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Abstract 

Investigation into the role of rare genetic variation in lung function and 

chronic obstructive pulmonary disease. 

Victoria E Jackson 

Lung Function is a physiological measurement used for monitoring respiratory health 

and in the diagnosis of chronic obstructive pulmonary disease (COPD), a leading cause 

of morbidity and mortality worldwide. Lung function and COPD are influenced by a 

combination of environmental and genetic factors. This thesis aims to investigate the 

genetic basis of these traits, with a particular focus on the effect of low frequency and 

rare genetic variants, so far largely overlooked in genome-wide association studies 

(GWAS). 

An analysis of exome array data and COPD identifies novel associations between COPD 

risk and low frequency single nucleotide polymorphisms (SNPs) in MOCS3 and IFIT3 

and between a rare SNP in SERPINA12 and percent predicted forced expiratory volume 

in one second (FEV1) in COPD cases. Recently developed methods for the meta-analysis 

of gene-based tests are empirically evaluated and shown to be approximately 

equivalent to a mega-analysis using individual level data for a quantitative trait. These 

methods are then applied in a meta-analysis of exome array data and quantitative lung 

function measures. This meta-analysis identifies no gene-based associations; however 

genome-wide significant (P<5x10-8) single variant associations are identified in two 

novel regions: a SNP near LY86 associated with the ratio of FEV1 to forced vital capacity 

(FVC) and a SNP near FGF10 associated with FVC in ever smokers. Finally the largest 

GWAS to date of two lung function flow measures (peak expiratory flow [PEF] and 

forced expiratory flow between 25% and 75% of FVC [FEF25-75]) is described. The 

overlap in variants associated with PEF and FEF25-75 and volumetric measures of lung 

function (FEV1, FVC and FEV1/FVC) is examined, and 10 SNPs are identified as showing 

association with PEF (P<5x10-8), but no other lung function trait with P<5x10-5. These 

findings have the potential to provide insight into the biological mechanisms 

underlying lung health and disease. 
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Chapter 1 Introduction 

This chapter provides an introduction to genetic epidemiology, including the basic 

genetic concepts underlying genetic epidemiology, a description of genome-wide 

association studies and an introduction to the study of rare genetic variation. Key lung 

function measures and chronic obstructive pulmonary disease, the traits which are 

investigated within this thesis, are then described. Finally the aims of the thesis are set 

out and the structure of the remainder of the thesis is described. 

Table 1-1 provides a list of fundamental terms and abbreviations, which are used 

throughout the thesis. These terms are highlighted in bold throughout this chapter. 

Table 1-1: Key terms and abbreviations used throughout the thesis. 

A. Genetics 

Term Definition 

allele The variant forms of a SNP or other genetic variant. 

amino acid Building blocks of proteins. 

base pair 

Pairs of nucleotides connected by hydrogen bond. Genetic distance may be 

measured in base pairs. 

chromosome Structure into which DNA is organised.  

CNV 

Copy Number Variation - Type of structural variation where sections of DNA are 

either inserted or deleted. 

codon 

A sequence of three nucleotides that codes a specific amino acid or stop signal 

during translation. 

DNA Deoxyribonucleic acid - molecule which carries genetic information 

exons / exonic Coding sections of a gene which are translated into a protein. 

gene Section of DNA, which codes for a protein or functional RNA molecule. 

genotype The two alleles (from each of the chromosomal pair) collectively. 

haplotype Groups of SNPs which tend to be inherited together 

heterozygous An individual is heterozygous at a particular locus if they have two different alleles. 

homozygous 

An individual is homozygous at a particular locus if they have two copies of the 

same allele. 

indel A variant where one, or a small number of bases are inserted or deleted. 

intergenic Located in a region of the genome with no genes. 

intron / intronic 

Noncoding sections of a gene which are spliced out before RNA is translated into a 

protein. 

Inversion Section of DNA where the order of bases is reversed. 

LD 

Linkage Disequillibrium - the non-random association (correlation) of nearby 

genetic variants. 

locus A genetic location. 

missense A SNP which results in a codon that codes for a different amino acid. 

mRNA Messenger RNA. 

nonsense A SNP which results in a premature stop codon. 
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Term Definition 

nonsynonymous A SNP which results in a change to the amino acid. 

nucleotide Building block of DNA. Contain one of four types of chemical base: A, T, C and G. 

proteins Molecules consisting of several amino acids that perform many functions within 

living organisms. 

recombination A process occurring during meiosis in which sections of DNA are broken and 

recombined to produce new chromosomes. 

regulatory region Region of DNA which regulates the transcription of a gene. 

RNA Ribonucleic acid - complementary molecule to DNA, made during transcription. 

SNP Single Nucleotide Polymorphism: type of genetic variation where a single 

nucleotide base is substituted. 

splice site A SNP which changes the sequence at a site at which splicing takes place. 

spliced / splicing Process in which introns are removed from RNA and exons are joined together, to 

form mRNA. 

synonymous A SNP which does not affect the amino acid sequence. 

transcription Process in which RNA is made from a DNA molecule. 

translation Process in which proteins are produced from mRNA. 

B. Genetic epidemiology and statistical genetics 

Term Definition 

additive 

Occurs where each allele contributes one unit of an effect to a trait for each copy of 

that allele, in a linear fashion. 

co-dominant Occurs where the effect of both alleles on a trait can be observed. 

complex trait A trait influenced by a combination of several genetic and environmental factors. 

dominant 

Interaction of alleles at a locus, where the effect of the dominant allele masks the 

effect of the other (recessive) allele. 

dosage 

Imputed genotypes value take the form of allele dosages, which relate to the 

expected count of the minor allele on a continuous scale from 0 to 2. 

epistatic / 

epistasis Interactions between alleles at different loci. 

familial 

aggregation The clustering of a trait or disease within families.  

GWAS 

Genome-wide association study - An investigation of statistical associations 

between alleles and a trait, for variants across the genome. 

heritability The variance of a trait which can be attributed to genetic effects 

h2 Narrow sense heritability - heritability due to additive genetic effects. 

H2 

Broad sense heritability - heritability due to all genetic effects (additive, dominant 

and epistatic effects). 

HWE 

Hardy-Weinberg equillibrium - principle which assumes that allele and genotype 

frequencies in a population will remain constant through the generations of a 

population, assuming random mating and the absence of other evolutionary 

influences. 

IBS 

Identity (Identical) by state - Where two individuals share the same alleles at a 

locus, they are said to be IBS. 

IBD 

Identity (identical) by decent - Where two individuals share the same alleles at a 

locus, inherited from a recent common ancestor, they are said to be IBD. 

imputation Method of inferring genotypes that are not directly measured through genotyping. 
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Term Definition 

kinship coefficient 

Measure of relatedness between individuals - the probability that two individuals 

are IBD at a given locus. 

λ 

Genomic inflation factor - the ratio of the median of the observed test statistics of a 

GWAS to the median of the expected test statistics under the null. In GWAS, test 

statistics may be scaled using λ to correct for population stratification; this is known 

as genomic control. 

MAF Minor allele frequency - frequency of the less common allele in a population. 

monogenic A trait that is a result of a single gene. 

PCA / PCs 

Principal components analysis / principal components - statistical method used to 

cluster sample by ancestry, which can be used to account for population structure. 

polygenic A trait that is a result of the effects of multiple genes. 

recessive 

An allele at a locus is recessive, where it’s effect is masked by the effect of the 

other (dominant) allele. 

C. Respiratory function and disease 

Term Definition 

AAT 

Alpha1-antitrypsin deficiency - a rare disorder caused by mutations in the SERPINA1 

gene which leads to early onset COPD. 

airflow limitation 

A reduction of FEV1, and FEV1/FVC (airflow limitation in COPD defined as 

FEV1/FVC<0.7) 

alveoli Small air sacs in the lungs where gas exchange takes place. 

bronchioles Small airways of the lung, which branch off from the bronchi. 

bronchi 

Airways which branch off from the trachea into the lungs, subsequently branching 

into bronchioles. 

bronchodilation 

Expansion of the bronchi and bronchioles in response to a pharmacologically active 

substance. 

COPD 

Chronic Obstructive Pulmonary Disease - lung disease characterised by fixed airflow 

limitation. 

FEF25-75 The forced expiratory flow between 25% and 75% of vital capacity. 

FEV1 

Forced expiratory volume in 1 second - the amount of air that can be forcibly 

exhaled in the first second of an FVC manoeuvre. 

fibrosis Thickening and scarring of (lung) fibrous tissue in response to injury or damage. 

FEV1/FVC The ratio of FEV1 to FVC. 

FVC Forced vital capacity - the total amount of air that can be forcibly exhaled. 

GOLD 

Global Initiative for Chronic Obstructive Lung Disease - organisation which has 

provided a strategy document for the diagnosis, management and prevention of 

COPD, which includes a grading system for severity of airflow limitation in COPD 

(GOLD 1-4). 

lung parenchyma 

The part of the lung involved in gas transfer, including the alveoli, alveolar ducts 

and bronchioles  

PEF Peak expiratory flow - a measure of maximum instantaneous expiratory flow 

%pred (eg FEV1) 

Percent predicted (eg FEV1) - a measure which compares an individual’s measured 

spirometric values with that which would be expected, given their age, sex, height 

and ethnicity. 

pneumocytes Cells lining the alveoli. 

spirometry A physiological test, measuring lung function. 
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Term Definition 

trachea 

The largest airway in the lower respiratory tract that connects the pharynx/larynx 

with the lungs. 

 

1.1 Introduction to genetic epidemiology 

1.1.1 Genetic concepts 

The human genome is made up of deoxyribonucleic acid (DNA), which in turn consists 

of nucleotides, each containing one of four types of chemical base, namely adenine 

(denoted A), cytosine (C), guanine (G) or thymine (T), joined with a sugar (deoxyribose) 

and phosphate group. Covalent bonds join the nucleotide bases together to form 

strands of DNA. Strands of DNA have directionality, with the two different ends 

denoted 5’ and 3’. Two strands running in opposite directions and connected by 

hydrogen bonds form the double helix structure of a DNA molecule. In this double 

stranded structure, the A nucleotides consistently pair with T nucleotides, with the C 

and G nucleotides pairing equivalently, to form base pairs. The human genome 

consists of approximately 3.3 billion base pairs and is arranged into 46 chromosomes, 

consisting of 22 homologous pairs of autosomes (numbered 1-22) and two sex 

chromosomes (XX in females and XY in males). For each chromosomal pair, one is 

inherited from the individual’s mother, and one from the father (1, 2). 

DNA contains biological information which instructs the synthesis of proteins. In a 

process known as transcription, the two strands of DNA break apart, with one of the 

strands forming a template for a complementary second molecule called ribonucleic 

acid (RNA). RNA is similar to DNA, but it contains the sugar ribose instead of 

deoxyribose and an alternative base, Uracil (U) is in place of T.  Similarly to DNA, an 

RNA strand contains a 5’ and 3’ end, and is aligned in the opposite direction to the 

DNA strand in transcription. Certain sections of the DNA sequence are known as genes; 

most genes contain regulatory regions, non-coding regions known as introns and 

coding regions known as exons. After transcription, the sections of RNA from the 

exons are spliced together to form messenger RNA (mRNA). Translation of the mRNA 

molecule then occurs in which groups of three bases, known as codons, are read from 



 
 

5 
 

the 5’ to the 3’ end of the mRNA to form a chain of amino acids and in turn produce 

proteins (1, 2). 

The majority of the genome is identical across all humans; however there are several 

ways in which DNA can vary between individuals. The variation present in the human 

genome can broadly be categorised into two classes: structural variants and single 

nucleotide polymorphisms (SNPs). SNPs are the most common type of variation, and 

are where a single nucleotide is substituted for a different nucleotide at a particular 

position, or locus (3). SNPs may be located in regions of the genome with no genes 

(intergenic), or they may be located within genes. SNPs which are located within the 

coding regions of genes (exonic) may be either nonsynonymous or synonymous. A 

nonsynonymous SNP results in a codon which codes for a different amino acid within 

the translated protein (missense). Sometimes this alternative codon is a stop codon, 

which results in truncation of the protein product (nonsense). If an exonic SNP does 

not affect the amino acid sequence, it is known as synonymous. SNPs may also be 

located at the site where splicing occurs during the formation of mRNA (splice site), or 

in the non-coding regions of genes (intronic). 

Structural variants include insertion-deletions (indels), inversions and copy number 

variants (CNVs). Indels and CNVs are where sections of bases are either inserted or 

deleted. Indels tend to consist of a small number of bases, whereas CNVs are longer 

sections of DNA, which may also contain repeats of bases.  Inversions occur where the 

order of a section of bases in a chromosome is reversed (3).These types of structural 

variation and SNPs are shown schematically in Figure 1-1.  

  



 
 

6 
 

Figure 1-1: Classes of Genetic Variation.  

For each type of variation, the bases of one strand of DNA are shown from a particular locus on two copies of a 

chromosome. 

SNP TCTGACATGACGTGGTCTCGATCAGAGCTGACTGACGTACGAAGGTGCTGACG 

TCTGACATGACGTGGTCTCGATCAAAGCTGACTGACGTACGAAGGTGCTGACG 

 

Indel TCTGACATGACGTGGTCTCGATCAGAGCTGACTGACGTACGAAGGTGCTGACG 

TCTGACATGA- - - - GTCTCGATCAGAGCTGACTGACGTACGAAGGTGCTGACG 

  

Inversion TCTGACATGACGTGGTCTCGATCAGAGCTGACTGACGTACGAAGGTGCTGACG 

TCTGACATGACGTGGTCTCGATCAGAGCTGACTGGCATGCAAAGGTGCTGACG 

 

CNV TCTGACATGACGTGGTCTCGAGGTCTCGAGGTCTCGATACGAAGGTGCTGACG 

TCTGACATGACGTGGTCTCGA- - - - - - - - - - - - - - - - TACGAAGGTGCTGACG 

 

Where there are these differences in a particular position in the genome, the variants 

at that locus are known as alleles, and the two alleles an individual has (one from each 

of the chromosomal pair) are collectively known as the genotype. Using the SNP 

illustrated in Figure 1-1 as an example, the alleles are A and G, and an individual may 

have one of three genotypes: AA, AG or GG. If an individual has the same allele on 

both chromosomes (AA or GG), their genotype is termed homozygous, whereas if the 

two alleles are different (AG), their genotype is heterozygous. Given that the two 

strands of a DNA molecule are complementary, the same information may be obtained 

from either strand; therefore only the alleles and genotypes from one strand are ever 

reported. If the alleles from the preceding example were taken from the other strand, 

the resulting genotypes would be TT, TC and CC.  

Chromosomes are passed on to offspring from their parents via gametes (sperm from 

the father and ovum from the mother). The gametes are formed by a cell division 

process known as meiosis in which cells are created with only one member of each 

chromosomal pair: 22 autosomes and one sex chromosome (X in an ovum cell and 

either an X or Y in  a sperm cell). During meiosis, a process called recombination takes 

place where the two parental chromosomes overlap and sections of DNA are 
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exchanged. Consequently chromosomes are not transmitted to the gametes as a 

whole, rather a mixture of the two homologous chromosomes is passed on, as 

illustrated in Figure 1-2 (1, 2). 

Figure 1-2: Illustration of recombination, during meiosis. 

 

Genes and genetic variants that are located close to each other on a chromosome are 

less likely to have undergone recombination than those located farther away. As a 

consequence, nearby genes and variants are more likely to be inherited together and 

are therefore found to be correlated within populations. For example, in Figure 1-2, 

SNP A and SNP B are more likely to be inherited together than are SNP A and SNP C. 

This non-random association is known as linkage disequilibrium (LD) and the stretch of 

genes or variants which are inherited together are known as a haplotype (1, 4). 

The majority of the work in this thesis focusses on SNPs; the terms SNP and (genetic) 

variant have therefore been used interchangeably for the remainder of this thesis.  
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1.1.2 Overview of Genetic Epidemiology 

Genetic epidemiology is the study of how genetic factors affect health and disease in 

populations. The uncovering of the genetics of a disease or a trait, can lead to a greater 

understanding of the mechanisms of disease and may highlight molecular targets for 

novel therapeutics.  

The initial steps in determining whether a trait or disease is influenced by genetic 

determinants do not require measurement of any genetic information. Firstly, we 

might want to show there is familial aggregation of a disease or quantitative trait. For 

a binary disease trait, this is where there is on average, a greater prevalence of disease 

amongst the relatives of individuals with the disease, compared to amongst relatives 

of individuals who are disease free. For a quantitative trait, familial aggregation may be 

assessed using measures such as the intra-family correlation coefficient, which 

measures the proportion of the total trait variance that is due to variation between 

families. Familial aggregation is usually a result of a combination of genetic and shared 

environmental factors (1, 5).  

The genetic contribution to the variability of a trait or disease is known as the 

heritability and is defined as a ratio of the variance of a trait that can be attributed to 

genetic effects, to the total trait variance. There are two types of heritability: firstly 

narrow sense heritability (h2), which considers only additive genetic effects; secondly 

broad sense heritability (H2), which comprises all genetic effects, including interactions 

within loci (dominant effects), and between loci (epistatic effects). Estimates of 

heritability are made by partitioning known variation into components of unmeasured 

genetic and environmental effects. This estimation is straightforward for quantitative 

traits; for binary disease traits, heritability is usually estimated using a hypothetically 

assumed underlying normally distributed liability trait, which determines the 

probability of an individual developing the disease (1, 5-7). Heritability is an important 

measure to assess the level of genetic contribution to a trait or disease, however it has 

a number of limitations: heritability estimates are population specific, can change over 

time, and are not informative about the actions and interactions of specific genes (7). 
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Once a genetic contribution to a trait has been established, segregation analysis has 

historically been used to determine the mode of inheritance. A genetic trait may be 

consistent with a dominant, recessive, co-dominant or additive genetic model and be 

a result of a single locus (monogenic), a combination of a small number of genes 

(oligogenic), or a result of a large number of genes, each with small effects (polygenic) 

(8). There are a number of limitations to segregation analysis methods however, and 

with the developments in technologies for measuring genetic variation, they are no 

longer widely utilised (1). 

The first studies which attempted to implicate specific regions of the genome with a 

trait were based on genetic linkage. These family-based genetic linkage studies are 

reliant on the tendency for short regions of the genome to be transmitted from parent 

to offspring as a whole, without being subject to recombination. If a genetic marker is 

passed down through families of affected individuals, it follows that there might be a 

disease gene close to that marker (1, 8).These studies involve genome-wide scans of 

sparsely distributed markers spaced several Centimorgans (cM, a measure of genetic 

distance based on recombination frequency) apart. These analyses have been most 

successful for identifying genetic causes of monogenic Mendelian disease, such as 

cystic fibrosis and Huntington disease (9). For most polygenic complex traits, 

influenced by several genetic and environmental factors, linkage studies have had 

limited success.  

A previously popular approach for identifying genes associated with complex traits was 

through candidate gene studies. These studies are usually population-based and 

examine variants in specific gene regions chosen due to a priori hypotheses about their 

role in the trait of interest. Results from candidate gene studies have seldom been 

replicated in follow-up studies however and are reliant on our ability to predict 

biologically plausible candidate genes (10). Due to these limitations, hypothesis-free 

genome-wide association studies (GWAS) have been most widely used in recent years 

and have proved a powerful method for identifying genes associated with complex 

traits. These GWAS are fully described in the following section. 
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1.1.3 Genome-wide Association Studies (GWAS) 

Over the past decade, GWAS have proved a powerful method for identifying 

associations between common SNPs and a number of complex traits. GWAS are 

usually large, population based studies which involve testing for associations between 

a trait and multiple individual SNPs in turn, from across the genome. 

The development of GWAS was made possible due to efforts such as the International 

HapMap Project (11), which provided knowledge of LD structures, alongside the 

development of genotyping technologies, allowing for the measurement of several 

hundreds of thousands of SNPs, genome-wide, in large numbers of individuals. Due to 

the correlation (LD) patterns existing across the genome, the SNPs measured by these 

arrays are able to capture a large proportion of common variation genome-wide (12). 

Any association between genotyped SNPs and a trait may then be a result of a direct 

association (where the associated SNP is the causal variant), or an indirect association 

(where the associated SNP is in LD with [or tagging] the causal variant) (1, 12). The 

remainder of this section outlines how GWAS are carried out, including quality control 

(QC) of genotype data, methods for association testing and interpretation of results. 

1.1.3.1 Quality control of GWAS genotype data 

SNP data from genotyping arrays are in the form of allele probe intensities from which 

genotypes may be estimated by genotype calling algorithms, usually implemented in 

software accompanying the genotyping platform (e.g. Gencall by Illumina (13)). Once 

genotypes have been estimated, there are several quality control (QC) metrics which 

are routinely implemented, prior to any analysis (14, 15).  These QC metrics are 

undertaken on both a per-sample and per-SNP basis and are detailed below. 
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Per-sample QC 

i. High level of missing data: Samples with a high number of missing genotypes are 

likely a result of poor DNA quality and should be excluded. 

ii. Outlying heterozygosity rate: The mean level of autosomal heterozygosity across 

all individuals should be determined and any sample with an outlying mean 

heterozygosity rate should be identified for exclusion. Samples with an excessive 

heterozygosity rate may be subject to DNA sample contamination, whilst samples 

with a lower than expected heterozygosity rate may be due to inbreeding. 

iii. Discordant sex information: Samples whose genetically inferred sex is 

inconsistent with that supplied within the phenotype data may be subject to 

sample mix-ups, or DNA sample contamination.  

iv. Duplicate and related samples: Metrics known as identity by state (IBS) and 

identity by decent (IBD) can be calculated for each pair of samples. IBS is an 

estimation of the average proportion of alleles shared by each sample pair, across 

genotyped SNPs. IBD is a measure of recent shared ancestry, and can be estimated 

with IBS data. Sample pairs with IBD=1 are likely duplicates (or monozygotic 

twins). IBD values of 0.5 and 0.25 correspond with first and second degree 

relatives. In studies with related individuals, one sample of each pair of related 

individuals may be removed, to leave only unrelated samples; removal of related 

samples is usually carried out where there are a small number of samples who are 

related, so there is only small decrease in overall sample size and therefore power. 

The benefit of restricting to only unrelated individuals is that association analyses 

are computationally more straightforward. Alternatively, related samples may be 

retained and their relatedness taken into account during analyses (Section 

1.1.3.2). 

v. Ancestral outliers: Principal components analysis (PCA) is a statistical method 

which calculates a number of uncorrelated variables (principal components, PCs) 

each accounting for variability in the data. These PCs can be calculated jointly with 

samples of known ancestry (e.g. from HapMap (11) or 1000 Genomes projects 

(16)); the first two resulting PCs are sufficient to cluster individuals from different 

ancestral populations (Figure 1-3) and any sample with an ancestry different to 
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the population being studied may be identified for exclusion. These calculated PCs 

may also be used in the analysis, to account for smaller scale population structure 

(Section 1.1.3.2). 

Figure 1-3: Example of PCA plot. 

First two principal components for samples from the 1958 British Birth Cohort (samples labelled data), and HapMap 

samples of different ancestries. HapMap ancestry codes: African populations: ASW; LWK; MKK; YRI. East Asian 

Ancestry: CHB; CHD; JPT. South Asian Ancestry: GIH. Admixed American Ancestry: MEX. European Ancestry: CEU; 

TSI. 

 

Per-SNP QC 

i. High level of missing data: SNPs with a low call rate (non-missing genotypes) 

are excluded. 

ii. SNPs deviating from Hardy Weinberg equilibrium: Hardy-Weinberg 

equilibrium (HWE) assumes that under random mating and no evolutionary 

influences, the relationship between genotype and allele frequencies in a 

population should remain stable. SNPs which show significant deviation from 

HWE may be a result of genotyping, or genotype calling errors; these SNPs may 

be removed or flagged as potentially problematic. 

iii. SNPs with a low minor allele frequency: In GWAS of common SNPs, it has been 

common practice to exclude variants under a given minor allele frequency 

(MAF) threshold, as these SNPs are more difficult to call using genotype-calling 
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algorithms. More recently, there has been a greater focus on low frequency 

and rare SNPs (Section 1.2) and as such this filter is not always applied. 

1.1.3.2 Analysis of GWAS data 

GWAS analyses generally consist of testing for a statistical association between a trait 

of interest and all genotyped SNPs. GWAS may be undertaken assuming an additive, 

dominant or recessive genetic model; however the additive model is most commonly 

assumed in the analyses of polygenic complex traits, and is described in this section. 

For a SNP with two alleles C and T, individuals may have one of three genotypes: CC; 

CT; or TT. If we assign T as the effect allele, then an individual with a CC genotype 

would have no copies of the effect allele, an individual with a CT genotype would have 

one copy of the effect allele and an individual with a TT genotype would have two 

copies of the effect allele. Associations may then be tested between the number of 

copies of the effect allele an individual has (0, 1 or 2) and the trait. For a quantitative 

trait, this genetic association may be tested using a linear model, and for a binary trait 

a logistic model may be utilised, as follows: 

Quantitative Trait: 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑮 + 𝜷𝟐𝑿 + 𝜀 

𝑤ℎ𝑒𝑟𝑒 𝜀~𝑁(0, 𝜎𝜀
2) 

( 1-1 ) 

 

Binary Trait: 

𝑙𝑜𝑔𝑖𝑡(𝒀) = 𝜷𝟎 + 𝜷𝟏𝑮 + 𝜷𝟐𝑿 

 

( 1-2 ) 

 

where Y is an vector of trait values and G is an matrix of the genotypes {0,1,2}. 

Additional covariates (denoted by the matrix X) may additionally be included in these 

models, including non-genetic risk factors (e.g. sex or smoking), and PCs (Section 

1.1.3.1) to adjust for fine-scale genetic differences due to population structure 

(population stratification (17)). 𝜀 is a random error term, accounting for the residual 

variation of Y. In both models, β0 is a vector of intercept terms and β2 is a vector of 

covariate effects. For a quantitative trait, β1 provides a vector of effect estimates for 

the effect of each copy of the effect allele on the trait value, for each SNP. For a binary 
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trait, β1 provides a vector of log odds ratio, again for each copy of the effect allele. In 

each case, the null hypothesis being tested is that the genotype has no effect on the 

trait, that is each element of β1 is equal to 0 (H0: β1=0).  

In the analyses undertaken in this thesis, I have utilised both linear models (equation 

(1-1)) and logistic models (equation (1-2)) described above, as implemented in the 

software packages PLINK (18) and SNPTEST (19). 

GWAS may also be undertaken in samples which contain related individuals; for these 

analyses, linear mixed models are the most widely used approach. This method firstly 

involves the calculation of kinship coefficients between all pairs of individuals, using 

genome-wide genotype data. Secondly, a linear mixed model is fitted, which includes 

the SNP as a fixed effect, along with a random effect which incorporates the kinship 

estimates and models the genetic correlation between individuals, as in equation (1-3) 

(20). 

𝒚 = 𝜷𝟎 + 𝜷𝟏𝑮 + 𝜷𝟐𝑿 + 𝑼 + 𝜀 

𝒘𝒉𝒆𝒓𝒆 𝑼~𝑀𝑉𝑁(0, 𝜎𝑔
2𝑲) 

 𝜀~𝑁(0, 𝜎𝜀
2) 

( 1-3 ) 

 

 

where U is a vector of random effects where 𝜎𝑔
2 is the component of the overall 

variance of Y, which is due genetic factors and K is a matrix of kinship coefficients. 

Once genetic associations have been tested for all SNPs, plots and summaries may be 

produced to examine the results. Firstly, the observed –log10 P-values of the GWAS 

may be plotted against those expected under the null hypothesis, in a quantile-

quantile (QQ) plot (Figure 1-4). This plot shows whether there were more significant 

associations than would be expected by chance. If the distribution of P-values broadly 

follows the expected distribution under the null, but with some deviation at the highly 

significant end of the distribution, this is suggestive of there being significant trait-

associated SNPs. Alternatively, if there is inflation of the P-values across the 

distribution, this may be indicative of underlying population stratification, that has not 

been properly accounted for during the analysis. Another related indicator of 

population stratification is the genomic inflation factor (λ) (21). λ is defined in equation 
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(1-4) as the ratio of the median of the observed test statistics (𝑋1
2, … , 𝑋𝑗

2) to the 

median of the expected test statistics under the null.  

𝜆 = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑋1
2, … , 𝑋𝑗

2)/0.456 ( 1-4 ) 

 

where 0.456 is the median of a chi-squared distribution with one degree of freedom. A 

value of λ that is well in excess of 1 may be an indication over-inflation of test statistics 

due to population stratification. Where λ>1, test statistics may be scaled using the 

value of λ to give corrected P-values; this method is known as genomic control. 

Figure 1-4: Example of quantile-quantile (QQ Plot). 

 

Manhattan plots are usually produced to summarise GWAS results (Figure 1-5). These 

plots show the –log10 P-values (y-axis) for each SNP, ordered by chromosome and 

position (x-axis). The higher a SNP’s position on the y-axis, the more highly significant 

the association for that SNP. Due to the LD structure of SNPs usually included in GWAS, 

there is a tendency of “peaks” of association to form. 
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Figure 1-5: Example of Manhattan plot. 

 

1.1.3.3 Meta-analysis of GWAS 

In order to increase sample size, and therefore statistical power to detect SNP 

associations, meta-analyses combining GWAS data from several studies are commonly 

undertaken. In these meta-analyses, it is not necessary to share individual level data; 

rather each contributing study performs association analyses according to a centrally 

agreed analysis plan. The study-level results are then combined by a central meta-

analyst to give overall genome-wide association results. Combining data in this way 

has been shown to be as powerful as conducting analyses using individual level data 

(22). 

1.1.3.4 Statistical significance and replication 

In a GWAS there are a large number of hypotheses being tested; the significance 

threshold at which we reject the null hypothesis must reflect this. A Bonferroni 

correction, in which the desired type 1 error rate (α=0.05) is divided by the number of 

tests undertaken, may be used to correct for multiple testing. However, the Bonferroni 

correction assumes that all tests are independent and this is not the case in GWAS due 

to the correlation of the SNPs, and therefore the Bonferroni correction is likely to be 

overly conservative. It is possible to estimate the number of effective independent 

tests, for example using the SNPSpD package (23); however it has been common 

practice to utilise a significance level of  P<5x10-8. This widely used significance 

threshold is equivalent to a Bonferroni correction for 1 million independent tests and 
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SNPs meeting this significance level are deemed genome-wide significant (24). Other 

methods for determining significance levels have also been proposed, such as 

permutation-based (25, 26), or Bayesian approaches (27), however these have been 

less widely adopted. 

In order to verify that SNPs identified in a GWAS reflect true associations, replication 

should be sought.  A common approach is to select SNPs from a GWAS under a given P-

value threshold (usually less stringent than the genome-wide significance level), which 

are then taken forward to a follow-up replication stage of analyses undertaken in an 

independent set of samples. The results from the first discovery-stage GWAS and the 

follow-up stage may then be combined to give an overall result; SNPs meeting 

P<5x10-8 overall are then declared as genome-wide significant results (28). 

A quality control check that should be undertaken to eliminate false-positive 

associations is the examination of cluster plots of probe intensities from the 

genotyping experiment. Either the normalised probe intensities for each allele can be 

plotted (Figure 1-6 A), or the log ratio may be plotted against the strength (Figure 1-6 

B), where log ratio is defined as log2 (
𝑖𝑛𝑡𝑋

𝑖𝑛𝑡𝑌
) and the strength as 

log2(𝑖𝑛𝑡𝑋)+log2(𝑖𝑛𝑡𝑌)

2
, 

where intX and intY are the two probe intensities. Plotted on either scale, three distinct 

clusters should form, corresponding to the three possible genotypes (homozygous for 

the major allele, heterozygous, and homozygous for the minor allele). If these three 

clusters are not well defined, then there may be inaccuracies with the called 

genotypes, which could lead to spurious associations.  
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Figure 1-6: Examples of cluster plots of probe intensity data.  

A. Normalised probe intensities. B. log ratio versus strength of probe intensities. 

 

 

1.2 “Missing-heritability” and rare variants 

1.2.1 Missing Heritability 

GWAS to date have generally focussed on investigating the effects of common SNPs 

(MAF ≥ 5%), and whilst they have had some success in discovering  genetic variants 

that influence complex diseases and traits, most genome-wide significant associated 

variants have only shown modest effects, and collectively only explain small amounts 

of the expected heritability. Some recent examples include body mass index (BMI), for 

which 97 genome-wide significant loci were found to explain approximately 2.7% of 

phenotypic variance (29) (h2 estimates between 47-90% (30)) and schizophrenia for 

which 108 genome-wide significant loci explained 3.4% of variation on the liability 

scale (31) (h2 estimates 44-87% (32)). However, these studies and others (29, 31, 33-

35) have estimated that collectively, common SNPs do explain a substantial proportion 

of the heritability estimated from family studies. 

Nevertheless, there still remains a proportion of the heritability that is unexplained 

and several suggestions have been offered for where this so-called “missing 

heritability” might be found. These include structural variations; gene-environment 

interactions; epigenetics; epistasis; transgenerational effects and rare variants with 

large effects (36). The work in this thesis investigates the last of these hypotheses. 

There are a number of arguments in support of the rare variant hypothesis: firstly, 

evolutionary theory predicts that disease causing variants are likely to be rare, since 

A. B. 
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variants which are deleterious should be selected against (37). Furthermore, most 

nonsynonymous mutations, which lead to changes in the protein structure and 

therefore are more likely to be deleterious, are strongly skewed to the lower end of 

the allele frequency spectrum (38). There have also been a number of highly 

penetrant, rare CNVs identified that confer a substantial risk in common 

neuropsychiatric disorders, including epilepsy, schizophrenia and autism (37, 39).  

This remainder of this section describes the types of studies used to investigate the 

effect of rare SNPs on a phenotype, and outlines some of the methods for association 

testing. 

1.2.2 Sequencing Studies 

Sequencing is the process of determining the full sequence of nucleotides in DNA and 

is the most useful tool for identifying very rare genetic variation. Sequencing may be 

carried out in specific regions (targeted sequencing), in exonic regions (whole exome 

sequencing), or across the entire genome (whole genome sequencing). Although the 

cost of sequencing has fallen dramatically in recent years, it remains prohibitively 

expensive for studying genome-wide genetic variation in large numbers of individuals 

(39). 

1.2.3 Imputation 

Genotype imputation is the prediction of genotypes that are not directly measured in 

a sample of individuals. Given the tendency for stretches of DNA, or haplotypes, to be 

shared amongst individuals, by measuring genotypes at a selection of SNPs, it is 

possible to infer the unobserved genotypes at other SNPs within that region. Several 

reference panels containing haplotypes from a number of individuals are available, 

which genotyped samples may be imputed against. More recent reference panels 

utilising haplotypes from an increasing number of samples (recent efforts include the 

1000 Genomes (16) and UK10K (40) projects and the Haplotype Reference Consortium 

(41)), are allowing for imputation of SNPs at the lower end of the allele frequency 

spectrum, and analyses using data imputed to these panels are beginning to identify 
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associations with low frequency SNPs and a number of common complex traits (42-

45). 

Several software packages have been developed to facilitate imputation, with the most 

widely used being IMPUTE2 (46), MaCH/minimac (47, 48) and Beagle (49). Imputed 

genotypes are in the form of allele dosages, on a continuous scale from 0 to 2. These 

dosages relate to the expected count of the minor allele, with the non-integer nature 

of the value reflecting the genotype uncertainty. Imputation packages also provide 

metrics for each SNP regarding the quality of the imputation; SNPs with low 

imputation qualities are usually excluded from any analyses. 

1.2.4 The exome chip 

Whilst genotyping arrays (or chips) have widely been used as a cost-effective method 

for examining common genetic variation, low frequency and rare SNPs have been 

largely underexplored in GWAS using array data. To date, the influence of rare genetic 

variation in disease has mainly been examined through sequencing studies; however 

as mentioned in Section 1.2.2, the cost of this technology remains high. The exome 

chip is an array that was designed to act as an intermediary between existing 

genotyping array and sequencing technologies, allowing for the investigation of rare 

genetic variation in large sample sizes.  

The variants included on the chip were selected as they were observed numerous 

times in the sequenced exomes or genomes of a set 12,000 individuals taken from 16 

sample collections, enriched for a range of traits. The chip focusses on SNPs within the 

exons, the part of the gene which when transcribed to RNA, codes for proteins. Most 

variants on the chip are either missense, nonsense or splice site variants and are likely 

to affect protein structure and function. Nonsynonymous variants were included if 

they were observed at least three times, in two or more sample collections, with less 

stringent inclusion criteria for splice and nonsense variants. Additional content on the 

chip includes previously described GWAS hits, ancestry informative markers, IBD 

markers, fingerprint SNPs, variants from the mitochondria, the major 

histocompatibility complex genes and chromosome Y, and a random sample of 

synonymous SNPs. The exome chip is estimated to include 97-98% of missense 
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variants and 94-95% splice and nonsense variants detected in an average sequenced 

genome. The array includes variants with all ranges of MAFs, but the majority are low 

frequency (1-5% MAF) and rare (>1% MAF) (Figure 1-7) (50).  

Figure 1-7: Distribution of allele frequencies of SNPs genotyped by the exome chip and polymorphic in the 1958 

British Birth Cohort.  

 

One of the challenges for the exome array was that the genotype calling algorithms 

previously used for calling array genotype data were less accurate for SNPs with a low 

MAF. Consequentially, new algorithms were developed which were intended to either 

refine genotype calls from existing algorithms, (zCall (51)), or to more accurately call 

genotypes for SNPs from across the allele frequency spectrum (iCall (52)). The CHARGE 

Consortium have also developed a “Best Practices and Joint Calling Protocol” (53) and 

made available a cluster file to be used for calling Illumina exome array data in Gencall. 

In the analyses described in Chapters 2 and 4 of this thesis, I have utilised zCall for 

refining genotype calls; Figure 1-8 shows a schematic of how this algorithm assigns 

genotypes to individuals called as missing by the Gencall calling algorithm, for a 

particular SNP. 
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Figure 1-8: Comparison of genotype calling by A. Gencall and B. zCall. 

A. Shows a SNP with genotypes based on the Gencall calling algorithm. B. Shows the same SNP with genotypes 

refined by the zCall algorithm: zCall separates the plot of normalised intensities into four quadrants based on the 

means and standard errors of the X and Y intensities across common SNPs on the array. Samples whose genotypes 

were called as missing by Gencall (coloured red in A) were then reassigned as follows: samples in quadrant 1 as 

homozygote GG; samples in quadrant 2 as heterozygote AG, samples in quadrant 3 as missing and samples in 

quadrant 4 as homozygote AA. Samples which were assigned a genotyped by Gencall were not reassigned by zCall. 

 

The exome array has been used to investigate the effect of low frequency and rare 

variation and a number of traits, with some success. Exome array analyses have 

identified low frequency SNPs associated with asthma (54), diabetes and related traits 

(55-57), lipids (58) and haematological traits (59). Other exome array studies have 

identified only common variants associated with disease, for example with glaucoma 

(60) and psoriasis (61). 

More recently, other related arrays have been developed which include the original 

exome array content, alongside a grid of SNPs which allow for genome-wide 

imputation, to provide even greater coverage. Two such arrays are the UK BiLEVE array 

and UK Biobank array, which are currently being utilised to generate genome-wide 

genotype data from half a million individuals from UK Biobank. 

1.2.5 Methods for testing associations with rare variants 

Single variant association analyses (methods described in Section 1.1.3.2), where the 

effect of each SNP is tested in turn, with the trait of interest, have proved successful in 

identifying common SNPs which influence complex disease; for rare variants however, 

they are somewhat underpowered (62). A number of collapsing methods have been 

developed, which combine information from several variants within a specified 

genomic region, for example a gene, into a single quantity which is then used for 

1 2 

3 4 

A

. B
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association testing with the trait (63). The first category of methods is the burden test, 

which attempts to assess the overall “genetic burden”, attributable to rare variants. 

The Cohort Allelic Sum Test (CAST) tests for association between genes and binary 

traits by collapsing the counts of alternate alleles for a set of variants below a given 

MAF threshold, into single quantities in cases and controls, and then comparing these 

quantities (64). The Combined Multivariate & Collapsing Test (CMC) utilises a similar 

collapsing method to sets of variants, and performs a multivariate test to determine 

whether any of the sets of variants show association with a binary disease trait (62). 

These approaches involve selecting variants below a pre-specified allele frequency 

threshold; a variable threshold test (VTT) applies the collapsing methods under a series 

of MAF thresholds, and selects the threshold which has the greatest statistical power 

(65). The VTT can be applied to a binary or quantitative trait, and additionally allows 

the incorporation weights, for example based of predictions of functional effect. The 

Weighted Sum Test (WST) is a further collapsing method which weights variants, such 

that the effects of rare variants are accentuated, and allows for testing association 

with both binary and quantitative traits (66). 

The main disadvantage of burden tests is that they fail to account for the magnitude 

and direction of effect of each variant so will be low powered when variants within the 

region act in opposing directions. A more flexible approach, which does not make 

assumptions about the direction of effect of variants, is through testing genetic 

similarities using nonparametric kernel functions and variance component models. The 

Kernel Based Association Test (KBAT) uses a range of kernel functions in an analysis of 

variance (ANOVA) formulation, for use with binary disease traits (67). The Sequence 

Kernel Association test (SKAT) is a more flexible regression approach which uses a 

weighted linear kernel, and allows for covariate adjustment and both binary and 

quantitative traits (68). These tests are powerful where a region has a combination of 

protective, deleterious and neutral variants, but where the majority of rare variants in 

a region influence the trait in the same direction, they tend to be outperformed by 

burden tests. A further method, SKAT-O attempts to unify the WST method and SKAT, 

by providing a weighted average of the two methods, optimised for each region (69). 
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The methods mentioned above are summarised in Table 1-2; this is not an exhaustive 

list of all methods developed for gene-based association analyses however. 

Table 1-2: Summary of statistical methods for testing gene-based associations. 

Test Category Traits Description 

CAST Burden test Binary Collapsing method, using univariate tests of association. 

CMC Burden test Binary Collapsing method, using multivariate tests. 

VTT Burden test Binary & 

Quantitative 

Performs collapsing methods under various MAF 

thresholds and selects MAF threshold to give optimal P-

value. Also allows for weighting of variants. 

WST Burden test Binary and 

Quantitative 

Collapsing method which incorporates weights, such that 

rarer variants have greater weights. 

KBAT Test of 

genetic 

similarity 

Binary Compares variation in cases and controls using kernel 

functions. 

SKAT Test of 

genetic 

similarity 

Binary and 

Quantitative 

Compares variation using a weighted kernel function, 

and allows for covariate adjustment. 

SKAT-O Optimising 

approach 

Binary and 

Quantitative 

Weighted combination of WST and SKAT tests. 

 

In practice, the underlying genetic architecture of a trait is generally unknown, so it is 

beneficial to utilise both burden tests and methods which compare genetic similarity, 

or alternatively to use an optimising approach (SKAT-O). In the remainder of this 

thesis, the WST, VTT, SKAT and SKAT-O methods are considered, and are more 

formally defined in equations (1-5) to (1-10). 

The WST, VTT, SKAT and SKAT-O tests, may all be constructed using the score statistic. 

The score statistic (U) for the jth variant in a study with n individuals is: 

𝑈𝑗 = ∑
𝑔𝑖𝑗(𝑦𝑖 − �̂�𝑖)

𝜙

𝑛

𝑖=1

 

 

 

( 1-5 ) 

 

 

where gij is the genotype (gij={0,1,2}) of jth variant of the ith individual, yi is the 

phenotype of the ith individual and �̂�𝑖is the predicted yi under the null. For a 

continuous trait, a linear model is utilised with �̂�𝑖 = 𝛽0 + 𝜷𝟏𝑿𝒊, where 𝑿𝒊is a vector of 

covariates with effects 𝜷𝟏, and intercept 𝛽0,  and 𝜙 = 𝜎𝜀
2. For a binary trait, a logistic 

model is used, where 𝑙𝑜𝑔𝑖𝑡(�̂�𝑖) = 𝛽0 + 𝜷𝟏𝑿𝒊 and 𝜙 = 1. 



 
 

25 
 

For a gene with m variants, the variance-covariance matrix 𝑽 of the score statistics 

𝐔 =  [𝑈1, 𝑈2, … , 𝑈𝑚]T  may be estimated as follows: 

𝐕 = 𝑮(𝛀−𝟏 − 𝛀−𝟏𝑿(𝑿𝑻𝛀−𝟏𝑿)−𝟏𝑿𝑻𝛀−𝟏)𝑮𝑻 ( 1-6 ) 

 

Where 𝑮 is a matrix of genotpyes and 𝑿 = [𝐗𝟏, 𝐗𝟐, … , 𝐗𝐧]   is a matrix of covariates. 

For a continuous trait, 𝛀 = 𝜎𝜀
2𝑰, where 𝑰 is the identity matrix, and for a binary trait  

𝛀 = 𝑑𝑖𝑎𝑔[�̂�1(1 − �̂�1), … , �̂�𝑛(1 − �̂�𝑛)], where �̂�𝑖 is the probability that the ith 

individual is a case, under the null. The jjth element of 𝑽 is the variance of the score 

statistic for variant j: 

𝑉𝑗𝑗 = 𝑉𝑎𝑟(𝑈𝑗) 

For a gene with m variants, each gene-based test may be constructed as follows.  

Weighted Sum Test (WST): 

𝑄𝑊𝑆𝑇 = ∑ 𝑤𝑗𝑈𝑗

𝑚

𝑗=1

  ~  𝑁 (0, ∑ 𝑤𝑗
2𝑉𝑗𝑗

𝑚

𝑗=1

) 

 

 

( 1-7 ) 

 

 

where wj is a weight for the jth variant. The WST test statistic QWST asymptotically 

follows a normal distribution.  

Variable Threshold Test (VTT): 

𝑄𝑇(𝐹) = ∑ 𝑇𝐹𝑈𝑗

𝑚

𝑗=1

  

𝑄𝑉𝑇𝑇 = max(𝑄𝑇(𝐹)) ~  𝑁 (0, ∑ 𝑇𝐹𝑉𝑗𝑗

𝑚

𝑗=1

) 

 

 

 

( 1-8 ) 

 

 

Where TF is an indicator variable that equals 1 if the MAF of j is less than F, or 0 

otherwise. QT is calculated using a series of MAF thresholds (F), and the QVTT test 

statistic is then defined  as the maximum QT over values of F. 
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SKAT:  

𝑄𝑆𝐾𝐴𝑇 = ∑ 𝑤𝑗
2𝑈𝑗

2

𝑚

𝑗=1

  ~  ∑ 𝜆𝑗

𝑚

𝑗=1

𝜒1𝑗
2  

 

( 1-9 ) 

 

 

The QSKAT statistic follows a mixture of chi-squared distributions where λ1, …, λM are 

eigenvalues of 𝑽𝟏/𝟐𝑾(𝑽𝟏/𝟐)
𝑇

, where V is the variance-covariance matrix (equation 

(1-6)), 𝑾 = 𝑑𝑖𝑎𝑔[𝑤1
2, … , 𝑤𝑚

2 ] is a diagonal matrix of weights and 𝜒11
2 , …, 𝜒1𝑚

2  are 

independent 𝜒1
2 variables. 

SKAT-O:  

𝑄𝑝(𝜌) = (1 − 𝜌)𝑄𝑆𝐾𝐴𝑇 + 𝜌𝑄𝑊𝑆𝑇 

𝑄𝑆𝐾𝐴𝑇−𝑂 = max (𝑄𝑝(𝜌)) ~  ∑ 𝜆𝑗

𝑚

𝑗=1

𝜒1𝑗
2  

 

 

( 1-10 ) 

 

 

Qp is calculated using a series of values (ρ), with the QSKAT-O test statistic defined using 

the value ρ which gives the maximum Qp. 

There have been several challenges regarding the testing of joint effects of several 

variants on a trait. One question surrounds how to define the genomic region for 

association testing; a region might be defined as a gene or an exon, or alternatively a 

“moving window” approach could be adopted (70).  Another often cited issue is that of 

population structure. It is thought that rare variants are likely to exhibit stronger 

patterns of population stratification compared to common variants and that existing 

methods for correcting for population structure may be insufficient (63, 70-72). A 

further consideration is whether functional information regarding variants could be 

utilised. Variants thought to have a greater functional impact might be given more 

weight in pooled variant analyses (63), or pathway-based approaches might be used 

(70). 

1.2.6 Meta-analysis of rare variant tests 

The importance of sample size is even greater for studies attempting to identify low 

frequency SNPs that are associated with a trait. As mentioned in Section 1.1.3.3, meta-
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analysis is a popular way of achieving large sample sizes in GWAS studies, and is 

commonly used for identifying single variant associations. Recently, there have been a 

number of software packages developed which additionally facilitate the meta-analysis 

of some of the gene-based tests mentioned in Section 1.2.5 (73-78). Similarly to the 

single variant meta-analysis, the meta-analysis of gene-based tests involves each 

contributing study undertaking analyses according to an agreed analysis plan, with the 

gene-based tests then being carried out centrally. These methods are more extensively 

reviewed in Chapter 3. 

 

1.3 Introduction to pulmonary function measures & COPD 

1.3.1 Spirometry & key pulmonary function measures 

Spirometry is physiological test which measures the volume and flow of air, as an 

individual forcibly and completely, expels air from the lungs after maximal inspiration. 

This procedure provides several measures of pulmonary function that may be used for 

the diagnosis of a number of diseases and for monitoring general respiratory health 

(79). Some key volumetric measures include: forced vital capacity (FVC), the total 

amount of air that can be forcibly exhaled; forced expiratory volume in the first second 

(FEV1), the amount of air that can be exhaled in the first second of the blow; the ratio 

of FEV1 to FVC (FEV1/FVC). Spirometry also provides flow measurements including the 

peak expiratory flow (PEF), a measure of maximum instantaneous expiratory flow, and 

the forced expiratory flow between 25% and 75% of vital capacity (FEF25-75) which is 

the average forced expiratory flow rate over the middle 50 percent of the FVC. 

During a spirometric manoeuvre, flow of air reaches a peak early in the blow, with 

airflow then declining as the volume of air within the lung decreases. Expiratory flow is 

determined by a combination of the power of the respiratory muscles, elasticity of the 

lung and airway resistance. Up to peak flow, airflow is largely determined by the 

expiratory muscles; following peak flow the force largely comes from elastic recoil. At 

peak flow, muscle force, elastic roil and airway calibre are all at their maximum (80, 

81).  
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Around peak flow, airflow may be limited due to the concept that the flow of air 

cannot exceed the speed at which a pressure wave can travel along the airway (wave 

speed theory). Under this theory, air flow velocity will be determined by a combination 

of airway cross-sectional area and stiffness, along with gas density (82). Following peak 

flow, proposed mechanisms for airflow limitation include the equal pressure point 

theory (83) and the Starling resistor (“waterfall”) effect (84), which describe the 

relationship between the elastic recoil of the lung and expiratory flow (80, 81). 

Spirometry measures are influenced by the age, sex, ethnicity and height of an 

individual. Several initiatives, including the National Health and Nutrition Examination 

Survey (NHANES III) (85),  the European Community for Steel and Coal (ECSC) (86) and 

more recently the Global Lung initiative (GLI) (87) have developed reference equations, 

which provide predicted spirometric measures for an individual given these 

characteristics. These equations can also be used to derive percent predicted 

measures (eg percent predicted FEV1 [%pred FEV1]) by comparing an individual’s 

measured spirometric values with that which would be expected and allow the 

estimation of lower limits of normal and Z-scores. Elsewhere, efforts have been made 

to standardise procedure and quality control of spirometry, by both the the European 

Respiratory Society (ERS) and American Thoracic Society (ATS), who in 2005 appointed 

a joint task force to combine guidelines for pulmonary function testing (88). 
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1.3.2 Chronic Obstructive Pulmonary Disease - Symptoms and Diagnosis 

Chronic obstructive pulmonary disease (COPD) is a major public health concern, being 

a leading cause of morbidity and mortality worldwide (89). According to World Health 

Organisation estimates, 65 million people globally have moderate to severe COPD (90) 

and the disease accounted for approximately 6% of deaths worldwide in 2012 (91). 

The typical symptoms of COPD are chronic cough, shortness of breath (dyspnoea) and 

sputum production and the disease is characterised by progressive and irreversible 

airflow limitation. The airflow limitation in COPD is a result of a combination of 

disease of the small airways, leading to increased airway resistance (92), and 

destruction of the lung parenchyma (emphysema), causing a decrease in lung elastic 

recoil (93, 94). Airflow limitation in COPD is progressive and associated with an 

increased inflammatory response to long-term exposure to noxious particles or gases 

(94). 

Airflow limitation is defined using spirometry as FEV1/FVC<0.70, after bronchodilation. 

Severity of airflow limitation is further classified using %pred FEV1, as per the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) (94) (Table 1-3).  There is a weak 

correlation between severity of airflow limitation and quality of life however; as such, 

GOLD recommends that the impact of COPD on an individual patient should assessed 

by considering breathlessness, symptoms and risk of exacerbation, in combination 

with the level of airflow limitation (94). 

Table 1-3: GOLD COPD Classification. 

GOLD  Classification Spirometric Definition 

GOLD I: mild  FEV1/FVC<0.70 and %pred FEV1≥80% 

GOLD II: moderate FEV1/FVC<0.70 and 80%> %pred FEV1 ≥50%  

GOLD III: severe FEV1/FVC<0.70 and 50%>%pred FEV1 ≥30%  

GOLD IV: very severe FEV1/FVC<0.70 and %pred FEV1 <30 %  
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1.3.3  Processes and risk factors for airflow limitation and COPD 

There are a number of processes that may lead to impaired lung function and COPD 

that can occur throughout an individual’s lifetime. In the womb, the lung bud initially 

develops at 6 weeks gestation, with the completion of lung airway branching 

(formation of the trachea, bronchi and bronchioles) occurring at 17 weeks. 

Subsequently, the airways increase in size and alveoli continue to develop until an 

individual reaches early adulthood. During this period of growth, lung volume and 

airflow increase, until a maximum lung volume is attained, at 20-25 years. Lung 

function then tends to plateau, for a period of approximately 5-10 years in healthy 

individuals, before a gradual decline with age (95, 96). 

A recent epidemiological study found there were broadly two trajectories to impaired 

lung function (97). Firstly, a reduced maximally attained lung function, resulting from 

impaired lung development and growth either in utero or during childhood, can 

increase the risk of airflow limitation and COPD in later life, even where the rate of 

lung function decline is normal (97). Lung development may be compromised by a 

number of factors including maternal smoking and nutrition during pregnancy, 

prematurity, low birthweight, respiratory infections during childhood and exposure to 

cigarette smoke through either passive or active smoking (95, 96). 

Secondly, the development of airflow limitation and COPD might also be a result of a 

shortened plateau phase at maximal lung function, or by an accelerated decline (97). 

Cigarette smoking is recognised as the most significant risk factor for this decline in 

lung function, however there are other environmental factors thought to play a role 

(95). In low and middle income countries, exposure to biomass fuels used for heating 

and cooking in a domestic setting has a great effect on lung health and COPD risk (93). 

Other risk factors include air pollution and workplace exposure to dust or fumes (98-

100).  The exposure to noxious particles from cigarette smoking or occupational or 

environmental exposures causes an abnormal inflammatory response in the airways 

and in the lung parenchyma. (94, 96, 101). Such inflammatory responses can lead to 

the accumulation of exudates in the bronchial lumen and an increased infiltration of 
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inflammatory cells, which have been associated with a thickening of the walls of the 

small airways, by means of repair or remodelling processes (102). 

Whilst it is helpful for understanding the mechanisms underlying lung function decline 

and COPD to consider these two separate trajectories, for any individual, airflow 

limitation might be a result of a combination of both a low maximal lung function and 

accelerated decline in lung function (97). Aside from environmental factors affecting 

both lung development and the rate of lung function decline, there is additionally a 

genetic component, with COPD and lung function tending to aggregate within families 

(103, 104).  

1.3.4 Known genetics of lung function and COPD 

Estimates of the narrow sense heritability of lung function vary widely, with the 

proportion of variance of FEV1 attributable to additive genetic effects estimated at 

between 11% and 50% (105-110). Heritability estimates for FVC range from 37% to 

54% (107, 108, 111), whilst for FEV1/FVC estimates range from 14% to 66% (106-108, 

110). For flow measures, estimates of heritability have similar ranges: 14% to 43% for 

PEF (112, 113) and 35% to 45% for FEF25-75 (109, 114, 115).  

To date, a number of GWAS have had success in identifying SNPs which show 

association with three volumetric measures of lung function: FEV1, FVC and FEV1/FVC. 

In 2009, Wilk and colleagues in the Framingham Heart Study (116) identified a region 

on 4q31 associated with both FEV1 and FEV1/FVC, close to the hedgehog-interacting 

protein (HHIP) gene. Two large scale meta-analyses, carried out by the SpiroMeta 

(117) and CHARGE (118) consortia in 2010, verified this association and identified a 

further nine regions showing association with either FEV1 or FEV1/FVC. Two joint 

SpiroMeta-CHARGE efforts identified an additional 16 regions associated with FEV1 or 

FEV1/FVC in 2012 (119), and 6 novel regions associated with FVC in 2014.  

Running concurrently to the analyses described in this thesis were two studies, whose 

results were published at the end of 2015. Firstly, a further SpiroMeta analysis, using 

genotype data imputed to the 1000 Genomes (16) reference panel identified 16 novel 

lung function loci, including two low frequency variants (rs113473882, in LTBP4 and 
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rs148274477 near GPR126) (43). Secondly, the UK Biobank Lung Exome Variant 

Evaluation (UK BiLEVE) effort examined the genotypes from 48,943 individuals, who 

were sampled from the extremes and the middle of the distribution of FEV1, separately 

in never smokers and ever smokers. Case-control analyses of samples with high FEV1 

compared to samples with low FEV1 identified an additional 6 loci, including a rare 

intergenic SNP between RBM19 and TBX5 (120). 

Less is known about the genetic determinants of flow lung function measures and to 

date, very few GWAS of PEF or FEF25-75 have been carried out. A genome-wide 

interaction study of FEF25-75 and small particulate matter (PM10) identified SNPs in 

CDH13 associated with FEF25-75 decline; this association met genome-wide significance 

and showed evidence of replication (121). A study undertaken as part of the 

Framingham Heart Study identified several other, less statistically significant 

associations with FEF25-75, or FEF25-75 decline at NIP2, IL6R, CCBL2, LIPF, SYT10 and 

ETAA16, though replication of these signals was not undertaken (122). A GWAS of 

allergic disease in a Russian population identified associations between PEF and SNPs 

in RIT2 and ADAD2, however these did not reach genome-wide significant, and no 

replication was undertaken (123).  

Through the study of genetic influences of lung function measures, in particular of FEV1 

and FEV1/FVC, it is hoped that a greater understanding of the genetics of COPD may 

also be gained, given the diagnosis of the disease is based on these measures and so 

they are likely to share many of the same genetic determinants. The advantage of 

studying quantitative lung function traits in addition to COPD is that there is greater 

statistical power to detect associations with continuous outcomes, rather than binary 

traits (124). So far, nineteen of the 54 loci associated with lung function have also been 

shown to be associated with COPD risk or airflow obstruction through GWAS (120, 

125-129). In addition to these lung function regions, a locus on 15q25 has been 

implicated in COPD susceptibility (129, 130), and has since shown to be associated with 

smoking behaviour (131-134). Finally, approximately 1-2% of COPD cases can be 

attributed to alpha1-antitrypsin (AAT) deficiency, a rare inherited disorder, caused by 

mutations within the SERPINA1 gene (129, 135). Low levels of AAT leave pulmonary 

tissue more susceptible to degradation and often results in early onset COPD (98, 135).  
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All loci identified through GWAS as showing genome-wide significant associations to 

date with one or more of FEV1, FVC, FEV1/FVC and COPD are listed in Table 1-4. The 

genes cited in this table are generally the nearest gene(s) to the GWAS signal, and are 

not necessarily the causal gene in each case. 

Table 1-4: Genetic loci showing genome-wide significant association with at least one lung function / COPD trait 

to date. 

  Quantitative lung function COPD  

Chr Gene(s) Phenotype Reference Reference 

1 MFAP2 FEV1/FVC Soler Artigas et al. 2011 (119) - 

1 MCL1,ENSA FEV1 Soler Artigas et al. 2015 (43) - 

1 TGFB2 FEV1/FVC Soler Artigas et al. 2011 (119) Cho et al. 2014 (128) 

1 LYPLAL1,RNU5F-1 FEV1/FVC Soler Artigas et al. 2015 (43) - 

2 KCNS3,NT5C1B-
RDH14 

FEV1/FVC Soler Artigas et al. 2015 (43) - 

2 EFEMP1 FVC Loth et al. 2014 (136) - 

2 TNS1 FEV1 Repapi et al. 2010 (117) Soler Artigas et al 2011 
(127) 

2 HDAC4 FEV1/FVC Soler Artigas et al. 2011 (119) - 

3 RARB FEV1/FVC Soler Artigas et al. 2011 (119) Wilk et al. 2012 (130) 

3 RP11-538P18.2 FVC Soler Artigas et al. 2015 (43) - 

3 MECOM FEV1 Soler Artigas et al. 2011 (119) - 

4 FAM13A  FEV1/FVC Hancock et al. 2010 (118)  Cho et al. 2010 (126) 

4 TET2 FEV1 Wain et al. 2015 (120) Wain et al. 2015 (120) 

4 GSTCD FEV1 Repapi et al. 2010 (117),  
Hancock et al. 2010 (118) 

Soler Artigas et al 2011 
(127) 

4 NPNT FEV1 Wain et al. 2015 (120) Wain et al. 2015 (120) 

4 NPNT FEV1/FVC Soler Artigas et al. 2015 (43) - 

4 HHIP FEV1/FVC Wilk et al. 2009 (116) Pillai et al. 2009 (129) 

5 SPATA9 FEV1/FVC Soler Artigas et al. 2011 (119) - 

5 HTR4  FEV1 Repapi et al. 2010 (117),  
Hancock et al. 2010 (118) 

Soler Artigas et al 2011 
(127) 

5 ADAM19 FEV1/FVC Hancock et al. 2010 (118) Castaldi et al. 2011  (125) 

6 BMP6 FVC Loth et al. 2014 (136) - 

6 ZKSCAN3 FEV1 Soler Artigas et al. 2011 (119) - 

6 NCR3 FEV1/FVC Soler Artigas et al. 2011 (119) - 

6 AGER FEV1/FVC Repapi et al. 2010 (117),  
Hancock et al. 2010 (118) 

Castaldi et al. 2011 (125) 

6 HLA-DQB1/ HLA-
DQA2 

FEV1 Wain et al. 2015 (120) Wain et al. 2015 (120) 

6 ARMC2 FEV1/FVC Soler Artigas et al. 2011 (119) - 

6 GPR126, RP11-
440G9.1 

FEV1/FVC Soler Artigas et al. 2015 (43) - 

6 GPR126 FEV1/FVC Hancock et al. 2010 (118) Wilk et al. 2012 (130) 

9 PTCH1 FEV1/FVC Hancock et al. 2010 (118) - 

9 ASTN2 FEV1/FVC Soler Artigas et al. 2015 (43) - 
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  Quantitative lung function COPD  

Chr Gene(s) Phenotype Reference Reference 

9 LHX3 FVC Soler Artigas et al. 2015 (43) - 

10 CDC123 FEV1/FVC Soler Artigas et al. 2011 (119) - 

10 C10orf11 FEV1 Soler Artigas et al. 2011 (119) Wilk et al. 2012 (130) 

11 HSD17B12 FVC Loth et al. 2014 (136) - 

11 PRDM11 FVC Loth et al. 2014 (136) - 

11 MMP12 - - Hunninghake et al. 2009 
(137) 

12 PTHLH,CCDC91 FVC Soler Artigas et al. 2015 (43) - 

12 LRP1 FEV1/FVC Soler Artigas et al. 2011 (119) - 

12 CCDC38 FEV1/FVC Soler Artigas et al. 2011 (119) - 

12 RBM19/TBX5 FEV1 Wain et al. 2015 (120) Wain et al. 2015 (120) 

12 TBX3,MED13L FEV1 Soler Artigas et al. 2015 (43) - 

14 TRIP11 FEV1 Soler Artigas et al. 2015 (43) - 

14 RIN3 FEV1 Soler Artigas et al. 2015 (43) Cho et al. 2014 (128) 

15 CHRNA3, 
CHRNA5, IREB2 

- - Pillai et al. 2009 (129) 

15 THSD4  FEV1/FVC Repapi et al. 2010 (117) Wilk et al. 2012 (130) 

16 EMP2,TEKT5 FEV1/FVC Soler Artigas et al. 2015 (43) - 

16 MMP15 FEV1/FVC Soler Artigas et al. 2011 (119) - 

16 CFDP1 FEV1/FVC Soler Artigas et al. 2011 (119) - 

16 WWOX FVC Loth et al. 2014 (136) - 

17 17q21.31 FEV1 Wain et al. 2015 (120) Wain et al. 2015 (120) 

17 KCNJ2 FVC Loth et al. 2014 (136) - 

17 TSEN54 FEV1 Wain et al. 2015 (120) Wain et al. 2015 (120) 

19 LTBP4 FEV1/FVC Soler Artigas et al. 2015 (43) - 

21 KCNE2 FEV1/FVC Soler Artigas et al. 2011 (119) - 

22 MIAT,MN1 FEV1 Soler Artigas et al. 2015 (43) - 

X AP1S2,GRPR FEV1/FVC Soler Artigas et al. 2015 (43) - 

 

Whilst GWAS have been successful in identifying many regions of the genome that are 

associated with lung function and COPD, it is not clear how these genetic regions might 

be influencing lung health and disease. There are several genes which have been 

implicated in these traits which are involved in processes such as growth, inflammation 

and tissue remodelling and repair, which might suggest biological mechanisms for 

disease. A number of Metalloproteinase genes, have been associated with COPD 

and/or lung function: matrix metalloproteinases (MMPs) MMP12 and MMP15 and a 

disintegrin and metalloprotease domain gene ADAM19. Metalloproteinase play a role 

in tissue remodelling and repair are involved in inflammatory processes (138-140). 

Genes in the Hedgehog (Hh) signalling pathway, including HHIP and PTCH1 have also 
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been implicated in lung function traits; this pathway is crucial to the branching 

morphogenesis of the lung and other embryonic processes and disruption of the 

pathway can lead to severe foetal lung malformations (141, 142).   

Amongst other genes implicated in COPD and lung function are GSTCD, a member of 

the glutathione S-transferase, family of genes involved in cellular detoxification and 

upregulated in response to oxidative stress (143), and AGER (advanced glycosylation 

end product-specific receptor), a multiligand receptor of the immunoglobulin 

superfamily which is highly expressed in the lung, particularly in the type I 

pneumocytes, and has been implicated in lung cancer and fibrosis (144). One of the 

genes identified recently through an association with a low frequency variant was 

LTBP4 (latent transforming growth factor beta [TGFβ] binding protein 4); this gene 

belongs to a family of extracellular matrix (ECM) proteins which binds to TGFβ, and 

targets TGFβ to the ECM (145). LTBP4 has been found to play a role in the regulation of 

fibulin-5 dependent elastic fiber assembly and mice deficient in the protein display 

defects in lung septation and elastogenesis (146). 

A number of the regions associated with lung function and COPD have also been 

implicated in other traits, notably height (CCDC91, TRIP11, TET2, HHIP, GPR126, 

MFAP2), smoking (CHRNA3/5, IREB2) and lung cancer (CHRNA3/5, NCR3, ZSCAN3). 

Several associations with lung function have also been identified in the major 

histocompatibility complex (MHC) region (NCR3, ZSCAN3, AGER, HLA-DQB1, ARMC2). 

This region is characterized by extended blocks of LD, making localisation of signals in 

this region challenging, and has been implicated in a large number of diseases, 

particularly autoimmune and inflammatory diseases such as rheumatoid arthritis, type 

1 diabetes and ankylosing spondylitis (147). Whilst some of these associations may 

represent pleiotropic effects (for example in the case of height), for the loci which have 

been found to be associated with both smoking and COPD risk, it is likely that the 

observed effect on the risk of COPD is driven by the genetic effect on smoking. 
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1.4 Aims and Outline of Thesis 

The primary aim of the analyses described in this thesis was to identify low frequency 

and rare SNPs which influence lung function and COPD susceptibility, and to explain 

some of the heritability not accounted for by the common variants already identified 

as being associated with these traits.  

In Chapter 2, I describe an analysis of COPD cases and controls with exome array data. 

This study aimed to investigate the role of low frequency SNPs in both the risk of 

COPD, and the severity of airflow limitation within COPD cases. In this chapter, I fully 

describe the quality control of the data undertaken and the results of both single 

variant and gene-based analyses. 

In Chapter 3, I describe the methods for the meta-analysis of gene-based tests and 

review the software packages which implement these tests. I then evaluate the 

performance of one of the software packages (RAREMETAL (74)), using real data from 

48,943 individuals from the UK BiLEVE study (120). Through these analyses I compare 

the concordance of the meta-analysis methods with analyses carried out using 

individual level data, and compare the new meta-analysis methods to the meta-

analysis of gene-based tests using Fisher’s and Z-score methods of combining P-values.  

Following this evaluation of the RAREMETAL package, I then utilise the software in the 

analyses I describe in Chapter 4, consisting of a meta-analysis of exome array data and 

three lung function measures: FEV1, FVC and FEV1/FVC.  In this study, I designed an 

analysis plan, which was used by 11 contributing studies to undertake study level 

analyses. I then undertook quality control of all study level analyses, and combined the 

results using the RAREMETAL software package, undertaking both single variant and 

gene-based tests. 

In Chapter 5, I describe a GWAS of two flow measures: PEF and FEF25-75. This analysis 

includes 102,929 individuals from UK Biobank, with 14.6 million genotypes imputed to 

the combined 1000 Genomes (16) and UK10K (40) reference panel. I describe firstly 

how the flow variables were derived from spirometry data, and then present the 

results of the GWAS of single variant associations with the aim of ascertaining whether 
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there is utility in studying these measures of flow, in addition to volumetric lung 

function measures in genetic studies. 

Finally, in Chapter 6, I summarise the findings of the preceding chapters and discuss 

ongoing and potential future work in the area. 

  



 
 

38 
 

Chapter 2 Association of rare variants with COPD risk and airflow 

limitation 

2.1 Introduction 

COPD is characterised by fixed airflow limitation and is a leading cause of morbidity 

and mortality (89). Approximately 1-2% of COPD cases may be attributed to the rare 

inherited disorder, alpha1-antitrypsin (AAT) deficiency, which is caused by mutations 

within the SERPINA1 gene (129, 135). For the remainder of COPD cases, cigarette 

smoking is recognised as the most significant risk factor (100); however there is also a 

genetic component. As discussed in Section 1.3.4, GWAS have successfully identified 

several genomic regions showing association with COPD or airflow limitation to date 

(125-127, 129, 130, 137), with many of these regions having also been associated with 

the quantitative lung function measures FEV1 and FEV1/FVC (116-119). These known 

loci however, only explain a small proportion of the expected heritability (119). GWAS 

undertaken to date have generally focussed on common variants (typically >5% minor 

allele frequency [MAF]); one hypothesis is that some of the so-called “missing 

heritability” might be accounted for by variants of lower frequencies.  

This chapter describes the single variant and gene-based association analyses of COPD 

risk and severity of airflow limitation, which I carried out as part of the UK COPD 

Exome Chip Consortium. Through these analyses, I primarily aimed to identify low 

frequency and rare coding variants associated with COPD, through the use of exome 

array data, thereby uncovering some of the missing heritability. The severity of airflow 

limitation in COPD is classified using percent predicted FEV1, as per the Global Initiative 

for Chronic Obstructive Lung Disease (GOLD) (94). Through these analyses, I also aimed 

to identify variants associated with percent predicted FEV1 in COPD cases, as a 

measure of severity of disease. The results of this chapter were published in Thorax in 

2016 (148) and a copy of the manuscript is included in Appendix A. 

2.1.1 UK COPD Exome Chip Consortium 

The UK COPD Exome Chip Consortium is a collaborative consortium, bringing together 

COPD cases from twelve COPD disease cohorts and population based studies, who 
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have been genotyped using a custom exome chip array. The Consortium additionally 

genotyped approximately 1000 general population controls, to contribute to the wider 

UK Exome Chip Consortium effort, from which additional controls could also be drawn. 

Analyses using these samples firstly aimed to investigate the role of rare functional 

variants in COPD, and secondly to confirm the role of SNPs previously showing 

association with lung function. This latter aim was facilitated by the inclusion of 

additional custom content on the array of 2585 SNPs from regions previously showing 

suggestive association (P<2.21x10-3) with lung function in large genome-wide HapMap-

imputed meta-analysis of quantitative lung function measures (119). Discovery case-

control analyses (analyses of COPD risk) and analyses of percent predicted FEV1 in 

COPD cases (analyses of airflow limitation) were carried out, with both the exome chip 

genotype data (exome analyses) and custom content genotype data (custom content 

analyses). Replication was undertaken using the UK Biobank Lung Exome Variant 

Evaluation (UK BiLEVE) study, a subset of 48,943 UK Biobank participants with genome-

wide SNP genotyping data which includes substantial overlap with the exome chip. A 

more powerful discovery strategy was adopted for COPD risk and severity of airflow 

limitation, by meta-analysing data for the subset of exome chip variants that were in 

both the COPD exome chip consortium and the UK BiLEVE study.  

2.1.2 My role in the study 

Samples were first prepared and sent for genotyping by each case collection. I received 

genotype data for all consortium samples and I carried out thorough quality control of 

these data. Each case collection provided phenotype information, and I undertook 

further quality control of these data, to ensure all samples had the required 

phenotypes available and all met the appropriate inclusion criteria. Subsequently, I 

undertook the discovery exome analyses, and the meta-analyses of the UK COPD 

exome chip consortium and UK BiLEVE samples; this included both single variant 

association analyses and gene-based analyses. This chapter describes the quality 

control of the data and these analyses fully. I did not lead the analyses of the custom 

content data, however since the results of these analyses are published alongside the 

exome analyses (148), some aspects of the custom content analyses are mentioned in 

this chapter, for completeness.  
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2.2 Discovery exome analyses of COPD risk and severity 

2.2.1 Study participants, phenotypes and genotyping 

3487 COPD cases with airflow limitation indicative of GOLD 2-4 COPD were identified 

from 12 UK collections, listed in Table 2-1. Descriptions of all these studies, including 

details of spirometry are described in (148) (Appendix A). Individuals met case criteria 

if they had COPD GOLD 2 (94) or worse (FEV1/FVC≤0.7 and percent predicted 

FEV1<80%, according to the NHANES III spirometric reference equations (85)), did not 

have a doctor diagnosis of asthma and had reported ever smoking. Five of the sample 

collections (UKCOPD, COPDBEAT, NottCOPD, EUCOPD and GoTARDIS) were COPD 

cohorts, with all individuals (total n=1562) having irreversible airflow limitation, and 

meeting GOLD 2 criteria based on post-bronchodilator spirometry. The remaining 

cases were taken from general population cohorts. For these samples, only pre-

bronchodilator spirometry measures were available; the inclusion of these samples as 

cases was to increase the power of the association analyses.   

Table 2-1: Case collections used in discovery analyses.  

N samples prior to quality control of genotype data. 

Abbreviation Study Name N samples Study Type 

GS:SFHS Generation Scotland 525 General Population 

BRHS British Regional Heart Study 436 General Population 

BWHHS British Women’s Heart and Health Study 261 General Population 

UKCOPD UK COPD Cohort 231 COPD case cohort 

HCS Hertfordshire Cohort Study 340 General Population 

COPDBEAT 
Biomarkers to target Antibiotic & Systemic 
Corticosteroid therapy in COPD exacerbations 

92 COPD case cohort 

NottCOPD Nottingham COPD Study 77 COPD case cohort 

Nott smokers Nottingham smokers 157 General Population 

Gedling Gedling study 37 General Population 

ELSA English Longitudinal Study of Aging  170 General Population 

EUCOPD EU COPD Gene Scan  292 COPD case cohort 

GoTARDIS GoTARDIS Study 870 COPD case cohort 

 

For the analyses of COPD risk, 4945 healthy controls with exome chip data were 

selected from: Generation Scotland (GS:SFHS, n=1032); British 1958 Birth Cohort 

(1958BC, n=1456); Oxford Biobank (OXBB, n=1822) and GoDARTS (n=635). All controls 

were ever smokers and were free of lung disease, according to available spirometry 

and/or phenotype information. 
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2.2.2 Quality Control of phenotype and genotype data 

Thorough quality control (QC) checks of the phenotype data from all case and control 

collections were carried out, and issues with missing or erroneous phenotype 

information were resolved by liaising with individual sample collections, as necessary. 

For all samples, FEV1/FVC and percent predicted FEV1 were recalculated and all 

smoking phenotype data examined, with any samples not meeting the appropriate 

case or control criteria identified for exclusion. 

All COPD cases and GS:SFHS controls were genotyped together using a custom version 

of the Illumina Human Exome BeadChip which included additional custom content for 

regions which have previously shown modest association with lung function (119). The 

remaining control samples (1958BC, OXBB and GoDarts) were genotyped separately 

using the Illumina Human Exome Beadchip.  

The UK exome chip consortium is a UK-wide collaborative effort to create a pool of 

samples with exome chip data available for use as general population controls, and to 

harmonise genotype calling and quality control of these data. To that end, the 

consortium developed a standard operating procedure (SOP) (149) which outlines the 

recommended QC procedure for exome chip data and includes many of the QC steps 

routinely applied in GWAS studies, as described in Section 1.1.3.1.  In the first instance, 

QC of the exome chip genotype data was carried out based on this SOP, as follows (QC 

of the custom content genotype data was undertaken separately). The genotype data 

were received with genotypes that had been called using Illumina’s Gencall algorithm 

in Genomestudio (13). Initial exclusions were carried out to exclude SNPs and samples 

with >90% missing data. Subsequently, samples with a call rate<98%, an unusually high 

or low heterozygosity rate (greater than three standard deviations from the mean; 

sample heterozygosity rates calculated separately for SNPs with MAF>=1% and SNPs 

with MAF<1%, [Figure 2-1], gender mismatches, and duplicates were excluded. 

Ancestry principal components analysis (PCA) was carried out with EIGENSTRAT(17), 

using subset of 3241 ancestry informative markers; any individuals that were more 

than four standard deviations from the sample mean for either of the first two 

principal components were excluded (Figure 2-2).  
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Figure 2-1: Plots of Proportion of SNPs missing versus heterozygosity rate for A. SNPs with MAF≥1% and B. SNPs 

with MAF<1%.  

The vertical lines correspond with the 98% call rate threshold. The horizontal lines indicate 3SDs from the mean 

heterozygosity rate. 

 

Figure 2-2: Ancestry Principal Components Plots. 

Plots of the first two ancestry principal components. Cases and GS:SFHS controls are labelled data (coloured royal 

blue) and cluster with Northern European (CEU) and Tuscan (Italian) samples (TSI). Plot A. shows the data in context 

with all other ancestries. Plot B shows the European cluster, with lines indicating 4SDs from the data sample mean 

 

Following this first stage of QC, missing genotypes were recalled using zCall (51), a 

software package developed specifically for improving the calling of rare variants 

(described in Section 1.2.4). A second stage of QC was then carried out using the 

recalled data; SNPs with call rate<99% or which deviated from Hardy Weinberg 

Equilibrium (P<10-4) were excluded, along with samples with call rate<99%, and 

heterozygosity outliers. In addition, samples were excluded if they had an excess of 

A. 

A. 

B. 

B. 
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singleton SNPs (samples who were the only individual to have the minor allele for 

greater than 50 SNPs, Figure 2-3). 

Figure 2-3: Plot of the number of SNPs for which each sample is the only one to have the alternate allele for that 

SNP. 

 

After completing the QC of data, there remained a number of issues regarding the 

quality of the genotype data of the COPD cases.  These issues were evident from the 

inspection of clusterplots of normalised intensity values, which should result in up to 

three defined clusters of data, corresponding to genotype groups (Section 1.1.3.4). 

Firstly, a number of SNPs were poorly clustered in the COPD cases (Figure 2-4 A), whilst 

showing good clustering in the 1958BC controls (Figure 2-4 B). These SNPs could be 

identified through testing for differential missingness in cases and controls, using the 

original Gencall-called data. As a result, an additional genotype QC step was applied, 

which excluded 9155 SNPs showing differential missingness with P<10-5. 
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Figure 2-4: Example clusterplots of poorly clustered SNP. 

SNP is exm462709, with genotypes called by Gencall. A. Clusterplot for COPD cases; genotypes labelled “00” were 

assigned missing genotypes by Gencall. B. Clusterplot for 1958BC Controls. 

 

 

Secondly, there were a number of SNPs whose genotypes were subject to batch effects 

by case collection. Figure 2-5 A shows each sample coloured by genotype; either 

homozygote GG or heterozygote GA. When each sample is coloured by case collection 

(Figure 2-5 B), it can be seen that the heterozygote cluster is in fact the result of a 

case-collection batch effect. For a number of other SNPs, the same case collections 

appeared to cluster separately from the remainder of the samples. Across these SNPs, 

Gencall assigned this second cluster as having missing genotypes, with zCall 

subsequently recalling all samples in the second cluster with heterozygote genotypes. 

Consequently, it was possible to identify SNPs affected by this batch effect by testing 

for associations between genotype and sample collection, using the zCall genotypes. I 

tested for association with each case cohort in turn vs all other cases combined and 

the 4104 SNPs showing a significant association (P<10-6) with any case collection were 

excluded. 

 

  

COPD Cases 

Cases 

1958 British Birth Cohort A B 
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Figure 2-5: Example of SNP that was subject to batch effects by case collection. 

SNP was exm578529 with genotypes called by zCall. A. Clusterplot for COPD cases, coloured by zCall assigned 

genotypes. B. Clusterplot for COPD cases, coloured by case collection. 

 

 

Finally, there was a small subset of samples which consistently had unusual intensity 

data values. The SNP shown in Figure 2-6 A (exm1595800) had generally clustered well, 

however there were a number of samples for which Gencall has assigned a CC 

genotype, but which were separate from the homozygote CC genotype cluster. 

Similarly, for rs3097648 (Figure 2-6 B), there are a number of samples assigned an AA 

genotype, but which are separate from the AA cluster. There were 12 samples in total 

which were consistently outliers in this way, across many SNPs, but which had passed 

all quality control filters. I calculated the mean X and Y intensities across all autosomal 

SNPs for all COPD cases. These 12 outliers all had mean X and/or Y intensities that 

were greater than four standard deviations from the overall sample mean (Figure 2-7); 

this criterion was used as a final sample filter, to exclude those 12 outliers. Aside from 

these 12 samples, there were a further 30 with outlying X and/or Y intensities. 29 of 

those were excluded as they had a call rate<90%. The final sample was excluded as it 

had a call rate<98%, was a heterozygosity outlier and had inconsistent sex in the 

genotype and phenotype data. 

 

 

 

COPD  Cases COPD Cases coloured by case 

collection 

A B 
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Figure 2-6: Example of two SNPs (A. exm1595800 and B. rs3097648) showing samples which consistently had 

unusual intensity data values. 

 

    

Figure 2-7: Plot of mean X and Y intensities per sample, across all autosomal SNPs. 

Red lines indicate 4SDs from overall sample means.  

 

 

For cases and GS:SFHS controls, I undertook both stages of genotype QC and recalling 

of genotypes using zCall. The 1958BC, OXBB and GoDARTs samples were shared 

controls from the UK exome chip consortium and the first stage of QC and recalling of 

genotypes for these samples were carried out centrally within the consortium. For 

these data, I undertook the second stage of QC (post-zCall) only. Details of the sample 

exclusions applied to cases and to each control collection are shown in Table 2-2. 

COPD Cases - rs3097648 A COPD Cases - exm1595800 B 
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Table 2-2: Genotype QC for samples used in discovery exome analyses. 

 Cases GS:SFHS 
Controls 

1958BC 
Controls* 

OXBB 
Controls* 

GoDARTS 
Controls* 

Initial sample 3488 1032 - - - 

Samples failing stage 1 QC: pre zCall 

Call rate<90% 34 1 - - - 

Sex mismatches 18 2 - - - 

Heterozygosity outliers (common SNPs MAF≥1%) 41 3 - - - 

Heterozygosity outliers (rare SNPs MAF<1%) 28 6 - - - 

Call rate<98% 43 46 - - - 

Duplicates (PI_HAT>0.95) 56 0 - - - 

PCA outliers (+/- 3SD of the mean) 12 2 - - - 

Samples with excess number of singletons SNPs (>50) 15 6 - - - 

Inconsistency with GWAS data 1 0 - - - 

XY-intensity outliers (+/- 4SD of the mean) 12 0 - - - 

Samples passing pre zCall QC 3302 976 1456 1822 635 

Samples failing stage 2 QC: post zCall 

Call rate<99% 0 0 0 0 0 

Heterozygosity outliers  76 15 27 52 11 

Final Samples Passing both QC stages 3226 961 1429 1770 624 

*Stage 1 QC and recalling of genotypes using zCall carried out for 1958BC, OXBB and GoDARTs controls within UK exome chip consortium
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2.2.3 Discovery Analyses: Methods 

2.2.3.1 Single Variant Association analyses 

Single SNP associations with all 135,818 SNPs passing QC and COPD risk were tested 

using a logistic regression model, with adjustment for age, sex and pack-years smoking 

and assuming an additive genetic model, as in equation (2-1). Associations with 

untransformed percent predicted FEV1 in COPD cases (analysis of airway limitation) 

were tested using a linear regression model, with adjustment for pack-years (equation 

(2-2)). Since not all samples had pack-years data available, secondary analyses were 

carried out without adjustment for pack-years smoked, for both the COPD risk and 

airflow limitation analyses. These secondary analyses allowed the inclusion of all 

samples, thereby giving greater power to detect associations with low frequency SNPs. 

All single variant associations were carried out using PLINK v1.07 (18). Using a 

Bonferroni correction for the number of tests undertaken, a significance level of 

P<3.7x10-7 would be required in the exome single variant analysis to retain a type 1 

error of 5% (“exome-wide significant”). SNPs of interest were identified using a less 

conservative threshold of P<10-5 in any of the analyses. For all significant associations, 

cluster plots were inspected by eye to check genotype calling quality. 

 

 𝑙𝑜𝑔𝑖𝑡(𝑃𝐶𝑂𝑃𝐷) =  𝛽0 + 𝛽1𝑆𝑁𝑃 + 𝛽2sex + 𝛽3age + 𝛽4𝑝𝑎𝑐𝑘𝑦𝑒𝑎𝑟𝑠 ( 2-1 ) 

 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝐸𝑉1 =  𝛽0 + 𝛽1𝑆𝑁𝑃 + 𝛽2𝑝𝑎𝑐𝑘𝑦𝑒𝑎𝑟𝑠 + 𝜀 

𝜀~𝑁(0, 𝜎𝜀
2) 

( 2-2 ) 

 

 

2.2.3.2 Gene-based Association analyses 

Gene-based tests assess the pooled effect of several variants within a specified gene 

region. In these analyses, SKAT-O was utilised, which optimally combines the Weighted 

Sum Test and SKAT methods (described in Section 1.2.5, equation (1-10)). Variants 

were annotated using ANNOVAR (150), based on the GRCh37/hg19 database, and all 

variants located within exons were included in the analyses. Analyses of COPD risk and 

airflow limitation were undertaken for SNPs with MAF<5% using SKAT-O (69), with 

covariate adjustments carried out analogously to the single variant analyses. The 
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default beta distribution weightings were used (weight for jth variant: β(𝑀𝐴𝐹𝑗; 1, 25)), 

giving greater weight to rarer variants. Gene-based results were filtered to only include 

genes with at least two SNPs with a MAF<5%, and with a cumulative MAF>0.05%. 

To further evaluate notable gene based signals, a “drop-one” analysis was utilised. This 

involved recalculating the SKAT-O P-value when individual SNPs were sequentially 

excluded from the test. If the SKAT-O P-value was considerably attenuated by the 

removal of a particular SNP, this would indicate that the SKAT-O signal was likely to be 

largely influenced by that individual SNP, rather than variants within that gene as a 

whole. 

2.2.4 Discovery Analyses: Results 

3226 cases and 4784 controls passed all sample genotype QC and were used in the 

exome analysis. Clinical characteristics of these samples are summarised in Table 2-3. 

Of the SNPs which passed all quality control criteria in both cases and controls, 

135,818 were polymorphic, of which 101,308 (74.6%) had a MAF<1%.  In only cases, 

there were 116,809 polymorphic variants, with 81,347 (69.6%) of those having a 

MAF<1%. Of the polymorphic variants in cases and controls combined, 120,315 were 

exonic, with 108,513 annotated as nonsynonymous, 8302 synonymous, 2254 stop-

gain, 86 stop-loss and 1160 of unknown function.
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Table 2-3: Clinical characteristics of Samples passing Genotype QC. 

 
Sample Collection 

n 

Sex Age 
Percent 
Predicted FEV1 

FEV1/FVC Pack-years 

Male, n (%) Mean (SD) Mean (SD) Mean (SD) 
Samples with 
data (n) 

Mean (SD) 

Discovery Analyses COPD cases (total n=3226, with pack-years n=2517) 

Generation Scotland (GS:SFHS) 508 224 (44.1%) 58.9 (8.94) 64.84 (12.64) 0.580 (0.108) 482 29.32 (24.96) 

British Regional Heart Study (BRHS) 425 425 (100%) 70.1 (5.46) 59.41 (14.66) 0.597 (0.084) 0 - 

British Women’s Heart and Health Study (BWHHS) 254 0 (0%) 69.3 (5.46) 64.26 (12.40) 0.603 (0.074) 203 28.1 (18.36) 

UK COPD Cohort (UKCOPD) ‡ 209 129 (61.7%) 68.7 (8.11) 37.94 (15.29) 0.447 (0.119) 199 50.07 (27.79 

Hertfordshire Cohort Study (HCS) 317 203 (64.0%) 66.1 (2.79) 62.89 (13.57) 0.589 (0.101) 312 32.25 (23.37) 

Biomarkers to target Antiiotic & Systemic Corticosteroid 
therapy in COPD exacerbations (COPDBEAT) ‡ 

87 62 (71.3%) 67.6 (8.77) 45.19 (16.24) 0.480 (0.115) 86 38.69 (21.24) 

Nottingham COPD Study (NottCOPD) ‡ 76 48 (63.2%) 67.2 (8.97) 50.29 (15.04) 0.482 (0.111) 74 49.02 (26.86) 

Nottingham smokers 125 78 (62.4%) 63.1 (8.60) 46.27 (17.65) 0.503 (0.125) 124 41.75 (20.61) 

Gedling study 33 26 (78.8%) 69.0 (8.23) 59.67 (16.81) 0.593 (0.103) 31 45.47 (33.40)  

English Longitudinal Study of Aging (ELSA) 166 75 (45.2%) 66.0 (8.17) 54.84 (17.24) 0.526 (0.149) 0 - 

EU COPD Gene Scan (EUCOPD) ‡ 277 155 (56.0%) 67.0 (8.68) 38.51 (14.74) 0.467 (0.120) 277 46.43 (20.56) 

GoTARDIS Study‡ 749 412 (55.0%) 68.8 (8.97) 52.16 (14.14) 0.509 (0.110) 729 43.26 (21.59) 

Discovery Analyses Controls (total n=4784, with pack-years n=3889) 

Generation Scotland (GS:SFHS) 961 552 (57.4%) 54.5 (8.41) 98.18 (10.92) 0.783 (0.051) 961 28.92 (16.86) 

British 1958 Birth Cohort (1958BC) 1429 888 (62.1%) 44 (0) 100.90 (13.46) 0.809 (0.060) 1046 14.74 (10.07) 

Oxford Biobank (OXBB) 1770 832 (47.0%) 41.6 (5.77) - - 1682 9.09 (9.34)  

GoDARTS 624 402 (64.4%) 59.0 (10.75) - - 200 35.46 (25.89) 
‡Sample collection is COPD case cohort 
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2.2.4.1 Single variant association analyses 

Analyses of COPD risk: Due to the limited power to detect single variant associations 

for very rare SNPs, there was great underinflation of the test statistics in analyses of 

COPD risk, leading to genomic inflation factors (λ, equation (1-4)) of 0.255 and 0.291 in 

the pack-years adjusted analysis, and unadjusted analysis, respectively. Removing the 

very rare SNPs (overall MAF<0.05% ~MAC<8) resulted in a distribution of test statistics 

closer to expected (quantile-quantile (QQ) plots Figure 2-8), with corresponding λ 

values of 1.013 (pack-years adjusted) and 1.054 (unadjusted). A total of 4 SNPs in 3 

regions met the P<10-5 significance threshold in the pack-years adjusted analysis, with 

5 SNPs in 4 regions showing P<10-5 in the unadjusted analysis. 

Figure 2-8: Quantile-quantile plots for analyses of COPD risk A. with and B. without pack-years adjustment.  

SNPs with MAF>0.05% only shown. 

 

In the pack-years adjusted analysis of COPD risk (2517 cases and 3889 controls; Table 

2-4 and Figure 2-9 A), the most significant association was in the 15q25 region. The 

sentinel SNP in this region was rs8034191 (MAF=34.8%, OR:1.374, P=2.42×10-7). This 

SNP is highly correlated (r2=0.93) with rs1051730, a SNP previously identified through 

GWAS as being associated with smoking behaviour (132-134), lung cancer (151, 152), 

COPD(129) and airflow obstruction (defined as FEV1 and FEV1/FVC  below the lower 

limit of normal (LNN)) in ever smokers (130). The pack-years adjusted analysis 

identified two novel signals of association with COPD (P<10-5): a common 

nonsynonymous SNP, located within SMPDL3B (rs3813803, MAF=29.2%, OR:1.370, 

λ=1.013 λ=1.054 

A. B. 
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P=1.04×10-6) and a rare nonsynonymous SNP located within MOCS3 (rs7269297, 

MAF=1.1%, OR:0.251, P=3.08×10-6). 

The unadjusted analysis of COPD risk (Table 2-4 and Figure 2-9 B) resulted in similar 

effect estimates for the 15q25 and SMPDL3B SNPs, with a slight augmentation of P-

values (the 15q25 SNPs reached genome-wide significance), likely due to the increased 

sample size. The association with rs7269297 (MOCS3) identified in the pack-years 

adjusted analysis was less significant in the unadjusted analysis.  

A further two loci were associated with COPD risk in the unadjusted analysis: a rare 

nonsynonymous SNP located within PRICKLE1 (rs3827522, MAF=0.37% OR:0.123 

P=1.03×10-7) and rs17368582 (MAF=12.16%, OR:0.712, P=5.01×10-6), a common 

synonymous SNP located in MMP12,  a member of the matrix metalloproteinases 

family of genes which play a role in tissue remodelling. rs2276109, another SNP within 

MMP12, which is strongly correlated with rs17368582 (r2=0.84), has previously been 

associated with COPD risk in smokers (137). The associations with the PRICKLE1 and 

MMP12 SNPs did not reach the P<10-5 significance threshold in the pack-years 

adjusted analysis, suggesting that these signals may in part be driven by differences in 

smoking behaviour between cases and controls.  
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Table 2-4: Top associations in exome analyses of COPD risk, with and without pack-years adjustment (P<10-5). 

SNPs ordered by chromosome (Chr) and genomic position (Pos). Only most significant SNP in each region shown. All P-values are two-sided. OR values reflect odds ratios after adjustments for 

age, sex (and pack-years in pack-years adjusted analysis only). 

 

 Pack-years adjusted analysis Unadjusted analysis  

MAF (MAC)  MAF (MAC)  

rs no. Chr Pos 
Effect / 
noneffect 
allele 

Cases 
(n=2517) 

Controls 
(n=3889) 

OR P* 
Cases 
(n=3226) 

Controls 
(n=4784) 

OR P* Gene (Function) 

rs3813803 1 28282292 C/T 
30.61% 
(1541) 

28.32% 
(2203) 

1.370 2.41×10-6 
30.32% 
(1956) 

28.45% 
(2722) 

1.288 2.11×10-6 
SMPDL3B 
(nonsynonymous) 

rs17368582 11 102738075 C/T 
11.14% 
(561) 

12.87% 
(1001) 

0.767 3.22×10-3 
11.14% 
(719) 

12.84% 
(1229) 

0.712 5.01×10-6 
MMP12 
(synonymous) 

rs3827522 12 42853871 A/G 
0.22% 
(11) 

0.35% 
(27) 

0.184 1.39×10-3 
0.22% 
 (14) 

0.48% 
(46) 

0.123 1.03×10-7 
PRICKLE1 
(nonsynonymous) 

rs8034191 15 78806023 C/T 
37.98% 
(1912) 

32.73% 
(2546) 

1.374 2.42×10-7 
37.69% 
(2432) 

32.86% 
(3144) 

1.364 1.18×10-9 
near AGPHD1 
(intergenic) 

rs7269297 20 49576664 G/T 
0.74% 
(37) 

1.41% 
(110) 

0.251 3.08×10-6 
0.84% 
 (54) 

1.45% 
(139) 

0.423  3.98×10-4 
MOCS3 
(nonsynonymous) 

*P-values in bold significant at P<10-5 level 
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Figure 2-9 A) Analysis of COPD risk, with pack-years adjustment  B) Analysis of COPD risk, without pack-years 

adjustment.  

SNPs with MAF>0.05% only; SNPs with P<10-5 highlighted. 

A. 

 

B. 
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Analyses of airflow limitation: The genomic inflation factors for all variants in the 

pack-years adjusted and unadjusted analyses were 1.130 and 1.122, respectively 

(Figure 2-10). Appropriate genomic control was applied to adjust the standard errors 

of effect estimates. No SNPs reached the predefined P<10-5 significance level in either 

the pack-years adjusted analysis, or the unadjusted analysis of airflow limitation 

(Figure 2-11). There were six SNPs which showed associations with P<10-4 in these 

analyses, listed in Table 2-5. The strongest association in both the pack-years adjusted 

and unadjusted analyses was with rs77108843, a nonsynonymous SNP in RNA 

exonuclease 1 homolog (REXO1) gene (pack-years adjusted analysis: MAF=0.5% , 

beta=13.37 , P=7.44×10-5). Of note, rs28929474 the z-allele within the SERPINA1 gene 

showed association in the unadjusted analysis (MAF=0.2%, Beta=-6.17, P=2.83×10-5); 

this gene is a well-established cause of alpha1-antitrypsin (AAT) deficiency, a rare 

inherited disorder that accounts for 1-2% of COPD cases (98, 129, 135). A further signal 

of association in the unadjusted analysis was with rs11749 (MAF=24.3%, 

beta=-1.97, P=4.30×10-5), a nonsynonymous SNP located within DNALI1¸ a potential 

candidate for immotile cilia syndrome (153).  

Figure 2-10: Quantile-quantile plots for analyses of severity of airflow limitation A. with and B. without pack-

years adjustment.  

Plots include all SNPs passing genotype QC. 

 

λ=1.13

0 

λ=1.12

2 

A. B. 
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Figure 2-11. A) Manhattan for severity of airflow limitation analysis, adjusted for pack-years smoking, B) 

Manhattan for severity of airflow limitation analysis without adjustments for pack-years smoking. 

Plots include all SNPs passing genotype QC. 

A) 

 

B)  
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Table 2-5: Top associations in exome analysis of airflow limitation, with and without adjustment for pack-years smoking (P<10-4). 

SNPs ordered by chromosome (Chr) and genomic position (Pos). Only most significant SNP in each region shown. All P-values are two-sided. Beta values reflect effect size estimates on percent 

predicted FEV1 (after adjustments for pack-years in pack-years adjusted analysis only). 

 
%predicted FEV1, adjusted for pack-years 
(n=2517) 

%predicted FEV1 (n=3226)  

rs no. Chr Pos 
Effect / 
noneffect 
allele 

MAF (MAC) Beta P MAF (MAC) Beta P Gene (Function) 

rs11749 1 38023316 T/C 24.08% (1212) -1.57 3.99×10-3 24.26% (1565) -1.97 4.30×10-5 DNALI1(nonsynonymous) 

rs59035258 8 65527669 T/C 3.72% (187) 4.18 8.75×10-4 3.60% (232) 4.79 2.11×10-5 CYP7B1(nonsynonymous) 

rs117991621 12 96379884 T/C 0.56% (28) 10.92 6.19×10-4 0.56% (36) 12.02 2.26×10-5 HAL(nonsynonymous) 

rs28929474 14 94844947 T/C 2.17% (109) -5.05 1.30×10-3 1.97% (127) -6.17 2.83×10-5 SERPINA1(nonsynonymous) 

rs147487857 15 41247629 G/A 1.25% (63) -8.90 3.27×10-5 1.26% (81) -5.62 3.19×10-3 CHAC1(nonsynonymous) 

rs77108843 19 1828148 A/G 0.50% (25) 13.37 7.44×10-5 0.59% (38) 12.09 1.18×10-5 REXO1(nonsynonymous) 
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2.2.4.2 Gene-based Association analyses 

In the gene-based analyses of COPD risk, PRICKLE1 was the only gene to reach the 

P<10-5 significance level (P=1.968×10-6, analysis with no pack-years adjustment). The 

SKAT-O test utilised three SNPs within this gene (Table 2-6), however  “drop-one” 

analyses, where the SKAT-O P-value is recalculated when individual SNPs are 

sequentially excluded from the test, showed the signal to be largely driven by 

rs3827522, the SNP identified in the single variant analysis (COPD risk unadjusted for 

pack years, P=1.03x10-7). Consequentially, the single SNP, but not the gene was 

followed up further (Section 2.3.3). 

The analyses of airflow limitation identified no associated genes with P<10-5. Three 

genes showed modest association, with P-values<10-4, however all were driven by 

single SNPs which had individual signals of association with P<10-4.
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Table 2-6: Risk of COPD single variant association results of SNPs included in SKAT-O test of PRICKLE1. 

 

Risk of  COPD with pack-years adjustment Unadjusted  analysis of risk of  COPD Drop-one result 

MAF (MAC) Association result MAF (MAC) Association result 

rs no. 
Effect / 
noneffect 
allele 

Cases 
(n=2517) 

Controls 
(n=3889) 

OR P 
Cases 
(n=3226) 

Controls 
(n=4784) 

OR P 

SKAT-O Analysis 
utilising all SNPs 
in PRICKLE1 

P-value of SKAT-O Analysis 
if SNP removed 

rs3827522 A/G 
0.22% 
(11) 

0.35%  
(27) 

0.628 1.38×10-3 
0.22% 
 (14) 

0.48% 
 (46) 

0.123 1.03×10-7 
Unadjusted 

P=1.968×10-6 
 
Pack-years 
adjusted 

P=2.086×10-3 
 

unadjusted:P=0.0484; 
adjusted: P=0.0258 

rs146199468 G/T 
0.02%  
(1) 

0.00%  
(0) 

- - 
0.02%  
(1) 

0.00% 
(0) 

- - 
unadjusted:P=1.973×10-6; 

adjusted: P=4.347×10-3 

rs79087668 T/C 
0.20% 
(10) 

0.32%  
(25)  

0.617 0.999 
0.20%  
(13) 

0.30% 
 (29) 

0.364 4.44×10-2 
unadjusted:P=1.693×10-9; 

adjusted: P=1.367×10-3 
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2.3 Meta-Analysis with UK BiLEVE data and look-up of SNPs identified in 

discovery analysis. 

2.3.1 UK BiLEVE study 

The UK BiLEVE study is a collection of 48,943 individuals aged 39-72 from UK Biobank 

with high quality lung function and smoking data. Details of the sample selection for 

UK BiLEVE are fully described in (120).  In brief, 50,008 samples of European ancestry 

and with acceptable and reproducible spirometry measures, based on European 

Respiratory Society / American Thoracic Society (ERS/ATS) guidelines, were selected 

from the extremes and middle of the distributions of percent predicted FEV1, 

separately in never smokers and in heavy smokers. DNA was extracted and genotyping 

was undertaken with the custom-designed Affymetrix Axiom UK BiLEVE array, 

including variants which were selected from the same sequencing project as the 

Illumina Human Exome BeadChip. Following thorough variant and sample QC, 48,943 

unrelated individuals remained. 

I utilised data from the UK BiLEVE study in two ways. Firstly, I carried out a look-up of 

all SNPs in novel regions that were identified in the single variant analyses, in an 

attempt to replicate these findings. Secondly, I selected a subset of SNPs that were 

included on both the Illumina Human Exome Beadchip and the Affymetrix Axiom UK 

BiLEVE array, and undertook a meta-analysis, as a more powerful discovery study 

(Figure 2-12).  

For these analyses, I selected cases and controls from amongst the 24,457 heavy 

smokers in UK BiLEVE (average 35 pack-years). 4231 individuals with airflow limitation 

consistent with GOLD 2 COPD or worse were selected as cases, alongside 8979 controls 

with FEV1/FVC>0.7, percent predicted FEV1>80%, and no doctor diagnosis of COPD. All 

spirometry measures were pre-bronchodilator (reversibility testing was not carried 

out), and individuals with a doctor diagnosis of asthma or other lung diseases were 

excluded.
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Figure 2-12: Overview of discovery analyses and follow-up in UK BiLEVE. 

Stage 1: UK COPD exome chip 
Consortium Discovery Analysis. 

Stage 2: 

Follow-up in 

UK BiLEVE.  

Replication - Look-

up of SNPs of 

interest. 

Meta-analysis of 

SNPs common 

to both studies. 

4231 cases vs 8979 controls. 

Look-up of 3 SNPs in novel 

regions reaching P<10-5 in 

discovery analysis. 

No SNPs reached P<10-5 

threshold in discovery 

analysis for look-up. 

Exome Analyses 

3226 cases vs 4784 controls. 

135,818 SNPs Analysed. 
3226 cases. 

115,638 SNPs Analysed. 

6748 cases vs 12,868 controls. 

Meta-analysis of 57,234 SNPs 

included in exome discovery analysis 

and genotyped in UK BiLEVE. 

6748 cases. 

Meta-analysis of 54,168 SNPs 

included in exome discovery 

analysis and genotyped in UK 

BiLEVE. 

Analysis of COPD Risk. Analysis of severity of airflow 

limitation. 
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2.3.2 Meta-analyses: Methods 

2.3.2.1 Phenotypes 

The 4231 cases with airflow limitation indicative of COPD and 8979 controls from UK 

BiLEVE contributing to the meta-analysis, were selected based on their % predicted 

FEV1 values, calculated using reference equations derived using healthy never smokers 

in the whole of UK Biobank (120). For association testing, percent predicted FEV1 was 

recalculated using the NHANES III spirometric reference equations (85)  for consistency 

with the exome discovery analyses. The two methods for calculating percent predicted 

FEV1 gave highly correlated values (r2=0.992) and all selected COPD cases met GOLD 2 

criteria (FEV1/FVC<0.7 and % predicted FEV1<80%) under both reference equations 

(Figure 2-13). 

Figure 2-13: Comparison of % predicted FEV1 based on predictive values calculated using healthy never smokers 

in UK BiLEVE, versus predictive values calculated using NHANES III spirometric reference equations. 

 

2.3.2.2 Single Variant Association analyses 

SNP associations with COPD risk were carried out using a logistic regression model, 

adjusting for age, sex and pack-years and assuming an additive genetic model (as 

equation (2-1)). For the analysis of severity of airflow limitation, associations with 
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untransformed percent predicted FEV1 in cases were tested using a linear regression 

model, with adjustment for pack-years (as equation (2-2)). All association analyses 

were undertaken using PLINK v1.07 (18). 

2.3.2.3 Meta-analyses of UK COPD exome chip consortium discovery samples and UK 

BiLEVE samples 

 The genomic inflation factor (λ, equation (1-4)) was calculated for both the discovery 

exome analyses and the UK BiLEVE analyses and where λ>1, genomic control was 

applied, adjusting the standard errors of effect estimates. All SNPs were oriented to 

the same strand, with consistent effect alleles. Effect estimates were combined across 

the two analyses using an inverse-variance–weighted meta-analysis:  

𝛽𝑚𝑒𝑡𝑎𝑗
=

∑ 𝑤𝑗𝑘𝛽𝑗𝑘 2
𝑘=1

∑ 𝑤𝑗𝑘 2
𝑘=1

 
 

( 2-3 ) 

 

   

where 𝛽𝑗𝑘 is the estimated effect and wjk is the weight of jth SNP of the kth analysis: 

 𝑤𝑗𝑘 =
1

𝑠𝑒𝑗𝑘
2   

 

 

where sejk is the standard error of the effect estimate for the jth SNP of the kth analysis.  

Pooled standard errors were estimated as: 

𝑠𝑒𝑚𝑒𝑡𝑎𝑗
=

1

√∑ 𝑤𝑗𝑘
2
𝑘=1

 
 

λ was calculated for the pooled effect estimates and genomic control was applied 

again where λ>1. Meta-analysis statistics and figures were produced using R version 

3.1.1. 
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2.3.3 Meta-analyses: Results 

The characteristics of the UK BiLEVE samples used in these analyses are summarised in 

Table 2-7. 

2.3.3.1 Replication of signals identified in discovery exome analyses 

A total of six SNPs, within five regions were identified in the discovery exome analyses 

of COPD risk (Table 2-4). For the three SNPs in regions not previously implicated in 

COPD risk, a look-up within the UK BILEVE single variants association analysis was 

carried out (Table 2-8). Only rs7269297 in MOCS3 showed evidence for association 

with COPD risk in UK BiLEVE, consistent with the discovery stage analysis (OR:0.742, 

P=0.019); this result is just above the Bonferroni corrected level of significance 

(P<0.017, corrected for 3 SNPs tested).
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Table 2-7: Characteristics of UK BiLEVE samples used in meta-analyses with discovery samples and for replication of signals identified in discovery analyses. 

 
Sample Collection 

n 

Sex Age 
Percent Predicted 
FEV1 

FEV1/FVC Pack-years 

Male, n (%) Mean (SD) Mean (SD) Mean (SD) 
Samples with 
data (n) 

Mean (SD) 

UK BiLEVE Samples (Meta-analysis and replication) 

Airflow limitation cases 4231 2379 (56.2%) 59.54 (6.86) 61.76 (11.8) 0.607 (0.076) 4231 42.41 (21.10) 

Controls 8979 4260 (47.4%) 56.19 (7.92) 101.40 (8.1) 0.773 (0.038) 8979 30.43 (14.41) 
 

 

Table 2-8: Look-up within UK BiLEVE single variant associations, for SNPs in novel regions identified in discovery exome analyses.  

 Discovery analysis of COPD risk Analysis in UK BiLEVE (pack-years adjusted)  

 Association Result MAF (MAC) Association Result 

rs no. Chr Pos 
Coded / 
other 
allele 

Analysis in 
which SNP 
identified 

OR P* Cases 
(n=4231) 

Controls 
(n=8979) 

OR P Gene (Function) 

rs3813803 1 28282292 C/T 
pack-years 
adjusted 

1.370 2.41×10-6 
28.72% 
(2418) 

29.43% 
(5269) 

0.968 0.2984 
SMPDL3B 
(nonsynonymous) 

rs3827522 12 42853871 A/G unadjusted 0.123 1.03×10-7 
0.25% 
(21) 

0.25% 
(45) 

0.907 0.7309 
PRICKLE1 
(nonsynonymous) 

rs7269297 20 49576664 G/T 
pack-years 
adjusted 

0.2501 3.08×10-6 
1.16% 
(98) 

1.41% 
(252) 

0.742 0.0193 
MOCS3 
(nonsynonymous) 
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2.3.3.2 Meta-Analysis of discovery and UK BiLEVE data 

Analyses of COPD risk: For the 57,234 SNPs common to both the UK COPD exome chip 

consortium samples and the UK BiLEVE study, a meta-analysis of the discovery pack-

years adjusted analysis and the UK BiLEVE study results was undertaken (total 6748 

cases and 12,868 controls). The strongest association in the meta-analysis was with the 

SNPs in the 15q25 region, identified in the discovery analysis (sentinel SNP rs8034191 

near AGPHD1). Three further regions, not identified in the discovery analysis, showed 

association with risk of COPD (P<10-5) in the meta-analysis (Figure 2-14 and Table 2-9). 

The GYPA/HHIP and GPR126 regions have previously been reported as showing 

association with lung function and COPD or airflow limitation risk (116, 129, 130). The 

IFIT3 region signal (rs140549288 in IFIT3, MAF=0.67%, OR=1.92 P=7.49x10-6) 

represents a novel rare variant signal of association with COPD.  

Figure 2-14: Meta-analysis of COPD risk in discovery and UK BiLEVE samples. 

 

AGPHD1 / 
CHRNA5 

GYPA / 
HHIP-AS1 GPR126 IFIT3 / 

LIPA 
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Table 2-9: SNPs with P<10-5 in the meta-analysis.  

SNPs ordered by chromosome (Chr) and genomic position (Pos). Only most significant SNP in each region shown. All P-values are two-sided. OR values reflect odds ratios after adjustments for 

age, sex and pack-years. 

 

Discovery pack-years adjusted analysis  UK BiLEVE  pack-years adjusted analysis  

Meta-analysis of 

discovery and UK 

BiLEVE pack-year 

adjusted analyses. 

 

MAF (MAC) 
Association 

Result 
MAF (MAC) Association Result Association Result 

rs no. Chr Pos 

Coded 

/ other 

allele 

Cases 

(n=2517) 
Controls 

(n=3889) 
OR P* 

Cases 

(n=4231) 
Controls 

(n=8979) 
OR P* OR P* Gene 

rs1828591 4 145480780 A/G 
35.64% 

(1794) 

39.11% 

(3042) 
0.917 0.153 

36.55% 

(3088) 

40.00% 

(7171) 
0.867 9.88×10-7 0.876 5.75×10-7 

GYPA / HHIP 

(intergenic) 

rs4896582 6 142703877 A/G 
29.26% 

(1473) 

31.73% 

(2468) 
0.859 0.018 

28.04% 

(2349) 

30.20% 

(5344) 
0.879 3.87×10-5 0.875 2.53×10-6 

GPR126 

(intronic) 

rs140549288 10 91099466 C/G 0.76% (38) 
0.57% 

 (44) 
2.156 0.037 

0.94%  

(79) 

0.56% 

(100) 
1.880 6.87×10-5 1.924 8.56×10-6 

IFIT3 (exonic), 

LIPA (intronic) 

*P-values in bold significant at P<10-5 level 
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Analyses of severity of airflow limitation: 54,168 SNPS were included in the meta-

analysis of severity of airflow limitation. One SNP showed association with P<10-5: 

rs140198372, at a splice site in SERPINA12 (MAF=0.04%, Beta=-33.51, P=5.72x10-6, 

Figure 2-15 and Table 2-10).  

Figure 2-15: Meta-analysis of severity of airflow limitation in discovery and UK BiLEVE samples. 

 

SERPINA12 
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Table 2-10: Top associations (P<10-5) in meta-analysis of severity of airflow limitation. 

Only most significant SNP in region shown. All P-values are two-sided. Beta values reflect effect size estimates on percent predicted FEV1 after adjustments for pack-years. 

 
Severity of  airflow limitation, 
adjusted for pack-years (n=2517) 

UK BiLEVE  pack-years adjusted 
analysis (n=4231 ) 

Meta-analysis of 
discovery and UK 
BiLEVE pack-year 
adjusted analyses. 

 

rs no. CHR Position 
Coded / 
other 
allele 

MAF (MAC) Beta P 
MAF 
(MAC) 

Beta P Beta P Gene 

rs140198372 14 94953832 A/C 
0.062% 
 (4) 

-26.44 1.80×10-3 
0.012% 
(1) 

-38.35 4.11×10-4 -33.51 5.72×10-6 
SERPINA12  
(splice site) 

*P-values in bold significant at P<10-5 level 
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2.4  Sensitivity analyses to assess COPD case criteria 

Clinical diagnosis of airflow limitation in COPD, is based on post-bronchodilator 

spirometry (94). Of the 3226 COPD cases defined as described above, 1398 had GOLD 2 

or worse airflow limitation based on post-bronchodilator spirometry values; for the 

remainder of samples, these data were unavailable. To assess the potential 

misclassification bias this could give rise to, a sensitivity analysis was carried out for all 

SNPs identified in the discovery or meta-analyses of COPD risk, by repeating the 

discovery analyses including only those 1398 COPD cases who underwent reversibility 

testing.  This sensitivity analysis resulted in estimated effect sizes that were consistent 

with the original analyses (Table 2-11 and Figure 2-16). In particular, the odds ratios 

were not substantially altered for rs7269297 in MOCS3 (sensitivity analysis OR:0.276; 

original discovery OR:0.251), nor rs140549288 in IFIT3 (sensitivity analysis OR:2.554; 

original discovery OR:2.156). The P-values for both of these SNPs were somewhat 

attenuated in the sensitivity analysis, however this is likely to be largely a result of the 

reduced sample size. 



 
 

71 
 

Table 2-11: Sensitivity analysis to assess COPD case criteria of SNPs identified in either the a. discovery, or b. meta-analyses of COPD risk.  

 Results for original analyses, and for analyses where cases restricted to include only those with known irreversible airflow limitation 

a. SNPs identified in discovery analyses 

     Discovery pack-years 
adjusted analysis 
(2517 cases, 3889 
controls) 

Discovery pack-years 
adjusted analysis (1365 
COPD cases with 
reversibility testing, 
3889 controls) 

Discovery unadjusted 
analysis (3226 cases, 
4784 controls) 

Discovery unadjusted 
analysis (1398 COPD 
cases with reversibility 
testing, 4784 controls) 

rs no. CHR Position Coded
/ other 
allele 

Gene OR P OR P OR P OR P 

rs3813803 1 28282292 C/T SMPDL3B 
(nonsynonymous) 

1.37 2.41x10-6 1.46 5.18 x10-6 1.288 2.11 x10-6 1.382 2.98 x10-6 

rs17368582 11 102738075 C/T MMP12 
(synonymous) 

0.767 3.22 x10-3 0.673 1.08 x10-3 0.712 5.01 x10-6 0.6567 2.35 x10-5 

rs3827522 12 42853871 A/G PRICKLE1 
(nonsynonymous) 

0.184 1.39 x10-3 0.272 1.08 x10-3 0.123 1.03 x10-7 0.1836 1.43 x10-4 

rs8034191 15 78806023 C/T near AGPHD1 
(intergenic) 

1.374 2.42 x10-7 1.42 8.14 x10-6 1.364 1.18 x10-9 1.414 1.33 x10-7 

rs7269297 20 49576664 G/T MOCS3 
(nonsynonymous) 

0.251 3.08 x10-6 0.276 4.05 x10-4 0.423 3.98 x10-4 0.4502 0.0118 
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b. SNPs identified in meta-analyses 

     Discovery pack-years 
adjusted analysis 
(2517 cases, 3889 
controls) 

Discovery pack-years 
adjusted analysis (1365 
COPD cases with 
reversibility testing, 
3889 controls) 

Discovery unadjusted 
analysis (3226 cases, 
4784 controls) 

Discovery unadjusted 
analysis (1398 COPD 
cases with reversibility 
testing, 4784 controls) 

rs no. CHR Position Coded
/ other 
allele 

Gene OR P OR P OR P OR P 

rs1828591 4 145480780 A/G 
GYPA / HHIP 
(intergenic) 

0.917 0.153 0.873 0.0866 0.919 0.093 0.8821 0.0566 

rs4896582 6 142703877 A/G GPR126 0.859 0.018 0.868 0.0861 0.864 5.95 x10-3 0.8702 0.0427 

rs140549288 10 91099466 C/G 
IFIT3 (exonic), LIPA 
(intronic) 

2.156 0.037 2.554 0.0640 1.823 0.057 2.211 0.0480 
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Figure 2-16: Comparison of effect estimates of discovery case-control analysis of COPD risk where the cases were restricted to only include those with known irreversible airflow 

obstruction, versus the analysis including all COPD cases. 

 A. Pack-years adjusted analysis of COPD risk. B. Analysis of COPD risk, without adjustment for pack-years. Highlighted are the effect estimates of the two SNPs reported as novel regions 

(rs7269297 in MOCS3 and rs140549288 in IFIT3). 

 

MOCS3

3 

IFIT3 

MOCS3
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IFIT3 

A. Discovery analysis of COPD risk, adjusted for pack-years 

 

B. Discovery analysis of COPD risk, without adjustment for pack-years 
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2.5  Discussion 

This chapter describes the analyses of exome chip variants with COPD risk and percent 

predicted FEV1 among cases in an attempt to identify low frequency and rare 

functional variants which may play a role in susceptibility to COPD, and severity of 

airflow limitation.  

Firstly, I carried out discovery analyses utilising 3226 samples from 12 studies in the UK 

COPD exome chip consortium, and 4784 general population controls. The most 

significant associations identified in the discovery analysis of COPD risk were with SNPs 

in the 15q25 region, previously identified through GWAS as being associated with 

smoking behaviour (132-134), lung cancer (151, 152), COPD (129) and airflow 

obstruction (130). These discovery analyses also provided independent replication of 

the previously reported association of MMP12 with COPD risk (137). Associations with 

COPD risk were also identified at three loci, not previously implicated in lung function 

or COPD: SMPDL3B, MOCS3, and PRICKLE1. There was only evidence to support the 

association at MOCS3 (rs7269297, Serine to Alanine, MAF=1.3%, Pdiscovery=3.08x10-6) in 

the follow-up analyses in UK BiLEVE, however (Prep=0.019). The protein encoded by 

MOCS3 adenylates and activates molybdopterin synthase, an enzyme required to 

synthesize molybdenum cofactor (154).  

The discovery analysis of airflow limitation identified no SNPs reaching the predefined 

significance level of P<10-5. Just falling sort of this significance level, the z-allele 

(rs28929474) within the SERPINA1 gene was associated with a lower percent predicted 

FEV1 in cases (unadjusted analysis: β=-5.053, Pdiscovery=2.83x10-5). As well as being a 

well-established cause of alpha1-antitrypsin (AAT) deficiency, (98, 129, 135), this SNP 

has also previously been associated with an increased annual decline in FEV1 in a 

general population sample (155) and increased airflow limitation in COPD cases (156). 

In these analyses, the z-allele was associated with an increased risk of COPD, although 

this was not statistically significant (OR:1.270, P=0.252). The likely reason for the lack 

of a significant association with this known COPD locus, is that some of the case 

collections excluded individuals with AAT deficiency, resulting in selection bias. 
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For a subset of 57,234 SNPs, I combined association results from the COPD exome chip 

consortium and UK BiLEVE samples in a meta-analysis. As in the original discovery 

analyses, the strongest associations in the meta-analysis of COPD risk were with SNPs 

in the 15q25 region. Associations in two further previously reported COPD regions 

were also identified, at HHIP (116, 129) and GPR126 (130). There was additionally one 

SNP in a novel region, IFIT3, which showed significant association with COPD risk 

(rs140549288, Valine to Leucine, MAF=0.7%, Pmeta=8.56x10-6). IFIT3 is associated with 

interferon-alpha (IFN-α) antiviral activity and has been found to be up-regulated in 

respiratory syncytial virus infection (157) and in human lung epithelial cells infected 

with dengue virus (158). rs140549288 is also located within in an intron of LIPA, which 

is transcribed from the opposite strand; the product of this gene is involved in the 

hydrolysis of cholesteryl esters and triglycerides and other SNPs within this gene have 

previously been associated with coronary artery disease (159). 

Through the meta-analysis of airflow limitation, an association was identified with a 

very rare SNP within a serine protease inhibitor gene, SERPINA12, that has not 

previously been associated with COPD (rs140198372, MAF=0.03%, Pmeta=5.72x10-6). 

SERPINA12 has been associated with cardiovascular diseases, being implicated in 

obesity and type 2 diabetes (160). 

The lack of strong statistical findings in these analyses might be due to limited 

statistical power. For example, for a SNP with a MAF of 1% and an OR=2, there is just 

54% power to detect an association in the discovery analyses described in this chapter, 

if a significance level of P<3.8x10-7 (“exome-wide significant”) is assumed. Due to the 

limited power of single variant association tests for rare variants, several statistical 

tests have been developed which test the joint effects of several variants within a 

gene, as described in Section 1.2.5. In these analyses, I utilised the SKAT-O test, a 

method which optimally combines both a burden style test, which assumes all variants 

act in the same direction and with similar magnitude of effects, and the SKAT test, 

which allows for variants within the gene to act in opposing directions and with 

different effect sizes (69). Where the underlying genetic architecture is unclear, this 

optimal test approach should increase the chance of detecting genes influencing 

disease, without increasing the multiple testing burden. In these analyses, only one 



 
 

76 
 

gene was identified through the SKAT-O tests as meeting the elected significance level 

(P<10-5). After subsequent analysis however, it was found that this gene-based signal 

in PRICKLE1 was driven by the single SNP which was identified in the single variant 

discovery analyses, but whose association was not replicated in the UK BiLEVE 

samples. 

The GOLD Global Strategy for Diagnosis, Management, and Prevention of COPD (94) 

states that airflow limitation in COPD should be determined using post-bronchodilator 

spirometry (94). In attempt to maximise power, the analyses described in this chapter 

included some cases that had pre-bronchodilator spirometry measures only; for these 

samples it could not be determined whether their airflow limitation was reversible, 

and so a proportion of these cases may not have met the clinical definition of COPD. 

To assess the effect of the inclusion these samples for whom reversibility testing was 

not undertaken, a sensitivity case-control analysis was performed, with cases 

restricted to the subset of 1398 individuals who were taken from COPD cohorts and 

had known irreversible airflow limitation. In this sensitivity analysis, the effect 

estimates of the top hits did not substantially change, which suggests that the broader 

case definition, including samples that did not undergo reversibility testing, did not 

result in substantial misclassification bias. This is supported by findings from another 

genetic study which defined cases using pre-bronchodilator spirometry (127); 

estimated effects for their sentinel SNPs did not substantially differ where the analyses 

were restricted to individuals with known COPD. Furthermore, this study estimated 

that 98% of samples defined as having GOLD 2 COPD based on pre-bronchodilator 

values, also met GOLD 2 criteria based on post-broncholidator spirometry measures. 

In summary, the analyses described in this chapter identified potentially interesting 

associations between COPD risk and low frequency SNPs in MOCS3 and IFIT3, two 

regions not previously implicated in COPD or lung function. Furthermore, an 

association was identified with percent predicted FEV1 in individuals with COPD, and a 

very rare SNP in SERPINA12. These three regions warrant further investigation as they 

may provide insight into the underlying biological mechanisms of COPD and airflow 

limitation in smokers. These analyses also independently replicated associations with 

known COPD loci at MMP12, HHIP, GPR126 and in the 15q25 region, and provided 
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further evidence that the z-allele within SERPINA1 may be related to severity of airflow 

limitation in COPD. These analyses support the hypothesis that low frequency 

variation, alongside common genetic variants, play a role in COPD; however further 

follow-up would be required to formally verify the associations identified here and 

larger sample sizes are necessary to comprehensively assess the genetic contribution 

of rare variation.  
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Chapter 3 Investigation of methods: Meta-analysis of gene-based tests 

3.1 Introduction 

Detection of trait-associated SNPs has generally demanded large sample sizes, a 

requirement which is of particular importance where associated SNPs are low 

frequency or rare (161, 162). Such large sample sizes have commonly been attained 

through meta-analyses of data from a number of studies within a consortium setting. 

These meta-analyses involve each study undertaking analyses of individual level data 

according to a centrally agreed analysis plan, with only summary statistics being 

shared with the central meta-analysts. Methods for combining the summary statistics 

for single variant associations are well established and have been widely employed for 

a range of complex traits (14, 163).  

With the availability of novel genotyping arrays such as the exome chip (50), and with 

the falling costs of sequencing, there has developed a greater focus on examining SNPs 

at the lower end of the frequency spectrum, and in particular an increase in the 

popularity of gene-based tests, thought to be more powerful than single variant tests 

for low frequency variants (Section 1.2.5) (162). Until recently, consortia wishing to 

adopt these gene-based tests in a meta-analysis setting would have required each 

study to undertake gene-based analyses using individual level data, with the P-values 

from these gene-based tests being combined centrally using Fisher’s (164) or Z-score 

(165) methods. 

Several software packages have now been developed which allow the meta-analysis of 

gene-based tests, without sharing individual level data (74-78, 166). These packages 

utilise a common method, which involves each study generating score statistics for 

each single variant, along with variance-covariance matrices, which describe the 

correlation between the variants. Gene-based tests may then be constructed centrally, 

allowing for flexibility in specifying the SNPs used in these tests, in terms of MAF 

frequency, function and so on. Furthermore, most of these packages also allow for 

conditional analyses to be carried out, with no additional analyses required at study 

level; these conditional analyses may be used to determine whether any gene-based 

associations are a result of an association with a single variant. 
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In this chapter I describe the methods used for the meta-analysis of gene-based tests 

and recount a number of the software packages and programs developed to 

undertake these tests. I then describe in more detail the simulations undertaken to 

evaluate one of these methods, RAREMETAL (74, 166) (the program used in the 

analyses described in Chapter 4), as undertaken by the program’s authors. I further 

explore RAREMETAL using real genotype and phenotype data from 48,943 individuals 

from UK BiLEVE (120), a dataset far larger than has been used previously for the 

evaluation of these methods (74). The main aim of these analyses was to compare the 

concordance of the meta-analysis methods with analyses carried out using individual 

level data.  I also examine the Fisher’s and Z-score methods of combining P-values, to 

ascertain the benefit of using the new meta-analysis methods. 

 

3.2 Methods for meta-analysis of gene-based tests 

Programs developed to date for the meta-analysis of gene-based tests include both 

the burden-test methods (weighted sum test (WST) and variable threshold test (VTT)), 

and variance-component methods which compare genetic similarity (SKAT and SKAT-

O), as described in Section 1.2.5. Both the WST and VTT tests broadly involve 

combining information from all variants under a given MAF threshold within a gene 

into a single quantity, which can then be used for association testing with a trait. The 

WST test allows for the incorporation of weights; for example, it can allow greater 

weightings to rarer SNPs. The VTT test performs the burden test using several MAF 

thresholds, selecting a threshold for each gene, to give an optimal P-value. These 

burden tests perform well where the effects of causal variants within a gene are 

similar in terms of both direction and magnitude. The SKAT test in comparison is 

powerful where a gene has a combination of protective, deleterious and neutral 

variants. A further method, SKAT-O combines both the WST test and SKAT, by 

providing a weighted average of the two tests, optimised for each gene.  

In equations (1-7) to (1-10) in Section 1.2.5, it was shown that the WST, VTT, SKAT and 

SKAT-O could all be constructed using the score statistic (U, equation (1-5)). To 

construct these gene-based tests for a gene with m variants, in a meta-analysis of K 
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studies, the MAFs, a vector of score statistics (𝑼𝒌 = [𝑈1𝑘, 𝑈2𝑘, … , 𝑈𝑚𝑘]𝑇 ) and 

corresponding variance-covariance matrix (𝑽𝒌, equation (1-6)) is required from each 

study, k. 

All gene-based tests may then be constructed as follows. 

Meta-WST: 

𝑄𝑚𝑒𝑡𝑎−𝑊𝑆𝑇 = ∑ ∑ 𝑤𝑗𝑈𝑗𝑘

𝑚

𝑗=1

𝐾

𝑘=1

 ~  𝑁 (0, ∑ ∑ 𝑤𝑗
2𝑉𝑗𝑗𝑘

𝑚

𝑗=1

𝐾

𝑘=1

) 

where Ujk is the score statistic and wj is the weight for the jth variant in the 

kth study and Vjjk is the variance of Ujk. 

 

( 3-1 ) 

 

 

Meta-VTT: 

𝑄𝑚𝑒𝑡𝑎−𝑇(𝐹) = ∑ ∑ 𝑇𝐹𝑈𝑗𝑘

𝑚

j=1

𝐾

𝑘=1

 

 

( 3-2 ) 

 

 

𝑄𝑚𝑒𝑡𝑎−𝑉𝑇𝑇 = max (𝑄𝑚𝑒𝑡𝑎−𝑇(𝐹)) ~  𝑁 (0, ∑ ∑ 𝑇𝐹Vjjk

𝑚

𝑗=1

𝐾

𝑘=1

) 

 

 

where TF is an indicator variable that equals 1 if the MAF of the jth variant is less than F, 

or 0 otherwise.  

The meta-analysis of SKAT may be undertaken either assuming homogeneous genetic 

effects (meta-SKAT-hom), or heterogeneous effects (meta-SKAT-het) across studies. 

Meta-SKAT-hom first sums the weighted score of a variant across studies, and then 

sums the squared summed statistic across all variants in the gene (equation (3-3)), 

whilst meta-SKAT-het sums the squared weighted score statistic across studies and 

variants in the gene (equation (3-4)). 
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Meta-SKAT-hom: 

𝑄𝑚𝑒𝑡𝑎−𝑆𝐾𝐴𝑇−ℎ𝑜𝑚 = ∑ (∑ 𝑤𝑗𝑈𝑗𝑘

𝐾

𝑘=1

)

2𝑚

𝑗=1

  ~ ∑ 𝜆𝑗

𝑚

𝑗=1

𝜒1𝑗
2  

 

( 3-3 ) 

 

 

Meta-SKAT-het: 

𝑄𝑚𝑒𝑡𝑎−𝑆𝐾𝐴𝑇−ℎ𝑒𝑡 = ∑ ∑ 𝑤𝑗
2𝑈𝑗𝑘

2

𝑚

𝑗=1

𝐾

𝑘=1

  ~ ∑ 𝜆𝑗

𝑚

𝑗=1

𝜒1𝑗
2  

 

( 3-4 ) 

 

where λ1, …, λM are eigenvalues of (∑ 𝑽𝒌
𝐾
𝑘=1 )

𝟏

𝟐𝑾 ((∑ 𝑽𝒌
𝐾
𝑘=1 )

𝟏

𝟐)
𝑇

 and 𝑾 =

𝑑𝑖𝑎𝑔[𝑤1
2, … , 𝑤𝑚

2 ]  is a diagonal matrix of squared weights and 𝜒11
2 , …, 𝜒1𝑚

2  are 

independent 𝜒1
2 variables. 

The meta-analysis of SKAT-O may be undertaken using the meta-WST test statistic in 

conjunction with the meta-SKAT statistic assuming either homogeneous or 

heterogeneous effects. 

Meta-SKAT-O:  

𝑄𝑚𝑒𝑡𝑎−𝑝(𝜌) = (1 − 𝜌)𝑄𝑚𝑒𝑡𝑎−𝑆𝐾𝐴𝑇 + 𝜌𝑄𝑚𝑒𝑡𝑎−𝑊𝑆𝑇 ( 3-5 ) 

 

𝑄𝑚𝑒𝑡𝑎−𝑆𝐾𝐴𝑇−𝑂 = max (𝑄𝑚𝑒𝑡𝑎−𝑝(𝜌)) ~  ∑ 𝜆𝑗

𝑚

𝑗=1

𝜒1𝑗
2  

 

 

3.3 Summary of meta-analysis software packages 

There have been several software packages developed to implement the methods 

described in Section 3.2; all packages vary in the specific tests they run, the traits 

which they can analyse (quantitative, binary, survival), and whether they can handle 

studies of related individuals. These software packages and their characteristics are 

summarised in Table 3-1. 
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Table 3-1: Summary of software packages developed for the meta-analysis of gene-based tests. 

Meta-analysis 
software 

Study-level software to 
generate score statistics 
and covariance matrices 

Gene-based 
tests performed 

Phenotypes 
that may be 
tested 

Allows for 
homogeneous and 
heterogeneous 
effects across studies? 

Can handle 
related 
samples? 

MetaSKAT (75) MetaSKAT WST, SKAT,  
SKAT-O 

Quantitative 
and binary 

Yes No 

RAREMETAL 
(74, 166) 

Rvtests 
RAREMETALWORKER 

WST, VTT, SKAT Quantitative 
and binary 

Only homogeneous Yes  

SeqMeta (78) SeqMeta WST, SKAT, 
SKAT-O 

Quantitative, 
binary and 
survival 

Only homogeneous Yes 
(Quantitative 
traits only) 

MASS (76, 77) SCORE-Seq 
SCORE-SeqTDS 

WST, VTT, SKAT, 
SKAT-O 

Quantitative 
and binary 

Yes No 

 

These four meta-analysis packages all require the studies contributing to the meta-

analysis to generate score statistics and variance-covariance matrices using individual 

level data and specific study-level packages. These summary statistics may be 

generated either using the packages themselves (MetaSKAT and SeqMeta), or by using 

companion software (RAREMETALWORKER or Rvtests for RAREMETAL and SCORE-Seq 

or SCORE-SeqTDS for MASS, Table 3-1). Each meta-analysis package may then be used 

by a central meta-analyst to combine the study-level summary statistics and undertake 

gene-based tests, as described in Section 3.2. Recently a program called PreMeta has 

been developed which allows the conversion of summary statistics generated by any 

of the study-level packages listed in Table 3-1 to the format required for any of the 

other meta-analysis packages listed (167). 

A further package (MAGA) has also been developed which allows the meta-analysis of 

gene-based tests using the single variant summary statistics only. MAGA collates the 

results of single variant analyses based on Wald, score or likelihood ratio tests to 

estimate the score vector from either the test statistics or the betas and P-values. A 

covariance matrix may then be estimated using individual level data from one study, 

or if unavailable, an external reference panel, and together with the score vector may 

be used to construct WST, VTT and SKAT tests, as in Section 3.2 (168).  

The methods implemented by these packages have been evaluated through a number 

of simulations and empirical analyses (74-78, 166-168). The power of the meta-

analysis methods was consistently found to be equivalent to that of the joint analysis 

of individual level data (74, 75, 78) and type 1 error was generally well controlled (75, 
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77). Other findings of these simulations were as expected, given the properties of each 

statistical test. Meta-SKAT and meta-SKAT-O were more powerful where the effects of 

variants in a gene were bidirectional, and where a smaller proportion of variants in a 

region were causal. Conversely, meta-WST and meta-VT tests were more powerful 

where larger proportions of variants in a region were causal, and where all variants 

were acting in the same direction (75). The meta-SKAT-hom method was more 

powerful where genetic effects were homogeneous across studies, with meta-SKAT-

het becoming more powerful as the heterogeneity of genetic effects increased (75, 

77). In general, the power of all tests improved with an increasing proportion of causal 

variants (75) and larger overall sample sizes (74).  

Overall these methods have been most extensively evaluated using simulated data, 

which made several assumptions regarding the underlying genetic architecture. 

Evaluation of these methods in real genome-wide genetic data have generally used 

relatively small samples (up to approximately 10,000 samples) and only quantitative 

traits have been considered. Assessment of the concordance of the meta-analysis 

methods with equivalent analyses using individual level data has also been less 

thoroughly examined in a real dataset.  

 

3.4 Empirical investigation of RAREMETAL in UK BiLEVE 

Chapter 4 of this thesis describes a meta-analysis of exome array data and lung 

function traits. In that analysis, the meta-analysis software RAREMETAL is utilised. In 

this section, I shall describe in more detail the simulations undertaken by the 

RAREMETAL authors. I then use data from UK BiLEVE to examine the performance of 

RAREMETAL in a real dataset that is considerably larger than was used in the published 

RAREMETAL evaluation (74). To this end, I utilise real phenotype data and genotypes 

from 48,943 individuals, and test whether the meta-analyses of WST and SKAT gene-

based tests are equivalent to the corresponding analysis using individual level data.  
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3.4.1 Evaluation of simulation methods undertaken in RAREMETAL paper 

The RAREMETAL authors undertook several simulations to evaluate the software’s 

methods. Genes were simulated as 5000 base pair regions, using a coalescent 

approach and a demographic model based on European population history. They 

generated “studies” of 1000 individuals each from one of several related populations, 

such that some variants were shared between studies, and other variants were study 

specific.  

Firstly, test statistics and P-values were compared from a meta-analysis and a joint 

analysis of 10,000 simulated genes in samples from 3 studies. They carried out this 

comparison, assuming three different trait models: 

1. 50% of all variants were causal, with each causal variant increasing trait 

values by 0.25 standard deviations (SDs). 

2. 50% of all variants were causal, with 80% causal variant increasing trait 

values by 0.25 SDs and 20% decreasing trait values by 0.25 SDs. 

3. 50% of all variants were causal, with the effect of each causal variant 

following a normal distribution with mean 0 and SD of 0.25. 

For the meta-WST and meta-SKAT tests, test statistics and P-values from the meta-

analysis were consistent to those obtained through a joint analysis of individual level 

data. For the meta-VTT analysis, the P-values, both estimated asymptotically and 

empirically using Monte-Carlo methods, were slightly less concordant.  

Secondly, type 1 error was assessed through 50 million null simulations, based on 

meta-analyses of 3, 6 and 9 studies, and was found to be well controlled for all gene-

based tests at significance levels α=1x10-3, 1x10-4 and 2.5x10-6. 

Finally, power was investigated in scenarios of between 2 and 100 studies, under 

several phenotype models: 

1. 50% of variants with MAF<0.5% were causal, with each causal variant 

increasing trait values by 0.25 SDs. 
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2. 50% of all variants were causal, with each causal variant increasing trait 

values by 0.25 SDs. 

3. 50% of all variants were causal, with 80% of causal variants increasing trait 

values by 0.25 SDs and 20% decreasing trait values by 0.25 SDs. 

The power of RAREMETAL was compared to the power of combining study-level P-

values using Fisher’s method and by a minimum P-value approach, using a type 1 error 

rate of α=2.5x10-6. RAREMETAL was found in all scenarios to be the most powerful 

approach, with increasing power as number of studies increases; however all methods 

were found to be fairly underpowered, until the sample size became very large 

samples (~60% power achieved in the analysis of 100 cohorts, n=100,000 samples).The 

RAREMETAL methods were then applied using real data, in a meta-analysis of blood 

lipid traits in 18,699 samples from 7 sample collections, with exome array genotype 

data. Associations with high density lipoprotein (HDL), low density lipoprotein (LDL) 

and triglycerides levels were tested in each study, with covariate adjustment and 

inverse normalisation of traits. Meta-WST, meta-SKAT and meta-VT tests were then 

undertaken using RAREMETAL. These analyses identified several associations, although 

many of these appeared to be driven by SNPs which also showed association in single 

variant analysis. One gene (LDLR) was identified, whose signal did appear to be driven 

by several rare variants and would not have been identified in single variant 

association analysis. 

Type 1 error and power were also assessed using the real genotype data from three 

case collections (total n=10,361) and simulated phenotypes; similar trends were 

observed as were in the simulations. Finally, the P-values of a RAREMETAL analysis 

using two sample collections (total n=7862) were compared to the joint analysis of 

individual level data and were found to be highly concordant. 

The properties of RAREMETAL methods were largely tested using simulated genetic 

data, which made a number of assumptions regarding the underlying genetic 

architecture of the trait and causal variants. All simulated scenarios assumed that 50% 

of variants under a given MAF threshold within a gene were causal. Different 

assumptions were also made regarding direction and magnitude of variant effects; in 
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some scenarios, all causal variants acted in the same direction, whilst other 

simulations considered a scenario where 80% of causal variants acted in one direction, 

(increased disease risk / trait value), whilst the other 20% acted in the opposite 

direction (decreased risk / trait value). The simulations which tested the concordance 

of the RAREMETAL and joint analysis methods also included a scenario where variant 

effects were normally distributed, with a mean effect of zero, although this was not 

considered in the simulations examining type 1 error and power. In reality, the 

distribution and effects of causal variants are unknown in advance, so it is not clear 

how realistic the considered scenarios are. A further consideration is whether causal 

variants might vary across studies; it is not clear to what extent this was the case in 

these simulations.  

The genetic data simulated was all based on genes of 5kb in length, with each having 

an average of 100 variants within them, with 80% having a MAF<1%, and 49% as 

singletons. Across the genome, genes vary greatly in length, with some less than 

100bp, and the longest genes up to 2.4Mb (169); it is not clear whether the results of 

the simulations would be applicable to genes with varying lengths and numbers of 

variants. The simulations included all variants within the MAF inclusion threshold, and 

so would be akin to analyses of sequencing data. In exome chip studies, not all rare 

variants in a gene will be measured, so there are likely to be far fewer variants 

included within each test. 

The application of RAREMETAL to real data in the meta-analysis of blood lipid traits 

addresses some of these issues. The real genotype data from a subset of the studies 

included in the meta-analysis was also used to assess type 1 error, power and 

concordance with joint analysis of individual level data, in an exome chip study. These 

investigations were limited to only 2 or 3 sample collections, so it is unclear whether 

these findings would be the same where the meta-analysis consisted of many more 

studies, as is more common in practice. Only quantitative traits were considered 

throughout, so it is not clear if similar trends would be seen for binary traits. 
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3.4.2 Investigation of RAREMETAL in UK BiLEVE: Aims 

The most extensive evaluation of the meta-analysis methods employed by 

RAREMETAL were undertaken using simulated data, that were akin to sequence data, 

and limited in terms of the underlying genetic architecture. Whilst the RAREMETAL 

authors also assessed the methods in real exome chip data, this was in fewer studies 

and samples than are likely to be included in meta-analyses of exome chip data in 

practice. In addition, the RAREMETAL methods were only evaluated using a 

quantitative trait. I therefore aimed to further evaluate the methods in a more realistic 

setting, using data from 48,943 samples from the UK BiLEVE study. Through these 

analyses, I primarily sought to investigate whether the results of a RAREMETAL meta-

analysis were in agreement with a joint analysis undertaken with the individual level 

data (mega-analysis) for the following: 

1. A quantitative trait 

2. A binary trait, where each study has  a balanced (1:1) ratio of cases to controls 

3. A binary trait where each study has an unbalanced ratio of cases to controls 

To simulate a meta-analysis of gene-based tests, I split the UK BiLEVE data, by 

randomly allocating samples to sub-studies, and performed meta-SKAT and meta-WST 

tests using summary statistics generated for each study, as would be done in a meta-

analysis setting. To address each aim, I used real phenotypes: FEV1 (quantitative trait) 

and smoking status (binary trait: ever/never smoker). I compared the results of these 

meta-analyses to the results of the equivalent mega-analysis, performed using 

individual level data. I also undertook a comparison of results from the mega-analysis 

with those obtained through a meta-analysis combining P-values from gene-based 

tests carried out at study level, using both Fisher’s method (164)  and Stouffer’s Z-

score method (165), to confirm the advantage of using the RAREMETAL methods. 

3.4.3 Investigation of RAREMETAL in UK BiLEVE: Methods 

3.4.3.1 UK BiLEVE data 

The UK BiLEVE study selected 50,008 samples from UK Biobank, based on their 

smoking history and FEV1 measurements. Samples were selected from the extremes 
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and middle of the distributions of percent predicted FEV1, separately in never smokers 

and heavy smokers and were genotyped using a custom-designed Affymetrix Axiom 

UK BiLEVE array. The UK BiLEVE array includes rare coding variants selected from the 

same sequencing project as the exome array, alongside additional genome-wide 

coverage. Following genotype and sample quality control (QC), 48,943 unrelated 

individuals remained for analysis. The number of samples passing QC that were 

included in each smoking-FEV1 stratum are summarised in Table 3-2. 

Table 3-2: Number of samples selected in each smoking- FEV1 stratum. 

 Never smokers Heavy smokers 

Low FEV1 9750 9750 

Average FEV1 9831 9803 

High FEV1 4902 4907 

Total 24,483 24,460 

 

The UK BiLEVE samples were genotyped in 11 batches; only those SNPs which passed 

QC in all batches were included in these analyses. Furthermore, SNPs were filtered to 

include those with overall call rate>99% and MAF<5% only. The genotype data were 

annotated using VEP based on the GRCh37/hg19 database and gene files were created 

based on these annotations. For computational efficiency, I restricted the analyses to a 

single chromosome (chromosome 6). 

3.4.3.2 Gene-based tests mega-analyses 

Mega-analyses using the individual level data from all samples were carried out using 

the SKAT R package (68). Analyses were undertaken for FEV1 as a quantitative trait and 

for smoking as a binary trait with a balanced ratio of cases and controls overall; the 

results of these analyses were used for comparison with all meta-analyses scenarios. 

For both traits, the null model of no association was fitted, with adjustment for 

covariates, as listed in Table 3-3. The residuals of the null models were then used for 

two gene-based tests: 1. SKAT with default weighting (weight for jth variant: 

β(𝑀𝐴𝐹𝑗; 1, 25)); 2. WST with Madsen Browning (66) weightings, achieved by including 
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the arguments r.corr=1, weights.beta=c(0.5,0.5) in the SKAT 

command.  

Table 3-3: Covariate adjustments undertaken for each trait. 

Trait Covariate adjustments 

FEV1 Sex, age, height, pack-years and 10 

principal components (PCs) 

Smoking 10PCs 

 

3.4.3.3 Meta-analyses: meta-analysis of gene-based tests using RAREMETAL 

For the meta-analyses of the quantitative trait and the binary trait with a balanced 

ratio of cases to controls, the 48,943 UK BiLEVE samples were randomly split into the 

following scenarios: 

I. 2 studies: 1 study with n=24,471; 1 study with n=24,472. 

II. 5 studies: 4 studies with n=9789; 1 study with n=9787. 

III. 10 studies: 9 studies with n=4894; 1 study with n=4897. 

IV. 49 studies: 48 studies with n=999; 1 study with n=991. 

V. Mixed studies: 1 study with n=15,000; 1 study with n=10,000; 3 studies with 

n=5000; 3 studies with n=2000; 2 studies with n=1000, 1 study with n=943. 

Scenarios I-IV were intended to allow the evaluation of the RAREMETAL meta-analysis 

methods as samples came from an increasing number of smaller studies.  In scenario 

V, the samples were split into 11 studies of varying sample sizes, which is more typical 

to what is seen in practice in a consortium meta-analysis effort. 

For the meta-analyses of the binary trait with unbalanced ratio of cases to controls, 

the samples were randomly split into 10 studies (9 studies with n=4894; 1 study with 

n=4897) as follows: 

a. 1:1 ratio: 10 studies with case-control ratio 1:1. 

b. 2:1 ratio: 5 studies with case-control ratio 2:1; 5 studies with case-control ratio 

1:2. 
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c. 5:1 ratio: 5 studies with case-control ratio 5:1; 5 studies with case-control ratio 

1:5. 

d. 10:1 ratio: 5 studies with case-control ratio 10:1; 5 studies with case-control 

ratio 1:10. 

Whilst the ratio of cases to controls in each study for scenarios b-d was unbalanced, 

the overall ratio of cases to controls was 1:1. This allowed direct comparison between 

each scenario and the same mega-analysis undertaken using all samples and with a 

balanced ratio of cases and controls.  

Within each scenario, RAREMETALWORKER was run for each study using both smoking 

and FEV1 (scenarios I-V only). Traits were adjusted for the covariates listed in Table 3-3 

and score statistics and variance-covariance matrices were calculated for each study 

using the resulting residuals. 

The score statistics and variance-covariance matrices from each study were then 

combined using RAREMETAL to perform both meta-SKAT-hom (equation (3-3)) and 

meta-WST (equation (3-1)) analyses. Default weightings were used for meta-SKAT, 

with Madsen-Browning weightings used for the meta-WST tests. 

3.4.3.4 Meta-analyses: Combining P-values of gene-based tests 

Samples were split into studies as per scenarios I-V, above. Within each study, SKAT 

and WST tests were performed for both FEV1 and smoking using the SKAT R package, 

analogously to the mega-analysis. The P-values (Pk) from the gene-based tests of each 

study k, with sample size nk were then combined, by two methods: 

1. Z-score meta-analysis:  

𝑍 =
∑ 𝑤𝑘𝑍𝑘

𝐾
𝑘=1

√∑ 𝑤𝑘
2𝐾

𝑘=1

~𝑁(0,1), 
( 3-6 ) 

 

 

where 𝑤𝑘 = √𝑛𝑘  and 𝑍𝑘 = 𝛷−1 (1 −
𝑃𝑘

2
). 

  



 
 

91 
 

2. Fisher’s method: 

𝑋2 = −2 ∑ ln(𝑃𝑘)𝐾
𝑘=1 ~𝜒2𝐾

2 , 

where 𝐾 is the number of studies. 

( 3-7 ) 

 

Unlike the output from RAREMETAL, the SKAT package does not provided an effect 

estimate for the WST test, so the estimated direction of effect could not be taken into 

account in the Z-score meta-analysis. 

3.4.4 Investigation of RAREMETAL in UK BiLEVE: Results 

3.4.4.1 Comparison of RAREMETAL meta-analysis methods versus mega-analysis 

Figure 3-1 and Figure 3-2 show comparisons of the SKAT P-values resulting from a 

mega-analysis of all samples and each meta-analysis scenario (I-V) for the SKAT and 

WST analyses of FEV1, respectively. Figure 3-3 and Figure 3-4 show the equivalent 

plots for the analysis of smoking, with a balanced ratio of cases and controls.  

Figure 3-1: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the SKAT analysis of FEV1. 
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Figure 3-2: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the WST analysis of FEV1. 

 

Figure 3-3: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the SKAT analysis of smoking with a balanced ratio of cases and controls. 
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Figure 3-4: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the WST analysis of smoking with a balanced ratio of cases and controls. 

 

The RAREMETAL results became less closely correlated with the mega-analysis results 

as the data were split into an increasing number of studies; however all meta-analyses 

were highly concordant overall with the mega-SKAT and mega-WST results, even when 

split into 49 studies (scenario IV, concordance correlation coefficient=0.993 [FEV1 SKAT 

analysis]). The meta-analysis with 11 studies of mixed sizes (scenario V) showed similar 

results to the meta-analysis with 10 equal sized studies (scenario III). Figure 3-5 shows 

the P-value comparisons for all genes meeting the P<0.01 (-log10P>2) threshold in 

either the mega-SKAT or each meta-SKAT analysis of FEV1, for the five scenarios. 

These plots show that a similar, if not identical set of top genes would be selected 

through all meta-analyses compared to the mega-analysis, if a significance level of 

P<0.01 was assumed. Whilst there are some genes which would be identified at the 

P<0.01 significance level in the meta-analysis, but not in the mega-analysis (or vice 

versa), these genes all have P-values close to the 0.01 threshold in both analyses. 
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Figure 3-5: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the SKAT analysis of FEV1: genes with P<0.01 in either analysis only. 

 

Where RAREMETAL analyses were carried out using studies with unbalanced ratios of 

cases to controls (scenarios a-d), the resulting P-values were not so highly concordant 

with the mega-analysis P-values, as can be seen in Figure 3-6 and Figure 3-7. The 

mega-SKAT analysis had a balanced ratio of cases to controls (1:1) and identified a 

total of 18 genes with P<0.01. Table 3-4 compares the number of genes meeting this 

significance threshold in the mega-SKAT analysis and in each meta-SKAT analysis 

scenario. In scenario a, where the ratio of cases to controls in each study was 1:1, the 

RAREMETAL analysis resulted in the same 18 genes meeting the P<0.01 significance 

level. For the remaining scenarios, as the imbalance of cases to controls increased, 

fewer of those 18 genes met the P<0.01 significance level and conversely, there were 

an increasing number of genes meeting this level, which did not have P<0.01 in the 

mega-analysis. Similar trends were seen for the meta-WST analyses for unbalanced 

studies. 
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Figure 3-6: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the SKAT analysis of smoking with unbalanced ratios of cases and controls. 

 
Figure 3-7: Comparison of -log10 P-values from the mega-analysis, and RAREMETAL meta-analysis scenarios for 

the WST analysis of smoking with unbalanced ratios of cases and controls. 

 

  



 
 

96 
 

Table 3-4: No. genes meeting the P<0.01 in either the mega-analysis, or each RAREMETAL meta-analysis scenario 

for the SKAT analysis of Smoking. 

Scenario a 

 1:1 ratio meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 789 0 

P<0.01 0 18 

Scenario b 

 2:1 ratio meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 783 6 

P<0.01 9 9 

Scenario c 

 5:1 ratio meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 783 6 

P<0.01 13 5 

Scenario d 

 10:1 ratio meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 775 14 

P<0.01 14 4 

 

3.4.4.2 Comparison of combining P-values of gene-based tests versus mega-analysis 

Figure 3-8 and Figure 3-9 show comparisons of the SKAT P-values resulting from a 

mega-analysis of all samples and five meta-analysis scenarios for the combined SKAT 

P-values analyses of FEV1. Similar trends for the WST and for smoking were seen; 

equivalent figures are in appendix B.  

Figure 3-8 shows the comparison of P-values from the mega-analysis, and each meta-

analysis scenario (I-V) where P-values were combined using Fisher’s Method. Overall, 

the meta-analysis P-values become less concordant with P-values from the mega-SKAT 

analysis as the data were split into increasingly smaller studies. Genes with a low 

cumulative MAF (<0.1%) are highlighted in orange; as the number of studies increased, 

the meta-SKAT P-values for these genes with these low cumulative MAFs tended to 1 

(-log10P=0).  Table 3-5 outlines the number of genes associated with FEV1 with P<0.01 

in either the mega-analysis, or in each of the meta-analyses. The mega-SKAT analysis 

identified 17 genes with P<0.01 in total. Where the data were split into two studies 

(scenario I), the meta-SKAT analysis resulted in 12 genes meeting P<0.01; of those 6 

also had P<0.01 in the mega-analysis.  When the data were split into 49 studies 
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(scenario IV), only 7 genes had P<0.01, with none of those genes meeting P<0.01 in the 

mega-analysis. If we assume that the mega-analysis resulted in “true” P-values, then 

the number of false negatives increased as there was an increasing number of smaller 

studies, whereas the number of false positives remained fairly consistent in all 

scenarios. 

Figure 3-8: Comparison of -log10 P-values from the mega-analysis, and each Fisher’s Method meta-analysis 

scenario for the SKAT analysis of FEV1. Genes with Cumulative MAF<0.1% highlighted in orange. 



 
 

98 
 

Table 3-5:No. genes meeting the P<0.01 in either the mega-analysis, or each Fisher’s Method meta-analysis 

scenario for the SKAT analysis of FEV1. 

Scenario I 

 2 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 784 6 

P<0.01 11 6 

Scenario II 

 5 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 784 6 

P<0.01 15 2 

Scenario III 

 10 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 783 7 

P<0.01 15 2 

Scenario IV 

 49 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 783 7 

P<0.01 17 0 

Scenario V 

 Mixed studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 782 8 

P<0.01 17 0 

 

Figure 3-9 shows the P-value comparison where SKAT P-values were combined using Z-

score meta-analysis. This meta-analysis method is mostly anti-conservative, an issue 

that worsens as the data are split into increasingly smaller studies. As the number of 

studies increased, the meta-SKAT P-values for genes with a low cumulative MAF 

tended to get closer to 1 (-log10P=0); whereas for those genes with a higher cumulative 

MAF, the P-values became more significant.  
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Figure 3-9: Comparison of -log10 P-values from the mega-analysis, and each Z-score meta-analysis scenario for the 

SKAT analysis of FEV1.  

 

Table 3-6 also illustrates the anti-conservative results of this method. Where the data 

were split into two studies (scenario I), the meta-SKAT analysis identified 13 genes with 

P<0.01 that also had P<0.01 in the mega-analysis, along with an additional 7 genes.  

When the data were split into 49 studies (scenario IV), the majority of genes (709 of 

807) had P<0.01. Overall, the number of false positives significantly increased as there 

were an increasing number of smaller studies, whilst the number of false negatives 

tended to decrease.  
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Table 3-6: No. genes meeting the P<0.01 in either the mega-analysis, or each Z-score Method meta-analysis 

scenario for the SKAT analysis of FEV1. 

Scenario I 

 2 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 783 7 

P<0.01 4 13 

Scenario II 

 5 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 711 79 

P<0.01 5 12 

Scenario III 

 10 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 460 330 

P<0.01 1 16 

Scenario IV 

 49 studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 81 709 

P<0.01 1 16 

Scenario V 

 Mixed studies meta-analysis 

P≥0.01 P<0.01 

Mega-analysis P≥0.01 544 246 

P<0.01 1 16 

 

To summarise the findings of this section, the performance of each gene-based meta-

analysis method, in terms of concordance with the equivalent mega-analysis using 

individual level data, is described in Table 3-7.
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Table 3-7: Summary of the performance of meta-analysis methods. 

Meta-analysis method (Traits) Summary of performance compared to mega-analysis 

RAREMETAL 
(Quantitative Trait and Binary Trait with balanced 
case:control ratio) 

Meta-analysis P-values were overall highly concordant with those obtained for mega-analysis, even 
where data split into a large number of small studies. 

RAREMETAL  
(Binary Trait with unbalanced case:control ratio) 

As the imbalance of cases to controls in each study increased, the P-values became less concordant 
with those from the mega-analysis, likely resulting in an increase of both false positive and false 
negative findings. 

Fisher’s Method to combine P-values  
(Quantitative trait and Binary trait with balanced 
case:control ratio) 

Concordance to mega-analysis P-values decreased as the number of studies increased. Generally, P-
values became conservative (less significant) as the numbers of studies increases, especially for genes 
with a low cumulative MAF, likely resulting in an increase in false negative findings. 

Z-score Method to combine P-values  
(Quantitative trait and Binary trait with balanced 
case:control ratio) 

Concordance to mega-analysis P-values decreased as the number of studies increased. P-values tended 
to get more anti-conservative (highly significant) as the number of studies increased, likely resulting in 
an increase in false positive findings; however this trend was not so distinct in genes with a low 
cumulative MAF. 
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3.5 Discussion 

The analyses conducted in this chapter have shown that the meta-analysis of SKAT and 

WST gene-based tests using RAREMETAL result in equivalent P-values to an analysis 

undertaken using individual level data, for both quantitative trait and a binary trait 

with a balanced ratio of cases to controls. The RAREMETAL meta-analysis methods did 

not give such consistent results to the mega-analysis of a binary trait with an 

unbalanced ratio of cases to controls however. If it is assumed that the mega-analysis 

result gave the “true” P-value, then with an increasing magnitude of imbalance, the 

number of false positives increased, along with the number of false negatives. An 

imbalanced ratio of cases to controls has previously been found to be problematic in 

single variant analyses of low frequency variants, leading to highly inflated type 1 

errors (170). 

The analyses undertaken in this chapter primarily aimed to determine empirically the 

consistency of the results of a RAREMETAL meta-analysis, compared to a joint analysis 

of individual level data, in real array-based genotype data from the UK BiLEVE study. 

These analyses did not address other properties of the meta-analysis methods, such as 

power and type 1 error; this would have required the use of simulated phenotype 

data. For the analyses of quantitative traits and binary traits with a balanced ratio of 

cases and controls, these properties have been extensively examined by the authors of 

RAREMETAL, and the other software packages (74-78, 166, 167) and have found type 1 

error to generally be well controlled (75, 76), although the power of these tests was 

somewhat limited, except for very large samples sizes (74, 75, 78). For the analyses of 

binary traits with an unbalanced ratio of cases and controls, power and type 1 error 

have not been fully assessed, to date. The benefit of using real genotype and 

phenotype data from UK BiLEVE is that a sample size more realistic to a real meta-

analysis of GWAS or exome array data could be achieved, and no assumptions 

regarding the underlying genetic architecture of a trait were required to be made. 

The UK BiLEVE samples used in these analyses all came from UK Biobank, which is 

likely to be a relatively homogeneous population compared to many meta-analyses, 

which often use samples from several geographical regions (163), and sometimes 

include multiple ancestries (171). Other between study differences may add to the 
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heterogeneity, including differences in phenotype definitions and differences in study 

level genotyping and QC or analyses (163).  It is possible that meta-analyses using 

studies from more diverse populations may affect the performance of the gene-based 

meta-analysis methods. In the meta-analyses described in this chapter, the simulated 

studies consisted of individuals selected at random. To introduce heterogeneity to the 

studies, thereby creating more realistic meta-analysis scenarios, studies could have 

been generated according to geographical region (eg by study centre), or alternatively 

some studies could have been selected based on secondary phenotypes (eg samples 

could be identified for disease case collections). Furthermore, the UK BiLEVE samples 

were restricted to unrelated individuals only; meta-analyses often include studies with 

related individuals and it is not clear whether the results of this chapter will also be 

applicable to analyses which include studies with related samples.  

As well as investigating the concordance of the RAREMETAL meta-analysis results to 

those from a mega-analysis, alternative meta-analysis methods which combine gene-

based P-values were additionally considered. The analyses combining SKAT and WST P-

values using Fisher’s or Z-score methods performed very poorly, giving inconsistent 

results to the equivalent mega-analysis. Other evaluations of the Z-score and Fisher’s 

method for combining SKAT or burden test P-values have found the method to have 

similar or less power to the equivalent mega-analysis (75, 172). These previous 

evaluations have considered meta-analysis scenarios with only 2 or 3 studies. In terms 

of using Fisher’s method for combining SKAT and WST P-values, the results of this 

chapter are fairly consistent with these previous findings, and furthermore 

demonstrate that the method performs more poorly as the number of studies in a 

meta-analysis increases. The results of this chapter showed that the Z-score method 

resulted in a large number of false positive findings. The reason for this is the Z-score 

method effectively assigned a direction of effect to each study; since no effect size was 

given for SKAT or the WST (when implemented in the SKAT R package), the assumed 

direction of effect was consistent across all studies, therefore resulting in an 

overestimate of the meta-analysis Z statistic. This issue is likely to be compounded 

where direction of effects differed across studies, and as the number of studies 

included in the meta-analysis is increased. Some software packages, for example 
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RAREMETAL provide gene effect estimate for the WST; where this is the case, it is 

probable that the Z-score method would perform better, as directions of effect would 

be taken into account, however this method for combining P-values is still likely to be 

less powerful than the RAREMETAL method. 

Overall, these results show there is a clear advantage to using the RAREMETAL 

methods for the meta-analysis of gene-based tests for the analysis of a quantitative 

trait, or a binary trait with a balanced ratio of cases and controls. Chapter 4 of this 

thesis describes the meta-analyses of three quantitative traits utilising these methods. 

The findings of this chapter give confidence that the results of these meta-analyses 

should be consistent with a mega-analysis of the data. The gene-based meta-analysis 

methods appear less suitable for the analysis of a binary trait where contributing 

studies have a large imbalance of cases to controls however; in this instance, the 

RAREMETAL method appears likely to result in a number of both false positives and 

false negatives.  
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Chapter 4 Meta-analysis of exome array data and quantitative lung 

function traits 

4.1 Introduction 

Lung function measures are an important predictor of mortality and morbidity and are 

used in the diagnosis of a number of diseases, including chronic obstructive pulmonary 

disease (COPD), a leading cause of death globally (89). Lung function is largely affected 

by environmental factors such as smoking and exposure to air pollution; however 

there is also a genetic component, with heritability estimates ranging up to 66% (105, 

108, 110, 173).  A number of large-scale genome-wide association studies (GWAS) of 

lung function have successfully identified single nucleotide polymorphisms (SNPs) 

influencing lung function in over 50 regions (43, 116-120, 136), yet these identified 

regions only account for a small proportion of  the estimated heritability. Low 

frequency (minor allele frequency (MAF) 1-5%) and rare (MAF<1%) variants, have been 

largely underexplored by GWAS to date.  

Many of the GWAS which have identified lung function loci have been meta-analyses 

carried out within the SpiroMeta and CHARGE consortia. Large consortia such as these 

allow information from a number of studies to be combined, thereby maximising 

sample size, without sharing individual level data. In this context, a meta-analysis 

involves studies generating summary statistics, according to a pre-determined analysis 

plan. The meta-analysis of single variant associations has been found to be equivalent 

to analyses using individual level data (174) and these methods have been widely used 

to identify SNPs associated with a range of complex traits. More recently, methods for 

meta-analysing gene-based associations have been developed (74-76, 168), which I 

explored further in Chapter 3. 

In this chapter I describe a meta-analysis of exome array data and three lung function 

measures: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) 

and the ratio of FEV1 to FVC (FEV1/FVC) in 23,398 individuals of European ancestry, 

from 11 studies from the SpiroMeta Consortium. Analyses of both single variant 

associations and gene-based associations were carried out. The most significant single 

variant and gene associations were then followed up in up to 93,390 independent 
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samples. My role in this study was to generate analysis plans describing the analyses to 

be carried out by each study, and to undertake the study level analyses for the 1958 

British Birth Cohort (1958BC). Once the study-level analyses were completed, I carried 

out thorough quality control (QC) checks of the study-level summary statistics, 

performed the meta-analyses and associated follow-up. This chapter describes all 

aspects of this work. 

 

4.2 Discovery stage samples, study-level analyses and quality control of data 

4.2.1 Discovery Stage Samples and Phenotypes 

The discovery stage analyses were carried out using data from 11 studies from the 

SpiroMeta consortium, listed in Table 4-1. All samples were genotyped using the 

Illumina Human Exome BeadChip v1. Analyses were carried out for three lung function 

phenotypes: FEV1; FVC; FEV1/FVC.  

Table 4-1: Studies included in discovery analyses. 

Study name (abbreviation) n 

1958 British Birth Cohort (1958BC) 5270 

Generation Scotland: Scottish Family Health Study (GS:SFHS) 8164 

Cooperative Health Research in the Region of Augsburg (KORA F4) 1447 

CROATIA-Korcula cohort (KORCULA) 791 

Lothian Birth Cohort 1936 (LBC1936) 974 

Study of Health in Pomerania (SHIP) 1681 

Northern Swedish Population Health Study (NSPHS) 880 

Prospective Investigation of the Vasculature in Uppsala Seniors (Pivus) 836 

Swiss study on Air Pollution and Lung Disease in adults (SAPALDIA) 2707 

The Cardiovascular Risk in Young Finns Study (YFS) 434 

Finnish Twin Cohort (FIN) 214 

Total Discovery Sample Size 23,398 
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4.2.2 Study design and analysis plans 

From the outset of this study, it was intended that both single variant and gene-based 

associations would be tested. At the start of this study, a number of the gene based 

tests described in Section 1.2.5 had been developed; however it was unclear how 

these tests might be performed in a meta-analysis setting. For this reason, I first 

generated an analysis plan for studies to undertake single variant analyses (analysis 1), 

with the equivalent gene-based analysis plan to be generated at a later date. Some 

months into the project, several software packages for the meta-analysis of gene-

based tests had been developed, as described in Chapter 3.  Within the consortium, it 

was decided that we would utilise the RAREMETAL package (74) for the gene-based 

analyses, largely as this software package had been adopted by other consortia, and 

this would limit extra work for study analysts. I therefore generated a second analysis 

plan (analysis 2) to generate study level summary statistics to be used in the 

RAREMETAL analyses. The analyses carried out by each study is described in Sections 

4.2.4 (study-level analysis 1: single variant associations) and 4.2.5 (study-level analysis 

2: RAREMETAL) and both analysis plans are included in appendix C. 

As well as performing the meta-analysis of gene-based tests, the RAREMETAL package 

additionally allows meta-analyses of single variant associations to be carried out. I 

therefore performed two single variant meta-analyses: in the first analysis I combined 

the summary statistics generated according to the first analysis plan using the 

statistical package R; the second meta-analysis was carried out using RAREMETAL and 

the summary statistics generated according to the second analysis plan. I subsequently 

carried out a comparison of the results generated by these two meta-analyses, 

described in Section 4.3.2. The final single variant association analysis results 

presented in this chapter are based on the analyses carried out using RAREMETAL.  

This method was selected as there were some discrepancies in the number of samples 

and QC procedures included in the two study level analyses for some studies; the 

utilisation of RAREMETAL for both the single variant association analyses and gene-

based analyses meant the samples included in both analyses were consistent. 
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4.2.3 Study Level Quality Control 

All QC of genotype data was carried out at study level. For 1958BC, KORA F4, NSPHS, 

PIVUS, SAPALDIA, SHIP, FIN and YFS, genotype calling and QC were carried out in 

accordance with the Exome Chip Quality Control SOP Version 5, as developed within 

the UK exome chip consortium (149). Genotypes were initially called using Gencall in 

Illumina’s Genome Studio software (13) and the following QC of SNPs and samples was 

performed. Initial filters applied excluded SNPs with very low call rate (<90%) and 

samples with low call rate (<98%), heterozygosity outliers, duplicates, gender 

mismatches and ancestral outliers. SNPs with missing data were then recalled using 

genotype calling software zCall (51). All alleles were mapped to the forward strand of 

human genome build 37 and secondary exclusions were applied to remove SNPs with 

low call rate (<99%) or deviations from HWE (P<10-4). Samples with call rate <99% and 

heterozygosity outliers were then also excluded.  

The KORCULA and LBC1936 samples underwent genotype calling and QC as above 

before study level analysis 1 (Section 4.2.4) was carried out. Prior to study level 

analysis 2 (Section 4.2.5), these two studies underwent an alternative genotype calling 

and QC process: genotypes were called using Gencall in Illumina’s Genome Studio 

software (13) via the CHARGE Consortium joint calling cluster file 

(http://www.chargeconsortium.com/main/exomechip) and quality control of the 

genotype data was undertaken according to the CHARGE exome chip best practices, 

described elsewhere (53). Genotype calling and QC for GS:SFHS samples was carried 

out according to CHARGE best practices for both study level analyses. 

The QC procedures carried out by all studies, prior to both study level analyses are 

summarised in Figure 4-1. 
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Figure 4-1: Summary of QC procedures carried out, prior to the two study-level analyses. 

Analysis 1: single variant associations; Analysis 2: RAREMETAL. 

 

4.2.4 Study Level analyses 1: Single Variant Associations 

Within each study, the following association analyses were carried out for FEV1, FVC 

and FEV1/FVC: all traits were adjusted for sex, age, age2 and height; the resulting 

residuals were converted to ranks and then to normally distributed z-scores.  These 

inverse rank normalised traits were used for all subsequent association testing. Studies 

of unrelated individuals tested for single SNP associations assuming additive genetic 

effects, using a linear model (equation (1-1)), with adjustment for principal 

components, implemented in PLINK (18) or EPACTS (175). Studies with related 

individuals tested associations using a mixed model to account for relatedness 

(equation (1-3)), implemented in GEMMA (176). Software used by each study is listed 

in Table 4-2. 

  

Genotype calling and QC 

according to UK Exome Chip 

Consortium SOP. 

Genotype calling and QC 

according to CHARGE best 

practices. 

Study level 

analysis 1 

Study level 

analysis 2 

1958BC, KORA F4, NSPHS, 

PIVUS, SAPALDIA, SHIP, FIN, YFS, 

KORCULA, LBC1936 

For 1958BC, KORA F4, NSPHS, 

PIVUS, SAPALDIA, SHIP, FIN, YFS 

GS:SFHS 

GS:SFHS, KORCULA, LBC1936 
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Table 4-2: Summary of software used by each cohort for study level analysis 1. 

Study Related Association Analysis Software 

1958BC No PLINK 

KORCULA Yes GEMMA 

KORA F4 No PLINK 

LBC1936 No PLINK 

PIVUS No EPACTS 

SHIP No PLINK 

GS:SFHS Yes GEMMA 

FIN Yes GEMMA 

NSPHS Yes GEMMA 

SAPALDIA No PLINK 

YFS No PLINK 

 

4.2.5 Study Level analyses 2: RAREMETAL 

Within each study, single-variant score statistics were calculated for each SNP 

(equation (1-5)), along with a variance-covariance matrix (equation (1-6)), describing 

correlations between variants, using RAREMETALWORKER or rvtests (74). For each 

trait, these summary statistics were generated separately in ever and never smokers, 

with adjustment for sex, age, age2, height, and with each trait being inverse normally 

transformed prior to association testing. Further adjustments were made for the first 

10 principal components and for familial relationships, as appropriate. Software used 

by each study listed in Table 4-3. 
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Table 4-3: Summary of software used by each cohort for study level analysis 2. 

Study Related Association Analysis Software 

1958BC No RAREMETALWORKER 

KORCULA Yes RAREMETALWORKER 

KORA F4 No RAREMETALWORKER 

LBC1936 No rvtests 

PIVUS No RAREMETALWORKER 

SHIP No RAREMETALWORKER 

GS:SFHS Yes RAREMETALWORKER 

FIN Yes RAREMETALWORKER 

NSPHS Yes RAREMETALWORKER 

SAPALDIA No RAREMETALWORKER 

YFS No rvtests 

 

4.2.6 1958BC Study level analysis 

The individual level data for 1958BC was available centrally, and I undertook the QC 

and analyses for this study. The quality control of 1958BC genotype data was 

undertaken as described in Section 4.2.3. The first stage of the QC and re-calling of 

genotypes by zCall was undertaken within the UK exome chip consortium. I undertook 

sample and SNP exclusions in a second stage of QC (post-zCall), as summarised in Table 

4-4. 

Table 4-4: SNP and sample exclusions: second stage of genotype QC (post-zCall) only. 

Total number of SNPs 247,849 

SNP Exclusions 

(N failing QC) 

Deviates from HWE (P<10-4) 2587 

Call rate< 90% 170 

Total SNPs passing genotype QC 245,249 

 

Total number of samples 5963 

 

Sample Exclusions 

(N failing QC) 

 

Call rate<99% 0 

Heterozygosity outlier (>3SDs from mean 

heterozygosity rate for SNPs with MAF≥5%) 

66 

Heterozygosity outlier (>3SDs from mean 

heterozygosity rate for SNPs with MAF<5%) 

54 

Total samples passing genotype QC 5844 
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Quality control of phenotype data was also undertaken to exclude samples with 

outlying or unusual values of FEV1 or FVC (Figure 4-2). 10 samples with FEV1 measures 

greater than their FVC measure were excluded along with 26 samples with extreme 

values of FVC (samples FVC<1L or FVC>8L examined for plausibility given their sex and 

height). There was additionally a cluster of samples with unusually low FEV1 values, 

given their measure of FVC; these 167 samples with FVC >3L and FEV1 <1L were also 

identified for exclusion (FEV1/FVC outliers). Whilst it is plausible a small number of the 

measurement from these individuals with outlying values may be in fact accurate, 

many of these outlying measurements were undertaken by a limited subset of nurse 

and spirometer combinations, suggesting issues with spirometer calibration or 

measurement.  

Figure 4-2: Plot of FEV1 versus FVC with samples identified as outliers highlighted.  

Table 4-5 shows the nurse-spirometer combinations which had more than 50% 

samples identified as outliers. Consequentially, the remaining samples with 

measurements undertaken by these nurse/spirometer combinations were additionally 

excluded.  
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Table 4-5: Number of outliers per nurse-spirometer combination.  

Only nurse-spirometer combinations which had more than 2 (or ≥50%) samples as outliers shown. 

Nurse_Spirometer ID N outlier samples Total samples measured by 

Nurse_Spirometer 

combination. 

120_53 11 13 

123_1 1 2 

123_11 15 15 

162_22 7 11 

162_61 18 19 

176_38 39 42 

179_33 26 26 

179_40 11 13 

179_49 9 10 

216_36 7 7 

 

A total of 5270 samples passing genotype and phenotype QC and with complete data 

for smoking history (ever/never), sex and height were then selected for analyses.  

Study level analyses 1 were undertaken using PLINK v1.07 (18) and study level analyses 

2 were undertaken using RAREMETALWORKER (74). Both analyses were undertaken 

for FEV1, FVC and FEV1/FVC, with adjustment for sex and height (no adjustment for age 

was made as all individuals were the same age) and 10 principal components. Analyses 

were undertaken in 2805 ever smokers and 2465 never smokers separately and traits 

were inverse normally transformed. Secondary analyses for a subset of 2489 ever 

smokers was undertaken with additional adjustment for pack-years smoked (pack-

years data unavailable for remaining ever smokers).  

The QQ plots and Manhattan plots for these analyses are shown for never smokers in 

Figure 4-3 and Figure 4-4 respectively, and for ever smokers in Figure 4-5 and Figure 

4-6. The results from study level analyses 1 and 2 were comparable so for brevity, the 

results for study level analyses 2 are shown only.
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Figure 4-3: QQ Plots and genomic inflation factors (GC) for 1958BC never smokers.  

Analysis of A. FEV1 B. FVC and C. FEV1/FVC. 

 

 

 

A. FEV1 B. FVC 

C. FEV1/FVC 
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Figure 4-4: Manhattan plots for 1958BC never smokers.  

Analysis of A. FEV1 B. FVC and C. FEV1/FVC. 

 

 

 

 

 

 

  

A. FEV1 

B. FVC 

C. FEV1/FVC 
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Figure 4-5: QQ Plots and genomic inflation factors (GC) for 1958BC ever smokers.  

Analysis of A. FEV1 B. FVC and C. FEV1/FVC. 

 

 

 

  

A. FEV1 B. FVC 

C. FEV1/FVC 
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Figure 4-6: Manhattan plots for 1958BC ever smokers.  

Analysis of A. FEV1 B. FVC and C. FEV1/FVC. 

 

 

 

 

 

  

A. FEV1 

B. FVC 

C. FEV1/FVC 
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4.2.7 Quality control of study level data 

The results from the analyses from each study were uploaded and a number of QC 

checks were undertaken on the study level data, to identify any unusual results, which 

were suggestive of errors in the data or analyses. As a basic initial check, for each 

study the effect estimates (β), and standard errors (seβ) from study level analysis 1 

were plotted, along with the effect estimates (β), score function (U) and the square 

root of the variance of the score function (√V) from study level 2. Examples of the 

expected distributions of all these statistics are shown in Figure 4-7. 
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Figure 4-7: Examples of expected distributions of study level results (study level analysis of FEV1 in never smokers). 

Top: A. Effect estimates and B. standard errors from study level analysis 1. 

Bottom: C. score function, D. square root of the score function variance and E. effect estimates from study level analysis 2. 

 

 

A. B. 

C. D. 
E. 
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 Due to the trait transformation, the effect estimates from each analysis should 

approximately follow a standard normal distribution. The distribution of U statistics 

from each analysis was also expected to follow a normal distribution, with mean 0 and 

variance increasing with samples size (Figure 4-8). 

Figure 4-8: Variance of the distribution of score function (U) statistics within each analysis, versus the sample size.  

Analysis of FEV1, Statistics for ever smokers and never smokers from each study plotted separately. 

 

The distributions of the standard errors from study analysis 1 and the √V statistics 

from study analysis 2 were related to the distribution of MAFs (Figure 4-9): the √V 

statistics increased with increasing MAF, whilst the standard errors decreased with 

increasing MAF (Figure 4-10). 
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Figure 4-9: Example distribution of allele frequencies. 

 Study level analysis of FEV1 in never smokers 

 

Figure 4-10: Example trends from a study level analysis of FEV1 in never smokers. 

A. allele frequencies versus the square root of V statistics. B. allele frequencies versus the standard errors of effect 

estimates.   

 

In one study, plots of the effect estimates showed that there were a small number of 

SNPs for which there were extreme effect estimate (β) values (Figure 4-11 A). In this 

study, the principal components analysis had been carried out using a set of rare 

exome chip variants, which led to some extreme principal components values, and in 

turn, extreme effect estimates. The study analyst repeated the principal components 

analysis using a set of common variants and re-ran all analyses using the updated 

principal components. The resulting effect estimates were in line with what would be 

A. B. 



 
 

122 
 

expected, and was seen in the remaining studies (Figure 4-11 B). No other data QC 

issues were identified from these plots. 

Figure 4-11: Distributions of study level result for a study with extreme values for the effect estimates for some 

SNPs. 

A. Distribution of effect estimates with extreme values, due to incorrect principal components. B. Distribution of 

effect estimates after analyses re-ran using the updated principal components. 

  

A comparison of the results of study level analyses 1 (Single variant associations) and 2 

(RAREMETAL) allowed the identification of other issues. For all analyses undertaken in 

each study, the P-values, effect estimates and test statistics from the two study level 

analyses were plotted against each other. In study level analysis 1, the Wald test 

statistic is calculated as 

𝑍 =
𝛽

𝑠𝑒
 

In study level analysis 2, the score test statistic may be calculated as 

𝑆 =
𝑈

√𝑉
 

Both the Wald test statistic (Z) and the score test statistic (S) follow a standard normal 

distribution and are asymptotically equivalent. 

These comparative plots helped to identify a number of other issues. Figure 4-12 

shows a comparison of the results from study level analyses 1 and 2, from a typical 

study of unrelated individuals. Overall, the effect estimates were highly concordant, 

although the test statistics and P-values were more conservative from study level 

A. B. 
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analysis 2. There were a small number of SNPs for which the summary statistics varied 

greatly in the two study level analyses, although there was no obvious reason for these 

discrepancies. These highly discordant SNPs were flagged as potentially erroneous 

results. 

Figure 4-13 shows a comparison of a typical study with related individuals. In studies of 

related individuals, summary statistics from the two study level analyses were less 

closely correlated than in studies of unrelated individuals. All studies of related 

individuals used GEMMA for study level analysis 1 and RAREMETALWORKER for study 

level two. GEMMA and RAREMETALWORKER both utilise mixed models with 

empirically estimated kinship matrices to account for relatedness (74, 176).The two 

software packages adopt different methods for estimating the relationship matrices 

however and this is likely the cause of the differences in summary statistics from the 

two analyses. 



 
 

124 
 

Figure 4-12: Example comparison of results from study level analysis 2 versus study level analysis 1 - Study of unrelated individuals. 

 
Figure 4-13: Example comparison of results from study level analysis 2 versus study level analysis 1 - Study of related individuals. 
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There was one study, for which the comparative plots of the analyses of FVC and 

FEV1/FVC in never smokers showed the results of study level analyses 1 and 2 were 

entirely discordant (Figure 4-14). After contacting the original analyst, it transpired the 

study level analysis 2 for never smokers was in fact conducted using the study’s ever 

smokers. These analyses were repeated using the correct samples, and the resulting 

summary statistics showed good correlation between the two study-level analyses. 
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Figure 4-14: Study with discordant summary statistics from study level analyses 1 and 2 (never smokers analysis of FVC). 
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The effect allele frequencies from each study were also plotted against allele 

frequencies from European samples from the 1000 Genomes reference panel. This 

was useful, firstly to check the allele frequencies in all studies did not differ 

significantly than would be expected in a population of European ancestry individuals, 

and secondly to check that consistent effect alleles were used across all studies. All 

studies were asked to report alleles on the + strand and Figure 4-15 shows the effect 

allele frequencies of two studies, plotted against frequencies from 1000 Genomes, 

based on alleles on the + strand. Figure 4-15 A shows generally good correlation 

between allele frequencies and is typical of what was seen in most studies. In one 

study, shown in Figure 4-15 B, there was high agreement for the majority of SNPs 

although for a subset of SNPs, the allele frequencies suggested the wrong effect allele 

was reported. All of the inconsistent alleles were either C/G or A/T SNPs and so the 

inconsistencies were a result of alleles being on the incorrect strand. For the affected 

SNPs in this study, the direction of the effect estimates and effect allele frequencies 

were changed so that the effect allele was consistent with other studies. Where the 

effect allele frequencies of the A/T and C/G SNPs were close to 50%, it was difficult to 

ascertain which strand was reported and as a result, these SNPs with 45%<EAF<55% 

were excluded. 
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Figure 4-15: Plots of study specific effect allele frequencies, against frequencies in European 1000 Genomes samples.  

A/T and C/G highlighted in orange.  

A. Study where allele frequencies where consistent with 1000 Genomes. B. Study where a number of A/T and C/G SNPs were reported on the incorrect strand. 

 

 

A. B. 
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Finally, for each analysis from all studies, the QQ plots and the genomic inflation factor 

(λ, equation (1-4)) were inspected. For one study, in the analyses of never smokers, 

there were a large number of SNPs with identical P-values, manifesting as a horizontal 

line on the QQ plots (Figure 4-16). It was suggested to the study analyst that this 

unusual distribution of P-values might be due to one individual with an excess of 

singletons, that is where there were a large number of SNPs for which that individual 

was the only one to have the alternative allele. In the example illustrated in Figure 

4-16, it appears that individual might also have a fairly extreme FEV1, resulting in a 

number of identical and significant associations.  Since this distribution of P-values was 

only seen in the analyses of never smokers, this additionally supported the idea that 

this anomaly was due to a single sample. 

Figure 4-16: QQ plot of study with an individual with an excess of singletons. 

The effect of this individual was a large number of identical P-values (indicated by horizontal line on plot). 

 

The study analyst found that the unusual distribution of P-values in the never-smokers 

analyses was indeed due to a single individual, and re-ran the analyses without this 

individual. Once this issue had been resolved, λ values for all studies were not 
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considerably greater than 1, indeed for many analyses, there was deflation of the test 

statistics (λ values for study level analysis 2 of FEV1 shown in Table 4-6 as an illustrative 

example).The QQ plots showed that the distributions of test statistics did not 

significantly deviate from the null, suggesting there were no issues of underlying 

population structure and that familial relationships were correctly accounted for in the 

analyses. 

Table 4-6: Genomic inflation factor (λ) values for study level analysis 2 of FEV1. 

 Genomic Inflation factor (λ) 

Study Smokers Non-smokers 

1958BC 0.986 0.977 

KORCULA 1.021 0.958 

KORA F4 1.039 1.034 

LBC1936 1.036 1.018 

PIVUS 0.976 0.979 

SHIP 0.842 0.942 

GS:SFHS 0.991 0.978 

FIN - 1.026 

NSPHS 0.823 0.997 

SAPALDIA 0.985 1.043 

YFS 1.052 0.945 

  

4.3 Meta-Analyses Methods 

4.3.1 Discovery meta-analysis of single variant associations 

4.3.1.1 Meta-analysis 1 (R) 

Using the summary level data from study level analyses 1, an inverse variance 

weighted meta-analysis (as in equation (2-3)) was firstly carried out using R, to 

estimate pooled effect estimates (𝛽𝑚𝑒𝑡𝑎𝑗
) and standard errors (𝑠𝑒𝑚𝑒𝑡𝑎𝑗

), as follows. 

After ensuring that effect estimates across all studies corresponded with consistent 

effect alleles, the standard errors of all study level effect estimates were adjusted 

using genomic control where λ>1, using study-specific genome inflation factors 

(equation (1-4)). Results for ever and never smokers were combined within each 

study, using inverse variance weighted meta-analysis. Overall effect estimates and 

standard errors from each study were then combined, again through meta-analyses 
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using inverse variance weights. The standard errors of the resulting pooled effect 

estimates were then adjusted using genomic control (λ calculated using pooled 

results) and P-values were calculated, using the Wald test: 

𝑍𝑚𝑒𝑡𝑎𝑗
=

𝛽𝑚𝑒𝑡𝑎𝑗

𝑠𝑒𝑚𝑒𝑡𝑎𝑗

  ~ 𝑁(0,1) 

4.3.1.2 Meta-analysis 2 (RAREMETAL) 

The summary statistics from study level analyses 2 were utilised in a second meta-

analysis using RAREMETAL (74). Score statistics from each study were combined using 

a Cochran-Mantel-Haenzsel meta-analysis: 

𝑆𝑚𝑒𝑡𝑎𝑗
=

∑ 𝑈𝑗𝑘
𝑘
𝑘=1

√∑ 𝑉𝑗𝑗𝑘
𝑘
𝑘=1

 ~𝑁(0,1) 
( 4-1 ) 

 

where Uj is the score statistic and Vjjk is the variance of the score statistic of the jth SNP 

of the kth study. The genomic inflation factor was calculated using the pooled results 

and where λ (equation (1-4)) was greater than 1, genomic control adjustment was 

applied to the resulting test statistic and P-values.  

4.3.2 Comparison of R and RAREMETAL methods 

After completing both meta-analyses, I compared the results, to ensure their 

consistency. For brevity, only the comparison of the analyses of FEV1 is shown here, 

however comparisons for all traits were similar. Figure 4-17 shows the -log10 P-values 

(A) and effect estimates (B), from the two meta-analyses. Overall, the results from 

these two analyses were highly correlated, although not identical. Crucially, the P-

values and effect estimates were highly concordant in the two analyses for the most 

strongly associated SNPs (Figure 4-18). A total of 25 SNPs had P<10-4 in either meta-

analysis: 21 SNPs in meta-analysis 1 and 24 SNPs in meta-analysis 2. 20 SNPs had 

P<10-4 in both analyses, with the remaining 5 SNPs falling just short of this significance 

threshold in one analysis.
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Figure 4-17: Comparison of Meta-Analysis methods for the analysis of FEV1. 

 A. Comparison of -log10 P-values. B. Comparison of effect estimates (Betas). 

 
 

 

  

A B 
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Figure 4-18: Comparison of Meta-Analysis methods for the analysis of FEV1, restricted to SNPs with P<10-4 in either analysis.  

A. Comparison of -log10 P-values. B. Comparison of effect estimates (Betas). 

 

A B -log10 
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There are a number of explanations for the discrepancies of the results of the less 

strongly associated SNPS. Firstly, as was seen in Section 4.2.6, the two sets of summary 

statistics generated at study-level for the two meta-analyses were not identical, 

particularly in studies of related individuals. Furthermore, the number of samples and 

SNPs included from each study was not always consistent for the two meta-analyses: 

there were two studies where the number of samples included in each of the two 

study level analyses differed and in many studies, there were some SNPs which had 

missing summary statistics in one study level analyses, and not the other. 

Secondly, the meta-analysis methods were not identical. In meta-analysis 1, non-

smokers and smokers within each study were first meta-analysed to give overall study 

estimates, with these overall study estimates then being combined in an overall meta-

analysis. This two-stage meta-analysis is consistent with previous large scale meta-

analyses of lung function (43). The RAREMETAL software used in meta-analysis 2 did 

not allow this two-step meta-analysis, rather non-smokers and smokers are treated as 

individual studies (Figure 4-19). A further difference in the two meta-analyses was the 

way adjustments for genomic control were implemented. In meta-analysis 1, standard 

errors of the study level effect estimates for never smokers and ever smokers were 

adjusted using analysis specific λ values before meta-analysis, with further genomic 

control adjustment carried out on the final pooled standard errors. RAREMETAL does 

not adjust study level results, instead correction for genomic control was applied only 

to the final standard errors, after meta-analysis. This likely resulted in the less 

conservative P-values for meta-analysis 2 (Figure 4-18) and indeed why 24 SNPs 

reached the P<10-4 significance level in meta-analysis 2, compared to 21 SNPs in meta-

analysis 1. 
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Figure 4-19: Summary of two meta-analyses. 

 

A. Meta-analysis 1 (R) 

 

B. Meta-analysis 2 (RAREMETAL) 

 

Based the comparison of the two meta-analyses overall, I was confident that the 

results from both study level analyses were sufficiently consistent. For the final 

analyses the results from meta-analyses 2 were used as this would allow for 

consistency in the study level data contributing to the meta-analyses of both single 

variant associations and gene-based associations. The remainder of this chapter is 

therefore based on the results of meta-analysis 2. 

 

4.3.3 Replication of single variant associations 

4.3.3.1 Selection of SNPs for follow-up 

Since low frequency and rare variants were of particular interest in this analysis, no 

MAF or minor allele count (MAC) filter was applied. SNPs of interest were identified as 
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those with P <10-4. Where a SNP in close proximity to a previously identified lung 

function SNP was identified, the SNP was deemed to represent an independent signal 

if it had r2<0.2 with the known SNP, and if it retained P <10-4 when conditional 

analyses were carried out with the known SNP, or a genotyped proxy, where this was 

possible. Conditional analyses were carried out using the RAREMETAL package, and 

utilising linkage disequilibrium estimates based on the variance-covariance matrices of 

single variant score statistics, similarly to the method described by Yang et al (177).  

Where a SNP was associated with more than one trait, the SNP was followed up with 

the trait for which it was most significantly associated only. 

4.3.3.2 Two Stage Replication Design 

I undertook a two-stage replication analysis, utilising samples from UK BiLEVE and 

UKHLS (described below), alongside a look-up from the CHARGE Consortium. The 

results of the discovery and replication analyses were combined using a sample-size 

weighted Z-score meta-analysis: 

𝑍𝑚𝑒𝑡𝑎𝑗
=

∑ 𝑤𝑘𝑍𝑗𝑘
𝐾
𝑘=1

√∑ 𝑤𝑘
2𝐾

𝑘=1

 ~ 𝑁(0,1) 
 

( 4-2 ) 

 

 

where wk is the weight of the kth study, with sample size nk: 

𝑤𝑘 = √𝑛𝑘  

and Zjk is the Z-score, estimated using the P-value (Pjk) for the jth SNP from the kth 

study: 

𝑍𝑗𝑘 = 𝜙−1(1 − 𝑃𝑗𝑘) 

This method was adopted as it required only the P-value and direction of effect from 

each replication analysis, thus allowing the inclusion of the results from the CHARGE 

analysis as these were based on untransformed traits, as opposed to the inverse 

normally transformed traits which were used in all other studies. 
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4.3.3.3 Replication Stage Samples 

The UK BiLEVE samples (n=48,943) were genotyped using the Affymetrix Axiom UK 

BiLEVE array, which has substantial overlap with the Illumina Human Exome BeadChip. 

The QC and imputation procedure of the UK BiLEVE genotype data is described 

elsewhere (120). In brief, thorough sample and genotype QC was undertaken before 

imputation to a combined 1000 Genomes (16) and UK10K Project (40) reference panel. 

Following imputation, SNPs were excluded if they had imputation (INFO) score ≤0.5 or 

MAC <3. 

UKHLS samples (n=7449) were genotyped using the Illumina Infinium 

HumanCoreExome-12 v1.0 BeadChip and genotype calling was performed using 

Illumina’s GenCall software (2). Samples were excluded using the following filters: call 

rate<98%, heterozygosity outliers (>3 SD), gender mismatches, duplicates and 

ancestral outliers. SNPs were mapped to the forward strand of human genome build 

37 and QC was performed as follows: SNPs with HWE P<1×10-4, a call rate < 98% and 

poor genotype clustering values (<0.4) were removed. 

Details of the QC undertaken by the CHARGE Consortium are described elsewhere 

(53). The CHARGE consortium pulmonary function analysis includes 44,719 samples 

(36,998 European ancestry and 7721 African ancestry). Only the results for European 

samples are included in these analyses. 

All study level QC and analysis of single variant associations in the replication samples 

were carried out by individual study analysts. I undertook the central meta-analyses of 

these data. 

4.3.3.4 Stage 1 Replication in UK BiLEVE 

 All SNPs of interest identified in the discovery analysis were taken forward to a first 

stage of replication, using samples from UK BiLEVE. Analyses with all traits were 

carried out separately in never smokers and heavy smokers. All traits were adjusted 

for age, age2, height, sex and 10 principal components, with additional pack-years 

adjustment for heavy smokers. Residuals were inverse normally transformed 

separately for each smoking stratum and used as the trait for association testing. 
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Associations were carried out using the score test as implemented in SNPTEST v2.5b4 

(19), with results for never and heavy smokers combined using sample size weighted 

Z-score meta-analysis. Overall UK BiLEVE estimates and SpiroMeta discovery estimates 

were then meta-analysed.  

Any SNP still meeting the P<10-4 significance threshold in the meta-analysis, and with 

consistent direction of effect in both SpiroMeta and UK BiLEVE were selected for stage 

2 replication. Any SNP not available in UK BiLEVE (either genotyped or imputed) was 

also selected for stage 2 replication. 

4.3.3.5 Stage 2 replication 

The second stage of replication utilised samples from UKHLS, and look-ups from a 

concurrent analysis undertaken by the CHARGE consortium. For the subset of SNPs 

taken forward to the second replication stage, UKHLS generated study level summary 

statistics for never smokers and ever smokers, analogously to the discovery studies, as 

per the analysis plan (study level analysis 2) in appendix C. These summary statistics 

from never and ever smokers were then centrally meta-analysed using RAREMETAL to 

give overall study estimates. The CHARGE Consortium carried out a meta-analysis of 

FEV1, FVC and FEV1/FVC. In their analyses, all traits were adjusted for former smoking, 

current smoking and pack-years of smoking, age, age2, sex, height, height2, centre and 

principal components. FVC was additionally adjusted for weight. For each SNP in the 

stage 2 replication, effect sizes, standard errors and P-values were provided from the 

CHARGE meta-analysis, for all traits in ever and never smokers and in all samples 

combined.  

The results from UKHLS and the CHARGE consortium look-ups were combined with the 

results from the discovery analysis and stage 1 replication in a sample size weighted Z-

score meta-analysis (equation (3-6)). SNPs with overall exome-wide significance of 

P<2.7x10-7 (Bonferroni corrected for 189,962 SNPs tested) are reported as novel loci. 

4.3.4 Discovery meta-analyses of gene-based associations 

Using combined score statistics and variance-covariance matrices, two gene-based 

tests were constructed using RAREMETAL: firstly the weighted sum test (WST, 
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equation (3-1)) using Madsen Browning weightings (66), which performs well when 

variants within a gene have similar directions and magnitude of effect; and secondly 

SKAT (equation (3-3)), which is more powerful where there are both protective and 

deleterious variants within a gene (68). Variants were annotated to genes using 

ANNOVAR (150) on the basis of the GRCh37 gene database. Analyses were restricted 

to include only exonic SNPs with MAF<5%, and only genes with at least two such 

variants were included. For any gene with P<10-4, additional analyses were carried out, 

which conditioned on the most significantly associated individual SNP within that 

gene, to determine whether this was a true gene-based signal, or whether the 

association could be ascribed to the single SNP.  

4.3.5 Replication of gene-based associations 

All genes of interest (P<10-4) were followed up using data from UK BiLEVE and UKHLS. I 

undertook the study-level RAREMETALWORKER analysis for UK BiLEVE and the central 

meta-analyses of these data. 

Summary statistics were generated in UK BiLEVE using RAREMETALWORKER and 

including directly genotyped SNPs only. Equivalent summary statistics were generated 

by UKHLS, using RAREMETALWORKER. Firstly, gene-based tests were constructed in 

RAREMETAL using the summary statistics from UK BiLEVE and UKHLS only. Secondly, 

the results from the discovery cohorts with the two replication cohorts were combined 

in an overall combined meta-analysis using RAREMETAL. Any genes with overall 

P<2.4x10-6 (Bonferroni corrected for 14,865 genes tested) in our combined meta-

analysis was declared statistically significant. Further supporting evidence for the 

genes of interest was sought through a look-up of gene-based associations within the 

CHARGE consortium.  

4.3.6 Smoking stratum specific analyses 

Secondary discovery meta-analyses were additionally undertaken in ever smokers 

(n=11,632) and never smokers (n=11,766) separately. For the single variant 

associations, a two-stage replication was carried out, similarly to the analyses utilising 

all samples. Any SNP with P<10-4 was selected for a first stage of replication, using the 
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corresponding smoking stratum from UK BiLEVE (n=24,460 ever smokers and n=24,483 

never smokers). Any SNP still meeting the P<10-4 significance threshold in SpiroMeta 

and UK BiLEVE combined, along with all SNPs not genotyped or imputed in UK BiLEVE, 

were selected for a second stage of replication using UKHLS samples only (n=4509 ever 

smokers and n=2940 never smokers). 

Gene-based association analyses in never smokers and ever smoker separately were 

also undertaken. For all genes of interest from these analyses (P<10-4), replication was 

carried out in UK BiLEVE and UKHLS, analogously to the analyses of all individuals, 

described above. 

4.3.7 Tests of heterogeneity 

For the SNPs identified in the single variant association analyses within novel regions, 

heterogeneity was tested for amongst the discovery stage samples, using Cochran’s Q 

statistic, calculated as follows: 

𝑄𝑗 = ∑ 𝑤𝑗𝑘(𝛽𝑚𝑒𝑡𝑎𝑗 − 𝛽𝑗𝑘)
2

𝐾

𝑘=1

 ~𝜒𝐾−1
2  

where βmetaj is the pooled effect size estimate and , βjk and wjk are the study-specific 

effect estimates and weights, respectively for the jth SNP. The Q statistic follows a chi-

squared distribution with K-1 degrees of freedom, where K is the number of studies 

(ever smokers and never smokers from each sample collection treated as separate 

studies). 

4.3.8 Functional characterisation of novel loci 

The sentinel SNPs, and proxies (r2>0.3) within newly identified regions were assessed 

in three eQTL data sets. 

Firstly, associations with blood eQTLs were searched for within a publicly available 

blood eQTL dataset with results from the analysis of 5,311 individuals, imputed to 

HapMap 2 (178). Association testing was undertaken both for cis (+/- 250Kb distance 

between the SNP and the probe midpoint) and trans (distance between the SNP and 

the probe midpoint >5Mb) eQTLs. All eQTL signals detected at a false-discovery rate 
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(FDR) of 50% were available in the dataset; signals meeting the 10% FDR genome-wide 

significant threshold were identified. 

Secondly, the selection of SNPs were assessed in lung tissue expression data from 124 

samples from the GTEx project (179). Only cis-eQTLs (+/- 1Mb distance between the 

SNP and transcription start site) meeting the 5% FDR genome-wide significant 

threshold were available in the dataset. 

Finally, selected SNPs were assessed in a lung eQTL resource based on lung tissues of 

1,111 individuals. The descriptions of the lung eQTL dataset and subject demographics 

have been published previously (180-182). Briefly, non-tumor lung tissues were 

collected from patients who underwent lung resection surgery at three participating 

sites: Laval University (Quebec City, Canada, n=409), University of Groningen 

(Groningen, The Netherlands, n=363), and University of British Columbia (UBC, 

Vancouver, Canada, n=339). Whole-genome gene expression and genotype data 

imputed to the 1000 Genomes Project (16) reference panel were available for all 

samples. eQTLs were identified as either cis (within 1 Mb of transcript start site) or in 

trans (all other eQTLs) and meeting the 10% FDR genome-wide significant threshold. 

 

4.4 Meta-Analyses Results 

The meta-analysis of single variant associations consisted of a discovery analysis 

including 23,398 samples from 11 studies, followed up with two replication stages, 

including 48,943 (replication stage 1) and up to 44,447 (replication stage 2) samples, 

respectively. Moreover the joint effects of rare variants were investigated through a 

meta-analysis of gene-based associations. Study-specific characteristics of the samples 

included in these analyses are described in Table 4-7.
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Table 4-7: Characteristics of samples from 11 SpiroMeta cohorts contributing to the discovery analyses and 2 replication cohorts. 

Discovery Cohorts               

Study Name n  n (%) Male 
Ever Smokers,  
n (%) 

Age, mean (SD) 
FEV1, litres. 
mean (SD) 

FVC, litres. 
mean (SD) 

FEV1/FVC, 
mean (SD) 

1958 British Birth Cohort (1958BC) 5270 2961 (56.19%) 2866 (53.29%) 44.00 (0.00) 3.35 (0.79) 4.29 (1.03) 0.788 (0.09) 

Generation Scotland (GS:SFHS) 8164 3413 (41.81%) 3806 (46.62%) 51.59 (13.33) 2.78 (0.87) 3.91 (1.01) 0.710 (0.12) 

Cooperative Health Research in the Region of 
Augsburg (KORA F4) 

1447 701 (48.45%) 900 (62.20%) 54.82 (9.66) 3.24 (0.85) 4.20 (1.04) 0.771 (0.07) 

CROATIA-Korcula cohort (KORCULA) 791 296 (36.82%) 418 (51.99%) 55.56 (13.69) 2.72 (0.83) 3.29 (0.95) 0.829 (0.10) 

Lothian Birth Cohort 1936 (LBC1936) 974 501 (50.55%) 554 (55.90%) 69.55 (0.84) 2.38 (0.67) 3.04 (0.87) 0.787 (0.10) 

Study of Health in Pomerania (SHIP) 1681 831 (49.43%) 955 (56.81%) 52.25 (13.43) 3.29 (0.88) 3.88 (1.03) 0.848 (0.07) 

Northern Swedish Population Health Study (NSPHS) 880 407 (46.25%) 122 (13.86%) 49.13 (19.96) 2.93 (0.90) 3.53 (1.06) 0.831 (0.09) 

Prospective Investigation of the Vasculature in 
Uppsala Seniors (Pivus) 

836 413 (49.4%) 426 (50.96%) 70.20 (0.17) 2.44 (0.68) 3.20 (0.87) 0.76 (0.10) 

Swiss study on Air Pollution and Lung Disease in 
adults (SAPALDIA) 

2707 1379 (50.9%) 1399 (51.7%) 40.86 (10.92) 3.65 (0.83) 4.62 (1.04) 0.794 (0.07) 

The Cardiovascular Risk in Young Finns Study (YFS) 434 198 (47.3%) 186 (44.4%) 38.88 (5.07) 3.73 (0.75) 4.68 (0.99) 0.80 (0.06) 

Finnish Twin Cohort (FIN) 214 0 (0%) 0 (0%) 68.73 (3.31) 2.18 (0.47) 2.79 (0.58) 0.786 (0.08) 

Total Discovery Sample Size 23,398             

                

Replication Cohorts               

Study Name n  n (%) Male 
Ever Smokers,  
n (%) 

Age, mean(SD) 
FEV1, litres. 
mean (SD) 

FVC, litres. 
mean (SD) 

FEV1/FVC, 
mean (SD) 

UK Biobank Lung Exome Variant Evaluation study (UK 
BiLEVE) (Replication Stage 1) 

48,943 24,489 (50.0%) 24,460 (50.0%) 56.93 (7.89) 2.65 (0.87) 3.59 (1.05) 0.73 (0.08) 

UKHLS (Replication Stage 2) 7449 3293 (44.2%) 4509 (60.5%) 53.10 (15.94) 2.89 (0.90) 3.83 (1.08) 0.753 (0.09) 
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4.4.1 Meta-Analyses of single variant associations 

Firstly single variant associations were evaluated between FEV1, FVC and FEV1/FVC and 

the 189,962 SNPs which passed study level quality control and were polymorphic in at 

least one of the 11 discovery stage studies. The QQ plots and genomic inflation factors 

(λ) for each meta-analysis are shown in Figure 4-20. The λ values for FEV1 and 

FEV1/FVC were both less than one. In the meta-analysis of FVC, λ was slightly above 

one, at 1.043; the -log10 P-values shown in the QQ plot have been adjusted 

accordingly. 

The analyses of associations across all discovery samples identified a total of 50 SNPs 

in 49 regions not previously associated with lung function, showing association with at 

least one trait at P<10-4 (Table 4-8).
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Figure 4-20: Quantile-quantile plots for the meta-analyses of A. FEV1, B.  FVC and C. FEV1/FVC. 

A. B. C. QQ Plot: FEV1, λ=0.998 QQ Plot: FVC, λ=1.043 QQ Plot: FEV1/FVC, λ=0.989 
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Table 4-8: All SNPs showing association (P<10-4) with FEV1, FVC or FEV1/FVC in the discovery stage meta-analysis. 

SNPs ordered by chromosome (Chr) and genomic position (Pos). Only variants in novel loci shown, and only the trait for which each SNP was most significantly associated is shown. All P-

values are two-sided. Beta values reflect effect-size estimates on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry principal components, and 

stratified by ever smoking status. 

SNP Chr:Pos Gene(s) Function 

Effect / 

other 

allele Trait N 

Effect 

allele 

frequency 

(EAF) Beta P-value 

rs201163722 1:28661302 MED18 exonic T/C FEV1 23386 0.006% -2.347 5.29x10-5 

rs200090958 1:86951099 CLCA1 exonic A/G FEV1/FVC 23397 0.004% 2.783 9.67x10-5 

rs141436979 1:89844088 GBP6 exonic T/C FEV1/FVC 23396 0.017% -1.486 2.44x10-5 

rs1192415 1:92077097 CDC7, TGFBR3 intergenic A/G FVC 23376 81.24% -0.059 6.11x10-7 

rs11204697 1:150658971 PTCD3 exonic T/C FEV1 23393 0.030% 1.060 7.62x10-5 

rs35608243 2:174131392 ZAK exonic C/T FVC 23395 8.17% 0.081 1.60x10-6 

rs148627602 2:209309610 PTH2R exonic A/G FEV1 23397 0.034% 1.009 5.75x10-5 

rs144052038 3:49720010 APEH exonic G/A FVC 23392 0.066% 0.755 2.59x10-5 

rs141921900 3:74334458 CNTN3 exonic A/G FEV1/FVC 23384 1.32% -0.178 1.21x10-5 

rs62290268 3:194790799 XXYLT1 exonic G/C FEV1 23394 0.079% 0.681 5.47x10-5 

rs3733250 4:77192868 FAM47E, FAM47E-STBD1 exonic A/G FVC 23392 41.02% -0.044 2.71x10-6 

rs142127543 4:90833153 MMRN1 exonic A/G FEV1/FVC 23395 0.143% 0.522 2.09x10-5 

rs17037102 4:107845794 DKK2 exonic T/C FEV1/FVC 23394 10.34% -0.062 4.78x10-5 

rs79300690 4:122250654 QRFPR exonic A/G FEV1/FVC 23385 1.77% 0.143 4.44x10-5 

rs147517729 4:147561147 POU4F2 exonic A/C FVC 18294 1.46% -0.202 4.56x10-6 

rs772835 5:944298 TRIP13, LOC100506688 intergenic G/A FVC 23395 9.95% -0.067 2.03x10-5 

rs17648108 5:177831556 COL23A1 intronic C/T FVC 12820 28.38% 0.046 6.93x10-6 

rs1294421 6:6743149 LY86, RREB1 intergenic G/T FEV1/FVC 23395 61.47% 0.037 9.14x10-5 

rs3749903 6:42992825 RRP36 exonic G/C FVC 23389 12.38% -0.072 2.95x10-5 
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SNP Chr:Pos Gene(s) Function 

Effect / 

other 

allele Trait N 

Effect 

allele 

frequency 

(EAF) Beta P-value 

rs9784763 6:109624937 CCDC162P ncRNA 

intronic 

A/G FEV1 15224 39.24% 0.039 4.07x10-5 

rs143974258 6:136552493 MTFR2 exonic A/G FEV1/FVC 22559 0.064% 0.740 7.35x10-5 

rs57658073 8:24775940 NEFM exonic A/G FEV1 23297 0.279% 0.344 9.04x10-5 

rs146520900 8:145667730 TONSL exonic A/G FEV1 22392 0.375% 0.386 7.00x10-7 

rs141834891 9:12694063 TYRP1 exonic T/C FEV1/FVC 23397 0.077% 0.755 6.45x10-6 

rs2773347 9:100388197 TSTD2 exonic T/C FEV1 23391 67.49% 0.043 1.16x10-5 

rs143386455 9:107533244 NIPSNAP3B exonic C/G FEV1/FVC 23139 0.080% 0.648 8.81x10-5 

rs41278437 9:113170060 SVEP1 exonic A/G FEV1/FVC 23397 0.066% -0.769 2.24x10-5 

rs17578859 9:139879170 LCNL1 exonic A/G FEV1 23387 25.90% 0.048 5.95x10-6 

rs141541697 10:92635830 RPP30 exonic T/C FEV1 23361 0.013% 1.897 3.30x10-6 

rs61736639 11:14891141 PDE3B exonic C/G FEV1 23396 0.583% 0.238 8.58x10-5 

rs188851356 11:125647897 PATE2 exonic A/G FEV1/FVC 23397 0.088% -0.718 1.00x10-5 

rs187124232 11:126144859 FOXRED1 exonic G/C FEV1/FVC 23392 0.077% -0.780 7.61x10-6 

rs35639297 12:56142553 GDF11 exonic T/G FEV1/FVC 23396 0.479% -0.278 3.26x10-5 

rs142653430 12:121469271 OASL exonic A/G FEV1 23395 0.0006% -2.858 1.12x10-6 

rs201930455 12:129360559 GLT1D1 exonic A/G FEV1 23396 0.0004% -3.011 3.35x10-5 

rs7984952 13:31231806 USPL1 exonic C/T FVC 23394 40.72% -0.039 4.14x10-5 

rs3742302 13:31233063 USPL1 exonic A/G FVC 23358 40.72% -0.039 3.64x10-5 

rs149470963 13:67477723 PCDH9 exonic T/G FEV1 12633 0.146% -0.690 2.90x10-5 

rs11558436 14:32257065 NUBPL exonic C/A FEV1 23397 0.611% -0.247 3.40x10-5 

rs1952153 14:87775721 LOC283585, GALC intergenic C/A FVC 23390 57.67% -0.039 3.29x10-5 

rs61991737 14:93712290 BTBD7 exonic A/C FEV1 23397 0.154% 0.469 5.85x10-5 
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SNP Chr:Pos Gene(s) Function 

Effect / 

other 

allele Trait N 

Effect 

allele 

frequency 

(EAF) Beta P-value 

rs118125046 15:79586782 ANKRD34C exonic G/C FEV1/FVC 23376 0.753% 0.219 4.38x10-5 

rs3751093 17:25958304 LGALS9 exonic A/G FVC 12633 20.90% -0.070 6.62x10-6 

rs144042976 19:37975803 ZNF570 exonic A/G FEV1 23386 0.021% -1.439 5.06x10-6 

rs149178822 19:40540724 ZNF780B exonic C/A FEV1/FVC 12631 1.26% -0.233 5.05x10-5 

rs146608853 20:49225233 FAM65C exonic A/G FEV1/FVC 23397 0.036% -1.085 7.90x10-6 

rs200373931 20:62193999 HELZ2 exonic T/C FVC 23381 0.024% 1.237 4.46x10-5 

rs140025782 21:28216862 ADAMTS1 exonic A/C FEV1 23378 0.299% -0.338 7.20x10-5 

rs35946782 21:40763754 WRB exonic A/G FEV1/FVC 23397 0.021% 1.458 4.37x10-6 

rs77543787 22:33264982 SYN3 exonic T/C FVC 23396 0.015% 1.547 4.07x10-5 
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A first stage of replication using samples from UK BiLEVE was carried out for a subset 

of 38 SNPs (the remaining 12 SNPs were not available in the UK BiLEVE data). 7 SNPs 

still met the P<10-4 significance level in the meta-analysis of the discovery stage result 

and the UK BiLEVE replication results and these 7 SNPs, along with 12 SNPs identified 

in the discovery analysis, but not present in the UK BiLEVE data, were taken forward to 

a second stage of replication. The second stage of replication combined results of a 

look-up within the CHARGE consortium, and analyses within UKHLS (Figure 4-21). 

Combining the results from the discovery and both stages of replication in a meta-

analysis identified one intergenic SNP close to LY86, showing association with 

FEV1/FVC (rs1294421, MAF=38.5%, Nmeta= 116,772, Pmeta=1.12x10-13, Table 4-9). The 

replication results for all SNPs identified in the discovery analyses are in appendix D 

(Table D-1). 
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Figure 4-21: Overview of discovery analysis and 2 stage replication, annotated with the number of SNPs analysed in each stage. 

 
 

Table 4-9: Novel locus identified in meta-analysis of FEV1/FVC. 

Two-sided P-values are given for the discovery analysis, stage 1 and stage 2 replication analyses, alongside the combined P-value of all three analyses (discovery + replication stage 1 + 

replication stage 2). Beta values reflect effect-size estimates on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry principal components, and 

stratified by ever smoking status. Beta values for the stage 2 replication are from UKHLS only, as the CHARGE consortium effect estimates are based on untransformed traits. Total Combined 

sample size N=116,772. 

      

Discovery Analysis Stage 1 Replication Stage 2 Replication Combined 

SNP Chr:Pos Genes Trait 

Effect / 

other 

allele 

Effect allele 

frequency 

(Discovery) N βdisc Pdisc N βrep1 Prep1 N βrep2 Prep2 Pmeta 

rs1294421 6:6743149 
LY86(dist=87,933), 

RREB1(dist=364,681) 
FEV1/FVC G/T 61.47% 23,395 0.0373 9.14 x10-5 48,943 0.0314 1.59 x10-6 44,434 0.0284 3.17 x10-5 1.12 x10-13 

  

Analysis of 
FEV1, FVC and 
FEV1/FVC in 
23,398 
samples from 
11 Studies 

50 SNPs with P<10-4 
with at least one 
trait. 

19 SNPs followed 
up in CHARGE 
consortium 
(n=36,998) and 
UKHLS study 
(n=7449) 

1 SNP met exome-
wide significance 
level in meta-
analysis of discovery, 
stage 1 and stage 2 
replication results 
(P<2.7x10-7) 

Discovery 

Analysis 

Replication Stage 1 Replication Stage 2 

38 SNPs followed up 
in UK BiLEVE 
(n=48,943) 

7 SNPs with P<10-4 in meta-
analysis of discovery & stage 1 
replication results. 

12 SNPs not in UK BiLEVE  
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Meta-analyses of single variant associations were additionally carried out in ever 

smokers and never smokers separately. These analyses identified an additional 16 

SNPs associated with at least one trait (P<10-4) in never smokers and 37 SNPs in ever 

smokers (Table 4-10). These SNPs were taken forward to a two stage replication using 

data from UK BiLEVE (stage1) and UKHLS only (stage 2), as shown in Figure 4-22. These 

replication analyses provided no evidence to support the associations with the 16 

SNPs identified in the never smokers only analyses. Of the 37 SNPs identified in the 

ever smokers discovery analyses, one intergenic SNP, close to FGF10 attained exome-

wide significance in the meta-analysis of the discovery and replication data 

(rs1448044, MAF=31.5%, Nmeta=40,447, Pmeta=1.90x10-8, Table 4-11). The replication 

results for all SNPs identified in the smoking stratum specific discovery analyses are in 

appendix D (Table D-2). 
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Table 4-10: All SNPs showing association (P<10-4) with FEV1, FVC or FEV1/FVC in the discovery stage meta-analysis, in ever smokers and never smokers separately. 

Only variants in novel loci and that were not identified in the analyses of ever and never smokers combined are shown. Only the trait for which each SNP was most significantly associated is 

shown. Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Beta values reflect effect-size estimates on an inverse-normal transformed scale after adjustments for age, 

age2, sex, height and ancestry principal components, and stratified by ever smoking status. 

SNP Chr:Pos Gene(s) Function 

Effect / 

other 

allele Trait 

Smoking subset 

(Ever / never 

smokers) N 

Effect allele 

frequency 

(EAF) Beta P-value 

rs201163722 1:28661302 MED18 nonsynonymous T/C FEV1/FVC ever 11558 0.0087% -2.9956 2.35x10-5 

rs1414896 1:95692310 TMEM56-

RWDD3 

intronic A/G FVC ever 11562 60.84% -0.0561 4.14x10-5 

rs2764504 1:119234198 SPAG17, TBX15 intergenic C/T FVC ever 11560 5.89% 0.1133 5.78x10-5 

rs199581193 1:201175658 IGFN1 nonsynonymous G/A FVC never 11418 0.013% -2.8726 7.45x10-7 

rs76611705 1:223177974 DISP1 nonsynonymous A/G FEV1 never 11834 1.55% -0.2065 8.09x10-5 

rs200091857 2:97008504 NCAPH nonsynonymous T/C FEV1/FVC never 11832 0.072% -1.0461 1.91x10-5 

rs202022630 2:234750666 HJURP nonsynonymous T/C FEV1/FVC ever 11562 0.009% 2.7461 9.20x10-5 

rs147184138 3:25833094 OXSM nonsynonymous G/C FVC ever 11563 0.087% 0.9031 7.47x10-5 

rs61747991 3:56653424 CCDC66 nonsynonymous T/A FEV1/FVC ever 11557 4.90% 0.1249 4.52x10-5 

rs201934751 3:150404106 FAM194A nonsynonymous T/A FEV1/FVC ever 11563 0.009% 2.7604 6.75x10-5 

rs7652177 3:171969077 FNDC3B synonymous G/C FEV1 ever 11558 46.38% -0.0549 6.90x10-5 

rs7627615 3:183818416 HTR3E synonymous A/G FEV1 ever 11555 58.72% -0.0561 3.54x10-5 

rs144473454 5:9136617 SEMA5A nonsynonymous A/G FVC ever 10440 0.273% 0.5816 8.92x10-5 

rs4634319 5:27418887 CDH9, 

LINC01021 

intergenic G/A FVC ever 11564 6.89% 0.1058 5.43x10-5 

rs1448044 5:44296986 NNT, FGF10 intergenic A/G FVC ever 11550 31.53% 0.0563 8.41x10-5 

rs255888 5:111103258 NREP intronic T/C FEV1 ever 11562 55.70% 0.0550 3.56x10-5 

rs147752980 5:130791507 RAPGEF6 synonymous C/T FEV1 never 11834 0.123% 0.8385 6.44x10-6 

rs148279287 5:140768844 PCDHGB4 nonsynonymous T/C FVC ever 10165 0.551% -0.3905 4.16x10-5 

rs6941356 6:87967636 ZNF292 nonsynonymous G/A FEV1/FVC never 11833 10.97% 0.0833 7.48x10-5 
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SNP Chr:Pos Gene(s) Function 

Effect / 

other 

allele Trait 

Smoking subset 

(Ever / never 

smokers) N 

Effect allele 

frequency 

(EAF) Beta P-value 

rs144830879 6:129649451 LAMA2 nonsynonymous A/G FEV1/FVC never 11832 0.017% 1.9884 8.17x10-5 

rs41298397 6:132891977 TAAR6 nonsynonymous C/T FEV1 ever 11562 0.398% -0.4721 6.28x10-6 

rs35839363 6:132909838 TAAR5 nonsynonymous A/G FVC ever 11561 0.035% 1.4025 7.42x10-5 

rs13286541 9:113251951 SVEP1 nonsynonymous C/T FEV1/FVC ever 11559 9.87% 0.0870 8.11x10-5 

rs5030723 9:120476694 TLR4 nonsynonymous A/G FEV1/FVC ever 11553 0.307% 0.4750 7.12x10-5 

rs2296957 9:134401335 UCK1 synonymous T/C FEV1/FVC never 10069 95.42% -0.1336 8.65x10-5 

rs7871194 9:139544437 MIR4674, EGFL7 intergenic C/A FEV1/FVC never 11830 57.04% -0.0525 6.44x10-5 

rs141660796 10:72360577 PRF1 nonsynonymous A/G FEV1/FVC ever 11563 0.056% 1.1473 3.65x10-5 

rs821205 10:107727810 SORCS3, SORCS1 intergenic C/A FVC ever 11564 52.01% 0.0522 7.93x10-5 

rs5006889 11:5373104 OR51B6 nonsynonymous G/A FEV1 never 11827 26.30% -0.0696 3.51x10-6 

rs142159415 11:5776626 OR52N4 nonsynonymous T/C FVC ever 11564 0.951% 0.2677 7.98x10-5 

rs199618034 11:114182882 NNMT nonsynonymous C/G FEV1 ever 11559 0.022% 1.8491 3.59x10-5 

rs1982528 12:132237848 SFSWAP synonymous C/T FVC ever 10147 98.35% -0.2244 5.25x10-5 

rs140930007 13:51854595 FAM124A nonsynonymous A/G FVC never 11419 0.031% -1.6837 8.63x10-6 

rs144854034 13:98829388 RNF113B nonsynonymous G/T FEV1/FVC ever 11560 0.108% -0.7922 8.43x10-5 

rs140501662 14:20711665 OR11H4 nonsynonymous T/C FEV1/FVC never 11831 0.148% 0.6755 7.66x10-5 

rs200081065 14:91755506 CCDC88C nonsynonymous T/C FEV1 never 11834 0.080% 0.9679 2.47x10-5 

rs200614333 15:42143077 SPTBN5 stopgain T/C FVC never 11832 0.021% 1.7770 6.41x10-5 

rs138439412 15:52017135 LYSMD2 nonsynonymous T/C FVC ever 11561 0.917% -0.2737 7.75x10-5 

rs79030022 15:75941897 SNX33 nonsynonymous T/C FEV1/FVC ever 11553 0.052% 1.1613 5.71x10-5 

rs144617499 16:21073933 DNAH3 nonsynonymous A/G FEV1 ever 11561 2.15% -0.1813 8.23x10-5 

rs77439178 16:31091757 ZNF646 nonsynonymous A/G FEV1/FVC ever 11479 0.009% 2.9418 3.61x10-5 

rs141225776 16:66547713 TK2 nonsynonymous A/T FVC never 11833 0.021% 1.7422 9.80x10-5 

rs146239773 17:1387496 MYO1C synonymous A/G FEV1 ever 11563 0.022% 2.0179 1.11x10-5 
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SNP Chr:Pos Gene(s) Function 

Effect / 

other 

allele Trait 

Smoking subset 

(Ever / never 

smokers) N 

Effect allele 

frequency 

(EAF) Beta P-value 

rs7207403 17:47210506 B4GALNT2 synonymous A/C FEV1 ever 11562 56.42% 0.0591 6.02x10-5 

rs143270448 17:74274071 QRICH2 nonsynonymous A/G FEV1 never 11834 0.152% 0.7305 1.20x10-5 

rs201979657 18:77171089 NFATC1 nonsynonymous A/G FEV1/FVC ever 11557 0.017% -1.9564 9.00x10-5 

rs200123506 19:38375738 WDR87 nonsynonymous C/T FEV1 ever 11563 0.018% 0.6251 7.17x10-5 

rs61737337 19:40197267 LGALS14 nonsynonymous A/G FEV1/FVC ever 11137 0.009% 2.9111 4.18x10-5 

rs201361713 19:48737800 CARD8 synonymous T/C FVC ever 11564 0.087% 0.8992 6.58x10-5 

rs143501994 19:51870712 CLDND2 synonymous T/C FEV1/FVC ever 11563 0.372% 0.4191 9.25x10-5 

rs200402559 21:44838346 SIK1 nonsynonymous A/G FVC never 11833 0.008% 2.9643 2.54x10-5 

rs201423754 22:37893171 CARD10 nonsynonymous T/C FEV1/FVC ever 11563 0.013% -2.5360 1.26x10-5 

rs12841259 X:118893390 SOWAHD nonsynonymous G/A FEV1/FVC ever 8744 0.480% 0.3479 4.25x10-5 
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Figure 4-22: Overview of discovery analysis and 2 stage replication in ever smokers and never smokers separately, annotated with the number of SNPs analysed in each stage. 

 
 

Table 4-11: Novel locus identified in meta-analysis of FVC in ever smokers. 

Two-sided P-values are given for the discovery analysis, stage 1 and stage 2 replication analyses, alongside the combined P-value of all three analyses (discovery + replication stage 1 + 

replication stage 2). Beta values reflect effect-size estimates on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry principal components, and 

stratified by ever smoking status. Total Combined sample size N=40,447. 

       

Discovery Analysis Stage 1 Replication Stage 2 Replication Combined 

SNP Chr:Pos Genes Trait Analysis 

Effect / 

other 

allele 

Effect allele 

frequency 

(Discovery) N βdisc Pdisc N βrep1 Prep1 N βrep2 Prep2 Pmeta 

rs1448044 5:44296986 
FGF10(dist=8111), 

NNT(dist=591,318) 
FVC 

Ever 

Smokers 
A/G 31.53% 11,550 0.0563 8.41x10-5 24,460 0.0402 3.31 x10-5 4437 0.0199 0.3796 1.90 x10-8 

  

Analysis of 
FEV1, FVC and 
FEV1/FVC in 
11,632 ever 
smokers and 
11,766 never 
smokers from 
11 Studies 

SNPs with P<10-4 
with at least one 
trait. 
 
Ever smokers only 
n=37 
Never smokers only 
n=16 

SNPs followed 
up in UKHLS 
 
n=9 SNPs in 
4509 ever 
smokers 
 
n=5 SNPs in 
2940 never 
smokers 
 

SNPs exome-wide 
significant in meta-
analysis of discovery, 
stage 1 and stage 2 
replication results 
(P<2.7x10-7) 
 
Ever smokers only 
n=1 
Never smokers only 
n=0 
 

Discovery 

Analysis 

Replication Stage 1 Replication Stage 2 

SNPs followed up in 
UK BiLEVE  
 
n=30 SNPs in 24,460 
ever smokers 
 
n=11 SNPs in 24,483 
never smokers 
 

SNPs with P<10-4 in meta-
analysis of discovery & stage 
1 replication results. 
 
Ever smokers only n=2 
Never smokers only n=0 
 

 SNPs not in UK BiLEVE  
 
Ever smokers only n=7 
Never smokers only n=5 
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4.4.2 Associations in known lung function regions 

In addition to the two novel loci, associations (P<10-4) were identified in a number of 

regions previously associated with one or more of FEV1, FVC and FEV1/FVC: MCL1-

ENSA; MECOM; FAM13A; GSTCD; HTR4; PTCH1; PTHLH-CCDC91; LRP1; THSD4; LTBP4 

and 2 signals in the GPR126 region (Table 4-12). In the analysis of ever smokers only, 

there was an association with rs8034191 (HYK- AGPHD1) and FEV1/FVC; this SNP is in 

strong LD (r2=0.93) with a smoking behaviour associated SNP in CHRNA5 (rs1051730) 

(132) and has previously been implicated in COPD (129), as well as lung cancer (183).
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Table 4-12: Associations identified in discovery analysis in known lung function (and related traits) regions. 

       Discovery Analysis  

SNP Chr:Pos Gene(s) Function 

Effect / 
other 
allele Trait 

Smoking 
subset 

Effect Allele 
Frequency Beta P-value Details 

rs11204697 1:150658971 GOLPH3L intronic T/C FEV1 all 41.10% 0.0377 7.39x10-5 r2=0.633 with rs6681426 (MCL1-ENSA, 
previously associated with FEV1/FVC) (43) 

rs1344555 3:169300219 MECOM intronic T/C FEV1 all 19.78% -0.0535 4.52x10-6 SNP previously associated with FEV1 (119) 

rs7671167 4:89883979 FAM13A intronic T/C FEV1/FVC all 50.27% -0.0428 3.94x10-6 r2=0.664 with rs2045517 (previously 
associated with FEV1/FVC) (119) 

rs10516526 4:106688904 GSTCD intronic G/A FEV1 all 6.49% 0.0756 5.79x10-5 SNP previously associated with FEV1 (119) 

rs11168048 5:147842353 HTR4 intronic C/T FEV1/FVC all 41.58% 0.0445 2.59x10-6 r2=1 with rs1985524 (previously associated 
with FEV1 & FEV1/FVC) (119) 

rs17280293 6:142688969 GPR126 exonic G/A FEV1/FVC all 2.53% 0.1253 2.35x10-5 r2=0.85 with rs148274477  (previously 
associated with FEV1/FVC) (43) 

rs7763064 6:142797289 GPR126, 
LOC153910 

intergenic A/G FEV1/FVC all 29.91% 0.0437 2.04x10-5 r2=0.961 with rs262129 (previously associated 
with FEV1/FVC) (119) 

rs16909898 9:98231008 PTCH1 ncRNA 
exonic 

G/A FVC all 9.74% 0.0729 3.23x10-6 SNP previously associated with FEV1/FVC 
(119) 

rs10843206 12:28722756 CCDC91, 
FAR2 

intergenic T/C FVC all 48.55% -0.0412 1.05x10-5 Not independent to indel rs11383346 (PTHLH-
CCDC91, previously associated with FVC) (43) 

rs1564374 12:58010163 ARHGEF25 exonic G/A FEV1/FVC all 59.11% 0.0393 3.52x10-5 r2=0.022 with rs1172113 in (LRP1, previously 
associated with FEV1/FVC) (119) 

rs12899618 15:71645120 THSD4 intronic A/G FEV1/FVC all 15.37% -0.0628 1.19x10-6 r2=0.688 with rs8033889 (previously 
associated with FEV1/FVC) (119) 

rs8034191 15:78806023 HYKK, 
AGPHD1 

intronic C/T FEV1 ever 34.38% -0.0645 5.23x10-6 SNP previously associated with smoking and 
COPD (129, 133)  

rs34093919 19:41117300 LTBP4 exonic A/G FEV1/FVC all 1.14% 0.1910 1.58x10-5 r2=0.99 with rs113473882(previously 
associated with FEV1/FVC) (43) 
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4.4.3 Meta-Analyses of gene-based associations 

WST and SKAT tests were undertaken to assess the joint effects of multiple low 

frequency variants within a gene on lung function traits. In the discovery analyses of all 

23,398 samples, 14,865 genes were tested, all of which had at least two exonic 

variants with MAF<5%.  

The SKAT analyses identified 8 genes associated (P<10-4) with FEV1, FVC or FEV1/FVC. 

Single SNPs within seven of these eight genes were identified in the meta-analyses of 

single variant associations (Table 4-8). The only exception was PTPRA; within this gene 

there was a SNP whose association with FEV1 was just below the P<10-4 significance 

level (rs148576102, chr20:3016535, Pdisc=1.25x10-4). Additional analyses were carried 

out, conditioning for the most significantly associated single SNP within each gene, 

and these analyses showed that all gene associations were driven by these single SNPs 

(Table 4-13). Consequently, none of these gene-based associations were followed up 

further. 

Table 4-13: SKAT test association results for all genes identified in discovery SKAT test analyses (P<10-4). 

For each gene, a conditional analysis was carried out, conditioning on the most significantly associated individual 

SNP within that gene. Chromosome: Position of individual SNP shown, along with conditional SKAT P-value when 

that SNP has been conditioned on. Only the trait for which each gene was most significantly associated is shown. 

  Discovery Analysis - SpiroMeta 

Consortium 

 

Gene Name Trait No. variants 

included in test 

(nsnp) 

P-value  Conditional Analyses 

NUBPL FEV1 8 5.61x10-5 Signal driven by chr14:32257065.  

Conditional P=0.4520 

PTPRA FEV1 2 9.27x10-5 Signal driven by chr20:3016535.  

Conditional P=0.1633 

TONSL FEV1 27 1.89x10-6 Signal driven by chr8:145667730.  

Conditional P=1.0 

POU4F2 FVC 5 8.15x10-6 Signal driven by chr4:147561147.  

Conditional P =0.5076 

PATE2 FEV1/FVC 2 9.51x10-6 Signal driven by chr11:125647897.  

Conditional P =0.1732 

ANKRD34C FEV1/FVC 3 5.88x10-5 Signal driven by chr15:79586782.  

Conditional P =0.3165 

QRFPR FEV1/FVC 12 7.71x10-5 Signal driven by chr4:122250654.  

Conditional P =0.6188 
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The WST analyses identified one significant association between SEMA7A and FVC, and 

this did not appear to be driven by a single SNP (nSNPs=12, βdisc=0.0062, Pdisc=2.55x10-5). 

Initially, this gene-based signal was followed up using samples from UK BiLEVE and 

UKHLS; however the signal did not replicate (nSNPs=7, βrep=0.0014, Prep=0.156, Table 

4-14). Further evidence for replication was sought from the CHARGE consortium; the 

WST result for this gene showed inconsistent direction of effect on FVC to the 

discovery analysis (nSNPs=14, βrep= -3.174 [effect estimate on untransformed scale], 

Prep=0.047, Table 4-14). A common intronic SNP within SEMA7A (rs8036030) has 

previously been associated with airflow obstruction, however this association did not 

meet genome-wide significance (130). 
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Table 4-14: WST association results for all genes identified in discovery WST analyses (P<10-4). 

Discovery + Stage 1 replication meta result calculated using RAREMETAL. Discovery + Stage 1 + Stage 2 replication meta result calculated by combining Discovery + Stage 1 replication result 

with Stage 2 (CHARGE Consortium) result, by sample size weighted z-score meta-analysis. Betas values for Discovery and Stage 1 replication results reflect effect-size estimates on an inverse-

normal transformed scale. For the CHARGE Consortium (replication Stage 2), beta values represent untransformed trait effect estimates.  

  

  

Discovery Analysis  Stage 1 Replication 
Discovery + Stage 1 

replication meta 

Stage 2 Replication Discovery + Stage 1 

+ Stage 2 

replication meta 

  

SpiroMeta Consortium UK BiLEVE & UKHLS CHARGE 

Gene 

Name Trait 

No. 

variants 

included 

in test 

(nsnp) 

Effect 

size(βdisc) 

P-value 

(Pdisc) 

No. 

variants 

included 

in test 

(nsnp) 

Effect 

size(βrep) 

P-value 

(Prep) 

Effect 

size(βmeta) 

P-value 

(Pmeta) 

No. 

variants 

included 

in test 

(nsnp) 

Effect 

size(βrep) 

P-value 

(Prep) P-value (Pmeta) 

SEMA7A FVC 12 0.0062 2.55 x10-5 7 0.0014 0.1564 0.0020 8.44 x10-3 14 -3.1740 0.0471 0.2878 
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Gene-based tests were also carried out in ever smokers and never smokers separately; 

these analyses identified a further eight genes associated (P<104) with at least one 

trait, that were not driven by single SNP associations (Table 4-15 and Table 4-16). 

There was some independent evidence of replication of one of the WST associations in 

the replication samples: LRPPRC showed suggestive evidence of association with 

FEV1/FVC in ever smokers (replication analysis: nSNPs=7, βrep=-0.0009, Prep=3.49x10-3, 

Table 4-17). A combined meta-analysis of the discovery and replication samples was 

then undertaken using RAREMETAL; the resulting WST result for LRPPRC and FEV1/FVC 

in ever smokers fell short of the predefined P<2.4x10-6  significance threshold 

(βmeta=-0.0010, Pmeta=3.65x10-3, Table 4-17). The replication results for all gene-based 

associations listed in Table 4-15 and Table 4-16 are given in Appendix D (SKAT: Table 

D-3; WST: Table D-4). 

Table 4-15: SKAT association results for all genes identified in discovery SKAT analyses in ever smokers and never 

smokers separately (P<10-4).  

   

Discovery Analysis - SpiroMeta Consortium 

Gene Name Trait 

Smoking subset (Ever / 

never smokers) 

No. variants included 

in test (nsnp) P-value (Pdisc) 

C12orf77 FEV1/FVC Ever 4 5.33x10-5 

NFATC1 FEV1/FVC Never 10 8.41x10-5 

 

Table 4-16: WST association results for all genes identified in discovery WST analyses in ever smokers and never 

smokers separately (P<10-4). 

Betas values reflect effect-size estimates on an inverse-normal transformed scale.  

   

Discovery Analysis - SpiroMeta Consortium 

Gene Name Trait 

Smoking subset 

(Ever / never 

smokers) 

No. variants 

included in 

test (nsnp) 

Effect 

size(βdisc) P-value (Pdisc) 

NPEPL1 FEV1 Never 2 0.0180 8.46x10-5 

PGBD1 FEV1 Never 13 0.0067 2.63x10-5 

FAM45A FVC Ever 6 -0.0134 3.78x10-5 

GPR123 FVC Ever 4 0.0170 8.40x10-5 

WRB FVC Never 2 -0.0177 9.73x10-5 

C12orf77 FEV1/FVC Ever 4 0.0189 3.29x10-6 

LRPPRC FEV1/FVC Ever 16 -0.0102 8.03x10-5 
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Table 4-17: Replication of WST association results for LRPPRC and FEV1/FVC in ever smokers. 

Discovery, replication and combined meta results calculated using RAREMETAL. Beta values for Discovery and Stage 1 replication results reflect effect-size estimates on an inverse-normal 

transformed scale.  

 

   

Discovery Analysis - SpiroMeta 

Consortium Replication Analysis - UK BiLEVE & UKHLS Combined Meta-analysis 

Gene 

Name Trait 

Smoking 

subset (Ever 

/ never 

smokers) 

No. variants 

included in 

test (nsnp) 

Effect 

size(βdisc) 

P-value 

(Pdisc) 

No. variants 

included in 

test (nsnp) 

Effect 

size(βrep) 

P-value 

(Prep) 

Effect 

size(βmeta) P-value (Pmeta) 

LRPPRC FEV1/FVC Ever 16 -0.0102 8.03x10-5 7 -0.0009 3.49x10-3 -0.0010 3.65x10-3 
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4.4.4 Heterogeneity of signals identified in single variant association analyses 

The heterogeneity of the results across studies from the two novel loci identified in 

the single variant association analyses was tested using Cochran’s Q Statistic. No 

significant heterogeneity was identified for either signal (Table 4-18). Forest plots for 

the two SNPs (Figure 4-23) also show that the results from each study were broadly 

consistent, and neither was driven by extreme results from one or two studies. 

Table 4-18: Test of Heterogeneity, using Cochran’s Q statistic for the two SNPs in novel regions, identified 

through the single variant association analyses. 

SNP (Gene(s)) Analysis Q 

Statistic 

N Studies Phet 

rs1294421 (LY86, RREB1) FEV1/FVC, all samples 15.913 21 0.722 

rs1448044 (FGF10, NNT) FVC, Ever smokers 7.618 10 0.573 

 

Figure 4-23: Forest plots for two SNPs in novel regions, identified through the single variant association analyses. 

A. rs1294421 associated with FEV1/FVC. B. rs1448044 associated with FVC in ever smokers only. 

 

 

A. rs1294421 B. rs1448044 (ever smokers only) 

Effect Estimate Effect Estimate 

Never 
Smokers 

Ever 
Smokers 

Legend 
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4.4.5 Functional characterization of novel loci  

In order to gain further insight into the two loci identified in the analyses of single 

variant associations, it was assessed whether these regions were associated with gene 

expression levels. This was done by carrying out a look-up of the two sentinel SNPs, 

and all proxies (r2>0.3) within the newly identified regions in a number of publically 

available eQTL data sets, as described in Section 4.3.7. 

Firstly, the Blood eQTL database, a dataset with results from the analysis of 5,311 

individuals, was searched for cis (+/- 250Kb distance between the SNP and the probe 

midpoint) and trans (>5Mb distance between the SNP and the probe midpoint) eQTLs 

(178). Secondly, lung tissue expression data from 124 samples from the GTEx project 

was searched for cis-eQTLs (+/- 1Mb distance between the SNP and transcription start 

site) (179). In these two datasets, no significant eQTLs were found for the sentinel 

SNPs, or any proxy. 

SNPs were further assessed in a lung eQTL resource based on lung tissues of 1,111 

individuals from three sites: Laval, Groningen and UBC (180). Lung eQTLs were 

identified as associated with mRNA expression in either cis (+/- 1Mb distance between 

the SNP and transcription start site) or in trans (all other eQTLs). A proxy of rs1448044 

in the FGF10 region (rs6892212, r2=0.464 with rs1448044) was identified as a cis-eQTL 

for MRPS30 (P=1.71x10-5), and proxies of rs1294421 in the LY86 region (strongest 

associated SNP rs1294416, r2=0.69 with rs1294421) were associated with the 

expression of a cDNA clone (BC039678, P=1.85x10-8), which does not map to a gene 

(Table 4-19). 
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Table 4-19: Evidence for the role of novel variants identified in single variant association analyses as eQTLs in lung. 

Z-score Laval, Z-score Groningen and Z-score UBC are the per-study estimates which were then meta-analysed to give the overall P-value. For each probeset variants were ranked firstly 

according to their correlation with the sentinel SNP (r2) and secondly by eQTL P-value, and only the top ranked SNP for each probeset is presented (rs id, chromosome and position is shown). 

The total number of significant SNP-probeset associations for each gene is also given. 

 

Sentinel 

SNP 

eQTL SNP 

(chr:pos) 

LD (r2) 

with 

sentinel 

Effect / 

other 

allele 

Z-score 

Laval 

Z-score 

Groning

en 

Z-score 

UBC P-value 

Sequence 

Source id 

Gene 

Symbol Gene Name 

Total no. 

Proxy SNP-

probeset 

associations 

rs1448044 rs6892212 

(5:44382842) 

0.464 A/C 2.4640 2.6080 2.3746 1.71x10-5 DA746332 MRPS30 mitochondrial ribosomal protein S30 1 

rs1294421 rs1294416 

(6:6741327) 

0.69 A/G -4.4911 -1.3252 -3.6964 1.85x10-8 BC039678 - - 9 
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Finally evidence of protein expression for LY86 and FGF10 in the respiratory system 

was searched for by querying the Human Protein Atlas (184). The protein products of 

both these genes were expressed in bronchial epithelial cells, pneumocytes and lung 

macrophages (Table 4-20). 

Table 4-20: Protein expression results fornovel regions identified in single variant association analyses. 

Expression levels in the respiratory system for epithelial cells, pneumocytes and macrophages were assessed for 

identified genes, in the Human Protein Atlas. Two results are for 1.HPA044895 staining; 2.CAB025000 staining. 

Expression level abbreviations: ND=Not Detected; NA=Not available. 

SNP Gene  Trait 

(analysis) 

P-value  Respiratory 

epithelial cells, 

Nasopharynx 

Respiratory 

epithelial cells, 

Bronchus 

Pneumocytes, 

lung  

Macrophages, 

lung  

rs1448044 FGF10 

(dist=8111)  

FVC (ever 

smokers) 

1.90 x10-8 Medium 

ND 

Low 

ND 

Low 

ND 

Low 

High 

rs1294421 LY86 

(dist=87933) 

FEV1/FVC 

(all samples) 

1.12 x10-13 NA 

Medium 

NA 

Medium 

NA 

Low 

NA 

Low 

 

4.4.6 Association of novel loci with smoking behaviour 

It was further examined whether the signals at the two novel loci might be driven by 

smoking behaviour, or a result of a gene-smoking interaction. Firstly, a Z-test was 

carried out to compare the effect estimates for never smokers and ever smokers in the 

discovery samples, as a simple test for gene-smoking interaction (Table 4-21). For 

rs1294421 (LY86), there was no evidence for a different effect in never smokers 

compared to ever smokers (P=0.550); however, for rs1448044 (FGF10), there was a 

significant interaction (P=1.44x10-3). It is not possible to definitively conclude that this 

locus represents a gene-smoking interaction however. In the stage 1 replication (UK 

BiLEVE samples), a similar effect was seen for this SNP in both ever smokers 

(βrep1=0.040, Prep1=3.31x10-5) and in never smokers (βrep1=0.038, Prep1=7.23x10-5, Table 

4-22). Furthermore, the combined analysis of discovery and replication samples for 

this SNP, including both ever and never smokers, met the exome-wide significance 

level (P=2.35x10-9) and showed no statistically significant evidence of interaction 

overall (P=0.06). 
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Table 4-21: Discovery analysis results for novel loci in ever smokers and never smokers separately, and in ever 

smokers with additional adjustment for pack-years.  

Betas and P-values from discovery meta-analysis only. Interaction P-value is for test for difference in effect sizes for 

ever smokers vs never smokers. 

SNP Gene  Trait  Analysis N Beta P-value 

Interaction P-

value 

rs1448044 FGF10  FVC  

never 11809 -0.0077 0.5851 

1.44x10-3 ever 11550 0.0563 8.41x10-5 

ever 

(pack-years) 10368 0.0553 2.71x10-4  

rs1294421 LY86  FEV1/FVC  

never 11827 0.0294 0.0279 

0.550 ever 11561 0.0454 8.26x10-4 

ever  

(pack-years) 10378 0.0408 4.57x10-3  

 

Table 4-22: Association of rs1448044 and FVC in ever smokers and never smokers separately, and in all 

individuals combined. 

  

Discovery Analysis Stage 1 Replication 

Stage 2 

Replication 

Discovery + 

Stage 1 + 2 

Replication 

meta 

  

SpiroMeta 

Consortium UK BiLEVE UKHLS 

Name 

Smoking 

subset  Beta P-value Beta P-value Beta P-value P-value 

rs1448044 

never -0.0077 0.5851 0.0384 7.23x10-5 0.0047 0.8640 3.93x10-3 

ever 0.0563 8.41x10-5 0.0402 3.31x10-5 0.0199 0.3796 1.90x10-8 

all 0.0238 0.0229 0.0393 9.39x10-9 0.0138 0.4312 2.35x10-9 

 

The main meta-analyses did not adjust for smoking amount in the ever smokers; 

sensitivity analyses were therefore also carried out in ever smokers with additional 

adjustment for pack-years where available. Effect estimates for rs1448044 (FGF10) 

were unchanged when pack-years were adjusted for, and only slightly attenuated for 

rs1294421 (LY86), suggesting that these associations are not driven by smoking 

behaviour (Table 4-21). 

Finally, a look-up of this SNP in the publicly available results of a GWAS of smoking 

behaviour by the Tobacco and Genetics Consortium (132) was undertaken (Table 

4-23). There was some evidence that rs1448044 (FGF10) was associated with ever vs 

never smoking (P=0.04), and rs1294421 (LY86) was associated with pack-years 

(P=0.01). 
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Table 4-23: Look-up of effect of novel variants on smoking phenotypes in the Tobacco and Genetics (TAG) 

consortium. 

  

Cigarettes per 

day 

Ever vs Never 

smoker 

Current vs former 

smoker 

Log age of 

starting smoking 

SNP Gene Beta  P OR  P OR  P Beta P 

rs1448044  FGF10 0.1511 0.097 0.9734 0.0388 0.9885 0.511 -0.0026 0.3029 

rs1294421  LY86 0.2187 0.0101 1.0055 0.6518 1.0079 0.6355 -0.0001 0.9777 

 

 

4.5 Discussion 

This chapter describes the analysis of 23,398 samples from 11 studies with exome 

array data and three lung function traits, with follow up of the most significant single 

SNP and gene-based associations in up to 93,390 independent samples. The combined 

analyses of the discovery and replication single variant associations identified two 

SNPs meeting the pre-defined exome-wide significance level (P<2.7x10-7), in regions 

not previously implicated in lung function.  

The first of these was a common (MAF=38.5%), intergenic SNP close to LY86 

(lymphocyte antigen 86), associated with FEV1/FVC (Pmeta=1.12x10-13). LY86 interacts 

with the toll-like receptor signalling pathway, when bound with RP105 to form a 

heterodimer (185). The sentinel SNP rs1294421 has previously been associated with 

waist-hip ratio (186), and an intronic SNP within LY86 (rs7440529, LD with rs1294421: 

r2=0.005) has previously been implicated in asthma in two studies of individuals of Han 

Chinese ancestry (187, 188). 

The second identified association was another common (MAF=31.5%) intergenic SNP, 

close to FGF10 (Pmeta=1.90x10-8) associated with FVC. FGF10 is a member of the 

fibroblast growth factor family of proteins, involved in a number of biological 

processes, including embryonic development, cell growth, morphogenesis, tissue 

repair, tumor growth and invasion. Specifically, the FGF10 signalling pathway plays an 

essential role in lung development and lung epithelial renewal (189). A study in mice 

found a deficiency in FGF10 resulted in a fatal disruption of branching morphogenesis 

during lung development (190). A further study in mice with bleomycin-induced lung 

fibrosis found overexpression of FGF10 to result in attenuated fibrosis and increased 

survival (191). A proxy of the sentinel SNP in the FGF10 region was identified as a cis-
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eQTL for MRPS3, a constituent of the mitochondrial ribosome which plays a role in 

oxidative phosphorylation (192). 

The relationship with the two novel loci and smoking was also examined. rs1924421 in 

LY86 showed suggestive association with amount smoked in the publically available 

TAG meta-analysis. Whilst the primary analyses did not adjust for smoking quantity, a 

secondary analyses of ever smokers with adjustment for pack-years was performed. In 

this adjusted analysis, the estimated effect of rs1924421 on FEV1/FVC was not 

substantially changed. rs1448044 in FGF10 also showed weak association with ever vs 

never smoking, and there was some evidence for a gene-smoking interaction in the 

discovery analysis of FVC. In the stage 1 replication samples, similar effects were seen 

for this SNP in both ever and never smokers however, so further evidence would be 

required to conclude that this signal is driven by smoking behaviour.  

Through the use of the exome array, it was hoped that associations with low frequency 

and rare functional variants would be identified. Whilst the discovery analyses 

identified single SNP associations with a number of low frequency variants, these 

findings were not replicated in the replication samples. There are a number of possible 

explanations for the lack of replication of these findings. Firstly, many of the rarest of 

these SNPs were not genotyped, or were monomorphic in our follow-up samples, so 

replication was not possible. In some instances, a failure to replicate might be due to 

the phenomenon of “winner’s curse”, whereby the effects identified in the discovery 

samples may have been overinflated.  

Overall, the lack of convincing associations with rare variants is likely due to a limited 

statistical power for identifying single variant associations, particularly if those variants 

exhibit only modest effects. So far, low frequency variants in only 2 regions have been 

associated with quantitative lung function. In the present analysis, the most strongly 

associated SNPs in these regions were rs17280293 in GPR126 (MAF=2.5%, β=0.125) 

and rs34093919 in LTBP4 (MAF=1.1%, β=0.191). For a SNP with MAF=1% and an effect 

size of β=0.2, there is only 22% power to detect an association in the present discovery 

analysis (n=23,398) at exome-wide significance (P<2.7x10-7). Figure 4-24 shows that for 

low frequency SNPs (MAF<5%), the present study generally has limited power to 
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detect associations at this significance level, unless effect sizes are much larger than 

observed SNP effects identified to date. Figure 4-25 further shows that for low 

frequency SNPs with modest effects (β=0.1), even analyses undertaken with a sample 

size of 100,000 would have very low power to detect significant associations (power of 

24%% and 2% for SNPs with MAF=1% and 0.5%, respectively). 

Figure 4-24: Power to detect exome-wide significant associations (P<2.7x10-7) with low frequency variants in the 

SpiroMeta discovery data (n=23,398). 

Beta estimates are on the inverse-normal transformed scale. 
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Figure 4-25: Power to detect exome-wide significant associations (P<2.7x10-7) with variants of varying effect sizes 

(Beta) and sample sizes (N). 

Power shown for SNPs with MAFs of A. 0.05%, B. 1%, C. 5%. Beta estimates are on the inverse-normal transformed 

scale. 

 

 

SKAT and burden gene-based tests were additionally employed to investigate the joint 

effects of low frequency and rare variants within a gene on lung function traits. Many 

of the genes identified through these analyses were in fact a result of single SNPs, 

which were themselves identified through the meta-analyses of single variant 

associations. For those genes that did not appear to be driven by single SNPs, 

replication was sought. This proved challenging however, as again many SNPs included 

within these analyses in the discovery samples were not genotyped, or were 

monomorphic in the replication samples. This often meant a disparity in the gene unit 

being tested in the discovery and replication samples; hence the interpretation of 

these results was not straightforward. 

These analyses also identified associations in several regions that have previously been 

implicated in lung function and related traits. These included associations the two 
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previously mentioned two low frequency SNPs (GPR126 and LTBP4) associated with 

FEV1/FVC in these analyses. SNPs in strong LD (r2>0.85) with these two SNPs were first 

identified in separate meta-analyses of lung function within the SpiroMeta 

Consortium, using data imputed to the 1000 Genomes reference panel (43). The two 

SNPs identified in these analyses are both nonsynonymous, and could potentially 

represent the causal SNP in each region. 

Through the analyses described in the chapter, I have identified two common, 

intergenic SNPs in regions not previously implicated in lung function. These 

associations were both replicated in the follow-up analyses and met the pre-specified 

exome-wide significance level overall, as well as the well the more stringent genome-

wide significant level (P<5x10-8). Further interrogation of these loci could lead to 

greater understanding of lung function and lung disease, and could provide novel 

targets for therapeutic interventions. Whilst these analyses had limited success in 

identifying novel low frequency and rare variants associated with lung function, we 

cannot rule out the possibility that more of these variants do make a contribution to 

the underlying genetic basis of lung function. Future studies, of increasingly larger 

sample sizes, will be required in order to fully evaluate the effect of variants across the 

allele frequency spectrum. 
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Chapter 5 Analysis of flow lung function measures PEF and FEF25-75 in 

UK Biobank 

5.1 Introduction 

Genome-wide association studies (GWAS) of lung function to date have generally 

focussed on three volumetric lung function measures: FEV1, FVC and FEV1/FVC. Other 

measures that may be derived from spirometry include measures of flow, such as the 

peak expiratory flow (PEF) and the forced expiratory flow between 25% and 75% of 

vital capacity (FEF25-75). PEF and FEF25-75 are correlated with each other and with FEV1, 

FVC and FEV1/FVC, however each measure varies in terms of clinical significance. 

PEF is the maximum measure of expiratory flow measured during a forced expiratory 

manoeuvre. PEF is determined by a number of physiological factors including lung 

volume and dimensions of the large airways, the elastic properties of the lung and the 

power of the expiratory muscles (193).  PEF is a valid indicator of lung function 

impairment and can be helpful in clinical practice for monitoring airflow limitation, 

particularly in individuals with asthma (193, 194). It is less useful however for 

distinguishing between obstructive and restrictive impairment and has a low sensitivity 

to measuring obstruction in the small airways (194). FEF25-75 is the average forced 

expiratory flow rate over the middle 50 percent of the FVC. FEF25-75 is considered a 

measure of the calibre of the small airways, with a reduction in FEF25-75 thought to be 

an early indicator of airflow limitation, even where an individual has normal FEV1 (195, 

196). However, a reduction in FEF25-75 is not a specific measure of small airway disease 

(197) and is highly effort dependent (194).  

Similarly to the volumetric lung function measures, PEF and FEF25-75 vary with height, 

age, sex and ethnicity, and various reference equations for these measures exist (85, 

87). PEF is also subject to diurnal variation, with maximal PEF usually occurring during 

the afternoon to early evening, with lowest values occurring during the night and early 

morning (193). 

As discussed in Section 1.3.4, there have been a limited number of GWAS studies 

undertaken for PEF and FEF25-75 (121-123), with only one signal from these studies (a 
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signal in CDH13 associated with FEF25-75 decline) meeting genome-wide significance 

and with independent replication (121). This chapter describes the largest GWAS of 

flow lung function measures carried out to date with the aim of determining whether 

investigating these measures of lung function can reveal any regions of the genome 

which might be influencing lung function, which would not be identified through 

studies of FEV1, FVC and FEV1/FVC alone. The analyses described in this chapter, utilise 

a subset of individuals from UK Biobank who have both genotype and high quality 

spirometry data available. Firstly, the process of deriving various phenotype and blow 

quality measures from spirometric curves is described, followed by a summary of the 

QC of phenotype data and the selection of samples from UK Biobank. Summaries of all 

lung function measures are then shown and correlations between the traits described. 

The results of GWAS of PEF and FEF25-75 are then presented. For all signals identified as 

showing association with one or both of PEF and FEF25-75, associations with three 

volumetric lung function traits (FEV1, FVC and FEV1/FVC) were tested, and the overlap 

in signals for all traits examined.  

 

5.2 Quality Control of phenotype data and sample selection 

5.2.1 Derivation of variables from blow curves 

Each individual in UK Biobank underwent spirometry using a Vitalograph Pneumotrac 

6800. Each individual performed two blows; the reproducibility of the two blows was 

then checked by the Vitalograph software (defined by software as <5% difference in 

FEV1 and FVC). If the blows were reproducible, no further blows were undertaken. 

Where the blows were not reproducible, a third blow was performed. Within the UK 

Biobank data, measures of FEV1, FVC and PEF recorded by the Vitalograph software 

were provided for each blow, along with a number of indices of blow quality. 

Additionally, for each blow, the volume measures in mililitres, recorded at 10 

milisecond (ms) intervals were provided (blow data points), from which blow curves 

could be plotted, and a series of measures derived. 

Firstly, from the 502,682 individuals in the whole of UK Biobank, 427,222 individuals of 

self reported white European ancestry and with at least 2 FEV1 and FVC measures were 
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selected as the sampling frame. For these individuals, a number of measures (listed in 

Table 5-1) were derived from the blow data points, for all of the blows carried out by 

each individual. Whilst the lung function measures FEV1, FVC and PEF were already 

available in the UK Biobank data, deriving these variables from the blow data points 

and comparing these to the recorded measure was used as an indicator of data quality 

(Section 5.2.2). The other phenotype included in these analyses, FEF25-75, was not 

included in the measures recorded by the Vitalograph software, so this had to be 

derived from the blow data points. The remaining variables were derived for quality 

control purposes.  

Table 5-1: Variables derived from the blow data points.  

Each variable was generated for up to 3 blows from each individual. 

Variable type Description 

Phenotype FEV1 derived from blow data points 

Phenotype FVC derived from blow data points 

Phenotype PEF - peak expiratory flow over 80ms interval (L/min), derived from 

blow data points 

Phenotype FEF25-75 - 80ms flow rate between 25% and 75% of FVC (L/s) 

QC measure Time of PEF 

QC measure Back-extrapolated volume (ml) 

QC measure FET - Time recorded after back-extrapolated zero (s). 

QC measure Flow in last 1.0 second of FET (ml/s) 

 

All flow values were derived using the mean flow over 80 ms intervals. PEF was then 

derived as the highest of these flow values.  A new “time zero” was also estimated, 

which back extrapolated from the time of PEF, assuming constant flow; this back-

extrapolated time zero was then used as the start for all timed measurements. The 

back extrapolated volume was derived as the volume of air already exhaled by the new 

time zero (79). Figure 5-1 shows an example of blow curves, generated for one blow 

from one individual, with the derived values of FEV1, FVC, PEF and FEF25-75 indicated. 
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Figure 5-1: Example blow curves for an individual, with derived volume and flow measures. 

FEV1= 
1.947 Litres 

FVC= 
2.81 Litres 

PEF= 
250.5 L /min 
(4.18 L / Second) 
 
( Mean flow: 

FEF25-75= 
1.239 L /Second 
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5.2.2 Selection of acceptable and reproducible blows 

There were a total of 1,281,666 blows recorded from the 427,222 individuals included 

in the sampling frame. For each blow there was a field which described the 

acceptability of the blow, as determined by the Vitalograph software. This field 

indicated whether there were any problems with the blow, for example if a cough was 

detected during the manoeuvre, the field indicated “COUGHING”, or if the blow had a  

duration of less than 6 seconds, the field indicated “TEST_DURATION”. At the end of 

the manoeuvre, the healthcare professional had the opportunity to accept or reject 

the blow; if this was done, the fields indicated “USER_ACCEPTED” or 

“USER_REJECTED”, respectively. The UK Biobank protocol specified that all blows 

should be automatically accepted or rejected by the software however; where there 

were no issues with the blow and the blow was automatically accepted, the field was 

blank. Blows were first excluded if in this UK Biobank (Vitalograph) acceptability field 

they had anything other than “USER_ACCEPTED”, “USER_ACCEPTED + 

TEST_DURATION”, “TEST_DURATION”, or were blank. Blows were then excluded based 

on the derived variables: if they had poor start of blow quality (back extrapolated 

volume>5% of FVC, or 150ml, whichever was greater), or were without a terminal 

plateau (flow rate >25ml/s in last second), or had a duration of less than four seconds 

(FET<4). Table 5-2 summarises the number of blows failing each quality criterion.  

Table 5-2: Quality control of blows. 

Quality Criterion Total no. blows 

Poor blow based on Vitalograph acceptability field 532,057 

Poor start of blow quality 183,098 

No terminal plateau 395,489 

Duration <4 seconds 164,481 

No. blows failing one or more QC criteria 671,976 

 

671,976 blows failed at least one QC criterion and were excluded, leaving a total of 

609,690 acceptable blows. The numbers of individuals with one, two and three 

acceptable blows were 124,227, 175,953 and 44,519, respectively. Following these 

exclusions, each acceptable blow was then checked for reproducibility (within 250ml) 

with any other blow (acceptable or not).  
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For each individual, the “best” FEV1 and FVC were selected as the highest acceptable 

and reproducible measure for each, not necessarily from the same blow. The best flow 

measures (PEF and FEF25-75) were derived from the blow with the highest acceptable 

measure of FEV1+FVC; again this was not necessarily from the same blow as FEV1 

and/or FVC. 311,762 individuals in total had acceptable and reproducible measures for 

all phenotypes.  

The best FEV1, FVC and PEF measures derived from the blow curve data were then 

compared to the values recorded in UK Biobank (Figure 5-2). The FEV1 and FVC values 

were overall highly concordant, with a few exceptions:  for 58 individuals the best 

derived FEV1 and/or FVC differed to the measure recorded in UK Biobank by greater 

than 5%. These 58 individuals were excluded. For PEF, there were many more 

individuals whose PEF derived from the blow curves significantly differed from the 

value recorded in the data. Plots of the PEF versus FEV1 values from the UK Biobank 

dataset and the derived variables (Figure 5-3), show that these two measures are 

correlated for the derived variables, but for the values in UK Biobank, there are a large 

number of individuals with very low values of PEF given their FEV1. This indicated that 

the PEF values recorded in UK Biobank were erroneous; the derived PEF values 

therefore were chosen for all further analyses.  
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Figure 5-2: Comparison of FEV1, FVC and PEF values recorded in UK Biobank with the equivalent measures derived from the blow curve data. 
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Figure 5-3: Comparison of FEV1 versus PEF. 

A. Measures from UK Biobank. B. measures derived from blow curves.  

 

 

Further exclusions were then made to remove individuals with extreme lung function 

measures or missing covariates. Firstly 4554 individuals with missing phenotype data 

for height and smoking status were excluded. Linear models were then fitted for FEV1, 

FVC, PEF and FEF25-75, with adjustment for age, age2, height and height2 and ever 

smoking, separately in males and females. 188 individuals with studentised residuals 

greater than 5, or less than -5 for any trait were identified as outliers (Figure 5-4). 

Following all exclusions, 306,962 individuals with full lung function and smoking data 

remained, of which 105,547 have been genotyped. 

A. B. 
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Figure 5-4: Studentised residuals of FEV1, FVC, PEF and FEF25-75, after adjustment for age, age2, height and height2 and ever smoking, separately in males and females. 

Red lines indicate 5 SDs from the sample mean.
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5.2.3 Relation of sample selection process to the UK BiLEVE study 

The quality control of the UK Biobank phenotype data and selection of the samples 

described in the preceding sections was undertaken similarly to in the UK BiLEVE 

study. The UK BiLEVE study was the first genetic study to be carried out in UK Biobank, 

and involved the selection of 48,943 individuals, carried out as follows: firstly, the 

sampling frame was defined as individuals of white European ancestry (self-reported) 

who had at least two recorded spirometric measures meeting ATS/ERS criteria (blows 

acceptable and within 150ml of another blow). The smoking status of these individuals 

was then determined, and those who were classified as either never smokers, or 

heavy-smokers were retained (heavy smokers defined using the measure pack-years 

as a proportion of adult lifespan). Predicted values of FEV1 were then calculated using 

an internal reference sample of healthy never smokers, who reported no respiratory 

disease. Using these predicted values, percent predicted FEV1 was then calculated for 

all individuals. Within the never smokers and heavy smokers separately, samples were 

selected for high FEV1, low FEV1 and middle FEV1 groups, based on these percent 

predicted values. This process was undertaken by myself, in parallel to a second 

analyst; this was to ensure consistency of sample selection. A full description of the 

sample selection for the study and results of this study were published in the Lancet 

Respiratory Medicine in 2015 (120). 

Since the UK BiLEVE study was undertaken, approximately 100,000 further samples 

have been genotyped in UK Biobank. For the analyses described in this chapter, I 

repeated the quality control of the phenotype data and defined a new selection of 

samples, in order to utilise as many of the 150,000 genotyped individuals as possible. 

To this end, I adapted the sample selection process I undertook for the UK BiLEVE 

study, informed by an evaluation of UK Biobank spirograms and derived indices from 

the volume-time curves, carried out independently (D. P. Strachan, personal 

communication, 02/09/2015), to ensure the most suitable flow measures were 

selected.  
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5.3 Quality Control of genotype data  

The 105,547 samples included in these analyses were amongst 152,256 individuals 

from UK Biobank genotyped using the Affymetrix Axiom UK BiLEVE or UK Biobank 

arrays. These two arrays are very similar, sharing 95% of their content. Once 

genotyped, all samples were imputed to a combined 1000 Genomes Phase 3 (16) and 

UK10K (40) reference panel. A series of sample genotype QC metrics were provided by 

UK Biobank along with the imputed data. These metrics included sex mismatches, 

missingness, heterozygosity rate, and ancestry based on principal component analysis. 

For pairs of related samples, kinship coefficients, estimated using KING’s robust 

estimator (198) were also provided. Sample QC was firstly undertaken to exclude 

samples, based on the QC metrics in Table 5-3. 

Table 5-3: Sample exclusions based on genotype QC metrics provided by UK Biobank. 

Reason for exclusion N samples 

Withdrawn consent 4 

Sex mismatch 131 

Heterozygosity outlier / high missingness 303 

Non-European ancestry (PCA outlier) 272 

Total samples excluded 689 

 

In the remaining 104,858 samples, pairs of related individuals were identified as those 

with kinship coefficients >0.088, equivalent to at least 2nd degree relatives. For each 

related pair, the sample with the highest rate of missingness was selected for 

exclusion. In total, 1929 related samples were removed, leaving a final sample of 

102,929 unrelated individuals (54,538 never smokers and 48,391 ever smokers). 

There were a total of 72,355,667 imputed variants available for the 102,929 selected 

individuals. The majority of those variants were SNPs, but some short indels were also 

included. Stringent genotype QC was carried out to exclude variants with a very low 

minor allele count (MAC) (MAC<3 in either the ever smokers or never smokers), 

variants which had a low imputation information (INFO) score, or which deviated from 

HWE (P<10-6). The INFO score is a metric which ranges from 0 to 1 and acts as a 

measure of uncertainty of the imputed genotype (INFO=1 indicates no uncertainty of 

genotype, whilst INFO=0 indicates complete uncertainty of the genotype). For variants 
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with a MAF>1%, variants with INFO<0.5 were excluded. For rare variants with 

MAF≤1%, INFO<0.8 was used for exclusions. These INFO score filters are fairly 

conservative; however in these analyses, there are no independent samples in which 

to verify identified associations, so a strict INFO score threshold was utilised to limit 

the number of false positive findings. The numbers of variants excluded due to a low 

MAC or INFO score, or as they deviated from HWE are summarised in Figure 5-5. 
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Figure 5-5: Summary of variant exclusions, prior to association testing.   

72,355,667 imputed variants 

 

47,872,691 variants with MAC≥3 

in both smokers and never 

smokers. 

 
9,816,964 

variants with 

MAF≥1% 

38,055,727 

variants with 

MAF<1% 

17,458,656 variants with high 

imputation quality. 

 

14,527,158 variants to be 

included in association analyses. 

 

24,448,976 variants 

with MAC<3 in 

either ever, or 

never smokers. 

30,354,906 variants 

with INFO<0.8 

59,129 variants 

with INFO<0.5 

2,931,498 variants 

with HWE P<10-6 

102,929 samples Imputed to a 

combined UK10K and 1000 

Genomes reference panel. 
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5.4 Analysis of PEF and FEF25-75: Methods 

5.4.1 Statistical Analyses 

For both PEF and FEF25-75, linear models were fitted separately in never and ever 

smokers, with age, age2, sex, height, and 10PCs as covariates. The residuals resulting 

from these models were converted to ranks and then to normally distributed z-scores.  

These inverse rank normalised traits were used for all subsequent association testing. 

Associations were carried out using the score test as implemented in SNPTEST v2.5b4 

(19), assuming an additive genetic model, and using genotype doses (continuous from 

0 to 2). The genomic inflation factor (equation (1-4)) was calculated for the genome-

wide results for never and ever smokers separately, and the standard errors and P-

values for each smoking stratum were adjusted accordingly. The results for ever and 

never smokers were then combined, using inverse variance weighted meta-analysis 

(equation (2-3)). Finally the overall genomic inflation factor was calculated using the 

genome-wide results for all samples combined, and the standard errors and P-values 

adjusted. 

5.4.2 Selection of signals 

In the remainder of this chapter, the results shall be described in terms of signals, 

sentinel SNPs and regions. Regions are defined based on genomic position only, with 

each region potentially including multiple signals. Signals refer to each independent 

association, and often include several variants which are associated with the trait, due 

to the LD structure. The sentinel SNP is the most highly significant SNP from each 

signal. 

Firstly, all SNPs associated with either PEF or FEF25-75 with P<5x10-8 were identified. For 

both traits, selection of sentinel SNPs was carried out as follows: Amongst the 

identified SNPs, the most statistically significant association was selected as the first 

sentinel SNP. All SNPs located +/-1MB from that sentinel SNP were then excluded. Of 

the remaining SNPs, the next most significant was selected as a second sentinel SNP, 

with all SNPs +/-1MB from that sentinel SNP subsequently excluded. This process was 

repeated until all sentinel SNPs, each representing a 2Mb region were selected. 
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Following the generation of this initial list of sentinel SNPs, secondary signals were 

identified, by undertaking further analyses within each 2MB region, conditioning on 

the sentinel SNP in that region. Conditional analysis was undertaken using SNPTEST, 

where the sentinel SNP was included as an additional covariate in the model. All SNPs 

with P<5x10-8 in these conditional analyses were identified, with the most strongly 

associated SNP in each region selected as a secondary sentinel. 

Where a secondary signal existed, regions were redefined such that the region 

spanned both sentinels in the region, +/-1MB. Where these newly defined regions 

overlapped, the regions were merged to form larger regions with multiple sentinels. In 

these larger regions, an additional conditional analysis was undertaken, for all 

sentinels, conditioning on all other sentinels in the region, to ensure each sentinel 

represented an independent signal. Any sentinel with P>5x10-8 in these conditional 

analyses was removed from the sentinel list, and the region redefined, if appropriate. 

A final conditional analysis was undertaken in all newly defined regions with more 

than one sentinel, conditioning on all sentinel SNPs in the region, in order to identify 

any further signals. Finally, to ensure all selected sentinel SNPs did in fact represent 

independent signals, linkage disequilibrium between all SNPs was estimated, to ensure 

none were correlated (r2>0.1). 

5.4.3 Analysis of top findings and volumetric lung function traits 

For all SNPs identified as showing association with PEF and/or FEF25-75, associations 

were tested for three volumetric measures of lung function: FEV1, FVC and FEV1/FVC. 

Each volumetric trait was inverse normally transformed, separately in ever and never 

smokers, with adjustments made for age, age2, sex, height, and 10PCs. The inverse 

rank normalised traits were used for association testing, with the results for ever and 

never smokers combined using inverse-variance weighted meta-analysis.  The results 

for each volumetric trait were compared with those for the flow measures. SNPs which 

were associated with flow measures with P<5x10-8, but which were not associated 

with any volumetric measure with P<5x10-5, were selected as PEF or FEF25-75 specific 

signals.  



 
 

187 
 

5.4.4 Quality Control of results 

For all sentinels, cluster plots (Section 1.1.3.4) were generated to assess the accuracy 

of genotype calling. Where a sentinel SNP was not directly genotyped, clusterplots 

were generated for the strongest genotyped proxy SNP (based on LD) to the imputed 

SNP and checked for calling accuracy. For all identified sentinel SNPs, additional 

association analyses were undertaken to determine whether associations might be a 

result of a chip effect. Associations were tested between each SNP and genotyping 

array (UK BiLEVE array vs UK Biobank array) using the score test as implemented in 

SNPTEST v2.5b4 (19) and SNPs that were significantly associated with genotyping array 

(P<10-5) were identified. 

 

5.5 Analysis of PEF and FEF25-75: Results 

5.5.1 Lung function phenotypes in UK Biobank 

Phenotype summaries for all 102,929 samples included in these analyses are in Table 

5-4. 

Table 5-4: Phenotype summaries for all samples included in analyses, by smoking status. 

 Ever smokers 

(n=48,391) 

Never smokers 

(n=54,538) 

Sex, N (%) Male 24,336 (50.3%) 22,920 (42.0%) 

Age, Mean (SD) 57.1, (7.9) 56.0 (8.0) 

FEV1, Litres, Mean (SD) 2.714 (0.798) 2.815 (0.796) 

FVC, Litres, Mean (SD) 3.563 (0.973) 3.684 (0.999) 

FEV1/FVC, Mean (SD) 0.740 (0.077) 0.764 (0.063) 

PEF (Litres/min), Mean (SD) 393.6 (123.5) 401.5 (119.5) 

FEF25-75 (Litres/sec), Mean (SD) 2.252 (0.993) 2.499 (0.984) 

Pack-years, Mean (SD) 

(n=38,377 ever smokers with pack-

years) 

27.29 (18.14) - 

 

PEF and FEF25-75 and the three volumetric lung function traits are all closely related, as 

can be seen in Figure 5-6 and Figure 5-7. PEF can be seen to be most strongly 

correlated with FEV1 (inverse-normally transformed traits r2=0.741), with slightly 
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weaker correlations with FVC (r2=0.601) and FEV1/FVC (r2=0.512). FEF25-75 shows an 

even stronger correlation with FEV1 (r2=0.824) and is also highly correlated with 

FEV1/FVC (r2=0.85), whilst showing weaker correlation with FVC (r2=0.539). PEF and 

FEF25-75 are also moderately correlated with each other (r2=0.676). 
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Figure 5-6: Comparisons of PEF versus other lung function trait values (FEV1, FVC, FEV1/FVC and FEF25-75) in the n=102,929 samples included in the association analyses. 

A. raw trait values B. inverse-normally transformed trait values. 

 

 

 

A. 

B. 
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Figure 5-7: Comparisons of FEF25-75 versus other lung function trait values (FEV1, FVC, FEV1/FVC and PEF) in the n=102,929 samples included in the association analyses. 

A. raw trait values B. inverse-normally transformed trait values. 
 

 

A. 

B. 
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5.5.2 Single variant association analyses  

A total of 14,527,158 variants and 102,929 samples passed all QC and were included in 

the association analyses. The genomic inflation factorsl (λ, equation (1-4)) for the 

analyses of PEF and FEF25-75 were 1.0617 and 1.0646, respectively. There were a 

considerable number of strongly associated variants for both traits, as can be seen in 

the QQ plots (Figure 5-8), which show substantial deviation from the null, and in the 

Manhattan plots (Figure 5-9). 

Figure 5-8: QQ plots of analysis of A. PEF and B. FEF25-75  

 

 

 

A. PEF: λ=1.0617 B. FEF25-75: λ=1.0646 
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Figure 5-9: Manhattan plots for the analysis of A. PEF and B. FEF25-75.  

Highlighted SNPs significant P<5x10-8 

 

 

 

A. Analysis of PEF 
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 B. Analysis of FEF25-75 
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5.5.3 Selection of Signals 

Initially, 94 sentinel SNPs were identified as showing association with PEF with 

P<5x10−8, each SNP chosen as the most significantly associated SNP within a 2MB 

region. Within each region, secondary signals were tested for, through conditional 

analyses, conditioning on the sentinel SNP; these conditional analyses identified a 

further 24 SNPs independently associated with PEF with P<5x10-8. Final conditional 

analyses were undertaken in regions with more than one sentinel to identify tertiary 

signals; an additional 12 SNPs were identified in these final analyses. In total, 127 SNPs 

in 93 regions were identified as significantly associated with PEF. For FEF25-75, a total of 

215 SNPs in 153 regions were identified as showing association P<5x10-8. The process 

of identifying secondary and tertiary signals for both traits is shown in Figure 5-10. 

Figure 5-11 shows an example of this process for a region on chromosome 4 with 3 

signals identified in the analysis of FEF25-75. This example is in a region spanning several 

genes including TET2, INST12 and GSTCD, and within this region multiple independent 

signals have been previously been identified for FEV1 and FEV1/FVC (43). 
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Figure 5-10: Selection of sentinel SNPs. 

 

 

 

  

GWAS of 14,527,158 variants and 102,929 samples undertaken for 

PEF and FEF25-75. 

Original list of sentinels selected from list of SNPs with P<5x10-8: 

Each sentinel selected as most significantly associated SNP within a 

2MB region, centred on the sentinel. 

 

PEF: 95 SNPs identified FEF25-75: 156 SNPs identified 

Conditional analyses ran within each 2MB region to identify 

secondary signals. 

 

PEF: 24 secondary signals 

identified. 

FEF25-75: 36 secondary signals 

identified. 

Regions redefined to include nearby sentinels (<1MB apart), plus a 

further 1MB either side. Conditional analyses ran within each 

redefined region to identify tertiary signals. 

 

 

PEF: 8 tertiary signals 

identified. 

FEF25-75: 23 tertiary signals 

identified. 

Regions redefined to include nearby sentinels (<1MB apart), plus a 

further 1MB either side.  

 

 

PEF: 127 SNPs in 93 regions 

identified in total. 

FEF25-75: 215 SNPs in 153 

regions identified in total. 

All SNPs with P<5x10-8 identified. 

 



 
 

196 
 

Figure 5-11: Identification of primary, secondary and tertiary signals in region chr4:105133184-107819053, 

associated with FEF25-75.  

Plots (right) show the sentinel SNP in each region is highlighted in blue with the LD (r2) of nearby SNPs to the 

sentinel indicated by colour (red: r2>0.8, orange: 0.8≥r2>0.5, yellow:0.5≥r2>0.2, grey: r2<0.2). The fine scale 

recombination rate is shown in light blue. 

rs34712979 (chr4:106819053, P=1.61x10-62) 

selected as primary sentinel SNP in 2MB 

region (chr4: 105819053-107819053). 

 

Analysis carried out in region (chr4: 

105819053-107819053), conditional on 

rs34712979. rs6533183 (chr4: 106133184, 

P=4.02x10-13) identified as secondary signal. 

Region redefined, to include both sentinels +/- 

1MB (chr4:105133184-107819053). 

 

Analysis carried out in region 

(chr4:105133184-107819053), conditional on 

both rs34712979 and rs6533183. rs145501437 

(chr4:106815984, P=3.46x10-9) identified as 

tertiary signal. Region defined, to include all 

three sentinels +/- 1MB (chr4:105133184-

107819053). 
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5.5.4 Top findings 

The 10 most significantly associated SNPs for each trait are listed in Table 5-5 (PEF) 

and Table 5-6 (FEF25-75). The full results for each trait are in Appendix E (PEF: Table E-1; 

FEF25-75: Table E-2). There was significant overlap in the SNPs and regions identified for 

PEF and FEF25-75 and 9 of the 10 most most significantly associated regions overlapped 

for the two traits.  

In both analyses, the most strongly associated signals were within CPNE8 (PEF: 

rs150950471, MAF=2.4%,  PPEF=3.65x10-82; FEF25-75: rs115903505, MAF=2.5%,  

PFEF25−75=5.68x10-144), rs73314997 in MAPT (MAF=2.3%,  PPEF =3.00x10-77;  

PFEF25−75=1.24x10-119) and rs191050570 in CC2D2A (MAF=1.9%, PPEF =1.42X10-65; 

PFEF25−75 =2.40x10-98). CPNE8 and CC2D2A have not previously been implicated in lung 

function, or related traits. Other signals in regions not previously associated with 

respiratory traits include SNPs in SYT17, CASC16, STF6B and an intergenic SNP near 

CCDC15 and SHROOM3. 

The signal identified in MAPT (microtubule-associated protein tau), is within a 

common inversion locus, which shows marked differences in allele frequencies across 

European populations (199). SNPs within this gene have previously shown associations 

with idiopathic pulmonary fibrosis (IPF) (200) and a common (MAF=24%) SNP in the 

nearby gene KANSL1, also within the inversion locus was associated with extremes of 

FEV1 (high FEV1 versus low FEV1) in the UK BiLEVE study (120). The SNP identified in 

these analyses is the first low frequency SNP in this region to be associated with lung 

function. 
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Table 5-5: Analysis of PEF; 10 most strongly associated SNPs. 

Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry 

principal components, and stratified by ever smoking status. 

SNP (Chr:Pos) 
 

Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
estimate 

Standard 
error 

P-value Annotation(s) 

rs79105080 (chr3:160779029) * T/C 0.8474 2.28% -0.2397 0.0173 1.61x10-43 PPM1L, intron_variant 

rs191050570 (chr4:15582642) * T/C 0.6451 1.88% -0.3890 0.0227 1.42X10-65 CC2D2A, intron_variant 

rs74936215 (chr4:77349465)* G/A 0.7627 1.51% -0.3133 0.0225 3.07x10-44 Intergenic, near CCDC158, SHROOM3 

rs7658614 (chr4:145445694) T/A 0.9987 46.81% 0.0707 0.0046 7.55x10-54 Intergenic, near HHIP 

rs538489083 (chr6:32095727) * C/T 0.5303 1.70% -0.3768 0.0256 3.83x10-49 ATF6B, intron_variant 

rs138535200 (chr6:108633740) * C/T 0.7463 2.54% -0.2482 0.0176 4.73x10-45 LACE1, intron_variant 

rs150950471 (chr12:39134817)* C/G 0.6038 2.41% -0.4098 0.0213 3.65x10-82 CPNE8, intron_variant 

rs74930371 (chr16:19273328) * G/T 0.9151 1.95% -0.2447 0.0176 7.15x10-44 SYT17, intron_variant 

rs3104770 (chr16:52627368) * A/T 0.7563 2.77% -0.2379 0.0168 1.98x10-45 
CASC16, intron_variant, 
non_coding_transcript_variant 

rs73314997 (chr17:44061123) * C/T 0.6376 2.31% -0.3898 0.0210 3.00x10-77 MAPT, missense_variant 
* SNP in one of the 10 most strongly associated regions with FEF25-75 (Table 5-6) 
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Table 5-6: Analysis of FEF25-75; 10 most strongly associated SNPs. 

Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry 

principal components, and stratified by ever smoking status. 

SNP (Chr:Pos) 
 

Effect/ 
noneffect 
allele 

INFO MAF Effect 
estimate 

Standard 
error 

P-value Annotation(s) 

rs79105080 (chr3:160779029) * T/C 0.8474 2.28% -0.2985 0.0175 1.67x10-65 PPM1L, intron_variant 

rs191050570 (chr4:15582642) * T/C 0.6451 1.88% -0.4881 0.0232 2.40x10-98 CC2D2A, intron_variant 

rs116291420 (chr4:77346196)* G/C 0.7825 1.52% -0.4094 0.0222 5.10x10-76 Intergenic, near CCDC158, SHROOM3 

rs538489083 (chr6:32095727) * C/T 0.5303 1.70% -0.4520 0.0260 6.70x10-68 ATF6B, intron_variant 

rs138535200 (chr6:108633740) * C/T 0.7463 2.54% -0.3021 0.0178 2.88x10-64 LACE1, intron_variant 

rs6981627 (chr8:22530061)  G/C 0.9132 2.56% -0.2699 0.0157 2.31x10-66 BIN3, upstream_gene_variant 

rs115903505 (chr12:39146668)* T/A 0.6039 2.48% -0.5497 0.0215 5.86x10-144 CPNE8, intron_variant 

rs74930371 (chr16:19273328) * G/T 0.9152 1.95% -0.2974 0.0178 7.04x10-63 SYT17, intron_variant 

rs3104770 (chr16:52627368) * A/T 0.7563 2.77% -0.3065 0.0171 3.84x10-72 
CASC16, intron_variant 
non_coding_transcript_variant 

rs73314997 (chr17:44061123) * C/T 0.6376 2.31% -0.4944 0.0213 1.24x10-119 MAPT, missense_variant 
* SNP in one of the 10 most strongly associated regions with PEF (Table 5-5)  
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The only common SNP amongst the top ten hits for each trait was an intergenic SNP, 

rs7658614 (MAF=46.81%), associated with with PEF (PPEF =7.55x10-54). This SNP is 

upstream of HHIP and in LD with SNPs which have previously been associated with 

FEV1/FVC (117) and COPD related traits (201, 202). The remaining top hits were all low 

frequency (1%≤MAF<5%) and indeed, the majority of of identified variants had a 

MAF<5%.  

Of the 127 SNPs identified as associated with PEF, 64 had a MAF of 1-5%, and 11 had a 

MAF<1%. For FEF25-75, 96 of the 215 identified SNPs had a MAF between 1-5%, and 27 

had a MAF <1%. Figure 5-12 shows the MAFs and effect estimates of all identified 

SNPs; low frequency and rare SNPs can be seen to have far larger effect size estimates 

than common SNPs. This result supports the notion that rare variants are likely to 

exhibit larger effects than do common variants on a complex trait (37, 203); however 

very low frequency SNPs are only likely to be detected if they have large effect sizes. It 

is probable that many more low frequency SNPs with more modest effects could be 

influencing these traits, however there is not enough statistical power to detect these 

associations. Furthermore, the estimated effect sizes of these SNPs may also be 

inflated due to the winner’s curse phenomenon, and it is likely that observed effects in 

independent follow-up samples would be more modest. 

Figure 5-12: Comparison of MAF and effect sizes for all SNPs identified in the analyses of A. PEF and B.FEF25-75. 

 

It should also be noted that these low frequency SNPs may be more prone to false 

positive associations as lower frequency SNPs are more likely to be less well imputed 

B A 
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than are common SNPs. Indeed the majority of the most strongly associated low 

frequency SNPs (1%≤MAF<5%, Table 5-5 and Table 5-6) had INFO<0.8, indicating some 

uncertainty of the imputed genotypes (INFO<0.5 used as filter for SNPs with MAF≥1%). 

In terms of common SNPs (MAF≥5%), the 10 most significant associations for each trait 

are listed in Table 5-7 (PEF) and Table 5-8 (FEF25-75). Some of the SNPs listed in these 

tables are secondary or tertiary signals in regions where the sentinel SNPs for the 

primary signals were low frequency. The majority of these common SNP associations 

are within regions previously associated with FEV1 or FEV1/FVC, including HTR4, 

THSD4, NPNT (117), HHIP (116), GPR126 (118), CFDP1 (119). There were also several 

SNPs within the major histocompatibility complex (MHC) region associated with PEF 

and FEF25-75 in these analyses; a number of genes within this region have previously 

been implicated in lung function (117-120). Associations in regions not previously 

implicated in lung function included common SNPs in, or near to SLC26A9, HAPLN1, 

BIN3 and BIRC6.   

None of the regions previously identified in GWAS of PEF and FEF25-75 (121-123) were 

identified in the present analyses. rs2325934 in CDH13 is the only genome-wide 

significant association with FEF25-75 (decline) identified to date, however in this 

analyses, this SNP showed no association with FEF25-75 (PFEF25-75=0.398). Other SNPs 

within CDH13 did show modest association with FEF25-75 however (strongest 

association with rs552901786, MAF=0.20%, INFO=0.851, PFEF25-75=1.45x10-4). 
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Table 5-7: Analysis of PEF; 10 most strongly associated common SNPs (MAF≥5%). 

Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry 

principal components, and stratified by ever smoking status. 

SNP (Chr:Pos) 
 

Effect/ 
noneffect 
allele 

INFO MAF Effect 
estimate 

Standard 
error 

P-value Conditioned SNP(s) Annotation(s) 

rs1342062 (chr1:205912786) G/T 0.9514 32.70% 0.0437 0.0050 2.33x10-18 NA SLC26A9, upstream_gene_variant 

rs34712979 (chr4:106819053) G/A 1.0000 25.85% -0.0592 0.0052 1.04x10-29 NA NPNT, splice_region_variant,intron_variant 

rs7658614 (chr4:145445694) T/A 0.9987 46.81% 0.0707 0.0046 7.55x10-54 NA Intergenic, near HHIP 

rs4466136 (chr5:82985576) T/G 0.9962 21.94% -0.0485 0.0055 2.05x10-18 NA HAPLN1, intron_variant 

rs9273229 (chr6:32613914) A/C 0.8656 36.45% -0.0502 0.0051 8.46x10-23† 
rs532524051, rs538489083, 
rs560438058 HLA-DQA1, downstream_gene_variant 

rs560438058 (chr6:32670158) T/G 0.8307 5.48% -0.1304 0.0113 1.22x10-30† rs538489083 Intergenic, near HLA-DQB1, HLA-DQA2 

rs190516 (chr6:142813761) T/C 0.9947 31.09% 0.0494 0.0050 2.29x10-23 NA Intergenic, near GPR126, ADGRG6 

rs34249114 (chr8:22535398) G/A 0.9461 6.01% -0.1264 0.0100 1.01x10-36 rs6981627 Intergenic, near BIN3, EGR3 

rs1441358 (chr15:71612514) T/G 1.0000 33.60% -0.0468 0.0049 6.39x10-22 NA THSD4, intron_variant 

rs11149827 (chr16:75435143) A/G 0.9878 40.82% -0.0380 0.0047 4.54x10-16 NA CFDP1, intron_variant 

† P-value conditional on SNP(s) listed in Conditioned SNP(s) column.  
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Table 5-8: Analysis of FEF25-75; 10 most strongly associated common SNPs (MAF≥5%). 

Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry 

principal components, and stratified by ever smoking status. 

SNP (Chr:Pos) Effect/ 
noneffect 
allele 

INFO MAF Effect 
estimate 

Standard 
error 

P-value Conditioned SNP(s) Annotation(s) 

rs73922761 (chr2:32816432) T/C 0.889 5.06% -0.1403 0.0115 1.62x10-34† rs143880252,rs139999372 BIRC6, intron_variant 

rs34712979 (chr4:106819053) G/A 1.000 25.85% -0.0879 0.0053 1.61x10-62 NA NPNT, splice_region_variant,intron_variant 

rs6817273 (chr4:145492003) T/C 0.998 39.56% 0.0686 0.0047 3.16x10-48 NA Intergenic, near HHIP 

rs7733410 (chr5:147856522) G/A 1.000 44.04% 0.0571 0.0046 8.49x10-35 NA HTR4, intron_variant 

rs9270377 (chr6:32558260) G/T 0.729 44.95% -0.0685 0.0054 5.77x10-37† 
rs149405105 ,rs532524051, 
rs538489083, rs560438058 Intergenic, near HLA-DRB1 

rs560438058 (chr6:32670158) T/G 0.831 5.48% -0.1633 0.0114 2.58x10-46† rs538489083 Intergenic, near HLA-DQB1, HLA-DQA2 

rs3748069 (chr6:142767633) A/G 1.000 28.91% 0.0729 0.0051 1.02x10-46 NA Intergenic, near GPR126, ADGRG6 

rs34249114 (chr8:22535398) G/A 0.946 6.01% -0.1503 0.0100 1.25x10-50† rs6981627 Intergenic, near BIN3, EGR3 

rs2271804 (chr10:12252217) G/A 0.996 47.03% 0.0462 0.0046 1.73x10-23 NA 
CDC123, intron_variant  

rs1441358 (chr15:71612514) T/G 1.000 33.60% -0.0614 0.0049 3.89x10-36 NA 
THSD4, intron_variant 

† P-value conditional on SNP(s) listed in Conditioned SNP(s) column.  
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There was a significant overlap in the SNPs and regions identified through the analyses 

of PEF and FEF25-75. Of the 127 sentinel SNPs for PEF, 98 were significantly associated 

with FEF25-75 (P<5x10-8). Similarly, of the 215 sentinel SNPs identified for FEF25-75, 102 

were significantly associated with PEF. The estimated effect sizes for the two traits 

were also highly correlated, as can be seen in Figure 5-13, which shows a comparison 

of the effect estimates for all SNPs identified as sentinels for one or both of PEF and 

FEF25-75. This overlap in the signals identified for these two traits is unsurprising, given 

the correlation of these two flow measures of lung function, as was seen in Section 

5.5.1 (inverse-normally transformed traits, r2=0.676, Figure 5-6).  

Figure 5-13: Comparison of estimated effect sizes for PEF and FEF25-75.  

All SNPs identified as sentinel SNPs for one or both of PEF and FEF25-75 shown. 

 

5.5.5 Quality Control of results 

There are a number of steps which should be taken to limit the number of false 

positive associations identified in these analyses, which are outlined in this section. 

Firstly, clusterplots should be generated for all identified SNPs. Where SNPs have been 

directly genotyped, for example rs34712979 in NPNT, which was associated with both 

PEF and FEF25-75 (MAF=25.85%, PPEF=1.04x10-29, PFEF25-75=1.61x10-62), the clusterplot for 

that SNP can be inspected. Figure 5-14 shows two clusterplots for this SNP: the left 
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shows genotype clusters for samples genotyped using the UK BiLEVE array, whilst the 

right plot shows clustering for samples genotyped using the UK Biobank array. 

Genotype calling for samples genotyped on both arrays appears accurate in this 

example, so this signal is not an artefact of genotyping error, nor of poor genotype 

calling. 

Figure 5-14: Clusterplot for rs34712979, identified as a sentinel in the analyses of PEF and FEF25-75.  

The left plot shows samples genotyped on the UK BiLEVE array; the right plot shows samples genotyped on the UK 

Biobank array. 

 

Where sentinel SNPs have been imputed and not directly genotyped, clusterplots for 

SNPs which are in LD with the sentinel SNP and have been directly genotyped should 

be inspected, where possible. rs6817273 near HHIP (MAF=25.85%, PFEF25-75=3.16x10-48) 

was not directly genotyped, but appeared well imputed with an INFO score of 0.998. 

The region plot showing the association of this SNP with FEF25-75 shows that there are a 

number of nearby SNPs in high LD (r2>0.8) with the sentinel SNP, which also show 

strong association with FEF25-75 (Figure 5-15). One of the SNPs in strong LD with the 

sentinel SNP was rs1980057 (r2=0.976 with rs6817273), which had been directly 

genotyped; the clusterplots for this SNP (Figure 5-16) appear to show accurate 

clustering and genotype calling, providing supporting evidence that this does not 

represent a false positive association due to genotyping error. 
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Figure 5-15: Region plot for the association of rs6817273 and FEF25-75.  

The sentinel SNP in each region is highlighted in blue with the LD (r2) of nearby SNPs to the sentinel indicated by 

colour. The fine scale recombination rate is shown in light blue. 

 

Figure 5-16:  Clusterplot for rs1980057, in strong LD with the sentinel SNP rs6817273 (r2=0.976) identified in the 

analysis of FEF25-75.  

The left plot shows samples genotyped on the UK BiLEVE array; the right plot shows samples genotyped on the UK 

Biobank array. 

 

Region plots for some of the other sentinel SNPs show less supporting evidence of 

association from nearby SNPs in the region, such as intergenic SNP rs12427728 
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(MAF=1.05%, INFO=0.565 PFEF25-75=1.74x10-50, Figure 5-17). This SNP is not in LD with 

any genotyped SNP (LD between rs12427728 and all genotyped SNPs r2<10-7), and has 

an INFO score close to the exclusion threshold (INFO<0.5 for SNPs with MAF≥1%; 

INFO<0.8 for SNPs with MAF<1%), so is therefore more likely to be a false positive. 

Figure 5-17: Region plot for the association of rs12427728 and FEF25-75. 

The sentinel SNP in each region is highlighted in blue with the LD (r2) of nearby SNPs to the sentinel indicated by 

colour. The fine scale recombination rate is shown in light blue. 

 

In total, 20 (15.7%) SNPs associated with PEF were directly genotyped and 37 (29.1%) 

SNPs had a proxy (r2≥0.1) that was genotyped and for which cluster plots could be 

inspected. For the remaining 70 (55.1%) SNPs there were only very weak genotyped 

proxies (r2<0.1). For the FEF25-75 associated SNPs, 57 (26.5%) were directly genotyped, 

59 (27.4%) had a genotyped proxy (r2≥0.1) with the remaining 99 (46%) SNPs having 

only a very weak proxy that was genotyped. For both traits, it was mostly the low 

frequency and rare variants for which no good genotyped proxy was available (Table 

5-9); the assessment of genotype calling errors for these SNPs in particular is 

challenging. 
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Table 5-9: Summary of the number of SNPs that were genotyped, or had a genotyped proxy, for which 

clusterplots could be generated to assess genotype calling.  

SNPs categorised by MAF. Strength of proxies determined by linkage disequilibrium (r2). 

A. SNPs associated with PEF 

 Directly 

Genotyped 

Strong proxy  

(r2≥0.5) 

Weak proxy  

(0.5>r2≥0.1) 

No good proxy 

 (r2<0.1 ) 

MAF≥5% 6 26 10 10 

5%≥MAF>1% 14 1 0 49 

MAF<1% 0 0 0 11 

B. SNPs associated with FEF25-75 

 Directly 

Genotyped 

Strong proxy  

(r2≥0.5) 

Weak proxy  

(0.5>r2≥0.1) 

No good proxy 

 (r2<0.1 ) 

MAF≥5% 15 42 16 19 

5%≥MAF>1% 41 1 0 54 

MAF<1% 1 0 0 26 

 

A further potential cause of false positive associations in the present analyses is from 

the use of two different genotyping arrays. To investigate this issue, analyses were 

undertaken in which associations between all identified sentinel SNPs and genotyping 

array were tested (UK BiLEVE array [n=44,289] versus UK Biobank array [n=58,640]). 

Table 5-10 summaries the numbers of sentinel SNPs (A. 127 SNPs associated with PEF 

and B. 215 SNPs associated with FEF25-75) that were associated with genotyping array 

with P<10-5. For common variants, reassuringly the majority of identified SNPs do not 

show significant associations with genotyping array. For identified SNPs with MAF<5% 

however, a large proportion was found to be associated with genotyping array. Some 

of the SNPs identified as showing associations with PEF or FEF25-75 in these analyses are 

therefore likely to be spurious associations due to an array effect. For example, 

rs1426311472 was identified in the GWAS of PEF (P=1.14x10-27). The MAFs for this SNP 

amongst those samples genotyped on each array were markedly different (UK BiLEVE 

array MAF=0.02%; UK Biobank array MAF=5.9%); this large difference in MAF suggests 

that the observed association with PEF was a result of a bias due to genotype array 

effect. 
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Table 5-10: Summary of associations with genotyping array. 

Results shown for A. 127 SNPs associated with PEF and B. 215 SNPs associated with FEF25-75 

 A. SNPs associated with PEF B. SNPs associated with FEF25-75 

Associated with Chip (P<10-5) Associated with Chip (P<10-5) 

Yes No Yes No 

MAF≥5% 7 45 12 80 

5%≥MAF>1% 60 4 91 5 

MAF<1% 11 0 27 0 

 

It may not be the case that all SNPs showing association with genotyping array are 

resulting in spurious associations with lung function however. The samples selected to 

be genotyped using the UK BiLEVE array were chosen as their lung function measures 

(percent predicted FEV1) were at the extremes or the middle of the lung function 

distribution in UK Biobank. Consequently, there is a very strong association between 

genotyping array and lung function (association between genotyping array and the 

transformed PEF phenotype P=2.76x10-220). Figure 5-18 shows the distribution of PEF 

and FEF25-75 phenotypes in never smoker and ever smokers, stratified by genotyping 

array, and it can be seen that individuals whose lung function is towards the extremes 

of the distribution are more likely to be genotyped on the UK BiLEVE array. In 

particular, if there exist low frequency variants with large effects, they are likely to be 

enriched in individuals at the extremes of the lung function distribution, therefore 

significant associations with genotyping array would be expected. rs7711789 was 

associated with PEF (P=3.82x10-9), and also showed a significant association 

genotyping array (P=1.61x10-78). There were differences in MAFs between those 

samples genotyped on the UK BiLEVE array (MAF=1.7%) and the UK Biobank array 

(MAF=1.0%); however it is plausible that this difference in MAFs is reflective of this 

SNP having a true effect on lung function. 
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Figure 5-18: Distribution of PEF and FEF25-75 phenotypes in never smoker and ever smokers, stratified by 

genotyping array. 

 

For the purposes of this chapter, no exclusions have been made based on the 

inspection of clusterplots, nor due to array associations. The most convincing way to 

eliminate false positive findings is through following up all identified signals in an 

independent sample, to identify which SNP associations are replicated. At the time of 

writing, there was no available resource with sufficient sample size and phenotype 

data that would be suitable for the replication of the findings described in this chapter. 

However, the remaining samples in UK Biobank (n=201,415 with PEF and FEF25-75 

phenotype data available) are currently being genotyped, and these samples would 

provide a suitable replication resource for future follow-up. Since the UK BiLEVE 

samples were selected from heavy smokers and never smokers in UK Biobank, a large 

proportion of individuals with extreme lung function values will have been selected for 

this analysis and will have been genotyped on the UK BiLEVE array. Individuals with 

extreme lung function values, but who did not meet either the never or heavy smoking 
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criteria will be amongst the remaining UK Biobank participants, currently being 

genotyped on the UK Biobank array. This subset of individuals in particular will be 

useful for following up potential associations with low frequency SNPs with large 

effects, and for distinguishing whether these signals represent true associations, or are 

due to a genotyping array effect. 

5.5.6 Effect of identified SNPs on volumetric lung function traits 

For all SNPs identified as showing association with PEF and/or FEF25-75, analyses of 

three volumetric lung function traits (FEV1, FVC and FEV1/FVC) were undertaken. As 

was seen in Figure 5-6 and Figure 5-7, PEF and FEF25-75 and the three volumetric lung 

function traits were all moderately to strongly correlated. A comparison of effect sizes 

for all SNPs associated (P<5x10-8) with A. PEF and B.FEF25-75 and their estimated effects 

on FEV1, FVC, FEV1/FVC can be seen in Figure 5-19. The effect estimates for both PEF 

and FEF25-75 and the three volumetric lung function traits are overall highly correlated, 

with the majority of identified SNPs also reaching genome-wide significance (P<5x10-8) 

for one or more of the volumetric traits (Figure 5-19).  
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Figure 5-19: Comparison of effect estimates and P-values for SNPs associated (P<5x10-8) with A. PEF and B. FEF25-75 and other lung function traits. 

A. 

B. 
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Figure 5-20 further shows the overlap of SNPs showing genome-wide significant 

associations with the three volumetric traits, for all SNPs identified as showing 

association with A. PEF and B. FEF25-75. 

Figure 5-20: Summary of overlap of traits for which SNPs show genome-wide significant associations (P<5x10-8).  

Shown are the number of variants showing  genome-wide significant association (P<5x10-8) with each volumetric 

trait (FEV1, FVC and FEV1/FVC)  for A. 127 SNPs associated with PEF and B. 215 SNPs associated with FEF25-75. 

 

 

 

 

Consistent with the patterns of correlation of the traits (Figure 5-7), the majority of 

SNPs associated with FEF25-75, are also significantly associated with one or both of FEV1 

and FEV1/FVC (P<5x10-8). Furthermore, there are no SNPs which show association with 

FEF25-75 and FVC, that are not also associated with one of the other two traits. Ten 

FEF25-75 associated SNPs did not show genome-wide significant associations with any of 

the volumetric lung function traits; however all of those SNPs did show moderate 

association at a lower level of significance (P<5x10-5) with at least one other trait. 

For the PEF associated SNPs, again the majority showed genome-wide significant 

associations with at least one volumetric trait, in particular FEV1 and FEV1/FVC. There 

are 25 SNPs which were identified  through the analysis of PEF which do not show 

genome-wide significant association with any of FEV1, FVC or FEV1/FVC; of those, 15 

6 16 11 

65 

4 0 

0 25 

FVC 

FEV1 FEV1/FVC 

23 47 50 

73 

12 0 

0 10 

FVC 

FEV1 FEV1/FVC 

A. 127 PEF associated SNPs B. 215 FEF25-75 associated SNPs 

All 10 variants show suggestive 
association with at least one 

volumetric trait with 5x10-8 <P<5x10-5. 

15 variants show suggestive 
association with at least one 

volumetric trait with 5x10-8<P<5x10-5. 

10 “PEF-specific Signals”: 
variants associated with no 

volumetric trait with P<5x10-5. 
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did show moderate association (P<5x10-5),  while for 10 SNPs, no associations reached 

this intermediate significance level for any other lung function trait. 

The associations of these ten SNPs and PEF are summarised in Table 5-11 and region 

plots are shown in Figure 5-21. The most significant PEF specific association was with 

rs4466136, an intronic SNP in HAPLN1 (MAF=21.9%, Beta=-0.0485, P=2.05x10-18). This 

showed no statistically significant association with any of the volumetric lung function 

traits, all with P≥0.045. Other SNPs which showed a significant association with PEF 

and only very weak associations with other lung function traits (P≥0.01) were 

rs59538733 (MAF=30.7%, Beta=-0.0311, P=3.98x10-8), an intergenic SNP on 

chromosome 1, upstream of LAPTM5 and MATN1, and rs11111272 (MAF=28.5%, 

Beta=-0.0303, P=2.17x10-9), an intronic SNP in IGF1. Other PEF-specific SNPs were 

located in, or near to ARHGAP15, CYTL1, LOC105378963, MIR8056, UST, LYL1 and 

TASP1. All of these SNPs did show suggestive association with either FEV1 or FEV1/FVC 

however (5x10-3>P>5x10-5).
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Table 5-11: Summary of SNPs associated with PEF and no other lung function trait (P<5x10-5). 

Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and 

ancestry principal components, and stratified by ever smoking status. 

SNP (Chr:Pos) Effect/ 
noneffect 
allele 

INFO MAF Effect 
estimate 

Standard 
error 

P-value Gene(s) Most significant association with 
another lung function trait. 

Trait P-value 

rs59538733 (chr1:31258698) GC/G 0.9978 30.69% -0.0311 0.0050 3.98x10-10 near LAPTM5, MATN1, SDC3, intergenic FEV1/FVC 0.0619 

rs4372823 (chr2:144325926) A/G 0.9931 17.59% 0.0413 0.0060 8.02x10-12 ARHGAP15, intron_variant 
FEV1/FVC 1.88 x10-4 

rs28752137 (chr4:5030854) A/G 0.9895 32.57% 0.0370 0.0049 4.17x10-14 near CYTL1, STK32B, intergenic FEV1 4.39 x10-3 

rs350415 (chr5:51968428) A/G 0.9948 26.02% 0.0293 0.0052 2.13x10-8 LOC105378963, downstream_gene_variant FEV1 7.52x10-5 

rs4466136 (chr5:82985576) T/G 0.9962 21.94% -0.0485 0.0055 2.05x10-18 HAPLN1, intron_variant 
FEV1/FVC 0.0451 

rs11747434 (chr5:172779211) T/C 0.9778 27.68% 0.0301 0.0052 5.93x10-9 MIR8056, downstream_gene_variant  FEV1 2.70 x10-3 

rs574284527 
(chr6:149371098) 

C/CACAG 0.9497 33.67% -0.0324 0.0050 7.52x10-11 UST, intron_variant 
FEV1/FVC 4.40x10-3 

rs11111272 
(chr12:102827441) 

G/C 0.9961 28.53% -0.0303 0.0051 2.17x10-9 IGF1, intron_variant 
FVC 0.0105 

rs138326911 
(chr19:13213277) 

T/C 0.9380 3.74% -0.0715 0.0124 9.01x10-9 LYL1, intron_variant  
FEV1 2.26x10-4 

rs34590652 (chr20:13526292) A/AT 0.9862 43.53% 0.0269 0.0046 7.05x10-9 TASP1, intron_variant  FEV1 1.33x10-4 
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Figure 5-21: Region plots for 10 PEF-specific signals.  

The sentinel SNP in each region is highlighted in blue with the LD (r2) of nearby SNPs to the sentinel indicated by 

colour (red: r2>0.8, orange: 0.8≥r2>0.5, yellow: 0.5≥r2>0.2, grey: r2<0.2). The fine scale recombination rate is shown 

in light blue. 
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All of these 10 PEF-specific signals appear to be well imputed (all have INFO>0.9) and 

the sentinel SNP for all but one signal was common. The genotyped proxy SNP in 

strongest LD with the sentinel was identified for each signal, and cluster plots 

inspected. For 6 sentinels, there was a genotyped SNP in strong or moderate LD 

(r2>0.5) for which clusterplots could be generated. Two sentinel SNPs had weaker 

proxies (0.2≤r2<0.5) and only very weak genotyped proxy SNPs (r2≤0.01) were available 

for the remaining 2 sentinels. The clusterplots for all of these genotyped proxies 

(Appendix F) showed good clustering and accurate genotype calling. Furthermore, 

none of these 10 SNPs showed significant associations with genotyping array (all 

P≥0.02). To fully verify these associations, replication analyses should be carried out 

using an independent set of samples. 
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5.6 Discussion 

This chapter describes the largest GWAS of flow measures of lung function, PEF and 

FEF25-75, carried out to date. These analyses were intended to determine the utility of 

studying these flow measures in addition to FEV1, FVC and FEV1/FVC, and to establish 

whether such analyses could potentially point to novel biological mechanisms 

underlying lung function. These analyses identified a large number of signals for each 

trait: 127 SNPs in 93 regions for PEF and 215 SNPs in 153 regions for FEF25-75. Whilst all 

SNPs associated with FEF25-75 were also found to be associated with one or more of 

FEV1, FVC and FEV1/FVC, there were 10 SNPs which were associated with PEF and no 

other lung function trait (P<5x10-5). Future replication in independent samples is 

required to fully verify all results. 

Amongst the top signals identified for each trait were a number of SNPs in regions 

which had previously been implicated in the volumetric lung function traits, FEV1 and 

FEV1/FVC, or COPD and related traits; these included associations in, or near to HHIP, 

NPNT and KANSL1. The two most statistically significant associations for both PEF and 

FEF25-75 that were in regions not previously implicated in other lung function traits, 

were with SNPs in CPNE8 and CC2D2A. CPNE8 (Copine VII) is in a family of calcium-

dependent membrane binding proteins, characterised as having two N-terminal C2 

domains and an A domain at the C-terminus, which may be involved in membrane 

trafficking and cell signaling pathways (204). CC2D2A (coiled-coil and C2 domain 

containing 2A) encodes a coiled-coil and calcium binding domain protein which plays a 

critical role in cilia formation, with mutations within this gene known to cause Joubert 

and Meckel syndromes (205).  

The sentinel SNPs in CPNE8 and CC2D2A, were amongst 59% and 57% of the sentinel 

SNPs for PEF and FEF25-75 respectively, which were low frequency or rare (MAF<5%). 

The estimated effect sizes of low frequency and rare SNPs on PEF and FEF25-75 were 

generally seen to be greater than for SNPs with higher frequencies. Low frequency 

SNPs have been found to exhibit large effects on a number of other traits, including 

bone mineral density (206), insulin processing and secretion (57) haematological traits 

(59), as well as in other lung function traits (43). These low frequency and rare SNPs 

are likely to be imputed with less accuracy than common SNPs, so replication of the 
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low frequency signals in the present analysis is of particular importance to eliminate 

false positive findings. Many of the low frequency and rare SNPs in these analyses 

were additionally found to be significantly associated with genotyping array (P<10-5). 

Whilst this suggests that some of the identified SNPs might spurious associations 

resulting from a genotyping array effect, this may not be the case for all SNPs as 

samples that were genotyped on the UK BiLEVE array were selected on the basis of 

their lung function. For example, a SNP that is associated with low values of PEF or 

FEF25-75 might also be significantly associated with genotyping array, as samples with 

poor lung function are more likely to genotyped on the UK BiLEVE array. In some 

instances, it might be possible to determine whether a signal is likely to be a result of a 

genotyping array effect, by examining each SNP individually (for example if the 

differences in MAFs between individuals genotyped on the two arrays was too 

extreme to be a result of differences in lung function, section 5.5.5), however 

replication will be the most convincing way to eliminate false positive associations 

overall. 

In terms of common SNPs, the most statistically significant associations were generally 

within regions previously implicated in lung function. Associations in novel loci 

included common SNPs within, or close to SLC26A9, HAPLN1, BIN3 and BIRC6.  Of note, 

the solute carrier 26A9 (SLC26A9) gene functions as a chloride ion (Cl–) channel and is 

highly expressed in the lung. Missense mutations within SLC26A9 have been identified 

in individuals with diffuse bronchiectasis (207), and mice deficient in SLC26A9 showed 

airway obstruction after IL-13 induced mucus overproduction, suggesting the SLC26A9 

Cl– channel is activated in airway inflammation (208). 

The present analyses also identified a number of regions where there were two or 

more independent signals. Recent studies of a number of traits, including body mass 

index (29), height (33), lipids and coronary artery disease (209) have also identified 

regions where there are multiple signals. These results highlight the utility of 

undertaking conditional analyses to identify secondary and potentially further signals 

in each identified genomic region. Although gene-based tests were not undertaken as 

part of this chapter, these too could provide an additional means for identifying 

regions with multiple SNPs influencing a trait. 
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Overall there was a large overlap in the regions that were significantly associated with 

both PEF and FEF25-75. The majority of SNPs associated with these flow measures, were 

also found to be associated with at least one of the three volumetric lung function 

traits, in particular with FEV1 and FEV1/FVC. This is largely unsuprising, given that all of 

these traits are moderately to strongly correlated. One of the main aims of this chapter 

was to determine whether GWAS of PEF and FEF25-75 might identify signals in regions 

not associated with the three volumetric lung function measures, usually studied in 

GWAS of lung function. While all SNPs identified in the analysis of FEF25-75 showed at 

least modest association with one or more of FEV1, FVC and FEV1/FVC, there were ten 

SNPs which were identified as being associated with PEF, but not with any volumetric 

lung function trait with P<5x10-5. In particular, associations with PEF were identified 

with SNPs in HAPLN1, IGF1 and an intergenic SNP near to LAPTM5 and MATN1; for 

these SNPs, all associations with other lung function traits had P≥0.01. 

The Hyaluronan and proteoglycan link protein 1 (HAPLN1) gene assembles and 

stabilises cartilage proteoglycan aggregate in the cartilage extracellular matrix (210). 

Mice deficient in HAPLN1 have been shown to have defective cartilage development 

and delayed bone formation (211) and the gene is also thought to play a role in cardiac 

development (212). The matrilin 1, cartilage matrix protein (MATN1) is another 

component of the extracellular matrix, containing two Willebrand Factor A domains. 

MATN1 is associated with cartilage proteoglycans and binds to both collagen fibrils and 

noncollagenous proteins (213, 214). 

Insulin-like growth factor 1 (IGF1) regulates several cell functions including 

proliferation, growth and apoptosis (215) and has been implicated in a wide range of 

traits and diseases, including anthropometric traits (216, 217), bone mineral density 

(218), breast cancer (219) and glycaemic traits (215, 220). IGF1 has also been found to 

play a crucial role in lung development. One study showed that embryonic mice 

deficient in IGF1 exhibited delayed distal lung organogenesis (221). Furthermore, IGF1 

has been found to be highly expressed in human lung endothelial cells in early 

gestation, suggesting a role in vascular development in the foetal lung (222). 
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Lysosomal protein transmembrane 5 (LAPTM5) encodes a transmembrane receptor 

that has a role in T and B cell activation and the regulation of inflammatory responses 

by macrophages (223). LAPTM5 has been shown to display differential expression in 

foetal and adult lung and may be partially regulated by DNA methylation (224).  

In summary, the analyses described in this chapter highlighted a modest number of 

associations with PEF and SNPs that were not seen with any of the volumetric traits, 

usually studied in GWAS of lung function. Although the associations identified in this 

chapter require replication in independent samples, they suggest there may be some 

utility in studying flow measures, particularly PEF, alongside volumetric measures in 

future studies. The benefit of studying these additional lung function phenotypes is the 

potential to discover loci which would not be identified through studying volumetric 

traits alone and which might reveal the influence of different biological pathways on 

lung health and disease. The disadvantage of studying multiple related traits is the 

increased burden of multiple testing, which would need to be taken into account. One 

way in which these flow measures could be incorporated into prospective analyses, 

without increasing the burden of multiple testing, is through the use of multivariate 

methods. A number of multivariate GWAS methods have been proposed for studying 

the genetic determinants of multiple correlated traits (225-229), which aim to 

maximise power, by making use of extra information from the between-trait 

covariance.  Given the correlations between PEF, FEF25-75 and volumetric lung function 

traits, these multivariate methods might provide a promising approach for further 

unravelling the genetic architecture of lung function in future studies. 
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Chapter 6 Conclusions 

The primary aim of the work presented in this thesis was to investigate the genetic 

basis of lung function and COPD, with a particular focus of exploring the effect of low 

frequency and rare genetic variants, so far largely overlooked in GWAS of these traits. 

To this end I have utilised recently developed genotyping chips, imputation panels and 

statistical methods throughout the thesis. This final chapter summarises the main 

findings of the thesis (Section 6.1), describes some of the challenges faced whilst 

undertaking this work (Section 6.2) and discusses ongoing and future work in the field 

(Section 6.3). 

 

6.1 Summary of work 

In Chapter 2, I describe an exome array analysis of COPD risk, and of airflow limitation 

in COPD cases.  These analyses drew 3226 COPD cases from a number of sample 

collections, as part of the UK COPD exome chip Consortium, and 4784 controls from 

the wider UK exome chip Consortium, with follow-up using a further 13,210 samples 

from the UK BiLEVE study (120). I verified associations at a number of previously 

reported COPD loci, and identified novel associations between COPD risk and low 

frequency SNPs in MOCS3 and IFIT3. Furthermore, a rare SNP in SERPINA12 was 

identified as showing association with %predicted FEV1 in COPD cases. None of these 

associations met a predefined exome-wide significance level (P<3.7x10-7) however and 

further follow-up would be required to fully verify these associations. The results of 

these analyses were published in Thorax in 2016 (148). 

In Chapter 3, I undertook an evaluation of methods developed for the meta-analysis of 

gene-based tests. This evaluation aimed to examine the concordance of the meta-

analysis methods with equivalent analyses using individual level data in a dataset with 

real genome-wide genetic data and phenotypes, far larger than has been utilised for 

evaluating these methods to date. Using the RAREMETAL (74) package and data from 

the UK BiLEVE study (120), I found the meta-analysis methods to be approximately 

equivalent to a mega-analysis using individual level data, for a quantitative trait, and a 

binary trait with a balanced ratio of cases and controls. I then applied these methods in 
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a meta-analysis of exome array data and three quantitative lung function measures: 

FEV1, FVC and FEV1/FVC, as described in Chapter 4. These analyses were undertaken in 

23,398 individuals from 11 studies from the SpiroMeta Consortium, with follow-up in 

up to 93,390 independent samples. Through these analyses, I identified an association 

with a SNP near LY86 and FEV1/FVC and with a SNP near FGF10 and FVC, in ever 

smokers; both of these associations were replicated in the follow-up samples. LY86 

interacts with the Toll-like receptor signalling pathway and may be involved in 

immunity and inflammation whilst FGF10 plays a role embryonic development, growth 

and repair.  

Finally, in Chapter 5 I carried out the largest GWAS to date of two flow lung function 

measures (PEF and FEF25-75) and genotype data imputed to a combined 1000 Genomes 

(16) and UK10K (40) imputation panel in 102,929 samples from UK Biobank. These 

analyses identified a substantial number of SNPs and short indels associated with both 

PEF and FEF25-75, a large proportion of which were low frequency or rare. Most of the 

SNPs associated with one or both of PEF and FEF25-75 were also found to be associated 

with at least one volumetric measure of lung function (FEV1, FVC and FEV1/FVC). 

However there were 10 SNPs which were identified as showing association with PEF 

(P<5x10-8), but no other lung function trait with P<5x10-5, suggesting there may be 

some utility in studying these flow measures, in addition to the three volumetric traits 

usually considered in studies of lung function. All of the associations identified in this 

chapter require replication in independent samples. 

 

6.2 Challenges and limitations 

One of the main challenges in GWA studies, particularly where low frequency variants 

are a focus, is obtaining large enough samples to have the statistical power to detect 

associations. In order to achieve such large samples, the analyses described in two of 

the chapters in this thesis utilised data from various sample collections, either by 

pooling individual level data (as was done in Chapter 2), or through carrying out a 

meta-analysis of summary level data (as in Chapter 4). Combining data in this way 

posed several challenges.  
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In Chapter 2, I used individual level data from several sample collections. Before 

undertaking the analyses, I carried out extensive quality control of both phenotype and 

genotype data. Firstly I had to combine the phenotype data from each sample 

collection, checking that all phenotype data were consistent. For example, I ensured 

that all samples had their lung function and height measurements recorded in the 

same units. I also had to ensure that all samples met the appropriate case or control 

definition. Where there were seemingly erroneous or missing data, I had to contact 

the affected study to attempt to resolve these issues. There were also a number of 

issues regarding the genotype data (Section 2.2.2). The cases and controls were 

genotyped independently and as a result, there were several SNPs which were subject 

to genotype calling errors in cases, but which were called correctly in controls. Another 

issue arose for some very rare SNPs which were subject to batch effects by case 

collection. A major challenge of the work described in Chapter 2 was identifying and 

then rectifying each of these issues, in order to eliminate false positive findings. 

For the analyses described in Chapter 4, I did not have access to individual level data. 

Instead I utilised summary data from a number of studies, which posed a different set 

of difficulties. To ensure comparable analyses were undertaken in each study, I 

developed detailed analysis plans for study analysts to follow; however there were still 

a number of issues identified, either by the study analysts, or by myself when 

undertaking QC of the summary level data (Section 4.2.7). Any heterogeneity in the 

study level analyses, or programming errors could lead to erroneous results, so great 

effort was made to detect such errors or inconsistencies. For one study (1958BC), I did 

have the individual level data which allowed me to pilot the analysis plans, prior to 

circulation. Having access to the individual level data for this study also assisted with 

resolving queries and issues faced by other study analysts. 

For the analyses undertaken in Chapter 5, I did have available the individual level data 

for all samples, which were all from a single large sample collection. As a result, there 

were fewer problems in terms of inconsistent data, batch effects and heterogeneity, as 

there were in the analyses described in Chapters 2 and 4. These data were not without 

issue however, for example I identified that a number of samples had erroneous PEF 

measurements recorded (Section 5.2.2), a problem I was able to resolve using the blow 
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data points. This issue has also been relayed to UK Biobank for the benefit of future 

scientific projects. This demonstrates the importance of thorough QC of all genotype 

and phenotype data, which has made up a substantial part of this thesis. 

The analyses described in Chapter 5 utilised imputed genotype data requiring further 

QC considerations, which were not applicable to the preceding chapters. Since there 

were no available replication samples for these analyses, I adopted strict filters for 

imputation quality (Section 5.3.1). These filters are fairly conservative, particularly for 

the lower frequency SNPs, in comparison to other GWAS using UK10K imputed data 

(120, 230, 231) and it is likely that these strict filters will have removed some true 

associations. Limiting false positive associations in these analyses was not a 

straightforward process, with post-association QC of identified SNPs being more 

complicated than for data where SNPs are directly genotyped. For example, I described 

how it was not always possible to generate clusterplots to check genotype calling for 

the identified SNP, nor for a good proxy which was directly genotyped. In particular a 

large proportion of the low frequency and rare SNPs did not have a good genotyped 

proxy and so for these SNPs, the assessment of genotype calling is especially 

challenging and the likelihood of them representing false positive associations is 

higher. Another issue specific to these analyses was that of genotyping array effects. 

Usually where multiple arrays are used in a study, this can be a source of spurious 

associations; however in the present analyses, the genotype array and lung function 

were not independent, therefore it might be expected that SNPs showing association 

with PEF or FEF25-75 might also show association with genotyping array. Indeed many of 

the SNPs identified through these analyses, did show association with genotyping array 

and this was particularly true for low frequency and rare SNPs. Each SNP would need 

to be individually examined in attempt to determine whether the signal is a true 

association or is a result of an array effect. For all associations identified in these 

analyses, replication in independent samples would be required to fully eliminate false 

positive findings. For the purposes of the chapter I generated clusterplots for all 

identified SNPs where this was possible, however due to time constraints, I did not 

identify SNPs for exclusion based on poor clusterplots, nor were any exclusions made 

due to array effects. If these associations are to be followed up in the remainder of UK 
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Biobank, these exclusions should first be made where possible, to reduce the number 

of SNPs included in the replication analyses, thereby limiting the burden of multiple 

testing.  

The analyses described in Chapters 2 and 4 utilise genotype data generated using the 

exome array. This array was primarily designed to enable the identification of trait 

associations with low frequency and rare variants, largely in coding regions, in large 

sample sizes. Overall the analyses in these chapters had limited success in identifying 

such associations. In Chapter 2, associations with COPD risk and two low frequency 

variants were identified, along with an association between a rare variant and percent 

predicted FEV1 in COPD cases. None of these associations met “exome-wide” 

significance however and so require additional verification. The analyses in Chapter 4 

identified genome-wide significant associations with two common intergenic SNPs 

only. There were several low frequency and rare SNPs identified in the discovery stage 

of these analyses, however none of these were replicated in the follow-up analyses, 

and indeed for some SNPs replication was not possible as SNPs were unavailable, or 

monomorphic in the follow-up samples. Studies using exome array data in other traits 

have also had mixed success in identifying associations with low frequency variants; 

whilst associations with low frequency variants have been identified for a number of 

traits including asthma (54), lipids (58), glycaemic (57) and haematological traits (59) 

and coronary heart disease (232), other exome array studies identified only common, 

or even no novel statistically significant associations (61, 233-235). 

The analyses described in Chapter 5 utilised custom arrays which included: (i) content 

similar to that of the exome array; (ii) a GWAS grid which allowed for imputation of 

low frequency variants using the combined 1000 Genomes and UK10K reference 

panels. This analysis was the largest GWAS of lung function flow measures, and indeed 

of any measure of lung function, carried out to date and a large number of SNPs with 

low frequency (MAF<5%) were identified, with larger estimated effect sizes than 

identified common variants. These results suggest there may be low frequency 

variants influencing lung function traits, which are revealed when analyses are 

undertaken with very large numbers of samples (over 100,000 samples in these 

analyses). However low frequency variants are more likely than common variants to be 
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false positives due to imputation error, so it is likely that the results in this chapter 

provide an overestimation of the contribution of low frequency variants with large 

effects on lung function. Indeed without undertaking replication, potentially preceded 

by further QC, it is not possible to determine how many of the low frequency signals 

represent true associations.  

As there has been a greater focus on investigating variation at the lower end of the 

frequency spectrum, there have been a number of developments in statistical 

methodology for the study of rare variation, in particular with regards to gene-based 

tests of association. I have utilised some of the most widely used tests (SKAT, WST and 

SKAT-O) in this thesis. These gene-based tests were intended to identify associations 

with regions of the genome which would not be detected through single variant 

association. Many of the genes identified through the gene based tests carried out as 

part of Chapters 2 and 4 in this thesis were also identified through the single variant 

association analyses. In each case, the gene-based association appeared to be driven 

by the single SNP identified in the single variant association analyses. In Chapter 4, 

there were several genes identified through the gene-based analyses, which did not 

appear to be driven by a single SNP, however replication of these gene-based signals 

was found to be difficult. In exome array studies of other traits, there have been some 

successes of gene-based tests identifying associations with genes that were apparently 

driven by several rare variants (55, 56, 59). 

 

6.3 Ongoing developments in respiratory genetics and future work  

Running concurrently to the work in this thesis were a number of other studies 

investigating the genetic basis of lung function and lung disease. As mentioned in 

Section 1.3.4, the SpiroMeta 1000 Genomes (43) and UK BiLEVE (120) efforts utilised 

genotype data imputed to either the 1000 Genomes only, or 1000 Genomes and 

UK10K combined reference panels. These analyses had discovery sample sizes of 

38,199 (SpiroMeta 1000 Genomes) 48,943 (UK BiLEVE) individuals and between them 

identified 22 novel lung function signals (associated with FEV1 FVC or FEV1/FVC), of 

which two were low frequency (1%<MAF<5%) and one was rare (MAF<1%). The 
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CHARGE Consortium has also undertaken a large meta-analysis of exome array data 

with 44,719 samples. In Chapter 4, a look-up of the results in this analysis was 

undertaken as part of the replication stage analyses. The SpiroMeta and CHARGE 

exome array analyses are now being amalgamated into a larger combined analysis, 

which I am leading and will shortly be writing up for publication. 

A further analysis running concurrently with the work in this thesis was a recently 

published meta-analysis of exome array data and COPD (cases defined as having 

airflow limitation consistent with GOLD2 or worse) which identified a novel genome-

wide significant association between COPD and a common SNP in IL27 (236). 

Additionally, a GWAS of post-bronchodilator spirometry in COPD cases identified an 

association between FEV1 and a common SNP in DBH (237), a region not previously 

implicated in lung function, nor COPD; however this gene has previously been 

associated with smoking cessation (132).  

Many of the GWAS undertaken for COPD to date are based on airflow limitation, 

measured by spirometry, largely as this provides an easily measured and objective 

criterion. The GOLD guidelines however recommend that the impact of COPD on an 

individual should take into account symptoms and risk of exacerbation, alongside the 

severity of airflow limitation (94). More recently, studies have been undertaken with 

more detailed clinical measures and imaging which aim to provide some insight into 

other aspects of COPD. GWAS studies of emphysema related traits, assessed using 

computed tomography (CT) identified several genes which were within or near to 

established lung function loci (HHIP, AGER, CCDC38, TGFB2, MMP12) and the 15q25 

region associated with smoking, as well as genome-wide significant associations in loci 

not previously implicated in COPD or related traits (SERPINA10, DLC1, MAN2B1, 

DHX15, MGAT5B, MAN1C1, VWA8, MYO1D) (202, 238, 239).  These studies all utilised 

samples from multiple ancestries and the associations in novel regions reached 

genome-wide significance in the discovery samples alone; however these signals have 

not yet been replicated in independent samples. A further analysis of COPD cases with 

chronic bronchitis versus smoking controls with normal spirometry, identified 

associations with the known lung function gene FAM13A and a genome-wide 

significant association in a novel COPD region, near to EFCAB4A and CHID1 (201). 



 
 

229 
 

As described in Chapter 1 of this thesis, genome-wide significant associated variants 

identified to date collectively only explain small amounts of the expected heritability of 

the majority of complex traits, including lung function and other respiratory traits. A 

main aim of this thesis was to investigate whether low frequency and rare variants 

might explain some of the missing heritability of lung function and COPD. Through the 

analyses described in this thesis, a number of such variants have been identified as 

showing associations with COPD (Chapter 2) or quantitative lung function traits 

(Chapters 4 and 5). In Chapters 4 and 5 in particular, the majority of the variants 

identified in the discovery analyses had MAF<5%. Where follow-up analyses were 

undertaken in Chapter 4, none of these low frequency SNP associations were 

convincingly replicated. However, these findings could still be consistent with rare 

variants explaining some of the missing heritability of complex traits. Larger sample 

sizes than those described here are likely required in order to have enough statistical 

power to detect associations with variants at the lower end of the frequency spectrum. 

Genotyping of large population based biobanks, such as the UK Biobank and the 

Kadoori Biobank in China are currently underway and these could provide valuable 

data resources in which trait associations with low frequency variants can be 

successfully identified. Other study designs have also been proposed to increase power 

to detect low frequency associations, such as studies in population isolates (240, 241), 

family studies with multiple affected members (240), and extreme trait sampling (162, 

240). In terms of lung function, the last of these study designs has been adopted in the 

UK BiLEVE study; as mentioned previously, this analysis identified an association with 

one rare variant and the extremes of FEV1, alongside associations with 5 novel 

common variants (120).  

Recent studies of complex traits including height (35), body mass index (BMI) (29, 35) 

and schizophrenia (31) have estimated that much of the heritability of these traits is a 

result of the polygenic effect of many common SNPs with small effects, which have not 

been identified as genome-wide significant associations; however there still remains a 

small proportion of the heritability that is unexplained. Other potential contributors to 

heritability include structural variation, epigenetics, epistatic effects, and gene-

environment interactions (36). There have been a limited number of gene-
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environment interactions influencing lung function identified to date.  A genome-wide 

interaction study (GWIS) of FEV1 and FEV1/FVC and smoking identified signals in 3 

regions which had not at that time been implicated in lung function (DNER, HLA-DQ, 

KCNJ2); however these associations were largely driven by the SNP main effects   

(242). More recently, another GWIS of occupational exposure to dust, gases and fumes 

identified associations with FEV1 in novel lung function regions (ZMAT4, PDE4D, ODZ2) 

(243). I am currently involved in an analysis of gene-smoking interactions and lung 

function, focussing on low frequency variants, using gene-based tests, which is being 

undertaken within the CHARGE and SpiroMeta consortia. 

GWAS are continuing to have great success in identifying regions of the genome which 

are associated with respiratory traits; however the mechanisms through which these 

loci influence lung function and susceptibility to disease remain largely unknown. It is 

often the case that the SNP identified through GWAS showing the most statistically 

significant association does not have a clear biological function on the trait itself, 

rather it is in LD with a causal variant (244). The identification of a causal variant can 

highlight molecular mechanisms and provide insight into the pathophysiology of a trait 

(245). Consequently, there has recently been a greater focus in GWAS on inferring 

putative causal variants and genes through fine-mapping. A number of programs such 

as CAVIAR (246), PAINTOR (247) and PICs (248) have been recently developed for 

identifying credible sets of causal variants using Bayesian methods for statistical fine-

mapping. Trans-ethnic fine-mapping methods such as MANTRA (249) have also been 

proposed. These methods utilise differences in LD structures between different 

ancestral populations to further restrict credible sets of SNPs to those which are in LD 

with the causal variant across all populations. Functional annotations can also be used 

to prioritise variants, in particular genome annotation projects such as ENCODE (250), 

NIH Roadmap Epigenomics Mapping Consortium (251), and FANTOM5 (252) can help 

to refine signals in non-coding regions which might be affecting regulation of genes 

and influencing expression levels. Combinations of statistical and functional methods 

of fine-mapping have been used in recent studies to refine loci for a number of traits 

(248, 253-255). The utilisation of these methods for fine-mapping and functional 
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characterisation of loci is likely to be a focus in ongoing studies of lung function and 

COPD. 

The translation of genetic findings has been a slow process; however examples of 

GWAS discoveries providing insight into the biological mechanisms of complex traits 

are now emerging. There are a number of examples of loci identified through GWAS, 

which themselves exhibit  small effects, but for which the genes are already proven to 

be effective drug targets, such as HMGCR (256) and PCSK9 for LDL cholesterol, PPARG 

and KCNJ11 for type 2 diabetes (257) and several rheumatoid arthritis genes (253). 

Recently it has been proposed that the success rate in drug development could 

potentially be doubled by selecting targets with genetic supporting evidence (256). For 

most loci discovered through GWAS, the functional mechanism is less apparent; 

however there are instances of some identified loci leading to novel biological insight. 

Recent examples include the obesity gene FTO which has highlighted a pathway of 

adipocyte thermogenesis regulation in obesity (258), and an association with 

schizophrenia and the MHC locus, which has led to the suggestion that excessive 

complement component 4 (C4) activity could lead to an increased risk of schizophrenia 

(259). These examples highlight the potential value of GWAS findings and demonstrate 

the utility of continuing to investigate the genetic determinants of disease traits. 

Uncovering the role of low frequency and rare genetic variants on lung function and 

COPD has proved challenging, and similarly to other complex traits (61, 233-235), very 

few associations with low frequency SNPs have been identified to date. It is apparent 

that very large sample sizes are required to evaluate rare variation; such sample sizes 

are now becoming attainable, for example through the current genotyping efforts of 

large biobanks. It is likely that a very large number of both common and rare variants, 

in combination with environmental factors are contributing to these traits and future 

studies should aim to interrogate genetic variation across the full frequency spectrum. 

Continuing to uncover the genetic architecture of lung function and COPD has the 

potential to give insight into the biological mechanisms underlying lung health and 

disease, and could lead to the future development of preventative and therapeutic 

interventions. 
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Appendices 

A. Publication resulting from the analyses described in the association of rare 

variants with COPD risk and airflow limitation (Chapter 2). 

 



 
 

233 
 

  



 
 

234 
 



 
 

235 
 



 
 

236 
 



 
 

237 
 



 
 

238 
 



 
 

239 
 



 
 

240 
 



 
 

241 
 



 

242 
 

B. Additional Results for the Investigation of RAREMETAL in UK BiLEVE (Chapter 

3) 

P-value comparisons from the mega-analysis, and each meta-analysis scenario where 

P-values were combined using both Fisher’s Method and the Z-score meta-analysis 

method, for the following: 

1. WST Analysis of FEV1 

2. SKAT Analysis of Smoking: 

3. WST Analysis of Smoking:  
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1. WST Analysis of FEV1 

Appendix Figure B-1: Comparison of P-values from the mega-analysis, and each Fisher’s Method meta-analysis 

scenario for the WST analysis of FEV1. Genes with Cumulative MAF<0.1% highlighted. 

 

Appendix Figure B-2: Comparison of P-values from the mega-analysis, and each Z-score meta-analysis scenario 

for the WST analysis of FEV1. Genes with Cumulative MAF<0.1% highlighted. 
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Appendix Figure B-3: Comparison of P-values from the mega-analysis, and each Fisher’s Method meta-analysis 

scenario for the SKAT analysis of Smoking. Genes with Cumulative MAF<0.1% highlighted. 

 

Appendix Figure B-4: Comparison of P-values from the mega-analysis, and each Z-score meta-analysis scenario 

for the SKAT analysis of smoking. Genes with Cumulative MAF<0.1% highlighted. 
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Appendix Figure B-5: Comparison of P-values from the mega-analysis, and each Fisher’s Method meta-analysis 

scenario for the WST analysis of Smoking. Genes with Cumulative MAF<0.1% highlighted. 

  

Appendix Figure B-6: Comparison of P-values from the mega-analysis, and each Z-score meta-analysis scenario 

for the WST analysis of smoking. Genes with Cumulative MAF<0.1% highlighted. 
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C. Analysis plans for the meta-analysis of exome array data and quantitative 

lung function traits (Chapter 4) 

1. Analysis plan for study-level analysis 1: “SpiroMeta Exome Chip Analysis Plan” 

2. Analysis plan for study-level analysis 2: “SpiroMeta Exome Chip Gene-based 

Analysis Plan”  
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SpiroMeta Exome Chip Analysis Plan 
Draft: 8th May 2013 

 

This document has been adapted from the generic quantitative traits exome chip analysis 

plan1 which describes the cohort-specific analysis strategy for quantitative traits where 

genotype data is available from the exome chip. The focus is on SINGLE-VARIANT analyses as a 

“fast-track” plan, whilst gene-based burden tests are being finalised.   

 

SPIROMETA SPECIFIC - GENOTYPE CALLING & QC 

Gencall has been found to perform poorly when calling very rare genotypes, in particular by 

calling singleton heterozygotes as missing. Consequentially, cohorts will be asked to run the 

genotyping algorithm zCall (Goldstein,J.I. et al. 2012) to assign genotypes called as missing by 

Gencall. The Exome-chip Quality Control SOP (Version 5) outlines the full genotype calling and 

QC procedure, which in brief includes: 

- Running of Gencall 

- Initial QC on Gencall data  

- Callibration of zCall 

- Running of zCall 

- Secondary QC on zCall data 

 

In terms of post-calling QC, we ask each cohort to carry out the following QC checks: 

- Identification of SNPs with an excess of Mendelian inconsistencies (this only applies to 

data with parent-offspring pairs available) 

- Identification of monomorphic SNPs. 

 

We ask that cohorts submit a SNP QC report, for all SNPS, as a tab-delimited txt format file, 

with fields named and formatted as follows: 

Markername: as produced by the software used. 

Min_all: minor allele (a single character: “A” “C” “G” “T” for SNPs and “R”, “I” or 

“D” for INDELS and CNVs) 

Maj_all: major allele (a single character: “A” “C” “G” “T” for SNPs and “R”, “I” or 

“D” for INDELS and CNVs) 

Freq: allele frequency for minor allele (numeric data, 4 decimal places) 

MAC: minor allele count(integer) 

Call_rate: SNP call rate (numeric data, 4 decimal places) 

HWE_P: Hardy Weinberg equilibrium P-value (scientific notation, coefficient to 3 

decimal places) 

                                                      

1 Generic Quantitative Traits Exome Chip Analysis Plan Draft: 25th October 2012. Initial document 

drafted by Andrew Morris, Cecilia Lindgren, Anuhba Majahan (Oxford), and subsequently adapted after 

discussion by wider UK exome chip analysts and PIs.  
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Cluster_sep: Cluster separation score (numeric data, 2 decimal places) 

Mono: Indicator variable for monomorphic SNPs (1=monomorphic SNP; 

0=otherwise) 

Men_Incon: For cohorts with parent-offspring pairs only -Indicator variable for 

Mendelian Inconsistencies (1=excess of Mendelian inconsistencies; 0=otherwise) 

- Indicator variables and the MAC field should be a single integer with no decimal 

point.  

- Please code missing values as a single dot character (“.”).  

- Note that no quotes should be used around any data cells or headers. 

Please use the following name for the SNP QC report file: 

SNP_QC_COHORTNAME_VERSION.txt 

where: 

COHORTNAME will be an identifier for the specific cohort 

VERSION will be the date of the day of the uploading (ddmmyy) 

 

Cohort analysts should perform analyses of traits as described in Steps 1-4 of the analysis plan 

below.  If you have any questions or problems with implementing these cohort-specific steps 

in the analysis plan, please contact the central analyses email for generic analyses/QC issues 

and the trait specific groups for more trait-specific queries.  Trait specific analysis teams 

should then perform meta-analyses of the submitted association summary statistics for each 

trait, but feedback to central analysts group if they spot issues of generic interest. Guidelines 

in Steps 5-6 of the analysis plan.  

 

 

1. Cohort-specific “kinship” analyses in non-family based studies 

 

SPIROMETA SPECIFIC – KINSHIP ANALYSIS 

This step of the analysis should be carried out in studies with unrelated individuals only.  

The generic QT analysis plan recommends the use of PLINK for kinship analysis, as outlined 

below. Cohorts may carry out an equivalent analysis using ancestry principal components, 

estimated using eigenstrat or equivalent software, but are encouraged to liaise with the 

analysis working group to confirm that comparable methods are being used. Please ensure this 

analysis is carried out with the subset of LD pruned SNPs, with MAF>0.01. 

If the threshold PI_HAT>0.2, suggested below results in the exclusion of a large number of 

samples, cohorts should liase with the central analysis team regarding alternative approaches 

to dealing with cryptic relatedness. 

 

 

Calculate identity by state (IBS) between each pair of samples on the basis of an LD pruned 

(r2<0.2) set of markers at MAF >0.01 passing QC.  From these data, calculate the proportion of 

the genome shared IBD (PI_HAT).  Within PLINK, this can be achieved using the --genome 



 

249 
 

option.  For each pair of samples with PI_HAT>0.2 remove the sample with lowest call rate on 

the basis of all variants passing QC.  Repeat this process until only “unrelated” samples remain 

(i.e. PI_HAT≤0.2 for all pairs).  

 

For all “unrelated samples”, perform multidimensional scaling (MDS) on the basis of the IBS 

calculated from the LD pruned MAF >0.01 markers.  Record the projection of each sample 

onto the first ten principal components (PCs) for use in downstream analyses to adjust for 

population structure.  Final decisions on whether to exclude samples is likely to be cohort 

specific, but clear European outliers should be excluded from European based studies at a 

minimum. Within PLINK, this can be achieved using the --cluster --mds-plot 10 

options.  

 

 

2. Cohort-specific trait transformations 

 

Inverse rank normalisation of the residuals are recommended to reduce the impact of 

deviations from normality on trait associations (most often observed for rare variants). The 

pipeline for generation of transformed traits is thus as follows: 

   

Raw values -> Exclusions -> Residuals after covariate adjustment -> Inverse rank normalisation  

 

SPIROMETA SPECIFIC – TRAIT TRANSFORMATIONS 

ADJUSTMENTS – No adjustments to the raw trait values need to be made, prior to exclusions. 

 

ADULT COHORTS: Undertake exclusions & trait transformation for FEV1, FEV1/FVC and FVC, for 

the following subsets: 

1. Never-smokers:  

- Exclusions – Restrict dataset to never-smokers only with complete data on both FEV1 

and FVC. 

- Covariate adjustments – Undertake linear regression of age, age2, sex & height 

2. Ever-smokers:    

- Exclusions – Restrict dataset to ever-smokers only with complete data on both FEV1 

and FVC. 

- Covariate adjustments – Undertake linear regression of age, age2, sex & height 

3. Ever-smokers with pack-years: 

- Exclusions – Restrict dataset to ever-smokers only with complete data on FEV1,FVC and 

pack-years smoking. 

- Covariate adjustments – Undertake linear regression of age, age2, sex, height & pack-

years 

 

CHILDREN’S COHORTS: Undertake exclusions & trait transformation for FEV1, FEV1/FVC and 

FVC, for all individuals: 

1. All samples: 
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- Exclusions – Restrict dataset to samples with complete data on both FEV1 and FVC. 

- Covariate adjustments – Undertake linear regression of age, age2, sex & height 

 

INVERSE RANK NORMALISATION: For all subsets, transform residuals after covariate 

adjustment to ranks and then to normally distributed z-scores. These inverse-normal 

transformed residuals are then used as the phenotype for SNP association testing under an 

additive genetic model. 

 

We recommend that traits are NOT adjusted for principal components to adjust for population 

structure because: (i) they can be included in downstream single-variant and burden test 

analyses; and (ii) they are not necessary for kinship-based association analyses (for example 

EMMAX & GEMMA). 

 

SPIROMETA SPECIFIC - DESCRIPTIVE STATISTICS  

Cohorts will be asked to provide information on the distribution (range, mean, sd) of FEV1, 

FEV1/FVC, FVC, age, sex, height, smoking status, pack-years of smoking, numbers diagnosed 

with asthma, COPD (across all individuals, not for subset analyses at this stage).   

 

Cohorts will also be asked to provide mean, sd and histograms of trait residuals (FEV1, 

FEV1/FVC and FVC)  from linear regression after adjusting for covariates age, age2, sex & 

height .Please provide these for males and females separately and for all individuals combined.  

 

We have asked for copies of the questionnaires used to collect smoking data, and additional 

information where needed so that we can assess the consistency of approaches used. 

 

3. Cohort-specific single-variant analyses in non-family based studies 

 

SPIROMETA SPECIFIC – ASSOCIATION ANALYSIS SOFTWARE 

The generic QT analysis plan recommends the use of EPACTS or PLINK for single variant 

association analysis, as outlined below. Cohorts wishing to use different packages for 

association testing are encouraged to liaise with the analysis working group to confirm that 

consistent approaches are employed and that consistent output is available.  

After the association test has been undertaken, GWAtoolbox 

(www.eurac.edu/GWAtoolbox.html) can be used to quickly check the quality of the results 

before uploading. 

 

SPIROMETA SPECIFIC – PRIORITISATION OF TRAITS 

The analysis should ideally be undertaken on all three lung function traits, however if the 

deadline is not manageable for all traits, please prioritize in the order FEV1, FEV1/FVC and FVC.  

In addition, the analysis of the autosomal chromosomes should take priority over that of the X-

chromosome. 

http://www.eurac.edu/GWAtoolbox.html
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Test for association of each inverse rank normalised trait with each autosomal variant passing 

QC (irrespective of minor allele count).  For each trait, fit a linear regression model assuming 

an additive effect of the minor allele.  Within EPACTS, this can be achieved with the --test 

q.linear option.  Within PLINK, this can be achieved using the --linear option.  Remeber to 

adjust for PCs as covariates to account for population structure, as necessary.   

 

Test for association of each inverse rank normalised trait with each X-chromosome variant 

passing QC (irrespective of minor allele count) in males and females separately.  For each 

trait, fit a linear regression model assuming an additive effect of the minor allele, in the same 

way as for autosomal analyses. Code males  as 0/2 not 0/1, as females inactivate one X 

chromosome making homozygous females the equivalent dosage as hemizygous males. 

 

SPIROMETA SPECIFIC – FILE NAMING SCHEME 

For each trait and cohort subset, please prepare three files containing unformatted output 

produced by the software analysis: (i) for all autosomal variants passing QC (sex-combined 

analysis); (ii) for all X chromosome variants passing QC (male-specific analysis); and (iii) for all 

X chromosome variants passing QC (female-specific analysis).  Please use the following naming 

convention for files: 

 

STUDY_ANALYSIS_TRAIT_EXOMECHIP_SINGLE_AUTOSOMES_ANALYST_DATE.txt 

STUDY_ ANALYSIS _TRAIT _EXOMECHIP_SINGLE_XMALES_ ANALYST_DATE.txt 

STUDY_ ANALYSIS _TRAIT _EXOMECHIP_SINGLE_XFEMALES_ ANALYST_DATE.txt  

 

In these filenames: 

 

STUDY is replaced with a short name or acronym for the study. 

ANALYSIS is replaced with ”smk”, “smkPY” (for the pack-years adjustment), ”nonsmk”, or “all” 

(for childrens cohorts where no stratification for smoking is carried out) . 

TRAIT is replaced wiht “FEV1”,”FVC” or ”FF” (for the ratio FEV1/FVC). 

ANALYST is replaced with the initials of the analyst. 

DATE is replaced with the date of the analysis in the form DDMMYY. 

 

For example: 

 

ILFGC_smk_FEV1 _EXOMECHIP_SINGLE_AUTOSOMES_APM_051012.txt 

ILFGC_smkPY _FVC _EXOMECHIP_SINGLE_XMALES_APM_051012.txt 

ILFGC_nonsmk _FF _EXOMECHIP_SINGLE_XFEMALES_APM_051012.txt  

 

 

SPIROMETA SPECIFIC – POST-ASSOCIATION TESTING QC 

To ensure that appropriate quality controls have been applied, after the single-variant 

association tests have been undertaken on the genotype data, QQplots and lambdas should be 
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generated seperately for SNPs with MAF≥0.05, 0.05>MAF≥0.01 and  MAF<0.01 and checked 

for any gross deviations. 

In future, cohorts may be required to inspect the cluster plots of  any significant results to 

ensure those SNPs have not been incorrectly called by Gencall (and therefore not called by z-

call). 

 

4. Cohort specific single variant analyses in family based studies. 

 

SPIROMETA SPECIFIC – SINGLE VARIANT ANALYSES IN RELATED INDIVIDUALS 

Please test for association with the inverse rank normalised trait (i) for all autosomal variants 

passing QC (sex-combined analysis); (ii) for all X chromosome variants passing QC (male-

specific analysis); and (iii) for all X chromosome variants passing QC (female-specific analysis).    

Given that the analysis should be carried out on the transformed trait and that GEMMA takes 

into account population structure in its analysis, no adjustments should be needed with the –c 

flag. Please also use the –maf 0 flag, so that no MAF filter is applied. 

Please refer to section 3 for details of trait prioritisation, file naming scheme and post-

association testing QC. 

We recommend the use of GEMMA for single-variant analyses in cohorts with related 

individuals.  Full details of the GEMMA software can be found at: 

 

http://home.uchicago.edu/xz7/software.html 

 

GEMMA accepts plink format files as input. Initially, calculate a centered relatedness matrix 

by running “gemma –bfile <inputfilename> –gk 1 –o <matrixfilename>”. By default, only 

polymorphic SNPs that have missingness below 5% and minor allele frequency above 1% will 

be used to estimate the relatedness matrix.  

 

Then perform association of each inverse rank normalised trait with each variant by running 

“gemma –bfile <inputfilename> –n 1  –k <matrixfilename .cXX.txt> -maf 0 –fa 4 –o 

<outputfilename>”.  

 

One can specify a different column in the .fam file as phenotype column by using "-n [num]", 

where "-n 1" uses the original sixth column and "-n 2" uses the seventh column as phenotypes 

etc. 

 

GEMMA can produce Wald, score and LRT test results. By adjusting the number after flag “-

fa”, you can specify your choice. Above we request all three tests to be run. Asymptotically, 

these tests are equivalent. It may be worth running only the LRT for small sample sizes and/or 

low frequency variants. 

 

By default, only polymorphic SNPs that have missingness below 5% and minor allele frequency 

above 0.01 will be tested. These threshold can be changed using the “-miss” and “-maf” flags. 

http://home.uchicago.edu/xz7/software.html
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Both missingness and minor allele frequency of a given SNP are calculated based on analysed 

individuals (i.e. individuals with no missing phenotypes and no missing covariates). 
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 SpiroMeta Exome Chip Gene-based Analysis Plan 
Draft: 4th June 2014 

 

 

Single variant association analysis has proved successful in identifying common SNPs which 

influence complex disease; for rare variants however, it is somewhat underpowered. A 

number of gene-based, or region-based methods have been developed as a more powerful 

tool to detect rare variants associated with a trait. Several burden tests have been proposed, 

which combine information from several variants within a specified genomic region into a 

single quantity, which is then used for association testing with the trait; these methods 

perform well where variants within a gene have similar effects on the trait, in terms of 

direction and magnitude. Other proposed methods such as the sequence kernel association 

test (SKAT) utilise variance-components models and are powerful where a region has a 

combination of protective, deleterious and neutral variants.  

Several packages have been developed to facilitate the meta-analysis of these gene-based 

tests; within SpiroMeta, we shall be using RAREMETAL developed by Liu et al. (Nature 

Genetics 46, 200–204 (2014)). RAREMETAL allows for a number of burden tests and SKAT to be 

carried out, as well as conditional analyses. Further to this, it allows for different genomic 

regions to be specified centrally, without further analyses at study level. 

 

To run RAREMETAL, we require from each study, score statistics for each variant, along with 

covariance matrices. This analysis plan outlines how these statistics can be generated using 

either RAREMETALWORKER, or rvtests. Studies are free to choose whichever of these two 

softwares to use. 

 

PHENOTYPES 

 

Phenotypes for the gene-based analyses should be identical to those used in the single variant 

analyses. Required phenotypes are fully described in the single variant analysis plan, but in 

brief: 

Undertake trait transformation for FEV1, FEV1/FVC and FVC, for the following subsets: 

1. Never-smokers, adjusted for age, age2, sex & height 

4. Ever-smokers, adjusted for age, age2, sex & height 

5. Ever-smokers with pack-years, adjusted for age, age2, sex, height & pack-years 

 

For all subsets and traits, transform residuals after covariate adjustment to ranks and then to 

normally distributed z-scores. These inverse-normal transformed residuals are then used as the 

phenotype. The first ten principal components should be used as covariates when running 

analyses using RAREMETALWORKER / rvtests. 
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CREATING INPUT FILES FOR RAREMETALWORKER / RVTESTS 

 

RAREMETALWORKER and rvtests require the following input files: 

 

RAREMETALWORKER:  VCF 
  PED  
  DAT 
  

RVTESTS:  VCF 
  phenotype file  
  covariate file 

Note- RAREMETALWORKER may be run without the vcf file, with genotypes in the PED file 

instead; we strongly recommend running with the vcf file as the checkvcf script helps to 

ensure consistency of alleles/positions etc. across studies. 

 

 

1. VCF file (Both RAREMETALWORKER and RVTESTS) 

 

To create vcf files from plink files, we recommend using PLINK/SEQ. The vcf file should include 

genotypes for all autosomal and X chromosome SNPs.  

Please note: 

 There are a number of SNPs on the exome chip which share chromosomal positions; 

this has been found to cause some problems when creating the vcf using PLINK/SEQ. 

The file “duplicate_sites.txt” (circulated with this analysis plan), provides a list of 833 

sites for which there are two SNPs for the Illumina Human Exome Beadchip v.1. For 

each site, the file gives the SNP id and alleles for the SNP to preserve (identified as was 

present in annotatedList.txt file from exome chip FTP site 

ftp://share.sph.umich.edu/exomeChip/IlluminaDesigns/) and the corresponding SNP 

to exclude. The file “SNPs_to_exclude.txt” may be used with the --remove flag in Plink 

to remove these 833 SNPs from the plink files, prior to the conversion to vcf. If studies 

are using an alternative version of the exome chip, we ask that duplicate SNPs be 

identified and removed before converting data to vcf (in this case, please upload 

details of duplicate sites and excluded SNP ids with results).  

 To ensure the chromosome X genotypes are coded correctly in the vcf file, all 

individuals must have sex correctly coded in the Plink fam file. 

 

Full PLINK/SEQ installation instructions and documentation can be found here: 

https://atgu.mgh.harvard.edu/plinkseq/start-pseq.shtml 

 

First, PLINK/SEQ may be downloaded and installed using: 
 

wget http://atgu.mgh.harvard.edu/plinkseq/dist/version-

0.08/plinkseq-0.08-x86_64.tar.gz 

tar -xvzf plinkseq-0.08-x86_64.tar.gz 

 

ftp://share.sph.umich.edu/exomeChip/IlluminaDesigns/
https://atgu.mgh.harvard.edu/plinkseq/start-pseq.shtml
http://atgu.mgh.harvard.edu/plinkseq/dist/version-0.08/plinkseq-0.08-x86_64.tar.gz
http://atgu.mgh.harvard.edu/plinkseq/dist/version-0.08/plinkseq-0.08-x86_64.tar.gz
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The PLINK/SEQ files must be in command path to run; this may be done by modifying the 
PATH environment variable: 
 

export PATH=$PATH:/path/to/plinkseq-0.08-x86_64 

 
Create new PLINK/SEQ project: 
 

pseq projectname new-project 

 

Load Plink files:  
 

pseq projectname load-plink --file Plinkfilesname --id iid 

 

Create vcf: 
 

pseq projectname write-vcf > vcfname.vcf 

 

The vcf file must then be edited: “chr” must be removed from the first from first field in vcf 

file; chromosome X must be labelled X rather than 23, as in Plink and the file compressed using 

bgzip: 

sed 's/^chr//' vcfname.vcf | sed 's/^23/X/' | bgzip -c > 

vcfname.vcf.gz 

 

 Use checkVCF python script to check VCF (Download script and reference genome from: 

http://genome.sph.umich.edu/wiki/CheckVCF.py) 

python checkVCF.py -r hs37d5.fa -o outputname vcfname.vcf.gz 

 

This script will create a number of files, listing SNPs which are monomorphic 

(outputname.check.mono), SNPs where the expected minor allele has a frequency >0.5 

(outputname.check.af), a list of non-SNP sites, largely indels 

(outputname.check.nonSnp) and genotypes which are not found or are incorrectly 

formatted (outputname.check.geno). It is worth checking these files to identify any 

issues from the conversion of the data to vcf, but listed variants need not necessarily be 

excluded or changed. A final file (outputname.check.ref) lists SNPs whose reference 

allele does not match with the required reference allele. Sites will be listed as: 

MismatchRefBase 1:564766:T-C/T 

 

where T  is the expected reference allele and C/T are the reference/non-reference allele in the 

vcf file. For these SNPs, the reference allele should be changed using Plink, by forcing the 

reference allele (using the --reference-allele command) and /or by strand flipping (--flip 

command). After changing the reference alles, a new vcf file should be created and again 

checked using the checkVCF.py. This process should be repeated until the vcf file is consistent 

with the reference genome, and the checkVCF script outputs the message “No error 

found by checkVCF.py, thank you for cleanning VCF”. 

 

http://genome.sph.umich.edu/wiki/CheckVCF.py
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2. PED & DAT files (RAREMETALWORKER only) 
 

For each of the three subsets (never smokers, ever smokers and ever smokers with pack-

years), ped files containing the phenotypes and covariates must be created. The ped file 

should include the first five columns of the plink ped file (FamID, IndID, PatID, MatID, Sex), 

followed by three phenotype columns with the inverse transformed residuals of each trait 

(FEV1, FVC, FEV1/FVC), followed by ten columns of covariates (PC1-PC10). The ped file should 

have no column headers and individuals must be listed in the same order as they appear in the 

vcf file. Missing values should be coded “NA”. 

 
Example ped: 
 
FAM1 AB1 0 0 1 2.564 1.434 1.657 -0.01209 0.01324 … 0.008585 

FAM2 CD2 0 0 2 1.456 1.336 0.267 -0.009965 -0.00645 … -0.005685 

FAM3 FW5 0 0 2 3.211 2.876 3.022 0.00015 -0.02151 … -0.000365 

FAM4 JK7 0 0 1 -1.654 -0.5164 -0.9634 -0.00454 0.00654 … 0.006354 

  

 
The corresponding dat file describes the ped file; the second column should list trait and 

covariate names, with the first column coded T for trait and C for covariate. The dat file must 

have traits and covariates listed in the order they appear as columns in the ped file, have no 

column headers, and it should not describe the first five rows, as these are always the same. 

 
Corresponding example dat: 
 

T FEV1 

T FVC 

T FF 

C PC1 

C PC2 

⁞ ⁞ 

C PC10 

 
 

3. Phenotype & Covariate files (RVTESTS only) 

 

For each of the three subsets (never smokers, ever smokers and ever smokers with pack-

years), phenotype and covariate files must be created. These files both include the first five 

columns of the plink ped file. In the phenotype file, these are followed by three phenotype 

columns with the inverse transformed residuals of each trait (FEV1, FVC, FEV1/FVC). In the 

covariates file, the five ped file fields are followed by ten columns of covariates (PC1-PC10). 

We advise the use of headers in these files, with the first two columns to be labelled “FID IID”. 

Missing values should be coded “NA”. 
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Example phenotype file: 
 

FID IID PATID MATID SEX FEV1 FVC FF 

FAM1 AB1 0 0 1 2.564 1.434 1.657 

FAM2 CD2 0 0 2 1.456 1.336 0.267 

FAM3 FW5 0 0 2 3.211 2.876 3.022 

FAM4 JK7 0 0 1 -1.654 -0.5164 -0.9634 

  

 

Example covariate file: 
 

FID IID PATID MATID SEX PC1 PC2 … PC10 

FAM1 AB1 0 0 1 -0.01209 0.01324 … 0.008585 

FAM2 CD2 0 0 2 -0.009965 -0.00645 … -0.005685 

FAM3 FW5 0 0 2 0.00015 -0.02151 … -0.000365 

FAM4 JK7 0 0 1 -0.00454 0.00654 … 0.006354 

  

 

 

RUNNING RAREMETALWORKER 

 

RAREMETALWORKER may be downloaded from here: 

http://genome.sph.umich.edu/wiki/RAREMETALWORKER . This wiki page also provides full 

instructions for the installation and running of RAREMETALWORKER. 

 

Prior to running RAREMETALWORKER, the cleaned vcf file will need to be tabix 

indexed using: 

 
tabix -p vcf vcfname.vcf.gz 

 

 

1. Studies with unrelated individuals 
 

RAREMETALWORKER may be ran with the ped, dat and vcf files as input, using the following 

command: 

raremetalworker --ped pedname.ped --dat datname.dat --vcf 

vcfname.vcf.gz --makeResiduals --prefix outputname 

 

This will carry out the RAREMETAL analysis for all autosomal and chromosome X SNPs, with 

each of the three traits in turn; the --makeResiduals flag specifies that the trait is to be 

adjusted using the 10PCs, before the linear models are fitted using the resulting residuals.   

2. Studies with family data 
 

RAREMETALWORKER has several ways of dealing with family data: either familial relationships 

may be described in the ped file; alternatively a kinship matrix may be calculated from 

genotype data, or be read from an existing file. 

http://genome.sph.umich.edu/wiki/RAREMETALWORKER
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We recommend that studies run analysis of related individuals, using an empirical kinship 

matrix, as follows: 

raremetalworker --ped pedname.ped --dat datname.dat --vcf 

vcfname.vcf.gz --makeResiduals -–kinGeno --kinMAF 0.01 --kinMiss 

0.05 --vcX --prefix outputname 

 

This will carry out the RAREMETAL analysis for all autosomal and chromosome X SNPs, with 

each of the three traits in turn. The --makeResiduals flag specifies that the 10PCs are to 

be used as covariates. To account for relatedness, the --kinGeno command creates a 

kinship matrix using variants with MAF>0.01 (--kinMAF) and genotype missing rate <0.05 

(--kinMiss), with the --vcX flag indicating an additional kinship matrix be generated for 

the non-pseudoautosomal region of chromosome X.  

 

 

RUNNING RVTESTS 

 

Rvtests may be downloaded from here: http://genome.sph.umich.edu/wiki/Rvtests.  

 

1. Studies with unrelated individuals 
 

Rvtests should be ran with the vcf, phenotype and covariate files, using the --meta 

score,cov command, as follows: 

rvtest --inVcf vcfname.vcf.gz --pheno phenofilename.txt --pheno-

name FEV1 --covar covarfilename.txt --covar-name 

PC1,PC2,PC3,PC4,PC5,PC6,PC7,PC8,PC9,PC10 --meta score,cov --out 

outputname 

 

 

The above command would generate a score vector and covariance matrix for all autosomal 

and chromosome X SNPs, for the FEV1 phenotype, with adjustment for the first 10 PCs. The --

pheno-name and --covar-name flags specify which of the phenotypes / covariates are 

to be used from the files specified by --pheno and --covar, respectively. 

 

2. Studies with family data 
 

Before running rvtests on related individuals, a kinship matrix must first be created using the 
vcf2kinship command. This kinship matrix may be created either from known pedigree 
information in a ped file, or by creating an empirical kinship matrix from the vcf file. 
 
  

http://genome.sph.umich.edu/wiki/Rvtests
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We recommend creating an empirical kinship matrix from genotype data as follows: 
 
 

vcf2kinship --inVcf vcfname.vcf.gz --ped phenofilename.txt --bn 

--xHemi --minMAF 0.01 --maxMISS 0.05 --out kinshipname  

 

The --bn flag indicates the kinship will be calculated using the Balding-Nicols method, using 

variants with MAF>0.01 (--minMAF) and genotype missing rate <0.05 (--maxMiss). The 

--xHemi flag is required to create an additional kinship matrix for the hemizygote region of 

chromosome X. To utilise the -xHemi flag, vcf2kinship requires the phenotype file to be 

specified using --ped, which should have sex listed in the fifth column. 

 

Once the kinship matrix has been created, rvtests may be run as follows, using the --meta 

score,cov command:  
 

rvtest --inVcf vcfname.vcf.gz --pheno phenofilename.txt --pheno-

name FEV1 --covar covarfilename.txt --covar-name 

PC1,PC2,PC3,PC4,PC5,PC6,PC7,PC8,PC9,PC10 --kinship 

kinshipname.kinship --meta score,cov --out outputname 

 

 

This will generate a score vector and covariance matrix for all autosomal and chromosome X 

SNPs, for the FEV1 phenotype, with adjustment for the first 10 PCs. The --kinship flag 

should be used to specify the name of the main kinship file created using the vcf2kinship 

command. For analysis of chromosome X SNPs, it is not necessary to additionally specify the 

name of the X hemizygote kinship matrix; if kinshipname.kinship is specified using the 

--kinship flag, rvtests will automatically attempt to use 

kinshipname.xHemi.kinship for the chromosome X analysis. 
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DATA FOR UPLOAD 

 

1. RAREMETALWORKER output 
 

 After running RAREMETALWORKER, the following files will have been generated: 

outputname.traitname.singlevar.score.txt 

outputname.traitname.singlevar.cov.txt 

outputname.singlevar.log 

outputname.traitname.plots.pdf 

 

For each subgroup and trait, we ask for all unformatted output files and plots to be uploaded, 

using the following naming scheme: 

STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-BASED_ANALYST_DATE.score.txt 
STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-BASED_ANALYST_DATE.cov.txt 
STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-BASED_ANALYST_DATE_RMW.log 

STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-BASED_ANALYST_DATE.plots.pdf 

 

In these filenames: 

 

STUDY is replaced with a short name or acronym for the study. 

ANALYSIS is replaced with ”smk”, “smkPY” (for the pack-years adjustment), ”nonsmk”. 

TRAIT is replaced with “FEV1”,”FVC” or ”FF” (for the ratio FEV1/FVC). 

ANALYST is replaced with the initials of the analyst. 

DATE is replaced with the date of the analysis in the form DDMMYY. 

 

For example: 

 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414.score.txt 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414.cov.txt 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414_RMW.log 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414.plots.pdf 
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2. Rvtests output 
 

 After running rvtests, the following files will have been generated: 

outputname.MetaScore.assoc 

outputname.MetaCov.assoc.gz 

outputname.log 

 

For each subgroup and trait, we ask for the unformatted .MetaScore.assoc and the 

.MetaCov.assoc.gz files to be uploaded, using the following naming scheme: 

STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-
BASED_ANALYST_DATE.MetaScore.assoc 
STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-
BASED_ANALYST_DATE.MetaCov.assoc.gz 
STUDY_ANALYSIS_TRAIT_EXOMECHIP_GENE-BASED_ANALYST_DATE_RVTESTS.log 

 

In these filenames: 

 

STUDY is replaced with a short name or acronym for the study. 

ANALYSIS is replaced with ”smk”, “smkPY” (for the pack-years adjustment), ”nonsmk”. 

TRAIT is replaced with “FEV1”,”FVC” or ”FF” (for the ratio FEV1/FVC). 

ANALYST is replaced with the initials of the analyst. 

DATE is replaced with the date of the analysis in the form DDMMYY. 

 

For example: 

 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414.MetaScore.assoc 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414.MetaCov.assoc.gz 

B58C_smk_FEV1 _ EXOMECHIP_GENE-BASED _VEJ_080414_RVTESTS.log 

 

 

3. QC files 

 

Please upload the output files generated by the checkvcf script for the final vcf file: 

STUDY.check.log  
STUDY.check.dup  
STUDY.check.noSnp 
STUDY.check.ref  
STUDY.check.geno 
STUDY.check.af  
STUDY.check.mono 

 
If studies are not using the Illumina Human Exome BeadChip v.1 version of the exome chip, 

please upload a list of duplicate sites, with the ids of SNPs which were removed prior to 

converting the genotype data to vcf (see creating VCF file section of plan for details).   
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D. Additional Results for the meta-analysis of exome array data and quantitative lung function traits (Chapter 4) 

Appendix Table D-1: Replication results for all SNPs identified in single variant association discovery analyses (P<10-4). Only variants in novel loci 

shown, and variants were only followed up for the trait for which they were most significantly associated. Chromosome (CHR) and position (POS) in build 37 are given for 

each SNP. For the discovery analysis, UK BiLEVE (replication stage 1) and UKHLS (replication stage 2), beta values reflect effect-size estimates on an inverse-normal 

transformed scale after adjustments for age, age2, sex, height and ancestry principal components, and stratified by ever smoking status. For the CHARGE Consortium 

(replication Stage 2), beta values represent untransformed trait effect estimates, after adjustment for former smoking, current smoking and pack-years of smoking, age, 

age2, sex, height , height2, centre/cohort, principle components and weight (FVC only). 
     Discovery Analysis Stage 1 Replication Discovery + 

Stage 1 
Replication 

meta 

Stage 2 Replication Discovery + 
Stage 1 + 2 
Replication 

meta 

     SpiroMeta Consortium UK BiLEVE UKHLS CHARGE Consortium 

rs id CHR POS Effect / 
other 
allele 

Trait N Effect 
Allele 

Frequency 
(EAF) 

Beta P-value N EAF Beta P-value P-value N EAF Beta P-value N EAF Beta P-value P-value 

rs201163722 1 28661302 T/C FEV1 23386 0.01% -2.347 5.29E-05 NA NA NA NA 5.29E-05 7446 0.00% NA NA 36998 0.02% -109.569 0.3850 2.57E-03 

rs200090958 1 86951099 A/G FEV1/FVC 23397 0.00% 2.783 9.67E-05 NA NA NA NA 9.67E-05 7449 0.00% NA NA 36985 0.01% -2.157 0.4780 5.75E-03 

rs141436979 1 89844088 T/C FEV1/FVC 23396 0.02% -1.486 2.44E-05 NA NA NA NA 2.44E-05 7449 0.01% -0.7122 0.6911 36985 0.02% -3.089 0.0903 7.32E-05 

rs1192415 1 92077097 A/G FVC 23376 81.24% -0.059 6.11E-07 48943 81.02% -0.0138 0.0872 5.21E-05 7448 81.75% -0.0104 0.6252 36996 82.22% -8.589 0.0925 2.52E-05 

rs11204697 1 150658971 T/C FEV1 23393 0.03% 1.060 7.62E-05 48943 0.01% 0.2483 0.5775 2.35E-04 - - - - - - - - - 

rs35608243 2 174131392 C/T FVC 23395 8.17% 0.081 1.60E-06 48943 8.43% 0.0041 0.7191 0.0048 - - - - - - - - - 

rs148627602 2 209309610 A/G FEV1 23397 0.03% 1.009 5.75E-05 48943 0.03% -0.3466 0.0906 0.2177 - - - - - - - - - 

rs144052038 3 49720010 G/A FVC 23392 0.07% 0.755 2.59E-05 NA NA NA NA 5.46E-05 7436 0.00% NA NA 33029 0.09% -65.951 0.3484 7.71E-02 

rs141921900 3 74334458 A/G FEV1/FVC 23384 1.32% -0.178 1.21E-05 48943 1.10% 0.0015 0.9606 0.0098 - - - - - - - - - 

rs62290268 3 194790799 G/C FEV1 23394 0.08% 0.681 5.47E-05 48943 1.29% -0.0491 0.1551 0.5588 - - - - - - - - - 

rs3733250 4 77192868 A/G FVC 23392 41.02% -0.044 2.71E-06 48943 40.41% -0.0087 0.1830 3.29E-04 - - - - - - - - - 

rs142127543 4 90833153 A/G FEV1/FVC 23395 0.14% 0.522 2.09E-05 48943 0.19% -0.0053 0.9470 0.0244 - - - - - - - - - 

rs17037102 4 107845794 T/C FEV1/FVC 23394 10.34% -0.062 4.78E-05 48943 10.56% 0.0003 0.9742 0.0238 - - - - - - - - - 

rs79300690 4 122250654 A/G FEV1/FVC 23385 1.77% 0.143 4.44E-05 48943 1.13% -0.0350 0.2464 0.0734 - - - - - - - - - 

rs147517729 4 147561147 A/C FVC 18294 1.46% -0.202 4.56E-06 48943 1.40% 0.0141 0.6131 0.0647 - - - - - - - - - 

rs772835 5 944298 G/A FVC 23395 9.95% -0.067 2.03E-05 48943 10.11% -0.0232 0.0293 4.89E-05 7449 10.42% -0.0355 0.1834 36996 10.20% -3.347 0.6032 1.26E-03 

rs17648108 5 177831556 C/T FVC 12820 28.38% 0.046 6.93E-06 NA NA NA NA 1.62E-05 7449 27.63% 0.0112 0.5393 36996 29.58% -1.122 0.7941 1.10E-02 

rs1294421 6 6743149 G/T FEV1/FVC 23395 61.47% 0.037 9.14E-05 48943 60.78% 0.0314 1.59E-06 6.78E-10 7449 60.35% 0.0284 0.0892 36985 61.94% 0.203 1.46E-04 1.12E-13 

rs3749903 6 42992825 G/C FVC 23389 12.38% -0.072 2.95E-05 48943 13.50% -0.0088 0.3451 0.0073 - - - - - - - - - 

rs9784763 6 109624937 A/G FEV1 15224 39.24% 0.039 4.07E-05 48943 37.87% 0.0063 0.3401 0.0018 - - - - - - - - - 

rs143974258 6 136552493 A/G FEV1/FVC 22559 0.06% 0.740 7.35E-05 48943 0.13% 0.0029 0.9775 0.0518 - - - - - - - - - 

rs57658073 8 24775940 A/G FEV1 23297 0.28% 0.344 9.04E-05 48943 0.26% -0.0400 0.5416 0.0642 - - - - - - - - - 

rs146520900 8 145667730 A/G FEV1 22392 0.38% 0.386 7.00E-07 48943 0.37% -0.0913 0.1237 0.0743 - - - - - - - - - 

rs141834891 9 12694063 T/C FEV1/FVC 23397 0.08% 0.755 6.45E-06 48943 0.11% -0.0697 0.5241 0.0532 - - - - - - - - - 

rs2773347 9 100388197 T/C FEV1 23391 67.49% 0.043 1.16E-05 48943 67.05% 0.0118 0.0835 9.05E-05 7449 67.08% 0.0278 0.1110 36998 66.51% 2.334 0.5176 1.18E-04 
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     Discovery Analysis Stage 1 Replication Discovery + 
Stage 1 

Replication 
meta 

Stage 2 Replication Discovery + 
Stage 1 + 2 
Replication 

meta 

     SpiroMeta Consortium UK BiLEVE UKHLS CHARGE Consortium 

rs id CHR POS Effect / 
other 
allele 

Trait N Effect 
Allele 

Frequency 
(EAF) 

Beta P-value N EAF Beta P-value P-value N EAF Beta P-value N EAF Beta P-value P-value 

rs143386455 9 107533244 C/G FEV1/FVC 23139 0.08% 0.648 8.81E-05 48943 0.11% -0.0631 0.5924 0.0657 - - - - - - - - - 

rs41278437 9 113170060 A/G FEV1/FVC 23397 0.07% -0.769 2.24E-05 48943 0.11% 0.0191 0.8501 0.0572 - - - - - - - - - 

rs17578859 9 139879170 A/G FEV1 23387 25.90% 0.048 5.95E-06 48943 25.81% 0.0122 0.0954 8.41E-05 7447 25.49% 0.0235 0.2052 36998 25.56% -8.100 0.0366 2.45E-02 

rs141541697 10 92635830 T/C FEV1 23361 0.01% 1.897 3.30E-06 NA NA NA NA 3.30E-06 - - NA NA 36998 0.02% -50.711 0.6490 1.67E-02 

rs61736639 11 14891141 C/G FEV1 23396 0.58% 0.238 8.58E-05 48943 0.66% 0.0599 0.1376 6.50E-04 - - - - - - - - - 

rs188851356 11 125647897 A/G FEV1/FVC 23397 0.09% -0.718 1.00E-05 NA NA NA NA 1.00E-05 7449 0.00% NA NA 36985 0.04% 1.497 0.2898 6.99E-02 

rs187124232 11 126144859 G/C FEV1/FVC 23392 0.08% -0.780 7.61E-06 NA NA NA NA 7.61E-06 7449 0.00% NA NA 36985 0.00% 1.232 0.7922 1.49E-02 

rs35639297 12 56142553 T/G FEV1/FVC 23396 0.48% -0.278 3.26E-05 48943 0.48% -0.0005 0.9915 0.0139 - - - - - - - - - 

rs142653430 12 121469271 A/G FEV1 23395 0.01% -2.858 1.12E-06 NA NA NA NA 1.12E-06 7449 0.00% NA NA 36998 0.00% -139.237 0.5698 1.04E-03 

rs201930455 12 129360559 A/G FEV1 23396 0.00% -3.011 3.35E-05 NA NA NA NA 3.35E-05 7449 0.00% NA NA - - NA NA 3.35E-05 

rs7984952 13 31231806 C/T FVC 23394 40.72% -0.039 4.14E-05 48943 40.55% 0.0016 0.8019 5.01E-02 - - - - - - - - - 

rs3742302 13 31233063 A/G FVC 23358 40.72% -0.039 3.64E-05 48943 40.49% 0.0009 0.8931 3.85E-02 - - - - - - - - - 

rs149470963 13 67477723 T/G FEV1 12633 0.15% -0.690 2.90E-05 48943 0.17% -0.0307 0.7128 2.69E-02 - - - - - - - - - 

rs11558436 14 32257065 C/A FEV1 23397 0.61% -0.247 3.40E-05 48943 0.50% -0.0925 0.0641 4.49E-05 7448 0.61% 0.1047 0.3202 36998 0.55% 23.453 0.3063 6.35E-03 

rs1952153 14 87775721 C/A FVC 23390 57.67% -0.039 3.29E-05 48943 57.43% -0.0044 0.4966 0.0058 - - - - - - - - - 

rs61991737 14 93712290 A/C FEV1 23397 0.15% 0.469 5.85E-05 48943 0.17% 0.1019 0.2087 8.84E-04 - - - - - - - - - 

rs118125046 15 79586782 G/C FEV1/FVC 23376 0.75% 0.219 4.38E-05 48943 0.61% -0.0283 0.5331 0.0304 - - - - - - - - - 

rs3751093 17 25958304 A/G FVC 12633 20.90% -0.070 6.62E-06 48943 21.16% -0.0155 0.0482 2.55E-04 - - - - - - - - - 

rs144042976 19 37975803 A/G FEV1 23386 0.02% -1.439 5.06E-06 NA NA NA NA 5.06E-06 7431 0.02% 0.3427 0.5524 36998 0.01% 235.498 0.1349 1.68E-01 

rs149178822 19 40540724 C/A FEV1/FVC 12631 1.26% -0.233 5.05E-05 48943 1.49% -0.0271 0.3041 0.0086 - - - - - - - - - 

rs146608853 20 49225233 A/G FEV1/FVC 23397 0.04% -1.085 7.90E-06 48943 0.03% 0.1487 0.6516 8.75E-04 - - - - - - - - - 

rs200373931 20 62193999 T/C FVC 23381 0.02% 1.237 4.46E-05 NA NA NA NA 9.02E-05 7449 0.03% -1.0725 0.0164 33029 0.01% -45.311 0.8051 1.70E-01 

rs140025782 21 28216862 A/C FEV1 23378 0.30% -0.338 7.20E-05 48943 0.01% -0.6916 0.1648 3.37E-05 7395 0.10% 0.1079 0.6762 36998 0.20% 2.965 0.9365 1.09E-02 

rs35946782 21 40763754 A/G FEV1/FVC 23397 0.02% 1.458 4.37E-06 48943 0.01% -0.3965 0.2864 0.00509 - - - - - - - - - 

rs77543787 22 33264982 T/C FVC 23396 0.02% 1.547 4.07E-05 48943 0.38% 0.0296 0.6538 0.2742 - - - - - - - - - 
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Appendix Table D-2: Replication results for all SNPs identified in single variant association discovery analyses in ever smokers and never smokers 

separately (P<10-4). Only variants in novel loci and that were not identified in the analyses of ever and never smokers combined are shown. Variants were only followed 

up for the trait for which they were most significantly associated. Chromosome (CHR) and position (POS) in build 37 are given for each SNP.  Beta values reflect effect-size 

estimates on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry principal components, and stratified by ever smoking status. 

      Discovery Analysis Stage 1 Replication Discovery + 
Stage 1 

Replication 
meta 

Stage 2 Replication Discovery + 
Stage 1 + 2 
Replication 

meta 

      SpiroMeta Consortium UK BiLEVE UKHLS 

rs id CHR POS Effect / 
other 
allele 

Trait Smoking 
subset (Ever / 
never 
smokers) 

N Effect Allele 
Frequency 

(EAF) 

Beta P-value N EAF Beta P-value P-value N EAF Beta P-value P-value 

rs201163722 1 28661302 T/C FEV1/FVC ever 11558 0.01% -2.9956 2.35E-05 NA NA NA NA 2.35E-05 4509 0.00% NA NA 2.35E-05 

rs1414896 1 95692310 A/G FVC ever 11562 60.84% -0.0561 4.14E-05 24460 60.36% 0.0125 0.1770 0.2262 - - - - - 

rs2764504 1 119234198 C/T FVC ever 11560 5.89% 0.1133 5.78E-05 24460 5.99% 0.0407 0.0322 5.26E-05 4508 5.48% 1.3342 0.1821 2.07E-05 

rs199581193 1 201175658 G/A FVC never 11418 0.01% -2.8726 7.45E-07 24483 0.08% 0.4149 0.0203 0.3578 - - - - - 

rs76611705 1 223177974 A/G FEV1 never 11834 1.55% -0.2065 8.09E-05 24483 1.61% -0.0607 0.0907 2.74E-04 - - - - - 

rs200091857 2 97008504 T/C FEV1/FVC never 11832 0.07% -1.0461 1.91E-05 24483 0.09% -0.0749 0.6736 0.0053 - - - - - 

rs202022630 2 234750666 T/C FEV1/FVC ever 11562 0.01% 2.7461 9.20E-05 NA NA NA NA 9.20E-05 4509 0.01% -1.8633 0.0624 0.0198 

rs147184138 3 25833094 G/C FVC ever 11563 0.09% 0.9031 7.47E-05 24460 0.08% 0.0261 0.8937 0.0186 - - - - - 

rs61747991 3 56653424 T/A FEV1/FVC ever 11557 4.90% 0.1249 4.52E-05 24460 4.87% 0.0255 0.2256 9.35E-04 - - - - - 

rs201934751 3 150404106 T/A FEV1/FVC ever 11563 0.01% 2.7604 6.75E-05 NA NA NA NA 6.75E-05 4507 0.00% NA NA 6.75E-05 

rs7652177 3 171969077 G/C FEV1 ever 11558 46.38% -0.0549 6.90E-05 24460 49.18% -0.0153 0.0921 3.20E-04 - - - - - 

rs7627615 3 183818416 A/G FEV1 ever 11555 58.72% -0.0561 3.54E-05 24460 59.19% 0.0175 0.0579 0.4357 - - - - - 

rs144473454 5 9136617 A/G FVC ever 10440 0.27% 0.5816 8.92E-05 24460 0.08% 0.1050 0.5369 0.0065 - - - - - 

rs4634319 5 27418887 G/A FVC ever 11564 6.89% 0.1058 5.43E-05 24460 6.81% 0.0011 0.9517 0.0195 - - - - - 

rs1448044 5 44296986 A/G FVC ever 11550 31.53% 0.0563 8.41E-05 24460 32.34% 0.0402 3.31E-05 1.62E-08 4437 33.55% 0.8785 0.3796 1.90E-08 

rs255888 5 111103258 T/C FEV1 ever 11562 55.70% 0.0550 3.56E-05 24460 56.21% 0.0124 0.1776 5.54E-04 - - - - - 

rs147752980 5 130791507 C/T FEV1 never 11834 0.12% 0.8385 6.44E-06 NA NA NA NA 6.44E-06 2940 0.15% -0.0790 0.9371 6.27E-05 

rs148279287 5 140768844 T/C FVC ever 10165 0.55% -0.3905 4.16E-05 24460 0.48% 0.0111 0.8649 0.0291 - - - - - 

rs6941356 6 87967636 G/A FEV1/FVC never 11833 10.97% 0.0833 7.48E-05 24483 9.99% -0.0088 0.5600 0.0747 - - - - - 

rs144830879 6 129649451 A/G FEV1/FVC never 11832 0.02% 1.9884 8.17E-05 24483 0.04% 0.0070 0.9777 0.0231 - - - - - 

rs41298397 6 132891977 C/T FEV1 ever 11562 0.40% -0.4721 6.28E-06 24460 0.43% 0.1317 0.1032 0.2240 - - - - - 

rs35839363 6 132909838 A/G FVC ever 11561 0.03% 1.4025 7.42E-05 24460 0.03% -0.2007 0.4376 0.1085 - - - - - 

rs13286541 9 113251951 C/T FEV1/FVC ever 11559 9.87% 0.0870 8.11E-05 24460 9.84% 0.0216 0.1550 0.0007 - - - - - 

rs5030723 9 120476694 A/G FEV1/FVC ever 11553 0.31% 0.4750 7.12E-05 24460 0.36% -0.1399 0.1161 0.3396 - - - - - 

rs2296957 9 134401335 T/C FEV1/FVC never 10069 95.42% -0.1336 8.65E-05 24483 95.21% 0.0044 0.8343 0.0386 - - - - - 

rs7871194 9 139544437 C/A FEV1/FVC never 11830 57.04% -0.0525 6.44E-05 24483 58.84% 0.0026 0.7765 0.0406 - - - - - 

rs141660796 10 72360577 A/G FEV1/FVC ever 11563 0.06% 1.1473 3.65E-05 24460 0.02% -0.8962 0.0084 0.8683 - - - - - 

rs821205 10 107727810 C/A FVC ever 11564 52.01% 0.0522 7.93E-05 24460 51.37% -0.0056 0.5360 0.0843 - - - - - 

rs5006889 11 5373104 G/A FEV1 never 11827 26.30% -0.0696 3.51E-06 24460 27.04% 0.0034 0.7405 0.0175 - - - - - 
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      Discovery Analysis Stage 1 Replication Discovery + 
Stage 1 

Replication 
meta 

Stage 2 Replication Discovery + 
Stage 1 + 2 
Replication 

meta 

      SpiroMeta Consortium UK BiLEVE UKHLS 

rs id CHR POS Effect / 
other 
allele 

Trait Smoking 
subset (Ever / 
never 
smokers) 

N Effect Allele 
Frequency 

(EAF) 

Beta P-value N EAF Beta P-value P-value N EAF Beta P-value P-value 

rs142159415 11 5776626 T/C FVC ever 11564 0.95% 0.2677 7.98E-05 24460 1.01% 0.0540 0.2297 0.0013 - - - - - 

rs199618034 11 114182882 C/G FEV1 ever 11559 0.02% 1.8491 3.59E-05 24460 0.06% -0.1230 0.5644 0.0049 - - - - - 

rs1982528 12 132237848 C/T FVC ever 10147 98.35% -0.2244 5.25E-05 24460 98.61% -0.0372 0.3538 0.0023 - - - - - 

rs140930007 13 51854595 A/G FVC never 11419 0.03% -1.6837 8.63E-06 NA NA NA NA 8.63E-06 2940 0.03% -0.1255 0.9001 5.40E-05 

rs144854034 13 98829388 G/T FEV1/FVC ever 11560 0.11% -0.7922 8.43E-05 24460 0.14% -0.0512 0.7120 0.0113 - - - - - 

rs140501662 14 20711665 T/C FEV1/FVC never 11831 0.15% 0.6755 7.66E-05 24483 0.04% 0.1679 0.4809 0.0046 - - - - - 

rs200081065 14 91755506 T/C FEV1 never 11834 0.08% 0.9679 2.47E-05 NA NA NA NA 2.47E-05 2490 0.07% 0.5251 0.5995 6.10E-05 

rs200614333 15 42143077 T/C FVC never 11832 0.02% 1.7770 6.41E-05 24483 0.02% 0.5671 0.0753 1.83E-04 - - - - - 

rs138439412 15 52017135 T/C FVC ever 11561 0.92% -0.2737 7.75E-05 24460 0.89% 0.0483 0.3377 0.1474 - - - - - 

rs79030022 15 75941897 T/C FEV1/FVC ever 11553 0.05% 1.1613 5.71E-05 24460 0.02% 0.5275 0.2122 9.41E-04 - - - - - 

rs144617499 16 21073933 A/G FEV1 ever 11561 2.15% -0.1813 8.23E-05 24460 2.32% -0.0120 0.6885 0.0104 - - - - - 

rs77439178 16 31091757 A/G FEV1/FVC ever 11479 0.01% 2.9418 3.61E-05 NA NA NA NA 3.61E-05 4509 0.00% NA NA 3.61E-05 

rs141225776 16 66547713 A/T FVC never 11833 0.02% 1.7422 9.80E-05 NA NA NA NA 9.80E-05 2936 0.02% 0.3146 0.7530 2.87E-04 

rs146239773 17 1387496 A/G FEV1 ever 11563 0.02% 2.0179 1.11E-05 24460 0.01% -0.5164 0.4243 0.3357 - - - - - 

rs7207403 17 47210506 A/C FEV1 ever 11562 56.42% 0.0591 6.02E-05 24460 55.81% -0.0185 0.0369 0.4004 - - - - - 

rs143270448 17 74274071 A/G FEV1 never 11834 0.15% 0.7305 1.20E-05 24460 0.24% 0.0277 0.7754 0.0063 - - - - - 

rs201979657 18 77171089 A/G FEV1/FVC ever 11557 0.02% -1.9564 9.00E-05 NA NA NA NA 9.00E-05 4509 0.01% 0.4703 0.6382 0.0021 

rs200123506 19 38375738 C/T FEV1 ever 11563 0.18% 0.6251 7.17E-05 24460 0.09% 0.0699 0.6795 0.0563 - - - - - 

rs61737337 19 40197267 A/G FEV1/FVC ever 11137 0.01% 2.9111 4.18E-05 24460 0.02% -0.2268 0.5628 0.0651 - - - - - 

rs201361713 19 48737800 T/C FVC ever 11564 0.09% 0.8992 6.58E-05 24460 0.01% -0.2270 0.6666 0.0566 - - - - - 

rs143501994 19 51870712 T/C FEV1/FVC ever 11563 0.37% 0.4191 9.25E-05 24460 0.22% -0.0107 0.932 0.0319 - - - - - 

rs200402559 21 44838346 A/G FVC never 11833 0.01% 2.9643 2.54E-05 NA NA NA NA 2.54E-05 2940 0.00% NA NA 2.54E-05 

rs201423754 22 37893171 T/C FEV1/FVC ever 11563 0.01% -2.5360 1.26E-05 NA NA NA NA 1.26E-05 4509 0.00% NA NA 1.26E-05 

rs12841259 X 118893390 G/A FEV1/FVC ever 8744 0.48% 0.3479 4.25E-05 NA NA NA NA 4.25E-05 4506 0.03% -0.6750 0.4997 0.0020 
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Appendix Table D-3: Replication results for all genes identified discovery SKAT analyses in ever smokers and never smokers separately 

(P<10-4). Discovery, replication and combined meta results calculated using RAREMETAL.  

 

   

Discovery Analysis - 

SpiroMeta Consortium 

Replication Analysis - UK 

BiLEVE & UKHLS 

Combined Meta-

analysis 

Gene 

Name Trait 

Smoking 

subset (Ever 

/ never 

smokers) 

No. variants 

included in 

test (nsnp) 

P-value 

(Pdisc) 

No. variants 

included in 

test (nsnp) 

P-value 

(Prep) P-value (Pmeta) 

C12orf77 FEV1/FVC Ever 4 5.33E-05 4 0.840701 0.048557 

NFATC1 FEV1/FVC Never 10 8.41E-05 7 0.45282 0.431509 
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Appendix Table D-4: Replication results for all genes identified discovery WST analyses in ever smokers and never smokers separately 

(P<10-4). Discovery, replication and combined meta results calculated using RAREMETAL. Beta values for Discovery and Stage 1 replication results reflect effect-size 

estimates on an inverse-normal transformed scale.  

 

   

Discovery Analysis - SpiroMeta 

Consortium Replication Analysis - UK BiLEVE & UKHLS Combined Meta-analysis 

Gene 

Name Trait 

Smoking 

subset (Ever 

/ never 

smokers) 

No. variants 

included in 

test (nsnp) 

Effect 

size(βdisc) 

P-value 

(Pdisc) 

No. variants 

included in 

test (nsnp) 

Effect 

size(βrep) 

P-value 

(Prep) 

Effect 

size(βmeta) P-value (Pmeta) 

FAM45A FEV1 Ever 6 -0.01309 5.66E-05 2 0.003047 0.296944 -0.00584 7.79E-04 

NPEPL1 FEV1 Never 2 0.018006 8.46E-05 2 -0.00082 0.742565 -0.00277 0.281712 

PGBD1 FEV1 Never 13 0.006683 2.63E-05 7 -4.9E-05 0.957415 0.001683 0.015263 

FAM45A FVC Ever 6 -0.01337 3.78E-05 2 0.000384 0.895643 -0.00653 1.65E-04 

GPR123 FVC Ever 4 0.016998 8.40E-05 4 -0.00168 0.343451 0.004207 0.04262 

WRB FVC Never 2 -0.01768 9.73E-05 1 -0.00221 0.603703 -0.01017 4.37E-05 

C12orf77 FEV1/FVC Ever 4 0.018913 3.29E-06 3 0.000154 0.933714 0.007473 0.030133 

LRPPRC FEV1/FVC Ever 16 -0.01023 8.03E-05 7 -8.95E-04 0.003491 -0.00104 0.003646 



 

269 
 

E. Full results for the analysis of flow lung function measures PEF and FEF25-75 in UK Biobank (Chapter 5). 

Appendix Table E-1: All sentinel SNPs identified in the analyses of PEF (P<5x10-8). 
Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry 

principal components, and stratified by ever smoking status. 

 

SNP (Chr:Pos) 

Effect/ 
noneffect 
allele INFO MAF 

Effect 
Estimate 

Standard 
error P-value Conditioned SNP(s) Gene(s) Consequence 

rs3790760(chr1:19746527) C/G 0.9887 22.58% -0.0390 0.0055 1.51E-12 NA CAPZB intron_variant 

rs59538733(chr1:31258698) GC/G 0.9978 30.69% -0.0311 0.0050 3.98E-10 NA LOC105378621 upstream_gene_variant 

rs111253797(chr1:51216645) C/CT 0.9720 39.94% 0.0294 0.0047 5.23E-10 NA FAF1 intron_variant 

rs72706228(chr1:149177435) T/A 1.0000 2.41% -0.1307 0.0151 4.51E-18 NA - intergenic_variant 

rs186278988(chr1:149681794) T/C 0.9205 1.01% 0.1405 0.0239 4.20E-09 rs72706228 - intergenic_variant 

rs187954997(chr1:205741433) T/A 0.7575 1.18% -0.1981 0.0256 1.01E-14 rs1342062 RAB29 intron_variant 

rs1342062(chr1:205912786) G/T 0.9514 32.70% 0.0437 0.0050 2.33E-18 NA SLC26A9 upstream_gene_variant 

rs6688548(chr1:239850638) C/A 0.9840 48.87% -0.0339 0.0046 1.83E-13 NA CHRM3 intron_variant 

rs71389215(chr2:9293365) CCT/C 0.9767 37.59% -0.0268 0.0048 2.34E-08 NA - intergenic_variant 

rs2544531(chr2:15904041) A/G 1.0000 48.47% 0.0273 0.0046 2.26E-09 NA - intergenic_variant 

rs143880252(chr2:31878429) A/T 0.9239 3.48% -0.1598 0.0131 4.64E-34 rs143268195 SRD5A2 intron_variant 

rs143268195(chr2:32021240) C/T 0.6868 1.48% -0.3114 0.0241 3.47E-38 NA LOC105374449 
intron_variant, 
non_coding_transcript_variant 

rs7583334(chr2:32800602) T/C 0.8608 4.89% -0.1117 0.0118 2.23E-21 rs143880252, rs143268195  BIRC6  intron_variant 

rs77972916(chr2:43762112) G/A 0.9855 7.63% 0.0583 0.0087 1.77E-11 NA THADA intron_variant 

rs702901(chr2:65763552) A/C 1.0000 3.79% 0.0662 0.0119 2.78E-08 NA LOC105369166 
intron_variant, 
non_coding_transcript_variant 

rs188717678(chr2:135593014) T/G 0.6325 1.08% -0.2384 0.0294 4.58E-16 NA ACMSD upstream_gene_variant 

rs559940908(chr2:135607570) G/A 0.6294 1.03% -0.3155 0.0305 4.18E-25 rs188717678 ACMSD intron_variant 

rs148474091(chr2:135825162) A/G 0.8608 1.29% -0.1537 0.0224 6.50E-12 
rs188717678, rs559940908, 
rs75840321 RAB3GAP1 intron_variant 

rs75840321(chr2:136650513) G/C 0.6878 1.17% -0.2776 0.0271 1.53E-24 NA - intergenic_variant 

rs4372823(chr2:144325926) A/G 0.9931 17.59% 0.0413 0.0060 8.01E-12 NA ARHGAP15 intron_variant 
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SNP (Chr:Pos) 

Effect/ 
noneffect 
allele INFO MAF 

Effect 
Estimate 

Standard 
error P-value Conditioned SNP(s) Gene(s) Consequence 

rs72855705(chr2:151018807) T/C 0.9601 4.45% 0.0771 0.0114 1.13E-11 NA LOC105373682 
intron_variant, 
non_coding_transcript_variant 

rs115723803(chr2:156842429) G/A 1.0000 6.58% -0.0522 0.0092 1.33E-08 NA LOC105373705 upstream_gene_variant 

rs150421147(chr2:184213901) C/T 1.0000 1.92% -0.1025 0.0166 6.21E-10 NA - intergenic_variant 

rs558858909(chr2:204693871) C/G 0.6432 1.05% -0.3160 0.0301 1.02E-25 rs56102377 - intergenic_variant 

rs56102377(chr2:204737635) G/A 0.8085 1.28% -0.2415 0.0234 5.42E-25 NA CTLA4 3_prime_UTR_variant 

rs13069216(chr3:55149475) A/G 0.9820 48.01% -0.0276 0.0046 2.63E-09 NA - intergenic_variant 

rs6445925(chr3:57709777) T/C 0.9890 48.73% 0.0258 0.0046 2.04E-08 NA - intergenic_variant 

rs79105080(chr3:160779029) T/C 0.8474 2.28% -0.2397 0.0173 1.61E-43 NA PPM1L intron_variant 

rs76580162(chr3:160989377) C/T 0.7294 1.17% -0.1846 0.0263 2.31E-12 rs79105080 LOC105374187 
non_coding_transcript_exon_variant, 
non_coding_transcript_variant 

rs17515933(chr3:164971278) G/A 1.0000 1.76% -0.1010 0.0173 5.26E-09 NA LINC01322 
intron_variant, 
non_coding_transcript_variant 

rs6794830(chr3:168811226) T/C 0.9959 36.19% -0.0319 0.0048 2.01E-11 NA MECOM intron_variant 

rs2592831(chr4:1711404) T/C 0.9972 33.63% -0.0265 0.0048 4.26E-08 NA SLBP intron_variant 

rs28752137(chr4:5030854) A/G 0.9895 32.57% 0.0370 0.0049 4.16E-14 NA LOC105374361 
intron_variant, 
non_coding_transcript_variant 

rs191050570(chr4:15582642) T/C 0.6451 1.88% -0.3890 0.0227 1.42E-65 NA CC2D2A intron_variant 

rs76364661(chr4:15743240) G/T 0.8421 1.08% -0.2732 0.0249 4.29E-28 rs191050570 BST1 intron_variant 

rs73238348(chr4:56656153) G/T 1.0000 11.15% -0.0417 0.0072 8.61E-09 NA - intergenic_variant 

rs192751765(chr4:77236153) G/T 0.8150 0.92% -0.2211 0.0275 7.98E-16 rs74936215 CCDC158 intron_variant 

rs74936215(chr4:77349465) G/A 0.7627 1.51% -0.3133 0.0225 3.07E-44 NA LOC105377287 
intron_variant, 
non_coding_transcript_variant 

rs113192062(chr4:90832304) G/T 0.8506 0.56% -0.2686 0.0340 2.79E-15 rs558009692 MMRN1 intron_variant 

rs558009692(chr4:90840728) A/T 0.6600 1.78% -0.1982 0.0223 6.41E-19 NA MMRN1 intron_variant 

rs181375239(chr4:91081880) T/C 0.7627 1.29% -0.2802 0.0241 3.03E-31 NA CCSER1 intron_variant 

rs34712979(chr4:106819053) G/A 1.0000 25.85% -0.0592 0.0052 1.04E-29 NA NPNT splice_region_variant, intron_variant 

rs541066384(chr4:133944260) C/T 0.8901 1.25% -0.1409 0.0220 1.57E-10 NA LOC105377431 
intron_variant, 
non_coding_transcript_variant 

rs7658614(chr4:145445694) T/A 0.9987 46.81% 0.0707 0.0046 7.55E-54 NA LOC105377462 
intron_variant 
,non_coding_transcript_variant 
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SNP (Chr:Pos) 

Effect/ 
noneffect 
allele INFO MAF 

Effect 
Estimate 

Standard 
error P-value Conditioned SNP(s) Gene(s) Consequence 

rs116391341(chr4:154393826) G/C 1.0000 3.15% -0.0727 0.0130 2.20E-08 NA KIAA0922 intron_variant 

rs350415(chr5:51968428) A/G 0.9948 26.02% 0.0293 0.0052 2.12E-08 NA LOC105378963 downstream_gene_variant 

rs76494599(chr5:60464399) T/C 0.9699 4.94% -0.0784 0.0108 3.27E-13 NA CTC-436P18.1 
intron_variant, 
non_coding_transcript_variant 

rs4466136(chr5:82985576) T/G 0.9962 21.94% -0.0485 0.0055 2.05E-18 NA HAPLN1 intron_variant 

rs55971857(chr5:92441594) A/C 0.9975 36.77% 0.0315 0.0047 3.34E-11 NA - intergenic_variant 

rs376542571(chr5:102433408) C/T 0.8180 0.36% -0.2438 0.0433 1.87E-08 NA  GIN1  intron_variant 

rs140877435(chr5:137245396) G/A 0.9381 1.25% -0.1375 0.0213 1.07E-10 NA PKD2L2 intron_variant 

rs549379352(chr5:137440650) T/A 0.6525 1.66% -0.1454 0.0231 3.12E-10 rs140877435 - intergenic_variant 

rs6580550(chr5:147856232) T/C 1.0000 44.51% 0.0302 0.0046 5.59E-11 NA HTR4 downstream_gene_variant 

rs6872356(chr5:156962658) C/T 0.9800 14.43% -0.0437 0.0066 2.93E-11 NA ADAM19 intron_variant 

rs11747434(chr5:172779211) T/C 0.9778 27.68% 0.0301 0.0052 5.93E-09 NA MIR8056 downstream_gene_variant 

.(chr6:17602870) A/G 1.0000 1.78% 0.1321 0.0175 4.15E-14 NA FAM8A1 missense_variant 

rs3130568(chr6:31102884) T/C 0.9962 49.30% -0.0370 0.0046 5.82E-16 
rs532524051, rs538489083, 
rs560438058  PSORS1C1  intron_variant 

rs532524051(chr6:31194673) G/A 0.6055 1.83% -0.2781 0.0232 3.81E-33 rs538489083 - intergenic_variant 

rs538489083(chr6:32095727) C/T 0.5303 1.70% -0.3768 0.0256 3.83E-49 NA ATF6B intron_variant 

rs9273229(chr6:32613914) A/C 0.8656 36.45% -0.0502 0.0051 8.46E-23 
rs532524051, rs538489083, 
rs560438058 HLA-DQA1,- 

downstream_gene_variant, 
intergenic_variant 

rs560438058(chr6:32670158) T/G 0.8307 5.48% -0.1304 0.0113 1.22E-30 rs538489083 - intergenic_variant 

rs138535200(chr6:108633740) C/T 0.7463 2.54% -0.2482 0.0176 4.73E-45 NA LACE1 intron_variant 

rs7748807(chr6:108814162) G/C 1.0000 1.39% -0.1183 0.0196 1.48E-09 rs138535200 LACE1 intron_variant 

rs75176386(chr6:112203464) T/C 0.8008 0.62% -0.1941 0.0334 6.07E-09 NA - intergenic_variant 

rs17280293(chr6:142688969) A/G 1.0000 2.71% 0.0825 0.0141 4.90E-09 rs190516 ADGRG6 missense_variant 

rs190516(chr6:142813761) T/C 0.9947 31.09% 0.0494 0.0050 2.29E-23 NA - intergenic_variant 

rs574284527(chr6:149371098) C/CACAG 0.9497 33.67% -0.0324 0.0050 7.52E-11 NA UST intron_variant 

rs213522(chr7:26944252) G/T 0.9934 49.10% 0.0263 0.0046 1.13E-08 NA - intergenic_variant 

rs140768661(chr7:81185406) A/G 1.0000 2.64% -0.1029 0.0142 3.83E-13 NA LOC105369146 intron_variant 

.(chr7:128496289) T/TCA 1.0000 3.37% -0.1376 0.0126 1.14E-27 NA FLNC intron_variant 

rs12698403(chr7:156127246) G/A 0.9936 44.14% -0.0283 0.0046 9.51E-10 NA - intergenic_variant 
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SNP (Chr:Pos) 

Effect/ 
noneffect 
allele INFO MAF 

Effect 
Estimate 

Standard 
error P-value Conditioned SNP(s) Gene(s) Consequence 

rs2272026(chr8:9757600) C/T 0.9839 30.52% 0.0278 0.0050 3.15E-08 NA LINC00599 
non_coding_transcript_exon_variant, 
non_coding_transcript_variant 

rs117929207(chr8:13901118) T/A 1.0000 1.55% -0.1022 0.0186 3.66E-08 NA - intergenic_variant 

rs6981627(chr8:22530061) G/C 0.9132 2.56% -0.2091 0.0156 3.53E-41 NA BIN3 upstream_gene_variant 

rs34249114(chr8:22535398) G/A 0.9461 6.01% -0.1264 0.0100 1.01E-36 rs6981627 - intergenic_variant 

rs551029716(chr8:118071198) C/T 0.8578 0.52% -0.2478 0.0347 9.39E-13 NA SLC30A8 intron_variant 

rs190161317(chr8:130919581) C/T 0.9103 0.74% -0.2249 0.0281 1.33E-15 NA FAM49B intron_variant 

rs150078012(chr8:145860483) G/A 0.7090 1.17% -0.1488 0.0265 1.83E-08 NA ARHGAP39,- intron_variant, intergenic_variant 

rs4925815(chr8:145894656) C/G 0.6338 47.59% -0.0328 0.0058 1.24E-08 rs150078012 ARHGAP39,- intron_variant, intergenic_variant 

rs116341416(chr9:1924499) G/C 1.0000 2.60% -0.0782 0.0143 4.92E-08 NA LOC105375952 downstream_gene_variant 

rs17209774(chr9:4145163) G/C 0.9894 36.77% -0.0267 0.0048 2.14E-08 NA GLIS3 intron_variant 

rs116940183(chr9:27480138) G/A 0.7998 2.50% -0.0918 0.0167 3.86E-08 rs548356952 MOB3B intron_variant 

rs548356952(chr9:27500658) G/C 0.8039 1.22% -0.1707 0.0235 4.16E-13 NA MOB3B intron_variant 

rs558415(chr9:33953770) T/C 0.8220 1.84% -0.2231 0.0195 2.61E-30 NA UBAP2 intron_variant 

rs117434123(chr9:38996308) C/G 1.0000 3.33% -0.0719 0.0129 2.27E-08 NA LOC101927042 
intron_variant, 
non_coding_transcript_variant 

rs811689(chr9:119410756) C/T 0.9978 44.89% -0.0276 0.0046 1.85E-09 NA ASTN2 intron_variant 

rs2271804(chr10:12252217) G/A 0.9956 47.03% 0.0355 0.0046 1.10E-14 NA CDC123 intron_variant 

rs185638441(chr10:15559576) G/C 0.8150 0.27% -0.2967 0.0491 1.48E-09 NA ITGA8 intron_variant 

.(chr10:97879525) A/AT 0.5054 1.11% -0.2705 0.0323 5.06E-17 NA  CRTAC1  intron_variant 

rs117443545(chr11:83190398) G/A 0.7085 1.08% -0.2414 0.0268 2.08E-19 NA DLG2 intron_variant 

rs138857603(chr11:83275030) A/AT 0.8690 0.63% -0.2337 0.0315 1.18E-13 rs117443545 DLG2 intron_variant 

rs112066330(chr11:83299083) G/T 0.8023 0.36% -0.2781 0.0441 2.92E-10 rs117443545, rs138857603 DLG2 intron_variant 

rs114902756(chr11:85820597) G/C 0.8024 0.42% -0.2968 0.0406 2.62E-13 NA - intergenic_variant 

rs7105597(chr11:86432083) G/A 0.9866 15.25% -0.0360 0.0064 1.94E-08 rs114902756 - intergenic_variant 

rs111400016(chr11:91208353) G/A 1.0000 1.76% -0.0966 0.0172 2.16E-08 NA - intergenic_variant 

rs503441(chr11:126010797) A/G 0.9904 18.38% 0.0329 0.0059 2.88E-08 NA LOC105369591 upstream_gene_variant 

rs150950471(chr12:39134817) C/G 0.6038 2.41% -0.4098 0.0213 3.65E-82 NA CPNE8 intron_variant 

rs558946982(chr12:40462632) G/GT 0.6928 1.62% 0.1334 0.0217 7.63E-10 rs17519950 SLC2A13 intron_variant 
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SNP (Chr:Pos) 

Effect/ 
noneffect 
allele INFO MAF 

Effect 
Estimate 

Standard 
error P-value Conditioned SNP(s) Gene(s) Consequence 

rs200767456(chr12:40558001) A/T 0.6709 3.81% 0.0806 0.0145 2.52E-08 
rs150950471, rs558946982, 
rs17519950 - intergenic_variant 

rs17519950(chr12:40695188) A/T 0.8380 1.15% -0.2785 0.0240 4.00E-31 NA LRRK2 intron_variant 

rs4760619(chr12:48499931) A/T 0.9899 16.64% -0.0349 0.0062 1.63E-08 NA PFKM intron_variant 

rs11111272(chr12:102827441) G/C 0.9961 28.53% -0.0303 0.0051 2.17E-09 NA IGF1 intron_variant 

rs12427728(chr13:98174730) C/T 0.5654 1.05% -0.4013 0.0338 1.36E-32 NA - intergenic_variant 

rs55962908(chr15:49768429) G/T 0.8900 47.02% -0.0270 0.0049 2.58E-08 NA FGF7 intron_variant 

rs1441358(chr15:71612514) T/G 1.0000 33.60% -0.0468 0.0049 6.39E-22 NA THSD4 intron_variant 

rs77111785(chr15:74930527) C/T 0.5803 1.29% -0.1563 0.0265 3.82E-09 NA EDC3 intron_variant 

rs12594577(chr15:76828793) A/C 0.9995 47.86% 0.0255 0.0046 2.71E-08 NA SCAPER intron_variant 

rs140330585(chr15:78866445) G/A 0.9996 33.46% -0.0308 0.0049 2.46E-10 NA CHRNA5 intron_variant 

rs74930371(chr16:19273328) G/T 0.9152 1.95% -0.2447 0.0176 7.15E-44 NA SYT17 intron_variant 

rs544559569(chr16:30880829) TC/T 0.5605 1.99% -0.1307 0.0225 6.46E-09 NA BCL7C intron_variant 

rs3104770(chr16:52627368) A/T 0.7563 2.77% -0.2379 0.0168 1.98E-45 NA CASC16 
intron_variant, 
non_coding_transcript_variant 

rs11149827(chr16:75435143) A/G 0.9878 40.82% -0.0380 0.0047 4.54E-16 NA CFDP1 intron_variant 

rs561060101(chr17:17776177) G/C 0.7202 1.18% -0.2338 0.0258 1.34E-19 rs201183826 TOM1L2 intron_variant 

rs76926781(chr17:17805129) C/T 0.8439 1.26% -0.1916 0.0230 9.04E-17 rs561060101, rs201183826 TOM1L2 intron_variant 

rs201183826(chr17:18107778) AT/A 0.8990 1.26% -0.2268 0.0221 1.06E-24 NA ALKBH5 intron_variant 

rs561223711(chr17:36861636) T/TG 0.9847 19.69% -0.0319 0.0058 3.55E-08 NA MLLT6 upstream_gene_variant 

rs73314997(chr17:44061123) C/T 0.6376 2.31% -0.3898 0.0210 3.00E-77 NA MAPT,MAPT missense_variant, missense_variant 

rs139935845(chr17:44307598) G/A 0.7489 1.55% -0.1817 0.0224 5.41E-16 rs73314997, rs56332949 LOC105371799 
intron_variant, 
non_coding_transcript_variant 

rs56332949(chr17:44316480) G/C 0.7377 1.69% -0.1595 0.0210 3.00E-14 rs73314997 LOC105371799 
intron_variant, 
non_coding_transcript_variant 

rs227726(chr17:54777585) C/T 0.9884 33.61% -0.0296 0.0049 1.21E-09 NA - intergenic_variant 

rs9898150(chr17:69185195) T/G 0.9976 48.59% -0.0355 0.0046 8.59E-15 NA CASC17 
intron_variant, 
non_coding_transcript_variant 

rs112990608(chr17:69384158) G/C 0.9772 7.36% -0.0522 0.0088 3.41E-09 rs9898150 - intergenic_variant 

rs8089099(chr18:10078071) G/A 0.9802 27.21% 0.0348 0.0052 2.12E-11 NA - intergenic_variant 
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SNP (Chr:Pos) 

Effect/ 
noneffect 
allele INFO MAF 

Effect 
Estimate 

Standard 
error P-value Conditioned SNP(s) Gene(s) Consequence 

rs138326911(chr19:13213277) T/C 0.9380 3.74% -0.0715 0.0124 9.01E-09 NA LYL1 intron_variant 

rs564454164(chr19:54957229) AAAG/A 0.9289 1.43% -0.2168 0.0204 2.06E-26 NA LENG8,- 
upstream_gene_variant, 
intergenic_variant 

rs143792972(chr19:55834177) G/C 0.9281 0.62% -0.2561 0.0307 6.86E-17 rs564454164 TMEM150B intron_variant 

rs34590652(chr20:13526292) A/AT 0.9862 43.53% 0.0269 0.0046 7.05E-09 NA TASP1 intron_variant 
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Appendix Table E-2: All sentinel SNPs identified in the analyses of FEF25-75 (P<5x10-8). 
Chromosome (Chr) and position (Pos) in build 37 are given for each SNP. Effect estimates are on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry 

principal components, and stratified by ever smoking status. 

SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs11588995 (chr1:17417958) C/T 0.9325 37.72% -0.0295 0.0049 2.19E-09 NA PADI2 intron_variant 

rs2986163 (chr1:25622288) T/A 0.8132 41.01% -0.0333 0.0052 1.24E-10 NA RHD intron_variant 

rs67452844 (chr1:39616282) A/G 1.0000 25.09% -0.0442 0.0053 8.36E-17 NA MACF1 intron_variant 

rs72673454 (chr1:60962424) T/C 0.9868 5.02% -0.0633 0.0106 2.16E-09 rs146229204 - intergenic_variant 

rs146229204 (chr1:61789514) A/G 1.0000 1.60% -0.1223 0.0183 2.38E-11 NA NFIA intron_variant 

rs79745125 (chr1:68617354) G/A 1.0000 3.12% -0.0776 0.0132 3.92E-09 NA WLS intron_variant 

rs6693314 (chr1:92058290) C/T 0.9616 13.84% -0.0390 0.0068 9.03E-09 NA - intergenic_variant 

rs2282248 (chr1:111736594) C/T 0.9903 32.69% 0.0290 0.0049 4.27E-09 NA DENND2D intron_variant 

rs72706228 (chr1:149177435) T/A 1.0000 2.41% -0.1763 0.0152 3.45E-31 NA - intergenic_variant 

rs587733913 (chr1:149698458) G/A 0.9325 0.97% 0.1671 0.0242 5.49E-12 rs77421422 RP11-353N4.5 
non_coding_transcript_exon_variant,n
on_coding_transcript_variant 

rs77421422 (chr1:150604958) A/G 1.0000 1.58% -0.1160 0.0185 3.21E-10 rs72706228,  rs587733913 ENSA upstream_gene_variant 

rs187954997 (chr1:205741433) T/A 0.7575 1.18% -0.2647 0.0258 9.32E-25 NA RAB29 intron_variant 

rs142495088 (chr1:219929662) CAA/C 0.9475 45.08% 0.0296 0.0048 4.89E-10 NA SLC30A10 
intron_variant,non_coding_transcript_
variant 

rs6694220 (chr1:239883616) A/G 0.9989 49.05% -0.0359 0.0046 6.65E-15 NA CHRM3 intron_variant 

. (chr2:15913628) C/CA 1.0000 49.03% 0.0300 0.0046 6.95E-11 NA - intergenic_variant 

rs55884799 (chr2:18287623) T/C 0.9949 17.42% 0.0541 0.0061 7.45E-19 NA KCNS3 
intron_variant,non_coding_transcript_
variant 

rs143880252 (chr2:31878429) A/T 0.9239 3.48% -0.2065 0.0132 6.11E-55 rs139999372 AL133247.3 downstream_gene_variant 

rs139999372 (chr2:31941464) C/A 0.6270 1.23% -0.4530 0.0286 1.40E-56 NA - intergenic_variant 

rs73922761 (chr2:32816432) T/C 0.8892 5.06% -0.1403 0.0115 1.62E-34 rs143880252, rs139999372 BIRC6 intron_variant 

rs702901 (chr2:65763552) A/C 1.0000 3.79% 0.0753 0.0120 3.38E-10 NA AC074391.1 
intron_variant,non_coding_transcript_
variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs13018626 (chr2:67087652) C/T 1.0000 6.67% -0.0560 0.0092 1.36E-09 NA - intergenic_variant 

rs77524493 (chr2:128618594) A/T 1.0000 4.18% 0.0631 0.0114 3.51E-08 NA POLR2D upstream_gene_variant 

rs188717678 (chr2:135593014) T/G 0.6325 1.08% -0.3259 0.0298 7.09E-28 NA ACMSD upstream_gene_variant 

rs559940908 (chr2:135607570) G/A 0.6294 1.03% -0.3935 0.0309 3.55E-37 rs188717678 ACMSD intron_variant 

rs149870752 (chr2:135707918) CTG/C 0.5716 2.46% -0.1866 0.0209 4.16E-19 

rs188717678, 
rs559940908, rs75840321, 
rs17467077 CCNT2 intron_variant 

rs75840321 (chr2:136650513) G/C 0.6878 1.17% -0.3388 0.0276 1.33E-34 NA - intergenic_variant 

rs186885313 (chr2:136736556) T/A 0.6100 1.48% 0.1551 0.0237 6.23E-11 

rs188717678, 
rs559940908, rs75840321, 
rs17467077 DARS intron_variant 

rs17467077 (chr2:136976914) G/A 0.7473 41.12% -0.0407 0.0055 1.15E-13 rs75840321 - intergenic_variant 

rs72855705 (chr2:151018807) T/C 0.9601 4.45% 0.0634 0.0114 2.97E-08 NA - intergenic_variant 

rs16840048 (chr2:156992261) A/G 0.9789 13.92% -0.0417 0.0067 5.59E-10 NA - intergenic_variant 

rs16858920 (chr2:171556798) T/C 1.0000 2.74% -0.0827 0.0141 4.24E-09 NA AC007277.3 upstream_gene_variant 

rs150421147 (chr2:184213901) C/T 1.0000 1.92% -0.1217 0.0167 2.93E-13 NA - intergenic_variant 

rs533421015 (chr2:204645768) A/C 0.8762 0.10% -0.4362 0.0785 2.81E-08 rs558858909, rs56102377 RNU6-474P upstream_gene_variant 

rs558858909 (chr2:204693871) C/G 0.6432 1.05% -0.4102 0.0304 1.85E-41 rs56102377 - intergenic_variant 

rs56102377 (chr2:204737635) G/A 0.8085 1.28% -0.3251 0.0238 1.87E-42 NA CTLA4 3_prime_UTR_variant 

rs7602943 (chr2:217632085) A/G 0.9583 14.58% -0.0391 0.0067 4.55E-09 NA AC007563.5 
intron_variant,non_coding_transcript_
variant 

rs2571445 (chr2:218683154) A/G 1.0000 39.70% 0.0373 0.0047 2.41E-15 NA TNS1 missense_variant 

rs56398110 (chr2:221353688) C/T 1.0000 3.33% -0.0734 0.0128 9.35E-09 NA AC067956.1 
intron_variant,non_coding_transcript_
variant 

rs16825267 (chr2:229569919) C/G 0.9900 8.06% 0.0734 0.0085 6.45E-18 NA - intergenic_variant 

rs61332075 (chr2:239316560) G/C 0.9824 12.12% 0.0406 0.0071 9.99E-09 rs11124197 RNU6-234P upstream_gene_variant 

rs11124197 (chr2:239882327) T/C 0.9947 19.84% 0.0518 0.0058 4.43E-19 NA - intergenic_variant 

rs1286664 (chr3:25529280) C/T 1.0000 17.61% 0.0385 0.0061 1.98E-10 NA RARB intron_variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs553112184 (chr3:53692219) C/CT 0.9371 22.89% -0.0362 0.0057 1.48E-10 NA CACNA1D intron_variant 

rs62256243 (chr3:55163321) C/T 0.9903 33.64% -0.0373 0.0049 3.19E-14 NA - intergenic_variant 

rs72874879 (chr3:57713464) C/T 0.9959 23.55% 0.0399 0.0054 2.10E-13 NA - intergenic_variant 

rs114153976 (chr3:120798364) G/C 1.0000 2.79% 0.0795 0.0140 1.22E-08 NA STXBP5L intron_variant 

rs2999089 (chr3:127935159) C/G 0.9985 12.00% -0.0480 0.0071 1.43E-11 NA EEFSEC intron_variant 

rs372836737 (chr3:134261782) C/CAA 0.9152 26.14% -0.0302 0.0055 4.06E-08 NA CEP63 intron_variant 

rs76904649 (chr3:143776664) C/T 1.0000 3.10% -0.0756 0.0132 1.10E-08 NA - intergenic_variant 

rs79105080 (chr3:160779029) T/C 0.8474 2.28% -0.2985 0.0175 1.67E-65 NA PPM1L intron_variant 

rs185502807 (chr3:160977292) C/T 0.6696 1.45% -0.1423 0.0244 5.86E-09 rs79105080, rs112769734 - intergenic_variant 

rs112769734 (chr3:160984308) C/A 0.7292 1.17% -0.2282 0.0266 1.08E-17 rs79105080 - intergenic_variant 

rs17515933 (chr3:164971278) G/A 1.0000 1.76% -0.1201 0.0174 5.45E-12 NA LINC01322 
intron_variant,non_coding_transcript_
variant 

rs6794830 (chr3:168811226) T/C 0.9959 36.19% -0.0357 0.0048 9.96E-14 NA MECOM intron_variant 

rs191050570 (chr4:15582642) T/C 0.6451 1.88% -0.4881 0.0232 2.40E-98 NA CC2D2A intron_variant 

rs76364661 (chr4:15743240) G/T 0.8421 1.08% -0.3461 0.0251 3.02E-43 rs191050570 RP11-442P12.2 upstream_gene_variant 

rs73238348 (chr4:56656153) G/T 1.0000 11.15% -0.0529 0.0073 3.79E-13 NA - intergenic_variant 

rs62316308 (chr4:75676337) C/A 0.9979 26.27% 0.0329 0.0052 3.34E-10 NA BTC intron_variant 

rs1530294 (chr4:77202186) G/A 0.8191 0.22% -0.3734 0.0554 1.58E-11 
rs62316308, rs192751765, 
rs116291420 FAM47E-STBD1 intron_variant 

rs192751765 (chr4:77236153) G/T 0.8150 0.92% -0.2837 0.0276 7.56E-25 rs116291420 STBD1 downstream_gene_variant 

rs116291420 (chr4:77346196) G/C 0.7825 1.52% -0.4094 0.0222 5.10E-76 NA CCDC158 upstream_gene_variant 

rs2013701 (chr4:89885086) G/T 0.9955 49.23% -0.0363 0.0046 4.04E-15 NA FAM13A intron_variant 

rs113192062 (chr4:90832304) G/T 0.8506 0.56% -0.3184 0.0343 1.52E-20 
rs2013701, rs558009692, 
rs181375239 MMRN1 intron_variant 

rs558009692 (chr4:90840728) A/T 0.6600 1.78% -0.2713 0.0225 1.50E-33 rs2013701 MMRN1 intron_variant 

rs181375239 (chr4:91081880) T/C 0.7627 1.29% -0.3515 0.0243 2.20E-47 NA CCSER1 intron_variant 

rs6533183 (chr4:106133184) C/T 0.9984 34.06% -0.0352 0.0048 4.02E-13 rs34712979 TET2 intron_variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs145501437 (chr4:106815984) 
TAGAGAC/
T 0.9830 5.92% 0.0616 0.0098 3.98E-10 rs6533183, rs34712979 NPNT upstream_gene_variant 

rs34712979 (chr4:106819053) G/A 1.0000 25.85% -0.0879 0.0053 1.61E-62 NA NPNT splice_region_variant,intron_variant 

rs73844242 (chr4:122572542) A/T 1.0000 2.15% -0.0973 0.0158 7.69E-10 NA - intergenic_variant 

rs541066384 (chr4:133944260) C/T 0.8901 1.25% -0.1573 0.0221 1.23E-12 rs146919752 - intergenic_variant 

rs146919752 (chr4:134018576) C/A 0.5872 1.31% -0.2070 0.0275 4.88E-14 NA RP11-9G1.3 
intron_variant,non_coding_transcript_
variant 

rs6817273 (chr4:145492003) T/C 0.9980 39.56% 0.0686 0.0047 3.16E-48 NA KRT18P51 upstream_gene_variant 

rs2251639 (chr4:154656410) T/C 0.9693 24.07% -0.0311 0.0055 1.30E-08 NA RNF175 intron_variant 

rs115884234 (chr4:177128291) T/A 1.0000 4.52% 0.0679 0.0111 9.17E-10 NA - intergenic_variant 

rs17064246 (chr4:178003392) A/G 1.0000 3.27% -0.0750 0.0129 5.45E-09 rs115884234 - intergenic_variant 

rs111310362 (chr5:3008207) T/A 1.0000 3.83% -0.0659 0.0120 4.17E-08 NA - intergenic_variant 

rs12520489 (chr5:43515280) A/C 0.9825 19.98% -0.0322 0.0058 3.05E-08 NA C5orf34 upstream_gene_variant 

rs1551943 (chr5:52195033) G/A 1.0000 22.81% -0.0424 0.0055 1.16E-14 NA ITGA1 intron_variant 

rs12186544 (chr5:52255140) C/A 0.9818 20.52% 0.0369 0.0057 1.42E-10 rs1551943 ITGA1 downstream_gene_variant 

rs17659497 (chr5:55903639) A/T 1.0000 2.14% 0.0917 0.0159 7.35E-09 NA C5orf67 upstream_gene_variant 

rs115007883 (chr5:60076358) C/T 0.8889 0.40% -0.2434 0.0395 7.36E-10 rs75848589 ELOVL7 intron_variant 

rs75848589 (chr5:60469357) C/T 0.8560 2.14% -0.1466 0.0176 8.97E-17 NA CTC-436P18.1 
intron_variant,non_coding_transcript_
variant 

rs71626454 (chr5:66180965) G/A 1.0000 1.86% -0.1030 0.0170 1.29E-09 NA MAST4 intron_variant 

rs1501911 (chr5:98342868) T/A 0.9831 38.53% 0.0296 0.0048 5.28E-10 NA - intergenic_variant 

rs376542571 (chr5:102433408) C/T 0.8180 0.36% -0.2838 0.0441 1.27E-10 NA GIN1 synonymous_variant 

rs17163397 (chr5:128767384) A/G 0.9904 12.55% 0.0445 0.0070 1.87E-10 NA - intergenic_variant 

rs10060626 (chr5:131803967) T/G 0.9674 23.93% -0.0299 0.0055 4.69E-08 NA C5orf56 downstream_gene_variant 

rs140877435 (chr5:137245396) G/A 0.9381 1.25% -0.1595 0.0214 9.95E-14 rs549379352 PKD2L2 intron_variant 

rs549379352 (chr5:137440650) T/A 0.6525 1.66% -0.1881 0.0234 8.19E-16 NA - intergenic_variant 

rs7733410 (chr5:147856522) G/A 1.0000 44.04% 0.0571 0.0046 8.49E-35 NA HTR4 downstream_gene_variant 



 

279 
 

SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs1800888 (chr5:148206885) C/T 1.0000 1.51% -0.1283 0.0188 9.41E-12 rs7733410 ADRB2 missense_variant 

rs13361953 (chr5:156926442) T/C 0.9958 33.69% -0.0457 0.0049 8.06E-21 NA ADAM19 intron_variant 

rs6896218 (chr5:179598009) G/C 0.9808 49.32% 0.0272 0.0047 5.41E-09 NA RASGEF1C intron_variant 

rs1294417 (chr6:6741932) T/C 0.9822 46.04% 0.0296 0.0047 2.15E-10 NA - intergenic_variant 

. (chr6:17602870) A/G 1.0000 1.78% 0.1618 0.0176 3.58E-20 NA FAM8A1 missense_variant 

rs6905736 (chr6:19843767) C/A 0.9321 15.22% -0.0386 0.0066 5.45E-09 NA ID4 downstream_gene_variant 

rs2517611 (chr6:30169327) A/G 1.0000 22.96% -0.0321 0.0055 4.05E-09 

rs149405105, 
rs532524051, 
rs538489083, rs560438058 TRIM26 intron_variant 

rs149405105 (chr6:30976349) G/A 0.9678 6.16% 0.0936 0.0097 7.53E-22 NA MUC22 upstream_gene_variant 

rs532524051 (chr6:31194673) G/A 0.6055 1.83% -0.3128 0.0232 2.24E-41 rs538489083 
XXbac-
BPG299F13.16 upstream_gene_variant 

rs2442724 (chr6:31319907) C/T 0.9857 14.89% -0.0586 0.0065 1.26E-19 

rs149405105, 
rs532524051, 
rs538489083, rs560438058 HLA-B downstream_gene_variant 

rs538489083 (chr6:32095727) C/T 0.5303 1.70% -0.4520 0.0260 6.70E-68 NA FKBPL downstream_gene_variant 

rs9270377 (chr6:32558260) G/T 0.7291 44.95% -0.0685 0.0054 5.77E-37 

rs149405105, 
rs532524051, 
rs538489083, rs560438058 HLA-DRB1 upstream_gene_variant 

rs560438058 (chr6:32670158) T/G 0.8307 5.48% -0.1633 0.0114 2.58E-46 rs538489083 MTCO3P1 downstream_gene_variant 

rs115830429 (chr6:56239955) G/A 1.0000 2.45% 0.0901 0.0149 1.47E-09 NA COL21A1 intron_variant 

rs13206617 (chr6:73663745) G/T 0.9942 19.90% 0.0351 0.0058 1.22E-09 NA KCNQ5 intron_variant 

rs138535200 (chr6:108633740) C/T 0.7463 2.54% -0.3021 0.0178 2.88E-64 NA LACE1 intron_variant 

rs112818441 (chr6:108709124) T/A 0.6688 1.18% -0.2692 0.0278 3.06E-22 rs138535200 LACE1 intron_variant 

rs7748807 (chr6:108814162) G/C 1.0000 1.39% -0.1741 0.0197 8.77E-19 rs138535200, rs112818441 LACE1 intron_variant 

rs75176386 (chr6:112203464) T/C 0.8008 0.62% -0.3110 0.0339 4.54E-20 NA - intergenic_variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs117677851 (chr6:113532326) T/G 1.0000 2.22% -0.1049 0.0155 1.40E-11 NA - intergenic_variant 

rs7765914 (chr6:142560307) T/C 1.0000 27.50% 0.0384 0.0052 1.05E-13 rs3748069 - intergenic_variant 

rs17280293 (chr6:142688969) A/G 1.0000 2.71% 0.0938 0.0142 3.64E-11 rs7765914, rs3748069 ADGRG6 missense_variant 

rs3748069 (chr6:142767633) A/G 1.0000 28.91% 0.0729 0.0051 1.02E-46 NA ADGRG6 downstream_gene_variant 

rs117606901 (chr6:143970809) C/G 1.0000 3.51% 0.0823 0.0125 4.29E-11 NA PHACTR2 intron_variant 

rs140768661 (chr7:81185406) A/G 1.0000 2.64% -0.1153 0.0143 6.10E-16 NA AC008163.4 
intron_variant,non_coding_transcript_
variant 

. (chr7:128496289) T/TCA 1.0000 3.37% -0.1874 0.0127 3.18E-49 NA FLNC intron_variant 

rs12698403 (chr7:156127246) G/A 0.9936 44.14% -0.0307 0.0047 4.52E-11 NA - intergenic_variant 

rs372477046 (chr8:7275432) C/T 0.5825 4.90% -0.0903 0.0141 1.68E-10 NA DEFB4B upstream_gene_variant 

rs2272026 (chr8:9757600) C/T 0.9839 30.52% 0.0296 0.0051 5.02E-09 NA LINC00599 
non_coding_transcript_exon_variant,n
on_coding_transcript_variant 

rs4128298 (chr8:11823332) T/C 0.9866 28.45% 0.0310 0.0052 1.73E-09 NA - intergenic_variant 

rs117929207 (chr8:13901118) T/A 1.0000 1.55% -0.1031 0.0187 3.32E-08 NA - intergenic_variant 

rs75621048 (chr8:13928632) T/A 1.0000 2.21% -0.0863 0.0156 3.33E-08 rs117929207 - intergenic_variant 

rs372505725 (chr8:22452602) AG/A 0.6410 1.48% -0.1828 0.0260 2.19E-12 rs6981627, rs34249114 PDLIM2 downstream_gene_variant 

rs6981627 (chr8:22530061) G/C 0.9132 2.56% -0.2699 0.0157 2.31E-66 NA BIN3 upstream_gene_variant 

rs34249114 (chr8:22535398) G/A 0.9461 6.01% -0.1503 0.0100 1.25E-50 rs6981627 CTD-3247F14.2 downstream_gene_variant 

rs659398 (chr8:103131300) T/C 0.9797 26.92% 0.0295 0.0052 1.90E-08 NA NCALD intron_variant 

rs551029716 (chr8:118071198) C/T 0.8578 0.52% -0.3177 0.0351 1.52E-19 NA RP11-1059L18.1 downstream_gene_variant 

. (chr8:130893236) TTC/T 0.9003 0.59% -0.3379 0.0322 9.58E-26 NA     

rs150078012 (chr8:145860483) G/A 0.7090 1.17% -0.2056 0.0266 1.05E-14 NA - intergenic_variant 

rs10108089 (chr8:145958174) G/A 0.6506 2.20% 0.1224 0.0191 1.51E-10 rs150078012, rs190738032 ZNF251 intron_variant 

rs190738032 (chr8:146126686) G/C 0.8596 0.50% -0.2528 0.0357 1.50E-12 rs150078012 ZNF250 intron_variant 

rs116341416 (chr9:1924499) G/C 1.0000 2.60% -0.0918 0.0144 2.06E-10 NA - intergenic_variant 

rs7872188 (chr9:4124377) C/T 0.9738 40.06% -0.0315 0.0048 3.53E-11 NA GLIS3 intron_variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs113374461 (chr9:23583610) A/ATATAT 0.9911 48.48% 0.0295 0.0046 1.52E-10 NA - intergenic_variant 

rs116940183 (chr9:27480138) G/A 0.7998 2.50% -0.1139 0.0169 1.46E-11 rs548356952 MOB3B intron_variant 

rs548356952 (chr9:27500658) G/C 0.8039 1.22% -0.2286 0.0236 3.36E-22 NA MOB3B intron_variant 

rs150361628 (chr9:33941516) C/T 0.8057 0.37% -0.3185 0.0438 3.57E-13 rs558415 UBAP2 intron_variant 

rs558415 (chr9:33953770) T/C 0.8220 1.84% -0.2763 0.0197 7.03E-45 NA UBAP2 intron_variant 

rs12156614 (chr9:34040152) C/A 0.5561 1.11% 0.1730 0.0283 1.04E-09 rs150361628, rs558415 UBAP2 intron_variant 

rs117434123 (chr9:38996308) C/G 1.0000 3.33% -0.0783 0.0129 1.45E-09 NA - intergenic_variant 

rs2493637 (chr9:109521257) C/T 0.9878 21.16% -0.0326 0.0057 9.16E-09 NA - intergenic_variant 

rs73558998 (chr9:117954724) T/A 0.8647 0.37% -0.2422 0.0418 6.84E-09 NA 37226 intron_variant 

rs803909 (chr9:119413447) T/G 0.9988 46.18% -0.0254 0.0046 3.76E-08 NA ASTN2 intron_variant 

rs2271804 (chr10:12252217) G/A 0.9956 47.03% 0.0462 0.0046 1.73E-23 NA CDC123 intron_variant 

rs185638441 (chr10:15559576) G/C 0.8150 0.27% -0.3575 0.0500 8.93E-13 NA ITGA8 intron_variant 

rs3847402 (chr10:30267810) G/A 0.9829 40.34% -0.0279 0.0047 3.98E-09 NA - intergenic_variant 

rs2579762 (chr10:78318879) A/C 1.0000 47.15% -0.0398 0.0046 6.63E-18 NA C10orf11 downstream_gene_variant 

rs4933356 (chr10:82113885) A/T 0.9837 49.95% 0.0257 0.0047 3.25E-08 NA DYDC1 intron_variant 

rs116411520 (chr10:91533071) G/A 0.8433 2.55% -0.1025 0.0163 2.99E-10 NA KIF20B intron_variant 

. (chr10:97879525) A/AT 0.5054 1.11% -0.3158 0.0330 1.02E-21 NA     

rs140192357 
(chr10:121338937) C/A 0.8629 0.24% -0.2953 0.0525 1.87E-08 NA TIAL1 intron_variant 

rs736962 (chr10:124257996) A/G 1.0000 2.80% -0.0832 0.0139 1.97E-09 NA HTRA1 intron_variant 

rs11231161 (chr11:62378221) A/G 1.0000 37.17% 0.0300 0.0048 2.73E-10 NA B3GAT3 downstream_gene_variant 

rs2027761 (chr11:73036179) C/T 0.9992 11.19% 0.0456 0.0073 4.23E-10 NA ARHGEF17 intron_variant 

rs117443545 (chr11:83190398) G/A 0.7085 1.08% -0.3064 0.0272 2.06E-29 NA DLG2 intron_variant 

rs138857603 (chr11:83275030) A/AT 0.8690 0.63% -0.3078 0.0318 3.23E-22 rs117443545 DLG2 intron_variant 

rs17146129 (chr11:83525694) A/T 0.9009 0.78% -0.2543 0.0280 1.02E-19 rs117443545, rs138857603 DLG2 intron_variant 

rs114902756 (chr11:85820597) G/C 0.8024 0.42% -0.4324 0.0410 4.89E-26 NA - intergenic_variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs117261012 (chr11:86444761) A/G 0.9557 15.38% -0.0399 0.0065 1.09E-09 rs114902756 CTD-2005H7.2 
intron_variant,non_coding_transcript_
variant 

rs111400016 (chr11:91208353) G/A 1.0000 1.76% -0.1246 0.0174 7.20E-13 NA - intergenic_variant 

rs503441 (chr11:126010797) A/G 0.9904 18.38% 0.0369 0.0060 6.57E-10 NA - intergenic_variant 

rs7112357 (chr11:131981029) G/A 0.9871 31.48% -0.0280 0.0050 1.98E-08 NA NTM intron_variant 

rs569915721 (chr12:34781058) A/C 0.9896 0.36% 0.2186 0.0384 1.23E-08 NA - intergenic_variant 

rs539643279 (chr12:38396219) G/A 0.8244 0.34% -0.2974 0.0445 2.38E-11 rs115903505 - intergenic_variant 

rs148892628 (chr12:38501518) T/C 0.5120 1.31% -0.1836 0.0310 3.15E-09 
rs539643279, 
rs115903505, rs17519950 - intergenic_variant 

rs115903505 (chr12:39146668) T/A 0.6039 2.48% -0.5497 0.0215 5.86E-144 NA CPNE8 intron_variant 

rs17519950 (chr12:40695188) A/T 0.8380 1.15% -0.3457 0.0243 9.33E-46 NA LRRK2 intron_variant 

rs11107915 (chr12:95549025) G/A 0.9960 21.46% -0.0325 0.0056 7.10E-09 NA FGD6 intron_variant 

rs12427728 (chr13:98174730) C/T 0.5654 1.05% -0.5018 0.0336 1.74E-50 NA - intergenic_variant 

rs976224 (chr14:24244518) T/A 1.0000 4.45% -0.0607 0.0111 4.91E-08 NA - intergenic_variant 

rs147261823 (chr14:36578852) T/C 1.0000 2.71% -0.0772 0.0141 4.74E-08 NA LINC00609 
intron_variant,non_coding_transcript_
variant 

rs74810641 (chr14:82590256) G/T 1.0000 3.85% -0.0730 0.0119 9.68E-10 NA - intergenic_variant 

rs10137684 (chr14:93494500) G/A 0.9723 11.81% -0.0447 0.0072 6.37E-10 NA ITPK1 intron_variant 

rs72731149 (chr15:49984710) G/C 0.9905 6.69% 0.0588 0.0093 2.14E-10 NA - intergenic_variant 

rs72750950 (chr15:63841893) C/G 1.0000 6.60% 0.0506 0.0093 4.82E-08 NA USP3 intron_variant 

rs140396483 (chr15:66381494) C/T 1.0000 1.82% -0.1017 0.0171 2.78E-09 NA MEGF11 intron_variant 

rs1441358 (chr15:71612514) T/G 1.0000 33.60% -0.0614 0.0049 3.89E-36 NA THSD4 intron_variant 

rs72531998 (chr15:71797532) CCAT/C 0.9952 17.75% -0.0364 0.0061 1.94E-09 rs1441358 THSD4 intron_variant 

rs116015662 (chr15:74866502) T/C 0.8588 0.25% -0.3692 0.0505 2.61E-13 NA ARID3B intron_variant 

rs11852372 (chr15:78801394) A/C 0.9882 33.62% -0.0435 0.0049 1.06E-18 NA HYKK upstream_gene_variant 

. (chr15:84541379) 
C/CACACAC
ACAG 0.9170 23.58% 0.0348 0.0057 8.36E-10 NA     

rs74930371 (chr16:19273328) G/T 0.9152 1.95% -0.2974 0.0178 7.04E-63 NA SYT17 intron_variant 
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SNP (Chr:Pos) 
Effect/ 
noneffect 
allele 

INFO MAF 
Effect 
Estimate 

Standar
d error 

P-value Conditioned SNP(s) Gene(s) Consequence 

rs544559569 (chr16:30880829) TC/T 0.5605 1.99% -0.1342 0.0227 3.15E-09 rs371168229 BCL7C intron_variant 

rs371168229 (chr16:30990454) C/T 0.9032 0.40% -0.2408 0.0391 7.03E-10 NA SETD1A intron_variant 

rs569251473 (chr16:31081057) C/A 0.8314 0.25% -0.2926 0.0516 1.38E-08 rs544559569, rs371168229 ZNF646 upstream_gene_variant 

rs3104770 (chr16:52627368) A/T 0.7563 2.77% -0.3065 0.0171 3.84E-72 NA CASC16 
intron_variant,non_coding_transcript_
variant 

rs2060573 (chr16:58057627) A/G 0.9906 44.77% 0.0303 0.0047 8.45E-11 NA MMP15 upstream_gene_variant 

rs11149827 (chr16:75435143) A/G 0.9878 40.82% -0.0393 0.0047 6.54E-17 NA CFDP1 intron_variant 

rs112426952 (chr17:9391686) T/A 1.0000 0.78% -0.1585 0.0262 1.35E-09 NA STX8 intron_variant 

rs561060101 (chr17:17776177) G/C 0.7202 1.18% -0.2751 0.0259 2.74E-26 rs76926781, rs201183826 TOM1L2 intron_variant 

rs76926781 (chr17:17805129) C/T 0.8439 1.26% -0.2395 0.0231 3.89E-25 rs201183826 TOM1L2 intron_variant 

rs201183826 (chr17:18107778) AT/A 0.8990 1.26% -0.2905 0.0222 5.13E-39 NA ALKBH5 intron_variant 

rs35491131 (chr17:28267098) CT/C 0.9815 44.40% -0.0266 0.0047 1.30E-08 NA EFCAB5 upstream_gene_variant 

rs35246838 (chr17:36915540) T/C 0.9654 13.36% -0.0452 0.0069 5.82E-11 NA PSMB3 intron_variant 

rs540802774 (chr17:43881141) T/C 0.6421 24.74% 0.0661 0.0066 1.76E-23 rs73314997 CRHR1 intron_variant 

rs73314997 (chr17:44061123) C/T 0.6376 2.31% -0.4944 0.0213 1.24E-119 NA MAPT missense_variant 

rs56332949 (chr17:44316480) G/C 0.7377 1.69% -0.1954 0.0212 3.16E-20 
rs540802774, rs73314997, 
rs556156663 RP11-259G18.2 upstream_gene_variant 

rs556156663 (chr17:45029053) A/G 0.8041 0.50% -0.2889 0.0378 2.05E-14 rs73314997 RP11-156P1.2 
intron_variant,NMD_transcript_varian
t 

rs1878688 (chr17:64052034) G/A 0.6725 1.26% -0.1768 0.0257 6.39E-12 NA CEP112 intron_variant 

rs17178530 (chr17:69236112) G/C 0.9921 49.16% -0.0306 0.0046 3.38E-11 NA - intergenic_variant 

rs8066839 (chr17:77239697) T/A 1.0000 2.75% -0.1043 0.0141 1.19E-13 NA RBFOX3 intron_variant 

rs633286 (chr18:8809273) C/T 0.9832 27.17% -0.0295 0.0052 1.65E-08 NA MTCL1 intron_variant 

rs12607689 (chr18:20016299) T/G 0.9933 40.55% 0.0259 0.0047 4.05E-08 NA - intergenic_variant 

rs10513996 (chr18:68744370) T/C 1.0000 1.67% -0.1037 0.0179 7.37E-09 NA - intergenic_variant 

rs1995745 (chr18:74301015) T/G 1.0000 1.71% -0.1010 0.0177 1.21E-08 NA LINC00908 
intron_variant,non_coding_transcript_
variant 
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rs9636166 (chr19:31829613) A/C 0.9786 12.61% -0.0436 0.0070 5.90E-10 NA TSHZ3 intron_variant 

rs34093919 (chr19:41117300) G/A 1.0000 1.20% 0.1290 0.0211 1.06E-09 NA LTBP4 
missense_variant,splice_region_varian
t 

rs564454164 (chr19:54957229) AAAG/A 0.9289 1.43% -0.2715 0.0205 6.25E-40 NA LENG8 upstream_gene_variant 

rs550705585 (chr19:55832694) T/C 0.8179 0.11% -0.4517 0.0801 1.70E-08 rs564454164, rs143792972 TMEM150B intron_variant 

rs143792972 (chr19:55834177) G/C 0.9281 0.62% -0.3286 0.0310 2.55E-26 rs564454164 TMEM150B intron_variant 

rs182804848 (chr20:26290295) T/C 0.6653 1.06% 0.1662 0.0269 6.09E-10 NA - intergenic_variant 

rs3833318 (chr20:31031590) TA/T 0.9908 16.89% -0.0340 0.0062 3.70E-08 NA NOL4L 3_prime_UTR_variant 

rs1110660 (chr22:18444693) A/C 0.9885 23.63% 0.0322 0.0055 3.37E-09 NA MICAL3 intron_variant 

rs2283847 (chr22:28181399) C/T 0.9289 44.57% -0.0333 0.0048 4.15E-12 NA MN1 intron_variant 

rs73883355 (chr22:30401775) C/A 0.9975 8.87% 0.0580 0.0081 9.41E-13 NA MTMR3 intron_variant 
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F. Cluster plots for PEF-specific SNPs  (Chapter 5). 

 

Appendix Figure F-1: Clusterplot for rs16865759 (chr1:31258724) r2=0.9997 with rs34590652. 

 

 

Appendix Figure F-2: Clusterplot for rs16865759, (chr1:31258724) r2=0.9997 with rs34590652. 

rs16865759 only included on UK Biobank array. Strongest proxy genotyped on UK BiLEVE array was rs72857926 

(chr2: 144327971); see Appendix Figure F-3. 
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Appendix Figure F-3: Clusterplot for rs72857926 (chr2: 144327971), r2=0.1277 with rs34590652. 

 

Appendix Figure F-4: Clusterplot for rs6446313 (chr4:5032174) r2=0.9459 with rs28752137. 

 

Appendix Figure F-5: Clusterplot for rs619148 (chr5:51972476) r2=0.9911 with rs350415. 
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Appendix Figure F-6: Clusterplot for rs336958 (chr5:82973396) r2=0.9815 with rs4466136.  

 

Appendix Figure F-7: Clusterplot for rs17733311 (chr5:172780104) r2=0.5066 with rs11747434.  

 

Appendix Figure F-8: Clusterplot for rs9498202 (chr6:149383257) r2=0.9336 with r s574284527.  
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Appendix Figure F-9: Clusterplot for rs117064226 (chr12:102845393) r2=0.0102 with rs11111272.  

 

Appendix Figure F-10: Clusterplot for rs12151248 (chr19:13212025) r2=0.0047 with rs138326911.  

 

 

Appendix Figure F-11: Clusterplot for rs6134904 (chr20:13516026) r2=0.2449 with rs34590652.  
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