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Abstract

Discontinuous Galerkin Methods
on Polytopic Meshes

Zhaonan Dong

This thesis is concerned with the analysis and implementation of the hp-version
interior penalty discontinuous Galerkin finite element method (DGFEM) on com-
putational meshes consisting of general polygonal /polyhedral (polytopic) elements.
Two model problems are considered: general advection—diffusion-reaction bound-
ary value problems and time dependent parabolic problems. New hp—version a
priori error bounds are derived based on a specific choice of the interior penalty
parameter which allows for edge/face-degeneration as well as an arbitrary number

of faces and hanging nodes per element.

The proposed method employs elemental polynomial bases of total degree p (P,
bases) defined in the physical coordinate system, without requiring mapping from
a given reference or canonical frame. A series of numerical experiments high-
lighting the performance of the proposed DGFEM are presented. In particular,
we study the competitiveness of the p—version DGFEM employing a P,~basis on
both polytopic and tensor—product elements with a (standard) DGFEM and FEM
employing a (mapped) Q,—basis. Moreover, a careful theoretical analysis of op-
timal convergence rate in p for P,-basis is derived for several commonly used
projectors, which leads to sharp bounds of exponential convergence with respect

to degrees of freedom (dof) for the P,-basis.
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Chapter 1

Introduction

1.1 Background

Mathematical modeling with ordinary differential equations (ODEs) and partial
differential equations (PDEs) is widely used in diverse areas, from computational
fluid dynamics, solid mechanics and optimal control, to finance, biology and ge-
ology. Many natural phenomena, e.g. diffusion, convection and reaction, can be
accurately modeled by using PDEs. It is well known that there are only limited
ways for finding closed form solutions of PDEs with appropriate boundary and
initial conditions over particularly related solution domains. Therefore, the need
to resort to numerical approximation to find the solutions of a large class of PDEs

is apparent.

In the last six decades, finite element methods (FEMs) have been widely used and
accepted by mathematicians and engineers as one of the most powerful tools for
solving a wide range of PDEs problems. Historically, the first work in FEM was
written by Richard Courant [82]. In the 1960s, finite element method began to
be popular among the engineers due to its power in solving PDEs on complicated
geometry with high-order approximation, as well as due to their solid mathemat-
ical foundations that has been developed for the analysis of their performance by

mathematicians.

However, classical FEMs are known to lack sufficient stability properties for trans-
port dominated PDE models. Various kind of stabilisation techniques have been
designed for resolving this issue in the last 40 years, typically with the expense

of the determination of a hard-to-evaluate user-defined parameter. On the other
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Introduction 2

hand, finite volume methods (FVMs) have been predominantly used for transport
dominated problem in industrial software packages, especially, in computational
fluid dynamics (CFD), due to their efficiency of implementation, particularly on
parallel computer architectures and also their good stability for solving hyperbolic
problem. However, the convergence of rate of FVMs is usually low, and their

accuracy may deteriorate on irregular and/or highly stretched meshes.

Discontinuous Galerkin finite element methods (DGFEMs, for short) have enjoyed
considerable success, especially during the last three decades, and are now consid-
ered as a standard variational framework for the numerical solution of many classes
of problems involving partial differential equations. Loosely speaking, DGFEMs
can be considered to be a hybrid between classical FEMs and FVMs. Indeed, just
like in the FVM setting, information in DGFEMs is transmitted via the intro-
duction of numerical fluxes. At the same time, DGFEMs are defined as Galerkin
procedures just like FEMs, and they can easily employ approximation of arbitrary

degree locally on each computational cell.

The origins of DGFEMs can be traced back to the early 1970s for the numerical
solution of first-order hyperbolic problems by Reed & Hill [155]. This method
is later analysed by Lesaint & Raviart [141] and by Johnson & Pitkéranta [132];
see, e.g., [79, 78, 76, 81, 97, 72, 41], and the volume [77]. In the context of elliptic
PDEs, Nitsche’s work on weak imposition of essential boundary conditions [149] for
(classical) FEMs, allowed for the weak imposition of non-homeogeneous essential
boundary conditions. This was subsequently studied by Baker [27] who proposed
the first modern DGFEM for elliptic problems, later followed by Wheeler [187],
Arnold [13], Baker et al. [28], and others. Also the related FEM with penalty of

Babuska [26] is worth mentioning here.

In the late 1990’s, a number of different DGFEMs have been developed by a
number of researchers. These include the method of Bassi & Rebay [33, 34], the
methods by Brezzi, Manzini, Marini, Pietra & Russo [48], and the generalisation
of these ideas in the context of local discontinuous Galerkin methods (LDG) by
Cockburn & Shu [80], and the so-called interior-penalty (IP) methods by Wheeler
and co-workers [157, 156] and Houston, Schwab & Suli [175, 125]. Addition-
ally, we also mention the DGFEM used by Baumann, Babuska & Oden [150, 19],
which is a parameter free version of the IP method. The similarities between the
above mentioned methods led Arnold, Brezzi, Cockburn & Marini to seek a unified

framework for deriving and analysing DGFEMs [16, 71]. For reviews of some of
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the main development before the year 2000, see monograph [77]. In recent years,
DGFEMs have been applied to numerious boundary value and initial value prob-
lems, such as Stokes problems [161, 162], fourth order problems [176, 146, 107],
Maxwell equation [122, 153, 121], Cahn-Hilliard equation [137, 100], Friedrichs’
systems [128, 92, 93, 94] and more recently Hamilton-Jacobi-Bellman equations

168, 169], etc.

The interest in DGFEMs can be attributed to a number of factors: classical
DGFEMs, such as interior penalty methods, have typically minimal communi-
cation, in the sense that only direct face-element neighbours are coupled through
the exploitation of appropriate numerical fluxes; this has important advantages
for imposing boundary conditions and also for parallel efficiency. Additionally,
meshes containing hanging-nodes and elemental polynomial bases consisting of lo-
cally variable polynomial degrees are also admissible, owing to the lack of pointwise
continuity requirements across the mesh-skeleton. This allows for the variation of
the order of polynomials over the computational domain (p-refinement), which in
combination with local mesh adaptation (h-refinement) leads to hp—version ap-
proximations. Furthermore, powerful solvers are now available for the resulting
linear systems; indeed, both domain decomposition preconditioners, see, for ex-
ample, [5, 6, 99, 140, 10, 9], and the references cited therein, as well as multigrid
solvers, cf. [11, 12, 45, 44], have been developed.

On the other hand, many practitioners often object that DGFEMs are compu-
tationally expensive, as for a given mesh and polynomial order, DGFEMs lead
to an increase in the number of degrees of freedom compared to classical FEM
for comparable accuracy, typically when discretizing elliptic operators. This is a
somehow simplistic argument, since it overlooks all the key aforementioned and
other potential advantages of DGFEMSs in terms of their applicability, versatility
and mesh-flexibility. Indeed, as we shall see below, within the DGFEM frame-
work, it is possible to employ the same underlying approximating space of piece-
wise polynomials, irrespective of the structure of the PDE of interest. Moreover,
the flexibility offered by different choices of numerical fluxes allows for the design
of DGFEMs with desirable conservation properties of important quantities (e.g.,

mass, momentum or energy conservation).

Additionally, DGFEM elemental bases can be constructed to contain fewer degrees
of freedom than their (conforming) FEM counterparts for quadrilateral /hexahe-

dral or, general, polytopic elements with more than d faces. The underlying idea
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in this context is the use of physical frame (i.e., without resorting to the use of
local element mappings) polynomial basis functions of total degree, say p, hence-
forth, denoted by P,, independently of the shape of the element; see, for example,
in 31, 32, 30, 61]. This way, the order of convergence of the underlying method is
independent of the element shape; cf., [14, 15] for a detailed discussion of this issue,
when element mappings are employed. Indeed, as noted in our recent work [61],
when the underlying mesh consists of tensor-product elements, e.g., quadrilaterals
in 2D and hexahedra in 3D, the use of P, polynomial spaces not only renders
the underlying DGFEM more efficient than the standard DGFEM using tensor-
product polynomials of degree p in each coordinate direction (Q,), but also more
efficient than the standard FEM, as the polynomial degree p increases. Going one
step further, the exploitation of DGFEMs using polynomial spaces defined in the
physical frame, means that DGFEMSs naturally allow for the use of computational

meshes consisting of general polytopic elements.

This work is concerned with the theoretical analysis and practical performance of
the hp-version interior penalty discontinuous Galerkin method (hp-IP DGFEM),
for boundary value problems in non-negative characteristic form on general poly-
topic elements (polygonal/polyhedral elements in two/three space dimensions).
Moreover, this work concerns with space-time hp-IP DGFEM for parabolic ini-
tial /boundary value problems over prismatic elements (polytopic spatial elements

tensorised with a time interval).

Numerical methods on polytopic elements have gained substantial traction in re-
cent years for a number of important reasons. A key underlying issue for all classes
of FEMs/FVMs is the design of a suitable computational mesh upon which the
underlying PDE problem will be discretized. The problem of good mesh design
has to address two competing traits. On the one hand, the mesh should provide
an accurate representation of the given computational geometry with sufficient
resolution for accurate numerical approximations. On the other hand, there are
cases where a ‘coarse’ mesh contains already too many degrees of freedom for com-
putation, rendering the computations impractical, or even intractable. Such cases
are often met in practice. Indeed, standard mesh generators typically generate
grids consisting of triangular/ quadrilateral elements in 2D and tetrahedral /hexa-
hedral /prismatic/pyramidal elements in 3D; these will be, henceforth, collectively
termed a standard element shapes. In the presence of essentially lower-dimensional
solution features (e.g., boundary layers), anisotropic meshing may be exploited.

In areas of high curvature, however, the use of such highly-stretched elements may
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lead to element self-intersection, unless the curvature of the geometry is carefully
‘propagated’ into the interior of the mesh through the use of (computationally
expensive) isoparametric element mappings. These issues are particularly perti-
nent in the context of high—order methods, since in this setting, accuracy is often
achieved by the use of coarse meshes combined with high order local basis; the
flexibility in the shape of coarse meshes is, therefore, crucial in this context for
the efficient approximation of localised geometrical features of the underlying so-
lutions. Hence, it is obvious that, increasing dramatically the flexibility in the
admissible element shapes in the mesh, can potentially deliver dramatic savings

in computational cost.

An alternative approach is to exploit general meshes consisting of polytopic (i.e.,
polygonal in 2D and polyhedral in 3D) elements. In the context of discretizing
PDEs in complicated geometries, Composite Finite Elements (CFEs) (both con-
forming and DGFEM versions), have been developed [116, 115, 8, 110], which
exploit general meshes consisting of polytopic elements arising as agglomerates of
standard shaped elements; cf., also the closely related (but more restrictive, in
terms of the basis functions it employs, compared to [8, 110]), so-called, agglom-
erated DGFEM [30, 31, 32]; cf., also the unfitted discontinuous Galerkin Method
[119, 35], which is one of the first works considering the computational issues re-
lated to the use of total degree basis over general shaped elements for DGFEMs
to the best of author’s knowledge. More recently, the Cut Finite Element Meth-
ods (both conforming and DGFEM versions), have been developed [56, 51, 55],
which use a fixed background meshes to represent the geometry of the domain and
build on a general finite element formulation for the approximation of PDEs, in
the bulk and on surfaces, that can handle elements of complex shape and where
boundary and interface conditions are built into the discrete formulation. In addi-
tion, the Hybrid High-Order methods have been first introduced [88] and developed
[85, 86, 68, 73]. They support general polyhedral meshes and delivers an arbitrary-
order accurate approximation by intermediating the cell-based discrete unknowns
in addition to the face-based ones. The cell-based unknowns can be eliminated by

static condensation which improves the efficiency.

In the context of the numerical simulation of evolution PDE problems, the resolu-
tion of time-dependent sharp solution features (layers, interfaces, shocks, etc.)

remains a significant challenge in the quest of resolved computations, e.g., in
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CFD. Mesh-geometry freedom, in conjunction with variable order local polyno-
mial elemental degrees, is expected to achieve accurate approximation of lower—
dimensional features, while simultaneously reducing significantly the sizes of the

resulting linear systems required to be solved per time-step.

The use of polytopic meshes in the context of characteristic-based/Lagrange—
Galerkin methods is also highly relevant. Such moving-meshing methodologies
result to extremely general /irregular node configurations, which give rise to highly
irregular element shapes. The practical relevance and potential impact of employ-
ing such general computational meshes is an extremely exciting topic which has
witnessed a vast amount of research in recent years by a number of leading research
groups. In the conforming setting, we mention the CFE method [116, 115], the
Polygonal Finite Element Method [174], and the Extended Finite Element Method
[101]. These latter two approaches achieve conformity by enriching/modifying the
standard polynomial finite element spaces, in the spirit of the Generalized Finite
Element framework of Babuska & Osborn in [23]. Typically, the handling of non-
standard shape functions carries an increase in computational effort. The recently
proposed Virtual Element Method [37, 40, 65, 177, 38], overcomes this difficulty,
achieving the extension of conforming finite element methods to polytopic ele-
ments while maintaining the ease of implementation of these schemes; see also the
closely related Mimetic Finite Difference method, e.g., [39, 47, 64].

We point out that in all of the above mentioned methods, the construction of
the finite element space depends on the geometrical information of the underlying
polytopic elements in various ways: the number of basis depends on the number of
face of polytopic elements, or the stability of the method is lost when the measure

of faces is degenerating.

In this work, we will introduce the mathematical construction and analysis of hp-
version DGFEMs on meshes consisting of extremely general classes of polytopes.
In particular, these meshes may contain d-dimensional polytopes with arbitrarily
small (d — k)-dimensional faces, for k = 1,...,d — 1. Here, the construction of the
proposed finite element space is independent of the number of faces per element.
In the analysis presented below, stability and a priori error bounds will be deduced
which are sharp with respect to face degeneration under a refined choice of the

(user-defined) discontinuity-penalization parameter.

We briefly describe the mesh assumptions over the polytopic meshes which this

work is based on. Due to the general geometry of the polytopic elements allowed,
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we need to make assumptions on number of faces per elements and/or shape-
regularity for polytopic elements in order to derive the stability and a-priori error

bound depends explicitly on the geometrical information of the meshes.

The total number of (d — 1)-dimensional faces of simplicial meshes and tensor
product-type meshes are (d + 1) and 2¢, respectively. For d = 2,3, the number of
faces are uniformly bounded for the standard meshes.(The same condition holds
for pyramidal and prismatic elements.) However, even for d = 2, polygons with
arbitrary number of faces exist. So in order to extend the hp-IP DGFEM from
standard meshes to polytopic meshes, it is very natural to start working on the
polytopic meshes with bounded number of faces. We point out that polytopic

elements satisfying above mesh assumption can still be shape regular.

On the other hand, there are some simple and “nice” shaped polytopic elements
with unbounded number of faces which are excluded by the above mesh assump-
tions, 'nice’ in the sense of satisfying shape regularity assumptions. In this work,
a new shape regularity assumption which is stronger than the classical shape reg-

ularity assumptions for polytopic elements will be considered.

Finally, we will also present some new hp-approximation results for some com-
monly used projectors over standard tensor-product typed elements with P, basis.
By utilising the new results, we can prove for piecewise analytic problems in this
work, DGFEMs with P, basis has a steeper exponential convergence compared to
DGFEMs with Q,, basis over tensor product elements, and the better convergence
only depends on dimension. The sharpness of the approximation results is also

verified by the numerical experiments.

1.2 Overview

In this thesis we present the a priori error analysis of hp-version DGFEMs on
extremely general classes of meshes consisting of polytopic meshes, containing
polytopes with arbitrary small (d — k)-dimensional faces, k = 1,...,d — 1. Addi-
tionally, series of numerical examples will be presented to conform the theoretical
analysis. This work is structured as follows; the main results can also be found in

(61, 59, 58, 7], as well as in the monograph [60] which is in preparation.

In Chapter 2, we start by introducing the functional space setting use to define

the model problems and discontinuous Galerkin methods (Section 2.1). Next, the
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discontinuous Galerkin method for first-order hyperbolic problems will be derived
(Section 2.2). Then, we present the general discontinuous Galerkin approach to
second order elliptic problems and derive the interior penalty DGFEMs from a par-
ticular choice of numerical fluxes (Section 2.3). Finally, we derive the I[P DGFEM

formulation for PDEs in non-negative characteristic form (Section 2.4).

In Chapter 3, we first fix a set of mesh assumptions allowing for very general
polygonal meshes with a uniformly bounded number of faces per element (Section
3.1). Based on these assumptions, in Section 3.2 we derive inverse estimates over
polytopic elements, making use of classical hp-version inverse estimates over stan-
dard simplical meshes cf. [167, 183, 185, 184]. The resulting inverse estimates are
sharp with respect to the face degeneration by using ideas in [104]. In Section
3.3, we derive the hp-version polynomial approximation results over polytopic el-
ements. The key technique is to use the classical Babuska-Suri operator [24] over

a simplical spatial mesh covering.

In Chapter 4, we present the analysis for Ap-version IP DGFEM for elliptic prob-
lems over polytopic elements. In Section 4.1, we define the elliptic problems sat-
isfying the uniform ellipticity conditions. In Section 4.2, we prove coercivity and
continuity of the IP DGFEM method assuming a uniformly bounded number of
faces per polytopic element. Then we derive the hp-version a priori error bound
by using the approximation results in Section 3.3. We emphasize that the coer-
cwity and continuity constants depend on the number of faces per element, but is
independent of shape regularity of polytopic elements. In Section 4.3, we present a
new proof of coercivity and continuity conditions and we derive the hp-version a
priori error bound with a different mesh assumption allowing for arbitrary number
of faces per polytopic element. In this case, the coercivity and continuity constants
depend on the shape reqularity of polytopic elements, but is independent of number
of faces per element. Although the a priori error bounds differs slightly under the
two different mesh assumptions, both of the error bounds will be h optimal and
p suboptimal by 1/2 order, if we consider quasi-uniform meshes. In Section 4.4,

several numerical examples are presented.

In Chapter 5, we present the analysis for hp-version DGFEM for partial differential
equations with non-negative characteristic form over polytopic elements. For the
sake of simplicity, we will use the bounded number of faces per element mesh

assumption in this chapter. The reason for not using the new shape regularity
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mesh assumption is due to lack of inverse estimates from H'-seminorm to L?*-
norm over the element satisfying the underlying assumption. In Section 5.1, we
define the partial differential equations in non-negative characteristic form under
the same setting of Houston, Schwab, Siili [125]. In Section 5.2, we derive a
priori bounds for the hp-version I[P DGFEM for this class of problems. Due
to the lack of hp-approximation results for the local L?-projection operator on
polytopic elements, it is not possible to directly generalise the analysis from [125]
to meshes consisting of such elements. To address this issue, we prove an inf-
sup condition for the underlying DGFEM, with respect to a stronger streamline—
diffusion type norm, for simple advection coefficients, thereby extending respective
results from [133, 49, 18, 57] to the current setting. This naturally leads to a priori
bounds for the hAp-version DGFEM for this general class of linear PDE problems on
very general polytopic element with possibly arbitrarily small/degenerate (d — k)—
dimensional element facets, k = 1,...,d — 1. The resulting a priori bound will
be h optimal and p suboptimal by 1/2 order in pure hyperbolic cases and pure
elliptic cases. In Section 5.3, a series of numerical examples is presented to test
performance of the IP DGFEM. This analysis is also novel for classical simplicial

or tensor-product type elements.

In Chapter 6, we present the analysis for hp-version space-time DGFEMs for
parabolic problems over prismatic space-time elements under shape regularity
mesh assumption for the spatial mesh. Moreover, we will define the new space-time
finite element space in order to adapting to the space-time DGFEMs framework.
In Section 6.1, we present the problem setting for parabolic PDEs. In Section 6.2,
we will derive a priori bounds for the hp-version space-time DGFEMs for parabolic
problems. Here, since total degree P, basis is utilised over each prismatic space-
time elements, there is no space-time tensor product structure in local basis. The
classical stability proof [180] depends on utilising tensor product of spatial and
temporal projectors, which is not possible under the current setting. We prove
the unconditional stability of the new space-time DGFEMs, via the proof of an
inf-sup condition for space-time elements with arbitrary aspect ratio between the
time-step A and the local spatial mesh-size h. The resulting inf-sup stability is
independent of number of faces per element. Furthermore, under a space-time
shape-regularity assumption, hp-a priori error bounds are proven in the L?(H')-
and L?*(L?)-norms, combining the classical duality approach with careful use of
approximation arguments to circumvent the fundamental impossibility of apply-

ing ‘tensor-product’ arguments (as is standard in this context [180]) in the present
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setting. Instead, a new argument, based on judicious use of the space-time local
degrees of freedom, eventually delivers the L*(H')-norm and L?(L?)-norm error
bound, with constants independent of number of faces per element. Here, the
resulting a priori bound is h optimal and p suboptimal by half order in L*(H')-
norm, while the a priori bound is h suboptimal by half order and p suboptimal by
3/2 order in L?*(L?*)-norm. In Section 6.3, extensive comparison among different
combinations of spatial and temporal discretizations and the new approach are

given through a series of numerical examples.

In Chapter 7, we present some hp-version polynomial approximation results for
commonly used projectors onto the P, basis and serendipity (S,) basis on ten-
sor product elements. In Section 7.1, we will derive the sharp hp-bound for L*-
orthogonal projections and H'-projections onto the P, and S,, respectively, in
several different norms. Classical hp-approximation theory depends on a tensor
product Q,, basis, while the hp-approximation theory for P, and S, are usually
constructed by using the fact that there always exist a Q, basis, ¢ < p, as a
subspace of P, or S,. We emphasize that the resulting hp-bound for P, and S,
are p-optimal when the underlying function has finite Sobolev reqularity, and it is
not p-optimal for piecewise analytic functions. The new hp-approximation result
for P, and S, bases are optimal in p, not only for functions with finite Sobolev
regularity, but also for analytic functions. In fact, the analysis shows that the
extra basis functions in Q, compared to P, or S, only reduce the constant in the
error bound without improving the rate in p. The main tools used in the proof
are orthogonal polynomial expansions, together with judicious choice of the local
basis. In Section 7.2, we will apply the new approximation results to prove the ex-
ponential convergence for DGFEMs with the P, basis and FEMs with the S, basis
over standard tensor product elements for piecewise analytic problems. Here, the
main proof is based on [125, 124, 167]. Moreover, we will prove that exponential
convergence for DGFEMs with P, basis is steeper than DGFEMs with Q,, basis
in error against number of degrees of freedom under p-refinement, respectively,
thereby highlighting that DGFEMs can be cheaper by standard FEM per dof in
certain regimes. In Section 7.3, we present several examples to verify the sharpness
of the theory.

In Chapter 8, we conclude this work and look at some possible future directions

of further research.



Chapter 2
Discontinuous Galerkin Methods

In this chapter we will establish the general settings for this work is based on,
and also we will introduce the discontinuous Galerkin finite element methods
(DGFEMSs).

2.1 Sobolev Spaces

Let © be a bounded open subset of R?, d > 1, with boundary 9); moreover, we
write |€2| to denote the measure of the domain Q. For 1 < p < oo, let LP(Q2) denote

the usual Lebesgue space of real-valued functions with norm || - || »(q), defined by

l/p
Il = (/ \v(x)\pdx) |

in the case 1 < p < oo, and in the case p = oo

[Vl = ess sup|v(x)].
x€N
Given a multi-index a = (ay,...,aq), a; € Ng, ¢ = 1,...,d, of length |o| :=

Sy, we let D* := D' ... DY and D; = 8/dz; for j = 1,...,d. For m €
Ny U {oc}, we denote by C™(2) the set of all continuous real-valued functions
defined on € such that D“v is continuous on € for all |a|] < m. In particular,
when m = 0, we simply write C'(Q) instead of C°(Q2). The subspace C§*(£2) will

denote the set of functions in C™(£2) which have compact support in €.

11
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Next, we recall the definition of a Sobolev space (see, e.g., [4]); with a slight abuse
of notation, we also write D%v to denote the weak derivative of a sufficiently

smooth function v.

Definition 2.1 (Sobolev space). For m € Ny, we define the Sobolev space W™P(2)

over an open domain Q C R?, by
WmP(Q) :={u € LP(Q) : D*u € LP(Q) for |a| < m}, (2.1)

with associated norm || - ||wm.r(q) and seminorm | - |ymas(q) given by:

p p
I ::(anunzp(m) C ulwmo :=<Z\|D“ullip(m) ,

lor|<m |a|=m

for p € [1,00), and

||u||Wm,oo(Q) ‘= max ||D0‘u||Loo(Q), |u|Wm,oo(Q) = |max ||D°‘u||Loo(Q),

|a|<m al=m

for p = oo, respectively.

For p = 2, we write H™(Q2) to denote Hilbertian Sobolev spaces. Further, we

define HJ*(Q2) in the following way.

Hi"(Q) :== {u : ||ul|gm@) < oo, and D%u|pq = 0 for |of < m — 1}, (2.2)

Next, we give the definition for dual norm of Sobolev spaces

(u,U)LZ(Q)
lullg-m@) == sup —————=

: (2.3)
verp©) |[V]zm @)

where (u,v)r20) = fQ wv dx denotes the standard L? inner product. We compress
the notation of the L? product and norm by (-, )2 = (-,+) and ||| z2) = |

respectively, on €.

Definition 2.2. For m € Nj, we define the dual space of the Sobolev space H{",
by
H™™(Q) == {u: [Jul|g-m@) < oo}, (2.4)

We point out that fractional order Sobolev spaces, i.e., where the Sobolev index
m € R are defined by (standard) function-space interpolation procedures; for more

details concerning these techniques, we refer to [4], for example.
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Finally, we introduce the Bochner spaces needed for time dependent problems.
For 1 < p < oo, we define the spaces LP(0,T; X), with X being a real Banach
space with norm ||| x, consisting of all measurable functions v : [0,7] — X, for
which

1
T P
ol = ([ I0la) <o 1gp<o @9
0
|v]| oo o, x) :=ess sup ||v(t)||x < oo, p = oo. (2.6)
te[0,7

We denote by C(0,T; X) the space of continuous function v : [0,7] — X with

bounded norms

A t . 2.7
Jolltorony == ma (o) 27

Throughout this work, we denote by 7}, a subdivision of the domain €2 into disjoint
open elements x such that Q = U7, k. Moreover, for k € T, we define h, :=
diam(k) to be the diameter of the element k. We stress that when x € 7T, is
polytopic, it is possible to be shape-regular in the sense of [70] and have faces
with arbitrarily small diameters compared to h,. The detailed mesh assumptions

will be presented at the beginning of following chapters.

On the basis of the subdivision 7;, we define the broken Sobolev space H' (2, Ty),

up to composite order s, by
HYQ,Th) = {ue L*(Q) : ul, € H*(k) V& € Tp}.

Moreover, for v € H'(Q,T,), we define the broken gradient V,v by (Vuv)|. =
V(v|k),k € Th.

2.2 Discretization of first—order hyperbolic PDEs

To highlight the key aspects concerning the construction of DGFEMs, while keep-
ing notation to a minimum, we first consider the discretization of a first—order
linear Cauchy problem. To this end, let Q C R d > 1, a bounded Lipschitz
domain with boundary 9Q, ¢ € L>®(Q), f € L?(Q), and b := (b1, ba,...,by)" €

(Wi (Q)]4. Furthermore, the inflow and outflow boundaries of the domain 2 are



Definition and Tools 14

denoted, respectively, by
0. Q={xe€d:b(x) nx) <0}, 0,02={xe€d:b(x) n(x)>0},
where n denotes the unit outward normal to 9€2. Upon defining the graph space
Gy(Q) :={v e L*(Q) :b- Vv e L*(Q)},
we seek u € Gy(€2) such that

b-Vu+cu = f in (), (2.8)
u = g ond_S. (2.9)

From the well-posedness of the above problem in graph space we know that the
boundary 0,2 = {x € 9Q : b(x) - n(x) = 0} will play no role, see [84, Chapter 2]

for details.

Before introducing the DGFEM approximation of (2.8), (2.9), we first consider
a standard (conforming) FEM discretization based on employing weakly imposed

boundary conditions, cf. [130], for example.

To approximate the solution of (2.8), (2.9) with a FEM, we first consider a shape—
regular mesh 7, of the computational domain €2, assuming, for simplicity, that 7,
consists of d-dimensional simplicial elements x € 7T,. Letting p > 1 denote the

finite element polynomial degree, we introduce the finite element space

VE(Th) = {u € C(Q)  ulx € Py(k), 5 € T},
where P, (k) denotes the space of polynomials of total degree p on .

The FEM reads: find u;, € VA(T,) such that

/(b-Vuh—i-cuh)vhdx—/ b-nuhvhds:/fvhdx—/ b-ngv, ds
Q 8_Q Q 8_Q
(2.10)

for all vy, € VE(Ty). It is well-known that this method may exhibit numerical insta-
bilities in the form of spurious oscillations [130]. Even in cases where meaningful
solutions (free of spurious oscillations) are computed by (2.10), these typically

converge at suboptimal rates when compared with the approximation power of
VE(Tn) [130].
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To address these concerns, (2.10) should be supplemented by appropriate numeri-
cal stabilization in order to render the underlying scheme stable, e.g., by employing
the so-called streamline-diffusion FEM, whereby the test functions arising in the
volume integrals can be replaced by v, + db - Vuy. In the h—version setting, i.e.,
when the polynomial degree p is kept fixed, the analysis undertaken in [131] indi-
cates that 6 = O(h); the generalisation to the hp-setting outlined in [124] shows
that 6 = O(h/p). Another choice is the so-called continuous interior penalty
method [50, 53, 52, 54].

The essential idea behind the DGFEM discretization of (2.8)-(2.9) is to employ
the scheme (2.10) elementwise, subject to a prescribed boundary condition on the
inflow boundary of each element. This way we enhance the numerical stability of
the approximation a the expense of introducing more degrees of freedom (in this

d-simplicial mesh) as we will be seeking discontinuous approximations belonging
to the DGFEM space

VP(Ty) = {u € L*(Q) : ul, € Py(k),k € Tn},

defined for p > 0.

To make this precise, we first need to introduce some notation. For p > 0 we
introduce the DGFEM space

VP(T,) = {u € L*(Q) : ul, € Py(k),k € Th}.

(For simplicity of the exposition here, we only consider a uniform polynomial
degree distribution over the mesh 7j; the general hp—version case will be treated
in the chapters below.) For any element x € 7T, we denote by dx the union of
(d — 1)—dimensional open faces of . Then, the inflow and outflow parts of Ok are
defined as:

O_k={x €0k, b(x) n.x)<0}, 0;r={x€dr, b(x) n.x)>0},

respectively, where n, (x) denotes the unit outward normal vector to Ok at x € Ok.

Given x € Ty, we denote by vl the trace of a function v € H'(Q,7;) on Ok,
relative to k. Then for almost every x € 0r\0S2, there exists a unique element
k' € Ty, such that x € Ox’; thereby, the outer or exterior trace v, of v on 9k\052,
relative to k, is defined as the inner trace v}, relative to the element(s) &' such

that the intersection of Ox’ with 0r\0S2 has positive (d — 1)-dimensional measure.
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Then, the upwind jump of u across 0_x\0S2 is defined by

|v]. i=vF — v, (2.11)

We note that the sign of above upwind jump depends on the direction of the flow

over each element x € 7;,. In the following, when it is clear from the context to
+

+ correspond to, for the sake

which element x in the subdivision 7, the quantities v
of notational simplicity we shall suppress the letter x in the subscript and write,

respectively, v* instead.

With this notation, motivated by (2.10), we may introduce the following local
FEM formulation: for each x € Ty, find u, € VP(T,), such that

/(b-Vuh—l—cuh)vhdx—/ b n,uv; ds

K O0_K

:/fvhdx—/ b - n, gv; ds, (2.12)
K 0_k

for all v, € VP(T;,), where

I

(%) = S(x), x€0_r\0Q,
= g(x), x € 0_k N O

Summing (2.12) over k € T, and employing the definition of ¢, the DGFEM
approximation to (2.8), (2.9) is given by: find uy, € V?(7T;,) such that

Z{/(b-Vuh—Fcuh)vhdx—/ b n, [up]v; ds
K O_k\ON

KETH

—/ b-nﬁu;des}:Z{/fvhdx—/ b-nﬁgv;ds},(2.13)
O—_kNON K 0—_KkNON

KEThH

for all v, € VP(T,). Integrating the first term in (2.13) by parts gives rise to the
following equivalent formulation: find wu;, € V?(7},) such that

>

KETh

+/ b n, ufv; ds}:Z{/fvhdx—/ b-nﬁgv:ds},(2.14)
Otk K 00— kNOK2

KETH

/((c — V- b)upvy, — upb - Vo) dx + / b-n, u, vy ds
K 0—k\OQ

for all v, € VP(Ty).
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To motivate why the above method has the potential of yielding significant im-
provement in the stability of the approximate solution it computes, let us consider
a component-wise constant wind b across 2. We observe that, then, v, +0b-Vuv, €
VP(Ty) for all § > 0 when v, € VP(T,). Therefore, the fact that such a function
belongs to the element-wise discontinuous space V?(7;) allows for partial deriva-
tives of the basis functions to be included in the finite element space, which gives
the control of the derivative along the advective direction. This, in conjunction
with the weak imposition of the elemental boundary conditions, has the effect of

enhancing stability.

An alternative approach to derive the method (2.14), which is more generally
applicable for the discretization of first-order nonlinear hyperbolic conservation
laws, is to employ the concept of numerical fluxes, exploited widely within F'VMs,
see, e.g., [118]. In this approach, we begin again by the local weak formulation of
(2.8), (2.9), and we integrate by parts the leading order term. (Notice that if b
depends on the solution u also, the aforementioned integration by parts avoids the

presence of, potentially cumbersome, derivatives of b in the numerical method.)

With this in mind, multiplying (2.8) by a smooth test function v and integrating

over a single element x € T, gives: find u|, such that uls_q = g and

/((C—V-b)uv—ub-Vu)dx+/

K ok

b-n,utvt ds = /fv dx. (2.15)

The DGFEM discretization of (2.15) is then based on replacing the analytical
solution u by the DGFEM approximation u, and the test function v by vy, where
both uy, and vy, belong to VP(7,). Additionally, since uy, is discontinuous between
neighbouring elements, we must replace the flux b - n,u™ by a numerical flux
function H(u;, u; ,n,), which depends on both the inner— and outer-trace of uy,
on 0k, kK € Ty, and on the unit outward normal vector n, to dx. Summing over
the elements k in the mesh 7}, yields the DGFEM: find u;, € VP?(7,) such that

Z {/((c — V -b)upvy, — upb - Vo) dx + | H(u),uy,n,)v" ds}

KETH Ik

- Z/fvdx, (2.16)

KETH UK

for all v, € VP(Ty).
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We emphasize that the choice of the numerical flux function is independent of the
finite element space employed. Indeed, the two key properties that the numerical

flux function #H(, -, -) should satisfy are:

1. Consistency: for each k € Tj, we require that H(v,v,n,)|s. = (bv) - n,.

2. Conservation: given any two neighbouring elements x and ' from the finite
element mesh 7Ty,, at each point x € dx N Ik’ # (), noting that n,, = —n,,

we have that H(v,w,n,) = —H(w,v, —n,).

A classical and very natural choice is the upwind numerical flux, given by

b - n, lim, .o+ up(x — sb)  x € 9r\0_1,

(2.17)
b - n, g(x) X € 0kNO_Q,

H(“ﬁ? Uy, s nfﬂ)|8l~c = {
for k € Tp; indeed, upon substituting (2.17) into (2.16), we immediately recover
the DGFEM scheme given in (2.14) through an integration by parts. For further
details, and indeed for the construction of appropriate numerical flux functions for

nonlinear first-order hyperbolic conservation laws, we refer to, e.g., [138, 181].

2.3 Discretization of second—order elliptic PDEs

The DGFEM discretization of general second-order elliptic PDEs is based on the
following key steps:

1. Rewrite the underlying PDE as a first—order system of equations and derive

an elemental weak formulation.

2. Introduce appropriate numerical flux functions in a similar fashion to that
undertaken in the previous section; this gives rise to the so-called flux for-

mulation.
3. Finally, the auxiliary variables introduced in step 1. may be eliminated to

yield the underlying primal formulation.

To demonstrate each of these steps in a clear fashion, here we consider the model

elliptic problem of the Poisson equation with essential boundary conditions, given
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by: given Q@ CR? d > 1, and f € L*(Q), find u € H*(Q) such that

—Au = f in (), (2.18)
u = g on0df, (2.19)

in the weak sense, i.e., we seek solution u € H'(Q2) with u|sq = ¢ (in the sense of

trace) of the above problem posed in the weak form:
/QVU -Vvdx = /va dx for all v € Hy (). (2.20)

Step 1. We rewrite (2.18) as the first—order system:
s —Vu =0, —V-s=f. (2.21)

Upon multiplication by test functions 7 and v, and intergration by parts, the
element-wise formulation is given by: for each x € T, find u|, € H'(k) and

s|. € [L%(k)]%, such that u|sq = g and

/S-de%—/uV-de—/m—-n,ﬁds = 0,

K K ok
/S-Vvdx—/ s-n.,vds = /fvdx.
K ok K

Step 2. To arrive to the flux formulation, we introduce the numerical flux func-
tions @ = u(uy) and 8 = §(up, Vyuy) which represent approximations to u and s,
respectively, on the boundary of each element x in the computational mesh 7.
Thereby, replacing (u,s) by (un,sp) € VP(Ty) x ZP(T), BP(Ty) = [VP(Tn)]%, and
(v,7) by (vn, ) € VP(T) x ¥P(Tp), and summing over k € T, gives rise to the
DGFEM: find (up,sy) € VP(Ty) x XP(T;,) such that

Z/Sh'Tth+Z uhV-Thdx—Z/ ar -n.ds =0, (2.22)

KETH KETR Y F KETH g
Z /sh -V, dx — Z / $-n,ufds = Z fopdx (2.23)
keTH U F KETH Ok KETR Y

for all (v, ) € VP(Th) x XP(Th).

The flux formulation given in (2.22), (2.23) involves the additional (auxiliary)

unknowns sj; these may be eliminated in the following manner. Setting 7|, =
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V(vnl), k € Th, in (2.22) and integrating by parts gives

Z/sh Vvhdx—Z/Vuh Vo, dx

KEThH KETH

+Z/ )V -n.ds = 0. (2.24)

KETH

Inserting (2.24) into (2.23) gives rise to the primal DGFEM formulation: find
up, € VP(Ty) such that

Z/Vuh Vo, dx — Z/ a)Voy - n,ds

KETH KETH

- Z/ $-nufds=) /fvhdx (2.25)

KEThH KETH
for all v, € VP(Ty).

Before we consider the choice of the numerical flux functions @ and s, we first
rewrite (2.25) in terms of integrals arising on each face in the underlying mesh
Tn. To this end, we introduce the following notation. We denote by Fj the set
of open (d — 1)-dimensional element faces associated with 7,. Further, we write
Fn = FE U FP, where FF denotes the set of all open (d — 1)-dimensional element
faces F' € F;, that are contained in €2, and FP is the set of element boundary faces,
i.e., F C 99 for F € FP. The boundary dx of an element k and the sets dr \ 99,
Ok N O will be identified in a natural way with the corresponding subsets of F,.

Next, we introduce some trace operators. Let x; and k; be two adjacent elements
of Ty and let x be an arbitrary point on the interior face F € F¥ given by F =
Ok; N Ok;. We write n,;, and n,. to denote the outward unit normal vectors on
F, relative to Ok; and Ok, respectively. Furthermore, let v and q be scalar- and
vector-valued functions, which are smooth inside each element x; and x;. Using
the above notation, we write (v, q;l,) and (v, q; ), we denote the traces of (v, q)
on F' taken from within the interior of x; and &;, respectively. The averages of v

and q at x € F' € Ff are given by

folt =5 (v +ou), fa} =5 (qﬁ,+q@)

respectively. Similarly, the jumps of v and q at x € F € F¥ are given by

[v] = vi e, +v) ng, [l =4, -n, +ql n,,
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respectively. On a boundary face F' € FP, such that F C Ok, k; € Tp, we set

{vl = v:p {a} = q:iv [v] = U:inm [[Cﬂ] = q:i R

with n,, denoting the unit outward normal vector on the boundary 0f2. Here, we
point out that the jump operator here is different compared to the upwind jump
operator |-| defined in the previous section. Here the sign of the upwind jump ||
depends on the direction of the flow, whereas in the [-] case it only depends on

the element-numbering.

With this notation, we note that the following elementary identity holds:

Z/a a’ ntutds= ) /F{q}}'ﬂv]] ds+ > /F[[q]]{{v}}ds, (2.26)

KETH FeFy, FeFf

cf. [16]. Exploiting (2.26), the primal formulation of the DGFEM (2.25) may be

rewritten in the following equivalent manner: find wj, € VP?(7,) such that

> /Vuh-Vvhdx+ > /F([[ﬁ—uh]] AVur} — {8} - [on]) ds

KETH FeF,

+ 3 [ whvul - Ba s = 3 [rnax @2

FeFf KET, "
for all v, € VP(T,).

The choice of the numerical flux functions 4 and § arising in the DGFEM (2.27)
has been studied extensively: different choices of numerical flux functions lead
to discontinuous Galerkin schemes with quite different consistency, stability, and
convergence properties; for a review, we refer to [16]. In the interest of simplicity of
the presentation, in this work, we consider one popular family of schemes, referred
to as interior penalty (IP) methods. We stress, however, that the theoretical
developments presented below are applicable to many other discontinuous Galerkin

schemes. For IP methods, we select

i = auy) = {{Uh}‘f’#ﬂp'[[ﬂh]] on F e Ff,
(1+0)uy — g on F € FB,

{Viur} — ofus] on FeFfl,
Vuy, —o(up, —gn  on F € FP,

§ = S(up, Vyuy) = {
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where 6 € [-1,1] and for F' € Ff, F C 9k;N0k;, np = n,,. Moreover, o : F;, — R
is referred to as the discontinuity penalization function; the precise definition of
o depends on the local mesh size and local polynomial degree. In the current
setting, i.e., assuming that the underlying simplicial mesh 7}, is shape-regular and
that the polynomial degree p is constant over 7Ty, then the analysis undertaken in
[125], for example, indicates that o = O(p?/h). The precise definition for general
polytopic meshes and variable elemental polynomial degrees is a key question in

this work and will be discussed in detail in Chapter 4.

Given the above definition of @ and S, we deduce the following family of IP-
DGFEMs: find u;, € VP(T,) such that

Z /Vuh - Vo dx + Z /F(—{{Vuh} o] + 0 Vor} - [un]) ds

KEThH FeFy
+ Z /a[[uh]] o] ds = Z /fvhdx—l— Z /g(@Vuh-n+Jvh) ds (2.28)
FeFy, F keTH U F FG]‘—S F

for all v, € VP(T,). Selecting the parameter § = 1 gives rise to the so—called
Nonsymmetric Interior Penalty (NIP) DGFEM, 6 = 0 is the Incomplete Interior
Penalty (ITP) DGFEM, while setting § = —1 yields the Symmetric Interior Penalty
(SIP) scheme.

On the basis of the schemes (2.16) and (2.28) the DGFEM discretization of general
classes of second—order PDEs with so—called non-negative characteristic form may
be defined; see Chapter 5 for details, cf., also, [125]. Before we embark on this
topic, in the next chapter we first introduce the key technical results required to
study the stability and convergence properties of DGFEMs defined over general

mesh partitions.

2.4 PDEs with non-negative characteristic form

To highlight the versatility of the DGFEMs described above, we also consider the
general class of linear second order equations with non-negative characteristic form

in the form of respective initial/boundary value problems.
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Given  is a bounded Lipschitz domain in R? d > 1, we consider the following
PDE: find u such that

-V - (aVu)+b-Vu+cu = f inQ. (2.29)

Here, a = {a,-j}zjzl with a;; € L>®(Q) and a;; = aj;, for i,5 = 1,...,d, b =
(by,...,by) € WE2(Q)]%, ¢ € L*(Q) and f € L2(Q). The PDE (2.29) is referred
to as an equation with nonnegative characteristic form on the set Q C RY if, at

each x in €,
d
ij=1

for any vector & = (&;,...,&;) in R%.

This class of equations includes second—order elliptic and parabolic PDEs, ultra-
parabolic equations, first-order hyperbolic problems, the Kolmogorov-Fokker—
Planck equations of Brownian motion (cf. [29], for example), the equations of
boundary layer theory in hydrodynamics, and various other degenerate equations.
More generally, according to a well-known result of Hérmander [151], second-order
hypoelliptic operators have nonnegative characteristic form at each point of the

domain €2, after possible multiplication by —1, so they all into this category.

To supplement (2.29) with suitable boundary conditions, following [151, 126], we
first subdivide the boundary 02 of the computational domain €2 into appropriate

subsets. To this end, we let

d
a[)Q = {X € 00 : Z aij(x)nmj > O},

ij=1

where n = (nq,...,ny) denotes the unit outward normal vector to d€2. Loosely
speaking, we may think of 9y{2 as being the ‘elliptic’ portion of the boundary 0.
On the ‘hyperbolic’ portion of the boundary 0Q\0y(2, we define the inflow and

outflow boundaries 0_{2 and 0, €2, respectively, in the standard manner:

0-Q = {x €0\ :b(x) n(x) <0},
0.0 = {x €I\ :b(x) n(x)>0}.

If 0p$2 is nonempty, we shall further divide it into disjoint subsets 9€Q)p and 0y

whose union is 0y€2, with 0€2p nonempty and relatively open in 9€2. It is evident
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from these definitions that 02 = 9QpUIQNUO_QUO, Q. Assuming the (physically
reasonable) hypothesis that b-n > 0 on 92y whenever 02y is nonempty, we sup-
plement (2.29) with the following, respectively, Dirichlet and Neumann boundary

conditions:
u=g¢gp on dpUOI_Q, n-(aVu) =gy on 0Qx. (2.31)

Additionally, we assume that the following positivity hypothesis holds: there exists

a constant vector £ € R? such that
1
¢(x) = 5 V-b(x) +b(x)-£ = ae x€Q, (2.32)

where 7y > 0 is a constant. The well-posedness of the boundary value problem
(2.29), (2.31), in the case of homogeneous boundary conditions, has been studied
in [126], cf. also [151].

It is possible to introduce an IP-DGFEM discretization for the general (2.29),
(2.31), thereby, treating numerically this very general class of equations in a stable

fashion.

We consider a mesh T, which is subordinate to the mixed boundary conditions
(2.31), in the sense that the set of boundary faces F? of T;, can be subdivided as
FB = FPUFNUF, UF!, covering (almost everywhere) the Dirichlet, Neumann,
inflow and outflow parts of boundary, respectively. We define the IP-DGFEMs:
find w;, € VP(T,) such that

/ (avhuh : VhUh + (b : thh)?]h + cup, ’Uh) dx
Q

+ Z /F ( - {{aVuh}} : [[Uh]] + Q{avvh}} : [[uh]] + U[[uh]] . [[vh]]) ds

FeFfuFrp
- Z /b-nHLthv,f[ds— Z /b-nﬁqu;{ ds
FeF, \FB o FeF, UFP E
= /fvhdx—i- Z /gD(QVUh-n—f—Jvh)ds
@ FeFp F
— Z /b-n,igDv;[ds—l— Z /nghds
Ferurp Fery 7 E

for all v, € VP(Ty,).



Chapter 3

Polynomial Approximation and

Inverse Estimates

In this chapter we develop the key mathematical tools needed to study the sta-
bility and convergence properties of hp—version DGFEMs; these estimates will be
exploited in the following chapters for IP-DGFEM discretizations, with the ulti-
mate goal of tackling general second—order PDEs with non-negative characteristic
form. While results of this type are readily available within the literature for
standard element types, e.g., simplices and tensor product elements, cf., for ex-
ample, [24, 25, 69, 147, 167], in this chapter we concentrate on the extension of
these bounds to general meshes consisting of polytopic elements. A key issue in
this setting is that general shape-regular polytopic meshes may, under refinement,
possess elements with (d — k)—dimensional facets, k = 1,2,...,d— 1, which degen-
erate as the mesh size tends to zero. Therefore, care must be taken to ensure that
the resulting inverse estimates and polynomial approximation results are sensitive
to this type of degeneracy. The key approach adopted here is to exploit known
results for standard elements, both within an L?- and L>-setting, and to take the
minimum of the resulting bounds, cf. [61, 59, 58, 7]. In this way, bounds which
are optimal in both the h—version and p—version setting may be deduced, which

directly account for (d — k)-dimensional facet degeneration, k =1,2,...,d — 1.

Firstly, we begin by introducing the classes of meshes which may be admitted in the
analysis presented below, cf. Section 3.1. Under these assumptions in Sections 3.2

and 3.3 we derive hp—version inverse and approximation results, respectively.

25
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FIGURE 3.1: Polygonal element x, k € T, and its face-wise neighbours; hang-
ing nodes are highlighted with e.

3.1 Mesh assumptions

We introduce a very general class of computational meshes consisting of polytopic
elements, satisfying some technical assumptions. The notation introduced here

will be employed throughout the rest of this work.

To this end, we let 7, be a subdivision of the computational domain Q C R¢,
d > 1, into disjoint open polygonal/polyhedral (polytopic) elements k constructed
in such a manner that the union of the closures of the elements x € 7, forms a
covering of the closure of Q, i.e., Q = U7, k. Furthermore, we denote by h,; the

diameter of k € Ty, i.e., h,, := diam(k).

From a mesh adaptation point of view DGFEMs are advantageous in the sense
that they can naturally handle meshes which contain irregular/hanging nodes.
With this in mind, we allow 7} to consist of general elements which may possess
several hanging nodes on their (d — k)-dimensional facets, k = 1,2,...,d — 1, cf.
Figure 3.1. As noted above, the stability and approximation results developed in
this chapter rely on employing results for standard element shapes; in fact, here
we shall rely on hp—version bounds for simplices. For this reason, we introduce
the notion of both element interfaces and element faces; the latter being assumed

to be simplices in R4!.

To this end, and to facilitate the presence of hanging nodes, we define the interfaces
of the computational mesh 7}, to be the intersection of the (d — 1)-dimensional
facets of neighbouring elements. In the two-dimensional setting, i.e., when d = 2,
the interfaces of 7Tj, are simply piecewise linear line segments, i.e., they consist of
a set of (d — 1)—dimensional simplices. However, in general for d = 3, (or indeed

d > 3), the interfaces of T, will consist of general polygonal surfaces in R? (or
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polyhedral surfaces in R? respectively). Thereby, we assume that each planar
section of each interface of an element x € T, may be subdivided into a set of
co-planar triangles ((d — 1)-dimensional simplices). We refer to these (d — 1)

dimensional simplices, whose union form the interfaces of F},, as faces.

In the following sections we outline the key assumptions required to be satisfied
by the computational mesh 7}, in order to derive suitable inverse inequalities and
approximation results for general polytopic elements. Firstly, however, we intro-
duce the following assumption, which guarantees that the number of faces each
element possesses remains bounded under mesh refinement; we shall return to this

issue in Chapter 4 when we consider the coercivity of the IP-DGFEM.

Assumption 3.1.1. For each element k € Ty, we define
C,= card{F e Fn,:FC 8/{}.

In the following we assume there exists a positive constant C'r, independent of the
mesh parameters, such that

max C,, < Cp.
KETH

3.2 Inverse estimates

One of the key mathematical tools required for the analysis of DGFEMs are inverse
inequalities; results of this type for standard element shapes are well-known the
literature, cf., for example, [167, 183, 185].

Lemma 3.1. Given T is a simplex in R, d = 2,3, we write F C 0T to denote
one of its faces. Then, for v € P,(T), the following inverse inequalities hold

2| F]

||U||%2(F) < Ciwap m“UHi?(T)’ (3.1)
2 p2d 2

ol < Comallolie (3.2

Vol < Cimala ol (3.3
LA(T) —= Yinv,3 h2. L2(T)» ’

where Ciyy 4, © = 1,2, 3, are positive constants which are independent of v, p, and

hy. Ciw,s depends on the shape reqularity of T'.
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Proof. The detailed proof of (3.1) can be found in [185], and is based on solving
the eigenvalue problem for polynomial functions. We point out that the exact

bound is:

(p+ Dp+d)|F
Joliqey < L5 e el (34)

The proof of (3.2) can be found in [167]. For (3.3), the proof can be found in
[167]. Here, we emphasize that constant Ci,, 5 depends on the shape regularity of
simplex 7. O

We shall consider the generalization of (3.1) and (3.3) to general meshes consisting
of polytopic elements. We remark that (3.1) is required to establish stability of
IP-DGFEM approximations of second-order elliptic PDEs, cf. Lemma 4.2, while
(3.3) will be utilized to determine an inf-sup condition in the presence of first—
order transport terms, cf. Theorem 5.5. In order to generalize (3.1) to general
polytopic elements k, k € Ty, we first introduce the following family of (overlap-
ping) simplices associated with each face F' C 0k. Note that this is precisely the

reason why we require that each face F' is a d — 1-dimensional simplex.

Definition 3.2. For each element x in the computational mesh 7, we define the
family F of all possible d-dimensional simplices contained in x and having at
least one face in common with k. Moreover, we write fif to denote a simplex

belonging to F;° which shares with x € 7, the specific face F' C Ok.

With the above definition, we may now employ (3.1) directly to deduce the cor-
responding inverse estimate on a general polytopic element. To this end, given
r € T and the face F € F}, such that F' C Ok, consider " € FF given in Def-
inition 3.2. Then, for v € P,(k), applying (3.1) on xl", we immediately deduce
that

o8y < Coeat? g ol < ot S bl (33)

where Ciyy1 is a positive contant, independent of v, |F|, ||, and p.

Clearly, the choice of x{ is not unique; thereby, we may select /{f to have the
largest possible measure |x!’|. Hence, on the basis of (3.5), the following inverse

inequality holds:

|F|

2 < G, ’
HUHLQ(F)— inv,1P up,ifc,imlf

| V1122 ) (3.6)
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Ky

7

FiGURE 3.2: Illustration of the quadrilateral in Example 3.1

We point out that for a fixed element size h,, the inverse inequality (3.6) is sharp
with respect to the polynomial degree p, cf. [167]. However, for fixed polynomial
order p, (3.6) lacks sharpness with respect to (d — k)-dimensional facet degenera-
tion, k = 1,...,d — 1; or more precisely, it is not sensitive to the magnitude of the
face measure relative to the measure of the polytopic element x. To illustrate this

in a clear manner, we consider the two—dimensional example presented in [61].

Example 3.1. In order to demonstrate the lack of sharpness of the inverse in-
equality (3.6) with respect to one of its lower—dimensional facets degenerating, we

consider the quadrilateral domain k given by
ki={(r,y) ER? x>0,y >0,0+y < 1}U{(z,y) eR*: 2 >0,y <0, 2—y < €},

for some e > 0, ¢f. Figure 3.2. Givenv € Ppy(k), let F:={(z,y) € R* : z—y = €},
then exploiting (3.6) gives
V2pPe
||UH%2(F) < Cinv,IW”UH%%ﬁ)a (3.7)
where

ki={(r,y) ER*:2>0, s+ey<e, v —y <eh

Noting that |k{'| = e(1 + €)/2, inequality (3.7) becomes

21/2p?

o0

”UH%?(F) < Cinv,l

Hence, if we let € — 0, the left-hand side ||v||72p) — 0, whereas the right-hand

side Q\I/Efz Hv||%g(n) — 2\/§p2||v||%2(ﬁ) # 0 in general.




Polynomial Approximation and Inverse Estimates 30

The above example clearly indicates that the inverse inequality (3.6) may not be
sharp, with respect to element facets of degenerating measure. In the context of
employing such a bound to deduce the stability of a given DGFEM approximation
of a given second—order elliptic PDE, cf. Section 4.2, will typically lead to an
excessively large penalization term within the underlying scheme; this in turn

may result in ill conditioning of the resulting system of equations.

To rectify this issue, we proceed by deriving an alternative inverse inequality,
under suitable mesh assumptions, based on first noting that since F' C 8&5 , by
definition, we have that

[ol2agey < 1w o) (3.8)

In order to bound the right-hand side of (3.8), we need to introduce some additional
requirements on the elements k € Tj,. These are based on the following result which

represents the generalization of Lemma 3.7 in [104].

Lemma 3.3. Let K be a shape-regular simplex. Then, for each v € Py(K), there
exists a simpler k C K, having the same shape as K and faces parallel to the
faces of K, with dist(0k, 0K ) > C,sdiam(K)/p*, where C,g is a positive constant,
independent of v, K and p, such that

1
v|lz2ery > §HUHL2(K)-

Proof. For simplicity, we present here the proof for triangles, as the general case

follows analogously, see the proof of Lemma 3.7 in [104] for more details.

We first consider the case of the reference triangle K of vertices (0,0), (1,0), and
(0,1). We consider a splitting of K into 4 disjoint parts as follows, cf. Figure
3.3. We let i be the triangle having same shape as K, faces parallel to K, and
dist(0k, 0K) = §. Then, we also split K\& into 3 disjoint parts {#;}?_;. For &1,

we have

T A ' P2y dedy+ [ 6 2z, y)dz d
L2(R1) — o o ,Y)ar ay s ; v\T,y)dr Ay
1 1

2 2
/0 50z, o) A + /5 510C+ 1) 20 Iy

IN

1 1
2 2
< Sllo(z, Miworydr + [ Ol )l Fw o1, dy
0 ) 0 2
S 5Cinv,2p2HUH%2(Al)7 (39)
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(0,1)

(0,0) 1.0) (1,0)

2

FIGURE 3.3: Splitting triangle K into # and {&;}3_;.

where 4; = (0, %)2, and in the last inequality we have used the one-dimensional

analogue of the inverse inequality (3.2).

For ks, we make the (linear) change of variables (x,y) — (Z,7), where T =z +y

and y = y. Then, we have

1 1 % 1
oy = [ [ @-gadsags [ 2a-gadads
1

! 2
< [ dlote = My it [l = 50 07

2

1 3
< [ = Mgy 47+ [l = 5D ey
= 0

2

S 50111\,72])2”1)“%2(‘42), (310)

where A, denotes the parallelogram with vertices (3,0), (1,0), (3,1),(0,3).

For &3, we make the (linear) change of variables (x,y) — (Z,7), where £ = x and

y = x + y. Then, completely analogously to the case of k9, we obtain
”U||%2(;a3) < 5Cinv,2pg”v||%2(A3)> (3.11)

where Az denotes the parallelogram with vertices (3, 0), (%, $),(0,1),(0,3). Com-
bining (3.9), (3.10), and (3.11), we deduce

”UH%%K\%) < 3501nv,2p2”v“%2(1()'
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FIGURE 3.4: Illustration of quadrilateral in Definition 3.4

Selecting 0 = (4Ciny 2p®) ", We have [|v]|72 5y < 7110l 72 Using this, we have,

respectively,

3 1
”UH%?(,%) = “UH%Q(K) - ”UH%Q(K\R) = ||U||%Q(K) - ZHUH%Q(K) = ZHU”%Q(K)'

For general physical triangles, by using scaling arguments, it is easy to see that
there must exist a triangle £ having same shape as K, faces parallel to K, with
dist(0k, OK) > C,, diam(K)/p?, satisfying the required statement. O

Motivated by the result of Lemma 3.3 we introduce the following definition.

Definition 3.4. An element x € 7T}, is said p-coverable with respect to p € N if

there exists a set of m, shape-regular simplices K;, 1 = 1,...,m,, m, € N, such
that
, diam(K;)
dist(k, 0K;)<Cos——5—, and | K| > cas| K] (3.12)
p
for all i = 1,...,m,, where C,s and c¢,s are positive constants, independent of x

and 7p,.

Following [61], in Figure 3.4 we present a polygonal element x in R? which may
be covered by two triangles K7 and K, i.e., m, = 2. We point out that Def-
inition 3.4 admits very general polytopic elements x € 7;, which may contain
(d — k)—dimensional facets, k = 1,...,d — 1, whose measure is arbitrarily small,
relative to the measure of k itself. We point out that (3.12) can be considered as
a restriction on the polynomial degree p for the proposed DGFEM over polytopic
elements. Returning to Example 3.1, we note that the quadrilateral element s

depicted in Figure 3.2 is p-coverable when e < C,,/p? for some constant C,, > 0.
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Equipped with (3.6), (3.8), Lemma 3.3, and Definition 3.4, we are now in a position
to present hp-version inverse inequality for a general polytopic elements which

directly accounts for elemental interface degeneration.

Lemma 3.5. Let k € Ty, F C Ok denote one of its faces. Then, for each v €
P,(k), the following inverse inequality holds

||
[0]172r) < Cinev (p, mF)pQWHvuiQ(R), (3.13)
where
Clipv.4 Min {|—H|F,p2(dl)}, if Kk is p-coverable
7 Supl{FCK |Hb |
Cvv(p, &, F) = ' (3.14)

11 otherwise,

inv,1

F )
SUD o 1N

and fif € F as in Definition 3.2. Furthermore, Cin1 and Cina are positive

constants which are independent of |m\/suprCH (&L, |F|, p, and v.

Proof. If k is not p-coverable, then the above inverse inequality follows immediately
from the bound (3.6). Thereby, we now consider the case when s is p-coverable;
recalling Definition 3.4, the element x may be covered by shape-regular simplices

K;, i =1,...,m,. Hence, given s’ € FF, F C 0k, cf. Definition 3.2, we note that
F My,

with [KG| > cos|k], 1 =1,. .., my.

Employing the inverse estimate (3.2) on each K;, i = 1,...,m,, together with
Definition 3.4, we deduce that

2 2
||U||L°°(nf) < R [0l1Z0e (k)
V1122 i,
< C 2d (K3)
>~ Olnv,Qp ZZIII,la,}T{nK |KZ|
C. 2d
< T2l ax ||U||%2(Ki). (3.15)

Cas |,Lg| i=1,....mu

We now define &; C K; to denote the simplex relative to K; defined in Lemma 3.3;

hence, exploiting Lemma 3.3 and Definition 3.4, and noting by construction that
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ki CkNK; C K;and K; Nk C K, foreach7=1,...,m,, we deduce that

1
ZLHUH%Q(IQ) < ||U||%2(fﬂ) < HUH%Q(Kmn) < ||U||%2(ﬁ)- (3.16)

Combining (3.15) and (3.16), we arrive at the inequality

4CYinv,Q de
[Vl 7 e oy < - WHUH%%)- (3.17)
Inserting (3.22) into (3.8) gives
4Cinv,2 p2d’F|
“U”%Q(F) < ces Al HUH%%H)- (3.18)

Taking the minimum between (3.6) and (3.18), we deduce the desired result, with

a positive constant Ciny 4 = max{Ciny 1,4 Ciny.2/Cas }- O

Remark 3.6. We point that for a fixed mesh size the inverse inequality stated in
(3.13) is sharp with respect to the polynomial degree p; indeed, as p — oo the
minimum in (3.14) will be equal to ||/ SUD,.F |5E|. Moreover, (3.13) is sensitive
with respect to the (d — k)-dimensional facet degeneration, k = 1,...,d — 1.
Indeed, recalling Example 3.1, we observe that the left— and right—hand sides of

(3.13) degenerate at the same rate as e — 0.

We end this section by presenting a further inverse inequality which provides a
bound on the H'(k)-norm of a polynomial function v, x € Ty, with respect to the
L?*(k)-norm of v, cf. (3.3) for the case of simplices; this result will be required to
deduce the inf-sup estimate derived in Theorem 5.5. In this setting, it is necessary

to assume shape—reqularity of the polytopic mesh Ty.

Assumption 3.2.1. We assume that the subdivision Ty, is shape—regular in the
sense of [70], i.e., there exists a positive constant C., independent of the mesh

parameters, such that )
Ve € Th, — <C..

Pr

with p, denoting the diameter of the largest ball contained in k.

In addition to Assumption 3.2.1, we also require that each non p-coverable element
also admits a shape-regular simplicial sub-partition; more precisely, we require

that the following assumption holds.
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Assumption 3.2.2. We assume that each polytopic element which is not p-
coverable admits a sub-partition into at most n,, n, € N, shape-reqular simplices

s;, 1 =1,2,...,n,, such that
‘51‘ Zcﬁ‘ﬁ‘a izlw"anlm

where ¢ is a positive constant, independent of k and Ty,.

We note that the above assumptions have been commonly used in other polygonal
discretization methods, see [85, 86, 63].

Lemma 3.7. Given Assumptions 3.2.1 and 3.2.2, for v € Py(k), the following

tmverse inequality holds
2 p4 2
||VU||L2(H) < Cinv,E)ﬁH'UHLZ(H)a (3.19)

where Ciny 5 15 a positive constant, which is independent of h,, and p, but depends
on the shape reqularity of the covering of k if Kk is p-coverable, or the sub-partition

of K if K is mot p-coverable.

Proof. Let us first consider the case when x is not p-coverable; then recalling
the sub-triangulation introduced in Assumption 3.2.2, together with the inverse

inequality (3.3), we note that

IVolliz = D IVolliae) < Civap® D 0 llollFaey, (3.20)
i=1 i—1

where hs, = diam(s;), i« = 1,...,n,. Recalling the shape-regularity of the mesh
T, cf. Assumption 3.2.1, together with Assumption 3.2.2 and the trivial relation

h > |k| > p¢, we note that the following inequalities hold for i = 1,...,n,:

C,
B, > lsil > cals] > capll = i
r

Thereby, we deduce that

hs, > ——h,., (3.21)

for i = 1,...,n,. Inserting (3.21) into (3.20) we immediately deduce (3.19) with

constant equal to Ciyy 302/ o
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Let us now consider the case when k is p-coverable. From Definition 3.4 there
exits a covering of k by shape-regular simplices K;, ¢ = 1,...,m,, such that
|K;| > cus|k|, i =1,...,m,. By proceeding in an analogous manner to the previous
case, we note that hg, > c;/sdh,{/Cr, fori=1,...,m,, cf. (3.21) above.

Employing (3.3) and Definition 3.4, we deduce that

My M 4
p
HVUH%%H) < Z HVUH%%KQ < Cinvg Z hTHUH%Q(Ki)

4 me

Cp
1nv3
< R Il 022

Recalling (3.16) in the proof of Lemma 3.5, the inequality given in (3.22) may be
bounded as follows:

46'mv 30 mlip
=1
Cas

||VUH%2(H)
as required. Thereby, the statement of the lemma holds with
Cinv,5 = maX(CinV,?)CrQ/Cj/d, 4 CIHV 302mﬁ/c2/d)'

O

Remark 3.8. We point out that Assumption 3.2.1, which imposes the shape regu-
larity of the mesh 7j, is only needed for the proof of Lemma 3.7; this result extends
the classical inverse estimate, bounding the H'-seminorm of a polynomial func-
tion with its L?>-norm, to polytopic elements. We note, however, that such inverse
estimates depend on the shape regularity of the elements, even in the case of sim-
plicial elements, cf. [183]. Moreover, the Assumption 3.2.1 and Lemma 3.7 are

only used for proving the inf-sup stability in Chapter 5.

3.3 hp—Approximation bounds

For the approximation theory undertaken in this section, we require the existence
of a suitable covering of the mesh by an overlapping set of simplices in R?. More

precisely, we introduce the following definition.

Definition 3.9. We define the covering 7}? = {K} related to the computational

mesh 7, as a set of open shape-regular d—simplices IC, such that for each xk € Ty,
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FIGURE 3.5: Polygonal element &, & € Ty, in R? and the corresponding simplex
KeTi kcCk.

there exists a K € 7}?, such that k C K. Given ﬁ, we denote by €4 the covering
domain given by () := UICG?}?’C'

For clarity, in Figure 3.5 we show a single polygonal element , k € 7Tj,, in R?
and the corresponding simplex K € 7',f such that k C K. With the definition
of the simplicial covering 7’,? associated with the computational mesh 7, given in
Definition 3.9, we make the following key assumption regarding the amount of

allowable overlap between elements in 7, and the simplices present in ’721.

Assumption 3.3.1. We assume that there exists a covering 773 of Tr, and a positive

constant Oq, independent of the mesh parameters, such that

maxcard{/i’e’ﬁl:fi’ﬂ/C#@, Keﬁf such that KCK} < Oq,.

KETH

As a consequence, we deduce that
h;c = dlam(lC) S Cdiamhm

for each pair k € Ty, K € 771”, with k C IC, for a constant Cajam > 0, uniformly

with respect to the mesh size.

Remark 3.10. We point out that Assumption 3.3.1 requires shape-regularity of the
mesh covering 7',?, rather than the corresponding condition being assumed directly

for the computational mesh 7j,.

In order to derive appropriate hp—version approximation estimates on general poly-

topic elements k, k € Tp,, we note that standard results, cf. [167], for example, are
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applicable by noting that each « is a subset of a d—simplex belonging to the cover-
ing T,? and that the local finite element spaces consist of polynomials without the
use of element mappings to a reference/canonical element. With this in mind, we
recall the following standard hp—approximation results (Babuska-Suri operator)
on d-simpleces; see, for example, [24] for the case when d = 2 and [147] when

d = 3. We also refer to [25] for similar results.

Lemma 3.11. Let K € 7’,? be a d-simplex, d = 2,3, of diameter hx. Suppose
further that v|x € HY(K), for some | > 0. Then, for p € N, there exists v €
P,(K), such that

hy- 1
o = Tyl < Ot ollger. 120, (3.23)
for 0 <q<lI, and
s—d/2
v — T o) < CLQpl’C_—d/Q|yv||Hl(,q, [ >d/2. (3.24)

Here, s = min{p + 1,1} and C1, and Cyy are positive constants which depend on

the shape-reqularity of IC, but are independent of v, hx, and p.

In order to generalize Lemma 3.11 to general polytopic elements, we first note that
functions defined on €2 can be extended to the covering domain €2; based on the

employing the following standard extension operator.

Theorem 3.12. Let €2 be a domain with a Lipschitz boundary. Then there exists
a linear extension operator € : H*(Q) — H*(R?), s € Ny, such that €vlg = v and

| €0 grsray < Cellv]| s (02),

where C¢ is a positive constant depending only on s and 2.
Proof. See [171]. O

We note that the assumptions stated in Theorem 3.12 on the domain {2 may be
weakened. Indeed, [171] only requires that 2 is a domain with a minimally smooth
boundary; the extension to domains which are simply connected, but may contain

microscales, is treated in [158].

Secondly, we also recall the following multiplicative trace inequality for d—simplex.
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Lemma 3.13. Let T is a d-dimensional simplex and F C OT denote one of its
faces. Then, given v € HY(T), the following inequality holds:

hr

1
[WliZ2(e) < CilF (mllvllizm + |7|||UI|L2(T)IIWI|L2<T)> ) (3.25)

where Cy is a positive constant depends on d but independent of the mesh size hr,

|T|, |F| and shape regularity .

Proof. The proof of (3.25) follows from Lemma 1.49 in [84], also see [145, 67],
where the relation (3.25) is written to be independent of unknown constants in

the following way.

P 2|
[0l 72 () < (mHUH%z(T) T [ollz2) [[Vollz2ery | » (3.26)
Here, it is easy see positive constant C; depends only on d. O

Given the projection operator II, defined in Lemma 3.11 and the extension op-
erator € given in Theorem 3.12, we now proceed to define a suitable projection
operator on a general polytopic element x, k € Ty. To this end, for v € L*(Q), we
define ﬁpv € P,(k) as follows: for each x € T}, and given the associated element
K e 7’,?, such that k C K, cf. Definition 3.9, we write

v := I, (€v[x)|, (3.27)

where II, : L?(K) — P,(K) as defined in Lemma 3.11. With the definition of II,

given in (3.27) we now give the following hp—version approximation bounds.

Lemma 3.14. Let k € T, F C Ok denote one of its faces, and K € 7}? the
corresponding simplex such that k C K, cf. Definition 3.9. Suppose that v € L*(Q)
is such that €v|x € H(K), for some I, > 0. Then, given Assumption 3.3.1 is
satisfied, the following bounds hold

Sk—q

- h
lo = ol < Cra-ae €0l ey L > 0, (3.28)

l—
P q

for 0 <q<l,, and

Skw—d/2

~ h.
v — T 2y < CralF|Y? e Con(p, 5, F) 2| €0 i ), Le > df2, (3.29)
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where

m\D, K, = min ) )
Supnan |HbF| plid

s, =min{p+ 1,1,} and Cy3 and Ci4 are positive constants, which depend on the

shape-reqularity of IC, but are independent of v, h,., and p.
Proof. To prove (3.28), we note that
l|lv — f.[p'UHHq(H) = ||¢v — Hp(QEU)HHq(n) < ||€v — Hp(@U)HHq(]C).

Thereby, upon application of (3.23) and noting that Assumption 3.3.1 holds, the
desired bound follows immediately with Cy3 = C1,C35 7

diam ?
To prove (3.29), we let s € Fy, cf. Definition 3.2; then applying a standard
scaling argument with respect to [, the multiplicative trace inequality (3.25),
and (3.28), we obtain

o — T1,0]1 22, §<MFK o = Tpoll2a e,

i
hg |8 17 0 = T | 20 1V (0 = T0) | 2 )

F hn hZSK—l
< Ct 0121 OQSN ! | ’| (Odiam?—i_h’nf) p2ln 1 HSUHHM(IC (3 30)

diam |

Given that hnf < h,, and kf is arbitrary, from (3.30) we conclude that

|F| h23

SUp,F . K | PP~

o = T0)3aey < Gy €2y Cii (1 + Cltan) - €0 ey (3:31)

diam
On the other hand, proceeding as in the proof of Lemma 3.5, we observe that
v — ﬁp“”%?(p) < [F[llv — ﬁp”“%w(m

Hence, employing the definition of the projection operator f[p, together with (3.24)
and Assumption 3.3.1, we deduce that

_ . h25 w—d
lv = Tl Z2(m < CFp Clinn IFI — 1€0] 30 i - (3.32)

diam

Thereby, taking the minimum of the two bounds (3.31) and (3.32), the approxi-
mation result stated in (3.29) holds with

CI A= max CI 1 jfam1/2 V Ct 1+ Cdlarn CI 2C§famd/2 '
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O

Remark 3.15. We note that (3.31) is also valid for the case when [, > 1; for
simplicity of presentation, we have omitted this level of generality in the statement
of Lemma 3.14.



Chapter 4

DGFEMs for Pure Diffusion
PDEs

On the basis of the hp—version inverse and approximation bounds developed in the
previous chapter, here we study the IP-DGFEM discretization of pure diffusion

problems based on two different type mesh assumptions over polytopic meshes.

4.1 Model problem

Let © be a bounded Lipschitz domain in R?, d > 1, and let 9 signify the union
of its (d — 1)-dimensional open faces. We consider the following PDE: find u as

the solution of

V- (aVu) = f inQ, (4.1)
u = gp ondQp, (4.2)
n-(aVu) = gy on Q. (4.3)

Here, f € L*(Q2), a = {aij}?j:]_ with a;; € L*(Q) and a;; = aj;, fori,j =1,...,4d,

at each x in €,

d
> ay(x)&E = 0lEl > 0, (4.4)
ij=1
with 6 a positive constant, for any vector & = (&1,...,&;) in RY. For the sake of

simplicity, we divide 0f2 into two disjoint subsets 0{2p and 0€lx whose union is

42
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0L), with 0€)p is non empty and relatively open in 9€). The well-posedness of the
boundary value problem (4.1), (4.2), (4.3) under the uniform ellipticity condition
(4.4), can be proved by using the Lax-Milgram theorem; see [70, 46].

Before we present the IP DGFEMs for elliptic problems, we will talk about two
mesh assumptions used in this chapter. The first mesh assumption is given in
Assumption 3.1.1, which can be interpreted as each polytopic mesh has uniformly
bounded number of faces without any shape reqularity restrictions. This mesh
assumption first appeared in [61] and is already utilised in Chapter 3 for deriving
inverse estimation and polynomial approximation results. We will keep on using
this mesh assumption for DGFEMs to solve elliptic PDEs in Section 4.2 and also

to solve PDEs in non-negative characteristic form in Chapter 5.

On the other hand, the second mesh assumption can be interpreted as each poly-
topic mesh is allowed to have arbitrary number of faces if it satisfies a general
shape reqularity assumption. This mesh assumption first appeared in [58]; its pre-
cise definition is given in Section 4.3. In this setting, we can simplify some inverse
estimate and polynomial approximation results from Chapter 3. Then, these new
results will be utilised for DGFEMs to solve elliptic PDEs in Section 4.3 and also
to solve time dependent PDEs in Chapter 6.

4.2 DGFEMs for elliptic PDEs on polytopic

meshes with bounded number of faces

Following Chapter 3, we write 7, to denote a subdivision of the computational
domain Q C R? d > 1, into disjoint open polytopic elements x constructed such
that ) = U,er, k. Recalling that F, denotes the set of open (d — 1)-dimensional
element faces associated with the computational mesh 7, employing the notation
introduced in Chapter 2, we write F;, = Fi UJFP, where FiI denotes the set
of all open (d — 1)-dimensional element faces F' € Fj, that are contained in €2,
and FP is the set of element boundary faces, i.e., F C 99 for F € FP. For
simplicity, we assume that 7}, respects the decomposition of 92 in the sense that
each ' € FP belongs to the interior of exactly one of 9p or 9€x. Hence we
further denote by FP ,}"}/L\f C FP as the subsets of boundary faces belonging to
0Qp, Of)y, respectively.
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To facilitate hp—adaptivity, to each element x € T,, we write p, > 1 to denote the
elementwise polynomial degree, and collect the p, in the vector p := (p, : K € Tp).
With this notation, we define the finite element space S% with respect to 75, and
p by

Sy ={u¢€ L*(Q) : ul, € Pp.(k),k € Th},

where, we recall that P,(x) denotes the space of polynomials of total degree p on k.
We stress that, by construction, the local elemental polynomial spaces employed
within the definition of S% are defined in the physical space, without the need
to map from a given reference or canonical frame, as is typically necessary for

classical finite element methods.

Following the derivation presented in Section 2.3, we introduce the following (sym-
metric) IP-DGFEM bilinear form

Bqa(up,vp) = Z aVuy - Vu, dx

KETR Y F

. /F ({aVun} - [on] + §aVon} - [un] — ofur] - [en]) ds,

FeFLfuFrp

and linear functional

Ovy) = Z/fvhdx— > /FgD(aVvh-n—avh)ds—i— > /Fnghds,

KETH FeFP Fery

for uy, vy, € SY.. The corresponding DGFEM reads: find wj, € Sy, such that

Ba(un,vn) = £(vp), (4.5)

for all v;, € S%L.

The well-posedness and stability properties of the above formulation depend on
the choice of the discontinuity penalization function . These are analysed in
the next section based on the new hp—version inverse estimates presented in the
previous chapter, whereby we anticipate that the choice of o must be sensitive to

the size of each face relative to that of the neighbouring elements.
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4.2.1 The well-posedness of the IP-DGFEMs

To focus on the treatment of general polytopic subdivisions, we consider here the

special case of piecewise constant diffusion tensors, i.e.,

a € [VOT,)|&xd (4.6)

sym*

For the case of general positive semidefinite diffusion tensors, see [105] and [60].
We can consider y/a as the unique (positive definite) square-root of the symmetric

matrix a and define a, := |\/al3|., with | - | denoting the matrix l;—norm.

Definition 4.1. Assume that (4.6) holds. The discontinuity penalization function
o : Fn — R is given by

anpr| F|

U, max {OINV(pm K, F)

KE{Ki K

CO'CINV(pIm R, F)

}, FE]—"}%,anmﬂaﬁj,

Al

, F e FP, F C k.

olx) = a.p2|F|

i (4.7)

Here, Ciyy is the constant of the inverse inequality of Lemma 3.5 and C, > 0 is a

constant independent of p,, |F|, and of |&].

In accordance with the mesh settings laid out in Section 3.1, the value of the dis-
continuity penalization function ¢ on a given elemental interface is independently
determined on each constituent (d — 1)—dimensional simplicial mesh face. This
way, the penalization function is independent of any local h or p quasi-uniformity
or hanging nodes regularity assumption. In particular, for standard simplicial and
tensor product meshes with hanging nodes, the independent piecewise constant
definition of the penalization function allows for irreqular hanging nodes with ar-
bitrary positioning within the parent interface. This is in contrast with standard
IP-DGFEM settings, whereby irregular hanging nodes are not permitted as the
penalization function definition relies on the face and parent interface to be of size

comparable to that of the element [125].

A first issue encountered when analysing (4.5) is that this formulation cannot be
extended to functions in H'(Q). Indeed functions in L?*(2) do not have well-defined
traces on F, and hence the terms {Vo} are not well defined for v € H'(Q). Hence
we are not allowed to test in (4.5) with the analytical solution of (4.1) unless we
assume that this is regular enough. This issue can be overcome by introducing

suitable extensions of the bilinear form By(+,-) and linear functional £(-).
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Let II, : [L*(Q)]* — [S}.]? denote the orthogonal L*-projection onto the finite

element space [SY ]¢. Following [152, 105], we define the bilinear form

Bi(w,v) = Z aVu - Vudx

KETR Y F

- Y[ W0} o]+ Tt (Vo) fon] - oful - [e]ds),

FeFfuFrp

(4.8)

and linear functional

i(v) = Z/fvdx— > /FgD(aHQ(VU)-n—JU)ds—I— > /Fnghds,

KETh 75 FeFP Fery

for all v, w € § := H'(Q) + 5% . Then the DGFEM formulation (4.5) is equivalent
to: find uy, € S% such that

Bd(uh,vh) = g(vh), (49)

for all v, € S%.. This discrete problem is inconsistent with (4.1), hence Galerkin
orthogonality does not hold. On the other hand, weaker regularity assumptions on
the analytical solution are required allowing us to prove continuity and coercivity

of the bilinear form By(,-) on the whole of S.

We analyse the DGFEM method in the associated energy norm

lolllbe = Y IVaVollza + D /Fa\[[v]]\st. (4.10)

k€T FeFLuFrp

Here and in following chapters we shall often make use of the arithmetic—geometric

mean inequality ab < a?e + Z—Z, holding for any a,b € R and € > 0.

Lemma 4.2. Under Assumption 3.1.1 and with o as in Definition 4.1 with C,

large enough, the bilinear form given by (4.8) is coercive and continuous, that is
By(v,0) > Copee|[0]||Be for all v eSS, (4.11)

and

Bi(w,v) < Ceont|l|w|pe ||v]llpe for all w,v € S, (4.12)
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where Ceoer and Ceone are positive constants, independent of the mesh size h, and

polynomial order p,.

Proof. The proof follows standard arguments [84], by employing the inverse in-
equality Lemma 3.5 in place of the standard inverse inequality for simplexes. From

the definition of Bd, for any v € S, we have

Balvo) = Iollba—2 3 [{l(voy-[lds, (@13

FeFfurp

and it remains to bound the second term on the right-hand side. For F' € FI, the

Cauchy—Schwarz inequality and arithmetic-geometric mean inequality imply

1 1
[0 [ds < 5 (I-pat (Vo) + | ol o) e )
><||\/(_f[[v]]||L2(F
1
‘ (nﬁam(w My + | eTa(Ve >||L2<F)

1
+§H\/E[[U]] 172y

IN

Using the inverse inequality Lemma 3.5, the definition of the interior penalty
parameter o, the assumption of diffusion tensor in (4.6), and the L2-stability of

the projector Il,, we conclude that

a,ﬁpﬁ+ |F|

JAe(vo}-plds < e(Cmv(mef,F) P \/—\/_H2(VU)||L2 -

a-p>_|F|
Ll VAL (90 )

+CINV(pK_7 KJ_J F)

1
+§H\/E[[U]] 172
€
< = (IVaVelidage, + IVaVols.- )
Co
1
+ 5 IV (4.14)

Similarly, for F' € FP, we have that

JATL(T0) - o] ds < S VAol + LIVETl, (419
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Inserting (4.27) and (4.15) into (4.13) immediately gives

~ 2C 1
Bavr) = (1-755) T IVaVellay + (1-5) 5 IValdllae

€T FeFFUFP

as the number of elemental faces is uniformly bounded by Assumption 3.1.1. Hence

the bilinear form By(-,-) is coercive over S x S if C, > 2Cpe for some € > 1/2.

The continuity of Bd(-, ) easily follows by applying the Cauchy-Schwarz inequality
and then bounding the face terms by repeating the arguments leading to (4.27). O

Remark 4.3. The above analysis extends well known results for standard meshes
to meshes made of general polytopes. It is based on exploiting the new inverse
estimate of Lemma 3.5 to control the face terms and on requiring that the number
of elemental faces is uniformly bounded, cf. Assumption 3.1.1, when summing
up the contributions of all faces. This approach has the crucial advantage of
permitting very general polytopic meshes as no mesh elements shape regularity is

directly assumed.

Remark 4.4. Tt is possible to avoid the composition of a bound on the number
of faces by requiring, instead, that the mesh satisfies a certain shape regularity
assumption, as we shall show in Section 4.3. We note that the present approach
and the one described below may be easily combined to produce stable DGFEM

discretisations on very general mesh settings.

4.2.2 A priori error analysis

The following abstract error bound is an instance of Strang’s second lemma [172,
70], whereby the error is controlled by the sum of a quasi-optimal approximation

term and a residual term.

Lemma 4.5. Let u € H'(Q) be the weak solution of (4.3) and uj, € Sy be the
DGFEM solution given by (4.5). Under the hypotheses of Lemma 4.2, it holds

C . 1 By(u, wy,) — 0(u, w
| — up|||pe < (1+ t) inf |[lu — vallpg + —— sup | Ba(u, wp) — L(u, wy)|
Ocoer vhes%l Ccoer wh€S$h |||wh|”DG

Proof. By the triangle inequality,

llv = unlllpe < [[lw = vnllpe + llfon = unllpe,
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for all v, € S7, and it remains to bound |[|vy, — up|[[pe. To this end, we use the

coercivity on S7. and continuity on S of Ba(+,-), to obtain

Bd(Uh — Up, Up — Uh)

lun —wnllbe <

CCOBI‘
1 - .
=z (Ba(vp, — u,up, — vp) + Ba(u — up, up — vp))
C'COI’I
< 5 “[lon = ulloalllun = vnlllpa
1 - -
"—C (Bd(u, Up — ’Uh) — E(uh — Uh)),
and the required bound easily follows. O]

The abstract error bound of Lemma 4.5 is used to derive convergence results
for the method at hand. These depends on the availability of the hp—version
approximation estimates of Lemma 3.11. Assume that the mesh 7, admits a
shape regular covering T = {K}, cf. Definition 3.9, satisfying Assumption 3.3.1,
and further assume that u|, € H™(k), for some I, > 1+ d/2, for each x € Ty, so
that, by Theorem 3.12, Cu|x € H%(K), where K € 7;? with k C K. Then, the

approximation estimates of Lemma 3.14 together with Assumption 3.1.1 give

inf llu—vllbe < [lu =, ullbe
esk

<> [ IVaVu =T wliaw +2 Y oll(u— w3

k€T FC@E\]’{L\/

hi(sn—l) p—d+2

<C Z 2(lk—1) Gr +

KETH PR " Fcor\FY

Con(pr, 5, F)o| F| | || €ull1, i) (4.16)

with s, = min{p, + 1,1}

Similarly, we can bound the residual term as follows. First note that integration
by parts elementwise together with the identity (2.26) and the fact that u is the

solution of (4.1), gives

Ba(u, wy) — {(u, wh)‘ = | > /F fa(Vu — Ty (Vu))} - [wa] ds

FeFfuFrp

<( X [ o ava-muva)peds) " flunlioe.

FeFruFrp
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Let IT denote the vector-valued hp—projection operator obtained by applying com-
ponentwise the operator ﬂpn given in (3.27). Adding and subtracting f[(Vu), we

obtain

3 / 1 fa(Vu — TL(Vu) } ds

FeFLuFrp

< Y[ 20 (V= TV} + Ha(TL(I(Ve) - Tu)) J) ds

FeFfuFrp
=1+1IL

Using, as above, the approximation estimate (3.29) yields:

2(5n 1)h d
<O @ gy D Culvew P IFll€ullpn

w€Th P! FCor\FN

Similarly, the inverse inequality (3.13), the L?-stability of the projector Iy, and
the approximation estimate (3.28), yield:

el I

n<C) a w o | 2 Cosvloes F)oFL | l€ulin o,
w€Tn  Pr " FCoR\FN

Combining the above developments we arrive to the following bound of the residual

term:

| Ba(u,wy) — £(u,wy)] < <I+H>l/2

sup
wnest, l[wnllpe
hQ(SH—l)
—2
= C( P
KETH Px

h- d 1
X Z <C (p,i,li F)p— + CINv(me{ F) |p| ) O'_1|F|

Fcaﬁ\}';iv r H
1/2
X HQSUH?{M(IC)> : (4.17)
Now the approximation bound (4.16) and residual bound (4.17) yield the following

DGFEM convergence result.

Theorem 4.6. Let T, = {k} be a subdivision of Q C R, d = 2,3, consisting of
general polytopic elements satisfying Assumption 3.1.1 and Assumption 3.3.1 with

’721 = {K} an associated covering of Ty, consisting of shape-reqular d—simplices, cf.
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Definition 3.9. Let uj, € Sph, with p, > 1 for all kK € Ty, be the corresponding
DGFEM solution defined by (4.5) with the discontinuity-penalization functions
given by (4.7). If the exact solution v € HY(Q) to (4.1)~(4.3) satisfies u|. €
H"(K), L, > 1+ d/2, for each k € Tp, such that Culx € H*(K), where K € T}
with Kk C IC, then

2(sk—1)
lv — unlllpe < C Z W (@r + Gu(F, Cixv, Cony ) 1 €01 Fp -
KETR PR

Here, s, = min{p,. + 1,1},

gH(F7CINV70m7pn):aipnh;d Z Co(pr, 5, F)o | F|

FC@R\]:,/L\[

+dipi|/{|_1 Z CINV(pm R, F)0_1|F| + h;d+2p;1 Z Cm(pm Ry F)U|F|7
FCor\F FCor\FY

and C' is a positive constant independent of the discretization parameters.

Remark 4.7. The above result generalises well-known a priori bounds for IP-
DGFEMs defined on standard element domains [125, 156] in two ways. Firstly,
meshes comprising polytopic elements are allowed. Secondly, elemental faces are
allowed to degenerate. For d = 3, this also implies that positive measure inter-
faces may have degenerating (d — 2)-dimensional edges. In turns, this freedom is
relevant to standard (simplicial/hexahedral) meshes with hanging nodes in that
no regularity assumptions of the hanging nodes is required. If, on the other hand,
the diameter of the faces of each element k € 7T, is of comparable size to the
diameter of the corresponding element, then the a priori error bound of Theorem
4.6 reduces to

hsfl
I = unlllpe < C——lull g ()-
p 2

This coincides with the analogous result derived in [125] for standard meshes
consisting of simplices or tensor-product elements. It is easy to check that the

above a priori error bound is optimal in h and suboptimal in p by half an order.

Finally, we point out that a priori bounds depend on the mesh assumption 3.1.1,
which allows shape irregular polytopic meshes but meshes should have uniformly

bounded number of faces.
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FIGURE 4.1: Polygons with a lot of tiny faces (left); star shaped polygon (right).

4.3 DGFEMs for elliptic PDEs on polytopic

meshes with arbitrary number of faces

We recall the second mesh assumption.

Assumption 4.3.1 (Unbounded number of faces). For any k € Ty, there exists
a set of non-overlapping d-dimensional simplices {/@f}pca,.C C F) contained in K,
such that for all F' C Ok, and

dlry |
[F]

h. < C; (4.18)
with Cy > 0 constant independent of the discretization parameters, the number of

faces per element, and the face measures.

In Figure 4.1, we exemplify two different polygons satisfying the above mesh regu-
larity assumption. We note that the assumption does not give any restrictions on
neither the number nor the measure of the elemental faces. Indeed, shape irregu-
lar simplices mf , with base |F'| of small size compared to the corresponding height
d|kf’|/|F|, are allowed: the height, however, has to be comparable to h,; cf., the
left polygon on Figure 4.1. Further, we note that the union of the simplices sl
does not need to cover the whole element «, as in general it is sufficient to assume
that

Urcon Ry C R (4.19)

cf., the right polygon on Figure 4.1.
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Remark 4.8. Meshes made of polytopes which are finite union of polytopes with
the latter being uniformly star-shaped with respect to the largest inscribed circle

will satisfy Assumption 4.3.1.

We point out that above mesh assumptions are can be viewed as a generalization
of shape regularity assumption over polytopic meshes. It is easy to see that mesh
assumption 4.3.1 is equivalent to the classical shape regularity assumptions in
the sense of [70] for simplical meshes or tensor product meshes, if we take p, =

minpco, d|kl’|/|F|, where p,, denotes radius of largest inscribed ball.

We will simplify the inverse estimate and polynomial approximation results for

trace term based on Assumption 4.3.1.

Lemma 4.9. Let k € Ty, and Assumption 4.5.1 holds. Then, for each v € P,(k),

the following inverse inequality holds

(p+1)(p+d
h

K

[0]l72(m) < Cs [0]172(,)- (4.20)
Constant Cy is defined in 4.18, independent of |/<;]/supﬁéwoi &L, |F), p, and v.

Proof. The proof is straightforward applying inverse estimate (3.4) over each sim-

plex ! inside the k, combined with relation (4.19).

(p+1(p+d) [F]
||U||%2(8n) < Z d ‘KF|||U||%2(N;?)
FCok b
(p+1)(p+d) (p+1)(p+d)
= Z CS—HUH%2(HF) S CS—HUH%Q(R)
P b Do
FCok
Here, lif € FJ is defined in Definition 3.2, the proof is complete. O

Lemma 4.10. Let k € T, F C 0k denote one of its faces, and K € 7;? the
corresponding simplex such that k C K, cf. Definition 3.9. Suppose that v € L*(9)
is such that €v|x € H™(K), for some I, > 0. Then, given Assumption 4.3.1 is
satisfied, the following bound holds

N hiﬁfl/2
||’U - HpU||L2(8k) S OIﬁW“gU“HM(’C)’ l,..i > 1/2, (421)

where s, = min{p+1,1,} and Cy5 are positive constants, which depend on constant
Cy defined in 4.18 and shape-reqularity of IC, but are independent of v, h,., p, and

number of faces per element.
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Proof. By employing Assumption 4.3.1, relation (4.18), (4.19), the multiplicative
trace inequality 3.13 over simplices, arithmetic mean inequality, and bounds (3.28),

we have

v — HPU”%2(BR) < Z Ct‘F|< |HU _HPUHi?(nf)

FCok

e |68 17 o = T g2 1V (0 = ) 22 )

1 .
CiCd Y (h—||v — ]2,

FCok F

IN

Hlo = Tyl IV (0 =~ ) 1acep)

+1) -
< aea Y (-t
FCOk
hy, = 2
Hlvi - Hpv>|rL2<Kg))
(p+1) ~ hy -
< GQCA(S = o = el + 190 = o)l )
h23 -1
< GOACE Con i €0 e (4:22)

Here, we have

Crs = Cpy O35 12 /CCud.

diam

]

Remark 4.11. We point out that the above two bounds are both independent of
number of faces per element and measure of faces. The idea behind the above two
bounds are simple. We are not applying the inverse estimate and approximation
results from each individual faces F' to the whole element x, but applying those
results from element boundary Ok to the element x. With this approach, we do
not need to consider the L*-norm bounds for inverse estimate and approximation
result. So if the mesh k satisfies Assumption 4.3.1, each individual faces F is
allowed to have arbitrarily small measure and each element x is allowed to have

arbitrary number of faces.

4.3.1 The stability and a priori error bound of IP DGFEM

Based on the above new mesh Assumption 4.3.1, we will derive the coercivity and
continuity of proposed IP DGFEM. In this section, we will assume the diffusion

tensor a is a general function which satisfies the uniform ellipticity condition (4.4).
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Next, we shall often make use of the arithmetic—geometric mean inequality, to-

gether with inverse estimate (4.20) and relation (4.4)

Lemma 4.12. Under Assumption 4.3.1 and with the discontinuity penalization

function o : Fr, — R is given by

a2 K 1 K d
C, I?ax}{a“(p +h)(p i )}, F € Ff, F = 0k; N Okj,
RE1Ri,Kj K
o(x) = (4.23)
-
¢, %P V(P 1 d) FeFP, FCon,

I ’

with Cy > 0 sufficiently large, independent of discretization parameters and the
number of faces per element. The bilinear form given by (4.8) is coercive and

continuous, that is
Biy(v,0) > Coper||0]||5e for all v eSS, (4.24)

and
Ba(w,v) < Ceontlllwllpe lvllpe for all w,v € S, (4.25)

where Ceoer and Ceone are positive constants, mesh size h,, polynomial order p,.,

the number of faces per element.

Proof. By employing the inverse inequality Lemma 4.9 and recalling the definition

of By, for any v € S, we have

By(v,v) = |lvlllbe - /{{aﬂz (Vo) - [o] ds (4.26)

FeFfuFrp

and it remains to bound the second term on the right-hand side. For F' € Fi, the

Cauchy—Schwarz inequality and arithmetic—geometric mean inequality imply

1 1
Jarn oy Blas < 5 (1zamaVor )l + |zea(Vo )l
</l
1 2
e (10Tl ey + | (To) )

1
G [

IN
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Similarly, for F' € FP, we have that

JATE(T0} - P ds < el ZZal (Vo) s, + VAT

Using the inverse inequality Lemma 4.9, the definition of the interior penalty
parameter o, the uniform ellipticity condition (4.4) of diffusion tensor, and the

L?-stability of the projector Ily, we conclude that

/{{angvv}} [v] ds

FeFfuFrp
1
< EZ Z |—= CLH2 (Vo) Z2r) e Z Vool Ze )
KETH FCOk FE}-}%U]‘-}?
19 (ps + 1)(pe +d) |F|
S € Z Z g lai d | |||H2(vv)||12(nf)
k€T, FCor Ry
1
o > IVl
FE}'IU]-'D
1
Ellﬁ[[vlﬂlizmy (4.27)
7 keTh

Inserting (4.27) into (4.26) immediately gives

Bao) 2 (1-22) ¥ WVl + (1-5) 3 IValla

~ETh FeFEFUFP

as generalized shape regularity constant Cj is uniformly bounded by Assump-
tion 4.3.1. Hence the bilinear form By(-, ") is coercive over S x S if C, > 2C,¢/0
for some € > 1/2. C, depends on the constant Cj, but is independent of number

of faces per element.

The continuity of éd(-, ) easily follows by applying the Cauchy-Schwarz inequality
and then bounding the face terms by repeating the arguments leading to (4.27). O

Remark 4.13. The coercivity constant may depend on the shape regularity con-
stant C, and on the uniform ellipticity constant . To avoid the dependence on
the latter, it is possible to combine the present developments with the DGFEMs
proposed in [105]; we refrain from doing so here, in the interest of simplicity of

the presentation.
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Remark 4.14. We point out that the stability of SIP-DGFEM may be lost when
the diffusion tensor a has a high contrast. In that case, we should modify our

method by using diffusivity-dependent weighted averages, see [95, 87] for details.

Finally, we will derive the a priori error bound under the Assumption 4.3.1 for
the proposed IP DGFEM in [|||||pq. Here, we emphasize that only the error
analysis related to trace term will be different in this section compared to that
in Section 4.2. We detail here a different treatment of the trace terms to take
advantages of the different mesh assumption used here. By employing relation

(4.21) in approximation Lemma 4.10, we have

> [ob-futas= Y olfo- el

FeFfuFrp FeFfuFp
<2) 0 Y ol =Tl <2 max _o)|lv = T72 (s,
KETh FCOR\FY KET, Fca VR
hZSN—l
<O Y amax o) e, (4.28)
KETH

where the constant C' > 0 is independent of number of faces per elements. Bounds
for remaining trace and inconsistency terms can be derived in a completely anal-

ogous fashion. Then, we have the following DGFEM convergence result.

Theorem 4.15. Let T;, = {k} be a subdivision of @ C RY, d = 2,3, consisting of
general polytopic elements satisfying Assumption 4.5.1 and Assumption 3.3.1 with
7;? = {K} an associated covering of Tj, consisting of shape-reqular d—simplezes,
cf. Definition 3.9. Let uy € Sph, with p. > 1 for all k € Ty, be the corresponding
DGFEM solution defined by (4.5) with the discontinuity-penalization functions
given by (4.23). If the exact solution v € H'(Q) to (4.1)~(4.3) satisfies u|, €
H" (), I, > 3/2, for each r € Ty, such that €ulx € H*(K), where K € T, with
k C K, then

2(5,.;—1)
|Hu_uh|||DG < OZ an+g ( mpn)) ||Qiu||§_1lm(;c),
KETH p
where, s, = min{p, + 1,1},
o h’li? k) = K nh,il max o +GH ,{h ' max J_l
() i FCor\FY P Fcor\FY

+ pth, max o,
FC@H\]-'N
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and the positive constant C'is independent of the discretization parameters, number

of faces per element and w.

Remark 4.16. The above a priori error bound holds without any assumptions
on the relative size of the spatial faces F', ' C Ok, and number of faces of a
given polytopic element k € Ty, i.e., elements with arbitrarily small faces and/or
arbitrary number of faces are permitted, as long as they satisfy Assumption 4.3.1.
We will extend the above results in Chapter 6 for analysing the IP DGFEM for

parabolic time dependent problems.

4.4 Numerical examples

We present a series of computational examples to numerically investigate the
asymptotic convergence behaviour of the proposed IP DGFEM on general meshes
consisting of polygonal elements. Throughout this section the IP DGFEM solu-
tion uy is computed with the constant C, = 10 appearing in the interior penalty

parameter.

4.4.1 Example 1

In this first example, we investigate the computational efficiency of employing
the IP DGFEM on standard tensor-product elements (quadrilaterals in 2D and
hexahedra in 3D) with local polynomial bases consisting of either P, or Q, poly-
nomials; in the following figures, these schemes will be denoted by DGFEM(P)
and DGFEM(Q), respectively. Moreover, we shall compare both IP DGFEM ap-
proaches with the standard continuous Galerkin finite element method with Q,

basis, denoted by FEM(Q).

Firstly, we consider the following two—dimensional Poisson problem: let 2 = (0, 1)?
and select f = 272 sin(7z) sin(7y), so that the analytical solution to (4.1) is given
by u = sin(nx)sin(7wy). In Figure 4.2 we investigate the convergence behaviour
of the three schemes, namely DGFEM(P), DGFEM(Q), and FEM(Q), under p—
refinement for fixed h. Here, uniform square meshes consisting of 16, 64, and 256
elements are employed; for each mesh, we plot both the L?(Q)-norm and H'(Q)-
seminorm error against the square root of the number of degrees of freedom in
the underlying finite element space, as the polynomial degree p is uniformly in-

creased. Here, we clearly observe exponential convergence of all three methods, in
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FIGURE 4.2: Example 1. Comparison between IP DGFEM exploiting local Q,,

and P, polynomial spaces with FEM under p-refinement on uniform meshes

consisting of square elements on (0,1)? (2D). Left: |Ju — up|2q); Right: |u —
up| 1 (0); (a) 4 x 4 mesh; (b) 8 x 8 mesh; (c) 16 x 16 mesh.

the sense that, on the linear-log scale, the convergence plots become straight lines

as p is increased. Moreover, we observe that the convergence lines for FEM(Q) and

DGFEM(Q) are roughly parallel, with the former method being more efficient, in
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FIGURE 4.3: Example 1. Comparison between IP DGFEM exploiting local Q,,
and P, polynomial spaces with FEM under p-refinement on uniform meshes
consisting of hexahedral elements on (0,1)3 (3D). Left: |u — up|2(q); Right:

[u — up| 1 (q); (a) 4 x 4 x 4 mesh; (b) 8 x 8 x 8 mesh; (c) 16 x 16 x 16 mesh.

the sense that, for a given number of degrees of freedom (dof), the error measured
with respect to both the L?(Q2)-norm and H'(2)-seminorm is less than the corre-

sponding quantity computed for DGFEM(Q). However, one important observation
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is that, for each mesh, the slope of the convergence line for DGFEM(P), i.e., the
IP DGFEM employing local P, polynomial bases, is actually steeper than the
corresponding convergence line when local polynomial bases consisting of tensor-
product Q, polynomials are employed. Indeed, while for moderate p, we observe
that the FEM(Q) method is more efficient than DGFEM(P), as the polynomial
degree is increased, the convergence line for DGFEM(P) crosses the corresponding

line for FEM(Q), at least on the coarser meshes.

To investigate this behaviour further, we now consider the three—dimensional
variant of the above problem. To this end, we let © = (0,1)® and select f =
372 sin(mx) sin(ry) sin(7z), so that the analytical solution to (4.1) is given by
u = sin(mz)sin(7ry)sin(rz). In Figure 4.3 we consider the convergence of the
DGFEM(P), DGFEM(Q), and FEM(Q) schemes under p-refinement on uniform
hexahedral meshes consisting of 64, 512, and 4096 elements. As in the two-—
dimensional setting, we again observe that the convergence lines for both FEM(Q)
and DGFEM(Q) are roughly parallel, with, again, the former method being more
efficient in terms of leading to a smaller error for a given number of degrees of
freedom. Moreover, the slope of convergence line for the DGFEM(P) scheme is
not only steeper than the corresponding line for DGFEM(Q), but also that the
cross—over point between DGFEM(P) becoming more efficient than FEM(Q) oc-

curs much sooner.

We now turn our attention to investigate the asymptotic behaviour of the proposed
IP DGFEM (DGFEM(P) using the introduced early notation) on a sequence of
successively finer polygonal and square meshes for different values of the polyno-
mial degree p; we point out that in both cases we employ local spaces consisting
of polynomials of degree at most p on each element x € 7;,. The polygonal meshes
are generated using the general-purpose mesh generator PolyMesher, cf. [179].

Typical meshes generated by PolyMesher are shown in Figure 4.4.

Here, we again consider the 2D Poisson example, we let 2 = (0,1)? and select f =
272 sin(mrx) sin(7y), so that u = sin(7z)sin(my). In Figure 4.5 we plot the error,
measured in terms of both the L?(Q)-norm and the DG-norm [||-|||pg, against the
square root of the number of degrees of freedom in the underlying finite element
space S%L for (uniform) p between 1 and 5. We clearly observe that the error
l|u—up||r2() and [[ju — up|||pe converge to zero at the optimal rates O(hP*!) and
O(hP), respectively, as the mesh size h tends to zero for each (fixed) p; these latter

results clearly confirm the optimality of Theorem 4.6. In particular, we observe
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() (d)

FIGURE 4.4: Example 1. Polygonal element meshes generated using
PolyMesher. (a) Mesh with 64 elements; (b) Mesh with 256 elements; (c)
Mesh with 1024 elements; (d) Mesh with 4096 elements.

that the error in the underlying IP DGFEM is smaller when polygonal elements
are employed, when compared to the corresponding quantity computed based on
exploiting either uniform square elements; this behaviour is more pronounced when

the error is computed with respect to the DG-norm.

We remark that similar behaviour was observed in [124] when the DG—norm of
the error was computed on irregular quadrilateral meshes constructed by randomly
splitting each of the interior nodes by a displacement of up to 10% of the local
mesh size. As in [124], we attribute the improvement in the computed error, when
polygonal elements are employed, to the increase in interelement communication.
Indeed, uniform square elements may only communicate with their four immediate
neighbours, while polygonal elements possess a much greater stencil due to the

increase in the number of local element faces.
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FIGURE 4.5: Example 1. Convergence of the IP DGFEM with P, basis under
h-refinement: (a) ||u — uhHLg(Q); (b) [[lu — upl||pa-
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FIGURE 4.6: Example 1. Convergence of the IP DGFEM with P, basis under
p-refinement in DG—norm: (a) 1024 elements; (b) 4096 elements.

Finally, we investigate the convergence of the IP DGFEM under p-refinement
for fixed h. To this end, in Figure 4.6 we plot the DG-—norm of the error against
number of degrees of freedom on rectangle and polygonal meshes. In each case, we
observe that on the linear-log scale, the convergence plots become straight lines
as the degree of the approximating polynomial is increased, thereby indicating

exponential convergence in p.
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FIGURE 4.7: Example 2: Uniform square mesh, consisting of 48 elements.
4.4.2 Example 2

Following on from the previous numerical example, here we investigate the conver-
gence behaviour of the DGFEM(P) and DGFEM(Q) approaches for a non-smooth
problem on fixed computational meshes under p-refinement. To this end, we let
Q be the L-shaped domain (—1,1)?\ [0,1) x (=1, 0]. Uniform square meshes con-
sisting of 48 elements are used, see Figure 4.7. Then, writing (7, ¢) to denote the
system of polar coordinates, we impose an appropriate inhomogeneous boundary
condition for u so that
u = r?/?sin(2p/3);

cf. [189]. We note that u is analytic in Q\ {0}, but Vu is singular at the origin; in-
deed, here u € H?*(Q2). This example reflects the typical (singular) behaviour that
solutions of elliptic boundary value problems exhibit in the vicinity of reentrant

corners in the computational domain.

In fact, v € H %_E(Q), e > 0 an arbitrary small real number. We investigate the
convergence rate of the DGFEM(P) and DGFEM(Q) under p-refinement for this
problem. In Table 4.1, we list the DG—norm error and also the convergence rate of
DGFEM(P) and DGFEM(Q) with polynomial order p = 1,...,40. We point out
that due to the singularity at the origin, geometrically graded quadrature points
towards the origin are used in order to get the desired accuracy. As we can see,
the convergence rate in p for both DGFEM(P) and DGFEM(Q) is approximately:

lllu = unl|lpe < Cp73,
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FIGURE 4.8: Example 2: Convergence of the IP DGFEM with P, and Q,, basis
under p-refinement in DG norm.

where the constant C' is independent of p. The convergence rate in p is double
the theoretical rate in Theorem 4.15. This is the doubling order convergence
in the p-version finite element, see [25] for details. The reason of this doubling
order convergence in p is related to the fact that Sobolev space can not optimally
characterize the singularity of r7log” r type, v € R™, v € N; indeed from [21,
22|, we know that the modified Jacobi-weighted Besov spaces provide a sharper

function space setting to characterize such singular functions.

Finally, we present comparisons for error against Dofs between DGFEM(P) and
DGFEM(Q) under under p-refinement for fixed h. In Figure 4.8, observe lin-
ear convergence on the log-log scale between DG-norm error and Dofs, which
shows that the convergence rate is only algebraic. Interestingly, the convergence
of DGFEM(P) is as steep as the convergence of DGFEM(Q), and DGFEM(P) is
always larger by a fixed constant. This situation is quite different from the smooth

example.
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D DGFEM(P) DGFEM(Q) Ratio of Error
llu — upl||lpc | prate | |||lu—upll|lpg | p-rate | DG(P)/DG(Q) of error
1 3.28E-01 1.43E-01 2.2865
2 1.20E-01 1.4538 6.33E-02 1.1791 1.8899
3 7.74E-02 1.0726 3.93E-02 1.1764 1.9712
4 5.61E-02 1.1209 2.77E-02 1.2081 2.0213
) 4.32E-02 1.1656 2.11E-02 1.2351 2.0529
6 3.48E-02 1.1927 1.67E-02 1.2557 2.0766
7 2.88E-02 1.213 1.38E-02 1.2714 2.0954
8 2.45E-02 1.2312 1.16E-02 1.2837 2.1101
9 2.11E-02 1.2462 9.96E-03 1.2933 2.1218
10 1.85E-02 1.2576 8.68E-03 1.301 2.1316
11 1.64E-02 1.2674 7.67E-03 1.3071 2.1397
12 1.47E-02 1.2749 6.84E-03 1.3121 2.1466
13 1.33E-02 1.2816 6.16E-03 1.3162 2.1525
14 1.20E-02 1.2869 5.58E-03 1.3196 2.1578
15 1.10E-02 1.2916 5.10E-03 1.3223 2.1623
16 1.01E-02 1.2954 4.68E-03 1.3247 2.1664
17 9.37E-03 1.2989 4.32E-03 1.3266 2.1701
18 8.70E-03 1.3017 4.00E-03 1.3282 2.1733
19 8.10E-03 1.3044 3.72E-03 1.3296 2.1763
20 7.58E-03 1.3065 3.48E-03 1.3308 2.179
21 7.11E-03 1.3086 3.26E-03 1.3318 2.1815
22 6.69E-03 1.3103 3.06E-03 1.3327 2.1838
23 6.31E-03 1.3119 2.89E-03 1.3334 2.1878
24 5.97E-03 1.3133 2.73E-03 1.334 2.1878
25 5.66E-03 1.3146 2.58E-03 1.3346 2.1896
26 5.37E-03 1.3157 2.45E-03 1.335 2.1912
27 5.11E-03 1.3168 2.33E-03 1.3354 2.1928
28 4.87E-03 1.3177 2.22E-03 1.3358 2.1942
29 4.65E-03 1.3186 2.12E-03 1.3361 2.1956
30 4.45E-03 1.3193 2.02E-03 1.3363 2.1968
31 4.26E-03 1.3201 1.94E-03 1.3366 2.198
32 4.08E-03 1.3207 1.86E-03 1.3368 2.1991
33 3.92E-03 1.3214 1.78E-03 1.3369 2.2002
34 3.77E-03 1.3219 1.71E-03 1.3371 2.2012
35 3.63E-03 1.3225 1.65E-03 1.3372 2.2021
36 3.50E-03 1.3229 1.59E-03 1.3373 2.203
37 3.37E-03 1.3234 1.53E-03 1.3374 2.2039
38 3.25E-03 1.3238 1.48E-03 1.3375 2.2047
39 3.14E-03 1.3242 1.43E-03 1.3375 2.2054
40 3.04E-03 1.3245 1.38E-03 1.3376 2.2062

TABLE 4.1: Example 2: Convergence rate in p of the IP DGFEM with P, and
Q) basis in DG-norm, and the ratio of error.



Chapter 5

DGFEMs for PDEs with

Nonnegative Characteristic Form

On the basis of the hp—version inverse and approximation bounds developed in
Chapter 3, together with the IP-DGFEM scheme for pure diffusion problems in
Section 4.2 of Chapter 4, here we study the IP-DGFEM discretization of a general
class of second—order PDEs with non-negative characteristic form, following the
bounded number of faces per element mesh Assumption 3.1.1. The work contained

in this chapter is drawn from [59].

5.1 Model problem

Given € a bounded Lipschitz domain in R? d > 1, we consider the PDE: find u
such that

—V-(aVu)+b-Vu+cu = f inQ, (5.1)

where, a = {aij}?jzl with a;; € L>®(R2) and a;; = aj;, for 4,5 = 1,...,d, b =
(b1, ... ba) € WE=(Q)]% ¢ € L=(Q) and f € L3(). The PDE (5.1) is referred
to as an equation with nonnegative characteristic form on the set Q C R? if, at

each x in €2, we have

Z a;;(x)&& >0, (5.2)

4,j=1

67
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for any vector & = (&;,...,&;) in R%.

In order to supplement (5.1) with suitable boundary conditions, following [151,
126], we first subdivide the boundary 0 of the computational domain 2 into

appropriate subsets: we let

d
80Q = {X € 00 : Z aij(x)nmj > O} s (53)

ij=1

where n = (ny,...,nq) denotes the unit outward normal vector to 9. Loosely
speaking, we may think of Jy{2 as being the ‘elliptic’ portion of the boundary 0f2.
On the ‘hyperbolic’ portion of the boundary 9Q\0,f2, we define the inflow and

outflow boundaries 0_£2 and 0, €2, respectively, in the standard manner:

0-Q = {x€ N :b(x) n(x) <0},
0.0 = {x €I\ :b(x) n(x)>0}. (5.4)

If 0u€) is nonempty, we shall further divide it into disjoint subsets 0€)p and 0€)y
whose union is 0y€2, with 9€)p nonempty and relatively open in 0€2; cf. Figure 5.1
It is evident from these definitions that 02 = 0Qp U0 UI_QU 0, 2. Assuming
the (physically reasonable) hypothesis that b - n > 0 on 0y whenever 0y is

nonempty, we supplement (5.1) with the following boundary conditions:

u=gp on dpUJI_, n-(aVu) =gny on 0. (5.5)

The extension of this setting can be found in [62].

Additionally, we assume that the following positivity hypothesis holds: there exists

a constant vector & € R? such that
1
c(x) — 5 V -b(x)+b(x) &> ae x€, (5.6)

where 7 > 0 is a constant. For simplicity of presentation, following [125] we shall
assume throughout that (5.6) may be satisfied with €& = 0; we then define the

positive function cq by

(co(®))? = e(x) — % V-b(x) ae. xc 0. (5.7)
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o0,
- nTa(a?)n =0 00N
o0 Q
/
n'a(r)n >0 o0p
l
{ 0p

FIGURE 5.1: Boundary Conditions

The well-posedness of the boundary value problem (5.1), (5.5), in the case of

homogeneous boundary conditions, has been studied in [126], cf. also [151].

In next section, we will introduce the IP-DGFEM discretization of (5.1), (5.5). We
will prove an inf-sup stability condition based on the analysis for pure diffusion
problem undertaken in Sections 4.2, and we present hp-version a priori bounds
for the IP-DGFEM discretization of (5.1), (5.5) in Section 5.2.

5.2 DGFEMs

In this section, we will consider the IP-DGFEM discretization of the PDE with
nonnegative characteristic form introduced above. Due to the general boundary

conditions (5.5), we need to overload boundary faces notation F7 in this section.

Recalling (5.3) and (5.4), we have 09 = 0Qp UIQNUOI_QUO, 2. Similarly, we also
define FP = F, UF,FUFPU .7-"/1\[, where FP denotes the set of all open (d — 1)
dimensional element faces F' € Fj, that are contained in 0f2. For simplicity, we
assume that 7T, respects the decomposition of 9 in the sense that each F' € FP

belongs to the interior of exactly one of 9_2, 0., ), 0Qp and 0€2x. Hence we further
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denote by F, , F;, FF, ]_-}/L\f C FP as the subsets of boundary faces belonging to
0_Q, 0.1), 0Qp, 0N, respectively.

Next, we define the finite element space S% with respect to 7, and p by
Sy ={ue L*(Q) : ul, € Pp.(k),k € Th},

where we recall that P,(x) denotes the space of polynomials of total degree p on .
We stress that, by construction, the local elemental polynomial spaces employed
within the definition of S% are defined in the physical space, without the need
to map from a given reference or canonical frame, as is typically necessary for

classical finite element methods.

We introduce the following (symmetric) IP-DGFEM bilinear form
B(uh, Uh) = f(vh) (58)

for all v, € SY.. Here, the bilinear form B(-,-) : S§ x ST — R is defined as the
sum of two parts:
B(u,v) := Ba(u,v) + Bq(u,v),

where the bilinear form B, (-, ) accounts for the advection and reaction terms:

B (u,v) = Z/<b~Vu+cu)vdx— Z/a (b-n)|u|vds

keTp U F KETH R\FF
— Z / (b-n)uTvT ds. (5.9)
weT, ) O-sN(FLUF,)

The bilinear form By(+,-) takes care of the diffusion term:

Ba(u,v) = Z/aVu-Vvdx+ > /Fa[[u]]-[[v]]ds

RETH " FeFIUFP
- Z L(ﬁaVU}}'ﬂv]]Jr{aW}}-[[u]]) ds.  (5.10)
FeFfurp

Furthermore, the linear functional ¢ : S% — R is defined by

l(v) = Z/fvdx— Z/am(f}?ufh)(b.ngst

KETH V' F KETH

— Z /FgD<(aVv)-n—0v> ds + Z /FQNUdS- (5.11)

FeFy FeFr)N
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The nonnegative function o € Lo (FF U FP) appearing in (5.10) and (5.11) is the
same discontinuity-penalization functions defined in Definition 4.7, which plays an
important role for proving the inf-sup stability of the proposed DGFEM in next

section.

5.2.1 Inf-Sup Stability of IP-DGFEMs

In this section, the diffusion tensor a is assumed to satisfy (4.6), i.e.,

a € [V(Th)lgm (5.12)

sym*

Moreover, we are going to use the discontinuity penalisation function ¢ as in Def-
inition 4.1. The proof of inf-sup stability will employ an inconsistent formulation

of the diffusion part of the bilinear form as in the previous section. We define, for
all u,v € §:= H'(Q2) + S}, the bilinear form

B(u,v) := Ba(u,v) + Bg(u,v), (5.13)
where
Ba(u,v) = aVu-Vvdx + ofu] - [v] ds
’fg;h/ﬁ FGJ%L:J}‘,?/F
- Z /F ({{aHQ(Vu)}} Jo] + {alIx (Vo) } - [[u]]> ds,

and the linear functional ¢ : S% — R by

l(v) = Z/fvdx— Z/a_m(fl?ufh_)(b-n)g]gwrds

KETH ¥ K KETh

_ Z /FgD(al_Ig(Vv)-n—UU) ds + Z /Fngds,

Fery Fery
Here, IT : [L*(©2)]* — [S} ] denotes the orthogonal L*-projection onto [S} ]%.

We then rewrite the discrete problem with inconsistent formulation in the equiv-

alent form: find u, € S% such that

B(uh,vh) = (’Uh) Yy, € S% (514)
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Note that the above IP DGFEM formulation is generally not consistent due to the
discrete nature of L?-orthogonal projector, but is consistent for uy, vy, € S% when

the diffusion tensor a is element-wise constant.

In view of the error analysis, we introduce the DGFEM-norm |||-|||pc as the sum

of two parts as follows:

vlllbe = [olllz: + vl

where

1
ol := 37 (lleovlage + 5013 ompimsy
KETH

1 _ 1
+ §||v+ — v 5 §||v+||g+mf’?>, (5.15)

with ¢g as in (5.7), and

llollld = IVaVolfaw + > /FUIHU]szS- (5.16)

<€Th FeFIuFp

Here, || - ||;, 7 C Ok, denotes the (semi)norm associated with the (semi)inner

product (v,w), = [ |b-njowds.

The following relation holds

Bu(v,v) = [v]II3 (5.17)

ar?

for all v € S, cf. [125]. The continuity and coercivity of the inconsistent diffusion
bilinear form Bq(-,-), with respect to the DGFEM norm |||-|||4, is established in

Lemma 4.2.

Before we prove the inf-sup condition, we briefly discuss the reasons why the inf-
sup condition is essential. The hp—version a prior: error analysis presented in
[125] relies on the derivation of optimal hp—approximation results for the trace
of the local L?-projection operator on a given face of an element r in the finite
element mesh Ty; cf. also [69, 144] for analogous results on simplices. Due to the
lack of analogous hp-approximation results for the local L?-projection operator on
polytopic elements, it is not possible to directly generalise the analysis from [125]
to meshes consisting of such elements. To address this issue we prove an inf-sup
condition for the inconsistent bilinear form B (+,+), with respect to the following
streamline diffusion DGFEM-norm.
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Definition 5.1. The streamline diffusion DGFEM-norm is defined by:

o2 = lllollpe + D mllb- VollZagy, (5.18)
KEThH
where Pl
1 1 }
T :=ming ——— — » — Vi €Ty, (5.19)
{||b||L°°(n) Gx) D}
for p. > 1, and 7, is given by
5 Co ma { {e “ﬁpid}} Yk C T d=2,3, (5.20)
k= o Ma. a. inv4d=7 | ) — 4,9, .
4 Feon gg{lmf’} A h+ s h
FCOrkNOk'

where Ci,y 4 is defined as in Lemma 3.5. The constant ¢, may be zero locally
where a,, = 0; in this case it is understood that 7, takes the value of the first term
in (5.19). Further, the mesh parameter h is defined as follows:

Supnan |"€|5|

1. ] - =
by = min v d VeeT, d=23, (5.21)

with /{f as in Definition 3.2. We further deduce the relation
hyy < hy. (5.22)

Remark 5.2. We recall from Definition 3.2 that s denotes the family of simplices
contained in x and sharing a face F' with k. From the geometrical property of
d-dimensional simplices, it is easy to see that k> is the minimum over all faces F,
F C 0k, of the maximum of the set of all heights of the d—dimensional simplices

kil sharing a (d — 1)—dimensional face F' with x.

Remark 5.3. We note that 7, can be viewed as an indicator function for each
element k£ € 7, which measures the length scale of convection and diffusion over
each element. If x is in the advection dominated regime, then 7, takes the first
term in the bracket. On the other hand, « is in the diffusion dominated regime if
7. takes the second term in the bracket. By using this choice of 7., the resulting

inf-sup stability condition holds in both regimes.

Remark 5.4. With no loss of generality, the case p, = 0, relevant to the hyperbolic
regime, is excluded from Definition 5.1 and throughout this chapter. However, if
the underlying problem is strictly hyperbolic and p, = 0 is selected for all k € Tj,

then the streamline diffusion DGFEM-norm reduces to the advection-reaction
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DGFEM-norm |||-|||ar defined in (5.15); in this setting, the proceeding analysis is

trivial.

By employing the definition of h, together with an upper bound on the constant
Cinv(p, R, F') defined in Lemma 3.5, the inverse estimate (3.13) can be written in

the following manner. For each v € P,(k), F' C 0k, we have

F
lo320r) < Cinv(p, s, F)2 |ﬁ| [0]172(s
< Cinv4 L alld ’|| ||L2(N < Cinva jd||v||L2 (5.23)
p/@FCn ‘Hb ‘ | ‘ h,

Further, from the definition of o|r given in (4.1), in conjunction with the definition
of ht, cf. (5.21), we deduce the following bound

0. > olp, F COrk Vk€T,. (5.24)

For the reminder of this work we assume the following condition on b:
b-V, e Sy Ve Sy, (5.25)

cf. [125]. Under the above assumption, we prove the inf-sup condition for the
bilinear form B(-, ), with respect to the streamline diffusion DGFEM-norm (5.18).

Theorem 5.5. Given Assumptions 3.1.1, 3.2.1, and 3.2.2 hold, there exists a
positive constant Ay, independent of the mesh size h and the polynomial degree p,
such that:

inf sup Bl > A, (5.26)

vesy, 0} uese \qop [V [[ls[ll s

where the discontinuity-penalization function o is as defined in (4.1).

Proof. For allv € Sph, we select p := v+ avg, vs|, = T7,b- Vv for all k € Ty, where
« is a positive real number, chosen sufficiently small, cf. (5.41) below. By (5.25),

we note that u € S% ; the theorem now follows from the two bounds:
lullls < C{lIv]lls, (5.27)

and
B(v,p) = Cyl||v]I|2, (5.28)
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with Ay = C,/C*, where C* and C, are positive constants, independent of h and
.

We begin by proving (5.27). We first bound each term arising in the norm |||-|||ar
of v, where vg|,, = 7.b - Vv, k € T,. Employing Lemma 3.7 together with (5.19),
the lower bound on ¢y given in (5.7), and inequality (5.22), gives

S el < el 3 7200 - Vol

KETH KETH
< leolZoeiay Y 72BN o V122
KETh
P H HLOO
< leolZoe ey Cinvss Y T2 —a |24,
/{ETh
Cinv 5
< ol ooy Zch!liméc’l\llv\llf- (5.29)
Yo T,

Using the inverse estimate (5.23), we deduce that

1 _ 1
Z <_||V+||8 e ]:DU]: )+ 2”]/:_ — Vs ||§_n\]—'}? + 5””:”3_“{0]:5)

<Y Ibllwpr Y b Volltagy

KETH FCok
vy
< CpCinyad Z IB| oo vy 71 It 2||b- VUHLQ(H
KETH
piHb“L“(n) 2 2
< CpCinad Y Tnh—L(Tﬁnb : vy||L2(ﬂ)) < GolIvlI2. (5.30)
KETH K

Similarly, employing relation (5.25) together with Lemma 3.7, the streamline dif-

fusion term, cf. (5.18), can be bounded as follows:

ZTHHb'stH%Q(H) < ZTn|’b|’%w(n)<73\|v(b'VV)H%Q(H))

KETH KETH
N L ||Lm
< Z Can 5T (THHb vI/HLQ >
KETH
< Zcm(wb-w\ﬁzm) < Gyllllz: (5.31)
KETH

here, we have again exploited a bound on 7, k € Ty, and (5.22), cf. above.

Secondly, we consider the diffusion component |||-|[|q of the streamline diffusion

DGFEM-norm of vs. This time, the second term on the right hand side of (5.19)
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is used as an upper bound on 7., £ € T,. This, employing Lemma 3.7, the
definition of &, in (5.20), and (5.22), we get

> IVavwliaw < 3 amlVib- Vo)llag

KEThH KETH
Qi
< ZOIHVE)TH p (THHb vI/||L2 )
KETH
.
AxPy
= ZCinvbﬁ(TnIIb-VVHi?(n))
KETH R
1nv5
< w||b -V
< ey Ll Tl
= O b Vel < Gl (532)
KETh

Finally, employing (5.23) and noting that o|r < &, for F' C 0k, Kk € Ty, gives

3 /ay wlfds < 232 S olb Vult

FeFFUFP k€Tn  FCORN(FLUFP)
~ 2
OrDy
< 2CFCinv,4d Z Tk hL <TNHb ’ VUH%Q(H))
KETH k
< G (nallb - Vula) S Gl (5.33)

KETH

Combining the above bounds, we deduce that

lvsllls < Clilwllls, (5.34)

where C' = \/C; + Cy + Cs + C; + Cs. Exploiting the triangle inequality, we have
that
lellls < Nwllls + alllwsllls < (1 + aO)lvllls = C* (@)l ]lls, (5.35)

which gives the desired bound stated in (5.27).

Next we prove (5.28). To this end, we observe that since p := v + av,, B(v, i) =
B(v,v) + aB(v,v,). Considering the second term B(v,v,) first, we note that the

advection-reaction part of the bilinear form B, (v, v5) is given by

Ba (v, vs) Z /TH (b-Vv)? + cv(rb - Vv)dx _/a \fB(b -n)|v]|(rsb - Vv)tds
KETH —K\h,

- / (b-n)vt(rb - V)" ds. (5.36)
O_kN(FPUF,)
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Employing Lemma 3.7, together with the lower bound on 3 given in (5.7), the

second term in (5.36) may be bounded as follows:

|Z/cu (b - V) dx| < > lele@llvll2mlmeb - V|l

KEThH KETH
2
i Plblig

< 3 el (Colam D o g

KEThH K
Codeslellew o

< 3 GwslCl@y e, (5.37)

weT, Y0

To estimate the boundary terms present in (5.36), we exploit the inverse estimate
(5.23), the definition of 7, given in (5.19), together with the Cauchy-Schwarz
inequality. Then, we get

2 /aﬁ\ﬁ (b-n)[v)(reb - Vi)t ds+/

(b-n)v(r;b-Vv)* ds) ]
O_kN(FPUF, )

KETH
1
3 A P (R S | VR 8 7 PP
KETh FCo_r\FB
1
+ Z "VJF"B_KO(F}LDU.F;)( Z Hszoo(n)Tng : V’/HLQ(F))
KE€Th FCo_snN(FPUF;)
2 + -2 +112 Tk 2
< CCinead( 30 10 = v + 101 rmiry) + D0 2D Fvlia
KETH KETh
< C3Chuad Y (0 =013 + I S ey
> LpLiny, O_r\FP d_kN(FPUF;) D4 rNFP
KETh
Tfi
+ Z ZHb V12 (5.38)
KETH

Using (5.17), together with the bounds (5.37) and (5.38), we deduce that

Bu(v, 1) > (1 B mv5||C||L (Q)) Z | cov ||L2 +a Z ( ) b - VV||L2

kETh KETH
1 _
=+ (5 - aC}QWCinv,lld) Z <HV+ -V Hg,n\}f
KETH
Sl [ A A Sy (5.39)

Next, we consider the diffusion part of the bilinear form, i.e., Bq(v,v;). From the

continuity of By(-, ) stated in (4.12), together with the bounds given in (5.32) and
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(5.33), we get

- 3
Ba(w,vs) < Caomllvllallvsllla < Coontllllav/Ca+ Cs (D 7ullb - Vo)

KETH

Tk
< (Ceom)*(Cot GG+ Y FlIb - Voll7ag.

KETH

Exploiting the coercivity of the bilinear form By(-,-), cf. (4.11), gives

~ Te
Bd(ya :u) > (Ccoer - a(ocont)2(04 + C5)> |||V|||(21 - Z ZHb ) VVH%Q(I{) (540)

KETH

Finally, combining (5.39) and (5.40), the following bound holds:

B(% :u) = Bar(V, :u) + Bd(y7 M)

Oéciln/v2,5||c||L°°(Q) 2 Tk 2
> (1 . - ) S lleovlfa +a Y (TR . 3) b Vo2 -

k€T KETH

1 _
+(§ - aCI%CinvAd) > (|yy+ SR ARl 720 PR Hyﬂ,gmmﬁg).
RET,

+(Cuoer = o€+ C0)) (0 IWaVoliay + 3 [ olbIPas).

K<ETh FeFFurp

The coefficients in front of the norms arising on the right hand side of the above

bound are all positive for sufficient small «, namely if

] ,yo 1 Ocoer
a < min , , . 541
{Oiln/\?,SHCHLOO(Q) QC%CiHVAd (Ccont)2(c4 + 05) } ( )

Since the constants in (5.41) are independent of the discretization parameters, we

conclude that (5.28) holds as long as « is chosen according to (5.41). O

Remark 5.6. Theorem 5.5 extends the analogous result derived for DGFEMs on
meshes comprising of simplices presented in [49, 57, 18] and monograph [84, Chap-
ter 2|, to general polytopic elements. It also improves those results in the sense

that here the inf-sup constant A, is also independent of the polynomial degree p.

Remark 5.7. The above inf-sup condition has been derived under the assump-
tion that (5.25) holds, hence limiting the validity of the present analysis to prob-
lems with piecewise linear convection fields b. However, an analogous inf-sup

condition still holds for general b, if we replace the test space S%L by WP =
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span{v+avs, v, = TIla(b-Vv), &€ Ty, v e S}, endowed with the stream-
line diffusion DGFEM-norm |[[v[|[? := [|[v[[[5¢ + > ,e7, Tl TL2(b - V) |72, This

approach, though, results in suboptimal, with respect to the polynomial degree p,

KETH

a priori error bounds, cf. Remark 5.12 below.

5.2.2 A priori error analysis

In this section, we derive an a priori error bound for the IP DGFEM (5.14). First,
we point out that Galerkin orthogonality does not hold due to the inconsistency
of B (+,+). Thereby, we derive the following abstract error bound in the spirit of

Strang’s second lemma.

Lemma 5.8. Let u be the analytical solution of (5.1), (5.5), and uy be the IP
DGFEM solution satisfying (5.14). Assuming the inf-sup condition derived in
Theorem 5.5 holds, we have that

~ 1 |B(Iu — u,wy)|
|Hu_uh|HS < H|U_HU‘HS+A_ sSup |H ‘H
s wyeST \{0} Whllls
1 B —1
Lo g 1Bl —lwn)] (5.42)
s wpeSH, \{0} llwnlls

where 1 is the operator defined in Lemma 3.14.

Proof. The result follows in a standard manner, based on Strang’s second lemma.

We first use the triangle inequality;,

e = unllls < [llw = Tullls + [T = up |

Then we use fact that the second term in the above inequality if in S% together
with relation, (5.26)

~ 1 B(Ilu — up,w
R . D

s wp€ST. \{0} e lls

< 1 sup |B(HU—U;Wh)|+i sup | B(u — up, wh)|
s wpeSH, \{0} l|wonlls As wn€SE, \{0} leonllls
1 B(Iu — 1 B —1

CL Ly BO—wel 1 Bluwn) — i)
s wpeSH, \{0} lJeonlls s wpeSE \{0} llonllls

Then the proof is complete. O
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The abstract error bound of Lemma 5.8 is used to derive convergence results for
the method at hand. These depend on the availability of the hp—version approx-
imation estimates of Lemma 3.11. Assume that the mesh 7, admits a shape
regular covering 7;& = {K}, cf. Definition 3.9, satisfying Assumption 3.3.1. Fur-
ther assume that u|, € H'*(k), for some I, > 1 +d/2, for each k € Ty, so that, by
Theorem 3.12, ulc € H'(K), where K € 7,* with x C K. To bound the first term
on the right-hand side of the abstract bound above, we employ the approximation
estimates of Lemma 3.14 together with Assumption 3.1.1 give
= tull? < 05 B (leollmg + Tl bl 225+,

56771 K K K

h_4
bl zee )5 Z Con (D 5, F) | F|

Kk Fcok

h-4
4 > Culpe F)olF])l|€ul3u, ). (5.43)

pol
" FCORN(FEUFP)

Next, we define n = u—Iu and embark on bounding the second term on right-hand
side of (5.42). Exploiting element-wise integration by parts, the advection-reaction

bilinear form B, (-, -), cf. (5.9), can be written as:

Bar(n,wp) = Z (/(c— V -b)wpndx — /(b - Vwyp)ndx

l€€7—h K K
+/ (b-n)|wp|n ds+ / (b-n)w,n" ds).
O_k\FB 04 kNFB

Then, by using Cauchy-Schwarz inequality, we have the following bound:

1 _1
| Bar(n, wn)| < Z(HCowhHL?(m)HCWHL%)+||Tn2b'th||L2(n)||Tn277|!L2(n)

KETH

Hlwy = wy lo_azlnllo_wzs + ||w;f|!a+mf5||n+\|a+mf;3)

< Z lernll72ge) + Z T Il 72 + 2 Z ||77_||§_H\f,’?

KETh kEThH kETH
1

2 2
23 03 ) X (MenllZ+ 3 7iellb - VenllEagy)

KETH KETH

IN

=
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We now derive a bound for B (n,wp) by employing the above result in conjunction

with the continuity of Bq(-, -). Then, we get

[B.w)| = [Bu(n.wn) + Baln,wn)]
< (X el + D2 7t nlagy +2 3 N I35
KETh s k€ThH
1 1
2 2
23 1 ) (el + D 7llb - Vel )
KETH KETH

Ceontl[|[llal[lwnllla

< (D e + X il
K€Th K€Th
+ 23 I e+ 2 e
KETH
1
2
4 Coon 32 Vel + Coon? S [ ollillPds) sl
KETh FerfuFp V' F

Hence, by applying the approximation results in Lemma 3.14, we have the following
bound:

B(lu — u, w h2s« h_2
sup 124 Wl < ¢ > e (%3+T,;1+dﬁ%2
wn €SP \{0} ][] . p

h?
‘f‘”b”L‘x’(n)F Z Con(Pr» &, F) | F|

Kk Fcok
h-4 3
+pfl Z Crn (i, K, F)0|F|> HGUH?{%(K)) . (5.44)
" FCORN(FTUFP)

Finally, we consider the residual due to the inconsistent formulation given by the
third term in (5.42). From the definition of the original and inconsistent bilinear

forms given by (5.10) and (5.13), respectively, we deduce that
Blu,wp) = l(wp) = Y /{{a(Vu — TIy(Vu)} - [ws] ds
rerfuFp 't

(X [ o Hatvu-mvupras) o

FeFfuFrpP

IN
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where IT, denotes the vector-valued L?-projection onto the finite element space

[S% ]¢. Employing the Cauchy Schwarz inequality gives

sup |B(U,Wh) - l<wh Z / 1’{{@ Vi — H2(Vu))}‘2 d8> )

et el e

Let IT denote the vector-valued hp—projection operator obtained by applying com-
ponentwise the operator ﬂpﬁ given in (3.27). Adding and subtracting f[(Vu), we

obtain

2 / Ha(Vu T (Vu) 2 ds

FeFfuFrp

< Y[ 20 (V= TV + Ha(TL(I(Ve) - Tu)) B ds

FeFfuFrp
=1+1L

Using, as above, the approximation estimate (3.29) yields:

h2(5n*1) B

ISOZaiWﬁ Yo Culpes o [F] ) €ullf, -

FCornN(FLUFP)

Similarly, the inverse inequality (3.13), the L2-stability of the projector Iy, and
the approximation estimate (3.28), yield:

A Il

nsoy Tk

KETH ”

Z CINV(pm K, F)U_1|F| ||€U||?{ln(16)

FCorN(FEUFP)

Combining the above developments we arrive to the following bound of the residual

term:

B —7 1/2
Sup | (U, wh) (U’7 wh)| S (I + II)
mese Iwalls

h2(s,$71)

<0(Z 2

KETH Dx

h d 1
X Z (C’ (Pw, K, F)p_ + Cinv (pw, K, F)‘p‘ )0_1|F|

FCORN(FFUFP) " ®

1/2
2 Heu|r%m,@> - (5.45)
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Finally, combining the approximation bound (5.43), (5.44), and residual bound (5.45)
together with with Lemma 5.8 yield the following DGFEM convergence result.

Theorem 5.9. Let T, = {k} be a subdivision of Q C R%, d = 2,3, consisting
of general polygonal/polyhedral elements satisfying Assumption 3.1.1, Assump-
tion 3.2.1 and Assumptions 3.2.2 with 7’,? = {K} an associated covering of Ty,
consisting of shape-reqular d—simplexes, cf., Definition 3.9. Let u, € S%m with
pe > 1 for all & € Ty, be the corresponding DGFEM solution defined by (4.5)
with the discontinuity-penalization functions given by (4.7). If the exact solution
u € HY(Q) to (4.1)—(4.3) satisfies u|, € H'™(k), I, > 1+ d/2, for each k € Ty,
such that Culx € H'(K), where K € T} with k C K, then

e —will? < C o (G (F, Cons s ) + Dul(F, iy, o, i) ) €0l
KETh K
(5.46)
where
G, Cony iy ) = llcoll ooy + 7 + 7'+ TeBipihy” + Gupihy?
+ Bepeh® > Con(pi, 5, F)|F|
FCoOk
+peh® > Chlpw. k, F)ol|F], (5.47)
FCorN(FLEUFP)

and

D,.(F,Cinv, O, Di) = @i<ch;d_2 Z Con (P K, F)a_1|F|

FCOrN(FEUFP)

S AL CINV(pm/-f,F)a_1|F|), (5.48)

FCorN(FEUFP)

with s, = min{p, + 1,1.} and p. > 1. Here, v, = |[c1||re(x), with ci(z) =
(c(z) =V -b(z))/(co(x)), co as in (5.7), and B, = ||b||rew). The positive constant

C' is independent of the discretization parameters.

Remark 5.10. We note that the above hp-version a priori bound for the IP
DGFEM (5.14) holds without the need to impose any assumption concerning the
relative size of the faces F', F' C Ok, of a given polytopic element x € T,. If
b =0 and ¢ = 0 on (2, then the streamline diffusion DGFEM-norm degenerates
to the diffusion DGFEM-norm |||-|||q defined in (5.16) and the problem becomes
the pure diffusion problem, which is independent of 7, with constants (5, and 7,

equal to zero. Furthermore, the inf-sup condition is equivalent to the coercivity of
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the bilinear form Bg(-,-). This can be used to derive an error bound, analogous to
the error bound (5.46), which generalises the result presented in [61] for the Pois-
son equation with constant diffusion. Moreover, in this setting, for uniform orders
pe =p > 1, h = maxuer, hy, s = 8, s = min{p + 1,1}, | > 1+ d/2, under the
assumption that the diameter of the faces of each element x € T}, is of comparable
size to the diameter of the corresponding element, i.e., diam(F) ~ h,, ht ~ h,,
F C Ok, k € Ty, so that |F| ~ h,(.;dfl), the a priori error bound of Theorem 5.9
reduces to

s—1
= unllla < Ol o,
p 2

This coincides with the analogous result derived in [125] for standard meshes
consisting of simplices or tensor-product elements. Here, we have employed Lemma
3.14 and Theorem 3.12, together with Assumption 3.3.1, assuming that for such
element domains Ciny (ps, F') = O(1) and Cy,(px, F)) = O(1) uniformly for each

face F' C Ok for all k € T;,. This error bound is A optimal and p suboptimal by
1/2
p/e.

Remark 5.11. Consider the purely hyperbolic case when the diffusion tensor a = 0.
In this case, the constants a, and o, are identically zero and the inconsistent
term Dy (F, Cixy, Cm, pi) vanishes due to the consistency of the bilinear form
Bar(+,+). Then, the streamline diffusion DGFEM-norm is actually stronger than
the advection-reaction DGFEM-norm ||-|||.; defined in (5.15) and 7,, = C’)(Z—g) by
(5.19). In this case, for uniform orders, cf. Remark 5.10 above, the a priori error
bound of Theorem 5.9 yields

o2
e = wnlllar < e = unllls < €= lll -

Hence, the above hp-bound is optimal in h and suboptimal in p by p'/2. In this
case, our bound generalizes the error estimate derived in [125] to general polytopic
meshes under the same assumption b - V,¢ € Sph, ¢ e Sph, with a slight loss of

p-convergence.

Remark 5.12. As noted in Remark 5.7, the case of general convection fields b can
be treated, based on employing an inf-sup condition with different test and trial
spaces. In this setting, the present analysis can easily be adapted to utilize such an
inf-sup condition, together with the exploitation of the L?-projector II, onto the
polytopic element x € 7,. However, this yields an error bound in the ||||||,—norm

that is optimal in A but suboptimal in p by p*/? for the purely hyperbolic problem.
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We also point out that if we modify the DGFEM by including the streamline-
diffusion stabilization term as in [124], then an hp-optimal bound can be derived
without the assumption that b - V;§ € S7, £ € S5 This is not derived here in
detail for brevity.

5.3 Numerical examples

We present a series of computational examples to numerically investigate the
asymptotic convergence behaviour of the proposed IP DGFEM on general meshes
consisting of polytopic elements. As in [61], the integrals arising in the bilinear
and linear forms B(,-) and £(-), respectively, are computed based on employing a
quadrature scheme defined on a sub-tessalation of each polytopic element in the un-
derlying finite element mesh. Throughout this section, the IP DGFEM solution uy,
defined by (5.8) is computed with the constant C, appearing in the discontinuity-
penalization parameter o equal to 10. Given the computations already presented
in Chapter 4, here we concentrate on studying the performance of the proposed
I[P DGFEM in the hyperbolic, mixed parabolic-hyperbolic setting and boundary
layer problem. To this end, we first study a pure hyperbolic problem (diffusion ma-
trix @ = 0) in Section 5.3.1. Secondly, we consider an advection-diffusion-reaction
problem with degenerate, anisotropic diffusion matrix a in Section 5.3.2. Within
these examples, we employ polygonal meshes generated using the general-purpose
mesh generator PolyMesher, cf. [179]. Additionally, a classical boundary layer
problem is presented in Section 5.3.3 to study the exponential convergence of P,
basis on anisotropic refined meshes. Finally, in Section 5.3.4, we study the con-
vergence behaviour of the underlying DGFEM for a purely hyperbolic problem in
three dimensions on general polytopes generated based on employing agglomera-

tion.

Throughout this section, we compare the performance of employing P,~polynomial
bases on polytopic meshes, with P,— and Q,-polynomial bases defined on standard

tensor-product meshes.
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256 standard polygonal mesh
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FI1GURE 5.2: Example 1: Uniform polygonal mesh, consisting of 256 elements.
5.3.1 Example 1

In this first example, we let © be the square domain (—1,1)?, and choose
a=0, b=2-y%2-12), c=1+1+2)(1+1y)* (5.49)

the forcing function f is selected so that the analytical solution to (5.1), (5.5) is
given by
u(z,y) = 1 +sin(x(1 +2)(1 +y)?/8), (5.50)

of. [125)].

We investigate the asymptotic behaviour of the hp—version DGFEM on a sequence
of successively finer polygonal and uniform quadrilateral meshes for different values
of the polynomial degree p. Three settings are compared: uniform quadrilateral
meshes and local polynomial bases consisting of either P, or Q, polynomials,
and polygonal meshes and local polynomial bases consisting of P, polynomials;
the three cases are referred to as, respectively, DGFEM(P), DGFEM(Q), and
DGFEM. The polygonal meshes used for DGFEM are generated using the Poly-
mesher mesh generator, cf. [179]; a typical mesh, consisting of 256 elements, is

depicted in Figure 5.2.

We first examine the convergence behaviour of the three schemes with respect to
h-refinement, with fixed polynomial p, for p = 1,...,6. In Figure 5.3 we plot
the error, measured in terms of both the L?(2)- and DGFEM-norm, against the
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FiGure 5.3: Example 1: Convergence of the DGFEM under h-refinement for
p=1,2,...,6. (a) [[u—unlr2(q); (b) l[lu—usllpe-

square root of the number of degrees of freedom in the underlying finite element
space SY, . Here, we clearly observe that |lu — up|[z2(q) and |[|u — up||[pc converge
to zero at the optimal rates O(hP™) and O(hP2), respectively, as the mesh size
h tends to zero for each fixed p. The latter set of results confirm the optimality
of Theorem 5.9, c¢f. Remark 5.11, in the case when polygonal elements are em-
ployed. We point out that the (optimal) convergence rate observed when the error
is measured in terms of the L?(Q)-norm is not guaranteed on general meshes, cf.
[154] (optimal convergence of ||u — u[12(q) has been established in [74, 75], but
only for special classes of triangular elements.) From Figure 5.3, we also observe
that polygonal and square meshes deliver almost identical results given the same
number of degrees of freedom, when P, elements are used (cf. the errors attained
by DGFEM and DGFEM(P)). By comparison, the use of tensor-product polyno-

mials, i.e. the DGFEM(Q) scheme, leads to a marginal decrease in both error
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FIGURE 5.4: Example 1: Convergence of the DGFEM under p-refinement.
Left: |lu — up|lr2(q); Right: [[|u — usl|pc; (a) Meshes consisting of 64 and 256
elements; (b) Meshes consisting of 1024 and 4096 elements.
quantities.

Finally, in Figure 5.4 we investigate the convergence behaviour of the three schemes
under p-refinement, for fixed h. Here, uniform polygonal and square meshes con-
sisting of 64, 256, 1024, and 4096 elements are employed. For each mesh, we plot
| — up||r2(0) and |[[|u — up|||pe against the square root of the number of degrees
of freedom in S% . In each case we clearly observe exponential convergence. We
observe that, under p-refinement, the efficiency of employing local P, polynomi-
als is apparent. Indeed, both the DGFEM and DGFEM(P) schemes lead to a
significant reduction in the error, when measured in terms of both the L?({2)-
and DGFEM-norms, for a fixed number of degrees of freedom, when compared
with the DGFEM(Q) scheme, cf. [61]. As before, the DGFEM and DGFEM(P)

schemes give almost identical results in terms of the size of the discretization error,
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256 modified polygonal mesh

FIGURE 5.5: Example 2: Modified uniform polygonal mesh, consisting of 256
elements

for a fixed number of degrees of freedom, though in some instances, the former

scheme is slightly more accurate.

5.3.2 Example 2

In this second example, we consider a partial differential equation with nonnegative
characteristic form of mixed type. To this end, we let Q = (—1,1)?, and consider
the PDE problem:

— 22Uy, + Uy +u =0, for —1<z<1,y>0,
w (5.51)
Uy +u =0, for —1<2x<1,y<0,
with analytical solution:
sin(3m(1 +y)) exp(—(z + ”igg)), for —1<z<1,y>0,
ulz,y) = (5.52)
sin(37(1 + y)) exp(—z), for —1<z<1,y<0,

cf. [103]. This problem is hyperbolic in the region y < 0 and parabolic for y > 0.

In order to ensure continuity of the normal flux across y = 0, where the partial
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FIGURE 5.6: Example 2: Convergence of the DGFEM under p-refinement.
Left: |lu — up|lr2(q); Right: [[|u — usl|pc; (a) Meshes consisting of 64 and 256
elements; (b) Meshes consisting of 1024 and 4096 elements.

differential equation changes type, the analytical solution has a discontinuity across
the line y = 0, cf. [125].

To highlight one of the advantages of employing finite element methods with dis-
continuous piecewise polynomial spaces, we consider a special class of quadrilateral
and polygonal meshes for which the discontinuity in the analytical solution lies
on element interfaces only; for the case when polygonal elements are employed, a
typical mesh is shown in Figure 5.5. In this setting, following [125], we modify the
discontinuity-penalization parameter o, so that ¢ vanishes on edges which form
part of the interface y = 0; this ensures that the (physical) discontinuity present

in the analytical solution is not penalized within the underlying scheme.

In this case, the hp-DGFEM behaves as if the analytical solution were smooth, in

the sense that exponential rates of convergence are observed for both the L?(Q)-
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FIGURE 5.7: Example 3: Anisotropically refined meshes. 64 elements (Left);
196 elements (Right).

and DGFEM-norm of the error under p—refinement, cf. Figure 5.6. As in the pre-
vious example, we again observe that the slope of the convergence curves for both
the DGFEM and DGFEM(P) schemes are steeper than the corresponding con-
vergence curve obtained when local polynomial bases consisting of tensor-product
polynomials (Q, basis) are employed, cf. the numerical results presented for the
DGFEM(Q) scheme. The DGFEM and DGFEM(P) schemes give once more very
similar results in terms of the size of the computed error for a given number of
degrees of freedom. Nevertheless, we notice more clearly that the use of polygo-
nal elements leads to a slight improvement when considering [ju — up||r2). As
noted in [61], cf. also [125], the improvement in the L?(£2)-norm when polygons
are employed, in comparison with square elements, is attributed to the increase in

interelement communication.

5.3.3 Example 3

In the this example, we consider a singularly perturbed advection-diffusion prob-

lem equation

—eAu + uy +uy = f,
with Q := (0,1)?, where 0 < ¢ < 1 and f is chosen so that

Ve — e~ (1=2)(1-9)/¢]

ulz,y) = +y(l-2)+ —— 7

(5.53)
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FicURE 5.8: Example 3: Convergence of the DGFEM under p-refinement
(a) € = 107! with 64 elements; (b) € = 1073 with 196 elements; (c) ¢ = 107°
with 400 elements.

This example is taken from [125]. For 0 < € < 1, (5.53) has boundary layers along
xr =1 and y = 1. Here, we use anisotropically refined meshes for resolving the

boundary layer.

In this numerical experiment we test the robustness of the DGFEM(P) and DGFEM-
(Q) on highly stretched anisotropic quadrilateral meshes as the physical diffusion e
decreases. The meshes are constructed by geometrical refinement into the bound-
ary layers along x = 1 and y = 1 and are parameterized by n, which denotes the
number of points in the z and y directions. In Figure 5.7 we show a typical mesh

for n. = 9 and n. = 15. Figure 5.8 shows a plot of the DG—norm of the error



DGFEMs for PDEs with Nonnegative Characteristic Form 93

under p-refinement for e = 1071, 1073, 107 on geometrically refined quadrilateral
meshes with n, = 9,15, 21, respectively. It is easy to see that in each case we
observe robust exponential convergence as the polynomial degree is increased for

both DGFEM(P) and DGFEM(Q) schemes, and DGFEM(P) still have a steeper

convergence in all cases.

5.3.4 Example 4

In this final example, we investigate the performance of the proposed DGFEM on
sequences of polyhedral meshes in three dimensions for a purely hyperbolic prob-
lem. To this end, we consider a three-dimensional variant of the two—dimensional
problem considered in Section 5.3.1. In particular, we let € be the unit cube (0, 1)3
and set

a=0, b= (-y,z21z), c=azy’z

f is then selected so that the analytical solution to (5.1), (5.5) is

u(z,y) = 1+ sin(mrzy®z/8). (5.54)

In this section the DGFEM solution is computed on general polyhedral meshes,
stemming from the agglomeration of a given (fixed) fine mesh 7;. More pre-
cisely, we employ a fine mesh consisting of approximately 1M tetrahedral elements
(1019674 elements, to be precise). cf. Figure 5.9 (a). The coarse agglomerated
mesh 7, is then constructed based on exploiting the graph partitioning package
METIS [136]. In order for METIS to partition the mesh 77, the logical structure
of the mesh is first stored in the form of a graph, where each node represents an
element domain of 7y, and each link between two nodes represents a face shared by
the two elements represented by the graph nodes. The partition of T; constructed
by METIS is produced with the objective of minimizing the number of neighbours
among each of the resulting partitions. In Figure 5.9, we show (the surface mesh
of) the polyhedral meshes generated by METIS, which consist of 64, 512, 4096,
and 32768 elements.

In Figure 5.10 we investigate the h—version convergence behaviour of the DGFEM
on both the polyhedral meshes depicted in Figure 5.9 and uniform hexahedral
meshes, using local P, polynomial bases; denoted by DGFEM and DGFEM(P),

respectively. As already noted in Section 5.3.1, we again observe that ||u—uwup| 2
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), re-

spectively, as the mesh size h tends to zero for each fixed p when the DGFEM(P)

1
2

) 64 elements; (¢) 512 elements;
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+
P
=
S~—
)
~
g
<
—~
—
L_l
Y
: =
%
= )
%)
= 8
< =
%} —
o0 —
Ne) <
1(0\7 m
;& =
£ 2,
22
g u -~
< E =
(&) +
S g <
s o
O "o )
\./m6 N
T O D
S~— — O
o0 2 )
cooBp
L T 20
£ = =
< O o
Xm S
M g
D Q
2 — =2
05 =
SIS 3
sl [
o s
© = =
Fm f—
el
==
<

Moreover, we observe

scheme is employed on uniform tensor-product elements.



DGFEMs for PDEs with Nonnegative Characteristic Form 95
102 . —— : : : , ,
DGFEM —A—DGFEM
\\ M i A
10} ]
p=1 3 5t 2\2\2 p=4 A
5
— - -3 |
S 107r p=2 1 84 B———g————ap=s3
= z
= 83 . - p=2
' - I Be— R ————— R} P== 1
2 10°% - B
p=3 5
T2t I —————————————a p=1
10 o
10710+ -
p=4 1 4
1072 : : 0 : : : : :
10 10 15 2 25 3 35 4 45
dof'" Mesh Number
(a)
' A~ DGFEN 6 ' ' ' ' :
B —A—-DGFEM
5t J
p=1 -
104} .8 B L
S 4t i
S
:‘%) p=2 § Jet B p=3
= k) T— & ——q p=2
p=3 =
108} 1 B2 1
(@] s A x p=1
100 L p=4 T |
‘1 ‘2 0 1 1 1 1 1
10 10 15 2 25 3 35 4 45
dof'® Mesh Number
(b)
FI1Gure 5.10: Example 4: Convergence of the DGFEM under h-refinement for
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FiGure 5.11: Example 4: Convergence of the DGFEM under p-refinement.
(a) llu —unllL2(0); (b) lu = unllpe-
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that the DGFEM-norm of the error, when general polyhedral elements are em-
ployed, is very similar to the corresponding quantity computed for the DGFEM(P)
scheme. However, we observe a slight degradation of ||u — up[12(q), when the
DGFEM scheme is employed, when compared to the case when uniform hexahedral
elements are exploited. For brevity, the corresponding results for the DGFEM(Q)
are omitted, though, we note again that, for fixed p, this approach is more efficient

as the mesh is uniformly refined.

Finally, we study the performance of the DGFEM, DGFEM(P), and DGFEM(Q)
schemes under p-refinement, for a given fixed mesh. To this end, in Figure 5.11
we plot both ||u — up||r2) and |||u — usl||[pa against the third root of the number
of degrees of freedom in S%L . As in the previous numerical examples, we again
observe the superiority of employing local polynomial bases of total degree p in

comparison with full tensor-product bases of degree p in each coordinate direction.



Chapter 6

DGFEMs for Time-Dependent
PDEs on Prismatic Meshes

In Chapter 5, we presented a detailed analysis on IP-DGFEM for PDEs with
non-negative characteristic form. In this chapter, we will study more in detail
space-time DGFEMs for time-dependent parabolic PDEs, which is an important
class of PDEs with non-negative characteristic form. The analysis presented here
is based on that for IP-DGFEM scheme for pure diffusion problem in Section 4.3
Chapter 4, and also the analysis in Chapter 5, following the arbitrary number of
faces per element mesh assumption 4.3.1. We present a priori bounds for the IP-
DGFEM in L?*(H')- and L?(L?)-norms applied to the underlying time-dependent
parabolic PDE. We begin by introducing the model problem, thereby extending
the findings of Chapter 5 for this important case. The work contained in this

chapter is drawn from [58].

6.1 Model problem

Let Q be a bounded open polyhedral domain in R, d = 2,3, and let J := (0,7

a time interval with 7" > 0. We consider the linear parabolic problem:

Owu—V-(aVu) = f in J x Q,

Ulgmo =ug on ), and w=gp onJ x I,

97
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for f € L*(J; L*(2)) and a € L>®(J x Q)4 symmetric with
Era(t,x)€ > 0> >0 VEERY ae (t,x)e€JxQ, (6.2)

for some constant 6§ > 0, a is allowed to depends on time ¢, which is different from
diffusion tensor a in Chapter 4 and Chapter 5. Note that the differential operator
V = (01,09, -+ ,04), i.e., is applied to the spatial variables only. For uy € L?(£2)
and gp = 0 the problem (6.1) is well-posed and there exists a unique solution
u € L3(J; H(Q)) with u € C(J; L*(Q)) and dyu € L*(J; H71(2)), see [139, 142].

6.2 Space-time DGFEMs for parabolic PDEs

For notational consistency, d denotes the dimension of the spatial domain 2. So
the above parabolic problem (6.1) can be regarded as a (d + 1)-dimensional PDE
with non-negative characteristic form, with hyperbolicity along time and strong
ellipticity over the spatial domain. We emphasize that the mesh Assumption 4.3.1
will be used through this chapter. It is possible, however, to repeat the analysis

using Assumption 3.1.1, but this is not done here for brevity.

For the sake of simplicity, we consider PDEs with Dirichlet boundary condition
00 = 0Qp, which implies 7P = FP and also F, = Ff U FP. Spatial meshes

k € Ty are defined in the same way as in the previous chapters.

Next, we introduce the temporal discretisation. Let U, be a partition of the
time interval J into N; time steps {In}gil, with I,, = (t,_1,t,) with respective
set of nodes {t,}*, defined so that 0 := ty < t; < --- < ty, := T. Set also
Ap = t, — t,_1, the length of I,,. For every time interval I,, € U; and every space
element k € Ty, we define the (d + 1)-dimensional space-time prismatic element
kn = I, x k; see Figure 6.1 for an illustration. Let p,, denote the (positive)
polynomial degree of the space-time element x,, and collect p., in the vector
P = (P, : kn € U, x Tp). We define the space-time finite element space with

respect to time interval I,,, subdivision 7, and p by

VP(L:Th) ={u e L*(I, x Q) :u

Kn S Ppmn (/{n)7 Kn € In X 7;1}7

where P, (k) denotes the space of polynomials of total degree p., on k,. The
space-time finite element space SP(Uy; T,) with respect to Uy, Tp, and p is de-
fined as SP(Uy; Tp) = @Y, VP(I,; T,). Note that the local elemental polynomial
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(a) (b)

FIGURE 6.1: (a). 16 polygonal spatial elements over the spatial domain Q =
(0,1)%; (b) 16 space-time elements over I,, x ().
spaces employed in the definition of SP(Uy;T,) are defined in the physical coor-
dinate system, without the need to map from a given reference/canonical frame;
cf. [61]. This setting is crucial to retain full approximation of the finite element
space, independently of the element shape. Note that SP(Uy,; T,) employs fewer de-
grees of freedom per space-time element compared to the standard tensor-product

polynomial bases of the usual space-time DGFEMs.

We shall also make use of the broken Sobolev space H(J x Q,Uy;Ts), up to
composite order 1:= (I, : k, € U X Ty) defined by

HYJ x QU Th) = {u € L*(J x Q) ., € H™ (ky),kn €Uy, x Tr}.  (6.3)

For u € H'(Q, T), we define the broken spatial gradient (V,u)|, = V(ul,), k € T.
Finally, let h,, denote the diameter of the space-time element «,; for convenience,

we collect the h,, in the vector h := (h,, : kK, € Up X Tp).

Remark 6.1. The main reason to introduce the space-time mesh diameter h,,
is that the proposed DGFEM is using space-time P, basis on each element &,
VK, € Uy X Ty. So the appropriate function space for error analysis is the space-

time Sobolev space rather than the Bochner space.

In order to work on the (d + 1)-dimensional space-time elements k,, € Uy, X T, we
introduce F; a generic d-dimensional face of a space-time element r, € U, x Ty,
which should be distinguished from the (d — 1)-dimensional face F' of the spatial

element k € T,. For any space-time element k,, € U, X T, we define Ok,, to be
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the union of all d-dimensional open faces F; of k,. For convenience, we further

subdivide F} into two disjoint subsets
Fl'=F, cJxF, and F:=F c {t,}), xQ, (6.4)

i.e., the parallel and perpendicular to the time direction boundaries, respectively.
Hence, for each &, there exist exactly two d-dimensional faces Ff and the number
of d-dimensional faces £} is equal to the number of (d — 1)-dimensional spatial

faces F' of the spatial element k.

Next, we extend the definition of trace operators defined in Chapter 2 over the
space-time element x, € U, X T,. Let Iﬁi and lﬁi be two adjacent space-time
elements sharing a face F)l = 0kl N Ok2 and (t,2) € F)' C J x FZ; let also 0,
and 1,2 denote the outward unit normal vectors on F), relative to 0k! and 0k2,
respectively. Then, for v and q, scalar- and vector-valued functions, respectively,
smooth enough for their traces on Ft” to be well defined, we define the averages
fo} = (vl +vle), {a} = 3(dlx + alz), and the jumps [v] = v, B +
V2 N2, [q] := qu1 -D1 + Q2 - D,2, Tespectively. On a boundary face Ft” C JxFP
and F)! C Ok, we set v} = vl.., {a} = dl.,., [v] = v]w, Dk, [d] = dls, - Dx,,
with n,, denoting the unit outward normal vector on the boundary. Upon defining

wh = lim u(t, +s), 0<n< N, —1, wu, = lim u(t, —s), 1 <n <N,

s—07t s—0t

+ —
n — Up-

the time-jump across t,, n =1,..., Ny — 1 is given by |u|, :=u
Remark 6.2. The above time-jump across different time nodes is exactly the same
upwind-jump, due to the fact that the hyperbolicity of parabolic problem is only

along the time direction.

Equipped with the above notation, we can now describe the space-time discontin-
uous Galerkin method for the problem (6.1), reading: find w;, € SP(Uy; Tp,) such
that

B(up,vy) = l(vy), for all v, € SP(Up; Th), (6.5)

where B : SP(Up; Tn) x SP(Un; Tr) — R is defined as

Ny

B(u,v) := Z/I ((Or, 0) + Ba(u,v)) dt + Y ([ufu-r, v7) + (ug o), (6.6)
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with the spatial IP-DGFEM bilinear form Bq(:, ) given by

By(u,v) == Z /aVu-Vvdx— Z /F<{{aVu}}-[[v]]+{aVv}-[[u]]—a[[u]]-[[v]]) ds,

KETR Y FeFy,

and the linear functional ¢ : SP(Uy; T,) — R given by

l(v) = i/ln ((f,v) - Z /FgD ((avhv) ‘n— O’U) ds) dt + (ug, vy ).

FeFP

The nonnegative function o € L>(J x F},) appearing in By and ¢ above is again
referred to as the discontinuity-penalization function; its precise definition, de-
pending on the diffusion tensor a and on the discretization parameters, will be

given in Lemma 6.5 in next section.

The use of prismatic meshes is key in that it permits us to solve for each time-step
separately: for each time interval I,, € Uy, n = 2,..., N, the solution U,, = uy|z, €
VP(I,;Ty) is given by:

/ (OUn, Vi) + Ba(Uy, Vo) dt + (U, Vi)

In

= /1 ((f7 V) — Z /FgD((thVn) ‘n—oV,) dS) dt + (Up1, Vi21), (6.7)

FeFP

for all V,, € VP(1,,;T5), with U,_, serving as the initial datum at time step I,; for

n =1, we set Uy = ug.

6.2.1 Inf-sup Stability of space-time DGFEMs

We shall establish the unconditional stability of the above space-time DGFEMs,
via the derivation of an inf-sup condition for arbitrary aspect ratio between the
time-step and the local spatial mesh-size. The proof circumvents the global shape-
regularity assumption, required in the respective result in Theorem 5.5 in Chapter
5 for the case of parabolic problems, since hyperbolicity is only imposed along

time.
Lemma 6.3. Let v € P, (kn), kin € Uy X Ty and © € {k, F'}. Then, there exist

positive constants Ciny ¢ and Ciny 7, independent of v, ky, A\, and p,,,, such that

2
Pk,
ol < Coma 50 (6.8)



DGFEMs for Parabolic PDEs 102

Pr,
HatUHIﬁ (I:12(0)) = Cinv, 75 2 ’|U"%2(1n;1:2(®))- (6.9)
Proof. We note that (d + 1)-dimensional spatial element x, := I, X k. So we

start the proof over the reference time interval I := (—1,1) and then the general
result can be derived by using the scaling augment. We start with (6.8). For
veP,., (f X K), we can rewrite v into the Legendre polynomial L, (£) up to order
P, With respect to variable ¢ over reference temporal interval I = (—1,1), such
that

ydt,  (6.10)

<
~
o}
I
S
3
»
S~—
h
3
=
z.
-+
=
S
3
|
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3
_l’_
—_
~\
4
X
h
3
—~
>

with L?-norm

Prn Pk Pr
n Pon )2 : 2
; ()t (%) =2 g — . (6.11
[0 01 7, /n§0:m§ O:a Yo ()52 ;%Ha a0y g (6:11)

Here, we have used the orthogonality of Legendre polynomials. The coefficient
a,(x) is a function of the spatial variable x only. To be more precise, they are
polynomial of total degree up to p., — n in spatial variables. Next, we have the

following result:

Prn

[o(+1,%)[[2(r) < ZHan M2 Ln(1D)] € =—7=—

£, %) | 120y (6.12
7 [0t %)l 22(x,)- (6.12)

Here, we used the Cauchy-Schwartz inequality and the fact that |L,(+1)| = 1. By
using the scaling argument, then (6.8) is proved. Next, we prove (6.9). Here, we
introduce set © to denote d-dimensional spatial element x or (d — 1)-dimensional

spatial face F'. We first introduce the following result:

Prn Prn

“atUHL? < Z |an (x)[[| L7, ( ||L2(1 < Z |an(x)|(n(n + 1))1/2 < \/_pi ||U||L2

(6.13)
Here, we have used result ||L;L(f)||iz(f) = n(n + 1); see [167] for detail. Then we

use above result together with Fubini’s theorem to derive the following result:
HatUHLz(I 12(0 S 3pin /6 Hv”izd) de = 3p ”UHLz(l 12(8))" (6'14)

Finally, we can use the scaling argument to derive (6.9) . O
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Remark 6.4. The proof of Lemma 6.3 can be viewed as an extension of anisotropic
tensor product elements with anisotropic tensor product Q, polynomial basis
[103, 163, 106]. In our scheme, the spatial mesh is a general polytopic mesh
and the polynomial basis here is total degree basis P,. Due to the fact that the
space time element x, = [, X k is constructed by tensor product of spatial and
temporal meshes. All inverse estimates related to time variable can be treated as
one dimensional inverse estimation problems with respect to time variable. The
resulting inverse estimate is sharp in the sense that it only depends on temporal

mesh size \,,.

For the forthcoming stability analysis, we introduce an inconsistent bilinear form
Bq(+,-): for u,v € 8 := L2(J; HY(Q)) N HY(J; H1(Q)) + SP(Up; Tr), we set

Ny

B(u,v) == Zz/l ((Oyu, v) + Ba(u,v)) dt + Z(Lujn,l, vt )+ (ug, ), (6.15)
where

Ba(u,v) = Z aVu - Vodx

KET, ¥ K

- Z /F ({{aﬂz(VU)}} o] + {ally(Vo) } - [u] — ofu] - [[v]]) ds,

FeF,

and a modified linear functional ¢ : S — R, given by

((v) == i/ln <(f, v) — Z /FgD <aH2(th) ‘n — av) ds) dt + (ug, vy ).

FeFp

Here, I, : [L2(J; L3(2))]? — [SP(Up; Tr)]¢ denotes the vector-valued L?>—projection
onto [SP(Uy; Tp)]%. Tt is immediately clear, therefore, that B(us,vy) = B(up, vp)
and that (v,) = Z(vh), for all vy, € SP(Up; Tr).

By recalling the definition of \/a be the square root of a and set a,, = |/al3., , for

Kn € U X Ty, with |- |2 denoting the matrix l,—norm. We introduce the DG-norm

[I-/llpe:

N¢—1

1 1 1, _
lolloc == ( [ Mol e+ 517 + 3= Flolall + 3105 )
n=1

1/2
)

(6.16)
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with

Toll2 = 3 IVaVela + 3 / o|[o]? ds. (6.17)

KEThH FeFy

The continuity and coercivity of the inconsistent diffusion bilinear form Bq(-, )

with respect to the diffusion DG—norm |[||-|||q is established in following lemma.

Lemma 6.5. Let Assumption 4.53.1 holds and let o : J x F, — R, be defined

face-wise over all Ft” by

( a2 (po, +1)(pe, +d .
C, max { 0P & 1) (s, )}, FtH C Jx Ff,
nn:FJ‘ﬂRn;ﬂD hr{
o(t,zr) = (6.18)
52
K + 1 n, T d ~
O, max Pt D@D
\ nn:ﬁt”ﬂkn;é@ hn

with C, > 0 sufficiently large, independent of discretization parameters and the

number of faces per element. Then, for allv € S, we have

/B’d(v,v)dtz ocoer/mvmgdt, (6.19)
J J
[ Batw.0)dt < o [ Illal oot (6:20
J J

Bv,v) 2 Clvlfbe (0:21)

for all v € S, with the positive constants Ceper, Coont and C, independent of the

discretization parameters, the number of faces per element, and of v.

Proof. The proof of coercivity in relation (6.19) and continuity in relation (6.20)
under the mesh Assumption 4.3.1 are exactly the same as in Lemma 4.12 in Section
4.3. Here, C,oer depends on the shape regularity constant C; and also the uniform
ellipticity constant 6. Hence, the bilinear form Bd(~, -) is coercive over § x S for
e>1/2 and C, > 2Cs¢/0. C, depends on constant Cy, but is independent of the

number of faces per element.
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For (6.21), integration by parts on the first term on the right-hand side of (6.15)
along with (6.19) yield

N¢—1

. 1 1 I, _
B(v,v) = Cuoun / ol de + 3 leg 17+ D7 S Lwlall® + 5 llvx, 17
n=1
> Cllvllbe,
with €' = min{1, Ceper }. O

Remark 6.6. Our approach is dictated by the shape regularity Assumption 4.3.1
allowing for an arbitrary number of faces per element. In contrast, if mesh Assump-
tion 3.1.1 is employed, no shape regularity was explicitly assumed at the expense
of imposing a uniform bound on the number of faces per element. Clearly, the two
approaches can be combined to produce admissible discretisations on even more
general mesh settings; we refrain from doing so here in the interest of brevity and

we refer to the forthcoming [60] for the complete treatment.

Moreover, the coercivity constant may depend on the shape regularity constant C|
and on the uniform ellipticity constant 6. To avoid the dependence on the latter,
it is possible to combine the present developments with the DGFEM proposed in

[105]; we refrain from doing so here, in the interest of simplicity of the presentation.

Before we prove the inf-sup condition, we briefly talk about the reasons why the
inf-sup condition is essential for the proposed space-time DGFEMs. The classical
a priori error analysis for DG time-stepping scheme depends highly on utilising
the tensor product structure of the space time basis. The optimal error bound
in various norms depends on using special temporal projections introduced by
Thomée [180] and elliptic projection introduced by Wheeler [186] over spatial
domains, see also [159] for the hp—version a priori error analysis. Due to the lack
of the space-time tensor product structure of the basis, we can not use the classical
techniques to do error analysis. To address this issue we prove an inf-sup condition
for the inconsistent bilinear form B (+,+), with respect to the following streamline
diffusion DGFEM-norm.

Definition 6.7. The streamline diffusion DGFEM-norm is defined by:

ollZ = Mollbe + D TeallOvliaen, (6.22)

Kn €UR X Th
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where

n

T, ‘= = VHnEUhX'Fl,

n ~9 )
Kn

for p., > 1 and p,, defined as

Di, = Mmax { max {pkn}}, VE, € Up X Ty; (6.23)
ﬁ‘t“cann RnE{Hm’f/n}
FJ‘CBNRO&QZ

Dr, 1s the largest polynomial order among each element x,, € U, x Tj, and their

spatial neighbouring elements.

Theorem 6.8. Given Assumption 4.3.1, there exists a constant Ay > 0, indepen-
dent of the temporal and spatial mesh sizes A\, h., of the polynomial degree py,

and of the number of faces per element, such that:

of B

D > A, (6.24)
ves? Uy T} pese oy Vsl llls

Proof. For v € SP(Up; Tp), we select u = v + avs, with vs|,, = 7.,0, Ky €
Uy, x T, with 0 < a € R, at our disposal. Then, (6.24) follows if both the

following;:

leellls < C{lIv[lls, (6.25)

and
B(v, ) = C.|lv[II2, (6.26)

hold, with C* > 0 and C\ > 0 constants independent of h,, A, ps,, the number
of faces per element, and A; = C,/C*.

To show (6.25), we start by considering the jump terms at time nodes {t,}2*,
Employing (6.8), we have

—|| ||2+Z—||LVS nll* + —||( P
< Z Tffn > 0wz,

Kon €URXTh Flcok,
2
Tﬁnpﬁn
< Y Wi (T Ol ) S CHIVIIE (627)

K €U X T}, An
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Using (6.9) with © = x and relation (6.23), the second term on the right-hand
side of (6.22) is estimated by

finplin
> ol € Y Cur 5 (Rl 0l) < G (628)

Kn €UR XTh Kn €UR X Ty

Next, for the first term on the right-hand side of (6.22), employing (6.9) with
© = k, the uniform ellipticity condition (6.2), together with Fubini’s theorem, we

have

Z IVaVyg|eg.,) < Z a7 10:(VV)l[72(s,) (6.29)

K €UR X T, Kn €UR X Th
T2 Dy
SEZ%%ﬁmwm
Kn €UR X Ty
aﬂn annn 2
S Z C(1nv7 H\/_VVHL2 (kn) < C3H|VH| :
’ineuhxﬁz

Finally, employing (6.9) with © = F' and (6.23), we have

S [ [olbardsas = 3 on 001,

FEFy Flcixr,
7'2 4
S Z O-Olnv7A ( i {:‘in W) {pl‘in}) ||[[ ]]HLQ(FH
Flcixr, F)l cornnon,
< ) 0GR, &y < CalllvIl- (6.30)
F't”CJX]:h

Combining the above, we have |||v|[|s < C||¥|ls, where C' = /321, Cy, or

llellls < 1Mwllls + allivllls < (14 aC)lIwlls = C @)l (6.31)

For (6.26), we start by noting that B(v, u) = B(v,v) + aB(v, vs). Also

Ny
Bww) = (% T,in||8tv||2Lz(,{n)+/IBd(l/,l/s)dt>

n=1 Kkpn€ULXTh
Ny

+ Z(Lan—h (Vs)ao1) + (g5 (V)g)-

n=2
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Further, using (6.8), we have

Ny

D (s ()iy) + (04, (7))

n=2

< Y MWlsrcon (e Do Oy

Kn €UR X T, ElConn

< AChs (I 12+ ISl + W 2 #3020l (6:32)

Kn €UR X Th

where, with slight abuse of notation, we have extended the definition of the time
jump |v] to time boundary faces. Next, from (6.20), together with (6.29) and
(6.30), we get

Nt Nt
> [ Batvwgat <3 [ Comllvllallellac
n=1"v1in n=1

n

(C’cont)2 1
S 5 [lv[1I3 dt + 3 lvsl13 dt
J J

< (ComP G [t o (6.3
Combining (6.21) with (6.32) and (6.33), we arrive at
Blo,w) = B(wv)+aBv,n)
> (5 — 40Cus) (19 3oy + Z 1)l + 175, o))
b (O — G+ a2 ) / i a

+ D O‘<T“"_T>”at””ﬂ(nn>'

kn €UR XTh

The coefficients in front of the norms arising on the right hand side of the above

bound are all positive if

1 2 C’coer }

o <min { (8Cimvs)” (Coom )2+ Cs + C)

with the latter independent of the discretization parameters and the number of

faces per element. O

The above result shows that the space-time DGFEM based on the reduced total-
degree-p space-time basis is well posed. It extends the stability proof from [59]
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FIGURE 6.2: (a). Polygonal spatial element x and covering KC; (b) space-time
element x,, = I, X k and covering KC,, := I, x K.

to space-time elements with arbitrarily large aspect ratio between the time-step
A, and local mesh-size h, for parabolic problems. Moreover, the inf-sup stability
result holds without any assumptions on the number of faces per spatial mesh,
too. Therefore, the scheme is shown to be stable for extremely general, possibly

anisotropic, space-time meshes.

The above inf-sup condition will be instrumental in the proof of the a priori error
bounds below, as the total-degree-p space-time basis does not allow for classical

space-time tensor-product arguments [180] to be employed.

6.2.2 A priori error analysis in L?(H')-norm

In view of using known approximation results, we shall require a shape-regularity

assumption for the space-time elements.

Assumption 6.2.1. We assume the existence of a constant c,.g > 0 such that

C_l S hn/An S Creg7

reg

uniformly for all k, € U X T, i.e., the space-time elements are also shape-reqular.

In this section, we need to slightly modify the Definition 3.9 for the spatial mesh

coverings.
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Definition 6.9. A covering ’T,f = {K} related to the polytopic mesh Ty, is a set of
shape-regular d-simplices or hypercubes K, such that for each x € Ty, there exists
a 7',?, with k C K. We refer to Figure 6.2(a) for an illustration. Given 72”, we
denote by €y the covering domain given by €y := (UKGNIC)O, with D° denoting
the interior of a set D C RY.

The covering K satisfies the Assumption 3.3.1. As a consequence, we have diam(K) <
Cgiamhs, for each pair k € Ty, K € ’721, with k C IC, for a constant Cgiam > O,

uniformly with respect to the mesh size.

Theorem 6.10 (Stein). Let Q be a domain with a Lipschitz boundary. Then,
there exists a linear extension operator € : H*(Q) — H*(R%), s € Ny, such that

Cvlg = v and ||€v||gsgay < O]
and €.

s (), with C' > 0 constant depending only on s

Moreover, we shall also denote by €v the (trivial) space-time extension €v :
L2(J; H3(Q)) — L*(J; H*(R%)) defined as the spatial extension above, for every

t € J. Next, we present the hp-approximation results in next lemma.

Lemma 6.11. Let k,, € Uy, X Tp, F, C Ok, a face, and K € 7',? as in Definition 6.9
and let K, = I, X K (see Figure 6.2(b) for an illustration). Let v € L*(J x Q),
such that €v|x, € H"(K,), for some l,, > 0. Suppose also that Assumptions
6.2.1 and 3.5.1 hold. Then, there exists TTv|,, € Py, (kn), such that

- hi’;nfq
v — V|| ga(e,y < C = €0l gpinn 1c)s lin =0, (6.34)
for0<q <,
~ hsﬁn—l/Q
[0 = Tol| 2o, ity < Cpl;—,l/QHQSUHHZNn(ICn)? len, > 1/2, (6.35)
and
~ Swkp—1/2
lo =Tl 2 iy < Oz €0 mten i,y b > 1/2, (6.36)
p’fn

with s, = min{p,, +1,1., }, and C > 0 constant, depending on the shape-regularity

of Ky, but independent of v, hy,, px, and the number of faces per element.

Proof. The bound (6.34) can be proved in completely analogous fashion to the
bounds appearing in relation (3.28) in Section 3.3. The proof of (6.35) also follows

using an anisotropic version of the classical trace inequality (see, e.g., [103]) and



DGFEMs for Parabolic PDEs 111

(6.34) for ¢ = 0,1. The proof for (6.36) follows the same proof as Lemma 4.10
in Section 4.3. Here, the constant C' depends on the constant from the trace
inequality, but is independent of the discretization parameters and number of

faces per element. n

We first give an a priori error bound for the space-time DGFEM in the |||-|||s—norm,

before using this bound to prove a respective L?(L?)-norm a priori error bound.

Theorem 6.12. Let Assumptions 4.3.1, 6.2.1 and 3.3.1 hold, and let up, € SP(Up; Tr)
be the space-time DGFEM approzimation to the exact solution uw € L*(J; H'(£2))N
HY(J; HY(Q)), with the discontinuity-penalization function given by (6.18), and
suppose that u|., € H" (ky,), l., > 1, for each k, € Uy, X Ty, such that Culx, €
H'n(K,). Then, the following error bound holds:

25k,

D,
= unll2 < C Y =5 (Grn(Pns Pra) + Do (s D)) | €0 1, 1, (6.37)

Rn Euh X 771, fin

where

—1 2 —2 -1 = 2 —2 -1
g"’in (h/"’in I p"’in) = Tlﬁn + T"inplin th + p"’in h/’un + a"’inpl-in hlin + p’in hlin ~ana“X 07
Fy' COkn

and

Dy, (M, Pr,) = a. (b} h.? max o' +p. h.? max o), (6.38)
F~'tH COkn / F‘t‘ COkn
with s, = min{p,+ 1,1} and p, > 1. Here, the positive constant C is independent

of the discretization parameters, number of faces per element and wu.

Proof. After noting that A, < ¢yegh. by Assumption 6.2.1, an a priori bound can
be derived following a similar approach as Theorem 5.9 where an a priori bound
for general second order linear problems is presented. However, we point out
that here a different treatment of the trace terms to take advantages of the mesh

Assumption 4.3.1 used here by employing the Lemma 6.11. O]

Remark 6.13. The above a priori bound holds without any assumptions on the
relative size of the spatial faces F', F' C 0Ok, and number of faces of a given
spatial polytopic element k € Ty, i.e., elements with arbitrarily small faces and/or

arbitrary number of faces are permitted, as long as they satisfy Assumption 4.3.1.
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For later reference, we note that Dy, (hs,,Dx,) given in (6.38), estimates the in-
consistency part of the error; and it is identical to the term appeared in (5.48) in
Chapter 5.

Remark 6.14. The proposed method uses space-time P, basis on each element
Fn, Yk, € Uy, X Ty, instead of the tensor-product basis used by standard DG-
time stepping schemes. Consequently, the above a priori bound (6.37) requires a
space-time Sobolev regularity which is stronger than the natural regularity of the

parabolic problem at hand. This extra regularity has to be assumed.

Corollary 6.15. Assume the hypotheses of Theorem 6.37 and consider uniform
elemental polynomial degrees p,, = p > 1. Assume also that h = max,, cy, x7, Pow, »

Sk, = s and s =min{p+ 1,1}, | > 1. Then, we have the bound

s—1
lu — unll L2501 () < CWHUHHZ(JXQ)v

for C' > 0 constant, independent of u, uy, number of faces per element, and of the

mesh parameters.

Proof. We begin by observing the bounds
Olloll e ) < lvllie < MVl (6.39)

Theorem 6.10, together with Assumption 3.3.1, implies that

HQEUHHZ(JXQ;O < CHUHHZ(JXQ)a

and the result follows. O]

The above bound is, therefore, h—optimal and p—suboptimal by p'/2.

6.2.3 A priori error analysis in L?(L?)-norm

In this section, we derive an error bound in the L?(J; L?(2))-norm using a parabolic
duality argument. To this end, the backward adjoint problem of (6.1) is defined
by

—0iz—V-(aVz)=¢ inJ xQ,
(6.40)
Zier =9 on, and u=0 onJ x9N
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Assume that g € H}(Q) and ¢ € L*(J; L*(©)). Then we have
z € L*(J; H*(Q)) N L®(J; Hy (), 0wz € L*(J; L*(Q)), (6.41)

We assume that €2 is convex and a is smooth such that the parabolic regularity

estimate

2l Loz + N2y + zllmoize@) < (6.42)
Crlolle2rr20)) + 19l 3 (0))

holds with the constant C, > 0 depending only on Q, T and a; cf. [96, p.360] for
smooth domains, and the parabolic regularity results can be extended to convex

domains by using results in [113, Chapter 3].

For the sake of simplicity, we make the following local bounded variation assump-

tion.

Assumption 6.2.2. For any two d-dimensional spatial elements k, k' € T sharing

the same (d — 1)—face, we have:
max(hy, he) < cpmin(hy, hy),  max(p,,pe ) < cpmin(py,,, Per ), (6.43)

form=1,..., Ny, ¢, >0, ¢, > 0 constants, independent of discretization parame-

ters.

Before deriving the main results in this section, we introduce some approximation

results in the following lemma.

Lemma 6.16. For v € H'(1,,), I, € U, with OI,, denotes the end points of the
interval I, let ﬂ; denote the L? orthogonal projection onto the polynomial space
P,(1,), p > 0. Then the following relation holds

A
_ 7t 2 <C n a 2 6.44
o =m0z, < O 2 10w lre, (6.44)

and A\
lo = mpwlliaon) < C=)" 10wl 12, (6.45)

p+1
Here, 0I,, = {t,_1,t,} . We also have

lv = mvllzeq,) < N[0l oo (1) (6.46)
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here, C' > 0 constant is independent of v, A\, p.

Proof. Bounds (6.44) and (6.45) can be proved by using Legendre polynomial
expansion (see, e.g. [125]). Bound (6.46) can be proved by using the stability of
L? projector and Holder’s inequality. O

Theorem 6.17. Consider the setting of Theorem 6.12, and assume the parabolic
reqularity estimate (6.42) holds along with Assumption 6.2.2. Then, we have the

bound

har
le = wnllfeuz@y < € masc he, 3 =5 (G, (e )

Kn €UR X T,
PR €Uy x T, Prin

+D"’in (h’fn ’ p"in)) || éu”?{lwn (’Cn)’

with the constant C' > 0, independent of u, uy, of the discretization parameters

and of number of faces per element.

Proof. We set ¢ =0 and ¢ = u—wuy, in (6.40). After integration by parts, we have,

Nt
|lu — U/hH%Q(J;LQ(Q)) = Z/ —(Oz,u — up) + Bal(z,u — up) dt (6.47)
n=1"1In
Ne—1
= D (L=l (= un)y) + (2, (w = un)y,) = Blu— up, 2),
n=1

with z the solution to (6.40); cf. [180]. Now, using the inconsistent formulation,
we have

lu — uh“%Q(J;LQ(Q)) = B(u —up, 2) = R(z,u — un),
with

R,w) = Y /J/F{{a(Vv—Hg(Vv))}~[[w]]dsdt.

FeF,

Here, we point out that if w € H'(Q), then above inconsistent term is zero.

Further, for any z, € SP(Uy; Ty,), we have
B(u—up, 2z1) = B(u—up,z) — B(u—un, 2z1) = R(u, 23),

and also R(u, zp) = —R(u, z — zp,) since R(u, z) = 0 by relation (6.42). The above
imply that

l|lu — uh||2LQ(J;L2(Q)) = B(u—up, 2 — 2z) — R(z,u —up) — R(u, 2z — 2,).  (6.48)
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For brevity, we set e := u — uy and 7 := z — z,. Let z, € SP(Uy;Ty,) defined on
each element k,, € U;, X Ty by

| millzz , for py, even;
Zhlky = ~
t
2, for p,, odd,

Prn
2

of degree q with respect to the time variable defined in Lemma 6.16, and fIq is the

for p := |2~ |, with 7/ denoting the L*—orthogonal projection onto polynomials

projector defined in Lemma 3.14 over d-dimensional spatial variables. Note that
this choice ensures that z, € SP(Up; Tr).

For the first term on the right-hand side of (6.48), using (6.20) together with the

Cauchy-Schwarz inequality we have

N¢—1

Ble) = 3 [ @)+ Butecnyae+ Y- (Lehoond) + (e

Ny
< Y 1m0l 7@1/277||L2(m)+2/ Ceontllle[llalllnllla dt
Hneuhxﬁl n=1 In
Ni—1

+ > lLelallllmttl + lleg IHing |
n=1

N
S Tl + (Coom)? S / Il dt
n=1 n

Kn €UR X Th
N¢—1

1
+ 23 ) llells (6.49)
n=0

IN

We shall now estimate the terms involving 7 on the right-hand side of (6.49).

Recalling standard hp-approximation bounds in Lemma 6.16, we have for r €

{p.p+1},

Z TJHWH%(H”) = Z T,;LIHZ - W}%HﬁzH%?(nn)
Kn €UR X Th Kn €UR X Th
< 2 Z ! (Hz — W;Z”%z(nn) + ||z — W;ﬁ,«ZH%Q(,{n))
Kn €UR X T,
DY h
< C Z Tnn1<TnH3tZH%2(5n) + THHQEZH%Q(IW;H?(IC)))
Kn €UR X Th p"{n p“"

h?
< Cmaxh,, (“ZHIQLP(J;L?(Q)) + max anHz”%Q(J;HQ(Q)))’

" (6.50)
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using the triangle inequality, the stability of L?—projection, Assumptions 6.2.1,
6.2.2, Lemma 6.11, and Theorem 6.10, respectively. Next, we have

Ntl Ntl

> Il < 222(uz—m 22y + N(mbz = T2 32 )
n=0 k€T,
< 29023, || Lz = 02) [,
nneuthh fin
An hi
< (EII@ZIIH + o H@ZH%?(J;H?(IC)))

Kn €UR XTh
h? 9
ey ) (651

Kn

h
< (C'max —=

n Kn

<||Z||§{1(J;L2(Q)) + max

using an hp-version inverse estimate over time variable and working as before.

Next, we have

/ SOV dt = S V(= 7t B

KETH kn €UR X Th

< 3 2(IVG = ey + IV (Rhz = 7L 2) s, )

Kn €UR X Th
2 h2 2
<C > Ve Bz + €2 a0 )
Kn €UR X T, pn”

s
<C’maxh,m(||z||Loo JHI) —|—maxp 212 (J:H2(Q ))>.(6.52)

n

Using similar arguments as before. Also, since [z] = 0 = [rlz], due to relation
(6.42), we have [z — i1l 2] = 7i[z — II,2], thus,

Z//ﬂ DlPdsdt = 3 olls — meiiiel

FeF, Elcaxr,

< 2 Z aHz—Hz]H|L2(F”

ElcixF,

Mo 2

< C Z (}Hnax U)TH@zHL%J;H?(IC))

ren €U, X T, F,' COkn V2

h? 5

< C’mzix ’: ||Z||L2(J;H2(Q))7 (6.53)

by Assumption 6.2.2.
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Substituting (6.50), (6.51), (6.52), (6.53) into (6.49), along with (6.42), leads to
Ble,n) < CC, max h2{lellell2nz(on- (6.54)

Moving on to the second term on the right-hand side of (6.48), we have

R(z,e)= ) /, /F fa(Vz —TI1,(V2)} - [e] dsdt

FerFy,

< (X [ [ Hatvs - mvapedsa) el

FeFy

To bound further R(z,e), it is sufficient to bound I + II instead, where

L= 3 /J /F 20| {a(Vz — LT, (V2) )2 ds dr,

FeFy

I = Z/J/FQJ_H{[aHg(ﬂ'%I:IT(VZ)—Vz)}|2dsdt.

FeFy

Here, 7'(';'3].:[1. denotes the vector valued projector W%ﬁ,,. To bound the term I, using

Lemma 6.11 and working as before gives

3/2
Kn

h
I < Cf{l{ivx 2 (HZH%OO(J;H&(Q))—i_HZH%Q(J;H%Q))‘ (6.55)

Kn

By using the inverse estimation Lemma 4.9 and stability of II,, and working as

above, we also have

I < Cn}1€ax hm( |z||i°°(J;Hé(ﬂ)) + ||Z||2L2(J;H2(Q))' (6.56)

Therefore, (6.55) and (6.56), together with (6.42) give

R(z,e) < CC, rrflfaxhl/ lelllsllell L2 2 ) (6.57)

Next, we bound the last term on the right-hand side of (6.48), which is given by

R(u,n) = Z/} /F{{a(vhu — I, (Vyu)} - [n] dsdt.
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The Cauchy-Schwarz inequality together with (6.53), result in

R(u,n) < Z// “!{a( th—Hg(th))}Hstdt)

FeF,

xZ// dsdt

FeFy,

IN

CC, maXp1/2|| ell 22

Kn

28k, 1/2
(X D €l ) - (658)
2[}1” Kn Kn) MRn H'kn (]Cn)

ren €U, xT5, Pn

Here, D,,, (hs,, Px,) is defined in (6.38), which measures the inconsistency error.
Finally, combining (6.54), (6.57) and (6.58) with (6.48), the result follows. O

Remark 6.18. If we use the same assumptions as in Corollary 6.15, then we can
see that the L?(J; L?(Q))-norm error bound in Theorem 6.17 can be simplified to

s—1/2
[|u — uh||L2(J;L2(Q)) < CWHUHH’(JXQ)a

with s = min{p + 1,{}, which is suboptimal with respect to the meshsize h by
half an order of h, and sub-optimal in p by 3/2 orders. (The respective space-
time tensor-product basis DGFEMs, using the same approach can be shown to
be h—optimal and p—suboptimal by one order of p.) The numerical experiments
in the next section confirm the suboptimality in h for the proposed method, but
at the same time highlight its competitiveness with respect to standard (optimal)
methods.

An interesting further development would be the use of different polynomial de-
grees in space and in time as done, e.g., in [173, 182] in the context of total degree
space-time basis. The exploration of a number of index sets for space-time poly-
nomial basis, including this case, will be discussed elsewhere. Nevertheless, the
above proof of the L?(.J; L?(€2))-norm error bound would carry through with minor

modifications only for various choices of space-time basis function index sets.

6.3 Numerical examples

We shall present a series of numerical experiments to investigate the asymptotic

convergence behavior of the proposed space-time DGFEMs. We shall also make
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comparisons with known methods on space-time hexahedral meshes, such as the
tensor-product space-time DGFEM and the DG time-stepping scheme combined
with conforming finite elements in space. Furthermore, an implementation using
prismatic space-time meshes with polygonal bases is presented and its convergence

is assessed. In all experiments we choose C, = 10.

6.3.1 Example 1

We begin by considering a smooth problem for which uy and f are chosen such

that the exact solution u of (6.1) is given by:
w(z,y,t) = sin(207t)e S(E-0* +W=0%ip Jx (6.59)

for J = (0,1) and Q = (0,1)2, and a(z,y,t) is an identity matrix. Notice that
the solution oscillates in time. To asses the convergence rate with respect to the
space-time mesh diameter h,, on (quasi)uniform meshes, we fix the ratio between

the spatial and temporal mesh sizes to be h,, /A, = 10.

The convergence rate with respect to decreasing space-time mesh size h,, in three
different norms is given in Figure 6.3 for space-time prismatic elements with rect-
angular bases (standard hexahedral space-time elements) and for prismatic meshes
with quasi-uniform polygonal bases: all computations are performed over 16, 64,
256, 1024, 4096 spatial rectangular or polygonal elements and for 40, 80, 160, 320,
640 time-steps, respectively.

The left three plots in Figure 6.3, show the rate of convergence for the proposed
DGFEM using the P, basis, for p = 1,2,...,6, on each 3-dimensional space-time
element, against the total space-time degrees of freedom (Dof). This will be re-
ferred to as ‘DG(P)’ for short, with ‘rect’ meaning spatial rectangular elements and
‘poly’ referring to general polygonal spatial elements in the legends. The observed
rates of convergence are also given in the legends. The error appears to decay
at essentially the same rate for both rectangular and polygonal spatial meshes,
with very similar constants. Indeed, the DG(P) scheme appears to converge at
an optimal rate O(h?) in the L*(J; H'(2))-norm for p = 1,2,...,6 (cf. Corol-
lary 6.15), while the convergence appears to be slightly sub-optimal, O(hP*'/2), in
the L?(J; L*(Q))- and L*>°(J; L*(Q))-norms. Again, the observed L?(J; L*(Q2))-
norm convergence rate is in accordance with the theory, cf. the a priori bound of
Theorem 6.17.
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FIGURE 6.3: Example 1. DG(P) under h-refinement (left) and comparison

with other methods (right) for three different norms.
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We now assess whether the deterioration in the h-convergence rates is an accept-
able trade-off for the DG(P) method. We present a comparison between 4 different
space-time schemes over rectangular space-time meshes in the right plots of Fig-
ure 6.3. More specifically, we compare the proposed DG(P) method, against the
time-DGFEM with: 1) discontinuous tensor-product space-time bases consisting
of P,-basis in space ('DG(PQ)’ for short), 2) full discontinuous tensor-product
Q, basis in space ('DG(Q)’ for short) and, 3) the standard finite element method
with conforming tensor-product Q, basis in space ("FEM(Q)’ for short) [180, 159].
Unlike the proposed DG(P) scheme, the three other methods achieve the opti-
mal h-convergence rate in the three different norms: O(hP*') in L?(J; L*(Q))-
and L>(J; L?(Q?))-norms and O(h?) in L*(J; H'(Q2))-norm, respectively. Never-
theless, plotting the error against the total degrees of freedom, a more relevant
measure of computational effort, we see, for instance, that DG(P) with p = 2 use
less Dofs compared to the other 3 methods with p = 1, to achieve the same level
of accuracy, at least for relatively large number of space time elements. More pro-
nounced gains are observed when comparing DG(P) with p = 5,6 with the other

methods with p = 4, across all mesh sizes and error norms. Analogous results hold
for DG(P) with p = 3,4.

Moving on to the p-version, Figure 6.4 shows the error for all four methods in
the three different norms for fixed space-time meshsize under p-refinement. The
left three plots are with final time T" = 1, for fixed 64 spatial elements and 80
time steps. As expected, exponential convergence is observed since the solution
to (6.59) is analytic over the computational domain. However, the convergence
slope for DG(P) with both rectangular and polygonal spatial elements appears to
be steeper than the other 3 methods. Indeed, DG(P) achieves the same level of

accuracy for p > 3 with less number of Dofs in all 3 different norms.

The right three plots for the same computation run for a longer time interval
with final time 7" = 40, that is 3200 time-steps. Since DG(P) use less Dofs
per space-time element compared to the other three methods, the acceleration
of p—convergence for the DG(P) is expected to be more pronounced for long
time computations. Again DG(P) achieves the same level of accuracy with fewer
degrees of freedom for p > 3. For instance, the total DG(P) Dofs for this problem
are about 45 million when p = 9, compared to about 53 million Dofs with p = 6
for FEM(Q), while the error for DG(P) is about 100 times smaller than the error
of FEM(Q) in all three norms.
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FIGURE 6.4: Example 1. Convergence under p-refinement for 7" = 1 with 80
time steps (left) and for 7' = 40 with 3200 time steps (right) for three different
norms.
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FIGURE 6.5: Example 1. Convergence under p-refinement for 7' = 1 with 80
time steps for three different norms.

Finally, we investigate the convergence performance of the proposed approach
against DG time-stepping spatially conforming FEM with the cheaper conforming
serendipity elements in space on hexahedral space-time meshes. Numerical results
under p-refinement are given in Figure 6.5, with FEM(Se) standing for the latter
method. We note that for d = 2, the cardinality of the local serendipity space
equals the cardinality of P,~basis plus two more Dofs. We observe that the con-
vergence slope of FEM(Se) is steeper than that of FEM(Q) and almost parallel
to DG(PQ), but it is still not steeper than the convergence slope of DG(P). We
observe that DG(P) with p = 7 gives smaller error against Dofs than FEM(Se)
with p = 6. Noting that serendipity basis in three dimensions uses consider-
ably more Dofs compared to total degree P,-basis, it is expected that DG(P) will

achieve smaller error for the same Dofs than FEM(Se) with lower order that 7
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polynomials for d = 3.

6.3.2 Example 2

We shall now assess the performance of the hp-version of the proposed method for
a problem with an initial layer. Let a(x,y,t) to be the identity matrix, and ug

and f chosen so that the exact solution of (6.1) is given by
u(z,y,t) = t*sin(mz) sin(ry) in J x (6.60)

with J = (0,0.1) and Q = (0,1)%. We set o = 1/2, so that u € H*~(J; L*(Q)), for
all e > 0. This problem is analytic over the spatial domain, but has low regularity
at t = 0. To achieve exponential rates of convergence, we use temporal meshes,
geometrically graded towards ¢ = 0, in conjunction with temporally varying poly-
nomial degree p, starting from p = 1 on the elements belonging to the initial time
slab, and linearly increasing p when moving away from ¢ = 0; see [167, 159] for
details. Following [159], we consider a short time interval with 7" = 0.1. Let
0 < o0 < 1 be the mesh grading factor which defines a class of temporal meshes
tp =0V x0.1forn=1,...,N. Let also u be the polynomial order increasing
factor determining the polynomial order over different time steps by p,, := |un]|
forforn=1,..., N.

The three left plots in Figure 6.6 show the convergence history for DG(P) and
FEM(Q) for this problem. All computations are performed over 256 spatial ele-
ments with geometrically graded temporal meshes based on 3 different grading fac-
tors 0 = 0.1,0.172,0.5 and fixed p = 1.5. The error for both DG(P) and FEM(Q)
appears to decay exponentially under the hp refinement strategy described above
for all three grading factors considered. The choice of o = 0.5, is motivated by the
meshes constructed in standard adaptive algorithms; o = 0.172, is classical in that
it was shown that it is the optimal grading factor for one-dimensional functions
with r“-type singularity for elliptic problem in [114], while ¢ = 0.1 appears to be
a better choice in the current context. We also note that the convergence rate of
DG(P) appears to be steeper than FEM(Q) under the same mesh and polynomial
distribution. Furthermore, performing the same experiments on general polygonal
spatial meshes, we observe that the error decay does not appear to depend on the
shape of the spatial elements. This is expected, as the error in the time variable

dominates in this example.
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FIGURE 6.6: Example 2: Convergence under hp-refinement with fixed p = 1.5
(left); with fixed ¢ = 0.1 (right) for three different norms.
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For completeness, we also report on how the choice of the polynomial order in-
creasing factor p influences the exponential error decay for DG(P) with fixed
mesh grading factor ¢ = 0.1; these are given in the three right plots in Figure
6.6. For both L?(J; L?(2))— and L?(J; H'(Q))-norms, the results show that pu = 1
gives the fastest convergence, while y = 1.25 gives the fastest error decay in the

L>(J; L*(92))-norm.



Chapter 7

Exponential Convergence for
DGFEMs with P, basis

We will present some hp-approximation results for the total degree P, basis on
standard tensor product elements. The new results can be viewed as a natural
extension of the classical hp-approximation results with the tensor product Q,
basis on tensor product elements. Here, we will focus on deriving an optimal
hp-approximation bound for the L?-orthogonal projector onto the P, basis in the
L*morm, and optimal hp-approximation bounds for H'-projector onto the S,
basis in the L?~ and H' norms. The technique for proving these bounds will be
different from the existing techniques for hp-approximation with Q, basis. The
main difficulty is due to the lack of tensor product structure in the P, basis and
the S, basis, thereby hindering the use of tensor product arguments together
with 1D stability and approximation results. The main technique used below is
the multi-dimensional orthogonal polynomial expansion. The resulting bounds are
hp-optimal with respect to both Sobolev regularity and polynomial approximation

order.

Here, we mention that there are at least two reasons why we need new approxima-
tion results with the P, and S, bases: the first reason is to explain the findings of
the numerical experiments in the previous chapters, where we observed that the
error compared against number of degrees of freedom for DGFEMs with the P,
basis has a steeper exponential convergence than for DGFEMs with the O, basis,
for sufficiently smooth problems. This situation has been numerically tested on
different examples. We also observed that the ratio of the slope of the exponen-

tial error decay for the P, basis compared to that of the Q, basis depends only
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on the space dimension. A natural intuition to explain this is that the Q, basis
contains in a sense “too many” basis functions other than those of P,. These
basis functions do not increase the order in p of the error bound, but instead only
reduce the “constant” in the error bound. The same phenomenon is also observed
in standard FEM with the S, basis.

The second reason is of a theoretical nature. The exponential convergence proofs
depend on the hp-approximation bound for the L2-orthogonal projector and the
H'-projector over tensor product elements. In general, the classical hp-approxim-
ation results are only proved for Q, by using the tensor product arguments with
the 1D stability and approximation results. The resulting bound is sharp in the
sense that it is optimal in both A and p. Typically, bounds for projectors onto P, or
S, are proved using the fact that there exists a ¢ < p such that Q, is a subspace of
P, or S, together with the help of the approximation results for the Q, basis. We
emphasise that by using this technique, the resulting hp-approximation bound is p-
optimal for functions with finite Sobolev reqularity, but not p-optimal for analytic
functions. So for the above two reasons we derive the new approximation results

for projectors onto P, and S,.

We note that the hp-approximation results used in the previous chapters can
not be used to prove exponential convergence. The key reason is because the
proof of the Ap-bound in previous chapters is based on Babuska & Suri operator
in Lemma 3.11, which is the classical tools in hp-FEMs [24, 25]. Although the
Babuska & Suri operator is a novel tool in hAp-approximation due to the fact that
it is simultaneously optimal in A and p in all Sobolev norms with finite Sobolev
indices, it seems not to be useful in proving the exponential convergence of the
p-version of the FEM for sufficiently smooth solutions. There are two reasons for
this: first, the constant C1; in Lemma 3.11 blows up as [ — oo, which means
we can not take Sobolev indices to infinity; second, even in cases where Cf; is
uniformly bounded with respect to [, we can only prove spectral convergence but

not exponential convergence.
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7.1 Polynomial approximation over tensor prod-

uct elements with P, basis and S, basis

In this section, we derive the hp-approximation results for the L2- and H'-projectors
over tensor product elements with the P, basis and S, basis, respectively. We will
employ the approximation results for projectors onto the Q, basis from [124, 125]
without giving a detailed proof. For the sake of simplicity, we only consider the
tensor product elements which can be considered as an affine equivalent family of

the reference element # := (—1,1)<.

7.1.1 The L*-projection onto P, over a d-dimensional cube

We start our analysis over the standard reference element & := (—1,1)%, by intro-

ducing some necessary notation. We shall employ the multi-index ¢ = (iq, is, . . ., iq),
and a = (ay,a9,...,a4). With | - | we denote the /[;—norm of the multi-index ¢,
with |i| = Z?:l lir|. Further, for multi-indices, the relation o > i means that

ap > forall k=1,...,d.

For the reference element & := (—1, 1)<, let

d
we @) = [ [ Walan)™, (7.1)
k=1
with, for k=1,...,d,
Wi (@) = (1 — )", (7.2)

being a weight function as a; > —1, o € R. This is referred to as the Jacobi

weight.

Next, we define the Jacobi-weighted Sobolev spaces V!() as a closure of C™(#)

in the norm with the Jacobi weight
!
HUH%/Z(,:;) = Z HWQD&UHZB(@ (7.3)
|a|=0

By | - |vi(z) we denote the seminorm

|U|%/l(,a) = Z ||WaDau||%2(,%)- (7.4)

|al=l
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It is easy to see that |u|yis) < |u|pis), Yu € H' (k). The key reason to introduce
the Jacobi-weighted Sobolev spaces is to deal with the loss of orthogonality suffered
by orthogonal polynomials in standard Sobolev spaces; the L2-orthogonality is
preserved in Jacobi-weighted Sobolev spaces. As we shall see in the forthcoming
analysis, orthogonality plays a key role in deriving optimal error bounds in the

polynomial order p.

In order to distinguish the same projectors onto spaces with different polynomial
bases, we use superscripts to signify the basis type: we use HpQ = Hl(,l)Hf) e H](?d)
to denote the L*-projection onto Q,, which can be constructed by using the ten-
sor product arguments together with 1D L2-projection. On the other hand, L*-
projector onto P, is denoted by H;’.

First, we take the the following approximation lemma for the L2-projection HpQ
from [125].

Lemma 7.1. Let & = (—1,1)%. Suppose that u|z € H'(%), for some | > 0. Let
HpQu be the L*-projection of u onto Q,(~) with p > 0. Then, for any integer s,
with 0 < s <min{p + 1,1}, and Wy, = Wy(Z), we have:

Flp+s+2) —
C(p—s+2)\1/2
<F (p+s+2 > [ulvs(@)

< CO(s)d(p+ 1) "|ul s sy, (7.5)

S

d
F _S+2 S 1S
lu— T ey < ( ) > IWiDiull 2
)
)

where I' is the Gamma function.

We remark on the asymptotic behaviour of the Gamma function. Making use of
Stirling’s formula, see (9.15) in [98]

Vorntie ™ <T(n+1) < en"““%e_”, n >0, (7.6)

we can see that,

I'(p—s+2)

TpTst2) <O(s)(p+1)7%, (7.7)

with 0 < s < p+ 1 and C(s) depending on the generic constant s only.
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For u|; € HY(%), | > 0, we introduce its Legendre polynomial expansion over the

reference element &, given by
o0 d
u(z) = Z a; H L, (Z1), (7.8)

where & = (Z1,...,24). We use L;, (Z)) to denote the Legendre polynomial with

order i over the variable I, and a; is defined by

0 — / u(@) f[ ( 2“; V) L) i (7.9)

The Legendre polynomials have the following orthogonality property:

! 20,
JRZGPGES = (710

which implies that

oo d
2
HUH%Q(%) = Z |a,[* H %+ 1 (7.11)

li|=0 k=1

The derivatives of the function u can be expressed as

Du(z) = i i i a; [T L (). (7.12)
1= i9=02 ig=aq k=1

By Lemma 3.10 in [167], the derivatives of the Legendre polynomials satisfy the
orthogonality property

ok (R oy 7 (R) _
(=P LPOLP € de = 5o e

! 20;; D(i+k+1
/ g Ll+k+1) (7.13)
where ¢;; is the Kronecker delta. Identity (7.13) is related to the following property

of Legendre polynomials,

T(i+k+1)

)\ _
L@ = 5raT

7

-Pz—k(xv k)v

where P;_j(z; k) is the Jacobi polynomial of degree i — k with weight (1 — %),
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By employing (7.13), we have

d

WD) = i i i a2 ] 2Tl +o+1) (7.14)

2ik+1F(ik—ak+1)'

i1=Qq 12=Q2 ig=aq k=1

With the help of (7.14), we shall derive an L*norm error bound for II7. The

proof will be split into several steps.

We first solve a constrained optimization problem in the following Lemma 7.2,

which plays a key role for deriving the sharp hp bounds.

Lemma 7.2. Let & = (&1,&2,...,&a) and p = (p1, p2, - .-, pa) be two non-negative
real valued vectors, p > &, and |p| = M, |{| = m. Then, the function F(&, p) will
have the global upper bound

B T T(pr — &+ 1) DA 4 1) d
Fi&.) _,HF(kar{kJrl) = <F(M;m +1)> ' (7.15)

Furthermore, the mazimum value of F (&, p) under the above constraints on p and
€ is obtained at & =m/d, pp = M/d, k=1,...,d.

Proof. The proof follows the constrained optimization procedure. We introduce

the Lagrange multiplier for F'(¢, p),

L(&, p, i, A) = F(& p) + p(l€] = m) + Allp| = M), (7.16)

and we calculate the stationary points. We consider the partial derivative with

respect to §; and p;, 7 =1,...,4d,

oL (F’(pj — &+ 1) n (p;+ &+ 1)

o~ \Tp 61 r(pj+5j+1>>”§’p)+“:°’

and

oL _ <F’(Pj -§+1) Tp+§+1)
apj F(pj — Sj + 1) F(pj + gj + 1)

which satisfy the following conditions:

)F(ﬁ,p)JrA:O,

Mpj—&+1) _ p—=»A
lpj =& +1)  2F(Ep)

jg=1,...,d, (7.17)
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and

Ulpj+&+1) _ p+A
o +&+1)  2F(&p)

=1,...,d, (7.18)

by using the fact that F(&,p) > 1. The right-hand sides of (7.17) and (7.18)
are independent of the index j. Moreover, the function ¢(z) = I'(z)'/T'(z) is the
so-called Digamma function with the following property (see [3], (6.3.16)):

—  z — (1 1
DS S S I SR
v+ 1) 7—i_;n(n—i—z) 7+; n o n+z 27

where v is the Euler constant. For z > 0, the function ¢ (z + 1) is a continuous
monotonically increasing function, which shows that (7.17) and (7.18) under the
constraints will have only one solution. This solution is éj =m/d and p; = M/d,

j=1,...,d, and the F(, p) will have the extreme value at this point, given by

£ 5 (F(Mdm il 1>)d. (7.19)

0= {rana)

In order to find the global maximum, we need to prove the following asymptotic

relationship:
D(Mzm 4 q)\kT(M=m g 1)\d
( (Mk + )) s(%) k=1,....d—1 (7.20)
D(#™ 4+ 1) (3 4+ 1)

The proof of this can be split into three steps. We first consider the special case
m = 0. In this case, (7.20) holds trivially because both sides of the inequality are
identically 1. Next, we consider the case m = dM, with 0 < § < 1. By using the

property of Gamma functions (7.6), we have the following bounds:

?)ks( ‘ )k(ek)””%;g;:;

and .
(M _ m)M7m+§

(M + m)M+m+s

—)>k > (ﬁ)k(ek)m
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By using the upper and lower bounds from the above inequalities, we can derive

the lower bound

I-\(M—m+1) d \/ﬁ d om <(M_m)kf—m+g>
()’ | () e (St
e AL e\ k)2m ((M—m)M"”g)
r(AEm ) e (ek) (M4m)M+m+3
V2o dtk dN\20M ] — §\ S
= () ®) G5 o
e k 149
By recalling that 0 < § <1and k=1,...,d — 1, we have that 0 < 153 < 1 and

the function (£)** is monotonically increasing with respect to M. This implies

that, for M > ((d + k) 1og(\/327) + £k 10g(%)) (26 log(%))_17 the above quotient

formula is greater than 1 and therefore (7.20) holds. The upper bound for the

above quotient can also be derived by using similar techniques, producing

D) ¢
(F(WH)) < < e >d+k<d>26M<1_5>ko
reEm P T N2 k 110/)
N
Finally, we consider the case m = M. Using the same techniques used to derive

(7.21) together with the fact that I'(1) = 1, we have

(7.22)

(m) _ CEE+FDR (\/ﬁ)’“< d >U<g>2M+’s (7.23)
r(Mom 1)\ ¥ TEL+1) = et \2M k ‘ '
(i)

By using the fact that exponentially increasing functions grow faster than polyno-
mials, we know that for sufficiently large M the right hand side of (7.23) is greater
than 1 and therefore (7.20) holds.

Next, we need to show that the extreme value (7.19) is the global maximum value

of F(&, p) under the constraints || = m and |p| = M.

First, we can see that the function F'(,p) is symmetric and continuous with
respect to £ and p. The constraints |£| = m and |p| = M restrict the domain of £
and p to be a (d — 1)-dimensional simplex, which is convex and compact. So the
mazximum value of the function F(§, p) over the domain will be obtained only at
the boundary of the domain or the stationary point of F'(§, p). We have calculated
the function value at the stationary point in (7.19) already, so now we just need

to check the function values on the boundary of the domain.
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This may be proved by induction. We start with the case d = 2: the domain
of £ and p satisfying the constrains are two straight lines. Here, the stationary
point is the mid-point of each of the two lines € = (m/2,m/2), p = (M/2, M/2),
and the boundary of the domain consist of the points £ = (0,m), p® = (0, M) or
& = (m,0), p* = (M,0), due to the constraints p > £. Using the symmetry of
the function and of the domain, we know that at the two boundary points of the

domain, F(&, p) will attain the same value, with F(g?, p?) = S&mtl)

= m By using

the asymptotic relation (7.20), the following relation holds

F(M—m+1)<(r(@+1)>z .

P& ") = (M +m+1)—

The above relation shows that the extreme value (7.19) is the global maximum

value under the constraints for d = 2.

Next, we consider the case d = 3, where the domain of each of £ and p will be a
triangle. In this case, the stationary point of F'(§, p) is when £ and p are located at
the barycenter of their respective triangle. The boundary of each domain consists
of 3 straight lines. We need to calculate the maximum value of F(, p) on the
boundary of the domain. By using the symmetry of F'(, p), and that fact that
|| = m and |p| = M, we only need to consider one part of domain boundary
where ¢35 = 0 and p3 = 0. Then, the maximum of F'(§, p) on the domain boundary
can be viewed as exactly the same problem with the same constraints as in the
case d = 2. Consequently, the maximum value of F'(§, p) along the boundary of

M-—m 2
the domain is F(€%, p°) = GE%?”E;) . Again, by using the same techniques as
2
for d = 2, we deduce that

D5

) (5™
I(AME o ) = (F—I

=+ 1)

FE' ) = (qm

The above relation shows that the extreme value (7.19) is the global maximum
value under the constraints for d = 3. For the general d-dimensional case, the proof
can be carried out in a similar way. Another key observation is that the maximum
value of F'(£, p) on the domain boundary will be at the stationary points of F'(&, p)
on the boundary. By using the relation
(F(M‘m ))d-l _ (F(W + 1))d
[(Mtm 4 1) T DM 41y

d—1

the proof is complete. O
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With the help of Lemma 7.2, we present an approximation result for the L*-

projection operator II7.

Theorem 7.3. Let & = (—1,1)%. Suppose that ul; € H'(k), for some | > 0. Let
HPu be the L*(k) projection of u onto P,(k) with p > 0. Then for any integer s,
0 < s <min{p+ 1,1}, we have:

]_"(P-l—(li—s + 1) d

d 2s
Ju =17 ult < (pratey ) 1ol < OO () Tl (720
d

Proof. Using the definition of HZ,D, (7.8), for any integer s, 0 < s < min{p + 1,1},

we have

O A H —

lil=p+1 =1

o0

SO SN | s

|a|=s |i|=p+1,i>a

> Zk—FOék—i-l k—ak—i-l)
< P ) )
_Z Z |a HQZk—FlFZk—CYk—Fl H Zk+ak+1)

la|=s [i|=p+1,i>a k=1 k=1
<(fem)' Y > Pl
o laf=s |i|=p+1,i>a
< (=) 5 Dl
- (?E ) ke < €0 () Ml (7.25)

In step two, the index set is enlarged; indeed, some of the terms with multi-index
li| > p+ 1 have been used more than once. In step three, we use Lemma 7.2,
taking & =1, > 0, pp = >0, M = p+ 1, m = s, together with the restriction
0 <s <min{p+ 1,1}. The bound holds by Stirling’s formula (7.6). O

Remark 7.4. We make the comparison between the L*norm bound (7.5) for the
projector H[? and (7.24) for the projector Hf. Both bounds are p-optimal for
functions with finite Sobolev regularity and also for analytic functions. We can
also see that the bound in (7.24) will have a larger constant compared to the bound
n (7.5), and this constant only depends on the dimension d. This result will play

a key role in deriving the exponential convergence for the P, basis.
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FIGURE 7.1: Q, (left) and S, (right) with polynomial order 10.
7.1.2 The H'-projection onto S, over the reference square

In this section, we shall consider the H!-projection over the reference element

k = (—1,1)% For the sake of simplicity, we only consider the two-dimensional

case. We start by introducing the two-dimensional serendipity finite element space
Sp(k) = Pp(#) + span{z”y, y’z}. (7.26)

Here, we can see in Figure 7.1 that the serendipity space S, contains two more basis
functions than the P, basis for p > 2 . Another way to interpret the serendipity
basis is to consider a decomposition of the C? finite element space over a rectangle.
For polynomial order p, the S, basis has the same number of nodal basis functions
and edge basis functions as the Q, basis, but the &, basis only has modal basis
functions (those with zero value along the element boundary) whose total degree is

less than or equal p. For more details about serendipity FEMs, we refer to [14, 17].

Similarly to the case of the L2-projection, we use HpQ = 7-[,()1)7-[;)2) to denote the
H'-projection onto the Q, basis, which can be constructed via a tensor product of
one dimensional H'-projections. Similarly, the H'-projection onto the S, basis is
denoted by Hg , which is defined in (7.31). Here, we introduce some properties of

the one-dimensional H'-projector H,, from [167]. To this end, we set I := (—1,1).
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Then for u € H'(I), [ > 1, the projector Hyu € P,(I), p > 1, is defined by

xT

Hou = /_1 I, v dz + u(-1),
p—1 z p—1
AN /1 Li@)de +u(—1) = 3 aps () da +u(=1), (7.27)
: 2

<.
o
<

where a; are as in (7.9), and II,_; is the L?-projection. The function t;(z) is the
anti-derivative of L;(x) with degree j + 1, and satisfies ¢;(+1) = 0 for j > 1.

Moreover, for j > 1, we have

1 2\ 1/
giving
1 201
/j@/)j(x)wk(a:) sl GTDETD (7.29)

The orthogonality property in the weighted L?norm will play a key role in the

following analysis.

Next, we construct the two-dimensional H' projection. First, we consider 7—[pQ =

HZ(;I)H,(JQ): for u € H'(%), [ > 2, the projector ’HpQu € 9,(k), p > 1, is defined by

HQU = / / Hpg_lalaQUdl’l diL‘Q
-1 J-1

p
1
-

2

H;l_)lalu(xl, —1)dzy + / Hz(f_)lagu(—l, xg) dzy + u(—1,—1)

1 —1
p—1 p—1
= Z amn¢m(w1)¢n($2)
7;—:10 " p—1
+ bmwm(‘xl) + Z Cnd}n(xQ) + U(—l, _1)7 (730>
m=0 n=0

with a,,,, b, and ¢, given by:

2 12n+1
a = ZEIZY / O\Dyu(er, 23) Ly (1) L (22) daey deva,
2 1 [t
-1

2n+1 (!
Cn = n2—i— / Oou(—1,x9) Ly (x9) das.
-1
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From the definition of &,, Hf can be constructed by removing the modal basis
functions with order greater than p in HPQ. More specifically, for u € H'(&), | > 2,
Hou € Sp(k), p > 1, is defined by

%pSu = Z amnwm(x1>wn<x2)

m>1,n>1
p—2>m—+n>2

p—1 p—1
+ Z amowm($1)¢0(x2) + Z aonlﬁo(%)@bn(@)
m=0 n=1

—_

+ i b Vm (1) + Cnthp(x2) + u(—1,—1). (7.31)

bS]

3
Il
o

Next, we recall the following approximation lemma from [124].

Lemma 7.5. Let &k = (—1,1)% Suppose that ulz € HFY(%), for some |l > 1. Let
H])Qu be the H'-projection of u onto Q,(k) with p > 1. Then, we have

”H,pgu =wu at the vertices of &, (7.32)

and the following error estimates hold:

2 F(p—3+1)<
05t |2, + 21105 12, )
~ plp+ )T (p+s+1) 107wl 105 ullz2 )
4 L(p—s+2)
pp+1)* T(p+s)

Ju — HpQUH%%%)

||8118§u||%2(,%), (7.33)

F'p—s+1)
I'p+s+1)

8 TI'(p—s+2) Lo ) )
0705 || 72 01050l 7202 )+ 7.34
T T o0kl + 101gul g ) (730

IV (u = H2u)[F2qs) < 2 (105" ulage) + 105" 3y

for any integer s, 0 < s < min{p, [}.

Now, we derive the L?-norm error and H'-norm error bound for the H*-projection

HS.

Theorem 7.6. Let & = (—1,1)2. Suppose that u|s € H* (&), for somel > 1. Let
Hou be the H' projection of u onto Sp(k) with p > 1. Then, we have

Hou=u at the vertices of &, (7.35)
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and for any integer s, 1 < s < min{p, 1}, the following error estimates hold:

4 T(p—s+1)
w— HSul2, . < <(9S+1u2 2|95 2 >
lu=Hulay < ey (107wl + 2105 g,

8 I(p—s+2)

19s 2
+ pg(p+1)2 F(p+8) Hala2uHL2(f%)
L2 +1) \2 )
+ (m) ]8182u Vs—1(7)

2 \2+2
Fp—s+1)/, . s
IV (= #7Ea) < 4py (197 e + 105wl )

16 Ip—s+2) 1,12 1 2
T d70. o+ (|t O5u| 2
pip+1) T(p+s) (H 1 2uHL2(H) 10y 2U||L2(n))
(5 +1)\2 )
+ U(Fak)) Dol
I\ 2s
< C(s)(}—g) |u %SH(;@). (7.37)

Proof. The key observation is the fact that the serendipity basis S, differs from Q,
only at the modal basis functions which vanish along the boundary of . Indeed,
using (7.30) and (7.31), we have

Hou—Hiu=" " apntm(z1)¥n(22). (7.38)

p—1>m>1
p—1>n>1
m+4n>p—1

Using the fact ¢, (£1) = 0, for m > 1, we deduce that (H2u — HJu)lsz = 0.
Thus, (7.35) is proved.

Next, we derive (7.36). The first step is the use of the triangle inequality,
lu — HyullFas) < 20lu — Hull7zp) + 20 HPu — Hyull 72 (7.39)

Thus, we only need to consider the error from the second term in the above bound.
By using (7.30), (7.31), (7.28) and (7.29) and the orthogonality of ¢;(x) for j > 1,
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we have

||’H5u - HpQUH%Q(,%) < ||(H5U - HpQU)Wl_IWEIH%?(,%)

Z | ‘2 2 2 1 1

= amn

p—1>m>1p—1>n>1 2m +12n+1m(m+1)n(n+ 1)
_m—Fnép—l_ N

IN

S Y el
amn
2m+12n+1m(m+1)n(n+ 1)

|a|=s—1m>a1,n>a2

m+n>p—1
(F(m—oq—l— )I‘(n—a2+1))
Im+a+1)T(n+ay+1)
( Fm+a+1)T(n+ay+ ))
'm—-—oa1+1)T(n—as+1)

In step three, we enlarge the summation index sets by adding the high order terms.

S Q. 112
||Hpu - %p UHLQ(&)

Z Z (| 2 2 (F(m+a1+1)f‘(n+a2+1)>

2m+12n+1\I'm —a; + 1) '(n — as + 1)

la|=s—1m>ai,n>as

m+n>p—1
I'm—-—a1+1)T(n—as+1)
(F(m+a1+1)F(n+a2+1) (m+ n+1>
Z Z a? 2 2 <(m+a1+1) (n—irozg—irl))
"om4+12n+1\I'(m —a; + 1) T(n —ag + 1)

|a|=s—1m>ai,n>az
m+n>p—1

F'm—a;+1)T(n—as+1)
X36<P(m+a1 +3)T(n+ as +3))

L2 +1) o e
36< Z WD (8182u)|\%2(@

F(p+s+2+1) =
9\ 2542
Ly < e
> |81(92U Vs— C( ><p—|—2> ‘U

N2 +1
< 36< G5 +1) 2y (7.40)

M2 )

In step two, by employing the relation m > a4, we have

1 B 1 (m+a1+1)(m+ oy +2)
m(m + 1) (m+a1+1)(m+ oy +2) m(m + 1)
6
<

(m+a;+1)(m+a;+2)

In step three, we use Lemma 7.2, with & = a3 +1 > 0, & = as +1 > 0,
pp=m+1>0,ppo=n+1>0, M =p+1, and m = s + 1, together with the
restriction 1 < s < min{p,! — 1}, and in the last step, we use Stirling’s formula
(7.6).
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Using the same techniques, we can derive the error estimate for the H'-seminorm.
We have

l01(Hyu = Hyu)l[ oy < 101(Hpu — HPu)Wy  Zag,

2 2 1
2. 2 el
2m+12n+ 1n(n+1)

la|=s—1 mZOqJLZOéQ

IN

(F( —a1+1)F(n—a2+ ))
Fm4+a+1)T(n+ay+1)
( C(m+ oy + )F(n+a2—|—1)>

(m—a;+1)T(n—as+1)

In step two, we enlarge the summation index sets by adding the high order terms.

Hal(ng - %;?U)H%m)

2m+12n+1\I'm —a; + 1) I'(n —as + 1)

|a|l=s—1m2>ai1,n>as
m+n>p—1

T(m+ai+1)T(n+as+3)
(552 +1)y2 o ,
= 6<r(’$ + 1)> |a|;1 W= D% (0105u) [ L2(ry
_ F(? + ) 2\ 25 9
- (—F(%_f_ >> 01023 15 S C(s )<p) |ulrss1a)s (7.41)

where in step two we use Lemma 7.2, taking & = a1 > 0, & = as+1 > 0,
pr=m>0,po=n+12>0, M = p, and m = s, together with the restriction
1 < s <min{p,l —1}.

Therefore, we have the bound

[(E2+1)\2
— U112, < 2
IV = HP0ley < 12( gk ) 1000

2\ 2s
< C(s)(}—g) e - (7.42)
Finally, using (7.40), (7.42) and Lemma 7.5, the bounds (7.36) and (7.37) follow.
[l

Remark 7.7. We again make the comparison between the bounds in the L?*- and
H'-norms, given in (7.33) and (7.34) respectively for 2, and (7.36) and (7.37)
respectively for H;f . Similarly to the comparisons for the L*-projection onto P,

and Q,, both bounds are p-optimal for functions with finite Sobolev regularity
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and also for analytic functions. We can also see that the bounds for Hg have a

larger constant than those for Hpg.

Finally, we present the error bound for HZ; which we shall define now. The key
observation is that the P, basis with polynomial order p contains the S,41_4 basis
for p > d. Then, we can simply define ’HZ,D = 7—[5,1 for d = 2.

Corollary 7.8. Let & = (—1,1)% Suppose that ul, € H* (%), for some | > 1.
Let ’Hfu = Hfﬁlu be the H' projection of u onto P,(k) with p > 2. Then, we
have:

’P _ . A
H,u=u at the vertices of &, (7.43)

and the following error estimates hold:

92\ 2542
= HP ey = = A yulEagey < Cls) ()

| ulforney.  (7.44)

2 2s
IV (u = H7w o = 190 = H) oy < C) (=) T

for any integer s, 1 < s < min{p — 1,1}.

Remark 7.9. We emphasize that the above error bound for the ’HZ,D projector is p-
sub-optimal by one order for analytic functions, and p-optimal for functions with
finite Sobolev reqularity in the case | < p—1. However, sub-optimality by one order
in p is better than using the HLQp/QJ projector, as suggested by [167] (see Corollary
4.52 on p190), which is sub-optimal in p by at least p/2 orders. Moreover, the one
order sub-optimality in p for analytic functions does not influence the exponential

convergence results presented in the next section.

7.2 Exponential convergence for DGFEMs

We shall be concerned with the proof of exponential convergence for DGFEMs
with P, basis over tensor product elements. For simplicity, we only consider the
case when the given problem is piecewise analytic over the whole computational
domain. Exponential convergence is then achieved by fixing the computational
mesh 7,, and increasing the polynomial order p. Only parallelepiped meshes

are considered, which are the affine family obtained from the reference element



Exponential Convergence 144

= (—1,1)%. The analysis of DGFEMs with a general hp-refinement strategy are
beyond the scope of this analysis (see [163, 164, 165] for details).

The proof of exponential convergence for DGFEMs depends on proving exponen-
tial convergence of L2- and H'-projections for piecewise analytic functions un-
der p-refinement, as shown in the previous section. For deriving error bounds for
DGFEMs using the L?- and H'- projectors onto Q,, we refer to [124, 125, 103]. Fol-
lowing similar techniques, we can prove the corresponding hp-bounds for DGFEMSs
employing the P, basis, albeit with sub-optimal rate in p. The sub-optimality in p
is due to the fact that the H'-projector onto P, is one order sub-optimal. As we
proved in the previous section, the sub-optimality in p is independent of p, and
therefore does not influence the slope of the exponential convergence. Addition-
ally, we point out that the approximation results for the H!'-projector ’HS onto S,
can be directly applied to hp-FEMs for elliptic problems with same optimal rate
as the H' projector H?2, see [167] for details.

For the sake of simplicity, we focus on deriving the exponential convergence for the
L?-projection in the L?>norm on sufficiently smooth problems under p-refinement.

The proof for the H'-projection can be done analogously.

We shall derive the exponential convergence on general parallelepiped meshes. Let
k be an element of 7, with diameter h, < 1. For a function v having an analytic

extension into an open neighbourhood of &, we have for every s, > 0:

IR, >0, C >0 Vs, :|ulge(my < C(Re)* (s, + 1)|5|"2, (7.46)

where |x| denotes the measure of element &, cf. [83, Theorem 1.9.3].

Lemma 7.10. Let u : kK — R have an analytic extension to an open neighbourhood
of k. Also let p, > 0 and 0 < s, < p. + 1 be two positive numbers such that
sy =€(pe+1),0<e<1andd=2,3. Then the following bounds hold:

(pn — Sk + 2)
lu-Tulay < () e s
2 L(pys + s + 2)
< Clu)(p+ De 2Pt |g], (7.47)

and

25, F(pn+1 Sk + 1)
P 2 2
Ju— HpnuHLQ(n) < (?) <F(pn+1+s,€ T 1)> ‘“’Hsﬁ(,a)

Cu)(p+ e @D, (7.48)

IN
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Here, C(u) is a positive constant depending on u, Fi(R,,€) = ELZ);: (eRg)*,
€min = 1/4/1+ R2, bl = %| log Fi (R, €min)| + €min| log %"| and b? == bl — e log d.

Proof. Using standard scaling arguments, we have the approximation results for
L2-projection over k. For brevity, we set ¢, = p. + 1. By employing Stirling’s

formula, we have the bounds:

T(pe — Sk + 2)
L(pe + 5+ 2)

2 I'(ge —sx +1)

L(gx + 5.+ 1) I«

2eqn (€0x)° T ((1 =€) ) 19 e~ (1=0)ax "
e2€dx ((1 + E)qn)(1+e)qﬁe_(1+5)q,$

Cqu(Fi(Rs, €)™k,

ulfionmy < C(RQ)™ (e +1)°

IN

C(Rx)

IA

where

Fi(Re, ) = (1_—?_6(6]%;6)26.

Recalling (7.46), we have R, > 1,

2
R, 1

min Fi(R.,€) = Fi(Ru, énin) = | —————| <1, €ppm=————=.

0<e<] (B e) = Bl ) <N/1+R§+1) V1+ R2
(7.49)

Thus, we have
F K~ °K 2 — :

(p S, + )|u %{SH(R) < Oq,@t? |logF1(R,.€,emm)\q,§|I{|. (750)

[(ps + 8x +2)

Therefore, we have the exponential convergence for the L?-projection HpQ, via
lu = T2 |72 < Clp + e E= 4], (7.51)

with bl := %\ log F (R, €min)| + €min|log %*‘"] Similarly, for the L?-projection H;),

Stirling’s formula implies

F(p/@‘f';_sn + 1) d ) ) ) F( k — Sk )
sy < )2 T (s, —da 7
<]_“<Pn+01l+53,i +1)> |U’Hlﬂ(n) = C(R) F(S +1) <F<q +55 +1)> |K’|
(€ (1= €)g) O (ed) (1=
S C(RK)Q i 2€qs 1+€) _(1_;,_5) K’F‘:’
e2ir (14 €)ge) 1+ (ed)~(1+e)a
S CQH<F2(RH7€))QH|R|7
where,
- (1 _6)1_6 2¢
Fy(R,,€) = 1T o (eRyd)*,
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with the minimum,

2
R.d
min Fh(R,.,€) = <1
0<e<1 2( ) ( /1 + (Rﬁd)Q + 1)

In order to make comparison with the slope of projector HPQ, here we will use the

same €i,. We have

min Fy(R,,€) < Fy(Ry, €min) = F1 (R, €min ).

0<e<1

Thus, we have
lu =TI |72 < Clp + e E 5], (7.52)

with slope b? := %] log F (R, €min)| + €min(] log %’“| —log d). The proof is complete.
]

In the above theorem, we can see that the L?-norm error for both L?-projections
HI% and HZ; decays exponentially for analytic functions under p-refinement. If we
measure the error against p, the slope bl for the Q, basis is greater than the slope
b? for the P, basis by a small factor of (logd)/y/1 + R2. From Lemma 7.10 we

can also derive the following corollary.

Corollary 7.11. Let u be an analytic function as defined in Lemma 7.10. Then,
the following bounds hold:

lu— T2 ulf2s(,) < C(u)e = VDoF ||, (7.53)
and
=TI ]34y < C(u)e 202 YYD g (7.54)

Proof. By recalling the relationship between degrees of freedom and polynomial

order p for both P, basis and Q, basis, we have

+O((p+ 1)+,

Dof(Q,) = (p+1)* and Dof(Q,) = <p+d) _(p+1)

d d!

Then, (7.53) and (7.54) follow from Lemma 7.10. O
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For d = 2, 3, if the following condition
1 hy
§| log F1(Ry, €min)| + €min| log ?| > €min log d, (7.55)

holds, then we have b2 =~ bL. By recalling (7.49), we know that for sufficiently

small R, or sufficiently small mesh size h, the condition (7.55) will be satisfied.

Now, if we consider the error in terms of &/Dof for the above bounds, a by a fixed
factor of v/d!. The above exponential convergence for the L? projector with each
basis type also holds for H! projector. It is also possible to prove the same steeper
slope in error against degrees of freedom for 7-[17; and ’H;f with respect to HPQ, due
to the fact that the number of degrees of freedom in the P, basis and the S, grow

at asymptotically the same rate in p. For brevity, we do not prove this here.

We have observed the better slope in error against «/Dof for DGFEMs with P,.
For d = 2, this suggests a typical ratio between convergence slopes of DGFEMs
with P, and Q, basis to be V2! ~ 1.414. For d = 3, this ratio is v/3! ~ 1.817.
The numerical examples show that the ratio is slightly worse than the ideal ratio.
For d = 2, the computed ratio is approximately between 1.3 and 1.4. and for
d = 3, the computed ratio is approximately 1.6. The numerical examples in the

next section confirm the statements above.

7.3 Numerical examples

We present some numerical examples to confirm the theoretical analysis in this
chapter. The comparisons are made between the slope of DGFEMs with P, and
Q, basis over rectangle meshes for d = 2 and hexahedral meshes for d = 3 under
p-refinement. The slopes of the convergence lines are calculated by taking the

average of the last two slopes of the line segments of each convergence line.

7.3.1 Example 1

Let 2 be the square domain (—1,1)%, and choose

a=0, b=2-9*2-2), c=1+1+z)(1+1y)% (7.56)
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Ratio of slope P/Q 1.3645 Ratio of slope P/Q 1.3336
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FiGure 7.2: Example 1: Convergence of the DGFEM under p-refinement.
Square meshes with 64 elements (left) and 4096 elements (right).

the forcing function f is selected so that the analytical solution to (5.1), (5.5) is
given by
u(z,y) =1 +sin(x(1 +z)(1+y)?/8). (7.57)

This example is the one from Section 5.3.1. In Figure 7.2, we can see that the
slope of DGFEMs with P, basis is greater than the slope of DGFEMs with Q,
basis in error against v/ Dof. The ratio between the two slopes is about 1.35.

7.3.2 Example 2
Let 2 = (—1,1)%, and consider the PDE problem:

— Uy, + uy +u =0, for —1<x<1,y>0,

(7.58)
Uy +u =0, for —1<2x<1,y<0,
with analytical solution:
sin(3m(1 +y)) exp(—(z + 7Ti;ﬁg)), for —1<z<1,y>0,
u(z,y) = (7.59)
sin(37(1 + y)) exp(—x), for —1<z<1,y<0.

This example is the one from Section 5.3.2. In Figure 7.3, we can see that the
slope of DGFEMs with P, basis is greater than the slope of DGFEMs with Q,
basis in error against v/ Dof. The ratio between the two slopes is about 1.38.
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FiGure 7.3: Example 2: Convergence of the DGFEM under p-refinement.
Square meshes with 64 elements (left) and 4096 elements (right).

7.3.3 Example 3
We now consider a singularly perturbed advection-diffusion problem equation
—eAu+uy +uy = f,

with © := (0,1)?, where 0 < ¢ < 1 and f is chosen so that

[6_1/6 — 6_(1_x)(1_y)/6]

[1— eV

u(z,y) =z +y(l—z)+ (7.60)

From Section 5.3.3. We observe the same behaviour as before over anisotropically

refined meshes graded towards to layer with slope ratio 1.31.

7.3.4 Example 4

Moving to three-dimensional problems, we consider
—Au = f,

over the domain 2 = (0,1)3. The analytic solution is u = sin(7z) sin(ry) sin(r7z).

In Figure 7.5, we observe that the slope of DGFEMs with P, basis is greater than
the slope of DGFEMs with Q, basis in error against v/Dof. The ratio between
the two slopes is about 1.61.
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FiGure 7.4: Example 3: Convergence of the DGFEM under p-refinement.
Anisotropically refined meshes with 196 elements (left) and 400 elements (right).
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FIGURE 7.5: Example 4: Convergence of the DGFEM under p-refinement.
Cube meshes with 64 elements (left) and 4096 elements (right).

7.3.5 Example 5
In the last example, we consider the biharmonic problem
A’u = f,

over the domain Q = (0,1)3, the analytic solution is v = sin(mz) sin(my) sin(7z).
Although our analysis does not cover the biharmonic problem, we follow the IP

DGFEMs defined in [176, 146, 107] to approximate its solution, starting with p = 2.
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FIGURE 7.6: Example 5: Convergence of the DGFEM under p-refinement.
Cube meshes with 64 elements (left) and 4096 elements (right).

We need to emphasize that for biharmonic problems, the minimum polynomial
order is 2.

In Figure 7.6, we observe the same behaviour as the previous example with slope

ratio 1.62.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work, we presented an hp-version interior penalty discontinuous Galerkin fi-
nite element method on extremely general classes of meshes consisting of polytopic
elements, possibly with arbitrarily small (d—k)-dimensional faces, k = 1,...,d—1.
We applied the proposed DGFEMs to solve partial differential equations with non-
negative characteristic form, and with mixed Dirichlet and Neumann boundary
conditions. Furthermore, we presented the space-time DGFEMs for solving time-
dependent parabolic problems over prismatic meshes as a particular application.
The main goal in this work was to derive the hp-error bound for DGFEMs over
polytopic meshes. For this purpose, new Ap-version inverse estimate and poly-
nomial approximation results over polytopic elements have been derived. These
results are sharp with respect to (d — k)-dimensional face degeneration, which has

been a key aim of this work.

We presented detailed stability and a priori error analysis for DGFEMs over poly-
topic elements under two different types of mesh assumptions, which allow both
shape irregular polytopic meshes with bounded number of faces per element and
shape regular polytopic meshes with arbitrary number of faces. Due to lack of
hp-approximation theory for the L2-projection over polytopic elements, we pre-
sented a new way for deriving the inf-sup stability and a priori error bound for
DGFEMs for solving PDEs with non-negative characteristic forms. Moreover, due

to the use of the total degree P, basis over space-time prismatic elements, new

152
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stability and a priori error estimates for space-time DGFEMs are derived avoiding

the space-time tensor product setting.

A series of numerical experiments have been presented which, not only confirm
the theoretical results derived in this work, but also demonstrate the efficiency of
employing the total degree polynomial space P,, defined in the physical coordinate
system, compared with the tensor-product polynomial space Q,, mapped from a

given reference or canonical frame, under p-refinement.

Furthermore, we also derived new hp-approximation results for the L2-projector
onto the total degree P, basis and the H' projector onto the serendipity S, basis
on the tensor product element. The new results show that the extra basis func-
tions in the tensor-product Q, basis other than the total-degree P, basis and the
serendipity S, basis do not increase the convergence rate of p for the L?-projection
and H'-projection error bound in several norms, but instead only reduce the “con-
stant” in the error bound. The above new approximation results may be of inde-
pendent interest. One interesting application of these new approximation results
is in the proof of exponential convergence for DGFEMs with the P, basis. We
showed that for fixed tensor product elements, DGFEMs with the P, basis con-
verges exponentially to the analytical solution under p-refinement. Moreover, the
slope of exponential convergence of DGFEMs with the P, basis is steeper than
the slope of DGFEMs with the Q, basis if we measure the error against number
of degrees of freedom. The sharpness of these results was confirmed by a series of

numerical examples.

8.2 Future Work

In this section, we outline some future directions of research that naturally arise

from this work.

8.2.1 Adaptivity

The first and most important topic for future research is the design of adaptive
algorithms for the proposed DGFEMSs over general polytopic elements based on a

posteriori error estimators. DGFEMs are ideally suited for adaptive algorithms,
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as they naturally allow hanging nodes and different polynomial basis between

different elements.

The fundamental difficulty in deriving a posteriori error estimators for DGFEMs
in energy norm is that the DGFEM solution does not live inside the function
space on which the PDEs is defined. The first work to successfully derive rigorous
a-posteriori error estimators for DGFEMs in energy norm is by Karakashian &
Pascal [134]. Therein, the authors introduced a special type of recovery operator
for post-processing the DGFEM solution in order to split the DGFEM solution
error into conforming and non-conforming components. Adaptive DGFEMs have
been developed in the past 15 years, see [36, 108, 166, 188] for h-version a-posteriori

error estimator, and see [123, 190] for hp-version.

All the above mentioned works are concerned with standard meshes. For polytopic
meshes, energy norm based a-posteriori error estimators can be found in [111].
However, the theory in [111] does not work for general polytopic elements with
arbitrary small (d — k)-dimensional faces, k = 1,...,d — 1. The extension of their

results to such meshes is still elusive.

8.2.2 Space-time DGFEMs for problems on evolving do-

mains

Modeling of PDEs over evolving domains is both interesting and challenging. His-
torically, Jamet [127] was the first to propose the discontinuous Galerkin time-
stepping method for solving parabolic PDEs on evolving domains. Due to the
discontinuity over different time intervals, the problem can be solved with the
high order DGFEMSs over each space-time slap with good stability. More recently,
the DG time-stepping method for an advection-diffusion model defined on moving
domains written in the Arbitrary Lagrangian Eulerian (ALE) framework, has been
considered in [42, 43].

Space-time DGFEMs over general prismatic meshes have several advantages com-
pared to the classical DG time-stepping schemes. General shaped prismatic ele-
ments will offer great flexibility in practical computations. Using general shaped
elements on evolving domains will reduce the computational cost for mesh re-
finement and coarsening. Also, due to the discontinuous nature of space-time
DGFEMs, this approximation has great flexibility in choosing basis functions for

each element without considering the conformity of the finite element space. This
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is very important in view of reducing the complexity of the space-time DGFEMs

with high-order polynomial basis, as we saw in Chapter 6.

8.2.3 Other directions for further research

¢ DGFEMs for problems with multiple scales. Many problems of fun-
damental and practical importance have multiple-scale solutions, e.g. Com-
posite materials, porous media and turbulent transport in high Reynolds
number flows. Multicale-DGFEMs has been very popular in recent years,
[1, 2, 90, 91]. To develop multiscale DGFEMs over polytopic meshes for
solving problems imposed on complicated domains with multiple scales will

be a very interesting project.

¢ Extension of hp-approximation theory. The approximation result of the
L*-projection onto the total degree space P, in L*norm can be easily ex-
tended to the Jacobi projector onto the P, basis in Jacobi weighted Sobolev
norms. Following [21, 22, 20], we can study the new hp-approximation re-
sults with the P, basis in Jacobi-weighted Besov spaces. One application of
those results is that we can proof the sharp hp-optimal bound for serendip-
ity FEMs for PDEs containing singularity in 7 log” r type, v € R™, v € N.
Furthermore, the optimal trace estimates for L*-projection onto the P, basis
on simplicial elements has been shown in [69, 144]. It remains, however, an

open question their results can be extended to tensor product elements.

o hp-FEMs with serendipity basis. Serendipity FEMs are popular among
engineers. Their mathematical development, however, is relatively recent
[14, 17]. There is no sharp theory of serendipity hp-FEMs. In this work, we
derived some new hp-approximation theory for H!-projection with serendip-
ity S, basis in two dimensions. The next step would be to extend their
results to three dimensions and construct polynomial trace lifting results for
serendipity FEMs. Then we can derive, e.g., exponential convergence for

serendipity hp-FEMs with hp-refinement following [160].



Appendix A

Implementation of hp-Version
Discontinuous Galerkin Methods

on Polytopic Mehses

We present some of the key ingredients/techniques used in the implementation of
the proposed hp-version DGFEMs for general advection-diffusion-reaction bound-
ary value problem and time dependent parabolic problem over polytopic meshes

and prismatic meshes.

A.1 DGFEMs for boundary value problems over

polytopic meshes

A.1.1 Construction of the finite element basis functions on

general polygons/polyhedra

The finite element space S% may be constructed in a number of different ways.
In the case when the computational mesh 7, consists of standard affine element
domains (simplices, parallelograms, etc), standard polynomial bases on reference
elements may simply be mapped from the reference frame to the physical element;
indeed, this is the standard approach used within most finite element software

packages.

156
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FiGURE A.1: Bounding box By of an element x € Ty,.

Here, we introduce an alternative approach based on employing polynomial spaces
defined over the bounding box of each element; cf. [109]. More precisely, given
an element xk € 7T, we first construct the Cartesian bounding box B,, such
that & C B,, cf. Figure A.1. On the bounding box B, we may define a stan-
dard polynomial space P, (B,) spanned by a set of basis functions {¢; .}, i =
1,...,dim(P,, (B,)). With this in mind, we employ tensor-product (scaled) or-
thonormal Legendre polynomials; indeed, writing I = (—=1,1), we denote the fam-
ily of L?(I)-orthonormal (Legendre) polynomials by {L;(z)}22,. Thereby, given a
general interval I, = (x1, z5), the corresponding scaled Legendre polynomials may
be defined by
L (@) = (1/h) 2 Lil( — my) /1),

such that
/ L (@) LY () dx = 6,

Iy
where hy, = (2 — 21)/2, my = (x1 + x2)/2 and 0;; is the Kronecker symbol.
With this notation, a polynomial basis on B, may be defined as follows: writing
B, =1y xIyx---x 14, where I;, j = 1,...,d, denotes a one-dimensional interval,

the space of polynomials P,_(B,) of total degree py over B, is given by
Py (By) = span{gy, 2 7o),
where
Gin(x) = L (@) L (@) - LM(@a),  irtiot. . Aig <pe, x>0, k=1,....d,

and x = (21,29, ...,24). The polynomial basis over the general polygonal/poly-

hedral element x may be defined by simply restricting the support of {¢;,.},
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i =1,...,dim(P,, (Bx)) to x; ie., the polynomial basis defined over « is given
by {¢isle}, i =1,...,dim(P,, (B.)).

Remark A.1. Notice that, if the underlying polytopic elements are axisparallel
tensor product elements, then the resulting mass matrix M is the identity matrix
due to the orthogonality of the basis functions. Moreover, we point out that the
basis functions constructed based on bounding box can be defined via diagonal

affine transfer from tensor product reference element.

A.1.2 Quadrature rules for polytopic meshes

Following [129], quadrature over general polygonal/polyhedral element domains
is undertaken based on first constructing a sub-triangulation, followed by the
exploitation of integration schemes introduced in Section A.2. Therefore, given
Kk € Ty, we first construct a non-overlapping sub-triangulation ks = {7} consist-
ing of simplicial elements. As an example, if we consider the local stiffness matrix,

restricted to k, then we compute

/Vu~Vvdx = Z/VwVvdx

Te€rs VT

3 3 Vu(F(&) - Vo(FL (&) det(Jr, (€)ws,

TkERS 1=1

Q

where F,, : K — 7, is the mapping from the reference element (simplex) & to 7,
with Jacobi matrix Jg, , and (&;,w;)!_, denotes the quadrature rule defined on #.
We point out that the gradient operators are not transformed, as would be the

case if the element x was mapped to a reference frame.

We point out that alternative integration methods which do not require a sub-
triangulation of the underlying polygonal /polyhedral element have recently been
considered in [148, 37, 40]. For related work we refer to [31, 143] and the references

cited therein.

A.2 Quadrature rules over simplices/polytopes

In this section, we give the theoretical and practical background for constructing

stable Gauss quadrature rules over a d-dimensional simplex.
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A.2.1 Gauss-Jacobi quadrature rules in 1D

We will review some well-known results for the Gauss-Jacobi quadrature rules,
following [120, 135, 102, 178].

The classical Jacobi polynomial p? (x) of order n is the solution of the singular

Sturm-Liouvile eigenvalue problem

d%:(l - xQ)w(:p)%Péa’ﬁ) (z) + n(n+ a+ B + Dw(z) PP (z) =0, (A.1)

for x € [—1, 1], with weight function w(x) = (1 — 2)*(1 + z)?, for a, 8 > —1. The

Jacobi polynomials are normalized to be orthonormal:
1 ~ ~
/ PP (2) B (2w () da = d;. (A.2)
-1

An important property of Jacobi polynomials is [178]:

d%ﬁé‘*ﬂ) (@) = V/nln+a+ B+ )P (), (A3)

The special case of P\ (z), are as the Legendre polynomials Ly, ().

A classical way to evaluate the Jacobi polynomials is to use the recurrence relation

2P () = 4, PP (2) + b, PP (2) + a1 PP (1), (A.4)

where the coefficients are given as

Qn

_ 2 n(n+a+p)(n+a)(n+p)
T2t a+ B\ 2nta+B-1)2n+a+B+1)

042—52
Cn+a+B)2n+a+B+2)

To get the recurrence started, we need the initial values

S8 _ Joo1ap Lla+B8+2)
R (w) = \/2 Tas MG+ 1)

by = —

5(8) oy = Lpled | (@t B+3) ot (o —
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There is a close connection between Jacobi polynomials and Gaussian quadratures

for the approximation of integrals in the form

[ H@ta)de =3 flae

Here, (z;,w;) are the quadrature nodes and weights, and f(z) is a polynomial
function. It can be shown that if one chooses z; as the roots of jf’](\,afl) (x) and the
weights, w;, by requiring the integration to be exact for polynomials up to order NNV,
the above summation is in fact exact for f being a polynomial of order 2N + 1. A
key feature of Gauss quadrature rule is that all the quadrature weights are strictly

positive, which guarantees the stability of the quadrature, see [66].

Finding the nodes and weights can be done in several ways. One classical and
numerically stable way is based on recurrence, via (A.4). Starting from the three
term recurrence, the quadrature rule may be generated by computing the eigen-
values and first component of the orthornormalized eigenvectors of a symmetric
tridiagonal matrix; this is the celebrated Golub-Welsch (GW) algorithm, for the
details, we refer to [112].

In general, the GW algorithm takes O(n?) operations to solve the eigenvalue prob-
lem by taking advantage of the structure of the matrix and noting that only the
first component of the normalized eigenvector needs to be computed. Moreover,
it has been observed in [117] that the GW method leads to an O(n) error in the
Gauss-Legendre nodes and an O(n3/2) error for the relative maximum error in the
weights. Here, we will use the alternative approach proposed in [117] which is
to solve (A.4) by Newton iterates. It is shown that Newton iterates converge to
the zeros of the orthogonal polynomial with total complexity O(n?), see [117] for
details.

A.2.2 Quadrature rules over triangles

In this section, we present more details about stable and efficient computation
of quadratures over a triangle. As illustrated in Figure A.2, the reference square
Q? and the reference triangle 72 in Cartesian coordinates (1;,72) and (&1, &) are

represented as:
Q% ={(m,m)| =1 <mu,mp < 13,



Appendiz A 161

and

T2 ={(£,8)] - 1<6,86, & +&<O0}

(0,0) Ll (0,0) £,

(-1,-1) (1,-1) (-1,-1) (1,-1)

FIGURE A.2: Reference square Q? (left); reference triangle 72 (right).

In order to apply Gauss-quadrature rules over each triangle, we link 72 and Q2.
The key technique is to use the Duffy transformation (collapsed transformation)
[135] to link two different coordinate system (n1,72) and (&,&2) together. The

transformation is defined as follows:

1+&

1—¢, -1, n2 = o, (A-5)

m =2

and has inverse transformation

A+m)d—m)

D) ) 52 =T1p2. (A6)

&=

We emphasize that for any polynomial functions u(&1,&;) over the the region T2,
under Duffy transformation, u(ny,n2) is still a polynomial function over Q2. If we
want to compute the integral of polynomials u(&, &) over the region T2, recalling

the collapsed system (71, 72), we obtain

1 r—&
/T2 u(§1,62)d6ds = /_1 /_1 u(&1, &) A& d&

B / / tum,%) o6, &)

2
dny dns, A7
a(ﬁl: 772) e ( )




Appendiz A 162

where 0(&1,&)/0(m,m2) is the Jacobian of the Cartestian to the local coordinate

transformation and can be expressed in terms of 7y by

0(&, &) _L-m
6(771’772) 2 .

The last term in (A.7) can be approximated using one-dimensional Gaussian

quadrature rules to arrive at

1 pl 1— 1, Q1—1 Q2-1 1—
u(n, 1) = dm dipp = > wid Y wulmi, ne) 5 (AS)
—1J-1 im0

=0

where 7;; and 79, are quadrature points in the 7; and 7, directions, respectively.
The weights w; used in (A.8) correspond to the standard Gauss-Legendre rule.
However, if we take into account that the Jacobian term 9(&1,&2)/9(m,n2) = (1 —
12)/2, which is a singular function appearing inside the general Jacobi polynomial,
then we can use Gauss-Jacobi quadrature with « = 1 and 5 = 0 along 7, direction.

Accordingly, the integration scheme over 72 becomes

1 1 1— Q1—-1 Qa2—1
- 0,0 ~1,0 0,0 1,0
/ / u(n1, 72) B dny dnp = Z Wi { w;m (g, 1oj )}7 (A.9)
—1J-1 i=0 §=0
and
W0
~1,0 j
Wi = ]T, (A.10)

where wjl-’o and 77%30 are the weights and nodes of the Gauss-Jacobi quadrature with
weight « = 1 and = 0, respectively. The Gauss-Jacobi rule therefore uses fewer
quadrature points than the standard Gauss-Legendre quadrature rule to achieve

an equivalent accuracy.

Here, as we mentioned in Section A.1.2, the quadratures rules are applied on phys-
ical polytopic meshes, so we need to transform the above Gauss-Jacobi quadrature

points into the physical meshes.

First we can generate quadrature points on a reference square Q2. Next, by using
the inverse mapping of Duffy transformation, we find the corresponding quadrature
points on the reference triangle 72. The weight function is invariant; see Figure

A.3 for an illustration.
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(1.1)
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CEE

&

(-1-1)

FIGURE A.3: Quadrature points over Q2 with Gauss-Legendre points along 7,
and Gauss-Jacobi points (o« = 1 and 8 = 0) along 7, (left); quadrature points

over T2 after transformation (right).

Finally, we use the affine map to transform all the quadrature points from the

reference triangle to the physical triangles and glue them up to get the quadrature

points over the polygons. During the affine mapping, the weight of quadrature

points will change; see Figure A.4 for an illustration.

FIGURE A.4: Quadrature points for polygons

A.2.3 Quadrature rules over tetrahedra

In this section, we present quadratures over tetrahedra based on the same tech-

nique used in previous sections. As illustrated in Figure A.5, the reference cube Q3

and the reference triangle 72 in Cartesian coordinates (1,19, n3) and (&1, &9, &3
g
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are represented as:

Q% = {(n,m,m3)| — 1 <y, mayms < 13,

and
T3 = {(&,6,8) — 1< &,6,8&, & +&+& <0}
1
0.5
L 0 |
05 /
-1
1 | >
0 0

"y uh

FIGURE A.5: Reference square Q3 (left); reference tetrahedron 73 (right).

We introduce the Duffy transformation to link the two different coordinate systems

(m1,m2,m3) and (&1, &s,&3). The transformation is defined as:

21+ &)

214 &)
("

— 1, M= 5 -1, N3 = &3, (A.11)

and has the inverse transformation

Ly, o WEmUmm)

2
(A.12)

If we want to compute integral of polynomials u(£1, &, &) over the region T3,

(14 m)(1 = n2)(1 —n3)
4

& =

recalling the collapsed system (7,72, 72), we obtain

1 1 1
[ﬁ u(&1, &2, 63) A1 dédés = /_1/_1/_1u(m,?72,773)Jd771 dne dns, (A.13)

where

J_ (1,62, 83) _L-m (1 — 773)2.
(11, m2,m3) 2 2

We can include the Jacobian in the quadrature weights by using the Gauss-Jacobi

integration rules with a = 0 , 8 = 0 along the 7, direction (i.e., Gauss-Legendre

quadrature), « = 1, 8 = 0 along the 7, direction, and o = 2, § = 0 along the n3
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direction. The integration rule over 72 then becomes

1 1 gl 1— 1— 9
/ / / w(n1, M2, M3) 27]2 (7773> dmy dnp dns
“1J-1J-21

Q1—-1Q2-1Q3—1

=3 ulnt? ) wlwrar”, (A.14)

=0 =0 =0

b0 W20
10 _ Y 220 _ Y
== @t = (A.15)

and @1, Q)2 and Q)3 are the number of quadrature points in the 7y, 1y and 73

directions, respectively.

During implementation, we generate the quadrature points on reference cube Q3
and by using the inverse mapping of Duffy transformation, we find the corre-
sponding quadrature points on the reference tetrahedron 73, keeping the weight
function fixed; see Figure A.3 for an illustration. General polyhedra can be sub-
triangulated into finite number of tetrahedra, so we can use affine mapping to link

the quadrature points from the reference tetrahedron to physical polyhedron.

FIGURE A.6: Quadrature points over Q3 with Gauss-Legendre points along 71,

Gauss-Jacobi points (aw = 1 and 8 = 0) along 72 and Gauss-Jacobi points (o = 2

and B = 0) along 73 (left); quadrature points over 72 after transformation
(right).

We emphasize that the above quadrature rules over the simplex may use more
quadrature points to deal with polynomials with total degrees basis (P,-type)
compared with the quadrature rules in [170, 89]. The latter quadrature rules,

however do not take advantage of tensorial construction of the unstructured basis.
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Additionally, the order of these schemes also tends to be restricted by the numerical
process of evaluating the quadrature weights. Furthermore, in three dimension,
there exist quadrature points outside the underlying tetrahedron with negative
weights. Negative quadrature weights may cause numerical instability in practical
computation for large classes of functions, see example 4.1.2 in [70] (page 202).
On the other hand, the proposed Gauss quadrature rules do not suffer from these

drawbacks.

We point out that alternative integration methods which do not require a sub-
triangulation of the underlying polygonal /polyhedral element have recently been
considered in [148, 37, 40]. For related work, we refer to [31, 143], and the refer-

ences cited therein.

A.3 DGFEMs for parabolic problems over pris-

matic meshes

A.3.1 Construction of finite element basis functions on

prismatic meshes

The key point for constructing the space-time basis over the prismatic meshes is to
utilize the tensor product structure of a space-time element. The basis functions
can be constructed in a similar way as in Section A.1. The spatial basis functions
are still constructed based on the bounding box B, for k, and the temporal basis is
constructed based on the temporal interval I,, C R. We introduce the space-time

bounding box By, for each prismatic mesh x,; see Figure A.7 for an illustration.

A.3.2 Quadrature rules for prismatic meshes

The quadrature rules over prismatic meshes can be constructed by exploiting their
tensor product structure. Assuming that the spatial dimension d = 2, we will first
use the quadrature rules to get all the quadrature points over the spatial element
k, and then we use the one dimensional Gauss-Legendre quadrature rules along
temporal interval I,,. Finally, the quadrature points over the space-time element

k, is constructed by tensor product argument; see Figure A.8 for details.
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FIGURE A.7: (a). Polygonal spatial element x and bounding box By; (b).
space-time element x, = I, X k and space-time bounding box By, := I, X By.

FIGURE A.8: Quadrature points over the space-time element k,,, with 2D spa-
tial element k.
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