations (6.4) and (6.5) both have the same number of coefficients.
However, equation (6.5) has one less finite pole. This is because there

is a factor (p+l) common to all polynomials - (see Section 2.4).

2) The optimization algorithm in the Gauss Newton section yielded

very large corrections for the element values. This was attributed to the
large difference in the admittance level between input and output. As a
result, several elements were associated with large corrections. These

corrections were oscillating between large positive and large negative
values. Thus the optimization algorithm performed iterations only in
the conjugate gradient section. After two conjugate gradient iterations,

the current element values yielded the following set of functions:
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1.966p"*+63.729p3+185.429p2+136.8p+5.556

Y11 = T 9.220p5+55.525p2+83.026p+29. 160
o 1.742744 . 1.09685 . 14.69211
= §.22985 [1'96657P*1°758152 * p+0.510295) © (p+1.59)" (p+3.89905)]
oy - 1.966p*+6.37p3+5.979p2+6.1694p+5.556
12 = T 9.229p3+55.525p2+83.026p+29.169
o 1.742744  0.548425  4.89737
= 5772985 [1'96657p*1’758152 " (p+0.510295) " (p*1.59) - (p+3.89905)]
v = 1.966p"*+14.632p3+31.439p2+24,227p+5.556
22 = T 9.220p3+55.525p2+83.,026p+29. 169
1 1.742744  0.27421 _ 1.63246
= §.22985 [1'96657P*1'758152 * 5+0.510295)" (p+1.59) * (p+3.89905)]

(6.6)

From the equations above we notice that by altering the network
element values, the residues of the third finite pole increased from zero.
However, the signs of the residues in the transfer function are still not
as required. This could explain the instability in the Gauss Newton

algorithm.

3) The value of the overall error function F decreased monotonically

except:

i)  When the capacitor between nodes 0 and 5 was removed.

This was because its value was relatively high (see Section 4.5).

ii) When the capacitor between nodes 0 and 1 was added. This
was because the addition of this capacitor contravenes the
constraints imposed by the required set of functions. A
capacitor between nodes 0 and 1 would make the residues of

the pole at zero non-compact.
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iii) Starting from Fig.[6.6e] the optimization algorithm reached a
plateau. The addition of four elements only reduced the value
of F from 2.799 to 2.7515 . No further element addition
was possible as the optimum values of all the virtual elements
were negative. This is a further justification for the
technique developed for node addition. This technique was
based on the idea that adding elements which would contravene
the topological constraints imposed by the compactness of the
poles at zero and infinity in the required set of functionms,

will not improve the rate of convergence sufficiently.

Comparing the results given by this example with those obtained by -

Di Mambro23 we note that:

1) Di Mambro selected the topology shown in Fig.[6.6c] as a

starting network.

2) The first element his program added was a capacitor between nodes

0 and 1 (as in Fig.[6.6d]).

3) Instead of adding a capacitor between nodes 0 and 2 and a
resistor between nodes 0 and 1 , his program added a capacitor between

nodes 0 and 3 and a resistor between nodes 3 and 4 .

4) In his program, the final value of F ceased at F = 2.77 and

all the virtual element values were negative.
Hence from the above comparison we can conclude the following:

1) Using two different optimization algorithms, the same end point

was reached. If the residuals of the equations are studied, then
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i) The residual corresponding to the error in the coefficient of
p3 in A,, suggests that the element contributing in its

2-trees should either be removed or reduced in value.

ii) The residual corresponding to the error in the coefficient of
p“ in A;p suggests the reverse, i.e. the elements contri-

buting in its 2-trees should be increased in number or in value.

Since many of these elements are in common to both sets of 2-trees,

there is no solution within the frame of the minimum number of nodes.

2) The optimization algorithm employed in the present work is
efficient and reliable even if it is compared with a more sophisticated

oy 23 .. . . : .
algorithm .  Moreover the optimization algorithm employed in the

present work is faster.

3) The topological modification techniques developed by the author

are efficient.

The last part of this case study yet to be fulfilled is to find an
example which has a similar set of functions and can be realized by the
minimum number of nodes. This has been successfully achieved as follows:

The set of functions in the above examples (originally given by

Luca134) is

‘- 1Y) _ 36p"“+2058p3+6552p2+4638p+36 N
117 1120 36pS+216p2+396p+216

1, p ,15p 35
P+ 3 + | + 42 + p+3

v o D12 36(ptepSe2p2eps1)
127 Ayy1pp  36p3+216p2+396p+216 _ ¢

1 p 15p/2 _ 35p/3
P*g p+l * p+2 p+3

¢ o o1l 36p"+533p3+1572p2+1183p+36
227 Ayj122 36p3+216p2+396p+216)

_ 1, 15p/4 _ 35p/9 /
=p + 3 + ool + p+2 + +3

(6.7)
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and the set of functions selected is

22 36p%41563p3+4817p2+3348p+36

11 - Ayi22 - 36p3+216p<+396p +216 \
_ 1, 11p/36 . 85p/9 . 55p/2
_p+6+ o1 + D+2 + 2+3
v o 12 36p4451p3+67p2+66p+36

12 7 Ayj0o  36p3+216p2+396p+216

..., 1 _11p/36 , 8p/18 _ 55p/6
P*g p+l p+2 p+3

y B 36p4428p3+1157p2+823p+36
22 Ar122 - 36p3+216p2:396p+216

(6.8)

_ 1  11p/36 . 85p/36 _ 55p/18
=p + 3 + P+1 + p+2 + P+3 J

By comparing these two sets of short-circuit admittance functions
it is seen that:

1) Both sets have the same poles.

2) The ratio between the relevant residues are the same.
3) The residues at the poles at zero are the same.

4) The residues at the pole at infinity are the same.

5) The value of the residues at the finite poles in equations (6.8)
are less. Thus the values of the relevant coefficients in equations(6.8)
are less than those of equations (6.7). Hence the difference between the
admittance level at the input and output in equations (6.8) is less than
that in equation (6.7). In other words, the constraints imposed by
equations (6.8) on the required network can be satisfied by the degree of
connectivity available within the minimum number of nodes.

The example shown in Fig.[6.7] realizes the set of functions given in

equations (6.8). Further, for the same final topology given in Fig.[6.7b],
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but for different element values, a group of examples can be formulated.

The values of a,, a, and a, in any of those examples should not

12 72 3

exceed the relevant values given in equations (6.8).

Initial element values:- 1
. 1
all equal to unity
1
1e 1 T 2 (a)
1 1 1

3 5 1 14l
L. . LID) i J 1
Initial error function | ADD RESISTOR

3.37 x 102 ; value 1.95x10-3
between nodes

Final error function = 3§14

5.59 x 10'S

} =0

Initial error function

5.54 x 107" (b)

| —

Final error function =
5.8 x 10723

Final element values:- ‘
1 3.4355, C2 = 15.194
3.5, Cu = 1.54

39.38, G2 = 8.887, G3 ='0.1667, Gu = 2.275, Gs = 1.93, G, = 0.04

]
"

QO 0
" ]

Figure [6.7] Realization of Equations (6.8)

As a result of this case study, another interesting conclusion which
could be useful in practice was established as follows:

For a set of required functions, if a realization is required with a
minimum number of nodes and such a realization cannot be achieved because
the degree of connectivity within the minimum number of nodes is not
enough, then by perturbing the values of the given set of coefficients, such

a realization may be obtained within a certain tolerance.
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6.6. Conclusions

After the description of each case study in this chapter, detailed
conclusions were given. The general conclusion which can be obtained
from the work presented in this chapter is that the coefficient matching
technique is efficient and reliable. The optimization algorithm adopted
and the various techniques developed for topological modifications are

easily implemented and often successful.
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CHAPTER 7

CASE STUDIES II : ATTEMPTED SYNTHESIS OF SOME

THREE ELEMENT KIND 3-TERMINAL NETWORKS

7.1. Introduction

In the prévious chapter, several case studies for the synthesis of
two-element kind 3-terminal networks were described and discussed. In
this chapter the author presents some case studies for the realization of
3-terminal RLC networks.

In general, in the automated synthesis program, the orders of the
required set of polynomials and the number of coefficients to be matched
must be correctly specified at all times during the design process, if
the program is to realize a feasible final network. In RLC networks,
the addition or removal of an element may alter the order of the set of
functions obtained. Hence in RLC network éynthesis, the order of the
set of polynomials currently obtained should be checked after each
topological alteration.

During the evolution of any RLC network it is possible, because of
element removal, that the network may degenerate to a two-element kind
network (RL, LC or RC). Further, for some RLC networks, the
addition of one elementmay alter the orders of the obtained network poly-
nomials. This alteration, in general, depends on the position and type
of the new element. For example, the set of functions given in equations

(7.1) can be realized by the RC network shown in Fig.[7.1].

A1 = Agp = ;1{ (1+5p+5p?+p?)
21 2..3
A1z = 7 (1+p+p=+p°)
Ay12p = 1+2p+p? (7.1)
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Figure [7.1] Network Realizing Equations (7.1)

The addition of one inductance between any two nodes will affect each
of the four principal polynomials in a different way. Further, the way
in which each polynomial is modified depends on the position in which this

inductance is connected.

1) Suppose an inductance L 1is inserted between nodes 0 and 3 :

If an inductance of value unity is connected between nodes 0 and 3 ,
then the network of Fig.[7.2] is obtained. This network now realizes the

four principal polynomials of equations (7.2)

1
By = App = i (1+5p+7p2+5p3+p™)
Ayp = L (1+p+p2+p3+p*)
4p
1
B2z = 5 (1+2p+2p +p3) . (7.2)

4

Figure [7.2] Network Realizing Equations (7.2)
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2) Suppose an inductance L 1is inserted between nodes 0 ‘and 4 :

If an inductance of value unity is connected between nodes 0 and 4 ,
then the network of Fig.[7.3] is obtained. This network now realizes the

four principal polynomials of equations (7.3)

1
B11 = P22 = 75 (2+5p+6p®+5pp*)
b2 = Zlﬁ (0+p+2pZ+p3+p®)
1
a2z = o (1+2p+2p3+p3) . (7.3)

Figure [7.3] Network Realizing Equations (7.3)

Comparing equations (7.1), (7.2) and (7.3), the following is noticed:

1) The coefficients of Aj;322 1in equations (7.2) and (7.3) are

identical.

2) The number of the non-zero coefficients is increased and the
range of powers of p 1is increased by one with respect to equations

(7.1) (p_1 has been added to the polynomials).

3) A;; and Ay in equatioms (7.2) and (7.3) are polynomials of the

same order but with different coefficient values.
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4) The polynomials corresponding to AIQ in equations (7.2) and

(7.3) are different in order and in the coefficient values.

The increase in the range of powers of p in the polynomials shows the
need for a continuous check on the order and the number of coefficients of
the set of polynomials obtained during the evolution of the required
network. Clearly, in the example given above, if the solitary inductance
in the networks of Figs.[7.2] and [7.3] is removed, then the remainder is
identical to the network of Fig.[7.1] in both cases. Further, the
realized set of network polynomials will be that of equations(7.1). On -
the other hand, adding more inductance to the network shown in Fig.[7.1] -
may increase the range of powers of p in the set of polynomials obtained.
In practice, it is rather difficult to formulate a systematic
technique to check the orders of the set of polynomials currently obtained
during the evolution process, especially for sophisticated RLC networks.
However, the author developed -the following empirical check. The program
calculates the current values of all coefficients for polynomials of the
maximum order possible, as determined by the number of the current nodes.

Hence during network evolution and after each topological alteration,

1) If the value of a coefficient that is required to be non-zero is
calculated to be below a certain prescribed value (e.g. 10—6 say), this is
considered as an indication that the program suggested a wrong topological
alteration. In this case, the suggested topological alteration is to be
abandoned and the search for another topological alteration is to be

carried out.

2) If the value of one or more of the zero coefficients increases
above a certain minimum value (e.g. 10-6), then this coefficient(s)
should be included with the set of coefficients to be matched and the
orders of the required set of polynomials to be matched will be altered

accordingly.
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3) The coefficients of the four principal polynomials yielded by the

current network are printed out after every change in topology.

7.2, Case Study 1 : A simpnle RLC Realization

The example shown in Fig.[7.4] is to realize the set of functions given

by equations (7.4).

1

2
P

Ayq= (8\+33p‘+29p2+12p3+4p4)

Ay2= % (2+13p+14p2+4p3+4p*)

P
Bpp= Lz (2+19p+34p2+19p3+12p*)
p .
811202 = LZ (2+17‘p+13p2+‘7‘p3+2pb') . (7.4)
P

The corresponding set of short-circuit admittance functions, if written in

the pole-zero form, is

B22 ° p+0.13611) (p+0.19165) (p+0.655+2.037) (p+0.665-§2.037)

YT, T (p+0.1296) (p+2.207) (p+0.582+3.1776) (p+0.582-31.776)
Yoo = M2 (p+0.19165) (p+0.78434) (p+0.012+j1.824) (p+0.012-31,824)
12 7 AT122 0 (p+0.1296) (p*2.207+(p+0.582+31.776) (p+0.582-31.776)
Y b11 (p+0.3233) (n+1.3466) (p+0.665+§2.037) (p+0.665-72.037)

22

® Br122  (p+0.1296) (p+2.207) (p+0.582+31.776) (p+0.582-31.776)

(7.5)

From equations (7.5), this set of admittance functions has a conjugate complex
poles and zeros in each of the admittance functions. Hence it cannot be
realized by any two-element kind network.

From the starting network of Fig.[7.4a] the synthesis program converges
to a local minimum in six Gauss Newton iterationms. From 24 virtual elements
the program selected the resistor between nodes 0 and 4 . This resistor
corresponds to maximum optimum value and maximum reduction in the value of

the overall error function. A solution was achieved after inserting the



Initial element values :-

o
C. =G, =— =10 (i=1,2)

1
i 1 Li

Initial error function =
20.66 1

INITIAL STRUCTURE
Final error function = 10.7
ADD RESISTOR

Value 2.8 between nodes 0 & 4

Initial error function = 4.34

FINAL STRUCTURE Gy

Final error function =
2.07 x 107%°

Final element values :-

=
1]
—
-
(@]
H
N

—
"
P
-
[*p]
N
I
N
-
o]
w
|
N

Figure [7.4] Network Realizing Equations (7.4)

(a)

(b)
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new element,in five Gauss Newton iterations which is shown in Fig.[7.4b].

7.3. Case Study 2 : RLC Realization by Node Addition

For every statement relating to a 3-terminal RC network, corresponding
statements can be formulated for RL and LC networks without mutual
indﬁctances. This follows from the well‘known correspondence between
networks of any two kinds of element, chosen from the three kinds: induct-
ance, capacitance and resistance. The range of powers of p in the set
of functions representing two-element kind networks will depend on the tyve
of elements selected. The example given in Section 7.2 cannot be
realized by any two-element kind network. However, any set of admittance
functions which has a two-element kind realization, can also be realized
by an RLC network. An RLC -equivalent for a two-element kind network
may be possible, but it cannot be obtained from a straightforward transfor-
mation. Further, an RLC network can yield polynomials satisfying the
range of powers of p corresponding to any two-element kind network
containing the same number of nodes. Moreover, an RLC network can yield
twice the range of powers of p corresvonding to any RL or RC network
containing the same number of nodes.

Fialkow8 published a set of short circuit admittance functions
(equations (6.1)). The transfer admittance of this set of functions had a
negative coefficient in the numerator. Fialkow proved that if this set of

functions is realized by an RC network then,

1) The realization must be a non-series-parallel network with no

series-parallel equivalent.

1.14 197.176

< < —

3 1.14

is necessary in order to mask the existence of the negative coefficient.

2) At least one common factor of the form (p+a) (
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3) With the addition of one common factor, Ajjpo2 becomes a full
cubic polynomials in p , whence any two-element kind realization must

have at least five nodes plus the reference node, node zero.

The RL equivalent to Fialkow's original set of functions (equations (6.1)),
obtained by changing every capacitor present in his realization to a
resistor of the same value and each resistor in his realization to an inverse

inductance of the same value, is given in equations (7.6)

N 8(p) (1197p3+56613.14p2+28368.584p+191.184)
117 722 = 5(p) P (800000pZ+408000p+3840)

1]

-y 8(p) (3p3-1.14p2+197.176p+77.616)
12 = §(p) ~ p(800000pZ+408000p+3840)

(7.6)

An investigation into an RLC realization for Fialkow's transformed
set of functions given by equations (7.6) is of particular interest for the

following reasons:

1) Several RC realizations for Fialkow's set of functions, one of

which had not previously been published, were given in Chapter 6.
2) Equations (7.6) has a different range of powers of p .

3) In contrast with RC or RL networks, RLC networks can yield

polynomials of the required order with four nodes plus the reference node,

node zero.

4) ;Fialkow62 conjectured the existence of RLC non-series-parallel
networks, with no series-parallel equivalent. Thus, could an RLC

realization for equations (7.6) be a non-series-parallel network?

5) If an exact realization with only two internal nodes cannot be
obtained, can an RLC realization with three internal nodes exist? If

one exists, is it series-parallel or non-series-parallel?
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Unfortunately, theoretical aﬁswers to the above questions are very
difficult to obtain. Hence the computer program developed by the
author and employing the techniques described in the present work was used
to investigate the above questions.

In equations (7.6) , 6(p) 1is a polynomial in p , with real positive
coefficients, representing the product of the common factors which are

needed to mask the presence of the negative coefficient appearing in the

numerator of the transfer function (-Y;3) . For an RLC network, 6(p)
can take one of the following forms:

1)  (p*a) linear factor

(i11) (p+a) (p+B) two linear factors

(iii) (p+a) (p+B) (p+Y) three linear factors

(iv) (p2+2pcose+p2) conjugate complex pair of factors

) (p+a)(p2+chose+pz) linear factor and conjugate complex

pair of factors.

7.3.1. The Proposed Design Strategy

In view of the success achieved in synthesizing several two-element
kind networks, some of which were described in the previous chapter, it
was anticipated that the same techniques would also be suitable for
synthesizing RLC networks, with perhaps some minor modifications. This
anticipation was justified for simple RLC networks, e.g. the example
shown in Section 7.2. For the set of functions givén in equations (7.6)
no RLC realization had previously been published. Thus no reliable
estimate could be made of the size or order of the network that would be
most likely to yield a solution. Further, experience with adjusting two
or more common factors simultaneously during network optimization, in
cases where the initial starting.network was remote from any acceptable
solution, was limited.

A starting network was selected which contained the minimum number of
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nodes and element which would yield the required spread of powers in the
required polynomials. It was hoped that by adjusting the values of the
common factors and altering the starting topology, a technique which

proved successful in synthesizing two-element kind networks, a solution

would be achieved without undue difficulty.

7.3.2. The Design Strategy Adopted

The optimization algorithm worked well in cases where there were up
to 21 independent variables and a feasible topology (18 elements, 3
common factors and the correct number of nodes). Further, the program
converged to a solution without undue difficulty where there were up to
two extra nodes (Section 6.3). However, the case study considered in
this section proved to be far more difficult than any other problem

experienced before. The main reasons for this difficulty were:

1) An RLC realization for the set of functions given in equations
(7.6) was not known before. Thus, the form of the final solution, or

even whether a solution was possible or not, was not known.

2) The number of necessary common factors and nodes for a solution .

were not known.

3) The range in which the common factors should vary in favour of

topological alterations were not defined in this particular problem.

For any set of short-circuit admittance functions, if a topology and one
value of common factor which can yield a solution were known then, it is
easy to obtain several different realizations for the same value of the
common factor (see Section 6.2 and Krzeczkowskiz4). Further, it is also
possible to obtain realizations for a range of common factor values around

the value previously known24.



126

The problem becomes mére difficult if either the common factor value
or a solution topology was not known. Potentially, the problem becomes
very'difficult if neither the topology nor the common factor value for a
solution were known.  In the problem considered here, not only a solution
topology, and a value of a common factor are unknown, but also the
necessary number of nodes is unknown and there are up to three common
factors with unknown values or range.

In order to overcome these difficulties, several exploratory runs
were made to gain better understanding of the way in which the program would
react when remote from a solution (F > 10'6). The strategy of adjusting
the value of the common factors by the optimization algorithm (see Section

4.7) was abandoned and the following alternative strategy was adopted:

1) For a particular topology and a fixed set of element values,
select the common factor values which give the lowest value of the overall

error function F .
2) Fix these values of the common factors.

3) Adjust the network element values and alter the network topology
using the synthesis program with the values of the common factors obtained

in step 2).

4). If the rate of decrease of the overall error function F per
iteration is less than 0.01% or F 1is greater than 10-§, return to

step 1).

5) If F is less than 10"6 , adjust the values of the common factors

using the optimization algorithm (see Section 4.7).

[})

6) If the rate of decrease of F is > 0.01% continue until a

solution is obtained, otherwise return to step 1).
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factors =
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1
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FIG [7-5] STRUCTURAL CHANGES LEADING TO RLC ‘REALIZATION OF FUNCTIONS OF EQUATIONS (7-6)




(a)

Common factors=1.1 and 15.2
Final error function=5.71
ADD RESISTOR
value 2.29 between

nodes O and 3

(e)

Common factors =2 and 25
Final error function=414x10"°
ADD RESISTOR

value =1.04 between

nodes 0 and 1

Initial error function=5.066x 10"

3

(b)

Initial error function=15.70
Common factors =1.65 and 16
Final error function =4.32
ADD INDUCTANCE
value 2.208 between

nodes 3 and 4

(£)

Initial error function=4.1x 10

Common factors= 9 and 50

Final error function=3.04 x 10

REMOVE RESISTOR

value 2.5 x10™ % between

nodes 2 and 3

3

3

()

Initial error function=4.01

Common factors=1.65 and 19

Final error function = 3.154
REMOVE INDUCTANCE
value 0.037 between

nodes 0O and 4

(g)

Initial error function=3x10"
Common factors =12 and 55
Final error function=2.01x10
REMOVE RESISTOR
value 3.68x10™° between

nodes 1 and 3

3

3

(d)

Initial error function=2.98

Common factors=1.65 and 20

Final error function=5.068x10"

ADD RESISTOR
value 1.2 between

nodes O and 2

3

(h)

Initial error function=2 x 10~

Common factors =15 and 55

3

Final error function=1.89 x10 3

ADD CAPACITOR

value 2.4 x 10™" between

nodes 0 and 4

Figure [7.5] - Comments
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=35
Final error function=8.3x10

Final value of common factors =
2.951.., 2.95101.. and 54.099 .

Final element values :-
€,=0.1407..,C,=1.3243..,6;=4.5219..,
G,=0.2857..,G3=G,=0.0015,G5=3.5517,

) g =0.3112..,6,=2.8744..,7,=2.5589,
Ip=I'3=0.040425,T}=1.2222. . ,T5=T¢=0.029575.

FiG.[7-5] continued.




(i)

Initial error function=9.94x10™"
Common factors =40 and 60
Final error function=8.89x10™%
REMOVE CAPACITOR
value 9.86 x 10 12 between

nodes 0 and 3

(m)

Initial error function=5.2x10"

Common factors =2,3 and 50

Final error function=1.34x107°
REMOVE INDUCTANCE

value 3.37 x 10~2 between

nqdes 3 and 4

()

Initial error function=8.78x10"

Common factors = 65 and 75

Final error function=1.74x10 *
ADD NODE 5 and INDUCTANCE
value 6.12x 10" between

nodes 3 and 5

(n)

Initial error function=1.14x10"

Common factors=2.5, 2.6 and 51
Final error function = 3.9x10
ADD RESISTOR

value 0.12 between

nodes 4 and 5

7

6

(k)

Initial error function = 1.06
Common factors = 1, 5 and 50
Final error functions=2.12x10"
ADD INDUCTANCE
value 0.11 between

nodes 0 and 2

(0)

Initial error function=4.8x10

Common factors=2.9, 2.95 and 54

(1
2

Initial error function=2.01x10"
Common factors=1.8, 3.5 and 50
Final error function=5.7x10 "
ADD INDUCTANCE
value 2.2 x 1072 between

nodes 0 and 1

Figure [7.5] - Comments - Continued

8
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The final strategy adopted for adjusting the value of the common
factors was to use the strategy described above as long as F was
greater than 10-6. This involved several exploratory runs before any
decision was made on the next topological modification and the optimum
values of the common factors (see Section 4.7.2).

Figs.[7.5b] to [7.5.0] show the fourteen topological modifications
which were made before a solution was attained. The modifications
include the addition of one eXtra node. From the detailed analysis of

the computer printout produced, there were several items of interest:

1) The final network which yielded the solution (F < 10733

),

Fig.[7.5.0] was an RLC non-series-parallel network containing five nodes

plus reference node, node 0 and fifteen elements.

2) The total run time required and the number of topological alter-
ations needed to reach a local minimum with two internal nodes were much

greater than those with three internal nodes.
3) No element was added and then later removed.

4) The lowest value of F achieved before adding a new node

-4 . .
(F=1.74 x 10 ) was obtained with a series-parallel network.

5) The common factors values at this stage (F = 1.74 x 10‘“1 were

high (65 and 75).

6) After the addition of the new node, the values of the common

factors were greatly reduced (5 and 50).

7) The final values of two of the common factors were very

similar (2.951 and 2.95101).

8) The values of the initial error function given in Fig.[7.5]
are the values obtained after the selection of the optimum values for the

common factors.



128

.9) Whilst the final value of F obtained with the network of
Fig.[7.5.0] was less than 10"20 , which means that the coefficients of
the required network polynomials were matched correctly to at least the
first ten significant figures, there is no completely satisfactory way
of determining, when using a finite word length digital computer, whether
a true solution or a very good quasi-solution has been obtained.

However, a further investigation was carried out using a double precision
version of the program on a CDC 7600 computer. A value of F was
obtained as low as 10'35. Even so, the values of several internal
network elements were still seemingly irrational.

Two checks were made to justify tﬁe results obtained in Fig.[7.5]

namely:

1) Starting from the topology shown in Fig.[7.5.0] and with the
values of the three common factors fixed, for different initial element

values, the program converged to the same solution each time. Further,

the final value of the overall error function obtained at the solution was

-33) )

always of the same order (F < 10

2) Starting from the topology and element values shown in Fig.
[7.5.0] with the element values fixed, for different initial values of
the common factors, the program converged to the same solution each time.
Further, the final values of the common factors obtained at the solution
were always identical to those shown in Fig.[7.5.0] to at least the first

fourteen significant figures.

In both cases, a solution was obtained in a very short time (less than

two minutes on the CDC 7600 computer).
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7.4. Conclusion

The results obtained in Section 7.3 are a further justification of
the feasibility and efficiency of the coefficient matching technique in
solving very difficult problems. In Section 7.3 substantial topological
alterations were made (up to 14 topological alterations) until the
final solution, which was not known before, was obtained. The final
network was an RLC non-series-parallel network. However, this does
not prove that the set of functions given in equation (7.6) cannot be
realized by an RLC series-parallel network. It can only be considered
as an indication that such a realization is very unlikely, if not
impossible, to achieve using network evolution techniques. Further, it
strongly demonstrates the capability of the coefficient matching technique
for synthesizing networks which cannot be designed using theoretical or

classical methods.
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CHAPTER 8

CONCLUSION

8.1. General Conclusion

In this thesis, the automated design of lumped, linear, passive,
3-terminal networks, with no mutual inductances, has been described.
The design procedure is based on the coefficient matching technique. The
feasibility of this technique, for the synthesis of such networks,had

14,15,22,23,24,26,31

previously been pointed out , and this method had been

successfully used by earlier designers for the synthesis of RC networks,
though with somewhat limited topological modification523’24. In the
present work, the scope of this technique has been further extended and
generalized, on the basis of which fully automated design of a much wider
range of problems can be achieved. A brief summation of the contents of
each chapter of the thesis is as follows:

Chapter 1, introduces the general concept of automated network design
using the coefficient matching technique.

In Chapter 2, the significance of the information obtained from the
various equivalent forms of admittance functions has been pointed out.
The important role played by common factors in network synthesis, has been
discussed and a new concept of the degree of connectivity is introduced.
This information is very helpful in estimating a feasible starting network.

In Chapter 3, a review of the coefficient matching technique and the
optimization algorithm used are discussed, which form the basis of the
automated network design technique adopted in the present work,

During the process of automated network design, topological modifica-
tions may be necessary at several stages. Methods for the automatic
modification of the network topology, by node addition and node removal,

as well as element addition and element removal, have been discussed in



131

Chapter 4. These techniques overcome most of the limitations of the
previous work23’24. Adjustment of the common factors increases the

range of feasible designs. Several techniques for the adjustment of
different types of common factors, as for example linear common factors,
conjugate complex common factors and quadratic common factors, were
introduced by the author. The influence of more than one common factor
was hitherto unknowﬁ. The techniques developed and discussed in Chapter
4 increase the efficiency and the scope of the automated network design.

A brief description of the Fortran program, developed by the author,
which employs the techniques described in Chapters 3 and 4, has been
presented in Chapter 5. This program proved to be rapid, accurate and
efficient. .

The effectiveness of the program is illustrated by the synthesis of
several networks in Chapters 6 and 7. Ekamples of automatic removal of
more than one mode, and an example of the realization of a series-parallel
quasi-equivalent of a non-series-parallel network have been presented in
Chapter 6.

In Chapter 7, an example of non-series-parallel RLC realization,
involving automatic node addition, has been described — RLC non-series-
parallel realization was hitherto unknown.

The realization given in Chapters 6 and 7, some of which could not be
achieved by using classical methods, highlight the generality and the

advantages of the automated network design technique presented in this thesis,

8.2, Achievements

The author's main achievements, in the present work, may be summarized

as follows:

1) Selection of a suitable starting network on the basis of the
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information obtained from the equivalent forms of the short-circuit

admittance functions (Section 2.4).

2) Establishing the concept of the degree of connectivity on the basis
of the relationship between the coefficients of the required set of functions
and the complexity of the required network (Section 2.5 and Appendix A).

This concept is also verf useful for the selection of a suitable starting

network.
3) New criteria for automatic element removal (Section 4.5).
4) New techniques for automatic node removal (Section 4.5).
5) New criteria for automatic element addition (Section 4.6).
6) New techniques for automatic node addition (Section 4.6).

7) A new technique for estimating the value of the new element to be

added (Section 4.6).

8) The range of feasible designs was increased by introducing the
facility to alter the order of the required set of functions during network

evolution (Section 4.7).

9) The ability to vary up to three common factors of different forms

simultaneously (Section 4.7).

10) The development of computer-aided electrical network design program

in Fortran IV (Chapter 5).

11) Ability to deal with difficult problems involving substantial

topological alteration (Chaptersé6 and 7).

12) The successful design of an RLC non-series-parallel,3-terminal

network involving node addition (Section 7.3).
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13) Establishing the transfer phase-frequency characteristic of a

non-series-parallel network (Appendix B).

8.3, Future Work'

The automatic design of electrical networks, in general, is a very
complex problem. Thus the aforementioned achievements are not 'absolutes',
in the sense that they are incapable of further improvement, or the
collections of methods incorporated would always prove successful for all
lumped, linear, 3-terminal network design problems. The efficiency and
scope of the program developed, can be further improved. For short-term
studies, the modifications }n thé following areas are suggested; these

modifications would improve the efficiency and the effectiveness of the

present work to a considerable degree.

1) Optimization: The performance of the current optimization

algorithm could be improved by using the special properties of multilinear

functions65.

2) Matching technique: The significance of the information obtained

from the different but equivalent forms of the admittance functions was
pointed out in Section 2.4. In the present work, this information was
used only to select the starting networks and to check that the current
network topology still yielded functions of the required order, after each
topological modification. Further investigation is necessary in order to
make maximum use of this information, in such operations as the selection of

elements for addition or removal.

3) Topological Modifications: Although the program developed overcame
23,24

most of the limitations of the previous works in this field, there are

yet other areas for further developments namely:
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i) The program has no facilities for multiple topological
alteration. Thus an investigation into the possibilities of
adding more than one element at a time would be useful to under-
take. Also, techniques for removing an element and adding
another element, simultaneously, as well as adding a node and

removing another, could be helpful.

ii) In Section 2.5 and Appendix A , the concept of the degree of
connectivity was established. An investigation into an
analytical formulation for this concept would be helpful as it
could give a better estimate of the required number of nodes

(and hence, the number of extra common factors).

4) Using the Program: During the course of this research, it was

observed that for some types of network, a realization could be obtaine
more rapidly if a simple starting network was selected containing the
minimum number of nodes and elements. In these cases, a solution was
obtained, mainly, by adding elements but sometimes nodes as well. On the
other hand, for other typés of network, a solution could be obtained faster
if the starting network contained more elements, and perhaps more nodes
also, than those required. In these cases, a solution was obtained,
mainly, by removing elements, but possibly nodes as well. Hence, further
investigation is required for the selection of an optimum starting network

which would converge most readily to a feasible solution.

Pole-zero and frequency response matching techniques have been
successfully used for the realization of certain sophisticated networks,
e.g. simulation of coaxial cab1e21. Solution of such networks could not
be easily achieved using the coefficient matching technique. On the other
hand, with a number of problems for which the coefficient matching technique

has been successful, the pole-zero and frequency response matching techniques
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have failed21. Hence, further investigation is necessary so that the
limitations of these methods may be properly assessed, and a better and
efficient automated network design program may be developed; incorporating
the virtues of each of these techniques.

For long term, future studies, the following items could be areas of

research:

1) In order to make the coefficient matching technique more useful
for industrial applications, it would be helpful to include constraints on
network element values, network sensitivities, the ability to include
parasitics and to adjust the network element values and/ or topology:

accordingly.

2) To investigate the possibility of including active elements and

mutual inductance.

3) The development of a new optimization algorithm capable of
solving unconstrained, underdefined problems is very important. One way
to develop such an algorithm, could be by using random techniques43—45.
Since random techniques are not effective in the region of the solution,
it is probable that the approach will be hybrid in nature. Initially,
the error space would be studied in a random fashion to locate the areas
of possible solutions. Finally, to locate the best solution, conventional

analytical methods (e.g. Gauss Newton), might be used to investigate into

each area of possible solution.
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APPENDIX A

THE CONCEPT OF THE DEGREE OF CONNECTIVITY

The concept of the degree of connectivity was introduced in Chapter 2.
In this Appendix a further theoretical justification is presented.

Consider the network of Fig.[1l] as a possible realization for the

following four principal polynomials

2
811 = Bz2 = K(A +A;p+A,p )
2
Ayp = KCA0+A3p+A2p )

A1122 = K(A,+A.p) (1)

where Ai >0,i=0, ...,5 and K>0,

Figure [1] A Suggested Realization Topology for Equations (1)

The network has eight elements. There are, therefore, a total of eight
variables, xl, x2, ...,x8 whose values are to be obtained in terms of the
coefficients of the polynomials of equations (1). The admittance matrix

of the network is
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r . -
[(xg+xg) P+ (x,+x,)] - (xgp+x,) - (xgp+x,)
- (xgp*x;) [(xg+xg)p+(x,+x,)] - (xgp*x,)
- (xgp+x,) = (xgp+x,) [(x +xg+x Jp+ (x +x,+x )] | (2)
— J

Were the cofactors Aj;;, 832, Ayp and Apjp2 to be evaluated directly from the
admittance matrix, a total of eleven simultaneous equations could be con-

structed, all multilinear functions of Xy, X -5 Xg and K(A;1,A;2 and

gsee
Az, are quadratics, Ajjz2 is linear),.by equating the actual coefficient
values with the values required. Alternatively, equating the coefficients
of the cofactors given in equations (1) with the 2-tree and 3-tree admittance
produéts calculated directly from the elements of the network of Fig.[1],
the same eleven equations in nine unknowns would be obtained. The network
analysis problem requires the solution of eleven equations in nine variables
(eight élements and the constant multiplier K). However, the number of
equations to solve can be reduced if the information obtained in Chapter 2

is used and the constraints imposed by the given set of polynomials are

considered, namely:

1) From equations (1), it can be shown that A;; = Ao if and only if

X3 = X, and Xg = Xg . When the latter conditions are satisfied, the
equations yielded by A,; are identical to those yielded by 4;; . So 4y,
or A,, is redundant. Hence, there are only eight equations to be solved

in seven variables.

2) Because the coefficients of the highest powers of p in 4;; and

Ay, are equal (A11(p?) = Ayp(p2) = KA,) then:

either (i) x, = 0 and Xg = X¢ > 0,

1]
tal

1]
o

or (ii) X, > 0 and Xg 6
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3) Because the coefficients of p in and A*2 are equal

(Aii(p°) = Ai2(Cp°) = KA then;

either (111) =0 and Xg =x > 0 ,

or (iv) Xj >0 and Xg =x" = 0

4) From (i), (iii) and Fig.[l] , if x% =0 and x* =0 , then
the network becomes disconnected. Similarly, from (ii), (iv) and

Fig. [1] , if Xg =x» = Xg = Xg=0 , then the network becomes disconnected,

From (i) and (iv) , if X2 = Xg = x» = 0 , then a feasible topology
is obtained as shown in Fig.[2.a]. Case 1.

From (ii)and (i11) , if “ oas ~ > then a feasible
topology is obtained asshown in Fig.[2.b], Case 2.

The two networks of Fig.[2] have the only topologies which can yield
the functions of equations (1), if the constraint that the networks have no

more than four nodes is imposed.

Case 1 Case 2
a
3
X2 =Xg=X*=0
(a) (b)

Figure [2] The Two Feasible Topologies Realizing Equations(l)

For cases 1 and 2 , there are only six equations to be solved in five

variables.
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Case 1

From item 4) above, the network of Fig.[2.a] satisfies the
conditions 1), (i) and (iv). The network element values and the norma-
lizing variable, K, can be obtainedby solving six equations in five

unknowns. From equations (1) and (2) and Fig.[2.a] we want to solve

_ 2
A12 = K(AZP +A3p+Ao)

Ar122 = K(AD+A))

811 -812 = (A;-Ag)pK (3)

Construct six equations

KA2 = x§+2xsxé (3.1)
KA3 = x1x8+2x5x7 (3.2)
KA, = x;x, (3.3)
KA5 = 2x5 , (3.4)
KA, = X, (3.5)
K(AI-A3) = X, Xg. (3.6)
From equations (3.3) and (3.5)
X, = AO/AL+ . (3.7)
From equations (3.4) and (3.6)
X, = 2(A1-A3)/A5 . (3.8)

From equations (3.4) and (3.5)

K = 2(A1-A3)/AuA5 . (3.9)



From equations (3.5) and (3.6)

From equations (3.1),

x5=

8 A

)

5

A

3.
s A,

(A;-A3)/A, .

Ay-As

(3.9) and (3.10)

2), (3.7), (3.8) and (3.9)
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(3.10)

(3.11)

(3.12)

From equations (3.11) and (3.12), these setsof equations are consistent

if and only if

1. Either x

or 2. X =

8

> 0 , when

A, (2A,A (A -ADA) = 2A (A A -AA)

0 , when

A0A5=A3Al+

and 2A2Au=A5(A1-A3) , see Fig.[3] .
Case (1.1) Case (1.2)
x-, x1
I L
n ) J USSSS— |
1 o=y i Xp l-‘ 2 1 g —s 2
3 3
g L o o o
x,
x, X8 >0 xa
0

Figure [3] The two feasible topologies resulting from Case 1

to realize equations (1)
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Case 2

From item 4), the network shown in Fig.[2.b] satisfies the
conditions 1), (ii) and iii) . The network element values and the
normalizing variable, K, can be obtained by solving six equations
(equation (3)) in five unknowns.

Construct six equations

KA, = XyXg : | (4.1)
KA = 2x x +Xx X (4.2)
3 38 27

= 2 2 4.3

KA = 2X3X,+X, (4.3)

KA5 = X, (4.4)

KAH = 2x3 4.5)
K(A;-A3) = X,X, (4.6)

From equations (4.1} and (4.4)

Xg = A2/A5 . 4.7)
From equations (4.4) and (4.6)

X, = (Al-Aa)/AS . (4.8)
From equations (4.5) and (4.6)

X, = Z(Al'Aa)/Au . (4.9)
From equations (4.4) and (4.5)

K = Z(Al-Aa)/AL’A5 . (4.10)
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From equations (4.2), (4.8), (4.9) and (4.10)
2 2
X, 3 (A3A5-A2Au)/AuA5 . (4.11)

But from equations (4.3), (4.8) and (4.10)

A (A.-A)

o 1 3
X, = — = —0——r, (4.12)
7 Al+ 2A5 .

From equations (4.11) and (4.12), these sets of equations are consistent

if and only if

1. Either x, > 0 , when

A, (2AA -(A -ADA) = 2A (A A -A A)

or 2. X, = 0 , when

A2A =A3A5 and 2AOA5 = A“CAI—A3] , see Fig.[4]

4
Case (2.1) Case (2.2)
X,
X3
-
e ) -1h;: o2 J—s | Y.
3 "1'3 3 o
—{ —d | —
xs x

3

x; X2
Io 770 ' IO X7 70

Figure [4] The two feasible topologies resulting from Case 2

to realize equations (1)

The two cases described above represent all the possible topologies
which can be selected from the general topology shown in Fig.[1]. Both
these cases may realize the set of polynomials given in equations (1) under
certain conditions imposed by the given set of polynomials. Hence the

numerical values of the coefficients will decide which, if any, of the
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two networks shown in Fig.[2] yields the required set of polynomials.

To summarize, for a set of equations

: 2
A11 = A22 = K(A0+A1P+A2p )
2
Ay = K(A *A,p*A,p )

81122 = K(A, +A.p) ,

the required spread of powers can be obtained from a network composed

of three nodes plus a reference node. Because of the constraints
imposed by the required set of equations (symmetry, compactness at the
pole at zero, and compactness at the pole at infinity), there are two
alternative networks only which may yield the required solution. Each
6f these two networks has its own limitations. These limitations depend
upon the coefficient values of the required set of polynomials.

Case 1 cannot realize equations (1) unless

1. either x, > 0 , when

8

Ay A -(A-AAL) = 28 (ALA -AAL)

or 2. Xg = 0 , when
AOA5 = AaAu
and 2A2Au = AS(AI-A3)

Case 2 cannot realize equation (1) unless

1. either "x,>0 , when

7
- - = <A A
A (MM -(A -ADA) = 2A (AA -AA)

or 2. x7 = 0 , when
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AA, = AjAg and 2A A = A, (A}-A;)

Accordingly, none of the topologies shown in Fig.[2] can realize
equations (1) if the coefficient values will not satisfy any of the afore-
mentioned requirements. Such coefficient values are as those of

equations (5)

A1 = Bpp = K(1+3p+p?)
A2 = K(1+2p+p2)
‘Ay122 = K(1+p) (5)

ie. A, =1,A =3, A, =1, A, =2 ,A =1 and Ag = 1.

The coefficient values given in equations (5) do not satisfy any of the

aforementioned requirements.
Case 1
(x8 > 0) AACZAzAu'(Al"Aa)As) = 1(2x1x1-(3-2)x1) =1

ZAs(AsAk'AoAS) = 2x1(2x1-1x1) = 2

[}
o
—t
>
>
[
b
hed
(="
1]
—
>
>
"n
N
o]
[
1]
[\S)

(x
2A2An =2, AS(AI-A3) =1

Case 2
(x_. > 0) AA(ZAzAu-(Al_As)AS) =1

2A5(A3AH-AOA5) = 2

(x 0) A2A4= Ix1 =1, AA=2x1l=2

35

2AOA5 =2, Aq(Al-A3) =1
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However, the set of polynomials in equations (5) can be realized by intro-
ducing a common factor (p+1) , which necessitates the introduction of an

extra node, and a realization can be obtained as shown in Fig.[5].

1

L H
—

1— —2

Figure [5] Network Realizing Equations (5)

Equations (5), after the addition of the new common factor will be the form

of equations (6)

Ayy = App = K(p+1) (1+3p+p?)
Ayp = K(p+1) (1+2p+p?)
A1122 = K(p+1) (p+1) (6)

Although the introduction of the common factor (p+l) increases the number
of the non-zero coefficients by four, not all of the extra four coefficients
are independent. To multiply the four principal polynomials by the same
factor necessitates the addition of an extra node. Accordingly, the

number of possible elements increased from eight elements to sixteen elements,
i.e. the number of elements doubled. Thus the number of alternative
topologies to choose from within the frame of a total of five nodes is
increased. Further, addition of an extra node, increases thé/number of
2-trees and 3-trees in general. As a result, the inconsistency in the set

of equations used to evaluate the network element values is overcome.

Let us consider that the degree of connectivity is some measure of the
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number of different topologies which are possible for a network with a
given number of nodes. A network with a minimum number of nodes which
can yield the‘required spread of powers to synthesize a given set of
functions will possess a minimum number of different topologies. Thus
such a network has a low degree of conmnectivity. Such a network may, or
may not, be able to satisfy the constraints imposed by the required set of
functions, if any. For some network functions, a higher degree of
connectivity may be needed in order to achieve a solution as shown in the
example given above. A higher degree of connectivity is obtained by
adding extra nodes to the network with minimum number of nodes. The more
extra nodes that are added, the higher the degree of connectivity that is
obtained.

Unfortunately, the author did not have enough time to develop an
analytical formula to express the degree of connectivity. Such a formula
will be very useful in order to estimate the minimum number of nodes
required for a feasible starting network. A network composed of the
correct number of nodes is able to achieve a solution much faster as shown

in Section 7.2.
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APPENDIX B

TRANSFER PHASE-FREQUENCY CHARACTERISTIC OF NON-SERIES-PARALLEL NETWORK

It was pointed out in Chapter 1 that non-series-parallel networks have
been considered extensively in the present work. The reason is that non-
series-parallel networks cannot be realized using classical methods for
network synthesis and hence provide good test examples for the computer
design techniques developed in the present work. Further, the special
characteristics possessed by this type of network have yet to be infesti—
gated. What is so special about non-series-parallel networks which do
not have a series-parallel equivalent? So far, non-series-parallel net-
works with no series-parallel equivalent have only been considered as an

7,8,23,24,27 were concentrated on

academic problem. A1l the discussions
the implementation of the negative coefficient in the reduced numerator of
the transfer admittance function. No one, to the author's knowledge, has
investigated other aspects of the network performances yielded by this type
of network. In particular, what performance characteristics can a non~
series-parallel network yield, and is the same characteristic obtainable
with a series-parallel network? One property of intérest is the transfer
phase-frequency characteristic, which is often examined by a circuit design
engineer. An investigation into this characteristic proved to be very
fruitful and led to a special result which has not appeared in literature
before.

Zeros of the transfer admittance function may be located in the right-
half-plane of the complex frequency p . Such transfer functions are
known as non-minimum-phase functions. Transfer functions with no zeros in
the righf-half-plane are minimum-ph#ge functions.

The set of admittance functions given by Fialkows, which can only be

realized by non-series-parallel network with no series-parallel equivalent

are
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_ 1197p +56613.14p2+28368.584p+191.184

Yy ¥ ® 800000 (p2+0.51p+0.0048)
v = 3p3-1.14p2+197.176p+77.616 . o
12 = 800000 (p2+0.51p+0.0048)

(the common factor (p+1) has been removed from the equations ) .

The partial-fraction form of equations (1) was published by

Cutteridge and Krzeczkowski27. The transfer admittance in equations (1)

can be written in pole-zero form as

Y. = 3(p+0.3918) (p-0.3959+78.1166) (p-0.3959-78.1166)
12 © 800000 (p+0.5004) (p+0.0959)
(2)

The corresponding pole-zero plot is shown in Fig.[1]

| U
o P-plane
X = pole
0 = zero
——p p— > w
M-or
<y

Figure [1] Pole-zero plot of equation (2)

From equation (2) and Fig.[1], it can be observed that the transfer
function -Y12 has a conjugate complex pair of zeros in the right-half-
plane, i.e. it is a non-minimum-phase function. Further, from equations

(1) and (2) and Fig.[1] ,
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191.184

Y11(p)| © 73840 phase Y ) (50) = O
p—0 '
_ 77.616 _ - n°
‘Y1z(p)l . T 3840 phase -Y, (o) ~
p—0
_ 1197 -, T
Y11(p)| 800000 phase Yy (450 =% 2
p—roo
-Y | - 3 ___p phase -Y =+ I
12(p) | 800000 12(+jw) 2
p—0
~For the transfer function Yo, o the net increase in phase can be analysed

for variation of w from 0 to = as follows:
Net increase in phase for one zero in the left-half-plane (LHP) is + %—.
Net increase in phase for one pole in the LHP is « %—.

Phase contribution at w = 0 for a conjugate complex pair of zeros in

the right-half-plane (RHP) = + T + o + 7 - a = 27 .

Phase contribution at w = + » for a conjugate complex pair of zeros

in the RHP = + %—+ g—= + T .

Net increase in phase for a conjugate complex pair of zeros in the RHP

=+ T -27T = -7 .

To summarize, for one zero in the LHP and,
for two zeros in the RHP and,
for two poles in the LHP,

the net increase in phase for the variation of w from 0 to +

T ) T

= 4 ==-T + 2X - —
2 2
T

= + = -7 -
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- - 270° .

Hence, if the phase-frequency characteristic of non-series-parallel

network is plotted it would look as shown in Fig.[2].

Phase of -Y,,(jw) =~ =~ Phase of Y,,(juw) -

-37

> L .
—

w rad/sec w rad/sec

(a) (b)

Figure [2].Phase-Frequency Characteristics of Non-Series-Parallel Network

The result shown in Fig.[2] is a further justification for why these
type of networks cannot have a series-parallel equivalent. The form of
the phase-frequency characteristic shown in Fig.[2] differs from any phase-
frequency characteristic previously known for series-parallel, non-minimum
phase networks. A similar form of parts of the characteristic shown in
Figure [2] may be obtained by a series -parallel. non-minimum
phase network, but an identical form cannot be obtained. Thus in order
that the phase characteristic to be continuous for all networks in general,

a more general form to represent the increase in phase should be considered.
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This éeneralized'ﬂnm1may be defined as (+ %-i nm) , where n 1is a non-
negative integer > 0 . The reason for this salient characteristic is
that the transfer function, which is a cubic over quadratic rational poly-
nomial, has a negative coefficient in its numerator. Hence it has a
conjugate pair of complex zeros in the right-half-plane and a zero on the
negative axis. This characteristic necessitates that the transfer
function of non-series-parallel network with a negative coefficient in the
numerator of -le be asymptotic to (-3 g& instead of (+ gﬂ .

This especial characteristic could be useful in circuit design.
Recent1y24, it has been suggested that non-series-parallel networks could
be used as 'building blocks' in the construction of more sophisticated
topologies with no series-parallel equivalent. One such application could
be to use non-series-parallel networks as the main building block of Phase
Equalizers with a series-parallel network in the feedback loop.

To summarize, the non-series-parallel network proved to have a special
transfer phase-frequency characteristic which was not considered before.
This characteristic merits further investigation from the application point

of view in circuit design.
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SUMVARY

During the past decade, many techniques for computer-aided circuit
design have been suggested and investigated, butnone have been
developed to the stage where the designer is redundant. The research
described herein concerns the application of one technique, the method
of coefficient matching, to the synthesis of lumped, linear, passive ,
3-terminal networks with no mutual inductances. The author developed
a program which,with further development, could perform the entire
design process with no designer interaction. Further, the author con-
siders problems where the classical synthesis methods are unsuitable j
e.g. the synthesis of non-series-parallel networks with no series-
parallel equivalent.

The coefficient matching procedure is based on selecting a starting

_network which y~lds the correct polynomial structure and achieving a
solution by component value adjustment and network evolution. The closer
the starting network to a feasible topology, the more rapid the convergence
to a solution. It is shown that the suitability of a starting network
can be analysed on the basis of the information obtained from the different
but equivalent forms of the admittance functions. The significance of
common factors is discussed and the influence of various types of common
factors on the network realization is investigated.

For cases when the initial starting network is remote from any feasible
solution, sophisticated techniques allowing substantial topological modifi-
cation during network evolution are required. These techniques were
developed by the author on the basis of element and node addition and
elimination.

A Fortran IV program has been developed by the author welding together

all these aforementioned techniques for topological modification. The



Cii)

program makes large topological modification automatically during the
design process. The Effectiveness and efficiency of these techniques

and the program are illustrated by a variety of synthesis examples.
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