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Abstract In a regression with independent and identically distributed normal residu-
als, the log-likelihood function yields an empirical form of the L2-norm, whereas the
normal distribution can be obtained as a solution of differential entropy maximiza-
tion subject to a constraint on the L2-norm of a random variable. The L1-norm and
the double exponential (Laplace) distribution are related in a similar way. These are
examples of an “inter-regenerative” relationship. In fact, L2-norm and L1-norm are
just particular cases of general error measures introduced by Rockafellar et al. (2006)
on a space of random variables. General error measures are not necessarily symmet-
ric with respect to ups and downs of a random variable, which is a desired prop-
erty in finance applications where gains and losses should be treated differently. This
work identifies a set of all error measures, denoted by E , and a set of all probability
density functions (PDFs) that form “inter-regenerative” relationships (through log-
likelihood and entropy maximization). It also shows that M-estimators, which arise
in robust regression but, in general, are not error measures, form “inter-regenerative”
relationships with all PDFs. Remarkably, the set of M-estimators, which are error
measures, coincides with E . On the other hand,M-estimators are a particular case of
L-estimators that also arise in robust regression. A set of L-estimators which are error
measures is identified—it contains E and the so-called trimmed Lp-norms.
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1 Introduction

There are at least two approaches to regression analysis: likelihood maximization and
error minimization of regression residuals. The first assumes a certain class of prob-
ability distributions for the regression residuals and is traditionally used in statistics,
whereas the second ponders over a suitable choice of an error measure for the re-
gression residuals and is a customary tool in engineering and risk analysis [39]. Both
methods were introduced1 by Gauss in 1809 [10], who observed that if regression
residuals were assumed to be independent and identically distributed (i.i.d.) normal
random variables (r.v.’s), then maximization of the log-likelihood function of the re-
gression residuals could be reduced to the least squares problem or, equivalently, to
minimization of the L2-norm of the regression error. In fact, the normal distribution
was introduced in [10] as the only distribution with such a property. This made the
least squares (LS) method as well as the assumption of normally distributed resid-
uals a cornerstone of regression analysis for the past two centuries. (In fact, the LS
regression is quite sensitive to outliers—a single outlier may have a drastic impact
on regression coefficients [40, pp. 3–5], and there is extensive evidence questioning
the assumption on normality of noise in real data [5].) The information theory [21]
highlighted another relationship between the L2-norm and the normal distribution:
a normal distribution is a solution of differential entropy maximization [43] with a
constraint on the L2-norm of an r.v. Thus, the log-likelihood function of the normal
distribution yields an empirical form of the L2-norm, whereas the normal distribu-
tion can be “recovered” from the maximum entropy principle with a constraint on the
L2-norm:

probability distribution
of regression residuals

log-likelihood function
−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−

entropy maximization

error measure of
regression residuals (1)

We call (1) an “inter-regenerative” relationship.
In fact, the L2-norm and normal distribution are not the only pair with this re-

markable relationship. In 1887, Edgeworth [7] argued2 that LS regression coefficients
are so sensitive to outliers because the residuals are squared, so instead, he suggested
to minimize the sum of absolute values of the residuals—the method now known as
L1-regression. (Although coefficients in the L1-regression are not “immune” to out-
liers, see e.g. [40, pp. 10–11], the impact of a single outlier in the response variable
is not as severe as in the LS regression.) Laplace [26] observed that L1-regression is
equivalent to the likelihood maximization with the double exponential (Laplace) dis-
tribution. It turns out that this distribution maximizes the differential entropy subject
to a constraint on the L1-norm [29]. Thus, the L1-norm and the Laplace distribution
is yet another example of (1).

In 1964, Huber [19] proposed to minimize
∑
i ρ(zi) with respect to regression

coefficients, where ρ is a non-constant function and zi are regression residuals. The

1 The least squares method was used, although without proofs, by Legendre in 1805 [28], see [17].
2 The idea to minimize the sum of the absolute deviations of error residuals was first proposed by

Boscovich in 1757 [4], see [17].
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cases ρ(t) = t2 and ρ(t) = |t| correspond to the LS regression and to theL1-regression,
respectively, while the case ρ(t) = at2, t 6 0, ρ(t) = bt2, t > 0, with a > 0,b > 0, a ,
b, leads to the asymmetric least square (ALS) regression, which is also known as the
expectile regression [8,16,44]. This method with different ρ is known as the theory of
M-estimators [19]. Further, Huber [20] suggested to sum up ρ(zi) with weights corre-
sponding to the order statistic of zi , for example, the smallest and the largest residuals
could be assigned different weights. This idea leads to the theory of L-estimators [20]
that generalize M-estimators and that include quantile regression [23] and least me-
dian of squares (LMS) regression [42] or least trimmed squares (LTS) regression as
particular cases. LMS regression coefficients remain unchanged even if half of all
data are outliers. M-estimators and L-estimators remain an active research area, see
e.g. [1,18,27,30,32].

The use of M-estimators and L-estimators, as well as other robust estimators,
may, however, lead to non-convex optimization for regression coefficients—this is
a considerable disadvantage, particularly for large-scale high-dimensional problems.
Bernholt [3] suggested an algorithm which computes LMS estimator for n data points
in dimension d in time proportional to nd . Mount et al. [33] offered anO(nd+1) algo-
rithm for computing an LTS estimator and showed that the existence of any algorithm
which (exactly and deterministically) computes it in time O(nk) for any k < d would
contradict the well-known “hardness of affine degeneracy” conjecture. In real-life ap-
plications, particularly with large data sets, LTS regression coefficients can be found
by the fast-LTS heuristic [41], but in this case, they are not guaranteed to be optimal.

Rockafellar et al. [39] took the second approach to regression analysis. They in-
troduced general measures of error as nonnegative positively homogeneous convex
functionals on a space of r.v.’s, which include the L1-norm and the L2-norm, but
are not necessarily symmetric with respect to the ups and downs of r.v.’s, and then
proposed to minimize a general error measure of regression residuals. For a linear
regression, this approach yields convex optimization programs for regression coef-
ficients. Zabarankin and Uryasev [45, Proposition 5.1] showed that entropy maxi-
mization subject to a constraint on a general error measure E is equivalent to entropy
maximization subject to two constraints: on the deviation measure projected from E
and on the statistic associated with E.3 Grechuk and Zabarankin [15] analyzed sen-
sitivity of optimal values of positively homogenous convex functionals in various
optimization problems, including linear regression, to noise in the data. The theory
of general error measures opens up the possibility for identifying other pairs of error
measures and probability distributions that are related by (1). Also, connection be-
tween the theory of error measures [39] and the theories of M-estimators [19] and
L-estimators [20] is believed to be an open issue.

3 Rockafellar et al. [38,39] proposed a unifying axiomatic framework for general measures of error,
deviation and risk—all of them are positively homogenous convex functionals defined on a space of r.v.’s,
see also [37,34].
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This work shows that all possible pairs of error measures and probability density
functions (PDFs) that are related by (1) are determined by

E(X) =
∥∥∥Xa,b∥∥∥p , X ∈ Lp(Θ), a > 0, b > 0, p > 1, (2a)

f (t) = C exp
(
−λtpa,b

)
, t ∈R, C > 0, λ > 0,

∫ ∞
−∞
f (t)dt = 1, (2b)

respectively, where X is an r.v., ‖ · ‖p is the Lp-norm, and (·)a,b is a function defined
by

ta,b = a [t]+ + b [t]−, [t]± =max{0,±t}. (3)

For example, for a = b = 1, (2a) simplifies to the Lp-norm ‖X‖p, whereas for p = 1,
a = 1 and b = 1/α − 1 with α ∈ (0,1), it is the asymmetric mean absolute error, also
known as the Koenker-Bassett error measure used in the quantile regression [23]. The
sets of all error measures defined by (2a) and of all PDFs given by (2b) is denoted
by E and P , respectively. If E is replaced by M-estimators, which, in general, are
not error measures in the sense of Rockafellar et al. [39] (positively homogeneous
convex nonnegative functionals), then (1) is extended from P to all PDFs, and the
set of allM-estimators that are error measures coincides with E , see Figure 1. In fact,
M-estimators are a particular case of L-estimators, which are consistent with Huber’s
theory of robust regression. The set of all error measures which are also L-estimators
is denoted by V and contains E and so-called trimmed Lp-norms. In addition, this
work finds all PDFs that maximize the differential entropy subject to a constraint on
an arbitrary law-invariant error measure E.

error measures M-estimators all PDFs

log-likelihood

max entropy

Fig. 1 Relationship between E , P , error measures, and M-estimators.

The rest of the paper is organized into five sections and appendix. Section 2
formulates a general regression problem with error measures and M-estimators and
identifies the set of M-estimators which are also error measures. Section 3 discusses
entropy maximization subject to constraints on error measures/M-estimators and an-
alyzes correspondence between error measures/M-estimators and maximum entropy
distributions. Section 4 extends the results of Sections 2 and 3 for L-estimators. Sec-
tion 5 concludes the work. Appendix A presents proofs of all the propositions.
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2 Log-likelihood function, error measures, and M-estimators

Let Θ = (Ω,M,P) be a probability space, with Ω, M, and P being a set of el-
ementary events, a σ -algebra over Ω, and a probability measure on (Ω,M), re-
spectively. A random variable (r.v.) is any measurable function from Ω to R, and
Lr (Θ) = Lr (Ω,M,P), r ∈ [1,∞], is a linear space of r.v.’s with norms ‖X‖r =
(E[|X |r ])1/r , r <∞, and ‖X‖∞ = esssup |X |. For an r.v. X, FX(x) = Pr[X 6 x] and
qX(s) = inf{x|FX(x) > s} are its cumulative distribution function (CDF) and quan-
tile function, respectively. An r.v. X is continuous if FX(x) =

∫ x
−∞ fX(t)dt for some

function fX(t) : R→ R
+, where R

+ = [0,+∞), which is called a probability density
function (PDF). Θ is non-trivial if there exists a non-constant r.v. on Θ, and Θ is
atomless, if there exists a continuous r.v. on Θ.

Suppose variables x ∈Rm (regressor) and y ∈R (regressant) are related by

y = φ(x;β) + z (4)

where φ is a given function, β ∈ Rl is an unknown deterministic parameter, and z is
a regression error/residual. The regression problem is to find β based on given data
(x1, y1), . . . , (xn, yn), where xi ∈Rm and yi ∈R.

In statistics, regression residuals zi(β) = yi −φ(xi ;β), i = 1, . . . ,n, are often as-
sumed to be realizations of independent identically distributed (i.i.d.) r.v.’s Zi(β) ∈
Lr (Θ), i = 1, . . . ,n, with PDF f (t) : R → R

+, so that the likelihood of observing
z1(β), . . . , zn(β) is given by

n∏
i=1

f (zi(β)). (5)

Optimal β is then found by maximizing (5), or equivalently, the logarithm of (5)
(log-likelihood function):

max
β∈Rl

1
n

n∑
i=1

lnf (zi(β)), (6)

where the multiplier 1/n is introduced for convenience.
On the other hand, the objective function in (6) can be considered as the sam-

ple analogue of the expected log-likelihood E[lnf (Z;β)], which is negative cross
entropy, and the likelihood maximization (6) takes the form

max
β∈Rl

E[lnf (Z(β))], Z(β) = Y −φ(X;β). (7)

In this case, the functional E(Z(β)) = −E[lnf (Z(β))] plays the role of a measure
for the random error Z(β), and the problem (7) can be recast with an arbitrary error
measure E:

min
β∈Rl
E(Z(β)), Z(β) = Y −φ(X;β), (8)

which is essentially the approach to regression taken in engineering: find the best fit
for the random variable Y in terms of the explanatory random vectorX = (X1, . . . ,Xm).

In general, an error measure is a functional E : Lr (Θ) → [0,∞] satisfying the
following axioms [39]:
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(E1) E(0) = 0 but E(X) > 0 for nonzero X; also E(C) <∞ for constant C,
(E2) E(λX) = λE(X) for all X and all λ > 0 (here 0∞ = 0) (positive homogeneity),
(E3) E(X +Y ) 6 E(X) + E(Y ) for all X and Y (subadditivity),
(E4) {X ∈ Lr (Θ)

∣∣∣E(X) 6 C} is closed in Lr (Θ) for all C <∞ (lower semicontinuity).

Loosely speaking, E(X) is a nonnegative positively homogeneous convex functional,
which generalizes the notion of norm, but in contrast to a norm is not necessarily
symmetric, i.e., in general, E(−X) , E(X). An error measure E is called law invariant
if E(X) = E(Y ) whenever r.v.’s X and Y have the same distribution.

A broad class of error measures is given by (2a). Comparison of (7) and (8) with
(2a) yields (2b)—log-likelihood maximization (6) with (2b) is equivalent to error
minimization (8) with (2a).

Example 1 (LS regression) The least squares (LS) regression

min
β∈Rl
‖Z(β)‖2, Z(β) = Y −φ(X;β), (9)

is equivalent to likelihood maximization with a normally distributed regression error.

Example 2 (quantile regression) The quantile regression [23] is equivalent to likeli-
hood maximization with the regression error having the PDF f (t) = C exp(−λ (α [t]++
(1−α) [t]−)), t ∈R, with C > 0, λ > 0, and α ∈ (0,1).

In LS regression (9), a single outlier can substantially alter regression coefficients.
Several alternatives have been suggested with better robustness properties. For exam-
ple, Huber [19] proposed the coefficient vector β in (4) to minimize

min
β∈Rl

n∑
i=1

ρ(zi(β)) (10)

for some non-constant function ρ : R→ R
+, where the objective function in (10) is

calledM-estimator. The case ρ(t) = t2 corresponds to the ordinary least square error.
Problem (10) is equivalent to (8) with

E(Z) = h(E[ρ(Z)]), Z ∈ Lr (Θ), (11)

where Z is an r.v. such that P[Z = zi] = 1/n, i = 1, . . . ,n, and h : R+ → R
+ is an

arbitrary strictly increasing function. For example, with

ρ∗(t) = λtpa,b, h(x) =
x1/p

λ
, λ > 0, a > 0, b > 0, p > 1, (12)

(11) simplifies to (2a). However, in general, the functional (11) is not an error mea-
sure.

Example 3 Let h(z) = z ∈R+ in (11), and ρ :R→R be a convex function, such that
ρ(0) = 0, but ρ(z) > 0, z , 0. Then E(Z) = E[ρ(Z)] in (11) is a regular measure of
error [37], i.e., satisfies axioms E1, E3, E4, and

(E5) lim
n→∞
E(Zn) = 0 =⇒ lim

n→∞
E[Zn] = 0 holds for any sequence {Zn}∞n=1 of r.v.’s.
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In general, regular measures of error may not satisfy E2. For example, the asymmetric
exponential error E(Z) = E[eZ −Z − 1] satisfies E1 and E3–E5 but not E2, see [37,
Example 8].

The following proposition shows that the set of all M-estimators (11), which are
error measures, is, in fact, the set E .

Proposition 1 Let E : Lr (Θ)→ [0,∞] be anM-estimator (11) defined on non-trivial
Θ. Then E is an error measure if and only if E ∈ E .

Proof See Appendix A.1.

3 Entropy Maximization

Let C1(Θ) ⊂ L1(Θ) be the set of all r.v.’s, which have finite mean and a PDF, and let
X ⊂ C1(Θ). Maximization of the differential entropy

S(Z) = −
∫ ∞
−∞
f (t) lnf (t)dt

can be formulated in a general form:

max
Z∈X

S(Z). (13)

A set X is called law-invariant if X ∈ X implies Y ∈ X whenever r.v.’s X and Y have
the same distribution.

Proposition 2 An r.v. Z∗ ∈ C1(Θ) can be a solution to (13) for some convex closed
(in L1(Θ)) law-invariant set X if and only if Z∗ has a log-concave PDF.

Proof See Appendix A.2.

Problem (5.4.5) in [45] suggests that maximization of the differential entropy
with a constraint on an error measure E : Lr (Θ)→ [0,∞] of Z:

max
Z∈Lr (Θ)

S(Z) subject to E(Z) = 1, (14)

can “restore” the PDF of the regression residual. Indeed, if an r.v. Z admits a con-
tinuous PDF f (t) : R → R

+, then problem (14) with error measure (2a) takes the
form

max
f (t)>0

−
∫ ∞
−∞
f (t) lnf (t)dt

subject to
∫ ∞
−∞
t
p
a,b f (t)dt = 1,

∫ ∞
−∞
f (t)dt = 1,

(15)

and Boltzmann’s theorem [6, Theorem 11.1.1] yields (2b) with constants C > 0 and
λ > 0 to be found from the constraints in (15)—the exact form of f is given by [45,
(5.4.8)]

f (t) =
1

(a−p + b−p)p1/pΓ [1 + 1/p]
exp

− tpa,bp
 , t ∈R, (16)
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where Γ [·] is the gamma function. When a = b = 1, error measure (2a) takes the form
E(Z) = ‖Z‖p and PDF (16) simplifies to [45, (5.4.9)]

f (t) =
1

2p1/pΓ [1 + 1/p]
exp

(
−|t|

p

p

)
, t ∈R,

see Figure 5.2 in [45] for the graph of this PDF for various p.
Thus, given PDF (2b), error measure (2a) follows from the log-likelihood func-

tion, and given error measure (2a), PDF (2b) follows from entropy maximization, i.e.
(2a) and (2b) form “inter-regenerative” relationship (1). This raises the following
questions:

(i) Entropy-error relationship: For which PDF f does there exist an error measure E
such that f is a maximizer in (14)?

(ii) Likelihood-error relationship: For which PDF f does there exist an error measure
E such that (8) yields the same solution as (6)?

(iii) “Inter-regenerative” relationship: For which PDF f does there exist an error
measure E which satisfies (i) and (ii) simultaneously, i.e., f and E form (1)?

Questions (i) and (ii) are answered by the following results.

Proposition 3 A PDF f can be a maximizer in (14) for some law invariant error
measure E if and only if logf is a concave function.

Proof See Appendix A.3.

Proposition 4 Let E : Lr (Θ)→ [0,∞] be an error measure defined on a non-trivial
probability space Θ. If there exists a PDF f such that (6) yields the same solution as
(8), then f ∈P and E ∈ E .

Proof See Appendix A.4.

Proposition 4 implies that P and E are, in fact, the only sets of PDFs and er-
ror measures, respectively, for which the two regression approaches yield the same
solution and which form (1).

Example 4 (trimmed L1-norm) The trimmed L1-norm (also known as CVaR norm
[31]) is the average of the right (1−α)-tail of |Z |:

E(Z) = 1
1−α

∫ 1

α
q|Z |(s)ds =min

ζ

{
ζ +

1
1−α

E[|Z | − ζ]+
}
, (17)

where q|Z |(s) is the s-quantile of |Z |, is an error measure recently used in regression
analysis, see [39]. Since (17) is not in the form (2a), Proposition 4 implies that there
is no PDF, for which expected log-likelihood maximization is equivalent to (8) with
(17).
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Example 5 (mixture of normal distributions) Assume that there are m sources of er-
rors in regression problem (4). Let L be a latent, i.e., unobserved, r.v., such that L = j
if and only if the error was caused by source j. Assume that each source produces a
normally distributed error, i.e., z ∼N (µj ,σj ), if L = j, j = 1, . . . ,m. Then the (uncon-
ditional) density function for z is the mixture of normal distributions

f (x) =
m∑
j=1

wj√
2πσj

exp

− (x −µj )22σ2
j

 , (18)

where wj = P [L = j], j = 1, . . . ,m, which implies that
∑m
j=1wj = 1. Let wj > 0,

j = 1, . . . ,m, i.e., each source of error has a non-zero probability. Parameters w =
(w1, . . . ,wm) ∈ Rm, µ = (µ1, . . . ,µm) ∈ Rm and σ = (σ1, . . . ,σm) ∈ Rm in (18), and
β ∈ Rl in (4) can be found from likelihood maximization through the expected max-
imization (EM) algorithm [2]. Alternatively, we can minimize some error measure
E of the residuals. However, since f in (18) is not in the form (2b), Proposition 4
implies that there is no error measure for which these two approaches are equivalent.
Also, since logf is not a concave function, Proposition 3 implies that there is no error
measure for which f given by (18) is a maximizer in (14).

Next proposition introduces a relationship similar to (1) with M-estimators (11)
in place of error measures.

Proposition 5 Let f ∗ be an arbitrary PDF. Then (6) with the PDF f ∗ yields the
same solution as (8) with E∗ in the form (11) and ρ∗(t) = − lnf ∗(t). Moreover, f ∗

can be “restored” from maximization of the differential entropy S(Z) subject to the
constraint E∗(Z) = c for some constant c ∈R:

max
Z∈Lr (Θ)

S(Z) subject to E∗(Z) = c. (19)

Proof See Appendix A.5.

4 Generalizations

4.1 L-estimators

Robust alternatives for linear regression use other estimators as well (not just M-
estimators). Huber [20] suggested to find regression parameters, β ∈ Rl , in (4) from
the optimization problem

min
β∈Rl

n∑
i=1

aniρ(z(i)(β)), (20)

where ρ :R→R
+ is a non-constant function, ani are real coefficients, and z(1)(β), . . . ,

z(n)(β) are the order statistics, i.e., a permutation of z1(β), . . . , zn(β) such that z(1)(β) 6
. . . 6 z(n)(β). Huber [20] calls

∑n
i=1 aniρ(z(i)(β)) L-estimators. Note thatM-estimators

are a particular case of L-estimators with an1 = · · · = ann = 1.
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As observed in [20, p. 55], (20) is equivalent to (8) with

E(Z) =
∫ 1

0
ρ(qZ (α))M(dα),

where M is a signed measure on (0,1), or, equivalently, to (8) with

E(Z) = h
(∫ 1

0
ρ(qZ (α))M(dα)

)
, (21)

where h :R+→R
+ is a strictly increasing function.

An example of L-estimator is a so-called α-trimmed mean ([20, pp. 57–58]) that
corresponds to

E(Z) = 1
1− 2α

∫ 1−α

α
ρ(qZ (α))dα, α ∈ (0,1/2), (22)

where ρ(z) = z or ρ(z) = |z|.
There are other versions of robust regression which are similar to (20). They first

apply a function ρ to residuals and then rank them. They correspond to (8) with

E(Z) = h
(∫ 1

0
qρ(Z)(α)M(dα)

)
. (23)

A simple example is least median of squares regression

min
β∈Rl

med(Z(β)2), Z(β) = Y −φ(X;β),

where median med(X) of an r.v. X is a real number x such that Pr[X < x] 6 1/2 and
Pr[X > x] > 1/2. Coefficients in this regression do not change even if half of the data
are outliers, but this regression is much less efficient than (9): more data are required
to achieve the same accuracy [42]. Least trimmed squares (LTS) regression has the
same robustness level but is more efficient [42, Section 4]. It corresponds to (8) with

E(Z) = 1
α

∫ α

0
q2|Z |(s)ds (24)

for some α ∈ (0,1).
The functionals (22) and (24) are non-convex, and are, therefore, not error mea-

sures. The following propositions characterize all error measures which can have
either the form (21) or the form (23).

Proposition 6 Let Θ be an atomless probability space, and let E : Lr (Θ)→ [0,∞].
Then

(a) E is an error measure of the form (21) if and only if E ∈ E ;
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(b) E is an error measure of the form (23) if and only if it is a particular case of

E(Z) =
(∫ 1

0
w(α)qpZa,b (α)dα

)1/p
, a > 0, b > 0, p > 1, (25)

wherew(α) is either a Dirac delta function at 1 or a non-negative non-decreasing
function such that 0 <

∫ 1
0 w(α)dα <∞.

Proof See Appendix A.6.

Example 6 (trimmed L1-norm revisited) The trimmed L1-norm (17) is (25) with p =
1, a = b = 1, and w(s) = (1− s)−1I{s>α}, where I{... } is an indicator function equal to
1 if the condition in the curly brackets holds and equal to zero otherwise.

Example 7 (trimmed Lp-norm) Error measure

E(Z) =
(

1
1−α

∫ 1

α
q
p
|Z |(s)ds

)1/p
is a hybrid of trimmed L1-norm (17) and Lp-norm and can be called a trimmed Lp-
norm. It is (25) with a = b = 1 and with w(s) = (1− s)−1I{s>α}.

A different hybrid of trimmed L1-norm (17) and Lp-norm is given by

Ep,α(Z) = min
ζ

{
ζ +

1
1−α

‖ [|Z | − ζ]+ ‖p
}
.

In fact, Ep,α(Z) = HMCRp,α(|Z |), where HMCRp,α is a higher moment coherent
risk measure [24]. For p ∈ (1,∞) and α ∈ (0,1), Ep,α(Z) is not of the form (25).
Hence, by Proposition 6, it does not belong to family (23) of error measures related
to L-estimators.

4.2 Entropy maximization with a constraint on error measure (25)

Example 4 shows that there is no PDF of error residuals such that log-likelihood
maximization corresponds to minimization of the trimmed L1-norm, i.e., the “upper
arrow” in (1) does not hold. However, the “lower arrow” still works—differential en-
tropy maximization subject to a constraint on a general error measure was addressed
in [45, problem (5.5.4)].

Error measure (25) can be rewritten as

Ep =
∫ 1

0

(∫ 1

α
q
p
Za,b

(s)ds
)
dw(α) +w(0)

∫ 1

0
q
p
Za,b

(s)ds,

or

Ep =
∫ 1

0

(
1

1−α

∫ 1

α
q
p
Za,b

(s)ds
)
(1−α)dw(α) +w(0)E

[
Z
p
a,b

]
.
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The conditional value-at-risk (CVaR) minimization formula [36] (see also (1.4.4)
in [45]) yields

1
1−α

∫ 1

α
q
p
Za,b

(s)ds =min
ζ(α)

(
ζ(α) +

1
1−α

E

[
[Zpa,b − ζ(α)]+

])
.

Then

Ep =min
ζ(α)

∫ 1

0

(
ζ(α) +

1
1−α

E

[
[Zpa,b − ζ(α)]+

])
(1−α)dw(α) +w(0)E

[
Z
p
a,b

]
,

and entropy maximization problem (14) becomes

max
f (t)>0, ζ(α)

−
∫ ∞
−∞
f (t) lnf (t)dt

subject to
∫ ∞
−∞
f (t)g(t)dt = 1,

∫ ∞
−∞
f (t)dt = 1,

(26)

where

g(t) =
∫ 1

0

(
ζ(α) +

1
1−α

[tpa,b − ζ(α)]+
)
(1−α)dw(α) +w(0)tpa,b.

By Boltzmann’s theorem [6, Theorem 11.1.1], the maximum-entropy distribution
is given by

f (t) = cexp(−λg(t)) ,
where c and λ are positive constants which can be found from the constraints in (26).

With c2 = cexp
(
−λ

∫ 1
0 ζ(α)(1−α)dw(α)

)
, we obtain

f (t) = c2 exp
(
−λ

[∫ 1

0
[tpa,b − ζ(α)]+dw(α) +w(0)t

p
a,b

])
, (27)

where c2, λ, and ζ(α) are found from the constraints
∫ 1
0 f (t)dt = 1 and E(Z) = 1 and

the equation ∫ ∞
−∞
I{tpa,b6ζ(α)}

(t)f (t)dt = α.

Example 8 (entropy maximization with trimmed L1-norm) The entropy maximiza-
tion problem (14) with the error measure (17) simplifies to

max
f (t)>0, ζ

−
∫ ∞
−∞
f (t) lnf (t)dt

subject to
∫ ∞
−∞

(
ζ +

1
1−α [|t| − ζ]+

)
f (t)dt = 1,

∫ ∞
−∞
f (t)dt = 1.

As in (27), optimal f (t) has the form

f (t) = C exp(−λ [|t| − ζ]+) , t ∈R,

where constants C, λ, and ζ are found from the constraints
∫ 1
0 f (t)dt = 1, E(Z) = 1,

and ζ = q|Z |(α), so that

f (t) =
1
2
exp

(
− 1
1−α [|t| −α]+

)
, t ∈R.
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5 Conclusions

It has long been known that in a regression with independent and identically dis-
tributed normal residuals, the log-likelihood function yields an empirical form of
the L2-norm. Conversely, normal distribution can be “restored” as a solution of dif-
ferential entropy maximization (14) subject to a constraint on the L2-norm. This is
what we call an “inter-regenerative” relationship, i.e., (1). In this work, Proposition 4
shows that an error measure E can form (1) with some probability density function f
if and only if E belongs to the set E , see (2a). In fact, M-estimators (11), which, in
general, are not error measures, form (1) with all probability density functions (see
Proposition 5). Proposition 1 proves that E is the only set of error measures in the
sense of Rockafellar et al. [39], which areM-estimators, whereas Proposition 6 char-
acterizes the set of all error measures that are L-estimators. In addition, Proposition 2
finds all possible maximum-entropy distributions, for which corresponding entropy
maximization problems are convex and law invariant on the space of r.v.’s.
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A Proofs of Propositions 1–6

A.1 Proof of Proposition 1

Since E(Z) assumes all values in [0,+∞), the range of h is [0,+∞), hence it is continuous and h(0) = 0.
This implies that h has a strictly increasing continuous inverse function h−1 :R+→R

+, and

h−1(E(Z)) = h−1[h(E[ρ(Z)])] = E[ρ(Z)].

For constant Z = t > 0,
ρ(t) = E[ρ(t)] = h−1(E(t)) = h−1(|t|E(1)).

Similarly, ρ(t) = h−1(|t|E(−1)) for t 6 0. Consequently, in general,

ρ(t) = h−1 (a [t]+ + b [t]−) ,

where a = E(1) > 0 and b = E(−1) > 0. Thus,

E(Z) = ϕ−1 (E [ϕ (a [Z]+ + b [Z]− )]) , (28)

where ϕ = h−1.
Since Θ = (Ω,M,P) is non-trivial, there exists an event A ∈M such that p = P [A] ∈ (0,1). For any

non-negative constants c and d, let Z be an r.v. assuming values Z(ω) = c/a > 0 and Z(ω) = d/a > 0 for
ω ∈ A and ω < A, respectively. Then

ϕ−1 [pϕ(λc) + (1− p)ϕ(λd)] = E(λZ) = λE(Z) = λϕ−1 [pϕ(c) + (1− p)ϕ(d)] , (29)
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for any λ > 0. Replacing c and d by ϕ−1(c) and ϕ−1(d), respectively, and applying ϕ(·) to the left-hand
and right-hand parts, we obtain

pϕ(λϕ−1(c)) + (1− p)ϕ(λϕ−1(d)) = ϕ(λϕ−1(pc+ (1− p)d).

Consequently, the function g(x) = ϕ(λϕ−1(x)) satisfies

pg(c) + (1− p)g(d) = g(pc+ (1− p)d), ∀c,d > 0. (30)

Let
A = {a ∈ [0,1] : ag(c) + (1− a)g(d) = g(ac+ (1− a)d), ∀c,d > 0}.

By definition, 0 ∈ A and 1 ∈ A. Also, (30) implies that pa + (1 − p)b ∈ A whenever a,b ∈ A, hence A
is a dense subset of [0,1]. Finally, A is closed due to continuity of g, so that A = [0,1], and g is a linear
function. Since g(0) = ϕ(λϕ−1(0)) = 0, there exists a constant C(λ) such that

ϕ(λϕ−1(x)) = g(x) = C(λ)x, ∀x,λ > 0. (31)

Setting x = ϕ(y) in (31), we obtain

ϕ(λy) = C(λ)ϕ(y), ∀y,λ > 0. (32)

Then setting y = 1 in (32), we obtain ϕ(λ) = C(λ)ϕ(1). Consequently, C(λ) = ϕ(λ)/ϕ(1), and (32) takes
the form ϕ(λy) = ϕ(λ)ϕ(y)/ϕ(1), ∀y,λ > 0. For the function

g(x) = log
ϕ(ex)
ϕ(1)

,

this implies that

g(x+ y) = log
ϕ(ex+y )
ϕ(1)

= log
ϕ(ex)ϕ(ey )
ϕ(1)2

= g(x) + g(y).

Since g is additive, continuous, and g(0) = 0, it is linear, i.e., g(x) = px for some constant p. Consequently,
epx = eg(x) = ϕ(ex)/ϕ(1). Finally, with ex = y, we obtain ϕ(y) = ϕ(1)yp , and (28) simplifies to

E(Z) =
(
E [a [Z]+ + b [Z]− ]

p)1/p .
The condition p > 1 follows from sub-additivity of E.

A.2 Proof of Proposition 2

Proposition 4.7 (b) in [11] implies that if Z∗ ∈ C1(Θ) has a log-concave PDF, then it is a solution to

max
Z∈C1(Θ)

S(Z) subject to E[Z] = µ, D(Z) 6 1, (33)

for µ = E[Z∗] and some law-invariant deviation measure4 D, and we can set X = {Z ∈ C1(Θ) |E[Z] =
µ,D(Z) 6 1}.

Conversely, let Z∗ ∈ C1(Θ) be a solution to (13) for some convex closed law-invariant set X . Then it
is a solution to (33) for deviation measure

D(Z) = sup
α∈[0,1]

CVaR∆
α (Z)

CVaR∆
α (Z∗)

for all Z ∈ L1(Θ), (34)

4 A deviation measure is a functional D : Lr (Θ) → [0,∞] satisfying axioms E2–E4 and such that
D(Z) = 0 for constant Z, and D(Z) > 0 otherwise [38]. A deviation measure is called law-invariant if
D(X) =D(Y ) whenever r.v.’s X and Y have the same distribution [12].
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where

CVaR∆
α (Z) ≡ E[Z]− 1

α

∫ α

0
qZ (s)ds, α ∈ (0,1),

CVaR∆
0 (Z) = E[Z] − infZ and CVaR∆

1 (Z) = supZ −E[Z], see [14]. Indeed, if the r.v. Z satisfies the
constraints in (33) with D given by (34), then E[Z] = µ = E[Z∗], and CVaR∆

α (Z) 6 CVaR∆
α (Z

∗) for all
α ∈ [0,1], so that Z dominates Z∗ with respect to concave ordering, see Proposition 1 in [14]. Since Z∗

has a PDF, the underlying probability space Θ is, by definition, atomless, and part “(a) to (d)” of Corollary
2.61 in [9] along with Lemma 4.2 in [22] implies that Z ∈ X . Since Z∗ ∈ C1(Θ) is a solution to (13),
this yields S(Z∗) > S(Z), and consequently, Z∗ is a solution to (33). Thus, Z∗ has a log-concave PDF by
Proposition 4.11 in [11].

A.3 Proof of Proposition 3

If Z∗ ∈ C1(Θ) has a log-concave PDF, then it is a solution to (33) for some law-invariant deviation measure
D. On the other hand, Proposition 5.1 in [45] shows that problem (33) is equivalent to (14) with an error
measure E such thatD(Z) = infC∈R E(Z−C), i.e.,D is the deviation measure projected from E. In general,
for a given deviation measure D, such an error measure is non-unique and can be determined by

E(Z) = 1
1+µ

(D(Z) + |E[Z]|) , (35)

which is called inverse projection of D, see [39]. Thus, Z∗ is a solution to (14) with (35).
Conversely, let Z∗ ∈ C1(Θ) be a solution to (14) for some law-invariant error measure E. Then positive

homogeneity of E and relation S(kZ) = S(Z) + lnk, k > 0, imply that Z∗ is also a maximizer in

max
Z∈Lr (Θ)

S(Z) subject to E(Z) 6 1.

Since {Z |E(Z) 6 1} is a convex closed law-invariant set, Z∗ has a log-concave PDF by Proposition 2.

A.4 Proof of Proposition 4

If E and f satisfy the conditions of Proposition 4, then E and ρ(t) = − log(f (t)) satisfy the conditions of
Proposition 1. Consequently, ρ has the form in (12), which implies that f (t) = e−ρ(t), i.e., f (t) is in the
form (2b).

A.5 Proof of Proposition 5

Since h is strictly increasing, problem (8) with E∗ is equivalent to minimizing E[ρ∗(Z)] or to maximizing
E[ln(f ∗(Z))]. For an r.v. Z such that P[Z = zi ] = 1/n, i = 1, . . . ,n, it reduces to (6).

With c = h
(
−
∫∞
−∞ f

∗(t) lnf ∗(t)dt
)
, the constraint E∗(Z) = c in (19) simplifies to∫ ∞

−∞
f (t) lnf ∗(t)dt =

∫ ∞
−∞

f ∗(t) lnf ∗(t)dt,

which holds for f = f ∗ and for any f , f ∗ implies that

−
∫ ∞
−∞

f (t) lnf (t)dt 6 −
∫ ∞
−∞

f (t) lnf ∗(t)dt = −
∫ ∞
−∞

f ∗(t) lnf ∗(t)dt,

where the first inequality follows from the non-negativity of relative entropy (Kullback-Leibler divergence

between f and f ∗), defined as DKL(f ||f ∗) =
∫∞
−∞ f (t) ln

f (t)
f ∗(t) dt > 0, see [25].
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A.6 Proof of Proposition 6

We first prove the “if” part in (a) and (b). If E is a particular case of (2a), it is an error measure that
can be represented in the form (11), which is (21) with M being a Lebesgue measure on (0,1), and the
“if” part in (a) follows. If E is a particular case of (25), then it can be represented in the form (23) with

M(c,d) =
∫ d
c w(α)dα, 0 6 c < d 6 1, ρ(t) = t

p
a,b , and h(x) = x1/p . For Z , 0, q

p
Za,b

(α) is a non-negative

non-decreasing function with
∫ 1
0 q

p
Za,b

(α)dα > 0, so that L = lim
α→1

q
p
Za,b

(α) > 0, and we claim that

I =
∫ 1

0
w(α)q

p
Za,b

(α)dα > 0. (36)

Indeed, if w(α) is a delta function at 1, (36) reduces to I = L > 0. Otherwise lim
α→1

w(α) > 0, hence

w(α∗) > 0 and q
p
Za,b

(α∗) > 0 for some α∗ < 1, and I >
∫ 1
α∗ w(α

∗)q
p
Za,b

(α∗) = (1−α∗)w(α∗)qpZa,b (α
∗) > 0.

Inequality I > 0 implies that E(Z) is well-defined and satisfies E1. Property E2 is obvious, while E4
is proved for w(α) = 1 in [38, Proposition 6], and the general case holds by a similar argument. Next, we
claim that

E(X +Y ) 6
(∫ 1

0
w(α) (qXa,b + qYa,b )

p(α)dα
)1/p
6 E(X) + E(Y ) (37)

holds for all X,Y ∈ Lr (Θ). Indeed, the second inequality in (37) is a triangle inequality for the Lp[0,1]-
norm, and the first one states that∫ 1

0
w(α)f (α)dα 6

∫ 1

0
w(α)g(α)dα, (38)

for f (α) = q
p
(X+Y )a,b

(α) and g(α) = (qXa,b (α) + qYa,b (α))
p .

If f ,g ∈ Lr [0,1] are such that (38) holds for any non-negative non-decreasing w ∈ L1[0,1], we write
g < f . The relation < is
(i) associative;

(ii) monotone, in sense that f1(α) > f2(α) ∀α ∈ [0,1] implies that f1 < f2;
(iii) qX (α) + qY (α) < qX+Y (α) for any r.v.’s X,Y ∈ Lr (Θ) due to sub-additivity of functional F (Z) =∫ 1

0 w(α)qZ (α)dα, see [13, Proposition 4.3];

(iv) f1 < f2 is equivalent to
∫ 1
c f1(α)dα >

∫ 1
c f2(α)dα for all c ∈ (0,1), which, in turn, is equivalent to∫ 1

0 u(f1(α))dα >
∫ 1
0 u(f2(α))dα for all convex increasing u, see [35, Theorem 8]; and

(v) f1 < f2 implies that u(f1) < u(f2) for any convex increasing function u, which follows from (iv) and
the fact that superposition of two convex increasing functions is convex increasing.

Properties (i)–(iii) imply that

qXa,b + qYa,b < qXa,b+Ya,b < q(X+Y )a,b ,

and since the function ξ(z) = zp is convex increasing for z > 0, (38) follows from (v). This finishes the
proof of “if” part in (b).

Now we prove the “only if” part. Let E be an error measure that can be represented in either the form
(21) or (23). Since E(Z) assumes all values in [0,+∞), h is a strictly increasing continuous function with
h(0) = 0, which has a strictly increasing continuous inverse function h−1 : R+ → R

+. Applying h−1 to
both parts of either (21) or (23) and setting Z = t, we obtain

h−1(E(t)) =
∫ 1

0
ρ(t)M(dα) = ρ(t)M(0,1), t ∈R.

Consequently, M(0,1) , 0 and ρ(t) = 1
M(0,1)h

−1(E(t)). If M and ρ are replaced by −M by −ρ, respec-
tively, then E in (21) remains unchanged. Consequently, without loss of generality, we may assume that
M(0,1) > 0. Positive homogeneity of E implies that

ρ(t) =
1

M(0,1)
ϕ

(
ta,b

)
,
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where ϕ = h−1, ta,b is given by (3), a = E(1) > 0 and b = E(−1) > 0. In particular, both (21) and (23)
imply that

E(Z) = ϕ−1
(

1
M(0,1)

∫ 1

0
qϕ(aZ)(α)M(dα)

)
, Z > 0, (39)

where we used qϕ(aZ)(α) = ϕ(qaZ (α)).
If M(0,α) = 0 for all α < 1, (21) reduces to E(Z) = a [sup Z]+ + b [sup Z]−, which is not an

error measure (property E1 fails), whereas (23) simplifies to E(Z) = sup(Za,b), which is a particular
case of (25) with w being the Dirac delta function at 1. Otherwise there exists α ∈ (0,1) such that
q =M(0,α)/M(0,1) > 0. Since Θ is atomless, there exists an event A ∈Θ with P [A] = α. Let 0 6 c 6 d,
and let Z be an r.v. such that Z(ω) = c/a for ω ∈ A and Z(ω) = d/a for ω < A. Then (39) implies that

ϕ−1 [qϕ(λc) + (1− q)ϕ(λd)] = E(λZ) = λE(Z) = λϕ−1 [qϕ(c) + (1− q)ϕ(d)] , (40)

for any λ > 0. Expression (40) coincides with (29), and the proof of Proposition 1 implies that ϕ should
be in the form ϕ(y) = ϕ(1)yp , p > 0. Consequently,

h(z) =
(
z

ϕ(1)

)1/p
= h(1)z1/p , (41)

and

ρ(t) =
ϕ(1)
M(0,1)

t
p
a,b . (42)

In particular, (39) simplifies to

E(Z) =
(

ap

M(0,1)

∫ 1

0
qZ (α)

pM(dα)
)1/p

, Z > 0. (43)

Let 0 = α0 6 α1 < α2 < α3 6 α4 = 1 be such that α2 −α1 = α3 −α2, and let

Mi =
1

M(0,1)

∫ αi

αi−1
M(dα), i = 1,2,3,4.

Since Θ is atomless, there exist events A,B ∈M such that P [A] = P [B] = α2 and P [A∩B] = α1. Subad-
ditivity of E implies that

[E (1 + εIΩ/A) + E (1 + εIΩ/B)]p > E (2 + εIΩ/A + εIΩ/B)
p ∀ε > 0,

where I is an indicator function. With (43), this yields

2p
(
M1 +M2 + (1+ ε)p(M3 +M4)

)
> 2pM1 + (2+ ε)p(M2 +M3) + (2 + 2ε)p ,

which simplifies to
[(2 + 2ε)p − (2 + ε)p]M3 > [(2 + ε)p − 2p]M2. (44)

Dividing both parts by ε > 0 and taking limit ε→ 0+, we obtain p2p−1M3 > p2p−1M2, or M3 >M2.
This implies that the measure M(dα) has a non-decreasing density ω on [0,1], which can be the Dirac
delta function at the ends of the interval.

By selecting α1 = α2 − δ and α3 = α2 + δ and by taking δ→ 0+, we can make M3 arbitrarily close
to M2. Consequently, (44) may hold only if (2 + 2ε)p − (2 + ε)p > (2 + ε)p − 2p . With ε = 1, this reduces
to 4p − 2 · 3p + 2p > 0 and implies that p > 1. If E can be represented in the form (23), this along with

(41) and (42) yields (25). Moreover,
∫ 1
0 w(α)dα =M[0,1] > 0. To prove (b), it is left to verify that w is

non-negative.
Let a > b in (25)—the case a 6 b is treated similarly. Since Θ is atomless, for every α ∈ (0,1/2], there

exist events A,B ∈M such that P [A] = P [B] = α and P [A∩B] = 0. Subadditivity of E implies that

E (1− 2IA) + E (1− 2IB) > E (2− 2IA∪B) .
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With (25), this yields

2
(
bpM(0,α) + apM(α,1)

)1/p > (
(2a)pM(2α,1)

)1/p ,
which simplifies to

apM(α,2α) > −bpM(0,α) ∀α ∈ (0,1/2]. (45)

Let α∗ = sup{α : w(α) < 0}. Since w(α) is non-decreasing, (45) fails for α = α∗/2, and consequently,
α∗ = 0. Then lim

α→0
M(α,2α) 6 lim

α→0
αw(2α) = 0, so that lim

α→0
M(0,α) > 0 by (45), which implies that w

has no negative delta function at 0 as well. This finishes the proof of (b).
Finally, suppose that E is of the form (21). Then an analogue of (43) for negative r.v.’s is given by

E(Z) =
(

bp

M(0,1)

∫ 1

0
|qZ (α)|pM(dα)

)1/p
, Z 6 0. (46)

Since q−Z (α) = −qZ (1−α) for almost all α ∈ (0,1), (46) can be written as

E(Z′) =
(

bp

M(0,1)

∫ 1

0
|qZ′ (α)|pM′(dα)

)1/p
, Z′ > 0,

where Z′ = −Z and M′ is a measure such that M′(a,b) =M(1 − b,1 − a) for any interval (a,b). The last
expression coincides with (43) and the same argument implies that M′(dα) has a non-decreasing density
ω′ on (0,1). Since ω′(α) = ω(1 − α), α ∈ (0,1), both ω and ω′ may be non-decreasing only if ω is
constant, which along with (41) and (42) yields (2a) and proves (a).
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9. Föllmer, H., Schied, A.: Stochastic Finance, 3 edn. de Gruyter, Berlin New York (2011)

10. Gauss, C.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium. sumtibus
Frid. Perthes et IH Besser (1809)

11. Grechuk, B., Molyboha, A., Zabarankin, M.: Maximum entropy principle with general deviation mea-
sures. Mathematics of Operations Research 34(2), 445–467 (2009)

12. Grechuk, B., Molyboha, A., Zabarankin, M.: Chebyshev inequalities with law-invariant deviation
measures. Probability in the Engineering and Informational Sciences 24(1), 145–170 (2010)

13. Grechuk, B., Zabarankin, M.: Schur convex functionals: Fatou property and representation. Mathe-
matical Finance 22(2), 411–418 (2012)

14. Grechuk, B., Zabarankin, M.: Inverse portfolio problem with mean-deviation model. European Jour-
nal of Operational Research 234(2), 481–490 (2014)

15. Grechuk, B., Zabarankin, M.: Sensitivity analysis in applications with deviation, risk, regret, and error
measures. SIAM Journal on Optimization (to appear) (2017)

16. Gu, Y., Zou, H.: High-dimensional generalizations of asymmetric least squares regression and their
applications. The Annals of Statistics 44(6), 2661–2694 (2016)



Regression Analysis: Likelihood, Error and Entropy 19

17. Harter, L.: The method of least squares and some alternatives: Part i. International Statistical Re-
view/Revue Internationale de Statistique pp. 147–174 (1974)

18. Hosking, J., Balakrishnan, N.: A uniqueness result for l-estimators, with applications to l-moments.
Statistical Methodology 24, 69–80 (2015)

19. Huber, P.: Robust estimation of a location parameter. The Annals of Mathematical Statistics 35(1),
73–101 (1964)

20. Huber, P.: Robust statistics. Wiley, New York (1981)
21. Jaynes, E.T.: Information theory and statistical mechanics (notes by the lecturer). In: Statistical

Physics 3, vol. 1, p. 181 (1963)
22. Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the Fatou property. Ad-

vances in mathematical economics 9, 49–71 (2006)
23. Koenker, R., Bassett Jr, G.: Regression quantiles. Econometrica: journal of the Econometric Society

pp. 33–50 (1978)
24. Krokhmal, P.: Higher moment coherent risk measures. Quantitative Finance 7(4), 373–387 (2007)
25. Kullback, S., Leibler, R.: On information and sufficiency. The Annals of Mathematical Statistics

22(1), 79–86 (1951)
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