
Modelling, Realisations and Limitations of

Concurrent Delay-Insensitive Networks

Thesis submitted in accordance with the requirements of

the Department of Informatics, University of Leicester
for the degree of Doctor in Philosophy

by

Daniel Morrison

February 2017

Modelling, Realisations and Limitations of

Concurrent Delay-Insensitive Networks

Daniel Morrison

Abstract

Concurrent and distributed behaviour encompasses a wide range of ever evolving
phenomena and features of computation such as communication, mobility, causality,
failure recovery and reversibility. In order to understand better and make precise
the properties of such behaviour, concurrent and distributed behaviour needs to be
modelled abstractly and with formal rigour.

Delay-insensitive networks are a class of asynchronous systems which makes no
assumptions about the timing of signals or components. This makes them suitable
for the implementation of highly concurrent systems. Unfortunately, concurrency
within delay-insensitive networks is an underdeveloped concept which lacks formal
rigour. Reversibility of such systems is also typically only studied in the context of
serial systems without concurrency.

In this thesis, a new model for describing the behaviour of delay-insensitive com-
ponents is introduced which more naturally permits the modelling and study of
concurrency. Reversibility of such components is discussed. The concept of an envi-
ronment for a component is formalised, and its limitations in terms of interactivity
with such a component is also studied. Algorithms for generating the environ-
ments for delay-insensitive components, such that desirable properties always hold
are given. Universality results and properties of networks of such components are
examined in-depth.

A new process algebra which allows the encoding of these networks is introduced.
This permits rigorously defined notions of implementation and other desirable run-
time properties of these networks.

A family of new novel cellular automata is defined which allows the encoding of
delay-insensitive networks. These cellular automata are competitive with existing
CA regarding universality, and number of rules and states. They have a feature
we call direction-reversibility, which allows the inversion of behaviour simply by
reversing the direction of signals.

Finally, two pieces of software called Delay-Insensitive Network Tool Suite and
STCA Simulator, developed to aid in this research, are also detailed.

i

Acknowledgements

I would like to thank my supervisor Irek Ulidowski, who has guided me through

both my MComp degree and my PhD studies.

My PhD studies were funded by a PhD studentship from the College of Science

and Engineering PhD Studentship Scheme and by the ESPRC via the ESPRC Doc-

toral Training Award (DTA). I thank both the College of Science and Engineering

at the University of Leicester and the ESPRC.

Much of the material in this thesis was published in the RC 2013 [52], RC

2014 [53] and ACRI 2014 [54] conference proceedings, and the Journal of Cellular

Automata [55]. I thank the reviewers for providing invaluable feedback.

I would like to thank my parents for providing for me. This has given me the

opportunity to pursue a career in Computer Science.

Finally, I thank my partner Alexandra. She has supported me throughout all

of my studies over the last 6 years, and has given me a reason to work hard and

achieve all that I can.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Overview of thesis . 3

2 Background to DI networks and the sequential machine model 7

2.1 Sequential machine model by Keller 7

2.2 Reversibility . 19

2.3 Distributed memory modules . 21

2.3.1 Reversible serial universality results 22

2.3.2 Serial universality results . 23

2.4 Related work and alternative models 24

2.4.1 Implementation of DI modules in CMOS 24

2.4.2 Variations on the sequential machine model 25

2.5 Shortcomings of Keller’s sequential machine model 27

2.6 Conclusion . 29

3 The Set Notation model 30

3.1 Basic definitions and conditions . 30

3.2 Properties of modules . 36

3.2.1 Basic properties and important classes 36

3.2.2 Advanced properties . 39

3.3 ATS, sATS and external behaviour 43

3.4 Conclusion . 44

iii

CONTENTS iv

4 Environments and Implementation 45

4.1 Formalisation of an environment . 45

4.2 Generating maximal environments . 53

4.3 Implementation and universality . 60

4.4 Conclusion . 64

5 Correspondences between models 65

5.1 Non-deterministic sequential machines 65

5.1.1 Universal sets . 67

5.2 Implementing Set Notation modules using (ND) sequential machines . 72

5.3 Converting between models . 76

5.3.1 Realisability of Set Notation modules as sequential machines . 76

5.3.2 (ND) sequential machines to Set Notation modules 82

5.3.3 Set Notation modules to (ND) sequential machines 84

5.4 Conclusion . 87

6 Universality and implementing modules using concurrency 88

6.1 Inverting modules and networks . 88

6.2 Serial universality results . 90

6.3 Non-serial universality results and concurrent implementations 92

6.3.1 Universal sets for non-arb modules 94

6.3.2 Universal sets for eq-arb modules 102

6.3.3 Universal sets for all modules 106

6.3.4 Irreversibility from local bijectivity 108

6.4 Conclusion . 112

7 DI-Set algebra for DI networks 113

7.1 Syntax and operational semantics . 113

7.2 Properties of networks . 121

7.3 Bisimulation and simulation . 125

7.4 Implementation . 130

7.5 Conclusion . 132

8 Background to STCA 133

8.1 Introduction . 133

8.2 Existing CA for DI networks . 136

8.3 Conclusion . 137

9 Implementation in STCA and direction-reversibility 138

9.1 Direction-reversible STCA for serial modules 139

9.2 Extending to non-serial DI modules 144

CONTENTS v

9.3 Conclusion . 149

10 Software tools 151

10.1 Delay-Insensitive Network Tool Suite 151

10.1.1 Overview of features . 152

10.1.2 Implementation details . 153

10.2 STCA Simulator . 161

10.2.1 Brief overview of features . 161

10.2.2 Implementation details . 162

10.3 Conclusion . 166

11 Conclusion and future research 167

11.1 Achievement of objectives . 167

11.2 Summary of results by chapter . 168

11.3 Future work . 170

Bibliography 180

List of Figures

2.1 Select, Join, Merge, Fork, ATS modules 14

2.2 4-way Join and 4-way Fork trees . 16

2.3 Keller’s parallel module construction method 17

2.4 RE, RT, IRT modules . 20

2.5 Distributed Memory module . 21

2.6 Reduced Distributed Memory module 22

2.7 RE implem. using RDM s . 23

2.8 Select implem. using RDM s and Merges 24

3.1 Unsafe and clashing network . 36

3.2 Set Notation module classes . 40

4.1 Merge normally-connected to environment EnvM 47

4.2 Defin. of the set of reachable config. for a module and environment. . . 48

4.3 State-merge algorithm for a pseudo-environment 50

4.4 Generating a maximal environment for a non-arb module 54

4.5 Generating a maximal environment for any module 56

4.6 Maximal environment generation algorithm, recursive section Part 1 . . 57

4.7 Maximal environment generation algorithm, recursive section Part 2 . . 58

5.1 Choice module . 66

5.2 Modification to Keller’s parallel module construction method 70

5.3 Choice implem. using ATS and Fork 71

5.4 Converting a (ND) sequential machine to a Set Notation module 83

5.5 Converting any Set Notation module to a (ND) sequential machine . . 86

6.1 Safe non-arb non-b-arb network which is unsafe when inverted 90

6.2 Arbitrary M×NJoin module . 94

6.3 Arbitrary 1×NJoin implem. using DM s and Joins 94

6.4 Arbitrary M×NJoin implem. using DM s, Joins and 1×NJoins 95

6.5 Stage 1 of non-arb module construction 99

6.6 Stage 2 of non-arb non-b-arb module construction 100

vi

LIST OF FIGURES vii

6.7 Irreversible stage 2 of non-arb module construction 101

6.8 Join implem. using sATS and Merge 106

6.9 Merge implem. using sATS−1 and Join 109

7.1 BNF for DI-Set algebra . 114

7.2 SOS rules for DI-Set algebra . 115

7.3 Structural congruence equations for DI-Set algebra 116

7.4 Merge with environment EnvM’ in DI-Set algebra (abstract) 117

7.5 Merge implem. with environment EnvM’ in DI-Set algebra 119

7.6 Merge with environment EnvM’ LTS 120

7.7 Merge implem. with environment EnvM’ LTS 120

7.8 Network allowing an infinite number of signals 123

7.9 mATS with environment EnvfATS LTS 127

7.10 fATS with environment EnvfATS LTS 128

8.1 Depiction of an update rule . 134

8.2 Weak-fair execution example . 135

8.3 Update rules for STCA from [32] . 136

9.1 Set of update rules RS . 139

9.2 RT/IRT implem. in RS . 141

9.3 Reversible implem. of arbitrary irreversible function 142

9.4 Direction-reverser implem. in RS . 142

9.5 Direction-reversible implem. of reversible vers. of irreversible func. . . . 143

9.6 Set of update rules M . 143

9.7 Set of update rules P . 144

9.8 Fork/Join implem. in NANBP . 145

9.9 Set of update rules C . 145

9.10 ATS, sATS and sATS−1 implem. in NANBP and NAP 148

10.1 DI Network Tool Suite Console Window 153

10.2 DI Network Tool Suite Conversion tab 154

10.3 DI Network Tool Suite Construction tab 154

10.4 DI Network Tool Suite Environment Generation tab 155

10.5 DI Network Tool Suite DI-Set Algebra tab Main screen 155

10.6 DI Network Tool Suite GUI Input screen 156

10.7 DI Network Tool Suite Interactive Execution screen 156

10.8 DI Network Tool Suite LTS screen . 157

10.9 High-level architectural diagram of DI Network Tool Suite 157

10.10 Architectural diagram of DISetAlgebraStructure package 159

10.11 STCA Simulator main screen. 162

LIST OF FIGURES viii

10.12 STCA Simulator Rule Examination screen. 163

10.13 STCA Simulator Path Verification screen. 163

10.14 Architectural diagram of STCA Simulator 164

Chapter 1

Introduction

We begin with a brief motivation for the work in this thesis, as well as an overview

of its structure and results.

1.1 Motivation

Modern computers are reaching limits in terms of the speed which can be achieved

using a single thread of execution. This has forced CPU designers to adopt a design

strategy that involves concurrency, with general purpose CPUs now possessing mul-

tiple cores, allowing them to execute many threads in parallel. Similarly, graphical

processing units (GPUs) are inherently highly parallel by nature, often executing

many thousands of threads concurrently. As a result, it is important to study general

theoretical models of concurrency.

Asynchrony is similarly important for study. It is believed by some [13, 39] that

a move to an asynchronous paradigm for general-purpose computing is inevitable.

Nevertheless, asynchrony is already present in some existing technologies [20, 78].

It has numerous advantages over synchronous forms of computing, such as reduced

energy consumption due to both the absence of a global clock and inactive com-

ponents not consuming power, and a removal of “worst-case” timing assumptions

due to each component being self-timed [75]. Reversible circuit elements are also

energy efficient for different reasons [3, 12] as operations result in no loss of infor-

mation, and it has been shown in [26] that irreversible operations necessarily result

in the dissipation of energy. Combining concurrency, asynchrony, and reversibility

is therefore desirable.

Studying these types of models allows us to understand the limitations, practi-

cality, and complexity of concurrent, reversible or asynchronous systems. Methods

for verification of these types of systems can be studied and developed, ensuring

correctness of implementations. Inferring the resulting behaviour arising from some

starting specification is also possible. A general enough model can be independent

1

1. Introduction 2

of any particular technology or implementation, and can therefore be useful for any

potential future technology which employs concurrency, reversibility or asynchrony.

An example of a category of models for studying concurrent behaviour is Process

Calculi [17, 42], of which reversible versions exist [4, 7].

Delay-insensitive (DI) networks are a category of asynchronous networks which

makes no assumption about delays within elements or wires. As a type of asyn-

chronous circuit, they have no global clock. It is shown in [40] that it is not possible

to realise the full Turing-complete class of digital circuits with typical logic gates

such as NAND and XOR while requiring delay-insensitivity. Hence the typical DI

model of study, introduced by Keller [23], is more abstract and uses different types

of modules. These operate based upon the presence or absence of signals rather

than the values of wires like in the typical boolean circuit model. As the need for a

replacement technology for CMOS arises, DI networks are seen as a possible future

direction for the industry. Their implementation in several alternative technologies

such as cellular automata [29] and RSFQ circuits [63] is considered a potential op-

tion. Implementing these modules in CMOS is possible, but requires internal timing

constraints [23] due to the aforementioned impossibility of logic gates to provide suf-

ficiently expressive delay-insensitivity at all levels of abstraction. Moreover, as DI

networks represent the complete absence of any timing conditions, correctness of an

implementation when assuming a DI operating environment guarantees correctness

under any model with stricter timing conditions.

Ensuring a rigorous well-developed model for DI systems is therefore critical.

However the exact set of conditions which are considered essential for correct oper-

ation of DI modules and networks varies between publications. The result is that

there are subtle differences between the models used and results which hold in one

model do not necessarily hold in another. A lack of consistent notation for describ-

ing module behaviour (examples found across [23, 30, 60]) further compounds this

issue and makes the identification of behavioural properties difficult. Research into

combining reversibility and delay-insensitive networks [36, 45, 49] has been carried

out, in the context of single-signalled networks. However, a comparatively small

amount of research has been carried out into reversibility together with concurrency

in the setting of DI networks.

Cellular automata (CA) [6] are a category of computational models which nat-

urally implement concurrency. Variations which implement notions of reversibility

[22] and asynchrony [11], as well as combinations of the two [37] also exist. They are

considered an effective computational model for potential future nano-technologies

[66]. The difficulty of performing useful computation using a cellular automata-

based model has led to a concentrated effort towards encoding DI networks in a

subcategory of cellular automata, known as Self-Timed Cellular Automata (STCA)

1. Introduction 3

[65]. Research has focused on minimising the number of transition rules in cellular

automata, as well as ensuring that various notions of reversibility hold. Combining

concurrency, reversibility and DI networks in the setting of STCA is a relatively

unexplored concept.

1.2 Contributions

When conducting the research for this thesis, we set out to define a new, more

robust model for abstract delay-insensitive networks, which exhibits truly concurrent

behaviour at the fundamental level. This model would allow us to define reversibility

of concurrent modules, as well as a clear distinction between deterministic and non-

deterministic behaviour. We wished to also formalise the notion of an environment

for a given module or network. This would allow us to study and define clear notions

of universality and implementation.

We set out to introduce a new process algebra for the modelling and formal

representation of systems defined using such a newly developed model, and further

formalise behaviour and important properties (such as implementation) in the con-

text of this algebra. Such systems would then be able to have their behaviours

inferred based on the rules of this algebra. Formalising properties and behaviour

in this algebra would also help prevent the ambiguity of properties and conditions

which is commonly found in existing DI literature.

We also wanted to investigate how to implement concurrent delay-insensitive

networks in cellular automata, and see if any newly developed notions of reversibility

could be exploited in order to minimise the complexity of a cellular automaton’s

transition rules, or constructions within such cellular automata.

The above concepts were intended to be further explored and studied via the

development of dedicated software tools.

Many results in this thesis appeared in publications co-authored by Morrison

during the period of registration. This includes the works [52, 53, 54, 55]. Irek

Ulidowski is recognised as a co-author for these publications, and has provided

valuable feedback for the results which are present in each of these publications in

addition to this thesis. More generally, the reviewers of the RC 2013, RC 2014 and

ACRI 2014 conferences, and the Journal of Cellular Automata are thanked for their

comments.

1.3 Overview of thesis

We now detail the content and main results found in each chapter:

1. Introduction 4

2: Background to DI networks and the sequential machine model: We

give an overview of the existing model for DI networks formulated by Keller, which

we refer to as the sequential machine model. We include all operating conditions

and relevant definitions. The general construction method for any module in the

sequential machine model is detailed in depth. Further research in the field of DI

networks, including work related to reversibility, is also discussed. Several existing

universality results are detailed. We introduce our own reversible memory modules

in the sequential machine model, and we use these modules to infer some simple

universality results. We finish by discussing what we see as the main shortcomings

of the sequential machine model for DI networks. Motivation is given for the devel-

opment of a new DI model which implements concurrency more directly.

3: The Set Notation model: We introduce a new model for describing the be-

haviour of delay-insensitive modules, called Set Notation which more naturally mod-

els concurrency and notions of reversibility. We define important classes of modules

in the Set Notation model, such as the non-arb, eq-arb and arb classes. We define

networks of modules in the Set Notation model, along with the execution behaviour

of such networks. We define properties of such networks, such as the non-clashing

and safety properties. We investigate several further properties of modules in the

Set Notation model which limit the behaviour of the environment in unexpected

ways. Examples include the auto-firing or 1-step consistency properties of modules.

4: Environments and Implementation: We formalise the notion of an environ-

ment for a module in the Set Notation model. We give an algorithm for calculating

what is referred to as a maximal environment of any non-arb module. An algo-

rithm for calculating a maximal environment of any module is then given. Finally,

we use this notion to define implementation of a module using a network of modules.

5: Correspondences between models: We compare the sequential machine

model for DI networks with the new Set Notation model. We introduce an ex-

tension to the sequential machine model called the ND sequential machine model.

We establish limited correspondences between three models; the sequential machine

model, the ND sequential machine model, and the new Set Notation model. We

prove universality results for the ND sequential machine model. We give algorithms

for converting modules which satisfy certain conditions in the sequential machine

model or the ND sequential machine model, to corresponding definitions in the Set

Notation model, and vice versa.

6: Universality and implementing modules using concurrency: We inves-

1. Introduction 5

tigate inversion of networks of modules. We give some universality results for serial

modules in the Set Notation model. We then give a series of detailed construction

methods and universal sets for the non-arb and eq-arb classes of modules. We also

prove a universal set for all Set Notation modules, by utilising a correspondence be-

tween the ND sequential machine and Set Notation models defined in the previous

chapter. We demonstrate an interesting property inherent to networks of concurrent

DI modules, which is that bijectivity of all modules’ transition maps can still result

in useful irreversible behaviour at the global level. We compare this with a similar

but less general result in the literature.

7: DI-Set algebra for DI networks: We introduce a new process algebra, called

DI-Set algebra, which is intended to model the behaviour of networks from the Set

Notation model. We give examples of encoding modules (such as Merge) and net-

works (such as a network that implements Merge) in DI-Set algebra, and define prop-

erties of networks discussed in previous chapters (such as safety and non-clashing)

more formally in the context of DI-Set algebra. We investigate the use of bisimula-

tion and simulation, and use these together with the aforementioned properties to

define more formally the concept of implementation of a module using a network of

modules.

8: Background to STCA: We give an introduction to the concepts related to Self-

Timed Cellular Automata, including the definitions of important properties such as

local reversibility and local determinism. We define new versions of global reversibil-

ity and global determinism, which are related to similar properties in the literature.

However these new versions are more flexible properties which are based on notions

of convergence, and are appropriate for STCAs which simulate concurrent DI net-

works. We also give an example of an existing STCA from the literature.

9: Implementation in STCA and direction-reversibility: We introduce four

novel STCAs for implementing DI networks, including two STCAs for reversible se-

rial and non-arb non-b-arb networks. The two main STCAs have several very useful

properties, they are locally deterministic, locally reversible and support what we call

direction-reversibility. This allows us to operate a network in reverse by changing

the direction of signals and utilising its output lines as input lines (and vice versa).

This removes the need for separate constructions to implement the inverse of a net-

work. The new notions of global determinism and global reversibility are proven to

hold for these two STCA. We also introduce two further extensions to the STCAs

which simulate irreversible serial and non-arb b-arb networks. These two additional

STCAs are shown to be locally deterministic and globally deterministic. Finally, we

1. Introduction 6

prove that the third and fourth STCAs can be used to implement any module in

either Set Notation or the ND sequential machine model.

10: Software tools: We detail the two pieces of software developed in support of

this thesis. The first, called Delay-Insensitive Network Tool Suite contains imple-

mentations of the maximal environment generation algorithms in Chapter 4, con-

version algorithms in Chapter 5 and algorithms which follow the non-arb and eq-arb

construction methods in Chapter 6. It also implements a version of the DI-Set al-

gebra in Chapter 7 with interactive execution and LTS generation with property

and bisimulation/simulation checking. The second piece of software, called STCA

Simulator, implements the four direction-reversible STCA in Chapter 9 with an in-

teractive graphical interface. It also contains the constructions from that chapter. A

brief description of how important features are implemented is given for each piece

of software.

11: Conclusion and future research: We summarise the work achieved in this

thesis and outline possible future directions of research.

Chapter 2

Background to DI networks and

the sequential machine model

In this chapter we give an overview of the existing model for DI networks formulated

by Keller in [23], which we refer to as the sequential machine model. We include all

operating conditions and relevant definitions. The general construction method for

any module in the sequential machine model is detailed in-depth. Further research

in the field of DI networks, including work related to reversibility, is also discussed.

Several existing universality results are detailed. We introduce our own reversible

memory modules in the sequential machine model, and we use these modules to

infer some simple universality results. We finish by discussing what we see as the

main shortcomings of the sequential machine model for DI networks. Motivation is

given for the development of a new DI model which implements concurrency more

directly.

The contents of Section 2.3 with the exception of Corollary 2.41 were published

in [52].

2.1 Sequential machine model by Keller

We begin by outlining the original model by Keller given in [23], which we will refer

to as the sequential machine model. As in [23], let P [X] represent the powerset (the

set of all subsets) of the set X.

Definition 2.1. ([23], Definition 1.1) A sequential machine is a 6-tuple

N = (Q, qo, Σ, ∆, f, g), where:

1. Q is a finite set of states,

2. qo ∈ Q is the initial state,

3. Σ is the input alphabet,

7

2. Background to DI networks and the sequential machine model 8

4. ∆ is the output alphabet,

5. f : Q × Σ → Q is a partial function, the state-transition function,

6. g : Q × Σ → ∆ is a partial function, the output function.

Definition 2.2. ([23], Definition 1.2) A module is a 4-tuple (I, O, N, A) where:

1. I is a finite set of input lines,

2. O is a finite set of output lines,

3. N = (Q, qo, Σ, ∆, f, g) is a sequential machine with Σ in one-to-one correspon-

dence with I and ∆ in one-to-one correspondence with P [O],

4. A : Q → P [P [I]] is a function which specifies for each state the combination

of inputs which can occur.

The execution behaviour of such modules is given in prose in [23].

Definition 2.3. ([23]) An element of Σ represents the occurrence of a (one-valued)

“signal” on the corresponding element of I. Similarly, an element of ∆ represents the

occurrence of a signal on the corresponding elements of O. Signals are placed on the

input lines of a module m by other modules external to m. In turn, m “assimilates”

these signals by possibly changing state and creating signals on its output lines,

according to the specification of its machine N .

We also make note of the following description, given informally in [23], of the

A function.

Definition 2.4. ([23]) A function description: For any internal state q of a

module, A(q) ⊆ P [I] represents the allowable input sets; i.e. if S ∈ A(q) then

any subset of the lines corresponding to elements of S are allowed to be signalled

concurrently.

There is also the following assumption, given informally in [23], which for con-

venience we will name and refer to as the safety assumption.

Definition 2.5. ([23]) safety assumption: When the state-transition function or

output function is undefined for some particular state and input combinations, it is

assumed that this combination will never occur in actual operation.

2. Background to DI networks and the sequential machine model 9

Observation 2.6. It is not made explicit in [23] that for all q, a, if f(q, a) is defined,

then g(q, a) is defined and vice versa. However, it does not make sense for this not

to be the case. Similarly, it is not made explicit that for all q, a, f(q, a) is defined

iff there exists some set L such that a ∈ L ∈ A(q). However this is implied by the

existence of such sets in all modules defined by Keller in [23]. In the rest of this

thesis, we assume that these two conditions always hold (as in Definition 2.7).

In the rest of this thesis, when referring to the sequential machine model for

delay-insensitive networks, we do not make a distinction between a module and its

internal sequential machine: instead we combine them into a single definition. This

reduces the complexity of definitions and improves readability, without affecting

the model’s generality. This is similar to the approach used in other publications

[33, 45, 48, 60]. We therefore define a module as follows.

Definition 2.7. A module is defined by the 6-tuple (Q, I, O, f, g, A) where:

1. Q is a finite set of states,

2. I is a set of input lines,

3. O is a set of output lines,

4. f : Q × I → Q is a partial function, the state-transition function,

5. g : Q × I → P [O] is a partial function, the output function,

6. A : Q → P [P [I]].

We require that for all q, a, f(q, a) is defined iff g(q, a) defined. Finally, for all q, a,

f(q, a) is defined iff there exists some L such that a ∈ L ∈ A(q).

Note that we do not maintain the notion of an “initial” state. This is because

in practice, modules are typically initialised in various states, depending on the

intended operation of the network. As a result, it is more convenient to simply

indicate the current state of a module in each given network, and keep the definition

of a module’s operation independent of any assumptions about the state in which

it is initialised. All conditions and restrictions given by Keller regarding sequential

machines can be assumed to refer to our notion of a module.

We introduce some useful notation. q represents a state, and a, b, c . . . and

B, C, D . . . range over input/output lines and sets of such lines respectively. We

also utilise subscripts, superscripts and prime symbols to increase the set of vari-

ables at our disposal. Alphanumeric symbols may also be names of literal state

names and input/output lines. It will be clear from the context whether these refer

to variables or constants.

We use a CCS-like [42] notation to succinctly define a module.

2. Background to DI networks and the sequential machine model 10

Definition 2.8. If f(q, a) and g(q, a) are defined, then (a, g(q, a)).f(q, a) is called

an action of q, where (a, g(q, a)) is an input/output pair and f(q, a) is the resulting

state.

We specify all actions of q by writing q = (a1, B1).q1 + . . . + (an, Bn).qn where

Bx = g(q, ax), qx = f(q, ax) and f(q, ax) and g(q, ax) are defined for all 1 ≤ x ≤ n.

Then the definition of a module N is given by a set of such equations, one for each

state of N , together with a definition of the A function. Input and output lines are

implicit.

We require that for all pairs q, q′: if f(q, a) = f(q′, a) and g(q, a) = g(q′, a)

for all a, then q = q′ (no two different states have the same CCS-like definitions).

Sometimes we write (a, B).q′ ∈ q to mean (a, B).q′ is an action of q.

Networks of modules are defined as follows.

Definition 2.9. ([23], Definition 1.3) A network is a collection of modules with

some of their lines interconnected. If an input line of a module is unconnected, then

it is an input line to the network. If an output line of a module is unconnected then

it is an output line of the network.

We outline the main operating conditions of modules and networks after Keller

by listing them directly. Each Condition is taken directly from [23].

• Condition 1: I and O are disjoint.

• Condition 2: A module, once having created a signal on a line, cannot

“withdraw” the signal before it is assimilated by a module on the opposite end

of the line.

• Condition 3-(Arbitration Condition): If two signals appear on different

input lines of a module simultaneously, or very close together in time, the

action of the module should be as if one signal, then the other, occurred as

specified by the sequential machine. If the action depends on the order of

occurrence, then the action may be chosen arbitrarily by the module. Hence

a module may assimilate signals in one order, even if the actual order of oc-

currence is just the opposite.

• Condition 4: There may be an arbitrary delay between the assimilation of

an input signal by a module and the production of a corresponding output

signal. This delay is always finite but is not necessarily bounded.

• Condition 5: At most two modules in a network are ever connected by the

same line, and this line must be an input to one module and an output from

the other.

2. Background to DI networks and the sequential machine model 11

• Condition 6: If a signal is produced by one module on an input line to

another module, it must be assimilated before a second signal occurs on the

same line.

• Condition 7: A line interconnecting two modules has no intrinsic delay.

• Condition 8: Two successive signals can be placed on an input line of m only

if they are interspersed by at least one output signal from m, which occurs

in response to the input signal. (Otherwise the modules external to m would

have no way of knowing when a signal had been assimilated, and would tend

to violate Condition 6.)

• Condition 9: Two signals can be simultaneously placed on different input

lines of m only if the outputs that occur in response to these signals individ-

ually are produced on disjoint sets of output lines. (This is because if the

output signals were placed on the same line, Condition 6 would be violated

for some module external to m.)

• Condition 10: Two signals which could occur successively on (the same or

different) input lines and produce signals on overlapping sets of lines S must

be such the latter input occurs after the occurrence of all signals on S which

are due to the former.

• Condition 11-(Finite-blocking condition): If a signal is present on an

input line to a module, this signal must eventually be assimilated.

According to Keller in [23] the above conditions are motivated by a desire to

develop a model which is flexible enough to be independent of the details of any

particular hardware implementation. If we were to relax Condition 2, for example,

this would result in a model which suggests a sophisticated mechanism by which

modules have a great deal of control over their environment. This could potentially

reduce the applicability of the model to any “simple” or low-level technologies, as

well as any as-yet developed future technologies. We note informally that while the

model intentionally has no explicit notion of time, there is the informal assumption

(expressed directly by Conditions 4 and 11) that events (e.g. travelling of signals

along wires, absorption of input signals) may not be indefinitely delayed, as this

would also reduce the usefulness of the model.

Keller informally states the following restriction on the sequential machine.

Definition 2.10. ([23]) sequential machine restriction: Condition 3 implies

the following restriction on the sequential machine: If f(q, σ) and f(q, π) are both

defined, where σ 6= π, then so are f(f(q, σ), π) and f(f(q, π), σ).

2. Background to DI networks and the sequential machine model 12

We note that this is only required if there exists some L ∈ A(q) such that σ ∈ L

and π ∈ L (i.e. the signals are allowed to arrive concurrently), but this is omitted

by Keller. In the rest of this thesis, we assume that this is the case.

We give Keller’s definitions of speed-independence and delay-insensitivity.

Definition 2.11. ([23], Definition 1.4) A network is called speed-independent if its

external behaviour is independent of the delay of the constituent modules. (The

possibility of arbitration, as in Condition 3, is permitted).

Definition 2.12. ([23], Definition 1.5) A delay element is a module with one input

line, one output line, and one state. It functions only to assimilate signals on its

input and reproduce them on its output.

Definition 2.13. ([23], Definition 1.6) A network is called delay-insensitive if its

external behaviour remains unchanged, regardless of whether any number of delay

elements are inserted into, or removed from any lines.

Note that trivially, if a network is delay-insensitive, then it is also speed-

independent. In this thesis, we are only interested in delay-insensitive networks.

Hence, we simplify the model without loss of generality by removing the need for

delay elements and modify Condition 7 to the following.

• New Condition 7: A line has an unbounded but finite delay.

In the rest of this thesis, when referring to the sequential machine model for DI

networks, we assume that Conditions 1-6, New Condition 7, and Conditions 8-11

are enforced unless otherwise stated.

Keller gives the following definitions of a realisation and universality.

Definition 2.14. ([23], Definition 1.7) A realisation of a module m is a speed-

independent delay-insensitive network of modules which has the same external be-

haviour as m. (A realisation always implies some specific internal initial state.)

Definition 2.15. ([23], Definition 1.8) Let E be a class of modules and M a set of

modules types. M is called universal for E if every module in E may be realised (in

the sense of Definition 2.14) by a network consisting only of module types in M .

We note that the term speed-independent is redundant in Definition 2.14.

We note that the definitions of delay-insensitivity, realisation and external be-

haviour are given somewhat informally. One of the outcomes of this thesis is an

attempt to define these concepts more formally under the new model presented in

Chapters 3-7.

Modules defined using the sequential machine model can be divided into two

distinct classes. The first of which is the class of serial modules.

2. Background to DI networks and the sequential machine model 13

Definition 2.16. ([23], Definition 1.9) A module is called serial if it must operate

under the condition that every input signal, regardless of upon which input line it

occurs, must be followed by exactly one output signal on some line before another

input can be applied. Note that this is a proper strengthening of Conditions 2 and

3.

We note that Definition 2.16 implies that for all states q of a serial module, A(q)

contains only singletons, and for all actions (a, B).q′ of q, B is a singleton.

The second type is the class of parallel modules.

Definition 2.17. ([23], Definition 3.1) A module is called parallel if it allows more

than one signal on different inputs which are not necessarily separated by an output

signal, or if it may produce more than one output signal on different lines due to a

single input. (Conditions 2 and 6 are still to be observed however. Hence it is always

assumed, in the case of parallel modules, that the sequential machine is specified in

a manner consistent with Conditions 8-10).

Note that Definition 2.17 implies that for all actions (a, B).q′ of all states q of a

parallel module, B may be a set of any size, including the empty set ∅. Furthermore,

this implies that a module is parallel if it is not serial.

Definition 2.18. We say that a set of modules is universal for the class of sequential

machines if it is universal for both the class of serial modules and the class of parallel

modules.

Definition 2.18 is used to distinguish universality within the sequential machine

model from alternative models presented in Chapters 3 and 5.

We note a useful measure of complexity of sets of modules introduced by Keller

in [23].

Definition 2.19. ([23], Definition 2.6) A set of modules is said to have modularity

n if n is the maximum number of lines on any one module in the set.

In Figure 2.1 we define several useful modules from [23]. We rename the states,

input and output lines of these modules for convenience. All symbols shown are

constants and should not be confused with the variables used in this thesis.

Example 2.20. Join is a three-state module in which signals on a and b may arrive

concurrently in state S0, as given by A(S0). After processing an input signal on

both a and b, the module produces a single output signal on c.

Merge is a serial module which accepts an input signal on either a or b (but not

both concurrently) and produces an output signal on c.

Fork produces a pair of output signals (one on b and c each) in response to a

single input signal on a.

2. Background to DI networks and the sequential machine model 14

R R′ S S ′

T T0 T1

S0 = (T, {T0}).S0 + (S, {S ′}).S1

+ (R, {R′}).S0

S1 = (T, {T1}).S1 + (S, {S ′}).S1

+ (R, {R′}).S0

a
b J c

S0 = (a, {}).Sa + (b, {}).Sb

Sa = (b, {c}).S0

Sb = (a, {c}).S0

A(S0) = {{a, b}}

A(Sa) = {{b}}

A(Sb) = {{a}}

a
b M c

M = (a, {c}).M + (b, {c}).M

a b
F c

F = (a, {b, c}).F

A(F) = {{a}}

R T

T0 T1

S1 = (T, {T1}).S1 + (R, {}).S0

S0 = (T, {T0}).S1

A(S1) = {{T, R}}

A(S0) = {{T}}

Figure 2.1: From top-left: Select, Join, Merge, Fork, ATS [23].

2. Background to DI networks and the sequential machine model 15

Example 2.21. Select is a serial module which acts as a one-bit memory. The

states S0 and S1 correspond to each possible value. An input signal on T “queries”

the memory value, and produces an output signal on T0 or T1 depending on whether

the state is S0 or S1 respectively. An input signal on R sets the state of the module

to S0 regardless of the current state, and produces an output signal on R′. Similarly

for S, S ′ and S1.

We do not depict the function A for serial modules, as for all states q, the set

A(q) always contains a singleton {a} for each input line a which is in an action of

q. We also do not depict the labels of the input or output lines of Join, Merge or

Fork in diagrams, as the choice of particular input or output lines when connecting

these modules does not affect the behaviour of the network.

Example 2.22. ATS is a two-state module, which can hold one of two memory

values (referred to as 0 and 1), and allows the arrival of inputs signals on T and R

concurrently. If a signal on T is processed, the module outputs a signal on T1 or

T0, corresponding to the held value, and resets the held value of the module to 1.

If a signal on R is processed, the module sets the held value to 0 but produces no

output signal, so this is not visible to the environment. Hence to avoid violating

Keller’s Condition 6, the environment cannot send an input signal on R twice with-

out receiving an output signal on T0 in between, but may send an input signal on

T in between receiving any pair of output signals.

We note that it is possible to create arbitrary n-way Join, Merge and Fork trees

by connecting multiple instances of the same module together in a tree formation.

We will depict such trees using the same symbols as the standard modules shown

in Figure 2.1, with only the number of input lines differing in the case of Join and

Merge trees, and the number of output lines differing in the case of Fork trees.

Example 2.23. Figure 2.2 shows how a 4-way Join tree and a 4-way Fork tree can

be realised using Joins and Forks respectively, along with the symbols we use to

depict them.

We note two important universality results proven by Keller in [23].

Theorem 2.24. ([23], Theorem 2.1) The set {Merge, Select } is universal for the

class of serial modules.

Proof. The proof, given in [23], is achieved by showing how to realise modules Call

and D-call (which we do not define here) using only Merge and Select. A general

construction method for realising any serial module, using Call and D-call modules,

is then shown.

2. Background to DI networks and the sequential machine model 16

JJ

J

J

FF

F

F

Figure 2.2: (Top) 4-way Join tree and the symbol used to commonly depict it. A
single signal on each of the four input lines to the network will eventually produce
a signal on the output line from the network. (Bottom) 4-way Fork tree and the
symbol used to commonly depict it. A single signal on the input line to the network
will eventually produce signals on each of the four output lines from the network.

Theorem 2.25. ([23], Theorem 3.2) The set {Merge, Select, Fork, ATS } is universal

for the class of sequential machines.

Proof. Universality of serial modules is implied by Theorem 2.24. Universality of

parallel modules is proven by showing a general construction method for any parallel

module.

This construction method is directly relevant to material in this thesis, so we

describe it here. We give the general construction method for any parallel module

in Figure 2.3. The image in Figure 2.3 is adopted from a combination of Figures

15 and 16 in [23] and the description of the construction in [23]. We give our own

explanation of the construction.

Definition 2.26. Given some parallel module N = (Q, I, O, f, g, A) where

I = {I1 . . . Im} and O = {O1 . . . On}, we define N ′ = (Q′, I ′, O′, f ′, g′, A′) to be any

serial module (with A′ defined appropriately) where if

OSetsN = {C : ((q, a), C) ∈ g for any q, a}:

1. Q′ = Q and I ′ = {I ′
1 . . . I ′

m},

2. f ′ = {((q, I ′
i), q′) : ((q, Ii), q′) ∈ f},

3. O′ = {O′
1 . . . O′

k} where k = |OSetsN |,

4. g′ = {((q, I ′
i), mapON(C)) : ((q, Ii), C) ∈ g} where mapON is any bijection

that maps OSetsN to O′.

2. Background to DI networks and the sequential machine model 17

replacemen

MMM

MMMM

FFFF

F F
FF

RRR

TTT

T0T0T0

T1T1T1 ATSATSATS

I1 I2 Im

I ′
1 I ′

2 I ′
m

O′
1 O′

2 O′
k−1 O′

k

O1 O2 On

N ′

Input lines of N

Serialise inputs
(Allow only one)

Initial signal
present

Process single
input

Unlock serialiser
(allow another input)
while continuing on

Fork output
of N ′ to relevant

outputs of N

Output lines of N

Figure 2.3: Construction method for an arbitrary parallel module N as described
by Keller in [23], using {Merge, Select, Fork, ATS }, where N ′ is the serial module
with its output lines mapped to output sets of N .

2. Background to DI networks and the sequential machine model 18

Informally, N ′ is a serial module which represents the behaviour of N but with

output sets replaced with singleton outputs (which are in one-to-one correspondence

according to mapON). The set of states is equivalent between N and N ′, and the

set of input lines and state transition functions are in one-to-one correspondence

between N and N ′. The only differences lie in the sets of output lines (O and O′)

and output functions (g and g′). Note that OSetsN may include the empty set.

Assume that initially N ′ is in the desired state of N , and the ATS modules are

all in S1. The construction forces concurrent inputs to N to be processed one at a

time by the serial module N ′. The top ring of Merge and ATS modules (with an

initial signal circulating around the ring of modules) in Figure 2.3 achieves this by

causing only one input signal of N to reach N ′ at a time. The serial module N ′

(constructable using the set {Merge, Select } as given by Theorem 2.24) processes

each input signal on each a of N , and produces the corresponding output signal on b

and change of state according to its own definition. This output signal then forks in

two directions, with one signal returning to and entering the ring of ATS modules

via the various Merges; allowing a new input signal to reach N ′. Simultaneously, the

other output signal connects to a Fork tree which corresponds to the output set C

where mapON (C) = b. This sends signals to various Merge trees, with each Merge

tree corresponding to an output line c of the original module N , such that c ∈ C.

This has the effect of converting the output signal of N ′ into the corresponding

output set of N , while depositing a signal on each of the appropriate output lines

of N .

Observation 2.27. We address a minor oversight of the description given by Keller

in [23]. It is possible that some output line b of N ′ corresponds to the empty output

set (if there is some action (a, {}).q′ in some state q of N , such that mapON (∅) = b).

An output signal on b would therefore not be intended to produce output signals

on any O1, . . . , On of N . Hence the output line b would not be connected to a Fork

module (unlike all O′
i 6= b), and would instead connect directly to the input line of

some Merge module within the top ring of Merge and ATS modules.

We note that the parallel module construction method from [23] (and shown in

Figure 2.3) can be used to realise any module, including the class of serial modules.

However given a serial module N , the definition of N ′ is exactly equivalent to N .

Hence the remainder of the construction in Figure 2.3 is redundant, as it suffices

to simply realise N ′ using {Merge, Select }. However, in the rest of this thesis we

consider that it may be used to realise any module, and not just the class of parallel

modules.

Remark 2.28. We note that there exists numerous other proven universal sets for

the serial and parallel classes of modules. These can be found in [23], as well as

2. Background to DI networks and the sequential machine model 19

other publications such as [59, 60].

Finally, we define notions of a transition and a module processing an action.

Definition 2.29. Consider some module (Q, I, O, f, g, A) with some action (a, B).q′

of some state q ∈ Q. Assume that the module is in state q, and the environment

has sent a signal on the input line a. We refer to the acceptance of a signal on a,

the production of signals on all b ∈ B, and a move to state q′ as a transition. We

also say that the module has processed the action (a, B).q′.

2.2 Reversibility

Subsequent work by Patra and Fussell [59, 60] went into finding more efficient uni-

versal sets of modules, where efficiency is measured as low modularity and low

cardinality.

Reversible modules in general were originally studied by Fredkin and Toffoli [12]

who proposed a number of synchronous universal boolean logic gates. In the context

of DI modules however, more recently, Morita, Lee, Peper and Adachi carried out

research into finding efficient universal sets of reversible serial modules with memory

[31, 32, 33, 36, 45, 46, 47, 48, 49, 56]. Reversibility is simple to define in the context

of serial modules, as this is simply when no two actions share both the same singleton

output set and resulting state.

We define reversibility in the context of our CCS-like notation.

Definition 2.30. A serial module N is reversible if there are no two states q1 and

q2 of N such that (a, {b}).q′
1 and (a′, {b′}).q′

2 are actions of q1 and q2, respectively,

and q′
1 = q′

2, b = b′ and q1 6= q2. A serial module is irreversible if it is not reversible.

Rotary Element (RE) [45], Reading Toggle (RT) and Inverse Reading Toggle

(IRT) [32, 36] are examples of reversible modules. These can be found in Figure

2.4. The definitions of RT and IRT are taken from [32].

Example 2.31. For RE, the inputs n, s, w and e represent, informally, the “north”,

“south”, “west” and “east” directions of input respectively. The outputs are analo-

gous. V and H represent “vertical” and “horizontal” respectively, and refer to the

depiction of the state as a rotating bar.

Example 2.32. The two modules RT and IRT are each others’ mutual inverse.

Informally, RT behaves as follows. A signal on R in state 1 will query the state,

and cause an output signal on W1. An input signal on R in state 0 is undefined and

assumed to never occur. Signalling W will query the state by producing an output

signal on W1 or W0, depending on whether the module is in state 1 or 0 respectively,

2. Background to DI networks and the sequential machine model 20

s′s′

nn n′n′

ww
w′w′ ee

e′e′

ss

V = (n, {s′}).V + (s, {n′}).V

+ (w, {s′}).H + (e, {n′}).H

H = (n, {w′}).V + (s, {e′}).V

+ (w, {e′}).H + (e, {w′}).H

WW

RR

W0W0 W1W1

0 = (W, {W0}).1

1 = (W, {W1}).0 + (R, {W1}).1

PSfrag

WW

RR

W0W0 W1W1

0 = (W1, {W}).1

1 = (W1, {R}).1 + (W0, {W}).0

Figure 2.4: Rotary Element, Reading Toggle and Inverse Reading Toggle. The left
column of images depicts the modules in states V , 0 and 0 respectively. The right
column of images depicts the modules in states H , 1 and 1 respectively.

and will also cause the module to change to the other state. Note that there is no

action which produces an output signal on W0 and then moves to state 0. IRT is the

inverse of this module’s behaviour, and hence signalling W0 in state 0 is undefined

and assumed to never occur.

Merge is an example of an irreversible module, as both actions share the same

output set ({c}) and resulting state (M).

The set of all two-state reversible modules with two, three and four pairs of

input/output lines, such that all input lines are present in actions in all states, was

enumerated in [49]. However, a comparatively small amount of research has been

carried out into reversible parallel modules.

We note an important universality result.

Proposition 2.33. {RE } and {RT, IRT } are each universal for the class of re-

versible serial modules.

Proof. Universality of {RE } is shown in [48] through a general construction method

for any reversible serial module. Universality of {RT, IRT } is shown in [36] through

construction of RE.

2. Background to DI networks and the sequential machine model 21

qp

a

cr

s 0 1 S0 = (q, {0}).S0 + (p, {1}).S0 + (r, {s}).S1 + (c, {s}).Sa

Sa = (r, {a}).S1

S1 = (q, {1}).S1 + (p, {0}).S1 + (r, {s}).S0 + (c, {s}).Sb

Sb = (r, {a}).S0

Figure 2.5: Distributed Memory module and behaviour specification

2.3 Distributed memory modules

We now introduce our own reversible serial memory modules in the sequential ma-

chine model. We use these to infer some simple universality results.

Example 2.34. A Distributed Memory (DM) module is an eight-line, four-state

module with one-bit memory, given in Figure 2.5.

In the following, states S0 and S1 are referred to as steady states and Sa and Sb as

processing states. Informally, the module is composed of two systems of functionality,

separated by the dashed line. The input and output lines to the left are responsible

for controlling the modification of the internal state, while the input and output

lines to the right are responsible for querying the state. In S0, the module may be

said to “hold” the value 0, and similarly for S1 and the value 1. The behaviour of the

module is described as follows. In a steady state, a query may occur by signalling

either the line q or p, which outputs a signal corresponding to the held value or its

inverse respectively, via output lines 0 or 1. Signalling the input line q is referred to

as a query. Similarly, signalling the input line p is referred to as an inverse query.

An input signal on r causes an output signal on the s line, and the module moves

to the other steady state. This is referred to as a toggle. Alternatively, an input

signal on c causes an output signal on s and move to a processing state (Sa or Sb

depending on whether the steady state was S0 or S1 respectively). It remains in this

state until an input signal on r, during which it will move to a new steady state (the

complement of the previous steady state) and then send an output signal on a.

A network of these modules connected in a ring, with each module’s s output

line connected to the next module’s r input line, will cause all modules to toggle

their state in sequence when an input signal is sent on any one of the modules’ c

lines. The module which initiated the toggle will eventually output a signal on its a

line to indicate completion when the toggle signal has completed a full revolution.

Example 2.35. A Reduced Distributed Memory (RDM) is a six-line, four-state

module with one-bit memory, given in Figure 2.6.

Informally, the behaviour of this module is identical to DM with two exceptions.

Firstly, the module lacks the 1 and c lines. Secondly, if q is signalled when in

2. Background to DI networks and the sequential machine model 22

qp

a

r

s 0 S0 = (q, {0}).S0 + (p, {s}).Sa + (r, {s}).S1

Sa = (r, {a}).S1

S1 = (q, {s}).Sb + (p, {0}).S1 + (r, {s}).S0

Sb = (r, {a}).S0

Figure 2.6: Reduced Distributed Memory module and behaviour specification.

S1, or p is signalled when in S0, the module automatically enters the corresponding

processing state. We note that RDM can be trivially simulated by DM by connecting

the DM ’s 1 line to its c line.

Both modules are serial. The previous state and input line of an action is always

determined by the resulting state and the output line, and hence both modules are

reversible, satisfying the conditions of Definition 2.30 in Chapter 2.

Observation 2.36. DM (similarly to RE), is its own functional inverse. This can

be seen by running the module backwards (i.e. if (r, {s}).S1 is an action of S0, then

in the “inverted” module, (s, {r}).S0 is an action of S1), changing output lines to

input lines (and vice versa) and then swapping the names of the lines as given by

the pairs (0, q), (1, p), (s, r) and (a, c). Informally, this is a particularly desirable

property as it implies that the “reverse” behaviour of a network of DM s can be

achieved without using different modules. However RDM, much like RT or IRT,

does not have this property.

In the diagrams that follow, we indicate a steady state of either S0 or S1 with

a 0 or 1 in the centre of a module respectively. The use of a DM or RDM can be

distinguished via the presence or absence of the c and 1 lines. In general, we also

rearrange the locations of input and output lines in order to improve readability of

diagrams.

2.3.1 Reversible serial universality results

We prove the universality of DM and RDM for the class of reversible serial modules.

Example 2.37. We demonstrate the construction of RE using just RDM s in Figure

2.7. We illustrate the behaviour of the network when simulating RE processing the

action (w, {s′}).H in state V , and the final resulting state of the network.

The construction in Figure 2.7 uses only four modules, an alternative to the

approach using six Select modules as demonstrated in [28]. Furthermore, unlike in

[28], this decomposition does not use Merge and therefore contains only reversible

modules. We also contrast this approach with a decomposition using RT and IRT

as demonstrated in [36]. Though our modules are more complex than RT and IRT,

2. Background to DI networks and the sequential machine model 23

4

5

2

6

3

s′s′

nn n′n′

ww

w′w′

ee

e′e′

q

q q

qq

q q

q

p

p p

pp

p p

p a

a a

aa

a a

a r

r

r

r

r

r

r

r

s

s

s

s

s

s

s

s

s

s
0

0

0

0 0

0

0

0
0

0 0

0

1

11

1

0

1

Figure 2.7: Rotary Element realised using RDM s processing the action (w, {s′}).H .
The left network shows the initial state of the network corresponding to the state
V , as well as the series of transitions (represented by numbered circles on the appro-
priate lines) following a signal on w. The final state corresponding to H is shown
on the right. Intermediate states of modules are not shown.

the resulting decomposition is much simpler and more intuitive. This decomposition

in particular demonstrates the advantage that our module has in networks which

require multiple copies of a single memory value. The need for additional modules

dedicated to controlling homogeneous updates is removed.

Theorem 2.38. {DM } and {RDM } are each universal for the class of reversible

serial modules.

Proof. Figure 2.7 demonstrates a construction of RE using only RDM s. The theo-

rem follows from the universality of RE (Proposition 2.33). Furthermore, DM s may

be used in place of RDM s (by connecting the 1 line to the c line for each DM), so

DM is also universal.

2.3.2 Serial universality results

Next, we illustrate the use of our modules in the domain of networks which realise

irreversible serial modules.

Example 2.39. Recall Select (Figure 2.1). We show in Figure 2.8 how to realise

Select using RDM s and Merges, and furthermore we illustrate the behaviour of the

network when signalling the input line corresponding to T , in order to simulate

Select processing the action (T, {T1}).S1 in S1.

Theorem 2.40. {Merge, DM } and {Merge, RDM } are each universal for the class

of serial modules.

2. Background to DI networks and the sequential machine model 24

4

5

8

10

9 2 6 3 7

T S S ′ R R′

qqqq

pppp

aaaa

rrrr ssss
00

0000
11

MM

T0 T1

0

1

T S S ′ R R′

qqqq

pppp

aaaa

rrrr ssss
00
0000

11

MM

T0 T1

Figure 2.8: (Top) Select realised using RDM s and Merges processing the action
(T, {T1}).S1 in state S1. The series of transitions is represented by numbered circles
on the appropriate lines. The final state is the same as the one depicted in the top
image. Intermediate states of modules are not shown. (Bottom) The same network
in the state corresponding to S0 of Select.

Proof. The universality of {Merge, RDM } follows from the universality of {Merge,

Select } in [23] and the construction of Select using {Merge, RDM } in Figure 2.8.

As RDM can be simulated using a DM (by connecting the 1 line to the c line), it

follows that {Merge, DM } is universal for the class of serial modules.

Universality of {RT, IRT } for the class of reversible serial modules gives us the

following corollary.

Corollary 2.41. {RT, IRT, Merge } is universal for the class of serial modules.

Proof. Theorem 2.40 combined with Proposition 2.33.

We are not aware of any other proof of the universality of {RT, IRT, Merge} for

the class of serial modules.

2.4 Related work and alternative models

2.4.1 Implementation of DI modules in CMOS

The reader may be interested to know how delay-insensitive networks correspond

to the prominent CMOS technology [2] used in contemporary computing devices.

Recall that CMOS technology implements boolean logic gates, and utilises differ-

ing voltage levels to carry information. This seems contrary to asynchronous models

2. Background to DI networks and the sequential machine model 25

which are based around signals and events, such as the one we have described here by

Keller. Asynchronous circuits in CMOS therefore use hand-shaking systems where

components are connected via wires in both directions. Components then alternate

logic values using some pre-determined protocol to transmit information. This al-

lows components to detect when information has been successfully transmitted and

acknowledge receipt between the sender and recipient. See [23, 75, 76] for examples

of this approach. In a sense, this simulates the event-based model used by Keller.

However this technique introduces significant overhead in terms of space. Further-

more, [40] shows that it is not possible to realise the full Turing-complete class

of digital circuits with typical logic gates such as NAND and XOR while requiring

delay-insensitivity. Therefore, at least some timing assumptions are required for cor-

rect operation of an asynchronous circuit using logic gates, and CMOS circuits which

claim to be delay-insensitive are not actually such at all levels of abstraction. How-

ever, [38] shows that logic gates are Turing-complete when quasi-delay-insensitivity

(QDI) is assumed. This is similar to delay-insensitivity but requires that certain

forking wires produce signals which travel concurrently at the same speed. As a

result of this, some publications [5] use the terms DI and QDI interchangeably. We

note briefly that the class of circuits realisable in the CMOS QDI model is function-

ally identical to the class of circuits realisable in the CMOS speed-independent (SI)

model, as discussed in [16].

It is shown in [40] that it is not possible to realise the full Turing-complete class

of digital circuits with typical logical gates such as NAND and XOR while requiring

delay-insensitivity.

Instead, implementations of DI modules and networks in alternative technologies,

such as cellular automata [29] and RSFQ circuits [63], are researched actively in

recent years. See Chapters 8 and 9 for further details on implementation of DI

networks using Self-Timed Cellular Automata.

2.4.2 Variations on the sequential machine model

There exist several variations on Keller’s sequential machine model for DI networks.

Each contains additional features which are exploited in order to minimise complex-

ity and sizes of universal sets. We note a few here.

The first is the model in [34] which supports buffering of lines. This allows

multiple signals to be present on a line at a time.

The second is the bidirectional buffering model used in [35]. This permits buffer-

ing of lines similarly to the above model, but also allows input lines to act as output

lines and vice versa. Note however that a signal moves in the same direction until

being absorbed by a module. The direction that a signal moves is dependent upon

2. Background to DI networks and the sequential machine model 26

the end on which it is deposited.

Finally, we note the Brownian model of DI systems which is explored in [67].

This allows bidirectionality of lines, similarly to the bidirectional buffering model,

but signals may move in either direction along a line at any time. This is named

after the natural phenomenon of Brownian Motion which particles exhibit when

suspended in fluid. [64] explores Brownian Cellular Automata, which can be used

to model this type of network, similarly to the STCA shown in Chapters 8 and 9.

Alternative “DI” models of computation

We note Josephs’ related work on DI process algebra in [19, 21], but this is not in-

tended for the modelling of Keller’s DI modules and networks. This model involves

specifying desired environment behaviour in terms of a trace of events, known as a

specification. An event represents a communication between two objects. Specifi-

cations are then decomposed into parallel compositions of smaller traces known as

components. Various algebraic laws using a notion of delay-insensitivity are defined

in order to permit notions of equivalence between traces. Hence a specification de-

fines all possible “valid” system behaviours, and research involves finding methods of

decomposing such a system into constituent components (also specified in terms of

their environment behaviour) such that certain properties are guaranteed to always

hold.

Contrast the above with Keller’s sequential machine model where modules have

states and sets of transitions (via f), and input/output behaviour of modules is

considered independent of any specified behaviour of the environment. Research

surrounding Keller’s sequential machine model typically involves starting off with

individual components, and studying the behaviour produced as a result of composi-

tion. Expressiveness (universality) of certain sets of components is also a significant

focus. Environment behaviour remains abstract and is defined informally on a per-

case basis, and as a consequence, in general, the sets of “valid” behaviours of systems

are incapable of being enumerated or reduced to a single expression.

We note [18] which shows how to implement expressions given in Josephs’ algebra

using logic gates. There also exists a similar algebraic model by Ebergen shown in

[9, 10]. We also note that the notation used in Ebergen’s model is used by Patra

[59, 60, 61] to describe the behaviour of modules within Keller’s sequential machine

model.

2. Background to DI networks and the sequential machine model 27

2.5 Shortcomings of Keller’s sequential machine

model

We now briefly discuss some issues with the sequential machine model and associated

research into DI networks.

The method of processing concurrent signals (one signal at a time) mirrors the

interleaving approach to modelling concurrency observed in certain process algebra

models like CCS [42]. In a practical setting where such a system may be imple-

mented, this can be considered less efficient than an approach where multiple sig-

nals are processed simultaneously, which corresponds to “true-concurrency” models

of concurrency such as Petri Nets [73].

Consider the behaviour of ATS from Figure 2.1. It is valid in S1 to send input

signals on both R and T concurrently, or individually. Depending on the delays

in lines, and the order of processing by the module, this can lead to different out-

comes. In [23], this is referred to as non-trivial arbitration. If the order of processing

between two signals does not affect the output or resulting state, it is known as

trivial arbitration. In the case of non-trivial arbitration, the module can be seen

to make a “choice” which affects the overall outcome of the computation. Hence

non-trivial arbitration, when combined with delay-insensitivity results in a form of

non-determinism.

Trivial and non-trivial arbitration, however, are only defined with respect to

pairs of signals. In the general case where several signals may arrive concurrently,

leading to different possible states where different sets of inputs may be defined, the

situation is much more complex. It is not always clear from the definition whether a

module exhibits high-level non-deterministic behaviour. High-level “arbitration” in

this sense is briefly mentioned by Keller [23], but is not formally defined or further

elaborated on.

Constructions by Keller and by Patra and Fussell of arbitrary parallel mod-

ules make no clear distinction between those modules which utilised high-level non-

deterministic behaviour and those which did not. As a result, all current construc-

tions of parallel modules, whether they possess clear non-deterministic behaviour

or not, utilise such modules. By extension, universal sets for parallel modules exist

only for all parallel modules, and an identification of which modules are required for

only “deterministic” parallel modules is not possible. We note that it is conjectured

in [23] that the set of modules {Merge, Select, Fork, Join } is universal for the class

of modules which do not “require arbitration”, while it is noted that this notion has

not been formalised.

Keller’s construction method is also highly inefficient as it forces all concurrent

signals to be processed in a serial manner. The sequential approach to processing

2. Background to DI networks and the sequential machine model 28

input signals makes determining the overall effects of a set of concurrent input signals

to a module difficult. As a result, designing a construction method for an arbitrary

module which utilises concurrency appears challenging.

Furthermore, it is also not always clear whether a module exhibits “high-level”

reversibility. For example, simply inverting the definition of Join to yield its inverse

is not possible, as this would result in actions where “empty” input lines produce

output sets, which is not a valid definition. However Join’s abstract behaviour

clearly exhibits a form of reversibility in the sense that an output signal on c is

necessarily caused by a single input signal on both a and b each.

Together, these issues suggest that Keller’s approach to modelling concurrent

delay-insensitive networks (where modules process input signals one at a time) does

not naturally correspond to their behaviour as seen by an external observer. A

model which implements concurrency more directly would in theory allow us to

define reversibility for parallel modules, while allowing a clear distinction between

modules which exhibit high-level deterministic and non-deterministic behaviour.

Additionally, interactions of the environment with such modules are described

informally. It is reasonable to assume that an environment’s only information about

a system is deduced from the sequences of input signals it sends and output signals

it receives. However there currently exists no means to determine in general what

sequences of input signals may be sent to a module without ultimately causing a

“clash” on lines (Condition 6) or violating the safety assumption (Definition 2.5).

Reasoning about an environment’s knowledge of a module’s state is difficult due to

the presence of empty output sets in actions of a module. This is itself a direct con-

sequence of the manner in which concurrent combinations of input signals give rise

to output signals. Despite this, the operating conditions of Keller’s sequential ma-

chine model (particularly Conditions 8, 9 and 10) imply specific restrictions on how

an environment may operate. However, the above-discussed lack of formal rigour

makes it difficult to study the limitations resulting from such conditions. For the

same reason, it is also not clear how to guarantee that such conditions are enforced

when defining modules. We note [8] which defines a notion of “receptiveness” in the

context of a trace theory for speed-independent logic circuits, which concerns the

ability for a component to respond to any possible inputs which the environment

may provide.

Similarly the concept of implementation of a module, using a network of other

modules in order to simulate its behaviour (referred to by Keller as a realisation),

remains an informal concept. This is difficult to define between modules and net-

works, due to the informal way in which environments and “external behaviour” are

defined. As discussed in the previous section, this is compounded by the fact that

all possible “valid” behaviours of systems in this model cannot be enumerated.

2. Background to DI networks and the sequential machine model 29

Finally, the exact set of conditions which are considered essential for correct oper-

ation of DI modules and networks varies between publications. The most prominent

of these is Keller’s safety assumption (Definition 2.5). This was explicitly enforced

by Keller. However it is explicitly relaxed in some publications [34], unaddressed in

others [59, 60], and is defined but then subtly ignored elsewhere [30]. The result is

that there are small differences between the models used and it is not always clear

whether results which hold in one version of the model hold in another. A lack of

consistent notation for describing module behaviour [23, 30, 60] further compounds

this issue and makes the identification of behavioural properties of modules difficult.

We address these shortcomings via the development of a new model for DI net-

works called the Set Notation model. Details can be found in Chapter 3 onwards.

The Set Notation model allows modules to accept input signals concurrently, and

does not allow empty output sets to be defined in actions of modules. This allows

us to define notions of reversibility. Furthermore, the manner in which Set Notation

modules process concurrent signals allows us to make a clear distinction between

modules exhibiting deterministic and non-deterministic behaviour. This is visible

in the notation used to define modules, and is formalised directly as a property of

module definitions. Finally, definitions of modules and networks are considered in-

dependent of any assumptions about environment behaviour. Instead we formalise

the notion of an environment and identify behaviours which result in desirable prop-

erties holding for modules and networks. This contrasts with the sequential machine

model which attempts to restrict environment behaviours as part of its operating

conditions, while also lacking a formal notion of an environment.

2.6 Conclusion

In this chapter we gave an overview of the existing model for DI networks formulated

by Keller, which we refer to as the sequential machine model. We included all

operating conditions and relevant definitions. The general construction method for

any module in the sequential machine model was detailed in-depth. Further research

in the field of DI networks, including work related to reversibility, was also discussed.

Several existing universality results were detailed. We introduced our own reversible

memory modules in the sequential machine model, and we used these modules to

infer some simple universality results. We finished by discussing what we see as the

main shortcomings of the sequential machine model for DI networks. Motivation

was given for the development of a new DI model which implements concurrency

more directly.

Chapter 3

The Set Notation model

In this chapter we introduce a new model for describing the behaviour of delay-

insensitive modules, called Set Notation which more naturally models concurrency

and notions of reversibility. We define important classes of modules in the Set

Notation model, such as the non-arb, eq-arb and arb classes. We define networks

of modules in the Set Notation model, along with the execution behaviour of such

networks. We define properties of such networks, such as the non-clashing and safety

properties. We investigate several further properties of modules in the Set Notation

model which limit the behaviour of the environment in unexpected ways. Examples

include the auto-firing or 1-step consistency properties of modules.

Set Notation was introduced in [53].

3.1 Basic definitions and conditions

We wish to use a new type of module where for each action, inputs as well as outputs

are sets. Each input set will correspond to a valid combination of individual input

signals which may be sent in a given state.

Definition 3.1. A module is a 4-tuple (Q, I, O, T), where:

1. Q is a finite set of states,

2. I is a set of input lines and O is a set of output lines and I ∩ O = ∅,

3. T : Q× (P [I])\∅ → Q× (P [O])\∅ is a partial map, called the transition map,

and it assigns an input set in a given state to an output set and a new state.

Informally, T denotes what we call the input/output behaviour of a module.

This describes the effects of a concurrent set of input signals to a module. We

note that the sequential machine model requires the f and g partial maps to be

partial functions, whereas Set Notation is more general by also allowing partial

30

3. The Set Notation model 31

maps which are not partial functions. Also note that the definition of T requires

that no element of T contains an empty output set. Empty output sets in actions

are necessary in the sequential machine model due to the way in which concurrent

input signals together produce output signals. This requires multiple actions, one

for each possible input signal. In the Set Notation model, this functionality is

expressed directly as a single element of T and hence empty output sets are not

required. Informally, any module will always eventually produce at least one non-

empty set of output signals in response to a set of input signals. Therefore each

element of T can be seen to represent the least required set of signals in order to

produce some set of output signals from a module. Interpreting the notation in this

manner makes clear why allowing empty output sets for modules does not make

sense in this model. Similarly, allowing empty output sets complicates any possible

notion of reversibility that may be defined. We will represent elements of T as

a tuple. Hence we say ((q, A), (q′, B)) ∈ T iff T ((q, A)) = (q′, B). We will omit

the inner most brackets when representing elements of T in tuple form. Hence if

((q, A), (q′, B)) ∈ T , we will simply write this as (q, A, q′, B) ∈ T . Elements of T are

also called transitions.

As in Chapter 2 concerning the sequential machine model, we use a CCS-like

notation to present more easily the definitions of modules.

Definition 3.2. If (q, A, q′, B) ∈ T is defined, then (A, B).q′ is called an action of

q, where (A, B) is an input/output pair and q′ is the resulting state.

We specify all actions of q by writing q = (a1, B1).q1 + . . . + (an, Bn).qn where

(q, Ax, qx, Bx) ∈ T is defined for all 1 ≤ x ≤ n. Then the definition of a module N

is given by a set of such equations, one for each state of N . Input and output lines

are implicit.

For simplicity of the model, we require that no two different states have the

same sets of actions, and each state has at least one action. Sometimes we write

(A, B).q′ ∈ q to mean (A, B).q′ is an action of q.

Informally, each action corresponds to an element of T and vice versa.

Definition 3.3. A network or circuit of modules is a collection of instances of

modules, each in some state, such that every output line of a module is connected

to at most one input line of another module and every input line of a module is

connected to at most one output line of another module. Connections between lines

of modules are also called wires. Each wire has an implicit direction, which is from

an output line of the wire to the input line of the wire. The output line of a wire is

also known as the source of the wire, and the input line of a wire is also known as

the target of the wire. Each wire may contain any number of signals.

3. The Set Notation model 32

Informally, a signal can be viewed as a discrete “particle” which moves along a

wire. Note that unlike in the sequential machine model, the term line refers strictly

to a component of a module, and does not also refer to the connection between

these components through which signals travel. We instead call these wires to avoid

confusion. Informally, a network is a collection of modules, each in some state, and

wires connecting the lines of these modules, each of which may contain zero or more

signals.

Definition 3.4. The inverse of {Q, I, O, T} is the module {Q′, I ′, O′, T −1} where

Q′ = Q, I ′ = O, O′ = I and T −1 is the inverse of T .

Note that since T is a partial map, T −1 is defined.

We define the behaviour of wires and modules within a network as follows.

Definition 3.5. execution behaviour: Wires behave as follows. Signals on wires

travel towards some module’s input line specified as the target of the wire. Following

an unbounded but finite amount of time after a signal is placed on a wire, it arrives

at the input line specified as the target of the wire. The signal then remains pending

at the input line until absorbed by the module.

Modules behave as follows. A module (Q, I, O, T) in state q ∈ Q, with a signal

pending at each of its input lines A ⊆ I will, after an unbounded but finite amount

of time, non-deterministically and concurrently absorb a set of signals, one pending

at each of its input lines in some A′ ⊆ A, if and only if for some B, q′, (A′, B).q′ is

an action of q. After an unbounded but finite amount of time, the module simulta-

neously places a signal on each wire connected to each line b ∈ B and changes its

state to q′.

When a module places a signal on the wire connected to one of its output lines b,

we sometimes say that it has produced a signal on its output line b or it has output

on b. Similarly we say that a module has absorbed a signal on its input line a when

it absorbs a signal pending on the wire connected to its input line a.

Definition 3.6. We also use the term pending to refer to both: signals which have

arrived at the input lines specified as the target of the wires but are unabsorbed,

and signals which are travelling along wires but have not yet arrived at the input

line specified as the target of the wire.

The distinction between the two different scenarios described by the term pend-

ing is not made as this makes no difference to the overall behaviour of the network

or environment due to delay-insensitivity of wires, and the unbounded amount of

time that signals may pend at input lines.

3. The Set Notation model 33

Example 3.7. Consider the module defined partially by the equation

S0 = ({a, b, c}, {d, e}).S1. This means that in state S0, if a signal arrives at each of

the input lines a, b and c, in any order or concurrently, this will eventually result

in the module concurrently producing a single output signal on d and e each while

changing to the state S1.

As a result of the execution behaviour (Definition 3.5), it is clear that networks

eventually become other networks. Informally speaking, these possess the same

structure as the original network, but the state of each module and the number of

signals on each wire may be different. We formalise this notion.

Definition 3.8. Consider some network of modules S. We say a network S ′ is a

state variation of S if it is the same as S except:

1. each module in S ′ may be in a different state to its corresponding module in

S,

2. each wire in S ′ may contain zero or more signals, irrespective of its correspond-

ing wire in S.

Informally, a state variation of a network is the same network, but the state of each

module and the number of signals on each wire may be different. It is clear that

networks become state variations of themselves as a result of the execution behaviour

(Definition 3.5). Note however that just because there exists some network S ′ which

is a state variation of S, does not necessarily mean that it is possible for S to become

S ′ as a result of the execution behaviour. Note also that for all networks S, S is a

state variation of itself, and there exists an infinite number of S ′ such that S ′ is a

state variation of S.

We note that we further formalise the above notions of execution behaviour

and state variations using Structured Operational Semantics and Labelled Transition

Systems in the setting of our new DI-Set algebra, which can be found in Chapter 7.

Definition 3.9. Consider some network S. If it is possible for S to become some

state variation S ′ of S as a result of the execution behaviour (Definition 3.5), and

there does not exist some state variation S ′′ of S (where S ′′ 6= S ′), such that it is

possible to for S ′ to become S ′′ as a result of the execution behaviour, we say that

S is deadlocking. Otherwise it is non-deadlocking.

We also assume that Conditions 2, 4, 5 and our New Condition 7 (see Chap-

ter 2) are enforced at all times (with line assumed to be replaced by wire where

appropriate). Conditions 1, 3, 6 and 8-11 do not apply. Condition 1 is unneces-

sary as Definition 3.1 provides this restriction and Condition 3 is not applicable as

3. The Set Notation model 34

concurrent input signals are absorbed by a module simultaneously according to the

execution behaviour (Definition 3.5). The behaviour resulting from Condition 11 is

covered by Definition 3.5. The remaining Conditions are intentionally ignored.

We do not require the safety assumption (Definition 2.5 in Chapter 2) to hold as

this is not directly applicable under the new concurrent model. Instead we introduce

a related property together with a property corresponding to Condition 6.

Definition 3.10. Consider some network S. If for each state variation S ′ of S

which can be reached as a result of the execution behaviour (Definition 3.5) starting

from S, at most one signal is present on each wire, we say that S is non-clashing;

otherwise it is clashing.

The non-clashing property corresponds directly with Keller’s Condition 6. We define

the following property, which we will refer to as the safety property.

Definition 3.11. Consider some network S, containing some module

N = (Q, I, O, T). If for each state variation S ′ of S which can be reached as a result

of the execution behaviour (Definition 3.5) starting from S, there exists some action

(A, B).q′ of q ∈ Q, where:

1. q is the state of N in S ′,

2. A′ ⊆ A where A′ ⊆ I is the set of input lines of N whose connected wires

contain one or more signals in S ′,

we say that N is safe in S. Otherwise it is unsafe (or exhibits non-safety) in S.

Correspondingly, a network S is safe if all modules in S are safe, otherwise it is

unsafe (or exhibits non-safety).

Informally, the safety property says that a module does not receive a set of input

signals which are not defined as part of some expected input set. The desirability of

this property is related to implementation of DI modules as sequential machines (see

Chapter 5), and potential physical implementation, where modules without the abil-

ity to block undefined input signals should be simpler than those with the ability to

force undefined input signals to wait until an appropriate state. Furthermore, mean-

ingful answers to questions regarding behaviour of environments and reversibility of

modules can only be formed if at least some restrictions are placed on a module’s

operation, the simplest of which we consider to be the properties of clashing and

safety. Unsafety has a correspondence with the property of “input delaying” in the

buffering model used in [34]. As noted above, the safety property corresponds with

Keller’s safety assumption (Definition 2.5 in Chapter 2).

Recall the lack of Keller’s Conditions 8, 9, 10, which correspond to “valid” envi-

ronment behaviour in the sequential machine model. In the Set Notation model, we

3. The Set Notation model 35

do not assume or require any particular environment behaviour. Instead we will at-

tempt to identify environment behaviour which leads to networks which are always

safe and non-clashing. This, together with the safety and non-clashing properties

(as opposed to the safety assumption from Definition 2.5 and Condition 6 both in

Chapter 2), demonstrates one of the main differences between the sequential machine

model and our Set Notation model. Our Set Notation model attempts to formalise

preferred behaviour in the form of properties (i.e. safety and non-clashing), as op-

posed to inherently requiring them as part of the model and then attempting to

impose restrictions on modules and environments in order to guarantee the model’s

correctness.

We give an example of a useful module in the Set Notation model.

Example 3.12. We show the definition of Join in Set Notation. It is defined as the

one-state module J = ({a, b}, {c}).J , where this indicates that the combination of

input signals on {a, b} causes an output signal on c.

Remark 3.13. We note that it is possible in some circumstances to view a module

definition in Set Notation as an abstraction that represents more naturally the ex-

ternal behaviour of some sequential machine. In this case, the Set Notation module

corresponds to some sequential machine if certain conditions are assumed (Section

5.2 in Chapter 5).

Example 3.14. Consider the definition of Join given in Example 3.12. Trivially, if

non-clashing and safety are to hold for some network containing Join, it is necessary

that only a single signal arrives on a and b each. No more input signals may arrive

until an output signal is sent on c, in which case the same behaviour may repeat

indefinitely. In this sense, the external behaviour of the Set Notation Join from

Example 3.12 is equivalent to the external behaviour of the sequential machine Join

from Example 2.1 in Chapter 2. Consequently, it is possible to see the Set Notation

Join as an abstraction of the sequential machine Join provided that safety and

non-clashing always hold.

We note the following correspondence between certain modules in the sequential

machine model and similar modules in Set Notation.

Observation 3.15. Modules in the sequential machine model which contain only

singletons in each entry of their A function, and do not contain empty output sets

in any actions, can be redefined in Set Notation by simply placing set brackets

around the input lines in their CCS-like definitions. The difference in how modules

absorb and produce signals between Set Notation (Definition 3.5) and the sequential

machine model (Definition 2.3 and Condition 3 in Chapter 2) does not affect the

external behaviour of such modules, regardless of whether safety and non-clashing

are assumed.

3. The Set Notation model 36

M

F

initial

signal

here

Figure 3.1: A network containing a single Merge module and a single Fork module.
The network is both unsafe and clashing.

Example 3.16. Recall the modules Fork and Merge defined in the sequential ma-

chine model (Figure 2.1 in Chapter 2) which are defined as F = (a, {b, c}).F where

A(F) = {{a}} and M = (a, {c}).M + (b, {c}).M respectively. The corresponding

Set Notation definitions of Fork and Merge are therefore F = ({a}, {b, c}).F and

M = ({a}, {c}).M + ({b}, {c}).M respectively. The difference in how modules ab-

sorb and produce signals between models does not affect their behaviour, and the

new definitions of both modules are trivially equivalent to their sequential machine

model counterparts.

We depict the Set Notation modules Join, Fork and Merge using the same sym-

bols used to depict their counterparts from the sequential machine model in Example

2.1 in Chapter 2.

Example 3.17. In Figure 3.1 we show a network which is both unsafe and clashing.

When the Fork module produces output signals, the Merge module is unsafe as it

will have signals present on both input lines simultaneously, and there is no action

in the definition of Merge which contains both input lines. If the Merge module

then accepts both input signals and produces two output signals, before the Fork

module can accept one of these on its input line, the wire connecting the Merge and

Fork modules will contain two signals, resulting in clashing.

3.2 Properties of modules

We now outline several key properties of modules defined using Set Notation.

3.2.1 Basic properties and important classes

Definition 3.18. We call a module serial if all input and output sets of the module’s

actions are singletons, and for all states q and all pairs of actions (A, B).q1 ∈ q and

(A′, B′).q2 ∈ q, we have A 6= A′. We call a module non-serial if it is not serial.

This corresponds to Definition 2.16 in Chapter 2. Note however that the sequential

machine model requires that at most one input signal is ever sent to a serial module

3. The Set Notation model 37

at a time, and that these are interspersed with output signals. Definition 3.18 has

no such requirement and concerns strictly the definition of a module. Note however

that if safety holds then this behaviour is implied.

Correspondingly to Definition 2.30 in Chapter 2, we define reversibility in the

context of serial modules in the Set Notation model.

Definition 3.19. We call a serial module (Q, I, O, T) reversible if T is a partial

bijection, otherwise it is irreversible.

Similarly to Observation 3.15, we have the following correspondence between se-

rial modules in the sequential machine model and serial modules in the Set Notation

model.

Observation 3.20. Modules in the sequential machine model which contain only

singletons in all states of the A function, and singletons in all output sets (i.e. serial

modules), can be redefined in Set Notation by simply placing set brackets around

each input name in their CCS-like definitions. The resulting Set Notation modules

are serial according to Definition 3.18. By Observation 3.15, the difference in how

modules absorb and produce signals between Set Notation (Definition 3.5) and the

sequential machine model (Definition 2.3 and Condition 3 in Chapter 2) does not

affect the external behaviour of such modules, regardless of whether safety and non-

clashing are assumed.

Example 3.21. The module Merge found by modifying the definition given in

Figure 2.1 in Chapter 2 according to Observation 3.20 is irreversible according to

Definition 3.19. The module RT found by modifying the definition given in Figure

2.4 in Chapter 2 in the same way is reversible according to Definition 3.19.

We now introduce various properties of modules which are not serial.

Definition 3.22. A module N is arbitrating (arb for short) if there exists some state

q with different actions (A, B).q′ ∈ q and (A′, B′).q′′ ∈ q such that either A ⊆ A′ or

A′ ⊆ A. A module is non-arbitrating (non-arb) if it is not arbitrating.

Informally, arbitration corresponds to a form of non-determinism. As each possible

input set in an action corresponds to a set of signals arriving, for the behaviour of

a module to be deterministic, no input set of an action can be a subset of an input

set of another action in the same state, and no input set can lead to two different

output sets or different states.

Example 3.23. All modules defined so far in this chapter are non-arb. An example

of a simple arb module is N0, defined as:

S0 = ({a, b, c}, {x}).S0 + ({a, b}, {y}).S0

3. The Set Notation model 38

Here, the input set {a, b} is a subset of the input set {a, b, c} in the state S0. Hence

the module may output a signal on y as a result of the environment sending input

signals corresponding to either {a, b} or {a, b, c}. In the latter case, following the

production of an output signal on y, there is still an input signal pending on c.

Note that all serial modules are non-arb due to the requirement that no two

actions in a state contain the same input set.

Example 3.24. Recall the ATS module from Figure 2.1 in Chapter 2. We introduce

a similar module in Set Notation called sATS, defined as:

S1 = ({T}, {T1}).S1 + ({R, T}, {T0}).S1

sATS is arb.

It is trivial for an environment, when interacting with a non-arb module directly,

to ensure safety and non-clashing. In such a case, the environment simply needs to

send input signals corresponding to the input set of some action, and then wait for

the corresponding set of output signals. As the module is non-arb, all such input

signals are guaranteed to be processed by the module, and the set of output signals

is uniquely determined.

However with arb modules, for the environment to ensure safety and non-clashing

the situation is more complex, The environment must attempt to deduce which input

signals are pending and which output signals to expect, and as a result the set of

input signals which it may send such that safety and non-clashing are guaranteed to

hold. Note the sATS example above where the environment, after sending an input

signal on R, is restricted in its ability to send another input signal on R until an

output signal is received on T0.

We make note of a useful subclass of arbitrating modules.

Definition 3.25. A module N is equal-arbitrating (eq-arb for short) if there exists

some state q1 with different actions (A, B).q′
1 ∈ q1 and (A, B′).q′′

1 ∈ q1 and there does

not exist some state q2 with different actions (A′, B′′).q′
2 ∈ q2 and (A′′, B′′′).q′′

2 ∈ q2

such that either A′ ⊂ A′′ or A′′ ⊂ A′.

Eq-arb modules are those which can be interpreted as having non-determinism

purely as a result of an internal choice by the module, rather than non-determinism

as a result of either some input signals arriving faster than others or a choice by the

module of which input signals to absorb.

We note that modules where all input and output sets of actions are singletons,

and there is some state q with two different actions (A, B).q′ ∈ q and (A, B′).q′′ ∈ q,

are not considered serial modules (as they do not fit the requirement of Definition

3. The Set Notation model 39

3.18 that no two actions of the same state contain equal input sets). Instead they

are simply eq-arb.

Definition 3.26. A module N is backwards-arbitrating (b-arb for short) if there

exist two states q1 and q2 with different actions (A, B).q ∈ q1 and (A′, B′).q ∈ q2,

such that B ⊆ B′ or B′ ⊆ B. A module is non-backwards-arbitrating (non-b-arb) if

it is not b-arb.

Many b-arb modules are not logically reversible because their transitions maps

are not partial bijections. There are, however, logically reversible b-arb modules,

whose inverses are not forwards-deterministic in a DI environment due to the pres-

ence of inclusion between input sets in the same state. This is as a consequence of

the inverse of a b-arb module being an arb module.

Example 3.27. Consider the module sATS−1 defined as:

S1 = ({T1}, {T}).S1 + ({T0}, {R, T}).S1

The transition map T given by (S1, {T1}, S1, {T}) and (S1, {T0}, S1, {R, T}) is clearly

a partial bijection. However, the inverse of this module is the module sATS (Ex-

ample 3.24). sATS exhibits non-deterministic behaviour, as sending input signals

corresponding to {R, T} concurrently could produce an output signal on T0 or it

could result in an output signal on T1 and an input signal remaining pending on R.

Observation 3.28. There is a mismatch between the notion of logical reversibility

when considering a module’s definition, and the notion of a module being “invertible”

in a DI environment. We therefore use the term bijective module strictly when talking

about a module where T is a partial bijection.

A diagram showing the relationships between classes of modules defined using

Set Notation can be seen in Figure 3.2. Note that the overlap between the serial

and b-arb classes represents irreversible serial modules. The remainder of the serial

class represents reversible serial modules.

3.2.2 Advanced properties

We now identify several properties of module definitions which limit the behaviour

of the environment. We also define some functions related to these properties to

more easily facilitate the generation of environments in the next chapter.

Definition 3.29. A module N is stable if for all states q and all different actions

(A1, B1).q1 ∈ q and (A2, B2).q2 ∈ q such that A1 ⊆ A2, there exists some action

(A′
1, B′

1).q′
1 ∈ q1 such that (A2 \ A1) ⊆ A′

1. A module is unstable if it is not stable.

3. The Set Notation model 40

serial

All modules

arb b-arbeq-arb

Figure 3.2: Classes of Set Notation modules.

Informally, a module is stable if it means that there is no action such that signalling

its input set can result, due to arbitration, in a state where non-safety occurs. If

safety is required, then the environment cannot signal such an input set, as there is

always the possibility that this may result in non-safety.

Example 3.30. The module N1 defined as:

S0 = ({a, b}, {x}).S0 + ({b}, {y}).S1

S1 = ({c}, {z}).S0

is unstable, as there is no action in S1 with an input set that contains a, and hence

sending input signals corresponding to {a, b} in S0 may cause the module to receive

an input signal on a in the state S1, resulting in non-safety. However, the module

N2 defined as:

S0 = ({a, b}, {x}).S0 + ({b}, {y}).S1

S1 = ({c}, {z}).S0 + ({a, b}, {z}).S0

is stable.

Definition 3.31. A module N is auto-firing if there exists some state q with different

actions (A1, B1).q1 ∈ q and (A2, B2).q2 ∈ q such that A1 ⊂ A2, and there exists some

action (A′
1, B′

1).q
′
1 ∈ q1 such that A′

1 ⊆ (A2 \ A1). A module is non-auto-firing if it

is not auto-firing.

3. The Set Notation model 41

Informally, a module is auto-firing if it means that there exists some action such

that signalling its input set may result in the processing of more than one action in

succession before the environment has a chance to send any more input signals.

Example 3.32. The module N3 defined as:

S0 = ({a, b}, {x}).S0 + ({b}, {y}).S1

S1 = ({a}, {z}).S0

is auto-firing (and stable), as sending input signals corresponding to {a, b} in S0

may result in the module processing the action ({b}, {y}).S1 followed by the action

({a}, {z}).S0, even if no more input signals are sent. The module N2 in Example

3.30 is non-auto-firing.

Definition 3.33. Given some module N = (Q, I, O, T), a terminating autopath for

input set A ⊆ I and state q ∈ Q is a sequence (A0, B0).q0 . . . (An, Bn).qn where if

A′ =
n⋃

i=0

Ai:

1. (A0, B0).q0 is an action of q,

2. for all 0 < i ≤ n, (Ai, Bi).qi is an action of qi−1,

3. for all different 0 ≤ i, j ≤ n, Ai ∩ Aj = ∅,

4. A′ ⊆ A,

5. there is no action (An+1,Bn+1).qn+1 of qn where An+1 ⊆ (A \ A′).

For all A, q, we define autoP aths(A, q) to be the set of all possible terminating

autopaths for input set A and state q.

Informally, the set autoP aths(A, q) contains all possible sequences of actions which

may be processed as a result of signalling the set A in state q. We say that a

terminating autopath p ∈ autoP aths(A, q) is fired if the sequence of actions given

by the path p is processed as a result of signalling A.

Example 3.34. The set of autopaths autoP aths({a, b}, S0) for module N3 in Ex-

ample 3.32 is the set containing the two terminating autopaths ({a, b}, {x}).S0 and

({b}, {y}).S1, ({a}, {z}).S0.

We note that signalling the input set of any action of a stable module N , cannot

lead to a state of N where non-safety occurs simply as a result of the firing of an

autopath.

3. The Set Notation model 42

Definition 3.35. A module N = (Q, I, O, T) is auto-clashing if there exists some

autopath p = (A0, B0).q0 . . . (An, Bn).qn ∈ autoP aths(A, q) for some q ∈ Q and

some (A, B).q′ ∈ q, such that (Bi ∩ Bj) 6= ∅ for some different 0 ≤ i, j ≤ n. The

firing of p is said to cause an auto-clash. A module is non-auto-clashing if it is not

auto-clashing.

Informally, a module is auto-clashing if it is possible to result in two or more signals

on a wire connected to one of the module’s output lines, simply as a result of the

firing of an autopath. We note that if a module is non-auto-firing then it is non-

auto-clashing. If non-clashing is required, then the environment must ensure that

such an autopath is never fired as a result of any input signals it may send. The

only way to guarantee this is to never signal an input set that may result in an

auto-clash.

Example 3.36. The module N4 defined as:

S0 = ({a, b}, {x}).S0 + ({b}, {y}).S1

S1 = ({a}, {y}).S0

is auto-clashing (stable, and by implication auto-firing), as the output line y appears

twice in the terminating autopath ({b}, {y}).S1, ({a}, {y}).S0 ∈

autoP aths({a, b}, S0). This implies that signalling the set {a, b} in S0 may lead to

multiple signals produced on the output line y. The module N3 in Example 3.32 is

non-auto-clashing.

Definition 3.37. A module N is 1-step consistent if for all states q, and all different

actions (A1, B1).q1 ∈ q and (A2, B2).q2 ∈ q such that A1 ⊆ A2, it is the case that

B1 6⊆ B2 and B2 6⊆ B1.

Informally, if a module is 1-step consistent then the environment, after sending input

signals corresponding to the input set of an action, can deduce which action was

processed by the module, based purely on the observation of output signals from

the module. If the module is not 1-step consistent, an environment cannot (due to

delay-insensitivity) assume that certain output signals may or may not be travelling

along wires, and as a result cannot infer which input signals were processed and the

current state of the module. We refer to this run-time phenomenon as inconsistency.

We will show later in Chapter 4 that inconsistency can arise in delay-insensitive

networks even if a module is 1-step consistent, stable, and non-auto-clashing.

Example 3.38. The modules N1, N2, N3 and N4 in the previous examples are all

1-step consistent. The module N5 defined as:

S0 = ({a, b}, {x, y}).S0 + ({b}, {y}).S0

3. The Set Notation model 43

is not 1-step consistent. Informally this means that if the environment signals the

input set {a, b} in S0, receiving an output signal on y is not enough to deduce which

action was processed by the module, and whether or not an input signal is pending

on a. It is not possible for the environment to wait for an output signal on x in

order to deduce this information, as there is no upper bound for the time taken for

an output signal to arrive. The environment must therefore continue its operation

while considering the possibility that a signal may or may not be pending on a. In

this example, the environment may now only send a new input signal on b if it is to

guarantee that safety and non-clashing hold.

3.3 ATS, sATS and external behaviour

We finish this chapter by informally examining the relationship between ATS (Figure

2.1 in Chapter 2) and sATS (Example 3.24).

Assuming that there are no input signals pending, consider the possible sequences

of signals that the environment may send and receive from sATS, such that safety

and non-clashing always hold. Sending an input signal on T on its own will al-

ways eventually result in an output signal on T1. Sending an input signal on R

on its own will produce no output signal (resulting in an input signal pending on

R indefinitely due to an incomplete input set), but subsequently or concurrently

sending an input signal on T may (due to delay-insensitivity and arbitration) result

in different behaviours (an output signal on T1 with an input signal pending on R,

or an output signal on T0 with no input signals pending). The environment may

send input signals repeatedly on T , in between receiving output signals. However,

after sending an input signal on R the environment may not send another input

signal on R until it receives an output signal on T0. Otherwise this may result in

non-safety or clashing. The set of possibilities is equivalent to those provided by

ATS starting in S1, if the environment does not send any input signals which may

result in non-safety or clashing.

However consider that it is possible to initialise ATS in state S0 with no input

signals pending, such that the environment may send an input signal on T and it

is guaranteed that the next output signal will be produced on T0. It is not possible

to provide this functionality using sATS, as even placing an initial signal on the

wire connected to R does not ensure that the action ({R, T}, {T0}).S1 is processed

when an input signal is then sent by the environment on T . However, assuming that

ATS is initialised in state S1, sATS permits the same possible sequences of input

and output signals to be sent and received by the environment, and the environment

cannot distinguish one module from the other based purely on its sequences of input

and output signals. This is irrespective of any initial signals which may be pending,

3. The Set Notation model 44

as they can also be initialised similarly for sATS. Hence sATS can be considered to

have the same “external behaviour” as ATS, provided that ATS is never assumed

to be initialised in S0.

We now define a module similar to sATS but with an additional state, which we

call mATS.

Example 3.39. We define mATS as:

S1 = ({T}, {T1}).S1 + ({R, T}, {T0}).S1

S0 = ({T}, {T0}).S1

mATS is both arb and b-arb.

mATS is the same as sATS but allows us to initialise the module in such a way

(via state S0) that the first input signal sent on T by the environment guarantees

an output signal on T0 (similarly to initialising ATS in S0 with no signals pending).

After this, it behaves as sATS. Hence S1 and S0 of mATS possess the same external

behaviour as S1 and S0 of ATS respectively. Interestingly, S0 of mATS is not

reachable from S1 as a result of processing actions.

3.4 Conclusion

In this chapter we introduced a new model for describing the behaviour of delay-

insensitive modules, called Set Notation which more naturally models concurrency

and notions of reversibility. We defined important classes of modules in the Set

Notation model, such as the non-arb, eq-arb and arb classes. We defined networks

of modules in the Set Notation model, along with the execution behaviour of such

networks. We defined properties of such networks, such as the non-clashing and

safety properties. We investigated several further properties of modules in the Set

Notation model which limit the behaviour of the environment in unexpected ways.

Examples included the auto-firing or 1-step consistency properties of modules.

Chapter 4

Environments and Implementation

In this chapter we formalise the notion of an environment for a module in the

Set Notation model. We give an algorithm for calculating what is referred to as

a maximal environment of any non-arb module. An algorithm for calculating a

maximal environment of any module is then given. Finally, we use this notion to

define implementation of a module using a network of modules in Set Notation.

We also note that the algorithms introduced in this chapter are also implemented

in the Delay-Insensitive Network Tool Suite program developed in support of this

thesis. Furthermore, the environment definitions given in this chapter, produced by

these algorithms, were also generated by the corresponding software implementa-

tions. Please see Chapter 10 for details on this software.

4.1 Formalisation of an environment

We first formalise the concept of an environment. For reasons related to practical

implementation, we assume that an environment for a DI network can only deduce

the state of a system via its output behaviour. Hence an environment has no knowl-

edge of a network other than being able to detect signals on output lines which

connect to the environment (i.e. the environment cannot observe signals on internal

wires connecting modules within a network).

The simplest and most intuitive way to describe an environment’s behaviour is

using a similar approach to that used to describe a module. The main difference is

that we allow input or output sets of actions to be empty (but not both in the same

action), as we wish for an environment to be able to non-deterministically “decide”

between which sets of signals to send, based on the previous set of received signals,

without needing to define multiple actions containing the same sets. It is possible to

maintain the restriction, but this typically results in much larger and more complex

definitions. We also do not allow two actions in the same state to have identical

input and output sets even if the resulting states of the actions are different, as this

45

4. Environments and Implementation 46

particular form of non-determinism is unnecessary. Empty input sets in actions of

the environment, combined with the ability to non-deterministically choose between

these actions and then move to various states, provide sufficient non-deterministic

capability.

Definition 4.1. An environment is a 6-tuple (Q′, I ′, O′, T ′, N, sc), where:

1. Q′ is a finite set of states,

2. I ′ is a set of input lines and O′ is a set of output lines, where I ′ ∩ O′ = ∅,

3. T ′ : Q′ × P [I ′] → Q′ × P [O′] is a partial map, called the transition map, and

it assigns an input set in a given state to an output set and a new state.

4. N = (Q, I, O, T) is a module (Definition 3.1 in Chapter 3), such that |Q′| ≥

|Q|, I ′ = O and O′ = I,

5. sc : Q → Qs is the state correspondence function, which is a bijection between

Q and some Qs ⊆ Q′ where |Qs| = |Q|.

We say that an environment E = (Q′, I ′, O′, T ′, N, sc) is a corresponding environ-

ment of N .

We require that for all (q, A, q′, B) ∈ T ′ either A 6= ∅ or B 6= ∅, but not both.

Finally, we require that for all pairs (q, A, q′, B) and (q′′, A′, q′′′, B′) ∈ T ′, if q = q′′

then either A 6= A′ or B 6= B′.

We also describe environments using the CCS-like notation used to describe

modules, defined in the usual way. We require that no two states have identical sets

of actions. We also allow at most one state to have no actions. If a state q ∈ Q′ has

no actions, it is referred to as a deadlock state.

In the following, we assume that the definition of a network (Definition 3.3

in Chapter 3) is modified to allow up to one environment to be connected within a

network, with the same connectivity restrictions (each output line of an environment

connects to at most one input line of a module, and each input line of an environment

connects to at most one output line of a module). Similarly the execution behaviour

(Definition 3.5 in Chapter 3) applies to environments in the same way as modules.

The definition of safety (Definition 3.11 in Chapter 3) is also assumed to apply to

environments.

Definition 4.2. We say that a network composed of a single module

N = (Q, I, O, T) in state q ∈ Q and a corresponding environment

E = (Q′, I ′, O′, T ′, N, sc) in state sc(q) ∈ Q′ is normally-connected if all output lines

of the module connect to the identically named input lines of the environment, all

output lines of the environment connect to the identically named input lines of the

module, and there are no signals present on any wires.

4. Environments and Implementation 47

EnvM M
a
b
c

Figure 4.1: Normally-connected network containing Merge and a corresponding en-
vironment EnvM.

Example 4.3. In Figure 4.1 we show the module Merge normally-connected to a

corresponding environment EnvM.

When determining environments for corresponding modules, it makes sense to

attempt to define environments which utilise as much functionality of the module as

possible. If it is possible for an environment to signal a given input set of a module

in a given state, such that safety and non-clashing are guaranteed to hold, then

the environment should have the ability to do so. However, we do not want the

environment to signal input sets which do not enable at least the possibility of any

additional actions to be processed by the module. Similarly, if it is possible for an

environment in a given state to receive a given set of output signals from a module,

then these should be part of an input set of some action of the environment, otherwise

non-safety may occur for the environment. We also do not want the environment

to process a partial set of output signals from a module, if it is guaranteed that a

superset of these output signals will be sent by the module. We will soon define this

notion formally, but first we need to define the notion of a valid environment.

Definition 4.4. Consider a normally-connected network composed of a module

N = (Q, I, O, T) and a corresponding environment E = (Q′, I ′, O′, T ′, N, sc). We

define a configuration to be a tuple (q′, A, B, q) meaning:

1. E is in state q′ ∈ Q′,

2. A ⊆ I is the set of input lines of N (and output lines of E) connected to wires

which contain signals,

3. B ⊆ O is the set of output lines of N (and input lines of E) connected to wires

which contain signals,

4. N is in state q ∈ Q.

A and B are multisets and the same input or output line may be present multiple

times. This corresponds to the wires connected to these lines containing multiple

signals.

Informally, a configuration represents a formal notion of a state of a network. How-

ever this is limited to networks containing only one module and a corresponding

4. Environments and Implementation 48

Starting configurations
q ∈ Q

(sc(q), {}, {}, q) ∈ V

Module input & output
(q′, A, B, q) ∈ V (A′, B′).q′′ ∈ q A′ ⊆ A

(q′, A \ A′, B ∪ B′, q′′) ∈ V

Environment input
(q′, A, B, q) ∈ V (B′, {}).q′′ ∈ q′ B′ ⊆ B

(q′′, A, B \ B′, q) ∈ V

Environment output
(q′, A, B, q) ∈ V ({}, A′).q′′ ∈ q′

(q′′, A ∪ A′, B, q) ∈ V

Figure 4.2: Definition of the set of reachable configurations for a module N =
(Q, I, O, T) and a corresponding environment E = (Q′, I ′, O′, T ′, N, sc).

environment. It also treats the absorption of signals on input lines and production

of signals on output lines by a module as an atomic operation. For the purposes of

studying and generating environments this limited notion is sufficient.

Definition 4.5. Given a module N = (Q, I, O, T) and a corresponding environment

E = (Q′, I ′, O′, T ′, N, sc), we inductively define the set of reachable configurations

V for E and N in Figure 4.2.

Informally, each configuration in the set of reachable configurations for some mod-

ule N = (Q, I, O, T) and environment E = (Q′, I ′, O′, T ′, N, sc) is reached via the

execution behaviour, starting from some normally-connected network consisting of

N in some state q ∈ Q, and E in sc(q) ∈ Q′.

Definition 4.6. Given a module N = (Q, I, O, T), a corresponding environment

E = (Q′, I ′, O′, T ′, N, sc) and the set of reachable configurations V for E and N , we

say that V is a valid interaction for E and N if for each configuration (q′, A, B, q) ∈

V :

1. A and B are sets and not multisets,

2. there is at least one action (D, C).q′′′ in state q ∈ Q of N where A ⊆ D,

3. if B 6= ∅, there is an action (B, {}).q′′ in state q′ ∈ Q′ of E.

Informally, a valid interaction implies that connecting a module N = (Q, I, O, T) in

any state q ∈ Q to a corresponding environment E = (Q′, I ′, O′, T ′, N, sc) in sc(q)

never results in clashing or non-safety for either N or E.

4. Environments and Implementation 49

Definition 4.7. Given a module N = (Q, I, O, T), a corresponding environment

E = (Q′, I ′, O′, T ′, N, sc), and the set of reachable configurations V for E and N , we

say that E is a valid environment of N if V is a valid interaction and for all q′ ∈ Q′:

1. there exists some configuration (q′, A, B, q) ∈ V for some A, B, q,

2. for all actions ({}, X).q′′ ∈ q′, there exists some (q′, A, B, q) ∈ V for some

A, B, q, and some action (D, C).q′′′ ∈ q for some C, q′′′ such that D = X ∪ A,

3. for all actions (B, {}).q′′ ∈ q′, there exists some (q′, A, B, q) ∈ V for some A, q.

Example 4.8. Recall the module Merge and corresponding environment EnvM

from Figure 4.1. We define the behaviour of EnvM as:

EM = ({a}, {}).EMa

EMa = ({}, {c}).EM

where the sc function is defined simply as sc(M) = EM . EnvM is a valid environ-

ment for Merge, as the set of reachable configurations V = {(EM, {}, {}, M),

(EMa, {a}, {}, M), (EMa, {}, {c}, M)} is a valid interaction.

Now that we have the notion of a valid environment for a module, it is important

to distinguish those environments which do not utilise the full functionality of a

module from those which do wherever possible, such that non-clashing and safety

always hold when normally-connecting the module and the environment. We first

introduce the notion of an increase. In the following we relax the restriction on

environments that prohibits multiple states from containing identical sets of actions.

We call such environments pseudo-environments.

Definition 4.9. We define a psuedo-environment similarly to an environment, but

allow multiple states to contain identical sets of actions.

Informally, a pseudo-environment may have multiple “functionally equivalent” states.

Note that an environment is also a pseudo-environment.

Definition 4.10. Given two pseudo-environments E = (Q, I, O, T, N, sc) and E ′ =

(Q′, I, O, T ′, N, sc) which both correspond to the same module N , we say that E ′ is

an increase of E if Q ⊆ Q′ and T ⊂ T ′.

Informally, a pseudo-environment E ′ is an increase of a pseudo-environment E if it

is possible to get E ′ by adding at least one action, and any number of new states to

E.

In Figure 4.3, we give the state-merge algorithm. Informally, the algorithm sim-

ply removes each state which contains an identical set of actions to some other

4. Environments and Implementation 50

Require: pseudo-environment E = (Q, I, O, T, N, sc)
1: while there are multiple states with equivalent sets of actions do
2: for every q1 ∈ Q do
3: if there exists some q2 ∈ Q such that q1 6= q2 and q1 and q2 contain

identical sets of actions then
4: for every (q, A, q′, B) ∈ T where q = q1 do
5: remove (q, A, q′, B) from T
6: end for
7: for every (q, A, q′, B) ∈ T where q′ = q1 do
8: remove (q, A, q′, B) from T and add (q, A, q′′, B) to T , where

q′′ = q2, if it does not already exist.
9: end for

10: end if
11: end for
12: end while
Ensure: environment E = (Q′, I, O, T ′, N, sc) where |Q′| ≤ |Q| and |T ′| ≤ |T |.

Figure 4.3: State-merge algorithm for a pseudo-environment state-merge(E).

existing state, and then redirects transitions appropriately. Hence any pseudo-

environment definition is converted to an environment definition.

Definition 4.11. Let E = (Q, I, O, T, N, sc) be an environment. We say that an

environment E ′ is an valid-increase of E, if E ′ 6= E and there exists some psuedo-

environment E ′′ such that E ′′ is an increase of E, and E ′ can be found by running

the state-merge algorithm on E ′′.

Informally, an environment E ′ is a valid-increase of an environment E, if it is possible

to add actions or states to E, merging state definitions when equivalent, to get E ′.

Using this notion of a valid-increase, can now introduce the notions of sub-

maximality and maximality of an environment.

Definition 4.12. Let E be a valid environment of some module N . E is sub-

maximal for N if there exists some E ′ such that E ′ is a valid environment of N , and

E ′ is a valid-increase of E. We say that E is a maximal environment of N if it is

not sub-maximal for N .

Example 4.13. The environment EnvM defined in Example 4.8 is sub-maximal for

Merge, as it is possible to add the action ({b}, {}).EMa to the state EM , and the

resulting definition (which we call EnvM’) is a valid environment, as shown by the

valid interaction V = {(EM, {}, {}, M), (EMa, {a}, {}, M), (EMa, {}, {c}, M),

(EMa, {b}, {}, M)}.

Example 4.14. The environment EnvM’ discussed in Example 4.13, and defined

as:
EM = ({a}, {}).EMa + ({b}, {}).EMa

EMa = ({}, {c}).EM

4. Environments and Implementation 51

such that sc(M) = EM is a valid environment of Merge and is not sub-maximal.

Therefore it is a maximal environment of Merge.

We note that there are an infinite number of maximal environments for any

module. Informally however, the nature of the maximal environment is such that

it exhausts as much of the functionality of the module as possible. This is achieved

by sending as many output signals as possible which present at least the possibility

of additional actions being processed, such that safety and non-clashing are guar-

anteed to hold. The possibilities of which output signals may be sent are decided

deterministically by the environment, based on the sets of input signals it receives.

The previous paragraph suggests that, given some module N , all maximal en-

vironments of N are semantically equivalent, even if their definitions are not the

same. However we have been unable to prove this result formally. In the rest of this

thesis, we assume that this is the case.

A maximal environment of a module can often be determined by enumerating

all possible actions for the environment such that safety and non-clashing are guar-

anteed to hold when normally-connecting the environment to the module.

Example 4.15. Consider the definition of sATS from Section 3. If the definition

of the module is carefully considered, through enumeration of all possibilities for

input/output it can be deduced that a maximal environment EnvsATS of sATS can

be defined as follows:

ES1 = ({}, {T}).ES1T + ({}, {R, T}).ES1RT

ES1T = ({}, {R}).ES1RT + ({T1}, {}).ES1

ES1RT = ({T0}, {}).ES1 + ({T1}, {}.ES1R

ES1R = ({}, {T}).ES1RT

where ES1 corresponds to the module state S1. After signalling R, it is clear that

the environment cannot send another input signal on R until an output signal is

received on T0. Note that a single input signal on R is not sent by the environment

in ES1, as an input signal pending on R of the module in state S1 is not sufficient

to cause the module to process any actions. After sending input signals on {R, T},

the environment waits for an output signal on T0 or T1, and uses this to deduce

whether there is an input signal pending on R, and therefore whether it is safe

to send an input signal on T , or to return to the original state and have a choice

between sending input signals on either T or {R, T} again.

Enumerating all possible behaviours in order to determine a maximal environ-

ment is much more difficult when modules are auto-firing or not 1-step consistent.

Recall the informal notion of inconsistency (Section 3.2 in Chapter 3), which con-

4. Environments and Implementation 52

cerns the inability of an environment to deduce the current state of a module and

the number of signals on wires connected to its input or output lines.

Example 4.16. Consider the following module N6 which is not 1-step consistent.

S0 = ({a, b}, {x, y}).S0 + ({a, b}, {x}).S0

A possible maximal environment for N6 is defined as:

ES0 = ({}, {a, b}).ES0ab

ES0ab = ({x}, {}).ES0abx + ({x, y}, {}).ES0

ES0abx = ({y}, {}).ES0

where ES0 corresponds with S0. Consider that the environment may signal {a, b}

when the module is in S0, according to the definition of ES0. If an output signal

is received on only x, it is not possible to deduce whether an output signal is also

travelling along the wire connected to y. As a result, at this stage there are no input

lines of the module that the environment may signal without risking the network

becoming clashing. This forces the environment to wait for an output signal from y

before sending any more input signals, which may never arrive if the second action

of S0 was processed by the module. Here, inconsistency may cause a permanent

deadlock between the module and its environment.

Inconsistency can occur even if a module is 1-step consistent.

Example 4.17. Consider the following module N7 which is stable, 1-step-consistent

and auto-firing.

S0 = ({a, b}, {x}).S0 + ({a}, {y}).S1

S1 = ({b}, {x}).S0

The terminating autopath ({a}, {y}).S1, ({b}, {x}).S0 may fire if {a, b} is signalled

by the environment when the module is in S0. In such a situation, output signals will

be sent on y and x in that order. However due to delay-insensitivity, it is possible

that the output signal on x arrives at the environment prior to the output signal on

y, and the environment (similarly to the previous example) cannot deduce whether

or not an output signal was sent on y. Hence, it is not possible for the environment to

distinguish this situation from the one where the action ({a, b}, {x}).S0 was instead

processed by the module. As there are no other input lines which it may signal,

the environment cannot proceed until receiving an output signal on y. As a result,

if ({a, b}, {x}).S0 was instead processed by the module, the network permanently

deadlocks.

We now infer some results based on the new formal notion of an environment.

4. Environments and Implementation 53

Proposition 4.18. Normally-connecting any module N = (Q, I, O, T) in state q ∈

Q to any maximal environment E = (Q′, I ′, O′, T ′, N, sc) of N in state sc(q) gives

rise to a network which is safe and non-clashing.

Proof. If no initial signals are placed on any wires, then the environment E is re-

sponsible for initiating and dictating all interaction with the module N . The nature

of a maximal environment is such that no signals are sent which cause any possibil-

ity of non-safety or clashing on any wires between E and N . The only wires in the

network are those which are connected between E and N .

Theorem 4.19. Normally-connecting a stable, non-auto-firing, and 1-step consis-

tent module N = (Q, I, O, T) in state q ∈ Q to a maximal environment E =

(Q′, I ′, O′, T ′, N, sc) of N in state sc(q), gives rise to a network which is non-

deadlocking.

Proof. If a module is non-auto-firing, and is 1-step consistent, then it is always pos-

sible to deduce which set of input signals was processed by the module based purely

on its set of output signals. Consequently, the environment can wait until all out-

put signals are received from the module before proceeding to send any more input

signals. Furthermore, if a module is also stable, by implication it is guaranteed that

there is always at least one action defined in each state whose input set is available

for the environment to signal. Hence the environment can send and receive signals

to the module indefinitely without any possibility of inconsistency or deadlock.

4.2 Generating maximal environments

We investigate the generation of maximal environments.

Firstly, in Figure 4.4 we give an algorithm for generating a maximal environment

for any non-arb module.

We now show a small example of an environment generated by the algorithm.

Example 4.20. Consider the module N8 defined as:

S0 = ({a, b, c}, {g, e}).S1 + ({a, c, d}, {e, f}).S0

S1 = ({a}, {g}).S0

4. Environments and Implementation 54

Require: module N = (Q, I, O, T) which is non-arb
1: create pseudo-environment E = (Q′, I ′, O′, T ′, N, sc) where Q′ is any set the

same size as Q, sc is any bijection that maps Q to the (current)
elements of Q′, I ′ = O, O′ = I, and T ′ is empty

2: for every q1 ∈ Q do
3: for every (A, B).q′

1 in q1 do
4: add q2 to Q′ where q2 is fresh and create action ({}, A).q2 in sc(q1)
5: create action (B, {}).q3 in q2 where q3 = sc(q′

1)
6: end for
7: end for
8: run state-merge(E)

Ensure: maximal environment E = (Q′, I ′, O′, T ′, N, sc) for N

Figure 4.4: Generating a maximal environment for a non-arb module.

If this module is input to the algorithm, it yields the following environment.

ES0 = ({}, {a, b, c}).ES0abc + ({}, {a, c, d}).ES0acd

ES1 = ({}, {a}).ES1a

ES0abc = ({g, e}, {}).ES1

ES0acd = ({e, f}, {}).ES0

ES1a = ({g}, {}).ES0

where sc(S0) = ES0 and sc(S1) = ES1.

Proposition 4.21. For any given non-arb module N , the environment given by the

algorithm in Figure 4.4 with N as input is a maximal environment of N .

Proof. All non-arb modules are 1-step-consistent, non-auto-firing and stable. Hence

signalling an input set leads to exactly one set of output signals being produced

with no remaining input signals pending. Therefore all actions in a given state are

trivially able to have their input sets signalled by the environment. Due to the

deterministic behaviour of non-arb modules, the environment simply needs to signal

any input set of any action of the current state, then wait for the corresponding set

of output signals before proceeding. The algorithm produces this behaviour for the

resulting environment.

A more complex algorithm is needed to generate a maximal environment for

any Set Notation module. Such an algorithm would need to factor in the possibil-

ity of auto-firing, and more crucially the possibility of inconsistency. This means

generating an environment which can:

• anticipate the set of output signals which may or may not be travelling to the

environment and could arrive at any point,

4. Environments and Implementation 55

• deduce which input lines are safe to signal after considering the set of states

that the module might be in and which wires may already contain signals.

Before introducing the algorithm, we first define an important auxiliary function.

Definition 4.22. Given a terminating autopath (A0, B0).q0, . . . , (An, Bn).qn, we de-

fine the set of accumulated outputs, given by accum((A0, B0).q0, . . . , (An, Bn).qn) to

be the multiset B =
n⋃

i=0

Bi.

We utilise a limited version of the configuration data structure (q′, A, B, q) from

the previous section. However, we do not make use of the environment’s state value,

and leave it undefined. Hence when we refer to a configuration in the following, we

use the tuple (A, B, q).

Definition 4.23. Given a module N = (Q, I, O, T), we define an uncertainty to be

a finite set of configurations U , where for each (A, B, q) ∈ U , A ⊆ I, B ⊆ O and

q ∈ Q.

An uncertainty U represents a collection of states that the module and the wires

connected to its input/output lines may be in at a particular point in time. Each

state of an environment in the remainder of this section corresponds to an uncer-

tainty. Hence given a module N = (Q, I, O, T), and a corresponding environment

E = (Q′, I ′, O′, T ′, N, sc), each q′ ∈ Q′ of the environment corresponds to some un-

certainty U . Informally, this represents that in state q′, the environment is unsure

as to which configuration (A, B, q) ∈ U accurately represents the state of the net-

work. This notion is used to calculate which set of behaviours are available to an

environment in each state.

The algorithm for generating a maximal environment for any Set Notation mod-

ule N is broken into two parts, a parent function and the main recursive function. To

improve readability of the algorithm, we assume an implicit correspondence between

states of the environment and uncertainties. However we note that it is possible to

define an explicit partial bijection which maps states to uncertainties and is initially

empty, but adds new mappings as new environment states and uncertainties are

created by the algorithm.

We give the parent part of the algorithm in Figure 4.5. This creates the input and

output lines of the environment, and the “starting” states which correspond directly

to states of the module (via sc). It then calls the recursive part of the algorithm

recurseUncertain(N, E, sc(q), U) to generate environment actions for each possible

“starting” state sc(q) corresponding to each q of the module N .

The main recursive part of the algorithm is separated into two parts for read-

ability. We give the first half in Figure 4.6 which builds all possible “output” actions

4. Environments and Implementation 56

Require: module N = (Q, I, O, T)
1: create pseudo-environment E = (Q′, I ′, O′, T ′, N, sc) where Q′ is any set the

same size as Q, sc is any bijection that maps Q to the (current)
elements of Q′, I ′ = O, O′ = I, and T ′ is empty

2: for every state q ∈ Q do
3: create a new uncertainty U which contains a single configuration ({}, {}, q)
4: run recurseUncertain(N, E, sc(q), U) if not yet done so for sc(q) and U
5: end for
6: run state-merge(E)

Ensure: maximal environment E = (Q′, I ′, O′, T ′, N, sc) for module N =
(Q, I, O, T)

Figure 4.5: Generating a maximal environment for any module.

for the environment (corresponding to sending input signals to the module) for a

given uncertainty U . Each action created by this part of the algorithm is guaranteed

to enable the processing of at least one new action of the module for at least one

configuration in U , without causing clashing or non-safety of the module, regardless

of the configuration in U which accurately represents the state of the network. It

is possible that the algorithm creates no “output” actions for the environment, in

which case the environment cannot currently signal any input lines of the module,

such that it enables at the least the possibility of additional actions to be processed

by the module.

The second half of the recursive part is given in Figure 4.7 which builds all pos-

sible “input” actions for the environment (corresponding to receiving output signals

from the module) for a given uncertainty U . The algorithm considers that for any

(A, B, q) ∈ U , output signals corresponding to B may be received by the environ-

ment, possibly in combination with new output signals which may be produced

via the processing of several actions by the module (for all possible prefixes of all

p ∈ autoP aths(A, q)). The algorithm also calculates the new uncertainty U ′ pro-

duced in response to receiving a particular set of output signals from the module.

This is done by deciding whether each existing configuration in the old uncertainty

should be removed from the new uncertainty, and whether any new configurations

should be added. An existing configuration is removed if the input set of the current

action we are building is not a subset of the output signals which would arrive if

the existing configuration accurately represented the state of the network. In this

scenario, the environment can rule out the existing configuration as an accurate

representation of the state of the network. A new configuration is added if the input

set of the current action we are building is a subset of output signals that would

arrive if such a configuration accurately represented the state of the network. In

this scenario, the environment cannot rule out such a configuration from being an

accurate representation of the state of the network.

4. Environments and Implementation 57

Require: module N = (Q, I, O, T), pseudo-environment E = (Q′, I ′, O′, T ′, N, sc),
environment state qe ∈ Q′ and corresponding uncertainty U

1: create the empty set SI of type P [I]
2: for every configuration (AM , BM , qM) ∈ U do
3: for every action (AP , BP).qP ∈ qM of N do
4: if AM ⊂ AP then add AP \ AM to SI end if
5: end for
6: end for
7: for every input set AI ∈ SI do
8: for every configuration (AM , BM , qM) ∈ U do
9: if there is not some action (AP , BP).qP ∈ qM , such that (AI ∪ AM) ⊆ AP

then remove AI from SI and break end if
10: if for some prefix (A0, B0).q0, . . . , (Aj, Bj).qj where (0 ≤ j ≤ n) of

some (A0, B0).q0, . . . , (An, Bn).qn ∈ autoP ath(AI∪AM , qM), where

AS =
j⋃

k=0

Ak, there is not some action (AP , BP).qP ∈ qj where

((AI ∪ AM) \ AS) ⊆ AP (i.e. non-safety occurs for N in state qj)
then remove AI from SI and break end if

11: if for some p = (A0, B0).q0, . . . , (An, Bn).qn ∈ autoP ath(AI ∪ AM , qM),
accum(p) is not a set but is a multiset or (accum(p) ∩ BM) 6= ∅,
(i.e. there is an auto-clash or the output signals overlap with those
already sent by the module) then remove AI from SI and break
end if

12: end for
13: end for
14: for every set AI ∈ SI do
15: create a new uncertainty U ′ which is a copy of U
16: for every configuration (AM , BM , qM) ∈ U ′ do add all elements of AI to set

AM end for
17: create state q′

e ∈ Q′ if it doesn’t exist, where q′
e corresponds with U ′

18: create action ({}, AI).q
′
e in state qe if it doesn’t exist

19: run recurseUncertain(M, E, q′
e, U ′) if not yet done so for q′

e and U ′

20: end for

Figure 4.6: First half of recursive part of maximal environment algorithm
recurseUncertain(M, E, qe, U).

4. Environments and Implementation 58

21: for every configuration (A1, B1, q1) ∈ U do
22: let the set AP1 = autoP aths(A1, q1)
23: for every autopath p1 = (A1,0, B1,0).q1,0, . . . , (A1,n, B1,n).q1,n ∈ AP1, plus

once let p1 = ∅ do
24: for every prefix (A1,0, B1,0).q1,0, . . . , (A1,i, B1,i).q1,i (with 0 ≤ i ≤ n) of p1,

(or once if p1 = ∅) do
25: if p1 = ∅ then let q′ = q1, let A′

1 = A1, let B′
1 = B1

26: else let q′ = q1,i, let A′
1 = A1 \ A′′

1, where A′′
1 =

i⋃

k=0

A1,k, let B′
1 =

B1 ∪ B′′
1 where B′′

1 =
i⋃

k=0

B1,k end if

27: if some action (B′
1, {}).q′

e already exists in qe, for some q′
e then then

skip to the next prefix end if
28: create new empty uncertainty U ′ and add (A′

1, {}, q′) to U ′

29: for every configuration (A2, B2, q2) ∈ U do
30: let AP2 = autoP aths(A2, q2)
31: for every autopath p2 = (A2,0, B2,0).q2,0, . . . , (A2,m, B2,m).q2,m ∈

AP2, plus once let p2 = ∅ do
32: for every prefix (A2,0, B2,0).q2,0, . . . , (A2,l, B2,l).q2,l (with

0 ≤ l ≤ m) of p2, (or once if p2 = ∅) do
33: if (A1, B1, q1) = (A2, B2, q2), p1 = p2 and l ≤ i then skip

to next prefix of p2 end if
34: if p2 = ∅ then let q′′ = q2, let A′

2 = A2, let B′
2 = B2

35: else let q′′ = q2,l, let A′
2 = A2 \ A′′

2, where A′′
2 =

l⋃

k=0

A2,k, let

B′
2 = B2 ∪ B′′

2 where B′′
2 =

l⋃

k=0

B2,k end if

36: if B′
1 ⊆ B′

2 then add new configuration (A′
2, B′

2 \ B′
1, q′′) to

U ′

37: end if
38: end for
39: end for
40: end for
41: create state q′

e ∈ Q′ if it doesn’t exist, where q′
e corresponds with U ′

42: create action (B′
1, {}).q′

e in state qe if it doesn’t exist
43: run recurseUncertain(N, E, q′

e, U ′) if not yet done so for q′
e and U ′

44: end for
45: end for
46: end for
Ensure: maximal environment E behaviour for module N starting from U

Figure 4.7: Second half of recursive part of maximal environment algorithm
recurseUncertain(M, E, qe, U).

4. Environments and Implementation 59

We give an example of a module which possesses multiple properties to demon-

strate the effectiveness of the algorithm.

Example 4.24. Consider the following module N9 which is unstable, not 1-step

consistent, and auto-clashing:

S0 = ({a, b}, {x}).S0 + ({b}, {x}).S1 + ({b, c}, {y}).S1 + ({c}, {z}).S1

S1 = ({a}, {z}).S0 + ({c}, {x}).S0

Inputting N9 to the algorithm in Figure 4.5 will yield the following environment.

Note that due to the state-merge algorithm, multiple states (corresponding to dif-

ferent uncertainties) have been merged together, and as a result some states may

correspond to more than just the uncertainty indicated by its name.

ES0 = ({}, {a, b}).ES0ab + ({}, {b}).ES0b + ({}, {c}).ES0c

ES1 = ({}, {c}).ES1c + ({}, {a}).ES0S1aS0z

ES0ab = ({x}, {}).ES0S1aS0z + ({x, z}, {}).ES0

ES0S1aS0z = ({z}, {}).ES0

ES0b = ({}, {a}).ES0ab + ({x}, {}).ES1

ES1c = ({x}, {}).ES0

ES0c = ({z}, {}).ES1

The environment states ES0 and ES1 correspond to the module states S0 and S1

respectively. Note that in ES0, the environment cannot signal {b, c}, as this may

cause an auto-clash on the wire connected to the output line x, due to the autopath

({b}, {x}).S1, ({c}, {x}).S0. Consider the environment state ES0S1aS0z. This cor-

responds to the environment being uncertain as to whether the module is in S0 with

no input signals pending, S1 with a signal pending on a, or S0 with an output signal

travelling along the wire connected to z. As a result, the environment cannot send

any more input signals to the module, and it needs to wait for an output signal on

z in order to determine its next move. If an output signal then arrives from z, the

environment deduces that the module must now be in S0 with no signals pending,

regardless of which configuration previously represented the state of the network.

Theorem 4.25. For any module N , the environment given by the algorithm in

Figure 4.5 with N as input is a maximal environment of N .

Proof. Using the notion of an uncertainty, the algorithm considers all possibilities

concerning which signals may be on input or output lines and what state the module

may be in (through one configuration in the uncertainty for each possibility) during

each of the environment’s states. It also factors in whether a module is auto-firing,

4. Environments and Implementation 60

auto-clashing or stable, all of which are the limiting factors (other than the set of

currently pending input signals) as to whether individual actions are able to be

signalled in a given configuration. Using these pieces of information it guarantees

that it does not send any signals which have a possibility of causing non-safety or

clashing, but sends input signals corresponding to all possible actions in all config-

urations which are otherwise guaranteed to be “unproblematic”. It also uses this

information to accommodate all possible arrivals of output signals from the module

in all possible configurations, as well as any output signals which may be produced

by the module at any time prior to the environment choosing to send any more

input signals. It does this by factoring in the potential firing of any autopaths, for

any configuration in the current uncertainty. As a result, safety of the environment

is guaranteed to hold.

We note that, as described in the beginning of this chapter, the algorithm in

Figure 4.5 is implemented in the Delay-Insensitive Network Tool Suite program

developed in support of this thesis. Please see Chapter 10 for details on this software.

4.3 Implementation and universality

Using the new formal notion of a maximal environment, it is now possible to define

notions of implementation and universality in the Set Notation model. These cor-

respond to Definitions 2.14 and 2.15 of the sequential machine model respectively

(see Chapter 2), but are more precise due to a formal notion of an environment.

Definition 4.26. Consider a module N and a network S. We define an environment

mapping em between N and S to be an injective function which maps every input

line of N to exactly one unconnected input line of some module in S, and every

output line of N to exactly one unconnected output line of some module in S.

Informally, given some network S which is intended to implement some module N ,

an environment mapping is a way of formally expressing which input and output

lines of modules in S correspond to input and output lines of N respectively.

Definition 4.27. Consider a module N = (Q, I, O, T), a network of modules S

and an environment mapping em between N and S. We say that N and S are

indistinguishable in state q ∈ Q via em if, for some maximal environment E =

(Q′, I ′, O′, T ′, N, sc) of N , the following conditions hold:

1. Connecting E in state sc(q) to S according to em results in a network which

is safe and non-clashing,

4. Environments and Implementation 61

2. For all possible sequences of actions (A1, B1).q1, (A2, B2).q2 . . . of E which may

be processed when normally-connecting N in state q ∈ Q to E in state sc(q)

(where (A1, B1).q1 ∈ sc(q)), it is possible for the same sequence of actions to

be processed when connecting E in state sc(q) to S according to em, and vice

versa.

Informally, this says that the series of operations which may be performed by an

environment E starting in a particular state sc(q) when normally-connected to a

module N starting in state q, does not change when instead connecting the environ-

ment starting in sc(q) to a network S which “implements” the module N starting

in state q.

Indistinguishability is a more formal notion of external behaviour (Definition

2.14 in Chapter 2) described in the sequential machine model. We note that indis-

tinguishability can also be used to compare two modules, rather than just a module

and a network of multiple modules.

Example 4.28. Recall the definitions of sATS and mATS (Examples 3.24 and

3.39 in Chapter 3). Note that the definitions of S1 for both modules are the same.

Therefore trivially, an sATS can always be replaced by an mATS in state S1, and

the behaviour of the overall network is unaffected. More formally, it is the case that

the module sATS and the network containing a single mATS are indistinguishable

in state S1 via the mapping which maps all input and output lines of sATS to the

identically-named input and output lines of mATS.

Note however that this definition requires a specific starting state of the module,

similarly to the notion of a realisation in the sequential machine model (Definition

2.14 in Chapter 2). This is not general enough to cover implementation of a module

in all states, as with some modules, not all states are reachable from all other states

as a result of processing actions. An example is mATS, where S0 is not reachable

from S1.

Therefore we need a more general definition which says that a module is imple-

mented by a network with a fixed structure regardless of its starting state.

Definition 4.29. Consider a module N = (Q, I, O, T), and a network of modules

S. We say that S implements N if:

1. there exists some environmental mapping em between N and S,

2. for some q ∈ Q, N and S are indistinguishable in state q via em,

3. for each q′ ∈ Q, there exists some S ′ which is a state variation of S, and N

and S ′ are indistinguishable in state q′ via em.

4. Environments and Implementation 62

Informally, a network implements a module if for each possible state q of the module,

the network can have any of its modules’ internal states modified, and signals can be

added or removed from wires, such that the resulting network is indistinguishable

from the module in state q. The given network must also be indistinguishable from

the module in at least one of the module’s states.

Example 4.30. Following on from Example 4.28, the network S containing a single

mATS module in state S1, implements sATS, as there is only one state (S1) of sATS,

and sATS and S are indistinguishable in S1 via the mapping which maps all input

and output lines of mATS to the identically-named input and output lines of sATS.

Note however that the reverse is not true, as there does not exist a state variation

S ′ of the network containing a single sATS such that mATS and S ′ are indistin-

guishable in state S0 via the mapping which maps all input and output lines of

sATS to the identically-named input and output lines of mATS. Informally, this is

impossible because sATS is incapable of simulating the functionality provided by

mATS in state S0 (Section 3.3 in Chapter 3).

Definition 4.31. A set of modules X is universal for some class of modules Y , if

any module in Y can be implemented (according to Definition 4.29) by a network

containing only modules in X.

The terms implementation and universal in the context of the Set Notation model

should not be confused with the terms realisation and universal given in Definitions

2.14 and 2.15 in the sequential machine model. The use of the term realisation in

the sequential machine model corresponds more directly with our notion of indistin-

guishability. We now finish this chapter by highlighting an interesting relationship

between modules which share the same maximal environment.

We define a third module similar to sATS and mATS, which we will call fATS.

Example 4.32. We define fATS as:

S1 = ({T}, {T1}).S1 + ({R, T}, {T0}).S1 + ({R, T}, {T1}).S0

S0 = ({T}, {T0}).S1

fATS is both arb and b-arb.

fATS is similar to mATS except there is the additional action ({R, T}, {T1}).S0

in S1. As a result, unlike with mATS, S0 is reachable from S1 in fATS as a result

of processing actions.

Example 4.33. A possible maximal environment EnvfATS =

4. Environments and Implementation 63

(Q′, I ′, O′, T ′, fATS, sc) of fATS, given by the algorithm in Figure 4.5, is defined as:

ES1 = ({}, {T}).ES1T + ({}, {R, T}).ES1TR

ES0 = ({}, {T}).ES0T

ES1T = ({}, {R}).ES1TR + ({T1}, {}).ES1

ES1TR = ({T1}, {}).ES1RS0 + ({T0}, {}).ES1

ES1RS0 = ({}, {T}).ES1TR

ES0T = ({T0}, {}).ES1

where sc(S1) = ES1 and sc(S0) = ES0. Note that EnvfATS is also a maximal

environment of mATS, as given by the algorithm in Figure 4.5 (though state names

may differ as a result of the algorithm), with sc also defined identically.

Informally, the fact that EnvfATS is a maximal environment of both fATS and

mATS means that EnvfATS cannot distinguish one module from the other. It is

also the case that mATS is implemented by the network containing a single fATS

module, and fATS is implemented by the network containing a single mATS module.

This highlights the following result.

Proposition 4.34. If E1 = (Q1, I1, O1, T1, N, sc1) is a maximal environment of some

module N = (Q, I, O, T) and E2 = (Q2, I2, O2, T2, N ′, sc2) is a maximal environment

of some module N ′ = (Q′, I ′, O′, T ′) where N 6= N ′, Q1 = Q2, I1 = I2, O1 = O2 and

T1 = T2, then N is implemented by the network containing a single N ′, and N ′ is

implemented by the network containing a single N .

Proof. As the CCS-like definitions of E1 and E2 are the same, then for all states

q1 ∈ Q, there must exist some q2 ∈ Q′ such that for all possible sequences of actions

processed by the environment E1 when normally-connecting E1 in sc1(q1) to N in q1,

it is possible for the same sequence of actions to be processed when connecting E1 in

sc1(q1) to N ′ in q2 according to the mapping which maps all input and output lines

of N to the identically-named input and output lines of N ′. Similarly, for all states

q2 ∈ Q′, there exists some q1 ∈ Q such that for all possible sequences of actions

processed by the environment E2 when normally-connecting E2 in sc2(q2) to N ′ in

q2, it is possible for the same sequence of actions to be processed when connecting

E2 in sc2(q2) to N in q1, according to the mapping which maps all input and output

lines of N ′ to the identically-named input and output lines of N . By Definitions

4.27 and 4.29, this means that N implements N ′ and vice versa.

4. Environments and Implementation 64

4.4 Conclusion

In this chapter we formalised the notion of an environment for a module in the

Set Notation model. We gave an algorithm for calculating what is referred to as

a maximal environment of any non-arb module. An algorithm for calculating a

maximal environment of any module was then given. Finally, we used this notion

to define implementation of a module using a network of modules in Set Notation.

Chapter 5

Correspondences between models

In this chapter we compare the sequential machine model for DI networks with the

new Set Notation model. We introduce an extension to the sequential machine model

called the ND sequential machine model. We establish limited correspondences

between three models; the sequential machine model, the ND sequential machine

model, and the new Set Notation model. We prove universality results for the ND

sequential machine model. We give algorithms for converting modules which satisfy

certain conditions in the sequential machine model or the ND sequential machine

model, to corresponding definitions in the Set Notation model, and vice versa.

We also note that the algorithms introduced in this chapter are also implemented

in the Delay-Insensitive Network Tool Suite program developed in support of this

thesis. Furthermore, the module definitions given in this chapter, produced by these

algorithms, were also generated by the corresponding software implementations.

Please see Chapter 10 for details on this software.

5.1 Non-deterministic sequential machines

We begin by noting that the definitions of modules in the Set Notation model are

more expressive than in the sequential machine model, and as a result it is possible to

define modules in Set Notation which do not have sequential machine counterparts.

Example 5.1. In Figure 5.1 we introduce the module Choice which simulates a

non-deterministic binary choice, given a single input signal on c. Note that Choice

is the inverse of Merge.

Recall that, as a result of the sequential machine model requiring that f and

g are partial functions, modules such as ATS exhibit non-deterministic behaviour

by utilising multiple concurrent input signals combined with non-trivial arbitration

(Section 2.5 in Chapter 2). Hence there does not exist some sequential machine

65

5. Correspondences between models 66

a
b cC

C = ({c}, {a}).C + ({c}, {b}).C

Figure 5.1: Choice module.

module that has the same behaviour as Choice because there is only a single input

line (c).

Therefore, in order to identify a correspondence between Set Notation modules

and sequential machine modules, we must first generalise the sequential machine

model such that modules like Choice can be defined.

Definition 5.2. We define the non-deterministic sequential machine (ND sequential

machine) model the same as the sequential machine model (see Chapter 2) with all

associated conditions and definitions, except:

1. f and g components of modules do not have to be partial functions, and can

be partial maps,

2. A module is serial iff it fits the conditions in Definition 2.16 and f and g are

partial functions.

3. A module is parallel iff it fits the conditions in Definition 2.17 and f and g are

partial functions.

We call a module a ND sequential machine if f and g are partial maps but not

partial functions, and simply a sequential machine if f and g are partial functions.

We refer to the class of all modules in this model as the class of (ND) sequential

machines.

The use of the terms realisation and universal in the context of the ND sequential

machine model are therefore assumed to refer to Definitions 2.14 and 2.15 in Chapter

2, and should not be confused with the terms implementation or universal in the

context of our Set Notation model as given in Definitions 4.29 and 4.31 in Chapter

4.

The behaviour of modules and networks in the ND sequential machine model is

therefore the same as the sequential machine model with one exception. When a

module in some state q processes an input signal on some input line a, the set of out-

put signals and resulting state change of the module is decided non-deterministically

by selecting randomly any action (a, B).q′ ∈ q, for some B, q′.

The second condition in Definition 5.2 requires that modules are only consid-

ered serial if they are sequential machines. Informally, this ensures that the various

5. Correspondences between models 67

notions of serial modules across the Set Notation, ND sequential machine and se-

quential machine models remain consistent and all refer to the same set of module

behaviours. Note that this no longer implies that a module is parallel if it is not

serial. Instead, this results in a third class of modules in the ND sequential machine

model, which are neither serial nor parallel.

Example 5.3. An ND sequential machine counterpart to the Set Notation module

Choice is found by simply removing the set brackets from the input sets in the

CCS-like definition of Choice given in Figure 5.1. We also call the resulting module

Choice.

The ND sequential machine Choice is not a serial module as it does not fit the

requirement that it is a sequential machine.

We note that it is possible to create arbitrary n-way Choice trees by connecting

multiple instances of the same module together in a tree formation, similarly to how

we create Merge and Fork trees (see Chapter 2). In the same way, we depict an

n-way Choice tree using the same symbol as Choice, but with extra output lines

present on the image.

5.1.1 Universal sets

We will now prove some universality results in the ND sequential machine model,

which will be later utilised in Chapter 6 to prove universality results in the Set

Notation model. Recall Keller’s construction method (Figure 2.3 in Chapter 2),

which can be used to realise any sequential machine module (including modules

which are not parallel). We now describe how to extend this method to allow the

realisation of the class of ND sequential machines.

Recall that for any sequential machine N = (Q, I, O, f, g, A) there is a corre-

sponding serial module N ′ where output sets of actions are replaced by single output

lines, which are in one-to-one correspondence with the output sets of N . Assume

instead that N is an ND sequential machine. The module N ′ = (Q′, I ′, O′, f ′, g′, A′)

is derived from N in the usual way as described in Chapter 2. A′ is defined similarly

as for serial modules, where for all states q ∈ Q, all elements of A′(q) are singletons,

and for all input lines a ∈ I ′, there is an entry {a} ∈ A′(q) iff there is an action in

state q containing the input line a. Note that if N is a ND sequential machine, then

so is N ′.

We now define some useful auxiliary functions to help in the description of the

construction.

Definition 5.4. Given some ND sequential machine module

N ′ = (Q′, I ′, O′, f ′, g′, A′), the following are quantified over all a ∈ I ′ and q ∈ Q′:

5. Correspondences between models 68

1. Let no(a, q) refer to the number of actions in state q that contain input a.

2. Let max(a) be the maximum of all no(a, q).

3. If max(a) > 1, let relabel(a) = a1, . . . , an, be any sequence of names where:

• n = max(a) − 1,

• for all 1 ≤ i ≤ n: ai /∈ I ′ and for all b ∈ I ′, where b 6= a, ai /∈ relabel(b).

If max(a) ≤ 1 then relabel(a) is assumed to be undefined.

4. If no(a, q) > 0, let setAct(a, q) = (a1, B1).q1, . . . , (am, Bm).qm be any sequence

given by the set of actions in state q which contain the input line a, where

m = no(a, q), ai = a for all 1 ≤ i ≤ m, and no two actions in the sequence are

equal. If no(a, q) = 0 then setAct(a, q) is assumed to be undefined.

5. If no(a, q) > 1, and no(a, q) < max(a), let fill(a, q) = max(a) − no(a, q).

If fill(a, q) is defined then it is always greater than 0. Informally, fill(a, q) represents

the number of actions we need to add to state q containing the input line a, in order

for there to be max(a) actions in q containing a.

Example 5.5. Consider the following module N10 defined as:

S0 = (a, {x}).S1

S1 = (a, {x}).S0 + (a, {y}).S0 + (a, {z}).S0

Note that no(a, S0) = 1 and no(a, S1) = 3, and hence max(a) = 3. A possible

definition of relabel(a) is the sequence a1, a2. setAct(a, S0) is simply (a, {x}).S1.

A possible definition of setAct(a, S1) is (a, {x}).S0, (a, {y}).S0, (a, {z}).S0. Finally,

fill(a, S0) = 2 and fill(a, S1) is undefined as no(a, S1) = max(a) = 3.

We now show how to derive a standard sequential machine

N ′′ = (Q′′, I ′′, O′′, f ′′, g′′, A′′) from N ′, which will be utilised in the modification to

Keller’s construction. N ′′ is similar to N ′, but has duplicate instances of each input

line a in each state’s list of actions replaced by an alternative name from relabel(a).

Hence N ′′ contains no “internal” non-determinism in terms of actions.

The procedure for converting N ′ = (Q′, I ′, O′, f ′, g′, A′) to

N ′′ = (Q′′, I ′′, O′′, f ′′, g′′, A′′) is as follows. Assume that initially Q′′ = Q′, I ′′ = I ′,

O′′ = O′, f ′′ = f ′ and g′′ = g′, and for all a ∈ I ′ and q ∈ Q′, any valid definitions

have been calculated for the functions in Definition 5.4.

1. For all a ∈ I ′, we add all ak ∈ relabel(a) to I ′′ if relabel(a) is defined.

5. Correspondences between models 69

2. For all states q ∈ Q′′, all input lines a ∈ I ′ where no(a, q) > 1, and all 0 < i ≤ k

where setAct(a, q) = (a0, B0).q0, . . . , (ak, Bk).qk, we relabel ai in (ai, Bi).qi ∈ q,

to the jth name in the sequence relabel(a), where j = i−1. This ensures that

for each state, no input line appears in more than one action in that state.

3. For all states q ∈ Q′′ and all input lines a ∈ I ′, if fill(a, q) is defined: then for

all 1 ≤ i ≤ fill(a, q), add action (ak, Bk).qk to q, where:

• ak is any name from relabel(a) such that there is not already an action

in q with the input ak,

• Bk = B′, qk = q′ where (a′, B′).q′ is the only action of q with a′ = a.

The resulting N ′′ always satisfies the conditions of a serial sequential machine mod-

ule. We therefore assume that A′′ is defined in the usual way for serial modules.

The third step in the above generation of N ′′ is to facilitate ease of construction.

It makes sure that, if some input line a appears in some given state q, then for all

possible names ar given by relabel(a), we make sure that there is also an action in q

containing the input line ar. This adds actions for all possible “alternative” names

of a to q. Therefore, if an input line a is in some action in state q of N ′, and a has

alternative names defined by relabel(a), the resulting module N ′′ also contains an

action in q for each alternative name of a.

Example 5.6. Assuming that N ′ is defined as N10 in Example 5.5, then a possible

definition of N ′′ is as follows.

S0 = (a, {x}).S1 + (a1, {x}).S1 + (a2, {x}).S1

S1 = (a, {x}).S0 + (a1, {y}).S0 + (a2, {z}).S0

This module is a sequential machine, whereas N10 was a ND sequential machine.

Note that two of the actions in S1 have had the input names in their actions relabelled

from a to a1 and a2 respectively, so that now all actions in S1 contain unique input

names. Furthermore, two additional actions have been added to S0, so that all

alternative names of a now appear in actions in all states which originally contained

at least one action containing a. The two additional actions in S0 possess the

same output set and resulting state as the original action in S0. This ensures that

signalling either a, a1 or a2 in S0 always has the same effect as signalling a in S0 of

N10.

We show how to modify Keller’s construction method for any module (Figure

2.3 in Chapter 2) to accommodate N ′′. The differences between the construction

in Figure 2.3 in Chapter 2, and the modified construction are as follows. In the

modified construction:

5. Correspondences between models 70

C

From ATS module

corresponding to

corresponding

Ij of N

To all ai in

relabel(I ′
j)

of N ′′

To I ′
j of N ′′

to Ij of N

Figure 5.2: Modification to Keller’s construction method to accommodate N ′′ and
realise ND sequential machines.

1. We replace N ′ with N ′′.

2. For all ATS modules, if its R input line corresponds to Ij of N where max(I ′
j) >

1 (where I ′
j is the input line of N ′′ which also corresponds with Ij of N),

• instead of connecting the T0 output line to I ′
j of N ′′, we connect the T0

output line of this ATS module to the input line of a n-way Choice tree,

where n = max(I ′
j),

• we connect any output line of this Choice tree to the input line I ′
j of N ′′,

where I ′
j corresponds with Ij of N ,

• for all remaining output lines b of this Choice tree, we connect b to any

unconnected ai of N ′′, where ai ∈ relabel(I ′
j).

In Figure 5.2, we depict such a modification.

The result of this modification is such that signalling the input line of the network

corresponding to Ij of the original module N , when the network is in the state

corresponding to q of N , will non-deterministically result in the processing of some

action among n actions of q of N ′′, where n = max(I ′
j) and I ′

j of N ′′ corresponds to

Ij of N . One of these actions of N ′′ is equal to an action in the module N ′. Some

of these actions may be modifications of actions in N ′, with the input line of the

action I ′
j replaced by a alternative name given by relabel(I ′

j). Finally, some of these

actions may have been added as a result of the duplication of existing actions of N ′,

with the input line I ′
j of the action also replaced with an alternative name given by

5. Correspondences between models 71

F

ATS

R T

T0 T1

c

a b

initial

signal

here

Figure 5.3: Choice module realised using ATS and Fork. ATS is in S1.

relabel(I ′
j). This preserves the non-determinism of N resulting from a single input

signal, despite N ′′ being a sequential machine.

This gives us the following universal set for the class of ND sequential machines.

Theorem 5.7. The set of modules {ATS, Fork, Merge, Select, Choice } is universal

(in the sense of Definition 2.15 in Chapter 2) for the class of ND sequential machines.

Proof. Any ND sequential machine can be constructed by following Keller’s general

construction method for any module (Figure 2.3 in Chapter 2), and then making

the modifications outlined above. This involves replacing the ND sequential machine

N ′ with a sequential machine N ′′ and then incorporating Choice modules into the

construction. N ′′ is a serial sequential machine, and so can be realised with {Merge,

Select } as in the original construction method. The only new module required is

Choice.

In Figure 5.3 we show how to realise Choice using only ATS and Fork. Trivially,

any environment of Choice is one which simply sends an input signal on c, then waits

for an output signal on a or b before repeating this behaviour. Such an environment

cannot distinguish between the realisation in Figure 5.3 and the original Choice

module, as sending an input signal on c may result in an output signal on either a

or b, and this can happen repeatedly. Hence the network in Figure 5.3 satisfies the

notion of realisation (Definition 2.14 in Chapter 2) used in the sequential machine

model. This gives us the following smaller universal set.

Proposition 5.8. The set of modules {Merge, Select, Fork, ATS } is universal (in

the sense of Definition 2.15 in Chapter 2) for the class of (ND) sequential machines.

Proof. Theorem 2.25 in Chapter 2 proves universality for the class of sequential

machines. Theorem 5.7 combined with the realisation of Choice using ATS and

Fork proves universality for the class of ND sequential machines.

5. Correspondences between models 72

This is the same universal set as the one given in Theorem 2.25 in Chapter 2

for the class of sequential machines. This demonstrates an interesting property.

Informally, while individual ND sequential machine module definitions are more

expressive than sequential machine module definitions, networks of sequential ma-

chines are powerful enough to realise any ND sequential machine. Intuitively, it may

be more desirable from an engineering perspective to utilise a universal set which

contains only sequential machines, as depending on the technology in question, ND

sequential machines may be more physically complex due to the presence of explicit

internal non-determinism.

Corollary 5.9. Any ND sequential machine can be realised (in the sense of Defini-

tion 2.14 in Chapter 2) using a network of sequential machines.

Proof. The set {Merge, Select, Fork, ATS } contains only sequential machines and is

universal (in the sense of Definition 2.15 in Chapter 2) for the class of ND sequential

machines.

We finish by proving a universal set for both sequential machines and ND se-

quential machines, which does not contain the irreversible serial module Select, and

instead replaces it with the reversible serial modules RT and IRT (Figure 2.4 in

Chapter 2).

Theorem 5.10. {ATS, Fork, Merge, RT, IRT } is universal (in the sense of Defini-

tion 2.15 in Chapter 2) for the class of (ND) sequential machines.

Proof. Proposition 5.8 proves that {Merge, Select, Fork, ATS } is universal for (ND)

sequential machines. Select can be realised using {RT, IRT, Merge } (Corollary 2.41

in Chapter 2).

5.2 Implementing Set Notation modules using

(ND) sequential machines

We now investigate the notion of a (ND) sequential machine “implementing” the

functionality of a Set Notation module. The motivation for this is regarding physical

implementation. Depending on the technology in question, concurrent signals may

need to be physically assimilated in a sequential manner. It is for this reason that

the ND sequential machine model cannot be discounted due to the introduction of

the Set Notation model. We will also use this new notion of implementation to prove

a universal set regarding all Set Notation modules in Chapter 6.

5. Correspondences between models 73

Recall that the definition of Join in the Set Notation model can be considered

“externally equivalent” to the definition of the identically named Join in the se-

quential machine model, provided that the safety and non-clashing properties hold

(Example 3.14 in Chapter 3).

We attempt to define a limited one-way version of this correspondence more

formally. We first define a variation of the Set Notation model which we call the

Seq/Set model. The Seq/Set Notation model is used exclusively in this chapter

to prove this correspondence between Set Notation modules and (ND) sequential

machines.

Definition 5.11. We define the Seq/Set model the same as the Set Notation model,

except modules may contain empty output sets in their transition maps.

Informally, the Seq/Set model is the same as the Set Notation model, but allows us

to utilise (ND) sequential machines directly within the model. This is in order to

establish a formal correspondence between Set Notation modules and ND sequential

machines. All definitions and notions are otherwise equivalent to the Set Notation

model.

When referring to (ND) sequential machines operating under the Seq/Set model,

we assume that set brackets are present around the input lines in the CCS-like

definitions of modules. Similarly, we assume that the f and g partial functions are

combined into the single transition map T : Q × (P [I]) \ ∅ → Q × P [O] as required

by the Seq/Set model (note however, input sets are always singletons). The A

function is still required for these modules. Hence a (ND) sequential machine is

given in the form (Q, I, O, T, A) in the Seq/Set model. Set Notation modules are

still defined in the form (Q, I, O, T), and environments are still defined in the form

(Q, I, O, T, N, sc).

Definition 5.12. Given a Set Notation module N = (Q, I, O, T) and a (ND) se-

quential machine module N ′ = (Q′, I ′, O′, T ′, A′), such that |Q′| ≥ |Q|, we define

a state mapping function sm between N and N ′ to be a bijection where, for some

Qs ⊆ Q′ with |Qs| = |Q|, sm : Q → Qs.

We note that the definition of a normally-connected network in the Set Notation

model (Definition 4.2 in Chapter 2) still applies to networks containing Set Notation

modules and their corresponding environments when operating under the Seq/Set

Notation model. We introduce a similar notion for (ND) sequential machines oper-

ating under the Seq/Set Notation model.

Definition 5.13. We say that a network composed of a single (ND) sequential

machine module N ′ = (Q, I, O, T, A) in some state q ∈ Q and a corresponding

environment E = (Q′, I ′, O′, T ′, N, sc) in some state q′ ∈ Q′ of some Set Notation

5. Correspondences between models 74

module N , such that I ′ = O and O′ = I, is identically-connected if all output lines

of the module connect to the identically named input lines of the environment, all

output lines of the environment connect to the identically named input lines of the

module, and there are no signals present on any wires.

We now introduce the notion of sequential implementation.

Definition 5.14. Consider some Set Notation module N = (Q, I, O, T), and a (ND)

sequential machine N ′ = (Q′, I ′, O′, T ′, A′). We say that N ′ sequentially implements

N if there exists a state-mapping function sm between N and N ′ such that, given any

corresponding maximal environment E = (Q′′, I ′′, O′′, T ′′, N, sc) of N , the following

conditions hold for all q ∈ Q:

1. Identically-connecting E in state sc(q) ∈ Q′′ to N ′ in state sm(q) ∈ Q′ results

in a network S which is non-clashing and:

• E is safe in S,

• for every state variation S ′ of S which can be reached as a result of the

execution behaviour (Definition 3.5 in Chapter 3) starting from S, there

exists some A1 ∈ A′(q′) where q′ is the state of N ′ in S ′, and A2 ⊆ A1

where A2 is the set of input lines of N ′ whose connected wires contain

one or more signals in S ′.

2. For all possible sequences of actions (A1, B1).q1, (A2, B2).q2 . . . of E which may

be processed when normally-connecting N in state q ∈ Q to E in state sc(q)

(where (A1, B1).q1 ∈ sc(q)), it is possible for the same sequence of actions to

be processed when identically-connecting E in state sc(q) to N ′ in state sm(q),

and vice versa.

Informally, this means that a (ND) sequential machine N ′ sequentially implements a

Set Notation module N if, assuming that the environment is a maximal environment

of N , the environment cannot distinguish between N and N ′. It is similar to the

definitions of indistinguishability and implementation (Definitions 4.27 and 4.29 in

Chapter 4), but is modified to account for the fact that the definition of safety in

the Set Notation model does not apply to (ND) sequential machines. Instead, the

second sub-condition of the first condition in Definition 5.14 requires safety of the

(ND) sequential machine according to the requirements outlined in the sequential

machine model (Definition 2.5 in Chapter 2).

Example 5.15. The sequential machine Join (Figure 2.1 in Chapter 2) sequen-

tially implements the Set Notation module Join (Example 3.12 in Chapter 3), where

sm(J) = S0. This can be seen by identically-connecting a maximal environment E

5. Correspondences between models 75

of the Set Notation Join to the sequential machine Join, which results in E pro-

cessing the same sequences of actions than when normally-connecting E to the Set

Notation Join. Informally, this is the single infinite sequence where the environment

repeatedly sends input signals on {a, b} and then receives an output signal from {c}.

It would be ideal to define a converse notion where a Set Notation module can

be considered to “implement” a (ND) sequential machine. However, this requires

formal notions of environments and maximal environments for (ND) sequential ma-

chines. There are various reasons as to why this is not easy or trivial. Determining,

in general, the sequences of input and output signals that an environment may send

and receive to and from a (ND) sequential machine module, such that safety and

non-clashing always hold appears difficult. Recall the challenges faced with gener-

ating environments for Set Notation modules which are auto-firing, auto-clashing or

not 1-step consistent (see Chapter 4). These properties, and the abstract behaviour

of modules implied by such properties, clearly have counterparts in the (ND) se-

quential machine model. Defining these notions in the (ND) sequential machine

model appears to be more complex than in Set Notation due to the nature of the

(ND) sequential machine model’s approach to concurrency. This further complicates

the issue of identification and generation of valid environments. Environments and

maximal environments for (ND) sequential machines are therefore beyond the scope

of this thesis.

However, in very simple cases such as the sequential machine Join and ATS,

it is easy to enumerate all possible environment behaviours, and the “maximal”

environments for such sequential machine modules are trivial and it is possible to

define them informally. See Chapter 3, where we have argued informally that the

Set Notation modules Join and mATS “implement” the behaviour provided by the

sequential machine modules Join and ATS respectively.

Example 5.16. Recall the maximal environment EnvfATS of mATS (Example 4.33

in Chapter 4). By enumerating all possible sequences of environment behaviours,

it can be determined that the sequential machine ATS module sequentially imple-

ments mATS under the above requirements, where sm(S1) = S1 and sm(S0) = S0.

Moreover, ATS sequentially implements sATS, where sm(S1) = S1, as the definition

of ES1 of the maximal environment EnvsATS of sATS (Example 4.15 in Chapter

4) is the same as ES1 of EnvfATS. However recall that ATS initialised in S0 can-

not have its behaviour matched by sATS (Section 3.3 in Chapter 3). Hence, while

ATS sequentially implements sATS, it appears that sATS cannot be seen to be

“equivalent” to ATS in general.

5. Correspondences between models 76

5.3 Converting between models

We will give algorithms which will allow us to convert modules from the Set Notation

model to the ND sequential machine model and (in a limited fashion) vice versa, such

that the (ND) sequential machine module sequentially implements the Set Notation

module.

5.3.1 Realisability of Set Notation modules as sequential

machines

We first identify which Set Notation modules can be sequentially implemented by

sequential machines, and which can only be sequentially implemented by ND se-

quential machines.

Recall the Set Notation definition of Join is J = ({a, b}, {c}).J (Example 3.12

in Chapter 3). Informally, this means that regardless of the order that input signals

arrive on a and b, an output signal is produced on c. A (ND) sequential machine

which sequentially implements this module would therefore simply produce an out-

put signal on c regardless of the order that input signals on a and b are processed

by the module. To do this, the definition must consider all possible permutations

of the set {a, b} and produce an output signal on c after processing input signals

in either possible sequence. This is exactly the behaviour of the sequential machine

Join (Figure 2.1 in Chapter 2).

We can conclude that any non-arb module N has some corresponding sequential

machine N ′, such that N ′ sequentially implements N . The corresponding sequen-

tial machine simply needs to process each Set Notation module’s input set using

sequences of actions corresponding to all possible permutations of the set, and then

produce the set of output signals after processing the last input signal in each se-

quence.

Proposition 5.17. Any non-arb module N can be sequentially implemented by

some sequential machine N ′.

Proof. For all states q of N , and all actions (A, B).q′ ∈ q, the sequential machine N ′

simply needs to process each signal on each input line in A one at a time in all possible

sequences corresponding to permutations of A, and produce the set of output signals

on the lines B after processing the last input signal in each sequence.

We now examine the ability to sequentially implement eq-arb modules using

sequential machines via two examples.

Example 5.18. Consider the eq-arb module N11 defined as:

S0 = ({a, b}, {x}).S0 + ({a, b}, {y}).S0

5. Correspondences between models 77

A sequential machine which sequentially implements this module would have to

account for processing signals in sequences corresponding to both possible permuta-

tions of {a, b}. However it would also have to account for the two different possible

output sets which may be produced as a result of processing {a, b}. The fact that

the number of actions containing {a, b} is less than or equal to the number of pos-

sible permutations of {a, b} is critical. This means that each possible output set

(and resulting state change) can be produced as a result of at least one processing

sequence. Hence the deterministic nature of sequential machines is sufficient to pro-

vide the non-determinism exhibited by N11. One possible sequential machine which

sequentially implements this module is N ′
11, defined as:

S0 = (a, {}).Sa + (b, {}).Sb {{a, b}}

Sa = (b, {x}).S0 {{b}}

Sb = (a, {y}).S0 {{a}}

The set at the end of each line is the corresponding A function entry for that state.

Clearly, if there were instead three or more actions containing the input set {a, b}

in the same state of N11, it would not be possible to sequentially implement N11

using a sequential machine, as there are only 2 possible permutations of this set,

and therefore only 2 possibilities for “deciding” the output set and resulting state

in the sequential machine.

Note that if the input set of an action is cardinality 3 or more, there are 6

permutations of the set, 6 possible sequences in which the set of signals must be

processed, and therefore 6 actions containing the input set would be permitted in

the same state of the Set Notation module. The limitation of an eq-arb module to

be sequentially implemented by a sequential machine appears to be linked to the

number of permutations of each input set, and the number of occurrences of this

input set in actions of the same state.

Example 5.19. Consider the input set {b, c} which is not a subset of {a, b}, or vice

versa. Now consider the module N12 defined as:

S0 = ({a, b}, {x}).S0 + ({a, b}, {y}).S0 + ({b, c}, {z}).S0

A possible sequential machine definition which sequentially implements N12 is N ′
12,

5. Correspondences between models 78

defined as:

S0 = (a, {}).Sa + (b, {}).Sb + (c, {}).Sc {{a, b}, {b, c}}

Sa = (b, {x}).S0 {{b}}

Sb = (a, {y}).S0 + (c, {z}).S0 {{a}, {c}}

Sc = (b, {z}).S0 {{b}}

Note that the input set {b, c} must be processed by N ′
12 in S0 in both sequences b, c

and c, b in order to guarantee that signalling {b, c} always results in the output set

{z} and resulting state S0, as in N12.

Now consider that, as in N ′
11, the module N ′

12 must also process the input set

{a, b} in both sequences a, b and b, a. Each sequence provides the possibility of

producing a different output set and state change ({x} with S0 or {y} with S0), which

are used to “implement” the non-deterministic behaviour of N12 when signalling

{a, b}. Note however that neither of these sequences are prefixes of any sequence

corresponding to a permutation of {b, c} (or vice versa). As a result, it is possible

for N ′
12 to process the input set {b, c} in both sequences, resulting in the output set

{z} in both cases, without modifying the actions from N ′
11 which are responsible for

processing {a, b}. Modifying N ′
11 to “implement” actions from N12 containing {b, c},

to result in N ′
12, is achieved by only adding actions and states.

We can conclude from this example that the presence of different input sets in

actions of the same state of the Set Notation module, which are not strict subsets or

strict supersets of each other, does not affect the previous limitation regarding the

number of permutations of each input set, and the number of occurrences of this

input set in actions of the same state.

Proposition 5.20. An eq-arb module N = (Q, I, O, T) can be sequentially imple-

mented by some sequential machine N ′ if for all (q1, A1, q′
1, B1) ∈ T , the number of

transitions (q2, A2, q′
2, B2) ∈ T , where q2 = q1 and A2 = A1 is less than or equal to

n! where n = |A1|.

Proof. Similarly to sequential machines which sequentially implement non-arb mod-

ules, each input set A1 of N needs to be processed by some sequential machine N ′,

one signal at a time, in all possible sequences corresponding to permutations of A1.

Each sequence provides an opportunity for non-determinism. The limiting factor to

whether some sequential machine N ′ can sequentially implement an eq-arb module

N is therefore whether the number of actions in the same state of N which contain

A1 is larger than the number of permutations of A1, for all possible A1. Actions in

the same state of N which contain different input sets do not affect this limitation if

they are not a strict subset or strict superset of A1. By definition, an eq-arb module

5. Correspondences between models 79

does not contain actions in the same state such that one input set is a strict subset

or strict superset of another.

We now generalise this to all eq-arb modules and (ND) sequential machines. If

the number of actions in a state containing the same input set is larger than the

number of permutations of the set, we can utilise the non-deterministic nature of

ND sequential machines to provide additional alternatives for the output set and

state change at the end of one of the sequences of actions which processes the input

set.

Example 5.21. Consider the module N13 defined as:

S0 = ({a, b}, {x}).S0 + ({a, b}, {y}).S0 + ({a, b}, {z}).S0 + ({b, c}, {z}).S0

Note that the input set {a, b} appears in three actions in S0, and there are only

two permutations of {a, b}. Hence this cannot be sequentially implemented by a

sequential machine. Instead, a possible ND sequential machine definition which

sequentially implements this module is N ′
13, defined as:

S0 = (a, {}).Sa + (b, {}).Sb + (c, {}).Sc {{a, b}, {b, c}}

Sa = (b, {x}).S0 + (b, {z}).S0 {{b}}

Sb = (a, {y}).S0 + (c, {z}).S0 {{a}, {c}}

Sc = (b, {z}).S0 {{b}}

Note that this is similar to N ′
12 from Example 5.19, but an additional action

(b, {z}).S0 has been added to Sa, resulting in a ND sequential machine. This pre-

serves the possibility that signalling {a, b} in S0 may produce an output on {z} and

a change to S0. We also note that an alternative modification to N ′
12 from Example

5.19 which has the same effect involves adding the action (a, {z}).S0 to Sb.

Proposition 5.22. Any eq-arb module N can be sequentially implemented by some

(ND) sequential machine N ′.

Proof. Proposition 5.20 proves the set of eq-arb modules which can be sequentially

implemented by sequential machines. If an eq-arb module N cannot be sequentially

implemented by a sequential machine, we utilise non-determinism in the definition

of N ′. This is achieved by adding new actions to N ′, containing input lines which

are already present in actions in the same state, where the output sets and resulting

states are that of actions in N which have not yet been “implemented” in N ′. This

causes N ′ to non-deterministically “decide” between multiple actions of N during

the processing of the final input signal in a sequence of actions which processes an

input set of N .

5. Correspondences between models 80

We wish to generalise this relationship to all Set Notation modules and (ND)

sequential machines. We investigate via an abstract example.

Example 5.23. Consider some Set Notation module N = (Q, I, O, T) which con-

tains the input set {a, b, c, d, e} in some action in some state q ∈ Q. The set

{a, b, c, d, e} permits 5! = 120 processing sequences in the (ND) sequential ma-

chine N ′ which sequentially implements this module, before requiring us to utilise

non-determinism in the definition of N ′. Hence this input set could appear in 120

actions in q, while still allowing a sequential machine to sequentially implement this

module.

However, now consider the possibility of the input set {a, b} in some action in

q. Note that {a, b} is a proper subset of {a, b, c, d, e}. Clearly, to “implement” the

functionality of this action, the (ND) sequential machine must process the input set

{a, b} in the sequences a, b and b, a. The final action in both of these sequences must

produce the output set and resulting state change according to some action in q of

N which contains the input set {a, b}. Otherwise signalling {a, b} may lead to no

output signals from the sequential machine, which is not allowed by the behaviour of

N . Hence this prevents all sequences corresponding to permutations of {a, b, c, d, e}

which begin with either a, b or b, a from being “available” to the (ND) sequential

machine to process the input set {a, b, c, d, e} starting in q. In this example, this

rules out exactly 12 sequences from the 120 permutations of {a, b, c, d, e}.

Now consider the possibility that the input set {a} is present in some action in q

of N , in addition to actions containing the input sets {a, b} and {a, b, c, d, e} in q of

N . By the same reasoning as above, the presence of the input set {a} in some action

rules out some sequences for the sequential machine to process the input set {a, b}

in q of N (corresponding to ruling out exactly the one sequence a, b, but leaving

the sequence b, a “available”). Additional sequences corresponding to permutations

of {a, b, c, d, e} which begin with a are also ruled out for processing the input set

{a, b, c, d, e}. Note however that all sequences beginning with a, b have already been

ruled out as “available” for processing the input set {a, b, c, d, e}, as a result of the

presence of an action in q of N which contains the input set {a, b}.

In general, given some Set Notation module N , if for all actions (A, B).q′ in

all states q of N , after ruling out sequences corresponding to permutations of A

which are prefixed by a sequence needed to process some other input set A′ ⊂ A

(where there is an action containing A′ in q), the number of remaining sequences

corresponding to permutations of A is larger than or equal to the number of actions

in q containing A, then N can be sequentially implemented by a sequential machine.

As with eq-arb modules, the presence of other input sets in actions in q which are

not strict subsets or strict supersets of A does not affect this limitation.

5. Correspondences between models 81

To express this notion formally, we must first define some useful functions and

predicates.

Definition 5.24. For all pairs of sequences p1 and p2, let the predicate prefix(p1, p2)

hold iff p1 is a prefix of p2.

Definition 5.25. Given some Set Notation module N = (Q, I, O, T), the following

are quantified over all A ⊆ I and all q ∈ Q:

1. Let sequences(A) be the set of sequences given by all possible permutations

of the set A.

2. Let total(A, q) be the total number of actions (A, B′).q′′ in q for some B′, q′′.

3. Let remaining(A, q) be the largest proper subset of sequences(A), such that

for all p ∈ remaining(A, q) the following condition holds:

• for all A′ ⊂ A, if (A′, B).q′ is an action of q for some B, q′, then for all

p′ ∈ sequences(A′) it is not the case that prefix(p′, p).

Informally, remaining(A, q) is the set of sequences “available” for the sequential

machine to process the input set A in state q, after ruling out all sequences which

contain prefixes that are required to process proper subsets of A in q.

Proposition 5.26. A Set Notation module N can be sequentially implemented by

a sequential machine iff for all q ∈ Q and all actions (A, B).q′ ∈ q, total(A, q) ≤

|remaining(A, q)|.

Proof. Similarly to sequential machines which sequentially implement non-arb or

eq-arb modules, each input set A needs to be processed by some sequential machine

N ′, one signal at a time, in all possible sequences corresponding to permutations of

A. Each sequence provides an opportunity for non-determinism. However certain

sequences are ruled out as “available” for processing a given input set A in a state

q of N whenever there exists a proper subset of A in some action in q. The limiting

factor to whether a sequential machine can sequentially implement a module N is

therefore whether the number of actions in the same state of N which contain the

input set A is larger than the number of “available” sequences which can process

the input set A, for all possible A.

Using a similar reasoning to Proposition 5.22, it can be argued that any Set

Notation module can be sequentially implemented using some (ND) sequential ma-

chine.

Proposition 5.27. Any Set Notation module N can be sequentially implemented

by some (ND) sequential machine N ′.

5. Correspondences between models 82

Proof. Proposition 5.26 proves the set of Set Notation modules which can be se-

quentially implemented by sequential machines. Similarly to Proposition 5.22, if a

module N cannot be sequentially implemented by a sequential machine, we utilise

non-determinism in the definition of N ′. This is achieved by adding new actions to

N ′, containing input lines which are already present in actions in the same state,

where the output sets and resulting states are that of actions in N which have not

yet been “implemented” in N ′. This causes N ′ to non-deterministically “decide”

between multiple actions of N during the processing of the final input signal in a

sequence of actions which processes an input set of N .

5.3.2 (ND) sequential machines to Set Notation modules

We established earlier in this chapter that it is difficult to prove in general that a

Set Notation module N has the same “external behaviour” as some (ND) sequential

machine N ′, due to the difficulty of formalising the notion of an environment for a

(ND) sequential machine. Regardless, we give a limited algorithm which, given some

(ND) sequential machine N ′ which satisfies certain conditions, we claim produces a

Set Notation module N such that N ′ sequentially implements N .

We introduce some useful notation to help express these conditions. Given some

(ND) sequential machine module N ′ = (Q, I, O, f, g, A), let q1
a1→ q2

a2→ . . .
an−1

→ qn

iff for all 1 ≤ i < n, f(qi, ai) = qi+1.

Given some (ND) sequential machine module N ′ = (Q, I, O, f, g, A), the fol-

lowing conditions are quantified over all L ∈ A(q1) for all q1 ∈ Q, all sequences

a1, . . . , an given by all possible permutations of L, and all q1
a1→ q2

a2→ . . .
an→ qn+1.

• E1: g(qi, ai) ∩ g(qj, aj) = ∅ for all 1 ≤ i, j ≤ n.

Informally, this condition states that for all states q and all concurrent sets L ∈ A(q),

signalling the set L in state q cannot result in multiple signals (i.e. clashing) on the

wires connected to the module’s output lines.

• E2: g(qi, ai) 6= ∅ for some 1 ≤ i ≤ n.

Informally, this condition states that for all states q and all concurrent sets L ∈ A(q),

signalling the set L in state q must eventually produce a non-empty set of output

signals.

For simplicity, the algorithm assumes that the (ND) sequential machine is given

in the form (Q, I, O, T, A), that is to say that f and g are combined into the single

transition map T : Q × I → Q × P [O], similarly to when encoding (ND) sequential

machines in the Seq/Set model. We give the algorithm in Figure 5.4.

5. Correspondences between models 83

Require: (ND) sequential machine N ′ = (Q′, I ′, O′, T ′, A′) which satisfies condi-
tions E1 and E2.

1: create Set Notation module N = (Q, I, O, T) where Q = Q′, I = I ′, O = O′ and
T = {(q, {a}, q′, B) : (q, a, q′, B) ∈ T ′}

2: let n = |B| for the largest B ∈ A′(q′) for all q′ ∈ Q′

3: for every 2 ≤ i ≤ n do
4: for every q ∈ Q ∩ Q′ do
5: for every set B ∈ A′(q) such that |B| ≥ i do
6: let subs = {C ⊆ B : |C| ≤ i − 1}
7: for all pairs D, E in subs such that D ∩ E = ∅, and |D| + |E| = i do
8: for all actions (D, F).q′ of q do
9: for all actions (E, G).q′′ of q′ do

10: create action (D ∪ E, F ∪ G).q′′ in q of N
11: end for
12: end for
13: for all actions (E, G).q′ of q do
14: for all actions (D, F).q′′ of q′ do
15: create action (D ∪ E, F ∪ G).q′′ in q of N
16: end for
17: end for
18: end for
19: end for
20: end for
21: end for
22: delete all actions of N containing empty output sets
Ensure: Set Notation module N = (Q, I, O, T)

Figure 5.4: Algorithm for converting a (ND) sequential machine N ′ to a Set Notation
module N .

5. Correspondences between models 84

Optionally, it may also be possible in practice to delete certain states in N ′

which are unreachable from some assumed starting state, depending on the intended

operation of the module. This is due to the fact that these unreachable states may

be equivalent to a situation where the module is in a different state with some signals

pending, but has not yet absorbed them.

Example 5.28. Inputting the sequential machine Join (Figure 2.1 in Chapter 2)

to the algorithm would yield the following Set Notation module.

S0 = ({a, b}, {c}).S0

Sa = ({b}, {c}).S0

Sb = ({a}), {c}.S0

Note that Sa and Sb are not reachable from S0. These states correspond to Sa and Sb

of the sequential machine Join respectively and also correspond to a scenario where

the sequential machine Join has absorbed only one of the two required input signals.

However, due to the nature of Set Notation, this situation can also be modelled by

placing a signal on one of the wires connected to either a or b when the module is in

state S0. Therefore we can safely remove states Sa and Sb from the above definition,

resulting in the single state module S0 = ({a, b}, {c}).S0, which is equivalent to the

Set Notation Join (Example 3.12 in Chapter 3, where the state S0 is instead labelled

J).

However it is not clear that it is always possible in general to remove states, and

so we do not assume it as part of the algorithm.

Informally, we note that the algorithm is not “minimal” in the sense that in-

putting N ′ may not result in the simplest such N , where N ′ sequentially implements

N . An example of this is the ATS module. Inputting ATS to the algorithm yields

the fATS Set Notation module (Example 4.32 in Chapter 4), but we have already

shown in Example 5.16 that ATS also sequentially implements mATS. Furthermore,

mATS and fATS implement each other (Section 4.3 in Chapter 4).

Remark 5.29. We note that the conditions E1 and E2, which limit the modules

that may be input to the algorithm in Figure 5.4, guarantee that an auto-clashing

Set Notation module is never produced.

Claim 5.30. Given a (ND) sequential machine module N ′, the algorithm in Figure

5.4 yields a Set Notation module N such that N ′ sequentially implements N .

5.3.3 Set Notation modules to (ND) sequential machines

We finish this chapter by giving an algorithm for converting any Set Notation module

N to a sequential machine module N ′, such that N ′ sequentially implements N .

5. Correspondences between models 85

Similarly to the previous section, for simplicity, the algorithm assumes that f

and g are combined into the single transition map T : Q × I → Q × P [O]. Hence

the resulting (ND) sequential machine is given by (Q, I, O, T, A).

Before introducing the algorithm, we give two important auxiliary functions.

Definition 5.31. Given some Set Notation module N = (Q, I, O, T), the following

are quantified over all A ⊆ I and all q ∈ Q:

1. Let S(A, q) = {(q, A, q′, out) : (q, A, q′, out) ∈ T}.

2. Let aggregate(q) = {S(A, q) : S(A, q) 6= ∅}.

Informally, S(A, q) returns the set of transitions which share the input set A and

the source state q. aggregate(q) returns the set of all possible S(A, q) for a given

state q.

Assume in the following that a state name is represented using a string, and two

state variables are equal if their strings are equal. Assume also that the ability to

concatenate strings is defined in the usual way using the · operator. This allows

us to easily encode data in the state names of the module during the algorithm’s

execution. We require that no state variable initially contains a “—” character in its

string representation. We give the algorithm in Figure 5.5. The algorithm converts

a module to a sequential machine module if possible, and only converts to a ND

sequential machine module if required.

The final step in the algorithm in Figure 5.5 is performed by following the same

steps as the state-merge algorithm for pseudo-environments (Figure 4.3 in Chapter

4), but modified to account for the fact that transitions of (ND) sequential machines

contain single input lines rather than input sets. It is not included as the resulting

algorithm is identical with this exception.

Example 5.32. Inputting the Set Notation module Join (Example 3.12 in Chapter

3) to the algorithm in Figure 5.5 yields (if we ignore the difference in state names)

the sequential machine module Join (Figure 2.1 in Chapter 2).

Proposition 5.33. Given any Set Notation module N , the algorithm in Figure 5.5

yields a (ND) sequential machine N ′ such that N ′ sequentially implements N . If N

can be sequentially implemented by a sequential machine (according to Proposition

5.26), then N ′ is a sequential machine, otherwise it is a ND sequential machine.

Proof. The algorithm generates the behaviour of N ′ for each state q of N , by se-

lecting each action (A, B).q′ one at a time from the set of actions in q of N which

contain A. In general, each (A, B).q′ is “implemented” in N ′ using a single sequence

of actions corresponding to a single permutation of A. In the final action in a se-

quence, the output set B is produced and the state of N ′ changes to the state which

5. Correspondences between models 86

Require: Set Notation module N = (Q, I, O, T) where no q ∈ Q contains the
character “—”

1: create (ND) sequential machine module N ′ = (Q′, I ′, O′, T ′, A′) where Q′ =
Q, I ′ = I, O′ = O, T is empty, and for all q′ ∈ Q′, A(q′) returns
the empty set

2: for every q1 ∈ Q ∩ Q′ do
3: create empty set U (of type sequence)
4: for every S = {(q1, B, q′, C) : (B, C).q′ ∈ q1 for some C, q′} ∈ aggregate(q1)

in increasing size of B, such that |B| > 1 do
5: for some (q1, B, q′, C) ∈ S, add B to A(q1)
6: let S ′ = S and let P = sequences(B) for some (q1, B, q2, C) ∈ S
7: for every p1 ∈ P do
8: if there exists some p2 ∈ U , where prefix(p2, p1), remove p1 from P
9: end for

10: add all elements of P to set U
11: for every transition t = (q1, B, q′, C) ∈ S ′ do
12: remove t from S ′

13: if |S ′| = 0 then let P ′ = P
14: else let P ′ = P ′′ for some P ′′ ⊆ P where |P ′′| = 1 end if
15: remove all elements of P ′ from P if |P | > 1
16: for every p = (i1, i2, . . . , in) ∈ P ′ do
17: create transition (q1, i1, q2, ∅) ∈ T ′ if it does not exist where q2 =

(q1·“—”·i1), and if q2 /∈ Q′ it is added to Q′ and we set A(q2) =
∅

18: for every 1 < j < n do
19: create transition (qj , ij, qj+1, ∅) ∈ T ′ if it does not already exist

where qj = (q1·“—”·i1 · . . . · ij−1) ∈ Q′, and qj+1 = (qj · ij),
and if qj+1 /∈ Q′ it is added to Q′ and we set A(qj+1) = ∅

20: add to A(qj) the set D = {ij , ij+1, . . . , in} if there does not
exist some E ∈ A(qj) where D ⊆ E

21: end for
22: create transition (qn, in, q′, C) ∈ T ′ if it does not already exist

where qn = (q1·“—”·i1 · . . . · in−1) ∈ Q′ (note q′ ∈ Q′)
23: add to A(qn) the singleton set {in} if there does not exist some

C ∈ A(qn) where in ∈ C
24: end for
25: end for
26: end for
27: end for
28: remove duplicate states of N ′ and associated transitions, and redirect transitions’

co-domains appropriately if any states are removed.
Ensure: (ND) sequential machine module N ′ = (Q, I, O, T, A).

Figure 5.5: Algorithm for converting any Set Notation module N to a (ND) sequen-
tial machine module N ′.

5. Correspondences between models 87

corresponds to q′ of N . If (A, B).q′ is the last action in q of N to be “implemented”

which contains A, it will be “implemented” in N ′ using all remaining available se-

quences corresponding to permutations of A. If there are no available sequences

remaining to process A, non-determinism is utilised in N ′ and the penultimate state

in an “already-used” sequence has a new action added containing the final input

of that sequence (resulting in N ′ becoming a ND sequential machine). This new

action’s output set is B and its resulting state (of N ′) corresponds to q′ of N . Sets

of actions from q of N are “implemented” in N ′ in order of increasing size of input

set. This allows the algorithm to rule out sequences which are prefixed by sequences

corresponding to permutations of smaller sets in actions in q of N . This guarantees

that a ND sequential machine is only produced if N does not fit the conditions given

in Proposition 5.26.

5.4 Conclusion

In this chapter we compared the sequential machine model for DI networks with

the new Set Notation model. We introduced an extension to the sequential machine

model called the ND sequential machine model. We established limited correspon-

dences between three models; the sequential machine model, the ND sequential

machine model, and the new Set Notation model. We proved universality results

for the ND sequential machine model. We gave algorithms for converting modules

which satisfy certain conditions (formalised as E1 and E2) in the sequential machine

model or the ND sequential machine model, to corresponding definitions in the Set

Notation model, and vice versa.

Chapter 6

Universality and implementing

modules using concurrency

In this chapter we investigate inversion of networks of modules. We give some

universality results for serial modules in the Set Notation model. We then give a

series of detailed construction methods and universal sets for the non-arb and eq-

arb classes of modules. We also prove a universal set for all Set Notation modules,

by utilising a correspondence between the ND sequential machine and Set Notation

models defined in the previous chapter. We demonstrate an interesting property

inherent to networks of concurrent DI modules, which is that bijectivity of all mod-

ules’ transition maps can still result in useful irreversible behaviour at the global

level. We compare this with a similar but less general result in the literature.

Part of this chapter was published in [53]. This includes the constructions of

arbitrary M×NJoins (Figure 6.4) and M×NForks and the non-arb b-arb and non-

arb non-b-arb construction methods (Figures 6.5, 6.6 and 6.7).

We also note that imperative algorithms which follow the non-arb and eq-arb

construction methods in this chapter are implemented in the Delay-Insensitive Net-

work Tool Suite program developed in support of this thesis. Please see Chapter 10

for details on this software.

6.1 Inverting modules and networks

Recall (Example 3.27 and Observation 3.28 in Chapter 3) that it is not possible to

simply invert any bijective module, such that the resulting module is guaranteed to

operate deterministically given a set of input signals, even if safety holds. We show

instead an interesting property regarding non-arb non-b-arb modules. These are

logically reversible, and as shown previously in Chapter 3, they are a proper subset

of all modules which are bijective. This gives these modules, and certain networks

88

6. Universality and implementing modules using concurrency 89

composed of only these modules a special property, which is that of invertibility

while maintaining deterministic behaviour.

Observation 6.1. Consider some network S containing some non-arb, non-b-arb

module N = (Q, I, O, T) in state q ∈ Q, and assume that signals are present on

the wires connected to the set of input lines A, and that for some B, q′, (A, B).q′ is

an action of q. As N is non-arb, the module is guaranteed to eventually absorb all

signals on the lines A, produce signals on the output lines B, and move to state q′.

Now assume that we take some network S ′ containing the inverse

N ′ = (Q′, I ′, O′, T ′) of N in state q′. Note that I ′ = O and O′ = I. T ′ is the inverse

of T and is still a partial bijection. Assume now that signals are present on the wires

connected to the set of (now input) lines B. Note that N ′ is also non-arb non-b-arb.

Hence, due to the inversion of T , the input set B is defined in exactly one action in

the current state q′ of N ′ such that (B, A).q is an action of q′. Hence the module N ′

is guaranteed to eventually absorb all input signals on the input lines B, produce

output signals on the output lines A and move to state q, via the same action as

before, but now inverted.

Informally, provided that safety and non-clashing holds, the module N ′ can be

seen to have the “inverse behaviour” of N , even when concurrent signals are involved.

Furthermore, assuming that there are no initial signals on the wires of the net-

work, this phenomenon appears to apply transitively to networks of non-arb, non-

b-arb modules. This is due to the fact that the sets of input signals applied to each

module in the network, the sets of output signals produced from each module, and

the resulting state changes are all deterministic (providing safety and non-clashing

hold). Inverting all modules within the network maintains backwards-deterministic

behaviour in terms of which actions of each module are processed.

Definition 6.2. We say that S is an invertible network if it contains only non-arb

non-b-arb modules and no signals present on any wires. We define the inverse of S

to be the network S ′, where S ′ is S except:

1. each module is replaced with its inverse in the same state,

2. the directions of all wires are reversed.

Example 6.3. Recall the 4-way Join and 4-way Fork trees (Example 2.2 in Chap-

ter 2). Assume that these networks are operating under the Set Notation model,

and each Join and Fork module is replaced with its identically named counterpart

(Examples 3.12 and 3.16 in Chapter 3 respectively). Note that all modules in the

resulting networks are non-arb non-b-arb and both networks are invertible. Further-

more, each network is the other’s inverse.

6. Universality and implementing modules using concurrency 90

qp

a

cr

s

0

0 1

JJ
initialinitial

signalsignal

herehere

Figure 6.1: A safe non-arb non-b-arb network containing two Join modules and a
DM module in state S0. Inverting this network results in a network which is unsafe.

Signalling each of the four input lines of the Join tree eventually results in an

output signal from the network. Similarly, signalling the input line of the Fork tree

eventually results in a signal on each of the four output lines of the network. In this

sense, each network exhibits the inverse behaviour of the other.

We note however that this is not the case in general when there are signals

initially present on wires in a network. Sometimes “inverting” such a network may

result in non-safety for one of the (now inverted) modules within the network.

Example 6.4. Consider the network in Figure 6.1, which contains two Join mod-

ules (Example 3.12 in Chapter 3) and the Set Notation counterpart (according to

Observation 3.20 in Chapter 3) of the DM module (Figure 2.5 in Chapter 2) in state

S0. Note that this network is safe and non-clashing.

Inverting this network will result in a network containing two Fork modules

(Example 3.16 in Chapter 3), and a single serial module which is the inverse of DM

(that we note is equivalent to DM according to Observation 2.36 in Chapter 2).

However, due to the presence of the two signals indicated in the image, the inverted

DM module will have simultaneous signals on the wires connected to two of its input

lines. As this module is serial, this means that the module (and by extension the

network) is unsafe.

See Chapter 9 where we exploit the existence of invertible networks in order

to design new Self-Timed Cellular Automata which allow the implementation of

networks which operate in both the forwards and reverse directions using a single

structure.

6.2 Serial universality results

In this section we infer some useful universality results for the classes of reversible

serial and serial modules in Set Notation.

6. Universality and implementing modules using concurrency 91

Proposition 6.5. The set {RT, IRT } is universal for the class of reversible serial

modules, where RT and IRT are the Set Notation counterparts (found by Observa-

tion 3.20) of the sequential machines RT and IRT (Figure 2.4 in Chapter 2).

Proof. In [48] it is shown that for any reversible serial sequential machine N , a

network of sequential machine REs (Example 2.4 in Chapter 2) can be constructed

such that the network realises (according to Definition 2.14 in Chapter 2) N in

one of its states q. It can also be observed in [48] that the same network can

realise the other states of N just by altering the states of the RE modules in the

construction (analogously to the concept of a state variation in the Set Notation

model). Similarly, in [36] it is shown that RE can be realised in either of its states

V or H using a network of RT, IRT, and C-D modules (which we do not define here),

and it can also be observed that the same network can realise the other state of RE

just by altering the states of the RT, IRT and C-D modules. It is also shown in [36]

that a C-D module can be realised in one of its states using a network of RT and

IRT modules, and again it can also be observed that the same network can realise

all other states of C-D by altering the states of the RT and IRT modules. From

this we can conclude that for any reversible serial sequential machine module N ,

there exists a network S of sequential machine RT and IRT modules which realises

N in some state q, and altering the states of the modules can allow the network to

realise N in any other of its states.

By Observation 3.20, the behaviour of serial modules in the sequential machine

model is not affected by the differences in execution behaviour between the sequential

machine model (Definition 2.3 and Condition 3 in Chapter 2) and the Set Notation

model (Definition 3.5 in Chapter 3). Set Notation counterparts are considered serial

by Definition 3.18. By Definition 2.16 it is necessary that any networks in the

sequential machine model containing serial modules must ensure that only one input

signal arrives at each serial module at a time. Therefore, replacing each RT and

IRT module in S with its Set Notation counterpart (resulting in a network S ′) and

assuming Set Notation execution behaviour (Definition 3.5 in Chapter 3) always

results in a safe network. Non-clashing also holds trivially in S ′ by the requirement of

Condition 6 in the sequential machine model. The network S ′ therefore behaves the

same as S, and the network is guaranteed to be safe and non-clashing. The definition

of a realisation (Definition 2.14 in Chapter 2) guarantees that the environment of N

cannot distinguish N from S. The environment behaviour of a sequential machine

serial module is trivially equivalent to the behaviour of any maximal environment of

its Set Notation counterpart (which sends a single signal on some valid input line,

and then waits for the corresponding output signal). From this we can conclude that

N ′ and S ′ are indistinguishable in state q, where N ′ is the Set Notation counterpart

of N .

6. Universality and implementing modules using concurrency 92

By the same reasoning, we can alter the states of any modules in S in order for the

network to realise N in any of its other states q′. Each resulting network possesses

a Set Notation counterpart S ′′, which is a state variation of S ′, such that N ′ and

S ′′ are indistinguishable in state q′. This satisfies the conditions for implementation

(Definition 4.29 in Chapter 4), and S ′ implements N ′.

Furthermore, all serial modules in the sequential machine model can be expressed

in the Set Notation model using a counterpart, and vice versa. Hence any serial

module in the Set Notation model can be implemented using a network of the Set

Notation modules RT and IRT.

Proposition 6.6. The set {RT, IRT, Merge } is universal for the class of serial

modules, where RT, IRT and Merge are the Set Notation counterparts (found by

Observation 3.20) of the sequential machines RT, IRT and Merge (Figures 2.4 and

2.1 in Chapter 2).

Proof. Similarly to Proposition 6.5, in [23] it is shown that for any serial sequential

machine N , a network of sequential machine Selects and Merges can be constructed

such that the network realises (according to Definition 2.14 in Chapter 2) N in one

of its states q. It can also be observed in [23] that the same network can realise

the other states of N just by altering the states of the modules in the construction

(analogously to the concept of a state variation in the Set Notation model). In

Figure 2.8 in Chapter 2, it is shown that Select can be realised in either of its states

S0 or S1 using a network of RDM s, Merges, and it is shown that the same network

can realise the other state of Select just by altering the states of the modules. By

the same reasoning shown in the proof of Proposition 6.5, RDM can be realised in

one of its states using a network of RT and IRT modules, and the same network can

realise all other states of RDM by altering the states of the RT and IRT modules.

From this we can conclude that for any serial sequential machine module N , there

exists a network S of sequential machine RT, IRT and Merge modules which realises

N in some state q, and altering the states of the modules can allow the network to

realise N in any other of its states.

The remainder of the proof is the same as Proposition 6.5, but it is consid-

ered that the sequential machine Merge can also be replaced by its Set Notation

counterpart without affecting the behaviour of the network.

6.3 Non-serial universality results and concurrent

implementations

Our objective is to identify separate universal sets for different non-serial classes of

modules defined in Set Notation, such that modules in a universal set for a class

6. Universality and implementing modules using concurrency 93

possess desirable properties related to the class. For example, a universal set for

non-b-arb modules would ideally contain only modules which are non-b-arb. The

importance of creating different sets relates to the implied greater complexity of

physical implementation of modules with certain properties (i.e. arb vs. non-arb,

b-arb vs. non-b-arb). Recall that it is not simple in the sequential machine model

to create different universal sets for various classes of modules which are not serial,

as the sequential machine model makes it difficult to classify modules based on

their high-level behaviour due to the lack of a distinction between deterministic and

non-deterministic behaviour.

We will prove several universal sets for different subclasses of modules in Set

Notation. We do this by first introducing general construction methods for both

subclasses of non-arb modules. We then show how to extend this to both sub-

classes of eq-arb modules. We compare our constructions with Keller’s method

(Figure 2.3 in Chapter 2) and our extension of it (Figure 5.2 in Chapter 5) by

noting that those methods require modules which exhibit clear non-deterministic

behaviour (such as ATS) even when realising modules which exhibit clear deter-

ministic behaviour. Those constructions also processes one signal at a time, in a

sequential manner which reflects the behaviour of modules in the sequential ma-

chine model. Our new constructions are parallel in nature, thus realising modules’

concurrent behaviour more directly. We finish by proving a universal set for all

Set Notation modules by utilising the correspondence developed between the Set

Notation model and ND sequential machine model in Chapter 5.

We shall use in our main construction arbitrarily-sized M×NJoins (Figure 6.2),

where at least one of M , N is greater than or equal to 2. Note that a maximal

environment of an arbitrary M ×NJoin is one which sends a single input signal

on some ai (for some 1 ≤ i ≤ M) and a single input signal on some bj (for some

1 ≤ j ≤ N), before waiting for an output signal on ci,j. It then repeats this

behaviour.

In the remainder of this section, when referring to the module DM (Figure 2.5 in

Chapter 2), it can be assumed that we are referring to its Set Notation counterpart

(found by Observation 3.20 in Chapter 3).

We now demonstrate how to construct arbitrary M × NJoins using only the

non-arb non-b-arb set {DM, Join }. Figure 6.3 shows how to construct an arbitrary

1×NJoin using only {DM, Join }. Figure 6.4 shows how to utilise a 1×NJoin to

construct an arbitrary M×NJoin. We compare our construction with that of Keller

in [23], and Patra and Fussell in [60] which both utilise Merge and therefore do

not satisfy any notion of reversibility. Note also that inverting these constructions

according to Definition 6.2, which involves replacing Join with Fork in and rela-

belling the ports of DM (as DM is its own inverse by Observation 2.36 in Chapter

6. Universality and implementing modules using concurrency 94

b1b2bN

a1

a2

aM

c1,N

c2,N

cM,1cM,2cM,N

JMN = ({a1, b1}, {c11}).JMN + ({a1, b2}, {c12}).JMN

+ . . . + ({aM , bN }, {cMN}).JMN

Figure 6.2: M×NJoin and behavioural specification

b1b2bN

c1c2cN

0 0 0

000

000

0 00

111

1 11

qqq

q qq

ppp

p pp

a

aaa

a aa

ccc

c cc

rrr

r rr

sss

s ss

J

Figure 6.3: Arbitrary 1×NJoin implemented using {DM, Join}.

2), the inverse of this construction can be achieved, yielding M ×NForks. Hence

the non-arb non-b-arb set {DM, Join, Fork } allows M ×NJoins and M ×NForks

of arbitrary size to be constructed.

6.3.1 Universal sets for non-arb modules

In order to construct an arbitrary non-arb module N , we shall use three auxiliary

modules defined in terms of N . Firstly, we introduce some helpful functions.

Definition 6.7. Given any Set Notation module N = (Q, I, O, T).

1. Let ISetsN = {B : (q, B, q′, C) ∈ T}.

2. Let OSetsN = {C : (q, B, q′, C) ∈ T}.

Informally, ISetsN and OSetsN are the sets of input and output sets which appear

in actions of N respectively.

The three auxiliary modules for N are defined as follows.

6. Universality and implementing modules using concurrency 95

b1

b2

bN

a1a2aM

c1,1c2,1cM,1

c1,2c2,2cM,2

c1,Nc2,NcM,N

0
0

0
0

0

0

0

00

0
0

000

000

0

00

000

0

1 1 1

111

111

111

q q q

qqq

qqq

qqq

p p p

ppp

ppp

ppp

a a a

aaa

aaa

aaa

c c c

ccc

ccc

ccc

r r r

rrr

rrr

rrr

s s

s

s

s

ss

s

s

sss

Figure 6.4: Arbitrary M×NJoin implemented using {DM, 1×NJoin}.

Definition 6.8. Given any non-arb module N = (Q, I, O, T), let

SerN = (SQ, SI, SO, ST) where:

1. SQ = Q,

2. SI = {Ii : 1 ≤ i ≤ |ISetsN |},

3. SO = {Oi : 1 ≤ i ≤ |OSetsN |},

4. ST = {(q, A, q′, B) : (q, mapIN(A), q′, mapON(B)) ∈ T}, where mapIN is any

bijection that maps SI to I and mapON is any bijection that maps SO to O.

Informally, SerN is a serial module which represents the behaviour of N but with

input and output sets replaced with singletons. SerN is reversible iff N is non-b-arb.

Definition 6.9. Given any non-arb module N = (Q, I, O, T) and

SerN = (SQ, SI, SO, ST), let SerN Q = (SqQ, SqI, SqO, SqT) where:

1. SqQ = Q,

2. SqI = SI ∪ {qi},

3. SqO = SO ∪ {qx : x ∈ Q},

6. Universality and implementing modules using concurrency 96

4. SqT = ST ∪ {(x, qi, x, qx) : x ∈ Q}.

Informally, SerN Q extends the functionality of SerN with the ability to query the

state of the module on a dedicated set of lines, and this does not modify the state

of the module. SerNQ is reversible iff N is non-b-arb.

Definition 6.10. Given any non-arb module N = (Q, I, O, T) and

SerN = (SQ, SI, SO, ST), let SerN Q′ = (Sq′Q, Sq′I, Sq′O, Sq′T) where:

1. Sq′Q = Q,

2. Sq′I = SI ∪ {qx : x ∈ Q},

3. Sq′O = SO ∪ {qi},

4. Sq′T = ST ∪ {(x, qx, x, qi) : x ∈ Q}.

Informally, SerNQ′ is similar to SerN Q but with the query functionality inverted.

SerN Q′ is reversible iff N is non-b-arb.

We help to explain the overall construction method through use of an example.

We define a non-arb non-b-arb module P , and its auxiliary modules. We will then

describe how to construct P using {RT, IRT, Join, Fork }. Our explanation will refer

to both the construction of P and the general case for constructing some module N .

Example 6.11. P is given by:

S0 = ({a, b, c}, {x, y}).S0 + ({a, c, d}, {y, z}).S1

S1 = ({a, c, d}, {x, y}).S1 + ({a, b, d}, {x, z}).S0

The set mappings required for SerP , SerP Q and SerP Q′ are:

mapIP = {({I1}, {a, b, c}), ({I2}, {a, c, d}), ({I3}, {a, b, d})}

mapOP = {({O1}, {x, y}), ({O2}, {y, z}), ({O3}, {x, z})}

Finally:

SerP : S0 = ({I1}, {O1}).S0 + ({I2}, {O2}).S1

S1 = ({I2}, {O1}).S1 + ({I3}, {O3}).S0

SerP Q : S0 = ({I1}, {O1}).S0 + ({I2}, {O2}).S1 + ({qi}, {qS0
}).S0

S1 = ({I2}, {O1}).S1 + ({I3}, {O3}).S0 + ({qi}, {qS1
}).S1

SerP Q′ : S0 = ({I1}, {O1}).S0 + ({I2}, {O2}).S1 + ({qS0
}, {qi}).S0

S1 = ({I2}, {O1}).S1 + ({I3}, {O3}).S0 + ({qS1
}, {qi}).S1

6. Universality and implementing modules using concurrency 97

The construction is divided into two stages. Stage 1 determines the input set which

has been signalled and then updates the state of the auxiliary modules in the network

accordingly. Stage 2 determines the output set and creates signals on the appropriate

output lines. The states of the auxiliary modules remain consistent with each other

and correspond to the state of the original module. Stage 1 of the construction of

P is shown in Figure 6.5.

In the general case for some module N = (Q, I, O, T), a signal on some input line

ai is forked to several columns of M×NJoins, one for each input set A defined in some

action (A, B).q′ of the current state of N , such that ai ∈ A. This is determined by

querying an instance of SerN Q to determine the current state of N , and hence which

columns the signal should be forked to. These columns contain different numbers

and sizes of M×NJoins depending on the module being constructed. Each M×

NJoin in a given input set’s column synchronises an additional input signal. Hence

synchronising three signals requires two M×NJoins. We typically synchronise signals

in lexicographical order for simplicity, but this is not required. In this example for

P it can be observed that the leftmost column, which calculates whether {a, b, c}

has been signalled, first synchronises signals on a and b, and then following this it

synchronises this completed set {a, b} with a signal on c.

Eventually exactly one column produces an output on the bottom M×NJoin,

corresponding to some input set C, for some action (C, D).q′′ of the current state

of N , being satisfied. This signal then removes other signals from the network

corresponding to input lines which are part of the C. These are guaranteed to be

eventually indefinitely pending on various M×NJoins in other columns. This is

achieved by utilising other inputs of the M×NJoins. The order that inputs in a set

are synchronised also affects the location of signals which need to be “cancelled”,

but this is always able to be determined based on the structure of the columns.

In this example for P , if {a, b, c} is satisfied in S0 (the leftmost column), the

resulting signal removes other signals corresponding to these input lines from the M×

NJoin column corresponding to the (only) other input set in actions of S0 ({a, c, d}).

This involves removing signals corresponding to a and c from the second column of

M×NJoins (but no signals corresponding to b, as there are no sets other than {a, b, c}

containing b in actions in S0 of P). However, due to the synchronisation order of

the second column, the signals corresponding to a and c, which have been forked to

the second column, will eventually be synchronised by the top-most M×NJoin in

that column, and hence a single signal corresponding to the completed set {a, c} is

guaranteed to eventually be pending on the second M×NJoin. This signal must be

removed. Similarly, if {a, c, d} is satisfied in S0, pending signals corresponding to a

on the top M×NJoin and c on the bottom M×NJoin in the leftmost column must

be cancelled.

6. Universality and implementing modules using concurrency 98

In the general case, it is always possible to cancel other forked input signals

either individually or after they have been synchronised, as they will be pending on

some fixed combination of M×NJoins. As N is non-arb, this is uniquely determined

based on the satisfied input set, the structure of the columns, and the current state

of N .

After “cancelling” other instances of input signals, the resulting signal is “re-

versibly merged” using an instance of SerNQ′, allowing input sets which exist in

actions in different states to share a single line. Following this, the resulting signal

forks to the input line Ii of all SerNQ and SerNQ′ modules in both stages of the

construction, where Ii maps to the satisfied input set C according to mapIN(Ii) = C.

This has the effect of updating the state of N (stored consistently across all SerNQ

and SerN Q′ modules). Output signals on all Oj of these modules are then synchro-

nised using a Join tree. The resulting signal corresponds to an output set of N , and

continues to Stage 2.

In this example for P , this can be seen with the set {a, c, d}, which exists in

actions in both S0 and S1. Hence two columns, each representing {a, c, d} in an

action in S0 and S1 respectively, are reversibly merged through the middle instance

of SerP Q′. Using a Fork tree, the signal then forks to all thirteen instances of SerP Q

and SerP Q′ in both stages 1 and 2 (Figure 6.6), inputting on each module’s instance

of I2 as mapIP (I2) = {a, c, d}. This updates the state of P according to the action

({a, c, d}, {y, z}).S1 or ({a, c, d}, {x, y}).S1 depending on whether the current state

of P is S0 or S1.

Stage 2 (Figure 6.6 for the example with P) uses a mostly symmetric method to

stage 1. In the general case, this is achieved by inverting N , and then following the

construction method of stage 1 but we:

1. exclude the “state update” operation (the bottom Fork and Join trees in

Figure 6.5),

2. utilise the existing definitions of SerNQ and SerNQ′ in the construction, rather

than those corresponding to the inverse of N .

After this, we mostly invert the construction of this stage, (with M×NForks replaced

with M×NJoins, and vice versa) except instead of inverting SerN Q and SerN Q′

modules, we exchange SerNQ modules with SerN Q′ modules and vice versa. This

construction for stage 2 is only possible when N is non-b-arb, and hence the inverse

of N is non-arb. This allows us to re-use the method for stage 1. If N is non-arb

non-b-arb, stages 1 and 2 contain only non-arb non-b-arb modules.

In this example for P , stages 1 and 2 contain only non-arb non-b-arb modules.

This completes the construction for the non-arb non-b-arb module P . Any non-

arb non-b-arb module can be constructed by following such a method.

6. Universality and implementing modules using concurrency 99

SerP Q SerP QSerP Q SerP Q

SerP Q′SerP Q′SerP Q′

a

a

a a

a b

b
b

c

c
c

c

d dd

d

{a, b, c}

{a, b, c}

{a, c, d}{a, c, d}

{a, c, d}

{a, b, d}

{a, b, d}

{a, b}
{a, b}

{a, c}{a, c}

{x, y} {y, z} {x, z}

qi qiqi qi

qiqiqi

qS0
qS0

qS0
qS0

qS0
qS0

qS0

qS1
qS1

qS1
qS1

qS1
qS1

qS1

I1 I1I1

I1I1I1I1

I2 I2I2

I2I2I2I2

I3 I3I3

I3I3I3I3

O1 O1O1 O1

O1O1O1

O2 O2O2 O2

O2O2O2

O3 O3O3 O3

O3O3O3

in S0

in S0

in S1in S1
satisfiedsatisfied

satisfied
satisfied

FFF F

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

merge allmerge allmerge all
{a, b, c} into {a, c, d} into {a, b, d} into

single linesingle linesingle line

ca
n
ce

l
an

y
ot

h
er

ca
n
ce

l
an

y
ot

h
er

ca
n
ce

l
an

y
ot

h
er

ca
n
ce

l
an

y
ot

h
er

a
,

c,
d

in
S

0

a
,

b,
c

in
S

0

a
,

c,
d

in
S

1

a
,

b,
d

in
S

1

a

a

a

a

b

b

c

c

c

dd

d

a, b
a, ba, ca, c

Fork to all I1 Fork to all I2 Fork to all I3

Join from all O1 Join from all O2 Join from all O3

To stage 2

Query the
state and
fork each

input to all
relevant

input sets in
the current

state

Verify input
set one

input at a
time by
joining

signals

signals
together

Satisfied
input set
cancels
other

Reversibly
merge

identical
sets from
different

states

Update
states of all
SerP Q and
SerP Q′ in

both stages

Figure 6.5: Stage 1 (input determination and state update) for P . This stage of the
construction contains only non-arb non-b-arb modules.

6. Universality and implementing modules using concurrency 100

SerP QSerP QSerP Q

SerP Q′SerP Q′SerP Q′

xxx

x

y
y y

y

z
z

z

{x, y} {y, z} {x, z}

qiqiqi

qiqiqi

qS0
qS0

qS0

qS0
qS0

qS0

qS1
qS1

qS1

qS1
qS1

qS1

I1I1 I1

I1I1I1

I2I2 I2

I2I2I2

I3I3 I3

I3I3I3

O1O1O1

O1O1O1

O2O2O2

O2O2O2

O3O3O3

O3O3O3

JJ

Figure 6.6: Stage 2 (output determination) for P . This stage of the construction
contains only non-arb non-b-arb modules.

6. Universality and implementing modules using concurrency 101

x y z

FFF

MMM

{x, y} {y, z} {x, z}

Figure 6.7: Irreversible stage 2 (output determination) for P .

In the general case, an “irreversible” version of stage 2 can be trivially constructed

with Merges and Forks, similarly to the bottom section of Figure 2.3 (see Chapter

2). When combined with stage 1, this is used to construct any non-arb module.

This version of stage 2 is used when the module is b-arb and the previous technique

of inverting N , then following the method for stage 1, is not possible.

Figure 6.7 shows an irreversible stage 2 for P . We note however that this is

not necessary as P is non-b-arb and hence we can use the non-b-arb method for

generating stage 2 of P (shown in Figure 6.6).

When considering both possible methods for generating stage 2, the construction

method can be used to implement any non-arb module. This gives us two universal

sets for different classes of non-arb modules.

Theorem 6.12. {RT, IRT, Fork, Join } is universal for the class of non-arb non-b-

arb modules, and all constructions of such modules contain only non-arb non-b-arb

modules. Such constructions are invertible.

Proof. A non-arb non-b-arb module N has reversible serial instances of SerNQ and

SerN Q′ which can be implemented using {RT, IRT } (Proposition 6.5). Hence non-

arb non-b-arb constructions of stages 1 and 2 (Figures 6.5 and 6.6) can be achieved

using {RT, IRT, Fork, Join } and arbitrarily large M×NJoins and M×NForks. We

showed how to construct any M×NJoin or M×NFork using {DM, Fork, Join }. DM

can also be implemented using {RT, IRT } (Proposition 6.5). Such networks do not

require any initial signals on wires, and hence are invertible by Definition 6.2.

Theorem 6.13. {RT, IRT, Fork, Join, Merge } is universal for non-arb modules.

Proof. Theorem 6.12 proves that {RT, IRT, Fork, Join } can implement any mod-

ules in the non-b-arb subclass. Any other module N in this class has instances of

SerN Q and SerNQ′ which can be implemented using {RT, IRT, Merge } (Proposi-

tion 6.6). Hence, constructions of stage 1 (Figure 6.5) can be achieved using {RT,

6. Universality and implementing modules using concurrency 102

IRT, Fork, Join, Merge } and arbitrarily large M×NJoins and M×NForks (which

can be constructed with {RT, IRT, Fork, Join }). Stage 2 can be constructed for

any non-arb module using {Merge, Fork } (Figure 6.7).

6.3.2 Universal sets for eq-arb modules

We will show how to modify stage 1 of the construction from the previous section

to allow separate realisations of the classes of eq-arb non-arb, and eq-arb b-arb

modules.

Recall (Section 5.1.1 in Chapter 5) that we can relabel identical input lines

between actions in the same state of an ND sequential machine module such that

for all states, no input line appears in more than one action in that state. We follow

a similar approach for Set Notation modules, such that the resulting SerN generated

from an eq-arb Set Notation module N , does not contain multiple actions containing

the same input line in any given state. Hence SerN remains serial despite N being

eq-arb.

Like in Definition 5.4 in Chapter 5, we define some useful auxiliary functions to

help in the description of the construction.

Definition 6.14. Given some SerN = (Q′, I ′, O′, T ′) for some module

N = (Q, I, O, T), the following are quantified over all a ∈ I ′ and q ∈ Q′:

1. Let no(a, q) refer to the number of actions in state q that contain input a.

2. Let max(a) be the maximum of all no(a, q).

3. If max(a) > 1, let relabel(a) = a1, . . . , an, be any sequence of names where:

• n = max(a) − 1,

• for all 1 ≤ i ≤ n: ai /∈ I ′ and for all b ∈ I ′, where b 6= a, ai /∈ relabel(b).

If max(a) ≤ 1 then relabel(a) is assumed to be undefined.

4. Let setAct(a, q) = (a1, B1).q1, . . . , (am, Bm).qm, be any sequence given by the

set of actions in state q which contain the input line a, where m = no(a, q),

ai = a for all 1 ≤ i ≤ m, and no two actions in the sequence are equal. If

no(a, q) = 0 then setAct(a, q) is assumed to be undefined.

Assume we are given an eq-arb module N = (Q, I, O, T), and we generate

SerN = (Q′, I ′, O′, T ′) in the usual way described in Definition 6.8. We now show

how to modify SerN to be a serial module. Assume that for all a ∈ I ′ and q ∈ Q′,

any valid definitions have been calculated for the functions in Definition 6.14.

6. Universality and implementing modules using concurrency 103

1. For all a ∈ I ′, we add all ak ∈ relabel(a) to I ′ if relabel(a) is defined.

2. For all states q ∈ Q′, all inputs a ∈ I ′ such that no(a, q) > 1, and all 0 < i ≤ k

where setAct(a, q) = (a0, B0).q0, . . . , (ak, Bk).qk, we relabel ai in (ai, Bi).qi ∈ q

to the jth name in the sequence relabel(a), where j = i−1. This ensures that

for each state, no input line appears in more than one action in that state.

Informally, as a result of this modification, each input set of N now instead corre-

sponds to multiple input lines of SerN , rather than a single input line of SerN as in

the case of N being non-arb.

Note that the resulting module is always a serial module. We still generate

SerNQ and SerNQ′ from SerN in the usual way according to Definitions 6.9 and

6.10.

The modifications to the non-arb construction to accommodate eq-arb modules

are similar to those given in Figure 5.2 in Chapter 5, and utilise Choice modules

(Figure 5.1 in Chapter 5) in order to preserve the non-determination of N . The

modifications involve stage 1 only.

In the modified construction:

1. Instead of there existing a corresponding SerNQ′ module for each input set of

the original module N , there exists a corresponding SerNQ′ module for each

input line of SerN . Note that some SerNQ′ still correspond with input sets of

N , as some input lines of SerN still also correspond with input sets of N .

2. For all M×NJoin columns, if it synchronises some input set A in some state

q of N , where A appears in n > 1 actions in q of N ,

• instead of connecting the output line of some M×NJoin in some column

(corresponding to the current column having finished “removing” pending

input signals) to the input line qx of the SerNQ′ corresponding to A

(where x = q), we connect this output line to the input line of a n-way

Choice tree,

• we connect any output line of this Choice tree to the input line qx of the

SerNQ′ corresponding to A (where x = q),

• for all remaining output lines b of this Choice tree, we connect b to any

unconnected qx of some NA, where x = q, and NA is an instance of

SerNQ′ which corresponds to some I ′
j of SerN , such that I ′

j ∈ relabel(Ij)

where Ij is the input of SerN which corresponds directly with the input

set A.

Informally, this ensures that the non-deterministic choice present from signalling A

in state q of N is preserved, as the Choice tree non-deterministically distributes the

6. Universality and implementing modules using concurrency 104

final resulting signal from the M×NJoin column which synchronises the set of signals

corresponding to A, (after removing any pending input signals from other columns)

to any of the SerN Q′ modules corresponding to alternative “choices” resulting from

signalling the input set A in state q.

Example 6.15. Consider module P2 given by:

S0 = ({a, b, c}, {x, y}).S0 + ({a, b, c}, {x, z}).S1 + ({a, c, d}, {y, z}).S1

S1 = ({a, c, d}, {x, y}).S1 + ({a, b, d}, {x, z}).S0

This module is similar to P used in the previous section and in Figures 6.5 and 6.6,

but instead contains an additional action in S0 which contains the input set {a, b, c}.

By following the standard method for generating SerP2
(according to Definition 6.8),

it is initially defined as follows.

S0 = ({I1}, {O1}).S0 + ({I1}, {O3}).S1 + ({I2}, {O2}).S1

S1 = ({I2}, {O1}).S1 + ({I3}, {O3}).S0

As I1 appears multiple times in S0, a relabelling occurs, and SerP2
is modified to

the following.

S0 = ({I1}, {O1}).S0 + ({I ′
1}, {O3}).S1 + ({I2}, {O2}).S1

S1 = ({I2}, {O1}).S1 + ({I3}, {O3}).S0

Note that the 2nd instance of I1 in S0 has been relabelled to I ′
1. SerP2

Q and

SerP2
Q′ are then generated from SerP2

in the usual way.

The resulting construction of stage 1 for this module is similar to that shown in

Figure 6.5 for module P . The differences are as follows.

1. All SerP Q and SerP Q′ modules are replaced in both stages with SerP2
Q and

SerP2
Q′, containing the additional input line I ′

1.

2. There exists a new additional instance of SerP2
Q′, such that its output line qi

forks to all I ′
1 in all SerP2

Q and SerP2
Q′ in both stages, and all existing Fork

and Join trees also connect appropriately to its input and output lines as with

other SerP2
Q SerP2

Q′ modules.

3. The wire which connects to the input line qS0
of the leftmost SerP Q′ (now

SerP2
Q′) in Figure 6.5, instead connects to the input line of a new 2-way

Choice module.

4. One output line of the new Choice module connects to the qS0
input line of

the leftmost SerP Q′ (now SerP2
Q′) in Figure 6.5.

6. Universality and implementing modules using concurrency 105

5. The other output line of the new Choice module connects to the qS0
input line

of the new additional SerP2
Q′ module.

The method for constructing stage 2 of P2 is the same as for P (Figure 6.6), ex-

cept as noted above, all SerP Q and SerP Q′ are replaced with SerP2
Q and SerP2

Q′

respectively.

The existence of this modified construction method gives us the following result.

Theorem 6.16. {RT, IRT, Fork, Join, Choice } is universal for eq-arb non-b-arb

modules and {RT, IRT, Fork, Join, Merge, Choice } is universal for eq-arb modules.

Proof. Theorems 6.12 and 6.13 prove that {RT, IRT, Fork, Join } is universal for

non-arb non-b-arb modules and {RT, IRT, Fork, Join, Merge } is universal for non-

arb modules respectively. We have detailed modifications to stage 1 of the non-arb

non-b-arb and non-arb b-arb construction methods to allow the constructions of eq-

arb non-arb modules and eq-arb b-arb modules respectively. This involves modifying

the SerN , SerN Q and SerNQ′ modules generated from the eq-arb module in order

for them to remain serial, and hence still able to be implemented by {RT, IRT } if

they are reversible and {RT, IRT, Merge } otherwise. The only additional module

required is Choice. Hence {RT, IRT, Fork, Join, Choice } can be used to construct

any eq-arb non-b-arb module, and {RT, IRT, Fork, Join, Merge, Choice } can be

used to construct any eq-arb module.

For physical implementation, it may be more desirable to use universal sets which

contain only those modules which can be sequentially implemented by sequential

machines. Recall that the ND sequential machine version of Choice can be realised

using ATS and Fork (Figure 5.3 in Chapter 5). Note that ATS is not required to

be initialised in state S0. This allows us to replace the above two sets with the

following.

Theorem 6.17. {RT, IRT, Fork, Join, sATS } is universal for eq-arb non-b-arb

modules and {RT, IRT, Fork, Join, Merge, sATS } is universal for eq-arb modules.

Proof. Theorem 6.16 proves that {RT, IRT, Fork, Join, Choice } is universal for

eq-arb non-b-arb modules and {RT, IRT, Fork, Join, Merge, Choice } is universal

for eq-arb modules. Recall (Figure 5.3 in Chapter 5) that we have shown how to

realise the ND sequential machine version of Choice using the sequential machine

modules Fork and ATS. Note that it is possible to replace Fork with its Set Notation

counterpart (Observation 3.15 in Chapter 3), and ATS with sATS (Section 3.3 in

Chapter 3), and assume Set Notation execution behaviour (Definition 3.5 in Chapter

3) without affecting the overall behaviour of the network. Finally, the Set Notation

6. Universality and implementing modules using concurrency 106

sATS

R T

T0 T1

M

ab

c

Figure 6.8: Join implemented using sATS and Merge.

version of Choice is trivially equivalent to its ND sequential machine counterpart

(also by Observation 3.15 in Chapter 3), and has only one state. Hence the Set

Notation version of Choice can be implemented using {sATS, Fork }.

While these sets only contain modules which can be sequentially implemented

by sequential machines, this has the effect of replacing the eq-arb module Choice

with the more general arb module sATS, which may or may not be ideal.

We now show how to replace Join in the previous universal sets with sATS

and Merge. See Figure 6.8 where Join is implemented using sATS and Merge. In

universal sets where sATS and Merge are already present, such as the universal set

{RT, IRT, Fork, Join, Merge, sATS } for eq-arb b-arb modules, this has the effect

of reducing the size of the set.

This implies the following universality result.

Proposition 6.18. {RT, IRT, Fork, Merge, sATS } is universal for the class of

eq-arb modules.

Proof. Theorem 6.17 proves that {RT, IRT, Fork, Join, Merge, sATS } is universal

for eq-arb modules. Figure 6.8 shows how to implement Join using sATS and

Merge.

We note that as a result of Figure 6.8, it is possible to remove Join from the

other non-arb universal sets shown in this chapter. However this has the effect

of introducing the arb module sATS to sets which otherwise contain only non-arb

modules.

6.3.3 Universal sets for all modules

We now prove a universal set for all Set Notation modules. This is achieved by

utilising the correspondence between Set Notation modules and (ND) sequential

6. Universality and implementing modules using concurrency 107

machines, as well as the general construction method for (ND) sequential machines

(see Chapter 5).

Recall that {ATS, Fork, Merge, RT, IRT } is universal (in the sense of Definition

2.15 in Chapter 2) for (ND) sequential machines (Theorem 5.10 in Chapter 5).

Theorem 6.19. {sATS, Fork, Merge, RT, IRT } is universal for all Set Notation

modules.

Proof. Recall that we showed that any Set Notation module N can be sequentially

implemented using a (ND) sequential machine N ′, such that any maximal environ-

ment of N cannot distinguish between N and N ′ (Proposition 5.27 in Chapter 5)

for all pairs of corresponding states q and sm(q). For any state q′ of N ′, N ′ can

be realised using a network S (following the construction method in Figure 2.3 in

Chapter 2 and the modifications in Section 5.1.1 in Chapter 5) containing only the

set of sequential machines {ATS, Fork, Merge, RT, IRT } (Theorem 5.10 in Chapter

5).

Note that the serial module (which we call N ′′) in the network S, (which maps

its output sets to N ′), can be realised using {RT, IRT } if it is reversible, and {RT,

IRT, Merge } otherwise (Proposition 2.33 and Corollary 2.41 in Chapter 2). Note

that, as discussed in the proofs of Propositions 6.5 and 6.6, there exists a realisation

of N ′′, such that for any state q′′ of N ′′, it is possible to have the states of its modules

modified, such that the resulting network is also a realisation of N ′′ in state q′′.

From this we can conclude that for any N ′, there exists a network S of sequential

machines {ATS, Fork, Merge, RT, IRT } which realises N ′ in some state q, and

altering the states of the modules in S can allow the network to realise N ′ in any of

its other states.

Note that the ATS modules in S are never required to be initialised in state

S0. Hence it is possible for these modules to be replaced with sATS (Section 3.3

in Chapter 3), for Fork, Merge, RT and IRT modules to be replaced by their Set

Notation counterparts (Observation 3.15 in Chapter 3), and to assume Set Notation

execution behaviour (Definition 3.5 in Chapter 3) without affecting the overall be-

haviour of S. Let S ′ refer to the modified network containing only the Set Notation

modules {ATS, Fork, Merge, RT, IRT }.

The network S ′ therefore behaves the same as S, and S ′ is also guaranteed to be

safe and non-clashing. The definition of sequential implementation (Definition 5.14

in Chapter 5) guarantees that the environment of N cannot distinguish N from N ′,

and by extension N from S or S ′. From this we can conclude that N and S ′ are

indistinguishable in state q.

By the same reasoning, we can alter the states of any modules in S in order

for the network to realise N ′ in one of its other states sm(q′′′) for all q′′′ of N .

6. Universality and implementing modules using concurrency 108

Each resulting network possesses a Set Notation counterpart S ′′, which is a state

variation of S ′, such that N and S ′′ are indistinguishable in state q′′′. This satisfies

the conditions for implementation (Definition 4.29 in Chapter 4), and S ′ implements

N ′.

However, consider that this only shows that a “sequential” style construction

exists for any Set Notation module, such that all input signals are forced to be pro-

cessed one at a time by a serial module inside the construction. This is in contrast to

the construction methods given in this chapter, which yield highly parallel networks

in order to process multiple inputs concurrently. Hence the only currently known

way to construct an arb Set Notation module is to use a highly inefficient serialised

implementation which reflects sequential machine behaviour.

Recall also that Join is not present in this set. Informally, this implies that

all synchronisation operations within any construction using this set are done via

sATS, as this is the only module in this set which allows two signals to safely arrive

concurrently. Note that Join is the simplest possible “synchronisation” module,

containing only one state, two input lines, a single output line, and one action. The

above implementation of Join (Figure 6.8) utilises sATS, but also requires Merge. It

is not clear whether an implementation of Join exists which does not require Merge,

and can be achieved using only {sATS, Fork, RT, IRT }. However if {Merge, sATS }

are used in place of Join, there will be a large number of non-bijective modules

present (due to Merge) in implementations of arbitrary modules, even if the module

being implemented is bijective. It therefore may be preferable in practice to utilise

a Join module in order to minimise the number of clear sources of irreversibility

in a given construction (which, as discussed in Chapter 1, corresponds to energy

dissipation in practice).

6.3.4 Irreversibility from local bijectivity

Recall (Observation 3.28 in Chapter 3) that there is a mismatch between logical

reversibility of a module’s definition, and the ability to invert a module and obtain

forwards-deterministic behaviour. We prove that this phenomenon is sufficient to

allow non-trivial irreversible computation.

Recall the definition of sATS−1 (Example 3.27 in Chapter 3). Figure 6.9 shows

how to implement the Merge module using sATS−1 and Join.

We begin by stating new universality results which are implied by the implemen-

tation of Merge using sATS−1 and Join.

Proposition 6.20. The set of bijective modules {sATS−1, Join, RT, IRT } is uni-

versal for the class of serial modules.

6. Universality and implementing modules using concurrency 109

sATS−1

R T

T0 T1

J

a b

c

initial
signal
here

Figure 6.9: Merge implemented with sATS−1 and Join.

Proof. Proposition 6.6 states that {RT, IRT, Merge } is universal for the class of

serial modules. Figure 6.9 shows that Merge can be implemented using {sATS−1,

Join }.

The full class of Set Notation modules is similarly implied to be realisable using

only bijective modules.

Theorem 6.21. The set of bijective modules {Join, Fork, RT, IRT, sATS, sATS−1 }

is universal for the full class of Set Notation modules.

Proof. Theorem 6.19 states that {Merge, Fork, RT, IRT, sATS } is universal for the

class of Set Notation modules. Figure 6.9 shows that Merge can be implemented

using {sATS−1, Join }.

We note that, interestingly, the universal set {Join, Fork, RT, IRT, sATS,

sATS−1 } contains three sets of pairs, where each pair represents two modules which

are mutual inverses.

As a side result, we briefly note that the sequential machine module Merge can

be realised using the same network as Figure 6.9, but sATS−1 is replaced by its

sequential machine counterpart (found according to Observation 3.15), and Join is

replaced by the sequential machine Join. This gives us the following result where

sATS−1 is the sequential machine counterpart to the Set Notation sATS−1.

Corollary 6.22. The set of modules {ATS, Fork, Join, sATS−1 } is universal (in

the sense of Definition 2.15 in Chapter 2) for the class of (ND) sequential machines.

Proof. Theorem 5.10 in Chapter 5 states that {ATS, Fork, Merge, RT, IRT } is

universal for the class of (ND) sequential machines. The sequential machine Merge

can be realised using the sequential machines sATS−1 and Join.

If constructing non-arb non-b-arb modules according to the method demon-

strated in Figures 6.5 and 6.6, restricting to the set in Theorem 6.21 would require

6. Universality and implementing modules using concurrency 110

that Join is substituted with sATS−1 and Merge, which may not be desirable as this

introduces b-arb modules into the construction.

Informally, we note that the only obvious source of irreversibility in the network

in Figure 6.9 is the lack of retention of information regarding the timing of signals

travelling along wires throughout the network. Consider also that the order in

which modules in Figure 6.9 assimilate input signals and produce output signals is

fixed. If the input line a is signalled, Join always assimilates all input signals and

produces an output signal prior to sATS−1, followed by no other modules. If the

input line b is signalled then sATS−1 assimilates this signal and produces two output

signals, followed by no other modules. By extension, if an irreversible serial module

is implemented using a safe network containing only {Merge, RT, IRT} such that all

Merge modules are then replaced by the implementation using sATS−1 and Join, the

resulting network contains no variations in the order in which modules absorb input

signals and produce output signals. This still occurs in a fixed order as outside of

the Merge implementations, there is a single signal moving throughout the network

as the only other modules are the serial modules RT and IRT and safety is assumed.

These are interesting results for the study of the theoretical limitations of asyn-

chronous circuits. It suggests that a delay-insensitive network has an inherent limi-

tation where the lack of any timing assumptions on its own introduces enough irre-

versibility to perform useful irreversible computation, regardless of the information-

theoretic reversibility (bijectivity) of any modules within the circuit, even if the

strong desirable property of safety holds. This is highlighted further when consid-

ering the implementation of serial modules, as the set {sATS−1, Join, RT, IRT} is

still universal even though in addition to the above properties, a network can be

constructed such that modules assimilate input signals and produce output signals

in a fixed order. This rules out the possibility that the cause of this “global” ir-

reversibility is the asynchronous order in which modules process signals relative to

each other.

We compare this result with a similar but less general result from [30]. In [30] it

is shown that the set of bijective modules {CDE, T-Join, multiplexer} is universal

for the class of DI modules which are conservative when defined using the notation

in [62] (where a module is conservative if for all actions (A, B).q′ in all states,

|A| = |B|). However the proof depends on the module multiplexer which, when

represented using our CCS-like notation, is defined in [30] as follows.

e = (S0, T0).0 + (S1, T1).1

0 = (I0, O0).e

1 = (I1, O1).e

6. Universality and implementing modules using concurrency 111

It is explicitly stated in [30] that simultaneous input signals are expected on S0 and

S1 in e, meaning that the set {S0, S1} may arrive in state e, and an input signal on

S1 (S0) may also arrive in state 0 (1). When operating in the Set Notation model,

this does not satisfy our notion of safety. One may consider altering the definition of

multiplexer such that it is safe when used as expected under our model. One possible

definition of multiplexer in our Set Notation model, modified such that signals may

arrive on S0 and S1 without causing non-safety would be:

e = ({S0}, {T0}).0 + ({S1}, {T1}).1 + ({S0, S1}, {T0}).0S1

0 = ({I0}, {O0}).e + ({S1, I0}, {O0, T1}).1

1 = ({I1}, {O1}).e + ({S0, I1}, {O1, T0}).0

0S1 = ({I0}, {O0, T1}).1

It can be argued that the behaviour implied by this definition is equivalent to mul-

tiplexer from [30], and the definition cannot be reduced without reintroducing non-

safety during its operation. However, when modelled using this definition, the mod-

ule is no longer considered bijective (and is also not conservative). Therefore the

proof in [30] does not show that the set of modules {CDE, T-Join, multiplexer} is

for universal for the class of DI modules which are conservative when defined using

the notation in [62], while preserving both our notion of safety and bijectivity of

its modules at the same time. We conjecture that as a result, the lack of safety

of multiplexer in [30] introduces additional irreversibility as it is impossible to de-

duce in which order the “competing” input signals on S0 and S1 were assimilated

(alternatively, irreversibility is introduced from the non-bijectivity of multiplexer if

the definition given above is assumed). Compare this with our discovery above,

where the only information loss in Figure 6.9 appears to be the timing of signals

travelling across wires, and yet this still provides enough expressiveness for full serial

universality if used in conjunction with RT and IRT to implement the set of serial

modules.

We also briefly note a similar investigation into this phenomenon in [33], where

Merge is implemented using REs and Conservative Joins, which are similar to Joins

but contain two output lines instead of one, and produce output signals on both

output lines simultaneously. Hence both modules contain bijective transition maps,

and when defined using Set Notation are in fact non-b-arb. However, examining the

implementation of Merge in [33] reveals that safety of the (explicitly serial) module

labelled RE1 is not guaranteed to hold when an input signal is applied to I1 of the

network, followed by receipt of a signal on O by the environment and the sending

of an input signal on I2 of the network.

6. Universality and implementing modules using concurrency 112

6.4 Conclusion

In this chapter we investigated inversion of networks of modules. We gave some

universality results for serial modules in the Set Notation model. We then gave

a series of detailed construction methods and universal sets for the non-arb and

eq-arb classes of modules. We also proved a universal set for all Set Notation

modules, by utilising a correspondence between the ND sequential machine and Set

Notation models defined in the previous chapter. We demonstrated an interesting

property inherent to networks of concurrent DI modules, which is that bijectivity of

all modules’ transition maps can still result in useful irreversible behaviour at the

global level. We compared this with a similar but less general result in the literature.

Chapter 7

DI-Set algebra for DI networks

In this chapter we introduce a new process algebra, called DI-Set algebra, which is

intended to model the behaviour of networks from the Set Notation model. We give

examples of encoding modules (such as Merge) and networks (such as a network that

implements Merge) in DI-Set algebra, and define properties of networks discussed in

previous chapters (such as safety and non-clashing) more formally in the context of

DI-Set algebra. We investigate the use of bisimulation and simulation, and use these

together with the aforementioned properties to define more formally the concept of

implementation of a module using a network of modules.

We note that a version of DI-Set algebra is implemented in the Delay-Insensitive

Network Tool Suite program developed in support of this thesis. Furthermore, the

bisimulation and simulation relations defined in this chapter were verified using this

software. Please see Chapter 10 for details on this software.

7.1 Syntax and operational semantics

We now introduce DI-Set algebra which will allow us to more formally model delay-

insensitive networks. This will let us deduce all possible behaviours of a network

and formalise concepts from previous chapters such as safety, non-clashing and more

importantly, implementation.

An important feature of DI-Set algebra is that of module labels. These allow

us to store the set of signals on wires of a network in a single structure (which we

call the communication bus), while recording which module is the target of each

signal. It also allows us to distinguish between modules in the labels of transitions,

even if they share the same names of input or output lines. Finally, it allows us to

re-use constants (which correspond to CCS-like module state definitions) in order to

utilise multiple instances of the same module in a network. For example, we might

construct a network containing two Merge modules. These would possess different

labels (e.g. “1” and “2”). It would then be clear whether a particular signal in the

113

7. DI-Set algebra for DI networks 114

〈port〉 |= 〈string〉

〈A〉 |= ∅ | {〈port〉} | 〈A〉∪〈A〉

〈action〉 |= (〈A〉,〈A〉).〈D〉 | (•,〈A〉).〈D〉

〈M〉 |= 〈D〉 | 〈action〉 | 〈M〉+〈M〉

〈nM〉 |= 〈M〉·〈name〉

〈P 〉 |= 〈nM〉 | 〈P 〉|〈P 〉

〈name〉 |= 〈string〉

〈nP ort〉 |= 〈port〉·〈name〉

〈C〉 |= ∅ | {〈nP ort〉} | 〈C〉∪〈C〉

〈wire〉 |= {(〈nP ort〉,〈nP ort〉)}

〈w〉 |= ∅ | 〈wire〉 | 〈w〉∪〈w〉

〈G〉 |= 〈C〉〈w〉

〈L〉 |= 〈P 〉||〈G〉

〈S〉 |= 〈L〉-〈C〉

Figure 7.1: BNF for algebra

bus is an input signal to one of these two modules, as it will have a label associated

with it, which could be either “1” or “2”.

The structure of our new process algebra is described using Backus-Naur Form

(BNF) [41], which can be seen in Figure 7.1.

The type 〈string〉 refers to all possible strings composed only of alphanumeric

characters ([a-z],[A-Z],[0-9]) and subscripts. Informally, M represents a module,

P represents a collection of named modules. G represents a communication bus,

and w represents the wire function. A represents a set of ports, C represents a

set of named ports. L represents a network, and S represents a partially-visible

network. D represents a constant. The + operator represents non-deterministic

choice. The | operator composes multiple modules. The || operator composes the

set of modules with the communication bus. The • symbol in an action represents

that the module has absorbed input signals but not yet produced output signals.

Finally, the − operator hides a given set of named ports from being visible in the

labels of transitions. It is similar to the hiding operator found in the CSP process

algebra [17].

We use the prime operator ′ and subscripts to refer to different variables of the

same type. When referring to w we generally write w for convenience. We also as-

sume the common set operations of membership (∈), union (∪) and difference (\) are

defined on A, C, w in the usual way. We use k in the following to refer to a variable

of type 〈name〉. We also require w(nP ort1) = nP ort2 ⇐⇒ {nP ort1, nP ort2} ∈ w.

7. DI-Set algebra for DI networks 115

Input
A 6= ∅

(A, A′).D
?A
→ (•, A′).D

Output
A′ 6= ∅

(δ, A′).D
!A′

→ D

Summation
M

∗A
→ M ′

M + M ′ ∗A
→ M ′

Labelled module
M

∗A
→ M ′

M · k
∗A·k
→ M ′ · k

Module collection
P

∗A·k
→ P ′

P |Q
∗A·k
→ P ′|Q

Enter bus
C ′

w

?C
→ (C ′ ∪ w(C))w

Leave bus
(C ′ ∪ C)w

!C
→ C ′

w

Module/Bus
P

∗C
→ P ′, G

∗C
→ G′

P ||G
∗C
→ P ′||G′

Network
L

∗C
→ L′

L − C ′
∗(C\C′)

→ L′ − C ′
⋆

Congruence
S ≡ S ′, S ′ ∗C

→ S ′′, S ′′ ≡ S ′′′

S
∗C
→ S ′′′

Figure 7.2: SOS rules for DI-Set algebra. Let ! =? and ? =!, and ∗ ∈ {!, ?}. For all
A = {a1, . . . , an} and all k, we write A · k as shorthand for {a1 · k, . . . , an · k}. Let
δ ∈ {•, ∅}. The condition ⋆ is, if C ′ \ C = ∅ then ∗(C ′ \ C) is τ .

With the exception of Figure 7.2, we do not refer to terms of type L, and we instead

always refer directly to components (P ||G) of L within the context of a larger term

of type S. Hence for simplicity, we refer to partially-visible networks (terms of type

S) as network definitions (or simply networks).

To define the behaviour of the syntax, we use Structured Operational Semantics

(SOS for short) [71, 72] which describes the behaviour of a system based on the

behaviour of its parts. The SOS of our process algebra is found in Figure 7.2.

We also define several structural congruence equations to provide flexibility when

writing terms. These can be found in Figure 7.3.

Typically the set of all behaviours of a network is represented by a labelled

transition system.

Definition 7.1. A Labelled Transition System (LTS for short) (Si, St, T) of a

7. DI-Set algebra for DI networks 116

(∅, ∅).D ≡ D (•, ∅).D ≡ D

P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R

M + M ′ ≡ M ′ + M M + (M ′ + M ′′) ≡ (M + M ′) + M ′′

P ||G ≡ G||P D ≡ M if D
def
= M

Figure 7.3: Structural congruence equations for DI-Set algebra.

network Si is the smallest such collection of states St of type S, and transitions

T ⊆ (St × {?, !, τ} × C × St), where:

1. Si ∈ St,

2. (S ′, ∗, Cj, S ′′) ∈ T iff S ′ ∗Cj
→ S ′′ is defined,

3. for all (S ′, ∗, Cj, S ′′) ∈ T , if ∗ = τ then Cj = ∅.

The algebra allows us to conveniently encode module definitions given in their

CCS-like form directly into the syntax, by defining each state’s CCS-like represen-

tation as a constant. As discussed previously, we can then instantiate the module

by labelling a module’s state constant with a unique identifier and then placing it

within the larger network term, resulting in a “named” module. This allows us to

instantiate a module’s state constant multiple times, corresponding to the presence

of several instances of the same module in a network. Furthermore, we can encode

environment definitions directly within the syntax in the same way as modules.

Hence a “module” in DI-Set algebra corresponds with a Set Notation module or en-

vironment in a particular state. The wire function w allows us to connect modules

and environments within a network, by specifying which output lines of modules are

connected to which input lines.

When depicting a network, we do not depict modules which contain actions of

the form (∅, ∅).D or (•, ∅).D, instead choosing to rewrite the term using one of the

equations from Figure 7.3.

Example 7.2. We show how to encode a single Merge module (which we label “1”),

with a corresponding maximal environment EnvM’ (Example 4.14 in Chapter 4),

and use the wire function to normally-connect them together. Assume that Merge is

defined using the constant M
def
= ({a}, {c}).M +({b}, {c}).M , analogously to Exam-

ple 3.16 in Chapter 3. The environment EnvM’ is defined, analogously to Example

4.14 in Chapter 4, using the constants EM
def
= ({}, {a}).EMa + ({}, {b}).EMa and

EMa
def
= ({c}, {}).EM , which we instantiate in state EM with label “E”. We define

the wire function as w1 = {(a · E, a · 1), (b · E, b · 1), (c · 1, c · E)}, which results in a

7. DI-Set algebra for DI networks 117

M · 1 EM · E
aa bb cc

{}w1
(bus)

Figure 7.4: Abstract representation of the network containing Merge and a corre-
sponding maximal environment EnvM’ encoded in the algebra as S1. Signals are
sent and received between modules via the bus according to w1.

normally-connected network. The resulting network term S1 is as follows.

S1 = M · 1 | EM · E || {}w1
− {}

The {}w means that there are no signals initially on any wires. Similarly, the −{}

means that there are no ports being hidden, and hence all signals which are placed

or removed from the bus will appear in the labels of transitions. Figure 7.4 shows

an abstract representation of the structure of S1. Informally, the two modules can

be considered to be connected to the bus, which is then responsible for the passage

of signals between the two modules. A possible series of transitions corresponding

to the environment sending an input signal to the module on a, and ultimately

receiving an output signal from the module on c is as follows.

S1 = M · 1 | EM · E || {}w1
− {}

!{a·E}
→ S1

1 = M · 1 | EMa · E || {a · 1}w1
− {}

?{a·1}
→ S2

1 = ((•, {c}).M) · 1 | EMa · E || {}w1
− {}

!{c·1}
→ S3

1 = M · 1 | EMa · E || {c · E}w1
− {}

?{c·E}
→ S1

The output transition !{a · E} causes a signal a · 1 to appear in the bus, due to the

relabelling which occurs as a result of the wire function w1(a · E) = a · 1. Similarly,

the output transition !{c · 1} causes a signal c · E to appear in the bus.

Port hiding can be utilised to hide all “internal” transitions which correspond to

the processing of signals by modules within a network.

Example 7.3. We give a modified version of S1, along with the same series of

transitions, except that all ports that are not labelled with “E” are hidden. This

causes transitions containing only these ports to become τ , and transitions which

contain these ports as well ports with labels other than “E” to contain only the

ports with labels other than “E”. Let the set of hidden ports be defined by C1 =

7. DI-Set algebra for DI networks 118

{a · 1, b · 1, c · 1}. The new network is defined as S2 = M · 1 | EM · E || {}w1
− C1,

and the series of possible transitions is as follows.

S2 = M · 1 | EM · E || {}w1
− C1

!{a·E}
→ S1

2 = M · 1 | EMa · E || {a · 1}w1
− C1

τ
→ S2

2 = ((•, {c}).M) · 1 | EMa · E || {}w1
− C1

τ
→ S3

2 = M · 1 | EMa · E || {c · E}w1
− C1

?{c·E}
→ S2

We note briefly that the algebra is flexible enough to allow realisations of several

alternative DI models outlined in Section 2.4.2 of Chapter 2. This includes bi-

directionality (there is no restriction in the syntax to say that input and output

lines cannot share the same name, and we can simply add extra pairs to the w

function corresponding to wires simultaneously operating in the reverse direction)

and buffering lines (as the bus is a multiset and there is nothing stopping multiple

signals on the same line from being present). Finally, the algebra directly supports

the modelling of (ND) sequential machines in the syntax, but with the concession

that the definition of safety which we define below would not be applicable when

considering (ND) sequential machines (as briefly discussed in Chapter 5). These

concepts are not explored further as this is beyond the scope of this thesis.

We demonstrate how to model a network containing multiple modules.

Example 7.4. Recall (Figure 6.9 in Chapter 6), that we can implement the Merge

module using sATS−1 and Join. The left of Figure 7.5 shows the resulting net-

work after combining Figure 6.9 with Merge’s environment EnvM’ (Example 4.14

in Chapter 4).

We now show how to model this in DI-Set algebra. We define the behaviour of

the Join and sATS−1 modules in DI-Set algebra in the usual way, with the constants

J
def
= ({a, b}, {c}).J and sATS−1 def

= ({T1}, {T}).sATS−1 + ({T0}, {R, T}).sATS−1.

Let the instance of Join have the label “1”, the instance sATS−1 have the label “2”,

and the instance of EnvM’ have the label “E”. Let the wire function w2 be defined

as:

w2 = {(a · E, b · 1), (b · E, T1 · 2), (T · 2, c · E), (R · 2, a · 1), (c · 1, T0 · 2)}

as suggested by the network in the left of Figure 7.5. Let the set of hidden ports be

defined as C2 = {a · 1, b · 1, c · 1, R · 2, T · 2, T0 · 2, T1 · 2}, which corresponds to all

non-environment ports being hidden. The network S3 containing both modules and

7. DI-Set algebra for DI networks 119

sATS−1

R T

T0 T1

EM

J

a b c

initial
signal
here

R T T0 T1

Bus

a a

J · 1 sATS−1 · 2 EM · E

b bc c

initial
signal
in bus

Figure 7.5: (Left) Merge implemented with sATS−1 and Join (as shown in Fig-
ure 6.9), combined with Merge’s maximal environment EnvM’ and (right) abstract
representation of its encoding in the algebra.

the environment is therefore defined as:

S3 = J · 1 | sATS−1 · 2 | EM · E || {a · 1}w2
− C2

There is initially a signal present on the wire connected to the input line a of the

Join (as shown in the left of Figure 7.5), which is modelled by placing the signal a ·1

in the bus. The right of Figure 7.5 shows an abstract representation of the structure

of S3. A possible sequence of transitions, again modelling the environment sending

an input signal on a and eventually receiving an output signal on c, is as follows.

S3 = J · 1 | sATS−1 · 2 | EM · E || {a · 1}w2
− C2

!{a·E}
→ S1

3 = J · 1 | sATS−1 · 2 | EMa · E || {a · 1, b · 1}w2
− C2

τ
→ S2

3 = ((•, {c}).J) · 1 | sATS−1 · 2 | EMa · E || {}w2
− C2

τ
→ S3

3 = J · 1 | sATS−1 · 2 | EMa · E || {T0 · 2}w2
− C2

τ
→ S4

3 = J · 1 | ((•, {R, T}).sATS−1) · 2 | EMa · E || {}w2
− C2

τ
→ S5

3 = J · 1 | sATS−1 · 2 | EMa · E || {a · 1, c · E}w2
− C2

?{c·E}
→ S3 = J · 1 | sATS−1 · 2 | EM · E || {a · 1}w2

− C2

We now show the LTSs of S2 and S3. We typically depict LTSs by listing all

states and numbering them, along with each associated transition and the number

of its resulting state. The LTS of S2 is shown in Figure 7.6, where the top-most

state is S2. We give the LTS of S3 in Figure 7.7, where the top-most state is S3.

Note that in both networks, all ports not labelled “E” are hidden. Hence in S3, the

only transition labels which are not τ are the same as those in the LTS of S2 (Figure

7.6).

7. DI-Set algebra for DI networks 120

0 : M · 1 | EM · E || {}w1
− C1

!{a·E}
→ 1

!{b·E}
→ 4

1 : M · 1 | EMa · E || {a · 1}w1
− C1

τ
→ 2

2 : ((•, {c}).M) · 1 | EMa · E || {}w1
− C1

τ
→ 3

3 : M · 1 | EMa · E || {c · E}w1
− C1

?{c·E}
→ 0

4 : M · 1 | EMa · E || {b · 1}w1
− C1

τ
→ 2

Figure 7.6: LTS of Merge combined with its maximal environment EnvM’. The first
state (numbered 0) is the network S2.

0 : J · 1 | sATS−1 · 2 | EM · E || {a · 1}w2
− C2

!{a·E}
→ 1

!{b·E}
→ 6

1 : J · 1 | sATS−1 · 2 | EMa · E || {a · 1, b · 1}w2
− C2

τ
→ 2

2 : ((•, {c}).J) · 1 | sATS1 · 2 | EMa · E || {}w2
− C2

τ
→ 3

3 : J · 1 | sATS−1 · 2 | EMa · E || {T0 · 2}w2
− C2

τ
→ 4

4 : J · 1 | ((•, {R, T}).sATS−1) · 2 | EMa · E || {}w2
− C2

τ
→ 5

5 : J · 1 | sATS−1 · 2 | EMa · E || {a · 1, c · E}w2
− C2

?{c·E}
→ 0

6 : J · 1 | sATS−1 · 2 | EMa · E || {a · 1, T1 · 2}w2
− C2

τ
→ 7

7 : J · 1 | ((•, {T}).sATS−1) · 2 | EMa · E || {a · 1}w2
− C2

τ
→ 5

Figure 7.7: LTS of Merge implementation using sATS−1 and Join, combined with
Merge’s maximal environment EnvM’. The first state (numbered 0) is the network
S3.

7. DI-Set algebra for DI networks 121

7.2 Properties of networks

We can now formalise certain properties from previous sections in order to establish

that desirable conditions hold for networks during execution.

Definition 7.5. We say that an LTS (Sn, St, T) is deadlocking iff there exists some

state Si ∈ St such that for all (S ′, ∗, C ′, S ′′) ∈ T , S ′ 6= Si. We call Si a deadlock

state. An LTS is non-deadlocking if it is not deadlocking.

Informally, an LTS is deadlocking if it is possible to reach a state where no more

transitions are available. The LTSs in Figures 7.6 and 7.7 are non-deadlocking. This

has a correspondence with Definition 3.9 in Chapter 3.

Definition 7.6. We say that an LTS (Sn, St, T) is non-clashing iff for all Pi||Gi −

Ci ∈ St, Gi is a set but not a multi-set. We say it is clashing otherwise.

This corresponds directly with Definition 3.10 in Chapter 3. The LTSs of S2 and S3

in Figures 7.6 and 7.7 are non-clashing.

Definition 7.7. An LTS (Sv, St, T) is safe iff for all Pl||Gl − Cl ∈ St and for all

0 ≤ i ≤ n, where:

1. Pl = M0 · k0| . . . |Mn · kn,

2. Mi = (Ai,0, Bi,0).qi,0 + . . . + (Ai,m, Bi,m).qi,m.

if m > 0 or Ai,0 6= •, then for some 0 ≤ j ≤ m, Gi ⊆ Ai,j where Gi = {a : (a · ki ∈

Gl)}.

Informally, this means that an LTS is safe if all named modules in the network are

safe. It is a further formalisation of Definition 3.11 in Chapter 3. The definition

factors in that modules in DI-Set algebra may be in “intermediate” states, having

assimilated input signals but not yet produced output signals (i.e. there is only a

single action present in the term, with the • symbol in place of an input set). For

these intermediate states of a module, the definition ignores the requirement that

the set of input signals are a subset of some input set of an action. The LTSs in

Figures 7.6 and 7.7 are safe.

Using these properties we can infer some results concerning LTSs in DI-Set al-

gebra. These will correspond with Proposition 4.18 and Theorem 4.19 in Chapter

7.

We first define the previous notion of normal-connectivity (Definition 4.2 in

Chapter 4) between a module and a corresponding environment in the context of

DI-Set algebra. However in this case, we consider only maximal environments.

7. DI-Set algebra for DI networks 122

Definition 7.8. For all Set Notation modules N = (Q, I, O, T) and for all q ∈ Q, let

the constant defined by CCS(N, q) be the CCS-like representation of a Set Notation

module N = (Q, I, O, T) in state q ∈ Q. i.e. the list of actions:

(A0, B0).CCS(N, q0) + , . . . , + (An, Bn).CCS(N, qn)

where (Ai, Bi).qi ∈ q for all 0 ≤ i ≤ n.

Let CCS(E, q′) be defined similarly for all environments E = (Q′, I ′, O′, T ′, N, sc)

and for all q′ ∈ Q′.

Definition 7.9. We define the normal-execution (N, q, E) of a module

N = (Q, I, O, T) and corresponding maximal environment E = (Q′, I ′, O′, T ′, N, sc)

to be the network:

Sm = CCS(N, q) · 1 | CCS(E, q′) · E || {}wn
− Cn

where:

1. q ∈ Q and q′ = sc(q),

2. wn = {(a · 1, a′ · E) : a ∈ O, a′ ∈ I ′} ∪ {(a′ · E, a · 1) : a′ ∈ O′, a ∈ I},

3. Cn = {a · 1 : a ∈ (I ∪ O)}.

This definition corresponds directly with Definition 4.2 in Chapter 4. The new

propositions are as follows and correspond directly with Proposition 4.18 and The-

orem 4.19 from Chapter 4 respectively.

Proposition 7.10. The LTS for the normal-execution (N, q, E) of a module N and

a corresponding maximal environment E is safe and non-clashing.

Proof. By Proposition 4.18.

Proposition 7.11. The LTS for the normal-execution (N, q, E) of a Set Notation

module N which is stable, non-auto-firing, and 1-step-consistent and a corresponding

maximal environment E is safe, non-clashing and non-deadlocking.

Proof. By Theorem 4.19.

We show a useful result regarding infiniteness of LTSs. We first demonstrate the

phenomenon through an example.

Example 7.12. Consider the network from Figure 7.8, composed of a single Fork

and a single Join module, with a signal initially present on the wire connected to

the input line of the Fork. We show how to encode this below using the network S4,

7. DI-Set algebra for DI networks 123

F

J initial
signal
here

Figure 7.8: A network demonstrating the ability for an infinite number of signals to
appear on a wire. The Fork module continuously absorbs a signal on its input line,
and produces a signal on each of its output lines. This causes the wire connecting
the Fork module to the Join module to repeatedly have signals deposited on it.

where F
def
= ({a}, {b, c}).F , J

def
= ({a, b}, {c}).J , and w3 = {(c · 1, a · 1), (b · 1, b · 2)}.

We place an initial signal on the wire connected to the input line of the Fork module,

by initialising the bus to {a · 1}. A possible series of transitions starting from S4 are

also shown.

S4 = F · 1 | J · 2 || {a, ·1}w3
− {}

?{a·1}
→ S1

4 = ((•, {b, c}).F) · 1 | J · 2 || {}w3
− {}

!{b·1,c·1}
→ S2

4 = F · 1 | J · 2 || {b · 2, a · 1}w3
− {}

?{a·1}
→ S3

4 = ((•, {b, c}).F) · 1 | J · 2 || {b · 2}w3
− {}

!{b·1,c·1}
→ S4

4 = F · 1 | J · 2 || {b · 2, b · 2, a · 1}w3
− {}

Note that the states S4, S2
4 and S3

4 are examples of the network returning to the

same state, with the exception that another signal appears on the wire connecting

an output line of the Fork to an input line of the Join (specified as b · 2) with each

“iteration”. As a result, the LTS of S4 contains an infinite number of states.

We now give the following general result. This assumes that the network SD

contains only Set Notation modules and environments, and these are encoded in the

expected way using state constants defined with CCS-like notation.

Proposition 7.13. An LTS (SD, St, T) contains an infinite number of states in St

iff there exists two states Si = Pi||Gi − Ck and Sj = Pj||Gj − Ck, in St such that:

1. Pi = Pj,

2. Gi ⊂ Gj,

3. there exists a sequence of transitions leading from Si to Sj.

Proof. For simplicity, assume that the LTS is depicted in a form similarly to a tree

where the initial state SD is at the top. All states which are reached from the

initial state by a single transition are depicted one level underneath; then all states

7. DI-Set algebra for DI networks 124

which are reachable from these states via a single transition are depicted one further

level underneath, and so on. However a state cannot appear more than once, and

a transition to a state which has already been listed simply connects back to its

existing entry, otherwise a new entry is created on the next level below. Consider

now that there exists a finite number of transitions starting from each state (i.e. the

LTS has finite “breadth” at each level). If there is an infinite number of states in

the LTS, there must exist an infinite number of levels (or “depth”) to the tree-like

representation, and so there must be at least one sequence of transitions starting

from the initial node which has infinite length and does not pass through the same

state twice. Let p be any such sequence of transitions. Let the set of states visited

by following p, (note there is no looping back to an earlier state by following p)

be denoted with StI . Recall that each module in a DI network can be in only a

finite number of states. Hence in StI , there must exist an infinite set of LTS states

StM ⊆ StI where the states of the modules are equivalent, but they differ only in

the contents of the bus. Due to the finite number of wires in the network however,

there must be an infinite number of states in StM where signals are duplicated in

the bus. Let StB ⊆ StM be any infinite set where the states of the modules are

equivalent, but for every pair of states Sm, Sn ∈ StB, either the bus of Sm is a strict

superset of the bus of Sn or the bus of Sn is a strict superset of the bus of Sm. Due

to the infinite size of StB it must be that for any So ∈ StB:

1. there exist a finite number of states StS ⊂ StB such that the bus of So is a

strict superset of the bus of all Sp ∈ StS and hence,

2. there exist infinite number of states StL ⊂ StB such that the bus of So is a

strict subset of all Sq ∈ StL.

Note that as StL is infinite, and there can only be a finite number of states “prior”

to any So ∈ StB in the sequence p, it must be that for all So ∈ StB there is a path

of transitions leading from So to all Sr in some infinite set StA ⊆ StL.

This covers the forwards direction of the two-way implication. For the reverse of

the implication, consider also that adding signals to the bus of a network does not

“reduce” the number of input or output “transitions” that an individual module may

perform. Hence, for all So ∈ StB it is possible for the same “sequence” of transitions

(ignoring starting and ending network states of transitions, but considering simply

the labels of transitions) from So to some Sr ∈ StA to also occur starting from

Sr, leading to some Su where the difference in bus contents between Su and Sr is

the same as the difference in bus contents between Sr and So. This can repeat

indefinitely, guaranteeing an infinite number of states.

Informally this means that it is possible for the bus of some state Si in the LTS of

SD to “grow” infinitely, such that the states of all modules keep returning to the

7. DI-Set algebra for DI networks 125

same as in Si, but more signals become present in the bus (corresponding to signals

on wires) with each iteration. Note that this also implies that if an LTS has an

infinite number of states, then it is clashing.

Corollary 7.14. If an LTS has an infinite number of states, then it is clashing.

Proof. By the proof of Proposition 7.13.

The converse of the implication is also useful to note. If an LTS is non-clashing,

then it does not have an infinite number of states. This will simplify our formal

notion of implementation, as we will require (like Definition 4.29 in Chapter 4) that

networks are non-clashing, thereby guaranteeing that we do not need to accommo-

date infinite-sized LTSs.

7.3 Bisimulation and simulation

We now examine notions of bisimulation and simulation, in order to facilitate a

notion of implementation.

In the following, we define
α

=⇒ as (
τ

→)∗ α
→ (

τ
→)∗ if α 6= τ . Otherwise,

α
=⇒ is

simply (
τ

→)∗. Let SX , SY be any two network definitions. Bisimulation is defined as

follows.

Definition 7.15. Relation R is a bisimulation if for all (SX , SY) ∈ R and all A · k:

1. if SX
!A·k
→ S ′

X then there exists some S ′
Y where SY

!A·k
=⇒ S ′

Y and R(S ′
X , S ′

Y),

2. if SX
?A·k
→ S ′

X then there exists some S ′
Y where SY

?A·k
=⇒ S ′

Y and R(S ′
X , S ′

Y),

3. if SX
τ

→ S ′
X then there exists some S ′

Y where SY
τ

=⇒ S ′
Y and R(S ′

X , S ′
Y),

4. if SY
!A·k
→ S ′

Y then there exists some S ′
X where SX

!A·k
=⇒ S ′

X and R(S ′
X , S ′

Y),

5. if SY
?A·k
→ S ′

Y then there exists some S ′
X where SX

?A·k
=⇒ S ′

X and R(S ′
X , S ′

Y),

6. if SY
τ

→ S ′
Y then there exists some S ′

X where SX
τ

=⇒ S ′
X and R(S ′

X , S ′
Y).

We say that networks SX , SY are bisimilar if there exists some bisimulation R such

that R(SX , SY).

For convenience, we define relations by referring to the numbered states in a

network’s LTS.

Example 7.16. The following relation R1 represents a bisimulation of the two net-

works S2 and S3, whose LTSs are given in Figures 7.6 and 7.7. For each component

7. DI-Set algebra for DI networks 126

(i, j) in R1, i is the state numbered i from the LTS of S2, and j is the state numbered

j from the LTS of S3.

R1 = {(0, 0), (1, 1), (2, 2), (3, 3), (3, 4), (3, 5), (4, 6), (5, 7)}

This example may suggest that bisimulation is an ideal basis for a notion of equiv-

alence between two networks, and could be used to formally define implementation

in the context of DI-Set algebra. However we now argue that this may not be the

case.

Recall the definitions of mATS (Example 3.39 in Chapter 3) and fATS (Example

4.32 in Chapter 4). We have shown that both of these modules possess the same

maximal environment EnvfATS (Example 4.33 in Chapter 4). Furthermore, each

implements the other (Proposition 4.34 in Chapter 4). Informally, this implies that

replacing one module with the other in a network does not affect the operation of

the network.

We therefore check whether the two networks, each consisting of one of these

modules in state S1 normally-connected to EnvfATS, are bisimilar.

Example 7.17. Consider in Figure 7.9 the LTS of the network S5 (shown as the

top state) which is the normal-execution (mATS, S1, EnvfATS) consisting of mod-

ule mATS in state S1 together with the maximal environment EnvfATS of mATS

in state sc(S1). w5 and C5 are defined appropriately according to Definition 7.9.

Assume that the constants given in Figure 7.9 are defined as follows.

• mATS1
def
= CCS(mATS, S1)

• ES1
def
= CCS(EnvfATS, ES1)

• ES1T
def
= CCS(EnvfATS, ES1T)

• ES1TR
def
= CCS(EnvfATS, ES1TR)

• ES1RS0
def
= CCS(EnvfATS, ES1RS0)

Example 7.18. Consider in Figure 7.10 the LTS of the network S6 (shown as the

top state) which is the normal-execution (fATS, S1, EnvfATS) consisting of module

fATS in state S1 together with a maximal environment EnvfATS of fATS in state

sc(S1). Assume that fATS1
def
= CCS(fATS, S1) and fATS0

def
= CCS(fATS, S0).

Let w5, C5, ES1, ES1T, ES1TR and ES1RS0 be defined equivalently to in Example

7.17.

7. DI-Set algebra for DI networks 127

0 : mATS1 · 1 | ES1 · E || {}w5
− C5

!{T ·E}
→ 1

!{R·E,T ·E}
→ 6

1 : mATS1 · 1 | ES1T · E || {T · 1}w5
− C5

τ
→ 2
!{R·E}

→ 6

2 : (•, {T1}).mATS1 · 1 | ES1T · E || {}w5
− C5

τ
→ 3
!{R·E}

→ 7

3 : mATS1 · 1 | ES1T · E || {T1 · E}w5
− C5

?{T1·E}
→ 0

!{R·E}
→ 4

4 : mATS1 · 1 | ES1TR · E || {T1 · E, R · 1}w5
− C5

?{T1·E}
→ 5

5 : mATS1 · 1 | ES1RS0 · E || {R · 1}w5
− C5

!{T ·E}
→ 6

6 : mATS1 · 1 | ES1TR · E || {R · 1, T · 1}w5
− C5

τ
→ 7
τ

→ 8

7 : (•, {T1}).mATS1 · 1 | ES1TR · E || {R · 1}w5
− C5

τ
→ 4

8 : (•, {T0}).mATS1 · 1 | ES1TR · E || {}w5
− C5

τ
→ 9

9 : mATS1 · 1 | ES1TR · E || {T0 · E}w5
− C5

?{T0·E}
→ 0

Figure 7.9: LTS of mATS combined with its maximal environment EnvfATS. The
first state (numbered 0) is the network S5.

7. DI-Set algebra for DI networks 128

0 : fATS1 · 1 | ES1 · E || {}w5
− C5

!{T ·E}
→ 1

!{R·E,T ·E}
→ 6

1 : fATS1 · 1 | ES1T · E || {T · 1}w5
− C5

τ
→ 2
!{R·E}

→ 6

2 : (•, {T1}).fATS1 · 1 | ES1T · E || {}w5
− C5

τ
→ 3
!{R·E}

→ 7

3 : fATS1 · 1 | ES1T · E || {T1 · E}w5
− C5

?{T1·E}
→ 0

!{R·E}
→ 4

4 : fATS1 · 1 | ES1TR · E || {T1 · E, R · 1}w5
− C5

?{T1·E}
→ 5

5 : fATS1 · 1 | ES1RS0 · E || {R · 1}w5
− C5

!{T ·E}
→ 6

6 : fATS1 · 1 | ES1TR · E || {R · 1, T · 1}w5
− C5

τ
→ 7
τ

→ 8
τ

→ 10

7 : (•, {T1}).fATS1 · 1 | ES1TR · E || {R · 1}w5
− C5

τ
→ 4

8 : (•, {T0}).fATS1 · 1 | ES1TR · E || {}w5
− C5

τ
→ 9

9 : fATS1 · 1 | ES1TR · E || {T0 · E}w − Cm

?{T0·E}
→ 0

10 : (•, {T1}).fATS0 · 1 | ES1TR · E || {}w5
− C5

τ
→ 11

11 : fATS0 · 1 | ES1TR · E || {T1 · E}w5
− C5

?{T1·E}
→ 12

12 : fATS0 · 1 | ES1RS0 · E || {}w5
− C5

!{T ·E}
→ 13

13 : fATS0 · 1 | ES1TR · E || {T · 1}w5
− C5

τ
→ 8

Figure 7.10: LTS of fATS combined with its maximal environment EnvfATS. The
first state (numbered 0) is the network S6.

7. DI-Set algebra for DI networks 129

The two LTSs in Figures 7.9 and 7.10 are not bisimilar. Informally, this is because

the existence of a bisimulation reflects the ability for two networks to “match” each

other’s visible transitions at each step. However note that in state 12 of the LTS in

Figure 7.10, it is guaranteed that if the environment sends a single signal to fATS on

T only, then the next visible transition will be an output from T0 (in state 9). Such

a situation never occurs for the LTS in Example 7.17, as whenever the environment

sends a single signal to mATS on T only, there is always the possibility that the

next visible transition will be an output from T1.

It is possible that bisimulation is therefore a too fine relation to be an appropriate

notion of equivalence for DI networks. We define the slightly coarser relation of

simulation.

Definition 7.19. Relation R is a simulation if for all (SX , SY) ∈ R and all A · k:

1. if SX
!A·k
→ S ′

X then there exists some S ′
Y where SY

!A·k
=⇒ S ′

Y and R(S ′
X , S ′

Y),

2. if SX
?A·k
→ S ′

X then there exists some S ′
Y where SY

?A·k
=⇒ S ′

Y and R(S ′
X , S ′

Y),

3. if SX
τ

→ S ′
X then there exists some S ′

Y where SY
τ

=⇒ S ′
Y and R(S ′

X , S ′
Y).

We say that network SY simulates SX if there exists some simulation R such that

R(SX , SY).

Informally, simulation is like bisimulation but does not require that all visible

transitions of the “right” network in the relation must always be “matched” by the

“left” network in the relation (but optionally preceded or succeeded with one or

more τ transitions).

Definition 7.20. We say that networks SX , SY are similar if SX simulates SY , and

SY simulates SX .

Two networks are similar if each can simulate the other.

Example 7.21. The following relation R2 is a simulation between S5 from Example

7.17 and S6 from Example 7.18, such that S6 simulates S5. For each component (i, j)

in R2, i is the state numbered i from the LTS of S5, and j is the state numbered j

from the LTS of S6.

R2 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)}

The following relation R3 is a simulation between S6 from Example 7.18 and S5

from Example 7.17, such that S5 simulates S6. For each component (i, j) in R3, i is

7. DI-Set algebra for DI networks 130

the state numbered i from the LTS of S6, and j is the state numbered j from the

LTS of S5.

R3 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 6),

(11, 6), (12, 5), (13, 6)}

From this we can conclude that networks S5 and S6 are similar.

This raises an interesting question as to whether simulation or bisimulation is

more appropriate for DI networks. We note informally that the conditions outlined

in Definition 4.27 (see Chapter 4) for indistinguishability appear to reflect those

required for simulation.

Consider the above example regarding networks S5 and S6 containing mATS

and fATS, with both modules initially in S1. These networks are not bisimilar as,

informally speaking, it is possible for a situation to arise where fATS can guarantee

an output signal on T0 as a result of the next input signal on T . Such a situation

cannot arise with mATS. However, even when considering the module fATS only,

the environment cannot identify when this particular situation occurs. From the

environment’s perspective, it is never clear whether it may or may not be possible

for an output signal on T0 to be produced as a result of the next input signal on T .

This is why mATS and fATS possess an identical maximal environment (given as

EnvfATS).

We believe that this particular property, and the assumption that an environment

has limited knowledge of the state of the network as a result of delay-insensitivity,

means that simulation is more appropriate as a basis for a notion of “equivalence”

between DI networks.

7.4 Implementation

We can now define a notion of implementation in DI-Set algebra. We first define

indistinguishability between a Set Notation module and network, both encoded in

DI-Set algebra. This corresponds directly with Definition 4.27 in Chapter 4.

Definition 7.22. Given a module N = (Q, I, O, T), a network

SD = PD || C ′
wD

− {} and some em = wI ∪ wO, where:

1. PD = CCS(Nx,0, qx,0) · kx,0 | . . . | CCS(Nx,n, qx,n) · kx,n,

2. for all 0 ≤ i ≤ n, Nx,i = (Qx,i, Ix,i, Ox,i, Tx,i) and qx,i ∈ Qx,i,

3. all kx,0, . . . , kx,n are distinct and kx,i 6= E for all 0 ≤ i ≤ n,

4. wI = {(a · E, b · k′) : a ∈ I and for some 0 ≤ i ≤ n, b ∈ Ix,i and k′ = kx,i},

7. DI-Set algebra for DI networks 131

5. wO = {(b · k′, a · E) : a ∈ O and for some 0 ≤ i ≤ n, b ∈ Ox,i and k′ = kx,i},

we say that N and SD are indistinguishable in state q ∈ Q via em if given any

maximal environment E ′ = (Q′, I ′, O′, T ′, N, sc) of N , the network S ′
D and the

normal-execution (N, q, E ′) are similar and, the LTS of (N, q, E ′) and the LTS of

S ′
D are safe and non-clashing, where:

1. S ′
D = PD | CCS(E ′, q′) · E || C ′

wV
− CV

2. sc(q) = q′,

3. CV = {a · k′ : for some 0 ≤ i ≤ n, a ∈ (Ix,i ∪ Ox,i) and k′ = kx,i},

4. wV = wD ∪ em is a partial bijection.

Note that the above definition requires that no module in the network SD is

labelled with “E”, as this is “reserved” for the label of an environment.

Example 7.23. Let S ′
3 = J · 1 | sATS−1 · 2 || {a · 1}wN

− {} where

wN = {(R, ·2, a · 1), (c · 1, T0 · 2)}, and the constants J and sATS−1 are defined as

in Example 7.4. Let em = {(a · E, b · 1), (b · E, T1 · 2), (T · 2, c · E)}.

Note that S2 (Figure 7.6) is a normal-execution of Merge in its only state M

with corresponding maximal environment EnvM’. Furthermore S ′
3 is S3 (Figure 7.7)

from Example 7.4 with the environment EnvM’ (encoded as EM ·E) and associated

wires em removed (as wN = w2 \ em).

Since, S2 and S3 are shown to be bisimilar in Example 7.16 (which means that

they are also similar), Merge and S ′
3 are indistinguishable in state M via em.

Recall (Section 4.3 in Chapter 4) that indistinguishability can be viewed as a

state-specific notion of implementation. Hence, correspondingly to Definition 4.29

in Chapter 4, we also define the concept of implementation in DI-Set algebra, which

is independent of any starting state.

Definition 7.24. Given a network SI = PI || C ′
wD

− {} where:

1. PI = CCS(Nx,0, qx,0) · kx,0 | . . . | CCS(Nx,n, qx,n) · kx,n,

2. for all 0 ≤ i ≤ n, Nx,i = (Qx,i, Ix,i, Ox,i.Tx,i) and qx,i ∈ Qx,i,

3. all kx,0 . . . kx,n are distinct, and kx,i 6= E for all 0 ≤ i ≤ n,

we say that SI implements module N = (Q, I, O, T) iff there exists some em where,

SI and N are indistinguishable in state q via em for some q ∈ Q, and for all q′ ∈ Q

there exists some S ′
I = P ′

I || C ′′
wF

− {} where:

1. wF = wD,

7. DI-Set algebra for DI networks 132

2. P ′
I = CCS(Ny,0, qy,0) · ky,0 | . . . | CCS(Ny,m, qy,m) · km where m = n, and for

all 0 ≤ j ≤ n, Ny,j = Nx,j, ky,j = kx,j and qy,j ∈ Qx,j,

3. S ′
I and N are indistinguishable in state q′ via em.

This corresponds directly to Definition 4.29 in Chapter 4. It can also be seen to

formalise the notion of a state variation (Definition 3.8 in Chapter 4), as the network

S ′
I is found by modifying the “states” of “modules” in the term SI , as well as the

contents of the bus (corresponding to the presence of signals on wires).

We note that if a module N has only one state q, and a network SI is indistin-

guishable from N in q via some em, then trivially, SI implements N .

Example 7.25. Since Merge has only one state (defined by the constant M), and

the network S ′
3 from Example 7.23 is indistinguishable from Merge in state M via

wm, then S ′
3 implements Merge.

Informally, when considering Definition 4.29 in Chapter 4 which concerns the

abstract setting of Set Notation networks, and Definition 7.24 above which concerns

encoding Set Notation networks in DI-Set algebra, it is clear that we have strong

formal notions of what it means for a network of modules to implement a module.

We believe that such definitions are rigorously defined, and there is no ambiguity as

to what constitutes an implementation. Compare this with the notion of a realisation

(Definition 2.14 in Chapter 2), which uses informal language and is potentially open

to interpretation.

7.5 Conclusion

In this chapter we introduced a new process algebra, called DI-Set algebra, which is

intended to model the behaviour of networks from the Set Notation model. We gave

examples of encoding modules (such as Merge) and networks (such as a network that

implements Merge) in DI-Set algebra, and defined properties of networks discussed

in previous chapters (such as safety and non-clashing) more formally in the context

of DI-Set algebra. We investigated the use of bisimulation and simulation, and

used these together with the aforementioned properties to define more formally the

concept of implementation of a module using a network of modules.

Chapter 8

Background to STCA

In this chapter we give an introduction to Self-Timed Cellular Automata and related

concepts, including the definitions of important properties such as local reversibility

and local determinism. We define new versions of global reversibility and global

determinism, which are related to similar properties in the literature. However these

new versions are more flexible properties which are based on notions of convergence,

and are appropriate for STCAs which simulate concurrent DI networks. We also

give an example of an existing STCA in the literature.

Material in this chapter has been published in [54, 55].

8.1 Introduction

Definition 8.1. A Self-Timed Cellular Automaton (STCA), introduced in [65], is a

special type of asynchronous cellular automaton. It is given by a set of update rules

together with a two-dimensional infinite array of cells. In Figure 8.1, adopted from

[32], a cell is depicted as a square (for example, the square containing triangles with

a, b, c, d). Each cell is divided into four subcells which are depicted in Figure 8.1

as small triangles, each of which can be in one of two states, 0 or 1. We depict

the state 0 with a clear triangle, and the state 1 with a black triangle. The default

state of a subcell is 0 and is known as the quiescent state. The state of all cells

and their subcells in the two-dimensional array is known as a configuration, and

the state of cells and subcells in the initial array is called the initial configuration.

Configurations are ranged over by C, C ′ . . . and D, D′ In this thesis we identify

an STCA with the set of its update rules R.

A configuration in the context of STCA is not to be confused with the defini-

tion of a configuration in Chapter 4, which concerns normally-connected networks

composed of a single module and a corresponding environment.

Definition 8.2. A set of subcells in a configuration may be involved in an up-

133

8. Background to STCA 134

a
c

b
d

e
g

f
h

q

s

r

t

u

w

v

x

Figure 8.1: Depiction of an update rule.

date, where the states of subcells are modified according to one of the update rules.

An update involves a full cell (comprised of its four subcells) together with the

cell’s four adjacent neighbouring subcells on the two-dimensional plane. Figure

8.1 shows how a general update rule is depicted (image adopted from [32]), where

a, b, c, d, e, f, g, h, q, r, s, t, u, v, w, x ∈ {0, 1}. This means that subcells

a, b, c, d, q, r, s, t of a configuration are updated to e, f, g, h, u, v, w, x, respectively,

giving a new configuration. Following [65], an update of a set of subcells may only

occur if an update rule is defined for the current state of the given subcells.

Subcells are assumed to update instantaneously and randomly at any time if a

corresponding update rule is defined. However, as two adjacent cells share subcells

in their update codomain, we assume, following [66], that no two adjacent cells may

update simultaneously. The issues regarding simultaneous updating of adjacent cells

are discussed in [66].

Definition 8.3. A set of update rules is locally reversible, if no two update rules

have identical right-hand sides. A set of update rules is locally deterministic if

no two update rules have identical left-hand sides. An update causes the current

configuration to change to a new configuration. An execution of a configuration C

is a sequence of configurations C → C ′ → C ′′ . . . , where → represents that one or

more updates have occurred simultaneously. The reflexive and transitive closure of

→ is denoted by →∗. Configuration C ′ is reachable from C if C →∗ C ′, and we call

C ′ a derivative of C.

In this thesis we assume that configurations give rise only to those executions

that satisfy weak fairness [25].

Definition 8.4. An execution C1 → C2 → . . . , with C = C1, is weakly fair when-

ever if:

1. there are different Ck, Cl in the execution with k < l such that Cl+1 = Ck (a

“loop” containing Ck and Cl is reachable from C),

2. there is D 6= Ci, for all k ≤ i ≤ l, such that Cj → D, for some k ≤ j ≤ l, (D

is not one of the configurations of this loop and the execution can leave the

loop by updating to D),

8. Background to STCA 135

CkC

Cl

Cj D

Figure 8.2: A weak-fair execution. Each node represents a unique configuration.

then Cm = D for some m > l (the execution leaves the loop eventually).

Informally, once an execution reaches a loop, if it is possible to break from the

loop by updating to a configuration outside the loop, then the configuration will be

reached eventually. An example of this can be seen in the execution graph in Figure

8.2, where each node represents a unique configuration. Weak fairness allows us to

guarantee that a module eventually produces a set of output signals in response to

a set of valid input signals, as is assumed by the execution behaviour (Definition 3.5

in Chapter 3) of the Set Notation model.

Next, we define two new important properties of STCAs.

Definition 8.5. Let C be a configuration of an STCA.

1. C is globally deterministic if there exists a configuration D such that, for all

C ′, if C →∗ C ′, then C ′ →∗ D.

2. C is globally reversible if there exists a configuration D′ such that, for all C ′,

if C ′ →∗ C, then D′ →∗ C ′.

Informally, if C is globally deterministic then all executions from C must eventu-

ally reach the configuration D required by Definition 8.5. Correspondingly, if C is

globally reversible then all executions to C originate from some configuration D′

as required in Definition 8.5. This is a modification of global reversibility defined

in [32], and is made here to accommodate for parallel signals travelling through an

STCA and looping execution sequences.

Remark 8.6. There is some similarity between the global determinism and global

reversibility of configurations in Definition 8.5 and the Forward Diamond (FD) and

Reverse Diamond (RD) properties of Labelled Transition Systems in [68, 69] (not to

be confused with the LTSs from Chapter 7). There is also some similarity between

global determinism and the global confluence property defined in [24].

For the purpose of this thesis, we assume that configurations are finite two-

dimensional arrays such that the four “edges” of the grid are rows of cells which are

not involved in updates. As the configurations simulate DI network behaviour, this

8. Background to STCA 136

1. 2. 3.

4. 5.

Figure 8.3: The five classes of update rules for STCA from [32]. Rotation-symmetric
equivalences are omitted. The rules represent, from left-to-right: 1. Signal propa-
gation; 2. Right turn; 3. Alternative right turn; 4. Left turn; 5. Memory toggle.

has the effect of causing what are analogous to signals to “stop” at the edges of the

grid. This allows us to more easily satisfy the above notions of global reversibility

and global determinism.

8.2 Existing CA for DI networks

We briefly discuss some existing cellular automata intended for the implemented of

DI networks.

We first give an example of an existing STCA intended for the implementation

of networks of reversible serial modules.

Example 8.7. The particular STCA we note here is the one given in [32]. Rules

are locally deterministic and locally reversible. It is a relatively simple STCA with 2

states per subcell and containing only 5 different classes of rules. Each class contains

a rule along with its three rotation-symmetric equivalences. The 5 classes of rules

are shown in Figure 8.3, but rotation-symmetric equivalences are omitted.

Other examples of STCAs developed for the simulation of networks of reversible

serial modules can be found in [30, 36, 37]. The STCAs in [30, 37] each utilise

four classes of rotation-symmetric rules. Furthermore, each STCA contains locally

reversible and locally deterministic rules. The STCA in [36] requires five classes of

rotation-symmetric and reflective-symmetric rules. Its rules are locally deterministic

but are not locally reversible.

We also note the Partitioned Cellular Automaton (PCA) in [27] which is similar

to a STCA but has a smaller codomain for the update function, and three states

per subcell. This PCA implements the class of sequential machine modules, but its

rules are not locally reversible. Finally, we note the ACA in [74] that simulates the

boolean NAND gate via the implementation of sequential machine modules.

8. Background to STCA 137

8.3 Conclusion

In this chapter we gave an introduction to the concepts related to Self-Timed Cellular

Automata, including the definitions of important properties such as local reversibility

and local determinism. We defined new versions of global reversibility and global

determinism, which are related to similar properties in the literature. However these

new versions are more flexible properties which are based on notions of convergence,

and are appropriate for STCAs which simulate concurrent DI networks. We also

gave an example of an existing STCA in the literature.

Chapter 9

Implementation in STCA and

direction-reversibility

In this chapter we introduce four novel STCAs for implementing DI networks, in-

cluding two STCAs for reversible serial and non-arb non-b-arb networks. The two

main STCAs have several very useful properties, they are locally deterministic, lo-

cally reversible and support what we call direction-reversibility. This allows us to

operate a network in reverse by changing the direction of signals and utilising its

output lines as input lines (and vice versa). This removes the need for separate

constructions to implement the inverse of a network. The new notions of global de-

terminism and global reversibility are proven to hold for these two STCA. We also

introduce two further extensions to the STCAs which simulate irreversible serial

and non-arb b-arb networks. These two additional STCAs are shown to be locally

deterministic and globally deterministic. Finally, we prove that the third and fourth

STCAs can be used to implement any module in either Set Notation or the ND

sequential machine model.

Recall (Section 6.1 in Chapter 3) that inverting a network of non-arb non-b-arb

modules results in a network of non-arb non-b-arb modules. Our objective in this

chapter is to exploit this property to aid in simplicity of implementation.

Material in this chapter with the exception of Theorems 9.26 and 9.27 has been

published in [54, 55]. We also note that the various STCA and constructions in-

troduced in this chapter are also implemented in the STCA Simulator program

developed in support of this thesis. Please see Chapter 10 for details on this soft-

ware.

In this chapter, all modules and classes can be assumed to refer to the Set

Notation model unless otherwise stated.

138

9. Implementation in STCA and direction-reversibility 139

1.

2.

3.

4.

Figure 9.1: The set of rules RS for reversible serial modules. Each class 1-4 consists
of a single rule (on the left) together with three of its rotations (on the right). The
classes represent the following behaviours: 1. Signal movement; 2. Signal right turn;
3. Signal left turn (direction-reversal of class 2); 4. Toggle of a memory structure
by a signal.

9.1 Direction-reversible STCA for serial modules

In Figure 9.1, we give four different rules along with three rotations by the multiples

of 90 degrees. Hence each line in Figure 9.1 represents an equivalence class of rules.

In the context of DI networks, a signal is represented by a single subcell in state

1, with the subcell adjacent to its longest side in the quiescent state. Signals are

considered to “point” in the direction perpendicular and away from the subcell’s

longest side such that the path does not pass through the subcell.

Definition 9.1. Let the set of rules in Figure 9.1 (and the STCA defined by this

set) be referred to as RS (for reversible serial).

Definition 9.2. Given an update rule r, δ(r) is the update rule obtained from r

by:

1. inverting r, namely swapping the left and right-hand sides,

2. inverting the direction of the signal in the resulting rule, namely swapping the

states of subcells inside the squares given by the following pairs (q, a), (c, s),

(r, b), (d, t), (u, e), (g, w), (v, f), (h, x) in Figure 8.1.

The rule δ(r) is called the direction-reversal (rule) of r and, given the set of rules

R, δ(R) is the set of direction-reversal rules of the rules in R. An STCA with the

set of rules R is direction-reversible if R = δ(R).

9. Implementation in STCA and direction-reversibility 140

Example 9.3. The direction-reversal of rule 2 in Figure 9.1 is rule 3, namely δ(2) =

3, and vice-versa. Also, δ(1) is the third rule in class 1 and δ(4) is the third rule in

class 4.

Proposition 9.4. Let r ∈ RS. Then δ(r) ∈ RS and, hence δ(RS) = RS.

Proof. By Definition 9.2.

Observation 9.5. Proposition 9.4 implies that for each construction in RS which

performs an operation on a single signal, inverting the direction of the signal in the

rules has the same effect as using the inverses of rules.

Moreover, we have the following result.

Proposition 9.6. Rules in RS are locally reversible and locally deterministic.

Proof. By Definition 8.3.

Figure 9.2 shows a single construction which acts as either RT or IRT, depending

which lines are used as inputs. This is a consequence of the direction-reversibility

of RS. Informally, we say that such constructions are direction-reversible.

Definition 9.7. We say that a construction implementing a module N is direction-

reversible if it also implements N−1, and:

1. the input lines to the construction corresponding to the input lines of N also

correspond to the output lines of N−1, and

2. the output lines from the construction corresponding to the output lines of N

correspond to the input lines of N−1.

Figure 9.2 implies that RS can be used to simulate any reversible serial module.

Theorem 9.8. Any reversible serial module can be implemented by a configuration

in RS. Such configurations, and their derivatives, are globally deterministic, globally

reversible, and direction-reversible.

Proof. Proposition 6.5 in Chapter 6 states that any reversible serial module can

be implemented using a network of RT and IRT modules. Composing multiple

instances of the construction in Figure 9.2 allows a realisation of such a network.

Local reversibility and local determinism of the rules, together with the presence of a

single signal in the network, results in a unique execution sequence, thus guarantee-

ing global reversibility and global determinism. Direction-reversibility of RT/IRT,

local reversibility and local determinism guarantee direction-reversibility.

9. Implementation in STCA and direction-reversibility 141

R

W

W0

W1

R

W

W0

W1

Figure 9.2: Left: RT/IRT in state 0. Right: RT/IRT in state 1. When R and
W are used as input lines, the construction acts as RT with W0 and W1 as output
lines, and vice-versa for IRT. The images show the path of a signal on W when
the construction is used as RT. A dotted white line through a memory structure
indicates that the memory’s state is toggled and the signal continues in the same
direction.

Observation 9.9. As both RT and IRT are implemented by a single construction,

separate constructions are not required to implement the inverse of a network which

implements a reversible serial module. Inverting a network in RS requires simply

changing the direction of the signal. This bidirectional nature implies a potential

advantage when considering physical implementation.

Our STCA RS uses only four classes of rotation-symmetric rules. The only STCA

for implementing reversible serial networks which utilises four classes of rotation-

symmetric rules that we are aware of appears in [30, 37], but direction-reversibility

is not supported. The STCA in [36] supports a notion of direction-reversibility, but

the rules are not locally reversible or locally deterministic. We are not aware of any

other STCA which supports a notion of direction-reversibility. Furthermore, the

STCA in [36] requires five classes of rotation-symmetric and reflective-symmetric

rules.

We now demonstrate a useful construction in RS. In [3] it is shown that any

irreversible function (which we call I) of the type Input → Output can be converted

to a reversible function which simulates I. In order to be left with a garbage-less

result, this requires a complex series of operations A, B and C (see Figure 9.3),

where:

1. A is a reversible version of the original irreversible function I which performs

the operation of I while recording the computation history,

9. Implementation in STCA and direction-reversibility 142

A C

B

inputinput

output

outputoutput

history

Figure 9.3: Reversible garbage-less implementation of an irreversible function I. A
is the reversible version of I, B clones the output of A and C is the inverse of A.

IO

Figure 9.4: A Direction-Reverser. An input signal on IO causes a change in the
state of the memory structure (with a white dotted line) and an output on IO.

2. B is a function which copies the output (excluding the computation history),

3. C is the inverse of A which removes the computation history and the first

copy of the output, while reproducing the original input. This results in a new

function of the type Input → (Input + Output) which simulates I.

Example 9.10. In order to facilitate implementations of these functions, in Figure

9.4 we show a construction called Direction-Reverser (DR for short) which takes an

input signal on IO, toggles the internal state, and then produces an output on IO.

Hence, this construction can be used to reverse the direction of a signal. If DRs

are placed at the output lines of a network as in Figure 9.5, due to the direction-

reversible nature of RS, an input signal to the network will eventually result in

the output being “recorded” in one of these constructions, and the signal being

returned to the original input line (but facing the opposite direction). The internal

state of the rest of the network is also returned to its original configuration. Hence,

when implementing reversible versions of irreversible functions in RS, it suffices to

implement only the function A.

9. Implementation in STCA and direction-reversibility 143

I1 I2 I3 In

O1 O2 O3 On

record output

via state change

and reverse

DRDRDRDR

A (C)

Figure 9.5: Direction-reversible STCA implementation of a reversible version of an
irreversible function in Figure 9.3. The main part of the network implements both
A and C.

Figure 9.6: The set of rules M . The rotation-symmetric equivalences are included
for ease of implementation, but are not required if turns (classes 2 and 3 in RS) are
utilised.

Definition 9.11. Let the set of rules in Figure 9.6 be referred to as M.

Informally, the new rules extend the left/right-turn structure so that a signal ap-

proaching from the previously unused side is (irreversibly) forwarded to the opposite

side. Hence the left/right turn structure can now operate directly as a Merge mod-

ule.

Proposition 9.12. Rules in M are locally deterministic.

Proof. By Definition 8.3.

Definition 9.13. Let the STCA S be RS ∪ M (where S is for serial).

The set S supports the reversible constructions demonstrated in this section. In-

terestingly, direction-reversibility is maintained for all of these constructions. How-

ever, attempting to perform a direction-reversal on constructions which utilise Merge

(which is an irreversible serial module) may result in unexpected behaviours.

Theorem 9.14. Rules in S are locally deterministic. Any serial module can be

implemented by a configuration in S. Such configurations, and their derivatives, are

globally deterministic. Configurations which implement reversible serial modules,

and their derivatives, are direction-reversible.

Proof. By Proposition 6.6 in Chapter 6, {RT, IRT, Merge} is universal for the class

of serial modules. Composing multiple instances of the construction in Figure 9.2

and Merge structures allows us to implement any serial module. Local determinism

9. Implementation in STCA and direction-reversibility 144

Figure 9.7: The set of rules P . The rules represent from left to right: (p1) Fork to
Join evolution; (p2) Join to Fork evolution; (p3) Fork to Join evolution while an
input produces two outputs; (p4) Join to Fork evolution while two inputs produce
an output. In the third rule (p3), an input signal (the bottommost black subcell
in the source of the rule) arrives at a Fork, produces two outputs (the leftmost and
the rightmost black subcells in the target of the rule) and changes the configuration
to a Join. In the last rule (p4), two input signals (the leftmost and the rightmost
black subcells in the source of the rule) arrive at a Join, produce an output (the
bottommost black subcell in the target of the rule) and change the configuration to
a Fork.

of the rules, together with the presence of a single signal, results in a unique execution

sequence, thus guaranteeing global determinism. The behaviour of the RT/IRT

construction is unaffected by the additional rules in M . Hence, by Theorem 9.8,

compositions of RT/IRT are direction-reversible.

9.2 Extending to non-serial DI modules

We now show how RS and S can be extended to implement networks that contain

more than one signal at a time. Recall that {RT, IRT, Fork, Join} is universal

for the class of non-arb non-b-arb modules (Theorem 6.12 in Chapter 6). Hence it

suffices to add rules which will allow us to implement Fork and Join. These are

given in Figure 9.7.

Definition 9.15. Let the set of rules in Figure 9.7 be referred to as P (for “parallel”).

Proposition 9.16. Rules in P are locally deterministic and locally reversible.

Proof. By Definition 8.3.

Remark 9.17. In order to maintain local reversibility and local determinism, ro-

tation equivalent rules in P are not permitted. So, there is a design constraint on

the layout of such networks, and it implies that Fork and Join constructions must

be oriented appropriately in order to function correctly. This is overcome by using

left/right turn constructions when designing networks. We note that the direction-

reversal version of each rule in P is also in P , thus δ(P) = P .

Example 9.18. Figure 9.8 shows a Fork and Join construction in P . As Fork

and Join are each other’s inverses, they can be constructed with a single direction-

reversible construction. This is achieved by two simple structures that evolve con-

stantly, one into the other. The central structure is an evolving structure (as opposed

9. Implementation in STCA and direction-reversibility 145

a

b

c

Evolving structure

Figure 9.8: Fork and Join. The central structure evolves between Fork and Join
patterns according to p1 and p2 in Figure 9.7. When a (correspondingly b, c) is used
as an input line, the construction acts as Fork (Join) with b and c (correspondingly
a) as output lines. The image shows the path of signals when used as a Fork. Signals
loop along the dotted lines until they encounter the evolving structure in the correct
state. This will eventually happen due to the weak fairness assumption (see Chapter
8).

Figure 9.9: The set of rules C (for crossing) to implement the crossing of signals.

to previously seen static structures), as updates can occur continuously even when no

signals are present. It can be verified that the construction is globally deterministic

and globally reversible when signals are applied as intended.

Figure 9.9 contains rules C for crossing of signals. Note that δ(C) = C.

Definition 9.19. Let the set of rules in Figure 9.9 be referred to as C (for “cross-

ing”).

Proposition 9.20. Rules in C are locally deterministic and locally reversible.

Proof. By Definition 8.3.

We now define our third STCA.

9. Implementation in STCA and direction-reversibility 146

Definition 9.21. Let NANBP be RS ∪ P ∪ C, (where NANBP is for “non-arb

non-b-arb parallel”).

Since the construction for Fork/Join in Figure 9.8 is direction-reversible, glob-

ally deterministic and globally reversible when operated with appropriately placed

signals, it is easy to see that when combining the construction with that of RT/IRT

and connecting lines appropriately as in networks of Set Notation modules, the re-

sulting configuration is also direction-reversible, globally deterministic and globally

reversible.

Theorem 9.22. Rules in NANBP are locally deterministic and locally reversible.

Any non-arb non-b-arb module can be implemented by a configuration in NANBP.

Such configurations, and their derivatives, are globally deterministic, globally re-

versible and direction-reversible.

Proof. By Theorem 6.12 in Chapter 6, {RT, IRT, Fork, Join} is universal for the

class of non-arb non-b-arb modules (by following the construction method in Fig-

ures 6.5 and 6.6 in Chapter 6). Composing multiple instances of the constructions

in Figures 9.2 and 9.8 allows an implementation of such a network. Global de-

terminism and global reversibility of both types of construction, together with the

delay-insensitive property of the general construction (Figures 6.5 and 6.6 in Chapter

2) and the lack of any initial signals on wires (see Section 6.1 in Chapter 6), guaran-

tee that such a network is also globally deterministic and globally reversible when

used as an implementation of a non-arb non-b-arb module. Direction-reversibility,

globally determinism and globally reversibility of RT/IRT and Fork/Join, together

with local reversibility and local determinism guarantee direction-reversibility.

We now define our fourth and final STCA.

Definition 9.23. Let NAP be RS ∪ P ∪ C ∪ M (for “non-arbitrating parallel”).

Correspondingly to Theorem 9.14, we have the following.

Theorem 9.24. Rules in NAP are locally deterministic. Any non-arb module

can be implemented by a configuration in NAP. Such configurations, and their

derivatives, are globally deterministic. Configurations which implement non-arb

non-b-arb modules, and their derivatives, are direction-reversible.

Proof. By Theorem 6.13 in Chapter 6, {RT, IRT, Fork, Join, Merge} is universal

for the class of non-arb modules (by following the construction method in Figures

6.5 and 6.7 in Chapter 6). Composing multiple instances of the constructions in

Figure 9.2, Figure 9.8 and Merge structures using the rules in Figure 9.6 allows

an implementation of such a network. Global determinism of these constructions,

9. Implementation in STCA and direction-reversibility 147

together with the delay-insensitive property of the general construction (Figures

6.5 and 6.7 in Chapter 2), guarantee that such a network is globally deterministic.

The behaviour of the RT/IRT and Fork/Join constructions is unaffected by the

additional rules in M . Hence, by Theorem 9.22, compositions of RT/IRT and

Fork/Join are direction-reversible.

We will finish by demonstrating a useful construction which implements the

sequential machine module ATS and related modules.

Example 9.25. In Figure 9.10, we show how the STCAs NANBP and NAP can

implement the sequential machine module ATS (Figure 2.1 in Chapter 2). The

construction contains two consistent memory structures which can hold one of two

values, 0 or 1 (represented by the grey and corresponding black subcells). The held

values of 0 and 1 correspond to ATS in state S0 and S1 respectively. An input signal

on R may only arrive when the memory structures hold a value of 1. In this case

it can be verified that the signal sets the two memory structures to 0 and pends

indefinitely at the Join structure to the right of the construction. An input signal

on T will query the value in the upper memory structure. A value of 1 will cause the

signal to leave on the T1 output line. A value of 0 will cause the signal to enter the

Join structure, synchronising with the pending R signal, before resetting the values

to 1 and outputting on the T0 output line. A race condition may arise between an

input signal on T attempting to query the upper memory, and an output signal on

R attempting to modify the value. A collision will not occur as it is assumed (see

Chapter 8) that no two adjacent cells may update simultaneously. It can be verified

that this construction correctly implements the behaviour of ATS.

Note that, due to the correspondence between ATS and the Set Notation module

sATS (Section 3.3 in Chapter 3) this construction can also be seen to implement

sATS in S1, if we set the held value to 1 (which also corresponds to S1 of ATS).

Furthermore, if the held value is set to 1 (corresponding to S1 of both ATS and

sATS), and we utilise T1 and T0 as input lines, and R and T as output lines, the

behaviour of the construction is as follows. Sending an input signal on T1 will result

in a single output signal from T , without changing the held value. Sending an input

signal on T0 will eventually result in one output signal from R and T each, with the

held value set to 1. Hence this construction can also be seen to implement the Set

Notation module sATS−1. The sequential machine sATS−1 (found by removing the

brackets around the input sets in the CCS-like definition according to Observation

3.15 in Chapter 3) is also implemented by this construction.

Based on the the construction in Figure 9.25, we can conclude two universality

results.

9. Implementation in STCA and direction-reversibility 148

T

R

T1 T0

Figure 9.10: Construction which implements ATS, sATS and sATS−1 modules.
The two memory structures from the left of the figure hold a value of 1 (depicted
by the black subcells) or a value of 0 (depicted by the grey subcells), corresponding
to the ATS states S1 and S0 respectively. The black and grey subcells both denote
the subcell state of 1 but are used to depict the differing location of the memory
structure depending on the held value. A white dotted line indicates that a signal
toggles the memory structure and then continues in the same direction. When the
held value is set to 1, the construction also acts as an implementation of the Set
Notation modules sATS and sATS−1, and the sequential machine sATS−1.

9. Implementation in STCA and direction-reversibility 149

Theorem 9.26. Any (ND) sequential machine module can be implemented by a

configuration in NANBP or NAP.

Proof. By Corollary 6.22 in Chapter 6, {ATS, Fork, Join, sATS−1} is universal (in

the sense of Definition 2.15 in Chapter 2) for the class of (ND) sequential machines.

By Theorems 9.22 and 9.24, NANBP and NAP are able to implement the Set

Notation modules Fork, Join, RT and IRT. The behaviours of the sequential machine

versions of Fork, RT, and IRT are trivially equivalent (Observation 3.15 in Chapter

3) to their Set Notation counterparts. As discussed in Example 3.14 in Chapter 3, the

behaviours of the Set Notation module Join and the sequential machine module Join

are equivalent as long as safety and non-clashing hold within the network. Hence,

NANBP and NAP are able to implement the sequential machine modules Join,

Fork, RT and IRT. Figure 9.10 shows how to implement ATS and the sequential

machine sATS−1, also with NANBP or NAP.

Theorem 9.27. Any Set Notation module can be implemented by a configuration

in NANBP or NAP.

Proof. By Theorem 6.21 in Chapter 6, {Join, Fork, RT, IRT, sATS, sATS−1} is

universal for the class of Set Notation modules. By Theorems 9.22 and 9.24, NANBP

and NAP are able to implement the Set Notation modules Fork, Join, RT and

IRT. Figure 9.10 shows how to implement sATS and sATS−1, also with NANBP or

NAP.

This shows an interesting result, that NANBP is as expressive as NAP and is

capable of implementing all (ND) sequential machines and all Set Notation modules.

This is despite NANBP not containing the set of rules M. As discussed at the end of

Chapter 3, bijective modules combined with multiple signals can result in networks

which implement useful irreversible modules (such as Merge), and are universal for

all modules. It would appear from Theorems 9.26 and 9.27 that a corresponding

property exists for STCA, which is that local reversibility of all STCA rules, when

combined with parallelism (in the form of multiple “signals”) can result in useful

irreversible computation.

9.3 Conclusion

In this chapter we introduced four novel STCAs for implementing DI networks,

including two STCAs for reversible serial and non-arb non-b-arb networks. The

two main STCAs have several very useful properties, they are locally deterministic,

locally reversible and support what we call direction-reversibility. This allows us

to operate a network in reverse by changing the direction of signals and utilising

9. Implementation in STCA and direction-reversibility 150

its output lines as input lines (and vice versa). This removes the need for separate

constructions to implement the inverse of a network. The new notions of global

determinism and global reversibility were proven to hold for these two STCA. We

also introduced two further extensions to the STCAs which simulate irreversible

serial and non-arb b-arb networks. These two additional STCAs were shown to be

locally deterministic and globally deterministic. Finally, we proved that the third

and fourth STCAs can be used to implement any module in either Set Notation or

the ND sequential machine model.

Chapter 10

Software tools

In this chapter we detail the two pieces of software developed in support of this

thesis. The first, called Delay-Insensitive Network Tool Suite contains implementa-

tions of the maximal environment generation algorithms in Chapter 4, conversion

algorithms in Chapter 5 and algorithms which follow the non-arb and eq-arb con-

struction methods in Chapter 6. It also implements a version of the DI-Set algebra in

Chapter 7 with interactive execution and LTS generation with property and bisim-

ulation/simulation checking. The second piece of software, called STCA Simulator,

implements the four direction-reversible STCA in Chapter 9 with an interactive

graphical interface. It also contains the constructions from that chapter. A brief

description of how important features are implemented is given for each piece of

software.

The two programs were developed in the Java programming language [14], and

run on the Java SE platform [1]. They require the installation of the Java Runtime

Environment in order to launch, which can be found at [1]. No other external

libraries are utilised and all code other than built-in Java SE libraries is our own.

Both pieces of software can be found with their respective source codes at [51].

10.1 Delay-Insensitive Network Tool Suite

In this section, we describe the software which was developed to aid in the research

and study of abstract DI networks.

The graphical front-end of the program is divided into four main distinct tabs,

each reflecting the different research areas in this thesis. They are the Conversion

tab, Construction tab, Environment Generation tab, and the DI-Set Algebra tab,

which reflect the material in Chapters 5, 6, 4 and 7 respectively. The CCS-like

definitions of modules is assumed when entering definitions into the software.

Usage instructions can be found in the included README file which accompa-

nies the program. The software source code is also bundled [51] and extensively

151

10. Software tools 152

commented, so the interested reader may explore the implementation details for the

following features in more depth. Additionally, the various module definitions given

in this thesis, and network definitions given in Chapter 7 are included as examples

in the program.

10.1.1 Overview of features

We now list the main features of the program.

1. Each tab contains the ability to save/load various definitions which are rele-

vant to the tab’s functionality. Furthermore, a console window displays extra

information to the user which is not displayed in the main window (Figure

10.1). This includes additional properties of modules, and the actions taken

by algorithms as they are executing.

2. The Conversion tab (Figure 10.2) contains the ability to convert (ND) sequen-

tial machine module definitions to Set Notation module definitions and vice

versa, according to the algorithms in Chapter 5.

3. The Construction tab (Figure 10.3) allows the user to input any non-arb or eq-

arb module definition. The software then generates a construction according to

the methods in Chapter 6. The construction contains the irreversible version of

Stage 2 (Figure 6.7 in Chapter 6) only if the module is b-arb. The construction

is given as a list of modules and wires. It also gives the DI-Set algebra’s network

definition of the construction, including all required constant definitions and

the wire function.

4. The Environment Generation tab (Figure 10.4) allows the user to input any Set

Notation module. It will then calculate which properties outlined in Chapter

4 hold (i.e. if it is 1-step consistent, auto-firing, auto-clashing or stable). The

user may then generate a maximal environment of the module using one of

the two algorithms in Chapter 4, depending on whether or not it is non-arb.

5. The DI-Set Algebra tab implements a slightly modified version of the DI-Set

algebra in Chapter 7, which is more friendly to typical keyboard-based input.

“·” is replaced with “:” (with the SOS rules from Figure 7.2 assumed to be

modified appropriately). We also allow a wildcard operator “∗” when defining

the hidden ports of a network, allowing multiple ports with the same label to

be hidden with a single entry (e.g. “∗ : 1” where “1” is a module label). This

section of the software contains the largest number of features, which we detail

below. The tab is separated into multiple screens: the Main screen (Figure

10.5); the GUI Input screen (Figure 10.6); the Interactive Execution screen

10. Software tools 153

Figure 10.1: Delay-Insensitive Network Tool Suite Console Window.

(Figure 10.7) and the LTS screen (Figure 10.8). The main features of this tab

are as follows.

• Maintain two separate network definitions (with associated constant def-

initions and wire function) given in a variation of DI-Set algebra.

• Enter network definitions manually using the keyboard (as in Figure 10.5)

or with an interactive GUI-based term generator (Figure 10.6) where the

user selects modules, names them, and then specifies wire connections,

initial signals and port hidings.

• Hide multiple ports with the same label by utilising a wildcard “*” op-

erator in place of literal port names.

• Execute a network one transition at a time (Figure 10.7), by viewing all

available transitions at each state and selecting which one to apply.

• Generate the LTS for a network definition (Figure 10.8), including the

option to automatically halt this procedure if the software detects that

the current LTS being generated has an infinite number of states.

• Analyse an LTS and check if the properties of safety and non-clashing

hold (Figure 10.8).

• Given a set of state pairs for two generated LTSs, validate whether it rep-

resents one network simulating the other, or if it represents a bisimulation

between them (Figure 10.8).

10.1.2 Implementation details

In Figure 10.9 we show the major relationships between the packages which make up

the software. Excluding the GUI, GUIListeners and CommonStructures packages,

each package is one of two types: “Operations” or “Structure”.

An “Operations” package contains key technical algorithms corresponding with

the material in this thesis. An exception to this is the InputOutputOperations pack-

age which contains algorithms for storing definitions on the hard disk and algorithms

10. Software tools 154

Figure 10.2: Delay-Insensitive Network Tool Suite Conversion tab.

Figure 10.3: Delay-Insensitive Network Tool Suite Construction tab.

10. Software tools 155

Figure 10.4: Delay-Insensitive Network Tool Suite Environment Generation tab.

Figure 10.5: Delay-Insensitive Network Tool Suite DI-Set Algebra tab Main screen.

10. Software tools 156

Figure 10.6: Delay-Insensitive Network Tool Suite DI-Set Algebra tab GUI Input
screen.

Figure 10.7: Delay-Insensitive Network Tool Suite DI-Set Algebra tab Interactive
Execution screen.

10. Software tools 157

Figure 10.8: Delay-Insensitive Network Tool Suite DI-Set Algebra tab LTS screen.

Launch

ConstructionOperationsConversionOperations

EnvironmentOperations

InputOutputOperations

DISetAlgebraOperations DISetAlgebraStructure

DISetAlgebraLTSStructure SetNotationStructure

SequentialMachineStructure

GUI GUIListeners

CommonStructures

To all Structure

From all Structure

and Operations

and Operations

packages

packages

Figure 10.9: High-level architectural diagram of Delay-Insensitive Network Tool
Suite, showing the major relationships between the packages which make up the
program source. An arrow represents a dependency (import) between packages,
where the package at the tail of the arrow is dependent on functionality within the
package at the head of the arrow. We also include the Launch class in the diagram,
which is not part of any package.

10. Software tools 158

for parsing definitions. For example, DISetAlgebraOperations contains algorithms

for inferring transitions in the DI-Set algebra, for generating the LTS of a given net-

work, and verifying simulation/bisimulation of user-defined simulation/bisimulation

relations between two LTSs. Each of these packages may also contain data struc-

tures which are unique to the functionality provided by that package, but are not

utilised across the rest of the software.

A “Structure” package contains classes which are intended to model some data

structure or component, along with commonly associated operations. These pack-

ages are generally utilised by multiple areas of the software. For example SetNota-

tionStructure contains classes which are used to store all data comprising a single

module in the Set Notation model. It is utilised by back-end functionality relating

to the Conversion, Environment and Construction tabs (and hence by the Conver-

sionOperations, EnvironmentOperations, and ConstructionOperations packages). It

also contains associated operations such as the ability to invert a module definition,

or to check properties such as whether a module is arb or b-arb.

The DISetAlgebraStructure contains classes which model the structure of DI-Set

algebra. In Figure 10.10 we show the major relationships between the classes in this

package. Objects heavily utilise class membership in order to reflect the hierarchical

structure of the terms defined in Figure 7.1 in Chapter 7.

In general, each one of the types defined on the left-hand side in Figure 7.1 in

Chapter 7 is represented internally by a Java class object: port and name are im-

plemented directly as instances of the String class (included as part of Java SE); A

is implemented using PortSet; action is implemented using IOAction; M is imple-

mented using Module; nM is implemented using NamedModule; P is implemented

using NamedModuleSet; nP ort is implemented using NamedPort; C is implemented

using NamedPortSet; wire is implemented using WireConnection; w is implemented

using WireFunction; G is implemented using Bus and S is implemented using Par-

tiallyVisibleNetwork. The exception is the type L which does not have a correspond-

ing Java class. Instead, an instance of PartiallyVisibleNetwork, contains membership

fields for a NamedModuleSet (type P), a Bus (type G) and a NamedPortSet (type

C). Hence the components of L are referenced directly in S, without implementing

an intermediate term of type L. This results in simpler code and more efficient

manipulation of data during run-time.

LTSs are generated by simply calculating all available transitions for a network,

then for each transition, recursing and performing the same procedure for the re-

sulting network. An LTS is represented by a linear list of objects of type LTSState

from the DISetAlgebraLTSStructure package. Each LTSState object stores a unique

state of the LTS. Each LTSState object also contains a list of outgoing transitions,

as well as a corresponding list of LTSState objects, with each object in this list

10. Software tools 159

Bus

IOAction

NamedModule

NamedModuleSet

NamedPort

NamedPortSet

Module

PartiallyVisibleNetwork

PortSet

WireConnection

WireFunction

1 1

1

1

1

*
2

*

*

1

*

2

1

*

String
1 1

111

Figure 10.10: Architectural diagram of the DISetAlgebraStructure package, showing
the major relationships between the Java classes. An arrow represents class member-
ship, where a single instance of the class at the tail of the arrow contains n instances
of the class at the head of the arrow as attributes, where n is the number at the
head of the arrow. An asterisk (*) represents an arbitrary number greater than or
equal to zero. We also include the String class in the diagram, which is included by
default as part of Java SE and is not technically part of the DISetAlgebraStructure
package.

10. Software tools 160

being the resulting LTSState for each corresponding outgoing transition. A state

of the LTS is checked against the existing overall list of LTSState objects, and a

new LTSState object is added if one does not already exist for the given state of the

LTS. Non-clashing and safety properties of the LTS are validated by simply iterating

through all states in the LTS, and checking that these properties hold for each state

as required by Definitions 7.6 and 7.7 in Chapter 7.

Infinite LTS state detection is achieved by examining each new state as it is

added, to see if there already exists a state in the LTS such that:

1. the state of each NamedModule in the existing LTS state is the same as in the

new LTS state,

2. the bus contents (stored with an instance of Bus) of the new LTS state is a

superset of the bus contents of the existing LTS state and,

3. there exists a path of transitions from the existing LTS state to the new LTS

state.

If such a state is found, then generation of the LTS halts. Hence this checks whether

the LTS exhibits infinite growth behaviour (according to Proposition 7.13 in Chap-

ter 7). The existence of a path between two states is found by recursion. A list of

states visited by recursion is maintained to ensure that states are not checked more

than once.

Finally, simulation and bisimulation are checked by iterating through each state

pair which has been defined by the user. For each pair, it is checked that the require-

ments of Definition 7.15 or Definition 7.19 in Chapter 7 are satisfied. Recursion is

again utilised to check all possible paths of only τ transitions from a particular LTS

state. As before, a list of LTS states visited by recursion is maintained to ensure

that LTS states are not checked more than once. The software requires that the

components within a state pair are written in a fixed order with respect to the two

LTSs, regardless of which network is said to be simulating the other by the relation.

Hence the left component in a state pair always represents a state from the left LTS

on-screen, similarly for the right component and the right LTS.

We briefly describe several other technical aspects of the software.

1. All parsing makes use of Java SE’s built-in ability to split strings based on reg-

ular expressions. This allows state or constant definitions to be easily broken

down into lists of actions, and then further into input/output sets and state

names.

2. Set Notation module definitions and (ND) sequential machine definitions are

implemented using data structures which are used commonly in the implemen-

10. Software tools 161

tations of the Conversion, Construction and Environment tabs. These struc-

tures store lists of strings for state, input, and output names. All transitions

are then stored as tuples of integers, where the values refer to the indexes of

the appropriate names in their respective lists. Calculating properties of these

modules (e.g. where they are non-arb, 1-step consistent, auto-clashing etc.) is

done in the expected way by comparing transitions.

3. The Construction tab utilises algorithms which generate non-arb and eq-arb

module constructions according to the methods in Chapter 6. These algo-

rithms are not included in this thesis due to their size. However the code is

extensively commented and these algorithms heavily utilise the console output

to detail step-by-step behaviour for any construction during run-time. The in-

terested reader may consult these sources if they wish to view an imperative

implementation of the construction methods in Chapter 6.

10.2 STCA Simulator

We now describe the simulator which was developed to aid in the research and study

of the direction-reversible STCA in Chapter 9. As with the previous software, usage

instructions can be found in the included README file which accompanies the

program. As before, the software source code is also bundled [51] and extensively

commented, so the interested reader may explore the following features in more

depth. The various constructions given in Chapter 9 are also included as examples.

10.2.1 Brief overview of features

We now briefly list the main features of the simulator.

1. Experiment with the behaviour resulting from the transition rules of the STCA

found in [32, 36, 37], as well as all STCA introduced in this thesis (RS, S,

NANBP and NAP) and inverses of RS and NANBP.

2. Modify states of any subcells in the cell grid interactively by clicking on the

subcell which the user wishes to modify (Figure 10.11).

3. Save/load configurations defined in any of the implemented STCA. All con-

structions defined in Chapter 9 are included.

4. Perform stochastic “path verification” for any pair of configurations (Figure

10.13). This executes (randomly) a given STCA starting with a given config-

uration. Upon reaching some other given configuration the execution stops.

10. Software tools 162

Figure 10.11: STCA Simulator main screen.

It also allows automatic repeating of this procedure, to check many times in

rapid succession whether a given configuration is likely to reach some other

given configuration.

5. Analyse local determinism and local reversibility of an STCA’s transition rules

(Figure 10.12).

6. Annotate the cell grid (as seen by the text on top of the cells in Figure 10.11).

This helps the user to see which areas of a construction correspond to input

or output lines of modules and networks. Annotations are stored when saving

a configuration.

10.2.2 Implementation details

In Figure 10.14 we show the major relationships between the classes which make up

the software. Note that the JFrame, JPanel and Thread classes are included as part

of Java SE.

We briefly describe several key technical aspects of the software.

1. The state of the cell grid is represented internally using a finite 2D array of

Cell objects within an instance of Cellspace. A Cell object is a simple data

structure that contains four integer values, each one representing the state of a

subcell. All STCA implemented contain only two states per subcell, which are

10. Software tools 163

Figure 10.12: STCA Simulator Rule Examination screen.

Figure 10.13: STCA Simulator Path Verification screen.

10. Software tools 164

Cell

Cellspace

ExaminerFrame

MainFrame

Launch

PathVerifierFrame ExaminerPanel

Rules

GlobalAttributes

JPanel

*

JFrame

Thread
1

1

1

1

1 1
ApplyRule

1

1

1

From all classes

Figure 10.14: Architectural diagram of STCA Simulator, showing the major rela-
tionships between the Java classes. An arrow with a solid white triangle as its head
represents inheritance, where the class at the tail of the arrow is a subclass of the
class at the head of the arrow. An arrow with 1 (*) by its head represents class
membership, where a single instance of the class at the tail of the arrow contains
a single (multiple) instance of the class at the head of the arrow as a field. The
remaining arrows represent basic dependency of non-instantiated classes, where a
single instance of the class at the tail of the arrow calls upon static fields or meth-
ods within the class at the head of the arrow. Note also that the ApplyRule, Rules
and GlobalAttributes classes contain only static methods and fields, and are never
instantiated.

10. Software tools 165

represented with the integer values of 0 and 1. These are depicted graphically

as white (for 0, the default or “quiescent” state) and black (for 1, which is

used in practice to model signals and structures).

2. Execution is handled by randomly selecting a Cell object, then passing the

values of its four subcells and four adjacent neighbouring subcells to a method

in ApplyRule which checks the states of subcells against hard-coded rules

stored in Rules. Rotations and reflections of the states of the subcells are

also considered on-the-fly. This removes the need to hard-code rotations and

reflections of STCA rules. If a match is found then the new states of the

subcells are applied to the given Cell object. This happens repeatedly until

execution is stopped by the user.

3. As implied above, the execution logic occurs on a single thread, stored in

Cellspace. Cell objects are selected one at a time. A new Cell is not considered

until the current Cell is checked against the current STCA’s transition rules,

and the states have been updated if applicable. This however does not affect

correctness of the implementation, as the underlying theoretical model does

not allow adjacent cells to update at the same time (see Chapter 8). As a

result, the overall behaviour of an STCA is not affected by forcing cells to

update in a serial manner.

4. The hard-coded rules are stored as 1D arrays of integers in Rules, with each

array representing a set of rules. Every set of 16 integers in the array represents

a single rule. The first 8 integers in a set represent the states of the 8 subcells

of the source of the rule, and the last 8 integers in a set represent the states

of the 8 subcells of the target of the rule.

5. Local determinism and local reversibility of rules is determined by comparing

the values of the subcells in the expected way. Rotations and reflections are

also considered if appropriate, and these are applied on-the-fly similarly to

when executing the STCA.

6. The Java2D API (part of Java SE) is used for rendering the cell grid, and this

is handled by the Cellspace object. Each cell is rendered as a square containing

4 triangles representing the 4 subcells. When depicting the STCA from [37],

for simplicity, subcells are also depicted using triangles rather than with circles

as in [37].

10. Software tools 166

10.3 Conclusion

In this chapter we detailed the two pieces of software developed in support of this

thesis. The first, called Delay-Insensitive Network Tool Suite contains implementa-

tions of the maximal environment generation algorithms in Chapter 4, conversion

algorithms in Chapter 5 and algorithms which follow the non-arb and eq-arb con-

struction methods in Chapter 6. It also implements a version of the DI-Set algebra in

Chapter 7 with interactive execution and LTS generation with property and bisim-

ulation/simulation checking. The second piece of software, called STCA Simulator,

implements the four direction-reversible STCA in Chapter 9 with an interactive

graphical interface. It also contains the constructions from that chapter. A brief

description of how important features are implemented was given for each piece of

software.

Chapter 11

Conclusion and future research

In this chapter we summarise the work achieved in this thesis and outline possible

future directions of research.

11.1 Achievement of objectives

We set out to define a new, more robust model for abstract delay-insensitive sys-

tems, which exhibits truly concurrent behaviour at the fundamental level. This

model would allow us to define reversibility of concurrent modules, as well as a clear

distinction between deterministic and non-deterministic behaviour. We wished to

also formalise the notion of an environment for a module or network. This would al-

low us to study and define clear notions of universality and implementation. We have

achieved this objective, in the form of the Set Notation model for delay-insensitive

modules and networks. The main description of the Set Notation model is found

in Chapter 3, and notions of environments, implementation and universality in Set

Notation are defined in Chapter 4. Universality results for the Set Notation model

are found in Chapter 6.

We set out to introduce a new process algebra for the modelling and formal

representation of systems defined using such a newly developed model, and further

formalise behaviour and important properties (such as implementation) in the con-

text of this algebra. Such systems would then be able to have their behaviours

inferred based on the rules of this algebra. Formalising properties and behaviour

in this algebra would also help prevent the ambiguity of properties and conditions

which is commonly found in existing DI literature. The DI-Set algebra in Chapter

7 further formalises the behaviour and conditions of the Set Notation model and its

main concepts such as implementation, safety and non-clashing.

We also wanted to investigate how to implement concurrent delay-insensitive

networks in cellular automata, and see if any newly developed notions of reversibility

could be exploited in order to minimise the complexity of a cellular automaton’s

167

11. Conclusion and future research 168

transition rules, or constructions in such cellular automata. The four Self-Timed

Cellular Automata given in Chapter 9 exploit the inherent ability for networks of

non-arb non-b-arb modules in Set Notation to be inverted, in order to construct

networks which operate in both the forwards and backwards direction. The first

of these STCA was argued to be an improvement over existing STCA intended for

modelling DI networks, in terms of the number of transition rules which are defined.

The above concepts were intended to be further explored and studied via the

development of dedicated software tools. The two tools successfully developed in

support of this work are Delay-Insensitive Network Tool Suite and STCA Simulator.

Both of these were described in detail in Chapter 10.

11.2 Summary of results by chapter

We now list the main results in this thesis, collected in order of chapter.

• We introduced our own reversible memory modules in the sequential machine

model, and we used these modules to infer some simple universality results.

• We introduced a new model for describing the behaviour of delay-insensitive

modules, called Set Notation which more naturally models concurrency and

notions of reversibility. We defined important classes of modules in the Set

Notation model, such as the non-arb, eq-arb and arb classes. We defined

networks of modules in the Set Notation model, along with the execution

behaviour of such networks. We defined properties of such networks, such

as the non-clashing and safety properties. We investigated several further

properties of modules in the Set Notation model which limit the behaviour

of the environment in unexpected ways. Examples included the auto-firing or

1-step consistency properties of modules.

• We formalised the notion of an environment for a module in the Set Notation

model. We gave an algorithm for calculating what is referred to as a maximal

environment of any non-arb module. An algorithm for calculating a maximal

environment of any module was then given. Finally, we used this notion to

define implementation of a module using a network of modules in Set Notation.

• We introduced an extension to the sequential machine model called the ND

sequential machine model. We established limited correspondences between

three models; the sequential machine model, the ND sequential machine model,

and the new Set Notation model. We proved universality results for the ND

sequential machine model. We gave algorithms for converting modules which

satisfy certain conditions (formalised as E1 and E2) in the sequential machine

11. Conclusion and future research 169

model or the ND sequential machine model, to corresponding definitions in

the Set Notation model, and vice versa.

• We investigated inversion of networks of modules. We gave some universality

results for serial modules in the Set Notation model. We then gave a series

of detailed construction methods and universal sets for multiple classes of

modules, including the non-arb and eq-arb classes. We also proved a universal

set for all Set Notation modules, by utilising a correspondence between the ND

sequential machine and Set Notation models defined in the previous chapter.

We demonstrated an interesting property inherent to networks of concurrent

DI modules, which is that bijectivity of all modules’ transition maps can still

result in useful irreversible behaviour at the global level. We compared this

with a similar but less general result in the literature.

• We introduced a new process algebra, known as DI-Set algebra, which is in-

tended to model formally the behaviour of networks from the Set Notation

model. We gave examples of encoding modules (such as Merge) and networks

(such as a network that implements Merge) in DI-Set algebra, and defined

properties of networks discussed in previous chapters (such as safety and non-

clashing) more formally in the context of DI-Set algebra. We investigated the

use of bisimulation and simulation, and used these together with the afore-

mentioned properties to define more formally the concept of implementation

of a module using a network of modules.

• We defined new versions of global reversibility and global determinism in the

context of Self-Timed Cellular Automata. These are related to similar prop-

erties in the literature, but are more flexible properties which are based on

notions of convergence, and are appropriate for STCAs which simulate con-

current DI networks.

• We introduced four novel STCAs for implementing DI networks, including

two STCAs for reversible serial and non-arb non-b-arb networks. The two

main STCAs have several very useful properties, they are locally deterministic,

locally reversible and support what we call direction-reversibility. This allows

us to operate a network in reverse by changing the direction of signals and

utilising its output lines as input lines (and vice versa). This removes the

need for separate constructions to implement the inverse of a network. The

new notions of global determinism and global reversibility were proven to

hold for these two STCAs. We also introduced two further extensions to the

STCAs which simulate irreversible serial and non-arb b-arb networks. These

two additional STCAs were shown to be locally deterministic and globally

11. Conclusion and future research 170

deterministic. Finally, we proved that the third and fourth STCAs can be

used to implement any module in either Set Notation or the ND sequential

machine model.

• We detailed the two pieces of software developed in support of this thesis.

The first, called Delay-Insensitive Network Tool Suite contains implementa-

tions of the maximal environment generation algorithms in Chapter 4, con-

version algorithms in Chapter 5 and algorithms which follow the non-arb and

eq-arb construction methods in Chapter 6. It also implements a version of

the DI-Set algebra in Chapter 7 with interactive execution and LTS genera-

tion with property and bisimulation/simulation checking. The second piece

of software, called STCA Simulator, implements the four direction-reversible

STCA in Chapter 9 with an interactive graphical interface. It also contains

the constructions from that chapter. A brief description of how important

features are implemented was given for both pieces of software.

11.3 Future work

We finish by briefly outlining some areas of research from this thesis which could be

further developed.

• Currently, the only method for generating a construction of some arb module

(which is not eq-arb) is to utilise the correspondence between Set Notation

and (ND) sequential machines, and then follow the construction method for an

arbitrary (ND) sequential machine (Section 5.1.1 in Chapter 5). As discussed

in Chapter 6, this results in a “sequential” style construction, which lacks

any useful level of concurrency. Research into such “parallel” constructions

was conducted, but no meaningful methods have yet to be discovered. Given

the existence of “parallel” constructions for non-arb and eq-arb modules, a

method for constructing arb modules in such a way would allow the full set of

Set Notation modules to be constructed in a way that utilises concurrency.

• Verification of the constructions in Chapter 9 was performed both by hand and

by testing several thousand execution sequences using the STCA Simulator.

However a more formal means of verification has yet to be developed. Full

enumeration of all possible resulting configurations of a STCA, starting from

some given configuration, is an obvious future direction. However we note

that, given an STCA which allows 2 states per subcell and a finite grid of

m cells, there are 16 possible states per cell, and hence up to 16m possible

configurations in total for the given STCA and grid. Therefore any algorithm

11. Conclusion and future research 171

which enumerates all possible configurations may have a very large upper-

bound time-complexity.

• Verifying whether a network satisfies the notion of implementation in DI-Set

algebra (Definition 7.24 in Chapter 7) is dependent on enumeration of the

LTS of the given network. However highly parallel networks contain very large

LTSs due to a state explosion arising from concurrent signals. This has proven

impractical to calculate in many cases. We attempted to calculate the LTS

of the network resulting from combining Figures 6.5 and 6.6 with a maximal

environment of P (see Chapter 6), using the Delay-Insensitive Network Tool

Suite described in Chapter 10. This resulted in crashing the system due to

excessive RAM usage. Attempting to manually define a simulation relation

for such a large LTS would also be impractical. Hence a more feasible notion

of implementation which does not require the full enumeration of an LTS is

ideal.

• The algorithms in this thesis have not had their time-complexity studied in

great depth. This is a difficult task and beyond the scope of this work. However

there are some suggestions of a high-cost for many of the algorithms.

1. Figure 4.4: The algorithm duplicates the input/output sets and states of

the module for the environment. For each action of the original module,

it creates two actions and one new state for the environment. We can

deduce that this algorithm has linear time complexity.

2. Figure 4.5: The algorithm creates an environment state for each possi-

ble uncertainty which may be reached during execution of the network

containing the module and its environment. An uncertainty contains

any possible set of configurations. Hence, in general there are 2n possi-

ble uncertainties, where n is the number of possible configurations. The

number of possible configurations is dependent on all possible combina-

tions of input lines, output lines, and states of a module. Hence there

are up to 2m possible configurations, where m = |I| + |O| + |Q| for some

given N = (Q, I, O, T). This implies that there are up to 22m

possible

uncertainties for a given module. Furthermore, the creation of each envi-

ronment state involves a non-fixed number of steps, as all possible prefixes

of variable length autopaths must be examined. However it is not clear

whether there exists some module such that all possible uncertainties

must be calculated for a corresponding environment.

3. Figure 5.4: for all q and for all S ∈ A(q) and for all A ⊆ S, the algorithm

produces at least n! actions (one for each permutation of the set A),

11. Conclusion and future research 172

where n = |A|. The algorithm produces even more actions if the original

module is an ND sequential machine. This suggests that the algorithm’s

upper-bound time complexity is at least factorial time.

4. Figure 5.5: for all actions (A, B).q′ in the Set Notation module, the algo-

rithm produces up to n! actions in the resulting (ND) sequential machine

(a sequence of actions for each permutation of A), where n = |A|. This

suggests that the algorithm’s upper-bound complexity is at least factorial

time. Furthermore, it also tracks which sequences are “available” to im-

plement a particular action, and therefore contains additional overhead

regarding the ruling out of sequences.

• Modelling the behaviour of DI networks defined in the Set Notation model

using an existing formalism is a possible future direction. The advantage of this

is that it would allow the utilisation of well-developed verification techniques

and software tools. It may occur to the reader that the behaviour of individual

modules in the Set Notation model (the “firing” of a transition once certain

prerequisites are satisfied) seems a good match for Petri Nets [73]. A deliberate

decision was made to instead model networks using the domain-specific DI-

Set algebra given in this thesis. This had the advantage of allowing CCS-like

definitions of modules to be encoded directly, and allows a human to quickly

analyse the state of the network and bus by simple visual inspection of the

syntax itself. Utilising Petri Nets would require the conversion of modules

from their more intuitive CCS-like form to a Petri Net that exhibits the same

behaviour, as well as the converse. The current state of the module would need

to be explicitly tracked, due to the static structure of Petri Nets. Furthermore,

while the property of non-clashing appears easy to verify in the context of Petri

Nets, the property of safety does not appear to be as simple due to this static

nature. Checking that the currently signalled input lines are a subset of those

required to fire some transition, such that the module is also in the correct

state to fire the transition, is a more complex procedure. Compare this with

the DI-Set algebra, where we simply check that the set of signals with a given

label is a subset of the input set of some action, currently visible in the syntax,

for the module with the same label. Therefore the current state of each module

does not need to be explicitly tracked or factored into the verification of safety.

However the abundance of research into Petri Nets as well as wide availability

of software tools means that Petri Nets should not be ruled out as a way of

modelling these types of networks. We note [43] which investigates modelling

“DI” circuits (where they are referred to as speed-independent) of logic gates

(Section 2.4.1 in Chapter 2) using Petri Nets. Similarly, [77] shows how to

11. Conclusion and future research 173

model the behaviour of multiple classes of asynchronous logic circuits using a

formal framework based on Petri Nets. We also note [57, 58] which detail how

to realise Petri Nets using asynchronous circuits of logic gates.

• We also note that DI-Set algebra does not include notions of reversibility or

backtracking. As a result, it is not possible to invert a network of non-arb

non-b-arb modules in the same way as described in Section 6.1 in Chapter

6, and utilised in the direction-reversible STCA given in Chapter 9. This

would involve sacrificing the dynamic nature of the syntax of DI-Set algebra,

and the full definition of a module, including the definitions of previous, now

possibly unreachable, states would need to be retained in the top-level term.

The simplicity of encoding the CCS-like definition of a state of a module would

be lost, and a syntactic way of “tracking” the current state would need to be

implemented, further complicating the algebra. However a process algebra

that allows inversion analogously to the STCA in Chapter 9 would be useful

in order to allow the modelling of the bidirectional networks found in these

STCA using a single network definition. We note [4, 7] which detail RCCS

(for reversible CCS) process algebra. RCCS allows the backtracking of events.

Similarly, we note [70] which describes a process algebra which can reverse

the direction of computation. Finally, we also note [69] which shows how to

convert standard dynamic process algebra operators (such as “+”) to static

equivalents, permitting notions of reversibility.

• Recall the Seq/Set model outlined in Chapter 5 which was used to prove

correspondences between the sequential machine, ND sequential machine and

Set Notation models. DI-Set algebra appears capable of also modelling the

Seq/Set model. As a result, it should be possible to encode (ND) sequential

machine definitions in the algebra, and also to further formalise the notion of

sequential implementation by defining a corresponding notion in the algebra.

This was not attempted due to space, as well as the fact that the motivation

for DI-Set algebra was to facilitate the further development and formalisation

of the Set Notation model. However such notions could be further explored,

and existing notions of bisimulation and simulation in DI-Set algebra could be

utilised in this possible future study.

Bibliography

[1] java.com. http://www.java.com/en/. Accessed: 2016-09-08.

[2] R. J. Baker. CMOS Circuit Design, Layout, and Simulation. 3rd edition.

Wiley-IEEE Press, 2010.

[3] C. H. Bennett. Logical reversibility of computation. In IBM Journal of Research

and Development, 17(6):525–532. IBM, 1973.

[4] L. Cardelli and C. Laneve. Reversible structures. In Proceedings of the 9th In-

ternational Conference on Computational Methods in Systems Biology (CMSB

’11), pages 131–140. ACM, 2011.

[5] F. Cheng. Synthesizing iterative functions into delay-insensitive tree circuits. In

Proceedings of the 1997 International Conference on Computer Design: VLSI

in Computers and Processors (ICCD ’97), pages 301–306. IEEE, 1997.

[6] E. F. Codd. Cellular Automata. Academic Press, Inc., 1968.

[7] V. Danos and J. Krivine. Reversible Communicating Systems. In CONCUR

2004 - Concurrency Theory, volume 3170 of LNCS, pages 292–307. Springer,

2004.

[8] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-

independent Circuits. Carnegie Mellon University, 1987.

[9] J. C. Ebergen. Translating Programs into Delay-insensitive Circuits. Centrum

voor Wiskunde en Informatica, 1989.

[10] J. C. Ebergen. A formal approach to designing delay-insensitive circuits. In

Distributed Computing, 5(3):107–119. Springer, 1991.

[11] N. Fatès. A guided tour of asynchronous cellular automata. In Journal of

Cellular Automata, 9(5–6):387–416. Old City Publishing, 2014.

[12] E. F. Fredkin and T. Toffoli. Conservative logic. In International Journal of

Theoretical Physics, 21(3):219–253. Springer, 1982.

174

http://www.java.com/en/

BIBLIOGRAPHY 175

[13] G. Gopalakrishnan and V. Akella. High-level optimizations in compiling process

descriptions to asynchronous circuits. In Journal of VLSI signal processing

systems for signal, image and video technology, 7(1):33–45. Springer, 1994.

[14] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley. The Java Language

Specification, Java SE 8 Edition. 1st edition. Addison-Wesley Professional,

2014.

[15] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley. The Java Language

Specification, Java SE 8 Edition. 1st edition. Addison-Wesley Professional,

2014.

[16] S. Hauck. Asynchronous design methodologies: an overview. In Proceedings of

the IEEE, 83(1):69–93. IEEE, 1995.

[17] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[18] C. R. Jesshope, I. M. Nedelchev, and C. G. Huang. Compilation of process

algebra expressions into delay-insensitive circuits. In IEE Proceedings E - Com-

puters and Digital Techniques, 140(5):261–268. IEEE, 1993.

[19] M. B. Josephs and D. Furey. Delay-insensitive interface specification and syn-

thesis. In Proceedings of the Conference on Design, Automation and Test in

Europe, pages 169–173. ACM, 2000.

[20] M. B. Josephs and S. M. Nowick. Scanning the technology: Applications of

asynchronous circuits. In Proceedings of the IEEE, pages 223–233. IEEE, 1999.

[21] M. B. Josephs and J.T. Udding. An overview of D-I algebra. In Proceedings

of the 26th Hawaii International Conference on System Sciences (HICSS ’93),

pages 329–338. IEEE, 1993.

[22] J. Kari. Reversible Cellular Automata. In Developments in Language Theory,

volume 3572 of LNCS, pages 57–68. Springer, 2005.

[23] R. M. Keller. Towards a theory of universal speed-independent modules. In

IEEE Transactions on Computers, 23(1):21–33. IEEE, 1974.

[24] R. M. Keller. A fundamental theorem of asynchronous parallel computation. In

Parallel Processing: Proceedings of the Sagamore Computer Conference, pages

102–112. Springer, 1975

[25] M. Z. Kwiatkowska. Defining process fairness for non-interleaving concurrency.

In Foundations of Software Technology and Theoretical Computer Science, vol-

ume 472 of LNCS, pages 286–300. Springer, 1990.

BIBLIOGRAPHY 176

[26] R. Landauer. Irreversibility and Heat Generation in the Computing Process.

In IBM Journal of Research and Development, 5(3):183–191. IBM, 1961.

[27] J. Lee, S. Adachi, and F. Peper. A partitioned cellular automaton approach for

efficient implementation of asynchronous circuits. In The Computer Journal,

54(7):1211–1220. Oxford University Press, 2011.

[28] J. Lee, S. Adachi, F. Peper, and S. Mashiko. Delay-insensitive computation in

asynchronous cellular automata. In Journal of Computer and System Sciences,

70(2):201–220. Elsevier, 2005.

[29] J. Lee, S. Adachi, F. Peper, and K. Morita. Embedding universal delay-

insensitive circuits in asynchronous cellular spaces. In Fundamenta Informati-

cae, 58(3-4):295–320. IOS Press, 2003.

[30] J. Lee, S. Adachi, Y. Xia, and Q. Zhu. Emergence of universal global behav-

ior from reversible local transitions in asynchronous systems. In Information

Sciences, 282:38–56. Elsevier, 2014.

[31] J. Lee, X. Huang, and Q. Zhu. Decomposing Fredkin Gate into simple reversible

elements with memory. In International Journal of Digital Content Technology

and its Applications, 4(5):153–158. Advanced Institute of Convergence Infor-

mation Technology, 2010.

[32] J. Lee, X. Huang, and Q. Zhu. Embedding simple reversed-twin elements into

self-timed reversible cellular automata. In Journal of Convergence Informa-

tion Technology, 6(1):49–54. Advanced Institute of Convergence Information

Technology, 2011.

[33] J. Lee, F. Peper, S. Adachi, and S. Mashiko. On Reversible Computation in

Asynchronous Systems, In Quantum Information and Complexity, pages 296–

320. World Scientific, 2004.

[34] J. Lee, F. Peper, S. Adachi, and S. Mashiko. Universal delay-insensitive systems

with buffering lines. In IEEE Transactions on Circuits and Systems I: Regular

Papers, 52(4):742–754. IEEE, 2005.

[35] J. Lee, F. Peper, S. Adachi, and K. Morita. Universal delay-insensitive circuits

with bidirectional and buffering lines. In IEEE Transactions on Computers,

53(8):1034–1046. IEEE, 2004.

[36] J. Lee, F. Peper, S. Adachi, and K. Morita. An asynchronous cellular automaton

implementing 2-state 2-input 2-output reversed-twin reversible elements. In

Cellular Automata, volume 5191 of LNCS, pages 67–76. Springer, 2008.

BIBLIOGRAPHY 177

[37] J. Lee, F. Peper, S. Adachi, K. Morita, and S. Mashiko. Reversible computation

in asynchronous cellular automata. In Unconventional Models of Computation,

volume 2509 of LNCS, pages 220–229. Springer, 2002.

[38] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are turing-

complete. Technical report. California Institute of Technology, 1995.

[39] A. J. Martin. Asynchronous logic: Results and prospects.

http://www.async.caltech.edu/general07.ppt. California Institute of

Technology, Accessed 2016-09-08.

[40] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits.

In Proceedings of the 6th MIT Conference on Advanced Research in VLSI

(AUSCRIPT ’90), pages 263–278. MIT Press, 1990.

[41] D. D. McCracken and E. D. Reilly. Backus-naur form (BNF). In Encyclopedia

of Computer Science, pages 129–131. John Wiley & Sons, 2003

[42] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[43] D. Misunas. Petri nets and speed independent design. In Communications of

the ACM, 16(8):474–481. ACM, 1973.

[44] K. Morita. Universality of a reversible two-counter machine. In Theoretical

Computer Science, 168(2):303–320. Elsevier, 1996.

[45] K. Morita. A simple universal logic element and cellular automata for re-

versible computing. In Machines, Computations, and Universality, volume 2055

of LNCS, pages 102–113. Springer, 2001.

[46] K. Morita. Reversible computing and cellular automata - a survey. In Theoret-

ical Computer Science, 395(1):101–131. Elsevier, 2008.

[47] K. Morita. Reversible computing systems, logic circuits, and cellular automata.

In 2012 3rd International Conference on Networking and Computing (ICNC

’12), pages 1–8. IEEE, 2012.

[48] K. Morita. Reversible logic elements with memory and their universality. In

Proceedings Machines, Computations and Universality 2013 (MCU 2013), pages

3–14. Electronic Proceedings in Theoretical Computer Science, 2013.

[49] K. Morita, T. Ogiro, K. Tanaka, and H. Kato. Classification and universality

of reversible logic elements with one-bit memory. In Machines, Computations,

and Universality, volume 3354 of LNCS 3354, pages 245–256. Springer, 2004.

http://www.async.caltech.edu/general07.ppt

BIBLIOGRAPHY 178

[50] T. Ogiro, A. Kanno, K. Tanaka, H. Kato, and K. Morita Nondegenerate 2-

State 3-Symbol Reversible Logic Elements Are All Universal. In International

Journal of Unconventional Computing, 1(1):47–67. Old City Publishing, 2005.

[51] D. Morrison. Delay-Insensitive Network Tool Suite and STCA Simulator,

http://www.cs.le.ac.uk/people/dm181/PhDTools.zip. Department of In-

formatics, University of Leicster. Accessed 2016-09-19.

[52] D. Morrison and I. Ulidowski. Reversible delay-insensitive distributed memory

modules. In Reversible Computation, volume 7948 of LNCS 7948, pages 11–24.

Springer, 2013.

[53] D. Morrison and I. Ulidowski. Arbitration and reversibility of parallel delay-

insensitive modules. In Reversible Computation, volume 8507 of LNCS, pages

67–81. Springer, 2014.

[54] D. Morrison and I. Ulidowski. Direction-reversible self-timed cellular automata

for delay-insensitive circuits. In Cellular Automata, volume 8751 of LNCS,

pages 367–377. Springer, 2014.

[55] D. Morrison and I. Ulidowski. Direction-reversible self-timed cellular automata

for delay-insensitive circuits. In Journal of Cellular Automata, 12(1-2):101–120.

Old City Publishing, 2016.

[56] T. Ogiro, A. Alhazov, T. Tanizawa, and K. Morita. Universality of 2-State 3-

Symbol Reversible Logic Elements — A Direct Simulation Method of a Rotary

Element. In Natural Computing, volume 2 of Proceedings in Information and

Communications Technology, pages 252–259. Springer, 2010.

[57] S. S. Patil Coordination of asynchronous events. ScD Thesis, Department of

Electrical Engineering. MIT, Project MAC, 1970.

[58] S. S. Patil. Circuit Implementation of Petri Nets, Computation Structures

Group Memo 73. MIT, Project MAC, 1972.

[59] P. Patra and D. S. Fussell. Building-blocks for designing DI circuits. Technical

report. Department of Computer Sciences, University of Texas at Austin, 1993.

[60] P. Patra and D. S. Fussell. Efficient building blocks for delay insensitive cir-

cuits. In Proceedings of the International Symposium on Advanced Research in

Asynchronous Circuits and Systems (Async ’94), pages 196–205. IEEE, 1994.

[61] P. Patra and D. S. Fussell. Fully asynchronous, robust, high-throughput arith-

metic structures. In Proceedings of the 8th International Conference on VLSI

Design, pages 141–145. IEEE, 1995.

http://www.cs.le.ac.uk/people/dm181/PhDTools.zip

BIBLIOGRAPHY 179

[62] P. Patra and D. S. Fussell. Conservative delay-insensitive circuits, In Proceed-

ings of the 4th Workshop on Physics and Computation (PhysComp96), pages

248–259. New England Complex Systems Institute, 1996.

[63] P. Patra and D. S. Fussell. Efficient delay-insensitive RSFQ circuits. In Proceed-

ings of the 1996 IEEE International Conference on Computer Design: VLSI in

Computers and Processors (ICCD ’96), pages 413–418. IEEE, 1996.

[64] F. Peper. Simplifying brownian cellular automata: Two states and an average

of two rules per cell. In 2012 3rd International Conference on Networking and

Computing (ICNC ’12), pages 367–370. IEEE, 2012.

[65] F. Peper, T. Isokawa, N. Kouda, and N. Matsui. Self-timed cellular automata

and their computational ability. In Future Generation Computer Systems,

18(7):893–904. Elsevier, 2002.

[66] F. Peper, J. Lee, S. Adachi, and S. Mashiko. Laying out circuits on asyn-

chronous cellular arrays: a step towards feasible nanocomputers? In Nanotech-

nology, 14(4):469–485. IOP Publishing, 2003.

[67] F. Peper, J. Lee, J. Carmona, J. Cortadella, and K. Morita. Brownian circuits:

Fundamentals. In Journal on Emerging Technologies in Computing Systems,

9(1):3:1–3:24. ACM, 2013.

[68] I.C.C. Phillips and I. Ulidowski. Reversibility and models for concurrency.

In Electronic Notes in Theoretical Computer Science, 192(1):93–108. Elsevier,

2007.

[69] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. In Journal

of Algebraic and Logic Programming, 73(1-2):70–96. Elsevier, 2007.

[70] I.C.C. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the

modelling of the ERK signalling pathway. In Reversible Computation, volume

7581 of LNCS, pages 218–232. Springer, 2013.

[71] G. D. Plotkin. A structural approach to operational semantics. Technical report.

Computer Science Department, Aarhus University, 1981.

[72] G D. Plotkin. The origins of structural operational semantics. In Journal of

Logic and Algebraic Programming, 60-61:17–139. Elsevier, 2004.

[73] W. Reisig. Petri Nets: An Introduction. Springer, 1985.

BIBLIOGRAPHY 180

[74] O. Schneider and T. Worsch. A 3-state asynchronous CA for the simulation of

delay-insensitive circuits. In Cellular Automata, volume 7495 of LNCS, pages

565–574. Springer, 2012.

[75] M. Shams, J. C. Ebergen, and M. I. Elmasry. Asynchronous Circuits. John

Wiley & Sons, 2001.

[76] J. Spars and S. Furber. Principles of Asynchronous Circuit Design: A Systems

Perspective. 1st edition. Springer, 2010.

[77] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified signal

transition graph model for asynchronous control circuit synthesis. In Formal

Methods in System Design, 9(3):139–188. Springer, 1996.

[78] A. Yakovlev, P. Vivet, and M. Renaudin. Advances in Asynchronous logic:

from Principles to GALS & NoC, Recent Industry Applications, and Commer-

cial CAD tools In Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition (DATE ’13), pages 1715–1724. IEEE, 2013.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation
	Contributions
	Overview of thesis

	Background to DI networks and the sequential machine model
	Sequential machine model by Keller
	Reversibility
	Distributed memory modules
	Reversible serial universality results
	Serial universality results

	Related work and alternative models
	Implementation of DI modules in CMOS
	Variations on the sequential machine model

	Shortcomings of Keller's sequential machine model
	Conclusion

	The Set Notation model
	Basic definitions and conditions
	Properties of modules
	Basic properties and important classes
	Advanced properties

	ATS, sATS and external behaviour
	Conclusion

	Environments and Implementation
	Formalisation of an environment
	Generating maximal environments
	Implementation and universality
	Conclusion

	Correspondences between models
	Non-deterministic sequential machines
	Universal sets

	Implementing Set Notation modules using (ND) sequential machines
	Converting between models
	Realisability of Set Notation modules as sequential machines
	(ND) sequential machines to Set Notation modules
	Set Notation modules to (ND) sequential machines

	Conclusion

	Universality and implementing modules using concurrency
	Inverting modules and networks
	Serial universality results
	Non-serial universality results and concurrent implementations
	Universal sets for non-arb modules
	Universal sets for eq-arb modules
	Universal sets for all modules
	Irreversibility from local bijectivity

	Conclusion

	DI-Set algebra for DI networks
	Syntax and operational semantics
	Properties of networks
	Bisimulation and simulation
	Implementation
	Conclusion

	Background to STCA
	Introduction
	Existing CA for DI networks
	Conclusion

	Implementation in STCA and direction-reversibility
	Direction-reversible STCA for serial modules
	Extending to non-serial DI modules
	Conclusion

	Software tools
	Delay-Insensitive Network Tool Suite
	Overview of features
	Implementation details

	STCA Simulator
	Brief overview of features
	Implementation details

	Conclusion

	Conclusion and future research
	Achievement of objectives
	Summary of results by chapter
	Future work

	Bibliography

