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Never mistake knowledge for wisdom. One helps you make a living; the other helps

you make a life.

Eleanor Roosevelt.



Abstract

In this thesis, we are interested in the study of cohomology of differentiable stacks

and we want to provide a good notion of equivariant cohomology for differentiable

stacks. For this we describe in detail some of the cohomology theories found in

the literature and give some relations between them. As we want a notion of

equivariant cohomology, we discuss the notion of an action on a stack by a Lie

group G and how to define the quotient stack for this action. We find that this

quotient stack is a differentiable stack and we describe its homotopy type. We

provide a Cartan model for equivariant cohomology and we show that it coincides

with the cohomology of the quotient stack previously defined. We prove that theG-

equivariant cohomology can be expressed in terms of a T -equivariant cohomology

for T a maximal torus of G and its Weyl group. Finally we construct some spectral

sequences that relate the cohomology of the nerve associated to the Lie groupoid

of the quotient stack with the previously described equivariant cohomology.
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Chapter 1

Introduction

This thesis is concerned with equivariant cohomology theories of differentiable
stacks. Historically, the concept of stacks as algebraic stacks was introduced by
Grothendieck in algebraic geometry for the study of moduli problems and non-
abelian cohomology in algebraic geometry and it can be found in Giraud’s work
[25]. Later, Deligne and Mumford used algebraic stacks in [17] to study moduli
spaces of algebraic curves and their irreducibility. Meanwhile in 1974, Artin in
[3] introduced a generalisation of Deligne-Mumford stacks; which is now called
an Artin stack to study moduli problems, quotient spaces and generalised global
deformations. Recently, stacks were also introduced in other areas like algebraic
topology, differential geometry and mathematical physics. For instance, in alge-
braic topology the notion of a topological stack was introduced by Noohi in [51]
to study quotient spaces and cohomology theories. In differential geometry and
mathematical physics the notion of a differentiable stack was introduced to study
objects that are not smooth manifolds like for example orbifolds, which were in-
dependently introduced by Satake [54] and Thurston [59], classifying spaces of
compact Lie groups or quotients of Lie group actions on smooth manifolds that
are not necessarily free actions as in [5]. Some general approaches to the notion
of a differentiable stack were given by Behrend in [5, 6] and Heinloth in [28]. In
particular they initiated to study de Rham cohomology of diffferentiable stacks
and Lie groupoids.

The notion of a stack is based on the language of 2-categories as we are here
considering a stack as a pseudo functor from the opposite category of smooth
manifolds to the category of groupoids, M : Diffop → Grpds (described for
example in [28, 50]), with conditions for gluing objects and morphisms. If X is

1



Introduction 2

a smooth manifold, the stack associated to it will be given by the pseudo-functor
Hom(_, X), the set of all smooth maps with codomain in X. A stackM is then
a differentiable stack if there exists a morphism of stacks X → M between the
stack associated to a smooth manifold and M which in addition is a surjective
submersion, which means that we have the following commutative diagram

T ×M X X

T M

where T ×M X is a differentiable manifold and T ×M X → T is a submersion
for any morphism of stacks T → M, with T a smooth manifold. The main
examples of differentiable stacks are the ones given by a smooth manifold X, that
is the pseudo-functor Hom(_, X), the classifying stack BG and the quotient stack
[X/G] associated to a Lie group action of G on a smooth manifold X such that for
any smooth manifold T this gives a groupoid of pairs 〈E p−→ T,E

f−→ X〉, where p
is a principal G-bundle and f is a G-equivariant map. If X is a point, we recover
the classifying stack BG, which classifies principal G-bundles and plays a similar
role then the classifying space in algebraic topology.

If we have a differentiable stack M with an atlas X → M, we can consider the
smooth manifold X×MX and this helps us to get a Lie groupoid (X×MX ⇒ X)

associated toM. Conversely, we can get for a Lie groupoid Γ = (Γ1 ⇒ Γ0) a dif-
ferentiable stack built by principal Γ-bundles. This relation between differentiable
stacks and Lie groupoids gives an equivalence of categories if we keep in mind
that two Lie groupoids define the same differentiable stack if and only if they
are Morita equivalent. Now we can use the nerve of the associated Lie groupoid
which is a simplicial smooth manifold to get different cohomologies for differen-
tiable stacks as sheaf cohomology, cohomology of the associated Lie groupoid, de
Rham cohomology and hypercohomology (see for these [4, 28]) and also a notion
of Čech cohomology that uses coverings of simplicial smooth manifolds as in [20].
Dupont’s work on de Rham cohomology for simplicial smooth manifold in [19]
shows that the fat geometric realisation ‖ X• ‖ gives in fact the homotopy type
for a given differentiable stack with atlas X →M.

It is possible to define principal G-bundles over a differentiable stackM with atlas
X →M as a principal G-bundle over X. If we consider the classifying stack BG,
we get that the collection of morphism of stacks from a differentiable stackM into
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BG is equivalent to the collection of all principal G-bundles onM, that is

MapsSt(M,BG) ∼= BunG(M).

The aim in this thesis is to develop a good notion of equivariant cohomology for dif-
ferentiable stacks with an action of a Lie group G. For this we consider a compact
Lie group G and we follow the classical point of view that consists of associating a
Borel model and a Cartan model to this equivaraint situation. In order to pursue
this we will first define an action of a Lie group G on a differentiable stack M
as first described in general terms by Romagny in [53] and Ginot-Noohi in [24] in
the algebraic geometric context. We then prove that the quotient stackM/G is
in fact a differentiable stack and its cohomology coincides with the cohomology of
EG×G ‖ X• ‖; such that when M is the stack associated to a smooth manifold
we recover the classical Borel model. For the Cartan model version of a differen-
tiable G-stack we follow a construction given by Meinreken in [46] for simplicial
smooth manifolds and we verify that actually its cohomology is equivalent to the
cohomology of EG×G ‖ X• ‖. Therefore, we conclude that both models coincide
in cohomology like in the classical result on smooth manifolds as first proven by
Cartan in [14].

We can also restrict the Lie group G to a closed subgroup and we prove that the G-
equivariant cohomology can be expressed in terms of the equivariant cohomology
of a maximal torus T of G and the Weyl group W of this torus as follows by the
ring of invariants

H∗G(X•,R) ∼= H∗T (X•,R)W .

This generalises a result by Guillemin and Sternberg [27], when we have a G-atlas
X →M.

In the last part of this thesis we get some comparison results via spectral sequences
for the equivariant cohomology of differentiable stacks that generalises previous
results. For instance, the group cohomology of each level in the simplicial smooth
manifold is related to the equivariant cohomology by a general spectral sequence

Ep,r
2 = Hp(G,Hr(M,F))⇒ Hp+r(M/G,F).
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generalising a result by Felder et al., in [20]. In a similar way, we prove that there
is a spectral sequence

Ek,p
2 = Totk

⊕
q+n=k

Hp(G,
⊕
s+t=q

Ωs(Xn)⊗ St(g))⇒ Hk+p
dR (M/G)

which is a more general version of the spectral sequence

Et,p
2 = Hp(G;St(g))⇒ H t+p(BG,R)

first described by Bott in [9] and by Stasheff in [55], whenM is a point. Related
spectral sequences in the manifold case was also developed more recently by Abad-
Uribe [1] and García-Compeán-Paniagua-Uribe [22]. These are also concerned with
general actions of non-compact Lie groups on smooth manifolds using Getzler’s
model [23]. We aim to address also non-compact Lie group actions in the future.

As a consequence of the results of this thesis, it should be noted that the notion of
equivariant cohomology and the two given models allow us to relate the quotient
stack with its smooth structure given by the atlas with equivariant differential
forms. It also gives us the versatility to calculate different properties such as those
seen previously that occur in the classic case. Last but not least, the concepts
and results of this thesis allow us to think about a possible classification of K-
equivariant principal T-bundles over a differentiable stack X via the equivariant
cohomology group H1(EG×G X,T) similar as was discussed in the smooth man-
ifold case by Brylinsky in [13]. This is currently another part of my research in
progress.
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Thesis outline

The content of this thesis is subdivided into three chapters after this introduction
and is organised as follows:

Chapter 2 introduces basic concepts on categories, 2-categories and simplicial sets.
It reviews some basic definitions in the category of smooth manifolds and smooth
maps with special attention on principal G-bundles, simplicial smooth manifolds
and the two classical models of equivariant cohomology, the Borel model and the
Cartan model. It recalls the definition of groupoids and Lie groupoids with sev-
eral examples and the definition of a principal Γ-bundle where Γ is a Lie groupoid.
Finally it introduces the concept of spectral sequences and some important prop-
erties of them.

Chapter 3 is concerned with the general theory of differentiable stacks. We define
what is a stack and we give a Yoneda lemma version for stacks. We define fibered
products for stacks and using this we define the notion of an atlas for a stack.
From this we get the notion of a differentiable stack. We provide the main exam-
ples of differentiable stacks as the ones associated to a smooth manifold and the
classifying stack BG of a Lie group. For a Lie group G, we define then principal
G-bundles and we show their relation with the classifying stack BG. We discuss
the relation between differentiable stacks and Lie groupoids and we prove that
both categories are equivalent up to Morita equivalences. We give the definition
of a sheaf on a differentiable stack and define sheaf cohomology. We use the nerve
of the Lie groupoid associated to a differentiable stack to define the cohomology
of the associated groupoid, the de Rham cohomology, singular homology, singular
cohomology, hypercohomology and Čech cohomology. We check that these coho-
mologies are well defined, that is they are Morita invariant. Also we prove a de
Rham theorem version for differentiable stacks. We show that hypercohomology
and de Rham cohomology are equivalent. We get a similar result for de Rham co-
homology and Čech cohomology under the condition of the existence of an acyclic
covering.

Chapter 4 defines general Lie group actions on differentiable stacks and also defines
quotient stacks for this kind of actions. We check that these quotient stacks
are in fact differentiable stacks and we describe their homotopy types. Then we
introduce the concept of equivariant cohomology for differentiable stacks with G-
actions. We define a Cartan model for differentiable stacks and we show that this
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model has the same cohomology as the equivariant cohomology described before.
We then restrict the group in the equivariant cohomology to a subgroup and we
get a relation between the equivariant cohomology of the Lie group and of its
maximal torus. Finally, we derive some general spectral sequences that relate the
cohomology of the nerve of the Lie groupoid associated to the differentiable stack
with the equivariant cohomology of the differentiable stack. We will analyse them
in particular situations and discuss their homological properties.



Chapter 2

Preliminaries

We begin with the necessary preliminaries for our discussion and, with them,
we will conceive the equivariant cohomology for differentiable stacks and their
fundamental properties. In most of the cases the technicalities can be found in
the references provided, and we will only give them when necessary.

2.1 Categories

Categories and 2-categories are going to unify the language in our discussion, since
they provide a rigorous definition for stacks being examples of pseudo-functors
between 2-categories. Hence, it is necessary to recall some aspects about them.
For this, we follow [32, 40].

Definition 2.1.1. A category C consists of:

• a collection of objects Ob(C),

• a collection of morphisms MorC(x, y) for two objects x, y ∈ Ob(C),

with the following properties:

1. For x, y, z ∈ Ob(C), there exists a function

MorC(y, z)×MorC(x, y)→ MorC(x, z)

(g, f) 7→ g ◦ f

7



Preliminaries 8

called a composition.

2. For each element x ∈ Ob(C) there is a morphism 1x ∈ MorC(x, x) called
identity of x, such that for each f ∈ MorC(x, y), f ◦ 1x = 1y ◦ f .

3. For each f ∈ MorC(x, y), g ∈ MorC(y, z) and h ∈ MorC(z, w), h ◦ (g ◦ f) =

(h ◦ g) ◦ f .

Remark 2.1.2. If the collections of objects and morphism are sets, we say that the
category is a small category.

Example 2.1.3.

1. The category of sets and functions is denoted by Sets.

2. The category of topological spaces with morphism being continuous functions
is denoted by Top.

3. The category of smooth manifolds with smooth maps as morphisms is de-
noted by Diff .

4. The category of groups with group homomorphisms, is denoted by Gr. If
we ask for only abelian groups the category is going to be denoted by Ab.

Definition 2.1.4. For each category C, there exists a category called the opposite
category, Cop, that consists of:

• objects of Cop the same objects as C,

• morphisms of Cop are arrows f op in one-one correspondence with arrows f of C
such that if f op : x→ y then f : y → x.

The composition in Cop is defined as f op ◦ gop = (g ◦ f)op.

We can relate two categories in the following functorial way:

Definition 2.1.5. Let C and D be categories. A covariant functor F : C → D
consists of:

• a function Ob(C)→ Ob(D),

• for each morphism f ∈ MorC(x, y), there is a morphism F (f) ∈ MorD(F (x), F (y)),
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such that:

1. F (g ◦ f) = F (g) ◦ F (f).

2. F (1x) = 1F (x) for any x ∈ Ob(C).

Definition 2.1.6. Let C and D be categories. A contravariant functor F : C → D
consists of:

• a function Ob(C)→ Ob(D),

• for each morphism f ∈ MorC(x, y), there is a morphism F (f) ∈ MorD(F (y), F (x)),

such that:

1. F (g ◦ f) = F (f) ◦ F (g).

2. F (1x) = 1F (x) for any x ∈ Ob(C).

In our work it will be necessary to consider higher categories as well, so we recall
some aspects of the theory of 2-categories, for this we follow [50, 2.1].

Definition 2.1.7. A 2-category consists of the following:

• a collection of objects, denoted by ob(C),

• a collection of 1-morphisms of HomC(X, Y ) for any two objects X, Y ∈ ob(C),

• a collection of 2-morphisms α of HomC(f, g) between two 1-morphism f, g ∈
HomC(X, Y ). An element α ∈ HomC(f, g) will be illustrated as arrows in the
following way:

X Y

f

g

α

with the conditions

1. Objects and 1-morphisms form a category.

2. For fixed objects X and Y , HomC(X, Y ) and the collection of 2-morphisms
on it, form a category under the operation known as vertical composition:
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X Y
g

f

h

α

β

This vertical composition is denoted by β · α : f ⇒ h and its identities
1f : f ⇒ f .

3. There is a horizontal composition:

X Y Z = X Z

f

g

u

v

α γ

uf

vg

γ∗α

The horizontal composition is denoted by γ ∗ α : uf ⇒ vg. With this
composition, the 2-morphisms form a category with identities:

X X

1X

1X

11X

4. If there is:

X Y Z
g

f

h

u

v

w

α

β

γ

δ

then (δ ∗ β) · (γ ∗ α) = (δ · γ) ∗ (β · α).

5. And if there is:

X Y Z

f

f

u

u

1f 1u

then 1u ∗ 1f = 1uf .

Definition 2.1.8. Let X and Y be objects in a 2-category C. They are equivalent
if there exist two 1-morphisms f : X → Y , g : Y → X and two 2-isomorphisms,
that is, α : g ◦ f

∼=−→ idX and β : f ◦ g
∼=−→ idY .

Definition 2.1.9. Let C andD be two 2-categories. F : C → D is a pseudo-functor
if the following data is given:

• For every object X ∈ C there is an object F(X) ∈ D.

• For each 1-morphism f : X → Y in C there is a 1-morphism F(f) : F(X) →
F(Y ) in D.
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• For each 2-morphism α : f ⇒ g in C there is a 2-morphism F(α) : F(f)⇒ F(g)

in D.

such that:

1. F respects identity 1-morphisms, that is F(idX) = idF(X),

2. F respects identity 2-morphisms, that is F(f) = idF(f),

3. F respects composition of 1-morphism up to 2-isomorphism, that is for any
diagram of the form

X
f−→ Y

g−→ Z

there is a 2-isomorphism εg,f : F(g) ◦ F(f)⇒ F(g ◦ f) such that:

(a) εf,idX = εidY ,f = idF(f).

(b) ε is associative, that is

F(h) ◦ F(g) ◦ F(f) F(h ◦ g) ◦ F(f)

F(h) ◦ F(g ◦ f) F(h ◦ g ◦ f)

idF(h)∗εg,f

εh,g∗idF(f)

εh◦g,f

εh,g◦f

4. F respects vertical composition of 2-morphisms, that is, for every pair of
2-morphisms α : f → f ′ and β : g → g′ then

F(β ◦ α) = F(β) ◦ F(α),

5. F respects horizontal composition of 2-morphisms, that is, for every pair of
2-morphism α : f → f ′ and β : g → g′ the following diagram

F(g) ◦ F(f) F(g′) ◦ F(f ′)

F(g ◦ f) F(g′ ◦ f ′).

εg,f

F(β)∗F(α)

εg′,f ′

F(β∗α)

commutes.

Definition 2.1.10. Consider two 2-categories C and D. A 2-functor F : C → D
is a correspondence that takes objects to objects, 1-morphisms to 1-morphisms
and 2-morphisms to 2-morphisms, such that all compositions and all identities are
preserved.
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The following notion of a site of a category will be important to define sheaf
cohomology later.

Definition 2.1.11. If C is a category then CJ is a site, where J is a Grothendieck
topology, and J is a Grothendieck topology if:

1. (Existence of fibered products). X → Y , Z → Y in J then X ×Y Z → X.

2. (Stability under base change). For any Y → X and for every {Xα → X}
covering, {Xα ×X Y → Y } is a covering.

3. (Local character). {Xα → X} in J and {Xβα → Xα} in J then {Xβα →
Xα → X} is in J .

4. (Isomorphism). If Y → X is an isomorphism, then {Y → X} is in J .

Example 2.1.12.

1. In Top a site can be considered with all the topological spaces with open
coverings.

2. In Diff a site can be considered with all the smooth manifolds and local
diffeomorphisms.

2.2 Simplicial sets

Some basic concepts of simplicial homotopy theory are relevant for the study of
stacks and their cohomology. Most of this information can be found in [26, 43, 52].

Definition 2.2.1. A simplicial set is a graded set K• such that Kq is a set for each
q = 0, 1, . . . together with face maps ∂j : Kq → Kq−1, 0 ≤ i ≤ q , and degeneracy
maps σi : Kq → Kq+1, 0 ≤ i ≤ q, which satisfy the following identities:

1. ∂i∂j = ∂j−1∂i if i < j,

2. σiσj = σj+1σi if i ≤ j,

3. ∂iσj = σj−1∂i if i < j,

∂jσj = id = ∂i+1σj,
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∂iσj = σj∂i−1 if i > j + 1.

Remark 2.2.2. Consider ∆ the category of finite ordinal numbers. That is, if
[n] ∈ ∆ we have that [n] = (0 < 1 < . . . < n) and morphisms given by θ : [m] →
[n] order-preserving set functions. We can simply say that a simplicial set is a
contravariant functor X• : ∆op → Sets.

Definition 2.2.3. A simplicial map f : K• → L• is a map, such that for each
degree q there is fq : Kq → Lq and these functions commute with the face and
degeneracy maps. That is,

fq∂i = ∂ifq+1

fqσi = σifq−1.

Example 2.2.4. Let ∆n = {(t0, . . . , tn) | 0 ≤ ti ≤ 1,
∑
ti = 1} ⊂ Rn+1, the

standard n-simplex. By a singular n-simplex of a topological space X we mean a
continuous function f : ∆n → X. We consider Sn(X), namely the set of singular
n-simplices ofX, and the graded set S(X) of all singular simplices is called the total
singular complex of X. S(X) is a simplicial set if we define face and degeneracy
maps by:

(∂if)(t0, . . . , tn−1) = f(t0, . . . , ti−1, 0, ti, . . . , tn−1)

and
(σif)(t0, . . . , tn+1) = f(t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1).

Definition 2.2.5. For a simplicial set X•, its geometric realisation is the quotient
space

|X•| =|p 7→ Xp| =
⋃
p∈N

∆p ×Xp/ ∼

with the identifications (∂it, x) ∼ (t, ∂ix) and (σjt, x) ∼ (t, σjx) for any x ∈ Xp,
t ∈ ∆p−1, i, j = 0, . . . , n and p.

If we only use the identifications (∂it, x) ∼ (t, ∂ix), the resulting set is called fat
geometric realisation and it is denoted by ‖X•‖ or ‖p 7→ Xp‖.

Definition 2.2.6. A bisimplicial set X•,• is a simplicial object in the category of
simplicial sets or as a functor given by:

X•,• : ∆op ×∆op → Sets.

The set of Xm,n has bidegree (m,n), where m is the horizontal degree and n the
vertical degree.
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Remark 2.2.7. In this way, a bisimplicial set has vertical and horizontal face maps,
as vertical and horizontal degeneracy maps that commute with each other.

2.3 Smooth manifolds

In this section we give some definition and relevant results on the de Rham com-
plex, Borel model and Cartan model for equivariant cohomology. A good overview
on this subject can be found in [10, 12, 61].

2.3.1 Smooth maps

The category of smooth manifolds and smooth maps is denoted by Diff . We recall
some important morphisms in this category.

Definition 2.3.1. A smooth map f : M → N is a diffeomorphism if there exists an
inverse smooth map for it, and a smooth map f ′ : M → N is a local diffeomorphism
if every m ∈ M has an open set U such that f ′(U) is open in N and f ′ |U : U →
f ′(U) is a diffeomorphism.

Definition 2.3.2. Let M be a smooth manifold and γ : R→ M a smooth curve
with γ(0) = p (γ need only be defined in a neightborhood of 0.) Let f : U → R be
smooth where U is an open neightborhood of p. Then the directional derivative
of f along γ at p is

Dγ(f) =
d

dt
f(γ(t)) |t=0 .

The operator Dγ is called the tangent vector to γ at p. For two such curves γ and
γ′ we regard Dγ = Dγ′ if they have the same value at p on each such function f .

Definition 2.3.3. IfM is a smooth manifold and p ∈M , TpM denotes the vector
space of all tangent vectors to M at p.

Definition 2.3.4. If f : M → N is a smooth map between two smooth manifolds
then we define the differential of f at p ∈M to be the function

f∗ : TpM → Tf(p)N

given by f∗(Dγ) = Df◦γ.
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Definition 2.3.5. A vector field on a smooth manifold M is a function ξ on M ,
such that ξ(p) ∈ TpM and which is smooth in the following sense: Given local
coordinates x1, . . . , xn near p ∈M , one can write

ξ(p);
n∑
i=1

ai(p)∂/∂xi

and smoothness of ξ means that the ai are smooth functions.

For a smooth manifold M of dimension n put TM =
⊔
p∈M TpM . This is the set

of all ordered pairs (p, ξ) where ξ ∈ TpM . There is a projection π : TM → M .
Let φ : U → U ′ ⊂ Rn be a chart giving the local coordinates x1, . . . , xn near
p.Then any tangent vector at a point of U is of the form

∑
i ai∂/∂i. Therefore

π−1(U) ∼= U × Rn ∼= U × Rn and a specific map is

(φ ◦ π)× φ∗ : π−1(U)→ U ′ × Rn

taking v ∈ TpM to (φ(π(v)), φ∗(v)) = (φ(p), φ∗(v)). We can take this as a chart to
TM . If ψ : V → Rn is another chart onM so that θ = ψφ−1 : φ(U∩V )→ ψ(U∩V )

is the transition function, then the corresponding transition function on TM is
θ × θ∗. This makes TM into a smooth 2n-manifold, called the tangent bundle of
M . A vector field ξ in M is then just a smooth section of this bundle. That is, it
is a smooth map ξ : M → TM such that π ◦ ξ = IdM .

Definition 2.3.6. A smooth map f : M → N is called a submersion if f∗ :

TmM → Tf(m)N is surjective for each point m ∈ M . If f∗ is injective, f is called
an immersion.

Example 2.3.7.

1. IfM1, . . . ,Mn are smooth manifolds, each projection πi : M1×· · ·×Mn →Mi

is a submersion.

2. If f is a local diffeomorphism then f is a submersion and an immersion.
Thus smooth covering maps are submersions and immersions.

We recall some useful properties of a submersion map, since these properties are
a first approach for the concept of an atlas of a differentiable stack. These are the
following:
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Proposition 2.3.8. [38, 7.16]

Let f : M → N be a submersion. Then the following holds:

1. f is an open map.

2. Every point of M is in the image of a local section of f .

3. If f is surjective then it is a quotient map.

4. For any smooth map g : P → N the pullback space g∗(P ) = {(p,m) ∈
P ×M | g(p) = f(m)} induced by g is a smooth manifold.

Remark 2.3.9. The last property follows because a submersion is transversal to
every smooth map. For further details see [12, 15.2].

2.3.2 De Rham complex

The de Rham complex of a manifold allows us to get information about the topol-
ogy and geometry of a smooth manifold via differentiable forms. For example, we
can compute its cohomology directly using the calculus of differentiable forms. In
fact, singular cohomology (with real coefficients) and de Rham cohomology are
the same via the classical de Rham theorem (see for example [12, V.9.1] ). For
this section we recall some results on the de Rham complex and we follow [10].

For a complete construction of a differential p-form and the exterior derivative on
smooth manifolds, we follow [10, 12, 38, 61]. With these concepts, we get that:

Let M be a smooth manifold.

Definition 2.3.10. A differential p-form ω onM is a differentiable function which
assigns to each point x ∈M , an element in ωx ∈ Ap(TxM) where Ap(TxM) is the
vector space of all alternating multilinear p-forms on TxM .

Remark 2.3.11. We denote the vector space of all differentiable p-forms on M by
Ωp(M). Note that Ω0(M) is the space of all real valued smooth functions on M .

Definition 2.3.12. If f : M → N is smooth then the pullback map f ∗ : Ωp(N)→
Ωp(M) is defined by

f ∗(ω)(X1x , . . . , Xpx) = ω(f∗(X1x), . . . , f∗(Xpx))

where X1x , . . . , Xpx are tangent vectors to M at x. On functions f ∗(g) = g ◦ f .
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Definition 2.3.13. The exterior derivative on a smooth manifoldM of dimension
n is an operator ddR : Ωp(M)→ Ωp+1(M) defined as

1. If f ∈ Ω0(M) then it is locally defined as

ddRf =
n∑
i=0

∂f

∂xi
dxi ∈ Ω1(M).

2. If ω ∈ Ωp(M) with a local form given by ω =
∑
fIdxI then

ddRω =
∑

dfI ∧ dxI ∈ Ωp+1(M).

Proposition 2.3.14. [12, V.2.2] For the exterior derivative one has that

ddR ◦ ddR = 0.

Definition 2.3.15. Let M be a smooth manifold of dimension n. The de Rham
complex consists of the collection Ω∗(M) of differential forms on M and can be
graded as

Ω∗(M) =
n⊕
p=0

Ωp(M)

where Ωp(M) is the collection of differential p-forms with the exterior derivative
ddR on smooth manifolds such that

ddR : Ωp(M)→ Ωp+1(M)

for each p.

We recall some functorial properties of the de Rham complex.

Proposition 2.3.16. [61, 2.23] Let f : M → N be a smooth map. The pullback
map f ∗ : Ωq(N)→ Ωq(M) commutes with the differential operator ddR, for each q
and Ω∗ is a contravariant functor over Diff .

Based on [61, Chapter 2], we recall the following useful definitions and properties.

Definition 2.3.17. [61, 2.21] The interior multiplication with X ∈ TM , where
TM is the tangent space of M , is an operator ιX : Ωk(M) → Ωk−1(M) whose
value at x ∈M is given by

(ιXω(Y2, . . . , Yk)) |x= ιX|xωx(Y2 |x, . . . , Yk |x) = ωx(X |x, Y2 |x, . . . , Yk |x).
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Proposition 2.3.18. For each X, Y ∈ TM , ιX ◦ιY = −ιY ◦ιX . Hence ιX ◦ιX = 0.

Also, it is important to know the relation between the interior multiplication and
the Lie derivative.

Definition 2.3.19. The Lie derivative is defined as

LXω =
d

dt

∣∣∣∣
t=0

ϕ∗tω

where X ∈ TM , and ϕ : U ⊂ R ×M → M is the flow of the vector field X,
that is, ϕ′(t, x) = X(ϕ(t, x)) which is uniquely defined on an open neighborhood
of 0 ∈ R for any x ∈M , see [36, IV.1].

Some of the Lie derivative properties are useful for us later and given by the next
proposition.

Proposition 2.3.20. [61, 2.25] Let X ∈ TM then

1. LX(f) = df(X), for f ∈ C∞(M).

2. LX = d ◦ ιX + ιX ◦ d.

2.3.3 Lie groups and Lie algebras

As we will be concerned with actions of Lie groups on differentiable stacks, it is
convenient to present some properties related to Lie groups and Lie algebras. More
details about this discussion can be found in [61].

Definition 2.3.21. A Lie group is a smooth manifold G, which has the structure
of a group and the map

G×G→ G

(g, h) 7→ g · h−1

is a smooth map.

Definition 2.3.22. A Lie algebra g over R is a real vector space with a bilinear
function [ , ] : g× g→ g such that:

1. [x, y] = −[y, x], anti-commutativity.
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2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0, Jacobi identity.

The important relation between Lie group and Lie algebras is based on the fact
that we can assign to each Lie group G a Lie algebra g.

Definition 2.3.23. The Lie algebra g associated to a Lie group G is defined as
the Lie algebra of left invariant vector fields of G.

Remark 2.3.24. The Lie algebra associated to a Lie group can be considered as
the tangent space at the identity of the Lie group. See [61, 3.8].

Definition 2.3.25. A Lie group action on a smooth manifold M is an action of
a group G on M such that µ : G×M → M is a smooth map. The action is free
if for all m ∈M , gm = m implies g = e, where e is identity in the group G.

Remark 2.3.26. We usually write µ(g,m) as g ·m when the context is clear.

Definition 2.3.27. Let µ : G ×M → M and ν : G × N → N be two Lie group
actions on the smooth manifolds M and N , respectively. A map f : M → N is
called an G-equivariant map if f(µ(g,m)) = ν(g, f(m)).

Let us also consider the next result concerned with the case of simply connected
Lie groups.

Theorem 2.1. [29, II.3.1.5][33, I.4] Let G be a Lie group. For every X ∈ g there
is a unique smooth homomorphism expX : R→ G such that d(expX)(0) = X.

So we can define

Definition 2.3.28. The exponential map is defined as

exp : g→ G

X 7→ exp(X) = expX(1).

It is good to remember that

Theorem 2.2. [61, 3.32] If ϕ : H → G is a homomorphism, then the following
diagram

H G

h g

ϕ

exp

dϕ

exp
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commutes.

Consider the action of G on itself, which is given by conjugation, that is µ :

G×G→ G and defined by µ(g, h) = ghg−1. Then the identity is a fixed point of
this action. We recall

Definition 2.3.29. The adjoint representation is given by

Ad : G→ Aut(g)

g 7→ dµe

∣∣∣∣
TeG∼=g

and the adjoint action is given by

G× g→ g

(g,X) 7→ Adg(X)

Definition 2.3.30. Let G be a Lie group and M a smooth manifold. Suppose
that G acts on m ∈ M and X ∈ g. The fundamental vector field of X on M is
defined as

X](m) =
d

dt

∣∣∣∣
t=0

(exp(tX) ·m) ∈ TmM.

2.3.4 Principal G-bundles

The category of principal G-bundles provides some of the main examples of dif-
ferentiable stacks (see example 3.1.4 and definition 3.1.11), and the existence of
universal principal G-bundles and the classifying space is important in the con-
struction of the Borel model for equivariant cohomology and also in the general
theory of characteristic cohomology classes. For this, we mainly follow [31] and
[56].

Definition 2.3.31. Let E be a smooth manifold with a Lie group action µ :

G × E → E. Consider M a smooth manifold and a smooth map π : E → M .
(E, π,G) is a principal G-bundle over M if:

1. There is an open covering {Ui | i ∈ I} of M and G-equivariant homeomor-
phisms φUi : G× Ui → π−1Ui such that the diagram
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π−1Ui Ui ×G

Ui

φU

commutes.

2. π(g · f) = π(f) for g ∈ G and f ∈ E.

3. If f, f ′ ∈ π−1(m) then there exists a unique g ∈ G such that f ·m = f ′.

The pair (Ui, φi) is called a local trivialisation. The collection of all local triviali-
sation {(Ui, φi)} on M is called an atlas of (E, π,G).

For any atlas (Ui, φi) of a principal G-bundle (E, π,G) over M , we restrict φi and
φj to Ui ∩ Uj and we get a unique map gi,j : Ui ∩ Uj → G, the so-called transition
function, such that φj(b, y) = φi(b, gi,j(b)y) for (b, y) ∈ Ui∩Uj×M . The functions
gi,j on Ui ∩ Uj have the following properties:

• For each b ∈ Ui ∩ Uj ∩ Uk we have the relation gi,k(b) = gi,j(b)gj,k(b).

• For each b ∈ Ui we have gi,i = idG.

• For each b ∈ Ui ∩ Uj we have gi,j(b) = gj,i(b)
−1.

Definition 2.3.32. Two systems of transition functions {gi,j} and {g′i,j} relative
to the same open covering (Ui, φi) of a smooth manifold M are equivalent if there
exist maps τi : Ui → G satisfying the relation g′i,j(b) = τi(b)

−1gi,j(b)τj(b).

Theorem 2.3. [31, 5.2.7] Let (E, π,G) and (E ′, π′, G) be two principal G-bundles
over M . If there is an atlas (Ui, φi) for π with transition functions {gi,j} and an
atlas (Ui, φ

′
i) for π′ with transition functions {g′i,j}, then π and π′ are isomor-

phic over M if and only if {gi,j} and {g′i,j} are equivalent systems of transition
functions.

Definition 2.3.33. Consider (E, π,G) and (E ′, π′, G) two principal G-bundles
over M and M ′, respectively. A morphism of principal G-bundles is a pair (u, f)

of two smooth maps, where u : E → E ′ is an equivariant map and f : M →M ′ is
a smooth map such that the diagram

E E ′

M M ′

u

f
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commutes.

Remark 2.3.34. The category of principal G-bundles over M will be denoted by
BG(M).

Example 2.3.35. If we consider the action µ : G × G ×M → G ×M given by
µ(g, g′,m) = (g · g′,m), where M is a smooth manifold and G is a Lie group, then
the second projection π2 : G×M →M forms a principal G-bundle. This principal
G-bundle is called the product principal G-bundle.

Example 2.3.36. Let H be closed subgroup of a Lie group G. If we consider the
action µ : H×G→ G such that µ(h, g) = hg, then the smooth map π : G→ G/H

forms a principal H-bundle (G, π,H) over G/H.

The next example is known as the quotient manifold theorem. To see more details
follow [31, 4.4.1] and [38, 9.16].

Example 2.3.37. Let M be a smooth manifold and G a Lie group that acts on
M freely and properly. We get that M/G is a smooth manifold and the map
p : M →M/G is a submersion and (M, p,G) is a principal G-bundle over M/G.

Definition 2.3.38. A principal G-bundle (E, π,G) over M is a trivial principal
G-bundle if it is isomorphic to the product principal G-bundle.

Definition 2.3.39. Let (E, π,G) be a principal G-bundle over M . A local section
of the principal bundle π is a smooth map s : U → E, where U is an open set of
M such that π ◦ s = idU . If U = M , the section is global.

Proposition 2.3.40. [31, 4.8.3] A principal G-bundle (E, π,G) is trivial if and
only if it admits a global section.

Theorem 2.4. [31, 4.3.2] Every morphism in BG(M) is an isomorphism.

Example 2.3.41. Let (E, π,G) be a principal G-bundle over M such that π is a
submersion and f : N →M a smooth map, then we can get a principal G-bundle
called pullback of f given by f ∗ : f ∗(E) → N where f ∗(E) = {(e, n) ∈ E × N |
π(e) = f(n)} and f ∗(e, n) = n. Since π is a submersion for transversality, f ∗(E) is
a smooth manifold and π∗ is a smooth map. G is acting on f ∗(E) by the induced
map of the action of G in the first component. Notice that we have that the
diagram
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f ∗(E) E

N M

f∗

π2

π

f

commutes.

Proposition 2.3.42. [31, 2.5.5. & 4.4.2] Consider a principal G-bundle (E, π,G)

over M , a smooth map f : N → M and the canonical morphism of principal G-
bundles (π2, f) between the pullback f ∗ and π. If there is a principal G-bundle
(E ′, π′, G) over N with a morphism of principal G-bundle from π′ to π, then there
exists a morphism of principal G-bundle (σ, idN) from π′ to f ∗ such that f ∗σ =

π′ and the principal G-bundle given by π′ and f ∗ are isomorphic. Finally f ∗ :

BG(M)→ BG(N) is a functor.

Definition 2.3.43. A principal G-bundle (E, π,G) over B is numerable if there
is a numerable cover {Ui}i∈I of B such that π |U : p−1(U) → U is trivial for each
i ∈ I.

Definition 2.3.44. Let (E, π,G) be a numerable principal G-bundle over B. π
is a universal principal G-bundle if for each principal G-bundle (E, p,G) over M
there exists a unique up to homotopy continuous map f : M → B such that p is
isomorphic to the pullback principal G-bundle induced by f .

Remark 2.3.45. Universal principal G-bundles can be characterized as a principal
G-bundle (E, π,G) over B, where G acts freely on E and E is contractible. See
[44, 23.8].

We recall that a Hausdorff space B is paracompact if and only if each open covering
is numerable. As every smooth manifold is a Hausdorff space and paracompact,
we have that any principal G-bundle over a smooth manifold is numerable, so we
have the next result by Milnor [48].

Theorem 2.5. (Milnor)[48, Section 3] Let G be a Lie group then there exists a
universal principal G-bundle (EG, p,G) over BG, where G is acting freely on EG.

Remark 2.3.46.

1. BG is called a classifying space, since each principal G-bundle over M is
isomorphic to a pullback principal G-bundle of a map from M to BG up to
homotopy.
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2. There are several models for EG and BG. The most relevant model for our
current discussion makes use of simplicial smooth manifolds, it is going to
be stated later in the example 2.4.20 and also can be found in [19, Ch.5
Example 3].

2.3.5 Simplicial smooth manifolds

Due to the interplay between simplicial smooth manifolds, Lie groupoids and dif-
ferentiable stacks, as we will explore in sections 3.3 and 3.4, it will be necessary to
recall here some properties of the homotopy theory of simplicial smooth manifolds.
For this, we follow [18] and [19].

Definition 2.3.47. A simplicial smooth manifold is a simplicial set X•, where
everyXq is a smooth manifold, and all face and degeneracy maps are smooth maps.
A simplicial smooth map between simplicial smooth manifolds is a simplicial map
such that fq is a smooth map for each q.

Remark 2.3.48. We can see a simplicial smooth manifold as a functor

X• : ∆op → Diff

Example 2.3.49. Let G a Lie group and µ : G×M →M a Lie group action. We
consider the set of smooth manifolds given by {Gp×M}p≥0 and Gp = G×· · ·×G
the Cartesian product of p copies of G. We take the face maps as

∂0(g1, . . . , gp, x) = (g2, . . . , gp, x)

∂i(g1, . . . , gp, x) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gp, x) for 1 ≤ i ≤ p− 1

∂p(g1, . . . , gp, x) = (g1, . . . , gp−1, gp · x)

and degeneracy maps as

σi(g1, . . . , gp, x) = (g1, . . . , gi, e, gi+1, . . . gp, x)

so they are smooth maps and satisfy the conditions that make {Gp ×M}p≥0 a
simplicial manifold. An important property for us occurs with the face maps with
domain G ×M , because ∂0 is the projection to the second component and ∂1 is
the action µ.
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In the same way, as in simplicial sets we can get the geometric realisation and
the fat geometric realisation for simplicial smooth manifolds. These geometric
realisations are quotient spaces.

Example 2.3.50. The fat geometric realisation of the simplicial smooth manifold
{Gp ×M} is a model for EG×M/G. If M is a single point, we have that the fat
geometric realisation is a model for BG and in the case M = G we get a model
for EG. Further details can be found in [19, Ch.5 Example 3].

There exists an analogue version for group actions on simplicial smooth manifold.

Definition 2.3.51. Let G be a Lie group and X• a smooth simplicial smooth
manifold. A simplicial map

µ• : G×X• → X•

is a smooth action of G on X•, if µn : G ×Xn → Xn is an action for the smooth
manifold Xn.

For a simplicial smooth manifold we have a notion of covering as well. Compare
with [20, A.2].

Definition 2.3.52. A covering V of a simplicial smooth manifoldX• is a collection
of open coverings Vn = {Vn,α}α∈I for every smooth manifold Xn such that it is
compatible with face maps, that is, if x ∈ Vn,α then ∂i(x) ∈ Vn−1,di(α) for 0 ≤ i ≤ n,
where di : I → I with the same compatible conditions as face maps on a simplicial
set.

For simplicial smooth manifolds, we can associate a de Rham complex in the
following way.

Definition 2.3.53. Let X• be a simplicial smooth manifold. The de Rham com-
plex for a simplicial manifold is the complex given by

Ck =
⊕
p+n=k

Ωp(Xn)

with differential operator D = ddR + (−1)p∂, where ddR is the exterior derivative
and ∂ =

∑
i(−1)i∂∗i the alternate sum of pullback of face maps. The cohomology

defined by this complex is the simplicial de Rham cohomology of X•, and it is
denoted by H∗dR(X•).
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The relation between simplicial de Rham cohomology and singular cohomology is
given as:

Theorem 2.6. [18, 2.8] There exists an isomorphism such that

H∗dR(X•) ∼= H∗(‖X•‖,R).

Definition 2.3.54. A bisimplicial smooth manifold is a functor

X•,• : ∆op ×∆op → Diff .

Example 2.3.55. Let G be a Lie group acting on a simplicial smooth manifold
X•. Consider the set {Gp×Xn}. This can be considered as a bisimplicial smooth
manifold with the followings face horizontal maps

∂H0 (g1, . . . , gp, x) = (g2, . . . , gn, x)

∂Hi (g1, . . . , gp, x) = (g1, . . . gi−1, gigi+1, gi+2, . . . , gn, x) for 1 ≤ i ≤ p

∂Hp (g1, . . . , gp, x) = (g1, . . . , gn−1, gnx)

and degeneracy horizontal maps

σiH(g1, . . . , gp, x) = (g1, . . . , gi, e, gi+1, . . . gp, x)

Meanwhile, face and degeneracy vertical maps are the induced maps by the face
and degeneracy maps of X•,•.

Definition 2.3.56. Let X•,• be a bisimplicial smooth manifold. Its fat geometric
realisation is the quotient space

‖ X•,• ‖=
∐
m,n≥0

(∆m ×∆n ×Xm,n)/ ∼

where the equivalence relation is given by

(∂i × id× id)(t, s, x) ∼ (id× id× ∂i)(t, s, x)

for any (t, s, x) ∈ ∆m−1 ×∆n ×Xm,n and

(id× ∂i × id)(t, s, x) ∼ (id× id× ∂′i)(t, s, x)

for any (t, s, x) ∈ ∆m ×∆n−1 ×Xm,n.
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In [52] it is shown that the geometric realisation for a bisimplicial smooth manifold
can be calculated, considering the diagonal geometric realisation or working with
any horizontal or vertical degree first. The next result is going to be fundamental
for our current discussion, since this allows us to relate the fat geometric realisation
of a simplicial smooth manifold with the one of a bisimplicial smooth manifold.
Thus we can use bisimplicial smooth manifolds to get results for the homotopy
theory of simplicial smooth manifolds.

Proposition 2.3.57. [52, Lemma p.86] There are homeomorphisms

‖ X•,• ‖∼=‖ p 7→ Xp,p ‖∼=‖ p 7→‖ q 7→ Xp,q ‖‖∼=‖ q 7→‖ p 7→ Xp,q ‖‖ .

Example 2.3.58. If we consider the bisimplicial smooth manifold {G• × X•}
defined in the example 2.3.55, we get that its fat geometric realisation is given by

‖ p 7→‖ n 7→ Gp ×Xn ‖‖∼=‖ p 7→ Gp× ‖ X• ‖‖∼= EG× ‖ X• ‖ /G.

In the same way, as for simplicial smooth manifolds, we can define a de Rham
complex for a bisimplicial smooth manifold.

Definition 2.3.59. Let X•,• be a bisimplicial smooth manifold. The de Rham
complex C• is defined as

Ck =
⊕

m+n+p=k

Ωp(Xm,n)

with differential operator D = ddR + ∂+ ∂′, where ddR is the exterior derivative, ∂
is the alternate sum of horizontal face maps, and ∂′ is the alternate sum of vertical
face maps. This cohomology is called de Rham cohomology for the bisimplicial
smooth manifold X•,•, and denoted by H∗dR(X•,•).

In addition, we have a similar result as for simplicial smooth manifolds.

Theorem 2.7. [21, p.40] There exists an isomorphism such that

H∗dR(X•,•) ∼= H∗(‖X•,•‖,R).
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2.3.6 Equivariant cohomology

The idea of equivariant cohomology is important when looking for a good notion
of cohomology for the quotient space M/G, when G is a Lie group acting on a
smooth manifold M . We know that this quotient is not always a smooth manifold
and the cohomology might not be well-defined. For our current discussion we recall
two models. The first one is the Borel model, built from topological properties,
and the second is the Cartan model, built from geometric properties. We follow
here [27, Ch.1],[34], [35], [7, Ch.7], [39] and [23].

Let G be a compact Lie group and M a smooth manifold with a smooth action

µ : G×M →M.

The idea of Borel model is trying to get a space E with the following two conditions:

• E is contractible.

• There is a free action ν : G× E → E.

So, we can consider the action:

θ : G× E ×M → E ×M

(g, f,m) 7→ θ(g, f,m) = (ν(g, f), µ(g,m))

which is a free action, because if (f,m) = θ(g, f,m) = (ν(g, f), µ(g,m)) this
implies that g = e is the identity in G. Thus, we have the smooth manifold
E ×M/G and we denote it also as E ×GM .

Proposition 2.3.60. Let G be a Lie group acting freely on a smooth manifold M .
If there are two contractible spaces E,E ′ with free actions by G, then

H∗(E ×GM,R) = H∗(E ′ ×GM,R)

Proof. Since E and E ′ are contractible, we can consider the universal principal G-
bundles (E, p,G) over E/G and (E ′, q, G) over E ′/G. Thus we get G-equivariant
isomorphisms φ : E → E ′ and ψ : E ′ → E such that φ ◦ψ ' idE′ and ψ ◦φ ' idE,
that is, they are homotopic between each other. As cohomology is invariant under
homotopy equivalence, we set the result.
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The Borel model for equivariant cohomology is independent of the choice of E.
In the subsection 2.3.4, we get the space EG, which is related with the universal
G-bundle p : EG→ BG, and this space has the properties required for the Borel
model. So we say that

Definition 2.3.61. The equivariant cohomology of a smooth manifold is defined
as

H∗G(M) = H∗(E ×GM,R).

This model is called the Borel model.

Example 2.3.62. Let G be a Lie group with a free smooth action on the smooth
manifold M . As EG is contractible, we get

H∗G(M) = H∗(M/G).

The next model is the Cartan model and is formed by equivariant forms, see [14],
[34, 2.4]. For this, let G be a compact Lie group and a smooth action on M given
by µ : G×M →M .

Definition 2.3.63. An equivariant form of a smooth manifoldM acted on by the
compact Lie group G is a polynomial function α : g→ Ω∗(M) such that

g Ω∗(M)

g Ω∗(M)

Adg

α

g

α

that is, α(AdgX) = gα(X). Here g is the Lie algebra of G and gα is given by
the pullback in differential forms of the smooth map µg : M → M such that
µg(m) = g ·m. The set of equivariant forms is denoted as Map(g,Ω∗(M)).

Remark 2.3.64. α is a Ω∗(M)-valued polynomial function from g to Ω∗(M). This
construction comes from the Weyl algebras as it is done in [27, 3], [47, 5].

We can induce an action on Map(g,Ω∗(M)) in the following way

ν : G×Map(g,Ω∗(M))→ Map(g,Ω∗(M))

(g, α)(X) 7→ ν(g, α)(X) = gα(Adg−1X)

for any X ∈ g.
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Proposition 2.3.65. Consider the action

ν : G×Map(g,Ω∗(M))→ Map(g,Ω∗(M)).

α is an equivariant form if and only if α is invariant for the action ν.

Proof. We suppose that α is an equivariant form then ν(g, α)(X) = gα(Adg−1X) =

g(g−1)α(X) = α(X), then α is invariant.

If we have that α is invariant then ν(g−1, α)(X) = g−1α(AdgX) = α(X), that is,
α(AdgX) = gα(X). Then α is equivariant.

Now we consider the morphism

dG : Map(g,Ω∗(M))→ Map(g,Ω∗(M))

given by dG(α)(X) = ddR(α(X))− ιX#α(X), where ddR is the exterior derivative
of differential forms, and ιX# is the interior multiplication by the fundamental
vector field X#.

Proposition 2.3.66. The morphism dG is well defined and d2
G = 0

Proof. To see that dG is well defined, we need to check that dG(α(X)) is equivariant
form. Firstly, it is a polynomial function since ddR is only applied in the elements
of Ω∗(M) and i#X is applied as well in the elements of Ω∗(M) but in this case we get
elements with a one degree least in Ω∗(M) but with one degree plus as polynomial
function, compared with the one at the beginning.

Secondly, to check that is equivariant we take g ∈ G,

dGα(AdgX) = ddR(α(AdgX))− ι(AdgX)#α(AdgX)

= ddR(gα(X))− gιX#g−1gα(X) = gddR(α)− gιX#α(X)

as we want.

On the other hand,

d2
G(α)(X) = d2

dR(α)(X)− (ddRιX#(α)(X) + ιX#ddR(α)(X)) + ι2X#(α)(X)

= LXα
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since d2
dR = 0, ι2

X# = 0 and the Lie derivative LXα = ddRιX# + ιX#ddR. As α(X)

is invariant we have that LXα = 0. Therefore d2
G = 0.

As an equivariant form α : g → Ω∗(M) is a polynomial, we can consider it as an
element in (S∗(g∨)⊗Ω∗(M))G, where g∨ is the dual of the Lie algebra g and S∗(g∨)
its symmetric algebra. The algebra of equivariant n-forms can be expressed as the
algebra of invariant forms:

Ωn
G(M) =

⊕
2k+i=n

(Sk(g∨)⊗ Ωi(M))G.

We notice that the degree of an equivariant form is twice the degree of the poly-
nomial plus the degree of the differential form. In this way, the morphism ddR

increases the degree by one. Meanwhile, ιX# increases the degree of the polyno-
mial by one and the degree of the form decreases by one. Therefore the degree of
dG increases by one, and (Ωn

G(M), dG) is a complex.

Example 2.3.67. If we consider the trivial action of the Lie group G on the point
pt, we get that

Hk
G(pt) = S2k(g∨).

The Borel model and the Cartan model have a strong interplay. The next result
is due to Cartan in [14].

Theorem 2.8. (Cartan)[14] If G is a compact Lie group acting on a smooth com-
pact manifold M , then the complex of equivariant forms computes the equivariant
cohomology in the Borel model, i.e., the Cartan and Borel model give isomorphic
cohomologies.

2.4 Lie groupoids

The category of groupoids play an important role in the definition of stacks that
we are going to provide later. In this section we give definitions of Lie groupoids
and their morphisms following [41] and [42].

A groupoid is a small category in which every morphism is an isomorphism. How-
ever, we can provide a more structural definition, as follows:
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Definition 2.4.1. A groupoid consists of two sets Γ1 and Γ0, and some functions
s, t : Γ1 → Γ0, the source and the target map, respectively. Also, there is a map

1 : Γ0 → Γ1

m 7→ 1m

called inclusion map. There exists a multiplication

Γ1 ×s,t Γ1 → Γ1

(h, g) 7→ hg

where Γ1 ×s,t Γ1 = {(h, g) ∈ Γ1 × Γ1|s(h) = t(g)} such that:

1. s(hg) = s(g) and t(hg) = t(h) for any (h, g) ∈ Γ1 ×s,t Γ1.

2. j(hg) = (jh)g for any j, h, g ∈ Γ1 such that s(j) = t(h) and s(h) = t(g).

3. s(1x) = t(1x), for all x ∈ Γ0.

4. g1s(g) = g and 1t(g)g = g for all g ∈ Γ1.

5. For each g ∈ Γ1 there is an inverse g−1 such that s(g−1) = t(g), t(g−1) = s(g)

and g−1g = 1s(g), gg−1 = 1t(g).

Remark 2.4.2.

1. A groupoid Γ1 over Γ0 is denoted by Γ = (Γ1 ⇒ Γ0).

2. Elements in Γ1 are called arrows and elements in Γ0 are called objects.

3. The arrow 1x is called the identity of x, for any x ∈ Γ0.

Proposition 2.4.3. [42, 1.1.2] Let Γ = (Γ1 ⇒ Γ0) be a groupoid over Γ0. Con-
sider g ∈ Γ1 with s(g) = x and t(g) = y.

1. If h ∈ Γ1 with s(h) = y and hg = g then h = 1y. If j ∈ Γ1 with t(j) = x and
gj = g then j = 1x.

2. If h ∈ Γ1 with s(h) = y and hg = 1x then h = g−1. If j ∈ G with t(j) = x

and gj = 1y then j = g−1.



Preliminaries 33

Example 2.4.4. Let M be a set. Consider Γ1 = M × M with s(a, b) = a,
t(a, b) = b and µ : Γ1 ×s,t Γ1 → Γ1 such that ((a, b), (b, c)) = (a, c). In this case,
we have 1 : M = Γ0 → Γ1 given by 1x = (x, x).

Definition 2.4.5. A Lie groupoid Γ = (Γ1 ⇒ Γ0) is a groupoid where Γ1 and
Γ0 are smooth manifolds such that s, t are surjective submersions. 1 and the
multiplication are required to be smooth.

Remark 2.4.6. Γ1×s,tΓ1 = (s×t)−1(∆Γ0) is a closed embedded smooth submanifold
of Γ1 × Γ1 where ∆Γ0 is the diagonal of Γ1 × Γ1, since s and t are submersions.
Compare with [12, II.15.2].

Remark 2.4.7. We can define a topological groupoid Γ = (Γ1 ⇒ Γ0) where Γ1

and Γ0 are topological spaces and the source, target and multiplication maps are
continuos.

Proposition 2.4.8. [42, 1.1.5] Let Γ = (Γ1 ⇒ Γ0) be a Lie groupoid over Γ0. The
inverse function i(g) = g−1 is a diffeomorphism.

Example 2.4.9.

1. We can consider a smooth manifold M as a Lie groupoid (M ⇒ M) over
itself with s = t = idM . Here, every element is a identity. A groupoid, where
every element is a identity, will be called the base groupoid. Observe that
M ×s,tM = ∆M = {(x, y) ∈M ×M | x = y}.

2. Let beM a smooth manifold and G a Lie group. Consider (M×G×M ⇒M)

as a Lie groupoid with

s = π3 : M ×G×M →M

(m, g, n) 7→ n

t = π1 : M ×G×M ⇒M

(m, g, n) 7→ m

1 : M →M ×G×M

m 7→ (m, 1,m)

and multiplication given by (z, h, y′)(y, g, x) = (z, hg, x) defined if and only
if y = y′. The inverse of (y, g, x) is (x, g−1, y). We call this groupoid the
trivial groupoid over M with group G.
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3. Every cartesian product M ×M is a groupoid over M and it is called the
pair groupoid.

4. Let q : M → Q be a surjective submersion. Then

R(q) = M ×QM = {(x, y) ∈M ×M |q(x) = q(y)}

is a Lie groupoid over M with respect to the restriction of the structure of
the pair groupoid. This Lie groupoid is called the banal groupoid induced
by q.

5. Let M be a smooth manifold. Then, the set Π(M) of homotopy classes
< γ > of relative endpoints of smooth paths γ : [0, 1] → M is a groupoid
on M with respect to α(< γ >) = γ(0), β(< γ >) = γ(1), 1 : M → Π(M)

m 7→ 1m =< Cm >, where Cm is the constant path in m. The multiplication
is the concatenation, and the inverse element is the reverse of the path. This
groupoid is called fundamental groupoid and it is a Lie groupoid, see [49,
5.1.6].

6. Let (E, q,M) be a vector bundle over M . Let Ψ(E) denote the set of all the
isomorphism of vector spaces η : Ex → Ey for x, y ∈M . Then (Ψ(E) ⇒M)

with the structure maps α(η) = x, β(η) = y and 1(x) = 1x = idEx is a
groupoid. If ξ : Ey → Ez then the multiplication is given by ξ ◦ η and the
inverse of η is η−1. With this structure Ψ(E) is called the frame groupoid of
(E, q,M).

The smooth structure on Ψ(E) is induced by E. Consider an atlas {ψi :

U × V → EU} for E. For each i and j, it is defined

ψji : Uj ×GL(V )× Ui → Ψ(E)
Uj
Ui

(y, A, x) 7→ ψj,y ◦ A ◦ ψ−1
i,x

where each ψji is a bijection and any (ψlk)
−1 ◦ ψji is a diffeomorphism.

Definition 2.4.10. Let Γ = (Γ1 ⇒ Γ0) and Γ′ = (Γ′1 ⇒ Γ′0) be two groupoids. A
morphism between Γ and Γ′ is pair (F, f) of maps F : Γ1 → Γ′1, f : Γ0 → Γ′0 such
that s′ ◦F = f ◦ s, t′ ◦F = f ◦ t and F (hg) = F (h)F (g) for any (h, g) ∈ Γ1×s,t Γ1.

Remark 2.4.11. A morphism of groupoids is also a functor Γ→ Γ′.

Definition 2.4.12. Let (F, f) : Γ → Γ′ and (G, g) : Γ → Γ′ be morphism of
groupoids. A 2-morphism of groupoids θ : (F, f) ⇒ (G, g) is a map θ : Γ0 → Γ′1
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such that θ has the same properties as a natural transformation of categories, that
is, for any element in Γ1 with form xk

φk+1−−−→ xk+1 the following diagram

f(xk) f(xk+1)

g(xk) g(xk+1)

F (φk+1)

θ(xk) θ(xk+1)

G(φk+1)

commutes.

Remark 2.4.13.

1. The category constituted by groupoids and groupoid morphisms, is denoted
by Grpds.

2. If Γ and Γ′ are Lie groupoids then (F, f) is a morphism of Lie groupoids if
(F, f) is a morphism of groupoids, and both F and f are smooth. The cate-
gory of Lie groupoids and Lie groupoid morphisms is denoted by LieGrpds.
For a 2-morphism θ of Lie groupoids, θ : Γ0 → Γ′1 is a smooth map.

Proposition 2.4.14. [42, 1.2.2] Let (F, f) : Γ → Γ′ be morphism of groupoids.
Then F (1m) = 1f(m) and F (g−1) = F (g)−1 for all m ∈ Γ0 and g ∈ Γ1.

Definition 2.4.15. A morphism (F, f) between groupoids Γ = (Γ1 ⇒ Γ0) and
Γ′ = (Γ′1 ⇒ Γ′0), is an isomorphism of Lie groupoids if F and f are diffeomor-
phisms.

Example 2.4.16. A morphism of trivial groupoids

F : M ×G×M →M ′ ×G′ ×M ′

where F (y, g, x) = (f(y), θ(y)l(g)θ(x)−1, f(x)) with l : G→ G′ a morphism of Lie
groups and θ : M → G′ a smooth function.

Definition 2.4.17. The nerve of a Lie groupoid Γ = (Γ1 ⇒ Γ0) is the simplicial
smooth manifold (Γn)n∈N where

Γn = {(g1, g2, . . . , gn) | s(gi) = t(gi+1) and gi ∈ Γ1,∀i=1,...,n}

with face maps
∂0(g1, g2, . . . , gn) = (g2, . . . , gn),
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∂i(g1, g2, . . . , gn) = (g1, . . . , gi.gi+1, . . . , gn) for 0 < i < n,

∂n(g1, g2, . . . , gn) = (g1, . . . , gn−1)

and degeneracy maps

σi(g1, g2, . . . , gn) = (g1, . . . , gi, 1s(gi), gi+1, . . . , gn).

For a Lie groupoid we can induce a covering for its nerve, as it was defined for
simplicial smooth manifolds in the definition 2.3.52. This was provided by [20,
A.2].

Example 2.4.18. Let Γ• be the nerve of the Lie groupoid Γ = (Γ1 ⇒ Γ0). If we
have an open covering V0 = {Vi} of Γ0, we can induce a covering Vn of Γn with
the following open sets

Vi0i1···in := {(g1, g2, . . . , gn) : t(g1) ∈ Vi0 , s(g1) ∈ Vi1 , . . . , s(gn) ∈ Vin}

and maps for indices given by dk(i0 · · · in) = i0 · · · îk · · · in. If (g1, g2, . . . , gn) ∈ Vα,
we have

∂0((g1, g2, . . . , gn)) = (g2, . . . , gn) ∈ Vn−1,d0(α)

∂i((g1, g2, . . . , gn)) = (g1, . . . , gi.gi+1, . . . , gn) ∈ Vn−1,di(α)

∂n((g1, g2, . . . , gn)) = (g1, , . . . , gn−1) ∈ Vn−1,dn(α).

2.4.1 Two important Lie groupoids

The first important example for us is the following Lie groupoid:

Definition 2.4.19. Let φ : G×M →M be a smooth action of a Lie group on a
smooth manifold M . G×M ⇒M is a Lie groupoid in the following way

s : G×M →M

(g,m) 7→ m

t : G×M →M

(g,m) 7→ φ(g,m) = gm

1 : M → G×M
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m 7→ (1,m)

with multiplication (g2,m)(g1, n) = (g2g1, n) if and only if m = g1n, The inverse of
(g,m) is (g−1, gx). This groupoid is called the action groupoid or transformation
groupoid.

Example 2.4.20. Consider the action groupoid (G×M ⇒M) where G is a Lie
group and M is a smooth manifold. The nerve is given by (G ×M)n where an
element in (G×M)n has the form (g1, g2g3 · · · gnmn, g2, g3g4 · · · gnmn, . . . , gn,mn).
Thus we can define a diffeomorphism between (G ×M)n and G × . . . × G ×M
with n copies of G given by

Φn : (G×M)n → G× . . .×G×M

(g1, g2g3 · · · gnmn, g2, g3g4 · · · gnmn, . . . , gn,mn) 7→ (g1, . . . , gn,mn).

If we consider this diffeomorphism, the face maps are given by

∂0(g1, g2, . . . , gn,m) = (g2, . . . , gn,m),

∂i(g1, g2, . . . , gn,m) = (g1, . . . , gigi+1, . . . , gn,m) for 0 < i < n,

∂n(g1, g2, . . . , gn,m) = (g1, . . . , gn−1, gnm)

and degeneracy maps by

σi(g1, g2, . . . , gn,m) = (g1, . . . , gi, e, gi+1, . . . , gn,m).

Thus, the nerve of this groupoid coincides with the simplicial smooth manifold
defined on the example 2.3.49, and its fat geometric realisation is a model for
EG × M/G, when M is a point this is a model for the classifying space BG.
Compare with [19, Ch.5 Example 3].

Our next example was provided in the subsection 2.3.4.

Definition 2.4.21. The category of principal G-bundles over a smooth manifold
M is a groupoid, since each morphism between principal bundles is an isomor-
phism. The multiplication for the groupoid is the composition of morphisms and
the inverse function is given by taking the inverse morphism. This groupoid is
denoted by BG(M).
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Remark 2.4.22. This example will give us later one of the most important differ-
entiable stacks and it is going to be related with the action groupoid. See section
3.1.

2.4.2 Action of Lie groupoids and principal Γ-bundles

The following definitions can be found in [49, 5.7].

Definition 2.4.23. Let Γ = (Γ1 ⇒ Γ0) be a Lie groupoid and M a smooth
manifold. A left action of Γ on M along a smooth map ε : M → Γ0 is given by a
smooth map

µ : Γ1 ×Γ0 M →M

(g, y) 7→ µ(g, y) = gy

with Γ1 ×Γ0 M = {(g, y) ∈ Γ1 ×M | s(g) = ε(y)} which satisfies the following
identities:

• ε(gy) = t(g),

• 1ε(y)y = y,

• g′(gy) = (g′g)y,

for g′, g ∈ Γ1 and y ∈M with s(g′) = t(g) and s(g) = ε(y).

Definition 2.4.24. A right action of the Lie groupoid Γ′ = (Γ′1 ⇒ Γ′0) on a
smooth manifols M along a smooth map ε′ : M → Γ′0 is given by

µ : M ×Γ′0
Γ′1 →M

with M ×Γ′0
Γ′1 = {(y, g) ∈ M × Γ′1 | t(g) = ε(y)} which satisfies the following

identities:

• ε(yg) = s(g),

• y1ε(y) = y,

• (yg)g′ = y(gg′),

for g′, g ∈ Γ1 and y ∈M with t(g′) = s(g) and t(g) = ε(y).
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Definition 2.4.25. Let Γ = (Γ1 ⇒ Γ0) be a Lie groupoid. A principal right Γ-
bundle over a smooth manifold M is a smooth manifold P equipped with a map
π : P → M and a smooth right Γ-action µ on P along ε : P → Γ0 which is
fibrewise with respect to π, that is π(pg) = π(p) for any p ∈ P and any g ∈ Γ1

with ε(p) = t(g) such that

1. π is surjective submersion,

2. (pr1, µ) : P ×Γ0 Γ1 → P ×M P given by (p, g) 7→ (p, pg) is a diffeomorphism.

Remark 2.4.26. We can talk about a principal left Γ′-bundle over a smooth man-
ifold beginning with a left action of a Lie groupoid Γ′ over M by changing the
details in the previous definition.

Definition 2.4.27. An equivariant map between principal right Γ-bundles π :

P → M and π′ : P ′ → M is a smooth map f : P → P ′ which commutes with all
the structure maps, that is π′(f(p)) = π(p), ε′(f(p)) = ε(p) and f(pg) = f(p)g for
any p ∈ P , g ∈ Γ1 with ε(p) = t(g).

Remark 2.4.28. Also we get a definition for equivariant map for principal left
Γ′-bundles.

Definition 2.4.29. Let Γ = (Γ1 ⇒ Γ0) and Γ′ = (Γ′1 ⇒ Γ′0) be Lie groupoids. A
Γ-Γ′ bibundle is a right principal Γ′-bundle E → Γ0 over Γ0 and a smooth right
Γ′-action on E along ε′ : E → Γ′0 together with a left Γ-action along ε : E → Γ0

such that the two actions commute.

Example 2.4.30.

1. Let Γ = (Γ1 ⇒ Γ0) be a Lie groupoid. We have that Γ1 is a principal Γ-
bundle over Γ0 with projection given by the target map along the source
map. We call this the unit bundle of Γ.

2. Let P → M be a principal Γ-bundle. If we have a smooth map f : N → M

then the pullback N ×M P is a principal Γ-bundle over N .

3. Let Γ = (Γ1 ⇒ Γ0) be a Lie groupoid. If we have a smooth map α : M → Γ0,
there is a principal Γ-bundle that is the pullback of α for the unit bundle of
Γ. This bundle is called the trivial bundle.

Proposition 2.4.31. [49, 5.34.4] Let Γ = (Γ1 ⇒ Γ0) be a Lie groupoid over Γ0.
Any principal Γ-bundle is locally trivial.
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2.5 Spectral sequences

When we try to find some properties that relate different cohomology theories or
properties that show some facts about a specific cohomology theory via successive
approximations, spectral sequences are a very useful tool to work with. In this
way, we recall some ideas from [27, Chapter 6] and [45, Chapter 2].

Let
C =

⊕
p,q∈Z

Cp,q

be a double complex of vector spaces with differential operators

d : Cp,q → Cp,q+1, δ : Cp,q → Cp+1,q

satisfying
d2 = 0, δ2 = 0 and dδ + δd = 0.

The associated total complex is defined by Cn =
⊕

p+q=n

Cp+q with differential d+δ :

Cn → Cn+1. Hence we can look at the filtration Cn
k =

⊕
p+q=n,p≥k

Cp,q of Cn+1 with

Zn
k = {z ∈ Cn

k |(d+ δ)z = 0} and Bn = (d+ δ)Cn−1

Then the map
Zn
k → Zn

k /(B
n ∩ Zn

k )

gives a decreasing filtration

. . . ⊂ Hn
k+1 ⊂ Hn

k ⊂ Hn
k−1 ⊂ . . .

of Hn(C, d + δ). Thus, we denote the successive quotients by Hk,n−k = Hn
k /H

n
k+1

and grHn =
⊕
k

Hk,n−k as the associated graded vector space.

Definition 2.5.1. Let Zp,q be the set of elements a ∈ Cp,q such that the following
system of equations has a solution

da = 0

δa = −da1

δa1 = −da2
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δa2 = −da3

...

where ai ∈ Cp+i,q−i.

Definition 2.5.2. Let Bp,q ⊂ Cp,q be the set of all b such that the following system
of equation has a solution

dc0 + δc−1 = b

dc−1 + δc−2 = 0

dc−2 + δc−3 = 0

...

where ci ∈ Cp−i,q+i−1.

Remark 2.5.3. The systems of equations in the definitions 2.5.1 and 2.5.2 are
solvable if Ci,j = 0 for i + j = p + q, |i− j| > ml, for some ml and for each i the
systems of equations are solvable for a bounded range of i.

Proposition 2.5.4. [27, p.64] Hp,q can be also described as

Hp,q = Zp,q/Bp,q.

To describe this, we define Zp,q
r as the set of elements in Cp,q such that the equation

system in the definition 2.5.1 has a solution for the first r− 1 equations, and Bp,q
r

the set of all b ∈ Cp,q with a solution for the system in the definition 2.5.2, with
ci = 0 for i ≥ r. Then we get:

Theorem 2.9. [27, 6.1.1] Let be a ∈ Zp,q
r . Then

a ∈ Zp,q
r+1 ⇔ δar−1 ∈ Bpr+1,qr

r

for any solutions (a1, . . . , ar) of the first r − 1 equations in the system of the
definition 2.5.1.

We define Ep,q
r = Zp,q

r /Bp,q
r and since δar−1 ∈ Bpr+1,qr

r+1 ⊂ Zpr+1,qr ⊂ Zpr+1,qr
r , we

can see the element δar−1 as an element δra ∈ Epr+1,qr
r . In this way, we define

δr : Ep,q
r → Ep+r,q−r+1

r .

Proposition 2.5.5. [27, p.66] The sequence of complexes (Er, δr) has H(Er, δr) =

Er+1.
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Remark 2.5.6.

1. If we have the condition in the remark 2.5.3, the spectral sequence (Er, δr)

stabilises for some r, that is, Ep,q
r = Ep,q

k for all k > r, and we can consider
its limit as Ep,q

∞ = limr E
p,q
r = Hp,q.

2. A spectral sequence converges if for every p, q, if r is sufficiently large then
δr vanishes on Ep,q

r and Ep+r,q−r+1
r .

It is important to know the behaviour of the spectral sequences when we have
two double complexes (C, d, δ), (C ′, d′, δ′) and a morphism ρ : C → C ′ of double
complexes of bidegree (m,n) such that ρd = d′ρ, and ρδ = δ′ρ. This gives rise to
a cochain map

ρ : (C, d+ δ)→ (C ′, d′ + δ′)

of degree m+ n. It induces a map in the total cohomology

ρ# : H(C, d+ δ)→ H(C ′, d′ + δ′)

of degree m+ n. Similarly, ρ maps the cochain complex (Cp,∗, d) into the cochain
complex ((C ′)p+m,∗, d′) and hence ρ induces a map on cohomology

ρ1 : E1 → E ′1

of bidegree (m,n) with ρ1δ1 = δ′1ρ1. Inductively, we get maps

ρr : (Er, δr)→ (E ′r, δ
′
r).

Here ρr+1 is the map on cohomology induced from ρr where Er+1 = H(Er, δr).

Theorem 2.10. [27, 6.4.1] If the two spectral sequences converge, then

lim
r
ρr = grρ#

where grρ# is the induced morphism in the total complex.

Theorem 2.11. [27, 6.4.2] If ρr is an isomorphism for some r = r0 then there
is an isomorphism for all r > r0, and so, if both spectral sequences converge, then
ρ# is an isomorphism.



Chapter 3

Stacks and cohomology

In this chapter we will discuss the category of differentiable stacks, cohomology
theories in this category, and the different interplays between these cohomology
theories. For a first view on this category, we take as a main reference [28]. Thus,
we consider a stack as a pseudo-functor between the category of smooth manifolds
Diff and Grpds, instead of using the fibered categories approach, as in [4], but
always bearing in mind that both approaches are equivalent. To study cohomology
theories in the category of differentiable stacks and some techniques to work on it,
we use [4, 6, 20, 28].

In the first three sections, we focus our efforts on discussing the category of differ-
entiable stacks and on how we can consider a geometrical environment for them.
Also, we discuss the relation between a Lie groupoid and a differentiable stack. In
particular, we discuss how a Morita equivalence for Lie groupoids gives rise to the
same differentiable stack. The fourth section is devoted to different cohomology
theories for differentiable stacks and how the theories interplay with each other.

3.1 Differentiable stacks

In this chapter, we consider Diff with the big site of smooth manifolds and local
diffeomorphisms as it was defined previously in 2.1.11 and 2.1.12. Compare with
[28, 1.2.6] and [6, 2]. We begin with a preparatory definition.

Definition 3.1.1. A prestack over Diff is a pseudo-functor

M : Diffop → Grpds.

43
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Remark 3.1.2. If M is a prestack with P ∈ M(U) and f : U ′ → U a smooth
map in Diff , we will denote f ∗P in the groupoid M(U ′) as P |U ′ . If we have a
covering {Ui

i−→ U}i∈I and P ∈ M(U) we denote by P |Ui the pullback i∗P . We
will denote by Pi|Uij the pullback i∗ij,iPi given by the smooth map i∗ij,i : Uij → Ui

for Pi ∈M(Ui).

Definition 3.1.3. A stack M over Diff is a prestack

M : Diffop → Grpds ⊂ Cat

such that:

1. One can glue objects: given a covering {Ui → X}i∈I , objects Pi ∈ M(Ui)

and isomorphisms φij : Pi|Uij → Pj|Uij which satisfy the cocycle condition on
threefold products φjk ◦φij = φik|Uijk there is an object P ∈M(X) together
with isomorphisms φi : P |Ui → Pi such that φij = φj ◦ φ−1

i .

2. One can glue morphisms: given objects P, P ′ ∈ M(X), a covering {Ui →
X}i∈I and isomorphisms φi : P |Ui → P ′|Ui such that φi|Uij = φj|Uij , then
there is a unique φ : P → P ′ such that φi = φ|Ui .

Example 3.1.4.

1. For any smooth manifold X ∈ Diff we can associate a stack given by

X = Map(_, X) : Diffop → Grpds

which takes a Y ∈ Diff and associates the set of all smooth morphism
between Y and X, Map(Y,X). The morphisms in Map(Y,X) as a groupoid,
are identity maps.

(a) We can glue objects: let {Ui → Y }i∈I be a covering of Y . If there exists
Ui

pi−→ X ∈ Map(Ui, X) for each i such that pi|Uij : Uij → X and pj|Uij :

Uij → X are isomorphic, then pi|Uij = pj|Uij ◦ idUij = pi|Uij = pj|Uij .
Therefore we can define p : Y = tiUi → X with p(z) = pi(z) if z ∈ Ui.
This map is well defined since the maps pi coincide on Uij and they are
all smooth maps.

(b) We can glue morphisms: Let Y p−→ X , Y p′−→ X be elements in X(Y ).
If we have a covering {Ui → Y }i∈I and isomorphisms φi : p|Ui → p′|Ui
such that φi|Uij = φj|Uij , we know that p|Ui is the element Ui

i−→ Y
p−→ X
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and by φi, we know that Uij → Ui
i−→ Y

p−→ X is the same map as
Uij → Ui

i−→ Y
p′−→ X. Since this is true for each Uij, we get that p = p′

as we want.

2. Let G be a Lie group. Consider the functor BG : Diffop → Grpds which
assigns to any smooth manifold the category of principal G-bundles over the
smooth manifold, as in theorem 2.4.

(a) We can glue objects: let {Ui → X}i∈I be a covering of the smooth
manifold X. If we have principal G-bundles (Pi, pi, G) over Ui and
isomorphism φij : Pi|Uij → Pj|Uij , we can get an open cover {Vl}l∈L
of local trivialisations for pi and transition functions {gm,n}. As φij :

Pi|Uij → Pj|Uij with φjk ◦ φij = φik|Uijk , we get a principal G-bundle
(P, p,G) over X by theorem 2.3, such that P |Ui → Ui is isomorphic to
Pi → Ui via an isomorphism φ : P |Ui → Ui and φij = φj ◦ φ−1

i .

(b) We can glue morphisms: let (P, p,G) and (P ′, p′, G) be elements in
BG(X). If we have {Ui → X}i∈I a covering of X with isomorphisms
φi : P |Ui → P ′|Ui such that φi|Uij = φj|Uij , we can consider an open cov-
ering {Vk}k∈K of local trivialisation for P |Ui

p−→ Ui with transition func-
tions {gm,n} and P ′|Ui

p′−→ Ui with transition functions {g′m,n}. We can
consider the principal G-bundles that come from the transition func-
tions, and we get an isomorphism between these principal G-bundles
by theorem 2.3, and as these principal G-bundles are isomorphic to
(P, p,G) and (P ′, p′, G), so we get finally an isomorphism of principal
G-bundle φ : P → P ′ with the required properties.

Definition 3.1.5. 1-morphism and 2-morphisms on stacks are defined in the fol-
lowing way:

1. A 1-morphism of stacks between two stacksM and N is given by a natural
transformation of functors of 2-categories F :M→N , that is:

• for every smooth manifold X ∈ Diff , a functor FX :M(X)→ N (X),

• for every morphism f : X → Y in Diff , an invertible natural transforma-
tion Ff : N (f) ◦ FY ⇒ FX ◦M(f) which is compatible with the natural
transformations

εg,f : (g ◦ f)∗ ⇒ f ∗ ◦ g∗,

that is, there exists the following commutative diagram for Ff



Stacks and Cohomology 46

M(Y ) N (Y )

M(X) N (X)

FY

M(f) N (f)

FX

Ff

such that:

i. if f = idX then FidX = idFX .

ii. if X f−→ Y
g−→ Z then Fg◦f is the composite of the commutative di-

agrams by Ff and Fg further composed with the composition of the
pullback isomorphisms εg,f : (g ◦ f)∗ ⇒ f ∗ ◦ g∗ forM and N .

2. A 2-morphism of stacks φ : F → G between two 1-morphisms F :M→ N
and G :M→N is given by the diagram

M N
F

G

φ

such that for any X ∈ Diff there are invertible natural transformations
φX : FX → GX of the form

M(X) N (X).

FX

GX

φX

As we build stacks and its different kinds of morphisms in the previous way, we
get the next property:

Proposition 3.1.6. The category of stacks over Diff with 1-morphisms and 2-
morphisms form a 2-category. This 2-category is denoted by St.

Remark 3.1.7. In the same way, we can consider the 2-category of pre-stacks and
we denote it by pre-St.

The next proposition relates pre-stacks with stacks and it is known as stackification
of a pre-stack.

Proposition 3.1.8. [15, 8.8.1] Let M be a pre-stack. Then there exists a mor-
phism of prestacks σ :M→ M̃, with M̃ a stack, such that for every stack N , the
functor HomSt(M̃,N )

σ∗−→ Hompre−St(M,N ) is an equivalence of categories.

The next result is a version for stacks of the classical Yoneda lemma in category
theory, and it is going to allow us to consider elements of a stack as morphisms of
stacks and vice-versa. We are going to refer to this result as 2-Yoneda lemma.
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Lemma 3.1.9. (2-Yoneda lemma) LetM be a stack and X ∈ Diff , a smooth man-
ifold. Then there is a canonical equivalence of categoriesM(X) ∼= MorSt(X,M).

Proof. We define the morphism Φ : M(X) → MorSt(X,M), such that for any
element P of M(X) and we assign Φ(P ) = FP (f) = f ∗P with Y f−→ X, and for
any isomorphism φ : P → P ′ between element P, P ′ in M(X) is defined as a
natural transformation Φφ : FP → FP ′ by f ∗P → f ∗P ′.

Also, we define Ψ : MorSt(X,M)→M(X) given by Ψ(F ) = F (idX) = PF where
F ∈ MorSt(X,M). Thus we have that:

1. Ψ ◦ Φ(P ) = Ψ(FP ) = FP (idX) = id∗(P ) = P so Ψ ◦ Φ = idM(X).

2. Φ ◦ Ψ(F ) = φ(PF ) = Φ(F (idX)) = FPF . We observe that for f ∈ X(Y ) we
have FPF (f) = f ∗PF = f ∗(F (idX)). Since F is a natural transformation we
get f ∗(FX(idX)) = F ((idX) ◦ f), that is f ∗(F (idX)) = F (f). Then FPF = F

and Φ ◦Ψ = idMorSt(X,M).

Since the compositions are equal to the identities, it is enough to show that ψ is
natural.

If we fixM and consider Y f−→ X a morphism in Diff , we have that F (f)(idY ) =

F (f) = f ∗(F ) and then the diagram commutes

MorSt(X,M) MorSt(Y ,M)

M(X) M(Y )

_◦f

ψX ψY

f∗

Let X ∈ Diff be. If we consider M,M′ stacks and a natural transformation
θ :M⇒M′, then the following diagram

MorSt(X,M) MorSt(X,M′)

M(X) M′(X)

θ◦_

Ψ Ψ

θX

commutes, since for F : X →M we know that θX ◦ FX = (θ ◦ F )X .

Remark 3.1.10. We will write X for the stack X, and for the diagram X → M
we understand a stack 1-morphism between the stacks X andM.
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Definition 3.1.11. Let G be a Lie group acting on a smooth manifold X via
µ : G×X → X. Then the quotient stack [X/G] is defined by

[X/G](Y ) := 〈(P p−→ Y, P
f−→ X) | p forms a principal G-bundle, f is G-equivariant〉

Morphisms in this groupoid are G-equivariant isomorphisms, that means, if we
have (P

p−→ Y, P
f−→ X), (P ′

p′−→ Y, P ′
f ′−→ X) ∈ [X/G] then a morphism between

them consists of φ : P → P ′ such that p′ ◦ φ = p and f ′ ◦ φ = f with φ a G-
equivariant morphism. Since it is possible to glue principal G-bundles, it follows
[X/G] is a stack.

On the other hand, if Y , Y ′ are smooth manifolds and h : Y → Y ′ then the
morphism induced by the stack is

[X/G](h) : [X/G](Y ′)→ [X/G](Y )

(p, f) 7→ (h∗p, qf)

where

h∗P P X

Y Y ′

q

h∗p

f

p

h

Remark 3.1.12. For G acting trivially on X = pt the quotient [pt/G] is the stack
BG classifying principal G-bundles. To check this, let Y be a smooth manifold
then

[pt/G](Y ) = 〈(P p−→ Y, P
c−→ pt)〉 = 〈(P p−→ Y )〉 = BG(Y )

and if Y ′ h−→ Y is a morphism in Diff then

[pt/G](h) = h∗p : h∗P → Y ′.

Hence [pt/G] = BG.

Proposition 3.1.13. If the action of G is proper and free on X, the quotient
stack [X/G] and the smooth manifold X/G define the same stack.

Proof. As the action is proper and free, X → X/G is a G-bundle. Let us consider
f : Y → X/G a smooth morphism, so we can assign the pair (f ∗X

f∗−→ Y, f ∗X
q−→

X) in the stack. Moreover, if we have the pair (P
p−→ Y, P

f−→ X), we can define
φf : Y → X/G as follows, for each w ∈ P then φf (p(w)) = π(f(w)) = f(w)G.
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Thus, we define Ψ : X/G→ [X/G] for Y ∈ Diff as

X/G(Y )
Ψ−→ [X/G](Y )

f 7→ (f ∗X
f∗−→ Y, f ∗X

q−→ X)

and Φ : [X/G]→ X/G as

[X/G](Y )
Φ−→ X/G(Y )

(P
p−→ Y, P

f−→ X) 7→ φf

since Ψ ◦ Φ ∼= id[X/G](Y ) and Φ ◦Ψ = idX/G(Y ), so [X/G] ∼= X/G as stacks.

3.2 Fibered products

In order to get geometric properties of morphisms like embedding morphisms, open
morphisms and others, it is necessary to define the fibered product stack, which
allows us to relate differentiable stacks with Lie groupoids as well.

Definition 3.2.1. Let F : M → N and F ′ : M′ → N be morphisms of stacks,
so there is a diagram of morphisms of stacks given by

M

M′ N

F

F ′

and the fibered product M×N M′ is defined as

M×N M′(X) = 〈(f, f ′, φ) | X f−→M, X
f ′−→M′, φ : F ◦ f ⇒ F ′ ◦ f ′〉.

We will show below that this definition gives us a stack where a morphism (f, f ′, φ)→
(g, g′, ψ) is given by a pair of morphisms

(Φf,g : f → g,Φf ′,g′ : f ′ → g′)

such that
ψ ◦ F (Φf,g) = F ′(Φf ′,g′) ◦ φ.
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Remark 3.2.2. We note that if f, g ∈ MorSt(X,M) ∼= M(X) then Φf,g is a mor-
phism and hence an isomorphism. Moreover, ψ is an isomorphism as well, because
it is a morphism in MorSt(X,N ) ∼= N (X).

Proposition 3.2.3. The fibered product is a stack.

Proof. 1. Consider {Ui} a covering of X and (fi, f
′
i , φi) ∈ M×N M′(Ui) with

(Φij,Φ
′
ij) : (fi, f

′
i , φi)|Uij → (fj, f

′
j, φj)|Uij which satisfy the cocycle condition.

Then, there are f : X →M(X) and f ′ : X →M′(X), such that there exist
Φ : f |Ui → fi and Φ′ : f ′|Ui → f ′i isomorphisms with Φ|Uij = Φij and
Φ′|Uij = Φ′ij.

2. We consider (f, f ′, φ), (g, g′, ψ) ∈ M ×N M′(X) and {Ui}i∈I a open cov-
ering of X with isomorphisms (Φi,Φ

′
i) : (f, f ′, φ)|Ui → (g, g′, ψ)|Ui such

that Φi|Uij = Φj|Uij and Φ′i|Uij = Φ′j|Uij , then there exist Φ : f → g and
Φ′ : f ′ → g′ because they are morphisms inM(X) andM′(X). Besides, the
condition ψi ◦ (Fi ◦Φi) = F ′i ◦Φi(φi) holds because it glues like an object in
N (X).

Example 3.2.4. Consider pt → BG and X → BG. By the 2-Yoneda lemma,
there is a one-to-one correspondence between MorSt(X,BG) and BG(X). So if
P ∈ BG(X) is a principal G-bundle on X, there exists FP in MorSt(X,BG) such
that

pt×BG X(Y ) = 〈(f, g, φ) | Y f−→ pt, Y
g−→ X,φ : FP ◦ g ⇒ F ′ ◦ f〉.

Since MorSt(Y,X) ∼= X(Y ), g could be considered as an element in X(Y ) and

pt×BG X(Y ) ∼= 〈(g, φ) | Y g−→ X,φ : g∗P → F ′ ◦ f〉

as we know that MorSt(Y, pt) ∼= pt(Y ) then F ′ ◦ f = f ∗pt. That means

pt×BG X(Y ) ∼= 〈g | Y g−→ X, g∗P ∼= f ∗pt ∼= G× Y 〉

∼= 〈g | Y g−→ X, s : Y → g∗P a local section 〉

so if we could consider g = g∗◦s then we get pt×BGX(Y ) ∼= 〈g : Y → P 〉 = P (Y ).
The last equation is because if f : Y → P , then π ◦ f : Y → X and, by the 2-
Yoneda lemma, π ◦ f can be considered as an element in MorSt(Y,X).
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Proposition 3.2.5. [15, 8.8.4] Let P a pre-stack. If there are two morphisms of
stacks F : M → N , F ′ : M′ → N and the following 2-commutative diagram of
pre-stacks

P M

M′ N

F

F ′

then the stack P̃ is isomorphic to the fibered productM×N M′.

We can now define the notion of a differentiable stack, see [28, 1.1] and [50, 2.10].

Definition 3.2.6. A stackM is called a differentiable stack if there is a smooth
manifold X and a morphism of stacks p : X → M between the stack associated
to X, as in example 3.1.4 and the stackM such that:

1. For all morphism of stacks Y → M the stack associated to X ×M Y is
isomorphic to a smooth manifold.

2. p is a submersion, i.e., for all Y → M the projection X ×M Y → Y is a
submersion.

The map X →M is then called an atlas or a presentation ofM.

The first property in the definition above is going to be used to get morphisms
with geometric properties.

Definition 3.2.7. A morphism of stacks F : M → N is called representable, if
for any morphism of stacks Y → N , where Y is a smooth manifold, the fibered
productM×N Y is a stack, which is equivalent to a smooth manifold.

Example 3.2.8.

1. The map pt → BG gives that pt ×BG X ∼= P by example 3.2.4. That is,
pt→ BG is representable.

2. The map F : BG → pt is not representable. Consider Y = pt, F ′ : pt → pt

and Z a smooth manifold, then

BG×pt pt(Z) = 〈(f, f ′, φ) | Z f−→ BGZ p−→ t, φ : F ′ ◦ f ′ ⇒ F ◦ f〉
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= 〈(f, φ) | Z f−→ BG, φ : Cpt ⇒ F ◦ f〉

where Cpt : Z → pt. Since

BG×pt pt(Z) ∼= MorSt(Z,BG) ∼= BG(Z)

and BG is not a smooth manifold, therefore F : BG → pt is not repre-
sentable.

Proposition 3.2.9. The quotient stack [X/G] is a differentiable stack if X and
G are smooth.

Proof. We are going to check that X → [X/G] is an atlas, defined by the trivial
G-bundle G×X q−→ X and by the action map G×X a−→ X, where a is considered
as a G-equivariant map.

1. X
Fq−→ [X/G] is representable. Let be Y , T smooth manifolds and Y

FP−→
[X/G] then we have

X ×[X/G] Y (T ) = 〈(f, f ′, φ) | T f−→ X,T
f ′−→ Y, φ : FPf

′ ⇒ Fqf〉

Consider (p, h) ∈ [X/G](Y ) ∼= MorSt(Y, [X/G]) then, by the 2-Yoneda Lemma,
we have Fp(f ′) = ((f ′)∗P

p∗−→ T, (f ′)∗P
hf∗−−→ X) and Fq(f) = (f ∗(G×X)

q∗−→
T, f ∗(G×X)

af∗−−→ X). As q is the trivial principal G-bundle, we know that
f ∗(G × X) ∼= G × T . Since a morphism φ between Fp(f ′) and Fq(f) is an
isomorphism we have (f ′)∗P ∼= G× T , thus X ×[X/G] Y (T ) = 〈(f ′, φ) | T f ′−→
Y, (f ′)∗P ∼= G× T 〉. Hence

X ×[X/G] Y (T ) ∼= 〈(f ′, s) | T f ′−→ Y, T
s−→ (f ′)∗P is a section 〉

and we can consider f = (f ′)∗ ◦ s : T → P and X ×[X/G] Y (T ) ∼= P (T ).
Therefore X ×[X/G] Y (T ) ∼= P (T ). That is, X → [X/G] is representable.

2. X → [X/G] is a submersion. We have to show that P (T ) ∼= X ×[X/G]

Y (T ) → Y (T ) is a submersion, but this is already given because P → Y is
a submersion.

Lemma 3.2.10.

1. (Composition) If F : K →M and G :M→N are representable, then F ◦G
is representable.
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2. (Pull-back) If F : M→ N is representable, and G : M′ → N is arbitrary,
then the projectionM′ ×N M→M′ is representable.

Proof.

1. For this, we need to check that Y ×N K ∼= (Y ×N M) ×M K. If we have a
morphism V : Y → N and T a smooth manifold, then

Y ×N K(T ) = 〈(f ′, f, φ) | f ′ : T → Y, f : T → K, φ : V f ′ ⇒ (G ◦ F )f〉

and for W : Y ×N M→M we get

(Y×NM)×MK(T ) = 〈(h′, f, ψ) | h′ : T → Y×NM, f : T → K, ψ : Wh′ ⇒ Ff〉.

Then, by the 2-Yoneda Lemma h′ ∈ MorSt(T, Y ×NM) ∼= Y ×NM(T ), that
is h′ = (f ′, Ff, φ) with φ : V f ′ → G(Ff).

Thus, we get the next equivalence,

(Y ×N M)×M K(T ) ∼=

〈(f ′, Ff, φ, f, ψ) | T f−→ Y, T
Ff−→M, φ : V f ′ ⇒ G(Ff), T

f−→ K, ψ : Wh′ ⇒ Ff〉

∼= 〈(f ′, Ff, φ, f, ψ) | T f ′−→ Y, T
Ff−→M, φ : V f ′ ⇒ G(Ff), T

f−→ K, ψ : Ff ⇒ Ff〉

∼= 〈(f ′, φ, f) | T f ′−→ Y, φ : V f ′ ⇒ G(Ff), T
f−→ K, 〉.

= Y ×N K(T )

2. We need to note that Y ×M′ (M′ ×N M) ∼= Y ×N M.

First, we observe that Y ×M′M′(T ) ∼= Y (T ) for T ∈ Diff and Y W−→ M′,
because

Y ×M′M′(T ) = 〈(f ′, f, ζ)|T f ′−→ Y, T
f−→M′, ζ : Wf ′ ⇒ f〉 ∼= Y (T )

Second, Y ×M′ (M′ ×N M) ∼= (Y ×M′M′)×N M

(Y ×M′M′)×N M(T )

= 〈(u′, u, φ)|T u′−→ Y ×M′M′, T
u−→M,φ : G ◦W ◦ π1(u′)⇒ Fu〉

〈(v′, v, θ, u, φ)|T v′−→ Y, T
v−→M′, θ : v ⇒ Wv′, T

u−→M,φ : G ◦Wv′ ⇒ Fu〉
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Here, we are using the 2-Yoneda lemma for u′ ∈ MorSt(T, Y ×M′ M′) ∼=
Y ×M′M′(T ), thus u′ = (v′, v, θ). On the other hand,

Y×M′(M′×NM)(T ) = 〈(f ′, h, ψ)|T f ′−→ Y, T
h−→M′×NM, ψ : W◦f ′ ⇒ π1◦h〉

∼= 〈(f ′, g′, f, µ, ψ)|T f ′−→ Y, T
g′−→M′, T

f−→M, ψ : W ◦f ′ ⇒ g′, µ : Gg′ ⇒ Ff〉

∼= 〈(f ′, g′, f, µ, ψ)|T f ′−→ Y, T
g′−→M′, T

f−→M, ψ : W◦f ′ ⇒ g′, µ : G◦Wf ′ ⇒ Ff〉

Therefore, Y ×M′ (M′ ×N M) ∼= Y ×N M.

Definition 3.2.11. A representable morphismM→ N is an open embedding, if
for an atlas Y → N the mapM×N Y → Y is an open embedding.

Remark 3.2.12. The previous definition can be used in the same way for different
properties such as closed embedding, submersion or proper and it does not depend
of the atlas [28, 2], [50, 2.2]. We can see this independence in the following example.

Example 3.2.13. If M and N are smooth manifolds, we have that any sub-
mersion map is representable because transversality and the usual notion of open
embedding agree with the representable notion. To check this:

1. We assume that M f−→ N is an open embedding and consider Y g−→ N an
atlas, then the map M ×N Y = {(m, y) ∈ M × Y | f(m) = g(y)} π2−→ Y has
image equal to g−1(f(M)). Thus, if f(M) is open then π2(M) = g−1(f(M))

is also open.

We need to check that π2 is diffeomorphic to its image. It is injective because
if π2(m, a) = π2(n, b) implies that a = b so f(m) = g(a) = g(b) = f(n) since
f is injective then m = n. Therefore π2 is injective.

We know that there is a well-defined map π−1
2 : π2(M ×N Y ) → M ×N Y

given by y 7→ (f−1(g(y)), y) and because g and f−1 are smooth, then π2 is
also smooth.

Therefore π2 is an open embedding.

2. Now if Y g−→ N is an atlas then M ×N Y
π2−→ Y is an open embedding.

Therefore π2(M) = g−1(f(M)) is open. But g is an atlas, so g is surjective
and open, hence g(g−1(f(M))) = f(M).

We have that f is injective, because if f(m) = f(m′) then there are y, y′ such
that f(m) = g(y) and f(m′) = g(y′). Therefore (m, y), (m′, y) ∈M×NY and
thus, π2(m′, y) = π2(m, y). Since π2 is injective m′ = m and f is injective.
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As π−1
2 is smooth and π−1

2 (y) = (f−1(g(y)), y) then we have that f−1g and
g are smooth. Besides we know that g is a quotient map and f−1 is smooth.

Definition 3.2.14. A morphismM→N of differentiable stacks is smooth if for
an atlas X → M the composition X → N is smooth, i.e., for an atlas Y → N
the fibered product X ×N Y → Y is smooth.

Definition 3.2.15. A principal G-bundle over a stack M is given by a principal
G-bundle (PX , πX , G) over X, where X →M is an atlas forM, together with an
isomorphism of the two pullbacks of φ12 : p∗1PX → p∗2PX on X ×M X satisfying
the cocyle condition on X ×M X ×M X, that is φ12 ◦ φ23 = φ13.

The groupoid of principal G-bundles overM is denoted by BunG(M).

Remark 3.2.16. The same definition can be applied to vector bundles. Since each
rank n vector bundle can be seen as a principal Gln-bundle where GLn is the
general n-linear group. See [31, I.5.3.2].

Example 3.2.17. For each principal G-bundle PX over a differentiable stackM
with an atlas X →M, there exists a differentiable stack given by

P : Diffop → Grpds

such that P(T ) = 〈(f : T →M, s : T → PT,f a local section )〉 where PT,f comes
for gluing.

Remark 3.2.18. For any f : T →M we can define a principal G-bundle (PT,f , π,G)

over T , since X×MT → T has local sections. We consider {Ui ↪→ T}i∈I a covering
then there exist sections Ui

si−→ X ×M T . For each of these sections we notice that
the arrow Ui

si−→ X ×M T
p1−→ X which allows us to pullback with PX . The gluing

of this collection of pullbacks gives us the principal G-bundle. Therefore, this
automatically defines a differentiable stack P p−→M where

P(T ) = 〈(f : T →M, s : T → PT,f a local section )〉

An atlas of this stack is given by (PX ,PX
∆−→ PX ×X PX). This shows that

universal bundles on stacks classifying principal G-bundles exist.

Example 3.2.19.

1. pt→ [pt/G] gives a G-bundle over pt and it is, in fact, the trivial bundle.
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2. We have the atlas pt→ BG, so a G-bundle associated to BG is given by

G× pt

pt BG

p

By the above remark, we have that the associated stack is

EG(T ) =< T
f−→ BG, T s−→ PT,f a section >

and an atlas for EG is given by α : G× pt→ EG such that the diagram

G× pt EG

pt BG

p

α

commutes.

Theorem 3.2.20. There exists an equivalence of categories given by

MapsSt(M,BG) ∼= BunG(M)

Proof. Let G be a Lie group and the classifying stack BG with its atlas pt→ BG.
By The 2-Yoneda Lemma we have that for X ∈ Diff we get

MapsSt(X,BG)
φ−→ BG(X)

If we have Θ ∈ MapsSt(M,BG) and atlas X a−→M, we get Θ◦a ∈ MapsSt(X,BG)

and so φ(Θ ◦ a) ∈ BG(X). Hence, we get φ(Θ ◦ a) a principal G-bundle over X,
that is, an element in BunG(M). Observe that this principal G-bundle comes via
the 2-diagram

X ×BG G G

pt

X M BGa Θ

On the other hand, if we have a principal G-bundle PX
p−→ X →M, we can define

a morphism betweenM and BG considering the following 2-diagram



Stacks and Cohomology 57

T ×M PX PX G

X pt

T M BG

f∗

p

a

f Ψp

where Ψp is defined as Ψp(f) = f ∗.

Due to the last two diagrams, we can notice that Ψφ(Θ◦a)(f) ∼= Θ(f) and φ(Ψp◦a) ∼=
p. Hence, we get the result.

3.3 Morita equivalence

Let X →M be an atlas of the differentiable stackM. We add another structure
which allow to define a Lie groupoid associated toM with the next structure, the
two projections p1, p2 : X ×M X → X as the source and target map respectively,
and 1 = ∆ : X → X ×M X the identity of the Lie groupoid. The multiplication
is given by

(X ×M X)×X (X ×M X)(T ) ∼= X ×M X ×M X(T )→ X ×M X(T )

((f, f ′, η), (g, g′, ξ), ϕ) 7→ (f, g′, ϕ ◦ η ◦ ξ)

for any smooth manifold T . Besides, if (f, f ′, η), its inverse is (f ′, f, η−1). This
Lie groupoid will be denoted by (X1 ⇒ X0) = (X ×M X ⇒ X).
Conversely, for any groupoid Γ = (Γ1 ⇒ Γ0) we can define a differentiable stack

[Γ0/Γ1](Y ) = 〈(P p−→ Y, P
f−→ Γ0) where p is a principal Γ-bundle along f 〉

as in section 2.4.2.

Lemma 3.3.1. The unit Γ-bundle Γ1 → Γ0 induces a map Γ0
π−→ [Γ0/Γ1] which

is an atlas for [Γ0/Γ1], the map π is the map given by the pullback Γ-bundle over
[Γ0/Γ1]. The groupoids Γ and Γ0,• are canonically isomorphic.

Proof. Let Y fP−→ [Γ0/Γ1] be given by a bundle P in lemma 3.1.9. Then

(Γ0 ×[Γ0/Γ1] Y )(T ) ∼= 〈(T f−→ Y, T
g−→ Γ0), ϕ : fP ◦ f

∼=−→ π ◦ g〉
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∼= 〈(f, g, ϕ : f ∗P ∼= g∗Γ1)〉

∼= 〈(f, T f−→ P )|PrY ◦ f = f〉

∼= {f : T → P} = P (T ).

The groupoids Γ and Γ0,• are canonically isomorphic because Γ0
π−→ [Γ0/Γ1] is an

atlas, then (Γ0×[Γ0/Γ1]Γ0 ⇒ Γ0) is the groupoid Γ0,•. Therefore, Γ0×[Γ0/Γ1]Γ0(T ) ∼=
Γ1(T ), for any smooth manifold T .

Definition 3.3.2. Let Γ and Γ′ be Lie groupoids. A morphism of groupoids
φ = (φ1, φ0) : Γ→ Γ′ is called a Morita morphism, if:

1. φ0 : Γ0 → Γ′0 is a surjective submersion.

2. the diagram

Γ1 Γ0 × Γ0

Γ′1 Γ′0 × Γ′0

s×t

φ1 φ0×φ0

s′×t′

commutes.

We say that a Morita morphism φ• = (φ1, φ0) : Γ → Γ′ admits a section if there
exists s : Γ′0 → Γ0 such that s ◦ φ0 = idΓ′0

.

Definition 3.3.3. Two Lie groupoids Γ and Γ′ are called Morita equivalent, if
there exists a third Lie groupoid Γ

′′ and Morita morphisms Γ
′′ → Γ and Γ

′′ → Γ′.
That is, there exists a diagram

Γ
′′

Γ Γ′

of Lie groupoids.

Theorem 3.1. Let Γ and Γ′ be Lie groupoids. Let [Γ0/Γ1] and [Γ′0/Γ
′
1] be the

associated differentiable stacks. Then the following are equivalent:

i. The differentiable stacks [Γ0/Γ1] and [Γ′0/Γ
′
1] are isomorphic.

ii. The Lie groupoids Γ and Γ′ are Morita equivalent.
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iii. There exists a smooth manifold M with two smooth maps p : M → Γ0 and
p′ : M → Γ′0, and actions of Γ1 and Γ′1 such that M is a left Γ-principal bundle
over Γ′0 by p′, and a right Γ′-principal bundle over Γ0 by p. Such M is called
a Γ-Γ′-principal bundle.

Proof. 1. i. implies iii. Consider the atlases Γ0
π−→ [Γ0/Γ1] and Γ′0

π′−→ [Γ′0/Γ
′
1]

and suppose we have an isomorphism

ψ : [Γ′0/Γ
′
1]→ [Γ0/Γ1]

then Γ′0
ψ◦π′−−→ [Γ0/Γ1] is an atlas. Hence, it is possible to consider the smooth

manifold Γ0 ×[Γ0/Γ1] Γ′0. This smooth manifold is a right Γ′-principal bundle
over Γ0 with the following structure

Γ0 ×[Γ0/Γ1] Γ′0 Γ′0

Γ0

p2

p1

2. iii. implies ii. Let M be a smooth manifold with the following right Γ′-
principal bundle

M Γ′0

Γ0

a′

p

and the left Γ-principal bundle

M Γ0

Γ′0

a

p′

Consider M1 = Γ′1 ×Γ′0,s
′ M ×Γ0,t Γ1. This smooth manifold is a groupoid

M over M with structure given by s = t = p2, that is, the source and the
target map are the same projection in the second component. The identity
map is 1(m) = (1′(p′(m)),m, 1(p(m)) where 1 and 1′ are the identity maps
of Γ and Γ′ respectively. The multiplication is

M1 ×M M1 →M1
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((h′,m′h), (g′,m, g)) 7→ (h′g′,m, gh)

where every function here is smooth, so (M1 ⇒ M) is a Lie groupoid. A
Morita equivalence between M and Γ is given by ϕ = (p3, p × p) : M → Γ,
and a Morita equivalence between M and Γ′ is ϕ′ = (p3, p

′ × p′) : M → Γ′.

3. ii. implies iii. To prove this, it is necessary to show two things. First, if
φ : Γ

′′ → Γ is a Morita morphism, then M = Γ
′′
0 ×Γ0,t Γ1 is a Γ

′′-Γ-principal
bundle over Γ

′′
0 with the following structure of a Γ-principal bundle

M Γ0

Γ
′′
0

t◦p2

p1

and as a Γ′-principal bundle

M Γ
′′
0

Γ0

p1

t◦p2

Second, if M is a Γ-Γ′′-principal bundle and M̂ is Γ
′′-Γ′-principal bundle

then
M ∧Γ

′′
0 M̂ = M ×Γ

′′
0
M̂/ ∼

is a Γ-Γ′-principal bundle, where ∼ is the equivalence relation defined by

(µ
′′
(u, ψ

′′
), v) ∼ (u, µ′′(ψ

′′
, v))

where µ′′ and µ′′ are right and left Γ
′′-actions on M and M̂ , respectively.

For more details about the smooth structure of M ∧Γ
′′
0 M̂ we follow [8, 2.11].

If M is a left Γ-principal bundle with

M Γ0

Γ
′′
0

a

p
′′

then the structure of a left Γ-principal bundle of M ∧Γ
′′
0 M̂ is given by

M ∧Γ
′′
0 M̂ Γ0

Γ′0

a◦p1

π◦p2
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with the action
Θ : Γ1 ×Γ0,sM ∧Γ

′′
0 M̂ →M ∧Γ

′′
0 M̂

(ψ, [u, v]) 7→ [µ(ψ, u), v],

where µ is the left Γ-action on M .
In the same way, a structure of a right Γ′-principal bundle can be given to
M ∧Γ

′′
0 M̂ .

4. iii. implies i. Given a Γ-principal bundle F over U . If we consider E = M∧Γ0

F then E is a Γ′-principal bundle over U , where the equivariant map is E a−→
Γ′0 given by a([m, f ]) = p′(m) and the action is [m, f ]g′ = [mg′, f ]. Therefore,
for any element in [Γ0/Γ1](U), we can obtain an element in [Γ′0/Γ

′
1](U).

Besides, any morphism between elements of [Γ0/Γ1](U) induces a morphism
between elements in [Γ′0/Γ

′
1].

This functor gives an equivalence of categories.

3.4 Cohomology theories for differentiable stacks

3.4.1 Sheaf cohomology

Before we can define a sheaf for a differentiable stack we need to define the site
Ms. See [6, 3.1] and [50, 3.1].

Definition 3.4.1. LetM be a differentiable stack. The siteMs onM is defined
as the following category:

1. The objects are given as pairs (U, u), where U is a smooth manifold and
u : U →M is a morphism of stacks.

2. The morphisms are given as pairs (φ, α) : (U, u)→ (V, v), where φ : U → V

is a local diffeomorphism and α : u⇒ v ◦ φ is a 2-isomorphism, i.e. there is
a 2-commutative diagram of the form

U V

M

f

u v

α
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3. The coverings of an object (U, u) are families of morphisms

{(φi, αi) : (Ui, ui)→ (U, u)}i∈I

such that the morphism ⊔
i∈I

φi :
⊔
i∈I

Ui → U

is surjective.

Remark 3.4.2. For the covering {(φi, αi) : (Ui, ui)→ (U, u)}i∈I , we use the notation
{Ui → U}.

The notion of sheaf on stacks can be expressed in two ways. We consider both
and we check that these two approaches are equivalent.

Definition 3.4.3. LetMs be the site of the stackM. F :Ms → Ab is a sheaf
over the site J in abelian groups Ab if:

1. (Presheaf). F is a contravariant functor.

2. (a) If {Ui → U} covering of U and s, t ∈ F(U) such that s|Ui ∼= t|Ui for all
i, then s ∼= t.

(b) If {Ui → U} covering of U and si ∈ F(Ui) such that si|Uij ∼= sj|Uij then
there exists s ∈ F(U) such that s|Ui ∼= si, for all i.

Definition 3.4.4. A sheaf F on a stack M is a collection of sheaves FX→M in
Ab for any X →M such that for any triangle

X Y

M

f

h g

φ

there is a morphism of sheaves Φφ,f : f ∗FY→M → FX→M such that for

X Y Z

M

f g

φ ψ

it holds Φφ,f ◦ f ∗Φψ,g = Φφ◦f∗ψ,f◦g .
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Remark 3.4.5. The sheaf F is called Cartesian if Φφ,f are isomorphisms.

Proposition 3.4.6. Both definitions for a sheaf on a stack are equivalent.

Proof. 3.4.3 ⇒ 3.4.4. If we have a sheaf defined on M, F : Ms → Ab, we can
define for each X →M a sheaf by

FX→M : Xs → Ab

(U → X) 7→ FX→M(U) = F(U)

This is a sheaf since we are considering local diffeomorphism and the properties
of F . Consider the diagram

X Y

M

f

h g

φ

We get that there exists a morphism of sheaves Φφ,f : f ∗FY→M → FX→M given
by the usual induced morphism of sheaves and it gives the required property.

3.4.4 ⇒ 3.4.3. If we have a sheaf for any X →M, we define F :Ms → Ab as

(U →M) 7→ F(U) = FU→M(U)

As our site is given by local diffeomorphisms and FU→M is a sheaf, we get the
result.

Definition 3.4.7. A morphism of sheaves h : F → F ′ on Ms is a collection of
morphisms of sheaves hX,x : FX,x → F ′X,x on X for any morphism X →M with
X a smooth manifold, i.e. for all (X, x) ∈ Ms which are compatible with Φφ,f

and Φ′φ,f in the following way

f ∗FY,y f ∗F ′Y,y

FX,x F ′X,x

f∗hX,x

Φφ,f Φ′φ,f

hX,x

Remark 3.4.8. We denote by Sh/M the category of sheaves of Abelian groups
over the differentiable stackM.



Stacks and Cohomology 64

Example 3.4.9. Let M be a differentiable stack. We can define the q-th De
Rham sheaf Ωq

DR overM setting that for U →M in the site. Let (Ωq
DR)U = Ωq

U

be the sheaf of q-forms on U . Observe that if there is f : U → V such that

U V

M

f

h g

there exists an isomorphism Φf : f ∗Ωq
V → Ωq

U , since f is a local diffeomorphism.
Hence, the sheaf Ωq

DR is Cartesian.

Definition 3.4.10. Let M be a differentiable stack with atlas X → M. Let
{fi : Ui → U}i∈I be an covering in the site Ms. A descent datum (Fi, φi,j) for
sheaves Fi on Ui is a collection of sheaf morphisms φi,j : p∗iFi → p∗jFj on Uij with
pi : Uij → Ui and pj : Uij → Uj, satisfying the cocycle condition

φi,j|Uijk ◦ φj,k|Uijk = φi,k|Uijk

with Uijk for all i, j, k ∈ I.

The next result allows us to consider a sheaf F over an atlas X →M, as a way
to get an atlas on the differentiable stackM. Moreover, it states that if we have a
sheaf on the atlas X →M, we can define a sheaf on the nerve of the Lie groupoid.
For further details, we refer to [28, 4.3] and [37, 12.4.5].

Proposition 3.4.11. A cartesian sheaf F is the same as a sheaf FX on some
atlas X → M together with a descent datum, that is, Φ : pr∗1FX → pr∗2FX on
X ×M X, which satisfies the cocycle condition on X×3

M.

Remark 3.4.12. The sheaf induced on X• by the sheaf F on M will be denoted
by F•.

Definition 3.4.13. The global sections of a Cartesian sheaf onM can be defined
as

Γ(M,F) = Ker(Γ(X,F) ⇒ Γ(X ×M X,F))

Lemma 3.4.14. For a cartesian sheaf F on M the group Γ(M,F) does not
depend on the choice of the atlas.

Proof. Let X → M be an atlas for the differentiable stack M. We consider an
atlas X ′ → M, which factors as X ′ f−→ X → M such that f has local sections.
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Since F is a cartesian sheaf and we have f ◦ s = idX′ , we have the isomorphism
Φφ,f◦sF(X ′)→ (f ◦ s)∗(X) = id∗X′F(X) = F(X). Thus, any global section on X ′

induces one on X and vice-versa.

For a not necessarily Cartesian sheaf F over the differentiable stack M we have
the next definition. See [28, 4] and [50, 3.10].

Definition 3.4.15. The set of global sections of a sheaf on M is defined as

Γ(M,F) = lim
←

Γ(X,FX→M)

This limit is taken over all atlases X →M.

Remark 3.4.16. Γ(M,F) is an inverse limit.

If {FX→M}X→M is a collection of sheaves over all the atlases ofM related to the
sheaf F onM, then we can express this inverse limit as

Γ(M,F) =
{

(ax′) ∈
∏

Γ(X ′,FX′→M) | Φf,φ(ax′) = ax with X f−→ X ′
}
.

Lemma 3.4.17. For a Cartesian sheaf F on a stackM the two notions of global
sections coincide.

Proof. We define two functions

lim
←

Γ(X ′,FX′→M) Ker(Γ(X,F) ⇒ Γ(X ×M X,F))

q

p

For (ax′) ∈ lim
←

Γ(X ′,FX′→M), we can consider the atlas X → M and so ax ∈
Γ(X,FX→M). Then we define q(ax′) = ax since X ×M X ⇒ X then Φp1,φ(ax) =

Φp2,φ(ax). Therefore ax ∈ Ker(Γ(X,F) ⇒ Γ(X ×M X,F)).

On the other hand, by lemma 3.4.14, we define p(ax) = (ax′) for each ax ∈
Ker(Γ(X,F) ⇒ Γ(X×MX,F)) and where a′x ∈ Ker(Γ(X ′,F) ⇒ Γ(X ′×MX ′,F))

is the induced element by ax for any atlas X ′ →M. We then get that q and p are
mutually inverse since both maps are defined in terms of the isomorphisms in the
proof of lemma 3.4.14.
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Remark 3.4.18.

1. As limits are left exact functors, then the functor of global section is left
exact [12, D.4].

2. The category of all sheaves of Abelian groups on the stackM, Sh/M is an
abelian category with enough injectives [2, 2.1.1.i].

Hence, for any F ∈ Sh/M, we can choose an injective resolution

0→ F → I•.

As the global section functor is left exact we can apply it to this sequence and, after
that, we can use the derived functor such that we can define the sheaf cohomology
of the differentiable stackM by

H∗Sh(M,F) := H∗(Γ(M, I•)) = R∗Γ(F).

Example 3.4.19. We know that an injective resolution for R is given by the de
Rham complex of differential forms and we get H∗dR(M) ∼= H∗Sh(M,R).

3.4.2 Cohomology of Lie groupoids

We consider the Lie groupoid X = (X1 ⇒ X0) associated to the differentiable
stack M with atlas X → M. We can consider the following simplicial smooth
manifold via iterated pullbacks

· · · X2 X1 X0

where Xn = X ×M X ×M . . . ×M X, the n-times product of X with the atlas
X →M. Let Ωq be the sheaf of q-forms, so we get

Ωq(X0) Ωq(X1) Ωq(X2) · · ·

We can associate a complex

Ωq(X0)
∂−→ Ωq(X1)

∂−→ Ωq(X2)
∂−→ . . .
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where ∂ : Ωq(Xp−1) → Ωq(Xp) is given by ∂ =

p∑
i=0

(−1)i∂∗i and ∂2 = 0. Hence we

can talk about Hk(X•,Ω
q), the cohomology groups of the associated Lie groupoid.

Proposition 3.4.20. Let f, g : X → Y be a morphism of Lie groupoids X =

(X1 ⇒ X0), Y = (Y1 ⇒ Y0) . If θ : f ⇒ g a 2-morphism of Lie groupoids, then
f ∗, g∗ induce maps in the de Rham complex

∂θ∗ + θ∗∂ = g∗ − f ∗.

Proof. We have that f induces a map f ∗ : Ω∗(Yp)→ Ω∗(Xp) with f ∗(ω)(φ1 . . . φp) =

ω(f(φ1) . . . f(φp)) in the same way as g. Also, we get that θ∗ : f ∗ ⇒ g∗ defines a
map

θ∗ : Ωq(Yp+1)→ Ωq(Xp)

given by

θ∗(ω)(φ1 . . . φp) =

p∑
i=0

ω(f(φ1) . . . f(φi)θ(xi)g(φi+1) . . . g(φp))

with f(φi)θ(xi)g(φi+1) = θ(x0)g(φ1) for i = 0 and f(φi)θ(xi)g(φi+1) = f(φp)θ(xp)

for i = p. Let ω be an element in Ωq(Yp) and an element in Xp with form

x0
φ1−→ x1

φ2−→ x2
φ3−→ · · · . . . · · · φp−→ xp

then we have that the sum θ∗∂ω(φ1φ2 . . . φp) has p2 + 3p+ 2 summands, and each
summand will be denoted by (−1)k+nCk,n with 0 ≤ k ≤ p, 0 ≤ n ≤ p + 1, and
Ck,n means that this summand comes from applying ∂∗n to k-th summand of θ∗.
There are some properties about Ck,n:

1. C0,0 = g∗ω, Cp,p+1 = f ∗ω. Cp,p+1 has negative sign.

2. Ck,k = Ck−1,k for 1 ≤ k ≤ p. Since

Ck,k = ω(f(φ1) . . . f(φk+1) ∗ θ(xk+1) . . . g(φp))

Ck−1,k = ω(f(φ1) . . . θ(xk) ∗ g(φk+1) . . . g(φp))

and
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f(xk) f(xk+1)

g(xk) g(xk+1)

f(φk+1)

θ(xk) θ(xk+1)

g(φk+1)

3. The pair of elements Ck,k = Ck−1,k add zero to θ∗∂ω(φ1φ2 . . . φp) because
they have different signs. These are 2p summands that come to zero.

On the other hand, we have the sum ∂θ∗ω(φ1φ2 . . . φp) with p2 +p summands, and
each summand will be denoted by (−1)l+mDl,m with 0 ≤ l ≤ p − 1, 0 ≤ m ≤ p.
Hence, we understand by Dl,m as the l-th summand of θ∗ applying on ∂∗mω. Dl,m

are related with Ck,n in the following way:

• Dk,n−1 = Ck,n for any 0 ≤ k ≤ p, 0 ≤ n ≤ p+ 1 such that k 6= n and k 6= n− 1.
If we have that k < n− 1

Dk,n−1 = ω(f(φ1) . . . f(φl)θ(xl)g(φl+1) . . . g(φm ∗ φm+1) . . . g(φp))

= ω(f(φ1) . . . f(φl)θ(xl)g(φl+1) . . . g(φm) ∗ g(φm+1) . . . g(φp)) = Ck,n

If we have that k ≥ n− 1

Dk,n−1 = ω(f(φ1) . . . f(φm ∗ φm+1) . . . f(φl)θ(xl)g(φl+1) . . . g(φp))

= ω(f(φ1) . . . f(φm) ∗ f(φm+1) . . . f(φl)θ(xl)g(φl+1) . . . g(φp)) = Ck,n

Dk,n−1 and Ck,n have different signs, so its addition in (∂θ∗ + θ∗∂)ω is zero. As
we start with the sum θ∗∂ω(φ1φ2 . . . φp) with p2 + 3p + 2 summands, we add the
pair elements Cn,n = Cn−1,n as zero, we keep in mind that there are 2p elements.
Thus, we get p2 + p + 2 summands in this addition. When we compare this with
Dl,m, we add zero and we consider p2 + p summands. As a result, we only have 2

elements in (∂θ∗+ θ∗∂)ω, and those are g∗ω, −f ∗ω, so we get the final result.

Proposition 3.4.21.

1. Lie groupoid morphisms induce homomorphisms on cohomology groups of the
groupoid.

2. 2-isomorphic Lie groupoid morphisms induce identical homomorphisms on
cohomology groups of the Lie groupoid.
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3. A Morita morphism with a section induces isomorphisms on cohomology
groups of the Lie groupoid.

Proof.

1. For a morphism f of Lie groupoids we induce a morphism in the nerve of
the groupoid and then we consider f ∗ the induced map in Ωq.

2. For proposition 3.4.20, we have that θ∗ is a chain homotopy for ∂.

3. If we have a Morita morphism f : (X1 ⇒ X0) → (Y1 ⇒ Y0) with a section
s : Y0 → X0, we can define θ : X0 → X1 as θ = ψ ◦ s ◦ f where ψ is a
local section for the source map in (X1 ⇒ X0) and for proposition 3.4.20,
θ∗∂+ ∂θ∗ = (s ◦ f)∗− (idX)∗. We have the result because (f ◦ s)∗ = idY and
(s ◦ f)∗ = idX in cohomology.

Proposition 3.4.22. If X1 ⇒ X0 is the banal Lie groupoid associated to a sur-
jective submersion of smooth manifolds X0 → Y , then the cohomology groups
Hk(X,Ωq) vanish for all k > 0 and all q ≥ 0. Moreover, H0(X,Ωq) = Γ(Y,Ωq).

Proof. We verify the following cases:

1. We consider {Ui}i∈I an open covering of Y and the surjective submersion is
given by

∐
i∈I Ui → Y . If its associated Lie groupoid is

∐
Ui∩Uj ⇒

∐
i∈I Ui,

this is a result for the usual cohomology on smooth manifolds given in [10,
8.5 & 8.8].

2. Suppose we have a Morita morphism φ : (X1 ⇒ X0) → (Y ⇒ Y ) with
a section, where (Y ⇒ Y ) is the pair groupoid. If we use the proposition
3.4.21, we get the result.

3. In general, if we have the Lie groupoid X1 ⇒ X0 and {Ui}i∈I an open
cover of Y such that X → Y admits local sections with the Lie groupoid
V1 =

∐
Ui ∩ Uj ⇒ V0 = tUi, we define the bisimplicial smooth manifold

Wm,n = Xm ×Y Vn. If we apply Ωq to this bisimplicial smooth manifold, we
get a double complex with rows

Ωq(Vn)→ Ωq(X0 ×Y Vn)→ Ωq(X1 ×Y Vn)→ Ωq(X2 ×Y Vn)→ . . .
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such that the morphisms are the differentials induced by the simplicial
smooth manifold X•, denoted by ∂X , and the morphism given by the surjec-
tive submersion X0×Y Vn → Vn. We observe that the groupoid (X1×Y Vn ⇒

X0×Y Vn) is in fact the banal groupoid associated to X0×Y Vn → Vn, because

(X0 ×Y Vn)×Vn (X0 ×Y Vn) ∼= X0 ×Y X0 ×Y Vn = X1 ×Y Vn

Moreover, we can define the Morita morphism

φ : (X1 ×Y Vn ⇒ X0 ×Y Vn)→ (Vn ⇒ Vn)

given by the projection on Vn, and a section s = (s′, idVn) : Vn → X0 ×Y Vn
where s′ is the global section of X0 → Vn coming from all the local section
of X → Y . On the other hand, we have that the columns are

Ωq(Xm)→ Ωq(Xm ×Y V0)→ Ωq(Xm ×Y V1)→ Ωq(Xm ×Y V2)→ . . .

with morphisms ∂V induced by the one in V• and the one induced by the
surjective submersion Xm ×Y V0 → Xm. We observe that the groupoid
(Xm×Y V1 ⇒ Xm×Y V0) is the banal Lie groupoid of Xm×Y V0 → Xm since

(Xm ×Y V0)×Xm (Xm ×Y V0) ∼= Xm ×Y V0 ×Y V0 = Xm ×Y V1.

In this way, we have a homomorphism between complexes

(Ωq(V•), ∂V )→

( ⊕
m+n=•

Ωq(Wmn), ∂X + (−1)m∂V

)

Since we have that the Morita morphism φ has a section, and the previous
case in this proof says that we have an isomorphism in cohomology then each
column in Ωq(Wmn) given by

Ωq(Xm)→ Ωq(Xm ×Y V0)→ Ωq(Xm ×Y V1)→ Ωq(Xm ×Y V2)→ . . .

is exact.
Also, there is a homomorphism

(Ωq(X•), ∂X)→

( ⊕
m+n=•

Ωq(Wmn), ∂X + (−1)m∂V

)
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and as each row is exact, because we are in case 1 of this proof. Thus we get
an isomorphism in cohomology.

Therefore, we get the commutative diagram

H∗(W,Ωq) H∗(V,Ωq)

H∗(X,Ωq) H∗(Y ⇒ Y,Ωq)

case 2
∼=

∼=case 1 case 1∼=

and so, we get the result.

Corollary 3.4.23. Any Morita morphism of Lie groupoids

f = (f1, f0) : (X1 ⇒ X0)→ (Y1 ⇒ Y0)

induces an isomorphism on cohomology groups f ∗ : Hk(Y•,Ω
q)→ Hk(X•,Ω

q).

Proof. LetM = [Y0/Y1] be the differentiable stack given by (Y1 ⇒ Y0). We have
that X0

f0−→ Y0
p−→M is an atlas forM since f0 is a surjective submersion.

We consider the bisimplicial smooth manifold given by Zmn = Xm ×M Yn and we
see that the rows of this bisimplicial smooth manifold are given by the nerve of
the Lie groupoid

(X1 ×M Yn ⇒ X0 ×M Yn)

which is the banal Lie groupoid of the surjective submersion X0×MYn → Yn since
X0 ×M Yn ×Yn X0 ×M Yn ∼= X1 ×M Yn and the columns are given by the nerve of
the Lie groupoid

(Xm ×M Y1 ⇒ Xm ×M Y0)

which is the banal Lie groupoid of the surjective submersion Xm ×M Y0 → Xm

because Xm×M Y0×XmXm×M Y0
∼= Xm×M Y1. Therefore for proposition 3.4.22,

we get two quasi-isomorphism in the following way

(Ωq(X•), ∂X)→

( ⊕
m+n=•

Ωq(Zmn), ∂X + (−1)m∂Y

)

(Ωq(Y•), ∂Y )→

( ⊕
m+n=•

Ωq(Zmn), ∂X + (−1)m∂Y

)
and so we get the result.

From theorem 3.1 and as a consequence of the previous corollary, we know that
this cohomology is well-defined for differentiable stacks and we define:
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Definition 3.4.24. LetM be a differentiable stack, then the cohomology of the
associated Lie groupoid forM is

Hk(X•,Ω
q)

where X →M is an atlas.

3.4.3 De Rham cohomology

3.4.3.1 The de Rham complex

Let M be a differentiable stack with atlas X → M. We have that the exterior
derivative ddR : Ωq → Ωq+1 connects the complexes Ω∗ in the previous construction.
Thus, we get a commutative diagram

...
...

...

Ω2(X0) Ω2(X1) Ω2(X2) . . .

Ω1(X0) Ω1(X1) Ω1(X2) . . .

Ω0(X0) Ω0(X1) Ω0(X2) . . .

∂

ddR

∂

ddR ddR

∂

ddR

∂

ddR ddR

∂

ddR

∂

ddR ddR

since ∂ ◦ ddR = ddR ◦ ∂, because ddR commutes with pullbacks.
If we consider D = ∂+(−1)pddR and Ωn

DR(X•) =
⊕
p+q=n

Ωq(Xp), we set the complex

(Ωn
dR(X•), D)

because D2 = 0.

Definition 3.4.25. The cohomology given by the complex (Ωn
dR(X•), D) is called

the de Rham cohomology of X•, and it is denoted by Hn
dR(X•).

Proposition 3.4.26. Hn
DR(X•) is invariant under Morita equivalence.
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Proof. Let f = (f1, f0) : (X1 ⇒ X0) → (Y1 ⇒ Y0) be a Morita morphism and
M = [Y0/Y1] be the differentiable stack given by the Lie groupoid Y . We consider
the atlas X0

f0−→ Y0
p−→ M for M and the bisimplicial smooth manifold Zmn =

Xm ×M Yn, then for corollary 3.4.23 we know that the rows and columns can be
considered as the nerve of the of banal groupoids induced by X0×M Yn → Yn and
Xm ×M Y0 → Xm, respectively. Therefore, we have the quasi-isomorphisms

(Ω•DR(X), D)→
(
Totq+m+n=•Ω

q(Zmn), ∂X + (−1)m∂Y + (−1)m+nddR
)

(Ω•DR(Y ), D)→
(
Totq+m+n=•Ω

q(Zmn), ∂X + (−1)m∂Y + (−1)m+nddR
)

and this is what we want.

Thus, this cohomology is well-defined for differentiable stacks. We define now the
de Rham cohomology of a differentiable stack:

Definition 3.4.27. Let M be a differentiable stack with atlas X → M, its de
Rham cohomology is given as:

Hn
DR(M) := Hn

DR(X•).

We have that the de Rham cohomology of X• is related by theorem 2.6 with the
one of its fat geometric realisation.

Definition 3.4.28. The homotopy type of the differential stack X →M is given
by the homotopy type of the fat geometric realisation ‖ X• ‖.

Remark 3.4.29. We observe that the same construction can be done for a complex
L• of cartesian sheaves of abelian groups on the differentiable stackM with atlas
X →M. The cohomology that we get, will be denoted by

H∗(M,L•) = H∗(X•,L•).

Compare with [16, 3.4.27], where for this cohomology is shown that the homotopy
type is the fat geometric realisation ‖ X• ‖.
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3.4.4 Singular homology and cohomology

In the same way as working with the cohomology of a Lie groupoid and its de
Rham complex, we can consider the simplicial set given by a differentiable stack
M and its atlas X →M

· · · X2 X1 X0

If we apply C•, the singular chain complex, we get

· · · C•(X2) C•(X1) C•(X0)

We define ∂ =

p∑
i=0

(−1)i∂i where ∂ : C•(Xp)→ C•(Xp−1). Thus

. . . C0(X2) C0(X1) C0(X0)

. . . C1(X2) C1(X1) C1(X0)

. . . C2(X2) C2(X1) C2(X0)

...
...

...

∂ ∂

∂

d

∂

d d

∂

d

∂

d d

We define the associated total complex as C•(X) =
⊕
p+q=n

Cq(Xp) with differential

δ : Cn → Cn−1 given by

δ(γ) = (−1)p+q∂(γ) + (−1)qd(γ)

if γ ∈ Cq(Xp) and δ2 = 0.

Definition 3.4.30. The complex (C•(X), δ) is called a singular chain complex of
the topological groupoid X• = (X1 ⇒ X0). Its homology groups Hn(X,Z) are
called the singular homology groups of X•.

Remark 3.4.31. For a definition of a topological groupoid, see the definition 2.4.7.

This cohomology is invariant under Morita equivalence and hence, we can define
it for a differentiable stack.
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Theorem 3.2. The homology is invariant under Morita equivalence.

Remark 3.4.32. If we follow the same argument as in proposition 3.4.26, we get
the result.

For a topological groupoid X• = (X1 ⇒ X0), we denote the dual of the complex
C•(X) by C•(X) where

Cn(X) = Hom(Cn(X),Z).

In the same way as above, we can define the singular cohomology groups of the
stackM with atlas X →M.

Hn(M,Z) = Hn(X,Z)

Definition 3.4.33. If A is an arbitrary abelian group, the singular homology for
A is defined by

Hk(M, A) = hk(C•(X)⊗Z A)

and in a similar way, the singular cohomology

Hk(M, A) = hk(C•(X)⊗Z A).

3.4.4.1 De Rham theorem for differentiable stacks

Theorem 3.3. [4, p.28] LetM be a differentiable stack.

H∗DR(M) = H∗(M,R).

Proof. Consider the Lie groupoidX• = (X1 ⇒ X0) associated to the atlasX →M
and consider its singular cohomology. We define a pairing given by

Ω•DR(X•)
⊗

C•(X•)→ R

ω ⊗ γ 7→
∫
γ

ω

We note that
∫
γ
ω = 0 unless p = p′ and q = q′. We get an homomorphism of

complexes since the pairing vanishes on coboundaries of total degree zero by the
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chain rule and Stokes’ theorem. This pairing induces one paring given by

Hk
DR(M)

⊗
Hk(M,R)→ R

for any differentiable stackM. This pairing can be used to define when a de Rham
cohomology class [ω] is integral, namely by requiring∫

γ

ω ∈ Z

for all [γ] ∈ Hk(M). The first pairing also give rise to a homomorphism of com-
plexes

Ω•DR(X•)
Ψ•−→ C•(X•)⊗ R

Since for each p, q
Ωp(Xq)

Ψp,q−−→ Cp(Xq)

we have an isomorphism on smooth manifolds

Hp
DR(Xq)→ Hp(Xq,R)

then for spectral sequence, theorem 2.11, we have that Ψ induces an isomorphism
on cohomology, as we want.

3.4.5 Hypercohomology and de Rham cohomology

Let L• be a complex of sheaves of abelian groups onM. We consider the injective
resolution 0→ L• → I•,q and

K =
⊕
p,q

Kp,q =
⊕
p,q

Γ(M, Ip,q)

with differential from the resolution

δ : Kp,q → Kp+1,q

and the differential from the complex

d : Kp,q → Kp,q+1
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d is defined considering that d : Lq → Lq+1 induces a morphism in I•,q → I•,q+1

because I•,q is injective, [11, II.3.4] and the differentials commutes.

Definition 3.4.34. The hypercohomology H∗(M,L•) of the complex L• is the
total cohomology of the double complex, that is

K• =
⊕
k

Kk =
⊕
k

⊕
p+q=k

Kp,q

with differential D = δ + (−1)pd.

Theorem 3.4. Let M be a differentiable stack and L• a complex of Cartesian
sheaves of abelian groups on M such that Lq is acyclic, then there is an iso-
morphism between H∗(M,L•) ∼= H∗(M,L•), where H∗(M,L•) is the cohomology
associated to the complex of sheaves L• applied to the nerve X•, see remark 3.4.29.

Proof. Consider the triple complex

Np,q,r = Ir,q(Xp)

with the three differentials: dX the simplicial differential, dI the resolution dif-
ferential and dL the differential of the complex of sheaves. Consider the double
complex

N
p,l

=
⊕
q+r=l

Np,q,r

with differential δ′ = dX and d′ = dL + (−1)qdI . Then considering the l-th row of
N
•,• is

0→
⊕
q+r=l

Ir,q(X0)→ · · · →
⊕
q+r=l

Ir,q(Xp)→
⊕
q+r=l

Ir,q(Xp+1)→ · · ·

with differential δ′ = dX . As Ir,q is injective then it is flabby by [11, II.5.3].
Therefore, the functions are surjective. Hence each row of the complex is exact
except in the zero-th column and we get a spectral sequence with

Ep,l
1 =

{
M l if p = 0

0 if p > 0
(3.1)

where M l =
⊕
q+r=l

Γ(M, Ir,q), since Ir,q is Cartesian. So E2
∼= H∗(M,L•) and the

spectral sequence degenerates, that is, E∞ ∼= E2.
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Proposition 3.4.35. The hypercohomology ofM with respect to the sheaf complex
L• is Morita invariant.

Proof. Considering the complex Np,q,r = Ir,q(Xp) and filter Np,q,r by
⊕
q+r≥n

Np,q,r.

Then we get the spectral sequence Er,q
0 = N r,q = Γ(M, Ir,q) and filtering this by⊕

q≥n

N r,q we get Er,q
1 = Hr(M,Lq) the sheaf cohomology of Lq, which is Morita

invariant by corollary 3.4.23. Therefore, the hypercohomology is Morita invariant.

As the de Rham sheaf is Cartesian, we have:

Proposition 3.4.36. Consider the de Rham complex of sheaves Ω•. Then de
Rham cohomology is the same as the hypercohomology of the complex Ω•.

Proof. We consider an injective resolution 0→ Ω• → I•,q and as below, the triple
complex Np,q,r = Ir,q(Xp). We are going to work with the associated double
complex given by Nk,r =

⊕
p+q=k

Np,q,r. Hence we have that the k-th column of the

complex Nk,r is given by:

0→
⊕
q+r=k

I0,q(Xp)→ · · · →
⊕
q+r=k

Ir,q(Xp)→
⊕
q+r=k

Ir+1,q(Xp)→ · · ·

Since Ω• is acyclic, this column is exact except in the zero-th row and we get a
spectral sequence with

Ek,q
1 =

{
Kk if q = 0

0 if q > 0
(3.2)

where Kk =
⊕
q+r=k

Ωq(Xp) and the differential is δ = dX + (−1)pdΩ. Thus E2
∼=

H∗DR(M) and it degenerates at E2.

Therefore we have that H∗DR(M) = H∗(M,Ω•).

Example 3.4.37.

1. Consider the atlas pt→ BG by example 3.2.8, and the nerve associated

· · · pt×BG pt×BG pt pt×BG pt pt
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We have that pt×BG pt ∼= G and pt×BGG ∼= G×G hence, the nerve can be
written as

· · · G×G×G G pt

Therefore, the nerve associated to BG is the same as the nerve usually as-
sociated to the classifying space BG. If we apply the cohomology we get
H∗(BG,R) ∼= H∗(BG,R)

2. Considering the example 3.2.19, we have an atlas G → EG so the nerve
associated to EG is

· · · G×EG G×EG G G×EG G G

and using the example 3.2.8, we get that the nerve can be seen as

· · · G×G×G G×G G

This is the usual nerve for the simplicial construction of the universal space
EG. Therefore if we find the cohomology we got that H∗(EG) ∼= H∗(EG) ∼=
H∗(pt), that is, EG is contractible.

3.4.6 Čech cohomology for differentiable stacks

LetM be a differentiable stack with an atlas X →M and its nerve X•. If F is a
sheaf onM, we get the collection of induced sheaves {Fn} on Xn for proposition
3.4.11.

If there exists a covering V for the simplicial smooth manifold X•, we can consider

Cn,k(V ,F)(Xn) := {s|⋂k
i=0 Vn,αi

: s ∈ Fn(Xn) for any
k⋂
i=0

Vn,αi in Vn}

that is, the sections in Fn(Xn) restricted to k + 1 intersections of elements in Vn.
With morphisms given by

δ̌ : Cn−1,k(V ,F)(Xn)→ Cn−1,k+1(V ,F)(Xn)

the Čech differential is δ̌(s)|⋂k+1
i=0 Vn−1,αi

=
∑k+1

j=0(−1)js|⋂k
i=0,i 6=j Vn−1,αi

, as given in
[10, II.10] and

δ : Cn−1,k(V ,F)(Xn)→ Cn,k(V ,F)(Xn)
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such that δ(s)|⋂k
i=0 Vn,αi

=
∑n

l=0(−1)l+n(∂∗l (s|⋂ki=0 Vn−1,dl(αi
))).

Proposition 3.4.38. The following holds:

1. δ2 = 0.

2. δ ◦ δ̌ = δ̌ ◦ δ.

Proof.

1. If s ∈ F(U) then:

δ2(s)|⋂k
i=0 Vn+1,βi

= δ(δ(s|⋂k
i=0 Vn−1,αi

))

= δ

(
n∑
l=0

(−1)l+n(∂∗l (s)|⋂i Vn,dl(αi))
)

=
n∑
l=0

(−1)l+nδ(∂∗l (s)|⋂i Vn,dl(αi))

=
n∑
l=0

(−1)l+n
n+1∑
j=0

(−1)j+n+1∂∗j (∂
∗
l (s))|⋂i Vn+1,djdl(αi)

=
∑
j≤l

(−1)l+j+1∂∗j (∂
∗
l (s))|⋂i Vn+1,djdl(αi)

+
∑
j>l

(−1)l+j+1∂∗j (∂
∗
l (s))|⋂i Vn+1,djdl(αi)

=
∑
j≤l

(−1)l+j+1∂∗j (∂
∗
l (s))|⋂i Vn+1,djdl(αi)

+
∑
j>l

(−1)l+j+1∂∗l−1(∂∗j (s))|⋂i Vn+1,dl−1dj(αi)

=
∑
h≤f

(−1)f+h+1∂∗h(∂
∗
f (s))|⋂i Vn+1,dhdl(αi)

+
∑
h≤f

(−1)f+h∂∗h(∂
∗
f (s))|⋂i Vn+1,dhdf (αi)

= 0.

2. If s ∈ F(U) then also:

δ ◦ δ̌(s)|⋂k+1
i=0 Vn,βi

= δ

(
k∑
j=0

(−1)js|⋂k
i=0,i6=j Vn−1,αi

)

=
k∑
j=0

(−1)j
n∑
l=0

(−1)l+n(∂∗l s)|⋂k
i=0,i 6=j Vn−1,dl(αi

)

=
n∑
l=0

(−1)l+n
k∑
j=0

(−1)j(∂∗l s)|⋂k
i=0,i 6=j Vn−1,dl(αi

)

=
n∑
l=0

(−1)l+nδ̌(∂∗l s)|⋂k
i=0 Vn−1,dl(αi

) = δ̌ ◦ δ(s)|⋂k+1
i=0 Vn,βi
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Definition 3.4.39. The Čech cohomology of the cover V with values in the sheaf
F as the cohomology of the double complex given by

(Cn,k(V ,F)(Xn), δ, δ̌)

and it is denoted by
H∗V(X•,F).

Definition 3.4.40. LetM be a differentiable stack with an atlas X →M. For
a sheaf F onM, define the sheaf

Cn,k(V ,F)(U) := {s|⋂k
i=0 Vn,αi

: s ∈ Fn(U) for any
k⋂
i=0

Vn,αi in Vn}

for any open set U of Xn, where Fn is the sheaf induced on Xn by F . We call
Cn,k(V ,F) a Čech resolution associated to V of X• with values in F•.

Remark 3.4.41. We have the complex of sheaves

0→ Fn → Cn,0(V ,F)→ Cn,1(V ,F)→ · · ·

Definition 3.4.42. A covering V is acyclic if

H l(
⋂

j=0,...,k

Vn,j,Fn) = 0

for l > 0 and for all n.

Proposition 3.4.43. The covering V of X• is acyclic if and only if Cn,0(V ,F) is
an acyclic resolution of F•.

Proof. Since we have that H∗(
⋂
j=0,...,k Vn,j,Fn) = 0 if and only if

H∗(Xn, C
n,k(V ,F)) = H∗

(⊔ ⋂
j=0,...,k

Vn,j,Fn

)
= 0.

We have that every resolution of F• maps to an injective resolution of F•. There-
fore, we have an induced map H∗V(X•,F)→ H i(X•,F•), for further details check
[11, II.3.4].
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Proposition 3.4.44. [20, A.2] LetM be a differentiable stack with atlas X →M
and nerve X•. If V is an acyclic covering of the nerve X•, then

H∗V(X•,F) ∼= H∗(X•,F•) ∼= H∗Sh(M,F).

Proof. As V is acyclic then the associated Čech resolution is acyclic and the map
H∗V(X•,F)→ H i(X•,F•) is an isomorphism.

Definition 3.4.45. Let V and U be coverings of the simplicial smooth manifold
X•. We say that V is finer than U if for all Vn,α ∈ VN , there is a Un,β ∈ Un such
that Vn,α ⊂ Un,β for all n and the maps ϕ : α→ β are compatible with face maps.
When V is finer than U it will be denoted by V ≺ U .

The collection of maps ϕ induces a map

ϕ∗ : Cn,k(U ,F)→ Cn,k(V ,F)

This map commutes with δ̌ as it is shown in [10, 10.4.1], and with δ, since ϕ is
compatible with face maps. Moreover, we get a well-defined map in

H∗U(X•,F)→ H∗V(X•,F)

and thus, a direct system given by {H∗V(X•,F)}V .

Definition 3.4.46. LetM be a differentiable stack with atlas X →M and nerve
X•. If F is a sheaf onM then the limit

Ȟ∗(X•,F) := lim
→
H∗V(X•,F)

is the Čech cohomology of X• with values in F .

As we have H∗V(X•,F)→ H i(X•,F•) for any covering V we have a map

Ȟ∗(X•,F)→ H∗(X•,F•) ∼= H∗(M,F)

and this map is an isomorphism if there exists an acyclic covering.



Chapter 4

Equivariant cohomology for

differentiable stacks

In this chapter we study the notion of an action by a Lie group G on a stack and
the 2-category of stacks with an action by G, denoted as G − St, the 2-category
of G-stacks. We discuss the concept of a quotient stack M/G and we provide
the idea of a G-atlas for a stack in G − St, such that this G-atlas allows us to
consider M/G as a differentiable stack. Then we devote our efforts to get the
homotopy type of M/G and to understand how this homotopy type is related
to a bisimplicial smooth manifold given by G• × X•, where Gp is the Cartesian
p-product and Xn is the n-th element of the nerve associated to the Lie groupoid
given by the G-atlas X → M. Consequently, we get a notion of equivariant
cohomology that generalises the one in smooth manifolds. We provide a Cartan
model of equivariant cohomology based on Meinreken’s work [46] and we compare
this notion with the one found through the G-atlas. Finally, we get some spectral
sequences that converge to the equivariant cohomology and which generalise some
results by Felder et al. in [20] and by Stasheff in [55].

The first section is devoted to the notion of a group action on a stack, the category
of G-stacks, as in [53] and [24]. In addition, we discuss how a G-stack can be
considered a differentiable stack. In the next section, we provide the notion of a
quotient stackM/G, some properties of this concept and we check that this stack
is a differentiable stack. In the third section we give the notion of equivariant
cohomology working with the homotopy type of M/G and we provide a Cartan
model that coincides in cohomology with the notion of equivariant cohomology

83
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previously defined. In the fourth section we construct some spectral sequences
that are conceived from the study of the homotopy type of the quotient stack.

4.1 Group actions on a stack

Let G be a Lie group andM a differentiable stack with atlas X →M.

Definition 4.1.1. A morphism of stacks µ : G×M→M is called an action on
M if for each T ∈ Diff the following diagrams

G×G×M(T ) G×M(T )

G×M(T ) M(T )

m×idM(T )

idG×µT µT

µT

α

and

G×M(T ) M(T )

M(T )

µT

e×idM(T )
idM(T )

a

are 2-commutative, that is, for every T ∈ Diff the following holds:

1. (g · αxh,k)αxg,hk = αk·xg,hα
x
gh,k, for all g, h, k ∈ G and x ∈M(T ).

2. (g · ax)αxg,e = 1g·x = ag·xαxe,g for every g ∈ G, x ∈ M(T ) and with e the
identity in G.

where the dot is denoting the action µ. Meanwhile, αxg,h : g · (h · x)→ (gh) · x and
ax : x→ e · x inM(T ).

Definition 4.1.2. The pair (M, µ, α, a) is a G-stack if µ is an action of G onM.

Definition 4.1.3. A morphism of G-stacks between (M, µ, α, a) and (N , ν, β, b)

is a morphism of stacks F : M → N together with a 2-morphism σ with the
following 2-commutative diagram
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G×M M

G×N N

µ

idG×f fσ

ν

such that, for every T ∈ Diff

1. σh·xg (g · σxh)β
F (x)
g,h = F (αxg,h)σ

x
gh, for every g, h ∈ G and x ∈M(T ).

2. F (ax)σxe = bF (x), for every object x ∈ M(T ) and e the identity element of
G.

where σxg : F (g · x)→ g · F (x) in N (T ).

Definition 4.1.4. A 2-morphism of G-stacks between 1-morphism of G-stacks,
(F, σ) and (F ′, σ′), is a 2-morphism of stacks φ : F ⇒ F ′ such that

∗ (σxg )(g · φx) = (φg·x)(σ
′x
g ) for every g ∈ G and x ∈M(T ).

Here φx : F (x)→ F ′(x) is the 2-morphism φ applied to x ∈M(T ).

Remark 4.1.5. In this way, we define a 2-category of G-stacks denoted by G-St.

Example 4.1.6. The definition of an action ofG on a smooth manifoldM coincide
with the one above, where the diagrams are strictly commutative. In the same
way, the notion of G equivariant smooth maps in Diff coincides with the one of
morphism of G-stacks.

4.2 Quotient stacks

Let G be a Lie group acting on a differentiable stackM.

Definition 4.2.1. Consider the pseudo-functor

M/G : Diffop → Grpds

such that for each T ∈ Diff , an element in M/G(T ) is a triple t = (p, f, σ)

such that p : E → T forms a principal G-bundle and an equivariant morphism
(f, σ) : E → M. The arrows in M/G(T ) are pairs (u, α) with a G-morphism
u : E → E ′ and a 2-commutative diagram of G-stacks given by
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E E ′

M

u

(f,σ) (f ′,σ′)

α

If there is a smooth map T
h−→ S, then there exists a morphism M/G(S) →

M/G(T ) given by the pullback as in the following commutative diagram

T ×S E E M

T S

h∗

(f,σ)

p

h

whereM/G(h) = h∗.

Proposition 4.2.2. Let G be a Lie group with an action on M. The pseudo-
funtorM/G is a stack.

Proof. Since it is possible to glue principal G-bundles, the gluing conditions in the
definition of a stack hold. Therefore the quotientM/G is a stack.

Example 4.2.3. Let M be a smooth manifold and an action by G on M . We
have that the usual quotient stack [M/G], given in definition 3.1.11, is the same
as the quotient M/G = Hom(_,M)/G defined as in the definition above.

Another way to consider this stack, is defining a prestack P such that for T ∈ Diff

we have P(T ) =M(T ) and morphisms between x and y inM(T ) are pairs (g, ϕ)

with g ∈ G and ϕ : g.x → y a morphism inM(T ). If we use stackification as in
the proposition 3.1.8, we get the stack (M/G)∗ = P̃ associated to P .

Proposition 4.2.4. The stacksM/G and (M/G)∗ are isomorphic.

Proof. Consider the morphism Φ : P →M/G such that for each T x−→M we get
as Φ(x) the following principal G-bundle

G× T M

T

p2

µ◦(id×x)
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where µ is the action onM.

We recall that a morphism (g, ϕ) : x → y in P , is a morphism ϕ : g · x → y. We
define Φ(g, ϕ) as the 2-morphism in the following commutative diagram

G× T G× T

M

idG×T

µ◦(id×g·x) µ◦(id×y)

idG×ϕ

where ϕ is the morphism described by the commutative diagram

T T

M

idT

g·x y

ϕ

Φ is a fully faithful morphism, for this we consider T ∈ Diff and

HomP(T )(x, y)
Φx,y−−→ HomM/G(T )(Φ(x),Φ(y))

then a morphism in HomM/G(T )(Φ(x),Φ(y)) is given by h× idT : G×T → G×T ,
where g1 · gx ∼= h(g1) · y, that means h−1(g1) · (g1 · gx) ∼= y, but as y ∼= g · x we
have that h−1(g1) · g1

∼= e, the identity element of G. Therefore h = idG, Φx,y

is a bijection and Φ is fully faithful. We observe that this morphism is locally
essentially surjective since its image are the trivial bundles. For stackification in
the proposition 3.1.8, this morphism extends to an isomorphism of stacks Φ′ :

(M/G)∗ →M/G as we want.

Remark 4.2.5. We observe that M(T ) can be considered as a subcategory of
M/G(T ) where to each element x ∈ M(T ), by the 2-Yoneda Lemma we can
take its morphism T

x−→ M and assign the element in M/G(T ) given by the
diagram

G× T M

T

p2

µ◦(id×x)

that is the trivial principal bundle over T .
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Example 4.2.6. For any stackN , we can associate aG-stack given by (N, pr2, id, id),
where pr2 : G × N → N is the projection to the second component. This is a
G-stack, since we have the following 2-commutative diagrams

G×G×N (T ) G×N (T )

G×N (T ) N (T )

m×idN (T )

idG×pr2 pr2

pr2

id

and

G×N (T ) N (T )

N (T )

pr2

1×idN (T )
idN (T )

id

with:

1. (αxh,k)α
x
g,hk = αxg,hα

x
gh,k, for all g, h, k ∈ G and x ∈M(T ).

2. (ax)αxg,e = 1x = axαxe,g for every g ∈ G, x ∈ M(T ) and with e the identity
in G,

because α and a are identities. Then (N, pr2, id, id) is a G-stack.

We can consider the 2-functor ι : St→ G− St such that

1. for N ∈ St, we have ι(N ) = (N , pr2, id, id).

2. for a 1-morphism of stacksM F−→ N , we have ι(M)
ι(F )−−→ ι(N ) where ι(F ) =

(F, id).

3. For a 2-morphism of stacks F φ−→ F ′, we have (F, id)
φ−→ (F ′, id).

This is a 2-functor since all the identities provided by ι preserve all identities and
all compositions.

Proposition 4.2.7. The stackM/G 2-represents the 2-functor St→ Cat defined
by

F (N ) = HomG−St(M, ι(N ))



Equivariant cohomology for differentiable stacks 89

Proof. Let f ∈ HomG−St(M, ι(N )) be a morphism of G-stacks. If we consider
the prestack PN associated to N , we can see that any element in PN (T ) is given
by

G× T M

T

p2

pr2◦(id×x)

as the action is pr2 we have that any element in PN (T ) is in bijective corre-
spondence with the elements in N (T ). Therefore if we use stackification we get
that N /G ∼= N . Hence we get an element in Hom(M/G,N ) and we have that
HomG−St(M, ι(N )) ∼= Hom(M/G,N ) by proposition 3.1.8.

Proposition 4.2.8. The projectionM q−→M/G has local sections.

Proof. Firstly we need to check how q is defined. Let V be a smooth manifold
then

M(V )
q−→M/G(V )

V
f−→M 7→ (G× V pr2−−→ V,G× V µ◦(idG×f)−−−−−−→M)

We need to check that in the following diagram

V ×M/GM M

V M/G

q

p

there exist local sections on V ×M/GM→ V that makes the diagram commutes.
Now we consider a covering {Ui

i−→ V } such that Ui are local trivialisation of
E → V . Then we have the diagram

G× Ui E M

Ui T

n

p

h

i

If we consider the section si : Ui → G × Ui then the section for q is given by
s = h ◦ n ◦ si ∈M(Ui).
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Definition 4.2.9. A stackM is called a differentiable G-stack if there is a smooth
manifold X with an action by G and a 1-morphism of G-stacks p : X →M such
that:

1. p is representable.

2. p is a submersion.

The map X →M is then called an G-atlas ofM.

Remark 4.2.10. We denote the 2-category of differentiable G-stacks by G−DiffSt.

Proposition 4.2.11. Let M be a differentiable G-stack with G-atlas given by
X

p−→ M. If σ is the smooth action by G on X, this action induces a simplicial
smooth action in the associated nerve of the Lie groupoid (X ×M X ⇒ X).

Proof. If we consider the fibered n-product Xn = X ×M . . .×M X, we define

σn,T : G×Xn(T )→ Xn(T )

such that
σn,T (g, (x1, x2, . . . , xn; p(x1)⇒ . . .⇒ p(xn)))

= (g · x1, g · x2, . . . , g · xn; p(g · x1)⇒ . . .⇒ p(g · xn))

this morphism is well-defined since there exists g · p(x1) ⇒ . . . ⇒ g · p(xn) and,
g · p(z) ∼= p(g · z) for any z ∈ X(T ) because p is a 1-morphism of G-stacks. We
observe that we have the following diagrams:

G×G×Xn(T ) G×Xn(T )

G×Xn(T ) Xn(T )

m×idXn(T )

idG×σn,T σn,T

σn,T

α

and

G×Xn(T ) Xn(T )

Xn(T )

σn,T

e×idXn(T )
idXn(T )

a
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where α and a are identities. By construction the collection of these morphisms
is a simplicial map and it is a smooth simplicial map since makes the following
diagram

G×Xn(T ) Xn(T )

G×X(T ) X(T )

σn,T

σ

commutes, where the vertical maps are given by the different compositions of face
maps of X•.

Proposition 4.2.12. Let X → M be a G-atlas. Then there is an atlas for the
quotient stack given by X →M→M/G.

Proof. We get that p and q have local sections, so it remains to check that q ◦ p is
representable. Hence if we consider the coverings {Ui → T} and {Uij → Ui} such
that the first one is the local sections for q and the second one for p. Hence we
get the following commutative diagram

Uij ×M X X

Ui ×M/GM M

Uij Ui T M/G

p

q

Thus we glue every Uij ×M X with this local section, we get a smooth manifold
and as the diagram commutes we have that T ×M/GX is a smooth manifold.

4.3 Equivariant cohomology

4.3.1 Homotopy type of the differentiable stack M/G

Let G be a Lie group andM a differentiable G-stack with a G-atlas X p−→M . We
denote the action onM by G with µ : G×M→M and the action onX by G with
σ : G ×X → X. Then by proposition 4.2.12, we get an atlas X p−→ M q−→ M/G

and we recall that the homotopy type for the quotient stack is given by the fat
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geometric realisation of the nerve of the Lie groupoid (X ×M/G X ⇒ X) as we
discussed in 3.4.28. In this section we will now devote our effors to get the homo-
topy type forM/G.

In order to find the homotopy type ofM/G we use the following result by Ginot-
Noohi, in [24, 4] and as a consequence of proposition 3.2.5.

Proposition 4.3.1. The following diagram is a 2-commutative diagram

G×M M

M M/G

µ

pr2 q

q

Therefore, we can consider the 2-commutative diagram

E G×X X

G×X G×M M

X M M/G

µ1

σ

idG×p p

idG×p

Pr2

µ

Pr2 q

p q

and we can conclude that:

Proposition 4.3.2. An equivalence of stacks is given by

X ×M/G X ∼= (G×X)×M X ∼= G× (X ×M X)

Proof. We have the first equivalence thanks to the diagram above X ×M/G X ∼=
(G × X) ×M X. For the equivalence (G × X) ×M X ∼= G × (X ×M X), we
consider T ∈ Diff and we see that any element in (G×X)×MX(T ) has the form
(g × x, y; g · p(x) ⇒ p(y)), where x, y ∈ X(T ) and g ∈ G. In the same way, an
element in G×(X×MX)(T ) has the form (g, (x, y; p(x)⇒ p(y))). Then we define
the morphism

ηT : (G×X)×M X(T )→ G× (X ×M X)(T )

such that η(g × x, y; g · p(x) ⇒ p(y)) = (g, (x, g−1 · y; p(x) ⇒ p(g−1 · y))), where
g−1 · y = σ(g−1, y) and the morphism

ξT : G× (X ×M X)(T )→ (G×X)×M X(T )
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such that ξ(g, (x, y; p(x)⇒ p(y))) = (g × x, g · y; g · p(x)⇒ p(g · y)) Then we get
that ηT ◦ ξT = idG×(X×MX)(T ) and ξT ◦ ηT = id(G×X)×MX(T ), as we want.

If we iterate the last proposition, we get that the (n+ 1)-product

X ×M/G X ×M/G . . .×M/G X ∼= Gn ×Xn+1

where Gn is the cartesian n-product of G and Xn+1 = X ×M X ×M . . .×M X is
the fibered (n+ 1)-product.

If we consider T ∈ Diff and the face maps in the nerve associated to X q◦p−−→M/G,
we get the face maps for the simplicial smooth manifold (Gn ×Xn+1)n≥0

∂i : Gn+1 ×Xn+2(T )→ Gn ×Xn+1(T )

such that

∂i(g1, g2, . . . , gn+1, (x1, x2, . . . , xn+2; p(x1)⇒ . . .⇒ p(xn+2)))

is equal to

(g2, g3, . . . , gn+1, π1(x1, x2, . . . , xn+2; p(x1)⇒ . . .⇒ p(xn+2))) if i = 0,

(g1, . . . , gi·gi+1, . . . , gn+2, πi(x1, x2, . . . , xn+2; p(x1)⇒ . . .⇒ p(xn+2))) if 0 < i < n,

(g1, g2, . . . , gn, gn+1 · πn+2(x1, x2, . . . , xn+2; p(x1)⇒ . . .⇒ p(xn+2))) if i = 0,

where πj : Xn+2 → Xn+1 is the i-face map of the nerve of the simplicial smooth
manifold X• and gn+1 · πn+2 is the action induce by σ in Xn+1.

Theorem 4.3.3. LetM be a differentiable stack and G a Lie group with a G-atlas
X →M. Then

H∗(M/G,R) ∼= H(EG×G ‖ X• ‖,R).

Proof. If we consider the bisimplicial smooth manifold given by {Gp×Xn}p≥0,n>0,
where Gp is the cartesian p-product of G and Xn = X ×M X ×M . . . ×M X is
the fibered n-product. With face vertical maps given by the faces in the simplicial
manifold X• and face horizontal maps given by

∂H0 (g1, . . . , gp, z) = (g2, . . . , gn, z)
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∂Hi (g1, . . . , gp, z) = (g1, . . . gi−1, gigi+1, gi+2, . . . , gn, z) for 1 ≤ i ≤ p

∂Hp (g1, . . . , gp, z) = (g1, . . . , gn−1, gn · z)

where z ∈ Xn for some n. Then by proposition 2.3.57 we get that ‖ G• ×X• ‖∼=
EG×G ‖ X• ‖ as we want.

Example 4.3.4. If M = X is a smooth manifold, we have that the below defi-
nition of equivariant cohomology for stacks coincide with usual equivariant coho-
mology for smooth manifolds. Since

(G×X)×X X ' G×X

and the maps of the Lie groupoid is given by the action µ : G × X → X and
projection pr2 : G ×X → X, hence this Lie groupoid coincide with the transfor-
mation groupoid and its fat geometric realisation is EG ×G X. Then de Rham
cohomology of X/G is H∗dR(X/G) = H∗(EG ×G X,R), which is the Borel model
as defined in 2.3.61. So when we have a differentiable stack associated to a smooth
manifold the equivariant stack cohomology coincides with the classical equivariant
cohomology of the given smooth manifold.

Since we note that in the classical case the cohomology of a quotient stack coincide
with the one given by the Borel model we give the following notion:

Definition 4.3.5. Let G be a Lie group and M a differentiable G-stack with a
G-atlas X p−→M . The equivariant cohomology ofM, H∗G(M), is given by

H∗G(M) = H∗(M/G,R)

for R any commutative ring with identity.

Remark 4.3.6. Since we are interested in the comparison with de Rham cohomol-
ogy, in our current work we focus in singular cohomology with real coefficients,
see subsection 3.4.4.1.

Remark 4.3.7. By remark 3.4.29, this definition of equivariant cohomology can be
done for any cartesian sheaf or complex of cartesian sheaves.
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4.3.2 Cartan model for differentiable stacks

In this subsection, we apply the Cartan model for simplicial smooth manifold as
described in appendix A.

LetM be a differentiable G-stack with G-atlas X →M for a compact Lie group
G. We denote the action on X by σ and the action on the stackM by µ. Then we
can consider the simplicial smooth action σ• induced by σ in X•, as in proposition
4.2.11.

Then we can consider the complex of simplicial equivariant forms

C2p+m = (
⊕
q+r=m

(Sp(g∨)⊗ Ωq(Xr)
G), D − ι)

as in the subsection A.0.1. Now we can consider its cohomology H∗G(X•). If we
apply the theorem A.0.1 to this complex, then:

Proposition 4.3.8. The cohomology of the complex C• holds that

H∗G(X•) ∼= H∗(EG×G ‖ X• ‖,R)

with ‖ X• ‖ is the fat geometric realisation of the simplicial smooth manifold X•.

If we compare this result with the theorem 4.3.3, we get that this Cartan model
and the cohomology of the quotient stackM/G coincide, that is:

H∗G(X•) ∼= H∗(M/G,R).

Let G be a compact connected Lie group and K a closed subgroup. We denote by
g and k the Lie algebra of G and the Lie algebra of K, respectively. g∨ is the dual
of the Lie algebra g and S(g∨) its symmetric algebra. Then by subsection A.0.3
we get that:

Proposition 4.3.9. Suppose that the restriction map

S(g∨)G → S(k∨)K

is an isomorphism of algebras. Then the restriction map

HG(X•)→ HK(X•)
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in equivariant cohomology is an isomorphism.

By theorem A.0.6, we get that if have a differentiable G-stack M with G-atlas
X →M, then:

Theorem 4.3.10. Let G be a connected compact Lie group, T a maximal torus
and W its Weyl group. Then

H∗G(X•) ∼= H∗T (X•)
W .

4.4 Some results via spectral sequences

We state some results on spectral sequences for the equivariant cohomology of a
differentiable G-stack.

4.4.1 Sheaf cohomology on quotient stacks

Let G be a Lie group,M a G-stack and F a cartesian sheaf on the quotient stack
M/G with atlas X →M→M/G, where X →M is a G-atlas forM. So we can
get an induced sheaf F on M and also a sheaf F• on the associated bisimplicial
smooth manifold (Gp × Xn)n>0. We present two spectral sequences under the
previous assumptions.

Theorem 4.4.1. There exists a spectral sequence such that

Er,n
1 = Hr([Xn/G],F)⇒ Hr+n

G (M,F).

Proof. We take an acyclic equivariant resolution Kq of F. Then we can consider
the induced sheaves Kp,n,q on Gp ×Xn. Then we get the triple complex Γ(Gp ×
Xn, Kp,n,q). We know that the geometric resolution of bisimplical smooth manifold
accomplishes

‖ Gp ×Xp+1 ‖∼=‖ p→‖ n→‖ Gp ×Xn ‖‖‖ .

So the double complex Γ(Gp × Xp+1, Kp,q) calculates the same cohomology. We
know that the resolution is acyclic and computing first with respect to q we get
the complex given by Γ(Gp×Xp+1,F) and that is H∗G(M,F). On the other hand if
we consider the triple complex Γ(Gp×Xn, Kp,q) with differential dK given by the
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resolution and a second differential δ the one provided by the bisimplicial smooth
manifold making the double complex Cr,n =

⊕
r=p+q Γ(Gp ×Xn, Kp,q), we get

Er,n
0 =

⊕
r=p+q

Γ(Gp ×Xn, Kp,q)

and
Er,n

1 = Hr([Xn/G],F).

Therefore we get the result.

Theorem 4.4.2. If G is a discrete group, there exists a spectral sequence such
that

Ep,r
2 = Hp(G,Hr(M,F))⇒ Hp+r

G (M,F).

Proof. We can consider that the sheaf induced by F onM with the same F and also
a sheaf F• on the associated bisimplicial smooth manifold (Gp×Xn)n>0. Consider
an acyclic resolution K• of F and the induced sheaves in the bisimplicial smooth
manifold, then we get the triple complex Γ(Gp×Xn, Kp,n,q). As we know that the
geometric resolution of bisimplical smooth manifold accomplishes

‖ Gp ×Xp+1 ‖∼=‖ p→‖ n→‖ Gp ×Xn ‖‖‖

we have again that the double complex Γ(Gp × Xp+1, Kp,q) calculates the same
cohomology. We know that the resolution is acyclic and computing first with
respect to q we get the complex given by Γ(Gp ×Xp+1,F) and that is H∗G(M,F).
If we consider the triple complex Γ(Gp × Xn, Kp,n,q) where each element can be
seen as a map Gp → Γ(Xn, Kn,q) since G is discrete and for each f(g, x) ∈ Γ(Gp×
Xn, Kp,n,q) we can define a map f(x)(g) = f(g, x) ∈ Γ(Xn, Kn,q). We are going
to consider this triple complex as a double complex with a first differential given
by δ = dq + (−1)ndn and dp, where dq is the differential given by the resolution, dn
given by the simplicial structure of X• and dp by the simplicial structure on G•.
Besides there exists an action φ of G on Hn(M,F) given by

φ : G×Hn(M,F)→ Hn(M,F)

(g, [f ]) 7→ φ(g, [f ]) = [f(g, g · x)]

where f ∈ Γ(Gn ×Xn+1,F). Hence, if we apply the differential δ first, we get

Ep,r
1 = Cp(G,Hr(M,F))
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and as d1 = δG is the differential induced by dp then

Ep,r
2 = Hp(G,Hr(M,F)).

Example 4.4.3. If M = X is a smooth manifold with an action of a discrete
group G, we have that the previous result generalises the spectral sequence

Ep,n
2 = Hp(G,Hn(X,F))⇒ Hp+n([X/G],F)

which is given by Felder et al., in [20, A.4].

4.4.2 Hypercohomology of a quotient stack

Let F0 → F1 → · · · → Fm be a complex of Cartesian sheaves of abelian groups
overM/G with an atlas given by X →M→M/G, where X →M is a G-atlas.
Consider Fr the sheaf associated onM and for the bisimplicial smooth manifold
Gp ×Xn the bisimplicial sheaf Fr,•, for any r.

Theorem 4.4.4. There exists a spectral sequence such that

Es,n
1 = Hs([Xn/G],F0 → F1 → · · · → Fm)⇒ Hs+n

G (M,F0 → F1 · · · →→ Fm).

Proof. Let Kq
r be an acyclic equivariant resolution of Fr and we denote by Kp,n,q

r

the sheaves generated on Gp ×Xn. Then we have the quadruple complex

Cp,n,q,r = Γ(Gp ×Xn, Kp,n,q
r ).

As below we can consider the complex Cp,q,r = Γ(Gp × Xp+1, Kp,q
r ) and we have

that Kp,q
r is acyclic. That is if we compute with respect to q we get the double

complex Cp,r = Γ(Gp×Xp+1,Fpr). Hence the quadruple complex has as cohomology
H∗G(M,F0 → F1 → · · · → Fm).

Besides we can consider the quadruple complex as a double complex if we con-
sider the complex given by Cs,n =

⊕
s=p+q+r Γ(Gp ×Xn, Kp,q

r ) with its respective
differential and as a second differential the one given on X•. Then

Es,n
0 =

⊕
s=p+q+r

Γ(Gp ×Xn, Kp,q
r )
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and
Es,n

1 = Hs([Xn/G],F0 → F1 → · · · → Fm).

Theorem 4.4.5. If G is a discrete group, there exists a spectral sequence such
that

Ep,s
2 = Hp(G,Hs(M,F0 → F1 → · · · → Fm))⇒ Hp+s

G (M,F0 → F1 · · · → Fm).

Proof. Let Kq
r be an acyclic equivariant resolution of Fr and we denote by Kp,n,q

r

the sheaves generated on Gp ×Xn. Then we have the quadruple complex

Cp,n,q,r = Γ(Gp ×Xn, Kp,n,q
r ).

As below we can consider the complex Cp,q,r = Γ(Gp×Xp+1, Kp,q
r ). If we compute

with respect to the resolution we get the double complex Cp,r = Γ(Gp×Xp+1,Fpr).
Hence the quadruple complex has as cohomology H∗G(M,F0 → F1 → · · · → Fm).

Besides we can consider the quadruple complex Cp,n,q,r as a double complex given
by the differential for n, q, r and as second differential the one of the simplicial
structure of G•. Moreover if we consider the elements in Cp,n,q,r as maps Gp →
Γ(Xn, Kq

r ) then
Ep,s

0 = Cp(G,
⊕

n+q+r=s

Γ(Xn, Kq
r ))

Ep,s
1 = Cp(G,Hs(M,F0 → F1 → · · · → Fm))

and
Ep,s

2 = Hp(G,Hs(M,F0 → F1 → · · · → Fm)).

Example 4.4.6. IfM = X is smooth manifold with an action of a discrete group
G, we have that the previous result generalises the spectral sequence

Ep,n
2 = Hp(G,Hn(X,F0 → F1 → · · · → Fm))⇒ Hp+n([X/G],F0 → F1 · · · → Fm)

which is given by Felder et al., in [20, A.7].

4.4.3 Spectral sequence of group cohomology for compact

Lie group actions

Let us finally now deal with the case that the group G is a compact Lie group.
We then get the following general spectral sequence:
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Theorem 4.4.7. There exists a spectral sequence such that

Ek,p
1 =

⊕
q+n=k

Hp(G,
⊕
s+t=q

Ωs(Xn)⊗ St(g∨))

Ek,p
2 = Totk

⊕
q+n=k

Hp(G,
⊕
s+t=q

Ωs(Xn)⊗ St(g∨))⇒ Hk+p
G (M,R).

Proof. Let (Ωq(Gp × Xn), ddR, ∂G, ∂X) be the triple complex which computes the
cohomology H∗dR(M/G). We can consider the complex of smooth functions

C∞(Gp,
⊕
s+t=q

Ωs(Xn)⊗ ∧t(g∨p))

with differentials induced for ddR, ∂G and ∂X . So if we take the function

Ψ : Ωq(Gp ×Xn)→ C∞(Gp,
⊕
s+t=q

Ωs(Xn)⊗ ∧t(g∨p))

∑
ωi(~g, ~x)dgIdxJ 7→ ~g

ω−→ (ωi(~g, ~x)dxJ ⊗ dgI)

which commutes with the differentials and is a bijection, we have that the complex
of smooth functions computes the same cohomology as Ωq(Gp ×Xn).

Moreover if we consider the double complex

Ck,p =
⊕
q+n=k

C∞(Gp,
⊕
s+t=q

Ωs(Xn)⊗ ∧t(g∨p))

Then Ek,p
0 = Ck,p,

Ek,p
1 =

⊕
q+n=k

Hp
∞(G,

⊕
s+t=q

Ωs(Xn)⊗Hp(∧t(g∨p)))

=
⊕
q+n=k

Hp
∞(G,

⊕
s+t=q

Ωs(Xn)⊗ St(g∨))

HereHp
∞ means the group cohomology for smooth cochains, however these cochains

can be approximated by continuous cochains [30, 5], [55, 6], [60, I]; so we can con-
sider this cohomology as the continuous version Hp. Hence we get for the second
page

Ek,p
2 = Totk

⊕
q+n=k

Hp(G,
⊕
s+t=q

Ωs(Xn)⊗ St(g∨)).
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Example 4.4.8. IfM = pt, this result generalises the spectral sequence

Et,p = Hp(G,St(g∨))⇒ H t+p(BG,R)

which is given by Bott in [9] and by Stasheff in [55].



Appendix A

The Cartan model for simplicial

smooth manifolds

In this appendix, we give the construction of equivariant forms for simplicial
smooth manifolds, following [46, C.1], [57, 2.2] and [58]. We provide a discus-
sion about the restriction of the group of equivariance based on [27, 6.5 & 6.8].

A.0.1 Cartan model

Let M• be a simplicial smooth manifold and a simplicial smooth action µ• : G ×
M• →M• with G a compact Lie group.

We can define the complex

C2p+m =

( ⊕
q+r=m

(Sp(g∨)⊗ Ωq(Mr)
G), D − ι

)

where D = ddR+(−1)q∂ is the operator of the simplicial de Rham complex defined
in the subsection 2.3.6 and ι the operator defined by the interior multiplication in
the usual Cartan model, as in the definition 2.3.53. Then the cohomology of this
complex its denoted by H∗G(M•,R), compare with [46, C.1] and [58, 4.2].

Proposition A.0.1. [58, 4.2],[57, 4.1] The cohomology of C• holds that

H∗G(M•,R) ∼= H∗(EG×G ‖M• ‖,R)

102
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A.0.2 Cartan model as a double complex

Consider the double complex

Cp,q =

(
Sp(g∨)⊗

( ⊕
s+r=q−p

Ωs(Mr)

))G

with horizontal operator D and horizontal ι.

Theorem A.0.2. The E1 term in the spectral sequence of Cp,q is

(Sp(g∨)⊗Hq−p(M•,R))G.

Proof. The complex Cp,q with the boundary D sits inside the complex Z =

(S∗(g∨)⊗(
⊕

Ω∗(M•))) and the cohomology groups of Cp,q are just the G-invariant
components of the cohomology which are appropriately graded components of
S∗(g∨)⊗H(M•,R).

To compute E1 we are going to use that ∂∗i ιXω = ιX∂
∗
i ω where ∂i is a face in the

simplicial manifold. We get

∂∗i (ι(X)ω)p(X1, . . . Xk−1) = ∂∗i ωp(X(p), X1, . . . , Xk−1)

= ω∂i(p)(X(∂i(p)), d∂ipX1(p), . . . , d∂ipXk−1(p)) = ι(X)ω∂i(p)(d∂ipX1(p), . . . , d∂ipXk−1(p))

= ι(X)(∂∗i ω)p(X1, . . . , Xk−1)

and we set the following proposition

Proposition A.0.3. The connected component of the identity in G acts trivially
on H∗(M•,R).

Proof. We consider
ιD +Dι

= ι(d+ (−1)q+1∂) + (d+ (−1)q∂)ι = ιd+ dι = Lα

So the Lie derivative Lα is chain homotopic to 0 in Ωq(Mr). As in the Lie derivative
the action acts trivially ia connected component of the identity, we get the result.

Theorem A.0.4. If G is connected, then Ep,q
1 = Sp(g∨)G ⊗Hq−p(M•,R)
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Proof. By proposition A.0.3, we get that G acts trivial on H∗(M•,R) and if we
apply this in the theorem A.0.2, we get the result.

A.0.3 Restricting the acting group

Let G be a compact connected Lie group and K a closed subgroup of G (not
necessarily connected). We then get an injection of Lie algebras

k→ g

where k is the Lie algebra of K and g is the Lie algebra of G. Also we get an
injection in the dual spaces

g∨ → k∨

which extends to the symmetric algebras

S(g∨)→ S(k∨)

and then to
(S(g∨)⊗

⊕
Ω∗(M•))

G → S(k∨ ⊗
⊕

Ω∗(M•))
K

Thus we get a restriction map

HG(M•,R)→ HK(M•,R)

and also a restriction morphism at each stage of the corresponding spectral se-
quences. Since G acts trivially on H∗(M•,R) and K is a subgroup of G then K
acts trivially as well. So by the theorem A.0.2, we get a morphism on E1

S(g∨)G ⊗
⊕

Ω∗(M•)→ S(k∨)K ⊗
⊕

Ω∗(M•)

Then we get:

Theorem A.0.5. Suppose that the restriction map

S(g∨)G → S(k∨)K

is an isomorphism. Then the restriction map

HG(M•,R)→ HK(M•,R)
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in equivariant cohomology is an isomorphism.

Let T be a maximal torus of G and let K = N(T ) be its normalizer. The quotient
group W = K/T is the Weyl group. It is a finite group so the Lie algebra of K is
the same as the Lie algebra of T . Since T is abelian its action on t∨ and on S(t∨)

is trivial. So we get
S(k∨)K = S(t∨)K = S(t∨)W

According to Chevalley restriction theorem the restriction morphism

S(g∨)G → S(t∨)W

is an isomorphism, see [62, 2.1.5.1], so we can apply the theorem A.0.5. Besides
considering the inclusion T → K we get a morphism of double complexes

CK(M•)→ CT (M•)
W

which induces a morphism

HK(M•)→ HT (M•)
W

and a morphism at each level of the spectral sequences. At E1-level we get the
identity morphism

S(t∨)W ⊗H∗(M•,R)→ S(t∨)W ⊗H∗(M•,R)

then by theorem A.0.5 we get H∗K(M•,R) = H∗T (M•,R)W . And we conclude:

Theorem A.0.6. Let G be a connected compact Lie group, T a maximal torus
and W its Weyl group. Then:

H∗G(M•,R) ∼= H∗T (M•,R)W
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