
Encoding Nearest Larger Values

Michael Hoffmanna, John Iaconob, Patrick K. Nicholsonc, Rajeev Ramana,

aUniversity Road, Leicester, United Kingdom
bNew York University, School of Engineering, 6 MetroTech Center, Brooklyn, New York,

United States of America
cBell Labs, Clyde House, Blanchardstown Business and Technology Park, Dublin, Ireland

Abstract

In nearest larger value (NLV) problems, we are given an array A[1..n] of distinct

numbers, and need to preprocess A to answer queries of the following form:

given any index i ∈ [1, n], return a “nearest” index j such that A[j] > A[i]. We

consider the variant where the values in A are distinct, and we wish to return

an index j such that A[j] > A[i] and |j − i| is minimized, the nondirectional

NLV (NNLV) problem. We consider NNLV in the encoding model, where the

array A is deleted after preprocessing.

The NNLV encoding problem turns out to have an unexpectedly rich struc-

ture: the effective entropy (optimal space usage) of the problem depends cru-

cially on details in the definition of the problem. Of particular interest is the

tiebreaking rule: if there exist two nearest indices j1, j2 such that A[j1] > A[i]

and A[j2] > A[i] and |j1 − i| = |j2 − i|, then which index should be returned?

For the tiebreaking rule where the rightmost (i.e., largest index) is returned, we

encode a path-compressed representation of the Cartesian tree that can answer

all NNLV queries in 1.89997n+ o(n) bits, and can answer queries in O(1) time.

An alternative approach, based on forbidden patterns, achieves the same space

bound and query time, and (for a slightly different tiebreaking rule) achieves

1.81211n+ o(n) bits. Finally, we develop a fast method of counting distinguish-

IA preliminary version appeared in the Proceedings of the 26th Annual Symposium on
Combinatorial Pattern Matching (CPM 2015).

Email addresses: mh55@leicester.ac.uk (Michael Hoffmann), iacono@nyu.edu (John
Iacono), pat.nicholson@nokia.com (Patrick K. Nicholson), r.raman@leicester.ac.uk
(Rajeev Raman)

Preprint submitted to Journal of LATEX Templates December 15, 2016

able configurations for NNLV queries. Using this method, we prove a lower

bound of 1.62309n−Θ(1) bits of space for NNLV encodings for the tiebreaking

rule where the rightmost index is returned.

Keywords: Data structures, encoding data structures, succinct data

structures.

1. Introduction

Nearest Larger Value (NLV) problems have had a long and storied history.

Given an array A[1..n] of values, the objective is to preprocess A to answer

queries of the general form: given an index i, report the index or indices nearest

to i that contain values strictly larger that A[i]. If no such index exists, then5

A[i] is the maximum element in A, and we return −1.

Berkman et al. [1] studied the parallel pre-processing for this problem and

noted a number of applications, such as parenthesis matching and triangulating

monotone polygons. The connection to string algorithms for both the data struc-

turing and the pre-processing variants of this problem is since well-established.10

Since the definition of “nearest” is a bit ambiguous, we propose replacing it

by one of the following options in order to fully specify the problem:

• Unidirectionally nearest : the solution is the index j ∈ [1, i− 1] such that

A[j] > A[i] and i− j is minimized.

• Bidirectionally nearest : the solution consists of indices j1 ∈ [1, i− 1] and15

j2 ∈ [i+1, n] such that A[jk] > A[i] and |i−jk| is minimized for k ∈ {1, 2}.

• Nondirectionally nearest : the solution is the index j such that A[j] > A[i]

and |i− j| is minimized. As far as we are aware, this formulation has not

been considered before.

Furthermore, the data structuring problem has different characteristics depend-20

ing on whether we consider the elements of A to be distinct (Berkman et al.

considered the undirectional variant when all elements in A are distinct).

2

We consider the problem in the encoding model, where once the data struc-

ture to answer queries has been created, the array A is deleted. Since it is not

possible to reconstruct A from NLV queries on A, the effective entropy of NLV25

queries [2], the log (base 2) of the number of distinguishable NLV configura-

tions, is very low and an NLV encoding of A can be much smaller than A itself.

The encoding variant has several applications in space-efficient data structures

for string processing, in situations where the values in A are intrinsically unin-

teresting. Results on encoding NLV problems include (all of the space bounds30

below are tight to within lower-order terms):

• The bidirectional NLV when A contains distinct values boils down essen-

tially to encoding a Cartesian tree, through which route 2n+o(n)-bit and

O(1)-time data structures exist [3, 4].

• The unidirectional NLV when A contains non-distinct values can be en-35

coded in 2n+ o(n) bits and queries answered in O(1) time [5, 6]. For the

unidirectional NLV the bound is tight even when all values are distinct: we

can perturb any instance of the unidirectional problem with non-distinct

values in such as way as to preserve the solutions to all queries.1

• The bidirectional NLV for the case where elements in A need not be40

distinct was first studied by Fischer [7]. His data structure occupies

lg(3 + 2
√

2)n+ o(n) ≈ 2.544n+ o(n) bits of space2, and supports queries

in O(1) time.

In this paper, we consider the nondirectionally nearest larger value (NNLV)

problem, in the case that all elements in A are distinct. The above results45

1More details: given any array with non-distinct elements for the unidirectional problem,

we first reduce the values of the elements to their ranks (allowing ties). We then tweak the

values so that the rightmost of each duplicated value x is x+ ε for some ε ∈ (0, 1). We then

reduce ε by some positive amount such that it is remains positive, and repeat this step until

all elements are distinct.
2We use lg x to denote log2x.

3

already hint at the combinatorial complexity of NLV problems. However, the

NNLV problem appears to be even richer, and the space bound appears not

only to depend upon whether A is distinct or not, but also upon the specific

tie-breaking rule to use if there are two equidistant nearest values to the query

index i.50

For instance, given a location i where there is a tie, we might always select

the larger value to the right of location i to be its nearest larger value. We call

this rule I. We give an illustration in the middle panel of Figure 1 (on page

8). Alternative tie breaking rules might be: to select the smallest of the two

larger values (rule II), or to select the larger of the two larger values (rule III).55

Interestingly, it turns out that the tie breaking rule is important for the space

bound. That is, if we count the number of distinguishable configurations of

the NNLV problem for the various tie breaking rules, then we get significantly

different answers. We counted the number of distinguishable configurations, for

problem instances of size n ∈ [1, 12], and got the sequences presented in Table 1.60

Unfortunately, none of the above sequences appears in the Online Encyclo-

pedia of Integer Sequences3. Consider the sequence generated by some arbitrary

tie breaking rule. If zi is the i-th term in this sequence, then limn→∞ lg(zn)/n

is the constant factor in the asymptotic space bound required to store all the

answers to the NNLV problem subject to that tiebreaking rule.65

1.1. Our Contributions

Our main results are as follows. First, we present the following upper bound:

Theorem 1. Let A[1..n] be an array containing distinct numbers. The array A

can be processed to obtain an encoding data structure that occupies 1.89997n+

o(n) bits of space, that can answer the query NNLV(A, i) in O(1) time for any70

i ∈ [1, n]. Ties are resolved using rule I. At no point after preprocessing does

the data structure require access to the array A.

3https://oeis.org/

4

T
a
b

le
1
:

N
u

m
b

er
o
f

d
is

ti
n

g
u

is
h

a
b

le
co

n
fi

g
u

ra
ti

o
n

s
o
f

n
ea

re
st

la
rg

er
v
a
lu

e
p

ro
b

le
m

s
w

it
h

th
e

th
re

e
ti

eb
re

a
k
in

g
ru

le
s

d
is

cu
ss

ed
.

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

ru
le

I
1

2
5

14
4
0

1
1
6

3
4
1

1
0
1
0

3
0
0
9

9
0
1
2

2
7
0
8
7

8
1
6
5
8

ru
le

II
1

2
5

14
4
2

1
2
6

3
8
3

1
1
7
8

3
6
4
0

1
1
3
1
6

3
5
2
6
3

1
1
0
3
7
6

ru
le

II
I

1
2

5
12

3
2

8
8

2
4
8

7
0
2

1
9
9
8

5
6
9
6

1
6
3
0
4

4
6
7
1
8

T
a
b

le
2
:

S
u

m
m

a
ry

o
f

re
su

lt
s

fo
r

th
e

n
ea

re
st

la
rg

er
v
a
lu

e
p

ro
b

le
m

.
T

h
e

co
lu

m
n

d
is

ti
n

ct
sp

ec
ifi

es
w

h
et

h
er

th
e

v
a
lu

es
a
re

sp
ec

ifi
ed

to
b

e
d

is
ti

n
ct

o
r

n
o
t.

T
h

e
co

lu
m

n
sp

a
ce

b
o
u

n
d

in
d

ic
a
te

s
th

e
ty

p
e

o
f

re
su

lt
:

“
M

a
tc

h
in

g
B

o
u

n
d

s”
m

ea
n

s
th

a
t

th
e

b
o
u

n
d

p
re

se
n
te

d
is

o
p

ti
m

a
l

to
w

it
h

in
lo

w
er

o
rd

er
te

rm
s.

D
is

ti
n

ct
P

ro
b

le
m

B
o
u

n
d

T
y
p

e
S

p
a
ce

Q
u

er
y

R
ef

er
en

ce

Y
es

U
n

id
ir

ec
ti

on
al

M
a
tc

h
in

g
B

o
u
n

d
s

2
n

+
o(
n

)
O

(1
)

C
a
rt

es
ia

n
T

re
e

[5
,

6
]

B
id

ir
ec

ti
on

al
M

a
tc

h
in

g
B

o
u
n

d
s

2
n

+
o(
n

)
O

(1
)

C
a
rt

es
ia

n
T

re
e

[3
,

4
]

N
on

d
ir

ec
ti

on
al

(r
u

le
I)

U
p

p
er

B
o
u

n
d

1
.8

9
9
9
7
n

+
o(
n

)
O

(1
)

S
ec

ti
o
n

s
3

a
n

d
6

N
on

d
ir

ec
ti

on
al

(r
u

le
II

I)
U

p
p

er
B

o
u

n
d

1
.8

1
2
1
1
n

+
o(
n

)
O

(1
)

S
ec

ti
o
n

s
5

a
n

d
6

N
on

d
ir

ec
ti

on
al

(r
u

le
I)

L
ow

er
B

o
u

n
d

1
.6

2
3
0
9
n
−

Θ
(1

)
—

S
ec

ti
o
n

8

N
o

U
n

id
ir

ec
ti

on
al

M
a
tc

h
in

g
B

o
u
n

d
s

2
n

+
o(
n

)
O

(1
)

C
a
rt

es
ia

n
T

re
e

[5
]

B
id

ir
ec

ti
on

al
M

a
tc

h
in

g
B

o
u
n

d
s

lg
(3

+
2
√

2
)n

+
o(
n

)
O

(1
)

S
ch

rö
d

er
T

re
es

[7
]

5

As mentioned before, the Cartesian tree (defined later) occupies 2n+o(n) bits

and can solve NNLV queries. In Section 3 we describe a novel path-compressed

representation of a binary tree that uses 2n+O(lg n) bits (but supports no oper-75

ations). To get the improved space bound of Theorem 1 we prove combinatorial

properties of the NNLV problem relating to chains of degree one nodes in the

Cartesian tree. These properties allow us to compress the Cartesian tree using

the representation of Section 3, losing some information, but still retaining the

ability to answer NNLV queries. The constant factor (1.89997) comes from a80

numeric calculation bounding the worst case structure of chains in the Cartesian

tree for our compression scheme (Section 4). Later, in Section 6 we show how to

support operations on the “lossy” Cartesian tree, thereby proving Theorem 1.

We also present an alternate construction, based on forbidden patterns in

binary strings, in Section 5. This construction is simpler than that of Section 3,85

and also achieves a better upper bound for a different tiebreaking rule.

Theorem 2. Let A[1..n] be an array containing distinct numbers. The array A

can be processed to obtain an encoding data structure that occupies 1.81211n+

o(n) bits of space, that can answer the query NNLV(A, i) in O(1) time for any

i ∈ [1, n]. Ties are resolved using rule III. At no point after preprocessing does90

the data structure require access to the array A.

After discussing upper bounds, in Section 7 we discuss methods to efficiently

enumerate the number of distinguishable configurations of arrays of size n with

respect to NNLV queries (subject to tiebreaking rule I). Using these methods

we are able to extend the row for rule I of Table 1 to n = 700.95

Using this extended table, in Section 8, we prove the following lower bound:

Theorem 3. Any encoding data structure that can answer the query NNLV(A, i)

for any i ∈ [1, n] (breaking ties according to rule I) must occupy at least 1.62309n−

Θ(1) bits, for sufficiently large values of n.

A summary of the known results for all variants of the NLV problem can be100

found in Table 2. We leave the variant of the NNLV problem for non-distinct

6

values as future work.

1.2. Other Related Work

Asano et al. [8] studied the time complexity of computing all nearest larger

values in an array as well as higher dimensions, and mention applications to105

communication protocols. Asano and Kirkpatrick [9] considered sequential time-

space tradeoffs for computing the nearest larger values of all elements in the

array. When A is a random permutation, the expected effective entropy of

the bidirectional NLV problem was shown to be 1.74n + o(n) bits by Golin et

al. [2]. Finally, Jayapaul et al. [6] studied the nearest larger value problem in110

two dimensional arrays.

2. Cartesian Tree Review

Given a binary tree T , let d(v) denote the degree (i.e., number of children)

of node v, and p(v) denote the parent of v. We define the rank r(v) to be the

inorder rank of the node v in the binary tree T . Define the range of a node v to115

be the range [e1(v), e2(v)], where e1(v) (resp. e2(v)) is the inorder rank of the

leftmost (resp. rightmost) descendant of v.

Suppose we are given an array A[1..n] which stores an n element permutation

π, i.e., A[i] = π(i). The Cartesian tree of A[1..n] is the n node binary tree T

such that the root v of T has rank r(v) = arg maxiA[i]. If r(v) > 1, then the120

left child of v is the Cartesian tree of A[1..r(v) − 1], otherwise it has no left

child. If r(v) < n then the right child of v is the Cartesian tree of A[r(v)+1..n],

otherwise it has no right child. Figure 1 (bottom panel) illustrates the Cartesian

tree of an example array (top panel).

We require the following technical lemma about Cartesian trees:125

Lemma 1. Consider a node v in a Cartesian tree T having range [e1(v), e2(v)].

If e1(v) − 1 ≥ 1 then A[e1(v) − 1] > A[r(v)]. Similarly, if e2(v) + 1 ≤ n then

A[e2(v) + 1] > A[r(v)].

7

Figure 1: Top: an array containing a permutation of {1, . . . , 30}. Middle: The tree structure

of the NNLV problem. Here the parent of a node represents its NNLV, breaking ties by

selecting the element on the right (rule I). Bottom: The Cartesian tree.

Proof. If v is the root of T , then e1(v) − 1 = 0 and e2(v) + 1 = n + 1, and

the lemma holds trivially. Thus, suppose p(v) exists. Since the Cartesian tree is130

binary, we have two cases: (i) e1(p(v)) = e1(v), which implies r(p(v)) = e2(v)+1

and therefore A[e2(v) + 1] > A[r(v)]; or (ii) e2(p(v)) = e2(v), which implies

r(p(v)) = e1(v) − 1, and therefore A[e1(v) − 1] > A[r(v)]. This proves the

lemma in the case where either e1(v) − 1 = 0 or e2(v) + 1 = n + 1. Next,

suppose that both e1(v) − 1 ≥ 1 and e2(v) + 1 ≤ n. Thus, let u be the closest135

ancestor of v such that e1(u) 6= e1(v) and e2(u) 6= e2(v). By the definition of

u, u 6= p(v). Consider the child of u, denoted w, that contains v in its subtree.

There are two cases: (i) e2(w) = e2(v), which implies r(u) = e2(v) + 1 and

therefore A[e1(v) − 1] = A[r(p(v))] > A[r(v)] and A[e2(v) + 1] = A[r(u)] >

A[r(v)]; or (ii) e1(w) = e1(v), which implies r(u) = e1(v) − 1, and therefore140

A[e1(v)− 1] = A[r(u)] > A[r(v)] and A[e2(v) + 1] = A[r(p(v))] > A[r(v)]. �

8

NLV and Cartesian Trees. Lemma 1 is key to using the Cartesian tree for

computing NLVs. Let v be a node in a Cartesian tree with range [e1(v), e2(v)].

Then the following observations are immediate:

1. If e1(v) > 1 then e1(v)−1 is the nearest larger value to the left of A[r(v)].145

If e1(v) = 1 then there is no larger value to the left of A[r(v)].

2. If e2(v) < n then e2(v)+1 is the nearest larger value to the right of A[r(v)].

If e2(v) = n then there is no larger value to the right of A[r(v)].

Thus, by comparing r(v)− e1(v) and e2(v)− r(v) we can obtain NNLV(A, r(v))

according to tie break rule I.150

If e1(v) > 1, then let w be the vertex corresponding to A[e1(v) − 1]. If

e2(v) < n, then let x be the vertex corresponding to A[e2(v) + 1]. The following

observations follow directly from the definition of the Cartesian tree.

1. If e1(v) = 1 and e2(v) = n then v is the root of the Cartesian tree.

2. If e1(v) > 1 and e2(v) = n then w = p(v).155

3. If e1(v) = 1 and e2(v) < n then x = p(v).

4. If e1(v) > 1 and e2(v) < n either w or x is p(v).

Assume that e1(v) > 1 and e2(v) < n. We now argue that either w is a

descendant of x, or vice versa. If not, let u be the LCA of w and x. Clearly

A[r(u)] is greater than bothA[e1(v)−1] andA[e2(v)+1], and hence, by Lemma 1,160

A[r(u)] > A[r(v)]. However e1(v)− 1 < r(u) < e2(v) + 1, i.e. r(u) is within the

extent of v, a contradiction. Thus, we can break ties according to rules II or III

as well, by seeing if r(p(v)) = e1(v)− 1 or r(p(v)) = e2(v) + 1.

3. A Path Based Tree Representation

Consider an arbitrary rooted binary tree T with n nodes. We next describe165

a path-based encoding of such a tree that occupies no more than 2n + Θ(lg n)

bits.

We identify all maximal chains v1, ..., v`, v`+1 such that:

9

1. Either v1 is the root of T , or d(p(v1)) = 2;

2. d(vi) = 1 for i ∈ [1, `], and;170

3. d(v`+1) ∈ {0, 2}.

We refer to v`+1 as the terminal of the chain. Iteratively, we remove each

such maximal chain: i.e., the nodes v1, ..., v` are removed from the tree. If v1

was the root, then v`+1 is set to be the new root. Otherwise, v`+1 is set to

be the left (resp. right) child of p(v1) iff v1 was the left (resp. right) child of175

p(v1). We call the chain left hanging if p(v1) had v1 as a left child, and right

hanging otherwise. After removing all such maximal chains, the tree T ′ that

remains is a full binary tree (i.e., it has no nodes of degree one) and has n′ ≤ n

nodes. Suppose that we have removed k nodes, for some k ∈ [0, n − 1], and so

n = n′ + k.180

Suppose there are m maximal chains removed during the process just de-

scribed. We now describe the representation of the original tree T .

• We store the tree T ′, which is a full binary tree and requires n′ + O(1)

bits to represent.

• We store a bitvector B of length n′. Bit B[i] = 1 iff the node v, corre-185

sponding to the i-th node in an inorder traversal of T ′, is the terminal of

a removed chain. This requires dlg
(
n′

m

)
e bits.

• Suppose we order the subset of nodes that are terminals by their inorder

rank in T ′, and that v is the terminal ordered i-th. We refer to the chain

having v as its terminal as Ci, and its length as ci. We store a bitvector190

L of length k, which represents the lengths of each removed chain; i.e.,

the values c1, ..., cm. Let pi =
∑i
j=1 ci for i ∈ [1,m]. Then L[pi] = 1 for

i ∈ [1,m], and all other entries of L are 0. As L is a bit sequence of length

k with m one bits, it can be stored using dlg
(
k
m

)
e bits.

• For each chain Ci = {v1, ..., vci} having terminal node vci+1, we store a195

bitvector Zi of length ci, in which Zi[j] = 0 if vj+1 is the left child of vj ,

10

and Zi[j] = 1 otherwise. Let Z be the concatenation of each Zi, i ∈ [1,m]

and is of length k. We store Z naively using k bits.

We call the above data structures, bitvectors B, L, Z and the tree T ′ the

path compressed representation of T . Note that to decode this and recover the200

tree T , we require the value of n and n′. These can be stored using an additional

Θ(lg n) bits. By summing the above space costs, we get the following lemma.

Lemma 2. The path compressed representation of an arbitrary binary tree T

completely describes the combinatorial structure of T , and can be stored using

n′ + lg
(
n′

m

)
+ lg

(
k
m

)
+ k + Θ(lg n) ≤ 2n′ + 2k + Θ(lg n) = 2n+ Θ(lg n) bits.205

4. Encoding Nearest Larger Values

In this section we show how to use the path compressed tree representation

to compress Cartesian trees—losing some information in the process—but still

retaining the ability to answer NNLV queries. Our key observation is that

chains in the Cartesian tree can be compressed to save space, as illustrated by210

the following lemma:

Lemma 3. Consider the set of all possible chains with ci deleted nodes in a path

compressed representation of a Cartesian tree, excluding chains having nodes

representing array elements A[1] or A[n]. There are exactly ci + 1 combina-

torially distinct chains with respect to answering nearest larger value queries,215

breaking ties according to rule I.

Proof. Consider a chain with ci deleted nodes, {v1, ..., vci}, where vci+1 is the

terminal. Clearly, v1 represents the maximum element in the chain, and either

r(vj) = e1(vj) or r(vj) = e2(vj) for each j ∈ [1, ci]. This follows because since if

vj is in a chain it is either the left or right endpoint of the range [e1(vj), e2(vj)].220

In turn, this implies that the range [e1(v1), e2(v1)] has a deleted prefix and

deleted suffix which in total contain the inorder ranks of the ci deleted nodes.

The deleted nodes corresponding to this prefix (resp. suffix) appear contigu-

ously in the array A, and form a decreasing (resp. increasing) run of values in A.

11

Furthermore, by Lemma 1, and since 1, n 6∈ [e1(v1), e2(v1)] (by the assertion in225

the statement of the lemma), we can assert that both A[e1(v1)− 1] > A[e1(v1)]

and A[e2(v1) + 1] > A[e2(v1)]. Thus, for each k such that vk is in the prefix

we have that A[e1(vk) − 1] > A[e1(vk)], and we can return the nearest larger

value of r(vk) = e1(vk) to be e1(vk)− 1. Similarly, for each k such that vk is in

the suffix we have that A[e2(vk) + 1] > A[e2(vk)], and return the nearest larger230

value of r(vk) = e2(vk) to be e2(vk) + 1.

This implies that, if we know the value ci, then we additionally need only

know how many nodes are in the prefix in order to determine the answer to a

nearest larger value query for any index represented by a deleted node. There

are at most ci + 1 possible options: {0, ..., ci}. Moreover, for an arbitrary index235

i ∈ [1, n] \ [e1(v1), e2(v1)] the answer to a nearest larger value query cannot

be in [e1(v1), e2(v2)], since this range is sandwiched between larger values by

Lemma 1. Finally, consider indices in the range [e1(vci+1), e2(vci+1)]. Using the

fact that A[e1(vci+1) − 1] and A[e2(vci+1) + 1] by are larger than all elements

in A[e1(vci+1), e2(vci+1)] by Lemma 1, we can correctly answer queries for a240

position i in the subtree. First, we find the solution to the NNLV query within

the subtree, and denote the index as j. Then, we return the nearest position to

i of either j, e1(vci+1)− 1, or e2(vci+1) + 1, breaking ties according to rule I. �

Recall that recovering a chain of ci deleted nodes exactly required ci bits

in the path compressed tree representation. In contrast, the previous lemma245

allows us to get away with lg(ci + 1) bits: an exponential improvement. Using

the above lemma, we get the following upper bound for the NNLV problem

(note that, on its own, it does not allow queries to be performed efficiently).

Lemma 4. The solutions to all nearest larger value queries can be encoded using

no more than 1.89997 + o(n) bits of space.250

Proof. We store the path compressed version of T , the Cartesian tree of A.

However, we replace index Z, by an index Z ′ consisting of dlg
∏m
i=1(ci + 1)e

bits. Z ′ represents, for each deleted chain—including those that contain nodes

representing A[1] and A[n]—the length of its deleted prefix. We explicitly store

12

the answers to nearest larger value queries for A[1] and A[n].255

For the remaining A[i], i ∈ [2, n− 1] there are two options:

1. A[i] is represented by a node in a deleted chain from the Cartesian tree T .

By Lemma 3 the replacement index Z ′ is enough information to recover

the nearest larger values for all deleted nodes, with the exception of those

in chains containing the nodes representing A[1] or A[n]. For such a chain260

Ci, the information recorded in Z ′ indicates a number ∆ ∈ {0, ..., ci + 1}.

Suppose the chain v1, ..., v`+1 contains a node u representing A[1]. If u is

in the deleted prefix, then u represents the largest element in the deleted

prefix, so the only information lost by storing ∆ is the nearest larger value

of A[1]. If u is in the deleted suffix, then it represents the smallest element265

in the deleted suffix, and the nearest larger value can be inferred. The case

where a node in the chain represents A[n] is symmetric. Since we store the

nearest larger values of A[1] and A[n] explicitly, we can therefore recover

the nearest larger value of all deleted nodes.

2. A[i] is represented by a node u in the Cartesian tree T ′. In this case,270

can infer the nearest larger value as follows. Let s` be the size of the

T (left(u)), which is equal to the T ′(left(u)) plus the lengths of the chains

deleted from T ′(left(u)), sr is defined analogously for right(u). Then the

nearest larger value is either A[i − s` − 1] or A[i + sr − 1], depending on

which is closer. Ties can be broken according to rule I.275

The space bound for storing the data structures described is n′ + lg
(
n′

m

)
+

lg
(
k
m

)
+lg

∏m
i=1(ci+1)+O(lg n) bits. This is bounded by n′+lg

(
n′

m

)
+lg

(
k
m

)
+

m lg(km+1)+O(lg n) bits using Jensen’s inequality. Numerical methods (see Ap-

pendix A) reveal that this expression is upper bounded by 1.91975n + Θ(lg n)

bits. In the sequel we show how to improve this bound. The main idea is to280

replace the representation of the lengths of the chains, the data structure L,

with a slightly more space efficient structure.

Since there are m chains, let σ denote the number of distinct chain sizes.

We consider the sequence R = {c1, c2, ..., cm}, letting mj denote the number of

13

occurrences of symbol j in R. Given such a sequence we use H(R) to denote the

zeroth-order empirical entropy of the sequence R.4 Thus, we need only store:

σdlg ne+ nH(R) +O(1) =

σdlg ne+

σ∑
i=1

(
mi lg

m

mi

)
+O(1) bits

in order to reconstruct each c1, ..., cm.

We can also rewrite the term lg
∏m
i=1(ci + 1) to get

lg

σ∏
i=1

(i+ 1)mi =

σ∑
i=1

mi lg(i+ 1)

Combining the two sums, this gives us that the total space bound is:

n′ + lg

(
n′

m

)
+

σ∑
i=1

(
mi lg

m(i+ 1)

mi

)
+ σdlg ne+O(lg n) <

n′ + lg

(
n′

m

)
+

σ∑
i=1

(
mi lg

m(i+ 1)

mi

)
+O(

√
n lg n)

bits, since the number of distinct chain lengths can be at most Θ(
√
n). We can

then rewrite the equation, recalling n′ = n − k, k =
∑σ
i=1(imi), and letting

yi = mi/n, and Y = k/n, and y =
∑σ
i=1(yi), to get:

n− k + lg

(
n− k
m

)
+

σ∑
i=1

(
mi lg

m(i+ 1)

mi

)
+O(

√
n lg n) <

n

(
(1− Y)

(
1 +H

(
y

1− Y

))
+

σ∑
i=1

(
yi lg

y(i+ 1)

yi

)
+ o(1)

)
By numerical methods (see Appendix A), we find that this expression is285

upper bounded by 1.89997n+ o(n); a slight improvement. �

5. Forbidden Patterns

In this section we describe a simpler approach to upper-bounding the num-

ber of distinguishable configurations of the NNLV problem, based on forbidden

4Overloading notation, if x is a probability instead of a sequence of symbols, we use H(x)

to denote the standard binary entropy of x: x lg(1
x

) + (1− x) lg(1
1−x

).

14

patterns. As described in the previous section, the aim is, given an input array290

A, to come up with a new array A0, such that using the Cartesian tree T0 of

A0 to compute NNLVs using the above approach will give the same answer as

for A. Our goal is to ensure that this new Cartesian tree T0 will be more com-

pressible. The general approach is to consider the encodings of the modified

Cartesian trees as strings over an alphabet, then argue that certain substrings295

are forbidden in these encodings, and count the number of strings that exclude

these substrings to upper-bound the number of modified Cartesian trees.

5.1. Forbidding Zig-Zags

Say that a degree 1 node is an turn if it is the right child of its parent, and

it has a left child, or it is the left child of its parent and it has a right child300

(we take the root as being the left child of an imaginary super-root). It is a

non-turn otherwise. Consider the encoding of a node of a binary tree where a

turn is encoded as b = 01, a non-turn is encoded using c = 10 and degree 2

nodes and leaves are encoded d = 11 and a = 00 respectively. For any binary

tree T , let E(T) be the sequence of symbols that give the encoding of the nodes305

of the T , visiting the nodes of T in depth-first order. Overloading notation, for

any array A containing distinct items, we use E(A) to denote E(T) where T is

the Cartesian tree of A. We now claim:

Lemma 5. Given any array A of size n, if E(A) has a subsequence of the form

bckb for some k ≥ 0, then there is an array A0 such that in E(A0), the above310

subsequence is replaced by cbck, such that all NNLV queries on A and A0 return

the same answer, except possibly for NNLV(1) and NNLV(n).

Proof. We first consider the case where the indices in A representing the given

subsequence are 1 > i1, . . . , ik+2 > n . Assume without loss of generality that

the node corresponding to i1 has only a right child and let i0 be the parent of315

i1 (i0 always exists, since i1 cannot be the root: the root cannot be a degree 1

node unless it is at position 1 or n). We make the following observations (see

Figure 2):

15

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����

�����
�����
�����

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

i
0

i
0

i
k+2

i
k+1

i
2

i
1

i
k+1

i
2

i
k+2

i
1

Figure 2: Diagrammatic representation of Lemma 5.

1. i1, . . . , ik+1 have only a right child (since i2, . . . , ik+1 are non-turn nodes).

2. ik+2 has only a left child.320

3. ij+1 = ij + 1 for j = 1, . . . , k.

4. i0 = ik+1 + 1.

5. ik < ik+1 − 1.

Clearly, A[ij] > A[ij+1] for j = 0, . . . , k. Thus, we have:

6. NNLV(A, ij) = ij−1 for j = 2, . . . , k + 1325

7. NNLV(A, i1) = i1 − 1, since i0 − i1 ≥ 3.

8. NNLV(A, ik+2) = i0, since ik+2 − ik+1 > 1.

Thus, we can create a new array A0 such that A[i1] < A0[ik+2] < A[i0] and

A[j] = A0[j] for all j 6= ik+2. It is easy to verify that all NNLV answers in A0 are

the same as in A.330

Now suppose that i1 is the root of the Cartesian tree. For it to be a turn,

it must be the case that i1 only has a right child (recall that the root is the

left child of its imaginary parent). Then i1 = 1, and furthermore, ik+2 = n. In

16

A0, the only NNLV answers that change will be for 1 and n. A similar argument

shows that if i1 is not the root of the Cartesian tree and it is the left (right) child335

of its parent i0 then i1 = 1 (i1 = n) is the only possibility not yet considered;

in this case NNLV(1) (NNLV(n)) is the only answer that changes. �

5.2. Forbidding a Turn Before a Leaf

Lemma 6. Given an array A of size n, if E(A) has a subsequence of the form

ba, then there is an array A0 such that in E(A0), the above subsequence is340

replaced by ca, such that all NNLV queries, except possibly on positions 1 and n

on A0 return a correct answer for A, using Rule III for tiebreaking (break ties

to larger).

Proof. First consider the case that the nodes labelled b and a correspond to

the indices 1 < i and i+1 < n. In this case, we have the following observations.345

• The parent of i must be i+ 2.

• i+1 has two equidistant larger values, i and i+2, and NNLV(A, i+1) = i+2

since A[i+ 2] > A[i].

• Observe that i− 1 must be an ancestor of i meaning A[i− 1] > A[i], and

hence NNLV(A, i) = i− 1.350

In A0, we exchange the values A[i] and A[i+ 1]. Now NNLV(A0, i+ 1) = i+ 2

as before. A0[i] now has two equidistant larger values, i − 1 and i + 1, since

A0[i− 1] = A[i− 1] > A[i] = A0[i+ 1], so NNLV(A0, i) = i− 1 as before.

The case that b is i + 1 < n and a is i > 1 is symmetric. Finally, it can be

verified that if i or i+ 1 is one of the boundary elements A[1] or A[n], the only355

possibilites where NNLV(i, A0) 6= NNLV(i, A) are the cases i = 1 or i = n. �

5.3. Counting Strings with Forbidden Sub-Patterns

Overview. We apply the transformations on A repeatedly until the patterns

ba and bc∗b do not exist. We upper-bound the number of distinct modified

Cartesian trees by the number of distinct strings over the alphabet {a, b, c, d}360

17

4

5

2 31

 b

 c b

c

a, b, c, d

a, b, c, d

a, d

 b

a, d

a, c, d

4

5

2 31

 a, b

 c b

c

a, b, c, d

a, b, c, d

a, d

 b

d

a, c, d

Figure 3: Automata for all strings over {a, b, c, d} excluding bc∗b (left), and both bc∗b and ba

(right). The initial state is 1 and the final states are 1, 2, and 3 in each case.

that exclude just the pattern bc∗b and that exclude both bc∗b and ba. To count

the number of strings with forbidden sub-patterns, we use the transfer matrix

approach [12]. In this approach, we first create a DFA with states s1, . . . , sk

that accepts exactly those strings which do not have any forbidden substrings

(assume wlog that s1 is the start state). We then create the transfer matrix365

M , which is a k × k matrix where the (i, j)-th entry is the number of distinct

symbols that label a transition from si to sj . It is not hard to see that the

(i, j)-th entry of
∑∞
i=0(Mz)i = (I −Mz)−1, where z is a formal variable, is the

generating function for the number of distinct strings that lead from si to sj .

Summing up the (1, j)-th entries of (I −Mz)−1 for all final states j gives the370

required generating function.

In our case, the generating functions will be rational functions of the form

P (z)/Q(z) where P and Q are polynomials. To obtain asymptotic upper bounds

on the coefficient of zn we use the following:

Theorem 4 (Rational Expansion Theorem[12]). If R(z) = P (z)/Q(z) is375

the generating function for the sequence 〈rn〉, where Q(z) = (1 − ρ1z)(1 −

ρ2z) . . . (1 − ρ`z), and the numbers (ρ1, . . . , ρ`) are distinct, and if P (z) is a

polynomial of degree less than `, then rn =
∑`
i=1 aiρ

n
i for constants a1, . . . , a`.

18

Results. Let fn (gn) for n ≥ 1 denote the number of distinct strings of length

n over the alphabet {a, b, c, d} that exclude just the pattern bc∗b (exclude both

bc∗b and ba, respectively). The automata that accept all strings over {a, b, c, d}

excluding bc∗b, and both bc∗b and ba are shown in Figure 3. The corresponding

transfer matrices are below:

M1 =



3 1 0 0 0

2 0 1 0 1

2 0 1 1 0

0 0 0 4 0

0 0 0 0 4


, M2 =



3 1 0 0 0

1 0 1 0 2

2 0 1 1 0

0 0 0 4 0

0 0 0 0 4


We obtain (I −M1z)

−1 as:

1−z
z2−4z+1

−(z−1)z
z2−4z+1

z2

z2−4z+1
z3

−4z3+17z2−8z+1
(z−1)z2

(4z−1)(z2−4z+1)

2z
z2−4z+1

3z2−4z+1
z2−4z+1

z−3z2
z2−4z+1

z2(3z−1)
(4z−1)(z2−4z+1)

z(3z2−4z+1)
−4z3+17z2−8z+1

2z
z2−4z+1

2z2

z2−4z+1
−2z2−3z+1
z2−4z+1

z(2z2+3z−1)
(4z−1)(z2−4z+1)

2z3

−4z3+17z2−8z+1

0 0 0 1
1−4z 0

0 0 0 0 1
1−4z


Adding together the entries in positions (1, 1), (1, 2), and (1, 3) we get that

F (z) = 1−z−(z−1)z+z2
z2−4z+1 = 1

z2−4z+1 is the generating function for 〈fn〉. The roots380

of z2 − 4z + 1 are 2 +
√

3 and 2 −
√

3 giving ρ1 = 1/(2 +
√

3) < 0.27695 and

ρ2 = 1/(2 −
√

3) < 3.73206. From this we use Theorem 4 to conclude that

lg fn = n lg 3.73206 + o(n) = 1.89997n+ o(n).

We remark that the constant achieved via the above calculation is strikingly

similar to that of Lemma 4. We have been unable to determine whether the385

bounds achieved by the two approaches are indeed equal, or just matching up

to five decimal places.

19

Similarly (I −M2z)
−1 equals:

z−1
z3−2z2+4z−1

(z−1)z
z3−2z2+4z−1

z2

−z3+2z2−4z+1
z3

4z4−9z3+18z2−8z+1
−2(z−1)z2

(4z−1)(z3−2z2+4z−1)
−z(z+1)

z3−2z2+4z−1
−3z2+4z−1
z3−2z2+4z−1

z(3z−1)
z3−2z2+4z−1

z2−3z3
4z4−9z3+18z2−8z+1

2z(3z2−4z+1)
(4z−1)(z3−2z2+4z−1)

−2z
z3−2z2+4z−1

−2z2
z3−2z2+4z−1

z2+3z−1
z3−2z2+4z−1

−z(z2+3z−1)
(4z−1)(z3−2z2+4z−1)

4z3

4z4−9z3+18z2−8z+1

0 0 0 1
1−4z 0

0 0 0 0 1
1−4z


From which we get that G(z) = z−1+(z−1)z+z2

z3−2z2+4z−1 = −1
z3−2z2+4z−1 . Solving for

z3 − 2z2 + 4z − 1 = 0 we get that ρ1 < 3.51155, and that ρ2 and ρ3, both of

which are complex, have magnitude < 0.53365. From this we use Theorem 4 to390

conclude that lg gn = n lg 3.51155 + o(n) = 1.81211n+ o(n).

6. Data Structures

To accomplish the goal of supporting operations, we use a technical modifi-

cation of the mini-micro tree decomposition presented by Farzan and Munro [10]

which can be stated as follows:395

Lemma 7 (Theorem 1 [10]). For any parameter k > 1, a tree with n nodes

can be decomposed into Θ(nk) subtrees of size at most 2k, which are pairwise

disjoint aside from their roots. With the exception of edges branching from the

root of a subtree, there is at most one edge from a non-root node in a subtree to

a node outside the subtree.400

We also make use of the succinct binary tree data structure of Davoodi et

al. [4] that supports the following operations in O(1) time, and represents an

arbitrary binary tree using 2n+ o(n) bits:

1. select inorder(T, i): return the node u in T having inorder number i.

2. subtree size(T,u): Return the size of the subtree rooted at node u in T .405

3. parent(T, u): Return the parent node of u in T .

20

Algorithm 1 Computing NNLV(A, i).

1: if i = 1 or i = n then

2: return explicitly stored answer for A[1] or A[n].

3: else

4: `← subtree size(left(select inorder(i)))

5: r ← subtree size(right(select inorder(i)))

6: if ` < r and i− `− 1 ≥ 1 then

7: return i− `− 1

8: else if i+ r + 1 ≤ n then

9: return i+ r + 1

10: else

11: return −1 (A[i] is the maximum, and has no NNLV)

12: end if

13: end if

4. left(T, u) (resp. right(T, u)): return node u’s left (resp. right) child

in T .

We are now ready to prove Theorem 2. We note that the same machinery

can be applied to prove Theorem 1, almost verbatim, except we replace the410

forbidden pattern representation with that of Lemma 4.

Proof. Given the array A, we obtain an array A0 as described in Sections 5.1

and 5.2. We create the Cartesian tree T0 of A0, and seek to represent T0 in

1.81211n+ o(n) bits so that NNLV queries can be answered in O(1) time.

We now present a straightforward modification of the succinct binary tree415

representation of Davoodi et al. [4]. The representation of Davoodi et al. applies

Lemma 7 to decompose the tree into O(n/ lg n) micro-trees of with at most d lgnk e

nodes, for some constant k ≥ 8. Apart from the space needed to represent the

micro-trees, the space usage of their representation is o(n) bits.

Our objective is to replace the encoding of the micro-trees with one based420

on Sections 5.1 and 5.2. For each micro-tree µ of ν nodes, we create E(µ) as a

string of length ν over the alphabet {a, b, c, d} as above. Observe that patterns

21

that are forbidden in E(T0) are also (essentially) forbidden in E(µ). The only

exception is that a degree 1 or 2 node v in µ may have its children in another

micro-tree. Then v is a leaf of µ, and if its parent is a degree 1 turn node, then a425

forbidden pattern may appear in E(µ). However, this can happen only for nodes

which have their children in another micro-tree, and there is at most one such

node by Lemma 7. The information needed to store the modifications to E(µ) so

that E(µ) now has no forbidden patterns takes at most O(lg ν) = O(lg lg n) bits,

which is negligible summed over all micro-trees since the number of micro-trees430

is O(n/ lg n).

The representation of E(µ) is as a pointer into a table that stores all possi-

ble trees whose encodings have no forbidden patterns; this pointer clearly takes

1.81211 · ν +O(1) bits. The representations of all micro-trees take 1.81211 ·n+

O(n/ lg n) bits. Since the encoding of each micro-tree takes at most (lg n)/4 +435

O(1) bits, operations on nodes inside a micro-tree can be done in O(1) time by

table-lookup, as in [4]. Finally, the algorithm to answer the NNLV query is pre-

sented in Algorithm 1, and uses only operations supported by the representation

of Davoodi et al. [4]. �

7. Exact Enumeration of Distinguishable Configurations440

In this section we count the distinguishable configurations with respect to

NNLV queries. We obtain recursive formulae for the precise numbers of dis-

tinguishable configurations. The values calculated by these formulae will also

improve the lower bound as indicated in Theorem 3.

In total we define six sequences. Of these, Γ is the sequence that counts the445

number of distinguishable configurations of the NNLV problem; the others are

auxiliary sequences. We will use the notation of a chain of nearest neighbours

for a list of numbers L1, . . . , Ln where the nearest neighbour of Li is Li+1.

Further, we use the term distinguishable configurations of A[l . . . r] for some

l, r when configurations can be distinguished by asking the queries NNLV(i) for450

i = l, . . . , r.

22

1. A = {αn}n∈N. Let A[0 . . . n + 1] be an array of n + 2 numbers such that

A[0] and A[n+ 1] are greater than A[i] for all 1 ≤ i ≤ n. Then αn is the

number of distinguishable configurations of A[1 . . . n]. Figure 7 (first row)

denotes the conditions for A graphically.455

2. B = {βn}n∈N. Let A[0 . . . n] be an array of n + 1 numbers such that

A[0] > A[i] for all 1 ≤ i ≤ n. Then βn is the number of distinguishable

configurations of A[1 . . . n]. Figure 7 (second row) denotes the conditions

for B graphically.

3. Brev = {βrev
n }n∈N. Let A[1 . . . n + 1] be an array of n + 1 numbers such460

that A[n + 1] > A[i] for all 1 ≤ i ≤ n. Then βrev
n is the number of

distinguishable configurations of A[1 . . . n].

4. Γ = {γn}n∈N. Let A[1 . . . n] be an array of n numbers. Then βn is the

number of distinguishable configurations of A[1 . . . n]. Figure 7 (third row)

denotes the conditions for Γ graphically.465

5. ∆ = {δn,m}n,m∈N. Let A[0 . . . n + m + 1] be an array of n + m + 2

numbers such that A[0] > A[i] for all 1 ≤ i ≤ n; A[n + m + 1] > A[i]

for all 1 ≤ i ≤ n + m; A[n] > A[i] for all n + 1 ≤ i ≤ n + m; and there

exists a chain of nearest neighbours from A[n] to A[0] without including

A[n+m+1]. Then δn,m is the number of distinguishable configurations of470

A[1 . . . n]. Figure 7 (fourth row) denotes the conditions for ∆ graphically.

6. ∆rev = {δrevn,m}n,m∈N. Let A[−m. . . n + 1] be an array of n + m + 2

numbers such that A[n+ 1] > A[i] for all 1 ≤ i ≤ n; A[−m] > A[i] for all

−m + 1 ≤ i ≤ n; A[1] > A[i] for all −m + 1 ≤ i ≤ 0; and there exists a

chain of nearest neighbours from A[1] to A[−m] without including A[n+1].475

Then δrevn,m is the number of distinguishable configurations of A[1 . . . n].

All sequences share that they count the number of distinguishable configu-

rations of A[1 . . . n]. In the special case of n = 0 the array A[1 . . . n] is of length

23

A :

B :

Γ :

∆ :

Figure 4: Overview of conditions for each sequence

zero. No queries can be made that distinguishes between any two configura-

tions. Hence the number of distinguishable configurations is 1 and in particular480

α0 = β0 = βrev
0 = δ0,m = δrev0,m = 1 for m ∈ N.

We first prove some auxiliary lemmas.

Lemma 8. Let A[0 . . . n+1] be an array of n+2 numbers such that A[0] > A[i]

for all 1 ≤ i < (n+ 1)/2 and A[n+ 1] > A[j] for all 1 ≤ j ≤ n. Then αn is the

number of distinguishable configurations of A[1 . . . n].485

Proof. Any array of n + 2 numbers that satisfy the condition for sequence

A also satisfies the condition of this lemma. Hence there are at least αn dis-

tinguishable configurations of A[1 . . . n] where A satisfies the condition of this

lemma. Lets assume there exist an array A[0 . . . n + 1] of n + 2 numbers that

satisfies the condition of this lemma and its configuration of A[1 . . . n] is dis-490

tinguishable from all conditions of Ā[1 . . . n] within an array Ā that satisfy the

condition of sequence A. We now consider the array A′[0 . . . n + 1] defined by

A′[i] = A[i] for all 1 ≤ i ≤ n+1 and A′[0] = A[n+1]+1. So A′ satisfies the con-

dition of sequence A and A′ configuration of A′[1 . . . n] must distinguishable A’s

configuration of A[1 . . . n]. As both arrays are the same apart from A′[0] > A[0]495

there must exists an 1 ≤ j ≤ n which nearest neighbour in A′ is A[0] and in A

it is not A[0]. So A[0] < A[j] < A′[0]. Since A satisfies the condition of this

lemma j ≥ (n + 1)/2. This is contradiction as any such position is not closer

to A′[0] than to A′[n+ 1], in A′[j] nearest neighbour cannot be A′[0]. Hence by

weakening the condition of sequence A to the condition of this lemma does not500

24

i

αi−1 βn−i

Figure 5: βn sequence step

create further distinguishable configuration on A[1 . . . n]. �

A similar approach will give following lemma.

Lemma 9. Let A[0 . . . n+1] be an array of n+2 numbers such that A[0] > A[i]

for all 1 ≤ i ≤ n and A[n+ 1] > A[j] for all (n+ 1)/2 ≤ j ≤ n. Then αn is the

number of distinguishable configurations of A[1 . . . n].505

Now we give the formulae for each sequence.

Lemma 10. βn =
∑n
i=1 αi−1βn− i

Proof. Let A[0 . . . n] be an array satisfying the condition of sequence B.

Further let A[i] be the highest number in A[1 . . . n]. Then A[0] has no nearest

neighbour in A. The nearest neighbour of A[i] is A[0]. The nearest neighbours510

of A[1] to A[i− 1] must lie within the subarray A[0 . . . i] which also satisfies the

condition sequence A. Similarly the the nearest neighbours of A[i + 1] to A[n]

must lie with the subarray A[i . . . n], which satisfies the condition of sequence

B. Hence, the number of distinguishable configuration of A[1 . . . n] is αi−1βn−i.

For any 1 ≤ i ≤ n, A[i]’s nearest neighbour is A[0] and there does not exists515

a number A[j] with j > i such that A[j]’s nearest neighbour is A[0]. Hence

all configurations for one value of i are distinguishable from configurations of

different value of i.

Summing up all distinguishable configuration for all possible values of i gives

the above formula of βn.520

�

Following the structure of the proof of Lemma 10 one can show that βrev
n =∑n

i=1 β
rev
i−1αn− i =

∑n
i=1 αi−1β

rev
n−i. Since βrev

0 = 1 = Brev0 we have the following

lemma.

25

i

βi−1 βn−i

Figure 6: γn sequence step

Lemma 11. βrev
n = βn for all n ∈ N.525

Lemma 12. γn =
∑n
i=1 βi−1βn−i

Proof. Let A[1 . . . n] be an array of n numbers. Further let A[i] be the

highest number in A. Then A[i] has no nearest neighbour in A; the nearest

neighbours of A[1] to A[i− 1] lie in the subarray A[1 . . . i− 1] which satisfy the

condition of B′; the nearest neighbours of A[i + 1] to A[n] lie in the subarray530

A[1 . . . n] which satisfies the condition of B. See figure 7.

Hence the number of distinguishable configurations of A[1 . . . n] is βi−1βn−i.

For any 1 ≤ i ≤ n, A[0] is the only number that has no nearest neighbour in A.

Hence all configurations for one value of i are distinguishable from configurations

of different value of i. Summing up all distinguishable configuration for all535

possible values of i gives the above formula of γn. �

Lemma 13. δn,m =
∑min(m,n)
i=1 αi−1δ(n−i,i+m)

Proof. As given by the conditions of the sequence ∆ there exists a chain of

nearest neighbours from A[n] to A[0]. So let i be the distance of the A[n] to its

nearest neighbour. Then there exists a chain of nearest neighbours from A[n−i]540

to A[0], A[n− i] is greater than any number between A[n− i+ 1] to A[n+m],

and also A[n+m+ 1] remain higher than all number in A[1 . . . n]. Hence there

are δn−i,m+i distinguishable configuration for A[1] to A[n − i]. The subarray

A[n − i + 1 . . . n satisfy the condition of A. So every i there are αi−1δn−i,i+m

distinguishable configurations. Building the sum of over all possible values of i545

give the formula of δn,m. �

Following the same structure as used in the proof of Lemma 13 one can show

that δrevn,m =
∑min(m−1,n)
i=1 αi−1δ

rev
(n−i,i+m). Since δrev0,m = 1 = ∆rev

0,m for all m ∈ N

we have the following lemma.

26

Lemma 14. δrevn,m = δrevn,m−1 for all n,m ∈ N.550

Lemma 15. Let r =
⌊
2n+1

3 + 1
⌋

and l =
⌊
r
2

⌋
then

αn =

r−1∑
k=l

αk−1αn−k+

l−1∑
i=1

n∑
j=r

αi−1αj−i−1αn−j+

l−1∑
i=1

n∑
j=r

i+b j−i+1
2 c−1∑

k=2i+1

min(j,2k)∑
p=2k−i+1

αi−1αn−jαk−i−1αp−k−1δj−p,p+

l−1∑
i=1

n∑
j=r

2j−1−n∑
k=i+b j−i+1

2 c

2k−j∑
p=max(i,2k−n)

αi−1αn−jαj−k−1αk−p−1δp−i,n−p+

n∑
j=r

αn−jδj−1,1

Proof. The setting of αn splits into five disjoint cases, see Figure 7. Each

of them corresponds to a line in the formula of αn. We use i for the rightmost

position that has A[0] as its nearest neighbour and j for the leftmost position

that has A[n+ 1] as its nearest neighbour. As we break ties to the right, j must

always exists but i must not. Further we split A[1 . . . n] in three roughly evenly555

sized parts: First third A[1 . . . l− 1], the middle third A[l . . . r− 1] and the last

third A[r . . . n] with r =
⌊
2n+1

3 + 1
⌋

and l =
⌊
r
2

⌋
.

We first identify three cases that cover all configurations and do not share

any configurations. We later split case 2 into three separate sub-case and reach

our five cases as given in the formula.560

• Case 1: Either i or j lies in middle third.

• Case 2: The position i lies in the first third and j lies in the last third.

• Case 3: The position j in the last third and i does not exists.

From the definitions the cases have disjoint configurations. To show all

configuration are covered by the three cases one has to show that there are no565

27

configurations with i in last third or j in the first third. As the nearest neighbour

of A[i] is A[0] it must be strictly closer to A[0] than to A[n+ 1] as both of them

are higher than A[i] and we break ties to the right. As r =
⌊
2n+1

3 + 1
⌋
≥

2n+1+1
3 > n+1

2 ≥ bn+ 1c2 any position in the last third cannot have A[0] as its

nearest neighbour. Similarly for the first third, as l− 1 = brc2− 1 < 2n+1+3
6 =570

n
3 + 1

2 ≤
n+1
2 a number in the first third cannot have A[n + 1] as its nearest

neighbour.

We will now go through each case and justify the corresponding part in the

formula of αn.

Case 1. We first assume A[i] lies in the middle third. Note that this does

not mean A[i] is highest number among A[1 . . . n], but it is higher than any A[1]

to A[i − 1]. Also it is higher than any A[i + 1] to A[i + i]. If one shows that

i + i is at least b(n+ 1 + i)/2c − 1 by Lemma 8 the number of distinguishable

configuration will be αi−1αn−i. So

i+ i ≥ b(n+ 1 + i)/2c − 1

⇐ 3i ≥ n

⇐ 3
⌊r

2

⌋
≥ 3r − 3

2
≥

3(
⌊
2n+1

3 + 1
⌋
)− 3

2
≤ 2n+ 1 + 3− 3

2
> n+

1

2

If we assume A[j] lies in the middle third, by a similar argument and by the575

Lemma 8 the number of distinguishable configuration is αj−1αn−j .

So the number of all distinguishable configurations covered by case 1 is∑r−1
k=l αk−1αn−k.

Case 2. So A[i] lies in the first third and A[j] lies in the last third. A[i] or

A[j] must the be the highest value among A[1 . . . n]. However the other does not580

have to be the second highest. We first assume that A[i] and A[j] are the highest

and second highest values (case 2a). This gives
∑l−1
i=1

∑n
j=r αi−1αj−i−1αn−j

distinguishable configurations.

In case 2b, we count the additional configuration to the case 2a, when A[j] is

highest and A[i] is not the second highest value in among A[1 . . . n]. In order to

have a configuration that has not yet been counted in case 2a there must exists

28

an A[k] > A[i] with i < k < j such that A[k] nearest neighbour is not A[i] but it

would be so if A[i] would have been the second highest. The number A[k] must

lie further away from A[i] then A[i] is from A[0] as A[i]’s nearest neighbour is

A[0]. Also A[k] must be closer to A[i] then to A[j]. Hence the range for k is from

2i+1 to i+
⌊
j−i+1

2

⌋
−1. In a single configuration there might multiple numbers

that satisfy the condition of A[k]. To avoid double counting of configuration

we assume that A[k] is the furthest left of such numbers and hence count the

configuration in between A[i] and A[k] by αk−i−1. We now consider A[p] the

nearest neighbour of A[k]. The number A[k] must be closer to A[i] than to A[p]

as it other wise never has A[i] as its nearest neighbour independent of the value

of A[i]. Hence 2k− i+ 1 ≥ p. As A[p] is A[k]’s nearest neighbour, A[p] must be

less or the same distance away from A[k] than A[k] is from A[0], as otherwise

A[0] is A[k]’s nearest neighbour. Also it must not lie to the right of A[j]. Hence

p ≤ min(j, 2k). From A[p] onwards there must be a chain of nearest neighbours

to A[j]. Hence the number of configuration for case 2b are

l−1∑
i=1

n∑
j=r

i+b j−i+1
2 c−1∑

k=2i+1

min(j,2k)∑
p=2k−i+1

αi−1αn−jαk−i−1αp−k−1δj−p,p

The case 2c is equivalent to case 2b with A[i] being the highest number and

A[j] not being the second highest number in A[1 . . . n]. The reasoning concerning

the range for k and p are similar and lead to k ≥ i+
⌊
j−i+1

2

⌋
, j− k ≥ n− j+ 1,

k− p < n+ 1− k, p ≥ i and k− p > j− k Hence all configuration of case 2c are

l−1∑
i=1

n∑
j=r

2j−1−n∑
k=i+b j−i+1

2 c

2k−j∑
p=max(i,2k−n)

αi−1αn−jαj−k−1αk−p−1δp−i,n−p

Case 3. There is no number that has A[0] as it’s nearest neighbour. So

there is a chain of nearest neighbours from A[1] to A[j]. The number of config-

uration for A[1 . . . j] is δn−j,1 and for A[j+ 1 . . . n is αn−j . The total number of

configuration of case 3 is
n∑
j=r

αn−jδj−1,1

By adding up the formulae for each case we obtain the formula for αn.

29

Case 1)

l ri

αi−1 αn−i

Case 2a)

l ri j

αi−1 αj−i−1 αn−j

Case 2b)

l ri jk p

αi−1 αk−i−1 αp−k−1 δj−p,l αn−j

Case 2c)

l ri jkp

αi−1 δp−i,n−p αk−p−1 αj−k−1 αn−j

Case 3)

l r jk

δk−1,1 αj−k αn−j

Figure 7: αn sequence step

�585

We were unable to give a closed-form solution for γn. We have, however,

computed them up to n = 700. Figure 7 shows the ratios of γn/γn−1 and

αn/αn−1, and 2kn where kn is lower bound of bytes obtained by using the formula,

as given in Section 8, with the values of γn and αn. Up to the computed values

the ratios for Γ and A are monotonic increasing.590

8. Lower Bound

The main idea of the lower bound is to show that for a given n, there are

many configurations of A that can be distinguished by NNLV queries. To do

this, we reuse the sequence definitions for both αn and γn from the previous

section: αn can be considered to be a restricted input to the NNLV problem595

30

0 200 400 600
3

3.02

3.04

3.06

3.08

3.1

n

ra
ti

os

Γ ratio
A ratio

2kn

Figure 8: The ratios of consecutive values for sequence Γ and A, 2 to the power of the lower

bound of bytes.

that is padded with two additional entries A[0] =∞ and A[n+ 1] =∞.

For an n element array, we use αn to denote the number of different con-

figurations for the NNLV problem on restricted inputs, and γn to denote the

number of solutions to NNLV, both subject to tie breaking rule I. We present

both sequences in Table 3 for some values of n and up to n = 700.600

Next we discuss how to the values in Table 3 to derive a lower bound.

Consider an array of length n, for n sufficiently large. Without loss of generality,

we assume that a parameter ` ≥ 1 divides n − 2 and that n−2
` is odd. Let Di

denote the i-th odd block, and Ei denote the i-th even block. Locations A[1]

and A[n] are assigned values n−1 and n, respectively. Odd block Di is assigned605

values [(i− 1)`+ 1, i`], and can be arranged in one of α` configurations, to form

an instance of a restricted input. Suppose there are λ odd blocks. Even block

Ei will be assigned values from [(λ+ i− 1)`+ 1, (λ+ i)`], and arranged in one

of the γ` configurations of the NNLV problem.

Our claim is that each even (resp. odd) block can be assigned any of the γ`610

(resp. α`) possible configurations, without interference from other blocks. To

see this, consider that for each even block we have assigned values so that—with

31

n γn αn

0 1 1

1 1 1

2 2 2

3 5 4

4 14 9

5 40 22

6 116 55

7 341 142

8 1010 378

9 3009 1015

10 9012 2768

50 2.60634 ×1023 1.76356 ×1022

200 1.23839 ×1097 2.13372 ×1095

400 3.14284 ×10195 2.71590 ×10193

700 1.49191 ×10343 7.37685 ×10340

Table 3: The calculated values of γn and αn for some selected values of n.

32

the exception of the maximum element—the nearest larger value to all elements

must be within the same block. This follows since the adjacent odd blocks

contain strictly smaller values than those in any even block. Moreover, for615

odd blocks, the values immediately to the left and right of the block are strictly

larger than any values in the block. Thus, we can force the global solution to the

NNLV problem on the entire array into at least (γ`α`)
n−2
2` distinct structures.

This implies that lg γn is at least (n−2)
2` lg(γ`α`): selecting ` = 700 yields the

lower bound of Theorem 3.620

9. Conclusions

We have introduced the encoding NNLV problem, and have noted its com-

binatorial richness. Using a novel path-compressed representation of Cartesian

trees, we gave a space-efficient NNLV encoding that supports queries in O(1)

time. Determining the effective entropy of NNLV, and to consider the other625

NNLV variants (such as for arrays of non-distinct values), is an open problem.

Finding ways to apply NNLV encodings to compressed suffix trees, as Fischer

[7] did for his bidirectional NLV encoding, would also be interesting.

We conclude with a final remark about the sub-optimality of our approaches

for representing an NNLV tree. To show that these data structures are sub-

optimal, consider the following two example arrays:

[10, 12, 8, 9, 1, 7, 3, 4, 2, 6, 5, 13, 11] and [10, 12, 7, 9, 1, 6, 3, 4, 2, 8, 5, 13, 11]

Both of these arrays have different cartesian trees which contain no degree one

nodes, however they both have the same NNLV tree under the three tie-breaking630

rules. This indicates that any strategy which focuses only on degree one nodes

in the Cartesian tree is unlikely to achieve optimal bounds, whatever they may

be.

References

[1] O. Berkman, B. Schieber, U. Vishkin, Optimal doubly logarithmic parallel635

algorithms based on finding all nearest smaller values, J. Algorithms 14 (3)

33

http://dx.doi.org/10.1006/jagm.1993.1018
http://dx.doi.org/10.1006/jagm.1993.1018
http://dx.doi.org/10.1006/jagm.1993.1018

(1993) 344–370. doi:10.1006/jagm.1993.1018.

URL http://dx.doi.org/10.1006/jagm.1993.1018

[2] M. J. Golin, J. Iacono, D. Krizanc, R. Raman, S. R. Satti, S. M. Shende,

Encoding 2d range maximum queries, Theor. Comput. Sci. 609 (2016) 316–640

327. doi:10.1016/j.tcs.2015.10.012.

URL http://dx.doi.org/10.1016/j.tcs.2015.10.012

[3] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range mini-

mum queries on static arrays, SIAM Journal on Computing 40 (2) (2011)

465–492.645

[4] P. Davoodi, G. Navarro, R. Raman, S. Rao, Encoding range minima and

top-2 queries, Phil. Trans. R. Soc. A 372 (2016) (2014) 1471–2962.

URL https://lra.le.ac.uk/handle/2381/28856

[5] J. Fischer, V. Mäkinen, G. Navarro, Faster entropy-bounded compressed

suffix trees, Theor. Comput. Sci. 410 (51) (2009) 5354–5364.650

[6] V. Jayapaul, S. Jo, R. Raman, V. Raman, S. R. Satti, Space efficient data

structures for nearest larger neighbor, J. Discrete Algorithms 36 (2016) 63–

75. doi:10.1016/j.jda.2016.01.001.

URL http://dx.doi.org/10.1016/j.jda.2016.01.001

[7] J. Fischer, Combined data structure for previous- and next-smaller-values,655

Theor. Comput. Sci. 412 (22) (2011) 2451–2456. doi:10.1016/j.tcs.

2011.01.036.

URL http://dx.doi.org/10.1016/j.tcs.2011.01.036

[8] T. Asano, S. Bereg, D. G. Kirkpatrick, Finding nearest larger neigh-

bors, in: S. Albers, H. Alt, S. Näher (Eds.), Efficient Algorithms, Essays660

Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, Vol.

5760 of Lecture Notes in Computer Science, Springer, 2009, pp. 249–260.

doi:10.1007/978-3-642-03456-5_17.

URL http://dx.doi.org/10.1007/978-3-642-03456-5_17

34

http://dx.doi.org/10.1006/jagm.1993.1018
http://dx.doi.org/10.1006/jagm.1993.1018
http://dx.doi.org/10.1016/j.tcs.2015.10.012
http://dx.doi.org/10.1016/j.tcs.2015.10.012
http://dx.doi.org/10.1016/j.tcs.2015.10.012
https://lra.le.ac.uk/handle/2381/28856
https://lra.le.ac.uk/handle/2381/28856
https://lra.le.ac.uk/handle/2381/28856
https://lra.le.ac.uk/handle/2381/28856
http://dx.doi.org/10.1016/j.jda.2016.01.001
http://dx.doi.org/10.1016/j.jda.2016.01.001
http://dx.doi.org/10.1016/j.jda.2016.01.001
http://dx.doi.org/10.1016/j.jda.2016.01.001
http://dx.doi.org/10.1016/j.jda.2016.01.001
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1016/j.tcs.2011.01.036
http://dx.doi.org/10.1007/978-3-642-03456-5_17
http://dx.doi.org/10.1007/978-3-642-03456-5_17
http://dx.doi.org/10.1007/978-3-642-03456-5_17
http://dx.doi.org/10.1007/978-3-642-03456-5_17
http://dx.doi.org/10.1007/978-3-642-03456-5_17

[9] T. Asano, D. G. Kirkpatrick, Time-space tradeoffs for all-nearest-larger-665

neighbors problems, in: F. Dehne, R. Solis-Oba, J. Sack (Eds.), Al-

gorithms and Data Structures - 13th International Symposium, WADS

2013, London, ON, Canada, August 12-14, 2013. Proceedings, Vol. 8037

of Lecture Notes in Computer Science, Springer, 2013, pp. 61–72. doi:

10.1007/978-3-642-40104-6_6.670

URL http://dx.doi.org/10.1007/978-3-642-40104-6_6

[10] A. Farzan, J. I. Munro, A uniform paradigm to succinctly encode vari-

ous families of trees, Algorithmica 68 (1) (2014) 16–40. doi:10.1007/

s00453-012-9664-0.

URL http://dx.doi.org/10.1007/s00453-012-9664-0675

[11] R. Raman, V. Raman, S. S. Rao, Succinct indexable dictionaries with ap-

plications to encoding k-ary trees, prefix sums and multisets, ACM Trans-

actions on Algorithms 3 (4).

[12] P. Flajolet, R. Sedgewick, Analytic Combinatorics, 1st Edition, Cambridge

University Press, New York, NY, USA, 2009.680

35

http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/978-3-642-40104-6_6
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0
http://dx.doi.org/10.1007/s00453-012-9664-0

Appendix A. Mathematica Code

In this section we present Mathematica code for numerical maximization that

leads to the bounds presented in Lemma 4. The following snippet produces first

bound discussed in the Lemma:

h[x_] := x*Log2[1/x] + (1-x) * Log2[1/(1-x)]

f[m_, k_]:= 1-k + (1-k)*h[m/(1-k)] + k*h[m/k] + m*Log2[k/m+1]

NMaximize[{ Re[f[m, k]],

k > $MachineEpsilon, m > $MachineEpsilon,

m < k, k < 1 },

{k, m}, {MaxIterations->100000, Method->{"RandomSearch"}}]

The second bound is slightly more involved, and involves optimizing over a685

vector to determine the values of yi that maximize the entropy of the chains.

Through experimentation, we determined that yi = 0 for all i > 15 (hence

setting σ = 15 below).

Sigma = 15;

g[m_,k_]:=

1-(Sum[m[[i]]*i, {i,1,k}]) +

(1-(Sum[m[[i]]*i, {i,1,k}])) *

h[(Sum[m[[i]], {i,1,k}]) / (1-(Sum[m[[i]]*i, {i,1,k}]))] +

Sum[m[[j]]*Log2[(Sum[m[[i]], {i,1,k}])/m[[j]]], {j,1,k}] +

Sum[m[[j]]*Log2[j+1], {j,1,k}];

yArr = Array[Unique[y],{Sigma}]

NMaximize[{ Re[g[yArr,Sigma]],

And@@Table[yArr[[i]]>=$MachineEpsilon, {i,Sigma}] &&

(Sum[yArr[[i]], {i,1,Sigma}]) <

1 - (Sum[yArr[[i]] * i, {i,1,Sigma}])},

yArr, {MaxIterations->100000, Method->{"RandomSearch"}}]

36

	Introduction
	Our Contributions
	Other Related Work

	Cartesian Tree Review
	A Path Based Tree Representation
	Encoding Nearest Larger Values
	Forbidden Patterns
	Forbidding Zig-Zags
	Forbidding a Turn Before a Leaf
	Counting Strings with Forbidden Sub-Patterns

	Data Structures
	Exact Enumeration of Distinguishable Configurations
	Lower Bound
	Conclusions
	Mathematica Code

