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by
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Abstract

The aerodynamic noise radiating from an unsteady flow can be extracted by acous-

tic analogy from time-resolved Computational Fluid Dynamic (CFD) simulations.

For this purpose, two Ffowcs Williams and Hawkings (FW-H) solvers are developed,

based on an advanced time formulation (AFW-H) and on a convective formulation

(CFW-H). The methods are coded in Python and embedded in Antares, a CFD

post-processor of wide access and usability for the scientific community, developed

by Cerfacs, France. The new FW-H solvers are tested on a hierarchy of noise sources

of increasing complexity. The radiating field from elementary acoustic sources is

considered first, progressing then to single-stream and dual-stream jets. The tests on

monopoles, dipoles, and quadrupoles show good predictions of pressure fluctuation

time-history and directivity against reference analytical results. CFD results obtained

at Cerfacs by Large Eddy Simulation and at the University of Leicester by Detached

Eddy Simulation provide the input to the acoustic analogy to estimate the noise

radiation from jets. The jet noise predictions are compared against acoustic results

obtained numerically by the elsA software (ONERA, France) and against sound

measurements taken at the Von Karman Institute for Fluid Dynamics, Belgium. The

tool is then used to assess dual-stream under-expanded jet noise in a configuration

by Airbus SAS, at flow conditions that differ from the ones explored in previous

aeroacoustic literature. Flight effects on jet noise are tested by applying the CFW-H

tool to a single-stream under-expanded jet in-flight. The acoustic predictions for both

static and in-flight jets are found in good agreement with reference predictions and

with measurements, building confidence in using the new FW-H solvers to extract

the aerodynamic noise generated by unsteady shock-containing jets.
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Chapter 1

Introduction

1.1 Overview and objectives

The main objective of this research consists in developing an aeroacoustic tool of

wide access and usability that allows the prediction of the noise radiation from

unsteady flows both in the near-field and in the far-field. The new aeroacoustic

tool is designed to be run either as a post-processor on a stored set of data, or

embedded in a Computational Fluid Dynamic (CFD) software. Specifically, starting

from the unsteady flow field prediction on a control surface, the tool aims to produce

reliable noise estimations for under-expanded single-stream and dual-stream jets,

towards cabin noise predictions. A dual-flux test case proposed by Airbus SAS,

which is introduced in Appendix A and investigated in Section 4.2, represents a new

application with flow conditions that differ from the ones explored in the previous

aeroacoustic literature. Moreover, the convective acoustic analogy implementation

described in Section 2.2.4 is applied to a single-stream under-expanded jet in flight

in Chapter 5, for which no equivalent application is available in the literature.

Aeroacoustics is a compelling discipline that stems from the pioneering work of Sir

James Lighthill [1, 2] on sound generated aerodynamically. The ensuing work on the

modelling and control of jet noise from aircraft enabled the growth of air transport

operations with acceptable levels of airport noise. In 2015, aviation supported 63

million jobs worldwide and underpinned $ 2.7 trillion of Gross Domestic Product [3].

Such achievement of high economic, environmental, and societal impact was reached

through an arduous research path, as reported by Tam [4].
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The physics of jet noise radiation is extremely complex. Many elements interact

with each other, generating complex dependencies that make it extremely difficult to

disentangle and isolate the effect of each physical parameter. Jet noise modelling

is closely linked to turbulence, which is another complex discipline that is far from

being a closed subject.

Many analytical and numerical jet noise models have been tested and appraised

over the past decades. However, there is still no large consensus among aeroa-

cousticians on the most efficient modelling approach [5], especially for predicting

supersonic jet noise, where broadband shock-associated noise is involved. This makes

aeroacoustics a very interesting field, in which many researchers work to pursue a

model that correctly reproduces the physics of the problem, given the restrictions

imposed by the current technology and computing facilities.

The increasingly restrictive limits imposed by the International Civil Aviation

Organization (ICAO) in terms of noise emission, both towards the ground and the

cabin (ICAO Annex 16 Chapter 4), constitute a main driver for further reducing jet

noise emissions from aircraft engines. The introduction of turbofan engined aircraft

provided a significant reduction in noise pollution. The increase in the bypass ratio

(BPR) between the secondary and the primary flow has given further noise reductions

over the last half century. By increasing the air inflow to the engine, the same thrust

can be produced with a lower jet exit velocity, which implies a reduction in the noise

emission, the latter being proportional to a high power of the jet exit velocity [1, 6, 7].

Further increases in turbofan diameter are becoming difficult to integrate in the

conventional underwing configuration and other techniques need to be investigated.

During the last half century, many solutions have been developed and tested

to decrease noise radiation levels from turbofan engines, both towards the ground

and towards the cabin, including mass injection [8], and the alteration of the nozzle

shape [9] through vortex generators [10] or chevrons [11]. The use of acoustic liners

is also very common, both on the engine and over the cabin fuselage, but this acts

on the transmission path without reducing the noise level at source. Even though

some of these solutions were shown to represent a good compromise between noise

reduction and both thrust and efficiency losses, there is still not a general noise

reduction technique that is independent of the aircraft configuration and that acts
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effectively for reducing both low and high frequency jet noise components on modern

turbofan engines.

Therefore, it is of interest to investigate jet noise radiation from modern wide-body

civil aircraft, which operate high-bypass ratio turbofan engines with a fixed area

nozzle. The annular nozzle from the bypass flux can operate ideally expanded only at

one point of the flight envelope. The bypass jet is therefore typically under-expanded,

causing unwanted shock-associated noise, which is more prominent in the passenger

cabin, given today’s more composite airframe fuselage materials. This prompts

the pursuit of prediction techniques for the sound pressure at monitoring positions

corresponding to the airframe fuselage alongside the jet, in order to evaluate the

noise transmission from the engine to the fuselage.

The major accomplishment pursued during this PhD is the ability to extract

engineering estimates of far-field as well as of near-field jet noise (Section 1.4), both

in the static and in the in-flight configuration, given time-dependent descriptions of

the flow, for which a common database format is defined, applicable to numerical,

experimental, and analytical jet flow descriptions. For this purpose the author

implemented two Ffowcs Williams and Hawkings acoustic analogy formulations in

the Antares software [12], a post-processing package of wide access and usability for

the scientific community that is developed and maintained by the Centre Européen

de Recherche et de Formation Avancée en Calcul Scientifique (Cerfacs).

This research was undertaken within the context of the AeroTraNet2 (AERO-

nautical TRAining NETwork in Aerodynamic Noise from Wide-body Civil Aircraft)

project [13]. The aim of the wider AeroTraNet2 project was to build a physics-based

model for idealised dual-stream jets and to obtain predictions of the radiating acoustic

pressure field from under-expanded single/dual-stream jets that match experimental

data. Such predictions can then be used to investigate the physical mechanisms

generating the noise.
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1.2 Computational AeroAcoustics of supersonic

jets

A comprehensive review of the advances in jet noise research since Lighthill [1]

has been published by Tam [4] in 1998 and most recently by Viswanathan [14] in

2009. The physics of jet noise, for both subsonic and supersonic flows, has been

described by Mancini [15] and Pérez [16], who were Early Stage Researchers in the

AeroTraNet2 project. A special focus on supersonic jets and their shock-associated

noise is given by Tam [17], who provides a clear classification of the main noise

components. In this section, a brief introduction to supersonic jet noise is given,

followed by a discussion on the issues pertaining to Computational AeroAcoustics

(CAA) jet noise simulations.

In a jet, the driving parameter of the flow is the Nozzle Pressure Ratio (NPR).

This is defined as the ratio between the jet total pressure pt and the ambient pressure

p0:

NPR = pt
p0
. (1.1)

This parameter and the nozzle exit pressure pe determines whether the jet is fully

expanded or otherwise. For supercritical nozzles, just one operating condition exists

for which the jet is perfectly expanded and the fluid inside the nozzle expands to

the external pressure p0 at the nozzle exit section, satisfying pe = p0. All other

conditions generate a system of shock-cells within the jet that produces a significant

contribution to the overall radiated sound, referred to as Shock-Cell Noise (SCN).

A perfectly expanded supersonic jet requires a convergent-divergent nozzle, long

enough to allow the flow to be accelerated to the fully expanded jet Mach number

Mj and the ambient pressure p0 to be reached at the nozzle exit. In most wide-body

transport aircraft applications, this nozzle configuration would imply an unacceptable

increase in the engine weight and consequent fuel consumption. The current solution

is to use convergent nozzles even for supersonic flows, by generating under-expanded

configurations, represented schematically in Figure 1.2(b). The degree of off-design

operation O depends on the difference between the local exit pressure of the flow, pe,

and the ambient pressure p0. Following Miller and Morris [18], O is proportional to

the difference between the squares of the fully expanded jet Mach number Mj, and
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the nozzle exit Mach number Me and it can be expressed as:

O =
√∣∣∣M2

j −M2
e

∣∣∣ =
√∣∣∣M2

j − 1
∣∣∣, (1.2)

where Me = 1 is used for a supersonic under-expanded jet (Mj > 1) issuing from a

convergent choked nozzle, according to simple 1D theory.

Figure 1.1: Typical far-field supersonic jet noise spectrum in the upstream direction,

150° from the jet axis (Seiner et al. [19]).

As described by Tam [17], supersonic jet noise is characterized by three main

components, which are turbulent mixing noise, BroadBand Shock-Associated Noise

(BBSAN), and screech tone. The last two components are generated by a shock-cell

system in incorrectly expanded jets and constitute the SCN contribution. Figure 1.1

reports a typical jet noise spectrum in which the three contributions are clearly

visible. The highest peak is the screech tone, while the weaker broadband noise peaks

to the left (lower frequencies) and to the right (higher frequencies) of the screech

tone are, respectively, the turbulent mixing noise (typical of all jet flows), and the

BBSAN. As shown in Figure 1.1, the non-dimensional Strouhal number is typically

used in place of the frequency f on the horizontal axis. Herein, the Strouhal number
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is defined as Str = (fDe) /Ue, where f is the frequency in Hertz, while De and Ue

are respectively the nozzle exit diameter and velocity.

Both the fine and the large scales of turbulence in the flow are responsible for

the generation of the turbulent mixing noise component [4], which is mainly directed

downstream at an angle between 45° and 60° from the jet axis [17]. At polar angles

higher than 60°, a weaker contribution is given predominantly by the fine scales

of turbulence [20], of higher wave number. These scales, due to their unsteady

and incoherent nature, generate a broadband noise that does not show a strongly

directional radiation pattern. However, the mean flow refraction [21] effect, by

causing the waves to deviate towards right angles from the jet axis, is responsible for

the generation of a “cone of silence” at the downstream angles, where the fine-scale

turbulence contribution is extremely weak [4].

The dominant component of turbulent mixing noise in the downstream direction is

emitted by the large-scale (lower wave number) turbulent structures [17], which can be

modelled by a superposition of instability wave modes of the mean flow [22]. In high

speed jets, where the convection speed of the structures can reach supersonic values,

the large-scale turbulence radiates noise mainly through the Mach wave radiation,

described by Tam [4]. The contribution of these coherent structures is a broad

peak in the noise spectrum with a preferred directivity towards small downstream

angles, due to turbulent eddies convecting downstream in the jet shear-layer. Tam et

al. [23] found empirical self-similar spectra, for both fine and large-scale contributions,

confirming the existence of these two turbulent mixing noise components.

The other two jet noise components are mainly generated by the interaction

between the shock-cell system and the shear-layer, where vortical structures are

convected downstream. The BBSAN component is spread across the frequency

domain and it is predominant in the upstream direction. The peak Strouhal number

depends on the radiation direction and several weaker peaks are usually observed [17]

to the right of the screech tone.

On the other hand, the screech component is an intense tonal noise contribution

that was first observed by Powell [24], who proposed a model to predict both the

directivity and the frequency of the screech fundamental tone and of its harmonics.

Improvements on the model by Powell were proposed by Tam et al. [25] and by
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Panda [26]. The main emission of the screech noise is in the upstream direction and

several harmonics of the screech tone are usually observed, with different directivity

patterns.

An important characteristic of a jet in screech is the oscillation of the jet, which

can be either axisymmetric and toroidal, or helical and flapping [17]. Important

contributions were made by Manning and Lele [27], and Suzuki and Lele [28] who

introduced the concept of shock-leakage. Norum [29] stressed the effect of the nozzle

lip thickness σe on the screech noise intensity, as σe influences the feedback loop

responsible for the screech tonal component that appears in the acoustic radiation.

However, despite the increasing number of studies on screech noise, the flow and

geometric conditions that determine the onset of this tonal noise component are still

not completely clear.

Figure 1.2 shows the two possible configurations for an incorrectly expanded jet

which generate the BBSAN and the screech noise components described above. The

over-expansion (Figure 1.2(a)) can occur with convergent-divergent nozzle and it

causes the flow at the nozzle exit to have a pressure lower than the ambient value

(Figure 1.2(c)). The exit Mach number Me is supersonic and the velocity difference

between the airflow at the nozzle exit plane, and the surrounding quiescent air, creates

a streamwise growing shear-layer forming at the nozzle lip. The over-expanded air

flow from the nozzle exit plane recompresses, due to the higher ambient pressure,

through a shock-cone. The oblique shock from the nozzle lip first converges onto the

nozzle axis where it recompresses the flow, then reflects as an expansion wave at the

shear-layer, expanding the jet. This process repeats as a sequence of compressions

and expansions.

The inflected velocity profile of the shear-layer is receptive to disturbances that

convectively amplify, developing into large-scale instabilities. The resulting shear-

layer motion makes the shock-cell structure inside it unsteady. Shock-shear layer

interaction results in screech noise being emitted to the surroundings.

The under-expansion configuration (Figure 1.2(b)) has different initial conditions,

with the flow at the convergent nozzle exit section having a pressure higher than

the ambient value and a sonic Mach number Me (Figure 1.2(d)). Therefore, the

flow initially expands through expansion waves that are reflected as shocks at the
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shear-layer. The flow then develops similarly to the over-expanded case.

r

Unsteady shocks

Mixing
regionUe

x

Shock coneDe

Shear layer

Large–scale instabilities

Noise
Shock Cell

(a) Over-expanded flow from a convergent-

divergent nozzle.

x

r

Mixing
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Shear layer

De

Unsteady shocks
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Noise
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(b) Under-expanded flow from a convergent

nozzle.

Shear layer

x

r

Mixed subsonic/supersonic
flow with waves

Expansion fan
Shock cone

Exit
Me > 1

pe < p0

(c) Over-expanded flow detail at exit.
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(d) Under-expanded flow detail at exit.

Figure 1.2: Noise radiation in a turbulent jet flow, with the presence of shocks.

The complexity of the physical phenomena driving the jet noise generation

and propagation, represented schematically in Figure 1.2, makes a jet aeroacoustic

simulation a complex and challenging process. An overview of the requirements

for a successful aeroacoustic simulation is given by Tam [30] and Roe [31]. The

most important difference between standard aerodynamic problems and aeroacoustic

applications lies in the time-dependent nature of the noise generation phenomenon,

which requires well resolved time-dependent simulations, as well as the storing of a

time history of the flow prediction.

The large spectral bandwidth of the disturbances is another important factor. This

dictates the spatial resolution requirements of the discretization [30]. Specifically,

the shortest wavelength (highest frequency) of the sound waves determines this

constraint. The amplitude of the velocity fluctuations associated with the sound

radiation are usually several orders of magnitude smaller than the amplitude of the

turbulent velocity fluctuations from the mean flow. This is due to the fact that only

a small fraction of the turbulent energy is converted to acoustic energy [1] and it
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represents another challenge for aeroacoustic simulations.

The domain size and accuracy requirements are also more stringent compared to

other aerodynamic simulations. This increases further the computational cost of an

aeroacoustic simulation. The sound waves propagate a long distance compared to

aerodynamic disturbances and the computed solution needs to be accurate throughout

the entire domain. Good dispersive and dissipative characteristics of the numerical

scheme are therefore critical [30].

The presence of non-linearities, such as shocks, in the flow complicates the mod-

elling further. Tailored boundary conditions are required to prevent the generation

of reflection phenomena at the boundary of the computational domain, which can

otherwise contaminate the noise field with spurious numerical waves.

Consequently, an aeroacoustic simulation presents different peculiarities compared

to standard CFD problems, thus requiring the use of tailored numerical techniques,

in order to build a model that can simulate and reproduce the main physical features

of a heterogeneous flow phenomenon. Some of the complexity of an aeroacoustic

simulation can be circumvented by adopting a hybrid approach. This consists in

performing two separate simulations, one for the unsteady flow field prediction

and one for the noise radiation. One-step simulations and hybrid approaches are

introduced in Section 1.5 and discussed in Sections 2.1 and 2.2 in the next chapter.

1.3 Noise from dual-stream coaxial jets

One of the goals of this research is to capture the main features of the noise radiation

from a dual-stream jet configuration presented in Appendix A by the use of a

numerical implementation of the Ffowcs Williams and Hawkings acoustic analogy.

The methodology is discussed in the next chapter, while in this section, a literature

review of the noise radiation from dual-stream jets is given.

Most wide-body civil aircraft use turbofans. These engines are characterised

by an internal core primary flow and a coaxial secondary flow. The primary flow

undergoes the Brayton-Joule, or jet-engine, cycle and expands through a primary

nozzle. The secondary flow compresses through a fan, by-passes the engine core, and

expands through a nozzle coaxial to the primary flow.
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According to the operating conditions, which are related to the specific engine

and air transport operation types, the dual-stream outflow assumes different configu-

rations. If both the internal and the coaxial flows are perfectly expanded, the local

pressure at the nozzle exit equates the ambient pressure, for both secondary and

primary flow, that is pp = p0 and ps = p0, where subscripts p and s stand for primary

and secondary flow respectively. This ideal condition is not easily satisfied and the

engine usually operates with at least one of the two flows not perfectly expanded.

In a dual-stream jet, there are two characteristic pressure ratios, i.e. the Core

Nozzle Pressure ratio (CNPR), which relates to the core flow, and the Fan Nozzle

Pressure Ratio (FNPR), for the secondary flow. CNPR and FNPR are obtained,

from Equation 1.1, by substituting pt with ptp for the primary flow, and with pts for

the secondary flow.

By varying these two parameters, different dual-nozzle set point operations are

obtained, in which the two flows can be subsonic and/or supersonic. According to

the velocity ratio between secondary and primary flow, a Normal Velocity Profile

(NVP) Us/Up < 1 or an Inverted Velocity Profile (IVP) Us/Up > 1 is obtained. With

a NVP, the jet is characterised by a higher inner velocity, while with an IVP, the

secondary flow is faster. Both profile types are studied in the literature [32, 33].

As far as noise radiation is concerned, the same noise components described for a

single jet in Section 1.2 can be observed in a dual-stream jet. If both streams are

subsonic, turbulent mixing noise is the most important noise contribution, while with

a supersonic imperfectly expanded jet, the Shock-Cell Noise contribution becomes

dominant, especially towards the upstream direction and at right angles to the jet.

Additional complexities arise in the noise generation process, making the physical

mechanisms responsible for sound production rather challenging to be reproduced,

both numerically and experimentally. A comprehensive and general model is still far

from being achieved for dual-stream jet noise generation and radiation and various

approximate models are available (Chapter 2). This makes the dual-stream jet noise

a very prominent topic in the aircraft noise research portfolio.

One of the main difference relative to a single-stream jet is that a shock-cell

system can be formed in the primary stream and/or in the secondary stream. If the

primary flow is incorrectly expanded and the outer flow fully expanded, the noise
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generation process is similar to that of a single-stream jet in which the secondary

stream acts as a co-flow [34], generating refraction effects that are negligible in the

normal direction only [18] (see Chapter 5 for flight effects on under-expanded jets).

With an IVP from an incorrectly expanded supersonic secondary stream, as

sketched in Figure 1.3(b), the secondary flow and the shock-cell system within it are

bounded by the two shear-layers, one generated by the velocity discontinuity between

the two flows (inner shear-layer), and the other arising from the difference between the

outer jet and the ambient velocity (outer shear-layer). In this case, the shocks within

the outer flow interact with both shear-layers, generating noise contributions with

different characteristics in terms of frequency content and directivity. In Section 4.2,

the noise radiation from a dual-stream jet of this type is investigated.
xd

h

DpDs

(a) Nozzle geometry.

Us

Up

Shock-cells

x

r

Large turbulent structures in the
inner and outer shear layer

(b) Flow schematic.

Figure 1.3: Nozzle geometry with recessed outer nozzle and flow schematic of a

dual-stream jet, with shock-cells in the secondary flow (Mjs > 1, Mjp < 1) interacting

with turbulent structures convected both in the inner and in the outer shear-layer.

Tanna et al. [32] conducted extensive noise measurements on dual-stream jets,

focusing on IVPs. They considered four main parameters: the primary and the

secondary total temperatures, Ttp and Tts, and pressure ratios, CNPR and FNPR,

which they referred to as Ttp, Ttf , ξp, and ξf .

By comparing the results with an equivalent single jet, defined as having the

same nozzle exit area, mass flow rate, and thrust, they investigated the conditions

at which the coaxial jet is quieter, or noisier, compared to the single-stream case.

A condition for minimum noise [35] was found by varying the CNPR and keeping

the other parameters constant. When the shock-cell system is developed in the

secondary flow, for low subsonic core flow Mach numbers, several regularly spaced

shock-cells can be detected by flow visualization (Schlieren). By increasing the
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CNPR above the critical value, the flow undergoes drastic changes and the shock-cell

system is significantly reduced, preserving only one or two shock-cells close to the

nozzle exit. These changes affect the SCN contribution, resulting in a minimum

noise radiation condition with a slightly supersonic primary stream (for both IVP

and NVP cases) [35].

The physical explanation for this minimum noise condition is given by Tam &

Tanna [35] by analysing a simplified model, in which shear-layers are replaced by

vortex sheets. SCN is mainly generated by the interaction between the convected

large-scale turbulent structures in the shear-layer and the quasi-periodic shock-cell

system. As the latter is essentially absent for slightly supercritical conditions in

the inner flow, this interaction and consequently the SCN radiation is significantly

weakened.

The shock-cell system in the secondary flow is supported by the two shear-layers

surrounding it, which reflect shocks and expansion waves. The reflections bounce

back into the secondary flow and are “trapped” within it. If the primary flow is

subsonic, its core pressure field is continuous and smoothly varying, so that incident

positive characteristics from the outer flow are reflected as negative characteristics

at the primary flow boundary. The reflected waves are just slightly weaker than

the incident ones. In the supersonic regime, the core flow allows discontinuities to

propagate within it and the reflection process is far less efficient, so that the shocks

and expansion waves become very weak after a few reflections.

Tam & Tanna proposed an analytical model to predict the peak frequency in

the noise spectra and the noise intensity scaling for the SCN radiation, from both

single-stream [36] and IVP dual-stream jets [37]. They developed the theoretical

model by Harper Bourne and Fisher [38], who obtained simple analytical formulae

relating the frequency of the spectral peaks to the direction of radiation.

The BBSAN component is generated by the interaction between the shock-cell

system and the turbulent structures convected downstream in the jet shear-layer.

Therefore, the peak frequencies of the spectrum mainly depend on the convective

velocity of these vortical structures, on the shock-cell spacing, and on the direction

of radiation [18]. The intensity of the BBSAN is dictated by geometrical factors,

such as the jet diameter and the observer location, as well as by flow properties, such
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as the fully expanded jet velocity and the off-design factor O (Equation 1.2) [18].

As for a single-stream jet, the noise radiation is dominated by turbulent mixing

noise when the jet is fully expanded. In order to investigate this noise component

in coaxial jets, Dahl & Morris [33] developed a numerical model able to predict the

mean flow properties of supersonic coaxial jets, with a NVP or an IVP. Mean flow

properties are then used to determine turbulent mixing noise, through an extension

of the instability wave theory [39] to coaxial jets. Even for incorrectly expanded jets,

the noise radiation from instability waves with supersonic phase speed is the most

efficient noise radiation mechanism at low angles from the jet axis [33, 40].

As far as NVP coaxial jets are concerned, Dahl & Morris [33] found that the

instability waves in the inner shear-layer are the dominant turbulent mixing noise

source, for low velocity ratios Us/Up < 0.5, and they are characterised by higher peak

Strouhal numbers in the noise spectra, compared to the outer shear-layer component.

For Us/Up > 0.5, the outer shear-layer becomes the main contributor to mixing

noise. For IVP coaxial jets, the turbulent mixing noise component radiating to the

acoustic far-field can be reduced by increasing the initial spreading rate of the outer

shear-layer, which reduces the maximum amplitude of the instability waves [33].

Despite the potential noise reduction given by the IVP concept compared to a

NVP, and the numerous investigations in the literature, a commercial engine with

an IVP has not been built to date, due to the drawbacks in terms of weight and

complexity [34]. Focusing on NVP dual-stream jets, Viswanathan [34] conducted a

parametric experimental study to determine the effect, on both mixing and shock-

associated noise, of a number of fundamental parameters: CNPR, FNPR, primary

and secondary jet total temperatures, velocity ratio, forward flight, and nozzle

geometry. The aim of this effort was to contribute to the understanding of a complex

phenomenon, for which a model that is generally accepted and recognised within the

research community is far from being achieved.

Viswanathan confirmed the strong dependence of the noise radiation features on

the presence of a shock-cell system in the primary, secondary, or in both flows. He

identified three main noise source regions: the inner shear-layer, the outer shear-layer,

and the fully merged jet [34]. A strong shock-associated noise component radiating

downstream is found to be generated for supersonic Mach numbers Mjs > 1 in the
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secondary flow [34], which is not affected by changes in the primary Mach number

Mjp.

The primary jet temperature and secondary-to-primary velocity ratio, influencing

turbulent mixing noise levels, are found to have minor effects on SCN [34]. Mixing

noise increases as the primary flow is heated up, while the influence of the velocity

ratio is dependant on the frequency range, as well as on the direction considered.

The low and mid frequency noise contributions are believed to be generated by the

fully merged jet, farther downstream than the primary nozzle exit plane. These

contributions are amplified by an increase in the mixed jet velocity. The outer

shear-layer is responsible for the high frequency noise components [34].

Forward flight effects are beneficial in terms of mixing noise reduction, while an

amplification of the spectrum peaks from SCN follows an increase in flight speed,

especially for the downstream radiation [34]. The nozzle geometry has a significant

effect on the noise radiation from coaxial jets. Besides having different exit areas,

the primary and secondary nozzles can be staggered, so that the outer nozzle exit

section is located upstream from the inner one, as in Figure 1.3(a). The ratio of the

distance between the nozzle exit sections xd and the annulus height h is referred to

as the recess ratio [34] and, together with the secondary-to-primary area ratio, is a

fundamental geometrical parameter influencing dual-stream jet noise.

Focusing on the supersonic secondary jet and subsonic primary jet configuration

of Figure 1.3(b), typical of current turbofan engines, two sets of interaction between

the shock-cell system and the shear-layers occur. The shock-cell structure in the

fan stream is confined between two shear-layers, both characterised by turbulent

structures convected downstream and generating BBSAN, from the interaction with

the shocks.

Two BBSAN components can therefore be identified [18, 41]. The first one

behaves as in supersonic single-stream jets, decreasing in intensity while moving

from upstream to downstream angles. This component is thought to be generated by

the interaction of the shock-cell system in the secondary stream, with the turbulent

structures convected in the outer shear-layer. The second BBSAN component

has a different directivity and it is mainly radiated in the downstream direction.

The interaction of the shock-cell system with the inner shear-layer generates this
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contribution, characterised by higher frequency peaks [41].

For both BBSAN components, the peaks get broader in wave number by decreasing

the angle from the jet axis. Tam et al. [41] derived analytical formulae relating

the peak frequency and the directivity of the two BBSAN components, by using

a stochastic instability wave model and generalised Fourier series, to model the

pressure fluctuations associated respectively with turbulent structures (in both the

inner and outer shear-layer) and with a shock-cell system.

The noise from dual-stream jets is also influenced by the confluence of the

secondary flow with the primary flow. At the primary nozzle exit section, the

secondary supersonic flow, that is following the primary convergent nozzle wall, turns

to run parallel with the primary nozzle shear layer. This turning generates a shock in

the secondary flow of intensity proportional to the deviation angle, which is trapped

within the secondary flow and produces a second shock-cell system. The latter is

typically weak for small turning angles [42], but it influences the shock-cell system

geometry farther downstream.

In this research, a dual-stream jet configuration proposed by Airbus SAS is

considered, as described in Appendix A, with the inner flow run subsonic and the

outer flow supersonic and under-expanded, as in Figure 1.3(b). Both nozzles are

convergent and run unheated air. The velocity profile is inverted (IVP) with the

outer stream velocity Us > Up, where Up is the inner stream velocity.

The selection of unheated air as the working fluid is to match experimental

conditions at the Von Karman Institute for Fluid Dynamics, where the test facility

could not generate heated air jets. This facility was developed by Guariglia [43], who

provided reference measurements for the numerical aerodynamic and aeroacoustic

predictions.

In the outflow from current turbofan engines, the velocity profile is of the normal

type (NVP) with a higher inner velocity. However, the elevated temperature of the

core flow increases the local speed of sound so that the primary flow Mach number

Mp can be subsonic, as in the test case studied. The full-scale flow Mach numbers

are therefore approximately reproduced by the model in Appendix A.
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1.4 Acoustic source non-compactness in jets

Jet noise can be studied in the acoustic near-field and/or in the acoustic far-field.

The acoustic far-field is typically defined as the region of R3 where the distance r

between the source y and the observer x locations is large compared to the acoustic

wavelength [44]: r = |x− y| � λ. In the far-field, a specific approximation (the

Fraunhofer approximation [44]) can be applied when r = |x− y| � λ.

However, r = |x− y| � λ is not a rigorous definition of the acoustic far-field, as

there are several regions into which the acoustic domain can be split, according to the

relative magnitude of the acoustic wavelength λ, the maximum extent of the source

region Lmax (usually measured orthogonally with respect to the radiation direction

r) and the source to observer distance r. A comprehensive review of the relevant

definitions can be found in Morfey [45], including hydrodynamic and geometric near-

field, Fresnel region, Fraunhofer approximation and far-field criteria. The definitions

of the Fresnel region and of the hydrodynamic/geometric near-field goes beyond

the objective of this section, while the acoustic far-field criteria and the Fraunhofer

approximation are discussed below and reported respectively in Equations 1.3 and 1.5.

The reader is referred to the work by Morfey [45] for further details.

Following Morfey [45], the far-field can be defined as the region of R3 where the

following relations are satisfied [45]

r � λ,

r � L2
max/λ,

r � Lmax,

(1.3)

where the quantity L2
max/λ is referred to as the Rayleigh distance [45]. This distance

represents the limit beyond which the high-frequency radiation from a coherent

source region of finite extent approaches the far-field behaviour [45]. The other

conditions express respectively the fact that in the acoustic far-field the distance

between source and observer r needs to be much greater than both the characteristic

wavelength of the sound waves λ and the maximum extension of the source region

Lmax (compactness).

When Equation 1.3 is satisfied, the Fraunhofer approximation can be applied to

estimate the pressure fluctuation to the acoustic far-field [44]. It is worth saying that,
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the objective of the current research is the development of a code able to estimate

near-field as well as far-field noise prediction from unsteady flows. Consequently,

no far-field approximation is applied, and this holds for all the tests considered in

Chapters 3 to 5.

For free-field radiation in a uniform medium at rest from an acoustic source y,

the disturbance emitted at a certain time will be perceived by a specific observer x,

after a time of flight that is required for sound to travel from y to x. Specifically,

the travel time can be expressed as |x− y| /c0 = r/c0, with c0 the speed of sound of

the uniform medium. Also, the noise radiation will be attenuated by a factor which

depends again on the distance r = |x− y|, but with inverse proportionality. The

geometric scaling with distance from the source as well as the phase of the acoustic

radiation are therefore dependent on the location y considered.

The emission time is usually referred to as retarded time τret and the time delay

between the reception (observer) and the emission (source) is given by t− τret = r/c0.

Hereafter, τret is called τe, where the subscript e is for emission, to make it clear that

τe refers to the sound emission time. This enables to introduce the “advanced time”

method in Section 2.2.2 with a distinct nomenclature with respect to the “retarded

time” approach of Lighthill [1].

If there is more than one position y(i), with i = 1 . . . Ny and Ny > 1, from which

sound is generated, then the sound at receiver x is obtained by summing over all Ny

source positions y(i). Equivalently, by considering a continuous source distribution

Q (x, t), the pressure fluctuation at receiver x at time t is given by the following

integral [44]:

p′ (x, t) = 1
4π

∫
R3

Q
(
y, t− |x−y|

c0

)
|x− y|

d3y. (1.4)

The source function Q inside the integral in Equation 1.4 is evaluated at emission

time τe, given by subtracting the travel time |x− y| /c0 to the reception instant

t, and the attenuation factor is proportional to 1/ |x− y|. In order to correctly

estimate the sound radiation to the near-field, differences in both travel time and

attenuation factor within the source region need to be accounted for.

On the other hand, when Equation 1.3 is satisfied, the Fraunhofer approxima-
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tion [44] 
|x−y|
c0
≈ 1

c0

(
|x| − x·y

|x|

)
,

1
|x−y| ≈

1
|x| ,

(1.5)

allows simplification of Equation 1.4 to

p′ (x, t) ≈ 1
4π |x|

∫
R3

Q

(
y, t− |x|

c0
+ x · y
c0 |x|

)
d3y. (1.6)

It can be noticed that differences in the scaling factor are neglected in the Fraunhofer

approximation, while the emission time needs still to be calculated over the whole

source region in order to perform the integration correctly.

An important distinction related to the extension of the source region is between

compact and non-compact sources. An acoustically compact source is defined as

having a small characteristic dimension Lmax compared to the acoustic wavelength

λ it generates: Lmax � λ. For non-compact sources, an observer in the near-field

will perceive sound generated from different locations y within the acoustically

active volume, as arriving from different emission times τe and attenuated with a

different scaling factor. In the far-field, the Fraunhofer approximation expressed by

Equation 1.5 is valid, and the differences in scaling factor can be neglected, while

the travel time will approach a constant limit.

For a compact source distribution Q (x, t) over a source region Vs, a further

approximation (Equation 1.7) is available in the acoustic far-field. If the overall

source strength obtained by integrating Q (x, t) over the whole acoustically active

volume Vs is significantly different from zero, the compact region is seen by an

observer in the far-field as a point source (monopole) and both changes in scaling

factor and travel time due to the extent of Vs can be neglected [46] in Equation 1.4.

By placing the origin of the reference system within Vs, the distance source observer

|x− y| can be approximated by |x|:
|x−y|
c0
≈ |x|

c0
,

1
|x−y| ≈

1
|x| .

(1.7)

If the overall strength of the source distribution is zero, the compact source

distribution can still be approximated by a point source (dipole) if the first spatial

moment of the source strength [47], integrated over the acoustically active volume
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Vs, gives a finite value [46]. If both the integral of the source strength and its first

moment are equal to zero, the condition needs to be applied to the moment of the

next order (quadrupole moment) [46].

In summary, the point source approximation for a compact source in the far-field

is valid when the source strength distribution Q (x, t) (or its moments) integrated

over the whole acoustically active region Vs is found to be different from zero. The

strength of the point source is equivalent to the minimum order moment of the

source strength Q (x, t), which integrated over the whole source region Vs, gives a

value that is significantly different from zero. This approximation is not valid in a

jet flow, where the volume of the acoustic sources that are active has approximately

a conical trunk shape, with axial length and base diameter of the order of several jet

diameters De. Therefore, in the jet noise tests considered in Chapters 4 and 5, the

source field is extended and non-compact.

Where non-compact source regions are considered, the time of flight of each

disturbance, generated from each position y in the source field, to an observer x

needs to be correctly estimated, so as to obtain an accurate prediction of both the

acoustic near and far-field. This process represents a numerical complexity [48] that

can be addressed with two different approaches, referred to as the “retarded time”

approach and the “advanced time” approach, respectively (Section 2.2.2).

1.5 Approach to modelling jet noise

The noise generated by unsteady flows can be predicted by different approaches [49]

that can be first classified as either one-step [50] (such as direct CAA), or hybrid

methods [51] (e.g. acoustic analogies). The main difference between these two

categories is in the way the phenomena of noise generation by unsteady flows and of

noise propagation in the surroundings are treated.

The approach followed in the present work is the use of a numerical implementation

of the Ffowcs Williams and Hawkings (FW-H) acoustic analogy on time and space

resolved jet flow predictions. The FW-H acoustic analogy [52] is a method for

extrapolating unsteady flow data defined on a closed surface outwards into the

acoustic field. The intended output is a FW-H noise extraction software package
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that can be used as an advanced signal processing tool on numerical simulations,

experiments, and reduced order models of unsteady, unbounded single and dual-

stream jets. The main challenge is the prediction of noise in the acoustic near-

field, where the acoustic sources are non-compact (Section 1.4) and the far-field

approximation becomes invalid. This involves the correct evaluation of the acoustic

source emission time (Section 2.2.2), in addition to the source amplitude and phase.

The implementation of the FW-H acoustic analogy is first carried out in the

advanced time formulation [53], described by Casalino [54] (Section 2.2.3). This is

followed by a second implementation (Section 2.2.4) that uses a convective FW-H

formulation by Najafi-Yazdi et al. [55]. This is still an advanced time formulation,

but it also takes into account the flight velocity, by directly including the effect of a

uniform co-flow surrounding the jet in the acoustic analogy equation.

Both formulations are coded in Python and embedded in Antares 1.4.0 [12].

Antares is a software package of wide access and usability developed by Cerfacs,

France, which provides post-processing tools for CFD. The availability in Antares [12]

of input and output data interfaces, for popular structured and unstructured CFD

geometries and solutions, provides a good starting point for developing a FW-H

extractor of wide access and usability. The aim is to build a numerical tool that is

accessible to the wider research community to use, develop, and improve.

1.6 Thesis outline

The thesis is structured as follows: the methodology is described in Chapter 2,

while the validation and the main results are reported in Chapters 3– 5. The

numerical implementations of the FW-H formulations in Casalino [54] and in Najafi-

Yazdi et al. [55] are presented in Sections 2.2.3 and 2.2.4 respectively. The acoustic

analogy theory is introduced in Section 2.1.2.1, and the standard and the porous

FW-H analogies are detailed respectively in Sections 2.2 and 2.2.1. CAA techniques

alternative to the selected FW-H approach are briefly outlined in Section 2.1.

The validation and the main applications from the stationary advanced time

formulation [54] are reported respectively in Chapters 3 and 4. Elementary sources

of increasing complexity are considered in Chapter 3, by progressing from an omnidi-
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rectional source in Section 3.1.1 (monopole), to a dipole source in Section 3.1.2, and

to two types of quadrupole sources in Sections 3.1.3 and 3.1.4. The noise radiation

from three different jet configurations is investigated in Chapter 4. Single-stream

jets are considered in Section 4.1 with both subsonic (Section 4.1.1) and supersonic

(Section 4.1.2) nozzle exit conditions, while a dual-stream under-expanded jet test

case is discussed in Section 4.2.

The convective acoustic analogy applications are discussed in Chapter 5. Sec-

tion 5.1 validates the convective acoustic analogy implementation on elementary

sources. In Section 5.2, the effects of forward flight on both mixing noise and SCN

radiation from a single-stream under-expanded jet are discussed. The main results

of the thesis are summarised in Chapter 6, highlighting the key advances (Sec-

tion 6.1) with respect to the state of the art and the significance of the achievements.

Considerations for future work are finally given in Section 6.3.
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Chapter 2

Methodology

This chapter presents the analytical development and the numerical implementation

of the aeroacoustic models that have been used for obtaining the results presented

in Chapters 3–5. Specifically, the stationary jet noise predictions in Chapter 4 are

obtained by an implementation of the Casalino advanced time formulation [54],

described in Section 2.2.3. The noise radiation from jets with co-flow discussed

in Chapter 5 is modelled through the convective acoustic analogy formulation by

Najafi-Yazdi et al. [55], discussed in Section 2.2.4.

An overview of the currently available aeroacoustic approaches is presented in

Section 2.1 to contextualise the motivation behind the choice of two specific acoustic

analogies. A concise description of the different acoustic analogies developed over the

last half century based on the seminal work of Lighthill [1], Lilley [56], and Ffowcs

Williams and Hawkings [52] is given in Section 2.1.2.1. Section 2.2.1 then focuses on

the porous FW-H formulation. For a comprehensive review of aeroacoustic techniques,

the reader is referred to Colonius & Lele [57], and Kurbatskii & Mankbadi [49]. Bennet

et al. [58] describe the current aeroacoustic research field in Europe. Finally, the

details of the numerical implementation of both the FW-H formulations used in

Chapters 3–5 are presented in Section 2.3.

2.1 Aeroacoustic techniques

An overview of the different approaches available in aeroacoustics is given in this

section. The direct computation of sound is discussed first, in Section 2.1.1, and
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hybrid approaches are then presented in Section 2.1.2. Four hybrid method options

are discussed, which are the acoustic analogy (Section 2.1.2.1), the Kirchhoff integral

method (Section 2.1.2.2), the incompressible/acoustic split (Section 2.1.2.3), and the

vortex sound theory (Section 2.1.2.4).

The Kirchhoff method is shown to be a particular case of the FW-H porous

acoustic analogy in Section 2.2.1 and the direct computation of sound presents some

limitations, specifically in its application to predicting far-field noise. This led the

author together with the supervisory team to choosing the acoustic analogy approach

for unsteady CFD predictions.

The AeroTraNet2 project briefly introduced in Appendix A was aimed to address

all the aspects of the modelling of the noise radiation from a supersonic dual-stream

jet, including numerical, experimental and theoretical research. Direct computation

of sound methods were applied by Mancini [15] and Pérez [16] to estimate the noise

radiation to the near-field of the supersonic dual-stream test case (Appendix A)

investigated in the AeroTraNet2 project. The use of an integral method to project

the noise radiation to the near-field and far-field outside the CFD domain is therefore

complementary to references [15] and [16], and it allowed both interchange of data

and comparison of acoustic results between numerical partners.

Vortex sound theory and incompressible/acoustic split techniques are less widely

used in the literature and appear less generally applicable than the FW-H porous

acoustic analogy. Consequently, the acoustic analogy approach has a wider database

of validations and implementations reported in the literature than other CAA

approaches.

The implementation of the formulations detailed in Section 2.2.3 and 2.2.4 is a

well-established numerical procedure, once appropriate expressions for the monopole,

dipole, and quadrupole contributions are obtained analytically. The challenges

are the numerically-efficient estimation of the emission time, which is addressed in

Section 2.2.2, and the application to a dual-stream jet noise configuration, which

has not hitherto been investigated in the literature for the prediction of both near

and far-field noise, including radiation from non-compact sound sources and forward

flight effects.
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2.1.1 Direct computation of sound

The main challenge in the direct computation of sound, which is also referred to as

a one-step simulation [50], is in the necessity of designing a numerical model that

properly simulates two phenomena characterised by significantly different length

scales and numerical requirements. In this approach, a single simulation predicts the

pressure fluctuation at any given observer position by resolving both the unsteady

vortical motion of the fluid, which is governed by the compressible Navier-Stokes

equations and is responsible for the noise generation, and the noise radiation outside

the turbulent flow, which follows the laws of acoustics. The numerical requirements

for resolving the unsteady flow field and the noise radiation are significantly different

and somehow contrasting, as reported in Section 1.2.

From a numerical viewpoint, to perform a direct computation of sound, not only

the computational mesh needs to include both the source and observer locations, but

also there are stringent numerical requirements to be satisfied for the solution to be

accurate [30], as explained in Section 1.2. The affordability of the domain extent to

include the observer positions in the computation depends on many factors, such as

the specific geometry of the problem, the flow conditions, the available resources,

and the required spatial and temporal resolutions. Whilst this approach allows to

take into account flow/sound interaction effects [50], by solving directly the unsteady

flow field (noise generation) and its noise radiation, it is computationally demanding

and, at present, it does not represent a generally applicable technique.

Direct noise computations are currently restricted to a small number of flows [57]

that can be modelled either by a Direct Numerical Simulation (DNS), to resolve the

whole range of turbulent scales in the flow, or by a Large Eddy Simulation (LES),

which resolves the larger energy-containing scales by filtering out the sub-grid scales.

Sample DNS applications to jet noise are given by Freund, both for subsonic [59]

and supersonic [60] jets.

As far as cabin noise is concerned, the geometry of current wide-body civil aircraft

could make direct noise computations feasible. An investigation of this approach

using Implicit LES (ILES) was published by the author in collaboration with the

supervisory team in Rona et al. [62]. In this work, a regional civil transport aircraft

is considered, for which the distance between the jet axis and the fuselage is relatively
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B A

Figure 2.1: Plan view of a regional civil transport aircraft showing the cabin position

relative to the inboard engine bypass nozzle. Plan view adapted from “Jane's all the

world's aircraft” [61].

small, as shown in Figure 2.1. An axisymmetric domain is used to reduce the

computational cost compared to a three-dimensional flow model. The results show

that, within the limitations of the axisymmetric geometry, it is possible to directly

estimate the noise radiation to the cabin (located in the acoustic near-field), with

limited computational resources [62].

In many other cases, a direct sound computation is either not affordable with

current computing facilities or requires lengthy simulations. Therefore, an approach

that splits the two phenomena of sound generation and propagation is preferable.

This allows to extend the solution to the acoustic near-field and to the acoustic

far-field, while confining the full unsteady CFD simulation to a smaller control

volume (see also Figure 2.2, Section 2.1.2.1). The computational cost is therefore

decreased and the overall numerical requirements are less stringent than in a one-step

simulation.

Mankbadi et al. [63] discuss the direct noise computation of supersonic jets,

comparing it to a Lighthill analogy approach. They argue that a direct noise

computation is far more computationally expensive than the Lighthill analogy

approach, while the latter struggles to deal with acoustically non-compact sources.

However, non-compact acoustic sources can be taken into account by the proper

estimation of the emission time of each disturbance reaching the observer locations,

as reported in Section 2.2.2, provided they are fully contained within the boundaries

of the Lighthill analogy integration volume.
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Di Francescantonio [64] and Lyrintzis [48] also argue that the direct noise com-

putation is not a practical method for all aeroacoustic problems, because of the

typically large distance between the source region and the observer location in

common engineering applications.

Colonius [57] highlights the limitations of the direct computation of sound. Given

its high computational cost, this method used to be confined to idealized geometries.

Over the last two decades, it has started producing results of engineering relevance,

by simulating realistic flows [27, 59, 60]. Colonius highlights the important role

of the direct computation of sound in the development of theoretical models, by

reproducing the physics of the problem in a progressively more accurate way.

Separating the aerodynamic and the aeroacoustic simulations usually offers the

possibility of a better insight into the problem and the use of different physical

models describing the flow, in regions where the flow follows different simplified laws.

From a practical viewpoint, hybrid methods also offer the possibility to run different

aeroacoustic simulations on the same CFD dataset, by storing the solution of the

acoustically active region. This is especially convenient with surface integral methods,

such as with the Kirchhoff method or with the FW-H porous surface approach, when

the quadrupole noise contribution is negligible.

2.1.2 Hybrid methods

An alternative to a one-step aeroacoustic simulation is provided by hybrid methods,

such as the acoustic analogy. Hybrid methods are typically used for estimating both

the near-field and the far-field noise from unsteady flow predictions (see Section 1.4

for the acoustic near-field and far-field definition). Hybrid methods require the

coupling of separate hydrodynamic and aeroacoustic simulations. The flow field

is modelled first, for instance by time-dependent CFD simulations. The unsteady

hydrodynamic flow field is then given as input to the aeroacoustic solver, which

estimates the noise radiation to arbitrary observer positions. At each acoustic time

step, this process is repeated, in order to build up a pressure time history at the

observer positions, which is then stored. By splitting the generation of the flow field

data from the evaluation of the acoustic pressure at the observer positions, it is

possible to obtain a CAA tool of more general applicability than by a direct noise
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computation. In this process, a simple data structure interface needs to be developed,

so that custom CFD output can be read by the CAA solver.

Despite their computational cost advantage, hybrid approaches do not model

explicitly the interactions between the flow and the noise it generates. In the acoustic

analogy, for instance, it is assumed that the noise active flow region solved by the

CFD simulation has a finite extent and that it can be isolated from an “acoustic

source free” domain. The flow/acoustic interactions are usually included in the

source term of the inhomogeneous wave equation integrated by the aeroacoustic

solver. This source term is estimated from the unsteady flow field prediction.

Therefore, acoustics and aerodynamics, which are coupled in the direct approach,

are separated in the acoustic analogy and in the other hybrid techniques and the

two phenomena of noise generation and propagation, which are modelled by using

different assumptions, are treated separately. An approach that gives a better insight

of the physics is preferable, ultimately allowing the investigation of where and how

to intervene to reduce noise generated aerodynamically.

In the next sections, an introduction to the acoustic analogy theory is given

first (Section 2.1.2.1), followed by three examples of different hybrid methods,

i.e. the Kirchhoff integral method (Section 2.1.2.2), the viscous/acoustic split (Sec-

tion 2.1.2.3), and the theory of vortex sound (Section 2.1.2.4).

2.1.2.1 Acoustic analogy

Sir James Lighthill is credited with laying the foundations of aeroacoustics, which is

a branch of aerodynamics dealing with the generation of noise by fluid motion. From

his seminal work [1], many acoustic analogy formulations and alternative approaches

have been developed.

Lighthill's approach is referred to as an acoustic analogy, because it establishes

a parallel between sound propagation in a physical turbulent flow and in an ideal

uniform medium at rest. In the latter medium, a non-linear wave equation derived

exactly from the compressible conservation laws is integrated to estimate the radiated

sound. Whilst this is a relatively simple theoretical framework, the propagation in

a turbulent flow remains a complex phenomenon, characterised by both linear and

non-linear effects, as well as by the interaction between several physical mechanisms
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that are not yet fully explained by aeroacoustic researchers.

An important aspect enlightened by Lighthill [1] concerns the flow energy budget.

A very small fraction of the flow kinetic energy propagates as sound after the

conversion from kinetic to acoustic energy, as opposed to being dissipated by viscous

stresses. This makes the acoustic pressure fluctuation amplitude far smaller than

its hydrodynamic counterpart, which does not radiate as sound. Resolving the

interaction between these very different energy scales is a significant modelling

challenge in CAA.

The sound produced by a turbulent flow interacts with the complex flow structures

across different scales and frequencies, giving rise to sound convection and propagation

with a variable speed, as well as refraction, and sound scattering phenomena [1].

Taking into account all these complexities is not trivial and Lighthill developed

a simple concept to tackle them. By rearranging the Navier-Stokes equations, he

obtained a convenient formulation in the form of an inhomogeneous wave equation

for a uniform medium at rest,

�2
[
c2

0 (ρ− ρ0)
]

= ∂2Tij
∂xi∂xj

, (2.1)

where �2 = (1/c2
0) ∂2/∂t2−∂2/ (∂xj∂xj) is the d'Alembertian or linear wave operator,

c0 and ρ0 are, respectively, the constant sound speed and the unperturbed density

in the uniform medium of the analogy, and Tij is the Lighthill stress tensor. The

mathematical details of the Lighthill acoustic analogy are reported in Appendices B

and C.

Adopting this approach, sound can be considered as if generated in a uniform

medium at rest and the noise estimation is reduced to the evaluation, in the acousti-

cally active flow region, of the quadrupole-type source term which appears on the

right-hand side of Equation 2.1:

Tij = ρuiuj + Pij − c2
0ρδij,

Pij = pδij − τij,
(2.2)

where Pij is the compressive stress tensor and δij is the Kronecker delta. Lighthill

assumed that this term, representing time-dependent stresses acting upon a linear

acoustic medium, is known or can be modelled from an unsteady flow field prediction.

Once the Lighthill stress tensor Tij is known, the radiated sound to an arbitrary
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position (x, t) can be calculated, by evaluating the integral solution of Equation 2.1

in terms of the acoustic density fluctuation as:

4πc2
0 (ρ (x, t)− ρ0) =

∫
Vs

∂2

∂yi∂yj
Tij

(
y, t− r

c0

)
d3y

r
. (2.3)

In Equation 2.3, y and x are, respectively, the source and the observer positions,

t− r/c0 is the emission time τe, and r = |x− y| is the source-observer distance.

Vs source region (CFD data)

y(i) ∈ Vs: Source

x: Observer

rQuadrupole sources

Figure 2.2: Schematic of the acoustic analogy approach.

Figure 2.2 schematically shows the general concept of the acoustic analogy. The

acoustically active region is defined by the volume Vs where quadrupole point sources

are distributed in order to reproduce the acoustic radiation in the outer domain. An

elementary source y(i) radiating to the observer located at x is also shown. The

acoustically active region, which can have theoretically an infinite extent, needs to

be confined to a finite domain where flow field variables are computable, for instance

by CFD. This allows the estimation of the Lighthill stress tensor Tij and of its

derivatives in Equation 2.3. By integrating Equation 2.3 over the volume Vs, the

acoustic density fluctuation ρ (x, t)− ρ0 can be estimated for an arbitrary observer

position x.

In 1954, Lighthill [65] investigated turbulence as a source of sound and obtained

results in good agreement with previous experiments for a subsonic cold jet. He

found a first confirmation of the acoustic power law P ∝ U8
e he derived analytically in

1952 [1]. Furthermore, he assessed the broadband nature of the jet noise phenomenon

for a subsonic cold jet. The latter is characterized by low frequency components
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emitted at small angles from the jet axis, in a region mainly confined between 5 and

20 jet diameters De from the nozzle exit section. Higher frequency components are

also emitted, radiating at higher angles from a region closer to the nozzle lip [65].

These high frequency components are affected by the mean flow refraction effect and

their radiation is characterised by the presence of a “cone of silence”, as previously

discussed in Section 1.2.

In the Lighthill [65] acoustic analogy, convection effects are modelled as moving

noise sources in Tij . Ffowcs Williams [7] corrected Lighthill's analysis for distributed

moving sources, and extended it to account for transonic and supersonic speed

steady convection of sources, deriving the dependence of the acoustic power P from

high-speed jets with the third power of the jet velocity: P ∝ U3
e .

x

r
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(a) Noise radiation from a turbulent under-

expanded jet.
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u = 0
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Quadrupole sources
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(b) Noise radiation modelled by the Lighthill

acoustic analogy.

Figure 2.3: Schematic of the Lighthill acoustic analogy model for turbulent jets.

In Figure 2.3, a turbulent jet is compared with the uniform medium at rest

in the acoustic analogy approach. In Figure 2.3(a), the schematic representation

of the under-expanded jet shows both the aerodynamic features of the flow and

the noise radiation with downstream and upstream components, which were briefly

introduced in Section 1.2 for single-stream jets and in Section 1.3 for coaxial jets. In

Figure 2.3(b), the same phenomenon of noise radiation is modelled with a volume

distribution of quadrupole sources in the jet shear layer, which reproduces the same

acoustic propagation as the real flow. In this acoustic analogy, the noise propagates

in a uniform medium at rest, following the linear wave equation of acoustics. All flow

turbulence effects are included in the volume distribution of Tij , which also accounts

for any flow non-linearity.
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Lilley [56] highlighted the importance of the term (p− c2
0ρ) δij in the Lighthill

stress tensor for hot jets, deriving a dependence of the acoustic power P ∝ U4
e

for very low Mach number flows [66]. Morfey [67] stressed the importance of flow

inhomogeneities in the sound radiation to the far-field, obtaining a modified acoustic

power law with a 6th power rather than an 8th power [1], when considering a turbulent

jet with local density different from the surrounding quiescent and uniform medium.

Ffowcs Williams and Hawkings [52] tried to develop a general expression for

sources in arbitrary motion convected in a turbulent flow, confirming Curle's theory

in which boundaries are modelled with a surface distribution of dipole sources [68].

A considerable complexity neglected by Lighthill is the presence of solid bound-

aries, which occurs in jet noise problems in which the nozzle lip is modelled. Curle [68]

discussed the influence of rigid bodies on the noise radiation. He observed that a

solid boundary in a turbulent flow reflects and diffracts the sound waves generated

by the quadrupole source of Lighthill's theory.

Mathematically, the solid boundary limits the quadrupole source distribution to

the region external to the solid body. To take account of this, Curle [68] added a

surface integration term to the integral solution proposed by Lighthill, modelling

the solid boundary effects with a surface distribution of dipole-like sources on the

boundary itself.

Many researchers developed the Lighthill acoustic analogy concept by taking into

account additional complexities. Their goal has been to formulate a more practical

and applicable model, which is able to generate quantitative noise predictions for a

number of unsteady turbulent flows. The assumption that the Lighthill stress tensor

of Equation 2.2 is known or can be modelled from an independent flow field prediction

is legitimate in many simple cases and Lighthill's theory allows the estimation of the

radiated sound in such cases. Nevertheless, in many applications, this estimation is

very challenging.

The Lighthill stress tensor Tij is often approximated by its first term ρuiuj,

representing the momentum flux per unit area in the ith direction generated from

fluid crossing a control volume surface in the jth direction [56]. Both the viscous

effects, that are small for high Reynolds number flows, and the non-isentropic

contribution (p− c2
0ρ) δij are neglected in this approximation. Besides, the fluid
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density ρ in Tij is usually replaced by its mean value ρ0. Following the Lighthill

approximation, assuming that velocity fluctuations in the unsteady flow are not

dependent on density fluctuations and can be estimated from an incompressible flow

problem, the left-hand side (LHS) and the right-hand side (RHS) of Equation 2.1 are

independent from one another. The resulting approximation for the Lighthill stress

tensor Tij ≈ ρ0uiuj, first proposed by Lighthill [1] for flows with small temperature

non-uniformities, is not generally valid and its applicability is restricted to low Mach

number acoustically compact flows [69].

To overcome these complexities, Lilley [56, 70, 71] proposed a different version of

the acoustic analogy, by deriving an inhomogeneous moving medium wave equation

for the sound radiation process, considering a steady parallel shear flow instead of

a medium at rest. A third-order wave equation with a non-linear source term is

obtained. A third-order wave operator appears on the LHS of the equation, applied

to a modified pressure-based dependent variable. The source term on the RHS of

the equation has a more complex form than in the Lighthill analogy, which does not

offer an intuitive physical interpretation. Nevertheless, the main advantage of the

Lilley formulation is that first order pressure disturbance components, representing

refraction, diffraction, and convection by the turbulent flow, are not considered

as sources, but are included in the wave operator [56]. In this way, flow/acoustic

interaction effects are directly taken into account in the “propagation part” of the

Lilley equation [56]. Furthermore, the latter shows the importance of mean velocity

and of mean temperature distribution effects on the radiated sound, through the

third-order wave operator form [56, 70, 71].

Many researchers focused on the importance of the flow/acoustic interaction

effects [72] for predicting noise from unsteady turbulent flows. Lilley [70] argued that

these effects, although included in the Lighthill stress tensor, are better addressed

by considering a more realistic base flow than a uniform medium at rest. He

showed that these effects become more important in heated jets. Goldstein tried to

model the flow/acoustic interaction effects through asymptotic expansions of the

disturbances [73].

A number of acoustic analogies involving a convective non-linear wave operator,

eventually linearised before getting noise estimations, were proposed by many authors
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[74, 75, 76, 77, 78]. The complexity of the formulation increases in these developments,

but the analytical cost is compensated by not requiring the Lighthill source field

term of Equation 2.2 to be estimated. A review of these acoustic analogy theories is

given by Lilley [70].

Following the approach stated by Lilley and developing it, Goldstein [79] tried to

find a more general formulation, recovering Lilley's equation [56] as a particular case

of such a general formulation. Starting from the Navier-Stokes equations, Goldstein

decomposed the flow field variables into a base flow and a residual component.

The result is a general set of Linearised Inhomogeneous Euler equations (LIE) that

establishes an analogy between the fluctuations in a real flow and the inviscid

fluctuations about an arbitrary base flow. This generalised acoustic analogy theory

takes into account the fluctuating component of the velocity field in the noise radiation

process.

Goldstein's work [79] attempts to unify many different approaches using the LIE

for modelling noise propagation. In the homogeneous case, a non-trivial root of

the Linearised Euler Equations (LEE) is an instability wave solution of the Kelvin-

Helmholtz type that is unbounded and can contaminate the acoustic field [57]. In

many approaches, this homogeneous solution is suppressed with some numerical

technique [80, 81]. In his generalised acoustic analogy theory [79], Goldstein proposed

a tailored base flow that can be used to make the homogeneous solution bounded,

allowing noise prediction through the LIE. Goldstein [82] highlighted the importance

of instability waves in jet noise radiation problems and investigated their effect by

proposing a non-parallel convecting mean base flow.

Despite the development of a number of acoustic analogy formulations that

attempt to improve on the Lighthill acoustic analogy, the FW-H acoustic analogy,

discussed in Section 2.2, has become the most widely used acoustic analogy approach.

Progress in the computational power of high-performance computers suggests that a

major development would be the application of the FW-H acoustic analogy with the

estimation of both surface and volume integrals, which is still a challenge with the

current computational resources.
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2.1.2.2 The Kirchhoff formulation

The Kirchhoff formula was first published in 1883 [83]. Most recently, Lyrintzis [84]

produced a review of the application of this theory in aeroacoustics, referring to the

methodology as a surface integral method [48].

The basic concept of the Kirchhoff method, which is derived under the assumption

of linear acoustic disturbances, is the use of a control surface on which the pressure

and its surface normal and time derivatives are estimated, typically by numerical

methods. The acoustic pressure in the far-field can then be obtained from an

integration over this control surface of the above mentioned quantities.

The noise propagation to the surroundings is assumed to follow the linear wave

equation and the control surface is required to enclose all the non-linearities of

the flow and all the noise sources. Consequently, the Kirchhoff method does not

allow the presence of any non-linearity on or outside the control surface. This

represents a limitation with respect to the FW-H acoustic analogy method, described

in Section 2.2, that allows the placement of the control surface in the non-linear

region of the flow. In the Kirchhoff method, the position of the integration surface is

therefore critical, typically requiring a larger computational domain compared to the

FW-H acoustic analogy method.

Differently from the Kirchhoff and from the FW-H methods, the Lighthill acoustic

analogy described in Section 2.1.2.1 includes only a volume integral contribution of

the quadrupole type, without the use of a control surface. The same quadrupole term

appears in the FW-H acoustic analogy (Section 2.2), which includes both volume and

surface integration. Possible non-linearities outside the FW-H control surface are

included in the quadrupole source term integrated over the volume external to the

surface itself. Therefore, the full FW-H integral solution requires an expensive volume

integration with a consequent increase in the computational effort with respect to

Kirchhoff methods. However, also when this volume integration is neglected, the

FW-H acoustic analogy appears to give more accurate results compared to the

Kirchhoff method [85], for a given size of the integration surface.

The first Kirchhoff formulation [83] was limited to a stationary control surface

integration. Morgans [86] extended the use of the method to moving control surfaces,

introducing the use of Green's functions in this integral method. Ffowcs Williams
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and Hawkings [52] derived a general formulation to deal with the effect of arbitrarily

moving surfaces on the generation of sound, which represents a fundamental link

between the acoustic analogy theory and the surface integral methods for aeroa-

coustics. Hawkings [87] applied the Kirchhoff formula to a transonic open rotor,

introducing the idea of using a surface, surrounding the rotating blades, which follows

the helicopter moving at the flight forward speed.

Notwithstanding the generalization obtained by Ffowcs Williams and Hawk-

ings [52], their modification to the original theory presented a numerical complication,

as the time and space derivatives are taken in the observer reference frame. Farassat

and Myers [88] found a formulation that prevents the numerical issue of evaluating

space and time partial derivatives in the observer reference system. They brought

these derivatives in the source frame, which made their estimation more practical

from a computational viewpoint. They showed that their development represented

a more general formula, applicable to both deformable and rigid piecewise smooth

moving surfaces. In this framework, they included the original Kirchhoff formula [83]

for stationary surfaces as a special case.

Extended Kirchhoff methods have been proposed by many authors, by including

additional non-linearities in the region outside the control surface, where a volume

integration is therefore required [48]. These are Kirchhoff-type methods in the sense

they start from the use of a surface integral approach, including then volume integral

non-linear terms. An example of this “Kirchhoff/Lighthill” approach is given by

Pilon & Lyrintzis in 1998 [89], who applied this methodology to supersonic jets.

Mitchell et al. [90] applied a Kirchhoff stationary-surface integral method to a

jet noise problem. An application of the moving-surface Kirchhoff approach with

a uniform surface velocity can be found in Morris et al. [91] and in Lyrintzis &

Mankbadi [92].

2.1.2.3 Viscous/acoustic split

The viscous/acoustic split is a hybrid method in which the noise radiation is esti-

mated in two separate steps. First, the time-dependent flow is solved with a set of

incompressible viscous equations. Then, linearised inviscid compressible equations

allow the estimation of sound radiation. Hardin & Pope [93] first proposed the
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viscous/acoustic split theory and applied it to estimate the noise radiation from a

flow over a two dimensional cavity [94]. In this first formulation, a density correction

was applied to the constant incompressible density, after the unsteady flow was pre-

dicted by solving the incompressible Navier-Stokes equations. The sound radiation

was finally estimated by considering acoustic fluctuations as perturbations to the

incompressible flow solution.

Shen & Sørensen [95] revised the theory by Hardin & Pope, claiming that the

formulation presented some inconsistency. They proposed a modified version of

the aerodynamic/acoustic splitting technique, investigating sound radiation from

low-speed flows over a circular cylinder [96] and over a turbulent aerofoil [97]. Ewert

& Schröder [98] proposed a model in which a source term, estimated through either

an incompressible or a compressible flow field prediction, provides the forcing to

a set of linearised equations for the acoustic perturbation. They obtained good

results for simple source tests and for a circular cylinder in a transverse flow problem.

While investigating the tonal component emitted by a flow over a circular cylinder,

Cheong et al. [99] proposed a new formulation of the incompressible/acoustic split.

An incompressible Reynolds Averaged Navier-Stokes (RANS) simulation is used for

the estimation of a more complex source term, of the Lighthill type, which provides

the input to the acoustic model, based on the Linearised Euler Equations (LEE).

The hypothesis that all the compressibility effects are originated from the acoustic

irrotational field [100] confines the application of viscous/acoustic splitting techniques

to low Mach number flows, including non-compact sources [101]. A new formulation

of the theory should be developed to extend its applicability to supersonic flows.

2.1.2.4 Theory of vortex sound

In 1964, Powell [102] first proposed the theory of vortex sound, which follows a

different concept from the acoustic analogy and represents a different approach in

aeroacoustics, to which many authors have contributed. Powell argued that both the

hydrodynamics and the acoustics of a flow are governed by vorticity fluctuations in

low Mach number turbulent flows [76]. Acoustic sources are associated with limited

regions of flow in which the vorticity vector is non-vanishing, rather than to the

whole hydrodynamic field as in Lighthill's theory [76].
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Howe [76] tried to develop a revised formulation of the Lighthill acoustic analogy,

able to deal with problems characterized by an extended region of non-uniform flow,

in which a non-uniform base flow is more appropriate than the uniform medium at

rest of Lighthill's theory. He proposed the stagnation enthalpy as acoustic variable,

identifying the source terms of such acoustic variable as confined in regions of non-

vanishing vorticity and entropy gradients [76], so to develop a revised version of the

vortex sound theory of Powell [102].

Howe [44] gives a complete and exhaustive explanation of the vortex sound theory,

focusing on trailing edge scattering problems. He defines vortex sound as the branch

of fluid mechanics dealing with the conversion between rotational kinetic energy in

a turbulent flow and longitudinal disturbances corresponding to sound waves. He

argued that Lighthill's equation can be rearranged by showing the importance of

the vorticity in the sound production [44]. To do so, the total enthalpy is chosen as

the acoustic field variable, instead of the Lighthill acoustic density fluctuation. This

new acoustic variable can be introduced by rearranging the momentum equation

into Crocco's form [44], differently from Lighthill's derivation. The justification for

the use of total enthalpy as acoustic variable comes from the consideration that, in

inviscid steady irrotational flows, such a variable is constant. Consequently, at large

distances from the acoustic sources, a perturbation in the total enthalpy represents

an acoustic wave [44].

2.2 FW-H acoustic analogy theory

Ffowcs Williams and Hawkings [52] developed a generalization of the Lighthill

acoustic analogy for flows including bodies in arbitrary motion. In their work, they

used the theory of generalised functions [103], which enabled a milestone progress in

theoretical aeroacoustics. The FW-H equation introduces the concept of partitioning

an unbounded continuous medium, which is defined everywhere in space, into two

regions by a surface. The latter is referred to as the FW-H integration surface. This

surface needs not to coincide with a physical body and can be penetrable (permeable

or porous) [104]. Further details about the FW-H surface requirements are given in

Brentner and Farassat [85, 104].
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Figure 2.4: Schematic of the FW-H acoustic analogy approach including the presence

of solid bodies enclosed by a control surface.

A schematic of the FW-H acoustic analogy approach is shown in Figure 2.4.

The acoustically active source region is confined to a volume Vs as for the Lighthill

analogy (see Figure 2.2 for comparison), but a control surface within Vs defines

an excluded region that encloses any solid bodies. Additional surface sources of

monopole and dipole type are introduced on the control surface in order to represent

the excluded region. Thus, the sound field is represented by the sum of a volume

integral over Vs, and a surface integral (similar to Kirchhoff) over the control surface.

Unsteady flow field data needs to be available both in the integration volume and on

the integration surface, which can be either stationary or moving.

Referring to Figure 2.4, let F (x, t) = 0 be the equation describing the moving

control surface, the points of which move at velocity v (x, t) [54]. The component of

this velocity in the direction normal to the surface vn either coincides with the fluid

velocity un in the same direction (vn = un), which gives an impenetrable/solid FW-H

surface, otherwise vn 6= un, which gives a permeable/porous FW-H surface. The

surface F (x, t) = 0 is defined to satisfy the property ∇F = n̂ on the surface, where

n̂ is the outward-pointing unit-normal vector. Following this procedure, the flow is

partitioned into three regions according to the value of F, as shown in Figure 2.4.

The unbounded fluid satisfies the Navier-Stokes equations on and outside the surface,

where F (x, t) ≥ 0. Its motion matches that of a real flow in this continuum. Inside
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the surface, where F (x, t) < 0, the conservation laws are assumed not to apply and

the flow state can be defined arbitrarily. The flow is usually replaced by a quiescent

fluid in the complement F (x, t) < 0, so generating a discontinuity in the flow state

at the surface itself.

In order to maintain this discontinuity, mass and momentum sources are dis-

tributed on the integration surface F (x, t) = 0, so that the conservation laws

across it are satisfied. These surface source distributions act as sound generators

(y(h) ∈ F (x, t) = 0) and their strength is given by the difference between the flux

requirements of the state variables in the two regions F (x, t) > 0 and F (x, t) < 0.

The contribution given by the inner region F (x, t) < 0 is included in the surface

source distribution itself, while outside the integration surface a distribution of

quadrupole sources of the Lighthill type is considered, at y(i) ∈ F (x, t) > 0. The

estimation of the volume and of the surface source distributions is carried out from the

time-resolved estimates of pressure, density, and velocity in the region F (x, t) ≥ 0,

which are obtained independently (for instance by a CFD simulation).

Expressions for the source terms are obtained by recasting the mass and the mo-

mentum conservation laws into an inhomogeneous wave equation. The mathematical

details are given in Appendices B and C. The result is the FW-H equation [52]:

�2
[
H (F) c2

0 (ρ− ρ0)
]

= ∂ [δ (F) ρ0un]
∂t

− ∂ [δ (F)Pijn̂j]
∂xi

+ ∂2 [H (F)Tij]
∂xi∂xj

, (2.4)

where H (F) is the Heaviside function and δ (F) is the Dirac delta function, which

are both defined in Appendix B. The quantities n̂ and un are, respectively, the

outward-pointing unit-normal vector and the flow velocity normal to the surface

F (x, t) = 0. The tensors Tij and Pij are, respectively, the Lighthill stress tensor and

the compressive stress tensor defined in Equation 2.2, the latter representing the

force acting on a portion of fluid per unit surface area [1]. Equation 2.4 is obtained

by assuming the control surface as impenetrable (vn = un) as in the original FW-H

formulation [52].

Equation 2.4 determines the acoustic density fluctuation of the radiating noise

using three kinds of sound sources, in order to take into account the different aspects

of a significantly heterogeneous phenomenon. These sources are respectively referred

to as the monopole, the dipole, and the quadrupole source. The monopole and dipole

contributions, representing the source distributions of mass and momentum, are also
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called, respectively, thickness and loading noise, for analogy with helicopter rotor

applications.

The quadrupole term represents a volume distribution. The dipole and monopole

noise are instead surface source distributions, as indicated by the presence of the

Dirac delta function in the first two terms on the right hand side of Equation 2.4,

which sifts the value of the variables on the FW-H integration surface. The sifting

property is a characteristic of the Dirac delta function, as detailed by Farassat [105],

who discussed the analytical development of the generalised function theory focusing

on aeroacoustic applications.

The volume source distribution accounts for all the non-linearities in the flow.

The effects of non-linear wave propagation and steepening, local fluctuations in the

speed of sound, generation of noise by shocks, vorticity, and turbulence in the flow

field are all included in this source term [85]. If the integration surface is taken

coincident with a solid body, a physical interpretation of the dipole and of the

monopole noise contributions is available. The dipole noise takes into account the

effect of the interaction of the unsteady flow with steady or moving rigid surfaces.

The solid body is replaced with fluid plus a distribution of normal dipoles over the

surface, whose strength equals the instantaneous force per unit area acting on the

fluid. If the body dimensions are small in comparison with the acoustic wavelength,

this dipole distribution may be replaced for far-field purposes by a point force acting

on the fluid, whose strength equals the instantaneous total force that the body exerts

on the fluid. The monopole noise is originated by the motion of the surface in the

normal direction [106] with respect to the fluid and it represents a displacement

effect [52]. It is fully determined by the geometry and by the kinematics of the

body [85].

The FW-H integral solution [52] to Equation 2.4 is

4πc2
0 (ρ (x, t)− ρ0) = ∂2

∂xi∂xj

∫
F>0

[
TijJ

r|1−Mr|

]
τe

d3η

− ∂

∂xi

∫
F=0

[
Pijn̂jA

r|1−Mr|

]
τe

d2η

+ ∂

∂t

∫
F=0

[
ρ0un

r|1−Mr|

]
τe

d2η,

(2.5)
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with:

yi = ηi +
∫ τe

−∞
c0Mi (η, τ ′) dτ ′, n̂j =

∂F
∂xj

|∇xF|
, (2.6)

J = exp

(∫ τe

−∞

∂

∂yi
(c0Mi (η, τ ′)) dτ ′

)
, A = J

|∇yF|
|∇ηF|

, (2.7)

un = uin̂i, Mr = Miri. (2.8)

In Equations 2.5–2.8, x is the observer position defined in the y reference system.

The y reference system is fixed with the undisturbed medium and it is used to

carry out the integration in η in the source region. The variable η represents a

Lagrangian coordinates reference frame, moving with the sources. The Jacobian J

of the transformation between the fixed reference system y and the moving reference

frame η accounts for any local dilation of the volume element in the change of

coordinates (ratio between volume elements in y and η), and it is related to the

divergence of the convection velocity c0M. The variable A is the surface dilation

factor (same as J in 2D). c0Mi and Mr are, respectively, the source convection

velocity defined in the y reference frame and the source convection Mach number in

the direction r = x− y.

The square brackets in Equation 2.5 indicate evaluation of the terms within at

the source emission time τe (Section 1.4), estimated through the “emission time”

equation

τe = t− |x− y (τe)|
c0

. (2.9)

Equation 2.9, traditionally referred to as the “retarded time” equation, expresses

that a disturbance emitted from the source location y (τe) at time τe is perceived by

an observer x at time t, with a time delay t− τe = |x− y (τe)|/c0, due to the noise

propagation at the speed of sound c0.

The FW-H acoustic analogy, given by Equations 2.4 and 2.5, extended the acoustic

analogy approach to a broader range of applications, by allowing more freedom in the

definition of the source field and of its boundaries compared to the Lighthill analogy.

The theory of generalised functions has continued to be used in aeroacoustics after

Ffowcs Williams and Hawkings, and it is developed with a rigorous mathematical

approach by Farassat [105].

Farassat [106] applied the FW-H acoustic analogy to helicopter rotors, showing

the effectiveness of this approach in predicting aerodynamic sound in the presence
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of moving surfaces in an unsteady turbulent flow, with non-compact sources. The

embedding procedure (Section B.1), which converts the standard fluid dynamic

problem to an unbounded fluid case, through the use of the generalised function

theory, is also detailed by Farassat [106].

In numerical simulations, the main disadvantage of the original FW-H acoustic

analogy formulation, compared to surface integral methods such as the Kirchhoff

approach (Section 2.1.2.2), is the need to perform a numerical volume integration

that is far more expensive than a two dimensional one. However, the quadrupole

source term is usually some order of magnitude smaller than the surface source

distribution and, even if this is not the case, a wise choice of the integration surface

could still lead to a negligible volume source contribution. Therefore, the quadrupole

source term is often neglected [64].

Nevertheless, sample computations that include the quadrupole term are reported

by Brentner [107, 108] and by Rona [53]. The current progress in computational power

of computer clusters gives hope towards including the volume source contribution

more often in future applications.

2.2.1 The porous FW-H formulation

As stated in Section 2.2, the control surface in the FW-H acoustic analogy can either

coincide with a solid body or be permeable (porous FW-H). Di Francescantonio [64]

presented analytical developments concerning the use of the permeable surface by

trying to combine the advantages of the Kirchhoff method with the ones of the FW-H

acoustic analogy. He derived a new formulation that he referred to as Kirchhoff

FW-H (KFW-H). He pointed out that the main advantage of this approach is that

the derivatives of CFD quantities in the direction normal to the integration surface,

which are necessary in the standard Kirchhoff formula, are not required. In the

application of the KFW-H equation, Di Francescantonio neglected the volume source

distribution by considering a surface placed in a linear acoustic region. This allows for

a fast computation, as with the Kirchhoff method. However, the general form of the

KFW-H solution includes a volume integral, to take into account any non-negligible

quadrupole source outside the permeable surface.

Di Francescantonio [64] developed the concepts of formulation 1 and 1A by
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Farassat, by explicitly allowing the data surface to be porous. Formulation 1 was

first published in 1975 [106] and then revised in 1981 [109]. Formulation 1A was

proposed in 1980 [110]. Boundaries moving at a subsonic speed are taken into

account and the equations have been successfully applied to rotor and propeller

noise prediction, before their exhaustive redefinition in 2007 by Farassat [104]. The

difference between the two formulations lies in the estimation of the observer time

derivative. In formulation 1A, this is done analytically, resulting in a decreased

execution time and a higher accuracy [104]. Di Francescantonio [64] showed how

the method that does not require the numerical estimation of the time derivative is

twice as fast.

Brentner and Farassat [85] compared the Kirchhoff method using the pressure

as acoustic variable, and the porous FW-H integral method with the quadrupole

non-linear contribution neglected. They concluded that the FW-H acoustic analogy is

more accurate and allows more freedom in the surface placement [85]. The Kirchhoff

method could be considered as a particular case of the porous FW-H (without

the volume integral term) when the surface is placed in the linear region. In this

configuration, the two integral methods are equivalent [85].

As stated in Section 2.1.2.2, in the Kirchhoff formulation all the non-linearities

of the flow are assumed enclosed within an integration surface, referred to as the

Kirchhoff surface. This assumption avoids having to perform a volume integration,

which is usually more expensive from a computational viewpoint than a surface

integration. This advantage is also available in the FW-H acoustic analogy, if the

FW-H surface is thought as penetrable, or permeable [85], and it is placed in the

linear acoustic region of the flow, so that the quadrupole source contribution outside

the surface is negligible. On the other hand, the FW-H acoustic analogy has the

advantage of better representing the physics of the problem and it is possible to give

a physical interpretation to the various terms in the formulation, as explained in

Section 2.2. Furthermore, it offers a more robust approach and it is easier to be

interfaced to CFD codes [85].

Lyrintzis [48] also argues that the porous FW-H equation method is equivalent to

the Kirchhoff's method and that it represents a preferable alternative to it, given the

current state of the art of numerical techniques and of computing hardware. Even
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though the porous FW-H requires a larger memory usage due to the volume integral

term, it is less limiting in the control surface placement and it does not require the

normal derivative of flow field variables to be estimated.

The porous FW-H formulation allows non-linearities to be present on the integra-

tion surface, which can consequently be placed closer to sources of noise generated

aerodynamically, such as the ones from a jet, compared to the Kirchhoff method.

Shur et al. [111] claimed that placing the surface in the inviscid non-linear region

proximal to the jet, in the porous FW-H method, is beneficial both in terms of mesh

design and of the solution accuracy at the integration surface. Specifically, a refined

computational mesh can be applied over the turbulent region of the jet enclosed

by the integration surface. The mesh can then be gradually coarsened in the outer

domain, where the mesh function becomes mainly to prevent spurious reflections of

outgoing waves [111]. The shorter path from the source region to the integration

surface also typically reduces the numerical dissipation and dispersion that affect

the acoustic waves travelling towards the FW-H surface.

Even if the more recent contributions to the theory of aeroacoustics [64, 85, 104]

have broadened and consolidated the permeable surface theory, the porous FW-H

acoustic analogy concept was already included in Ffowcs Williams & Hawkings [52],

as argued by Farassat [104].

2.2.1.1 Effect of neglecting the FW-H volume integral contribution

As far as the jet noise problem is concerned, the FW-H surface placement is a crucial

factor, due to the slow development of the turbulent flow in the axial direction.

Hydrodynamic perturbations are convected many jet diameters De downstream

of the nozzle exit section, extending the turbulent region beyond the boundary

of the numerical domain, which is limited by the computational resources. The

computational domain is truncated typically at about 20− 30 jet diameters De from

the nozzle exit section and jet mixing farther downstream is not resolved.

A permeable FW-H surface of finite extent cannot enclose the whole jet. The

FW-H surface is typically defined so that the flow crosses the downstream end of it,

which is usually referred to as the outflow disk. The FW-H acoustic analogy allows

for this implemetation, provided the full integral solution is estimated. The volume

44



integration outside the surface allows the correct estimation of the noise radiation, by

modelling the turbulent perturbations in the exterior domain as quadrupole sources.

Neglecting the quadrupole noise sources in the exterior region, F (x, t) > 0 in

Figure 2.4, results in spurious noise contributions being emitted by the flow crossing

the outflow disk. If left untreated, this spurious noise affects both the near-field and

the far-field acoustic predictions.

Several solutions have been adopted to mitigate this pseudo-noise radiation. The

easiest modification is the exclusion of the outflow disk from the surface integration,

by leaving the FW-H surface open at the downstream end. Good agreement has

been shown in recent publications [112, 113, 114, 115] between the noise predicted

with an open FW-H surface and experimental measurements. This suggests that the

outflow disk contribution to noise radiation is small compared to the contribution

from the whole integration surface and that the pseudo-noise cancellation obtained

by neglecting this small contribution can be beneficial for the accuracy of the noise

prediction.

An alternative approach consists in applying some particular treatment to the

acoustic analogy formulation, in order to include the outflow disk while minimizing

the volume integral contribution from the excluded downstream region of the jet. For

instance, different versions of the FW-H equation have been proposed, replacing the

acoustic density fluctuations with derived variables based on pressure fluctuations [5,

67, 116, 117, 118, 119]. The benefit comes from the pressure fluctuations being lower

than the density fluctuations at the outflow disk, especially for hot jets [5]. This

results in a weaker spurious noise emission as the flow crosses the downstream end

of the surface [111, 117, 119].

Shur et al. [5] also proposed a disk-averaging procedure, obtained from a set of

nested FW-H surfaces. The contribution from the outflow disk is averaged between

different positions of the surface and the pseudo-noise was shown to reduce. This

technique works on the principle that, whereas the pseudo-noise is affected by the

position of the integration surface, the physical sound should be essentially unaffected

by the axial position of the outflow disk, beyond a certain axial distance. Mendez [119]

proposed a formula for determining the number and the spacing of the outflow disks

that optimize the disk-averaging procedure.
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While similar conclusions about the advantages of using the porous FW-H

formulation, in place of the Kirchhoff method, are drawn by Rahier et al. [120],

their findings about the open vs closed surface comparison are in contrast with

the ones by Shur et al.. According to Rahier et al. [120], a closed FW-H surface,

requiring additional storage memory and more expensive computations compared to

an open surface, does not improve the noise prediction. For some cases, it is shown

to overestimate the far-field sound intensity, degrading the accuracy of the noise

prediction [120]. Uzun et al. [121] also showed no significant improvement in the

results by closing the FW-H surface at the downstream end.

Whether an open FW-H surface is preferable to a closed FW-H surface, for

applications in which noise sources cross it, remains unclear. A closed surface

appears to give significant improvements for hot jets but only when coupled with a

disk-averaging procedure and with a tailored change of the acoustic variable. On

the basis of this review, it was decided to adopt an open integration surface for the

jet noise applications in Chapters 4 and 5, also due to the attraction of its lower

memory-storage requirements. An additional constraint was represented by the CFD

input to the new FW-H tools developed by the author, which was provided by third

parties (Cerfacs, Toulouse for instance). This was produced and stored before the

new FW-H tools were completed. Therefore, the author did not have full freedom

on the choice of the FW-H surface shape and size.

Another variant to the implementation of the FW-H acoustic analogy consists

in approximating the volume integral in a convenient way, instead of completely

neglecting its contribution. Additional surface integral terms, both in the frequency

domain [122] and in the time domain [123], have been proposed. The computational

cost is just slightly increased by this additional terms and the noise prediction

has been shown to be more accurate for simple source problems. Even though

this represents an interesting development of the theory that could give significant

improvements in the future, there is still insufficient evidence of the effectiveness of

these formulations for jet noise applications and an optimal rearrangement of the

source terms needs to be found.
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2.2.2 Advanced time vs retarded time approach

In jet aeroacoustics, an algorithm to correctly take into account the propagation of

the disturbance from the source position y to the observer position x is required,

due to the non-compactness of the source, as stated in Section 1.4. Two different

methods can be adopted, which are referred to as the retarded time [108, 124, 125]

and the advanced/forward time approach [48, 54, 55, 126, 127, 128].

In the retarded time approach, the aeroacoustic simulation runs in the observer

temporal frame, meaning that the computation time axis is representative of the

reception phenomenon. In this case, it can happen that different disturbances

reaching the observer at the same time were not emitted simultaneously. For each

disturbance, i.e. each source position y, the emission time τe needs therefore to be

calculated, by solving an implicit emission time equation of the type of Equation 2.9.

Once τe is known, the unsteady flow field solution has to be interpolated at time τe.

This involves selecting the value of the flow variables relative to the emission of each

disturbance and estimating the source terms of Equation 2.4 at τe. Consequently,

CFD flow field predictions at different times τe are required at each observer time

step, making the retarded time algorithm computationally expensive. Furthermore,

the retarded time approach is dependent on the specifications of the test case

and, for supersonic speed, it presents the issue of multiple roots [54] deriving from

Equation 2.9.

A different approach is described in Rona [53] and in Casalino [54], where

the aeroacoustic simulation runs in the emission time frame and, for each different

disturbance, an advanced time tadv is calculated for a specific observer. This represents

the reception time that takes into account the time of flight for the disturbance

to travel from the emission to the reception locations. In this approach, the CFD

and the aeroacoustic simulations advance in the same time frame and the flow field

prediction does not need to be interpolated. Consequently, the aeroacoustic and the

CFD simulation can be run simultaneously and the storage of the flow-field time

history is not required [54]. Furthermore, the advanced time tadv (corresponding to t

in Equation 2.9) can be explicitly determined as

tadv = τe + |x− y (τe)|
c0

, (2.10)
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without the requirement of an iterative method [54].

τ1 τ

t

tI

τ2

tII tIII

∆t = ∆τ

∆τ

s(2)(τ1) s(2)(τ2)
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adv(τ1) t

(2)
adv(τ2)

p′s(1) + p′s(2)

Figure 2.5: Advanced time algorithm schematic showing the observer time-domain

interpolation for the simple case of two sources and one observer.

In Figure 2.5, the advanced time algorithm is schematically represented for a

simplified model with two point sources s(1) and s(2). The source (τ) and the reception

(t) time axes are shown, respectively, at the bottom and at the top of the figure. It

is convenient to apply the same discretization to both time frames (∆τ = ∆t), from

a numerical viewpoint.

Given this configuration, the time-of-flight to reach the observer location x, for a

disturbance emitted at τ1 by the point source s(1) located at y(1) (τ1), is proportional

to the distance |x − y(1) (τ1)| and the advanced time t(1)
adv (τ1) can be determined

through Equation 2.10. The latter does not necessarily coincide with a discrete

observer instant ti = i∆t, with i integer. The contribution from the point source

y(1) at time τ1 can fall within two discrete reception times (tI and tII in Figure 2.5).

The same occurs for source s(2), as indicated by the blue symbols in Figure 2.5.

By storing the contributions from two consecutive time steps, a time interpolation

can be performed between the acoustic pressure perturbations from s(1) received at

the observer time t(1)
adv (τ1) and at t(1)

adv (τ2), to obtain the pressure perturbation from

s(1) at the discrete observer time tII . This interpolation process is schematically

represented by the black dashed line in Figure 2.5. Once the contributions from all

point sources have been projected to the adjacent discrete observer time tII , the
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acoustic pressure fluctuation (red dot in Figure 2.5) is computed by adding over

all the sources. A linear interpolation is applied in the new implementation of the

advanced time algorithm in Python for both the stationary (Section 2.2.3) and the

convective (Section 2.2.4) acoustic analogy, as sketched in Figure 2.5.

2.2.3 Casalino advanced time approach (AFW-H)

By the derivation in Appendix B, the FW-H equation for a stationary medium is

obtained as

�2
(
H (F) c2

0 (ρ− ρ0)
)

= ∂ [δ (F)Qjn̂j]
∂t

− ∂ [δ (F)Lijn̂j]
∂xi

+ ∂2 [H (F)Tij]
∂xi∂xj

, (2.11)

where:

�2 =
[

1
c2

0

∂2

∂t2
− ∂2

∂xj∂xj

]
, (2.12)

Qj = ρ
(
u′j − vj

)
+ ρ0vj, (2.13)

Lij = ρu′i
(
u′j − vj

)
+ P ′ij. (2.14)

In Equations 2.11–2.14, H is the Heaviside function and δ is the Dirac delta function,

both defined in Appendix B. The primed variables represent fluctuations about the

state of the fluid at rest in the acoustic analogy. vj is the FW-H surface velocity

component in the jth direction.

Casalino [54] applied the advanced time approach to the integral solution of

Equation 2.11 proposed by Farassat [106] and Brentner [108]. The mathematical

details of this Advanced-time Ffowcs Williams and Hawkings acoustic analogy

formulation, here referred to as AFW-H, are given in Appendices B and C.

By using the free-space Green's function:

G (x, t,y, τ) =


δ(g)
4πr , if t ≥ τ

0, if t < τ ,

(2.15)

where:

g = τ − t+ r

c0
, r = |x− y| , (2.16)

to convolve Equation 2.11, the acoustic pressure fluctuation p′ = p− p0 perceived by

an observer located at the vector position x at time t is expressed as follows:

p′ (x, t) = p′T (x, t) + p′L (x, t) + p′Q (x, t) , (2.17)
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where subscripts T , L, and Q refer to thickness, loading, and quadrupole noise,

respectively.

As discussed in the following Section 2.3, the noise radiation is estimated in this

study by performing only the surface integration. The volume source distribution

is assumed to be negligible compared to the thickness and to the loading noise

contributions. The expressions for the T and L noise components are respectively

4πp′T (x, t) =
∫
F=0

[
Q̇jn̂j +Qj

˙̂nj
r (1−Mr)2

]
τe

d2η

+
∫
F=0

Qjn̂j
(
r ∂Mr

∂τ
+ c0 (Mr −M2)

)
r2 (1−Mr)3


τe

d2η,

(2.18)

4πp′L (x, t) = 1
c0

∫
F=0

[
L̇ijn̂j r̂i

r (1−Mr)2

]
τe

d2η

+
∫
F=0

[
Lijn̂j r̂i − Lijn̂jMi

r2 (1−Mr)2

]
τe

d2η

+ 1
c0

∫
F=0

Lijn̂j r̂i
(
r ∂Mr

∂τ
+ c0 (Mr −M2)

)
r2 (1−Mr)3


τe

d2η,

(2.19)

with:

Mi = vi
c0
, M =

√
v2

1 + v2
2 + v2

3

c0
, Mr = Mir̂i. (2.20)

In Equations 2.18 and 2.19, the convention [...]τe is adopted to indicate that the

quantities inside the square brackets are evaluated at the emission time τe.

Equations 2.18 and 2.19 can be simplified for jet noise applications. A FW-H

surface enclosing the jet can be defined as fixed in the nozzle frame of reference, by

which its velocity vi = 0, its Mach number M = Mr = 0, and its outward-normal

unit vector n̂ is invariant with time, hence ˙̂nj = 0.

Under these conditions, Equations 2.18 and 2.19 simplify as

4πp′T (x, t) =
∫
F=0

[
Q̇jn̂j
r

]
τe

d2η , (2.21)

4πp′L (x, t) =
∫
F=0

[
1
c0

L̇ijn̂j r̂i
r

+ Lijn̂j r̂i
r2

]
τe

d2η . (2.22)

Equations 2.21 and 2.22 are discretised and implemented in Antares [12], as

discussed in Section 2.3. Noise estimations for elementary point sources, as well as

stationary jet noise applications, are presented respectively in Chapters 3 and 4.
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2.2.4 Convective acoustic analogy (CFW-H)

The FW-H acoustic analogy of Section 2.2.3 models sound waves propagating in

a uniform medium at rest. A usual way to model a moving medium relative to a

fixed observer is to reverse the reference frame, by considering a case in which the

observer moves in a medium at rest [54, 104, 125]. In 2011 Najafi-Yazdi et al. [55]

developed an interesting convective formulation of the FW-H acoustic analogy, by

explicitly taking into account the presence of a mean flow. The application of the

convective analogy in [55] was restricted to elementary noise sources (monopoles and

dipoles). In the current work, the CFW-H formulation is used to investigate the

flight effects on the noise radiation from jets (Section 5.2). The mathematical details

to get the moving-medium formulation are omitted here for conciseness and reported

in Appendix B. The result is the inhomogeneous wave equation

�(c)2 (
H (F) c2

0ρ
′
)

=
[
∂

∂t
+ U0i

∂

∂xi

] [
δ (F)Q(c)

j n̂j
]

−
∂
[
δ (F)L(c)

ij n̂j
]

∂xi
+ ∂2 [H (F)Tij]

∂xi∂xj
,

(2.23)

where:

�(c)2 =
[

1
c2

0

∂2

∂t2
− ∂2

∂xj∂xj
+ 1
c2

0
2U0j

∂2

∂t∂xj
+ 1
c2

0
U0iU0j

∂2

∂xi∂xj

]
, (2.24)

Q
(c)
j = ρ

(
u′j + U0j − vj

)
+ ρ0 (vj − U0j) , (2.25)

L
(c)
ij = ρu′i

(
u′j + U0j − vj

)
+ P ′ij. (2.26)

The superscript (c) indicates the convective frame of reference, which is moving at

the subsonic uniform velocity U0j = (U01, U02, U03). In this analogy, sound waves

propagate in an analogous medium of uniform velocity U0j at the constant speed of

sound c0. Substituting U0j = 0 in Equations 2.23–2.26 recovers the stationary form

of Equations 2.11–2.14.

An important difference with respect to the FW-H equation for a stationary

medium is the presence of the convective wave operator (Equation 2.24) in place of

the wave operator (Equation 2.12), by which the effect of convection by the uniform

flow on the sound field is accounted for in the left hand side of Equation 2.23. A

Lagrangian derivative also appears in the thickness noise and the source terms Q(c)
j

and L
(c)
ij are slightly different compared to Equations 2.13 and 2.14.
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The solution of Equation 2.23 is estimated by convolution with the convective

Green's function G(c) stated in Blokhintsev [129], which is

G(c) (x, t,y, τ) =


δ(g(c))
4πR∗ , if t ≥ τ

0, if t < τ ,

(2.27)

where:

g(c) = τ − t+ R

c0
, (2.28)

R = −M0 (x1 − y1) +R∗

β2 , (2.29)

R∗ =
√

(x1 − y1)2 + β2
[
(x2 − y2)2 + (x3 − y3)2

]
, (2.30)

β =
√

1−M2
0 , M0 = U0

c0
. (2.31)

In Equation 2.27, δ is the Dirac delta function defined in Appendix B and a uniform

flow at velocity U0 in the x1 direction is considered, without loss of generality. This

is convenient in jet noise applications, where the co-flow around an installed jet, due

to aircraft motion, can be defined in the x1 direction.

The convolution of Equation 2.23 with Equation 2.27 is detailed in Appendix C.

From this convolution, after neglecting the quadrupole noise contribution, the acoustic

pressure perturbation p′ (x, t) is obtained as the sum of two contributions, the

thickness p′T (x, t) and the loading p′L (x, t) noise contributions, which are defined

respectively as

4πp′T (x, t) =
∫
F=0

[
Q̇jn̂j +Qj

˙̂nj
R∗ (1−MR)2

]
τe

d2η +
∫
F=0

[
−∂R∗

∂τ

Qjn̂j

R∗2 (1−MR)2

]
τe

d2η

+
∫
F=0

[
Qjn̂j

R∗ (1−MR)3
∂MR

∂τ

]
τe

d2η

−M0

∫
F=0

 ˙̃R1Qjn̂j + R̃1Q̇jn̂j + R̃1Qj
˙̂nj

R∗ (1−MR)2


τe

d2η

+M0

∫
F=0

[
∂R∗

∂τ

R̃1Qjn̂j

R∗2 (1−MR)2

]
τe

d2η

−M0

∫
F=0

[
∂MR

∂τ

R̃1Qjn̂j

R∗ (1−MR)3

]
τe

d2η

− U0

∫
F=0

[
R̃∗1Qjn̂j

R∗2 (1−MR)

]
τe

d2η,

(2.32)
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4πp′L (x, t) = 1
c0

∫
F=0

 L̇ijn̂jR̃i + Lij ˙̂njR̃i + Lijn̂j
˙̃Ri

R∗ (1−MR)2


τe

d2η

− 1
c0

∫
F=0

[
∂R∗

∂τ

Lijn̂jR̃i

R∗2 (1−MR)2

]
τe

d2η

+ 1
c0

∫
F=0

[
∂MR

∂τ

Lijn̂jR̃i

R∗ (1−MR)3

]
τe

d2η

+
∫
F=0

[
Lijn̂jR̃

∗
i

R∗2 (1−MR)

]
τe

d2η.

(2.33)

In Equations 2.32 and 2.33, the superscript (c) is omitted for brevity, while MR =(
R̃ivi

)
/c0 is the Mach number of a point source on the surface F = 0 (with vi the

components of the surface velocity in the convective reference frame). R̃∗ and R̃ are

defined in Equations 2.34 and 2.35 (see Appendix C for more details).

R̃∗ = ∇R∗ =
(
x1 − y1

R∗
; x2 − y2

R∗
β2; x3 − y3

R∗
β2
)
. (2.34)

R̃ = ∇R =
(

1
β2

(
−M0 + x1 − y1

R∗

)
; x2 − y2

R∗
; x3 − y3

R∗

)
. (2.35)

Equations 2.32 and 2.33 can be simplified for jet noise applications in which a

wind tunnel [55] configuration is used. In this configuration, both the nozzle and

the observers are defined in a fixed reference frame x. For jet noise applications, the

FW-H surface needs to enclose the jet and can be fixed to the nozzle. The η reference

system is defined in Appendix C as fixed to the FW-H surface. Consequently, in a

wind tunnel test, the x and η reference frames coincide and the nozzle, the integration

surface, and the observers do not experience any relative motion from one another.

Several terms in Equations 2.32 and 2.33 can be simplified as shown by Equa-

tion 2.36. Specifically, the surface velocity v (and consequently MR) is zero. Also,

the outward-normal unit vector n̂, the radiation vectors R∗ and R̃, and the Mach

number MR do not change with time (fixed surface). This gives

vi = 0, MR = 0, ˙̂nj = 0, ∂R
∗

∂τ
= 0, ˙̃Ri = 0, ∂MR

∂τ
= 0. (2.36)

Replacing 2.36 in Equations 2.32 and 2.33, the thickness and the loading noise in

a wind tunnel test can be expressed as follows:

4πp′T (x, t) =
∫
F=0

[(
1−M0R̃1

) Q̇jn̂j
R∗
− U0

R̃∗1Qjn̂j
R∗2

]
τe

d2η, (2.37)
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4πp′L (x, t) =
∫
F=0

[
1
c0

L̇ijn̂jR̃i

R∗
+ Lijn̂jR̃

∗
i

R∗2

]
τe

d2η. (2.38)

Equations 2.37 and 2.38 are discretised and implemented in Antares [12], as

discussed in the next session. Noise estimations for simple sources, as well as a jet

noise application, are obtained and presented in Chapter 5.

2.3 Implementation in Antares

A discretised form of Equations 2.21-2.22 and 2.37-2.38 is implemented in Antares,

respectively in the new AFW-H and CFW-H tools. As mentioned in Section 1.5,

Antares [12] is a software package embedding post-processing tools for CFD applica-

tions. In the new Antares tools, the quadrupole volume source term contribution is

not modelled. Besides the motivations already discussed in Sections 2.2 and 2.2.1,

neglecting the quadrupole source term contribution allows a direct comparison of

the acoustic predictions from the new Python AFW-H and CFW-H tools against

reference numerical solutions obtained at Cerfacs. These reference solutions were

obtained respectively from the ONERA solver elsA [130], for the stationary test

cases presented in Chapter 4, and from the ONERA KIM software [131, 120], for

the convective case presented in Section 5.2. In both the elsA and the KIM software,

a FW-H acoustic analogy formulation that neglects p′Q (x, t) is used.

The significant advantage in terms of the computational cost given by restricting

the numerical integration to a surface integral, typical of Kirchhoff's methods, is

therefore preserved. An additional advantage arises when the Python tool is used as

a post-processor and inputs a stored CFD solution. Neglecting the quadrupole noise

source translates in a lower storage requirement, because the flow field variables data

are stored only on the FW-H surface F (x, t) = 0, rather than on the entire source

volume Vs of Figure 2.4.

In the Python implementation, the CAA tool is built to be used with structured

meshes only, which are used in many CFD codes. According to this CFD mesh

topology, the FW-H surface F (x, t) = 0 is partitioned into different zones Sj, corre-

sponding to different mesh blocks Bj, as represented in Figure 2.6. The intersection

between F (x, t) = 0 and the CFD mesh determines the set Sj of faces lying on the
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Bj

∆Sk ⊂ Sj

x(i)

Sj ⊂ F(x, t) = 0

y(k)

Figure 2.6: Schematic of the FW-H surface discretization, showing the surface

element ∆Sk, on the face Sj, defined by intersection with the mesh block Bj.

FW-H surface. For each Sj, the FW-H tool estimates its contribution to p′ at the

observer position.

The FW-H algorithm is structured so that, at each discrete acoustic time τn, a

loop over the faces Sj is performed. For each Sj, a second loop is implemented over

the surface elements ∆Sk defined as in Figure 2.6, where the discretised form of the

loading and of the thickness noise terms in the FW-H acoustic analogy is computed.

The advanced times relative to the pairs ∆Sk-x(i) are estimated from the “advanced

time” Equation 2.10, in order to save the p′ contribution from ∆Sk at the correct

observer time [54]. By summing over all the ∆Sks, the contribution from face Sj is

determined. The noise radiated by the entire FW-H surface is then estimated by

summing over all faces Sj.

This process is then repeated at the next acoustic time τn+1. Advancing in time,

a partial pressure fluctuation history is reconstructed that is not the final acoustic

output. A specific filtering technique is required in order to remove the data relative

to an initial and a final transient, in which the solution is not converged.

The computation has a limited time range in which acoustic disturbances are

predicted. As the simulation starts at the initial time τ = τ0, the disturbances

emitted by each source element ∆Sk, in which the source region (FW-H surface) is
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discretised, needs a finite time to travel to the observer position x(i), this finite time

depending on the distance ∆Sk-x(i) (r(k,i) =
∣∣∣x(i) − y(k)

∣∣∣). The acoustic pressure

time history starts when the first disturbance from the closest ∆Sk reaches x(i), at a

receiver time t0 = τ0 + r
(k,i)
min /c0, and the acoustic pressure output is only a partial

result.

At a later time t > t0, the disturbance emitted by the second closest ∆Sk
reaches the observer x(i) and progressively all the source elements contribute to the

sound perceived at x(i) at a given receiver time t0−conv > t0. Only at this point the

summation of the contributions to p′ (x, t) is complete and the pressure fluctuation

time-history can be defined as “converged”.

A similar issue occurs towards the end of the time range considered. Therefore a

correction procedure is implemented which consists in simply cutting out (deleting)

the initial and final transients from the acoustic pressure time-history.

An additional variable, Φconv
(
x(i), t

)
, is computed for monitoring the completion

of the summation of all contributions to p′ (x, t). This variable stores the number of

disturbances that reach each observer, at each acoustic time step. The value of this

variable increases during the initial transient of the simulation till the time t0−conv,

at which all the source elements ∆Sk have contributed to the sound radiation at

x(i). At this point, the monitor variable assumes its maximum value and it remains

constant thereafter for most part of the simulation. When the acoustic time history

enters in the final transient, the monitor variable starts to decrease.

A typical shape of the normalized monitor variable is shown in Figure 2.7, from

which the deletion of the initial and of the final transients of the acoustic pressure

history is performed. The “converged” acoustic output is enclosed within the time

range of a maximum plateau of the monitor variable (Φconv = 1 in Figure 2.7). The

deletion procedure is applied at the end of the simulation, by discarding the signal

before and after the time range of constant Φconv. The final output of the tool is a

matrix that stores, for each observer position, the pressure fluctuation p′
(
x(i), t

)
as

a discretised time array.

For each discrete acoustic-source time τn, the acoustic analogy tool reads the

density, the static pressure, and the velocity field on the FW-H surface from the CFD

solution and retains the flow field data relative to the previous discrete acoustic-source
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t

p′(x(i), t)

Φconv(x(i), t)

1

Retained signal

tt0−convt0

Figure 2.7: Procedure to discard time segments of the acoustic fluctuation p′ at

the ith observer x(i) that feature an incomplete sum of acoustic pressure fluctuation

contributions.

field time τn−1. This enables the estimation of the source time derivatives using the

backward finite difference approximation

ζ̇ = ∂ζ

∂τ
≈ (ζn − ζn−1)

∆τ , (2.39)

where ζ is a general source term variable. It also enables to perform the interpolation

procedure described in Section 2.2.2.

The new CAA tools can either be run as post-processors or synchronously with

the CFD simulation. In this work, the new AFW-H and CFW-H noise extractors

were used to post-process previously stored CFD data, as shown by the flowchart in

Figure 2.8. Both the CFD and the CAA processes run in the source time τ reference

frame. In many applications, the CAA time step ∆τCAA can be larger than the

CFD time step ∆τCFD, because of differences in characteristic wavelength between

the aerodynamic and the acoustic fields. This enables to define ∆τCAA = k∆τCFD,

where k is a positive integer. The CFD solution projected onto the predefined FW-H

surface is saved at several contiguous discrete acoustic times τ = m∆τCAA, where

m = 1, 2, 3, ... is integer, or, equivalently, when mod (τ,∆τCAA) = 0, as shown by
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Figure 2.8: CFD/FW-H post-processor flowchart.

Figure 2.8. After the unsteady CFD simulation completes at time τ = τf , a time

history of the flow state on the integration surface is available. The new FW-H

post-processors use this dataset to predict the noise radiation both to the near-field

and to the far-field.

2.3.1 Parallel MPI implementation

A parallel version of the FW-H post-processor is built for both the stationary and the

convective acoustic analogy implementations, by using the Message Passing Interface

(MPI) available in Python (MPI4Py). The parallelization is designed according to

the discretization of the surface, by allocating the FW-H processing of different faces

Sj to different computer cores. By optimizing the mesh design and by increasing the

number of cores Nc ≤ Nf , where Nf is the number of faces Sj, a significant speed

up can be obtained, compared to the serial implementation of the FW-H algorithm.

In the parallel version of the code, the sequence of the loops over the time level n

and the face index j is inverted, looping over the faces Sj first and then over time

τn. This allows the estimation of the entire p′ time-history resulting from a specific

face Sj with a single core. The MPI schematic algorithm is shown in Figure 2.9.

Specifically, the number of tasks Ntask equals the number of faces Nf . Each taskj

consists in the estimation of the contribution to the noise radiation from a face Sj.
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core1 coreNc

Ntask−1 Ntask−2

core0

Ntask−Nc

∑Nc
h=1

p′task−Nc(x(i), t)p′task−2(x(i), t)p′task−1(x(i), t)

p′(x(i), t)

core2

Figure 2.9: Flowchart of the FW-H MPI algorithm.

The Nf tasks are split between the Nc computer cores, by assigning a number of

tasks Ntask−h to each core, so that ∑Nc
h=1 Ntask−h = Nf ≡ Ntask.

Each face Sj is then processed separately, by post-processing the entire flow

field time-history on Sj, obtained by CFD. At the end of the post-processing, the

contributions to p′
(
x(i), t

)
from different processes taskj on faces Sj are summed up

by each slave coreh and the result is passed to the master core 0. The latter sums the

contributions to p′
(
x(i), t

)
from all Nc cores to obtain the p′

(
x(i), t

)
at the observer

positions.

2.4 CFD dataset

The time-dependent flow prediction given in input to the new AFW-H and CFW-H

tools for the jet noise applications presented in Chapters 4 and 5 was obtained

by CFD. The density, velocity, and pressure fields on the control FW-H surfaces

were provided by two numerical partners of the AeroTraNet2 project [13], i.e. the

University of Leicester (UoL) and the Centre Européen de Recherche et de Formation

Avancée en Calcul Scientifique (Cerfacs). Specifically, the Detached Eddy Simulation

(DES) method implemented in the in-house code Cosmic [15, 132] was used at

UoL, while the LES approach in the ONERA elsA software [130] was used at
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Cerfacs [16, 133, 134, 135, 136].

The database for the single-stream jets investigated in Section 4.1 was obtained

by LES [134, 135] for the subsonic case (Section 4.1.1) and by DES [15] for the

supersonic case (Section 4.1.2). Both DES [15, 132] and LES [16, 133] data were

available for the dual-stream under-expanded jet discussed in Section 4.2. Finally,

for the in-flight single-stream jet presented in Section 5.2, LES data by Pineau [136]

was used.

In Chapter 4, the results from the new Python AFW-H tool are indicated by

a dual label referring to both the CFD code and the FW-H formulation adopted

in the two-step hybrid approach coupling CFD and acoustic analogy. For instance,

the “Cosmic/AFW-H” label indicates that DES predictions by Cosmic [15, 132] were

post-processed by applying the stationary formulation of Section 2.2.3 to extract the

noise radiation from the jet. Where LES predictions by elsA were given in input to

the AFW-H tool, the label “elsA/AFW-H” is used. The same convention is adopted

in Chapter 5 for the acoustic estimation obtained by the new convective analogy

CFW-H tool.

2.4.1 DES by Cosmic

The in-house code Cosmic implements a DES method that aims to combine the

advantages of both LES and Reynolds Averaged Navier-Stokes (RANS) approaches.

Both LES and RANS consist in splitting the time-resolved variables in the flow

governing equations (Navier-Stokes equations) between an averaged component and a

fluctuation [15]. The main difference is in the averaging procedure. A spatial average

is used in LES, while in RANS simulations the averaging is performed over time [15].

Averaging the Navier-Stokes equations generates additional unknown terms that

need to be modelled either with a Sub Grid Scale (SGS) model or with a RANS

model, respectively for LES and RANS [15].

In the DES approach in Cosmic, LES and RANS are alternatively used in different

regions of the CFD domain. Specifically, a pure RANS is used at short distances

from the wall, where this method is known to provide accurate mean boundary layer

predictions [15]. As the distance from the wall is increased, a blending function

converts the behaviour of the code first to a coupled RANS/LES approach and then

60



to a pure LES [15]. The blending function acts on the closure turbulence model that

functions as an SGS model in regions where the mesh is fine enough to allow for LES

and as a RANS model where the mesh is coarser [15].

In terms of spatial discretization, Cosmic is a finite-volume code up to third-order

accurate in space, compatible with structured meshes only [15]. The time integration

is performed with an explicit multi-stage Runge-Kutta time step algorithm, giving a

second-order accuracy in time [15]. The use of a low-order code for DES predictions

produces some computational savings with respect to a LES approach on a high-order

CFD code, such as elsA [130]. The feasibility of this cheaper computation is tested

in [15].

As far as the single-stream and the dual-stream under-expanded jets investigated

in Sections 4.1.2 and 4.2 are concerned, the computational domain was discretised

with a structured multi-block body-fitted Cartesian mesh [15]. The mesh is built

with a butterfly topology in order to avoid any singularity on the jet axis as it occurs

with cylindrical meshes [15]. In order to save computational cost without degrading

the accuracy of the solution with spurious reflections at the boundaries of the domain,

a sponge region surrounds the physical domain [15]. The function of the sponge

region is to damp outgoing waves in order to reduce their amplitude to values that

can be handled by the non-reflective boundary conditions [15]. The total number of

cells in the finite volume discretization is around 65.8 × 106 for the single-stream

under-expanded jet and 226× 106 for the dual-stream under-expanded jet [15].

2.4.2 LES by elsA

The elsA software [130] is a high-order CFD solver developed by ONERA that was

used at Cerfacs to generate LES predictions of the flow for the test cases investigated

in Chapters 4 and 5. ElsA is a finite-volume multi-block structured solver with a

sixth-order space accurate scheme [16]. It uses for the time integration a six-step

low storage Runge-Kutta Dispersion Relation Preserving (DRP) scheme by Bogey

and Bailly[137] [16]. As in the Cosmic code, the mesh used in elsA has a butterfly

topology that allows for a more uniform mesh close to the jet axis [16]

In the test cases investigated in this work, the LES obtained by elsA is initialized

by a RANS simulation used as boundary and initial conditions [16]. The RANS
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prediction is first interpolated to a coarse LES mesh in order to accelerate the transient

phase characterised by an non-physical behaviour of the jet [16]. Afterwards, the

simulation is progressed in time with the finer LES mesh used for the data acquisition

process [16]. As far as the time step is concerned, the simulation is initialised with a

constant CFL that allows for a variable time step. The time step achieved during

this phase is then used for the constant time step LES.

2.4.3 FW-H surface placement in the CFD domain

The FW-H surface could theoretically be placed everywhere in the flow, as the

FW-H acoustic analogy allows for non-linearities to be present on or outside the

F (x, t) = 0 surface (see Section 2.2). However, if the quadrupole noise distribution in

the volume outside the surface is neglected, as in the jet noise applications presented

in Chapters 4 and 5, special care needs to be taken to ensure the correct placement of

the control surface, as previously discussed in Sections 2.2 and 2.2.1. In 2006, Suzuki

and Colonius [138] discussed the different regions of the pressure field in a single

round jet, identifying three main regimes. The mixing layer of the jet is characterised

by non-linear hydrodynamic perturbations. These perturbations decay exponentially

outside the mixing layer, with increasing radial distance from the jet axis [138]. This

behaviour allows to identify both a “non-linear hydrodynamic” (mixing layer) and

a “linear hydrodynamic” (near-field outside the mixing layer) regime [138]. In the

latter, the non-linear perturbations associated with instability waves generating at

the shear-layer become negligible and the pressure field is characterized by a mixture

of linear hydrodynamic perturbations and of radiating pressure waves [138]. Further

away from the jet axis, where the hydrodynamic perturbations are far weaker than

the acoustic waves, a “linear acoustic” regime can be identified. The three regimes

are shown in Figure 2.10, from [138].

In Chapters 4 and 5, the correct placement of the FW-H surface is tested by

comparing the acoustic prediction between nested surfaces enclosing the jet. The

surfaces have the same shape and axial size, but the radial size increases moving

from the innermost to the outermost surface. If the acoustic estimation is essentially

invariant between two or more surfaces, this means that the control surface is correctly

placed in the linear regime of the pressure field [138]. The specific regime in which the
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Figure 2.10: Diagram of the flow regimes of a round jet in the radial direction at

x/D = 4 from Suzuki and Colonius [138].

surface is placed is also discussed in Chapters 4 and 5 for the test cases considered,

based on Figure 2.10.
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Chapter 3

Advanced-time FW-H acoustic

analogy code validation

In this chapter, the new Advanced-time Ffowcs Williams-Hawkings acoustic analogy

(AFW-H) tool is validated on a set of elementary noise sources of increasing complexity.

Both omnidirectional and directive sources are considered, including monopole (Sec-

tion 3.1.1), dipole (Section 3.1.2), and quadrupole sources (Sections 3.1.3 and 3.1.4).

These elementary sources are often used for modelling the acoustic radiation from

unsteady flows. Specifically, quadrupole sources are used to represent the noise

generated aerodynamically from free jets [1], while a distribution of dipole-type

sources is used in the presence of solid bodies [68] (see Section 2.2).

This validation process provides confidence in using the time-domain code to

predict the near-field and the far-field noise from unsteady flows, leading to single

and dual-stream jet noise applications, in either a stationary or a uniformly convected

medium, respectively in Chapters 4 and 5.

An unexpected behaviour of the acoustic analogy numerical tool is found with a

lateral quadrupole source placed close to the FW-H surface corners, in Section 3.1.4.

Section 3.2 presents the results of a parametric study that further investigates this

behaviour and aims to explain its occurrence.

64



3.1 Predicting noise radiated from elementary

sources

Figure 3.1 shows the layout of the elementary source test cases that is used to

validate the AFW-H tool. Specifically, a prismatic FW-H integration surface is

defined relative to the observer and to the source locations. The surface size and

position are defined in the Cartesian reference system shown in Figure 3.1.

All tests use FW-H integration surfaces of the same topology, which is a square

prism of cross-section a× a, and length 2` normal to this cross-section. The prism

extends symmetrically about the x1 = 0 plane over the range −` ≤ x1 ≤ `, enclosing

the source locations s(1) and s(2).

a

a

x2

` θ

s(2)

o(n)

s(1)

ro
`

x1

x3

Figure 3.1: Sketch of the prismatic FW-H integration surface, showing the nth

observer o(n) of a circular array centred at the origin and the source locations s(1)

(origin) and s(2) (proximal to the corner of the FW-H surface).

The location s(1) is chosen to reproduce the known directivity pattern of the

elementary noise sources, for which analytical reference solutions are available [47,

139]. The radiation pattern of each noise source is discussed in Sections 3.1.1– 3.1.4,

where it is shown that the AFW-H code correctly reproduces these patterns. Position

s(2) is defined to test the robustness of the AFW-H code on the source being proximal

to the corner of the prismatic FW-H surface.

A circular array of 40 observers in the x3 = 0 plane set at a radial distance ro
from the origin of the reference system is considered. These observers are uniformly
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spaced in θ, with ∆θ = 9°. Their position is defined by the distance from the origin

ro and the angle θ from the x1-axis, as shown in Figure 3.1. The coordinates in

the Cartesian reference system of the nth observer are x(n) = ro
(
cos θ(n), sin θ(n), 0

)
,

with θ(n) = (n− 1) ∆θ, n = 1, 2, . . . , 40, and θ ∈ [0; 2π). The radius of the circular

array of observers is denoted by ro to distinguish it from the distance source-observer

r = |x− y|. Whereas r = ro for a source located at s(1), r 6= ro for any source

located off-origin, as at position s(2).

The noise radiation is estimated for each observer of the circular array in terms

of the pressure fluctuation time-history. Collectively, the amplitudes of the acoustic

disturbance at each observer determine the source directivity that is compared against

the reference analytical solutions. Pressure fluctuations and radiation patterns are

reported for each source, for both locations s(1) and s(2), in Sections 3.1.1– 3.1.4.

The effect of the FW-H surface position on the acoustic prediction is also investi-

gated by varying the size of the square prism (a and `) around the sources located at

s(2). The solution is shown to be independent from the FW-H surface (Section 3.1.4),

as it is expected in a well-posed porous FW-H formulation application [54, 85].

If a source is located at s(2) within a short distance d from the corner of the

FW-H square prism compared to the acoustic wavelength λ (d/λ� 1), a discrepancy

between the analytical solution and the numerical prediction is found. Unexpectedly,

Section 3.2 shows that increasing either the time resolution or the space resolution

does not improve the noise prediction for d/λ below a certain limit value, even for

simple elementary sources.

Further numerical tests are performed to investigate this behaviour by varying the

source location s(2) along the prism diagonal, from the origin of the axes to positions

proximal to the (`, a/2, a/2) corner of the FW-H integration surface. This provides

two parametric studies of the mismatch between the reference analytical solution

and the numerical prediction in Sections 3.2.1 and 3.2.2. This study produces a

guideline for the normalised distance d/λ that gives an acceptable numerical error

for practical engineering applications of the new AFW-H code.

It is inferred that the integration on the FW-H surface for d/λ� 1 presents some

numerical issue that cannot be overcome by simply improving the discretization.

The integral solution of the FW-H acoustic analogy was found by the author,
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in collaboration with the supervisory team and Emeritus Professor Christopher

Morfey, to be characterised by large contributions of opposite sign cancelling out by

summation, when d/λ� 1. These are extremely challenging to evaluate numerically,

even with double precision arithmetics, causing a significant numerical error when

the point source is located proximal to the FW-H corner. A further investigation is

required to clearly determine the cause of this unexpected behaviour.

3.1.1 Monopole

The first source considered is a monopole of sound power level LW = 96.83 dB re

1pW radiating at a frequency f = 5.67 kHz (λ = 0.06 m). This acoustic power gives

a Sound Pressure Level (SPL) of 80 dB re 20 µPa at 33.33λ from the source [140].

A FW-H surface is used with base side a = λ/3 and half height ` = λ/6, resulting in

a surface of a cube centred at the origin of the reference system. This integration

surface is discretised with a uniform mesh of N nodes in each spatial direction that

corresponds to Nλ = (λ/a)×N = 3N points per wavelength.

The reference analytical solution for the acoustic pressure fluctuation from the

monopole source is [47]

p′ (r, t) = −Bq
r

sin (ωt− kr) , (3.1)

where B = ρ0c0k (4π)−1, ρ0 = 1.225 kg/m3, c0 = 340.25 m/s, k = ω/c0, q =(
8πc0Wρ−1

0 ω−2
)1/2

, W = 10Lw pW, and ω = 2πf . r = |r| = |x− y| is the source-

observer radiation distance, from the monopole position y to the observer position x.

In Equation 3.1, sin (ωt− kr) represents the oscillatory part (both in time and in

space) and the amplitude of the pressure fluctuation is Bq/r ∝ 1/r.

The source strength q is obtained by imposing SPL=80 dB re 20 µPa at r = 33.33λ

in Equation 3.1. Noise predictions are obtained at ro,1 = λ and at ro,2 = 2λ on the

circular array of observers of Figure 3.1, from the application of the acoustic analogy

of Section 2.2.3. Figure 3.2 shows the time-resolved acoustic pressure fluctuation

and the directivity for a monopole source located at s(1). Solid and dash-dot black

lines denote the reference analytical solution, respectively at ro,1 and at ro,2, which is

labelled as “ref”. Blue and red symbols show the corresponding numerical solutions

at ro,1 and at ro,2, respectively.
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The acoustic pressure fluctuation p′ in Figure 3.2(a) is from the observer o(4) at

θ(4) = 27°. This result shows that the AFW-H tool matches the analytical pressure

fluctuation in amplitude, phase, and frequency, at both radial distances [140]. A

small time shift is present in the numerical solution that is not noticeable from

Figure 3.2(a), because the order of magnitude of this time shift is ∆τ/2, where

∆τ = λ/ (NT c0) = 4.41× 10−6 s is the time step of the numerical calculation, with

NT = 40 the number of points per period T and c0 the speed of sound in the

undisturbed medium. This discrepancy is due to the backward finite difference

approximation of Equation 2.39 that is used to discretise the source time derivatives.

This phase shift error can be decreased by increasing the time resolution, by reducing

∆τ .
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Figure 3.2: Radiation in a stationary medium from an omnidirectional noise source

(monopole), located at the origin s(1), to observers placed at radial distances ro,1 = λ

and ro,2 = 2λ from the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and

Nλ = 120.

The ratio of the peak to peak pressure fluctuation amplitude at ro,2 and at ro,1 for

both the numerical and the analytical p′ is 2.0. This shows that the AFW-H method

correctly predicts the geometric scaling of the acoustic intensity with increasing

radial distance from the monopole source, that is I ∝ 1/r2 (acoustic intensity), by

which p′ ∝ 1/r. The spherically symmetric radiation pattern of the monopole is

correctly captured by the FW-H method, at both radial distances ro,1 and ro,2, as
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shown by Figure 3.2(b).

The effect of the spatial discretization error of the FW-H surface on the numerical

predictions is investigated by varying the number of ∆Sk discrete surface elements

(see Section 2.3) on the FW-H surface from 6× 202 (Nλ = 60) to 6× 402 (Nλ = 120)

and to 6× 802 (Nλ = 240). In this analysis, the time step is kept constant to a very

small value, ∆τ = 1.380× 10−7 s, in order to reduce as much as possible the error

contribution due to the temporal discretization. The error

ed =

∣∣∣max (p′FW-H (t))−max
(
p′ref (t)

)∣∣∣
max

(
p′ref

) × 100 (3.2)

in the fluctuating pressure amplitude between the numerical and the analytical

solutions at o(4) at ro,1 reduces from 0.1122% on the baseline mesh to 0.0243% and to

0.0024%, respectively on the 6× 402 mesh and on the 6× 802 mesh. No appreciable

differences in frequency are observed.

The effect of the temporal discretization is also examined by increasing the

temporal resolution from ∆τ = 8.820 × 10−6 s (NT = 20) to ∆τ = 4.410× 10−6 s

(NT = 40) and to ∆τ = 2.205× 10−6 s (NT = 80), resulting in a decrease of the error

ed from 2.7198% to 0.7690% and to 0.2273% at the same observer location. In this

case, the mesh is refined to 6× 1602 in order to reduce the error contribution due to

the spatial discretization.

Thus, as both the spatial and the temporal resolutions are improved, the numerical

solution converges to the analytical solution [140]. The spatial and the temporal

resolutions of Nλ = 60 points per wavelength (6 × 202 ∆Sk discrete faces) and

NT = 40 points per period (∆τ = 4.41× 10−6 s) give an error lower than 1% and

appear appropriate for this application.

Figure 3.3 displays the acoustic results for the off-centre source location s(2)

versus the benchmark analytical solution, on a circular array of 40 uniformly spaced

observers at the constant radial distance ro = 10λ from the origin. ro does not

coincide with the radiation distance r = |x− y| in this case. For this test, the FW-H

surface of a cube is used with a = 2λ and ` = λ.

Figure 3.3(a) shows the predicted acoustic pressure fluctuation p′ at the observer

positions o(4) (θ(4) = (n− 1) ∆θ|n=4 = 27°) and o(18) (θ(18) = 180° − 27°). The

analytical solution is labelled “ref” and it is denoted by the solid-black line and by
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the dash-dot black line, respectively for o(4) and o(18). Blue and red symbols are used

respectively for the numerical predictions at o(4) and at o(18).
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Figure 3.3: Radiation in a stationary medium from an omnidirectional noise source

(monopole), located at s(1) (origin) and at s(2) (y(2) = (0.92, 0.92, 0.92)λ), to observers

placed at a constant radial distance ro = 10λ from the origin. a = 2λ, ` = λ, λ = 0.06

m, NT = 40, and Nλ = 20.

The source s(2) is placed at y(2) = (0.92, 0.92, 0.92)λ, while the corner of the

FW-H surface is at (1.00, 1.00, 1.00)λ. In Figure 3.3(a), the prediction substantially

matches the analytical solution in amplitude, phase, and frequency at both observers

o(4) and o(18), despite the small distance d/λ = 0.14 between the source and the

corner of the FW-H integration surface. The acoustic pressure fluctuation amplitude

at the observer o(4) is greater than that at o(18), due to the shorter source-observer

distance. This causes the directivity to lose its spherical symmetry as the source is

placed off-origin at s(2), as shown by Figure 3.3(b).

Figure 3.3(b) reports the directivity on the ro = 10λ circular array centred at

the origin for both s(1) and s(2). The black lines denote the analytical solution and

the symbols denote the corresponding numerical prediction. A substantial match

is found between the analytical solution and the numerical prediction of the sound

pressure directivity for both source locations. A spherically-symmetric pattern is
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obtained with the source placed at s(1). For a monopole located at s(2), towards the

corner of the FW-H surface, an oval directivity pattern is obtained that has a 45°

line axis of symmetry. The maximum p′ amplitude is reached at θ(6) = 45°, in the

direction of the shortest distance from the source to the observer, while the minimum

p′ amplitude is predicted at θ(26) = 180° + 45° = 225°.

3.1.2 Dipole

In the second test, a directional source is considered. This is a x2-axis dipole sound

source, which radiates at the same frequency f = 5.67 kHz (λ = 0.06 m) as the

monopole in Section 3.1.1. The same layout of Figure 3.1 is used as in Section 3.1.1.

The two source locations s(1) and s(2) test respectively the dipole source radiation

directivity and the influence on the acoustic analogy prediction of placing a source

close to the FW-H integration surface corner.

The time-resolved acoustic pressure fluctuation for the source position s(1) at the

origin of the reference system is reported in Figure 3.5, together with the analytical

solution labelled “ref”. The reference analytical solution is [139]

p′ (r, t) = −Bk (qε)
r

(r̂ · ε̂)
[
cos (ωt− kr) + sin (ωt− kr)

kr

]
, (3.3)

where ε is the dipole direction vector, oriented along the x2-axis in the current test,

while ε = |ε| and ε̂ = ε/ε are respectively its magnitude and its unit vector.

The magnitude ε of the dipole direction vector ε represents the dipole source

size. Its meaning can be explained by considering two point monopole sources,

located close to one another, to approximate the dipole radiation as in Figure 3.4.

In this case, ε represents the distance between the two monopole sources, which is

set to a small value with respect to the smallest acoustic distance source-observer

r = |x− y|. For ε < 10−3r, the acoustic field generated by the two monopole sources

approximates well the sound field of a dipole acoustic source. The dipole source

strength is therefore represented by the quantity (qε), which assumes a finite value

normalised to give the SPL of 80 dB re 20µPa on the x2-axis, 33.33λ away from the

source, as in Section 3.1.1.

By referring to Figure 3.1, the dot product between the two unit vectors r̂ and ε̂
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+q

−q

ε

θ(n)

r

o(n)x2

x1

Figure 3.4: Schematic of the dipole source approximated by two monopole sources

of equal and opposite strength q spaced ε → 0 apart. The plane x3 = 0 is shown,

together with a generic observer o(n) from the circular array defined in Section 3.1.

can be stated as

r̂ · ε̂ = cos (90°− θ) = sin (θ) , (3.4)

which represents the directivity pattern of the source. The maximum radiation

is therefore at θ = 90° and at θ = 270° from the positive x1-axis (i.e. on the x2-

axis), where sin (θ) = ±1. In all the other directions, the amplitude of the pressure

fluctuation is lower, as |sin (θ)| < 1 for θ 6= 90° + n180°. Along the x1-axis direction,

the dipole does not radiate, as sin (θ) = 0 where θ → 0.

The second term in the square brackets in Equation 3.3 is a near-field term,

because of its dependence on 1/ (kr) that approaches zero where kr � 1. The scaling

factor with distance r from the source, along any specific θ direction, is given by

ζdip (r) =

√
1 + 1

(kr)2

r
. (3.5)

Consequently, the amplitude of the acoustic pressure fluctuation in the far-field,

where kr � 1, decays as 1/r.

Figure 3.5 uses the same notation as Figure 3.2(a), by which the black lines

and the symbols indicate respectively the reference solutions and the numerical

predictions. The numerical solution is obtained using the FW-H surface of a cube

with a = λ/3 and ` = λ/6. Two circular arrays with 40 observers each, equispaced

in θ, are defined respectively at ro,1 = λ and at ro,2 = 2λ.
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Figure 3.5: Radiation in a stationary medium from a dipole point source, located at

the origin s(1), to observers placed at radial distances ro,1 = λ and ro,2 = 2λ from

the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and Nλ = 120.

Figures 3.5(a) and 3.5(b) show the acoustic pressure time-history respectively at

the observer o(4), for which θ(4) = 27°, and at o(8), for which θ(8) = 63°. There is no

noticeable difference in amplitude, phase, or frequency between the analytical and

the numerical time traces, at both observers, indicating that the acoustic pressure is

correctly predicted by the AFW-H method.

Upon close examination of the results, a small phase shift due to the backward

finite difference approximation of the source time derivatives is found as in Sec-

tion 3.1.1, which is not noticeable in Figures 3.5(a) and 3.5(b). Doubling the radial

distance of the observers from the origin to ro,2 = 2λ doubles the source-observer

distance, as the dipole is located at s(1). The pressure perturbation amplitude

is reduced by a factor of 0.495 in both the analytical and the numerical results,

confirming that the analytical scaling of the sound pressure with distance from the

source in Equation 3.5 is correctly captured. The good match in amplitude, phase,

and frequency between the reference analytical pressure fluctuation and the AFW-H

integration surface method prediction is maintained at this increased radial distance.

Figure 3.6(a) displays the acoustic pressure fluctuation at θ(11) = 90°, on the

dipole axis, where the dipole radiation reaches its maximum amplitude. The AFW-H

prediction matches again the reference solution in amplitude, phase, and frequency,
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for both radial distances ro,1 and ro,2.

Comparing Figures 3.5(a) and 3.5(b) with Figure 3.2(a) in the previous section, it

can be observed that the dipole radiation at o(4) and at o(8) exhibits a lower amplitude

at the same distance from the source compared to the monopole, even though the

strength of the two elementary sources is defined to obtain the same 80 dB re 20µPa

on the x2-axis, 33.33λ away from the source. According to Equations 3.3 and 3.4,

away from the x2-axis, the acoustic pressure fluctuation amplitude reduces by a

factor of sin (θ) for a dipole point source. Therefore, at the observers o(4) and o(8),

the pressure fluctuation amplitude is expected to be respectively 0.454 and 0.891 of

the maximum amplitude at θ(11) = 90°, as confirmed by the numerical predictions in

Figures 3.5(a)– 3.6(a).

The sin (θ) directivity of the dipole point source is confirmed by Figure 3.6(b).

The typical figure-of-eight shape of the dipole radiation pattern [47, 139] is clearly

visible at both radial distances ro,1 and ro,2 and the numerical prediction correctly

follows the analytical solution. This indicates that the new AFW-H tool is able to

capture the radiation characteristics of directive sources to a good approximation.
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Figure 3.6: Radiation in a stationary medium from a dipole point source, located at

the origin s(1), to observers placed at radial distances ro,1 = λ and ro,2 = 2λ from

the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and Nλ = 120.

Figure 3.7 shows the results for a dipole source of the same strength placed
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off-origin at s(2), at location y(2) = (0.92, 0.92, 0.92)λ. 40 observers equispaced in θ

are set at constant ro = 10λ from the origin. The FW-H surface has base side a = 2λ

and half height ` = λ in this test. The acoustic pressure fluctuations predicted at

o(4) and at o(18) are reported in Figure 3.7(a). A good match is shown between

the prediction and the reference solution. The noise radiation to observers o(4) and

o(18), which are placed symmetrically about the x2-axis, differs, displaying a greater

amplitude at o(4), which is located in the first quadrant. This is due to placement

of the dipole source off-origin, at s(2), giving a different source-observer distance r

distribution around the circular arc of observers, which is defined about the origin.
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Figure 3.7: Radiation in a stationary medium from a dipole point source, located at

s(1) (origin) and at s(2) (y(2) = (0.92, 0.92, 0.92)λ), to observers placed at a constant

radial distance ro = 10λ from the origin. a = 2λ, ` = λ, λ = 0.06 m, NT = 40, and

Nλ = 20.

In Figure 3.7(b), the directivity pattern from the source at the off-origin position

s(2) is compared to the characteristic figure-of-eight shape of the dipole radiation,

obtained from a source of the same strength located at s(1). Placing the dipole at s(2)

breaks the symmetry in directivity about the x2-axis. The radiation is amplified in the

first and fourth quadrants, respectively for angles 30° < θ < 90° and 300° < θ < 360°,

while an attenuation is produced in the third quadrant (180° < θ < 270°) and in
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most of the second quadrant (120° < θ < 180°). A good match can be appreciated

between the analytical and the numerical results for the off-origin source location

s(2), which is characterised by a short distance d between the source and the corner

of the prismatic FW-H surface, d/λ = 0.14.

3.1.3 Longitudinal quadrupole

The second directional sound source considered in this study is a x2-axis longitudinal

quadrupole that can be approximated by two dipole sources with equal strength and

in-line axes [47], as shown in Figure 3.8. The analytical solution for the pressure

perturbation [139] at distance r from the source is

p′ (r, t) = −B1
(qε2)
r

(r̂ · ε̂)2
[

3
kr

cos (ωt− kr) +
(

3
(kr)2 − 1

)
sin (ωt− kr)

]

+B1
(qε2)
r

[
1
kr

cos (ωt− kr) + 1
(kr)2 sin (ωt− kr)

]
,

(3.6)

where B1 = ρ0c0k
3 (4π)−1, the vector ε is the orientation of the longitudinal

quadrupole, ε2 = |ε|2, and ε̂ = ε/ε. The magnitude ε of the longitudinal quadrupole

orientation vector ε assumes a similar meaning as for the dipole test case, as shown

in Figure 3.8. The longitudinal quadrupole source strength is represented by the

quantity (qε2) in Equation 3.6.

θ(n)

r

o(n)x2

x1

ε

-ε

-2q
+q

+q

Figure 3.8: Schematic of the longitudinal quadrupole source approximated by two

in-line dipole sources (four monopoles) of equal and opposite strength (qε). The

plane x3 = 0 is shown, together with a generic observer o(n) from the circular array

defined in Section 3.1.
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Equation 3.6 does not allow an immediate reading of the source directivity.

However, a far-field (kr � 1) approximation to Equation 3.6 can be obtained by

neglecting the terms proportional to 1/kr and to 1/(kr)2 in the square brackets in

Equation 3.6, which simplifies to

p′ (r, t) = B1
(qε2)
r

(r̂ · ε̂)2 sin (ωt− kr) , as kr →∞. (3.7)

From Equation 3.7, the far-field directivity of the longitudinal quadrupole radia-

tion is

(r̂ · ε̂)2 = cos2 (90°− θ) = sin2 (θ) , (3.8)

which is the square of the dipole far-field directivity represented by Equation 3.4.

Therefore, the pressure fluctuation amplitude is likewise maximum at θ = 90° and at

θ = 270°, along the longitudinal quadrupole axis. The minimum amplitude for p′ is

on the x1-axis and a similar figure-of-eight is obtained (in the far-field) as for the

dipole. Narrower lobes are obtained compared to the dipole radiation, due to the

square power in Equation 3.8.

In the far-field, Equation 3.7 shows that the acoustic pressure fluctuation am-

plitude scales with the source-observer distance as 1/r. In the near-field, the

approximation of Equation 3.7 is not valid and the pressure fluctuation is given by

Equation 3.6. From Equation 3.6, it can be derived that the pressure fluctuation

scales with distance from the source by the factor

ζlo-q (r) =

√
1 + 4

(kr)4

r
, (3.9)

where the subscript “lo-q” stands for longitudinal-quadrupole.

In terms of the near-field directivity, it can be noticed that, in Equation 3.6, the

first term has a directivity of sine squared (Equation 3.8), while the second term

is a spherically symmetric source. The latter radiates equally in all directions and

vanishes in the far-field, where the first term is dominant. Thus, in the near-field, the

directivity pattern is obtained by summing a spherical pattern with a figure-of-eight

shaped pattern. The result is a four-lobes pattern, with the x2-axis lobes becoming

increasingly dominant as the observers are moved away from the point source.

The layout in Figure 3.1 is also used for this longitudinal quadrupole source

test and the source strength qε2 is determined by imposing the same SPL of 80 dB
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re 20µPa on the x2-axis, 33.33λ away from the source, as in Section 3.1.2. The

source is placed at the origin s(1), at y(1) = (0.0, 0.0, 0.0)λ, and then at s(2), at

y(2) = (0.92, 0.92, 0.92)λ, proximal to the FW-H surface corner.

The acoustic results for the longitudinal quadrupole point source are reported in

Figures 3.9 and 3.10 for the s(1) source location and in Figure 3.11 for the off-origin

source position s(2).
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Figure 3.9: Radiation in a stationary medium from a longitudinal quadrupole point

source, located at the origin s(1), to observers placed at radial distances ro,1 = λ and

ro,2 = 2λ from the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and Nλ = 120.

The acoustic pressure fluctuations from the longitudinal quadrupole located at

s(1) predicted by the AFW-H tool at observers o(4) (θ(4) = 27°), o(8) (θ(8) = 63°),

and o(11) (θ(11) = 90°) are plotted against the reference solution of Equation 3.6,

respectively in Figures 3.9(a), 3.9(b), and 3.10(a). Results are reported for two radial

positions of the circular array of observers, ro,1 = λ and ro,2 = 2λ. In Figure 3.10(b),

the directivity predicted by the AFW-H tool at ro,1 and at ro,2 is compared with the

reference analytical solution.

Solid and dash-dot black lines denote the analytical solution at ro,1 and at ro,2,

respectively, while blue and red symbols denote the numerical prediction. The latter

correctly reproduces both the pressure fluctuation time-history and the directivity

pattern, as shown by the good match with the reference solution labelled “ref” in

Figures 3.9 and 3.10.
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Figures 3.9(a)–3.10(a) show an increase in the pressure fluctuation amplitude

as the angle θ increases from 27° to 90°. The peak to peak ratio between the

disturbances at observers o(4) and o(11), o(8) and o(11) are respectively 0.21 and 0.79,

in agreement with the analytical directivity pattern sin2 (θ) for the longitudinal

quadrupole, confirming the good prediction capability of the code in terms of angular

scaling with θ.
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Figure 3.10: Radiation in a stationary medium from a longitudinal quadrupole point

source, located at the origin s(1), to observers placed at radial distances ro,1 = λ and

ro,2 = 2λ from the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and Nλ = 120.

The scaling with r is correctly reproduced by the AFW-H tool. For instance,

at observer o(8), the ratio of the amplitudes of the acoustic pressure fluctuation at

ro,2 = 2λ and at ro,1 = λ is 1.995 for the numerical prediction and it is 1.994 for the

analytical solution.

At the radial distance ro,1 = λ, the directivity pattern shown in Figure 3.10(b)

is influenced by the near-field omnidirectional term in Equation 3.6 and four lobes

are visible. The x2-axis lobes are far greater than the x1-axis lobes that almost

vanish when the distance is doubled to ro,2 = 2λ. It is worth noticing that both

distances ro,1 and ro,2 are of the same order of magnitude of the acoustic wavelength

λ and, therefore, do not satisfy the far-field condition kr � 1. However, at ro,2 the

directivity pattern reported in Figure 3.10(b) is better approximating the figure-of-
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eight shape, typical of the longitudinal quadrupole radiation in the far-field. This

trend is confirmed by the s(1) directivity pattern in Figure 3.11(b), which reports

equivalent predictions at the increased radial distance of ro = 10λ. The directivity

shows the same topology as for the dipole source, with the two lobes slightly narrower,

as determined by Equations 3.7 and 3.8.
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Figure 3.11: Radiation in a stationary medium from a longitudinal quadrupole point

source, located at s(1) (origin) and at s(2) (y(2) = (0.92, 0.92, 0.92)λ), to observers

placed at a constant radial distance ro = 10λ from the origin. a = 2λ, ` = λ, λ = 0.06

m, NT = 40, and Nλ = 20.

Figure 3.11(a) shows the pressure fluctuation time history at observers o(4), at

θ(4) = 27°, and o(18), at θ(18) = 180°− 27°, from the longitudinal quadrupole placed

at the off-origin location s(2). These are two observers from a circular array of 40

observers evenly spaced in θ and placed at a constant radial distance ro = 10λ on the

x3 = 0 plane. A FW-H surface of a cube was used with a base side a = 2λ and a half

height ` = λ. The black lines denote the analytical solution labelled “ref” and the

symbols denote the numerical prediction. A good match is shown, at both observers,

in terms of amplitude, phase, and frequency of the pressure fluctuation.

Observers o(4) and o(18) are symmetrically placed about the x2-axis, but the

predicted pressure fluctuation amplitude is weaker at o(18), due to this observer

being farther away from the longitudinal quadrupole source sited at s(2), at y(2) =
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(0.92, 0.92, 0.92)λ.

A comparison between the directivity patterns from the source placed at s(1) and

at s(2) is shown in Figure 3.11(b). With a source placed at the origin at s(1), the

directivity has the typical far-field shape of a figure-of-eight, while with a source

placed off the origin at s(2), the radiation pattern becomes asymmetric, with the

direction of maximum radiation in the first quadrant (θ < 90°). The near-field term

in Equation 3.6 appears to make a negligible contribution at the radial distance

ro = 10λ, as the radiation pattern of Figure 3.11(b) displays only two lobes, as for

the dipole source.

3.1.4 Lateral quadrupole

The last test case for the validation of the advanced time Ffowcs Williams and

Hawkings acoustic analogy code is the numerical prediction of the radiating pressure

field from a lateral quadrupole. The analytical expression of the acoustic pressure

fluctuation from a lateral quadrupole at distance r from the source is [47]

p′ (r, t) = −4B1
(qε1ε2)
r

(r̂ · ε̂1) (r̂ · ε̂2)[
3
kr

cos (ωt− kr) +
(

3
(kr)2 − 1

)
sin (ωt− kr)

]
,

(3.10)

where B1 = ρ0c0k
3 (4π)−1 and ε1 and ε2 are the quadrupole axes, with ε1 = |ε1| and

ε2 = |ε2|. The caret variables ε̂1 and ε̂2 indicate the corresponding unit vectors. In

this test, ε1 and ε2 are oriented respectively in the positive x1-axis direction and in

the positive x2-axis direction, as shown in Figure 3.12. The quadrupole strength

qε1ε2 is defined to obtain a SPL of 80 dB re 20µPa on the x1 = x2 line of the x3 = 0

plane (θ = 45° in Figure 3.1), 33.33λ away from the lateral quadrupole source as

placed at the origin of the reference system. ε1 and ε2 assume infinitesimally small

values compared to the minimum distance source-observer r = |x− y| considered

herein, in order to accurately approximate a point lateral quadrupole source.

The directivity pattern for this source is given in Equation 3.10 by the term

(r̂ · ε̂1) (r̂ · ε̂2) = cos (θ) cos (90°− θ) = cos (θ) sin (θ) = 1
2 sin (2θ) . (3.11)

Equation 3.11 states that the lateral quadrupole directivity is characterised by four

lobes. Along the x1-axis (θ = 0 and θ = 180°) and along the x2-axis (θ = 90° and
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Figure 3.12: Schematic of the lateral quadrupole source approximated by two dipole

sources (four monopoles) with equal and opposite strength (qε2) and parallel axes

spaced ε1 → 0 apart. The plane x3 = 0 is shown, together with a generic observer

o(n) from the circular array defined in Section 3.1.

θ = 270°), the lateral quadrupole does not radiate, while four maxima in the noise

radiation amplitude form at angles θ = 45°± n90°, with n integer.

The terms proportional to 1/ (kr) and to 1/ (kr)2 in the square brackets in

Equation 3.10 are near-field contributions vanishing for kr → ∞. By neglecting

these terms, the far-field approximation of Equation 3.10

p′ (r, t) = 4B1
(qε1ε2)
r

(r̂ · ε̂1) (r̂ · ε̂2) sin (ωt− kr) , as kr →∞, (3.12)

is obtained, in which p′ (r, t) scales as 1/r.

In the near-field, the approximation of Equation 3.12 is inaccurate and the scaling

with distance r from the source is given by Equation 3.10 as

ζla-q (r) =

√
1 + 3

(kr)2 + 9
(kr)4

r
, (3.13)

where the subscript “la-q” refers to the lateral quadrupole source.

The results reported herein are obtained using the layout of Figure 3.1. A

prismatic FW-H integration surface is defined and 40 observers are evenly spaced in

θ on a circular array at a radial distance ro from the origin of the reference system.

Two locations for the lateral quadrupole position are tested. One is the origin s(1),

at y(1) = (0.0, 0.0, 0.0)λ. The other location is s(2), used in Figures 3.16 and 3.17,

placed proximal to the corner of the FW-H surface at y(2) = (0.92, 0.92, 0.92)λ.
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Figures 3.13 and 3.14 report the time-dependent acoustic pressure fluctuation and

the directivity due to the lateral quadrupole point source located at s(1), obtained

with FW-H surface of a cube of base side a = λ/3 and half height ` = λ/6. In

this layout, the radial distance origin-observer ro is the same as the distance source-

observer r and the radiation is centrally symmetric about the origin. Predictions are

obtained for two values of the radial distance to the observers, which are ro,1 = λ

and ro,2 = 2λ = 2ro,1.

The p′ time-history at three observers is given in Figures 3.13(a), 3.13(b), and

3.14(a). Solid and dash-dot black lines denote the analytical solution, labelled “ref”,

respectively for ro,1 and ro,2. Blue and red symbols denote the FW-H tool estimations.

The three observers are o(6) at θ(6) = 45° in the direction of maximum radiation,

and two other observers placed symmetrically about the θ = 45° line, at θ(4) = 27°

(o(4)) and at θ(8) = 63° (o(8)). The acoustic pressure fluctuation at o(4), displayed in

Figure 3.13(a), has the same amplitude and phase as for observer o(8) in Figure 3.14(a).

Figure 3.13(b) relative to o(6) shows an acoustic pressure fluctuation of higher

amplitude than at o(4) and at o(8). These results are in agreement with the analytical

directivity pattern of Equation 3.11.

The scaling of the pressure fluctuation amplitude with increasing radial distance

from the source is well predicted by the AFW-H tool for the lateral quadrupole

source. In Figure 3.13(b), the ratio of the pressure fluctuation amplitudes at ro,2 and

at ro,1 is 2.067 from the tool, compared to 2.060 from Equation 3.13.

The typical four-leaved clover shape is obtained for the directivity of the lateral

quadrupole source, as shown in Figure 3.14(b), where the numerical prediction is

shown to reproduce very accurately the reference solution at both radial distances

ro,1 and ro,2. A good overall match is shown between the analytical solution of

Equation 3.10 and the numerical prediction obtained by implementing Equations 2.21-

2.22, of Section 2.2.3.

Figures 3.16 and 3.17 document the validation of the AFW-H code with a source

placed at s(2), proximal to the FW-H prism corner, and observers placed at ro = 10λ.

Specifically, Figures 3.16(a), 3.16(b), and 3.17(a) display the directivity patterns for

a lateral quadrupole source radiating from locations s(1) and s(2), with three different

FW-H surfaces, which are represented in Figure 3.15 and referred to as F1 = 0,
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Figure 3.13: Radiation in a stationary medium from a lateral quadrupole point

source, located at the origin s(1), to observers placed at radial distances ro,1 = λ and

ro,2 = 2λ from the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and Nλ = 120.
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θ(8) = 63°.
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Figure 3.14: Radiation in a stationary medium from a lateral quadrupole point

source, located at the origin s(1), to observers placed at radial distances ro,1 = λ and

ro,2 = 2λ from the origin. a = λ/3, ` = λ/6, λ = 0.06 m, NT = 40, and Nλ = 120.
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x2x1

x3

F2 = 0

F3 = 0

Figure 3.15: Sketch of the three integration surfaces used to test the sensitivity of

the acoustic predictions on the FW-H surface position.

F2 = 0, and F3 = 0, respectively.

F1 = 0, shown in black in Figure 3.15, is the innermost FW-H surface of a cube, of

base side a1 = 2λ and half height `1 = λ. It is the same surface used in the previous

sections for predicting the acoustic radiation from sources at s(2). The intermediate

surface F2 = 0, which is shown in blue in Figure 3.15, and the largest surface

F3 = 0, which is shown in green in Figure 3.15, have size (a2, `2) = (2.34λ, 1.17λ)

and (a3, `3) = (2.66λ, 1.33λ), respectively.

Surfaces F1 = 0, F2 = 0, and F3 = 0 test the sensitivity of the predictions

from the AFW-H tool to the integration surface size and position. The results in

Figure 3.16(a), for which the innermost control surface F1 = 0 is used, show that,

by keeping the same FW-H prism size as for the monopole, dipole, and longitudinal

quadrupole tests, the numerical prediction for the off-origin source s(2) does not

reproduce correctly the analytical solution. This is especially noticeable in the

direction of maximum radiation amplitude θ = 45°, where the numerical solution

denoted by the red squares overestimates the analytical solution denoted by the

dash-dot line by a 3% factor.

By increasing the control surface size from (a1, `1) = (2λ, λ) to (a2, `2) =

(2.34λ, 1.17λ), a good match between the AFW-H code prediction and the reference

analytical solution is recovered, as shown in Figure 3.16(b). Figure 3.17(a) shows
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Figure 3.16: Radiation in a stationary medium from a lateral quadrupole point

source, located at s(1) (origin) and at s(2) (y(2) = (0.92, 0.92, 0.92)λ), to observers

placed at a constant radial distance ro = 10λ from the origin. λ = 0.06 m, NT = 40,

and Nλ = 20.
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(a) Directivity pattern with F3 = 0: (a3, `3) =

(2.66λ, 1.33λ) (Di Stefano et al. [141]).
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(b) Pressure fluctuation at observers o(4) (θ(4) =

27°) and o(18) (θ(18) = 180° − 27°), from the

source located at s(2), with F2 = 0: (a2, `2) =

(2.34λ, 1.17λ).

Figure 3.17: Radiation in a stationary medium from a lateral quadrupole point source,

located at s(1) (origin) and s(2) (y(2) = (0.92, 0.92, 0.92)λ), to observers placed at

a constant radial distance ro = 10λ from the origin. λ = 0.06 m, NT = 40, and

Nλ = 20.
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that using the outermost FW-H surface F3 = 0 does not produce any appreciable

further improvement in the match between the analytical and the numerical results

compared to the directivities obtained with F2 = 0. This indicates that the numerical

prediction is independent of the surface size for (a2, `2) ≥ (2.34λ, 1.17λ), with an

error e < 0.1% between the numerical prediction and the analytical reference solution

of Equation 3.10.

Having determined that surface F2 = 0 is appropriate for predicting the acoustic

pressure fluctuations from the lateral quadrupole placed off-origin at s(2) by the

AFW-H tool, the directivity and time-dependent pressure fluctuation history by

using F2 = 0 are discussed in further details. Figure 3.16(b) shows that a lateral

quadrupole source placed at the origin at s(1) generates a symmetric directivity

pattern in the form of a four-leaved clover shape, which is a recognisable feature of

the lateral quadrupole radiation pattern [47, 139].

By placing the sound source off-centre, as with s(2), the sound radiation pattern

becomes asymmetric and the directivity lobe in the first quadrant increases, giving a

peak radiation in the θ = 45° direction. The directivity lobe in the third quadrant

reduces in size and remains symmetric about the θ = 225° line. The remaining

two lobes become asymmetric and lean towards the first quadrant. The reduced

source-observer distance in the first quadrant is responsible for the radiation peak

in the θ = 45° direction. By positioning the sound source on the θ = 45° line, the

quadrupole retains a symmetric radiation about this line.

In spite of the greater complexity of the lateral quadrupole radiation pattern,

Figure 3.16(b) shows that the AFW-H tool has correctly captured this pattern, as the

numerical prediction shown by the symbols overlaps the analytical solution shown

by the lines.

The good noise prediction capability of the AFW-H tool is confirmed by Fig-

ure 3.17(b), in which the pressure fluctuation p′ from the noise source s(2) is plotted

against time t, for two observers o(4) at θ(4) = 27° and o(18) at θ(18) = 180° − 27°.

The FW-H surface F2 = 0 of a2 = 2.34λ and `2 = 1.17λ is used. The numerical

predictions indicated by the symbols match the analytical time traces plotted with

black lines.
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3.2 Numerical error sources in the AFW-H tool

Section 3.1.4 showed how increasing the extent of the FW-H surface from (a1, `1) =

(2λ, λ) to (a2, `2) = (2.34λ, 1.17λ), respectively for surfaces F1 = 0 and F2 = 0 in

Figure 3.15, improved the numerical prediction of the lateral quadrupole radiation

from source s(2) that is proximal to the surface corner. This improvement is shown

by the comparison between Figure 3.16(a) and Figure 3.16(b).

The discrepancy between the reference analytical solution and the numerical

prediction from the AFW-H code in Figure 3.16(a) was thought at first to be due to

the spatial discretization of the FW-H surface. However, by increasing the spatial

discretization of F1 = 0, the numerical prediction did not improve. For this reason,

a detailed investigation of the source of this numerical error was undertaken.

With the source located at s(2), the characteristic length scales governing the

accuracy of the numerical quadrature of the FW-H surface integral are the mesh size

h, the wavelength λ of the radiated sound, and the distance d between the source

and the closest corner of the FW-H surface. The non-dimensional ratio d/λ expresses

how close the source is to the corner of the FW-H integration surface in terms of the

acoustic wavelength λ.

In Figure 3.16(a) the results from the FW-H surface F1 = 0 are obtained with

d/λ = 0.144, which is lower than d/λ = 0.433 for F2 = 0 in Figure 3.16(b). Using

d/λ = 0.144 with F1 = 0 does not allow the correct estimation of the noise radiation

using the current AFW-H code, showing that the placement of the integration surface

in the application of the acoustic analogy to elementary sources is an important

aspect.

Two series of tests are described below to quantify the error sources. In Sec-

tion 3.2.1, the integration surface F2 = 0 of Figure 3.15 is used and a point lateral

quadrupole of the type described in Section 3.1.4 is brought progressively closer to

one corner. F2 = 0 is kept of constant size (a2, `2) = (2.34λ, 1.17λ), while the mesh

size h and the distance d from the source to the corner of the FW-H surface are

systematically varied.

In Section 3.2.2, a point dipole of the type described in Section 3.1.2 is used.

The surface F2 = 0 is kept of constant size, while the distance d from the source to

the corner of F2 = 0 and the wavelength λ of the acoustic waves vary over specified
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ranges. The FW-H surface size is therefore given in meters, rather than in number

of wavelengths, with (a2, `2) = (0.14, 0.07) m.

3.2.1 Lateral quadrupole proximity to the FW-H surface

corner

For the elementary source tests, the FW-H surface is discretised uniformly by the

spacing h, which gives Nλ = λ/h points per wavelength. A numerical experiment

was conducted by which the position of the lateral quadrupole source s(2) from

Section 3.1.4 was systematically varied along the first quadrant diagonal of the FW-H

surface F2 = 0, as sketched in Figure 3.18. 40 source positions were considered

over the range 0.845 < λ/d < 17.321. For each source location, the FW-H surface

integration was performed using 50 different spatial discretization levels of F2 = 0,

over the range 0.0147 < h/λ = 1/Nλ < 0.1944.

x1

x3

2`2

F2 = 0

a2

a2
x2

Figure 3.18: Range of source locations s(2) along the diagonal of the FW-H surface.

a2 = 2.34λ, `2 = 1.17λ.

At each location, the normalized difference between the reference analytical

solution p′ref and the numerical prediction p′FW-H of the sound pressure amplitude

was computed as

e =
max

1≤i≤Nθ

∣∣∣p̆′ref (x(i)
)
− p̆′FW-H

(
x(i)

)∣∣∣
p̆′ref [x (r, θmax)] , (3.14)

where

p̆′ = max
0≤t≤T

[p′ (x, t)] . (3.15)

In Equation 3.14, Nθ is the number of the observers o(n) located on an arc centred

at the origin of the Cartesian reference system, as shown in Figure 3.1. θ is the
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polar angle as defined in Figure 3.1. The observers are located at the constant radial

distance from the origin ro = 10λ. p̆′ref [x (r, θmax)] normalizes the error by the sound

pressure fluctuation amplitude from the lateral quadrupole directivity peak.

In Figures 3.19(a) and 3.19(b), the numerical error e evaluated by Equation 3.14

is plotted on a base 10 logarithmic scale against log10 (1/Nλ) and log10 (λ/d). The

results are obtained for two time resolution levels that give NT = 40 and NT = 60

points per period T , respectively. Figure 3.19(a) shows that with a spatially well-

resolved acoustic sound field, meaning 1/Nλ → 0, the log10 (e) iso-contours appear to

be regularly spaced in log10 (λ/d) from one another, indicating an exponential error

decay of order m = 5.64. As the source s(2) is moved relatively far from the corner,

meaning λ/d → 0, then the log10 (e) iso-contours appear also regularly spaced in

log10 (1/Nλ), indicating an exponential error decay of order n = 1.81 [141].
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Figure 3.19: Normalised error contours of acoustic pressure fluctuation amplitude from

Equation 3.14, in logarithmic scale, obtained by a lateral quadrupole radiating from

different locations along the diagonal of the FW-H surface. 0.845 < λ/d < 17.321,

0.0147 < 1/Nλ < 0.1944. ` = 1.17λ, a = 2.34λ, ro = 10λ, and λ = 0.06 m.

The log10 (e) iso-contour level −2 indicates a 1% error in the prediction of the

acoustic pressure amplitude. This contour line and the lines to the left of it appear to

run diagonally parallel to one another. This suggests that a given level of error can

be maintained by keeping constant the product (1/Nλ)n (λ/d)m so that, for a source

90



located 50% closer to the FW-H surface corner, a spatial refinement of the acoustic

domain in the ratio 2m/n is required. At higher values of 1/Nλ and of proximity

to the FW-H surface corner λ/d, e increases more rapidly and the curvature of

the contours in the [log10 (1/Nλ) , log10 (λ/d)] plane indicates a possible non-linear

interaction between these two sources of error [141].

Figure 3.19(b) shows the effect of increasing the temporal resolution. Specifically,

the top part of the plot, where large values of λ/d appear as being a dominant source

of numerical error, is not affected by the increased time resolution of Figure 3.19(b).

As the source is placed farther away from the FW-H surface corner, the time resolution

starts influencing the numerical error. Increasing the number of points per period

NT from 40 in Figure 3.19(a) to 60 in Figure 3.19(b) reduces the error e between

the numerical prediction and the reference solution only at error levels lower than

1% (−2 iso-contour). This can be noticed by the shift to the right of the log10 (e)

iso-contours in the bottom left part of Figure 3.19(b), compared to Figure 3.19(a).

Figure 3.19 can be used to perform a first estimate of the magnitude of the

numerical error that can be expected by a quadrupole source approaching the FW-H

integration surface corner, for a given level of spatial discretization of the acoustic

pressure field. The sensitivity of this error to changes in the source position and in

the spatial discretization is also computable.

3.2.2 Dipole proximity to the FW-H surface corner

It is of interest to define a d/λ range that allows a numerical error contribution due

to the short distance source-corner lower than that from the discretization in the

FW-H code. A second parametric analysis has been undertaken to show a way of

selecting this “safe” range, by considering the dipole source of Section 3.1.2 placed

along the diagonal of the FW-H surface F2 = 0.

The dipole source is located at 50 different positions along the diagonal of the

FW-H surface as shown in Figure 3.18, covering the source-corner distance range:

d ∈ [8.66× 10−4; 3.98× 10−2] m. For each position, 50 simulations are performed,

with acoustic wavelengths within the range: λ ∈ [0.02; 1] m. The mesh size h is kept

constant so that higher wavelengths result in an increased Nλ.

In the previous tests, all the characteristic lengths were normalised by λ, which
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was fixed to the value 0.06 m. In this last test, the wavelength is varied between

different simulations in the parametric study. Therefore, the size of the FW-H

surface F2 = 0, as well as the radial distance of the circular array from the origin,

are expressed in meters. Specifically (a2, `2) = (0.14, 0.07) m and ro = 0.6 m. These

correspond to the normalised values (a2, `2) = (2.34λ, 1.17λ) and ro = 10λ, with

λ = 0.06 m.

The results are reported in Figure 3.20, where the logarithm of the error e

estimated by Equation 3.14 is plotted against log10 (λ) and log10 (d), for two values of

the temporal resolution, NT = 40 in Figure 3.20(a), and NT = 60 in Figure 3.20(b).

For this application, in Equation 3.14, p′ref is the analytical pressure fluctuation

from the dipole source and p′FW-H is the corresponding numerical prediction. The top

part of Figures 3.20(a) and 3.20(b) refer to configurations with larger source-surface

distances, while in the lower part of these figures the dipole is more proximal to the

corner of the FW-H prism. The numerical resolution increases moving from left to

right in each of the two figures.
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Figure 3.20: Normalised error contours of acoustic pressure fluctuation amplitude

from Equation 3.14, in logarithmic scale, obtained by a dipole radiating from different

locations along the diagonal of the FW-H surface. d ∈ [8.66× 10−4; 3.98× 10−2] m,

λ ∈ [0.02; 1] m. ` = 0.07 m, a = 0.14 m, ro = 0.6 m, and h = 1.167× 10−3 m.

Figure 3.20 shows that the AFW-H prediction of the dipole source radiation is

also affected by a loss of accuracy if the ratio d/λ is small. The omnidirectional
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radiation from the monopole source of Section 3.1.1 is the only test in which this

behaviour was not observed.

In many practical engineering applications, it is often required to provide an

estimate of the acoustic pressure amplitude within a set level of error. Figure 3.20

can be used to determine which (d, λ) combinations generate predictions with a

numerical error that is within this set level. Assume, for instance, an acceptable

level of error of 1%. The area above the −2 iso-contour in Figure 3.20 represents the

(d, λ) region where e ≤ 1%.

The minimum value (d/λ)min that gives an error of e ≤ 1% over a useful λ

range is determined by the log10 (d) = log10 (λ) + log10 [(d/λ)min] line at 45° in the

(log10 (λ) , log10 (d)) plane that crosses the −2 iso-contour at the change-of-slope

point, as shown in Figure 3.20. Another condition is given by the minimum spatial

resolution (λ/h)min assuring e ≤ 1% over a useful d range. Given the constant mesh

size h, this requirement translates in a minimum wavelength λmin, represented, in

Figure 3.20, by the vertical line crossing the −2 iso-contour at the change-of-slope

point. Furthermore, in the case d/λ < (d/λ)min (bottom right part of the plot),

Figure 3.20 shows that the error e between the numerical prediction and the reference

solution does not reduce with increasing spatial resolution.

Figure 3.20(b) shows that increasing the temporal resolution has no tangible

effect on e for small values of d/λ (bottom right part of the plot). A reduction in

the numerical error can be observed in Figure 3.20(b), compared to Figure 3.20(a),

at larger values of d/λ (top left part of the plot) and the threshold (d/λ)min is less

stringent, decreasing from 0.112 for NT = 40, to 0.106 for NT = 60.

3.3 Chapter 3 summary

The AFW-H tool has been tested on monopole, dipole, and quadrupole elementary

sources in Sections 3.1.1– 3.1.4. A good match with the corresponding analytical

time-domain reference solution was shown in terms of pressure fluctuation amplitude,

phase, and frequency. Both the geometrical scaling of the acoustic radiation with

distance from the source and the source directivity were correctly captured in all the

tests.

93



The acoustic prediction was shown to be independent of the FW-H surface

placement, except for the case of a point source proximal to the surface corner. The

numerical error generated by this configuration was investigated in two parametric

analyses in Sections 3.2.1 and 3.2.2. In Section 3.2.2, guidelines for the appropriate

design of the FW-H surface are suggested, aimed at circumventing this exception.

The numerical error did not arise for the point monopole and it was found to

be more significant for lateral quadrupole sources, compared to both dipoles and

longitudinal quadrupoles. This appears to suggest an increase in the numerical error

with increasing order of the elementary source.

For jet noise problems, this numerical error issue does not generally occur because

the limit condition investigated in Section 3.2 is not reached. The FW-H surface is

usually axisymmetric, i.e. with no corners or edges, and it is designed to enclose the

jet at a distance which prevents a close proximity between the surface itself and the

jet acoustic sources. The origin of the numerical error arising in this limit condition

from the application of the AFW-H analogy to predicting noise from directive sources

remains unclear. Section 3.1 advanced an hypothesis concerning large and opposite

contributions to the FW-H integral failing to cancel each other out in the numerical

integration procedure. However, this hypothesis remains to be verified.
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Chapter 4

Application to stationary jets

The AFW-H method of Section 2.2.3 is applied in this chapter to both single-stream

and dual-stream stationary jets, in order to get noise estimations through the new

Python AFW-H tool, both in the acoustic near-field and in the acoustic far-field.

Two single-stream jet test cases are considered in Section 4.1. The first one is a

subsonic isothermal jet (Section 4.1.1) with a nozzle exit Mach number of 0.9 [142].

A supersonic cold jet is then investigated in Section 4.1.2, generated by a contoured

convergent nozzle that is operated under-expanded to give a 1D nozzle exit Mach

number of 1.0, and a fully expanded jet Mach number Mj = 1.15 [143].

CFD predictions of the unsteady jets are available for both test cases from Large

Eddy Simulations performed at Cerfacs (Toulouse), respectively by Biolchini [135] for

the subsonic jet and by Pérez [16] for the supersonic jet, who used the elsA code [130]

by ONERA. Details of the CFD technique applied in [135] are given by Biolchini

in [134]. A time history of the thermodynamic variables was produced, and it was

stored on a set of FW-H integration surfaces [16, 135]. As far as the single-stream

supersonic jet test case is concerned, Detached Eddy Simulations (DES) were also

performed at the University of Leicester [15] with the low order code Cosmic, and a

CFD database was built to be used as input to the new AFW-H tool. This constitutes

an independent check on the supersonic single-stream jet results by Pérez [16].

The single-stream jet tests validate the AFW-H tool beyond the elementary

noise source field tests in Chapter 3. They contribute to building confidence in the

acoustic analogy tool, towards its application to the more complex geometry of an

under-expanded dual-stream cold jet in Section 4.2. The dual-stream nozzle geometry
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and operating conditions are detailed in Appendix A. These were proposed by Airbus

SAS, partner of the AeroTraNet2 project. The dual-stream jet represents a new

application with flow conditions that differ from the ones explored in the previous

aeroacoustic literature. DES and LES simulations of the coaxial jet were performed

within AeroTraNet2 by Mancini [15] and by Pérez [16], by using respectively a

low-order code at the University of Leicester (Cosmic) and a high-order code at

Cerfacs (elsA [130]).

The main features of the CFD simulations providing the input to the AFW-H

code are briefly summarised in Sections 4.1 and 4.2. Further details can be found in

Biolchini [135, 134], in Mancini [15], and in Pérez [16, 133].

Before presenting the results obtained through the new Python AFW-H tool

applied to stationary jets, it is worth recalling that, in this specific implementation

of the FW-H acoustic analogy, the sound pressure p′Q due to the volume source

distribution in Equation 2.17 is neglected. The quadrupole source contribution from

the volume external to the FW-H surface is assumed to be small compared to the

monopole and to the dipole contributions of Equations 2.21 and 2.22, which are

discretised and estimated on the integration surface.

With this assumption, the FW-H surface needs to be placed far enough from the

jet in the “linear acoustic” region [138], allowing the error due to the absence of the

volume integration to be negligible. Furthermore, if part of the surface is placed in a

region of vorticity, as the downstream closing face of a FW-H integration surface

enclosing a jet, a special treatment is required locally. This treatment is necessary

to prevent the generation of spurious dipole noise sources as vortical structures cross

the integration surface [116, 121], which would affect the noise prediction.

Among the possible solutions described in Section 2.2.1.1, the “open” surface

strategy is adopted throughout the current chapter. Specifically, the closing disk,

located at the downstream end of the FW-H surfaces enclosing the jet, is omitted

from the surface integration in Equations 2.21 and 2.22, both for the supersonic

single-stream jet investigated in Section 4.1.2 and for the dual-stream jet presented

in Section 4.2. As far as the subsonic single-stream jet is concerned, the FW-H

surface is prismatic with both the upstream and the downstream faces crossed by

the jet. Both faces are omitted and the surface integration in Section 4.1.1 is limited

96



to the lateral surface of the square prism.

This choice is dictated by the CFD data collection being omitted on these closing

disks (or squares) by Mancini [15], Pérez [16], and Biolchini [135]. The dataset

used by the new Python AFW-H tool is a previously stored CFD prediction of

the unsteady flow field on the “open” FW-H surfaces, obtained by LES at Cerfacs,

Toulouse [16, 135], and by DES at the University of Leicester [15]. The main

advantage resides in the reduced computational effort and memory requirements of

this strategy, compared to other techniques described in Section 2.2.1.1, such as the

evaluation of surface integrals on multiple end-domain disks.

The “open” surface FW-H integration was also carried out at Cerfacs (Toulouse)

using the elsA software, from ONERA, on the same CFD data set for the jet test cases

investigated in this chapter. This allows a direct comparison of the numerical noise

predicted by the new Python AFW-H tool to that from the reference implementation

by ONERA.

Moreover, as reported in Section 2.2.1.1, there are many examples in the literature

of acoustic analogy applications to jet noise that used an “open” surface strategy

for the surface integration, producing satisfactory results, also because a reliable

treatment of the face crossed by the jet is still not generally agreed within the

aeroacoustic community. However, the Python AFW-H tool allows the use of

different configurations for the FW-H surface, such as that of a closed surface with

outflow disk averaging [5], provided CFD data is available over these surfaces.

4.1 Single jet noise predictions

4.1.1 Subsonic fully expanded isothermal jet

In this section, the AFW-H method of Section 2.2.3 is used to estimate the noise

radiation from a single-stream subsonic jet [142]. A three-dimensional jet issues

from a circular nozzle with an exit Mach number of 0.9. The jet is isothermal

and it is modelled at a Reynolds number based on the nozzle exit diameter of

Re = (ρjUjDe) /µ = 4× 105, where µ is the dynamic viscosity. The CFD domain

geometry, the FW-H surface, and the location of the far-field acoustic observer o(1)

for this test case are shown in Figure 4.1. The geometry is symmetric with respect
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to the y = 0 plane, therefore only the top half of the CFD domain is shown in

Figure 4.1.

The CFD domain extends from the nozzle exit plane, located at x = 0.0De,

to x = 25.0De in the positive axial direction, which coincides with the nozzle

outflow direction. The domain extends up to ±8.0De both in y and z, in Cartesian

coordinates, and the portion 0.0De ≤ y ≤ 8.0De is shown in Figure 4.1. The nozzle

is located upstream of the CFD domain, as described in Figure 4.1, and the nozzle lip

thickness σe is not modelled. The prismatic FW-H surface F0 (x, t) = 0 has extent

0.0De ≤ x ≤ 12.5De, −3.0De ≤ y ≤ 3.0De, and −3.0De ≤ z ≤ 3.0De, and the

contributions from the square faces with side 6De at x = 0.0De and at x = 12.5De

have been excluded from the integration procedure in the application of the AFW-H

method.
o(1)

30De
y

25De

12.5De

3De

8De

x

σe = 0

0.5De

Ue

FW-H surface
(F0 = 0)

CFD domain

Figure 4.1: Domain schematic for the subsonic single-stream jet (Di Stefano et

al. [144]) showing the CFD domain, a sample observer position, and the location of

the FW-H integration surface. Lengths are scaled by the nozzle exit diameter De.

Noise predictions are obtained on a spherical array of 110 numerical observers at a

polar distance of 30.0De from the origin of the Cartesian reference system, distributed

between 11 different axial locations over the range −15.0De ≤ x ≤ 28.2De. At each

axial location, 10 numerical observers are equally spaced in azimuth. The observers
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span the range 20° ≤ θ ≤ 120°, where θ is the polar angle measured with respect to

the jet axis. The observer o(1) from the spherical array, located on the nozzle exit

plane at x(1) = (0, 30.0, 0)De, is shown in Figure 4.1 and it corresponds to θ = 90°.

0 5 10 15

X

Y

Z

­250 ­160 ­70 20 110 200p′(Pa)

x/De

U

Figure 4.2: Large Eddy Simulation of a single-stream Mach 0.9 jet modelled at

Re = 4 × 105 [142], obtained at Cerfacs (Toulouse) by the elsA software [130].

Instantaneous pressure fluctuation iso-levels on the FW-H surface F0 = 0 from [135].

The time-history of the flow prediction is available on the FW-H surface F0 (x, t) =

0, obtained by LES. The unsteady numerical simulation was performed at Cerfacs

by Biolchini [135] by using the ONERA elsA code [130]. The flow in the database

is sampled on F0 (x, t) = 0 with a CAA sampling time ∆τCAA = 6× 10−6 s, that is

ten times the CFD time step (∆τCFD = 6 × 10−7 s). The time length of the LES

dataset is 0.0528 s, with 8800 acoustic time steps overall. Figure 4.2 shows the colour

iso-levels of the instantaneous pressure fluctuation p′ from this CFD dataset [135].

Specifically, the radiating near-field pressure fluctuation on the FW-H surface, which

is essentially of acoustic nature, is displayed. This pressure fluctuation radiates

beyond the CFD domain and this propagation is modelled by the acoustic analogy
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implementation described in Section 2.2.3.

The correct placement of the integration surface is usually checked by verifying

that the acoustic prediction is independent of the surface position itself. In Sec-

tion 4.1.2, where a supersonic single-stream jet is investigated, this test is performed

by using the CFD prediction stored on three nested surfaces F1 = 0, F2 = 0, and

F3 = 0 and Figure 4.7 shows that the BBSAN and the mixing noise contributions

are independent of the choice of the FW-H surface. However, for the subsonic jet

investigated here, only the CFD prediction on the prismatic surface of Figure 4.1 is

available.

FW-H Surface xmin = 0.0De x = 9.7De xmax = 12.5De

F0 (x, t) = 0 −3.0De ≤ y, z ≤ 3.0De −3.0De ≤ y, z ≤ 3.0De −3.0De ≤ y, z ≤ 3.0De

F1 (x, t) = 0 −2.0De ≤ y, z ≤ 2.0De −3.0De ≤ y, z ≤ 3.0De −3.5De ≤ y, z ≤ 3.5De

Table 4.1: Dimensions of the FW-H surface F0 = 0 used for the Mj = 0.9 subsonic

test case compared to the surface F1 = 0 of Table 4.2, relative to the supersonic single-

stream jet of Section 4.1.2. Dimensions scaled by the corresponding jet diameter

De.

Table 4.1 compares the size of the integration surface in Figure 4.1 with the

dimensions of the smallest integration surface adopted for the supersonic single-

stream jet, that is F1 = 0 in Table 4.2. It can be noticed that, in the range

0.0De ≤ x ≤ 9.7De, the prismatic surface F0 = 0 is external to the hourglass-shaped

surface F1 = 0. At x = 9.7De, the square section of the prismatic surface F0 = 0 is

tangent to the round section of the axisymmetric surface F1 = 0. Further downstream,

over the range 9.7De ≤ x ≤ 12.5De, the prismatic surface F0 = 0 is contained within

F1 = 0.

As far as the axial extent is concerned, F0 = 0 reaches x = 12.5De at the

downstream edge, whereas F1 = 0 extends to x = 19.0De. Still, the potential core

of the subsonic jet extends up to x ≈ 5.0De [142] and the FW-H prismatic surface

F0 = 0 encloses both the potential core and the turbulent mixing region downstream,

which contribute most to the noise generation from the M = 0.9 single-stream

jet [142]. In the supersonic jet, the potential core stretches up to x = 9.0De [16].

This justifies the use of a FW-H surface F1 = 0 of greater axial extent, which is able
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to enclose the acoustically active region of the supersonic jet in Section 4.1.2.
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Figure 4.3: Predicted sound radiation at observer o(1) from a single-stream, isothermal,

and circular jet (Bogey and Bailly [142]) modelled by LES [135]. Mach 0.9, Re =

4× 105. ro = 30.0De from the nozzle exit section centre.

Figure 4.3 shows the acoustic pressure fluctuation estimated using the current

AFW-H implementation versus the reference prediction from elsA at o(1) (see Fig-

ure 4.1). The solid-black lines labelled by “elsA” represent the reference solution

provided by Cerfacs, Toulouse, while the dashed-blue lines labelled by “AFW-H”

show the current prediction. The acoustic pressure fluctuation at the observer o(1)

is broadband and non-periodic, as shown by the combination of large and small

amplitude pressure oscillations in Figure 4.3. This results in a complex pressure per-

turbation time-history. The current implementation of the AFW-H method appears

to follow this time-history well in Figure 4.3(b) [144]. In Figure 4.3(a) from [140],

the AFW-H code result shows a small phase lead and a small negative mean pressure

offset with respect to the reference solution, due to an initial incorrect normalization

of the reference solution itself.

Figure 4.4(a) reports the Power Spectral Density (PSD) of the single-observer

pressure fluctuation time-history of Figure 4.3(b). The Python AFW-H tool pre-

diction is compared against the reference solution and the same notation is used

as in Figure 4.3. The values are in dB/Str (dB per unit Strouhal), meaning that
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∫
PSD(Str)dStr provides the overall sound energy. The overall sound power can be

obtained dividing the overall sound energy by the acquisition time. The Strouhal

number is defined using the diameter De and the jet velocity Ue at the nozzle exit

plane. Two lines with slope of −4/3 and −7/2 are reported in Figure 4.4 to appreciate

how the PSD at o(1) follows the trends for noise generated by unheated convected

turbulence, obtained by dimensional analysis by Lilley [71] and by Zhou [145]. At

Strouhal numbers less than 2.0, a good match of the prediction with the reference

solution is shown. At Strouhal numbers above 2.0, the short period of flow time

modelled by LES, compared to a typical acoustic recording by microphones, generates

an irregular PSD trace in Figure 4.4(a), which is commonly referred to as a “noisy”

spectrum in experiment. Some form of signal averaging is required to reduce these

spectral fluctuations and to evaluate the PSD decay rate with Str.
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(a) PSD (Di Stefano et al. [144]).
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(b) PSD obtained by the Welch method [146],

averaged over the azimuthal array of observers

on the plane x = 0.

Figure 4.4: Far-field PSD vs Strouhal number at observer o(1) from a single-stream,

isothermal, and circular jet (Bogey and Bailly [142]) modelled by LES [135]. Reference

discontinuous-grey lines with slope −4/3 and −7/2 display the PSD decay for noise

generated by unheated convected turbulence, predicted by dimensional analysis by

Lilley [71]. Mach 0.9, Re = 4× 105. ro = 30.0De from the nozzle exit section centre.

Figure 4.4(b) shows the outcome from a first attempt at reducing the PSD

fluctuations at Str > 2.0. The Welch method [146] is used to compute the Power
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Spectral Density from each of the 10 observers on the plane x = 0 and the result is

then averaged in azimuth. Figure 4.4(b) shows significantly smoother trends. All

the PSDs presented in Chapters 4 and 5 are smoothed with the same technique

explained here for Figure 4.4(b).

Figure 4.4(b) confirms that the new Python AFW-H tool follows very closely the

reference prediction at Str < 1.0. As the Strouhal number increases, the dashed-

blue line and the solid-black line start to diverge. This is due to a difference in

sampling frequency of the CFD solution between the two FW-H tools. In the elsA

FW-H combined solver, the acoustic analogy is performed every CFD time step,

with ∆τCAA,elsA = ∆τCFD. On the other hand, the Python AFW-H tool is used as

a post-processor and it is applied to a previously stored CFD database that was

recorded at ∆τCAA,AFW-H = 10∆τCFD. This longer acoustic time step lowers the

sampling frequency, which degrades the accuracy of the solution at the high Strouhal

number end of the spectrum in Figure 4.4.
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Figure 4.5: Far-field PSD vs Strouhal number and radiation angle θ from a single-

stream, isothermal, and circular jet (Bogey and Bailly [142]) modelled by LES [135].

Mach 0.9, Re = 4 × 105. ro = 30.0De from the nozzle exit section centre. PSD

smoothed as in Figure 4.4(b).

In Figure 4.5, the PSD in the acoustic far-field is plotted against both the Strouhal

number and the radiation angle θ and a good match is obtained between the AFW-H

tool prediction, shown in Figure 4.5(a), and the reference numerical prediction by the
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elsA code [130], shown in Figure 4.5(b). From Figure 4.5, an a posteriori qualitative

assessment of the correct placement of the FW-H surface F0 = 0, used for the

integration procedure, can be provided. The mixing noise component that dominates

the noise radiation from the M = 0.9 jet reaches its peak at θ ≈ 30°, as shown by

the red 111 dB iso-level in Figure 4.5, in agreement with the results by Bogey and

Bailly in [142]. The line at θ = 30° reaches a distance of 3De from the jet axis at

(x = 5.2De; y = 3.0De), intersecting F0 = 0 well before its downstream boundary

located at x = 12.5De. The prismatic integration surface F0 = 0 of Figure 4.1

appears therefore to be placed correctly, allowing to capture the peak of the noise

radiation as shown by the PSD reported in Figure 4.5.

Overall, the AFW-H tool prediction follows satisfactorily the reference numerical

solution for the observer o(1) in Figure 4.4, as well as for the other observers in the

far-field array, as it is shown in Figure 4.5. This indicates that the new Python

AFW-H tool produces frequency content and directivity characteristics consistent

with the reference acoustic prediction from elsA. The satisfactory outcome from this

first application of the AFW-H tool to jet noise warrants the investigation of more

complex cases in Sections 4.1.2 and 4.2, where under-expanded jets are considered.

4.1.2 Supersonic under-expanded cold jet

The second jet noise application of the new AFW-H tool is to a supersonic Mj = 1.15

jet, from an axisymmetric convergent nozzle. The nozzle geometry does not allow the

flow to be accelerated to the fully-expanded supersonic velocity Uj and the pressure

pe at the nozzle exit is higher than the ambient pressure p0, with Me < Mj. The

jet is therefore under-expanded and an expansion wave generates at the nozzle lip,

accelerating the flow to supersonic velocities that cannot be reached before or at

the convergent nozzle throat. The expansion wave is reflected at the shear layer

as a compression wave and a system of consecutive expansions and compressions

is established (shock-cells). Shock-Cell Noise (SCN) is then generated and the

flow configuration is similar to the one described in Section 1.2 and sketched in

Figure 1.2(b).

The flow is modelled at a Nozzle Pressure Ratio (NPR) of 2.27 and at a Reynolds

number based on the nozzle exit diameter Re = ρjUjDe/µ = 1.25 × 106. A DES
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of the jet was performed at the University of Leicester by Alessandro Mancini and

details of both the numerical parameters and the flow prediction can be found in [15].

Comparative LES results are also obtained by Peréz at Cerfacs [16]. Experimental

measurements are available, obtained both at the Von Karman Institute for fluid

dynamics (VKI), Brussels, by Guariglia [43] and at the Laboratoire de Mécanique

des Fluides et d'Acoustique (LMFA) of the École Centrale de Lyon, by André [143].

Mancini [15] and Pérez [16] compared their respective numerical predictions of

the flow against the aerodynamic measurements by André [143] and by Guariglia [43].

The numerical simulations predict higher expansion rates, resulting in a shorter

spacing after the first three shock-cells that affects the peak frequencies of the

BBSAN contribution to the far-field noise. However, the length of the potential

core is in agreement between both numerical predictions and the experimental

measurements and a good match is achieved overall. The appearance of screech in

the experiment could explain the difference in the shock-cell structure after the first

three shock-cells [16].

FW-H Surface xmin = −3.0De x = 0.0De xmax = 19.0De

F1 (x, t) = 0 −2.8De ≤ y, z ≤ 2.8De −2.0De ≤ y, z ≤ 2.0De −4.7De ≤ y, z ≤ 4.7De

F2 (x, t) = 0 −3.3De ≤ y, z ≤ 3.3De −2.5De ≤ y, z ≤ 2.5De −5.0De ≤ y, z ≤ 5.0De

F3 (x, t) = 0 −3.8De ≤ y, z ≤ 3.8De −3.0De ≤ y, z ≤ 3.0De −5.4De ≤ y, z ≤ 5.4De

Table 4.2: Dimensions of the FW-H surfaces used for the Mj = 1.15 test case, scaled

by the jet diameter De.

The AFW-H formulation of Section 2.2.3 is applied to the flow time-history

obtained by DES by Mancini [15]. The flow prediction is stored on three nested

surfaces with increasing size that surround the jet. Table 4.2 summarises the

dimensions of the three surfaces in terms of the radial extent at three axial locations,

i.e. the upstream and the downstream ends of the surfaces and the nozzle exit plane.

The FW-H surfaces follow the CFD mesh axial profile, resulting in a shape that

is similar to that of an hourglass, with a convergent section for x < 0, followed by a

divergent section downstream of the jet outflow. All three surfaces are of the “open”

type (see Section 2.2.1) at the aft edge xmax = 19.0De. The monopole and the dipole

contributions expressed by Equations 2.21 and 2.22 are discretised and estimated on
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F1 = 0, F2 = 0, and F3 = 0 of Table 4.2.

The DES flow prediction by the Cosmic software (Mancini [15]) was stored on

these open surfaces with an acoustic time step ∆τCAA = 5 × 10−6 s, that is 500

times larger than the CFD counterpart (∆τCFD = 1 × 10−8 s). 1800 snapshots of

the CFD prediction on the FW-H surfaces are available, for an overall time length

of 0.009 s. The instantaneous pressure fluctuation p′ on the FW-H surface F2 = 0

from one of these snapshots is shown in Figure 4.6. The hourglass shape of the

surface can be appreciated, as well as the open end at the downstream edge. The

pressure fluctuation is of the acoustic type, being the surface placed in the “linear

acoustic” region of the pressure field [138], almost free from non-linear hydrodynamic

contributions (see Section 2.4.3). The trace of acoustic waves travelling downstream

is also noticeable in Figure 4.6, as axially alternating ring bands of high (red) and

low (green) pressure perturbations.

A comparison of the results from the three surfaces F1 = 0, F2 = 0, and F3 = 0

was performed and the result is reported in Figure 4.7 for two radiation angles in

the upstream arc, where the BBSAN contribution is clearly present, i.e. θ = 100° in

Figure 4.7(a) and θ = 120° in Figure 4.7(b). In Figure 4.7, the result obtained with

the innermost surface F1 = 0 is shown by the solid-red lines, while short-dash green

lines and long-dash blue lines display the spectra predicted by using respectively the

intermediate surface F2 = 0 and the outermost surface F3 = 0. The three curves

mutually overlap showing that the increase of the FW-H surface size from F1 = 0

to F2 = 0 and then from F2 = 0 to F3 = 0 does not significantly affect the noise

prediction. The three surfaces are therefore correctly placed in the “linear acoustic”

region of the pressure field (see Section 2.4.3), by satisfying the requirements discussed

in Section 2.2.1. The choice between the three surfaces is therefore arbitrary. The

results from the intermediate surface F2 = 0 are reported in this section.

Figure 4.8 reports the far-field Power Spectral Density versus Strouhal number

Str = fDe/Uj for 8 radiation angles θ from the jet axis, between 40° and 140°. The

AFW-H prediction in blue is compared against experimental measurements obtained

by André at LMFA and by Guariglia at VKI, referred to as “exp LMFA” and “exp

VKI”, respectively. Solid-red lines show the acoustic measurements by André [143],

while dashed-green lines show the VKI noise measurements by Guariglia [43]. The
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Figure 4.6: Detached Eddy Simulation of a single-stream Mach 1.15 jet [143] modelled

at Re = 1.25×106. Instantaneous pressure fluctuation iso-levels on the FW-H surface

F2 = 0 from [15].
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Figure 4.7: Far-field PSD from a single-stream under-expanded jet modelled by

DES [15]. Comparison between the predictions obtained through the surfaces F1 = 0,

F2 = 0, and F3 = 0. Mj = 1.15, Re = 1.25× 106, ro = 52.0De from the nozzle exit.

PSD smoothed as in Figure 4.4(b).
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experimental measurements are not corrected to lossless conditions and the atmo-

spheric effects are ignored. This is in agreement with André [143], who showed that

spectra measured at LMFA are attenuated by less than 1 dB up to f = 30 kHz,

which corresponds to about Str = 3 in Figure 4.8.

Only slight discrepancies between the two experimental measurements can be

noticed in Figure 4.8, except for the θ = 40° direction, where the PSD by Guariglia [43]

is up to 8 dB less than the corresponding measurement at LMFA [143]. Over the

low Strouhal number range (Str < 0.8) in the upstream arc (90° < θ < 140°), the

measurements by Guariglia show lower noise levels by up to 2− 3 dB with respect

to the corresponding PSDs measured at LMFA. The measured PSD at VKI is louder

with respect to the LMFA PSD over the high Strouhal number range (Str > 2) at

θ = 90°. As far as the BBSAN peaks are concerned, the measurements agree very

well in terms of peak frequency. The noise peak level is slightly lower in the VKI

experiment [43] in the upstream arc.

These discrepancies could be explained by differences in the actual jet flows in

the two cases. It is worth mentioning that the experimental set-up at VKI [43] is

characterised by a smaller nozzle, with De = 0.024 m, against the value used in the

CFD simulation and in the experiment by André [143] that is De = 0.038 m. The

distance of the far-field array is also shorter, corresponding to ro = 40.0De, against

ro = 52.0De in the CFD simulation. Therefore, the “exp VKI” PSDs in Figure 4.8

are scaled geometrically to ro = 52.0De, in order to allow a direct comparison among

the results.

Figure 4.8 shows a good agreement between numerical prediction and experiment

in terms of the BBSAN peak frequency and amplitude at radiation angles θ ≥ 80°,

above which the BBSAN emerges from the mixing noise background, showing that

the AFW-H tool applied to the DES flow prediction correctly captures this noise

component. However, over the Strouhal number range below the BBSAN peak,

the numerical prediction shows louder noise levels compared to the experimental

measurements, by about 5 to 10 dB, especially in the upstream quadrant (θ > 90°).

The reason for this elevated contribution at low Strouhal numbers can be attributed

to a coarse flow domain discretization in the azimuthal coordinate [15, 16]. Due

to this coarse discretization, larger scale structures develop in the CFD simulation
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Figure 4.8: Far-field PSD from a single-stream under-expanded jet modelled by

DES [15]. Comparison with experimental measurements by André [143] (“exp

LMFA”) and by Guariglia [43] (“exp VKI”). FW-H surface F2 = 0. Mj = 1.15,

Re = 1.25×106, ro = 52.0De from the nozzle exit. PSD smoothed as in Figure 4.4(b).
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compared to the experiment, as documented by larger velocity autocorrelation

lengths reported in [15]. As the low frequency contribution to turbulent mixing

noise is mainly generated by the large scales, these bigger structures in the CFD

flow prediction are likely to be responsible for the mismatch in the low Strouhal

number contributions between the AFW-H post-processed CFD and the acoustic

measurements.

At the opposite end of the Strouhal number range, the predicted PSD is lower

in the upstream direction (angles θ = 100°, 110°, 120°, 140° in Figure 4.8). The

fine-scale structures are mainly responsible for the turbulent mixing noise radiation

at these high frequencies. The CFD mesh spatial resolution was probably insufficient

to accurately resolve the spatial and the temporal evolution of these short scale

structures in the flow. Specifically, the prediction for high-frequency small-scale

flow structures is limited by the mesh cut-off Strouhal number and by the sampling

frequency. In this case, the more stringent limitation is represented by the mesh that

gives a cut-off Strouhal number of around 2.5 [15].

The discrepancies at high Strouhal numbers below the mesh cut-off (1.5 ≤ Str ≤

2.5), especially at θ = 120° and at θ = 140°, are likely to be related to the azimuthal

discretization of the mesh [15]. As already mentioned, the DES prediction shows

larger turbulent structures compared to the experiment that are convected many jet

diameters downstream the nozzle exit section. The coarse azimuthal discretization

does not allow to accurately reproduce the breakdown of these large structures into

fine-scale turbulence [15]. The inadequacy of this breakdown makes the contribution

from the fine-scales weaker than in experiment, especially at the high-frequency

range in the upstream direction, where this contribution is dominant [15].

Figure 4.8 shows that screech noise is measured in both the experimental facilities,

while the CFD simulation does not predict any significant tonal component of the

resolved pressure fluctuation. This difference can be ascribed to several factors, such

as a too coarse mesh close to the nozzle lip in the numerical simulation and the fact

that the interior of the nozzle is not modelled [15, 16]. Moreover, the feedback loop

at the nozzle lip that generates the screech noise contribution needs time to develop

and establish. The flow time length in the numerical simulation was shorter than in

the experiment and, in this case, it could have been insufficient to allow this feedback
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loop to establish.

Notwithstanding these discrepancies, the acoustic prediction in Figure 4.8 gives

a satisfactory match with both the experimental measurements by Guariglia [43]

and by André [143], by correctly capturing the θ dependency of the BBSAN spectral

contribution to far-field noise from the Mj = 1.15 under-expanded jet.
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Figure 4.9: Far-field Overall Sound Pressure Level (OSPL) from a single-stream

under-expanded jet modelled by DES [15]. FW-H surface F2 = 0. Mj = 1.15,

Re = 1.25× 106, ro = 52.0De from the nozzle exit.

This is confirmed by Figure 4.9 that compares the Overall Sound Pressure Level

(OSPL) directivity from the single-stream supersonic jet, as predicted from the

AFW-H tool to measurements by André [143] and by Guariglia [43]. A good match

is shown in the upstream direction, where the BBSAN contribution is dominant.

The overestimation of the noise levels in the downstream arc are likely to be due

to larger scale structures in the CFD prediction compared to the experiment, as

mentioned above.

Therefore, the new Python AFW-H tool appears to produce satisfactory results

when applied to the single-stream under-expanded jet investigated herein, also in

view of the differences between the measured and the predicted flow field, which

provides the input to the AFW-H tool.
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4.2 Dual-stream jet noise

The last application of the Antares AFW-H tool is to a dual-stream jet configuration

that is defined in Appendix A. This configuration is an idealized geometry of a civil

transport turbofan exhaust developed by the Airbus SAS propulsion team as an

academic test case for the AeroTraNet2 project. This dual-stream jet is generated

by an axisymmetric convergent nozzle surrounded by a staggered coaxial annular

convergent nozzle, as sketched in Figure A.1.

In the primary stream, the nozzle exit Mach number Mp is equal to the fully-

expanded primary jet Mach number Mjp (Mp = Mjp = 0.89) and the Reynolds

number based on the primary nozzle exit diameter Dp = 0.024 m is Rep = 0.57× 106.

In the bypass or secondary stream, the geometry of the convergent duct constrains

the nozzle exit Mach number Ms to be sonic and does not allow the flow to accelerate

to its fully expanded Mach number Mjs = 1.20 inside the nozzle. Therefore, the

secondary stream is under-expanded, resulting in the generation of SCN as described

in Sections 1.2 and 1.3, due to the shock-cell system that establishes between the

primary and the secondary shear layers. The Reynolds number based on the annular

nozzle outer diameter Ds = 0.055 m is Res = 1.66× 106. The flow conditions for the

dual-stream jet are summarised in Table 4.3.

Flow D(m) M Mj Re NPR Tt(K) pt (Pa)

Primary 0.024 0.89 0.89 0.57× 106 1.675 283 1.6972× 105

Secondary 0.055 1.00 1.20 1.66× 106 2.450 283 2.4825× 105

Table 4.3: Dual-stream jet flow conditions.

In this test, the AFW-H tool is used for post-processing an archived LES sim-

ulation performed at Cerfacs, France, from the ONERA CFD software package

elsA [130]. Details of the LES are given by Pérez [16]. The flow field prediction

was stored on a set of three nested integration surfaces of the “open” type (see Sec-

tion 2.2.1), referred to as F1 = 0, F2 = 0, and F3 = 0 (Table 4.4). The CFD dataset

consists of 1764 snapshots of the flow prediction on each integration surface, covering

an overall time length of 0.01322 s. The CFD solution is stored every 400 CFD time

steps ∆τCFD = 1.9× 10−8 s, giving an acoustic time step ∆τCAA = 7.5× 10−6 s.
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FW-H Surface xmin = −0.9Ds x = 0.0Ds xmax = 10.6Ds

F1 (x, t) = 0 −1.5Ds ≤ y, z ≤ 1.5Ds −1.2Ds ≤ y, z ≤ 1.2Ds −3.1Ds ≤ y, z ≤ 3.1Ds

F2 (x, t) = 0 −2.0Ds ≤ y, z ≤ 2.0Ds −1.7Ds ≤ y, z ≤ 1.7Ds −3.6Ds ≤ y, z ≤ 3.6Ds

F3 (x, t) = 0 −2.3Ds ≤ y, z ≤ 2.3Ds −2.1Ds ≤ y, z ≤ 2.1Ds −4.1Ds ≤ y, z ≤ 4.1Ds

Table 4.4: Dimensions of the FW-H surfaces scaled by the secondary jet diameter

Ds.

The maximum frequency resolved by the CFD simulation is imposed by the

cut-off Strouhal number Strmax ≈ 6.8 [16] dictated by the spatial discretization

of the LES mesh. This is lower than the Nyquist frequency limit from the data

storage time sampling rate, which is Strmax ≈ 10.6 [16]. The cut-off Strouhal number

value is estimated via a point-per-wavelength criterion. The high-order compact

scheme implemented in the elsA [130] software allows for the discretization of a

wave with a negligible dispersion and dissipation using a minimum of six points per

wavelength [16]. The relation between the mesh size and the resolved frequency is

fmax = c0/(6∆s).

Figure 4.10 shows the CFD domain, which is axisymmetric with respect to the

common axis of the two nozzles. A Cartesian reference system with the origin located

on the jet axis at the primary nozzle exit plane is used to define the geometry. For

the sake of simplicity, just the top half of the x− y plane is shown and the sponge

region used to prevent acoustic wave reflections at the computational domain outer

boundaries [16, 133] is omitted.

The CFD physical domain [16] extends 15.0Ds in the axial direction from x =

−2.4Ds to x = 12.6Ds. It reaches ±5.0Ds in both the y and z directions at the

downstream edge, enclosing the FW-H surfaces F1 = 0, F2 = 0, and F3 = 0. The two

nozzles are staggered and the secondary stream exits into the surrounding upstream

of the primary stream, specifically at x = −0.4Ds. The nozzle lip thickness is

σs = σp = 0.3× 10−3 m for both nozzles, to match the nozzle geometry defined in

Appendix A.

The axisymmetric integration surface F1 = 0, shown in Figure 4.10, follows the

mesh axial profile and it is approximately in the shape of an hourglass, with a

convergent section followed by a divergent section. Specifically, it reaches x = 10.6Ds
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in the axial downstream direction and it extends upstream of the secondary nozzle

exit plane up to x = −0.9Ds. At the downstream end, the surface extends to ±3.1Ds

in both y and z directions.

x

Us

Up

2.5Ds

y

3.7Ds 1.2Ds
5.0Ds

0.5Ds

1.5Ds

10.6Ds0.9Ds

12.6Ds2.0Ds

0.4Ds

3.1Ds

θ(n)

o(n)

ro = 30Ds

0.5Dp

FW-H surface
(F1 = 0)

CFD domain

Figure 4.10: Domain schematic for the dual-stream jet (see Appendix A), showing the

CFD domain, the FW-H surface F1 (x, t) = 0 and a generic observer o(n). Lengths

are scaled by the secondary nozzle exit diameter Ds.

Surface F1 (x, t) = 0 is the smallest of three nested surfaces used in the LES

simulation, on which the flow field time-history is available. The other surfaces

have the same axial size as F1 (x, t) = 0, but they extend radially up to ±3.6Ds

and ±4.1Ds at the downstream end, respectively for F2 (x, t) = 0 and F3 (x, t) = 0.

Table 4.4 reports the radial extent of the three FW-H surfaces normalized by Ds, at

the upstream end, the downstream end, and the origin of the reference system.

The monopole and the dipole noise contributions from Equations 2.21 and 2.22

are integrated on the FW-H surfaces of Table 4.4, with omission of the downstream

disk, located at x = 10.6Ds. A time snapshot of the pressure fluctuation p′ predicted

on the “open” FW-H surface F2 (x, t) = 0 by LES [16] is shown in Figure 4.11 by

iso-colour levels. The fluctuation amplitude is higher compared to that from the

subsonic single-stream jet reported in Figure 4.2, while it is comparable with that

from the supersonic single-stream jet, reported in Figure 4.6, and the highest values

are reached close to the nozzle exit within the potential core of the jet.
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Figure 4.11: Large Eddy Simulation of a coaxial dual-stream jet by Pérez [16].

Mjp = 0.89, Mjs = 1.20, Rep = 0.57× 106, Res = 1.66× 106. Instantaneous pressure

fluctuation iso-levels on the FW-H surface F2 = 0 of Table 4.4.

In this flow, two concentric jet cores develop [133]. The primary potential core is

surrounded by an annular potential core, where the shock-cell structure is established.

The shear layers bounding these two cores come together between 6.0Ds and 8.0Ds

downstream of the primary nozzle exit and the two streams fully merge farther

downstream. Three main noise sources [34] can be identified, which are the two shear

layers and the fully merged jet downstream of x = 8.0Ds. The primary shear layer is

generated by the velocity difference between the primary and the secondary flows,

while the outer (or secondary) shear layer is due to the secondary flow exiting in the

quiescent ambient air (U0 = 0).

The inner and the outer shear layers generate two BBSAN components by

interacting with the shock-cell system “trapped” between them, as explained in
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Section 1.3. The fully merged jet generates turbulent mixing noise in a similar

manner as a single-stream jet, by which the noise intensity is proportional up to the

eight power of the mixed jet velocity.

To predict the noise radiation from the dual-stream jet configuration of Table 4.3,

two different shapes are considered for the array of observers used to get far-field and

near-field noise estimations, presented respectively in Section 4.2.1 and 4.2.2. This

layout of observers is shared by the experimental and by the numerical partners in

the AeroTraNet2 project (see Appendix A), as to enable a direct comparison among

the results.

Specifically, a spherical array at r = 30.0Ds from the secondary nozzle exit disk

centre is used for the far-field analysis. The near-field analysis uses instead two

nested conical arrays, the surfaces of which follow the jet spreading along the x-axis

with a 8.0° slope. The conical surface of the innermost array is generated by a

line between (x = −0.4Ds; r = 1.5Ds) and (x = 7.6Ds; r = 2.6Ds). The outermost

array goes from (x = −0.4Ds; r = 1.7Ds) to (x = 7.6Ds; r = 2.8Ds).

16 observers are placed azimuthally in all the tests, in order to average the results

in the azimuthal coordinate direction φ. This aims to get smoother frequency spectra

of the signal, which are otherwise noisy due to the acquisition time of the relatively

short CFD simulations [16].

4.2.1 Far-field radiation

For the far-field noise estimation, a polar arc with 15 observers is placed on the x− y

plane at a constant polar distance of 30.0Ds from (−0.4, 0, 0)Ds (see Figure 4.10),

which is the secondary nozzle exit disk centre. A sample observer o(n) is represented

in Figure 4.10, located at the polar angle θ(n) from the jet axis. The arc extends

from θ = 20° up to θ = 160° anti-clockwise from the jet axis, spanning the range

−28.6Ds < x < 27.8Ds. For each of the 15 axial positions (or radiation angles), 16

observers are placed azimuthally at a constant angular distance ∆φ = π/8, so that a

spherical array of observers is formed with 15× 16 = 240 observers overall.

Figures 4.12– 4.15 report the spectral analysis in the far-field, obtained by using

as input of the AFW-H tool the CFD solution on the three nested surfaces of

Table 4.4. Figure 4.12 shows iso-levels of PSD in dB/Str plotted against Strouhal
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Figure 4.12: Far-field PSD vs Strouhal number and angle θ from the jet axis, from a

dual-stream cold jet with the secondary flow under-expanded (Ms = 1.0), modelled by

LES [16]. Mjp = 0.89, Mjs = 1.20, Rep = 0.57× 106, Res = 1.66× 106, ro = 30.0Ds

from the centre of the coaxial nozzle-exit disk. PSD smoothed as in Figure 4.4(b).
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number Str = fDs/Us and polar angle θ. The AFW-H tool prediction on the left is

compared against the reference numerical solution on the right, obtained at Cerfacs

by Pérez [16] through the elsA code [130]. Figures 4.12(a) and 4.12(b) at the top are

obtained using the smallest integration surface F1 = 0, Figures 4.12(c) and 4.12(d)

are obtained using the intermediate surface F2 = 0, and Figures 4.12(e) and 4.12(f)

are obtained using the largest surface F3 = 0. The θ axis is reversed so that the right

part of the plots represent downstream directions, while upstream angles are shown

on the left.

The results are in good agreement with the reference numerical prediction and

show the spectral bandwidth peaking at about θ = 60° from the jet axis. By

increasing the polar angle, the bandwidth of significant frequencies is reduced. In

the upstream direction, the predicted far-field noise is dominated by contributions

over the Strouhal number range 1.0 ≤ Str ≤ 1.5.

The spectral bandwidth peak at θ ≈ 60° appears to be less intense for the F2 = 0

results in Figures 4.12(c) and 4.12(d), compared to the prediction from the surface

F1 = 0, as indicated by the yellow 108 dB/Str iso-level extending to higher Strouhal

numbers in Figures 4.12(a) and 4.12(b). Increasing further the surface size from the

intermediate FW-H surface F2 = 0 to the largest FW-H surface F3 = 0 does not

appear to further change the acoustic prediction significantly. This shows that the

results from F2 = 0 and F3 = 0 are essentially independent from the placement of

the integration surface, and suggests that F2 = 0 and F3 = 0 lie within the “linear

hydrodynamic” region of the jet [138], free from non-linear perturbations to a good

approximation. In this region, the hydrodynamic perturbations associated with

instability waves in the jet experience an exponential decay with increasing radial

distance from the jet axis and the pressure field exhibits linear characteristics [138].

The specific PSD at selected radiation angles is shown in Figures 4.13– 4.15, where

8 values of θ between 30° and 130° are displayed. Figure 4.13 reports predictions from

using the smallest integration surface F1 = 0, while Figures 4.14 and 4.15 report the

results obtained with F2 = 0 and F3 = 0, respectively. In each figure, the AFW-H

tool prediction, shown by the dashed-blue lines, is compared against the reference

numerical solution referred to as “elsA”, which is shown by the solid-black lines.

Overall, a good agreement can be appreciated, especially on the amplitude and
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Figure 4.13: Far-field PSD from a dual-stream cold jet with the secondary flow under-

expanded (Ms = 1.0), modelled by LES [16]. FW-H surface F1 = 0. Mjp = 0.89,

Mjs = 1.20, Rep = 0.57× 106, Res = 1.66× 106, ro = 30.0Ds from the coaxial nozzle

exit. PSD smoothed as in Figure 4.4(b).
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Figure 4.14: Far-field PSD from a dual-stream cold jet with the secondary flow under-

expanded (Ms = 1.0), modelled by LES [16]. FW-H surface F2 = 0. Mjp = 0.89,

Mjs = 1.20, Rep = 0.57× 106, Res = 1.66× 106, ro = 30.0Ds from the coaxial nozzle

exit. PSD smoothed as in Figure 4.4(b).
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Figure 4.15: Far-field PSD from a dual-stream cold jet with the secondary flow under-

expanded (Ms = 1.0), modelled by LES [16]. FW-H surface F3 = 0. Mjp = 0.89,

Mjs = 1.20, Rep = 0.57× 106, Res = 1.66× 106, ro = 30.0Ds from the coaxial nozzle

exit. PSD smoothed as in Figure 4.4(b).
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on the Strouhal number range of the BBSAN peaks. The BBSAN noise is most

evident between 90° and 130° [16] and the AFW-H tool correctly reproduces the

broad peak amplitude and frequency estimated by the reference solution.

As for the single-stream jet in Section 4.1, the agreement between the PSD

prediction and the reference solution worsens at higher Strouhal numbers. For the

dual-stream jet, this is noticeable above Str = 5. The reason for this worsening of

the acoustic prediction at Str ≥ 5 is due to the difference in sampling frequency

between the two acoustic simulations. The elsA reference solution is obtained by

applying the acoustic analogy at each CFD time step, that is ∆τCAA,elsA = ∆τCFD.

The AFW-H tool is applied to a database in which the flow field properties are stored

every 400∆τCFD, that is ∆τCAA,AFW−H = 400∆τCFD. This gives different Nyquist

Strouhal numbers and hence different spectral roll-off characteristics at high Strouhal

numbers.

The effect of the FW-H surface placement can also be inspected by looking at

Figures 4.13– 4.15. As mentioned before, the intermediate surface F2 = 0 seems to

represent a good compromise between placing the surface far enough from the jet to

prevent spurious hydrodynamic noise from contaminating the acoustic predictions,

and placing it close enough in order to avoid any significant dispersion and dissipation

of the acoustic waves travelling towards the surface itself.

Indeed, it can be noticed that Figure 4.14 relating to F2 = 0 shows a better

match between the reference numerical solution elsA and the AFW-H tool prediction,

compared to Figure 4.13 relating to F1 = 0, while minor differences can be appreciated

comparing the results from F2 = 0 and F3 = 0 (respectively Figures 4.14 and 4.15).

Overall, the match is slightly worse at the upstream angles (110° < θ < 130°), over

the low frequency range (mostly turbulent mixing noise contribution), while the

BBSAN peaks at the same angles are well captured.

Having cross-validated the AFW-H tool prediction against the elsA numerical

solution in Figures 4.12– 4.15, a comparison with experimental measurements in

the far-field is reported in Figure 4.16. The measurements were taken at the Von

Karman Institute for fluid dynamics (VKI), where an ad-hoc facility named FAST

(Free jet AeroacouSTic facility) was designed, built and commissioned by Daniel

Guariglia. Details about both the facility and the measurements on the dual-stream
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jet are given by Guariglia [43].

Whereas the experiment and the numerical simulations targeted the same geome-

try and running conditions (see Appendix A), small differences in the nozzle geometry

due to the elasticity of the rig under pressure were identified in the post-processing

of the experimental readings. Choking in the air lines in experiment also prevented

testing at exactly the conditions modelled by CFD [43]. Due to the high cost of

the LES simulations, further runs better matching the experiment in [43] could

not be run within the AeroTraNet2 project [16]. Therefore, the comparison against

experiment is herein presented on the basis of this being a comparison of the best

matching dataset available to the author.

In Figure 4.16, short-dashed green lines denote the experimental measurements

from [43], referred to as “exp VKI”. The AFW-H prediction that is estimated starting

from the LES solution on the FW-H surface F2 = 0 of Table 4.4, obtained at Cerfacs,

is shown by the long-dashed blue lines and is referred to as “elsA/AFW-H”. It is the

same solution reported in Figures 4.12– 4.15.

The solid-red lines denote a second numerical solution, estimated by the appli-

cation of the AFW-H solver to the DES database generated at the University of

Leicester by Mancini [15], through the Cosmic CFD code. Therefore, this solution is

referred to as “Cosmic/AFW-H”. It is worth recalling that acoustic pressure predic-

tions are obtained by a two-stage approach, as explained in Sections 1.5 and 2.1.2.

The unsteady flow field prediction on the FW-H integration surface is calculated

first by CFD. The acoustic pressure is then computed in the acoustic near-field and

far-field by the advanced-time formulation of the FW-H acoustic analogy reported in

Section 2.2.3, as implemented in the new AFW-H solver.

Figure 4.16 shows results for 8 values of the radiation angle θ and the BBSAN

contribution appears over the range 90° < θ < 130° as a broadband peak centred

at Str ≈ 2.0, raising above the turbulence associated noise, which stretches across

the full Strouhal number range. The Strouhal number range of the BBSAN is

well captured by the numerical prediction, but the numerical PSD is up to 10 dB

louder than the experimental result across a large portion of the BBSAN Strouhal

bandwidth.

The author has not arrived to a definite justification for this mismatch, but
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Figure 4.16: Far-field PSD from a dual-stream cold jet with the secondary flow

under-expanded (Ms = 1.0), compared with far-field experimental measurements

by Guariglia [43] at ro = 30.0Ds. FW-H surface F2 = 0. Mjp = 0.89, Mjs = 1.20,

Rep = 0.57 × 106, Res = 1.66 × 106. PSD geometrically scaled to rref = 40.0Deq

from the secondary nozzle exit disk centre and smoothed as in Figure 4.4(b).
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several hypotheses have been proposed [15, 16, 43]. It is worth highlighting that the

new Python AFW-H acoustic analogy code produces results that are consistent with

the elsA numerical reference solution in Figures 4.12– 4.15 and that the reason for

the 10 dB gap in Figure 4.16 may to be sought in the difference between the CFD

and the experimental set-ups that seem to use two slightly different test cases.
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Figure 4.17: Far-field Overall Sound Pressure Level (OSPL) from a dual-stream

cold jet with the secondary flow under-expanded (Ms = 1.0), modelled by LES [16].

Mjp = 0.89, Mjs = 1.20, Rep = 0.57× 106, Res = 1.66× 106. OSPL geometrically

scaled to rref = 40.0Deq from the secondary nozzle exit disk centre.

Figure 4.17 represents an attempt to recover the match in noise levels between

the numerical prediction and the experiment. Overall Sound Pressure Levels in the

far-field are reported, with three curves showing the results from two numerical noise

predictions and from the experimental measurements by Guariglia [43], which is

denoted by the green circles. The blue squares denote the noise prediction obtained

by the elsA/AFW-H method, while the black diamonds show the acoustic prediction

obtained through the application of the acoustic analogy implementation in elsA [130],

by Pérez [16].

In Figure 4.17, the experimental curve is modified by adding +6 dB at all

radiation angles and the match in noise levels between experiment and numerical
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simulation is thereby recovered. This +6 dB correction is adopted following Pérez

in [16], who used a similar correction to match his numerical PSD prediction to

the same measurements by Guariglia [43]. Figure 4.17 suggests that a constant gap

between the acoustic numerical prediction and the noise measurements occurs over

the range 60° ≤ θ ≤ 130°. In the downstream direction over the range 30° ≤ θ ≤ 50°,

Figure 4.17 still shows a mismatch in the noise levels up to 4 dB, despite the +6 dB

correction to the experimental result.

In the comparison between acoustic numerical predictions and measurements

in Figures 4.16 and 4.17, an important aspect to be considered is that the nozzle

manufactured for the FAST facility is smaller by 20% compared to the geometry

used for the CFD simulations, which is shown in Figure A.1 in Appendix A. This is

due to choking of the air supply lines requiring the use of a smaller nozzle diameter.

As the CFD simulation had been run before the completion of the FAST facility, the

numerical and the experimental investigations ended up being about different nozzle

diameters.

Figures 4.16 and 4.17 attempt to account for this difference by scaling geometri-

cally the sound pressure amplitude to the same distance ro = 40.0Deq in terms of

the respective equivalent jet diameter

Deq =
√

4
π

(As + Ap) , (4.1)

where As and Ap are the nominal secondary and primary nozzle areas. Using the

As and Ap values from CFD and from experiment determines respectively Deq,CFD

and Deq,exp. However, the different geometry could cause differences in the flow field

features.

Moreover, with the FAST facility turned on, the elasticity of the pressure vessel

led to an axial shift of the secondary nozzle lip in the downstream direction [43],

resulting in an increment of the nozzle exit area As that needs to be taken into

account in the equivalent jet diameter calculation (Equation 4.1). Consequently, the

secondary mass flow rate increases and the shock-cell system in the experiment is

affected by this modification. The comparison between the CFD and the experiment

showed larger shock-cell lengths in the measurements, while the numerical simulation

is characterised by a wider shear-layer [16].
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Another aspect to be considered is that screech noise is generated in the experi-

ment, as it can be seen from the spectra in Figure 4.16 that display tones at Str ≈ 0.9

and at Str ≈ 1.8 that are substantially independent from θ in the upstream arc.

The numerical simulation does not predict any tonal noise component at any of the

radiation angles considered. All these factors may contribute to the differences in

noise levels between predictions and measurements.

It is important to recall that the results obtained independently via the new

AFW-H tool developed by the author and via the FW-H analogy implemented in elsA

applied to CFD data were similar to the noise levels measured in the FAST facility,

for the supersonic under-expanded single-stream jet configuration by André [143].

Besides, the two acoustic numerical predictions for the dual-stream jet, obtained

by the new AFW-H tool developed by the author at the University of Leicester and,

independently, by the elsA software used at Cerfacs, France, give comparable noise

levels in Figure 4.12– 4.15. The dual-stream jet noise levels measured at the VKI

are instead lower by up to 10 dB. The reason for this quieter experimental jet could

be hidden within the aerodynamics of the measured flow, but for a systematic error

in the simulations or in the experiment.

4.2.2 Near-field radiation

In this section, results in the acoustic near-field of the jet are presented in Figure 4.18,

in terms of Power Spectral Density (PSD), at observers located on right frusta of

cones. The observers are placed at 41 axial locations between the secondary nozzle

exit section (x = −0.4Ds) and x = 7.6Ds. For each axial location, the acoustic PSD

is averaged across 16 observers equispaced in the azimuthal direction φ, in order to

obtain smoother spectra of the acoustic pressure fluctuation (see Section 4.2.1). The

number of observers for a single array is therefore 41× 16 = 656.

Figures 4.18(a) and 4.18(b) show the predictions from the observers located along

α = 8° radially divergent lines that start respectively from (x = −0.4Ds; r = 1.5Ds)

and (x = −0.4Ds; r = 1.7Ds). The PSD is plotted against the normalised axial

position x/Ds and the Strouhal number in Figure 4.18. The iso-levels of PSD show

the “banana-like” shape typical of SCN in the near-field [16, 147] and they are in

good agreement with the prediction by Pérez [16], obtained by a direct computation
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(c) (x = −0.4Ds; r = 1.7Ds) from [16].

Figure 4.18: Near-field PSD vs Strouhal number (Str) at different x/Ds from a dual-

stream jet with the secondary flow under-expanded (Appendix A). FW-H surface

F1 = 0. Linear array of observers diverging by α = 8.0° with respect to the jet

axis. The dashed-line circles indicate the “banana-like” shape typical of SCN in the

near-field [16, 147]. PSD smoothed as in Figure 4.4(b).
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approach (Section 2.1.1), shown in Figure 4.18(c). In Figure 4.18(b) the PSD is

predicted to be lower than in Figure 4.18(a), which reports the acoustic prediction

from observers located closer to the jet axis.

In summary, with a porous FW-H acoustic analogy approach (see Section 2.2.1),

if the volume quadrupole source distribution outside the FW-H surface is assumed

to be negligible compared to the monopole and to the dipole source contributions, a

good noise prediction is feasible both in the acoustic near-field and in the acoustic

far-field, when the integration surface is correctly placed. This means that the surface

needs to be positioned in the linear region of the flow, where non-linear hydrodynamic

perturbations are negligible [138]. At the same time, the FW-H surface is required

to wrap the jet closely enough for any numerical dissipation and dispersion of the

acoustic waves travelling to the surface itself to be negligible.

Figure 4.18 shows that, by correctly placing the integration surface in such way,

the approximation that originates from neglecting the volume integral contribution

outside the surface in the FW-H acoustic analogy theory appears to be reasonable

and both near-field and far-field noise can be estimated through this approach.

4.2.3 Jet acoustic source compactness

In this section, the empirical method described by Viswanathan [148, 149] is applied

to the dual-stream jet test case of Table 4.3, in order to get the minimum distance in

the acoustic far-field that enables the jet to be considered as an acoustically compact

source for jet noise measurement purposes. The meaning of this characteristic

distance, here referred to as Rf (far-field), is briefly explained in this section, before

discussing the results reported in Figures 4.20– 4.24. Rf is an empirical result based

on noise estimations by the AFW-H tool and it is not tested against the conditions

expressed in Equation 1.3, Section 1.4.

In jets, the centre of the nozzle exit (primary exit for dual-stream jets) is commonly

chosen as the origin of the Cartesian reference system, as it is in this chapter. However,

the jet is intrinsically a non-compact acoustic source and the noise sources spread

across several jet diameters in the downstream direction. For turbulent mixing noise,

Lilley [56, 150] shows that the location of the acoustic sources in a jet relates to the

axial position of maximum amplitude of the shear layer instabilities, which increases
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with the instability wavelength. Therefore, the axial location of the noise source in a

given bandwidth is frequency-dependent. It is sometimes possible to use the spectral

peak frequency to define the “peak source” axial position when SCN is generated.

For instance, for dual-stream jets, the peak source is located at x ≈ 5.0Deq [149] in

terms of equivalent jet diameters (Equation 4.1).

Therefore, assuming an equivalent point source located at the origin of the refer-

ence system for an acoustically non-compact source is inaccurate. The r−2 geometric

scaling of the acoustic intensity in the far-field is only obtained approximately, within

a given tolerance (here taken as 1 dB), beyond a polar distance Rf from the nozzle

exit centre. Rf is determined later on in this section. Observers located at r ≥ Rf

cannot distinguish among the different axial and radial positions of the acoustic

sources in the acoustically active portion of the flow and the jet becomes acoustically

compact at these distances. An equivalent noise source can thus be assumed to

be placed at the centre of the nozzle exit plane, and both acoustic distances and

radiation angles can be directly measured from this point.

Viswanathan determined the Rf that gives acoustic source compactness [148]

both in single-stream jets [151, 152] and in dual-stream jets [149]. Considering just

unheated jets, distances of about 35.0De and 45.0De have been found respectively

for subsonic and supersonic single-stream jets. In the dual-stream jet configuration,

the equivalent diameter (Equation 4.1) is used as a reference length and a shorter

distance of about 30.0Deq is determined for Rf [149].

The reason for this shorter Rf in dual-stream jets is attributed to the slowly

varying Overall Sound Pressure Level (OSPL) with radiation angle θ compared to

single-stream jets, where the variation with θ presents stronger gradients in the

downstream quadrant [149].

The method applied here for determining Rf empirically consists in comparing

the spectral results of two arrays of observers, one axial array at distance dsl from

the jet axis, referred to as the sideline array (SL), and an arc of observers at constant

distance rpol from the origin of the Cartesian reference system, referred to as the

polar array (POL). Both arrays are shown schematically in Figure 4.19.

The two arrays cover 11 radiation angles between 40° and 140°, generating couples

of paired observers, one for each radiation angle. Two paired observers have the same
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ro = dsl
sin θ

Primary nozzle exit section

Ujp

x

y

Figure 4.19: Schematic representation of the sideline array, with distance dsl from

the jet axis, and of the polar array, with radius rpol.

polar coordinate θ but different distance ro from the origin, as shown in Figure 4.19.

As far as the polar array is concerned, the distance is independent from θ and equal

to the radius of the arc (ro = rpol). The radial distance of an observer on the sideline

array varies with θ and it reaches a minimum at θ = 90°. Moving along the sideline

array away from the nozzle exit section, both in the upstream and in the downstream

direction, the distance ro of the observer from the origin increases, following the

relation

ro = dsl
sin θ . (4.2)

Rf is then found by the following procedure. Once the noise radiation to

both arrays is estimated, the resulting PSDs from two corresponding observers are

geometrically scaled to the same reference distance rref in order to allow for a direct

comparison between them. If the two scaled PSDs for a specific radiation angle θ

match, it can be concluded that the jet is acoustically compact in the θ direction

considered. Thus, Rf = dsl/ sin θ. The criterion adopted here is that the two scaled

PSDs need to match within a ±1 dB tolerance over the whole frequency range. If

the difference between the two scaled PSDs at the same θ is greater than 1 dB, the

sideline array can be moved farther away from the jet axis, till the scaled PSD of the

observer on this array in the θ direction matches the scaled PSD of its corresponding

counterpart on the polar array, according to the above stated tolerance.
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Acoustic results have been produced with the new Python AFW-H tool, on a

polar array at rpol = 45.9Deq from the origin of the reference system, and on three

sideline arrays. The PSDs, geometrically scaled to rref = 40.0Deq, are reported in

Figures 4.20– 4.22.

Figure 4.20 shows the comparison with a sideline array at dsl = 24.3Deq, from

which it can be inferred that there are no appreciable differences in the scaled PSDs

in the directions θ ≤ 50° and θ ≥ 130°. At intermediate angles, acoustic source

non-compactness effects are clearly visible at the low and at the mid frequency ranges,

where the PSDs from the sideline array and from the polar array differ by more than

1 dB. This first test would suggest Rf ≥ 31.7Deq both in the upstream and in the

downstream directions.

In Figure 4.21, the distance of the sideline array is increased to dsl = 27.7Deq and

this improves the agreement among the scaled PSDs from paired observers compared

to Figure 4.20. However, the range in which acoustic source non-compactness effects

are appreciable is still 60° ≤ θ ≤ 120°, where the PSDs from the sideline array

and from the polar array differ by more than 1 dB. This second test suggests

Rf > 32.0Deq.

The distance of the sideline array is increased again in Figure 4.22 to dsl = 31.6Deq.

In the upstream direction, the match is really good and the PSDs from the polar array

and from the sideline array differ by less than 1 dB. In the downstream quadrant,

the match is slightly worse and the PSDs over the range 70° ≤ θ ≤ 90° do not satisfy

the tolerance defined above. This suggests ro ≈ 33.0Deq as the researched value, for

which the differences between the PSDs from the sideline array and from the polar

array are lower than 1 dB over the whole frequency range. Therefore, Rf ≈ 33.0Deq

can be considered a reasonable value for the minimum distance that enables the

jet to be considered as an acoustically compact source for jet noise measurements

purposes.

This result is in agreement with Viswanathan [149], who investigated two jet

outflow geometries, obtaining Rf = 36.0Deq and Rf = 28.0Deq, respectively for the

smaller and the larger nozzle. Furthermore, from Table 4.5, the distance ro chosen

for the far-field array in Section 4.2.1 is ro = 30.0Ds = 34.4Deq > Rf . This confirms

that the analysis in Section 4.2.1 is of far-field noise.
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Figure 4.20: PSD comparison between the Polar (POL) and the Sideline (SL) arrays

of observers for a dual-stream under-expanded jet (Appendix A). rpol = 45.9Deq

(from the origin), dsl = 24.3Deq. FW-H surface F3 = 0. PSD scaled to rref = 40.0Deq

and smoothed as in Figure 4.4(b).
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Figure 4.21: PSD comparison between the Polar (POL) and the Sideline (SL) arrays

of observers for a dual-stream under-expanded jet (Appendix A). rpol = 45.9Deq

(from the origin), dsl = 27.7Deq. FW-H surface F3 = 0. PSD scaled to rref = 40.0Deq

and smoothed as in Figure 4.4(b).
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Figure 4.22: PSD comparison between the Polar (POL) and the Sideline (SL) arrays

of observers for a dual-stream under-expanded jet (Appendix A). rpol = 45.9Deq

(from the origin), dsl = 31.6Deq. FW-H surface F3 = 0. PSD scaled to rref = 40.0Deq

and smoothed as in Figure 4.4(b).
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Flow D(m) A (m2) σ(m) Deq(m)

Primary 0.024 0.43× 10−3 0.3× 10−3

Secondary 0.055 1.39× 10−3 0.3× 10−3 0.048

Table 4.5: Jet outflow geometry and equivalent jet diameter Deq.

Another test has been carried out to identify the axial location of the dominant

contributions to jet noise in dual-stream jets, which is reported as x ≈ 5.0Deq in the

literature [149]. Figures 4.23 and 4.24 are obtained by moving the centre of both the

polar and the sideline array to this point (5.0Deq, 0, 0). The radius of the polar array

is kept to 45.9Deq and two sideline arrays are considered, with distance dsl = 20.0Deq

in Figure 4.23, and dsl = 24.3Deq in Figure 4.24.

The results for the shorter distance dsl = 20.0Deq in Figure 4.23 show a good

match for angles θ ≤ 60° and θ ≥ 110° in the scaled PSDs from paired observers at

the same polar angle, while minor acoustic source non-compactness effects are visible

over the range 70° ≤ θ ≤ 100°, where the difference between the PSDs from the

polar array and from the sideline array is greater than 1 dB. Moving to the farther

sideline array at dsl = 24.3Deq in Figure 4.24, the match is satisfactory for all the

radiation angles considered (40° ≤ θ ≤ 140°), with noise levels differing by less than

1 dB across the whole frequency range.

Figure 4.24 shows a better match in the scaled PSDs from paired observers at

the same polar angle compared with Figure 4.20, where the array is centred at the

nozzle exit section, for the same distance dsl = 24.3Deq of the sideline array from

the jet axis. The farthest arrays at dsl = 27.7Deq and dsl = 31.6Deq for the case

with the radiation angle measured from (5.0Deq, 0, 0) are not reported, because the

geometrically scaled PSDs from the sideline and from the polar arrays essentially

overlap at these distances.

These results confirm that the peak noise source is not located at the nozzle exit

section, but farther downstream at x ≈ 5.0Deq for dual-stream supersonic cold jets.

A far-field minimum distance of Rf ≈ 24.0Deq is determined when the centre of the

noise radiation is assumed at x = 5.0Deq, which is lower than Rf ≈ 33.0Deq obtained

by setting the acoustic origin at the centre of the nozzle exit area.
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Figure 4.23: PSD comparison between the Polar (POL) and the Sideline (SL) arrays

of observers for a dual-stream under-expanded jet. rpol = 45.9Deq from (5.0Deq, 0, 0),

dsl = 20.0Deq. FW-H surface F3 = 0. PSD scaled to rref = 40.0Deq and smoothed

as in Figure 4.4(b).
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Figure 4.24: PSD comparison between the Polar (POL) and the Sideline (SL) arrays

of observers for a dual-stream under-expanded jet. rpol = 45.9Deq from (5.0Deq, 0, 0),

dsl = 24.3Deq. FW-H surface F3 = 0. PSD scaled to rref = 40.0Deq and smoothed

as in Figure 4.4(b).
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As a practical conclusion, the distance Rf ≈ 33.0Deq can be taken as the lower

limit of the acoustic far-field in order to approximate the jet noise sources with an

equivalent point source placed at the origin of the reference system, coinciding with

the centre of the primary nozzle exit area for dual-stream cold jets, to within 1 dB

of the true far-field value.

4.3 Chapter 4 summary

The AFW-H tool has been applied, as a post-processor, to previously stored time-

resolved CFD predictions of single-stream jets, both subsonic (Section 4.1.1) and

supersonic (Section 4.1.2), and of a dual-stream under-expanded jet (Section 4.2).

LES and DES results, obtained respectively at Cerfacs, by the high-order CFD code

elsA [130] and at the University of Leicester, by the second-order CFD code Cosmic,

have been used. The numerical prediction by the AFW-H tool has been compared

against both numerical reference solutions in Section 4.1.1 and against experimental

measurements by André [143] and by Guariglia [43] in Sections 4.1.2 and 4.2.

The acoustic analogy AFW-H tool was able to correctly capture the main noise

features of both single and dual-stream jets, in terms of acoustic pressure fluctuation

amplitude and directivity. The comparison with both the numerical reference

predictions and the experimental measurements showed a good overall match. The

differences with the experimental measurements in Sections 4.1.2 and 4.2 can be

attributed to differences between the CFD and the experimental set-ups. These

results build confidence in the application of the AFW-H tool to extracting the

aerodynamic noise generated by unsteady turbulent jets, also in the presence of

shocks.

The AFW-H tool was also extremely efficient from a computational point of

view. For instance, by considering the Cosmic/AFW-H method of Section 4.2.1,

the AFW-H tool was used to post-process the CFD database, consisting of 1600

time steps of the flow field time-history on the integration surface. The FW-H

surface was discretised by 271872 cells across 364 zones and the acoustic simulation

whole time was about half an hour on 128 cores. By comparison, the 2nd order

CFD code Cosmic was run on 1824 processors with a computational domain of 226
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million cells. The CFD simulation was run for 800 thousands iterations, excluding

the initialization phase, with an averaged time per iteration of 0.6321 s [15]. The

resulting computational cost of the acoustic simulation was only 0.02% of the DES

simulation.
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Chapter 5

Noise radiation in a uniformly

moving medium

In this chapter, the CFW-H formulation described in Section 2.2.4 is used to determine

the acoustic pressure radiated from elementary sources in Section 5.1 and from an

under-expanded single-stream jet in Section 5.2. The point source tests aim to

validate the CFW-H code on noise radiation from elementary sources in a uniform

flow. The noise sources considered herein are a monopole (Section 5.1.1) and a dipole

(Section 5.1.2) of the same type studied respectively in Sections 3.1.1 and 3.1.2. The

difference is in the state of the medium in which the generated noise propagates.

Whereas in Chapter 3 all the elementary sources were radiating in a medium at rest,

in Section 5.1 a uniform flow parallel to one of the coordinate axes is considered and

the effects of the uniformly moving medium on the noise radiation are evaluated.

Section 5.2 reports an application to an under-expanded jet issuing from the

same nozzle geometry at the same nozzle exit conditions as the test case analysed in

Section 4.1.2, with the addition of an external flow moving at constant velocity U0 in

the jet direction. Due to the convergent shape of the axisymmetric nozzle, the flow

at the nozzle exit is under-expanded and the jet is characterised by the presence of a

shock-cell system. The latter generates a BBSAN contribution to the jet noise.

The U0 external flow aims to model a jet in flight, even if the low Mach number

M0 = 0.39 of the external flow and the cold jet outflow make this configuration

different than the jet conditions for cruise of contemporary subsonic wide-body

civil aircraft. Still, the M0 = 0.39 external flow enables to investigate the forward
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flight effects both on the mixing noise and on the BBSAN contributions from the

application of the convective acoustic analogy, by comparing the predictions with

the corresponding ones for the static jet reported in Section 4.1.2.

The CFW-H formulation is also tested for the stationary case (M0 = 0) and the

results are reported in Appendix D. Beyond representing a preliminary validation,

Appendix D shows that, since the AFW-H formulation (Equations 2.21 and 2.22) is

a special case of the CFW-H formulation (Equations 2.37 and 2.38), by replacing

M0 = 0 in the convective acoustic analogy, the results from the AFW-H and from

the CFW-H codes for M0 = 0 coincide. Specifically, Appendix D shows this for the

numerical noise prediction in a medium at rest, both for elementary noise sources

and for noise generated aerodynamically by jets.

5.1 Noise radiation from elementary sources in a

uniform flow

The first application to noise propagation in a moving medium is presented in this

section. Both an omnidirectional source (monopole) and a directive source (dipole)

are investigated, respectively in Sections 5.1.1 and 5.1.2. The sources are located

at the origin of the reference system and the integration surface and the observers

are laid out as sketched in Figure 3.1. A uniform flow with constant velocity U0

in the positive x1-axis direction is imposed. Different simulations with different

values of U0 cover the Mach number range from low subsonic (M0 = 0.2) to high

subsonic (M0 = 0.85). The choice of the flow direction is convenient in terms of the

calculations, but it is not prescriptive.

5.1.1 Monopole acoustic source in a uniform flow

The analytical solution for a monopole acoustic source radiating in a uniform flow in

the x1-axis direction is given by Lockard [153], in the form of a convective derivative

of a harmonic velocity potential (see also Dowling & Ffowcs Williams [154]). From

this, the acoustic pressure fluctuation is obtained analytically as

p′ (x, t) = B(c)

(kR∗)

{
[SBcos]
(kR∗) cos (ωt− kR) + [SBsin] sin (ωt− kR)

}
, (5.1)
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where

B(c) = ρ0c0Ak
2

4π , (5.2)

SBcos = M0
x1 − y1

R∗
, (5.3)

SBsin = 1−M0

(
−M0 + x1−y1

R∗

β2

)
. (5.4)

The monopole of Equation 5.1 is a volume velocity source [155], obtained by using

the harmonic velocity potential as acoustic variable.

It is worth recalling the meaning of some of the terms in Equations 5.1– 5.4.

Vectors x and y respectively refer to the observer position and to the source position.

k is the wave number and ω the angular frequency of the acoustic waves generated

by the omnidirectional source. M0, ρ0, and c0 are the Mach number, the density and

the sound speed of the moving medium.

The distances R and R∗ are defined in Section 2.2.4 and in Appendix C, respec-

tively by Equations 2.29 and 2.30, and they represent the convective counterparts of

the source-observer scaling distance r = |x− y|. R is the source-observer distance

at the sound emission time as sketched in Figure C.1, while R∗ determines the decay

of the acoustic pressure fluctuation p′ amplitude with propagation distance from the

source (as defined in Appendix C). Finally, β is related to M0 through Equation 2.31

(Section 2.2.4), and A is a parameter used to define the noise source strength, in

m3s−1.

Figure 5.1 compares the monopole source directivity obtained by the application

of the CFW-H acoustic analogy, shown by the blue squares, against the reference

analytical solution of Equation 5.1, shown by the solid-black lines, for different values

of the convection Mach number M0 of the moving medium. The solid-red lines show

the directivity of a monopole source with the same acoustic power radiating in a

medium at rest (M0 = 0).

In all the tests reported in Figure 5.1, the FW-H surface is a cube with side

a = 2` = 1 m. The shape of the integration surface was found not to affect the

accuracy of the solution in tests not reported here, for brevity. The frequency of the

acoustic waves is fixed to f = 5 Hz (λ/a = 68) and the monopole acoustic source

strength to A = 1 m3s−1.

Two acoustic distances source-observer are considered, which are r = ro = 5 m
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(e) ro = 5 m, M0 = 0.85.
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(f) ro = 340 m, M0 = 0.85.

Figure 5.1: Radiation in a medium uniformly moving in the x1-axis direction, from

an acoustic monopole source located at the origin. Prismatic FW-H surface with

a = 2` = 1 m (see Figure 3.1). Source frequency f = 5 Hz, and source strength

A = 1 m3s−1.
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and r = ro = 340 m. Predictions are obtained for three different values of Mach

number M0 of the uniform medium in which the monopole radiates. Figures 5.1(a)

and 5.1(b) show a low subsonic convection simulation at M0 = 0.2. In Figures 5.1(c)

and 5.1(d), the Mach number of the uniform medium is increased to M0 = 0.5.

In Figures 5.1(e) and 5.1(f), the Mach number of the uniform medium is further

increased to M0 = 0.85.

Figures 5.1(a)– 5.1(f) show the x3 = 0 plane and the uniform medium moves

horizontally from left to right along the x1-axis. The effect of the mean flow on the

monopole source radiation is mainly to increase to a value higher than unity the

ratio between the upstream and the downstream noise radiation amplitude. This

causes the directivity pattern to lose its symmetry with respect to the x2-axis, which

is orthogonal to the mean flow direction, compared to the red line M0 analytical

solution. This effect strengthens with increasing uniform flow Mach number M0,

both at r = ro = 5 m (Figure 5.1 on the left), and at r = ro = 340 m (Figure 5.1

on the right). The symmetry of the monopole noise directivity about the x1-axis is

unaffected by the U0 uniform flow.

Figure 5.1 also shows that the presence of the uniform flow affects the direction of

maximum noise radiation. Table 5.1 reports the angular positions and the intensities

of the noise peak for the three cases considered in Figure 5.1, and for two additional

values of the uniform flow Mach number M0, that are M0 = 0.55 and M0 = 0.6.

From Table 5.1, it can be inferred that the noise peak is at θ = 180°, for M0 ≤ 0.55.

For M0 = 0.6, two peak noise radiation directions occur, at θ ≈ 145° and at θ ≈ 215°,

placed symmetrically about the x1-axis. Increasing further M0, the noise peaks bend

towards the x2-axis, reaching θ ≈ 110° and θ ≈ 250° for the high subsonic Mach

number M0 = 0.85, as shown by Figures 5.1(e) and 5.1(f).

The shape of the monopole acoustic source directivity is significantly modified

by the mean flow of M0 = 0.85, generating a cardioid pattern aligned in the x1-axis

direction but compressed in x1. The cardioid minimum is at θ = 0°, where the

pressure fluctuation amplitude assumes its lowest value.

It is worth noting that the polar axes in Figures 5.1(e) and 5.1(f), pertaining to

the M0 = 0.85 results, have a different scale compared to Figures 5.1(a)– 5.1(d). This

is because the convective amplification due to the moving medium is large and the
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ro(m) M0 θpeak p̄′peak

0.2 180° 1.32
0.5 180° 2.29

5 0.55 180° 2.54
0.6 180°± 35° 2.86
0.85 180°± 70° 9.28

0.2 180° 1.25
0.5 180° 2.00

340 0.55 180° 2.23
0.6 180°± 35° 2.54
0.85 180°± 70° 8.84

Table 5.1: Amplitude of the noise radiation directivity peaks from a monopole source,

normalised by the peak amplitude of the noise radiated from the same monopole in

a medium at rest, at M0 = 0.

noise peak intensity increases significantly compared not only to the stationary case

M0 = 0, but also to the low and to the intermediate Mach number cases (M0 = 0.2

and M0 = 0.5). This aspect is confirmed in Table 5.1 that reports the values of

the pressure fluctuation amplitude in the direction of the maximum noise radiation,

normalised by the corresponding value in the absence of a mean flow (M0 = 0).

At M0 = 0.85, the peak pressure fluctuation amplitudes are reported to be almost

one order of magnitude above the omnidirectional pressure fluctuation amplitude at

M0 = 0.

All these features are correctly reproduced in the acoustic fields obtained from

the CFW-H acoustic analogy implemented in Python, which match the reference

analytical solution very closely, for the directivity at all the six different conditions

of Figures 5.1(a)– 5.1(f). The match is slightly worse for the (ro = 5 m;M0 = 0.85)

case, where the distance of the observers from the FW-H surface is relatively small

and the convective effects are strong. Najafi-Yazdi et al. [55] suggested that the

match can be improved by increasing the spatial resolution of the FW-H surface.

Another test is presented in Figure 5.2, which reports the acoustic directivity

pattern and the acoustic pressure fluctuation at θ = 0° radiated by the monopole
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Figure 5.2: Radiation in a medium uniformly moving with M0 = 0.5 in the x1-axis

direction, from an acoustic monopole source located at the origin. Prismatic FW-H

surface with a = 2` = 10 m (see Figure 3.1). Source frequency f = 14.8 Hz, and

source strength A = 3.4 m3s−1. Distance source-observers ro = 50 m.

source in a uniformly moving medium, obtained with different parameters with

respect to Figure 5.1. The parameters are equivalent to a test run by Lockard [153]

and they are summarised in the figure caption. The match between the analytical and

the numerical solution is again good, and the CFW-H prediction correctly captures

the changes in the acoustic pressure with respect to time t and radiation angle θ.

The CFW-H results for the monopole radiation in a uniform flow presented in

Figures 5.1 and 5.2 are very satisfactory and they agree with the previous results by

Lockard [153] and by Najafi-Yazdi et al. [55].

5.1.2 Dipole acoustic source in a uniform flow

In this section, a directional source of dipole type radiating in a uniform flow is

considered. The noise radiation, given in terms of the acoustic pressure fluctuation,

is

p′ (x, t) = B(c)k

(kR∗)
x2 − y2

R∗

{
[SBcos] cos (ωt− kR) + [SBsin]

(kR∗) sin (ωt− kR)
}

, (5.5)

where

SBcos = −1 + M0

β2

(
x1 − y1

R∗
−M0

)
− 3M0β

2x1 − y1

R∗
1

(kR∗)2 , (5.6)
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SBsin = −β2 +M0

(
3x1 − y1

R∗
−M0

)
. (5.7)

Equation 5.5 is obtained similarly to Equation 5.1 from the convective derivative of

the corresponding velocity potential, which is given in [55]. This velocity potential is

the same as the one used to get Equation 5.1 for the monopole point source radiating

in a uniform flow, but for a spatial derivative taken in the direction of the dipole

orientation. The latter is chosen to coincide with the x2-axis. Therefore, Equation 5.5

represents a volume-velocity dipole [155]. All the variables in Equation 5.5 are defined

in Section 2.2.4 and in Appendix C.

The dipole source is located at the centre of the Cartesian reference system

of Figure 3.1 and it radiates in a medium that is moving at constant velocity in

the positive x1-axis direction. The FW-H integration surface and the layout of

the observers are defined in Figure 3.1. Acoustic directivity patterns are reported

in Figure 5.3, for the same mean flow Mach numbers (M0 = 0.2, M0 = 0.5, and

M0 = 0.85), and for the same distances (ro = 5 m and ro = 340 m) considered in

Section 5.1.1. Solid-black lines denote the analytical solution from Equation 5.5 and

blue squares denote the CFW-H acoustic analogy prediction. Besides, the analytical

solution for the configuration with the medium at rest is shown by the solid-red lines.

Figure 5.3 shows the acoustic pressure fluctuation directivity on the x3 = 0 plane,

on which the uniform flow moves from left to right.

As for the monopole source of Section 5.1.1, the mean flow convection has the effect

of strengthening the noise intensity in the upstream direction. However, this effect is

mainly noticeable in the noise radiation at r = ro = 340 m, in Figures 5.3(b), 5.3(d),

and 5.3(f). At this distance, the direction of the maximum noise radiation bends

towards forward angles in the presence of a mean flow. This effect is amplified as the

mean flow Mach number is stepped up from M0 = 0.2 in Figure 5.3(b), to M0 = 0.5

in Figure 5.3(d). Figure 5.3(f) shows that, at M0 = 0.85, the noise peak bends back

towards aft angles, so inverting the trend compared to the results at M0 = 0.5.

The predicted noise directivity at r = ro = 340 m from the source in Fig-

ures 5.3(b), 5.3(d), and 5.3(f), shows that the two lobes of the dipole directivity

progressively narrow as the uniform convection Mach number of the moving medium

increases. The radiation maximum in each lobe also increases. The noise directivity

peaks, normalized by the corresponding value for the M0 = 0 case, are listed in
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(b) ro = 340 m, M0 = 0.2.
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(c) ro = 5 m, M0 = 0.5.
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(d) ro = 340 m, M0 = 0.5.
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(e) ro = 5 m, M0 = 0.85.
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(f) ro = 340 m, M0 = 0.85.

Figure 5.3: Radiation in a medium uniformly moving in the x1-axis direction, from an

acoustic dipole source located at the origin. Prismatic FW-H surface with a = 2` = 1

m (see Figure 3.1). Source frequency f = 5 Hz, and source strength A = 1 m4s−1.

NT = 40 points per period.
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Table 5.2. Table 5.2 shows a monotonic increase in the acoustic pressure fluctuation

amplitude with M0. As in Section 5.1.1, at M0 = 0.85 this amplification reaches

about one order of magnitude above the baseline M0 = 0.

ro(m) M0 θpeak p̄′peak

0.2 180°± 70° 1.09
5 0.5 180°± 60° 2.13

0.85 180°± 76° 9.91

0.2 180°± 80° 1.11
340 0.5 180°± 72° 1.93

0.85 180°± 78° 14.97

Table 5.2: Amplitude of the noise radiation directivity peaks from a dipole source,

normalised by the peak amplitude of the noise radiated from the same dipole in a

medium at rest, at M0 = 0.

At the shorter distance r = ro = 5 m, the results reported in Figures 5.3(a), 5.3(c),

and 5.3(e) show a reduced asymmetry in directivity about the x2-axis compared to

Figures 5.3(b), 5.3(d), and 5.3(f). At M0 = 0.2, the leaning of the dipole directivity

lobes in the upstream direction is rather difficult to detect. At M0 = 0.5 and

M0 = 0.85, the directivity pattern exhibits four lobes. This feature makes clear the

presence of a directivity bias in the upstream direction in Figures 5.3(c) and 5.3(e).

At both distances r = ro = 5 m and r = ro = 340 m, the noise peak intensity is

progressively amplified as the uniform Mach number of the moving medium increases.

Due to the significant increment in the amplitude of the acoustic pressure fluctuation,

the results for the high subsonic Mach number M0 = 0.85 in Figures 5.3(e) and 5.3(f)

are reported with a larger radial scale on the polar axis, for visualization purposes,

compared to the lower Mach number configurations in Figures 5.3(a)– 5.3(d).

The numerical prediction obtained with the new Python CFW-H tool appears

to be correctly capturing the noise directivity from the dipole source in a uniformly

moving medium, as it displays a good match with the analytical solution of Equa-

tion 5.5, both at r = ro = 5 m and at r = ro = 340 m. A slight mismatch around

the noise peak is only appreciable in Figure 5.3(f), concerning the highest subsonic

Mach number M0 = 0.85 and the largest distance r = ro = 340 m. By refining the
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Figure 5.4: Radiation in a medium uniformly moving at M0 = 0.85 in the x1-axis

direction, from an acoustic dipole source located at the origin. Prismatic FW-H

surface with a = 2` = 1 m (see Figure 3.1). Source frequency f = 5 Hz, and source

strength A = 1 m4s−1. Distance source-observers ro = 340 m.

spatial and/or the temporal discretization, it is possible to improve the accuracy of

the solution, as shown by the test reported in Figure 5.4. Figure 5.4(b), pertaining

to the results obtained with NT = 80 number of points per period, shows a better

match between the CFW-H prediction and the analytical solution of Equation 5.5

compared to Figure 5.4(a), where NT = 40 as for Figures 5.3(a)– 5.3(f).

It is worth pointing out that the acoustic predictions at the farthest distance

r = 340 m in Figures 5.3(b), 5.3(d), and 5.3(f) have not been referred to as acoustic

far-field predictions, either in this section, or in Section 5.1.1. The acoustic far-field

has been defined in Section 1.4, by using Equation 1.3 to express the conditions that

the observer location needs to satisfy for it to be a far-field one. The characteristic

lengths of interest are the acoustic wavelength λ, the distance between source

and observer r, and the maximum extent of the source region Lmax. Following

Equation 1.3, the ratios r/λ, r/Lmax, and r/LRayleigh need to be much greater than

unity for r to be considered within the acoustic far-field. By considering the test in

Figure 5.3, for the distance r = 340 m, these ratios are

r/λ = 5,

r/LRayleigh = r/ (L2
max/λ) = 23120,

r/Lmax = 340.

(5.8)
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(c) M0 = 0.85.

Figure 5.5: Far-field radiation in a medium uniformly moving in the x1-axis direction,

from an acoustic dipole source located at the origin. Prismatic FW-H surface with

a = 2` = 1 m (see Figure 3.1). Source frequency f = 5 Hz, and source strength

A = 1 m4s−1. Source-observers distance ro = 6800 m = 100λ.
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Therefore, while the conditions on the maximum extent of the source region

and on the Rayleigh distance are satisfied to a good extent, the requirement on the

ratio r/λ� 1 is weakly met, being the distance source-observer only five times the

acoustic wavelength.

A test with an increased distance r = ro = 6800 m is reported in Figure 5.5. This

distance gives a ratio r/λ = 100 that is 20 times larger than the same ratio for the

test in Figure 5.3. r = ro = 6800 m satisfies all the conditions in Equation 1.3 to a

good extent and it can be effectively considered as acoustic far-field distance for this

problem.

However, comparing Figures 5.3 and 5.5, it is clear that the directivity patterns

do not undergo any significant qualitative change as the distance source-observer is

increased by 20 times from r = ro = 340 m to r = ro = 6800 m. The only effect is

the scaling of the amplitude of the acoustic pressure fluctuation by the same factor of

20. This proves not only that the scaling with distance r from the source is correctly

captured by the CFW-H tool prediction, but also that the distance r = ro = 340 m

is sufficient for the observers to record far-field dipole radiation characteristics.

Overall, Figures 5.3 and 5.5 show that the CFW-H acoustic analogy as imple-

mented in Python correctly predicts the noise radiation from a directional source,

in terms of both directivity and intensity, for the conditions herein considered. For

NT = 40, the error at the peak radiation angle with respect to the analytical reference

solution of Equation 5.5 is typically less than 2%, reaching values below 1% for

NT = 80. Besides, the spatial discretization of 80 points per each side a = 1 m of

the FW-H cubical surface gives enough points to correctly represent the acoustic

wavelength λ = 68 m.

5.2 Forward flight effects on BroadBand Shock

Associated Noise

The effect of forward flight on under-expanded jets is investigated in this section, by

the “wind tunnel configuration” [55] of a jet discharging in a uniform flow. A brief

literature review on the forward flight effect for jets is provided, before applying the

CFW-H formulation to a supersonic under-expanded jet in flight, in Section 5.2.1.
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Tam [156] pointed out the dual nature of the flight effect, explaining that the

presence of a uniform flow external to the jet shear layer modifies both the generation

(aerodynamic effects on the noise source) and the propagation (mean flow convection

effects) of noise.

Norum and Shearin [157] showed experimentally that the flight effect on the

BBSAN noise radiation reduces the BBSAN peak frequency and narrows the BBSAN

peak bandwidth as the Mach number M0 of the coaxial flow increases [156, 158].

Higher frequency peaks are also detected with increasing M0 [156], which are probably

due to BBSAN higher harmonics.

The reason for these modifications have to be sought in the modification of the

jet, by the external co-flow. Firstly, a reduction of the shear gradients across the jet

occurs [156] that causes the rate of growth of the mixing layer to be reduced [156, 159].

The turbulent mixing with the ambient medium is weakened by the external co-

flow [159] and the jet becomes stretched in the flow direction.

As a consequence of the jet stretching, an increase in the length of the potential

core and in the shock-cell spacing [156, 159, 160] is produced, as M0 is increased. The

growth/decay rate of the instability waves in the jet shear layer is also attenuated [156,

159].

As well as the length, the co-flow also influences the strength of the shock-cells,

by weakening the first shocks [159] closer to the nozzle exit, which are mainly

responsible for the screech noise radiation. On the contrary, the shock-cells further

downstream, that are responsible for the BBSAN contribution, are strengthened by

the surrounding uniform flow [159].

By analysing the case of a moving noise source and a fixed ground observer,

Tam [160] also pointed out that the large convective amplification that occurs for

simple point sources radiating in a uniform flow (see Section 5.1) does not take place

for the BroadBand Shock Associated Noise contribution of a jet.

5.2.1 Far-field noise radiation from an under-expanded jet

in flight

The CFW-H formulation is applied here to a supersonic single-stream jet generated

by the same nozzle operated at the same nozzle exit conditions as in Section 4.1.2.
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While Section 4.1.2 reports the results obtained for the stationary case (M0 = 0), a

coaxial flow in the jet direction is considered here, in order to reproduce the effects

of forward flight.

This uniform subsonic flow in the x-axis direction has a Mach number M0 = 0.39.

This allows a direct comparison with published far-field acoustic results obtained

both experimentally and by computation. Specifically, acoustic measurements were

obtained by André [143] at the Acoustics Center of the École Centrale de Lyon, while

numerical noise estimations were obtained by Pineau [136] at Cerfacs. Pineau used

a convective formulation [131] of the FW-H acoustic analogy [52] implemented in

the ONERA KIM software [120, 131] to project the noise radiation to the far-field.

The supersonic jet of fully expanded Mach number Mj = 1.15 and Reynolds

number Re = 1.25× 106 issues from a convergent nozzle of exit diameter De = 0.038

m. These values are the same as the ones used in experiment by André [143] and

in Section 4.1.2. The convergent nozzle prevents the flow from expanding to the

ambient pressure and this causes the jet to be under-expanded. The jet therefore

develops shock-cells in the jet plume and generates BBSAN.

CFD data for the single-stream under-expanded jet in flight with M0 = 0.39 are

obtained by Pineau [136], at Cerfacs, by elsA [130]. This dataset is used as input to

the CFW-H tool. Specifically, LES flow field predictions are available on the conical

FW-H integration surface shown in Figure 5.6. The surface is closed upstream by the

nozzle external wall and it is left open (see Section 2.2.1.1) at the downstream end.

Figure 5.6 shows the CFD domain, the integration surface F (x, t) = 0, the

Cartesian reference system centred at the nozzle exit section on the jet axis, and a

sample observer o(n) in the direction θ(n). The polar angle θ is measured from the jet

axis and angles over the range 0° ≤ θ ≤ 90° represent downstream directions, while

the upstream arc is characterised by 90° ≤ θ ≤ 180°. The CFD domain has a shape

similar to that of an hourglass and it extends over the range −7.0De ≤ x ≤ 25.0De

in the axial direction. The radial extent of the CFD domain varies from r = 5.0De

at the nozzle exit, to r = 6.9De at x = −7.0De, and to r = 10.0De at x = 25.0De.

The radial and the axial size of the conical integration surface are reported in

Table 5.3, together with the corresponding dimensions of the CFD domain at the same

abscissas, in order to show how the FW-H surface is well within the computational
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Figure 5.6: Domain schematic for the supersonic single-stream jet in flight, show-

ing the CFD domain, a sample observer position, and the location of the FW-H

integration surface. Lengths are scaled by the nozzle exit diameter De.

domain boundaries. Specifically, the FW-H surface reaches x = −3.7De upstream of

the nozzle exit and x = 19.1De at its downstream boundary, with a constant slope

of 11.2° from the jet axis.

xmin = −3.7De xmax = 19.1De

F (x, t) = 0 −1.5De ≤ y, z ≤ 1.5De −6.0De ≤ y, z ≤ 6.0De

CFD domain −6.0De ≤ y, z ≤ 6.0De −9.0De ≤ y, z ≤ 9.0De

Table 5.3: Dimensions of the FW-H surface and of the computational domain for

the Mj = 1.15 under-expanded jet in flight (M0 = 0.39). Dimensions scaled by the

nozzle exit diameter De.

Far-field acoustic estimations at ro = 52.0De are performed on a spherical array

of 208 observers, covering 13 axial positions within the range −45.0De ≤ x ≤ 45.0De,

covering the polar angle 30° ≤ θ ≤ 150°. At each radiation angle, 16 observes

equispaced in the azimuthal coordinate φ are used to average the noise spectra, in

order to get smoother PSD trends.
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Figure 5.7 shows the LES prediction by Pineau [136] on the integration surface

F (x, t) = 0 of Figure 5.6, in terms of iso-levels of the instantaneous pressure

fluctuation p′. Downstream travelling acoustic waves are shown in Figure 5.7, as

axially alternating ring bands of high (red) and low (yellow) pressure perturbations.

A reduction in the pressure wave amplitude with increasing axial distance from the

nozzle exit is clearly noticeable in Figure 5.7, as it was in Figure 4.6 in the previous

chapter, which described the same single-stream jet but stationary. On the other

hand, the effect of the increase in the radiation wavelength with axial distance from

the nozzle exit section is less marked here. Besides, the amplitude of the pressure

fluctuation is about three times higher compared to the stationary case in Figure 4.6.

0 5 10 15 20
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Y

Z

­2600 ­1560 ­520 520 1560 2600

p′(Pa)

x/De

U0

U

Figure 5.7: Large Eddy Simulation of a single-stream Mach 1.15 jet [143] in flight

(M0 = 0.39), modelled at Re = 1.25 × 106. Instantaneous pressure fluctuation

iso-levels on the FW-H surface F = 0 from [136].

The LES simulation was performed by Pineau [136] during an internship at

Cerfacs, in collaboration with the École Centrale de Lyon. The limited amount of

time of the internship led to the choice of a relatively coarse mesh, with 21.06× 106

cells, against 65.80 × 106 cells used by Mancini [15] and 75.00 × 106 cells used by

Pérez [16], for modelling the same jet in the stationary case (Section 4.1.2).

This coarser spatial discretization affects the accuracy of the numerical prediction
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due to the local mesh cut-off Strouhal number being lower than in [15] and in [16].

The axial discretization by Pineau [136] gives a mesh cut-off Strouhal number Str ≈ 2

for most part of the CFD domain, including where the FW-H surface lies [136]. The

azimuthal discretization imposes a more stringent limitation, giving a cut-off Strouhal

number around Str = 1 that is not sufficient to resolve the BBSAN contribution,

characterised by a peak Strouhal number of about 1 [143].

This produces unwanted numerical dissipation of the acoustic waves travelling

to the integration surface in the BBSAN Strouhal number range. Therefore, it is

preferable to use CFD predictions with a higher cut-off Strouhal number. Unfor-

tunately, a LES simulation with a finer discretization is not available for this test

case. Therefore, the author decided to test the CFW-H tool on the relatively coarse

mesh CFD results by Pineau [136] that, despite the lack of accuracy, capture the

qualitative effects of the forward flight in terms of both the aerodynamics and the

acoustics of the jet [136]. The numerical results by Pineau [136] qualitatively agree

with previous measurements by André [143].

This qualitative agreement is shown by the far-field noise spectra that are com-

pared in Figures 5.8 and 5.9. Power Spectral Densities in decibel are plotted against

the Strouhal number Str = fDe/Uj, based on the nozzle exit diameter De.

In Figure 5.8, six radiation angles between 90° and 140° are considered, focusing

on the upstream arc where the BBSAN is more prominent in the stationary case [16,

143, 136], as shown in Section 4.1.2. Three curves are shown, with the solid-black

lines and the long-dashed blue lines denoting the noise predictions from the jet in

a M0 = 0.39 simulated flight, obtained respectively by Pineau [136], with the KIM

software [120, 131], and by the author, with the new CFW-H tool. The experimental

results from the stationary jet (M0 = 0) measured by André [143] are indicated by

the dashed-green lines.

It can be observed that the two numerical predictions agree for all the polar

angles considered in terms of the BBSAN noise peak frequency and intensity. The

KIM prediction slightly underestimates the noise levels at the high frequency range.

Both predictions show a decrease in the BBSAN peak frequency and a narrowing of

the BBSAN peak compared to the stationary jet prediction by André [143], which

are known flight effects reported in the BBSAN literature [156, 158].
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Figure 5.8: Far-field PSD from a single-stream under-expanded jet in subsonic

flight, modelled by LES [136] at Cerfacs. Comparison with the reference numerical

solution by Pineau [136], obtained through the software KIM [120] by ONERA.

Experimental measurements by André [143] are shown, for the same jet tested under

static conditions. Mj = 1.15, M0 = 0.39, Re = 1.25 × 106, ro = 52.0De from the

nozzle exit. PSD smoothed as in Figure 4.4(b).
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As a further consequence of the presence of a modelled flight stream, higher order

BBSAN peaks should appear, but they are not noticeable in Figure 5.8, for two

reasons. Firstly, these new peaks should occur at higher frequencies compared to

the BBSAN main peak, i.e. at frequencies that are not adequately resolved by the

available CFD mesh. Secondly, these higher order peaks are characterized by lower

noise levels than the main peak, making them even more challenging to be captured.

The last result of this section is reported in Figure 5.9 that compares the numerical

far-field spectrum at θ = 100° with the same result obtained experimentally by

André [143]. This is the only angle for which measurements are available for exactly

the same conditions as the LES simulation, in terms of jet Mach number Mj = 1.15,

and uniform flow Mach number M0 = 0.39.
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Figure 5.9: Far-field PSD from a single-stream under-expanded jet in subsonic

flight, modelled by LES [136] at Cerfacs. Comparison with both the reference

numerical solution by Pineau [136], obtained through the software KIM [120] by

ONERA, and the experimental measurement by André [143]. Mj = 1.15, M0 = 0.39,

Re = 1.25× 106, ro = 52.0De from the nozzle exit, θ = 100° from the jet axis. PSD

smoothed as in Figure 4.4(b).
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In Figure 5.9, the same legend is used as for Figure 5.8, with solid-black and

long-dashed blue lines indicating respectively the KIM [136] and the CFW-H tool

predictions. The experimental measurements, reported with a dashed-green line, are

relative to the in-flight condition with M0 = 0.39 in Figure 5.9. It can be appreciated

that the numerical prediction is not far from the experimental result, despite the

limitations given by the CFD mesh. Besides, the CFW-H solution is closer to the

measurement by André [143], compared to the prediction by Pineau [136], in terms of

noise level at the BBSAN peak. The underestimation of the BBSAN peak frequency

is probably due to the coarse azimuthal discretization in the CFD mesh, giving a

cut-off Strouhal number of about 1.

The results presented in Figure 5.8 and 5.9 are encouraging, giving confidence

in the reliability of the new Python CFW-H noise extractor. However, further

applications to jets in flight are necessary, possibly with a more accurate CFD

simulation, in order to be able to better predict the peak frequency and the amplitude

of the BBSAN contribution to jet noise radiation during cruise conditions.
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Chapter 6

Conclusions

6.1 Key contributions

This work has substantially achieved its main aim of providing a Python-based

aerodynamic noise extractor from time-resolved data of aerodynamic fields for noise

radiating in an acoustic outer medium, both stationary and uniformly moving. In

the process of achieving this aim, the following contributions to the state of the art

have been made:

1. Stationary (Section 2.2.3) and convective (Section 2.2.4) formulations of the

advanced-time Ffowcs Williams and Hawkings acoustic analogy are provided

on a unified community shared software platform (Antares [12]), parallelised

for compatibility with high performance computing.

2. The equivalence between the stationary and convective formulations is verified

by numerical tests (Appendix D) against benchmark implementations of the

stationary formulation that is integrated in the numerical solver elsA [130] by

ONERA.

3. Salient acoustic aspects of the noise radiation from an under-expanded dual-

stream jet are exposed (Section 4.2) for a dual-stream jet configuration (Ap-

pendix A) that was previously unreported in the literature and that is relevant

to ultra-high bypass aircraft turbofans.

4. The convective formulation is used to demonstrate, numerically, the forward

flight effects on a single-stream under-expanded jet (Section 5.2.1), providing

162



supporting evidence to previously inferred flight effect mechanisms affecting

the noise directivity in the far-field.

5. The application of the stationary formulation to analytical jet flow descriptions

obtained by the Parabolised Stability Equation (PSE), in collaboration with

the Institut de Mécanique des Fluides de Toulouse (IMFT), has allowed the

testing of the code on a reduced-order jet flow model [161].

6. The computational savings from using the acoustic analogy approach compared

to a direct approach to modelling near-field noise by LES are quantified,

enabling an informed choice to be made by prospective users of the noise

extractor tool.

Important numerical aspects were also exposed by this work, specifically concern-

ing discretization:

(a) The effect of time sampling in the aerodynamic data on the extracted aero-

dynamic sound was exposed, so that lower and upper frequency limits on the

acoustic predictions are identified a priori.

(b) A more complex spatial discretization effect was identified for the Ffowcs

Williams and Hawkings surfaces in Section 3.2. This led to the formulation

of a set of heuristic “good practice” rules for obtaining engineering accurate

results. It also exposed important opportunities for further work in numerical

analysis, to try to fully resolve the identified problems.

Part of the results presented in Chapters 3 and 4 have been published in three

conference papers by Di Stefano et al. [140, 141, 144], including a peer-reviewed

paper [144]. A preliminary direct noise computation 2.1.1 test was presented in the

20th AIAA/CEAS Aeroacoustics conference in 2014 in Rona et al. [62].

6.2 Implications of the main results

As mentioned in Chapter 1, the main objective of this research was to develop a

noise extractor that can be applied to unsteady predictions of turbulent flows to

project the noise emission both to the acoustic near-field and to the acoustic far-field.
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This objective has been realized by implementing two integral formulations of the

Ffowcs Williams and Hawkings (FW-H) acoustic analogy [52] in Antares [12], a

software package of wide access and usability for the aeroacoustic community. Both

a stationary [54] (AFW-H) and a convective [55] (CFW-H) formulation, described

respectively in Sections 2.2.3 and 2.2.4, have been coded in Python and embedded

in Antares.

Given a time-dependent description of the flow on a control surface in terms of

the pressure, density, and velocity fields, the AFW-H and the CFW-H tools extract

the noise radiation everywhere outside the FW-H control surface.

These new AFW-H and CFW-H aeroacoustic tools have been applied to both

elementary noise sources and jet test cases, in Chapters 3, 4, and 5. The elementary

source tests reported in Chapter 3, for the AFW-H method, and in Section 5.1, for

the CFW-H method, provided a validation of the two implementations on simple

noise radiation problems.

In Sections 4.1.2, 4.2, and 5.2.1, the AFW-H and CFW-H tools have been

applied to under-expanded jets, for which a CFD database on an open axisymmetric

integration surface was available. In these tests, the open surface strategy was shown

to produce good jet noise predictions, even in the presence of shocks, by the use of

the aeroacoustic AFW-H and CFW-H tools.

The main application has been presented in Section 4.2, where the AFW-H

method is applied to the dual-stream jet configuration of Appendix A, proposed

by Airbus SAS, partner of the AeroTraNet2 project. For this configuration, neither

numerical nor experimental results can be found in the previous aeroacoustic literature.

This test case is representative of a turbofan engine configuration on contemporary

wide-body civil aircraft. In Section 4.2, the AFW-H noise extractor applied to

LES and DES predictions of the flow was shown to be a good tool for estimating

both the acoustic near-field and the acoustic far-field from the new dual-stream

under-expanded jet configuration.

An effort towards improving the numerical model for stationary jet engine noise

is presented in Section 5.2.1, where the convective CFW-H formulation, described in

Section 2.2.4, was applied to a single-stream under-expanded jet in flight. By adding

a uniform coaxial flow external to the jet, the main flight effects on the BBSAN
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noise contribution were identified. The results showed a good match with previous

acoustic estimations in the jet noise literature in terms of the BBSAN contribution.

This was achieved despite the low resolution mesh used to get the CFD prediction

on the FW-H surface, input to the CFW-H tool.

Another application of the AFW-H code of Section 2.2.3 has been realized in

collaboration with the Institut de Mécanique des Fluides de Toulouse (IMFT) and

it was published by Ansaldi in [161]. The AFW-H code was applied to very-low-

cost analytical jet flow descriptions, obtained by solving the Parabolised Stability

Equations (PSE) [162], in order to extract the noise radiation to the acoustic far-field.

The coupled PSE/AFW-H method, consisting in a two-step hybrid approach, was

developed by following the work by Léon and Brazier [163]. This technique was

applied to a semi-empirical supersonic single-stream jet and to the dual-stream

under-expanded jet of Section 4.2. The acoustic predictions were compared with

both experimental and numerical reference solutions and the results, showing a good

match, were published by Ansaldi [161].

The FW-H tools are extremely efficient from a computational point of view. The

computational cost of the acoustic simulation represents a very small fraction of

the CFD counterpart. For instance, in the dual-stream jet test case of Section 4.2,

the overall computational cost of the AFW-H simulation was 0.02% of the DES

simulation for the Cosmic/AFW-H method.

Typically, the differences in characteristic wavelengths between the acoustic field

and the aerodynamic field allow for a CAA time step larger than the CFD time step.

Therefore, the different sampling frequency of the CAA simulation compared to the

CFD simulation (∆τCAA = 500∆τCFD) in the Cosmic/AFW-H method applied in

Section 4.2 contributed to the comparatively low cost of the acoustic computation.

However, the value of 0.02% can be improved when the computational cost of the

AFW-H simulation is compared against predictions from high order LES, where a

larger range of scales is resolved in the computational domain volume.

This short time length of the acoustic simulation compared to the CFD counterpart

makes the use of a CAA post-processor very advantageous. Once the simulation on

the FW-H integration surface is stored, the tool can be applied to perform a number

of acoustic simulations, aimed to cover all the observer regions that are worth of
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investigation, at a very low computational cost. On the other hand, when the code is

embedded into the CFD software, the increase in the computational cost is expected

to be lower than 1%.

Beyond the practical implications stated above, it is worth concluding by recalling

that the AFW-H and CFW-H tools have been developed by the author following a non-

commercial approach. Current advances in computational physics are facilitated by

the sharing of benchmark computations and experimental data across the community

on a royalty-free non-commercial base. Open-source software contribute to these

initiatives by supporting the shared use of advanced numerical methods across the

research community. The development of the AFW-H and CFW-H tools in this

work was devoted to academic and research purposes and it is not constrained by

Intellectual Property Rights. The Antares software [12], managed and developed

by Cerfacs, France is not open-source, but its distribution and use is ruled by a

copyright agreement that does not require the payment of an upfront license fee.

Given this non-commercial approach, the new Antares AFW-H and CFW-H packages

are expected to bring advantages to the whole aeroacoustic community.

6.3 Future perspectives

The tests presented in the current research are only an example of the possible

applications of the acoustic analogy tools developed by the author that can be

used to extract the noise radiation from any unsteady flow predictions, provided

that time-dependent data are generated on an integration surface placed in the

“quasi-linear” region of the flow (see Section 4.3). Other examples are represented by

rotor noise or propeller noise applications, where the FW-H acoustic analogy integral

method is typically applied [106, 108, 110, 125].

Many points of interest related to the use of integral methods in aeroacoustics

and the jet noise topic have already been covered by the author in this thesis. To

deal with additional aspects of these topics that were partially discussed in the main

body of the thesis, a number of further applications can be stated in terms of future

perspectives:

1. Application of the new AFW-H and CFW-H tools to jet noise problems with a
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closed control surface (provided that such a CFD database becomes available to

the author), by using a tailored technique to filter out the spurious contribution

to jet noise radiation, arising from the jet inevitably crossing the FW-H surface

at the downstream boundary (Section 2.2.1.1). Two possible solutions are

the disk averaging technique [5, 119], or the inclusion of new surface integral

contributions approximating the volume source contribution, as suggested by

Rahier et al. [164].

2. Application of the CFW-H tool of Section 2.2.4 to a dual-stream under-expanded

jet in flight (subject to the availability of a tailored CFD database). This would

represent a significant test to progress towards modelling the noise radiation

from a turbofan engine in cruise conditions.

3. Use of the AFW-H and CFW-H tools not as post-processors but embedded

to a CFD code, by developing an interface that extracts the CFD prediction

on a FW-H surface defined a priori. The use of an object-oriented language,

Python, facilitates the development of this interface. In this way, the acoustic

simulation runs simultaneously with the CFD simulation and computational

effort can be saved by activating the interface only at integer multiples of the

acoustic time step, typically larger than the CFD counterpart.

4. Investigation on the numerical error in the AFW-H and CFW-H tools, when

the acoustic source is proximal to the integration surface corners or edges

(Section 3.2). In Section 3.3, an hypothesis was advanced by the author, in

collaboration with the Leicester team and Emeritus Professor Christopher

Morfey, but further investigations are necessary to validate this hypothesis.

The applications listed above would help to strengthen the confidence in the

reliability of the new noise prediction tools, but also to contribute further to the

understanding of jet noise. In the previous literature, most applications to noise

radiating from under-expanded jets were limited to stationary jets. Modelling the in-

flight conditions with an efficient and widely accessible tool would further contribute

towards more accurate predictions of jet noise.
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Appendix A

AeroTraNet2

This research is undertaken within the AeroTraNet2 (AEROnautical TRAining NET-

work in Aerodynamic Noise from Wide-body Civil Aircraft) project. “AeroTraNet2

is a Marie Curie Action of the European Commission's 7th Framework Programme

(FP7). It trains Early Stage Researchers (ESRs) and Experienced Researchers (ERs)

in front-line, integrated, industry relevant research in unsteady aerodynamics and

noise for the next generation of environmentally friendly wide-body civil aircraft” [13].

“Six academic partners address the common objective of modelling shock-cell noise

in a wide-body aircraft engine configuration from private sector partner Airbus SAS

France, by shock-tolerant numerical modelling for under-expanded jets (University

of Leicester), Large Eddy Simulations (LES) for turbulent jets with weak shocks

(Cerfacs, Toulouse), advanced flow-noise correlations (Università degli Studi Roma

Tre), jet and near-field noise experiments (Von Karman Institute for Fluid Dynamics),

reduced-order modelling and flow control (Institut de Méchanique des Fluides de

Toulouse, IMFT-INP), and advanced laser-based measurement techniques (the Italian

Ship Model Basin, CNR-INSEAN).

Knowledge output is synthesized through a dedicated knowledge capturing pro-

gramme by the University of Greenwich, which is used by private sector partner

GE Power. In AeroTraNet2, the research output becomes itself object of knowledge

management research, which is a novel supra-disciplinary element” [13].

Three different approaches are adopted, which are mathematical, numerical, and

experimental modelling, used in synergy to push forward the state of the art of

shock-cell noise prediction methods applied to aircraft design. The current research
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is part of the numerical modelling effort of AeroTraNet2. An acoustic analogy tool is

applied to unsteady flow field predictions obtained both at the University of Leicester

and at Cerfacs in Chapters 3– 5. The results are compared against predictions from

both the numerical and the experimental partners of AeroTraNet2.

A.1 Wide-body civil transport configuration

The test case proposed relates to jet noise reduction from civil aircraft, which is

an active area of aeroacoustic research. In Figure A.1 and A.2, the geometry of

the nozzle and the flow conditions are specified, respectively. Table A.1 reports the

numerical values of the Fan-Nozzle Pressure Ratio (FNPR) and of the Core-Nozzle

Pressure Ratio (CNPR) for the test points represented in Figure A.2.

The geometry is the one of a dual-stream jet issuing from coaxial nozzles for the

primary and for the secondary stream. Both the primary and the secondary streams

issue from axisymmetric conical convergent nozzles. The external and the internal

nozzle cowls converge respectively at 12° and at 14° towards the jet axis. The exit

planes of the nozzles are axially staggered. The bypass flow exits the nozzle 0.021 m

upstream of the primary nozzle exit section and the secondary jet diameter is more

than double the internal one. The design does not include the use of any primary

nozzle central plug and the coaxial nozzle geometry is fixed.

The numerical predictions for this dual-stream jet test case obtained by the

AeroTraNet2 partners were compared with measurements taken at the FAST (Free

jet AeroacouSTic) facility, at the Von Karman Institute for fluid dynamics (VKI),

Brussels. This facility was built within the AeroTraNet2 framework between 2013

and 2016 by the Early Stage Researcher Daniel Guariglia [43]. The total mass flow

rate was constrained by the VKI compressed air supply line. This determined a

target test point of 1.09 kg/s. The fully expanded Mach numbers of the primary jet

and of the secondary jet at this test point are 0.89 and 1.21, respectively.

The secondary jet is sonic at the nozzle exit section of the convergent duct and it

experiences a considerable degree of under-expansion. This causes the development

of a shock-cell system in the secondary flow, with a configuration similar to the one

of Figure 1.3. The main features of under-expanded jets are described in Section 1.2,
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Figure A.1: Dual-stream under-expanded jet: nozzle geometry.
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Figure A.2: Dual-stream under-expanded jet: FNPR-CNPR plane showing the Test

Conditions (TC).
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for single-stream jets, and in Section 1.3, for dual-stream jets. The shock-cell system

in the secondary flow also affects the primary flow, by preventing the fully expanded

condition to be reached in the experiment [43]. CFD [15, 16] and experimental [43]

data on the test case of Figures A.1 and A.2 were produced within the AeroTraNet2

project in order to further investigate the flow features.

As far as noise estimations from dual-stream jets are concerned, there are not many

publications on this topic (see Section 1.3) and the test case here reported presents

peculiar features that makes it an interesting contribution to the aerodynamic and

to the aeroacoustic literature.

TC FNPR CNPR

01 2.450 1.675

02 2.500 1.720

03 2.425 1.645

04 2.400 1.626

05 2.350 1.589

06 2.250 1.518

07 2.150 1.450

08 2.050 1.385

09 2.000 1.353

10 1.800 1.235

11 2.475 1.675

12 2.425 1.675

13 2.450 1.650

14 2.450 1.700

Table A.1: Dual-stream under-expanded jet: matrix of the Test Conditions (TC).

The current work produced both near-field and far-field noise predictions for

the test case of Figures A.1 and A.2 at target conditions, by the application of the

new AFW-H tool of Section 2.2.3 to post-process CFD data obtained both at the

University of Leicester [15] and at Cerfacs [16].
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Appendix B

Convective FW-H derivation

The derivation of the convective FW-H equation with permeable surface follows two

fundamental steps that are described in this appendix:

1. embedding procedure to get the generalised form of the governing equations [106,

165];

2. rearrangement of the generalised governing equations in the form of an inho-

mogeneous wave equation [1, 52].

The embedding procedure [106] introduces the concept of the unbounded fluid [52],

through the use of the generalised function theory [165]. The extension of the validity

of the conservation equations everywhere in space enables to include the presence of

solid bodies. The latter need to be enclosed by the integration surface F (x, t) = 0,

represented in Figure 2.4, Section 2.2.

Before presenting the analytical development of items 1 and 2 in the next two

sections, it is worth recalling that the FW-H surface F (x, t) = 0 can always be defined

so that ∇F = n̂ is satisfied [165], where n̂ is the outward-normal unit vector to the

surface itself. Herein, the integration surface is thought as permeable (Section 2.2.1),

and it divides the unbounded fluid into three regions, according to the value of

F (x, t) (see Figure 2.4).

Considering the noise propagation in a uniform medium, characterised by constant

density ρ0 and pressure p0, moving at constant subsonic velocity U0, the fluid

properties can be written as follows:

ui = U0i + u′i, ρ = ρ0 + ρ′, p = p0 + p′, (B.1)
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where “0” refers to the ambient (undisturbed medium), and the local perturbations

are represented by the primed variables [55]. The latter are obtained by subtracting

the respective uniform value assumed at infinity to the local fluid density, pressure,

and velocity, so that the (acoustic) disturbances vanish far away from the source

region [106]. The index i = 1, 2, 3 refers to the ith velocity component in a fixed

Cartesian reference system, where points in the source region and observers are

defined, respectively by the vectors y and x.

The local surface velocity is indicated by v, to distinguish it from the fluid velocity

u. The case of an impermeable surface can be recovered by replacing everywhere

in the equations vi = ui, for i = 1, 2, 3. The stationary case is obtained again as a

particular case of the convective FW-H equation, when U0 = 0 is replaced in the

equations.

B.1 Extension to the unbounded space

The governing laws, describing the unsteady motion of the fluid, are the compressible-

viscous continuity and the momentum conservation equations. Expressing the latter

in the Lagrangian formulation, using the index notation:
∂ρ

∂t
+ ∂ (ρuj)

∂xj
= 0, (B.2)

∂ (ρui)
∂t

+ ∂ (ρuiuj)
∂xj

= −∂Pij
∂xj

, (B.3)

where Pij = pδij − τij.

Substituting B.1 in B.2:

∂ρ0

∂t
+ ∂ρ′

∂t
+ ∂ (ρU0j)

∂xj
+
∂
(
ρu′j

)
∂xj

= 0. (B.4)

As ρ0 and U0j are constants, their derivatives are identically zero and B.4 can be

simplified in:
∂ρ′

∂t
+ U0j

∂ρ′

∂xj
+
∂
(
ρu′j

)
∂xj

= 0. (B.5)

Substituting now B.1 in the momentum Equation B.3:

∂ (ρU0i)
∂t

+ ∂ (ρu′i)
∂t

+ ∂ (ρU0iU0j)
∂xj

+
∂
(
ρU0iu

′
j

)
∂xj

+

∂ (ρu′iU0j)
∂xj

+
∂
(
ρu′iu

′
j

)
∂xj

= −∂Pij
∂xj

.

(B.6)
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Simplifying the derivatives of constant terms, B.6 can be rearranged as follows:

U0i

∂ρ∂t +
∂
[
ρ
(
U0j + u′j

)]
∂xj

+ ∂ (ρu′i)
∂t

+ U0j
(ρu′i)
∂xj

+

∂
(
ρu′iu

′
j

)
∂xj

+
∂P ′ij
∂xj

= 0.

(B.7)

Noticing that the curly bracket term on the LHS is identically zero for the continuity

Equation B.2, the final result for the momentum equation is:

∂ (ρu′i)
∂t

+ U0j
(ρu′i)
∂xj

+
∂
(
ρu′iu

′
j + P ′ij

)
∂xj

= 0. (B.8)

To extend Equations B.5 and B.8 to the unbounded space, the generalised

function theory [105, 165] is applied. Specifically, two generalised functions need to

be introduced, i.e. the Heaviside H (F) and the Dirac δ (F) functions.

The Dirac delta function is defined as zero-valued everywhere but for the support

(the FW-H surface F (x, t) = 0 in this case), on which it diverges to infinite:

δ (F) =


+∞, if F = 0

0, if F 6= 0 .
(B.9)

The Heaviside function is defined as:

H (F) =


1, if F > 0

0, if F < 0 .
(B.10)

It is constant everywhere, meaning nought-valued derivative, except for the support

F (x, t) = 0 where it presents a jump, responsible for the divergence of the first

derivative to infinite. This naturally leads to introducing the following property

satisfied by the Heaviside function:

∂H (F)
∂F

= δ (F) , (B.11)

that expresses the equivalence between the Dirac delta function, and the first

derivative of the Heaviside function [105].

The first step towards the derivation of the generalised conservation equations

consists in multiplying B.5 and B.8 by the Heaviside function H:

H
∂ρ′

∂t
+HU0j

∂ρ′

∂xj
+H

∂
(
ρu′j

)
∂xj

= 0, (B.12)
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H
∂ (ρu′i)
∂t

+HU0j
(ρu′i)
∂xj

+H
∂
(
ρu′iu

′
j + P ′ij

)
∂xj

= 0. (B.13)

It can be noticed that in B.12 and in B.13 the Heaviside function appears multiplied

by a partial derivative. The following relation, based on the chain rule, can therefore

be used to get the generalised conservation equations:

H
∂ζ

∂χ
= ∂ (Hζ)

∂χ
− ζ H

∂χ
, (B.14)

where ζ and χ are generic dependent and independent variables, respectively. The

result is expressed by the following equations:

∂ (Hρ′)
∂t

+ U0j
∂ (Hρ′)
∂xj

+
∂
(
Hρu′j

)
∂xj

=

ρ′
∂H

∂t
+ U0jρ

′ ∂H

∂xj
+ ρu′j

∂H

∂xj
,

(B.15)

∂ (Hρu′i)
∂t

+ U0j
(Hρu′i)
∂xj

+
∂
[
H
(
ρu′iu

′
j + P ′ij

)]
∂xj

=

ρu′i
∂H

∂t
+ U0jρu

′
i

∂H

∂xj
+
(
ρu′iu

′
j + P ′ij

) ∂H
∂xj

.

(B.16)

By the use of Equation B.11, the Heaviside function time and space derivatives,

appearing in B.15 and in B.16, can be expressed as:

∂H (F)
∂t

= δ (F) ∂F
∂t
, (B.17)

∂H (F)
∂xj

= δ (F) ∂F
∂xj

. (B.18)

The space and the time derivative of function F (x, t) in B.17 and in B.18 can be

simplified by considering that they are multiplied by the delta function δ (F), which

sifts the values of the derivatives on the integration surface F (x, t) = 0 itself.

The function F (x, t) satisfies the following properties:

∂F (x, t)
∂xj

= n̂j, (B.19)

DF (x, t)
Dt

= 0, (B.20)

expressing the value of the gradient and of the total time derivative of the function

F. The surface F (x, t) = 0 is assumed by definition to satisfy the property ∇F = n̂,

as recalled in the previous section. The total time derivative of the function F is

identically zero when estimated on the integration surface itself, where F is constant
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by definition. The partial time derivative of F can then be expressed, using B.20, as

follows:
∂F

∂t
= − ∂F

∂xj

∂xj
∂t

= −vjn̂j. (B.21)

Replacing B.19 in B.18 and B.21 in B.17, the time and space derivatives of the

Heaviside function become:

∂H (F)
∂t

= −δ (F) vjn̂j, (B.22)

∂H (F)
∂xj

= δ (F) n̂j. (B.23)

The generalised conservation equations B.15 and B.16 can then be rearranged as:

∂ (Hρ′)
∂t

+ U0j
(Hρ′)
∂xj

+
∂
(
Hρu′j

)
∂xj

= δ (F)Q(c)
j n̂j, (B.24)

∂ (Hρu′i)
∂t

+ U0j
(Hρu′i)
∂xj

+
∂
[
H
(
ρu′iu

′
j + P ′ij

)]
∂xj

= δ (F)L(c)
ij n̂j, (B.25)

where (c) stands for “convective”, and the convective mass and momentum source

terms are given by:

Q
(c)
j = ρ

(
u′j + U0j − vj

)
+ ρ0 (vj − U0j) , (2.25 restated)

L
(c)
ij = ρu′i

(
u′j + U0j − vj

)
+ P ′ij. (2.26 restated)

B.2 Lighthill rearrangement

The rearrangement of the generalised conservation equations to get the convective

FW-H equation consists in two steps that are described in this section:

1. the following term is added to both sides of the generalised momentum equation:

c2
0
∂ (Hρ′)
∂xi

= c2
0
∂ (Hρ′δij)

∂xj
; (B.26)

2. the divergence of the generalised momentum equation is subtracted to the time

derivative of the generalised continuity equation:

∂/∂t [continuity]− ∂/∂xi [momentum]i . (B.27)
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Item 1 and 2 are actually applied in the reverse order in the original Lighthill

formulation, with a double space derivative term added in item 1. However, the

result is equivalent.

Adding B.26 to both sides of B.25:

∂ (Hρu′i)
∂t

+ c2
0
∂ (Hρ′)
∂xi

+ U0j
(Hρu′i)
∂xj

= −∂ [H (F)Tij]
∂xj

+ δ (F)L(c)
ij n̂j, (B.28)

where Tij = ρu′iu
′
j + P ′ij − c2

0ρ
′δij = ρu′iu

′
j + (p′ − c2

0ρ
′) δij − τij is the Lighthill stress

tensor.

Applying item 2 to Equations B.24 and B.28, and moving all the source terms to

the RHS: [
∂2

∂t2
− c2

0
∂2

∂xi∂xi
+ U0j

∂2

∂t∂xj

]
(Hρ′)− U0j

∂2 (Hρu′i)
∂xi∂xj

=

∂
[
δ (F)Q(c)

j n̂j
]

∂t
−
∂
[
δ (F)L(c)

ij n̂j
]

∂xi
+ ∂2 [H (F)Tij]

∂xi∂xj
.

(B.29)

By taking the space derivative ∂/∂xi of the generalised continuity Equation B.24,

the last term on the LHS of B.29 can be expressed as follows:

− U0j
∂2 (Hρu′i)
∂xi∂xj

= U0j
∂2 (Hρ′)
∂xj∂t

+ U0iU0j
∂2 (Hρ′)
∂xi∂xj

− U0i
∂
[
δQ

(c)
j n̂j

]
∂xi

. (B.30)

Replacing B.30 in B.29:

�(c)2 (
Hc2

0ρ
′
)

=
[
∂

∂t
+ U0i

∂

∂xi

] [
δ (F)Q(c)

j n̂j
]

−
∂
[
δ (F)L(c)

ij n̂j
]

∂xi
+ ∂2 [H (F)Tij]

∂xi∂xj
,

(2.23 restated)

where �(c)2 is the convective wave operator:

�(c)2 =
[

1
c2

0

∂2

∂t2
− ∂2

∂xj∂xj
+ 1
c2

0
2U0j

∂2

∂t∂xj
+ 1
c2

0
U0iU0j

∂2

∂xi∂xj

]
. (2.24 restated)

It is worth noticing that every index can assume the values 1, 2, 3 and when

repeated indices appear, the summation convention is applied. For instance:

∂

∂χj
ζj = ∂

∂χi
ζi = ∂

∂χ1
ζ1 + ∂

∂χ2
ζ2 + ∂

∂χ3
ζ3, (B.31)

where ζ and χ are generic dependent and independent (space) variables.

Equation 2.23 corresponds to the Najafi-Yazdi et al. [55] convective FW-H

formulation, reducing to the Casalino [54] stationary FW-H formulation when U0j = 0,
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for j = 1, 2, 3 is replaced everywhere in the equation. The result (corresponding to

Equation 2.11 in Section 2.2) is reported here for comparison:

�2
(
Hc2

0ρ
′
)

= ∂ [δ (F)Qjn̂j]
∂t

− ∂ [δ (F)Lijn̂j]
∂xi

+ ∂2 [H (F)Tij]
∂xi∂xj

, (2.11 restated)

where:

Qj = ρ
(
u′j − vj

)
+ ρ0vj, (2.13 restated)

Lij = ρu′i
(
u′j − vj

)
+ P ′ij. (2.14 restated)

The wave operator �2 (d'Alembertian) has the conventional expression for wave

propagating in a medium at rest:

�2 =
[

1
c2

0

∂2

∂t2
− ∂2

∂xj∂xj

]
. (2.12 restated)

The Lighthill Equation 2.1 can be obtained with the same procedure applied in

this section, but considering the standard mass B.2 and momentum B.3 equations,

instead of the generalised versions B.24 and B.25.
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Appendix C

FW-H integral solution

The wave equation is a second-order linear Partial Differential Equation (PDE),

describing the propagation of physical waves in a medium. Here the analysis is

limited to sound waves propagation in the unbounded space, when no solid bodies

interfere with the travelling waves. In this case, the solution to the inhomogeneous

wave equation can be easily found in integral form, through the use of specific Green's

functions (analytical, or numerical). For a quiescent medium, the 3D free-space

Green's function [105] is used, which is expressed as follows:

G (x, t,y, τ) =


δ(g)
4πr , if t ≥ τ

0, if t < τ ,

(2.15 restated)

where:

g = τ − t+ r

c0
, r = |x− y| . (2.16 restated)

In Equation 2.16, r is the distance covered by the wave travelling at the undisturbed-

medium speed of sound c0, from the source to the observer locations, respectively

indicated by y and x. τ and t refer to the emission and to the reception instant.

In the Lighthill and in the FW-H acoustic analogy application, the acoustic waves

are supposed to propagate in a uniform medium at rest, and G can be used [54, 165]

in order to find the acoustic pressure fluctuation at the observer location p′ (x, t).

Even though the FW-H acoustic analogy allows the presence of solid bodies, the

latter are all enclosed by the integration surface, and confined to the region F < 0

(see Figure 2.4 of Section 2.2). The propagation is investigated in the exterior domain

F > 0, that is free from solid boundaries.
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The Green's function G represents the solution to the inhomogeneous wave

equation, with source term given by an impulse at time t = τ , at the position

x = y [44]. This means that G satisfies the following equation:

�2G = δ (x− y) δ (t− τ) , (C.1)

where �2 is the linear wave operator and δ the Dirac delta function, both defined in

the previous section.

As we can see from Equation 2.15, the free-space Green's function is defined as

zero-valued when t < τ , that represents the causality condition. Before the impulse

δ (x− y) is emitted at time t = τ , there is no wave propagating in the free-space,

because no source term acts on the fluid.

When the source term is different from the impulse δ (x− y) δ (t− τ), the integral

solution is found by convolution of the source function with the Green's function G.

Let's consider the wave equation:

�2p′ = Q (x, t) , (C.2)

with generic source function Q. The solution to C.2 can be found by considering

the source distribution Q as a superposition of impulse point sources of the type

δ (x− y) δ (t− τ). It is worth recalling that the wave equation is a linear PDE,

meaning that the sum of two different solutions satisfies again the wave equation.

The result is:

p′ (x, t) =
∫ t

−∞

∫
R3

Q (y, τ)G (x, t,y, τ) d3y dτ. (C.3)

Substituting 2.15 in C.3 and applying the sifting property of the Dirac delta func-

tion [105]:

p′ (x, t) = 1
4π

∫ t

−∞

∫
R3

Q (y, τ) δ (g)
r

d3y dτ = 1
4π

∫
R3

Q
(
y, t− r

c0

)
r

d3y, (C.4)

where the source function Q is estimated at g = 0.

Let's now consider the more interesting case of a source function of the dipole-

type [44], characterized by the divergence of a generic vector function L:

�2p′ = ∂

∂xj
Lj (x, t) . (C.5)

Applying the free-space Green's function:

p′ (x, t) = 1
4π

∫ t

−∞

∫
R3

∂

∂yj
(Lj (y, τ)) δ (g)

r
d3y dτ. (C.6)
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Before using the sifting property of the Dirac delta function, it is convenient to move

the space derivative outside the integral. Integrating C.6 by parts:

p′ (x, t) = 1
4π

∫ t

−∞

∫
R3

Lj (y, τ)
[
− ∂

∂yj

(
δ (g)
r

)]
d3y dτ. (C.7)

Noticing that:

− ∂

∂yj

(
δ (g)
r

)
= ∂

∂xj

(
δ (g)
r

)
, (C.8)

Equation C.7 becomes:

p′ (x, t) = 1
4π

∫ t

−∞

∫
R3

Lj (y, τ) ∂

∂xj

(
δ (g)
r

)
d3y dτ. (C.9)

The space derivative can now be taken outside the integral, being δ (g) and r the only

variables depending on x. By using the sifting property of the Dirac delta function,

the solution of C.5 is finally expressed as follows:

p′ (x, t) = 1
4π

∂

∂xj

∫
R3

1
r

[
Lj

(
y, t− r

c0

)]
d3y. (C.10)

Other useful source terms for the wave equation are the monopole and the

quadrupole sources, expressed respectively by Equations C.11 and C.12, where Q

represents a generic source function, and Tij a generic tensor source function.

�2p′ = ∂

∂t
Q (x, t) . (C.11)

�2p′ = ∂2

∂xi∂xj
Tij (x, t) . (C.12)

The same procedure, previously described for the dipole-type source term, leads

to solutions C.13 and C.14, respectively for the monopole and for the quadrupole

source.

p′ (x, t) = 1
4π

∂

∂t

∫
R3

1
r

[
Q

(
y, t− r

c0

)]
d3y. (C.13)

p′ (x, t) = 1
4π

∂2

∂xi∂xj

∫
R3

1
r

[
Tij

(
y, t− r

c0

)]
d3y. (C.14)

The solution of the FW-H equation for a stationary medium (Equation 2.11) can

be estimated by convolution with the Green's function 2.15. Equations C.13, C.10,

and C.14 can be applied by replacing Q, Lj , and Tij with the specific source functions

in Equation 2.11, respectively for the monopole, the dipole, and the quadrupole
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source. This yields:

4πp′ (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Qjn̂jδ (F) δ (g)

r
d3y dτ

− ∂

∂xi

∫ t

−∞

∫
R3
Lijn̂jδ (F) δ (g)

r
d3y dτ

+ ∂2

∂xi∂xj

∫ t

−∞

∫
R3
H (F)Tij

δ (g)
r

d3y dτ .

(C.15)

For the convective FW-H acoustic analogy formulation, the same procedure

can be applied to determine the solution of Equation 2.23, but replacing the free-

space Green's function (Equation 2.15) with the convective form [129]. Considering

a medium moving in the x1 direction (e.g. coinciding with the jet axis) at the

uniform velocity U0 = (U0; 0; 0), the convective Green's function can be expressed

as follows [55]:

G(c) (x, t,y, τ) =


δ(g(c))
4πR∗ , if t ≥ τ

0, if t < τ

, (2.27 restated)

where:

g(c) = τ − t+ R

c0
, (2.28 restated)

R = −M0 (x1 − y1) +R∗

β2 , (2.29 restated)

R∗ =
√

(x1 − y1)2 + β2
[
(x2 − y2)2 + (x3 − y3)2

]
, (2.30 restated)

β =
√

1−M2
0 , M0 = U0

c0
. (2.31 restated)

The convective Green's function shows a dependence on two distances R and R∗

in place of the geometric distance r = |x− y|. Specifically, R indicates the distance

travelled by the disturbance during t− τ (time interval between the emission and

the reception), while R∗ is the scaling factor with distance from the source in the

convective formulation.

Figure C.1 shows schematically the radiation in a uniform flow, when the medium

moves at velocity U0 in the x1 direction. The disturbance emitted at position y at

time τ propagates at the speed of sound of the undisturbed medium c0. Without

co-flow (U0 = 0), the disturbance would reach the position x̄ at a distance R from

the source point after t − τ . x̄ is the observer position as seen from (y, τ) at the

emission time τ . Because of the convection velocity, the disturbance reaches instead
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(y, τ )

x− yR = c0 (t− τ ) R̂

x1

U0 (t− τ ) (x, t)(x̄, τ )

Figure C.1: Schematic of the radiation in a uniform flow with constant velocity U0

in the x1 direction.

position x at t and the triangle shown in Figure C.1 can be drawn. R is the acoustic

distance source-observer that coincides with the geometric distance r in a stationary

medium problem.

Referring to Figure C.1, the following vectorial equation is satisfied:

r−U0 (t− τ) = c0 (t− τ) R̂. (C.16)

It is possible to estimate the magnitude of the vector on the LHS (Equation C.18),

whose components are expressed explicitly in Equation C.17, where ri = xi − yi.

r−U0 (t− τ) = (r1 − U0 (t− τ) ; r2; r3) . (C.17)

|r−U0 (t− τ)|2 = U2
0 (t− τ)2 − 2U0r1 (t− τ) + r2

1 + r2
2 + r2

3. (C.18)

Therefore, Equation C.16 can be rearranged as:

(t− τ)2
(
U2

0 − c2
0

)
− (t− τ) 2r1U0 + r2

1 + r2
2 + r2

3 = 0, (C.19)

that is a second order equation in the variable (t− τ). Estimating the latter:

(t− τ) =
r1U0 ±

√
r2

1c
2
0 + (r2

2 + r2
3) (c2

0 − U2
0 )

U2
0 − c2

0
, (C.20)

where the only physical solution is the one with a minus sign in front of the square

root. The variable (t− τ) is positive for the causality condition, which establishes

that disturbances cannot travel in the past. The denominator of Equation C.20 is
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negative because a uniform subsonic co-flow is considered. Consequently, the solution

with positive numerator is discarded.

Multiplying by c0 both sides of Equation C.20 and rearranging:

c0 (t− τ) =
−r1M0 +

√
r2

1 + (r2
2 + r2

3) (1−M2
0 )

1−M2
0

. (C.21)

Using 2.30 and 2.31, the distance R is finally obtained:

R = c0 (t− τ) = −r1M0 +R∗

β2 . (C.22)

The acoustic distance R is used to define the support g of the Dirac delta function

in G(c). G(c) allows the noise radiation at an arbitrary observer x at time t to be

estimated:

4πp′ (x, t) =
[
∂

∂t
+ U0

∂

∂x1

] ∫ t

−∞

∫
R3
Q

(c)
j n̂jδ (F)

δ
(
g(c)

)
R∗

d3y dτ

− ∂

∂xi

∫ t

−∞

∫
R3
L

(c)
ij n̂jδ (F)

δ
(
g(c)

)
R∗

d3y dτ

+ ∂2

∂xi∂xj

∫ t

−∞

∫
R3
H (F)Tij

δ
(
g(c)

)
R∗

d3y dτ .

(C.23)

C.1 Solution in a uniformly moving medium

As discussed in Section 2.3, the acoustic radiation from unsteady turbulent flows

is here approximated by considering exclusively the surface integral contributions.

Therefore, Equation C.23 simplifies to:

4πp′ (x, t) ≈ 4πp′T (x, t) + 4πp′L (x, t) , (C.24)

with:

4πp′T (x, t) =
[
∂

∂t
+ U0

∂

∂x1

] ∫ t

−∞

∫
R3
Q

(c)
j n̂jδ (F)

δ
(
g(c)

)
R∗

d3y dτ, (C.25)

4πp′L (x, t) = − ∂

∂xi

∫ t

−∞

∫
R3
L

(c)
ij n̂jδ (F)

δ
(
g(c)

)
R∗

d3y dτ. (C.26)

T and L stand for thickness and loading noise, respectively. This terminology stems

from rotor noise applications [106].

Equations C.25 and C.26 are now rearranged to get the Najafi-Yazdi et al. [55]

formulation (Equations 2.32 and 2.33), that is more convenient to be applied from a
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numerical viewpoint. From now on the superscript (c) is omitted, bearing in mind

that the convective case is developed. In the stationary formulation, the same steps

can be applied.

Before giving the mathematical details, let's define the following variables, for

convenience [55]:

R̃∗ = ∇R∗ =
(
x1 − y1

R∗
; x2 − y2

R∗
β2; x3 − y3

R∗
β2
)
, (2.34 restated)

R̃ = ∇R =
(

1
β2

(
−M0 + x1 − y1

R∗

)
; x2 − y2

R∗
; x3 − y3

R∗

)
. (2.35 restated)

Besides, it can be noticed that all the variables in the thickness and in the loading

noise integrals depend on y and τ only, except for the ratio δ (g) /R∗, coming from

the Green's function, which depends on (x, t,y, τ). Therefore, the space derivative

can be moved inside the integrals, yielding:

4πp′T (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Qjn̂jδ (F) δ (g)

R∗
d3y dτ

+ U0

∫ t

−∞

∫
R3
Qjn̂jδ (F) ∂

∂x1

[
δ (g)
R∗

]
d3y dτ ,

(C.27)

4πp′L (x, t) = −
∫ t

−∞

∫
R3
Lijn̂jδ (F) ∂

∂xi

[
δ (g)
R∗

]
d3y dτ. (C.28)

C.1.1 Change of variable y −→ η

Let's now consider a moving reference frame η, fixed to the FW-H surface

F = 0. Assuming that the surface translates and rotates only, without contracting

or dilating [55], the Jacobian J of the transformation y −→ η is equal to unity.

Consequently, the change of variable is straightforward:

d3y = d3η. (C.29)

Applying C.29 to the thickness and to the loading noise contributions yields:

4πp′T (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Qjn̂jδ (F) δ (g)

R∗
d3η dτ

+ U0

∫ t

−∞

∫
R3
Qjn̂jδ (F) ∂

∂x1

[
δ (g)
R∗

]
d3η dτ ,

(C.30)

4πp′L (x, t) = −
∫ t

−∞

∫
R3
Lijn̂jδ (F) ∂

∂xi

[
δ (g)
R∗

]
d3η dτ. (C.31)
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C.1.2 Change of derivative ∂
∂xi
−→ ∂

∂t

In order to convert the space derivative to a time derivative (more convenient to

be calculated numerically), it is necessary to estimate the term ∂/∂xi (δ (g) /R∗) in

Equations C.30 and C.31. Applying the chain rule:

∂

∂xi

(
δ (g)
R∗

)
= ∂δ (g)

∂g

R̃i

c0R∗
− δ (g) R̃∗i

R∗2
. (C.32)

The first term on the RHS can be expressed as follows:

− 1
c0

∂

∂t

(
R̃iδ (g)
R∗

)
= − R̃i

c0R∗
∂δ (g)
∂g

∂g

∂t
= ∂δ (g)

∂g

R̃i

c0R∗
. (C.33)

Replacing C.33 in C.32:

∂

∂xi

(
δ (g)
R∗

)
= − 1

c0

∂

∂t

(
R̃iδ (g)
R∗

)
− δ (g) R̃∗i

R∗2
. (C.34)

Using Equation C.34, the thickness and the loading noise (Equations C.30 and C.31)

are rearranged as follows:

4πp′T (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Qjn̂jδ (F) δ (g)

R∗

(
1−M0R̃1

)
d3η dτ

− U0

∫ t

−∞

∫
R3
Qjn̂jδ (F) R̃

∗
1δ (g)
R∗2

d3η dτ ,

(C.35)

4πp′L (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Lijn̂jδ (F) R̃iδ (g)

c0R∗
d3η dτ

+
∫ t

−∞

∫
R3
Lijn̂jδ (F) R̃

∗
i δ (g)
R∗2

d3η dτ .

(C.36)

C.1.3 Change of variable τ −→ g

A second variable substitution is applied, for the time τ . The time derivative of

function g needs to be estimated. The latter is expressed as:

∂g

∂τ
= 1 + 1

c0

∂R

∂yi

∂yi
∂τ

= 1− 1
c0

∂R

∂xi

∂yi
∂τ

= 1−MR, (C.37)

with:

MR = R̃ivi
c0

. (C.38)

In Equation C.38, vi is the surface velocity component in the ith direction, while R̃

is the radiation vector that does not coincide with r = x− y, due to the convection

with the uniform flow at velocity U0. Consequently, MR represents the radiation
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Mach number of a source point on the surface F = 0 towards the observer position

x, including the convection effects. Using C.37, the relation between the differentials

dg and dτ can be estimated:

dg = ∂g

∂τ
dτ = (1−MR) dτ −→ dτ = dg

1−MR

. (C.39)

Applying C.39 to Equations C.35 and C.36:

4πp′T (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Qjn̂jδ (F) δ (g)

(1−MR)R∗
(
1−M0R̃1

)
d3η dg

− U0

∫ t

−∞

∫
R3
Qjn̂jδ (F) R̃∗1δ (g)

(1−MR)R∗2
d3η dg ,

(C.40)

4πp′L (x, t) = ∂

∂t

∫ t

−∞

∫
R3
Lijn̂jδ (F) R̃iδ (g)

(1−MR) c0R∗
d3η dg

+
∫ t

−∞

∫
R3
Lijn̂jδ (F) R̃∗i δ (g)

(1−MR)R∗2
d3η dg .

(C.41)

C.1.4 Sifting property of the Dirac delta functions δ (F), δ (g)
In the thickness and in the loading noise contributions, the Dirac delta functions

δ (F) and δ (g) sift the integrals on their respective support. Specifically, δ (F) restrict

the volume integral to a surface one on F = 0, while δ (g) allows the estimation of

the time integral, by selecting the value of the variables on g = 0 −→ τe = t − R
c0

.

The result is here reported in Equations C.42 and C.43, where all the variables inside

the integrals are estimated on the FW-H surface F = 0, at the emission instant τe.

4πp′T (x, t) = ∂

∂t

∫
F=0

[
Qjn̂j

(1−MR)R∗
(
1−M0R̃1

)]
τe

dη2

− U0

∫
F=0

[
Qjn̂jR̃

∗
1

(1−MR)R∗2

]
τe

dη2 .

(C.42)

4πp′L (x, t) = 1
c0

∂

∂t

∫
F=0

[
Lijn̂jR̃i

(1−MR)R∗

]
τe

dη2

+
∫
F=0

[
Lijn̂jR̃

∗
i

(1−MR)R∗2

]
τe

dη2 .

(C.43)

C.1.5 Change of derivative ∂
∂t −→

∂
∂τ

It is possible to demonstrate that the time derivative in the thickness and in the

loading noise (Equations C.42 and C.43) can be moved inside the integral. This is
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possible through application of the Leibniz Rule:
d

dt

∫ B(t)

A(t)
Q (τ ; t) dτ =

∫ B(t)

A(t)

∂

∂t
Q (τ ; t) dτ + Ḃ(t)Q [B(t); t]

− Ȧ(t)Q [A(t); t] .
(C.44)

The additional terms generated from the application of Equation C.44 to Equa-

tions C.42 and C.43 are identically zero [55], yielding:

4πp′T (x, t) =
∫
F=0

∂

∂t

[
Qjn̂j

(1−MR)R∗
(
1−M0R̃1

)]
τe

dη2

− U0

∫
F=0

[
Qjn̂jR̃

∗
1

(1−MR)R∗2

]
τe

dη2 ,

(C.45)

4πp′L (x, t) = 1
c0

∫
F=0

∂

∂t

[
Lijn̂jR̃i

(1−MR)R∗

]
τe

dη2

+
∫
F=0

[
Lijn̂jR̃

∗
i

(1−MR)R∗2

]
τe

dη2 .

(C.46)

To convert the t derivative to a source time τ derivative, the following formula

can be applied:
∂

∂t
=
[
∂

∂τ

∂τ

∂t

]
τe

, (C.47)

where the derivative ∂τ/∂t needs to be estimated at emission time τe. It can be

noticed that the time derivative of function g at τe is identically zero, yielding:

∂g

∂t

∣∣∣∣
τe

= ∂τ

∂t
− 1 + 1

c0

∂R

∂t
= 0. (C.48)

The last term on the RHS of Equation C.48 can be expressed as follows:

1
c0

∂R

∂t

∣∣∣∣
τe

= 1
c0

∂R

∂yi

∂yi
∂τ

∂τ

∂t
= − 1

c0
R̃ivi

∂τ

∂t
= −MR

∂τ

∂t
. (C.49)

Replacing C.49 in C.48 and rearranging:

∂τ

∂t

∣∣∣∣
τe

= 1
1−MR

. (C.50)

Finally, Equation C.47 can be reformulated as follows:

∂

∂t
=
[

1
1−MR

∂

∂τ

]
τe

, (C.51)

and the thickness and the loading noise become:

4πp′T (x, t) =
∫
F=0

[
1

1−MR

∂

∂τ

(
Qjn̂j

(1−MR)R∗
(
1−M0R̃1

))]
τe

dη2

− U0

∫
F=0

[
Qjn̂jR̃

∗
1

(1−MR)R∗2

]
τe

dη2 ,

(C.52)
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4πp′L (x, t) = 1
c0

∫
F=0

[
1

1−MR

∂

∂τ

(
Lijn̂jR̃i

(1−MR)R∗

)]
τe

dη2

+
∫
F=0

[
Lijn̂jR̃

∗
i

(1−MR)R∗2

]
τe

dη2 .

(C.53)

C.1.6 Estimation of ∂
∂τ by the chain rule

The last step to get the final solution consists in applying the chain rule to

the time derivative in Equations C.52 and C.53. In the thickness noise, the time

derivative can be decomposed into two terms:

∂

∂τ

(
Qjn̂j

(1−MR)R∗
(
1−M0R̃1

))
= ∂

∂τ

(
Qjn̂j

(1−MR)R∗

)

−M0
∂

∂τ

(
Qjn̂jR̃1

(1−MR)R∗

)
.

(C.54)

Applying the chain rule to both terms on the RHS of C.54:

∂

∂τ

(
Qjn̂j

(1−MR)R∗

)
= Q̇jn̂j +Qj

˙̂nj
(1−MR)R∗

− ∂R∗

∂τ

Qjn̂j
(1−MR)R∗2

+ ∂MR

∂τ

Qjn̂j

(1−MR)2 R∗
,

(C.55)

∂

∂τ

(
Qjn̂jR̃1

(1−MR)R∗

)
= Q̇jn̂jR̃1 +Qj

˙̂njR̃1 +Qjn̂j
˙̃R1

(1−MR)R∗

− ∂R∗

∂τ

Qjn̂jR̃1

(1−MR)R∗2

+ ∂MR

∂τ

Qjn̂jR̃1

(1−MR)2 R∗
.

(C.56)

For the loading noise, the chain rule is applied again, yielding:

∂

∂τ

(
Lijn̂jR̃i

(1−MR)R∗

)
= L̇ijn̂jR̃i + Lij ˙̂njR̃i + Lijn̂j

˙̃Ri

(1−MR)R∗

− ∂R∗

∂τ

Lijn̂jR̃i

(1−MR)R∗2

+ ∂MR

∂τ

Lijn̂jR̃i

(1−MR)2 R∗
.

(C.57)

Finally, replacing C.55, C.56, and C.57 in Equations C.52 and C.53, the convective

acoustic analogy solution is obtained, in the form of Equations 2.32 and 2.33 of

Section 2.2.4.
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Appendix D

New CFW-H tool validation for

stationary test cases

In this section, the CFW-H acoustic analogy of Section 2.2.4 is applied to predict

noise radiation in a medium at rest. The first test considers four elementary noise

sources, which are a monopole, a dipole, a longitudinal quadrupole, and a lateral

quadrupole, radiating in a uniform medium at rest (M0 = 0). The configuration is

the same as the one reported in Section 3.1, and Figure 3.1 displays the FW-H surface

shape and the observer positions. Specifically, the integration surface has a prismatic

shape with cross-section a× a and length 2` and the observers are distributed on a

circular array on the plane x3 = 0. The array of radius ro is centred at the origin

and the observers are equally spaced at constant angular increments of 9°.

The sources are placed at the origin of the Cartesian reference system, at the

location of s(1) in Figure 3.1. Their strength is normalised to get a Sound Pressure

Level of 80 dB re 20 µPa at 33.33λ from the source in the direction of the maximum

noise radiation, as in Section 3.1. Due to the orientation of the sources, the latter

coincides with the x2-axis for both the dipole and the longitudinal quadrupole, which

are characterised by a far-field noise pattern in a figure-of-eight shape. The lateral

quadrupole has instead a four-leaved clover pattern, with four directions of maximum

radiation at 0°± 45° and at 180°± 45° from the positive x1-axis.

The emission frequency of all four elementary sources is f = 5.67 kHz (λ = 0.06

m), and NT = 40 points are used to discretise the period T of the acoustic waves. The

FW-H surface is defined as a cube with side a = 2` = 2λ, centred at the origin of the
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Cartesian axes. Nλ = 20 points per wavelength are used to provide an appropriate

spatial discretization, as in Section 3.1.

The noise radiation directivity is reported in Figure D.1, for two values of the

observers polar coordinate ro, measured from the origin of the Cartesian reference

system, i.e. ro,1 = 10λ and ro,2 = 20λ = 2ro,1. All the sound sources are placed at

the origin of the reference system itself, so that ro is also the acoustic radial distance

source-observer r = |x− y|. The typical decay of the acoustic pressure fluctuation

amplitude with the inverse of r is expected to be obtained for the acoustic pressure

fluctuation in the far-field, that is p′ ∝ 1/r.

0

30

60

90

120

150

180

210

240

270

300

330

0 0.2 0.4 0.6

CFW-H ro,2
ref ro,2
CFW-H ro,1
ref ro,1

max(p′) (Pa)

θ

(a) Monopole.
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(b) Dipole.
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(c) Longitudinal quadrupole.
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(d) Lateral quadrupole.

Figure D.1: Radiation in a stationary medium from elementary noise sources, located

at the origin, to observers placed at radial distances ro,1 = 10λ and ro,2 = 20λ from

the origin. a = 2λ, ` = λ, λ = 0.06 m, NT = 40, and Nλ = 20.

As shown from Figure D.1, the numerical prediction denoted by “CFW-H” closely
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matches the analytical solution denoted by “ref” for all the sources considered, in

terms of the acoustic pressure amplitude and directivity. The acoustic pressure

amplitude decay with increasing radial distance r is also correctly captured, with a

0.5 ratio between the acoustic pressure amplitude at ro,2 = 20λ and at ro,1 = 10λ.

These results provide a sanity check on the correct implementation of the convective

FW-H acoustic analogy formulation in the new Python CFW-H tool.
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(a) Single-stream subsonic isothermal jet (Sec-

tion 4.1.1). Mj = 0.9, Re = 4× 105, ro = 30De.
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(b) Dual-stream under-expanded cold jet (Sec-

tion 4.2). Mjp = 0.89, Mjs = 1.20, Rep =

0.57× 106, Res = 1.66× 106, ro = 30Ds.

Figure D.2: Overall Sound Pressure Level (OSPL) vs polar angle θ from stationary

(M0 = 0) jets, modelled by LES.

The outcome from a second test on the implementation of the CFW-H acoustic

analogy is shown in Figure D.2, where Overall Sound Pressure Levels (OSPLs)

are reported for the acoustic pressure fluctuation emitted by the subsonic single-

stream jet and by the under-expanded dual-stream jet, discussed respectively in

Sections 4.1.1 and 4.2. Three curves are reported in Figure D.2 that are the two

numerical predictions from the new Python AFW-H and CFW-H tools, and the

numerical reference solution by elsA [130]. The latter is indicated by black diamond

symbols, while blue squares and red deltas denote the results obtained respectively

with the AFW-H and with the CFW-H tool applied to the LES prediction by

Biolchini [135], for the single-stream jet (Figure D.2(a)), and by Pérez [16], for the

dual-stream jet (Figure D.2(b)).

The three curves match very well and the two Python implementations predict

overlapping OSPLs, for both the single-stream and the dual-stream jet. A good
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match is obtained at all polar angles over the range 20° ≤ θ ≤ 120° for the single-

stream jet in Figure D.2(a) and over the range 20° ≤ θ < 160° for the dual-stream

jet in Figure D.2(b). A noticeable difference is shown in Figure D.2(b) only at

θ = 160°, where the discrepancy between the elsA reference solution and the numerical

prediction by the new FW-H tools reaches 1.6 dB.

The good match obtained in Figures D.1 and D.2 is just a starting point in the

process of validation of the CFW-H tool. It proves the equivalence between the

stationary (Section 2.2.3) and the convective (Section 2.2.4) FW-H acoustic analogy

formulations, when M0 = 0. Tests with a uniformly moving flow are performed

in Chapter 5, for both elementary sources (Section 5.1) and jet noise problems

(Section 5.2), to provide further confidence in the new CFW-H tool at M0 > 0.
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