
THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Realising Relative Autonomy and
Adaptation in Smart Objects Systems

by

Marco Eric Pérez Hernández

Department of Informatics

March 1, 2018

Declaration

I declare that this thesis is the product of my own work, that it has not been submitted
before for any degree or examination in any other university, and that all the sources I
have used or quoted have been indicated and acknowledged as complete references.
I have previously published some of the contents of this thesis in SMARTCOMP14
[91], FICLOUD15 [92] and FICLOUD16 [93]. I also presented part of the ideas and
charts of this project in the BCS Current Leicester Postgraduate Research in Comput-
ing 2016.

Marco Eric Pérez Hernández
March 2018,
Leicester

2

Abstract

The common approach for engineering of applications for the Internet of Things (IoT)
relies heavily on remote resources, particularly in the cloud. As a result, data is col-
lected and functionality is centralised in the cloud platforms leaving devices with only
raw data gathering and actuation functions. IoT envisions an environment where de-
vices can act as smart objects that are able to make decisions and operate autonomously
for the benefit of the human users. Usually, autonomous functions are mixed with au-
tomatic functions that only consider the human user point of view.

In this work, we propose an IoT application development framework based on goal-
directed and role-based smart objects. This framework is composed of a conceptual
basis, a software architecture, a middleware architecture and an adaptation method.
First, we define the concepts of smart object, its autonomy and the collective of smart
objects from a thorough examination of the smart object, its properties and key pro-
cesses. Then, we develop a set of abstractions and the software architecture for smart
objects.

For easing the development effort and making this approach practical, we define a mid-
dleware architecture, intended to serve as blueprint for concrete middleware solutions.
We also implemented a prototype based on this architecture. Functional components
of the architecture enable smart object systems to adapt to volatile situations. We pro-
pose a method for adaptation based on the selection of smart objects, services and roles.

Finally, we develop an agent-based model for simulation of IoT environments under
conditions of heterogeneity, volatility and large quantities of smart objects. We use
this model together with a case study and a qualitative comparison of existing solutions
to evaluate our framework. Our results show that the proposed approach is a feasible
and scalable alternative for IoT application development based on smart objects that
incorporates the concept of relative autonomy, in this context, and the adaptation at
individual and collective level.

3

Acknowledgements

There are several persons I would like to thank.

First of all, I would like to thank Dr. Stephan Reiff-Marganiec for his supervision
along my PhD work. His advice, motivation and support has been fundamental for the
development of this thesis. I appreciate his continuous guidance and his experience for
providing always valuable contributions, advice and moral support.

I would also like to thank Professor Reiko Heckel and Dr. Rami Bahsoon for their
valuable suggestions and opinions that were very useful for the final version of this
work. Likewise, I would like to thank Dr. Emilio Tuosto and Dr. Fer-Jan de Vries for
their relevant opinions along the different stages of this project. I also want to thank
Ludovic Clarissou from Télécom Saint-Étienne, for help me in the validation of the
em4so middleware prototype.

Special thanks also to several people of the department that directly or indirectly sup-
port me along this journey. Thanks to Dr. Gilbert Laycock, for his opinions and sug-
gestions, particularly during the evaluation. For this project, I have learned and gath-
ered ideas from my teaching assistant activities, particularly working with Dr. Stephan
Reiff-Marganiec, Dr. Artur Boronat, Dr. Yi Hong and Professor Rick Thomas. Many
thanks to all of them.

I want to thank the Department of Informatics of the University of Leicester for funding
my research studies. Besides the persons already mentioned, many thanks to Professor
Thomas Erlebach, Professor Alexander Kurz and Professor Effie Law.

Thanks to my colleagues PhD Students, together we listened to each other, gave mutual
support. Thanks specially to Laith, Hao, Othman and Badr.

Last but not least, I want to thank my wife, parents, sister, family and friends. This
thesis is also yours. Thanks to Nidia for her love, support, patience and strength during
the ups and downs of this journey. Thanks for all her encouragement and for being
part of this. Thanks to Marco Antonio, Martha and Bibiana, their love, motivation and
advice give me always that extra boost needed. Thanks to my friends in UK, Spain, US
and Colombia, particularly, to my friend Oscar for his frank and timely advice.

4

Contents

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Research Problem and Challenges . 18

1.2 Thesis Statement . 21

1.3 Research Scope and Contributions . 22

1.4 Thesis Overview and Summary . 23

2 Research Background and Related Work 25
2.1 Overview of the Internet of Things . 25

2.1.1 IoT Realisation Models . 27

2.2 Web of Things . 33

2.3 Smart Object-based IoT . 35

2.3.1 Using agents for SOb-IoT . 37

2.3.2 Agent’s goals . 40

2.3.3 Agent autonomy . 41

2.3.4 Joint Use of Agents and Web Services 44

2.3.5 Autonomic Systems . 46

2.3.6 Role-based architectures . 47

2.4 SOb-IoT Middleware: State of the Art 49

2.4.1 UbiWare Project: Middleware for Industrial Systems 49

2.4.2 FedNet . 50

2.4.3 ACOSO . 51

2.4.4 ASAWoO . 52

2.4.5 Leppänen . 53

2.4.6 Other platforms . 54

5

2.5 IoT Service Selection . 55

2.6 Summary . 56

3 Foundations of Smart Object’s Autonomy 59
3.1 Introduction . 59

3.2 Research challenges and requirements 60

3.3 Contributions . 60

3.4 IoT Autonomous Systems: Individual and Collective 61

3.4.1 Smart Object . 62

3.4.2 Collective of Smart Objects 63

3.5 E-Ma-Gen3 Framework: An analysis tool 63

3.6 SO Analysis using E-Ma-Gen3 . 67

3.6.1 Planes and Scope . 67

3.6.2 Knowledge . 68

3.6.3 Behaviour . 69

3.6.4 Resources . 75

3.6.5 Relationships . 76

3.6.6 Structure . 77

3.6.7 Fundamental Processes . 78

3.7 Smart Object’s Autonomy . 80

3.8 Summary . 83

4 Role-based Smart Objects (RbSOs) 85
4.1 Introduction . 85

4.2 Challenges and Requirements . 86

4.3 Contributions . 87

4.4 The Role-Based SO Software Architecture 87

4.4.1 Overall approach . 88

4.4.2 Uncoupled Goal-motivated Behaviour 91

4.4.3 SO’s Knowledge Representation 101

4.5 Summary . 103

5 em4so: A Middleware Architecture for RbSOs 105
5.1 Introduction . 105

5.2 Research Challenges and Requirements 105

5.3 Contributions . 107

5.4 Middleware Architecture . 108

6

5.4.1 Design Principles . 108

5.4.2 em4so Architecture Overview 111

5.5 Governing Body . 114

5.5.1 Smart Object Controller (SOC) 114

5.5.2 Knowledge Base (KB) . 116

5.5.3 Reasoning Engine (RE) . 117

5.6 SO Management Body . 118

5.6.1 Capability Manager (CM) . 119

5.6.2 Social Interaction Manager (SIM) 120

5.6.3 KB and Storage Manager (KSM) 122

5.7 Support Facilities . 122

5.7.1 Communication Facilities (CF) 122

5.7.2 Device Facilities (DF) . 123

5.7.3 Extra Facilities (EF) . 123

5.8 SO Protocol . 123

5.9 Key interactions between SOs . 124

5.9.1 Creating/Joining the Network 125

5.9.2 Querying within SOs . 128

5.9.3 Coordination & Cooperation 128

5.10 Implementation . 129

5.11 Summary . 134

6 Adaptation of SO-based IoT Systems 135
6.1 Introduction . 135

6.2 Research Challenges and Requirements 136

6.3 Contributions . 136

6.4 em4so Adaptation Strategy . 137

6.4.1 Collective Adaptation . 138

6.4.2 Individual SO Adaptation . 139

6.4.3 Adaptation Drivers . 140

6.4.4 Multi Objective Optimisation 141

6.5 Selection of SO . 143

6.6 Selection of Services . 146

6.6.1 Selection of Deployed Services 152

6.7 Selection of Offered Roles . 154

6.8 Summary . 158

7

7 Evaluation 159
7.1 Introduction . 159

7.2 Research Challenges . 160

7.3 Contribution . 160

7.4 Case Study: Physical Resource Provisioning 160

7.4.1 Design . 160

7.4.2 Scenario Description . 161

7.4.3 Stage 1: SO Software Engineering 163

7.4.4 Stage 2: SO-Based System Operation 166

7.4.5 Stage 3: Node/Internet unavailability 168

7.4.6 Discussion & Limitations . 168

7.5 em4so Middleware Performance Evaluation 170

7.5.1 Design . 170

7.5.2 Results & Discussion . 171

7.6 Collective Evaluation . 172

7.6.1 Agent-based Modelling . 173

7.6.2 Design . 174

7.6.3 Model assumptions and limitations 178

7.6.4 Experiment EX1: Scalability Evaluation 179

7.6.5 Experiment EX2: System Adaptation Evaluation 183

7.6.6 Discussion . 185

7.7 Qualitative Evaluation . 187

7.7.1 Design . 187

7.7.2 Results & Discussion . 187

7.7.3 Threats to Validity . 190

7.8 Summary . 191

8 Conclusion and Future Work 193
8.1 Research Contributions . 193

8.1.1 Foundations of smart object autonomy 193

8.1.2 A software architecture for smart objects 194

8.1.3 A embedded middleware architecture for smart objects 194

8.1.4 A method for adaptation of smart objects systems at individual
and collective level . 195

8.1.5 An agent-based model for evaluation of smart object systems . . 195

8.2 Future Work . 195

8

8.2.1 Machine Learning Services to SO Middleware 196
8.2.2 RbSOs through Unikernels . 196
8.2.3 Real-time RbSOs Application Development 196
8.2.4 Hierarchical P2P SO Protocol 197
8.2.5 Blockchain for Activity Tracking 197

Appendices 199

A em4so’s Middleware Prototype Implementation Examples 201
A.1 Service List by Host: Map Function 202
A.2 Service List by Host: Reduce Function 202
A.3 Preconceived belief: Device . 203
A.4 Preconceived belief: High . 203

B Case Study Implementation Examples 205
B.1 JSON Activity Definition . 206
B.2 JSON Scenario Definition . 207

Bibliography 209

9

List of Figures

1.1 IoT Application Development Approaches 18

2.1 IoT Concept, characteristics and main branches in the literature. 28

2.2 IoT Realisation Models: Expanded from IAB Communication Patterns
[108] . 31

2.3 Procedural Reasoning System by Georgeff and Ingrand. Adapted from
[40] . 37

2.4 FIPA’s Agent Management Reference Model from [31] 39

2.5 Notions of autonomy from the literature 43

2.6 Joint use of Agent & Web Services: a)Web-integrated agent services b)
Agent-backed web services c) Web Agents 46

3.1 E-Ma-Gen3: Framework for Analysis of SO Systems 66

3.2 Smart Objects Capabilities . 72

4.1 Conceptual view of the Software Architecture for Smart Objects 89

4.2 Uncoupled Goal-motivated Behaviour 93

4.3 SO’s Goal States . 95

4.4 SO’s Knowledge Representation . 102

5.1 Logical View of the em4so Architecture 113

5.2 Overlay joining process . 127

5.3 Querying within the overlay . 127

5.4 Supported cooperation . 127

5.5 Package Diagram: em4so prototype’s core component 130

5.6 Prototype Middleware: Class Diagram Excerpt 133

6.1 Group of Factors Involved in SO’s Decision-Making 141

7.1 Scenario for Physical Resource Provisioning 164

11

7.2 Case Study: Keep Air Fresh Scenario 166
7.3 Performance Metrics Local Service Load 171
7.4 Performance Metrics SO Discovery 173
7.5 Collective Experiment Design . 174
7.6 em4so middleware Scalability Results: Increasing No. of SOs 181
7.7 em4so middleware Scalability Results: Increasing No. of Plans 182
7.8 em4so middleware Adaptation Results: Departing SOs 184
7.9 em4so middleware Adaptation Results: Rejoining SOs 186

12

List of Tables

3.1 Limits of SO Autonomy . 81

5.1 Infrastructure functional blocks for architecture 110
5.2 em4so protocol payload descriptors . 125

7.1 Case Study: Main files and properties per SO 162
7.2 Main Simulation Parameters . 176
7.3 IoT Middleware Architecture Comparison 188

13

Chapter 1

Introduction

In the past few years Internet of Things (IoT) has become an active research field where
multiple areas from computer science and other disciplines converge. IoT is envisioned
as a paradigm based on the idea of regular objects that are interconnected through the
internet, combining cyber physical functionality and data gathering in order to make
human users life easier. IoT scenarios are characterised, among others, by the cyber
physical operation, heterogeneity, volatility and human user orientation. In a first stage,
the research community has been working vigorously to tackle the open challenges of
device connectivity, interoperability, data gathering and processing, among others. A
popular IoT application development approach has emerged naturally, incorporating
advances in tackling these challenges and particularly, the inherent heterogeneity.

Considering the constrained computing capabilities of the IoT devices, most of the
software engineering approaches have been directed towards concentrating the most of
the functionality in the cloud platforms. This is an effective way to tackle heterogene-
ity as devices are paired to the lower capacity, enabling applications to deal with every
device uniformly, regardless of their individual differences. As a result the IoT soft-
ware architecture of these applications is realised as having a “physical layer” where
the individual devices are conceived as kind of “cyber physical peripherals” that only
gather and distribute raw data and actuate on the environment upon request, regard-
less of each individual device’s characteristics. However, considering the volatility of
the scenarios, the human user demand for trustworthy applications and the increasing
power of the IoT devices. The IoT paradigm is also expected to enable the development
of applications based on smart objects (SOs), that is, objects able to make decisions,
operate autonomously and cooperate with each other in order to carry out individual
and collective tasks.

15

The IoT based on smart objects is still under construction and while multiple chal-
lenges exist, this approach is emerging as an alternative to the established one. In this
work we address and contribute towards filling some of these gaps. One first challenge
is at conceptual level: there is no agreement on what a smart object is, its properties and,
more importantly, what it means to be autonomous for a smart object. Therefore, our
first contribution is to thoroughly explore and analyse the smart object characteristics
and based on these, propose definitions for smart object, collective of smart objects and
smart object’s autonomy, as key concepts for a software engineering based on smart
objects. This analysis subsumes existing literature, particularly in the areas of agent
and ubiquitous computing. As a result, we build the concept of autonomy, not only
relative to the human user perspective, but also from the point of view of exogenous
platforms and other smart objects. In order to bring relevant elements together, we also
propose an analysis tool based on the identification of key areas, fundamental processes
and operation planes.

Another challenge at the smart object’s software level, is how to incorporate the de-
fined concepts as part of the software development effort and identify the components,
relationships and functionalities that have to be covered in order to enable IoT devices
to become smart objects, considering the aforementioned typical IoT scenario condi-
tions —E.g. heterogeneity, volatility, etc.—. A reference IoT software architecture
must provide blueprints and abstractions for the development of IoT applications en-
abling sharing of expertise, among different applications, in the shape of behavioural
and structural solutions. To tackle this challenge, we propose a set of abstractions
that together build the software architecture of a smart object and provide the building
blocks for an alternative IoT application development approach. These abstractions are
based on those from the agent, service and role-based computing paradigms. The set of
abstractions and architecture brings a novel approach for smart object software devel-
opment that endows a relative definition of autonomy, dynamics and flexibility to the
IoT systems.

For a software architecture to be practical, the development effort must be reduced
as much as possible to the specific application logic required, instead of requiring en-
gineering of software from the scratch to every application. For this purpose and since
the early stages of the IoT paradigm, middleware has been identified as a key enabler of
the common requirements of IoT applications including support to heterogeneity and

16

volatility. There are several middleware solutions designed under the established de-
velopment approach of the “physical layer”, there are also few solutions aimed at smart
objects development. However, the multiple views of autonomy are not considered in
any of these. Therefore, another contribution of this work is the definition of a mid-
dleware architecture that enables the engineering of concrete middleware solutions that
support common operations of smart objects inline with the proposed software archi-
tecture and application development approach.

For the middleware architecture, since we have to consider multiple views of the auton-
omy, the traditional operational approach of agent platforms as controlled environments
and imposing particular models of integration with the internet, does not fulfil the re-
quirements of smart object’s autonomy. We investigate on how to remove constraints
of an enclosed agent platforms by enabling smart objects based on web agents. In
addition, since smart objects do not have the endless resources a cloud platform can
provide, a mechanism for cooperation and social interaction between smart objects is
fundamental, this way, they overcome individual limitations and engage in achieving
common goals.

Considering the characteristic volatility of IoT scenarios, adaptation is a fundamen-
tal common feature of the IoT applications and then ideally offered by middleware
solutions. The challenge is in how to enable smart objects and collectives of smart ob-
jects to adapt to changing conditions at individual and system level. We address this
challenge by defining runtime selection methods for the most suitable smart objects,
services and roles at each given situation.

Finally, with the lack of methods that incorporate the different variables that take part
in smart objects systems, the evaluation of these systems is still an open challenge. Our
contribution in this regard is the definition of an agent-based model that enables to test
medium-scale collectives of smart objects under conditions of variability and hetero-
geneity.

As a whole, this work offers a framework for IoT application development based on
smart objects that are goal-oriented and role-based. As opposed to other smart ob-
ject approaches, this proposal considers multiple views of autonomy and from that,
it defines the abstractions, software architecture, middleware architecture and adap-
tation methods required to provide a concrete toolbox for application development.

17

IoT
DeviceIoT

DeviceIoT
DeviceSmart

Object

Collective Raw Data
Gathering & Processing

Actuation

Distributed Application
Functionality

Filtered Data Storage
and Processing

Standard Protocols and APIs

Application Flow Control and
Decision-Making

IoT
Platform

Co
m

m
an

di
ng

La

ye
r

Su
pp

or
t L

ay
er

Application Functionality

IoT
DeviceIoT

DeviceIoT
DeviceIoT

Device
Raw Data Gathering

Actuation

Core Application Functionality

Raw Data Storage and Processing
Standard Protocols and APIs

Application Flow Control and
Decision-Making IoT

Platform

Ph
ys

ic
al

 L
ay

er
Fu

nc
t io

na
l L

ay
er

a) Physical Layer Approach b) Envisioned Smart Object Approach

Figure 1.1: IoT Application Development Approaches

This work has been partially published in SMARTCOMP14[91], FICLOUD15[92] and
FICLOUD16[93].

The remainder of this chapter will explore further the research challenges, contribu-
tions and thesis statement. Besides, it will provide an overview and organisation of the
whole document.

1.1 Research Problem and Challenges

Most of the popular approaches for IoT application development conceive the IoT de-
vices as data sources that feed web applications, mainly deployed in cloud or network
platforms. From an architectural perspective, the application logic, flow and decision-
making is controlled and centralised from within the platform in a model similar to the
presented in figure 1.1 a). Raw data gathered from the devices is consistently stored in
remote repositories. These models present various advantages, for example: a) these
platforms make intensive use of cloud infrastructure for enhancing device capabilities
and scope, enabling more complex applications; and b) these offer a portfolio of run-
time services covering device management, data analytics and enterprise integration,
among others. However, the following key issues have been identified with this model:

• Functionality Concentration

The minimal functionality required by the user has to go through the remote
platform and then come back to the device with a response to the user, even if
both input and outcome are only related to the device and the device has the

18

power to carry out the functionality locally. As a result, the advantage of the
device’s unique cyber physical characteristics —E.g. location— is diminished
by the control and decision-making exercised remotely.

• Lack of device autonomy

Since the control of the application flow and the core functionality is kept out of
the device, it becomes useless in situations of unstable or failing network con-
nection. Part of the vision of the IoT involves autonomy of devices, however this
is usually perceived from the perspective of the user. Hence, the devices seem
autonomous because they can carry out some functionalities without user inter-
vention but the operation is controlled by a remote application. The moment, the
connection is lost, the “autonomy” and complete functionality of the device is
also lost, indicating that this is not a truly autonomous device.

• Data Accumulation

All gathered data is stored in the remote platform even if it is not required by
the application. Platforms can potentially have access to many users data that
could be shared without the user being informed. Having user’s data concentrated
makes it more exposed to security and privacy threads. This is more critical in
personal and home applications, where devices are constantly gathering data even
when the user is not aware of.

With these issues in mind and being aware that, even though we are entering a post
Moore’s law era [114], where the increase in computing power for devices will not be
as fast as it used to be, there are still perspectives of hardware platforms for IoT devices
to continue becoming more powerful —E.g. the Intel® Joule™ Platform1 —. We join
the view that a different approach for IoT application development is possible where
the IoT devices have more responsibilities. In that vision, the IoT devices become
smart objects that are autonomous and able to control the applications using the remote
resources as support of their operation. Such a vision is presented in figure 1.1 b).

This view of IoT applications, where the control is kept in the devices is particularly
suitable for scenarios with two broad requirements. First, the privacy is important,
users are not comfortable uploading data about their everyday activities and storing it
out of their control; and second, the activities done by the smart object are simple as it is
not worthwhile to couple the device operation to a remote platform while constraining
device’s autonomy. The remote platforms are indeed used, but as support of the smart

1https://software.intel.com/en-us/node/721455

19

object and not as the primary source of its functionality. These scenarios are found in
the smart home and smart personal space domains; we describe one leading scenario
as part of out evaluation in chapter 7. Many challenges are relevant to this alternative
approach, we are going to focus on the following:

R1 In the research community and industry there are several IoT solutions claiming
to be “autonomous” because they provide some automatic functions or use some
of the ideas of software agents, however there is not a common understanding of
what autonomy implies in the context of smart objects. This concept needs to be
revisited and defined in this context, to build a conceptual basis that enables def-
inition of the basic common requirements in regards processes and functionality
to be satisfied by the smart object’s software to ensure this characteristic. Key
issues to address include:

• What is smart object’s autonomy and how does it differ from other more
abstract concepts such as agent autonomy?

• What are the elements and processes of the smart object that shape its au-
tonomy?

• How is the smart object’s autonomy constrained and how can this be avoided
from a software engineering perspective?

R2 Define an IoT software architecture based on smart objects that enables them to
be autonomous and keep control of the IoT applications. This approach must
include abstractions for managing the typical heterogeneity of smart objects and
exploiting local resources while enabling the use of the remote resources as sup-
port and the cooperation with other smart objects to enhance own capabilities.
Key issues to address include:

• What are the key requirements for a software architecture for smart objects?
• How can functionalities of the smart objects be defined regardless of their

differences?
• Which components should the smart object’s software include to be able to

operate autonomously but also cooperate with others?

R3 Specify a middleware architecture that enables the provision of smart object’s
common functionalities as runtime services and programming libraries. Rather
than a single middleware solution that constraints the development to concrete
supported technologies or programming platforms, this middleware architecture
should serve as reference, offering abstract components, relationships and the

20

means for their extension according to the developer needs. Key issues to address
include:

• Which common functionalities should be offered by a middleware aimed to
enable software engineering for autonomous smart objects?

• How can smart object middleware enable extension of smart object’s func-
tionalities with reduced effort while preserving autonomy?

• How can middleware enable cooperation between smart objects and taking
advantage of their collective operation?

R4 Since IoT environments are volatile, it is clear that one of the key features of any
middleware is adaptability of the IoT systems to different conditions. Aligned
with the defined concept of autonomy, a mechanism for adaptation of smart ob-
jects must enable to take advantage of other smart objects and remote services
when these are available, without constraining its control of applications and
ability to operate without them. Key issues to address include:

• How can a system of smart objects achieve cooperative goals without de-
pending in particular smart objects?

• How can a system of smart objects cope with changes in its components i.e.
the smart objects?

• How can smart objects adjust their own structure and behaviour to the con-
text?

R5 A derived challenge from the previously defined, is the definition of an approach
for evaluation and testing of IoT systems in conditions of heterogeneity and
volatility considering large quantities of devices. Nowadays, existing testing and
evaluation techniques are insufficient as they offer only partial coverage to the
aspects mentioned or do not allow to test software and middleware architectures
with the expected number of participating devices.

1.2 Thesis Statement

This thesis analyses the smart object’s autonomy and proposes a set of concepts and
an IoT software architecture on top of it. The software architecture is based on goal-
oriented role-based smart objects that cooperate within a collective. A middleware
architecture is the enabler to provide common functionalities. Among these, we define

21

a method for collective and individual adaptation of smart object systems based on the
selection of smart objects, services and roles.

1.3 Research Scope and Contributions

The main research contributions of this thesis are:

C1 For tackling R1, we propose a definition of the concepts of smart object auton-
omy and collective of smart objects and a thorough examination of the SO as
an autonomous system, its properties and processes. Together these concepts
and the SO characteristics detailed augment the existing key literature —E.g.
[62, 69, 32]— by providing the basis for a Smart Object-based IoT application
development with attention to the SO autonomy and the role of an SO within a
collective (Chapter 3).

C2 For addressing R2, we present a novel architecture for IoT applications based
on goal-directed and role-based smart objects (RbSOs). This architecture enables
the development of SO systems that hold the control of key processes, application
logic and data, being able to work at different levels of autonomy, not only from
human user perspective (Chapter 4).

C3 For tackling R3, we created a middleware architecture covering common func-
tionalities for the development of RbSOs software. This architecture works as a
template for the development of specific middleware solutions that offer runtime
services on-object, covering key SO operations. It also incorporates the definition
of an SO protocol that enable coordination and cooperation within a collective of
smart objects and following the RbSOs approach (Chapter 5).

C4 We tackle R4 by defining a decentralised utility-based method for individual
and collective adaptation of smart objects based on the RbSOs approach and the
em4so middleware architecture. This covers a strategy based on the selection
of SOs to cooperate with, the selection of services to carry out a plan and the
selection of roles to offer within a collective (Chapter 6).

C5 For addressing R5, we propose an agent-based model for the evaluation of IoT

systems based on smart object and incorporating heterogeneity, instability and
large number of nodes. This model enables to simulate installation of middleware
and software of top of the smart objects and monitor the behaviour of the SOs and
the collective during operation (Chapter 7).

22

1.4 Thesis Overview and Summary

This chapter has presented the rationale behind this work and provided an overview of
the contributions. We showed the key challenges for a smart object-based IoT appli-
cation development approach that considers multiple views of autonomy. We scoped
our work through a thesis statement focused in the building of autonomy foundations
in the context of smart objects. From there, we define a set of abstractions and software
architecture for the smart objects and propose of a middleware architecture with special
emphasis in offering relative autonomy and adaptation at individual and collective level.

The remainder of this thesis is organised as follows:

• In chapter 2, we provide details of the background of this work. Starting from an
overview of the Internet of Things field, we continue in more detail presenting
the key paradigms and concepts that are used for building Smart Object-based
IoT applications. We also summarise the main related work in the area of smart
objects software development and middleware.

• In chapter 3, we elaborate the concept of smart object’s autonomy from the or-
ganised examination of the properties of the smart object. We also propose defi-
nitions for smart object and collective of smart objects. Besides, we present the
analysis tool we developed in order to carry out the structured analysis of the
smart object as an autonomous system.

• In chapter 4, we introduce the overall approach for engineering of software for
smart objects. We present the main abstractions and how these are organised
around a software architecture.

• In chapter 5, we identify the common functionality that a middleware based on
the previously defined approach has to cover in order to ease the development
effort. We organise these functionalities as a middleware architecture, making
concrete the abstractions presented in chapter 4. We also defined a smart object
protocol that enable the cooperation and coordination based on the functional
components of the architecture. Finally, we present details of the implementation
of an actual middleware prototype, based in the proposed architecture.

• In chapter 6, we describe the selection methods that enable adaptation of smart
object as a key common functionality offered by the middleware architecture. We

23

define a set of utility functions that incorporate the main criteria to consider in se-
lecting smart objects, services and roles. We explain how these selections meth-
ods work together as enablers of adaptation at individual and collective level.

• In chapter 7, we detail our evaluation approach that includes the proposal of
an agent-based model of smart object systems. We also present the results of
case study implemented based in a real testbed from the prototype introduced in
chapter 5. We measure performance of middleware functionalities at individual
level in a real setting and at collective level in a simulated environment based on
the agent-based model. Finally, we compare our middleware architecture with
that of the main solutions available and discuss the results obtained.

• In chapter 8, we present the summary of this thesis and reflect on the main con-
clusions and contributions. Finally, we outline a set of potential work streams for
future research efforts.

24

Chapter 2

Research Background and Related
Work

2.1 Overview of the Internet of Things

The Internet of Things (IoT) is the result of efforts in different computer science and
other science, engineering and even arts disciplines. Although it is clear that it rep-
resents a revolution in everyday life, the foundations are still under construction and
agreement within the research community and the industry. Depending on the area
from which the IoT concept is approached it has different elements and focus.

One of the first IoT definitions, by the CERP-IoT [105], envisioned IoT as a network
infrastructure with virtual things integrated in an information network. The most pop-
ular view of IoT is as a paradigm, where the existence of internet-connected digital
entities, representing the physical things, enables the realisation of multiple use cases.
Uckelmann et al. [109] stress that, by means of these representations, the right infor-
mation is available and accessible at the right quantity, condition, time, place and price.
They distinguish IoT from other approaches such as ubiquitous/pervasive computing,
embedded devices, the intranet/extranet of things, although recognise that it combines
elements of these. On the other side, Vermesan et al. [112] aim attention at the per-
vasiveness, interaction and cooperation abilities of the things for the creation of new
services/applications.

Atzori et al. [8] initially surveyed and presented an IoT conceptualisation based on
the convergence of the things, internet and semantic views; where the spotlight was
on the augmentation of objects, the inter-connection and the importance of semantic

25

technologies for the use of generated information. More recently, the same authors
[10] propose a definition coming from an analysis of the IoT evolution since its ori-
gins. They see IoT as a “conceptual framework” where heterogeneity, interconnection
and shared information of augmented objects, at global scale, are key for the design of
applications enabling involvement of people and virtual objects.

The IEEE IoT Initiative [80] envisions IoT as a network and provides two definitions
depending on the complexity of the scenario. They define a “small environment IoT”
as “a network that connects uniquely identifiable Things to the internet”, this is centred
in the collection of things information and change of their status without restrictions of
place, time and user. Their “large environment IoT” is “a self-configuring, adaptive,
complex network that interconnects Things to internet through standard communica-
tion protocols...”. Then, they elaborate the concept from a wide set of features includ-
ing sensing, actuating, programmability, service-offer and intelligent interfaces, among
others.

Another term commonly used to refer to the same or a very similar concept is Cyber-
physical system (CPS). A CPS is regarded as “the integration of computation with
physical processes” [72]. From our review, it is more popular within engineering fields
—i.e. might involve electronic and mechanical components and not only software—
and it clearly emphasises the system nature of the concept. Authors of [80], also indi-
cates that CPS might work at intranet as well and not only at internet scale.

It is evident that reaching agreement on a definition is challenging and it is out of scope
of this work. For this work, we will adopt the view of IoT as an umbrella paradigm
where all the other approaches and pre-existing fields have room. We summarise the
set of key features identified along the reviewed contributions, these are presented in
figure 2.1. IoT conceives an ubiquitous, global scale internet which is the base for
communication and interconnection of heterogeneous augmented things. It enables the
interaction between things and people by providing effective and secure information
and services that pervade and gather from the physical environment through sensing
and actuating capabilities. The IoT enables programming of different behaviours and
is able to self-configure.

Figure 2.1 also shows, at the top, some of the key fields that have been integrated in
the IoT . At the bottom, some of the branches derived from IoT: Web of Things (WoT)

26

[28], Social-IoT (S-IoT) [9], Cognitive IoT (CIoT)[119] and Smart Object-based IoT

(SOb-IoT) [69]. Within the remaining sections of this chapter we will mention some of
these branches giving more attention to WoT and SOb-IoT which is where this work is
situated.

2.1.1 IoT Realisation Models

In 2015, The Internet Architecture Board (IAB)1 identified four communication pat-
terns commonly used in IoT [108]. The communication approach depends on the char-
acteristics and, particularly, the communication features of the devices. Likewise, these
characteristics impose constraints for the software architecture of the solutions. E.g.
when the solution requires support to devices unable to process data, then the software
architecture for the solution must include functionality for data collection off-device.
Figure 2.2 presents an extended version of the communication patterns, which are de-
scribed below. We call it realisation models as, instead of addressing connection and
interoperability considerations as IAB did, we take a software architecture-oriented
perspective.

Device-To-Device (D2D)

As presented in figure 2.2a, the idea is that devices connect directly to each other. This
connection is usually based in proximity or even visual field, rather than a truly internet
connection. Technologies for achieving this model include communication protocols
such as Bluetooth and more recently Zigbee and Z-wave; but we can also consider
identification mechanisms such as RFID.

The architecture of the solution might follow a typical Client/Server model where the
server is a powerful device. The server device carries out the main functionality, data
processing and usually interfaces with the user. The client is only considered as a data
source or peripheral, instead of adding real functionality to the solution, it depends ab-
solutely on the server. It might be the case, that devices involved have enough power
to work in a distributed peer-to-peer communication and processing model. In this
scenario, each device carries out part of the functionality of the IoT solution.

1https://www.iab.org/

27

Figure 2.1: IoT Concept, characteristics and main branches in the literature.

28

Device-To-Cloud (D2C)

The devices are capable of connecting directly to the internet as shown in 2.2b. The
connection is over IP using available transports (E.g. TCP, UDP) and web, publish/-
subscribe message queues or ad hoc constrained protocols such as COAP2 for the ap-
plication layer. The devices are generally connected to cloud platforms that provide
access to multiple services over a virtualised hardware infrastructure. We observe two
software architecture approaches for the IoT solutions:

• “Dumb Data Feeders”
The most typical architecture is based on placing the core functionality in the
Cloud Service Provider (CSP). Therefore, devices systematically send raw data
to the CSP, which is in charge of collecting, storing and processing it through
multiple applications or services. The CSP has the control of the data and the
application logic flows. This approach has several advantages such as:

– It provides a normalised interface to heterogeneous devices.

– Since functionality is in the cloud, it offers wide support even the most
constrained devices that can be used as data sources.

– Application is centralised in the CSP making it ease to maintain and en-
hance.

– If one device is not available, users can still use already collected data.

However, some of the drawbacks include:

– The whole raw data, sometimes even unnecessary for the application is col-
lected and stored in the CSP. Such concentration of data raises privacy is-
sues such as how, for how long and who might have access to and use it.

– The more powerful devices are sub-utilised in order to have normalised
interfaces.

– It is up to the device manufacturer to couple it to a specific cloud service
provider which causes vendor lock-in.

– There is no true autonomy nor “intelligence” in the devices in fact, assum-
ing that they all are equally constrained to a minimum of resources, reduces
the computing value to the mere connection, which hampers the potential
of the IoT .

2Constrained Application Protocol

29

CSP might offer web applications that enable users to change behaviour of the
devices or the whole solution. The provider might also offer APIs (E.g. libraries
or REST-based) to enable access of the gathered data from ad hoc applications
and systems. This approach is identified by IAB as a separate communication
pattern called “Back-End Data-Sharing”(BEDS) [108]. The BEDS pattern in-
troduces the aggregation of multiple data providers so users can have integrated
views —E.g. Service mashups— that are possible in any case having the data in
the cloud. In this case the CSP behaves as a data repository that is queried by
multiple applications, each one having its own logic.

• “Embedded Intelligence”
An alternative, less exploited, approach for architecture is based on keeping part
of the functionality of the solution in each device. In this case, the cloud is
only used for supporting and backing device functionality on-demand rather than
giving the CSP the whole control and responsibility of it. The advantages of this
approach are:

– CPS are only used for specific tasks and so only a portion of the data is
sent to them. Even multiple CSP might be used, then reducing the data
concentration on a single platform or provider.

– The CSP vendor lock-in is avoided as devices can work with multiple plat-
forms and providers.

– IoT solution is more resilient as these are able to operate even if the internet
connection is unavailable.

On the other side, the disadvantages are:

– Different devices require different software components and hence devel-
opment of maintenance of the solution becomes complex.

– Some data or functionality might be only available if a particular device is
connected.

Device-Gateway-Cloud (DGC)

This approach is presented in figure 2.2c, the main purpose is to enable internet con-
nectivity to devices that do not have it directly. It has the potential to be used not only
to fit this purpose but also to collect, aggregate, pre-process the data gathered from con-
strained devices and to carry out part of functionality of the IoT solution. The gateway

30

(a) Device-to-Device (b) Device-Cloud

(c) Device-Gateway-Cloud (d) Edge

Figure 2.2: IoT Realisation Models: Expanded from IAB Communication Patterns
[108]

31

is generally a mobile phone, tablet, laptop, PC, a dedicated computer or ad hoc hub.

The architecture of the IoT solution varies according to the role given to the gateway. It
might only send the data to the CSP as in a Device-Cloud solution or it might provide
additional functionality. It has the advantage that enables support to more constrained
devices than the Device-Cloud model. However, it adds an additional device to man-
age and control to the solution that, if used just to send raw data to the CSP, raises the
question about which is better: to design a solution giving support only to devices with
internet connectivity or giving support to any device, by adding a new one that enable
them to connect to internet.

Device-Fog/Edge (D2F/E)

Finally, the Device-Fog/Edge realisation model highlights the localisation of the hard-
ware resources and the nature of the virtualisation layer supporting the operation of the
devices in an IoT solution. In the Cloud model the virtualised hardware platform comes
from dedicated data centres, the Fog extends this power by including devices and net-
work equipment that provide a geographically distributed hardware infrastructure over
which application and services are offered in proximity to where these are requested
[1, 110, 17].

The Fog/Edge computing is a paradigm even newer than IoT . The constraints and po-
tentials are, to date, being determined, with platforms still in the early stages. So far,
main changes are from the virtualisation layer, keeping operating system and applica-
tion layers as they work normally in cloud environments but enabling use of distributed
physical resources that include network equipment e.g. routers. Little can be said about
software architectures of IoT solutions using this realisation model as these are still to
appear. However, since the Fog model is based on a platform that manages the Fog
resources, it is reasonable to expect a model where highly constrained devices feed a
central platform with raw data with the underlying virtualisation manager splitting the
load across the available edge and cloud resources.

In contrast to the D2D approach, that enables direct connection between devices via
proximity protocols, the D2F/E uses distributed computers and network equipment —
e.g. switches or routers— for enabling communication as well as data processing, stor-
age and other functions to explore. The network equipment, do not only meet a network
purpose but also an application-level one. Scenarios covered by the D2D approach are

32

of lower scale than the ones covered by the D2F/E. Examples of D2D include applica-
tions for controlling light bulbs, doors and blinds in smart home or industrial scenarios,
where the controlled device are paired to controlling device without any extra network
equipment but limited to the physical range of the protocol. On the other side, one
example of D2F/E in a smart industry can involve devices in multiple factories’ shop
floors that are connected to internet via routers. These devices are available to ap-
plications whose functionalities, processes or services are distributed, deployed and
executed in the routers or devices with computing power in each shop floor, where it
best suit the application’s user.

2.2 Web of Things

Since heterogeneity is one of the key characteristics of IoT and a single language or
communication protocol for IoT solutions is unrealistic, engineering of IoT solutions
involves many protocols, programming languages, operating systems, architectures
and, in general, communication and software technologies. For a solution, it is dif-
ficult to ensure support to even the most of the key protocols and technologies within
the IoT spectrum. As a result, IoT solutions become silos only able to communicate
with others coming from the same manufacturer or built over the same technologies.
These are not able to connect to internet but instead work in a kind of intranet in a
model similar to the Device-to-Device realisation model. From the software engineer-
ing perspective, the integration efforts within a single solution or with others become
extensive.

Thinking on these issues and others, the research community has promoted the use
of web notions and standards in application development and communication for IoT

solutions in what is called the Web of Things (WoT). Guinard [43] states that the ulti-
mate goal of WoT is to maximise the use of tools and techniques coming from the web
arena to apply them in the IoT scenarios. For doing so, web protocols are the solution
for inter-operability of multiple solutions and provide truly wide internet connectivity.
Therefore, WoT aims to concentrate efforts around the application level of the protocol
stack (OSI model layers) and abstract from the complexity of lower layers (E.g. trans-
port, network, etc.). Referenced from [43], key benefits of WoT over IoT include: Use
of open standards, easier deployment, maintenance and integration; loose coupling be-
tween elements and the existence of widely used security and privacy mechanisms. On
the other side, two of the major drawbacks identified so far are: the risk of enabling web

33

wide access to the IoT devices, even with security mechanism in place; and the “gen-
eral purpose” nature of the web standards might not be optimal in low-resource devices.

The service-oriented computing (SOC) paradigm is part of the essence of modern web
applications and so it is for WoT solutions. The approach for developing WoT appli-
cations is that “things” expose their functionality —E.g. based on physical sensors—
as web services. Wu [120] describes web services as “a kind of application, based
on a web environment, that is adaptive, self-describing and modular and has good in-
teroperability”. Web services are published by providers and then queried, found and
bound/invoked by consumers: either applications or other services. This approach is
then advantageous as web services offered by “things” can be reused in multiple appli-
cations with minimal effort, regardless of the underling hardware and low-level network
connectivity. In WoT, “things” have web service hosting capabilities and they are able
to consume others’ web services. There a two well known architectural styles for build-
ing web services: RPC and RESTful, we briefly described them based on [97].

The RESTful style is based on the identification of resources, with an URI (Unified
Resource Identifiers), over which a set of operations can be performed. What is de-
fined as a resource depends on every application, the operations are given by the HTTP
protocol —i.e. GET, POST, PUT and DELETE.—. Hence, RESTful web services are
explicit in that the URI indicates what operation is being carried out over the resource
and there is not additional processing required on client or server side to unwrap the re-
quest and response. Conversely, RPC Web Services use data wrappers for transmitting
both request and response. It means that both client and provider have to unwrap what
they have received in order to determine the contents. The wrap is usually a HTTP re-
quest and the contents is the meaningful information in a document format E.g. XML,
JSON, etc. The content varies according to the type of information being transmitted
and the operation requested.

Although the RESTful style is more popular along WoT applications, both of them
are valid for different scenarios and are called to coexist according to particular re-
quirements [125]. The abstraction level in which this thesis is developed goes beyond
a particular web service style. There is no restriction to apply one or the other.

In WoT, web services usually gather data from or trigger actions on the physical en-
vironment. Main differentiating factors among WoT web services come from the phys-

34

ical properties of the provider —E.g. location— and the devices —namely sensors and
actuators— linked to it. It is not the case that any service can be deployed in any server,
these services are more coupled to the provider than traditional web services. Imple-
mentation of these services depends on the hardware platforms and the specific devices
which are part of the “thing” and that vary from one manufacturer to other. However,
the architecture and operation of these services is the same that in traditional web ser-
vices.

Composition of various web services brings more complex and powerful applications.
Traditional service composition methods are also valid in the WoT domain. Consider-
ing the method, there are two basic types of service compositions: orchestration and
choreography [88]. In orchestration a business process is created from a flow of in-
teracting web services while keeping the control from a single point. On the other
side, a choreography does not follow a single process but the sequence of messages
among different providers and consumers. Considering the composition time, it could
be static –before runtime— and dynamic —during runtime—. Considering the au-
tomation level, there are manual techniques —requires an human design and binds the
composition—, automated —the composition is generated from a requirement and us-
ing mainly semantics and AI— and semi-automated —a mix where the human designer
is supported with some automatic processes— [100].

The lifecyle of a service composition includes four generic phases [100]. First, the
definition of the composition requirements by the designer, including control flow and
QoS. These requirements are the components of the service abstract process model.
Second, the selection of the particular services that make concrete the model. Since
there might be multiple services fulfilling the functional requirements, these services
are selected based on the non-functional properties. Third, the deployment of the com-
posite service, where the bindings to each individual service are made. And finally, the
execution or invocation of the composite service.

2.3 Smart Object-based IoT

One of the approaches for building the IoT vision is based on the concept of Smart Ob-
ject (SO). In this approach, the SOs are the individual “augmented things” that together
combine as a system to make IoT scenarios possible. Although the concept comes from
the first decade of the century and the basis for the Smart Object-based IoT (SOb-IoT)

35

might be from the work by Kortuem, Kawsar et al.[69] back in 2010, nowadays the
SOb-IoT and the SO as a concept are still under construction. There are various defi-
nitions and characteristics of the SO that vary slightly. There are also other terms that
seem to refer to the same concept.

An intelligent product was defined, from a manufacturing perspective, as a commer-
cial product with five characteristics: unique identity, communication ability, storage
of self-data, a deployed language and decision-making capabilities [116]. Similarly,
smart devices —including PDAs and mobile phones— were defined as physical ob-
jects with computing resources that are able to communicate with each other and with
users [20]. Later on, U-things are described as physical things with digital abilities, as
opposed to merely virtual e-things. The U-thing concept is a generalisation of u-objects

—i.e. everyday objects —, u-spaces and u-systems[76].

Others coined terms including Smart-Its, Spime and Blogject. Smart-Its is an abbre-
viation of Smart Artefacts, i.e. objects that maintain their appearance and functionality,
but are able to compute in the background [49]. Spimes refer to a more abstract entity,
namely space-and-time-tracked objects that are dynamic and palpable although part of
an intangible system [103]. Emphasising the role of objects as part of a social web,
Bleecker [16] distances from “sci-fi" Sterling’s view and proposes Blogjects as objects
that converse and exhibit location tracking, experience- holding, and the ability to fo-
ment action.

Yet, additional interpretations have brought wider definitions. In [13] an augmented
entity is the composition of virtual and physical entities. In [84], the concept of smart

product includes not only physical objects but also software and services. They are
placed in a smart environment and gifted with self-organisation and interaction abili-
ties that provide simplicity and openness. Later on, Gutierrez et al.[44] attempted to
unify this denomination. They proposed a meta model with the smart thing as an ab-
straction of both smart product and intelligent product. However, they did not identify
differences between these terms neither relations with other variants such as SO.

Smart object is probably the most common term to refer to the “augmented things”.
It is defined from a technical perspective, as “an item equipped with a sensor or actu-
ator, a tiny microprocessor, communication device and power source" [111]. Similar
definitions can be found in [78] and [15], among other works. It is worth mentioning

36

Figure 2.3: Procedural Reasoning System by Georgeff and Ingrand. Adapted from [40]

the work by Kawsar, who defines an SO as an object that “...augments human per-
ception, is aware of its operational situations and capable of providing supplementary
services...” [62]. This author also identifies key properties of the SO: Unique ID, Self-
awareness, Sociality, Autonomy and State-fulness. In the following sections we present
the fundamental concepts that we use to build the SOb-IoT .

2.3.1 Using agents for SOb-IoT

The agent paradigm provides powerful abstractions with direct mapping to the SO char-
acteristics. An agent is defined by Wooldrige and Jennings as “a computer system that
is situated in some environment, and that is capable of autonomous action in order to
meet its delegated objectives” [117]. It is clear from this definition that the agent in-
volves a software system that works autonomously towards some objectives. In order
to meet these objectives, agents sense the environment, react to it, take the initiative to
carry out actions, interact and work together with others.

The agent has an internal architecture that allows it to behave as described. Archi-
tectures are specific for every particular agent solution, but there are reference models
that work as blueprint for ensuring the key processes and relations are considered. Al-
though agent architectures are usually layered including elements of different models,
we present one of the most popular and well-known models in order to show these
processes and relations. The Belief-Desire-Intention (BDI) is proposed and applied, by

37

Georgeff and Ingrand, in the Procedural Reasoning System (PRS) [40] as presented in
figure 2.3. PRS was originally designed for the operation of a robot but the concepts
are of capital importance within the agent computing field.

According to PRS, the agent is not only able to sense the environment and react ac-
cording to it, but also to reason based on its beliefs and commit (have intention) to
generate and execute commands through the available effectors. Instead of having a
complete fixed pre-programmed behaviour, the agent makes its own decisions based on
the beliefs and the existing plans. Plans provide the set of steps required to achieve a
goal. The interpreter is the central component that enables the decision-making based
on the aggregated agent’s knowledge. Details of each component are left open to be
realised for each particular problem in multiple ways.

This internal view does not show agents are part of Multi-agent systems (MAS). In
fact, some of the agent’s plans might involve collaboration with other agents. For en-
abling this collaboration, the agents require a common language and mechanisms to
communicate and coordinate with others in order to achieve their goals.

FIPA (Foundation for Intelligent Physical Agents)3 is an organisation that produces
standards for agent-based systems. The cornerstone of their specifications is the FIPA
Abstract Architecture (FIPA-AA) [30], which gathers multiple contributions in the field
as abstractions for building inter-operable MAS. Rather than a specific solution, FIPA-
AA provides a conceptual basis for meaningful communication between agents that
can be realised with different semantic and communication technologies. It defines
an Agent Communication Language (ACL) that is used by agents in order to inter-
change messages. In addition, it defines the existence of a set of services that support
agent’s communication. The Message Transport Services (MTS) enables the exchange
of messages between agents. These message’s structure and transport are also defined
throughout the specification. The other defined services are the Agent Directory Ser-
vice (ADS) and the Service Directory Service (SDS). These are registries of agents and
services respectively where every agent must register itself or its services and query
for others or others’ services. These registries are not part of an agent in particular,
but are provided externally to every agent. Every agent depends on these registries to
communicate with each others. It is assumed then that these services are provided by
the environment where the agent are situated.

3http://www.fipa.org/

38

Figure 2.4: FIPA’s Agent Management Reference Model from [31]

One example of environment for a software agent are the agent platforms. These pro-
vide the space where agents habit, communicate and cooperate. The most used agents
platforms are based on the FIPA Agent Management Specification [31]. This speci-
fication is derived from FIPA-AA and defines a reference model (see figure 2.4) and
the guidelines for managing and controlling agents within agent platforms. Accord-
ing to this specification, the agent platform is the physical infrastructure where agents
are located, which might be distributed across several machines. The Agent is the ac-
tor with one or multiple service capabilities, one identity and one owner. The Agent
Management System is the way that ADS is included in the platform, it is unique per
platform and provides control over access and use of the it. If the ADS provides the
white pages directory service, the Directory Facilitator provides the yellow pages one,
enabling queries based on services offered by agents. The Message Transport Service
is the communication method between agents. Finally, software is every non-agent
routines that might cover other services, communication, security protocols and tools,
among others.

From reviewing the FIPA specifications, particularly this reference model and the ab-
stract architecture, important aspects can be noted:

• Although registries can be materialised in multiple ways, even as distributed or
federated repositories that are replicated at different levels, conceptually, FIPA

39

conceives the location of agents and their services is based on the existence of
centralised registries where the agents register to and query for others.

• Agents only exist within an agent platform, they are scoped and constrained by
it where they are centrally controlled and supervised [31].

• Everything that is not part of the platform, nor the agents is treated as software,
external to the platform and aimed to be accessed through the agents.

• Specifications have not been updated since 2004, leaving out any possible, sup-
port details, adjustment or guidelines for usage in new use case scenarios such as
those in the IoT field.

2.3.2 Agent’s goals

Goals have been widely analysed and described in the agent literature. We adopt the
notion of goal defined by Sterling [104] that indicates that a goal is a “situation de-
scription that refers to an intended state of the environment” i.e. agents seek to provoke
a target state in the environment. From this perspective, goals are expressed in terms
of states that are measurable and can be discrete e.g. on or off, open or close; or con-
tinuous e.g. 20 Kg. These represent a high level way of defining the motivation of an
agent. Goal-driven behaviour refers to the ability to guide agent operation by defining
high level goals, instead of indicating detailed instructions like in an imperative pro-
gramming style.

There are different classifications for type of goals the agents can have. One example
refers to four big groups: achievement, cease, maintaining, avoidance and optimisation
goals [104]. The first two refer to reaching or leaving (respectively) a target state. The
next two types look at keeping agent’s operation while maintaining/avoiding a defined
state. And finally, the optimisation goals aim to minimise or maximise a defined func-
tion.

As an agent can have defined multiple goals simultaneously, there is a need to specify
priorities among them. Hierarchies of goals enable the arrangement of goals according
to its importance. These hierarchies are usually modelled as trees that are well known
structures in computer sciences.

40

2.3.3 Agent autonomy

Autonomy is one of the core characteristics of software agents that makes them suitable
to engineer software for SOb-IoT solutions. It is usually taken for granted that by using
agents as building blocks for software the result is an autonomous system. However
architectural decisions in agent platforms —the default frameworks for engineering
agent-based software— and specifically in the solutions, constraint the autonomy. In
this section, we examine the notions of autonomy in the agent literature that are the
basis for the foundations of SO’s autonomy. Most of the foundations here described
come from the works by Castelfranchi et al. [21, 22], Hexmoor et al. [47, 48] and Luck
et al. [75]

There is not a unique understanding of autonomy. Different notions have been in the lit-
erature well before the beginning of the millennium (See figure 2.5). A common ground
is that autonomy of an agent is a relational concept. It can be related to the agent’s func-
tions, goals and actions; to another subject or entity (something or somebody) [22] or to
agent’s own capabilities [47]. For example, an agent can be autonomous in triggering
a process (action) in regards the human user (somebody), or it can be able to minimise
the execution time for a process (goal) autonomously from the provider of the input
of that process (something). If only the relation with itself is considered —the agent’s
internal view— the absolute autonomy is the ability to manipulate its own capabilities
and determine what to experience from the outside [47].

In autonomy as a concept relative to other subjects or entities, there is a social and
a non-social autonomy [22]. Non-social autonomy comes from the agent’s condition
of being situated in an environment. An agent is autonomous if it has its own goals
and not only reacts to every environment stimuli, but it is able to perceive actively, se-
lect among these and decide whether to respond or not and how to do it, based on its
own internal states. In other words, the environment (at least not exclusively) does not
drive agent behaviour [22]. This definition helps to clarify why autonomous agents are
different from objects4 and service providers, the latter ones do not have control of the
decision to carry out the methods or services, according to the case, and just react to
calls [117, 104].

Social autonomy comes from the relationship of the agent with other software agents or

4the notion of object from the object-oriented paradigm

41

the human user. It is conceptualised from the views of dependency and collaboration.
The most common and simple conception is that of autonomy as the independence
—i.e. the agent does not need intervention— from the human user for a particular
goal, function or action. Under this view, it is worthwhile to differentiate autonomous
from automatic agents, where the latter ones have an unreasoned —they are not able
to make decision and reason— behaviour for a particular task, exhibiting only some
degree of autonomy, in contrast to the former agents that do not hold these constraints.
The collaboration view is more complex, it is defined in the context of some goals,
functions or actions that are delegated to the agent. We simplify Castelfranchi [21]
defining autonomy in collaboration as the multilevel characteristic of an agent within
a context, determined by the existence of its own goals, the discretion to make de-
cisions —including following rules or not—, the initiative for engaging in tasks, the
effort required for understanding these, and the control it might have in producing the
results, monitoring the progress and executing the necessary steps for achieving these.

Considering how the goals, functions and actions determine autonomy, it is defined
at three levels. At executive level, the agent only decides on the execution of a plan; at
planning level, the agents is allowed to plan; and at goal level, the agent has its own
goals [21]. In contrast to having multiple levels of autonomy and looking at concrete
functions, Luck et al. [75] propose another view of absolute autonomy as a property
with a binary discrete domain: the agent has the ability to generate its own goals.
Other authors [82] adopt the same absolute position, but see decision-making as the
key function that determines autonomy.

Finally, considering the variability of the autonomy, it could be fixed or adjustable.
From a multi-level autonomy, the concrete level of autonomy for an agent can be fixed

or adjustable by the subject who delegates the task. The adjustment of autonomy could
be done before runtime, during runtime and after execution (affecting only future be-
haviour) [22].

42

Figure 2.5: Notions of autonomy from the literature

43

Autonomy and Architecture

The autonomy is derived from the agent’s architecture as the latter provides the re-
sources and capabilities the agent uses to accomplish its goals [21]. The architecture
is an enabler of internal power such as knowledge, skills and capabilities. If the agent
does not have the required power, it has to depend on external power such as material
and social resources. Hence, the architecture might generate by default dependencies
on another subject/entity if it is not designed to provide what is required to achieve the
agent’s goals.

These ideas are still valid with little fundamental changes to the core concept as shown
in a recent survey focused in adjustable autonomy [82]. We have seen the concept of
autonomy is abstract and with multiple views. In order to ensure that requirements of
autonomy are considered in the software for SOs and that the SO is designed without
hampering it, the concept needs to be more concrete and applied to the context of in-
terest. Little attention has been given so far in SOb-IoT literature to analyse autonomy
in SOs and differentiate it from the more abstract agent autonomy. We provide a more
concrete view in section 3.7 adopting independence from another subject/entity as the
basis of our definition.

2.3.4 Joint Use of Agents and Web Services

Service and Agent computing paradigms have proven to be powerful and useful soft-
ware building blocks in multiple contexts. For IoT , this is not an exception. We have
said that web services are particularly suitable for web application development as they
provide inherent interoperability and reusability (Section 2.2). On the other side, agents
and MAS are instrumental in development of autonomous and cooperating systems that
are able to reason and proactively take actions. Inter-operability, autonomy and coop-
eration are fundamental for achieving the SOb-IoT vision. However, it is a challenge to
ensure these paradigms are used together effectively, enhancing each other and taking
advantage the existing common grounds.

Agents and web services have traditionally been treated as separated worlds requir-
ing some integration efforts. This has resulted in the perception, from a technology
point of view, that these worlds can not interact with each other directly [39]. Looking
beyond what current solutions offer, we identify three conceptual approaches for work-

44

ing with agent and web service environments.

• Web-integrated agent services

When agent platforms are not wide open to internet these require integration and
therefore an interface to it —See figure 2.6(a)—. The interface enables on one
side that agent services within a platform consume web services and on the other
side, that agents services can be exposed as web services, so non-agent-based ap-
plications can use them. The interface is in charge of translating messages from
one world to the other. Several integration efforts have been reviewed in [42].
Some are either ad hoc solutions as the ones proposed for different domains in
[127, 14]; or platform offered as the gateway and dynamic client add-ons pro-
vided by the JADE Platform5 [52, 51].

• Agent-backed web services

Whereas the previous approach targets individual agent services, in this case an
entire MAS is wrapped or used for generating web services. This could be the
case of a MAS mediating for service composition as in [96, 45]; or that separated,
unconnected MAS inter-operate through web services [46, 59]—figure 2.6(b)—.

• Web Agents

In this approach the agent environment is the internet —See figure 2.6(c)—. Ser-
vices define the behaviour of the agent, they allow to benefit from the resources
and infrastructure already existing on the Internet. Agents do not require gate-
ways, intermediate agents or services to communicate with others via web ser-
vices. This approach is less exploited, one example of an agent platform avail-
able is [56] and a conceptual view describing a similar approach, as described, is
found in [54].

We think Web Agents is the best approach for realising the SOb-IoT . Not only because
it provides direct access to web resources, infrastructure and communication through
standard protocols enabling the inter-operation of heterogeneous platforms as SOs are,
but also because it does not enclose the agents in a controlled environment. Hence, this
approach has the potential to enable software engineering based on agents that are not
limited by the platform therefore more autonomous than traditional FIPA agents.

5http://jade.tilab.com/

45

Figure 2.6: Joint use of Agent & Web Services: a)Web-integrated agent services b)
Agent-backed web services c) Web Agents

2.3.5 Autonomic Systems

Since SOs must exhibit self management characteristics in a highly heterogeneous and
dynamic environment, they must behave as autonomic systems. These are systems able
to adapt to frequent changes and new conditions at runtime, minimising human inter-
vention [71]. In IoT , the focus of this work stream is to diminish the effort required
when managing IoT applications by automating all or part of the tasks related to hard-
ware, software, network, sensors configuration in order to connect to, read, publish or
process data sensed from the several dissimilar devices.

The fundamental features of autonomic systems were initially identified by IBM
and then summarised in different publications [65], these characteristics are:

• Self-configuration: The system is able to establish and modify configuration pa-
rameters according to high-level policies.

• Self-healing: The system is able to recovery from failures occurring at runtime.

• Self-optimisation: The system is able to pro actively change parameters in order
to improve performance or efficiency.

• Self-protection: The system is able to detect and anticipate to threads taking
proper actions to ensure security and integrity.

One of the most popular architectures for autonomic systems is the MAPE-K Model
also defined by IBM [64]. This defines autonomic managers that are goal and knowl-
edge oriented, able to perform the processes of monitoring, analysis, planning and exe-
cution over a set of managed artefacts. Within these processes there are two particular
key functions that are relevant for this work: the adaptation and decision function.

The adaptation function covers how the system modifies its structure and behaviour

46

in response to changes in the environment in order to keep working towards the de-
fined goals [71]. It comes from modifying code, data or resources and can be done
at operating system level, at program or component level [71]. The first case includes
the services provided by the SO to deal with configuration of new hardware resources
and common libraries, dynamically on-demand. The second case, is the adaptation
achieved by programming languages within an application, E.g. using interception or
dynamic linking when the language supports it. The last case, gives support to changes
at high-level based on programmed building blocks from which the application is built.
It includes mainly components but also services or the hybrid service-oriented compo-
nents [23].

On the other side, the decision function is about how autonomic systems represent and
use the available knowledge to make decisions. There are several approaches mainly
coming from intelligent systems literature [71]. Techniques include rule, goals and
utility-based systems, among others.

The different functions of the autonomic systems can be carried out centralised or de-
centralised. Decentralised mechanisms are particularly challenging because decisions
are made with partial information and coordination mechanisms are required between
the different nodes that are part of the system. There are scarce practical approaches
that offer decentralised solutions and the drivers for deciding when to use decentralised
control loops in self-adaptive systems are not clear yet [27]. The IoT environments
with their heterogeneity, volatility and resource-constrained nodes, offer a rich set of
concrete situations where decentralised self-adaption solutions come to their play.

2.3.6 Role-based architectures

The role concept is embedded in the view of the systems as organisations. These ab-
stractions enable the modelling of highly dynamic and adaptable systems where the
individual parts —role players— and the whole —the organisation— can vary quickly
and easy. Roles have been used extending both object-oriented paradigm as in [70]
and agent paradigm, as in the works surveyed in [19] and the others presented in
[121, 104, 126]; or as an independent paradigm as in [25]. Main advantages of these
abstractions include:

• Facilitate the definition of the system’ behaviour as the processes, functions,
components of one organisation that can be reused and adapted.

47

• Enable the definition of individual functions of components of the systems or
subsystems uncoupled from the concrete component.

• Provide a model for coordination between components or subsystems of a sys-
tem.

Given the powerful advantages this abstraction provides, it is surprising that it has been
rarely used in the development of SOb-IoT systems.

The definition of a role varies according to the properties and scope given to it. For
example, Colman identifies a Player-centric viewpoint and an Organisational-centric

viewpoint [25]. In the former one, players are stable and roles are attached/removed
from them. Roles do not have identity beyond the players but are only an appearance
of them. In the latter one, the identity and existence of the role is derived from the
organisation [25]. There, the roles also define the processes carried out within the or-
ganisation and the players are executors of it. It is clear, that latter view includes a
broader more complex notion of role.

We think neither of the mentioned views suits the context of SOb-IoT applications
well. In the first case, because roles might exist and have identity even if there are
no players available. Players —SOs— are highly dynamic in IoT scenarios coming in
and out very often, in addition the characteristics that cause the role-assignment, might
also change, so in one moment the SO suits the role and the next not, regardless of the
originally attached roles. On the other side, having a complex definition of role makes
it a more sensitive entity. In particular, a process definition is, itself, complex and it
may change independently of other role properties. By adding the process to the role,
this complexity is shared as well adding multiple sources of change to the role. As
SOs are resource-constrained, the idea is to take advantage of the role abstraction but
minimising the management required, for that it is required that role definitions be as
stable as possible.

For the mentioned reasons, we adopt a simpler role definition given by Sterling. He
describes a role as the capacities required to achieve goals [104]. On top of that defini-
tion, we pick from the literature [70, 102, 25] the role characteristics and adapt them to
our role definition:

• Visibility: Object (player) is visible and accessible through the properties of the
role.

48

• Multiplicity: A role can be played by multiple players.

• Dynamics: Roles can be added or removed during player’s lifetime and roles can
change their definition.

• Normative: The assignment of a role to a player indicates its responsibility to
carry out the actions described on it.

Management of the roles is a derived management task of working with them. Colman
defines a functional role as that related to a functional process of the organisation and
an organisational role as that related to the organisation management including roles
[25]. The organisational role players are seen as meta-players that create and destroy
roles among other tasks.

2.4 SOb-IoT Middleware: State of the Art

The main related work of this thesis is that of middleware solutions that intend to pro-
vide facilities for both SOb-IoT software development and SO operation.

2.4.1 UbiWare Project: Middleware for Industrial Systems

UbiWare [60] was a project for building a platform for development of industrial com-
plex systems. It was built from the SmartResource Platform [61], their previous effort
in a development framework for MAS. In UbiWare, they followed an approach based on
the view of a Global Enterprise Resource Integration (GERI) system, that enables not
only inter-connectivity but also inter-operability of different resources that are linked
to it. Resources may include physical devices, web services, software applications and
even humans. They proposed various industrial use cases, for example: UbiWare for
connecting multiple systems (E.g. intelligent, experts) for detecting failures in power
networks or UbiWare for automation of Service Desk operative processes in a Telecom
Operator.

Through the definition of a software agent, representing each resource within the plat-
form and a semantic adaptor, these resources become smart. These are proactive and
self-managed resources able to control their own state, communicate and coordinate
with other resources. They give special emphasis to the role of semantic technologies
as enablers of the coordination, discovery and common understanding between each
resource.

49

The architecture of SmartResource and UbiWare is built on top of JADE framework
and is composed of three main layers: Reusable Atomic Behaviours (RAB), Behaviour
Models and a Behaviour Engine. A RAB is a “piece of Java code” [61] that implements
an atomic function. The behaviour is defined by representations of organisational roles
which are linked to documents defined using a Semantic Agent Programming Language
(S-APL) which is based on RDF6. The behaviour engine which is part of every agent
and provides their default behaviour, consisting on parsing the RDF-based document,
registering the role with the Directory Facilitator and the agent life cycle. Additional
behaviours are obtained from a external repository, that is supposed to be managed by
the organisation.

Although UbiWare is one of the first attempts to introduce agents to endow human-
related autonomy to the IoT devices it does not incorporate the concept of SO. In ad-
dition, it relies heavily in the GERI platform for the different interactions between
resources. The existence of a central behaviour repository gives control over the def-
initions however it is error-prone and impose exogenous dependencies in the agents
managing resources.

2.4.2 FedNet

FedNet is a document-centric framework for building SO systems [63, 62]. This is
one of the first platforms to be designed under the notion of Smart Object. Authors
of Fednet considered that SOs had multiple roles, however the proposed software pro-
gramming model was not based in this structure but in service profiles. SOs expose
their features as documents as the applications expose functional tasks that need to be
carried out by SOs. Application developers use these documents regardless of the ac-
tual SOs that carry out the task. There is an intermediate infrastructure that connect
applications and SOs. The infrastructure carries out bootstrapping, management and
enable utilisation of SOs independently of the applications.

There is an Artefact Framework component which is the digital identity and encap-
sulates an SO. This component can be deployed “at-edge” on the artefact, or “at-
infrastructure” in a proxy, which is powerful device (e.g laptop). Its logical architecture
is composed by a core and a “cloud” of optional smart features. The core is common to

6Resource Description Framework (RDF) is a data model

50

every SO and contains modules for communication, notification, local memory, a client
handler and a plug-in repository that manages the smart features. This design allows to
have objects that although physically identical can differ in the smart features offered.
These features are called profiles represent generic services that do not depend of the
artefacts.

FedNet works as a Gateway connecting applications and services using RESTful ser-
vice calls. It is composed of: an Application Repository, Artefact Repository, the Fed-

NetCore that generates templates of federation of artefacts that are attached to Access

points. Access points represent the physical environment needed by the application
and are delegated by these to forward requests and receive responses from artefacts.
Components of FedNet can reside in different nodes along the network.

2.4.3 ACOSO

The Agent-based COoperating Smart Objects middleware [32, 33, 35] is perhaps one
of the solutions most aligned to the SOb-IoT vision. Their approach is based on the
view of IoT as a system of decentralised and cooperating SOs and ACOSO provides a
programming model for it. SO’s hardware structure include wireless sensors/actuators
and either a PC, notebook, tablet, smartphone or embedded computing device [33],
whose power is pre-defined according to the functions it will accomplish. The case
study proposed is based in a smart office scenario, where the SOs recognise activities
and location of the user to active some behaviours.

ACOSO is agent-oriented, event-based and its architecture is based on a general mas-
ter/slave model. In this general architecture the computing device is the SO’s master
and the sensors/actuators are slaves [32]. Besides, it comprises functional blocks for
managing: input/output, communication, discovery, knowledge base, context, sensors
and actuators. It relies in the notion of a Directory Facilitator which enables the discov-
ery of SOs using different criteria E.g. services, location and different SO properties.

Instanced from the general architecture, ACOSO architecture is organised in three sub-
systems and two components. Subsystems are for communication, knowledge base and
device management. The Behaviour component is a set of event-driven system and user
tasks that intend to reach specific goals. The Event Dispatcher is a central component
that manages a queue of events related to these tasks.

51

From this architecture, they offer a middleware implementation and application ad-
dressing their key case study. Their implementation is based mainly on JADE but also
in Jadex7 and MAPS —a previous effort of the same group [3] —. Tasks are defined as
Jade behaviours or Jadex plans, the execution is provided by each framework.

2.4.4 ASAWoO

ASAWoO: Adaptive Supervision of Avatar/Object Links for the Web of Objects [54, 83,
107, 66, 106, 79] is a big project that aims to build an architecture that provides func-
tionalities for enabling the creation of WoT applications, in which, from basic sensors
to complex robots, are able to collaborate with each other. They envisioned a Cyber-
physical object made from a physical object and an avatar —“virtual extension of
physical of physical objects” [83]— i.e. an agent able to communicate and cooperate.
Their platform is intended to be installed in powerful devices (PCs, laptops) or in the
cloud to support constrained ones. The platform is required to be inter-operable, adapt-
able to environment, able to delegate and determine objects that can perform actions
based on estimations of usage, computation and networking; and tolerant to discon-
nection. Their approach is mainly based in RESTful web services, web semantics, the
OSGi architecture8, disruption-tolerant protocols and using agents for task allocation.

Capabilities are described semantically enabling the platform to infer which are re-
quired for a given high-level functionality –E.g. –. A multilevel context model and
processing engine that determines where to deploy code, which protocols to use, which
functionality to perform and whether to collaborate with others or not. For disruption
tolerance they work with routing protocols based on both centralised and distributed
services discovery. The autonomous behaviour is based on interaction situation by
the avatars that determine to be indifferent, cooperative or antagonist to others. The
functionalities every device offer are exposed as RESTful resources and stored in a
Functionality Directory in order to determine objects to execution application.

The architecture is grouped in the following functional modules:

• Core includes a reasoner and functionality, deployment and context managers.

7https://www.activecomponents.org
8Open Service Gateway initiative: https://www.osgi.org/developer/architecture/

52

• Web service exposes single-object or multiple-object functionalities as applica-
tions. It enables exposition of object’s services directly as RESTful services that
can be called by other avatars.

• WoT application provides description of the object behaviour to end-user
• Local functionality carries out introspection of capabilities and deduction of func-

tionality.
• Collaboration Looks for other object’s functionality and negotiate with them to

expose it in the WoT application server.
• Communication selects the right communication protocols.
• Filtering makes context-based decisions in regards which functions to deploy

where and protocol to choose.
• Object Inter-operability connects to repositories of drivers and files to be able to

configure the object.

The existence of a Gateway or a cloud platform is assumed as it enables constrained
devices to work. This is required to host an avatar builder that detects incoming objects
and creates new avatars. Applications are deployed in the platform and a semantic
process decides which objects to use and when to use the cloud. When writing this
section, the project was in its final stage with intensive and important contributions
reported separately, although the operation as whole is not clear, E.g. how the agent-
based task allocation mechanism works over the disruption tolerant protocol.

2.4.5 Leppänen

A lightweight approach is presented in [73, 74]. They aim to distribute the processing
of data among the IoT devices. Their approach is based in the composition of Mobile

Agents that run atop SO platforms.

Although they call them mobile agents, it is not clear what is the difference of these
agents to the standard web services. As these are accessed via REST interfaces, it is
not mentioned if the agents have some autonomy to process or not a given request. A
resource directory is the basis for localisation of services and communication relies on
HTTP and COAP. The composition of mobile agents is made from key segments that
include information about the code of the task to be done by an agent, the resources
needed for the task and state of the agent.

Every SO has an architecture composed by the physical components, an execution envi-

53

ronment, an agent and object interface and a repository. The execution environment is
the central component in charge of running the agent’s tasks based on resources stored
in the repository. It also carries out configuration of SO’s physical components and
controls the lifecycle of the agents. A series of agent interfaces including marshal/un-
marshalling, execution and stopping, among others enable to control the agents. They
also provide REST interfaces for communication between objects and also relies in the
existence of a gateway to interact with “external” services.

2.4.6 Other platforms

It is worth mentioning a few additional middleware solutions. Jung et al. [57] present
an Agent Service Platform, mainly addressing the management of heterogeneity in
devices. Resource-constrained devices based on Arduino, delegate control to agents
placed outside them, but able to communicate with other agents and devices through a
message bus. Runtime adaptation is possible using Portable-Service abstractions and
dependency-injection patterns. Agents in this proposal are located away from the ob-
ject they represent and depend on an external agent manager.

UbiComp [41] offers a programming model and middleware for development of ubiq-
uitous applications based on the composition of artefacts (SOs). The focus in the pro-
gramming of such applications using visual editing tools. They enable that SOs locate
each other based on the service descriptions. A visual platform enable to link differ-
ent artefacts trough “synapses”, carrying out for example measurement, reasoning and
actuating functions. They do not address the problem of having multiple SOs offering
the same service nor a goal-directed behaviour to the SO which is required to endow
autonomy. UbiComp and other solutions have been surveyed and compared in [34].

Most of the works we have reviewed deal with autonomy as an abstract concept, con-
sidering only the human user perspective and under the assumption that using agents as
part of the development implies an autonomous behaviour. In most of the cases, web
services and agents are considered two separated worlds that require additional inte-
gration efforts. Likewise, social characteristics of the SO are barely considered along
SOb-IoT middleware solutions. In our evaluation (Section 7.7), we provide a further
comparison of the main solutions from the autonomy point of view.

54

2.5 IoT Service Selection

Since service selection is central part of our adaptation approach, we turn now the at-
tention to IoT service selection solutions. We note that service selection has been a
very active topic in the research community. Attention is centred in distinguishing and
comparing services based on other criteria than functionality. Several studies address
the key questions of how to describe the non-functional properties and the methods
for choosing the most suitable given some requirements [100]. A thorough survey of
service selection based on non-functional properties is presented in [122], presenting
a classification of the different approaches mainly based on the identification of QoS

attributes.

Common strategies for selection include taking advantage of service semantics and
metrics to enable objective comparison given a defined criteria [95]. Recently service
selection has been approached from the IoT field, the main interest has been around in-
corporating physical properties to the selection criteria and identify methods to assess
these properties. [67] presents an energy-centred approach that intends to maximise
the availability of the IoT devices of an application. This approach uses pre-selection
and a method based on lexicographic optimisation of individual QoS attributes. Energy
QoS are used to establish a relative dominance criteria that enable to establish a total
order relationship between the pre-selected candidates [67]. In [55] a model of physical
service properties is presented that enable the definition of QoS attributes. Their selec-
tion is split along design and run time and is based on the individual QoS attributes,
a ranking generated from them and a absolute dominance relationship defined for the
importance of some attributes to the user. Since these approaches do not contextualise
the service selection methods within a complete end-to-end IoT scenario, they do not
consider practical aspects —e.g. a big quantity of QoS attributes — that can complicate
the preference definition.

[7] proposes a dynamic service-arbitration scheme for IoT systems. This scheme
enables the selection of a reduced set of devices to be active when there are multiple
providing equivalent services. A multi attribute decision making problem is formulated
with energy used, sensing frequency, number of neighbours and memory resources
are the representative attributes. They use the Technique for Order of Preferences by
Similarity to Ideal Solution (TOPSIS).

There are solutions identifying the need of selecting IoT devices to perform spe-
cific tasks within a system. [107, 83] introduce an approach for multi-purpose adap-

55

tation addressing the selection of appliance’s local capabilities needed for a high-level
functionality. The IoT device’s capabilities are described semantically enabling the
platform to infer which are required for a given high-level functionality. They present a
multilevel context model and processing engine that determines where to deploy code,
which protocols to use, which functionality to perform and whether to collaborate with
others or not.

Another solution that offers a sensor-centred approach is CASSARAM [89]. Au-
thors propose a model for search, selection and ranking sensors based on user priori-
ties. Their idea is that users enter manually their preferences on a broad set of sensor
properties including reliability, battery, precision, among others. This platform works
effectively in ranking and selecting from a large numbers of sensors with overlapping
and redundant functionality.

A common characteristic of the solutions reviewed in this group is that these as-
sume complete knowledge of the connected devices, services and their attributes or
QoS properties, so these are conceptually based on a central repository gathering all
network information, which is unpractical for autonomous IoT solutions.

2.6 Summary

The IoT is a novel paradigm that brings several disciplines together in order to enable
enhanced physical objects to be connected and interact with each other for the bene-
fit of the human user. The foundations of this paradigm are still under construction.
There are different realisation models identified so far, with the “data-feeder” approach
as the popular choice for IoT application development. This approach is based in the
existence of a platform that centralised the application logic and controls the different
connected devices that behave as mere data feeders.

The SOb-IoT approach envisions the IoT as a collection of smart objects that as a
whole make IoT applications possible. Although there is not agreement nor on the
characteristics or the concept definition these objects, they work as a building block for
IoT applications. Software agents and web services are two popular paradigms used for
building SOb-IoT software systems. However, there are different challenges in regards
how these are applied.

Autonomy is a key SO characteristic although contradictory, little attention has been
given to convert abstract notions into concrete ones, for the field. There is a mis-

56

conception that simply because SO software is based on software agents, it becomes
autonomous. Autonomy is a relative concept that can be analysed in relation to other
subjects or the goals, functions and actions. It is also challenging the way that agents
and services are used, traditionally they are seen as two separated worlds although SOb-
IoT requires a more effective and blended approach. Part of the autonomy involves the
capacity to self manage, i.e. behave as an autonomic system. Roles is a powerful ab-
straction, still rarely used in the development of SOb-IoT systems.

We have reviewed some of the most important SOb-IoT middleware and IoT service
selection solutions. The most of middlewares surveyed work with autonomy as an ab-
stract concept and do not consider the implications of the design decisions on it. In fact,
most solutions rely in a platform that provides services to distributed SOs. For a true
SOb-IoT , an approach for building software and tools for enabling it based on a defined
concept of SO autonomy are required. From the side of IoT service selection, in most
of the cases there is a lack of decentralised solution that does not assume complete
knowledge of connected nodes and services.

57

Chapter 3

Foundations of Smart Object’s
Autonomy

3.1 Introduction

Considering the variety of concepts and view points around Smart Objects (SOs) and
autonomy, the aim of this chapter is to provide the conceptual foundation for Smart Ob-
jects, their autonomy and the role they play in the IoT software engineering. It seeks
to enable scoping of the SO term and identification of the relevant elements for the
analysis of the SO autonomy. In this chapter we built from existing literature (Chapter
2) and describe SOs and collectives of SOs. We propose an analysis tool for describing
SOs in detail.

After identifying main challenges (Section 3.2) and contributions (Section 3.3) of this
chapter, we present a summarised description of the SOs and collectives of SOs (Section
3.4). Next, we introduce the proposed analysis tool (Section 3.5) that brings together
characteristics of an SO, envisioned as an autonomous system. The succeeding section
3.6, presents the examination of the SO characteristics according to the analysis tool.
It is worthwhile mentioning that there is a wide spectrum of SOs that do not exhibit
several of the characteristics identified, as these represent a vision of the SO.

Finally, from the examined characteristics we examine and discuss the concept of SO

autonomy in section 3.7. We analyse how the lack of some of the SO characteristics
have impact in its autonomy. In this regard, we identify the scope of the SO autonomy
and describe some of the main dependencies that might hamper the SO autonomy.

59

3.2 Research challenges and requirements

The vision of the IoT considers the SO as autonomous systems. These are complex
active entities that can be analysed from multiple perspectives, each one according to
different interests. This chapter aims to cover the following challenges:

• Understanding of Smart Object’s Autonomy
Since SOs are embedded in a Cyber physical environment, they are not merely
software agents. The physical dimension and the localisation of the software
functions have impact in the autonomy and these are aspects to be considered
in the SOs software engineering. It is necessary to define the concept of SO

autonomy, what are its boundaries and what are the obstacles that might prevent
an SO to fully develop it, so these can be avoiding when designing SO systems.

• Smart Object Analysis
In order to analyse autonomy, it is necessary to understand the entity of interest,
its features and scope. A thorough analysis of the SO is then required, starting
from the concept of what is and what is not an SO. It should determine how
autonomy can be analysed in such heterogeneous entities and what are the SO’s
elements that have impact on it.

• Approach for an organised analysis of SO systems
It is difficult to identify a proper and complete set of elements of analysis, spe-
cially when the subject under study is the construction of multiple disciplines.
We observe the lack of normalised analytic tools that target the SO-based systems
in order to enable the identification of their relevant features, their relationships
with the environment and the distinction from other existing entities. This ab-
sence hampers the applicability of the advances made in one field to others. An
analysis tool might help to drive the research efforts through equivalent areas and
characteristics, reducing the overlapping efforts.

3.3 Contributions

We describe the main contributions of this chapter:

• Definition and analysis of the concept of SO’s autonomy, derived from the agent’s
autonomy and relative to SO’s key properties and its relationships with the envi-
ronment and other relevant entities, rather than an absolute feature.

60

• A systematic analysis of the SO, its properties and behaviour as an autonomous
entity from a system perspective and considering its individual nature and its role
as part of a collective of SOs.

• As derived contribution, we propose a schema that organises the analysis of au-
tonomous systems. It facilitates the analysis by providing a set of views covering
key areas, fundamental processes and planes that lead the thinking towards the
key aspects that characterise an autonomous system with a holistic approach.
The schema provides an homogeneous reference of analysis for cited systems
and related solutions. Therefore, regardless of the different characteristics of the
subjects of analysis, these can be organised and compared following a common
set of elements of analysis.

3.4 IoT Autonomous Systems: Individual and Collec-
tive

When developing IoT software systems there are two levels to be considered: indi-
vidual and collective. At individual level, each Smart Object (SO) is an unique entity
and a system that works with a defined purpose. It has responsibilities that lead to the
achievement of the purpose by using its capabilities, being aware that is placed in a en-
vironment and surrounding by other systems. On the other side, in many IoT scenarios,
one purpose is common to multiple SOs, so they can cooperate in order to extend each
other’s capabilities. In the case of cooperative SOs, when capabilities of individual SOs

are not enough for achieving their individual purposes, a collective of SOs cooperates
in order to achieve a common purpose. Individual SOs and collectives of SOs face dif-
ferent challenges that need to be considered when engineering SO’s software systems.

At the individual level, the SO has to deal with situations such as:

• Executing individual plans leading to own goals.
• Overcoming unexpected situations such as lack of data, failure of hardware com-

ponents.
• Configure and upgrade its components.
• Switch on and off its components as per defined goals.

At the collective level, a set of SOs has to deal with situations such as:

• Executing cooperative plans leading to common goals achievement.

61

• Overcoming unexpected situations such as departure and arrival of SOs, changes
in available SOs.

• Latency and noise in communication channels.
• Select best SO available to carry out a task.

Both a single SO and a collection of them might behave as autonomous systems. A
summarised description of SO and collective of SOs gives an overview of the key char-
acteristics of each one.

3.4.1 Smart Object

Definition 1 A Smart Object (SO) is an autonomous cyber physical system (CPS) built

from an ordinary physical object that is enhanced with digital and social capabilities.

The SO maintains the object’s original essence but is an active entity that exhibits

autonomous behaviour.

Key characteristics

• A unique identity
• Relevant knowledge to carry out its operation
• A motivated behaviour, SOs have a purpose and they are aware of it.
• A set of core capabilities that are subject to be updated and/or enhanced.
• Location in a cyber physical environment.

An SO is also a holon as it is composed by other sub systems and is part of a broader
system. An SO is an active subject that interacts with other subjects including other
systems, human individuals and collectives of them. There are many types of SOs, ones
with a richer mix of capabilities than others. The smartness of the SO is associated to its
autonomy from different perspectives. A Smart Object is different from Smart Thing in
that the latter one is more abstract and includes a broader spectrum of devices that have
some of the characteristic of SOs but not all of them. e.g. An object with cyber physical
features such as sensors and actuators but that has no motivated behaviour; or a smart
room with multiple actuators as well as data processing and sensing units. In this work,
we concentrate in the SO as a whole entity which interacts with one or multiple human
users.

62

3.4.2 Collective of Smart Objects

Definition 2 A collective is a system of SOs that are connected and interact with each

other. The collective is a society where SOs have responsibilities and a position.

Key characteristics

• It is built around a defined criteria, E.g. proximity, common ownership, func-
tional domain, supply chain stage, etc.

• It has knowledge, resources, relationships, structure and behaviour, that by de-
fault, is an aggregation of the individual SOs that are part of it.

• It is built from heterogeneous or homogeneous SOs. The heterogeneity comes
from the particular mix of SO’s functionalities, their individual properties —
E.g. location— and the properties of the functionalities offered by the SOs—E.g.
quality, performance, etc.—.

• Within a collective, both cooperative and competing behaviours can emerge from
the SOs that are part of a collective.

In the scope of this work we only deal with collectives where a cooperative willingness
is assumed. This means that SOs are willing to cooperate with others as long as they
have the resources and capabilities to do so. In this work we do not address scenarios
with competitive behaviours by the SO collective members.

3.5 E-Ma-Gen3 Framework: An analysis tool

In this section, we present the analysis tool we defined to examine the smart object’s
properties in detail. E-Ma-Gen3 allows to analyse, conceptualise, describe and “imag-
ine” SOs as autonomous systems from three perspectives as shown in figure 3.1. The
analysis can be started from any of the three perspectives and the findings structured in
a scheme, as the one presented in the mentioned figure, that can be read from each key
area, process or plane. The three combined perspectives of analysis are:

• Key Areas: The columns aggregate elements of analysis of the subject in regards
Knowledge, Capabilities, Relationships, Structure and Resources. The areas are
static points of reference from which the analysis is approached.

• Fundamental Processes: The rows provide a dynamic view, identifying the set
of processes the systems carry out as part of their operation. These are broad

63

processes that are carried out from elements within each area and include: Ex-
ploitation, Management and Generation. Processes are made concrete by the ca-
pabilities available in the system. Processes increase in complexity from bottom
to top.

• Planes: These are the source of rules, restrictions and details that have impact in
the system operation. Planes provide context and a reference for scoping of the
subject of analysis. Although these are analysed under each key area and process,
it is the behaviour area that mostly defines the scope of the system within the
planes. Planes are particular to the field of study.

Every system has an initial set up and state for processes and elements under each area.
The system evolves from the initial state by carrying out the fundamental process, end-
ing up in a resulting state. That resulting state determines the complexity of the system.

E-Ma-Gen3 was conceived to guide and provide structure to the examination of Smart
Object systems. The tool provides support to organise thoughts and ideas around the
cited systems. When examining SOs, the tool is intended to help to differentiate be-
tween existing SO solutions and determine how far these are from the SO vision. It
also works to scope the research efforts in the multidisciplinary field such as IoT . The
processes, key areas and planes identified in E-Ma-Gen3 are general enough to support
analysis of other autonomous systems. In fact, the SOs are a type of autonomous sys-
tem. Therefore, there is no evident restriction of E-Ma-Gen3 to support the analysis of
other type of autonomous systems, however this is no evaluated as this is not part of the
scope of this work.

The definition of the tool emerged from the need to identify and analyse the relevant
characteristics of the SOs. There were not available guides to carry out this analysis in
a systematic way. Clarifying the need and the expectations of an analysis tool, E-Ma-

Gen3 was conceived in a three-step process. First, existing analysis tools used in other
areas were identified. E-Ma-Gen3 is inspired by the Zachmam Framework™ [123, 124]
for Enterprise Architecture and the Unified Software Development Process [50]. These
tools provide schemes that enable to examine the properties of the subject of analysis,
however these tools are general with a broad applicability that do not allow to highlight
specific differences among different SO systems. We found that several ideas used by
these tools were applicable to the SO domain. Particularly, we reuse the concept of
“analysis tool” and the “key question” approach (E.g. who, what, where, why, etc.) for

64

identifying relevant elements of analysis from Zachmam Framework™ and the matrix-
based schema and view-based approach from both mentioned references.

The second step, was to identify the gaps required to make the tool more specific to
the SO domain. It was evident that SO systems have properties at different planes, not
only cyber digital. So we incorporated a view for the different operation planes e.g.
physical, digital or social. On the other side, since SOs are active entities we wanted
to highlight and differentiate their dynamic nature from other static properties. This
way, we identify a view with the a set of fundamental processes the SOs might carry
out. These processes consume and produce elements from the key areas identified and
shape the behaviour of the SO. The third and final step was to use the initial version
of E-Ma-Gen3 to perform a first analysis of the SO system vision as presented in this
chapter and then feedback it with improvements.

The main limitation of E-Ma-Gen3 is that it is potentially incomplete. First, because
it emerged as a tool to facilitate the analysis of SO systems rather than with the goal
of creating the most complete and best tool for this analysis. Therefore, in this work,
E-Ma-Gen3 is not the aim but the means. Second, because it is part of an improvement
cycle where the more E-Ma-Gen3 is used, the more it is refined, however E-Ma-Gen3

has been only used in the scope of this work. Finally, because it was conceived with
well known existing references in mind (Zachman™and UP tools), the outcome is a
tool that share some criteria and structure with its references.

65

Figure 3.1: E-Ma-Gen3: Framework for Analysis of SO Systems

66

The following section present the the characterisation of the SO using the frame-
work for illustrating its key elements and concepts. Particular properties of the col-
lective of SOs are highlighted when relevant for the analysis. Both a single SO and a
collection of them might behave as autonomous systems. the analysis tool presented
can be used at both levels. The five areas identified are characteristic of both the indi-
vidual SO and the collective of SOs. The processes of exploitation, management and
generation can be carried out by each SO or collectively by different SOs. However,
there are differences in the challenges that each system faces and that must be consid-
ered when engineering SO’s software systems.

3.6 SO Analysis using E-Ma-Gen3

Since SOs exhibit autonomous behaviour, we can analyse them using the tool proposed
in section 3.5. Therefore the following sections cover analysis and description of SO’s
features in relation to the relevant areas, processes and planes.

3.6.1 Planes and Scope

The SOs are analysed from three planes: Cyber/digital, physical and social. Every
plane highlights a set of relevant properties for the SO, its environment and any entity
within it. What makes an object smart is its existence in the Cyber/digital plane. The
conjunction of elements from the Cyber and physical planes makes the SO a unique
active entity. These elements are also enablers of the social plane. This one emphasises
the SO as part of the collective, where other subjects habit, namely other SOs or soft-
ware systems and that all together interact with human individuals and collectives of
them. The key factors for each dimension are analysed within each view and process.
The scope of the SOs, within each plane, can be clarified by comparing it with other
systems:

• For traditional information systems the relevant structure, relationships and re-
sources are part of the Cyber/digital plane. These exploit, manage and even gen-
erate knowledge from the physical and social plane but are not able to exhibit
behaviour on the physical and social spaces.

• A social bot is defined as “a computer algorithm” [29], it can be seen as a system
that permeates the human social networks acting as humans and trying to influ-
ence them. Social bots exhibit a behaviour in human social networks but are not
able nor concerned to interact within physical spaces.

67

• Robots are highly active in the physical space. Autonomous motion is one of the
robot’s key characteristics that distinguish them from the SOs.

• Software agents are only active in the Cyber/digital space. They are not con-
cerned with physical properties nor constrained by the physical laws.

3.6.2 Knowledge

The individual SO or collective system’s knowledge of interest involves elements of
itself and its context from the three defined planes. The knowledge about the context
can be described using the “five W’s” context definition proposed in [2]. The knowl-
edge about itself gives the basis for carrying out the system’s fundamental processes
along the elements under the areas and planes analysed. We describe key knowledge
elements below.

• Purpose: The system goals and motivation. Core goals are related to specific
system’s Cyber-physical characteristics. These are more of the interest of the
end-users of the SO or the collective. Support goals are related to SO’s autonomic
functions such as to optimise the use of a resources, install and/or configure new
components i.e. hardware and software. These are common to multiple SOs and
domains, being mainly the interest of SO administrators.

• Properties: The relevant fixed or dynamic characteristics of itself, other key sub-
jects, the environment, the resources it needs, its components and also its be-
haviours, functionalities, relationships, among others.

• Subjects: The human individuals, exogenous systems, their collectives and their
relationships which are relevant for the SO in the scope of each plane. Exogenous
systems are those that neither belong to the SO under analysis, nor this is part of
them.

• Location: This includes addresses, coordinates or contact details of other SOs,
systems and human individuals/collectives, resources, components of its struc-
ture and its environment.

• Time: References to standard time notations (E.g. UTC, BST) or relative to
events or situations (E.g. after X, before Y).

• Plans: Details of how to achieve its purpose considering the existing knowledge.

68

We illustrate the key knowledge elements with an example. A smart desk lamp (SDL)
has the core purpose of lighting when an user is sitting at the desk where SDL is placed.
It also has a support goal of monitoring its light bulb lifetime and notify an administra-
tor when this resource gets exhausted. For operation, SDL needs a workable represen-
tations of these goals and the following:

• The beliefs about itself, the environment, the collective of SOs it belongs to and
the relations with them. The beliefs about itself include, for example, the differ-
ent states of light that can be achieved i.e. bright light, soft light or no light, in
addition to the actions that will lead to each one.

• The physical properties of the light bulb —E.g.spiral, LED, white, 12W.—, the
place —home or office— where SDL is placed, the lighting conditions of that
place and the current time.

• The users to which SDL should respond might include family members except
housekeepers or workers in an office except janitors. SDL requires their prefer-
ences, usage profiles and their family or workplace relationships.

• For every goal, SDLs needs a plan with event-bounded tasks triggered by either
exhausting the light bulb or reaching a lifetime threshold.

• For a human administrator, it will need preferred contact channel —E.g. mobile
phone— and the details.

• As SDL is a constrained SO, part of the plan for sending notification might re-
quire of other SO that is able to send and/or display text messages, so SDL will
need to know which SO can do this part and its URL —E.g. IP address—.

3.6.3 Behaviour

This area considers the most distinctive elements of an SO. The SO’s capabilities are a
function of the elements considered in other areas and represent what the SO does as an
active entity. Capabilities deliver the functionality of the SO and shape its behaviour,
these are the mechanisms through which the processes are implemented for the SO.

Capabilities are based on the existence of both physical and digital features (i.e. Hard-
ware and Software), but they can be achieved with different configurations. E.g. SOs

can harvest energy from radio waves or from an ad hoc battery, similarly networking

69

capabilities can be achieved either with wireless or wired interfaces.

Capabilities can be Hardware-driven or Software-driven. The former ones refer to
those capabilities achieved, mainly, by modifying the hardware structure of the SO,
Software changes are insufficient to reach it. SOs can only evolve their Hardware-
driven capabilities by incorporating new or improved hardware components to their
structure, e.g. adding new sensors that were not originally present in the object. The
former ones, refer to those capabilities the SOs develop by deploying software routines,
models, components or services with minimal (if any) changes in the Hardware struc-
ture. For example, a Software-driven capability enables the SO to classify the data it
gathers and generate further knowledge by using clustering algorithms e.g. k-Means.
Once this capability is installed in the SO it evolves its original capability offer.

Capabilities can also be simple i.e. atomic that do not require any other capability
to exist; or these can be derived or complex i.e. these rely on the existence on other
atomic or complex capabilities.

Core Capabilities

Core capabilities constitute the most fundamental nature of an SO, sine qua non an
object cannot be considered smart. These capabilities are atomic, the simplest abilities
an SO can have. They are based on three of the characteristics identified in [116] for
intelligent products, but we extended each one and included a fourth characteristic:

• Digital Identification

It enables information access and object presence in a digital context. This ca-
pability requires the existence of an unique and immutable identity but, beyond,
it refers to the ability of the object to identify itself to other objects, systems and
even humans.

• Retention

It refers to the ability of an object to store information about itself or the envi-
ronment, minimally its identity. It relies on the existence of a local or remote
memory that in more complex cases can be a large repository.

• Communication

It is essential to interchange information with other objects or users. In the sim-
plest SOs it is a basic point-to-point mechanism with numerous restrictions –

70

E.g. any object with a RFID/NFC (passive) tags. At this basic level of communi-
cation, objects require others to access Internet.

• Energy-harvesting

As dynamic entities, SOs require energy to carry out the processes and tasks they
are intended for. This is the the ability to gather the demanded energy either from
external sources or by generating it autonomously. Usually, the complexity of the
SO tasks is proportional to the energy consumption. Therefore, the more energy
the objects can get, the more complex the capabilities they can have.

Enhanced Capabilities

Besides the core capabilities, every SO might have a set of capabilities derived from
the core ones. It is unrealistic to identify all the possible enhanced capabilities, but it
is possible to provide a non-exhaustive group of categories that helps to identify the
capabilities the SOs might have. In some cases, constraints related to the object’s pur-
pose, lifetime, design, or just technical or financial matters might be sufficient reason
to develop just the core capabilities and a minimum of the enhanced capabilities. From
the identified categories, there are two particular Hardware-Driven capabilities that are
the base for most of the other capabilities:

• Processing

It refers to the ability of executing fixed or adjustable instructions and tasks and
compute in the background as the object meets its purpose. It relies on the exis-
tence of, at least, an attached processing unit such as an embedded controller or
system-on-chip (SoC), although some objects can leverage resources by taking
advantage of distributed or cloud processing. This capability can broadly vary
from one object to other, considering multiple hardware architectures and con-
figurations. Generally, the processing capabilities are required to develop further
capabilities.

• Networking

This is the evolution of the communication capabilities with the same central
purpose, but involving more complex functions. It implies existence of network
adaptors, support to a protocol stack – like network layer protocols as in the OSI
Model –, the ability to join a variety of system and object networks and sup-
port to multiple communication patterns as the ones introduced by [111] (one-
to-one, one-to-many and many-to-one). SOs can have intra-networking and/or

71

Figure 3.2: Smart Objects Capabilities

inter-networking capabilities, for the latter case, it is also required to ensure pro-
tection of the object in open environments.

The remainder categories refer to four group of factors:

A Endogenous Factors

These allow objects to discover their own features, status, possible changes and
issues. Including also the capability to adapt and use information to manage the
object’s own life cycle and trigger healing mechanisms.

• Logging

These refer to an object’s ability of registering events about itself or the
environment. In order to log these events, the SO has attached storage or
connects to remote repositories through its networking capability.

• Self-Awareness

It refers to the capability of an object to know its own status and structure
as well as any change on it and its history.

• Self-management

It goes beyond self-awareness and includes the development of abilities to

72

use the data gathered in order to manage the object’s own life cycle includ-
ing services, response to incidents, problems, maintenance and self-repair.
Concrete actions for carrying out the fundamental process of management
are encapsulated in this capability.

B Environment Factors

These are focused in objects to obtain and improve knowledge as well as discover
and manage the environment – both physical and digital – in which it is placed.
These include awareness of nearby things, establishing different relations and
inducing desired behaviours.

• Sensing & Actuating

According to the purpose, it is common that SOs have one or multiple sen-
sors gathering live information from the environment (E.g. home, human
body, etc.) or the objects own structure. Although sometimes it is seen
as a fundamental characteristic, with the existence on multiple on-line data
repositories being permanently updated, SOs can still be smart without ac-
tually sensing. Actuating refers to the ability of provoking a change either
on the environment or on other objects. Usually actuating and sensing are
linked, although many objects can have either one or the other.

• Environment-Awareness

These are part of the context-awareness capabilities. These refer in partic-
ular to the ability of gathering information from the environment and the
surrounding objects in order to improve the user-experience for example by
adjusting the object’s behaviour. This ability goes beyond having a few sen-
sors; it involves knowledge of environment conditions (E.g. temperature,
noise, etc.), locations [99] (E.g. relative and absolute), the present infras-
tructure and platform, and available services and objects, among others.

• Social-Readiness

This is related to services that enable the object to exhibit social behaviour.
For example, joining object social networks and generating and interchang-
ing information in order to meet its purpose and improving services and
functionalities offered to the user. Objects are able to relay on and generate
social interactions with each other.

C Human Factors

Although fulfilling the user expectations is the purpose for what the object was

73

built and hence it is the driver of any group of capabilities, this group focuses
on features and services that improve the interaction with human individuals. In
addition, this group considers one of the main concerns of people using SOs:
trust.

• Shielding

These comprise the services an object offers to preserve the critical charac-
teristics of the information it deals with. These characteristics include avail-
ability, accuracy, authenticity, confidentiality – and privacy –, integrity, util-
ity and possession as described in [115]. Regardless of the security mecha-
nisms in networks and platforms with which the object interacts, the object
itself is able to provide protection against any threat and thus enhancing
trust in users.

• Human-awareness

It is also part of the general context awareness, but it is focused on the ser-
vices related to gather information from the humans that interact with the
object. It includes habits, emotional state, social interaction, spontaneous
activity, among others [99]. Since this information is sensitive, shielding
becomes a pre-requisite to this capability. It also includes services to im-
prove interaction with human users such as friendly and customised user
interfaces. SOs offering direct interfaces to human users without requiring
others, are more complex than those which do not.

D Engineering Factors

These are related to how the object behaviour is obtained, i.e. how engineers
interact with the object in order to induce the desired functionality. In some cases
operations are based in detailed pre-programmed instructions, in others, objects
have partial control of some activities and in others, advanced objects control
every aspect of operation simplifying SO creation and management.

• Programmability

It refers to the ability of objects to be programmed. Programming can be
fixed (single-time) or dynamic (many-times, upgradable) and can use one
or several models (structured, object-oriented, aspect-oriented, etc.). It is
highly related to the representation design dimension as proposed in [69].
Objects with this capability require detailed instructions from a programmer
to be able to accomplish their tasks.

74

• Rule-adaptation

It is the ability of the object to modify its operation based on a predefined
set of rules in reaction to data sensed from the environment. Engineers can
define degrees of freedom for the object and when the conditions are met,
the object launches a set of pre-programmed tasks.

• Goal-Orientation

It is an object’s ability to act based on defined high-level objectives. Engi-
neers set the objectives and the object is then able to reason and generate the
best plan to achieve the objectives. These plans can be dynamically gener-
ated based on atomic tasks and considering design restrictions and policies.
This behaviour gives more autonomy to the object and enables the existence
of other derived capabilities.

The SOs compounding a collective might have different enhanced capabilities. These
capabilities are then the realisation of the SO’s heterogeneity and are a key differential
factor among SOs. Within a collective, there is a Capability Density, indicating that
some capabilities might be common within multiple SOs whereas other might be scarce
and only offered by a few SOs.

3.6.4 Resources

Resources are the physical, Cyber/digital or social elements required by the SO in order
to achieve its purpose. These can be externally or internally sourced. The latter implies
the SO is able to use its generation processes in order to self-provide the resources it
needs. The SOs can potentially exploit and manage all the resources they need for op-
eration and also generate Cyber/digital and social resources.

From the Cyber/digital plane, data is the key resource the SO creates, processes, stores,
deletes and updates during operation. The data generated by the SO can be simple,
coming from the raw observations the SO makes from the environment, the human
individual, their activity and also from other SOs and systems. This data can also be
complex, which is a result of processing simple data.

From the social plane, the SO’s reputation is a resource created, which is based on
SO’s interactions with human users and other SOs and systems. This reputation can
be modified either positively or negatively according to the existing rules in the SO

system. Every SO system is also a society that determines the rules for modifying the

75

reputation, E.g. SOs that respond effectively to requests of cooperation from other SOs

have a strong positive reputation in contrast to those that do not, which have a strong
negative reputation and with a wide spectrum in-between.

Physical resources such as hardware components —E.g. a storage unit—, consum-
ables —E.g. paper, cartridges, supplies—, are managed by the SO. We distinguish two
types: Transient resources, whose usage pattern is highly volatile, these can be used
and recover their initial capacity after usage very quickly E.g. memory; and Persistent
resources, that have a more steady usage pattern, requiring generally a longer process
to restore their initial capacity. E.g. the battery. The SO controls the usage levels and
triggers refill processes that in most of the cases are externally sourced. Generation of
physical resources for self-consumption of the SOs is rare, with the only exception of
energy when the suitable physical structure, resources and capabilities are in place in
the SO. In most of the cases, physical resources are externally sourced.

3.6.5 Relationships

Many kind of relationships can be established between the SO, the collectives of SOs

and the different subjects of analysis in the IoT domain. We discuss some of the key
ones:

• Functional relationships

These are the relationships of human individuals who use/consume the function-
ality provided by an SO or a collective. Likewise, it is possible to establish these
relations between the SOs—consumer— and other systems —provider—. In this
case, the consumer pursues a goal that might not be shared by the provider, even
the provider might not have a goal-directed behaviour. This is a transient relation
where the provider only carries out the scoped functionality without awareness
of the broader goal being pursued. In this case, the consumer is responsible of
the workflow for achieving a goal, it is delegating a concrete task to other SO or
system.

• Cooperation relationships

This case is well known from agent literature. It implies that cooperating subjects
have goal-directed behaviour, they share common goals and are part of the same
collective. The two main types of cooperation are knowledge-based and activity-
based. Knowledge-base involves sharing beliefs required for the operation of

76

each SO. Activity-based cooperation implies that SOs carry out activities in order
to achieve the common goal.

• Social relationships

There is a variety of social relationships possible between SO-human individuals
and SO-SO. Authors of [11] and [68] identified some of them. E.g. friendship,
co-location and ownership. In the context of collective of SOs, social relations
provide a structure for the whole collective and a position for each individual SO.
We observe social relations as durable relations rather than short-lived interac-
tions.

• Composition relationships

One SO might be composed from another system. E.g. platform, operating sys-
tem or middleware. This is a permanent relation where the resulting composition
is the SO’s software system.

• Topological relationships

These are spatial relations of one SO or a collective, not only with other subjects
but also with its physical environment. Some examples are: disjoint, in, touch,
cover and overlap relations analysed by Clementini [24].

Since the ultimate purpose of the SO is achieved through delivering its functionality.
Social and composition relationships only make sense when these are exploited as a
way to establish a functional relationship. On the other side, functional, cooperation
and composition relationships are the origin of dependencies between the subjects
at each endpoint using/consuming, receiving the cooperation from or composed from
another.

3.6.6 Structure

Relevant structures for the study of the SOs are identified for the planes of analysis.

• Infrastructure

This is the specific mix of hardware, an operating system and the middleware
over which a particular SO is built. SOs usually have a fixed and constrained
physical infrastructure.

• Ad hoc Hardware architecture

This comprises the specific hardware components, namely, sensors and actuators.

77

• Software architecture

This includes the software components that are deployed on top of the infrastruc-
ture and hardware architecture and are specific for the SO’s purpose. Software
components that deliver functionality that is common to multiple applications
domains are candidate to be moved to the infrastructure of the system.

• Social structure

Characterisation of the social structure is relevant for the collective of SOs. The
social structure is built from continuous interaction between related SOs. These
interactions make links/relations between SOs weaker or stronger. The SO’s par-
ticular characteristics, the relations they have with others and its behaviour within
the collective make everyone to acquire a particular position in the social struc-
ture. Being aware of the position every SO holds in the collective is useful for
determining which SOs to work with.

3.6.7 Fundamental Processes

Exploitation

These processes are applied to elements of each area in order to deliver SO’s functional-
ity through capabilities. In other words, the use of knowledge, structure, resources and
relationships enables the SO to operate. Exploitation involves the flow of processes for
making decisions using the knowledge available to the SO in order to trigger capabil-
ities according to the structure, resources and relations available. The more complete
the knowledge and the capabilities to process that knowledge the more complex the
decisions the SO can make. High level representation of SO’s purpose, relevant prop-
erties, subjects, etc.; require a complex process of decision-making [18].

Exploitation involves dealing with uncertainty. Knowledge might be incomplete and
still decisions are required for the SO operation. Well known approaches for dealing
with these situations are: ignore, block and generate.

• Ignoring implies that decisions are only based on and fitted to the available
knowledge.

• Blocking implies that the SO delegates the decision-making to other exogenous
subject and it comes to a blocking state, while the others decide.

• Generation implies that SO has mechanisms for the knowledge generation pro-
cess which will lead to the needed knowledge for making the decision.

78

Management

These processes are in charge of supporting the operation of the SO. If provided by
the SO, these are implemented through capabilities and allow for achievement of the
support goals defined. Management involves essentially monitoring, control and con-
figuration of the elements in each area. For example, these processes might be applied
to the different sources and repositories of knowledge the SO works with or to the data
generated from the operation.

Generation

Generation involves processes for production of new elements, adding up to or chang-
ing existing elements, according to each area and plane. From the cyber/digital plane,
the SO generates knowledge, data, new functional relations and behaviour. For capa-
bilities, the SO is able to change the pre defined ones in order to adapt or optimise
them as way to achieve its defined goals. An SO adapts and enhances its structure
E.g. by generating new functional components — E.g. by composing from other more
fundamental— or by changing the existing ones —or their relationships—. On the
other side, it can increase the physical resources and establish new relationships.

Knowledge generation might be achieved by discovery, reasoning or learning. Dis-
covery is to build knowledge from gathering previously unknown information of itself,
the environment or other subjects. Reasoning might be inductive or deductive and in-
volves creating knowledge from the existing one. Unlike previous approaches, learning
does not depend on a pre defined algorithm and involves different approaches based on
the data resources E.g. supervised, unsupervised or deep learning.

Generation of physical resources is very limited in SOs and it is only possible if the
physical structure is enabled with the required components. One example is energy.
Electrical energy required by the operation of the SO might be transformed from energy
collected from heat, light or motion and requires specific devices in the SO’s structure.
In most of the cases SOs are not able to generate physical resources.

The social plane is useful looking at the collective. The capacity of adaptation of the
collective system depends on the SO’s individual capabilities and their state. Adap-
tation is triggered as a resilience response or as an evolution. Unexpected situations
trigger the generation of new relations between cooperating SOs which leads to a new

79

structure aiming to keep the behaviour expected by the human end users. On the other
side, the collective system is able to evolve by generating new collective behaviours
aiming at either optimising operation for achieving existing goals or seeking new de-
fined goals.

3.7 Smart Object’s Autonomy

Autonomy is an expected feature of the SO itself and the systems made from multiple
SOs. It is usually defined from the human user point of view, an entity is autonomous
if it is able to carry out tasks without human intervention and control. However, rather
than an absolute fixed characteristic to every SOs, it is a relative feature derived from
other fundamental characteristics of the SO.

SO autonomy is a particularisation of the autonomy defined in the context of agent-
based computing (AbC). In AbC, the boundaries defined for the planes within which
the SO operates are not clearly defined. However, these are necessary constraints in the
SO context that must be considered in the autonomy definition. Therefore we start by
defining autonomy in this context.

The definition is built from concepts discussed by various authors [22, 21] in regards
agent’s autonomy, enriching it with the elements and constraints given by the SO’s
relevant areas, planes and fundamental processes as presented in section 3.4.1.

Definition 3 Autonomy is the ability of a Smart Object to independently carry out the

processes of exploitation, management and generation of its knowledge, behaviour,

relationships, structure and resources, in order to pursuit defined goals and considering

the constraints imposed within the planes it operates. The autonomy depends on and

is circumscribed to the goals the SO is involved on —either by its own or through the

collective it belongs to—, its characteristics and the operation planes.

To build an operational definition of autonomy in the SO context, it is necessary to con-
sider autonomy boundaries. Table 3.1 presents the limits of SO autonomy in terms of
processes, areas and planes, i.e. the maximum level of autonomy expected by an SO.
We now discuss these limits from every plane of analysis.

At cyber/digital level, the three fundamental processes can be potentially carried out
for the relevant elements by any SO for a particular goal. Potentially, there is no limit to

80

Table 3.1: Limits of SO Autonomy

Cyber / Digital Physical Social
K RC B RS S K RC B RS S K RC B RS S

Generation
Management
Exploitation
K: Knowledge, RC: Resources, B: Behaviour, RS: Relationships, S: Structure

achieve the three processes in every element for every goal, however, from the current
state-of-the-art it is rare that SOs are autonomous for every single goal they pursuit in
each process and element.

From the physical plane, SOs might be able of managing and exploiting their phys-
ical elements. They can, exploit, monitor and control its given structure, behaviour,
resources, relations and even reason and generate knowledge about these. The limit for
SO autonomy comes from the object’s essence. It implies the SO is a passive entity
depending on other subjects, mainly human individuals, to generate/outsource physical
resources, structure, behaviour and relations.

From the social plane, the structure, relations, resources are not an individual con-
struction of the SO. The SOs depend on other subjects —part of the whole system— to
generate these elements. Social relations depend on the endpoints of the relation, they
build the social structure and then these two elements clearly represent a limit for an
SO autonomy. These are a collective construction, E.g. in the case of the reputation,
it is positively or negatively affected from the interaction of the SO with others. For
any social subject it makes no sense to be autonomous in generation of the mentioned
elements, as these are only meaningful in the interaction with others.

Inherent heterogeneity of the SOs implies there is a wide spectrum of SO autonomy,
constrained only by the mentioned boundaries. There is a number of dependencies that
hamper the potential of the SO autonomy, these come from the different relations of the
SO with other systems. In many cases these are necessary to expand SOs behaviour and
achieve defined goals. We are particularly interested in dependencies coming from
the cyber/digital and social planes, some of the key dependencies identified are:

• Structural Dependency
The SO’s software architecture is coupled to a third system, platform or node that

81

carries out the fundamental processes for the SO. The use of this system, platform
or node is not optional for the SO. The nature of the dependency of the SO with
the other system is linked to the localisation of the source of the dependency.

– Endogenous: All the services or functions provided by the other system
are deployed and operate from within the SO. One example is the operat-
ing system of an SO. This software system is considered a part of the SO

as a cyber-physical entity. It does not impose additional restrictions nor
lack of control on the SO, on the contrary it enables SO software to control
hardware and network platform.

– Exogenous: it imposes constraints to the SO as some services or functions
are available remotely to the SO, either in other SO, a heavy gateway/n-
ode or a cloud provider. Exogenous dependencies also imply a transfer of
control for some part of the processing, data or other required resource.
These dependencies represent a serious constraint to the SO’s autonomy for
various reasons: (1) the unavailability of the endogenous function blocks
the SO’s basic operation; (2) there is an added risk, given the channels and
third-players required for the function to be carried out.

Structural dependencies are usually set by default to the SO from the particular
software architecture and development approach followed.

• Resource Dependency
The resources the SO needs are sourced, managed, stored and exploited else-
where. Particularly, in regards data required for operation E.g. readings about
the status of SO’s physical properties, if the SO lacks of its control there is no
guarantee it will be timely available and accurate for the SO to make decisions.

• Knowledge Dependency
Under situations of uncertainty, the SO requires another subject —E.g. human
individual, system or SO— to provide a course of action. The SO has no knowl-
edge about unexpected situation, does not recognise them and might end up in a
blocking status. The SO is unable to learn from its experience and reason about
unknown scenarios to determine adaptations the plan for achieving the goal.

• Cooperating Dependency
Cooperation is usually regarded as conflicting to autonomy [6]. Relying on others
requires delegating control of part of the goal to them. However, the cooperation

82

is natural to SO systems for users to benefit from interaction of multiple SO. It
desirable as a way to expand the limits of each SO. Without cooperation some
goals might not be achieved.

Whereas cooperating dependency is desirable, the other dependencies might be avoided.
Structural and resource dependencies are not specific to a particular goal, but to the
SO’s software architecture. SO’s software might be designed in such a way that these
dependencies are avoided. Since it is unpractical to provide the SO with all the possible
scenarios it might face in achieving a goal, the only solution is to ensure mechanism
for knowledge generation. These mechanisms might be common to multiple goals and
then incorporated as key components of the SO’s software architecture.

The remainder of this work will present a proposal for avoiding structural and resource
dependencies by providing a flexible and extensible SO software architecture. The
software architecture incorporates conceptual elements and capabilities as services. Be-
sides, a middleware architecture provides the basis for building SO’s software that is
common to multiple IoT applications.

3.8 Summary

We have presented a thorough analysis of the Smart Object and its characteristics. We
have defined Smart Objects as active socio-cyber-physical autonomous systems with an
active behaviour and with a number of capabilities. Likewise, we define the collective
of SOs as a society built from heterogeneous SOs around a defined criteria.

We have analysed the concept of autonomy and presented our own definition in the
context of SOs. We made this definition concrete to the relevant planes where the SO

operates, differentiating it from the abstract agent’s autonomy. We identified the scope
for autonomy in SO systems as well as four main types of dependencies that hamper it,
namely: structural, resource, knowledge and cooperating dependencies.

We have presented our tool for analysis of the autonomous systems. This tool en-
ables to approach the analysis of these systems from three perspectives: fundamental
processes, key areas and planes. The tool was successfully used to describe and analyse
the SO-based systems.

83

Chapter 4

Role-based Smart Objects (RbSOs)

4.1 Introduction

We have seen in the previous chapter that in order to develop the potential of SO’s au-
tonomy, a set of fundamental processes must be carried out by the SO while avoiding
unwanted dependencies. We have also seen that SO’s autonomy is not fixed nor abso-
lute, but it is linked to the inherent heterogeneity of the SOs.

In this chapter, we present an IoT software architecture based on smart objects (SOs).
This architecture enables to build cyber-physical autonomous systems that carry out
the fundamental processes and gives flexibility for achieving autonomy according to
the hardware constraints of the SOs. We present the concepts and the software archi-
tecture for goal-oriented role-based SOs that fit together for the development of IoT

applications. We built over existing concepts and principles from agent and cognitive
systems literature [48, 21, 117, 113]. We will present in chapter 5 how the common
functionalities of this software architecture, are detailed and offered as part of an em-
bedded middleware architecture.

In the next sections, we identify the specific challenges and requirements addressed
by the software architecture, as well as the key contributions. Then we describe the
elements of the architecture and how these constitute the SO software.

85

4.2 Challenges and Requirements

We present key requirements for the software architecture and reference authors when
these have been identified elsewhere. A software architecture for SOs must:

• Enable engineering of goal-directed SO’s software

Since the autonomy is scoped within the achievement of goals, it is necessary that
SO’s software be designed and developed under the goal concept. This enables
the SOs to exhibit a truly intentional behaviour where there is a clear distinc-
tion of the processes carried out for achieving a goal. The SO system must be
able to be enhanced adding new goals and the supporting plans and routines for
achieving those goals.

• Enable engineering of SO’s software with different levels of autonomy

Instead of trying to provide a solution for enabling potential autonomy for every
single goal, the approach must intend to set the basic entities for the three fun-
damental process and enable software engineers and administrators to configure
the SO’s autonomy according to concrete requirements and hardware set up. The
approach must allow achievement of goals at individual and collective level, pro-
viding mechanism for adaptation of the system of SOs according to the available
SOs.

• Provide a model for developing autonomous SOs

The architecture must define components and relations required for building SO

software avoiding structural exogenous dependencies. This architecture should
avoid assumptions about a controlled environment where the SOs are placed, as
this is unrealistic.

• Provide a simple approach for dealing with SO’s heterogeneity

Different sources of heterogeneity arise from the diversity of SO’s and their en-
vironments, more relevant sources to be considered are:

– SO’s hardware architectures [98]: To allow development of SO applications
that can run in multiple hardware platforms without requiring source code
changes.

– Device-dependant SO’s features [62, 101]: To enable applications that in-
corporate and interact with the different kinds of devices that can be at-
tached to an SO (E.g. sensors or actuators)

86

– Communication protocols [101]: To enable SOs to communicate with each
others, with applications, systems and devices using different communica-
tion protocols.

• Enable SO cooperation for goal achievement

When SOs are not capable of carrying out a set of goals, the approach must
provide mechanism for seeking and assuring cooperation of other SOs from the
collective.

4.3 Contributions

The main contribution of this chapter is to provide a software architecture and a set of
abstractions for the engineering of software for SO systems enabling adaptability and
autonomy at individual and collective level. More specifically, we propose:

• A software architecture for SOs based on roles, goal-directed scenarios and plans
that are ultimately achieved through the orchestration of known services. This
proposal combines agent-computing notions of agent, actions, activities, plans,
among others; with a service-oriented architecture.

• An strategy for separation of SO behaviour from concrete SOs through roles and
scenarios. Roles providing a basic interface-type1 list of responsibilities and sce-
narios providing more detailed behaviour in a workflow fashion.

• The entities for building autonomous agent-based SOs that do not depend on
endogenous platforms services, such as directories, nor assume the existing of
controlled environment, then boosting the autonomy of individual SOs.

• A basic and normalised knowledge representation for the different sources of
beliefs an SO might need to work with.

4.4 The Role-Based SO Software Architecture

The software architecture we propose, enables the development of IoT applications
based on SOs that play different roles within a collective of SOs. The roles define
groups of functionalities and responsibilities the SOs are able to take in order to achieve

1In our case interfaces can be instantiated. This is similar to the concept of port in some ADLs [94].
For example, in SADL, a port has a name, a type and is designated for an input and output [81].

87

individual and cooperative goals. SOs are able to act autonomously, only constrained
by their physical infrastructures, but lacking of predefined exogenous structural depen-
dencies.

Our approach is based on the idea that as multi-purpose computers are able to run
multiple applications based on their hardware resources, SOs can play different roles
based on the services they can offer. Therefore, conceptually SOs are boxes where roles
can be either “installed” or “uninstalled” to achieve a particular behaviour in pursuit of
some goals. The services are just wrappings of SO’s cyber physical capabilities, that
enable modular development. Although there are common roles the SOs can play, each
SO has specific roles according to its particular capabilities, hardware platform and
purpose.

In order to build SO software following this approach, the software architecture defines
the overall components of the RbSOs software and identifies the relationships between
them. We detail the building blocks for RbSOs applications which are the abstractions
organised in two functional groups: The uncoupled goal-motivated behaviour and the
socio-cyber-physical knowledge representation.

4.4.1 Overall approach

The SO’s software architecture is organised in two container layers as presented in
figure 4.1. In our case the containers meet three purposes: (1) enabling support to het-
erogeneous SO configurations, (2) facilitating easy reuse of functionality among similar
configurations and (3) allowing for runtime adaptation of the SO’s structure.

Our approach inherits advantages of a layered architectural style namely: flexibility,
reduction of coupling and increase of abstraction, among others [58]. The layers, re-
duce software complexity by using every layer as a client to the layers below and as
a server to layers above. Besides the advantages already mentioned, in our case, this
style enables breakdown of SO software that is related to capabilities and behaviours
providing a natural abstraction for building applications, aligned with real-world enti-
ties.

The top agent layer includes both an autonomous software agent and a container of
roles. We built this layer over the existing agent theory [117, 104]. The agent provides

88

Figure 4.1: Conceptual view of the Software Architecture for Smart Objects

89

socio-cyber/digital identity for the SO and is in charge of the processes of exploitation,
management and generation of behaviour, knowledge, resources and relations. The
container holds the different responsibilities the SO has from a collective’s common re-
sponsibility definition. These responsibilities are also interfaces of the SO’s behaviour
expressed as capabilities.

The bottom services layer is a container of capabilities. Capabilities are service com-
ponents that are developed according to the different combinations of software and
hardware infrastructure in place in the SO. The container loads and unloads capabilities
according to agent layer needs. Capabilities are used in workflows that are orchestrated
by the agent layer according to the plans in operation.

SO’s software is then a combination of functionalities and abstractions giving support
to both layers and also the specific capabilities and roles. Layers functionality which is
common to multiple SOs is intended to be realised either by a middleware solution (as
presented in chapter 5) or incorporated at system level, E.g. as an unikernel solution.
Specific development required is aimed to follow a “light programming approach”. We
call it light programming because from the common reusable functionalities, the devel-
opment of new applications involves only the agent-based configuration of files and the
development of the particular capabilities.

Some known disadvantages of using this layered style include: performance degrada-
tion, difficulty to assign functionality to a layer and risk of duplicating services among
layers [58]. The performance drawback is more evident when there are multiple layers
involved, in our case there are only two layers. There is degradation of performance if
we compare our architecture with that of a monolithic SO software application tailored
to an specific hardware platform. The degradation comes from management services
that are required by the containers —in each layer dealing with the software elements
i.e. roles and services — that make SO software flexible and able to deal with the
changing conditions while easing the development effort required by each different SO

application or SO hardware platform.

The performance is a key requirement in some IoT scenarios e.g. requiring real-time
responses and also considering the constrained resources in the available hardware plat-
forms. However, heterogeneity and volatility are present in any IoT environment, solu-
tions designed only for one platform are not able to be used widely as these are coupled

90

to concrete manufacturers, deploying in a different platform implies building a new
application. Besides, performance is closely linked the hardware resources available,
with more powerful hardware platforms emerging (see for example the Intel® Joule™

Platform2), we consider the trade-off in performance, imposed by the layered approach,
is reasonable in order to ensure support to multiple platforms and typical IoT dynamics
situations.

In the service layer, we use service-oriented components [23] for representing capa-
bilities. This approach enables a clear identification of SO functionalities, kept under
responsibility of the services layer. What is not manageable by the architecture is the
possible duplication of services that could be well supported, as services can be devel-
oped separately. This is also a trade-off, we consider justified with the benefit of having
the flexibility to support heterogeneous services. A classification and standardisation of
interfaces for the services (SO capabilities) could help to reduce the potential problem,
however this is out of the scope of this work.

In the following sections, we describe the the main elements of our approach.

4.4.2 Uncoupled Goal-motivated Behaviour

The figure 4.2 presents the key entities and their relationships used to represent a Smart
Object in the proposed architecture. The Smart Object is a composition of the software
agent, the role and capability containers and a particular mix of devices, capabilities
and roles. The Smart Object has also a particular set socio-cyber-physical properties
which are generally dynamic during operation.

Autonomous Software Agent

The software agent represents uniquely an SO within a collective of SOs. It uses under-
ling communication protocols supported by the SO infrastructure in order to obtain the
SO’s Id. This agent has not structural dependencies with endogenous entities. Although
the end solution requirements define the concrete level of autonomy an SO requires, a
reasonable expectation — looking to support reference IoT requirements e.g. volatility,
heterogeneity, etc. — is that these entities should work uncoupled from others (both
SOs and other type of systems) and be able to carry out a minimal processing by them-
selves.

2https://software.intel.com/en-us/node/721455

91

The platform services the agent needs for interacting with other agents and to access
knowledge base, goals, behaviours and resources are all those located within the SO

infrastructure. One example is the communication process. Usually, agent platform
provides a directory where every agent needs to record the services they might offer.
Although this directory might be replicated to reduce centralisation, there is always the
need to query this directory in order to communicate with any other agent. This clearly
imposes dependency on the SO thus constraining its autonomy.
In our approach, there is truly autonomous agent that is supported only by platform
services hosted on-object and a P2P communication protocols. This way, even if the
SO is isolated the agent will be able to perform its basic operation. The agent performs
the fundamental processes of the SO by picking the available capabilities according to
the goal-directed plans being carried out.

Devices

These represent the potential physical capabilities of the SO, i.e. the particular on-
object and remote sensor and actuators linked to the SO. These have id, description,
location (on-object or remote), frequency, wrapping service and a set of properties they
can either read or change. For example, a light sensor reads the property “Surrounding
light”, which might be either 0 or 1, according to the physical environment where the
SO is placed. Likewise, an actuator can be a switch turning on or off a light bulb, then
affecting the “Surrounding light” property. The concrete routines performing the sens-
ing and actuating using the devices are wrapped as services. The frequency determines
if the wrapping service associated to the device, is in active mode and hence must be
triggered according to this frequency value (E.g. in seconds) or, in a passive mode,
triggered on-demand by another capability (frequency = none).

Properties of Interest

The properties of interest (PoI) are the narrowed subset of the relevant socio-cyber-
physical properties from the environment, SO’s resources, the SO itself, the human
users or other systems —E.g. other SOs— of a particular IoT scenario. This entity is
inspired in the “Feature of Interest” entity included in the OGC’s SensorThings data
model [86]. The status of these properties is sensed directly through sensing services.
Similarly, actuating services are used to directly modify the current values of these
properties.

92

Figure 4.2: Uncoupled Goal-motivated Behaviour

93

Since different entities of the IoT scenario might have common properties, each PoI
has a scope, which holds a unique reference to the entity to which the property refers to.
Specific observations are transformed into beliefs that are then stored in the Knowledge
Base. Properties of interest are dynamic, their changes represent different states of the
entities of interest. These are then the basis for defining current and target states along
the individual and collective systems. The value domain for each property is defined in
the Knowledge Base as a belief and it can be continuous, discrete or categorical.

Goals

The goals define the intentions related to the socio-cyber-physical world which are rele-
vant to the SO. We represent goals as target states of the properties of interest previously
described. In our case, a goal meets three purposes: 1) It is a conceptual entity (See
figure 4.2) that enables the engineering of IoT applications, 2) a data unit which is part
of the SO’s beliefs and 3) a high-level functionality (behaviour) to be achieved by the
SO. Therefore, goals are stored as part of the SO’s knowledge base but also brought to
runtime when the SO is reasoning and determining which actions to carry out. Goals
are conceived to be separated documents, uncoupled from the implementation of any
other component of the SO’s software (e.g. services, middleware, operating system,
etc.). Each goal has the following particular properties:

• Goals are defined with a collection of SO or environment properties with specific
target states.

• Goals can be time-bounded, it indicates that a constraint after/before a particular
date and time can be established for goal to be considered in operation.

• Goals are organised in a hierarchy (See section 2.3.2) including a reference to the
goal they belong to.

• Goals have a priority which is established by the administrator according to the
nature of the goal. Since the SO has a limited processing capability, it will check
and try to achieve first the goals with higher priority. This is used to define
“selfish”/“unselfish” behaviour in which individual core and supporting goals
have higher/lower priority over common collective goals. When a collective goal
is prioritised over an individual, the actions of the plan leading to the collective
goal are carried out first by the SO, this includes the default task of looking for
an object to cooperate with when the SO does not have the required capability.

94

Figure 4.3: SO’s Goal States

Goals are processed by the SO in order to plan the next activities to carry out given
the current SO and environment status (See Section 5.5.3). While being processed and
according to the state of its properties, we define the goals to be in any of the states
depicted in figure 4.3. Goals remain pending or on progress until the target state, of the
properties of interest that define it, is reached. The unachievable state is reached when,
after a number of attempts of triggering the activities for achieving the goal, the target
status is not reached for any of the properties of interest. This could be due to unavail-
ability of the resources or capabilities leading to that state or simply because the goal
is time-bounded and the time has expired. After being achieved, goals can transition to
the pending state if the target state for the relevant properties of interest has changed.

Activities and Actions

Activities describe a functionality to be carried out by an SO through the execution
of different known services (capabilities). Activity specifications include the inputs,
triggers and outputs in terms of knowledge items (E.g. properties of interest) and the
actions. This is a wide definition rather than concrete as every activity can be imple-
mented in multiple ways in different SOs. The way activities are defined, enables the
specification of scenarios that are uncoupled from the specific capabilities of each SO.
For example, an scenario can include steps for setting the temperature for a room and

95

displaying a message to the user, when this is done. In this case, “display message to
the user” (including identification of the user) is the activity, that is part of a longer sce-
nario. This activity (and therefore the entire scenario) could be carried out in a different
way e.g. using an embedded display or communicating via email or sms to the user.
This approach provides flexibility, as scenarios and activities can be defined without
knowing the specific underlying services that will execute the operation. Of course, the
trade-off is that it adds another level of complexity which also requires maintenance,
programming and processing by the SO.

The actions are the glue between services (capabilities) and the activities. Besides
making use of the concrete services available in the SO for an activity, these specify
the required arguments and output that are linked to the ones in the activity. The same
activity can be implemented in two different SOs using different actions (according to
their capabilities). At this level, it does not matter how the action is actually imple-
mented, as long as the output is the expected according to the specification.

The output of an activity includes the effect it has on a knowledge item. E.g. an activity
of an SO can have the effect “ increase” of the property of interest: “lighting” in a room.
Since, ultimately activities are composed by a set of services, one activity can be seen
as a simple flow of services, where the agent running it is the single point of control
based on the sequence and dependencies defined within the activity. Data flow is also
ensured by the definition of the input and output knowledge as pre and pos conditions
of each activity.

On the other side, the actions are atomic and specify a particular use of a known ser-
vices. An action includes the arguments to pass in to the service in terms of knowledge
items. An activity can be dependent on updated observations of the properties of inter-
est or on other beliefs from the knowledge base. For example, sending a message to
other SO, requires the selection and use of a communication service. The asynchronous
nature of an agent’s message is implemented through services, sending and receiving
the message in source and target SOs respectively. The message itself in this example,
is composed by data gathered through sensing services and also from pre-configured
rules in the knowledge base.

96

Scenarios and Roles

In order to allow for adaptation within the collective of SOs, it is necessary to sep-
arate the required behaviour for a scenario from the concrete SOs that carry out that
behaviour. This way, multiple and different SOs might have common behaviours that
can be offered within the collective. In case of unexpected situations, such as one con-
crete SOs not being available, other SOs with a common behaviour can be picked to
carry out an activity.

We achieve this through Roles and Scenarios. The Scenario describes the activities
to be carried out in order to achieve a particular goal. We use the concept of scenario as
an ordered workflow of activities, a collection of dependent functionalities, rather than
a sample sequence, as is the common use in requirements engineering. Our scenarios
are intended to be defined either by the human users or calculated by the SO. Since the
activities are by themselves flows of services, the scenario is another level of workflow
composition. The scenario works as a template for plans, in fact, the definition of sce-
narios by human users is similar to defining a library of agent plans, they are loaded in
the knowledge base either in design or runtime. If the scenario is not pre-defined, it can
be calculated in runtime if the ad hoc reasoning services are available. The reasoning
services take the goals to achieve as argument, determine the effect required on the
properties of interest to achieve that goal and look for activities producing that effect
on the property.

Besides being the entity that ensures predictability of one agent, by scoping the ac-
tivities and actions it can performs, roles are also a key entity for adaptation. These are
fundamental for avoiding structural dependencies at collective level and for the group-
ing of capabilities. Each role defines an exclusive and unordered list of responsibilities.
Roles are kept simple as these are intended to be configured instead of require exten-
sive programming. Roles and SOs are uncoupled, the roles played by a particular SO

can change in runtime. This feature enables the SO to adapt its own behaviour to the
changing system conditions. Using roles to adapt its own behaviour gives the SO the
advantage of management of its own structure —based on the underlying services— at
broad granularity level, instead of going service by service.

Role responsibilities might be carried out or not, depending on the scenario. A role
specification is common for all SOs within a particular collective of SOs. Therefore,
any SO able to play an specific role will carry out the same activities. This implies

97

that, in some scenarios, it is not necessary that a particular SO be available, but any
SO playing the required role, can carry out the activities as long as the role player has
the required input knowledge. This characteristic is advantageous as it gives flexibility
in regards the particular participants of the scenario. The collective of SOs does not
depend on a particular SO to achieve a goal, improving the autonomy of the collective
system.

A role is specified by the human administrator of the collective. Every SO has an
instance of the role specification. Although role specification are intended to be stable,
these might change in runtime. The management of these changes can be approached
by having an organisational role, as proposed by Colman (Section 2.3.6).

It is also foreseeable that in some scenarios, although more than one SOs can play the
same role, it is required that a particular SO take over one activity, that should be spec-
ified as conditions for the activity. Properties of interest, enable a general specification
of roles, providing a common behaviour playable for multiple SOs in diverse scenar-
ios differing only in the properties checked. For example, the SO Resource Manager

role includes activities for resources monitoring and notification to the human users
(or other SOs) about the lack of SO’s resources and asking for replacements; or the
SS Resource Manager role can include the same activities but applied to smart space
resources.

Capabilities as Services

For capabilities we use the concept of service-oriented components from Cervantes et
al. [23]. SOs wrap capabilities as service-oriented component (we refer to it as ser-
vice component) covering concrete and simple functionality. Adding new capabilities
becomes a process of deploying, on-object, new service components that wrap the op-
erations supporting the capability. As a result, the SO becomes compact and able, not
only to make its own decisions, but also to carry out concrete tasks in line with these
decisions.

In our approach, the service interfaces are intended to be generated by the SO when
loading (see 5.6.1). The actions and activities use these interfaces for defining the
SO behaviour within a plan thus composing more complex services for achieving the
defined goals, regardless of the concrete implementations. In other words, the imple-
mentations are decoupled from the overall SO system behaviour. Hence, multiple SO

98

behaviours —following the agent-based notions of activity, action and plans— can be
programmed without changing implementation services at this level. Likewise the same
services can be easily deployed, in several SOs with the right hardware configuration,
by copying the service implementation.

Another advantage of this approach is that capabilities are isolated. In the case of
an unexpected situation, for example a sensor failure, only the capabilities using that
device are affected, being possible to disabled them and even update the roles played
by the SO, without changes required in the base source code of the SO software. In
runtime, another SO offering the unavailable capability can be asked by the SO to run
the required functionality.

Each SO has a particular mix of common and specific capabilities that are used with
the arguments specified in the actions. Capabilities are intended to be based on Support
Facilities (Section 5.7). The more the hardware resources in the SO, the greater the
quantity and complexity of the services. Common capabilities are based on services
covering the typical functionality performed by the SO, we describe some of them:

• Communication Services
These services include operations for the configuration of network and human in-
terfaces and the processing required for receiving or sending messages. Network-
aimed services receive as arguments: a transmitter, the message type, the mes-
sage contents and a receiver; and using the supported protocols, they build (dis-
assemble) the message and carry out the transmission (reception) using the con-
figured interfaces. These services ensure at least support to bidirectional com-
munication with other SOs or remote systems. Human-aimed communication
services require additional processing for delivery and recognition of the mes-
sage, E.g. speech synthesizer/recogniser processing. Communication services
enable indirectly sensing and acting, which is enough in certain IoT scenarios.

• Decision-making (Reasoning) Services
Multiple approaches exist for reasoning (E.g. theoretical, rule-based, ontology-
based, probabilistic, etc) and so multiple services can perform different kinds
of reasoning based on user-defined rules, preferences, data sensed or particular
domain-specific knowledge models. The service approach allows for definition
of basic reasoning services giving support to a minimal local decision-making,

99

that can be extended through these ad hoc services that can be either local or
remote.

• Actuating Services
These services include functionality for modifying the status of (resources and
properties of) the SO’s and the environment. This functionality depends on the
hardware platform and the specific nature of the object. Actuating on other SOs

or human users is only possible indirectly through communication services. The
autonomy an SO is increased when the actuating services, provided by this SO,
enable control of its own properties of interest. E.g Would be desirable that
a microwave oven controls the oven temperature based on the conditions of the
meal instead of an fixed pre-defined time. For that to be possible, the oven should
be capable of either decrease or increase the temperature when required.

• Sensing Services
Sensing services enable the SO to be aware of an updated view of itself and the
environment which is needed for a proper decision-making. These services in-
clude configuration and operations for data reading from sensors. SO’s autonomy
is as constrained by the actuating services as it is by the sensing ones. Contin-
uing with the microwave oven example, these sensing services enable the oven
to read meal temperature, appearance or smoke presence on-object, and then en-
able required actions without relying on connection health or remote platforms
availability.

• Management Services
These services extend the basic infrastructure functions offering common opera-
tions for different SOs that can afford it. Some examples are:

– Monitoring Services: Watch over the operation of the attached devices and
hardware platform of both physical and digital resources.

– Cost Management Services: Calculate and monitor cost of services in terms
of resources used, transform this information into knowledge items.

– Continuity Services: Manage remote replication and backup of the KB.

– Security Services: Provide operations for ensuring data integrity and proper
access to the resources.

100

4.4.3 SO’s Knowledge Representation

The basic intuition of our knowledge representation is to provide a simple solution that
can enable on-object storage and reasoning around preconceived and generated beliefs.
As the name stands, preconceived are given before the start of the SO operation whereas
generated are created within it, through observation and communication.

In our case, preconceived beliefs come from three sources: multi-domain fundamental
entities, domain-specific entities and predefined properties of the entities of interest.
The multi-domain beliefs are founded on the ontology presented in the previous sec-
tion, covering the key entities for the motivated behaviour. These beliefs provide the
initial SO vocabulary and basic relations used to recognise nature and attributes of the
entities relevant to the SO. This initial set is intended to be expanded for every applica-
tion with the domain-specific entities required.

The Entity of Interest is used to represent the environment, the human users, other
SOs and systems that are relevant for SO operation. In order to organise and normalise
the different properties each of these entities might have, we use the concept of Knowl-
edge Item. The figure 4.4 shows how the knowledge of entities of interest is represented
throughout the system.

The Knowledge Item is the entity representing the simplest meaningful pieces of knowl-
edge the system can learn about. It has an unique id, a name/value pair, last usage
date, and a collection of attributes also having name/value pairs. Knowledge Items
group the different attributes and their values —from the Entities of Interest— used for
decision-making. Attributes are the generalisation of characteristics being predefined,
communicated or even observed. For characteristics that are highly dynamic, we use
more specifically the Property of Interest entity, as described in the previous section.

101

Figure 4.4: SO’s Knowledge Representation

102

We identified three types of Knowledge Items: features, resources and messages.
Features and resources are either pre-defined or observed by the SO through the avail-
able sensors. The difference between each other is that features group attributes that are
related directly to the Entity of Interest. E.g. physical characteristics such as location,
size, light conditions, among others or cyber/digital features such as software version,
available capabilities, number of users, among others.

On the other side, the resource type groups characteristics of the resources related to an
Entity of Interest which are not fixed part of them and can be replaced or restored. E.g.
battery, light bulbs, storage space, among others. Since we want a simple model, we at-
tach the resources to an Entity of Interest instead of modelling each resource separately.

The messages contain pieces of knowledge communicated by others SOs or systems.
This entity meets two purposes: (1) enable sharing of beliefs between different SOs

involved on a scenario and (2) enable to distinguish directly and indirectly observed
properties. Messages represent a simplified view of features and resources observed
by another system. Messages can be associated to other Knowledge Items grouping
features and resources.

Observation represents a raw reading made through the SO’s sensors and related to
a property of interest. It includes current value of a property, the time the reading was
done and the sensor used. This entity is inspired in the “Observation” entity included
in the OGC’s SensorThings data model [86].

The presented solution enables a basic representation of knowledge relevant to the SO.
This representation is intended to be used on-object services hence avoiding/reducing
the dependency on third systems. In case of requiring more complex knowledge repre-
sentations, transformations can be addressed in specific reasoning capabilities. These
can be deployed on-object —when possible by the available hardware configuration—
or consumed as services from specialised remote platforms.

4.5 Summary

We have presented the RbSO software architecture. This architecture provides the
abstractions needed to build autonomous and adaptable SO systems that lack of pre-
defined exogenous dependencies. Smart Objects are seen as containers where multiple

103

roles and capabilities can be deployed in order to build an SO-based software system.
Having an autonomous agent backed by on-object platform services boosts the individ-
ual SO autonomy as there are no dependencies on exogenous directories.

Our approach uses the notions of role, scenario and service-oriented components to
decouple behaviour and functionality from every particular SO. This way, multiple
behaviours can be programmed for an individual SO, or a collective, without requir-
ing changes in the services implementation. This approach enables the development of
goal-directed SO software where the scenarios, for achieving the goals, are orchestrated
from known services.

104

Chapter 5

em4so: A Middleware Architecture for
RbSOs

5.1 Introduction

In the previous chapter, we have introduced our RbSO software architecture and the
abstractions for developing autonomous IoT applications. We have learned that on top
of these, there are some common functions that need to be provided by either a middle-
ware or system level libraries (e.g an unikernel solution).

In this chapter, we present the em4so (Embedded Middleware for Smart Objects) archi-
tecture that covers common functions defined by the RbSOs architecture. Engineering
of a particular middleware solution must be guided by a set of architectural require-
ments. We identify in section 5.2 those that we have considered at least partially. In
section 5.3, we highlight our contributions in the context of these requirements. Then
we give an overview of the architecture to continue explaining its different components.
We detail the common interactions between SOs made possible through the middleware
and particularly the SO protocol (section 5.9). We end the chapter by presenting details
of the implementation prototype we have developed based on the middleware architec-
ture (section 5.10).

5.2 Research Challenges and Requirements

The middleware architecture must enable the provision of operations that are com-
mon to multiple SO applications. These can be available as a mix of platform services

105

available in runtime and as reusable programming routines that access those services.
Hence, one first challenge is to determine how to offer the required function. The key is
to reduce the programming effort by moving design-time decisions to runtime through
configuration of on-object platform services. In addition, for the volatile and heteroge-
neous nature of IoT environments it is important that a middleware architecture gives
support to a decentralised decision-making and coordination.

In regards to specific requirements of the IoT middleware architectures, these have been
identified thoroughly along the literature. We identify here those key requirements that
are addressed by the em4so middleware architecture. We reference works where these
requirements have been identified or compiled elsewhere, if that is the case.

• Realisation of abstractions

Middleware must provide the concrete architecture and a set of reference func-
tionalities using the defined abstractions for enabling development of SO-software
systems. The focus of this middleware solution is in providing functionality that
enables dealing with relative autonomy and adaptation of heterogeneous SO’s,
not only at individual level, but also at collective level. This way, the software
engineer does not need to design and implement new solutions for autonomy and
adaptation for every new application.

• Device Management [101]
Offering dynamic discovery and configuration of different sensors, actuators and
interfaces (E.g. Network) the SO might have.

• Context Management[63, 101, 90]
It refers to processes from information acquisition to reasoning using contextual
information including digital, physical and social attributes.

• Data Management [101, 37]
It covers operations to configure generation, store and make available the data
generated by the SO.

• Service Management

These are related to the catalogue of services offered by an SO and its lifecycle.
Beyond the service discovery, it also involves dynamically discovering services
atop of the particular hardware architecture and making them available/unavail-
able for an application.

106

• Application management

Operations to allow an SO to dynamically active/deactivate and change configu-
ration of applications running on top of the SO.

• Social engagement

Since the SO is also a social entity, middleware must provide functionality to
enable SOs to engage in social interactions beyond bare communication. Hence,
based on the available abstractions, the middleware must enable:

– Cooperation between two or multiple SOs, either performing actions or
sharing knowledge.

– Keep and manage knowledge of previous interactions for decision-making
about future interactions.

– Use knowledge about other SOs in a collective to make decisions about
individual and common goals.

• Enable SO Evolution

This has been identified as a characteristic of SOs by Kawsar [62], but not incor-
porated as a middleware feature. On top of the available abstractions, middleware
must support capability upgrades when the SO’s hardware configuration allows
it.

5.3 Contributions

In this chapter, we address the shortage of practical approaches for decentralisation of
autonomic functions (See section 2.3.5) with the following contributions:

• A em4so architecture for SO software that enables taking advantage of on-object
resources for decentralised decision-making at collective level while reduce de-
pendency on exogenous platforms or systems. Thanks to the middleware archi-
tecture an RbSOs is able to keep working even if there is no connection to other
systems or SOs. Our focus here is in local (decentralised) on-object processing,
in contrast to delegate it to remote platforms.

• A role-based p2p coordination and discovery method for SO. This method en-
ables to locate and coordinate with available SOs without requiring a remote
platform-based address repository. Since a role might encapsulate multiple ser-
vices, there are less frequent discovery requests compared to do it at service level.

107

• Definition of an approach for providing autonomic runtime services for the key
SO processes including lifecycle management, capability discovery and cooper-
ation with other SOs.

• Definition of an approach for using information gathered from single communi-
cations to drive long-term interactions and adapt to context.

5.4 Middleware Architecture

5.4.1 Design Principles

Middleware is well known as a facilitator of the software development process. Its role,
from the software side of the SO, is to reduce the development effort. This reduction
either comes in the way of providing software libraries with pre-defined solutions to
recurrent problems, or it comes as a set o runtime services that transform development
effort into configuration and management.

The aim of the em4so architecture is to work as reference for building middleware so-
lutions that enable development of SO applications, on top of it, with by default support
to relative autonomy and adaptation functions. In contrast to leave the SO behaviour
approach open for the application developer. The approach is to define a minimal set
of functionalities that are common to multiple SOs and application domains and embed
those within each SO as the basis for building applications.

The middleware is then deployed in every SO. There is no assumption about a common
platform to which all SOs have access to and provide services to all of them —E.g. di-
rectory, semantic reasoning, etc.— Instead, the middleware provides minimal services
for each SO that enable it to communicate, reason and adapt to changing situations.
From the approach used for enabling autonomy and adaptation, the middleware can be:

• API-dominant

It means that SO behaviour is enabled mainly through API services, requiring
extensive software development effort. E.g. Goal and plan definition involves
programming. The SO software when deployed only fit for the purposes envi-
sioned during development time. Changes in the goals and plans require software
components to be adapted.

108

• Configuration-dominant

It means that SO behaviour can be configured from the middleware services with-
out changes in the software components. E.g. Configuration-dominant goal defi-
nition gives users direct access to drive SO behaviour by defining new goals that
fit the deployed software and hardware architectures.

The Configuration-dominant approach is preferred, as it provides a straightforward sup-
port to delegation, through goal definition. It is also more secure as goals and plans do
not require changes on core source code and these are constrained by the existing SO

software, limiting the scope of the modifications.

Enabling Social Features

As an agent itself, the SO is situated in an environment, therefore social abilities are
another key characteristics of the SO which are common to every application domain.
Use of the knowledge about social interactions is key for adaptation at collective level
but also can be used for SO’s individual decisions. Subsuming agent and social theory
literature [12], the following have been identified as key SO features that can be enabled
from middleware services and routines:

• Communication
Communication is a well known and a common use of the middleware infrastruc-
ture. The communication approach must avoid constraints on other SO features,
particularly autonomy. At application level communication, pure peer-to-peer
approach avoids exogenous dependencies which makes it suitable for SO com-
munication. Middleware then must provide mechanisms to create an overlay
network in order to enable P2P SO communication. At lower levels, middle-
ware must enable the developer to deal with heterogeneity of protocols and avoid
constraints to particular choices. It must enable utilisation and selection among
available choices according to each SO hardware resources.

109

Table 5.1: Infrastructure functional blocks for architecture

Agent infrastructure
Lifecycle Management Create, activate and deactivate software agent
Knowledge Management Create, maintain and store knowledge
Reasoning Make decisions based on existing knowledge
Perception Monitor and pro actively sense environment in search for stimulus and changes
Communication Receive and send messages from other agents

Cyber physical infrastructure

Device Management
Discover, active, deactivate cyber physical
devices

Context Management Acquisition, modelling and reasoning [90]
Data Management Sense, store, clean and prepare data of interest

Application Infrastructure
Service Management Discover, publish, maintain and select services of interest
Application Management Create, activate, deactivate supported SO-based applications

Autonomy Framework
Goal Management Definition, organisation, prioritisation, update and removal of goals

Plan Provision
Definition of strategy and configuration for plan generation E.g. definition and
discovery of pre-designed plans within a library

110

• Cooperation
Relying on other SOs in order achieve a goal, involves delegating control of part
of the goal to them. It is not the function of the middleware components to de-
termine the exact balance of cooperation and autonomy, i.e. to what extend, a
task is delegated, and the data required to achieve that task, is distributed. This
balance depends on every particular use case and application domain. The role
of middleware goes until providing services that enable cooperation. Based on
communication protocol and services, middleware architecture must provide a
mechanism for enabling SO cooperation. The cooperation types to support in-
clude knowledge-based and activity-based as discussed in section 3.6.5. That
means the definition of a coordination approach between SOs within a volatile
environment is also required. The use of roles as part of the conceptual model
enables flexible coordination uncoupled from specific SOs.

• Collective Adaptation
The social context of the SOs is dynamic and includes mainly other SOs within
the environment and the interacting end-users. From an internal view, the SO

must adapt its operation to the context. For a default adaptation strategy the
middleware must include services dealing with cooperation scenarios. The SOs

are immerse in a environment containing large number of SOs, it is key to select
the more suited SOs to cooperate with. The selection made for one scenario is
not static but it should be prone to change and adapt to new conditions as the SOs

and their properties are dynamic. Selection of the SOs can be based in multiple
criteria, for example related to hardware resources —E.g. available resources—,
performance, location and trustworthiness —E.g. the time SOs are known by
each other–, among others.

5.4.2 em4so Architecture Overview

The purpose of the em4so middleware architecture is to provide the common functional
components that enable the realisation of the RbSOs approach. This way, applications
can be designed and built on top of middlewares implementing this architecture. Since
the SO is a single Cyber physical entity, the architecture covers not only functional/log-
ical aspects but also physical deployment considerations to enable different configura-
tions according to application requirements.

111

From middleware requirements and building from literature [118, 21, 104, 30], func-
tional blocks satisfied by the infrastructural component of the middleware are identified
in table 5.1 on page 110. The proposed architecture is presented in figure 5.1, this is
built from our work presented in [92]. The architecture presents the central compo-
nents arranged in two levels and a set of supporting facilities. This structure is inspired
on the enterprise organisations. The idea is to distinguish the functions related to the
regular operation of the SO or particular parts of it —Management Body— from those
concerned with the overall achievement of the SO goals —Governing Body—. These
functions are fundamental to any SO and so are common along multiple application
domains. How these functions are implemented and deployed has impact on the over-
all autonomy of the SO i.e. it affects all defined goals. In addition, the architecture
groups those functions that might vary from one SO to other and that require ad hoc
programming efforts —Support Facilities—. How these functions are implemented and
deployed has impact on the autonomy relative to particular goals.

These facilities are not coupled to the a central components of the architecture and
have multiple purposes. These can vary and allow for tailoring to specific SO hard-
ware platforms and supported communication protocols. Besides, these also enable
the evolution of the SO’s central infrastructure as facilities can provide extra services
for enhancing management and governing functions. Finally, these facilities allow for
reusing of existing frameworks and APIs specialised in dealing with particular prob-
lems. E.g. hardware manufacturer APIs, data storage or network communication.

The specific middleware solutions, implementing this architecture, must provide run-
time services for the two identified bodies and API access for the particular SO platform
services. E.g. A Capability Manager (CM) runtime service must deal with the lifecycle
of the capabilities deployed in an SO, whereas the capabilities have to be programmed
individually and made visible to the CM through the use of the supplied API. This way,
the architecture allows to achieve different deployment configurations by exploiting the
resources available on object.

Since the RbSOs approach is driven by the agent paradigm and MAS, the most nat-
ural way to make it concrete is to rely in an agent platform. An agent platform provides
then the basis which enables middleware functional blocks. Rather than imposing de-
pendencies, the agent platform services are deployed locally, and with the SO commu-
nication based on a p2p protocol, the SOs have what they need for its basic operation.

112

Figure 5.1: Logical View of the em4so Architecture

Governing Body

Management Body

Governing Body

SO
Controller
(SOC)

Reasoning
Engine
(RE)

Knowledge
Base
(KB)

Capability
Manager

(CM)

Social
Interaction
Mgr. (SIM)

Knowledge
& Storage

Mgr. (KSM)

Device Facilities

C
om

m
un

ic
at

io
n

Fa
ci

lit
ie

s

E
xt

ra
Fa

ci
lit

ie
s

SO Applications

There is a trade-off between the adaptability given by moving decisions from design
time to runtime and the easiness of the quality assurance process for the system. In
other words, the middleware, built using the proposed reference architecture, enables
the development of applications that can change in runtime making it difficult to spec-
ify, validate and verify the SO systems at individual and collective level. This is a char-
acteristic of adaptable systems because their behaviour is not completely deterministic.
This lack of determinism brings risks to the software system as whole, including reli-
ability, security and correctness. For example, it is not possible to predict which SO,
in particular, will be used to complete a scenario. If a failing SO is picked, it might
cause a malfunction of the whole collective ending up, in a scenario failure. Besides,
an untrustworthy SO represents a threat as the capabilities offered can be used to exploit
collective vulnerabilities.

One way we mitigate these risks is through the Social Interaction Manager (SIM) and
the SO protocol. First, the SO protocol enables the definition of rules for the forma-
tion of collectives, enabling filtering of SOs that join a collective (See section 5.9.1).
Second, since the lack of hardware resources can be a source of failures in SOs, the
SIM gathers information about SO members of the collective including the Declared

Resources Profile and the Current Resource Availability (See section 5.7.2) for using
when selection the SOs to collaborate with. Finally, the Extra Facilities (See section

113

5.7.3), enable the middleware architecture to extend incorporating additional security
or reliability monitors. This is not ideal solution for scenarios with strong safety and
security requirements, however most smart scenarios in homes, buildings, industries or
cities that benefit of the flexibility and adaptability provided by our architecture.

In the following section we provide further description of the em4so architecture com-
ponents.

5.5 Governing Body

This body performs decision-making, defines and controls how the whole SO infras-
tructure, capabilities and applications are managed in order to achieve the defined goals.
The focus here is on the processes related to the purpose of the SO, i.e. what the SO

has to carry out. These components ensure that decisions are taken, balancing the dif-
ferent goals that have been set for the SO. It also ensures control of the plan lifecycle
for achieving the goals, which is the way of controlling the overall application flow.

5.5.1 Smart Object Controller (SOC)

This is the autonomous software agent responsible for keeping the SO up and running
according to goals specified. For doing so, first of all it gathers information about itself
and the environment (context), making it available for the SO operation by populating
the KB through the KBM. This setup process involves the loading of available goals,
the SO’s infrastructure, applications and the relevant properties of interest from the SO

and the environment as well as the available capabilities to sense these. One example
of the information the SOC obtains in the setup, with support of the Device Facilities
(Section 5.7.2), is the Declared Resource Profile (DRP). This is a set of calculated val-
ues from the SO’s hardware configuration that give an indication of the SO’s power and
are shared with other SOs of a collective for the SO selection (Section 6.5).

After setup, architectural components and capabilities are in charge of updating sta-
tus of loaded entities (goals, capabilities, properties, etc.) through KBM. SOC then
queries for the updated status through KBM. Based on the goal status, it triggers rea-
soning process through the RE and determines which actions to carry out. This is a
cycle as the one depicted in Algorithm 1 which is an adaptation of the abstract agent
loop proposed in [104]. Actions to perform are not only reactive to changes in the SO

114

context but also pro active based on the existing knowledge.

The SOC monitors Management Body, triggering particular operations on each com-
ponent based on the goals and the decisions made through the RE. This component
makes possible the goal-driven behaviour of the SO, which is a condition for the rela-
tive autonomy. The design of this component enables goals to be defined as uncoupled
configuration documents that might change during runtime. The SOC monitors these
changes and trigger the required reasoning process to deal with these.

When working towards a goal, the SOC uses the RE to determine the plan and ac-
tivities to carry out for that goal. The SOC controls the execution flow for each plan
and then, it is in charge of using each specific service linked to the actions of each
activity. The SOC follows the plan and activity workflows, it uses the CM to localise
on-demand the service associated to each action. In order to process each action, the
SOC checks that preconditions defined for each activity, through the activity definition,
are met.

Each workflow is intended to be implemented as separated processes/threads, in that
way, each process/thread is blocked until it receives the references of the services it
requires, but it does not block other workflows. After a service associated to an action
is triggered and an activity is completed, the SOC checks the preconditions of the next
activity to keep working until completing the plan. When the service output involves
changes in the states of the attributes of entities of interest, the KSM is triggered in
order to transform those in beliefs to update in the KB.

115

input: A boolean for periodic checks of SO’s structure: setupRequired
1 /* goals, activities, roles, capabilities and

devices are part of the KB available at global

scope */

2 if setupRequired then
3 checkDeviceChanges(devices);
4 checkCapabilityChanges(capabilities);
5 performKBMaintenance();

6 end
7 pendingGoals ← traverseGoalHierarchy();
8 for goal in pendingGoals do
9 observations ← observe(propertiesOfInterest);

10 updateKnowledgeBase(observations);
11 activities ← reason(goal); // goal conditions satisfied

& plan (list of activities)

12 for activity in activities do
13 triggerActivity(activity) ; // include the activity

in the set of pendingActivities to be executed.

14 end
15 updateGoalState(goal);

16 end
Algorithm 1: High-level SO Controller Loop

5.5.2 Knowledge Base (KB)

It is designed to store knowledge, relevant to the SO operation, either generated by it-
self or by the context. Beyond the entities defined in sections 4.4.2 and 4.4.3, no other
particular knowledge representations are enforced, leaving that open to middleware
implementation. The KB is composed by the set of beliefs of the SO. The architec-
ture allows for storing of preconceived and generated beliefs (Section 4.4.3). The set
of preconceived beliefs related to the multi-domain entities is based on the ontology
presented in section 4.4.2. These are part of the middleware architecture and come
pre-stored in the KB. The remaining preconceived beliefs are specific for the domain
or application and must be loaded, by application programmers, for every particular
implementation. These Knowledge Items and attributes include, for example, measure-

116

ment units, existing human users, types, locations —E.g. living room, meeting room,
office, home, park, etc—, their topological, composition and different types of rela-
tions, among others.

The KB persistence strategy is particularly important to ensure the SO autonomy. KB
is designed to be distributed and based on semi-structured data storages. As the KB
incorporates the regular observations according to the SO applications, the repository
might grow very fast. The KB is designed to have a cache repository on-object, this
is refreshed and managed by KSM. This cache includes the core multi-domain model
(E.g. goals, roles, activities, plans, etc.) and the most recent used Knowledge Items.
This way, SO will be able to make decisions and operate even in connection-less situa-
tions.

Control over KB contents is approached through determination of access policies for
the KB, mainly applied on the data generated for the properties-of-interest and the of-
fered services (capabilities). In this way, there are three levels of access: private —only
available for the SO—, public —available for any object or application— and specific

—allows to define a set of authorised URL. These policies are considered when the KB
is exploited for a particular activity via the KSM.

5.5.3 Reasoning Engine (RE)

It enables the SO to develop beyond a purely reactive behaviour. The SOC component
requests the RE to performs the decision-making process, choosing activities to carry
out and the plans to follow. The RE is designed to provide a basic solution for decision-
making on-object. The reasoning is inspired on the means-end reasoning used in the
Belief-Desire-Intention model proposed by Georgeff [40] (See section 2.3.1). This rea-
soning, also known as practical reasoning, is based on deciding what state of affairs to
achieve and how to do it [117].

In our case, the RE determines the next goals to execute by examining the proper-
ties of interest being monitored. It receives from the SOC the work to be done in terms
of goals with unachieved status. Then, it evaluates goal conditions according to pre-
existing and performed observations in order to determine which plan to invoke given
the current status. Generic scenarios are pre defined in the KB, these define template
plans including: list of activities, conditions to be met for triggering, required knowl-

117

edge and data to process. The RE chooses the scenario linked to the goal. Once the
SOC triggers the scenario, the RE queries the KB to obtain the current beliefs that
match the evaluation terms.

The RE allows for querying over pre defined goal plans or for generation of the plan
based on available activities. Meta-data for each activity includes post-conditions in
terms of properties of interest which can be matched to goal’s target state —also ex-
pressed in properties of interest— in order to backward-chain the plan generation.

When reasoning for triggering goal plans or determining if conditions of an activity
have been met, the existing beliefs might not be enough to determine a resulting action
for a given state of a property of interest. The RE calculates new relations based on the
existing ones. For example, based on the topological relations the location of one entity
of interest can be obtained, even if the location is not recorded as one of the attributes of
that entity. Concretely, if an Object A is next to other B which is within the living room,
the RE determines that both A and B are within the living room even if there is no rela-
tion between the Living Room entity and the Object A entity. An attribute representing
the fact that Object A is also within the Living Room entity is then generated trough the
KSM for Object A: “within: LivingRoom”. Hence, the observations coming from any
of these objects can be used for evaluation of conditions for a particular activity or plan.

The on-object RE allows for autonomy from cloud platforms. However, the process is
highly constrained by the resources available. A more extensive process would require
capacity for both processing and storage of huge amounts of beliefs. For this reason
RE also works as a proxy, enabling consumption of local or remote services provided
by more powerful and specialised, reasoning platforms (Section 4.4.2). This design
enables configuration of different degrees of autonomy from reasoning platforms.

5.6 SO Management Body

The management body is the group of three managers that enable the SO operation
with different degrees of autonomy. The focus here is on how the SO carries out,
executes, the decisions made at Governing level. These managers monitor and act,
using their facilities, over their elements of interest. E.g. capabilities, knowledge base,
or communication protocols. The purpose of this body is to uncouple the key multi-
domain SO functions from the actual constraints imposed by the particular hardware

118

and software platforms. E.g. a network interface. In addition, instead of enabling
API-level interaction to the programmers, these managers offer runtime services based
on the SO configuration. These are aimed to ease both programming, as routines are
provided by the em4so architecture, and management tasks during the SO operation.
Having this body per se does not implies a particular degree of autonomy relative to a
goal. This varies, according to the deployment of the capabilities, the knowledge and
communication services.

5.6.1 Capability Manager (CM)

This is an autonomic manager responsible for discovering, on-demand loading/unload-
ing and configuring of the capabilities required for the SO activity execution. The
capabilities are realised as service components that are developed atop of the available
hardware and software platforms. Therefore, the capabilities are not coupled to the
middleware architecture itself but are part of the specific programming for each par-
ticular SO. The capabilities are deployed in the local directory recorded in the em4so

configuration files.

The CM works at service level and has a double role, one as consumer and the other as
provider. As provider, the capability manager detects, at runtime, available capabilities,
extracts the meta-data describing them (E.g. contract, data parameters, host/location,
category, etc.) and store it in the KB via the KSM. This way it is accessible by the
RE when determining how to deal with a particular SO activity. It also updates the ca-
pability locations when these change if the SO is mobile. The capabilities are specific
for each SO and can be based on hardware components (E.g. sensor, actuator, network
interfaces or peripherals), other API-enabled software libraries or ad hoc programmed
routines. In order to use a particular capability, this manager dynamically loads execu-
tion instances based on the stored meta-data. It is in charge of either the creation of new
instances or the allocation of existing stateless objects having the capabilities/services
implementation. The specific data to use when invoking the services comes from the
KB. It can be either gathered from the SO operation, pre-defined by the SO Developer
or configured by the SO (End-user) Manager.

As a consumer, the CM is responsible for allocating the capabilities (services) required
by the SO for a particular plan. It carries out the search, selection, request and usage
of the services required. These services can be hosted locally or in remote/cloud plat-

119

forms. It allocates the services that best suit the decisions made in the Governing body
and binds them making them ready to be used by SOC. The selection of services is
part of the adaptation strategy and is presented in section 6.6. If a service is hosted by
another SO, the request for using that service is managed through the SIM component.
The selection of a particular service has impact in the autonomy of the SO. The moti-
vation of one service or other comes from the given goals and the current state of the
SO itself —E.g. resources— and its context. Different configurations of on-object and
cloud services are then possible resulting in different degrees of autonomy for specific
goals.

5.6.2 Social Interaction Manager (SIM)

The SIM emphasises the existence of the SO as one entity within a social context,
surrounded by other SOs, systems and end-users. This is a runtime service with two
purposes. The first is managing the communication of the SO and other SOs, systems
and end-users. The second, is about adapting the SO to the social context by managing
the roles the SO plays within an collective for the existing scenarios.

This component goes beyond establishing communication and transmitting/receiving
messages to a particular actor (E.g. SOs). Since every SO has a reduced “contact list”

including the known SOs, this component triggers the routines to manage that list based
on the previous interactions the SO has had with those in the list. The “contact list”

records not only the network location (E.g. IP address) but also a reference to the phys-
ical location which is transmitted by the neighbour SO. In this way, the SIM cleans the
list removing SOs that do not meet the criteria which comes from the user preferences
matching the actual interactions with every SO. For example, if an SO is committed to
carry out an action within a time window but it did not accomplish it, this could cause
SIM to flag this SO as candidate to leave the “contact list” if a slot is required for a
new SO.

The SIM also considers long-term interactions instead of single communication acts. It
records available information about the SOs with which it interacts in order to consider
it for decision-making by Governing Body. When queried, SOs store key information
from each others. The SIM is responsible for triggering update and cleaning routines
for the KBM in order to keep KB updated with relevant cooperating SOs. This process
is progressive and depends on the available connections.

120

This component encapsulates the heterogeneity of the communication protocols and
the participants. The SIM includes a message processor which receives and transmits
SO-level messages according to the SO protocol (Section 5.8). It uses the communi-
cation capabilities based on supported protocols to receive/transmit messages from/to
senders/receptors. The capability must include the mapping between the SO protocol
and the particular communication protocol implemented.

Roles played by an SO are dynamic during its lifecycle. The SIM ensures consis-
tency of the common roles and scenarios definition and enables or disables specific
roles according to decisions made by Governing Body. To ensure consistency, for each
collective the SO might belong, the SIM has two mutually exclusive modes: change

promoter or change adopter. Change promoter is only activated through a special con-
figured role: the collective organiser. This role is intended to be initially assigned to
the SO which is the collective founder, however it might be moved to another SO by the
SO founder administrator. The SO playing the organiser is the only enabled to prop-
agate changes on the roles and scenarios. This way, conflicts between role/scenario
definitions are avoided as there is always a unique valid definition. If the collective
founder is not available, the available SOs can still keep working with the definitions
they have available —local copies—. When joining a collective, every SO whose SIM
is in change adopter mode, overwrites its own role definition (instance) with the one
provided by the access SO1. In addition, on start up and periodically when changes on
the roles are received or changes in capabilities are communicated by the CM, the SIM
checks that activities included in the role are supported by the SO capabilities and that
bounded remote services are available. When the role is not fully supported, the SIM
disables it.

The SIM enables the SO to control the type of interactions it is able to engage in —E.g.
the message request is going to receive from other SOs– by disabling playing roles.
This adaptation can be triggered for example when there is a lack of resources in the
SO, E.g. battery. The SIM records the SOs within the network that are playing a partic-
ular role. When disabling roles, to avoid disabling a scarce one, the SO Administrator
might include a rule for the SIM including a threshold of a minimum roles available to
allow disabling a role. The SIM component allows the SO for self-configuration of dif-
ferent degrees of autonomy from other SOs. These configurations arise from the goals

1the SO that has served as access point to an entrant SO to join the collective

121

defined and the available role players. More details on the role management, as part of
the adaptation strategy, are presented in section 6.7.

5.6.3 KB and Storage Manager (KSM)

It provides access to the KB to the rest of the components. It encloses CRUD methods
altering the contents and the structure of the repository hosting the KB. This is the only
component accessing the KB, when required by the SOC. The main operations run by
the KSM are:

• Transform raw observations into Knowledge Items. The transformation consists
of update current value for attributes of the Entities of Interest to which the ob-
servation is related to.

• Create new Knowledge Items derived from the RE outputs.

• Ensure a periodic replication and cleanup of the KB based on pre-defined SO

configuration.

• Monitor use of beliefs to determine candidates to be excluded from the cache

The KSM component can be extended by ad hoc capabilities providing for example
remote backup and storage.

5.7 Support Facilities

These are a set of functions provided via API for the development of capabilities. The
Management Body is able to discover and handle capabilities as long as these are using
the respective facilities.

5.7.1 Communication Facilities (CF)

These provide routines supporting protocols at different levels of the network stack that
enable or extend the RbSOs communication via the SO protocol. The SO protocol can
rely on other application protocols —E.g. agent-based, service-based, etc.— or in pro-
tocols from the network or lower layers of the OSI Model. The agent-protocols are
provided by the platform APIs that encapsulate the low-level network communication
programming. Likewise, web service protocols enable discovery, publishing and con-
sumption of web services on top of web protocols either RPC-based or REST-based.

122

Clearly the programming effort required for a particular SO application in regards com-
munication capabilities will depend on the level of the facilities available for the devel-
opment.

5.7.2 Device Facilities (DF)

When capabilities depend on sensor, actuator or other physical/hardware devices they
need to be configured and its access enabled for development of ad hoc SO capabilities.
This is a common component required and proposed in other Smart Object middle-
ware. In our proposal, it provides interfaces for configuration and use of the attached
sensors and actuators. Methods for adding, removing, restarting, reading, activating
and deactivating these devices are invoked by the SOC. These interfaces are standard,
hiding specific functions provided by Hardware manufacturers. This component calls
underlying low level libraries (E.g. operating system) to adjust sensor and actuators
according to SOC instructions. For example, DF provides the methods for obtaining
the different properties of the SO’s hardware platform. These properties are used to
calculate the Declared Resource Profile and include maximum memory, CPU cores,
CPU cache and CPU clock speed, among others.

5.7.3 Extra Facilities (EF)

These enable the enhancement of the fundamental architectural components. E.g. the
RE or the KSM. The EF offer specialised functions for example covering reasoning, au-
tonomic management, repository administration or data backup, among others. These
facilities can be light offering only functions to access platforms were the services are
hosted E.g. a REST client; or these can be heavy providing the expected functionality
to be exploited on-object.

5.8 SO Protocol

Middleware includes routines for enabling communication and cooperation following
the principles of the relative autonomy. One fundamental function provided by the
middleware is to enable the SOs to discover other SOs they can cooperate with. This is
possible thanks to the definition of an SO protocol. The protocol is part of the Commu-
nication Facilities (Section 5.7.1) provided by the middleware architecture. The em4so

protocol is a simple message protocol based on the Gnutella protocol [38]. Gnutella
is a peer-to-peer file exchange protocol whose approach offers independence of any

123

central directory —or any robust (super) peer— which makes it suitable for avoiding
constraints to the autonomy of the SO.

The em4so protocol adapts Gnutella approach to the SO context and incorporates ad-
ditional elements. The peers are SOs and instead of addressing file exchange; roles,
players and activities are the entities of interest of each peer. The resulting protocol
is basic but cover the key interactions between RbSOs, enabling not only communica-
tion but also cooperation. As Gnutella, the em4so is an application level protocol that
is aimed to work over internet protocols. Messages are composed by a header and a
payload. The header carries the meta-information of message: a message id, the Time-
to-live (TTL), hops and a payload descriptor. The novel elements of em4so protocol
are summarised below.

• New primitives

Four new primitives are incorporated to allow coordination for cooperation based
on activities and also for knowledge transfer. Table 5.2 presents the complete set
of primitives and its description.

• PING & PONG payload

PING messages include a payload. This is required to describe the entrant SO to
get access to the overlay network as explained in section 5.9.1 and to periodically
update status of the SO within the overlay. PONG payload is variable according
to the PING message received.

• Message priority

For processing messages, these are processed per every SO according to the pri-
ority indicated in table 5.2, being 1 the topmost and 8 the lowest. This enables
messages that have a more direct impact in the SO decision-making processes to
be processed earlier than others.

5.9 Key interactions between SOs

This section describes how the protocol is used to carry out the key processes in which
SOs are involved.

124

Table 5.2: em4so protocol payload descriptors

Primitive Description Priority

Ping
The SO advertises itself and check for available SOs to
communicate with. 5

Pong An SO responds to a ping message sending its own address. 4
Query An SO performs a syntactical query of a role within the known SOs. 7
QueryHit An SO playing the queried role responds to the query. 3

Execute
An SO asks for execution of a given action to the SO playing the role
responsible of this action. 8

Transfer SOs exchange information gathered by each one. 6

Committed
Having received an execute request, if the SO decides to execute
the activity it sends back a committed message to the SO requester. 1

Succeed
Having executed an activity, the SO sends back acknowledge
to the requester. 2

5.9.1 Creating/Joining the Network

The protocol enables the creation of overlay networks that become SO organisations
including only SOs of interest. SOs that join the overlay discover a part of the partici-
pant SOs. A particular SO uses them to get access to their functionality (roles) and to
other SOs, part of the overlay, but which are not directly connected to this SO. These
overlays are built based on a criteria defined by the SO users. SOs are enabled to build
or join overlays that meet that criteria. The more intuitive one is the ownership, as in
the Personal Smart Spaces (PSS)[87].

In this case, SOs only reply back messages from SOs having the same owner. The join-
ing process is depicted in figure 5.2. Every entrant SO must have pre configured the
network address of the access member, which is currently part of the overlay it wants
to join. The entrant SO then sends a PING message to the access member including
as payload the join criteria to use and its introduction. The introduction is the value
for the access criteria, in this case, an identifier of the owner, the pre-defined roles the
SO is playing, the Declared Resources Profile, the Current Resource Availability and a
reference to its physical location. This reference might be exact or approximated de-
pending on how this is obtained. It could be obtained from the attached sensors —E.g.
gps—, from the used protocol —if connection is made trough proximity protocols—
or configured —by the SO Administrator—. Other criteria for access include: proxim-
ity, manufacturer, factory resources and capabilities offered, among others. These are
intended to vary according to the specific domains and applications.

125

If the access member accepts the request, it replies back with a PONG message in-
cluding the welcome pack and its introduction. The welcome pack is the set of updated
role and scenario definitions available within the collective. The introduction is the set
of roles played by the access member. The access member then forwards the PING

message to other known members of the collective that also reply back with a PONG

message. Periodically, the members of the overlay interchange lighter PING and PONG

messages that include only the properties that have changed since the last message E.g.
current available resources, referenced physical location or role offer. This interchange
enables each SO to check for availability of others and update its “contact list”.

126

Figure 5.2: Overlay joining process Figure 5.3: Querying within the overlay

(a) Activity Cooperation (b) Knowledge Transfer

Figure 5.4: Supported cooperation

127

5.9.2 Querying within SOs

During decision-making SOs might require additional information from others to set
their base of beliefs. One example is the updated status of a property of interest —from
the physical environment— they are not able to sense directly. Another one, is the SOs

able to play a role they need for a particular plan, when none of the known SOs is able
to play it.

In these cases, the SO starts the process depicted in figure 5.3 by sending a QUERY

message to the known SOs. Each SO receiving the message searches locally and reply
back with the information if it has found it. For that purpose, it uses the QUERY_HIT

message including as payload the result of the query. In the case of not finding any
result, it forwards the query to others until exhausting the TTL. Every SO has a pre
configured timeout for query operations. After timeout is reached without having re-
ceived any result, the SO looks for an alternative course of action. E.g. wait for some
configured time and then re-attempt or abort the active plan.

5.9.3 Coordination & Cooperation

The em4so cooperation approach is decentralised and includes both knowledge-sharing
and activity-based cooperation. The activity based-cooperation is depicted in figure
5.4a. This relies in the existence of common role and scenario specifications which are
ensured by the collective organiser. The roles, scenarios and activities are defined in
each SO’s KB as beliefs. These are pre defined by the SO Administrator and updated
when joining a collective.

As part of a plan being carried out by an SO, if it requires to ask another to carry out
an activity, it sends an EXECUTE message with the identifier of the activity required.
The SO receiving the request might decide to execute or not, the activity. If it decides
to execute it, it sends back a COMMITTED message to the requester. Otherwise, it just
ignores the request. After execution, the collaborator SO sends a SUCCEED message
back to the requester.

During the plan execution, each SO has a pre defined time out in order to get SOs

committed with activities and to get them done. If the requester does not receive the
corresponding messages on time, it will attempt to carry out again, until, according
to existing beliefs, it has to abort the execution of the plan and the goal. Knowledge-

128

sharing is depicted in figure 5.4b, an SO sends knowledge of interest (KoI) to other SOs

through the TRANSFER message. This KoI includes beliefs that are part of one SO’s
KB and are required by another SO to carry out an activity of a cooperative plan.

5.10 Implementation

A prototype of a middleware based on the em4so architecture was implemented. Whereas
the em4so’s model of operation is based on agents and services, there is no constraint
in the paradigm for implementing the functionality provided by the middleware and the
services. The implementation requires concrete design models to be translated to the
language of implementation.

The prototype design is organised around two main software components:

• Core
It contains the packages and classes for the Governing and Management bodies.
A structural view of the packages and their classes is shown in figure 5.5. It pro-
vides the API that is used by both the platform services and for any capability
implementation.

A closer view of a subset of the classes is presented in figure 5.6. This shows
classes that give access to key services of the RE, the SOC and the KSM. SOC
inherits indirectly from BaseAgent which is a subclass of the Agent class pro-
vided by the agent platform.

• SOManager
This is the main thread for the runtime services. It includes classes for loading
configuration files with the preferences for the SO and a embedded web server.
The web server hosts the core component and the specific capabilities for the
SO. This component triggers the methods of the SO. by referencing the core
component.

The implementation was based in the Java Platform, the EVE Agent Platform and
CouchDB as distributed repository. EVE [56], is a web-based agent platform that works
on top of the Jetty Web Server. Jetty is a “small, fast, embeddable web server and servlet
container" 2. EVE promotes a model in which agents reside in a web environment, it

2http://www.eclipse.org/jetty/powered/

129

Figure 5.5: Package Diagram: em4so prototype’s core component

130

does not rely in a central directory facilitator unlike most FIPA implementations. EVE
is also lighter than other platforms since it offers only an essential agent model focused
on communication, task-scheduling and agent memory management. These are captive
features since it gives flexibility to enhance the platform using ad hoc implementations
of communication protocols, agent capabilities, discovery and selection methods.

The design approach allows the core functionality be kept uncoupled of the web server
implementation. It enables easy replacement of the middleware thread so it can be
based on other server implementation. We extended the EVE platform by introducing
a base agent with pre-defined features and actions common to all agents (E.g. loading
the KB reference). We also included the implementation of the agent domain model
with the elements mentioned in the conceptual model (Chapter 4).

For the RE, the means-ends reasoning was based on rules defined from the each SO’s
properties of interest and their target values, using basic boolean algebra. The im-
plementation of the persistence for the KB is based on CouchDB. It implements a
document-oriented repository using JSON documents. It allows for the definition of
map-reduce functions in javascript and offer a REST interface for operations over the
structure and the contents. Although the EVE platform offers a simple key/value stor-
age interface to CouchDB, it is restricted. So we implemented a custom client to enable
more flexibility of the model for storing the status of the SO. The SO protocol is im-
plemented on top of the EVE inter-agent communication capabilities. These services
wrap agent messages as JSON-RPCs over the offered transports. We worked with
HTTP since it was the most robust choice available3.

The prototype was used for the evaluation of the architecture. Concretely, we devel-
oped the application described in the case study presented in section 7.4. Since the
persistence layer is unstructured and document-oriented we defined design documents
implementing the map-reduce views of the other documents in the KB. Hence, these
views were used by the rest of components to access the SO data. These views in-
clude subsets of the properties of each application documents as goals, observations,
services, knownP layers, among others; and common documents representing pre-

conceived beliefs. We also defined these common documents including concepts,
relations, properties, devices and domains, among others; that are required by RE

3Our proposal does not fundamentally depend on HTTP, so other transport protocols can be em-
ployed.

131

when reasoning about triggering rules. We present some examples of the map/reduce
view scripts and of these documents in Appendix A.

132

Figure 5.6: Prototype Middleware: Class Diagram Excerpt

133

5.11 Summary

This chapter has introduced the middleware architecture we propose covering the com-
mon functions of the software engineering approach for autonomous and adaptable
SOs. The architecture is inspired in an enterprise organisation and components are
arranged around two bodies —Governing and Management— and a set of Communi-
cation, Device and Extra facilities.

Two of the key components are the Capability Manager and the Social Interaction
Manager. The first one has two purposes: as a provider, loading and unloading of
the capabilities at runtime, as a consumer, it localises and binds the services required
in order to carry out the SO’s goals. The second one, manage the communication and
carries out individual and collective adaptation based on the established social relations.

We have described the SO protocol used to carry out the main interactions among
SOs including joining a collective of SOs, querying services offered and seeking for
cooperation. The protocols is based in the Gnutella P2P and enable the creation of un-
structured overlay network for the collective of SOs.

We have implemented a prototype using the proposed em4so architecture. The pro-
totype demonstrated the feasibility of the architecture using available platforms and
tools.

134

Chapter 6

Adaptation of SO-based IoT Systems

6.1 Introduction

The vision of SOs and the SO-based systems includes the existence of self management
abilities, i.e. act as an autonomic system. Self management capabilities implies the au-
tonomy by the SO systems to make decisions in regards how they operate and approach
their goals. We have seen that one of the key process for a relative autonomy is the
generation that might be achieved by means of adaptation. Adaptation as defined in
Cambridge dictionaries is “the process of changing to suit different conditions”1. Since
adaptation is a common function that is required for multiple IoT applications and is in-
strumental for achieving autonomy, it makes sense that em4so middleware architecture
provides an approach for adaptation that takes advantage of its functional components.

In this chapter, we present the adaptation method used by the em4so middleware ar-
chitecture. In section 6.4, we first present the strategy we use in order to provide adap-
tation functions to the SOs built on top of the em4so middleware architecture. We also
distinguish the types of supported adaptation and explain the drivers and how the selec-
tion of the SOs, services and roles are the basis of the proposed adaptation mechanism.
Next, we apply the presented strategy to the selection of SOs (section 6.5), services
(section 6.6) and roles (section 6.7). We present the details and particularities of each
selection process and present the functions and algorithms used.

1http://dictionary.cambridge.org/dictionary/english/adaptation

135

6.2 Research Challenges and Requirements

The SO systems might adapt to multiple situations at both individual and system level.
These situations involve factors regarding the SOs, their resources, the cyber physical
and social environment and the human users, among others. Since it is not realistic to
cover all the possible situations that would require adaptation, the main requirement is
that an SO middleware solution provides a general approach for adaptation that can be
extended to each particular application. This approach should cover some of the typical
situations that we summarise in the following requirements:

• The IoT system must be able to operate with different configurations of SOs.
The approach for achievement of system goals, either individual or collective,
must work regardless of the specific available SOs. Equivalent SOs might have
different characteristics but must share the ones that make them suitable for co-
operating with others in achieving a common goal.

• The IoT system must be aware of and cope with the unavailability of particu-
lar SOs avoiding or reducing the disruption in the achievement of the system
goals. Typical volatility of the IoT environments must be managed ensuring that
a system of SOs, as whole, is able to recover and overcome failure, departure of
individual components, namely, SOs.

• The IoT system must deal with individual SO’s variability. SOs might change
their characteristics while available because of several reasons, for example, mo-
bility, resource exhaustion and behavioural or structural changes. These changes
might have impact in the suitability of these SOs for achieving the system goals.
The system must detect these changes and ensure a proper allocation of task
within the available SOs.

• SOs must identify opportunities to save local resources and adapt its behaviour
and structure accordingly.

6.3 Contributions

The main contribution of this chapter is to provide a decentralised method for the adap-
tation of SO-based IoT systems. This method takes advantage of the RbSOs and em4so

architectures and also uses multi-objective optimisation for selecting IoT services. Our
contribution is in using these known techniques for a decentralised adaptation (See sec-
tion 2.3.5), based on the allocation of SOs, enabling SO collectives to adapt to variable

136

type and quantity of SOs, to the lack of availability of some of them and to changes in
the internal SO structure and behaviour. Service selection and multi-objective optimi-
sation have been used previously in IoT context for allocation of services and nodes.
However, there is a lack of dynamic decentralised solutions that work under the concept
of smart object as autonomous entities (See section 2.5). In this sense, we incorporate
the use of roles and grouping of selection factors enabling us to propose:

• A strategy for adaptation of SO systems based on the dynamic and decentralised
selection of SOs, services and roles and that considers changes in some of the
key factors of the SO systems and its context.

• Definition of utility-based methods for dynamic selection of SOs based on roles
and a localised/decentralised decision-making process.

• Definition of utility-based methods for adaptation of the SO’s internal structure
based on services and roles and a localised/decentralised decision-making pro-
cess.

6.4 em4so Adaptation Strategy

Runtime adaptation implies the ability of the SOs to make decisions according to the
current circumstances and based in a defined criteria. The main operation of the SOs

comes from the execution of the plans for the achievement of a defined goal. These
plans involve sequential or parallel activities to be carried out by one or multiple SOs.
In the case of goals requiring cooperation of multiple SOs, plans provide the interaction
workflow between the different role-playing SOs. From the triggering of an activity to
the moment the individual actions, part of the activity, take place there are different de-
cisions taken by participating SOs that make execution flexible and adapted to current
situation.

Adaption involves decision-making which is, ultimately, the selection between differ-
ent alternatives. If these alternatives are assessed based on parameters that describe
them and the relevant context properties, the alternatives become sensitive to changes
in the context. Therefore, if selection is based on this assessment the best suited alter-
native will change according to the context. For adaptation of the SO systems, these
alternatives present the possible configurations, the task is to select the best fit for the
context and the user requirements. em4so middleware enables adaptation at collective
and individual level.

137

At collective level, a configuration is the set of different SOs that carry out a plan
from the available in the collective. At individual level, a configuration is the different
mix of services and roles that are chosen by a particular SO according to the situa-
tion. Since an SO collective is not centrally controlled by a particular SO or a platform,
the decisions that shape the collective configuration are made individually by each SO.
em4so ensures that a common model for adaptation decision-making is used among the
different cooperating SOs.

There is a trade-off between decentralisation of decisions and the success of collec-
tive plans. On one side, the decentralisation brings independence in the adaptation and
resilience to the SO systems, however it makes an SO collective unable to always en-
sure the achievement of the common goals. This is mainly due to the partial knowledge
that every decision-maker (SO member) has, particularly, when finding another SO to
cooperate with. Although the RbSOs architecture enables prioritisation of collective
over individual goals (See section 4.4.2), the lack of knowledge might lead to decisions
that are not optimal for the collective.

One example is when an SO aims to save energy, this is an individual goal that, at first,
seems also beneficial for the collective as it helps to maximise availability of their SO

members. However, this goal can lead to reduce the services offered by an SO within
the collective, therefore other SOs are unable to request execution of a needed activity.
Although our approach incorporates interchange of information, by SOs, about their
available resources, finding the optimal solution for the collective can not be guaran-
teed. In this case, it depends on the SO collective administrator to determine alternative
scenarios when common goals can not be achieved. To mitigate this situation, the SO

manages its “contact list”, by favouring the SOs it needs (to achieve a common goal)
and that have had successful interactions with it (See section 5.6.2). Considering a
long-term view of dynamic IoT scenarios and where there are multiple SOs offering
equivalent services, we consider our strategy is acceptable.

6.4.1 Collective Adaptation

The collective of SOs is an IoT system composed by the set of nodes —the SOs— that
are connected through an overlay network enabling them to interact and cooperate be-
tween each other. The system achieves its goals by means of the SOs that are part of

138

it. These SOs carry out the actions that collectively lead to the goal achievement. The
em4so SO protocol (Section 5.8) provides the mechanism for sharing and gathering
data between the SOs, part of the collective.

For a plan execution, there is not a unique SO being able to carry out an activity, on the
contrary the SOs offer redundant services that end up completing the required activity.
In addition, the SOs are not always connected and they might move from one space
to other making their services unavailable or less suitable for a task. Therefore, IoT

systems can not rely in specific SOs to achieve their goals. Considering these char-
acteristics, our approach is to enable each SO to, autonomously, select among other
various SOs to cooperate with, according to the current conditions. Since these condi-
tions are changing, every time each SO needs to find an SO to cooperate with, it can
check if the conditions have changed and so find a better suited SO for the new con-
ditions or if the conditions remain, but the SO is no longer available, identify the best
substitute.

In em4so middleware architecture, the uncoupled goal-motivated behaviour of the SOs

(Section 4.4.2) together with the SO protocol (Section 5.8) endow flexibility to the IoT

system to carry out plans without depending in concrete SOs and following the dis-
tributed peer-to-peer approach without requiring a central coordinator. Hence, roles
enable decoupling of the responsibilities and the functionalities from the entities play-
ing the role. In addition, in em4so roles are also decoupled from the specific workflows
leading to the achievement of goals, which are defined by the plans. These charac-
teristics set the basis for the collective adaptation as plans are defined functionally in
terms of roles whose players are chosen dynamically according to the execution con-
text. Over this basis, the collective of SOs faces one fundamental adaptation question:
which SO should carry out the next activity of a plan given the current context?

6.4.2 Individual SO Adaptation

The SO from an individual point of view is an entity that has been delegated some work
to do (expressed in plans), as per the roles and capabilities it has. The em4so middle-
ware architecture is designed to enable the SO to carry out the work in different ways
according to the user preferences and context. The selection of capabilities (services) to
be used for this work is dynamic, as these are evaluated when the activities are triggered
in order to detect changes that might require a different configuration of services for an

139

activity. Besides deciding in which particular goals to engage, SOs make decisions for
adapting elements in its key areas —E.g. structure and behaviour— based on these
preferences and situation. Thus, SOs face three key adaptation questions they need to
make a decision about:

• Which services should it use to carry out an action within an activity and plan?
• Which services should it deploy/undeploy in a particular moment?
• Which roles should it play in a particular moment?

The decisions to answer these questions are made at different moments of the SO life
cycle. Whereas the first one is made when the SO has committed to an activity, the
others are made in a regularly basis as part of the SO’s maintenance goals. In addition,
since the autonomy is relative, decisions made might have impact in the autonomy of
SO for a particular goal and situation.

6.4.3 Adaptation Drivers

The adaptation as whole, including the selection of the SOs, services and roles accord-
ing to user preferences and context, is motivated by a set of decision drivers. The first
decision driver is the functionality, i.e. the SO, to pick for an activity, must have con-
figured the corresponding role that includes the required activity. Besides the function-
ality, non-functional properties i.e. QoS attributes, are used to select among available
candidates —e.g. various SOs playing the same role or various service providers—. We
categorise the key non-functional factors to consider in the context of IoT applications
in groups. The purpose is to ease the configuration of preferences for these factors and
enable comparison of the relative importance of each group to the user.

For describing our adaptation approach we identified four reference groups where the
most relevant attributes for IoT applications can be gathered: trustworthiness, perfor-
mance, efficiency and context. Additional groups can be added without affecting sig-
nificantly the approach, however, the more groups identified, the less the advantage of
grouping factors. We assign every non-functional attribute to one group. For example,
the context group is aimed to gather the most diverse requirements that are specific of
the context where the SO is being used, e.g. location and usability. On the other side,
the trustworthiness group includes, for example, security, privacy and safety factors.
These groups are presented in figure 6.1 and cover characteristics of the IoT applica-
tions that might vary and to which the SOs have to adapt.

140

Trustworthiness

Performance Efficiency
Service Selection
Role Selection

SO Selection
Service Selection

SO Selection
Service Selection

Context
SO Selection

Figure 6.1: Group of Factors Involved in SO’s Decision-Making

The different selection processes address some of these group of factors and together
these cover all of them. The group of factors are the basis for the definition of selection
criteria for each selection, thus enabling the dynamic comparison of the different al-
ternatives and finally leading the adaptation process. Each group includes a number of
metrics that can be calculated in order to compare different alternatives. We model each
selection process as separated optimisation problems whose objectives are defined from
the group of factors identified. The selection of the SOs is a multi objective problem
where objectives are defined by trustworthiness, performance, and context factors. The
selection of services is also multi objective with objectives given by trustworthiness,
performance, and efficiency factors. Finally, the role selection is addressing the single
efficiency group. Each group of factors is defined by an utility function that includes
the assessment of each alternative using the metrics defined for the group. According
to each case, the aim is to maximise or minimise, the utility function in order to get the
best alternative.

6.4.4 Multi Objective Optimisation

For multi objective problems we use the Simple Additive Weighting (SAW) method [26].
It proposes the definition of an aggregated utility function from the weighted sum of
the assessments of the alternatives according to each individual objective involved. The
best candidate comes from maximising the aggregated utility.

In our case, each individual objective corresponds to the group utility of each candi-
date —i.e. SO or service, according to the case— for the group of factors. Thus we
can define the group utility function ugi,j of a candidate cj for each group gi using the

141

arithmetic mean of the factors of the group:

ugi,j(cj) = ̄al,j(cj) =
1
n

n
∑

l=1
al,j(cj), (6.1)

where al,j(cj) is the function that returns the normalised value of the metric l for the
candidate cj and n is the number of metrics of a group gi. Since we want to avoid
having to define a weight for each factor of the group, we leave this as a simple mean,
however, it can also be replaced with a weighted mean then, requiring the user to spec-
ify the weight for every factor.

To resolve situations where two or more alternatives have identical values of utility,
we incorporate the use of rankings for determining the weights. These rankings, de-
fine the order of relative importance, to the user, of each key factor involved in each
selection. This simple approach has a number of advantages:

• Each group utility is a meaningful measurement of the related metrics, enabling
to assess individually each optimisation objective.

• It avoids the need of defining preference weights at lower level, E.g. device
characteristics or QoS attributes. This is consistent with the autonomous SOs as
the user should be able to define preferences at a higher level without the need of
atomic decisions that are left to the SO.

• The consolidated utility shows the dominance of the groups of factors avoiding
conflicts for nondominance of criteria.

For a multi objective problem, we define g as the set of groups of factors such as
g = {g1, g2, ..., gk}, where k is the number of groups identified. For each group, the user
defines the vector r, which includes the set of the rankings of the relative importance
of the itℎ group g compared to the other groups: r = {r1, r2, ..., rk}. Therefore, we
can define the user preferences in regards the relevant groups of factors for a selection
problem as the 2 × k matrix m:

m =

[

gi gi+1 ... gk
ri ri+1 ... rk

]

(6.2)

In practice, the SO Administrator specifies the mentioned preferences per user.

In order to apply the SAW method, we need to transform the rankings r in normalised

142

weights. To do so, we use:

!i(ri) =
k
∑

i=1

1 + k − ri
∑k

d=1 d
, (6.3)

where !i is the equivalent normalised weights for the rank ri.

At this point, we can use the normalised weighted mean to obtain the aggregated utility
uj for each candidate cj:

uj(cj) =
k
∑

i=1
wi ⋅ ugj,i(cj) (6.4)

Thus, we pick the candidates with the maximum utility. In case of candidates with
the same utility, we use the group utility as criteria for settle the final decision. In
the following sections we present how this approach is used for selection of SOs and
services.

6.5 Selection of SO

This process starts with a source SO triggering a plan. It carries out the activities it is
responsible for and then finds and selects a target SO, that is able to carry on executing
the plan, until the plan is complete and the goal is achieved. In this process, the source

SO might have in its “contact list” an SO playing the required role or, since this list is
reduced and there is no room to every SO in the collective, it might need to query for it
(Section 5.9.2).

Once some candidates are found, the SO compares them to determine which one is
the best SO to control the collaborative plan, according to the preferences and context.
Then the source SO sends a request for activity execution to the target SO. As the SOs

are autonomous, the target SO might decide to commit to an activity or just ignore the
request. Ignoring the request causes that the source SO look for another SO to pass
the next activity on. Once an SO has committed to carry out an activity this process is
restarted from the target SO until the goal is achieved.

The aggregated utility for SO selection covers the groups of trustworthiness, perfor-

mance and context (figure 6.1). We have chosen the functions of reliability, poten-

tial performance and estimated distance to target to represent each group respectively.

143

These functions are based on the metrics gathered by em4so middleware for each SO.
Therefore we can particularise Equation No. 6.4, with:

uj(soj) = wt ⋅ relj(soj) +wp ⋅ ppj(soj) +wl ⋅ edtj(soj) (6.5)

where the weights come from the rankings specified by SO Administrator for each
group. For example in a matrix such as:

mso =

[

t p l
1 3 2

]

(6.6)

The SO’s Reliability is calculated from the previous interactions the source SO has
had with potential SO candidates. Every time the SO interacts with another SO, SIM

middleware component (Section 5.6.2) keeps track of these, for example recording
requests, commitments and success of the other SOs in regards a plan activity. The
SO’s Reliability can be calculated with:

reli = �
asj,i
acj,i

+ (1 − �)
aci,j
ari,j

, (6.7)

where asj,i, acj,i and arj,i represent the previous successful, committed and requested
activity executions, respectively, from an SOj to an SOi. � is a constant that enables
to vary the importance given to the successful execution after commitment or to the
commitment itself after requesting. If there has not been any previous data yet, the SOj

uses the data provided by another trusted SO, or in absence, it uses a default arbitrary
score, for example 0.5.

The Potential Performance (pp) gives an indication of the amount of resources available
in the candidate SO and works only for determining which SOs have better hardware
configuration than others. The assumption is that the better the SO’s hardware config-
uration the better the performance in the execution of a plan activity. Since the SO’s
has a mix of Transient and Persistent resources (Section 3.6.4), the pp is calculated dif-
ferently according to the resource usage patterns. For Persistent resources, as these are
stable, we use both the Declared Resource Profile (DRP) and the last Current Resource

Availability (CRA), reported by the SO through the SO protocol (Section 5.9.1). For
Transient resources, as these change very quickly, we use only DRP. In practice, DRP

is a percentage (set by SO Administrator) of the real SO’s hardware resources.

144

We emphasise the Potential nature of this component as it does not consider the cur-
rent SO’s workload that also have impact in the performance. Although having better
hardware configuration —E.g. more CPU power or better sensor quality— generally
derives in a best performance it also attracts more work, as other SOs might choose
the most powerful SOs, implying then a higher workload for an SO compared to others
with low potential resources. However DRP is a stable measurement which is more
reliable than an instant view of the available resources, that for sure, will have changed
when an activity is finally triggered. The pp is not used for a precise work allocation
as it is not an exact, but an estimated, measurement based on the data shared by the
candidate SO about its hardware platform. Having a high workload might be one of the
reasons, of a target SO, for ignoring an activity request. The pp for an SO i is calculated
from:

ppi =
1
2

(

kt
∑

j=1
trej(drpi,j) +

kp
∑

l=1
prel(drpi,l, crai,l)

)

, (6.8)

where trei,j(drpi,j) and prei,l(drpi,l, crai,l) are the functions that calculate the normalised
value, considering all the SO candidates, for each Transient resource j and Persistent

resource l, respectively, from a total of kt Transient and kp Persistent resources. The
arguments drpi,j is the corresponding declared resource profile, from DRP, for the re-
source j and crai,l is the last known available measurement, from CRA, for the resource
l. The particular functions to calculate trei,j and prei,l are not fixed and depend on each
particular resource. These might be as simple as returning the normalised value or in-
clude more calculations.

Consider a simple example with memory (m), CPU (c) and battery (b) as resources
and the following functions:

trei,m(mem) =
memi

∑n
s=1mems

, (6.9)

trei,c(cores, cspd, ccℎ) =
1
3

(

coresi
∑n

s=1 coress
+

cspdi
∑n

s=1 cspds
+

ccℎi
∑n

s=1 ccℎs

)

, (6.10)

prei,b(bac, bav) =
baci ⋅ bavi

∑n
s=1 bacs ⋅ bavs

, (6.11)

where mem, cores, cspd, ccℎ, bac and bav are vectors of 1 × n representing the mem-
ory size, number of cores, the CPU speed, the CPU cache size, the battery capacity and

145

the available battery of the n SO candidates; and the sub index i represents the value for
the itℎ candidate.

For describing the context group we are going to consider only the physical location,
however other attributes can be included. The Estimated Distance to Target (edt) is a
normalised value, calculated from the physical location information that the SOs share
when joining the overlay network. This is updated regularly via the SO protocol, for the
SOs that are part of the “contact list” of an SO. Part of the properties of the SO include
its physical location. There are SOs that have the capabilities backed by sensors —E.g.
GPS— enabling them to report its own location, whereas there are other SOs that are
not able to. In the latter case, we assume the location of the SO is not relevant for
the IoT application or the SO is static. Hence, in this situation, the em4so middleware
requires the SO Administrator to specify the location via a parameter.

By default the SOs will try to locate other SOs that are closer to a given target E.g.
the user, the source SO or a reference point. This reference point is by default the user,
but can be overwritten as the input knowledge of each activity. So this metric indicates
how close the SO is from the target. This calculation depends on the precision of the
location reference available, E.g. outdoor absolute coordinates as GPS, or indoor rela-
tive location. There are multiple algorithms and methods for calculating position and
distance, authors of [4], present an example of calculating distance from GPS readings.
These methods can be implemented as Extra Facilities (Section 5.7.3) or just consume
from existing web services that have these methods already implemented2 and convert
to required units. Therefore we assume we obtain the distance to the target of each SO

candidate and normalise it with a simple quotient:

edtj(soj) =
disj

∑n
s diss

, (6.12)

where disj is the distance to the target of and SOj over the sum of the distances of all
the n SOs candidates. The Algorithm 2 shows the process for the selection of an SO.

6.6 Selection of Services

An SO, as an autonomous entity, controls the invocation of the services it uses to carry
out the job required for an activity and plan. The activity is an abstract service def-

2https://developers.google.com/maps/documentation/distance-matrix/start

146

inition that, in order to be executed, needs the services to invoke with the concrete
requirements for the actions adapted to user preferences and current context. Every SO

has a number of capabilities —realised as stateless services— that are locally —on-
object— available so the em4so middleware is able to manage them. These capabilities
are the main source for actions carrying-out an activity to which the SO has acquired a
commitment. However, as usually the SO is connected to the cloud it might be the case
that other remote service providers are available for the actions. Hence, the SO must
decide which service to consume for the action, considering the available offer.

147

input: A matrix of user’s preferences: mPreferences, Set of pending
activities to trigger for this SO: pendingActivities, A map
indicating the queries that have been sent by activity: sentQueries

1 /* The “contact list" is updated asynchronously

when other SOs respond to query messages. */

2 while pendingActivities ≠ ∅ do
3 activity ← getFirst (pendingActivities) ;
4 candidates ← ∅;
5 theRole ← getResponsibleRole (activity);
6 foundCsos ← queryLocal (theRole) ; // Check “contact

list”

7 if foundCsos ≠ ∅ then
8 for cso in foundCsos do
9 gUtilities ← calculateGroupUtilities(cso) ;

// (6.1)

10 utility ← calculateAggrtdUtility(gUtilities) ;
// (6.4)

11 candidates ← add(candidates, cso, gUtilities, utility);

12 end
13 selectedso ← maxUtility(candidates, mPreferences) ;

// 1) by aggregated utility 2) by dominance

order

14 sendExecuteMsg (selectedso, activity);
15 pendingActivities ← remove (activity);

16 else
17 if contains (sentQueries, activity) ≠ true then
18 sendQueryRoleMsg (theRole) ; // Send query

message to known SOs (Section 5.9.2)

19 sentQueries ← addQuery (sentQueries, activity)

20 end
21 end
22 end
23

Algorithm 2: SO Selection

148

The flow for allocation of services starts when the SO has committed to do an ac-
tivity. The services are bounded the first time these are used, so the subsequent times,
the bounded services are used instead of doing a full search and selection process. The
SO gathers, through CM middleware component (Section 5.6.1), the current state of the
preferences and the context data required for the activity. The bound services are only
updated if there are changes in the requirements or the availability of the service.

The selection problem is slightly different to the SO selection presented before. One
particularity is that the number of services that might be potential candidates is higher
than the number of SOs that are part of a collective. The service selection has been
tackled from different perspectives and researchers have overcome this problem with
different strategies. Our search and selection strategy is based in the pre-selection of
a reduced set of services in order to then selecting over it the best fit for the service.
This strategy has been previously applied, by service selection researchers, for example
in [5, 67], with different calculation methods and criteria for making the pre-selection.
We subsume this approach as an extension of our base adaptation strategy presented in
section 6.4.3.

Another particularity of the service selection is that usually preferences, as well as
concrete non-functional requirements, for each service are specified as values of QoS

attributes. Service selection researchers have identified and proposed a vast number of
QoS attributes and methods for calculation and assessments. Although having a fine
coarse grained definition of preferences and multiple QoS attributes with sophisticated
calculation methods might fit concrete needs and give more control to the user, in prac-
tice, it evidences a lack of delegation towards the SO. In addition, the more complex
the calculation method the more time it takes to gather arguments for calculation and
selection which is challenging in constrained resources objects.

We organise the QoS attributes in the groups of the factors previously presented (figure
6.1). Some examples of concrete QoS attributes are:

• Trustworthiness: privacy level profile, reputation, reliability, security profile, etc.
• Performance: response time, precision, range, accuracy, etc.
• Efficiency: CPU usage profile, storage usage profile, energy usage profile, etc.

Note that many of the performance attributes are specific for the type of service, for
example, services backed by a physical sensor might be described with attributes about

149

the precision of the sensor but also the reading range, which are assumed to be argu-
ments of the service. Note also this list is not exhaustive, as we said, multiple other
attributes exist an so the methods for calculating them. The more the QoS required to
consider, the more values will need to be specified by the user for its preferences. Each
QoS attribute is classified by the CM according to the preconceived beliefs.

For service selection, besides the relative importance of each group of factors we define
the tolerance level for a set of related QoS. This avoids the need of defining tolerance
for each particular QoS attribute. Thus, we extend the matrix m presented in Equation
No. 6.2 with another row ℎ representing the normalised tolerance for the specified
value in each QoS value of a group g: ℎ = {ℎ1, ℎ2, ..., ℎk}. As a result, we can define
the general preferences of an SO’s user as the 3 × k matrix m′:

m′ =

⎡

⎢

⎢

⎢

⎣

gi gi+1 ... gk
ri ri+1 ... rk
ℎi ℎi+1 ... ℎk

⎤

⎥

⎥

⎥

⎦

(6.13)

Thus, for SO’s service selection the three important groups of QoS attributes are:
g = {t, p, e} with t,p,e trustworthiness, performance and efficiency respectively. Hence,
one example of the concrete preferences of an user can be defined with the 3×3 matrix
m′
so:

m′
so =

⎡

⎢

⎢

⎢

⎣

t p e
2 3 1
0.2 0.5 0

⎤

⎥

⎥

⎥

⎦

, (6.14)

where the most important factors are efficiency, trustworthiness and performance, in
that order, with efficiency as the dominant factor. Likewise, it indicates that the user
has no tolerance for the QoS attributes of efficiency but is relaxed about performance

attributes.
Calculation for trustworthiness and efficiency QoS attributes is common for every ser-
vice, so we can define it. The values for the trustworthiness group are initially calcu-

150

lated with a simple ranking as follows:

at(sj) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 sj is locally hosted

2 sj has High reputation

3 sj has Medium reputation

4 sj has Low/Unknown reputation

(6.15)

In the case of remote services, we assume the Service Directory records reputation
based on the scores given by other service users after interaction. After the first use, the
SO records the state of services attempted and their response, thus enabling calculation
of reliability in further uses.

The QoS attributes for efficiency are defined mainly in terms of usage patterns for re-
sources. For locally hosted services SOs record the usage of the key resources (CPU,
battery and storage) every time a service is invoked, this information is used in further
selections. We are describing decisions made from the SO perspective, it means that
efficiency only takes into account the resource usage of the individual SO instead of a
whole collective and remote services.

Hence, the resource usage of remote services only considers the resources for invoking
the service, sending the required data arguments through and receiving the response.
This enables, that by means of Extra Facilities the SO is able to offline classify —
E.g. using the k-means algorithm [53]— every observation of resource usage for all the
services, to fit a reduced group of usage patterns (E.g. high, medium and low). This
classification provides a relative scale to compare services, according to the resource
usage. Thus, SO is able to autonomously gather the service usage patterns and tune
them to the underlying hardware platform efficiency. For example, if the energy con-
sumption (battery degradation for a battery-powered SO) of using the network interface
for requesting/getting response to/from a remote service is low, it makes the SO select
these services over the local hosted. On the other hand, if the energy consumption for
the same task is the same or higher, compared to running a service locally, the decision
is clear on invoking the local service, if available. Therefore, efficiency based on the

151

usage patterns can also be simplified to the ranking:

ae(sj) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 sj has Low resource usage

2 sj has Medium resource usage

3 sj has High resource usage

(6.16)

For the performance group, another ranking might have been specified, however it has
less value as the QoS attributes for assessing each service’s performance are highly
heterogeneous, so it is more suitable to define performance in regard to every particular
service domain. As the set of candidate services might be large, we firstly pre-select
a reduced set, working only with the group g with the highest ranking. This group is
generally the most restrictive (less tolerance) group also, ensuring a well reduced set as
the starting point. With the reduced set we calculate the remaining group utilities. The
algorithm No. 3 shows the process.

6.6.1 Selection of Deployed Services

There are contexts where local capabilities might not be required due to availability or
more suitable remote services. For example, when sensor precision is the key perfor-

mance QoS requirement and the sensors available for the SO do not meet the expected
level. Once capabilities are deployed, these consume resources that might be allocated
to other activities. Since these capabilities are realised as service components, these
can be deployed and undeployed in runtime. Thus, it is advantageous to undeploy local
capabilities that are not used, so the SO adapts its structure to the existing service offer.

The CM is in charge of periodically check for capabilities that are candidates to be
undeployed. The selection process presented in Algorithm 3 identifies every time the
local capabilities are discarded to be used in an action (line 17). Besides just mark-
ing the capability, this method stores the current state of the SO when the capability
is discarded (physical location, connected network, time and active user). The default
operation of the CM undeploys the capabilities that have been marked unused a number
of times since the last deployment. Both the frequency for these checks and the number
of times required to disable the capabilities are parameters defined by SO Administra-
tor. Further classification of the data recorded is intended to be performed using Extra

Facilities. The implementation of classification algorithms to identify the discarding

patterns is subject to the particular SO solution and the underlying hardware platform.

152

input: A matrix of user’s preferences: mPreferences, the set of actions

1 for action in actions do
2 boundService ← getBoundService(action);

3 if
boundService == ∅ or
checkContextRulesChanges(action) == true or
ping(boundService) == false

then

4 candidates ← ∅;
5 serviceContract ← getServiceContract(action, mPreferences);
6 localService ← getLocalService(capabilities, serviceContract);

7 if
localService == ∅ or
isLookForRemote(localService, mPreferences) == true

then
8 dGroup ← maxRankingVector(mPreferences);
9 dominantQoS ← getQoSGroup(action, dGroup);

10 preSelected ← lookUpService(serviceContract, dominantQoS);
11 for pres in preSelected do
12 gUtilities ← calculateGroupUtilities(pres) ;

// (6.1)

13 utility ← calculateAggrtdUtility(gUtilities) ;
// (6.4)

14 candidates ← add(candidates, pres, gUtilities, utility);

15 end
16 boundService ← maxUtility(candidates, mPreferences) ;
17 if boundService ≠ localService then markNotUsed(capabilities,

localService);

18 else
19 boundService ← localService;
20 end
21 end
22 invokeService (boundService, getArguments(action),

returnToElement(action));

23 end
Algorithm 3: SO Service Selection & Invocation.

153

6.7 Selection of Offered Roles

Every SO has a set of roles to play that is predefined (before runtime) by the SO Ad-
ministrator. These roles represent the commitments an SO is willing to take and also
the constraints on its behaviour, imposed by the SO Administrator. The roles arrange
a set of activities (composite services) and actions (atomic services) that are generally
realised by local capabilities and, in some cases, by remote services. Although it is
intended that roles are stable and that every SO plays a reduced number of roles, from
an autonomic perspective, roles fulfil the purpose of enabling the management of SO’s
behaviour and structure at a higher level, in order to adapt to the context while pursu-
ing SO’s optimisation goals. The management at role level has two main advantages:
a) it provides a functional association among multiple services; and b) Since roles are
intended to be fewer than the capabilities available, the effort of managing a more re-
duced set of autonomic artefacts is lower than that of managing individual capabilities.

The following example helps to illustrate the concepts around the SO role management.
A decorative and battery-powered SO “smart flowerpot” (SFP) monitors the plants it
contains and uses its led panel and incorporated speaker to notify to the user about the
plants status and its estimated needs. Depending on the hardware platform SFP might
play multiple roles, minimally “Soil Carer” and “User Mediator” and optionally oth-
ers linked to its physical capabilities such as “Music Player” and “Fire/Smoke Detec-

tor” or others more general such as “Music Recommender”, “News Feed aggregator”

and “Unit Converter”. The role “User Mediator” includes activities for formatting
and transforming raw data in a layout able to be presented, according to the particu-
lar user interfaces available (E.g. wide/tiny screens, speakers, leds, etc). SFP has its
own implementation of activities of the “User Mediator” role using its led panel and
speaker to present alerts and interact with end users. The role “Soil Carer” includes
activities to monitor the physical properties of the soil and recommend or take actions
to improve its physical conditions. SFP’s implementation of this role uses its local
sensors (temperature, humidity, light, movement and gas) to monitor plants and trigger
proper actions and notifications. The “Soil Carer” role represents the core activities of
the SFP, its operation only makes sense in the context of the particular object and its
contents (soil and plants). These activities depend completely on the local capabilities
of this SO and the activities are only meaningful in the context of the soil the SO is
taking care of, so this role needs to be played by the SO regardless of others playing
it. On the other side, the “User Mediator” role and the other roles are delegable roles,

154

that can be played by another SO without affecting SFP’s main purpose.

In a collective of SOs, multiple SOs might play the same delegable role on purpose,
for example, because the role activities depend highly in the context of the SO playing
the role and multiple SO’s views are required for a plan. (E.g. temperature sensing from
multiple points). However, there are also cases when roles are replicated just because
the SOs are designed to work autonomously even if others are not available. In these
situations, it is desirable that SOs stop offering a role which is broadly offered within
the collective if that helps a particular SO to extend its availability. Depending on its in-
ternal or external context —E.g. battery level or physical space— an SO might decide
to stop offering one of its “delegable” roles —and all the services linked to these—
and so rely in the work of the other SOs. It might be because it has to save energy or
because it has entered a space where there is a broad offer of the same roles by other
SOs.

In practice, the SO Administrator determines which roles are delegable and defines
the rules for triggering the management of them. This process could be carried out
with a predefined frequency or once some context-based conditions are met. Even if
the SO has a reduced number of offered roles, once the process is triggered, a criteria is
needed to select between one role or other. We propose this criteria to be based on the
estimation of both the partial role density and the role contribution.

Partial Role Density

Role density is a measurement that indicates how many SOs are available to play a re-
quired role within a collective. Calculating the role density having a complete view of
the collective would be easy. However, each SO only has a partial view defined by the
reduced list of the SOs it knows. This type of adaptation must avoid using excessive
resources that could eliminate the benefit of switching off a role. Therefore, it is not
worthwhile to query other SOs trying to obtain an updated and broad view of the collec-
tive. That would generate more network traffic, and additional processing for sending
and receiving responses from others.

Instead, the SO has to rely in the list of known SOs to calculate a partial role density as
follows:

prdi =
krsi
kso

, (6.17)

155

where krsi is the number of known SOs playing a role i within the collective and kso
is the total number of known SOs. This measurement might be imprecise, but is a first
filter that can be used together with another criteria. This measurement obtains cases
where the density of roles is substantially high compared to the size of the collective,
that these are detected even with a partial view. The more SOs are in the “contacts list”

and the smaller the collective size, the more precise this measurement will be. However,
it is not intended that SOs store every SO belonging to the collective, so the view will
always be partial which, reinforce the need of complementing this measurement with
another criteria.

SO’s Role Contribution

In the case that role density do not provide The roles are uncoupled of the concrete
workflows of operation —which are defined by plans and their activities—, these only
identify the activities an SO is able to carry out. According to the triggered plans some
activities of a role might be carried out while others no. The contribution is a measure-
ment of the perceived importance of an SO to play a particular role, for the SO’s and
collective’s operation. This is an estimated measurement based only in the SO view
and considering the execution profile of activities both individually and in cooperation
with others. The rationale is that the most frequently the activities of a role are carried
out by the SO, the most important is that SO for playing the role.

SIM monitors how frequent the activities are triggered within a set of context-related
rules. These rules can define time windows E.g. (daily, weekly, etc) and physical places
(E.g. meeting room, living room, etc.), among others. The individual SO’s contribution
by role rc of a role i within a context x is defined as:

rci,x =
qeai,x
toai

⋅
toai
∑

j=1
tiej,x, (6.18)

where qeai,x is the quantity of role i activities that have been executed within a context
x over the total number of activities of the role toai, multiplied by the times all activities
of the role i have been executed tiej,x within the time window.
In order to compare contribution of the SO for each available roles, we obtain a nor-
malised role contribution nrci,x with:

nrci,x =
rci,x

∑r
i=1 rci,x

, (6.19)

156

The roles with the minimum normalised contribution nrci,w are the candidates to be
disabled. In case of roles with the same nrc we use the minimum tie.
The Algorithm 4 presents the selection of roles for disabling.

input: The minimum role density parameter: rdParameter, the SO’s
contact list: contactList, the SO’s delegable roles: myRoles,
Count of triggered activities in the last time window:
triggeredAct

1 for sobj in contactList do
2 quantityRoles ← countMyRoles(quantityRoles, sobj,

myRoles) ; // quantityRoles accumulates the

quantity of SOs playing each of myRoles

3 end
4 for role in myRoles do
5 densityRoles [role] ←

calculatePartialDensity(sizeOf (contactList),

quantityRoles [role]) ; // 6.17

6 if densityRoles [role] > rdParameter then
7 candidates ← add(candidates, role)

8 else
9 contribution [role] ←

calculateRoleContribution(role, triggeredAct,

myRoles) ; // 6.19

10 end
11 end
12 candidates ← add(candidates,

minContribution(contribution));
13 for candidate in candidates do
14 disableRole(candidate);
15 end
16

Algorithm 4: Role Selection for Disabling

157

6.8 Summary

We have described our strategy for SO adaptation and presented the functions and meth-
ods that enable its implementation. The strategy is based in the dynamic selection of
SOs, services and roles according to the context and the user preferences. At collec-
tive level, the SOs are able to select the SOs they cooperate with considering changing
conditions. At individual level, SOs can decide every time they need to carry out an
activity what is the service best suited to every situation. This approach is dynamic and
flexible, it is driven by four group of factors: trustworthiness, performance, efficiency

and location.

Based on these drivers, we defined a set of utility functions. These utilities enable
to assess different candidates and so identify the best suited for a given context. Ev-
ery time the context changes, these utilities are recalculated enabling to always obtain
the best available candidates (SOs, services or roles). In the case of SO selection we
have defined utility functions based on reliability, Potential Performance and Estimated

Distance To Target. The data to calculate these utilities is gathered by the em4so mid-
dleware routines and is share through the SO protocol. For the service selection, we
based the calculation of utilities from groups of QoS attributes matching the driving
groups of factors.

Both SO and service selection were approached as multi objective optimisation prob-
lems. We introduced rankings defining user preferences that were transformed into
weights to determine dominant factors within an aggregated utility function. The case
of role selection was approached as a efficiency-driven optimisation. A utility func-
tion was defined including factors for a partial view of the role density and the role
contribution for an SO.

158

Chapter 7

Evaluation

7.1 Introduction

In this chapter, we evaluate the RbSO software and em4so middleware architectures.
We used several techniques in order to cover different parts of this work:

• Case Study: This is aimed to evaluate C2, C3 and C4. This particularly covers
the RbSOs conceptual model 4 and the em4so middleware architecture (Chapter
5), including the SO protocol and the adaptation method (Chapter 6), with a real
testbed.

• Performance Evaluation: This is aimed to evaluate C3. It addresses mainly the
em4so middleware prototype implementation.

• Collective Evaluation: It evaluates C2, C3 and C4, particularly the SO protocol
(Chapter 5) and adaptation approach (Chapter 6), mainly in regards scalability
and support to large number of SOs. We develop and use an agent-based model
for simulation of IoT systems, showing the feasibility of C5.

• Qualitative Evaluation: It assess from the perspective of the relevant SOb-IoT

middleware solutions in regards the coverage of elemental processes and auton-
omy according to the foundations given in chapter 3. This also works as eval-
uation of C1, concretely the analysis tool that is used to assess other SO-based
solutions.

For each part of the evaluation we present the design, results and discussion.

159

7.2 Research Challenges

The evaluation of the IoT systems is challenging as the standard techniques cover par-
tial characteristics of these system at individual or network level E.g. [36]. On the
other side, IoT test beds such as SmartSantander [85] provide a real infrastructure for
operation and management of the cyber-physical devices with a defined architecture
and approach for software development model, offering limited interaction over the
base software of the involved devices. Multiple methods for IoT applications have
been used highlighting particular aspects, but rarely, these enable the incorporation of
heterogeneity, instability, large quantities of IoT devices in order to validate scalability
and adaptation, at individual and collective level, of the middleware and specific SO

software.

7.3 Contribution

We propose a novel agent-based model that enables the simulation of the IoT system
operation covering mainly the collective behaviour and the characteristics of the SOs

with larger number of SOs. This model enables simulation of multiple SOs that com-
municate and cooperate within a collective. On top of this model multiple metrics can
be monitored and defined. We particularly define two metrics that enable the compari-
son of collective performance at the different situations under evaluation. To complete
the evaluation of this work, this model is complemented with a case study working in
a real setting and covering mainly individual aspects of the SO software development
and the operation with a reduced number of SOs.

7.4 Case Study: Physical Resource Provisioning

7.4.1 Design

This part of the evaluation demonstrates the application of the RbSOs software devel-
opment approach as well as the benefits of the RbSOs software and em4so architec-
tures in the development of a real SO-based IoT application. The em4so architecture is
evaluated through the prototype implementation described in section 5.10. Hence, the
approach for the case study was to choose an IoT scenario and develop the application
following the RbSOs approach and using the em4so middleware prototype. The case
study is explanatory, focusing mainly in the individual operation of the SOs in order to

160

define goals, roles, scenarios, plans, capabilities activities and actions. The SO interac-
tions are demonstrated along the few SOs available.

Particularly the case study highlights the following characteristics of the mentioned
components of this work:

• Use of the RbSOs software architecture to build IoT applications with different
heterogeneous participating SOs.

• Sufficiency of the em4so middleware architecture on-object components for a
simple IoT application.

• Feasibility of the em4so middleware implementations to run on existing SO hard-
ware platforms.

• Use of the em4so middleware to endow autonomy in regards user, platforms and
other SOs to the SO.

• The operation of the SO communication protocol for cooperation and coordina-
tion at a low scale.

• The adaptation of an SO collective to unavailability on nodes, at low scale.

Three stages allow to observe these characteristics: the SO software engineering, the
standard operation and the simulation of node/internet unavailability.

7.4.2 Scenario Description

We considered a case with common IoT requirements such as the support to hetero-
geneous capabilities, physical data gathering, adaptation based on the context and co-
operation among others. Everyday objects, like home and office appliances, usually
require consumables to operate. For example, a printer requires printing cartridges/ton-
ers, a vacuum cleaner requires filters, an air freshener a fragrance, etc. With the SOs in
place, sensors detect promptly, when the physical resources get consumed and notify
the operator, giving also information about where to get the supplies from (local stock
or nearby supplier) or even triggering a purchase order.

Concretely, this case is applied to a smart home scenario where different SOs must
play different roles in order to ensure provisioning of the physical resources. The sce-
nario includes four SOs: an air freshener (SAF), a cleaning cupboard (SCC), a home
Controller (SHC) and a TV (STV). SHC is simply a panel in charge of controlling the
sensors around the home. The aim is to develop the IoT application and deploy it along
the four SOs available, where the SOs are heterogeneous in regards the capabilities

161

Table 7.1: Case Study: Main files and properties per SO

Roles Goal
Observable
Properties

Condition
Relevant Actions

(services)

SAF
airFreshener keep air fresh

room.activity = true
spray

saf_agent.freshener
> 0 ml

pResourceConsumer keep freshener deposit full ≤ 1 ml prepareRefillSpecs
prepareUserNotification

SCC lInventoryManager
keep control of inventory of
cleaning products in home

scc_agent.demandRefill ≠ null checkHomeAvailability

home.freshener
> 0 units prepareUserNotification

= 0 units lookUpNearbyStores

prepareUserNotification
store.details ≠ null

scc_agent.incomingRFID ≠ null addProductToInventory
scc_agent.outgoingRFID ≠ null removeProductFromInventory

SHC operatorNotifier Notify user about SOs requests.
shc_agent.pendingNotification ≠ null notifyUser
msg_platform.pendingMessage ≠ null processMessage

STV operatorNotifier Notify user about SOs requests. stv_agent.pendingNotification ≠ null notifyUser

they have. The hardware architecture of each SO is based on the Raspberry Pi Platform
Model B and B+ with WiFi dongles. With Arch Linux 4.x as Operating system and
Open JDK Zero VM 1.7.

The following is the expected behaviour for each SO:

• SAF
– Detects movement and records it as observations.
– When working as air freshener, sprays fragrance on movement detection.
– Tracks the level of a simulated fragrance deposit.
– Notifies the operator about the need of a refilling.
– Since this SO does not have user interface it interacts with user through

other SOs it has to discover.
– Connects to the overlay network through the SHC.

• SCC
– Tracks incoming and outgoing household items from the local inventory.
– When there are not units of an item gather availability from known stores

and notifies operator to repurchase.
– When there are no stores registered it requests details about available stores

to remote supplier system.
– Since this SO does not have user interface it interacts with user through

other SOs it has to discover.

• SHC
– Obtain a list of nearby stores from cloud web services.

162

– Send notifications via Telegram to the user.
– Founder of the overlay network.

• STV
– Display notifications to the user.

7.4.3 Stage 1: SO Software Engineering

The IoT application is made from the software components of each SO which is a set
of:

• JSON documents including mainly properties of interests, activities, goals and
scenarios.

• Service components implementing the capabilities of each SO.

The SO’s software was installed on top of the em4so middleware prototype in each
SO. From the scenario specification we carried out design, implementation, testing and
deployment of each of the SO’s capabilities and then we defined the required documents
on top of these, according to the following process:

1. Identify the capabilities for each SO and develop the Service Components for
each one.
These are atomic services implemented in Java and are discovered via introspec-
tion by the CM which generates the JSON interface and stores it in the KB. For
the developer, there is no need to define the interface of each service. Some
examples of the implemented services are:

• For SAF we implemented a service for configuring and reading from the
motion sensor. This is a Java class that inherits from a middleware class
SensingService and implements the method public String readValue(). This
class configures the sensor using the Pi4J GPIO API1 which is imported as
a library, part of the DF. Within the readValue method the sensor is read
returning a boolean value converted to String. It is a String as it supports
different types of sensor readings. The em4so middleware takes this value
and creates an observation that is transformed and stored as knowledge item

by the KSM.

1http://pi4j.com/

163

Figure 7.1: Scenario for Physical Resource Provisioning

164

• We implemented two variations of the service notifyUser. One in SHC,
using Telegram Bot API2, which connects to the Telegram Messaging plat-
form and sends a message to the registered users. They receive these mes-
sages in their Telegram applications that is installed in the mobile phone or
accessible via web browser. The other implementation in STV is simpler, it
only displays a text message with the notification. These implementations
are used to demonstrate how these actions are uncoupled from the activi-
ties enabling each SO to have its own version within the boundaries of a
common activity definition.

2. Define the goals and properties of interest for each SO.
We defined a hierarchy with one parent goal and two children. The parent goal
runs forever —on progress state— and is required to group the other two parallel
goals. The children goals are, one for standard operation, keeping a defined space
fresh, and the other for resource provisioning, keeping fragrance deposit above a
defined level. This latter SAF’s goal is a collective goal as require one SO capable
to interact with users and another that provides information of the local inventory.
Likewise we defined goals for the other SOs as presented in table 7.1. Since goals
are defined as target states of the properties of interest, we needed to define these.
The properties of interest for the physical resources include the usage level, the
model/reference and the last date replaced. These are the knowledge items —
defined according to the RbSOs knowledge representation 4.4.3— that are used
in the activity definition.

3. Define the activities and roles that each SO can play/execute/monitor using the
defined capabilities.
We started with a general design of the activities required in each SO from the
scenario and built the diagram presented in figure 7.1. Next, we define the activity
documents containing the required: knowledge items , the triggering rules —
simple conditions in terms of knowledge items that are processed by the RE—,
a description, the output, the quality attributes, user preferences (optional) and
the list of actions. These actions are named according to the services previously
implemented and numbered indicating the flow of execution. An example of an
activity document is found in the Appendix B.1. Finally, we defined the roles
based on the case study description by grouping the related activities.

2https://core.telegram.org/bots/api

165

Figure 7.2: Case Study: Keep Air Fresh Scenario

4. Define the scenarios for each goal.
According to the general design of interactions between roles defined previously,
we specified the scenario documents containing the list of steps, in terms of ac-
tivities, that are required for each goal. Besides the main collective goal we also
define the scenario for individual goals, for example the one for SAF’s goal of
“keeping air fresh” as shown in Figure 7.2. The first scenario ensures that fra-
grance is sprayed when surrounding movement is detected. A simple sequential
scenario is presented in the Appendix B.2.

5. Configure SO and deploy.
The configuration is made through definition of other auxiliary documents: a
document for a known SO (to connect to the overlay), a document for the user
and preferences. A text configuration file with mainly deployment paths, the SO

id and transport protocol configuration. The deployment of the IoT application
is done just by copying the jar files containing the Service components to the
location configured and uploading the JSON documents to the KB. Note that
at start up, each SO only has its own capabilities, roles, activities, properties,
scenarios and the reference to another known SO.

7.4.4 Stage 2: SO-Based System Operation

In this stage we tested the standard operation of the SO collective. SHC as founder of
the overlay, starts first and the others progressively. With the STV joining in the last

166

place. The em4so middleware ensures that every SO runs a web agent with an URL
(i.e. IP + port + webcontext + agentId). The em4so middleware allows to enhance
SAF’s limited capabilities by locating other SOs playing the roles needed, to achieve
their defined goals.

Several processes happen at start up of every SO:

• Discover, load of each one’s capabilities and generation of the interfaces in SO’s
KB.

• Load goal hierarchy and start threads for monitoring pending ones.
• Start SO protocol for joining the network. The TTL defined is 1 as the number of

participating SOs is low.
• Start threads for SensingServices defined that are linked to sensors monitoring

properties of interest and recording observations in the KB.

We start with the SAF behaviour which is the one that triggers the main scenario. It
starts monitoring two key properties of interest: one called activity from the room scope
and the other freshener from saf_agent scope —the saf web agent—. We simulated the
movement randomly and for the freshener, we assumed 1 spray spent approximately
0.1 ml of fragrance, and a refill is 250 ml. SAF loads the scenario and triggers the plan
for the keep fresh air role. This keeps running until the freshener property indicates that
the level of fragrance is below the specified in the activity keepAirFresh that contains
the spray action. In this case, the activity cannot be triggered anymore until the deposit
level is increased.

After observing a low level in the fragrance, SAF triggers the plan for physical re-
source provisioning from the defined scenario. It gathers the specification of the refill
needed and then looks for the role in charge of the next activity: checkHomeAvailabil-

ity which is part of the lInventoryManager role. It queries known SOs and finds SCC,
to whom it transfers the knowledgeItem with the product refill specifications —the fra-
grance bottle model— and triggers the next activity. SAF also prepares the contents of
a user notification, in this case indicating the deposit is empty. Then it detects that the
next activity in the plan: notifyUser is responsibility of the operatorNotifier role, which
it does not play. Hence, it queries known SOs and finds SHC, to whom it transfers the
knowledgeItem with the notification details and triggers the next activity. SAF keeps
waiting and monitoring freshener property to get back to the spray operation when the
deposit is refilled.

167

SCC is monitoring the property demandRefill which is populated when it receives the
refill specifications from other SOs. In this case, it receives one from SAF, so SCC

end up triggering checkHomeAvailibility for the required product. In our first tests, we
simulated enough units in the local inventory, so SCC triggers the next activity on the
SHC to notify the user indicating that there is local stock. Then, when the local stocks
is exhausted, SCC triggers the activity to look Up via simulated web service where to
buy the product. SCC waits for information of the store and when received, it triggers
user notification in SHC. SHC monitors pending notifications and sends them to the
user via Telegram platform. STV has no participation in the standard operation.

7.4.5 Stage 3: Node/Internet unavailability

In this stage, we tested the autonomy of each SO from others by shutting down, during
collective plan execution, one SO. We observed that, although activities of the unavail-
able role were, of course, not achieved, every other SOs were able to achieve their own
activities. When SCC, playing the lInventoryManager, was not available, the SAF could
still notify the user about the lack of consumables via SHC. When SHC, playing the
operatorNotifier role, was not available, both SAF and SCC could still notify the user,
when needed, via STV . In addition, once SAF had triggered SCC’s checkHomeAvail-

ability and SAF went unavailable, SCC kept sending the user notifications —through
SHC— and looking for the store details.

Likewise, when we dropped the internet connection, SCC’s store look up and SHC’s
user notifications activities were not achieved but SAF and SCC could notify user via
STV .

7.4.6 Discussion & Limitations

The RbSOs model and em4so middleware prototype were successful for implementing
and executing the IoT scenario, showing that are a feasible solution for R3. The em4so

was fundamental for easing and speeding this type of development. Compared to the
traditional centralised approach where most of the application logic is implemented
in a platform, in this case we had to develop four mini applications. Although every
SO was based in the same hardware platform they were heterogeneous in the capabil-
ities (sensing/actuating services) they hosted. The RbSOs abstractions were useful in
defining each SO’s software individual structure and behaviour. Thanks to the em4so

middleware, the development effort was focused in the concrete atomic functionalities

168

particular to each SO rather than in common tasks such as triggering goals, processing
sensor data as input for activities, etc. The approach of capabilities realised as service
components enabled us to share part of the functionality, for example when implement-
ing the user notification services, between SOs, which was also a gain in effort and time.
Each SO was able to discover others when joining the network. They successfully iden-
tified which roles each SO was able to play without the need of a central directory or
platform having all the available roles.

We evaluated the autonomy of the IoT system as a whole and from the individual per-
spective of each SO. As a result, the em4so prototype demonstrated effectiveness in
tackling R2. The SOs were able to complete the scenario without fundamental depen-
dencies on third platforms. Each SO had control of both the application workflow and
the data required to achieve a goal. Even when some nodes of the SO collective were
not available the impact in the overall operation was minimised as each SO could still
cooperate with the others available, showing this is a feasible solution for R4. A col-
lective goal implies dependency, for example, SAF could not achieve the provisioning
goal without SCC and either SHC or STV . However, this dependency comes from the
lack of SAF’s capabilities which is a consequence of its hardware platform. In fact, if
SAF had a screen or speaker it could play operatorNotifier role. So the em4so middle-
ware is enabling the SO to extend its capabilities beyond its limitations, through others.

The em4so middleware applicability of course is not limited to this scenario. Addi-
tional roles and scenarios can be defined even using the same capabilities. For example,
in the case of SO having movement detection sensor, the sensing service can be used
for triggering an alarm, if it checks that it happened in a building during non working
hours. Then, security staff can receive a notification in either a screen, a phone call or
a voice message depending on where they are and the nearby SOs. In other situation,
the same sensing service can be used just to activate the lights during a particular time.

The case was illustrative in the key advantages of the RbSOs model abstractions and
the benefits of the em4so middleware in a real world scenario with a real hardware
infrastructure. However, the case is limited mainly by the number of SOs and the com-
plexity of the scenario. Considering the lack of availability of a real testbed with many
SOs, we addressed scenarios with higher number of SOs via simulation in other parts
of the evaluation. For more complex scenarios, we realised that more development and
performance tuning was required for the em4so prototype. This was mainly because

169

in some runs of the case, we experienced delays of around 10-40 seconds, some times
due to the sensor hardware and others due to the processing and transformation of the
readings. These are implementation issues, that do not affect the overall approach and
architecture, therefore we left them for a future work.

We found challenges when developing and managing applications that are distributed
among various SOs. One of these is the maintenance and deployment of the versions
of the different applications and middleware. This is a time consuming tasks and if
done manually, is error prone because effective coordination of SOs require up to date
versions of the middleware. Approaching the final of the development stage we found a
relatively new tool3, that deals with this problem as enable to develop and deploy appli-
cations in a single platform (PaaS) that later can be deployed at once to multiple device
and updated from there. This is a recommended approach for developing applications
on top of em4so middleware.

7.5 em4so Middleware Performance Evaluation

7.5.1 Design

The aim of this assessment is to evaluate the em4so middleware performance working
over an existing real hardware architecture. This evaluation provides a view of how an
SO, working with the em4so middleware, performs individually. Particularly, we deter-
mine how key components of the em4so architecture behave with different load units.
This part of the evaluation is based on the prototype implementation and depends heav-
ily in the programming language and software infrastructure used for it. The data was
taken from a Raspberry Pi B+ using the Hyperic Sigar4 for monitoring.

We focused on two key functions the capability/service loader and the SO Discovery.
For the service load, we simulated loading up to 30 services. The simulated services
where very basic, since the intention was to monitor the pure load process. For the SO

discovery we simulated the creation/joining of an overlay network up to 20 nodes. The
Raspberry Pi SO had to discover the other nodes that were started and run from an Intel
Core i5 laptop.

3https://resin.io/blog/
4https://support.hyperic.com/display/SIGAR/Home

170

●

● ●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

0

450

900

1350

1800

2250

5 10 15 20 25 30
No. of Services

A
V

G
 M

em
or

y
U

sa
ge

 (
 K

B
)

A

V
G

 C
P

U
 T

im
e

(M
ill

is
ec

on
ds

)

Prototype Performance Service Loading

Figure 7.3: Performance Metrics Local Service Load

7.5.2 Results & Discussion

For the service/capability loader, the results are presented in figure 7.3. These show
that the memory usage increases in the order of KBs, with an acute raise with more
than 20 services. For the interval between 10 and 30 services the growth seems to be
better described by a quadratic function. CPU usage starts in around 21 seconds which
is roughly the time taking for SO booting, without triggering the service loader. When
the number of services is increased the CPU usage rises at proportional pace. The dif-
ference between loading 5 services and 30 is around 1.6 seconds in CPU time. We
observe that raise in CPU usage is sharper after the 15 services but then tends to get
smoother after 25. We learned from this evaluation that the service loader implemen-
tation does not impose an excessive overload in the CPU. Therefore devices, with the
hardware architecture under analysis, are able to load up to 30 basic services with less
than 2 seconds of CPU time which indicates this is a load the device can handle prop-
erly. On the other side, the RAM usage grows fast while increasing the services and
thus implies that, for the prototype implementation, the service loader consumes addi-
tional RAM resources when the services are increased. These results do not consider
the particular resource demands from each individual service, that will vary according

171

to the type of service and this is expected to be higher when services access I/O devices.

For the SO overlay creation and SO discovery the results are presented in figure 7.4.
The demands of memory for this function are in the order of MBs. For the CPU time,
the difference between discovering 5 and 20 nodes was in the range of 8 seconds. These
measurements give us an order of magnitude of the variations in performance when the
load is increased. From the works reviewed we did not find similar metrics to compare
with.

We observe that, compared to the service loading functionality, the SO discovery de-
mands more CPU and RAM resources, although the increase, in relation to the quantity
of SOs, is smooth and clearly linear. Even in the case of RAM it tends to stabilise faster
as it grows. The results suggest that devices, with this hardware architecture and using
the em4so middleware, are able to cope with the discovery of even higher number of
SOs. One factor that is not analysed here is if the variable characteristics of the dis-
covered SOs —E.g. roles offered— make any difference in the resource consumption
when starting the overlay.

Our current prototype requires platforms with the Java VM support. Despite that every-
day there are more IoT hardware platforms supporting JVMs5, it imposes a constraint
about the required resources for running the middleware. The em4so architecture, how-
ever does not hold that restriction and we left for future work to explore other middle-
ware implementations (E.g. C and javascript/nodejs) with the idea of reducing the
hardware requirements. It is also true, that our architecture is aimed at non-trivial ob-
jects, it is clear that in some scenarios with trivial objects it is not worthwhile to endow
autonomy. E.g. a pen. Here, at most it would be desirable to store owners information
and be able to be tracked if lost, probably also alert when ink is about to run out, but in
this case autonomy for the purpose of the object is probably not worthwhile. Overall he
em4so demonstrated to have a decent performance for a basic scenario which confirms
it as a potential solution for R3.

7.6 Collective Evaluation

Considering the huge amount of devices required in order to set a proper test bed for
IoT scenarios, this part of the evaluation was carried out through a simulation. The

5http://www.oracle.com/technetwork/java/embedded/overview/index.html

172

●

●

●

●

●

●

●

●

0

1

2

3

4

5

6

0

3

6

9

12

5 10 15 20
No. of Nodes

A
V

G
 M

em
or

y
U

sa
ge

 (
 M

B
)

A

V
G

 C
P

U
 T

im
e

(S
ec

on
ds

)

Prototype Performance SO Discovery (Overlay creation)

Figure 7.4: Performance Metrics SO Discovery

simulation approach is based mainly in the Agent-Based Modelling (ABM) and also
incorporates elements from Montecarlo methods, essentially to include randomness to
the ABM model.

7.6.1 Agent-based Modelling

In ABM, agents are though to work autonomously during a time frame which is mea-
sured in ticks. The equivalence of the tick, if required, is assigned for each individual
model. ABM is particularly suitable for the evaluation of IoT systems for several rea-
sons:

• It enables to setup highly heterogeneous scenarios. Experiments can consider
several characteristics of the IoT devices, their environment and the other agents
involved E.g. humans or third systems. These characteristics can be defined as
parameters or variables in every particular scenario.

• It enables to simulate autonomous entities as the SOs are.
• It enables to monitor characteristics and behaviour at micro and macro level.
• It enables to simulate highly volatile situations.

173

Figure 7.5: Collective Experiment Design

7.6.2 Design

The main goal of this evaluation is to resemble operation of cyber-physical systems —
i.e. the SO collectives— and particularly, highlight the following key features of em4so

middleware:

• Scalability of the em4so middleware approach and SO protocol to different con-
ditions.

• The adaptation of an SO collective, at a high scale of expected SOs.

The design of the experiments of this section is presented in figure 7.5. The core ele-
ment is an ABM that represent the IoT system deployed within an environment. This
environment is a physical setting, it could be a residential building, a factory, a school
or a neighbourhood. Agents are essentially the SOs that interact in order to achieve
defined goals. The model was implemented in the Repast6 agent-based simulation plat-
form. The links between SOs are the overlay network connections built from the em4so

protocol. Each SO has installed a em4so middleware prototype.

The model is feed by a set of random-generated data covering:

• Order of the SOs joining the overlay and the time to do so.
• Capabilities assigned to each SO following a given distribution.
• Generation of events that include triggering of plans, departure and rejoining of

SOs.
6https://repast.github.io/index.html

174

There is also a set of controlled parameters that are part of the SO characteristics defined
below. Given these inputs we run the model for a number of repetitions and obtain the
metrics of interest according to each particular experiment. For the execution of these
simulation cycles we used the ALICE7 High Performance Computing Facility at the
University of Leicester.

Model Parameters

SOs are the autonomous and heterogeneous entities that have installed an em4so mid-
dleware implementation and ad hoc application software. The heterogeneity supported
in the model is defined by the hardware characteristics and the particular mix of capa-
bilities and roles every SO plays. Each SO has a set of deployed services that work atop
the existing hardware capabilities. The mix of capabilities simulates the different types
of sensors, actuator or processing functionalities the SO might have. Roles are assigned
to each SO based on their capabilities. Each SO’s KB includes the roles they can play
and the scenarios for achieving the goals they have.

Likewise, the SO collective exhibits some characteristics that are consequence of the
characteristics of the SOs that belong to it. The Service density indicates how many SOs

are offering a particular service. As the services enable the execution of the activities
this can also be regarded as Activity density, meaning how many SOs are able to carry
out an activity (See assumptions 7.6.3). Since roles group a number of activities, the
density of activities is proportionally linked to the Role Density. The more spread a
role throughout a collective, the easiest to find a suitable player for that role within the
collective.

The table 7.2 presents the most relevant characteristics of the SO and the collective
of SOs that are defined as parameters within the model. The scope of the parameter
indicates how the parameter is defined. For example, the four hardware configuration
types are defined at model level, but how many SOs are of each type is defined per
experiment.

7http://www2.le.ac.uk/offices/itservices/ithelp/services/hpc/alice/about

175

Table 7.2: Main Simulation Parameters

Name Description Scope Values Units
Hardware

Processing
Power

Maximum amount (millions) of
instructions the SO is able to
process in a time unit (tick).

Model 1 Mipt

Config type
A combination of: No. of Cores,
RAM and Storage, respectively. Model

A (1, 0.5, 2)
B (2, 1, 16)
C (4, 2, 32)
D (4, 4, 64)

Cores: Units
RAM: Gb
Storage: Gb

SO per type Percentage of SOs per Config type Experiment [1-100] %
Battery Battery powered SO type [0, 1] (Discrete)

Network
TTL Time-to-live for messages Model 4 hops

PING Frequency How often SOs PING others Model 30 ticks
em4so

Roles Roles played by the SO SO type [1 -7] (Discrete)
Role:Activity

Proportion Proportion of Activities per Role Experiment 1:1 & 1:5

Service/
Activity/Role

Density

Percentage of SOs
offering a service/able to

carry out an activity
/play a role.

Experiment [1 - 100] %

Max Known SOs
Maximum number of SOs
to be stored in contact list. SO type [4 -7] (Discrete)

Timeout
Maximum time an SO waits to

find the next player before
quitting the plan.

Model 30 ticks

176

System Behaviour

SOs are able to send and receive messages following em4so’s SO protocol. Each SO

schedules the work it carries out in every time unit considering the available hardware
resources. See assumptions in section 7.6.3. The work includes planned activities as
well as tasks for adaptation and passing and processing the different protocol messages.
Tasks accepted to be processed by the SO within one tick, are put in its queue to be pro-
cessed from the next tick. The amount of instructions of each task is split to fit in the
available processing capacity for the SO and the tick.

We defined two metrics to measure the performance of the SO collective: Mean Query

Time (MQT) and Plan Success Rate (PSR). MQT is calculated for the plans that the SO

collective completes and is an indicator of how quickly the SOs are able to locate other
cooperating SOs within the collective. MQT is a component of the total execution of a
plan, the rest of the time depends on the power and workload of each SO. The MQT is
calculated:

MQT =
∑n

i=1 TQTPi
n

, (7.1)

where TQTPi is the total query time for a plan i of n plans completed by the collective
during the period of analysis. TQTP is calculated as the sum of the query time of every
activity of the plan.

On the other side, Plan Success Rate is calculated as follows:

PSR = CP
TP

, (7.2)

where CP is the quantity of completed plans and TP is the quantity of triggered plans
within the collective during the period of analysis. These metrics are analysed during
the experiments in order to determine how the system performance is affected.

We define the following common characteristics for the system’s behaviour along the
experiments:

• The system is evaluated by triggering plans with activities of different character-
istics.

• The system workload is defined by the quantity of plans to be executed.
• The plan requires the SOs to query for others in order to continue carrying out

the activities of the plan they are not able to perform.

177

• Activities are performed by different SOs of the system.
• There are five scenarios with seven steps each one requiring the mentioned activ-

ities.
• The SOs have different hardware configurations and they spent their resources

carrying out these activities but also sending and replying messages and deciding
about ongoing plans.

• The SO collectives are evenly heterogeneous with 25% of the SOs of each type
in every collective.

7.6.3 Model assumptions and limitations

Assumptions

• For simplicity, each activity includes one single action which is carried out by
one service. For this reason, for the model, the service density is equal to the
activity density. Actions are managed as tasks to be processed by an SO.

• Besides actions, which are specific for each SO, relevant tasks include also com-
mon routines for adaptation and message passing and processing. Other tasks are
assumed to produce an even load in the SOs and therefore these are not consid-
ered.

• Tasks have a size which indicates the set of fixed instructions required to process.
• The speed of processing a task by an SO, depends on the task size as well as on

the SO’s configuration type. The more powerful the SO’s configuration type and
the lower the size of the task, the quicker the SO is able to process it.

• Before joining every SO has the address of another SO that is already in the
network.

• Battery and storage usage patterns are independent of the concrete tasks being
processed. E.g. battery usage might depend on the hardware characteristics of
the SOs such as the presence of a screen; likewise, storage might depend on the
data to store which might vary for different executions of the same activity by the
same SO.

• The exit condition of the experiments is the completion of the triggered plans or
1200 ticks.

Limitations

• Hardware resources —particularly CPU, ram, storage and battery— and their
scheduling / allocation / usage patterns were modelled as a consistent simplifi-

178

cation of those existing in real world. The reasons are: (1) The aim was to in-
corporate SO heterogeneity at this level and their impact in each one’s behaviour
during operation, rather than a strict modelling of each resource operation. (2)
Real world patterns are complex considering multiple factors that go beyond the
scope of this work.

• Due to the absence of real world data for the SOs and the collective, the data was
generated following real world constraints E.g. hardware power available for IoT

devices. We tuned the parameters having as reference the results of the prototype
performance and adjusting after several cycles of evaluation.

7.6.4 Experiment EX1: Scalability Evaluation

The purpose is to assess the performance of the em4so middleware, increasing the
quantity of participating SOs and the workload of the system. Besides the common
characteristics, for this experiment the heterogeneity in offered services is incorporated
with three types of activities with different density: High density in 30%, Medium

density in 20% and Low density in 5% of the SOs of the collective, respectively.

Test case 1: Increasing number of SOs

This case simulates a situation where the system is composed by different quantities
of SOs (nSO) and a stable workload of 10 plans is randomly triggered. The range
evaluated for nSO is from 20 to 140, which covers reasonable expectations for the
overlay networks under analysis.

Results

Figure 7.6 shows the MQT and PSR results for 50 runs with two role/activity propor-
tions. Each run represents a different collective with the corresponding number of SOs,
so for each nSO value there are 50 different collectives. In figure 7.6a, each shape
represents a role/activity proportion, the triangles are for values obtained with five ac-
tivities per each role and the circles are for the ones obtained for one activity per role.
A slightly bigger triangle or circle shows the mean value for the 50 runs along each
quantity of SOs.

The first observation is that there is a proportional increment in the MQT values when
nSO increases. The displayed growth is close to a linear function, with a more acute

179

slope for values of nSO ⩽ 60. This shows that the greater the nSO, the growth tends
to stabilise, which makes sense as there are more SOs available offering the roles and
activities and then it is quicker to find them, therefore reducing MQT . The box plot
on the right of the figure 7.6a shows that MQT values are consistently distributed with
a difference lower than around 7 ticks throughout the different nSOs, perhaps slightly
increasing for greater nSOs and proportion 1-to-5. This low variability of the data ob-
tained strengthen the observations of the MQT growth along the nSO.

In regards PSR, we plotted the frequency polygons for the 50 runs with the two pro-
portions indicated. Figure 7.6b shows that the most of the PSR values are close to 1.0
and only a few ⩽ 0.9. Particularly, only when nSO = 40 and nSO = 20, there are a few
cases when PSR ⩽ 0.6. Since it is consistent for the different nSO values and role/ac-
tivity proportions, the PSR shows that the system is stable in completing the plans,
regardless of the nSO values.

The role/activity proportion enables to determine the difference, if any, between work-
ing with roles (1-to-5) or with activities —services— at individual level (1-to-1). In-
deed, we appreciate a consistent difference the mean values of around 5 ticks for the
MQT values, in favour of having roles. This is explained as each SO has a limited space
for storing other SOs activities/roles. When the activities are grouped they gather more
information of the abilities of each other than individually. Considering that by default,
SOs have a role definition that indicates which activities are associated to each role.

Test case 2: Increasing Workload

This case simulates a situation where the system is composed by a stable nSO and an
increasing workload of plans nP lan is randomly triggered. The range evaluated for
nP lan is from 10 to 90 with a nSO = 40.

Results

Figure 7.7 shows the MQT and PSR results for 50 runs with two role/activity propor-
tions. We observe an inverse relationship between the nP lan and the MQT . A combined
analysis of MQT and PSR shows that the collective keeps stability in completing the
triggered plans and is able to reduce the MQT while the workload is increased. This
is explained because SOs store in their “contact lists” the SOs they have cooperated
with and their roles, enabling them to complete further executions of plans involving

180

●

●
●

●

●
●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

● ●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

15

20

25

30

20 40 60 80 100 120 140

M
ea

n
Q

ue
ry

 T
im

e
−

M
Q

T
−

(T
ic

ks
)

●

●

●

●
●

●
●

20 40 60 80 100 120 140

No. Smart Objects −nSO−

Proportion Role:Activity ●● 1−to−1 1−to−5

Ex1−Test Case 1: Mean Query Time (50 Runs)

(a) Mean Query Time

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

20
40

60
80

100
120

140

0.000.250.500.751.00
Success Rate −PSR−

R
un

 C
ou

nt

Role/Activtiy Proportion 1−to−1 1−to−5

Ex1−Test Case 1: Frequency of Success Rate (50 Runs)

(b) Success Rate

Figure 7.6: em4so middleware Scalability Results: Increasing No. of SOs

181

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

10

15

20

25

30

10 30 50 70 90

M
ea

n
Q

ue
ry

 T
im

e
(T

ic
ks

)

●

●

●

●
●

10 30 50 70 90

No. Plans

Proportion Role:Activity ●● 1−to−1 1−to−5

Ex1−Test Case 2: Mean Query Time (50 Runs)

(a) Mean Query Time

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

10
30

50
70

90

0.000.250.500.751.00
y

R
un

 C
ou

nt

Role/Activtiy Proportion 1−to−1 1−to−5

Ex1−Test Case 2: Frequency of Success Rate (50 Runs)

(b) Success Rate

Figure 7.7: em4so middleware Scalability Results: Increasing No. of Plans

182

the same roles, without the need of additional queries. Although plans are triggered
randomly, a successful cooperation between two SOs is reinforced by the reliability
criteria considered in the SO selection. The box plot in this case shows data with even
lower variability than the one in the test case 1.

In regards the role/activity proportion, analysing the mean values, there is a noticeable
difference in favour of having roles. However, in this case this difference decreases
slightly from a value around 7 ticks to a value around 3 ticks when the workload in-
creases. This is due to the same reason previously described, after the initial coopera-
tion, the “contact list” cache represents and advantage for allocating other SOs.

7.6.5 Experiment EX2: System Adaptation Evaluation

The main purpose is to evaluate how the system adapts to unstable conditions, par-
ticularly the departure and joining of new SOs, with different densities of activities
and while executing a set of triggered plans. At the same time, this case is designed
to demonstrated that, thanks to em4so middleware, SOs within the collective are au-
tonomous from each others being able to carry on with their tasks even if some of the
SOs are not available. In this experiment, we also compare how the different densities
of activities have impact in the adaptability of the system. For this purpose, we work
with densities of 10% and 30% of SOs offering each activity.

Test case 1: SOs Departing

This case simulates a situation of different numbers of SOs departing from the collec-
tive. The collective starts with nSO = 40 and a stable workload of plans is randomly
triggered. During the execution of these plans a range between 20% and 60% of the
SOs departs randomly and progressively from the collective.

Results

Analysing the PSR frequencies presented in figure 7.8b, we observe that departures
cause the PSR to be distributed between 0.3 and 0.9. There is a shift in the frequency
distribution, from the acute peaks in the higher values of PSR when the percentage of
departures is just 20%, to the more lower flattened peaks when the departures are of
60%. However, the figure shows that for density of activity = 30% and the departures
⩾ 40%, the PSR is relatively stable, showing a very similar frequency distribution. For
fewer departures, the performance is better with most of the PSR values between 0.8

183

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

10

20

30

40

−20% −30% −40% −50% −60%

M
ea

n
Q

ue
ry

 T
im

e
(T

ic
ks

)

●

●

●

●
●

−20% −30% −40% −50% −60%

Departing Smart Objects

Activity Density ●● 10% 30%

Ex2−Test Case 1: Mean Query Time (50 Runs)

(a) Mean Query Time

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

−
20%

−
30%

−
40%

−
50%

−
60%

0.40.60.81.0
Success Rate

R
un

 C
ou

nt

Activity Density 10% 30%

Ex2−Test Case 1: Frequency of Success Rate (50 Runs)

(b) Success Rate

Figure 7.8: em4so middleware Adaptation Results: Departing SOs

184

and 0.9. On the other side, when the activity density = 10%, the system is more sensi-
tive to departures and then the frequency of lower PSR values increases clearly.

Observing the MQT presented in figure 7.8a there are two very different situations
according to the activity density. On one side, when the density is 30%, the departures
of the SOs are almost unnoticeable keeping a smooth MQT . On the other side, when
density is 10%, not only the plans completed are fewer with more departures but also
the MQT of the completed ones is higher. The box plot shows a more homogeneous
MQT value distribution for higher density of activities. These finding together with the
previously seen stable PSR values show that the system adapts to the conditions of hav-
ing multiple service provider available (density = 30%) and takes advantage of them
to carrying on with the triggered plans, causing the minimum variation in performance
given by MQT and PSR.

Test case 2: SOs Rejoining

This case is complementary to the previous one and is designed to show how the sys-
tem is able to incorporate new SOs in the execution of the triggered plans and recover
from caused disruptions. For this case, the SOs that had previously departed from the
collective, rejoin after 30 ticks.

Results

Figure 7.9 presents the results for the rejoining of the SOs. Compared to the test case
1, the results are almost identical with minimal improvements in the mean for the MQT

shown by the slight variation in the slope of the lines. However, there is a significant
improvement in the PSR, particularly for density = 30%, where we observe that most
of the cases have PSR values ⩾ 0.8. For density = 10% there are also improvements as
most of the cases are distributed around PSR values ⩾ 0.5. Again, these results show
the ability of the system to adapt to the new conditions where new returning SOs are
available which has impact in the increase of completed plans.

7.6.6 Discussion

The results of the agent-based simulation have shown that em4so middleware scales
lineally to the increasing number of SOs and is able to take advantage of previous inter-
actions with other SOs in an scenario of a high workload. Likewise, the system is able
to adapt to the changes related to the outgoing and incoming SOs and incorporate them

185

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

10

20

30

40

−20% −30% −40% −50% −60%

M
ea

n
Q

ue
ry

 T
im

e
(T

ic
ks

)

●

●

●

●
●

−20% −30% −40% −50% −60%

Departing Smart Objects

Activity Density ●● 10% 30%

Ex3−Test Case 2: Mean Query Time (50 Runs)

(a) Mean Query Time

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

−
20%

−
30%

−
40%

−
50%

−
60%

0.40.60.81.0
Success Rate

R
un

 C
ou

nt

Activity Density 10% 30%

Ex3−Test Case 2: Frequency of Success Rate (50 Runs)

(b) Success Rate

Figure 7.9: em4so middleware Adaptation Results: Rejoining SOs

186

to the collective operation. All of these, considering a scenario with heterogeneous SOs

in both their hardware platform and the capabilities offered. These results confirm case
study findings on effectiveness of our solution for tackling R2 and R4. In this case, by
scaling the workload and number of SOs, part of the collective.

We have learned from this evaluation that performance of these SO collectives depend
on multiple variables. We observed that changes in the activity density and the pro-
portion of roles/activity have impact in the performance of the system. Therefore, the
perceived advantages of the em4so middleware depend also in the configuration of the
collective.

7.7 Qualitative Evaluation

7.7.1 Design

Using the E-Ma-Gen3 analysis tool proposed in section 3.5 we carried out a qualitative
comparison of the main middleware solutions presented in the chapter 2.4. We focused
in the support that each middleware solution gives to the set of fundamental processes
along the key areas defined in E-Ma-Gen3. Hence, we analysed two perspectives. The
first one is the middleware support to the SO’s fundamental process within the elements
of an area. This support can be offered in many ways, for example: routines, abstrac-
tions, API or runtime services. If the solution offers any of these, we indicate then the
process is supported. The second perspective indicates if, the support offered, enables
the SO to keep autonomy relative to human users and exogenous platforms, or if, on
the contrary, it imposes any dependency from the user or an exogenous platform.

7.7.2 Results & Discussion

The results of the comparison are presented in table 7.3 below we summarise the main
findings:

• Analysing autonomy across the different processes and areas, we observed that
only Leppänen, em4so and partially ASAWoO consider the autonomy from exoge-
nous platforms. Only em4so provides a solutions that is not based on the concept
of Central Directory and give the basis for a communication, coordination and
cooperation based on a P2P SO protocol. Leppänen and ASAWoO solutions con-
sider the existence of the Central Directory where SOs register their resources

187

Table 7.3: IoT Middleware Architecture Comparison

Knowledge Behaviour Resources Relationships Structure

G
en

er
at

io
n

M
an

ag
em

en
t

E
xp

lo
ita

tio
n

G
en

er
at

io
n

M
an

ag
em

en
t

E
xp

lo
ita

tio
n

G
en

er
at

io
n

M
an

ag
em

en
t

E
xp

lo
ita

tio
n

G
en

er
at

io
n

M
an

ag
em

en
t

E
xp

lo
ita

tio
n

G
en

er
at

io
n

M
an

ag
em

en
t

E
xp

lo
ita

tio
n

UbiWare
HrA ⚫ ⚪ ⚫ ⚫ ⚪ ⚫ ⚫ ⚫ ⚫ ⚪ ⚪ ⚫ ⚫ ⚫ ⚫

PrA ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪

FedNet
HrA − − − − ⚪ ⚪ ⚫ ⚫ ⚫ − − ⚫ ⚫ ⚫ ⚫

PrA − − − − ⚪ ⚪ ⚪ ⚪ ⚪ − − ⚪ ⚪ ⚪ ⚪

ACOSO
HrA ⚫ ⚫ ⚫ ⚪ ⚫ ⚫ ⚪ ⚫ ⚫ ⚪ ⚫ ⚫ − ⚪ ⚫

PrA ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ − ⚪ ⚪

ASAWoO
HrA ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚪ ⚪ ⚫ ⚫ ⚫ ⚫

PrA ⚪ ⚪ ⚫ ⚪ ⚫ ⚫ ⚫ ⚫ ⚫ ⚪ ⚪ ⚪ ⚪ ⚫ ⚫

IoTSilo
HrA − − − − ⚪ ⚪ ⚫ ⚫ ⚫ − ⚪ ⚫ ⚪ ⚫ ⚫

PrA − − − − ⚪ ⚪ ⚪ ⚪ ⚪ − ⚪ ⚪ ⚪ ⚪ ⚪

Leppänen
HrA − ⚪ ⚫ − ⚫ ⚫ ⚫ ⚪ ⚫ − − ⚫ ⚫ ⚫ ⚫

PrA − ⚫ ⚫ − ⚫ ⚫ ⚫ ⚪ ⚫ − − ⚫ ⚫ ⚫ ⚫

em4so
HrA ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

PrA ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

HrA: Human-relative Autonomy, PrA: Exogenous Platform-relative Autonomy
⚫: Solution supports a process and gives relevance to the SO’s relative autonomy,
⚪: Solution supports a process but does not give relevance to the SO’s relative autonomy,
−: Solution does not indicate support to the process

188

y/o services, however the former one indicates that this could implemented as
P2P although do not give details [74]; on the other side, ASAWoO requires a
Functionality Directory to determine what avatars can do [79], this is required to
determine how to execute a particular application, however part of the individual
functions of the SO, mainly OSGi-based, do not require interaction with others.
The other solutions rely in the Directory Facilitator of the agent platform or in a
Message bus.

• In regards knowledge, we observed support to decision-making functions in most
of the solutions except FedNet and IoTSilo. The management of the SO’s knowl-
edge repository is only tackled in ACOSO, ASAWoO and em4so. In Leppänen it
is considered as part of a broader mobile agent repository and is regarded as a
standard database [74]. ASAWoO is strong in the use of semantics for annotation
of functionalities, reasoning and decision-making. In general, there is a lack of
combined techniques for knowledge generation, including not only reasoning but
also machine learning and deep learning approaches.

• ASAWoO, ACOSO UbiWare and em4so stand out among the others in the pro-
cesses related to the behaviour. These provide good abstractions that enable
to manage and use distinctively different SO capabilities and to adapt the SO

behaviour to the context. Avatars, User-Defined Tasks, Reusable Atomic Be-

haviours and Roles/Capabilities, respectively, are the key pillars of the SO be-
haviour in each solution.

• Data generation and exploitation without human intervention is a must in SO-
based middleware and so it is widely supported by the compared solutions. Ubi-

Ware and IoTSilo have a clear orientation towards resource management and offer
simple abstractions for configuration and use. In regards social resources, only
em4so makes use of reputation for decision-making and operation within a col-
lective of SOs.

• We focus in the cooperation and social relationships that might require more sup-
port from the middleware solution. Cooperation of SOs is addressed specially in
ACOSO, ASAWoO and em4so. em4so stands out in the approach for relationship
generation and management, in most of the other solutions, relationships with
other SOs are considered mainly as a specific transient communication. em4so

is the only one that considers long-term relationships and use the information

189

provided from previous interactions with other SOs in order to make decisions of
new cooperation.

• Fundamental processes along the SO structure are widely supported. Leppänen,
ASAWoO and em4so stand out as tackle specifically structural adaptation. The
former solution use mobile agents which are composed dynamically via Web
service interfaces. The latter solutions use implementation of the service compo-
nents, in the case of ASAWoO is more robust as is based in the OSGi framework,
however this also makes it heavier than em4so. em4so has a minimal implemen-
tation and service interfaces are generated as documents that have direct transfor-
mation into knowledge items making them available for reasoning process with
few required processing.

From the surveyed solutions, these results show that em4so middleware architecture is
the only one addressing relative autonomy as a central characteristic, then contributing
to fill the gaps identified in R2 and R3.

7.7.3 Threats to Validity

We identify the main threats to the validity of our study considering each part of the
evaluation:

• Case Study
Given that the size of the sample, in this case the number of SOs that we use
for the study, is not characteristic of a typical IoT scenario and the simplicity
of the executed scenario. We addressed this threat with a set of complementary
experiments using the agent-based simulation.

• Middleware Performance Evaluation
The results obtained in this evaluation show conclusions that can only be applied
for the particular implementation. There are different variables that influence
the performance of the solution including the implementation of the Java Vir-
tual Machine, the version of the API, the use of the framework for monitoring
and gathering operating system and hardware-level information and the particu-
lar programming of the reference architecture.

• Agent-based simulation
Results obtained can be affected by the particular agent model that we employed.
Although, we incorporated as much as possible of the properties of individual

190

SOs and collectives, our model reflects only a limited set properties of a real-
world scenario (See section 7.6.2).
Besides, the model and initial parameters required some input data for generation
of overlays, event triggering, hardware and network properties. Due to the lack
of data available following the SO-based development, the values were based in
our results obtained in the case study and the performance evaluation of the pro-
totype. In order to reduce this threat, the input data was generated randomly and
the parameters tuned after running several simulation cycles. One tuning that
is pending is to gather the Mean Query Time and Plan Success Rate measure-
ments from a real-world test bed, using our prototype in small or medium scale
scenario.

• Qualitative Evaluation
The tool we employed for comparison of the existing solutions is our own pro-
posal, making the evaluation potentially biased. First, because the tool is poten-
tially incomplete (See section 3.5) and second because the it makes emphasis in
the elements we focused our study on, including relative autonomy as well as
the fundamental processes and key areas identified for the SO systems. However,
due to the lack of other tools that include this view of the solutions, our proposed
tool was the best alternative available for a qualitative evaluation.

7.8 Summary

This chapter has presented the evaluation of the RbSO software architecture and the
em4so middleware architecture including its adaptation features. We have utilised dif-
ferent approaches for validation including definition of a case study, performance eval-
uation of the em4so prototype, agent-based simulation and qualitative comparison.

We developed a case study based on a physical resource provisioning scenario. We used
the implemented prototype based on the em4so architecture and developed a distributed
SObIoT application. The application was based on the RbSOs approach involving the
specification of goals, scenarios, roles, activities, capabilities and properties of inter-
est for each involved SO. The case showed the advantage of the em4so architecture in
developing software for devices that have control of the application workflow, the data
generated, are able to reason and determine which goals to pursuit and cooperate with
other SOs in achieving collective goals. These SOs can operate even when there is no

191

connection to a remote platform.

With the em4so middleware prototype we carried out a performance evaluation focused
in the SO’s functionalities for the SO discovery (overlay creation) and the service/ca-
pability loader. The results show that these key functions run properly in devices with
a constrained hardware architecture as the Raspberry Pi B+ used. However, the service
loader functionality imposes an overload in the RAM resource usage, without consid-
ering the specific load of the services. On the side, the SO discovery results show that
this combination of hardware architecture and em4so middleware is able to cope with
increasing number of SOs with small variations in CPU and RAM demands.

The agent-based simulation enabled the evaluation of em4so middleware at a collec-
tive level. To compare performance with different conditions we defined two metrics:
the Mean Query Time and the Plan Success Rate. From the scalability results we ob-
served that the performance a collective working with em4so middleware, based in its
MQT , scales linearly as the number of SOs increase while the Plan Success Rate is sta-
ble throughout. In addition, with em4so middleware the SO collectives use SO details
from previous interactions and hence the MQT decreases while the Plan Success Rate

is kept stable. We observed that em4so middleware makes possible the adaptation of SO

collectives by taking advantage of the available SOs for completing their plans, rather
than be stuck to specific SOs. The MQT variations are even minimal when the activity
density is 30% regardless of the quantity of SOs departing. The em4so middleware also
makes the SO collective to adapt to new entrant SOs by using them to stabilise the PSR

in values greater than 0.8.

Finally, we carried out a comparison of the existing SO middleware solutions available.
We focused the comparison in the support these solutions give to the set of fundamen-
tal processes along the key areas defined in the E-Ma-Gen3 analysis tool. We observed
that em4so middleware offers support to the mentioned processes without constraining
the autonomy relative to the user, platforms or other SOs. This is a key difference of
em4so in regards compared solutions.

192

Chapter 8

Conclusion and Future Work

In summary this thesis has presented a framework for development of smart objects
based on the concept of relative autonomy. Our overall research challenges are (1)
the examination of the smart object’s properties and definition of autonomy under this
context, (2) the definition of a software architecture, for SOs, based on the mentioned
concepts, (3) development of a middleware architecture that gathers common function-
alities of the software architecture, (4) Definition of a method for adaptation of the
smart objects at individual and collective level; and (5) an approach for the evaluation
of smart objects systems under different situations of heterogeneity, volatility and large
quantities of nodes.

In this chapter we will discuss our research contributions in addressing the mentioned
challenges. We also present some potential future directions to extend further the
present work.

8.1 Research Contributions

8.1.1 Foundations of smart object autonomy

We examined the smart object characteristics from five key areas —knowledge, be-
haviour, relationships, resource and structure—, three planes —cyber, physical and
social— and three fundamental processes —exploitation, management and generation—
. We concluded that autonomy implies that the smart object is able to carry out its fun-
damental processes on the elements and planes identified, in an independent way. The
autonomy of the SO is constrained by structural, resource, knowledge and cooperating
dependencies. While the former dependency is desirable in cooperative goal achieve-

193

ment scenarios, the other three former dependencies must be avoided for development
of the potential autonomy. We also defined collective of smart objects as a system and
a society of heterogeneous smart objects that cooperate towards common goals.

8.1.2 A software architecture for smart objects

Based on the concept of smart object’s autonomy we defined a software architecture
or building IoT applications: Role-based Smart Objects (RbSOs) . The building blocks
of IoT applications are goal-oriented and role-based smart objects. Key abstractions
of this architecture are organised in terms of an uncoupled goal-oriented behaviour
and a knowledge representation. Individual SO’s capabilities are wrapped as services
and used as actions —with concrete execution arguments— of a set of plan activities.
The roles are defined in terms of these activities and work as high level interface of
the SO behaviour, that enables other SOs to locate potential cooperating partners. We
demonstrated the feasibility of our approach by the implementation of case study for
provisioning of physical resources.

8.1.3 A embedded middleware architecture for smart objects

From the abstractions defined previously we proposed a middleware architecture (em4so)
that incorporates the components covering common functionalities in smart object ap-
plication development. The em4so architecture is distributed in Governing and Man-
agement bodies. The former includes the components for decision-making by the SO,
namely Smart Object Controller, Knowledge Base and Reasoning Engine. The later
is formed by the Capability Manager, KB and Storage Manager and the Social In-
teraction Manager. Bodies are extended by a set of communication, device and extra
facilities. The architecture also defines a p2p smart object protocol that enables creation
of SO overlay networks, queries, cooperation and coordination for achieving common
goals. We implemented a middleware prototype using the architecture and adopt it for
evaluation, by the development of the case study and a simulation. We compared our
middleware architecture with that of other existing solutions, we concluded that a key
difference is the focus and support we offer to autonomy not only related to human user,
but also to platform and other SOs. We demonstrated the scalability of this architecture
facing increasing number of SOs and increasing number of concurrent plans.

194

8.1.4 A method for adaptation of smart objects systems at individ-
ual and collective level

We presented our strategy for adaptation based in the dynamic selection of SOs, ser-
vices and roles according to the context and the user preferences. For the selection, we
defined a set of utility functions that enable to assess different candidates and so iden-
tify the best suited for a given context. Every time the context changes, these utilities
are recalculated enabling to always obtain the best available candidates, namely SOs,
services or roles. These utilities are calculated considering the ranked preferences of
human users in regards four key group of factors: trustworthiness, performance, effi-
ciency and location. We evaluated the adaptation method at low scale using the case
study defined and a higher scale using a simulated environment based on an agent-
based model. We observed how this method enables the SO systems to adapt and show
resilience facing unavailability of some of the nodes. Likewise, the method enables
that new SOs coming to the collective of SOs are considered for carry out cooperative
goals.

8.1.5 An agent-based model for evaluation of smart object systems

We developed an agent-based model that mimics the operation of a collective of smart
objects. SOs are modelled as heterogeneous agents that have different hardware config-
urations and capabilities. On top of each SO, software might be installed that enables
the SOs to carry out goals, communicate and coordinate between each other. For our
evaluation, we installed in each SO the em4so middleware (and SO protocol). We de-
fined two metrics that enabled measuring performance of SO collective at different sit-
uations, namely: Mean Query Time and Plan Success Rate. We showed the application
of the model in the evaluation of scalability and adaptability of the em4so middleware
architecture.

From the whole evaluation, we conclude that the development of RbSOs using em4so

architecture is a feasible alternative to existing IoT development approaches.

8.2 Future Work

We identify here some of the potential work streams that can be taken in order to con-
tinue our work.

195

8.2.1 Machine Learning Services to SO Middleware

We have learned that one approach to achieve generation of knowledge is through the
use of machine learning techniques including supervised, unsupervised and deep learn-
ing. Our current middleware architecture does not include by default use of machine
learning techniques for decision making, however these can be included as extra facili-
ties services and made available for different SO applications. These can be used con-
cretely to extend the Reasoning Engine component of the architecture (section 5.5.3)
and to offline classify the different QoS attributes or usage patterns that need to be
considered in a group criteria, according to the service selection method described in
section 6.6.

8.2.2 RbSOs through Unikernels

We have defined the abstractions for RbSOs software and made concrete, through func-
tional components of a middleware architecture, those that are common to multiple
IoT applications. Another approach to make these abstractions concrete would be to
incorporate the functional components as part of the operating system libraries of a
Unikernel system. Unikernels have become popular in the past years, these run on top
of an hypervisor, E.g. XEN 1 and enable to have a specific customised kernel for the
application running on top of it, instead of a general purpose operating system [77].
Unikernel only contains the drivers and libraries required for the application, becoming
more secure as reduce the potential threads derived from, by default, services available
in a modern operating system but not used for the particular application E.g. support to
a particular communication protocol. Therefore, a kind of agent-based unikernel could
be used to implement a single bootable virtual machine containing the Smart Object

Controller and the rest of the architecture components. It is open to investigate how
the middleware architecture components could be transformed into operating system
libraries.

8.2.3 Real-time RbSOs Application Development

One key potential application of RbSOs is for smart healthcare and smart factory sys-
tems. These systems have strict privacy and confidentially requirements, respectively,
that can be addressed following the proposed approach. However, these system have
also tough real-time processing requirements, in this domain, any delay might cause

1https://www.xenproject.org/

196

life costs, so these are not tolerated. Since in our real-setting evaluation, our prototype
experienced delays mainly by from sensor readings, as it is, is not fit for these kind of
systems. It is open to explore and evaluate the optimisation required at implementation
level to make this fit these kind of systems and to determine if there is any improvement
to be made at architectural level. This would require selection of efficient programming
language and platforms for implementation.

8.2.4 Hierarchical P2P SO Protocol

Our approach for the cooperation and coordination SO protocol is based in a simple
p2p unstructured overlay. In hierarchical overlays, the nodes are organised following
parent/child relationships. This would allow to organise all the SOs able to play a role
around a set of powerful SOs as super peers. The super peers would canalise query re-
quests for a particular role and store information about role density among the overlay.
This information would allow to extend the partial role density measurement (section
6.7), providing more accurate information for role selection. These super peers have to
define mechanisms of replication in order to avoid becoming a source of dependency
to the other SOs of the collective.

8.2.5 Blockchain for Activity Tracking

Blockchain enables the storage of transactions in a ledger that is managed by an open
decentralised p2p infrastructure. Transactions regarding the activities that every SO

carries out might be stored in this ledger enabling the access to the authorised SOs

with purpose of analysis and tracking of SO operation. In addition, blockchain extra
facilities could be implemented to enable backup of the transformed data gathered by
each SO.

197

Appendices

199

Appendix A

em4so’s Middleware Prototype
Implementation Examples

201

A.1 Service List by Host: Map Function

1 function (doc) {

2 var argValues = [];

3 var hostKeys = {};

4 var result = null;

5 var k;

6 if (doc.type && doc.type == ’service’){

7 for (var j in doc.args){

8 argValues.push(doc.args[j]);

9 }

10 if(!doc.result || doc.result==null || doc.result == "")

11 result = "";

12 else

13 result = doc.result;

14 hostKeys = Object.keys(doc.host);

15 for(var i=0,l=hostKeys.length;i<l;i++){

16 k = hostKeys[i];

17 emit([doc.name,result,argValues], {id:k, capability: doc.host[k

].capability, ranking:doc.host[k].ranking},1);

18 }

19 }

20 }

A.2 Service List by Host: Reduce Function

1 function (keys, values,rereduce) {

2 if (values.length > 1) {

3 var max = 0, ks = values;

4 for (var i = 1, len = ks.length; i < len; ++i) {

5 if (ks[max].ranking < ks[i].ranking) {

6 max = i;

7 }

8 }

9 return ks[max];

10 } else {

11 return values[0];

12 }

13 }

202

A.3 Preconceived belief: Device
1{

2 "_id": "device/parameters",

3 "type": "parameters",

4 "parameters": [

5 {

6 "type": [

7 "level",

8 "temperature",

9 "air_quality"

10]

11 },

12 {

13 "mode": [

14 "active",

15 "passive"

16]

17 }

18]

19}

A.4 Preconceived belief: High

1{

2"type":"concept",

3"_id":"concept/high",

4"name": "high",

5"equivalent":[

6"100","TRUE"

7] ,

8"leadedby":"increase",

9"makesvalid":["greatherthan","greatherequalthan"

10]

11}

203

Appendix B

Case Study Implementation Examples

205

B.1 JSON Activity Definition

1{ "_id": "activity/keepAirFresh",

2 "type": "activity",

3 "categories": [..],

4 "input": {"knowledge":[{

5 "scope": "saf_agent",

6 "name": "freshener",

7 "kind":"resource",

8 "attrNames":

9 ["model"] }],

10 "operator": "AND",

11 "operands": [{"operator": ">=",

12 "operand1": {"scope": "saf_agent",

13 "name": "freshener",

14 "kind":"resource",

15 "attributeName": "level"},

16 "operand2": { "value": "10" }},

17 {"operator": "==",

18 "operand1": {"scope": "room",

19 "name": "activity",

20 "kind":"feature",

21 "attributeName":"level"},

22 "operand2": {"value": "true"}}]},

23 "description": "actions related to keep the air fresh "

,

24 "actions": [{ "name": "spray",

25 "args": []}],

26 "output":[{ "scope": "saf_agent",

27 "name": "freshener",

28 "kind": "resource",

29 "effect": "decrease"},

30 { "scope": "room",

31 "name": "freshness",

32 "kind": "feature",

33 "effect": "increase",

34 "attrNames":["level"] }],

35 "quality": {}}

206

B.2 JSON Scenario Definition

1{

2 "_id": "scenario/keepHomeResources",

3 "type": "scenario",

4 "goal": "goals/keepHomeResources",

5 "description":"scenario for achieving goal keep home

resources",

6 "steps":[

7 {"activity":"activity/increaseHomeDemand"},

8 {"activity":"activity/askForRepurchase"},

9 {"activity":"activity/askNotifyUser"}

10]

11

12}

207

Bibliography

[1] Mohammad Aazam and Eui Nam Huh. Fog Computing: The Cloud-IoT/IoE
Middleware Paradigm. IEEE Potentials, 35(3):40–44, 2016.

[2] Gregory D Abowd and Elizabeth D Mynatt. Charting past, present, and future
research in ubiquitous computing. ACM Transactions on Computer-Human In-

teraction (TOCHI), 7(1):29–58, 2000.

[3] Francesco Aiello, Giancarlo Fortino, Raffaele Gravina, and Antonio Guerrieri. A
java-based agent platform for programming wireless sensor networks. Computer

Journal, 54(3):439–454, 2011.

[4] G B Al-Suwaidi and M J Zemerly. Locating friends and family using mobile
phones with global positioning system (GPS). 2009 IEEE/ACS International

Conference on Computer Systems and Applications, pages 555–558, 2009.

[5] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting skyline
services for QoS-based web service composition. Proceedings of the 19th inter-

national conference on World wide web, 2588(5):11–20, 2010.

[6] W Alshabi, S Ramaswamy, and M Itmi. Coordination, cooperation and con-
flict resolution in multi-agent systems. Innovations and Advanced Techniques in

Computer and Information Sciences and Engineering, pages 495–500, 2007.

[7] Qazi Mamoon Ashraf, Mohamed Hadi Habaebi, and Md. Rafiqul Islam.
TOPSIS-Based Service Arbitration for Autonomic Internet of Things. IEEE

Access, 4:1313–1320, 2016.

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
survey. Computer Networks, 54(15):2787–2805, oct 2010.

209

[9] Luigi Atzori, Antonio Iera, and Giacomo Morabito. SIoT: Giving a social struc-
ture to the internet of things. IEEE Communications Letters, 15(11):1193–1195,
2011.

[10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. Understanding the Internet
of Things: definition, potentials, and societal role of a fast evolving paradigm.
Ad Hoc Networks, 56:122–140, 2016.

[11] Luigi Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti. The so-
cial internet of things (SIoT) - When social networks meet the internet of
things: Concept, architecture and network characterization. Computer Networks,
56(16):3594–3608, 2012.

[12] Panos Bardis. Social Interaction and Social Processes. Social Science,
54(3):147–167, 1979.

[13] Martin Bauer, Mathieu Boussard, Nicola Bui, and Francois Carrez. Project De-
liverable D1.2 âĂŞ Final Architectural Reference Model for IoT. Technical re-
port, IoT-A Project - UniS, jul 2013.

[14] Tobias Betz, Lawrence Cabac, and M Wester-Ebbinghaus. Gateway architecture
for Web-based agent services. Multiagent System Technologies, pages 165–172,
2011.

[15] Giulia Biamino. A Semantic Model for Socially Aware Objects. Advances in

Internet of Things, 02(03):47–55, 2012.

[16] Julian Bleecker. A Manifesto for Networked Objects âĂŤ Cohabiting with Pi-
geons , Arphids and Aibos in the Internet of Things. Technical report, University
of Southern California, 2005.

[17] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Com-
puting and Its Role in the Internet of Things. Proceedings of the first edition of

the MCC workshop on Mobile cloud computing, pages 13–16, 2012.

[18] Ronald Brachman and Hector Levesque. Knowledge Representation and Rea-

soning, volume 1. Morgan Kaufmann Publishers, San Francisco, CA, 2004.

[19] Giacomo Cabri, Letizia Leonardi, Luca Ferrari, and Franco Zambonelli. Role-
based software agent interaction models: a survey. The Knowledge Engineering

Review, 25(04):397–419, 2010.

210

[20] Cosmin Carabelea and Olivier Boissier. Multi-agent platforms on smart devices:
Dream or reality. In Proceedings of the Smart Objects Conference (SOC03),

Grenoble, France, pages 126–129. Citeseer, 2003.

[21] Cristiano Castelfranchi and Rino Falcone. Founding autonomy: The dialectics
between (social) environment and agent’s architecture and powers. In Agents

and Computational Autonomy, pages 40–54. Springer, 2003.

[22] Cristiano Castelfranchi and Rino Falcone. From Automaticity to Autonomy:
The Frontier of Artificial Agents. Agent Autonomy, pages 103–136, 2003.

[23] Humberto Cervantes and R.S. Hall. Autonomous adaptation to dynamic avail-
ability using a service-oriented component model. Proceedings. 26th Interna-

tional Conference on Software Engineering, 3:2–11, 2004.

[24] Eliseo Clementini, Paolino Felice, and Peter Oosterom. A small set of formal
topological relationships suitable for end-user interaction. Advances in Spatial

Databases, pages 277–295, 1993.

[25] Alan Colman and Jun Han. Roles, players and adaptable organizations. Applied

Ontology, 2(Number 2/2007):105–126, 2007.

[26] Mark S. Daskin. Service Science : Service Operations for Managers and Engi-

neers. John Wiley & Sons, Ltd, Hoboken, N.J, 2011.

[27] Rogério De Lemos, Holger Giese, and et Al. Software engineering for self-
adaptive systems: A second research roadmap. Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 7475 LNCS:1–32, 2013.

[28] Simon Duquennoy, Gilles Grimaud, and Jean Jacques Vandewalle. The web
of things: Interconnecting devices with high usability and performance. Pro-

ceedings - 2009 International Conference on Embedded Software and Systems,

ICESS 2009, pages 323–330, 2009.

[29] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro
Flammini. The Rise of Social Bots. arXiv preprint arXiv:1407.5225, 59(7):1–
11, 2016.

[30] FIPA. Fipa Abstract Architecture Specification. Technical report, Foundation
for Intelligent Physical Agents, 2002.

211

[31] FIPA. FIPA Agent Management Specification. Technical report, FOUNDATION
FOR INTELLIGENT PHYSICAL AGENTS, 2004.

[32] Giancarlo Fortino, A. Guerrieri, and W. Russo. Agent-oriented smart objects
development. In Computer Supported Cooperative Work in Design (CSCWD),

2012 IEEE 16th International Conference on, pages 907–912, 2012.

[33] Giancarlo Fortino, Antonio Guerrieri, and Michelangelo Lacopo. An agent-
based middleware for cooperating smart objects. Highlights on Practical . . . ,
pages 387–398, 2013.

[34] Giancarlo Fortino, Antonio Guerrieri, Wilma Russo, and Claudio Savaglio. Mid-
dlewares for smart objects and smart environments: overview and comparison.
In Internet of Things Based on Smart Objects, pages 1–27. Springer, 2014.

[35] Giancarlo Fortino, Marco Lackovic, Wilma Russo, and Paolo Trunfio. A discov-
ery service for smart objects over an agent-based middleware. In Internet and

Distributed Computing Systems, pages 281–293. Springer, 2013.

[36] Giancarlo Fortino, Wilma Russo, and Claudio Savaglio. Agent-oriented Mod-
eling and Simulation of IoT Networks. In Federated Conference on Computer

Science and Information Systems, volume 8, pages 1449–1452, 2016.

[37] Giancarlo Fortino and Paolo Trunfio. Internet of Things Based on Smart Objects.
Springer, 2014.

[38] Justin Frankel and T. Pepper. The Gnutella Protocol Specification v0.4 1. Tech-
nical report, Clip2, 2003.

[39] Emilia Garcia, Adriana Giret, and Vicente Botti. Software engineering for
service-oriented MAS. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
5180 LNAI:86–100, 2008.

[40] Michael P. Georgeff and Francois Felix Ingrand. Decision-Making in an Embed-
ded Reasoning System. Proceedings of the 11th international joint conference

on Artificial intelligence, 2:972–978, 1989.

[41] Christos Goumopoulos and Achilles Kameas. Smart objects as components of
UbiComp applications. International Journal of Multimedia and Ubiquitous

Engineering, 4(3):1–20, 2009.

212

[42] Dominic Greenwood, Margaret Lyell, Ashok Mallya, and Hiroki Suguri. The
IEEE FIPA approach to integrating software agents and web services. In Pro-

ceedings of the 6th international joint conference on Autonomous agents and

multiagent systems - AAMAS ’07, volume 5, page 1, 2007.

[43] Dominique D. Guinard and M.Trifa Vlad. Building the Web of Things. Manning

Publications, 2, 2015.

[44] Cesar Gutierrez, Juan Garbajosa, Jessica Diaz, and Agustin Yague. Providing a
Consensus Definition for the Term" Smart Product". In Engineering of Computer

Based Systems (ECBS), pages 203–211. IEEE, apr 2013.

[45] J. Octavio Gutierrez-Garcia and Kwang Mong Sim. Agent-based cloud service
composition. Applied Intelligence, 38(3):436–464, 2013.

[46] Serge Haddad, Amal El, and Fallah Seghrouchni. Web-MASI : Multi-Agent
Systems Interoperability. In 2005 IEEE/WIC/ACM International Conference on

Intelligent Agent Technology(IAT’05), pages 2–5, 2005.

[47] Henry Hexmoor. A model of absolute autonomy and power: Toward group
effects. Connection Science, 14(4):323–333, 2002.

[48] Henry Hexmoor, Cristiano Castelfranchi, and Rino Falcone. Agent Autonomy,
volume 1. Springer Science + Business Media, LLC, 2003.

[49] Lars Erik Holmquist, Friedemann Mattern, Bernt Schiele, Petteri Alahuhta,
Michael Beigl, and Hans-W Gellersen. Smart-its friends: A technique for users
to easily establish connections between smart artefacts. In Ubicomp 2001: Ubiq-

uitous Computing, pages 116–122. Springer, 2001.

[50] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software De-
velopment Process. IEEE Software, 16:96–102, 1999.

[51] JADE. JADE Web Service Dynamic Client Guide. Technical report, CSELT
S.p.A, TILab S.p.A., 2010.

[52] JADE. JADE Web Service Integration Gateway (WSIG). Technical report, Tele-
com Italia, 2015.

[53] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition

Letters, 31(8):651–666, 2010.

213

[54] Jean-paul Jamont, M Lionel, and Michael Mrissa. A Web-Based Agent-Oriented
Approach to Address Heterogeneity in Cooperative Embedded Systems. Ad-

vances in Intelligent Systems and Computing. Trends in Practical Applications

of Heterogeneous Multi-Agent Systems. The PAAMS Collection, pages 45–52,
2014.

[55] Xiongnan Jin, Sejin Chun, Jooik Jung, and Kyong Ho Lee. IoT service selection
based on physical service model and absolute dominance relationship. Proceed-

ings - IEEE 7th International Conference on Service-Oriented Computing and

Applications, SOCA 2014, pages 65–72, 2014.

[56] Jos De Jong, Ludo Stellingwerff, and Giovanni E. Pazienza. Eve: A Novel Open-
Source Web-Based Agent Platform. In 2013 IEEE International Conference on

Systems, Man, and Cybernetics, pages 1537–1541. Ieee, oct 2013.

[57] Euihyun Jung, Ilkwon Cho, and Sun Moo Kang. iotSilo: The Agent Service Plat-
form Supporting Dynamic Behavior Assembly for Resolving the Heterogeneity
of IoT. International Journal of Distributed Sensor Networks, 2014:1–11, 2014.

[58] Stephen H. Kaisler. Software paradigms. John Wiley ∖& Sons, 2005.

[59] Paul Karaenke, Michael Schuele, András Micsik, and Alexander Kipp. Inter-
organizational interoperability through integration of multiagent, web service,
and semantic web technologies. Lecture Notes in Business Information Process-

ing, 98 LNBIP:55–75, 2012.

[60] Artem Katasonov, Olena Kaykova, Oleksiy Khriyenko, Sergiy Nikitin, and Va-
gan Terziyan. Smart Semantic Middleware for the Internet of Things. ICINCO-

ICSO, pages 169–178, 2008.

[61] Artem Katasonov and Vagan Terziyan. SmartResource Platform and Seman-
tic Agent Programming Language (S-APL). Multiagent System Technologies,
pages 25–36, 2007.

[62] Fahim Kawsar. A Document-Based Framework for User Centric Smart Object
Systems. PhD in Computer Science, Waseda University, Japan, 0:140, 2009.

[63] Fahim Kawsar and Tatsuo Nakajima. A document centric framework for
building distributed smart object systems. Proceedings of the 2009 IEEE In-

ternational Symposium on Object/Component/Service-Oriented Real-Time Dis-

tributed Computing, ISORC 2009, pages 71–79, 2009.

214

[64] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[65] JO Kephart and DM Chess. The vision of autonomic computing. Computer,
36(January):41–50, 2003.

[66] El Mehdi Khalfi, Jean Paul Jamont, Michael Mrissa, and Lionel Medini. A
RESTful task allocation mechanism for the Web of Things. 2016 IEEE RIVF

International Conference on Computing and Communication Technologies: Re-

search, Innovation, and Vision for the Future, RIVF 2016 - Proceedings, pages
73–78, 2016.

[67] Mohamed Essaid Khanouche, Yacine Amirat, Abdelghani Chibani, Moussa
Kerkar, and Ali Yachir. Energy-Centered and QoS-Aware Services Selection for
Internet of Things. IEEE Transactions on Automation Science and Engineering,
13(3):1256–1269, 2016.

[68] Ji Eun Kim, Adriano Maron, and Daniel Mosse. Socialite: A Flexible Frame-
work for Social Internet of Things. 2015 16th IEEE International Conference

on Mobile Data Management, pages 94–103, 2015.

[69] Gerd Kortuem, Fahim Kawsar, Daniel Fitton, and Vasughi Sundramoorthy.
Smart objects as building blocks for the internet of things. Internet Comput-

ing, IEEE, 14(1):44–51, 2010.

[70] Bent Bruun Kristensen and Kasper Østerbye. Roles: conceptual abstraction
theory and practical language issues. Theory and Practice of Object Systems,
2(3):143–160, 1996.

[71] Philippe Lalanda, Julie A. McCann, and Ada Diaconescu. Autonomic Computing

Principles, Design and Implementation. Springer, London, UK, 1 edition, 2014.

[72] Edward A. Lee. Computing Foundations and Practice for Cyber- Physical Sys-
tems : A Preliminary Report. Electrical Engineering and Computer Sciences

University of California at Berkeley, pages 1–27, 2007.

[73] Teemu Leppänen and Jukka Riekki. A lightweight agent-based architecture for
the Internet of Things. In IEICE workshop on Smart Sensing, Wireless Commu-

nications, and Human Probes, pages 2–4, 2013.

215

[74] Teemu Leppänen, Jukka Riekki, Meirong Liu, Erkki Harjula, and Timo Ojala.
Internet of Things Based on Smart Objects. In Giancarlo Fortino, editor, In-

ternet of Things Based on Smart Objects, pages 29–48. Springer International
Publishing, 2014.

[75] Michael Luck, Mark D’inverno, and Steve Munroe. Autonomy: Variable and
Generative. In Henry Hexmoor, Cristiano Castelfranchi, and Rino Falcone, ed-
itors, Agent Autonomy, chapter 2, pages 11–28. Kluwer Academic Publishers,
2003.

[76] Jianhua Ma. Smart u-Things - Challenging Real World Complexity. In IPSJ

Symposium Series, volume 19, pages 146–150, Japan, nov 2005.

[77] Anil Madhavapeddy and David J. Scott. Unikernels: The Rise of the Virtual
Library Operating System. ACM Queue - Distributed Computing, 11(11):30,
2013.

[78] Friedemann Mattern. From smart devices to smart everyday objects. In Pro-

ceedings of smart objects conference, 2003.

[79] Lionel Médini, Michael Mrissa, El-Mehdi Khalfi, Mehdi Terdjimi, Nicolas Le
Sommer, Philippe Capdepuy, Jean-Paul Jamont, Michel Occello, and Lionel
Touseau. Chapter 5 - Building a Web of Things with Avatars: A comprehen-

sive approach for concern management in WoT applications. Elsevier Inc., 1
edition, 2017.

[80] Roberto Minerva, Abyi Biru, and Domenico Rotondi. Towards a definition of
the Internet of Things (IoT). IEEE Internet Things, pages 1–86, 2015.

[81] Mark Moriconi and Robert Riemenschneider. Introduction to SADL 1.0: A
Language for Specifying Software Architecture Hierarchies. Technical report,
SRI International - Computer Science Laboratory, 1997.

[82] Salama A. Mostafa, Mohd Sharifuddin Ahmad, and Aida Mustapha. Adjustable
autonomy: a systematic literature review. Artificial Intelligence Review, pages
1–38, 2017.

[83] Michael Mrissa and Nicolas Le Sommer. An Avatar Architecture for the Web of
Things. IEEE Internet Computing, 2015.

216

[84] Max Mühlhäuser. Smart Products : An Introduction. In Constructing Ambient

Intelligence Workshops, pages 158–164. Springer, 2008.

[85] Computer Networks. SmartSantander: IoT Experimentation over a Smart City
Testbed. Computer Networks, 61(November):217–238, 2015.

[86] OGC. SensorThings Data Model, 2013.

[87] Elizabeth Papadopoulou, Sarah Gallacher, Nick K. Taylor, and M. Howard
Williams. Personal smart spaces as a basis for identifying users in pervasive
systems. Proceedings - Symposia and Workshops on Ubiquitous, Autonomic

and Trusted Computing in Conjunction with the UIC 2010 and ATC 2010 Con-

ferences, UIC-ATC 2010, pages 88–93, 2010.

[88] Chris Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003.

[89] Charith Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopou-
los. Context-Aware Sensor Search, Selection and Ranking Model for Internet of
Things Middleware. In IEEE International Conference on Mobile Data Man-

agement, volume 1, pages 314–322, 2013.

[90] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Georgakopou-
los. Context Aware Computing for The Internet of Things: A Survey. Commu-

nications Surveys & Tutorials, 2013.

[91] Marco E Perez Hernandez and Stephan Reiff-Marganiec. Classifying smart ob-
jects using capabilities. In Proceedings of 2014 International Conference on

Smart Computing, SMARTCOMP 2014, pages 309–316, 2014.

[92] Marco E Pérez Hernández and Stephan Reiff-Marganiec. Autonomous and self-
controlling smart objects for the future internet. In 2015 3rd International Con-

ference on Future Internet of Things and Cloud (FiCloud), 2015.

[93] Marco E Perez Hernandez and Stephan Reiff-marganiec. Towards a software
framework for the autonomous internet of things. In 2016 IEEE 4th International

Conference on Future Internet of Things and Cloud (FiCloud), 2016.

[94] Zheng Qin, Xiang Zheng, and Jiankuan Xing. Software Architecture. Springer,
2008.

217

[95] Stephan Reiff-Marganiec, Hong Qing Yu, and Marcel Tilly. Service selection
based on non-functional properties. In Service-Oriented Computing-ICSOC

2007 Workshops, pages 128–138. Springer, 2009.

[96] Debbie Richards, Sander van Splunter, Frances M T Brazier, and Marta Sabou.
Composing Web services using an agent factory. 1st Workshop on Web Services

and Agent-Based Engineering, WSABE’03, pages 57–66, 2003.

[97] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly, Se-
bastopol, CA, first edition, 2008.

[98] Luis Roalter, Matthias Kranz, Andreas Möller, and Technische Universität
München. A middleware for intelligent environments and the internet of things.
in Ubiquitous Intelligence and Computing, pages 267–281, 2010.

[99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is more to
context than location. Computers & Graphics, 23(6):893–901, dec 1999.

[100] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V. Vasilakos, Claudia Szabo, Scott
Bourne, and Xiaofei Xu. Web services composition: A decade’s overview. In-

formation Sciences, 280:218–238, 2014.

[101] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, and Subhajit Dutta.
Role Of Middleware For Internet Of Things: A Study. International Journal of

Computer Science & Engineering Survey, 2(3):94–105, aug 2011.

[102] Friedrich Steimann. The Role Data Model Revisited. Applied Ontology, 2(Bach-
man 1973):89–103, 2005.

[103] Bruce Sterling. Shaping Things, volume 39. MIT Press, Cambridge, Mass.,
2005.

[104] Leon Sterling and Kuldar Taveter. The Art of Agent-Oriented Modeling. The
MIT Press, feb 2009.

[105] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and S Woelfflé. Vision and

challenges for realising the Internet of Things. EUR-OP, Luxembourg, 2010.

[106] Mehdi Terdjimi, Lionel Médini, Michael Mrissa, and Maria Maleshkova. Multi-
purpose Adaptation in the Web of Things. In International and Interdisciplinary

Conference on Modeling and Using Context, volume 3554, pages 213–226.
Springer Cham, 2017.

218

[107] Mehdi Terdjimi, Lionel Medini, Michael Mrissa, and Nicolas Le Sommer. An
avatar-based adaptation workflow for the web of things. Proceedings - 25th

IEEE International Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises, WETICE 2016, pages 62–67, 2016.

[108] H. Tschofenig, J. Arkko, D. Thaler, and D. McPherson. Architectural Consid-
erations in Smart Object Networking. Technical report, Internet Architecture
Board, 2015.

[109] Dieter Uckelmann, Mark Harrison, and Florian Michahelles. Architecting the

Internet of Things. Springer, 2011.

[110] Luis M. Vaquero and Luis Rodero-Merino. Finding your Way in the Fog: To-
wards a Comprehensive Definition of Fog Computing. ACM SIGCOMM Com-

puter Communication Review, 44(5):27–32, 2014.

[111] Jean-Philippe Vasseur and Adam Dunkels. Interconnecting Smart Objects with

IP: The Next Internet - Interconnecting Smart Objects with IP.pdf. Elsevier-
Morgan Kaufmann, Burlington, MA, 2010.

[112] Ovidiu Vermesan and Peter Friess. Building the Hyperconnected Society. River
Publishers, 2015.

[113] David. Vernon. Artificial Cognitive Systems: A Primer. The MIT Press, 2014.

[114] Mitchell Waldrop. More Than Moore. Nature, 530(7589):145, 2016.

[115] Michael E Whitman and Herbert J Mattord. Principles of Information Security.
Cengage Learning, Boston, MA, fourth edition, 2011.

[116] C.Y Chien Yaw Wong, Duncan McFarlane, D. Zaharudin, V. Awarwal, A Ahmad
Zaharudin, and Vivek Agarwal. The Intelligent Product Driven Supply Chain.
In IEEE International Conference on systems, man and cybernetics, volume 4,
page 6. IEEE, 2002.

[117] Michael Wooldridge. Introduction to Multiagent Systems, volume 30. Wiley &
Sons, Ltd, Glasgow, second edition, 2009.

[118] M Wooldridgey and Paolo Ciancarini. Agent-oriented software engineering: The
state of the art. Agent-Oriented Software Engineering, 2001.

219

[119] Qihui Wu, Guoru Ding, Yuhua Xu, Shuo Feng, Zhiyong Du, Jinlong Wang, and
Keping Long. Cognitive Internet of Things: A New Paradigm Beyond Connec-
tion. IEEE Internet of Things Journal, 1(2):129–143, 2014.

[120] Zhaohui Wu, Shuiguang Deng, and Jian Wu. Service-Oriented Architecture and
Web Services. In Service Computing Concepts, Methods and Technology, vol-
ume 9, chapter 2, pages 62–64. Elsevier Inc., 2015.

[121] Haiping Xu. Developing Role-Based Open Multi-Agent Software Systems. In-

ternational Journal of Computational Intelligence Theory and Practice, 2(1),
2007.

[122] Hong Qing Yu and Stephan Rei. Non-functional property based service selec-
tion: A survey and classi cation of approaches. In Service Oriented Computing

Workshop. The 6th IEEE European Conference on Web Services, 2008.

[123] John a Zachman. A framework for information systems architecture. IBM Sys-

tems Journal, 38(2):454, 1999.

[124] John A Zachman. The Framework for Enterprise Architecture: Back-
ground, Description and Utility by: John A. Zachman. Retrieved from:

https://www.zachman.com/resources/ea-articles-reference/327-the-framework-

for-enterprise-architecture-background-description-and-utility-by-john-a-

zachman, pages 1–5, 2016.

[125] Deze Zeng, Song Guo, and Zixue Cheng. The Web of Things: A Survey (Invited
Paper). Journal of Communications, 6(6), sep 2011.

[126] Haibin Zhu. Role-Based Collaboration and E-CARGO. IEEE Systems, Man &

Cybernetics, pages 27–35, jul 2015.

[127] Ingo Zinnikus, Gorka Benguria, Brian Elvesaeter, Klaus Fischer, and Julien
Vayssiere. A Model Drive Approach to Agent-Based Service-Oriented Architec-
tures. In Multiagent System Technologies, volume LNAI 4196, pages 110–122.
Springer, 2006.

220

	List of Figures
	List of Tables
	Introduction
	Research Problem and Challenges
	Thesis Statement
	Research Scope and Contributions
	Thesis Overview and Summary

	Research Background and Related Work
	Overview of the Internet of Things
	IoT Realisation Models

	Web of Things
	Smart Object-based IoT
	Using agents for SOb-IoT
	Agent's goals
	Agent autonomy
	Joint Use of Agents and Web Services
	Autonomic Systems
	Role-based architectures

	SOb-IoT Middleware: State of the Art
	UbiWare Project: Middleware for Industrial Systems
	FedNet
	ACOSO
	ASAWoO
	Leppänen
	Other platforms

	IoT Service Selection
	Summary

	Foundations of Smart Object's Autonomy
	Introduction
	Research challenges and requirements
	Contributions
	IoT Autonomous Systems: Individual and Collective
	Smart Object
	Collective of Smart Objects

	E-Ma-Gen3 Framework: An analysis tool
	SO Analysis using E-Ma-Gen3
	Planes and Scope
	Knowledge
	Behaviour
	Resources
	Relationships
	Structure
	Fundamental Processes

	Smart Object's Autonomy
	Summary

	Role-based Smart Objects (RbSOs)
	Introduction
	Challenges and Requirements
	Contributions
	 The Role-Based SO Software Architecture
	Overall approach
	Uncoupled Goal-motivated Behaviour
	SO's Knowledge Representation

	Summary

	em4so: A Middleware Architecture for RbSOs
	Introduction
	Research Challenges and Requirements
	 Contributions
	Middleware Architecture
	Design Principles
	em4so Architecture Overview

	Governing Body
	Smart Object Controller (SOC)
	Knowledge Base (KB)
	Reasoning Engine (RE)

	SO Management Body
	Capability Manager (CM)
	Social Interaction Manager (SIM)
	KB and Storage Manager (KSM)

	Support Facilities
	Communication Facilities (CF)
	Device Facilities (DF)
	Extra Facilities (EF)

	SO Protocol
	Key interactions between SOs
	Creating/Joining the Network
	Querying within SOs
	Coordination & Cooperation

	Implementation
	Summary

	Adaptation of SO-based IoT Systems
	Introduction
	Research Challenges and Requirements
	Contributions
	em4so Adaptation Strategy
	Collective Adaptation
	Individual SO Adaptation
	Adaptation Drivers
	Multi Objective Optimisation

	Selection of SO
	Selection of Services
	Selection of Deployed Services

	Selection of Offered Roles
	Summary

	Evaluation
	Introduction
	Research Challenges
	Contribution
	 Case Study: Physical Resource Provisioning
	Design
	Scenario Description
	Stage 1: SO Software Engineering
	Stage 2: SO-Based System Operation
	Stage 3: Node/Internet unavailability
	Discussion & Limitations

	em4so Middleware Performance Evaluation
	Design
	Results & Discussion

	Collective Evaluation
	Agent-based Modelling
	Design
	Model assumptions and limitations
	Experiment EX1: Scalability Evaluation
	Experiment EX2: System Adaptation Evaluation
	Discussion

	Qualitative Evaluation
	Design
	Results & Discussion
	Threats to Validity

	Summary

	Conclusion and Future Work
	Research Contributions
	Foundations of smart object autonomy
	A software architecture for smart objects
	A embedded middleware architecture for smart objects
	A method for adaptation of smart objects systems at individual and collective level
	An agent-based model for evaluation of smart object systems

	Future Work
	Machine Learning Services to SO Middleware
	RbSOs through Unikernels
	Real-time RbSOs Application Development
	Hierarchical P2P SO Protocol
	Blockchain for Activity Tracking

	Appendices
	em4so's Middleware Prototype Implementation Examples
	Service List by Host: Map Function
	Service List by Host: Reduce Function
	Preconceived belief: Device
	Preconceived belief: High

	Case Study Implementation Examples
	JSON Activity Definition
	JSON Scenario Definition

	Bibliography

