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“All exact science is dominated by the idea of approximation. When a man tells

you that he knows the exact truth about anything, you are safe in infering that he

is an inexact man.”

Bertrand Arthur William Russell



Abstract

Discontinuous Galerkin Methods

on Polytopic Meshes

Zhaonan Dong

This thesis is concerned with the analysis and implementation of the hp-version

interior penalty discontinuous Galerkin finite element method (DGFEM) on com-

putational meshes consisting of general polygonal/polyhedral (polytopic) elements.

Two model problems are considered: general advection–diffusion–reaction bound-

ary value problems and time dependent parabolic problems. New hp–version a

priori error bounds are derived based on a specific choice of the interior penalty

parameter which allows for edge/face–degeneration as well as an arbitrary number

of faces and hanging nodes per element.

The proposed method employs elemental polynomial bases of total degree p (Pp–

bases) defined in the physical coordinate system, without requiring mapping from

a given reference or canonical frame. A series of numerical experiments high-

lighting the performance of the proposed DGFEM are presented. In particular,

we study the competitiveness of the p–version DGFEM employing a Pp–basis on

both polytopic and tensor–product elements with a (standard) DGFEM and FEM

employing a (mapped) Qp–basis. Moreover, a careful theoretical analysis of op-

timal convergence rate in p for Pp–basis is derived for several commonly used

projectors, which leads to sharp bounds of exponential convergence with respect

to degrees of freedom (dof) for the Pp–basis.
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Chapter 1

Introduction

1.1 Background

Mathematical modeling with ordinary differential equations (ODEs) and partial

differential equations (PDEs) is widely used in diverse areas, from computational

fluid dynamics, solid mechanics and optimal control, to finance, biology and ge-

ology. Many natural phenomena, e.g. diffusion, convection and reaction, can be

accurately modeled by using PDEs. It is well known that there are only limited

ways for finding closed form solutions of PDEs with appropriate boundary and

initial conditions over particularly related solution domains. Therefore, the need

to resort to numerical approximation to find the solutions of a large class of PDEs

is apparent.

In the last six decades, finite element methods (FEMs) have been widely used and

accepted by mathematicians and engineers as one of the most powerful tools for

solving a wide range of PDEs problems. Historically, the first work in FEM was

written by Richard Courant [82]. In the 1960s, finite element method began to

be popular among the engineers due to its power in solving PDEs on complicated

geometry with high-order approximation, as well as due to their solid mathemat-

ical foundations that has been developed for the analysis of their performance by

mathematicians.

However, classical FEMs are known to lack sufficient stability properties for trans-

port dominated PDE models. Various kind of stabilisation techniques have been

designed for resolving this issue in the last 40 years, typically with the expense

of the determination of a hard-to-evaluate user-defined parameter. On the other

1



Introduction 2

hand, finite volume methods (FVMs) have been predominantly used for transport

dominated problem in industrial software packages, especially, in computational

fluid dynamics (CFD), due to their efficiency of implementation, particularly on

parallel computer architectures and also their good stability for solving hyperbolic

problem. However, the convergence of rate of FVMs is usually low, and their

accuracy may deteriorate on irregular and/or highly stretched meshes.

Discontinuous Galerkin finite element methods (DGFEMs, for short) have enjoyed

considerable success, especially during the last three decades, and are now consid-

ered as a standard variational framework for the numerical solution of many classes

of problems involving partial differential equations. Loosely speaking, DGFEMs

can be considered to be a hybrid between classical FEMs and FVMs. Indeed, just

like in the FVM setting, information in DGFEMs is transmitted via the intro-

duction of numerical fluxes. At the same time, DGFEMs are defined as Galerkin

procedures just like FEMs, and they can easily employ approximation of arbitrary

degree locally on each computational cell.

The origins of DGFEMs can be traced back to the early 1970s for the numerical

solution of first–order hyperbolic problems by Reed & Hill [155]. This method

is later analysed by Lesaint & Raviart [141] and by Johnson & Pitkäranta [132];

see, e.g., [79, 78, 76, 81, 97, 72, 41], and the volume [77]. In the context of elliptic

PDEs, Nitsche’s work on weak imposition of essential boundary conditions [149] for

(classical) FEMs, allowed for the weak imposition of non-homeogeneous essential

boundary conditions. This was subsequently studied by Baker [27] who proposed

the first modern DGFEM for elliptic problems, later followed by Wheeler [187],

Arnold [13], Baker et al. [28], and others. Also the related FEM with penalty of

Babuška [26] is worth mentioning here.

In the late 1990’s, a number of different DGFEMs have been developed by a

number of researchers. These include the method of Bassi & Rebay [33, 34], the

methods by Brezzi, Manzini, Marini, Pietra & Russo [48], and the generalisation

of these ideas in the context of local discontinuous Galerkin methods (LDG) by

Cockburn & Shu [80], and the so-called interior-penalty (IP) methods by Wheeler

and co-workers [157, 156] and Houston, Schwab & Suli [175, 125]. Addition-

ally, we also mention the DGFEM used by Baumann, Babuška & Oden [150, 19],

which is a parameter free version of the IP method. The similarities between the

above mentioned methods led Arnold, Brezzi, Cockburn & Marini to seek a unified

framework for deriving and analysing DGFEMs [16, 71]. For reviews of some of
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the main development before the year 2000, see monograph [77]. In recent years,

DGFEMs have been applied to numerious boundary value and initial value prob-

lems, such as Stokes problems [161, 162], fourth order problems [176, 146, 107],

Maxwell equation [122, 153, 121], Cahn-Hilliard equation [137, 100], Friedrichs’

systems [128, 92, 93, 94] and more recently Hamilton-Jacobi-Bellman equations

[168, 169], etc.

The interest in DGFEMs can be attributed to a number of factors: classical

DGFEMs, such as interior penalty methods, have typically minimal communi-

cation, in the sense that only direct face-element neighbours are coupled through

the exploitation of appropriate numerical fluxes; this has important advantages

for imposing boundary conditions and also for parallel efficiency. Additionally,

meshes containing hanging-nodes and elemental polynomial bases consisting of lo-

cally variable polynomial degrees are also admissible, owing to the lack of pointwise

continuity requirements across the mesh-skeleton. This allows for the variation of

the order of polynomials over the computational domain (p–refinement), which in

combination with local mesh adaptation (h–refinement) leads to hp–version ap-

proximations. Furthermore, powerful solvers are now available for the resulting

linear systems; indeed, both domain decomposition preconditioners, see, for ex-

ample, [5, 6, 99, 140, 10, 9], and the references cited therein, as well as multigrid

solvers, cf. [11, 12, 45, 44], have been developed.

On the other hand, many practitioners often object that DGFEMs are compu-

tationally expensive, as for a given mesh and polynomial order, DGFEMs lead

to an increase in the number of degrees of freedom compared to classical FEM

for comparable accuracy, typically when discretizing elliptic operators. This is a

somehow simplistic argument, since it overlooks all the key aforementioned and

other potential advantages of DGFEMs in terms of their applicability, versatility

and mesh-flexibility. Indeed, as we shall see below, within the DGFEM frame-

work, it is possible to employ the same underlying approximating space of piece-

wise polynomials, irrespective of the structure of the PDE of interest. Moreover,

the flexibility offered by different choices of numerical fluxes allows for the design

of DGFEMs with desirable conservation properties of important quantities (e.g.,

mass, momentum or energy conservation).

Additionally, DGFEM elemental bases can be constructed to contain fewer degrees

of freedom than their (conforming) FEM counterparts for quadrilateral/hexahe-

dral or, general, polytopic elements with more than d faces. The underlying idea
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in this context is the use of physical frame (i.e., without resorting to the use of

local element mappings) polynomial basis functions of total degree, say p, hence-

forth, denoted by Pp, independently of the shape of the element; see, for example,

in [31, 32, 30, 61]. This way, the order of convergence of the underlying method is

independent of the element shape; cf., [14, 15] for a detailed discussion of this issue,

when element mappings are employed. Indeed, as noted in our recent work [61],

when the underlying mesh consists of tensor-product elements, e.g., quadrilaterals

in 2D and hexahedra in 3D, the use of Pp polynomial spaces not only renders

the underlying DGFEM more efficient than the standard DGFEM using tensor-

product polynomials of degree p in each coordinate direction (Qp), but also more

efficient than the standard FEM, as the polynomial degree p increases. Going one

step further, the exploitation of DGFEMs using polynomial spaces defined in the

physical frame, means that DGFEMs naturally allow for the use of computational

meshes consisting of general polytopic elements.

This work is concerned with the theoretical analysis and practical performance of

the hp-version interior penalty discontinuous Galerkin method (hp-IP DGFEM),

for boundary value problems in non-negative characteristic form on general poly-

topic elements (polygonal/polyhedral elements in two/three space dimensions).

Moreover, this work concerns with space-time hp-IP DGFEM for parabolic ini-

tial/boundary value problems over prismatic elements (polytopic spatial elements

tensorised with a time interval).

Numerical methods on polytopic elements have gained substantial traction in re-

cent years for a number of important reasons. A key underlying issue for all classes

of FEMs/FVMs is the design of a suitable computational mesh upon which the

underlying PDE problem will be discretized. The problem of good mesh design

has to address two competing traits. On the one hand, the mesh should provide

an accurate representation of the given computational geometry with sufficient

resolution for accurate numerical approximations. On the other hand, there are

cases where a ‘coarse’ mesh contains already too many degrees of freedom for com-

putation, rendering the computations impractical, or even intractable. Such cases

are often met in practice. Indeed, standard mesh generators typically generate

grids consisting of triangular/ quadrilateral elements in 2D and tetrahedral/hexa-

hedral/prismatic/pyramidal elements in 3D; these will be, henceforth, collectively

termed a standard element shapes. In the presence of essentially lower-dimensional

solution features (e.g., boundary layers), anisotropic meshing may be exploited.

In areas of high curvature, however, the use of such highly-stretched elements may
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lead to element self-intersection, unless the curvature of the geometry is carefully

‘propagated’ into the interior of the mesh through the use of (computationally

expensive) isoparametric element mappings. These issues are particularly perti-

nent in the context of high–order methods, since in this setting, accuracy is often

achieved by the use of coarse meshes combined with high order local basis; the

flexibility in the shape of coarse meshes is, therefore, crucial in this context for

the efficient approximation of localised geometrical features of the underlying so-

lutions. Hence, it is obvious that, increasing dramatically the flexibility in the

admissible element shapes in the mesh, can potentially deliver dramatic savings

in computational cost.

An alternative approach is to exploit general meshes consisting of polytopic (i.e.,

polygonal in 2D and polyhedral in 3D) elements. In the context of discretizing

PDEs in complicated geometries, Composite Finite Elements (CFEs) (both con-

forming and DGFEM versions), have been developed [116, 115, 8, 110], which

exploit general meshes consisting of polytopic elements arising as agglomerates of

standard shaped elements; cf., also the closely related (but more restrictive, in

terms of the basis functions it employs, compared to [8, 110]), so-called, agglom-

erated DGFEM [30, 31, 32]; cf., also the unfitted discontinuous Galerkin Method

[119, 35], which is one of the first works considering the computational issues re-

lated to the use of total degree basis over general shaped elements for DGFEMs

to the best of author’s knowledge. More recently, the Cut Finite Element Meth-

ods (both conforming and DGFEM versions), have been developed [56, 51, 55],

which use a fixed background meshes to represent the geometry of the domain and

build on a general finite element formulation for the approximation of PDEs, in

the bulk and on surfaces, that can handle elements of complex shape and where

boundary and interface conditions are built into the discrete formulation. In addi-

tion, the Hybrid High-Order methods have been first introduced [88] and developed

[85, 86, 68, 73]. They support general polyhedral meshes and delivers an arbitrary-

order accurate approximation by intermediating the cell-based discrete unknowns

in addition to the face-based ones. The cell-based unknowns can be eliminated by

static condensation which improves the efficiency.

In the context of the numerical simulation of evolution PDE problems, the resolu-

tion of time-dependent sharp solution features (layers, interfaces, shocks, etc.)

remains a significant challenge in the quest of resolved computations, e.g., in
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CFD. Mesh-geometry freedom, in conjunction with variable order local polyno-

mial elemental degrees, is expected to achieve accurate approximation of lower–

dimensional features, while simultaneously reducing significantly the sizes of the

resulting linear systems required to be solved per time-step.

The use of polytopic meshes in the context of characteristic-based/Lagrange–

Galerkin methods is also highly relevant. Such moving-meshing methodologies

result to extremely general/irregular node configurations, which give rise to highly

irregular element shapes. The practical relevance and potential impact of employ-

ing such general computational meshes is an extremely exciting topic which has

witnessed a vast amount of research in recent years by a number of leading research

groups. In the conforming setting, we mention the CFE method [116, 115], the

Polygonal Finite Element Method [174], and the Extended Finite Element Method

[101]. These latter two approaches achieve conformity by enriching/modifying the

standard polynomial finite element spaces, in the spirit of the Generalized Finite

Element framework of Babuška & Osborn in [23]. Typically, the handling of non-

standard shape functions carries an increase in computational effort. The recently

proposed Virtual Element Method [37, 40, 65, 177, 38], overcomes this difficulty,

achieving the extension of conforming finite element methods to polytopic ele-

ments while maintaining the ease of implementation of these schemes; see also the

closely related Mimetic Finite Difference method, e.g., [39, 47, 64].

We point out that in all of the above mentioned methods, the construction of

the finite element space depends on the geometrical information of the underlying

polytopic elements in various ways: the number of basis depends on the number of

face of polytopic elements, or the stability of the method is lost when the measure

of faces is degenerating.

In this work, we will introduce the mathematical construction and analysis of hp-

version DGFEMs on meshes consisting of extremely general classes of polytopes.

In particular, these meshes may contain d-dimensional polytopes with arbitrarily

small (d− k)-dimensional faces, for k = 1, . . . , d− 1. Here, the construction of the

proposed finite element space is independent of the number of faces per element.

In the analysis presented below, stability and a priori error bounds will be deduced

which are sharp with respect to face degeneration under a refined choice of the

(user-defined) discontinuity-penalization parameter.

We briefly describe the mesh assumptions over the polytopic meshes which this

work is based on. Due to the general geometry of the polytopic elements allowed,
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we need to make assumptions on number of faces per elements and/or shape-

regularity for polytopic elements in order to derive the stability and a-priori error

bound depends explicitly on the geometrical information of the meshes.

The total number of (d − 1)-dimensional faces of simplicial meshes and tensor

product-type meshes are (d+ 1) and 2d, respectively. For d = 2, 3, the number of

faces are uniformly bounded for the standard meshes.(The same condition holds

for pyramidal and prismatic elements.) However, even for d = 2, polygons with

arbitrary number of faces exist. So in order to extend the hp-IP DGFEM from

standard meshes to polytopic meshes, it is very natural to start working on the

polytopic meshes with bounded number of faces. We point out that polytopic

elements satisfying above mesh assumption can still be shape regular.

On the other hand, there are some simple and “nice” shaped polytopic elements

with unbounded number of faces which are excluded by the above mesh assump-

tions, ’nice’ in the sense of satisfying shape regularity assumptions. In this work,

a new shape regularity assumption which is stronger than the classical shape reg-

ularity assumptions for polytopic elements will be considered.

Finally, we will also present some new hp-approximation results for some com-

monly used projectors over standard tensor-product typed elements with Pp basis.

By utilising the new results, we can prove for piecewise analytic problems in this

work, DGFEMs with Pp basis has a steeper exponential convergence compared to

DGFEMs with Qp basis over tensor product elements, and the better convergence

only depends on dimension. The sharpness of the approximation results is also

verified by the numerical experiments.

1.2 Overview

In this thesis we present the a priori error analysis of hp-version DGFEMs on

extremely general classes of meshes consisting of polytopic meshes, containing

polytopes with arbitrary small (d− k)-dimensional faces, k = 1, . . . , d− 1. Addi-

tionally, series of numerical examples will be presented to conform the theoretical

analysis. This work is structured as follows; the main results can also be found in

[61, 59, 58, 7], as well as in the monograph [60] which is in preparation.

In Chapter 2, we start by introducing the functional space setting use to define

the model problems and discontinuous Galerkin methods (Section 2.1). Next, the
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discontinuous Galerkin method for first-order hyperbolic problems will be derived

(Section 2.2). Then, we present the general discontinuous Galerkin approach to

second order elliptic problems and derive the interior penalty DGFEMs from a par-

ticular choice of numerical fluxes (Section 2.3). Finally, we derive the IP DGFEM

formulation for PDEs in non-negative characteristic form (Section 2.4).

In Chapter 3, we first fix a set of mesh assumptions allowing for very general

polygonal meshes with a uniformly bounded number of faces per element (Section

3.1). Based on these assumptions, in Section 3.2 we derive inverse estimates over

polytopic elements, making use of classical hp-version inverse estimates over stan-

dard simplical meshes cf. [167, 183, 185, 184]. The resulting inverse estimates are

sharp with respect to the face degeneration by using ideas in [104]. In Section

3.3, we derive the hp-version polynomial approximation results over polytopic el-

ements. The key technique is to use the classical Babuška-Suri operator [24] over

a simplical spatial mesh covering.

In Chapter 4, we present the analysis for hp-version IP DGFEM for elliptic prob-

lems over polytopic elements. In Section 4.1, we define the elliptic problems sat-

isfying the uniform ellipticity conditions. In Section 4.2, we prove coercivity and

continuity of the IP DGFEM method assuming a uniformly bounded number of

faces per polytopic element. Then we derive the hp-version a priori error bound

by using the approximation results in Section 3.3. We emphasize that the coer-

civity and continuity constants depend on the number of faces per element, but is

independent of shape regularity of polytopic elements. In Section 4.3, we present a

new proof of coercivity and continuity conditions and we derive the hp-version a

priori error bound with a different mesh assumption allowing for arbitrary number

of faces per polytopic element. In this case, the coercivity and continuity constants

depend on the shape regularity of polytopic elements, but is independent of number

of faces per element. Although the a priori error bounds differs slightly under the

two different mesh assumptions, both of the error bounds will be h optimal and

p suboptimal by 1/2 order, if we consider quasi-uniform meshes. In Section 4.4,

several numerical examples are presented.

In Chapter 5, we present the analysis for hp-version DGFEM for partial differential

equations with non-negative characteristic form over polytopic elements. For the

sake of simplicity, we will use the bounded number of faces per element mesh

assumption in this chapter. The reason for not using the new shape regularity
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mesh assumption is due to lack of inverse estimates from H1–seminorm to L2–

norm over the element satisfying the underlying assumption. In Section 5.1, we

define the partial differential equations in non-negative characteristic form under

the same setting of Houston, Schwab, Süli [125]. In Section 5.2, we derive a

priori bounds for the hp–version IP DGFEM for this class of problems. Due

to the lack of hp–approximation results for the local L2–projection operator on

polytopic elements, it is not possible to directly generalise the analysis from [125]

to meshes consisting of such elements. To address this issue, we prove an inf-

sup condition for the underlying DGFEM, with respect to a stronger streamline–

diffusion type norm, for simple advection coefficients, thereby extending respective

results from [133, 49, 18, 57] to the current setting. This naturally leads to a priori

bounds for the hp-version DGFEM for this general class of linear PDE problems on

very general polytopic element with possibly arbitrarily small/degenerate (d−k)–

dimensional element facets, k = 1, . . . , d − 1. The resulting a priori bound will

be h optimal and p suboptimal by 1/2 order in pure hyperbolic cases and pure

elliptic cases. In Section 5.3, a series of numerical examples is presented to test

performance of the IP DGFEM. This analysis is also novel for classical simplicial

or tensor-product type elements.

In Chapter 6, we present the analysis for hp-version space-time DGFEMs for

parabolic problems over prismatic space-time elements under shape regularity

mesh assumption for the spatial mesh. Moreover, we will define the new space-time

finite element space in order to adapting to the space-time DGFEMs framework.

In Section 6.1, we present the problem setting for parabolic PDEs. In Section 6.2,

we will derive a priori bounds for the hp-version space-time DGFEMs for parabolic

problems. Here, since total degree Pp basis is utilised over each prismatic space-

time elements, there is no space-time tensor product structure in local basis. The

classical stability proof [180] depends on utilising tensor product of spatial and

temporal projectors, which is not possible under the current setting. We prove

the unconditional stability of the new space-time DGFEMs, via the proof of an

inf-sup condition for space-time elements with arbitrary aspect ratio between the

time-step λ and the local spatial mesh-size h. The resulting inf-sup stability is

independent of number of faces per element. Furthermore, under a space-time

shape-regularity assumption, hp-a priori error bounds are proven in the L2(H1)–

and L2(L2)–norms, combining the classical duality approach with careful use of

approximation arguments to circumvent the fundamental impossibility of apply-

ing ‘tensor-product’ arguments (as is standard in this context [180]) in the present
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setting. Instead, a new argument, based on judicious use of the space-time local

degrees of freedom, eventually delivers the L2(H1)–norm and L2(L2)–norm error

bound, with constants independent of number of faces per element. Here, the

resulting a priori bound is h optimal and p suboptimal by half order in L2(H1)–

norm, while the a priori bound is h suboptimal by half order and p suboptimal by

3/2 order in L2(L2)–norm. In Section 6.3, extensive comparison among different

combinations of spatial and temporal discretizations and the new approach are

given through a series of numerical examples.

In Chapter 7, we present some hp-version polynomial approximation results for

commonly used projectors onto the Pp basis and serendipity (Sp) basis on ten-

sor product elements. In Section 7.1, we will derive the sharp hp-bound for L2-

orthogonal projections and H1-projections onto the Pp and Sp, respectively, in

several different norms. Classical hp-approximation theory depends on a tensor

product Qp basis, while the hp-approximation theory for Pp and Sp are usually

constructed by using the fact that there always exist a Qq basis, q < p, as a

subspace of Pp or Sp. We emphasize that the resulting hp-bound for Pp and Sp
are p-optimal when the underlying function has finite Sobolev regularity, and it is

not p-optimal for piecewise analytic functions. The new hp-approximation result

for Pp and Sp bases are optimal in p, not only for functions with finite Sobolev

regularity, but also for analytic functions. In fact, the analysis shows that the

extra basis functions in Qp compared to Pp or Sp only reduce the constant in the

error bound without improving the rate in p. The main tools used in the proof

are orthogonal polynomial expansions, together with judicious choice of the local

basis. In Section 7.2, we will apply the new approximation results to prove the ex-

ponential convergence for DGFEMs with the Pp basis and FEMs with the Sp basis

over standard tensor product elements for piecewise analytic problems. Here, the

main proof is based on [125, 124, 167]. Moreover, we will prove that exponential

convergence for DGFEMs with Pp basis is steeper than DGFEMs with Qp basis

in error against number of degrees of freedom under p-refinement, respectively,

thereby highlighting that DGFEMs can be cheaper by standard FEM per dof in

certain regimes. In Section 7.3, we present several examples to verify the sharpness

of the theory.

In Chapter 8, we conclude this work and look at some possible future directions

of further research.



Chapter 2

Discontinuous Galerkin Methods

In this chapter we will establish the general settings for this work is based on,

and also we will introduce the discontinuous Galerkin finite element methods

(DGFEMs).

2.1 Sobolev Spaces

Let Ω be a bounded open subset of Rd, d ≥ 1, with boundary ∂Ω; moreover, we

write |Ω| to denote the measure of the domain Ω. For 1 ≤ p ≤ ∞, let Lp(Ω) denote

the usual Lebesgue space of real–valued functions with norm ‖ · ‖Lp(Ω), defined by

‖v‖Lp(Ω) :=

(∫
Ω

|v(x)|p dx

)1/p

,

in the case 1 ≤ p <∞, and in the case p =∞

‖v‖L∞(Ω) := ess sup
x∈Ω
|v(x)|.

Given a multi-index α = (α1, . . . , αd), αi ∈ N0, i = 1, . . . , d, of length |α| :=∑d
i=1 αi, we let Dα := Dα1

1 . . . Dαd
d and Dj = ∂/∂xj for j = 1, . . . , d. For m ∈

N0 ∪ {∞}, we denote by Cm(Ω) the set of all continuous real–valued functions

defined on Ω such that Dαv is continuous on Ω for all |α| ≤ m. In particular,

when m = 0, we simply write C(Ω) instead of C0(Ω). The subspace Cm
0 (Ω) will

denote the set of functions in Cm(Ω) which have compact support in Ω.

11
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Next, we recall the definition of a Sobolev space (see, e.g., [4]); with a slight abuse

of notation, we also write Dαv to denote the weak derivative of a sufficiently

smooth function v.

Definition 2.1 (Sobolev space). For m ∈ N0, we define the Sobolev space Wm,p(Ω)

over an open domain Ω ⊂ Rd, by

Wm,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ m}, (2.1)

with associated norm ‖ · ‖Wm,p(Ω) and seminorm | · |Wm,p(Ω) given by:

‖u‖Wm,p(Ω) :=

( ∑
|α|≤m

‖Dαu‖pLp(Ω)

)1/p

, |u|Wm,p(Ω) :=

( ∑
|α|=m

‖Dαu‖pLp(Ω)

)1/p

,

for p ∈ [1,∞), and

‖u‖Wm,∞(Ω) := max
|α|≤m

‖Dαu‖L∞(Ω), |u|Wm,∞(Ω) := max
|α|=m

‖Dαu‖L∞(Ω),

for p =∞, respectively.

For p = 2, we write Hm(Ω) to denote Hilbertian Sobolev spaces. Further, we

define Hm
0 (Ω) in the following way.

Hm
0 (Ω) := {u : ‖u‖Hm(Ω) <∞, and Dαu|∂Ω = 0 for |α| ≤ m− 1}, (2.2)

Next, we give the definition for dual norm of Sobolev spaces

‖u‖H−m(Ω) := sup
v∈Hm

0 (Ω)

(u, v)L2(Ω)

‖v‖Hm(Ω)

, (2.3)

where (u, v)L2(Ω) =
∫

Ω
uv dx denotes the standard L2 inner product. We compress

the notation of the L2 product and norm by (·, ·)L2(Ω) = (·, ·) and ‖·‖L2(Ω) = ‖·‖
respectively, on Ω.

Definition 2.2. For m ∈ N0, we define the dual space of the Sobolev space Hm
0 ,

by

H−m(Ω) := {u : ‖u‖H−m(Ω) <∞}, (2.4)

We point out that fractional order Sobolev spaces, i.e., where the Sobolev index

m ∈ R are defined by (standard) function-space interpolation procedures; for more

details concerning these techniques, we refer to [4], for example.
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Finally, we introduce the Bochner spaces needed for time dependent problems.

For 1 ≤ p ≤ ∞, we define the spaces Lp(0, T ;X), with X being a real Banach

space with norm ‖·‖X , consisting of all measurable functions v : [0, T ] → X, for

which

‖v‖Lp(0,T ;X) :=

(∫ T

0

‖v(t)‖pX dt

) 1
p

<∞, 1 ≤ p <∞, (2.5)

‖v‖L∞(0,T ;X) := ess sup
t∈[0,T ]

‖v(t)‖X <∞, p =∞. (2.6)

We denote by C(0, T ;X) the space of continuous function v : [0, T ] → X with

bounded norms

‖v‖C(0,T ;X) := max
t∈[0,T ]

‖v(t)‖X . (2.7)

Throughout this work, we denote by Th a subdivision of the domain Ω into disjoint

open elements κ such that Ω̄ = ∪κ∈Thκ̄. Moreover, for κ ∈ Th, we define hκ :=

diam(κ) to be the diameter of the element κ. We stress that when κ ∈ Th is

polytopic, it is possible to be shape-regular in the sense of [70] and have faces

with arbitrarily small diameters compared to hκ. The detailed mesh assumptions

will be presented at the beginning of following chapters.

On the basis of the subdivision Th we define the broken Sobolev space H l(Ω, Th),
up to composite order s, by

H l(Ω, Th) = {u ∈ L2(Ω) : u|κ ∈ H lκ(κ) ∀κ ∈ Th}.

Moreover, for v ∈ H1(Ω, Th), we define the broken gradient ∇hv by (∇hv)|κ =

∇(v|κ), κ ∈ Th.

2.2 Discretization of first–order hyperbolic PDEs

To highlight the key aspects concerning the construction of DGFEMs, while keep-

ing notation to a minimum, we first consider the discretization of a first–order

linear Cauchy problem. To this end, let Ω ⊂ Rd, d ≥ 1, a bounded Lipschitz

domain with boundary ∂Ω, c ∈ L∞(Ω), f ∈ L2(Ω), and b := (b1, b2, . . . , bd)
> ∈

[W 1,∞(Ω)]d. Furthermore, the inflow and outflow boundaries of the domain Ω are
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denoted, respectively, by

∂−Ω = {x ∈ ∂Ω : b(x) · n(x) < 0} , ∂+Ω = {x ∈ ∂Ω : b(x) · n(x) > 0} ,

where n denotes the unit outward normal to ∂Ω. Upon defining the graph space

Gb(Ω) := {v ∈ L2(Ω) : b · ∇v ∈ L2(Ω)},

we seek u ∈ Gb(Ω) such that

b · ∇u+ cu = f in Ω, (2.8)

u = g on ∂−Ω. (2.9)

From the well-posedness of the above problem in graph space we know that the

boundary ∂∗Ω = {x ∈ ∂Ω : b(x) · n(x) = 0} will play no role, see [84, Chapter 2]

for details.

Before introducing the DGFEM approximation of (2.8), (2.9), we first consider

a standard (conforming) FEM discretization based on employing weakly imposed

boundary conditions, cf. [130], for example.

To approximate the solution of (2.8), (2.9) with a FEM, we first consider a shape–

regular mesh Th of the computational domain Ω, assuming, for simplicity, that Th
consists of d–dimensional simplicial elements κ ∈ Th. Letting p ≥ 1 denote the

finite element polynomial degree, we introduce the finite element space

V p
C(Th) = {u ∈ C(Ω) : u|κ ∈ Pp(κ), κ ∈ Th},

where Pp(κ) denotes the space of polynomials of total degree p on κ.

The FEM reads: find uh ∈ V p
C(Th) such that∫

Ω

(b · ∇uh + cuh) vh dx−
∫
∂−Ω

b · nuhvh ds =

∫
Ω

fvh dx−
∫
∂−Ω

b · n gvh ds

(2.10)

for all vh ∈ V p
C(Th). It is well-known that this method may exhibit numerical insta-

bilities in the form of spurious oscillations [130]. Even in cases where meaningful

solutions (free of spurious oscillations) are computed by (2.10), these typically

converge at suboptimal rates when compared with the approximation power of

V p
C(Th) [130].
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To address these concerns, (2.10) should be supplemented by appropriate numeri-

cal stabilization in order to render the underlying scheme stable, e.g., by employing

the so-called streamline-diffusion FEM, whereby the test functions arising in the

volume integrals can be replaced by vh + δb · ∇vh. In the h–version setting, i.e.,

when the polynomial degree p is kept fixed, the analysis undertaken in [131] indi-

cates that δ = O(h); the generalisation to the hp–setting outlined in [124] shows

that δ = O(h/p). Another choice is the so-called continuous interior penalty

method [50, 53, 52, 54].

The essential idea behind the DGFEM discretization of (2.8)-(2.9) is to employ

the scheme (2.10) elementwise, subject to a prescribed boundary condition on the

inflow boundary of each element. This way we enhance the numerical stability of

the approximation a the expense of introducing more degrees of freedom (in this

d-simplicial mesh) as we will be seeking discontinuous approximations belonging

to the DGFEM space

V p(Th) = {u ∈ L2(Ω) : u|κ ∈ Pp(κ), κ ∈ Th},

defined for p ≥ 0.

To make this precise, we first need to introduce some notation. For p ≥ 0 we

introduce the DGFEM space

V p(Th) = {u ∈ L2(Ω) : u|κ ∈ Pp(κ), κ ∈ Th}.

(For simplicity of the exposition here, we only consider a uniform polynomial

degree distribution over the mesh Th; the general hp–version case will be treated

in the chapters below.) For any element κ ∈ Th, we denote by ∂κ the union of

(d− 1)–dimensional open faces of κ. Then, the inflow and outflow parts of ∂κ are

defined as:

∂−κ = {x ∈ ∂κ, b(x) · nκ(x) < 0}, ∂+κ = {x ∈ ∂κ, b(x) · nκ(x) > 0},

respectively, where nκ(x) denotes the unit outward normal vector to ∂κ at x ∈ ∂κ.

Given κ ∈ Th, we denote by v+
κ , the trace of a function v ∈ H1(Ω, Th) on ∂κ,

relative to κ. Then for almost every x ∈ ∂κ\∂Ω, there exists a unique element

κ′ ∈ Th such that x ∈ ∂κ′; thereby, the outer or exterior trace v−κ of v on ∂κ\∂Ω,

relative to κ, is defined as the inner trace v+
κ′ relative to the element(s) κ′ such

that the intersection of ∂κ′ with ∂κ\∂Ω has positive (d−1)–dimensional measure.
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Then, the upwind jump of u across ∂−κ\∂Ω is defined by

bvcκ := v+
κ − v−κ . (2.11)

We note that the sign of above upwind jump depends on the direction of the flow

over each element κ ∈ Th. In the following, when it is clear from the context to

which element κ in the subdivision Th the quantities v±κ correspond to, for the sake

of notational simplicity we shall suppress the letter κ in the subscript and write,

respectively, v± instead.

With this notation, motivated by (2.10), we may introduce the following local

FEM formulation: for each κ ∈ Th, find uh ∈ V p(Th), such that∫
κ

(b · ∇uh + cuh) vh dx−
∫
∂−κ

b · nκ u+
h v

+
h ds

=

∫
κ

fvh dx−
∫
∂−κ

b · nκ ĝv+
h ds, (2.12)

for all vh ∈ V p(Th), where

ĝ(x) =

{
u−h (x), x ∈ ∂−κ\∂Ω,

g(x), x ∈ ∂−κ ∩ ∂Ω.

Summing (2.12) over κ ∈ Th and employing the definition of ĝ, the DGFEM

approximation to (2.8), (2.9) is given by: find uh ∈ V p(Th) such that

∑
κ∈Th

{∫
κ

(b · ∇uh + cuh) vh dx−
∫
∂−κ\∂Ω

b · nκ buhcv+
h ds

−
∫
∂−κ∩∂Ω

b · nκ u+
h v

+
h ds

}
=
∑
κ∈Th

{∫
κ

f vh dx−
∫
∂−κ∩∂Ω

b · nκ gv+
h ds

}
,(2.13)

for all vh ∈ V p(Th). Integrating the first term in (2.13) by parts gives rise to the

following equivalent formulation: find uh ∈ V p(Th) such that

∑
κ∈Th

{∫
κ

((c−∇ · b)uhvh − uhb · ∇vh) dx +

∫
∂−κ\∂Ω

b · nκ u−h v
+
h ds

+

∫
∂+κ

b · nκ u+
h v

+
h ds

}
=
∑
κ∈Th

{∫
κ

f vh dx−
∫
∂−κ∩∂Ω

b · nκ gv+
h ds

}
,(2.14)

for all vh ∈ V p(Th).
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To motivate why the above method has the potential of yielding significant im-

provement in the stability of the approximate solution it computes, let us consider

a component-wise constant wind b across Ω. We observe that, then, vh+δb·∇vh ∈
V p(Th) for all δ > 0 when vh ∈ V p(Th). Therefore, the fact that such a function

belongs to the element-wise discontinuous space V p(Th) allows for partial deriva-

tives of the basis functions to be included in the finite element space, which gives

the control of the derivative along the advective direction. This, in conjunction

with the weak imposition of the elemental boundary conditions, has the effect of

enhancing stability.

An alternative approach to derive the method (2.14), which is more generally

applicable for the discretization of first–order nonlinear hyperbolic conservation

laws, is to employ the concept of numerical fluxes, exploited widely within FVMs,

see, e.g., [118]. In this approach, we begin again by the local weak formulation of

(2.8), (2.9), and we integrate by parts the leading order term. (Notice that if b

depends on the solution u also, the aforementioned integration by parts avoids the

presence of, potentially cumbersome, derivatives of b in the numerical method.)

With this in mind, multiplying (2.8) by a smooth test function v and integrating

over a single element κ ∈ Th gives: find u|κ such that u|∂−Ω = g and∫
κ

((c−∇ · b)uv − ub · ∇v) dx +

∫
∂κ

b · nκ u+v+ ds =

∫
κ

fv dx. (2.15)

The DGFEM discretization of (2.15) is then based on replacing the analytical

solution u by the DGFEM approximation uh and the test function v by vh, where

both uh and vh belong to V p(Th). Additionally, since uh is discontinuous between

neighbouring elements, we must replace the flux b · nκ u+ by a numerical flux

function H(u+
h , u

−
h ,nκ), which depends on both the inner– and outer–trace of uh

on ∂κ, κ ∈ Th, and on the unit outward normal vector nκ to ∂κ. Summing over

the elements κ in the mesh Th yields the DGFEM: find uh ∈ V p(Th) such that

∑
κ∈Th

{∫
κ

((c−∇ · b)uhvh − uhb · ∇vh) dx +

∫
∂κ

H(u+
h , u

−
h ,nκ)v

+ ds

}
=
∑
κ∈Th

∫
κ

fv dx, (2.16)

for all vh ∈ V p(Th).
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We emphasize that the choice of the numerical flux function is independent of the

finite element space employed. Indeed, the two key properties that the numerical

flux function H(·, ·, ·) should satisfy are:

1. Consistency: for each κ ∈ Th we require that H(v, v,nκ)|∂κ = (bv) · nκ.

2. Conservation: given any two neighbouring elements κ and κ′ from the finite

element mesh Th, at each point x ∈ ∂κ ∩ ∂κ′ 6= ∅, noting that nκ′ = −nκ,

we have that H(v, w,nκ) = −H(w, v,−nκ).

A classical and very natural choice is the upwind numerical flux, given by

H(u+
h , u

−
h ,nκ)|∂κ =

{
b · nκ lims→0+ uh(x− sb) x ∈ ∂κ\∂−Ω,

b · nκ g(x) x ∈ ∂κ ∩ ∂−Ω,
(2.17)

for κ ∈ Th; indeed, upon substituting (2.17) into (2.16), we immediately recover

the DGFEM scheme given in (2.14) through an integration by parts. For further

details, and indeed for the construction of appropriate numerical flux functions for

nonlinear first–order hyperbolic conservation laws, we refer to, e.g., [138, 181].

2.3 Discretization of second–order elliptic PDEs

The DGFEM discretization of general second–order elliptic PDEs is based on the

following key steps:

1. Rewrite the underlying PDE as a first–order system of equations and derive

an elemental weak formulation.

2. Introduce appropriate numerical flux functions in a similar fashion to that

undertaken in the previous section; this gives rise to the so-called flux for-

mulation.

3. Finally, the auxiliary variables introduced in step 1. may be eliminated to

yield the underlying primal formulation.

To demonstrate each of these steps in a clear fashion, here we consider the model

elliptic problem of the Poisson equation with essential boundary conditions, given
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by: given Ω ⊂ Rd, d ≥ 1, and f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∆u = f in Ω, (2.18)

u = g on ∂Ω, (2.19)

in the weak sense, i.e., we seek solution u ∈ H1(Ω) with u|∂Ω = g (in the sense of

trace) of the above problem posed in the weak form:∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx for all v ∈ H1
0 (Ω). (2.20)

Step 1. We rewrite (2.18) as the first–order system:

s−∇u = 0, −∇ · s = f. (2.21)

Upon multiplication by test functions τ and v, and intergration by parts, the

element-wise formulation is given by: for each κ ∈ Th, find u|κ ∈ H1(κ) and

s|κ ∈ [L2(κ)]d, such that u|∂Ω = g and∫
κ

s · τ dx +

∫
κ

u∇ · τ dx−
∫
∂κ

uτ · nκ ds = 0,∫
κ

s · ∇v dx−
∫
∂κ

s · nκv ds =

∫
κ

fv dx.

Step 2. To arrive to the flux formulation, we introduce the numerical flux func-

tions û = û(uh) and ŝ = ŝ(uh,∇huh) which represent approximations to u and s,

respectively, on the boundary of each element κ in the computational mesh Th.
Thereby, replacing (u, s) by (uh, sh) ∈ V p(Th) ×Σp(Th), Σp(Th) = [V p(Th)]d, and

(v, τ) by (vh, τh) ∈ V p(Th) × Σp(Th), and summing over κ ∈ Th gives rise to the

DGFEM: find (uh, sh) ∈ V p(Th)×Σp(Th) such that

∑
κ∈Th

∫
κ

sh · τh dx +
∑
κ∈Th

∫
κ

uh∇ · τh dx−
∑
κ∈Th

∫
∂κ

ûτ+
h · nκ ds = 0, (2.22)

∑
κ∈Th

∫
κ

sh · ∇vh dx−
∑
κ∈Th

∫
∂κ

ŝ · nκv+
h ds =

∑
κ∈Th

∫
κ

fvh dx (2.23)

for all (vh, τh) ∈ V p(Th)×Σp(Th).

The flux formulation given in (2.22), (2.23) involves the additional (auxiliary)

unknowns sh; these may be eliminated in the following manner. Setting τh|κ =



Definition and Tools 20

∇(vh|κ), κ ∈ Th, in (2.22) and integrating by parts gives

∑
κ∈Th

∫
κ

sh · ∇vh dx−
∑
κ∈Th

∫
κ

∇uh · ∇vh dx

+
∑
κ∈Th

∫
∂κ

(u+
h − û)∇v+

h · nκ ds = 0. (2.24)

Inserting (2.24) into (2.23) gives rise to the primal DGFEM formulation: find

uh ∈ V p(Th) such that

∑
κ∈Th

∫
κ

∇uh · ∇vh dx−
∑
κ∈Th

∫
∂κ

(u+
h − û)∇v+

h · nκ ds

−
∑
κ∈Th

∫
∂κ

ŝ · nκv+
h ds =

∑
κ∈Th

∫
κ

fvh dx (2.25)

for all vh ∈ V p(Th).

Before we consider the choice of the numerical flux functions û and ŝ, we first

rewrite (2.25) in terms of integrals arising on each face in the underlying mesh

Th. To this end, we introduce the following notation. We denote by Fh the set

of open (d − 1)–dimensional element faces associated with Th. Further, we write

Fh = FIh ∪ FBh , where FIh denotes the set of all open (d− 1)–dimensional element

faces F ∈ Fh that are contained in Ω, and FBh is the set of element boundary faces,

i.e., F ⊂ ∂Ω for F ∈ FBh . The boundary ∂κ of an element κ and the sets ∂κ \ ∂Ω,

∂κ ∩ ∂Ω will be identified in a natural way with the corresponding subsets of Fh.

Next, we introduce some trace operators. Let κi and κj be two adjacent elements

of Th and let x be an arbitrary point on the interior face F ∈ FIh given by F =

∂κi ∩ ∂κj. We write nκi and nκj to denote the outward unit normal vectors on

F , relative to ∂κi and ∂κj, respectively. Furthermore, let v and q be scalar- and

vector-valued functions, which are smooth inside each element κi and κj. Using

the above notation, we write (v+
κi
,q+

κi
) and (v+

κj
,q+

κj
), we denote the traces of (v,q)

on F taken from within the interior of κi and κj, respectively. The averages of v

and q at x ∈ F ∈ FIh are given by

{{v}} =
1

2
(v+
κi

+ v+
κj

), {{q}} =
1

2
(q+

κi
+ q+

κj
),

respectively. Similarly, the jumps of v and q at x ∈ F ∈ FIh are given by

[[v]] = v+
κi

nκi + v+
κj

nκj , [[q]] = q+
κi
· nκi + q+

κj
· nκj ,
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respectively. On a boundary face F ∈ FBh , such that F ⊂ ∂κi, κi ∈ Th, we set

{{v}} = v+
κi
, {{q}} = q+

κi
, [[v]] = v+

κi
nκi [[q]] = q+

κi
· nκi ,

with nκi denoting the unit outward normal vector on the boundary ∂Ω. Here, we

point out that the jump operator here is different compared to the upwind jump

operator b·c defined in the previous section. Here the sign of the upwind jump b·c
depends on the direction of the flow, whereas in the [[·]] case it only depends on

the element-numbering.

With this notation, we note that the following elementary identity holds:

∑
κ∈Th

∫
∂κ

q+ · n+ v+ ds =
∑
F∈Fh

∫
F

{{q}} · [[v]] ds+
∑
F∈FIh

∫
F

[[q]]{{v}} ds, (2.26)

cf. [16]. Exploiting (2.26), the primal formulation of the DGFEM (2.25) may be

rewritten in the following equivalent manner: find uh ∈ V p(Th) such that

∑
κ∈Th

∫
κ

∇uh · ∇vh dx +
∑
F∈Fh

∫
F

([[û− uh]] · {{∇vh}} − {{ŝ}} · [[vh]]) ds

+
∑
F∈FIh

∫
F

({{û− uh}}[[∇vh]]− [[ŝ]]{{vh}}) ds =
∑
κ∈Th

∫
κ

fvh dx (2.27)

for all vh ∈ V p(Th).

The choice of the numerical flux functions û and ŝ arising in the DGFEM (2.27)

has been studied extensively: different choices of numerical flux functions lead

to discontinuous Galerkin schemes with quite different consistency, stability, and

convergence properties; for a review, we refer to [16]. In the interest of simplicity of

the presentation, in this work, we consider one popular family of schemes, referred

to as interior penalty (IP) methods. We stress, however, that the theoretical

developments presented below are applicable to many other discontinuous Galerkin

schemes. For IP methods, we select

û = û(uh) =

{
{{uh}}+ 1+θ

2
nF · [[uh]] on F ∈ FIh ,

(1 + θ)uh − θg on F ∈ FBh ,

ŝ = ŝ(uh,∇huh) =

{
{{∇huh}} − σ[[uh]] on F ∈ FIh ,
∇uh − σ(uh − g)n on F ∈ FBh ,
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where θ ∈ [−1, 1] and for F ∈ FIh , F ⊂ ∂κi∩∂κj, nF = nκi . Moreover, σ : Fh 7→ R
is referred to as the discontinuity penalization function; the precise definition of

σ depends on the local mesh size and local polynomial degree. In the current

setting, i.e., assuming that the underlying simplicial mesh Th is shape–regular and

that the polynomial degree p is constant over Th, then the analysis undertaken in

[125], for example, indicates that σ = O(p2/h). The precise definition for general

polytopic meshes and variable elemental polynomial degrees is a key question in

this work and will be discussed in detail in Chapter 4.

Given the above definition of û and ŝ, we deduce the following family of IP-

DGFEMs: find uh ∈ V p(Th) such that

∑
κ∈Th

∫
κ

∇uh · ∇vh dx +
∑
F∈Fh

∫
F

(−{{∇uh}} · [[vh]] + θ{{∇vh}} · [[uh]]) ds

+
∑
F∈Fh

∫
F

σ[[uh]] · [[vh]] ds =
∑
κ∈Th

∫
κ

fvh dx +
∑
F∈FBh

∫
F

g(θ∇vh · n + σvh) ds (2.28)

for all vh ∈ V p(Th). Selecting the parameter θ = 1 gives rise to the so–called

Nonsymmetric Interior Penalty (NIP) DGFEM, θ = 0 is the Incomplete Interior

Penalty (IIP) DGFEM, while setting θ = −1 yields the Symmetric Interior Penalty

(SIP) scheme.

On the basis of the schemes (2.16) and (2.28) the DGFEM discretization of general

classes of second–order PDEs with so–called non-negative characteristic form may

be defined; see Chapter 5 for details, cf., also, [125]. Before we embark on this

topic, in the next chapter we first introduce the key technical results required to

study the stability and convergence properties of DGFEMs defined over general

mesh partitions.

2.4 PDEs with non-negative characteristic form

To highlight the versatility of the DGFEMs described above, we also consider the

general class of linear second order equations with non-negative characteristic form

in the form of respective initial/boundary value problems.
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Given Ω is a bounded Lipschitz domain in Rd, d ≥ 1, we consider the following

PDE: find u such that

−∇ · (a∇u) + b · ∇u+ cu = f in Ω. (2.29)

Here, a = {aij}di,j=1 with aij ∈ L∞(Ω) and aij = aji, for i, j = 1, . . . , d, b =

(b1, . . . , bd) ∈ [W 1,∞(Ω)]
d
, c ∈ L∞(Ω) and f ∈ L2(Ω). The PDE (2.29) is referred

to as an equation with nonnegative characteristic form on the set Ω ⊂ Rd if, at

each x in Ω̄,

d∑
i,j=1

aij(x)ξiξj ≥ 0 (2.30)

for any vector ξ = (ξ1, . . . , ξd) in Rd.

This class of equations includes second–order elliptic and parabolic PDEs, ultra-

parabolic equations, first–order hyperbolic problems, the Kolmogorov–Fokker–

Planck equations of Brownian motion (cf. [29], for example), the equations of

boundary layer theory in hydrodynamics, and various other degenerate equations.

More generally, according to a well-known result of Hörmander [151], second–order

hypoelliptic operators have nonnegative characteristic form at each point of the

domain Ω, after possible multiplication by −1, so they all into this category.

To supplement (2.29) with suitable boundary conditions, following [151, 126], we

first subdivide the boundary ∂Ω of the computational domain Ω into appropriate

subsets. To this end, we let

∂0Ω =
{

x ∈ ∂Ω :
d∑

i,j=1

aij(x)ninj > 0
}
,

where n = (n1, . . . , nd) denotes the unit outward normal vector to ∂Ω. Loosely

speaking, we may think of ∂0Ω as being the ‘elliptic’ portion of the boundary ∂Ω.

On the ‘hyperbolic’ portion of the boundary ∂Ω\∂0Ω, we define the inflow and

outflow boundaries ∂−Ω and ∂+Ω, respectively, in the standard manner:

∂−Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) < 0} ,

∂+Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) > 0} .

If ∂0Ω is nonempty, we shall further divide it into disjoint subsets ∂ΩD and ∂ΩN

whose union is ∂0Ω, with ∂ΩD nonempty and relatively open in ∂Ω. It is evident
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from these definitions that ∂Ω = ∂ΩD∪∂ΩN∪∂−Ω∪∂+Ω. Assuming the (physically

reasonable) hypothesis that b ·n ≥ 0 on ∂ΩN whenever ∂ΩN is nonempty, we sup-

plement (2.29) with the following, respectively, Dirichlet and Neumann boundary

conditions:

u = gD on ∂ΩD ∪ ∂−Ω, n · (a∇u) = gN on ∂ΩN. (2.31)

Additionally, we assume that the following positivity hypothesis holds: there exists

a constant vector ξ ∈ Rd such that

c(x)− 1

2
∇ · b(x) + b(x) · ξ ≥ γ0 a.e. x ∈ Ω, (2.32)

where γ0 > 0 is a constant. The well–posedness of the boundary value problem

(2.29), (2.31), in the case of homogeneous boundary conditions, has been studied

in [126], cf. also [151].

It is possible to introduce an IP-DGFEM discretization for the general (2.29),

(2.31), thereby, treating numerically this very general class of equations in a stable

fashion.

We consider a mesh Th, which is subordinate to the mixed boundary conditions

(2.31), in the sense that the set of boundary faces FBh of Th can be subdivided as

FBh = FDh ∪FNh ∪F−h ∪F
+
h , covering (almost everywhere) the Dirichlet, Neumann,

inflow and outflow parts of boundary, respectively. We define the IP-DGFEMs:

find uh ∈ V p(Th) such that∫
Ω

(
a∇huh · ∇hvh + (b · ∇huh)vh + cuh vh

)
dx

+
∑

F∈FIh∪F
D
h

∫
F

(
− {{a∇uh}} · [[vh]] + θ{{a∇vh}} · [[uh]] + σ[[uh]] · [[vh]]

)
ds

−
∑

F∈F−h \F
B
h

∫
F

b · nκ buhcv+
h ds−

∑
F∈F−h ∪F

D
h

∫
F

b · nκ u+
h v

+
h ds

=

∫
Ω

f vh dx +
∑
F∈FDh

∫
F

gD(θ∇vh · n + σvh) ds

−
∑

F∈F−h ∪F
D
h

∫
F

b · nκ gDv
+
h ds+

∑
F∈FNh

∫
F

gNvh ds

for all vh ∈ V p(Th).



Chapter 3

Polynomial Approximation and

Inverse Estimates

In this chapter we develop the key mathematical tools needed to study the sta-

bility and convergence properties of hp–version DGFEMs; these estimates will be

exploited in the following chapters for IP-DGFEM discretizations, with the ulti-

mate goal of tackling general second–order PDEs with non-negative characteristic

form. While results of this type are readily available within the literature for

standard element types, e.g., simplices and tensor product elements, cf., for ex-

ample, [24, 25, 69, 147, 167], in this chapter we concentrate on the extension of

these bounds to general meshes consisting of polytopic elements. A key issue in

this setting is that general shape–regular polytopic meshes may, under refinement,

possess elements with (d−k)–dimensional facets, k = 1, 2, . . . , d−1, which degen-

erate as the mesh size tends to zero. Therefore, care must be taken to ensure that

the resulting inverse estimates and polynomial approximation results are sensitive

to this type of degeneracy. The key approach adopted here is to exploit known

results for standard elements, both within an L2– and L∞–setting, and to take the

minimum of the resulting bounds, cf. [61, 59, 58, 7]. In this way, bounds which

are optimal in both the h–version and p–version setting may be deduced, which

directly account for (d− k)–dimensional facet degeneration, k = 1, 2, . . . , d− 1.

Firstly, we begin by introducing the classes of meshes which may be admitted in the

analysis presented below, cf. Section 3.1. Under these assumptions in Sections 3.2

and 3.3 we derive hp–version inverse and approximation results, respectively.

25
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Figure 3.1: Polygonal element κ, κ ∈ Th, and its face–wise neighbours; hang-
ing nodes are highlighted with •.

κ

3.1 Mesh assumptions

We introduce a very general class of computational meshes consisting of polytopic

elements, satisfying some technical assumptions. The notation introduced here

will be employed throughout the rest of this work.

To this end, we let Th be a subdivision of the computational domain Ω ⊂ Rd,

d > 1, into disjoint open polygonal/polyhedral (polytopic) elements κ constructed

in such a manner that the union of the closures of the elements κ ∈ Th forms a

covering of the closure of Ω, i.e., Ω̄ = ∪κ∈Thκ̄. Furthermore, we denote by hκ the

diameter of κ ∈ Th, i.e., hκ := diam(κ).

From a mesh adaptation point of view DGFEMs are advantageous in the sense

that they can naturally handle meshes which contain irregular/hanging nodes.

With this in mind, we allow Th to consist of general elements which may possess

several hanging nodes on their (d− k)–dimensional facets, k = 1, 2, . . . , d− 1, cf.

Figure 3.1. As noted above, the stability and approximation results developed in

this chapter rely on employing results for standard element shapes; in fact, here

we shall rely on hp–version bounds for simplices. For this reason, we introduce

the notion of both element interfaces and element faces; the latter being assumed

to be simplices in Rd−1.

To this end, and to facilitate the presence of hanging nodes, we define the interfaces

of the computational mesh Th to be the intersection of the (d − 1)–dimensional

facets of neighbouring elements. In the two–dimensional setting, i.e., when d = 2,

the interfaces of Th are simply piecewise linear line segments, i.e., they consist of

a set of (d − 1)–dimensional simplices. However, in general for d = 3, (or indeed

d ≥ 3), the interfaces of Th will consist of general polygonal surfaces in R3 (or
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polyhedral surfaces in Rd, respectively). Thereby, we assume that each planar

section of each interface of an element κ ∈ Th may be subdivided into a set of

co-planar triangles ((d − 1)–dimensional simplices). We refer to these (d − 1)–

dimensional simplices, whose union form the interfaces of Fh, as faces .

In the following sections we outline the key assumptions required to be satisfied

by the computational mesh Th in order to derive suitable inverse inequalities and

approximation results for general polytopic elements. Firstly, however, we intro-

duce the following assumption, which guarantees that the number of faces each

element possesses remains bounded under mesh refinement; we shall return to this

issue in Chapter 4 when we consider the coercivity of the IP-DGFEM.

Assumption 3.1.1. For each element κ ∈ Th, we define

Cκ = card
{
F ∈ Fh : F ⊂ ∂κ

}
.

In the following we assume there exists a positive constant CF , independent of the

mesh parameters, such that

max
κ∈Th

Cκ ≤ CF .

3.2 Inverse estimates

One of the key mathematical tools required for the analysis of DGFEMs are inverse

inequalities; results of this type for standard element shapes are well–known the

literature, cf., for example, [167, 183, 185].

Lemma 3.1. Given T is a simplex in Rd, d = 2, 3, we write F ⊂ ∂T to denote

one of its faces. Then, for v ∈ Pp(T ), the following inverse inequalities hold

‖v‖2
L2(F ) ≤ Cinv,1p

2 |F |
|T |
‖v‖2

L2(T ), (3.1)

‖v‖2
L∞(T ) ≤ Cinv,2

p2d

|T |
‖v‖2

L2(T ), (3.2)

‖∇v‖2
L2(T ) ≤ Cinv,3

p4

h2
T

‖v‖2
L2(T ), (3.3)

where Cinv,i, i = 1, 2, 3, are positive constants which are independent of v, p, and

hT . Cinv,3 depends on the shape regularity of T .
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Proof. The detailed proof of (3.1) can be found in [185], and is based on solving

the eigenvalue problem for polynomial functions. We point out that the exact

bound is:

‖v‖2
L2(F ) ≤

(p+ 1)(p+ d)

d

|F |
|T |
‖v‖2

L2(T ). (3.4)

The proof of (3.2) can be found in [167]. For (3.3), the proof can be found in

[167]. Here, we emphasize that constant Cinv,3 depends on the shape regularity of

simplex T .

We shall consider the generalization of (3.1) and (3.3) to general meshes consisting

of polytopic elements. We remark that (3.1) is required to establish stability of

IP-DGFEM approximations of second–order elliptic PDEs, cf. Lemma 4.2, while

(3.3) will be utilized to determine an inf-sup condition in the presence of first–

order transport terms, cf. Theorem 5.5. In order to generalize (3.1) to general

polytopic elements κ, κ ∈ Th, we first introduce the following family of (overlap-

ping) simplices associated with each face F ⊂ ∂κ. Note that this is precisely the

reason why we require that each face F is a d− 1-dimensional simplex.

Definition 3.2. For each element κ in the computational mesh Th, we define the

family Fκ[ of all possible d–dimensional simplices contained in κ and having at

least one face in common with κ. Moreover, we write κF[ to denote a simplex

belonging to Fκ[ which shares with κ ∈ Th the specific face F ⊂ ∂κ.

With the above definition, we may now employ (3.1) directly to deduce the cor-

responding inverse estimate on a general polytopic element. To this end, given

κ ∈ Th and the face F ∈ Fh such that F ⊂ ∂κ, consider κF[ ∈ Fκ[ given in Def-

inition 3.2. Then, for v ∈ Pp(κ), applying (3.1) on κF[ , we immediately deduce

that

‖v‖2
L2(F ) ≤ Cinv,1p

2 |F |
|κF[ |
‖v‖2

L2(κF
[

) ≤ Cinv,1p
2 |F |
|κF[ |
‖v‖2

L2(κ), (3.5)

where Cinv,1 is a positive contant, independent of v, |F |, |κF[ |, and p.

Clearly, the choice of κF[ is not unique; thereby, we may select κF[ to have the

largest possible measure |κF[ |. Hence, on the basis of (3.5), the following inverse

inequality holds:

‖v‖2
L2(F ) ≤ Cinv,1p

2 |F |
supκF

[
⊂κ |κF[ |

‖v‖2
L2(κ). (3.6)
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Figure 3.2: Illustration of the quadrilateral in Example 3.1

F

κF[

We point out that for a fixed element size hκ, the inverse inequality (3.6) is sharp

with respect to the polynomial degree p, cf. [167]. However, for fixed polynomial

order p, (3.6) lacks sharpness with respect to (d− k)–dimensional facet degenera-

tion, k = 1, . . . , d− 1; or more precisely, it is not sensitive to the magnitude of the

face measure relative to the measure of the polytopic element κ. To illustrate this

in a clear manner, we consider the two–dimensional example presented in [61].

Example 3.1. In order to demonstrate the lack of sharpness of the inverse in-

equality (3.6) with respect to one of its lower–dimensional facets degenerating, we

consider the quadrilateral domain κ given by

κ := {(x, y) ∈ R2 : x > 0, y > 0, x+y < 1}∪{(x, y) ∈ R2 : x > 0, y ≤ 0, x−y < ε},

for some ε > 0, cf. Figure 3.2. Given v ∈ Pp(κ), let F := {(x, y) ∈ R2 : x−y = ε},
then exploiting (3.6) gives

‖v‖2
L2(F ) ≤ Cinv,1

√
2p2ε

|κF[ |
‖v‖2

L2(κ), (3.7)

where

κκ[ := {(x, y) ∈ R2 : x > 0, x+ εy < ε, x− y < ε}.

Noting that |κF[ | = ε(1 + ε)/2, inequality (3.7) becomes

‖v‖2
L2(F ) ≤ Cinv,1

2
√

2p2

1 + ε
‖v‖2

L2(κ).

Hence, if we let ε → 0, the left-hand side ‖v‖2
L2(F ) → 0, whereas the right-hand

side 2
√

2p2

1+ε
‖v‖2

L2(κ) → 2
√

2p2‖v‖2
L2(κ) 6= 0 in general.
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The above example clearly indicates that the inverse inequality (3.6) may not be

sharp, with respect to element facets of degenerating measure. In the context of

employing such a bound to deduce the stability of a given DGFEM approximation

of a given second–order elliptic PDE, cf. Section 4.2, will typically lead to an

excessively large penalization term within the underlying scheme; this in turn

may result in ill conditioning of the resulting system of equations.

To rectify this issue, we proceed by deriving an alternative inverse inequality,

under suitable mesh assumptions, based on first noting that since F ⊂ ∂κF[ , by

definition, we have that

‖v‖2
L2(F ) ≤ |F |‖v‖2

L∞(κF
[

). (3.8)

In order to bound the right-hand side of (3.8), we need to introduce some additional

requirements on the elements κ ∈ Th. These are based on the following result which

represents the generalization of Lemma 3.7 in [104].

Lemma 3.3. Let K be a shape-regular simplex. Then, for each v ∈ Pp(K), there

exists a simplex κ̂ ⊂ K, having the same shape as K and faces parallel to the

faces of K, with dist(∂κ̂, ∂K) > Cas diam(K)/p2, where Cas is a positive constant,

independent of v, K and p, such that

‖v‖L2(κ̂) ≥
1

2
‖v‖L2(K).

Proof. For simplicity, we present here the proof for triangles, as the general case

follows analogously, see the proof of Lemma 3.7 in [104] for more details.

We first consider the case of the reference triangle K of vertices (0, 0), (1, 0), and

(0, 1). We consider a splitting of K into 4 disjoint parts as follows, cf. Figure

3.3. We let κ̂ be the triangle having same shape as K, faces parallel to K, and

dist(∂κ̂, ∂K) = δ. Then, we also split K\κ̂ into 3 disjoint parts {κ̂i}3
i=1. For κ̂1,

we have

‖v‖2
L2(κ̂1) =

∫ δ

0

∫ 1
2

0

v2(x, y) dx dy +

∫ 1
2

δ

∫ δ

0

v2(x, y) dx dy

≤
∫ 1

2

0

δ‖v(x, ·)‖2
L∞(0,δ) dx+

∫ 1
2

δ

δ‖v(·, y)‖2
L∞(0,δ) dy

≤
∫ 1

2

0

δ‖v(x, ·)‖2
L∞(0, 1

2
)
dx+

∫ 1
2

0

δ‖v(·, y)‖2
L∞(0, 1

2
)
dy

≤ δCinv,2p
2‖v‖2

L2(A1), (3.9)
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Figure 3.3: Splitting triangle K into κ̂ and {κ̂i}3i=1.

K

κ̂

κ̂1 κ̂2

κ̂3

(0, 0) (1
2
, 0) (1, 0)

(0, 1
2
)

(0, 1)

(1
2
, 1

2
)

where A1 = (0, 1
2
)2, and in the last inequality we have used the one-dimensional

analogue of the inverse inequality (3.2).

For κ̂2, we make the (linear) change of variables (x, y)→ (x̃, ỹ), where x̃ = x + y

and ỹ = y. Then, we have

‖v‖2
L2(κ̂2) =

∫ δ

0

∫ 1

1
2

v2(x̃− ỹ, ỹ) dx̃ dỹ +

∫ 1
2

δ

∫ 1

1−δ
v2(x̃− ỹ, ỹ) dx̃ dỹ

≤
∫ 1

1
2

δ‖v(x̃− ·, ·)‖2
L∞(0,δ) dx̃+

∫ 1
2

δ

δ‖v(· − ỹ, ỹ)‖2
L∞(1−δ,1) dỹ

≤
∫ 1

1
2

δ‖v(x̃− ·, ·)‖2
L∞(0, 1

2
)
dx̃+

∫ 1
2

0

δ‖v(· − ỹ, ỹ)‖2
L∞( 1

2
,1)

dỹ

≤ δCinv,2p
2‖v‖2

L2(A2), (3.10)

where A2 denotes the parallelogram with vertices (1
2
, 0), (1, 0), (1

2
, 1

2
), (0, 1

2
).

For κ̂3, we make the (linear) change of variables (x, y)→ (x̃, ỹ), where x̃ = x and

ỹ = x+ y. Then, completely analogously to the case of κ̂2, we obtain

‖v‖2
L2(κ̂3) ≤ δCinv,2p

2‖v‖2
L2(A3), (3.11)

where A3 denotes the parallelogram with vertices (1
2
, 0), (1

2
, 1

2
), (0, 1), (0, 1

2
). Com-

bining (3.9), (3.10), and (3.11), we deduce

‖v‖2
L2(K\κ̂) ≤ 3δCinv,2p

2‖v‖2
L2(K).
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Figure 3.4: Illustration of quadrilateral in Definition 3.4

K1

K2

κ

Selecting δ = (4Cinv,2p
2)−1, we have ‖v‖2

L2(K\κ̂) ≤
3
4
‖v‖2

L2(K). Using this, we have,

respectively,

‖v‖2
L2(κ̂) = ‖v‖2

L2(K) − ‖v‖2
L2(K\κ̂) ≥ ‖v‖2

L2(K) −
3

4
‖v‖2

L2(K) =
1

4
‖v‖2

L2(K).

For general physical triangles, by using scaling arguments, it is easy to see that

there must exist a triangle κ̂ having same shape as K, faces parallel to K, with

dist(∂κ̂, ∂K) ≥ Cas diam(K)/p2, satisfying the required statement.

Motivated by the result of Lemma 3.3 we introduce the following definition.

Definition 3.4. An element κ ∈ Th is said p-coverable with respect to p ∈ N if

there exists a set of mκ shape-regular simplices Ki, i = 1, . . . ,mκ, mκ ∈ N, such

that

dist(κ, ∂Ki)<Cas
diam(Ki)

p2
, and |Ki| ≥ cas|κ| (3.12)

for all i = 1, . . . ,mκ, where Cas and cas are positive constants, independent of κ

and Th.

Following [61], in Figure 3.4 we present a polygonal element κ in R2 which may

be covered by two triangles K1 and K2, i.e., mκ = 2. We point out that Def-

inition 3.4 admits very general polytopic elements κ ∈ Th which may contain

(d − k)–dimensional facets, k = 1, . . . , d − 1, whose measure is arbitrarily small,

relative to the measure of κ itself. We point out that (3.12) can be considered as

a restriction on the polynomial degree p for the proposed DGFEM over polytopic

elements. Returning to Example 3.1, we note that the quadrilateral element κ

depicted in Figure 3.2 is p-coverable when ε < Cas/p
2 for some constant Cas > 0.
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Equipped with (3.6), (3.8), Lemma 3.3, and Definition 3.4, we are now in a position

to present hp–version inverse inequality for a general polytopic elements which

directly accounts for elemental interface degeneration.

Lemma 3.5. Let κ ∈ Th, F ⊂ ∂κ denote one of its faces. Then, for each v ∈
Pp(κ), the following inverse inequality holds

‖v‖2
L2(F ) ≤ CINV(p, κ, F )p2 |F |

|κ|
‖v‖2

L2(κ), (3.13)

where

CINV(p, κ, F ) :=


Cinv,4 min

{ |κ|
supκF

[
⊂κ |κF[ |

, p2(d−1)
}
, if κ is p-coverable

Cinv,1
|κ|

supκF
[
⊂κ |κF[ |

, otherwise,
(3.14)

and κF[ ∈ Fκ[ as in Definition 3.2. Furthermore, Cinv,1 and Cinv,4 are positive

constants which are independent of |κ|/ supκF
[
⊂κ |κF[ |, |F |, p, and v.

Proof. If κ is not p-coverable, then the above inverse inequality follows immediately

from the bound (3.6). Thereby, we now consider the case when κ is p-coverable;

recalling Definition 3.4, the element κ may be covered by shape-regular simplices

Ki, i = 1, . . . ,mκ. Hence, given κF[ ∈ Fκ[ , F ⊂ ∂κ, cf. Definition 3.2, we note that

κF[ ⊂ κ ⊂ ∪mκi=1Ki,

with |Ki| ≥ cas|κ|, i = 1, . . . ,mκ.

Employing the inverse estimate (3.2) on each Ki, i = 1, . . . ,mκ, together with

Definition 3.4, we deduce that

‖v‖2
L∞(κF

[
) ≤ max

i=1,...,mκ
‖v‖2

L∞(Ki)

≤ Cinv,2p
2d max

i=1,...,mκ

‖v‖2
L2(Ki)

|Ki|

≤ Cinv,2

cas

p2d

|κ|
max

i=1,...,mκ
‖v‖2

L2(Ki)
. (3.15)

We now define κ̂i ⊂ Ki to denote the simplex relative to Ki defined in Lemma 3.3;

hence, exploiting Lemma 3.3 and Definition 3.4, and noting by construction that
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κ̂i ⊂ κ ∩Ki ⊂ Ki and Ki ∩ κ ⊂ κ, for each i = 1, . . . ,mκ, we deduce that

1

4
‖v‖2

L2(Ki)
≤ ‖v‖2

L2(κ̂i)
≤ ‖v‖2

L2(Ki∩κ) ≤ ‖v‖2
L2(κ). (3.16)

Combining (3.15) and (3.16), we arrive at the inequality

‖v‖2
L∞(κF

[
) ≤

4Cinv,2

cas

p2d

|κ|
‖v‖2

L2(κ). (3.17)

Inserting (3.22) into (3.8) gives

‖v‖2
L2(F ) ≤

4Cinv,2

cas

p2d|F |
|κ|
‖v‖2

L2(κ). (3.18)

Taking the minimum between (3.6) and (3.18), we deduce the desired result, with

a positive constant Cinv,4 = max{Cinv,1, 4Cinv,2/cas}.

Remark 3.6. We point that for a fixed mesh size the inverse inequality stated in

(3.13) is sharp with respect to the polynomial degree p; indeed, as p → ∞ the

minimum in (3.14) will be equal to |κ|/ supκF
[
⊂κ |κF[ |. Moreover, (3.13) is sensitive

with respect to the (d − k)–dimensional facet degeneration, k = 1, . . . , d − 1.

Indeed, recalling Example 3.1, we observe that the left– and right–hand sides of

(3.13) degenerate at the same rate as ε→ 0.

We end this section by presenting a further inverse inequality which provides a

bound on the H1(κ)–norm of a polynomial function v, κ ∈ Th, with respect to the

L2(κ)–norm of v, cf. (3.3) for the case of simplices; this result will be required to

deduce the inf-sup estimate derived in Theorem 5.5. In this setting, it is necessary

to assume shape–regularity of the polytopic mesh Th.

Assumption 3.2.1. We assume that the subdivision Th is shape–regular in the

sense of [70], i.e., there exists a positive constant Cr, independent of the mesh

parameters, such that

∀κ ∈ Th,
hκ
ρκ
≤ Cr.

with ρκ denoting the diameter of the largest ball contained in κ.

In addition to Assumption 3.2.1, we also require that each non p-coverable element

also admits a shape–regular simplicial sub-partition; more precisely, we require

that the following assumption holds.
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Assumption 3.2.2. We assume that each polytopic element which is not p-

coverable admits a sub-partition into at most nκ, nκ ∈ N, shape-regular simplices

si, i = 1, 2, . . . , nκ, such that

|si| ≥ cs|κ|, i = 1, . . . , nκ,

where cs is a positive constant, independent of κ and Th.

We note that the above assumptions have been commonly used in other polygonal

discretization methods, see [85, 86, 63].

Lemma 3.7. Given Assumptions 3.2.1 and 3.2.2, for v ∈ Pp(κ), the following

inverse inequality holds

‖∇v‖2
L2(κ) ≤ Cinv,5

p4

h2
κ

‖v‖2
L2(κ), (3.19)

where Cinv,5 is a positive constant, which is independent of hκ and p, but depends

on the shape regularity of the covering of κ if κ is p-coverable, or the sub-partition

of κ if κ is not p-coverable.

Proof. Let us first consider the case when κ is not p-coverable; then recalling

the sub-triangulation introduced in Assumption 3.2.2, together with the inverse

inequality (3.3), we note that

‖∇v‖2
L2(κ) =

nκ∑
i=1

‖∇v‖2
L2(si)

≤ Cinv,3p
4

nκ∑
i=1

h−2
si
‖v‖2

L2(si)
, (3.20)

where hsi = diam(si), i = 1, . . . , nκ. Recalling the shape-regularity of the mesh

Th, cf. Assumption 3.2.1, together with Assumption 3.2.2 and the trivial relation

hdκ ≥ |κ| ≥ ρdκ, we note that the following inequalities hold for i = 1, . . . , nκ:

hdsi ≥ |si| ≥ cs|κ| ≥ csρ
d
κ ≥

cs
Cd

r

hdκ.

Thereby, we deduce that

hsi ≥
c
1/d
s

Cr

hκ, (3.21)

for i = 1, . . . , nκ. Inserting (3.21) into (3.20) we immediately deduce (3.19) with

constant equal to Cinv,3C
2
r /c

2/d
s .
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Let us now consider the case when κ is p-coverable. From Definition 3.4 there

exits a covering of κ by shape–regular simplices Ki, i = 1, . . . ,mκ, such that

|Ki| ≥ cas|κ|, i = 1, . . . ,mκ. By proceeding in an analogous manner to the previous

case, we note that hKi ≥ c
1/d
as hκ/Cr, for i = 1, . . . ,mκ, cf. (3.21) above.

Employing (3.3) and Definition 3.4, we deduce that

‖∇v‖2
L2(κ) ≤

mκ∑
i=1

‖∇v‖2
L2(Ki)

≤ Cinv,3

mκ∑
i=1

p4

h2
Ki

‖v‖2
L2(Ki)

≤ Cinv,3C
2
r

c
2/d
as

p4

h2
κ

mκ∑
i=1

‖v‖2
L2(Ki)

. (3.22)

Recalling (3.16) in the proof of Lemma 3.5, the inequality given in (3.22) may be

bounded as follows:

‖∇v‖2
L2(κ) ≤

4Cinv,3C
2
rmκ

c
2/d
as

p4

h2
κ

‖v‖2
L2(κ),

as required. Thereby, the statement of the lemma holds with

Cinv,5 = max(Cinv,3C
2
r /c

2/d
s , 4Cinv,3C

2
rmκ/c

2/d
as ).

Remark 3.8. We point out that Assumption 3.2.1, which imposes the shape regu-

larity of the mesh Th is only needed for the proof of Lemma 3.7; this result extends

the classical inverse estimate, bounding the H1–seminorm of a polynomial func-

tion with its L2–norm, to polytopic elements. We note, however, that such inverse

estimates depend on the shape regularity of the elements, even in the case of sim-

plicial elements, cf. [183]. Moreover, the Assumption 3.2.1 and Lemma 3.7 are

only used for proving the inf-sup stability in Chapter 5.

3.3 hp–Approximation bounds

For the approximation theory undertaken in this section, we require the existence

of a suitable covering of the mesh by an overlapping set of simplices in Rd. More

precisely, we introduce the following definition.

Definition 3.9. We define the covering T ]h = {K} related to the computational

mesh Th as a set of open shape-regular d–simplices K, such that for each κ ∈ Th,
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κ

K

Figure 3.5: Polygonal element κ, κ ∈ Th, in R2 and the corresponding simplex
K ∈ T ]h , κ ⊂ K.

there exists a K ∈ T ]h , such that κ ⊂ K. Given T ]h , we denote by Ω] the covering

domain given by Ω̄] := ∪K∈T ]h K̄.

For clarity, in Figure 3.5 we show a single polygonal element κ, κ ∈ Th, in R2

and the corresponding simplex K ∈ T ]h such that κ ⊂ K. With the definition

of the simplicial covering T ]h associated with the computational mesh Th given in

Definition 3.9, we make the following key assumption regarding the amount of

allowable overlap between elements in Th and the simplices present in T ]h .

Assumption 3.3.1. We assume that there exists a covering T ]h of Th and a positive

constant OΩ, independent of the mesh parameters, such that

max
κ∈Th

card
{
κ′ ∈ Th : κ′ ∩ K 6= ∅, K ∈ T ]h such that κ ⊂ K

}
≤ OΩ.

As a consequence, we deduce that

hK := diam(K) ≤ Cdiamhκ,

for each pair κ ∈ Th, K ∈ T ]h , with κ ⊂ K, for a constant Cdiam > 0, uniformly

with respect to the mesh size.

Remark 3.10. We point out that Assumption 3.3.1 requires shape–regularity of the

mesh covering T ]h , rather than the corresponding condition being assumed directly

for the computational mesh Th.

In order to derive appropriate hp–version approximation estimates on general poly-

topic elements κ, κ ∈ Th, we note that standard results, cf. [167], for example, are
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applicable by noting that each κ is a subset of a d–simplex belonging to the cover-

ing T ]h and that the local finite element spaces consist of polynomials without the

use of element mappings to a reference/canonical element. With this in mind, we

recall the following standard hp–approximation results (Babuška-Suri operator)

on d–simpleces; see, for example, [24] for the case when d = 2 and [147] when

d = 3. We also refer to [25] for similar results.

Lemma 3.11. Let K ∈ T ]h be a d–simplex, d = 2, 3, of diameter hK. Suppose

further that v|K ∈ H l(K), for some l ≥ 0. Then, for p ∈ N, there exists Πpv ∈
Pp(K), such that

‖v − Πpv‖Hq(K) ≤ CI,1
hs−qK
pl−q
‖v‖Hl(K), l ≥ 0, (3.23)

for 0 ≤ q ≤ l, and

‖v − Πpv‖L∞(K) ≤ CI,2
h
s−d/2
K
pl−d/2

‖v‖Hl(K), l > d/2. (3.24)

Here, s = min{p + 1, l} and CI,1 and CI,2 are positive constants which depend on

the shape-regularity of K, but are independent of v, hK, and p.

In order to generalize Lemma 3.11 to general polytopic elements, we first note that

functions defined on Ω can be extended to the covering domain Ω] based on the

employing the following standard extension operator.

Theorem 3.12. Let Ω be a domain with a Lipschitz boundary. Then there exists

a linear extension operator E : Hs(Ω) 7→ Hs(Rd), s ∈ N0, such that Ev|Ω = v and

‖Ev‖Hs(Rd) ≤ CE‖v‖Hs(Ω),

where CE is a positive constant depending only on s and Ω.

Proof. See [171].

We note that the assumptions stated in Theorem 3.12 on the domain Ω may be

weakened. Indeed, [171] only requires that Ω is a domain with a minimally smooth

boundary; the extension to domains which are simply connected, but may contain

microscales, is treated in [158].

Secondly, we also recall the following multiplicative trace inequality for d–simplex.
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Lemma 3.13. Let T is a d-dimensional simplex and F ⊂ ∂T denote one of its

faces. Then, given v ∈ H1(T ), the following inequality holds:

‖v‖2
L2(F ) ≤ Ct|F |

(
1

|T |
‖v‖2

L2(T ) +
hT
|T |
‖v‖L2(T )‖∇v‖L2(T )

)
, (3.25)

where Ct is a positive constant depends on d but independent of the mesh size hT ,

|T |, |F | and shape regularity .

Proof. The proof of (3.25) follows from Lemma 1.49 in [84], also see [145, 67],

where the relation (3.25) is written to be independent of unknown constants in

the following way.

‖v‖2
L2(F ) ≤

(
|F |
|T |
‖v‖2

L2(T ) +
2|F |hT
d|T |

‖v‖L2(T )‖∇v‖L2(T )

)
, (3.26)

Here, it is easy see positive constant Ct depends only on d.

Given the projection operator Πp defined in Lemma 3.11 and the extension op-

erator E given in Theorem 3.12, we now proceed to define a suitable projection

operator on a general polytopic element κ, κ ∈ Th. To this end, for v ∈ L2(Ω), we

define Π̃pv ∈ Pp(κ) as follows: for each κ ∈ Th and given the associated element

K ∈ T ]h , such that κ ⊂ K, cf. Definition 3.9, we write

Π̃pv := Πp(Ev|K)|κ, (3.27)

where Πp : L2(K) → Pp(K) as defined in Lemma 3.11. With the definition of Π̃p

given in (3.27) we now give the following hp–version approximation bounds.

Lemma 3.14. Let κ ∈ Th, F ⊂ ∂κ denote one of its faces, and K ∈ T ]h the

corresponding simplex such that κ ⊂ K, cf. Definition 3.9. Suppose that v ∈ L2(Ω)

is such that Ev|K ∈ H lκ(K), for some lκ ≥ 0. Then, given Assumption 3.3.1 is

satisfied, the following bounds hold

‖v − Π̃pv‖Hq(κ) ≤ CI,3
hsκ−qκ

plκ−q
‖Ev‖Hlκ (K), lκ ≥ 0, (3.28)

for 0 ≤ q ≤ lκ, and

‖v − Π̃pv‖L2(F ) ≤ CI,4|F |1/2
h
sκ−d/2
κ

plκ−1/2
Cm(p, κ, F )1/2‖Ev‖Hlκ (K), lκ > d/2, (3.29)
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where

Cm(p, κ, F ) = min
{ hdκ

supκF
[
⊂κ |κF[ |

,
1

p1−d

}
,

sκ = min{p + 1, lκ} and CI,3 and CI,4 are positive constants, which depend on the

shape-regularity of K, but are independent of v, hκ, and p.

Proof. To prove (3.28), we note that

‖v − Π̃pv‖Hq(κ) = ‖Ev − Πp(Ev)‖Hq(κ) ≤ ‖Ev − Πp(Ev)‖Hq(K).

Thereby, upon application of (3.23) and noting that Assumption 3.3.1 holds, the

desired bound follows immediately with CI,3 = CI,1C
sκ−q
diam ,

To prove (3.29), we let κF[ ∈ Fκ[ , cf. Definition 3.2; then applying a standard

scaling argument with respect to κF[ , the multiplicative trace inequality (3.25),

and (3.28), we obtain

‖v − Π̃pv‖2
L2(F ) ≤ Ct|F |

( 1

|κF[ |
‖v − Π̃pv‖2

L2(κF
[

)

+hκF
[
|κF[ |−1‖v − Π̃pv‖L2(κF

[
)‖∇(v − Π̃pv)‖L2(κF

[
)

)
≤ CtC

2
I,1C

2sκ−1
diam

|F |
|κF[ |

(
Cdiam

hκ
p

+ hκF
[

)
h2sκ−1
κ

p2lκ−1
‖Ev‖2

Hlκ (K).(3.30)

Given that hκF
[
≤ hκ and κF[ is arbitrary, from (3.30) we conclude that

‖v − Π̃v‖2
L2(F ) ≤ Ct C

2
I,1C

2sκ−1
diam (1 + Cdiam)

|F |
supκF

[
⊂κ |κF[ |

h2sκ
κ

p2lκ−1
‖Ev‖2

Hlκ (K). (3.31)

On the other hand, proceeding as in the proof of Lemma 3.5, we observe that

‖v − Π̃pv‖2
L2(F ) ≤ |F |‖v − Π̃pv‖2

L∞(F ).

Hence, employing the definition of the projection operator Π̃p, together with (3.24)

and Assumption 3.3.1, we deduce that

‖v − Π̃pv‖2
L2(F ) ≤ C2

I,2C
2sκ−d
diam |F |h

2sκ−d
κ

p2lκ−d
‖Ev‖2

Hlκ (K). (3.32)

Thereby, taking the minimum of the two bounds (3.31) and (3.32), the approxi-

mation result stated in (3.29) holds with

CI,4 = max(CI,1C
sκ−1/2
diam

√
Ct(1 + Cdiam), CI,2C

sκ−d/2
diam ).
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Remark 3.15. We note that (3.31) is also valid for the case when lκ ≥ 1; for

simplicity of presentation, we have omitted this level of generality in the statement

of Lemma 3.14.



Chapter 4

DGFEMs for Pure Diffusion

PDEs

On the basis of the hp–version inverse and approximation bounds developed in the

previous chapter, here we study the IP-DGFEM discretization of pure diffusion

problems based on two different type mesh assumptions over polytopic meshes.

4.1 Model problem

Let Ω be a bounded Lipschitz domain in Rd, d ≥ 1, and let ∂Ω signify the union

of its (d − 1)-dimensional open faces. We consider the following PDE: find u as

the solution of

−∇ · (a∇u) = f in Ω, (4.1)

u = gD on ∂ΩD, (4.2)

n · (a∇u) = gN on ∂ΩN. (4.3)

Here, f ∈ L2(Ω), a = {aij}di,j=1 with aij ∈ L∞(Ω) and aij = aji, for i, j = 1, . . . , d,

at each x in Ω̄,

d∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 > 0, (4.4)

with θ a positive constant, for any vector ξ = (ξ1, . . . , ξd) in Rd. For the sake of

simplicity, we divide ∂Ω into two disjoint subsets ∂ΩD and ∂ΩN whose union is

42
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∂Ω, with ∂ΩD is non empty and relatively open in ∂Ω. The well–posedness of the

boundary value problem (4.1), (4.2), (4.3) under the uniform ellipticity condition

(4.4), can be proved by using the Lax-Milgram theorem; see [70, 46].

Before we present the IP DGFEMs for elliptic problems, we will talk about two

mesh assumptions used in this chapter. The first mesh assumption is given in

Assumption 3.1.1, which can be interpreted as each polytopic mesh has uniformly

bounded number of faces without any shape regularity restrictions. This mesh

assumption first appeared in [61] and is already utilised in Chapter 3 for deriving

inverse estimation and polynomial approximation results. We will keep on using

this mesh assumption for DGFEMs to solve elliptic PDEs in Section 4.2 and also

to solve PDEs in non-negative characteristic form in Chapter 5.

On the other hand, the second mesh assumption can be interpreted as each poly-

topic mesh is allowed to have arbitrary number of faces if it satisfies a general

shape regularity assumption. This mesh assumption first appeared in [58]; its pre-

cise definition is given in Section 4.3. In this setting, we can simplify some inverse

estimate and polynomial approximation results from Chapter 3. Then, these new

results will be utilised for DGFEMs to solve elliptic PDEs in Section 4.3 and also

to solve time dependent PDEs in Chapter 6.

4.2 DGFEMs for elliptic PDEs on polytopic

meshes with bounded number of faces

Following Chapter 3, we write Th to denote a subdivision of the computational

domain Ω ⊂ Rd, d > 1, into disjoint open polytopic elements κ constructed such

that Ω̄ = ∪κ∈Thκ̄. Recalling that Fh denotes the set of open (d − 1)–dimensional

element faces associated with the computational mesh Th, employing the notation

introduced in Chapter 2, we write Fh = FIh ∪ FBh , where FIh denotes the set

of all open (d − 1)–dimensional element faces F ∈ Fh that are contained in Ω,

and FBh is the set of element boundary faces, i.e., F ⊂ ∂Ω for F ∈ FBh . For

simplicity, we assume that Th respects the decomposition of ∂Ω in the sense that

each F ∈ FBh belongs to the interior of exactly one of ∂ΩD or ∂ΩN. Hence we

further denote by FDh ,FNh ⊂ FBh as the subsets of boundary faces belonging to

∂ΩD, ∂ΩN, respectively.
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To facilitate hp–adaptivity, to each element κ ∈ Th, we write pκ ≥ 1 to denote the

elementwise polynomial degree, and collect the pκ in the vector p := (pκ : κ ∈ Th).
With this notation, we define the finite element space Sp

Th with respect to Th and

p by

Sp
Th := {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ), κ ∈ Th},

where, we recall that Pp(κ) denotes the space of polynomials of total degree p on κ.

We stress that, by construction, the local elemental polynomial spaces employed

within the definition of Sp
Th are defined in the physical space, without the need

to map from a given reference or canonical frame, as is typically necessary for

classical finite element methods.

Following the derivation presented in Section 2.3, we introduce the following (sym-

metric) IP-DGFEM bilinear form

Bd(uh, vh) =
∑
κ∈Th

∫
κ

a∇uh · ∇vh dx

−
∑

F∈FIh∪F
D
h

∫
F

({{a∇uh}} · [[vh]] + {{a∇vh}} · [[uh]]− σ[[uh]] · [[vh]]) ds,

and linear functional

`(vh) =
∑
κ∈Th

∫
κ

fvh dx−
∑
F∈FDh

∫
F

gD(a∇vh · n− σvh) ds+
∑
F∈FNh

∫
F

gNvh ds,

for uh, vh ∈ Sp
Th . The corresponding DGFEM reads: find uh ∈ Sp

Th such that

Bd(uh, vh) = `(vh), (4.5)

for all vh ∈ Sp
Th .

The well-posedness and stability properties of the above formulation depend on

the choice of the discontinuity penalization function σ. These are analysed in

the next section based on the new hp–version inverse estimates presented in the

previous chapter, whereby we anticipate that the choice of σ must be sensitive to

the size of each face relative to that of the neighbouring elements.
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4.2.1 The well-posedness of the IP-DGFEMs

To focus on the treatment of general polytopic subdivisions, we consider here the

special case of piecewise constant diffusion tensors, i.e.,

a ∈ [V 0(Th)]d×dsym. (4.6)

For the case of general positive semidefinite diffusion tensors, see [105] and [60].

We can consider
√
a as the unique (positive definite) square-root of the symmetric

matrix a and define āκ := |
√
a|22|κ, with | · |2 denoting the matrix l2–norm.

Definition 4.1. Assume that (4.6) holds. The discontinuity penalization function

σ : Fh → R is given by

σ(x) =


Cσ max

κ∈{κi,κj}

{
CINV(pκ, κ, F )

āκp
2
κ|F |
|κ|

}
, F ∈ FIh , F = ∂κi ∩ ∂κj,

CσCINV(pκ, κ, F )
āκp

2
κ|F |
|κ|

, F ∈ FDh , F ⊂ ∂κ.

(4.7)

Here, CINV is the constant of the inverse inequality of Lemma 3.5 and Cσ > 0 is a

constant independent of pκ, |F |, and of |κ|.

In accordance with the mesh settings laid out in Section 3.1, the value of the dis-

continuity penalization function σ on a given elemental interface is independently

determined on each constituent (d − 1)–dimensional simplicial mesh face. This

way, the penalization function is independent of any local h or p quasi-uniformity

or hanging nodes regularity assumption. In particular, for standard simplicial and

tensor product meshes with hanging nodes, the independent piecewise constant

definition of the penalization function allows for irregular hanging nodes with ar-

bitrary positioning within the parent interface. This is in contrast with standard

IP-DGFEM settings, whereby irregular hanging nodes are not permitted as the

penalization function definition relies on the face and parent interface to be of size

comparable to that of the element [125].

A first issue encountered when analysing (4.5) is that this formulation cannot be

extended to functions inH1(Ω). Indeed functions in L2(Ω) do not have well-defined

traces on Fh and hence the terms {{∇v}} are not well defined for v ∈ H1(Ω). Hence

we are not allowed to test in (4.5) with the analytical solution of (4.1) unless we

assume that this is regular enough. This issue can be overcome by introducing

suitable extensions of the bilinear form Bd(·, ·) and linear functional `(·).
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Let Π2 : [L2(Ω)]d → [Sp
Th ]d denote the orthogonal L2-projection onto the finite

element space [Sp
Th ]d. Following [152, 105], we define the bilinear form

B̃d(w, v) :=
∑
κ∈Th

∫
κ

a∇u · ∇v dx

−
∑

F∈FIh∪F
D
h

∫
F

({{aΠ2(∇u)}} · [[v]] + {{aΠ2(∇v)}} · [[uh]]− σ[[u]] · [[v]] ds) ,

(4.8)

and linear functional

˜̀(v) =
∑
κ∈Th

∫
κ

fv dx−
∑
F∈FDh

∫
F

gD(aΠ2(∇v) · n− σv) ds+
∑
F∈FNh

∫
F

gNvh ds,

for all v, w ∈ S := H1(Ω)+Sp
Th . Then the DGFEM formulation (4.5) is equivalent

to: find uh ∈ Sp
Th such that

B̃d(uh, vh) = ˜̀(vh), (4.9)

for all vh ∈ Sp
Th . This discrete problem is inconsistent with (4.1), hence Galerkin

orthogonality does not hold. On the other hand, weaker regularity assumptions on

the analytical solution are required allowing us to prove continuity and coercivity

of the bilinear form B̃d(·, ·) on the whole of S.

We analyse the DGFEM method in the associated energy norm

|‖v|‖2
DG :=

∑
κ∈Th

‖
√
a∇v‖2

L2(κ) +
∑

F∈FIh∪F
D
h

∫
F

σ|[[v]]|2 ds. (4.10)

Here and in following chapters we shall often make use of the arithmetic–geometric

mean inequality ab ≤ a2ε+ b2

4ε
, holding for any a, b ∈ R and ε > 0.

Lemma 4.2. Under Assumption 3.1.1 and with σ as in Definition 4.1 with Cσ

large enough, the bilinear form given by (4.8) is coercive and continuous, that is

B̃d(v, v) ≥ Ccoer|‖v|‖2
DG for all v ∈ S, (4.11)

and

B̃d(w, v) ≤ Ccont|‖w|‖DG |‖v|‖DG for all w, v ∈ S, (4.12)
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where Ccoer and Ccont are positive constants, independent of the mesh size hκ and

polynomial order pκ.

Proof. The proof follows standard arguments [84], by employing the inverse in-

equality Lemma 3.5 in place of the standard inverse inequality for simplexes. From

the definition of B̃d, for any v ∈ S, we have

B̃d(v, v) = |‖v|‖2
DG − 2

∑
F∈FIh∪F

D
h

∫
F

{{aΠ2(∇v)}} · [[v]] ds, (4.13)

and it remains to bound the second term on the right-hand side. For F ∈ FIh , the

Cauchy–Schwarz inequality and arithmetic–geometric mean inequality imply∫
F

{{aΠ2(∇v)}} · [[v]] ds ≤ 1

2

(
‖ 1√

σ
aΠ2(∇v+)‖L2(F ) + ‖ 1√

σ
aΠ2(∇v−)‖L2(F )

)
×‖
√
σ[[v]]‖L2(F )

≤ ε

(
‖ 1√

σ
aΠ2(∇v+)‖2

L2(F ) + ‖ 1√
σ
aΠ2(∇v−)‖2

L2(F )

)
+

1

8ε
‖
√
σ[[v]]‖2

L2(F ).

Using the inverse inequality Lemma 3.5, the definition of the interior penalty

parameter σ, the assumption of diffusion tensor in (4.6), and the L2-stability of

the projector Π2, we conclude that∫
F

{{aΠ2(∇v)}} · [[v]] ds ≤ ε

(
CINV(pκ+ , κ

+, F )
āκ+p

2
κ+ |F |
|κ+|

‖ 1√
σ

√
aΠ2(∇v)‖2

L2(κ+)

+CINV(pκ− , κ
−, F )

āκ−p
2
κ−|F |
|κ−|

‖ 1√
σ

√
aΠ2(∇v)‖2

L2(κ−)

)
+

1

8ε
‖
√
σ[[v]]‖2

L2(F )

≤ ε

Cσ

(
‖
√
a∇v‖2

L2(κ+) + ‖
√
a∇v‖2

L2(κ−)

)
+

1

8ε
‖
√
σ[[v]]‖2

L2(F ). (4.14)

Similarly, for F ∈ FDh , we have that∫
F

{{aΠ2(∇v)}} · [[v]] ds ≤ ε

Cσ
‖
√
a∇v‖2

L2(κ+) +
1

4ε
‖
√
σ[[v]]‖2

L2(F ). (4.15)
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Inserting (4.27) and (4.15) into (4.13) immediately gives

B̃d(v, v) ≥
(

1− 2CF
Cσ

ε

)∑
κ∈Th

‖
√
a∇v‖2

L2(κ) +

(
1− 1

2ε

) ∑
F∈FIh∪F

D
h

‖
√
σ[[v]]‖2

L2(F ),

as the number of elemental faces is uniformly bounded by Assumption 3.1.1. Hence

the bilinear form B̃d(·, ·) is coercive over S × S if Cσ > 2CF ε for some ε > 1/2.

The continuity of B̃d(·, ·) easily follows by applying the Cauchy-Schwarz inequality

and then bounding the face terms by repeating the arguments leading to (4.27).

Remark 4.3. The above analysis extends well known results for standard meshes

to meshes made of general polytopes. It is based on exploiting the new inverse

estimate of Lemma 3.5 to control the face terms and on requiring that the number

of elemental faces is uniformly bounded, cf. Assumption 3.1.1, when summing

up the contributions of all faces. This approach has the crucial advantage of

permitting very general polytopic meshes as no mesh elements shape regularity is

directly assumed.

Remark 4.4. It is possible to avoid the composition of a bound on the number

of faces by requiring, instead, that the mesh satisfies a certain shape regularity

assumption, as we shall show in Section 4.3. We note that the present approach

and the one described below may be easily combined to produce stable DGFEM

discretisations on very general mesh settings.

4.2.2 A priori error analysis

The following abstract error bound is an instance of Strang’s second lemma [172,

70], whereby the error is controlled by the sum of a quasi-optimal approximation

term and a residual term.

Lemma 4.5. Let u ∈ H1(Ω) be the weak solution of (4.3) and uh ∈ Sp
Th be the

DGFEM solution given by (4.5). Under the hypotheses of Lemma 4.2, it holds

|‖u− uh|‖DG ≤
(

1 +
Ccont

Ccoer

)
inf

vh∈Sp
Th

|‖u− vh|‖DG +
1

Ccoer

sup
wh∈Sp

Th

|B̃d(u,wh)− ˜̀(u,wh)|
|‖wh|‖DG

.

Proof. By the triangle inequality,

|‖u− uh|‖DG ≤ |‖u− vh|‖DG + |‖vh − uh|‖DG,
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for all vh ∈ Sp
Th , and it remains to bound |‖vh − uh|‖DG. To this end, we use the

coercivity on Sp
Th and continuity on S of B̃d(·, ·), to obtain

|‖uh − vh|‖2
DG ≤ 1

Ccoer

B̃d(vh − uh, vh − uh)

=
1

Ccoer

(B̃d(vh − u, uh − vh) + B̃d(u− uh, uh − vh))

≤ Ccont

Ccoer

|‖vh − u|‖DG|‖uh − vh|‖DG

+
1

Ccoer

(B̃d(u, uh − vh)− ˜̀(uh − vh)),

and the required bound easily follows.

The abstract error bound of Lemma 4.5 is used to derive convergence results

for the method at hand. These depends on the availability of the hp–version

approximation estimates of Lemma 3.11. Assume that the mesh Th admits a

shape regular covering T ]h = {K}, cf. Definition 3.9, satisfying Assumption 3.3.1,

and further assume that u|κ ∈ H lκ(κ), for some lκ > 1 + d/2, for each κ ∈ Th, so

that, by Theorem 3.12, Eu|K ∈ H lκ(K), where K ∈ T ]h with κ ⊂ K. Then, the

approximation estimates of Lemma 3.14 together with Assumption 3.1.1 give

inf
v∈Sp

Th

|‖u− v|‖2
DG ≤ |‖u− Π̃pκu|‖2

DG

≤
∑
κ∈Th

‖√a∇(u− Π̃pκu)‖2
L2(κ) + 2

∑
F⊂∂κ\FNh

σ‖(u− Π̃pκu)|κ‖2
F


≤ C

∑
κ∈Th

h
2(sκ−1)
κ

p
2(lκ−1)
κ

āκ +
h−d+2
κ

pκ

∑
F⊂∂κ\FNh

Cm(pκ, κ, F )σ|F |

 ‖Eu‖2
Hlκ (K), (4.16)

with sκ = min{pκ + 1, lκ}.

Similarly, we can bound the residual term as follows. First note that integration

by parts elementwise together with the identity (2.26) and the fact that u is the

solution of (4.1), gives∣∣∣B̃d(u,wh)− ˜̀(u,wh)
∣∣∣ =

∣∣∣ ∑
F∈FIh∪F

D
h

∫
F

{{a(∇u−Π2(∇u))}} · [[wh]] ds
∣∣∣

≤
( ∑
F∈FIh∪F

D
h

∫
F

σ−1|{{a(∇u−Π2(∇u))}}|2 ds
)1/2

|‖wh|‖DG.
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Let Π̃ denote the vector-valued hp–projection operator obtained by applying com-

ponentwise the operator Π̃pκ given in (3.27). Adding and subtracting Π̃(∇u), we

obtain

∑
F∈FIh∪F

D
h

∫
F

σ−1|{{a(∇u−Π2(∇u))}}|2 ds

≤
∑

F∈FIh∪F
D
h

∫
F

2σ−1(|{{a(∇u− Π̃(∇u))}}|2 + |{{a(Π2(Π̃(∇u)−∇u))}}|2) ds.

≡ I + II.

Using, as above, the approximation estimate (3.29) yields:

I ≤ C
∑
κ∈Th

ā2
κ

h
2(sκ−1)
κ

p
2(lκ−1)
κ

h−dκ
p−1
κ

∑
F⊂∂κ\FNh

Cm(pκ, κ, F )σ−1|F |‖Eu‖2
Hlκ (K).

Similarly, the inverse inequality (3.13), the L2-stability of the projector Π2, and

the approximation estimate (3.28), yield:

II ≤ C
∑
κ∈Th

ā2
κ

h
2(sκ−1)
κ

p
2(lκ−1)
κ

|κ|−1

p−2
κ

 ∑
F⊂∂κ\FNh

CINV(pκ, κ, F )σ−1|F |

 ‖Eu‖2
Hlκ (K).

Combining the above developments we arrive to the following bound of the residual

term:

sup
wh∈Sp

Th

|B̃d(u,wh)− ˜̀(u,wh)|
|‖wh|‖DG

≤
(

I + II
)1/2

≤ C

(∑
κ∈Th

ā2
κ

h
2(sκ−1)
κ

p
2(lκ−1)
κ

×

 ∑
F⊂∂κ\FNh

(
Cm(pκ, κ, F )

h−dκ
p−1
κ

+ CINV(pκ, κ, F )
|κ|−1

p−2
κ

)
σ−1|F |


× ‖Eu‖2

Hlκ (K)

)1/2

. (4.17)

Now the approximation bound (4.16) and residual bound (4.17) yield the following

DGFEM convergence result.

Theorem 4.6. Let Th = {κ} be a subdivision of Ω ⊂ Rd, d = 2, 3, consisting of

general polytopic elements satisfying Assumption 3.1.1 and Assumption 3.3.1 with

T ]h = {K} an associated covering of Th consisting of shape-regular d–simplices, cf.
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Definition 3.9. Let uh ∈ Sp
Th, with pκ ≥ 1 for all κ ∈ Th, be the corresponding

DGFEM solution defined by (4.5) with the discontinuity-penalization functions

given by (4.7). If the exact solution u ∈ H1(Ω) to (4.1)–(4.3) satisfies u|κ ∈
H lκ(κ), lκ > 1 + d/2, for each κ ∈ Th, such that Eu|K ∈ H lκ(K), where K ∈ T ]h
with κ ⊂ K, then

|‖u− uh|‖2
DG ≤ C

∑
κ∈Th

h
2(sκ−1)
κ

p
2(lκ−1)
κ

(āκ + Gκ(F,CINV, Cm, pκ)) ‖Eu‖2
Hlκ (K).

Here, sκ = min{pκ + 1, lκ},

Gκ(F,CINV, Cm, pκ) = ā2
κpκh

−d
κ

∑
F⊂∂κ\FNh

Cm(pκ, κ, F )σ−1|F |

+ā2
κp

2
κ|κ|−1

∑
F⊂∂κ\FNh

CINV(pκ, κ, F )σ−1|F |+ h−d+2
κ p−1

κ

∑
F⊂∂κ\FNh

Cm(pκ, κ, F )σ|F |,

and C is a positive constant independent of the discretization parameters.

Remark 4.7. The above result generalises well-known a priori bounds for IP-

DGFEMs defined on standard element domains [125, 156] in two ways. Firstly,

meshes comprising polytopic elements are allowed. Secondly, elemental faces are

allowed to degenerate. For d = 3, this also implies that positive measure inter-

faces may have degenerating (d− 2)–dimensional edges. In turns, this freedom is

relevant to standard (simplicial/hexahedral) meshes with hanging nodes in that

no regularity assumptions of the hanging nodes is required. If, on the other hand,

the diameter of the faces of each element κ ∈ Th is of comparable size to the

diameter of the corresponding element, then the a priori error bound of Theorem

4.6 reduces to

|‖u− uh|‖DG ≤ C
hs−1

pl−
3
2

‖u‖Hl(Ω).

This coincides with the analogous result derived in [125] for standard meshes

consisting of simplices or tensor-product elements. It is easy to check that the

above a priori error bound is optimal in h and suboptimal in p by half an order.

Finally, we point out that a priori bounds depend on the mesh assumption 3.1.1,

which allows shape irregular polytopic meshes but meshes should have uniformly

bounded number of faces.
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Figure 4.1: Polygons with a lot of tiny faces (left); star shaped polygon (right).

4.3 DGFEMs for elliptic PDEs on polytopic

meshes with arbitrary number of faces

We recall the second mesh assumption.

Assumption 4.3.1 (Unbounded number of faces). For any κ ∈ Th, there exists

a set of non-overlapping d-dimensional simplices {κF[ }F⊂∂κ ⊂ Fκ[ contained in κ,

such that for all F ⊂ ∂κ, and

hκ ≤ Cs
d|κF[ |
|F |

, (4.18)

with Cs > 0 constant independent of the discretization parameters, the number of

faces per element, and the face measures.

In Figure 4.1, we exemplify two different polygons satisfying the above mesh regu-

larity assumption. We note that the assumption does not give any restrictions on

neither the number nor the measure of the elemental faces. Indeed, shape irregu-

lar simplices κF[ , with base |F | of small size compared to the corresponding height

d|κF[ |/|F |, are allowed: the height, however, has to be comparable to hκ; cf., the

left polygon on Figure 4.1. Further, we note that the union of the simplices κF[

does not need to cover the whole element κ, as in general it is sufficient to assume

that

∪F⊂∂κ κ̄F[ ⊆ κ̄; (4.19)

cf., the right polygon on Figure 4.1.
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Remark 4.8. Meshes made of polytopes which are finite union of polytopes with

the latter being uniformly star-shaped with respect to the largest inscribed circle

will satisfy Assumption 4.3.1.

We point out that above mesh assumptions are can be viewed as a generalization

of shape regularity assumption over polytopic meshes. It is easy to see that mesh

assumption 4.3.1 is equivalent to the classical shape regularity assumptions in

the sense of [70] for simplical meshes or tensor product meshes, if we take ρκ =

minF⊂∂κ d|κF[ |/|F |, where ρκ denotes radius of largest inscribed ball.

We will simplify the inverse estimate and polynomial approximation results for

trace term based on Assumption 4.3.1.

Lemma 4.9. Let κ ∈ Th, and Assumption 4.3.1 holds. Then, for each v ∈ Pp(κ),

the following inverse inequality holds

‖v‖2
L2(∂κ) ≤ Cs

(p+ 1)(p+ d)

hκ
‖v‖2

L2(κ). (4.20)

Constant Cs is defined in 4.18, independent of |κ|/ supκF
[
⊂κ |κF[ |, |F |, p, and v.

Proof. The proof is straightforward applying inverse estimate (3.4) over each sim-

plex κF[ inside the κ, combined with relation (4.19).

‖v‖2
L2(∂κ) ≤

∑
F⊂∂κ

(p+ 1)(p+ d)

d

|F |
|κF[ |
‖v‖2

L2(κF
[

)

=
∑
F⊂∂κ

Cs
(p+ 1)(p+ d)

hκ
‖v‖2

L2(κF
[

) ≤ Cs
(p+ 1)(p+ d)

hκ
‖v‖2

L2(κ).

Here, κF[ ∈ Fκ[ is defined in Definition 3.2, the proof is complete.

Lemma 4.10. Let κ ∈ Th, F ⊂ ∂κ denote one of its faces, and K ∈ T ]h the

corresponding simplex such that κ ⊂ K, cf. Definition 3.9. Suppose that v ∈ L2(Ω)

is such that Ev|K ∈ H lκ(K), for some lκ ≥ 0. Then, given Assumption 4.3.1 is

satisfied, the following bound holds

‖v − Π̃pv‖L2(∂k) ≤ CI,5
h
sκ−1/2
κ

plκ−1/2
‖Ev‖Hlκ (K), lκ > 1/2, (4.21)

where sκ = min{p+1, lκ} and CI,5 are positive constants, which depend on constant

Cs defined in 4.18 and shape-regularity of K, but are independent of v, hκ, p, and

number of faces per element.
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Proof. By employing Assumption 4.3.1, relation (4.18), (4.19), the multiplicative

trace inequality 3.13 over simplices, arithmetic mean inequality, and bounds (3.28),

we have

‖v − Π̃pv‖2
L2(∂κ) ≤

∑
F⊂∂κ

Ct|F |
( 1

|κF[ |
‖v − Π̃pv‖2

L2(κF
[

)

+hκF
[
|κF[ |−1‖v − Π̃pv‖L2(κF

[
)‖∇(v − Π̃pv)‖L2(κF

[
)

)
≤ CtCsd

∑
F⊂∂κ

( 1

hκ
‖v − Π̃pv‖2

L2(κF
[

)

+‖v − Π̃pv‖L2(κF
[

)‖∇(v − Π̃pv)‖L2(κF
[

)

)
≤ CtCsd

∑
F⊂∂κ

((p+ 1)

hκ
‖v − Π̃pv‖2

L2(κF
[

)

+
hk
4p
‖∇(v − Π̃pv)‖2

L2(κF
[

)

)
≤ CtCsd

((p+ 1)

hκ
‖v − Π̃pv‖2

L2(κ) +
hk
4p
‖∇(v − Π̃pv)‖2

L2(κ)

)
≤ CtCsdC

2
I,1C

2sκ−1
diam

h2sκ−1
κ

p2lκ−1
‖Ev‖2

Hlκ (K). (4.22)

Here, we have

CI,5 = CI,1C
sκ−1/2
diam

√
CtCsd.

Remark 4.11. We point out that the above two bounds are both independent of

number of faces per element and measure of faces. The idea behind the above two

bounds are simple. We are not applying the inverse estimate and approximation

results from each individual faces F to the whole element κ, but applying those

results from element boundary ∂κ to the element κ. With this approach, we do

not need to consider the L∞–norm bounds for inverse estimate and approximation

result. So if the mesh κ satisfies Assumption 4.3.1, each individual faces F is

allowed to have arbitrarily small measure and each element κ is allowed to have

arbitrary number of faces.

4.3.1 The stability and a priori error bound of IP DGFEM

Based on the above new mesh Assumption 4.3.1, we will derive the coercivity and

continuity of proposed IP DGFEM. In this section, we will assume the diffusion

tensor a is a general function which satisfies the uniform ellipticity condition (4.4).
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Next, we shall often make use of the arithmetic–geometric mean inequality, to-

gether with inverse estimate (4.20) and relation (4.4)

Lemma 4.12. Under Assumption 4.3.1 and with the discontinuity penalization

function σ : Fh → R is given by

σ(x) =


Cσ max

κ∈{κi,κj}

{ ā2
κ(pκ + 1)(pκ + d)

hκ

}
, F ∈ FIh , F = ∂κi ∩ ∂κj,

Cσ
ā2
κ(pκ + 1)(pκ + d)

hκ
, F ∈ FDh , F ⊂ ∂κ,

(4.23)

with Cσ > 0 sufficiently large, independent of discretization parameters and the

number of faces per element. The bilinear form given by (4.8) is coercive and

continuous, that is

B̃d(v, v) ≥ Ccoer|‖v|‖2
DG for all v ∈ S, (4.24)

and

B̃d(w, v) ≤ Ccont|‖w|‖DG |‖v|‖DG for all w, v ∈ S, (4.25)

where Ccoer and Ccont are positive constants, mesh size hκ, polynomial order pκ,

the number of faces per element.

Proof. By employing the inverse inequality Lemma 4.9 and recalling the definition

of B̃d, for any v ∈ S, we have

B̃d(v, v) = |‖v|‖2
DG − 2

∑
F∈FIh∪F

D
h

∫
F

{{aΠ2(∇v)}} · [[v]] ds, (4.26)

and it remains to bound the second term on the right-hand side. For F ∈ FIh , the

Cauchy–Schwarz inequality and arithmetic–geometric mean inequality imply∫
F

{{aΠ2(∇v)}} · [[v]] ds ≤ 1

2

(
‖ 1√

σ
aΠ2(∇v+)‖L2(F ) + ‖ 1√

σ
aΠ2(∇v−)‖L2(F )

)
×‖
√
σ[[v]]‖L2(F )

≤ ε

(
‖ 1√

σ
aΠ2(∇v+)‖2

L2(F ) + ‖ 1√
σ
aΠ2(∇v−)‖2

L2(F )

)
+

1

8ε
‖
√
σ[[v]]‖2

L2(F ).
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Similarly, for F ∈ FDh , we have that∫
F

{{aΠ2(∇v)}} · [[v]] ds ≤ ε‖ 1√
σ
aΠ2(∇v+)‖2

L2(F ) +
1

4ε
‖
√
σ[[v]]‖2

L2(F ).

Using the inverse inequality Lemma 4.9, the definition of the interior penalty

parameter σ, the uniform ellipticity condition (4.4) of diffusion tensor, and the

L2-stability of the projector Π2, we conclude that

∑
F∈FIh∪F

D
h

∫
F

{{aΠ2(∇v)}} · [[v]] ds

≤ ε
∑
κ∈Th

∑
F⊂∂κ

‖ 1√
σ
aΠ2(∇v)‖2

L2(F ) +
1

4ε

∑
F∈FIh∪F

D
h

‖
√
σ[[v]]‖2

L2(F )

≤ ε
∑
κ∈Th

∑
F⊂∂κ

σ−1ā2
κ

(pκ + 1)(pκ + d)

d

|F |
|κF[ |
‖Π2(∇v)‖2

L2(κF
[

)

+
1

4ε

∑
F∈FIh∪F

D
h

‖
√
σ[[v]]‖2

L2(F )

≤ εCs
θCσ

∑
κ∈Th

‖
√
a∇v‖2

L2(κ) +
1

4ε
‖
√
σ[[v]]‖2

L2(F ). (4.27)

Inserting (4.27) into (4.26) immediately gives

B̃d(v, v) ≥
(

1− 2εCs
θCσ

)∑
κ∈Th

‖
√
a∇v‖2

L2(κ) +

(
1− 1

2ε

) ∑
F∈FIh∪F

D
h

‖
√
σ[[v]]‖2

L2(F ),

as generalized shape regularity constant Cs is uniformly bounded by Assump-

tion 4.3.1. Hence the bilinear form B̃d(·, ·) is coercive over S × S if Cσ > 2Csε/θ

for some ε > 1/2. Cσ depends on the constant Cs, but is independent of number

of faces per element.

The continuity of B̃d(·, ·) easily follows by applying the Cauchy-Schwarz inequality

and then bounding the face terms by repeating the arguments leading to (4.27).

Remark 4.13. The coercivity constant may depend on the shape regularity con-

stant Cs and on the uniform ellipticity constant θ. To avoid the dependence on

the latter, it is possible to combine the present developments with the DGFEMs

proposed in [105]; we refrain from doing so here, in the interest of simplicity of

the presentation.



DGFEMs for Elliptic PDEs 57

Remark 4.14. We point out that the stability of SIP-DGFEM may be lost when

the diffusion tensor a has a high contrast. In that case, we should modify our

method by using diffusivity-dependent weighted averages, see [95, 87] for details.

Finally, we will derive the a priori error bound under the Assumption 4.3.1 for

the proposed IP DGFEM in |‖·|‖DG. Here, we emphasize that only the error

analysis related to trace term will be different in this section compared to that

in Section 4.2. We detail here a different treatment of the trace terms to take

advantages of the different mesh assumption used here. By employing relation

(4.21) in approximation Lemma 4.10, we have

∑
F∈FIh∪F

D
h

∫
F

σ[[v − Π̃pv]]2 ds =
∑

F∈FIh∪F
D
h

σ‖[[v − Π̃pv]]‖2
L2(F )

≤ 2
∑
κ∈Th

∑
F⊂∂κ\FNh

σ‖v − Π̃pv‖2
L2(F ) ≤ 2

∑
κ∈Th

( max
F⊂∂κ\FNh

σ)‖v − Π̃pv‖2
L2(∂κ)

≤ C
∑
κ∈Th

( max
F⊂∂κ\FNh

σ)
h2sκ−1
κ

p2lκ−1
‖Ev‖2

Hlκ (K), (4.28)

where the constant C > 0 is independent of number of faces per elements. Bounds

for remaining trace and inconsistency terms can be derived in a completely anal-

ogous fashion. Then, we have the following DGFEM convergence result.

Theorem 4.15. Let Th = {κ} be a subdivision of Ω ⊂ Rd, d = 2, 3, consisting of

general polytopic elements satisfying Assumption 4.3.1 and Assumption 3.3.1 with

T ]h = {K} an associated covering of Th consisting of shape-regular d–simplexes,

cf. Definition 3.9. Let uh ∈ Sp
Th, with pκ ≥ 1 for all κ ∈ Th, be the corresponding

DGFEM solution defined by (4.5) with the discontinuity-penalization functions

given by (4.23). If the exact solution u ∈ H1(Ω) to (4.1)–(4.3) satisfies u|κ ∈
H lκ(κ), lκ > 3/2, for each κ ∈ Th, such that Eu|K ∈ H lκ(K), where K ∈ T ]h with

κ ⊂ K, then

|‖u− uh|‖2
DG ≤ C

∑
κ∈Th

h
2(sκ−1)
κ

p
2(lκ−1)
κ

(āκ + Gκ(hκ, pκ)) ‖Eu‖2
Hlκ (K),

where, sκ = min{pκ + 1, lκ},

Gκ(hκ, pκ) = ā2
κpκh

−1
κ max

F⊂∂κ\FNh
σ−1 + ā2

κp
2
κh
−1 max

F⊂∂κ\FNh
σ−1

+ p−1
κ hκ max

F⊂∂κ\FNh
σ,
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and the positive constant C is independent of the discretization parameters, number

of faces per element and u.

Remark 4.16. The above a priori error bound holds without any assumptions

on the relative size of the spatial faces F , F ⊂ ∂κ, and number of faces of a

given polytopic element κ ∈ Th, i.e., elements with arbitrarily small faces and/or

arbitrary number of faces are permitted, as long as they satisfy Assumption 4.3.1.

We will extend the above results in Chapter 6 for analysing the IP DGFEM for

parabolic time dependent problems.

4.4 Numerical examples

We present a series of computational examples to numerically investigate the

asymptotic convergence behaviour of the proposed IP DGFEM on general meshes

consisting of polygonal elements. Throughout this section the IP DGFEM solu-

tion uh is computed with the constant Cσ = 10 appearing in the interior penalty

parameter.

4.4.1 Example 1

In this first example, we investigate the computational efficiency of employing

the IP DGFEM on standard tensor-product elements (quadrilaterals in 2D and

hexahedra in 3D) with local polynomial bases consisting of either Pp or Qp poly-

nomials; in the following figures, these schemes will be denoted by DGFEM(P)

and DGFEM(Q), respectively. Moreover, we shall compare both IP DGFEM ap-

proaches with the standard continuous Galerkin finite element method with Qp
basis, denoted by FEM(Q).

Firstly, we consider the following two–dimensional Poisson problem: let Ω = (0, 1)2

and select f = 2π2 sin(πx) sin(πy), so that the analytical solution to (4.1) is given

by u = sin(πx) sin(πy). In Figure 4.2 we investigate the convergence behaviour

of the three schemes, namely DGFEM(P), DGFEM(Q), and FEM(Q), under p–

refinement for fixed h. Here, uniform square meshes consisting of 16, 64, and 256

elements are employed; for each mesh, we plot both the L2(Ω)–norm and H1(Ω)–

seminorm error against the square root of the number of degrees of freedom in

the underlying finite element space, as the polynomial degree p is uniformly in-

creased. Here, we clearly observe exponential convergence of all three methods, in
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Figure 4.2: Example 1. Comparison between IP DGFEM exploiting local Qp
and Pp polynomial spaces with FEM under p–refinement on uniform meshes
consisting of square elements on (0, 1)2 (2D). Left: ‖u − uh‖L2(Ω); Right: |u −

uh|H1(Ω); (a) 4× 4 mesh; (b) 8× 8 mesh; (c) 16× 16 mesh.

the sense that, on the linear-log scale, the convergence plots become straight lines

as p is increased. Moreover, we observe that the convergence lines for FEM(Q) and

DGFEM(Q) are roughly parallel, with the former method being more efficient, in
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Figure 4.3: Example 1. Comparison between IP DGFEM exploiting local Qp
and Pp polynomial spaces with FEM under p–refinement on uniform meshes
consisting of hexahedral elements on (0, 1)3 (3D). Left: ‖u − uh‖L2(Ω); Right:
|u− uh|H1(Ω); (a) 4× 4× 4 mesh; (b) 8× 8× 8 mesh; (c) 16× 16× 16 mesh.

the sense that, for a given number of degrees of freedom (dof), the error measured

with respect to both the L2(Ω)–norm and H1(Ω)–seminorm is less than the corre-

sponding quantity computed for DGFEM(Q). However, one important observation
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is that, for each mesh, the slope of the convergence line for DGFEM(P), i.e., the

IP DGFEM employing local Pp polynomial bases, is actually steeper than the

corresponding convergence line when local polynomial bases consisting of tensor-

product Qp polynomials are employed. Indeed, while for moderate p, we observe

that the FEM(Q) method is more efficient than DGFEM(P), as the polynomial

degree is increased, the convergence line for DGFEM(P) crosses the corresponding

line for FEM(Q), at least on the coarser meshes.

To investigate this behaviour further, we now consider the three–dimensional

variant of the above problem. To this end, we let Ω = (0, 1)3 and select f =

3π2 sin(πx) sin(πy) sin(πz), so that the analytical solution to (4.1) is given by

u = sin(πx) sin(πy) sin(πz). In Figure 4.3 we consider the convergence of the

DGFEM(P), DGFEM(Q), and FEM(Q) schemes under p–refinement on uniform

hexahedral meshes consisting of 64, 512, and 4096 elements. As in the two–

dimensional setting, we again observe that the convergence lines for both FEM(Q)

and DGFEM(Q) are roughly parallel, with, again, the former method being more

efficient in terms of leading to a smaller error for a given number of degrees of

freedom. Moreover, the slope of convergence line for the DGFEM(P) scheme is

not only steeper than the corresponding line for DGFEM(Q), but also that the

cross–over point between DGFEM(P) becoming more efficient than FEM(Q) oc-

curs much sooner.

We now turn our attention to investigate the asymptotic behaviour of the proposed

IP DGFEM (DGFEM(P) using the introduced early notation) on a sequence of

successively finer polygonal and square meshes for different values of the polyno-

mial degree p; we point out that in both cases we employ local spaces consisting

of polynomials of degree at most p on each element κ ∈ Th. The polygonal meshes

are generated using the general-purpose mesh generator PolyMesher, cf. [179].

Typical meshes generated by PolyMesher are shown in Figure 4.4.

Here, we again consider the 2D Poisson example, we let Ω = (0, 1)2 and select f =

2π2 sin(πx) sin(πy), so that u = sin(πx) sin(πy). In Figure 4.5 we plot the error,

measured in terms of both the L2(Ω)–norm and the DG–norm |‖·|‖DG, against the

square root of the number of degrees of freedom in the underlying finite element

space Sp
Th for (uniform) p between 1 and 5. We clearly observe that the error

‖u− uh‖L2(Ω) and |‖u− uh|‖DG converge to zero at the optimal rates O(hp+1) and

O(hp), respectively, as the mesh size h tends to zero for each (fixed) p; these latter

results clearly confirm the optimality of Theorem 4.6. In particular, we observe
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(a) (b)

(c) (d)

Figure 4.4: Example 1. Polygonal element meshes generated using
PolyMesher. (a) Mesh with 64 elements; (b) Mesh with 256 elements; (c)

Mesh with 1024 elements; (d) Mesh with 4096 elements.

that the error in the underlying IP DGFEM is smaller when polygonal elements

are employed, when compared to the corresponding quantity computed based on

exploiting either uniform square elements; this behaviour is more pronounced when

the error is computed with respect to the DG–norm.

We remark that similar behaviour was observed in [124] when the DG–norm of

the error was computed on irregular quadrilateral meshes constructed by randomly

splitting each of the interior nodes by a displacement of up to 10% of the local

mesh size. As in [124], we attribute the improvement in the computed error, when

polygonal elements are employed, to the increase in interelement communication.

Indeed, uniform square elements may only communicate with their four immediate

neighbours, while polygonal elements possess a much greater stencil due to the

increase in the number of local element faces.
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Figure 4.5: Example 1. Convergence of the IP DGFEM with Pp basis under
h–refinement: (a) ‖u− uh‖L2(Ω); (b) |‖u− uh|‖DG.
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Figure 4.6: Example 1. Convergence of the IP DGFEM with Pp basis under
p–refinement in DG–norm: (a) 1024 elements; (b) 4096 elements.

Finally, we investigate the convergence of the IP DGFEM under p–refinement

for fixed h. To this end, in Figure 4.6 we plot the DG–norm of the error against

number of degrees of freedom on rectangle and polygonal meshes. In each case, we

observe that on the linear-log scale, the convergence plots become straight lines

as the degree of the approximating polynomial is increased, thereby indicating

exponential convergence in p.
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Figure 4.7: Example 2: Uniform square mesh, consisting of 48 elements.

4.4.2 Example 2

Following on from the previous numerical example, here we investigate the conver-

gence behaviour of the DGFEM(P) and DGFEM(Q) approaches for a non-smooth

problem on fixed computational meshes under p-refinement. To this end, we let

Ω be the L-shaped domain (−1, 1)2 \ [0, 1)× (−1, 0]. Uniform square meshes con-

sisting of 48 elements are used, see Figure 4.7. Then, writing (r, ϕ) to denote the

system of polar coordinates, we impose an appropriate inhomogeneous boundary

condition for u so that

u = r2/3 sin(2ϕ/3);

cf. [189]. We note that u is analytic in Ω\{0}, but ∇u is singular at the origin; in-

deed, here u 6∈ H2(Ω). This example reflects the typical (singular) behaviour that

solutions of elliptic boundary value problems exhibit in the vicinity of reentrant

corners in the computational domain.

In fact, u ∈ H 5
3
−ε(Ω), ε > 0 an arbitrary small real number. We investigate the

convergence rate of the DGFEM(P) and DGFEM(Q) under p-refinement for this

problem. In Table 4.1, we list the DG–norm error and also the convergence rate of

DGFEM(P) and DGFEM(Q) with polynomial order p = 1, . . . , 40. We point out

that due to the singularity at the origin, geometrically graded quadrature points

towards the origin are used in order to get the desired accuracy. As we can see,

the convergence rate in p for both DGFEM(P) and DGFEM(Q) is approximately:

|‖u− uh|‖DG ≤ Cp−
4
3 ,
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Figure 4.8: Example 2: Convergence of the IP DGFEM with Pp and Qp basis
under p–refinement in DG norm.

where the constant C is independent of p. The convergence rate in p is double

the theoretical rate in Theorem 4.15. This is the doubling order convergence

in the p-version finite element, see [25] for details. The reason of this doubling

order convergence in p is related to the fact that Sobolev space can not optimally

characterize the singularity of rγ logν r type, γ ∈ R+, ν ∈ N; indeed from [21,

22], we know that the modified Jacobi-weighted Besov spaces provide a sharper

function space setting to characterize such singular functions.

Finally, we present comparisons for error against Dofs between DGFEM(P) and

DGFEM(Q) under under p–refinement for fixed h. In Figure 4.8, observe lin-

ear convergence on the log-log scale between DG–norm error and Dofs, which

shows that the convergence rate is only algebraic. Interestingly, the convergence

of DGFEM(P) is as steep as the convergence of DGFEM(Q), and DGFEM(P) is

always larger by a fixed constant. This situation is quite different from the smooth

example.
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p DGFEM(P) DGFEM(Q) Ratio of Error
|‖u− uh|‖DG p-rate |‖u− uh|‖DG p-rate DG(P)/DG(Q) of error

1 3.28E-01 1.43E-01 2.2865
2 1.20E-01 1.4538 6.33E-02 1.1791 1.8899
3 7.74E-02 1.0726 3.93E-02 1.1764 1.9712
4 5.61E-02 1.1209 2.77E-02 1.2081 2.0213
5 4.32E-02 1.1656 2.11E-02 1.2351 2.0529
6 3.48E-02 1.1927 1.67E-02 1.2557 2.0766
7 2.88E-02 1.213 1.38E-02 1.2714 2.0954
8 2.45E-02 1.2312 1.16E-02 1.2837 2.1101
9 2.11E-02 1.2462 9.96E-03 1.2933 2.1218
10 1.85E-02 1.2576 8.68E-03 1.301 2.1316
11 1.64E-02 1.2674 7.67E-03 1.3071 2.1397
12 1.47E-02 1.2749 6.84E-03 1.3121 2.1466
13 1.33E-02 1.2816 6.16E-03 1.3162 2.1525
14 1.20E-02 1.2869 5.58E-03 1.3196 2.1578
15 1.10E-02 1.2916 5.10E-03 1.3223 2.1623
16 1.01E-02 1.2954 4.68E-03 1.3247 2.1664
17 9.37E-03 1.2989 4.32E-03 1.3266 2.1701
18 8.70E-03 1.3017 4.00E-03 1.3282 2.1733
19 8.10E-03 1.3044 3.72E-03 1.3296 2.1763
20 7.58E-03 1.3065 3.48E-03 1.3308 2.179
21 7.11E-03 1.3086 3.26E-03 1.3318 2.1815
22 6.69E-03 1.3103 3.06E-03 1.3327 2.1838
23 6.31E-03 1.3119 2.89E-03 1.3334 2.1878
24 5.97E-03 1.3133 2.73E-03 1.334 2.1878
25 5.66E-03 1.3146 2.58E-03 1.3346 2.1896
26 5.37E-03 1.3157 2.45E-03 1.335 2.1912
27 5.11E-03 1.3168 2.33E-03 1.3354 2.1928
28 4.87E-03 1.3177 2.22E-03 1.3358 2.1942
29 4.65E-03 1.3186 2.12E-03 1.3361 2.1956
30 4.45E-03 1.3193 2.02E-03 1.3363 2.1968
31 4.26E-03 1.3201 1.94E-03 1.3366 2.198
32 4.08E-03 1.3207 1.86E-03 1.3368 2.1991
33 3.92E-03 1.3214 1.78E-03 1.3369 2.2002
34 3.77E-03 1.3219 1.71E-03 1.3371 2.2012
35 3.63E-03 1.3225 1.65E-03 1.3372 2.2021
36 3.50E-03 1.3229 1.59E-03 1.3373 2.203
37 3.37E-03 1.3234 1.53E-03 1.3374 2.2039
38 3.25E-03 1.3238 1.48E-03 1.3375 2.2047
39 3.14E-03 1.3242 1.43E-03 1.3375 2.2054
40 3.04E-03 1.3245 1.38E-03 1.3376 2.2062

Table 4.1: Example 2: Convergence rate in p of the IP DGFEM with Pp and
Qp basis in DG–norm, and the ratio of error.



Chapter 5

DGFEMs for PDEs with

Nonnegative Characteristic Form

On the basis of the hp–version inverse and approximation bounds developed in

Chapter 3, together with the IP-DGFEM scheme for pure diffusion problems in

Section 4.2 of Chapter 4, here we study the IP-DGFEM discretization of a general

class of second–order PDEs with non-negative characteristic form, following the

bounded number of faces per element mesh Assumption 3.1.1. The work contained

in this chapter is drawn from [59].

5.1 Model problem

Given Ω a bounded Lipschitz domain in Rd, d ≥ 1, we consider the PDE: find u

such that

−∇ · (a∇u) + b · ∇u+ cu = f in Ω, (5.1)

where, a = {aij}di,j=1 with aij ∈ L∞(Ω) and aij = aji, for i, j = 1, . . . , d, b =

(b1, . . . , bd) ∈ [W 1,∞(Ω)]
d
, c ∈ L∞(Ω) and f ∈ L2(Ω). The PDE (5.1) is referred

to as an equation with nonnegative characteristic form on the set Ω ⊂ Rd if, at

each x in Ω̄, we have

d∑
i,j=1

aij(x)ξiξj ≥ 0, (5.2)

67
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for any vector ξ = (ξ1, . . . , ξd) in Rd.

In order to supplement (5.1) with suitable boundary conditions, following [151,

126], we first subdivide the boundary ∂Ω of the computational domain Ω into

appropriate subsets: we let

∂0Ω =

{
x ∈ ∂Ω :

d∑
i,j=1

aij(x)ninj > 0

}
, (5.3)

where n = (n1, . . . , nd) denotes the unit outward normal vector to ∂Ω. Loosely

speaking, we may think of ∂0Ω as being the ‘elliptic’ portion of the boundary ∂Ω.

On the ‘hyperbolic’ portion of the boundary ∂Ω\∂0Ω, we define the inflow and

outflow boundaries ∂−Ω and ∂+Ω, respectively, in the standard manner:

∂−Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) < 0} ,

∂+Ω = {x ∈ ∂Ω\∂0Ω : b(x) · n(x) > 0} . (5.4)

If ∂0Ω is nonempty, we shall further divide it into disjoint subsets ∂ΩD and ∂ΩN

whose union is ∂0Ω, with ∂ΩD nonempty and relatively open in ∂Ω; cf. Figure 5.1

It is evident from these definitions that ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂−Ω∪ ∂+Ω. Assuming

the (physically reasonable) hypothesis that b · n ≥ 0 on ∂ΩN whenever ∂ΩN is

nonempty, we supplement (5.1) with the following boundary conditions:

u = gD on ∂ΩD ∪ ∂−Ω, n · (a∇u) = gN on ∂ΩN. (5.5)

The extension of this setting can be found in [62].

Additionally, we assume that the following positivity hypothesis holds: there exists

a constant vector ξ ∈ Rd such that

c(x)− 1

2
∇ · b(x) + b(x) · ξ ≥ γ0 a.e. x ∈ Ω, (5.6)

where γ0 > 0 is a constant. For simplicity of presentation, following [125] we shall

assume throughout that (5.6) may be satisfied with ξ ≡ 0; we then define the

positive function c0 by

(c0(x))2 = c(x)− 1

2
∇ · b(x) a.e. x ∈ Ω. (5.7)
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Figure 5.1: Boundary Conditions

The well–posedness of the boundary value problem (5.1), (5.5), in the case of

homogeneous boundary conditions, has been studied in [126], cf. also [151].

In next section, we will introduce the IP-DGFEM discretization of (5.1), (5.5). We

will prove an inf-sup stability condition based on the analysis for pure diffusion

problem undertaken in Sections 4.2, and we present hp–version a priori bounds

for the IP-DGFEM discretization of (5.1), (5.5) in Section 5.2.

5.2 DGFEMs

In this section, we will consider the IP-DGFEM discretization of the PDE with

nonnegative characteristic form introduced above. Due to the general boundary

conditions (5.5), we need to overload boundary faces notation FBh in this section.

Recalling (5.3) and (5.4), we have ∂Ω = ∂ΩD∪∂ΩN∪∂−Ω∪∂+Ω. Similarly, we also

define FBh = F−h ∪ F
+
h ∪ FDh ∪ FNh , where FBh denotes the set of all open (d− 1)–

dimensional element faces F ∈ Fh that are contained in ∂Ω. For simplicity, we

assume that Th respects the decomposition of ∂Ω in the sense that each F ∈ FBh
belongs to the interior of exactly one of ∂−Ω, ∂+Ω, ∂ΩD and ∂ΩN. Hence we further
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denote by F−h ,F
+
h ,FDh ,FNh ⊂ FBh as the subsets of boundary faces belonging to

∂−Ω, ∂+Ω, ∂ΩD, ∂ΩN, respectively.

Next, we define the finite element space Sp
Th with respect to Th and p by

Sp
Th := {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ), κ ∈ Th},

where we recall that Pp(κ) denotes the space of polynomials of total degree p on κ.

We stress that, by construction, the local elemental polynomial spaces employed

within the definition of Sp
Th are defined in the physical space, without the need

to map from a given reference or canonical frame, as is typically necessary for

classical finite element methods.

We introduce the following (symmetric) IP-DGFEM bilinear form

B(uh, vh) = `(vh) (5.8)

for all vh ∈ Sp
Th . Here, the bilinear form B(·, ·) : Sp

Th × S
p
Th → R is defined as the

sum of two parts:

B(u, v) := Bar(u, v) +Bd(u, v),

where the bilinear form Bar(·, ·) accounts for the advection and reaction terms:

Bar(u, v) :=
∑
κ∈Th

∫
κ

(
b · ∇u+ cu

)
v dx−

∑
κ∈Th

∫
∂−κ\FBh

(b · n)bucv+ ds

−
∑
κ∈Th

∫
∂−κ∩(FDh ∪F

−
h )

(b · n)u+v+ ds. (5.9)

The bilinear form Bd(·, ·) takes care of the diffusion term:

Bd(u, v) :=
∑
κ∈Th

∫
κ

a∇u · ∇v dx +
∑

F∈FIh∪F
D
h

∫
F

σ[[u]] · [[v]] ds

−
∑

F∈FIh∪F
D
h

∫
F

(
{{a∇u}} · [[v]] + {{a∇v}} · [[u]]

)
ds. (5.10)

Furthermore, the linear functional ` : Sp
Th → R is defined by

`(v) :=
∑
κ∈Th

∫
κ

fv dx−
∑
κ∈Th

∫
∂−κ∩(FDh ∪F

−
h )

(b · n)gDv
+ ds

−
∑
F∈FDh

∫
F

gD

(
(a∇v) · n− σv

)
ds+

∑
F∈FNh

∫
F

gNv ds. (5.11)
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The nonnegative function σ ∈ L∞(FIh ∪FDh ) appearing in (5.10) and (5.11) is the

same discontinuity-penalization functions defined in Definition 4.7, which plays an

important role for proving the inf-sup stability of the proposed DGFEM in next

section.

5.2.1 Inf-Sup Stability of IP-DGFEMs

In this section, the diffusion tensor a is assumed to satisfy (4.6), i.e.,

a ∈ [V 0(Th)]d×dsym. (5.12)

Moreover, we are going to use the discontinuity penalisation function σ as in Def-

inition 4.1. The proof of inf-sup stability will employ an inconsistent formulation

of the diffusion part of the bilinear form as in the previous section. We define, for

all u, v ∈ S := H1(Ω) + Sp
Th , the bilinear form

B̃(u, v) := Bar(u, v) + B̃d(u, v), (5.13)

where

B̃d(u, v) :=
∑
κ∈Th

∫
κ

a∇u · ∇v dx +
∑

F∈FIh∪F
D
h

∫
F

σ[[u]] · [[v]] ds

−
∑

F∈FIh∪F
D
h

∫
F

(
{{aΠ2(∇u)}} · [[v]] + {{aΠ2(∇v)}} · [[u]]

)
ds,

and the linear functional ˜̀ : Sp
Th → R by

˜̀(v) :=
∑
κ∈Th

∫
κ

fv dx−
∑
κ∈Th

∫
∂−κ∩(FDh ∪F

−
h )

(b · n)gDv
+ ds

−
∑
F∈FDh

∫
F

gD

(
aΠ2(∇v) · n− σv

)
ds+

∑
F∈FNh

∫
F

gNv ds.

Here, Π2 : [L2(Ω)]d → [Sp
Th ]d denotes the orthogonal L2–projection onto [Sp

Th ]d.

We then rewrite the discrete problem with inconsistent formulation in the equiv-

alent form: find uh ∈ Sp
Th such that

B̃(uh, vh) = l̃(vh) ∀vh ∈ Sp
Th . (5.14)
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Note that the above IP DGFEM formulation is generally not consistent due to the

discrete nature of L2-orthogonal projector, but is consistent for uh, vh ∈ Sp
Th when

the diffusion tensor a is element-wise constant.

In view of the error analysis, we introduce the DGFEM–norm |‖·|‖DG as the sum

of two parts as follows:

|‖v|‖2
DG := |‖v|‖2

ar + |‖v|‖2
d,

where

|‖v|‖2
ar :=

∑
κ∈Th

(
‖c0v‖2

L2(κ) +
1

2
‖v+‖2

∂−κ∩(FDh ∪F
−
h )

+
1

2
‖v+ − v−‖2

∂−κ\FBh
+

1

2
‖v+‖2

∂+κ∩FBh

)
, (5.15)

with c0 as in (5.7), and

|‖v|‖2
d :=

∑
κ∈Th

‖
√
a∇v‖2

L2(κ) +
∑

F∈FIh∪F
D
h

∫
F

σ|[[v]]|2 ds. (5.16)

Here, ‖ · ‖τ , τ ⊂ ∂κ, denotes the (semi)norm associated with the (semi)inner

product (v, w)τ =
∫
τ
|b · n|vw ds.

The following relation holds

Bar(v, v) = |‖v|‖2
ar, (5.17)

for all v ∈ S, cf. [125]. The continuity and coercivity of the inconsistent diffusion

bilinear form B̃d(·, ·), with respect to the DGFEM–norm |‖·|‖d, is established in

Lemma 4.2.

Before we prove the inf-sup condition, we briefly discuss the reasons why the inf-

sup condition is essential. The hp–version a priori error analysis presented in

[125] relies on the derivation of optimal hp–approximation results for the trace

of the local L2–projection operator on a given face of an element κ in the finite

element mesh Th; cf. also [69, 144] for analogous results on simplices. Due to the

lack of analogous hp–approximation results for the local L2–projection operator on

polytopic elements, it is not possible to directly generalise the analysis from [125]

to meshes consisting of such elements. To address this issue we prove an inf-sup

condition for the inconsistent bilinear form B̃(·, ·), with respect to the following

streamline diffusion DGFEM–norm.
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Definition 5.1. The streamline diffusion DGFEM–norm is defined by:

|‖v|‖2
s := |‖v|‖2

DG +
∑
κ∈Th

τκ‖b · ∇v‖2
L2(κ), (5.18)

where

τκ := min

{
1

‖b‖L∞(κ)

,
1

σ̃κ

}
h⊥κ
p2
κ

∀κ ∈ Th, (5.19)

for pκ ≥ 1, and σ̃κ is given by

σ̃κ := Cσ max
F⊂∂κ

{
max

κ̃∈{κ,κ′}
F⊂∂κ∩∂κ′

{
Cinv,4

āκ̃p
2
κ̃

h⊥κ̃
d
}}

∀κ ⊂ Th, d = 2, 3, (5.20)

where Cinv,4 is defined as in Lemma 3.5. The constant σ̃κ may be zero locally

where āκ = 0; in this case it is understood that τκ takes the value of the first term

in (5.19). Further, the mesh parameter h⊥κ is defined as follows:

h⊥κ := min
F⊂∂κ

supκF
[
⊂κ |κF[ |
|F |

d ∀κ ∈ Th, d = 2, 3, (5.21)

with κF[ as in Definition 3.2. We further deduce the relation

h⊥κ ≤ hκ. (5.22)

Remark 5.2. We recall from Definition 3.2 that κF[ denotes the family of simplices

contained in κ and sharing a face F with κ. From the geometrical property of

d–dimensional simplices, it is easy to see that h⊥κ is the minimum over all faces F ,

F ⊂ ∂κ, of the maximum of the set of all heights of the d–dimensional simplices

κF[ sharing a (d− 1)–dimensional face F with κ.

Remark 5.3. We note that τκ can be viewed as an indicator function for each

element k ∈ Th, which measures the length scale of convection and diffusion over

each element. If κ is in the advection dominated regime, then τκ takes the first

term in the bracket. On the other hand, κ is in the diffusion dominated regime if

τκ takes the second term in the bracket. By using this choice of τκ, the resulting

inf-sup stability condition holds in both regimes.

Remark 5.4. With no loss of generality, the case pκ = 0, relevant to the hyperbolic

regime, is excluded from Definition 5.1 and throughout this chapter. However, if

the underlying problem is strictly hyperbolic and pκ = 0 is selected for all κ ∈ Th,
then the streamline diffusion DGFEM–norm reduces to the advection-reaction
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DGFEM–norm |‖·|‖ar defined in (5.15); in this setting, the proceeding analysis is

trivial.

By employing the definition of h⊥κ , together with an upper bound on the constant

CINV(p, κ, F ) defined in Lemma 3.5, the inverse estimate (3.13) can be written in

the following manner. For each v ∈ Pp(κ), F ⊂ ∂κ, we have

‖v‖2
L2(F ) ≤ CINV(p, κ, F )

p2|F |
|κ|
‖v‖2

L2(κ)

≤ Cinv,4
|κ|

supκF
[
⊂κ |κF[ |

p2|F |
|κ|
‖v‖2

L2(κ) ≤ Cinv,4
p2

h⊥κ
d‖v‖2

L2(κ). (5.23)

Further, from the definition of σ|F given in (4.1), in conjunction with the definition

of h⊥κ , cf. (5.21), we deduce the following bound

σ̃κ ≥ σ|F , F ⊂ ∂κ ∀κ ∈ Th. (5.24)

For the reminder of this work we assume the following condition on b:

b · ∇hξ ∈ Sp
Th ∀ξ ∈ Sp

Th , (5.25)

cf. [125]. Under the above assumption, we prove the inf-sup condition for the

bilinear form B̃(·, ·), with respect to the streamline diffusion DGFEM–norm (5.18).

Theorem 5.5. Given Assumptions 3.1.1, 3.2.1, and 3.2.2 hold, there exists a

positive constant Λs, independent of the mesh size h and the polynomial degree p,

such that:

inf
ν∈Sp

Th
\{0}

sup
µ∈Sp

Th
\{0}

B̃(ν, µ)

|‖ν|‖s|‖µ|‖s

≥ Λs, (5.26)

where the discontinuity-penalization function σ is as defined in (4.1).

Proof. For all ν ∈ Sp
Th , we select µ := ν+ανs, νs|κ = τκb ·∇ν for all κ ∈ Th, where

α is a positive real number, chosen sufficiently small, cf. (5.41) below. By (5.25),

we note that µ ∈ Sp
Th ; the theorem now follows from the two bounds:

|‖µ|‖s ≤ C∗|‖ν|‖s, (5.27)

and

B̃(ν, µ) ≥ C∗|‖ν|‖2
s , (5.28)
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with Λs = C∗/C
∗, where C∗ and C∗ are positive constants, independent of h and

p.

We begin by proving (5.27). We first bound each term arising in the norm |‖·|‖ar

of νs, where νs|κ = τκb · ∇ν, κ ∈ Th. Employing Lemma 3.7 together with (5.19),

the lower bound on c0 given in (5.7), and inequality (5.22), gives

∑
κ∈Th

‖c0νs‖2
L2(κ) ≤ ‖c0‖2

L∞(Ω)

∑
κ∈Th

τ 2
κ‖b · ∇ν‖2

L2(κ)

≤ ‖c0‖2
L∞(Ω)

∑
κ∈Th

τ 2
κ‖b‖2

L∞(κ)‖∇ν‖2
L2(κ)

≤ ‖c0‖2
L∞(Ω)Cinv,5

∑
κ∈Th

τ 2
κ

p4
κ‖b‖2

L∞(κ)

h2
κ

‖ν‖2
L2(κ)

≤ ‖c0‖2
L∞(Ω)

Cinv,5

γ0

∑
κ∈Th

‖c0ν‖2
L2(κ) ≤ C1|‖ν|‖2

s . (5.29)

Using the inverse estimate (5.23), we deduce that

∑
κ∈Th

(1

2
‖ν+

s ‖2
∂−κ∩(FDh ∪F

−
h )

+
1

2
‖ν+

s − ν−s ‖2
∂−κ\FBh

+
1

2
‖ν+

s ‖2
∂+κ∩FBh

)
≤
∑
κ∈Th

‖b‖L∞(κ)τ
2
κ

∑
F⊂∂κ

‖b · ∇ν‖2
L2(F )

≤ CFCinv,4d
∑
κ∈Th

‖b‖L∞(κ)
p2
κ

h⊥κ
τ 2
κ‖b · ∇ν‖2

L2(κ)

≤ CFCinv,4d
∑
κ∈Th

τκ
p2
κ‖b‖L∞(κ)

h⊥κ

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤ C2|‖ν|‖2

s . (5.30)

Similarly, employing relation (5.25) together with Lemma 3.7, the streamline dif-

fusion term, cf. (5.18), can be bounded as follows:

∑
κ∈Th

τκ‖b · ∇νs‖2
L2(κ) ≤

∑
κ∈Th

τκ‖b‖2
L∞(κ)

(
τ 2
κ‖∇(b · ∇ν)‖2

L2(κ)

)
≤

∑
κ∈Th

Cinv,5τ
2
κ

p4
κ‖b‖2

L∞(κ)

h2
κ

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤

∑
κ∈Th

Cinv,5

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤ C3|‖ν|‖2

s ; (5.31)

here, we have again exploited a bound on τκ, κ ∈ Th, and (5.22), cf. above.

Secondly, we consider the diffusion component |‖·|‖d of the streamline diffusion

DGFEM–norm of νs. This time, the second term on the right hand side of (5.19)
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is used as an upper bound on τκ, κ ∈ Th. This, employing Lemma 3.7, the

definition of σ̃κ in (5.20), and (5.22), we get

∑
κ∈Th

‖
√
a∇νs‖2

L2(κ) ≤
∑
κ∈Th

āκτ
2
κ‖∇(b · ∇ν)‖2

L2(κ)

≤
∑
κ∈Th

Cinv,5τκ
āκp

4
κ

h2
κ

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤

∑
κ∈Th

Cinv,5
āκp

2
κ

σ̃κhκ

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤ Cinv,5

CσCinv,4d

∑
κ∈Th

τκ‖b · ∇ν‖2
L2(κ)

≡ C4

∑
κ∈Th

τκ‖b · ∇ν‖2
L2(κ) ≤ C4|‖ν|‖2

s . (5.32)

Finally, employing (5.23) and noting that σ|F ≤ σ̃κ for F ⊂ ∂κ, κ ∈ Th, gives

∑
F∈FIh∪F

D
h

∫
F

σ|[[νs]]|2 ds ≤ 2
∑
κ∈Th

τ 2
κ

∑
F⊂∂κ∩(FIh∪F

D
h )

σ‖b · ∇ν‖2
L2(F )

≤ 2CFCinv,4d
∑
κ∈Th

τκ
σ̃κp

2
κ

h⊥κ

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤ C5

∑
κ∈Th

(
τκ‖b · ∇ν‖2

L2(κ)

)
≤ C5|‖ν|‖2

s . (5.33)

Combining the above bounds, we deduce that

|‖νs|‖s ≤ Ĉ|‖ν|‖s, (5.34)

where Ĉ =
√
C1 + C2 + C3 + C4 + C5. Exploiting the triangle inequality, we have

that

|‖µ|‖s ≤ |‖ν|‖s + α|‖νs|‖s ≤ (1 + αĈ)|‖ν|‖s ≡ C∗(α)|‖ν|‖s, (5.35)

which gives the desired bound stated in (5.27).

Next we prove (5.28). To this end, we observe that since µ := ν + ανs, B̃(ν, µ) =

B̃(ν, ν) + αB̃(ν, νs). Considering the second term B̃(ν, νs) first, we note that the

advection-reaction part of the bilinear form Bar(ν, νs) is given by

Bar(ν, νs) =
∑
κ∈Th

∫
κ

τκ(b · ∇ν)2 + cν(τκb · ∇ν) dx−
∫
∂−κ\FBh

(b · n)bνc(τκb · ∇ν)+ ds

−
∫
∂−κ∩(FDh ∪F

−
h )

(b · n)ν+(τκb · ∇ν)+ ds. (5.36)



DGFEMs for PDEs with Nonnegative Characteristic Form 77

Employing Lemma 3.7, together with the lower bound on c2
0 given in (5.7), the

second term in (5.36) may be bounded as follows:

|
∑
κ∈Th

∫
κ

cν(τκb · ∇ν) dx| ≤
∑
κ∈Th

‖c‖L∞(Ω)‖ν‖L2(κ)‖τκb · ∇ν‖L2(κ)

≤
∑
κ∈Th

‖c‖L∞(Ω)‖ν‖L2(κ)

(
C

1/2
inv,5τκ

p2
κ‖b‖L∞(κ)

hκ
‖ν‖L2(κ)

)
≤

∑
κ∈Th

C
1/2
inv,5‖c‖L∞(Ω)

γ0

‖c0ν‖2
L2(κ). (5.37)

To estimate the boundary terms present in (5.36), we exploit the inverse estimate

(5.23), the definition of τκ given in (5.19), together with the Cauchy-Schwarz

inequality. Then, we get

|
∑
κ∈Th

(∫
∂−κ\FBh

(b · n)bνc(τκb · ∇ν)+ ds+

∫
∂−κ∩(FDh ∪F

−
h )

(b · n)ν+(τκb · ∇ν)+ ds
)
|

≤
∑
κ∈Th

‖ν+ − ν−‖∂−κ\FBh
( ∑
F⊂∂−κ\FBh

‖b‖
1
2

L∞(κ)τκ‖b · ∇ν‖L2(F )

)
+
∑
κ∈Th

‖ν+‖∂−κ∩(FDh ∪F
−
h )

( ∑
F⊂∂−κ∩(FDh ∪F

−
h )

‖b‖
1
2

L∞(κ)τκ‖b · ∇ν‖L2(F )

)
≤ C2

FCinv,4d
(∑
κ∈Th

‖ν+ − ν−‖2
∂−κ\FBh

+ ‖ν+‖2
∂−κ∩(FDh ∪F

−
h )

)
+
∑
κ∈Th

τκ
4
‖b · ∇ν‖2

L2(κ)

≤ C2
FCinv,4d

∑
κ∈Th

(
‖ν+ − ν−‖2

∂−κ\FBh
+ ‖ν+‖2

∂−κ∩(FDh ∪F
−
h )

+ ‖ν+‖2
∂+κ∩FBh

)
+
∑
κ∈Th

τκ
4
‖b · ∇ν‖2

L2(κ). (5.38)

Using (5.17), together with the bounds (5.37) and (5.38), we deduce that

Bar(ν, µ) ≥
(

1−
αC

1/2
inv,5‖c‖L∞(Ω)

γ0

)∑
κ∈Th

‖c0ν‖2
L2(κ) + α

∑
κ∈Th

(
τκ −

τκ
4

)
‖b · ∇ν‖2

L2(κ)

+
(1

2
− αC2

FCinv,4d
)∑
κ∈Th

(
‖ν+ − ν−‖2

∂−κ\FBh

+ ‖ν+‖2
∂−κ∩(FDh ∪F

−
h )

+ ‖ν+‖2
∂+κ∩FBh

)
. (5.39)

Next, we consider the diffusion part of the bilinear form, i.e., B̃d(ν, νs). From the

continuity of B̃d(·, ·) stated in (4.12), together with the bounds given in (5.32) and
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(5.33), we get

B̃d(ν, νs) ≤ Ccont|‖ν|‖d|‖νs|‖d ≤ Ccont|‖ν|‖d

√
C4 + C5

(∑
κ∈Th

τκ‖b · ∇ν‖2
L2(κ)

) 1
2

≤ (Ccont)
2(C4 + C5)|‖ν|‖2

d +
∑
κ∈Th

τκ
4
‖b · ∇ν‖2

L2(κ).

Exploiting the coercivity of the bilinear form B̃d(·, ·), cf. (4.11), gives

B̃d(ν, µ) ≥
(
Ccoer − α(Ccont)

2(C4 + C5)
)
|‖ν|‖2

d − α
∑
κ∈Th

τκ
4
‖b · ∇ν‖2

L2(κ). (5.40)

Finally, combining (5.39) and (5.40), the following bound holds:

B̃(ν, µ) = Bar(ν, µ) + B̃d(ν, µ)

≥
(

1−
αC

1/2
inv,5‖c‖L∞(Ω)

γ0

)∑
κ∈Th

‖c0ν‖2
L2(κ) + α

∑
κ∈Th

(
τκ −

τκ
2

)
‖b · ∇ν‖2

L2(κ).

+
(1

2
− αC2

FCinv,4d
)∑
κ∈Th

(
‖ν+ − ν−‖2

∂−κ\FBh
+ ‖ν+‖2

∂−κ∩(FDh ∪F
−
h )

+ ‖ν+‖2
∂+κ∩FBh

)
.

+
(
Ccoer − α(Ccont)

2(C4 + C5)
)(∑

κ∈Th

‖
√
a∇ν‖2

L2(κ) +
∑

F∈FIh∪F
D
h

∫
F

σ|[[ν]]|2 ds
)
.

The coefficients in front of the norms arising on the right hand side of the above

bound are all positive for sufficient small α, namely if

α < min

{
γ0

C
1/2
inv,5‖c‖L∞(Ω)

,
1

2C2
FCinv,4d

,
Ccoer

(Ccont)2(C4 + C5)

}
. (5.41)

Since the constants in (5.41) are independent of the discretization parameters, we

conclude that (5.28) holds as long as α is chosen according to (5.41).

Remark 5.6. Theorem 5.5 extends the analogous result derived for DGFEMs on

meshes comprising of simplices presented in [49, 57, 18] and monograph [84, Chap-

ter 2], to general polytopic elements. It also improves those results in the sense

that here the inf-sup constant Λs is also independent of the polynomial degree p.

Remark 5.7. The above inf-sup condition has been derived under the assump-

tion that (5.25) holds, hence limiting the validity of the present analysis to prob-

lems with piecewise linear convection fields b. However, an analogous inf-sup

condition still holds for general b, if we replace the test space Sp
Th by Wp

T :=
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span{v+αvs, vs|κ = τκΠ2(b ·∇v), κ ∈ Th, v ∈ Sp
Th}, endowed with the stream-

line diffusion DGFEM–norm |‖v|‖2
s̃ := |‖v|‖2

DG +
∑

κ∈Th τκ‖Π2(b · ∇v)‖2
L2(κ). This

approach, though, results in suboptimal, with respect to the polynomial degree p,

a priori error bounds, cf. Remark 5.12 below.

5.2.2 A priori error analysis

In this section, we derive an a priori error bound for the IP DGFEM (5.14). First,

we point out that Galerkin orthogonality does not hold due to the inconsistency

of B̃(·, ·). Thereby, we derive the following abstract error bound in the spirit of

Strang’s second lemma.

Lemma 5.8. Let u be the analytical solution of (5.1), (5.5), and uh be the IP

DGFEM solution satisfying (5.14). Assuming the inf-sup condition derived in

Theorem 5.5 holds, we have that

|‖u− uh|‖s ≤ |‖u− Π̃u|‖s +
1

Λs

sup
ωh∈Sp

Th
\{0}

|B̃(Π̃u− u, ωh)|
|‖ωh|‖s

+
1

Λs

sup
ωh∈Sp

Th
\{0}

|B̃(u, ωh)− l̃(ωh)|
|‖ωh|‖s

, (5.42)

where Π̃ is the operator defined in Lemma 3.14.

Proof. The result follows in a standard manner, based on Strang’s second lemma.

We first use the triangle inequality,

|‖u− uh|‖s ≤ |‖u− Π̃u|‖s + |‖Π̃u− uh|‖s.

Then we use fact that the second term in the above inequality if in Sp
Th together

with relation, (5.26)

|‖Π̃u− uh|‖s ≤
1

Λs

sup
ωh∈Sp

Th
\{0}

B̃(Π̃u− uh, ωh)
|‖ωh|‖s

≤ 1

Λs

sup
ωh∈Sp

Th
\{0}

|B̃(Π̃u− u, ωh)|
|‖ωh|‖s

+
1

Λs

sup
ωh∈Sp

Th
\{0}

|B̃(u− uh, ωh)|
|‖ωh|‖s

=
1

Λs

sup
ωh∈Sp

Th
\{0}

|B̃(Π̃u− u, ωh)|
|‖ωh|‖s

+
1

Λs

sup
ωh∈Sp

Th
\{0}

|B̃(u, ωh)− l̃(ωh)|
|‖ωh|‖s

.

Then the proof is complete.
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The abstract error bound of Lemma 5.8 is used to derive convergence results for

the method at hand. These depend on the availability of the hp–version approx-

imation estimates of Lemma 3.11. Assume that the mesh Th admits a shape

regular covering T ]h = {K}, cf. Definition 3.9, satisfying Assumption 3.3.1. Fur-

ther assume that u|κ ∈ H lκ(κ), for some lκ > 1 + d/2, for each κ ∈ Th, so that, by

Theorem 3.12, Eu|K ∈ H lκ(K), where K ∈ T ]h with κ ⊂ K. To bound the first term

on the right-hand side of the abstract bound above, we employ the approximation

estimates of Lemma 3.14 together with Assumption 3.1.1 give

|‖u− Π̃u|‖2
s ≤ C

∑
κ∈Th

h2sκ
κ

p2lκ
κ

(
‖c0‖2

L∞(κ) + τκ‖b‖2
L∞(κ)

h−2
κ

p−2
κ

+ āκ
h−2
κ

p−2
κ

+‖b‖L∞(κ)
h−dκ
p−1
κ

∑
F⊂∂κ

Cm(pκ, κ, F )|F |

+
h−dκ
p−1
κ

∑
F⊂∂κ∩(FIh∪F

D
h )

Cm(pκ, κ, F )σ|F |
)
‖Eu‖2

Hlκ (K). (5.43)

Next, we define η = u−Π̃u and embark on bounding the second term on right-hand

side of (5.42). Exploiting element-wise integration by parts, the advection-reaction

bilinear form Bar(·, ·), cf. (5.9), can be written as:

Bar(η, ωh) =
∑
κ∈Th

(∫
κ

(c−∇ · b)ωhη dx−
∫
κ

(b · ∇ωh)η dx

+

∫
∂−κ\FBh

(b · n)bωhcη− ds+

∫
∂+κ∩FBh

(b · n)ω+
h η

+ ds
)
.

Then, by using Cauchy-Schwarz inequality, we have the following bound:

|Bar(η, ωh)| ≤
∑
κ∈Th

(
‖c0ωh‖L2(κ)‖c1η‖L2(κ) + ‖τ

1
2
κ b · ∇ωh‖L2(κ)‖τ

− 1
2

κ η‖L2(κ)

+‖ω+
h − ω

−
h ‖∂−κ\FBh ‖η

−‖∂−κ\FBh + ‖ω+
h ‖∂+κ∩FBh ‖η

+‖∂+κ∩FBh
)

≤
(∑
κ∈Th

‖c1η‖2
L2(κ) +

∑
κ∈Th

τ−1
κ ‖η‖2

L2(κ) + 2
∑
κ∈Th

‖η−‖2
∂−κ\FBh

+2
∑
κ∈Th

‖η+‖2
∂+κ∩FBh

) 1
2 ×

(
|‖ωh|‖2

ar +
∑
κ∈Th

τκ‖b · ∇ωh‖2
L2(κ)

) 1
2
.
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We now derive a bound for B̃(η, ωh) by employing the above result in conjunction

with the continuity of B̃d(·, ·). Then, we get

|B̃(η, ωh)| = |Bar(η, ωh) + B̃d(η, ωh)|

≤
(∑
κ∈Th

‖c1η‖2
L2(κ) +

∑
κ∈Th

τ−1
κ ‖η‖2

L2(κ) + 2
∑
κ∈Th

‖η−‖2
∂−κ\FBh

+ 2
∑
κ∈Th

‖η+‖2
∂+κ∩FBh

) 1
2
(
|‖ωh|‖2

ar +
∑
κ∈Th

τκ‖b · ∇ωh‖2
L2(κ)

) 1
2

+ Ccont|‖η|‖d|‖ωh|‖d

≤
(∑
κ∈Th

γ2
κ‖η‖2

L2(κ) +
∑
κ∈Th

τ−1
κ ‖η‖2

L2(κ)

+ 2
∑
κ∈Th

‖η−‖2
∂−κ\FBh

+ 2‖η+‖2
∂+κ∩FBh

+ (Ccont)
2
∑
κ∈Th

‖
√
a∇η‖2

L2(κ) + (Ccont)
2

∑
F∈FIh∪F

D
h

∫
F

σ|[[η]]|2 ds
) 1

2 |‖ωh|‖s.

Hence, by applying the approximation results in Lemma 3.14, we have the following

bound:

sup
ωh∈Sp

Th
\{0}

|B̃(Π̃u− u, ωh)|
|‖ωh|‖s

≤ C

(∑
κ∈Th

h2sκ
κ

p2lκ
κ

(
γ2
κ + τ−1

κ + āκ
h−2
κ

p−2
κ

+‖b‖L∞(κ)
h−dκ
p−1
κ

∑
F⊂∂κ

Cm(pκ, κ, F )|F |

+
h−dκ
p−1
κ

∑
F⊂∂κ∩(FIh∪F

D
h )

Cm(pκ, κ, F )σ|F |
)
‖Eu‖2

Hlκ (K)

) 1
2

. (5.44)

Finally, we consider the residual due to the inconsistent formulation given by the

third term in (5.42). From the definition of the original and inconsistent bilinear

forms given by (5.10) and (5.13), respectively, we deduce that

B̃(u, ωh)− l̃(ωh) =
∑

F∈FIh∪F
D
h

∫
F

{{a(∇u−Π2(∇u))}} · [[ωh]] ds

≤
( ∑
F∈FIh∪F

D
h

∫
F

σ−1|{{a(∇u−Π2(∇u))}}|2 ds
)1/2

|‖wh|‖d,
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where Π2 denotes the vector-valued L2–projection onto the finite element space

[Sp
Th ]d. Employing the Cauchy Schwarz inequality gives

sup
ωh∈Sp

Th
\{0}

|B̃(u, ωh)− l̃(ωh)|
|‖ωh|‖s

≤
( ∑
F∈FIh∪F

D
h

∫
F

σ−1|{{a(∇u−Π2(∇u))}}|2 ds
) 1

2
.

Let Π̃ denote the vector-valued hp–projection operator obtained by applying com-

ponentwise the operator Π̃pκ given in (3.27). Adding and subtracting Π̃(∇u), we

obtain

∑
F∈FIh∪F

D
h

∫
F

σ−1|{{a(∇u−Π2(∇u))}}|2 ds

≤
∑

F∈FIh∪F
D
h

∫
F

2σ−1(|{{a(∇u− Π̃(∇u))}}|2 + |{{a(Π2(Π̃(∇u)−∇u))}}|2) ds.

≡ I + II.

Using, as above, the approximation estimate (3.29) yields:

I ≤ C
∑
κ∈Th

ā2
κ

h
2(sκ−1)
κ

p
2(lκ−1)
κ

h−dκ
p−1
κ

 ∑
F⊂∂κ∩(FIh∪F

D
h )

Cm(pκ, κ, F )σ−1|F |

 ‖Eu‖2
Hlκ (K).

Similarly, the inverse inequality (3.13), the L2-stability of the projector Π2, and

the approximation estimate (3.28), yield:

II ≤ C
∑
κ∈Th

ā2
κ

h
2(sκ−1)
κ

p
2(lκ−1)
κ

|κ|−1

p−2
κ

 ∑
F⊂∂κ∩(FIh∪F

D
h )

CINV(pκ, κ, F )σ−1|F |

 ‖Eu‖2
Hlκ (K).

Combining the above developments we arrive to the following bound of the residual

term:

sup
wh∈Sp

Th

|B̃(u,wh)− ˜̀(u,wh)|
|‖wh|‖s

≤
(

I + II
)1/2

≤ C

(∑
κ∈Th

ā2
κ

h
2(sκ−1)
κ

p
2(lκ−1)
κ

×

 ∑
F⊂∂κ∩(FIh∪F

D
h )

(
Cm(pκ, κ, F )

h−dκ
p−1
κ

+ CINV(pκ, κ, F )
|κ|−1

p−2
κ

)
σ−1|F |


× ‖Eu‖2

Hlκ (K)

)1/2

. (5.45)
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Finally, combining the approximation bound (5.43), (5.44), and residual bound (5.45)

together with with Lemma 5.8 yield the following DGFEM convergence result.

Theorem 5.9. Let Th = {κ} be a subdivision of Ω ⊂ Rd, d = 2, 3, consisting

of general polygonal/polyhedral elements satisfying Assumption 3.1.1, Assump-

tion 3.2.1 and Assumptions 3.2.2 with T ]h = {K} an associated covering of Th
consisting of shape-regular d–simplexes, cf., Definition 3.9. Let uh ∈ Sp

Th, with

pκ ≥ 1 for all κ ∈ Th, be the corresponding DGFEM solution defined by (4.5)

with the discontinuity-penalization functions given by (4.7). If the exact solution

u ∈ H1(Ω) to (4.1)–(4.3) satisfies u|κ ∈ H lκ(κ), lκ > 1 + d/2, for each κ ∈ Th,

such that Eu|K ∈ H lκ(K), where K ∈ T ]h with κ ⊂ K, then

|‖u− uh|‖2
s ≤ C

∑
κ∈Th

h2sκ
κ

p2lκ
κ

(
Gκ(F,Cm, pκ, τκ) +Dκ(F,CINV, Cm, pκ)

)
‖Eu‖2

Hlκ (K),

(5.46)

where

Gκ(F,Cm, pκ, τκ) = ‖c0‖2
L∞(κ) + γ2

κ + τ−1
κ + τκβ

2
κp

2
κh
−2
κ + āκp

2
κh
−2
κ

+ βκpκh
−d
κ

∑
F⊂∂κ

Cm(pκ, κ, F )|F |

+ pκh
−d
κ

∑
F⊂∂κ∩(FIh∪F

D
h )

Cm(pκ, κ, F )σ|F |, (5.47)

and

Dκ(F,CINV, Cm, pκ) = ā2
κ

(
p3
κh
−d−2
κ

∑
F⊂∂κ∩(FIh∪F

D
h )

Cm(pκ, κ, F )σ−1|F |

+ p4
κ|κ|−1h−2

κ

∑
F⊂∂κ∩(FIh∪F

D
h )

CINV(pκ, κ, F )σ−1|F |
)
, (5.48)

with sκ = min{pκ + 1, lκ} and pκ ≥ 1. Here, γκ = ‖c1‖L∞(κ), with c1(x) :=

(c(x)−∇·b(x))/(c0(x)), c0 as in (5.7), and βκ = ‖b‖L∞(κ). The positive constant

C is independent of the discretization parameters.

Remark 5.10. We note that the above hp–version a priori bound for the IP

DGFEM (5.14) holds without the need to impose any assumption concerning the

relative size of the faces F , F ⊂ ∂κ, of a given polytopic element κ ∈ Th. If

b ≡ 0 and c ≡ 0 on Ω, then the streamline diffusion DGFEM–norm degenerates

to the diffusion DGFEM–norm |‖·|‖d defined in (5.16) and the problem becomes

the pure diffusion problem, which is independent of τκ with constants βκ and γκ

equal to zero. Furthermore, the inf-sup condition is equivalent to the coercivity of
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the bilinear form B̃d(·, ·). This can be used to derive an error bound, analogous to

the error bound (5.46), which generalises the result presented in [61] for the Pois-

son equation with constant diffusion. Moreover, in this setting, for uniform orders

pκ = p ≥ 1, h = maxκ∈Th hκ, sκ = s, s = min{p + 1, l}, l > 1 + d/2, under the

assumption that the diameter of the faces of each element κ ∈ Th is of comparable

size to the diameter of the corresponding element, i.e., diam(F ) ∼ hκ, h
⊥
κ ∼ hκ,

F ⊂ ∂κ, κ ∈ Th, so that |F | ∼ h
(d−1)
κ , the a priori error bound of Theorem 5.9

reduces to

|‖u− uh|‖d ≤ C
hs−1

pl−
3
2

‖u‖Hl(Ω).

This coincides with the analogous result derived in [125] for standard meshes

consisting of simplices or tensor-product elements. Here, we have employed Lemma

3.14 and Theorem 3.12, together with Assumption 3.3.1, assuming that for such

element domains CINV(pκ, F ) = O(1) and Cm(pκ, F ) = O(1) uniformly for each

face F ⊂ ∂κ for all κ ∈ Th. This error bound is h optimal and p suboptimal by

p1/2.

Remark 5.11. Consider the purely hyperbolic case when the diffusion tensor a ≡ 0.

In this case, the constants āκ and σ̃κ are identically zero and the inconsistent

term Dκ(F,CINV, Cm, pκ) vanishes due to the consistency of the bilinear form

Bar(·, ·). Then, the streamline diffusion DGFEM–norm is actually stronger than

the advection-reaction DGFEM–norm |‖·|‖ar defined in (5.15) and τκ = O(hκ
p2κ

) by

(5.19). In this case, for uniform orders, cf. Remark 5.10 above, the a priori error

bound of Theorem 5.9 yields

|‖u− uh|‖ar ≤ |‖u− uh|‖s ≤ C
hs−

1
2

pl−1
‖u‖Hl(Ω).

Hence, the above hp–bound is optimal in h and suboptimal in p by p1/2. In this

case, our bound generalizes the error estimate derived in [125] to general polytopic

meshes under the same assumption b · ∇hξ ∈ Sp
Th , ξ ∈ Sp

Th , with a slight loss of

p-convergence.

Remark 5.12. As noted in Remark 5.7, the case of general convection fields b can

be treated, based on employing an inf-sup condition with different test and trial

spaces. In this setting, the present analysis can easily be adapted to utilize such an

inf-sup condition, together with the exploitation of the L2–projector Π2 onto the

polytopic element κ ∈ Th. However, this yields an error bound in the |‖·|‖ar–norm

that is optimal in h but suboptimal in p by p3/2 for the purely hyperbolic problem.
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We also point out that if we modify the DGFEM by including the streamline-

diffusion stabilization term as in [124], then an hp–optimal bound can be derived

without the assumption that b · ∇hξ ∈ Sp
Th , ξ ∈ Sp

Th . This is not derived here in

detail for brevity.

5.3 Numerical examples

We present a series of computational examples to numerically investigate the

asymptotic convergence behaviour of the proposed IP DGFEM on general meshes

consisting of polytopic elements. As in [61], the integrals arising in the bilinear

and linear forms B(·, ·) and `(·), respectively, are computed based on employing a

quadrature scheme defined on a sub-tessalation of each polytopic element in the un-

derlying finite element mesh. Throughout this section, the IP DGFEM solution uh

defined by (5.8) is computed with the constant Cσ appearing in the discontinuity-

penalization parameter σ equal to 10. Given the computations already presented

in Chapter 4, here we concentrate on studying the performance of the proposed

IP DGFEM in the hyperbolic, mixed parabolic–hyperbolic setting and boundary

layer problem. To this end, we first study a pure hyperbolic problem (diffusion ma-

trix a ≡ 0) in Section 5.3.1. Secondly, we consider an advection-diffusion-reaction

problem with degenerate, anisotropic diffusion matrix a in Section 5.3.2. Within

these examples, we employ polygonal meshes generated using the general-purpose

mesh generator PolyMesher, cf. [179]. Additionally, a classical boundary layer

problem is presented in Section 5.3.3 to study the exponential convergence of Pp
basis on anisotropic refined meshes. Finally, in Section 5.3.4, we study the con-

vergence behaviour of the underlying DGFEM for a purely hyperbolic problem in

three dimensions on general polytopes generated based on employing agglomera-

tion.

Throughout this section, we compare the performance of employing Pp–polynomial

bases on polytopic meshes, with Pp– andQp–polynomial bases defined on standard

tensor-product meshes.
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Figure 5.2: Example 1: Uniform polygonal mesh, consisting of 256 elements.

5.3.1 Example 1

In this first example, we let Ω be the square domain (−1, 1)2, and choose

a ≡ 0, b = (2− y2, 2− x), c = 1 + (1 + x)(1 + y)2; (5.49)

the forcing function f is selected so that the analytical solution to (5.1), (5.5) is

given by

u(x, y) = 1 + sin(π(1 + x)(1 + y)2/8), (5.50)

cf. [125].

We investigate the asymptotic behaviour of the hp–version DGFEM on a sequence

of successively finer polygonal and uniform quadrilateral meshes for different values

of the polynomial degree p. Three settings are compared: uniform quadrilateral

meshes and local polynomial bases consisting of either Pp or Qp polynomials,

and polygonal meshes and local polynomial bases consisting of Pp polynomials;

the three cases are referred to as, respectively, DGFEM(P), DGFEM(Q), and

DGFEM. The polygonal meshes used for DGFEM are generated using the Poly-

mesher mesh generator, cf. [179]; a typical mesh, consisting of 256 elements, is

depicted in Figure 5.2.

We first examine the convergence behaviour of the three schemes with respect to

h–refinement, with fixed polynomial p, for p = 1, . . . , 6. In Figure 5.3 we plot

the error, measured in terms of both the L2(Ω)- and DGFEM–norm, against the
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Figure 5.3: Example 1: Convergence of the DGFEM under h–refinement for
p = 1, 2, . . . , 6. (a) ‖u− uh‖L2(Ω); (b) |‖u− uh|‖DG.

square root of the number of degrees of freedom in the underlying finite element

space Sp
Th . Here, we clearly observe that ‖u− uh‖L2(Ω) and |‖u− uh|‖DG converge

to zero at the optimal rates O(hp+1) and O(hp+
1
2 ), respectively, as the mesh size

h tends to zero for each fixed p. The latter set of results confirm the optimality

of Theorem 5.9, cf. Remark 5.11, in the case when polygonal elements are em-

ployed. We point out that the (optimal) convergence rate observed when the error

is measured in terms of the L2(Ω)–norm is not guaranteed on general meshes, cf.

[154] (optimal convergence of ‖u − uh‖L2(Ω) has been established in [74, 75], but

only for special classes of triangular elements.) From Figure 5.3, we also observe

that polygonal and square meshes deliver almost identical results given the same

number of degrees of freedom, when Pp elements are used (cf. the errors attained

by DGFEM and DGFEM(P)). By comparison, the use of tensor-product polyno-

mials, i.e. the DGFEM(Q) scheme, leads to a marginal decrease in both error
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Figure 5.4: Example 1: Convergence of the DGFEM under p–refinement.
Left: ‖u − uh‖L2(Ω); Right: |‖u− uh|‖DG; (a) Meshes consisting of 64 and 256

elements; (b) Meshes consisting of 1024 and 4096 elements.

quantities.

Finally, in Figure 5.4 we investigate the convergence behaviour of the three schemes

under p–refinement, for fixed h. Here, uniform polygonal and square meshes con-

sisting of 64, 256, 1024, and 4096 elements are employed. For each mesh, we plot

‖u − uh‖L2(Ω) and |‖u− uh|‖DG against the square root of the number of degrees

of freedom in Sp
Th . In each case we clearly observe exponential convergence. We

observe that, under p–refinement, the efficiency of employing local Pp polynomi-

als is apparent. Indeed, both the DGFEM and DGFEM(P) schemes lead to a

significant reduction in the error, when measured in terms of both the L2(Ω)-

and DGFEM–norms, for a fixed number of degrees of freedom, when compared

with the DGFEM(Q) scheme, cf. [61]. As before, the DGFEM and DGFEM(P)

schemes give almost identical results in terms of the size of the discretization error,
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Figure 5.5: Example 2: Modified uniform polygonal mesh, consisting of 256
elements

for a fixed number of degrees of freedom, though in some instances, the former

scheme is slightly more accurate.

5.3.2 Example 2

In this second example, we consider a partial differential equation with nonnegative

characteristic form of mixed type. To this end, we let Ω = (−1, 1)2, and consider

the PDE problem:−x2uyy + ux + u = 0, for − 1 ≤ x ≤ 1, y > 0,

ux + u = 0, for − 1 ≤ x ≤ 1, y ≤ 0,
(5.51)

with analytical solution:

u(x, y) =

sin(1
2
π(1 + y)) exp(−(x+ π2x3

12
)), for − 1 ≤ x ≤ 1, y > 0,

sin(1
2
π(1 + y)) exp(−x), for − 1 ≤ x ≤ 1, y ≤ 0,

(5.52)

cf. [103]. This problem is hyperbolic in the region y ≤ 0 and parabolic for y > 0.

In order to ensure continuity of the normal flux across y = 0, where the partial
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Figure 5.6: Example 2: Convergence of the DGFEM under p–refinement.
Left: ‖u − uh‖L2(Ω); Right: |‖u− uh|‖DG; (a) Meshes consisting of 64 and 256

elements; (b) Meshes consisting of 1024 and 4096 elements.

differential equation changes type, the analytical solution has a discontinuity across

the line y = 0, cf. [125].

To highlight one of the advantages of employing finite element methods with dis-

continuous piecewise polynomial spaces, we consider a special class of quadrilateral

and polygonal meshes for which the discontinuity in the analytical solution lies

on element interfaces only; for the case when polygonal elements are employed, a

typical mesh is shown in Figure 5.5. In this setting, following [125], we modify the

discontinuity-penalization parameter σ, so that σ vanishes on edges which form

part of the interface y = 0; this ensures that the (physical) discontinuity present

in the analytical solution is not penalized within the underlying scheme.

In this case, the hp–DGFEM behaves as if the analytical solution were smooth, in

the sense that exponential rates of convergence are observed for both the L2(Ω)-
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Figure 5.7: Example 3: Anisotropically refined meshes. 64 elements (Left);
196 elements (Right).

and DGFEM–norm of the error under p–refinement, cf. Figure 5.6. As in the pre-

vious example, we again observe that the slope of the convergence curves for both

the DGFEM and DGFEM(P) schemes are steeper than the corresponding con-

vergence curve obtained when local polynomial bases consisting of tensor-product

polynomials (Qp basis) are employed, cf. the numerical results presented for the

DGFEM(Q) scheme. The DGFEM and DGFEM(P) schemes give once more very

similar results in terms of the size of the computed error for a given number of

degrees of freedom. Nevertheless, we notice more clearly that the use of polygo-

nal elements leads to a slight improvement when considering ‖u − uh‖L2(Ω). As

noted in [61], cf. also [125], the improvement in the L2(Ω)–norm when polygons

are employed, in comparison with square elements, is attributed to the increase in

interelement communication.

5.3.3 Example 3

In the this example, we consider a singularly perturbed advection-diffusion prob-

lem equation

−ε∆u+ ux + uy = f,

with Ω := (0, 1)2, where 0 < ε� 1 and f is chosen so that

u(x, y) = x+ y(1− x) +
[e−1/ε − e−(1−x)(1−y)/ε]

[1− e−1/ε]
. (5.53)
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Figure 5.8: Example 3: Convergence of the DGFEM under p-refinement
(a) ε = 10−1 with 64 elements; (b) ε = 10−3 with 196 elements; (c) ε = 10−5

with 400 elements.

This example is taken from [125]. For 0 < ε� 1, (5.53) has boundary layers along

x = 1 and y = 1. Here, we use anisotropically refined meshes for resolving the

boundary layer.

In this numerical experiment we test the robustness of the DGFEM(P) and DGFEM-

(Q) on highly stretched anisotropic quadrilateral meshes as the physical diffusion ε

decreases. The meshes are constructed by geometrical refinement into the bound-

ary layers along x = 1 and y = 1 and are parameterized by nε which denotes the

number of points in the x and y directions. In Figure 5.7 we show a typical mesh

for nε = 9 and nε = 15. Figure 5.8 shows a plot of the DG–norm of the error
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under p-refinement for ε = 10−1, 10−3, 10−5 on geometrically refined quadrilateral

meshes with nε = 9, 15, 21, respectively. It is easy to see that in each case we

observe robust exponential convergence as the polynomial degree is increased for

both DGFEM(P) and DGFEM(Q) schemes, and DGFEM(P) still have a steeper

convergence in all cases.

5.3.4 Example 4

In this final example, we investigate the performance of the proposed DGFEM on

sequences of polyhedral meshes in three dimensions for a purely hyperbolic prob-

lem. To this end, we consider a three–dimensional variant of the two–dimensional

problem considered in Section 5.3.1. In particular, we let Ω be the unit cube (0, 1)3

and set

a ≡ 0, b = (−y, z, x), c = xy2z;

f is then selected so that the analytical solution to (5.1), (5.5) is

u(x, y) = 1 + sin(πxy2z/8). (5.54)

In this section the DGFEM solution is computed on general polyhedral meshes,

stemming from the agglomeration of a given (fixed) fine mesh Tf . More pre-

cisely, we employ a fine mesh consisting of approximately 1M tetrahedral elements

(1019674 elements, to be precise). cf. Figure 5.9 (a). The coarse agglomerated

mesh Th is then constructed based on exploiting the graph partitioning package

METIS [136]. In order for METIS to partition the mesh Tf , the logical structure

of the mesh is first stored in the form of a graph, where each node represents an

element domain of Tf , and each link between two nodes represents a face shared by

the two elements represented by the graph nodes. The partition of Tf constructed

by METIS is produced with the objective of minimizing the number of neighbours

among each of the resulting partitions. In Figure 5.9, we show (the surface mesh

of) the polyhedral meshes generated by METIS, which consist of 64, 512, 4096,

and 32768 elements.

In Figure 5.10 we investigate the h–version convergence behaviour of the DGFEM

on both the polyhedral meshes depicted in Figure 5.9 and uniform hexahedral

meshes, using local Pp polynomial bases; denoted by DGFEM and DGFEM(P),

respectively. As already noted in Section 5.3.1, we again observe that ‖u−uh‖L2(Ω)
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Figure 5.9: Example 4: (a). Initial fine mesh, consisting of approximately 1M
tetrahedral elements. Agglomerated meshes. (b) 64 elements; (c) 512 elements;

(d) 4096 elements; (e) 32768 elements.

and |‖u− uh|‖DG converge to zero at the optimal rates O(hp+1) and O(hp+
1
2 ), re-

spectively, as the mesh size h tends to zero for each fixed p when the DGFEM(P)

scheme is employed on uniform tensor-product elements. Moreover, we observe
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Figure 5.10: Example 4: Convergence of the DGFEM under h–refinement for
p = 1, 2, 3, 4. (a) ‖u− uh‖L2(Ω); (b) |‖u− uh|‖DG.
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Figure 5.11: Example 4: Convergence of the DGFEM under p–refinement.
(a) ‖u− uh‖L2(Ω); (b) |‖u− uh|‖DG.



DGFEMs for PDEs with Nonnegative Characteristic Form 96

that the DGFEM–norm of the error, when general polyhedral elements are em-

ployed, is very similar to the corresponding quantity computed for the DGFEM(P)

scheme. However, we observe a slight degradation of ‖u − uh‖L2(Ω), when the

DGFEM scheme is employed, when compared to the case when uniform hexahedral

elements are exploited. For brevity, the corresponding results for the DGFEM(Q)

are omitted, though, we note again that, for fixed p, this approach is more efficient

as the mesh is uniformly refined.

Finally, we study the performance of the DGFEM, DGFEM(P), and DGFEM(Q)

schemes under p–refinement, for a given fixed mesh. To this end, in Figure 5.11

we plot both ‖u− uh‖L2(Ω) and |‖u− uh|‖DG against the third root of the number

of degrees of freedom in Sp
Th . As in the previous numerical examples, we again

observe the superiority of employing local polynomial bases of total degree p in

comparison with full tensor-product bases of degree p in each coordinate direction.



Chapter 6

DGFEMs for Time-Dependent

PDEs on Prismatic Meshes

In Chapter 5, we presented a detailed analysis on IP-DGFEM for PDEs with

non-negative characteristic form. In this chapter, we will study more in detail

space-time DGFEMs for time-dependent parabolic PDEs, which is an important

class of PDEs with non-negative characteristic form. The analysis presented here

is based on that for IP-DGFEM scheme for pure diffusion problem in Section 4.3

Chapter 4, and also the analysis in Chapter 5, following the arbitrary number of

faces per element mesh assumption 4.3.1. We present a priori bounds for the IP-

DGFEM in L2(H1)– and L2(L2)–norms applied to the underlying time-dependent

parabolic PDE. We begin by introducing the model problem, thereby extending

the findings of Chapter 5 for this important case. The work contained in this

chapter is drawn from [58].

6.1 Model problem

Let Ω be a bounded open polyhedral domain in Rd, d = 2, 3, and let J := (0, T )

a time interval with T > 0. We consider the linear parabolic problem:

∂tu−∇ · (a∇u) = f in J × Ω,

u|t=0 = u0 on Ω, and u = gD on J × ∂Ω,
(6.1)

97
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for f ∈ L2(J ;L2(Ω)) and a ∈ L∞(J × Ω)d×d, symmetric with

ξ>a(t,x)ξ ≥ θ|ξ|2 > 0 ∀ξ ∈ Rd, a.e. (t, x) ∈ J × Ω, (6.2)

for some constant θ > 0, a is allowed to depends on time t, which is different from

diffusion tensor a in Chapter 4 and Chapter 5. Note that the differential operator

∇ := (∂1, ∂2, · · · , ∂d), i.e., is applied to the spatial variables only. For u0 ∈ L2(Ω)

and gD = 0 the problem (6.1) is well-posed and there exists a unique solution

u ∈ L2(J ;H1
0 (Ω)) with u ∈ C(J̄ ;L2(Ω)) and ∂tu ∈ L2(J ;H−1(Ω)), see [139, 142].

6.2 Space-time DGFEMs for parabolic PDEs

For notational consistency, d denotes the dimension of the spatial domain Ω. So

the above parabolic problem (6.1) can be regarded as a (d+ 1)-dimensional PDE

with non-negative characteristic form, with hyperbolicity along time and strong

ellipticity over the spatial domain. We emphasize that the mesh Assumption 4.3.1

will be used through this chapter. It is possible, however, to repeat the analysis

using Assumption 3.1.1, but this is not done here for brevity.

For the sake of simplicity, we consider PDEs with Dirichlet boundary condition

∂Ω = ∂ΩD, which implies FBh = FDh and also Fh = FIh ∪ FDh . Spatial meshes

κ ∈ Th are defined in the same way as in the previous chapters.

Next, we introduce the temporal discretisation. Let Uh be a partition of the

time interval J into Nt time steps {In}Ntn=1, with In = (tn−1, tn) with respective

set of nodes {tn}Ntn=0 defined so that 0 := t0 < t1 < · · · < tNt := T . Set also

λn := tn − tn−1, the length of In. For every time interval In ∈ Uh and every space

element κ ∈ Th, we define the (d + 1)-dimensional space-time prismatic element

κn := In × κ; see Figure 6.1 for an illustration. Let pκn denote the (positive)

polynomial degree of the space-time element κn, and collect pκn in the vector

p := (pκn : κn ∈ Uh × Th). We define the space-time finite element space with

respect to time interval In, subdivision T , and p by

V p(In; Th) := {u ∈ L2(In × Ω) : u|κn ∈ Ppκn (κn), κn ∈ In × Th},

where Ppκn (κ) denotes the space of polynomials of total degree pκn on κn. The

space-time finite element space Sp(Uh; Th) with respect to Uh, Th, and p is de-

fined as Sp(Uh; Th) =
⊕Nt

n=1 V
p(In; Th). Note that the local elemental polynomial
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(a) (b)

Figure 6.1: (a). 16 polygonal spatial elements over the spatial domain Ω =
(0, 1)2; (b) 16 space-time elements over In × Ω.

spaces employed in the definition of Sp(Uh; Th) are defined in the physical coor-

dinate system, without the need to map from a given reference/canonical frame;

cf. [61]. This setting is crucial to retain full approximation of the finite element

space, independently of the element shape. Note that Sp(Uh; Th) employs fewer de-

grees of freedom per space-time element compared to the standard tensor-product

polynomial bases of the usual space-time DGFEMs.

We shall also make use of the broken Sobolev space H l(J × Ω,Uh; Th), up to

composite order l := (lκn : κn ∈ Uh × Th) defined by

H l(J × Ω,Uh; Th) = {u ∈ L2(J × Ω) : u|κn ∈ H lκn (κn), κn ∈ Uh × Th}. (6.3)

For u ∈ H1(Ω, T ), we define the broken spatial gradient (∇hu)|κ = ∇(u|κ), κ ∈ T .

Finally, let hκn denote the diameter of the space-time element κn; for convenience,

we collect the hκn in the vector h := (hκn : κn ∈ Uh × Th).

Remark 6.1. The main reason to introduce the space-time mesh diameter hκn

is that the proposed DGFEM is using space-time Pp basis on each element κn,

∀κn ∈ Uh × Th. So the appropriate function space for error analysis is the space-

time Sobolev space rather than the Bochner space.

In order to work on the (d+ 1)-dimensional space-time elements κn ∈ Uh×Th, we

introduce F̃t a generic d-dimensional face of a space-time element κn ∈ Uh × Th,
which should be distinguished from the (d− 1)-dimensional face F of the spatial

element κ ∈ Th. For any space-time element κn ∈ Uh × Th, we define ∂κn to be
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the union of all d-dimensional open faces F̃t of κn. For convenience, we further

subdivide F̃t into two disjoint subsets

F̃
‖
t := F̃t ⊂ J ×Fh, and F̃⊥t := F̃t ⊂ {tn}Ntn=0 × Ω, (6.4)

i.e., the parallel and perpendicular to the time direction boundaries, respectively.

Hence, for each κn, there exist exactly two d-dimensional faces F̃⊥t and the number

of d-dimensional faces F̃
‖
t is equal to the number of (d − 1)-dimensional spatial

faces F of the spatial element κ.

Next, we extend the definition of trace operators defined in Chapter 2 over the

space-time element κn ∈ Uh × Th. Let κ1
n and κ2

n be two adjacent space-time

elements sharing a face F̃
‖
t = ∂κ1

n ∩ ∂κ2
n and (t, x) ∈ F̃ ‖t ⊂ J × FIh ; let also n̄κ1n

and n̄κ2n denote the outward unit normal vectors on F̃
‖
t , relative to ∂κ1

n and ∂κ2
n,

respectively. Then, for v and q, scalar- and vector-valued functions, respectively,

smooth enough for their traces on F̃
‖
t to be well defined, we define the averages

{{v}} := 1
2
(v|κ1n + v|κ2n), {{q}} := 1

2
(q|κ1n + q|κ2n), and the jumps [[v]] := vκ1n n̄κ1n +

vκ2n n̄κ2n , [[q]] := qκ1n · n̄κ1n +qκ2n · n̄κ2n , respectively. On a boundary face F̃
‖
t ⊂ J×FBh

and F̃
‖
t ⊂ ∂κn, we set {{v}} = v|κn , {{q}} = q|κn , [[v]] = v|κnn̄κn , [[q]] = q|κn · n̄κn ,

with nκn denoting the unit outward normal vector on the boundary. Upon defining

u+
n := lim

s→0+
u(tn + s), 0 ≤ n ≤ Nt − 1, u−n := lim

s→0+
u(tn − s), 1 ≤ n ≤ Nt,

the time-jump across tn, n = 1, . . . , Nt − 1 is given by bucn := u+
n − u−n .

Remark 6.2. The above time-jump across different time nodes is exactly the same

upwind-jump, due to the fact that the hyperbolicity of parabolic problem is only

along the time direction.

Equipped with the above notation, we can now describe the space-time discontin-

uous Galerkin method for the problem (6.1), reading: find uh ∈ Sp(Uh; Th) such

that

B(uh, vh) = `(vh), for all vh ∈ Sp(Uh; Th), (6.5)

where B : Sp(Uh; Th)× Sp(Uh; Th)→ R is defined as

B(u, v) :=
Nt∑
n=1

∫
In

(
(∂tu, v) +Bd(u, v)

)
dt+

Nt∑
n=2

(bucn−1, v
+
n−1) + (u+

0 , v
+
0 ), (6.6)
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with the spatial IP-DGFEM bilinear form Bd(·, ·) given by

Bd(u, v) :=
∑
κ∈Th

∫
κ

a∇u·∇v dx−
∑
F∈Fh

∫
F

(
{{a∇u}}·[[v]]+{{a∇v}}·[[u]]−σ[[u]]·[[v]]

)
ds,

and the linear functional ` : Sp(Uh; Th)→ R given by

`(v) :=
Nt∑
n=1

∫
In

(
(f, v)−

∑
F∈FDh

∫
F

gD

(
(a∇hv) · n− σv

)
ds
)

dt+ (u0, v
+
0 ).

The nonnegative function σ ∈ L∞(J × Fh) appearing in Bd and ` above is again

referred to as the discontinuity-penalization function; its precise definition, de-

pending on the diffusion tensor a and on the discretization parameters, will be

given in Lemma 6.5 in next section.

The use of prismatic meshes is key in that it permits us to solve for each time-step

separately: for each time interval In ∈ Uh, n = 2, . . . , Nt, the solution Un = uh|In ∈
V p(In; Th) is given by:∫

In

(∂tUn, Vn) +Bd(Un, Vn) dt+ (U+
n−1, V

+
n−1)

=

∫
In

(
(f, Vn)−

∑
F∈FDh

∫
F

gD

(
(a∇hVn) · n− σVn

)
ds
)

dt+ (U−n−1, V
+
n−1), (6.7)

for all Vn ∈ V p(In; Th), with U−n−1 serving as the initial datum at time step In; for

n = 1, we set U−0 = u0.

6.2.1 Inf-sup Stability of space-time DGFEMs

We shall establish the unconditional stability of the above space-time DGFEMs,

via the derivation of an inf-sup condition for arbitrary aspect ratio between the

time-step and the local spatial mesh-size. The proof circumvents the global shape-

regularity assumption, required in the respective result in Theorem 5.5 in Chapter

5 for the case of parabolic problems, since hyperbolicity is only imposed along

time.

Lemma 6.3. Let v ∈ Ppκn (κn), κn ∈ Uh × Th and Θ ∈ {κ, F}. Then, there exist

positive constants Cinv,6 and Cinv,7, independent of v, κn, λn and pκn, such that

‖v‖2
L2(F̃⊥t )

≤ Cinv,6

p2
κn

λn
‖v‖2

L2(κn), (6.8)



DGFEMs for Parabolic PDEs 102

‖∂tv‖2
L2(In;L2(Θ)) ≤ Cinv,7

p4
κn

λ2
n

‖v‖2
L2(In;L2(Θ)). (6.9)

Proof. We note that (d + 1)-dimensional spatial element κn := In × κ. So we

start the proof over the reference time interval Î := (−1, 1) and then the general

result can be derived by using the scaling augment. We start with (6.8). For

v ∈ Ppκn (Î × κ), we can rewrite v into the Legendre polynomial Ln(t̂) up to order

pκn with respect to variable t̂ over reference temporal interval Î := (−1, 1), such

that

v(t̂,x) =

pκn∑
n=0

an(x)Ln(t̂) with an(x) =
2n+ 1

2

∫
Î

v(t̂,x)Ln(t̂) dt, (6.10)

with L2–norm

‖v(t̂,x)‖2
L2(Î×κ)

=

∫
κ

pκn∑
n=0

pκn∑
m=0

an(x)am(x)
2δmn

2n+ 1
dx =

pκn∑
n=0

‖an‖2
L2(κ)

2

2n+ 1
. (6.11)

Here, we have used the orthogonality of Legendre polynomials. The coefficient

an(x) is a function of the spatial variable x only. To be more precise, they are

polynomial of total degree up to pκn − n in spatial variables. Next, we have the

following result:

‖v(±1,x)‖L2(κ) ≤
pκn∑
n=0

‖an(x)‖L2(κ)|Ln(±1)| ≤ (pκn + 1)√
2
‖v(t̂,x)‖L2(κn). (6.12)

Here, we used the Cauchy-Schwartz inequality and the fact that |Ln(±1)| = 1. By

using the scaling argument, then (6.8) is proved. Next, we prove (6.9). Here, we

introduce set Θ to denote d-dimensional spatial element κ or (d− 1)-dimensional

spatial face F . We first introduce the following result:

‖∂tv‖L2(Î) ≤
pκn∑
n=0

|an(x)|‖L′n(t̂)‖L2(Î) ≤
pκn∑
n=0

|an(x)|(n(n+ 1))1/2 ≤
√

3p2
κn‖v‖L2(Î).

(6.13)

Here, we have used result ‖L′n(t̂)‖2
L2(Î)

= n(n + 1); see [167] for detail. Then we

use above result together with Fubini’s theorem to derive the following result:

‖∂tv‖2
L2(Î;L2(Θ))

≤ 3p4
κn

∫
Θ

‖v‖2
L2(Î)

dΘ = 3p4
κn‖v‖

2
L2(Î;L2(Θ))

. (6.14)

Finally, we can use the scaling argument to derive (6.9) .
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Remark 6.4. The proof of Lemma 6.3 can be viewed as an extension of anisotropic

tensor product elements with anisotropic tensor product Qp polynomial basis

[103, 163, 106]. In our scheme, the spatial mesh is a general polytopic mesh

and the polynomial basis here is total degree basis Pp. Due to the fact that the

space time element κn = In × κ is constructed by tensor product of spatial and

temporal meshes. All inverse estimates related to time variable can be treated as

one dimensional inverse estimation problems with respect to time variable. The

resulting inverse estimate is sharp in the sense that it only depends on temporal

mesh size λn.

For the forthcoming stability analysis, we introduce an inconsistent bilinear form

Bd(·, ·): for u, v ∈ S := L2(J ;H1(Ω)) ∩H1(J ;H−1(Ω)) + Sp(Uh; Th), we set

B̃(u, v) :=
Nt∑
n=1

∫
In

(
(∂tu, v) + B̃d(u, v)

)
dt+

Nt∑
n=2

(bucn−1, v
+
n−1) + (u+

0 , v
+
0 ), (6.15)

where

B̃d(u, v) :=
∑
κ∈Th

∫
κ

a∇u · ∇v dx

−
∑
F∈Fh

∫
F

(
{{aΠ2(∇u)}} · [[v]] + {{aΠ2(∇v)}} · [[u]]− σ[[u]] · [[v]]

)
ds,

and a modified linear functional ˜̀ : S → R, given by

˜̀(v) :=
Nt∑
n=1

∫
In

(
(f, v)−

∑
F∈FDh

∫
F

gD

(
aΠ2(∇hv) · n− σv

)
ds
)

dt+ (u0, v
+
0 ).

Here, Π2 : [L2(J ;L2(Ω))]d → [Sp(Uh; Th)]d denotes the vector-valued L2–projection

onto [Sp(Uh; Th)]d. It is immediately clear, therefore, that B(uh, vh) = B̃(uh, vh)

and that l(vh) = l̃(vh), for all vh ∈ Sp(Uh; Th).

By recalling the definition of
√

a be the square root of a and set āκn = |
√

a|22|κn , for

κn ∈ Uh×Th, with | · |2 denoting the matrix l2–norm. We introduce the DG–norm

|‖·|‖DG:

|‖v|‖DG :=
(∫

J

|‖v|‖2
d dt+

1

2
‖v+

0 ‖2 +
Nt−1∑
n=1

1

2
‖bvcn‖2 +

1

2
‖v−Nt‖

2
)1/2

, (6.16)
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with

|‖v|‖2
d :=

∑
κ∈Th

‖
√
a∇v‖2

L2(κ) +
∑
F∈Fh

∫
F

σ|[[v]]|2 ds. (6.17)

The continuity and coercivity of the inconsistent diffusion bilinear form B̃d(·, ·)
with respect to the diffusion DG–norm |‖·|‖d is established in following lemma.

Lemma 6.5. Let Assumption 4.3.1 holds and let σ : J × Fh → R+ be defined

face-wise over all F̃
‖
t by

σ(t, x) :=


Cσ max

κn:F̃
‖
t ∩κ̄n 6=∅

{ ā2
κn(pκn + 1)(pκn + d)

hκ

}
, F̃

‖
t ⊂ J ×FIh ,

Cσ max
κn:F̃

‖
t ∩κ̄n 6=∅

ā2
κn(pκn + 1)(pκn + d)

hκ
, F̃

‖
t ⊂ J ×FDh ,

(6.18)

with Cσ > 0 sufficiently large, independent of discretization parameters and the

number of faces per element. Then, for all v ∈ S, we have∫
J

B̃d(v, v) dt ≥ Ccoer

∫
J

|‖v|‖2
d dt, (6.19)

∫
J

B̃d(w, v) dt ≤ Ccont

∫
J

|‖w|‖d |‖v|‖d dt, (6.20)

B̃(v, v) ≥ C̄|‖v|‖2
DG, (6.21)

for all v ∈ S, with the positive constants Ccoer, Ccont and C̄, independent of the

discretization parameters, the number of faces per element, and of v.

Proof. The proof of coercivity in relation (6.19) and continuity in relation (6.20)

under the mesh Assumption 4.3.1 are exactly the same as in Lemma 4.12 in Section

4.3. Here, Ccoer depends on the shape regularity constant Cs and also the uniform

ellipticity constant θ. Hence, the bilinear form B̃d(·, ·) is coercive over S × S for

ε > 1/2 and Cσ > 2Csε/θ. Cσ depends on constant Cs, but is independent of the

number of faces per element.
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For (6.21), integration by parts on the first term on the right-hand side of (6.15)

along with (6.19) yield

B̃(v, v) ≥ Ccoer

∫
J

|‖v|‖2
d dt+

1

2
‖v+

0 ‖2 +
Nt−1∑
n=1

1

2
‖bvcn‖2 +

1

2
‖v−Nt‖

2

≥ C̄|‖v|‖2
DG,

with C̄ = min{1, Ccoer}.

Remark 6.6. Our approach is dictated by the shape regularity Assumption 4.3.1

allowing for an arbitrary number of faces per element. In contrast, if mesh Assump-

tion 3.1.1 is employed, no shape regularity was explicitly assumed at the expense

of imposing a uniform bound on the number of faces per element. Clearly, the two

approaches can be combined to produce admissible discretisations on even more

general mesh settings; we refrain from doing so here in the interest of brevity and

we refer to the forthcoming [60] for the complete treatment.

Moreover, the coercivity constant may depend on the shape regularity constant Cs

and on the uniform ellipticity constant θ. To avoid the dependence on the latter,

it is possible to combine the present developments with the DGFEM proposed in

[105]; we refrain from doing so here, in the interest of simplicity of the presentation.

Before we prove the inf-sup condition, we briefly talk about the reasons why the

inf-sup condition is essential for the proposed space-time DGFEMs. The classical

a priori error analysis for DG time-stepping scheme depends highly on utilising

the tensor product structure of the space time basis. The optimal error bound

in various norms depends on using special temporal projections introduced by

Thomée [180] and elliptic projection introduced by Wheeler [186] over spatial

domains, see also [159] for the hp–version a priori error analysis. Due to the lack

of the space-time tensor product structure of the basis, we can not use the classical

techniques to do error analysis. To address this issue we prove an inf-sup condition

for the inconsistent bilinear form B̃(·, ·), with respect to the following streamline

diffusion DGFEM–norm.

Definition 6.7. The streamline diffusion DGFEM–norm is defined by:

|‖v|‖2
s := |‖v|‖2

DG +
∑

κn∈Uh×Th

τκn‖∂tv‖2
L2(κn), (6.22)
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where

τκn :=
λn
p̂2
κn

, ∀κn ∈ Uh × Th,

for pκn ≥ 1 and p̂κn defined as

p̂κn := max
F̃
‖
t ⊂∂κn

{
max

κ̃n∈{κn,κ′n}
F̃
‖
t ⊂∂κn∩∂κ′n

{
pκ̃n

}}
, ∀κn ∈ Uh × Th; (6.23)

p̂κn is the largest polynomial order among each element κn ∈ Uh × Th and their

spatial neighbouring elements.

Theorem 6.8. Given Assumption 4.3.1, there exists a constant Λs > 0, indepen-

dent of the temporal and spatial mesh sizes λn, hκ, of the polynomial degree pκn

and of the number of faces per element, such that:

inf
ν∈Sp(Uh;Th)\{0}

sup
µ∈Sp(Uh;Th)\{0}

B̃(ν, µ)

|‖ν|‖s|‖µ|‖s

≥ Λs. (6.24)

Proof. For ν ∈ Sp(Uh; Th), we select µ := ν + ανs, with νs|κn := τκn∂tν, κn ∈
Uh × Th, with 0 < α ∈ R, at our disposal. Then, (6.24) follows if both the

following:

|‖µ|‖s ≤ C∗|‖ν|‖s, (6.25)

and

B̃(ν, µ) ≥ C∗|‖ν|‖2
s , (6.26)

hold, with C∗ > 0 and C∗ > 0 constants independent of hκ, λn, pκn , the number

of faces per element, and Λs = C∗/C
∗.

To show (6.25), we start by considering the jump terms at time nodes {tn}Ntn=0.

Employing (6.8), we have

1

2
‖(ν+

s )0‖2 +
Nt−1∑
n=1

1

2
‖bνscn‖2 +

1

2
‖(ν−s )Nt‖2

≤
∑

κn∈Uh×Th

τ 2
κn

∑
F̃⊥t ⊂∂κn

‖∂tν‖2
L2(F̃⊥t )

≤
∑

κn∈Uh×Th

2Cinv,6

τκnp
2
κn

λn

(
τκn‖∂tν‖2

L2(κn)

)
≤ C1|‖ν|‖2

s . (6.27)
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Using (6.9) with Θ = κ and relation (6.23), the second term on the right-hand

side of (6.22) is estimated by

∑
κn∈Uh×Th

τκn‖∂tνs‖2
L2(κn) ≤

∑
κn∈Uh×Th

Cinv,7

τ 2
κnp

4
κn

λ2
n

(
τκn‖∂tν‖2

L2(κn)

)
≤ C2|‖ν|‖2

s . (6.28)

Next, for the first term on the right-hand side of (6.22), employing (6.9) with

Θ = κ, the uniform ellipticity condition (6.2), together with Fubini’s theorem, we

have

∑
κn∈Uh×Th

‖
√

a∇νs‖2
L2(κn) ≤

∑
κn∈Uh×Th

āκnτ
2
κn‖∂t(∇ν)‖2

L2(κn) (6.29)

≤
∑

κn∈Uh×Th

āκnCinv,7

τ 2
κnp

4
κn

λ2
n

‖∇ν‖2
L2(κn)

≤
∑

κn∈Uh×Th

Cinv,7
āκn
θ

τ 2
κnp

4
κn

λ2
n

‖
√

a∇ν‖2
L2(κn) ≤ C3|‖ν|‖2

s .

Finally, employing (6.9) with Θ = F and (6.23), we have

∑
F∈Fh

∫
J

∫
F

σ|[[νs]]|2 ds dt =
∑

F̃
‖
t ⊂J×Fh

στ 2
κn‖∂t[[ν]]‖2

L2(F̃
‖
t )

≤
∑

F̃
‖
t ⊂J×Fh

σCinv,7

τ 2
κn

λ2
n

(
max

κ̃n∈{κn,κ′n}
F̃
‖
t ⊂∂κn∩∂κ′n

{pκ̃n}
)4‖[[ν]]‖2

L2(F̃
‖
t )

≤
∑

F̃
‖
t ⊂J×Fh

σCinv,7‖[[ν]]‖2

L2(F̃
‖
t )
≤ C4|‖ν|‖2

s . (6.30)

Combining the above, we have |‖νs|‖s ≤ Ĉ|‖ν|‖s, where Ĉ =
√∑4

i=1 Ci, or

|‖µ|‖s ≤ |‖ν|‖s + α|‖νs|‖s ≤ (1 + αĈ)|‖ν|‖s ≡ C∗(α)|‖ν|‖s. (6.31)

For (6.26), we start by noting that B̃(ν, µ) = B̃(ν, ν) + αB̃(ν, νs). Also

B̃(ν, νs) =
Nt∑
n=1

( ∑
κn∈Uh×Th

τκn‖∂tv‖2
L2(κn) +

∫
In

B̃d(ν, νs) dt
)

+
Nt∑
n=2

(bνcn−1, (νs)
+
n−1) + (ν+

0 , (νs)
+
0 ).
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Further, using (6.8), we have

Nt∑
n=2

(bνcn−1, (νs)
+
n−1) + (ν+

0 , (νs)
+
0 )

≤
∑

κn∈Uh×Th

‖bνc‖L2(F̃⊥t ⊂∂κn)

(
τκn

∑
F̃⊥t ⊂∂κn

‖∂tν‖L2(F̃t)

)
≤ 4Cinv,6

(
‖ν+

0 ‖2 + ‖bνcn‖2 + ‖ν−Nt‖
2
)

+
∑

κn∈Uh×Th

τκn
4
‖∂tν‖2

L2(κn), (6.32)

where, with slight abuse of notation, we have extended the definition of the time

jump bνc to time boundary faces. Next, from (6.20), together with (6.29) and

(6.30), we get

Nt∑
n=1

∫
In

B̃d(ν, νs) dt ≤
Nt∑
n=1

∫
In

Ccont|‖ν|‖d|‖νs|‖d dt

≤ (Ccont)
2

2

∫
J

|‖ν|‖2
d dt+

1

2

∫
J

|‖νs|‖2
d dt

≤ (Ccont)
2 + C3 + C4

2

∫
J

|‖ν|‖2
d dt. (6.33)

Combining (6.21) with (6.32) and (6.33), we arrive at

B̃(ν, µ) = B̃(ν, ν) + αB̃(ν, νs)

≥
(1

2
− 4αCinv,6

)(
‖ν+

0 ‖2
L2(Ω) +

Nt−1∑
n=1

‖bνcn‖2
L2(Ω) + ‖ν−Nt‖

2
L2(Ω)

)
+

(
Ccoer − α

(Ccont)
2 + C3 + C4

2

)∫
J

|‖ν|‖2
d dt

+
∑

κn∈Uh×Th

α
(
τκn −

τκn
4

)
‖∂tν‖2

L2(κn).

The coefficients in front of the norms arising on the right hand side of the above

bound are all positive if

α < min
{ 1

(8Cinv,6)
,

2Ccoer

((Ccont)2 + C3 + C4)

}
,

with the latter independent of the discretization parameters and the number of

faces per element.

The above result shows that the space-time DGFEM based on the reduced total-

degree-p space-time basis is well posed. It extends the stability proof from [59]
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κ

K

κ
n

Kn

I
n

(a) (b)

Figure 6.2: (a). Polygonal spatial element κ and covering K; (b) space-time
element κn = In × κ and covering Kn := In ×K.

to space-time elements with arbitrarily large aspect ratio between the time-step

λn and local mesh-size hκ for parabolic problems. Moreover, the inf-sup stability

result holds without any assumptions on the number of faces per spatial mesh,

too. Therefore, the scheme is shown to be stable for extremely general, possibly

anisotropic, space-time meshes.

The above inf-sup condition will be instrumental in the proof of the a priori error

bounds below, as the total-degree-p space-time basis does not allow for classical

space-time tensor-product arguments [180] to be employed.

6.2.2 A priori error analysis in L2(H1)–norm

In view of using known approximation results, we shall require a shape-regularity

assumption for the space-time elements.

Assumption 6.2.1. We assume the existence of a constant creg > 0 such that

c−1
reg ≤ hκ/λn ≤ creg,

uniformly for all κn ∈ U ×T , i.e., the space-time elements are also shape-regular.

In this section, we need to slightly modify the Definition 3.9 for the spatial mesh

coverings.
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Definition 6.9. A covering T ]h = {K} related to the polytopic mesh Th is a set of

shape-regular d–simplices or hypercubes K, such that for each κ ∈ Th, there exists

a T ]h , with κ ⊂ K. We refer to Figure 6.2(a) for an illustration. Given T ]h , we

denote by Ω] the covering domain given by Ω] :=
(
∪K∈T]K̄

)◦
, with D◦ denoting

the interior of a set D ⊂ Rd.

The coveringK satisfies the Assumption 3.3.1. As a consequence, we have diam(K) ≤
Cdiamhκ, for each pair κ ∈ Th, K ∈ T ]h , with κ ⊂ K, for a constant Cdiam > 0,

uniformly with respect to the mesh size.

Theorem 6.10 (Stein). Let Ω be a domain with a Lipschitz boundary. Then,

there exists a linear extension operator E : Hs(Ω) → Hs(Rd), s ∈ N0, such that

Ev|Ω = v and ‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω), with C > 0 constant depending only on s

and Ω.

Moreover, we shall also denote by Ev the (trivial) space-time extension Ev :

L2(J ;Hs(Ω)) → L2(J ;Hs(Rd)) defined as the spatial extension above, for every

t ∈ J . Next, we present the hp-approximation results in next lemma.

Lemma 6.11. Let κn ∈ Uh×Th, F̃t ⊂ ∂κn a face, and K ∈ T ]h as in Definition 6.9

and let Kn = In × K (see Figure 6.2(b) for an illustration). Let v ∈ L2(J × Ω),

such that Ev|Kn ∈ H lκn (Kn), for some lκn ≥ 0. Suppose also that Assumptions

6.2.1 and 3.3.1 hold. Then, there exists Π̃v|κn ∈ Ppκn (κn), such that

‖v − Π̃v‖Hq(κn) ≤ C
h
sκn−q
κn

p
lκn−q
κn

‖Ev‖Hlκn (Kn), lκn ≥ 0, (6.34)

for 0 ≤ q ≤ lκn,

‖v − Π̃v‖L2(∂κn∩F̃⊥t ) ≤ C
h
sκn−1/2
κn

p
lκn−1/2
κn

‖Ev‖Hlκn (Kn), lκn > 1/2, (6.35)

and

‖v − Π̃v‖
L2(∂κn∩F̃ ‖t )

≤ C
h
sκn−1/2
κn

p
lκn−1/2
κn

‖Ev‖Hlκn (Kn), lκn > 1/2, (6.36)

with sκn = min{pκn+1, lκn}, and C > 0 constant, depending on the shape-regularity

of Kn, but independent of v, hκn, pκn and the number of faces per element.

Proof. The bound (6.34) can be proved in completely analogous fashion to the

bounds appearing in relation (3.28) in Section 3.3. The proof of (6.35) also follows

using an anisotropic version of the classical trace inequality (see, e.g., [103]) and
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(6.34) for q = 0, 1. The proof for (6.36) follows the same proof as Lemma 4.10

in Section 4.3. Here, the constant C depends on the constant from the trace

inequality, but is independent of the discretization parameters and number of

faces per element.

We first give an a priori error bound for the space-time DGFEM in the |‖·|‖s−norm,

before using this bound to prove a respective L2(L2)–norm a priori error bound.

Theorem 6.12. Let Assumptions 4.3.1, 6.2.1 and 3.3.1 hold, and let uh ∈ Sp(Uh; Th)
be the space-time DGFEM approximation to the exact solution u ∈ L2(J ;H1(Ω))∩
H1(J ;H−1(Ω)), with the discontinuity-penalization function given by (6.18), and

suppose that u|κn ∈ H lκn (κn), lκn ≥ 1, for each κn ∈ Uh × Th, such that Eu|Kn ∈
H lκn (Kn). Then, the following error bound holds:

|‖u− uh|‖2
s ≤ C

∑
κn∈Uh×Th

h
2sκn
κn

p
2lκn
κn

(
Gκn(hκn , pκn) +Dκn(hκn , pκn)

)
‖Eu‖2

Hlκn (Kn), (6.37)

where

Gκn(hκn , pκn) = τ−1
κn + τκnp

2
κnh

−2
κn + pκnh

−1
κn + āκnp

2
κnh

−2
κn + pκnh

−1
κn max

F̃
‖
t ⊂∂κn

σ,

and

Dκn(hκn , pκn) = ā2
κn

(
p3
κnh

−3
κn max

F̃
‖
t ⊂∂κn

σ−1 + p4
κnh

−3
κn max

F̃
‖
t ⊂∂κn

σ−1
)
, (6.38)

with sκ = min{pκ+1, lκ} and pκ ≥ 1. Here, the positive constant C is independent

of the discretization parameters, number of faces per element and u.

Proof. After noting that λn ≤ creghκ by Assumption 6.2.1, an a priori bound can

be derived following a similar approach as Theorem 5.9 where an a priori bound

for general second order linear problems is presented. However, we point out

that here a different treatment of the trace terms to take advantages of the mesh

Assumption 4.3.1 used here by employing the Lemma 6.11.

Remark 6.13. The above a priori bound holds without any assumptions on the

relative size of the spatial faces F , F ⊂ ∂κ, and number of faces of a given

spatial polytopic element κ ∈ Th, i.e., elements with arbitrarily small faces and/or

arbitrary number of faces are permitted, as long as they satisfy Assumption 4.3.1.
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For later reference, we note that Dκn(hκn , pκn) given in (6.38), estimates the in-

consistency part of the error; and it is identical to the term appeared in (5.48) in

Chapter 5.

Remark 6.14. The proposed method uses space-time Pp basis on each element

κn, ∀κn ∈ Uh × Th, instead of the tensor-product basis used by standard DG-

time stepping schemes. Consequently, the above a priori bound (6.37) requires a

space-time Sobolev regularity which is stronger than the natural regularity of the

parabolic problem at hand. This extra regularity has to be assumed.

Corollary 6.15. Assume the hypotheses of Theorem 6.37 and consider uniform

elemental polynomial degrees pκn = p ≥ 1. Assume also that h = maxκn∈Uh×Th hκn,

sκn = s and s = min{p+ 1, l}, l ≥ 1. Then, we have the bound

‖u− uh‖L2(J ;H1(Ω)) ≤ C
hs−1

pl−3/2
‖u‖Hl(J×Ω),

for C > 0 constant, independent of u, uh, number of faces per element, and of the

mesh parameters.

Proof. We begin by observing the bounds

θ‖v‖2
L2(J ;H1(Ω)) ≤ |‖v|‖2

DG ≤ |‖v|‖2
s . (6.39)

Theorem 6.10, together with Assumption 3.3.1, implies that

‖Eu‖Hl(J×Ω]) ≤ C‖u‖Hl(J×Ω),

and the result follows.

The above bound is, therefore, h−optimal and p−suboptimal by p1/2.

6.2.3 A priori error analysis in L2(L2)–norm

In this section, we derive an error bound in the L2(J ;L2(Ω))–norm using a parabolic

duality argument. To this end, the backward adjoint problem of (6.1) is defined

by

−∂tz −∇ · (a∇z) = φ in J × Ω,

z|t=T = g on Ω, and u = 0 on J × ∂Ω.
(6.40)
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Assume that g ∈ H1
0 (Ω) and φ ∈ L2(J ;L2(Ω)). Then we have

z ∈ L2(J ;H2(Ω)) ∩ L∞(J ;H1
0 (Ω)), ∂tz ∈ L2(J ;L2(Ω)), (6.41)

We assume that Ω is convex and a is smooth such that the parabolic regularity

estimate

‖z‖L∞(J ;H1
0 (Ω)) + ‖z‖L2(J ;H2(Ω)) + ‖z‖H1(J ;L2(Ω)) ≤ (6.42)

Cr(‖φ‖L2(J ;L2(Ω)) + ‖g‖H1
0 (Ω)),

holds with the constant Cr > 0 depending only on Ω, T and a; cf. [96, p.360] for

smooth domains, and the parabolic regularity results can be extended to convex

domains by using results in [113, Chapter 3].

For the sake of simplicity, we make the following local bounded variation assump-

tion.

Assumption 6.2.2. For any two d-dimensional spatial elements κ, κ′ ∈ T sharing

the same (d− 1)−face, we have:

max(hκ, hκ′) ≤ ch min(hκ, hκ′), max(pκn , pκ′n) ≤ cp min(pκn , pκ′n), (6.43)

for n = 1, . . . , Nt, ch > 0, cp > 0 constants, independent of discretization parame-

ters.

Before deriving the main results in this section, we introduce some approximation

results in the following lemma.

Lemma 6.16. For v ∈ H1(In), In ∈ Uh with ∂In denotes the end points of the

interval In, let πtp denote the L2 orthogonal projection onto the polynomial space

Pp(In), p ≥ 0. Then the following relation holds

‖v − πtpv‖L2(In) ≤ C
λn
p+ 1

‖∂tv‖L2(In), (6.44)

and

‖v − πtpv‖L2(∂In) ≤ C(
λn
p+ 1

)1/2‖∂tv‖L2(In). (6.45)

Here, ∂In = {tn−1, tn} . We also have

‖v − πtpv‖L2(In) ≤ Cλ1/2
n ‖v‖L∞(In), (6.46)
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here, C > 0 constant is independent of v, λn, p.

Proof. Bounds (6.44) and (6.45) can be proved by using Legendre polynomial

expansion (see, e.g. [125]). Bound (6.46) can be proved by using the stability of

L2 projector and Holder’s inequality.

Theorem 6.17. Consider the setting of Theorem 6.12, and assume the parabolic

regularity estimate (6.42) holds along with Assumption 6.2.2. Then, we have the

bound

‖u− uh‖2
L2(J ;L2(Ω)) ≤ C max

κn∈Uh×Th
hκn

∑
κn∈Uh×Th

h
2sκn
κn

p
2lκn
κn

(
Gκn(hκn , pκn)

+Dκn(hκn , pκn)
)
‖Eu‖2

Hlκn (Kn),

with the constant C > 0, independent of u, uh, of the discretization parameters

and of number of faces per element.

Proof. We set g = 0 and φ = u−uh in (6.40). After integration by parts, we have,

‖u− uh‖2
L2(J ;L2(Ω)) =

Nt∑
n=1

∫
In

−(∂tz, u− uh) +Bd(z, u− uh) dt (6.47)

−
Nt−1∑
n=1

(bzcn, (u− uh)−n ) + (z−Nt , (u− uh)
−
Nt

) = B(u− uh, z),

with z the solution to (6.40); cf. [180]. Now, using the inconsistent formulation,

we have

‖u− uh‖2
L2(J ;L2(Ω)) = B̃(u− uh, z)−R(z, u− uh),

with

R(v, ω) :=
∑
F∈Fh

∫
J

∫
F

{{a(∇v −Π2(∇v))}} · [[ω]] ds dt.

Here, we point out that if ω ∈ H1(Ω), then above inconsistent term is zero.

Further, for any zh ∈ Sp(Uh; Th), we have

B̃(u− uh, zh) = B̃(u− uh, zh)−B(u− uh, zh) = R(u, zh),

and also R(u, zh) = −R(u, z− zh) since R(u, z) = 0 by relation (6.42). The above

imply that

‖u− uh‖2
L2(J ;L2(Ω)) = B̃(u− uh, z − zh)−R(z, u− uh)−R(u, z − zh). (6.48)
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For brevity, we set e := u − uh and η := z − zh. Let zh ∈ Sp(Uh; Th) defined on

each element κn ∈ Uh × Th by

zh|κn :=

{
πtp̄Π̃p̄z , for pκn even;

πtp̄Π̃p̄+1z , for pκn odd,

for p̄ := bpκn
2
c, with πtq denoting the L2−orthogonal projection onto polynomials

of degree q with respect to the time variable defined in Lemma 6.16, and Π̃q is the

projector defined in Lemma 3.14 over d-dimensional spatial variables. Note that

this choice ensures that zh ∈ Sp(Uh; Th).

For the first term on the right-hand side of (6.48), using (6.20) together with the

Cauchy-Schwarz inequality we have

B̃(e, η) =
Nt∑
n=1

∫
In

(∂te, η) + B̃d(e, η) dt+
Nt−1∑
n=1

(becn, η+
n ) + (e+

0 , η
+
0 )

≤
∑

κn∈Uh×Th

‖τ 1/2
κn ∂te‖L2(κn)‖τ−1/2

κn η‖L2(κn) +
Nt∑
n=1

∫
In

Ccont|‖e|‖d|‖η|‖d dt

+
Nt−1∑
n=1

‖becn‖‖η+
n ‖ + ‖e+

0 ‖‖η+
0 ‖

≤
( ∑
κn∈Uh×Th

τ−1
κn ‖η‖

2
L2(κn) + (Ccont)

2

Nt∑
n=1

∫
In

|‖η|‖2
d dt

+ 2
Nt−1∑
n=0

‖η+
n ‖2
) 1

2 |‖e|‖s. (6.49)

We shall now estimate the terms involving η on the right-hand side of (6.49).

Recalling standard hp-approximation bounds in Lemma 6.16, we have for r ∈
{p̄, p̄+ 1},

∑
κn∈Uh×Th

τ−1
κn ‖η‖

2
L2(κn) =

∑
κn∈Uh×Th

τ−1
κn ‖z − π

t
p̄Π̃p̄z‖2

L2(κn)

≤ 2
∑

κn∈Uh×Th

τ−1
κn

(
‖z − πtp̄z‖2

L2(κn) + ‖πtp̄z − πtp̄Π̃rz‖2
L2(κn)

)
≤ C

∑
κn∈Uh×Th

τ−1
κn

( λ2
n

p2
κn

‖∂tz‖2
L2(κn) +

h4
κ

p4
κn

‖Ez‖2
L2(In;H2(K))

)
≤ C max

κn
hκn

(
‖z‖2

H1(J ;L2(Ω)) + max
κn

h2
κn

p2
κn

‖z‖2
L2(J ;H2(Ω))

)
,

(6.50)
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using the triangle inequality, the stability of L2−projection, Assumptions 6.2.1,

6.2.2, Lemma 6.11, and Theorem 6.10, respectively. Next, we have

Nt−1∑
n=0

‖η+
n ‖2 ≤ 2

Nt−1∑
n=0

∑
κ∈Th

(
‖(z − πtp̄z)+

n ‖2
L2(κ) + ‖(πtp̄z − πtp̄Π̃rz)+

n ‖2
L2(κ)

)
≤ C

∑
κn∈Uh×Th

( λn
pκn
‖∂tz‖2

L2(κn) +
p2
κn

λn
‖πtp̄(z − Π̃rz)‖2

L2(κn)

)
≤ C

∑
κn∈Uh×Th

( λn
pκn
‖∂tz‖2

L2(κn) +
h4
κ

λnp2
κn

‖Ez‖2
L2(J ;H2(K))

)
≤ C max

κn

hκn
pκn

(
‖z‖2

H1(J ;L2(Ω)) + max
κn

h2
κn

pκn
‖z‖2

L2(J ;H2(Ω))

)
, (6.51)

using an hp-version inverse estimate over time variable and working as before.

Next, we have∫
J

∑
κ∈Th

‖∇η‖2
L2(κ) dt =

∑
κn∈Uh×Th

‖∇(z − πtp̄Π̃s
p̄z)‖2

L2(κn)

≤
∑

κn∈Uh×Th

2
(
‖∇(z − πtp̄z)‖2

L2(κn) + ‖∇(πtp̄z − πtp̄Π̃rz)‖2
L2(κn)

)
≤C

∑
κn∈Uh×Th

(
λn‖∇z‖2

L∞(In;L2(κ)) +
h2
κ

p2
κn

‖Ez‖2
L2(In;H2(K))

)
≤C max

κn
hκn

(
‖z‖2

L∞(J ;H1
0 (Ω)) + max

κn

hκn
p2
κn

‖z‖2
L2(J ;H2(Ω))

)
.(6.52)

Using similar arguments as before. Also, since [[z]] = 0 = [[πtp̄z]], due to relation

(6.42), we have [[z − πtp̄Π̃rz]] = πtp̄[[z − Π̃rz]], thus,

∑
F∈Fh

∫
J

∫
F

σ|[[η]]|2 ds dt =
∑

F̃
‖
t ⊂J×Fh

σ‖[[z − πtp̄Π̃s
p̄z]]‖2

L2(F̃
‖
t )

≤ 2
∑

F̃
‖
t ⊂J×Fh

σ‖[[z − Π̃rz]]‖2

L2(F̃
‖
t )

≤ C
∑

κn∈Uh×Th

( max
F̃
‖
t ⊂∂κn

σ)
h3
κn

p3
κn

‖Ez‖2
L2(J ;H2(K))

≤ C max
κn

h2
κn

pκn
‖z‖2

L2(J ;H2(Ω)), (6.53)

by Assumption 6.2.2.
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Substituting (6.50), (6.51), (6.52), (6.53) into (6.49), along with (6.42), leads to

B̃(e, η) ≤ CCr max
κn

h1/2
κn |‖e|‖s‖e‖L2(J ;L2(Ω)). (6.54)

Moving on to the second term on the right-hand side of (6.48), we have

R(z, e) =
∑
F∈Fh

∫
J

∫
F

{{a(∇z −Π2(∇z))}} · [[e]] ds dt

≤
( ∑
F∈Fh

∫
J

∫
F

σ−1|{{a(∇z −Π2(∇z))}}|2 ds dt
) 1

2 |‖e|‖s.

To bound further R(z, e), it is sufficient to bound I + II instead, where

I :=
∑
F∈Fh

∫
J

∫
F

2σ−1|{{a(∇z − πt
p̄Π̃r(∇z))}}|2 ds dt,

II :=
∑
F∈Fh

∫
J

∫
F

2σ−1|{{aΠ2(πt
p̄Π̃r(∇z)−∇z)}}|2 ds dt.

Here, πt
p̄Π̃r denotes the vector valued projector πtp̄Π̃r. To bound the term I, using

Lemma 6.11 and working as before gives

I ≤ C max
κn

h
3/2
κn

p2
κn

(
‖z‖2

L∞(J ;H1
0 (Ω)) + ‖z‖2

L2(J ;H2(Ω)

)
. (6.55)

By using the inverse estimation Lemma 4.9 and stability of Π2, and working as

above, we also have

II ≤ C max
κn

hκn

(
‖z‖2

L∞(J ;H1
0 (Ω)) + ‖z‖2

L2(J ;H2(Ω)

)
. (6.56)

Therefore, (6.55) and (6.56), together with (6.42) give

R(z, e) ≤ CCr max
κn

h1/2
κn |‖e|‖s‖e‖L2(J ;L2(Ω)). (6.57)

Next, we bound the last term on the right-hand side of (6.48), which is given by

R(u, η) =
Nt∑
n=1

∫
In

∫
Γ

{{a(∇hu−Π2(∇hu))}} · [[η]] ds dt.
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The Cauchy-Schwarz inequality together with (6.53), result in

R(u, η) ≤
( ∑
F∈Fh

∫
J

∫
F

σ−1|{{a(∇hu−Π2(∇hu))}}|2 ds dt
) 1

2

×
( ∑
F∈Fh

∫
J

∫
F

σ[[η]]2 ds dt
) 1

2

≤ CCr max
κn

hκn

p
1/2
κn

‖e‖L2(J ;L2(Ω))

×
( ∑
κn∈Uh×Th

h
2sκn
κn

p
2lκn
κn

Dκn(hκn , pκn)‖Eu‖2
Hlκn (Kn)

)1/2

. (6.58)

Here, Dκn(hκn , pκn) is defined in (6.38), which measures the inconsistency error.

Finally, combining (6.54), (6.57) and (6.58) with (6.48), the result follows.

Remark 6.18. If we use the same assumptions as in Corollary 6.15, then we can

see that the L2(J ;L2(Ω))–norm error bound in Theorem 6.17 can be simplified to

‖u− uh‖L2(J ;L2(Ω)) ≤ C
hs−1/2

pl−3/2
‖u‖Hl(J×Ω),

with s = min{p + 1, l}, which is suboptimal with respect to the meshsize h by

half an order of h, and sub-optimal in p by 3/2 orders. (The respective space-

time tensor-product basis DGFEMs, using the same approach can be shown to

be h−optimal and p−suboptimal by one order of p.) The numerical experiments

in the next section confirm the suboptimality in h for the proposed method, but

at the same time highlight its competitiveness with respect to standard (optimal)

methods.

An interesting further development would be the use of different polynomial de-

grees in space and in time as done, e.g., in [173, 182] in the context of total degree

space-time basis. The exploration of a number of index sets for space-time poly-

nomial basis, including this case, will be discussed elsewhere. Nevertheless, the

above proof of the L2(J ;L2(Ω))–norm error bound would carry through with minor

modifications only for various choices of space-time basis function index sets.

6.3 Numerical examples

We shall present a series of numerical experiments to investigate the asymptotic

convergence behavior of the proposed space-time DGFEMs. We shall also make
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comparisons with known methods on space-time hexahedral meshes, such as the

tensor-product space-time DGFEM and the DG time-stepping scheme combined

with conforming finite elements in space. Furthermore, an implementation using

prismatic space-time meshes with polygonal bases is presented and its convergence

is assessed. In all experiments we choose Cσ = 10.

6.3.1 Example 1

We begin by considering a smooth problem for which u0 and f are chosen such

that the exact solution u of (6.1) is given by:

u(x, y, t) = sin(20πt)e−5((x−0.5)2+(y−0.5)2) in J × Ω, (6.59)

for J = (0, 1) and Ω = (0, 1)2, and a(x, y, t) is an identity matrix. Notice that

the solution oscillates in time. To asses the convergence rate with respect to the

space-time mesh diameter hκn on (quasi)uniform meshes, we fix the ratio between

the spatial and temporal mesh sizes to be hκn/λn = 10.

The convergence rate with respect to decreasing space-time mesh size hκn in three

different norms is given in Figure 6.3 for space-time prismatic elements with rect-

angular bases (standard hexahedral space-time elements) and for prismatic meshes

with quasi-uniform polygonal bases: all computations are performed over 16, 64,

256, 1024, 4096 spatial rectangular or polygonal elements and for 40, 80, 160, 320,

640 time-steps, respectively.

The left three plots in Figure 6.3, show the rate of convergence for the proposed

DGFEM using the Pp basis, for p = 1, 2, . . . , 6, on each 3-dimensional space-time

element, against the total space-time degrees of freedom (Dof). This will be re-

ferred to as ‘DG(P)’ for short, with ‘rect’ meaning spatial rectangular elements and

‘poly’ referring to general polygonal spatial elements in the legends. The observed

rates of convergence are also given in the legends. The error appears to decay

at essentially the same rate for both rectangular and polygonal spatial meshes,

with very similar constants. Indeed, the DG(P) scheme appears to converge at

an optimal rate O(hp) in the L2(J ;H1(Ω))–norm for p = 1, 2, . . . , 6 (cf. Corol-

lary 6.15), while the convergence appears to be slightly sub-optimal, O(hp+1/2), in

the L2(J ;L2(Ω))- and L∞(J ;L2(Ω))–norms. Again, the observed L2(J ;L2(Ω))–

norm convergence rate is in accordance with the theory, cf. the a priori bound of

Theorem 6.17.
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Figure 6.3: Example 1. DG(P) under h–refinement (left) and comparison
with other methods (right) for three different norms.
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We now assess whether the deterioration in the h-convergence rates is an accept-

able trade-off for the DG(P) method. We present a comparison between 4 different

space-time schemes over rectangular space-time meshes in the right plots of Fig-

ure 6.3. More specifically, we compare the proposed DG(P) method, against the

time-DGFEM with: 1) discontinuous tensor-product space-time bases consisting

of Pp-basis in space (’DG(PQ)’ for short), 2) full discontinuous tensor-product

Qp basis in space (’DG(Q)’ for short) and, 3) the standard finite element method

with conforming tensor-product Qp basis in space (’FEM(Q)’ for short) [180, 159].

Unlike the proposed DG(P) scheme, the three other methods achieve the opti-

mal h-convergence rate in the three different norms: O(hp+1) in L2(J ;L2(Ω))–

and L∞(J ;L2(Ω))–norms and O(hp) in L2(J ;H1(Ω))–norm, respectively. Never-

theless, plotting the error against the total degrees of freedom, a more relevant

measure of computational effort, we see, for instance, that DG(P) with p = 2 use

less Dofs compared to the other 3 methods with p = 1, to achieve the same level

of accuracy, at least for relatively large number of space time elements. More pro-

nounced gains are observed when comparing DG(P) with p = 5, 6 with the other

methods with p = 4, across all mesh sizes and error norms. Analogous results hold

for DG(P) with p = 3, 4.

Moving on to the p-version, Figure 6.4 shows the error for all four methods in

the three different norms for fixed space-time meshsize under p-refinement. The

left three plots are with final time T = 1, for fixed 64 spatial elements and 80

time steps. As expected, exponential convergence is observed since the solution

to (6.59) is analytic over the computational domain. However, the convergence

slope for DG(P) with both rectangular and polygonal spatial elements appears to

be steeper than the other 3 methods. Indeed, DG(P) achieves the same level of

accuracy for p ≥ 3 with less number of Dofs in all 3 different norms.

The right three plots for the same computation run for a longer time interval

with final time T = 40, that is 3200 time-steps. Since DG(P) use less Dofs

per space-time element compared to the other three methods, the acceleration

of p−convergence for the DG(P) is expected to be more pronounced for long

time computations. Again DG(P) achieves the same level of accuracy with fewer

degrees of freedom for p ≥ 3. For instance, the total DG(P) Dofs for this problem

are about 45 million when p = 9, compared to about 53 million Dofs with p = 6

for FEM(Q), while the error for DG(P) is about 100 times smaller than the error

of FEM(Q) in all three norms.



DGFEMs for Parabolic PDEs 122

20 40 60 80 100 120 140

Dof1/3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
 u

-u
h
|| L

2
((

0
,T

);
L2

(Ω
))

p refinement

64 rect DG(P)

64 poly DG(P)

64 rect DG(PQ)

64 rect DG(Q)

64 rect FEM(Q)

50 100 150 200 250 300 350 400

Dof1/3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

||
 u

-u
h
|| L

2
((

0
,T

);
L2

(Ω
))

p refinement

64 rect DG(P)

64 poly DG(P)

64 rect DG(PQ)

64 rect FEM(Q)

20 40 60 80 100 120 140

Dof1/3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
 u

-u
h
|| L

2
((

0
,T

);
H1

(Ω
))

p refinement

64 rect DG(P)

64 poly DG(P)

64 rect DG(PQ)

64 rect DG(Q)

64 rect FEM(Q)

50 100 150 200 250 300 350 400

Dof1/3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

||
 u

-u
h
|| L

2
((

0
,T

);
H1

(Ω
))

p refinement

64 rect DG(P)

64 poly DG(P)

64 rect DG(PQ)

64 rect FEM(Q)

20 40 60 80 100 120 140

Dof1/3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
 u

-u
h
|| L

∞

((
0
,T

);
L2

(Ω
))

p refinement

64 rect DG(P)

64 poly DG(P)

64 rect DG(PQ)

64 rect DG(Q)

64 rect FEM(Q)

50 100 150 200 250 300 350 400

Dof1/3

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
 u

-u
h
|| L

∞

((
0
,T

);
L2

(Ω
))

p refinement

64 rect DG(P)

64 poly DG(P)

64 rect DG(PQ)

64 rect FEM(Q)

Figure 6.4: Example 1. Convergence under p–refinement for T = 1 with 80
time steps (left) and for T = 40 with 3200 time steps (right) for three different

norms.
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Figure 6.5: Example 1. Convergence under p–refinement for T = 1 with 80
time steps for three different norms.

Finally, we investigate the convergence performance of the proposed approach

against DG time-stepping spatially conforming FEM with the cheaper conforming

serendipity elements in space on hexahedral space-time meshes. Numerical results

under p-refinement are given in Figure 6.5, with FEM(Se) standing for the latter

method. We note that for d = 2, the cardinality of the local serendipity space

equals the cardinality of Pp–basis plus two more Dofs. We observe that the con-

vergence slope of FEM(Se) is steeper than that of FEM(Q) and almost parallel

to DG(PQ), but it is still not steeper than the convergence slope of DG(P). We

observe that DG(P) with p = 7 gives smaller error against Dofs than FEM(Se)

with p = 6. Noting that serendipity basis in three dimensions uses consider-

ably more Dofs compared to total degree Pp-basis, it is expected that DG(P) will

achieve smaller error for the same Dofs than FEM(Se) with lower order that 7
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polynomials for d = 3.

6.3.2 Example 2

We shall now assess the performance of the hp-version of the proposed method for

a problem with an initial layer. Let a(x, y, t) to be the identity matrix, and u0

and f chosen so that the exact solution of (6.1) is given by

u(x, y, t) = tα sin(πx) sin(πy) in J × Ω, (6.60)

with J = (0, 0.1) and Ω = (0, 1)2. We set α = 1/2, so that u ∈ H1−ε(J ;L2(Ω)), for

all ε > 0. This problem is analytic over the spatial domain, but has low regularity

at t = 0. To achieve exponential rates of convergence, we use temporal meshes,

geometrically graded towards t = 0, in conjunction with temporally varying poly-

nomial degree p, starting from p = 1 on the elements belonging to the initial time

slab, and linearly increasing p when moving away from t = 0; see [167, 159] for

details. Following [159], we consider a short time interval with T = 0.1. Let

0 < σ < 1 be the mesh grading factor which defines a class of temporal meshes

tn = σN−n × 0.1 for n = 1, . . . , N . Let also µ be the polynomial order increasing

factor determining the polynomial order over different time steps by pκn := bµnc
for for n = 1, . . . , N .

The three left plots in Figure 6.6 show the convergence history for DG(P) and

FEM(Q) for this problem. All computations are performed over 256 spatial ele-

ments with geometrically graded temporal meshes based on 3 different grading fac-

tors σ = 0.1, 0.172, 0.5 and fixed µ = 1.5. The error for both DG(P) and FEM(Q)

appears to decay exponentially under the hp refinement strategy described above

for all three grading factors considered. The choice of σ = 0.5, is motivated by the

meshes constructed in standard adaptive algorithms; σ = 0.172, is classical in that

it was shown that it is the optimal grading factor for one-dimensional functions

with rα-type singularity for elliptic problem in [114], while σ = 0.1 appears to be

a better choice in the current context. We also note that the convergence rate of

DG(P) appears to be steeper than FEM(Q) under the same mesh and polynomial

distribution. Furthermore, performing the same experiments on general polygonal

spatial meshes, we observe that the error decay does not appear to depend on the

shape of the spatial elements. This is expected, as the error in the time variable

dominates in this example.
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Figure 6.6: Example 2: Convergence under hp–refinement with fixed µ = 1.5
(left); with fixed σ = 0.1 (right) for three different norms.
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For completeness, we also report on how the choice of the polynomial order in-

creasing factor µ influences the exponential error decay for DG(P) with fixed

mesh grading factor σ = 0.1; these are given in the three right plots in Figure

6.6. For both L2(J ;L2(Ω))– and L2(J ;H1(Ω))–norms, the results show that µ = 1

gives the fastest convergence, while µ = 1.25 gives the fastest error decay in the

L∞(J ;L2(Ω))–norm.



Chapter 7

Exponential Convergence for

DGFEMs with Pp basis

We will present some hp-approximation results for the total degree Pp basis on

standard tensor product elements. The new results can be viewed as a natural

extension of the classical hp-approximation results with the tensor product Qp
basis on tensor product elements. Here, we will focus on deriving an optimal

hp-approximation bound for the L2-orthogonal projector onto the Pp basis in the

L2–norm, and optimal hp-approximation bounds for H1-projector onto the Sp
basis in the L2– and H1–norms. The technique for proving these bounds will be

different from the existing techniques for hp-approximation with Qp basis. The

main difficulty is due to the lack of tensor product structure in the Pp basis and

the Sp basis, thereby hindering the use of tensor product arguments together

with 1D stability and approximation results. The main technique used below is

the multi-dimensional orthogonal polynomial expansion. The resulting bounds are

hp-optimal with respect to both Sobolev regularity and polynomial approximation

order.

Here, we mention that there are at least two reasons why we need new approxima-

tion results with the Pp and Sp bases: the first reason is to explain the findings of

the numerical experiments in the previous chapters, where we observed that the

error compared against number of degrees of freedom for DGFEMs with the Pp
basis has a steeper exponential convergence than for DGFEMs with the Qp basis,

for sufficiently smooth problems. This situation has been numerically tested on

different examples. We also observed that the ratio of the slope of the exponen-

tial error decay for the Pp basis compared to that of the Qp basis depends only

127
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on the space dimension. A natural intuition to explain this is that the Qp basis

contains in a sense “too many” basis functions other than those of Pp. These

basis functions do not increase the order in p of the error bound, but instead only

reduce the “constant” in the error bound. The same phenomenon is also observed

in standard FEM with the Sp basis.

The second reason is of a theoretical nature. The exponential convergence proofs

depend on the hp-approximation bound for the L2-orthogonal projector and the

H1-projector over tensor product elements. In general, the classical hp-approxim-

ation results are only proved for Qp by using the tensor product arguments with

the 1D stability and approximation results. The resulting bound is sharp in the

sense that it is optimal in both h and p. Typically, bounds for projectors onto Pp or

Sp are proved using the fact that there exists a q ≤ p such that Qq is a subspace of

Pp or Sp, together with the help of the approximation results for the Qp basis. We

emphasise that by using this technique, the resulting hp-approximation bound is p-

optimal for functions with finite Sobolev regularity, but not p-optimal for analytic

functions. So for the above two reasons we derive the new approximation results

for projectors onto Pp and Sp.

We note that the hp-approximation results used in the previous chapters can

not be used to prove exponential convergence. The key reason is because the

proof of the hp-bound in previous chapters is based on Babuška & Suri operator

in Lemma 3.11, which is the classical tools in hp-FEMs [24, 25]. Although the

Babuška & Suri operator is a novel tool in hp-approximation due to the fact that

it is simultaneously optimal in h and p in all Sobolev norms with finite Sobolev

indices, it seems not to be useful in proving the exponential convergence of the

p-version of the FEM for sufficiently smooth solutions. There are two reasons for

this: first, the constant CI,1 in Lemma 3.11 blows up as l → ∞, which means

we can not take Sobolev indices to infinity; second, even in cases where CI,1 is

uniformly bounded with respect to l, we can only prove spectral convergence but

not exponential convergence.
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7.1 Polynomial approximation over tensor prod-

uct elements with Pp basis and Sp basis

In this section, we derive the hp-approximation results for the L2- andH1-projectors

over tensor product elements with the Pp basis and Sp basis, respectively. We will

employ the approximation results for projectors onto the Qp basis from [124, 125]

without giving a detailed proof. For the sake of simplicity, we only consider the

tensor product elements which can be considered as an affine equivalent family of

the reference element κ̂ := (−1, 1)d.

7.1.1 The L2-projection onto Pp over a d-dimensional cube

We start our analysis over the standard reference element κ̂ := (−1, 1)d, by intro-

ducing some necessary notation. We shall employ the multi-index i = (i1, i2, . . . , id),

and α = (α1, α2, . . . , αd). With | · | we denote the l1–norm of the multi-index i,

with |i| =
∑d

j=1 |ik|. Further, for multi-indices, the relation α ≥ i means that

αk ≥ ik for all k = 1, . . . , d.

For the reference element κ̂ := (−1, 1)d, let

Wα(x̂) =
d∏

k=1

Wk(x̂k)
αk , (7.1)

with, for k = 1, . . . , d,

Wk(x̂k) = (1− x̂2
k)

1/2, (7.2)

being a weight function as αk > −1, αk ∈ R. This is referred to as the Jacobi

weight.

Next, we define the Jacobi-weighted Sobolev spaces V l(κ̂) as a closure of C∞(κ̂)

in the norm with the Jacobi weight

‖u‖2
V l(κ̂) =

l∑
|α|=0

‖WαDαu‖2
L2(κ̂). (7.3)

By | · |V l(κ̂) we denote the seminorm

|u|2V l(κ̂) =
∑
|α|=l

‖WαDαu‖2
L2(κ̂). (7.4)
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It is easy to see that |u|V l(κ̂) ≤ |u|Hl(κ̂), ∀u ∈ H l(κ). The key reason to introduce

the Jacobi-weighted Sobolev spaces is to deal with the loss of orthogonality suffered

by orthogonal polynomials in standard Sobolev spaces; the L2-orthogonality is

preserved in Jacobi-weighted Sobolev spaces. As we shall see in the forthcoming

analysis, orthogonality plays a key role in deriving optimal error bounds in the

polynomial order p.

In order to distinguish the same projectors onto spaces with different polynomial

bases, we use superscripts to signify the basis type: we use ΠQp := Π
(1)
p Π

(2)
p . . .Π

(d)
p

to denote the L2-projection onto Qp, which can be constructed by using the ten-

sor product arguments together with 1D L2-projection. On the other hand, L2-

projector onto Pp is denoted by ΠPp .

First, we take the the following approximation lemma for the L2-projection ΠQp

from [125].

Lemma 7.1. Let κ̂ = (−1, 1)d. Suppose that u|κ̂ ∈ H l(κ̂), for some l ≥ 0. Let

ΠQp u be the L2-projection of u onto Qp(κ̂) with p ≥ 0. Then, for any integer s,

with 0 ≤ s ≤ min{p+ 1, l}, and Wk = Wk(x̂k), we have:

‖u− ΠQp u‖L2(κ̂) ≤
(Γ(p− s+ 2)

Γ(p+ s+ 2)

)1/2
d∑

k=1

‖W s
kD

s
ku‖L2(κ̂)

≤ d
(Γ(p− s+ 2)

Γ(p+ s+ 2)

)1/2

|u|V s(κ̂)

≤ C(s)d(p+ 1)−s|u|Hs(κ̂), (7.5)

where Γ is the Gamma function.

We remark on the asymptotic behaviour of the Gamma function. Making use of

Stirling’s formula, see (9.15) in [98]

√
2πnn+ 1

2 e−n ≤ Γ(n+ 1) ≤ enn+ 1
2 e−n, n ≥ 0, (7.6)

we can see that,

Γ(p− s+ 2)

Γ(p+ s+ 2)
≤ C(s)(p+ 1)−2s, (7.7)

with 0 ≤ s ≤ p+ 1 and C(s) depending on the generic constant s only.



Exponential Convergence 131

For u|κ̂ ∈ H l(κ̂), l ≥ 0, we introduce its Legendre polynomial expansion over the

reference element κ̂, given by

u(x̂) =
∞∑
|i|=0

ai

d∏
k=1

Lik(x̂k), (7.8)

where x̂ = (x̂1, . . . , x̂d). We use Lik(x̂k) to denote the Legendre polynomial with

order ik over the variable x̂k, and ai is defined by

ai =

∫
κ̂

u(x̂)
d∏

k=1

(2ik + 1

2

)
Lik(x̂k) dx̂. (7.9)

The Legendre polynomials have the following orthogonality property:∫ 1

−1

Li(ξ)Lj(ξ) dξ =
2δij

2i+ 1
, (7.10)

which implies that

‖u‖2
L2(κ̂) =

∞∑
|i|=0

|ai|2
d∏

k=1

2

2ik + 1
. (7.11)

The derivatives of the function u can be expressed as

Dαu(x̂) =
∞∑

i1=α1

∞∑
i2=α2

· · ·
∞∑

id=αd

ai

d∏
k=1

L
(αk)
ik

(x̂k). (7.12)

By Lemma 3.10 in [167], the derivatives of the Legendre polynomials satisfy the

orthogonality property∫ 1

−1

(1− ξ2)kL
(k)
i (ξ)L

(k)
j (ξ) dξ =

2δij
2i+ 1

Γ(i+ k + 1)

Γ(i− k + 1)
, (7.13)

where δij is the Kronecker delta. Identity (7.13) is related to the following property

of Legendre polynomials,

L
(k)
i (x) =

Γ(i+ k + 1)

2kΓ(i+ 1)
Pi−k(x; k),

where Pi−k(x; k) is the Jacobi polynomial of degree i− k with weight (1− x2)k.
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By employing (7.13), we have

‖WαDαu‖2
L2(κ̂) =

∞∑
i1=α1

∞∑
i2=α2

· · ·
∞∑

id=αd

|ai|2
d∏

k=1

2

2ik + 1

Γ(ik + αk + 1)

Γ(ik − αk + 1)
. (7.14)

With the help of (7.14), we shall derive an L2–norm error bound for ΠPp . The

proof will be split into several steps.

We first solve a constrained optimization problem in the following Lemma 7.2,

which plays a key role for deriving the sharp hp bounds.

Lemma 7.2. Let ξ = (ξ1, ξ2, . . . , ξd) and ρ = (ρ1, ρ2, . . . , ρd) be two non-negative

real valued vectors, ρ ≥ ξ, and |ρ| = M , |ξ| = m. Then, the function F (ξ, ρ) will

have the global upper bound

F (ξ, ρ) =
d∏

k=1

Γ(ρk − ξk + 1)

Γ(ρk + ξk + 1)
≤
(Γ(M−m

d
+ 1)

Γ(M+m
d

+ 1)

)d
. (7.15)

Furthermore, the maximum value of F (ξ, ρ) under the above constraints on ρ and

ξ is obtained at ξk = m/d, ρk = M/d, k = 1, . . . , d.

Proof. The proof follows the constrained optimization procedure. We introduce

the Lagrange multiplier for F (ξ, ρ),

L(ξ, ρ, µ, λ) = F (ξ, ρ) + µ(|ξ| −m) + λ(|ρ| −M), (7.16)

and we calculate the stationary points. We consider the partial derivative with

respect to ξj and ρj, j = 1, . . . , d,

∂L

∂ξj
= −

(
Γ′(ρj − ξj + 1)

Γ(ρj − ξj + 1)
+

Γ′(ρj + ξj + 1)

Γ(ρj + ξj + 1)

)
F (ξ, ρ) + µ = 0,

and
∂L

∂ρj
=

(
Γ′(ρj − ξj + 1)

Γ(ρj − ξj + 1)
− Γ′(ρj + ξj + 1)

Γ(ρj + ξj + 1)

)
F (ξ, ρ) + λ = 0,

which satisfy the following conditions:

Γ′(ρj − ξj + 1)

Γ(ρj − ξj + 1)
=

µ− λ
2F (ξ, ρ)

, j = 1, . . . , d, (7.17)
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and

Γ′(ρj + ξj + 1)

Γ(ρj + ξj + 1)
=

µ+ λ

2F (ξ, ρ)
, j = 1, . . . , d, (7.18)

by using the fact that F (ξ, ρ) ≥ 1. The right-hand sides of (7.17) and (7.18)

are independent of the index j. Moreover, the function ψ(z) = Γ(z)′/Γ(z) is the

so-called Digamma function with the following property (see [3], (6.3.16)):

ψ(z + 1) = −γ +
∞∑
n=1

z

n(n+ z)
= −γ +

∞∑
n=1

( 1

n
− 1

n+ z

)
, z 6= −1,−2, . . . ,

where γ is the Euler constant. For z ≥ 0, the function ψ(z + 1) is a continuous

monotonically increasing function, which shows that (7.17) and (7.18) under the

constraints will have only one solution. This solution is ξ̃j = m/d and ρ̃j = M/d,

j = 1, . . . , d, and the F (ξ, ρ) will have the extreme value at this point, given by

F (ξ̃, ρ̃) =
(Γ(M−m

d
+ 1)

Γ(M+m
d

+ 1)

)d
. (7.19)

In order to find the global maximum, we need to prove the following asymptotic

relationship:

(Γ(M−m
k

+ 1)

Γ(M+m
k

+ 1)

)k
≤
(Γ(M−m

d
+ 1)

Γ(M+m
d

+ 1)

)d
, k = 1, . . . , d− 1. (7.20)

The proof of this can be split into three steps. We first consider the special case

m = 0. In this case, (7.20) holds trivially because both sides of the inequality are

identically 1. Next, we consider the case m = δM , with 0 < δ < 1. By using the

property of Gamma functions (7.6), we have the following bounds:

(Γ(M−m
k

+ 1)

Γ(M+m
k

+ 1)

)k
≤
( e√

2π

)k
(ek)2m (M −m)M−m+ k

2

(M +m)M+m+ k
2

,

and (Γ(M−m
k

+ 1)

Γ(M+m
k

+ 1)

)k
≥
(√2π

e

)k
(ek)2m (M −m)M−m+ k

2

(M +m)M+m+ k
2

.
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By using the upper and lower bounds from the above inequalities, we can derive

the lower bound(
Γ(M−m

d
+1)

Γ(M+m
d

+1)

)d
(

Γ(M−m
k

+1)

Γ(M+m
k

+1)

)k ≥
(√

2π
e

)d
(ed)2m(

e√
2π

)k
(ek)2m

(
(M−m)M−m+ d2

(M+m)M+m+ d2

)
(

(M−m)M−m+ k2

(M+m)M+m+ k2

)
≥

(√2π

e

)d+k(d
k

)2δM(1− δ
1 + δ

) d−k
2
. (7.21)

By recalling that 0 < δ < 1 and k = 1, . . . , d − 1, we have that 0 < 1−δ
1+δ

< 1 and

the function ( d
k
)2δM is monotonically increasing with respect to M . This implies

that, for M ≥
(

(d+ k) log( e√
2π

) + d−k
2

log(1+δ
1−δ )

) (
2δ log( d

k
)
)−1

, the above quotient

formula is greater than 1 and therefore (7.20) holds. The upper bound for the

above quotient can also be derived by using similar techniques, producing(
Γ(M−m

d
+1)

Γ(M+m
d

+1)

)d
(

Γ(M−m
k

+1)

Γ(M+m
k

+1)

)k ≤ ( e√
2π

)d+k(d
k

)2δM(1− δ
1 + δ

) d−k
2
. (7.22)

Finally, we consider the case m = M . Using the same techniques used to derive

(7.21) together with the fact that Γ(1) = 1, we have

(
Γ(M−m

d
+1)

Γ(M+m
d

+1)

)d
(

Γ(M−m
k

+1)

Γ(M+m
k

+1)

)k =
(Γ(2M

k
+ 1))k

(Γ(2M
d

+ 1))d
≥ (
√

2π)k

ed

( d

2M

) d−k
2
(d
k

)2M+ k
2
. (7.23)

By using the fact that exponentially increasing functions grow faster than polyno-

mials, we know that for sufficiently large M the right hand side of (7.23) is greater

than 1 and therefore (7.20) holds.

Next, we need to show that the extreme value (7.19) is the global maximum value

of F (ξ, ρ) under the constraints |ξ| = m and |ρ| = M .

First, we can see that the function F (ξ, ρ) is symmetric and continuous with

respect to ξ and ρ. The constraints |ξ| = m and |ρ| = M restrict the domain of ξ

and ρ to be a (d − 1)-dimensional simplex, which is convex and compact. So the

maximum value of the function F (ξ, ρ) over the domain will be obtained only at

the boundary of the domain or the stationary point of F (ξ, ρ). We have calculated

the function value at the stationary point in (7.19) already, so now we just need

to check the function values on the boundary of the domain.
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This may be proved by induction. We start with the case d = 2: the domain

of ξ and ρ satisfying the constrains are two straight lines. Here, the stationary

point is the mid-point of each of the two lines ξ̃ = (m/2,m/2), ρ̃ = (M/2,M/2),

and the boundary of the domain consist of the points ξb = (0,m), ρb = (0,M) or

ξb = (m, 0), ρb = (M, 0), due to the constraints ρ ≥ ξ. Using the symmetry of

the function and of the domain, we know that at the two boundary points of the

domain, F (ξ, ρ) will attain the same value, with F (ξb, ρb) = Γ(M−m+1)
Γ(M+m+1)

. By using

the asymptotic relation (7.20), the following relation holds

F (ξb, ρb) =
Γ(M −m+ 1)

Γ(M +m+ 1)
≤
(Γ(M−m

2
+ 1)

Γ(M+m
2

+ 1)

)2

= F (ξ̃, ρ̃).

The above relation shows that the extreme value (7.19) is the global maximum

value under the constraints for d = 2.

Next, we consider the case d = 3, where the domain of each of ξ and ρ will be a

triangle. In this case, the stationary point of F (ξ, ρ) is when ξ and ρ are located at

the barycenter of their respective triangle. The boundary of each domain consists

of 3 straight lines. We need to calculate the maximum value of F (ξ, ρ) on the

boundary of the domain. By using the symmetry of F (ξ, ρ), and that fact that

|ξ| = m and |ρ| = M , we only need to consider one part of domain boundary

where ξ3 = 0 and ρ3 = 0. Then, the maximum of F (ξ, ρ) on the domain boundary

can be viewed as exactly the same problem with the same constraints as in the

case d = 2. Consequently, the maximum value of F (ξ, ρ) along the boundary of

the domain is F (ξb, ρb) =
(

Γ(M−m
2

+1)

Γ(M+m
2

+1)

)2

. Again, by using the same techniques as

for d = 2, we deduce that

F (ξb, ρb) =
(Γ(M−m

2
+ 1)

Γ(M+m
2

+ 1)

)2

≤
(Γ(M−m

3
+ 1)

Γ(M+m
3

+ 1)

)3

= F (ξ̃, ρ̃).

The above relation shows that the extreme value (7.19) is the global maximum

value under the constraints for d = 3. For the general d-dimensional case, the proof

can be carried out in a similar way. Another key observation is that the maximum

value of F (ξ, ρ) on the domain boundary will be at the stationary points of F (ξ, ρ)

on the boundary. By using the relation

(Γ(M−m
d−1

+ 1)

Γ(M+m
d−1

+ 1)

)d−1

≤
(Γ(M−m

d
+ 1)

Γ(M+m
d

+ 1)

)d
,

the proof is complete.
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With the help of Lemma 7.2, we present an approximation result for the L2-

projection operator ΠPp .

Theorem 7.3. Let κ̂ = (−1, 1)d. Suppose that u|κ̂ ∈ H l(κ̂), for some l ≥ 0. Let

ΠPp u be the L2(κ̂) projection of u onto Pp(κ̂) with p ≥ 0. Then for any integer s,

0 ≤ s ≤ min{p+ 1, l}, we have:

‖u− ΠPp u‖2
L2(κ̂) ≤

(Γ(p+1−s
d

+ 1)

Γ(p+1+s
d

+ 1)

)d
|u|2V s(κ̂) ≤ C(s)

( d

p+ 1

)2s

|u|2Hs(κ̂). (7.24)

Proof. Using the definition of ΠPp , (7.8), for any integer s, 0 ≤ s ≤ min{p + 1, l},
we have

‖u− ΠPp u‖2
L2(κ̂) =

∞∑
|i|=p+1

|ai|2
d∏

k=1

2

2ik + 1

≤
∑
|α|=s

∞∑
|i|=p+1,i≥α

|ai|2
d∏

k=1

2

2ik + 1

≤
∑
|α|=s

∞∑
|i|=p+1,i≥α

|ai|2
( d∏
k=1

2

2ik + 1

Γ(ik + αk + 1)

Γ(ik − αk + 1)

)( d∏
k=1

Γ(ik − αk + 1)

Γ(ik + αk + 1)

)

≤
(Γ(p+1−s

d
+ 1)

Γ(p+1+s
d

+ 1)

)d ∑
|α|=s

∞∑
|i|=p+1,i≥α

|ai|2
d∏

k=1

2

2ik + 1

Γ(i+ k + 1)

Γ(i− k + 1)

≤
(Γ(p+1−s

d
+ 1)

Γ(p+1+s
d

+ 1)

)d ∑
|α|=s

‖WαDαu‖2
L2(κ̂)

=
(Γ(p+1−s

d
+ 1)

Γ(p+1+s
d

+ 1)

)d
|u|2V s(κ̂) ≤ C(s)

( d

p+ 1

)2s

|u|2Hs(κ̂). (7.25)

In step two, the index set is enlarged; indeed, some of the terms with multi-index

|i| ≥ p + 1 have been used more than once. In step three, we use Lemma 7.2,

taking ξk = ik ≥ 0, ρk = αk ≥ 0, M = p+ 1, m = s, together with the restriction

0 ≤ s ≤ min{p+ 1, l}. The bound holds by Stirling’s formula (7.6).

Remark 7.4. We make the comparison between the L2–norm bound (7.5) for the

projector ΠQp and (7.24) for the projector ΠPp . Both bounds are p-optimal for

functions with finite Sobolev regularity and also for analytic functions. We can

also see that the bound in (7.24) will have a larger constant compared to the bound

in (7.5), and this constant only depends on the dimension d. This result will play

a key role in deriving the exponential convergence for the Pp basis.
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Figure 7.1: Qp (left) and Sp (right) with polynomial order 10.

7.1.2 The H1-projection onto Sp over the reference square

In this section, we shall consider the H1-projection over the reference element

κ̂ := (−1, 1)2. For the sake of simplicity, we only consider the two-dimensional

case. We start by introducing the two-dimensional serendipity finite element space

Sp(κ̂) := Pp(κ̂) + span{xpy, ypx}. (7.26)

Here, we can see in Figure 7.1 that the serendipity space Sp contains two more basis

functions than the Pp basis for p ≥ 2 . Another way to interpret the serendipity

basis is to consider a decomposition of the C0 finite element space over a rectangle.

For polynomial order p, the Sp basis has the same number of nodal basis functions

and edge basis functions as the Qp basis, but the Sp basis only has modal basis

functions (those with zero value along the element boundary) whose total degree is

less than or equal p. For more details about serendipity FEMs, we refer to [14, 17].

Similarly to the case of the L2-projection, we use HQp := H(1)
p H(2)

p to denote the

H1-projection onto the Qp basis, which can be constructed via a tensor product of

one dimensional H1-projections. Similarly, the H1-projection onto the Sp basis is

denoted by HSp , which is defined in (7.31). Here, we introduce some properties of

the one-dimensional H1-projector Hp from [167]. To this end, we set Î := (−1, 1).
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Then for u ∈ H l(Î), l ≥ 1, the projector Hpu ∈ Pp(Î), p ≥ 1, is defined by

Hpu =

∫ x

−1

Πp−1u
′ dx+ u(−1),

=

p−1∑
j=0

aj

∫ x

−1

Lj(x) dx+ u(−1) =

p−1∑
j=0

ajψj(x) dx+ u(−1), (7.27)

where aj are as in (7.9), and Πp−1 is the L2-projection. The function ψj(x) is the

anti-derivative of Lj(x) with degree j + 1, and satisfies ψj(±1) = 0 for j ≥ 1.

Moreover, for j ≥ 1, we have

ψj(x) = − 1

j(j + 1)
(1− x2)L′j(x), (7.28)

giving ∫
Î

ψj(x)ψk(x)
1

1− x2
dx =

2δjk
j(j + 1)(2i+ 1)

. (7.29)

The orthogonality property in the weighted L2–norm will play a key role in the

following analysis.

Next, we construct the two-dimensional H1 projection. First, we consider HQp =

H(1)
p H(2)

p : for u ∈ H l(κ̂), l ≥ 2, the projector HQp u ∈ Qp(κ̂), p ≥ 1, is defined by

HQp u :=

∫ x1

−1

∫ x2

−1

ΠQp−1∂1∂2u dx1 dx2

+

∫ x1

−1

Π
(1)
p−1∂1u(x1,−1) dx1 +

∫ x2

−1

Π
(2)
p−1∂2u(−1, x2) dx2 + u(−1,−1)

=

p−1∑
m=0

p−1∑
n=0

amnψm(x1)ψn(x2)

+

p−1∑
m=0

bmψm(x1) +

p−1∑
n=0

cnψn(x2) + u(−1,−1), (7.30)

with anm, bm and cn given by:

amn =
2m+ 1

2

2n+ 1

2

∫
κ̂

∂1∂2u(x1, x2)Lm(x1)Ln(x2) dx1 dx2,

bm =
2m+ 1

2

∫ 1

−1

∂1u(x1,−1)Lm(x1) dx1,

cn =
2n+ 1

2

∫ 1

−1

∂2u(−1, x2)Ln(x2) dx2.
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From the definition of Sp, HSp can be constructed by removing the modal basis

functions with order greater than p in HQp . More specifically, for u ∈ H l(κ̂), l ≥ 2,

HSp u ∈ Sp(κ̂), p ≥ 1, is defined by

HSp u :=
∑

m≥1,n≥1
p−2≥m+n≥2

amnψm(x1)ψn(x2)

+

p−1∑
m=0

am0ψm(x1)ψ0(x2) +

p−1∑
n=1

a0nψ0(x1)ψn(x2)

+

p−1∑
m=0

bmψm(x1) +

p−1∑
n=0

cnψn(x2) + u(−1,−1). (7.31)

Next, we recall the following approximation lemma from [124].

Lemma 7.5. Let κ̂ = (−1, 1)2. Suppose that u|κ̂ ∈ H l+1(κ̂), for some l ≥ 1. Let

HQp u be the H1-projection of u onto Qp(κ̂) with p ≥ 1. Then, we have

HQp u = u at the vertices of κ̂, (7.32)

and the following error estimates hold:

‖u−HQp u‖2
L2(κ̂) ≤

2

p(p+ 1)

Γ(p− s+ 1)

Γ(p+ s+ 1)

(
‖∂s+1

1 u‖2
L2(κ̂) + 2‖∂s+1

2 u‖2
L2(κ̂)

)
+

4

p2(p+ 1)2

Γ(p− s+ 2)

Γ(p+ s)
‖∂1

1∂
s
2u‖2

L2(κ̂), (7.33)

‖∇(u−HQp u)‖2
L2(κ̂) ≤ 2

Γ(p− s+ 1)

Γ(p+ s+ 1)

(
‖∂s+1

1 u‖2
L2(κ̂) + ‖∂s+1

2 u‖2
L2(κ̂)

)
+

8

p(p+ 1)

Γ(p− s+ 2)

Γ(p+ s)

(
‖∂s1∂1

2u‖2
L2(κ̂) + ‖∂1

1∂
s
2u‖2

L2(κ̂)

)
, (7.34)

for any integer s, 0 ≤ s ≤ min{p, l}.

Now, we derive the L2–norm error and H1–norm error bound for the H1-projection

HSp .

Theorem 7.6. Let κ̂ = (−1, 1)2. Suppose that u|κ̂ ∈ H l+1(κ̂), for some l ≥ 1. Let

HSp u be the H1 projection of u onto Sp(κ̂) with p ≥ 1. Then, we have

HSp u = u at the vertices of κ̂, (7.35)



Exponential Convergence 140

and for any integer s, 1 ≤ s ≤ min{p, l}, the following error estimates hold:

‖u−HSp u‖2
L2(κ̂) ≤

4

p(p+ 1)

Γ(p− s+ 1)

Γ(p+ s+ 1)

(
‖∂s+1

1 u‖2
L2(κ̂) + 2‖∂s+1

2 u‖2
L2(κ̂)

)
+

8

p2(p+ 1)2

Γ(p− s+ 2)

Γ(p+ s)
‖∂1

1∂
s
2u‖2

L2(κ̂)

+ 72
( Γ(p−s

2
+ 1)

Γ(p+s+2
2

+ 1)

)2

|∂1∂2u|2V s−1(κ̂)

≤ C(s)
( 2

p+ 2

)2s+2

|u|2Hs+1(κ̂). (7.36)

‖∇(u−HSp u)‖2
L2(κ̂) ≤ 4

Γ(p− s+ 1)

Γ(p+ s+ 1)

(
‖∂s+1

1 u‖2
L2(κ̂) + ‖∂s+1

2 u‖2
L2(κ̂)

)
+

16

p(p+ 1)

Γ(p− s+ 2)

Γ(p+ s)

(
‖∂s1∂1

2u‖2
L2(κ̂) + ‖∂1

1∂
s
2u‖2

L2(κ̂)

)
+ 24

(Γ(p−s
2

+ 1)

Γ(p+s
2

+ 1)

)2

|∂1∂2u|2V s−1(κ̂)

≤ C(s)
(2

p

)2s

|u|2Hs+1(κ̂). (7.37)

Proof. The key observation is the fact that the serendipity basis Sp differs from Qp
only at the modal basis functions which vanish along the boundary of κ̂. Indeed,

using (7.30) and (7.31), we have

HQp u−HSp u =
∑

p−1≥m≥1
p−1≥n≥1
m+n≥p−1

amnψm(x1)ψn(x2). (7.38)

Using the fact ψm(±1) = 0, for m ≥ 1, we deduce that (HQp u − HSp u)|∂κ̂ = 0.

Thus, (7.35) is proved.

Next, we derive (7.36). The first step is the use of the triangle inequality,

‖u−HSp u‖2
L2(κ̂) ≤ 2‖u−HQp u‖2

L2(κ̂) + 2‖HQp u−HSp u‖2
L2(κ̂). (7.39)

Thus, we only need to consider the error from the second term in the above bound.

By using (7.30), (7.31), (7.28) and (7.29) and the orthogonality of ψj(x) for j ≥ 1,



Exponential Convergence 141

we have

‖HSp u−HQp u‖2
L2(κ̂) ≤ ‖(HSp u−HQp u)W−1

1 W−1
2 ‖2

L2(κ̂)

=
∑

p−1≥m≥1,p−1≥n≥1
m+n≥p−1

|amn|2
2

2m+ 1

2

2n+ 1

1

m(m+ 1)

1

n(n+ 1)

≤
∑
|α|=s−1

∑
m≥α1,n≥α2
m+n≥p−1

|amn|2
2

2m+ 1

2

2n+ 1

1

m(m+ 1)

1

n(n+ 1)

×
(Γ(m− α1 + 1)

Γ(m+ α1 + 1)

Γ(n− α2 + 1)

Γ(n+ α2 + 1)

)
×
(Γ(m+ α1 + 1)

Γ(m− α1 + 1)

Γ(n+ α2 + 1)

Γ(n− α2 + 1)

)
.

In step three, we enlarge the summation index sets by adding the high order terms.

‖HSp u−HQp u‖2
L2(κ̂)

≤
∑
|α|=s−1

∑
m≥α1,n≥α2
m+n≥p−1

|amn|2
2

2m+ 1

2

2n+ 1

(Γ(m+ α1 + 1)

Γ(m− α1 + 1)

Γ(n+ α2 + 1)

Γ(n− α2 + 1)

)

×
(Γ(m− α1 + 1)

Γ(m+ α1 + 1)

Γ(n− α2 + 1)

Γ(n+ α2 + 1)

1

m(m+ 1)

1

n(n+ 1)

)
≤

∑
|α|=s−1

∑
m≥α1,n≥α2
m+n≥p−1

|amn|2
2

2m+ 1

2

2n+ 1

(Γ(m+ α1 + 1)

Γ(m− α1 + 1)

Γ(n+ α2 + 1)

Γ(n− α2 + 1)

)

×36
(Γ(m− α1 + 1)

Γ(m+ α1 + 3)

Γ(n− α2 + 1)

Γ(n+ α2 + 3)

)
≤ 36

( Γ(p−s
2

+ 1)

Γ(p+s+2
2

+ 1)

)2 ∑
|α|=s−1

‖WαDα(∂1∂2u)‖2
L2(κ̂)

≤ 36
( Γ(p−s

2
+ 1)

Γ(p+s+2
2

+ 1)

)2

|∂1∂2u|2V s−1(κ̂) ≤ C(s)
( 2

p+ 2

)2s+2

|u|2Hs+1(κ̂). (7.40)

In step two, by employing the relation m ≥ α1, we have

1

m(m+ 1)
=

1

(m+ α1 + 1)(m+ α1 + 2)

(m+ α1 + 1)(m+ α1 + 2)

m(m+ 1)

≤ 6

(m+ α1 + 1)(m+ α1 + 2)
.

In step three, we use Lemma 7.2, with ξ1 = α1 + 1 ≥ 0, ξ2 = α2 + 1 ≥ 0,

ρ1 = m + 1 ≥ 0, ρ2 = n + 1 ≥ 0, M = p + 1, and m = s + 1, together with the

restriction 1 ≤ s ≤ min{p, l − 1}, and in the last step, we use Stirling’s formula

(7.6).
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Using the same techniques, we can derive the error estimate for the H1–seminorm.

We have

‖∂1(HSp u−HQp u)‖2
L2(κ̂) ≤ ‖∂1(HSp u−HQp u)W−1

2 ‖2
L2(κ̂)

≤
∑
|α|=s−1

∑
m≥α1,n≥α2
m+n≥p−1

|amn|2
2

2m+ 1

2

2n+ 1

1

n(n+ 1)

×
(Γ(m− α1 + 1)

Γ(m+ α1 + 1)

Γ(n− α2 + 1)

Γ(n+ α2 + 1)

)
×
(Γ(m+ α1 + 1)

Γ(m− α1 + 1)

Γ(n+ α2 + 1)

Γ(n− α2 + 1)

)
.

In step two, we enlarge the summation index sets by adding the high order terms.

‖∂1(HSp u−HQp u)‖2
L2(κ̂)

≤
∑
|α|=s−1

∑
m≥α1,n≥α2
m+n≥p−1

|amn|2
2

2m+ 1

2

2n+ 1

(Γ(m+ α1 + 1)

Γ(m− α1 + 1)

Γ(n+ α2 + 1)

Γ(n− α2 + 1)

)

×6
(Γ(m− α1 + 1)

Γ(m+ α1 + 1)

Γ(n− α2 + 1)

Γ(n+ α2 + 3)

)
≤ 6
(Γ(p−s

2
+ 1)

Γ(p+s
2

+ 1)

)2 ∑
|α|=s−1

‖WαDα(∂1∂2u)‖2
L2(κ̂)

= 6
(Γ(p−s

2
+ 1)

Γ(p+s
2

+ 1)

)2

|∂1∂2u|2V s−1(κ̂) ≤ C(s)
(2

p

)2s

|u|2Hs+1(κ̂), (7.41)

where in step two we use Lemma 7.2, taking ξ1 = α1 ≥ 0, ξ2 = α2 + 1 ≥ 0,

ρ1 = m ≥ 0, ρ2 = n + 1 ≥ 0, M = p, and m = s, together with the restriction

1 ≤ s ≤ min{p, l − 1}.

Therefore, we have the bound

‖∇(HSp u−HQp u)‖2
L2(κ̂) ≤ 12

(Γ(p−s
2

+ 1)

Γ(p+s
2

+ 1)

)2

|∂1∂2u|2V s−1(κ̂)

≤ C(s)
(2

p

)2s

|u|2Hs+1(κ̂). (7.42)

Finally, using (7.40), (7.42) and Lemma 7.5, the bounds (7.36) and (7.37) follow.

Remark 7.7. We again make the comparison between the bounds in the L2– and

H1–norms, given in (7.33) and (7.34) respectively for HQp , and (7.36) and (7.37)

respectively for HSp . Similarly to the comparisons for the L2-projection onto Pp
and Qp, both bounds are p-optimal for functions with finite Sobolev regularity
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and also for analytic functions. We can also see that the bounds for HSp have a

larger constant than those for HQp .

Finally, we present the error bound for HPp which we shall define now. The key

observation is that the Pp basis with polynomial order p contains the Sp+1−d basis

for p ≥ d. Then, we can simply define HPp = HSp−1 for d = 2.

Corollary 7.8. Let κ̂ = (−1, 1)2. Suppose that u|κ̂ ∈ H l+1(κ̂), for some l ≥ 1.

Let HPp u := HSp−1u be the H1 projection of u onto Pp(κ̂) with p ≥ 2. Then, we

have:

HPp u = u at the vertices of κ̂, (7.43)

and the following error estimates hold:

‖u−HPp u‖2
L2(κ̂) = ‖u−HSp−1u‖2

L2(κ̂) ≤ C(s)
( 2

p+ 1

)2s+2

|u|2Hs+1(κ̂). (7.44)

‖∇(u−HPp u)‖2
L2(κ̂) = ‖∇(u−HSp−1u)‖2

L2(κ̂) ≤ C(s)
( 2

p− 1

)2s

|u|2Hs+1(κ̂). (7.45)

for any integer s, 1 ≤ s ≤ min{p− 1, l}.

Remark 7.9. We emphasize that the above error bound for the HPp projector is p-

sub-optimal by one order for analytic functions, and p-optimal for functions with

finite Sobolev regularity in the case l ≤ p−1. However, sub-optimality by one order

in p is better than using the HQbp/2c projector, as suggested by [167] (see Corollary

4.52 on p190), which is sub-optimal in p by at least p/2 orders. Moreover, the one

order sub-optimality in p for analytic functions does not influence the exponential

convergence results presented in the next section.

7.2 Exponential convergence for DGFEMs

We shall be concerned with the proof of exponential convergence for DGFEMs

with Pp basis over tensor product elements. For simplicity, we only consider the

case when the given problem is piecewise analytic over the whole computational

domain. Exponential convergence is then achieved by fixing the computational

mesh Th, and increasing the polynomial order p. Only parallelepiped meshes

are considered, which are the affine family obtained from the reference element
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κ̂ = (−1, 1)d. The analysis of DGFEMs with a general hp-refinement strategy are

beyond the scope of this analysis (see [163, 164, 165] for details).

The proof of exponential convergence for DGFEMs depends on proving exponen-

tial convergence of L2- and H1-projections for piecewise analytic functions un-

der p-refinement, as shown in the previous section. For deriving error bounds for

DGFEMs using the L2- andH1- projectors ontoQp, we refer to [124, 125, 103]. Fol-

lowing similar techniques, we can prove the corresponding hp-bounds for DGFEMs

employing the Pp basis, albeit with sub-optimal rate in p. The sub-optimality in p

is due to the fact that the H1-projector onto Pp is one order sub-optimal. As we

proved in the previous section, the sub-optimality in p is independent of p, and

therefore does not influence the slope of the exponential convergence. Addition-

ally, we point out that the approximation results for the H1-projector HSp onto Sp
can be directly applied to hp-FEMs for elliptic problems with same optimal rate

as the H1 projector HQp , see [167] for details.

For the sake of simplicity, we focus on deriving the exponential convergence for the

L2-projection in the L2–norm on sufficiently smooth problems under p-refinement.

The proof for the H1-projection can be done analogously.

We shall derive the exponential convergence on general parallelepiped meshes. Let

κ be an element of Th with diameter hκ ≤ 1. For a function u having an analytic

extension into an open neighbourhood of κ̄, we have for every sκ ≥ 0:

∃Rκ > 0, C > 0 ∀sκ : |u|Hsκ (κ) ≤ C(Rκ)
sκΓ(sκ + 1)|κ|1/2, (7.46)

where |κ| denotes the measure of element κ, cf. [83, Theorem 1.9.3].

Lemma 7.10. Let u : κ→ R have an analytic extension to an open neighbourhood

of κ̄. Also let pκ ≥ 0 and 0 ≤ sκ ≤ pκ + 1 be two positive numbers such that

sκ = ε(pκ + 1), 0 < ε < 1 and d = 2, 3. Then the following bounds hold:

‖u− ΠQpκu‖
2
L2(κ) ≤ d2

(hκ
2

)2sκ Γ(pκ − sκ + 2)

Γ(pκ + sκ + 2)
|u|2Hsκ (κ̂)

≤ C(u)(p+ 1)e−2b1κ(pκ+1)|κ|, (7.47)

and

‖u− ΠPpκu‖
2
L2(κ) ≤

(hκ
2

)2sκ(Γ(pκ+1−sκ
d

+ 1)

Γ(pκ+1+sκ
d

+ 1)

)d
|u|2Hsκ (κ̂)

≤ C(u)(p+ 1)e−2b2κ(pκ+1)|κ|. (7.48)
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Here, C(u) is a positive constant depending on u, F1(Rκ, ε) = (1−ε)1−ε
(1+ε)1+ε

(εRk)
2ε,

εmin = 1/
√

1 +R2
κ, b1

κ := 1
2
| logF1(Rκ, εmin)|+εmin| log hκ

2
| and b2

κ := b1
κ−εmin log d.

Proof. Using standard scaling arguments, we have the approximation results for

L2-projection over κ. For brevity, we set qκ = pκ + 1. By employing Stirling’s

formula, we have the bounds:

Γ(pκ − sκ + 2)

Γ(pκ + sκ + 2)
|u|2Hsκ (κ̂) ≤ C(Rκ)

2sκΓ(sκ + 1)2 Γ(qκ − sκ + 1)

Γ(qκ + sκ + 1)
|κ|

≤ C(Rκ)
2εqκ

(εqκ)
2εqκ+1

e2εqκ

((1− ε)qκ)(1−ε)qκe−(1−ε)qκ

((1 + ε)qκ)(1+ε)qκe−(1+ε)qκ
|κ|

≤ Cqκ(F1(Rκ, ε))
qκ|κ|,

where

F1(Rκ, ε) =
(1− ε)1−ε

(1 + ε)1+ε
(εRk)

2ε.

Recalling (7.46), we have Rκ > 1,

min
0<ε<1

F1(Rκ, ε) = F1(Rκ, εmin) =

(
Rκ√

1 +R2
κ + 1

)2

< 1, εmin =
1√

1 +R2
κ

.

(7.49)

Thus, we have

Γ(pκ − sκ + 2)

Γ(pκ + sκ + 2)
|u|2Hsκ (κ̂) ≤ Cqκe

−| logF1(Rκ,εmin)|qκ |κ|. (7.50)

Therefore, we have the exponential convergence for the L2-projection ΠQp , via

‖u− ΠQpκu‖
2
L2(κ) ≤ C(p+ 1)e−2b1κ(pκ+1)|κ|, (7.51)

with b1
κ := 1

2
| logF1(Rκ, εmin)| + εmin| log hκ

2
|. Similarly, for the L2-projection ΠPp ,

Stirling’s formula implies

(Γ(pκ+1−sκ
d

+ 1)

Γ(pκ+1+sκ
d

+ 1)

)d
|u|2Hsκ (κ̂) ≤ C(Rκ)

2sκΓ(sκ + 1)2
(Γ( qκ−sκ

d
+ 1)

Γ( qκ+sκ
d

+ 1)

)d
|κ|

≤ C(Rκ)
2εqκ

(εqκ)
2εqκ+1

e2εqκ

((1− ε)qκ)(1−ε)qκ(ed)−(1−ε)qκ

((1 + ε)qκ)(1+ε)qκ(ed)−(1+ε)qκ
|κ|

≤ Cqκ(F2(Rκ, ε))
qκ|κ|,

where,

F2(Rκ, ε) =
(1− ε)1−ε

(1 + ε)1+ε
(εRkd)2ε,
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with the minimum,

min
0<ε<1

F2(Rκ, ε) =

(
Rκd√

1 + (Rκd)2 + 1

)2

< 1.

In order to make comparison with the slope of projector ΠQp , here we will use the

same εmin. We have

min
0<ε<1

F2(Rκ, ε) ≤ F2(Rκ, εmin) = F1(Rκ, εmin)d2εmin .

Thus, we have

‖u− ΠPpκu‖
2
L2(κ) ≤ C(p+ 1)e−2b2κ(pκ+1)|κ|, (7.52)

with slope b2
κ := 1

2
| logF1(Rκ, εmin)|+ εmin(| log hκ

2
| − log d). The proof is complete.

In the above theorem, we can see that the L2–norm error for both L2-projections

ΠQpκ and ΠPpκ decays exponentially for analytic functions under p-refinement. If we

measure the error against p, the slope b1
κ for the Qp basis is greater than the slope

b2
κ for the Pp basis by a small factor of (log d)/

√
1 +R2

κ. From Lemma 7.10 we

can also derive the following corollary.

Corollary 7.11. Let u be an analytic function as defined in Lemma 7.10. Then,

the following bounds hold:

‖u− ΠQpκu‖
2
L2(κ) ≤ C(u)e−2b1κ

d√Dof |κ|, (7.53)

and

‖u− ΠPpκu‖
2
L2(κ) ≤ C(u)e−2(b2κ

d√
d!) d
√
Dof |κ|. (7.54)

Proof. By recalling the relationship between degrees of freedom and polynomial

order p for both Pp basis and Qp basis, we have

Dof(Qp) = (p+ 1)d and Dof(Qp) =

(
p+ d

d

)
=

(p+ 1)d

d!
+O((p+ 1)d−1).

Then, (7.53) and (7.54) follow from Lemma 7.10.
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For d = 2, 3, if the following condition

1

2
| logF1(Rκ, εmin)|+ εmin| log

hκ
2
| � εmin log d, (7.55)

holds, then we have b2
κ ≈ b1

κ. By recalling (7.49), we know that for sufficiently

small Rκ or sufficiently small mesh size h, the condition (7.55) will be satisfied.

Now, if we consider the error in terms of d
√
Dof for the above bounds, a by a fixed

factor of d
√
d!. The above exponential convergence for the L2 projector with each

basis type also holds for H1 projector. It is also possible to prove the same steeper

slope in error against degrees of freedom for HPp and HSp with respect to HQp , due

to the fact that the number of degrees of freedom in the Pp basis and the Sp grow

at asymptotically the same rate in p. For brevity, we do not prove this here.

We have observed the better slope in error against d
√
Dof for DGFEMs with Pp.

For d = 2, this suggests a typical ratio between convergence slopes of DGFEMs

with Pp and Qp basis to be
√

2! ≈ 1.414. For d = 3, this ratio is 3
√

3! ≈ 1.817.

The numerical examples show that the ratio is slightly worse than the ideal ratio.

For d = 2, the computed ratio is approximately between 1.3 and 1.4. and for

d = 3, the computed ratio is approximately 1.6. The numerical examples in the

next section confirm the statements above.

7.3 Numerical examples

We present some numerical examples to confirm the theoretical analysis in this

chapter. The comparisons are made between the slope of DGFEMs with Pp and

Qp basis over rectangle meshes for d = 2 and hexahedral meshes for d = 3 under

p-refinement. The slopes of the convergence lines are calculated by taking the

average of the last two slopes of the line segments of each convergence line.

7.3.1 Example 1

Let Ω be the square domain (−1, 1)2, and choose

a ≡ 0, b = (2− y2, 2− x), c = 1 + (1 + x)(1 + y)2; (7.56)
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Figure 7.2: Example 1: Convergence of the DGFEM under p-refinement.
Square meshes with 64 elements (left) and 4096 elements (right).

the forcing function f is selected so that the analytical solution to (5.1), (5.5) is

given by

u(x, y) = 1 + sin(π(1 + x)(1 + y)2/8). (7.57)

This example is the one from Section 5.3.1. In Figure 7.2, we can see that the

slope of DGFEMs with Pp basis is greater than the slope of DGFEMs with Qp
basis in error against 2

√
Dof . The ratio between the two slopes is about 1.35.

7.3.2 Example 2

Let Ω = (−1, 1)2, and consider the PDE problem:−x2uyy + ux + u = 0, for − 1 ≤ x ≤ 1, y > 0,

ux + u = 0, for − 1 ≤ x ≤ 1, y ≤ 0,
(7.58)

with analytical solution:

u(x, y) =

sin(1
2
π(1 + y)) exp(−(x+ π2x3

12
)), for − 1 ≤ x ≤ 1, y > 0,

sin(1
2
π(1 + y)) exp(−x), for − 1 ≤ x ≤ 1, y ≤ 0.

(7.59)

This example is the one from Section 5.3.2. In Figure 7.3, we can see that the

slope of DGFEMs with Pp basis is greater than the slope of DGFEMs with Qp
basis in error against 2

√
Dof . The ratio between the two slopes is about 1.38.
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Figure 7.3: Example 2: Convergence of the DGFEM under p-refinement.
Square meshes with 64 elements (left) and 4096 elements (right).

7.3.3 Example 3

We now consider a singularly perturbed advection-diffusion problem equation

−ε∆u+ ux + uy = f,

with Ω := (0, 1)2, where 0 < ε� 1 and f is chosen so that

u(x, y) = x+ y(1− x) +
[e−1/ε − e−(1−x)(1−y)/ε]

[1− e−1/ε]
. (7.60)

From Section 5.3.3. We observe the same behaviour as before over anisotropically

refined meshes graded towards to layer with slope ratio 1.31.

7.3.4 Example 4

Moving to three-dimensional problems, we consider

−∆u = f,

over the domain Ω = (0, 1)3. The analytic solution is u = sin(πx) sin(πy) sin(πz).

In Figure 7.5, we observe that the slope of DGFEMs with Pp basis is greater than

the slope of DGFEMs with Qp basis in error against 3
√
Dof . The ratio between

the two slopes is about 1.61.
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Figure 7.4: Example 3: Convergence of the DGFEM under p-refinement.
Anisotropically refined meshes with 196 elements (left) and 400 elements (right).
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Figure 7.5: Example 4: Convergence of the DGFEM under p-refinement.
Cube meshes with 64 elements (left) and 4096 elements (right).

7.3.5 Example 5

In the last example, we consider the biharmonic problem

∆2u = f,

over the domain Ω = (0, 1)3, the analytic solution is u = sin(πx) sin(πy) sin(πz).

Although our analysis does not cover the biharmonic problem, we follow the IP

DGFEMs defined in [176, 146, 107] to approximate its solution, starting with p = 2.
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Figure 7.6: Example 5: Convergence of the DGFEM under p-refinement.
Cube meshes with 64 elements (left) and 4096 elements (right).

We need to emphasize that for biharmonic problems, the minimum polynomial

order is 2.

In Figure 7.6, we observe the same behaviour as the previous example with slope

ratio 1.62.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work, we presented an hp-version interior penalty discontinuous Galerkin fi-

nite element method on extremely general classes of meshes consisting of polytopic

elements, possibly with arbitrarily small (d−k)-dimensional faces, k = 1, . . . , d−1.

We applied the proposed DGFEMs to solve partial differential equations with non-

negative characteristic form, and with mixed Dirichlet and Neumann boundary

conditions. Furthermore, we presented the space-time DGFEMs for solving time-

dependent parabolic problems over prismatic meshes as a particular application.

The main goal in this work was to derive the hp-error bound for DGFEMs over

polytopic meshes. For this purpose, new hp-version inverse estimate and poly-

nomial approximation results over polytopic elements have been derived. These

results are sharp with respect to (d− k)-dimensional face degeneration, which has

been a key aim of this work.

We presented detailed stability and a priori error analysis for DGFEMs over poly-

topic elements under two different types of mesh assumptions, which allow both

shape irregular polytopic meshes with bounded number of faces per element and

shape regular polytopic meshes with arbitrary number of faces. Due to lack of

hp-approximation theory for the L2-projection over polytopic elements, we pre-

sented a new way for deriving the inf-sup stability and a priori error bound for

DGFEMs for solving PDEs with non-negative characteristic forms. Moreover, due

to the use of the total degree Pp basis over space-time prismatic elements, new

152
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stability and a priori error estimates for space-time DGFEMs are derived avoiding

the space-time tensor product setting.

A series of numerical experiments have been presented which, not only confirm

the theoretical results derived in this work, but also demonstrate the efficiency of

employing the total degree polynomial space Pp, defined in the physical coordinate

system, compared with the tensor-product polynomial space Qp, mapped from a

given reference or canonical frame, under p-refinement.

Furthermore, we also derived new hp-approximation results for the L2-projector

onto the total degree Pp basis and the H1 projector onto the serendipity Sp basis

on the tensor product element. The new results show that the extra basis func-

tions in the tensor-product Qp basis other than the total-degree Pp basis and the

serendipity Sp basis do not increase the convergence rate of p for the L2-projection

and H1-projection error bound in several norms, but instead only reduce the “con-

stant” in the error bound. The above new approximation results may be of inde-

pendent interest. One interesting application of these new approximation results

is in the proof of exponential convergence for DGFEMs with the Pp basis. We

showed that for fixed tensor product elements, DGFEMs with the Pp basis con-

verges exponentially to the analytical solution under p-refinement. Moreover, the

slope of exponential convergence of DGFEMs with the Pp basis is steeper than

the slope of DGFEMs with the Qp basis if we measure the error against number

of degrees of freedom. The sharpness of these results was confirmed by a series of

numerical examples.

8.2 Future Work

In this section, we outline some future directions of research that naturally arise

from this work.

8.2.1 Adaptivity

The first and most important topic for future research is the design of adaptive

algorithms for the proposed DGFEMs over general polytopic elements based on a

posteriori error estimators. DGFEMs are ideally suited for adaptive algorithms,
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as they naturally allow hanging nodes and different polynomial basis between

different elements.

The fundamental difficulty in deriving a posteriori error estimators for DGFEMs

in energy norm is that the DGFEM solution does not live inside the function

space on which the PDEs is defined. The first work to successfully derive rigorous

a-posteriori error estimators for DGFEMs in energy norm is by Karakashian &

Pascal [134]. Therein, the authors introduced a special type of recovery operator

for post-processing the DGFEM solution in order to split the DGFEM solution

error into conforming and non-conforming components. Adaptive DGFEMs have

been developed in the past 15 years, see [36, 108, 166, 188] for h-version a-posteriori

error estimator, and see [123, 190] for hp-version.

All the above mentioned works are concerned with standard meshes. For polytopic

meshes, energy norm based a-posteriori error estimators can be found in [111].

However, the theory in [111] does not work for general polytopic elements with

arbitrary small (d− k)-dimensional faces, k = 1, . . . , d− 1. The extension of their

results to such meshes is still elusive.

8.2.2 Space-time DGFEMs for problems on evolving do-

mains

Modeling of PDEs over evolving domains is both interesting and challenging. His-

torically, Jamet [127] was the first to propose the discontinuous Galerkin time-

stepping method for solving parabolic PDEs on evolving domains. Due to the

discontinuity over different time intervals, the problem can be solved with the

high order DGFEMs over each space-time slap with good stability. More recently,

the DG time-stepping method for an advection-diffusion model defined on moving

domains written in the Arbitrary Lagrangian Eulerian (ALE) framework, has been

considered in [42, 43].

Space-time DGFEMs over general prismatic meshes have several advantages com-

pared to the classical DG time-stepping schemes. General shaped prismatic ele-

ments will offer great flexibility in practical computations. Using general shaped

elements on evolving domains will reduce the computational cost for mesh re-

finement and coarsening. Also, due to the discontinuous nature of space-time

DGFEMs, this approximation has great flexibility in choosing basis functions for

each element without considering the conformity of the finite element space. This
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is very important in view of reducing the complexity of the space-time DGFEMs

with high-order polynomial basis, as we saw in Chapter 6.

8.2.3 Other directions for further research

• DGFEMs for problems with multiple scales. Many problems of fun-

damental and practical importance have multiple-scale solutions, e.g. Com-

posite materials, porous media and turbulent transport in high Reynolds

number flows. Multicale-DGFEMs has been very popular in recent years,

[1, 2, 90, 91]. To develop multiscale DGFEMs over polytopic meshes for

solving problems imposed on complicated domains with multiple scales will

be a very interesting project.

• Extension of hp-approximation theory. The approximation result of the

L2-projection onto the total degree space Pp in L2–norm can be easily ex-

tended to the Jacobi projector onto the Pp basis in Jacobi weighted Sobolev

norms. Following [21, 22, 20], we can study the new hp-approximation re-

sults with the Pp basis in Jacobi-weighted Besov spaces. One application of

those results is that we can proof the sharp hp-optimal bound for serendip-

ity FEMs for PDEs containing singularity in rγ logν r type, γ ∈ R+, ν ∈ N.

Furthermore, the optimal trace estimates for L2-projection onto the Pp basis

on simplicial elements has been shown in [69, 144]. It remains, however, an

open question their results can be extended to tensor product elements.

• hp-FEMs with serendipity basis. Serendipity FEMs are popular among

engineers. Their mathematical development, however, is relatively recent

[14, 17]. There is no sharp theory of serendipity hp-FEMs. In this work, we

derived some new hp-approximation theory for H1-projection with serendip-

ity Sp basis in two dimensions. The next step would be to extend their

results to three dimensions and construct polynomial trace lifting results for

serendipity FEMs. Then we can derive, e.g., exponential convergence for

serendipity hp-FEMs with hp-refinement following [160].



Appendix A

Implementation of hp-Version

Discontinuous Galerkin Methods

on Polytopic Mehses

We present some of the key ingredients/techniques used in the implementation of

the proposed hp-version DGFEMs for general advection-diffusion-reaction bound-

ary value problem and time dependent parabolic problem over polytopic meshes

and prismatic meshes.

A.1 DGFEMs for boundary value problems over

polytopic meshes

A.1.1 Construction of the finite element basis functions on

general polygons/polyhedra

The finite element space Sp
Th may be constructed in a number of different ways.

In the case when the computational mesh Th consists of standard affine element

domains (simplices, parallelograms, etc), standard polynomial bases on reference

elements may simply be mapped from the reference frame to the physical element;

indeed, this is the standard approach used within most finite element software

packages.

156
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κ

Bκ

Figure A.1: Bounding box Bκ of an element κ ∈ Th.

Here, we introduce an alternative approach based on employing polynomial spaces

defined over the bounding box of each element; cf. [109]. More precisely, given

an element κ ∈ Th, we first construct the Cartesian bounding box Bκ, such

that κ̄ ⊆ B̄κ, cf. Figure A.1. On the bounding box Bκ we may define a stan-

dard polynomial space Ppκ(Bκ) spanned by a set of basis functions {φi,κ}, i =

1, . . . , dim(Ppκ(Bκ)). With this in mind, we employ tensor-product (scaled) or-

thonormal Legendre polynomials; indeed, writing Î = (−1, 1), we denote the fam-

ily of L2(Î)-orthonormal (Legendre) polynomials by {L̃i(x)}∞i=0. Thereby, given a

general interval Ib = (x1, x2), the corresponding scaled Legendre polynomials may

be defined by

L
[b]
i (x) = (1/hb)

1/2L̃i((x−mb)/hb),

such that ∫
Ib

L
[b]
i (x)L

[b]
j (x) dx = δij,

where hb = (x2 − x1)/2, mb = (x1 + x2)/2 and δij is the Kronecker symbol.

With this notation, a polynomial basis on Bκ may be defined as follows: writing

Bκ = I1× I2×· · ·× Id, where Ij, j = 1, . . . , d, denotes a one–dimensional interval,

the space of polynomials Ppκ(Bκ) of total degree pk over Bκ is given by

Ppκ(Bκ) = span{φi,κ}dim(Ppκ (Bκ))
i=1 ,

where

φi,κ(x) = L
[1]
i1

(x1)L
[2]
i2

(x2) · · ·L[d]
id

(xd), i1+i2+. . .+id ≤ pκ, ik ≥ 0, k = 1, . . . , d,

and x = (x1, x2, . . . , xd). The polynomial basis over the general polygonal/poly-

hedral element κ may be defined by simply restricting the support of {φi,κ},
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i = 1, . . . , dim(Ppκ(Bκ)) to κ; i.e., the polynomial basis defined over κ is given

by {φi,κ|κ}, i = 1, . . . , dim(Ppκ(Bκ)).

Remark A.1. Notice that, if the underlying polytopic elements are axisparallel

tensor product elements, then the resulting mass matrixM is the identity matrix

due to the orthogonality of the basis functions. Moreover, we point out that the

basis functions constructed based on bounding box can be defined via diagonal

affine transfer from tensor product reference element.

A.1.2 Quadrature rules for polytopic meshes

Following [129], quadrature over general polygonal/polyhedral element domains

is undertaken based on first constructing a sub-triangulation, followed by the

exploitation of integration schemes introduced in Section A.2. Therefore, given

κ ∈ Th, we first construct a non-overlapping sub-triangulation κS = {τκ} consist-

ing of simplicial elements. As an example, if we consider the local stiffness matrix,

restricted to κ, then we compute∫
κ

∇u · ∇v dx =
∑
τκ∈κS

∫
τκ

∇u · ∇v dx

≈
∑
τκ∈κS

q∑
i=1

∇u(Fκ(ξi)) · ∇v(Fκ(ξi)) det(JFκ(ξi))wi,

where Fκ : κ̂ → τκ is the mapping from the reference element (simplex) κ̂ to τκ,

with Jacobi matrix JFκ , and (ξi, wi)
q
i=1 denotes the quadrature rule defined on κ̂.

We point out that the gradient operators are not transformed, as would be the

case if the element κ was mapped to a reference frame.

We point out that alternative integration methods which do not require a sub-

triangulation of the underlying polygonal/polyhedral element have recently been

considered in [148, 37, 40]. For related work we refer to [31, 143] and the references

cited therein.

A.2 Quadrature rules over simplices/polytopes

In this section, we give the theoretical and practical background for constructing

stable Gauss quadrature rules over a d-dimensional simplex.
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A.2.1 Gauss-Jacobi quadrature rules in 1D

We will review some well-known results for the Gauss-Jacobi quadrature rules,

following [120, 135, 102, 178].

The classical Jacobi polynomial P
(α,β)
n (x) of order n is the solution of the singular

Sturm-Liouvile eigenvalue problem

d

dx
(1− x2)ω(x)

d

dx
P (α,β)
n (x) + n(n+ α + β + 1)ω(x)P (α,β)

n (x) = 0, (A.1)

for x ∈ [−1, 1], with weight function ω(x) = (1− x)α(1 + x)β, for α, β > −1. The

Jacobi polynomials are normalized to be orthonormal:∫ 1

−1

P̃
(α,β)
i (x)P̃

(α,β)
j (x)ω(x) dx = δij. (A.2)

An important property of Jacobi polynomials is [178]:

d

dx
P̃ (α,β)
n (x) =

√
n(n+ α + β + 1)P̃

(α+1,β+1)
n−1 (x). (A.3)

The special case of P̃
(0,0)
n (x), are as the Legendre polynomials L̂n(x).

A classical way to evaluate the Jacobi polynomials is to use the recurrence relation

xP̃ (α,β)
n (x) = anP̃

(α,β)
n−1 (x) + bnP̃

(α,β)
n (x) + an+1P̃

(α,β)
n+1 (x), (A.4)

where the coefficients are given as

an =
2

2n+ α + β

√
n(n+ α + β)(n+ α)(n+ β)

(2n+ α + β − 1)(2n+ α + β + 1)
,

bn = − α2 − β2

(2n+ α + β)(2n+ α + β + 2)
.

To get the recurrence started, we need the initial values

P̃
(α,β)
0 (x) =

√
2−1−α−β Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
,

P̃
(α,β)
1 (x) =

1

2
P̃

(α,β)
0 (x)

√
(α + β + 3)

(α + 1)(β + 1)
((α + β + 2)x+ (α− β)).
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There is a close connection between Jacobi polynomials and Gaussian quadratures

for the approximation of integrals in the form

∫ i

−1

f(x)ω(x) dx =
N∑
i=0

f(xi)ωi.

Here, (xi, ωi) are the quadrature nodes and weights, and f(x) is a polynomial

function. It can be shown that if one chooses xi as the roots of P̃
(α,β)
N+1 (x) and the

weights, ωi, by requiring the integration to be exact for polynomials up to order N ,

the above summation is in fact exact for f being a polynomial of order 2N + 1. A

key feature of Gauss quadrature rule is that all the quadrature weights are strictly

positive, which guarantees the stability of the quadrature, see [66].

Finding the nodes and weights can be done in several ways. One classical and

numerically stable way is based on recurrence, via (A.4). Starting from the three

term recurrence, the quadrature rule may be generated by computing the eigen-

values and first component of the orthornormalized eigenvectors of a symmetric

tridiagonal matrix; this is the celebrated Golub-Welsch (GW) algorithm, for the

details, we refer to [112].

In general, the GW algorithm takes O(n2) operations to solve the eigenvalue prob-

lem by taking advantage of the structure of the matrix and noting that only the

first component of the normalized eigenvector needs to be computed. Moreover,

it has been observed in [117] that the GW method leads to an O(n) error in the

Gauss-Legendre nodes and an O(n3/2) error for the relative maximum error in the

weights. Here, we will use the alternative approach proposed in [117] which is

to solve (A.4) by Newton iterates. It is shown that Newton iterates converge to

the zeros of the orthogonal polynomial with total complexity O(n2), see [117] for

details.

A.2.2 Quadrature rules over triangles

In this section, we present more details about stable and efficient computation

of quadratures over a triangle. As illustrated in Figure A.2, the reference square

Q2 and the reference triangle T 2 in Cartesian coordinates (η1, η2) and (ξ1, ξ2) are

represented as:

Q2 = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1},
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and

T 2 = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 0}.
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(0,0)

η
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η
1
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(-1,1)

(0,0)

ξ
2

ξ
1

Figure A.2: Reference square Q2 (left); reference triangle T 2 (right).

In order to apply Gauss-quadrature rules over each triangle, we link T 2 and Q2.

The key technique is to use the Duffy transformation (collapsed transformation)

[135] to link two different coordinate system (η1, η2) and (ξ1, ξ2) together. The

transformation is defined as follows:

η1 = 2
1 + ξ1

1− ξ2

− 1, η2 = ξ2, (A.5)

and has inverse transformation

ξ1 =
(1 + η1)(1− η2)

2
− 1, ξ2 = η2. (A.6)

We emphasize that for any polynomial functions u(ξ1, ξ2) over the the region T 2,

under Duffy transformation, u(η1, η2) is still a polynomial function over Q2. If we

want to compute the integral of polynomials u(ξ1, ξ2) over the region T 2, recalling

the collapsed system (η1, η2), we obtain∫
T 2

u(ξ1, ξ2) dξ1 dξ2 =

∫ 1

−1

∫ −ξ2
−1

u(ξ1, ξ2) dξ1 dξ2

=

∫ 1

−1

∫ 1

−1

u(η1, η2)
∣∣∣ ∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣ dη1 dη2, (A.7)
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where ∂(ξ1, ξ2)/∂(η1, η2) is the Jacobian of the Cartestian to the local coordinate

transformation and can be expressed in terms of η2 by

∂(ξ1, ξ2)

∂(η1, η2)
=

1− η2

2
.

The last term in (A.7) can be approximated using one-dimensional Gaussian

quadrature rules to arrive at

∫ 1

−1

∫ 1

−1

u(η1, η2)
1− η2

2
dη1 dη2 =

Q1−1∑
i=0

ωi

{
Q2−1∑
j=0

ωju(η1i, η2j)
1− η2j

2

}
, (A.8)

where η1i and η2j are quadrature points in the η1 and η2 directions, respectively.

The weights ωi used in (A.8) correspond to the standard Gauss-Legendre rule.

However, if we take into account that the Jacobian term ∂(ξ1, ξ2)/∂(η1, η2) = (1−
η2)/2, which is a singular function appearing inside the general Jacobi polynomial,

then we can use Gauss-Jacobi quadrature with α = 1 and β = 0 along η2 direction.

Accordingly, the integration scheme over T 2 becomes

∫ 1

−1

∫ 1

−1

u(η1, η2)
1− η2

2
dη1 dη2 =

Q1−1∑
i=0

ω0,0
i

{
Q2−1∑
j=0

ω̂1,0
j u(η0,0

1i , η
1,0
2j )

}
, (A.9)

and

ω̂1,0
j =

ω1,0
j

2
, (A.10)

where ω1,0
j and η1,0

2j are the weights and nodes of the Gauss-Jacobi quadrature with

weight α = 1 and β = 0, respectively. The Gauss-Jacobi rule therefore uses fewer

quadrature points than the standard Gauss-Legendre quadrature rule to achieve

an equivalent accuracy.

Here, as we mentioned in Section A.1.2, the quadratures rules are applied on phys-

ical polytopic meshes, so we need to transform the above Gauss-Jacobi quadrature

points into the physical meshes.

First we can generate quadrature points on a reference square Q2. Next, by using

the inverse mapping of Duffy transformation, we find the corresponding quadrature

points on the reference triangle T 2. The weight function is invariant; see Figure

A.3 for an illustration.
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Figure A.3: Quadrature points over Q2 with Gauss-Legendre points along η1

and Gauss-Jacobi points (α = 1 and β = 0) along η2 (left); quadrature points
over T 2 after transformation (right).

Finally, we use the affine map to transform all the quadrature points from the

reference triangle to the physical triangles and glue them up to get the quadrature

points over the polygons. During the affine mapping, the weight of quadrature

points will change; see Figure A.4 for an illustration.

Figure A.4: Quadrature points for polygons

A.2.3 Quadrature rules over tetrahedra

In this section, we present quadratures over tetrahedra based on the same tech-

nique used in previous sections. As illustrated in Figure A.5, the reference cube Q3

and the reference triangle T 3 in Cartesian coordinates (η1, η2, η3) and (ξ1, ξ2, ξ3)
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are represented as:

Q3 = {(η1, η2, η3)| − 1 ≤ η1, η2, η3 ≤ 1},

and

T 3 = {(ξ1, ξ2, ξ3)| − 1 ≤ ξ1, ξ2, ξ3, ξ1 + ξ2 + ξ3 ≤ 0}.
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η
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η
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η
1
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1

-1 -1

Figure A.5: Reference square Q3 (left); reference tetrahedron T 3(right).

We introduce the Duffy transformation to link the two different coordinate systems

(η1, η2, η3) and (ξ1, ξ2, ξ3). The transformation is defined as:

η1 =
2(1 + ξ1)

−ξ2 − ξ3

− 1, η2 =
2(1 + ξ2)

1− ξ3

− 1, η3 = ξ3, (A.11)

and has the inverse transformation

ξ1 =
(1 + η1)(1− η2)(1− η3)

4
− 1, ξ2 =

(1 + η2)(1− η3)

2
− 1, ξ3 = η3.

(A.12)

If we want to compute integral of polynomials u(ξ1, ξ2, ξ3) over the region T 3,

recalling the collapsed system (η1, η2, η2), we obtain∫
T 3

u(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3 =

∫ 1

−1

∫ 1

−1

∫ 1

−1

u(η1, η2, η3)J dη1 dη2 dη3, (A.13)

where

J =
∂(ξ1, ξ2, ξ3)

∂(η1, η2, η3)
=

1− η2

2

(1− η3

2

)2

.

We can include the Jacobian in the quadrature weights by using the Gauss-Jacobi

integration rules with α = 0 , β = 0 along the η1 direction (i.e., Gauss-Legendre

quadrature), α = 1, β = 0 along the η2 direction, and α = 2, β = 0 along the η3
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direction. The integration rule over T 3 then becomes∫ 1

−1

∫ 1

−1

∫ 1

−1

u(η1, η2, η3)
1− η2

2

(1− η3

2

)2

dη1 dη2 dη3

=

Q1−1∑
i=0

Q2−1∑
i=0

Q3−1∑
i=0

u(η0,0
1i , η

1,0
2j , η

2,0
3j )ω0,0

k ω̂1,0
j ω̂2,0

k , (A.14)

ω̂1,0
j =

ω1,0
j

2
, ω̂2,0

j =
ω2,0
j

4
, (A.15)

and Q1, Q2 and Q3 are the number of quadrature points in the η1, η2 and η3

directions, respectively.

During implementation, we generate the quadrature points on reference cube Q3

and by using the inverse mapping of Duffy transformation, we find the corre-

sponding quadrature points on the reference tetrahedron T 3, keeping the weight

function fixed; see Figure A.3 for an illustration. General polyhedra can be sub-

triangulated into finite number of tetrahedra, so we can use affine mapping to link

the quadrature points from the reference tetrahedron to physical polyhedron.
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Figure A.6: Quadrature points over Q3 with Gauss-Legendre points along η1,
Gauss-Jacobi points (α = 1 and β = 0) along η2 and Gauss-Jacobi points (α = 2
and β = 0) along η3 (left); quadrature points over T 3 after transformation

(right).

We emphasize that the above quadrature rules over the simplex may use more

quadrature points to deal with polynomials with total degrees basis (Pp-type)

compared with the quadrature rules in [170, 89]. The latter quadrature rules,

however do not take advantage of tensorial construction of the unstructured basis.
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Additionally, the order of these schemes also tends to be restricted by the numerical

process of evaluating the quadrature weights. Furthermore, in three dimension,

there exist quadrature points outside the underlying tetrahedron with negative

weights. Negative quadrature weights may cause numerical instability in practical

computation for large classes of functions, see example 4.1.2 in [70] (page 202).

On the other hand, the proposed Gauss quadrature rules do not suffer from these

drawbacks.

We point out that alternative integration methods which do not require a sub-

triangulation of the underlying polygonal/polyhedral element have recently been

considered in [148, 37, 40]. For related work, we refer to [31, 143], and the refer-

ences cited therein.

A.3 DGFEMs for parabolic problems over pris-

matic meshes

A.3.1 Construction of finite element basis functions on

prismatic meshes

The key point for constructing the space-time basis over the prismatic meshes is to

utilize the tensor product structure of a space-time element. The basis functions

can be constructed in a similar way as in Section A.1. The spatial basis functions

are still constructed based on the bounding box Bκ for κ, and the temporal basis is

constructed based on the temporal interval In ⊂ R. We introduce the space-time

bounding box Bκn for each prismatic mesh κn; see Figure A.7 for an illustration.

A.3.2 Quadrature rules for prismatic meshes

The quadrature rules over prismatic meshes can be constructed by exploiting their

tensor product structure. Assuming that the spatial dimension d = 2, we will first

use the quadrature rules to get all the quadrature points over the spatial element

κ, and then we use the one dimensional Gauss-Legendre quadrature rules along

temporal interval In. Finally, the quadrature points over the space-time element

kn is constructed by tensor product argument; see Figure A.8 for details.
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Figure A.7: (a). Polygonal spatial element κ and bounding box Bκ; (b).
space-time element κn = In × κ and space-time bounding box Bκn := In ×Bκ.

⊗ =

Figure A.8: Quadrature points over the space-time element κn, with 2D spa-
tial element κ.



Bibliography

[1] A. Abdulle, Discontinuous Galerkin finite element heterogeneous multi-

scale method for elliptic problems with multiple scales, Math. Comp., 81

(2012), pp. 687–713.

[2] A. Abdulle and M. E. Huber, Discontinuous Galerkin finite element

heterogeneous multiscale method for advection–diffusion problems with mul-

tiple scales, Numer. Math., 126 (2014), pp. 589–633.

[3] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions

with formulas, graphs, and mathematical tables, vol. 55 of National Bureau

of Standards Applied Mathematics Series, For sale by the Superintendent of

Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[4] R. A. Adams and J. J. F. Fournier, Sobolev spaces, vol. 140 of Pure and

Applied Mathematics (Amsterdam), Elsevier/Academic Press, Amsterdam,

second ed., 2003.

[5] P. Antonietti and B. Ayuso, Schwarz domain decomposition precondi-

tioners for discontinuous Galerkin approximations of elliptic problems: non-

overlapping case, M2AN Math. Model. Numer. Anal., 41 (2007), pp. 21–54.

[6] , Multiplicative Schwarz methods for discontinuous Galerkin approxi-

mations of elliptic problems, M2AN Math. Model. Numer. Anal., 42 (2008),

pp. 443–469.

[7] P. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. Georgoulis,

S. Giani, and P. Houston, Review of discontinuous Galerkin finite el-

ement methods for partial differential equations on complicated domains,

Building Bridges: Connections and Challenges in Modern Approaches to

Numerical Partial Differential Equations. Lecture Notes in Computational

Science and Engineering, Springer Verlag, (2016).

168



Bibliography 169

[8] P. Antonietti, S. Giani, and P. Houston, hp–Version composite dis-

continuous Galerkin methods for elliptic problems on complicated domains,

SIAM J. Sci. Comput., 35 (2013), pp. A1417–A1439.

[9] P. Antonietti, S. Giani, and P. Houston, Domain decomposition pre-

conditioners for Discontinuous Galerkin methods for elliptic problems on

complicated domains, J. Sci. Comput., 60 (2014), pp. 203–227.

[10] P. Antonietti and P. Houston, A class of domain decomposition pre-

conditioners for hp-discontinuous Galerkin finite element methods, J. Sci.

Comp., 46 (2011), pp. 124–149.

[11] P. Antonietti, P. Houston, M. Sarti, and M. Verani, Multigrid

algorithms for hp–version interior penalty discontinuous Galerkin methods

on polygonal and polyhedral meshes, arXiv preprint arXiv:1412.0913, (2014).

[12] P. Antonietti, M. Sarti, and M. Verani, Multigrid algorithms for hp-

Discontinuous Galerkin discretizations of elliptic problems, SIAM J. Numer.

Anal., 53 (2015), pp. 598–618.

[13] D. Arnold, An interior penalty finite element method with discontinuous

elements, SIAM J. Numer. Anal., 19 (1982), pp. 742–760.

[14] D. Arnold, D. Boffi, and R. Falk, Approximation by quadrilateral

finite elements, Math. Comp., 71 (2002), pp. 909–922.

[15] D. Arnold, D. Boffi, R. Falk, and L. Gastaldi, Finite element

approximation on quadrilateral meshes, Commun. Numer. Meth. Engrg., 17

(2001), pp. 805–812.

[16] D. Arnold, F. Brezzi, B. Cockburn, and L. Marini, Unified analysis

of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer.

Anal., 39 (2001), pp. 1749–1779.

[17] D. N. Arnold and G. Awanou, The serendipity family of finite elements,

Found. Comput. Math., 11 (2011), pp. 337–344.

[18] B. Ayuso and L. Marini, Discontinuous Galerkin methods for advection-

diffusion-reaction problems, SIAM J. Numer. Anal., 47 (2009), pp. 1391–

1420.



Bibliography 170
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meshes, Comptes Rendus Mathématique, 353 (2015), pp. 31–34.

[87] D. A. Di Pietro, A. Ern, and J.-L. Guermond, Discontinuous

Galerkin methods for anisotropic semidefinite diffusion with advection, SIAM

J. Numer. Anal., 46 (2008), pp. 805–831.

[88] D. A. Di Pietro, A. Ern, and S. Lemaire, An arbitrary-order and

compact-stencil discretization of diffusion on general meshes based on local

reconstruction operators, Computational Methods in Applied Mathematics,

14 (2014), pp. 461–472.

[89] D. Dunavant, High degree efficient symmetrical gaussian quadrature rules

for the triangle, Internat. J. Numer. Methods Engrg., 21 (1985), pp. 1129–

1148.

[90] D. Elfverson, E. H. Georgoulis, and A. Målqvist, An adaptive
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[146] I. Mozolevski and E. Süli, A priori error analysis for the hp-version of

the discontinuous Galerkin finite element method for the biharmonic equa-

tion, Comput. Methods Appl. Math., 3 (2003), pp. 596–607.
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[161] D. Schötzau, C. Schwab, and A. Toselli, Mixed hp-DGFEM for in-

compressible flows, SIAM J. Numer. Anal., 40 (2002), pp. 2171–2194.

[162] , Mixed hp-DGFEM for incompressible flows II: Geometric edge meshes,

IMA J. Numer. Anal., 24 (2004), pp. 273–308.
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[176] E. Süli and I. Mozolevski, hp-version interior penalty DGFEMs for the

biharmonic equation, Comput. Methods Appl. Mech. Engrg., 196 (2007),

pp. 1851–1863.

[177] O. Sutton, The virtual element method in 50 lines of matlab, arXiv

preprint arXiv:1604.06021, (2016).
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