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 Abstract  

Thesis: Damage detection in laminated composite structures using dynamic analysis  

Author: Ahmed Uwayed 

Laminated composite materials are used in different applications, for example 

mechanical, civil and aerospace structures, due to their light weight and excellent mechanical 

properties. However, fibre breakage and delamination are among the more serious damage that 

often initiate and propagate due to a number of mechanical and, specifically, dynamic loads 

during the operational life. Also, these damages destroy design functionality of these structures. 

To address this issue, damage detection is required in time to provide a good understanding of 

structure state in advance of any potential failure. There are a number of damage detection 

approaches reported in the literature and reviewed herein.  Some of these are base-line free, 

whilst others use the intact data as a reference for the detection of damaged sections. However, 

currently there are a very limited number of experimental studies in the literature that use 

vibration-based damage detection to detect the delaminated areas, and are almost non-existent 

for fibre breakage; the majority of simulated studies consider delamination only. 

Defects in laminated structures are quite complicated and in most cases are hidden. 

Frequency-based damage detection is considered to be a global approach and is not useful when 

dealing with complex structures. There has been extensive research to develop the curvature 

mode shape as a reference for damage detection because it is highly sensitive at show the effects 

of damage. This sensitivity is tested in this research, as it is extremely difficult to detect 

damaged sections within composite materials, even with an active approach.  

Hence, the main objective of this research is to develop the curvature damage index by 

calculating the irregularity curvature index, and the proposal of a novel index, called the Haar 

index, to support the damage detection process. Both these indexes are used to detect 

delamination and fibre breakage on high modulus CFRP plate structures under condition of free 

vibration. Using these indexes gives an efficient method by which to quantify and localize 

damaged areas in both theoretical and experimental considerations of different lay-ups. In the 

modelling section, two finite element software programs, COMSOL Multiphysics 5.1 (Licence 

No. 7074366) and ABAQUS 6.14-1 (Licence No. 200000000008515), are used. This thesis 

includes development procedure of the curvature index, calculates the Haar index, gives details 

of the theoretical and experimental analysis, and reports the consequent results and discussion. 
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List of symbols 

Symbol Meaning Unit 

 ɸ⃗⃗  ⃗ Displacement vector    𝑚 

 𝐴𝑘, 𝐵𝑘  Chebyshev  coefficients  

(∅𝑖𝑗
 )

𝐷
 Damaged mode shape  

(∅𝑖𝑗
 )

𝐻
 Healthy mode shape  

𝐶𝑗,𝑘
̅̅ ̅̅  

Coefficients of wavelet transform function with two 

orthogonal signals 

 

𝑄̅𝑖𝑗 Reduce stiffness matrix in random directions  𝑃𝑎 

𝑋 (𝑖) 𝑖𝑡ℎ modal vector  𝑚 

𝑒1̃ Local base vector   

𝑢1̃ Displacement component  𝑚 

𝛽1̃ Rotational displacement component 𝑟𝑎𝑑 

𝜓𝑗,𝑘
̅̅ ̅̅ ̅ Wavelet  function with two scaling functions  

∅𝑟 Normalized mass mode  

𝐴𝑖  , 𝐴 Constant, cross sectional area , 𝑚2 

𝐴𝑖𝑗 Extensional matrix of laminate  𝑁/𝑚 

𝐵𝑖𝑗 Bending- extension matrix of laminate 𝑁 

𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4 Constants  

𝐶𝑖𝑗 Stiffness matrix of composite materials 𝑃𝑎 

𝐷̈ Acceleration 𝑚/𝑠2 

𝐷𝐼𝑗 Damage index  

𝐷𝑓 Stiffness reduction factor  

𝐷𝑖𝑗 Bending matrix of laminate 𝑁.𝑚 

𝐸1,𝐸11 Young’s modulus in 0°  𝐺𝑃𝑎 

𝐸2, 𝐸22 Young's  modulus in 90° 𝐺𝑃𝑎 

𝐸𝜃 Modulus of elasticity at any direction 𝐺𝑃𝑎 

𝐺12 Shear modulus 𝐺𝑃𝑎 
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[𝐾] Stiffness matrix 𝑁/𝑚 

𝐾𝜓 Constant depends on the wavelet type  

𝑀𝑥 ,𝑀𝑦,𝑀𝑥𝑦 Bending and twisting moment components 𝑁.𝑚 

𝑁𝑥,𝑁𝑦 , 𝑁𝑥𝑦 Axial and shear force components  𝑁 

𝑃⃗  Load vector     

𝑄𝑖 𝑖 𝑡ℎ generalized force  

𝑄𝑖𝑗   Reduce stiffness matrix 𝑃𝑎 

𝑅2 Irregularity index  

𝑆𝑖 Vector generated by the original wave  

𝑆𝑖𝑗 Compliance matrix 1/𝑃𝑎 

𝑇𝑘   𝑘𝑡ℎ Chebyshev polynomials  

𝑉𝑎, 𝑉𝑏 Velocity at point a and b 𝑚/𝑠 

𝑊𝑖 Deflection of  𝑊  at 𝑡 =  𝑡𝑖 𝑚 

𝑒𝑖𝑗   Error in the natural frequency   

𝑓𝐷 Difference in frequency   𝐻𝑧 

𝑓𝑛 Natural frequency 𝐻𝑧 

𝑓𝑟 , 𝑓𝑝 Frequency of receiver , frequency of particle 𝐻𝑧 

𝑘𝑥, 𝑘𝑦, 𝑘𝑥𝑦 Curvature along x and y axis and xy-plane 1/𝑚 

𝑝0,  𝑝2, 𝑝3 Constants  

𝑞𝑛 Generalized coordinates  

𝑢°, 𝑣°, 𝑤°, 
Components of the displacement vector at the 

laminate's mid-surface 

m 

𝑢𝑐  Displacement of point C in laminate  m 

𝑣12, 𝑣𝑖𝑗 Major Poisson’s ratio  

𝑣21, 𝑣𝑗𝑖 Minor Poisson’s ratio  

𝑣𝑖 Displacement of mode shape  𝑚 

𝑣𝑖
′′ Curvature index  

𝑥̈ Acceleration component  
𝑚

𝑠2
 

𝑥̇ Velocity component  𝑚/𝑠 
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𝑥0, 𝑥0  ̇  Displacement and velocity at 𝑡 = 0 𝑚,𝑚/𝑠 

𝑧𝑘+1, 𝑧𝑘−1 The location of lamina to the middle surface 𝑚 

𝛽𝑖,𝑗 Damage index  

𝛿𝑖 Damage index  

𝜀𝑗 Strain components  

𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦 Strains along x and y axes and shear strain in xy-plane  

𝜀𝑥
° , 𝜀𝑦

° , 𝛾𝑥𝑦
°  Strain of middle surface in laminate and shear strain  

𝜆𝑏 Laser beam wave length 𝑚 

𝜇𝑖 Mean  

𝜎1, 𝜎2, 𝜏12   Stresses along the fiber orientation and shear stress 𝑀𝑃𝑎 

𝜎x, 𝜎y, 𝜏xy   
Stresses along  x and y axes and shear stress in xy-

plane 

𝑀𝑃𝑎 

𝜎𝑖  Stress components , Standard deviation  𝑀𝑃𝑎, - 

𝜔𝑐 Damaged natural frequency  𝑟𝑎𝑑/𝑠 

𝜔𝑖 𝑖 𝑡ℎ Natural frequency  𝑟𝑎𝑑/𝑠 

𝜔𝑛, 𝜔 Angular natural frequency  𝑟𝑎𝑑/𝑠 

𝜙ℎ
′′ Healthy curvature  

𝜙𝑑
′′ Damaged curvature  

𝜙𝑖 Eigenvector, mode shape  

∅ Angle, phase angle  𝑟𝑎𝑑 

∅(𝑥),𝜓(𝑥) 
Reciprocally orthogonal components of the 

vibrational velocity distribution 

𝑚/𝑠 

∆ determinant  

∆𝐹 Increment in 𝐹  𝑁 

∆𝑊 Energy dissipated in cycle  𝐽 

∆𝑓 Measured frequency change  𝐻𝑧 

∆𝑡 Increment in time 𝑡  𝑠 

∆𝑥 Increment in 𝑥  𝑚 

  C Constant, Point through laminate thickness  
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ℎ Element length 𝑚 

h(x) weighted function  

u, v,w Displacement along u, v and w axes 𝑚 

Vf Fibre volume fraction   

w waviness of the mode shape, weight -, 𝑁 

x, y, z Cartesian coordinates   

𝐶(𝑎, 𝑏) Coefficients of wavelet transform function   

𝐷 Displacement matrix   𝑚 

𝐹 Force  𝑁 

𝐼 Area moment of inertia  𝑚4 

𝐽 Polar moment of inertia  𝑚4 

𝐿 Lagrange equation, Likelihood ratio, curve length 𝐽, , 𝑚 

𝑀 Mass matrix 𝑘𝑔 

𝑁 Layer number, degrees of freedom, number of modes  

𝑃(∆𝜔) Probability densities  

𝑇 Kinetic energy, torque  𝐽, N.m 

𝑈 Potential energy  𝐽 

𝑉 
Potential energy in Lagrange equation,  shear force in 

vibration analysis  

J, 𝑁 

𝑉(𝑡)   Scanning LDV velocity output 𝑚/𝑠 

𝑊 Transverse deflection , weight m,N 

𝑎, 𝑏 
Scaling parameter in wavelet function, position 

parameter 

 

𝑏, 𝑟, 𝑝 Subscripts of laser beam, receiver and particle   

𝑐 Wave velocity 𝑚/s 

𝑑 
Max estimated diameter between the first point 

and the 𝑖𝑡ℎ  point in mode shape 

𝑚 

𝑑𝑤𝑡 Haar function in MATLAB  

𝑒 Unit vector, error  

𝑓 Force per unit length 𝑁/𝑚 
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𝑓(𝑥) Function of 𝑥  

𝑘 Spring constant, sequence of layers in laminate 𝑁/𝑚, 

𝑚 Mass of system  𝑘𝑔 

𝑚, 𝑛 Number of observations  

𝑟 Radius of rotating shaft m 

𝑡 Plate thickness, lamina thickness,  time m,  m,  s 

𝑣(𝑥, 𝑡) distribution of velocity  𝑚/𝑠 

𝑥(𝑡) Displacement mode 𝑚 

𝑧 Distance from neutral axis to given lamina  m 

𝛺 Angular velocity 𝑟𝑎𝑑/𝑠 

𝛽 
Slop of middle surface of laminate, hysteresis damping 

constant, crack location ratio 

 

𝛾 Constant  

𝛿 Logarithmic decrement  

𝛿𝐷 Damage vector  

𝛿𝑊 Virtual work   𝑁.𝑚 

𝛿𝑓 Analytical frequency change  𝐻𝑧 

𝜃 
Angular orientation of a lamina , constant, angular 

displacement 

 

𝜇(𝑥) Probability density  

𝜌 Density 
𝑘𝑔

𝑚3
 

𝜏 Period of oscillation 𝑠 

𝜓(𝑡) Gabor wavelets  

𝜓(𝑥) Mother wavelet function   
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ADM:  Absolute difference method 
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CDF: Curvature damage factor 

CDT: Curvature damage factor  

CFRP: Carbon fiber reinforced polymer 

CNSH: Cumulative of normalize summation harmonic 

CWT: Continues wavelet transform 
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DI: Damage index 

DIM: Damage index method 
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MDLAC: Multiple damage location assurance criterion 

MoM lab: Mechanics of materials lab 

NDE: Non-destructive evaluation  
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ODS: Operating deflection shape 

PT: Pulse thermography  

SHM: Structural Health Monitoring 
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Chapter 1:   Introduction 

Over the past few decades, composite materials have begun to see extensive use in 

different civil and mechanical structures. According to material terminology, composite 

materials are a combination of two or more materials on a macroscopic scale to produce 

a new high-performance form which can be used in different applications. A number of 

mechanical properties such as stiffness, strength, corrosion resistance, weight, fatigue 

life, thermal insulation, and conductivity, etc., can be improved by manufacturing  this 

type of materials [1]. 

In the history of development, composite materials were found naturally in the 

wood of trees. This was utilized by the Egyptians (1500 B.C.) in the construction of 

reinforced walls in their living areas. Around 1800-A.D., metal strips were considered a 

remarkable source of new material, seeing use in military applications to manufacture 

weapons. In recent decades, composite materials have played an important role in daily 

life through their use in all types of civil and military applications and industries [2]. 

1.1 Classification of composite materials 

Composite materials can be classified into four main categories according to the 

methods utilized in producing them. These types can be in form of fibres, particles, 

laminated composite structures, and mixture of these three types. The current research 

focuses on the investigation of the laminated type due to its extensive use in different 

mechanical structures. 

Unidirectional laminated structure can be produced when fibres are laid up in 

matrix to produce fibre-reinforced composite structures. These structures offer high 

strength and stiffness to weight ratio, and this feature is considered important for 

applications that take the weight of individual components to account. In such cases, 

fibres might be configured in various form such as long, short, continuous and 

discontinuous, as well being aligned in single or multiple orientations depending on the 

design requirements, as shown in Fig 1-1. 
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Fig 1-1: Fibre-reinforced composite material systems [3]. 

Long fibres in composite structures have dominated the field of laminated 

structures in particular, due to a number of their associated features. Long, continuous 

fibres are considered easy to orient in any direction and process, provide high impact 

resistance, show low shrinkage and have good surface finishing properties [2]. These 

features are important in engineering designs. Within composite structures, fibres are 

configured in a thin form called a lamina, or ply. In composite structures, lamina (also 

called a ply or a layer) is a single flat ply of a unidirectional nature or with woven fibres 

organized in a matrix. To explain this, the composite structure shown in  Fig 1-2 shows 

that the basis of these structures consists of fibre and a matrix which are mixed in 

specific proportions to produce lamina, which are then combined in different 

orientations to produce the laminate; the final composite structure is produced by the 

combination of a number of laminates. 
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Fig 1-2: The level analysis of laminated structures starts from the individual elements 

that are combined to ultimately create the entire structure [4]. 

The second important concept is that composite materials can be classified into 

two main groups according to their physical properties. These two groups are isotropic 

and orthotropic materials. The mechanical definition of an isotropic material that this 

material’s properties are the same in all directions, otherwise these properties are 

independent on location within a given component. Mathematically, if  𝐸  represents the 

Young’s modulus of an isotropic material, this means 𝐸 = 𝐸𝜃, where 𝐸𝜃 is the modulus 

of elasticity in any direction within the plane of the ply (see Fig 1-3). In this type of 

structure, the material has an infinite number of symmetry planes. However, most of 

composite materials are neither isotropic nor homogeneous. For example, particulate 

composites consist of particles with different sizes and random distributions, so these 

composites might be considered as quasi-isotropic and quasi-homogeneous. The same 

concept can be applied with short or discontinuous fibres, where both of these 

composites can be anisotropic or quasi-isotropic as per Fig 1-1 [3]. 
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By contrast, orthotropic materials have three mutually perpendicular planes of 

symmetry. The principal axes of this material are the intersections of these planes. In 

terms of unidirectional composites, orthotropy means that properties along the fibre 

direction are quite different to those in the perpendicular directions. Fig 1-3 illustrates 

this concept, so if the Cartesian coordinate system (which corresponds to the fibre 

orientation) is represented by axes 1, 2 and 3 (axis 3 is perpendicular to the plane of 

ply), then the modulus of elasticity in the direction of fibre can be defined as 𝐸11, while 

in the perpendicular direction is 𝐸22   and in the normal axis is 𝐸33.[5]. 

 

Fig 1-3: Ply angle definition [5]. 

According to the principles of materials and fibre-reinforced composite structures 

in particular, the properties of any structure depend on the properties of its individual 

components. In high performance structures, the fibres’ role is significant due to their 

high stiffness and strength. To explain this point, Fig 1-4 provides stress-strain 

relationship for both matrix and fibres individually, and also as a composite. This means 

in a fibrous composite, the fibres have a strength that is greater than the matrix itself, 

and by mixing them one can introduce a composite structure with a strength that is 

dependent on the strength of the fibres and the matrix. Also, it is clear from Fig 1-5 that 

the fibres are principally responsible for composite materials, properties because, 

although they have small diameters, they can provide high strength and good ability to 
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carry different loads. Photomicrographs of transverse cross sections shown in Fig 1-6 

are for two composites. It can be seen that the composite with the larger fibre diameter, 

15 μm, (Fig 1-6a) has a fibre volume ratio that is less than for the composite with a low 

fibre diameter of 8 μm (Fig 1-6b). This confirms that composites with low fibre 

diameters have a greater strength than composites with large fibre diameters [3]. In 

addition, fibres show high crack resistance on their surfaces due to their excellent 

strength  [5, 6].  

 

Fig 1-4: Illustration of fibre, matrix and composite of stress-strain behaviours [5]. 
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Fig 1-5: Stress-strain relationships for different types of reinforcing fibres [3]. 

 

Fig 1-6: Typical transverse cross section areas of unidirectional composites: (a) silicon 

carbide/ glass ceramic average fibre diameter15 μm, fibre volume fraction Vf  = 

0.40 and (b) carbon/epoxy fibre diameter 8 μm, fibre volume fraction Vf  = 0.70 

[3]. 

Due to the use of composite materials in different mechanical industries, an 

extensive literature have produced on this subject. Jones [1] explained that since the 

1960, the use of composite materials has been developed in four stages. First was mere 

hypothesising about utilizing this type of material, per the philosophy “let’s see if we 

can build it ˮ, while the second step was the testing of small pieces of composite 

materials by replacement of their traditional counterparts in aircraft. The third step was 
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the use of composites as essential parts of the airframe. Finally, there was the aspiration 

to build all-composite aircraft.  

One of the most important characteristics in composite materials is their ability to 

provide a superior level of mechanical features such as the ratio of stiffness or strength 

to their weight. In some applications this can be greater than 16:1 (N / m. kg), (MPa / 

kg), and with graphite fibre composite structures may be greater than 40:1. In fact, there 

are many examples of the use of composite materials in the military aircraft industry. 

One example was the use of composite materials in manufacturing the General 

Dynamic F-111 wing-pivot fittings to avoid fatigue crack problems. Another example 

was replacement a metal 56 kg speed brake, which is used to reduce the speed of the 

Vought A-7  aircraft during landing, by a piece of composite of only 36 kg in weight. 

Moreover, the Boeing F-18 is another example of the use composite materials in various 

structures such as the wings, tail, vertical fins and regions that experience high static 

and dynamic stresses. In addition, composite materials are utilized in civil aircraft 

industries, for instance, the rear vertical fins in aircraft are comprised of composite 

materials to save on weight and costs [1]. The Boeing B787 (“Dreamliner”) uses a 

composite material in different components in its original design, as seen in Fig 1-7. 

The list of the use composite materials in civil transport, space applications, and 

obviously in automotive implementations, is too extensive to consider in depth.  

 

Fig 1-7:  Use of composite materials in different parts of the Boeing 787 [7]. 
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1.2 Influence of damages on composite structures 

The demand for utilizing advanced materials such as composite materials with 

good mechanical properties and low weight has become increasingly common in civil 

and mechanical applications. These types of materials may require special 

manufacturing conditions during their production. In general composite materials in 

different applications show high damage resistance. However, the possibility of 

different types of damage modes are still expected under different applied loads during 

working life [8]. 

For the best understanding of the most important damage modes and the most 

serious influences of these types on composite structure behaviour, there are some 

significant definitions that should first be clarified. As Heslehurst [9] reported, the terms 

defect, flaw, and discontinuity in composite structures mean any accidental or 

unplanned local change of a physical state or mechanical characteristics of material that 

may cause an effect on the performance of the structure. Moreover, failure in composite 

materials can be found when either the entire structure or some of its components lose 

their functionality. Within laminated structures, when damage occurs to one lamina, the 

function of the entire structure is affected, due to the reduction of local stiffness. 

Another important concept is that damage in laminated structures can be classified into 

two main types, as reported by Tita [10].  The first type is called the intra-ply failure 

mode, as shown in Fig 1-9a, and Fig 1-9b. In this mode, damage occurs to the fibres, 

polymeric matrix and might happen to interface between fires and matrix. This means 

damage occurs to the ply itself. The second mode is inter-ply failure mode, when failure 

mode is essentially delamination between the adjacent plies, as per Fig 1-8.  

There are a number of fibres damage mechanisms in the intra-ply damage mode 

as shown in Fig 1-9b, where mechanism 4 represents the fibre rupture. However, in 

composites, fibre failure depends on the type of applied load, where tensile loads can 

produce fibre rupture, while the compressing loads encourage the micro-buckling. The 

intra-ply damage in matrix depends on the temperature that matrix serve-in and its 

ductility. Whereas matrix can show brittle or plastic deformation (mechanism 5). Other 

failure mechanisms occur because the interface between matrix and fibre is weak, which 

is called “Pull-Out” (mechanism 1). Then fibre is pulled out after the occurrence of 
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debonding (mechanism 3). Moreover, fibre failure may occur due to the crushing of 

fibres by high concentrated loads or high velocity impact loads. 

The inter-ply (delamination) occurs when the matrix cracks propagate into the 

inter-laminar surface and begin to debond the damaged region into two parts, as shown 

in Fig 1-8. In general, all forms of damage have a negative effect on the functionality of 

laminated composite structures by reducing their stiffness, even when this only happens 

locally. In fact, it reduces the entire strength of the damaged structure. In this sense, a 

damaged sample offers a completely different load-carrying ability. For a better 

understanding of failure mechanisms in laminated composite structures, Fig 1-9 shows 

all of these damage modes in more detail [10].  

 

Fig 1-8: Microscopic-photo of delamination in FRP composites [11]  



 

Chapter 1: Introduction 

University of Leicester                                                                                                     Page | 41  
 

 

Fig 1-9: (a)  Failure mechanisms of composite materials :intra-ply and inter-ply failures 

and (b) Intra-ply damages [10]. 

1.3 Damage detection methods in laminated composite structures 

Damage analysis in laminated composite structures has been investigated by a 

number of researchers due to the extensive use of these structures in different practical 

applications. Although composite materials offer a high level of reliability in terms of 

mechanical properties, they are susceptible to the initiation and propagation of different 

forms of damage, though commonly in form of matrix cracks, fibre breakage and 

delamination [12]. The damage detection process in complex materials such as 

laminated composites is not a straightforward topic for all researchers and 

experimenters investigating structural health monitoring. The overall aim of damage 

detection is to ensure that these materials remain in the safe domain during their 

working lives. In general, the damage detection methods can be categorised into non-

destructive testing (NDT) and vibration-based damage detection techniques. 
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Doebling and Farrar [13] reported that NDT (the inspection of an sample to test its 

integrity without affecting the use of this sample in the future) damage identification 

methods that depend on visualization, observation, and localization of damaged regions 

can be classified as experimental methods. For example, some of them depend on 

ultrasonic waves, analysis of the magnetic field of examined structures, radiographic 

monitoring of constructions, utilizing acoustic emission or by the thermal field method. 

However, in a more practical sense these methods have a number of limitations due to 

the data they provide and their actual utility for complex structures.  

To overcome these limitations, researchers have tried to develop modern 

techniques to work with significant damage problems. Zhang et al. [14] reported that 

there have been remarkable efforts made to develop more modern techniques that are 

more practical in use than the more methods mentioned above. It was mentioned that 

vibration-based detection is one of the most important alternative methods. The key 

feature of this method that dynamic characteristics such as natural frequency, mode 

shape, and damping ratios are affected directly by any change in mechanical properties 

caused by the existence of damage in a given mechanical structure. In addition, 

vibration techniques can be used to identify and localize damage in a number of 

complicated, large and even in inaccessible structures. Furthermore, finite element 

technique provides useful role in modelling the mechanical problems, as recently this 

technique has been implemented in finite element software programs.  

1.4  The objectives of the current Ph.D. research 

The main purpose of the present research is to focus on damage detection in 

laminated carbon fibre-reinforced polymer (CFRP) structures, and to propose and 

develop vibration-based damage detection methods to quantify and localize 

delamination and fibre breakage in laminated structures under condition of free 

vibration. The specific purposes of this thesis can be listed as follows: 

Objective 1: 

The finite element modelling (FEM) of a simple cantilever beam with and 

without damage using finite element FE software COMSOL Multiphysics 5.1 to 

evaluate a  number of dynamic indexes and determine the most sensitive index 

under free vibration condition.   
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Objective 2: 

Manufacturing carbon fibre reinforced polymer (CFRP) plates with and without 

delamination and fibre breakage. 

Objective 3: 

Damage detection (fibre breakage and delamination) in CFRP plates using 

vibration-based damage techniques. The numerical modelling is achieved using 

ABAQUS 6.14-1 software. 

Objective 4: 

 Experimental verification to methods described in objective 3. 

Objective 5: 

Using the improved dynamic indexes (the irregularity and the Haar) to compare 

delamination and fibre breakage during the analysis of dynamic responses. 

1.5 Thesis structure 

The thesis is divided into eight chapters, which includes details of the research 

criteria. All the references cited in this thesis are listed in the “References” section. The 

following paragraphs briefly describe the content of each chapter in this thesis. 

 Chapter 1 provides an introduction about the composite materials, effects 

of damage on composite structures, a brief definition of damage detection 

methods and the major objectives of this thesis. 

 Chapter 2 includes two main parts. Part 1 provides an overview of the 

mechanics of composite materials. Stress-strain relationships of 

laminated structures are demonstrated. Part 2 explains the fundamentals 

of dynamic analysis, vibration of continuous systems and the most 

important issue, which is the fundamentals of calculating mode shape.   

 Chapter 3 contains a literature review of common methods used to detect 

and localize damaged areas in different structures. The advantages and 

limitations of each method are also briefly discussed. 

 Chapter 4 includes a comparative study on beam element models. The 

aim of this study is to evaluate a number of dynamic indexes and find the 

most sensitive for the purpose of damage detection. 
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 Chapter 5 summarises the practical steps used to prepare the 

experimental samples. The principles of laser Doppler vibrometer and 

data collection are presented. 

 Chapter 6 presents modelling the laminated carbon fibre reinforced 

polymer with and without damage using ABAQUS to detect the damaged 

areas. FEA analysis results and discussion are discussed. Two plates with 

different lay-ups are used in this chapter. Comparison between detection 

of fibre breakage and delamination is illustrated.   

 Chapter 7 presents the experimental results and discussion for the same 

laminated plates explained in chapter 6. In both chapter 6 and 7 vibration-

based damage detection techniques are used to detect the damaged areas.  

 Chapter 8 provides the conclusions and future work for this line of study. 
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Chapter 2: A review of constitutive law and dynamic analysis 

of laminated composite structures 

2.1 Introduction 

This chapter presents the mechanics of composite materials and fundamentals of 

dynamic analysis. To this end, it is divided into two sections, section 2.2, which is 

devoted to review the mechanics of laminated structures. Further, the aim is also to 

understand the effect of damage on reducing the local stiffness, which is the main 

premise behind the modelling of damaged sections. On the other hand, section 2.3 

includes the demonstration of the fundamentals of the dynamic analysis of the vibrated 

objects. The relationship between mechanical properties and modal characteristics such 

as natural frequency, damping ratio and mode shape is explained to provide a good 

understanding for the effect of damaged sections on these characteristics. 

2.2 A review of constitutive law of laminated composite structures 

Composite structures, especially in laminate form with continuous fibres, show 

non-homogenous mechanical characteristics during their working life. This issue is not 

only due to their construction of bi- or sometimes multi-phases, but also according to 

lamination features; for instance, fibre orientations and lay-up sequence. In this sense, 

laminated structures clearly have different stress-strain relationships during their 

loading. This means the stiffness of laminated structures depends on the orientations of 

the fibres in each ply. In other words, each lamina might have different fibre 

orientations and consequently different stiffness. Also, the extension-shear or twisting-

bending coupling has an important effect on the stress-strain relationship. This occurs 

due the un symmetry in layout of the layers and due to the complexity [composite 

structure consists of more than one material] of these structures [15]. Thus, it is 

important to demonstrate the mathematical principles of composite materials. 
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 Elastic stress-strain relations for solid materials 

The main purpose of this section is to provide a clear understanding of the 

relationships between different stress categories (principal and shear stresses) that are 

later used to formulate these relationships for laminated structures. To this end, the 

generalized form of Hooke's law given by Eq. (2.1) can be used [1]. In this formula, 𝜎𝑖  

represent the stress components applied in direction 𝑖, 𝐶𝑖𝑗 is stiffness matrix and 𝜀𝑗   

represents strain components. 

 𝜎𝑖 = 𝐶𝑖𝑗 𝜀𝑗        𝑖, 𝑗 = 1,… ,6 (2.1) 

The stress-strain correlation as proposed by Kollár and Springer [4]can be 

formulated as per Eq. (2.2). Using Hooke's law, it is possible to calculate the 

components of stress-strain relations in the principal material coordinates 1, 2 and 3. 

Mathematically, according to the concept of equilibrium applied to any element in the 

elastic material, stress-strain relations can be written as shown in Eq. (2.2). 
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Here, the matrix [𝐶𝑖𝑗] represents the stiffness matrix of any material, and by 

calculating the inverse of Eq.(2.2), the strain-stress relationships can be formulated as 

per Eq.(2.3). 
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where [𝑆𝑖𝑗] is the compliance matrix in the 1, 2, and 3 coordinates system. Also, it 

should be noted that the above two Eqs.(2.2) and (2.3) clarify the general mathematical 

form that can be used to represent stiffness for any element in the composite material. In 

isotropic materials, where the material has an infinite number of symmetry planes, the 
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stiffness and compliance matrix require just two independent constants as demonstrated 

in Eqs. (2.4) and (2.5). 
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However, in an orthotropic material with two perpendicular symmetry planes, the 

stiffness matrix is represented by nine independent constants. Otherwise, there is no 

coupling between the linear, shear stress and strain components, as shown in Eqs.(2.6) 

and (2.7). Here, an orthotropic material has two perpendicular symmetry planes, (a 

special case of three symmetry planes in an orthotropic material), according to the 

assumption that the material is subjected to plane stress. Subsequently, any layer in the 

laminate is extremely thin. 
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 Stress-strain relations for a thin lamina 

2.2.2.1 Stress-strain relations for a thin lamina in an orthotropic material 

In this section, the stress-strain relationships of a thin unidirectional lamina, as per 

Fig 2-1, is discussed when subject to plane stress. Within this analysis, plane stress has 

been chosen because the stress vector across normal direction (3-axis) is zero and this 

often applicable in thin flat plate structures. For the unidirectional composite structures 

shown in this figure, the stresses due to plane stress are   𝜎3 = 0 , 𝜏23 = 0, 𝜏13 = 0 [16]. 

 

Fig 2-1: Unidirectional lamina in composite structures [1]. 

  Applying a plane stress to the unidirectional laminated structures, and using the 

relationship between Young’s modulus and Poisson’s ratio for orthotropic material 

given by Eq.(2.8), the strain-stress relationship can be formulated as per Eq.(2.9). This 

formula is valid for all layers throughout the thickness of the laminate.  

 
𝑣𝑖𝑗

𝐸𝑖
=

𝑣𝑗𝑖

𝐸𝑗
 (2.8) 

 

 [

𝜀1

𝜀2

𝛾12

] = [
𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [

𝜎1

𝜎2

𝜏12

] (2.9) 

And the compliance matrix can be found from Eq.(2.10): 

 𝑆11 =
1

𝐸1
, 𝑆12 = −

𝑣12

𝐸1
= −

𝑣21

𝐸2
, 𝑆22 =

1

𝐸2
, 𝑆66=

1

𝐺12
 (2.10) 

The inverse of Eq.(2.9) provides the stress-strain, Eq.(2.11), of an orthotropic 

material, where 𝑄𝑗𝑖 in this formula represents the reduced stiffness matrix. 
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 [

𝜎1

𝜎2

𝜏12

] = [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1

𝜀2

𝛾12

] (2.11) 

Then 𝑄𝑗𝑖 matrix can be calculated using the engineering constants for any 

orthotropic material, as written in Eq.(2.12). 

 

𝑄11 =
𝐸1

1 − 𝑣12𝑣21
, 𝑄22 =

𝐸2

1 − 𝑣12𝑣21
, 𝑄12 =

𝑣21𝐸1

1 − 𝑣12𝑣21

=
𝑣12𝐸2

1 − 𝑣12𝑣21
, 𝑄66 = 𝐺12 

(2.12) 

Isotropic material can be considered a special case of orthotropic state, where in a 

plane stress state the compliance and reduced stiffness matrix are given by Eq.(2.13): 

 [

𝑆11 𝑆12 0
𝑆12 𝑆11 0

0 0 2(𝑆11 − 𝑆12)
] , [

𝑄11 𝑄12 0
𝑄12 𝑄11 0
0 0 𝑄66

] (2.13) 

Eq.(2.14) shows the above matrix in terms of engineering constants. It is obvious 

for this material that only Young’s modulus, Poisson’s ratio, and shear modulus are 

required to find these quantities: 

 𝑆11 =
1

𝐸
, 𝑆12 = −

𝑣

𝐸
, 𝑄11 =

𝐸

1 − 𝑣2
, 𝑄12 =

𝑣𝐸

1 − 𝑣2
, 𝑄66 =

𝐸

2(1 + 𝑣)
= 𝐺 (2.14) 

2.2.2.2 Stress-Strain relations for a thin lamina in arbitrary directions 

In section (2.2.1), stress-strain relations were defined in the principal coordinates 

for an orthotropic material. However, the principal directions in orthotropic materials do 

not always correspond with the local coordinate directions that are required in some 

structures to be the solution of the problem. As an example for this, laminated plate 

structures consist of a number of layers in different orientations. Thus, a formula is 

required to determine the stresses and strains in both the principal directions and those 

in the body itself. In this regard, the example of the laminate structure shown in Fig 2-2, 

is analysed to provide the transformations for the stresses and that allow the stress-strain 

relationships for this structure to be determined [1].  
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Fig 2-2: Global and local coordinates definition [1]. 

If it is assumed that x and y are the coordinates system of material and 1 and 2 the 

coordinate system that coincides locally with the fibre orientations. Then, the 

transformation matrix of stress components between the principal and local directions 

can be formulated as shown in Eq.(2.15): 

 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 −2sin 𝜃 cos 𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 2sin 𝜃 cos 𝜃

sin 𝜃 cos 𝜃 −sin 𝜃 cos 𝜃 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

] [

𝜎1

𝜎2

𝜏12

] (2.15) 

Similarly, the transformation of the strains between the different coordinates takes 

the form of Eq.(2.16). 

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

2

] = [
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 −2sin 𝜃 cos 𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 2sin 𝜃 cos 𝜃

sin 𝜃 cos 𝜃 −sin 𝜃 cos 𝜃 𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

] [

𝜀1

𝜀2
𝛾12

2

] (2.16) 

By using some mathematical simplifications and matrix concepts the stress-strain 

relationship in x-y coordinates is given by Eq.(2.17) 

 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] (2.17) 

Where, 𝑄̅𝑖𝑗 are the reduced stiffness matrix of laminate contains fibres in random 

orientations and can be written as per Eq. (2.18).  

 
𝑄̅11 = 𝑄11𝑐𝑜𝑠4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑠𝑖𝑛
4𝜃 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄12(𝑠𝑖𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃) 

(2.18) 
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𝑄̅22 = 𝑄11𝑠𝑖𝑛
4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑠𝑖𝑛
4𝜃 

𝑄̅16 = (𝑄11 − 𝑄12 − 2𝑄22)𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃 + (𝑄12−𝑄22

+ 2𝑄66)𝑠𝑖𝑛
3𝜃𝑐𝑜𝑠𝜃 

𝑄̅26 = (𝑄11 − 𝑄12 − 2𝑄22)𝑠𝑖𝑛
3𝑐𝑜𝑠𝜃 + (𝑄12−𝑄22

+ 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠3𝜃 

𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄66(𝑠𝑖𝑛

4𝜃

+ 𝑐𝑜𝑠4𝜃) 

 Mechanical behaviour of multidirectional laminates 

According to the principles of laminated composite structures, the entire strength 

and stiffness are highly dependent on the fibre orientations in each layer. Otherwise, 

stiffness may change through the thickness of laminated structure. This explains that the 

aim of manufacturing laminated structures is to satisfy a high level of bending stiffness 

[17]. 

2.2.3.1 Stress-strain variation through a laminate 

Knowledge of the change in stress and strain through the laminate is significant to 

determine the extensional and bending stiffness of laminated structures. To perform this 

analysis, there are some assumptions that need to be verified, such as perfect bonding 

between layers, the bond area between laminas must be infinitesimally thin, and there is 

no shear deformation in this area. These assumptions are important to ensure that the 

displacement domain will continue through the lamina edges. According to the 

Kirchhoff theorem, and because the lamina is infinitesimally thin as shown in Fig 2-3, 

the displacement of point C can be represented as per Eq.(2.19) [1], 
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Fig 2-3: Geometry of an element deformation [1]. 

 𝑢𝑐 = 𝑢° − 𝑧𝑐𝛽 (2.19) 

where 𝛽 represents the slope of the middle surface of laminate in the x direction. If it is 

assumed that the displacements u and v are in the x- and y-directions through the 

laminate thickness, respectively, then the displacement components can be formulated 

as per Eq. (2.20): 

 𝑢 =  𝑢° − 𝑧
𝜕𝑤°

𝜕𝑥
, 𝑣 =  𝑣° − 𝑧

𝜕𝑤°

𝜕𝑦
 (2.20) 

 

From the definition of strain, 𝜖 =
∂u

∂x
, and by deriving Eq.(2.20), the relationship 

strain components via laminate thickness can be given as in Eq.(2.21), where  𝜀𝑥
°  is the 

strain of middle surface, and  𝑘𝑥 is the curvature in the x-axis. 

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝜀𝑥
°

𝜀𝑦
°

𝛾𝑥𝑦
°

] + 𝑧 [

𝑘𝑥

𝑘𝑦

𝑘𝑥𝑦

] , [

𝑘𝑥

𝑘𝑦

𝑘𝑥𝑦

] =

[
 
 
 
 
 
 

𝜕2𝑤°

𝜕𝑥2

𝜕2𝑤°

𝜕𝑦2

2
𝜕2𝑤°

𝜕𝑥𝜕𝑦]
 
 
 
 
 
 

 (2.21) 

It is clearly possible to obtain the magnitude of the stress at any given position in 

laminate by substituting of the corresponding strains shown in Eq.(2.21) into Eq.(2.17). 

Another important issue in laminated structures analysis is the relationships 

between forces and moments across the thickness. Therefore, applying Hooke’s law can 

provide the magnitude of a force through the laminate thickness, as per Eq.(2.22): 
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 Nx = ∫σx

t
2

−
t
2

z,Mx = ∫σx

t
2

−
t
2

zdz (2.22) 

Moreover, the entire magnitude of force and moment of laminated structure 

shown in Fig 2-4, can be found by integration the induvial force and moment 

components for each layer, as formulated by Eq.(2.23).   

 

Fig 2-4: Model of Nth layered laminate [1]. 

 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] =  ∑ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

𝑁

𝑘=1

[ ∫ [

𝜀𝑥
°

𝜀𝑦
°

𝛾𝑥𝑦
°

] 𝑑𝑧 +

𝑧𝑘

𝑧𝑘−1

∫ [

𝑘𝑥

𝑘𝑦

𝑘𝑥𝑦

] 𝑧𝑑𝑧

𝑧𝑘

𝑧𝑘−1

] 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] =  ∑ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

𝑁

𝑘=1

[ ∫ [

𝜀𝑥
°

𝜀𝑦
°

𝛾𝑥𝑦
°

] 𝑧𝑑𝑧 +

𝑧𝑘

𝑧𝑘−1

∫ [

𝑘𝑥

𝑘𝑦

𝑘𝑥𝑦

] 𝑧2𝑑𝑧

𝑧𝑘

𝑧𝑘−1

] 

(2.23) 

Eq.(2.23) can be simplified to a new form, as shown in Eq.(2.24). These equations 

provide the relationship between the laminated stiffness and their forces and moments.  

 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = [

𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

] [

𝜀𝑥
°

𝜀𝑦
°

𝛾𝑥𝑦
°

] + [
𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝑘𝑥

𝑘𝑦

𝑘𝑥𝑦

]  

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] =  [
𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝜀𝑥
°

𝜀𝑦
°

𝛾𝑥𝑦
°

] + [
𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝑘𝑥

𝑘𝑦

𝑘𝑥𝑦

] 

(2.24) 
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 Where A is an extensional matrix, B is the bending-extension stiffness matrix and 

D is the bending matrix; each of those elements can be calculated using Eq.(2.25). 

 

𝐴𝑖𝑗 = ∑(𝑄̅𝑖𝑗)𝑘

𝑁

𝑘=1

( 𝑧𝑘 − 𝑧𝑘−1) 

𝐵𝑖𝑗 =
1

2
∑(𝑄̅𝑖𝑗)𝑘

𝑁

𝑘=1

(𝑧𝑘
2  − 𝑧𝑘−1

2 ) 

𝐷𝑖𝑗 =
1

3
∑(𝑄̅𝑖𝑗)𝑘

𝑁

𝑘=1

(𝑧𝑘
3  − 𝑧𝑘−1

3 ) 

 

 

(2.25) 

 

 

 

2.3 Dynamic analysis of structures 

Dynamic analysis has become of particular significance in structural health 

monitoring. This technique was used in analytical laboratories as well as gaining the 

attention of researchers as a potentially useful approach in analysing the dynamic 

behaviour of different mechanical structures. Historically, this method was first utilized 

to investigate and measure the elasticity of materials in 1909, and subsequently to find 

the deformation of materials under oscillatory motion in 1926. Thereafter, it reached a 

considerable level to analyse different mechanical structures [18]. This provides a clear 

idea about the use of dynamic analysis in different mechanical disciplines.  

 Free vibration of spring-mass system 

Calculating equations of motion is essential to understand the behaviour of any 

mechanical structure. Calculating the equation of motion for the spring-mass system can 

be a good example to understand the behaviour of a simple structure vibrates under 

harmonic motion. The system shown in Fig 2-5 is considered an example through which 

to determine its equation of motion and natural frequency. It was set up to move in the 

vertical direction (one degree of freedom) and oscillates at a natural frequency fn.  
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Fig 2-5: The simple oscillation of a mass-spring system [19]. 

According to Newton’s second law, the summation of vertical forces can be 

calculated as written in Eq.(2.26),  

 𝑚𝑥̈ = ∑𝐹 = 𝑤 − 𝑘(∆ − 𝑥)  (2.26) 

where k∆ is the force of the spring; if this is equal to the weight then Eq.(2.26), can be 

simplified to Eq.(2.27). 

 𝑚𝑥̈ = −𝑘𝑥  (2.27) 

In addition, if angular frequency is defined as 𝜔𝑛
2 =

𝑘

𝑚
, then the equation of 

motion can be represented by Eq.(2.28). 

 𝑚𝑥̈ + 𝜔2𝑥 = 0 (2.28) 

Then by solving the differential equation Eq.(2.28) and applying the boundary 

condition of free vibration, and where 𝜏 is the period of oscillation (𝜔𝑛𝜏 = 2𝜋), the 

natural frequency can be given as per Eq.(2.29) [19]. 

 𝑓𝑛 =
1

𝜏
=

1

2𝜋
√

𝑘

𝑚
 (2.29) 
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 Lagrange equation  

Applying the Lagrange equation in dynamic analysis can provide the equation of 

motion for any mechanical structure. Calculating equation of motion is the most 

important step in starting the analysis of a mechanical structure; for instance, Newton’s 

second law is appropriate to finding the equation of motions for a simple mechanism. 

However, in complex cases, the Lagrange approach is more suited to the derivation of 

an appropriate equation of motion, and which completely depends on computing the 

work and the kinetic energy of the object. 

To determine the equation of motion, generalized coordinates must be defined. 

This coordinate system is defined as a common coordinate system which used to 

describe the instantaneous position of any system. 𝑞𝑛 is usually used to denote to the set 

of generalized coordinates that describes the system, and they are represented 

by 𝑞1, 𝑞2, … , 𝑞𝑛 [20]. Furthermore, if 𝛿𝑊 refers to the virtual work (work is produces as 

a result of particles moving and depends on the particles displacement), the work which 

is produced by the effect of virtual displacement, and where 𝑄𝑖 indicates a force in a 

translation state and a moment in rotation. Therefore, the virtual work in the equilibrium 

position is 𝛿𝑊 = 𝑄𝑖𝛿𝑞𝑖.The Lagrangian identifies the difference between the kinetic 

energy and potential energy for the entire system [ L = T - V ]. Here, the equation of 

motion for any system is written as per Eq.(2.30). 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖, 𝑖 = 1,2, … , n   (2.30) 

By applying this formulation to the energy quantities of any mechanical system 

and where there is no dissipation of energy (i.e., the system energy is conserved), the 

right-hand side of Eq.(2.30) is equal to zero, and the Lagrangian can be written as per 

Eq.(2.31).  

 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 0   (2.31) 

 

To explain the Lagrange criteria, one can consider the mechanical system shown in 

Fig 2-6, [21].  
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Fig 2-6: Vibration model of the mechanical system [21]. 

If the generalized coordinates of this system are  q1(t) = x(t) and q2(t) = θ(t) , 

then the kinetic energy is 

T = mq̇1
2 +

1

2
Jq̇2

2 

, the potential energy is 

V =
1

2
k1q1

2 +
1

2
k2(rq2 − q1)

2
 

, and the polar moment of inertia 𝐽 is 

𝐽 =
𝜋𝑟4

2
, 𝑟 𝑖𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠ℎ𝑎𝑓𝑡 

Applying the Lagrange theorem for the two coordinate systems, at  𝑖 = 1 and  𝑄1 = 0. 

𝑑

𝑑𝑡
(𝑚𝑞̇1) + 𝑘1𝑞1 − 𝑘2(𝑟𝑞2 − 𝑞1) = 0  

For q1(t) coordinate the Lagrange is given by Eq.(2.32). 

 𝑚𝑞̈ 1 + (𝑘1 + 𝑘2)𝑞1 − 𝑘2𝑟𝑞2 = 0 (2.32) 

 

, and for the second coordinate q2(t) the Lagrange becomes as given by Eq.(2.33);  

 𝐽𝑞̈ 2 + 𝑘2𝑟
2𝑞2 − 𝑘2𝑟𝑞1 = 𝑀(𝑡) (2.33) 

, and these two equations represent the equations of motion for the above mechanism. 
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 Vibration of continuous systems  

This section provides the fundamentals of the dynamic analysis. An example was 

a beam vibrating laterally to its longitudinal axis. This analysis explains the relationship 

between the stiffness of the vibrated structure and its modal characteristics such as 

natural frequency, mode shape and damping ratio. From this, the effect of damage on 

the local stiffness and modal characteristics can be understood. Therefore, for the bent 

beam shown in Fig 2-7 [21], the free body diagram of the element shows the expected 

forces under vibration state. In fact, the equilibrium equation in the vertical axis of 

motion is given by Eq.(2.34).  

 

Fig 2-7: Forces and moments diagram of the vibrated beam reported in [21]. 

 −(𝑉 + 𝑑𝑉) + 𝑓(𝑥, 𝑡)𝑑𝑥 + 𝑉 = 𝜌𝐴(𝑥)𝑑𝑥
𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) (2.34) 

, and the moment about the y-axis can be calculated as per Eq.(2.35) 

 (𝑀 + 𝑑𝑀) − (𝑉 + 𝑑𝑉)𝑑𝑥 + 𝑓(𝑥, 𝑡)𝑑𝑥
𝑑𝑥

2
− 𝑀 = 0 

 

(2.35) 

 

 

Then the derivative of force and moment is,  

𝑑𝑉 =
𝜕𝑉

𝜕𝑥
𝑑𝑥 𝑎𝑛𝑑 𝑑𝑀 =

𝜕𝑀

𝜕𝑥
𝑑𝑥 



 Chapter 2: A review of constitutive law and dynamic analysis of laminated  

                                 composite structures 

 

University of Leicester                                                                                                     Page | 59  
 

, and simplifying the above equations, then the final equation of motion of the uniform 

beam can be written as per Eq.(2.36). With free vibration condition, the right-hand side 

is equal to zero.  

 𝑐 =  √
𝐸𝐼

𝜌𝐴
 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) + 𝜌𝐴(𝑥)𝑑𝑥

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) 

𝑐2
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) +

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) = 0, 𝑓𝑟𝑒𝑒 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 

(2.36) 

Moreover, the solution of this differential equation under simple harmonic motion 

shows that the natural frequency of the vibrating system can be formulated as per 

Eq.(2.37).  

 𝜔 = 𝛽2√
𝐸𝐼

𝜌𝐴
= (𝛽𝑙)2√

𝐸𝐼

𝜌𝐴𝑙4
, 𝛽4 =

𝜔2

𝑐2
 (2.37) 

 Dynamic response of a structure  

This section provides a simple demonstration of the vibration mechanism of the 

body shown in Fig 2-8 under simple harmonic motion. Harmonic motion refers to an 

oscillatory motion that repeats itself on a regular time base. In this figure, the 

instantaneous position of particle 𝐴, shown in Fig 2-8a (which vibrates at angular 

frequency𝜔), can be determined at any time as per Eq.(2.41). Fig 2-8b shows clearly the 

similarity between harmonic motion and sinusoidal motion after 𝑡 time. Fig 2-8c shows 

the amplitude and velocity of the vibrated body.  

 To analyse the above mechanism, the general solution of differential equation 

Eq.(2.27) can be formulated as per Eq.(2.38), where 𝐴1  and 𝐴2   are constants to be 

determined depending on the initial conditions of the system. Two conditions that can 

be used to evaluate this equation as written in Eq.(2.39), where 𝑥(𝑡) and 𝑥̇(t) are the 

displacement and velocity components [21]. 

 𝑥(𝑡) = 𝐴1  cos𝜔𝑛𝑡 + 𝐴2  sin𝜔𝑛𝑡 (2.38) 
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𝑥(𝑡 = 0) = 𝐴1 = 𝑥0   

𝑥̇(𝑡 = 0) = 𝜔𝑛 𝐴2 = 𝑥0  ̇  
(2.39) 

Appling these conditions to Eq.(2.38), the displacement component can be written 

as per Eq.(2.40). 

 𝑥(𝑡) = 𝑥0  cos𝜔𝑛𝑡 +
𝑥0  ̇

𝜔𝑛 
sin𝜔𝑛𝑡 (2.40) 

 The other important concept in vibrational analysis of mechanical structures is 

decomposition the dynamic response into components. This concept demonstrates the 

idea behind the use of mode shape, where according to the above equations, the 

instantaneous position and velocity of the vibrated particle can be predicted. This 

criteria can be applied to systems with multiple degrees of freedom to find their 

conditions of motion. 

Then, the same simple harmonic motion described by Eq.(2.38) can be formulated 

in an alternative form by applying the notations in Eq.(2.41), where A and ∅ are new 

constants as represented in Eq.(2.42). According to the initial conditions and these new 

constants, the dynamic of response of this mechanism can be expressed as per 

Eq.(2.43). 

 
𝐴1 =  A cos∅ 

𝐴2 =  A sin∅ 
(2.41) 

 

 

𝐴 =  (𝐴1
2 + 𝐴2

2)
1
2 = [𝑥0

2 + (
𝑥0  ̇

𝜔𝑛 
)
2

]

1
2

= 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

∅ = tan−1 (
𝐴1 

𝐴2 
) =  tan−1 (

𝑥0  ̇

𝑥0  ̇ 𝜔𝑛 
) = 𝑝ℎ𝑎𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 

(2.42) 

 

 𝑥(𝑡) = 𝐴0 sin(𝜔𝑛𝑡 − ∅0) (2.43) 
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Fig 2-8: Graphical description of a vibrating mechanism undergoing simple harmonic 

motion [21].   

 Introduction to use of the Finite Element Method in modelling engineering 

structures 

Developing the Finite Element Method (FEM) helps the modern computing 

technology to model and simulate both simple and advanced types of engineering 

structures. The defined keys (refer to GUI “graphical user interface” used in the 

modelling process) is one of the excellent features in the developed finite element 

software programs. As engineers and designers go through an extensive amount of work 

in the process of designing, modelling, simulating, analysis and visualization before the 

final step of manufacturing a given component. In complex structures an approximate 

understanding of their analysis through FEM is extremely needed. In modelling of 

complex engineering and mechanical structures, it is often difficult to model all the 
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surrounding conditions perfectly. However using FEM can save the costs of 

unsuccessful experimental trials and provide more information about the given structure 

without the requirement for physical testing [22]. 

In general, FEM in engineering studies is the process by which the given object, 

such as a gas, liquid or solid, is simulated as an ensemble of sub-elements called finite 

elements. These elements are related to each other by inter-connections at certain points 

called nodes, as per Fig 2-9. Although the actual variation of the parameters such as 

stress, displacement, temperature or velocity of the continuum inside the body are not 

defined, the underlying assumption to FEM is that variation can be assumed in an 

approximate manner by a simple function, where these relations are called interpolation 

models. From this principle, the entire solution can be found depending on the boundary 

conditions and applied loads for each case study [23].    

 

Fig 2-9: Finite element description of a one-dimensional structure [22].   

In FEM, the general solution for a continuum body generally follows the 

following steps: 

Step 1: Any given structure is divided into a number of elements, which means 

number, type and size of elements must be taken into consideration. 

Step2:   The interpolation or the displacement model should be selected properly. 

Normally, the displacement solution for complex structures is not known, so the start 
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point for the use of FEM assumes some approximations to the actual solution. The 

approximated solution must come from solid-point (defined point) and satisfy the 

convergence rules. 

Step 3: Derive the stiffness matrix elements and the load vector 

According to the principles of the displacement model, the stiffness matrix can be 

in terms of [𝐾] and the load vector 𝑃⃗ . 

Step 4: Assemble equations for the individual elements to find the solution of the 

entire body equations. If it is assumed that a body consists of a number of elements, and 

nodal displacement ɸ⃗⃗ , then the overall equilibrium equations is written as per Eq.(2.44),   

 [𝐾] [ɸ]⃗⃗⃗⃗ =[𝑃]⃗⃗⃗⃗  (2.44) 

Step 5: Solve for the non-defined nodal displacement. 

Starting by the defined points (boundary conditions are given) to calculate the 

overall model displacement; subsequently, calculating stresses and strains for the given 

problem [22].   

2.3.5.1 Analysis of free vibration using FEM 

The same criteria is the finite element method illustrated in section 2.3.5 is 

applied to simulate and analyse the free vibration of mechanical structures. The 

modelling procedure can be summarized as below: 

 Modelling and design the required geometry or case study; 

 Implement the material properties; 

 Fulfil the meshing for the entire structure;  

 Apply the boundary conditions, and any external loads if required; 

 Run the job analysis and then visualize the results produced. 

In this section, it is important to explain the principles of calculating mode shape 

using dynamic analysis. For a solid structure system with N degrees of freedom, the 

global equation for all individual elements are shown in Eq.(2.45), 
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 𝐾𝐷+ 𝑀𝐷̈=𝐹 (2.45) 

where 𝐾 is the stiffness matrix, 𝑀 the mass matrix, 𝐷 the displacement vector and 𝐹 the 

external load. Under free vibration, the external load is given by 𝐹 = 0, and this 

equation of motion can be formulated as per Eq.(2.46). 

 𝐾𝐷+ 𝑀𝐷̈=0 (2.46) 

If the nodal displacement 𝐷 = 𝜙 exp (𝑖𝑡𝜔), where 𝜙 is the amplitude, 𝜔 is the natural 

frequency and 𝑡 is the time, the solution of differential equation Eq.(2.46) can be written 

as per Eq. (2.47): 

 [𝐾- 𝜔2𝑀]𝜙 =0 (2.47) 

If it is assumed that 𝜆 =  𝜔2, the eigenvalue equation can be represented by Eq.(2.48),  

 [𝐾- 𝜆𝑀]𝜙 =0 (2.48) 

Accordingly, the overall eigenvalue equation for the entire continuum problem is 

formulated as per Eq.(2.49), 

 [𝐾- 𝜆𝑖𝑀]𝜙𝑖  =0 (2.49) 

where eigenvector 𝜙𝑖 is related to vibrational mode 𝑖, and from this, each structure may 

vibrate in a number of 𝑖𝑡ℎ mode shapes. The above equations show the mathematical 

basis by which the mode shape is calculated in the dynamic analysis. The same criteria 

is used by finite element software programs to calculate the modal characteristic. An 

example of the above analysis, the first three numerical modes of the cantilever beam 

shown in Fig 2-10 were determined. The cantilever beam was analysed analytically, and 

the first three bending modes were determined as shown in Fig 2-11under two boundary 

conditions. First of all, mode shapes were calculated in vibrated beam without rotation 

[beam did not rotate], and then they calculated for beam rotated at an angular velocity 𝛺 

with respect to the normal axis to study the effect of different conditions on the 

calculation of  mode shapes [24].  
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Fig 2-10: Schematic of rotating beam used in [24]. 

 

Fig 2-11: The first three modes of a cantilever beam [24]. 
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2.4 Concluding remarks 

A detailed introduction to the mechanics of laminated structures and the principles 

of dynamic analysis of mechanical structures were presented in this chapter. An 

introduction to the stress-strain relationship has been demonstrated to provide a clear 

understanding of these relationships. The variation of stiffness over the entire laminate 

thickness was presented to explain the effect of damage in laminated structures. This 

introduction represents an important start-point to an understanding of modelling the 

damaged elements and in order to provide a comprehensive overview of mechanics of 

laminated structures. 

The second objective of this chapter was to present a review of principles of 

dynamic analysis. The definition of free vibration, equation of motion, vibration of 

continuous systems and the dynamic response of vibrating structures were discussed. 

Additionally, an introduction into the use of the finite element method to calculate mode 

shape was given.  In summary, this chapter clarified the criteria behind the mechanics of 

laminated materials and the principles of dynamic response analysis.    
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Chapter 3: A literature review of vibration-based damage 

detection methods 

This chapter covers an overview of different techniques used in damage detection, 

and discusses the knowledge gap in damage detection subject. Various techniques have 

been investigated and practiced in the field of Structural Health Monitoring (SHM) 

depending on the efficiency, cost and ease of use. In general, these method can be 

divided into two groups; first is vibration-based damage techniques that are used to 

detect damaged sections in mechanical structures. The second is non-destructive testing 

(NDT) techniques which are a range of analysis methods used in the evaluation of 

structure functionality without causing damage. Both of these groups will be reviewed 

in sections 3.1 and 3.2 in this chapter [25]. 

3.1 Vibration-based damage detection methods    

Vibration-based damage detection is based on the analysis of dynamic 

characteristics such as natural frequency and mode shape in different mechanical 

structures. Quantify damages can be accomplished via the analysis of the dynamic 

responses of the damaged structures and compare them with the analysis of intact data 

[26]. This method is frequently used to quantify and localize the damaged areas and is 

considered to be one of the most practical techniques in damage detection. Practically, 

this means any effect on, or change to the structural characteristics, such as losing of 

mass or stiffness in any given element, will have a clear effect on the dynamic modal 

parameters [27]. The following sections explain this method. 

 Method based on the change of natural frequency  

For a number of reasons, the measurement of natural frequency in mechanical 

structures considers easy to use for more than one aspects. For example, it is not 

affected excessively by noisy conditions. It is a global technique, which means the 

measured data does not depend on the location (same damage in different locations may 

provide the same data). However, the data are measured in this technique require 

accuracy level much more than determining the mode shape or the damping 



 

Chapter 3: A literature review of vibration-based damage detection methods 

University of Leicester                                                                                                     Page | 68  
 

characteristics. Salawu [28] presented a comprehensive review that included most of the 

publications presented before 1997 and used natural frequency technique to detect the 

damaged areas. Ultimately, it should be noted that a natural frequency change might not 

be sufficiently accurate to localize damaged regions, according to the view that the 

same damage in different locations results in the same frequency change in a given 

structure. To overcome the challenge of damage localisation, Messina and Williams 

[29] suggested the localisation of damaged sections by a correlation coefficient termed 

the Multiple Damage Location Assurance Criterion (MDLAC). This method depends 

entirely on the sensitivity of the natural frequency in each mode to the damaged regions. 

MDLAC is essentially a statistical correlation between the analytical and experimental 

frequency change. The analytical frequency change (the magnitude of the frequency 

change, which is calculated analytically) is given by 𝛿𝑓 and the measured frequency 

is ∆𝑓. The change in analytical frequency can be formulated as a function of the damage 

vector, 𝛿𝐷, as shown in Eq.(3.1). So when damage occurs the magnitude of MDLAC 

index will increase. Here, 𝛿𝐷 refers to the stiffness reduction factor 𝐷𝑓 for the element. 

In this regard, the value for the undamaged element is 𝐷𝑓 = 1, and for 100% damage, 

𝐷𝑓 = 0. Although the authors mentioned the validity of this index to detect damage in 

truss structures. However, the biggest challenge that calculating this index needs a 

number of accurate mode shapes, and this is not easy in experiment. 

 MDLAC({𝛿𝐷}) =
|∆𝑓𝑇.{𝛿𝑓({ 𝛿𝐷}) |

2

({∆𝑓}2.{∆𝑓}).({𝛿𝑓({𝛿𝐷})}𝑇.{𝛿𝑓({𝛿𝐷})})
   (3.1) 

 Chinchalkar [30] developed a finite element method to detect cracks in a stepped 

beam, as per Fig 3-1, using the first three natural frequencies under a free vibration 

condition. Cracks were modelled by reducing the stiffness of the element at four 

locations, 0.05, 0.2, 0.4, 0.45, to the fixed edge, as shown in Fig 3-1. The material data 

used in this study are Young’s modulus = 210 GPa, density = 7800 kg/m3, ν = 0.3 and 

𝛽 =  
𝑥

𝐿
. The authors reported that calculating the non-dimensional stiffness (𝐾 =

𝑘𝐿

𝐸𝐼
), 

for the first three natural frequencies allowed the detection of the damaged section, 

where the intersection points of these frequencies showed the exact location of the 

crack, as shown in Fig 3-2.  
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Fig 3-1: The cracked beam used in the numerical analysis performed in [30]. 

 

Fig 3-2: The change of the first three natural frequencies of a cracked beam at different 

locations. The intersection points of these modes show the crack location [30]. 

Patil [31] used Euler-Bernoulli theory to detect multiple open cracks in a beam 

using frequency-based damage detection method. To model cracks, the beam was 

divided into a number of equal segments, as per Fig 3-3. In this analysis, a rotational 

spring (in this spring, the applied torque is proportional to the angular displacement of 

one end with respect to the other) was used to implement the reduction in stiffness at the 

cracked sections. The stiffness was reduced across this spring, which is how the 



 

Chapter 3: A literature review of vibration-based damage detection methods 

University of Leicester                                                                                                     Page | 70  
 

modelling of cracks can be accomplished. The crack detection procedure was dependent 

on calculating the change in natural frequency due to the existence of cracks. This 

calculation can be performed by computing the strain and kinetic energies,  U and V, as 

shown in Eq.(3.2). Then, the change in natural frequency can be obtained as per 

Eq.(3.3). The material properties are Young’s modulus = 28 GPa, and density = 2350 

kg/m3. The final step in this method was to calculate the stiffness 𝐾 of the first three 

modes and plot these magnitudes versus the crack location, as shown in Fig 3-4. The 

intersection points were associated with crack locations, 𝛽. However, the authors noted 

certain limitations to this procedure, which are; that it cannot be applied to beams with 

rotational inertia, or where there is shear deformation or a damping effect.  

 𝜔2 =

1
2∫ 𝐸𝐼(𝑥) (

𝑑2𝑍
𝑑𝑥2)

2

𝑑𝑥   
𝐿

0

1
2∫ 𝜌𝐴𝑍2𝐿

0
𝑑𝑥

 =
𝑈

𝑉
 (3.2) 

 

 
∆𝜔

𝜔
 =

∆𝑈

𝑈
−

∆𝑉

𝑉
 (3.3) 

 

 

Fig 3-3: Simply supported cracked beam and its segments, as investigated by [31]. 
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Fig 3-4: The relationship between variation of stiffness and crack location, β [31]. 

Kim et al. [32] proposed a new damage index to detect and quantify the damaged 

sections in structures for which a few mode shapes or natural frequencies are available. 

In this study, a damage-localization algorithm, a damage-sizing algorithm and a damage 

indictor were investigated. The damage indictor 𝐷𝐼𝑗 was calculated as a single index for 

a number of available modes as shown in Eq.(3.4). In this equation 𝑒𝑖𝑗 represents the 

magnitude of error localization for 𝑖𝑡ℎ mode and  𝑗𝑡ℎ location, where  𝑁𝑀 indicates that 

this index can use a number of mode shapes. The peak of this indictor, as shown in 

Fig 3-5, was entirely associated with the location of the crack in the beam. However, no 

experiments were performed in this study to demonstrate the practical application of 

this approach. 

 𝐷𝐼𝑗 = [∑ 𝑒𝑖𝑗
2

𝑁𝑀

𝑖=1

]

−
1
2

 (3.4) 
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Fig 3-5: The damage index of the cracked beam investigated in [32]. 

Lee [33] reported a simple approach to detect multiple notches in the vibrating 

beam demonstrated in Fig 3-6, where the damaged sections were modelled in terms of 

rotational springs to apply the stiffness reduction. The numerical solution was 

calculated using MATLAB program to calculate the few first natural frequencies. One 

of the main conclusions of this research was that damaged sections reduce the 

magnitude of the natural frequency.   

 

Fig 3-6: The multiple cantilever notched beam analysed in [33]. 

Although frequency-based damage detection has been investigated by a number of 

researchers for damage detection, it still has a number of limitations. One of the 

common fundamental drawbacks is modelling damage, where the mathematical basis of 

most approaches in modelling cracks depends on the Euler-Bernoulli beam theory. In 

this theory, cracks can be modelled as part of a rotational spring system to show the 

reduction of local stiffness. It is common, when using this approach, to lose accuracy 
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when modelling the cracked section at high frequencies or there are deep cracks. So, 

this method is most applicable for detecting damage in simple structures, for example 

thin beam with small cracks [34]. Further, the same authors reported that similar forms 

of damage might cause similar reduction in natural frequency, even they are located in 

different regions. Additionally, when using frequency-based damage detection at low 

frequencies levels, the small changes in frequency might be swamped by high levels of 

noise.   

 Mode shape-based damage detection  

There a number of advantages to damage detection methods that use mode shape 

compared to natural frequency-based damage detection. Firstly, mode shape can 

provide more local information than natural frequencies, this make mode shape more 

sensitive to damage localization. Secondly, mode shape is less sensitive to 

environmental conditions than natural frequency [35]. Mode shape-based damage 

detection depends on the assessment of the change between damaged and intact modes. 

The intact data is considered to be a baseline measurement, and can be determined 

either by experimental examination of the healthy structure or accurate numerical 

modelling of the same. 

 Ostachowicz et al. [36] investigated the effects of a transverse crack in a 

cantilever beam, as per Fig 3-7, on the measured dynamic response. The authors 

emphasized the fact that the existence of damage such as transverse cracks along beams 

causes a reduction in local stiffness. The cracked beam was analysed under condition of 

forced vibration. Then the analysis of dynamic response was utilized to quantify the 

damaged section in this beam. Using the subroutine of a program written in Fortran77, 

researchers were able to study the effect of cracks by calculating the global stiffness 

matrix for the structure. The dynamic amplitude of the cracked beam (crack ratio 
𝐿1

𝐿
=

0.3), was calculated at different crack sizes, as per Fig 3-8, under harmonic excitation. 

The crack size in this research had a ratio in terms of (
𝐴

𝐻
), where 𝐴 is the crack height, 

and 𝐻 is beam height and it was implemented at different values 0, 0.125, 0.250, 0.375, 

0.500, and 0.600. Obviously, from Fig 3-8, increasing the crack size decreases the local 

stiffness and this results in an increase in the dynamic amplitudes. Calculating the angle 
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of the dynamic response at these sizes clearly showed the cracked section, as per 

Fig 3-9. The sudden change in the angle deflection was associated with the location of 

the crack.  

 

Fig 3-7: Notched cantilever beam as reported in [36]. 

 

 

Fig 3-8: The dynamic amplitude of different notches size in a cantilever beam [36]. 

 



 

Chapter 3: A literature review of vibration-based damage detection methods 

University of Leicester                                                                                                     Page | 75  
 

 

Fig 3-9: Angle of deflection for the notched cantilever beam [36]. 

Abdo et al. [37] investigated the rotation in mode shape as a technique to define 

damaged regions in structures. Here, the first four modes were calculated numerically 

for damaged beam and plate structures. The damaged sections were modelled at 0.5 and 

0.6 to the supported edges, by reducing the value of Young’s modulus, ∆𝐸, of a simply 

supported bar. Calculating the damaged modes and their derivatives, as per Fig 3-10 and 

Fig 3-11, clearly showed that the slope of mode shape could capture the damaged 

sections, even with only a small change in stiffness of 5% 𝐸. The peak or spike 

associated with slope of the damaged modes showed the location of the damage. This 

study added further evidence in support of the use of vibration techniques in damage 

detection, even though an experiment study was not reported in this research.   
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Fig 3-10: Mode shape and its derivative for a steel bar with damage at 0.6 L: (a) first 

mode; (b) second mode; (c) third mode; (d) fourth mode [37]. 

 

Fig 3-11: Mode shape and its derivative of a steel bar with damage at 0.5 L: (a) first 

mode; (b) second mode; (c) third mode; (d) fourth mode [37]. 
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Ghoshal et al. [38] reported the use of Vibration Deflection Shapes (VDS) to 

detect the delaminated areas in composite structures. Delamination was artificially 

created in different sizes and locations. Piezoelectric actuator patches were embedded in 

the plate samples, and a laser scanning Doppler vibrometer was used to measure the 

vibrational modes of the delaminated sample under steady-state condition. The test 

procedure required are scanning the damaged structure at different frequencies to 

identify the resonant frequencies, and then exciting these frequencies using a sine wave. 

The sine excitation adds the maximum energy to the sample at resonance, whereby the 

peak point of the VDS can then identify the location of the damage. The planar location 

shown in  Fig 3-12b, d shows the delaminated area.  

 

Fig 3-12: Delaminated fibreglass plate with its vibration deflection shapes (a) – (d), as 

measured by a laser scanning Doppler vibrometer [38].  
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A damaged multi-girder bridge was investigated by Lee et al. [39]. In this 

research, neural network-based damaged identification was utilized to detect the 

damaged sections. The difference between the intact and damaged modes was used as 

input to the neural network.  By analysing two numerical examples for a simple beam 

model and the multi-girder bridge, the proposed method showed the applicability of 

mode analysis as a basis for damage identification. In a different study, the damaged 

carbon fibre-reinforced epoxy plate samples were utilized to detect the damaged areas 

using vibration-based damage detection techniques [40]. The change in the dynamic 

characteristics was used as a basis to determine the damaged areas. Double-pulse TV 

holography with acoustic excitation was employed to measure mode shape translation, 

rotation and curvature differences due to impact damage in laminated plates. 

Calculating the curvature difference index using the measured signals showed the 

ability of this method to detect the damaged area, although the actual type of damage 

was not noted.  

 

Fig 3-13: Curvature differences method for a damaged plate for the third mode (a) 3D 

plot of curvature index, (b) contour plot [40]. 

An excellent review of the development of vibration-based damage detection 

techniques was given by Yan et al. [41]. The details of these methods were explained in 

addition to potential trends in their future development. Furthermore, this article 

explains why vibration-based damage detection is utilized for damage detection 

purposes. Qiao et al. [42] studied the combination of static and dynamic methods to 

identify the delaminated areas in E-glass epoxy laminated composite specimens. 

Whereas, the pre-set of composite samples with static compressive force showed that as 

static force goes up, damage detection via the analysis of dynamic signals becomes 
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increasingly clear. Experimental work was completed in this regard, while numerical 

analysis was performed using the ANSYS software to allow for identification of the 

delaminated sections. Notched steel beams were investigated to demonstrate the 

possibility of using vibration-based damage detection methods in the practical 

applications [43]. The structural irregularity index (SSI) was calculated to determine the 

damaged sections. The irregularity of dynamic responses was shown by calculating the 

curvature index of the contact and damaged modes. Mode shape was less sensitive than 

curvature for localization damaged sections. This paper again confirms the utility of 

vibration-based techniques in damage detection. Roy et al. [44] investigated the 

mathematical criteria for the correlation between the damage and the fundamentals of 

mode shape. This was achieved by mathematically deriving an expression for the 

damaged mode shape. The numerical example was a cantilever beam divided into a 

number of elements to study the effects of damaged sections on the dynamic responses 

at different positions, as per Fig 3-14, where the discontinuities in beam can be localised 

by calculating the mode shape and its derivatives, as per Fig 3-15. 

 

Fig 3-14: Schematic of the cantilever beam used in [44]. 
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Fig 3-15: The sensitivity of mode shape and its derivatives for the damage to the beam 

shown in Fig 3-14 [44]. 

 Analysing mode shape using modern signal processing methods  

To develop the damage detection using the change in mode shape, extensive 

research has been completed into damage detection using modern signal processing 

methods. In most cases, the intact data-baseline is not available, so the numerical model 

should be created carefully [45]. To avoid a lack of intact data and difficulty in 

modelling the accurate numerical model, modern signal processing can detect the 

damaged sections without the intact data being required. Hadjileontiadis et al. [46], [47] 

proposed a beam and plate index called a fractal dimension (FD) to detect the notched 

sections in the beam and plate structures. Fractal dimension is an index proposed to 

analyse waveform points for more mathematical details about this index, see chapter 

four section 4.2.4. Hadjileontiadis et al. [46] used FD to localize the notched section in 

beam structures, as shown in Fig 3-16. As it is clear from Fig 3-17, that this index can 

detect the damaged section by the peak associated with the location of the damaged 

region, where the FD was calculated directly using mode shape data. 
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Fig 3-16: Cantilever beams with transverse notches [46]. 

 

Fig 3-17: Fractal dimension calculated for the notched beam [46]. 

FD is sufficient to detect damage using lower-frequency modes; however, for higher-

frequency modes, FD might give misleading information about the damaged area. For 

this, Wang et al. [48] proposed a modifications to FD, referred to as a “generalized 

fractal dimension” (GFD) by implementing a scale factor, 𝑆, to the FD equation, as 

shown in Eq.(3.5). The authors noted that the choice of 𝑆 is vital to accurate detection. 

Theoretically, 𝑆 is a scale and it is used to increase the index peak. According to Wang 

et al. [48],  𝑆 can be increased till the data over the curves begins to oscillate. After this 

step, increasing 𝑆 might result in the disappearance of the peak in the curve used to 

detect damaged sections. 

 
𝐺𝐹𝐷 =

𝑙𝑜𝑔10(𝑛)

𝑙𝑜𝑔10(𝑛) (
𝑑𝑠

𝐿𝑠
) + 𝑙𝑜𝑔10(𝑛) 

 
(3.5) 

𝑑𝑠 = max
1<𝑗≤𝑀

√(𝑦𝑖+𝑗 − 𝑦𝑖)
2
+ 𝑆2 (𝑥𝑖+𝑗 − 𝑥𝑖)

2
 , 

𝐿𝑠 = ∑√(𝑦𝑖+𝑗 − 𝑦𝑖+𝑗−1)
2
+ 𝑆2 (𝑥𝑖+𝑗 − 𝑥𝑖+𝑗−1𝑎)

2
𝑀

𝑗=1
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Qiao et al. [49] confirmed the advantages of using GFD in detecting delaminated 

areas in laminated E-glass composite plates, as shown in Fig 3-18. Both numerical and 

experimental results showed the delaminated area as per the GFD peaks shown in 

Fig 3-19 and Fig 3-20. The same criteria of damage detection were applied, where the 

mode shapes of delaminated samples were obtained and then GFD was calculated to 

show the damaged areas.    

 

Fig 3-18: E-glass epoxy delaminated plate investigated by [49].  

 

Fig 3-19: Numerical GFD index of E-glass epoxy delaminated plate as investigated in 

[49].  
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Fig 3-20: Experimental GFD index of E-glass epoxy delaminated plate as investigated 

in [49]. 

Qiao et al. [50] suggested a novel fractal dimension–based damage detection 

method by which to detect the location of damage in a notched cantilever beam. Mode 

shape was calculated, and the new algorithm applied to identify the location of the 

damage. The approximated waveform capacity dimension (AWCD) was then derived, 

as well as formulating the modal abnormality algorithm to determine the damage 

location. Another approach to damage identification was described by Hadjileontiadis et 

al. [51]. The proposed kurtosis crack detector (KCD) was a new algorithm to analyse 

the dynamic response of damaged specimens. The crack is modelled in terms of a spring 

to represent the reduction in stiffness due to the presence of cracks in the damaged 

beams. The use of this indicator showed that an analysing dynamic responses is 

applicable to localize cracks at different locations in beam structures. Li et al. [52] 

suggested the use of FD-based index to formulate a new index called FD-based index 

for damage localization (FDIDL). The key idea to this index was to show the deviation 

between any two sequence points along the displacement mode shape. Numerical and 

experimental analysis were achieved to test the efficiency of this index. A cracked beam 
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was used, where the numerical analysis showed the damaged location, while analysis of 

the experimental data was not sensitive to damaged regions, as numerical analysis 

subsequently showed. More recently, Jiang et al. [53] provided further evidence that the 

analysis of the damaged mode shape of cracked beam structures using FD index 

provides a good index by which to define damaged areas. By contrast, a double-cracked 

beam model is used to calculate the first three mode shapes, and then, by determining 

the FD indicator for the damaged modes, two clear peaks were found that indicated the 

presence of two damage regions. Both numerical and experimental analysis were 

accomplished to show the applicability of FD in damage detection purpose. According 

to the features of FD index, for instance, localization, identification severity of damage 

and ease of calculation have resulted in a number of researchers considering this index 

to be one of the proposed techniques in use. However, there is no evidence about the 

efficiency of using FD with noisy data. 

 Analysing mode shape using wavelet transform method 

 The Wavelet Transform Method (WTM) is another significant approach that 

has received considerable attention due to its ability to show damage information via 

analysis of modal characteristics. Liew and Wang [54] were amongst the first 

researchers to use wavelet theory to detect edge-cracks in beam structures, as shown in 

Fig 3-21. Numerical study presented the damage model, where eigenvalues were 

analysed using wavelet theory to determine the crack locations. In this study, damage 

locations were accurately determined. In utilizing wavelet transform analysis, Wang and 

Deng [55] reported the detection of tip cracks in beam structures using Gabor wavelets, 

Eq.(3.6), under static and dynamic loads. This formula can be used to detect damage 

locations in terms of displacement or strain data, as per Eq.(3.7). One of the selected 

results, that shown in Fig 3-22, illustrates the damage location in the proposed beam. 

Here, 𝜔° and 𝛾 are positive constants 𝜔° = 2𝜋  and 𝛾 = 𝜋√
2

𝑙𝑛2
 

 𝜓(𝑡) =
1

√𝜋
4 √

𝜔°

𝛾
exp [−

(
𝜔°

𝛾 )
2

2
 𝑡2 + 𝑖𝜔° 𝑡] (3.6) 
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 𝐶𝑗,𝑘 = ∫ 𝑓(𝑥)
1

0
 𝜓𝑗,𝑘(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑑𝑥  (3.7) 

 

 

Fig 3-21: Schematic of the cracked beam utilized in [55]. 

 

Fig 3-22: Gabor index distribution of the cracked beam investigated in [55]. 

Quek et al. [56] reported the sensitivity of using the wavelet transforms in 

damage identification in beam structures. Static and impact loads were used in this 

study. One of the most significant contributions the authors made via their research was 

that signal processing analysis is effective in analysing mode shape and consequently 
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detecting damaged areas. Douka et al. [57] and [58] studied the use of wavelet 

transforms to analyse changes in mode shape to detect damaged regions, where the use 

of continuous wavelet transform (CWT) in detecting damaged sections for the damaged 

steel beam was investigated by [57]. In [58], the authors reported one-dimensional 

damage detection using CWT on plate structures. To estimate the severity of such 

damage, an intensity factor was calculated as a reflection of crack depth. In both 

articles, a sudden change in wavelet transform index was associated with the damaged 

regions. The use of wavelet transforms in detecting transverse open cracks in beam 

structures was demonstrated by [59]. Extensive work was undertaken to simulate the 

cracked location, and different wavelet families were used in damage detection. 

Classical Gaussian wavelets were used to analyse mode shape and define damaged 

sections. The Gabor index as shown in Eq.(3.6) was calculated to show the damaged 

sections. The authors suggested, as shown in Fig 3-23, that scaling the damage index 

provides clear damage index peaks. Also, Chang et al. [60] used the same technique 

reported in [59] to detect the damaged sections in plate structures. 

 

Fig 3-23: Calculated first-mode Gabor index for a notched cantilever beam using 

different scales [59]. 
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Rucka et al. [61] applied both respective and biorthogonal wavelet criteria on the 

fundamental mode shape to detect damaged sections, where the fundamentals of 1D 

analysis were extended to 2D. The sudden change in wavelet distribution provided a tip 

identical with the location damage. One of the studies focused on using a 2D CWT-

based algorithm detection to detect damage in plate and shell structures was introduced 

by Khan et al. [62]. The use of this technique was reported as being an effective method 

of analysing damaged modes. Shahsavari et al. [63] studied the application of wavelet 

transform-based damage detection in localizing damage sections in beam structures. 

According to the fundamentals of CWT, authors proposed a new indicator called the 

Likelihood ratio, as per Eq.(3.8), where, 𝜎𝑖 is standard deviation, 𝜇𝑖 the mean, 𝑚, 𝑛 are 

the numbers of observations, and 𝑆𝑖 is a vector generated by the original wave. One of 

the selected results shown in Fig 3-24 explains a possible way in which wavelet 

transform signal processing could be improved. The damage was detected by analysing 

the measured mode shape.   

 𝐿(𝑆𝑖\𝜇𝑖, 𝜎𝑖) = { ∑ (2𝜋𝜎𝑖
2)

1
2

𝑚

𝑗=𝑁1+1

 𝑒

−(𝑆𝑖(𝑗)−𝜇𝑖)
2

2𝜎𝑖
2

}

𝑖

; (𝑖 = 1, 2,3, … . , 𝑛) (3.8) 

 

 

Fig 3-24: Calculated likelihood ratio using wavelet transform criteria of a steel beam 

with damage at 0.17 L [63]. 
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   Curvature-based damage detection 

The main purpose of using any method in damage detection is to quantify and 

localize damaged areas. In the last few decades, most researchers in this subject have 

noticed that using displacement mode is not effective to detect simple damages even 

with using higher modes [64]. An extensive effort was made to develop the sensitivity 

of mode shape in damage detection. 

Pandey et al. [65] was one of the first research groups to investigate the 

relationship between the change in dynamic characteristics and physical properties. The 

authors proposed the possibility of using the second derivative of mode shape in 

damage detection. This derivative was called curvature index as per Eq.(3.9), where 𝑣𝑖
′′ 

is the curvature, 𝑣𝑖+1 displacement of mode shape and ℎ element length. The numerical 

analysis of a cantilever beam was proposed, and the damaged sections were modelled in 

terms of reducing the local stiffness, as per Fig 3-25. In this figure the cantilever beam 

model was divided into 20 equal elements. Then damage was modelled by reducing the 

modulus of elasticity; according to this, damage can be modelled at any location along 

the beam. As demonstrated, calculating the curvature of the intact for the first five 

modes did not show any sudden change or jump, as seen in Fig 3-26, while calculating 

the difference between the damaged and intact curvatures for the first mode, Fig 3-27, 

showed a clear peak at the damage location. This difference was calculated for different 

damage locations, where the modulus of the elasticity of the damaged section 𝐸′ was 

reduced to different values (0.1 𝐸 , 0.1 𝐸,  0.3 𝐸,  0.3 𝐸,  0.5 𝐸,  0.7 𝐸 and 0.9 𝐸). Each 

damage provided a unique peak due to the change in mode shape amplitude. A larger 

reduction in local stiffness showed a larger curvature index peak. 

 𝑣𝑖
′′ =

(𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1)

ℎ2
 (3.9) 
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Fig 3-25: Numerical cantilever beam model: (a) finite element model; (b) cross-

sectional area of beam [65].  

 

Fig 3-26:The first five curvatures mode shapes for an intact cantilever beam, as per 

[65]. 

 

Fig 3-27: Numerical absolute difference between the damaged and intact first mode 

with different local stiffness at element 10 [65]. 
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Salawu et al. [66] confirmed the same point investigated in [65], namely that 

calculating the displacement of mode shapes numerically or measuring them 

experimentally is not an effective approach in identifying discontinuity in mode shape. 

This contribution urged researchers to research and modify the dynamic analysis 

process in order to use in damage detection for different mechanical structures. 

Swamidas and Chen [67] performed a finite element study on notched structures. This 

study showed that notches had a clear effect on modal parameters. Also, the authors 

reported that cracks can be quantified via the analysis of measured mode shapes. The 

difference between the intact and damaged data was used for this purpose. Further, they 

reported that using the accurate instruments in experiment have potential role to reduce 

the noise problems.      

Ratcliffe [68] proposed the use of modified Laplacian operator to analyse mode 

shape and localize damaged sections, where it was reported that in cases of severe 

damage the local thickness reduces to more than 10%. Here, a finite difference 

approximation of Laplace’s differential operator was applied to the damaged mode to 

identify the damaged elements. It was found that the magnitude of the difference 

function using the Laplace criteria was able to localize damaged sections, as per 

Fig 3-28. 

 

Fig 3-28: Calculating the difference function using Laplace criteria of a damaged 

cantilever beam [68]. 

The experimental study completed by Ratcliffe and Bagaria [69] demonstrated 

the localization of delaminated areas in a composite beam. Vibration-based damage 
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detection was implemented through the measurement of dynamic modes. Then, to 

determine the damaged area, the curvature index was calculated; to improve this 

damage index, the algorithm from the gapped smoothing method (GSM) was 

implemented to help reduce the effects of noise. The authors reported that the intact data 

baseline was not required for damage detection. Sampaio et al. [70] discussed the 

effectiveness of using the curvature of frequency response function (FRF) in damage 

detection. The difference between the intact and damaged FRF curvature index was 

clearly show the damage location. Local stiffness was reduced at different values to 

evaluate the efficiency of this method. The author concluded that higher reduction in 

stiffness causes higher curvature peaks. 

 

Fig 3-29: FRFs curvature difference index for a frequency between 0-10 rad/s, damaged 

located between points 4 and 5 and peaks representative of different damage 

levels of 20, 40, 60 and 80% from the low to the high peak [70].  

Within the frame-work of damage detection development, Wahab et al. [71] 

presented a numerical study to develop the curvature damage index. This development 

was accomplished by calculating the curvature damage factor, Eq.(3.10). Damage in 

this numerical study was modelled by reducing local stiffness to 90% 𝐸𝐼 (𝐸𝐼 Intact 

stiffness). This reduction was used to represent the stiffness of a damaged section in a 

simply supported beam. This factor was calculated by using the average of the absolute 

difference between intact and damaged data for the first four modes. In this 

equation, 𝑣𝑜𝑖
′′  and  𝑣𝑑𝑖

′′  are the intact and damaged curvatures, respectively and 𝑁 is 

number of modes. The authors reported that calculating this index showed the damaged 
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location (node 11) precisely, as shown in Fig 3-30. This factor was applied to detect 

damage in real bridge with damaged sections. According to their research, as per 

Fig 3-31, curvature damage factor can be more accurate than just calculate curvature. 

However, this factor depends on more than one mode and in dynamic analysis it is not 

easy to measure the higher modes accurately.   

 𝐶𝐷𝐹 =
1

𝑁
 ∑|𝑣𝑜𝑖

′′  − 𝑣𝑑𝑖
′′ |

𝑁

𝑛=1

 (3.10) 

 

Fig 3-30: The effect of the damaged element on the curvature difference index of 

simply supported beam [71]. 
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Fig 3-31: Calculated curvature index and CDF of the real bridge; (a-d) are absolute 

curvature index for mode 1-4 and (e) is the curvature damage factor calculated 

by [71].  

Ratcliffe [72] used vibration-based damage detection to identify the notched 

sections in steel beam structure. Experimental results included measuring the frequency 

response functions for the damaged beam to determine the displacement as a function of 

the measured frequency. Then displacement functions were converted to curvature 

indexes. To improve the damage detection process, the damage index was calculated 

according to the formula shown in Eq.(3.11), where 𝛿𝑖 is the damage index for the 𝑖𝑡ℎ 

grid in the curvature curve, 𝑝0,  𝑝2, and 𝑝3 are coefficients calculated using curvature 

points, 𝐶𝑖. The difference shown between Fig 3-32 and Fig 3-33 explains the upgrading 

of curvature (using curvature as a basis to calculate another damage index) to detect 

damaged sections efficiently. 

 𝛿𝑖 = (𝑝0 + 𝑝1𝑥𝑖 + 𝑝2𝑥𝑖
2 + 𝑝3𝑥𝑖

3 − 𝐶𝑖)
2 (3.11) 
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Fig 3-32: Curvature index with two thickness reduction percent, 10% and 15% between 

points 7 and 8 of a notched steel beam  [72]. 

 

Fig 3-33: Damage index with two thickness reduction percent, 10% and 15% between 

points 7 and 8 of a notched steel beam  [72]. 

Hamey et al. [73] addressed the use of vibration techniques in delamination 

detection for carbon/epoxy composite beams. In this study, piezoelectric detectors were 

used as a sensor to capture the curvature of the laminated beams. Measuring the 

frequency and mode shape of the vibrating beams were considered the basis for 

subsequent damage detection. The Absolute Difference Method (ADM) was found to be 
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a simple approach of damage localization. The difference between the intact and 

damage curvatures was calculated. In this method, each mode shape was tested 

individually and then analysed as a single signal. They determined that the careful 

setting of experimental procedures increased the efficiency to detect the damaged 

regions. One of the most significant algorithms which involves the same criteria of 

absolute difference method is Curvature Damage Factor (CDF). Calculating CDF is 

more accurate than ADM. The third algorithm investigated in this research was Damage 

Index Method (DIM). It was reported that this technique provides a high level of 

sensitivity compared to CDF, although it was not as easy to calculate as other methods. 

Finally, they examined the Frequency Curvature Method (FCM) for the Frequency 

Response Function (FRF), which was considered to be of particular importance to 

experimental work. In this method, there is no need for a database of intact structures to 

perform damage detection. Lestari and Qiao [74] reported damage detection in 

sandwich E-glass fibre composite beams. Artificial damage was created within the core 

of these structures and smart piezoelectric detectors were used to measure the dynamic 

response of the vibrating samples. Calculating curvature damage factor (CDT), as per 

Eq.(3.10), and damage index, Eq.(3.12), demonstrates that this approach was useful in 

detecting the damaged areas in sandwich structures. Fig 3-34 can confirm that the CDF 

and damage index method are useful in damage detection. 

 𝛽𝑖,𝑗 = 
({𝜙𝑑

′′}𝑖,𝑗
2 + ∑ {𝜙𝑑

′′}𝑖,𝑗
2 ) ∑ {𝜙𝑑

′′}𝑖,𝑗
2𝑖 𝑚𝑎𝑥

𝑖=1
𝑖 𝑚𝑎𝑥
𝑖=1

({𝜙ℎ
′′}𝑖,𝑗

2 + ∑ {𝜙𝑑
′′}𝑖,𝑗

2 ) ∑ {𝜙𝑑
′′}𝑖,𝑗

2𝑖 𝑚𝑎𝑥
𝑖=1

𝑖 𝑚𝑎𝑥
𝑖=1

 (3.12) 
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Fig 3-34: Comparison between curvature index (a) and damage index (b) in damage 

detection in a sandwich beam with delamination and crush damage [74].  

  A beam subjected  to an axial load was investigated by Kim et al. [75]. In this 

study, the curvature of the damaged and intact modes was calculated to quantify the 

damaged regions. The authors reported that analysis of dynamic responses clearly 

showed the damaged regions. Vibration-based damage detection was used to identify 

the damaged area in wooden beam structures [76], whereas a novel statistical method 

was proposed to calculate the damage index, 𝐷𝐼𝑖𝑗 , as shown in Fig 3-35. Calculation of 

this index depends on the difference between the intact and damaged data, as 

implemented for a small number of mode shapes in this calculation.  

 

Fig 3-35: Damage detection index for the damaged wooden plate considered in [76]. 
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By contrast, the passive method depends on signal processing analysis to identify 

the damaged regions, as investigated by a number of researchers. In this regard, 

numerical and experimental study was investigated by Mosti et al. [77]. The authors 

demonstrated that dynamic techniques are useful to detect damage in composite 

structures. The numerical approach involved simulating damage in isotropic laminated 

composite plates using the FE COMSOL Multiphysics. Calculating the curvature of 

mode shapes for both damaged and intact data used to detect the damaged area. In 

experimental work, a numerical filter was combined with the unit of data measurement 

in order to eliminate the effects of noise. Damage detection using vibration-based 

techniques was reviewed by Dessi and Camerlengo [78]. This article compared two 

groups of vibration-based damage detection methods. The first group includes methods 

require to baseline data, while the second group methods used modified techniques to 

avoid the intact baseline. In this article the authors reported that the limitations of each 

technique should be understood. Which means that in practical applications, some 

techniques are able to localize damaged areas while failing to quantify the severity of 

the associated damage. More recently, damage detection in delaminated composite 

plates was reported by Chandrashekhar and Ganguli [79]. The delaminated area (2.5 cm 

*5 cm) in their study was located at different locations (inboard, centre and outboard) in 

carbon cyanate laminated plate as shown in Fig 3-36. In this article, a Fuzzy Logic 

Systems (FLS) was used to calculate the probability densities Eq.(3.13), (Gaussian 

distribution function), for both damaged and intact plates. In this equation 𝑚  is the 

midpoint of fuzzy set and 𝜎 is the standard deviation. In this method the change in 

natural frequency due to different damage locations was used to calculate this index. It 

is clear from Fig 3-37 that the probability density wave location moves forward 

depending on the location of the delaminated area. This change in location can be 

considered an indicator of the existence of damage. The second contribution in this 

article was calculating CDF as per Eq.(3.10) for a few mode shapes. The peak of this 

factor was obvious, showing the delaminated area at different levels (slight, moderate 

and severe) as per Fig 3-38; though for severe damage the distortion at the damaged 

area become larger. 

 𝑃(∆𝜔) =
1

√2𝜋𝜎
𝑒

−0.5(
(∆𝜔−𝑚)

𝜎
)
2

 (3.13) 
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Fig 3-36: Schematic of delaminated composite plate investigated in  [79].  

 

Fig 3-37: Calculating the probability density index for intact and damaged plates using 

fuzzy logic system for the third vibrational mode [79]. 
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Fig 3-38: Calculating the curvature damage index for different damage levels in 

delaminated composite  plates [79]. 
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 Modal flexibility-based methods damage identification      

Using the flexibility parameter of mechanical structures in damage detection has 

been investigated by a number of researchers. Pandey et al. [80] proposed a  numerical 

study whereby the variation in flexibility and its curvature were calculated as indexes to 

detect the damaged regions. The authors showed that this method works better with 

severe damage than simple damage. Zhang et al. [81] discussed the use of modal 

flexibility and its derivative, uniform load surface (ULS), Eq.(3.14), where  ∅𝑟 is the 

normalized mass mode, 𝑛 the degree of freedom, 𝜔𝑟 the natural frequency of 𝑟𝑡ℎ mode. 

The authors concluded that ULS was less sensitive to the noise data than the mode 

shape. ULS curvature was used to determine damaged areas in plate structures, as 

investigated by Wu and Law [82] and [83]. The ULS curvature shown in Fig 3-39 

emphasizes the use of this technique as a useful method in the detection of damaged 

areas. To improve the use of ULS method, Wang [48] proposed the application of a new 

filter called Simplified Gapped-Smoothing (SGS), as shown in Eq.(3.15), where (𝐶0 −

𝐶4) are constants that can be calculated by regression analysis. According to the 

definition of SGS, this index is based on a polynomial equation, as shown in Eq.(3.15), 

so squaring the entire equation can increase the index peak.  

 𝑢𝑘 = ∑
∅𝑟(𝑘)∑ ∅𝑟(𝑙)

𝑛
𝑙=1

𝜔𝑟
2

𝑚

𝑟=1

 (3.14) 

  

 𝑆𝐺𝑆(𝑥) =  (𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑥) − 𝐶0 − 𝐶1𝑥 − 𝐶2 𝑥
2 − 𝐶3 𝑥

3 − 𝐶4 𝑥
4 )2 (3.15) 
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Fig 3-39: Calculated ULS curvature index map of the damaged plate discussed in [83]. 

Bernagozzi et al. [84] investigated the use of modal flexibility-based damage 

identification to detect the damage in truss steel structures. This technique can be used 

in structural health monitoring of generic buildings. This study added another evidence 

that studying the flexibility behaviour of mechanical structures might be useful in 

damage detection purpose.    

3.2 Non-destructive testing (NDT) techniques 

In general, composite structures are inspected for the existence of damage that is 

commonly caused by the continuous use of these structures in different applications. In 

composite structures, visual inspection is considered among the easiest and most 

common methods used in monitoring subject. Techniques similar to radiography are 

employed to test and analyse bond-line defects. Thermography and shearography NDT 

methods are generally used to diagnose fibre discontinuity, or where defects occur in 

honeycomb core and adhesive voids. Acoustic emissions are another NDT techniques 

utilized to detect damage in thin structures. Ultrasonic methods are another important 

NDT technique that can be used to macerate the energy of a sound wave to identify 

damaged regions in composite structures [85].  According to this explanation, the most 

common NDT methods are:   
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 Thermal NDT 

Thermography method can be used in health monitoring of composite structures 

as reported by Dutton [86]. In this research Dutton [86] utilized infrared thermography 

in addition to external radiation source in order to induce differences in temperature at 

the surface of composite samples. These differences in temperature were used to detect 

air voids and other foreign bodies in the samples, as shown in Fig 3-40, whereas the 

recorded data could be analysed to clarify the nature of any internal damage. Genest et 

al. [87] investigated detection of disbands in composite structures. To detect the 

damaged areas, pulse thermography (PT) was used. Then a thermographic signal 

processing (TSP) and derivative processing were employed to analyse the received 

signals. Using transient thermal NDT to assess damage in aircraft structures was 

investigated by Avdelidis et al. [88]. In this research, the authors used this technique to 

detect different types of damages in composite samples. It was found that this method 

could detect damage in large structures with considerable efficiency. However, this 

method has limitation to a certain amount of size and depth of damage after that 

damaged areas cannot be detected. So, this method is not useful in the detection of small 

regions of delamination in composite structures. Meola et al.[89] reported the use of 

optical lock-in to detect the manufactured damages (artificial damages) in carbon fibre 

reinforced polymer (CFRP) samples. Fig 3-41 demonstrates the set-up of this method 

that used in the experiment work. It is worth noting that thermographic techniques can 

be not useful in testing the sensitive surface and are not valid for online health 

monitoring. 

 

Fig 3-40: Experimental schematic of thermography[86].  



 

Chapter 3: A literature review of vibration-based damage detection methods 

University of Leicester                                                                                                     Page | 103  
 

 

Fig 3-41:Look-in thermography pattern [88]. 

 Radiography 

Radiographic techniques, practically X-ray, are considered among the most 

important non-destructive methods. These methods can be applied to all materials and 

can be used to examine the internal parts of an object. X-rays are electromagnetic waves 

at wavelengths ranging between 0.01 and 10 nanometres. X-rays have a high energy 

level according to the inverse relationship between wavelength and energy. This enables 

them to pass through materials and examine their internal parts. This feature of X-rays 

can be utilized to detect damage, cracks, voids and any fault in the material. Different 

parameters are related to the use of these waves, such as the density and thickness of the 

material to be examined, the density and energy of the X-rays, and the required amount 

of X-rays to pass through the material. Also X-rays can be collected in 1D, 2D and even 

in 3D [90]. 

 Fiori et al. [91] conducted an experiment using phase-contrast neutron 

tomography to examine the ability of this technique to identify cracks in samples of 

aluminium alloy. In this study, the authors used 2024 fatigued Al alloy samples. They 

reported that using this experimental method detected cracks and provided an estimate 

as to some of the cracks’ parameters, such as thickness and length. Xu et al. [92] 

investigated an automatic-X-ray approach to identify radial and circular cracks in wing 

structures. To this end, the authors used a robotic X-ray imaging system provided with a 

sophisticated detector to collect high-resolution photographs. These images have been 
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taken for fastener holes at different locations in the wing of aircraft. Both of radial and 

circular scanning on this structure was accomplished to detect the crack location, as per 

Fig 3-42. Finally, to reduce the effect of noise in the captured images, three crack filters 

were employed. Albuquerque et al. [93] presented a successful identification of 

delaminated areas in laminated plates utilizing radiographic technique. Here, the authors 

used an artificial network to divide the captured images and analyse them efficiently.   

The advantages of using radiographic technique that can be applied to all types of 

materials, allows rapid examination, and provides efficient visual of interior parts.  

However, there are a few limitations of this technique, such as it being expensive, 

potentially unsafe, and extensive user training is required. 

 

Fig 3-42: Photo of X-ray scanning of an aircraft wing structure [92]. 

 Acoustic emissions 

Acoustic emissions (AE) can be defined as the process by which transient elastic 

waves are generated at high speed and energy at a source and are directed into the 

material. In this process, waves are created inside the material. Thus, external excitation 

is required to encourage the source sending acoustic waves out. This feature is the key 

idea to the use of this technique. In addition, in the AE method any change in the 

applied load, temperature, pressure or strain can be considered as a type of external 

excitation.  

Holford et al. [94] investigated damage detection in bridges using acoustic 

emission. The authors identified damage in steel-concert bridge by applying time-of-

arrival location methods. Local and global attempts were used. The local monitoring 

was achieved on a 12 m I-beam at the same laboratory conditions. In addition, finite 

element included modelling a component of bridge was presented and results compared 
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with the experiment work. The acoustic emission signals were analysed and modes are 

filtered. It was reported that the use of this technique could successfully detect damage 

in steel-concert composite bridge. Hatta et al. [95] presented the using of AE to detect 

cracks in carbon composite samples. Notched composite samples subjected to compact 

tension load were utilized. To detect the notches, Electronic Speckle Pattern 

Interferometry (ESPI), as per Fig 3-43, and a Super Conducting Quantum Interference 

Device (SQUID), as seen in Fig 3-44, were employed. In this study, the authors found 

that delaminated areas were detected efficiently, where ESPI detected the delamination 

in this structure and it proved to diagnose failure in fibres.  

Elforjani and Mba [96] researched the use of acoustic emission technique in 

detection and localization natural damages in rolling element bearing and test its ability 

to assess initiation and propagation cracks in bearing races during their operation. Many 

data analysis sets were recorded, such as spectrum wave analysis and characteristics of 

entropy, to detect the existence of cracks. They reported that using the AE technique 

efficiently provided information about natural crack sizes in bearings. As demonstrated 

by Fig 3-45, a typical acoustic emission has various waveform amplitudes at different 

working hours.  

One of the most significant drawbacks to use acoustic emission is that this 

technique is not useful in noisy environments, as it is difficult to filter the measured 

signal from the noise. Also, it is not useful for online structural health monitoring [97]. 

 

Fig 3-43: Schematic 3D-ESPI system used in [95].  
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Fig 3-44: Schematic of SQUID system and terminal setting used in [95]. 

 

Fig 3-45:  Acoustic emission waveforms record during different times of operation 

[96]. 



 

Chapter 3: A literature review of vibration-based damage detection methods 

University of Leicester                                                                                                     Page | 107  
 

 Ultrasonic waves 

Ultrasonic waves can be defined as high-frequency sound waves vibrating at 

frequency of more than 20,000 Hz. This higher frequency makes these waves are not 

heard by humans who are generally restricted to a frequency range of 20 – 17,000 Hz. 

In non-destructive evaluation (NDE), ultrasonic frequencies are higher than 50 kHz 

[90]. These waves can be used to assess a material in terms of geometry, density, 

configuration, mechanical properties and even to detect damage in the material. The key 

feature is that this technique depends on the scattering of ultrasonic waves due to 

damages. Analysis of echo properties can be used to quantify damage characteristics 

such as location, size and shape. 

Guta et al. [97] improved the statistical methods used to detect fatigue damage in 

polycrystalline alloy structures. This statistical method can be used to analyse ultrasonic 

waves and then applied in the online monitoring of these structures. The authors 

reported that a simple change found to this statistical due to the growth of simple crack 

inside the material. They concluded their study by noting that data analysed using this 

statistical analysis can provide an early warning to the next failure. 

Harri et al. [98] investigated an online method to quantify the surface cracks in 

wing structures under loading. Their method involved passing a continuous multi-sine 

ultrasonic wave and then measuring the variance in the received signal. The method was 

reported as a useful approach where cracks had not yet attained a critical length (start 

fracture). In addition to this, this method is applicable to structures under tensile or 

compressive load in order to verify the opening and closing in cracks. However, the 

challenge to this method is that crack detection depends on analysing characteristics of 

ultrasonic waves that should pass through more than one transducers.  

In summary, there are a number of advantages of using ultrasonic waves in 

damage detection. This method was shown to be highly efficient in noisy conditions, 

even when excited at high frequencies. However, ultrasonic waves have some 

limitations, where they can fail to scan damage parallel to the wave direction. It has also 

been reported that this method is not always useful in online structural health 

monitoring. 
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3.3 Application of damage detection methods on different structures 

Over the last few decades, the analysis of modal characteristics such as mode 

shape and natural frequency have become considered to be reliable techniques to detect 

the damaged areas. Valdes et al. [99] reported the analysis of natural frequency response 

to detect delaminated areas in composite beams. A piezoceramic was utilized to vibrate 

the structure, with the subsequent dynamic responses measured using piezoelectric film 

sensors. Resonant ultrasound spectroscopy was applied to determine the modal 

frequencies. Comparison of intact and damaged data clearly showed the delaminated 

area via the associated change in modal frequencies. Moreover, the effect of 

delaminated area size on the natural frequency was examined. The influence of a 

delaminated area in a honeycomb beam on natural frequency was investigated by Kim 

et al. [100]. The effect of delamination on flexural stiffness and natural frequency was 

computed theoretically and compared with experimental results. This study showed that 

the reduction of the natural frequency was proportional to the increase in the length of 

the delamination in a composite beam. The authors also reported that calculating the 

difference between the intact and damaged frequency response function showed that 

increasing the delaminated area reduces the peak in the natural frequency response.  

Lestari et al. [101] investigated the experimental and theoretical analysis of mode 

shape and its curvature. They mentioned that calculating the curvature can be 

considered as a sensitive index to assess damaged regions. Different types of damages 

were created to test the validity of using this technique in damage detection. A new 

approach to detect cracks in  beam structures was investigated in [102]. The key feature 

of this was calculating the irregularity index of mode shapes. In this study, the mode 

shape of cracked beam was calculated analytically. Then, numerically, the intact and 

damaged mode shapes were calculated and filtered at different frequencies. This 

filtration was able to separate the fluctuating part in the damaged data and use this to 

identify the position and severity of any crack. Another study was proposed by Cao et 

al.[103], who explained the validity of using the mode shape approach and static 

deflection to detect damaged section in cantilever beam structures. Another contribution 

to the  subject of damage detection was the proposal presented by Wang et al. [102]. 
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The authors investigated and extended what achieved by Bazardehi et al. [104] to detect 

the delamination in laminated plate structures under different boundary conditions. It 

was found that mode shapes contain sufficient information about any change in the 

physical characteristics of the vibrated structures to be useful as a detection technique. 

To improve the detection process, two new indexes ‘slope of the smooth part’, and 

‘irregularities in the slope of smooth part’ were calculated to show the damaged areas. 

The limitations to this method were the lack of detection of deep delamination through 

thicknesses and the inability to detect delaminated areas near edges. 

Delamination in laminated composite structures using vibration-based damage 

detection was investigated by Ullah and  Sinha [105]. The lower few modes were 

utilized and the harmonic response was calculated and measured to show the nonlinear 

interaction of delamination in laminated structures. The finite element analysis available 

in ABAQUS was used to model the delaminated areas and calculate the amplitude of 

dynamic velocity components. Then, an experiment was implemented to compare to the 

numerical analysis. In this study the novel index called “Cumulative of Normalize 

Summation Harmonic” (CNSH) was proposed to detect the delaminated area. Different 

damage regions in a metal beam and plate structures were detected by using the damage 

index method (DIM), as proposed by Eraky et al. [106]. A numerical model was 

developed to study the effect of different parameters, such as the orientation and 

location of damage on the dynamic response. Experimental work was undertaken to 

compare with the numerical analysis. The authors concluded that analysing modal strain 

energy and calculating the damage index was sufficient to detect damaged sections. 

Ghosh et al. [107] researched the higher derivatives of mode shape and their 

sensitives in damage detection. They reported that the higher modes were more 

sensitive in the detection of damaged areas than lower ones. Theoretical analysis 

concentrated on the mathematical formulation to derive the changes in mode shapes. 

Additionally, experimental work was performed on steel frame structures to detect 

damaged regions. The authors concluded that although the higher modes and their 

derivatives provide significant damage indicators, they are significantly affected by 

damage location. Which means that the detection of damage near the fixed edges is 

easier than damage located nearer the free edges.   
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There are a number of studies that have attempted to compare experimental and 

numerical analysis using vibration-based damage detection techniques, whereas in [108] 

and [109], the authors reported a number of damage indexes used in damage detection 

for both  numerical and experimental work. For example, curvature of mode shape 

index, and change in flexibility and stiffness, were calculated to identify the location 

and severity of damage in a three-span bridge structure. Ndambi et al. [110] studied 

damage detection in concrete beams by utilizing the analysis of the intact and damaged 

dynamic characteristics. According to this study, the severity of damaged sections has a 

potential effect on the magnitudes of indexes.  

3.4 Unresolved issues on damage detection of composite structures  

Vibration-based damage detection techniques are still one of the most important 

methods by which to assess and monitor the development of damage in mechanical 

structures. Modal parameter-based damage detection techniques have been used to 

detect damaged areas in different applications. These techniques can include analysis of 

mode shape, natural frequency, and damping ratio.  

Intensive research has been conducted into the use and development of vibration-

based damage detection methods. According to the literature review in this research, 

each method has advantages and disadvantages, where some can detect but not localize, 

some require a number of mode shapes, etc. Also, there are a number of limitations to 

NDT methods, such as being expensive, requiring high levels of training, and some are 

not useful for online monitoring, etc. In this regard, the most important issue in damage 

detection processes is to select the perfect method, one which is sufficiently sensitive to 

detect any damaged areas and save both time and money.  

Frequency change-based techniques can be applied to detect and quantify 

damaged regions in simple structures. Due to its limitations, this method is not 

sufficient to detect damage in complex structures, although it can be considered a global 

damage detection method. Using mode shape is useful for detecting severe damage. To 

improve mode shape-based damage detection, the curvature index was formulated. This 

index was found to be more sensitive than mode shape.  

 The aim of comparative studies was to evaluate the dynamic damage indicators 

used in damage identification. This was one of the motivations to apply and discuss this 
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method in chapter four of this thesis. The second point is that damages in laminated 

structures tend to be complicated. According to the literature review, there is a 

knowledge gap in detecting different types of damage in laminated composite structures 

and the comparison between them. Additionally, there is a general lack of research into 

local damage detection. This was the main motivation to investigate the detection of 

damage in linear patterns and to attempt to report the severity of the damage in 

laminated structures.    
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Chapter 4: A comparative study of the damage detection 

methods 

The main purpose of this chapter is to evaluate a number of dynamic indexes in 

damage detection subject. This evaluation started with numerical analysis, by modelling 

a cracked cantilever beam using FE COMSOL Multiphysics 5.1 software, where the 

variation of the first natural frequency at different crack sizes was computed. Then, a 

simple cantilever beam with and without damage was simulated using COMSOL to test 

the sensitivity of slope of mode shape, curvature, fractal dimension and irregularity 

indexes. This analysis was accomplished under a free vibration condition, where the 

few first mode shapes were calculated and used to detect the damaged sections. Also, 

the effect of noise on the dynamic response analysis was examined.   

4.1 Validation case study 

The aim of this section was to study the effect of a cracked section on the natural 

frequency of the beam structure using finite element analysis. To this end, COMSOL 

5.1 software was employed to calculate the dynamic response of this model and to allow 

comparison with the analysis investigated by Chati et al. [111]. Here, cracked cantilever 

beams were investigated by Chati et al. [111] and Barad et al. [112] modelled as a 

validation case study. Moreover, the variation of natural frequency was calculated for 

different crack depths. Natural frequency, according to the literature review, is 

considered to be a global index, whereas a reduction in natural frequency indicates the 

existence of damage.  

The numerical solution was determined via simulation of a cantilever beam using 

the COMSOL Multiphysics 5.1. All dimensions of the model were identical to those 

reported in [111], where L represents the length of the beam = 10 m, A is the cross-

sectional area = 1 m2, b is the location of crack relative to the fixed end and a is the 

crack length. Also, the mechanical properties of steel, as listed in Table 4-1, were used 

in the FE analysis. Moreover, Fig 4-2 illustrates the simulated model of a cracked beam. 

To achieve the numerical analysis, a solid mechanics interface was employed to identify 

the boundary conditions of the cracked beam, and an eigenfrequency study was utilized 
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to find the associated eigenmodes and natural frequencies. A free triangular mesh type 

with extremely fine size was utilized to create the unstructured, triangular mesh in the 

2D domain.  

Table 4-1: Mechanical properties of steel, as reported in [111].   

Property Magnitude 

Modulus of elasticity (𝐺𝑃𝑎) 210 

Poisson’s ratio 0.3 

Density (
𝑘𝑔

𝑚3) 7850 

 

 

Fig 4-1: Schematic of cracked cantilever beam used in the validation case study [111]. 

 

Fig 4-2: Numerical model of the cracked cantilever beam as represented in the FE 

software COMSOL Multiphysics 5.1. 

The numerical analysis for this case study showed the relationship between the 

variations in natural frequency of a cracked beam for different crack sizes. The 

normalized natural frequency was calculated for this model by dividing each value of 

damaged natural frequency (𝜔𝑐) by the undamaged value (𝜔), (normalized natural 

frequency =  ωc/ω ). In this analysis, the crack reduces the local stiffness and the 

higher crack size causes higher reduction in the local stiffness. To explain this, Fig 4-3 

was the best demonstration of the common relationship between crack size and natural 

frequency, with cracks located at different positions along the beam.   
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Fig 4-3: The variation of first normalized natural frequency ωc/ω with a different 

crack ratio for the cantilever beam shown in Fig 4-1[111]. 

According to the principles of the vibration of a continuous system, as discussed 

in section 2.3.3, the mathematical basis for the relationship between natural frequency 

and the stiffness of a vibrating beam is clear. Two important issues can be seen in 

Fig 4-3: firstly, that increasing crack depth decreases the natural frequency, and that 

normalized value consequently reduces, where at a crack depth approximately equal 

beam height, the normalized value roughly will be equal to zero. Secondly, natural 

frequency is affected by a crack that is close to the fixed end to a much greater extent 

than a crack near to the free edge. As is clear in this figure, a crack at 0.2 has a greater 

influence than a crack at 0.5 and 0.7 L (beam length) because the local bending moment 

of beam is variable along its length.  

4.2 Results of comparative study 

This section involves the evaluation of dynamic indicators via the analysis of the 

dynamic response for the damaged cantilever beam, where the variation of natural 

frequency, mode shape and its slope, curvature, fractal dimension and irregularity 

indexes were calculated for both intact and damaged beams. The dimensions used in the 
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numerical model, as simulated by COMSOL Multiphysics 5.1, are listed in Table 4-2. 

To clarify, Fig 4-4 describes the schematic of damaged beam used in the current study. 

The mechanical properties shown in Table 4-1 were also used for the vibrating beam in 

this section. Furthermore, to simulate this model, the beam element type, a cantilever 

beam as boundary conditions, mechanical properties of steel and the eigenfrequency 

were utilized to calculate the modal characteristics. A 1D beam element type was 

selected for the simulation. 

Table 4-2: Details of the cantilever beam used in the comparative study. 

Part Symbol Magnitude (Unit) 

Beam length L 1 (𝑚) 

Position of damaged section to the fixed edge 𝐿1 Different values (𝑚) 

Length of damaged section 𝐿2  0.03 (𝑚) 

Position of damaged section to the free edge 𝐿3 Different values (𝑚) 

Cross-sectional area A 0.0025 (𝑚2) 

Width and thickness b, b  0.05 (𝑚) 

  

 

Fig 4-4: Schematic of the damaged cantilever beam used in the numerical analysis. The 

total length = 1 m, cross-sectional area = 0.0025 m2 and damage is located at L1.  
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 Frequency-based damage detection in a simple cantilever beam 

The motivation for this section is that damage detection in complicated structures 

is not in any way straightforward. For this, an evaluation of different indicators is of 

particular important to improve the damage identification process. There has been 

intensive work, as reported in the literature, into testing the modal characteristics and 

improving them to better analyse dynamic signals.  

The cantilever beam in Fig 4-4 has been simulated to detect the damaged sections. 

Within this analysis, a few first natural frequencies were calculated. The key idea of this 

study was to determine the relationship between natural frequency and variation of 

beam stiffness(𝐸𝐼). To model damage in this beam, the stiffness was reduced in terms 

of change the moment of inertia (𝐼) at the damaged section. This reduction occurs due 

to the change of coordinate point of neutral axis, which means there will be a new area 

moment of inertia for the damaged section. As demonstrated by Fig 4-5, the area 

moment of inertia for both circular and rectangular areas are entirely different and 

depends on the coordinates of the neutral axis. For a rectangular area, this is:  

𝑰𝒙 =
𝟏

𝟑
𝒃𝒉𝟑 and  𝑰𝒙́ =

𝟏

𝟏𝟐
𝒃𝒉𝟑,  𝑰𝒚́ =

𝟏

𝟏𝟐
𝒉𝒃𝟑.  

While for a semi-circular area this is: 

  𝑰𝒙 = 𝑰𝒚 =
𝟏

𝟖
𝝅𝒓𝟒    𝑰𝒙́ = (

𝝅

𝟖
−

𝟖

𝟗𝝅
) 𝒓𝟒.  

 In the current study, the reduction in moment of inertia can be understood by 

considering Fig 4-6, where 𝑰𝒉, 𝑰𝒅  are the area moments of inertia for the intact and 

damaged beams, respectively. The reduction of moment of inertia means a reduction in 

the local stiffness of the damaged sections. 

 

Fig 4-5:  The effect of coordinate location on the moment of inertia.  
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Fig 4-6: The moment of inertia for both the intact and a damaged square area. 

The damaged section has been simulated with different moments of inertia, and 

this is in fact the same idea as when damage occurs in laminated structures. According 

to the delamination mechanism discussed in chapter one, delamination causes the 

debonding of adjacent plies and this divides the damaged section into more than one 

area, and this was the same idea assumed here to model the damaged section. 

Furthermore, the first three natural frequencies have been calculated. To demonstrate 

this more clearly, Fig 4-7, Fig 4-8 and Fig 4-9 show the decreasing value of the first 

three natural frequencies with the associated reduction in moment of inertia (the initial 

value of the moment of inertia for the damaged section is 0.52 e-6 m4). It is obvious 

from these figures that frequency-stiffness variation is not smooth, so these curves show 

greater stability at damaged stiffness larger than 0.2, while from damaged stiffness less 

0.2, the reduction in natural frequency increases sharply. This variation in natural 

frequency can add another evidence to explain the relationship between natural 

frequency and the reduction in local stiffness. Also, in the dynamic analysis each mode 

shape vibrates at a certain natural frequency, which explains why each curve in the 

above figures show their own unique frequency- stiffness curve.  
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Fig 4-7: The variation of first natural frequency of the damaged cantilever beam at 

different local stiffnesses, L = 1 m, L1 = 0.5 m, L2 = 0.03 m and cross-sectional 

area = 0.0025 m2. 

 

Fig 4-8: The variation of the second natural frequency of the damaged cantilever beam 

at different local stiffnesses, L = 1 m, L1 = 0.5 m, L2 = 0.03 m and cross-

sectional area = 0.0025 m2. 
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Fig 4-9: The variation of the third natural frequency of the damaged cantilever beam at 

different local stiffnesses, L = 1 m, L1 = 0.5 m, L2 = 0.03 m and cross-sectional 

area = 0.0025 m2. 

 Mode shape damage index 

This section demonstrates the effect of the reduction in local stiffness on the 

displacement mode shape in the beam structures shown in Fig 4-4, where the first two 

modes were calculated using COMSOL 5.1. This case study assumes that the drop in 

stiffness occurs at different ratios in order to represent the reality of severe damage. The 

mathematical basis of this approach is that clear from Eq.(2.37) and Eq.(2.38).  

According to the relationship between the dynamic amplitude of mode shape, natural 

frequency and stiffness, the decrease in natural frequency is the real indicator of any 

reduction in local stiffness. To this end, local stiffness at the damaged section (refers to 

the length in which stiffness is reduced to 𝐸𝐼𝑑) was reduced by sequentially by 10%, 

20% and 30% (i.e., 0.1, 0.2 and 0.3  𝐸𝐼𝑑) to study the change in stiffness, as seen in 

Table 4-3. The first two mode shapes with 10%, 20% and 30% and without these 

percentages under condition of free vibration were calculated. The normalized first 

intact and damaged modes are presented in Fig 4-10. In this figure, it can be seen there 

is no significant difference between the intact and damaged modes, because reducing 

stiffness for example 0.3 or 0.2 𝐸𝐼𝑑 has invisible effect on the mode shape. Which 

means it is not easy to see the effects of simple damage [damage was modelled by 
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reducing the local stiffness] by mode shape itself. However, it is not surprising to see 

the effect of damage that mode shape can be affected by severe reductions in local 

stiffness, and that the local disturbance associated with the damage location can be 

noticed when the reduced stiffness value is equal to 0.1 𝐸𝐼𝑑. The second issue that 

should be demonstrated is that modelling the damaged section at different positions 

relative to the fixed edge (0.4 and 0.6 m) may result in different local disturbances, 

whereas in Fig 4-11, reducing the stiffness to 0.1 𝐸𝐼𝑑 resulted in a clear local distortion 

in mode shape, with the same occurring at a damage location of 0.6 m, as per Fig 4-12. 

The same criteria were applied to the second mode, as shown in Fig 4-13, Fig 4-14 and 

Fig 4-15. The intact mode was quite close to the profile of the damaged modes as seen 

by Fig 4-13. The same discussion is equally valid for the second mode, the only 

difference being that reducing the local stiffness to greater than 0.3 𝐸𝐼𝑑 showed a clear 

local perturbation at the damaged section. Also, damage at different locations had 

different influences on the amplitude of the damaged modes and this due to the varying 

of local bending moment of the beam along its length, as seen in Fig 4-13 and Fig 4-14, 

where the variation of damaged modes due the damaged sections at 0.2 and 0.4 m 

showed different local distortions. The most important point in mode shape analysis is 

that the mode shape itself can be sensitive to cases of severe damage.  

Table 4-3: Details of stiffness parameters used in this chapter. 

Stiffens  Magnitude  

Intact stiffness  (𝐸𝐼ℎ) 

Damaged stiffness  (𝐸𝐼𝑑) 

Intact moment of inertia    𝐼ℎ =
𝑏4

12
 

Damaged moment of inertia   
𝐼𝑑 =

𝑏4

48
 

Reduced stiffness 𝑁% ∗ (𝐸𝐼𝑑), 𝑁 > 0  
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Fig 4-10: Numerical first mode shape of the intact and damaged cantilever beam, L = 1 

m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at different local 

stiffness.  

 

Fig 4-11: Numerical first mode shape of the damaged cantilever beam, L = 1 m, L1 = 

0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at different local stiffness.  
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Fig 4-12: Numerical first mode shape of the damaged cantilever beam, L = 1 m, L1 = 

0.6 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at different local stiffness.  

 

Fig 4-13: Numerical second mode shape of the intact and damaged cantilever beam, L 

= 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at different 

local stiffness.  
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Fig 4-14: Numerical second mode shape of the damaged cantilever beam, L = 1 m, L1 = 

0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at different local stiffness.  

 

 

Fig 4-15: Numerical second mode shape of the damaged cantilever beam, L = 1 m, L1 = 

0.6 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at different local stiffness.  
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 Slope of mode shape damage index 

In this section, the slope of the damaged modes was evaluated in terms of the 

identification the damaged sections in the simple cantilever beam shown in Fig 4-4. The 

forward finite difference in the x-direction was utilized to determine the slope of mode 

shape as shown in Eq.(4.1), where  
𝜕𝜙

𝜕𝑥
|𝑖,𝑗 is the first derivative, 𝜙𝑖𝑗 is the mode shape 

and ∆𝑥 the element length for the sequence points over the calculated mode. The most 

important issue in analysing mode shape is to test its efficiency in detecting damaged 

sections. Some of the earliest articles in this subject, as investigated by Ostachowicz et 

al. [36] and Cao et al. [103], reported that the slope of the mode shape might be suitable 

for identifying the cracked sections. To test the efficiency of this index, the slope of the 

first two modes was calculated.  

 
𝜕𝜙

𝜕𝑥
|𝑖,𝑗 =

𝜙(𝑖+1)𝑗 − 𝜙𝑖𝑗

∆𝑥
 

(4.1) 

It is clear from Fig 4-16 that any reduction in the local stiffness of the damaged 

section at 0.2 m has a noticeable effect on the continuity of the slope index. This means 

that the slope can show any hidden information in the displacement mode shape due to 

the influence of damaged section. In this figure, there was no significant difference 

between slope indexes for both damaged stiffness (𝐸𝐼𝑑) and (0.3 𝐸𝐼𝑑) value, while, 

once the stiffness reduces further, the local distortion to the mode shape becomes more 

obvious, for example at (0.2 𝐸𝐼𝑑), a clear jump can be seen. For this case, the local 

stiffness was reduced by 10%, 20% and 30% to determine the influence of this 

parameter on the dynamic signal.  Furthermore, this reduction was applied to different 

locations (0.4, and 0.6 m) as per Fig 4-17 and Fig 4-18 . Both of these figures show that 

the slope index allows detection of the damaged sections at these locations. However, 

this index showed that the detection of low stiffnesses is more difficult than an 

equivalent value near the fixed edge, as can be seen in Fig 4-17 and Fig 4-18. The same 

concept was applied to the second mode shapes, as shown in Fig 4-19, Fig 4-20 and 

Fig 4-21. The variation in slope index still indicates a distortion at all three different 

stiffnesses and locations, also the slope of the second mode showed that the detection of 

any damage that is distance from fixed end is easier than damage close to the fixed 

edge. This can occur because each mode has a certain profile due to the change in local 



   

Chapter 4: A comparative study of the damage detection methods  

University of Leicester                                                                                                     Page | 126  
 

bending moment. In brief, the slope of the mode shape is more effective than the mode 

shape itself in terms of detection of damaged regions. However, it still detects severe 

damages more efficiently than the detection of simple damage [in FEA simple damage 

means small reduction in local stiffness].  

 

Fig 4-16: Slope index of numerical first mode shape of the damaged cantilever beam, L 

= 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at different 

local stiffnesses.  

 

Fig 4-17: Slope index of numerical first mode shape of a damaged cantilever beam, L = 

1 m, L1 = 0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at different local 

stiffnesses.  
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Fig 4-18: Slope index of numerical first mode shape of a damaged cantilever beam, L = 

1 m, L1 = 0.6 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at different local 

stiffnesses.  

 

 

Fig 4-19: Slope index of numerical second mode shape of a damaged cantilever beam, 

L = 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at different 

local stiffnesses.  
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Fig 4-20: Slope index of numerical second mode shape of a damaged cantilever beam, 

L = 1 m, L1 = 0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at different 

local stiffnesses.  

 

 

Fig 4-21: Slope index of numerical second mode shape of a damaged cantilever beam, 

L = 1 m, L1 = 0.6 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at different 

local stiffnesses.  
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 Curvature and fractal dimension indexes 

The purpose of this section is to explain the calculation and evaluation of 

curvature and fractal dimension indexes. Both of these indicators were used to quantify 

the damaged sections using vibration-based damage detection.  

The curvature of the mode shape is the second derivative of the curve. The central 

difference method was employed to formulate the curvature index Eq.(4.2), as reported 

by Chandrashekhar and Ganguli [113].  

 𝑣𝑖,𝑗
′′ = 

𝜙(𝑖+1)𝑗 − 2𝜙𝑖,𝑗 + 𝜙(𝑖−1)𝑗

∆𝑥2
 (4.2) 

Where 𝑣𝑖,𝑗
′′  is the modal curvature and 𝑖 represents node number, 𝑗 is the mode 

number and ∆𝑥 is the element length. ϕi,j is the modal value of the 𝑖𝑡ℎ node and the 𝑗𝑡ℎ 

mode.  

Fractal dimension index is another damage detection index, as per Eq.(4.3), as 

proposed by Katz [114]. This index was used in the detection of cracked sections of a 

rectangular plate [47]. This index was proposed to improve damage detection analysis 

by revealing the hidden information in dynamic signals. Fig 4-22 shows the application 

of the fractal dimension to the 1D signal analysis.   

 𝐹𝐷 = 
𝑙𝑜𝑔10(𝑛)

𝑙𝑜𝑔10 (
𝑑
𝐿) + 𝐿𝑜𝑔10(𝑛)

 (4.3) 

 Where n represents the number of steps over the curve =
𝐿

𝑎
 , 𝑎 is the average 

distance between the successive points over the curve, 𝑑 = max dist (1, 𝑖) is the max 

estimated diameter between the first point and the 𝑖𝑡ℎ  point over the curve and 𝐿 is the 

total length of the curve or the summation of the distance between successive points.  
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Fig 4-22: Numerical 1D estimated fractal dimension index of a rectangular plate with a 

surface crack, where the FD peak shows the exact notch location [47]. 

Numerically, the intact and damaged cantilever beams shown in Fig 4-4 were 

simulated using COMSOL Multiphysics 5.1 with different local stiffnesses.  Both the 

intact mode shape and its curvature index do not show any significant change as per 

Fig 4-23 and Fig 4-24. This means there is no change in the physical properties that can 

affect the continuity of the dynamic response for the vibrated object. By contrast, 

Fig 4-25 shows an extreme jump in the curvature index of the first mode shapes for 

damage modelled at 0.2 m. The peaks of curvature index associated with damage 

sections (𝐸𝐼𝑑) and (0.3 𝐸𝐼𝑑) were approximately equal to -7000. Different curvature 

indexes were seen depending on the reduction of local stiffness. By contrast, Fig 4-26 

and Fig 4-27 introduce the curvature index of the damaged beam at different locations, 

namely 0.4 and 0.6 m. Both figures showed that a significant reduction in local stiffness 

shows a low curvature index peak. For example, a peak of (0.3 𝐸𝐼𝑑) is higher than peak 

of (0.1 𝐸𝐼𝑑). In addition, damage that is distance from the fixed edge has curvature 

index peak values that are greater than similar damage close to the fixed end, for 

example the numerical values for curvature peak with damaged stiffness (𝐸𝐼𝑑) at 0.6 m 

equal to -70000 Fig 4-27 , while -6800 for the same damaged stiffness at 0.2 m Fig 4-25 

. These three figures show that curvature can effectively detect damage at different 

positions due to the ability of the curvature correlation to show any minor change 

between adjacent points along the calculated dynamic response.   
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The performance of the fractal dimension on the same cantilever beam model 

discussed in the above paragraphs was tested. Calculating fractal dimension index using 

the intact mode data did not show any change, as seen in Fig 4-28. On the other hand, 

calculating this index using the first damaged mode showed a sudden jump associated 

with the damaged sections, as per Fig 4-29. However, it is clear from this figure 

whether the magnitude of the fractal dimension peak in the damaged section is 

significantly lower than the curvature peak for the same damage (Fig 4-25), where the 

fractal dimension peak = 0.6 while curvature = -6800. According to this analysis, the 

expected peak in the curvature index is more visible than fractal dimension in a real-

world applications. 

   

 

Fig 4-23: Numerical first intact mode shape of the cantilever beam, L = 1 m, cross-

sectional area = 0.0025 m2.  
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Fig 4-24: Numerical curvature index of first intact mode shape of a cantilever beam, L 

= 1 m, cross-sectional area = 0.0025 m2; no change can be seen.  

 

Fig 4-25: Numerical curvature index for first mode shape of a damaged cantilever 

beam, L = 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, for 

different local stiffnesses; curvature peaks show the damaged elements.  
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Fig 4-26: Numerical curvature index for first mode shape of a damaged cantilever 

beam, L = 1 m, L1 = 0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, at 

different local stiffnesses; curvature peaks show the damaged elements.  

 

 

Fig 4-27: Numerical curvature index for first mode shape of a damaged cantilever 

beam, L = 1 m, L1 = 0.6 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2 at 

different local stiffnesses; curvature peaks show the damaged elements. 
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Fig 4-28: Numerical fractal dimension index of first intact mode shape of the cantilever 

beam, L = 1 m, cross-sectional area = 0.0025 m2. There is no obvious change to 

be seen. 

 

 

Fig 4-29: Numerical fractal dimension index for first mode shape of a damaged 

cantilever beam, L = 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 

m2. The peak shows the damaged elements. 
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 Damage detection at different noise levels using curvature and fractal 

dimension indicators 

4.2.5.1 Testing with noisy modes 

From a practical perspective, noise is one of the most important issues to control 

due to its effect on the measured data. To study this parameter, a theoretical analysis 

was proposed. To explain this analysis, consider that 𝑒 represents the fluctuation in the 

mode shape across the damaged section, as seen in Fig 4-30. Then numerically adding 

this magnitude to the intact mode to create noisy mode shape. Providing for the analysis 

of noisy data can help to evaluate the efficiency of both curvature and fractal dimension 

in damage detection within a noisy environment. Random values were created 

depending on the magnitude of 𝑒 and then added to the mode shape to simulate the 

effect of noise. To test the noisy modes, Fig 4-31 demonstrates the noisy first mode with 

10% 𝑒 and with damage at 0.2 m. Then, the curvature index of this mode was 

calculated, as seen in Fig 4-32. The peak of the curvature clearly indicates the damage 

location, as created at 0.2 m. The same noisy mode was used to calculate the fractal 

dimension index, as seen in Fig 4-33, where its peak still shows the exact location of the 

damage. However, even though the same mode shape was used, the curvature peak is 

higher than fractal dimension peak for example curvature peak is roughly -19000, while 

fractal dimension is 3.3. With this amount of noise, although fractal dimension still 

showed the damaged sections, the curvature peak was the more visible of the two. 
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Fig 4-30: Expanding the mode shape at the damaged section of the damaged cantilever 

beam, L = 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. 

 

Fig 4-31: Non-dimensional first mode shape of the damaged cantilever beam, L = 1 m, 

L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Noise level is 10%.  
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Fig 4-32: Curvature index of first mode shape of the damaged cantilever beam, L = 1 

m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 10%. 

Curvature shows the damaged elements. 

 

Fig 4-33: Fractal dimension index of first mode shape of the damaged cantilever beam, 

L = 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 10%. 

The fractal dimension peak is less sensitive than curvature, but still shows the 

damaged elements.  
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4.2.5.2 Test them at different noise levels 

The purpose of this section was to discuss and evaluate the curvature and fractal 

dimension indexes at different noise levels. Noise effect is considered one of the main 

challenges associated with experimental work. Ideally, any index that might be used in 

damage detection should be sensitive to damaged regions, even with noisy data.  

Within this analysis, different levels of noise, at 20%, 40%, and 60% 𝑒, were 

added to mode shape, as shown in Fig 4-34 and Fig 4-35. It was obvious from these 

figures that as the level of noise increases, the mode begins to assume a non-smooth 

profile. This fluctuation in mode shape has a significant influence on the analysis of 

dynamic responses. The calculated curvature peak was tested at the above noise levels, 

as shown in Fig 4-36, Fig 4-37 and Fig 4-38, respectively. According to these figures, 

curvature gives different peaks values, it is easy to demonstrate that curvature peak 

increases with increasing noise value, thus at 20%, 𝑒 = -29000, 40%, 𝑒 = 39000 and 

60%, 𝑒 = 90000 (approximately). It should be noted that curvature index still allows for 

the detection of damaged sections, even with high noise. The same concept of damage 

detection at different noise percentages was applied to calculate fractal dimension 

index, as shown in Fig 4-39, Fig 4-40, and Fig 4-41. It is clear from Fig 4-39 and 

Fig 4-40 that increasing the noise from 20% 𝑒  to 40% 𝑒 does not effect peak value, 

which is 3.3; however, at 40% 𝑒 the rest of the FD profile begins to fluctuate. On 

raising this percentage to 60% 𝑒, as per Fig 4-41, a dramatic change was seen in the FD 

by reducing the peak to 0.7, whereby a messy FD profile was generated. In brief, 

according to the trend found for the peaks, the curvature index would be expected to 

detect the damaged area more efficiently than FD in real-world applications. However, 

FD may be useful for the detection of severe damages and dynamic responses are 

accurately measured.  
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Fig 4-34: Non-dimensional first mode shape of the damaged cantilever beam, L = 1 m, 

L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 20%. 

 

 

Fig 4-35: Non-dimensional first mode shape of the damaged cantilever beam, L = 1 m, 

L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 40%. 
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Fig 4-36: Curvature index of the first mode shape of the damaged cantilever beam, L = 

1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 20%. 

Curvature clearly shows the damaged elements. 

 

Fig 4-37: Curvature index of first mode shape of a damaged cantilever beam, L = 1 m, 

L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 40%. Curvature 

shows the damaged elements. 
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Fig 4-38: Curvature index of first mode shape of a damaged cantilever beam, L = 1 m, 

L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 60%. Curvature 

shows the damaged elements.  

 

Fig 4-39: Fractal dimension index of first mode shape of the damaged cantilever beam, 

L = 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise      

20%. The fractal dimension peak can still be seen. 
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Fig 4-40: Fractal dimension index of first mode shape of a damaged cantilever beam, L 

= 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 40%. 

The fractal dimension can be seen to begin fluctuating at this level of noise. 

 

Fig 4-41: Fractal dimension index of first mode shape of a damaged cantilever beam, L 

= 1 m, L1 = 0.2 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2, noise 60%. 

The fractal dimension peak has essentially disappeared in the noise. 
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 Irregularity damage index 

The last part of this chapter presents an assessment of the irregularity index. This 

concept was originally proposed by Wang and Qiao [102], where the “waviness” of the 

damaged mode was extracted numerically. They used Eq.(4.4) to smooth the mode 

shape, upon which the smooth part is subtracted from the entire mode to provide the 

irregularity index, 𝑅, as formulated in Eq.(4.5). Within these equations, z is the 

amplitude of mode shape, h(x) is the weighted function used to provide the smooth part 

of mode shape, and w refers to the waviness of the mode shape (as defined 

mathematically below).  

 In the current study, the concept discussed above was determined by calculating 

the numerical irregularity index (𝑅2) as per Eq.(4.6), where (∅𝑖𝑗
 )

𝐷
 and (∅𝑖𝑗

 )
𝐻

 are the 

damaged and intact modes respectively. Both the damaged and intact mode shapes are 

calculated using the FE analysis, from which the square of their difference defines the 

irregularity index, as shown in Eq.(4.6). 

 𝑤(𝑥𝑜) = ∫ 𝑧(𝑥𝑜 + 𝑥)ℎ(𝑥)𝑑𝑥

∞

−∞

  (4.4) 

 𝑅(𝑥𝑜) = 𝑧(𝑥𝑜) − 𝑤(𝑥𝑜). 
(4.5) 

 𝐼𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝑅2) = ((∅𝑖𝑗
 )

𝐷
− (∅𝑖𝑗

 )
𝐻
)
2

 
(4.6) 

 

The cantilever beam shown in Fig 4-4 was analysed using COMSOL 5.1 to detect 

the damaged sections by calculating the irregularity index, Eq.(4.6). The first and 

second modes were calculated for intact and damaged beams. In this section, damaged 

regions were located at 0.4, 0.5 and 0.65 m from the fixed edge using the same stiffness 

reduction criteria. As can be seen from the irregularity index for mode one, as shown in 

Fig 4-42, Fig 4-43 and Fig 4-44, this index can effectively detect the damaged sections, 

where the index peak was associated with damage at different locations. In all these 

figures, the peak value of the irregularity index was 2.2e-28, which means that damage 

at different locations provides the same peak. The same analysis was applied to the 
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second mode, as can be seen in Fig 4-45, Fig 4-46 and Fig 4-47; the same peak trend 

was found as for the first mode, where the peak was localized at the damaged location. 

The only difference was that the second mode peak is larger in magnitude than the first 

mode peak at 1.2e-25. This difference makes using second mode data is more applicable 

in damage detection than using first mode shape. In summary, testing the irregularity 

index provides another efficient way to precisely detect the damaged sections.  

 

 

Fig 4-42: Irregularity index of the first mode shape of a damaged cantilever beam, L = 

1 m, L1 = 0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Damage was 

located 0.4 m from the fixed end of the beam. 
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Fig 4-43: Irregularity index of the first mode shape of a damaged cantilever beam, L = 

1 m, L1 = 0.5 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Damage was 

located 0.5 m from the fixed end of the beam.  

 

Fig 4-44: Irregularity index of the first mode shape of a damaged cantilever beam, L = 

1 m, L1 = 0.65 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Damage was 

located 0.65 m from the fixed end of the beam.  
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Fig 4-45: Irregularity index of the second mode shape of a damaged cantilever beam,     

L = 1 m, L1 = 0.4 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Damage 

was located 0.5 m from the fixed end of the beam 

 

 

Fig 4-46: Irregularity index of the second mode shape of a damaged cantilever beam,     

L = 1 m, L1 = 0.5 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Damage 

was located 0.5 m from the fixed end of the beam.  
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Fig 4-47: Irregularity index of the second mode shape of a damaged cantilever beam,     

L = 1 m, L1 = 0.65 m, L2 = 0.03 m, cross-sectional area = 0.0025 m2. Damage 

was located 0.65 m from the fixed end of the beam.  

4.3  Conclusion 

This chapter concludes the evaluation of vibration-based damage detection using 

different damage indicators. COMSOL Multiphysics 5.1 was used to run finite element 

analysis (FEA) on the cantilever beam models. The damaged sections were modelled by 

calculating the reduction in local stiffness (𝐸𝐼). It has been assumed that damage 

produces new local cross-section coordinates. The validation case study was undertaken 

by simulation of a cracked cantilever beam, upon which the subsequent effects on 

variation of natural frequency were investigated. The use of area moment of inertia to 

reduce the local stiffness was proposed as an approach to evaluating a number of 

dynamic indexes. 

A comparative case study was run to evaluate a number of dynamic indicators, 

where mode shape, slope of mode shape, curvature, fractal dimension and irregularity 

indexes were calculated. These indicators were evaluated at different local stiffnesses, 

different locations, and some were further assessed in terms of the influence of different 
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noise levels. All the indicators were found to be sensitive to severe cases of damage. 

The higher derivatives of mode shape and filtration of the damaged data showed greater 

efficiency with regards to damage detection and localization than using the mode shape 

itself. Fractal dimension showed a lower peak magnitude and lower sensitivity to the 

noisy data.  

    Using the beam structure in this analysis provides a clear idea about the 

evaluation of different dynamic indexes. As is already known, the detection of damage 

in laminated structures is more complicated than in metal structures due to the 

complexity of these structures [laminated structure consists at least of two materials]. 

This feature can effectively influence their dynamic responses such as mode shape, 

natural frequency and damping ratio. This analysis suggests curvature index as a 

recommended approach of damage detection in laminated composite structures due to 

its efficiency and sensitivity to the existence of damage.  
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Chapter 5: Experimental setup 

This chapter discusses the manufacture of the laminated composite samples used 

in the experimental work. Also, the fundamentals of using laser Doppler vibrometer 

(LDV) in measuring dynamic responses are demonstrated. In this research, carbon fibre-

reinforced polymer (CFRP) was used to produce the laminated composite plate 

structures. Two different sized lay-ups of CFRP plates were used. The first set was a 

narrow four-layer laminated plate with and without damage, while the second setup had 

two styles (A and B) of eight-layer CFRP laminated plate structures which were 

prepared in order to investigate the damage detection process. Here, A and B refer to 

different lay-up orientations. 

The intact and damaged mode shapes and frequency response functions (FRF) 

were measured using a laser Doppler 3D vibrometer. This tool was employed to 

overcome the noise challenge associated with dynamic tests.  

5.1 Damage detection in CFRP using a laser vibrometer scanning 

system 

For the past few decades, vibration-based damage detection has remained one of 

the most important techniques used to quantify the damaged areas in different 

mechanical structures. Damage detection in composite structures, in particular, has 

gained the attention of a number of researchers. The high strength relationship between 

physical characteristics such as stiffness, mass, and damping and dynamic parameters 

such as mode shapes, natural frequencies, and damping ratio enhance the use of this 

technique for damage detection purposes. 

A Laser Doppler Vibrometer (LDV) is a non-perturbing measurement tool ( for 

continuous measurement of dynamic response) was used to precisely measure the 

dynamic signal of the vibrated surfaces via the laser scanning technique [115]. The 

process of data acquisition using LDV is shown schematically in Fig 5-1. It is clear 

from this figure that the measurement hardware requires the following: 

i. Scanning laser vibrometer head 

ii. Custom cable used to control the scan-mirror servo motors  
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iii. Dual channel with arbitrary function generator  

iv. Impact hammer to excite the object to be vibrated 

Where in simple way that scanning laser Doppler vibrometer can obtain non-

contact vibrational data from a vibrated structures. The hammer, for example, in this 

figure was used to excite the object at different frequencies. Then the collected data is 

computerized in order to be separated into different mode shapes [115].  

As reported by Stanbridge and Ewins [116], LDV can be considered a diagnostic-

quality tool for damage detection due to its ability to scan a dense set of points and 

provide non-contact data for the vibrated structure. If 𝑣𝑧 represents the sinusoidal 

velocity of any point in the 𝑧-direction, which is perpendicular to surface in the 𝑥, 𝑦 

plane, with an angular frequency ω, then mathematically this can be formulated as per 

Eq.(5.1)   

 𝑣𝑧(𝑠, 𝑡)  =𝑉𝑎(𝑠)𝑐𝑜𝑠𝜔𝑡 + 𝑉𝑏(𝑠)𝑠𝑖𝑛𝜔𝑡 (5.1) 

 

where 𝑠 is the distance between point 𝑎 and  𝑏, and  𝑉𝑎  𝑎𝑛𝑑 𝑉𝑏 are velocities of these 

points. The operating deflection shape (ODS) can be found if the laser scan is 

performed continuously by demodulating the dynamic signal. The mathematical basis 

for demodulation is represented by Eqs.(5.2) and (5.3). Then, the imaginary and real 

ODS shown in Fig 5-2 give the dynamic output signal that can be used to gauge the 

performance of the final vibrational modes [116]. 

 

 

𝑣𝑎(𝑡)𝑐𝑜𝑠2𝜔𝑡 + 𝑉𝑏(𝑡)𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠𝜔𝑡  = 
1

2
𝑉𝑎(𝑡) +

1

2
𝑉𝑏 𝑐𝑜𝑠2𝜔𝑡 +

1

2
𝑉𝑏(𝑡)𝑠𝑖𝑛2𝜔𝑡 

(5.2) 

 

 

𝑣𝑎(𝑡) 𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠𝜔𝑡 + 𝑉𝑏(𝑡)𝑠𝑖𝑛
2𝜔𝑡   = 

1

2
𝑉𝑏(𝑡) +

1

2
𝑉𝑎 𝑠𝑖𝑛2𝜔𝑡 −

1

2
𝑉𝑏(𝑡)𝑐𝑜𝑠2𝜔𝑡 

(5.3) 
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Fig 5-1: Schematic explanation of data measurement  [115]. 

 

Fig 5-2: The imaginary and real operational deflection shape of a cantilever beam 

[116]. 

The experimental results can be collected  over linear path or in any selected 

pattern [117]. One of the limitations to LDV tools is that the point-by-point collection 

by this method needs a very long time to complete, especially when the number of 

required points is large. Sriram et al. [118] [119] suggested a new method to improve 

the scanning of surfaces through the use of a continuous laser scan over the required 

area. A sinusoidal excitation was used in this instance to vibrate the damaged structure. 

Also, researchers built a prototype to modify the measurement of the dynamic response. 
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Here, the velocity of the surface was recorded and then processed to gain an accurate 

signal.  

Another suggestion was proposed by Stanbridge and Ewins [116] [120],  to 

improve the continuous scan by scanning different patterns such as circular and scans of 

the entire area. They investigated the application of filters to the output signal to 

increase damage detection efficiency. The continuous laser scan method has been used 

with impact testing, as discussed by Stanbridge et al. [121], and with different excitation 

modes, as reported by Maio and Ewins [122]. Laser vibrometer scanning has further 

been extended to include the measurement of the modal response of civil structures, as 

reported by Bougard and Ellis [123] and Kaito and Fujino [124]. The “lifting” method 

was suggested by [115] to improve the dynamic response measured by laser scanning, 

where curve fitting was used to modify and smooth the output signal. This method has 

been further modified to identify the modal characteristics of structures under random 

excitations [125]. Yang and Allen [126] proposed the harmonic transfer function to treat 

the dynamic output signal of laser scanning. This method was utilized to calculate the 

translational and rotational velocities of surfaces using a circular scan pattern. Fig 5-3 

shows additional evidence for the advantage of using LDV to scan light structures and 

its ability to show their 3D excitations [127]. This is a practical example of using LDV 

to measure the second mode shape of a tennis racket. It is clear that this figure presents 

the second bending mode of this racket under free vibration. One of the important 

feature of using LDV that even racket was thin, LDV can successfully measure the 

vibrational modes. Also, the latest generation of development in LDV offers automatic 

control over the scanning of mechanical structures. It is clear from Fig 5-4 that a laser 

scan of the entire body of vehicle by a robotic system indicates the extent to which LDV 

can be used in damage detection, even with complex structures [128].  
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Fig 5-3: The second mode shape of tennis racket strings was determined using LDV 

[127]. 

 

Fig 5-4: 3D laser Doppler scanning vibrometer and the typical mode shape of an entire 

vehicle body in the ASDEC lab [128]. 

5.2 Experimental setup for CFRP plate structures 

 Curing conditions for carbon laminated samples 

Unidirectional carbon fibre reinforced polymers (CFRP), M55J with epoxy, were 

utilized to manufacture the laminated plate structures. A frozen roll of carbon fibre / 

epoxy was utilized to prepare experimental samples in the required dimensions. The 

first step was to leave a roll of the raw material for 12 hours at room temperature before 

starting sample preparation. Then, the fibres were cut into rectangular pieces (each piece 
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represents a layer with a certain fibre orientation) according to the required size for each 

set. These layers were then stacked together to produce the laminated plate structures 

required. These samples were then covered with unperforated film and a layer of 

breather cloth on both sides, and then isolated with bagging film and tacky tape. To 

produce the final laminated structures, the laminated sample needed to be heated. This 

process is quite important in terms of increasing the interfacial adhesion of surfaces 

between carbon fibres and matrix, where interfacial adhesion plays an important role in 

transferring stresses from the matrix to fibres.  

 Laminated narrow plate structures 

Three groups of narrow laminated plates were manufactured using the high 

modulus M55J unidirectional CFRP prepreg, as provided by the Cytec group, following 

the procedure recommended by the manufacturer. All symmetric plates consist of four 

layers of CFRP with orientations of  00, 900, 900, 00  with identical layer thicknesses. 

The dimensions of the intact plate are represented by L (plate length) = 0.25 m, W 

(plate width) = 0.02 m, A-A (selected path to measure the mode shape), D = 0.01m (the 

distance between the free edge and A-A), and t (layer thickness) = 0.125 x 10−3 m, as 

shown in Fig 5-5. 

 

Fig 5-5: Schematic of the intact narrow laminated cantilevered rectangular carbon-

epoxy plate, length = 0.25 m, width = 0.02 m and total thickness = 0.5 x 

10−3 m. 
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The damaged plates, with artificial delamination and fibre breakage damage 

at 𝐿1 = 0.1 𝑚 to the fixed edge were manufactured. The delamination was created by 

adding a thin layer of 15 μm 𝑅250 unperforated release film to separate the top two 

layers, as shown in Fig 5-6. The dimensions of the delaminated area, b* W, are W plate 

width, and b = 0.01 m. In this research, fibre breakage was created by cutting the fibre 

on the top surface of plate in the same area as the delamination located at L1, as per 

Fig 5-7. The actual shape of the laminated samples used in the experimental work is 

shown in Fig 5-8. 

 

Fig 5-6: Schematic of the delaminated a narrow laminated cantilevered rectangular 

carbon-epoxy plate, length = 0.25 m, width = 0.02 m, total thickness = 0.5 

x 10−3 m and the delaminated area (0.01 m * 0.02 m) at L1 = 0.1 m between the 

top two layers. 
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Fig 5-7: Schematic of fibre breakage in a narrow laminated cantilevered rectangular 

plate with four plies of carbon-epoxy, length = 0.25 m, width = 0.02 m, total 

thickness = 0.5 x 10−3 m and fibre breakage area (0.01 m * 0.02 m) at L1 = 0.1 

m on the top surface. 

 

Fig 5-8: Actual shape of intact, delaminated and fibre breakage narrow laminated plate 

structures. 

The manufacture for the experimental samples was performed in the Mechanics of 

Materials (MoM) lab. The first step was to cut the unidirectional fibre mat to match the 

required direction and size of each sample, as shown in Fig 5-9. Then, these individual 

layers were stacked together according to the required thickness. A double layer of 
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unperforated release film was used to separate the samples from the aluminium mould 

and the top layer covering them. Another breather cloth was placed over the release 

film, and the entire structure was isolated by vacuum bagging film, after which the 

bagging film was stuck to the mould using the tacky tape, as per Fig 5-10. When the 

samples were ready to cure, they were heated in the automatic oven, Fig 5-11, at two 

continuous temperature steps under vacuum condition; for the first two hours, the 

samples were heated at 1300𝐶, while for the second two hours the temperature was set 

to 1800𝐶. Finally, samples were ready to be tested and their dynamic responses 

measured. 

 

Fig 5-9: Unidirectional carbon fibre reinforced polymer CFRP–epoxy when cutting the 

first layer’s shape. 
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Fig 5-10: Fabricated laminated samples in their final shape, at Mechanics of Materials 

(MoM) lab. 

 

Fig 5-11: Automatic oven with vacuum pump. 
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 Laminated plate structures 

5.2.3.1 Laminated plates with artificial damage 

The same narrow plate structure procedures were used to produce the laminated 

composite plate structures. Two lay-up sequences were prepared to study the effects of 

fibre orientation on damage identification. The first sequence, style A, consisted of eight 

symmetric layers with identical layer thicknesses and with orientations of 

00, 900, 00, 900, 900, 00, 900, 00, whilst the second, style B, had orientations of 

00, 450, 900, −450, −450, 900, 450, 00. The dimensions of the intact plate are plate 

length, L = 0.2 m, width, W = 0.1 m, distance between the free edge and the 

measurement line, D = 0.01 m, A-A measurement line and layer thickness, and t = 

0.125 x 10−3 m, as shown in Fig 5-12. The artificial damage was manufactured in both 

the A and B plate sample styles. The side square delamination area (b = 0.02 m) was 

placed at L1 = 0.1 m to the fixed edge, using the unperforated film to produce the 

delamination damage, as seen in Fig 5-13, while, fibre breakage was created by cutting 

a narrow strip of fibre from the structure with dimensions of 𝑙 = 0.001 m, b = 0.02 m at 

L1, as seen in Fig 5-14. To clarify the description, Fig 5-15 shows the actual intact and 

damaged plate samples.  

 

Fig 5-12: Schematic of the intact laminated cantilever rectangular plate with eight plies 

of carbon fibre -epoxy, length = 0.2 m, width = 0.1 m and total thickness = 1 x 

10−3 m. 
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Fig 5-13: Schematic of the delaminated laminated cantilevered rectangular plate with 

eight plies of carbon fibre-epoxy, length = 0.2 m, width = 0.1 m, total thickness 

= 1 x 10−3 m and delaminated area b2 (0.02 m * 0.02 m) at L1 = 0.1 m between 

the top two layers. 
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Fig 5-14: Schematic of the fibre breakage in the cantilevered rectangular plate with 

eight plies of carbon fibre-epoxy, length = 0.2 m, width = 0.1 m, total thickness 

= 1 x 10−3 m and fibre breakage area (0.001 m * 0.02 m) at L1 = 0.1 m on the 

top surface. 

 

Fig 5-15: Actual intact, delaminated and fibre breakage eight-ply laminate plate 

samples. 
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5.2.3.2 Laminated plates with real impact damage 

Laminated plate samples A and B lay-up sets were tested using impact load tests 

to match the reality of laminated structure damage. The impact test achieved in the 

MaTIC (Lab Materials Technology Integration Centre) at the Engineering Department, 

University of Leicester, as shown in Fig 5-16. Fibre breakage and delamination were 

produced by dropping the impact load at L1 (the same location as the artificial damage). 

Two steel indenters, 2 and 10 mm in diameter, were used to produce damage in the 

laminated sample, as seen in Fig 5-17. In this study, the delaminated area was created 

by dropping a 0.363 kg weight from a 0.26 m height using a 10 mm indenter. Fibre 

breakage was produced by a 0.362 kg, 0.26 m height and 2 mm diameter indenter. The 

front and back sides of the damaged specimens are shown in Fig 5-18 and Fig 5-19, 

respectively, which also show the differences between these two damage modes. In 

Fig 5-18, it is clear that fibre breakage dominated the damage mode and the penetration 

of the indenter is quite visible. In contrast, in Fig 5-19 the damaged area could not be 

identified with the naked eye, which means the main damage in this case was 

delamination (although there may be some damaged fibres but this was not significant 

in this case). In fact, as the diameter of the indenter used becomes smaller, the fibre 

breakage becomes more visible, and the opposite state (using large indenter diameter) 

produces the delamination [129]. 
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Fig 5-16: Impact test apparatus in the Materials Technology Integration Centre lab. 

 

 

Fig 5-17: Two different steel indenter diameters. 



 

Chapter 5: Experimental setup 

University of Leicester                                                                                                     Page | 165  
 

 

Fig 5-18: Microscope photos of fibre breakage for (a) the front side and (b) back side of 

the impact test. 

 

Fig 5-19: Microscope photos of delamination for (a) the front side and (b) back side of 

the impact test. 



 

Chapter 5: Experimental setup 

University of Leicester                                                                                                     Page | 166  
 

 Experimental modal analysis (EMA) 

A free vibration analysis test was run to measure the first three frequencies and 

mode shapes for all types of laminated plate structure (i.e., with both artificial and 

impact damage). These tests were performed using the laser vibrometer in the Advanced 

Structural Dynamic Evolution Centre (ASDEC). One of the advantages of this 

technology is the accuracy of the results collected and the availability of the non-contact 

vibration technique.   

5.2.4.1 Electrodynamic shaker and force gauge 

The laminated cantilever plate configurations are set up as per Fig 5-20 for all 

experimental tests. An Electrodynamic Modal Shaker (model number K2004E01, serial 

number 1476) was utilized to provide the free vibration condition by shaking the 

clamped edge, as per Fig 5-21. In addition, the force gauge (model number 208C02, 

serial number LW39159) was set up to satisfy the equivalent force in the free vibration 

test. The free vibration condition was achieved by applying a micro-vibration to the 

clamped jaws, so a ‘non-touch’ force was provided. 

 

Fig 5-20: Experimental setup for the laminated cantilever plates in ASDEC lab. 
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Fig 5-21: Electrodynamic and force gauge.  

5.2.4.2 Robotic laser Doppler vibrometer 

The dynamic response was measured using 3D laser vibrometer heads, so this 

technology can be used to measure mode shapes with highly accurate results, as per 

Fig 5-22, where the noise associated with dynamic response measurement is one of the 

most important challenges that needs to overcome. In the present research, a 1D mode 

shape was used to identify the damaged area. The laminated specimens were clamped at 

one end and the movable robotic laser vibrometer was able to examine any required 

point. 

 

Fig 5-22: Robotic laser Doppler vibrometer in ASDEC. 
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5.3 Principles of laser Doppler vibrometer  

The Laser Doppler Vibrometer (LDV) is a laser-based, non-contact measurement 

system used to measure the vibrational characteristics (mode shape and frequency). The 

operational principle behind the LDV system is the Doppler effect concept. As seen in 

Fig 5-22, the system consists of three measuring units (scanning heads). These heads 

provide information about the movement of vibrated objects in three orthogonal 

directions.  

The principles of the Doppler effect a change in the frequency or wavelength of 

released waves occurs when the source of the waves approaches or moves further away 

from the observed object as seen in Fig 5-23 [130]. This means the effect of the laser 

wave can be seen twice, primarily, before hitting the particle (denoted any point within 

the vibrated object), and secondly after impinging the vibrated particle. If it is assumed 

that subscripts 𝑏, 𝑟, 𝑝 represent laser beam, receiver and particle, respectively, in 

Fig 5-23, then 𝑓, 𝑉, 𝑐, and 𝑒 are frequency, velocity, velocity of light in the 

measurement medium and a unit vector. To calculate the frequency of received signal 

Eq.(5.4) can be used, where 𝑓𝑟, 𝑓𝑝 are frequency of receiver and particle 

respectively, 𝑒𝑝𝑟 is the unit vector of the particle received by receiver, and 𝜆𝑏 

wavelength of laser beam (other symbols can be defined according to their subscripts) . 

In case of dual scattering as shown in Fig 5-24, the difference in frequency 𝑓𝐷 (denoted 

as the difference between two scattered waves) can be computed as per the formula in 

Eq.(5.5) [130]. In brief, in an LDV system the vibrometer receives the scattered laser 

light and compares this with the frequency of a reference beam. It then creates a voltage 

signal compatible to the shift in frequency. This signal represents the velocity of the 

vibrated object. The entire process of calculating mode shape is discussed in section 7.3.  

 

𝑓𝑟 = 𝑓𝑝  
1

1 − 
𝑒𝑝𝑟 . 𝑉𝑝

𝑐

= 𝑓𝑏  
1 −

𝑒𝑏 . 𝑉𝑝

𝑐

1 − 
𝑒𝑝𝑟 . 𝑉𝑝

𝑐

 

≈ 𝑓𝑏 + 𝑓𝑏
𝑉𝑝 (𝑒𝑝𝑟 −𝑒𝑏 )

𝑐
= 𝑓𝑏

𝑉𝑝 (𝑒𝑝𝑟 −𝑒𝑏 )

𝜆𝑏
 , (|𝑉𝑝| ≪ 𝑐,   𝑐 = 𝑓𝑏𝜆𝑏) 

(5.4) 
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 𝑓𝐷 = 
𝑉𝑝 (𝑒𝑝2 − 𝑒𝑝1 )

𝜆𝑏
 (5.5) 

 

 

Fig 5-23: Explanation as to how the Doppler effect is used to measure velocity in the 

laser Doppler technique [130].  

 

Fig 5-24: Optical configuration of dual-beam scattering of a single incident beam 

[130]. 
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5.4 Data collection 

Free vibration-based conditions were used to determine the performance of the 

materials in the experimental work. In this study, the first three modes for each sample 

were collected by laser vibrometers along the lengths of the laminated structures, as 

shown in Fig 5-25  

In terms of calculating the mode shape, an experimental modal analysis with the 

samples in a fixed-free cantilever plate configurations were used. The samples were 

excited with a broadband white noise signal delivered via an electrodynamic shaker at 

the fixed end. The input signal was quantified with a force gauge, through which the 

force was applied, and the response signal was measured using a scanning laser Doppler 

vibrometer. The frequency response function (FRF) for each point was exported, and 

the displacement of each node from the natural frequency was reported via Excel. 

Natural frequencies were assumed to be the peaks in the FRF.  

 

Fig 5-25: Laser geometric points used to measure the modal characteristics.  
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5.5 Conclusion 

This chapter describers the experimental procedures utilized in preparing 

and measuring the dynamic response of laminated composite plate structures. The 

principles of using a laser vibrometer (LDV) and its advantages are also briefly 

described. Furthermore, the practical steps utilised to manufacture the composite 

samples are explained. Curing of carbon-epoxy fibre to produce the laminated 

plate structures of the required dimensions was illustrated in this chapter. Narrow 

plates, and two types of laminated plates, A and B, including intact and damaged 

samples were prepared to being tested in experimental work. Procedures for 

creating artificial and impact damage were demonstrated. The setup of the 

cantilevered laminated samples under free vibration conditions were explained 

and the principles of the Doppler effect were discussed. Finally, calculating the 

mode shape using laser vibrometer scanning techniques was illustrated.        

 

 

 



 

Chapter 6: Finite element analysis of laminated plates  

University of Leicester                                                                                                     Page | 172  
 

Chapter 6: FEA damage detection of laminated composite 

plates        

6.1 Introduction  

This chapter presents the finite element analysis of damage detection in laminated 

carbon fibre-reinforced polymer (CFRP) plate structures using vibration-based damage 

detection techniques. A detailed discussion for delamination and fibre breakage analysis 

was presented. Also in this chapter, laminated plates with and without damage are 

simulated using ABAQUS software (version 6.14-1). The first two mode shapes were 

calculated and analysed to show the effect of damaged areas on the dynamic signals. 

One of the novelty points in this research is that the irregularity of curvature was 

calculated to quantify the damaged areas. Narrow laminated plates in addition to two 

styles of eight-layer A and B plates were analysed in this chapter. The comparison 

between fibre breakage and delamination have not been previously reported to the best 

of our knowledge.  

6.2 Shell finite elements  

This section explains the principles of sell finite elements used by finite element 

software programs to simulate thin plate structures. According to the terminology of 

plate structures, a plate is a thin, flat, structural element. Within this topic/structure, thin 

refers to the ratio of transverse dimensions (thickness) and are smaller than the 

minimum length or width of plate. If it is assumed that 𝑡 is the plate thickness and L it’s 

smallest lateral dimension (either length or width), then thickness can be described as 

𝐿
𝑡⁄ , and demonstrated as in Table 6-1. 
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Table 6-1: Classification of plate structure according to its thickness 

Plate thickness 𝐿
𝑡⁄  

Very thin  > 100 

Moderately thin 20 − 100 

Thick 3 − 20 

 

For this, the classical theory can be applied to analyse both very thin and 

moderately thin structures [131]. 

Using finite element analysis, flat shell elements are used to represent thin plate 

structures. These type of shell elements can be either triangles or quadrilaterals. A flat 

element is based on the combination of the plate membrane element (plane stress) and 

plate element (bending), as shown in Fig 6-1. As illustrated by Fig 6-2 each node in flat 

shell element has five degrees of freedom, the plate element has three degrees of 

freedom, while the plane stress elements has two degrees. Within this figure 𝑢1̃ is the 

displacement component, 𝛽1̃ is the component of rotational displacement, and  𝑒1̃ is the 

local base vector along the 1-axis.  

As discussed, flat shell elements can efficiently model thin structures, for example 

the cylindrical shell seen in Fig 6-3. This only requires a quarter of the sample and can 

be modelled according to the symmetry condition. The mesh size can significantly 

affect the accuracy of results, ie. Increasing the quantity of flat elements significantly 

improves quality of surface approximation. 
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Fig 6-1: A flat element used to represent thin plate structures [131].  

 

Fig 6-2: Degrees of freedom for each node in the flat shell element [131]. 

 

Fig 6-3: Schematic of modelling the cylindrical shell using flat shell element with two 

coarse and fin mesh [131]. 

According to the above paragraphs, to model the laminated composite materials, 

3D shell-planar (supported by ABAQUS) was used. In this scenario, both narrow and 

plate structures are considered moderately thin because for both  
𝐿

𝑡
 > 20, where L is 

width of plates and t is their thickness. As illustrated in Fig 6-4, flat shell element was 

used to simulate the intact and damaged (fibre breakage and delamination) laminated 
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plates. Then, using the shell-planar (mentioned previously) the intact plates are 

simulated, applying the mechanical properties of carbon fibre reinforced polymer 

(CFRP) to each layer (each layer may have different orientation). The two modes of 

breakage were modelled differently. Fibre breakage was modelled by applying the 

mechanical properties of an epoxy matrix to the top layer in the damage section. For 

delamination, the mechanical properties of the release film were applied to a thin layer 

(15 μm) to spread the top layers as demonstrated in Fig 6-4, this will discussed in detail 

in the next section.      

 

Fig 6-4: Finite element model of laminated palate ( as in ABAQUS), with the intact and 

damaged sections, FB is modelled by applying the mechanical properties to the 

top  layer in the damaged  section, whilst delamination is achieved by applying 

the mechanical properties of the release film to a thin layer between the top two 

layers in the damaged section. 
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6.3 Finite Element Model of Laminated Plate Structures 

Finite element ABAQUS 6.14-1 software was used to simulate the laminated plate 

samples. Narrow plate structures in four symmetric layers were modelled using the 

same dimensions given in section 5.2.2. In this structure, the mechanical properties of 

the high modulus CFRP M55J unidirectional prepreg provided by the Cytec group were 

utilized to perform the FE analysis, as shown in Table 6-2. These properties were used 

to model both the intact and damaged laminated plates by representing the mechanical 

properties for each lamina. The same dimensions shown in Fig 5-5 are used in the FE 

analysis to model the intact plate. The delaminated area is modelled by applying the 

mechanical properties of R250 unperforated release film supplied by Easy Composites 

Company, as shown in Table 6-3. A thin layer of 15 μm, as shown in Fig 6-5, was 

added to the damaged section in the FE analysis and is located between the top two 

layers, while fibre breakage was modelled by adding the mechanical properties of epoxy 

shown in Table 6-4 to the damaged area on the top surface with the same dimensions 

seen in Fig 6-6. All models were simulated to match the manufactured samples used in 

the experiment work (chapter 7).  

In ABAQUS software, the 3D-deformable shell was used to model the laminated 

plates.  The procedures of modelling these plates explain as following: 

1. Select 3D-deformable shell to create the required dimensions 

2. Insert mechanical properties to the model 

3. Select shell, then composite section to insert the required layers 

4. Section assignment to define the model 

5. Select the frequency step to calculate frequency and mode shape 

6. Define boundary conditions using load button 

7. Add mesh to the model 

8. Set up and run a job 

9. Finally, select visualization for the calculated results  

As demonstrated in Fig 6-7, the second mode is shown with the mesh structure of 

damaged section. In this study, the sensitivity of the mesh was tested until the calculated 

results became stable, as per Fig 6-8. A standard linear quad. shell element mesh type 

with 0.005 m element size was used in the numerical model. The narrow cantilevered 
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laminated plate was analysed under free vibration conditions. The first two modes are 

calculated to obtain the dynamic analysis. 

 

Fig 6-5: ABAQUS model shows modelling of eight-layer laminated plate at different 

orientations, delamination was simulated by applying a thin layer (layer 8) with 

mechanical properties of unperforated release film.  

 

Fig 6-6: ABAQUS model shows modelling of eight-layer laminated plate at different 

orientations, fibre breakage was simulated by applying the mechanical 

properties of epoxy to layer 8. 
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Table 6-2: Mechanical properties of the composite M55J carbon fibre reinforced 

polymer/ epoxy used in FE analysis. 

Tensile modulus 0o  𝐸1 (𝐺𝑃𝑎)             300 

Tensile modulus 90o  𝐸2 (𝐺𝑃𝑎)              12 

In-plane shear modulus 𝐺12(𝐺𝑃𝑎)               5 

Density 𝜌 (
𝑘𝑔

𝑚3)            1650 

Major Poisson’s ratio (𝜗12)             0.3 

Fibre volume 𝑉𝑓             60 % 

Cured temperature 1800 

 

Table 6-3: Mechanical properties of unperforated film used to create delamination 

supplied by Easy Composites. 

Young’s modulus (𝐺𝑃𝑎) Density 

(
𝑘𝑔

𝑚3) 

Poisson’s ratio (𝜗) 

0.65 1733.3 0.3 

 

Table 6-4: Mechanical properties of resin epoxy. 

Young’s modulus (𝐺𝑃𝑎) Density 

(
𝑘𝑔

𝑚3) 

Poisson’s ratio (𝜗) 

3.4 1170 0.36 
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Fig 6-7: The second mode shape and mesh of the damaged section within the four-layer 

narrow cantilever laminated plates as determined by ABAQUS software. 
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Fig 6-8: Mesh sensitivity was tested for the second mode of the narrow laminated plate. 

There was no significant change in natural frequency with element sizes less 

than 0.005 m. 

Models of A and B plate sets followed the same numerical steps used to model the 

narrow plate models in the previous paragraph. The 3D deformable shell in ABAQUS 

was selected to model the cantilever plate structures, as per Fig 6-9. The same 

dimensions discussed in section 5.2.3.1, are employed to perform the numerical 

analysis. The mechanical properties of M55J, as given in Table 6-2, were used in FE 

analysis. The intact plate is simulated with eight layers and the dimensions identical to 

those shown in Fig 5-12. Whereas, the mechanical properties of M55J were used as 

lamina properties. The same concept illustrated in the narrow plates is utilized to model 

the delamination, where the schematic diagram shown in Fig 5-13 is simulated in 

ABAQUS. The mechanical properties of the release film were used for the thin layer 

between the top two layers through the damaged section. Furthermore, fibre breakage 

was modelled according to the same criteria explained previously with narrow plates.  It 

is accomplished by applying the epoxy properties to the top layer through the damaged 

section with the same dimensions explained in Fig 5-14 . In terms of the mesh, the 

standard shell element free medial axis mesh type with an element size of 0.002 m was 

used. The free vibration condition was selected to analyse the intact and damaged 

models. To ensure the convergence in the calculated results, the mesh sensitivity was 
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computed as per Fig 6-10 . According to this figure there is no significant change in the 

second natural frequency lower than element size 0.002 m. This ensure the viability of 

this value to mesh these models.   

 

Fig 6-9: The second mode shape of the eight-layer cantilever laminated plates as 

determined by ABAQUS software. 

 

Fig 6-10: Mesh sensitivity was tested for the second mode of laminated composite plate 

A. There was no significant change in natural frequency with an element size 

less than 0.002 m. 
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6.4 Methodology of damage detection in laminated plates  

The numerical models discussed in section 6.2 analysed under free vibration 

conditions. The first two intact and damaged modes of the four-layer narrow and eight- 

layer laminated plates were calculated. In this chapter, the novel point was to develop 

the curvature index as a vibration-based damage technique to detect delamination and 

fibre breakage in laminated composite structures. The curvature index written in 

Eq.(4.2) was evaluated (chapter 4) as a sensitive index to detect the damaged areas. 

With laminated plate structures and due to the high strength of these structures, damage 

detection is expected to be not an easy task. Thus, the curvature was improved by 

calculating the irregularity curvature index, as can be seen in Eq.(6.1) to be efficient in 

damage detection purpose. The Irregularity index represents the square difference 

between the damaged and intact modes, where (∅𝑗𝑖
′′ )

𝐻
 is the intact curvature index and 

(∅𝑗𝑖
′′ )

𝐷
 the damaged one. This formula (Eq.(6.1)) has not been reported before.  

 

 𝐼𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 (𝑅2) = ((∅𝑗𝑖
′′ )

𝐷
− (∅𝑗𝑖

′′ )
𝐻
)2 (6.1) 

 

6.5 FEA results and discussion of narrow laminated plates 

It is important to mention that damage in any structure causes reduction in local 

stiffness. In this study delamination and fibre breakage reduce the local stiffness at 

different amounts. This reduction depends on the type of damage and fibre orientations 

in each lamina through laminated thickness. To start the dynamic analysis of narrow 

plates, the intact and damaged normalised second mode shapes were calculated as 

shown in Fig 6-11. It was clear from this figure that there is no significant difference 

between the intact and delaminated normalised second modes (delamination located at 

0.1 m). During calculation, the second mode with fibre breakage showed much more 

local distribution associated with fibre breakage location (0.1 m). In terms of numerical 

value, the amplitude of intact and delaminated modes is -0.8, while in fibre breakage is -

1. This explains the relationship between physical properties and modal characteristics, 

where higher stiffness reduction leads to higher amplitude mode shape.  
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To improve the identification of damaged areas in these structures, the curvature 

index was calculated. As per Fig 6-12, the curvature index shows a fluctuated profile 

even when calculated for fibre breakage (the severest damage in laminated structure). 

The maximum value for this index found is 3.7 at L1 (location of damaged area), but it is 

expected to be not effective in practical applications due to the noise effect. The 

insufficiency of the curvature index suggests further development of this technique is 

needed. The irregularity index mentioned above was employed to assess the damaged 

areas. As demonstrated by Fig 6-13 that modelling fibre breakage on the top surface at 

L1 can be predicted via the sudden jump in the irregularity index. The main reason for 

this sudden change is the larger reduction in local stiffness due to fibre breakage, which 

can affect the calculated mode shape. Mathematically, the irregularity index represents 

the relationship between the adjacent points along the curve. In other words, the 

irregularity index can detect any change between neighbouring points along the curve. 

Fig 6-14 shows the irregularity index of the delaminated area (delamination sets 

between the top two layers) at L1 in the narrow plate. The clear flat peak of irregularity 

index precisely indicates the location of delamination. Numerically, the irregularity 

index with fibre breakage shows a sharp peak and higher magnitude, while delamination 

is much lower than the FB damage index magnitude and has a flat peak. For FB, the 

peak value is 13, and 4.8 for delamination. Also, in FB the irregularity index jumps 

sharply to hit the peak, while in Del case this increasing observed in two steps. Which 

means the magnitude and the shape of the irregularity index can be an indicator for 

damage type. In brief, mode shape and its curvature cannot detect delamination and 

fibre breakage sufficiently on their own; whilst calculating the irregularity index was 

shown as a trustworthy method to detect these damages in plate structures.   
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Fig 6-11: Numerical intact and damaged second modes for the four-layer narrow 

laminated plate, with delamination and fibre breakage located at 0.1 m from the 

fixed end. There is no visible change between the intact and delamination 

modes due to the small reduction in stiffness, and damage is not shown. 

 

 

Fig 6-12: Numerical curvature index of the second mode for the narrow laminated 

plate, fibre breakage at 0.1 m. The curvature does not show the damaged area. 
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Fig 6-13: Numerical irregularity index for the second mode of the narrow laminated 

plate, fibre breakage at 0.1 m. The sharp peak shows the damaged section. 

 

 

  Fig 6-14: Numerical irregularity index of second mode for the narrow laminated plate, 

delamination at 0.1 m. The flat peak shows the damaged section.  
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6.6 FEA results and discussion of eight-layer laminated plates   

The plate structures discussed in section 5.2.3.1 were used to study the damage 

detection. Two lay-up sequences, A and B, are utilised to determine if there is any 

difference between the analysis of intact and damaged dynamic signals for these 

structures. Mode shape, curvature, and the irregularity index were calculated as a part of 

damage identification process.  

 The modelling part achieved using ABAQUS software, where the delamination 

and fibre breakage are simulated as two types of damage in laminated structures. The 

same narrow plate analysis procedures were employed to quantify these damages in 

both styles A and B. Calculating the normalized second intact and damaged modes do 

not show the damaged sections. As seen in Fig 6-15, although delamination and fibre 

breakages are modelled at 0.1 m to the fixed edge, there is no that divergence in the 

mode shape amplitude. The intact amplitude at 0.1 m is - 0.8 and - 0.85 for Del and FB 

respectively. Which means reduction in local stiffness is not shown by mode shape. In 

the same regards, calculating curvature index in plate structures still do not provide the 

solution to quantify the damaged sections. It is obvious from Fig 6-16 that there is no 

difference between the amplitude of intact and delaminated curvatures at maximum 

value, approximately 420 at 0.1 m. This suggests no or small change in the local 

stiffness, which cannot be detected easily. A small jump can be seen in the curvature 

with fibre breakage, as seen in the red curve. This spike is associated with the damaged 

section (FB at 0.1 m), but it is expected to be not valid in the real applications with 

noisy environment.   

The irregularity index again was computed to assess the damaged areas in these 

structures. In style A Fig 6-17 clearly shows a sharp peak completely at the fibre 

breakage area at 0.1 m, while the flat peak seen in Fig 6-18 suggests the existence of the 

delaminated area. In those two figures Del and FB can be clearly detected. Further, the 

reduction in stiffness caused by fibre breakage has a mathematical explanation, where 

losing fibres means higher reduction in local stiffness [within laminated structures, 

Young’s modulus of fibre is the main parameter in calculating the laminate stiffness]. 

This can explain the higher effect of FB which is seen in the irregularity index. 

Furthermore, there is a difference between Del and FB, where FB has sharper and 
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higher peak than Del. The magnitude of FB is 0.23 while Del is 0.14. In both FB and 

Del irregularity indexes had sharp increasing close the damaged area (increasing in Del 

starts early, because the width of delaminated area is greater than FB).The same criteria 

are applied to style B, as seen in Fig 6-19 and Fig 6-20, where the irregularity index 

behaves in a similar manner to style A with an obvious variation in the shape and 

magnitude. However, the only difference between them is that the peak in both FB and 

Del for style B is higher than the peak of same damage in style A, where the peak 

magnitudes are 6.5 FB and 0.65 for Del. This is because style B has higher stiffness 

than style A.  

 

 

 

Fig 6-15: Numerical intact and damaged second modes for the laminated plate A, with 

delamination and fibre breakage located at 0.1 m from the fixed end. There is no 

visible difference between the intact and damaged modes and damage cannot be 

localized.  
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Fig 6-16: Numerical curvature index for intact and damaged second modes for 

laminated plate A, where delamination and fibre breakage are located 0.1 m 

from the fixed end. The damaged area is still unpredictable, although there is a 

little change in the curve for the fibre breakage mode in the relevant location. 

 

Fig 6-17: Numerical irregularity index for fibre breakage 0.1 m from the fixed end of 

laminated plate A. The sharp peak with the high magnitude can be consider an 

indicator of damaged sections. 
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Fig 6-18: Numerical irregularity index of delamination 0.1 m from the fixed end of 

laminated plate A. The flat peak confirms that damage is not severe.  

 

 

Fig 6-19: Numerical irregularity index of fibre breakage 0.1 m from the fixed end of 

laminated plate B. The sharp peak with the high magnitude indicates the 

location of the damaged sections.  
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Fig 6-20: Numerical irregularity index for delamination 0.1m from the fixed end of 

laminated plate B. The flat peak confirms that damage is not severe. 

6.7 Summary 

To summarise, this chapter has shown the numerical damage detection analysis of 

laminated CFRP composite plate structures using vibration-based damage detection 

techniques. Two types of narrow and laminated plates were used in this study. The 

narrow plates consist of four symmetric layers, while the other samples consist of eight 

symmetric layers. The numerical analysis was completed using the ABAQUS 6.14-1 

software to model both intact and damaged plates. Fibre breakage is modelled by using 

the mechanical properties of epoxy in the damage area while the mechanical properties 

of the release film is used to model in the delamination. In this analysis, the first two 

mode shapes were calculated. The second mode was used for detection purposes. The 

second conclusion in this chapter is that the damaged modes and curvature index do not 

detect the damaged sections. The improved irregularity curvature index provided a clear 

peak for both fibre breakage and delamination. Also, this index showed that fibre 

breakage has sharper and higher peaks than delamination in all these cases; the 

discrimination between FB and Del was the main point of this research. This difference 

occurs due to the considerably greater reduction in local stiffness due to fibre breakage 

than delamination. 
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Chapter 7: Experimental damage detection of laminated 

composite plates 

7.1 Introduction 

Damage detection in laminated carbon fibre-reinforced polymer (CFRP) plate 

structures based on experimental analysis is presented in this chapter. Vibration-based 

damage detection techniques are used to compare between delamination and fibre 

breakage. The experimental data are presented and explained for the intact and damaged 

laminated plate samples explained in chapter 5. The first three mode shapes were 

measured using laser Doppler vibrometer (LDV), where the second mode is analysed to 

detect the damaged areas. One of the novel points in this chapter calculating the Haar 

index using the MATLAB R2017a software. No previous comparison between these 

two types of damage has been reported to the best of our knowledge.  

7.2 Calculating mode shape using laser Doppler vibrometer 

This section presents the calculation of the bending modes for the vibrating 

laminated composite plates. Normally, modal testing or accelerometers are employed to 

measure the structural dynamic response which is exported and processed to determine 

the modal characteristics such as natural frequencies, damping and mode shapes of the 

vibrated objects. The laser Doppler vibrometer, as an optical instruments it can be used 

to measure the response data, of light weight samples such as composites. With the 

accessibility of real time scanning, a number of measurement possibilities become 

available [132].  

To demonstrate the process of calculating mode shape, vibrating cantilever beam 

is assumed, as shown in Fig 7-1. If the structure is excited at one of its resonance 

frequency, (𝜔𝑏), then the formula of velocity distribution in the space-time domain can 

be written as per Eq.(7.1) [133],   

 𝑣(𝑥, 𝑡)  = ∅(𝑥) 𝑠𝑖𝑛 𝜔𝑏𝑡 + 𝜓(𝑥) 𝑠𝑖𝑛 𝜔𝑏𝑡 (7.1) 
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where ∅(𝑥) and 𝜓(𝑥) are reciprocally orthogonal components of the vibrational 

velocity distribution. Within LDV scanning technique, structures such as beam or plate 

are supposed to be scanned under controlled way using a normalized scan function 

formula, as shown in Eq.(7.2),  

 𝑥  = 𝑐𝑜𝑠 𝜔𝑚𝑡 (7.2) 

 where 𝜔𝑚 is the scan rate. According to this, the response measured by LDV 𝑉(𝑡) at 

any time 𝑡, and position 𝑥 can be formulated as per Eq.(7.3). 

 𝑉(𝑡)  = ∅(𝑐𝑜𝑠 𝜔𝑚𝑡) 𝑠𝑖𝑛 𝜔𝑏𝑡 + 𝜓(𝑐𝑜𝑠 𝜔𝑚𝑡) 𝑐𝑜𝑠 𝜔𝑏𝑡 (7.3) 

Both functional  ∅ and 𝜓 in the above equation are even and periodic according to 

assumption of Eq.(7.2).Thus, these quantities can be simplified in the Fourier cosine 

series as per Eq.(7.4) and Eq.(7.5).   

 ∅(𝑐𝑜𝑠 𝜔𝑚𝑡)  =  𝐴0 + ∑  𝐴𝑘
∞
𝑘=1  𝑐𝑜𝑠 𝑘𝜔𝑚𝑡 (7.4) 

 

 𝜓(𝑐𝑜𝑠 𝜔𝑚𝑡)  =  𝐵0 + ∑ 𝐵𝑘
∞
𝑘=1  𝑐𝑜𝑠 𝑘𝜔𝑚𝑡 (7.5) 

Then, the velocity distribution 𝑉(𝑡)  is  

 
𝑉(𝑡)  = { 𝐴0 + ∑  𝐴𝑘

∞
𝑘=1  𝑐𝑜𝑠 𝑘𝜔𝑚𝑡} 𝑠𝑖𝑛 𝜔𝑏𝑡 + { 𝐵0 +

∑ 𝐵𝑘
∞
𝑘=1  𝑐𝑜𝑠 𝑘𝜔𝑚𝑡} 𝑐𝑜𝑠 𝜔𝑏𝑡 

(7.6) 

Eq.(7.6) can be written according to the trigonometric products as  

 

𝑉(𝑡)  = 𝐴0 𝑠𝑖𝑛 𝜔𝑏𝑡 + ∑
 𝐴𝑘

2

∞
𝑘=1 sin( 𝜔𝑏 + 𝑘𝜔𝑚) 𝑡 + ∑

 𝐴𝑘

2

∞
𝑘=1 sin( 𝜔𝑏 −

 𝑘𝜔𝑚) 𝑡 +  𝐵0 𝑐𝑜𝑠 𝜔𝑏𝑡 + ∑
𝐵𝑘

2

∞
𝑘=1 cos( 𝜔𝑏 + 𝑘𝜔𝑚) 𝑡 +  𝐵0 𝑐𝑜𝑠 𝜔𝑏𝑡 +

∑
𝐵𝑘

2

∞
𝑘=1 cos( 𝜔𝑏 − 𝑘𝜔𝑚) 𝑡  

(7.7) 

Using the definition of the Chebyshev polynomials 𝑇𝑘  which is 

𝑇𝑘 = cos (𝑘 𝑐𝑜𝑠−1𝑥)   

Equations (7.4) and (7.5) can be written as  
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 ∅(𝑥)=  𝐴0 + ∑  𝐴𝑘
∞
𝑘=1  𝑐𝑜𝑠 (𝑘 𝑐𝑜𝑠−1𝑥) (7.8) 

 𝜓(𝑥)  =  𝐵0 + ∑ 𝐵𝑘
∞
𝑘=1 𝑐𝑜𝑠 (𝑘 𝑐𝑜𝑠−1𝑥) (7.9) 

It is clear that equations (7.8) and (7.9) represent the expansion of Chebyshev 

series for  ∅(𝑥) and 𝜓(𝑥).  𝐴𝑘 and 𝐵𝑘 are the coefficients for these series. As 

demonstrated in Fig 7-2, the frequency at each point along the vibrated beam has two 

components. According to the above equations, mode shape can be calculated for any 

frequency. As an example, theoretical and experimental normalized second mode for 

the cantilever beam is calculated, as shown in Fig 7-3.  

The same principle is used in the current research to perform the calculation of the 

experimental mode shapes, where the LDV was used to measure the frequency response 

function (FRF) for all samples, then the measured data were processed to calculate the 

vibrational modes of the laminated CFRP plates.       

 

Fig 7-1: Schematic of LDV scanning [133]. 
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Fig 7-2: Frequency components of signal measured by LDV [133]. 

 

Fig 7-3: Experimental and theoretical second modes for vibrated beam reported in 

[133]. 

7.3 Application of wavelet transforms in damage detection 

This section explains the use of wavelet analysis as a signal processing analysis 

technique to detect the damaged regions. Wavelets can be defined as a rapidly decaying 

wave oscillation with a zero average, originally studied by Alex Grossmann and Jean 

Morlet Alex Grossmann and Jean Morlet [134]. These wavelets may be in terms of real 
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or complex functions. Real wavelets are more successful than complex in the detection 

of sharp signals. 

According to the principles of wavelet analysis, a basic wavelet function can be a 

function of time 𝑡 or a function of space 𝑥. In the current analysis, it is assumed that the 

independent variable is 𝑥. This function can be termed ‘mother wavelet’ and shown 

mathematically as 𝜓(𝑥). This function can be stretched or compressed (dilated) by 

scaling parameter 𝑎 (𝑎 ≠ 0), and position parameter 𝑏 to create a set of  𝜓𝑎,𝑏(𝑥) as 

written by Eq.(7.10) [135]. 

 𝜓𝑎,𝑏(𝑥) = 
1

√𝑎
 𝜓 (

𝑥−𝑏

𝑎
) (7.10) 

The function in the above equation is catered by the value 𝑏 at expansion 

proportionate to 𝑎. Within wavelet transform, both  𝑓(𝑥) and 𝜓𝑎,𝑏(𝑥) are correlated. 

Thus, the continuous wavelet transform (CWT) can be determined by the summation of 

signals’ coefficients along the given path. This CWT function 𝐶(𝑎, 𝑏) can be 

formulated as per Eq.(7.11). 

 𝐶(𝑎, 𝑏) = 
1

√𝑎
 ∫ 𝑓(𝑥) 𝜓 (

𝑥−𝑏

𝑎
)

∞

−∞
 𝑑𝑥 = ∫ 𝑓(𝑥) 

∞

−∞
𝜓𝑎,𝑏(𝑥)𝑑𝑥  (7.11) 

The output of the wavelet transform can be represented as coefficients that present 

the correlation of wavelet function with the signal processed. Consequently, the peak 

transitions which seen in 𝑓(𝑥)  produce wavelet coefficients at large amplitudes. This 

feature can be effectively recommended in the damage detection. To do this end, the 

inverse of CWT can be implemented to regain the signal from the CWT coefficients 

(𝐶(𝑎, 𝑏)) as written in Eq.(7.12), where 𝐾𝜓 is constant depends on the type of wavelet 

used.  

 𝑓(𝑥) = 
1

𝐾𝜓
 ∫  ∫ 𝐶(𝑎, 𝑏) 

∞

𝑏= −∞
𝜓𝑎,𝑏(𝑥) 𝑏𝑑 (

𝑑𝑎

𝑎2
)

∞

𝑎=−∞
  (7.12) 

The biorthogonal wavelet can be used to reduce the limitations of the orthogonal 

wavelet. In this case, the analysed signal 𝑓(𝑥) in the above equation can be written as 

per (7.13), the output of this signal can be as demonstrated in Fig 7-4 [135].     
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 𝑓(𝑥) = ∑ 𝐶𝑗,𝑘
̅̅ ̅̅

𝑗,𝑘  𝜓𝑗,𝑘(𝑥) (7.13) 

The calculated coefficients of signal 𝑓(𝑥) is written as per Eq.(7.14). 

 𝐶𝑗,𝑘
̅̅ ̅̅ = ∫ 𝑓(𝑥) 𝜓𝑗,𝑘

̅̅ ̅̅ ̅ (𝑥)𝑑𝑥 (7.14) 

Both equations (7.12) and (7.13), show wavelet transform can be applied to detect 

the damaged sections via analysis the measured signals. Where calculating the value of 

coefficients for the analysed signal over all signal domain can show different 

amplitudes. An example of using the wavelet transforms in crack detection, the analysis 

of fixed-end beam shown in Fig 7-5, as reported in [135] is discussed. The geometric 

properties of the cracked beam are;  𝐿 is the length of beam 3 m, ℎ, 𝑤 are height and 

width and both equal to 0.15 m, 𝑑 crack depth and 𝐿𝑐𝑟 is crack location. The mechanical 

properties are, 𝐸 = 31 𝐺𝑃𝑎, 𝜌 = 2.3 
𝑘𝑔

𝑚3⁄  and 𝜗 = 0.2. One of the selected results 

from this work, the intact and cracked deflection for the beam under impact load, as per 

Fig 7-6. It is clear from this figure the difference between the intact deflection mode and 

the crack modes, where cracks were created at node 4 and 9. The gap between them 

suggests the reduction in stiffness, but did not detect the crack location.  Calculating the 

biorthogonal wavelet for crack at node 9 (Fig 7-7) showed a local disturbance 

associated with crack location. The length of beam in this study was divided to a 

number of nodes in the analysed signal.   

According to above demonstration, Haar wavelet coefficients (Haar index) was 

calculated using MATLAB R2017a in the current research, where the command shown 

in Eq.(7.15), was used to run the calculation of Haar index. In this formula (∅𝑗𝑖
′′ )

𝐻
 is the 

intact curvature index and (∅𝑗𝑖
′′ )

𝐷
 is damaged one. In addition, calculating Haar index in 

this chapter is to upgrade the irregularity index and help in the solution of noise 

problems that generally associate with experiment.  

 Haar Index = 𝑑𝑤𝑡 (((∅𝑗𝑖
′′ )

𝐷
− (∅𝑗𝑖

′′ )
𝐻
)2) , `ℎ𝑎𝑟𝑟′); (7.15) 

In the current research, the Haar index was calculated and draw versus the number 

of nodes of each signal. As Haar function was run as a function of space 𝑥, then the 

number of nodes is equivalent to the length of plate (length of plate is divided into equal 



 

Chapter 7: Experimental damage detection of laminated composite plates   

University of Leicester                                                                                                     Page | 197  
 

30 nodes). Which means, as the damaged area was created in the centre of eight-layer 

plate samples, the peak of Haar index was found roughly at node number 15 or shifts 

due to noise as will be discussed in the result sections.   

 

Fig 7-4: Signal of biorthogonal wavelet [135]. 

  

 

Fig 7-5: Schematic of fixed-end beam under a static or dynamic load [135]. 
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Fig 7-6: Deflection of the fixed-end beam at t = 0.048 s after impact [135]. 

 

Fig 7-7: Wavelet transform analysis by biorthogonal wavelet (crack model at node 9) 

[135]. 
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7.4 Statistical analysis of mode shape 

To ensure that experimental results were statistically significant, three samples 

were used to measure each mode shape. Then the average of measurement for each 

mode was calculated and error bars were added using Excel. The curves shown in 

Fig 7-8 show the average of second mode for the intact and damaged narrow plates and 

the error bars indicate the variation of similar measurements. The same curves and error 

bars were calculated for style B plates and for impact damage style B plates as shown in 

Fig 7-9 and Fig 7-10 respectively.    
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Fig 7-8: Statistical analysis of the experimental second mode of the intact and damaged 

narrow laminated plates. 
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Fig 7-9: Statistical analysis of the experimental second mode of intact and damaged 

style B laminated plates.  
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Fig 7-10: Statistical analysis of the experimental second mode for impact damaged 

eight-layer style B laminated plates.  
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7.5 Experimental results and discussion of narrow plates  

The narrow laminated plate samples shown in Fig 5-8 have been tested 

experimentally under free vibration conditions. The first three intact and damaged 

modes of the four-layer narrow laminated plate were measured, as per Fig 7-11. These 

modes where normalized to the maximum amplitude found for each mode shape. The 

curve fitting (red line in these figures) was calculated in Excel. As in chapter 6, 

vibration-based techniques were used to detect the delamination and fibre breakage in 

all plate structures.  

The curvature index formulated in Eq.(4.2) was used, and to improve the damage 

detection, the irregularity curvature index was calculated, as per Eq.(6.1). The 

irregularity index represents the square difference between the damaged and intact 

modes, where (∅𝑗𝑖
′′ )

𝐻
 is the intact curvature index and (∅𝑗𝑖

′′ )
𝐷

 the damaged. The Haar 

index (discussed in section 7.3) was calculated to improve the damage detection in 

laminated structures. As these structures show high strength and stiffness compared 

with metals, the improved method is significantly needed. Also, Haar index is proposed 

here to overcome the noise and errors problems, normally associated with experiment. 

Both of these indexes are used for the first time. 

The analysis of the experimental data was compared with the finite element 

analysis presented in chapter 6 to show the real use of this method. A laser Doppler 

vibrometer was used to provide the accurate measurement of mode shapes. As 

demonstrated in Fig 7-11, the first normalized mode is quite noisy, and thus provides a 

noisy data analysis. In this regard, first mode was efficient for damage detection in any 

of the laminated plate samples. The normalized second intact and damaged modes for 

the narrow plates shown in Fig 7-12 show approximately the same (as might expected, 

experimental modes are more noisy than numerical ones) trend as that calculated in the 

FEA in chapter 6; however, there is no valuable difference between the intact and 

delamination modes. In this figure, the amplitude of the intact mode is -0.7, whilst for 

the delamination mode, the amplitude is -0.8; by contrast, the mode shape for the fibre 

breakage has a local perturbation close to the damaged area with an amplitude of -1. 

Also, it was noted that the greater reduction in stiffness due to fibre breakage provides 

more noisy data, and the effect of the damage can extended to the surrounded area of 
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damage itself. Further damaged areas cannot be detected by mode shape, although there 

is a local disturbance in fibre breakage mode near the damaged region. The effect of the 

noise can be clearly seen in experimental data. As demonstrated in Fig 7-13, the 

curvature index was not efficient to quantify the damaged sections, even for fibre 

breakage (fibre breakage is more severe than delamination). The fluctuating curve in 

this figure does not provide any notable peak, in an identical manner to the FEA 

analysis. This means neither the mode shape nor its curvature were sufficient to detect 

the damaged areas.   

As in FEA, the irregularity index for both FB and Del showed the damaged area. 

The curve shown in Fig 7-14 represents the irregularity index of the second mode with 

FB (fibre breakage) at L1. The effect of the noise was clear, where small jumps were 

picked up around the peak at approximately the position of damage (damage at 0.1 m). 

In this figure, the irregularity index increases sharply close to the damaged area to reach 

its peak and then decreases to the fluctuating level due to the noise. This can add 

another evidence that irregularity can overcome the noise effect. The shift in the main 

peak is entirely dependent on the amount of noise that was measured in experiment. The 

peak of the irregularity index was 7.7 and was quite close to the damaged area.  

In contrast, Fig 7-15 shows the irregularity index of the delaminated area located 

at L1. A flat peak was seen at 0.1 m (the delamination position) with an amplitude of 2, 

confirming the location of the damage. The curve in this figure increases gradually at 

0.05 m to its tip at 0.09 m then at 0.12 m declines gradually to the lowest level close the 

end of plate. This variation is entirely depends on the amount of stiffness reduction 

which affect the measured mode shape. The difference in both tip form and magnitude 

for the irregularity index can help to quantify and recognize whether Del or FB is 

existence in the narrow laminated plate structures. As for finite element analysis, FB 

still provides a sharper and greater peak than for the delamination. The only difference 

that the analysis of experimental data analysis provides is a non-smooth index due to 

effect of noise. 

 The improved method, which is represented by calculation of the Haar index for 

both FB and Del, as shown in Fig 7-16 and Fig 7-17. In these figures, the Haar index 

successfully detect the damaged areas in these structures. The peak of the Haar 

(coefficients of Haar function vary over the plate length) in FB is 8.1, and in Del is 2.9, 
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which shows the difference between these two types of damage. According to Haar 

index premise discussed in section 7.2, the number of nodes are identical to the plate 

length in all samples (plate length is divided into 30 nodes in this analysis). Which 

means damage is located at node 12 (0.1 m). The effect of noise causes the shift in the 

tip of Haar in both FB and Del, also causes the fluctuation found in FB case. Another 

issue to these figures that the area of delamination (0.02 m2) which is greater than the 

area of fibre breakage (0.00002 m2) and this can explain the extension of tip in Del, as 

shown in Fig 7-17. Experimental data analysis demonstrated that the decrease in 

stiffness due to FB is much greater than delamination, which was observed in the 

difference between the profile and magnitude of the irregularity and Haar indexes. The 

same conclusion of irregularity index can be drawn for the Haar index, where both of 

them behave in the same manner. 
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Fig 7-11: First three experimental normalized modes for the narrow delaminated plate, 

delaminated area is located at 0.1 m. No damage is apparent in this region. 
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Fig 7-12: Experimental  intact and damaged second modes for the four-layer narrow 

laminated plate, with delamination and fibre breakage located at 0.1 m from the 

fixed end. The damaged area is not predictable via mode shape, as there is 

considerable fluctuation in the fibre breakage mode due to the large reduction in 

stiffness. 

 

 

Fig 7-13: Experimental curvature index of fibre breakage at 0.1 m from the fixed end of 

the laminated narrow plate, curvature does not show the damage location.  
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Fig 7-14: Experimental irregularity index of fibre breakage at 0.1 m from the fixed end 

in the narrow laminated plate. The sharp peak and high magnitude can be 

considered an acceptable index by which to detect the damaged area.  

 

Fig 7-15: Experimental irregularity index of delamination at 0.1 m from the fixed end 

in the narrow laminated plate. The flat peak can be considered an acceptable 

index by which to demark the damaged elements. 
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Fig 7-16: Experimental Haar index of fibre breakage in the narrow laminated plate. The 

sharp peak is related to the presence of a high reduction in local stiffness as a 

result of fibre breakage. 

 

Fig 7-17: Experimental Haar index for delamination in the narrow laminated plate. The 

flat peak and low magnitude confirm that damage is less severe than fibre 

breakage. 
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7.6 Experimental results and discussion of eight-layer plates  

The eight-layer plate structures discussed in section 5.2.3.1 were used to 

investigate the damage detection subject. Two lay-up sequences, A and B, were utilized 

to determine the difference between the analysis of the intact and damaged dynamic 

signals. Mode shape, curvature, and irregularity indexes were calculated as a part of 

damage identification process. Further, the Haar index was calculated as a new index to 

improve the damage detection.   

Experimental work has been achieved using the intact and damaged (samples with 

artificial damage) composite plates, as seen in Fig 5-15. Delamination and fibre 

breakage were created to represent damaged areas. As in the previous section, the first 

three modes were measured, as shown in Fig 7-18, to start the analysis of the dynamic 

data. A laser Doppler vibrometer was used also to measure these modes. 

 In this study, it should be noted that the first mode is still noisy, and it is not 

useful for use with the damage detection subject, as seen in Fig 7-18. For that, the 

second mode was employed to detect the damaged areas in eight-layer plates. In terms 

of data analysis, the same concept can be discussed where the reduction in local 

stiffness caused by the damaged area can be detected via analysis of the intact and 

damaged dynamic signals. Dynamic signals (here mode shape) can be affected much 

more by the severe damage. It is clear from Fig 7-19, that there is no difference between 

the intact and delaminated mode. The amplitudes of normalised intact and delaminated 

(delamination at 0.1 m) modes are both -0.79, while in the same figure, the mode shape 

with fibre breakage shows a non-smooth profile. Further, in both damaged modes, FB 

and Del were not detected.  

 To quantify and localize the damaged areas, curvature index was calculated, as 

per Fig 7-20. The fluctuating profile seen in this figure confirms that the curvature index 

is not efficient to quantify and localize the damaged areas. Thus, the irregularity and 

Haar indexes were calculated for the purpose of damage detection. Calculating the 

irregularity index of style A with FB at 0.1 m shows the damaged area quite clearly, as 

per Fig 7-21, where the peak was located quite close to the FB area with a magnitude of 

0.11. In this figure the curve increases gradually to the sharp tip at 0.09 m. A small shift 

for the tip (FB at 0.1 m) occurred due the noisy data. Then declined to the lower level at 
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0.13 m. This peak can be considered as indicative of fibre breakage in this structure. 

Also, the Haar index successfully shows a peak at node 12 (damaged area position), as 

shown in Fig 7-22. The profile found for the Haar index is roughly similar to that of the 

irregularity index and its magnitude, 0.15, where the curve rises at node 4 to the sharp 

tip, and declines to the lower level at node 21.  

The same indexes are calculated to detect the delaminated area in style A. The 

difference in the reduction of local stiffness between FB and Del is clearly apparent 

through the calculation of these indexes. It was not surprising to find a flat peak at 0.1 m 

(delamination position) with an amplitude of 0.085, as seen in Fig 7-23, and a similar 

shape with a magnitude of 0.12 for the Haar peak for the same plate, as per Fig 7-24. In 

both these figures, curves rise gradually to reach the max magnitude, then stay constant 

to drop again to the lowest level at last quarter of beam length. Also, it should mention 

that the size of delamination is greater than FB and that how effects the extension of tip 

in both irregularity and Haar indexes.     

To study the effect of different ply-orientations on damage detection, style B was 

investigated. Fig 7-25, presents the irregularity index, where curve rises gradually to its 

sharp tip of 4.3 at 0.09 m then declines progressively to magnitude of 0.5 at 0.13 m. The 

noise effect causes both shift the peak and the observed fluctuation in this curve. The 

damaged area can be successfully detected. For the same plate conditions, Haar index is 

calculated as seen in Fig 7-26. The same gradual increasing and decreasing is found, 

where curve rises at node 4 to reach its tip of 5.8 at node 12 then declines to 0.5 at node 

20. Haar index show smoother profile than the irregularity index, this is considered as a 

significant issue to overcome the effect of noise. 

Delaminated area is detected by calculating the irregularity index, as per Fig 7-27. 

Within this figure curve had dramatic increase at 0.06 m to reach the flat tip of 0.27 at 

0.075 (delamination at 0.1 m), then declined to the fluctuated curve at 0.12 m. This shift 

caused by the noise effect. The irregularity index did not drop significantly after the 

damaged area as in style A, this due to the difference in laminate stiffness in between 

them. According to the laminated structures principles, style B is stiffer than style A. In 

this analysis Fig 7-28 presents the haar index for style B, curve rises at node 5 to its flat 

tip of 0.38 and at node 13 drops to 0.25.  
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According to these figures, the same trend for both FB and Del was found. In 

brief, for both of those styles, the peak found for fibre breakage was sharper and greater 

in magnitude than that for delamination, which can be used as a basis by which to 

differentiate between the fibre breakage and delamination. It is important to note that 

the Haar index provides a smoother curve than FB, which is of particular importance 

when dealing with noisy signals.  

 

 

 

Fig 7-18: First three experimental non-dimensional modes for delaminated plate B, 

with delaminated area 0.1 m from the fixed end of the plate. The damage cannot 

be predicted.  
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Fig 7-19: Experimental intact and damaged second modes for laminated plate B. 

Delamination and fibre breakage are located 0.1m from the fixed end. The 

damaged area is not predicted by the mode shape, though the fibre breakage 

mode shows considerable fluctuation due to the significant reduction in 

stiffness.  

 

Fig 7-20: Curvature index of experimental second mode with fibre breakage 0.1 m 

from the fixed end of laminated plate B. The curvature does not show the 

damage location. 
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Fig 7-21: Experimental irregularity index for fibre breakage 0.1 m from the fixed end 

of laminated plate A. The sharp peak gives an indication of the localization of 

the damaged area.   

 

Fig 7-22: Experimental Haar index for fibre breakage 0.1 m from the fixed end of 

laminated plate A. The sharp peak indicates the presence, and localization of 

severe damage in the structure.   
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Fig 7-23: Experimental irregularity index of delamination 0.1 m from the fixed end of 

laminated plate A. The flat top of the curve shown is evidence of the 

localization of the damaged area.    

 

Fig 7-24: Experimental Haar index for delamination 0.1 m from the fixed end of 

laminated plate A. The flat peak observed indicates that there is little damage to 

the structure.   
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Fig 7-25: Experimental irregularity index of fibre breakage 0.1 m from the fixed end of 

laminated plate B. The sharp peak indicates the localization of the damaged 

area.   

 

Fig 7-26: Experimental Haar index for fibre breakage 0.1 m from the fixed end of 

laminated plate B. The sharp peak indicates the presence of severe damage to 

the structure.   
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Fig 7-27: Experimental irregularity index for delamination 0.1 m from the fixed end of 

laminated plate B. The flat top of the curve indicates the localization of the 

damaged area.    

 

Fig 7-28: Experimental Haar index of delamination 0.1 m from the fixed end of 

laminated plate B. The flat peak confirms that there is little damage to the 

structure. 
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7.7 Experimental results and discussion of eight-layer plates (impact 

damage) 

This section presents the discussion of damage detection in CFRP plates using 

vibration-based damage techniques. To match the real damage in laminated composite 

plate structures, fibre breakage and delamination were created using the impact test. 

Details of creating both of FB and Del are discussed in section 5.2.3.2. Both style A and 

B were designed as shown in Fig 5-15 for testing using an impact load. The use of two 

different indenter diameters allows the creation of delamination and fibre breakage 

(small indenter diameter produces FB, whereas, the delamination will dominate the 

damage with large diameter).  

As for the narrow and eight-layer plate structures, the first three modes were 

measured using the laser Doppler vibrometer, as per Fig 7-29. In this figure, mode 

shapes are presented as normalized to the maximum amplitude of each mode shape. The 

first mode was found to fluctuate (due the measurement of noise and errors), so again 

was of no use in damage detection. For this, the second mode was selected to detect the 

damaged areas for both FB and Del.  

To start the damage detection procedures, both the intact and damaged modes 

draw to show if there any difference between them, as per Fig 7-30. From this figure, it 

can be seen that there is no clear difference between the intact and damaged modes. The 

amplitude of these modes in the centre of plate ranged between -0.6 and -0.8, which 

means the reduction in local stiffness due the damage cannot be detected by calculating 

mode shape, even with FB (severe damage) in these structures. Similarly, the curvature 

index for style B did not show the fibre breakage at 0.1 m, as per Fig 7-31. The 

fluctuating shown in this figure with max tip of 0.0015 at 0.15 m did not show the 

damaged area. 

To perform the damage detection, both of the curvature and Haar indexes are 

calculated. It is notable from Fig 7-32 that a clear peak for the irregularity was found in 

plate A with fibre breakage at 0.1 m. The peak does not localize at 0.1 m (damage 

location). This shift occurs due to effect of irregular damaged area (when the indenter 

hits the sample, the resultant damage extends to the region surrounding the point of 

impact). Moreover, the effect of noise also contributes to this shift, where the curvature 
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is quite sensitive to any change in mode shape. The gradually increase of this curve to 

the sharp tip at 0.09 m and then decreases to the lower level can suggest the damaged 

area. The same trend was found when the Haar index was calculated, as shown in 

Fig 7-33. The peak of this index shows the effect of FB on the mode shape, so as it was 

discussed in the previous section, plate length is dived into 30 equal nodes. So in this 

figure, damage is created at node 15. The noise and damage itself extensively shift the 

tip of Haar index from the real position (damage position) to node 11. There is no 

considerable difference between the irregularity and Haar indexes for FB, where their 

peak magnitudes are 1.21x 10-6 and 1.62 x 10-6.  

In contrast, it is clear from Fig 7-34 and Fig 7-35 that there are flat peaks for the 

irregularity and Harr indexes for style A with delamination at 0.1 m, whose peak 

magnitudes are 5.9 x 10-8 and 8.2 x 10-8, respectively. The lower reduction in local 

stiffness and the large size of delamination are detected via the peak found in these two 

figures. According to these four figures, it is easy to recognize that the FB peak seen for 

both the irregularity and Haar indexes are sharper and greater in magnitude than those 

found for Del. Again, this due the greater reduction of local stiffness caused by FB. The 

considerable reduction in local stiffness due to fibre breakage makes the peak in these 

indexes sharper than the analogous peak due to delamination.  

The same analysis was applied to style B in terms of the analysis of FB and 

delamination damage, where Fig 7-36, Fig 7-37, Fig 7-38 and Fig 7-39 show the FB and 

delamination signal analysis. Within these figures, the trend in mode shape analysis is 

identical to that found for style A, Where in both of these styles, the FB peak magnitude 

of the irregularity and Haar indexes is sharper and higher than Del peak. Peak of 

irregularity index does not localized with the damaged area due to the spread of damage 

to the surrounding region (out of the contact area of the point of impact of the indenter) 

and the effect of noisy environment. However, the only difference between these styles 

was that fibre breakage is more easily detected for style A than style B (the peak value 

of irregularity index with FB in style A is 1.21x10-6  ,while in style B it is 2.9 x 10-7  ); 

otherwise, the trend in the results for both styles is essentially identical. 
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Fig 7-29: First three experimental normalized modes for eight-layer delaminated plate 

B. There is no damage shown, although the impact delaminated area is present 

0.1 m from the fixed end of the plate. 
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Fig 7-30: Experimental  intact and damaged second modes for the eight-layer intact and 

impact delaminated and fibre breakage laminated plate B. Damage is located at 

0.1 m from the fixed end; the damaged area is not  apparent from the mode 

shape.   

 

Fig 7-31: Curvature index of experimental second mode with impact fibre breakage at 

0.1 m in eight-layer from the fixed end of the eight-layer laminated plate B. The 

curvature does not show the damage location. 
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Fig 7-32: Experimental irregularity index for fibre breakage 0.1 m from the fixed end 

of impact damaged laminated plate A. The sharp peak indicates the detection of 

the damaged area.   

 

Fig 7-33: Experimental Haar index for fibre breakage 0.1 m from the fixed end of 

impact damaged laminated plate A. The sharp peak demonstrates the presence 

of severe damage to the structure.   
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Fig 7-34: Experimental irregularity index for delamination 0.1 m from the fixed end of 

impact damaged laminated plate A. The flat peak of the curve indicates the 

localization of the damaged area.    

 

Fig 7-35: Experimental Haar index for delamination 0.1 m from the fixed end of impact 

damaged laminated plate A. The flat peak confirms that a small amount of 

damage is present in the structure.   
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Fig 7-36: Experimental irregularity index for fibre breakage 0.1 m from the fixed end 

of impact damaged laminated plate B. The sharp peak indicates the detection of 

the damaged area.   

 

Fig 7-37: Experimental Haar index for fibre breakage 0.1 m from the fixed end of the 

impact damaged laminated plate B. The sharp peak demonstrates the presence 

of severe damage to the structure.   
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Fig 7-38: Experimental irregularity index for delamination 0.1 m from the fixed end of 

the impact damaged laminated plate B. The flat peak of the curve indicates the 

damaged area.    

 

Fig 7-39: Experimental Haar index for delamination 0.1 m from the fixed end of the 

eight-layer impact damaged laminated plate A. The flat peak observed confirms 

that a small amount of damage is present in the structure. 
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7.8 Comparison between FEA and experimental work 

This section presents the comparison between the data analysis in both finite 

element analysis presented in chapter 6 and experiment work reported in this chapter. 

The key premise in both chapters was the detection of fibre breakage and delamination 

using vibration-based damage techniques.  

Damage detection entirely depends on the effect of these damages on the 

calculated mode shapes, where any damage causes a reduction in the local stiffness. In 

general, fibre breakage reduces local stiffness more than delamination, because Young’s 

modulus of fibre is the main parameter in calculating ply-stiffness.  

Another issue to be discussed is the effect of noise and errors in the experimental 

data. These effects influence the damage detection process. Here, the comparison 

includes relating the theoretical (FEA) and experimental mode shapes, curvature and the 

irregularity index. The data for narrow laminated plates and style B plates was 

implemented to perform this comparison. 

 Within the data of narrow laminated plates, as seen in Fig 7-40, there is no 

significant difference between theoretical and experimental modes. In this figure, 

theoretical modes (intact and damaged) shows profile smoother than experimental one. 

In both theoretical and experimental, mode shape with Del has more fluctuation than the 

intact mode and less than what observed in fibre breakage (FB) mode. This depends on 

the small reduction of stiffness in Del compared with FB.  

Theoretical mode in FB showed the same experimental amplitude at 0.09 m (FB 

at 0.1 m), but still provides a smooth curve. It is not surprising to see this fluctuation in 

experiential data, as this the result of noise effects. In brief, theoretical and experimental 

modes showed convergence profiles, and in all modes, damaged areas were not 

detected. 

Theoretical and experimental curvature indexes are compared for narrow 

laminated plate with FB at 0.1 m, as per Fig 7-41a, b, where the theoretical index is 

shown fluctuating along the plate length with maximum tip 3.6 at 0.1 m (FB location). 

In the same regard, experimental index shown in Fig 7-41b has a disturbed curve from 

0.05 m to the end of plate with a max amplitude of 3.2 at 0.12 m. This means in both 

there no that difference and they did not detect the FB. 
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The effect of noise can be clearly seen on the calculating of irregularity index, as 

per Fig 7-42 a, b. In terms of peak, theoretical index has greater peak than the 

experimental one, with their values of 13 and 7.5 respectively. The experimental index 

was quite disturbed compared with the theoretical curve. This fluctuating is clearly 

observed after the damaged area. The sharp increase in both precisely detects the FB. In 

the same manner, theoretical and experimental irregularity indexes are compared for 

delaminated plates, as shown in Fig 7-43a, b. As in FB case, the amplitude of the 

theoretical irregularity index is greater than experimental value at 4.8 and 2.1. Whilst 

the flat tip in both is found. For experimental index the centre of the tip was identical to 

theoretical Del location. The sharp tip in FB case compared with the flat for Del is 

considered the legend of irregularity index. Also, both theoretical and experimental 

indexes detect the damaged area.  

 

 

Fig 7-40: Theoretical and experimental intact and damaged normalized second mode 

shape for narrow laminated plates. FB and Del are located at 0.1m to the fixed 

edge, there is no a valuable difference between the intact and delamination 

response, whilst disturbance was found at the middle of plate with FB 

experimental mode. 
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Fig 7-41: Curvature index of second mode shapes for narrow laminated plates with 

fibre breakage at 0.1m; a) theoretically (the entire curve shows clear disturbance 

and the damaged location was not detected, and b) experimentally (fluctuating 

observed along the curve and the damage not detected).   

 

 

Fig 7-42: Irregularity index of second mode for narrow laminated plates with fibre 

breakage at 0.1 m; a) theoretical irregularity index, and b) experimental 

irregularity index,  in all cases FB was successfully localized. 
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Fig 7-43: Irregularity index of second mode for narrow laminated plates with Del at 0.1 

m; a) theoretical irregularity index, and b) experimental irregularity index, in 

both Del was localized. 

The second part in this section is the comparison of theoretical and experimental 

mode shapes, curvature and irregularity index in style B laminated plates. As can be 

seen in Fig 7-44, there is no difference between the FEA and experimental modes in 

both intact and delamination (Del at 0.1 m), where the mode amplitude at 0.1 m is 

roughly - 0.8. In the same figure, the experimental mode with FB at 0.1 m showed 

fluctuated profile inverse the smooth curve of FEA mode, although in dynamic analysis 

this is not considered as a difference. The noise effect is one of the parameter causes for 

this divergence. 

Then, the comparison between the FEA and experimental curvature index for 

artificial FB in style B plates is presented, as shown in Fig 7-45a, b. 

 According to the evaluation of curvature as an effective and sensitive index to 

any small change in the mode shape, a small jump in FEA curvature with value 600 was 

found at 0.1 m (FB location), as per Fig 7-45a. This jump disappeared in the 

experimental index as shown in Fig 7-45b. Again, noise reduces the efficiency of the 

curvature index, where the tip of the curvature is much less than FEA index at 

maximum 4.1. In brief, there is a difference in the amplitude and profile for FEA and 

experimental curvature indexes caused by the noisy data and both cannot be considered 

as an efficient indexes to detect FB and Del.  

Finally, the irregularity index for both FEA and experiment is compared, where 

Fig 7-46a, b shows the comparison between the FE and experimental irregularity 
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indexes. In Fig 7-46a,  the irregularity index showed a sharp peak with value 6.5 at FB 

location, whilst, experimentally, this value was 4.4 and the curve increased gradually 

after 0.05 m to its tip and then declined to 0.5 at ≅ 0.13 m. This results that in both 

analysis the irregularity curve goes up to the sharp tip but in different manners. 

Experimentally, the tip of irregularity had a small shift to the damage location due to the 

noise data. The same issue performed to compare between irregularity indexes for FEA 

and experimental with Del, as shown in Fig 7-47a, b. For FEA index shown in 

Fig 7-47a, the peak value is 0.6 and the curve jumps at 0.09 m, then comes to the zero at 

0.12 m (Del length is 0.02 m). Experimentally, the tip value was 0.28, as shown 

Fig 7-47b, the curve rises sharply at 0.075 m to the tip, then declined to 0.15 at plate 

length 0.12 m. The flat tip and the approximate numerical value for the FEA and 

experimental indexes emphasises the convergence between them. Also, another 

comparison in both Fig 7-46  and Fig 7-47 can be drawn, where the irregularity FB 

index showed sharper and greater magnitude than Del in FEA and experiment.  

 

 

Fig 7-44: Theoretical and experimental intact and damaged normalized second mode 

shape for style B laminated plate. FB and Del are located at 0.1 m to the fixed 

edge, there is no a valuable difference between the intact and delamination 

response, whilst more fluctuation with the experimental FB mode.  
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Fig 7-45: Curvature index of second mode shape for style B laminated plates with fibre 

breakage at 0.1m; a) theoretically (a small disturbance shown at damage 

location but that not efficient in the real applications, and b) experimentally (the 

entire cure is disturbed) . 

 

 

Fig 7-46: Irregularity index of second mode for style B laminated plates with fibre 

breakage at 0.1 m; a) theoretical irregularity index, and b) experimental 

irregularity index, in both FB was successfully localized. 
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Fig 7-47: Irregularity index of second mode for style B laminated plates with 

delamination at 0.1 m; a) theoretical irregularity index and b) experimental 

irregularity index, in both Del was detected. 

7.9 Summary 

To summarise, this chapter has shown the experimental damage detection analysis 

of laminated CFRP composite plate structures using vibration-based damage detection 

techniques. The same laminated plate models discussed in chapter 6 were used to 

achieve the experimental analysis, whereas narrow and laminated plates with artificial 

damage, in addition to plates with impact damage, were used in this study. The narrow 

plates consisted of four symmetric layers, while the other samples consisted of eight 

symmetric layers. In experiment, the first three mode shapes were measured using a 

laser Doppler vibrometer. The first mode in each case was found to be extremely noisy, 

making it inefficient for the detection of damaged sections, whilst the second mode was 

generally found to be suitable in this regard. The second conclusion in this chapter is 

that the damaged modes and curvature index did not quantify and localize damaged 

areas for either artificial or impact damage. In contrast, calculating the irregularity index 

successfully detect both fibre breakage and delamination. Also, calculating the Haar 

index (using MATLAB R2017a) as an improved method showed the same efficiency of 

detection as the irregularity index. Further, the use of both the irregularity and Harr 

indexes showed that fibre breakage has sharper peaks and grater magnitudes than 

delamination in laminated structures; the discrimination between delamination and fibre 

breakage being the main point of this research. This difference occurs due to the 
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considerably greater reduction in local stiffness due to fibre breakage than the case for 

delamination. In all cases, the effect of noise was clearly observed during the shift of tip 

from the real damage position and the fluctuating curves for both the irregularity and 

Haar indexes.  
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Chapter 8: Conclusions and future work 

8.1 Conclusions 

Early detection of damage in laminated structures is one of the most important 

requirements for structural health monitoring systems to avoid failures. Over the past 

few decades, vibration-based damage detection techniques have been utilized as a 

diagnostic method in different types of structures. Fundamentally, these techniques are 

based on the variation in local flexibility due to the existence of damage. To find the 

most suitable and yet accurate technique to use for a given problem, a number of 

parameters such as ease of use, accuracy and economic factors should be taken into 

consideration.  

In this thesis, the vibration techniques to detect the damaged areas in carbon fibre 

reinforced polymer (CFRP) are developed using two indexes. The first one, which is 

called the irregularity curvature index, used the intact and damaged modes to assess the 

normality of these modes. The peak of this index was then utilized to localize and 

quantify the damaged araes. The second index, which is an improvement on the Haar 

index, used to perform the data analysis based on the irregularity index profile. The 

peaks that are picked up in this method added another approach for assessing the 

existence of damage. Both of these indexes showed the efficiency in damage detection 

particularly with experimental data.  

  In order to achieve the objective of this thesis, at first, simple cantilever beams 

with and without damage were modelled numerically using the finite element software 

COMSOL Multiphysics 5.1. Numerical simulation was run under free vibration 

condition to evaluate the efficiency of a number of dynamic response techniques used in 

damage detection (refer to Chapter 5). All beams were excited at their first two mode 

shapes. The damaged section was modelled by reducing the local stiffness (𝐸𝐼𝑑) with 

different values. In the analysis of the numerical simulation, it was shown that the mode 

shape and its slope are sensitive and, therefore, suitable for the detection of severe 

damages. The curvature index (refer to Eq.(4.2)), and fractal dimension (FD) (refer to 

Eq.(4.3)), also showed high sensitivity in the presence of a damage. The peak in both 

cases was associated with damaged sections. However, curvature index was much better 
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than fractal dimension index when noise effect is taken into account. Moreover, the 

irregularity index of mode shape (refer to Eq.(4.6)), showed a good sensitivity to the 

discontinuities in mode shape due to damaged sections. These numerical studies provide 

a significant understanding that, due to its sensitivity, using curvature-based damage 

detection is one of the most effective indexes that can be used for damage detection. 

Secondly, damage detection in laminated composite structures was investigated 

numerically. Four-layer narrow and eight-layer CFRP laminated plates were used to 

model the fibre breakage and delamination. This modelling was accomplished using the 

ABAQUS 6.14-1 software. Cantilever plate condition was used for all plates which 

were analysed under free vibration condition. In the modelling, the fibre breakage is 

simulated by adding the mechanical properties of epoxy to the damaged area, and the 

delamination was modelled by adding a very thin layer (15 μm) of release film 

properties to the damaged area. The first two modes were calculated in order to detect 

the damage areas. Mode shape failed to detect both of fibre breakage and delamination 

in all plates. Applying the curvature index in this case (refer to Eq.(4.2)), did not detect 

the damaged areas. In contrast, applying the improved formula of irregularity curvature 

index (refer to Eq.(6.1)), successfully detected and differentiated between fibre 

breakage and delamination. Importantly, the clear peak with this improved formula of 

irregularity curvature index was used to show the damaged areas. The irregularity 

curvature index used in this way has not been reported previously in the literature. In 

addition, the analysis showed that fibre breakage has a sharper and higher magnitude 

peak than those found for delamination.  

To compare FEA and experimental results, the samples discussed in FE analysis 

were manufactured to perform the experimental analysis. The artificial and impact 

damages (fibre breakage and delamination) in CFRP laminated structures were 

produced for the purpose of being tested. The first three mode shapes were measured 

using laser Doppler vibrometer located in ASDEC. The same conclusion of FEA can be 

drawn, where either mode shape or its curvature can detect the damaged area. In 

contrast, calculating the irregularity and the novel index (the Haar index) detected the 

damaged areas efficiently. Also they provide the same trend of data analysis, and they 

both showed peak with fibre breakage being sharper and greater magnitude than 

delamination. The major difference between FEA and experiment approach was the 
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noise effect seen in experimental method. This was picked up as random jumps in the 

irregularity and Haar indexes.    

Finally, there are a number of conclusions that can be drawn. For CFRP laminated 

structures, the first mode was found quite noisy in all plates, rendering it essentially 

useless for damage detection purpose. The baseline data is extremely important for the 

detection of damaged areas. The main achievements of this thesis include the following: 

 Different vibration-based damage indicators have been evaluated to 

ensure that most sensitive approach can be used for damage identification. 

For example, slope, curvature, irregularity and fractal dimension have all 

been considered in the analysis of intact and damaged data. 

 A new method was used to calculate the reduction of the local stiffness of 

beam structures. This method depends on shifting the neutral axes to 

another location according to the damaged location.  

 The noise effect was investigated to test the efficiency of vibration 

techniques in analysing a given signal. 

 Manufacturing plate structures with and without damage to achieve the 

experimental part of the current research. 

 Curvature index was improved by calculating the irregularity index. 

Additionally, the novel numerical Haar index is proposed to enhance the 

analysis of dynamic data. The Haar provides the same peak that can be 

found using irregularity index.   

 Both irregularity and Haar indexes were applied to assess fibre breakage 

and delamination in the finite element and experimental analyses. 

Comparison between fibre breakage and delamination was presented.  

8.2 Future Work 

Vibration-based damage detection techniques are highly recommend to detect 

damage in different applications, not just laminated composite structures. Accordingly, 

these methods need to be investigated and developed extensively. Other indexes can be 

used along with the currently known-indexes to enhance the damage detection 

techniques. Thus, the future scientific research on this subject focus on the following: 
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 The application of the Haar and irregularity indexes to localize and 

quantify damaged area in complicated structures and extend their use to 

2D or even 3D dynamic analysis. 

 The use of these indexes to detect other types of damage such as those in 

non-composite structures. 

 The current indexes can be used to detect damage in different types of 

composite materials with multiple damages.  

 Other laminated structures such as curved beams, plate, trapezoidal, or 

triangular structures can be tested with actual impact loads, then current 

indexes can be used to detect the damaged areas.  

 Because the key feature of damage detection depends on the possibility of 

showing discontinuities in modal characteristics due to the presence of 

damage, new methods can be developed to enhance the damage detection 

using this primary feature. 
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