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Abstract. The checkerboard is a frequently-used pattern in camera calibration, an essential process to get 
intrinsic parameters for more accurate information from images. An automatic checkerboard detection method 
that can detect multiple checkerboards in a single image is proposed in this paper. It contains a corner extraction 
approach using self-correlation and a structure recovery solution using constraints related to adjacent corners 
and checkerboard block edges. The method utilizes the central symmetric feature of the checkerboard crossings 
as well as the spatial relationship of neighboring checkerboard corners and the grayscale distribution of their 
neighboring pixels. Five public datasets are used in the experiments to evaluate the method. Results show high 
detection rates and a short average runtime of the proposed method. In addition, the camera calibration accuracy 
also presents the effectiveness of the proposed detection method with re-projected pixel errors smaller than 0.5 
pixels. 
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1 Introduction 

Camera calibration is an important step to get the intrinsic parameters of cameras for better 

sensing the world, such as three-dimensional reconstruction and thematic information 

extraction from digital images. Many camera calibration techniques use special patterns to 

automatically compute the point correspondences, such as Tsai’s method [1] and Zhang’s 

method [2]. Among those techniques, the most common pattern is the checkerboard, due to 

its robustness, low cost and simple structure. Therefore, the detection of checkerboards 

becomes a key factor that determines the accuracy and the processing speed in many 
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calibration methods. 

When carrying out calibration, corner extraction and structure construction are both necessary, 

and have been studied by many researchers. Two common camera calibration tools, the 

Camera Calibration Toolbox for MATLAB [3] and the OpenCV library [4], include these two 

steps, but the former needs manual operation to locate four external corners of a 

checkerboard to form a rectangle, whilst the latter requires the number of corners in a row 

and a column, resulting in a complicated and semi-automatic calibration procedure. Other 

approaches include De la Escalera and Armingol, who proposed an automatic chessboard 

detection method using the Hough transform to detect straight chessboard edge lines then 

extracting the corners [5]. Chu et al. detected the chessboard corners using a round template 

by analyzing the gray distribution in it and computing the centroids of redundant points [6]. 

These two methods make the calibration task less tedious, which however may fail in 

processing images with strong geometric distortions, such as fisheye camera data. Bennett 

and Lasenby then developed a new chessboard feature detector that is robust against some 

poor conditions like noise, whereas their method may detect redundant corners that are 

outside the checkerboard and doesn’t recover the whole structure of the checkerboards for 

calibration [7]. Their subsequent work [8] deals with the structure, and gets good result in 

finding structures of projected checkerboards with surface distortion, but the method is 

restricted by its prerequisites and may fail when the angles of the checkerboard squares are 

far away from 90°. Placht et al. used an edge graph generation idea to accurately refine the 

checkerboard corners and the algorithm can process images at extreme poses or with high 

distortions, and it is also valid for low-resolution images [9]. Fuersattel et al. then made an 
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improvement that uses graphs to represent checkerboards and can find partly occluded 

checkerboard pattern by graph matching, resulting in a higher detection rate and a shorter 

runtime [10]. Bok et al. employed circular boundaries of corner candidates to extract the 

checkerboard ones and conduct the indexing, which also performs well in processing 

distorted or noisy images [11]. However, the three methods detect only a single checkerboard 

in one image, and that means the camera or the checkerboard need to be relocated for several 

times to ensure robust and accurate calibration results. Geiger et al. developed a fully 

automatic calibration method using a single shot by calculating a corner likelihood at each 

pixel in the image with two different corner prototypes, and detecting all checkerboards in it 

[12]. Their method is robust in many difficult scenes such as blurring and distortion, but it 

can be quite time-consuming when processing large scale images. Therefore, more accurate 

and faster automatic checkerboard detection methods still need to be developed. 

In this work, we make a tradeoff between robustness and runtime for checkerboard detection 

and calibration with a single shot, and try to improve both. The key idea of our approach is 

the self-correlation computing of the corner neighborhood, which utilizes the central 

symmetry property of the checkerboard corner areas. In our solution, potential corners are 

roughly detected by Harris detector [13] first, then a square area centred at each pixel in the 

corner neighborhood is selected and rotated by 180°; the correlation between the square 

itself and the rotated one, the aforementioned self-correlation, is calculated afterward to 

extract more accurate corner candidates, as the correlation values for the checkerboard 

corners can be quite large, while for other points it can be much smaller. Our approach also 

contains a checkerboard structure recovery solution using gradient, orientation and distance 



4 

 

constraints of the checkerboard edges, which is able to detect multiple checkerboards in a 

single image through structure expansion and grouping. We evaluate the proposed approach 

with six datasets including five online public datasets [9, 10, 14], and compare it to the 

state-of-the art methods. The main contributions of the proposed method are: (1) detecting 

checkerboard corners using self-correlation; (2) recovering the structure of a checkerboard by 

taking the advantages of the grey distribution in the checkerboard square as well as angle and 

distance constraints; (3) gaining robust results against distortion with a high detection rate. 

This work is organized as follows. Section 2 describes the specific procedures to extract 

checkerboard corners and the refinement of corners. Section 3 gives a detailed introduction to 

the checkerboard structure recovery and grouping method. The experiments and results of the 

proposed approach are discussed in Section 4. Finally, we draw conclusions based on the 

evaluation in Section 5. 

2 Checkerboard corner detection 

There have been several commonly used feature detectors, such as Harris [13], Susan [15], 

SIFT [16, 17] and FAST [18], that can extract the checkerboard crossings, but corners outside 

the checkerboards may also be extracted by them, leading to more outliers. Addressing this 

problem, our algorithm utilizes the inner feature of the checkerboard to precisely locate its 

corners and discarding the outliers (as shown in Fig. 1): (1) rough detection by Harris; (2) 

corner filtering using gray distribution to accelerate the later procedure; (3) self-correlation 

computation at each pixel in the corner neighborhoods; (4) non-maximum suppression on the 

self-correlation map; (5) outlier discarding through some constraints; (6) refinement. The 

details of the above steps are described in the following subsections, with step (1) and (2) in 
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Subsection 2.1, step (3) and (4) in Subsection 2.2, and step (5) and (6) in Subsection 2.3. 

 
Fig. 1 Processing steps of checkerboard corner detection. (a) Flowchart. (b) Original gray image. (c) Corners 

detected by Harris. (d) Corners after filtering. (e) Self-correlation map, pixels with larger gray values represent 
higher checkerboard corner likelihood. (f) Non-maximum suppression on the self-correlation map. (g) Result 

after outlier discarding and refinement. 
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2.1 Rough detection and filtering 

In this part, the Harris detector is used first to roughly detect all potential corners in an image 

as shown in Fig. 1b. There are two important parameters in the Harris corner detection that 

can be changed to get better results: the minimum accepted quality MQ and the filter size FS. 

The MQ parameter is a scalar specifying the minimum accepted quality of corners, and larger 

values of it can be used to remove erroneous corners. The FS parameter is an odd integer 

specifying a Gaussian filter that is used to smooth the gradient of the image in the Harris 

corner detection, and the standard deviation of the filter is FS/3. The value of the FS 

parameter can be determined by the image size and resolution, and usually smaller values can 

be applied on lower resolution images. 

However, the Harris detection step will lead to plenty of redundant corners that are not 

exactly the checkerboard corners when processing high-resolution or noisy images, as the 

Harris algorithm is not designed for checkerboard corner only. Therefore, a filtering step 

utilizing the gray distribution of corner areas is applied. Given a square area surrounding the 

checkerboard corner, the square should satisfy the two conditions as shown in Fig. 2a: (1) 

containing two bright and two dark parts with a cross shape; (2) the boundary of the square 

area also consists of four segments in black or white. The filtering algorithm is designed 

based on the two constraints. First, a n n×  square centered at each corner is selected as a 

sub-image and transformed to a binary one using its mean pixel value as a threshold. Then, 

the boundary of each square is scanned to find the endpoints of the segments in it, and the 

corners without four endpoints in the boundary are removed. Note that, to make it more 

robust against noise, three squares (with side length n=11, 23, 35 pixels respectively) of each 
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corner are selected for the boundary check, and as long as one fits the condition, the corner 

will not be removed. We also use the four endpoints to construct two cross lines to separate 

the square into four parts and assign zero and one values to the opposite parts (Fig. 2b), then 

calculate the correlation between the original square and the newly modified one with Eq. 1, 

so as to check whether the corner meet the first condition. The corners with low correlation 

are discarded (like the bad example in Fig. 2b). Note that this filter step is optional in the 

whole procedure, and it aims to shorten the runtime by discarding many outliers beforehand. 

For low-resolution images, this step is not needed since the processing time for them will not 

be long, and in another aspect, the step may lead to correct corners being discarded because 

the edge of the square in low-resolution images may be too short. 
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Where A  and B  are two n n×  matrixes, A  and B  denote the mean value of all 

elements in A  and B , respectively. 

 
Fig. 2 Schematic diagrams of the corner neighborhood area. (a) Square centered at the corner, with two bright 

(② and ③) and two dark (① and ④) parts in it; the boundary is marked by blue lines and contains four black 
and white segments; the endpoints are actually where the signal changes and where the segments separate. (b) 

The examples of different squares; the endpoints (green circles) are detected the same in the original squares of 
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each example, so the orange cross lines constructed by the endpoints in the modified squares are also the same; 
but only the original square in the good example is like the real checkerboard corner neighborhood, and its 

correlation with the modified one is strong, while that for the bad example is not. 

2.2 Corner extraction using self-correlation and non-maximum suppression 

The central symmetric property of the checkerboard corner neighborhoods can be well 

utilized to extract the real checkerboard corners from the mass potential corners as shown in 

Fig. 3a. Even if the image is taken under strong distortion, the small local checkerboard 

corner areas still keep their central symmetric property. In this work, we exploit this feature 

by computing the self-correlation of corner neighborhoods as shown in Fig. 3b and Fig. 3c. 

For each candidate corner detected by the former steps, a  m m×  square centered at each 

pixel in the corner neighborhood (a k k×  area) is selected and rotated by 180°, then the 

correlation between the square and its rotated one is calculated using Eq. 1. To better 

distinguish the checkerboard corners, the self-correlation is magnified by an exponential 

function as Eq. 2, with a larger value representing a higher corner likelihood. Finally, we can 

obtain the self-correlation map by assigning zero to other pixels outside the corner 

neighborhoods and easily extract corners through a non-maximum suppression step. The key 

idea of non-maximum suppression is that pixels are set to zero if they are not part of the local 

maxima. Therefore, the real corners can be extracted from corner neighborhoods using such 

algorithms, as described in [19, 20].  

( )/0.8 1exp Corr
mCorr −=                          (2) 

Where 0.8 is an empirical value. 
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Fig. 3 The central symmetric property of the checkerboard corner neighborhood and its application in corner 

detection. (a) Some examples of checkerboard corners (1) and other corners (2). (b) The schematic of the square 
areas processed in correlation calculation. (c) The original and rotated squares of two pixels in the corner 

neighborhood; the corner is located in the yellow pixel so the square of it is more central symmetric than the 
farther red pixel, leading to a higher correlation between the original and the rotated square. 

Through the above steps, corner clusters detected by Harris, that surround the real 

checkerboard corner neighborhoods, can be processed to a single corner point and the 

position can be found more accurately as shown in Fig. 4. There are two details here that 

should be noted: 

(1) before the self-correlation computation, the standard deviation of each selected square is 

calculated to remove the obviously wrong corner candidate to improve the efficiency of the 

algorithm. 

(2) the length m  is equal to 2k  to improve robustness against geometric distortion and 

poor lighting condition like over-exposure, as the large circle area shows in Fig. 4. 
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Fig. 4 Self-correlation computation and non-maximum suppression steps. (a) Candidate corners detected by 
Harris. (b) Corners after filtering. Cluster corner points surround the checkerboard corner positions, some of 
which even remain after the filter step. (c) The self-correlation map, where brighter color represents higher 
self-correlation of the pixels (as the ones in the small white circles show). (d) Corners extracted from the 

self-correlation map using non-maximum suppression. After the steps, the corner clusters are processed into 
single corners with more accurate positions, such as the one in the large circle. 

In this part, two parameters should be noted: the length k of the square neighborhood in the 

self-correlation calculation denoted by CS, and the radius of region considered in 

non-maximum suppression denoted by NMS. Larger values of the two parameters mean 

larger neighborhoods of corners will be considered and processed. The effect of the values 

can be obvious when processing images with different resolutions. Generally, smaller values 

should be set in lower resolution images.  

2.3 Outlier discarding and refinement 

After the self-correlation step, there are still a few outliers, as the previous steps are designed 
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to detect single corners, including points inside and outside the checkerboard. To eliminate 

the remaining outliers after the preprocessing, we first calculate the distance between each 

two extracted corners and find the closest 12 ones for each corner. Let C denote the set of the 

corners, i and j be the indexes of two corners, then CN(i) and CN(j) represent the 12 closest 

corner index vectors corresponding to corner C(i) and C(j), respectively. If i ∈ CN(j) and j ∈ 

CN(i), C(i) and C(j) are regarded as neighbors and their correlation Corr(i, j) will be 

calculated using their square neighborhoods with Eq. 1, with the size of the square set by Eq. 

3. Then, all the correlation values between a corner and its neighbors are used to remove 

outliers with Eq. 4. Only if all the absolute correlation values are too small (less than the 

threshold), will the corner candidate be discarded. 

( ), min max ,5 ,
4 2
ij ijd d

CorrRadius i j
  

=   
  

             (3) 

Where CorrRadius  denotes the half length of the square edge and ijd  denotes the distance 

between C(i) and C(j). 

 ( ) ( ) ( )( )( )( ) ( ) ( ), 1, &
j

remove i Corr i j i j j iτ= > < ∈ ∈∑ C C CN CN    (4) 

Where Corr  is the correlation operator, ( ) 1remove i =  denotes that corner C(i) will be 

removed, and τ  is a threshold that can be set as 0.5 empirically. 

Many researchers [9, 21, 22] have proposed different corner position refinement algorithms 

to obtain a higher sub-pixel accuracy of calibration. The method proposed by Geiger et al. 

uses both corner position and edge orientation information to do the refinement, leading to a 

good sub-pixel result [12]. Therefore in this work, the same refinement method is adopted.  

First, two edge orientation vectors can be refined with Eq. 5. Since the edge orientations iE  

are almost orthogonal to the image gradients on the edges, the deviation of their normal i′E   
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with respect to the gradients npg  should be as small as possible. 

  ( )2
arg min . . 1

ii

T T
i np i i is t

∈′
′ ′ ′= =∑np NE

E g E E E              (5) 

Where np  denotes the neighbor pixel in the corner neighborhood, and iN  represents the 

set of neighbor pixels in the buffer area of edges around the corner. 

Then, the neighbor pixels along the two refined edge orientations within the corner 

neighborhood can be found. Given such a neighbor pixel np  of corner pC , the image 

gradient of it should be approximately orthogonal to p−np C . Therefore, the corner positions 

can be optimized using Eq. 6. 

( )( )2
arg min

Cp

T
p np p∈′

′= −∑np NC
C g np C                  (6) 

Where CN  represents the set of neighbor pixels along the refined edge orientations within 

the corner neighborhood. 

All the above are the steps of checkerboard corner detection. Table 1 summarizes four key 

parameters in Section 2. Note that, though the values of the four parameters can be adapted to 

more situations, their empirical values in the experiments (Subsection 4.2) can be used in 

most cases, so little manual work is needed. 

Table 1 Four important parameters in checkerboard corner detection. 

Name Explanation Step 
MQ a scalar specifying the minimum accepted quality of corners Harris corner detection 
FS an odd integer specifying a Gaussian filter that is used to 

smooth the gradient of the image 
Harris corner detection 

CS the size k of the square corner neighborhood in the 
self-correlation calculation 

Self-correlation computation 

NMS the radius of region considered in non-maximum suppression Non-maximum suppression 
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3 Checkerboard structure recovery 

The structure of the checkerboard can be constructed according to the detected corners. 

Geiger’s method uses an energy function to recover the structure [12], which is robust against 

distortion but very time-consuming in dealing with high-resolution images. Bennett and 

Lasenby's approach [8] takes advantage of the checkerboard crossings’ orientation to get the 

structure, and it does well under deformation and noise. But it has some prerequisites and 

restrictions that may lead to failure when the angles and the edges of the checkerboard 

squares differ greatly. We recover the structures of checkerboards using constraints related to 

the correlation of the corner neighborhoods, the gray distribution in a black or white 

checkerboard square as well as the checkerboard crossings’ orientation, which makes it more 

robust against strong distortion and extreme pose. The detailed steps are shown in Fig. 5: (1) 

find four neighbor corners from all candidate corners (gray symbols) that reliably locate at 

the four vertexes of a white or black block in the checkerboard as the initial points (the four 

red symbols in Fig. 5(a)); (2) expand the quadrangle formed by the four initial corners in the 

top, right, bottom, left directions iteratively, until no appropriate corners remain, and label the 

corners in the expanded structure as belonging to one checkerboard; (3) repeat the two 

previous steps to recover all checkerboards, until no appropriate initial corners found; (4) 

check whether the checkerboard structures overlap, and retain the one with most corners 

among the overlapping ones. The details of the steps are described in the following 

subsections. 
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Fig. 5 Steps of checkerboard structure recovery. (a) Four initial corners. (b) Expanding in the top direction. (c) 
Expanding in the right direction. (d) Expanding in the bottom direction. (e) Expanding in the left direction. (f) 

Expansion completed. (g) Four new initial corners found. (h) Structure of all checkerboards recovered. 

3.1 Finding initial corners 

The selection of the four initial corners is crucial in the whole structure recovery procedure, 

thus we use strict constraints to find reliable initial corners. Given a random corner as a seed, 

the other three initial corners are found in the neighbors of the seed corner, and the 

constraints are related to the distances, the angles and the correlation between the seed and its 

neighbors, as well as the gray distribution inside the quadrangle formed by the initial points. 

Here, the angle of each two corners (Fig. 6) can be computed with Eq. 7.  

 ( ) ( )( ) ( ) ( )
( ) ( )

2

,
, arccos

i j
angle i j

i j

 −
=  

 − 

C C e
C C

C C
                 (7) 

Where e  is a unit vector along the horizontal axis direction.  

An eligible seed is first detected as the left-bottom initial corner (CL), then the top-left initial 
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corner (CT), the right-top corner (CR), and the bottom-right one (CB) are selected one by one 

as shown in Fig. 6a. The details are shown as the following. If no suitable initial corners are 

found, the former seed will be labelled as a useless one, and a new random corner among all 

the other corner candidates will be given as a new seed to continue the process.  

 
Fig. 6 Schematic diagrams in finding initial corners. (a) A seed is first detected as the left-bottom initial corner, 
then the top-left, right-top, bottom right corners are found in turn. (b) and (c) show a number of parameters that 

will be used in the detection of initial corners. 

(1) In the four corners of a white or black block of the checkerboard, the correlation between 

the diagonal corners should be strongly positive, while the correlation between two corners 

on the same edge of the block should be strongly negative. Therefore, for the initial corners 

there is, 

( ) ( ) ( ) ( ), , , , , , ,L T T R R B B L corrCorr Corr Corr Corr τ< −C C C C C C C C         (8) 

Where corrτ  denotes a correlation threshold. 

(2) When trying to find the top and bottom corners from the four closest neighbors of a 

corner (Cc), the two with the smallest angles to the y axis are regarded as the top (Cc-top) and 

bottom (Cc-bottom) neighbors of Cc, respectively, and the angle (θtb) between edge Cc -Cc-top and 

edge Cc -Cc-bottom should be close to 180° shown as Fig. 6b, 
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( ) ( )1 1, , 180angle c c top c c bottom angleangle angleτ τ− −− ≤ + − ≤C C C C          (9) 

Where 1angleτ  denotes an angle threshold. 

(3) When trying to find the right corner from the eight closest neighbors of a corner (Cc), the 

angle (θtr) between edge Cc -Cc-top and edge Cc -Cc-right should not be too small or too large as 

shown in Fig. 6c, 

 ( ) ( )2 2, , 180angle c c top c c right angleangle angleτ τ− −− ≤ − ≤ −C C C C           (10) 

Where 2angleτ  denotes an angle threshold. 

(4) In a single black or white block of the checkerboard, the gray distribution should be even. 

Therefore, the standard deviation (STD) inside the quadrangle formed by the initial points 

( ), , ,L T R B
qd C C C C   should be small enough, and in case of strong distortion, the quadrangle for 

STD computation is shrunken into a smaller size one by removing the marginal area, 

  ( )( ) ( ), , , , max 1,0.1
L T R B std edgemSTD qd margin Lτ< =C C C C             (11) 

Where stdτ  denotes a STD  threshold, ( ), , ,L T R Bmqd C C C C  denotes the shrunken quadrangle, 

and edgeL  denotes the mean length (pixel) of the four edges in the ( ), , ,L T R B
qd C C C C . 

Algorithm 1 lists the steps to find the initial corners with these constraints in detail. 

Algorithm 1 finding initial corners 

Input data: cS ← Set of corners 

Result: , , ,L T R BC C C C  

While true do 

Initialize parameters: corrτ , stdτ , corrτ∆ , ( )L crandom←C S  ; 

While 0.7corrτ >  do 

( ) ( )( ),L top L bottom LFindNeighborsClosestToYAxis Neighbor− − ←C C C   

      ( ),T L top L bottomFindTopCorner − −←C C C ; if ( )Tempty C  then go to P1 

( )( )R TFindRightCorner Neighbor←C C ; if ( )Rempty C  then go to P1 
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( )( )B RFindBottomCorner Neighbor←C C ; if ( )Bempty C  then go to P1 

If ( ) ( ),L B L B corrNeighbor or Corr τ∉ ≥ −C C C C  then go to P1 else go to P2  

P1:  decrease corrτ  by corrτ∆ ; 

end 

P2: ( )( ) ( )( ), , , , , ,L T R B L T R Bm mCalculateStandardDeviationstd qd qd←C C C C C C C C   

If ( )( ), , ,L T R B stdmstd qd τ<C C C C   then break; 

end 

 

3.2 Structure expansion and checkerboard grouping 

With the four initial corners found, the structure will be expanded in the top, right, bottom 

and left directions iteratively by each corner on the structure edge. An angle constraint 

between neighbor corners is also used in the expansion process but less strict than that used 

for the detection of the initial corners. 

When expanding in a direction, the angle θbn between the newly found corner and the border 

corner should be close to the angle θob between the border corner and its nearest neighbor 

corner in the opposite direction as shown in Fig. 7. 

 
Fig. 7 Structure expansion in one direction. 

In addition, the gradient on the boundary of a white or black checkerboard block is calculated 



18 

 

and utilized for a more robust and precise structure recovery. On the edges of the white and 

black blocks in a checkerboard, the absolute gradient values of the pixels should be very 

similar, thus the mean value of the gradients on the edge between a newly found corner and a 

border corner should be close to that of the four initial corners. Corners satisfying both the 

angle and gradient constraints are selected to expand the structure. 

In case of strong geometric distortion, where the edge may be a curve, we use the following 

strategy to compute the mean gradient of a distorted edge as shown in Fig. 8: (1) calculate the 

length (LAB) of the line between two vertices (A and B) and find its midpoint (the red point in 

Fig. 8a); (2) draw a perpendicular line centered at the midpoint with its length being l 

(l=max(2, 0.1× LAB)) pixels; (3) search along the perpendicular line and find the point with 

max gradient (the orange point in Fig. 8a), compute the distance between the point and the 

midpoint (Dist); (4) if the distance is not larger than two pixels, calculate the gradients of all 

pixels along LAB, and if not, regard the max-gradient point as a new vertex and repeat the 

previous steps until all lines meet the distance requirement; (5) calculate the mean gradient of 

all pixels along the line segments. 

 
Fig. 8 Steps of mean gradient calculation of a distorted edge. (a) The midpoint (red) of the line between two 
corners is far from the point (orange) with max gradient. (b) They are closer when the corners are connected 

with two lines linked by the former max-gradient point. (c) The midpoints and the max-gradient points almost 
overlap, which also means the lines quite resemble the real edge of a checkerboard block. (d) The pixels along 

all the constructed lines (light blue) are used to calculate the mean gradient. 
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After the structure expansion of a checkerboard, all corners in it will be grouped with the 

same label, and all the structure recovery steps will be repeated until no corners without a 

label are found or no appropriate initial corners are found. Then we check whether the 

checkerboard structures overlap or not by checking the corner labels. If there are corners with 

more than one label, the groups with the labels are regarded overlapping and only the one that 

contains most corners will be retained. 

4 Experiments and evaluation 

We evaluate our method in four aspects: the detection rate, the detection speed, the ability to 

detect checkerboards in images taken under special or extreme conditions and the accuracy of 

camera calibration with the detected corners. In the following subsections, the experiment 

data are first introduced in Subsection 4.1, then the results in the four aspects are successively 

presented in Subsection 4.2–4.5. 

4.1 Data introduction 

Six groups of images, including five public data sets, were tested in the experiments. The first 

three, the Mesa SR4000 (176×144 pixels), the IDS uEye (1280×1024 pixels) and the GoPro 

Hero 3 (4000×3000 pixels) datasets, are from the evaluation data of [9]. The other two public 

ones are the Partial-full datasets (1280×720 pixels) from [10] and the images (1392×512 

pixels) from the KITTI calibration data [14]. The most significant difference between the 

KITTI calibration data and the other four datasets is that there are more than ten 

checkerboards in each image of the KITTI data while for the others there is only a single one. 

Table 2 briefly summarizes the characteristics of the five public datasets. The last group is 
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made up of images taken under special or extreme conditions, such as poor lighting and 

overexposure. These datasets are representative in some characteristics of checkerboard 

images that can be well utilized to evaluate the corner detection methods. 

Table 2 Simple summarization of the public datasets. 

 
Resolution Distortion 

Wide angle 
camera 

Fully 
visible 

Noise Pose 
Number of 

checkerboards 

Mesa low strong — all large 
amount extreme single 

IDS medium little  — all various extreme single 
GoPro high strong yes all little — single 

Partial-full medium strong yes partial various — single 
KITTI low — — all various various multiple 

Note: a. the ‘—’ symbol means that there is no extra explanation of the corresponding characteristic with regard 
to the corresponding dataset. 
b. the ‘wide angle camera’ column shows whether the images are taken with a wide angle camera. 
c. in the ‘fully visible’ column, ‘all’ means the checkerboard corners are fully visible in all images of a dataset; 
‘partial’ means only in some images are the checkerboard corners fully visible. 
d. in the last column, ‘single’ means that there is only one checkerboard in each image; ‘multiple’ means that 
there are more than one checkerboard in a single image. 
 

4.2 Quantitative detection results  

A certain number of point correspondences are needed to conduct the camera calibration, 

which means that enough checkerboards including their corners must be detected. In real 

cases, the checkerboards may be recorded by various cameras under different conditions, and 

a good method should be able to detect as many checkerboard corners as possible regardless 

of the situation. We use detection rate and corner percentage to evaluate the robustness of the 

proposed method with regard to resolution, geometric distortion, noise and extreme poses. 

Here, the detection rate is defined as the ratio of the number of successfully detected images 

to the total number of images in a group, while the ‘corner percentage’ is the ratio of the 

number of detected corners to the total number of all corners (including the occluded ones of 
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a checkerboard), and ‘successfully detected’ means that the corner percentage of an image is 

100%.  

Some other automatic checkerboard detection methods and implementations are also applied 

in the experiments for comparison, including the method using a single shot proposed by 

Geiger et al. [12], the Camera Calibrator app included in the ‘2016b’ version of MATLAB 

[23], the ROCHADE method [9] and the OCPAD method [10]. The quantitative detection 

results of the methods are shown in Table 3 (bold values are best results of each dataset). 

In the experiments of Table 3, the values of the four parameters (MQ, FS, CS and NMS 

introduced in Section 2) of the proposed method are set as follows. The MQ value is set to 

0.001 for all the datasets, while the other parameters vary since they are quite related to the 

image resolution. The FS, the CS and the NMS values are set to three, five and three (pixels) 

respectively for the Mesa and KITTI datasets, seven, seven and five (pixels) for the IDS and 

Partial-full datasets, and seven, thirteen and nine (pixels) for the GoPro dataset. Larger values 

of the three parameters should be used in processing images with higher resolutions, but it is 

not strictly necessary. The setup of the three parameters for the five datasets is representative 

for low, medium and high-resolution images, and in fact, the setup for the medium IDS and 

Partial-full datasets can also be used in the high-resolution GoPro dataset where experiments 

show the same detection results. It should also be noted that the filtering step (introduced in 

Subsection 2.1) after the Harris corner detection is applied in the IDS, GoPro and Partial-full 

datasets during the experiments. 

Table 3 The number of the successfully detected images in each dataset using different methods. 

 
Mesa IDS GoPro Partial-full KITTI 

Total images 206 206 100 162 20 
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ROCHADE 195 205 96 44 — 
OCPAD 200 205 100 44 — 

Geiger’s method 201 206 100 61 17 
MATLAB app 204 205 99 64 — 

SCCD (proposed) 204 206 100 63 18 
Note: a. the result data of ROCHADE and OCPAD are quoted from [10]. 
b. our proposed self-correlation checkerboard detection method is written in ‘SCCD’ for short. 
 

In the cases of the Mesa, IDS and GoPro data, the performances of the five methods are all 

good and very similar, in which the numbers of successfully detected images are all close to 

or equal to the total images. The detection rates of the proposed method and the MATLAB 

app are highest, 204/206, in the Mesa data results. Geiger’s method and the proposed method 

do best with the IDS data with a successful detection of all images, but the other three also 

perform well with only one image failing. For the GoPro data, the OCPAD, the Geiger’s and 

the proposed methods have the highest detection rate, 100%, and the ones of the other two 

methods are little smaller. 

The results of the Partial-full data show much lower detection rates of all methods, but it is 

reasonable because the checkerboards of many images are positioned close to the image 

boundary in this dataset that many corners are occluded in the images. The MATLAB app has 

the most successfully detected images, which is 64 images, one more than the proposed 

method. 

For the KITTI data, though only 20 images in size, there are more than ten checkerboards in 

each of them, and the conditions of the checkerboards, such as lighting and pose, are various. 

The proposed method does best on this dataset, with 18 images (226 checkerboards in total) 

successfully detected. In fact, the total number of detected checkerboards is even more than 

226 because some checkerboards in the failed two images are also fully detected. Among the 
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other four methods, only Geiger’s method has the ability to detect multiple checkerboards in 

an image, whose result is 17, a little smaller than the proposed method. However, if the MQ 

value is set to 0.0001, all the 20 images in the KITTI dataset can be successfully detected 

using our proposed method. 

 
Fig. 9 Detection rate when different corner percentages allowed. The smaller figure in the bottom right box 

shows the overlapped lines in the top left part of the whole figure. 

For the failed images in all the datasets, the proposed method is able to detect partial 

checkerboards, so higher detection rates can be acquired if lower corner percentages are 

allowed as shown in Fig. 9. The detection rates of the five datasets all reach 100% when a 

corner percentage more than 30% is regarded as ‘successfully detected’, and they will all be 

larger than 95% if the limit of the corner percentage is set to more than 50%. The detection 

rates of the Partial-full dataset are obviously lower than the others when required corner 

percentages are large. 

The proposed method is robust as shown by its high detection rates of all the datasets. The 

numbers of successfully detected (corner percentage equal to 100%) images using the 
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proposed method are the largest in four datasets of all the five public experiment datasets and 

outperform the four other methods, and for the remaining dataset it is only one image less 

than the MATLAB app. 

4.3 Detection speed 

When processing a large number of images, the detection speed is also an important factor to 

judge a detection method. Table 4 shows the average runtime for processing an image of all 

the experiment datasets using different methods. Here, only Geiger’s method and the 

MATLAB app are used in the speed experiments to ensure the same running platform (the 

hardware, the system etc.) for comparison. The programs run on the Windows system with an 

Intel(R) Core(TM) i7-4790 CPU and 16 GB RAM. They are all written in MATLAB and use 

the CPU. The four important parameters of the proposed method are set the same as 

explained in Subsection 4.2. 

For the Mesa, IDS and Partial-full datasets the MATLAB app needs the shortest runtime and 

the ones of the proposed method are all less than one second as well. For the high-resolution 

GoPro data, it is quite time-consuming using Geiger’s method and the MATLAB app, which 

are more than one minute, while it only needs 10.4 seconds with the proposed method. 

Overall, the proposed method is the fastest with an average runtime being 3.62 seconds. 

Table 4 Average runtime for different datasets using different methods (unit: second). 

 Mesa IDS GoPro Partial-full KITTI Average 
Geiger’s method 1.43 4.43 126.76 3.42 21.97 31.60 
MATLAB app 0.02 0.34 68.52 0.19 — 17.27 

SCCD (proposed) 0.59 0.77 10.40 0.79 5.53 3.62 
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4.4 Qualitative detection results 

Our proposed method has the ability to detect checkerboards in some images taken under 

special or extreme conditions, such as strong distortion, extreme poses, slight shade, blurring, 

projected checkerboards and screen-shown checkerboards etc. In this subsection, 

representative results are presented as shown in Fig. 10. 

In Fig. 10 (a–d), the checkerboards are shown on screen with different backgrounds, where 

the first two are interfered with curved stripes (this can be seen when the images are zoomed 

in). Fig. 10 (e–f) record checkerboards projected on a white wall with strong geometric 

distortion. The ones in Fig. 10 (g–j) are also significantly distorted, but there are some 

differences in them—(g), (h) and (i) are weakly blurred, and the checkerboards appear on 

different media, while (j) is a bit noisy. In Fig. 10 (k) and (l), some parts of the checkerboards 

are covered with some projected characters, which may affect the detection process. Fig. 10 

(m) shows a complex circumstance. Fig. 10 (n) and (o) contain multiple checkerboards, and 

the former is taken by a fisheye camera, while the other is from the KITTI dataset. The 

checkerboard detection succeeds in all the images in Fig. 10 using the proposed method, and 

different color and shape symbols mean different checkerboards detected in the same image.  
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Fig. 10 Detection results. (a–d) Checkerboards shown on screen. (e-f) Checkerboards projected on a white wall. 

(g-i) Weakly blurred checkerboards with strong fisheye distortion. (j) Checkerboards in a noisy image. (k-l) 
Checkerboards with some slightly shaded areas. (m) A complex circumstance. (n-o) Multiple checkerboards in a 

single image. 
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4.5 Camera calibration accuracy 

It is important to find the accurate position of the checkerboard corners, as well as recovering 

the structure, in camera calibration. We calculate the calibration accuracy using the 

checkerboard corners detected by different methods to evaluate the proposed method. 

Zhang’s camera calibration method [2] is utilized due to its robustness, convenience and high 

efficiency, and the calibration functions for normal and fisheye images in the Camera 

Calibration Toolbox for MATLAB [3] are also applied to conduct the calibration. 

For comparison, the detection results of Geiger’s method and the MATLAB app are used in 

the calibration experiments as well. The same images that can be fully detected by all three 

methods in each dataset are processed in the calibration. Since the Mesa and the IDS datasets 

contain stereo images recorded by binocular cameras (left and right), only the right images of 

the two datasets are used. It should be noticed that the GoPro images and the Partial-full 

images use the fisheye calibration functions in the toolbox for their strong geometric 

distortion, while the other three use the normal calibration functions. The calibration 

precision of each dataset is presented by the reprojection pixel error shown in Table 5. After 

the calibration step, the intrinsic and extrinsic parameters of the cameras can be obtained, so 

the two-dimensional image coordinates of the corners can be calculated later by reprojection 

using Eq. 12 with the already known three-dimensional coordinates. Then the reprojection 

error can be calculated using Eq. 13. 

[ ]
~ ~

s =x K R T X                              (12) 

Where K  is the intrinsic matrix, R  and T  are the rotation matrix and the translation 

matrix, 
~
X denotes the homogenous three-dimensional coordinates of the corners, 

~
x denotes 
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the reprojected homogenous two-dimensional image coordinates of the corners, and s  is a 

scalar factor. 

2

1
reprojection i ie

N
′= −∑ x x                      (13) 

Where N  is the number of corners,  i  is the index of a corner, i′x  denotes the detected 

two-dimensional image coordinates of the corners and ix  denotes the calculated 

two-dimensional image coordinates. 

Table 5 Calibration accuracy using different methods. 

pixel error Mesa IDS GoPro Partial-full KITTI 
number of used images 101 102 99 61 17 

MATLAB app 0.1233  0.3740  0.4083  0.3785  — 
Geiger’s method 0.1455  0.3690  0.4042  0.3622  0.1491  

SCCD (proposed) 0.1330  0.3702  0.4061  0.3760  0.1460  

 

All pixel errors are less than 0.5 pixels for the three methods. The MATLAB app does best on 

the Mesa data, while having the largest pixel errors in all the other datasets. The accuracies of 

the Mesa and the KITTI data with the proposed method are better than Geiger’s method, and 

the others worse, but the difference is small. The results indicate that the proposed method 

can bring in high calibration accuracy and our method is never the worst one, which shows its 

overall stability. 

5 Conclusion 

In this work, a method for automatic checkerboard detection is presented that takes advantage 

of the central symmetric feature of the checkerboard corners as well as their spatial 

relationship and grayscale distribution. The method can be used to acquire the intrinsic and 

extrinsic parameters in camera calibration for three-dimensional reconstruction and other 
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applications. It contains a corner extraction approach using self-correlation and a structure 

recovery solution using constraints related to adjacent corners and checkerboard block edges. 

Experiments indicate good performance of the proposed method, which has the highest 

detection rates (some reaching 100%) in four out of five public datasets considered when 

compared with four other advanced checkerboard detection methods. The detection speed of 

the proposed method is fast and its average runtime for one image is less than five seconds, 

which is even shorter (less than one second) when processing low and medium resolution 

images. In addition, the proposed method can detect multiple checkerboards in a single image, 

and it is robust against some special and extreme conditions such as partial checkerboards, 

screen-shown and projected checkerboards as well as geometric distortion, slight shade and 

extreme poses. The camera calibration results using the checkerboards detected by the 

proposed method also show good quantified accuracy. However, there are still some problems 

that need to be further studied. In extreme cases, such as part of the checkerboard being in 

shadow or the checkerboard being projected onto a patterned surface that leads to great 

difference between a correct checkerboard corner and all its neighboring corners, the correct 

corner may also be removed using the proposed method, resulting in only part of a 

checkerboard being detected, and this can be improved in the future. 
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Caption List 
 

Fig. 1 Processing steps of checkerboard corner detection. (a) Flowchart. (b) Original gray 

image. (c) Corners detected by Harris. (d) Corners after filtering. (e) Self-correlation map, 

pixels with larger gray values represent higher checkerboard corner likelihood. (f) 

Non-maximum suppression on the self-correlation map. (g) Result after outlier discarding 

and refinement. 

Fig. 2 Schematic diagrams of the corner neighborhood area. (a) Square centered at the corner, 

with two bright (② and ③) and two dark (① and ④) parts in it; the boundary is marked by 

blue lines and contains four black and white segments; the endpoints are actually where the 

signal changes and where the segments separate. (b) The examples of different squares; the 

endpoints (green circles) are detected the same in the original squares of each example, so the 

orange cross lines constructed by the endpoints in the modified squares are also the same; but 

only the original square in the good example is like the real checkerboard corner 

neighborhood, and its correlation with the modified one is strong, while that for the bad 

example is not. 

Fig. 3 The central symmetric property of the checkerboard corner neighborhood and its 

application in corner detection. (a) Some examples of checkerboard corners (1) and other 

corners (2). (b) The schematic of the square areas processed in correlation calculation. (c) 

The original and rotated squares of two pixels in the corner neighborhood; the corner is 

located in the yellow pixel so the square of it is more central symmetric than the farther red 

pixel, leading to a higher correlation between the original and the rotated square. 
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Fig. 4 Self-correlation computation and non-maximum suppression steps. (a) Candidate 

corners detected by Harris. (b) Corners after filtering. Cluster corner points surround the 

checkerboard corner positions, some of which even remain after the filter step. (c) The 

self-correlation map, where brighter color represents higher self-correlation of the pixels (as 

the ones in the small white circles show). (d) Corners extracted from the self-correlation map 

using non-maximum suppression. After the steps, the corner clusters are processed into single 

corners with more accurate positions, such as the one in the large circle. 

Fig. 5 Steps of checkerboard structure recovery. 

Fig. 6 Schematic diagrams in finding initial corners. (a) A seed is first detected as the 

left-bottom initial corner, then the top-left, right-top, bottom right corners are found in turn. 

(b) and (c) show a number of parameters that will be used in the detection of initial corners. 

Fig. 7 Structure expansion in one direction. 

Fig. 8 Steps of mean gradient calculation of a distorted edge. (a) The midpoint (red) of the 

line between two corners is far from the point (orange) with max gradient. (b) They are closer 

when the corners are connected with two lines linked by the former max-gradient point. (c) 

The midpoints and the max-gradient points almost overlap, which also means the lines quite 

resemble the real edge of a checkerboard block. (d) The pixels along all the constructed lines 

(light blue) are used to calculate the mean gradient. 

Fig. 9 Detection rate when different corner percentages allowed. The smaller figure in the 

bottom right box shows the overlapped lines in the top left part of the whole figure. 

Fig. 10 Detection results. (a–d) Checkerboards shown on screen. (e-f) Checkerboards 

projected on a white wall. (g-i) Weakly blurred checkerboards with strong fisheye distortion. 
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(j) Checkerboards in a noisy image. (k-l) Checkerboards with some slightly shaded areas. (m) 

A complex circumstance. (n-o) Multiple checkerboards in a single image. 

Table 1 Recommended font sizes and styles. 

Table 1 Four important parameters in checkerboard corner detection. 

Table 2 Simple summarization of the public datasets. 

Table 3 The number of the successfully detected images in each dataset using different 

methods. 

Table 4 Average runtime for different datasets using different methods (unit: second). 

Table 5 Calibration accuracy using different methods. 
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