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Abstract— This paper investigates the benefits of integrating 

multi-baseline polarimetric interferometric SAR (PolInSAR) data 

with LiDAR measurements using a machine learning approach in 

order to obtain improved forest canopy height estimates. Multiple 

interferometric baselines are required to ensure consistent height 

retrieval performance across a broad range of tree heights. 

Previous studies have proposed multi-baseline merging strategies 

using metrics extracted from PolInSAR measurements. Here, we 

introduce the multi-baseline merging using a Support Vector 

Machine trained by sparse LiDAR samples. The novelty of this 

method lies in the new way of combining the two datasets. Its 

advantage is that it does not require a complete LiDAR coverage, 

but only sparse LiDAR samples distributed over the PolInSAR 

image. LiDAR samples are not used to obtain the best height 

among a set of height stacks, but rather to train the retrieval 

algorithm in selecting the best height using the variables derived 

through PolInSAR processing. This enables a more accurate 

height estimation for a wider scene covered by the SAR with only 

partial LiDAR coverage. We test our approach on NASA AfriSAR 

data acquired over tropical forests by the L-band UAVSAR and 

the LVIS LiDAR instruments. The estimated height from this 

approach has a higher accuracy (r2=0.81, RMSE = 7.1 m) than 

previously introduced multi-baselines merging approach (r2=0.67, 

RMSE = 9.2 m). This method is beneficial to future spaceborne 

missions such as GEDI and BIOMASS, which will provide a 

wealth of near-contemporaneous LiDAR samples and PolInSAR 

measurements for mapping forest structure at global scale.  

 
Index Terms—Forest height, L-band, polarimetric synthetic 

aperture radar interferometry (PolInSAR), LiDAR (RH100), data 

fusion, Support Vector Machine (SVM). 

 

I. INTRODUCTION 

orest height is one of the most important forest 

biophysical parameters influencing light competition, 

stand productivity, carbon sequestration and biodiversity 

[1]. Forest height serves as a proxy to key information on forest 

ecosystems such as aboveground biomass and biomass change. 

It can be used to constrain allometric models in order to 

estimate forest aboveground biomass [2]. Height measurements 

within a stand provide information on the height distribution 

which can be used to assess the forest disturbance regime. 

Monitoring forest height changes over time is critical for 
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understanding forest dynamics as well as detecting logging 

activities, deforestation and forest degradation.  

LiDAR remote sensing, particularly with airborne platforms, 

has been widely used for estimating forest canopy height from 

local to regional scales although data availability is constrained 

by cost of acquisition. In addition, persistent cloud coverage, 

particularly over tropical areas, can limit LiDAR data 

availability. Spaceborne LiDAR missions like ICESAT-GLAS 

(2003-2007) and NASA’s forthcoming Global Ecosystem 

Dynamics Investigation (GEDI) mission aim to overcome these 

limitations by reducing the spatial density of samples, without 

producing directly an image, but rather a grid of the world’s 

land surface. 

Polarimetric Interferometric Synthetic Aperture Radar 

(PolInSAR) has emerged as a viable technique for forest canopy 

height mapping over the past two decades. PolInSAR was first 

developed and demonstrated with SIR-C L-band data [3, 4]. 

PolInSAR as a model-based forest height estimation technique 

has been validated for different radar frequencies (X- C- L- and 

P- band) from either airborne or spaceborne platforms for 

boreal, temperate and tropical forests [5-13]. The quality of the 

PolInSAR-derived height depends on many factors, including 

a) instrument characteristics, b) temporal baseline, c) spatial 

baseline and d) forest stand characteristics [8, 14]. Ignoring the 

effects of instrument characteristics and assuming no temporal 

decorrelation, PolInSAR inversion performance depends 

significantly on the selection of the spatial interferometric 

baseline, or alternatively an appropriate interferometric vertical 

wavenumber [14]. A single-baseline PolInSAR approach yields 

an accurate height estimation only for a limited range of forest 

height. The heights at small baselines are overestimated due to 

small values of vertical wavenumber, and underestimated at 

large baselines due to its large values. This causes the 

interferometric phase to be wrapped which is due to the 2π 

modulo in the definition of the vertical wavenumber. 

Additionally, for taller trees, the volumetric decorrelation limits 

the performance, particularly for the estimation of the ground 

topography. This typically leads to underestimation of the stand 

height [14]. For short/sparse vegetation outside the optimal 

range, the non-volumetric decorrelation limits the performance 

leading to overestimation of vegetation height. Hence, in order 

to achieve an accurate result over a wide range of tree heights 
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and stand densities, multiple spatial baselines with varying 

lengths (multiple vertical wavenumbers) are typically 

employed.  The multi-baseline merging approach helps to 

generate a new image which can cover different types of 

features on the ground (e.g. trees with different height ranges 

and density) [15]. There are different approaches introduced in 

previous studies for merging multiple baselines and obtaining 

optimum height estimates [10, 16, 17]. In these approaches, 

only PolInSAR related parameters are used as inputs for 

merging technique. Although, the estimated height from these 

multi-baseline merging approaches has higher accuracy than 

any single baseline approach, the estimated height still can be 

improved. One of the techniques that can help improving the 

height estimation is merging the multi-baseline PolInSAR 

height stack with the LiDAR samples using a machine learning 

approach. Merging SAR (mostly backscatter) and LiDAR data 

using machine learning approaches has been already proposed 

in the literature [18-21]. Hyde, et al. [19] investigated the 

synergic use of LiDAR, SAR and InSAR datasets using linear 

regression to estimate forest biomass in a Southwestern 

Ponderosa Pine forest. Santi, et al. [20] jointly considered 

Airborne Laser Scanning (ALS) and multi-frequency SAR 

images in an Artificial Neural Network approach for estimating 

forest biomass in Mediterranean areas [19]. These studies 

showed improvements in results when integrating both datasets 

compared to using either LiDAR or SAR data alone. It is 

evident that most applications of machine learning for 

combining SAR backscatter or InSAR parameters with LiDAR 

for biomass estimation required complete coverage of the study 

area by both sensors. A different approach was proposed by 

García, et al. [22] who used SAR backscatter and multispectral 

data to extrapolate LiDAR measurements of forest canopy 

height using a machine learning regression approach.  

In this paper we explore the use of machine learning for 

integrating PolInSAR and LiDAR data for improved estimation 

of tropical forest canopy height under conditions of partial 

LiDAR coverage. Introducing this new way of combining the 

two datasets for estimating forest height is the novel 

contribution of this research.  

Some studies explored the joint use of PolInSAR and LiDAR 

by estimating the underlying topography and the ground phase 

from the LiDAR-derived Digital Elevation Model (DEM) [23, 

24]. Although, the use of LiDAR in these studies returned an 

accurate estimation of forest height, having LiDAR data in 

these approaches requires availability of a complete LiDAR 

coverage which is not always available, especially at regional 

scales. Hence, it is desirable to develop a synergistic technique 

that combines the sparse sampling capabilities of LiDAR with 

the imaging capabilities of PolInSAR that works for incomplete 

LiDAR coverage. 

This paper is motivated by the large amount of PolInSAR and 

LiDAR data that will be available in the near future from 

forthcoming missions such as ESA’s P-band SAR BIOMASS 

in 2021 [25], the joint NASA-ISRO L-band SAR (NISAR) in 

2021 [26] and DLR’s Tandem-L with PolInSAR L-band 

capabilities in 2023 [27]. GEDI LiDAR is scheduled for launch 

in late 2018 [28] and is expected to operate for two years. It will 

sample the Earth’s surface with 25 m nominal footprints 

distributed at 60 m spacing along-track and ~500 m spacing 

cross-track) [29]. Therefore, in order to better quantify Earth’s 

forest structural parameters, a combination of GEDI footprints 

with upcoming low-frequency radar missions will be 

paramount [30]. The new way of combing PolInSAR and 

LiDAR samples introduced here will be likely beneficial to the 

science community exploiting future GEDI LiDAR and SAR 

missions data. Nevertheless, our method applies a stratified 

random sampling approach which differs from the systematic 

sampling of GEDI, however, this difference in the sampling 

scheme should not affect the suitability of our method. 

This study aimed to develop a method that applies the 

synergetic use of LiDAR and multi-baseline PolInSAR that 

enables a more accurate retrieval of forest canopy height, 

particularly when the coverage of LiDAR data is incomplete. A 

Support Vector Machines (SVM) is used to extrapolate LiDAR-

based canopy height using PolInSAR inverted parameters. 

SVM does not make any assumption about the distribution of 

the data and can capture complex relationships between 

dependent and the independent variables. A key consideration 

of this study is that the method needs to work even under 

conditions with only partial LiDAR coverage. Our method 

works in situations where a large PolInSAR image coverage 

and only sparse LiDAR samples are available. The method 

utilizes the LiDAR samples to inform the retrieval algorithm 

and improves the height retrieval over the entire PolInSAR 

scene where the LiDAR data is not available. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. A: Lope National Park showing the approximate UAVSAR and LVIS 
acquisition boundary (Google Earth image used for the background image). B: 

A subset of UAVSAR Pauli decomposition, near range (θ=25°) on the left and 

far range (θ=40°) on the right side. C: LiDAR RH100 image resampled to the 
UAVSAR image, indicating that vegetation ranges between 0-15 m over the 

open areas (blue/magenta) and 15-60 m over dense forest areas (yellow/red). 

In Section II, we provide an overview of the AfriSAR 

campaign, the study site and data acquisition. In Section III, we 

describe the methods which followed in this study: A) the 

conventional single-baseline PolInSAR inversion approach, B) 

PolInSAR multi-baseline merging approach and C) SVM 

PolInSAR and LiDAR data fusion approach. The results will be 

given in Section IV and discussion and analysis in Section V. 

Finally, the conclusions are drawn in Section VI. 
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II. AFRISAR CAMPAIGN 

The AfriSAR campaign was a joint effort between NASA 

and ESA to collect airborne and field data in multiple sites over 

Gabonese forests. The first phase of the campaign was carried 

out in July 2015 with the ONERA’s SETHI airborne SAR 

instrument. The second phase was performed in February-

March 2016 with NASA’s UAVSAR and LVIS airborne 

LiDAR, DLR’s F-SAR and a ground data campaign led by the 

University College London (UCL) and the Centre d’Etudes 

Spatiales de la BIOsphere (CESBIO). Gabonese forests are 

different from Amazonian or Asian forests as they include 

diverse forest types, from very tall, dense, rainforests to short, 

sparse and dry savannas. Heterogeneity in forest types within 

the same site is a challenge for the estimation of forest height 

and biomass due to differences in forest structure. Four main 

study sites within Gabon were identified during the campaign: 

Mondah, Lope, Mabounie and Rabi. The Lope test site was 

selected as a supersite due to being so diverse and covering 

different vegetation types within one area and this makes the 

observation of such a site challenging. In the scope of this 

research, we only focus on Lope.  

Fig. 2. An insight into forest height stand based on LiDAR RH100. As seen, the 

area covers two dominant vegetation types, namely short/sparse savannas (0-15 

m) and tall/dense forest (15-60 m). 

A. Study Site 

Lope National Park is located at 0°30′00″S 11°30′00″E in 

central Gabon and covers an area of 4,910 km². It has been a 

wildlife reserve since 1946, and a National Park since 2002. 

The area contains diverse habitats, surrounded by closed-

canopy tropical rainforest typical of the Congo Basin, the 

middle of the site is characterized by savannah and a mosaic of 

low-biomass forest types [21]. Here, the focus is on a small area 

of interest in northeastern Lope (Fig. 1).  

Fig. 1 and Fig. 2 provide an insight into forest stand heights 

and forest top canopy height ranges. They clearly indicate that 

the test site is divided into two different vegetation types. The 

image B of Fig. 1 is an RGB color composite using the Pauli 

basis components (HH+VV, 2HV, HH-VV) of the UAVSAR 

master image. Open areas appear in dark blue and forested areas 

in green. The dark blue part covers short/sparse savannas with 

trees height ranging from 0-15 m. The green part covers tropical 

forest with different ages: young (<10 years), intermediate (10-

24 years), older (25-49 years) and maturing (>50 years) and old-

growth with forest height ranges between 15-60 m. The forest 

is dominated by various tropical species including Annonaceae, 

Xylopia, Aethiopica , Staudtii, Burseraceae, Aucoumea, 

Klaineana, Ochnaceae, Lophira and Alata [31]. The 

topography is gently undulating with average slope up to 25%.  

B. Radar Acquisitions 

During the AfriSAR campaign, L- and P- band SAR data 

were acquired. Here we focus on the L-band JPL Uninhabited 

Aerial Vehicle SAR (UAVSAR) [32] acquisitions due to the 

characteristics of the imaging radar in mapping large areas for 

ecosystem applications. The UAVSAR instrument operates at 

1217.5-1297.5 MHz (L-band) and employs an electronically 

scanned array antenna to enable robust repeat-pass 

interferometric measurements [6]. The UAVSAR data were 

acquired in February 2016 with a nominal flight altitude of 12.5 

km, which allows mapping an area of about 22 km wide, with 

incidence angles ranging from 25° to 65°. The UAVSAR 

polarimetric single-look-complex (SLC) product has ground 

range and azimuth resolutions of 2.5 m and 1 m, respectively 

[7]. The Lope UAVSAR dataset is fully polarimetric and has 

been acquired by incrementing the aircraft altitude by 20 m at 

each flight track to achieve a broad range of vertical 

interferometric wavenumbers and resolve multiple layers of 

vegetation structure (Table I). UAVSAR data are focused and 

registered in a stack using precise platform-SRTM DEM [33, 

34] geometry.  

 
Table I 

SUBSET OF UAVSAR FLIGHTS OVER LOPE USED IN THIS STUDY 

Flight 
Baseline 

[m] 

Mean kz 

[m-1] 

Mean HoA 

[m] 

∆T 

 [min] 
Time 

1 master master master master 11:11 

2 20 0.06 104 22 11:33 

3 40 0.12 52 45 11:56 

4 60 0.18 35 67 12:18 

5 80 0.24 26 90 12:41 

6 100 0.30 21 129 13:20 

7 120 0.36 17.5 149 13:43 

 

UAVSAR was registered to the DEM using an accurate 

geometry-based co-location based on airborne look vectors and 

Doppler information commonly used in interferometry. The 

DEM then was up sampled to match the full resolution of 

UAVSAR images.   

C. LiDAR Acquisitions 

Land Vegetation and Ice Sensor (LVIS) LiDAR data [35] 

used in this study were acquired on the NASA Langley KingAir 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Lop%C3%A9_National_Park&params=0.500_S_11.500_E_source:eswiki
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B-200 at an altitude of 7.3 km. Nominal LVIS footprint 

diameter is 25 m with 9 m separation (overlapping) along track. 

Among all the metrics that can be extracted from the LVIS 

waveforms, we used the LVIS RH100 metric, which was 

generated and distributed by the GSFC LVIS team. The RH100 

metrics was provided in slant range geometry with a dimension 

of 600×1000 (pixels). 

LiDAR data was co-located with radar using location 

information stored in the LVIS metadata. Visual inspection and 

correlation analysis at full resolution shows highly precise co-

location between the different datasets. The original UAVSAR 

SLC images had a dimension of 3000×29000 (pixels). A multi-

looking process was carried out using a factor of 5×29 to 

transfer the PolInSAR stacks into LiDAR geometry. Both the 

LVIS and UAVSAR acquisitions used in this study cover the 

same area (Fig. 1). However, for the data fusion purpose, less 

than 1% of the available LiDAR samples are used for training, 

while the remaining pixels of LiDAR are used as an 

independent dataset for validation purposes.  

D. Ground Data Collection 

Field data collection was carried out as part of the AfriSAR 

campaign by the University College of London (UCL) and the 

Centre d’Etudes Spatiales de la BIOsphere (CESBIO), between 

January to August 2016 [31]. In total, 12 main plots (50×50 m) 

were collected, divided into four sub-plots (25×25 m). Some of 

the main plots are incomplete and miss the sub-plots. Therefore, 

a total of only 37 subplots are available. The plots include dense 

tropical forest to sparse savannas. The top canopy height 

measured for each subplot, is used in this research to validate 

the SVM estimated top canopy height. 

III. METHODOLOGY 

A. Single baseline PolInSAR Parameter Inversion 

This section describes the PolInSAR inversion scheme based 

on the Random Volume Over Ground (RVoG) model [4, 36] 

that was applied in this study to estimate forest canopy height 

from the UAVSAR data. We started by estimating the complex 

interferometric coherence γ for all pairs at all polarimetric 

channels (HH, HV and VV), [6] 

 

𝛾 = 
𝐸(𝑆1 𝑆2

∗ )

√𝐸(𝑆1𝑆1
∗ ).√𝐸(𝑆2𝑆2

∗ )

    (1) 

 

where S1 and S2 are two complex SAR images. The magnitude 

of γ ranges between 0 and 1 [37, 38] and depends on sensor 

characteristics, acquisition parameters and vegetation structure. 

Three main decorrelation sources affect the coherence: 

temporal decorrelation, thermal noise decorrelation and volume 

decorrelation [8, 14]. The UAVSAR instrument provides a 

good signal-to-noise ratio for vegetation applications in all 

polarimetric channels, which results in a very low thermal  

noise and phase decorrelation (> 0.95) [39]. Given the structure 

of the vegetation in the Lope site and the effects of temporal 

decorrelation at L-band, we ignored the effects of thermal noise 

decorrelation, which are significantly smaller compared to the 

combined volume and temporal decorrelation for UAVSAR 

[43]. Coherence was computed within a rectangular uniform 

window of 5x29 samples (145 nominal looks). The amplitude 

of interferometric coherence has values typically greater than 

0.85 over open areas in all three polarimetric channels for all 

pairs, with greatest value in the VV channel (≈ 0.9). Within the 

forested areas, this value is lower as volumetric interferometric 

decorrelation tends to be more prominent [6, 23]. On average, 

coherence in the HV channel is observed to be greater compared 

to the HH and VV channels within these areas. 

The performance of the RVOG model has been widely 

evaluated using different SAR wavelengths and over different 

forest conditions [4, 36]. In the RVoG model, forest canopy is 

idealized as a random volume layer of height hv over the ground 

located at z=z0. The ground can be seen through the canopy 

volume by the interferometer operating at wavelength λ, with a 

given incident angle θ0 at range R [6]. The RVOG model 

predicts the volume coherence (𝛾𝑒𝑠𝑡) using:  

 

𝛾𝑒𝑠𝑡 =
∫ exp (

2𝜎ℎ𝑣

cosθ0
)exp (𝑖 𝑘𝑧 𝑧)𝑑𝑧

𝑧0+ℎ𝑣
𝑧0

∫ exp (
2𝜎ℎ𝑣

cosθ0
)𝑑𝑧

𝑧0+ℎ𝑣
𝑧0

     (2) 

Eq.(2) represents a look-up-table (LUT) with priori-known 

values of all possible extinction coefficient (σ) and heights (hv). 

The extinction coefficient depends on the density of the canopy 

elements in the volume and their dielectric constant. We set 

values between 0-1.5 dB/m for mean extinction coefficient (σ) 

and 0-60 m for forest heights (hv), which are decided based on 

the forest types and ground field inspection for Lope. The 

parameter kz is the effective vertical wavenumber, which 

depends on the radar wavelength λ and imaging geometry and 

it scales the interferometric phase to height:  

 

𝑘𝑧  = 𝑚
2𝜋

λ

 𝛥𝜃

𝑠𝑖𝑛 (𝜃0)
     ≈    𝑘𝑧 = 𝑚

2𝜋

λ

 𝐵⊥

𝑅 𝑠𝑖𝑛 (𝜃0)
       (3) 

 

where Δθ is the angular separation of the two acquisitions in the 

direction of the resolution cell, 𝐵⊥ is the perpendicular baseline, 

𝜃0 is the local incidence angle, R is the slant range distance. The 

factor m accounts for the acquisitions mode. For monostatic 

acquisitions m = 2, and for bistatic m = 1 [9, 14].  

 

Once the volume coherence is predicted through the RVoG 

model, we need to estimate the volume coherence from the 

actual PolInSAR stacks. This step includes three main stages: 

a) mapping the real and imaginary components of the coherence 

points computed from (1) onto a line in a complex plane, b) 

estimating the ground phase φ0 which is the intersection point 

of the line with the unit circle (Fig. 3) and removing it from the 

assumed volume coherence and finally c) forest height (hv) and 

extinction coefficient (σ) estimation [6]. For the ground phase 

estimation, we examined both line-circle intersection points: 

 

{
If 𝑑1 > 𝑑2, 𝑡ℎ𝑒𝑛 φ0  =  φ1
If 𝑑1 < 𝑑2, 𝑡ℎ𝑒𝑛 φ0  =  φ2

             (4) 

 

and considered both solutions as possible valid ground phases 

in our multi-baseline merging approach, which will be 

described in the next sections.  

At L-band, we assumed HV channel as representative of the 

volume, and therefore, we subtracted the estimated ground 

phase from the HV channel to estimate the volume-only 
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coherence (𝛾𝑉𝑜𝑙) [5, 6]. This is justified by the fact that the 

cross-polarimetric channel is sensitive to random orientation of 

the canopy elements, and based on Lope characteristics, the 

ground contribution is expected to be low in the HV channel [6, 

9, 40].  

In the final step, the extinction coefficient and heights can be 

estimated by finding values at where the differences between 

predicted RVoG volume-only coherence (𝛾𝑒𝑠𝑡) and the 

estimated volume-only coherence (𝛾𝑉𝑜𝑙) are minimal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Unit circle and PolInSAR Inversion scenario: Grey ellipse: coherence 

region [6, 8, 23], black line: line fitted through the coherence region, white star: 
an example of a coherence point, black dots: candidates for γVol, black stars φ

1 

and φ
2: 

candidates for ground phase, d
1
and d

2
: distance candidates between a 

coherence point and ground phase, white dashed line: visible line of the 

coherence region (VL). 

The procedure described above is valid for tree heights not 

exceeding the interferometric Height of Ambiguity (HoA): 

HoA =  2𝝅 𝑘𝑧
⁄                   (5) 

In the presence of tall trees and large baselines, it is likely that 

the interferometric phase is wrapped along the vertical 

direction, which requires an unwrapping process prior to 

application of the height estimation algorithm. In this paper, 

however, phase unwrapping is deliberately not applied as 

baselines potentially affected by wrapped phases are 

disregarded by the multi- baseline selection and merging 

algorithm. 

B. Multiple Baseline PolInSAR Merging 

The procedure described above was applied to each of the 

single-baseline PolInSAR pairs of UAVSAR data for canopy 

height estimation. In order to have an accurate estimation of 

height over a wide range of vegetation types (short/sparse to 

tall/dense), multiple baselines (different kz values) are required. 

One possible approach for merging multiple PolInSAR 

baselines is based on the cost function introduced in [10, 17]. In 

this approach, the best height estimation from each individual 

pair is selected according to the interferometric height 

precision, which is defined as the standard deviation of the 

interferometric phase divided by the vertical wavenumber [10]: 

𝐻𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= −
1

𝑘𝑧
φ𝐼𝑛𝑡       with       φ𝐼𝑛𝑡 = √

1−𝛾2

2 𝐿𝐼𝑛𝑡𝛾
2    (6) 

where 𝐿𝐼𝑛𝑡  is the number of looks used to estimate the 

interferometric coherence γ.  When the interferometric coherence 

amplitude is reduced by non-volumetric factors such as 

temporal decorrelation, the standard deviation of φ
𝐼𝑛𝑡

 increases 

and the precision of estimated height decreases. This implies 

that the smallest height precision stands for a more reliable 

parameter inversion results. Between a set of multiple baseline 

forest height estimations, the approach proposed in [10] will 

select the height where the height precision is minimal: 

 

{
  
 

  
 
𝐻𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
1 (𝑘𝑧

1, 𝛾1, 𝐿𝐼𝑛𝑡) 

𝐻𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
2 (𝑘𝑧

2, 𝛾2, 𝐿𝐼𝑛𝑡)
.
.
.

𝐻𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑁 (𝑘𝑧

𝑁 , 𝛾𝑁 , 𝐿𝐼𝑛𝑡)

     (7) 

 

where N denotes for the number of available baselines. 

 

C. SVM PolInSAR and LiDAR Data fusion 

In this section, we introduce an approach based on the 

synergetic use of LiDAR and multiple PolInSAR baselines 

using a Least Squares Support Vector Machine (LS-SVM) 

algorithm [41]. The basis of SVM was established in [42] and 

has proven to be useful for integrating multisource remote 

sensing data both for classification [43, 44] and regression 

applications [22, 45, 46]. In classification problem, SVM 

attempts to fit an optimal hyperplane to the training samples in 

a multidimensional feature space based on structural risk 

minimization. This approach fits the hyperplane by maximizing 

the margin between the closest training samples, which are 

known as support vectors. When the classes cannot be linearly 

separated, the data are mapped into a higher dimensional space, 

where the classes can be linearly separated, by means of a 

kernel function [47]. In this study, a radial basis function (RBF) 

was selected, which is controlled by two parameters, the penalty 

parameter (C) and the kernel bandwidth (h). The parameter h 

determines the size of the kernel whereas C controls the penalty 

associated to misclassifications in the training data and 

represents a trade-off between error and model complexity. 

Large values of C reduce the error but also the generalization 

ability of the model. A grid search approach with ten-fold cross-

validation was used to obtain the optimum values for C and h.  

The first step of this approach consists of searching for the 

optimum height estimate Hopt in the stack of 12 PolInSAR 

height images previously obtained, by minimizing the absolute 

difference between PolInSAR height estimates and RH100. The 

histogram and scatterplot of Hopt illustrated in Fig. 4 indicate 

that in order to obtain an appropriate accuracy for the various 

height range between 0-60 meters, multiple baselines are 

required [14]. Fig. 4 also proves that there is at least one height 

value in the one the 12 PolInSAR heights that is very close to 

RH100. Hopt represents the desired height estimate after 

merging the available baselines where LVIS RH100 is used as 

reference height. The SVM classification approach requires a 

categorical image where each pixel is labeled with a value from 

1 to 12 corresponding to the PolInSAR height image with 

height value closest to RH100. The independent variables 
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(features) used for the SVM embraced the different parameters 

used in the estimation of forest height by PolInSAR. These 

features include the volume coherence (magnitude and phase) 

and the vertical wavenumber (kz). 

Fig. 4. Validation of the Optimum Height versus LiDAR RH100. The Optimum 
Height is a merged height based on all the available PolInSAR estimated 

heights by picking the pixels (one out of 12) which has the minimum absolute 

difference with the LiDAR RH100. 
 

An analysis of variable importance was carried out to identify 

the dominant variables in our model. An initial model was 

trained and validated using only coherence magnitude and 

phase. Subsequent models were trained by adding sequentially 

kz. The improvement in r2, RMSE and bias obtained after 

including this variable was evaluated. 

Training of the SVM algorithm was based on 5000 samples 

(less than 1% of the available samples, i.e. image pixels) 

collected across the images using a stratified random sampling 

approach. The stratification was based on the RH100 histogram 

using 5m height bins, thus ensuring that all forest canopy height 

ranges present in the study area were appropriately sampled 

based on their frequency. Different training sample sizes were 

tested but increasing the sample size beyond 5000 samples did 

not significantly improve the results and increased the time 

required for training the model. The rest of the pixels of the 

image (>550000) were used for independent validation. In this 

way, the generalization capability of the model was tested. 

 

 
 
 

 

 
 

 

 
 

 

 
 

 

Fig. 5. Validation of the PolInSAR merged height versus LiDAR RH100 

IV. RESULTS OF CANOPY HEIGHT ESTIMATION 

In this section, we first present the results of single baseline 

PolInSAR height estimation algorithm described in Section III-

A to individual UAVSAR interferometric pairs. This will be 

followed by the results obtained using a multi-baselines 

merging approach described in Section III-B and finally the 

results from PolInSAR and LiDAR data fusion approach which 

was introduced in Section III-C. 

1) Single-baseline PolInSAR Heights: Six nominal 

interferometric baselines were available: 20, 40, 60, 80, 100 and 

120 meters.  By considering both possible ground phases for 

each baseline, we estimated 12 PolInSAR heights in total for 

each pair using procedures explained in Section III A. It is 

understood that certain baselines are far from the optimum 

baseline for a given tree height, potentially providing very low 

coherence or even wrapped phases that are not appropriate for 

height estimation with the method described in Section III.A. 

The estimated height at each baseline was validated versus 

RH100 individually and Table II reports the errors for all 

baselines to illustrate how the average errors are dependent on 

the baseline length, as expected. 

 
Table II 

R2, RMSE AND BIAS FOR THE ESTIMATED HEIGHTS PER 

INDIVIDUAL BASELINE 
Baseline r2 RMSE [m] Bias[m] 

B = 20 m, using φ1 0.28 17.5 -15.7 

B = 20 m, using φ2 0.28 23.1 13.8 

B = 40 m, using φ1 0.45 12.6 -8.8 

B = 40 m, using φ2 0.12 25.8 -22.2 

B = 60 m, using φ1 0.66 11.3 -11.2 

B = 60 m, using φ2 0.53 13.9 -12.8 

B = 80 m, using φ1 0.69 9.5 -8.1 

B = 80 m, using φ2 0.59 12 -10.7 

B = 100 m, using φ1 0.68 9.1 -6.6 

B = 100 m, using φ2 0.63 10.4 -8 

B = 120 m, using φ1 0.71 8.6 -5.5 

B = 120 m, using φ2 0.70 8.7 -7.1 

 

2) PolInSAR Merged Height: We examined the previously 

introduced multi-baseline PolInSAR combination criterion in 

[10, 17] which uses a cost-function approach for merging the 

multiple baselines. In this method, no LiDAR is used, and only 

PolInSAR-derived parameters contribute to the cost function. 

These include the volume coherence (magnitude and phase) and 

the vertical wavenumber [10, 17]. This approach ensures that 

the phase errors are reduced while sensitivity to height is still 

high (Fig. 5). The calculated RMSE is 9.2 m and the r2=0.67. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. Validation of the SVM estimated height versus LiDAR RH100 

 

3) SVM Merged Height: In this approach we made a synergetic 

use of LiDAR and multiple baselines PolInSAR information 

introduced above to investigate forest height retrieval. The 

merged height from the SVM approach, performed better than 

the previous two approaches (Fig. 6), with an increase in r2 and 

RMSE = 1.8 m 
r2 = 0.98 



 7 

decrease in RMSE varying between 1.3 and 18.5 m, and a 

reduction of the bias by up to 20.8 m.  

The overestimation of the height over short/sparse vegetation 

reduced significantly (~5 m) and underestimation over the 

tall/dense stand is also reduced (~10 m) in comparison to 

PolInSAR-only merged height. The estimated height was 

evaluated against the LiDAR RH100 and model performance 

assessed in terms of the r2, RMSE (m) and bias (m) – Table III. 

We also validated the SVM estimated height versus the ground 

measured height. To perform this validation, the SVM merged 

height was georeferenced and resampled to 25×25 m resolution 

cells, the same size of the field plots (Fig. 7). The SVM 

estimated height and in situ heights have r2 = 0.68 and RMSE = 

7.6 m.  

 
Table III 

R2, RMSE (M) AND BIAS (M) OF THE SVM MERGED HEIGHT 

 r2 RMSE [m] Bias [m] 

Training 0.81 7.17 -1.32 

Validation 0.80 7.35 -1.40 

V. DISCUSSION 

1) Single Baseline PolInSAR Heights: We examined 

PolInSAR-derived canopy height for different spatial baselines. 

As anticipated, using a single baseline approach, either short or 

long, may not always return an accurate height results over a 

heterogeneous site covering different vegetation types 

(tall/dense and short/sparse) due to Height of Ambiguity (HoA). 

The values of kz play a significant role in PolInSAR 

performance. For too large kz values, the sensitivity of the 

coherence to forest height saturates at a given height, and large 

heights remain underestimated. For even larger kz values, phase 

unwrapping is more likely to happen along the vertical profile. 

On the other hand, for too small kz values, decorrelation 

introduces large height errors, so heights become overestimated 

[14]. According to (5), large kz values account for small HoA 

which indicates better estimation of the height for shorter trees 

and underestimation of taller heights, while small kz values 

account for large HoA. This leads to overestimation of the 

height. Looking at the results of validation of single baseline 

PolInSAR heights versus RH100 (Table II) r2, RMSE and bias 

are improving from small baselines (20, 40, 60 m) to large ones 

(80, 100, 120 m). At small baselines, the height becomes highly 

overestimated due to large HoA, while at larger baselines, the 

height is underestimated for taller trees and is reasonably well-

estimated for shorter trees. The higher accuracy associated with 

shorter vegetation increased the r2 values at larger baselines.  

Therefore, a single baseline may not return an accurate height 

estimate over a heterogeneous site and one way to overcome 

this bias is to merge multiple baselines with various kz values 

ranging from small to large. Each baseline provides solution 

space at a certain height value, and with the multiple baseline 

merging approach, the solution space of one baseline can 

support the solution space of the other ones  [10, 14].  

We also carried out further experiments by testing different two 

candidates of ground phases (φ
1 

and φ
2
) of the unit circle 

(Fig.3). Choosing φ
1 

and φ2 as ground phase might return a 

valid or an invalid outcome, but this only holds true for the high 

coherences. For these points, the shape of the coherence region 

is likely to be an ellipse, which normally locates at a side of the 

unit circle. In this case, the distances candidates between the 

coherence points and the intersection points are not equal (Fig. 

3: d1 ≠ d2), and accordingly, φ
1 

and φ
2 as the ground phase are 

valid or invalid. Our results at single baseline PolInSAR 

estimated height, totally confirms these arguments. Looking at 

RMSE and correlation coefficient (r2) results in Table II, for the 

smaller baseline (20 and 40 m) which provides higher 

coherences, the accuracy of estimated height differs from φ
1 

to 

φ
2
, meaning that the ground phase with the largest distance from 

the 𝛾𝐻𝑉 is valid for taller vegetation and the ground phase with 

the shortest distance from the 𝛾𝐻𝑉 is valid for shorter vegetation. 

For larger baselines (60, 80, 100 and 120 m) which give lower 

coherences, the coherence points locate around the middle of 

the unit circle, which shape a circular coherence region. In this 

case the distance between the coherence points and the 

intersection points are likely to be equal (Fig. 3: d1 ≈ d2), 

therefore, whatever points are selected as ground phase does not 

affect significantly on the estimated height. As per results in 

Table II for larger baselines, there is no significant difference 

between r2 and RMSE calculated for the estimated height in 

using φ
1 

or φ
2 as the ground phase, and both return similar 

results.  

Fig. 7. Validation of the SVM estimated height versus in-situ measured height. 

 

In case of short/sparse vegetation, the density is low, hence, the 

assumption of largest distance from the 𝛾𝐻𝑉 for choosing the 

intersection point of the unit circle as the ground, might not 

always pick an accurate ground phase. Radar L-band can 

penetrate into the open canopy, and the scattering might not 

necessary be from the top of the canopy. In this case, the ground 

phase can be the intersection point which has shortest distance 

from the 𝛾𝐻𝑉. However, this might lead to an underestimation 

of the height over these areas. If the study site covers different 

range of vegetation types like the Lope National Park where 

tall/dense forest and short/sparse savannas exist in the same 

scene, then both ground phase candidates should be retained. 

RMSE = 7.6 m 

r2 = 0.68 
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2) PolInSAR Merged Height: The comparison between 

PolInSAR multi-baseline merging and LVIS RH100 heights 

(Fig. 5) confirms that the overall accuracy of the merged 

product improves significantly compared to the single-baseline 

height estimate. This is the consequence of the sensitivity of the 

vertical wavenumber to different tree structural types. As 

suggested in [10], we used the interferometric height precision 

as a metric for merging the baselines, which incorporates both 

the volume coherence and the vertical wavenumber. From Fig. 

5, this balance between volume coherence level and baseline 

length appears to work better for relatively short vegetation (<7 

m) and tall trees (>50 m). Within this range, very small / very 

large baselines are correctly selected by the PolInSAR merging 

algorithm. However, in the range of 15 to 30 m the PolInSAR- 

derived height is overestimated because of the sub-optimal 

baseline selection, i.e. the values of vertical wavenumber are 

too small or too large for the given tree height and structure. 

 

3) SVM Merged Height: Fusion of LiDAR and PolInSAR 

parameters improved height estimation compared to merging 

baselines based on PolInSAR parameters only. The SVM 

estimated height captured the general trend in vegetation height 

for the study area, clearly representing the savannah and the 

closed canopy tropical rainforest vegetation. Nevertheless, it 

failed to capture some patterns of low vegetation within the 

closed canopy forest that can be observed in the LiDAR data 

(Fig. 8) and showed a more random distribution of the forest 

canopy height. Looking at the map of height difference (Fig. 8 

right), a small overestimation over open areas and 

underestimation over forested areas can be observed. The Lope 

test site is highly affected by topography and terrain slope, and 

one argument confirming the overestimation/underestimation 

can be related to topographic effects in the UAVSAR images. 

For terrain and slope correction of the UAVSAR images the 

SRTM DEM was used. However, the 30 m resolution of SRTM 

is sometimes insufficient for topographic correction of 

UAVSAR imagery with 2.5*1 (Rg*Az) m resolution in tropical 

areas. This then caused an underestimation of height over 

negative slopes and overestimation over positive slopes. The 

other reason is that the selected kz values are too small or too 

large for the given tree height resulting an overestimation of the 

mid-range height. However, these values are significantly 

improved over the PolInSAR-only approach. 

Several studies have explored the synergy of LiDAR and 

InSAR data for forest height estimation, where the LiDAR 

DEM is used to correct the InSAR ground phase [19, 24]. 

Nevertheless, these approaches require LiDAR and InSAR 

measurements continuously acquired over the same area. Qi 

and Dubayah [24] assessed the impact of extrapolating a 

simulated GEDI LiDAR DEM with poorer results than those 

yielded by an airborne imaging LiDAR DEM. Our approach 

allows an extrapolation of the forest canopy height over areas 

beyond the LiDAR coverage and can be applied to future 

satellite LiDAR and radar missions. GEDI data will provide 

global (between ± 51° latitude) sampling of terrestrial 

ecosystems. However, in order to provide wall-to-wall 

Fig. 8. Left: the LiDAR RH100 image, middle: the SVM merged height and right: the map of height difference between LiDAR RH100 and SVM merged 
height 

 

0 60 
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coverage, these data will need to be integrated with other 

sensors dataset. PolInSAR data provided by future satellite 

missions such as BIOMASS or NISAR could be used to derive 

such information using the method presented in this paper. 

However, further analysis over different forest types is required 

to prove the robustness of our method for global applications. 

Differences in the sampling strategy used in this study and the 

GEDI acquisition plan also require further assessment. GEDI 

plans to provide systematic sampling with footprints separated 

by 500 m across-track and 60 m along-track, while in this study 

a stratified random sampling approach was used, with a 

minimum, maximum and mean distance between samples of 1, 

1146 and 424 pixels in slant range, representing approximately 

20 m, 22.9 km and 8.5 km on the ground. Although differences 

in the sampling scheme could affect the performance of our 

approach, the GEDI sampling strategy should guarantee the 

minimum sample size required to achieve accurate results.  

Sample size is an important factor in the performance of 

machine learning algorithms [48], yet our approach proved to 

be robust with a sample size as small as 1% of the total area, i.e. 

5000 pixels. The small sample size highlights the capability of 

the method for applying it to the in-situ measured height in 

absence of LiDAR. Where a set of in-situ measured height 

covering different forest height ranges distributed over a test 

site is available, it is possible to carry out this approach and train 

the SVM with the ground-measured height, instead of LiDAR 

height. However, the LiDAR height is far more accurate than 

the in-situ measured height, particularly in the tropics where the 

forest is too dense to collect accurate in-situ height 

measurements. 

The SVM model was based on complex coherence 

(magnitude and phase) and kz. An analysis of variables 

importance showed that using only coherence information the 

model explained 77% of the variance, the RMSE was 8.46 m, 

and the bias was -3.29 m. By including kz in the model, r2 

increased by 3%, whereas RMSE and bias decreased 1.3 m and 

2.2 m respectively, both for the calibration and validation 

datasets. The contribution of kz to an improvement in the 

merged height results was negligible for the aggregated 

statistics, although their inclusion provides additional 

information over other vegetation types and more 

heterogeneous canopy structures. 

The SVM merged height with r2 =0.80 and RMSE = 7.35 m has 

higher accuracy in comparison to the PolInSAR-only merged 

height with r2 = 0.67 and RMSE = 9.2 m. In the SVM approach, 

the overestimation of the height over the short/sparse vegetation 

is significantly improved whereas this issue remains in place in 

the PolInSAR-only merged approach. The underestimation of 

the height over tall/dense forest is reasonably well corrected 

compared to the previously introduced merging approach, but 

can still be observed for the tallest forest stands (about 5 m) due 

to ground level limitation at L-band[40]. 

In addition to the validation of the SVM-estimated height 

versus LiDAR, we also carried out a validation analysis by 

including the ground measured height. Although the number of 

plots is small (37 plots sized 25×25 m), the results also indicate 

high accuracy with r2 = 0.68 and RMSE = 7.6 m. We believe 

with more measurements this result can be improved further. 

For this study, we used UAVSAR airborne datasets with six 

PolInSAR baselines (six different vertical wavenumbers). This 

helped achieve an accurate height retrieval over a wide range of 

tree heights and stand densities. Further studies are required to 

test the robustness of this method using different datasets and 

for a smaller number of baselines. 

Fig. 9. Histograms of forest height estimated from different approaches 
discussed in this paper. 

VI. CONCLUSION 

This paper evaluated the capability of the PolInSAR height 

estimation using multi-baseline UAVSAR L- Band data over a 

heterogeneous tropical forest in Gabon. Merging PolInSAR 

measurements from the multiple baselines improved the result 

with respect to the single- baseline approach. In this paper, we 

demonstrated how multiple PolInSAR baselines can be 

successfully integrated with LiDAR samples using SVM 

improving previous approaches based directly on PolInSAR 

descriptors. The proposed approach does not require continuous 

LiDAR coverage where PolInSAR observations are available. 

As an outcome, the results presented in this paper support the 

idea that sparse LiDAR samples can be fused with PolInSAR 

measurements at the stage of PolInSAR multi-baseline 

selection, although we recognize that further algorithm 

assessment is required over forest sites with different vegetation 

and soil conditions. These results are particularly significant for 

future space borne missions (GEDI, BIOMASS, TanDEM-L, 

NISAR), which are expected to provide a wealth amount of 

LiDAR samples and PolInSAR measurements observations for 

global forest height and structure mapping. 
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