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Abstract—In this paper, a novel variational Bayesian (VB) based
adaptive Kalman filter (VBAKF) for linear Gaussian state-space models
with inaccurate process and measurement noise covariance matrices is
proposed. By choosing inverse Wishart priors, the state together with the
predicted error and measurement noise covariance matrices are inferred
based on the VB approach. Simulation results for a target tracking
example illustrate that the proposed VBAKF has better robustness to
resist the uncertainties of process and measurement noise covariance
matrices than existing state-of-the-art filters.

Index Terms—Adaptive filtering, variational Bayesian, Kalman filter-
ing, time-varying noise covariance matrices, inverse Wishart distribution

I. INTRODUCTION

THE Kalman filter is an optimal state estimator for linear
Gaussian state-space models, and it has been widely used in

many applications, such as navigation, target tracking and control.
The performance of the Kalman filter depends largely on a priori
knowledge of the noise statistics, and the use of wrong a priori
statistics can result in substantial estimation errors or even filtering
divergence [1]. However, in many applications, such as Global Po-
sitioning System (GPS) and Inertial Navigation System (INS) based
integrated navigation systems, their noise statistics may be unknown
and time-varying [2], [3], [4]. The adaptive Kalman filter (AKF) is the
most common method to solve this problem, and it can be divided into
correlation, covariance matching, maximum likelihood and Bayesian
methods [1].

The Sage-Husa AKF (SHAKF) is a covariance matching method,
which estimates the noise statistics recursively based on the maximum
a posterior criterion [5], [6]. However, the convergence to the right
noise covariance matrices is not guaranteed with SHAKF, which
may lead to filtering divergence [1]. The Innovation-based AKF
(IAKF) is a maximum likelihood method, which estimates the noise
covariance matrices based on the fact that the innovation sequence of
the Kalman filter is a white process [2]. However, the IAKF requires
rather large windows of data to obtain reliable estimations of noise
covariance matrices, which makes it impractical for rapidly varying
noise covariance matrices [7]. The multiple model AKF (MMAKF)
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is an approximation of the Bayesian method, which can deal with
the model uncertainty by operating a bank of Kalman filters with
different models simultaneously [8]. However, the MMAKF suffers
from substantial computational complexities [9].

The existing variational Bayesian (VB) based AKF (VBAKF) is
also an approximation of the Bayesian method, which can estimate
an inaccurate and slowly varying measurement noise covariance
matrix (MNCM) by choosing appropriate conjugate prior distribution
[9]–[12]. However, the performance of the existing VBAKF will
degrade for an inaccurate process noise covariance matrix (PNCM)
since it assumes accurate PNCM. Although the VB based Rauch-
Tung-Striebel smoother can estimate unknown PNCM and MNCM
simultaneously [13], [14], it can only estimate unknown and constant
noise covariance matrices off-line. To the best of the knowledge of
the authors, it is always a challenge to design a VBAKF for linear
Gaussian state-space models with inaccurate PNCM and MNCM
since the PNCM is difficult to be estimated directly with a rather
small window of data.

In this paper, a novel VBAKF with inaccurate PNCM and MNCM
is proposed. By choosing inverse Wishart priors for the predicted
error covariance matrix (PECM) and MNCM, the state together with
PECM and MNCM are inferred based on the VB approach. The
proposed VBAKF and existing filters are applied to the problem
of target tracking with inaccurate and slowly varying PNCM and
MNCM. Simulation results show the proposed filter has smaller root
mean square error (RMSE) than existing state-of-the-art filters.

II. MAIN RESULTS

A. Problem formulation

Consider the following discrete-time linear stochastic system as
shown by the state-space model

xk = Fk−1xk−1 +wk−1 (1)

zk = Hkxk + vk (2)

where (1) and (2) are respectively process and measurement equation-
s, k is the discrete time index, xk ∈ Rn is the state vector, zk ∈ Rm

is the measurement vector, Fk ∈ Rn×n is the state transition matrix,
Hk ∈ Rm×n is the observation matrix; wk ∈ Rn and vk ∈ Rm are
respectively Gaussian process and measurement noise vectors with
zero mean vectors and covariance matrices Qk and Rk. The initial
state vector x0 is assumed to have a Gaussian distribution with mean
vector x̂0|0 and covariance matrix P0|0. Moreover, x0, wk and vj

are assumed to be mutually uncorrelated for any j and k.
The Kalman filter is frequently employed to estimate the state

vector xk given the state-space model and measurements z1:k, where
z1:k = {zj}kj=1 denotes the measurements from time 1 to time k.
The Kalman filter is optimal in terms of minimum mean square error
(MMSE) for linear Gaussian state-space model (1)-(2) with accurate
Qk and Rk. However, the use of wrong/inaccurate Qk and Rk can
result in substantial estimation errors or even filtering divergence [1].
Therefore, a novel VBAKF suitable for operation with inaccurate
PNCM and MNCM will be proposed.
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B. The choices of prior distributions

In the framework of the Kalman filter, the one-step predicted PDF
p(xk|z1:k−1) and likelihood PDF p(zk|xk) are Gaussian, i.e.

p(xk|z1:k−1,Pk|k−1) = N(xk; x̂k|k−1,Pk|k−1) (3)

p(zk|xk,Rk) = N(zk;Hkxk,Rk) (4)

where N(·;µ,Σ) denotes the Gaussian PDF with mean vector µ
and covariance matrix Σ, and x̂k|k−1 and Pk|k−1 are respectively
the predicted state vector and corresponding PECM, and x̂k|k−1 and
Pk|k−1 are given by

x̂k|k−1 = Fk−1x̂k−1|k−1 (5)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (6)

where (·)T denotes the transpose operation, and x̂k−1|k−1 and
Pk−1|k−1 are respectively the state estimation vector and corre-
sponding estimation error covariance matrix at time k− 1. Note that
Pk|k−1 obtained from (6) is inaccurate since the true PNCM Qk is
unavailable and an inaccurate PNCM is used.

Our aim is to infer xk together with Pk|k−1 and Rk. To this
end, the conjugate prior distributions need to be firstly selected for
inaccurate PECM Pk|k−1 and MNCM Rk since the conjugacy can
guarantee that the posterior distribution is of the same functional
form as the prior distribution. In Bayesian statistics, the inverse
Wishart distribution is usually used as the conjugate prior for the
covariance matrix of a Gaussian distribution with known mean [15].
The inverse Wishart PDF of a symmetric positive definite random
matrix B of dimension d × d is formulated as IW(B;λ,Ψ) =
|Ψ|λ/2|B|−(λ+d+1)/2 exp{−0.5tr(ΨB−1)}

2dλ/2Γd(λ/2)
, where λ is the degrees of

freedom (dof) parameter, and Ψ is the inverse scale matrix that is a
symmetric positive definite matrix of dimension d× d, and | · | and
tr(·) denote the determinant and trace operations respectively, and
Γd(·) is the d-variate gamma function [15]. If B ∼ IW(B;λ,Ψ),
then E[B−1] = (λ− d− 1)Ψ−1 when λ > d+ 1 [15]. Since both
Pk|k−1 and Rk are the covariance matrices of Gaussian PDFs, their
prior distributions p(Pk|k−1|z1:k−1) and p(Rk|z1:k−1) are chosen
as inverse Wishart PDFs, i.e.,

p(Pk|k−1|z1:k−1) = IW(Pk|k−1; t̂k|k−1, T̂k|k−1) (7)

p(Rk|z1:k−1) = IW(Rk; ûk|k−1, Ûk|k−1) (8)

where IW(·;µk,Σk) denotes the inverse Wishart PDF with dof
parameter µk and inverse scale matrix Σk, and t̂k|k−1 and T̂k|k−1

are respectively the dof parameter and inverse scale matrix of
p(Pk|k−1|z1:k−1), and ûk|k−1 and Ûk|k−1 are respectively the dof
parameter and inverse scale matrix of p(Rk|z1:k−1). Next, the prior
parameters t̂k|k−1, T̂k|k−1, ûk|k−1 and Ûk|k−1 will be determined.

To capture the prior information of Pk|k−1, the mean value of
Pk|k−1 is set as the nominal PECM P̃k|k−1, i.e.,

T̂k|k−1

t̂k|k−1 − n− 1
= P̃k|k−1 = Fk−1Pk−1|k−1F

T
k−1 + Q̃k−1 (9)

where Q̃k−1 denotes the nominal PNCM and is an algorithm param-
eter of the proposed VBAKF. Let

t̂k|k−1 = n+ τ + 1 (10)

where τ ≥ 0 is a tuning parameter. Using (10) in (9) yields

T̂k|k−1 = τP̃k|k−1 (11)

According to the Bayesian theorem, the prior distribution
p(Rk|z1:k−1) is formulated as

p(Rk|z1:k−1) =

∫
p(Rk|Rk−1)p(Rk−1|z1:k−1)dRk−1 (12)

where p(Rk−1|z1:k−1) is the posterior PDF of MNCM Rk−1.
Since the prior distribution p(Rk−1|z1:k−2) of MNCM Rk−1

is chosen as an inverse Wishart PDF in accordance with (7), the
posterior PDF p(Rk−1|z1:k−1) can be also updated as an inverse
Wishart PDF, i.e.,

p(Rk−1|z1:k−1) = IW(Rk−1; ûk−1|k−1, Ûk−1|k−1) (13)

To guarantee p(Rk|z1:k−1) is an inverse Wishart PDF formulated
in (8), the forward predictive model p(Rk|Rk−1) needs to be
determined. However, in practical application, the dynamical model
p(Rk|Rk−1) is not known in detail. Considering that the MNCM is
slowly varying in many practical applications, in this paper, we use
similar heuristics as in [10], which just spreads previous approximate
posteriors through a factor of ρ, and the prior parameters ûk|k−1 and
Ûk|k−1 are given by

ûk|k−1 = ρ(ûk−1|k−1 −m− 1) +m+ 1 (14)

Ûk|k−1 = ρÛk−1|k−1 (15)

where ρ ∈ (0 1] is a forgetting factor which indicates the extent of
the time-fluctuations.

In this paper, the initial MNCM R0 is also assumed to have an
inverse Wishart PDF, i.e., p(R0) = IW(R0; û0|0, Û0|0). To capture
the prior information of the initial MNCM, the mean value of R0 is
set as the initial nominal MNCM R̃0, i.e.,

Û0|0

û0|0 −m− 1
= R̃0 (16)

where the initial nominal MNCM R̃0 is an algorithm parameter of
the proposed VBAKF.

C. Variational approximation of posterior PDFs

To estimate xk together with Pk|k−1 and Rk, the joint posterior
PDF p(xk,Pk|k−1,Rk|z1:k) needs to be computed. Since there
is not an analytical solution for this joint posterior PDF, the VB
approach is used to look for a free form factored approximate PDF
for p(xk,Pk|k−1,Rk|z1:k), i.e., [16], [17]

p(xk,Pk|k−1,Rk|z1:k) ≈ q(xk)q(Pk|k−1)q(Rk) (17)

where q(·) represents the approximate posterior PDF of p(·), and
q(xk), q(Pk|k−1) and q(Rk) are given by minimizing the Kullback-
Leibler divergence (KLD) between the factored approximate pos-
terior PDF q(xk)q(Pk|k−1)q(Rk) and true joint posterior PDF
p(xk,Pk|k−1,Rk|z1:k), i.e. [16], [17]{

q(xk), q(Pk|k−1), q(Rk)
}
= argminKLD(

q(xk)q(Pk|k−1)q(Rk)||p(xk,Pk|k−1,Rk|z1:k)
)

(18)

where KLD(q(x)||p(x)) ,
∫
q(x) log q(x)

p(x)
dx denotes the KLD

between q(x) and p(x). The optimal solution for (18) satisfies the
following equation [17].

log q(θ) = EΞ(−θ) [log p(Ξ, z1:k)] + cθ (19)

Ξ , {xk,Pk|k−1,Rk} (20)

where E[·] represents the expectation operation, and log(·) represents
the logarithmic function, and θ is an arbitrary element of Ξ, and
Ξ(−θ) is the set of all elements in Ξ except for θ, and cθ denotes the
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constant with respect to variable θ. Since the variational parameters
of q(xk), q(Pk|k−1) and q(Rk) are coupled, we need to employ
fixed-point iterations to solve (19), where the approximate posterior
PDF q(θ) of the arbitrary element Ξ is updated as q(i+1)(θ) at the
i + 1th iteration using the approximate posterior PDF q(i)(Ξ(−θ))
[16], [17]. The iterations converge to a local optimum of (19).

Remark 1: In the standard VB approach, the KLD is chosen as
a distance measure between the factored approximate posterior PDF
and true joint posterior PDF, and the optimal solution is obtained
by minimizing the KLD. The VB approach can provide a closed
form solution for the approximate posterior PDF and guarantee the
local convergence of the fixed-point iterations. The alpha and tau
divergences are generalized distance measures [18], [19], and in
principle they can be also used as a distance measure between the
factored approximate posterior PDF and true joint posterior PDF.
However, the alpha or tau divergence based Bayesian inference
approach may not provide a closed form solution for the approximate
posterior PDF.

Using the conditional independence properties of the Gaussian-
inverse-Wishart state-space model in (1)-(2), (3)-(4) and (7)-(8), the
joint PDF p(Ξ, z1:k) can be factored as

p(Ξ, z1:k) = p(zk|xk,Rk)p(xk|z1:k−1,Pk|k−1)×
p(Pk|k−1|z1:k−1)p(Rk|z1:k−1)p(z1:k−1) (21)

Employing (3)-(4) and (7)-(8) in (21) obtains

p(Ξ, z1:k) = N(zk;Hkxk,Rk)N(xk; x̂k|k−1,Pk|k−1)×
IW(Pk|k−1; t̂k|k−1, T̂k|k−1)IW(Rk; ûk|k−1, Ûk|k−1)×
p(z1:k−1) (22)

Exploiting (22), log p(Ξ, z1:k) is formulated as

log p(Ξ, z1:k) = −0.5(m+ ûk|k−1 + 2) log |Rk| −
0.5(zk −Hkxk)

TR−1
k (zk −Hkxk)− 0.5tr(Ûk|k−1R

−1
k )

−0.5(n+ t̂k|k−1 + 2) log |Pk|k−1| − 0.5(xk − x̂k|k−1)
T ×

P−1
k|k−1(xk − x̂k|k−1)− 0.5tr(T̂k|k−1P

−1
k|k−1) + cΞ (23)

Let θ = Pk|k−1 and using (23) in (19), we have

log q(i+1)(Pk|k−1) = −0.5(m+ ûk|k−1 + 2)E(i)[log |Rk|]

−0.5E(i)
[
(zk −Hkxk)

TR−1
k (zk −Hkxk)

]
−

0.5E(i)
[
tr(Ûk|k−1R

−1
k )
]
− 0.5(n+ t̂k|k−1 + 2)×

log |Pk|k−1| − 0.5tr
(
(A

(i)
k + T̂k|k−1)P

−1
k|k−1

)
+ cΞ

= −0.5(n+ t̂k|k−1 + 2) log |Pk|k−1| −

0.5tr
(
(A

(i)
k + T̂k|k−1)P

−1
k|k−1

)
+ cP (24)

where q(i+1)(·) is the approximation of PDF q(·) at the i + 1th
iteration, and A

(i)
k is given by

Ai
k=Ei[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ]

=Ei[(xk − x̂i
k|k + x̂i

k|k − x̂k|k−1)×
(xk − x̂i

k|k + x̂i
k|k − x̂k|k−1)

T ]

=Ei[(xk − x̂i
k|k)(xk − x̂i

k|k)
T ] +

(x̂i
k|k − x̂k|k−1)(x̂

i
k|k − x̂k|k−1)

T

=Pi
k|k + (x̂i

k|k − x̂k|k−1)(x̂
i
k|k − x̂k|k−1)

T (25)

where E(i)[ρ] denotes the expectation of variable ρ at the ith iteration.
Exploiting (24), q(i+1)(Pk|k−1) can be updated as an inverse

Wishart PDF with dof parameter t̂
(i+1)
k and inverse scale matrix

T̂
(i+1)
k , i.e.

q(i+1)(Pk|k−1) = IW(Pk|k−1; t̂
(i+1)
k , T̂

(i+1)
k ) (26)

where the dof parameter t̂
(i+1)
k and inverse scale matrix T̂

(i+1)
k are

given by
t̂
(i+1)
k = t̂k|k−1 + 1 (27)

T̂
(i+1)
k = A

(i)
k + T̂k|k−1 (28)

Let θ = Rk and using (23) in (19), we have

log q(i+1)(Rk) = −0.5(m+ ûk|k−1 + 2) log |Rk| −

0.5tr
(
(B

(i)
k + Ûk|k−1)R

−1
k

)
− 0.5(n+ t̂k|k−1 + 2)×

E(i) [log |Pk|k−1|
]
− 0.5E(i)

[
tr(T̂k|k−1P

−1
k|k−1)

]
−

0.5E(i)
[
(xk − x̂k|k−1)

TP−1
k|k−1(xk − x̂k|k−1)

]
+ cΞ

= −0.5(m+ ûk|k−1 + 2) log |Rk| − 0.5tr
(
(B

(i)
k + Ûk|k−1

) R−1
k

)
+ cR (29)

where B
(i)
k is given by

B
(i)
k =Ei[(zk −Hkxk)(zk −Hkxk)

T ]

=Ei[(zk −Hkx̂
i
k|k +Hkx̂

i
k|k −Hkxk)×

(zk −Hkx̂
i
k|k +Hkx̂

i
k|k −Hkxk)

T ]

=(zk −Hkx̂
i
k|k)(zk −Hkx̂

i
k|k)

T +

HkE
i[(xk − x̂i

k|k)(xk − x̂i
k|k)

T ]HT
k

=(zk −Hkx̂
i
k|k)(zk −Hkx̂

i
k|k)

T +HkP
i
k|kH

T
k (30)

Utilizing (29), q(i+1)(Rk) can be updated as an inverse Wishart
PDF with dof parameter û(i+1)

k and inverse scale matrix Û
(i+1)
k , i.e.

q(i+1)(Rk) = IW(Rk; û
(i+1)
k , Û

(i+1)
k ) (31)

where the dof parameter û(i+1)
k and inverse scale matrix Û

(i+1)
k are

given by
û
(i+1)
k = ûk|k−1 + 1 (32)

Û
(i+1)
k = B

(i)
k + Ûk|k−1 (33)

Let θ = xk and using (23) in (19) results in

log q(i+1)(xk) = −0.5(m+ ûk|k−1 + 2)E(i+1)[log |Rk|]−

0.5E(i+1)
[
tr(Ûk|k−1R

−1
k )
]
− 0.5(n+ t̂k|k−1 + 2)×

E(i+1) [log |Pk|k−1|
]
− 0.5E(i+1)

[
tr(T̂k|k−1P

−1
k|k−1)

]
−

0.5(zk −Hkxk)
TE(i+1)[R−1

k ](zk −Hkxk)−
0.5(xk − x̂k|k−1)

TE(i+1)[P−1
k|k−1](xk − x̂k|k−1) + cΞ

= −0.5(zk −Hkxk)
TE(i+1)[R−1

k ](zk −Hkxk)−
0.5(xk − x̂k|k−1)

TE(i+1)[P−1
k|k−1](xk − x̂k|k−1) + cx (34)

where E(i+1)[R−1
k ] and E(i+1)[P−1

k|k−1] are given by

E(i+1)[R−1
k ] = (û

(i+1)
k −m− 1)(Û

(i+1)
k )−1 (35)

E(i+1)[P−1
k|k−1] = (t̂

(i+1)
k − n− 1)(T̂

(i+1)
k )−1 (36)

Define the modified one-step predicted PDF p(i+1)(xk|z1:k−1) and
likelihood PDF p(i+1)(zk|xk) at iteration i+ 1 as follows

p(i+1)(xk|z1:k−1) = N(xk; x̂k|k−1, P̂
(i+1)

k|k−1) (37)

p(i+1)(zk|xk) = N(zk;Hkxk, R̂
(i+1)
k ) (38)
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where the modified PECM P̂
(i+1)

k|k−1 and MNCM R̂
(i+1)
k are formu-

lated as

P̂
(i+1)

k|k−1 =
{
E(i+1)[P−1

k|k−1]
}−1

R̂
(i+1)
k =

{
E(i+1)[R−1

k ]
}−1

(39)
Employing (37)-(39) in (34) yields

q(i+1)(xk) =
1

c
(i+1)
k

p(i+1)(zk|xk)p
(i+1)(xk|z1:k−1) (40)

where the normalizing constant c(i+1)
k is given by

c
(i+1)
k =

∫
p(i+1)(zk|xk)p

(i+1)(xk|z1:k−1)dxk (41)

According to (37)-(41), q(i+1)(xk) can be updated as a Gaussian
PDF with mean vector x̂(i+1)

k|k and covariance matrix P
(i+1)

k|k , i.e.,

q(i+1)(xk) = N(xk; x̂
(i+1)

k|k ,P
(i+1)

k|k ) (42)

where the mean vector x̂
(i+1)

k|k and covariance matrix P
(i+1)

k|k at
iteration i+ 1 are given by

K
(i+1)
k = P̂

(i+1)

k|k−1H
T
k (HkP̂

(i+1)

k|k−1H
T
k + R̂

(i+1)
k )−1 (43)

x̂
(i+1)

k|k = x̂k|k−1 +K
(i+1)
k (zk −Hkx̂k|k−1) (44)

P
(i+1)

k|k = P̂
(i+1)

k|k−1 −K
(i+1)
k HkP̂

(i+1)

k|k−1 (45)

After fixed point iteration N , the variational approximations of
posterior PDFs are given by

q(xk)≈q(N)(xk) = N(xk; x̂
(N)

k|k ,P
(N)

k|k ) = N(xk; x̂k|k,Pk|k) (46)

q(Pk|k−1)≈q(N)(Pk|k−1) = IW(Pk|k−1; t̂
(N)
k , T̂

(N)
k )

=IW(Pk|k−1; t̂k|k, T̂k|k) (47)

q(Rk)≈q(N)(Rk) = IW(Rk; û
(N)
k , Û

(N)
k )

=IW(Rk; ûk|k, Ûk|k) (48)

The proposed VBAKF operates recursively by combining time
update (5), (9)-(11) and (14)-(16) with variational measurement
update (25)-(28), (30)-(33), (35)-(36), (39) and (42)-(48), whose
implementation pseudocode is shown in Algorithm 1.

Remark 2: In the standard Kalman filter, Pk|k−1 is usually used
to represent the covariance matrix of the predicted error based on the
measurement information z1:k−1. However, in the proposed method,
Pk|k−1 is estimated using the measurement information z1:k−1 and
zk based on the VB approach. Thus, the estimation of PECM P̂k|k−1

depends on not only previous measurement information z1:k−1 but
also current measurement information zk.

D. Parameter selection of the proposed VBAKF

To implement the proposed VBAKF, the tuning parameter τ , the
forgetting factor ρ, the nominal PNCM Q̃k, and the initial nominal
MNCM R̃0 need to be selected.

Firstly, we discuss the effect of the tuning parameter τ upon the
proposed VBAKF. Substituting (36) in (39), the modified PECM
P̂

(i+1)

k|k−1 can be reformulated as

P̂
(i+1)

k|k−1 =
T̂

(i+1)
k

t̂
(i+1)
k − n− 1

(49)

Using (10)-(11) and (27)-(28) in (49) yields

P̂
(i+1)

k|k−1 =
T̂k|k−1 +A

(i)
k

t̂k|k−1 − n
=

τP̃k|k−1 +A
(i)
k

τ + 1
(50)

Algorithm 1: One time step of the proposed VBAKF with inaccurate

PNCM and MNCM.

Inputs: x̂k−1|k−1, Pk−1|k−1, ûk−1|k−1, Ûk−1|k−1, Fk−1, Hk ,

zk , Q̃k−1, m, n, τ , ρ, N

Time update:

1. x̂k|k−1 = Fk−1x̂k−1|k−1

2. P̃k|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Q̃k−1

Variational measurement update:

3. Initialization: x̂(0)
k|k = x̂k|k−1, P(0)

k|k = P̃k|k−1, t̂k|k−1 = n+ τ + 1,

T̂k|k−1 = τP̃k|k−1, ûk|k−1 = ρ(ûk−1|k−1 −m− 1) +m+ 1,

Ûk|k−1 = ρÛk−1|k−1

for i = 0 : N − 1

Update q(i+1)(Pk|k−1) = IW(Pk|k−1; t̂
(i+1)
k , T̂

(i+1)
k ) given q(i)(xk):

4. A(i)
k = P

(i)
k|k + (x̂

(i)
k|k − x̂k|k−1)(x̂

(i)
k|k − x̂k|k−1)

T

5. t̂(i+1)
k = t̂k|k−1 + 1, T̂(i+1)

k = A
(i)
k + T̂k|k−1

Update q(i+1)(Rk) = IW(Rk; û
(i+1)
k , Û

(i+1)
k ) given q(i)(xk):

6. B(i)
k = (zk −Hkx̂

(i)
k|k)(zk −Hkx̂

(i)
k|k)

T +HkP
(i)
k|kH

T
k

7. û(i+1)
k = ûk|k−1 + 1, Û(i+1)

k = B
(i)
k + Ûk|k−1

Update q(i+1)(xk) = N(xk; x̂
(i+1)
k|k ,P

(i+1)
k|k ) given q(i+1)(Pk|k−1)

and q(i+1)(Rk):

8. E(i+1)[R−1
k ] = (û

(i+1)
k −m− 1)(Û

(i+1)
k )−1,

E(i+1)[P−1
k|k−1

] = (t̂
(i+1)
k − n− 1)(T̂

(i+1)
k )−1

9. P̂(i+1)
k|k−1

=
{
E(i+1)[P−1

k|k−1
]
}−1

, R̂(i+1)
k =

{
E(i+1)[R−1

k ]
}−1

10. K(i+1)
k = P̂

(i+1)
k|k−1

HT
k (HkP̂

(i+1)
k|k−1

HT
k + R̂

(i+1)
k )−1

11. x̂(i+1)
k|k = x̂k|k−1 +K

(i+1)
k (zk −Hkx̂k|k−1)

12. P(i+1)
k|k = P̂

(i+1)
k|k−1

−K
(i+1)
k HkP̂

(i+1)
k|k−1

end for

13. x̂k|k = x̂
(N)
k|k , Pk|k = P

(N)
k|k , t̂k|k = t̂

(N)
k , T̂k|k = T̂

(N)
k ,

ûk|k = û
(N)
k , Ûk|k = Û

(N)
k

Outputs: x̂k|k , Pk|k , t̂k|k , T̂k|k , ûk|k , Ûk|k

It is seen from (50) that the tuning parameter τ can be deemed
as a harmonic weight to balance the efficacy of P̃k|k−1 and A

(i)
k .

On the one hand, if τ is too large, the substantial prior uncertain-
ties induced by the inaccurate nominal PNCM are introduced into
the measurement update, which degrades the performance of the
proposed VBAKF. On the other hand, if τ is too small, a large
quantity of information about the process model is lost, which also
degrades the performance of the proposed VBAKF. In this paper,
the tuning parameter is selected to lie within the range τ ∈ [2, 6],
and the proposed VBAKF with τ ∈ [2, 6] has essentially consistent
estimation performance and higher estimation accuracy than existing
filters, as shown in the later simulation.
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Secondly, we study the effect of the forgetting factor ρ upon the
proposed VBAKF. Substituting (35) in (39), the modified MNCM
R̂

(i+1)
k is rewritten as

R̂
(i+1)
k =

Û
(i+1)
k

û
(i+1)
k −m− 1

(51)

Using (14)-(15) and (32)-(33) in (51) results in

R̂
(i+1)
k =

Ûk|k−1 +B
(i)
k

ûk|k−1 −m
=

ρÛk−1|k−1 +B
(i)
k

ρ(ûk−1|k−1 −m− 1) + 1
(52)

According to (48), the estimation of MNCM at time k− 1 can be
formulated

R̂k−1 =
Ûk−1|k−1

ûk−1|k−1 −m− 1
(53)

Substituting (53) in (52), we obtain

R̂
(i+1)
k =

ρ(ûk−1|k−1 −m− 1)R̂k−1 +B
(i)
k

ρ(ûk−1|k−1 −m− 1) + 1
(54)

Using (14), (32) and (48) yields

ûk|k = ρ(ûk−1|k−1 −m− 1) +m+ 2 (55)

Solving equation (55) gives

ûk−1|k−1−m−1 = ρk−1(û0|0−m−1)+(1−ρk−1)/(1−ρ) (56)

Utilizing (56) in (54) results in

R̂
(i+1)
k =

w(ρ, k)R̂k−1 +B
(i)
k

w(ρ, k) + 1
(57)

where w(ρ, k) is given by

w(ρ, k) = ρk(û0|0 −m− 1) + (ρ− ρk)/(1− ρ) (58)

Using (58) gives

lim
k→+∞

w(ρ, k) = ρ/(1− ρ) (59)

It is seen from (57)-(58) that w(ρ, k) can be deemed as a harmonic
weight to balance the efficacy of R̂k−1 and B

(i)
k . Moreover, we

can see from (59) that w(ρ, k) is a monotone increasing function
of the forgetting factor ρ when k → +∞. Thus, the forgetting factor
ρ ∈ (0 1] can be used to adjust the efficacy of the previous estimation
of MNCM R̂k−1 upon the modified MNCM R̂

(i+1)
k . On the one

hand, the smaller the forgetting factor ρ, the more the information
from the previous estimation R̂k−1 of MNCM is forgotten. On the
other hand, the larger the forgetting factor ρ, the more the information
from the previous estimation R̂k−1 of MNCM is used. Considering
that the MNCM is slowly varying in many practical applications, the
forgetting factor is selected to lie within the range ρ ∈ [0.9, 1], and
the proposed VBAKF with ρ ∈ [0.9, 1] has essentially consistent
estimation performance and higher estimation accuracy than existing
filters, as shown in the later simulation. Note that the forgetting factor
ρ = 1 corresponds to stationary MNCM.

Thirdly, we discuss the effect of the nominal PNCM Q̃k and the
initial nominal MNCM R̃0 upon the proposed VBAKF. In the fixed-
point iterations, the initial values P̂

(0)

k|k−1 and R̂
(0)
k are set as{

P̂
(0)

k|k−1 = P̃k|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Q̃k−1

R̂
(0)
k = R̂k−1

(60)

Let

ak =
w(ρ, k)

w(ρ, k) + 1
Ck =

B
(N−1)
k

w(ρ, k) + 1
(61)

where 0 < ak < 1 and Ck ≥ 0. Substituting (61) in (57) results in

R̂k = akR̂k−1 +Ck (62)

With R̂0 = R̃0 and solving equation (62) obtains

R̂k−1 =

(
k−1∏
i=1

ai

)
R̃0 +

k−1∑
i=1

(
k−1∏

j=i+1

aj

)
Ci (63)

It is seen from (60) and (63) that Q̃k and R̃0 respectively have
effects on the initial values P̂

(0)

k|k−1 and R̂
(0)
k . Moreover, we can

see from (63) that the effect of R̃0 on R̂
(0)
k is gradually reduced

as k increases. To guarantee that P̂
(i)

k|k−1 and R̂
(i)
k converge to

true PECM Pk|k−1 and MNCM Rk, appropriate initial values
P̂

(0)

k|k−1 and R̂
(0)
k are required since the VB approach can only

guarantee local convergence. To this end, the nominal PNCM Q̃k

needs to be near the true PNCM Qk at each time, and the initial
nominal MNCM R̃0 needs to be near the initial true MNCM R0.
In this paper, the nominal PNCM and the initial nominal MNCM
are respectively set as Q̃k = diag[α1,k, . . . , αi,k, . . . , αn,k] and
R̃0 = diag[β1, . . . , βj , . . . , βm], where αi,k > 0 and βj > 0.
The parameters αi,k and βj are selected based on engineering
experience since the diagonal entries of the PNCM and MNCM can
be approximately known in many practical applications.

Finally, we study the numerical stability of the proposed VBAKF
with the selections of Q̃k and R̃0. Using Q̃k > 0, R̃0 > 0, 0 <
ai < 1 and Ck ≥ 0 in (60) and (63) gives

P̃k|k−1 > 0 R̂k−1 > 0 (64)

Exploiting (25) and (30) yields

A
(i)
k ≥ 0 B

(i)
k ≥ 0 (65)

Employing (64)-(65) in (50) and (57) obtains

P̂
(i+1)

k|k−1 > 0 R̂
(i+1)
k > 0 (66)

It is seen from (66) that the modified PECM P̂
(i+1)

k|k−1 and MNCM
R̂

(i+1)
k are positive definite. Thus, the proposed VBAKF is numeri-

cally stable based on the selections of Q̃k and R̃0.
Remark 3: The number of iterations N is an important parameter

for the proposed filter since it determines the estimation accuracy
and implementation time. As the number of iterations increases, the
better estimation accuracy is achieved but the more implementation
time is required. Generally, the higher dimensions of the state and
measurement vectors, an increasing number of iterations is required
since with the higher dimensions of the state and measurement
vectors, the more inaccurate information involved in the PECM and
MNCM needs to be estimated. In practical application, we suggest
selecting sufficiently large value for the number of iterations to
guarantee that the fixed-point iterations converges to a local optimum.

Remark 4: In this paper, the tuning parameter and the forgetting
factor are selected to lie within the ranges τ ∈ [2, 6] and ρ ∈ [0.9, 1]
respectively based on the above discussions. The recommendations
regarding parameter ranges are specific to the simulation study
presented in the paper, and perhaps other parameter ranges are
more appropriate in other situations. Fortunately, our experience has
indicated that the proposed filter with the suggested parameter ranges
exhibits good estimation performance in many contexts.

III. SIMULATIONS

The performance of the proposed VBAKF is illustrated in the
problem of target tracking with slowly varying PNCM and MNCM. In
this simulation scenario, the target moves according to the continuous
white noise acceleration motion model in two dimensional Cartesian
coordinates, and the target’s positions are collected by a sensor. The
state is defined as xk , [xk yk ẋk ẏk], where xk, yk, ẋk and ẏk
denote the cartesian coordinates and corresponding velocities [13],
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Fig. 1: RMSEs of the position and velocity.
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Fig. 2: SRNFNs of the PECM and MNCM.

[20]. The state transition matrix Fk−1 and observation matrix Hk

are respectively given by

Fk−1 =

[
I2 ∆tI2
0 I2

]
Hk =

[
I2 0

]
(67)

where the parameter ∆t = 1s is the sampling interval and I2 is the
two-dimensional identity matrix. Similar to [13], the true PNCM and
MNCM are given by

Qk =
[
6.5 + 0.5 cos(πk

T
)
]
q

[
∆t3

3
I2

∆t2

2
I2

∆t2

2
I2 ∆tI2

]
Rk =

[
0.1 + 0.05 cos(πk

T
)
]
r

[
1 0.5
0.5 1

] (68)

where T = 1000s denotes the simulation time, and q = 1m2/s3 and
r = 100m2.

In this simulation, the nominal PNCM and MNCM are respec-
tively selected as Q̃k = αI4 and R̃0 = βI2, where I4 is the
four-dimensional identity matrix. The Kalman filter with nominal
covariance matrices Q̃k and R̃0 (KFNCM), the Kalman filter with
true covariance matrices Qk and Rk (KFTCM), the existing IAKF
[2], the existing SHAKF [6], the existing VBAKF for estimating only
Rk (VBAKF-R) [10], [11], and the proposed VBAKF for estimating
PECM and MNCM are tested. Note that the IAKF [2] and SHAKF
[6] were often found filtering divergence, thus their simulation results
are not shown in the following simulation. In the proposed VBAKF
and existing KFNCM and VBAKF-R, the algorithm parameters are
set as: parameter α = 1, parameter β = 100, tuning parameter
τ = 3, forgetting factor ρ = 1 − exp(−4) and the number of
iterations N = 10. All algorithms are coded with MATLAB and
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Fig. 3: ARMSEs of the position and velocity when N = 1, 2, . . . , 20.
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Fig. 4: ASRNFNs of the PECM and MNCM when N = 1, 2, . . . , 20.

100 200 300 400 500 600 700 800 900 1000

4

6

8

10

12

14

RM
SE

po
s (m

)

100 200 300 400 500 600 700 800 900 1000

4

6

8

10

Time (s)

RM
SE

ve
l (m

/s
)

 

 

KFNCM
KFTCM
VBAKF−R

The proposed filter (τ=2)

The proposed filter (τ=3)

The proposed filter (τ=4)

The proposed filter (τ=5)

The proposed filter (τ=6)
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the simulations are run on a computer with Intel Core i7-3770 CPU
at 3.40 GHz.

To evaluate the estimate accuracy of state, the RMSEs and the
averaged RMSEs (ARMSEs) of position and velocity are chosen as
performance metrics, which are defined as follows

RMSEpos ,
√

1
M

M∑
s=1

((xs
k − x̂s

k)
2 + (ys

k − ŷs
k)

2)

ARMSEpos ,
√

1
MT

T∑
k=1

M∑
s=1

((xs
k − x̂s

k)
2 + (ys

k − ŷs
k)

2)

(69)

where (xs
k, y

s
k) and (x̂s

k, ŷ
s
k) are the true and estimated positions at

the s-th Monte Carlo run, and M = 1000 represents the total number
of Monte Carlo runs. Similar to the RMSE and ARMSE in position,
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we can also write formula for the RMSE and ARMSE in velocity.
To evaluate the estimate accuracy of PECM and MNCM, the square

root of normalized Frobenius norm (SRNFN) and averaged SRNFN
(ASRNFN) are selected as error measures, which are defined as
follows [13]

SRNFNP ,
(

1
n2M

M∑
s=1

∥P̂s
k|k−1 −Ps

o,k|k−1∥2
) 1

4

ASRNFNP ,
(

1
n2MT

T∑
k=1

M∑
s=1

∥P̂s
k|k−1 −Ps

o,k|k−1∥2
) 1

4

(70)
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Fig. 9: RMSEs of the position and velocity when the nominal PNCM
Q̃k and the true PNCM Qk are identical.

TABLE I: Steady-state ARMSEs over the last 100s from the existing
filters and the proposed filter.

Filters ARMSEpos (m) ARMSEvel (m/s)

KFNCM 4.63 4.58

KFTCM 2.77 3.38

VBAKF-R 2.92 3.59

The proposed filter 2.81 3.45

where ∥D∥2 = tr(DDT ), and P̂s
k|k−1 denotes the estimated PECM

at the s-th Monte Carlo run, and Ps
o,k|k−1 represents the accurate

PECM at the s-th Monte Carlo run provided by the KFTCM. Similar
to the SRNFN and ASRNFN in PECM, we can also write formula
for the SRNFN and ASRNFN in MNCM.

The RMSEs of position and velocity and the SRNFNs of PECM
and MNCM from existing filters and the proposed filter are respec-
tively shown in Fig. 1–Fig. 2. It is seen from Fig. 1 that the proposed
filter has smaller RMSEs than existing KFNCM and VBAKF-R, and
the RMSEs from the proposed filter are close to the RMSEs from
KFTCM when k > 600s. The ARMSEs of position and velocity
from the proposed filter are respectively reduced by 54.5% and
22.4% as compared with the existing VBAKF-R. We can see from
Fig. 2 that the proposed filter has smaller SRNFNs than existing
KFNCM and VBAKF-R. The ASRNFNs of PECM and MNCM from
the proposed filter are respectively reduced by 18.7% and 60% as
compared with existing VBAKF-R. Moreover, the implementation
times of existing KFNCM, VBAKF-R and the proposed filter in
a single step run are respectively 2.5 × 10−5s, 3.8 × 10−4s and
5.6×10−4s. Thus, the proposed filter has better estimation accuracy
but higher computational complexity than existing state-of-the-art
filters.

Fig. 3–Fig. 4 show respectively the ARMSEs of position and
velocity and the ASRNFNs of PECM and MNCM from the existing
filters and the proposed filters when N = 1, 2, . . . , 20. It can be seen
from Fig. 3–Fig. 4 that the proposed filter has smaller ARMSEs and
ASRNFNs than existing filters when N ≥ 2, and the proposed filter
converges when N ≥ 6. Thus, the proposed filter exhibits satisfactory
convergence speed with respect to the number of iterations.

Fig. 5 shows the RMSEs of position and velocity from the existing
filters and the proposed filters when τ = 2, 3, 4, 5, 6. We can
see from Fig. 5 that the proposed filter with the tuning parameter
τ = 2, 3, 4, 5, 6 has essentially consistent estimation performance
and higher estimation accuracy than existing filters.

Fig. 6 shows the RMSEs of position and velocity from
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the existing filters and the proposed filters when ρ =
0.9, 0.92, 0.94, 0.96, 0.98, 1.0. It can be seen from Fig. 6 that the
proposed filter with ρ = 0.9, 0.92, 0.94, 0.96, 0.98, 1.0 has better
estimation accuracy than existing filters, and the proposed filter
with ρ = 0.9, 0.92, 0.94, 0.96, 0.98 has essentially consistent esti-
mation performance. Moreover, the proposed filter with ρ = 1.0
has worse estimation accuracy than the proposed filter with ρ =
0.9, 0.92, 0.94, 0.96, 0.98, which is because ρ = 1.0 corresponds to
stationary MNCM so that the estimation performance degrades when
the MNCM is slowly varying.

Fig. 7–Fig. 8 show the ARMSEs of position and velocity from the
proposed filter when parameters (α, β) ∈ [0.1, 1000] × [0.1, 1000]
and (α, β) ∈ [1, 1000]× [1, 1000] respectively. It is seen from Fig.
7–Fig. 8 that the proposed filter exhibits good estimation performance
only when parameters (α, β) ∈ [1, 1000] × [1, 1000]. Thus, the
proposed filter may fail when the nominal PNCM and MNCM are
too far away from the true PNCM and MNCM, which is induced by
the fact that the VB approach can only guarantee local convergence
so that the use of improper nominal PNCM and MNCM may result
in error estimations even divergence.

Fig. 9 and Table I show respectively the RMSEs and steady-state
ARMSEs over the last 100s of position and velocity from the existing
filters and the proposed filter when the nominal PNCM Q̃k and the
true PNCM Qk are identical. It is seen from Fig. 9 and Table I that
the proposed filter has significantly smaller RMSEs and steady-state
ARMSEs than the existing KFNCM and slightly smaller RMSEs and
steady-state ARMSEs than the existing VBAKF-R, and the steady-
state ARMSEs from the proposed filter are nearly identical to the
steady-state ARMSEs from the KFTCM, which also indicates good
performance of the proposed filter.

IV. CONCLUSIONS

In this paper, the authors focused on solving the filtering problem
of linear Gaussian state-space models with inaccurate PNCM and
MNCM. A novel VBAKF with inaccurate PNCM and MNCM
was proposed, where the state together with PECM and MNCM
were inferred by choosing inverse Wishart priors. Simulation results
illustrated that the proposed VBAKF has better robustness to resist the
uncertainties of PNCM and MNCM as compared with existing filters,
which is induced by the fact that the proposed filter can iteratively
find better estimates of PECM and MNCM.
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